diff --git "a/114483/metadata.json" "b/114483/metadata.json" new file mode 100644--- /dev/null +++ "b/114483/metadata.json" @@ -0,0 +1,98997 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "114483", + "quality_score": 0.9028, + "per_segment_quality_scores": [ + { + "start": 71.22, + "end": 71.32, + "probability": 0.1107 + }, + { + "start": 71.32, + "end": 71.32, + "probability": 0.068 + }, + { + "start": 71.32, + "end": 71.32, + "probability": 0.1742 + }, + { + "start": 71.32, + "end": 71.32, + "probability": 0.2918 + }, + { + "start": 71.32, + "end": 72.46, + "probability": 0.6459 + }, + { + "start": 72.66, + "end": 73.46, + "probability": 0.669 + }, + { + "start": 75.52, + "end": 79.71, + "probability": 0.3144 + }, + { + "start": 81.66, + "end": 85.18, + "probability": 0.4282 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 144.73, + "end": 147.76, + "probability": 0.1771 + }, + { + "start": 147.76, + "end": 147.92, + "probability": 0.0231 + }, + { + "start": 149.14, + "end": 149.24, + "probability": 0.1194 + }, + { + "start": 149.34, + "end": 150.22, + "probability": 0.046 + }, + { + "start": 150.94, + "end": 151.54, + "probability": 0.1041 + }, + { + "start": 151.54, + "end": 153.32, + "probability": 0.1617 + }, + { + "start": 154.88, + "end": 157.46, + "probability": 0.1439 + }, + { + "start": 157.9, + "end": 158.42, + "probability": 0.2207 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 272.0, + "end": 272.0, + "probability": 0.0 + }, + { + "start": 275.4, + "end": 278.76, + "probability": 0.1739 + }, + { + "start": 283.7, + "end": 284.18, + "probability": 0.0271 + }, + { + "start": 285.55, + "end": 290.7, + "probability": 0.075 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 404.17, + "end": 406.99, + "probability": 0.1374 + }, + { + "start": 408.11, + "end": 412.63, + "probability": 0.0225 + }, + { + "start": 417.98, + "end": 419.82, + "probability": 0.113 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 525.0, + "end": 525.0, + "probability": 0.0 + }, + { + "start": 526.72, + "end": 531.72, + "probability": 0.066 + }, + { + "start": 531.72, + "end": 532.08, + "probability": 0.4202 + }, + { + "start": 547.58, + "end": 549.12, + "probability": 0.0169 + }, + { + "start": 549.76, + "end": 551.16, + "probability": 0.0778 + }, + { + "start": 551.24, + "end": 555.14, + "probability": 0.078 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.0, + "end": 715.0, + "probability": 0.0 + }, + { + "start": 715.1, + "end": 716.78, + "probability": 0.0253 + }, + { + "start": 717.24, + "end": 719.54, + "probability": 0.3875 + }, + { + "start": 721.26, + "end": 722.64, + "probability": 0.1417 + }, + { + "start": 734.38, + "end": 734.96, + "probability": 0.0091 + }, + { + "start": 734.96, + "end": 735.2, + "probability": 0.3245 + }, + { + "start": 737.07, + "end": 742.58, + "probability": 0.0247 + }, + { + "start": 742.74, + "end": 743.78, + "probability": 0.0828 + }, + { + "start": 744.12, + "end": 744.88, + "probability": 0.4906 + }, + { + "start": 746.84, + "end": 748.4, + "probability": 0.2343 + }, + { + "start": 748.4, + "end": 749.18, + "probability": 0.0487 + }, + { + "start": 749.18, + "end": 749.95, + "probability": 0.0725 + }, + { + "start": 749.96, + "end": 750.06, + "probability": 0.0237 + }, + { + "start": 750.06, + "end": 751.1, + "probability": 0.0097 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.0, + "end": 858.0, + "probability": 0.0 + }, + { + "start": 858.38, + "end": 858.42, + "probability": 0.0691 + }, + { + "start": 858.42, + "end": 858.42, + "probability": 0.0493 + }, + { + "start": 858.42, + "end": 858.42, + "probability": 0.3155 + }, + { + "start": 858.42, + "end": 858.42, + "probability": 0.0661 + }, + { + "start": 858.42, + "end": 858.92, + "probability": 0.4731 + }, + { + "start": 859.84, + "end": 860.6, + "probability": 0.5478 + }, + { + "start": 862.02, + "end": 863.3, + "probability": 0.828 + }, + { + "start": 866.22, + "end": 867.06, + "probability": 0.7198 + }, + { + "start": 868.14, + "end": 869.93, + "probability": 0.9763 + }, + { + "start": 870.98, + "end": 871.8, + "probability": 0.9531 + }, + { + "start": 874.76, + "end": 875.5, + "probability": 0.9738 + }, + { + "start": 877.84, + "end": 880.08, + "probability": 0.9796 + }, + { + "start": 881.06, + "end": 881.16, + "probability": 0.7031 + }, + { + "start": 881.32, + "end": 882.2, + "probability": 0.8647 + }, + { + "start": 882.26, + "end": 883.99, + "probability": 0.9946 + }, + { + "start": 892.1, + "end": 892.42, + "probability": 0.8701 + }, + { + "start": 893.1, + "end": 894.96, + "probability": 0.9993 + }, + { + "start": 895.82, + "end": 896.9, + "probability": 0.784 + }, + { + "start": 897.24, + "end": 898.88, + "probability": 0.868 + }, + { + "start": 899.26, + "end": 900.68, + "probability": 0.7363 + }, + { + "start": 902.54, + "end": 902.8, + "probability": 0.7925 + }, + { + "start": 903.3, + "end": 906.06, + "probability": 0.9839 + }, + { + "start": 906.34, + "end": 907.6, + "probability": 0.9648 + }, + { + "start": 907.67, + "end": 909.32, + "probability": 0.9954 + }, + { + "start": 909.32, + "end": 909.32, + "probability": 0.6251 + }, + { + "start": 909.32, + "end": 909.32, + "probability": 0.5307 + }, + { + "start": 909.32, + "end": 910.44, + "probability": 0.1897 + }, + { + "start": 910.88, + "end": 917.48, + "probability": 0.5761 + }, + { + "start": 918.34, + "end": 918.34, + "probability": 0.0122 + }, + { + "start": 918.34, + "end": 919.5, + "probability": 0.7233 + }, + { + "start": 919.7, + "end": 920.62, + "probability": 0.6938 + }, + { + "start": 920.88, + "end": 921.36, + "probability": 0.8621 + }, + { + "start": 922.28, + "end": 922.84, + "probability": 0.174 + }, + { + "start": 922.84, + "end": 923.22, + "probability": 0.0027 + }, + { + "start": 923.42, + "end": 924.38, + "probability": 0.5413 + }, + { + "start": 925.08, + "end": 925.78, + "probability": 0.1204 + }, + { + "start": 925.88, + "end": 926.46, + "probability": 0.4812 + }, + { + "start": 926.56, + "end": 931.66, + "probability": 0.9929 + }, + { + "start": 932.8, + "end": 936.6, + "probability": 0.6896 + }, + { + "start": 937.0, + "end": 937.76, + "probability": 0.7476 + }, + { + "start": 938.0, + "end": 939.92, + "probability": 0.9814 + }, + { + "start": 941.16, + "end": 944.62, + "probability": 0.9689 + }, + { + "start": 945.12, + "end": 949.9, + "probability": 0.9912 + }, + { + "start": 950.94, + "end": 952.34, + "probability": 0.9907 + }, + { + "start": 954.28, + "end": 956.36, + "probability": 0.9532 + }, + { + "start": 957.24, + "end": 959.67, + "probability": 0.9967 + }, + { + "start": 960.16, + "end": 961.68, + "probability": 0.9961 + }, + { + "start": 963.7, + "end": 965.93, + "probability": 0.668 + }, + { + "start": 966.74, + "end": 968.16, + "probability": 0.9758 + }, + { + "start": 969.08, + "end": 971.42, + "probability": 0.9763 + }, + { + "start": 973.62, + "end": 974.98, + "probability": 0.9829 + }, + { + "start": 976.16, + "end": 977.42, + "probability": 0.8812 + }, + { + "start": 978.5, + "end": 982.74, + "probability": 0.9233 + }, + { + "start": 983.26, + "end": 985.22, + "probability": 0.9269 + }, + { + "start": 986.14, + "end": 986.68, + "probability": 0.9065 + }, + { + "start": 987.54, + "end": 988.72, + "probability": 0.9902 + }, + { + "start": 989.12, + "end": 993.46, + "probability": 0.9491 + }, + { + "start": 994.74, + "end": 996.21, + "probability": 0.9951 + }, + { + "start": 996.94, + "end": 1000.1, + "probability": 0.9417 + }, + { + "start": 1001.22, + "end": 1002.16, + "probability": 0.9267 + }, + { + "start": 1003.72, + "end": 1004.96, + "probability": 0.9145 + }, + { + "start": 1005.56, + "end": 1005.88, + "probability": 0.6626 + }, + { + "start": 1006.58, + "end": 1008.32, + "probability": 0.856 + }, + { + "start": 1009.72, + "end": 1011.14, + "probability": 0.9878 + }, + { + "start": 1011.24, + "end": 1013.42, + "probability": 0.9924 + }, + { + "start": 1013.42, + "end": 1016.14, + "probability": 0.9939 + }, + { + "start": 1017.42, + "end": 1018.1, + "probability": 0.9937 + }, + { + "start": 1019.92, + "end": 1020.67, + "probability": 0.877 + }, + { + "start": 1022.54, + "end": 1027.6, + "probability": 0.8435 + }, + { + "start": 1028.0, + "end": 1029.89, + "probability": 0.9868 + }, + { + "start": 1030.22, + "end": 1031.3, + "probability": 0.9256 + }, + { + "start": 1031.4, + "end": 1032.04, + "probability": 0.8881 + }, + { + "start": 1032.16, + "end": 1032.72, + "probability": 0.9344 + }, + { + "start": 1033.06, + "end": 1034.0, + "probability": 0.9077 + }, + { + "start": 1036.42, + "end": 1038.5, + "probability": 0.9987 + }, + { + "start": 1038.7, + "end": 1040.6, + "probability": 0.9363 + }, + { + "start": 1041.52, + "end": 1042.26, + "probability": 0.7251 + }, + { + "start": 1042.82, + "end": 1045.12, + "probability": 0.9799 + }, + { + "start": 1045.98, + "end": 1048.78, + "probability": 0.9004 + }, + { + "start": 1049.08, + "end": 1049.56, + "probability": 0.9484 + }, + { + "start": 1051.06, + "end": 1055.5, + "probability": 0.0272 + }, + { + "start": 1056.22, + "end": 1056.64, + "probability": 0.1064 + }, + { + "start": 1056.64, + "end": 1056.64, + "probability": 0.06 + }, + { + "start": 1056.64, + "end": 1056.64, + "probability": 0.1651 + }, + { + "start": 1056.64, + "end": 1062.32, + "probability": 0.7218 + }, + { + "start": 1062.58, + "end": 1063.93, + "probability": 0.6719 + }, + { + "start": 1064.2, + "end": 1066.3, + "probability": 0.0317 + }, + { + "start": 1066.3, + "end": 1066.3, + "probability": 0.092 + }, + { + "start": 1066.3, + "end": 1068.16, + "probability": 0.1365 + }, + { + "start": 1068.28, + "end": 1070.98, + "probability": 0.6842 + }, + { + "start": 1071.32, + "end": 1074.82, + "probability": 0.5336 + }, + { + "start": 1075.54, + "end": 1076.22, + "probability": 0.9572 + }, + { + "start": 1077.12, + "end": 1078.16, + "probability": 0.9461 + }, + { + "start": 1078.28, + "end": 1078.85, + "probability": 0.4952 + }, + { + "start": 1079.04, + "end": 1079.5, + "probability": 0.7523 + }, + { + "start": 1080.56, + "end": 1081.46, + "probability": 0.7609 + }, + { + "start": 1082.12, + "end": 1083.56, + "probability": 0.9457 + }, + { + "start": 1084.3, + "end": 1087.14, + "probability": 0.6458 + }, + { + "start": 1087.42, + "end": 1088.68, + "probability": 0.9523 + }, + { + "start": 1089.02, + "end": 1089.96, + "probability": 0.995 + }, + { + "start": 1090.88, + "end": 1091.42, + "probability": 0.9924 + }, + { + "start": 1092.4, + "end": 1095.64, + "probability": 0.7389 + }, + { + "start": 1097.3, + "end": 1097.98, + "probability": 0.0513 + }, + { + "start": 1097.98, + "end": 1098.72, + "probability": 0.0286 + }, + { + "start": 1099.46, + "end": 1104.16, + "probability": 0.912 + }, + { + "start": 1106.08, + "end": 1109.26, + "probability": 0.9582 + }, + { + "start": 1109.42, + "end": 1110.24, + "probability": 0.7892 + }, + { + "start": 1110.38, + "end": 1111.92, + "probability": 0.8584 + }, + { + "start": 1112.08, + "end": 1112.4, + "probability": 0.4893 + }, + { + "start": 1112.98, + "end": 1114.54, + "probability": 0.9972 + }, + { + "start": 1116.88, + "end": 1118.24, + "probability": 0.7053 + }, + { + "start": 1119.26, + "end": 1120.22, + "probability": 0.9829 + }, + { + "start": 1120.78, + "end": 1124.04, + "probability": 0.9855 + }, + { + "start": 1124.16, + "end": 1126.0, + "probability": 0.5732 + }, + { + "start": 1126.3, + "end": 1126.62, + "probability": 0.9392 + }, + { + "start": 1126.92, + "end": 1127.54, + "probability": 0.3648 + }, + { + "start": 1127.72, + "end": 1128.2, + "probability": 0.2495 + }, + { + "start": 1128.72, + "end": 1130.06, + "probability": 0.8428 + }, + { + "start": 1130.52, + "end": 1131.84, + "probability": 0.9868 + }, + { + "start": 1133.38, + "end": 1133.86, + "probability": 0.9181 + }, + { + "start": 1134.12, + "end": 1135.16, + "probability": 0.9978 + }, + { + "start": 1135.3, + "end": 1136.52, + "probability": 0.9937 + }, + { + "start": 1138.42, + "end": 1138.8, + "probability": 0.6436 + }, + { + "start": 1138.9, + "end": 1140.82, + "probability": 0.9775 + }, + { + "start": 1141.06, + "end": 1141.5, + "probability": 0.6447 + }, + { + "start": 1142.46, + "end": 1143.05, + "probability": 0.9683 + }, + { + "start": 1143.14, + "end": 1143.98, + "probability": 0.8626 + }, + { + "start": 1144.24, + "end": 1144.69, + "probability": 0.9756 + }, + { + "start": 1145.4, + "end": 1147.98, + "probability": 0.8139 + }, + { + "start": 1149.1, + "end": 1150.25, + "probability": 0.9547 + }, + { + "start": 1152.0, + "end": 1152.54, + "probability": 0.9456 + }, + { + "start": 1153.04, + "end": 1155.5, + "probability": 0.9422 + }, + { + "start": 1156.02, + "end": 1159.14, + "probability": 0.7339 + }, + { + "start": 1159.72, + "end": 1160.68, + "probability": 0.8673 + }, + { + "start": 1162.38, + "end": 1165.88, + "probability": 0.9785 + }, + { + "start": 1166.4, + "end": 1169.64, + "probability": 0.9499 + }, + { + "start": 1170.18, + "end": 1171.4, + "probability": 0.9713 + }, + { + "start": 1171.58, + "end": 1174.0, + "probability": 0.9432 + }, + { + "start": 1174.14, + "end": 1175.61, + "probability": 0.837 + }, + { + "start": 1176.16, + "end": 1179.14, + "probability": 0.8198 + }, + { + "start": 1179.14, + "end": 1181.68, + "probability": 0.9503 + }, + { + "start": 1182.96, + "end": 1183.44, + "probability": 0.7231 + }, + { + "start": 1183.58, + "end": 1184.34, + "probability": 0.5388 + }, + { + "start": 1184.54, + "end": 1186.6, + "probability": 0.9197 + }, + { + "start": 1188.1, + "end": 1193.08, + "probability": 0.9888 + }, + { + "start": 1196.46, + "end": 1200.9, + "probability": 0.845 + }, + { + "start": 1201.86, + "end": 1205.5, + "probability": 0.9607 + }, + { + "start": 1205.58, + "end": 1207.16, + "probability": 0.9836 + }, + { + "start": 1207.9, + "end": 1209.8, + "probability": 0.9023 + }, + { + "start": 1210.02, + "end": 1210.52, + "probability": 0.6824 + }, + { + "start": 1211.46, + "end": 1213.19, + "probability": 0.8492 + }, + { + "start": 1214.18, + "end": 1215.98, + "probability": 0.9644 + }, + { + "start": 1216.3, + "end": 1218.44, + "probability": 0.9762 + }, + { + "start": 1219.96, + "end": 1222.18, + "probability": 0.0319 + }, + { + "start": 1223.56, + "end": 1224.18, + "probability": 0.1695 + }, + { + "start": 1226.7, + "end": 1229.18, + "probability": 0.0456 + }, + { + "start": 1229.76, + "end": 1230.69, + "probability": 0.1244 + }, + { + "start": 1231.24, + "end": 1231.24, + "probability": 0.2503 + }, + { + "start": 1231.24, + "end": 1232.06, + "probability": 0.1937 + }, + { + "start": 1232.22, + "end": 1232.94, + "probability": 0.286 + }, + { + "start": 1232.94, + "end": 1233.12, + "probability": 0.2479 + }, + { + "start": 1233.38, + "end": 1233.66, + "probability": 0.0808 + }, + { + "start": 1235.19, + "end": 1237.08, + "probability": 0.0253 + }, + { + "start": 1242.87, + "end": 1245.82, + "probability": 0.1085 + }, + { + "start": 1245.82, + "end": 1249.42, + "probability": 0.0645 + }, + { + "start": 1249.42, + "end": 1251.14, + "probability": 0.0732 + }, + { + "start": 1251.14, + "end": 1252.38, + "probability": 0.2288 + }, + { + "start": 1253.06, + "end": 1253.18, + "probability": 0.1949 + }, + { + "start": 1253.18, + "end": 1253.18, + "probability": 0.035 + }, + { + "start": 1253.18, + "end": 1253.18, + "probability": 0.1786 + }, + { + "start": 1253.18, + "end": 1253.8, + "probability": 0.3986 + }, + { + "start": 1253.8, + "end": 1258.12, + "probability": 0.9328 + }, + { + "start": 1259.5, + "end": 1260.7, + "probability": 0.8364 + }, + { + "start": 1262.3, + "end": 1262.76, + "probability": 0.422 + }, + { + "start": 1263.48, + "end": 1263.7, + "probability": 0.0276 + }, + { + "start": 1263.7, + "end": 1263.7, + "probability": 0.0691 + }, + { + "start": 1263.7, + "end": 1263.7, + "probability": 0.2383 + }, + { + "start": 1263.7, + "end": 1264.46, + "probability": 0.7599 + }, + { + "start": 1265.16, + "end": 1266.02, + "probability": 0.7056 + }, + { + "start": 1266.42, + "end": 1270.92, + "probability": 0.8804 + }, + { + "start": 1271.02, + "end": 1271.54, + "probability": 0.0522 + }, + { + "start": 1271.56, + "end": 1274.08, + "probability": 0.6676 + }, + { + "start": 1274.82, + "end": 1275.66, + "probability": 0.9673 + }, + { + "start": 1287.36, + "end": 1289.13, + "probability": 0.3015 + }, + { + "start": 1289.7, + "end": 1289.9, + "probability": 0.3123 + }, + { + "start": 1289.9, + "end": 1290.16, + "probability": 0.1057 + }, + { + "start": 1291.14, + "end": 1291.43, + "probability": 0.0397 + }, + { + "start": 1292.52, + "end": 1294.46, + "probability": 0.6301 + }, + { + "start": 1294.52, + "end": 1298.88, + "probability": 0.1569 + }, + { + "start": 1298.98, + "end": 1300.79, + "probability": 0.1423 + }, + { + "start": 1302.6, + "end": 1302.6, + "probability": 0.0709 + }, + { + "start": 1302.6, + "end": 1302.6, + "probability": 0.0645 + }, + { + "start": 1302.6, + "end": 1302.6, + "probability": 0.0862 + }, + { + "start": 1302.6, + "end": 1305.28, + "probability": 0.6367 + }, + { + "start": 1306.08, + "end": 1311.14, + "probability": 0.8992 + }, + { + "start": 1311.76, + "end": 1313.4, + "probability": 0.9961 + }, + { + "start": 1314.14, + "end": 1314.97, + "probability": 0.6984 + }, + { + "start": 1315.76, + "end": 1316.28, + "probability": 0.9805 + }, + { + "start": 1318.0, + "end": 1320.76, + "probability": 0.9182 + }, + { + "start": 1321.1, + "end": 1322.5, + "probability": 0.4543 + }, + { + "start": 1323.24, + "end": 1327.4, + "probability": 0.5586 + }, + { + "start": 1327.46, + "end": 1329.4, + "probability": 0.7075 + }, + { + "start": 1329.94, + "end": 1331.3, + "probability": 0.9773 + }, + { + "start": 1331.78, + "end": 1333.36, + "probability": 0.9512 + }, + { + "start": 1333.9, + "end": 1336.68, + "probability": 0.9578 + }, + { + "start": 1336.68, + "end": 1337.32, + "probability": 0.5754 + }, + { + "start": 1337.42, + "end": 1339.8, + "probability": 0.9084 + }, + { + "start": 1339.84, + "end": 1340.28, + "probability": 0.0331 + }, + { + "start": 1340.4, + "end": 1341.84, + "probability": 0.8118 + }, + { + "start": 1342.12, + "end": 1343.38, + "probability": 0.8312 + }, + { + "start": 1343.42, + "end": 1343.52, + "probability": 0.1278 + }, + { + "start": 1343.52, + "end": 1345.84, + "probability": 0.5378 + }, + { + "start": 1346.28, + "end": 1348.58, + "probability": 0.8843 + }, + { + "start": 1349.62, + "end": 1351.48, + "probability": 0.798 + }, + { + "start": 1352.28, + "end": 1352.94, + "probability": 0.5342 + }, + { + "start": 1353.68, + "end": 1354.9, + "probability": 0.8729 + }, + { + "start": 1355.7, + "end": 1356.12, + "probability": 0.4063 + }, + { + "start": 1356.24, + "end": 1356.68, + "probability": 0.9205 + }, + { + "start": 1356.7, + "end": 1357.08, + "probability": 0.9582 + }, + { + "start": 1357.16, + "end": 1357.96, + "probability": 0.8532 + }, + { + "start": 1358.06, + "end": 1359.42, + "probability": 0.9355 + }, + { + "start": 1360.27, + "end": 1363.9, + "probability": 0.3834 + }, + { + "start": 1364.54, + "end": 1366.42, + "probability": 0.6784 + }, + { + "start": 1366.88, + "end": 1369.48, + "probability": 0.7585 + }, + { + "start": 1369.9, + "end": 1370.96, + "probability": 0.5798 + }, + { + "start": 1371.14, + "end": 1372.02, + "probability": 0.7852 + }, + { + "start": 1372.02, + "end": 1373.5, + "probability": 0.3278 + }, + { + "start": 1373.54, + "end": 1375.06, + "probability": 0.9793 + }, + { + "start": 1375.5, + "end": 1377.78, + "probability": 0.9423 + }, + { + "start": 1378.26, + "end": 1379.06, + "probability": 0.6728 + }, + { + "start": 1379.14, + "end": 1381.34, + "probability": 0.585 + }, + { + "start": 1381.54, + "end": 1382.14, + "probability": 0.415 + }, + { + "start": 1382.14, + "end": 1384.35, + "probability": 0.8996 + }, + { + "start": 1386.74, + "end": 1388.5, + "probability": 0.0601 + }, + { + "start": 1389.06, + "end": 1390.68, + "probability": 0.2618 + }, + { + "start": 1390.68, + "end": 1391.44, + "probability": 0.0504 + }, + { + "start": 1391.72, + "end": 1392.62, + "probability": 0.1252 + }, + { + "start": 1393.22, + "end": 1393.22, + "probability": 0.4148 + }, + { + "start": 1393.22, + "end": 1393.68, + "probability": 0.0851 + }, + { + "start": 1393.86, + "end": 1396.89, + "probability": 0.5463 + }, + { + "start": 1397.1, + "end": 1398.2, + "probability": 0.0624 + }, + { + "start": 1398.2, + "end": 1400.04, + "probability": 0.3212 + }, + { + "start": 1403.38, + "end": 1406.25, + "probability": 0.9899 + }, + { + "start": 1406.98, + "end": 1409.16, + "probability": 0.9844 + }, + { + "start": 1409.88, + "end": 1411.26, + "probability": 0.7334 + }, + { + "start": 1411.72, + "end": 1412.24, + "probability": 0.7302 + }, + { + "start": 1412.44, + "end": 1412.96, + "probability": 0.9621 + }, + { + "start": 1413.1, + "end": 1413.64, + "probability": 0.9202 + }, + { + "start": 1413.76, + "end": 1414.3, + "probability": 0.5859 + }, + { + "start": 1414.54, + "end": 1415.84, + "probability": 0.9793 + }, + { + "start": 1417.24, + "end": 1418.88, + "probability": 0.988 + }, + { + "start": 1419.88, + "end": 1422.5, + "probability": 0.8717 + }, + { + "start": 1423.14, + "end": 1427.68, + "probability": 0.9225 + }, + { + "start": 1428.66, + "end": 1431.12, + "probability": 0.9629 + }, + { + "start": 1431.9, + "end": 1432.62, + "probability": 0.7529 + }, + { + "start": 1433.18, + "end": 1437.34, + "probability": 0.9797 + }, + { + "start": 1438.86, + "end": 1440.24, + "probability": 0.8588 + }, + { + "start": 1440.58, + "end": 1443.92, + "probability": 0.9985 + }, + { + "start": 1445.36, + "end": 1446.66, + "probability": 0.9879 + }, + { + "start": 1446.74, + "end": 1449.4, + "probability": 0.9725 + }, + { + "start": 1450.1, + "end": 1450.44, + "probability": 0.051 + }, + { + "start": 1451.36, + "end": 1451.7, + "probability": 0.5419 + }, + { + "start": 1451.86, + "end": 1452.32, + "probability": 0.1771 + }, + { + "start": 1452.32, + "end": 1454.06, + "probability": 0.86 + }, + { + "start": 1454.9, + "end": 1457.52, + "probability": 0.7729 + }, + { + "start": 1458.52, + "end": 1459.02, + "probability": 0.4828 + }, + { + "start": 1459.06, + "end": 1460.54, + "probability": 0.7974 + }, + { + "start": 1460.62, + "end": 1461.29, + "probability": 0.9753 + }, + { + "start": 1463.16, + "end": 1465.94, + "probability": 0.9253 + }, + { + "start": 1467.02, + "end": 1467.66, + "probability": 0.6892 + }, + { + "start": 1468.3, + "end": 1469.88, + "probability": 0.8798 + }, + { + "start": 1470.7, + "end": 1471.82, + "probability": 0.8174 + }, + { + "start": 1472.06, + "end": 1473.56, + "probability": 0.9594 + }, + { + "start": 1473.9, + "end": 1477.64, + "probability": 0.9953 + }, + { + "start": 1477.92, + "end": 1479.6, + "probability": 0.8703 + }, + { + "start": 1480.8, + "end": 1481.06, + "probability": 0.429 + }, + { + "start": 1481.2, + "end": 1483.74, + "probability": 0.7567 + }, + { + "start": 1483.78, + "end": 1484.22, + "probability": 0.8725 + }, + { + "start": 1484.74, + "end": 1487.3, + "probability": 0.9171 + }, + { + "start": 1497.66, + "end": 1499.48, + "probability": 0.7482 + }, + { + "start": 1499.76, + "end": 1500.56, + "probability": 0.9233 + }, + { + "start": 1503.0, + "end": 1504.08, + "probability": 0.557 + }, + { + "start": 1505.16, + "end": 1506.13, + "probability": 0.963 + }, + { + "start": 1507.4, + "end": 1508.38, + "probability": 0.7774 + }, + { + "start": 1509.78, + "end": 1514.54, + "probability": 0.9987 + }, + { + "start": 1515.9, + "end": 1519.86, + "probability": 0.8814 + }, + { + "start": 1520.92, + "end": 1522.68, + "probability": 0.9379 + }, + { + "start": 1524.06, + "end": 1526.74, + "probability": 0.9824 + }, + { + "start": 1527.56, + "end": 1531.62, + "probability": 0.9765 + }, + { + "start": 1533.42, + "end": 1533.98, + "probability": 0.9736 + }, + { + "start": 1534.74, + "end": 1536.8, + "probability": 0.8176 + }, + { + "start": 1537.62, + "end": 1538.36, + "probability": 0.6787 + }, + { + "start": 1555.38, + "end": 1560.7, + "probability": 0.978 + }, + { + "start": 1561.52, + "end": 1563.48, + "probability": 0.8632 + }, + { + "start": 1564.38, + "end": 1567.66, + "probability": 0.9983 + }, + { + "start": 1568.3, + "end": 1568.64, + "probability": 0.8958 + }, + { + "start": 1568.84, + "end": 1570.94, + "probability": 0.912 + }, + { + "start": 1571.68, + "end": 1572.94, + "probability": 0.9322 + }, + { + "start": 1574.32, + "end": 1578.18, + "probability": 0.8019 + }, + { + "start": 1578.56, + "end": 1579.24, + "probability": 0.7858 + }, + { + "start": 1580.02, + "end": 1581.18, + "probability": 0.9955 + }, + { + "start": 1582.12, + "end": 1583.26, + "probability": 0.8982 + }, + { + "start": 1584.54, + "end": 1586.34, + "probability": 0.9487 + }, + { + "start": 1587.44, + "end": 1588.94, + "probability": 0.9948 + }, + { + "start": 1589.64, + "end": 1590.82, + "probability": 0.8012 + }, + { + "start": 1591.44, + "end": 1595.5, + "probability": 0.9739 + }, + { + "start": 1597.46, + "end": 1598.92, + "probability": 0.9742 + }, + { + "start": 1599.78, + "end": 1600.82, + "probability": 0.9562 + }, + { + "start": 1601.96, + "end": 1605.9, + "probability": 0.9917 + }, + { + "start": 1607.1, + "end": 1608.5, + "probability": 0.9612 + }, + { + "start": 1609.7, + "end": 1610.8, + "probability": 0.8808 + }, + { + "start": 1612.06, + "end": 1613.26, + "probability": 0.9873 + }, + { + "start": 1614.0, + "end": 1615.1, + "probability": 0.886 + }, + { + "start": 1616.22, + "end": 1618.02, + "probability": 0.8485 + }, + { + "start": 1619.8, + "end": 1621.94, + "probability": 0.9858 + }, + { + "start": 1623.18, + "end": 1628.02, + "probability": 0.9971 + }, + { + "start": 1629.7, + "end": 1634.18, + "probability": 0.9718 + }, + { + "start": 1636.0, + "end": 1638.82, + "probability": 0.9625 + }, + { + "start": 1639.92, + "end": 1641.22, + "probability": 0.9166 + }, + { + "start": 1642.08, + "end": 1644.06, + "probability": 0.7839 + }, + { + "start": 1645.14, + "end": 1646.9, + "probability": 0.9974 + }, + { + "start": 1647.64, + "end": 1648.3, + "probability": 0.9243 + }, + { + "start": 1650.14, + "end": 1651.28, + "probability": 0.9375 + }, + { + "start": 1652.04, + "end": 1653.56, + "probability": 0.8839 + }, + { + "start": 1656.06, + "end": 1657.16, + "probability": 0.9961 + }, + { + "start": 1658.82, + "end": 1659.86, + "probability": 0.6546 + }, + { + "start": 1660.08, + "end": 1666.4, + "probability": 0.9821 + }, + { + "start": 1668.32, + "end": 1672.58, + "probability": 0.9904 + }, + { + "start": 1674.06, + "end": 1674.92, + "probability": 0.9304 + }, + { + "start": 1676.28, + "end": 1677.34, + "probability": 0.9784 + }, + { + "start": 1678.22, + "end": 1680.06, + "probability": 0.9604 + }, + { + "start": 1680.76, + "end": 1681.67, + "probability": 0.9785 + }, + { + "start": 1683.09, + "end": 1683.78, + "probability": 0.8572 + }, + { + "start": 1685.54, + "end": 1690.17, + "probability": 0.979 + }, + { + "start": 1691.74, + "end": 1695.22, + "probability": 0.9923 + }, + { + "start": 1696.66, + "end": 1697.72, + "probability": 0.9324 + }, + { + "start": 1698.96, + "end": 1700.3, + "probability": 0.9551 + }, + { + "start": 1701.3, + "end": 1705.21, + "probability": 0.9696 + }, + { + "start": 1705.96, + "end": 1706.44, + "probability": 0.9615 + }, + { + "start": 1707.42, + "end": 1707.68, + "probability": 0.664 + }, + { + "start": 1708.46, + "end": 1708.7, + "probability": 0.4714 + }, + { + "start": 1709.22, + "end": 1711.34, + "probability": 0.9797 + }, + { + "start": 1712.46, + "end": 1713.12, + "probability": 0.8167 + }, + { + "start": 1730.12, + "end": 1731.1, + "probability": 0.8158 + }, + { + "start": 1735.36, + "end": 1736.72, + "probability": 0.8001 + }, + { + "start": 1736.86, + "end": 1737.84, + "probability": 0.9155 + }, + { + "start": 1738.32, + "end": 1739.1, + "probability": 0.9709 + }, + { + "start": 1739.6, + "end": 1740.38, + "probability": 0.8141 + }, + { + "start": 1741.64, + "end": 1745.04, + "probability": 0.9688 + }, + { + "start": 1745.64, + "end": 1748.72, + "probability": 0.6849 + }, + { + "start": 1756.46, + "end": 1757.4, + "probability": 0.5728 + }, + { + "start": 1757.78, + "end": 1764.9, + "probability": 0.8389 + }, + { + "start": 1765.44, + "end": 1766.38, + "probability": 0.8149 + }, + { + "start": 1767.22, + "end": 1769.94, + "probability": 0.9211 + }, + { + "start": 1770.54, + "end": 1773.22, + "probability": 0.9396 + }, + { + "start": 1773.92, + "end": 1775.24, + "probability": 0.2548 + }, + { + "start": 1775.24, + "end": 1777.64, + "probability": 0.8764 + }, + { + "start": 1778.58, + "end": 1781.34, + "probability": 0.9185 + }, + { + "start": 1781.66, + "end": 1787.94, + "probability": 0.992 + }, + { + "start": 1788.56, + "end": 1789.98, + "probability": 0.6702 + }, + { + "start": 1790.96, + "end": 1793.76, + "probability": 0.9959 + }, + { + "start": 1794.54, + "end": 1798.34, + "probability": 0.6388 + }, + { + "start": 1799.66, + "end": 1802.4, + "probability": 0.7054 + }, + { + "start": 1804.46, + "end": 1808.44, + "probability": 0.9763 + }, + { + "start": 1809.22, + "end": 1811.36, + "probability": 0.8989 + }, + { + "start": 1811.88, + "end": 1814.56, + "probability": 0.8688 + }, + { + "start": 1815.28, + "end": 1818.1, + "probability": 0.9795 + }, + { + "start": 1819.02, + "end": 1823.78, + "probability": 0.9907 + }, + { + "start": 1824.46, + "end": 1828.08, + "probability": 0.9634 + }, + { + "start": 1829.0, + "end": 1830.48, + "probability": 0.8654 + }, + { + "start": 1830.6, + "end": 1831.5, + "probability": 0.8391 + }, + { + "start": 1831.56, + "end": 1837.2, + "probability": 0.875 + }, + { + "start": 1837.84, + "end": 1840.14, + "probability": 0.9727 + }, + { + "start": 1840.7, + "end": 1844.24, + "probability": 0.9926 + }, + { + "start": 1845.28, + "end": 1849.12, + "probability": 0.9292 + }, + { + "start": 1849.48, + "end": 1853.82, + "probability": 0.9901 + }, + { + "start": 1854.34, + "end": 1857.18, + "probability": 0.9596 + }, + { + "start": 1857.76, + "end": 1860.8, + "probability": 0.9961 + }, + { + "start": 1860.8, + "end": 1864.28, + "probability": 0.9751 + }, + { + "start": 1864.58, + "end": 1865.18, + "probability": 0.8672 + }, + { + "start": 1865.84, + "end": 1871.0, + "probability": 0.9871 + }, + { + "start": 1871.64, + "end": 1874.14, + "probability": 0.9955 + }, + { + "start": 1874.14, + "end": 1877.22, + "probability": 0.9845 + }, + { + "start": 1877.42, + "end": 1878.4, + "probability": 0.9573 + }, + { + "start": 1879.04, + "end": 1881.44, + "probability": 0.9934 + }, + { + "start": 1882.14, + "end": 1886.84, + "probability": 0.9697 + }, + { + "start": 1887.32, + "end": 1888.76, + "probability": 0.9545 + }, + { + "start": 1889.6, + "end": 1894.8, + "probability": 0.9965 + }, + { + "start": 1895.66, + "end": 1896.72, + "probability": 0.9866 + }, + { + "start": 1897.4, + "end": 1898.44, + "probability": 0.7903 + }, + { + "start": 1899.06, + "end": 1901.16, + "probability": 0.9763 + }, + { + "start": 1901.92, + "end": 1905.6, + "probability": 0.9787 + }, + { + "start": 1905.6, + "end": 1909.42, + "probability": 0.9943 + }, + { + "start": 1910.04, + "end": 1915.36, + "probability": 0.9676 + }, + { + "start": 1916.08, + "end": 1921.1, + "probability": 0.9642 + }, + { + "start": 1921.36, + "end": 1922.3, + "probability": 0.8372 + }, + { + "start": 1922.52, + "end": 1923.84, + "probability": 0.9538 + }, + { + "start": 1924.4, + "end": 1928.88, + "probability": 0.9412 + }, + { + "start": 1929.06, + "end": 1929.42, + "probability": 0.975 + }, + { + "start": 1929.56, + "end": 1930.3, + "probability": 0.8554 + }, + { + "start": 1930.36, + "end": 1931.42, + "probability": 0.893 + }, + { + "start": 1932.1, + "end": 1934.54, + "probability": 0.9888 + }, + { + "start": 1935.2, + "end": 1939.94, + "probability": 0.9883 + }, + { + "start": 1940.52, + "end": 1944.38, + "probability": 0.9652 + }, + { + "start": 1944.74, + "end": 1947.78, + "probability": 0.9867 + }, + { + "start": 1948.44, + "end": 1949.34, + "probability": 0.9263 + }, + { + "start": 1949.96, + "end": 1954.92, + "probability": 0.9946 + }, + { + "start": 1956.66, + "end": 1960.0, + "probability": 0.9771 + }, + { + "start": 1960.36, + "end": 1963.36, + "probability": 0.9799 + }, + { + "start": 1964.06, + "end": 1964.46, + "probability": 0.342 + }, + { + "start": 1964.52, + "end": 1965.46, + "probability": 0.8781 + }, + { + "start": 1965.92, + "end": 1969.08, + "probability": 0.9381 + }, + { + "start": 1969.74, + "end": 1972.46, + "probability": 0.9555 + }, + { + "start": 1974.6, + "end": 1977.48, + "probability": 0.8202 + }, + { + "start": 1978.1, + "end": 1979.22, + "probability": 0.5725 + }, + { + "start": 1979.8, + "end": 1984.26, + "probability": 0.8761 + }, + { + "start": 1984.86, + "end": 1990.44, + "probability": 0.9971 + }, + { + "start": 1990.92, + "end": 1995.2, + "probability": 0.9927 + }, + { + "start": 1995.9, + "end": 1999.4, + "probability": 0.8071 + }, + { + "start": 2001.02, + "end": 2003.7, + "probability": 0.9877 + }, + { + "start": 2003.7, + "end": 2008.64, + "probability": 0.7327 + }, + { + "start": 2009.12, + "end": 2014.56, + "probability": 0.9689 + }, + { + "start": 2014.98, + "end": 2016.12, + "probability": 0.9448 + }, + { + "start": 2016.84, + "end": 2017.16, + "probability": 0.6761 + }, + { + "start": 2017.38, + "end": 2017.92, + "probability": 0.7811 + }, + { + "start": 2018.5, + "end": 2020.3, + "probability": 0.6842 + }, + { + "start": 2020.82, + "end": 2025.92, + "probability": 0.9965 + }, + { + "start": 2026.52, + "end": 2032.44, + "probability": 0.9528 + }, + { + "start": 2033.88, + "end": 2037.5, + "probability": 0.9393 + }, + { + "start": 2037.8, + "end": 2038.4, + "probability": 0.6125 + }, + { + "start": 2038.96, + "end": 2041.02, + "probability": 0.9951 + }, + { + "start": 2041.54, + "end": 2044.3, + "probability": 0.9822 + }, + { + "start": 2045.64, + "end": 2048.8, + "probability": 0.9178 + }, + { + "start": 2049.46, + "end": 2056.78, + "probability": 0.9701 + }, + { + "start": 2057.02, + "end": 2057.18, + "probability": 0.6031 + }, + { + "start": 2057.26, + "end": 2058.28, + "probability": 0.7544 + }, + { + "start": 2058.7, + "end": 2062.2, + "probability": 0.9551 + }, + { + "start": 2062.72, + "end": 2064.22, + "probability": 0.5835 + }, + { + "start": 2065.3, + "end": 2065.3, + "probability": 0.3666 + }, + { + "start": 2065.3, + "end": 2071.58, + "probability": 0.9751 + }, + { + "start": 2071.8, + "end": 2072.06, + "probability": 0.5121 + }, + { + "start": 2072.12, + "end": 2073.06, + "probability": 0.7529 + }, + { + "start": 2073.44, + "end": 2079.04, + "probability": 0.9065 + }, + { + "start": 2079.24, + "end": 2080.3, + "probability": 0.5838 + }, + { + "start": 2080.68, + "end": 2081.48, + "probability": 0.8746 + }, + { + "start": 2081.88, + "end": 2082.16, + "probability": 0.2858 + }, + { + "start": 2082.18, + "end": 2083.22, + "probability": 0.668 + }, + { + "start": 2083.22, + "end": 2084.9, + "probability": 0.995 + }, + { + "start": 2084.96, + "end": 2087.42, + "probability": 0.7854 + }, + { + "start": 2102.6, + "end": 2103.56, + "probability": 0.6995 + }, + { + "start": 2103.62, + "end": 2103.9, + "probability": 0.8343 + }, + { + "start": 2104.02, + "end": 2105.92, + "probability": 0.9801 + }, + { + "start": 2112.44, + "end": 2113.9, + "probability": 0.8712 + }, + { + "start": 2114.04, + "end": 2114.91, + "probability": 0.9597 + }, + { + "start": 2115.46, + "end": 2118.96, + "probability": 0.9482 + }, + { + "start": 2120.96, + "end": 2124.38, + "probability": 0.9743 + }, + { + "start": 2124.38, + "end": 2126.72, + "probability": 0.9974 + }, + { + "start": 2128.16, + "end": 2129.84, + "probability": 0.9795 + }, + { + "start": 2131.1, + "end": 2134.1, + "probability": 0.9992 + }, + { + "start": 2134.16, + "end": 2137.22, + "probability": 0.9989 + }, + { + "start": 2138.76, + "end": 2139.3, + "probability": 0.4428 + }, + { + "start": 2140.54, + "end": 2141.16, + "probability": 0.9329 + }, + { + "start": 2143.34, + "end": 2144.18, + "probability": 0.8462 + }, + { + "start": 2145.06, + "end": 2148.84, + "probability": 0.9902 + }, + { + "start": 2150.18, + "end": 2150.88, + "probability": 0.9668 + }, + { + "start": 2152.18, + "end": 2152.54, + "probability": 0.9378 + }, + { + "start": 2154.32, + "end": 2157.24, + "probability": 0.9937 + }, + { + "start": 2158.04, + "end": 2162.56, + "probability": 0.998 + }, + { + "start": 2164.44, + "end": 2168.92, + "probability": 0.9789 + }, + { + "start": 2169.72, + "end": 2172.02, + "probability": 0.9995 + }, + { + "start": 2173.56, + "end": 2174.22, + "probability": 0.7738 + }, + { + "start": 2175.22, + "end": 2176.44, + "probability": 0.6294 + }, + { + "start": 2177.36, + "end": 2179.98, + "probability": 0.9523 + }, + { + "start": 2181.18, + "end": 2182.02, + "probability": 0.9866 + }, + { + "start": 2182.92, + "end": 2184.26, + "probability": 0.6191 + }, + { + "start": 2185.38, + "end": 2186.92, + "probability": 0.9959 + }, + { + "start": 2187.84, + "end": 2190.22, + "probability": 0.9724 + }, + { + "start": 2192.22, + "end": 2193.13, + "probability": 0.9234 + }, + { + "start": 2193.36, + "end": 2195.0, + "probability": 0.9732 + }, + { + "start": 2195.1, + "end": 2197.1, + "probability": 0.7477 + }, + { + "start": 2197.96, + "end": 2200.36, + "probability": 0.9852 + }, + { + "start": 2200.46, + "end": 2202.0, + "probability": 0.7249 + }, + { + "start": 2203.14, + "end": 2203.9, + "probability": 0.9809 + }, + { + "start": 2204.78, + "end": 2205.6, + "probability": 0.9707 + }, + { + "start": 2207.56, + "end": 2209.24, + "probability": 0.9213 + }, + { + "start": 2209.64, + "end": 2210.49, + "probability": 0.4773 + }, + { + "start": 2210.6, + "end": 2211.48, + "probability": 0.8141 + }, + { + "start": 2211.56, + "end": 2214.06, + "probability": 0.9834 + }, + { + "start": 2215.06, + "end": 2217.96, + "probability": 0.982 + }, + { + "start": 2219.06, + "end": 2219.58, + "probability": 0.7203 + }, + { + "start": 2219.62, + "end": 2222.04, + "probability": 0.9513 + }, + { + "start": 2222.22, + "end": 2223.1, + "probability": 0.9031 + }, + { + "start": 2224.46, + "end": 2226.12, + "probability": 0.678 + }, + { + "start": 2227.16, + "end": 2228.94, + "probability": 0.8944 + }, + { + "start": 2229.98, + "end": 2232.54, + "probability": 0.9567 + }, + { + "start": 2233.58, + "end": 2235.24, + "probability": 0.9774 + }, + { + "start": 2237.46, + "end": 2240.1, + "probability": 0.964 + }, + { + "start": 2241.36, + "end": 2244.04, + "probability": 0.9948 + }, + { + "start": 2245.5, + "end": 2249.64, + "probability": 0.995 + }, + { + "start": 2250.54, + "end": 2252.76, + "probability": 0.9969 + }, + { + "start": 2252.8, + "end": 2255.84, + "probability": 0.9912 + }, + { + "start": 2257.52, + "end": 2260.54, + "probability": 0.9985 + }, + { + "start": 2260.54, + "end": 2263.16, + "probability": 0.9998 + }, + { + "start": 2264.24, + "end": 2266.48, + "probability": 0.9979 + }, + { + "start": 2267.74, + "end": 2269.42, + "probability": 0.9644 + }, + { + "start": 2270.02, + "end": 2271.22, + "probability": 0.6729 + }, + { + "start": 2273.0, + "end": 2276.88, + "probability": 0.995 + }, + { + "start": 2277.66, + "end": 2277.84, + "probability": 0.1548 + }, + { + "start": 2278.82, + "end": 2278.92, + "probability": 0.4907 + }, + { + "start": 2278.92, + "end": 2281.18, + "probability": 0.6479 + }, + { + "start": 2281.64, + "end": 2283.0, + "probability": 0.3968 + }, + { + "start": 2283.28, + "end": 2283.8, + "probability": 0.3494 + }, + { + "start": 2283.8, + "end": 2284.92, + "probability": 0.6102 + }, + { + "start": 2284.92, + "end": 2286.22, + "probability": 0.9732 + }, + { + "start": 2287.16, + "end": 2289.28, + "probability": 0.9211 + }, + { + "start": 2290.3, + "end": 2291.7, + "probability": 0.992 + }, + { + "start": 2293.46, + "end": 2295.56, + "probability": 0.9743 + }, + { + "start": 2296.68, + "end": 2297.74, + "probability": 0.9983 + }, + { + "start": 2298.88, + "end": 2300.04, + "probability": 0.8338 + }, + { + "start": 2301.68, + "end": 2302.72, + "probability": 0.9517 + }, + { + "start": 2303.42, + "end": 2306.3, + "probability": 0.9856 + }, + { + "start": 2307.24, + "end": 2308.82, + "probability": 0.9932 + }, + { + "start": 2309.54, + "end": 2312.04, + "probability": 0.9924 + }, + { + "start": 2313.76, + "end": 2316.94, + "probability": 0.8264 + }, + { + "start": 2317.86, + "end": 2319.78, + "probability": 0.9805 + }, + { + "start": 2320.5, + "end": 2325.26, + "probability": 0.9958 + }, + { + "start": 2326.24, + "end": 2329.32, + "probability": 0.9958 + }, + { + "start": 2330.76, + "end": 2335.34, + "probability": 0.981 + }, + { + "start": 2336.48, + "end": 2338.78, + "probability": 0.9445 + }, + { + "start": 2339.64, + "end": 2344.16, + "probability": 0.9982 + }, + { + "start": 2345.36, + "end": 2346.4, + "probability": 0.9638 + }, + { + "start": 2348.98, + "end": 2353.32, + "probability": 0.9696 + }, + { + "start": 2353.38, + "end": 2353.8, + "probability": 0.8552 + }, + { + "start": 2353.88, + "end": 2354.82, + "probability": 0.9446 + }, + { + "start": 2354.9, + "end": 2357.14, + "probability": 0.9598 + }, + { + "start": 2358.2, + "end": 2358.7, + "probability": 0.6037 + }, + { + "start": 2360.02, + "end": 2365.68, + "probability": 0.9954 + }, + { + "start": 2367.12, + "end": 2367.88, + "probability": 0.9766 + }, + { + "start": 2368.62, + "end": 2373.44, + "probability": 0.9892 + }, + { + "start": 2374.34, + "end": 2376.5, + "probability": 0.7678 + }, + { + "start": 2377.42, + "end": 2380.04, + "probability": 0.9759 + }, + { + "start": 2380.22, + "end": 2381.5, + "probability": 0.6848 + }, + { + "start": 2382.18, + "end": 2386.14, + "probability": 0.9902 + }, + { + "start": 2387.12, + "end": 2389.86, + "probability": 0.9951 + }, + { + "start": 2390.42, + "end": 2393.56, + "probability": 0.9445 + }, + { + "start": 2394.26, + "end": 2396.84, + "probability": 0.9858 + }, + { + "start": 2397.98, + "end": 2399.1, + "probability": 0.5751 + }, + { + "start": 2399.68, + "end": 2403.8, + "probability": 0.9986 + }, + { + "start": 2404.52, + "end": 2407.72, + "probability": 0.9941 + }, + { + "start": 2409.24, + "end": 2410.06, + "probability": 0.7778 + }, + { + "start": 2411.0, + "end": 2415.8, + "probability": 0.8761 + }, + { + "start": 2416.7, + "end": 2419.46, + "probability": 0.9976 + }, + { + "start": 2421.16, + "end": 2424.16, + "probability": 0.9707 + }, + { + "start": 2424.92, + "end": 2428.76, + "probability": 0.9977 + }, + { + "start": 2429.66, + "end": 2431.06, + "probability": 0.9168 + }, + { + "start": 2432.22, + "end": 2433.22, + "probability": 0.9786 + }, + { + "start": 2434.36, + "end": 2437.78, + "probability": 0.9884 + }, + { + "start": 2438.46, + "end": 2440.36, + "probability": 0.9977 + }, + { + "start": 2441.9, + "end": 2445.6, + "probability": 0.998 + }, + { + "start": 2446.88, + "end": 2449.48, + "probability": 0.9897 + }, + { + "start": 2449.48, + "end": 2451.68, + "probability": 0.9953 + }, + { + "start": 2453.14, + "end": 2457.36, + "probability": 0.9437 + }, + { + "start": 2458.42, + "end": 2461.32, + "probability": 0.9746 + }, + { + "start": 2462.42, + "end": 2462.98, + "probability": 0.887 + }, + { + "start": 2463.04, + "end": 2464.76, + "probability": 0.4979 + }, + { + "start": 2464.86, + "end": 2469.2, + "probability": 0.9403 + }, + { + "start": 2470.4, + "end": 2470.88, + "probability": 0.9133 + }, + { + "start": 2471.76, + "end": 2473.22, + "probability": 0.9961 + }, + { + "start": 2474.1, + "end": 2476.26, + "probability": 0.9061 + }, + { + "start": 2477.06, + "end": 2477.06, + "probability": 0.3497 + }, + { + "start": 2477.06, + "end": 2481.6, + "probability": 0.9628 + }, + { + "start": 2481.8, + "end": 2482.78, + "probability": 0.8855 + }, + { + "start": 2483.02, + "end": 2486.42, + "probability": 0.9933 + }, + { + "start": 2501.2, + "end": 2502.64, + "probability": 0.9427 + }, + { + "start": 2503.46, + "end": 2505.72, + "probability": 0.6426 + }, + { + "start": 2507.28, + "end": 2510.26, + "probability": 0.8573 + }, + { + "start": 2511.08, + "end": 2514.72, + "probability": 0.9932 + }, + { + "start": 2516.48, + "end": 2518.19, + "probability": 0.749 + }, + { + "start": 2519.68, + "end": 2521.7, + "probability": 0.8926 + }, + { + "start": 2522.42, + "end": 2527.48, + "probability": 0.9683 + }, + { + "start": 2528.4, + "end": 2531.72, + "probability": 0.9465 + }, + { + "start": 2532.18, + "end": 2535.86, + "probability": 0.9438 + }, + { + "start": 2536.74, + "end": 2540.42, + "probability": 0.9355 + }, + { + "start": 2541.26, + "end": 2542.34, + "probability": 0.886 + }, + { + "start": 2543.22, + "end": 2547.16, + "probability": 0.984 + }, + { + "start": 2548.36, + "end": 2551.18, + "probability": 0.9573 + }, + { + "start": 2551.96, + "end": 2555.4, + "probability": 0.974 + }, + { + "start": 2555.96, + "end": 2557.52, + "probability": 0.9371 + }, + { + "start": 2558.62, + "end": 2559.04, + "probability": 0.492 + }, + { + "start": 2561.36, + "end": 2562.72, + "probability": 0.0912 + }, + { + "start": 2563.44, + "end": 2567.5, + "probability": 0.9921 + }, + { + "start": 2568.16, + "end": 2569.85, + "probability": 0.9858 + }, + { + "start": 2570.68, + "end": 2574.45, + "probability": 0.8633 + }, + { + "start": 2574.48, + "end": 2580.68, + "probability": 0.8949 + }, + { + "start": 2581.4, + "end": 2586.14, + "probability": 0.9905 + }, + { + "start": 2587.42, + "end": 2589.98, + "probability": 0.9154 + }, + { + "start": 2590.86, + "end": 2592.08, + "probability": 0.9216 + }, + { + "start": 2592.98, + "end": 2595.44, + "probability": 0.979 + }, + { + "start": 2596.68, + "end": 2598.97, + "probability": 0.978 + }, + { + "start": 2599.74, + "end": 2602.36, + "probability": 0.9083 + }, + { + "start": 2602.56, + "end": 2608.88, + "probability": 0.9888 + }, + { + "start": 2609.14, + "end": 2610.86, + "probability": 0.7816 + }, + { + "start": 2611.6, + "end": 2612.84, + "probability": 0.9385 + }, + { + "start": 2613.42, + "end": 2616.18, + "probability": 0.9046 + }, + { + "start": 2616.26, + "end": 2618.22, + "probability": 0.7949 + }, + { + "start": 2618.78, + "end": 2621.74, + "probability": 0.9087 + }, + { + "start": 2622.36, + "end": 2624.02, + "probability": 0.9008 + }, + { + "start": 2624.7, + "end": 2630.04, + "probability": 0.9583 + }, + { + "start": 2630.4, + "end": 2632.94, + "probability": 0.8496 + }, + { + "start": 2633.68, + "end": 2634.7, + "probability": 0.5886 + }, + { + "start": 2635.04, + "end": 2637.42, + "probability": 0.5035 + }, + { + "start": 2637.9, + "end": 2642.38, + "probability": 0.9667 + }, + { + "start": 2642.5, + "end": 2643.56, + "probability": 0.8989 + }, + { + "start": 2643.96, + "end": 2645.24, + "probability": 0.8076 + }, + { + "start": 2645.94, + "end": 2648.02, + "probability": 0.9854 + }, + { + "start": 2648.64, + "end": 2652.4, + "probability": 0.946 + }, + { + "start": 2652.86, + "end": 2654.42, + "probability": 0.8687 + }, + { + "start": 2654.88, + "end": 2657.8, + "probability": 0.8555 + }, + { + "start": 2658.24, + "end": 2659.31, + "probability": 0.0374 + }, + { + "start": 2659.88, + "end": 2661.76, + "probability": 0.7463 + }, + { + "start": 2662.12, + "end": 2663.08, + "probability": 0.5393 + }, + { + "start": 2663.44, + "end": 2664.88, + "probability": 0.5335 + }, + { + "start": 2665.44, + "end": 2665.82, + "probability": 0.5307 + }, + { + "start": 2665.9, + "end": 2666.6, + "probability": 0.7529 + }, + { + "start": 2666.8, + "end": 2670.9, + "probability": 0.9561 + }, + { + "start": 2670.9, + "end": 2676.28, + "probability": 0.9509 + }, + { + "start": 2676.86, + "end": 2677.02, + "probability": 0.3216 + }, + { + "start": 2677.02, + "end": 2680.42, + "probability": 0.8023 + }, + { + "start": 2681.1, + "end": 2682.48, + "probability": 0.9899 + }, + { + "start": 2683.12, + "end": 2686.28, + "probability": 0.7426 + }, + { + "start": 2686.34, + "end": 2686.94, + "probability": 0.8957 + }, + { + "start": 2687.56, + "end": 2688.71, + "probability": 0.8853 + }, + { + "start": 2689.42, + "end": 2691.76, + "probability": 0.7891 + }, + { + "start": 2692.34, + "end": 2697.26, + "probability": 0.9893 + }, + { + "start": 2698.1, + "end": 2698.4, + "probability": 0.6331 + }, + { + "start": 2698.4, + "end": 2701.03, + "probability": 0.8931 + }, + { + "start": 2702.12, + "end": 2702.68, + "probability": 0.4551 + }, + { + "start": 2703.22, + "end": 2707.68, + "probability": 0.9979 + }, + { + "start": 2708.5, + "end": 2710.58, + "probability": 0.9638 + }, + { + "start": 2711.4, + "end": 2715.92, + "probability": 0.9144 + }, + { + "start": 2716.56, + "end": 2717.78, + "probability": 0.9005 + }, + { + "start": 2718.32, + "end": 2721.02, + "probability": 0.7337 + }, + { + "start": 2721.28, + "end": 2722.62, + "probability": 0.8551 + }, + { + "start": 2722.68, + "end": 2725.62, + "probability": 0.6104 + }, + { + "start": 2726.3, + "end": 2731.96, + "probability": 0.9886 + }, + { + "start": 2732.66, + "end": 2735.06, + "probability": 0.9824 + }, + { + "start": 2735.28, + "end": 2736.04, + "probability": 0.6895 + }, + { + "start": 2736.06, + "end": 2738.06, + "probability": 0.9429 + }, + { + "start": 2738.6, + "end": 2741.56, + "probability": 0.9839 + }, + { + "start": 2742.12, + "end": 2742.96, + "probability": 0.9655 + }, + { + "start": 2744.06, + "end": 2744.28, + "probability": 0.7093 + }, + { + "start": 2744.32, + "end": 2748.08, + "probability": 0.9993 + }, + { + "start": 2748.72, + "end": 2751.88, + "probability": 0.999 + }, + { + "start": 2751.88, + "end": 2755.64, + "probability": 0.9904 + }, + { + "start": 2756.48, + "end": 2759.82, + "probability": 0.9952 + }, + { + "start": 2760.4, + "end": 2764.02, + "probability": 0.9979 + }, + { + "start": 2764.84, + "end": 2767.86, + "probability": 0.998 + }, + { + "start": 2768.5, + "end": 2770.7, + "probability": 0.999 + }, + { + "start": 2771.44, + "end": 2772.98, + "probability": 0.9378 + }, + { + "start": 2773.02, + "end": 2775.0, + "probability": 0.9885 + }, + { + "start": 2775.76, + "end": 2778.74, + "probability": 0.9804 + }, + { + "start": 2779.46, + "end": 2781.26, + "probability": 0.9975 + }, + { + "start": 2781.8, + "end": 2786.6, + "probability": 0.999 + }, + { + "start": 2786.6, + "end": 2792.4, + "probability": 0.9966 + }, + { + "start": 2792.94, + "end": 2794.12, + "probability": 0.9917 + }, + { + "start": 2794.96, + "end": 2797.52, + "probability": 0.9984 + }, + { + "start": 2797.52, + "end": 2801.44, + "probability": 0.9985 + }, + { + "start": 2802.94, + "end": 2806.38, + "probability": 0.9948 + }, + { + "start": 2806.38, + "end": 2809.6, + "probability": 0.9936 + }, + { + "start": 2810.1, + "end": 2813.5, + "probability": 0.989 + }, + { + "start": 2814.08, + "end": 2817.78, + "probability": 0.9918 + }, + { + "start": 2818.72, + "end": 2823.0, + "probability": 0.9971 + }, + { + "start": 2823.64, + "end": 2825.7, + "probability": 0.9945 + }, + { + "start": 2826.68, + "end": 2829.1, + "probability": 0.9998 + }, + { + "start": 2829.1, + "end": 2831.92, + "probability": 0.9993 + }, + { + "start": 2832.4, + "end": 2833.32, + "probability": 0.9935 + }, + { + "start": 2834.32, + "end": 2835.08, + "probability": 0.8871 + }, + { + "start": 2835.6, + "end": 2841.22, + "probability": 0.9989 + }, + { + "start": 2841.8, + "end": 2843.58, + "probability": 0.9742 + }, + { + "start": 2843.8, + "end": 2847.34, + "probability": 0.9959 + }, + { + "start": 2847.34, + "end": 2849.88, + "probability": 0.9976 + }, + { + "start": 2851.04, + "end": 2854.16, + "probability": 0.9934 + }, + { + "start": 2854.16, + "end": 2858.4, + "probability": 0.996 + }, + { + "start": 2858.98, + "end": 2863.68, + "probability": 0.9747 + }, + { + "start": 2864.22, + "end": 2866.76, + "probability": 0.9986 + }, + { + "start": 2866.76, + "end": 2870.58, + "probability": 0.9996 + }, + { + "start": 2871.12, + "end": 2871.98, + "probability": 0.999 + }, + { + "start": 2873.0, + "end": 2873.68, + "probability": 0.7835 + }, + { + "start": 2874.86, + "end": 2877.38, + "probability": 0.9983 + }, + { + "start": 2877.56, + "end": 2880.0, + "probability": 0.8979 + }, + { + "start": 2880.5, + "end": 2884.54, + "probability": 0.9382 + }, + { + "start": 2885.3, + "end": 2888.02, + "probability": 0.9897 + }, + { + "start": 2888.62, + "end": 2890.32, + "probability": 0.9307 + }, + { + "start": 2891.2, + "end": 2894.0, + "probability": 0.9346 + }, + { + "start": 2894.72, + "end": 2896.72, + "probability": 0.9156 + }, + { + "start": 2897.52, + "end": 2901.02, + "probability": 0.9817 + }, + { + "start": 2901.02, + "end": 2904.6, + "probability": 0.999 + }, + { + "start": 2905.2, + "end": 2905.96, + "probability": 0.9953 + }, + { + "start": 2906.76, + "end": 2907.14, + "probability": 0.7419 + }, + { + "start": 2907.28, + "end": 2908.0, + "probability": 0.6637 + }, + { + "start": 2908.16, + "end": 2910.66, + "probability": 0.9978 + }, + { + "start": 2911.14, + "end": 2913.58, + "probability": 0.9297 + }, + { + "start": 2914.12, + "end": 2915.62, + "probability": 0.8847 + }, + { + "start": 2916.26, + "end": 2920.86, + "probability": 0.9872 + }, + { + "start": 2921.5, + "end": 2922.06, + "probability": 0.982 + }, + { + "start": 2922.82, + "end": 2923.34, + "probability": 0.4598 + }, + { + "start": 2923.94, + "end": 2926.58, + "probability": 0.9644 + }, + { + "start": 2926.64, + "end": 2929.76, + "probability": 0.8911 + }, + { + "start": 2930.46, + "end": 2933.34, + "probability": 0.9917 + }, + { + "start": 2933.84, + "end": 2934.36, + "probability": 0.5925 + }, + { + "start": 2934.62, + "end": 2934.94, + "probability": 0.462 + }, + { + "start": 2935.4, + "end": 2937.08, + "probability": 0.7883 + }, + { + "start": 2937.08, + "end": 2939.86, + "probability": 0.9543 + }, + { + "start": 2940.46, + "end": 2941.1, + "probability": 0.876 + }, + { + "start": 2941.78, + "end": 2942.79, + "probability": 0.6805 + }, + { + "start": 2948.64, + "end": 2949.96, + "probability": 0.903 + }, + { + "start": 2950.08, + "end": 2953.6, + "probability": 0.8725 + }, + { + "start": 2953.78, + "end": 2954.04, + "probability": 0.897 + }, + { + "start": 2964.3, + "end": 2964.42, + "probability": 0.1965 + }, + { + "start": 2964.42, + "end": 2965.62, + "probability": 0.4841 + }, + { + "start": 2967.2, + "end": 2967.24, + "probability": 0.0224 + }, + { + "start": 2967.24, + "end": 2968.02, + "probability": 0.7461 + }, + { + "start": 2968.04, + "end": 2969.85, + "probability": 0.2593 + }, + { + "start": 2970.3, + "end": 2971.94, + "probability": 0.1392 + }, + { + "start": 2972.84, + "end": 2976.34, + "probability": 0.9839 + }, + { + "start": 2976.38, + "end": 2978.74, + "probability": 0.9211 + }, + { + "start": 2979.36, + "end": 2979.66, + "probability": 0.7411 + }, + { + "start": 2979.66, + "end": 2980.04, + "probability": 0.428 + }, + { + "start": 2980.52, + "end": 2983.24, + "probability": 0.8545 + }, + { + "start": 2984.4, + "end": 2986.48, + "probability": 0.9795 + }, + { + "start": 2986.58, + "end": 2987.1, + "probability": 0.9157 + }, + { + "start": 2987.22, + "end": 2991.74, + "probability": 0.8574 + }, + { + "start": 2994.14, + "end": 2998.02, + "probability": 0.7893 + }, + { + "start": 2999.12, + "end": 3003.6, + "probability": 0.983 + }, + { + "start": 3003.62, + "end": 3008.78, + "probability": 0.9883 + }, + { + "start": 3009.02, + "end": 3009.62, + "probability": 0.7122 + }, + { + "start": 3011.02, + "end": 3013.48, + "probability": 0.9657 + }, + { + "start": 3014.08, + "end": 3017.96, + "probability": 0.9253 + }, + { + "start": 3019.86, + "end": 3020.98, + "probability": 0.9039 + }, + { + "start": 3021.74, + "end": 3026.14, + "probability": 0.8674 + }, + { + "start": 3026.84, + "end": 3028.87, + "probability": 0.9927 + }, + { + "start": 3030.06, + "end": 3034.5, + "probability": 0.9678 + }, + { + "start": 3040.08, + "end": 3045.28, + "probability": 0.9497 + }, + { + "start": 3045.98, + "end": 3050.48, + "probability": 0.8278 + }, + { + "start": 3051.46, + "end": 3058.18, + "probability": 0.9932 + }, + { + "start": 3058.35, + "end": 3062.36, + "probability": 0.9885 + }, + { + "start": 3063.14, + "end": 3065.0, + "probability": 0.6823 + }, + { + "start": 3065.9, + "end": 3067.36, + "probability": 0.6635 + }, + { + "start": 3068.14, + "end": 3071.36, + "probability": 0.9846 + }, + { + "start": 3071.88, + "end": 3075.2, + "probability": 0.995 + }, + { + "start": 3076.08, + "end": 3077.84, + "probability": 0.9969 + }, + { + "start": 3078.4, + "end": 3082.22, + "probability": 0.9962 + }, + { + "start": 3084.18, + "end": 3086.26, + "probability": 0.6112 + }, + { + "start": 3087.82, + "end": 3088.92, + "probability": 0.8895 + }, + { + "start": 3089.06, + "end": 3092.7, + "probability": 0.9917 + }, + { + "start": 3092.76, + "end": 3093.66, + "probability": 0.8829 + }, + { + "start": 3094.78, + "end": 3098.46, + "probability": 0.9434 + }, + { + "start": 3098.46, + "end": 3102.8, + "probability": 0.9238 + }, + { + "start": 3104.32, + "end": 3105.18, + "probability": 0.9357 + }, + { + "start": 3105.52, + "end": 3110.54, + "probability": 0.9814 + }, + { + "start": 3111.8, + "end": 3113.0, + "probability": 0.9965 + }, + { + "start": 3114.02, + "end": 3117.02, + "probability": 0.9692 + }, + { + "start": 3117.94, + "end": 3121.4, + "probability": 0.8753 + }, + { + "start": 3122.3, + "end": 3125.4, + "probability": 0.8593 + }, + { + "start": 3126.18, + "end": 3128.76, + "probability": 0.9993 + }, + { + "start": 3129.6, + "end": 3131.14, + "probability": 0.8492 + }, + { + "start": 3132.2, + "end": 3133.08, + "probability": 0.9323 + }, + { + "start": 3134.2, + "end": 3134.91, + "probability": 0.7643 + }, + { + "start": 3135.52, + "end": 3138.6, + "probability": 0.7295 + }, + { + "start": 3138.92, + "end": 3142.36, + "probability": 0.9298 + }, + { + "start": 3143.1, + "end": 3145.1, + "probability": 0.8472 + }, + { + "start": 3146.08, + "end": 3149.32, + "probability": 0.9858 + }, + { + "start": 3150.04, + "end": 3154.66, + "probability": 0.9994 + }, + { + "start": 3155.34, + "end": 3158.54, + "probability": 0.9863 + }, + { + "start": 3158.54, + "end": 3162.58, + "probability": 0.9947 + }, + { + "start": 3164.96, + "end": 3165.5, + "probability": 0.1124 + }, + { + "start": 3165.5, + "end": 3167.04, + "probability": 0.3054 + }, + { + "start": 3167.82, + "end": 3168.96, + "probability": 0.9376 + }, + { + "start": 3169.26, + "end": 3172.54, + "probability": 0.9774 + }, + { + "start": 3173.12, + "end": 3177.8, + "probability": 0.9939 + }, + { + "start": 3178.2, + "end": 3179.34, + "probability": 0.6218 + }, + { + "start": 3179.5, + "end": 3181.46, + "probability": 0.834 + }, + { + "start": 3182.16, + "end": 3182.74, + "probability": 0.7187 + }, + { + "start": 3183.38, + "end": 3191.46, + "probability": 0.9308 + }, + { + "start": 3191.46, + "end": 3196.3, + "probability": 0.9993 + }, + { + "start": 3196.64, + "end": 3197.92, + "probability": 0.6138 + }, + { + "start": 3197.96, + "end": 3199.23, + "probability": 0.5266 + }, + { + "start": 3200.4, + "end": 3200.96, + "probability": 0.3548 + }, + { + "start": 3201.0, + "end": 3202.46, + "probability": 0.5362 + }, + { + "start": 3202.88, + "end": 3203.42, + "probability": 0.9662 + }, + { + "start": 3203.54, + "end": 3204.12, + "probability": 0.97 + }, + { + "start": 3205.44, + "end": 3207.2, + "probability": 0.9689 + }, + { + "start": 3207.34, + "end": 3210.92, + "probability": 0.9795 + }, + { + "start": 3210.96, + "end": 3213.68, + "probability": 0.9983 + }, + { + "start": 3214.26, + "end": 3219.2, + "probability": 0.9995 + }, + { + "start": 3219.86, + "end": 3224.3, + "probability": 0.9655 + }, + { + "start": 3225.12, + "end": 3225.88, + "probability": 0.7324 + }, + { + "start": 3225.96, + "end": 3232.42, + "probability": 0.9512 + }, + { + "start": 3232.7, + "end": 3233.28, + "probability": 0.5119 + }, + { + "start": 3233.28, + "end": 3233.28, + "probability": 0.4556 + }, + { + "start": 3233.28, + "end": 3237.72, + "probability": 0.994 + }, + { + "start": 3238.3, + "end": 3239.2, + "probability": 0.6246 + }, + { + "start": 3239.28, + "end": 3239.9, + "probability": 0.9588 + }, + { + "start": 3239.9, + "end": 3239.92, + "probability": 0.4726 + }, + { + "start": 3239.92, + "end": 3240.96, + "probability": 0.7589 + }, + { + "start": 3241.16, + "end": 3241.2, + "probability": 0.3819 + }, + { + "start": 3241.22, + "end": 3243.68, + "probability": 0.9853 + }, + { + "start": 3246.26, + "end": 3249.22, + "probability": 0.6311 + }, + { + "start": 3249.28, + "end": 3249.52, + "probability": 0.4971 + }, + { + "start": 3249.52, + "end": 3250.74, + "probability": 0.453 + }, + { + "start": 3250.76, + "end": 3251.04, + "probability": 0.5978 + }, + { + "start": 3251.26, + "end": 3251.28, + "probability": 0.6146 + }, + { + "start": 3251.28, + "end": 3252.44, + "probability": 0.6281 + }, + { + "start": 3252.48, + "end": 3252.48, + "probability": 0.1866 + }, + { + "start": 3252.64, + "end": 3252.92, + "probability": 0.654 + }, + { + "start": 3252.98, + "end": 3254.28, + "probability": 0.3614 + }, + { + "start": 3254.38, + "end": 3255.14, + "probability": 0.4935 + }, + { + "start": 3255.68, + "end": 3256.08, + "probability": 0.7598 + }, + { + "start": 3256.3, + "end": 3256.6, + "probability": 0.8391 + }, + { + "start": 3257.38, + "end": 3259.28, + "probability": 0.9355 + }, + { + "start": 3282.9, + "end": 3285.74, + "probability": 0.7091 + }, + { + "start": 3286.18, + "end": 3287.7, + "probability": 0.9435 + }, + { + "start": 3288.8, + "end": 3289.42, + "probability": 0.6738 + }, + { + "start": 3289.5, + "end": 3292.26, + "probability": 0.9174 + }, + { + "start": 3293.3, + "end": 3296.8, + "probability": 0.5934 + }, + { + "start": 3297.56, + "end": 3299.5, + "probability": 0.607 + }, + { + "start": 3301.78, + "end": 3305.08, + "probability": 0.8967 + }, + { + "start": 3306.38, + "end": 3310.22, + "probability": 0.9383 + }, + { + "start": 3311.3, + "end": 3313.88, + "probability": 0.6591 + }, + { + "start": 3314.44, + "end": 3318.52, + "probability": 0.9602 + }, + { + "start": 3319.28, + "end": 3322.82, + "probability": 0.9862 + }, + { + "start": 3323.6, + "end": 3325.26, + "probability": 0.9733 + }, + { + "start": 3326.02, + "end": 3330.38, + "probability": 0.9337 + }, + { + "start": 3331.12, + "end": 3335.1, + "probability": 0.9904 + }, + { + "start": 3336.56, + "end": 3337.94, + "probability": 0.9886 + }, + { + "start": 3338.74, + "end": 3340.82, + "probability": 0.9392 + }, + { + "start": 3341.68, + "end": 3342.78, + "probability": 0.8289 + }, + { + "start": 3343.46, + "end": 3346.66, + "probability": 0.852 + }, + { + "start": 3347.62, + "end": 3349.52, + "probability": 0.9958 + }, + { + "start": 3350.3, + "end": 3353.48, + "probability": 0.9676 + }, + { + "start": 3354.86, + "end": 3359.86, + "probability": 0.923 + }, + { + "start": 3361.08, + "end": 3365.18, + "probability": 0.9861 + }, + { + "start": 3365.94, + "end": 3371.3, + "probability": 0.9517 + }, + { + "start": 3372.08, + "end": 3373.7, + "probability": 0.7947 + }, + { + "start": 3375.2, + "end": 3377.4, + "probability": 0.9169 + }, + { + "start": 3378.48, + "end": 3380.18, + "probability": 0.9967 + }, + { + "start": 3382.2, + "end": 3386.76, + "probability": 0.9863 + }, + { + "start": 3387.9, + "end": 3388.7, + "probability": 0.9906 + }, + { + "start": 3390.18, + "end": 3392.28, + "probability": 0.9985 + }, + { + "start": 3393.22, + "end": 3394.76, + "probability": 0.9988 + }, + { + "start": 3395.86, + "end": 3401.06, + "probability": 0.9289 + }, + { + "start": 3401.78, + "end": 3407.3, + "probability": 0.991 + }, + { + "start": 3407.9, + "end": 3410.1, + "probability": 0.9394 + }, + { + "start": 3410.84, + "end": 3411.6, + "probability": 0.4243 + }, + { + "start": 3411.94, + "end": 3415.16, + "probability": 0.9921 + }, + { + "start": 3415.16, + "end": 3418.54, + "probability": 0.9682 + }, + { + "start": 3419.14, + "end": 3423.44, + "probability": 0.9971 + }, + { + "start": 3423.92, + "end": 3425.73, + "probability": 0.9369 + }, + { + "start": 3426.34, + "end": 3426.5, + "probability": 0.0612 + }, + { + "start": 3426.5, + "end": 3427.58, + "probability": 0.6696 + }, + { + "start": 3427.62, + "end": 3428.04, + "probability": 0.7809 + }, + { + "start": 3428.54, + "end": 3429.76, + "probability": 0.688 + }, + { + "start": 3430.14, + "end": 3432.5, + "probability": 0.4065 + }, + { + "start": 3433.52, + "end": 3434.2, + "probability": 0.052 + }, + { + "start": 3434.2, + "end": 3434.2, + "probability": 0.0213 + }, + { + "start": 3434.2, + "end": 3434.34, + "probability": 0.1441 + }, + { + "start": 3434.34, + "end": 3434.34, + "probability": 0.0356 + }, + { + "start": 3434.34, + "end": 3434.34, + "probability": 0.1327 + }, + { + "start": 3434.34, + "end": 3434.34, + "probability": 0.0152 + }, + { + "start": 3434.34, + "end": 3438.01, + "probability": 0.2331 + }, + { + "start": 3438.98, + "end": 3439.0, + "probability": 0.0393 + }, + { + "start": 3439.0, + "end": 3442.98, + "probability": 0.9446 + }, + { + "start": 3442.98, + "end": 3446.14, + "probability": 0.8672 + }, + { + "start": 3446.66, + "end": 3447.44, + "probability": 0.8863 + }, + { + "start": 3448.14, + "end": 3452.02, + "probability": 0.9806 + }, + { + "start": 3452.68, + "end": 3456.54, + "probability": 0.9984 + }, + { + "start": 3457.02, + "end": 3458.79, + "probability": 0.7433 + }, + { + "start": 3459.68, + "end": 3461.48, + "probability": 0.9384 + }, + { + "start": 3461.9, + "end": 3464.2, + "probability": 0.9492 + }, + { + "start": 3465.0, + "end": 3470.64, + "probability": 0.9486 + }, + { + "start": 3471.22, + "end": 3474.24, + "probability": 0.4308 + }, + { + "start": 3474.24, + "end": 3477.24, + "probability": 0.7023 + }, + { + "start": 3478.02, + "end": 3479.88, + "probability": 0.8946 + }, + { + "start": 3480.04, + "end": 3480.58, + "probability": 0.6704 + }, + { + "start": 3481.08, + "end": 3482.38, + "probability": 0.9105 + }, + { + "start": 3482.82, + "end": 3487.1, + "probability": 0.9045 + }, + { + "start": 3487.38, + "end": 3487.7, + "probability": 0.911 + }, + { + "start": 3487.7, + "end": 3487.7, + "probability": 0.3531 + }, + { + "start": 3487.7, + "end": 3493.2, + "probability": 0.8457 + }, + { + "start": 3493.58, + "end": 3494.24, + "probability": 0.532 + }, + { + "start": 3495.06, + "end": 3495.36, + "probability": 0.0359 + }, + { + "start": 3495.36, + "end": 3495.36, + "probability": 0.024 + }, + { + "start": 3495.36, + "end": 3495.36, + "probability": 0.0333 + }, + { + "start": 3495.36, + "end": 3495.84, + "probability": 0.2486 + }, + { + "start": 3496.38, + "end": 3498.9, + "probability": 0.936 + }, + { + "start": 3499.42, + "end": 3501.32, + "probability": 0.7161 + }, + { + "start": 3501.76, + "end": 3505.36, + "probability": 0.9287 + }, + { + "start": 3505.9, + "end": 3509.12, + "probability": 0.9082 + }, + { + "start": 3509.64, + "end": 3510.04, + "probability": 0.2931 + }, + { + "start": 3510.04, + "end": 3511.18, + "probability": 0.8074 + }, + { + "start": 3511.8, + "end": 3512.72, + "probability": 0.0505 + }, + { + "start": 3513.39, + "end": 3513.46, + "probability": 0.1233 + }, + { + "start": 3513.46, + "end": 3515.3, + "probability": 0.5357 + }, + { + "start": 3515.72, + "end": 3517.14, + "probability": 0.0131 + }, + { + "start": 3518.08, + "end": 3518.8, + "probability": 0.2298 + }, + { + "start": 3518.84, + "end": 3520.86, + "probability": 0.5455 + }, + { + "start": 3520.88, + "end": 3521.7, + "probability": 0.6896 + }, + { + "start": 3521.78, + "end": 3521.98, + "probability": 0.8626 + }, + { + "start": 3521.98, + "end": 3523.02, + "probability": 0.058 + }, + { + "start": 3523.16, + "end": 3525.66, + "probability": 0.3859 + }, + { + "start": 3526.86, + "end": 3527.72, + "probability": 0.1361 + }, + { + "start": 3528.16, + "end": 3529.2, + "probability": 0.3159 + }, + { + "start": 3529.76, + "end": 3536.9, + "probability": 0.03 + }, + { + "start": 3539.04, + "end": 3539.04, + "probability": 0.3732 + }, + { + "start": 3539.04, + "end": 3540.9, + "probability": 0.7074 + }, + { + "start": 3541.64, + "end": 3542.88, + "probability": 0.9714 + }, + { + "start": 3546.96, + "end": 3547.24, + "probability": 0.9473 + }, + { + "start": 3550.12, + "end": 3551.04, + "probability": 0.9036 + }, + { + "start": 3551.72, + "end": 3552.56, + "probability": 0.7491 + }, + { + "start": 3553.6, + "end": 3555.22, + "probability": 0.8985 + }, + { + "start": 3558.41, + "end": 3561.16, + "probability": 0.9033 + }, + { + "start": 3561.22, + "end": 3562.32, + "probability": 0.9636 + }, + { + "start": 3562.6, + "end": 3564.38, + "probability": 0.9805 + }, + { + "start": 3564.44, + "end": 3566.4, + "probability": 0.7335 + }, + { + "start": 3567.46, + "end": 3568.96, + "probability": 0.9902 + }, + { + "start": 3570.24, + "end": 3571.42, + "probability": 0.9068 + }, + { + "start": 3572.0, + "end": 3577.0, + "probability": 0.9232 + }, + { + "start": 3577.0, + "end": 3580.28, + "probability": 0.9932 + }, + { + "start": 3582.5, + "end": 3582.96, + "probability": 0.897 + }, + { + "start": 3583.02, + "end": 3586.0, + "probability": 0.9949 + }, + { + "start": 3586.3, + "end": 3589.2, + "probability": 0.9388 + }, + { + "start": 3590.14, + "end": 3596.14, + "probability": 0.6731 + }, + { + "start": 3597.6, + "end": 3598.44, + "probability": 0.9706 + }, + { + "start": 3599.18, + "end": 3600.68, + "probability": 0.9371 + }, + { + "start": 3601.56, + "end": 3604.52, + "probability": 0.976 + }, + { + "start": 3605.4, + "end": 3607.9, + "probability": 0.7802 + }, + { + "start": 3608.96, + "end": 3609.52, + "probability": 0.2183 + }, + { + "start": 3609.88, + "end": 3612.34, + "probability": 0.898 + }, + { + "start": 3612.46, + "end": 3614.08, + "probability": 0.9025 + }, + { + "start": 3614.58, + "end": 3617.42, + "probability": 0.9937 + }, + { + "start": 3617.54, + "end": 3619.22, + "probability": 0.9868 + }, + { + "start": 3620.1, + "end": 3621.38, + "probability": 0.9775 + }, + { + "start": 3623.0, + "end": 3625.08, + "probability": 0.978 + }, + { + "start": 3625.18, + "end": 3625.92, + "probability": 0.6421 + }, + { + "start": 3627.0, + "end": 3630.68, + "probability": 0.9924 + }, + { + "start": 3631.38, + "end": 3631.94, + "probability": 0.6458 + }, + { + "start": 3632.24, + "end": 3635.78, + "probability": 0.9784 + }, + { + "start": 3636.0, + "end": 3636.22, + "probability": 0.9661 + }, + { + "start": 3636.34, + "end": 3638.04, + "probability": 0.967 + }, + { + "start": 3638.22, + "end": 3638.92, + "probability": 0.9825 + }, + { + "start": 3639.22, + "end": 3640.9, + "probability": 0.9331 + }, + { + "start": 3641.06, + "end": 3642.76, + "probability": 0.9951 + }, + { + "start": 3642.82, + "end": 3643.62, + "probability": 0.5528 + }, + { + "start": 3644.9, + "end": 3646.7, + "probability": 0.9595 + }, + { + "start": 3647.62, + "end": 3650.56, + "probability": 0.978 + }, + { + "start": 3651.26, + "end": 3652.64, + "probability": 0.9854 + }, + { + "start": 3652.74, + "end": 3654.28, + "probability": 0.9907 + }, + { + "start": 3654.68, + "end": 3656.1, + "probability": 0.9819 + }, + { + "start": 3656.58, + "end": 3659.58, + "probability": 0.9974 + }, + { + "start": 3660.22, + "end": 3661.98, + "probability": 0.5169 + }, + { + "start": 3662.96, + "end": 3665.4, + "probability": 0.9932 + }, + { + "start": 3665.5, + "end": 3668.4, + "probability": 0.9907 + }, + { + "start": 3669.28, + "end": 3673.4, + "probability": 0.9912 + }, + { + "start": 3674.0, + "end": 3675.24, + "probability": 0.9901 + }, + { + "start": 3676.68, + "end": 3678.26, + "probability": 0.9941 + }, + { + "start": 3679.04, + "end": 3682.02, + "probability": 0.9974 + }, + { + "start": 3682.86, + "end": 3686.14, + "probability": 0.9871 + }, + { + "start": 3686.22, + "end": 3689.22, + "probability": 0.9987 + }, + { + "start": 3690.92, + "end": 3694.78, + "probability": 0.9296 + }, + { + "start": 3695.4, + "end": 3696.46, + "probability": 0.7022 + }, + { + "start": 3698.12, + "end": 3702.64, + "probability": 0.9552 + }, + { + "start": 3704.12, + "end": 3706.58, + "probability": 0.999 + }, + { + "start": 3708.58, + "end": 3713.82, + "probability": 0.9988 + }, + { + "start": 3714.58, + "end": 3717.58, + "probability": 0.9969 + }, + { + "start": 3718.48, + "end": 3719.56, + "probability": 0.7358 + }, + { + "start": 3720.6, + "end": 3721.14, + "probability": 0.715 + }, + { + "start": 3721.92, + "end": 3725.3, + "probability": 0.6683 + }, + { + "start": 3725.3, + "end": 3731.32, + "probability": 0.9847 + }, + { + "start": 3732.24, + "end": 3732.6, + "probability": 0.5485 + }, + { + "start": 3733.79, + "end": 3736.16, + "probability": 0.4806 + }, + { + "start": 3736.16, + "end": 3736.16, + "probability": 0.1376 + }, + { + "start": 3736.16, + "end": 3736.74, + "probability": 0.5952 + }, + { + "start": 3738.5, + "end": 3738.5, + "probability": 0.0132 + }, + { + "start": 3738.5, + "end": 3739.78, + "probability": 0.012 + }, + { + "start": 3740.1, + "end": 3742.59, + "probability": 0.033 + }, + { + "start": 3745.04, + "end": 3746.68, + "probability": 0.1286 + }, + { + "start": 3746.68, + "end": 3746.68, + "probability": 0.0536 + }, + { + "start": 3746.68, + "end": 3747.67, + "probability": 0.1089 + }, + { + "start": 3748.82, + "end": 3749.6, + "probability": 0.1397 + }, + { + "start": 3750.28, + "end": 3752.18, + "probability": 0.4566 + }, + { + "start": 3752.8, + "end": 3753.7, + "probability": 0.0871 + }, + { + "start": 3753.7, + "end": 3753.7, + "probability": 0.0166 + }, + { + "start": 3753.7, + "end": 3753.7, + "probability": 0.0335 + }, + { + "start": 3753.7, + "end": 3755.54, + "probability": 0.9546 + }, + { + "start": 3755.6, + "end": 3756.03, + "probability": 0.9527 + }, + { + "start": 3756.38, + "end": 3757.06, + "probability": 0.5531 + }, + { + "start": 3757.12, + "end": 3758.62, + "probability": 0.6985 + }, + { + "start": 3759.12, + "end": 3760.58, + "probability": 0.7761 + }, + { + "start": 3761.32, + "end": 3762.56, + "probability": 0.8323 + }, + { + "start": 3763.4, + "end": 3767.02, + "probability": 0.8924 + }, + { + "start": 3768.06, + "end": 3771.64, + "probability": 0.9973 + }, + { + "start": 3772.9, + "end": 3775.74, + "probability": 0.9472 + }, + { + "start": 3776.56, + "end": 3780.12, + "probability": 0.9627 + }, + { + "start": 3781.32, + "end": 3782.32, + "probability": 0.7723 + }, + { + "start": 3783.54, + "end": 3787.74, + "probability": 0.9841 + }, + { + "start": 3788.32, + "end": 3792.26, + "probability": 0.9814 + }, + { + "start": 3793.4, + "end": 3796.38, + "probability": 0.9354 + }, + { + "start": 3797.18, + "end": 3801.3, + "probability": 0.9987 + }, + { + "start": 3801.3, + "end": 3804.07, + "probability": 0.9995 + }, + { + "start": 3804.92, + "end": 3809.04, + "probability": 0.9986 + }, + { + "start": 3810.82, + "end": 3812.42, + "probability": 0.8556 + }, + { + "start": 3812.58, + "end": 3814.22, + "probability": 0.8447 + }, + { + "start": 3814.94, + "end": 3818.8, + "probability": 0.9322 + }, + { + "start": 3819.66, + "end": 3822.68, + "probability": 0.9927 + }, + { + "start": 3822.68, + "end": 3827.06, + "probability": 0.9961 + }, + { + "start": 3827.86, + "end": 3832.5, + "probability": 0.9909 + }, + { + "start": 3833.3, + "end": 3836.1, + "probability": 0.6667 + }, + { + "start": 3836.66, + "end": 3839.7, + "probability": 0.9825 + }, + { + "start": 3840.96, + "end": 3842.14, + "probability": 0.5402 + }, + { + "start": 3842.34, + "end": 3843.0, + "probability": 0.7089 + }, + { + "start": 3843.06, + "end": 3848.26, + "probability": 0.9919 + }, + { + "start": 3849.1, + "end": 3850.4, + "probability": 0.906 + }, + { + "start": 3851.04, + "end": 3851.74, + "probability": 0.8667 + }, + { + "start": 3851.84, + "end": 3856.7, + "probability": 0.9924 + }, + { + "start": 3857.66, + "end": 3861.12, + "probability": 0.9935 + }, + { + "start": 3862.08, + "end": 3866.86, + "probability": 0.922 + }, + { + "start": 3867.54, + "end": 3868.94, + "probability": 0.8158 + }, + { + "start": 3869.54, + "end": 3872.74, + "probability": 0.9854 + }, + { + "start": 3873.62, + "end": 3875.92, + "probability": 0.0173 + }, + { + "start": 3878.36, + "end": 3880.74, + "probability": 0.0028 + }, + { + "start": 3881.94, + "end": 3882.9, + "probability": 0.0601 + }, + { + "start": 3882.9, + "end": 3882.9, + "probability": 0.1157 + }, + { + "start": 3882.9, + "end": 3882.9, + "probability": 0.0105 + }, + { + "start": 3882.9, + "end": 3884.54, + "probability": 0.1917 + }, + { + "start": 3885.56, + "end": 3887.44, + "probability": 0.8853 + }, + { + "start": 3887.96, + "end": 3890.7, + "probability": 0.682 + }, + { + "start": 3890.92, + "end": 3890.92, + "probability": 0.0314 + }, + { + "start": 3890.92, + "end": 3890.92, + "probability": 0.0856 + }, + { + "start": 3890.92, + "end": 3892.54, + "probability": 0.9767 + }, + { + "start": 3894.02, + "end": 3895.68, + "probability": 0.2026 + }, + { + "start": 3897.02, + "end": 3897.02, + "probability": 0.147 + }, + { + "start": 3897.02, + "end": 3897.02, + "probability": 0.0649 + }, + { + "start": 3897.02, + "end": 3897.02, + "probability": 0.6646 + }, + { + "start": 3897.02, + "end": 3904.3, + "probability": 0.8945 + }, + { + "start": 3904.34, + "end": 3904.48, + "probability": 0.2662 + }, + { + "start": 3905.22, + "end": 3905.42, + "probability": 0.0414 + }, + { + "start": 3905.42, + "end": 3913.92, + "probability": 0.8144 + }, + { + "start": 3914.08, + "end": 3914.2, + "probability": 0.0635 + }, + { + "start": 3914.2, + "end": 3919.16, + "probability": 0.9857 + }, + { + "start": 3919.24, + "end": 3919.48, + "probability": 0.2699 + }, + { + "start": 3919.52, + "end": 3921.9, + "probability": 0.9502 + }, + { + "start": 3921.98, + "end": 3926.72, + "probability": 0.9694 + }, + { + "start": 3926.98, + "end": 3928.98, + "probability": 0.8799 + }, + { + "start": 3929.5, + "end": 3929.56, + "probability": 0.0636 + }, + { + "start": 3929.56, + "end": 3933.48, + "probability": 0.9681 + }, + { + "start": 3934.34, + "end": 3935.06, + "probability": 0.6772 + }, + { + "start": 3935.8, + "end": 3940.32, + "probability": 0.9251 + }, + { + "start": 3941.05, + "end": 3943.34, + "probability": 0.0691 + }, + { + "start": 3943.34, + "end": 3948.78, + "probability": 0.9935 + }, + { + "start": 3948.92, + "end": 3953.82, + "probability": 0.9992 + }, + { + "start": 3953.82, + "end": 3960.82, + "probability": 0.999 + }, + { + "start": 3960.82, + "end": 3962.32, + "probability": 0.9001 + }, + { + "start": 3962.74, + "end": 3965.08, + "probability": 0.9454 + }, + { + "start": 3965.16, + "end": 3965.46, + "probability": 0.7543 + }, + { + "start": 3965.48, + "end": 3967.6, + "probability": 0.9974 + }, + { + "start": 3967.96, + "end": 3968.6, + "probability": 0.5627 + }, + { + "start": 3968.72, + "end": 3970.06, + "probability": 0.946 + }, + { + "start": 3988.24, + "end": 3989.46, + "probability": 0.8392 + }, + { + "start": 3990.82, + "end": 3991.46, + "probability": 0.2839 + }, + { + "start": 3992.66, + "end": 3994.68, + "probability": 0.6992 + }, + { + "start": 3995.8, + "end": 3997.02, + "probability": 0.6515 + }, + { + "start": 3997.9, + "end": 3999.98, + "probability": 0.7791 + }, + { + "start": 4002.0, + "end": 4002.18, + "probability": 0.5849 + }, + { + "start": 4004.72, + "end": 4008.14, + "probability": 0.9729 + }, + { + "start": 4009.72, + "end": 4013.22, + "probability": 0.9382 + }, + { + "start": 4013.66, + "end": 4016.26, + "probability": 0.7357 + }, + { + "start": 4016.9, + "end": 4017.3, + "probability": 0.8894 + }, + { + "start": 4019.12, + "end": 4019.86, + "probability": 0.849 + }, + { + "start": 4021.46, + "end": 4026.32, + "probability": 0.854 + }, + { + "start": 4026.32, + "end": 4031.6, + "probability": 0.5715 + }, + { + "start": 4032.34, + "end": 4035.82, + "probability": 0.758 + }, + { + "start": 4036.68, + "end": 4042.0, + "probability": 0.5963 + }, + { + "start": 4042.6, + "end": 4045.38, + "probability": 0.7544 + }, + { + "start": 4045.98, + "end": 4050.38, + "probability": 0.7647 + }, + { + "start": 4050.38, + "end": 4054.98, + "probability": 0.707 + }, + { + "start": 4055.68, + "end": 4057.06, + "probability": 0.9913 + }, + { + "start": 4057.88, + "end": 4058.8, + "probability": 0.7438 + }, + { + "start": 4059.7, + "end": 4060.06, + "probability": 0.6535 + }, + { + "start": 4061.4, + "end": 4062.0, + "probability": 0.7827 + }, + { + "start": 4063.66, + "end": 4066.44, + "probability": 0.9488 + }, + { + "start": 4067.78, + "end": 4069.2, + "probability": 0.9547 + }, + { + "start": 4070.06, + "end": 4070.88, + "probability": 0.779 + }, + { + "start": 4073.36, + "end": 4078.34, + "probability": 0.7659 + }, + { + "start": 4078.82, + "end": 4079.42, + "probability": 0.765 + }, + { + "start": 4081.04, + "end": 4088.06, + "probability": 0.9862 + }, + { + "start": 4089.8, + "end": 4090.72, + "probability": 0.8389 + }, + { + "start": 4091.82, + "end": 4095.34, + "probability": 0.9594 + }, + { + "start": 4096.12, + "end": 4096.88, + "probability": 0.5963 + }, + { + "start": 4098.52, + "end": 4105.74, + "probability": 0.9974 + }, + { + "start": 4106.66, + "end": 4112.1, + "probability": 0.9884 + }, + { + "start": 4112.1, + "end": 4112.28, + "probability": 0.0251 + }, + { + "start": 4112.28, + "end": 4113.06, + "probability": 0.5368 + }, + { + "start": 4114.1, + "end": 4116.76, + "probability": 0.9848 + }, + { + "start": 4117.68, + "end": 4123.2, + "probability": 0.4696 + }, + { + "start": 4123.2, + "end": 4125.76, + "probability": 0.9184 + }, + { + "start": 4126.4, + "end": 4127.5, + "probability": 0.9237 + }, + { + "start": 4128.16, + "end": 4133.34, + "probability": 0.9971 + }, + { + "start": 4133.9, + "end": 4137.0, + "probability": 0.9991 + }, + { + "start": 4138.96, + "end": 4138.96, + "probability": 0.1286 + }, + { + "start": 4138.96, + "end": 4142.82, + "probability": 0.9966 + }, + { + "start": 4143.02, + "end": 4144.78, + "probability": 0.9956 + }, + { + "start": 4145.82, + "end": 4150.16, + "probability": 0.7313 + }, + { + "start": 4150.52, + "end": 4151.78, + "probability": 0.1549 + }, + { + "start": 4151.98, + "end": 4156.24, + "probability": 0.9297 + }, + { + "start": 4157.12, + "end": 4157.5, + "probability": 0.876 + }, + { + "start": 4158.06, + "end": 4162.84, + "probability": 0.9955 + }, + { + "start": 4163.38, + "end": 4166.7, + "probability": 0.9678 + }, + { + "start": 4167.86, + "end": 4169.98, + "probability": 0.9839 + }, + { + "start": 4170.18, + "end": 4171.44, + "probability": 0.8227 + }, + { + "start": 4171.86, + "end": 4173.62, + "probability": 0.9458 + }, + { + "start": 4173.86, + "end": 4174.26, + "probability": 0.1371 + }, + { + "start": 4174.5, + "end": 4176.2, + "probability": 0.9567 + }, + { + "start": 4176.82, + "end": 4180.22, + "probability": 0.8299 + }, + { + "start": 4180.72, + "end": 4182.86, + "probability": 0.9888 + }, + { + "start": 4183.66, + "end": 4185.8, + "probability": 0.9977 + }, + { + "start": 4186.4, + "end": 4189.36, + "probability": 0.9984 + }, + { + "start": 4189.36, + "end": 4192.76, + "probability": 0.9985 + }, + { + "start": 4193.3, + "end": 4197.22, + "probability": 0.9487 + }, + { + "start": 4197.34, + "end": 4200.16, + "probability": 0.9736 + }, + { + "start": 4200.7, + "end": 4201.52, + "probability": 0.7289 + }, + { + "start": 4201.58, + "end": 4204.82, + "probability": 0.8462 + }, + { + "start": 4205.28, + "end": 4207.0, + "probability": 0.9929 + }, + { + "start": 4207.08, + "end": 4207.14, + "probability": 0.0281 + }, + { + "start": 4207.14, + "end": 4207.14, + "probability": 0.2055 + }, + { + "start": 4207.14, + "end": 4207.14, + "probability": 0.3633 + }, + { + "start": 4207.14, + "end": 4209.02, + "probability": 0.874 + }, + { + "start": 4209.18, + "end": 4209.92, + "probability": 0.3013 + }, + { + "start": 4210.6, + "end": 4212.52, + "probability": 0.4834 + }, + { + "start": 4212.52, + "end": 4213.74, + "probability": 0.7186 + }, + { + "start": 4213.86, + "end": 4214.46, + "probability": 0.389 + }, + { + "start": 4214.8, + "end": 4218.4, + "probability": 0.8495 + }, + { + "start": 4219.3, + "end": 4221.08, + "probability": 0.9941 + }, + { + "start": 4222.24, + "end": 4222.77, + "probability": 0.0069 + }, + { + "start": 4223.98, + "end": 4224.47, + "probability": 0.0189 + }, + { + "start": 4228.36, + "end": 4228.36, + "probability": 0.0078 + }, + { + "start": 4228.36, + "end": 4228.36, + "probability": 0.168 + }, + { + "start": 4228.36, + "end": 4228.68, + "probability": 0.2339 + }, + { + "start": 4228.68, + "end": 4228.68, + "probability": 0.5282 + }, + { + "start": 4228.68, + "end": 4229.38, + "probability": 0.856 + }, + { + "start": 4229.84, + "end": 4230.9, + "probability": 0.8498 + }, + { + "start": 4231.44, + "end": 4234.34, + "probability": 0.9763 + }, + { + "start": 4234.38, + "end": 4235.24, + "probability": 0.9404 + }, + { + "start": 4235.58, + "end": 4235.58, + "probability": 0.5728 + }, + { + "start": 4235.62, + "end": 4239.06, + "probability": 0.9651 + }, + { + "start": 4240.1, + "end": 4242.32, + "probability": 0.0111 + }, + { + "start": 4242.96, + "end": 4242.96, + "probability": 0.0935 + }, + { + "start": 4242.96, + "end": 4242.96, + "probability": 0.058 + }, + { + "start": 4242.96, + "end": 4242.96, + "probability": 0.1082 + }, + { + "start": 4242.96, + "end": 4242.96, + "probability": 0.1704 + }, + { + "start": 4242.96, + "end": 4242.96, + "probability": 0.0339 + }, + { + "start": 4242.96, + "end": 4247.0, + "probability": 0.9872 + }, + { + "start": 4247.0, + "end": 4251.9, + "probability": 0.9944 + }, + { + "start": 4252.18, + "end": 4252.42, + "probability": 0.009 + }, + { + "start": 4252.42, + "end": 4252.42, + "probability": 0.0546 + }, + { + "start": 4252.42, + "end": 4256.74, + "probability": 0.9806 + }, + { + "start": 4257.1, + "end": 4262.08, + "probability": 0.9955 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.0, + "end": 4324.0, + "probability": 0.0 + }, + { + "start": 4324.12, + "end": 4324.5, + "probability": 0.0238 + }, + { + "start": 4326.2, + "end": 4327.9, + "probability": 0.9302 + }, + { + "start": 4329.02, + "end": 4330.42, + "probability": 0.6953 + }, + { + "start": 4330.52, + "end": 4333.3, + "probability": 0.9848 + }, + { + "start": 4334.52, + "end": 4340.56, + "probability": 0.6647 + }, + { + "start": 4341.24, + "end": 4343.4, + "probability": 0.8224 + }, + { + "start": 4344.8, + "end": 4345.38, + "probability": 0.7322 + }, + { + "start": 4346.62, + "end": 4348.4, + "probability": 0.8719 + }, + { + "start": 4350.38, + "end": 4353.12, + "probability": 0.9532 + }, + { + "start": 4353.96, + "end": 4355.84, + "probability": 0.9962 + }, + { + "start": 4356.56, + "end": 4359.28, + "probability": 0.9797 + }, + { + "start": 4360.32, + "end": 4362.76, + "probability": 0.9176 + }, + { + "start": 4362.76, + "end": 4365.2, + "probability": 0.999 + }, + { + "start": 4365.38, + "end": 4367.4, + "probability": 0.9962 + }, + { + "start": 4368.78, + "end": 4371.34, + "probability": 0.9235 + }, + { + "start": 4372.46, + "end": 4374.16, + "probability": 0.8646 + }, + { + "start": 4375.34, + "end": 4376.84, + "probability": 0.9958 + }, + { + "start": 4377.82, + "end": 4379.56, + "probability": 0.9978 + }, + { + "start": 4380.74, + "end": 4382.64, + "probability": 0.9863 + }, + { + "start": 4383.54, + "end": 4384.34, + "probability": 0.8436 + }, + { + "start": 4385.8, + "end": 4387.72, + "probability": 0.9927 + }, + { + "start": 4388.24, + "end": 4389.78, + "probability": 0.993 + }, + { + "start": 4391.8, + "end": 4393.5, + "probability": 0.8622 + }, + { + "start": 4393.7, + "end": 4395.58, + "probability": 0.9802 + }, + { + "start": 4397.08, + "end": 4399.26, + "probability": 0.9659 + }, + { + "start": 4399.76, + "end": 4400.58, + "probability": 0.9553 + }, + { + "start": 4401.28, + "end": 4403.78, + "probability": 0.9927 + }, + { + "start": 4404.72, + "end": 4405.87, + "probability": 0.9971 + }, + { + "start": 4406.9, + "end": 4408.84, + "probability": 0.998 + }, + { + "start": 4409.9, + "end": 4412.4, + "probability": 0.9601 + }, + { + "start": 4413.94, + "end": 4416.14, + "probability": 0.9961 + }, + { + "start": 4417.46, + "end": 4418.48, + "probability": 0.9788 + }, + { + "start": 4419.18, + "end": 4421.62, + "probability": 0.7786 + }, + { + "start": 4422.42, + "end": 4423.04, + "probability": 0.9235 + }, + { + "start": 4423.14, + "end": 4424.05, + "probability": 0.9905 + }, + { + "start": 4424.18, + "end": 4425.56, + "probability": 0.9922 + }, + { + "start": 4425.7, + "end": 4425.96, + "probability": 0.773 + }, + { + "start": 4426.04, + "end": 4428.18, + "probability": 0.9873 + }, + { + "start": 4429.14, + "end": 4431.08, + "probability": 0.9937 + }, + { + "start": 4431.78, + "end": 4433.74, + "probability": 0.9163 + }, + { + "start": 4434.8, + "end": 4437.88, + "probability": 0.9979 + }, + { + "start": 4439.34, + "end": 4440.76, + "probability": 0.9457 + }, + { + "start": 4441.7, + "end": 4443.78, + "probability": 0.946 + }, + { + "start": 4447.06, + "end": 4447.22, + "probability": 0.1075 + }, + { + "start": 4447.22, + "end": 4448.79, + "probability": 0.4115 + }, + { + "start": 4449.8, + "end": 4451.38, + "probability": 0.6122 + }, + { + "start": 4452.42, + "end": 4454.62, + "probability": 0.9907 + }, + { + "start": 4455.74, + "end": 4458.84, + "probability": 0.967 + }, + { + "start": 4459.84, + "end": 4462.36, + "probability": 0.8028 + }, + { + "start": 4463.78, + "end": 4464.16, + "probability": 0.9072 + }, + { + "start": 4464.26, + "end": 4465.01, + "probability": 0.9846 + }, + { + "start": 4465.16, + "end": 4466.26, + "probability": 0.8696 + }, + { + "start": 4466.3, + "end": 4467.92, + "probability": 0.8193 + }, + { + "start": 4468.26, + "end": 4469.06, + "probability": 0.7232 + }, + { + "start": 4470.44, + "end": 4473.1, + "probability": 0.9963 + }, + { + "start": 4473.18, + "end": 4474.31, + "probability": 0.998 + }, + { + "start": 4475.64, + "end": 4477.35, + "probability": 0.9746 + }, + { + "start": 4478.36, + "end": 4479.19, + "probability": 0.4792 + }, + { + "start": 4479.32, + "end": 4479.96, + "probability": 0.999 + }, + { + "start": 4480.66, + "end": 4485.1, + "probability": 0.9941 + }, + { + "start": 4485.26, + "end": 4487.82, + "probability": 0.9352 + }, + { + "start": 4488.92, + "end": 4492.46, + "probability": 0.9871 + }, + { + "start": 4493.7, + "end": 4494.46, + "probability": 0.9296 + }, + { + "start": 4494.66, + "end": 4497.4, + "probability": 0.8385 + }, + { + "start": 4497.62, + "end": 4499.1, + "probability": 0.9871 + }, + { + "start": 4500.42, + "end": 4502.06, + "probability": 0.9748 + }, + { + "start": 4502.9, + "end": 4504.14, + "probability": 0.9642 + }, + { + "start": 4505.28, + "end": 4507.88, + "probability": 0.994 + }, + { + "start": 4507.94, + "end": 4509.08, + "probability": 0.6261 + }, + { + "start": 4509.98, + "end": 4513.04, + "probability": 0.9778 + }, + { + "start": 4513.9, + "end": 4519.32, + "probability": 0.9861 + }, + { + "start": 4519.52, + "end": 4519.88, + "probability": 0.8506 + }, + { + "start": 4520.76, + "end": 4521.08, + "probability": 0.3969 + }, + { + "start": 4521.1, + "end": 4521.52, + "probability": 0.6818 + }, + { + "start": 4522.48, + "end": 4523.04, + "probability": 0.8205 + }, + { + "start": 4523.76, + "end": 4525.78, + "probability": 0.9955 + }, + { + "start": 4526.62, + "end": 4528.18, + "probability": 0.9946 + }, + { + "start": 4528.96, + "end": 4531.06, + "probability": 0.8725 + }, + { + "start": 4531.52, + "end": 4532.48, + "probability": 0.9792 + }, + { + "start": 4533.74, + "end": 4534.98, + "probability": 0.9246 + }, + { + "start": 4535.1, + "end": 4535.32, + "probability": 0.8517 + }, + { + "start": 4536.14, + "end": 4536.46, + "probability": 0.2708 + }, + { + "start": 4536.46, + "end": 4538.44, + "probability": 0.9849 + }, + { + "start": 4539.22, + "end": 4539.96, + "probability": 0.9802 + }, + { + "start": 4540.94, + "end": 4543.18, + "probability": 0.9014 + }, + { + "start": 4559.04, + "end": 4559.98, + "probability": 0.7451 + }, + { + "start": 4570.9, + "end": 4572.5, + "probability": 0.5299 + }, + { + "start": 4574.14, + "end": 4581.16, + "probability": 0.8594 + }, + { + "start": 4581.3, + "end": 4582.14, + "probability": 0.7915 + }, + { + "start": 4583.0, + "end": 4586.04, + "probability": 0.9938 + }, + { + "start": 4586.92, + "end": 4589.0, + "probability": 0.9861 + }, + { + "start": 4589.78, + "end": 4591.58, + "probability": 0.6323 + }, + { + "start": 4591.72, + "end": 4594.28, + "probability": 0.9146 + }, + { + "start": 4594.4, + "end": 4595.24, + "probability": 0.9199 + }, + { + "start": 4595.66, + "end": 4596.5, + "probability": 0.9636 + }, + { + "start": 4597.28, + "end": 4599.94, + "probability": 0.9521 + }, + { + "start": 4601.2, + "end": 4601.2, + "probability": 0.0231 + }, + { + "start": 4601.2, + "end": 4602.07, + "probability": 0.4758 + }, + { + "start": 4602.54, + "end": 4606.8, + "probability": 0.9949 + }, + { + "start": 4607.52, + "end": 4607.66, + "probability": 0.201 + }, + { + "start": 4607.66, + "end": 4607.86, + "probability": 0.086 + }, + { + "start": 4608.46, + "end": 4609.55, + "probability": 0.3166 + }, + { + "start": 4609.58, + "end": 4610.08, + "probability": 0.6 + }, + { + "start": 4611.36, + "end": 4611.36, + "probability": 0.1561 + }, + { + "start": 4611.36, + "end": 4611.36, + "probability": 0.1076 + }, + { + "start": 4611.36, + "end": 4613.28, + "probability": 0.4885 + }, + { + "start": 4613.4, + "end": 4614.96, + "probability": 0.7675 + }, + { + "start": 4616.0, + "end": 4618.56, + "probability": 0.9708 + }, + { + "start": 4619.22, + "end": 4623.26, + "probability": 0.9562 + }, + { + "start": 4623.98, + "end": 4624.7, + "probability": 0.8006 + }, + { + "start": 4624.86, + "end": 4629.04, + "probability": 0.9831 + }, + { + "start": 4629.16, + "end": 4629.72, + "probability": 0.6851 + }, + { + "start": 4629.84, + "end": 4630.52, + "probability": 0.6493 + }, + { + "start": 4631.26, + "end": 4633.94, + "probability": 0.9598 + }, + { + "start": 4634.82, + "end": 4635.62, + "probability": 0.9189 + }, + { + "start": 4636.82, + "end": 4639.64, + "probability": 0.939 + }, + { + "start": 4640.18, + "end": 4642.47, + "probability": 0.9144 + }, + { + "start": 4643.46, + "end": 4645.1, + "probability": 0.9008 + }, + { + "start": 4645.72, + "end": 4648.72, + "probability": 0.8274 + }, + { + "start": 4649.1, + "end": 4649.88, + "probability": 0.7448 + }, + { + "start": 4650.18, + "end": 4651.82, + "probability": 0.8406 + }, + { + "start": 4652.34, + "end": 4653.2, + "probability": 0.9379 + }, + { + "start": 4653.78, + "end": 4654.58, + "probability": 0.7311 + }, + { + "start": 4655.18, + "end": 4657.51, + "probability": 0.8647 + }, + { + "start": 4658.1, + "end": 4663.8, + "probability": 0.9746 + }, + { + "start": 4664.02, + "end": 4666.1, + "probability": 0.9953 + }, + { + "start": 4666.62, + "end": 4667.78, + "probability": 0.9956 + }, + { + "start": 4668.36, + "end": 4670.14, + "probability": 0.9988 + }, + { + "start": 4670.2, + "end": 4671.14, + "probability": 0.9074 + }, + { + "start": 4671.22, + "end": 4671.82, + "probability": 0.775 + }, + { + "start": 4672.3, + "end": 4673.2, + "probability": 0.9558 + }, + { + "start": 4673.64, + "end": 4676.6, + "probability": 0.9849 + }, + { + "start": 4676.6, + "end": 4679.42, + "probability": 0.9341 + }, + { + "start": 4679.9, + "end": 4682.28, + "probability": 0.9362 + }, + { + "start": 4682.76, + "end": 4684.52, + "probability": 0.8408 + }, + { + "start": 4685.36, + "end": 4688.3, + "probability": 0.9637 + }, + { + "start": 4688.96, + "end": 4690.14, + "probability": 0.9912 + }, + { + "start": 4690.28, + "end": 4691.56, + "probability": 0.9902 + }, + { + "start": 4691.66, + "end": 4693.38, + "probability": 0.9626 + }, + { + "start": 4693.9, + "end": 4698.16, + "probability": 0.9979 + }, + { + "start": 4698.66, + "end": 4701.9, + "probability": 0.9636 + }, + { + "start": 4702.24, + "end": 4706.68, + "probability": 0.7522 + }, + { + "start": 4709.7, + "end": 4711.46, + "probability": 0.0707 + }, + { + "start": 4711.46, + "end": 4714.66, + "probability": 0.2542 + }, + { + "start": 4714.86, + "end": 4716.44, + "probability": 0.0374 + }, + { + "start": 4716.44, + "end": 4717.44, + "probability": 0.0933 + }, + { + "start": 4717.46, + "end": 4718.42, + "probability": 0.5434 + }, + { + "start": 4721.18, + "end": 4722.64, + "probability": 0.2925 + }, + { + "start": 4724.62, + "end": 4726.2, + "probability": 0.5378 + }, + { + "start": 4726.2, + "end": 4727.18, + "probability": 0.106 + }, + { + "start": 4727.44, + "end": 4727.44, + "probability": 0.1215 + }, + { + "start": 4727.78, + "end": 4728.44, + "probability": 0.2717 + }, + { + "start": 4728.44, + "end": 4728.58, + "probability": 0.0104 + }, + { + "start": 4732.6, + "end": 4733.54, + "probability": 0.127 + }, + { + "start": 4734.2, + "end": 4735.36, + "probability": 0.1043 + }, + { + "start": 4735.96, + "end": 4737.14, + "probability": 0.2175 + }, + { + "start": 4737.14, + "end": 4738.33, + "probability": 0.0537 + }, + { + "start": 4738.94, + "end": 4741.3, + "probability": 0.0851 + }, + { + "start": 4744.58, + "end": 4746.58, + "probability": 0.0598 + }, + { + "start": 4748.34, + "end": 4751.14, + "probability": 0.0926 + }, + { + "start": 4751.4, + "end": 4755.1, + "probability": 0.2021 + }, + { + "start": 4755.86, + "end": 4759.16, + "probability": 0.0836 + }, + { + "start": 4761.48, + "end": 4763.28, + "probability": 0.0302 + }, + { + "start": 4763.28, + "end": 4770.66, + "probability": 0.1518 + }, + { + "start": 4770.66, + "end": 4772.12, + "probability": 0.0349 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.0, + "end": 4787.0, + "probability": 0.0 + }, + { + "start": 4787.36, + "end": 4792.2, + "probability": 0.8047 + }, + { + "start": 4792.44, + "end": 4793.64, + "probability": 0.8083 + }, + { + "start": 4794.06, + "end": 4796.3, + "probability": 0.9548 + }, + { + "start": 4796.84, + "end": 4800.42, + "probability": 0.9658 + }, + { + "start": 4800.82, + "end": 4802.83, + "probability": 0.9854 + }, + { + "start": 4803.86, + "end": 4804.44, + "probability": 0.5815 + }, + { + "start": 4804.92, + "end": 4806.28, + "probability": 0.9261 + }, + { + "start": 4806.84, + "end": 4810.98, + "probability": 0.9723 + }, + { + "start": 4811.46, + "end": 4817.4, + "probability": 0.9603 + }, + { + "start": 4817.94, + "end": 4820.94, + "probability": 0.048 + }, + { + "start": 4821.62, + "end": 4821.82, + "probability": 0.0236 + }, + { + "start": 4821.82, + "end": 4821.82, + "probability": 0.1455 + }, + { + "start": 4821.82, + "end": 4821.82, + "probability": 0.1276 + }, + { + "start": 4821.82, + "end": 4821.82, + "probability": 0.062 + }, + { + "start": 4821.82, + "end": 4821.82, + "probability": 0.1481 + }, + { + "start": 4821.82, + "end": 4821.82, + "probability": 0.0914 + }, + { + "start": 4821.82, + "end": 4825.53, + "probability": 0.8883 + }, + { + "start": 4826.68, + "end": 4829.57, + "probability": 0.1814 + }, + { + "start": 4830.82, + "end": 4832.6, + "probability": 0.1157 + }, + { + "start": 4843.84, + "end": 4846.14, + "probability": 0.029 + }, + { + "start": 4855.6, + "end": 4860.5, + "probability": 0.045 + }, + { + "start": 4861.16, + "end": 4861.18, + "probability": 0.038 + }, + { + "start": 4861.18, + "end": 4863.38, + "probability": 0.1066 + }, + { + "start": 4864.22, + "end": 4865.52, + "probability": 0.2466 + }, + { + "start": 4882.24, + "end": 4883.5, + "probability": 0.0167 + }, + { + "start": 4884.34, + "end": 4885.7, + "probability": 0.0261 + }, + { + "start": 4885.79, + "end": 4885.86, + "probability": 0.0124 + }, + { + "start": 4885.86, + "end": 4887.1, + "probability": 0.0635 + }, + { + "start": 4887.9, + "end": 4888.66, + "probability": 0.1281 + }, + { + "start": 4889.52, + "end": 4892.84, + "probability": 0.0312 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.0, + "end": 4907.0, + "probability": 0.0 + }, + { + "start": 4907.1, + "end": 4907.76, + "probability": 0.0405 + }, + { + "start": 4907.76, + "end": 4907.76, + "probability": 0.1035 + }, + { + "start": 4907.76, + "end": 4913.2, + "probability": 0.1582 + }, + { + "start": 4915.78, + "end": 4918.42, + "probability": 0.7527 + }, + { + "start": 4919.76, + "end": 4920.52, + "probability": 0.9222 + }, + { + "start": 4921.44, + "end": 4924.5, + "probability": 0.9927 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.0, + "end": 5037.0, + "probability": 0.0 + }, + { + "start": 5037.32, + "end": 5037.92, + "probability": 0.0265 + }, + { + "start": 5039.08, + "end": 5041.66, + "probability": 0.718 + }, + { + "start": 5042.7, + "end": 5046.44, + "probability": 0.9933 + }, + { + "start": 5047.16, + "end": 5052.6, + "probability": 0.9962 + }, + { + "start": 5052.94, + "end": 5057.26, + "probability": 0.9297 + }, + { + "start": 5058.7, + "end": 5063.26, + "probability": 0.9881 + }, + { + "start": 5063.28, + "end": 5066.02, + "probability": 0.9716 + }, + { + "start": 5066.84, + "end": 5067.44, + "probability": 0.6833 + }, + { + "start": 5067.96, + "end": 5071.52, + "probability": 0.8228 + }, + { + "start": 5073.04, + "end": 5075.7, + "probability": 0.9375 + }, + { + "start": 5076.22, + "end": 5080.66, + "probability": 0.887 + }, + { + "start": 5081.18, + "end": 5083.06, + "probability": 0.9487 + }, + { + "start": 5084.06, + "end": 5084.52, + "probability": 0.8666 + }, + { + "start": 5085.36, + "end": 5088.52, + "probability": 0.9913 + }, + { + "start": 5089.48, + "end": 5092.9, + "probability": 0.9921 + }, + { + "start": 5093.62, + "end": 5096.24, + "probability": 0.983 + }, + { + "start": 5096.82, + "end": 5097.72, + "probability": 0.9976 + }, + { + "start": 5098.12, + "end": 5099.14, + "probability": 0.9956 + }, + { + "start": 5099.82, + "end": 5101.02, + "probability": 0.5884 + }, + { + "start": 5102.0, + "end": 5104.34, + "probability": 0.9573 + }, + { + "start": 5105.48, + "end": 5105.62, + "probability": 0.64 + }, + { + "start": 5106.22, + "end": 5109.68, + "probability": 0.9935 + }, + { + "start": 5109.76, + "end": 5111.08, + "probability": 0.7571 + }, + { + "start": 5111.38, + "end": 5114.58, + "probability": 0.9136 + }, + { + "start": 5115.04, + "end": 5118.48, + "probability": 0.9951 + }, + { + "start": 5118.56, + "end": 5121.44, + "probability": 0.702 + }, + { + "start": 5121.44, + "end": 5122.0, + "probability": 0.6944 + }, + { + "start": 5122.26, + "end": 5123.04, + "probability": 0.3473 + }, + { + "start": 5123.04, + "end": 5125.62, + "probability": 0.9512 + }, + { + "start": 5125.62, + "end": 5130.36, + "probability": 0.6744 + }, + { + "start": 5130.84, + "end": 5132.78, + "probability": 0.6475 + }, + { + "start": 5132.88, + "end": 5135.98, + "probability": 0.8575 + }, + { + "start": 5136.9, + "end": 5139.14, + "probability": 0.7937 + }, + { + "start": 5139.2, + "end": 5144.0, + "probability": 0.9373 + }, + { + "start": 5144.76, + "end": 5147.12, + "probability": 0.8944 + }, + { + "start": 5147.86, + "end": 5152.68, + "probability": 0.9916 + }, + { + "start": 5152.92, + "end": 5153.24, + "probability": 0.31 + }, + { + "start": 5153.46, + "end": 5155.66, + "probability": 0.9199 + }, + { + "start": 5156.42, + "end": 5159.22, + "probability": 0.9326 + }, + { + "start": 5159.52, + "end": 5165.36, + "probability": 0.8343 + }, + { + "start": 5166.12, + "end": 5168.04, + "probability": 0.8594 + }, + { + "start": 5168.52, + "end": 5168.86, + "probability": 0.0868 + }, + { + "start": 5168.86, + "end": 5171.32, + "probability": 0.8943 + }, + { + "start": 5179.94, + "end": 5180.64, + "probability": 0.0753 + }, + { + "start": 5181.9, + "end": 5183.37, + "probability": 0.5062 + }, + { + "start": 5184.14, + "end": 5184.82, + "probability": 0.0144 + }, + { + "start": 5184.82, + "end": 5185.58, + "probability": 0.2768 + }, + { + "start": 5185.76, + "end": 5188.44, + "probability": 0.099 + }, + { + "start": 5188.82, + "end": 5190.8, + "probability": 0.3529 + }, + { + "start": 5191.58, + "end": 5191.58, + "probability": 0.0435 + }, + { + "start": 5191.58, + "end": 5195.36, + "probability": 0.6795 + }, + { + "start": 5195.36, + "end": 5195.5, + "probability": 0.0205 + }, + { + "start": 5195.78, + "end": 5197.36, + "probability": 0.9544 + }, + { + "start": 5197.36, + "end": 5200.02, + "probability": 0.6638 + }, + { + "start": 5200.6, + "end": 5202.7, + "probability": 0.2323 + }, + { + "start": 5204.18, + "end": 5207.3, + "probability": 0.1473 + }, + { + "start": 5208.84, + "end": 5211.42, + "probability": 0.8675 + }, + { + "start": 5211.64, + "end": 5212.74, + "probability": 0.9494 + }, + { + "start": 5212.78, + "end": 5215.77, + "probability": 0.8849 + }, + { + "start": 5216.12, + "end": 5218.08, + "probability": 0.947 + }, + { + "start": 5218.24, + "end": 5219.3, + "probability": 0.9505 + }, + { + "start": 5219.4, + "end": 5223.15, + "probability": 0.9701 + }, + { + "start": 5223.26, + "end": 5224.32, + "probability": 0.698 + }, + { + "start": 5225.14, + "end": 5226.02, + "probability": 0.8376 + }, + { + "start": 5227.22, + "end": 5229.84, + "probability": 0.9978 + }, + { + "start": 5230.6, + "end": 5231.3, + "probability": 0.995 + }, + { + "start": 5232.0, + "end": 5233.52, + "probability": 0.9316 + }, + { + "start": 5234.36, + "end": 5234.82, + "probability": 0.8638 + }, + { + "start": 5235.4, + "end": 5236.82, + "probability": 0.9826 + }, + { + "start": 5237.78, + "end": 5239.12, + "probability": 0.9669 + }, + { + "start": 5239.68, + "end": 5241.02, + "probability": 0.9875 + }, + { + "start": 5241.56, + "end": 5244.64, + "probability": 0.8687 + }, + { + "start": 5245.86, + "end": 5247.26, + "probability": 0.9945 + }, + { + "start": 5248.66, + "end": 5250.28, + "probability": 0.9935 + }, + { + "start": 5251.0, + "end": 5251.64, + "probability": 0.9403 + }, + { + "start": 5252.18, + "end": 5254.88, + "probability": 0.9455 + }, + { + "start": 5255.12, + "end": 5257.08, + "probability": 0.9678 + }, + { + "start": 5258.2, + "end": 5259.1, + "probability": 0.8769 + }, + { + "start": 5259.6, + "end": 5260.14, + "probability": 0.8648 + }, + { + "start": 5260.32, + "end": 5263.76, + "probability": 0.8928 + }, + { + "start": 5264.72, + "end": 5267.08, + "probability": 0.6273 + }, + { + "start": 5267.92, + "end": 5268.78, + "probability": 0.7839 + }, + { + "start": 5269.7, + "end": 5272.68, + "probability": 0.9984 + }, + { + "start": 5272.88, + "end": 5273.7, + "probability": 0.9618 + }, + { + "start": 5274.86, + "end": 5276.96, + "probability": 0.8628 + }, + { + "start": 5278.24, + "end": 5282.0, + "probability": 0.9941 + }, + { + "start": 5282.02, + "end": 5283.4, + "probability": 0.9928 + }, + { + "start": 5283.44, + "end": 5284.58, + "probability": 0.9788 + }, + { + "start": 5286.0, + "end": 5286.84, + "probability": 0.9941 + }, + { + "start": 5287.62, + "end": 5289.16, + "probability": 0.9973 + }, + { + "start": 5289.94, + "end": 5290.86, + "probability": 0.9863 + }, + { + "start": 5291.58, + "end": 5292.8, + "probability": 0.9731 + }, + { + "start": 5293.36, + "end": 5296.52, + "probability": 0.8905 + }, + { + "start": 5297.2, + "end": 5298.0, + "probability": 0.9961 + }, + { + "start": 5298.54, + "end": 5300.34, + "probability": 0.9589 + }, + { + "start": 5301.06, + "end": 5301.72, + "probability": 0.7317 + }, + { + "start": 5302.3, + "end": 5302.72, + "probability": 0.8844 + }, + { + "start": 5303.36, + "end": 5303.74, + "probability": 0.9692 + }, + { + "start": 5304.46, + "end": 5305.52, + "probability": 0.9647 + }, + { + "start": 5306.58, + "end": 5307.74, + "probability": 0.8125 + }, + { + "start": 5308.0, + "end": 5309.66, + "probability": 0.9987 + }, + { + "start": 5310.54, + "end": 5311.3, + "probability": 0.7715 + }, + { + "start": 5312.1, + "end": 5313.26, + "probability": 0.7761 + }, + { + "start": 5314.42, + "end": 5315.76, + "probability": 0.6278 + }, + { + "start": 5316.6, + "end": 5318.56, + "probability": 0.3555 + }, + { + "start": 5319.76, + "end": 5321.6, + "probability": 0.8049 + }, + { + "start": 5323.8, + "end": 5325.72, + "probability": 0.7895 + }, + { + "start": 5326.28, + "end": 5329.26, + "probability": 0.9642 + }, + { + "start": 5330.74, + "end": 5333.78, + "probability": 0.9849 + }, + { + "start": 5334.56, + "end": 5335.52, + "probability": 0.4119 + }, + { + "start": 5337.78, + "end": 5338.38, + "probability": 0.7985 + }, + { + "start": 5339.26, + "end": 5341.76, + "probability": 0.9834 + }, + { + "start": 5342.24, + "end": 5343.34, + "probability": 0.9106 + }, + { + "start": 5343.48, + "end": 5344.34, + "probability": 0.9667 + }, + { + "start": 5345.12, + "end": 5346.54, + "probability": 0.9955 + }, + { + "start": 5347.18, + "end": 5348.34, + "probability": 0.9763 + }, + { + "start": 5348.78, + "end": 5349.74, + "probability": 0.7509 + }, + { + "start": 5349.86, + "end": 5352.34, + "probability": 0.9921 + }, + { + "start": 5353.02, + "end": 5355.1, + "probability": 0.9849 + }, + { + "start": 5356.42, + "end": 5357.64, + "probability": 0.6989 + }, + { + "start": 5358.44, + "end": 5360.68, + "probability": 0.979 + }, + { + "start": 5362.08, + "end": 5365.28, + "probability": 0.8673 + }, + { + "start": 5365.76, + "end": 5366.98, + "probability": 0.9956 + }, + { + "start": 5367.54, + "end": 5368.68, + "probability": 0.9867 + }, + { + "start": 5369.04, + "end": 5370.46, + "probability": 0.9731 + }, + { + "start": 5370.58, + "end": 5371.96, + "probability": 0.9655 + }, + { + "start": 5372.68, + "end": 5375.9, + "probability": 0.9845 + }, + { + "start": 5375.94, + "end": 5377.12, + "probability": 0.9775 + }, + { + "start": 5377.9, + "end": 5381.62, + "probability": 0.9968 + }, + { + "start": 5382.58, + "end": 5385.6, + "probability": 0.9915 + }, + { + "start": 5386.66, + "end": 5390.86, + "probability": 0.8334 + }, + { + "start": 5391.44, + "end": 5392.3, + "probability": 0.7806 + }, + { + "start": 5394.16, + "end": 5396.48, + "probability": 0.9436 + }, + { + "start": 5397.88, + "end": 5399.26, + "probability": 0.7434 + }, + { + "start": 5399.78, + "end": 5402.62, + "probability": 0.9995 + }, + { + "start": 5403.24, + "end": 5404.76, + "probability": 0.7111 + }, + { + "start": 5405.52, + "end": 5407.48, + "probability": 0.7529 + }, + { + "start": 5408.2, + "end": 5411.88, + "probability": 0.9923 + }, + { + "start": 5412.62, + "end": 5413.52, + "probability": 0.7297 + }, + { + "start": 5414.22, + "end": 5415.26, + "probability": 0.9847 + }, + { + "start": 5416.0, + "end": 5417.2, + "probability": 0.9951 + }, + { + "start": 5417.42, + "end": 5419.82, + "probability": 0.8919 + }, + { + "start": 5420.0, + "end": 5421.44, + "probability": 0.8085 + }, + { + "start": 5422.32, + "end": 5423.62, + "probability": 0.7701 + }, + { + "start": 5424.0, + "end": 5425.36, + "probability": 0.9185 + }, + { + "start": 5425.44, + "end": 5427.76, + "probability": 0.9231 + }, + { + "start": 5427.8, + "end": 5430.02, + "probability": 0.9679 + }, + { + "start": 5430.04, + "end": 5430.98, + "probability": 0.6635 + }, + { + "start": 5431.66, + "end": 5432.53, + "probability": 0.9989 + }, + { + "start": 5433.34, + "end": 5433.88, + "probability": 0.8832 + }, + { + "start": 5434.76, + "end": 5435.48, + "probability": 0.7857 + }, + { + "start": 5435.86, + "end": 5439.9, + "probability": 0.985 + }, + { + "start": 5440.1, + "end": 5440.46, + "probability": 0.8406 + }, + { + "start": 5440.64, + "end": 5443.54, + "probability": 0.8257 + }, + { + "start": 5443.68, + "end": 5444.68, + "probability": 0.7957 + }, + { + "start": 5444.8, + "end": 5447.06, + "probability": 0.9873 + }, + { + "start": 5447.94, + "end": 5447.94, + "probability": 0.1628 + }, + { + "start": 5447.94, + "end": 5451.72, + "probability": 0.8936 + }, + { + "start": 5452.7, + "end": 5453.7, + "probability": 0.8742 + }, + { + "start": 5454.26, + "end": 5460.8, + "probability": 0.884 + }, + { + "start": 5461.18, + "end": 5462.04, + "probability": 0.8594 + }, + { + "start": 5462.56, + "end": 5463.38, + "probability": 0.7874 + }, + { + "start": 5463.98, + "end": 5466.04, + "probability": 0.8625 + }, + { + "start": 5466.78, + "end": 5469.16, + "probability": 0.989 + }, + { + "start": 5469.88, + "end": 5471.12, + "probability": 0.9845 + }, + { + "start": 5471.94, + "end": 5473.4, + "probability": 0.7422 + }, + { + "start": 5473.92, + "end": 5475.96, + "probability": 0.8339 + }, + { + "start": 5476.7, + "end": 5480.8, + "probability": 0.9927 + }, + { + "start": 5481.38, + "end": 5482.3, + "probability": 0.9922 + }, + { + "start": 5482.86, + "end": 5483.54, + "probability": 0.6882 + }, + { + "start": 5484.72, + "end": 5487.06, + "probability": 0.965 + }, + { + "start": 5487.64, + "end": 5489.18, + "probability": 0.9813 + }, + { + "start": 5489.58, + "end": 5491.04, + "probability": 0.9832 + }, + { + "start": 5491.3, + "end": 5494.74, + "probability": 0.9624 + }, + { + "start": 5495.66, + "end": 5499.63, + "probability": 0.9385 + }, + { + "start": 5500.42, + "end": 5503.54, + "probability": 0.9834 + }, + { + "start": 5503.8, + "end": 5506.48, + "probability": 0.9451 + }, + { + "start": 5507.32, + "end": 5508.66, + "probability": 0.9961 + }, + { + "start": 5509.9, + "end": 5512.05, + "probability": 0.9963 + }, + { + "start": 5512.7, + "end": 5514.2, + "probability": 0.7061 + }, + { + "start": 5514.7, + "end": 5515.08, + "probability": 0.8599 + }, + { + "start": 5515.76, + "end": 5518.1, + "probability": 0.8753 + }, + { + "start": 5519.06, + "end": 5519.74, + "probability": 0.8872 + }, + { + "start": 5520.48, + "end": 5521.48, + "probability": 0.9729 + }, + { + "start": 5522.2, + "end": 5523.12, + "probability": 0.7612 + }, + { + "start": 5523.92, + "end": 5525.3, + "probability": 0.9969 + }, + { + "start": 5525.9, + "end": 5526.94, + "probability": 0.7174 + }, + { + "start": 5527.86, + "end": 5531.32, + "probability": 0.9932 + }, + { + "start": 5532.21, + "end": 5535.75, + "probability": 0.3372 + }, + { + "start": 5536.0, + "end": 5536.78, + "probability": 0.5486 + }, + { + "start": 5537.2, + "end": 5539.44, + "probability": 0.7527 + }, + { + "start": 5540.0, + "end": 5541.7, + "probability": 0.9871 + }, + { + "start": 5542.76, + "end": 5545.92, + "probability": 0.8403 + }, + { + "start": 5546.48, + "end": 5547.48, + "probability": 0.5402 + }, + { + "start": 5547.52, + "end": 5549.38, + "probability": 0.615 + }, + { + "start": 5549.92, + "end": 5550.44, + "probability": 0.8682 + }, + { + "start": 5551.14, + "end": 5553.2, + "probability": 0.8192 + }, + { + "start": 5553.78, + "end": 5554.98, + "probability": 0.9722 + }, + { + "start": 5555.78, + "end": 5557.37, + "probability": 0.9958 + }, + { + "start": 5557.54, + "end": 5560.82, + "probability": 0.7503 + }, + { + "start": 5561.34, + "end": 5561.85, + "probability": 0.8219 + }, + { + "start": 5562.14, + "end": 5562.85, + "probability": 0.9762 + }, + { + "start": 5563.5, + "end": 5564.04, + "probability": 0.9893 + }, + { + "start": 5564.7, + "end": 5566.54, + "probability": 0.8614 + }, + { + "start": 5567.62, + "end": 5570.76, + "probability": 0.979 + }, + { + "start": 5570.9, + "end": 5571.8, + "probability": 0.8534 + }, + { + "start": 5572.36, + "end": 5573.38, + "probability": 0.8701 + }, + { + "start": 5573.86, + "end": 5577.22, + "probability": 0.9861 + }, + { + "start": 5577.52, + "end": 5580.16, + "probability": 0.8379 + }, + { + "start": 5580.68, + "end": 5582.22, + "probability": 0.8912 + }, + { + "start": 5582.32, + "end": 5582.99, + "probability": 0.9429 + }, + { + "start": 5583.66, + "end": 5589.02, + "probability": 0.958 + }, + { + "start": 5589.52, + "end": 5590.3, + "probability": 0.5413 + }, + { + "start": 5590.46, + "end": 5592.12, + "probability": 0.9053 + }, + { + "start": 5592.64, + "end": 5593.1, + "probability": 0.8361 + }, + { + "start": 5593.52, + "end": 5593.8, + "probability": 0.4934 + }, + { + "start": 5594.22, + "end": 5595.12, + "probability": 0.9189 + }, + { + "start": 5595.54, + "end": 5596.76, + "probability": 0.9944 + }, + { + "start": 5597.12, + "end": 5599.3, + "probability": 0.9699 + }, + { + "start": 5599.38, + "end": 5599.86, + "probability": 0.9852 + }, + { + "start": 5602.56, + "end": 5603.16, + "probability": 0.5776 + }, + { + "start": 5603.18, + "end": 5606.73, + "probability": 0.9113 + }, + { + "start": 5607.68, + "end": 5611.7, + "probability": 0.9878 + }, + { + "start": 5612.86, + "end": 5617.5, + "probability": 0.9936 + }, + { + "start": 5619.6, + "end": 5623.92, + "probability": 0.9963 + }, + { + "start": 5624.52, + "end": 5626.0, + "probability": 0.9925 + }, + { + "start": 5628.0, + "end": 5629.1, + "probability": 0.7736 + }, + { + "start": 5629.9, + "end": 5630.8, + "probability": 0.8501 + }, + { + "start": 5636.12, + "end": 5638.46, + "probability": 0.7947 + }, + { + "start": 5641.22, + "end": 5642.48, + "probability": 0.998 + }, + { + "start": 5644.46, + "end": 5646.54, + "probability": 0.879 + }, + { + "start": 5647.52, + "end": 5648.18, + "probability": 0.994 + }, + { + "start": 5650.02, + "end": 5651.74, + "probability": 0.986 + }, + { + "start": 5654.34, + "end": 5655.02, + "probability": 0.4563 + }, + { + "start": 5656.9, + "end": 5658.46, + "probability": 0.9964 + }, + { + "start": 5659.6, + "end": 5661.74, + "probability": 0.8905 + }, + { + "start": 5663.34, + "end": 5665.42, + "probability": 0.9914 + }, + { + "start": 5668.28, + "end": 5669.2, + "probability": 0.8855 + }, + { + "start": 5671.92, + "end": 5672.78, + "probability": 0.9883 + }, + { + "start": 5675.02, + "end": 5676.3, + "probability": 0.9811 + }, + { + "start": 5678.02, + "end": 5678.96, + "probability": 0.8236 + }, + { + "start": 5680.76, + "end": 5681.96, + "probability": 0.8624 + }, + { + "start": 5683.86, + "end": 5686.48, + "probability": 0.9745 + }, + { + "start": 5691.38, + "end": 5692.42, + "probability": 0.9984 + }, + { + "start": 5694.3, + "end": 5694.86, + "probability": 0.8976 + }, + { + "start": 5698.9, + "end": 5699.94, + "probability": 0.9835 + }, + { + "start": 5700.84, + "end": 5702.1, + "probability": 0.9946 + }, + { + "start": 5705.06, + "end": 5706.68, + "probability": 0.8804 + }, + { + "start": 5708.16, + "end": 5710.0, + "probability": 0.7961 + }, + { + "start": 5713.16, + "end": 5714.18, + "probability": 0.9435 + }, + { + "start": 5716.28, + "end": 5718.58, + "probability": 0.979 + }, + { + "start": 5721.48, + "end": 5722.68, + "probability": 0.7681 + }, + { + "start": 5725.0, + "end": 5726.36, + "probability": 0.5393 + }, + { + "start": 5729.16, + "end": 5731.32, + "probability": 0.9284 + }, + { + "start": 5732.84, + "end": 5733.81, + "probability": 0.6747 + }, + { + "start": 5736.4, + "end": 5737.32, + "probability": 0.8435 + }, + { + "start": 5739.84, + "end": 5740.77, + "probability": 0.9813 + }, + { + "start": 5742.08, + "end": 5742.8, + "probability": 0.8892 + }, + { + "start": 5744.54, + "end": 5745.54, + "probability": 0.9884 + }, + { + "start": 5746.46, + "end": 5750.54, + "probability": 0.998 + }, + { + "start": 5751.52, + "end": 5751.92, + "probability": 0.7009 + }, + { + "start": 5752.68, + "end": 5753.68, + "probability": 0.9873 + }, + { + "start": 5757.08, + "end": 5758.04, + "probability": 0.7809 + }, + { + "start": 5761.32, + "end": 5762.02, + "probability": 0.9409 + }, + { + "start": 5764.08, + "end": 5764.88, + "probability": 0.9945 + }, + { + "start": 5766.44, + "end": 5768.74, + "probability": 0.9832 + }, + { + "start": 5770.3, + "end": 5772.44, + "probability": 0.9921 + }, + { + "start": 5774.18, + "end": 5778.3, + "probability": 0.9972 + }, + { + "start": 5779.42, + "end": 5781.88, + "probability": 0.9059 + }, + { + "start": 5784.24, + "end": 5788.28, + "probability": 0.9957 + }, + { + "start": 5788.28, + "end": 5794.3, + "probability": 0.999 + }, + { + "start": 5796.42, + "end": 5797.2, + "probability": 0.998 + }, + { + "start": 5799.18, + "end": 5800.4, + "probability": 0.9406 + }, + { + "start": 5802.14, + "end": 5803.92, + "probability": 0.851 + }, + { + "start": 5805.14, + "end": 5807.96, + "probability": 0.967 + }, + { + "start": 5808.88, + "end": 5809.96, + "probability": 0.9586 + }, + { + "start": 5812.9, + "end": 5814.16, + "probability": 0.9919 + }, + { + "start": 5818.44, + "end": 5819.22, + "probability": 0.9913 + }, + { + "start": 5821.2, + "end": 5822.54, + "probability": 0.9601 + }, + { + "start": 5823.86, + "end": 5825.3, + "probability": 0.9956 + }, + { + "start": 5827.3, + "end": 5827.98, + "probability": 0.9788 + }, + { + "start": 5830.28, + "end": 5832.38, + "probability": 0.9585 + }, + { + "start": 5837.12, + "end": 5838.2, + "probability": 0.9946 + }, + { + "start": 5840.28, + "end": 5841.04, + "probability": 0.9932 + }, + { + "start": 5844.72, + "end": 5846.67, + "probability": 0.9976 + }, + { + "start": 5850.38, + "end": 5851.38, + "probability": 0.976 + }, + { + "start": 5853.16, + "end": 5854.7, + "probability": 0.9822 + }, + { + "start": 5856.4, + "end": 5858.22, + "probability": 0.9993 + }, + { + "start": 5858.98, + "end": 5859.42, + "probability": 0.8175 + }, + { + "start": 5859.48, + "end": 5860.3, + "probability": 0.9599 + }, + { + "start": 5860.42, + "end": 5860.82, + "probability": 0.7721 + }, + { + "start": 5861.3, + "end": 5862.52, + "probability": 0.917 + }, + { + "start": 5864.02, + "end": 5864.46, + "probability": 0.6171 + }, + { + "start": 5864.56, + "end": 5864.56, + "probability": 0.1715 + }, + { + "start": 5864.56, + "end": 5864.56, + "probability": 0.0418 + }, + { + "start": 5864.56, + "end": 5866.14, + "probability": 0.7415 + }, + { + "start": 5867.24, + "end": 5867.96, + "probability": 0.4201 + }, + { + "start": 5868.94, + "end": 5875.06, + "probability": 0.9967 + }, + { + "start": 5875.72, + "end": 5878.2, + "probability": 0.9902 + }, + { + "start": 5878.44, + "end": 5879.3, + "probability": 0.1884 + }, + { + "start": 5879.3, + "end": 5881.68, + "probability": 0.5862 + }, + { + "start": 5883.42, + "end": 5886.14, + "probability": 0.9436 + }, + { + "start": 5886.34, + "end": 5886.86, + "probability": 0.1916 + }, + { + "start": 5887.58, + "end": 5888.12, + "probability": 0.2504 + }, + { + "start": 5888.16, + "end": 5888.3, + "probability": 0.0834 + }, + { + "start": 5888.3, + "end": 5888.9, + "probability": 0.139 + }, + { + "start": 5889.1, + "end": 5889.78, + "probability": 0.1595 + }, + { + "start": 5889.78, + "end": 5889.88, + "probability": 0.2459 + }, + { + "start": 5890.6, + "end": 5891.56, + "probability": 0.8917 + }, + { + "start": 5893.4, + "end": 5895.26, + "probability": 0.8285 + }, + { + "start": 5898.06, + "end": 5900.22, + "probability": 0.8432 + }, + { + "start": 5903.0, + "end": 5905.22, + "probability": 0.9645 + }, + { + "start": 5905.22, + "end": 5908.86, + "probability": 0.9983 + }, + { + "start": 5909.44, + "end": 5912.24, + "probability": 0.8589 + }, + { + "start": 5913.38, + "end": 5915.12, + "probability": 0.9881 + }, + { + "start": 5916.46, + "end": 5920.28, + "probability": 0.9973 + }, + { + "start": 5921.34, + "end": 5923.88, + "probability": 0.9971 + }, + { + "start": 5925.24, + "end": 5927.0, + "probability": 0.9698 + }, + { + "start": 5927.94, + "end": 5929.4, + "probability": 0.9404 + }, + { + "start": 5930.3, + "end": 5934.92, + "probability": 0.9919 + }, + { + "start": 5936.88, + "end": 5937.18, + "probability": 0.0729 + }, + { + "start": 5937.18, + "end": 5937.9, + "probability": 0.1233 + }, + { + "start": 5938.44, + "end": 5939.26, + "probability": 0.8558 + }, + { + "start": 5939.7, + "end": 5939.74, + "probability": 0.1439 + }, + { + "start": 5939.74, + "end": 5940.26, + "probability": 0.3619 + }, + { + "start": 5941.2, + "end": 5942.9, + "probability": 0.9438 + }, + { + "start": 5944.92, + "end": 5946.52, + "probability": 0.9811 + }, + { + "start": 5947.92, + "end": 5949.88, + "probability": 0.9976 + }, + { + "start": 5951.42, + "end": 5953.02, + "probability": 0.9875 + }, + { + "start": 5954.32, + "end": 5956.38, + "probability": 0.9951 + }, + { + "start": 5958.28, + "end": 5958.88, + "probability": 0.5999 + }, + { + "start": 5960.64, + "end": 5961.62, + "probability": 0.7602 + }, + { + "start": 5963.22, + "end": 5966.54, + "probability": 0.9924 + }, + { + "start": 5967.82, + "end": 5969.64, + "probability": 0.9504 + }, + { + "start": 5970.4, + "end": 5971.38, + "probability": 0.9786 + }, + { + "start": 5972.24, + "end": 5973.06, + "probability": 0.7178 + }, + { + "start": 5973.78, + "end": 5976.08, + "probability": 0.9839 + }, + { + "start": 5976.6, + "end": 5979.04, + "probability": 0.9065 + }, + { + "start": 5979.06, + "end": 5979.78, + "probability": 0.8654 + }, + { + "start": 5979.92, + "end": 5983.22, + "probability": 0.7704 + }, + { + "start": 5983.48, + "end": 5985.66, + "probability": 0.9087 + }, + { + "start": 5987.02, + "end": 5990.48, + "probability": 0.9726 + }, + { + "start": 5991.64, + "end": 5998.56, + "probability": 0.9007 + }, + { + "start": 6001.22, + "end": 6003.08, + "probability": 0.2234 + }, + { + "start": 6003.14, + "end": 6003.66, + "probability": 0.0169 + }, + { + "start": 6003.84, + "end": 6003.92, + "probability": 0.2252 + }, + { + "start": 6003.92, + "end": 6006.1, + "probability": 0.705 + }, + { + "start": 6006.78, + "end": 6007.82, + "probability": 0.1934 + }, + { + "start": 6010.92, + "end": 6010.92, + "probability": 0.0489 + }, + { + "start": 6010.92, + "end": 6010.92, + "probability": 0.0708 + }, + { + "start": 6010.92, + "end": 6013.04, + "probability": 0.9451 + }, + { + "start": 6014.0, + "end": 6016.38, + "probability": 0.8183 + }, + { + "start": 6017.62, + "end": 6018.08, + "probability": 0.4117 + }, + { + "start": 6019.04, + "end": 6020.36, + "probability": 0.8785 + }, + { + "start": 6022.72, + "end": 6025.46, + "probability": 0.2008 + }, + { + "start": 6026.52, + "end": 6027.16, + "probability": 0.1396 + }, + { + "start": 6027.18, + "end": 6027.24, + "probability": 0.4576 + }, + { + "start": 6027.24, + "end": 6028.04, + "probability": 0.3603 + }, + { + "start": 6029.24, + "end": 6034.64, + "probability": 0.411 + }, + { + "start": 6035.42, + "end": 6035.84, + "probability": 0.0419 + }, + { + "start": 6035.84, + "end": 6037.16, + "probability": 0.0186 + }, + { + "start": 6037.42, + "end": 6038.24, + "probability": 0.3983 + }, + { + "start": 6040.02, + "end": 6040.02, + "probability": 0.0417 + }, + { + "start": 6040.02, + "end": 6040.04, + "probability": 0.1203 + }, + { + "start": 6040.04, + "end": 6040.04, + "probability": 0.0304 + }, + { + "start": 6040.04, + "end": 6040.04, + "probability": 0.0647 + }, + { + "start": 6040.04, + "end": 6041.42, + "probability": 0.6705 + }, + { + "start": 6043.08, + "end": 6043.98, + "probability": 0.8353 + }, + { + "start": 6045.2, + "end": 6047.04, + "probability": 0.9448 + }, + { + "start": 6049.38, + "end": 6050.32, + "probability": 0.998 + }, + { + "start": 6051.18, + "end": 6055.56, + "probability": 0.9252 + }, + { + "start": 6057.48, + "end": 6059.1, + "probability": 0.9041 + }, + { + "start": 6061.44, + "end": 6062.88, + "probability": 0.9429 + }, + { + "start": 6064.74, + "end": 6065.92, + "probability": 0.7985 + }, + { + "start": 6067.6, + "end": 6068.64, + "probability": 0.9561 + }, + { + "start": 6069.26, + "end": 6070.34, + "probability": 0.9858 + }, + { + "start": 6073.26, + "end": 6075.9, + "probability": 0.9985 + }, + { + "start": 6078.02, + "end": 6080.78, + "probability": 0.9948 + }, + { + "start": 6082.74, + "end": 6083.8, + "probability": 0.9856 + }, + { + "start": 6085.0, + "end": 6086.36, + "probability": 0.925 + }, + { + "start": 6087.6, + "end": 6089.42, + "probability": 0.9797 + }, + { + "start": 6092.78, + "end": 6093.46, + "probability": 0.9496 + }, + { + "start": 6096.0, + "end": 6101.02, + "probability": 0.9929 + }, + { + "start": 6101.22, + "end": 6101.76, + "probability": 0.1181 + }, + { + "start": 6101.98, + "end": 6103.8, + "probability": 0.8771 + }, + { + "start": 6103.9, + "end": 6104.68, + "probability": 0.5154 + }, + { + "start": 6105.92, + "end": 6107.4, + "probability": 0.9447 + }, + { + "start": 6109.16, + "end": 6111.38, + "probability": 0.9824 + }, + { + "start": 6113.12, + "end": 6116.04, + "probability": 0.9863 + }, + { + "start": 6116.34, + "end": 6118.26, + "probability": 0.9845 + }, + { + "start": 6118.7, + "end": 6124.08, + "probability": 0.9097 + }, + { + "start": 6125.2, + "end": 6125.34, + "probability": 0.0324 + }, + { + "start": 6125.34, + "end": 6128.0, + "probability": 0.97 + }, + { + "start": 6128.66, + "end": 6129.76, + "probability": 0.1119 + }, + { + "start": 6129.76, + "end": 6129.76, + "probability": 0.0965 + }, + { + "start": 6130.04, + "end": 6130.66, + "probability": 0.7671 + }, + { + "start": 6130.78, + "end": 6132.64, + "probability": 0.1931 + }, + { + "start": 6132.7, + "end": 6133.1, + "probability": 0.8823 + }, + { + "start": 6134.1, + "end": 6135.4, + "probability": 0.1664 + }, + { + "start": 6136.96, + "end": 6139.32, + "probability": 0.9756 + }, + { + "start": 6140.23, + "end": 6141.04, + "probability": 0.1107 + }, + { + "start": 6141.18, + "end": 6142.56, + "probability": 0.9792 + }, + { + "start": 6142.66, + "end": 6146.46, + "probability": 0.9855 + }, + { + "start": 6148.4, + "end": 6149.24, + "probability": 0.9119 + }, + { + "start": 6150.52, + "end": 6151.84, + "probability": 0.7946 + }, + { + "start": 6152.82, + "end": 6154.08, + "probability": 0.9976 + }, + { + "start": 6154.88, + "end": 6156.88, + "probability": 0.746 + }, + { + "start": 6157.66, + "end": 6157.7, + "probability": 0.0801 + }, + { + "start": 6157.7, + "end": 6159.98, + "probability": 0.7198 + }, + { + "start": 6160.32, + "end": 6163.06, + "probability": 0.2312 + }, + { + "start": 6163.1, + "end": 6165.42, + "probability": 0.4531 + }, + { + "start": 6167.48, + "end": 6168.36, + "probability": 0.032 + }, + { + "start": 6170.44, + "end": 6172.16, + "probability": 0.17 + }, + { + "start": 6173.0, + "end": 6173.72, + "probability": 0.2619 + }, + { + "start": 6174.18, + "end": 6174.32, + "probability": 0.0101 + }, + { + "start": 6177.18, + "end": 6178.0, + "probability": 0.3515 + }, + { + "start": 6178.06, + "end": 6179.39, + "probability": 0.2503 + }, + { + "start": 6182.3, + "end": 6184.69, + "probability": 0.1769 + }, + { + "start": 6184.9, + "end": 6188.06, + "probability": 0.1223 + }, + { + "start": 6188.12, + "end": 6189.34, + "probability": 0.0125 + }, + { + "start": 6191.76, + "end": 6192.36, + "probability": 0.0183 + }, + { + "start": 6192.56, + "end": 6193.84, + "probability": 0.0564 + }, + { + "start": 6193.84, + "end": 6194.08, + "probability": 0.134 + }, + { + "start": 6194.44, + "end": 6194.56, + "probability": 0.0854 + }, + { + "start": 6195.2, + "end": 6198.16, + "probability": 0.2653 + }, + { + "start": 6198.68, + "end": 6198.7, + "probability": 0.0898 + }, + { + "start": 6198.7, + "end": 6199.38, + "probability": 0.0678 + }, + { + "start": 6203.48, + "end": 6204.08, + "probability": 0.2269 + }, + { + "start": 6206.36, + "end": 6207.84, + "probability": 0.0717 + }, + { + "start": 6208.12, + "end": 6208.47, + "probability": 0.1295 + }, + { + "start": 6209.24, + "end": 6212.44, + "probability": 0.4735 + }, + { + "start": 6212.7, + "end": 6214.86, + "probability": 0.135 + }, + { + "start": 6215.18, + "end": 6215.18, + "probability": 0.0487 + }, + { + "start": 6215.18, + "end": 6215.64, + "probability": 0.193 + }, + { + "start": 6217.15, + "end": 6218.28, + "probability": 0.0518 + }, + { + "start": 6218.28, + "end": 6218.78, + "probability": 0.1335 + }, + { + "start": 6219.62, + "end": 6219.62, + "probability": 0.0563 + }, + { + "start": 6220.28, + "end": 6221.48, + "probability": 0.4077 + }, + { + "start": 6221.48, + "end": 6221.76, + "probability": 0.059 + }, + { + "start": 6221.76, + "end": 6221.92, + "probability": 0.0348 + }, + { + "start": 6222.0, + "end": 6223.1, + "probability": 0.0394 + }, + { + "start": 6223.8, + "end": 6223.98, + "probability": 0.1993 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6224.0, + "end": 6224.0, + "probability": 0.0 + }, + { + "start": 6225.0, + "end": 6225.68, + "probability": 0.0426 + }, + { + "start": 6225.82, + "end": 6227.26, + "probability": 0.2631 + }, + { + "start": 6227.26, + "end": 6229.6, + "probability": 0.3555 + }, + { + "start": 6229.66, + "end": 6229.66, + "probability": 0.3266 + }, + { + "start": 6229.66, + "end": 6230.38, + "probability": 0.8503 + }, + { + "start": 6230.52, + "end": 6231.02, + "probability": 0.4084 + }, + { + "start": 6232.16, + "end": 6234.24, + "probability": 0.4097 + }, + { + "start": 6234.52, + "end": 6240.98, + "probability": 0.9946 + }, + { + "start": 6241.1, + "end": 6241.82, + "probability": 0.045 + }, + { + "start": 6241.82, + "end": 6242.1, + "probability": 0.1803 + }, + { + "start": 6242.26, + "end": 6246.24, + "probability": 0.9902 + }, + { + "start": 6248.04, + "end": 6250.02, + "probability": 0.971 + }, + { + "start": 6250.62, + "end": 6251.08, + "probability": 0.1064 + }, + { + "start": 6251.46, + "end": 6252.92, + "probability": 0.895 + }, + { + "start": 6254.04, + "end": 6254.98, + "probability": 0.9982 + }, + { + "start": 6256.78, + "end": 6261.12, + "probability": 0.9831 + }, + { + "start": 6261.84, + "end": 6264.0, + "probability": 0.2253 + }, + { + "start": 6265.28, + "end": 6268.92, + "probability": 0.7811 + }, + { + "start": 6269.44, + "end": 6272.12, + "probability": 0.4275 + }, + { + "start": 6273.56, + "end": 6275.66, + "probability": 0.0852 + }, + { + "start": 6276.08, + "end": 6278.1, + "probability": 0.4994 + }, + { + "start": 6279.34, + "end": 6285.04, + "probability": 0.6886 + }, + { + "start": 6285.92, + "end": 6287.86, + "probability": 0.9676 + }, + { + "start": 6292.46, + "end": 6293.32, + "probability": 0.1398 + }, + { + "start": 6294.28, + "end": 6296.64, + "probability": 0.0874 + }, + { + "start": 6302.3, + "end": 6310.56, + "probability": 0.2065 + }, + { + "start": 6315.62, + "end": 6318.24, + "probability": 0.5094 + }, + { + "start": 6318.36, + "end": 6324.64, + "probability": 0.0939 + }, + { + "start": 6328.44, + "end": 6329.36, + "probability": 0.1986 + }, + { + "start": 6331.5, + "end": 6335.0, + "probability": 0.3717 + }, + { + "start": 6336.06, + "end": 6337.68, + "probability": 0.0622 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.0, + "end": 6364.0, + "probability": 0.0 + }, + { + "start": 6364.14, + "end": 6364.48, + "probability": 0.0292 + }, + { + "start": 6364.48, + "end": 6364.66, + "probability": 0.0472 + }, + { + "start": 6364.66, + "end": 6365.96, + "probability": 0.5907 + }, + { + "start": 6366.22, + "end": 6370.66, + "probability": 0.9128 + }, + { + "start": 6370.9, + "end": 6371.44, + "probability": 0.0217 + }, + { + "start": 6371.44, + "end": 6371.88, + "probability": 0.0484 + }, + { + "start": 6372.8, + "end": 6373.99, + "probability": 0.4772 + }, + { + "start": 6374.3, + "end": 6376.88, + "probability": 0.7722 + }, + { + "start": 6377.54, + "end": 6379.94, + "probability": 0.9767 + }, + { + "start": 6381.48, + "end": 6384.68, + "probability": 0.9931 + }, + { + "start": 6384.68, + "end": 6388.94, + "probability": 0.9973 + }, + { + "start": 6390.28, + "end": 6391.36, + "probability": 0.9725 + }, + { + "start": 6392.16, + "end": 6395.04, + "probability": 0.9906 + }, + { + "start": 6395.92, + "end": 6397.3, + "probability": 0.926 + }, + { + "start": 6397.4, + "end": 6397.5, + "probability": 0.8729 + }, + { + "start": 6398.4, + "end": 6399.3, + "probability": 0.9253 + }, + { + "start": 6400.96, + "end": 6402.2, + "probability": 0.9951 + }, + { + "start": 6403.34, + "end": 6404.54, + "probability": 0.9988 + }, + { + "start": 6405.36, + "end": 6407.62, + "probability": 0.988 + }, + { + "start": 6409.16, + "end": 6411.78, + "probability": 0.9993 + }, + { + "start": 6412.48, + "end": 6413.06, + "probability": 0.9229 + }, + { + "start": 6413.88, + "end": 6416.66, + "probability": 0.9993 + }, + { + "start": 6417.92, + "end": 6419.8, + "probability": 0.8744 + }, + { + "start": 6421.3, + "end": 6421.78, + "probability": 0.1521 + }, + { + "start": 6421.78, + "end": 6424.0, + "probability": 0.8649 + }, + { + "start": 6425.42, + "end": 6425.98, + "probability": 0.4893 + }, + { + "start": 6425.98, + "end": 6426.46, + "probability": 0.3336 + }, + { + "start": 6426.7, + "end": 6429.8, + "probability": 0.9476 + }, + { + "start": 6429.82, + "end": 6429.84, + "probability": 0.3571 + }, + { + "start": 6429.84, + "end": 6431.46, + "probability": 0.8836 + }, + { + "start": 6431.68, + "end": 6433.04, + "probability": 0.8091 + }, + { + "start": 6433.98, + "end": 6434.74, + "probability": 0.7815 + }, + { + "start": 6434.92, + "end": 6436.58, + "probability": 0.5784 + }, + { + "start": 6436.72, + "end": 6437.18, + "probability": 0.4091 + }, + { + "start": 6437.2, + "end": 6437.9, + "probability": 0.5579 + }, + { + "start": 6438.52, + "end": 6439.46, + "probability": 0.648 + }, + { + "start": 6439.58, + "end": 6440.22, + "probability": 0.0283 + }, + { + "start": 6440.22, + "end": 6441.0, + "probability": 0.4344 + }, + { + "start": 6441.08, + "end": 6445.3, + "probability": 0.9822 + }, + { + "start": 6445.5, + "end": 6449.18, + "probability": 0.8956 + }, + { + "start": 6449.3, + "end": 6449.66, + "probability": 0.4915 + }, + { + "start": 6450.0, + "end": 6450.1, + "probability": 0.2632 + }, + { + "start": 6450.12, + "end": 6450.92, + "probability": 0.6461 + }, + { + "start": 6450.94, + "end": 6456.68, + "probability": 0.9941 + }, + { + "start": 6457.68, + "end": 6458.44, + "probability": 0.7668 + }, + { + "start": 6459.14, + "end": 6460.76, + "probability": 0.9389 + }, + { + "start": 6462.3, + "end": 6463.38, + "probability": 0.9937 + }, + { + "start": 6464.56, + "end": 6465.68, + "probability": 0.9892 + }, + { + "start": 6466.48, + "end": 6467.62, + "probability": 0.9043 + }, + { + "start": 6468.5, + "end": 6470.83, + "probability": 0.9277 + }, + { + "start": 6471.38, + "end": 6471.42, + "probability": 0.1 + }, + { + "start": 6473.44, + "end": 6473.84, + "probability": 0.0192 + }, + { + "start": 6473.84, + "end": 6473.86, + "probability": 0.2147 + }, + { + "start": 6473.86, + "end": 6473.86, + "probability": 0.0546 + }, + { + "start": 6473.86, + "end": 6480.68, + "probability": 0.7661 + }, + { + "start": 6481.14, + "end": 6485.56, + "probability": 0.0553 + }, + { + "start": 6492.24, + "end": 6493.92, + "probability": 0.0023 + }, + { + "start": 6497.02, + "end": 6498.24, + "probability": 0.7436 + }, + { + "start": 6500.93, + "end": 6502.64, + "probability": 0.349 + }, + { + "start": 6510.66, + "end": 6517.94, + "probability": 0.4341 + }, + { + "start": 6519.33, + "end": 6520.76, + "probability": 0.101 + }, + { + "start": 6520.86, + "end": 6520.86, + "probability": 0.0362 + }, + { + "start": 6521.38, + "end": 6522.52, + "probability": 0.177 + }, + { + "start": 6522.52, + "end": 6523.76, + "probability": 0.0581 + }, + { + "start": 6524.44, + "end": 6525.44, + "probability": 0.6815 + }, + { + "start": 6528.54, + "end": 6529.8, + "probability": 0.3101 + }, + { + "start": 6532.24, + "end": 6534.22, + "probability": 0.093 + }, + { + "start": 6534.95, + "end": 6537.54, + "probability": 0.0669 + }, + { + "start": 6537.8, + "end": 6537.8, + "probability": 0.2025 + }, + { + "start": 6537.8, + "end": 6537.8, + "probability": 0.0275 + }, + { + "start": 6537.8, + "end": 6538.48, + "probability": 0.1683 + }, + { + "start": 6539.32, + "end": 6544.6, + "probability": 0.0756 + }, + { + "start": 6545.64, + "end": 6547.84, + "probability": 0.069 + }, + { + "start": 6548.42, + "end": 6549.88, + "probability": 0.0709 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.0, + "end": 6593.0, + "probability": 0.0 + }, + { + "start": 6593.08, + "end": 6595.52, + "probability": 0.0482 + }, + { + "start": 6596.1, + "end": 6596.2, + "probability": 0.1841 + }, + { + "start": 6596.58, + "end": 6597.76, + "probability": 0.1216 + }, + { + "start": 6598.22, + "end": 6600.44, + "probability": 0.0255 + }, + { + "start": 6600.67, + "end": 6601.06, + "probability": 0.0634 + }, + { + "start": 6601.6, + "end": 6605.9, + "probability": 0.0184 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6718.0, + "end": 6718.0, + "probability": 0.0 + }, + { + "start": 6720.64, + "end": 6722.34, + "probability": 0.0148 + }, + { + "start": 6723.62, + "end": 6725.4, + "probability": 0.0951 + }, + { + "start": 6731.78, + "end": 6734.02, + "probability": 0.1392 + }, + { + "start": 6735.45, + "end": 6737.48, + "probability": 0.0838 + }, + { + "start": 6738.22, + "end": 6740.34, + "probability": 0.0991 + }, + { + "start": 6740.42, + "end": 6740.96, + "probability": 0.2322 + }, + { + "start": 6740.96, + "end": 6741.28, + "probability": 0.034 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6849.0, + "end": 6849.0, + "probability": 0.0 + }, + { + "start": 6850.59, + "end": 6853.52, + "probability": 0.0646 + }, + { + "start": 6854.36, + "end": 6855.92, + "probability": 0.2926 + }, + { + "start": 6856.26, + "end": 6856.7, + "probability": 0.1897 + }, + { + "start": 6856.7, + "end": 6859.5, + "probability": 0.811 + }, + { + "start": 6859.64, + "end": 6863.8, + "probability": 0.8164 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.0, + "end": 6982.0, + "probability": 0.0 + }, + { + "start": 6982.44, + "end": 6982.44, + "probability": 0.1068 + }, + { + "start": 6982.44, + "end": 6982.44, + "probability": 0.155 + }, + { + "start": 6982.44, + "end": 6984.18, + "probability": 0.3975 + }, + { + "start": 6984.22, + "end": 6986.22, + "probability": 0.8372 + }, + { + "start": 6986.76, + "end": 6987.92, + "probability": 0.176 + }, + { + "start": 6988.18, + "end": 6988.18, + "probability": 0.0546 + }, + { + "start": 6988.18, + "end": 6990.62, + "probability": 0.8146 + }, + { + "start": 6991.64, + "end": 6991.9, + "probability": 0.6784 + }, + { + "start": 6991.9, + "end": 6994.8, + "probability": 0.9874 + }, + { + "start": 6994.94, + "end": 6995.92, + "probability": 0.9877 + }, + { + "start": 6996.06, + "end": 6997.04, + "probability": 0.9077 + }, + { + "start": 6997.68, + "end": 7000.48, + "probability": 0.9989 + }, + { + "start": 7000.48, + "end": 7003.9, + "probability": 0.984 + }, + { + "start": 7004.52, + "end": 7005.78, + "probability": 0.7603 + }, + { + "start": 7006.24, + "end": 7007.48, + "probability": 0.9138 + }, + { + "start": 7008.12, + "end": 7008.26, + "probability": 0.0402 + }, + { + "start": 7008.26, + "end": 7011.24, + "probability": 0.0042 + }, + { + "start": 7012.34, + "end": 7015.44, + "probability": 0.0839 + }, + { + "start": 7015.44, + "end": 7015.52, + "probability": 0.0894 + }, + { + "start": 7015.52, + "end": 7017.02, + "probability": 0.0632 + }, + { + "start": 7017.46, + "end": 7018.18, + "probability": 0.243 + }, + { + "start": 7018.18, + "end": 7018.26, + "probability": 0.4434 + }, + { + "start": 7018.36, + "end": 7022.36, + "probability": 0.8009 + }, + { + "start": 7022.6, + "end": 7024.34, + "probability": 0.8602 + }, + { + "start": 7024.44, + "end": 7026.94, + "probability": 0.9913 + }, + { + "start": 7027.26, + "end": 7029.36, + "probability": 0.9567 + }, + { + "start": 7029.6, + "end": 7031.2, + "probability": 0.9893 + }, + { + "start": 7032.42, + "end": 7033.1, + "probability": 0.73 + }, + { + "start": 7033.28, + "end": 7033.88, + "probability": 0.926 + }, + { + "start": 7033.96, + "end": 7037.28, + "probability": 0.9941 + }, + { + "start": 7038.46, + "end": 7039.38, + "probability": 0.714 + }, + { + "start": 7040.16, + "end": 7046.06, + "probability": 0.9627 + }, + { + "start": 7046.9, + "end": 7050.54, + "probability": 0.9702 + }, + { + "start": 7050.68, + "end": 7051.32, + "probability": 0.7362 + }, + { + "start": 7052.22, + "end": 7054.3, + "probability": 0.999 + }, + { + "start": 7056.04, + "end": 7057.98, + "probability": 0.9779 + }, + { + "start": 7058.92, + "end": 7060.18, + "probability": 0.9519 + }, + { + "start": 7060.8, + "end": 7065.9, + "probability": 0.9983 + }, + { + "start": 7066.56, + "end": 7068.16, + "probability": 0.987 + }, + { + "start": 7069.02, + "end": 7074.4, + "probability": 0.999 + }, + { + "start": 7074.64, + "end": 7075.88, + "probability": 0.9288 + }, + { + "start": 7076.6, + "end": 7078.46, + "probability": 0.9863 + }, + { + "start": 7080.12, + "end": 7080.94, + "probability": 0.746 + }, + { + "start": 7081.62, + "end": 7083.62, + "probability": 0.9875 + }, + { + "start": 7084.72, + "end": 7086.44, + "probability": 0.9951 + }, + { + "start": 7087.08, + "end": 7091.68, + "probability": 0.9976 + }, + { + "start": 7092.08, + "end": 7093.06, + "probability": 0.8327 + }, + { + "start": 7093.62, + "end": 7095.48, + "probability": 0.8916 + }, + { + "start": 7096.34, + "end": 7099.38, + "probability": 0.9855 + }, + { + "start": 7100.18, + "end": 7102.18, + "probability": 0.9841 + }, + { + "start": 7102.22, + "end": 7104.12, + "probability": 0.9599 + }, + { + "start": 7104.6, + "end": 7106.46, + "probability": 0.9834 + }, + { + "start": 7106.86, + "end": 7110.0, + "probability": 0.9898 + }, + { + "start": 7110.92, + "end": 7111.14, + "probability": 0.3492 + }, + { + "start": 7112.28, + "end": 7112.84, + "probability": 0.9379 + }, + { + "start": 7113.38, + "end": 7118.62, + "probability": 0.9974 + }, + { + "start": 7119.72, + "end": 7122.76, + "probability": 0.9953 + }, + { + "start": 7123.9, + "end": 7126.24, + "probability": 0.6897 + }, + { + "start": 7127.02, + "end": 7129.32, + "probability": 0.9978 + }, + { + "start": 7130.22, + "end": 7133.24, + "probability": 0.9983 + }, + { + "start": 7134.36, + "end": 7135.56, + "probability": 0.9968 + }, + { + "start": 7136.26, + "end": 7138.06, + "probability": 0.8573 + }, + { + "start": 7139.02, + "end": 7140.12, + "probability": 0.8406 + }, + { + "start": 7141.08, + "end": 7147.54, + "probability": 0.9868 + }, + { + "start": 7148.76, + "end": 7150.38, + "probability": 0.9984 + }, + { + "start": 7151.02, + "end": 7154.24, + "probability": 0.9966 + }, + { + "start": 7155.38, + "end": 7158.52, + "probability": 0.9819 + }, + { + "start": 7159.5, + "end": 7161.86, + "probability": 0.9624 + }, + { + "start": 7162.74, + "end": 7163.62, + "probability": 0.9864 + }, + { + "start": 7164.4, + "end": 7165.84, + "probability": 0.9891 + }, + { + "start": 7166.16, + "end": 7166.52, + "probability": 0.94 + }, + { + "start": 7166.8, + "end": 7167.96, + "probability": 0.9629 + }, + { + "start": 7168.16, + "end": 7168.56, + "probability": 0.6337 + }, + { + "start": 7169.38, + "end": 7172.54, + "probability": 0.9707 + }, + { + "start": 7173.54, + "end": 7177.94, + "probability": 0.9944 + }, + { + "start": 7178.62, + "end": 7180.18, + "probability": 0.9459 + }, + { + "start": 7181.08, + "end": 7183.52, + "probability": 0.9698 + }, + { + "start": 7184.12, + "end": 7185.96, + "probability": 0.9921 + }, + { + "start": 7186.04, + "end": 7186.72, + "probability": 0.768 + }, + { + "start": 7187.1, + "end": 7187.92, + "probability": 0.8124 + }, + { + "start": 7190.0, + "end": 7191.12, + "probability": 0.9547 + }, + { + "start": 7192.38, + "end": 7196.34, + "probability": 0.9246 + }, + { + "start": 7196.96, + "end": 7199.62, + "probability": 0.998 + }, + { + "start": 7200.06, + "end": 7200.77, + "probability": 0.9873 + }, + { + "start": 7201.56, + "end": 7204.12, + "probability": 0.9956 + }, + { + "start": 7205.98, + "end": 7208.46, + "probability": 0.9962 + }, + { + "start": 7209.54, + "end": 7210.18, + "probability": 0.7759 + }, + { + "start": 7211.28, + "end": 7215.12, + "probability": 0.9971 + }, + { + "start": 7216.0, + "end": 7220.44, + "probability": 0.9869 + }, + { + "start": 7220.54, + "end": 7225.3, + "probability": 0.9961 + }, + { + "start": 7226.94, + "end": 7229.06, + "probability": 0.9863 + }, + { + "start": 7229.22, + "end": 7230.6, + "probability": 0.9526 + }, + { + "start": 7231.4, + "end": 7234.6, + "probability": 0.9845 + }, + { + "start": 7235.02, + "end": 7236.74, + "probability": 0.9615 + }, + { + "start": 7237.68, + "end": 7240.87, + "probability": 0.9491 + }, + { + "start": 7241.68, + "end": 7245.72, + "probability": 0.9985 + }, + { + "start": 7247.14, + "end": 7252.84, + "probability": 0.9966 + }, + { + "start": 7253.76, + "end": 7254.72, + "probability": 0.9147 + }, + { + "start": 7255.84, + "end": 7256.96, + "probability": 0.9908 + }, + { + "start": 7257.76, + "end": 7258.36, + "probability": 0.9943 + }, + { + "start": 7259.38, + "end": 7260.54, + "probability": 0.9734 + }, + { + "start": 7261.12, + "end": 7263.14, + "probability": 0.9849 + }, + { + "start": 7263.98, + "end": 7267.8, + "probability": 0.9973 + }, + { + "start": 7267.8, + "end": 7272.16, + "probability": 0.9995 + }, + { + "start": 7273.18, + "end": 7277.7, + "probability": 0.9991 + }, + { + "start": 7278.6, + "end": 7282.06, + "probability": 0.999 + }, + { + "start": 7282.28, + "end": 7285.58, + "probability": 0.999 + }, + { + "start": 7286.98, + "end": 7287.64, + "probability": 0.9201 + }, + { + "start": 7288.48, + "end": 7291.05, + "probability": 0.9498 + }, + { + "start": 7292.62, + "end": 7293.08, + "probability": 0.9277 + }, + { + "start": 7294.34, + "end": 7295.3, + "probability": 0.9859 + }, + { + "start": 7296.08, + "end": 7296.98, + "probability": 0.7771 + }, + { + "start": 7297.74, + "end": 7299.68, + "probability": 0.9968 + }, + { + "start": 7300.54, + "end": 7302.84, + "probability": 0.99 + }, + { + "start": 7304.22, + "end": 7305.56, + "probability": 0.5591 + }, + { + "start": 7305.62, + "end": 7307.16, + "probability": 0.9785 + }, + { + "start": 7307.3, + "end": 7308.28, + "probability": 0.9803 + }, + { + "start": 7309.4, + "end": 7313.62, + "probability": 0.9024 + }, + { + "start": 7314.6, + "end": 7317.58, + "probability": 0.9956 + }, + { + "start": 7318.3, + "end": 7321.86, + "probability": 0.9829 + }, + { + "start": 7321.86, + "end": 7325.04, + "probability": 0.9991 + }, + { + "start": 7325.6, + "end": 7326.18, + "probability": 0.6106 + }, + { + "start": 7326.26, + "end": 7326.77, + "probability": 0.9699 + }, + { + "start": 7327.5, + "end": 7330.62, + "probability": 0.992 + }, + { + "start": 7331.68, + "end": 7332.32, + "probability": 0.9336 + }, + { + "start": 7333.56, + "end": 7335.06, + "probability": 0.9183 + }, + { + "start": 7336.1, + "end": 7338.0, + "probability": 0.9984 + }, + { + "start": 7338.94, + "end": 7340.58, + "probability": 0.9951 + }, + { + "start": 7341.46, + "end": 7343.02, + "probability": 0.9988 + }, + { + "start": 7343.46, + "end": 7346.54, + "probability": 0.9976 + }, + { + "start": 7346.66, + "end": 7350.22, + "probability": 0.9983 + }, + { + "start": 7351.38, + "end": 7353.38, + "probability": 0.9976 + }, + { + "start": 7354.8, + "end": 7356.28, + "probability": 0.9376 + }, + { + "start": 7357.18, + "end": 7359.1, + "probability": 0.9963 + }, + { + "start": 7359.64, + "end": 7363.28, + "probability": 0.9996 + }, + { + "start": 7363.9, + "end": 7365.1, + "probability": 0.8999 + }, + { + "start": 7365.28, + "end": 7366.18, + "probability": 0.9428 + }, + { + "start": 7366.24, + "end": 7368.18, + "probability": 0.9342 + }, + { + "start": 7368.98, + "end": 7369.72, + "probability": 0.7784 + }, + { + "start": 7370.38, + "end": 7372.96, + "probability": 0.9834 + }, + { + "start": 7374.38, + "end": 7376.34, + "probability": 0.9983 + }, + { + "start": 7376.88, + "end": 7378.06, + "probability": 0.93 + }, + { + "start": 7379.16, + "end": 7380.58, + "probability": 0.9919 + }, + { + "start": 7381.12, + "end": 7382.36, + "probability": 0.9929 + }, + { + "start": 7383.04, + "end": 7385.42, + "probability": 0.8238 + }, + { + "start": 7385.94, + "end": 7389.08, + "probability": 0.9976 + }, + { + "start": 7389.18, + "end": 7391.06, + "probability": 0.9849 + }, + { + "start": 7391.72, + "end": 7393.8, + "probability": 0.999 + }, + { + "start": 7393.8, + "end": 7396.52, + "probability": 0.9894 + }, + { + "start": 7397.64, + "end": 7399.42, + "probability": 0.0589 + }, + { + "start": 7399.84, + "end": 7399.96, + "probability": 0.0093 + }, + { + "start": 7399.96, + "end": 7402.02, + "probability": 0.3471 + }, + { + "start": 7402.78, + "end": 7403.62, + "probability": 0.5248 + }, + { + "start": 7404.16, + "end": 7405.9, + "probability": 0.1147 + }, + { + "start": 7405.9, + "end": 7405.9, + "probability": 0.1257 + }, + { + "start": 7405.9, + "end": 7405.96, + "probability": 0.0493 + }, + { + "start": 7405.96, + "end": 7405.96, + "probability": 0.1726 + }, + { + "start": 7405.96, + "end": 7408.52, + "probability": 0.6245 + }, + { + "start": 7409.42, + "end": 7411.66, + "probability": 0.0025 + }, + { + "start": 7412.53, + "end": 7416.4, + "probability": 0.6219 + }, + { + "start": 7416.78, + "end": 7417.78, + "probability": 0.1116 + }, + { + "start": 7419.8, + "end": 7420.86, + "probability": 0.1463 + }, + { + "start": 7421.54, + "end": 7422.32, + "probability": 0.3362 + }, + { + "start": 7427.26, + "end": 7430.32, + "probability": 0.8698 + }, + { + "start": 7431.44, + "end": 7435.16, + "probability": 0.0204 + }, + { + "start": 7435.88, + "end": 7439.51, + "probability": 0.0611 + }, + { + "start": 7442.95, + "end": 7445.18, + "probability": 0.0088 + }, + { + "start": 7446.18, + "end": 7446.18, + "probability": 0.1384 + }, + { + "start": 7446.18, + "end": 7446.18, + "probability": 0.1108 + }, + { + "start": 7446.18, + "end": 7446.18, + "probability": 0.0991 + }, + { + "start": 7446.18, + "end": 7446.18, + "probability": 0.0906 + }, + { + "start": 7446.18, + "end": 7448.34, + "probability": 0.1698 + }, + { + "start": 7450.0, + "end": 7450.0, + "probability": 0.0047 + }, + { + "start": 7450.0, + "end": 7450.0, + "probability": 0.0732 + }, + { + "start": 7450.0, + "end": 7450.0, + "probability": 0.1326 + }, + { + "start": 7450.0, + "end": 7451.5, + "probability": 0.1589 + }, + { + "start": 7452.2, + "end": 7457.2, + "probability": 0.4219 + }, + { + "start": 7458.24, + "end": 7459.2, + "probability": 0.7126 + }, + { + "start": 7459.96, + "end": 7462.22, + "probability": 0.8976 + }, + { + "start": 7463.18, + "end": 7465.32, + "probability": 0.9214 + }, + { + "start": 7465.7, + "end": 7469.16, + "probability": 0.9949 + }, + { + "start": 7469.16, + "end": 7474.2, + "probability": 0.9971 + }, + { + "start": 7475.14, + "end": 7479.38, + "probability": 0.989 + }, + { + "start": 7480.04, + "end": 7480.44, + "probability": 0.7328 + }, + { + "start": 7481.72, + "end": 7484.5, + "probability": 0.962 + }, + { + "start": 7485.02, + "end": 7486.9, + "probability": 0.9955 + }, + { + "start": 7487.3, + "end": 7490.24, + "probability": 0.9938 + }, + { + "start": 7490.68, + "end": 7491.32, + "probability": 0.4382 + }, + { + "start": 7491.76, + "end": 7493.22, + "probability": 0.9567 + }, + { + "start": 7493.5, + "end": 7494.74, + "probability": 0.9955 + }, + { + "start": 7495.42, + "end": 7495.7, + "probability": 0.8589 + }, + { + "start": 7496.42, + "end": 7496.7, + "probability": 0.7308 + }, + { + "start": 7497.44, + "end": 7497.76, + "probability": 0.6449 + }, + { + "start": 7497.76, + "end": 7498.42, + "probability": 0.9552 + }, + { + "start": 7498.44, + "end": 7500.14, + "probability": 0.8706 + }, + { + "start": 7500.22, + "end": 7500.88, + "probability": 0.1907 + }, + { + "start": 7501.0, + "end": 7503.4, + "probability": 0.9807 + }, + { + "start": 7506.92, + "end": 7509.28, + "probability": 0.9839 + }, + { + "start": 7509.82, + "end": 7511.84, + "probability": 0.8503 + }, + { + "start": 7512.7, + "end": 7515.08, + "probability": 0.9839 + }, + { + "start": 7515.5, + "end": 7516.56, + "probability": 0.8779 + }, + { + "start": 7517.3, + "end": 7517.8, + "probability": 0.7698 + }, + { + "start": 7518.72, + "end": 7521.26, + "probability": 0.9705 + }, + { + "start": 7521.4, + "end": 7524.0, + "probability": 0.991 + }, + { + "start": 7540.48, + "end": 7540.96, + "probability": 0.1437 + }, + { + "start": 7542.62, + "end": 7547.08, + "probability": 0.9308 + }, + { + "start": 7564.66, + "end": 7565.46, + "probability": 0.6671 + }, + { + "start": 7566.92, + "end": 7567.71, + "probability": 0.9919 + }, + { + "start": 7569.22, + "end": 7570.78, + "probability": 0.9312 + }, + { + "start": 7574.1, + "end": 7574.36, + "probability": 0.0915 + }, + { + "start": 7576.08, + "end": 7576.54, + "probability": 0.7851 + }, + { + "start": 7581.88, + "end": 7582.66, + "probability": 0.9581 + }, + { + "start": 7585.74, + "end": 7586.52, + "probability": 0.9591 + }, + { + "start": 7588.18, + "end": 7588.94, + "probability": 0.8949 + }, + { + "start": 7591.92, + "end": 7598.5, + "probability": 0.8881 + }, + { + "start": 7598.7, + "end": 7599.58, + "probability": 0.6715 + }, + { + "start": 7602.94, + "end": 7606.54, + "probability": 0.6902 + }, + { + "start": 7608.88, + "end": 7612.18, + "probability": 0.9728 + }, + { + "start": 7612.3, + "end": 7612.96, + "probability": 0.8621 + }, + { + "start": 7616.14, + "end": 7616.92, + "probability": 0.9223 + }, + { + "start": 7617.06, + "end": 7617.46, + "probability": 0.6336 + }, + { + "start": 7620.06, + "end": 7622.26, + "probability": 0.9377 + }, + { + "start": 7623.12, + "end": 7624.3, + "probability": 0.8039 + }, + { + "start": 7626.4, + "end": 7629.14, + "probability": 0.988 + }, + { + "start": 7630.18, + "end": 7633.02, + "probability": 0.9878 + }, + { + "start": 7633.24, + "end": 7634.56, + "probability": 0.847 + }, + { + "start": 7637.3, + "end": 7638.24, + "probability": 0.9252 + }, + { + "start": 7639.34, + "end": 7640.34, + "probability": 0.9936 + }, + { + "start": 7643.96, + "end": 7646.54, + "probability": 0.9932 + }, + { + "start": 7649.76, + "end": 7649.96, + "probability": 0.3512 + }, + { + "start": 7650.04, + "end": 7653.06, + "probability": 0.9929 + }, + { + "start": 7653.28, + "end": 7654.26, + "probability": 0.5908 + }, + { + "start": 7657.14, + "end": 7660.66, + "probability": 0.8084 + }, + { + "start": 7664.22, + "end": 7667.58, + "probability": 0.9808 + }, + { + "start": 7669.0, + "end": 7669.72, + "probability": 0.5514 + }, + { + "start": 7672.42, + "end": 7677.38, + "probability": 0.7549 + }, + { + "start": 7678.82, + "end": 7679.16, + "probability": 0.8629 + }, + { + "start": 7680.66, + "end": 7681.48, + "probability": 0.9628 + }, + { + "start": 7682.32, + "end": 7682.76, + "probability": 0.5705 + }, + { + "start": 7685.44, + "end": 7691.53, + "probability": 0.9985 + }, + { + "start": 7693.06, + "end": 7696.72, + "probability": 0.7575 + }, + { + "start": 7698.02, + "end": 7699.0, + "probability": 0.6432 + }, + { + "start": 7701.18, + "end": 7703.04, + "probability": 0.8286 + }, + { + "start": 7703.26, + "end": 7706.5, + "probability": 0.976 + }, + { + "start": 7707.36, + "end": 7710.16, + "probability": 0.7926 + }, + { + "start": 7710.84, + "end": 7711.66, + "probability": 0.663 + }, + { + "start": 7712.54, + "end": 7713.52, + "probability": 0.489 + }, + { + "start": 7717.54, + "end": 7720.34, + "probability": 0.9946 + }, + { + "start": 7723.22, + "end": 7725.72, + "probability": 0.9435 + }, + { + "start": 7729.02, + "end": 7731.58, + "probability": 0.9978 + }, + { + "start": 7731.66, + "end": 7736.72, + "probability": 0.9973 + }, + { + "start": 7738.26, + "end": 7741.02, + "probability": 0.9575 + }, + { + "start": 7743.48, + "end": 7747.54, + "probability": 0.9985 + }, + { + "start": 7747.62, + "end": 7748.14, + "probability": 0.5852 + }, + { + "start": 7748.7, + "end": 7750.18, + "probability": 0.9646 + }, + { + "start": 7752.42, + "end": 7753.28, + "probability": 0.8769 + }, + { + "start": 7756.22, + "end": 7759.68, + "probability": 0.9923 + }, + { + "start": 7759.68, + "end": 7762.58, + "probability": 0.9613 + }, + { + "start": 7765.16, + "end": 7769.06, + "probability": 0.9123 + }, + { + "start": 7771.98, + "end": 7773.54, + "probability": 0.9774 + }, + { + "start": 7775.62, + "end": 7778.92, + "probability": 0.9741 + }, + { + "start": 7779.78, + "end": 7780.58, + "probability": 0.7388 + }, + { + "start": 7781.0, + "end": 7783.34, + "probability": 0.9973 + }, + { + "start": 7783.46, + "end": 7783.66, + "probability": 0.8485 + }, + { + "start": 7783.72, + "end": 7785.23, + "probability": 0.9974 + }, + { + "start": 7786.92, + "end": 7789.08, + "probability": 0.9836 + }, + { + "start": 7789.44, + "end": 7790.28, + "probability": 0.9707 + }, + { + "start": 7790.34, + "end": 7791.24, + "probability": 0.9911 + }, + { + "start": 7791.34, + "end": 7794.64, + "probability": 0.9905 + }, + { + "start": 7799.78, + "end": 7802.24, + "probability": 0.989 + }, + { + "start": 7802.4, + "end": 7806.16, + "probability": 0.9781 + }, + { + "start": 7807.3, + "end": 7807.62, + "probability": 0.6464 + }, + { + "start": 7810.7, + "end": 7812.92, + "probability": 0.9826 + }, + { + "start": 7814.44, + "end": 7815.87, + "probability": 0.5482 + }, + { + "start": 7818.42, + "end": 7819.6, + "probability": 0.8254 + }, + { + "start": 7819.8, + "end": 7821.66, + "probability": 0.827 + }, + { + "start": 7823.96, + "end": 7825.7, + "probability": 0.9917 + }, + { + "start": 7826.8, + "end": 7828.34, + "probability": 0.9702 + }, + { + "start": 7828.58, + "end": 7830.26, + "probability": 0.9877 + }, + { + "start": 7830.44, + "end": 7831.06, + "probability": 0.8841 + }, + { + "start": 7833.82, + "end": 7838.2, + "probability": 0.8465 + }, + { + "start": 7840.72, + "end": 7842.42, + "probability": 0.9997 + }, + { + "start": 7843.72, + "end": 7845.48, + "probability": 0.8144 + }, + { + "start": 7845.64, + "end": 7846.58, + "probability": 0.9922 + }, + { + "start": 7849.12, + "end": 7852.22, + "probability": 0.8542 + }, + { + "start": 7853.3, + "end": 7855.92, + "probability": 0.9325 + }, + { + "start": 7857.8, + "end": 7861.76, + "probability": 0.9941 + }, + { + "start": 7863.74, + "end": 7866.46, + "probability": 0.8971 + }, + { + "start": 7866.84, + "end": 7868.68, + "probability": 0.9844 + }, + { + "start": 7870.94, + "end": 7873.48, + "probability": 0.9502 + }, + { + "start": 7874.26, + "end": 7874.94, + "probability": 0.8248 + }, + { + "start": 7876.5, + "end": 7882.4, + "probability": 0.972 + }, + { + "start": 7882.48, + "end": 7885.96, + "probability": 0.9775 + }, + { + "start": 7889.22, + "end": 7889.96, + "probability": 0.8364 + }, + { + "start": 7891.02, + "end": 7891.78, + "probability": 0.9585 + }, + { + "start": 7893.06, + "end": 7895.7, + "probability": 0.9254 + }, + { + "start": 7896.58, + "end": 7897.42, + "probability": 0.9873 + }, + { + "start": 7898.8, + "end": 7899.56, + "probability": 0.8737 + }, + { + "start": 7902.42, + "end": 7904.49, + "probability": 0.979 + }, + { + "start": 7905.78, + "end": 7909.02, + "probability": 0.9731 + }, + { + "start": 7910.14, + "end": 7911.0, + "probability": 0.8053 + }, + { + "start": 7913.3, + "end": 7914.36, + "probability": 0.5104 + }, + { + "start": 7915.94, + "end": 7918.74, + "probability": 0.9919 + }, + { + "start": 7919.62, + "end": 7923.46, + "probability": 0.9667 + }, + { + "start": 7926.08, + "end": 7927.26, + "probability": 0.9782 + }, + { + "start": 7928.44, + "end": 7928.76, + "probability": 0.9609 + }, + { + "start": 7929.66, + "end": 7930.36, + "probability": 0.8267 + }, + { + "start": 7930.94, + "end": 7932.47, + "probability": 0.9771 + }, + { + "start": 7934.46, + "end": 7936.22, + "probability": 0.8789 + }, + { + "start": 7937.68, + "end": 7938.46, + "probability": 0.9812 + }, + { + "start": 7939.26, + "end": 7939.76, + "probability": 0.8136 + }, + { + "start": 7941.68, + "end": 7947.01, + "probability": 0.9852 + }, + { + "start": 7947.8, + "end": 7950.2, + "probability": 0.9323 + }, + { + "start": 7951.28, + "end": 7954.86, + "probability": 0.9934 + }, + { + "start": 7956.14, + "end": 7960.3, + "probability": 0.9822 + }, + { + "start": 7962.12, + "end": 7964.38, + "probability": 0.9978 + }, + { + "start": 7965.42, + "end": 7967.12, + "probability": 0.8964 + }, + { + "start": 7967.9, + "end": 7968.12, + "probability": 0.926 + }, + { + "start": 7968.84, + "end": 7971.18, + "probability": 0.9961 + }, + { + "start": 7971.34, + "end": 7972.5, + "probability": 0.9354 + }, + { + "start": 7972.5, + "end": 7973.66, + "probability": 0.9698 + }, + { + "start": 7974.96, + "end": 7978.72, + "probability": 0.9779 + }, + { + "start": 7981.08, + "end": 7985.38, + "probability": 0.9598 + }, + { + "start": 7985.92, + "end": 7986.92, + "probability": 0.7272 + }, + { + "start": 7988.04, + "end": 7989.24, + "probability": 0.9318 + }, + { + "start": 7990.36, + "end": 7990.38, + "probability": 0.6699 + }, + { + "start": 7991.38, + "end": 7993.6, + "probability": 0.7843 + }, + { + "start": 7995.1, + "end": 7997.24, + "probability": 0.899 + }, + { + "start": 7998.5, + "end": 7999.22, + "probability": 0.8677 + }, + { + "start": 8001.32, + "end": 8002.58, + "probability": 0.9457 + }, + { + "start": 8002.64, + "end": 8003.36, + "probability": 0.9626 + }, + { + "start": 8003.64, + "end": 8004.96, + "probability": 0.9971 + }, + { + "start": 8006.82, + "end": 8009.84, + "probability": 0.9996 + }, + { + "start": 8010.56, + "end": 8011.42, + "probability": 0.6589 + }, + { + "start": 8011.6, + "end": 8011.98, + "probability": 0.4963 + }, + { + "start": 8014.02, + "end": 8015.04, + "probability": 0.9992 + }, + { + "start": 8015.7, + "end": 8016.54, + "probability": 0.7896 + }, + { + "start": 8018.82, + "end": 8021.58, + "probability": 0.9978 + }, + { + "start": 8022.88, + "end": 8025.12, + "probability": 0.9823 + }, + { + "start": 8026.48, + "end": 8027.38, + "probability": 0.8965 + }, + { + "start": 8029.38, + "end": 8031.7, + "probability": 0.7936 + }, + { + "start": 8032.44, + "end": 8033.2, + "probability": 0.9551 + }, + { + "start": 8034.16, + "end": 8035.07, + "probability": 0.9801 + }, + { + "start": 8037.52, + "end": 8038.76, + "probability": 0.9896 + }, + { + "start": 8039.3, + "end": 8042.72, + "probability": 0.9976 + }, + { + "start": 8043.98, + "end": 8045.04, + "probability": 0.826 + }, + { + "start": 8045.32, + "end": 8049.34, + "probability": 0.9812 + }, + { + "start": 8050.68, + "end": 8055.2, + "probability": 0.9871 + }, + { + "start": 8056.26, + "end": 8058.96, + "probability": 0.7567 + }, + { + "start": 8059.78, + "end": 8060.4, + "probability": 0.7512 + }, + { + "start": 8060.5, + "end": 8062.04, + "probability": 0.9925 + }, + { + "start": 8063.84, + "end": 8066.68, + "probability": 0.9814 + }, + { + "start": 8067.38, + "end": 8068.63, + "probability": 0.9976 + }, + { + "start": 8069.38, + "end": 8070.02, + "probability": 0.5059 + }, + { + "start": 8071.54, + "end": 8073.78, + "probability": 0.9961 + }, + { + "start": 8074.28, + "end": 8074.64, + "probability": 0.7608 + }, + { + "start": 8075.64, + "end": 8077.64, + "probability": 0.8935 + }, + { + "start": 8077.76, + "end": 8078.76, + "probability": 0.7703 + }, + { + "start": 8078.8, + "end": 8081.48, + "probability": 0.9974 + }, + { + "start": 8082.18, + "end": 8083.8, + "probability": 0.8455 + }, + { + "start": 8083.8, + "end": 8085.5, + "probability": 0.9061 + }, + { + "start": 8099.22, + "end": 8100.56, + "probability": 0.8911 + }, + { + "start": 8101.18, + "end": 8102.82, + "probability": 0.6498 + }, + { + "start": 8103.66, + "end": 8105.98, + "probability": 0.978 + }, + { + "start": 8107.66, + "end": 8110.8, + "probability": 0.9503 + }, + { + "start": 8114.6, + "end": 8116.2, + "probability": 0.9539 + }, + { + "start": 8117.88, + "end": 8121.56, + "probability": 0.993 + }, + { + "start": 8123.26, + "end": 8125.1, + "probability": 0.9993 + }, + { + "start": 8126.48, + "end": 8127.98, + "probability": 0.9939 + }, + { + "start": 8130.0, + "end": 8132.5, + "probability": 0.9765 + }, + { + "start": 8133.38, + "end": 8135.78, + "probability": 0.9293 + }, + { + "start": 8136.88, + "end": 8138.88, + "probability": 0.9855 + }, + { + "start": 8139.62, + "end": 8141.24, + "probability": 0.9521 + }, + { + "start": 8143.02, + "end": 8144.16, + "probability": 0.9233 + }, + { + "start": 8144.28, + "end": 8147.5, + "probability": 0.8593 + }, + { + "start": 8149.2, + "end": 8153.42, + "probability": 0.9823 + }, + { + "start": 8154.74, + "end": 8156.96, + "probability": 0.9935 + }, + { + "start": 8157.02, + "end": 8159.34, + "probability": 0.998 + }, + { + "start": 8159.48, + "end": 8160.4, + "probability": 0.6002 + }, + { + "start": 8162.62, + "end": 8169.12, + "probability": 0.9828 + }, + { + "start": 8170.8, + "end": 8172.38, + "probability": 0.7221 + }, + { + "start": 8173.32, + "end": 8173.88, + "probability": 0.4762 + }, + { + "start": 8173.98, + "end": 8175.88, + "probability": 0.9993 + }, + { + "start": 8179.06, + "end": 8181.56, + "probability": 0.8767 + }, + { + "start": 8185.06, + "end": 8186.06, + "probability": 0.7485 + }, + { + "start": 8186.18, + "end": 8189.06, + "probability": 0.9962 + }, + { + "start": 8189.1, + "end": 8190.72, + "probability": 0.9546 + }, + { + "start": 8190.82, + "end": 8192.2, + "probability": 0.7825 + }, + { + "start": 8193.78, + "end": 8194.68, + "probability": 0.7437 + }, + { + "start": 8197.1, + "end": 8204.9, + "probability": 0.9917 + }, + { + "start": 8205.26, + "end": 8208.44, + "probability": 0.998 + }, + { + "start": 8210.52, + "end": 8211.36, + "probability": 0.7564 + }, + { + "start": 8214.8, + "end": 8215.34, + "probability": 0.3935 + }, + { + "start": 8216.7, + "end": 8218.72, + "probability": 0.9169 + }, + { + "start": 8221.64, + "end": 8222.58, + "probability": 0.8861 + }, + { + "start": 8223.26, + "end": 8224.86, + "probability": 0.9961 + }, + { + "start": 8225.28, + "end": 8226.4, + "probability": 0.8184 + }, + { + "start": 8226.56, + "end": 8227.28, + "probability": 0.658 + }, + { + "start": 8227.44, + "end": 8227.82, + "probability": 0.794 + }, + { + "start": 8228.84, + "end": 8230.14, + "probability": 0.9401 + }, + { + "start": 8231.62, + "end": 8232.55, + "probability": 0.9946 + }, + { + "start": 8233.38, + "end": 8240.64, + "probability": 0.9974 + }, + { + "start": 8241.38, + "end": 8244.04, + "probability": 0.9996 + }, + { + "start": 8245.04, + "end": 8246.5, + "probability": 0.9966 + }, + { + "start": 8247.22, + "end": 8250.46, + "probability": 0.9877 + }, + { + "start": 8251.24, + "end": 8252.22, + "probability": 0.8814 + }, + { + "start": 8253.64, + "end": 8259.7, + "probability": 0.9954 + }, + { + "start": 8260.02, + "end": 8264.46, + "probability": 0.998 + }, + { + "start": 8265.04, + "end": 8265.98, + "probability": 0.6647 + }, + { + "start": 8268.54, + "end": 8271.04, + "probability": 0.9243 + }, + { + "start": 8271.22, + "end": 8272.68, + "probability": 0.9714 + }, + { + "start": 8273.44, + "end": 8275.44, + "probability": 0.9927 + }, + { + "start": 8277.58, + "end": 8279.78, + "probability": 0.9752 + }, + { + "start": 8280.36, + "end": 8285.18, + "probability": 0.8467 + }, + { + "start": 8285.36, + "end": 8286.58, + "probability": 0.9391 + }, + { + "start": 8286.88, + "end": 8292.44, + "probability": 0.9879 + }, + { + "start": 8294.26, + "end": 8300.2, + "probability": 0.9974 + }, + { + "start": 8300.4, + "end": 8300.98, + "probability": 0.5451 + }, + { + "start": 8302.7, + "end": 8305.32, + "probability": 0.8037 + }, + { + "start": 8305.64, + "end": 8307.34, + "probability": 0.8118 + }, + { + "start": 8307.9, + "end": 8311.76, + "probability": 0.9346 + }, + { + "start": 8312.26, + "end": 8315.22, + "probability": 0.9971 + }, + { + "start": 8316.88, + "end": 8321.56, + "probability": 0.9905 + }, + { + "start": 8321.68, + "end": 8322.34, + "probability": 0.7632 + }, + { + "start": 8323.2, + "end": 8323.92, + "probability": 0.936 + }, + { + "start": 8325.88, + "end": 8326.66, + "probability": 0.6008 + }, + { + "start": 8327.88, + "end": 8335.16, + "probability": 0.9878 + }, + { + "start": 8335.82, + "end": 8341.5, + "probability": 0.9884 + }, + { + "start": 8341.78, + "end": 8342.2, + "probability": 0.6879 + }, + { + "start": 8343.06, + "end": 8348.12, + "probability": 0.8716 + }, + { + "start": 8348.3, + "end": 8348.53, + "probability": 0.6665 + }, + { + "start": 8349.74, + "end": 8350.68, + "probability": 0.7903 + }, + { + "start": 8351.76, + "end": 8353.6, + "probability": 0.7792 + }, + { + "start": 8353.62, + "end": 8355.96, + "probability": 0.9171 + }, + { + "start": 8355.96, + "end": 8358.44, + "probability": 0.9935 + }, + { + "start": 8358.64, + "end": 8360.72, + "probability": 0.9971 + }, + { + "start": 8361.58, + "end": 8366.24, + "probability": 0.9765 + }, + { + "start": 8367.18, + "end": 8370.28, + "probability": 0.9659 + }, + { + "start": 8372.04, + "end": 8373.2, + "probability": 0.9485 + }, + { + "start": 8375.12, + "end": 8381.94, + "probability": 0.9975 + }, + { + "start": 8382.9, + "end": 8383.96, + "probability": 0.7096 + }, + { + "start": 8385.08, + "end": 8387.04, + "probability": 0.8828 + }, + { + "start": 8388.6, + "end": 8393.2, + "probability": 0.9937 + }, + { + "start": 8394.72, + "end": 8396.96, + "probability": 0.9995 + }, + { + "start": 8397.74, + "end": 8399.22, + "probability": 0.8268 + }, + { + "start": 8400.84, + "end": 8401.44, + "probability": 0.9363 + }, + { + "start": 8402.88, + "end": 8408.28, + "probability": 0.972 + }, + { + "start": 8408.98, + "end": 8409.94, + "probability": 0.9382 + }, + { + "start": 8410.76, + "end": 8411.74, + "probability": 0.8365 + }, + { + "start": 8411.82, + "end": 8416.92, + "probability": 0.9965 + }, + { + "start": 8418.34, + "end": 8420.17, + "probability": 0.9885 + }, + { + "start": 8423.42, + "end": 8428.66, + "probability": 0.9955 + }, + { + "start": 8430.26, + "end": 8431.3, + "probability": 0.9364 + }, + { + "start": 8432.02, + "end": 8436.36, + "probability": 0.9966 + }, + { + "start": 8436.36, + "end": 8441.56, + "probability": 0.9937 + }, + { + "start": 8441.86, + "end": 8443.2, + "probability": 0.9922 + }, + { + "start": 8443.7, + "end": 8445.22, + "probability": 0.8041 + }, + { + "start": 8445.72, + "end": 8447.14, + "probability": 0.8767 + }, + { + "start": 8447.88, + "end": 8453.08, + "probability": 0.9737 + }, + { + "start": 8453.26, + "end": 8457.3, + "probability": 0.9961 + }, + { + "start": 8457.3, + "end": 8462.88, + "probability": 0.9817 + }, + { + "start": 8464.68, + "end": 8468.89, + "probability": 0.9976 + }, + { + "start": 8469.68, + "end": 8473.48, + "probability": 0.9992 + }, + { + "start": 8474.02, + "end": 8475.28, + "probability": 0.7349 + }, + { + "start": 8475.36, + "end": 8480.66, + "probability": 0.9985 + }, + { + "start": 8481.8, + "end": 8483.32, + "probability": 0.8813 + }, + { + "start": 8483.52, + "end": 8489.15, + "probability": 0.9954 + }, + { + "start": 8490.06, + "end": 8493.58, + "probability": 0.9995 + }, + { + "start": 8494.92, + "end": 8495.94, + "probability": 0.7843 + }, + { + "start": 8496.56, + "end": 8499.06, + "probability": 0.9452 + }, + { + "start": 8499.48, + "end": 8505.86, + "probability": 0.9878 + }, + { + "start": 8505.92, + "end": 8506.92, + "probability": 0.912 + }, + { + "start": 8507.16, + "end": 8507.84, + "probability": 0.9893 + }, + { + "start": 8508.58, + "end": 8509.5, + "probability": 0.9578 + }, + { + "start": 8509.8, + "end": 8510.3, + "probability": 0.7103 + }, + { + "start": 8511.02, + "end": 8512.94, + "probability": 0.9974 + }, + { + "start": 8513.6, + "end": 8516.2, + "probability": 0.9985 + }, + { + "start": 8517.12, + "end": 8518.3, + "probability": 0.774 + }, + { + "start": 8519.22, + "end": 8526.48, + "probability": 0.9626 + }, + { + "start": 8529.6, + "end": 8535.94, + "probability": 0.9982 + }, + { + "start": 8536.52, + "end": 8541.84, + "probability": 0.9456 + }, + { + "start": 8542.46, + "end": 8546.56, + "probability": 0.9875 + }, + { + "start": 8547.16, + "end": 8551.66, + "probability": 0.9877 + }, + { + "start": 8551.78, + "end": 8554.02, + "probability": 0.8572 + }, + { + "start": 8554.6, + "end": 8558.86, + "probability": 0.9943 + }, + { + "start": 8560.04, + "end": 8562.36, + "probability": 0.9973 + }, + { + "start": 8562.94, + "end": 8563.84, + "probability": 0.8393 + }, + { + "start": 8564.22, + "end": 8565.24, + "probability": 0.9382 + }, + { + "start": 8565.34, + "end": 8566.96, + "probability": 0.9033 + }, + { + "start": 8567.06, + "end": 8568.94, + "probability": 0.9588 + }, + { + "start": 8569.06, + "end": 8570.34, + "probability": 0.9966 + }, + { + "start": 8570.86, + "end": 8572.72, + "probability": 0.9229 + }, + { + "start": 8573.0, + "end": 8574.32, + "probability": 0.9751 + }, + { + "start": 8575.14, + "end": 8581.38, + "probability": 0.9965 + }, + { + "start": 8582.38, + "end": 8584.98, + "probability": 0.9959 + }, + { + "start": 8586.62, + "end": 8588.72, + "probability": 0.8226 + }, + { + "start": 8590.2, + "end": 8591.06, + "probability": 0.7478 + }, + { + "start": 8591.58, + "end": 8592.4, + "probability": 0.9088 + }, + { + "start": 8592.74, + "end": 8596.62, + "probability": 0.9492 + }, + { + "start": 8597.34, + "end": 8598.8, + "probability": 0.955 + }, + { + "start": 8599.3, + "end": 8602.7, + "probability": 0.9879 + }, + { + "start": 8602.7, + "end": 8607.2, + "probability": 0.979 + }, + { + "start": 8607.54, + "end": 8609.26, + "probability": 0.804 + }, + { + "start": 8609.78, + "end": 8611.62, + "probability": 0.7608 + }, + { + "start": 8613.1, + "end": 8615.64, + "probability": 0.9963 + }, + { + "start": 8616.06, + "end": 8623.18, + "probability": 0.9946 + }, + { + "start": 8623.7, + "end": 8625.38, + "probability": 0.9955 + }, + { + "start": 8626.0, + "end": 8627.82, + "probability": 0.769 + }, + { + "start": 8630.3, + "end": 8630.88, + "probability": 0.552 + }, + { + "start": 8631.68, + "end": 8632.04, + "probability": 0.8152 + }, + { + "start": 8635.06, + "end": 8636.96, + "probability": 0.9893 + }, + { + "start": 8637.18, + "end": 8643.76, + "probability": 0.992 + }, + { + "start": 8645.61, + "end": 8649.44, + "probability": 0.9581 + }, + { + "start": 8650.1, + "end": 8653.06, + "probability": 0.9733 + }, + { + "start": 8653.68, + "end": 8656.04, + "probability": 0.9966 + }, + { + "start": 8656.28, + "end": 8659.04, + "probability": 0.994 + }, + { + "start": 8659.86, + "end": 8664.46, + "probability": 0.9884 + }, + { + "start": 8665.04, + "end": 8667.36, + "probability": 0.9108 + }, + { + "start": 8670.68, + "end": 8674.52, + "probability": 0.9926 + }, + { + "start": 8675.76, + "end": 8682.28, + "probability": 0.9969 + }, + { + "start": 8682.34, + "end": 8682.92, + "probability": 0.8104 + }, + { + "start": 8683.52, + "end": 8684.62, + "probability": 0.9419 + }, + { + "start": 8686.28, + "end": 8689.44, + "probability": 0.9875 + }, + { + "start": 8689.44, + "end": 8694.1, + "probability": 0.9392 + }, + { + "start": 8695.44, + "end": 8698.12, + "probability": 0.5813 + }, + { + "start": 8699.12, + "end": 8699.7, + "probability": 0.9544 + }, + { + "start": 8700.46, + "end": 8701.96, + "probability": 0.9922 + }, + { + "start": 8702.62, + "end": 8705.62, + "probability": 0.5374 + }, + { + "start": 8706.92, + "end": 8709.06, + "probability": 0.8472 + }, + { + "start": 8710.14, + "end": 8711.92, + "probability": 0.9291 + }, + { + "start": 8713.16, + "end": 8713.5, + "probability": 0.6637 + }, + { + "start": 8714.54, + "end": 8715.9, + "probability": 0.9935 + }, + { + "start": 8716.72, + "end": 8717.7, + "probability": 0.6392 + }, + { + "start": 8718.92, + "end": 8720.02, + "probability": 0.7714 + }, + { + "start": 8720.68, + "end": 8721.86, + "probability": 0.774 + }, + { + "start": 8722.8, + "end": 8723.94, + "probability": 0.9635 + }, + { + "start": 8725.78, + "end": 8726.32, + "probability": 0.9167 + }, + { + "start": 8726.36, + "end": 8728.68, + "probability": 0.9875 + }, + { + "start": 8729.98, + "end": 8733.52, + "probability": 0.9705 + }, + { + "start": 8734.14, + "end": 8735.28, + "probability": 0.9948 + }, + { + "start": 8735.8, + "end": 8737.56, + "probability": 0.9985 + }, + { + "start": 8738.26, + "end": 8739.64, + "probability": 0.9758 + }, + { + "start": 8740.56, + "end": 8741.48, + "probability": 0.7993 + }, + { + "start": 8742.16, + "end": 8742.28, + "probability": 0.347 + }, + { + "start": 8742.88, + "end": 8744.48, + "probability": 0.9767 + }, + { + "start": 8745.78, + "end": 8746.36, + "probability": 0.2585 + }, + { + "start": 8747.14, + "end": 8747.44, + "probability": 0.7573 + }, + { + "start": 8748.62, + "end": 8749.58, + "probability": 0.5884 + }, + { + "start": 8750.18, + "end": 8750.56, + "probability": 0.9729 + }, + { + "start": 8751.42, + "end": 8754.32, + "probability": 0.9024 + }, + { + "start": 8755.02, + "end": 8755.32, + "probability": 0.9751 + }, + { + "start": 8756.22, + "end": 8757.02, + "probability": 0.8787 + }, + { + "start": 8759.4, + "end": 8761.8, + "probability": 0.8029 + }, + { + "start": 8763.02, + "end": 8763.38, + "probability": 0.9922 + }, + { + "start": 8764.3, + "end": 8764.88, + "probability": 0.4707 + }, + { + "start": 8765.84, + "end": 8766.26, + "probability": 0.5385 + }, + { + "start": 8767.52, + "end": 8768.56, + "probability": 0.5741 + }, + { + "start": 8769.74, + "end": 8770.06, + "probability": 0.9259 + }, + { + "start": 8771.72, + "end": 8772.5, + "probability": 0.7231 + }, + { + "start": 8773.38, + "end": 8776.3, + "probability": 0.9733 + }, + { + "start": 8778.76, + "end": 8779.68, + "probability": 0.9386 + }, + { + "start": 8780.54, + "end": 8782.26, + "probability": 0.9597 + }, + { + "start": 8783.8, + "end": 8784.54, + "probability": 0.9605 + }, + { + "start": 8785.18, + "end": 8786.38, + "probability": 0.9756 + }, + { + "start": 8786.96, + "end": 8787.94, + "probability": 0.9847 + }, + { + "start": 8789.34, + "end": 8789.86, + "probability": 0.9885 + }, + { + "start": 8791.66, + "end": 8794.12, + "probability": 0.9897 + }, + { + "start": 8797.9, + "end": 8798.62, + "probability": 0.6226 + }, + { + "start": 8800.0, + "end": 8800.82, + "probability": 0.9343 + }, + { + "start": 8801.4, + "end": 8802.12, + "probability": 0.7921 + }, + { + "start": 8802.82, + "end": 8803.54, + "probability": 0.7025 + }, + { + "start": 8804.08, + "end": 8804.88, + "probability": 0.8186 + }, + { + "start": 8807.56, + "end": 8808.04, + "probability": 0.7729 + }, + { + "start": 8809.86, + "end": 8810.24, + "probability": 0.9163 + }, + { + "start": 8811.16, + "end": 8811.6, + "probability": 0.9761 + }, + { + "start": 8812.4, + "end": 8814.22, + "probability": 0.9535 + }, + { + "start": 8815.24, + "end": 8818.54, + "probability": 0.9779 + }, + { + "start": 8819.46, + "end": 8819.84, + "probability": 0.9863 + }, + { + "start": 8822.22, + "end": 8823.24, + "probability": 0.9944 + }, + { + "start": 8823.94, + "end": 8824.64, + "probability": 0.8111 + }, + { + "start": 8825.48, + "end": 8826.56, + "probability": 0.8713 + }, + { + "start": 8827.5, + "end": 8828.54, + "probability": 0.6987 + }, + { + "start": 8830.18, + "end": 8831.24, + "probability": 0.9376 + }, + { + "start": 8831.9, + "end": 8832.72, + "probability": 0.98 + }, + { + "start": 8833.54, + "end": 8834.52, + "probability": 0.9358 + }, + { + "start": 8835.5, + "end": 8835.98, + "probability": 0.9619 + }, + { + "start": 8837.08, + "end": 8837.76, + "probability": 0.9733 + }, + { + "start": 8838.62, + "end": 8839.46, + "probability": 0.9834 + }, + { + "start": 8842.72, + "end": 8843.32, + "probability": 0.5395 + }, + { + "start": 8844.62, + "end": 8845.14, + "probability": 0.6278 + }, + { + "start": 8845.9, + "end": 8846.48, + "probability": 0.7773 + }, + { + "start": 8847.86, + "end": 8849.82, + "probability": 0.9788 + }, + { + "start": 8851.95, + "end": 8854.2, + "probability": 0.989 + }, + { + "start": 8857.14, + "end": 8857.6, + "probability": 0.9941 + }, + { + "start": 8858.86, + "end": 8859.48, + "probability": 0.9822 + }, + { + "start": 8860.26, + "end": 8860.98, + "probability": 0.9239 + }, + { + "start": 8861.54, + "end": 8862.06, + "probability": 0.8949 + }, + { + "start": 8863.1, + "end": 8864.18, + "probability": 0.9761 + }, + { + "start": 8864.94, + "end": 8868.1, + "probability": 0.9856 + }, + { + "start": 8869.04, + "end": 8869.44, + "probability": 0.9939 + }, + { + "start": 8870.52, + "end": 8871.62, + "probability": 0.5137 + }, + { + "start": 8872.6, + "end": 8874.06, + "probability": 0.801 + }, + { + "start": 8874.92, + "end": 8876.42, + "probability": 0.9323 + }, + { + "start": 8880.72, + "end": 8883.4, + "probability": 0.9522 + }, + { + "start": 8884.14, + "end": 8884.46, + "probability": 0.9885 + }, + { + "start": 8885.68, + "end": 8886.66, + "probability": 0.9546 + }, + { + "start": 8888.34, + "end": 8890.6, + "probability": 0.9917 + }, + { + "start": 8891.51, + "end": 8893.68, + "probability": 0.7018 + }, + { + "start": 8894.22, + "end": 8895.12, + "probability": 0.9484 + }, + { + "start": 8895.7, + "end": 8897.32, + "probability": 0.5312 + }, + { + "start": 8898.0, + "end": 8899.18, + "probability": 0.8826 + }, + { + "start": 8899.94, + "end": 8900.44, + "probability": 0.8467 + }, + { + "start": 8902.16, + "end": 8903.42, + "probability": 0.9494 + }, + { + "start": 8910.44, + "end": 8911.24, + "probability": 0.7956 + }, + { + "start": 8911.76, + "end": 8913.84, + "probability": 0.6219 + }, + { + "start": 8914.98, + "end": 8915.3, + "probability": 0.9622 + }, + { + "start": 8916.5, + "end": 8917.62, + "probability": 0.6943 + }, + { + "start": 8918.41, + "end": 8921.22, + "probability": 0.3797 + }, + { + "start": 8921.22, + "end": 8923.2, + "probability": 0.8977 + }, + { + "start": 8923.26, + "end": 8924.76, + "probability": 0.7908 + }, + { + "start": 8925.4, + "end": 8927.3, + "probability": 0.9578 + }, + { + "start": 8928.68, + "end": 8929.74, + "probability": 0.9705 + }, + { + "start": 8930.4, + "end": 8931.18, + "probability": 0.9194 + }, + { + "start": 8932.2, + "end": 8932.42, + "probability": 0.5329 + }, + { + "start": 8933.4, + "end": 8933.84, + "probability": 0.3237 + }, + { + "start": 8935.1, + "end": 8935.38, + "probability": 0.9653 + }, + { + "start": 8936.18, + "end": 8937.04, + "probability": 0.9647 + }, + { + "start": 8938.75, + "end": 8940.96, + "probability": 0.9103 + }, + { + "start": 8941.8, + "end": 8943.6, + "probability": 0.9344 + }, + { + "start": 8947.62, + "end": 8948.38, + "probability": 0.9458 + }, + { + "start": 8948.94, + "end": 8949.64, + "probability": 0.9613 + }, + { + "start": 8952.28, + "end": 8952.56, + "probability": 0.7077 + }, + { + "start": 8954.54, + "end": 8955.06, + "probability": 0.3936 + }, + { + "start": 8958.38, + "end": 8960.3, + "probability": 0.6528 + }, + { + "start": 8961.62, + "end": 8962.36, + "probability": 0.9777 + }, + { + "start": 8963.1, + "end": 8963.8, + "probability": 0.8497 + }, + { + "start": 8968.08, + "end": 8968.9, + "probability": 0.7553 + }, + { + "start": 8969.46, + "end": 8970.06, + "probability": 0.8992 + }, + { + "start": 8970.98, + "end": 8971.22, + "probability": 0.6797 + }, + { + "start": 8972.04, + "end": 8972.7, + "probability": 0.958 + }, + { + "start": 8973.65, + "end": 8974.9, + "probability": 0.9851 + }, + { + "start": 8975.74, + "end": 8977.82, + "probability": 0.8012 + }, + { + "start": 8978.42, + "end": 8980.26, + "probability": 0.9759 + }, + { + "start": 8981.28, + "end": 8982.02, + "probability": 0.9903 + }, + { + "start": 8982.74, + "end": 8983.38, + "probability": 0.741 + }, + { + "start": 8984.66, + "end": 8985.04, + "probability": 0.5979 + }, + { + "start": 8986.1, + "end": 8987.0, + "probability": 0.7623 + }, + { + "start": 8988.28, + "end": 8989.08, + "probability": 0.8974 + }, + { + "start": 8989.74, + "end": 8990.74, + "probability": 0.964 + }, + { + "start": 8991.82, + "end": 8992.2, + "probability": 0.98 + }, + { + "start": 8994.76, + "end": 8995.44, + "probability": 0.9616 + }, + { + "start": 8999.18, + "end": 8999.56, + "probability": 0.9759 + }, + { + "start": 9002.02, + "end": 9003.18, + "probability": 0.8448 + }, + { + "start": 9004.08, + "end": 9004.8, + "probability": 0.9312 + }, + { + "start": 9006.16, + "end": 9007.02, + "probability": 0.8622 + }, + { + "start": 9007.88, + "end": 9010.1, + "probability": 0.9609 + }, + { + "start": 9011.78, + "end": 9012.6, + "probability": 0.9947 + }, + { + "start": 9013.38, + "end": 9014.02, + "probability": 0.747 + }, + { + "start": 9015.36, + "end": 9017.76, + "probability": 0.7669 + }, + { + "start": 9019.76, + "end": 9020.2, + "probability": 0.9287 + }, + { + "start": 9023.12, + "end": 9023.9, + "probability": 0.6481 + }, + { + "start": 9024.8, + "end": 9025.28, + "probability": 0.9155 + }, + { + "start": 9026.5, + "end": 9027.1, + "probability": 0.9506 + }, + { + "start": 9028.42, + "end": 9030.36, + "probability": 0.9834 + }, + { + "start": 9031.22, + "end": 9032.02, + "probability": 0.862 + }, + { + "start": 9032.7, + "end": 9033.62, + "probability": 0.9497 + }, + { + "start": 9034.36, + "end": 9035.66, + "probability": 0.9929 + }, + { + "start": 9037.4, + "end": 9037.98, + "probability": 0.8749 + }, + { + "start": 9039.24, + "end": 9039.7, + "probability": 0.9978 + }, + { + "start": 9040.42, + "end": 9041.06, + "probability": 0.9812 + }, + { + "start": 9041.99, + "end": 9044.02, + "probability": 0.9963 + }, + { + "start": 9045.0, + "end": 9045.78, + "probability": 0.9811 + }, + { + "start": 9049.0, + "end": 9049.92, + "probability": 0.6851 + }, + { + "start": 9050.54, + "end": 9052.82, + "probability": 0.7326 + }, + { + "start": 9054.16, + "end": 9056.06, + "probability": 0.8457 + }, + { + "start": 9057.48, + "end": 9058.18, + "probability": 0.9264 + }, + { + "start": 9058.92, + "end": 9060.0, + "probability": 0.9769 + }, + { + "start": 9061.16, + "end": 9061.56, + "probability": 0.9504 + }, + { + "start": 9062.78, + "end": 9063.58, + "probability": 0.8516 + }, + { + "start": 9065.07, + "end": 9066.96, + "probability": 0.8726 + }, + { + "start": 9067.48, + "end": 9069.72, + "probability": 0.9707 + }, + { + "start": 9071.14, + "end": 9072.76, + "probability": 0.989 + }, + { + "start": 9074.1, + "end": 9075.06, + "probability": 0.8872 + }, + { + "start": 9075.62, + "end": 9075.84, + "probability": 0.5187 + }, + { + "start": 9076.7, + "end": 9077.48, + "probability": 0.7375 + }, + { + "start": 9078.26, + "end": 9080.22, + "probability": 0.9296 + }, + { + "start": 9081.34, + "end": 9081.78, + "probability": 0.9767 + }, + { + "start": 9082.74, + "end": 9083.44, + "probability": 0.9868 + }, + { + "start": 9084.88, + "end": 9085.78, + "probability": 0.9917 + }, + { + "start": 9086.58, + "end": 9087.22, + "probability": 0.9395 + }, + { + "start": 9088.44, + "end": 9089.46, + "probability": 0.9593 + }, + { + "start": 9090.08, + "end": 9090.94, + "probability": 0.9327 + }, + { + "start": 9091.68, + "end": 9092.12, + "probability": 0.993 + }, + { + "start": 9093.24, + "end": 9094.2, + "probability": 0.5343 + }, + { + "start": 9095.24, + "end": 9095.6, + "probability": 0.9934 + }, + { + "start": 9096.42, + "end": 9097.18, + "probability": 0.9094 + }, + { + "start": 9098.26, + "end": 9098.7, + "probability": 0.9901 + }, + { + "start": 9100.96, + "end": 9103.86, + "probability": 0.8587 + }, + { + "start": 9105.38, + "end": 9106.18, + "probability": 0.984 + }, + { + "start": 9106.84, + "end": 9107.66, + "probability": 0.9693 + }, + { + "start": 9108.36, + "end": 9108.78, + "probability": 0.7306 + }, + { + "start": 9110.28, + "end": 9111.12, + "probability": 0.9386 + }, + { + "start": 9112.14, + "end": 9114.46, + "probability": 0.9305 + }, + { + "start": 9114.62, + "end": 9117.0, + "probability": 0.9108 + }, + { + "start": 9117.72, + "end": 9119.64, + "probability": 0.9829 + }, + { + "start": 9120.6, + "end": 9121.04, + "probability": 0.9185 + }, + { + "start": 9121.98, + "end": 9122.72, + "probability": 0.9637 + }, + { + "start": 9123.62, + "end": 9123.92, + "probability": 0.5419 + }, + { + "start": 9125.14, + "end": 9126.08, + "probability": 0.8368 + }, + { + "start": 9126.84, + "end": 9127.52, + "probability": 0.8211 + }, + { + "start": 9128.2, + "end": 9128.94, + "probability": 0.9549 + }, + { + "start": 9133.98, + "end": 9134.8, + "probability": 0.789 + }, + { + "start": 9135.92, + "end": 9136.68, + "probability": 0.8929 + }, + { + "start": 9138.06, + "end": 9138.78, + "probability": 0.9882 + }, + { + "start": 9139.38, + "end": 9140.22, + "probability": 0.9639 + }, + { + "start": 9141.24, + "end": 9141.66, + "probability": 0.9551 + }, + { + "start": 9145.44, + "end": 9145.78, + "probability": 0.4673 + }, + { + "start": 9146.92, + "end": 9147.44, + "probability": 0.9368 + }, + { + "start": 9147.98, + "end": 9148.78, + "probability": 0.84 + }, + { + "start": 9149.98, + "end": 9151.66, + "probability": 0.9614 + }, + { + "start": 9152.6, + "end": 9153.26, + "probability": 0.9266 + }, + { + "start": 9154.02, + "end": 9154.94, + "probability": 0.9154 + }, + { + "start": 9158.62, + "end": 9160.9, + "probability": 0.8481 + }, + { + "start": 9161.8, + "end": 9163.64, + "probability": 0.9857 + }, + { + "start": 9164.44, + "end": 9165.1, + "probability": 0.9934 + }, + { + "start": 9165.72, + "end": 9166.72, + "probability": 0.9159 + }, + { + "start": 9167.92, + "end": 9168.28, + "probability": 0.9534 + }, + { + "start": 9169.26, + "end": 9169.82, + "probability": 0.7951 + }, + { + "start": 9171.38, + "end": 9172.04, + "probability": 0.8096 + }, + { + "start": 9173.22, + "end": 9174.0, + "probability": 0.5216 + }, + { + "start": 9174.84, + "end": 9176.5, + "probability": 0.967 + }, + { + "start": 9177.56, + "end": 9178.22, + "probability": 0.9827 + }, + { + "start": 9178.82, + "end": 9179.58, + "probability": 0.9344 + }, + { + "start": 9180.46, + "end": 9180.86, + "probability": 0.9065 + }, + { + "start": 9182.06, + "end": 9183.04, + "probability": 0.8885 + }, + { + "start": 9183.94, + "end": 9184.36, + "probability": 0.965 + }, + { + "start": 9185.0, + "end": 9185.82, + "probability": 0.8088 + }, + { + "start": 9187.22, + "end": 9188.0, + "probability": 0.9977 + }, + { + "start": 9190.36, + "end": 9191.06, + "probability": 0.7506 + }, + { + "start": 9191.38, + "end": 9193.14, + "probability": 0.8677 + }, + { + "start": 9194.52, + "end": 9194.8, + "probability": 0.2934 + }, + { + "start": 9196.22, + "end": 9196.66, + "probability": 0.9572 + }, + { + "start": 9198.78, + "end": 9199.42, + "probability": 0.7747 + }, + { + "start": 9201.82, + "end": 9202.28, + "probability": 0.9871 + }, + { + "start": 9204.48, + "end": 9205.18, + "probability": 0.9177 + }, + { + "start": 9206.42, + "end": 9206.76, + "probability": 0.9884 + }, + { + "start": 9208.64, + "end": 9209.44, + "probability": 0.842 + }, + { + "start": 9212.98, + "end": 9213.4, + "probability": 0.988 + }, + { + "start": 9216.18, + "end": 9217.02, + "probability": 0.7199 + }, + { + "start": 9218.06, + "end": 9219.22, + "probability": 0.9461 + }, + { + "start": 9220.18, + "end": 9221.02, + "probability": 0.952 + }, + { + "start": 9222.76, + "end": 9226.38, + "probability": 0.8987 + }, + { + "start": 9227.76, + "end": 9228.7, + "probability": 0.9846 + }, + { + "start": 9229.28, + "end": 9229.94, + "probability": 0.9667 + }, + { + "start": 9230.74, + "end": 9231.72, + "probability": 0.9538 + }, + { + "start": 9232.68, + "end": 9233.16, + "probability": 0.9958 + }, + { + "start": 9235.52, + "end": 9236.22, + "probability": 0.981 + }, + { + "start": 9237.46, + "end": 9238.22, + "probability": 0.9582 + }, + { + "start": 9240.34, + "end": 9241.04, + "probability": 0.9954 + }, + { + "start": 9241.96, + "end": 9242.34, + "probability": 0.9977 + }, + { + "start": 9244.72, + "end": 9245.26, + "probability": 0.911 + }, + { + "start": 9246.3, + "end": 9246.58, + "probability": 0.7865 + }, + { + "start": 9248.78, + "end": 9249.48, + "probability": 0.7449 + }, + { + "start": 9250.24, + "end": 9250.66, + "probability": 0.9189 + }, + { + "start": 9253.42, + "end": 9254.34, + "probability": 0.0694 + }, + { + "start": 9256.88, + "end": 9259.98, + "probability": 0.7538 + }, + { + "start": 9260.68, + "end": 9262.34, + "probability": 0.6958 + }, + { + "start": 9262.92, + "end": 9264.12, + "probability": 0.9406 + }, + { + "start": 9265.7, + "end": 9266.46, + "probability": 0.9801 + }, + { + "start": 9268.32, + "end": 9269.04, + "probability": 0.4708 + }, + { + "start": 9270.3, + "end": 9274.2, + "probability": 0.864 + }, + { + "start": 9274.84, + "end": 9276.7, + "probability": 0.6035 + }, + { + "start": 9280.16, + "end": 9281.34, + "probability": 0.4168 + }, + { + "start": 9284.08, + "end": 9284.4, + "probability": 0.7997 + }, + { + "start": 9287.28, + "end": 9287.6, + "probability": 0.6216 + }, + { + "start": 9288.26, + "end": 9288.98, + "probability": 0.7659 + }, + { + "start": 9289.52, + "end": 9290.22, + "probability": 0.826 + }, + { + "start": 9291.1, + "end": 9291.56, + "probability": 0.9723 + }, + { + "start": 9294.16, + "end": 9295.02, + "probability": 0.9301 + }, + { + "start": 9297.48, + "end": 9299.7, + "probability": 0.9209 + }, + { + "start": 9300.68, + "end": 9301.88, + "probability": 0.9901 + }, + { + "start": 9302.88, + "end": 9303.38, + "probability": 0.9706 + }, + { + "start": 9306.16, + "end": 9306.62, + "probability": 0.9948 + }, + { + "start": 9308.5, + "end": 9309.56, + "probability": 0.6078 + }, + { + "start": 9310.44, + "end": 9310.82, + "probability": 0.9974 + }, + { + "start": 9312.86, + "end": 9313.5, + "probability": 0.9646 + }, + { + "start": 9314.1, + "end": 9314.2, + "probability": 0.0092 + }, + { + "start": 9319.8, + "end": 9321.0, + "probability": 0.3522 + }, + { + "start": 9321.82, + "end": 9322.8, + "probability": 0.3946 + }, + { + "start": 9323.64, + "end": 9323.92, + "probability": 0.8338 + }, + { + "start": 9327.78, + "end": 9328.48, + "probability": 0.7213 + }, + { + "start": 9329.46, + "end": 9329.98, + "probability": 0.9307 + }, + { + "start": 9331.96, + "end": 9332.8, + "probability": 0.7321 + }, + { + "start": 9334.74, + "end": 9336.88, + "probability": 0.9958 + }, + { + "start": 9337.72, + "end": 9338.62, + "probability": 0.7831 + }, + { + "start": 9339.48, + "end": 9341.16, + "probability": 0.9964 + }, + { + "start": 9342.14, + "end": 9342.82, + "probability": 0.916 + }, + { + "start": 9344.5, + "end": 9344.94, + "probability": 0.9788 + }, + { + "start": 9347.06, + "end": 9347.72, + "probability": 0.9668 + }, + { + "start": 9348.7, + "end": 9350.18, + "probability": 0.9963 + }, + { + "start": 9352.9, + "end": 9353.9, + "probability": 0.864 + }, + { + "start": 9354.58, + "end": 9355.18, + "probability": 0.501 + }, + { + "start": 9358.8, + "end": 9359.76, + "probability": 0.1995 + }, + { + "start": 9362.92, + "end": 9363.36, + "probability": 0.8444 + }, + { + "start": 9365.98, + "end": 9368.04, + "probability": 0.6996 + }, + { + "start": 9368.74, + "end": 9370.32, + "probability": 0.9129 + }, + { + "start": 9370.9, + "end": 9371.64, + "probability": 0.9122 + }, + { + "start": 9373.34, + "end": 9374.26, + "probability": 0.9935 + }, + { + "start": 9376.5, + "end": 9377.32, + "probability": 0.9723 + }, + { + "start": 9378.18, + "end": 9379.58, + "probability": 0.9258 + }, + { + "start": 9380.42, + "end": 9381.58, + "probability": 0.873 + }, + { + "start": 9383.54, + "end": 9384.42, + "probability": 0.9929 + }, + { + "start": 9385.04, + "end": 9386.82, + "probability": 0.682 + }, + { + "start": 9390.25, + "end": 9392.82, + "probability": 0.7618 + }, + { + "start": 9395.1, + "end": 9395.52, + "probability": 0.9036 + }, + { + "start": 9397.9, + "end": 9398.62, + "probability": 0.8194 + }, + { + "start": 9400.32, + "end": 9401.06, + "probability": 0.9416 + }, + { + "start": 9404.36, + "end": 9404.98, + "probability": 0.6528 + }, + { + "start": 9406.16, + "end": 9406.64, + "probability": 0.848 + }, + { + "start": 9409.28, + "end": 9410.16, + "probability": 0.9111 + }, + { + "start": 9411.34, + "end": 9412.66, + "probability": 0.9925 + }, + { + "start": 9413.88, + "end": 9414.76, + "probability": 0.777 + }, + { + "start": 9415.38, + "end": 9416.7, + "probability": 0.9824 + }, + { + "start": 9417.78, + "end": 9418.62, + "probability": 0.6188 + }, + { + "start": 9419.78, + "end": 9420.22, + "probability": 0.9321 + }, + { + "start": 9422.4, + "end": 9423.32, + "probability": 0.7979 + }, + { + "start": 9424.06, + "end": 9424.3, + "probability": 0.9383 + }, + { + "start": 9426.72, + "end": 9427.72, + "probability": 0.8472 + }, + { + "start": 9428.78, + "end": 9430.08, + "probability": 0.9793 + }, + { + "start": 9431.0, + "end": 9431.72, + "probability": 0.9751 + }, + { + "start": 9432.64, + "end": 9434.24, + "probability": 0.988 + }, + { + "start": 9434.9, + "end": 9435.64, + "probability": 0.7402 + }, + { + "start": 9440.84, + "end": 9441.66, + "probability": 0.9773 + }, + { + "start": 9442.46, + "end": 9445.52, + "probability": 0.9955 + }, + { + "start": 9445.56, + "end": 9446.7, + "probability": 0.5433 + }, + { + "start": 9447.4, + "end": 9448.14, + "probability": 0.5053 + }, + { + "start": 9450.42, + "end": 9454.56, + "probability": 0.5463 + }, + { + "start": 9455.36, + "end": 9455.92, + "probability": 0.9733 + }, + { + "start": 9460.62, + "end": 9462.6, + "probability": 0.5185 + }, + { + "start": 9463.68, + "end": 9466.14, + "probability": 0.4318 + }, + { + "start": 9467.26, + "end": 9468.04, + "probability": 0.0088 + }, + { + "start": 9468.19, + "end": 9468.77, + "probability": 0.0968 + }, + { + "start": 9469.38, + "end": 9470.04, + "probability": 0.1489 + }, + { + "start": 9470.34, + "end": 9473.34, + "probability": 0.1447 + }, + { + "start": 9473.34, + "end": 9474.28, + "probability": 0.1905 + }, + { + "start": 9474.68, + "end": 9475.24, + "probability": 0.2282 + }, + { + "start": 9476.18, + "end": 9476.72, + "probability": 0.7299 + }, + { + "start": 9479.0, + "end": 9480.54, + "probability": 0.4668 + }, + { + "start": 9480.6, + "end": 9481.34, + "probability": 0.9716 + }, + { + "start": 9482.94, + "end": 9483.26, + "probability": 0.0756 + }, + { + "start": 9484.28, + "end": 9484.74, + "probability": 0.0142 + }, + { + "start": 9485.46, + "end": 9485.7, + "probability": 0.1877 + }, + { + "start": 9494.68, + "end": 9499.78, + "probability": 0.0266 + }, + { + "start": 9501.24, + "end": 9501.99, + "probability": 0.0916 + }, + { + "start": 9622.52, + "end": 9625.9, + "probability": 0.2977 + }, + { + "start": 9626.04, + "end": 9627.74, + "probability": 0.9531 + }, + { + "start": 9627.84, + "end": 9628.8, + "probability": 0.8444 + }, + { + "start": 9629.28, + "end": 9630.04, + "probability": 0.8036 + }, + { + "start": 9630.24, + "end": 9631.3, + "probability": 0.9517 + }, + { + "start": 9632.46, + "end": 9638.08, + "probability": 0.9824 + }, + { + "start": 9638.74, + "end": 9639.26, + "probability": 0.2807 + }, + { + "start": 9639.78, + "end": 9642.84, + "probability": 0.783 + }, + { + "start": 9643.16, + "end": 9650.12, + "probability": 0.9604 + }, + { + "start": 9650.64, + "end": 9653.04, + "probability": 0.955 + }, + { + "start": 9653.44, + "end": 9653.64, + "probability": 0.8724 + }, + { + "start": 9658.15, + "end": 9659.54, + "probability": 0.2405 + }, + { + "start": 9669.6, + "end": 9673.08, + "probability": 0.5005 + }, + { + "start": 9673.86, + "end": 9676.76, + "probability": 0.9703 + }, + { + "start": 9677.16, + "end": 9679.42, + "probability": 0.9951 + }, + { + "start": 9679.94, + "end": 9684.76, + "probability": 0.9529 + }, + { + "start": 9685.5, + "end": 9686.7, + "probability": 0.6008 + }, + { + "start": 9686.86, + "end": 9689.26, + "probability": 0.2809 + }, + { + "start": 9689.76, + "end": 9698.26, + "probability": 0.7749 + }, + { + "start": 9699.02, + "end": 9700.08, + "probability": 0.8046 + }, + { + "start": 9700.96, + "end": 9701.94, + "probability": 0.7221 + }, + { + "start": 9702.96, + "end": 9704.5, + "probability": 0.9253 + }, + { + "start": 9706.6, + "end": 9709.2, + "probability": 0.5011 + }, + { + "start": 9709.2, + "end": 9713.17, + "probability": 0.7711 + }, + { + "start": 9714.08, + "end": 9717.52, + "probability": 0.9696 + }, + { + "start": 9717.78, + "end": 9718.76, + "probability": 0.8014 + }, + { + "start": 9718.82, + "end": 9719.34, + "probability": 0.8302 + }, + { + "start": 9720.3, + "end": 9720.68, + "probability": 0.906 + }, + { + "start": 9724.56, + "end": 9725.5, + "probability": 0.8349 + }, + { + "start": 9726.42, + "end": 9727.48, + "probability": 0.8482 + }, + { + "start": 9727.6, + "end": 9731.46, + "probability": 0.7006 + }, + { + "start": 9732.02, + "end": 9735.04, + "probability": 0.7603 + }, + { + "start": 9736.14, + "end": 9739.21, + "probability": 0.772 + }, + { + "start": 9739.38, + "end": 9741.68, + "probability": 0.6686 + }, + { + "start": 9742.92, + "end": 9743.86, + "probability": 0.8784 + }, + { + "start": 9743.86, + "end": 9744.04, + "probability": 0.2768 + }, + { + "start": 9744.58, + "end": 9748.14, + "probability": 0.1178 + }, + { + "start": 9750.38, + "end": 9751.24, + "probability": 0.1701 + }, + { + "start": 9760.54, + "end": 9764.02, + "probability": 0.8456 + }, + { + "start": 9765.04, + "end": 9765.88, + "probability": 0.5048 + }, + { + "start": 9768.9, + "end": 9771.36, + "probability": 0.7838 + }, + { + "start": 9771.38, + "end": 9775.56, + "probability": 0.0121 + }, + { + "start": 9779.82, + "end": 9780.98, + "probability": 0.0587 + }, + { + "start": 9781.84, + "end": 9783.24, + "probability": 0.9005 + }, + { + "start": 9790.82, + "end": 9792.22, + "probability": 0.7518 + }, + { + "start": 9793.06, + "end": 9795.18, + "probability": 0.7974 + }, + { + "start": 9796.2, + "end": 9800.78, + "probability": 0.9756 + }, + { + "start": 9800.84, + "end": 9801.52, + "probability": 0.9724 + }, + { + "start": 9802.18, + "end": 9805.38, + "probability": 0.9517 + }, + { + "start": 9805.38, + "end": 9810.0, + "probability": 0.6834 + }, + { + "start": 9810.7, + "end": 9820.78, + "probability": 0.7358 + }, + { + "start": 9821.7, + "end": 9822.54, + "probability": 0.9979 + }, + { + "start": 9823.2, + "end": 9827.24, + "probability": 0.9984 + }, + { + "start": 9828.14, + "end": 9830.14, + "probability": 0.7931 + }, + { + "start": 9830.74, + "end": 9835.14, + "probability": 0.9894 + }, + { + "start": 9838.1, + "end": 9839.62, + "probability": 0.9922 + }, + { + "start": 9840.42, + "end": 9845.08, + "probability": 0.8881 + }, + { + "start": 9845.78, + "end": 9848.86, + "probability": 0.9965 + }, + { + "start": 9850.02, + "end": 9851.94, + "probability": 0.9929 + }, + { + "start": 9852.9, + "end": 9856.78, + "probability": 0.9099 + }, + { + "start": 9859.26, + "end": 9860.76, + "probability": 0.7647 + }, + { + "start": 9862.32, + "end": 9865.94, + "probability": 0.9921 + }, + { + "start": 9866.02, + "end": 9868.26, + "probability": 0.7236 + }, + { + "start": 9869.1, + "end": 9870.08, + "probability": 0.9699 + }, + { + "start": 9870.9, + "end": 9871.88, + "probability": 0.8165 + }, + { + "start": 9872.06, + "end": 9872.8, + "probability": 0.3098 + }, + { + "start": 9872.8, + "end": 9873.08, + "probability": 0.7004 + }, + { + "start": 9874.72, + "end": 9877.98, + "probability": 0.991 + }, + { + "start": 9878.12, + "end": 9881.04, + "probability": 0.8182 + }, + { + "start": 9881.9, + "end": 9882.18, + "probability": 0.7849 + }, + { + "start": 9883.2, + "end": 9885.36, + "probability": 0.9758 + }, + { + "start": 9885.44, + "end": 9886.3, + "probability": 0.6411 + }, + { + "start": 9886.32, + "end": 9886.84, + "probability": 0.8021 + }, + { + "start": 9887.5, + "end": 9888.22, + "probability": 0.6471 + }, + { + "start": 9888.3, + "end": 9890.04, + "probability": 0.7402 + }, + { + "start": 9890.1, + "end": 9894.64, + "probability": 0.8109 + }, + { + "start": 9895.16, + "end": 9897.24, + "probability": 0.7271 + }, + { + "start": 9897.74, + "end": 9902.38, + "probability": 0.8999 + }, + { + "start": 9903.72, + "end": 9903.82, + "probability": 0.8451 + }, + { + "start": 9914.7, + "end": 9915.52, + "probability": 0.6137 + }, + { + "start": 9916.1, + "end": 9917.48, + "probability": 0.807 + }, + { + "start": 9918.58, + "end": 9920.38, + "probability": 0.9943 + }, + { + "start": 9920.38, + "end": 9924.28, + "probability": 0.957 + }, + { + "start": 9924.42, + "end": 9925.52, + "probability": 0.9494 + }, + { + "start": 9926.1, + "end": 9927.92, + "probability": 0.9016 + }, + { + "start": 9930.08, + "end": 9932.54, + "probability": 0.8978 + }, + { + "start": 9932.54, + "end": 9935.46, + "probability": 0.9551 + }, + { + "start": 9935.54, + "end": 9936.74, + "probability": 0.8667 + }, + { + "start": 9939.19, + "end": 9941.76, + "probability": 0.7486 + }, + { + "start": 9942.16, + "end": 9942.92, + "probability": 0.4459 + }, + { + "start": 9943.28, + "end": 9945.42, + "probability": 0.9625 + }, + { + "start": 9946.26, + "end": 9949.16, + "probability": 0.9844 + }, + { + "start": 9951.4, + "end": 9953.28, + "probability": 0.9771 + }, + { + "start": 9953.98, + "end": 9956.1, + "probability": 0.8476 + }, + { + "start": 9956.18, + "end": 9959.6, + "probability": 0.93 + }, + { + "start": 9959.86, + "end": 9960.9, + "probability": 0.6266 + }, + { + "start": 9961.4, + "end": 9963.49, + "probability": 0.9819 + }, + { + "start": 9964.56, + "end": 9967.3, + "probability": 0.98 + }, + { + "start": 9967.32, + "end": 9968.66, + "probability": 0.7686 + }, + { + "start": 9969.52, + "end": 9970.5, + "probability": 0.981 + }, + { + "start": 9971.1, + "end": 9973.58, + "probability": 0.7725 + }, + { + "start": 9973.58, + "end": 9975.54, + "probability": 0.804 + }, + { + "start": 9976.16, + "end": 9976.58, + "probability": 0.5803 + }, + { + "start": 9977.22, + "end": 9978.98, + "probability": 0.8125 + }, + { + "start": 9980.0, + "end": 9982.42, + "probability": 0.7681 + }, + { + "start": 9982.5, + "end": 9984.18, + "probability": 0.7694 + }, + { + "start": 9984.42, + "end": 9985.04, + "probability": 0.9543 + }, + { + "start": 9985.78, + "end": 9987.6, + "probability": 0.9878 + }, + { + "start": 9989.66, + "end": 9991.14, + "probability": 0.6868 + }, + { + "start": 9991.34, + "end": 9994.1, + "probability": 0.9972 + }, + { + "start": 9994.12, + "end": 9997.38, + "probability": 0.975 + }, + { + "start": 9997.44, + "end": 9999.14, + "probability": 0.9746 + }, + { + "start": 10000.04, + "end": 10000.76, + "probability": 0.8137 + }, + { + "start": 10000.86, + "end": 10003.46, + "probability": 0.8205 + }, + { + "start": 10005.03, + "end": 10008.52, + "probability": 0.967 + }, + { + "start": 10008.52, + "end": 10012.22, + "probability": 0.989 + }, + { + "start": 10014.26, + "end": 10015.08, + "probability": 0.404 + }, + { + "start": 10015.16, + "end": 10017.57, + "probability": 0.959 + }, + { + "start": 10017.7, + "end": 10019.86, + "probability": 0.595 + }, + { + "start": 10020.06, + "end": 10021.78, + "probability": 0.6408 + }, + { + "start": 10021.88, + "end": 10023.14, + "probability": 0.9427 + }, + { + "start": 10023.32, + "end": 10023.88, + "probability": 0.6437 + }, + { + "start": 10024.0, + "end": 10025.44, + "probability": 0.8537 + }, + { + "start": 10025.94, + "end": 10026.62, + "probability": 0.636 + }, + { + "start": 10026.7, + "end": 10027.3, + "probability": 0.9598 + }, + { + "start": 10027.4, + "end": 10028.14, + "probability": 0.7267 + }, + { + "start": 10028.52, + "end": 10028.92, + "probability": 0.7608 + }, + { + "start": 10029.02, + "end": 10029.64, + "probability": 0.9057 + }, + { + "start": 10030.14, + "end": 10031.88, + "probability": 0.7885 + }, + { + "start": 10032.3, + "end": 10033.08, + "probability": 0.5527 + }, + { + "start": 10033.16, + "end": 10033.66, + "probability": 0.6402 + }, + { + "start": 10033.8, + "end": 10034.76, + "probability": 0.7494 + }, + { + "start": 10034.92, + "end": 10035.3, + "probability": 0.7649 + }, + { + "start": 10035.4, + "end": 10035.94, + "probability": 0.7988 + }, + { + "start": 10036.4, + "end": 10036.62, + "probability": 0.8937 + }, + { + "start": 10037.24, + "end": 10037.74, + "probability": 0.9631 + }, + { + "start": 10037.92, + "end": 10038.64, + "probability": 0.9321 + }, + { + "start": 10038.84, + "end": 10039.3, + "probability": 0.8797 + }, + { + "start": 10039.42, + "end": 10039.82, + "probability": 0.9972 + }, + { + "start": 10039.9, + "end": 10040.16, + "probability": 0.9424 + }, + { + "start": 10040.76, + "end": 10041.32, + "probability": 0.998 + }, + { + "start": 10041.44, + "end": 10044.56, + "probability": 0.5282 + }, + { + "start": 10044.56, + "end": 10044.56, + "probability": 0.2134 + }, + { + "start": 10044.56, + "end": 10044.66, + "probability": 0.1759 + }, + { + "start": 10044.72, + "end": 10045.12, + "probability": 0.2046 + }, + { + "start": 10045.4, + "end": 10048.4, + "probability": 0.8812 + }, + { + "start": 10049.22, + "end": 10050.74, + "probability": 0.9439 + }, + { + "start": 10051.08, + "end": 10051.5, + "probability": 0.8895 + }, + { + "start": 10052.3, + "end": 10055.5, + "probability": 0.6951 + }, + { + "start": 10056.18, + "end": 10058.24, + "probability": 0.7982 + }, + { + "start": 10058.64, + "end": 10060.56, + "probability": 0.7484 + }, + { + "start": 10062.48, + "end": 10063.2, + "probability": 0.5864 + }, + { + "start": 10063.98, + "end": 10065.32, + "probability": 0.3987 + }, + { + "start": 10065.32, + "end": 10065.68, + "probability": 0.3138 + }, + { + "start": 10066.44, + "end": 10069.9, + "probability": 0.9847 + }, + { + "start": 10070.72, + "end": 10071.16, + "probability": 0.7892 + }, + { + "start": 10074.2, + "end": 10075.46, + "probability": 0.6875 + }, + { + "start": 10076.72, + "end": 10077.44, + "probability": 0.9961 + }, + { + "start": 10077.56, + "end": 10079.84, + "probability": 0.9629 + }, + { + "start": 10081.72, + "end": 10081.72, + "probability": 0.0783 + }, + { + "start": 10082.3, + "end": 10082.95, + "probability": 0.0574 + }, + { + "start": 10083.6, + "end": 10084.6, + "probability": 0.2164 + }, + { + "start": 10110.66, + "end": 10111.48, + "probability": 0.5954 + }, + { + "start": 10112.84, + "end": 10113.58, + "probability": 0.9878 + }, + { + "start": 10115.26, + "end": 10117.4, + "probability": 0.8582 + }, + { + "start": 10119.04, + "end": 10122.82, + "probability": 0.9989 + }, + { + "start": 10122.82, + "end": 10126.64, + "probability": 0.9992 + }, + { + "start": 10127.36, + "end": 10129.54, + "probability": 0.8904 + }, + { + "start": 10129.6, + "end": 10131.18, + "probability": 0.9147 + }, + { + "start": 10132.08, + "end": 10133.44, + "probability": 0.6525 + }, + { + "start": 10133.44, + "end": 10136.42, + "probability": 0.9958 + }, + { + "start": 10137.06, + "end": 10140.08, + "probability": 0.9026 + }, + { + "start": 10140.4, + "end": 10141.08, + "probability": 0.8517 + }, + { + "start": 10141.2, + "end": 10143.36, + "probability": 0.8503 + }, + { + "start": 10143.8, + "end": 10144.85, + "probability": 0.9656 + }, + { + "start": 10146.44, + "end": 10146.48, + "probability": 0.8911 + }, + { + "start": 10148.1, + "end": 10149.58, + "probability": 0.8499 + }, + { + "start": 10150.68, + "end": 10151.52, + "probability": 0.5598 + }, + { + "start": 10151.52, + "end": 10152.5, + "probability": 0.8899 + }, + { + "start": 10152.56, + "end": 10154.76, + "probability": 0.96 + }, + { + "start": 10155.74, + "end": 10156.64, + "probability": 0.8836 + }, + { + "start": 10157.86, + "end": 10162.4, + "probability": 0.9668 + }, + { + "start": 10164.04, + "end": 10165.84, + "probability": 0.787 + }, + { + "start": 10167.18, + "end": 10168.36, + "probability": 0.5848 + }, + { + "start": 10168.88, + "end": 10172.58, + "probability": 0.9797 + }, + { + "start": 10172.58, + "end": 10175.14, + "probability": 0.957 + }, + { + "start": 10175.26, + "end": 10175.88, + "probability": 0.4734 + }, + { + "start": 10176.98, + "end": 10180.6, + "probability": 0.9344 + }, + { + "start": 10181.32, + "end": 10182.92, + "probability": 0.9937 + }, + { + "start": 10183.52, + "end": 10185.88, + "probability": 0.9956 + }, + { + "start": 10187.8, + "end": 10189.94, + "probability": 0.9318 + }, + { + "start": 10192.3, + "end": 10193.32, + "probability": 0.5857 + }, + { + "start": 10193.78, + "end": 10198.7, + "probability": 0.982 + }, + { + "start": 10199.4, + "end": 10201.24, + "probability": 0.9902 + }, + { + "start": 10201.4, + "end": 10207.36, + "probability": 0.9938 + }, + { + "start": 10207.44, + "end": 10208.82, + "probability": 0.6226 + }, + { + "start": 10209.46, + "end": 10210.28, + "probability": 0.7244 + }, + { + "start": 10210.82, + "end": 10216.4, + "probability": 0.9717 + }, + { + "start": 10216.4, + "end": 10221.32, + "probability": 0.9871 + }, + { + "start": 10221.94, + "end": 10222.32, + "probability": 0.9469 + }, + { + "start": 10223.04, + "end": 10223.4, + "probability": 0.9183 + }, + { + "start": 10224.52, + "end": 10225.78, + "probability": 0.9841 + }, + { + "start": 10226.54, + "end": 10228.76, + "probability": 0.9789 + }, + { + "start": 10229.72, + "end": 10237.12, + "probability": 0.972 + }, + { + "start": 10237.76, + "end": 10240.72, + "probability": 0.9745 + }, + { + "start": 10241.68, + "end": 10242.88, + "probability": 0.7856 + }, + { + "start": 10243.68, + "end": 10246.16, + "probability": 0.7769 + }, + { + "start": 10246.36, + "end": 10247.36, + "probability": 0.9739 + }, + { + "start": 10247.44, + "end": 10250.68, + "probability": 0.9983 + }, + { + "start": 10251.58, + "end": 10252.92, + "probability": 0.9984 + }, + { + "start": 10253.6, + "end": 10254.66, + "probability": 0.9879 + }, + { + "start": 10255.26, + "end": 10257.5, + "probability": 0.8877 + }, + { + "start": 10258.18, + "end": 10263.1, + "probability": 0.9976 + }, + { + "start": 10263.62, + "end": 10264.92, + "probability": 0.9692 + }, + { + "start": 10266.6, + "end": 10269.7, + "probability": 0.9836 + }, + { + "start": 10269.7, + "end": 10274.72, + "probability": 0.999 + }, + { + "start": 10275.44, + "end": 10275.94, + "probability": 0.6535 + }, + { + "start": 10276.5, + "end": 10280.22, + "probability": 0.972 + }, + { + "start": 10281.04, + "end": 10283.12, + "probability": 0.8925 + }, + { + "start": 10283.38, + "end": 10285.98, + "probability": 0.8634 + }, + { + "start": 10286.52, + "end": 10288.06, + "probability": 0.8696 + }, + { + "start": 10288.76, + "end": 10291.3, + "probability": 0.9908 + }, + { + "start": 10291.66, + "end": 10291.98, + "probability": 0.9521 + }, + { + "start": 10292.0, + "end": 10292.8, + "probability": 0.9932 + }, + { + "start": 10293.3, + "end": 10296.92, + "probability": 0.9991 + }, + { + "start": 10298.48, + "end": 10299.1, + "probability": 0.6504 + }, + { + "start": 10299.44, + "end": 10302.35, + "probability": 0.8608 + }, + { + "start": 10302.98, + "end": 10305.12, + "probability": 0.8755 + }, + { + "start": 10321.78, + "end": 10322.5, + "probability": 0.3368 + }, + { + "start": 10324.7, + "end": 10325.76, + "probability": 0.5882 + }, + { + "start": 10328.1, + "end": 10329.9, + "probability": 0.8005 + }, + { + "start": 10331.22, + "end": 10333.16, + "probability": 0.915 + }, + { + "start": 10333.92, + "end": 10337.02, + "probability": 0.9915 + }, + { + "start": 10337.54, + "end": 10338.58, + "probability": 0.6039 + }, + { + "start": 10339.2, + "end": 10341.06, + "probability": 0.9828 + }, + { + "start": 10341.8, + "end": 10344.64, + "probability": 0.935 + }, + { + "start": 10345.82, + "end": 10349.5, + "probability": 0.958 + }, + { + "start": 10350.42, + "end": 10352.46, + "probability": 0.8967 + }, + { + "start": 10352.86, + "end": 10355.82, + "probability": 0.8654 + }, + { + "start": 10357.38, + "end": 10360.72, + "probability": 0.989 + }, + { + "start": 10361.28, + "end": 10364.16, + "probability": 0.9932 + }, + { + "start": 10364.3, + "end": 10365.82, + "probability": 0.7604 + }, + { + "start": 10366.62, + "end": 10372.84, + "probability": 0.9888 + }, + { + "start": 10373.02, + "end": 10373.48, + "probability": 0.7008 + }, + { + "start": 10374.82, + "end": 10376.8, + "probability": 0.8845 + }, + { + "start": 10377.78, + "end": 10379.38, + "probability": 0.9312 + }, + { + "start": 10380.44, + "end": 10381.6, + "probability": 0.651 + }, + { + "start": 10382.84, + "end": 10383.27, + "probability": 0.9051 + }, + { + "start": 10384.5, + "end": 10389.24, + "probability": 0.9921 + }, + { + "start": 10389.56, + "end": 10390.76, + "probability": 0.9209 + }, + { + "start": 10391.62, + "end": 10398.24, + "probability": 0.9663 + }, + { + "start": 10399.28, + "end": 10404.64, + "probability": 0.9292 + }, + { + "start": 10405.46, + "end": 10407.38, + "probability": 0.9051 + }, + { + "start": 10408.14, + "end": 10413.72, + "probability": 0.9972 + }, + { + "start": 10414.36, + "end": 10416.0, + "probability": 0.725 + }, + { + "start": 10419.18, + "end": 10422.42, + "probability": 0.9919 + }, + { + "start": 10423.38, + "end": 10424.3, + "probability": 0.7794 + }, + { + "start": 10425.12, + "end": 10428.9, + "probability": 0.9821 + }, + { + "start": 10429.5, + "end": 10430.44, + "probability": 0.9793 + }, + { + "start": 10430.54, + "end": 10431.64, + "probability": 0.9084 + }, + { + "start": 10431.92, + "end": 10434.36, + "probability": 0.9855 + }, + { + "start": 10435.08, + "end": 10438.66, + "probability": 0.9982 + }, + { + "start": 10438.66, + "end": 10441.88, + "probability": 0.9945 + }, + { + "start": 10444.12, + "end": 10444.84, + "probability": 0.7308 + }, + { + "start": 10445.5, + "end": 10447.42, + "probability": 0.998 + }, + { + "start": 10448.16, + "end": 10448.82, + "probability": 0.8307 + }, + { + "start": 10449.74, + "end": 10451.66, + "probability": 0.8455 + }, + { + "start": 10452.9, + "end": 10456.28, + "probability": 0.9941 + }, + { + "start": 10457.44, + "end": 10458.14, + "probability": 0.9713 + }, + { + "start": 10458.3, + "end": 10462.7, + "probability": 0.9956 + }, + { + "start": 10463.62, + "end": 10466.12, + "probability": 0.9966 + }, + { + "start": 10466.78, + "end": 10468.56, + "probability": 0.9756 + }, + { + "start": 10470.14, + "end": 10471.62, + "probability": 0.8275 + }, + { + "start": 10472.3, + "end": 10476.96, + "probability": 0.9932 + }, + { + "start": 10477.58, + "end": 10480.42, + "probability": 0.9983 + }, + { + "start": 10481.84, + "end": 10484.56, + "probability": 0.9802 + }, + { + "start": 10485.7, + "end": 10488.26, + "probability": 0.9057 + }, + { + "start": 10488.76, + "end": 10491.14, + "probability": 0.9807 + }, + { + "start": 10492.14, + "end": 10493.22, + "probability": 0.9844 + }, + { + "start": 10493.94, + "end": 10493.94, + "probability": 0.4827 + }, + { + "start": 10493.94, + "end": 10496.66, + "probability": 0.9959 + }, + { + "start": 10497.18, + "end": 10498.24, + "probability": 0.9849 + }, + { + "start": 10499.46, + "end": 10502.56, + "probability": 0.9785 + }, + { + "start": 10502.6, + "end": 10503.06, + "probability": 0.7091 + }, + { + "start": 10503.52, + "end": 10503.82, + "probability": 0.8409 + }, + { + "start": 10505.58, + "end": 10506.66, + "probability": 0.7268 + }, + { + "start": 10507.78, + "end": 10508.22, + "probability": 0.4124 + }, + { + "start": 10508.48, + "end": 10510.1, + "probability": 0.8887 + }, + { + "start": 10538.2, + "end": 10539.22, + "probability": 0.6802 + }, + { + "start": 10539.3, + "end": 10540.28, + "probability": 0.8527 + }, + { + "start": 10540.4, + "end": 10549.2, + "probability": 0.9938 + }, + { + "start": 10549.88, + "end": 10550.94, + "probability": 0.9887 + }, + { + "start": 10551.84, + "end": 10552.74, + "probability": 0.9262 + }, + { + "start": 10552.97, + "end": 10556.25, + "probability": 0.9985 + }, + { + "start": 10557.02, + "end": 10559.26, + "probability": 0.9973 + }, + { + "start": 10560.48, + "end": 10562.78, + "probability": 0.9662 + }, + { + "start": 10563.78, + "end": 10567.16, + "probability": 0.9058 + }, + { + "start": 10567.38, + "end": 10572.42, + "probability": 0.8649 + }, + { + "start": 10573.2, + "end": 10578.88, + "probability": 0.9132 + }, + { + "start": 10578.94, + "end": 10581.24, + "probability": 0.9631 + }, + { + "start": 10582.56, + "end": 10588.54, + "probability": 0.9644 + }, + { + "start": 10588.54, + "end": 10595.44, + "probability": 0.9973 + }, + { + "start": 10595.68, + "end": 10601.98, + "probability": 0.998 + }, + { + "start": 10602.96, + "end": 10606.14, + "probability": 0.8748 + }, + { + "start": 10607.18, + "end": 10612.76, + "probability": 0.9961 + }, + { + "start": 10612.88, + "end": 10613.68, + "probability": 0.6366 + }, + { + "start": 10614.22, + "end": 10617.42, + "probability": 0.9865 + }, + { + "start": 10617.98, + "end": 10621.52, + "probability": 0.9705 + }, + { + "start": 10622.34, + "end": 10625.2, + "probability": 0.9845 + }, + { + "start": 10626.06, + "end": 10627.96, + "probability": 0.9674 + }, + { + "start": 10628.58, + "end": 10630.4, + "probability": 0.9547 + }, + { + "start": 10630.96, + "end": 10632.3, + "probability": 0.9824 + }, + { + "start": 10633.2, + "end": 10637.3, + "probability": 0.9997 + }, + { + "start": 10638.28, + "end": 10641.74, + "probability": 0.9813 + }, + { + "start": 10643.3, + "end": 10644.98, + "probability": 0.8983 + }, + { + "start": 10645.62, + "end": 10647.92, + "probability": 0.9821 + }, + { + "start": 10647.98, + "end": 10652.4, + "probability": 0.979 + }, + { + "start": 10652.4, + "end": 10655.8, + "probability": 0.847 + }, + { + "start": 10656.3, + "end": 10659.68, + "probability": 0.998 + }, + { + "start": 10660.62, + "end": 10663.32, + "probability": 0.9929 + }, + { + "start": 10663.72, + "end": 10663.88, + "probability": 0.2505 + }, + { + "start": 10663.88, + "end": 10665.21, + "probability": 0.1371 + }, + { + "start": 10666.42, + "end": 10667.86, + "probability": 0.2031 + }, + { + "start": 10667.86, + "end": 10669.16, + "probability": 0.0284 + }, + { + "start": 10669.16, + "end": 10669.58, + "probability": 0.2843 + }, + { + "start": 10669.82, + "end": 10670.36, + "probability": 0.5573 + }, + { + "start": 10672.54, + "end": 10673.18, + "probability": 0.3711 + }, + { + "start": 10673.62, + "end": 10673.64, + "probability": 0.3316 + }, + { + "start": 10673.64, + "end": 10674.56, + "probability": 0.6851 + }, + { + "start": 10675.42, + "end": 10676.42, + "probability": 0.8299 + }, + { + "start": 10676.46, + "end": 10677.52, + "probability": 0.9022 + }, + { + "start": 10677.76, + "end": 10680.72, + "probability": 0.0524 + }, + { + "start": 10681.18, + "end": 10682.6, + "probability": 0.1702 + }, + { + "start": 10692.42, + "end": 10695.22, + "probability": 0.0625 + }, + { + "start": 10695.98, + "end": 10696.82, + "probability": 0.484 + }, + { + "start": 10697.22, + "end": 10698.14, + "probability": 0.5347 + }, + { + "start": 10698.14, + "end": 10699.54, + "probability": 0.0355 + }, + { + "start": 10701.39, + "end": 10701.71, + "probability": 0.0301 + }, + { + "start": 10701.74, + "end": 10703.18, + "probability": 0.1409 + }, + { + "start": 10703.82, + "end": 10705.3, + "probability": 0.0534 + }, + { + "start": 10705.78, + "end": 10707.16, + "probability": 0.0488 + }, + { + "start": 10710.56, + "end": 10710.58, + "probability": 0.0999 + }, + { + "start": 10710.76, + "end": 10713.06, + "probability": 0.0922 + }, + { + "start": 10713.39, + "end": 10715.01, + "probability": 0.1047 + }, + { + "start": 10715.74, + "end": 10715.82, + "probability": 0.0075 + }, + { + "start": 10717.74, + "end": 10718.12, + "probability": 0.0406 + }, + { + "start": 10718.12, + "end": 10718.9, + "probability": 0.0413 + }, + { + "start": 10720.64, + "end": 10723.12, + "probability": 0.2799 + }, + { + "start": 10724.16, + "end": 10724.16, + "probability": 0.0559 + }, + { + "start": 10724.16, + "end": 10726.51, + "probability": 0.4189 + }, + { + "start": 10727.8, + "end": 10729.04, + "probability": 0.5436 + }, + { + "start": 10729.7, + "end": 10730.28, + "probability": 0.8265 + }, + { + "start": 10730.86, + "end": 10734.38, + "probability": 0.921 + }, + { + "start": 10734.74, + "end": 10737.98, + "probability": 0.9447 + }, + { + "start": 10738.44, + "end": 10741.18, + "probability": 0.9955 + }, + { + "start": 10741.52, + "end": 10744.06, + "probability": 0.998 + }, + { + "start": 10744.66, + "end": 10749.18, + "probability": 0.9949 + }, + { + "start": 10749.86, + "end": 10751.3, + "probability": 0.9692 + }, + { + "start": 10751.96, + "end": 10754.58, + "probability": 0.9761 + }, + { + "start": 10755.02, + "end": 10757.56, + "probability": 0.9736 + }, + { + "start": 10758.06, + "end": 10759.94, + "probability": 0.9791 + }, + { + "start": 10760.54, + "end": 10760.54, + "probability": 0.0469 + }, + { + "start": 10760.54, + "end": 10762.02, + "probability": 0.9374 + }, + { + "start": 10762.58, + "end": 10767.22, + "probability": 0.9279 + }, + { + "start": 10767.4, + "end": 10772.92, + "probability": 0.9922 + }, + { + "start": 10773.32, + "end": 10773.6, + "probability": 0.4512 + }, + { + "start": 10774.08, + "end": 10774.62, + "probability": 0.6693 + }, + { + "start": 10775.74, + "end": 10776.48, + "probability": 0.9513 + }, + { + "start": 10779.82, + "end": 10779.96, + "probability": 0.0765 + }, + { + "start": 10794.56, + "end": 10795.08, + "probability": 0.5268 + }, + { + "start": 10796.4, + "end": 10797.46, + "probability": 0.7644 + }, + { + "start": 10798.34, + "end": 10801.06, + "probability": 0.8355 + }, + { + "start": 10802.54, + "end": 10806.36, + "probability": 0.9405 + }, + { + "start": 10808.1, + "end": 10811.02, + "probability": 0.9216 + }, + { + "start": 10811.9, + "end": 10813.38, + "probability": 0.9263 + }, + { + "start": 10813.96, + "end": 10814.66, + "probability": 0.889 + }, + { + "start": 10816.4, + "end": 10817.76, + "probability": 0.9884 + }, + { + "start": 10818.42, + "end": 10819.84, + "probability": 0.9971 + }, + { + "start": 10820.58, + "end": 10822.5, + "probability": 0.9878 + }, + { + "start": 10823.0, + "end": 10824.68, + "probability": 0.9993 + }, + { + "start": 10825.66, + "end": 10828.78, + "probability": 0.9937 + }, + { + "start": 10829.08, + "end": 10831.8, + "probability": 0.9792 + }, + { + "start": 10833.02, + "end": 10833.82, + "probability": 0.9985 + }, + { + "start": 10834.56, + "end": 10838.08, + "probability": 0.9937 + }, + { + "start": 10838.9, + "end": 10843.02, + "probability": 0.9896 + }, + { + "start": 10844.1, + "end": 10844.52, + "probability": 0.8115 + }, + { + "start": 10845.98, + "end": 10847.26, + "probability": 0.0062 + }, + { + "start": 10847.26, + "end": 10847.82, + "probability": 0.1387 + }, + { + "start": 10848.36, + "end": 10850.58, + "probability": 0.9479 + }, + { + "start": 10851.26, + "end": 10853.66, + "probability": 0.938 + }, + { + "start": 10854.66, + "end": 10856.0, + "probability": 0.7493 + }, + { + "start": 10856.62, + "end": 10862.26, + "probability": 0.9676 + }, + { + "start": 10863.14, + "end": 10866.12, + "probability": 0.9872 + }, + { + "start": 10867.0, + "end": 10870.82, + "probability": 0.9585 + }, + { + "start": 10871.56, + "end": 10873.24, + "probability": 0.9369 + }, + { + "start": 10873.66, + "end": 10876.16, + "probability": 0.9791 + }, + { + "start": 10877.0, + "end": 10877.44, + "probability": 0.8895 + }, + { + "start": 10877.82, + "end": 10878.94, + "probability": 0.9868 + }, + { + "start": 10879.12, + "end": 10884.24, + "probability": 0.9752 + }, + { + "start": 10885.5, + "end": 10886.56, + "probability": 0.9561 + }, + { + "start": 10887.4, + "end": 10888.64, + "probability": 0.9349 + }, + { + "start": 10889.24, + "end": 10890.78, + "probability": 0.8486 + }, + { + "start": 10890.92, + "end": 10893.56, + "probability": 0.903 + }, + { + "start": 10893.9, + "end": 10894.22, + "probability": 0.7152 + }, + { + "start": 10894.98, + "end": 10895.5, + "probability": 0.8304 + }, + { + "start": 10895.54, + "end": 10896.04, + "probability": 0.296 + }, + { + "start": 10896.52, + "end": 10900.79, + "probability": 0.1727 + }, + { + "start": 10904.14, + "end": 10904.14, + "probability": 0.0697 + }, + { + "start": 10904.14, + "end": 10904.36, + "probability": 0.3593 + }, + { + "start": 10904.96, + "end": 10905.3, + "probability": 0.1055 + }, + { + "start": 10906.26, + "end": 10907.56, + "probability": 0.1417 + }, + { + "start": 10909.78, + "end": 10910.26, + "probability": 0.4627 + }, + { + "start": 10912.24, + "end": 10914.1, + "probability": 0.0272 + }, + { + "start": 10922.02, + "end": 10924.16, + "probability": 0.0644 + }, + { + "start": 10924.16, + "end": 10924.16, + "probability": 0.1973 + }, + { + "start": 10924.16, + "end": 10924.38, + "probability": 0.0622 + }, + { + "start": 10932.24, + "end": 10932.78, + "probability": 0.2531 + }, + { + "start": 10946.78, + "end": 10947.6, + "probability": 0.0344 + }, + { + "start": 10947.6, + "end": 10949.66, + "probability": 0.1009 + }, + { + "start": 10949.66, + "end": 10950.96, + "probability": 0.257 + }, + { + "start": 10951.36, + "end": 10955.36, + "probability": 0.0855 + }, + { + "start": 10955.82, + "end": 10956.44, + "probability": 0.0498 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10993.0, + "end": 10993.0, + "probability": 0.0 + }, + { + "start": 10999.74, + "end": 10999.76, + "probability": 0.0302 + }, + { + "start": 11000.02, + "end": 11000.34, + "probability": 0.1954 + }, + { + "start": 11000.34, + "end": 11002.96, + "probability": 0.1265 + }, + { + "start": 11002.98, + "end": 11003.92, + "probability": 0.076 + }, + { + "start": 11004.4, + "end": 11005.05, + "probability": 0.0767 + }, + { + "start": 11005.38, + "end": 11006.22, + "probability": 0.0243 + }, + { + "start": 11006.22, + "end": 11007.82, + "probability": 0.0791 + }, + { + "start": 11017.74, + "end": 11018.16, + "probability": 0.0174 + }, + { + "start": 11018.36, + "end": 11019.24, + "probability": 0.0991 + }, + { + "start": 11019.24, + "end": 11020.92, + "probability": 0.3922 + }, + { + "start": 11021.52, + "end": 11022.79, + "probability": 0.0705 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11133.86, + "end": 11134.32, + "probability": 0.0673 + }, + { + "start": 11134.88, + "end": 11139.28, + "probability": 0.1021 + }, + { + "start": 11139.56, + "end": 11141.7, + "probability": 0.1684 + }, + { + "start": 11142.12, + "end": 11143.72, + "probability": 0.0149 + }, + { + "start": 11145.64, + "end": 11147.14, + "probability": 0.0495 + }, + { + "start": 11147.14, + "end": 11147.42, + "probability": 0.1684 + }, + { + "start": 11147.42, + "end": 11147.74, + "probability": 0.0072 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.0, + "end": 11240.0, + "probability": 0.0 + }, + { + "start": 11240.24, + "end": 11241.78, + "probability": 0.6853 + }, + { + "start": 11244.06, + "end": 11244.34, + "probability": 0.825 + }, + { + "start": 11245.56, + "end": 11247.5, + "probability": 0.9854 + }, + { + "start": 11248.78, + "end": 11249.32, + "probability": 0.691 + }, + { + "start": 11250.24, + "end": 11250.56, + "probability": 0.915 + }, + { + "start": 11251.1, + "end": 11252.22, + "probability": 0.8646 + }, + { + "start": 11253.66, + "end": 11253.82, + "probability": 0.7571 + }, + { + "start": 11255.16, + "end": 11256.78, + "probability": 0.5072 + }, + { + "start": 11256.9, + "end": 11258.0, + "probability": 0.9601 + }, + { + "start": 11258.66, + "end": 11259.54, + "probability": 0.8039 + }, + { + "start": 11293.14, + "end": 11293.66, + "probability": 0.4336 + }, + { + "start": 11293.74, + "end": 11294.54, + "probability": 0.6452 + }, + { + "start": 11296.0, + "end": 11296.64, + "probability": 0.8855 + }, + { + "start": 11297.5, + "end": 11298.18, + "probability": 0.8617 + }, + { + "start": 11301.14, + "end": 11302.72, + "probability": 0.9091 + }, + { + "start": 11303.86, + "end": 11305.36, + "probability": 0.9751 + }, + { + "start": 11306.36, + "end": 11307.6, + "probability": 0.8827 + }, + { + "start": 11309.62, + "end": 11312.06, + "probability": 0.9839 + }, + { + "start": 11312.88, + "end": 11315.58, + "probability": 0.9706 + }, + { + "start": 11316.28, + "end": 11317.36, + "probability": 0.998 + }, + { + "start": 11318.34, + "end": 11319.78, + "probability": 0.8346 + }, + { + "start": 11320.76, + "end": 11323.7, + "probability": 0.9658 + }, + { + "start": 11324.6, + "end": 11325.82, + "probability": 0.9302 + }, + { + "start": 11326.9, + "end": 11327.78, + "probability": 0.9919 + }, + { + "start": 11328.48, + "end": 11329.54, + "probability": 0.999 + }, + { + "start": 11330.12, + "end": 11331.16, + "probability": 0.7285 + }, + { + "start": 11332.39, + "end": 11334.22, + "probability": 0.5729 + }, + { + "start": 11335.0, + "end": 11336.7, + "probability": 0.9256 + }, + { + "start": 11337.82, + "end": 11338.88, + "probability": 0.7536 + }, + { + "start": 11340.48, + "end": 11343.84, + "probability": 0.9917 + }, + { + "start": 11343.84, + "end": 11351.36, + "probability": 0.9878 + }, + { + "start": 11352.4, + "end": 11353.3, + "probability": 0.9792 + }, + { + "start": 11354.68, + "end": 11357.18, + "probability": 0.7108 + }, + { + "start": 11357.76, + "end": 11359.88, + "probability": 0.9235 + }, + { + "start": 11360.38, + "end": 11361.7, + "probability": 0.7214 + }, + { + "start": 11362.66, + "end": 11365.7, + "probability": 0.9832 + }, + { + "start": 11366.48, + "end": 11368.88, + "probability": 0.9914 + }, + { + "start": 11369.36, + "end": 11369.5, + "probability": 0.6367 + }, + { + "start": 11369.54, + "end": 11369.8, + "probability": 0.7298 + }, + { + "start": 11370.28, + "end": 11372.48, + "probability": 0.8792 + }, + { + "start": 11373.38, + "end": 11376.38, + "probability": 0.7327 + }, + { + "start": 11377.76, + "end": 11379.19, + "probability": 0.9611 + }, + { + "start": 11380.0, + "end": 11380.64, + "probability": 0.8304 + }, + { + "start": 11381.16, + "end": 11385.48, + "probability": 0.9616 + }, + { + "start": 11386.68, + "end": 11392.98, + "probability": 0.9271 + }, + { + "start": 11393.66, + "end": 11395.32, + "probability": 0.5 + }, + { + "start": 11396.06, + "end": 11396.34, + "probability": 0.6688 + }, + { + "start": 11396.88, + "end": 11399.88, + "probability": 0.7979 + }, + { + "start": 11400.64, + "end": 11401.98, + "probability": 0.6664 + }, + { + "start": 11402.54, + "end": 11407.38, + "probability": 0.9827 + }, + { + "start": 11407.9, + "end": 11408.62, + "probability": 0.8103 + }, + { + "start": 11410.3, + "end": 11413.3, + "probability": 0.9028 + }, + { + "start": 11414.72, + "end": 11417.42, + "probability": 0.9748 + }, + { + "start": 11418.24, + "end": 11421.48, + "probability": 0.9634 + }, + { + "start": 11421.48, + "end": 11425.02, + "probability": 0.9807 + }, + { + "start": 11426.38, + "end": 11426.8, + "probability": 0.8507 + }, + { + "start": 11427.46, + "end": 11429.48, + "probability": 0.979 + }, + { + "start": 11430.64, + "end": 11433.1, + "probability": 0.8982 + }, + { + "start": 11433.16, + "end": 11435.77, + "probability": 0.9419 + }, + { + "start": 11437.34, + "end": 11440.76, + "probability": 0.9927 + }, + { + "start": 11441.64, + "end": 11449.26, + "probability": 0.9526 + }, + { + "start": 11450.56, + "end": 11451.54, + "probability": 0.9351 + }, + { + "start": 11452.2, + "end": 11454.67, + "probability": 0.5141 + }, + { + "start": 11456.04, + "end": 11456.78, + "probability": 0.9297 + }, + { + "start": 11457.76, + "end": 11459.36, + "probability": 0.6215 + }, + { + "start": 11460.34, + "end": 11461.88, + "probability": 0.762 + }, + { + "start": 11461.88, + "end": 11463.64, + "probability": 0.4631 + }, + { + "start": 11463.9, + "end": 11464.88, + "probability": 0.887 + }, + { + "start": 11465.54, + "end": 11467.26, + "probability": 0.9102 + }, + { + "start": 11467.96, + "end": 11468.2, + "probability": 0.0228 + }, + { + "start": 11468.54, + "end": 11471.66, + "probability": 0.928 + }, + { + "start": 11472.22, + "end": 11472.56, + "probability": 0.0108 + }, + { + "start": 11472.78, + "end": 11474.22, + "probability": 0.6986 + }, + { + "start": 11474.42, + "end": 11475.38, + "probability": 0.9681 + }, + { + "start": 11475.72, + "end": 11477.36, + "probability": 0.7396 + }, + { + "start": 11477.38, + "end": 11478.26, + "probability": 0.7913 + }, + { + "start": 11478.36, + "end": 11481.54, + "probability": 0.9009 + }, + { + "start": 11482.18, + "end": 11485.66, + "probability": 0.986 + }, + { + "start": 11486.08, + "end": 11488.66, + "probability": 0.9683 + }, + { + "start": 11489.06, + "end": 11489.06, + "probability": 0.2599 + }, + { + "start": 11489.06, + "end": 11490.74, + "probability": 0.7746 + }, + { + "start": 11491.66, + "end": 11492.46, + "probability": 0.9089 + }, + { + "start": 11492.5, + "end": 11493.14, + "probability": 0.9585 + }, + { + "start": 11493.6, + "end": 11494.48, + "probability": 0.7621 + }, + { + "start": 11494.54, + "end": 11495.36, + "probability": 0.8374 + }, + { + "start": 11495.82, + "end": 11496.2, + "probability": 0.9277 + }, + { + "start": 11496.54, + "end": 11496.82, + "probability": 0.9608 + }, + { + "start": 11497.4, + "end": 11497.94, + "probability": 0.8089 + }, + { + "start": 11499.18, + "end": 11499.9, + "probability": 0.7341 + }, + { + "start": 11501.28, + "end": 11502.86, + "probability": 0.6622 + }, + { + "start": 11503.12, + "end": 11504.34, + "probability": 0.7933 + }, + { + "start": 11504.46, + "end": 11505.18, + "probability": 0.887 + }, + { + "start": 11508.5, + "end": 11514.0, + "probability": 0.3208 + }, + { + "start": 11514.12, + "end": 11519.44, + "probability": 0.2623 + }, + { + "start": 11520.0, + "end": 11521.64, + "probability": 0.8252 + }, + { + "start": 11521.92, + "end": 11522.9, + "probability": 0.9595 + }, + { + "start": 11523.04, + "end": 11523.29, + "probability": 0.1386 + }, + { + "start": 11524.38, + "end": 11525.36, + "probability": 0.8322 + }, + { + "start": 11526.3, + "end": 11528.66, + "probability": 0.8121 + }, + { + "start": 11529.48, + "end": 11531.1, + "probability": 0.987 + }, + { + "start": 11533.4, + "end": 11535.08, + "probability": 0.9521 + }, + { + "start": 11537.1, + "end": 11537.99, + "probability": 0.7413 + }, + { + "start": 11540.36, + "end": 11541.14, + "probability": 0.4414 + }, + { + "start": 11542.24, + "end": 11544.22, + "probability": 0.7626 + }, + { + "start": 11544.9, + "end": 11546.74, + "probability": 0.9364 + }, + { + "start": 11548.14, + "end": 11551.94, + "probability": 0.642 + }, + { + "start": 11553.22, + "end": 11555.14, + "probability": 0.9459 + }, + { + "start": 11556.94, + "end": 11557.96, + "probability": 0.3378 + }, + { + "start": 11558.92, + "end": 11560.68, + "probability": 0.6115 + }, + { + "start": 11563.8, + "end": 11564.48, + "probability": 0.2702 + }, + { + "start": 11565.48, + "end": 11566.98, + "probability": 0.7476 + }, + { + "start": 11568.32, + "end": 11569.2, + "probability": 0.9485 + }, + { + "start": 11571.1, + "end": 11574.8, + "probability": 0.7286 + }, + { + "start": 11575.82, + "end": 11576.78, + "probability": 0.7144 + }, + { + "start": 11577.6, + "end": 11579.02, + "probability": 0.9915 + }, + { + "start": 11580.56, + "end": 11581.72, + "probability": 0.9932 + }, + { + "start": 11582.8, + "end": 11583.9, + "probability": 0.8304 + }, + { + "start": 11584.72, + "end": 11586.18, + "probability": 0.9837 + }, + { + "start": 11587.66, + "end": 11589.38, + "probability": 0.9904 + }, + { + "start": 11592.06, + "end": 11593.08, + "probability": 0.6777 + }, + { + "start": 11594.2, + "end": 11596.38, + "probability": 0.8543 + }, + { + "start": 11597.24, + "end": 11601.88, + "probability": 0.9866 + }, + { + "start": 11601.88, + "end": 11606.58, + "probability": 0.9853 + }, + { + "start": 11609.7, + "end": 11611.54, + "probability": 0.9913 + }, + { + "start": 11613.0, + "end": 11614.72, + "probability": 0.8523 + }, + { + "start": 11616.48, + "end": 11617.24, + "probability": 0.6761 + }, + { + "start": 11618.82, + "end": 11621.35, + "probability": 0.9938 + }, + { + "start": 11622.3, + "end": 11625.16, + "probability": 0.9418 + }, + { + "start": 11627.84, + "end": 11631.72, + "probability": 0.999 + }, + { + "start": 11632.44, + "end": 11634.4, + "probability": 0.9813 + }, + { + "start": 11635.38, + "end": 11637.28, + "probability": 0.9686 + }, + { + "start": 11638.04, + "end": 11638.8, + "probability": 0.7086 + }, + { + "start": 11639.72, + "end": 11640.84, + "probability": 0.9946 + }, + { + "start": 11641.8, + "end": 11642.44, + "probability": 0.8765 + }, + { + "start": 11643.56, + "end": 11644.26, + "probability": 0.784 + }, + { + "start": 11645.28, + "end": 11649.16, + "probability": 0.9927 + }, + { + "start": 11650.0, + "end": 11651.7, + "probability": 0.9919 + }, + { + "start": 11652.48, + "end": 11653.4, + "probability": 0.9899 + }, + { + "start": 11653.96, + "end": 11654.84, + "probability": 0.6253 + }, + { + "start": 11655.7, + "end": 11657.14, + "probability": 0.9961 + }, + { + "start": 11658.02, + "end": 11661.58, + "probability": 0.9613 + }, + { + "start": 11661.74, + "end": 11662.28, + "probability": 0.642 + }, + { + "start": 11663.58, + "end": 11664.42, + "probability": 0.9861 + }, + { + "start": 11665.08, + "end": 11669.04, + "probability": 0.9488 + }, + { + "start": 11669.5, + "end": 11670.7, + "probability": 0.8264 + }, + { + "start": 11670.74, + "end": 11671.02, + "probability": 0.8031 + }, + { + "start": 11673.74, + "end": 11674.44, + "probability": 0.334 + }, + { + "start": 11674.44, + "end": 11675.38, + "probability": 0.7353 + }, + { + "start": 11675.96, + "end": 11679.42, + "probability": 0.9932 + }, + { + "start": 11680.54, + "end": 11684.68, + "probability": 0.9536 + }, + { + "start": 11685.4, + "end": 11690.78, + "probability": 0.9965 + }, + { + "start": 11691.34, + "end": 11694.43, + "probability": 0.8829 + }, + { + "start": 11695.08, + "end": 11695.87, + "probability": 0.7529 + }, + { + "start": 11696.58, + "end": 11698.24, + "probability": 0.9468 + }, + { + "start": 11698.92, + "end": 11699.86, + "probability": 0.852 + }, + { + "start": 11700.4, + "end": 11701.9, + "probability": 0.9963 + }, + { + "start": 11702.38, + "end": 11705.48, + "probability": 0.9657 + }, + { + "start": 11705.86, + "end": 11707.18, + "probability": 0.9982 + }, + { + "start": 11707.58, + "end": 11708.6, + "probability": 0.7167 + }, + { + "start": 11709.4, + "end": 11709.78, + "probability": 0.3086 + }, + { + "start": 11712.64, + "end": 11713.22, + "probability": 0.7856 + }, + { + "start": 11714.24, + "end": 11715.48, + "probability": 0.1869 + }, + { + "start": 11715.98, + "end": 11718.26, + "probability": 0.6382 + }, + { + "start": 11719.0, + "end": 11721.5, + "probability": 0.6737 + }, + { + "start": 11726.1, + "end": 11726.8, + "probability": 0.156 + }, + { + "start": 11729.61, + "end": 11731.08, + "probability": 0.0139 + }, + { + "start": 11750.3, + "end": 11752.2, + "probability": 0.5578 + }, + { + "start": 11753.66, + "end": 11757.12, + "probability": 0.9517 + }, + { + "start": 11758.2, + "end": 11758.54, + "probability": 0.9884 + }, + { + "start": 11759.64, + "end": 11760.0, + "probability": 0.9195 + }, + { + "start": 11760.76, + "end": 11762.08, + "probability": 0.9036 + }, + { + "start": 11763.08, + "end": 11763.68, + "probability": 0.5565 + }, + { + "start": 11765.56, + "end": 11773.74, + "probability": 0.9946 + }, + { + "start": 11776.2, + "end": 11778.58, + "probability": 0.9957 + }, + { + "start": 11779.36, + "end": 11780.66, + "probability": 0.8822 + }, + { + "start": 11782.68, + "end": 11784.32, + "probability": 0.9582 + }, + { + "start": 11785.28, + "end": 11786.58, + "probability": 0.8586 + }, + { + "start": 11787.28, + "end": 11789.98, + "probability": 0.9832 + }, + { + "start": 11790.74, + "end": 11793.52, + "probability": 0.9666 + }, + { + "start": 11795.48, + "end": 11798.82, + "probability": 0.9977 + }, + { + "start": 11801.08, + "end": 11806.24, + "probability": 0.9945 + }, + { + "start": 11808.1, + "end": 11810.1, + "probability": 0.7794 + }, + { + "start": 11811.38, + "end": 11814.87, + "probability": 0.7986 + }, + { + "start": 11820.26, + "end": 11823.22, + "probability": 0.4696 + }, + { + "start": 11824.02, + "end": 11825.94, + "probability": 0.5633 + }, + { + "start": 11827.76, + "end": 11829.9, + "probability": 0.986 + }, + { + "start": 11830.6, + "end": 11834.66, + "probability": 0.7345 + }, + { + "start": 11836.39, + "end": 11844.42, + "probability": 0.9774 + }, + { + "start": 11845.08, + "end": 11846.84, + "probability": 0.5909 + }, + { + "start": 11847.56, + "end": 11847.96, + "probability": 0.9217 + }, + { + "start": 11849.26, + "end": 11852.02, + "probability": 0.744 + }, + { + "start": 11852.68, + "end": 11853.9, + "probability": 0.6582 + }, + { + "start": 11854.64, + "end": 11857.44, + "probability": 0.9417 + }, + { + "start": 11858.48, + "end": 11863.96, + "probability": 0.6696 + }, + { + "start": 11864.45, + "end": 11864.9, + "probability": 0.1543 + }, + { + "start": 11865.38, + "end": 11867.86, + "probability": 0.8937 + }, + { + "start": 11868.46, + "end": 11873.78, + "probability": 0.9854 + }, + { + "start": 11873.78, + "end": 11877.66, + "probability": 0.9872 + }, + { + "start": 11878.26, + "end": 11879.48, + "probability": 0.9882 + }, + { + "start": 11881.34, + "end": 11882.88, + "probability": 0.9443 + }, + { + "start": 11883.76, + "end": 11884.82, + "probability": 0.6584 + }, + { + "start": 11885.18, + "end": 11889.5, + "probability": 0.9546 + }, + { + "start": 11890.54, + "end": 11892.38, + "probability": 0.9222 + }, + { + "start": 11893.02, + "end": 11895.88, + "probability": 0.8569 + }, + { + "start": 11896.44, + "end": 11897.52, + "probability": 0.8931 + }, + { + "start": 11898.08, + "end": 11899.08, + "probability": 0.7592 + }, + { + "start": 11899.66, + "end": 11901.8, + "probability": 0.9939 + }, + { + "start": 11902.02, + "end": 11903.5, + "probability": 0.7992 + }, + { + "start": 11904.36, + "end": 11905.56, + "probability": 0.8909 + }, + { + "start": 11905.8, + "end": 11912.0, + "probability": 0.9471 + }, + { + "start": 11912.58, + "end": 11914.86, + "probability": 0.8117 + }, + { + "start": 11915.14, + "end": 11915.6, + "probability": 0.5164 + }, + { + "start": 11916.32, + "end": 11917.06, + "probability": 0.9151 + }, + { + "start": 11917.64, + "end": 11919.62, + "probability": 0.6654 + }, + { + "start": 11920.24, + "end": 11921.5, + "probability": 0.9425 + }, + { + "start": 11922.28, + "end": 11923.78, + "probability": 0.757 + }, + { + "start": 11923.8, + "end": 11924.96, + "probability": 0.8628 + }, + { + "start": 11925.38, + "end": 11926.29, + "probability": 0.6558 + }, + { + "start": 11927.14, + "end": 11929.64, + "probability": 0.8697 + }, + { + "start": 11930.26, + "end": 11933.32, + "probability": 0.9445 + }, + { + "start": 11935.24, + "end": 11937.62, + "probability": 0.7148 + }, + { + "start": 11938.64, + "end": 11941.7, + "probability": 0.8335 + }, + { + "start": 11942.3, + "end": 11943.18, + "probability": 0.9397 + }, + { + "start": 11944.1, + "end": 11945.36, + "probability": 0.1735 + }, + { + "start": 11945.62, + "end": 11952.68, + "probability": 0.11 + }, + { + "start": 11952.68, + "end": 11956.12, + "probability": 0.8662 + }, + { + "start": 11956.58, + "end": 11958.44, + "probability": 0.6619 + }, + { + "start": 11958.52, + "end": 11960.7, + "probability": 0.8949 + }, + { + "start": 11978.94, + "end": 11978.94, + "probability": 0.1595 + }, + { + "start": 11978.94, + "end": 11978.94, + "probability": 0.1163 + }, + { + "start": 11978.94, + "end": 11978.94, + "probability": 0.0749 + }, + { + "start": 11978.94, + "end": 11978.98, + "probability": 0.0418 + }, + { + "start": 11978.98, + "end": 11978.98, + "probability": 0.1463 + }, + { + "start": 11978.98, + "end": 11978.98, + "probability": 0.1074 + }, + { + "start": 12000.24, + "end": 12005.84, + "probability": 0.9277 + }, + { + "start": 12006.54, + "end": 12007.92, + "probability": 0.5906 + }, + { + "start": 12009.38, + "end": 12010.6, + "probability": 0.7703 + }, + { + "start": 12011.2, + "end": 12014.18, + "probability": 0.9915 + }, + { + "start": 12015.06, + "end": 12018.14, + "probability": 0.8801 + }, + { + "start": 12019.78, + "end": 12024.42, + "probability": 0.9868 + }, + { + "start": 12024.78, + "end": 12025.72, + "probability": 0.8302 + }, + { + "start": 12027.5, + "end": 12030.8, + "probability": 0.7765 + }, + { + "start": 12031.58, + "end": 12033.5, + "probability": 0.9813 + }, + { + "start": 12035.28, + "end": 12037.82, + "probability": 0.996 + }, + { + "start": 12038.48, + "end": 12040.96, + "probability": 0.8226 + }, + { + "start": 12042.18, + "end": 12043.46, + "probability": 0.8036 + }, + { + "start": 12046.2, + "end": 12046.72, + "probability": 0.9905 + }, + { + "start": 12048.32, + "end": 12054.84, + "probability": 0.9841 + }, + { + "start": 12055.74, + "end": 12059.76, + "probability": 0.9639 + }, + { + "start": 12059.76, + "end": 12063.48, + "probability": 0.9973 + }, + { + "start": 12064.9, + "end": 12069.04, + "probability": 0.9932 + }, + { + "start": 12069.86, + "end": 12074.52, + "probability": 0.9969 + }, + { + "start": 12074.52, + "end": 12079.16, + "probability": 0.9242 + }, + { + "start": 12079.2, + "end": 12079.7, + "probability": 0.8519 + }, + { + "start": 12081.68, + "end": 12083.8, + "probability": 0.9105 + }, + { + "start": 12084.54, + "end": 12085.66, + "probability": 0.7147 + }, + { + "start": 12086.28, + "end": 12088.38, + "probability": 0.9612 + }, + { + "start": 12090.14, + "end": 12094.36, + "probability": 0.9955 + }, + { + "start": 12095.26, + "end": 12097.02, + "probability": 0.8486 + }, + { + "start": 12097.76, + "end": 12100.92, + "probability": 0.9178 + }, + { + "start": 12101.5, + "end": 12102.26, + "probability": 0.9388 + }, + { + "start": 12102.84, + "end": 12108.24, + "probability": 0.9976 + }, + { + "start": 12109.24, + "end": 12110.56, + "probability": 0.8204 + }, + { + "start": 12111.8, + "end": 12115.11, + "probability": 0.9971 + }, + { + "start": 12115.86, + "end": 12116.6, + "probability": 0.6942 + }, + { + "start": 12116.8, + "end": 12118.02, + "probability": 0.8651 + }, + { + "start": 12118.42, + "end": 12120.98, + "probability": 0.9899 + }, + { + "start": 12124.1, + "end": 12125.98, + "probability": 0.9988 + }, + { + "start": 12126.74, + "end": 12132.54, + "probability": 0.9159 + }, + { + "start": 12133.18, + "end": 12134.9, + "probability": 0.8449 + }, + { + "start": 12135.54, + "end": 12139.4, + "probability": 0.7631 + }, + { + "start": 12140.62, + "end": 12143.54, + "probability": 0.8462 + }, + { + "start": 12144.06, + "end": 12145.58, + "probability": 0.9808 + }, + { + "start": 12146.7, + "end": 12152.12, + "probability": 0.9906 + }, + { + "start": 12152.16, + "end": 12157.12, + "probability": 0.9896 + }, + { + "start": 12158.08, + "end": 12161.1, + "probability": 0.9056 + }, + { + "start": 12161.82, + "end": 12164.68, + "probability": 0.989 + }, + { + "start": 12165.42, + "end": 12168.76, + "probability": 0.988 + }, + { + "start": 12168.88, + "end": 12171.26, + "probability": 0.9958 + }, + { + "start": 12171.76, + "end": 12172.12, + "probability": 0.2885 + }, + { + "start": 12172.14, + "end": 12177.27, + "probability": 0.9841 + }, + { + "start": 12177.5, + "end": 12178.1, + "probability": 0.8965 + }, + { + "start": 12178.64, + "end": 12180.86, + "probability": 0.9702 + }, + { + "start": 12181.68, + "end": 12182.84, + "probability": 0.9419 + }, + { + "start": 12182.9, + "end": 12183.34, + "probability": 0.6621 + }, + { + "start": 12183.38, + "end": 12184.08, + "probability": 0.8684 + }, + { + "start": 12184.16, + "end": 12188.8, + "probability": 0.9283 + }, + { + "start": 12188.88, + "end": 12189.68, + "probability": 0.9012 + }, + { + "start": 12189.9, + "end": 12191.3, + "probability": 0.9898 + }, + { + "start": 12192.36, + "end": 12192.76, + "probability": 0.9058 + }, + { + "start": 12194.08, + "end": 12196.42, + "probability": 0.6462 + }, + { + "start": 12197.18, + "end": 12197.58, + "probability": 0.8728 + }, + { + "start": 12198.38, + "end": 12199.5, + "probability": 0.8097 + }, + { + "start": 12199.58, + "end": 12201.02, + "probability": 0.5085 + }, + { + "start": 12201.22, + "end": 12201.6, + "probability": 0.7101 + }, + { + "start": 12202.76, + "end": 12204.25, + "probability": 0.6732 + }, + { + "start": 12205.74, + "end": 12207.44, + "probability": 0.6485 + }, + { + "start": 12209.16, + "end": 12210.46, + "probability": 0.8603 + }, + { + "start": 12211.28, + "end": 12212.04, + "probability": 0.9149 + }, + { + "start": 12214.2, + "end": 12215.96, + "probability": 0.8347 + }, + { + "start": 12216.08, + "end": 12217.04, + "probability": 0.8462 + }, + { + "start": 12217.12, + "end": 12217.58, + "probability": 0.6263 + }, + { + "start": 12218.78, + "end": 12220.54, + "probability": 0.9671 + }, + { + "start": 12220.76, + "end": 12223.25, + "probability": 0.9961 + }, + { + "start": 12224.7, + "end": 12225.57, + "probability": 0.9813 + }, + { + "start": 12225.72, + "end": 12226.64, + "probability": 0.7412 + }, + { + "start": 12227.1, + "end": 12227.84, + "probability": 0.5813 + }, + { + "start": 12228.02, + "end": 12230.3, + "probability": 0.7316 + }, + { + "start": 12231.65, + "end": 12233.94, + "probability": 0.1566 + }, + { + "start": 12233.94, + "end": 12234.56, + "probability": 0.4953 + }, + { + "start": 12235.4, + "end": 12238.16, + "probability": 0.7884 + }, + { + "start": 12239.22, + "end": 12242.02, + "probability": 0.7589 + }, + { + "start": 12242.98, + "end": 12243.36, + "probability": 0.2006 + }, + { + "start": 12243.36, + "end": 12244.26, + "probability": 0.4642 + }, + { + "start": 12244.34, + "end": 12244.9, + "probability": 0.6621 + }, + { + "start": 12245.18, + "end": 12246.28, + "probability": 0.958 + }, + { + "start": 12246.72, + "end": 12247.42, + "probability": 0.9058 + }, + { + "start": 12247.46, + "end": 12248.32, + "probability": 0.8481 + }, + { + "start": 12248.36, + "end": 12248.6, + "probability": 0.6882 + }, + { + "start": 12248.68, + "end": 12250.22, + "probability": 0.8098 + }, + { + "start": 12250.24, + "end": 12250.52, + "probability": 0.8192 + }, + { + "start": 12251.82, + "end": 12253.16, + "probability": 0.1783 + }, + { + "start": 12253.72, + "end": 12256.38, + "probability": 0.8794 + }, + { + "start": 12256.66, + "end": 12259.64, + "probability": 0.9597 + }, + { + "start": 12259.64, + "end": 12260.66, + "probability": 0.7932 + }, + { + "start": 12260.7, + "end": 12261.66, + "probability": 0.9858 + }, + { + "start": 12261.94, + "end": 12264.3, + "probability": 0.9922 + }, + { + "start": 12264.72, + "end": 12265.06, + "probability": 0.4645 + }, + { + "start": 12265.16, + "end": 12266.08, + "probability": 0.9308 + }, + { + "start": 12266.5, + "end": 12268.46, + "probability": 0.9686 + }, + { + "start": 12268.94, + "end": 12270.56, + "probability": 0.5581 + }, + { + "start": 12270.56, + "end": 12271.51, + "probability": 0.5636 + }, + { + "start": 12272.22, + "end": 12273.24, + "probability": 0.277 + }, + { + "start": 12273.46, + "end": 12275.86, + "probability": 0.9827 + }, + { + "start": 12276.36, + "end": 12276.46, + "probability": 0.1503 + }, + { + "start": 12277.84, + "end": 12279.12, + "probability": 0.9246 + }, + { + "start": 12279.26, + "end": 12279.5, + "probability": 0.3704 + }, + { + "start": 12279.5, + "end": 12280.7, + "probability": 0.8403 + }, + { + "start": 12282.12, + "end": 12282.3, + "probability": 0.0364 + }, + { + "start": 12283.34, + "end": 12283.54, + "probability": 0.1824 + }, + { + "start": 12283.54, + "end": 12283.8, + "probability": 0.0556 + }, + { + "start": 12283.8, + "end": 12284.5, + "probability": 0.6064 + }, + { + "start": 12285.26, + "end": 12286.95, + "probability": 0.0947 + }, + { + "start": 12287.54, + "end": 12289.4, + "probability": 0.5371 + }, + { + "start": 12290.02, + "end": 12290.84, + "probability": 0.7554 + }, + { + "start": 12291.04, + "end": 12291.52, + "probability": 0.6539 + }, + { + "start": 12291.66, + "end": 12293.02, + "probability": 0.6596 + }, + { + "start": 12293.28, + "end": 12293.46, + "probability": 0.0611 + }, + { + "start": 12293.46, + "end": 12293.46, + "probability": 0.2766 + }, + { + "start": 12293.46, + "end": 12293.46, + "probability": 0.0469 + }, + { + "start": 12293.46, + "end": 12294.96, + "probability": 0.3317 + }, + { + "start": 12294.96, + "end": 12295.8, + "probability": 0.6579 + }, + { + "start": 12296.46, + "end": 12299.04, + "probability": 0.9325 + }, + { + "start": 12299.86, + "end": 12300.92, + "probability": 0.9043 + }, + { + "start": 12302.08, + "end": 12302.44, + "probability": 0.2059 + }, + { + "start": 12302.56, + "end": 12302.74, + "probability": 0.0671 + }, + { + "start": 12302.74, + "end": 12303.61, + "probability": 0.456 + }, + { + "start": 12304.64, + "end": 12304.9, + "probability": 0.3449 + }, + { + "start": 12305.84, + "end": 12307.36, + "probability": 0.6312 + }, + { + "start": 12309.86, + "end": 12310.48, + "probability": 0.9546 + }, + { + "start": 12312.62, + "end": 12313.96, + "probability": 0.9941 + }, + { + "start": 12315.1, + "end": 12316.48, + "probability": 0.9963 + }, + { + "start": 12317.88, + "end": 12322.22, + "probability": 0.9751 + }, + { + "start": 12324.6, + "end": 12325.48, + "probability": 0.845 + }, + { + "start": 12326.54, + "end": 12327.66, + "probability": 0.6431 + }, + { + "start": 12328.76, + "end": 12333.22, + "probability": 0.9908 + }, + { + "start": 12334.36, + "end": 12337.78, + "probability": 0.9743 + }, + { + "start": 12339.24, + "end": 12340.3, + "probability": 0.9382 + }, + { + "start": 12341.4, + "end": 12342.46, + "probability": 0.8853 + }, + { + "start": 12345.22, + "end": 12347.02, + "probability": 0.8637 + }, + { + "start": 12348.56, + "end": 12350.64, + "probability": 0.9868 + }, + { + "start": 12351.32, + "end": 12352.16, + "probability": 0.7721 + }, + { + "start": 12353.66, + "end": 12355.08, + "probability": 0.7889 + }, + { + "start": 12356.72, + "end": 12357.98, + "probability": 0.9785 + }, + { + "start": 12359.34, + "end": 12360.8, + "probability": 0.8706 + }, + { + "start": 12361.5, + "end": 12364.5, + "probability": 0.9756 + }, + { + "start": 12365.36, + "end": 12367.64, + "probability": 0.9686 + }, + { + "start": 12368.74, + "end": 12374.56, + "probability": 0.9708 + }, + { + "start": 12375.32, + "end": 12377.14, + "probability": 0.6501 + }, + { + "start": 12378.02, + "end": 12378.8, + "probability": 0.8531 + }, + { + "start": 12379.6, + "end": 12381.64, + "probability": 0.9948 + }, + { + "start": 12382.34, + "end": 12383.46, + "probability": 0.9343 + }, + { + "start": 12383.98, + "end": 12388.84, + "probability": 0.9602 + }, + { + "start": 12389.84, + "end": 12395.7, + "probability": 0.8854 + }, + { + "start": 12396.46, + "end": 12398.46, + "probability": 0.9877 + }, + { + "start": 12399.48, + "end": 12403.16, + "probability": 0.698 + }, + { + "start": 12404.56, + "end": 12408.38, + "probability": 0.991 + }, + { + "start": 12409.34, + "end": 12414.82, + "probability": 0.9877 + }, + { + "start": 12415.92, + "end": 12417.86, + "probability": 0.9987 + }, + { + "start": 12418.92, + "end": 12426.26, + "probability": 0.9461 + }, + { + "start": 12426.96, + "end": 12431.7, + "probability": 0.9526 + }, + { + "start": 12433.06, + "end": 12442.74, + "probability": 0.8857 + }, + { + "start": 12443.88, + "end": 12447.5, + "probability": 0.9976 + }, + { + "start": 12448.48, + "end": 12451.9, + "probability": 0.9949 + }, + { + "start": 12451.9, + "end": 12456.52, + "probability": 0.9042 + }, + { + "start": 12457.14, + "end": 12459.52, + "probability": 0.8755 + }, + { + "start": 12459.72, + "end": 12463.26, + "probability": 0.8929 + }, + { + "start": 12463.34, + "end": 12465.88, + "probability": 0.6337 + }, + { + "start": 12466.64, + "end": 12468.4, + "probability": 0.9995 + }, + { + "start": 12468.92, + "end": 12470.1, + "probability": 0.6604 + }, + { + "start": 12470.58, + "end": 12472.34, + "probability": 0.5442 + }, + { + "start": 12472.66, + "end": 12473.9, + "probability": 0.918 + }, + { + "start": 12474.04, + "end": 12475.33, + "probability": 0.5047 + }, + { + "start": 12475.88, + "end": 12477.76, + "probability": 0.8513 + }, + { + "start": 12478.0, + "end": 12479.92, + "probability": 0.6502 + }, + { + "start": 12480.52, + "end": 12480.74, + "probability": 0.5524 + }, + { + "start": 12482.88, + "end": 12483.42, + "probability": 0.7596 + }, + { + "start": 12484.38, + "end": 12485.64, + "probability": 0.9397 + }, + { + "start": 12486.8, + "end": 12487.34, + "probability": 0.5765 + }, + { + "start": 12487.54, + "end": 12488.82, + "probability": 0.8271 + }, + { + "start": 12500.66, + "end": 12501.0, + "probability": 0.7805 + }, + { + "start": 12504.68, + "end": 12507.78, + "probability": 0.7101 + }, + { + "start": 12508.42, + "end": 12511.8, + "probability": 0.9771 + }, + { + "start": 12511.94, + "end": 12516.68, + "probability": 0.9659 + }, + { + "start": 12517.44, + "end": 12517.7, + "probability": 0.7076 + }, + { + "start": 12517.8, + "end": 12518.58, + "probability": 0.9603 + }, + { + "start": 12518.72, + "end": 12519.82, + "probability": 0.985 + }, + { + "start": 12519.98, + "end": 12521.22, + "probability": 0.908 + }, + { + "start": 12521.24, + "end": 12523.2, + "probability": 0.9678 + }, + { + "start": 12523.3, + "end": 12524.36, + "probability": 0.9756 + }, + { + "start": 12524.36, + "end": 12524.96, + "probability": 0.6822 + }, + { + "start": 12525.18, + "end": 12527.46, + "probability": 0.8433 + }, + { + "start": 12528.1, + "end": 12528.94, + "probability": 0.8093 + }, + { + "start": 12529.04, + "end": 12530.7, + "probability": 0.9787 + }, + { + "start": 12530.72, + "end": 12531.32, + "probability": 0.7808 + }, + { + "start": 12531.54, + "end": 12532.72, + "probability": 0.9883 + }, + { + "start": 12532.96, + "end": 12533.92, + "probability": 0.9971 + }, + { + "start": 12534.74, + "end": 12538.78, + "probability": 0.847 + }, + { + "start": 12539.32, + "end": 12539.68, + "probability": 0.2781 + }, + { + "start": 12540.28, + "end": 12542.24, + "probability": 0.7561 + }, + { + "start": 12542.96, + "end": 12544.82, + "probability": 0.9526 + }, + { + "start": 12546.06, + "end": 12549.08, + "probability": 0.9693 + }, + { + "start": 12549.26, + "end": 12550.12, + "probability": 0.898 + }, + { + "start": 12551.08, + "end": 12552.2, + "probability": 0.8793 + }, + { + "start": 12552.82, + "end": 12555.54, + "probability": 0.9923 + }, + { + "start": 12556.16, + "end": 12561.86, + "probability": 0.9917 + }, + { + "start": 12561.98, + "end": 12564.64, + "probability": 0.7314 + }, + { + "start": 12565.32, + "end": 12568.46, + "probability": 0.9762 + }, + { + "start": 12568.96, + "end": 12569.55, + "probability": 0.9863 + }, + { + "start": 12569.88, + "end": 12572.78, + "probability": 0.9897 + }, + { + "start": 12573.28, + "end": 12575.22, + "probability": 0.8342 + }, + { + "start": 12575.88, + "end": 12579.14, + "probability": 0.9414 + }, + { + "start": 12579.6, + "end": 12584.13, + "probability": 0.974 + }, + { + "start": 12584.24, + "end": 12589.34, + "probability": 0.9451 + }, + { + "start": 12589.4, + "end": 12590.16, + "probability": 0.8507 + }, + { + "start": 12590.9, + "end": 12596.08, + "probability": 0.9974 + }, + { + "start": 12596.48, + "end": 12598.1, + "probability": 0.9875 + }, + { + "start": 12598.44, + "end": 12599.1, + "probability": 0.978 + }, + { + "start": 12600.12, + "end": 12602.92, + "probability": 0.9263 + }, + { + "start": 12603.84, + "end": 12604.92, + "probability": 0.9147 + }, + { + "start": 12605.42, + "end": 12606.82, + "probability": 0.9639 + }, + { + "start": 12607.38, + "end": 12610.94, + "probability": 0.864 + }, + { + "start": 12611.28, + "end": 12612.26, + "probability": 0.5969 + }, + { + "start": 12612.5, + "end": 12615.82, + "probability": 0.6976 + }, + { + "start": 12616.24, + "end": 12617.6, + "probability": 0.9229 + }, + { + "start": 12618.16, + "end": 12619.62, + "probability": 0.9568 + }, + { + "start": 12620.24, + "end": 12621.96, + "probability": 0.969 + }, + { + "start": 12622.36, + "end": 12624.18, + "probability": 0.8269 + }, + { + "start": 12624.32, + "end": 12625.7, + "probability": 0.9532 + }, + { + "start": 12626.02, + "end": 12626.78, + "probability": 0.5771 + }, + { + "start": 12627.34, + "end": 12630.16, + "probability": 0.9696 + }, + { + "start": 12630.8, + "end": 12631.78, + "probability": 0.943 + }, + { + "start": 12632.22, + "end": 12632.46, + "probability": 0.8431 + }, + { + "start": 12632.92, + "end": 12633.38, + "probability": 0.6357 + }, + { + "start": 12633.46, + "end": 12634.64, + "probability": 0.8391 + }, + { + "start": 12660.6, + "end": 12662.2, + "probability": 0.6654 + }, + { + "start": 12663.14, + "end": 12664.04, + "probability": 0.7546 + }, + { + "start": 12667.94, + "end": 12668.94, + "probability": 0.436 + }, + { + "start": 12670.26, + "end": 12670.5, + "probability": 0.2119 + }, + { + "start": 12671.02, + "end": 12671.64, + "probability": 0.8809 + }, + { + "start": 12673.72, + "end": 12680.82, + "probability": 0.967 + }, + { + "start": 12685.4, + "end": 12686.02, + "probability": 0.6944 + }, + { + "start": 12687.32, + "end": 12689.18, + "probability": 0.9831 + }, + { + "start": 12690.96, + "end": 12696.38, + "probability": 0.9524 + }, + { + "start": 12697.82, + "end": 12698.66, + "probability": 0.7521 + }, + { + "start": 12699.7, + "end": 12701.96, + "probability": 0.9585 + }, + { + "start": 12706.2, + "end": 12707.42, + "probability": 0.8862 + }, + { + "start": 12708.62, + "end": 12711.9, + "probability": 0.9124 + }, + { + "start": 12712.48, + "end": 12713.09, + "probability": 0.8174 + }, + { + "start": 12714.86, + "end": 12715.78, + "probability": 0.9976 + }, + { + "start": 12717.04, + "end": 12719.38, + "probability": 0.9856 + }, + { + "start": 12720.78, + "end": 12722.32, + "probability": 0.3362 + }, + { + "start": 12723.26, + "end": 12725.18, + "probability": 0.8431 + }, + { + "start": 12726.96, + "end": 12727.66, + "probability": 0.873 + }, + { + "start": 12729.0, + "end": 12729.62, + "probability": 0.8626 + }, + { + "start": 12730.36, + "end": 12732.0, + "probability": 0.942 + }, + { + "start": 12733.3, + "end": 12734.54, + "probability": 0.2873 + }, + { + "start": 12735.22, + "end": 12736.14, + "probability": 0.7614 + }, + { + "start": 12738.44, + "end": 12740.51, + "probability": 0.9907 + }, + { + "start": 12744.68, + "end": 12745.54, + "probability": 0.9763 + }, + { + "start": 12746.66, + "end": 12747.5, + "probability": 0.9407 + }, + { + "start": 12748.28, + "end": 12748.88, + "probability": 0.8328 + }, + { + "start": 12749.88, + "end": 12750.3, + "probability": 0.8743 + }, + { + "start": 12752.0, + "end": 12753.08, + "probability": 0.9796 + }, + { + "start": 12753.6, + "end": 12754.76, + "probability": 0.8594 + }, + { + "start": 12756.08, + "end": 12756.9, + "probability": 0.9962 + }, + { + "start": 12758.1, + "end": 12759.16, + "probability": 0.8948 + }, + { + "start": 12762.68, + "end": 12763.94, + "probability": 0.999 + }, + { + "start": 12765.48, + "end": 12767.94, + "probability": 0.9652 + }, + { + "start": 12770.2, + "end": 12773.88, + "probability": 0.9852 + }, + { + "start": 12775.12, + "end": 12776.42, + "probability": 0.9859 + }, + { + "start": 12777.46, + "end": 12779.24, + "probability": 0.9823 + }, + { + "start": 12780.34, + "end": 12781.38, + "probability": 0.9521 + }, + { + "start": 12783.38, + "end": 12785.14, + "probability": 0.8813 + }, + { + "start": 12785.66, + "end": 12786.36, + "probability": 0.5415 + }, + { + "start": 12788.12, + "end": 12794.32, + "probability": 0.9312 + }, + { + "start": 12795.1, + "end": 12797.46, + "probability": 0.8577 + }, + { + "start": 12799.3, + "end": 12800.16, + "probability": 0.9204 + }, + { + "start": 12801.22, + "end": 12801.48, + "probability": 0.9078 + }, + { + "start": 12802.68, + "end": 12805.24, + "probability": 0.9886 + }, + { + "start": 12806.96, + "end": 12808.78, + "probability": 0.6518 + }, + { + "start": 12810.12, + "end": 12814.62, + "probability": 0.9833 + }, + { + "start": 12814.76, + "end": 12815.2, + "probability": 0.6279 + }, + { + "start": 12815.26, + "end": 12815.82, + "probability": 0.8834 + }, + { + "start": 12817.24, + "end": 12818.42, + "probability": 0.8115 + }, + { + "start": 12818.72, + "end": 12819.38, + "probability": 0.7543 + }, + { + "start": 12819.58, + "end": 12824.04, + "probability": 0.8978 + }, + { + "start": 12827.8, + "end": 12828.54, + "probability": 0.7721 + }, + { + "start": 12829.4, + "end": 12831.14, + "probability": 0.8012 + }, + { + "start": 12832.4, + "end": 12833.88, + "probability": 0.6364 + }, + { + "start": 12835.44, + "end": 12838.04, + "probability": 0.6645 + }, + { + "start": 12838.58, + "end": 12839.21, + "probability": 0.313 + }, + { + "start": 12840.06, + "end": 12840.86, + "probability": 0.5821 + }, + { + "start": 12840.92, + "end": 12842.78, + "probability": 0.7913 + }, + { + "start": 12842.84, + "end": 12845.1, + "probability": 0.9244 + }, + { + "start": 12845.44, + "end": 12845.66, + "probability": 0.0503 + }, + { + "start": 12849.84, + "end": 12849.84, + "probability": 0.0117 + }, + { + "start": 12849.84, + "end": 12849.84, + "probability": 0.1413 + }, + { + "start": 12849.84, + "end": 12849.84, + "probability": 0.2899 + }, + { + "start": 12849.84, + "end": 12851.38, + "probability": 0.7256 + }, + { + "start": 12852.06, + "end": 12852.2, + "probability": 0.5805 + }, + { + "start": 12852.24, + "end": 12854.32, + "probability": 0.9637 + }, + { + "start": 12854.58, + "end": 12855.7, + "probability": 0.9163 + }, + { + "start": 12858.6, + "end": 12865.28, + "probability": 0.9458 + }, + { + "start": 12867.26, + "end": 12868.92, + "probability": 0.9919 + }, + { + "start": 12869.54, + "end": 12869.96, + "probability": 0.6176 + }, + { + "start": 12871.34, + "end": 12873.66, + "probability": 0.996 + }, + { + "start": 12874.38, + "end": 12874.9, + "probability": 0.5452 + }, + { + "start": 12875.4, + "end": 12878.92, + "probability": 0.9899 + }, + { + "start": 12878.92, + "end": 12883.38, + "probability": 0.9782 + }, + { + "start": 12885.06, + "end": 12890.04, + "probability": 0.9758 + }, + { + "start": 12890.16, + "end": 12891.54, + "probability": 0.6872 + }, + { + "start": 12892.7, + "end": 12895.92, + "probability": 0.9539 + }, + { + "start": 12896.1, + "end": 12897.62, + "probability": 0.2605 + }, + { + "start": 12897.62, + "end": 12897.62, + "probability": 0.6525 + }, + { + "start": 12898.08, + "end": 12898.98, + "probability": 0.9392 + }, + { + "start": 12900.37, + "end": 12902.92, + "probability": 0.9977 + }, + { + "start": 12903.7, + "end": 12905.66, + "probability": 0.9216 + }, + { + "start": 12906.48, + "end": 12906.92, + "probability": 0.0122 + }, + { + "start": 12906.92, + "end": 12907.44, + "probability": 0.6412 + }, + { + "start": 12908.32, + "end": 12916.84, + "probability": 0.9063 + }, + { + "start": 12917.44, + "end": 12918.88, + "probability": 0.9422 + }, + { + "start": 12920.18, + "end": 12920.72, + "probability": 0.7852 + }, + { + "start": 12921.24, + "end": 12922.14, + "probability": 0.9419 + }, + { + "start": 12922.74, + "end": 12924.16, + "probability": 0.7389 + }, + { + "start": 12925.06, + "end": 12925.08, + "probability": 0.0144 + }, + { + "start": 12925.08, + "end": 12927.48, + "probability": 0.887 + }, + { + "start": 12928.58, + "end": 12929.8, + "probability": 0.463 + }, + { + "start": 12929.84, + "end": 12930.5, + "probability": 0.0528 + }, + { + "start": 12931.18, + "end": 12932.38, + "probability": 0.8037 + }, + { + "start": 12933.22, + "end": 12935.36, + "probability": 0.6911 + }, + { + "start": 12936.0, + "end": 12938.3, + "probability": 0.934 + }, + { + "start": 12938.46, + "end": 12940.94, + "probability": 0.8492 + }, + { + "start": 12941.1, + "end": 12945.88, + "probability": 0.7523 + }, + { + "start": 12946.54, + "end": 12947.7, + "probability": 0.6846 + }, + { + "start": 12947.94, + "end": 12952.46, + "probability": 0.9966 + }, + { + "start": 12952.56, + "end": 12953.48, + "probability": 0.928 + }, + { + "start": 12953.82, + "end": 12954.28, + "probability": 0.625 + }, + { + "start": 12954.28, + "end": 12955.96, + "probability": 0.9707 + }, + { + "start": 12956.14, + "end": 12957.68, + "probability": 0.9204 + }, + { + "start": 12958.94, + "end": 12961.96, + "probability": 0.5919 + }, + { + "start": 12962.7, + "end": 12965.26, + "probability": 0.027 + }, + { + "start": 12965.34, + "end": 12968.78, + "probability": 0.1679 + }, + { + "start": 12968.78, + "end": 12969.89, + "probability": 0.0983 + }, + { + "start": 12973.36, + "end": 12976.66, + "probability": 0.1997 + }, + { + "start": 12977.42, + "end": 12977.94, + "probability": 0.2426 + }, + { + "start": 12979.88, + "end": 12981.98, + "probability": 0.1884 + }, + { + "start": 12982.66, + "end": 12982.88, + "probability": 0.5161 + }, + { + "start": 12982.92, + "end": 12983.76, + "probability": 0.6111 + }, + { + "start": 12984.05, + "end": 12985.04, + "probability": 0.0841 + }, + { + "start": 12985.04, + "end": 12985.06, + "probability": 0.1557 + }, + { + "start": 12985.06, + "end": 12985.08, + "probability": 0.0644 + }, + { + "start": 12985.44, + "end": 12985.54, + "probability": 0.0631 + }, + { + "start": 12989.16, + "end": 12989.82, + "probability": 0.3503 + }, + { + "start": 13002.78, + "end": 13005.54, + "probability": 0.0177 + }, + { + "start": 13005.6, + "end": 13008.66, + "probability": 0.2186 + }, + { + "start": 13009.5, + "end": 13010.32, + "probability": 0.1596 + }, + { + "start": 13010.34, + "end": 13012.02, + "probability": 0.3726 + }, + { + "start": 13012.32, + "end": 13014.44, + "probability": 0.0913 + }, + { + "start": 13014.44, + "end": 13015.86, + "probability": 0.0523 + }, + { + "start": 13016.28, + "end": 13016.28, + "probability": 0.0273 + }, + { + "start": 13016.58, + "end": 13020.48, + "probability": 0.0254 + }, + { + "start": 13020.58, + "end": 13020.78, + "probability": 0.1472 + }, + { + "start": 13020.8, + "end": 13022.94, + "probability": 0.0399 + }, + { + "start": 13022.94, + "end": 13022.94, + "probability": 0.2439 + }, + { + "start": 13022.94, + "end": 13022.98, + "probability": 0.0036 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.0, + "end": 13023.0, + "probability": 0.0 + }, + { + "start": 13023.08, + "end": 13025.24, + "probability": 0.0129 + }, + { + "start": 13025.24, + "end": 13025.24, + "probability": 0.1497 + }, + { + "start": 13025.24, + "end": 13028.56, + "probability": 0.4839 + }, + { + "start": 13029.82, + "end": 13034.08, + "probability": 0.248 + }, + { + "start": 13034.18, + "end": 13037.95, + "probability": 0.045 + }, + { + "start": 13044.36, + "end": 13047.24, + "probability": 0.3127 + }, + { + "start": 13048.28, + "end": 13048.66, + "probability": 0.1046 + }, + { + "start": 13048.66, + "end": 13048.66, + "probability": 0.194 + }, + { + "start": 13049.5, + "end": 13050.12, + "probability": 0.2223 + }, + { + "start": 13053.36, + "end": 13054.58, + "probability": 0.2123 + }, + { + "start": 13056.28, + "end": 13056.76, + "probability": 0.3334 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13148.0, + "end": 13148.0, + "probability": 0.0 + }, + { + "start": 13149.16, + "end": 13149.34, + "probability": 0.1088 + }, + { + "start": 13149.34, + "end": 13150.16, + "probability": 0.7477 + }, + { + "start": 13151.58, + "end": 13154.38, + "probability": 0.9308 + }, + { + "start": 13156.08, + "end": 13159.1, + "probability": 0.9624 + }, + { + "start": 13159.16, + "end": 13160.32, + "probability": 0.9945 + }, + { + "start": 13161.98, + "end": 13165.76, + "probability": 0.9967 + }, + { + "start": 13166.84, + "end": 13168.74, + "probability": 0.9209 + }, + { + "start": 13170.62, + "end": 13172.42, + "probability": 0.731 + }, + { + "start": 13174.28, + "end": 13175.52, + "probability": 0.695 + }, + { + "start": 13175.68, + "end": 13176.86, + "probability": 0.9374 + }, + { + "start": 13177.0, + "end": 13178.32, + "probability": 0.8154 + }, + { + "start": 13178.36, + "end": 13182.7, + "probability": 0.9895 + }, + { + "start": 13184.46, + "end": 13186.34, + "probability": 0.9971 + }, + { + "start": 13188.66, + "end": 13189.52, + "probability": 0.6969 + }, + { + "start": 13191.72, + "end": 13193.36, + "probability": 0.9985 + }, + { + "start": 13195.1, + "end": 13196.14, + "probability": 0.7003 + }, + { + "start": 13197.06, + "end": 13200.06, + "probability": 0.9825 + }, + { + "start": 13201.26, + "end": 13202.34, + "probability": 0.7892 + }, + { + "start": 13203.06, + "end": 13207.38, + "probability": 0.9982 + }, + { + "start": 13208.18, + "end": 13211.36, + "probability": 0.7595 + }, + { + "start": 13212.16, + "end": 13214.9, + "probability": 0.9164 + }, + { + "start": 13216.22, + "end": 13220.88, + "probability": 0.9774 + }, + { + "start": 13221.76, + "end": 13222.64, + "probability": 0.981 + }, + { + "start": 13223.4, + "end": 13224.46, + "probability": 0.7905 + }, + { + "start": 13224.82, + "end": 13225.12, + "probability": 0.7168 + }, + { + "start": 13226.39, + "end": 13227.74, + "probability": 0.6779 + }, + { + "start": 13228.14, + "end": 13228.66, + "probability": 0.1935 + }, + { + "start": 13230.1, + "end": 13233.96, + "probability": 0.9923 + }, + { + "start": 13234.38, + "end": 13237.49, + "probability": 0.9844 + }, + { + "start": 13238.84, + "end": 13239.48, + "probability": 0.6104 + }, + { + "start": 13239.68, + "end": 13239.78, + "probability": 0.7722 + }, + { + "start": 13240.66, + "end": 13242.5, + "probability": 0.8928 + }, + { + "start": 13243.0, + "end": 13243.4, + "probability": 0.5158 + }, + { + "start": 13243.46, + "end": 13244.34, + "probability": 0.8613 + }, + { + "start": 13244.78, + "end": 13250.28, + "probability": 0.9779 + }, + { + "start": 13251.1, + "end": 13254.12, + "probability": 0.991 + }, + { + "start": 13256.14, + "end": 13260.5, + "probability": 0.9917 + }, + { + "start": 13261.76, + "end": 13264.48, + "probability": 0.9976 + }, + { + "start": 13265.86, + "end": 13271.46, + "probability": 0.9705 + }, + { + "start": 13271.7, + "end": 13274.7, + "probability": 0.9224 + }, + { + "start": 13275.58, + "end": 13276.58, + "probability": 0.9282 + }, + { + "start": 13277.54, + "end": 13279.3, + "probability": 0.991 + }, + { + "start": 13280.6, + "end": 13283.82, + "probability": 0.744 + }, + { + "start": 13283.84, + "end": 13284.7, + "probability": 0.7376 + }, + { + "start": 13285.22, + "end": 13285.62, + "probability": 0.3571 + }, + { + "start": 13285.72, + "end": 13286.16, + "probability": 0.5398 + }, + { + "start": 13286.18, + "end": 13287.4, + "probability": 0.6388 + }, + { + "start": 13300.26, + "end": 13301.28, + "probability": 0.6614 + }, + { + "start": 13301.68, + "end": 13302.68, + "probability": 0.7126 + }, + { + "start": 13303.0, + "end": 13305.96, + "probability": 0.9712 + }, + { + "start": 13306.04, + "end": 13307.16, + "probability": 0.9733 + }, + { + "start": 13307.72, + "end": 13308.62, + "probability": 0.873 + }, + { + "start": 13308.76, + "end": 13312.86, + "probability": 0.9902 + }, + { + "start": 13312.96, + "end": 13318.2, + "probability": 0.995 + }, + { + "start": 13319.42, + "end": 13320.46, + "probability": 0.9254 + }, + { + "start": 13321.28, + "end": 13322.06, + "probability": 0.7109 + }, + { + "start": 13322.42, + "end": 13326.59, + "probability": 0.9781 + }, + { + "start": 13326.96, + "end": 13332.68, + "probability": 0.9958 + }, + { + "start": 13333.72, + "end": 13333.98, + "probability": 0.8018 + }, + { + "start": 13334.2, + "end": 13338.68, + "probability": 0.9989 + }, + { + "start": 13338.68, + "end": 13342.86, + "probability": 0.999 + }, + { + "start": 13342.86, + "end": 13348.82, + "probability": 0.9993 + }, + { + "start": 13349.52, + "end": 13350.6, + "probability": 0.8476 + }, + { + "start": 13351.14, + "end": 13355.68, + "probability": 0.9954 + }, + { + "start": 13356.3, + "end": 13358.82, + "probability": 0.7768 + }, + { + "start": 13359.6, + "end": 13363.44, + "probability": 0.9789 + }, + { + "start": 13363.86, + "end": 13365.74, + "probability": 0.912 + }, + { + "start": 13366.4, + "end": 13371.0, + "probability": 0.9646 + }, + { + "start": 13371.5, + "end": 13373.04, + "probability": 0.9879 + }, + { + "start": 13373.62, + "end": 13378.44, + "probability": 0.9768 + }, + { + "start": 13378.7, + "end": 13385.74, + "probability": 0.988 + }, + { + "start": 13385.82, + "end": 13387.4, + "probability": 0.7806 + }, + { + "start": 13388.04, + "end": 13389.24, + "probability": 0.7627 + }, + { + "start": 13389.62, + "end": 13389.72, + "probability": 0.4755 + }, + { + "start": 13389.9, + "end": 13392.8, + "probability": 0.994 + }, + { + "start": 13392.82, + "end": 13396.2, + "probability": 0.9985 + }, + { + "start": 13396.8, + "end": 13401.68, + "probability": 0.9207 + }, + { + "start": 13402.42, + "end": 13403.31, + "probability": 0.7469 + }, + { + "start": 13404.44, + "end": 13405.22, + "probability": 0.8682 + }, + { + "start": 13405.44, + "end": 13408.22, + "probability": 0.9954 + }, + { + "start": 13408.22, + "end": 13411.76, + "probability": 0.9628 + }, + { + "start": 13412.4, + "end": 13413.03, + "probability": 0.9807 + }, + { + "start": 13413.92, + "end": 13418.9, + "probability": 0.9167 + }, + { + "start": 13419.5, + "end": 13424.96, + "probability": 0.9851 + }, + { + "start": 13426.38, + "end": 13430.4, + "probability": 0.9448 + }, + { + "start": 13431.26, + "end": 13434.86, + "probability": 0.7553 + }, + { + "start": 13435.62, + "end": 13439.14, + "probability": 0.9797 + }, + { + "start": 13440.42, + "end": 13443.9, + "probability": 0.9813 + }, + { + "start": 13443.94, + "end": 13445.52, + "probability": 0.8259 + }, + { + "start": 13446.02, + "end": 13448.34, + "probability": 0.9665 + }, + { + "start": 13448.72, + "end": 13449.94, + "probability": 0.9843 + }, + { + "start": 13450.54, + "end": 13452.66, + "probability": 0.876 + }, + { + "start": 13453.62, + "end": 13454.34, + "probability": 0.9951 + }, + { + "start": 13455.0, + "end": 13456.98, + "probability": 0.98 + }, + { + "start": 13457.74, + "end": 13461.26, + "probability": 0.9977 + }, + { + "start": 13461.74, + "end": 13468.18, + "probability": 0.9968 + }, + { + "start": 13468.34, + "end": 13469.42, + "probability": 0.5809 + }, + { + "start": 13470.56, + "end": 13471.98, + "probability": 0.5753 + }, + { + "start": 13472.78, + "end": 13473.8, + "probability": 0.9274 + }, + { + "start": 13474.0, + "end": 13475.82, + "probability": 0.6743 + }, + { + "start": 13476.0, + "end": 13478.86, + "probability": 0.9436 + }, + { + "start": 13478.94, + "end": 13479.12, + "probability": 0.023 + }, + { + "start": 13479.82, + "end": 13483.06, + "probability": 0.9925 + }, + { + "start": 13483.6, + "end": 13488.46, + "probability": 0.9959 + }, + { + "start": 13489.0, + "end": 13490.64, + "probability": 0.9229 + }, + { + "start": 13491.02, + "end": 13493.32, + "probability": 0.9922 + }, + { + "start": 13494.1, + "end": 13497.12, + "probability": 0.9515 + }, + { + "start": 13497.18, + "end": 13497.56, + "probability": 0.9888 + }, + { + "start": 13498.14, + "end": 13498.44, + "probability": 0.7758 + }, + { + "start": 13498.78, + "end": 13499.36, + "probability": 0.6758 + }, + { + "start": 13499.74, + "end": 13501.34, + "probability": 0.8647 + }, + { + "start": 13527.52, + "end": 13529.26, + "probability": 0.6704 + }, + { + "start": 13530.56, + "end": 13535.64, + "probability": 0.9848 + }, + { + "start": 13536.3, + "end": 13537.84, + "probability": 0.9189 + }, + { + "start": 13538.98, + "end": 13539.46, + "probability": 0.7345 + }, + { + "start": 13539.62, + "end": 13542.06, + "probability": 0.8908 + }, + { + "start": 13542.42, + "end": 13543.76, + "probability": 0.9457 + }, + { + "start": 13547.23, + "end": 13549.31, + "probability": 0.7327 + }, + { + "start": 13550.3, + "end": 13551.26, + "probability": 0.7929 + }, + { + "start": 13552.28, + "end": 13552.72, + "probability": 0.4256 + }, + { + "start": 13554.02, + "end": 13555.92, + "probability": 0.9925 + }, + { + "start": 13556.66, + "end": 13557.54, + "probability": 0.8033 + }, + { + "start": 13558.54, + "end": 13561.64, + "probability": 0.9884 + }, + { + "start": 13563.18, + "end": 13565.26, + "probability": 0.8325 + }, + { + "start": 13566.08, + "end": 13568.58, + "probability": 0.9948 + }, + { + "start": 13569.78, + "end": 13571.0, + "probability": 0.9033 + }, + { + "start": 13571.62, + "end": 13577.26, + "probability": 0.9797 + }, + { + "start": 13578.34, + "end": 13579.2, + "probability": 0.8693 + }, + { + "start": 13580.1, + "end": 13581.52, + "probability": 0.9688 + }, + { + "start": 13583.08, + "end": 13585.34, + "probability": 0.9719 + }, + { + "start": 13586.28, + "end": 13587.3, + "probability": 0.6725 + }, + { + "start": 13587.5, + "end": 13589.04, + "probability": 0.9966 + }, + { + "start": 13589.28, + "end": 13591.68, + "probability": 0.9468 + }, + { + "start": 13593.22, + "end": 13594.34, + "probability": 0.9053 + }, + { + "start": 13596.84, + "end": 13599.52, + "probability": 0.9163 + }, + { + "start": 13599.72, + "end": 13602.5, + "probability": 0.9035 + }, + { + "start": 13603.84, + "end": 13609.94, + "probability": 0.9494 + }, + { + "start": 13610.0, + "end": 13610.96, + "probability": 0.9257 + }, + { + "start": 13611.1, + "end": 13611.3, + "probability": 0.8057 + }, + { + "start": 13612.32, + "end": 13614.12, + "probability": 0.6666 + }, + { + "start": 13615.26, + "end": 13616.3, + "probability": 0.9189 + }, + { + "start": 13617.64, + "end": 13619.66, + "probability": 0.9368 + }, + { + "start": 13619.86, + "end": 13622.42, + "probability": 0.8586 + }, + { + "start": 13623.6, + "end": 13624.28, + "probability": 0.8623 + }, + { + "start": 13625.84, + "end": 13628.38, + "probability": 0.8271 + }, + { + "start": 13628.92, + "end": 13633.4, + "probability": 0.8164 + }, + { + "start": 13634.72, + "end": 13635.88, + "probability": 0.915 + }, + { + "start": 13637.62, + "end": 13638.8, + "probability": 0.9352 + }, + { + "start": 13639.84, + "end": 13644.4, + "probability": 0.9935 + }, + { + "start": 13645.72, + "end": 13646.94, + "probability": 0.7611 + }, + { + "start": 13647.98, + "end": 13648.84, + "probability": 0.9615 + }, + { + "start": 13650.52, + "end": 13653.84, + "probability": 0.9867 + }, + { + "start": 13653.92, + "end": 13654.76, + "probability": 0.9756 + }, + { + "start": 13655.8, + "end": 13658.86, + "probability": 0.7596 + }, + { + "start": 13659.52, + "end": 13662.54, + "probability": 0.912 + }, + { + "start": 13663.28, + "end": 13665.6, + "probability": 0.978 + }, + { + "start": 13666.76, + "end": 13667.78, + "probability": 0.8115 + }, + { + "start": 13668.94, + "end": 13670.72, + "probability": 0.9961 + }, + { + "start": 13671.92, + "end": 13672.54, + "probability": 0.7811 + }, + { + "start": 13674.32, + "end": 13676.96, + "probability": 0.988 + }, + { + "start": 13678.08, + "end": 13680.28, + "probability": 0.9811 + }, + { + "start": 13681.2, + "end": 13683.38, + "probability": 0.9629 + }, + { + "start": 13683.58, + "end": 13684.92, + "probability": 0.9683 + }, + { + "start": 13686.7, + "end": 13687.02, + "probability": 0.8895 + }, + { + "start": 13687.08, + "end": 13690.96, + "probability": 0.5182 + }, + { + "start": 13692.04, + "end": 13696.44, + "probability": 0.9556 + }, + { + "start": 13696.9, + "end": 13697.82, + "probability": 0.0086 + }, + { + "start": 13698.0, + "end": 13698.9, + "probability": 0.7159 + }, + { + "start": 13700.5, + "end": 13701.2, + "probability": 0.9725 + }, + { + "start": 13701.52, + "end": 13705.12, + "probability": 0.922 + }, + { + "start": 13705.84, + "end": 13707.6, + "probability": 0.9869 + }, + { + "start": 13708.02, + "end": 13709.16, + "probability": 0.9164 + }, + { + "start": 13709.88, + "end": 13713.6, + "probability": 0.9829 + }, + { + "start": 13714.2, + "end": 13715.76, + "probability": 0.516 + }, + { + "start": 13716.5, + "end": 13717.64, + "probability": 0.9072 + }, + { + "start": 13718.22, + "end": 13720.2, + "probability": 0.9964 + }, + { + "start": 13721.0, + "end": 13725.42, + "probability": 0.9036 + }, + { + "start": 13725.84, + "end": 13726.92, + "probability": 0.8553 + }, + { + "start": 13727.5, + "end": 13727.9, + "probability": 0.5364 + }, + { + "start": 13727.98, + "end": 13729.56, + "probability": 0.7072 + }, + { + "start": 13729.92, + "end": 13733.42, + "probability": 0.7266 + }, + { + "start": 13733.66, + "end": 13735.2, + "probability": 0.7369 + }, + { + "start": 13735.94, + "end": 13741.08, + "probability": 0.992 + }, + { + "start": 13742.2, + "end": 13744.28, + "probability": 0.8272 + }, + { + "start": 13744.28, + "end": 13744.79, + "probability": 0.3542 + }, + { + "start": 13745.18, + "end": 13746.42, + "probability": 0.2735 + }, + { + "start": 13746.5, + "end": 13748.12, + "probability": 0.6139 + }, + { + "start": 13748.32, + "end": 13750.82, + "probability": 0.5374 + }, + { + "start": 13751.0, + "end": 13751.49, + "probability": 0.8302 + }, + { + "start": 13751.7, + "end": 13752.18, + "probability": 0.6241 + }, + { + "start": 13753.1, + "end": 13755.24, + "probability": 0.4001 + }, + { + "start": 13755.3, + "end": 13757.9, + "probability": 0.4952 + }, + { + "start": 13758.26, + "end": 13760.18, + "probability": 0.5043 + }, + { + "start": 13760.34, + "end": 13761.02, + "probability": 0.9236 + }, + { + "start": 13761.1, + "end": 13762.22, + "probability": 0.7671 + }, + { + "start": 13763.08, + "end": 13763.34, + "probability": 0.5521 + }, + { + "start": 13763.52, + "end": 13763.62, + "probability": 0.9776 + }, + { + "start": 13764.66, + "end": 13767.74, + "probability": 0.7144 + }, + { + "start": 13769.4, + "end": 13772.14, + "probability": 0.8463 + }, + { + "start": 13774.3, + "end": 13775.14, + "probability": 0.9182 + }, + { + "start": 13776.34, + "end": 13778.66, + "probability": 0.9917 + }, + { + "start": 13779.88, + "end": 13781.7, + "probability": 0.8156 + }, + { + "start": 13782.54, + "end": 13782.72, + "probability": 0.9915 + }, + { + "start": 13783.26, + "end": 13783.46, + "probability": 0.9211 + }, + { + "start": 13785.64, + "end": 13789.36, + "probability": 0.9979 + }, + { + "start": 13789.96, + "end": 13794.88, + "probability": 0.9141 + }, + { + "start": 13796.3, + "end": 13797.86, + "probability": 0.891 + }, + { + "start": 13797.92, + "end": 13800.02, + "probability": 0.8067 + }, + { + "start": 13800.24, + "end": 13800.9, + "probability": 0.7822 + }, + { + "start": 13801.6, + "end": 13804.44, + "probability": 0.882 + }, + { + "start": 13806.52, + "end": 13807.24, + "probability": 0.5888 + }, + { + "start": 13808.72, + "end": 13809.66, + "probability": 0.8526 + }, + { + "start": 13810.32, + "end": 13811.54, + "probability": 0.9643 + }, + { + "start": 13812.46, + "end": 13817.38, + "probability": 0.9727 + }, + { + "start": 13818.94, + "end": 13823.36, + "probability": 0.9599 + }, + { + "start": 13824.4, + "end": 13827.26, + "probability": 0.988 + }, + { + "start": 13830.0, + "end": 13830.54, + "probability": 0.8372 + }, + { + "start": 13832.58, + "end": 13835.06, + "probability": 0.8259 + }, + { + "start": 13835.9, + "end": 13840.36, + "probability": 0.9913 + }, + { + "start": 13841.12, + "end": 13842.14, + "probability": 0.6233 + }, + { + "start": 13842.9, + "end": 13844.66, + "probability": 0.2739 + }, + { + "start": 13845.76, + "end": 13847.22, + "probability": 0.9476 + }, + { + "start": 13849.72, + "end": 13857.62, + "probability": 0.9973 + }, + { + "start": 13859.44, + "end": 13864.12, + "probability": 0.9917 + }, + { + "start": 13864.78, + "end": 13869.08, + "probability": 0.9901 + }, + { + "start": 13869.48, + "end": 13871.68, + "probability": 0.8853 + }, + { + "start": 13874.08, + "end": 13875.26, + "probability": 0.9433 + }, + { + "start": 13876.02, + "end": 13880.54, + "probability": 0.9724 + }, + { + "start": 13884.2, + "end": 13887.0, + "probability": 0.9624 + }, + { + "start": 13887.84, + "end": 13888.4, + "probability": 0.849 + }, + { + "start": 13888.98, + "end": 13889.62, + "probability": 0.9944 + }, + { + "start": 13891.92, + "end": 13892.7, + "probability": 0.4797 + }, + { + "start": 13894.26, + "end": 13894.84, + "probability": 0.9819 + }, + { + "start": 13895.84, + "end": 13897.72, + "probability": 0.9019 + }, + { + "start": 13899.52, + "end": 13905.6, + "probability": 0.9891 + }, + { + "start": 13906.12, + "end": 13907.4, + "probability": 0.9183 + }, + { + "start": 13908.2, + "end": 13909.46, + "probability": 0.9735 + }, + { + "start": 13910.52, + "end": 13911.92, + "probability": 0.8799 + }, + { + "start": 13914.06, + "end": 13915.98, + "probability": 0.991 + }, + { + "start": 13916.84, + "end": 13921.64, + "probability": 0.9671 + }, + { + "start": 13924.32, + "end": 13925.46, + "probability": 0.8723 + }, + { + "start": 13926.42, + "end": 13929.32, + "probability": 0.9504 + }, + { + "start": 13930.04, + "end": 13932.08, + "probability": 0.7577 + }, + { + "start": 13933.48, + "end": 13935.96, + "probability": 0.9302 + }, + { + "start": 13937.36, + "end": 13940.82, + "probability": 0.9902 + }, + { + "start": 13942.18, + "end": 13942.66, + "probability": 0.7493 + }, + { + "start": 13943.36, + "end": 13946.45, + "probability": 0.9354 + }, + { + "start": 13947.5, + "end": 13948.46, + "probability": 0.9324 + }, + { + "start": 13949.68, + "end": 13950.02, + "probability": 0.9833 + }, + { + "start": 13951.0, + "end": 13951.14, + "probability": 0.4041 + }, + { + "start": 13951.14, + "end": 13951.66, + "probability": 0.6407 + }, + { + "start": 13951.82, + "end": 13953.3, + "probability": 0.8906 + }, + { + "start": 13966.6, + "end": 13968.28, + "probability": 0.6304 + }, + { + "start": 13970.72, + "end": 13972.2, + "probability": 0.426 + }, + { + "start": 13972.92, + "end": 13974.04, + "probability": 0.8296 + }, + { + "start": 13976.4, + "end": 13978.82, + "probability": 0.9089 + }, + { + "start": 13981.2, + "end": 13984.94, + "probability": 0.9753 + }, + { + "start": 13985.72, + "end": 13986.3, + "probability": 0.7015 + }, + { + "start": 13987.1, + "end": 13988.4, + "probability": 0.8867 + }, + { + "start": 13989.1, + "end": 13990.8, + "probability": 0.8367 + }, + { + "start": 13992.02, + "end": 13992.04, + "probability": 0.093 + }, + { + "start": 13992.04, + "end": 13994.34, + "probability": 0.9889 + }, + { + "start": 13994.42, + "end": 13996.14, + "probability": 0.8293 + }, + { + "start": 13996.28, + "end": 13997.92, + "probability": 0.8999 + }, + { + "start": 13998.8, + "end": 14000.2, + "probability": 0.948 + }, + { + "start": 14001.22, + "end": 14001.26, + "probability": 0.0576 + }, + { + "start": 14001.26, + "end": 14002.81, + "probability": 0.9494 + }, + { + "start": 14003.92, + "end": 14005.91, + "probability": 0.8511 + }, + { + "start": 14006.78, + "end": 14008.86, + "probability": 0.9228 + }, + { + "start": 14010.06, + "end": 14012.8, + "probability": 0.9504 + }, + { + "start": 14013.7, + "end": 14015.9, + "probability": 0.0518 + }, + { + "start": 14017.62, + "end": 14019.94, + "probability": 0.605 + }, + { + "start": 14020.08, + "end": 14020.92, + "probability": 0.8031 + }, + { + "start": 14021.54, + "end": 14023.08, + "probability": 0.9177 + }, + { + "start": 14023.62, + "end": 14025.28, + "probability": 0.1509 + }, + { + "start": 14025.66, + "end": 14026.64, + "probability": 0.598 + }, + { + "start": 14027.18, + "end": 14029.12, + "probability": 0.7409 + }, + { + "start": 14029.26, + "end": 14031.76, + "probability": 0.9104 + }, + { + "start": 14031.88, + "end": 14032.7, + "probability": 0.9836 + }, + { + "start": 14032.96, + "end": 14033.06, + "probability": 0.3817 + }, + { + "start": 14033.74, + "end": 14034.18, + "probability": 0.2002 + }, + { + "start": 14034.18, + "end": 14035.96, + "probability": 0.9919 + }, + { + "start": 14036.52, + "end": 14036.8, + "probability": 0.8183 + }, + { + "start": 14036.8, + "end": 14038.2, + "probability": 0.8926 + }, + { + "start": 14039.02, + "end": 14040.14, + "probability": 0.9208 + }, + { + "start": 14040.94, + "end": 14041.64, + "probability": 0.4846 + }, + { + "start": 14042.16, + "end": 14044.34, + "probability": 0.8552 + }, + { + "start": 14045.54, + "end": 14047.64, + "probability": 0.7468 + }, + { + "start": 14048.3, + "end": 14050.16, + "probability": 0.9072 + }, + { + "start": 14050.68, + "end": 14051.82, + "probability": 0.5989 + }, + { + "start": 14051.94, + "end": 14052.84, + "probability": 0.7384 + }, + { + "start": 14053.56, + "end": 14054.74, + "probability": 0.8436 + }, + { + "start": 14055.68, + "end": 14057.52, + "probability": 0.9909 + }, + { + "start": 14058.7, + "end": 14061.24, + "probability": 0.7406 + }, + { + "start": 14061.46, + "end": 14062.64, + "probability": 0.3084 + }, + { + "start": 14062.94, + "end": 14064.7, + "probability": 0.9705 + }, + { + "start": 14064.7, + "end": 14066.1, + "probability": 0.8506 + }, + { + "start": 14067.16, + "end": 14069.09, + "probability": 0.9626 + }, + { + "start": 14071.4, + "end": 14073.54, + "probability": 0.8768 + }, + { + "start": 14073.64, + "end": 14076.62, + "probability": 0.9508 + }, + { + "start": 14077.1, + "end": 14079.0, + "probability": 0.9504 + }, + { + "start": 14079.68, + "end": 14081.12, + "probability": 0.7449 + }, + { + "start": 14081.64, + "end": 14082.22, + "probability": 0.749 + }, + { + "start": 14082.34, + "end": 14082.88, + "probability": 0.6481 + }, + { + "start": 14083.28, + "end": 14084.08, + "probability": 0.4998 + }, + { + "start": 14084.58, + "end": 14087.8, + "probability": 0.9922 + }, + { + "start": 14088.3, + "end": 14089.64, + "probability": 0.9702 + }, + { + "start": 14090.4, + "end": 14093.18, + "probability": 0.9589 + }, + { + "start": 14093.98, + "end": 14095.98, + "probability": 0.9949 + }, + { + "start": 14096.38, + "end": 14098.26, + "probability": 0.9314 + }, + { + "start": 14098.82, + "end": 14101.41, + "probability": 0.8195 + }, + { + "start": 14102.24, + "end": 14106.74, + "probability": 0.847 + }, + { + "start": 14107.44, + "end": 14108.52, + "probability": 0.8813 + }, + { + "start": 14109.1, + "end": 14111.14, + "probability": 0.9983 + }, + { + "start": 14112.22, + "end": 14114.64, + "probability": 0.9812 + }, + { + "start": 14115.22, + "end": 14118.22, + "probability": 0.8438 + }, + { + "start": 14118.32, + "end": 14119.62, + "probability": 0.8633 + }, + { + "start": 14120.24, + "end": 14122.36, + "probability": 0.8722 + }, + { + "start": 14123.12, + "end": 14125.82, + "probability": 0.862 + }, + { + "start": 14126.28, + "end": 14127.24, + "probability": 0.9174 + }, + { + "start": 14127.8, + "end": 14129.66, + "probability": 0.7502 + }, + { + "start": 14130.22, + "end": 14131.96, + "probability": 0.8483 + }, + { + "start": 14132.54, + "end": 14134.42, + "probability": 0.9937 + }, + { + "start": 14135.22, + "end": 14137.36, + "probability": 0.9203 + }, + { + "start": 14137.5, + "end": 14138.0, + "probability": 0.881 + }, + { + "start": 14138.18, + "end": 14141.76, + "probability": 0.9932 + }, + { + "start": 14141.84, + "end": 14142.26, + "probability": 0.665 + }, + { + "start": 14142.88, + "end": 14145.22, + "probability": 0.6987 + }, + { + "start": 14145.7, + "end": 14147.78, + "probability": 0.9076 + }, + { + "start": 14148.36, + "end": 14151.22, + "probability": 0.9855 + }, + { + "start": 14151.26, + "end": 14151.49, + "probability": 0.6582 + }, + { + "start": 14152.68, + "end": 14154.36, + "probability": 0.9073 + }, + { + "start": 14155.08, + "end": 14157.68, + "probability": 0.631 + }, + { + "start": 14158.22, + "end": 14160.06, + "probability": 0.8618 + }, + { + "start": 14160.6, + "end": 14161.72, + "probability": 0.8967 + }, + { + "start": 14162.14, + "end": 14163.8, + "probability": 0.9941 + }, + { + "start": 14164.16, + "end": 14165.48, + "probability": 0.9133 + }, + { + "start": 14166.08, + "end": 14166.28, + "probability": 0.9298 + }, + { + "start": 14167.0, + "end": 14168.08, + "probability": 0.8018 + }, + { + "start": 14168.28, + "end": 14170.14, + "probability": 0.7813 + }, + { + "start": 14170.8, + "end": 14173.14, + "probability": 0.7609 + }, + { + "start": 14173.14, + "end": 14174.34, + "probability": 0.5521 + }, + { + "start": 14174.9, + "end": 14176.18, + "probability": 0.8721 + }, + { + "start": 14176.86, + "end": 14180.74, + "probability": 0.9218 + }, + { + "start": 14181.72, + "end": 14182.26, + "probability": 0.9023 + }, + { + "start": 14182.72, + "end": 14183.8, + "probability": 0.7659 + }, + { + "start": 14195.42, + "end": 14197.14, + "probability": 0.4451 + }, + { + "start": 14205.2, + "end": 14206.84, + "probability": 0.6749 + }, + { + "start": 14207.92, + "end": 14210.46, + "probability": 0.17 + }, + { + "start": 14210.86, + "end": 14212.64, + "probability": 0.8575 + }, + { + "start": 14213.56, + "end": 14214.08, + "probability": 0.9157 + }, + { + "start": 14216.14, + "end": 14219.1, + "probability": 0.9984 + }, + { + "start": 14220.06, + "end": 14221.48, + "probability": 0.9977 + }, + { + "start": 14222.5, + "end": 14224.5, + "probability": 0.9896 + }, + { + "start": 14225.28, + "end": 14226.84, + "probability": 0.9729 + }, + { + "start": 14228.04, + "end": 14229.6, + "probability": 0.9983 + }, + { + "start": 14230.46, + "end": 14232.1, + "probability": 0.8057 + }, + { + "start": 14232.82, + "end": 14236.08, + "probability": 0.976 + }, + { + "start": 14236.9, + "end": 14239.86, + "probability": 0.7988 + }, + { + "start": 14241.5, + "end": 14243.74, + "probability": 0.9642 + }, + { + "start": 14244.4, + "end": 14246.82, + "probability": 0.9814 + }, + { + "start": 14247.3, + "end": 14252.5, + "probability": 0.9946 + }, + { + "start": 14253.94, + "end": 14254.68, + "probability": 0.9062 + }, + { + "start": 14256.12, + "end": 14260.98, + "probability": 0.9871 + }, + { + "start": 14261.54, + "end": 14263.18, + "probability": 0.8738 + }, + { + "start": 14263.96, + "end": 14264.5, + "probability": 0.9205 + }, + { + "start": 14265.3, + "end": 14269.42, + "probability": 0.9889 + }, + { + "start": 14270.08, + "end": 14276.58, + "probability": 0.9894 + }, + { + "start": 14276.86, + "end": 14278.0, + "probability": 0.7507 + }, + { + "start": 14278.62, + "end": 14281.08, + "probability": 0.8491 + }, + { + "start": 14281.64, + "end": 14286.08, + "probability": 0.9834 + }, + { + "start": 14286.08, + "end": 14291.0, + "probability": 0.9937 + }, + { + "start": 14291.56, + "end": 14294.84, + "probability": 0.5405 + }, + { + "start": 14296.16, + "end": 14298.66, + "probability": 0.9766 + }, + { + "start": 14299.4, + "end": 14305.06, + "probability": 0.9396 + }, + { + "start": 14305.82, + "end": 14310.08, + "probability": 0.9969 + }, + { + "start": 14310.08, + "end": 14316.04, + "probability": 0.9941 + }, + { + "start": 14316.1, + "end": 14317.13, + "probability": 0.7079 + }, + { + "start": 14318.0, + "end": 14318.52, + "probability": 0.2658 + }, + { + "start": 14319.16, + "end": 14321.4, + "probability": 0.9158 + }, + { + "start": 14322.12, + "end": 14324.42, + "probability": 0.8019 + }, + { + "start": 14324.8, + "end": 14326.58, + "probability": 0.7848 + }, + { + "start": 14326.94, + "end": 14329.38, + "probability": 0.9359 + }, + { + "start": 14330.3, + "end": 14332.32, + "probability": 0.6877 + }, + { + "start": 14332.74, + "end": 14335.48, + "probability": 0.9975 + }, + { + "start": 14336.06, + "end": 14338.1, + "probability": 0.4709 + }, + { + "start": 14338.22, + "end": 14341.14, + "probability": 0.9115 + }, + { + "start": 14341.34, + "end": 14342.3, + "probability": 0.6879 + }, + { + "start": 14342.52, + "end": 14345.72, + "probability": 0.9592 + }, + { + "start": 14345.86, + "end": 14349.03, + "probability": 0.918 + }, + { + "start": 14349.78, + "end": 14349.94, + "probability": 0.4163 + }, + { + "start": 14351.06, + "end": 14356.06, + "probability": 0.9281 + }, + { + "start": 14356.94, + "end": 14359.7, + "probability": 0.7415 + }, + { + "start": 14360.64, + "end": 14363.54, + "probability": 0.9338 + }, + { + "start": 14364.84, + "end": 14365.95, + "probability": 0.9922 + }, + { + "start": 14366.86, + "end": 14367.6, + "probability": 0.8926 + }, + { + "start": 14368.04, + "end": 14369.8, + "probability": 0.987 + }, + { + "start": 14370.2, + "end": 14375.1, + "probability": 0.9381 + }, + { + "start": 14375.6, + "end": 14379.52, + "probability": 0.965 + }, + { + "start": 14380.6, + "end": 14386.3, + "probability": 0.9956 + }, + { + "start": 14386.3, + "end": 14390.32, + "probability": 0.9737 + }, + { + "start": 14390.78, + "end": 14391.1, + "probability": 0.6651 + }, + { + "start": 14391.3, + "end": 14397.64, + "probability": 0.9981 + }, + { + "start": 14397.7, + "end": 14403.9, + "probability": 0.9976 + }, + { + "start": 14404.08, + "end": 14405.44, + "probability": 0.7249 + }, + { + "start": 14405.64, + "end": 14408.58, + "probability": 0.9956 + }, + { + "start": 14409.04, + "end": 14410.9, + "probability": 0.9362 + }, + { + "start": 14411.48, + "end": 14415.06, + "probability": 0.9267 + }, + { + "start": 14416.54, + "end": 14421.0, + "probability": 0.4885 + }, + { + "start": 14421.86, + "end": 14425.24, + "probability": 0.9806 + }, + { + "start": 14425.38, + "end": 14425.84, + "probability": 0.5224 + }, + { + "start": 14425.88, + "end": 14427.25, + "probability": 0.9423 + }, + { + "start": 14448.22, + "end": 14449.88, + "probability": 0.7301 + }, + { + "start": 14451.9, + "end": 14453.6, + "probability": 0.9774 + }, + { + "start": 14454.32, + "end": 14455.46, + "probability": 0.93 + }, + { + "start": 14456.04, + "end": 14456.43, + "probability": 0.8569 + }, + { + "start": 14457.3, + "end": 14457.8, + "probability": 0.9213 + }, + { + "start": 14458.34, + "end": 14460.96, + "probability": 0.9854 + }, + { + "start": 14461.54, + "end": 14462.38, + "probability": 0.9131 + }, + { + "start": 14463.64, + "end": 14464.34, + "probability": 0.855 + }, + { + "start": 14464.78, + "end": 14466.11, + "probability": 0.9927 + }, + { + "start": 14466.42, + "end": 14467.42, + "probability": 0.9346 + }, + { + "start": 14468.22, + "end": 14468.84, + "probability": 0.8751 + }, + { + "start": 14469.46, + "end": 14470.46, + "probability": 0.8475 + }, + { + "start": 14471.58, + "end": 14474.32, + "probability": 0.9321 + }, + { + "start": 14475.34, + "end": 14477.08, + "probability": 0.9582 + }, + { + "start": 14477.68, + "end": 14481.38, + "probability": 0.8932 + }, + { + "start": 14481.94, + "end": 14486.0, + "probability": 0.9568 + }, + { + "start": 14487.56, + "end": 14489.68, + "probability": 0.9907 + }, + { + "start": 14489.8, + "end": 14493.32, + "probability": 0.8161 + }, + { + "start": 14494.6, + "end": 14496.3, + "probability": 0.9893 + }, + { + "start": 14496.94, + "end": 14498.52, + "probability": 0.9016 + }, + { + "start": 14499.16, + "end": 14504.1, + "probability": 0.9888 + }, + { + "start": 14505.1, + "end": 14507.02, + "probability": 0.9795 + }, + { + "start": 14507.92, + "end": 14509.68, + "probability": 0.9788 + }, + { + "start": 14510.3, + "end": 14513.02, + "probability": 0.9728 + }, + { + "start": 14514.36, + "end": 14516.9, + "probability": 0.998 + }, + { + "start": 14517.6, + "end": 14518.38, + "probability": 0.7107 + }, + { + "start": 14518.9, + "end": 14520.36, + "probability": 0.8032 + }, + { + "start": 14521.32, + "end": 14523.62, + "probability": 0.9728 + }, + { + "start": 14524.06, + "end": 14526.76, + "probability": 0.9959 + }, + { + "start": 14527.72, + "end": 14528.26, + "probability": 0.5671 + }, + { + "start": 14528.78, + "end": 14530.34, + "probability": 0.9136 + }, + { + "start": 14531.0, + "end": 14533.32, + "probability": 0.9641 + }, + { + "start": 14534.62, + "end": 14536.16, + "probability": 0.9158 + }, + { + "start": 14536.7, + "end": 14538.78, + "probability": 0.9976 + }, + { + "start": 14540.62, + "end": 14543.74, + "probability": 0.9951 + }, + { + "start": 14544.58, + "end": 14547.0, + "probability": 0.7913 + }, + { + "start": 14547.8, + "end": 14549.28, + "probability": 0.9935 + }, + { + "start": 14549.62, + "end": 14550.54, + "probability": 0.9172 + }, + { + "start": 14551.58, + "end": 14554.06, + "probability": 0.7697 + }, + { + "start": 14555.04, + "end": 14556.76, + "probability": 0.9398 + }, + { + "start": 14558.88, + "end": 14559.45, + "probability": 0.4103 + }, + { + "start": 14560.4, + "end": 14563.14, + "probability": 0.9902 + }, + { + "start": 14564.24, + "end": 14567.17, + "probability": 0.9631 + }, + { + "start": 14568.24, + "end": 14571.26, + "probability": 0.9964 + }, + { + "start": 14571.72, + "end": 14573.4, + "probability": 0.7302 + }, + { + "start": 14574.52, + "end": 14576.7, + "probability": 0.9327 + }, + { + "start": 14576.88, + "end": 14577.8, + "probability": 0.6885 + }, + { + "start": 14579.04, + "end": 14581.24, + "probability": 0.8961 + }, + { + "start": 14581.94, + "end": 14583.17, + "probability": 0.8724 + }, + { + "start": 14584.1, + "end": 14586.2, + "probability": 0.8744 + }, + { + "start": 14586.94, + "end": 14589.24, + "probability": 0.95 + }, + { + "start": 14589.78, + "end": 14594.98, + "probability": 0.9547 + }, + { + "start": 14595.62, + "end": 14598.2, + "probability": 0.9688 + }, + { + "start": 14598.44, + "end": 14599.88, + "probability": 0.9941 + }, + { + "start": 14600.7, + "end": 14602.42, + "probability": 0.7176 + }, + { + "start": 14603.32, + "end": 14604.48, + "probability": 0.7495 + }, + { + "start": 14605.18, + "end": 14607.94, + "probability": 0.9974 + }, + { + "start": 14608.24, + "end": 14609.02, + "probability": 0.9321 + }, + { + "start": 14609.64, + "end": 14611.88, + "probability": 0.998 + }, + { + "start": 14612.74, + "end": 14613.24, + "probability": 0.6005 + }, + { + "start": 14614.58, + "end": 14615.56, + "probability": 0.6403 + }, + { + "start": 14615.72, + "end": 14619.32, + "probability": 0.9989 + }, + { + "start": 14621.0, + "end": 14623.46, + "probability": 0.8348 + }, + { + "start": 14624.34, + "end": 14627.14, + "probability": 0.9924 + }, + { + "start": 14627.14, + "end": 14630.46, + "probability": 0.7773 + }, + { + "start": 14630.5, + "end": 14631.22, + "probability": 0.6259 + }, + { + "start": 14631.9, + "end": 14632.5, + "probability": 0.8862 + }, + { + "start": 14632.64, + "end": 14633.42, + "probability": 0.781 + }, + { + "start": 14633.9, + "end": 14635.48, + "probability": 0.9882 + }, + { + "start": 14636.02, + "end": 14638.42, + "probability": 0.9568 + }, + { + "start": 14639.02, + "end": 14640.52, + "probability": 0.9607 + }, + { + "start": 14641.04, + "end": 14642.08, + "probability": 0.9874 + }, + { + "start": 14642.48, + "end": 14642.92, + "probability": 0.5802 + }, + { + "start": 14642.92, + "end": 14643.02, + "probability": 0.6586 + }, + { + "start": 14647.92, + "end": 14649.28, + "probability": 0.8276 + }, + { + "start": 14684.48, + "end": 14686.5, + "probability": 0.9794 + }, + { + "start": 14687.72, + "end": 14690.02, + "probability": 0.9964 + }, + { + "start": 14690.56, + "end": 14690.9, + "probability": 0.8436 + }, + { + "start": 14692.26, + "end": 14695.02, + "probability": 0.9992 + }, + { + "start": 14695.72, + "end": 14697.5, + "probability": 0.9528 + }, + { + "start": 14698.86, + "end": 14702.4, + "probability": 0.9957 + }, + { + "start": 14703.48, + "end": 14709.52, + "probability": 0.9868 + }, + { + "start": 14710.32, + "end": 14713.12, + "probability": 0.9331 + }, + { + "start": 14714.12, + "end": 14716.9, + "probability": 0.9985 + }, + { + "start": 14718.46, + "end": 14720.8, + "probability": 0.8166 + }, + { + "start": 14721.92, + "end": 14723.8, + "probability": 0.999 + }, + { + "start": 14724.58, + "end": 14725.98, + "probability": 0.9548 + }, + { + "start": 14727.92, + "end": 14731.5, + "probability": 0.998 + }, + { + "start": 14731.84, + "end": 14735.18, + "probability": 0.9956 + }, + { + "start": 14736.16, + "end": 14737.4, + "probability": 0.876 + }, + { + "start": 14738.16, + "end": 14743.42, + "probability": 0.9737 + }, + { + "start": 14744.8, + "end": 14749.74, + "probability": 0.9972 + }, + { + "start": 14752.04, + "end": 14756.06, + "probability": 0.9974 + }, + { + "start": 14756.7, + "end": 14759.51, + "probability": 0.9506 + }, + { + "start": 14760.54, + "end": 14760.76, + "probability": 0.5965 + }, + { + "start": 14761.08, + "end": 14764.56, + "probability": 0.9835 + }, + { + "start": 14764.82, + "end": 14767.0, + "probability": 0.9468 + }, + { + "start": 14768.76, + "end": 14769.62, + "probability": 0.9715 + }, + { + "start": 14771.7, + "end": 14775.38, + "probability": 0.9839 + }, + { + "start": 14776.34, + "end": 14777.62, + "probability": 0.977 + }, + { + "start": 14779.56, + "end": 14783.32, + "probability": 0.9894 + }, + { + "start": 14785.02, + "end": 14785.86, + "probability": 0.9194 + }, + { + "start": 14786.9, + "end": 14788.78, + "probability": 0.9583 + }, + { + "start": 14789.86, + "end": 14791.68, + "probability": 0.8884 + }, + { + "start": 14792.82, + "end": 14799.62, + "probability": 0.9933 + }, + { + "start": 14800.74, + "end": 14805.36, + "probability": 0.9929 + }, + { + "start": 14807.08, + "end": 14810.14, + "probability": 0.978 + }, + { + "start": 14810.54, + "end": 14813.48, + "probability": 0.8175 + }, + { + "start": 14814.48, + "end": 14817.36, + "probability": 0.8706 + }, + { + "start": 14819.02, + "end": 14824.16, + "probability": 0.9995 + }, + { + "start": 14824.74, + "end": 14825.78, + "probability": 0.7073 + }, + { + "start": 14826.98, + "end": 14829.14, + "probability": 0.9993 + }, + { + "start": 14829.14, + "end": 14834.12, + "probability": 0.972 + }, + { + "start": 14836.64, + "end": 14839.64, + "probability": 0.9702 + }, + { + "start": 14840.56, + "end": 14842.5, + "probability": 0.913 + }, + { + "start": 14843.5, + "end": 14848.78, + "probability": 0.998 + }, + { + "start": 14849.42, + "end": 14850.64, + "probability": 0.9873 + }, + { + "start": 14851.68, + "end": 14852.08, + "probability": 0.8484 + }, + { + "start": 14853.06, + "end": 14853.84, + "probability": 0.6545 + }, + { + "start": 14853.9, + "end": 14855.46, + "probability": 0.9034 + }, + { + "start": 14856.36, + "end": 14856.84, + "probability": 0.5308 + }, + { + "start": 14857.76, + "end": 14859.1, + "probability": 0.9808 + }, + { + "start": 14860.44, + "end": 14861.5, + "probability": 0.5134 + }, + { + "start": 14862.84, + "end": 14863.78, + "probability": 0.9229 + }, + { + "start": 14864.66, + "end": 14865.44, + "probability": 0.3634 + }, + { + "start": 14866.86, + "end": 14867.16, + "probability": 0.4877 + }, + { + "start": 14869.38, + "end": 14871.74, + "probability": 0.518 + }, + { + "start": 14871.84, + "end": 14873.06, + "probability": 0.9465 + }, + { + "start": 14873.72, + "end": 14874.66, + "probability": 0.5946 + }, + { + "start": 14874.8, + "end": 14876.92, + "probability": 0.4647 + }, + { + "start": 14876.92, + "end": 14878.6, + "probability": 0.463 + }, + { + "start": 14878.86, + "end": 14879.74, + "probability": 0.9321 + }, + { + "start": 14879.96, + "end": 14880.74, + "probability": 0.9477 + }, + { + "start": 14881.52, + "end": 14882.74, + "probability": 0.6442 + }, + { + "start": 14883.48, + "end": 14889.62, + "probability": 0.9952 + }, + { + "start": 14889.8, + "end": 14891.04, + "probability": 0.9907 + }, + { + "start": 14891.86, + "end": 14894.12, + "probability": 0.9583 + }, + { + "start": 14894.46, + "end": 14898.28, + "probability": 0.9893 + }, + { + "start": 14898.96, + "end": 14903.9, + "probability": 0.968 + }, + { + "start": 14904.66, + "end": 14908.24, + "probability": 0.6528 + }, + { + "start": 14909.16, + "end": 14911.98, + "probability": 0.9658 + }, + { + "start": 14912.44, + "end": 14915.6, + "probability": 0.9915 + }, + { + "start": 14916.14, + "end": 14917.7, + "probability": 0.9855 + }, + { + "start": 14918.6, + "end": 14922.44, + "probability": 0.9309 + }, + { + "start": 14922.44, + "end": 14925.44, + "probability": 0.7222 + }, + { + "start": 14925.6, + "end": 14926.06, + "probability": 0.611 + }, + { + "start": 14926.16, + "end": 14926.6, + "probability": 0.9624 + }, + { + "start": 14927.56, + "end": 14930.48, + "probability": 0.9195 + }, + { + "start": 14930.7, + "end": 14931.29, + "probability": 0.8635 + }, + { + "start": 14931.58, + "end": 14933.74, + "probability": 0.9915 + }, + { + "start": 14934.38, + "end": 14937.34, + "probability": 0.8776 + }, + { + "start": 14937.36, + "end": 14940.1, + "probability": 0.9961 + }, + { + "start": 14940.9, + "end": 14944.4, + "probability": 0.769 + }, + { + "start": 14945.08, + "end": 14947.36, + "probability": 0.7997 + }, + { + "start": 14948.02, + "end": 14952.56, + "probability": 0.9628 + }, + { + "start": 14953.22, + "end": 14955.6, + "probability": 0.9937 + }, + { + "start": 14956.32, + "end": 14958.66, + "probability": 0.8524 + }, + { + "start": 14960.44, + "end": 14963.7, + "probability": 0.9983 + }, + { + "start": 14963.88, + "end": 14967.68, + "probability": 0.9902 + }, + { + "start": 14967.68, + "end": 14971.04, + "probability": 0.9984 + }, + { + "start": 14971.74, + "end": 14972.36, + "probability": 0.7714 + }, + { + "start": 14973.02, + "end": 14978.4, + "probability": 0.9856 + }, + { + "start": 14979.32, + "end": 14981.88, + "probability": 0.8725 + }, + { + "start": 14982.4, + "end": 14984.2, + "probability": 0.9375 + }, + { + "start": 14984.42, + "end": 14987.44, + "probability": 0.9737 + }, + { + "start": 14987.66, + "end": 14988.18, + "probability": 0.8472 + }, + { + "start": 14988.86, + "end": 14991.12, + "probability": 0.9161 + }, + { + "start": 14991.62, + "end": 14992.92, + "probability": 0.837 + }, + { + "start": 14992.96, + "end": 14995.8, + "probability": 0.9587 + }, + { + "start": 14995.86, + "end": 14996.42, + "probability": 0.9751 + }, + { + "start": 14997.74, + "end": 15000.6, + "probability": 0.995 + }, + { + "start": 15000.76, + "end": 15003.22, + "probability": 0.9868 + }, + { + "start": 15004.74, + "end": 15005.32, + "probability": 0.6895 + }, + { + "start": 15005.46, + "end": 15007.8, + "probability": 0.999 + }, + { + "start": 15007.8, + "end": 15009.78, + "probability": 0.9964 + }, + { + "start": 15010.26, + "end": 15013.1, + "probability": 0.9784 + }, + { + "start": 15013.98, + "end": 15017.18, + "probability": 0.8071 + }, + { + "start": 15017.62, + "end": 15020.4, + "probability": 0.9952 + }, + { + "start": 15020.84, + "end": 15023.02, + "probability": 0.9587 + }, + { + "start": 15023.62, + "end": 15028.58, + "probability": 0.9293 + }, + { + "start": 15028.76, + "end": 15032.84, + "probability": 0.9895 + }, + { + "start": 15033.96, + "end": 15036.1, + "probability": 0.9041 + }, + { + "start": 15036.42, + "end": 15038.2, + "probability": 0.9886 + }, + { + "start": 15039.02, + "end": 15040.08, + "probability": 0.7663 + }, + { + "start": 15040.72, + "end": 15044.36, + "probability": 0.8741 + }, + { + "start": 15045.26, + "end": 15046.94, + "probability": 0.9087 + }, + { + "start": 15047.12, + "end": 15047.46, + "probability": 0.4294 + }, + { + "start": 15048.12, + "end": 15050.28, + "probability": 0.8799 + }, + { + "start": 15050.44, + "end": 15050.74, + "probability": 0.3959 + }, + { + "start": 15051.38, + "end": 15053.78, + "probability": 0.9934 + }, + { + "start": 15054.08, + "end": 15054.58, + "probability": 0.7768 + }, + { + "start": 15055.22, + "end": 15059.74, + "probability": 0.9216 + }, + { + "start": 15060.4, + "end": 15060.86, + "probability": 0.9604 + }, + { + "start": 15061.26, + "end": 15061.86, + "probability": 0.7505 + }, + { + "start": 15062.4, + "end": 15063.82, + "probability": 0.3852 + }, + { + "start": 15063.96, + "end": 15064.38, + "probability": 0.4783 + }, + { + "start": 15064.52, + "end": 15067.86, + "probability": 0.9502 + }, + { + "start": 15068.5, + "end": 15073.02, + "probability": 0.9949 + }, + { + "start": 15073.08, + "end": 15073.88, + "probability": 0.9262 + }, + { + "start": 15074.84, + "end": 15078.14, + "probability": 0.9326 + }, + { + "start": 15078.54, + "end": 15080.92, + "probability": 0.9429 + }, + { + "start": 15081.82, + "end": 15083.12, + "probability": 0.8104 + }, + { + "start": 15083.54, + "end": 15084.51, + "probability": 0.7705 + }, + { + "start": 15085.3, + "end": 15086.36, + "probability": 0.9349 + }, + { + "start": 15086.46, + "end": 15090.84, + "probability": 0.7532 + }, + { + "start": 15090.88, + "end": 15092.32, + "probability": 0.7053 + }, + { + "start": 15092.84, + "end": 15094.18, + "probability": 0.7131 + }, + { + "start": 15094.72, + "end": 15096.54, + "probability": 0.9382 + }, + { + "start": 15097.28, + "end": 15097.84, + "probability": 0.9166 + }, + { + "start": 15098.22, + "end": 15100.34, + "probability": 0.9208 + }, + { + "start": 15100.34, + "end": 15104.44, + "probability": 0.9858 + }, + { + "start": 15104.86, + "end": 15109.5, + "probability": 0.9818 + }, + { + "start": 15109.66, + "end": 15113.58, + "probability": 0.822 + }, + { + "start": 15113.8, + "end": 15116.94, + "probability": 0.8277 + }, + { + "start": 15117.06, + "end": 15117.28, + "probability": 0.7782 + }, + { + "start": 15118.0, + "end": 15118.76, + "probability": 0.866 + }, + { + "start": 15119.22, + "end": 15122.3, + "probability": 0.7319 + }, + { + "start": 15122.64, + "end": 15124.96, + "probability": 0.9979 + }, + { + "start": 15125.44, + "end": 15125.6, + "probability": 0.7098 + }, + { + "start": 15125.6, + "end": 15126.16, + "probability": 0.6954 + }, + { + "start": 15126.32, + "end": 15129.2, + "probability": 0.8867 + }, + { + "start": 15129.72, + "end": 15131.02, + "probability": 0.6875 + }, + { + "start": 15131.54, + "end": 15133.68, + "probability": 0.9857 + }, + { + "start": 15134.44, + "end": 15135.1, + "probability": 0.8063 + }, + { + "start": 15136.32, + "end": 15136.52, + "probability": 0.7752 + }, + { + "start": 15136.6, + "end": 15137.74, + "probability": 0.9937 + }, + { + "start": 15137.76, + "end": 15138.48, + "probability": 0.8633 + }, + { + "start": 15138.56, + "end": 15140.22, + "probability": 0.965 + }, + { + "start": 15140.56, + "end": 15143.06, + "probability": 0.9847 + }, + { + "start": 15143.74, + "end": 15144.44, + "probability": 0.8711 + }, + { + "start": 15145.12, + "end": 15145.84, + "probability": 0.9075 + }, + { + "start": 15158.94, + "end": 15159.96, + "probability": 0.5951 + }, + { + "start": 15160.1, + "end": 15160.62, + "probability": 0.8385 + }, + { + "start": 15160.76, + "end": 15161.94, + "probability": 0.6007 + }, + { + "start": 15162.04, + "end": 15167.2, + "probability": 0.9702 + }, + { + "start": 15167.25, + "end": 15169.92, + "probability": 0.9961 + }, + { + "start": 15171.4, + "end": 15174.58, + "probability": 0.9316 + }, + { + "start": 15174.9, + "end": 15176.64, + "probability": 0.6901 + }, + { + "start": 15177.68, + "end": 15182.78, + "probability": 0.98 + }, + { + "start": 15183.86, + "end": 15188.28, + "probability": 0.9917 + }, + { + "start": 15188.4, + "end": 15188.68, + "probability": 0.978 + }, + { + "start": 15189.62, + "end": 15191.28, + "probability": 0.8849 + }, + { + "start": 15192.68, + "end": 15193.58, + "probability": 0.8153 + }, + { + "start": 15194.3, + "end": 15196.58, + "probability": 0.8948 + }, + { + "start": 15197.5, + "end": 15200.4, + "probability": 0.9895 + }, + { + "start": 15202.14, + "end": 15203.56, + "probability": 0.947 + }, + { + "start": 15205.08, + "end": 15205.74, + "probability": 0.996 + }, + { + "start": 15206.28, + "end": 15207.2, + "probability": 0.9315 + }, + { + "start": 15208.52, + "end": 15210.78, + "probability": 0.9873 + }, + { + "start": 15212.0, + "end": 15214.2, + "probability": 0.9922 + }, + { + "start": 15215.08, + "end": 15218.72, + "probability": 0.9154 + }, + { + "start": 15219.86, + "end": 15221.28, + "probability": 0.9894 + }, + { + "start": 15221.8, + "end": 15224.52, + "probability": 0.9579 + }, + { + "start": 15225.78, + "end": 15228.08, + "probability": 0.7249 + }, + { + "start": 15228.94, + "end": 15231.28, + "probability": 0.7122 + }, + { + "start": 15231.98, + "end": 15235.38, + "probability": 0.9355 + }, + { + "start": 15235.92, + "end": 15236.36, + "probability": 0.8609 + }, + { + "start": 15237.72, + "end": 15243.0, + "probability": 0.9795 + }, + { + "start": 15244.42, + "end": 15245.56, + "probability": 0.8447 + }, + { + "start": 15246.52, + "end": 15247.79, + "probability": 0.8713 + }, + { + "start": 15248.62, + "end": 15250.36, + "probability": 0.9875 + }, + { + "start": 15250.86, + "end": 15253.34, + "probability": 0.1468 + }, + { + "start": 15253.34, + "end": 15256.58, + "probability": 0.9668 + }, + { + "start": 15257.18, + "end": 15258.56, + "probability": 0.9497 + }, + { + "start": 15259.86, + "end": 15262.3, + "probability": 0.9594 + }, + { + "start": 15263.64, + "end": 15266.78, + "probability": 0.8785 + }, + { + "start": 15267.4, + "end": 15271.9, + "probability": 0.8516 + }, + { + "start": 15272.42, + "end": 15273.96, + "probability": 0.9827 + }, + { + "start": 15274.56, + "end": 15275.54, + "probability": 0.7868 + }, + { + "start": 15277.66, + "end": 15279.31, + "probability": 0.8122 + }, + { + "start": 15280.38, + "end": 15280.84, + "probability": 0.8007 + }, + { + "start": 15282.12, + "end": 15285.22, + "probability": 0.9922 + }, + { + "start": 15286.78, + "end": 15287.1, + "probability": 0.8747 + }, + { + "start": 15287.64, + "end": 15288.2, + "probability": 0.8607 + }, + { + "start": 15289.78, + "end": 15294.02, + "probability": 0.9192 + }, + { + "start": 15294.72, + "end": 15294.76, + "probability": 0.0834 + }, + { + "start": 15295.32, + "end": 15297.52, + "probability": 0.998 + }, + { + "start": 15298.76, + "end": 15302.42, + "probability": 0.9492 + }, + { + "start": 15302.6, + "end": 15308.34, + "probability": 0.9871 + }, + { + "start": 15310.46, + "end": 15311.74, + "probability": 0.67 + }, + { + "start": 15313.22, + "end": 15314.24, + "probability": 0.9907 + }, + { + "start": 15315.32, + "end": 15319.62, + "probability": 0.7211 + }, + { + "start": 15320.54, + "end": 15321.28, + "probability": 0.7183 + }, + { + "start": 15321.84, + "end": 15322.56, + "probability": 0.9198 + }, + { + "start": 15323.76, + "end": 15326.56, + "probability": 0.9875 + }, + { + "start": 15327.28, + "end": 15328.54, + "probability": 0.9379 + }, + { + "start": 15328.72, + "end": 15332.12, + "probability": 0.9532 + }, + { + "start": 15332.64, + "end": 15334.42, + "probability": 0.9524 + }, + { + "start": 15334.54, + "end": 15334.78, + "probability": 0.8456 + }, + { + "start": 15335.7, + "end": 15336.58, + "probability": 0.6413 + }, + { + "start": 15337.48, + "end": 15339.08, + "probability": 0.8503 + }, + { + "start": 15340.1, + "end": 15340.3, + "probability": 0.0193 + }, + { + "start": 15342.8, + "end": 15345.99, + "probability": 0.8992 + }, + { + "start": 15355.52, + "end": 15355.6, + "probability": 0.2755 + }, + { + "start": 15355.66, + "end": 15357.34, + "probability": 0.7354 + }, + { + "start": 15358.12, + "end": 15359.2, + "probability": 0.8139 + }, + { + "start": 15360.0, + "end": 15361.52, + "probability": 0.7765 + }, + { + "start": 15362.44, + "end": 15368.24, + "probability": 0.9915 + }, + { + "start": 15368.32, + "end": 15368.72, + "probability": 0.8427 + }, + { + "start": 15369.84, + "end": 15373.0, + "probability": 0.8531 + }, + { + "start": 15373.72, + "end": 15376.64, + "probability": 0.9839 + }, + { + "start": 15377.02, + "end": 15380.68, + "probability": 0.993 + }, + { + "start": 15381.4, + "end": 15384.64, + "probability": 0.768 + }, + { + "start": 15385.2, + "end": 15387.6, + "probability": 0.9869 + }, + { + "start": 15388.22, + "end": 15393.48, + "probability": 0.9419 + }, + { + "start": 15393.6, + "end": 15394.34, + "probability": 0.7851 + }, + { + "start": 15394.4, + "end": 15395.4, + "probability": 0.6943 + }, + { + "start": 15395.86, + "end": 15397.66, + "probability": 0.9628 + }, + { + "start": 15397.72, + "end": 15398.35, + "probability": 0.9722 + }, + { + "start": 15399.06, + "end": 15400.5, + "probability": 0.9696 + }, + { + "start": 15400.58, + "end": 15401.3, + "probability": 0.9939 + }, + { + "start": 15401.88, + "end": 15402.2, + "probability": 0.9918 + }, + { + "start": 15403.04, + "end": 15404.14, + "probability": 0.5 + }, + { + "start": 15404.72, + "end": 15406.36, + "probability": 0.9374 + }, + { + "start": 15406.76, + "end": 15409.08, + "probability": 0.9911 + }, + { + "start": 15409.1, + "end": 15412.12, + "probability": 0.7747 + }, + { + "start": 15412.72, + "end": 15414.64, + "probability": 0.8643 + }, + { + "start": 15416.06, + "end": 15418.74, + "probability": 0.9718 + }, + { + "start": 15419.46, + "end": 15422.58, + "probability": 0.9817 + }, + { + "start": 15423.56, + "end": 15426.74, + "probability": 0.9926 + }, + { + "start": 15426.76, + "end": 15428.42, + "probability": 0.775 + }, + { + "start": 15430.08, + "end": 15432.48, + "probability": 0.7587 + }, + { + "start": 15432.8, + "end": 15433.42, + "probability": 0.7808 + }, + { + "start": 15433.74, + "end": 15434.92, + "probability": 0.8906 + }, + { + "start": 15435.68, + "end": 15436.72, + "probability": 0.8947 + }, + { + "start": 15437.0, + "end": 15439.04, + "probability": 0.9644 + }, + { + "start": 15439.24, + "end": 15439.5, + "probability": 0.3881 + }, + { + "start": 15439.64, + "end": 15440.98, + "probability": 0.9753 + }, + { + "start": 15441.88, + "end": 15443.84, + "probability": 0.9757 + }, + { + "start": 15444.3, + "end": 15448.66, + "probability": 0.9949 + }, + { + "start": 15449.12, + "end": 15451.08, + "probability": 0.9744 + }, + { + "start": 15451.5, + "end": 15453.1, + "probability": 0.9201 + }, + { + "start": 15453.64, + "end": 15455.3, + "probability": 0.826 + }, + { + "start": 15455.52, + "end": 15455.76, + "probability": 0.8408 + }, + { + "start": 15455.84, + "end": 15457.6, + "probability": 0.933 + }, + { + "start": 15457.74, + "end": 15457.94, + "probability": 0.2119 + }, + { + "start": 15457.96, + "end": 15459.06, + "probability": 0.9771 + }, + { + "start": 15459.8, + "end": 15463.42, + "probability": 0.9948 + }, + { + "start": 15463.48, + "end": 15464.56, + "probability": 0.8386 + }, + { + "start": 15464.74, + "end": 15465.78, + "probability": 0.9944 + }, + { + "start": 15466.48, + "end": 15467.91, + "probability": 0.9102 + }, + { + "start": 15469.46, + "end": 15472.09, + "probability": 0.9953 + }, + { + "start": 15472.22, + "end": 15474.3, + "probability": 0.9874 + }, + { + "start": 15474.66, + "end": 15475.98, + "probability": 0.7776 + }, + { + "start": 15477.3, + "end": 15480.68, + "probability": 0.8602 + }, + { + "start": 15481.66, + "end": 15485.68, + "probability": 0.958 + }, + { + "start": 15486.1, + "end": 15486.92, + "probability": 0.6359 + }, + { + "start": 15487.36, + "end": 15487.94, + "probability": 0.7434 + }, + { + "start": 15488.1, + "end": 15492.28, + "probability": 0.8918 + }, + { + "start": 15492.94, + "end": 15494.1, + "probability": 0.8273 + }, + { + "start": 15494.5, + "end": 15495.36, + "probability": 0.9245 + }, + { + "start": 15495.82, + "end": 15497.78, + "probability": 0.9632 + }, + { + "start": 15498.44, + "end": 15501.1, + "probability": 0.9937 + }, + { + "start": 15502.22, + "end": 15505.24, + "probability": 0.9762 + }, + { + "start": 15505.62, + "end": 15506.34, + "probability": 0.9026 + }, + { + "start": 15506.86, + "end": 15509.99, + "probability": 0.9817 + }, + { + "start": 15510.42, + "end": 15512.36, + "probability": 0.9662 + }, + { + "start": 15512.98, + "end": 15514.02, + "probability": 0.9043 + }, + { + "start": 15514.64, + "end": 15515.14, + "probability": 0.6522 + }, + { + "start": 15517.47, + "end": 15523.8, + "probability": 0.9196 + }, + { + "start": 15524.72, + "end": 15526.64, + "probability": 0.9976 + }, + { + "start": 15526.76, + "end": 15529.78, + "probability": 0.9924 + }, + { + "start": 15529.78, + "end": 15532.82, + "probability": 0.9888 + }, + { + "start": 15534.68, + "end": 15536.32, + "probability": 0.9956 + }, + { + "start": 15537.08, + "end": 15539.5, + "probability": 0.7963 + }, + { + "start": 15540.34, + "end": 15541.94, + "probability": 0.8162 + }, + { + "start": 15543.02, + "end": 15544.59, + "probability": 0.9756 + }, + { + "start": 15544.78, + "end": 15548.7, + "probability": 0.9138 + }, + { + "start": 15548.92, + "end": 15549.48, + "probability": 0.5992 + }, + { + "start": 15550.1, + "end": 15550.1, + "probability": 0.0303 + }, + { + "start": 15550.1, + "end": 15551.88, + "probability": 0.9359 + }, + { + "start": 15552.24, + "end": 15553.66, + "probability": 0.8623 + }, + { + "start": 15553.72, + "end": 15556.62, + "probability": 0.8497 + }, + { + "start": 15557.18, + "end": 15557.38, + "probability": 0.8155 + }, + { + "start": 15557.58, + "end": 15558.26, + "probability": 0.7844 + }, + { + "start": 15558.82, + "end": 15561.04, + "probability": 0.9263 + }, + { + "start": 15561.28, + "end": 15563.96, + "probability": 0.5339 + }, + { + "start": 15564.18, + "end": 15566.32, + "probability": 0.9937 + }, + { + "start": 15566.42, + "end": 15567.34, + "probability": 0.9004 + }, + { + "start": 15567.34, + "end": 15567.82, + "probability": 0.4021 + }, + { + "start": 15568.24, + "end": 15568.88, + "probability": 0.8186 + }, + { + "start": 15569.18, + "end": 15571.62, + "probability": 0.5034 + }, + { + "start": 15571.78, + "end": 15573.92, + "probability": 0.883 + }, + { + "start": 15574.44, + "end": 15576.82, + "probability": 0.7995 + }, + { + "start": 15576.82, + "end": 15578.28, + "probability": 0.7459 + }, + { + "start": 15578.38, + "end": 15579.48, + "probability": 0.6217 + }, + { + "start": 15579.6, + "end": 15579.6, + "probability": 0.7178 + }, + { + "start": 15579.64, + "end": 15580.38, + "probability": 0.8745 + }, + { + "start": 15583.06, + "end": 15585.43, + "probability": 0.5917 + }, + { + "start": 15594.4, + "end": 15597.84, + "probability": 0.6493 + }, + { + "start": 15598.58, + "end": 15601.78, + "probability": 0.9927 + }, + { + "start": 15602.6, + "end": 15606.94, + "probability": 0.993 + }, + { + "start": 15607.14, + "end": 15608.88, + "probability": 0.9967 + }, + { + "start": 15609.5, + "end": 15613.56, + "probability": 0.9914 + }, + { + "start": 15614.36, + "end": 15614.84, + "probability": 0.2968 + }, + { + "start": 15615.02, + "end": 15620.98, + "probability": 0.9509 + }, + { + "start": 15621.12, + "end": 15622.0, + "probability": 0.9086 + }, + { + "start": 15622.16, + "end": 15623.06, + "probability": 0.8181 + }, + { + "start": 15623.66, + "end": 15626.56, + "probability": 0.9795 + }, + { + "start": 15627.44, + "end": 15631.42, + "probability": 0.98 + }, + { + "start": 15632.22, + "end": 15637.42, + "probability": 0.988 + }, + { + "start": 15638.26, + "end": 15641.2, + "probability": 0.798 + }, + { + "start": 15641.78, + "end": 15645.22, + "probability": 0.9949 + }, + { + "start": 15645.78, + "end": 15646.96, + "probability": 0.7742 + }, + { + "start": 15647.86, + "end": 15648.48, + "probability": 0.8618 + }, + { + "start": 15649.28, + "end": 15649.46, + "probability": 0.9521 + }, + { + "start": 15650.02, + "end": 15651.16, + "probability": 0.8743 + }, + { + "start": 15651.74, + "end": 15656.68, + "probability": 0.9414 + }, + { + "start": 15657.5, + "end": 15662.42, + "probability": 0.9949 + }, + { + "start": 15663.26, + "end": 15666.48, + "probability": 0.9916 + }, + { + "start": 15667.28, + "end": 15672.96, + "probability": 0.9798 + }, + { + "start": 15673.76, + "end": 15675.2, + "probability": 0.9967 + }, + { + "start": 15675.72, + "end": 15677.52, + "probability": 0.7072 + }, + { + "start": 15678.1, + "end": 15682.36, + "probability": 0.9888 + }, + { + "start": 15682.92, + "end": 15686.12, + "probability": 0.9942 + }, + { + "start": 15686.24, + "end": 15687.22, + "probability": 0.9421 + }, + { + "start": 15687.88, + "end": 15691.74, + "probability": 0.9763 + }, + { + "start": 15692.68, + "end": 15696.46, + "probability": 0.9813 + }, + { + "start": 15697.04, + "end": 15703.44, + "probability": 0.9641 + }, + { + "start": 15703.96, + "end": 15708.14, + "probability": 0.9956 + }, + { + "start": 15708.9, + "end": 15716.98, + "probability": 0.9931 + }, + { + "start": 15717.84, + "end": 15718.72, + "probability": 0.9551 + }, + { + "start": 15719.4, + "end": 15725.18, + "probability": 0.9314 + }, + { + "start": 15726.0, + "end": 15730.62, + "probability": 0.9242 + }, + { + "start": 15731.16, + "end": 15732.14, + "probability": 0.7957 + }, + { + "start": 15733.18, + "end": 15735.06, + "probability": 0.784 + }, + { + "start": 15735.62, + "end": 15737.54, + "probability": 0.8793 + }, + { + "start": 15738.22, + "end": 15742.44, + "probability": 0.9897 + }, + { + "start": 15743.5, + "end": 15748.8, + "probability": 0.9692 + }, + { + "start": 15749.22, + "end": 15750.72, + "probability": 0.8726 + }, + { + "start": 15751.44, + "end": 15756.4, + "probability": 0.8831 + }, + { + "start": 15757.34, + "end": 15762.38, + "probability": 0.9886 + }, + { + "start": 15762.94, + "end": 15763.54, + "probability": 0.7234 + }, + { + "start": 15764.68, + "end": 15766.8, + "probability": 0.9612 + }, + { + "start": 15767.38, + "end": 15773.4, + "probability": 0.9963 + }, + { + "start": 15774.22, + "end": 15774.48, + "probability": 0.6058 + }, + { + "start": 15774.66, + "end": 15775.74, + "probability": 0.3266 + }, + { + "start": 15776.1, + "end": 15781.58, + "probability": 0.969 + }, + { + "start": 15782.16, + "end": 15783.72, + "probability": 0.9655 + }, + { + "start": 15784.56, + "end": 15785.02, + "probability": 0.7297 + }, + { + "start": 15785.14, + "end": 15786.44, + "probability": 0.9091 + }, + { + "start": 15787.22, + "end": 15787.94, + "probability": 0.8793 + }, + { + "start": 15800.26, + "end": 15802.44, + "probability": 0.6226 + }, + { + "start": 15803.32, + "end": 15810.86, + "probability": 0.99 + }, + { + "start": 15812.24, + "end": 15812.67, + "probability": 0.5104 + }, + { + "start": 15814.04, + "end": 15816.78, + "probability": 0.8364 + }, + { + "start": 15816.9, + "end": 15817.5, + "probability": 0.5378 + }, + { + "start": 15817.92, + "end": 15820.3, + "probability": 0.9954 + }, + { + "start": 15821.08, + "end": 15821.9, + "probability": 0.9978 + }, + { + "start": 15822.88, + "end": 15825.82, + "probability": 0.9553 + }, + { + "start": 15826.56, + "end": 15826.66, + "probability": 0.7521 + }, + { + "start": 15826.76, + "end": 15828.28, + "probability": 0.8541 + }, + { + "start": 15828.57, + "end": 15832.49, + "probability": 0.9204 + }, + { + "start": 15833.38, + "end": 15835.86, + "probability": 0.9908 + }, + { + "start": 15837.66, + "end": 15840.04, + "probability": 0.8827 + }, + { + "start": 15841.38, + "end": 15842.38, + "probability": 0.998 + }, + { + "start": 15842.9, + "end": 15844.16, + "probability": 0.967 + }, + { + "start": 15845.96, + "end": 15847.74, + "probability": 0.949 + }, + { + "start": 15849.9, + "end": 15851.3, + "probability": 0.6862 + }, + { + "start": 15851.82, + "end": 15852.68, + "probability": 0.9647 + }, + { + "start": 15852.82, + "end": 15853.22, + "probability": 0.4957 + }, + { + "start": 15853.36, + "end": 15855.28, + "probability": 0.8639 + }, + { + "start": 15855.52, + "end": 15857.2, + "probability": 0.9791 + }, + { + "start": 15857.88, + "end": 15858.6, + "probability": 0.9673 + }, + { + "start": 15859.8, + "end": 15860.94, + "probability": 0.445 + }, + { + "start": 15862.04, + "end": 15864.52, + "probability": 0.9974 + }, + { + "start": 15864.52, + "end": 15866.36, + "probability": 0.9226 + }, + { + "start": 15867.22, + "end": 15870.51, + "probability": 0.9045 + }, + { + "start": 15871.22, + "end": 15874.54, + "probability": 0.9637 + }, + { + "start": 15876.6, + "end": 15880.22, + "probability": 0.7308 + }, + { + "start": 15881.0, + "end": 15881.66, + "probability": 0.8862 + }, + { + "start": 15883.0, + "end": 15883.7, + "probability": 0.7822 + }, + { + "start": 15883.88, + "end": 15884.08, + "probability": 0.8239 + }, + { + "start": 15884.3, + "end": 15887.18, + "probability": 0.9674 + }, + { + "start": 15888.58, + "end": 15892.16, + "probability": 0.84 + }, + { + "start": 15893.18, + "end": 15895.28, + "probability": 0.6323 + }, + { + "start": 15896.58, + "end": 15899.06, + "probability": 0.998 + }, + { + "start": 15899.2, + "end": 15901.1, + "probability": 0.7839 + }, + { + "start": 15901.9, + "end": 15904.96, + "probability": 0.9636 + }, + { + "start": 15906.44, + "end": 15907.0, + "probability": 0.7147 + }, + { + "start": 15907.04, + "end": 15907.7, + "probability": 0.9685 + }, + { + "start": 15907.8, + "end": 15909.22, + "probability": 0.9424 + }, + { + "start": 15910.16, + "end": 15911.96, + "probability": 0.9733 + }, + { + "start": 15912.96, + "end": 15917.22, + "probability": 0.994 + }, + { + "start": 15917.22, + "end": 15920.28, + "probability": 0.9867 + }, + { + "start": 15920.5, + "end": 15921.34, + "probability": 0.5786 + }, + { + "start": 15922.08, + "end": 15923.28, + "probability": 0.8352 + }, + { + "start": 15924.32, + "end": 15926.56, + "probability": 0.817 + }, + { + "start": 15927.3, + "end": 15928.02, + "probability": 0.8225 + }, + { + "start": 15929.44, + "end": 15931.16, + "probability": 0.9521 + }, + { + "start": 15931.26, + "end": 15932.21, + "probability": 0.9541 + }, + { + "start": 15932.52, + "end": 15932.82, + "probability": 0.6778 + }, + { + "start": 15933.36, + "end": 15935.3, + "probability": 0.9914 + }, + { + "start": 15936.44, + "end": 15937.96, + "probability": 0.9913 + }, + { + "start": 15939.04, + "end": 15939.82, + "probability": 0.8317 + }, + { + "start": 15941.36, + "end": 15944.32, + "probability": 0.9992 + }, + { + "start": 15944.52, + "end": 15945.86, + "probability": 0.7408 + }, + { + "start": 15946.74, + "end": 15947.94, + "probability": 0.8501 + }, + { + "start": 15948.47, + "end": 15949.7, + "probability": 0.9978 + }, + { + "start": 15950.64, + "end": 15951.66, + "probability": 0.9673 + }, + { + "start": 15951.84, + "end": 15955.3, + "probability": 0.8851 + }, + { + "start": 15955.94, + "end": 15957.44, + "probability": 0.9089 + }, + { + "start": 15957.56, + "end": 15958.9, + "probability": 0.9883 + }, + { + "start": 15960.5, + "end": 15963.56, + "probability": 0.9695 + }, + { + "start": 15966.37, + "end": 15967.1, + "probability": 0.4749 + }, + { + "start": 15967.56, + "end": 15968.05, + "probability": 0.9739 + }, + { + "start": 15968.3, + "end": 15969.06, + "probability": 0.541 + }, + { + "start": 15969.14, + "end": 15972.72, + "probability": 0.7945 + }, + { + "start": 15972.8, + "end": 15976.08, + "probability": 0.9707 + }, + { + "start": 15976.96, + "end": 15978.7, + "probability": 0.9718 + }, + { + "start": 15979.36, + "end": 15981.02, + "probability": 0.7644 + }, + { + "start": 15981.36, + "end": 15981.72, + "probability": 0.7611 + }, + { + "start": 15982.52, + "end": 15983.08, + "probability": 0.6324 + }, + { + "start": 15983.26, + "end": 15983.8, + "probability": 0.8558 + }, + { + "start": 15992.46, + "end": 15994.76, + "probability": 0.8712 + }, + { + "start": 15998.92, + "end": 15999.08, + "probability": 0.6855 + }, + { + "start": 15999.18, + "end": 16001.84, + "probability": 0.9433 + }, + { + "start": 16001.88, + "end": 16005.56, + "probability": 0.9875 + }, + { + "start": 16006.28, + "end": 16006.82, + "probability": 0.9545 + }, + { + "start": 16007.12, + "end": 16010.72, + "probability": 0.9573 + }, + { + "start": 16011.48, + "end": 16011.58, + "probability": 0.0022 + }, + { + "start": 16021.24, + "end": 16023.32, + "probability": 0.0318 + }, + { + "start": 16023.94, + "end": 16026.5, + "probability": 0.0002 + }, + { + "start": 16028.06, + "end": 16030.28, + "probability": 0.4475 + }, + { + "start": 16038.82, + "end": 16040.0, + "probability": 0.0505 + }, + { + "start": 16041.35, + "end": 16042.75, + "probability": 0.074 + }, + { + "start": 16047.68, + "end": 16050.62, + "probability": 0.0924 + }, + { + "start": 16050.62, + "end": 16051.48, + "probability": 0.1247 + }, + { + "start": 16051.48, + "end": 16051.48, + "probability": 0.1375 + }, + { + "start": 16051.52, + "end": 16052.16, + "probability": 0.0961 + }, + { + "start": 16052.8, + "end": 16052.9, + "probability": 0.1839 + }, + { + "start": 16053.06, + "end": 16053.16, + "probability": 0.318 + }, + { + "start": 16054.18, + "end": 16054.48, + "probability": 0.0578 + }, + { + "start": 16054.94, + "end": 16055.04, + "probability": 0.0756 + }, + { + "start": 16055.04, + "end": 16055.57, + "probability": 0.0575 + }, + { + "start": 16055.76, + "end": 16056.38, + "probability": 0.0591 + }, + { + "start": 16056.44, + "end": 16057.04, + "probability": 0.0688 + }, + { + "start": 16057.9, + "end": 16058.3, + "probability": 0.1376 + }, + { + "start": 16062.91, + "end": 16065.24, + "probability": 0.0746 + }, + { + "start": 16065.24, + "end": 16065.8, + "probability": 0.135 + }, + { + "start": 16066.6, + "end": 16067.98, + "probability": 0.0973 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.0, + "end": 16068.0, + "probability": 0.0 + }, + { + "start": 16068.32, + "end": 16069.8, + "probability": 0.6379 + }, + { + "start": 16069.92, + "end": 16070.92, + "probability": 0.5957 + }, + { + "start": 16073.36, + "end": 16074.08, + "probability": 0.6772 + }, + { + "start": 16075.66, + "end": 16078.0, + "probability": 0.9971 + }, + { + "start": 16078.98, + "end": 16082.62, + "probability": 0.9985 + }, + { + "start": 16083.72, + "end": 16084.14, + "probability": 0.9017 + }, + { + "start": 16085.64, + "end": 16086.64, + "probability": 0.9611 + }, + { + "start": 16086.72, + "end": 16090.1, + "probability": 0.9971 + }, + { + "start": 16090.94, + "end": 16091.94, + "probability": 0.9714 + }, + { + "start": 16093.0, + "end": 16094.3, + "probability": 0.8923 + }, + { + "start": 16095.28, + "end": 16095.78, + "probability": 0.3251 + }, + { + "start": 16097.46, + "end": 16102.68, + "probability": 0.9866 + }, + { + "start": 16103.38, + "end": 16104.04, + "probability": 0.9577 + }, + { + "start": 16105.16, + "end": 16110.46, + "probability": 0.9962 + }, + { + "start": 16111.1, + "end": 16111.9, + "probability": 0.9868 + }, + { + "start": 16113.28, + "end": 16117.56, + "probability": 0.986 + }, + { + "start": 16117.9, + "end": 16119.54, + "probability": 0.9595 + }, + { + "start": 16121.1, + "end": 16123.52, + "probability": 0.9704 + }, + { + "start": 16124.42, + "end": 16125.04, + "probability": 0.7642 + }, + { + "start": 16126.38, + "end": 16128.56, + "probability": 0.9961 + }, + { + "start": 16129.32, + "end": 16131.72, + "probability": 0.9961 + }, + { + "start": 16133.66, + "end": 16134.5, + "probability": 0.9025 + }, + { + "start": 16135.6, + "end": 16137.48, + "probability": 0.9519 + }, + { + "start": 16138.08, + "end": 16139.74, + "probability": 0.949 + }, + { + "start": 16140.4, + "end": 16141.34, + "probability": 0.9834 + }, + { + "start": 16141.84, + "end": 16144.44, + "probability": 0.9985 + }, + { + "start": 16145.32, + "end": 16148.48, + "probability": 0.9971 + }, + { + "start": 16149.34, + "end": 16150.76, + "probability": 0.9807 + }, + { + "start": 16151.28, + "end": 16157.3, + "probability": 0.9987 + }, + { + "start": 16158.26, + "end": 16158.8, + "probability": 0.5522 + }, + { + "start": 16159.86, + "end": 16160.68, + "probability": 0.8894 + }, + { + "start": 16161.52, + "end": 16162.86, + "probability": 0.9461 + }, + { + "start": 16163.7, + "end": 16165.9, + "probability": 0.9729 + }, + { + "start": 16166.58, + "end": 16167.84, + "probability": 0.9411 + }, + { + "start": 16168.68, + "end": 16169.54, + "probability": 0.9058 + }, + { + "start": 16170.24, + "end": 16170.54, + "probability": 0.6521 + }, + { + "start": 16171.46, + "end": 16172.52, + "probability": 0.9612 + }, + { + "start": 16173.48, + "end": 16177.96, + "probability": 0.9655 + }, + { + "start": 16179.06, + "end": 16180.8, + "probability": 0.9976 + }, + { + "start": 16181.26, + "end": 16187.28, + "probability": 0.9936 + }, + { + "start": 16188.62, + "end": 16190.9, + "probability": 0.9917 + }, + { + "start": 16192.24, + "end": 16192.68, + "probability": 0.5151 + }, + { + "start": 16193.76, + "end": 16194.66, + "probability": 0.9943 + }, + { + "start": 16195.38, + "end": 16199.48, + "probability": 0.9837 + }, + { + "start": 16199.96, + "end": 16202.34, + "probability": 0.9908 + }, + { + "start": 16203.16, + "end": 16208.18, + "probability": 0.998 + }, + { + "start": 16208.18, + "end": 16213.78, + "probability": 0.9448 + }, + { + "start": 16214.78, + "end": 16215.76, + "probability": 0.9716 + }, + { + "start": 16216.74, + "end": 16219.52, + "probability": 0.98 + }, + { + "start": 16220.4, + "end": 16223.58, + "probability": 0.9976 + }, + { + "start": 16223.58, + "end": 16226.36, + "probability": 0.999 + }, + { + "start": 16227.18, + "end": 16228.34, + "probability": 0.9894 + }, + { + "start": 16229.14, + "end": 16230.08, + "probability": 0.8949 + }, + { + "start": 16230.64, + "end": 16231.26, + "probability": 0.9648 + }, + { + "start": 16232.68, + "end": 16236.32, + "probability": 0.9955 + }, + { + "start": 16237.4, + "end": 16240.56, + "probability": 0.9966 + }, + { + "start": 16242.46, + "end": 16243.94, + "probability": 0.978 + }, + { + "start": 16244.94, + "end": 16245.34, + "probability": 0.3447 + }, + { + "start": 16245.66, + "end": 16245.9, + "probability": 0.6663 + }, + { + "start": 16245.98, + "end": 16247.74, + "probability": 0.9348 + }, + { + "start": 16248.32, + "end": 16248.78, + "probability": 0.8629 + }, + { + "start": 16249.52, + "end": 16251.76, + "probability": 0.3514 + }, + { + "start": 16271.44, + "end": 16272.16, + "probability": 0.4474 + }, + { + "start": 16272.6, + "end": 16273.56, + "probability": 0.7893 + }, + { + "start": 16273.84, + "end": 16274.8, + "probability": 0.7351 + }, + { + "start": 16275.28, + "end": 16275.68, + "probability": 0.5284 + }, + { + "start": 16275.78, + "end": 16278.6, + "probability": 0.4442 + }, + { + "start": 16279.44, + "end": 16280.53, + "probability": 0.9734 + }, + { + "start": 16281.08, + "end": 16282.08, + "probability": 0.8358 + }, + { + "start": 16283.04, + "end": 16284.5, + "probability": 0.3969 + }, + { + "start": 16285.3, + "end": 16288.34, + "probability": 0.9324 + }, + { + "start": 16293.1, + "end": 16297.12, + "probability": 0.9841 + }, + { + "start": 16297.18, + "end": 16298.36, + "probability": 0.5695 + }, + { + "start": 16299.22, + "end": 16301.8, + "probability": 0.9824 + }, + { + "start": 16302.26, + "end": 16304.46, + "probability": 0.959 + }, + { + "start": 16305.98, + "end": 16310.87, + "probability": 0.9366 + }, + { + "start": 16311.82, + "end": 16312.74, + "probability": 0.7821 + }, + { + "start": 16313.7, + "end": 16317.36, + "probability": 0.6409 + }, + { + "start": 16318.68, + "end": 16320.48, + "probability": 0.9446 + }, + { + "start": 16320.68, + "end": 16321.7, + "probability": 0.9735 + }, + { + "start": 16325.72, + "end": 16327.5, + "probability": 0.9504 + }, + { + "start": 16327.58, + "end": 16332.06, + "probability": 0.9933 + }, + { + "start": 16332.22, + "end": 16332.88, + "probability": 0.9316 + }, + { + "start": 16333.32, + "end": 16334.54, + "probability": 0.9111 + }, + { + "start": 16334.58, + "end": 16335.94, + "probability": 0.8899 + }, + { + "start": 16336.4, + "end": 16342.18, + "probability": 0.9889 + }, + { + "start": 16343.0, + "end": 16345.76, + "probability": 0.9976 + }, + { + "start": 16347.06, + "end": 16349.14, + "probability": 0.7713 + }, + { + "start": 16349.54, + "end": 16350.2, + "probability": 0.841 + }, + { + "start": 16350.62, + "end": 16351.02, + "probability": 0.9077 + }, + { + "start": 16352.66, + "end": 16353.18, + "probability": 0.8555 + }, + { + "start": 16354.22, + "end": 16355.38, + "probability": 0.9933 + }, + { + "start": 16358.68, + "end": 16361.62, + "probability": 0.9453 + }, + { + "start": 16363.16, + "end": 16363.94, + "probability": 0.6809 + }, + { + "start": 16364.2, + "end": 16365.27, + "probability": 0.4831 + }, + { + "start": 16365.5, + "end": 16368.42, + "probability": 0.9692 + }, + { + "start": 16369.98, + "end": 16371.38, + "probability": 0.8341 + }, + { + "start": 16372.26, + "end": 16372.84, + "probability": 0.8018 + }, + { + "start": 16373.72, + "end": 16375.96, + "probability": 0.845 + }, + { + "start": 16376.56, + "end": 16378.1, + "probability": 0.7082 + }, + { + "start": 16379.78, + "end": 16380.22, + "probability": 0.0701 + }, + { + "start": 16380.22, + "end": 16380.22, + "probability": 0.3661 + }, + { + "start": 16380.38, + "end": 16382.72, + "probability": 0.9819 + }, + { + "start": 16382.88, + "end": 16383.2, + "probability": 0.5367 + }, + { + "start": 16383.34, + "end": 16384.36, + "probability": 0.7231 + }, + { + "start": 16384.46, + "end": 16386.52, + "probability": 0.5296 + }, + { + "start": 16387.6, + "end": 16387.6, + "probability": 0.0152 + }, + { + "start": 16387.6, + "end": 16388.04, + "probability": 0.3874 + }, + { + "start": 16388.78, + "end": 16389.7, + "probability": 0.9424 + }, + { + "start": 16389.9, + "end": 16390.85, + "probability": 0.874 + }, + { + "start": 16390.96, + "end": 16392.8, + "probability": 0.9011 + }, + { + "start": 16392.86, + "end": 16393.44, + "probability": 0.854 + }, + { + "start": 16394.08, + "end": 16395.58, + "probability": 0.9928 + }, + { + "start": 16395.7, + "end": 16396.88, + "probability": 0.9703 + }, + { + "start": 16397.46, + "end": 16401.44, + "probability": 0.9093 + }, + { + "start": 16401.44, + "end": 16403.5, + "probability": 0.9993 + }, + { + "start": 16403.58, + "end": 16403.76, + "probability": 0.5137 + }, + { + "start": 16403.88, + "end": 16404.02, + "probability": 0.4082 + }, + { + "start": 16404.04, + "end": 16404.6, + "probability": 0.9548 + }, + { + "start": 16405.34, + "end": 16406.14, + "probability": 0.7032 + }, + { + "start": 16406.66, + "end": 16412.56, + "probability": 0.997 + }, + { + "start": 16415.29, + "end": 16416.96, + "probability": 0.1994 + }, + { + "start": 16418.54, + "end": 16420.54, + "probability": 0.9784 + }, + { + "start": 16420.6, + "end": 16422.24, + "probability": 0.9304 + }, + { + "start": 16422.26, + "end": 16423.4, + "probability": 0.7469 + }, + { + "start": 16424.28, + "end": 16425.74, + "probability": 0.8997 + }, + { + "start": 16425.82, + "end": 16427.92, + "probability": 0.8817 + }, + { + "start": 16427.96, + "end": 16429.82, + "probability": 0.5093 + }, + { + "start": 16429.82, + "end": 16430.64, + "probability": 0.9653 + }, + { + "start": 16430.94, + "end": 16431.32, + "probability": 0.8247 + }, + { + "start": 16432.08, + "end": 16433.08, + "probability": 0.6116 + }, + { + "start": 16433.14, + "end": 16434.38, + "probability": 0.8522 + }, + { + "start": 16434.54, + "end": 16436.04, + "probability": 0.9092 + }, + { + "start": 16436.6, + "end": 16437.36, + "probability": 0.9353 + }, + { + "start": 16437.4, + "end": 16438.24, + "probability": 0.9696 + }, + { + "start": 16438.52, + "end": 16439.18, + "probability": 0.8506 + }, + { + "start": 16439.5, + "end": 16441.32, + "probability": 0.8511 + }, + { + "start": 16441.42, + "end": 16442.0, + "probability": 0.5958 + }, + { + "start": 16443.6, + "end": 16444.98, + "probability": 0.7517 + }, + { + "start": 16445.02, + "end": 16445.14, + "probability": 0.5091 + }, + { + "start": 16445.26, + "end": 16446.82, + "probability": 0.9781 + }, + { + "start": 16447.14, + "end": 16449.1, + "probability": 0.8901 + }, + { + "start": 16449.38, + "end": 16450.48, + "probability": 0.8815 + }, + { + "start": 16450.76, + "end": 16452.62, + "probability": 0.9871 + }, + { + "start": 16452.64, + "end": 16453.04, + "probability": 0.9938 + }, + { + "start": 16453.56, + "end": 16454.3, + "probability": 0.9207 + }, + { + "start": 16454.34, + "end": 16455.64, + "probability": 0.7463 + }, + { + "start": 16456.0, + "end": 16457.04, + "probability": 0.9917 + }, + { + "start": 16457.34, + "end": 16459.94, + "probability": 0.877 + }, + { + "start": 16460.1, + "end": 16460.54, + "probability": 0.672 + }, + { + "start": 16460.56, + "end": 16461.78, + "probability": 0.8665 + }, + { + "start": 16462.5, + "end": 16463.18, + "probability": 0.9699 + }, + { + "start": 16463.44, + "end": 16463.94, + "probability": 0.7474 + }, + { + "start": 16464.08, + "end": 16464.96, + "probability": 0.8289 + }, + { + "start": 16466.7, + "end": 16467.26, + "probability": 0.0868 + }, + { + "start": 16467.82, + "end": 16468.76, + "probability": 0.4949 + }, + { + "start": 16469.6, + "end": 16469.88, + "probability": 0.0742 + }, + { + "start": 16469.88, + "end": 16469.88, + "probability": 0.0323 + }, + { + "start": 16469.88, + "end": 16469.88, + "probability": 0.0364 + }, + { + "start": 16469.88, + "end": 16471.26, + "probability": 0.4103 + }, + { + "start": 16471.26, + "end": 16472.26, + "probability": 0.7709 + }, + { + "start": 16472.46, + "end": 16474.9, + "probability": 0.9678 + }, + { + "start": 16475.3, + "end": 16476.74, + "probability": 0.9968 + }, + { + "start": 16477.1, + "end": 16478.8, + "probability": 0.9775 + }, + { + "start": 16479.44, + "end": 16481.78, + "probability": 0.9731 + }, + { + "start": 16482.54, + "end": 16485.7, + "probability": 0.7528 + }, + { + "start": 16485.7, + "end": 16492.82, + "probability": 0.9822 + }, + { + "start": 16492.92, + "end": 16494.32, + "probability": 0.632 + }, + { + "start": 16494.34, + "end": 16495.18, + "probability": 0.6631 + }, + { + "start": 16495.38, + "end": 16499.28, + "probability": 0.9872 + }, + { + "start": 16499.74, + "end": 16500.26, + "probability": 0.9335 + }, + { + "start": 16500.78, + "end": 16501.2, + "probability": 0.7346 + }, + { + "start": 16501.34, + "end": 16503.18, + "probability": 0.7652 + }, + { + "start": 16503.7, + "end": 16504.04, + "probability": 0.1334 + }, + { + "start": 16504.04, + "end": 16504.8, + "probability": 0.1003 + }, + { + "start": 16505.94, + "end": 16507.94, + "probability": 0.6403 + }, + { + "start": 16508.48, + "end": 16509.5, + "probability": 0.1798 + }, + { + "start": 16510.16, + "end": 16511.5, + "probability": 0.0634 + }, + { + "start": 16512.07, + "end": 16515.37, + "probability": 0.125 + }, + { + "start": 16538.06, + "end": 16539.02, + "probability": 0.0141 + }, + { + "start": 16539.14, + "end": 16540.26, + "probability": 0.1196 + }, + { + "start": 16540.26, + "end": 16540.26, + "probability": 0.1328 + }, + { + "start": 16540.26, + "end": 16540.58, + "probability": 0.0564 + }, + { + "start": 16541.84, + "end": 16542.2, + "probability": 0.1003 + }, + { + "start": 16542.2, + "end": 16544.04, + "probability": 0.064 + }, + { + "start": 16546.72, + "end": 16547.34, + "probability": 0.1794 + }, + { + "start": 16547.34, + "end": 16551.0, + "probability": 0.5715 + }, + { + "start": 16552.47, + "end": 16555.66, + "probability": 0.0355 + }, + { + "start": 16556.0, + "end": 16556.38, + "probability": 0.0943 + }, + { + "start": 16581.14, + "end": 16581.88, + "probability": 0.0412 + }, + { + "start": 16583.16, + "end": 16586.02, + "probability": 0.9884 + }, + { + "start": 16587.02, + "end": 16589.52, + "probability": 0.7835 + }, + { + "start": 16589.74, + "end": 16591.15, + "probability": 0.7107 + }, + { + "start": 16591.24, + "end": 16591.94, + "probability": 0.9628 + }, + { + "start": 16593.84, + "end": 16597.63, + "probability": 0.953 + }, + { + "start": 16598.12, + "end": 16600.3, + "probability": 0.9963 + }, + { + "start": 16600.38, + "end": 16601.96, + "probability": 0.9856 + }, + { + "start": 16602.96, + "end": 16603.88, + "probability": 0.9286 + }, + { + "start": 16604.94, + "end": 16606.52, + "probability": 0.9871 + }, + { + "start": 16607.36, + "end": 16609.28, + "probability": 0.9935 + }, + { + "start": 16612.32, + "end": 16617.08, + "probability": 0.9954 + }, + { + "start": 16617.08, + "end": 16621.0, + "probability": 0.9991 + }, + { + "start": 16621.0, + "end": 16624.48, + "probability": 0.9987 + }, + { + "start": 16625.9, + "end": 16628.76, + "probability": 0.9916 + }, + { + "start": 16628.76, + "end": 16631.08, + "probability": 0.9938 + }, + { + "start": 16631.6, + "end": 16632.98, + "probability": 0.9774 + }, + { + "start": 16634.74, + "end": 16635.24, + "probability": 0.5211 + }, + { + "start": 16636.08, + "end": 16637.9, + "probability": 0.9988 + }, + { + "start": 16638.3, + "end": 16639.22, + "probability": 0.8838 + }, + { + "start": 16640.38, + "end": 16643.94, + "probability": 0.9957 + }, + { + "start": 16646.14, + "end": 16648.08, + "probability": 0.9852 + }, + { + "start": 16648.6, + "end": 16649.58, + "probability": 0.8153 + }, + { + "start": 16650.48, + "end": 16651.74, + "probability": 0.9062 + }, + { + "start": 16652.72, + "end": 16654.78, + "probability": 0.9911 + }, + { + "start": 16656.24, + "end": 16660.82, + "probability": 0.9892 + }, + { + "start": 16662.66, + "end": 16666.28, + "probability": 0.9873 + }, + { + "start": 16667.38, + "end": 16668.34, + "probability": 0.8148 + }, + { + "start": 16668.54, + "end": 16669.24, + "probability": 0.8895 + }, + { + "start": 16669.36, + "end": 16670.4, + "probability": 0.9641 + }, + { + "start": 16670.88, + "end": 16672.22, + "probability": 0.9797 + }, + { + "start": 16672.32, + "end": 16673.24, + "probability": 0.9577 + }, + { + "start": 16674.32, + "end": 16677.88, + "probability": 0.9469 + }, + { + "start": 16679.7, + "end": 16682.18, + "probability": 0.918 + }, + { + "start": 16682.18, + "end": 16684.94, + "probability": 0.9995 + }, + { + "start": 16686.12, + "end": 16690.66, + "probability": 0.9775 + }, + { + "start": 16692.24, + "end": 16694.92, + "probability": 0.998 + }, + { + "start": 16695.24, + "end": 16696.78, + "probability": 0.9937 + }, + { + "start": 16697.12, + "end": 16698.32, + "probability": 0.9353 + }, + { + "start": 16699.22, + "end": 16702.4, + "probability": 0.9901 + }, + { + "start": 16702.4, + "end": 16705.84, + "probability": 0.9757 + }, + { + "start": 16709.78, + "end": 16711.62, + "probability": 0.9454 + }, + { + "start": 16712.34, + "end": 16713.32, + "probability": 0.9978 + }, + { + "start": 16714.64, + "end": 16718.1, + "probability": 0.9958 + }, + { + "start": 16719.54, + "end": 16719.68, + "probability": 0.7482 + }, + { + "start": 16719.68, + "end": 16720.14, + "probability": 0.3439 + }, + { + "start": 16721.2, + "end": 16721.64, + "probability": 0.6462 + }, + { + "start": 16723.78, + "end": 16727.88, + "probability": 0.9957 + }, + { + "start": 16728.4, + "end": 16730.96, + "probability": 0.9841 + }, + { + "start": 16731.5, + "end": 16733.02, + "probability": 0.9985 + }, + { + "start": 16733.62, + "end": 16734.58, + "probability": 0.9907 + }, + { + "start": 16734.96, + "end": 16735.32, + "probability": 0.8107 + }, + { + "start": 16735.52, + "end": 16736.2, + "probability": 0.7217 + }, + { + "start": 16736.68, + "end": 16737.78, + "probability": 0.7258 + }, + { + "start": 16746.88, + "end": 16746.98, + "probability": 0.2346 + }, + { + "start": 16746.98, + "end": 16748.22, + "probability": 0.5135 + }, + { + "start": 16748.98, + "end": 16749.88, + "probability": 0.7061 + }, + { + "start": 16751.16, + "end": 16752.18, + "probability": 0.7513 + }, + { + "start": 16753.72, + "end": 16755.76, + "probability": 0.8549 + }, + { + "start": 16757.92, + "end": 16759.81, + "probability": 0.995 + }, + { + "start": 16761.46, + "end": 16765.9, + "probability": 0.9955 + }, + { + "start": 16767.62, + "end": 16769.7, + "probability": 0.998 + }, + { + "start": 16770.28, + "end": 16771.3, + "probability": 0.8733 + }, + { + "start": 16772.38, + "end": 16773.32, + "probability": 0.9653 + }, + { + "start": 16774.58, + "end": 16775.49, + "probability": 0.9248 + }, + { + "start": 16776.98, + "end": 16777.26, + "probability": 0.8653 + }, + { + "start": 16778.64, + "end": 16779.36, + "probability": 0.8774 + }, + { + "start": 16779.92, + "end": 16780.68, + "probability": 0.9652 + }, + { + "start": 16782.56, + "end": 16786.36, + "probability": 0.9985 + }, + { + "start": 16787.46, + "end": 16788.22, + "probability": 0.958 + }, + { + "start": 16789.72, + "end": 16790.76, + "probability": 0.9932 + }, + { + "start": 16792.36, + "end": 16794.22, + "probability": 0.9886 + }, + { + "start": 16794.76, + "end": 16800.1, + "probability": 0.999 + }, + { + "start": 16801.98, + "end": 16804.1, + "probability": 0.9522 + }, + { + "start": 16805.5, + "end": 16810.7, + "probability": 0.9714 + }, + { + "start": 16811.46, + "end": 16815.82, + "probability": 0.8971 + }, + { + "start": 16816.82, + "end": 16818.23, + "probability": 0.9927 + }, + { + "start": 16819.74, + "end": 16821.82, + "probability": 0.6798 + }, + { + "start": 16822.88, + "end": 16826.3, + "probability": 0.7257 + }, + { + "start": 16827.04, + "end": 16833.88, + "probability": 0.969 + }, + { + "start": 16836.38, + "end": 16841.18, + "probability": 0.989 + }, + { + "start": 16842.84, + "end": 16843.62, + "probability": 0.8373 + }, + { + "start": 16845.78, + "end": 16847.02, + "probability": 0.9966 + }, + { + "start": 16848.66, + "end": 16850.72, + "probability": 0.8604 + }, + { + "start": 16851.38, + "end": 16855.86, + "probability": 0.9938 + }, + { + "start": 16856.86, + "end": 16858.4, + "probability": 0.9966 + }, + { + "start": 16859.32, + "end": 16859.78, + "probability": 0.778 + }, + { + "start": 16860.32, + "end": 16861.34, + "probability": 0.9258 + }, + { + "start": 16862.24, + "end": 16862.84, + "probability": 0.9703 + }, + { + "start": 16864.16, + "end": 16866.54, + "probability": 0.9352 + }, + { + "start": 16867.78, + "end": 16869.3, + "probability": 0.9067 + }, + { + "start": 16870.28, + "end": 16871.18, + "probability": 0.7516 + }, + { + "start": 16871.22, + "end": 16873.7, + "probability": 0.9728 + }, + { + "start": 16873.82, + "end": 16874.56, + "probability": 0.9254 + }, + { + "start": 16875.46, + "end": 16876.88, + "probability": 0.9756 + }, + { + "start": 16877.74, + "end": 16878.54, + "probability": 0.7427 + }, + { + "start": 16879.28, + "end": 16880.0, + "probability": 0.8731 + }, + { + "start": 16881.16, + "end": 16882.54, + "probability": 0.9896 + }, + { + "start": 16884.28, + "end": 16885.62, + "probability": 0.92 + }, + { + "start": 16886.24, + "end": 16886.64, + "probability": 0.8581 + }, + { + "start": 16887.32, + "end": 16889.72, + "probability": 0.7324 + }, + { + "start": 16889.84, + "end": 16890.16, + "probability": 0.5125 + }, + { + "start": 16890.28, + "end": 16890.5, + "probability": 0.2734 + }, + { + "start": 16890.96, + "end": 16895.94, + "probability": 0.9919 + }, + { + "start": 16897.56, + "end": 16898.0, + "probability": 0.6197 + }, + { + "start": 16899.22, + "end": 16900.9, + "probability": 0.9396 + }, + { + "start": 16901.96, + "end": 16902.74, + "probability": 0.9191 + }, + { + "start": 16903.7, + "end": 16907.1, + "probability": 0.9749 + }, + { + "start": 16908.2, + "end": 16910.08, + "probability": 0.8748 + }, + { + "start": 16910.88, + "end": 16911.98, + "probability": 0.8651 + }, + { + "start": 16912.58, + "end": 16914.6, + "probability": 0.9505 + }, + { + "start": 16915.02, + "end": 16916.76, + "probability": 0.9908 + }, + { + "start": 16917.12, + "end": 16918.32, + "probability": 0.7855 + }, + { + "start": 16918.5, + "end": 16919.62, + "probability": 0.9675 + }, + { + "start": 16919.64, + "end": 16920.44, + "probability": 0.9514 + }, + { + "start": 16920.52, + "end": 16921.72, + "probability": 0.9886 + }, + { + "start": 16922.24, + "end": 16923.22, + "probability": 0.9514 + }, + { + "start": 16923.46, + "end": 16925.5, + "probability": 0.9542 + }, + { + "start": 16925.9, + "end": 16928.92, + "probability": 0.9932 + }, + { + "start": 16929.42, + "end": 16931.22, + "probability": 0.8848 + }, + { + "start": 16931.5, + "end": 16933.04, + "probability": 0.9865 + }, + { + "start": 16933.36, + "end": 16934.24, + "probability": 0.8477 + }, + { + "start": 16934.74, + "end": 16937.34, + "probability": 0.9907 + }, + { + "start": 16937.9, + "end": 16939.78, + "probability": 0.8311 + }, + { + "start": 16939.84, + "end": 16941.98, + "probability": 0.9338 + }, + { + "start": 16942.42, + "end": 16944.62, + "probability": 0.9917 + }, + { + "start": 16945.18, + "end": 16945.92, + "probability": 0.7736 + }, + { + "start": 16946.24, + "end": 16947.0, + "probability": 0.9877 + }, + { + "start": 16947.52, + "end": 16948.54, + "probability": 0.8028 + }, + { + "start": 16956.46, + "end": 16956.46, + "probability": 0.5949 + }, + { + "start": 16956.48, + "end": 16960.26, + "probability": 0.9885 + }, + { + "start": 16961.52, + "end": 16964.24, + "probability": 0.9887 + }, + { + "start": 16964.98, + "end": 16966.6, + "probability": 0.9404 + }, + { + "start": 16967.2, + "end": 16969.15, + "probability": 0.951 + }, + { + "start": 16969.34, + "end": 16973.8, + "probability": 0.9337 + }, + { + "start": 16973.88, + "end": 16974.6, + "probability": 0.5435 + }, + { + "start": 16975.18, + "end": 16975.7, + "probability": 0.911 + }, + { + "start": 16976.28, + "end": 16979.74, + "probability": 0.9692 + }, + { + "start": 16979.82, + "end": 16982.74, + "probability": 0.8795 + }, + { + "start": 16984.12, + "end": 16987.1, + "probability": 0.805 + }, + { + "start": 16987.96, + "end": 16988.34, + "probability": 0.5966 + }, + { + "start": 16988.88, + "end": 16989.83, + "probability": 0.9414 + }, + { + "start": 16990.58, + "end": 16992.34, + "probability": 0.8804 + }, + { + "start": 16992.64, + "end": 16993.8, + "probability": 0.781 + }, + { + "start": 16994.36, + "end": 16994.98, + "probability": 0.7309 + }, + { + "start": 16995.6, + "end": 16997.9, + "probability": 0.9047 + }, + { + "start": 16998.4, + "end": 16999.6, + "probability": 0.7935 + }, + { + "start": 16999.68, + "end": 17000.3, + "probability": 0.5213 + }, + { + "start": 17001.02, + "end": 17006.64, + "probability": 0.9774 + }, + { + "start": 17007.2, + "end": 17008.66, + "probability": 0.9971 + }, + { + "start": 17010.38, + "end": 17012.22, + "probability": 0.6788 + }, + { + "start": 17013.9, + "end": 17019.88, + "probability": 0.9912 + }, + { + "start": 17020.5, + "end": 17023.56, + "probability": 0.9952 + }, + { + "start": 17023.72, + "end": 17024.48, + "probability": 0.445 + }, + { + "start": 17025.5, + "end": 17027.3, + "probability": 0.7386 + }, + { + "start": 17027.68, + "end": 17028.9, + "probability": 0.8763 + }, + { + "start": 17030.12, + "end": 17031.14, + "probability": 0.9379 + }, + { + "start": 17031.94, + "end": 17035.92, + "probability": 0.9588 + }, + { + "start": 17036.48, + "end": 17040.28, + "probability": 0.9149 + }, + { + "start": 17041.18, + "end": 17041.9, + "probability": 0.8071 + }, + { + "start": 17043.77, + "end": 17046.57, + "probability": 0.4836 + }, + { + "start": 17049.21, + "end": 17052.4, + "probability": 0.9668 + }, + { + "start": 17053.34, + "end": 17055.98, + "probability": 0.9976 + }, + { + "start": 17056.64, + "end": 17059.98, + "probability": 0.9668 + }, + { + "start": 17061.12, + "end": 17064.06, + "probability": 0.9845 + }, + { + "start": 17064.48, + "end": 17066.44, + "probability": 0.9751 + }, + { + "start": 17066.5, + "end": 17067.6, + "probability": 0.5155 + }, + { + "start": 17067.7, + "end": 17068.8, + "probability": 0.9834 + }, + { + "start": 17069.38, + "end": 17069.96, + "probability": 0.5823 + }, + { + "start": 17070.34, + "end": 17075.12, + "probability": 0.9858 + }, + { + "start": 17076.34, + "end": 17078.28, + "probability": 0.675 + }, + { + "start": 17078.74, + "end": 17080.2, + "probability": 0.9932 + }, + { + "start": 17080.7, + "end": 17083.64, + "probability": 0.8698 + }, + { + "start": 17084.28, + "end": 17088.06, + "probability": 0.9412 + }, + { + "start": 17089.34, + "end": 17092.54, + "probability": 0.912 + }, + { + "start": 17093.22, + "end": 17095.82, + "probability": 0.9725 + }, + { + "start": 17096.58, + "end": 17099.06, + "probability": 0.9847 + }, + { + "start": 17100.12, + "end": 17101.28, + "probability": 0.8064 + }, + { + "start": 17101.72, + "end": 17104.52, + "probability": 0.9806 + }, + { + "start": 17104.88, + "end": 17107.1, + "probability": 0.9945 + }, + { + "start": 17107.78, + "end": 17110.26, + "probability": 0.7651 + }, + { + "start": 17110.88, + "end": 17113.54, + "probability": 0.9952 + }, + { + "start": 17114.8, + "end": 17118.32, + "probability": 0.9165 + }, + { + "start": 17118.54, + "end": 17119.34, + "probability": 0.6716 + }, + { + "start": 17119.38, + "end": 17121.4, + "probability": 0.6665 + }, + { + "start": 17122.06, + "end": 17127.48, + "probability": 0.9531 + }, + { + "start": 17128.16, + "end": 17128.9, + "probability": 0.578 + }, + { + "start": 17129.3, + "end": 17133.32, + "probability": 0.9227 + }, + { + "start": 17133.78, + "end": 17133.88, + "probability": 0.8341 + }, + { + "start": 17133.96, + "end": 17134.03, + "probability": 0.3936 + }, + { + "start": 17134.64, + "end": 17135.78, + "probability": 0.931 + }, + { + "start": 17136.08, + "end": 17140.06, + "probability": 0.963 + }, + { + "start": 17140.56, + "end": 17144.8, + "probability": 0.9972 + }, + { + "start": 17145.54, + "end": 17149.74, + "probability": 0.9864 + }, + { + "start": 17150.28, + "end": 17153.78, + "probability": 0.9881 + }, + { + "start": 17155.94, + "end": 17160.88, + "probability": 0.7866 + }, + { + "start": 17161.58, + "end": 17167.26, + "probability": 0.9838 + }, + { + "start": 17168.1, + "end": 17168.38, + "probability": 0.9865 + }, + { + "start": 17169.36, + "end": 17170.48, + "probability": 0.8258 + }, + { + "start": 17171.5, + "end": 17172.5, + "probability": 0.9602 + }, + { + "start": 17172.64, + "end": 17177.82, + "probability": 0.9961 + }, + { + "start": 17178.42, + "end": 17180.04, + "probability": 0.8743 + }, + { + "start": 17180.68, + "end": 17183.62, + "probability": 0.8924 + }, + { + "start": 17184.42, + "end": 17186.7, + "probability": 0.9552 + }, + { + "start": 17186.84, + "end": 17189.56, + "probability": 0.996 + }, + { + "start": 17191.48, + "end": 17194.16, + "probability": 0.918 + }, + { + "start": 17194.22, + "end": 17197.32, + "probability": 0.8426 + }, + { + "start": 17197.64, + "end": 17199.56, + "probability": 0.7796 + }, + { + "start": 17200.32, + "end": 17204.04, + "probability": 0.9841 + }, + { + "start": 17204.1, + "end": 17204.55, + "probability": 0.4393 + }, + { + "start": 17204.9, + "end": 17205.5, + "probability": 0.897 + }, + { + "start": 17206.08, + "end": 17208.88, + "probability": 0.9674 + }, + { + "start": 17210.88, + "end": 17214.08, + "probability": 0.7117 + }, + { + "start": 17214.22, + "end": 17218.06, + "probability": 0.9678 + }, + { + "start": 17218.06, + "end": 17222.7, + "probability": 0.9869 + }, + { + "start": 17223.32, + "end": 17225.42, + "probability": 0.9916 + }, + { + "start": 17225.66, + "end": 17226.64, + "probability": 0.5544 + }, + { + "start": 17227.9, + "end": 17227.9, + "probability": 0.349 + }, + { + "start": 17227.9, + "end": 17230.28, + "probability": 0.8829 + }, + { + "start": 17230.9, + "end": 17231.78, + "probability": 0.9359 + }, + { + "start": 17247.76, + "end": 17248.62, + "probability": 0.6745 + }, + { + "start": 17249.66, + "end": 17251.5, + "probability": 0.7204 + }, + { + "start": 17252.74, + "end": 17259.76, + "probability": 0.9069 + }, + { + "start": 17260.5, + "end": 17263.53, + "probability": 0.9888 + }, + { + "start": 17264.98, + "end": 17266.3, + "probability": 0.6821 + }, + { + "start": 17266.94, + "end": 17270.1, + "probability": 0.9607 + }, + { + "start": 17270.46, + "end": 17271.94, + "probability": 0.6022 + }, + { + "start": 17272.42, + "end": 17273.08, + "probability": 0.5743 + }, + { + "start": 17273.16, + "end": 17275.24, + "probability": 0.9681 + }, + { + "start": 17276.3, + "end": 17278.14, + "probability": 0.8282 + }, + { + "start": 17279.0, + "end": 17281.14, + "probability": 0.988 + }, + { + "start": 17281.94, + "end": 17286.28, + "probability": 0.98 + }, + { + "start": 17287.26, + "end": 17291.26, + "probability": 0.9873 + }, + { + "start": 17291.26, + "end": 17294.93, + "probability": 0.7748 + }, + { + "start": 17296.18, + "end": 17299.0, + "probability": 0.9456 + }, + { + "start": 17300.06, + "end": 17301.7, + "probability": 0.9503 + }, + { + "start": 17302.62, + "end": 17306.88, + "probability": 0.9782 + }, + { + "start": 17307.38, + "end": 17308.42, + "probability": 0.9702 + }, + { + "start": 17308.6, + "end": 17309.66, + "probability": 0.8464 + }, + { + "start": 17310.16, + "end": 17316.44, + "probability": 0.9757 + }, + { + "start": 17317.48, + "end": 17322.28, + "probability": 0.9886 + }, + { + "start": 17322.52, + "end": 17327.56, + "probability": 0.9798 + }, + { + "start": 17329.24, + "end": 17329.92, + "probability": 0.6735 + }, + { + "start": 17330.06, + "end": 17335.04, + "probability": 0.9747 + }, + { + "start": 17335.56, + "end": 17339.84, + "probability": 0.9944 + }, + { + "start": 17340.88, + "end": 17343.38, + "probability": 0.9977 + }, + { + "start": 17343.38, + "end": 17345.48, + "probability": 0.9674 + }, + { + "start": 17347.0, + "end": 17349.9, + "probability": 0.9868 + }, + { + "start": 17349.9, + "end": 17352.58, + "probability": 0.9449 + }, + { + "start": 17354.94, + "end": 17360.26, + "probability": 0.8865 + }, + { + "start": 17360.84, + "end": 17366.56, + "probability": 0.9233 + }, + { + "start": 17368.18, + "end": 17371.0, + "probability": 0.8338 + }, + { + "start": 17371.3, + "end": 17375.78, + "probability": 0.8135 + }, + { + "start": 17375.78, + "end": 17379.46, + "probability": 0.8467 + }, + { + "start": 17380.06, + "end": 17384.76, + "probability": 0.9533 + }, + { + "start": 17385.6, + "end": 17389.38, + "probability": 0.9887 + }, + { + "start": 17389.38, + "end": 17393.64, + "probability": 0.9954 + }, + { + "start": 17394.88, + "end": 17400.4, + "probability": 0.9779 + }, + { + "start": 17401.7, + "end": 17408.22, + "probability": 0.8147 + }, + { + "start": 17408.22, + "end": 17413.34, + "probability": 0.9912 + }, + { + "start": 17414.34, + "end": 17418.76, + "probability": 0.9955 + }, + { + "start": 17418.92, + "end": 17421.26, + "probability": 0.9238 + }, + { + "start": 17421.6, + "end": 17421.92, + "probability": 0.8756 + }, + { + "start": 17422.56, + "end": 17424.9, + "probability": 0.7979 + }, + { + "start": 17424.94, + "end": 17431.0, + "probability": 0.8743 + }, + { + "start": 17431.14, + "end": 17431.48, + "probability": 0.7394 + }, + { + "start": 17431.86, + "end": 17433.02, + "probability": 0.3905 + }, + { + "start": 17433.48, + "end": 17437.34, + "probability": 0.9922 + }, + { + "start": 17438.42, + "end": 17441.84, + "probability": 0.9804 + }, + { + "start": 17442.36, + "end": 17448.8, + "probability": 0.9802 + }, + { + "start": 17448.8, + "end": 17454.28, + "probability": 0.9754 + }, + { + "start": 17454.68, + "end": 17454.92, + "probability": 0.7577 + }, + { + "start": 17455.24, + "end": 17455.86, + "probability": 0.5971 + }, + { + "start": 17455.86, + "end": 17457.58, + "probability": 0.9306 + }, + { + "start": 17468.18, + "end": 17468.32, + "probability": 0.5292 + }, + { + "start": 17468.32, + "end": 17469.0, + "probability": 0.1329 + }, + { + "start": 17477.23, + "end": 17478.74, + "probability": 0.6086 + }, + { + "start": 17480.28, + "end": 17484.16, + "probability": 0.9938 + }, + { + "start": 17484.92, + "end": 17488.76, + "probability": 0.9965 + }, + { + "start": 17490.14, + "end": 17495.72, + "probability": 0.9894 + }, + { + "start": 17497.14, + "end": 17500.38, + "probability": 0.9827 + }, + { + "start": 17501.36, + "end": 17503.04, + "probability": 0.9888 + }, + { + "start": 17504.04, + "end": 17508.96, + "probability": 0.9468 + }, + { + "start": 17509.55, + "end": 17511.84, + "probability": 0.9656 + }, + { + "start": 17512.28, + "end": 17512.96, + "probability": 0.861 + }, + { + "start": 17513.84, + "end": 17515.96, + "probability": 0.6913 + }, + { + "start": 17516.78, + "end": 17519.28, + "probability": 0.9778 + }, + { + "start": 17519.88, + "end": 17521.15, + "probability": 0.2884 + }, + { + "start": 17521.94, + "end": 17527.66, + "probability": 0.9954 + }, + { + "start": 17528.26, + "end": 17529.68, + "probability": 0.8966 + }, + { + "start": 17530.3, + "end": 17532.36, + "probability": 0.9961 + }, + { + "start": 17532.78, + "end": 17533.74, + "probability": 0.8745 + }, + { + "start": 17534.02, + "end": 17537.46, + "probability": 0.9924 + }, + { + "start": 17537.46, + "end": 17541.1, + "probability": 0.9934 + }, + { + "start": 17542.4, + "end": 17546.04, + "probability": 0.7695 + }, + { + "start": 17546.78, + "end": 17552.16, + "probability": 0.9705 + }, + { + "start": 17552.6, + "end": 17556.28, + "probability": 0.9958 + }, + { + "start": 17557.12, + "end": 17560.52, + "probability": 0.9718 + }, + { + "start": 17561.06, + "end": 17562.48, + "probability": 0.8299 + }, + { + "start": 17563.0, + "end": 17565.5, + "probability": 0.9044 + }, + { + "start": 17566.0, + "end": 17569.04, + "probability": 0.9682 + }, + { + "start": 17569.82, + "end": 17572.24, + "probability": 0.9208 + }, + { + "start": 17572.62, + "end": 17573.66, + "probability": 0.7909 + }, + { + "start": 17574.02, + "end": 17575.38, + "probability": 0.9331 + }, + { + "start": 17575.94, + "end": 17580.38, + "probability": 0.9631 + }, + { + "start": 17581.1, + "end": 17583.18, + "probability": 0.8683 + }, + { + "start": 17583.34, + "end": 17583.94, + "probability": 0.8604 + }, + { + "start": 17584.44, + "end": 17587.7, + "probability": 0.9737 + }, + { + "start": 17587.92, + "end": 17588.7, + "probability": 0.7774 + }, + { + "start": 17589.28, + "end": 17590.62, + "probability": 0.8084 + }, + { + "start": 17591.66, + "end": 17594.84, + "probability": 0.9509 + }, + { + "start": 17595.52, + "end": 17600.46, + "probability": 0.998 + }, + { + "start": 17601.72, + "end": 17606.68, + "probability": 0.9911 + }, + { + "start": 17607.52, + "end": 17611.18, + "probability": 0.9966 + }, + { + "start": 17612.22, + "end": 17614.56, + "probability": 0.9985 + }, + { + "start": 17615.26, + "end": 17618.32, + "probability": 0.9185 + }, + { + "start": 17619.04, + "end": 17623.12, + "probability": 0.9861 + }, + { + "start": 17623.58, + "end": 17626.82, + "probability": 0.9462 + }, + { + "start": 17628.12, + "end": 17632.8, + "probability": 0.9529 + }, + { + "start": 17633.3, + "end": 17635.52, + "probability": 0.9196 + }, + { + "start": 17635.84, + "end": 17638.46, + "probability": 0.9758 + }, + { + "start": 17639.26, + "end": 17639.76, + "probability": 0.6414 + }, + { + "start": 17640.38, + "end": 17641.1, + "probability": 0.6821 + }, + { + "start": 17642.22, + "end": 17642.94, + "probability": 0.9167 + }, + { + "start": 17643.46, + "end": 17643.66, + "probability": 0.8141 + }, + { + "start": 17664.26, + "end": 17665.2, + "probability": 0.8046 + }, + { + "start": 17666.14, + "end": 17666.54, + "probability": 0.6072 + }, + { + "start": 17668.08, + "end": 17670.58, + "probability": 0.9719 + }, + { + "start": 17670.58, + "end": 17674.24, + "probability": 0.7315 + }, + { + "start": 17675.02, + "end": 17676.34, + "probability": 0.5834 + }, + { + "start": 17677.68, + "end": 17683.82, + "probability": 0.9912 + }, + { + "start": 17685.76, + "end": 17687.24, + "probability": 0.7235 + }, + { + "start": 17687.82, + "end": 17690.92, + "probability": 0.8831 + }, + { + "start": 17691.48, + "end": 17695.78, + "probability": 0.9872 + }, + { + "start": 17696.7, + "end": 17700.66, + "probability": 0.9876 + }, + { + "start": 17700.66, + "end": 17703.26, + "probability": 0.9996 + }, + { + "start": 17704.08, + "end": 17708.16, + "probability": 0.9987 + }, + { + "start": 17709.34, + "end": 17714.7, + "probability": 0.9141 + }, + { + "start": 17716.08, + "end": 17716.87, + "probability": 0.9009 + }, + { + "start": 17717.42, + "end": 17723.6, + "probability": 0.9847 + }, + { + "start": 17724.54, + "end": 17728.32, + "probability": 0.9558 + }, + { + "start": 17728.8, + "end": 17729.22, + "probability": 0.8556 + }, + { + "start": 17730.22, + "end": 17734.38, + "probability": 0.8802 + }, + { + "start": 17734.88, + "end": 17735.42, + "probability": 0.4226 + }, + { + "start": 17735.48, + "end": 17736.66, + "probability": 0.8633 + }, + { + "start": 17737.7, + "end": 17739.28, + "probability": 0.8994 + }, + { + "start": 17740.86, + "end": 17745.22, + "probability": 0.9933 + }, + { + "start": 17745.82, + "end": 17746.52, + "probability": 0.9561 + }, + { + "start": 17747.92, + "end": 17752.08, + "probability": 0.988 + }, + { + "start": 17752.7, + "end": 17755.54, + "probability": 0.913 + }, + { + "start": 17757.0, + "end": 17762.6, + "probability": 0.9748 + }, + { + "start": 17763.26, + "end": 17769.08, + "probability": 0.7734 + }, + { + "start": 17769.3, + "end": 17769.94, + "probability": 0.9066 + }, + { + "start": 17770.1, + "end": 17770.72, + "probability": 0.9254 + }, + { + "start": 17770.78, + "end": 17773.02, + "probability": 0.7648 + }, + { + "start": 17773.44, + "end": 17773.86, + "probability": 0.6473 + }, + { + "start": 17774.68, + "end": 17776.58, + "probability": 0.8445 + }, + { + "start": 17777.52, + "end": 17778.94, + "probability": 0.5582 + }, + { + "start": 17779.44, + "end": 17782.5, + "probability": 0.8672 + }, + { + "start": 17783.38, + "end": 17788.28, + "probability": 0.827 + }, + { + "start": 17788.28, + "end": 17793.26, + "probability": 0.9971 + }, + { + "start": 17794.74, + "end": 17799.46, + "probability": 0.9463 + }, + { + "start": 17800.36, + "end": 17802.84, + "probability": 0.8367 + }, + { + "start": 17803.28, + "end": 17805.62, + "probability": 0.9883 + }, + { + "start": 17806.06, + "end": 17807.62, + "probability": 0.9883 + }, + { + "start": 17807.88, + "end": 17808.68, + "probability": 0.9883 + }, + { + "start": 17808.9, + "end": 17809.68, + "probability": 0.9429 + }, + { + "start": 17810.88, + "end": 17814.54, + "probability": 0.9827 + }, + { + "start": 17815.1, + "end": 17818.32, + "probability": 0.9857 + }, + { + "start": 17820.14, + "end": 17824.7, + "probability": 0.9893 + }, + { + "start": 17825.42, + "end": 17828.36, + "probability": 0.9969 + }, + { + "start": 17828.36, + "end": 17831.92, + "probability": 0.9842 + }, + { + "start": 17833.44, + "end": 17834.74, + "probability": 0.6206 + }, + { + "start": 17835.46, + "end": 17836.92, + "probability": 0.7672 + }, + { + "start": 17837.52, + "end": 17838.56, + "probability": 0.9979 + }, + { + "start": 17839.2, + "end": 17842.2, + "probability": 0.9832 + }, + { + "start": 17842.72, + "end": 17844.86, + "probability": 0.9993 + }, + { + "start": 17845.56, + "end": 17846.06, + "probability": 0.7233 + }, + { + "start": 17846.96, + "end": 17848.88, + "probability": 0.5248 + }, + { + "start": 17849.42, + "end": 17850.36, + "probability": 0.5918 + }, + { + "start": 17853.04, + "end": 17854.98, + "probability": 0.9102 + }, + { + "start": 17870.78, + "end": 17872.12, + "probability": 0.603 + }, + { + "start": 17872.38, + "end": 17876.58, + "probability": 0.8175 + }, + { + "start": 17878.48, + "end": 17879.31, + "probability": 0.994 + }, + { + "start": 17880.48, + "end": 17882.48, + "probability": 0.9933 + }, + { + "start": 17883.8, + "end": 17885.76, + "probability": 0.9978 + }, + { + "start": 17887.72, + "end": 17888.22, + "probability": 0.27 + }, + { + "start": 17888.52, + "end": 17895.06, + "probability": 0.9768 + }, + { + "start": 17895.28, + "end": 17896.13, + "probability": 0.9951 + }, + { + "start": 17896.86, + "end": 17897.79, + "probability": 0.9966 + }, + { + "start": 17899.2, + "end": 17901.66, + "probability": 0.992 + }, + { + "start": 17903.18, + "end": 17906.62, + "probability": 0.9832 + }, + { + "start": 17906.62, + "end": 17908.8, + "probability": 0.9964 + }, + { + "start": 17910.86, + "end": 17912.4, + "probability": 0.8652 + }, + { + "start": 17912.56, + "end": 17913.28, + "probability": 0.7192 + }, + { + "start": 17913.4, + "end": 17914.36, + "probability": 0.9872 + }, + { + "start": 17915.12, + "end": 17915.76, + "probability": 0.9605 + }, + { + "start": 17918.6, + "end": 17918.88, + "probability": 0.4691 + }, + { + "start": 17918.96, + "end": 17921.2, + "probability": 0.9937 + }, + { + "start": 17921.46, + "end": 17923.96, + "probability": 0.9977 + }, + { + "start": 17924.7, + "end": 17925.42, + "probability": 0.7295 + }, + { + "start": 17927.12, + "end": 17927.6, + "probability": 0.6519 + }, + { + "start": 17928.74, + "end": 17930.46, + "probability": 0.9898 + }, + { + "start": 17931.36, + "end": 17932.02, + "probability": 0.9713 + }, + { + "start": 17934.12, + "end": 17938.56, + "probability": 0.996 + }, + { + "start": 17938.7, + "end": 17942.42, + "probability": 0.9834 + }, + { + "start": 17943.34, + "end": 17946.08, + "probability": 0.9243 + }, + { + "start": 17946.24, + "end": 17947.2, + "probability": 0.9596 + }, + { + "start": 17947.24, + "end": 17950.3, + "probability": 0.9821 + }, + { + "start": 17950.42, + "end": 17950.96, + "probability": 0.323 + }, + { + "start": 17951.64, + "end": 17954.1, + "probability": 0.9983 + }, + { + "start": 17955.06, + "end": 17956.93, + "probability": 0.8813 + }, + { + "start": 17957.54, + "end": 17958.0, + "probability": 0.8837 + }, + { + "start": 17959.0, + "end": 17960.56, + "probability": 0.9812 + }, + { + "start": 17961.38, + "end": 17966.88, + "probability": 0.9606 + }, + { + "start": 17967.68, + "end": 17970.44, + "probability": 0.9991 + }, + { + "start": 17972.04, + "end": 17973.48, + "probability": 0.9675 + }, + { + "start": 17974.14, + "end": 17975.82, + "probability": 0.9955 + }, + { + "start": 17977.62, + "end": 17980.68, + "probability": 0.9791 + }, + { + "start": 17982.32, + "end": 17983.58, + "probability": 0.9504 + }, + { + "start": 17983.62, + "end": 17987.14, + "probability": 0.9971 + }, + { + "start": 17987.9, + "end": 17990.5, + "probability": 0.9929 + }, + { + "start": 17990.62, + "end": 17993.14, + "probability": 0.9985 + }, + { + "start": 17993.56, + "end": 17994.4, + "probability": 0.6902 + }, + { + "start": 17994.82, + "end": 17996.3, + "probability": 0.884 + }, + { + "start": 17997.06, + "end": 18002.26, + "probability": 0.9531 + }, + { + "start": 18002.98, + "end": 18004.22, + "probability": 0.9829 + }, + { + "start": 18004.78, + "end": 18008.06, + "probability": 0.814 + }, + { + "start": 18009.56, + "end": 18012.0, + "probability": 0.9247 + }, + { + "start": 18013.14, + "end": 18014.54, + "probability": 0.8607 + }, + { + "start": 18014.84, + "end": 18017.08, + "probability": 0.991 + }, + { + "start": 18018.62, + "end": 18020.38, + "probability": 0.875 + }, + { + "start": 18021.24, + "end": 18022.06, + "probability": 0.619 + }, + { + "start": 18022.2, + "end": 18022.58, + "probability": 0.6159 + }, + { + "start": 18022.9, + "end": 18024.8, + "probability": 0.4637 + }, + { + "start": 18025.02, + "end": 18025.16, + "probability": 0.8284 + }, + { + "start": 18025.4, + "end": 18025.78, + "probability": 0.517 + }, + { + "start": 18025.9, + "end": 18027.1, + "probability": 0.5899 + }, + { + "start": 18027.1, + "end": 18027.8, + "probability": 0.7346 + }, + { + "start": 18028.62, + "end": 18031.74, + "probability": 0.8979 + }, + { + "start": 18031.78, + "end": 18032.71, + "probability": 0.9391 + }, + { + "start": 18034.88, + "end": 18034.88, + "probability": 0.1717 + }, + { + "start": 18034.88, + "end": 18035.56, + "probability": 0.7485 + }, + { + "start": 18035.68, + "end": 18035.88, + "probability": 0.8483 + }, + { + "start": 18036.0, + "end": 18039.1, + "probability": 0.9858 + }, + { + "start": 18039.26, + "end": 18039.54, + "probability": 0.5084 + }, + { + "start": 18039.6, + "end": 18039.62, + "probability": 0.5046 + }, + { + "start": 18039.72, + "end": 18042.92, + "probability": 0.969 + }, + { + "start": 18043.6, + "end": 18044.88, + "probability": 0.9375 + }, + { + "start": 18045.42, + "end": 18046.04, + "probability": 0.973 + }, + { + "start": 18046.76, + "end": 18048.28, + "probability": 0.9695 + }, + { + "start": 18048.36, + "end": 18049.24, + "probability": 0.5986 + }, + { + "start": 18049.38, + "end": 18050.0, + "probability": 0.6562 + }, + { + "start": 18051.22, + "end": 18056.18, + "probability": 0.9338 + }, + { + "start": 18057.24, + "end": 18059.76, + "probability": 0.9802 + }, + { + "start": 18060.46, + "end": 18064.86, + "probability": 0.9871 + }, + { + "start": 18065.92, + "end": 18069.1, + "probability": 0.9221 + }, + { + "start": 18069.18, + "end": 18070.96, + "probability": 0.9708 + }, + { + "start": 18071.36, + "end": 18073.62, + "probability": 0.4992 + }, + { + "start": 18073.74, + "end": 18075.27, + "probability": 0.9968 + }, + { + "start": 18076.12, + "end": 18077.46, + "probability": 0.8479 + }, + { + "start": 18078.58, + "end": 18079.86, + "probability": 0.9995 + }, + { + "start": 18080.56, + "end": 18084.06, + "probability": 0.9916 + }, + { + "start": 18084.6, + "end": 18085.62, + "probability": 0.7799 + }, + { + "start": 18086.08, + "end": 18088.46, + "probability": 0.9971 + }, + { + "start": 18089.1, + "end": 18092.18, + "probability": 0.8943 + }, + { + "start": 18092.82, + "end": 18096.12, + "probability": 0.9733 + }, + { + "start": 18096.82, + "end": 18100.56, + "probability": 0.999 + }, + { + "start": 18100.8, + "end": 18101.02, + "probability": 0.7049 + }, + { + "start": 18101.06, + "end": 18101.72, + "probability": 0.6669 + }, + { + "start": 18102.3, + "end": 18104.34, + "probability": 0.9443 + }, + { + "start": 18105.66, + "end": 18106.52, + "probability": 0.4655 + }, + { + "start": 18109.74, + "end": 18112.46, + "probability": 0.9735 + }, + { + "start": 18140.24, + "end": 18140.36, + "probability": 0.2672 + }, + { + "start": 18140.36, + "end": 18141.62, + "probability": 0.6528 + }, + { + "start": 18142.76, + "end": 18144.02, + "probability": 0.7786 + }, + { + "start": 18147.24, + "end": 18154.74, + "probability": 0.9396 + }, + { + "start": 18155.74, + "end": 18161.16, + "probability": 0.9951 + }, + { + "start": 18162.56, + "end": 18165.52, + "probability": 0.6595 + }, + { + "start": 18166.24, + "end": 18167.12, + "probability": 0.9053 + }, + { + "start": 18167.4, + "end": 18169.76, + "probability": 0.8885 + }, + { + "start": 18170.14, + "end": 18172.14, + "probability": 0.9519 + }, + { + "start": 18172.38, + "end": 18173.53, + "probability": 0.9852 + }, + { + "start": 18175.72, + "end": 18179.38, + "probability": 0.9946 + }, + { + "start": 18179.92, + "end": 18180.76, + "probability": 0.7026 + }, + { + "start": 18182.18, + "end": 18184.2, + "probability": 0.8972 + }, + { + "start": 18185.44, + "end": 18188.94, + "probability": 0.9362 + }, + { + "start": 18190.36, + "end": 18194.44, + "probability": 0.9967 + }, + { + "start": 18195.48, + "end": 18197.54, + "probability": 0.9718 + }, + { + "start": 18198.46, + "end": 18202.82, + "probability": 0.9474 + }, + { + "start": 18203.8, + "end": 18204.36, + "probability": 0.5547 + }, + { + "start": 18204.44, + "end": 18208.48, + "probability": 0.994 + }, + { + "start": 18210.54, + "end": 18215.3, + "probability": 0.8618 + }, + { + "start": 18215.48, + "end": 18216.5, + "probability": 0.9159 + }, + { + "start": 18218.76, + "end": 18222.38, + "probability": 0.6804 + }, + { + "start": 18222.9, + "end": 18228.84, + "probability": 0.9975 + }, + { + "start": 18229.38, + "end": 18233.76, + "probability": 0.9399 + }, + { + "start": 18234.32, + "end": 18234.98, + "probability": 0.7803 + }, + { + "start": 18235.6, + "end": 18238.44, + "probability": 0.9606 + }, + { + "start": 18239.76, + "end": 18242.9, + "probability": 0.8254 + }, + { + "start": 18243.9, + "end": 18247.58, + "probability": 0.9635 + }, + { + "start": 18248.32, + "end": 18251.92, + "probability": 0.9313 + }, + { + "start": 18253.04, + "end": 18254.22, + "probability": 0.9674 + }, + { + "start": 18255.26, + "end": 18259.38, + "probability": 0.9704 + }, + { + "start": 18259.38, + "end": 18262.16, + "probability": 0.9976 + }, + { + "start": 18263.24, + "end": 18264.0, + "probability": 0.7818 + }, + { + "start": 18264.18, + "end": 18268.52, + "probability": 0.9971 + }, + { + "start": 18268.76, + "end": 18273.46, + "probability": 0.8936 + }, + { + "start": 18274.82, + "end": 18274.9, + "probability": 0.7085 + }, + { + "start": 18275.0, + "end": 18278.14, + "probability": 0.9893 + }, + { + "start": 18279.02, + "end": 18281.7, + "probability": 0.9524 + }, + { + "start": 18283.76, + "end": 18286.09, + "probability": 0.9973 + }, + { + "start": 18286.54, + "end": 18287.1, + "probability": 0.705 + }, + { + "start": 18288.3, + "end": 18290.12, + "probability": 0.6548 + }, + { + "start": 18290.72, + "end": 18292.16, + "probability": 0.793 + }, + { + "start": 18293.04, + "end": 18297.08, + "probability": 0.9586 + }, + { + "start": 18298.7, + "end": 18300.58, + "probability": 0.9785 + }, + { + "start": 18301.96, + "end": 18303.54, + "probability": 0.9867 + }, + { + "start": 18304.74, + "end": 18305.86, + "probability": 0.9874 + }, + { + "start": 18306.9, + "end": 18309.14, + "probability": 0.9888 + }, + { + "start": 18310.22, + "end": 18315.7, + "probability": 0.9674 + }, + { + "start": 18315.74, + "end": 18316.26, + "probability": 0.8361 + }, + { + "start": 18317.52, + "end": 18322.3, + "probability": 0.9847 + }, + { + "start": 18322.66, + "end": 18323.74, + "probability": 0.9121 + }, + { + "start": 18323.82, + "end": 18325.07, + "probability": 0.8857 + }, + { + "start": 18326.04, + "end": 18327.36, + "probability": 0.9385 + }, + { + "start": 18328.24, + "end": 18333.9, + "probability": 0.9705 + }, + { + "start": 18334.62, + "end": 18336.28, + "probability": 0.9327 + }, + { + "start": 18337.38, + "end": 18337.92, + "probability": 0.6021 + }, + { + "start": 18337.94, + "end": 18339.3, + "probability": 0.9141 + }, + { + "start": 18351.46, + "end": 18353.32, + "probability": 0.6186 + }, + { + "start": 18354.46, + "end": 18356.45, + "probability": 0.897 + }, + { + "start": 18357.62, + "end": 18362.26, + "probability": 0.9365 + }, + { + "start": 18363.54, + "end": 18366.2, + "probability": 0.9977 + }, + { + "start": 18367.06, + "end": 18369.9, + "probability": 0.9324 + }, + { + "start": 18370.02, + "end": 18371.02, + "probability": 0.9629 + }, + { + "start": 18371.76, + "end": 18374.44, + "probability": 0.8612 + }, + { + "start": 18375.1, + "end": 18377.94, + "probability": 0.9775 + }, + { + "start": 18378.58, + "end": 18380.12, + "probability": 0.9951 + }, + { + "start": 18381.36, + "end": 18383.22, + "probability": 0.8935 + }, + { + "start": 18383.96, + "end": 18386.32, + "probability": 0.8769 + }, + { + "start": 18386.5, + "end": 18388.78, + "probability": 0.9757 + }, + { + "start": 18390.14, + "end": 18392.74, + "probability": 0.9586 + }, + { + "start": 18393.64, + "end": 18395.58, + "probability": 0.9708 + }, + { + "start": 18395.68, + "end": 18396.72, + "probability": 0.9283 + }, + { + "start": 18397.98, + "end": 18399.47, + "probability": 0.9547 + }, + { + "start": 18400.72, + "end": 18402.42, + "probability": 0.9946 + }, + { + "start": 18403.54, + "end": 18406.82, + "probability": 0.919 + }, + { + "start": 18407.86, + "end": 18410.3, + "probability": 0.8859 + }, + { + "start": 18411.5, + "end": 18418.68, + "probability": 0.9473 + }, + { + "start": 18418.96, + "end": 18420.16, + "probability": 0.7468 + }, + { + "start": 18420.98, + "end": 18422.94, + "probability": 0.9109 + }, + { + "start": 18423.04, + "end": 18423.72, + "probability": 0.9899 + }, + { + "start": 18424.82, + "end": 18428.16, + "probability": 0.937 + }, + { + "start": 18428.94, + "end": 18430.98, + "probability": 0.8628 + }, + { + "start": 18431.78, + "end": 18437.18, + "probability": 0.9963 + }, + { + "start": 18437.86, + "end": 18439.02, + "probability": 0.8116 + }, + { + "start": 18439.18, + "end": 18443.72, + "probability": 0.9957 + }, + { + "start": 18445.48, + "end": 18448.72, + "probability": 0.9834 + }, + { + "start": 18449.4, + "end": 18452.5, + "probability": 0.9961 + }, + { + "start": 18453.14, + "end": 18456.24, + "probability": 0.9997 + }, + { + "start": 18456.94, + "end": 18458.5, + "probability": 0.979 + }, + { + "start": 18459.7, + "end": 18464.02, + "probability": 0.6997 + }, + { + "start": 18464.56, + "end": 18466.74, + "probability": 0.9733 + }, + { + "start": 18467.38, + "end": 18472.98, + "probability": 0.9995 + }, + { + "start": 18474.14, + "end": 18476.48, + "probability": 0.9585 + }, + { + "start": 18477.36, + "end": 18482.68, + "probability": 0.9945 + }, + { + "start": 18482.93, + "end": 18487.68, + "probability": 0.9965 + }, + { + "start": 18489.34, + "end": 18492.36, + "probability": 0.954 + }, + { + "start": 18493.98, + "end": 18496.08, + "probability": 0.9625 + }, + { + "start": 18497.02, + "end": 18500.2, + "probability": 0.9892 + }, + { + "start": 18500.84, + "end": 18501.06, + "probability": 0.8522 + }, + { + "start": 18501.36, + "end": 18502.18, + "probability": 0.8145 + }, + { + "start": 18503.68, + "end": 18504.56, + "probability": 0.9905 + }, + { + "start": 18505.18, + "end": 18506.08, + "probability": 0.6899 + }, + { + "start": 18520.96, + "end": 18522.58, + "probability": 0.5447 + }, + { + "start": 18522.58, + "end": 18523.74, + "probability": 0.6691 + }, + { + "start": 18524.66, + "end": 18528.0, + "probability": 0.9824 + }, + { + "start": 18528.74, + "end": 18530.34, + "probability": 0.7141 + }, + { + "start": 18530.38, + "end": 18531.5, + "probability": 0.9728 + }, + { + "start": 18531.72, + "end": 18532.22, + "probability": 0.9773 + }, + { + "start": 18532.26, + "end": 18541.0, + "probability": 0.9266 + }, + { + "start": 18541.28, + "end": 18542.04, + "probability": 0.8768 + }, + { + "start": 18542.28, + "end": 18542.92, + "probability": 0.6783 + }, + { + "start": 18543.46, + "end": 18546.3, + "probability": 0.9673 + }, + { + "start": 18547.06, + "end": 18547.98, + "probability": 0.9452 + }, + { + "start": 18548.78, + "end": 18554.7, + "probability": 0.8818 + }, + { + "start": 18554.9, + "end": 18557.0, + "probability": 0.9319 + }, + { + "start": 18557.76, + "end": 18558.0, + "probability": 0.3335 + }, + { + "start": 18558.08, + "end": 18559.9, + "probability": 0.9506 + }, + { + "start": 18560.2, + "end": 18561.28, + "probability": 0.9966 + }, + { + "start": 18561.82, + "end": 18565.26, + "probability": 0.9614 + }, + { + "start": 18566.22, + "end": 18569.8, + "probability": 0.9675 + }, + { + "start": 18570.4, + "end": 18571.38, + "probability": 0.9466 + }, + { + "start": 18572.14, + "end": 18575.6, + "probability": 0.9938 + }, + { + "start": 18576.44, + "end": 18579.34, + "probability": 0.8145 + }, + { + "start": 18580.02, + "end": 18583.74, + "probability": 0.9642 + }, + { + "start": 18584.58, + "end": 18587.66, + "probability": 0.8789 + }, + { + "start": 18587.66, + "end": 18591.44, + "probability": 0.9984 + }, + { + "start": 18592.36, + "end": 18594.8, + "probability": 0.8359 + }, + { + "start": 18595.32, + "end": 18598.04, + "probability": 0.9448 + }, + { + "start": 18598.6, + "end": 18602.18, + "probability": 0.9907 + }, + { + "start": 18603.24, + "end": 18605.52, + "probability": 0.9099 + }, + { + "start": 18606.26, + "end": 18608.96, + "probability": 0.939 + }, + { + "start": 18609.66, + "end": 18610.3, + "probability": 0.9415 + }, + { + "start": 18611.06, + "end": 18615.32, + "probability": 0.9979 + }, + { + "start": 18615.94, + "end": 18618.1, + "probability": 0.8742 + }, + { + "start": 18618.76, + "end": 18619.4, + "probability": 0.6739 + }, + { + "start": 18620.34, + "end": 18623.26, + "probability": 0.973 + }, + { + "start": 18624.22, + "end": 18627.44, + "probability": 0.799 + }, + { + "start": 18628.1, + "end": 18631.73, + "probability": 0.9842 + }, + { + "start": 18631.98, + "end": 18633.7, + "probability": 0.9556 + }, + { + "start": 18634.66, + "end": 18636.96, + "probability": 0.9697 + }, + { + "start": 18637.78, + "end": 18641.1, + "probability": 0.9922 + }, + { + "start": 18641.28, + "end": 18645.42, + "probability": 0.7909 + }, + { + "start": 18646.28, + "end": 18649.86, + "probability": 0.9242 + }, + { + "start": 18650.72, + "end": 18652.54, + "probability": 0.9775 + }, + { + "start": 18652.74, + "end": 18655.54, + "probability": 0.9714 + }, + { + "start": 18655.86, + "end": 18657.22, + "probability": 0.4027 + }, + { + "start": 18657.3, + "end": 18658.44, + "probability": 0.9136 + }, + { + "start": 18659.0, + "end": 18660.44, + "probability": 0.8694 + }, + { + "start": 18661.08, + "end": 18662.14, + "probability": 0.9954 + }, + { + "start": 18662.8, + "end": 18664.62, + "probability": 0.9811 + }, + { + "start": 18665.2, + "end": 18666.9, + "probability": 0.8001 + }, + { + "start": 18667.72, + "end": 18670.24, + "probability": 0.9932 + }, + { + "start": 18670.72, + "end": 18674.4, + "probability": 0.9854 + }, + { + "start": 18675.16, + "end": 18677.88, + "probability": 0.9091 + }, + { + "start": 18678.56, + "end": 18682.34, + "probability": 0.9949 + }, + { + "start": 18682.98, + "end": 18685.68, + "probability": 0.9814 + }, + { + "start": 18686.6, + "end": 18688.82, + "probability": 0.9212 + }, + { + "start": 18690.9, + "end": 18693.88, + "probability": 0.7797 + }, + { + "start": 18695.14, + "end": 18697.78, + "probability": 0.9528 + }, + { + "start": 18698.76, + "end": 18699.66, + "probability": 0.9461 + }, + { + "start": 18700.24, + "end": 18700.84, + "probability": 0.9324 + }, + { + "start": 18701.54, + "end": 18702.0, + "probability": 0.6086 + }, + { + "start": 18702.76, + "end": 18703.8, + "probability": 0.9816 + }, + { + "start": 18703.94, + "end": 18704.9, + "probability": 0.8061 + }, + { + "start": 18705.38, + "end": 18707.62, + "probability": 0.9891 + }, + { + "start": 18708.12, + "end": 18710.16, + "probability": 0.3128 + }, + { + "start": 18710.44, + "end": 18711.08, + "probability": 0.6692 + }, + { + "start": 18711.08, + "end": 18711.36, + "probability": 0.613 + }, + { + "start": 18711.92, + "end": 18713.7, + "probability": 0.744 + }, + { + "start": 18732.58, + "end": 18733.42, + "probability": 0.5212 + }, + { + "start": 18734.16, + "end": 18735.16, + "probability": 0.7086 + }, + { + "start": 18735.84, + "end": 18737.2, + "probability": 0.8266 + }, + { + "start": 18738.74, + "end": 18740.54, + "probability": 0.9652 + }, + { + "start": 18742.36, + "end": 18747.63, + "probability": 0.9785 + }, + { + "start": 18748.58, + "end": 18749.7, + "probability": 0.989 + }, + { + "start": 18751.2, + "end": 18754.58, + "probability": 0.9758 + }, + { + "start": 18755.26, + "end": 18758.46, + "probability": 0.9638 + }, + { + "start": 18759.58, + "end": 18762.2, + "probability": 0.9336 + }, + { + "start": 18763.6, + "end": 18767.38, + "probability": 0.9937 + }, + { + "start": 18769.3, + "end": 18775.22, + "probability": 0.9954 + }, + { + "start": 18776.48, + "end": 18779.92, + "probability": 0.9738 + }, + { + "start": 18780.76, + "end": 18782.36, + "probability": 0.9956 + }, + { + "start": 18782.96, + "end": 18787.46, + "probability": 0.997 + }, + { + "start": 18788.18, + "end": 18792.18, + "probability": 0.9938 + }, + { + "start": 18793.56, + "end": 18795.18, + "probability": 0.6869 + }, + { + "start": 18795.86, + "end": 18803.6, + "probability": 0.8626 + }, + { + "start": 18804.68, + "end": 18806.4, + "probability": 0.7722 + }, + { + "start": 18807.72, + "end": 18811.28, + "probability": 0.9983 + }, + { + "start": 18812.26, + "end": 18815.84, + "probability": 0.9947 + }, + { + "start": 18816.62, + "end": 18823.14, + "probability": 0.9874 + }, + { + "start": 18824.68, + "end": 18825.5, + "probability": 0.683 + }, + { + "start": 18826.18, + "end": 18831.28, + "probability": 0.9661 + }, + { + "start": 18832.48, + "end": 18834.52, + "probability": 0.9386 + }, + { + "start": 18835.28, + "end": 18837.76, + "probability": 0.8973 + }, + { + "start": 18838.54, + "end": 18840.42, + "probability": 0.9888 + }, + { + "start": 18841.16, + "end": 18844.0, + "probability": 0.9856 + }, + { + "start": 18844.1, + "end": 18846.38, + "probability": 0.9917 + }, + { + "start": 18847.38, + "end": 18849.78, + "probability": 0.9612 + }, + { + "start": 18850.82, + "end": 18852.22, + "probability": 0.896 + }, + { + "start": 18854.04, + "end": 18859.02, + "probability": 0.9974 + }, + { + "start": 18859.56, + "end": 18862.16, + "probability": 0.8564 + }, + { + "start": 18863.2, + "end": 18864.58, + "probability": 0.8662 + }, + { + "start": 18865.84, + "end": 18867.66, + "probability": 0.9634 + }, + { + "start": 18868.72, + "end": 18871.32, + "probability": 0.9838 + }, + { + "start": 18871.66, + "end": 18871.84, + "probability": 0.5026 + }, + { + "start": 18872.86, + "end": 18877.04, + "probability": 0.9805 + }, + { + "start": 18877.76, + "end": 18879.14, + "probability": 0.9816 + }, + { + "start": 18879.3, + "end": 18880.88, + "probability": 0.9956 + }, + { + "start": 18881.2, + "end": 18884.72, + "probability": 0.9945 + }, + { + "start": 18885.16, + "end": 18889.24, + "probability": 0.9602 + }, + { + "start": 18890.0, + "end": 18893.88, + "probability": 0.9978 + }, + { + "start": 18893.88, + "end": 18899.22, + "probability": 0.9993 + }, + { + "start": 18901.08, + "end": 18902.12, + "probability": 0.7874 + }, + { + "start": 18902.58, + "end": 18902.92, + "probability": 0.6085 + }, + { + "start": 18902.98, + "end": 18905.4, + "probability": 0.9966 + }, + { + "start": 18906.08, + "end": 18907.66, + "probability": 0.682 + }, + { + "start": 18909.5, + "end": 18910.9, + "probability": 0.6362 + }, + { + "start": 18912.44, + "end": 18914.7, + "probability": 0.9919 + }, + { + "start": 18915.42, + "end": 18916.78, + "probability": 0.9801 + }, + { + "start": 18917.9, + "end": 18921.86, + "probability": 0.9849 + }, + { + "start": 18922.44, + "end": 18923.17, + "probability": 0.8932 + }, + { + "start": 18924.32, + "end": 18926.96, + "probability": 0.9329 + }, + { + "start": 18927.44, + "end": 18928.24, + "probability": 0.5292 + }, + { + "start": 18928.3, + "end": 18929.42, + "probability": 0.7685 + }, + { + "start": 18929.9, + "end": 18933.5, + "probability": 0.9941 + }, + { + "start": 18934.18, + "end": 18940.28, + "probability": 0.998 + }, + { + "start": 18940.56, + "end": 18943.1, + "probability": 0.9694 + }, + { + "start": 18943.82, + "end": 18944.2, + "probability": 0.7053 + }, + { + "start": 18944.32, + "end": 18946.28, + "probability": 0.8927 + }, + { + "start": 18961.86, + "end": 18963.4, + "probability": 0.8944 + }, + { + "start": 18963.68, + "end": 18964.9, + "probability": 0.1067 + }, + { + "start": 18966.08, + "end": 18966.32, + "probability": 0.3577 + }, + { + "start": 18966.9, + "end": 18967.86, + "probability": 0.4412 + }, + { + "start": 18968.6, + "end": 18972.06, + "probability": 0.9155 + }, + { + "start": 18973.08, + "end": 18974.92, + "probability": 0.9963 + }, + { + "start": 18976.86, + "end": 18977.07, + "probability": 0.0193 + }, + { + "start": 18977.54, + "end": 18977.82, + "probability": 0.2842 + }, + { + "start": 18977.82, + "end": 18978.86, + "probability": 0.8152 + }, + { + "start": 18979.52, + "end": 18980.0, + "probability": 0.4446 + }, + { + "start": 18980.0, + "end": 18981.82, + "probability": 0.9654 + }, + { + "start": 18983.16, + "end": 18986.9, + "probability": 0.8671 + }, + { + "start": 18987.96, + "end": 18989.27, + "probability": 0.9842 + }, + { + "start": 18989.44, + "end": 18991.0, + "probability": 0.9844 + }, + { + "start": 18991.08, + "end": 18992.38, + "probability": 0.9762 + }, + { + "start": 18993.2, + "end": 18996.36, + "probability": 0.9934 + }, + { + "start": 18997.42, + "end": 18999.36, + "probability": 0.9324 + }, + { + "start": 19000.5, + "end": 19003.88, + "probability": 0.8409 + }, + { + "start": 19005.06, + "end": 19008.22, + "probability": 0.9232 + }, + { + "start": 19009.4, + "end": 19010.08, + "probability": 0.3426 + }, + { + "start": 19010.68, + "end": 19011.72, + "probability": 0.9315 + }, + { + "start": 19013.42, + "end": 19017.08, + "probability": 0.9337 + }, + { + "start": 19017.98, + "end": 19020.56, + "probability": 0.8394 + }, + { + "start": 19022.42, + "end": 19022.88, + "probability": 0.2728 + }, + { + "start": 19022.88, + "end": 19023.2, + "probability": 0.8867 + }, + { + "start": 19023.92, + "end": 19026.0, + "probability": 0.9883 + }, + { + "start": 19027.72, + "end": 19029.96, + "probability": 0.9875 + }, + { + "start": 19030.38, + "end": 19031.82, + "probability": 0.9233 + }, + { + "start": 19032.78, + "end": 19034.1, + "probability": 0.9775 + }, + { + "start": 19035.2, + "end": 19035.32, + "probability": 0.0101 + }, + { + "start": 19035.38, + "end": 19041.56, + "probability": 0.9678 + }, + { + "start": 19042.26, + "end": 19047.94, + "probability": 0.9905 + }, + { + "start": 19048.8, + "end": 19051.5, + "probability": 0.9766 + }, + { + "start": 19052.3, + "end": 19055.06, + "probability": 0.9336 + }, + { + "start": 19056.2, + "end": 19058.54, + "probability": 0.9993 + }, + { + "start": 19059.12, + "end": 19061.5, + "probability": 0.8052 + }, + { + "start": 19062.68, + "end": 19068.26, + "probability": 0.9937 + }, + { + "start": 19069.06, + "end": 19072.72, + "probability": 0.9871 + }, + { + "start": 19073.76, + "end": 19077.72, + "probability": 0.9958 + }, + { + "start": 19078.56, + "end": 19081.42, + "probability": 0.9983 + }, + { + "start": 19082.0, + "end": 19083.06, + "probability": 0.9135 + }, + { + "start": 19083.58, + "end": 19085.88, + "probability": 0.9236 + }, + { + "start": 19086.56, + "end": 19088.92, + "probability": 0.9936 + }, + { + "start": 19090.12, + "end": 19093.24, + "probability": 0.9961 + }, + { + "start": 19094.3, + "end": 19095.62, + "probability": 0.8947 + }, + { + "start": 19095.7, + "end": 19097.86, + "probability": 0.9503 + }, + { + "start": 19097.92, + "end": 19098.48, + "probability": 0.6595 + }, + { + "start": 19099.12, + "end": 19100.52, + "probability": 0.9934 + }, + { + "start": 19101.98, + "end": 19103.54, + "probability": 0.9977 + }, + { + "start": 19103.96, + "end": 19109.46, + "probability": 0.9982 + }, + { + "start": 19110.36, + "end": 19112.66, + "probability": 0.9995 + }, + { + "start": 19113.68, + "end": 19113.96, + "probability": 0.5423 + }, + { + "start": 19114.74, + "end": 19115.1, + "probability": 0.4701 + }, + { + "start": 19115.4, + "end": 19117.14, + "probability": 0.9129 + }, + { + "start": 19118.42, + "end": 19122.18, + "probability": 0.9957 + }, + { + "start": 19122.8, + "end": 19125.14, + "probability": 0.9941 + }, + { + "start": 19126.14, + "end": 19127.9, + "probability": 0.9966 + }, + { + "start": 19128.98, + "end": 19131.32, + "probability": 0.9989 + }, + { + "start": 19131.98, + "end": 19133.98, + "probability": 0.9902 + }, + { + "start": 19134.76, + "end": 19137.14, + "probability": 0.9976 + }, + { + "start": 19137.24, + "end": 19142.02, + "probability": 0.9062 + }, + { + "start": 19143.06, + "end": 19145.54, + "probability": 0.9439 + }, + { + "start": 19145.66, + "end": 19146.06, + "probability": 0.7362 + }, + { + "start": 19146.96, + "end": 19150.44, + "probability": 0.8567 + }, + { + "start": 19151.74, + "end": 19154.56, + "probability": 0.9867 + }, + { + "start": 19155.28, + "end": 19157.9, + "probability": 0.9552 + }, + { + "start": 19157.96, + "end": 19160.88, + "probability": 0.9827 + }, + { + "start": 19161.42, + "end": 19166.88, + "probability": 0.9741 + }, + { + "start": 19167.04, + "end": 19169.94, + "probability": 0.9878 + }, + { + "start": 19171.1, + "end": 19176.56, + "probability": 0.9922 + }, + { + "start": 19176.72, + "end": 19176.76, + "probability": 0.2659 + }, + { + "start": 19176.86, + "end": 19177.56, + "probability": 0.859 + }, + { + "start": 19177.72, + "end": 19178.5, + "probability": 0.822 + }, + { + "start": 19178.7, + "end": 19179.1, + "probability": 0.9247 + }, + { + "start": 19179.76, + "end": 19181.78, + "probability": 0.9026 + }, + { + "start": 19182.4, + "end": 19187.22, + "probability": 0.9954 + }, + { + "start": 19187.84, + "end": 19189.96, + "probability": 0.9968 + }, + { + "start": 19190.08, + "end": 19190.68, + "probability": 0.7788 + }, + { + "start": 19191.46, + "end": 19191.8, + "probability": 0.8187 + }, + { + "start": 19193.26, + "end": 19196.3, + "probability": 0.9972 + }, + { + "start": 19196.52, + "end": 19196.74, + "probability": 0.28 + }, + { + "start": 19196.74, + "end": 19197.78, + "probability": 0.7914 + }, + { + "start": 19198.33, + "end": 19201.56, + "probability": 0.1931 + }, + { + "start": 19201.82, + "end": 19201.89, + "probability": 0.1366 + }, + { + "start": 19203.06, + "end": 19203.18, + "probability": 0.054 + }, + { + "start": 19203.38, + "end": 19204.18, + "probability": 0.5136 + }, + { + "start": 19208.2, + "end": 19208.66, + "probability": 0.0153 + }, + { + "start": 19208.66, + "end": 19208.68, + "probability": 0.0823 + }, + { + "start": 19208.68, + "end": 19208.68, + "probability": 0.0596 + }, + { + "start": 19208.68, + "end": 19208.7, + "probability": 0.0845 + }, + { + "start": 19208.7, + "end": 19208.7, + "probability": 0.4596 + }, + { + "start": 19208.7, + "end": 19209.77, + "probability": 0.3605 + }, + { + "start": 19215.26, + "end": 19218.42, + "probability": 0.7579 + }, + { + "start": 19224.54, + "end": 19225.72, + "probability": 0.7515 + }, + { + "start": 19226.36, + "end": 19227.38, + "probability": 0.7693 + }, + { + "start": 19229.64, + "end": 19230.62, + "probability": 0.9664 + }, + { + "start": 19233.16, + "end": 19235.3, + "probability": 0.9409 + }, + { + "start": 19237.1, + "end": 19244.12, + "probability": 0.9983 + }, + { + "start": 19245.32, + "end": 19247.12, + "probability": 0.9674 + }, + { + "start": 19248.16, + "end": 19250.06, + "probability": 0.9988 + }, + { + "start": 19251.84, + "end": 19253.99, + "probability": 0.7485 + }, + { + "start": 19255.08, + "end": 19259.12, + "probability": 0.9857 + }, + { + "start": 19259.22, + "end": 19260.84, + "probability": 0.9854 + }, + { + "start": 19261.78, + "end": 19262.78, + "probability": 0.7593 + }, + { + "start": 19263.9, + "end": 19265.26, + "probability": 0.9966 + }, + { + "start": 19265.54, + "end": 19266.84, + "probability": 0.9912 + }, + { + "start": 19267.48, + "end": 19267.68, + "probability": 0.0221 + }, + { + "start": 19267.8, + "end": 19268.43, + "probability": 0.6933 + }, + { + "start": 19269.34, + "end": 19271.1, + "probability": 0.9937 + }, + { + "start": 19271.8, + "end": 19272.5, + "probability": 0.9386 + }, + { + "start": 19273.1, + "end": 19273.28, + "probability": 0.8897 + }, + { + "start": 19273.34, + "end": 19277.12, + "probability": 0.9945 + }, + { + "start": 19278.0, + "end": 19279.48, + "probability": 0.9531 + }, + { + "start": 19279.52, + "end": 19280.58, + "probability": 0.9815 + }, + { + "start": 19281.0, + "end": 19281.5, + "probability": 0.8984 + }, + { + "start": 19281.92, + "end": 19282.46, + "probability": 0.6891 + }, + { + "start": 19282.72, + "end": 19284.54, + "probability": 0.9912 + }, + { + "start": 19286.36, + "end": 19289.32, + "probability": 0.9889 + }, + { + "start": 19290.76, + "end": 19291.24, + "probability": 0.1356 + }, + { + "start": 19291.24, + "end": 19291.52, + "probability": 0.5903 + }, + { + "start": 19292.18, + "end": 19293.2, + "probability": 0.9524 + }, + { + "start": 19293.46, + "end": 19297.56, + "probability": 0.9834 + }, + { + "start": 19298.24, + "end": 19299.32, + "probability": 0.9981 + }, + { + "start": 19299.54, + "end": 19299.56, + "probability": 0.3718 + }, + { + "start": 19300.48, + "end": 19303.52, + "probability": 0.8459 + }, + { + "start": 19304.42, + "end": 19305.3, + "probability": 0.7763 + }, + { + "start": 19305.82, + "end": 19306.42, + "probability": 0.126 + }, + { + "start": 19306.54, + "end": 19308.12, + "probability": 0.769 + }, + { + "start": 19308.76, + "end": 19311.16, + "probability": 0.8434 + }, + { + "start": 19312.94, + "end": 19314.74, + "probability": 0.9472 + }, + { + "start": 19315.22, + "end": 19316.62, + "probability": 0.9722 + }, + { + "start": 19317.56, + "end": 19319.58, + "probability": 0.8233 + }, + { + "start": 19319.92, + "end": 19321.5, + "probability": 0.6059 + }, + { + "start": 19323.16, + "end": 19326.34, + "probability": 0.9463 + }, + { + "start": 19327.76, + "end": 19330.0, + "probability": 0.9187 + }, + { + "start": 19330.62, + "end": 19330.92, + "probability": 0.9611 + }, + { + "start": 19332.32, + "end": 19333.1, + "probability": 0.3965 + }, + { + "start": 19333.44, + "end": 19334.24, + "probability": 0.8197 + }, + { + "start": 19334.36, + "end": 19336.34, + "probability": 0.9819 + }, + { + "start": 19338.68, + "end": 19340.16, + "probability": 0.8414 + }, + { + "start": 19341.26, + "end": 19342.81, + "probability": 0.9802 + }, + { + "start": 19343.52, + "end": 19346.96, + "probability": 0.939 + }, + { + "start": 19350.04, + "end": 19354.02, + "probability": 0.9681 + }, + { + "start": 19354.32, + "end": 19355.0, + "probability": 0.4916 + }, + { + "start": 19356.74, + "end": 19365.4, + "probability": 0.934 + }, + { + "start": 19365.64, + "end": 19369.58, + "probability": 0.9828 + }, + { + "start": 19370.24, + "end": 19371.0, + "probability": 0.9861 + }, + { + "start": 19372.2, + "end": 19375.62, + "probability": 0.2651 + }, + { + "start": 19375.62, + "end": 19377.44, + "probability": 0.8747 + }, + { + "start": 19378.66, + "end": 19386.16, + "probability": 0.9955 + }, + { + "start": 19387.44, + "end": 19387.7, + "probability": 0.5771 + }, + { + "start": 19387.76, + "end": 19388.34, + "probability": 0.9533 + }, + { + "start": 19388.8, + "end": 19389.58, + "probability": 0.8642 + }, + { + "start": 19389.68, + "end": 19390.31, + "probability": 0.7891 + }, + { + "start": 19390.66, + "end": 19392.34, + "probability": 0.9852 + }, + { + "start": 19393.68, + "end": 19399.98, + "probability": 0.9505 + }, + { + "start": 19401.14, + "end": 19401.86, + "probability": 0.9017 + }, + { + "start": 19403.1, + "end": 19405.88, + "probability": 0.9996 + }, + { + "start": 19407.18, + "end": 19409.02, + "probability": 0.9529 + }, + { + "start": 19409.04, + "end": 19409.84, + "probability": 0.2654 + }, + { + "start": 19410.7, + "end": 19411.92, + "probability": 0.3906 + }, + { + "start": 19411.96, + "end": 19411.98, + "probability": 0.0599 + }, + { + "start": 19411.98, + "end": 19412.6, + "probability": 0.2185 + }, + { + "start": 19412.7, + "end": 19414.14, + "probability": 0.5661 + }, + { + "start": 19414.98, + "end": 19415.4, + "probability": 0.4608 + }, + { + "start": 19415.46, + "end": 19419.8, + "probability": 0.9868 + }, + { + "start": 19421.54, + "end": 19424.02, + "probability": 0.7008 + }, + { + "start": 19425.36, + "end": 19429.72, + "probability": 0.9928 + }, + { + "start": 19431.24, + "end": 19436.98, + "probability": 0.9979 + }, + { + "start": 19438.08, + "end": 19443.96, + "probability": 0.9885 + }, + { + "start": 19444.72, + "end": 19445.28, + "probability": 0.6678 + }, + { + "start": 19445.3, + "end": 19446.3, + "probability": 0.7135 + }, + { + "start": 19448.38, + "end": 19449.94, + "probability": 0.9171 + }, + { + "start": 19451.94, + "end": 19454.2, + "probability": 0.974 + }, + { + "start": 19454.2, + "end": 19458.9, + "probability": 0.9803 + }, + { + "start": 19459.52, + "end": 19461.8, + "probability": 0.9963 + }, + { + "start": 19462.54, + "end": 19464.78, + "probability": 0.5099 + }, + { + "start": 19464.78, + "end": 19465.7, + "probability": 0.7232 + }, + { + "start": 19466.42, + "end": 19472.76, + "probability": 0.9945 + }, + { + "start": 19473.36, + "end": 19475.82, + "probability": 0.8501 + }, + { + "start": 19476.34, + "end": 19477.02, + "probability": 0.5969 + }, + { + "start": 19477.06, + "end": 19478.29, + "probability": 0.9706 + }, + { + "start": 19486.02, + "end": 19488.36, + "probability": 0.7257 + }, + { + "start": 19488.36, + "end": 19489.64, + "probability": 0.9124 + }, + { + "start": 19489.94, + "end": 19490.16, + "probability": 0.4974 + }, + { + "start": 19499.88, + "end": 19500.1, + "probability": 0.1642 + }, + { + "start": 19500.1, + "end": 19501.52, + "probability": 0.1243 + }, + { + "start": 19502.06, + "end": 19502.06, + "probability": 0.0404 + }, + { + "start": 19502.06, + "end": 19506.77, + "probability": 0.7443 + }, + { + "start": 19507.3, + "end": 19507.3, + "probability": 0.4137 + }, + { + "start": 19507.3, + "end": 19508.94, + "probability": 0.8582 + }, + { + "start": 19509.16, + "end": 19510.76, + "probability": 0.5628 + }, + { + "start": 19510.94, + "end": 19511.76, + "probability": 0.4383 + }, + { + "start": 19511.82, + "end": 19511.92, + "probability": 0.3888 + }, + { + "start": 19511.92, + "end": 19511.92, + "probability": 0.4482 + }, + { + "start": 19511.92, + "end": 19511.94, + "probability": 0.6266 + }, + { + "start": 19511.94, + "end": 19512.66, + "probability": 0.2588 + }, + { + "start": 19512.86, + "end": 19513.56, + "probability": 0.0738 + }, + { + "start": 19513.72, + "end": 19515.2, + "probability": 0.4111 + }, + { + "start": 19515.42, + "end": 19515.62, + "probability": 0.0698 + }, + { + "start": 19515.62, + "end": 19515.62, + "probability": 0.5462 + }, + { + "start": 19515.62, + "end": 19518.44, + "probability": 0.8784 + }, + { + "start": 19519.82, + "end": 19522.12, + "probability": 0.654 + }, + { + "start": 19522.52, + "end": 19523.0, + "probability": 0.2333 + }, + { + "start": 19523.62, + "end": 19527.04, + "probability": 0.7313 + }, + { + "start": 19527.4, + "end": 19527.42, + "probability": 0.4889 + }, + { + "start": 19527.44, + "end": 19527.9, + "probability": 0.6832 + }, + { + "start": 19528.76, + "end": 19531.52, + "probability": 0.6426 + }, + { + "start": 19531.64, + "end": 19533.88, + "probability": 0.8056 + }, + { + "start": 19535.42, + "end": 19539.82, + "probability": 0.9586 + }, + { + "start": 19541.26, + "end": 19543.66, + "probability": 0.5022 + }, + { + "start": 19544.4, + "end": 19548.6, + "probability": 0.7507 + }, + { + "start": 19549.34, + "end": 19550.52, + "probability": 0.7294 + }, + { + "start": 19551.34, + "end": 19557.28, + "probability": 0.9709 + }, + { + "start": 19558.14, + "end": 19560.0, + "probability": 0.8046 + }, + { + "start": 19560.7, + "end": 19562.64, + "probability": 0.9602 + }, + { + "start": 19564.1, + "end": 19565.25, + "probability": 0.9946 + }, + { + "start": 19567.34, + "end": 19569.64, + "probability": 0.9759 + }, + { + "start": 19570.4, + "end": 19574.5, + "probability": 0.979 + }, + { + "start": 19576.13, + "end": 19582.38, + "probability": 0.9955 + }, + { + "start": 19583.18, + "end": 19586.46, + "probability": 0.9125 + }, + { + "start": 19587.0, + "end": 19588.78, + "probability": 0.9894 + }, + { + "start": 19589.66, + "end": 19594.64, + "probability": 0.9938 + }, + { + "start": 19595.96, + "end": 19598.18, + "probability": 0.9601 + }, + { + "start": 19599.3, + "end": 19600.58, + "probability": 0.9971 + }, + { + "start": 19601.1, + "end": 19609.48, + "probability": 0.9992 + }, + { + "start": 19610.4, + "end": 19612.04, + "probability": 0.9998 + }, + { + "start": 19612.7, + "end": 19613.62, + "probability": 0.9176 + }, + { + "start": 19613.66, + "end": 19618.1, + "probability": 0.9635 + }, + { + "start": 19618.72, + "end": 19620.32, + "probability": 0.9895 + }, + { + "start": 19621.24, + "end": 19623.24, + "probability": 0.9176 + }, + { + "start": 19624.02, + "end": 19625.02, + "probability": 0.6614 + }, + { + "start": 19626.43, + "end": 19636.48, + "probability": 0.9854 + }, + { + "start": 19638.16, + "end": 19639.52, + "probability": 0.9978 + }, + { + "start": 19640.7, + "end": 19643.6, + "probability": 0.9262 + }, + { + "start": 19644.16, + "end": 19644.68, + "probability": 0.8885 + }, + { + "start": 19645.72, + "end": 19650.62, + "probability": 0.995 + }, + { + "start": 19652.2, + "end": 19653.78, + "probability": 0.8046 + }, + { + "start": 19655.06, + "end": 19655.9, + "probability": 0.8283 + }, + { + "start": 19656.68, + "end": 19657.62, + "probability": 0.9702 + }, + { + "start": 19658.94, + "end": 19661.26, + "probability": 0.8276 + }, + { + "start": 19662.26, + "end": 19664.1, + "probability": 0.9536 + }, + { + "start": 19665.3, + "end": 19666.28, + "probability": 0.8187 + }, + { + "start": 19667.16, + "end": 19669.0, + "probability": 0.9972 + }, + { + "start": 19669.66, + "end": 19675.16, + "probability": 0.8796 + }, + { + "start": 19675.42, + "end": 19675.96, + "probability": 0.8355 + }, + { + "start": 19676.5, + "end": 19677.18, + "probability": 0.5461 + }, + { + "start": 19677.9, + "end": 19679.88, + "probability": 0.8631 + }, + { + "start": 19680.54, + "end": 19681.42, + "probability": 0.9604 + }, + { + "start": 19682.2, + "end": 19684.6, + "probability": 0.9332 + }, + { + "start": 19685.48, + "end": 19687.08, + "probability": 0.8725 + }, + { + "start": 19687.86, + "end": 19689.32, + "probability": 0.8619 + }, + { + "start": 19690.06, + "end": 19693.44, + "probability": 0.9407 + }, + { + "start": 19694.22, + "end": 19698.32, + "probability": 0.9667 + }, + { + "start": 19698.42, + "end": 19700.78, + "probability": 0.8112 + }, + { + "start": 19701.36, + "end": 19703.36, + "probability": 0.9985 + }, + { + "start": 19704.12, + "end": 19707.9, + "probability": 0.9422 + }, + { + "start": 19709.16, + "end": 19709.6, + "probability": 0.7528 + }, + { + "start": 19709.96, + "end": 19711.34, + "probability": 0.6348 + }, + { + "start": 19711.9, + "end": 19715.15, + "probability": 0.9045 + }, + { + "start": 19717.06, + "end": 19718.34, + "probability": 0.8692 + }, + { + "start": 19718.64, + "end": 19723.42, + "probability": 0.9985 + }, + { + "start": 19723.98, + "end": 19726.02, + "probability": 0.9155 + }, + { + "start": 19726.76, + "end": 19731.5, + "probability": 0.9868 + }, + { + "start": 19732.3, + "end": 19735.72, + "probability": 0.9663 + }, + { + "start": 19736.68, + "end": 19739.56, + "probability": 0.9255 + }, + { + "start": 19739.78, + "end": 19740.06, + "probability": 0.8854 + }, + { + "start": 19740.4, + "end": 19740.98, + "probability": 0.7196 + }, + { + "start": 19741.04, + "end": 19742.96, + "probability": 0.8466 + }, + { + "start": 19744.96, + "end": 19745.38, + "probability": 0.5002 + }, + { + "start": 19745.54, + "end": 19746.84, + "probability": 0.7109 + }, + { + "start": 19751.1, + "end": 19753.52, + "probability": 0.8189 + }, + { + "start": 19755.44, + "end": 19759.32, + "probability": 0.8014 + }, + { + "start": 19764.6, + "end": 19765.64, + "probability": 0.9444 + }, + { + "start": 19769.46, + "end": 19770.2, + "probability": 0.8063 + }, + { + "start": 19772.84, + "end": 19774.3, + "probability": 0.8793 + }, + { + "start": 19775.44, + "end": 19776.66, + "probability": 0.998 + }, + { + "start": 19778.28, + "end": 19779.72, + "probability": 0.9936 + }, + { + "start": 19780.7, + "end": 19782.52, + "probability": 0.9918 + }, + { + "start": 19783.1, + "end": 19783.8, + "probability": 0.7648 + }, + { + "start": 19785.26, + "end": 19787.68, + "probability": 0.9911 + }, + { + "start": 19788.98, + "end": 19790.2, + "probability": 0.7987 + }, + { + "start": 19791.62, + "end": 19792.36, + "probability": 0.7511 + }, + { + "start": 19793.44, + "end": 19794.2, + "probability": 0.8937 + }, + { + "start": 19795.26, + "end": 19796.02, + "probability": 0.9847 + }, + { + "start": 19798.6, + "end": 19800.18, + "probability": 0.9952 + }, + { + "start": 19801.14, + "end": 19802.14, + "probability": 0.9596 + }, + { + "start": 19803.48, + "end": 19804.0, + "probability": 0.8161 + }, + { + "start": 19804.22, + "end": 19806.64, + "probability": 0.9839 + }, + { + "start": 19807.82, + "end": 19808.86, + "probability": 0.9846 + }, + { + "start": 19810.36, + "end": 19810.9, + "probability": 0.7346 + }, + { + "start": 19811.96, + "end": 19813.52, + "probability": 0.8672 + }, + { + "start": 19815.8, + "end": 19818.54, + "probability": 0.9967 + }, + { + "start": 19819.58, + "end": 19821.26, + "probability": 0.9912 + }, + { + "start": 19822.72, + "end": 19824.1, + "probability": 0.706 + }, + { + "start": 19825.02, + "end": 19826.2, + "probability": 0.5149 + }, + { + "start": 19827.2, + "end": 19829.36, + "probability": 0.9738 + }, + { + "start": 19829.36, + "end": 19829.72, + "probability": 0.5004 + }, + { + "start": 19829.88, + "end": 19829.88, + "probability": 0.8796 + }, + { + "start": 19830.0, + "end": 19831.48, + "probability": 0.9974 + }, + { + "start": 19831.66, + "end": 19833.88, + "probability": 0.8906 + }, + { + "start": 19835.62, + "end": 19838.4, + "probability": 0.9889 + }, + { + "start": 19838.64, + "end": 19839.76, + "probability": 0.5426 + }, + { + "start": 19840.68, + "end": 19842.93, + "probability": 0.9397 + }, + { + "start": 19843.6, + "end": 19845.56, + "probability": 0.981 + }, + { + "start": 19846.56, + "end": 19847.52, + "probability": 0.7534 + }, + { + "start": 19848.82, + "end": 19852.16, + "probability": 0.981 + }, + { + "start": 19853.8, + "end": 19855.24, + "probability": 0.9658 + }, + { + "start": 19857.02, + "end": 19858.96, + "probability": 0.998 + }, + { + "start": 19859.9, + "end": 19861.16, + "probability": 0.8897 + }, + { + "start": 19862.72, + "end": 19865.92, + "probability": 0.9971 + }, + { + "start": 19866.72, + "end": 19868.66, + "probability": 0.9113 + }, + { + "start": 19869.72, + "end": 19870.79, + "probability": 0.9954 + }, + { + "start": 19872.08, + "end": 19873.92, + "probability": 0.998 + }, + { + "start": 19875.12, + "end": 19876.14, + "probability": 0.8931 + }, + { + "start": 19877.22, + "end": 19879.8, + "probability": 0.6069 + }, + { + "start": 19881.5, + "end": 19882.28, + "probability": 0.7502 + }, + { + "start": 19883.26, + "end": 19884.0, + "probability": 0.9786 + }, + { + "start": 19885.02, + "end": 19885.46, + "probability": 0.981 + }, + { + "start": 19888.18, + "end": 19889.86, + "probability": 0.9956 + }, + { + "start": 19891.2, + "end": 19891.98, + "probability": 0.7878 + }, + { + "start": 19893.16, + "end": 19894.18, + "probability": 0.9971 + }, + { + "start": 19895.52, + "end": 19898.72, + "probability": 0.9978 + }, + { + "start": 19900.52, + "end": 19902.34, + "probability": 0.9585 + }, + { + "start": 19903.38, + "end": 19905.0, + "probability": 0.9946 + }, + { + "start": 19906.58, + "end": 19909.12, + "probability": 0.9631 + }, + { + "start": 19909.22, + "end": 19909.74, + "probability": 0.1613 + }, + { + "start": 19910.38, + "end": 19912.9, + "probability": 0.9303 + }, + { + "start": 19914.06, + "end": 19915.02, + "probability": 0.8088 + }, + { + "start": 19916.9, + "end": 19917.82, + "probability": 0.9916 + }, + { + "start": 19919.0, + "end": 19920.34, + "probability": 0.9987 + }, + { + "start": 19922.6, + "end": 19923.24, + "probability": 0.9453 + }, + { + "start": 19924.62, + "end": 19926.42, + "probability": 0.9383 + }, + { + "start": 19927.06, + "end": 19927.83, + "probability": 0.9431 + }, + { + "start": 19928.94, + "end": 19930.42, + "probability": 0.9688 + }, + { + "start": 19930.98, + "end": 19932.5, + "probability": 0.6626 + }, + { + "start": 19932.68, + "end": 19935.42, + "probability": 0.9164 + }, + { + "start": 19935.52, + "end": 19937.1, + "probability": 0.803 + }, + { + "start": 19937.22, + "end": 19938.32, + "probability": 0.9927 + }, + { + "start": 19939.48, + "end": 19940.14, + "probability": 0.8471 + }, + { + "start": 19940.66, + "end": 19942.34, + "probability": 0.6607 + }, + { + "start": 19942.42, + "end": 19943.26, + "probability": 0.9042 + }, + { + "start": 19943.38, + "end": 19944.58, + "probability": 0.796 + }, + { + "start": 19945.16, + "end": 19946.52, + "probability": 0.924 + }, + { + "start": 19947.84, + "end": 19949.26, + "probability": 0.9277 + }, + { + "start": 19949.62, + "end": 19950.38, + "probability": 0.9649 + }, + { + "start": 19950.72, + "end": 19952.56, + "probability": 0.5188 + }, + { + "start": 19952.64, + "end": 19953.3, + "probability": 0.3954 + }, + { + "start": 19954.22, + "end": 19955.62, + "probability": 0.9474 + }, + { + "start": 19957.46, + "end": 19958.2, + "probability": 0.3039 + }, + { + "start": 19958.86, + "end": 19960.34, + "probability": 0.9412 + }, + { + "start": 19961.76, + "end": 19962.2, + "probability": 0.5482 + }, + { + "start": 19962.76, + "end": 19963.02, + "probability": 0.9613 + }, + { + "start": 19964.3, + "end": 19965.14, + "probability": 0.8848 + }, + { + "start": 19965.88, + "end": 19966.94, + "probability": 0.8693 + }, + { + "start": 19968.22, + "end": 19969.89, + "probability": 0.9897 + }, + { + "start": 19971.26, + "end": 19972.06, + "probability": 0.9784 + }, + { + "start": 19972.82, + "end": 19973.44, + "probability": 0.8348 + }, + { + "start": 19974.74, + "end": 19975.5, + "probability": 0.7066 + }, + { + "start": 19976.52, + "end": 19978.18, + "probability": 0.9861 + }, + { + "start": 19978.86, + "end": 19979.44, + "probability": 0.8872 + }, + { + "start": 19979.48, + "end": 19980.4, + "probability": 0.9517 + }, + { + "start": 19980.52, + "end": 19981.34, + "probability": 0.8049 + }, + { + "start": 19981.74, + "end": 19982.8, + "probability": 0.9919 + }, + { + "start": 19983.42, + "end": 19985.8, + "probability": 0.9995 + }, + { + "start": 19985.8, + "end": 19990.2, + "probability": 0.9236 + }, + { + "start": 19990.26, + "end": 19990.42, + "probability": 0.2918 + }, + { + "start": 19990.92, + "end": 19991.02, + "probability": 0.3653 + }, + { + "start": 19991.22, + "end": 19993.96, + "probability": 0.9906 + }, + { + "start": 19994.26, + "end": 19994.82, + "probability": 0.6503 + }, + { + "start": 19994.9, + "end": 19995.68, + "probability": 0.86 + }, + { + "start": 19996.2, + "end": 19996.9, + "probability": 0.9941 + }, + { + "start": 19997.73, + "end": 19999.64, + "probability": 0.9696 + }, + { + "start": 20000.18, + "end": 20000.96, + "probability": 0.916 + }, + { + "start": 20001.52, + "end": 20002.02, + "probability": 0.9102 + }, + { + "start": 20003.02, + "end": 20003.68, + "probability": 0.623 + }, + { + "start": 20004.2, + "end": 20010.02, + "probability": 0.8917 + }, + { + "start": 20016.16, + "end": 20016.3, + "probability": 0.1004 + }, + { + "start": 20016.3, + "end": 20016.3, + "probability": 0.1072 + }, + { + "start": 20016.3, + "end": 20016.32, + "probability": 0.098 + }, + { + "start": 20018.18, + "end": 20018.92, + "probability": 0.6079 + }, + { + "start": 20019.18, + "end": 20019.2, + "probability": 0.0037 + }, + { + "start": 20019.2, + "end": 20019.76, + "probability": 0.3685 + }, + { + "start": 20020.0, + "end": 20020.68, + "probability": 0.0733 + }, + { + "start": 20021.16, + "end": 20023.38, + "probability": 0.1932 + }, + { + "start": 20024.92, + "end": 20025.02, + "probability": 0.3783 + }, + { + "start": 20025.18, + "end": 20027.24, + "probability": 0.8757 + }, + { + "start": 20029.48, + "end": 20032.84, + "probability": 0.0021 + }, + { + "start": 20034.75, + "end": 20036.04, + "probability": 0.1217 + }, + { + "start": 20038.72, + "end": 20042.42, + "probability": 0.144 + }, + { + "start": 20043.22, + "end": 20044.12, + "probability": 0.0254 + }, + { + "start": 20044.12, + "end": 20046.12, + "probability": 0.0634 + }, + { + "start": 20047.96, + "end": 20049.0, + "probability": 0.4607 + }, + { + "start": 20051.2, + "end": 20052.34, + "probability": 0.083 + }, + { + "start": 20052.34, + "end": 20053.02, + "probability": 0.2337 + }, + { + "start": 20053.08, + "end": 20053.54, + "probability": 0.1147 + }, + { + "start": 20054.48, + "end": 20055.56, + "probability": 0.3752 + }, + { + "start": 20059.48, + "end": 20059.62, + "probability": 0.1166 + }, + { + "start": 20059.62, + "end": 20060.28, + "probability": 0.0129 + }, + { + "start": 20061.74, + "end": 20062.34, + "probability": 0.4032 + }, + { + "start": 20068.18, + "end": 20069.09, + "probability": 0.2094 + }, + { + "start": 20071.24, + "end": 20071.8, + "probability": 0.1158 + }, + { + "start": 20080.52, + "end": 20082.1, + "probability": 0.609 + }, + { + "start": 20082.98, + "end": 20083.7, + "probability": 0.4748 + }, + { + "start": 20084.14, + "end": 20085.52, + "probability": 0.8718 + }, + { + "start": 20085.82, + "end": 20087.98, + "probability": 0.7271 + }, + { + "start": 20088.0, + "end": 20088.0, + "probability": 0.0 + }, + { + "start": 20088.0, + "end": 20088.0, + "probability": 0.0 + }, + { + "start": 20089.68, + "end": 20091.66, + "probability": 0.9505 + }, + { + "start": 20092.78, + "end": 20095.86, + "probability": 0.9565 + }, + { + "start": 20096.7, + "end": 20099.72, + "probability": 0.7037 + }, + { + "start": 20100.52, + "end": 20102.2, + "probability": 0.9652 + }, + { + "start": 20104.14, + "end": 20105.08, + "probability": 0.0236 + }, + { + "start": 20106.02, + "end": 20108.24, + "probability": 0.1238 + }, + { + "start": 20109.48, + "end": 20109.72, + "probability": 0.0386 + }, + { + "start": 20109.72, + "end": 20112.52, + "probability": 0.0165 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20218.0, + "end": 20218.0, + "probability": 0.0 + }, + { + "start": 20219.24, + "end": 20219.34, + "probability": 0.1399 + }, + { + "start": 20219.34, + "end": 20220.46, + "probability": 0.8356 + }, + { + "start": 20223.52, + "end": 20225.54, + "probability": 0.8908 + }, + { + "start": 20227.44, + "end": 20228.26, + "probability": 0.9057 + }, + { + "start": 20231.8, + "end": 20232.58, + "probability": 0.6125 + }, + { + "start": 20234.76, + "end": 20240.34, + "probability": 0.9978 + }, + { + "start": 20241.58, + "end": 20242.58, + "probability": 0.9947 + }, + { + "start": 20243.48, + "end": 20244.74, + "probability": 0.8868 + }, + { + "start": 20247.06, + "end": 20248.84, + "probability": 0.885 + }, + { + "start": 20249.9, + "end": 20251.24, + "probability": 0.9941 + }, + { + "start": 20252.66, + "end": 20253.84, + "probability": 0.9908 + }, + { + "start": 20255.12, + "end": 20256.84, + "probability": 0.933 + }, + { + "start": 20257.98, + "end": 20263.64, + "probability": 0.9954 + }, + { + "start": 20266.12, + "end": 20267.92, + "probability": 0.9941 + }, + { + "start": 20268.78, + "end": 20270.46, + "probability": 0.9993 + }, + { + "start": 20272.36, + "end": 20276.78, + "probability": 0.9989 + }, + { + "start": 20277.52, + "end": 20281.7, + "probability": 0.9844 + }, + { + "start": 20282.82, + "end": 20286.59, + "probability": 0.9381 + }, + { + "start": 20287.88, + "end": 20290.42, + "probability": 0.9634 + }, + { + "start": 20291.52, + "end": 20292.42, + "probability": 0.7314 + }, + { + "start": 20294.0, + "end": 20295.98, + "probability": 0.8351 + }, + { + "start": 20296.7, + "end": 20297.88, + "probability": 0.5002 + }, + { + "start": 20299.74, + "end": 20301.06, + "probability": 0.9253 + }, + { + "start": 20302.84, + "end": 20304.48, + "probability": 0.7266 + }, + { + "start": 20306.26, + "end": 20309.84, + "probability": 0.9925 + }, + { + "start": 20310.6, + "end": 20313.78, + "probability": 0.9962 + }, + { + "start": 20313.96, + "end": 20314.18, + "probability": 0.4087 + }, + { + "start": 20314.76, + "end": 20315.86, + "probability": 0.9905 + }, + { + "start": 20316.18, + "end": 20318.98, + "probability": 0.9937 + }, + { + "start": 20320.16, + "end": 20323.92, + "probability": 0.986 + }, + { + "start": 20325.24, + "end": 20326.32, + "probability": 0.7973 + }, + { + "start": 20326.84, + "end": 20328.8, + "probability": 0.9849 + }, + { + "start": 20330.2, + "end": 20333.58, + "probability": 0.985 + }, + { + "start": 20334.88, + "end": 20337.16, + "probability": 0.9674 + }, + { + "start": 20338.06, + "end": 20339.44, + "probability": 0.8916 + }, + { + "start": 20340.34, + "end": 20342.11, + "probability": 0.8908 + }, + { + "start": 20343.36, + "end": 20345.12, + "probability": 0.9866 + }, + { + "start": 20346.22, + "end": 20348.8, + "probability": 0.9966 + }, + { + "start": 20350.02, + "end": 20351.48, + "probability": 0.9938 + }, + { + "start": 20352.44, + "end": 20354.26, + "probability": 0.9988 + }, + { + "start": 20355.98, + "end": 20359.34, + "probability": 0.9654 + }, + { + "start": 20360.62, + "end": 20363.22, + "probability": 0.9058 + }, + { + "start": 20363.86, + "end": 20366.14, + "probability": 0.9683 + }, + { + "start": 20366.72, + "end": 20368.2, + "probability": 0.6076 + }, + { + "start": 20370.02, + "end": 20372.4, + "probability": 0.9985 + }, + { + "start": 20373.02, + "end": 20375.4, + "probability": 0.9731 + }, + { + "start": 20376.64, + "end": 20378.86, + "probability": 0.9955 + }, + { + "start": 20380.04, + "end": 20380.82, + "probability": 0.8816 + }, + { + "start": 20381.7, + "end": 20382.46, + "probability": 0.6239 + }, + { + "start": 20383.1, + "end": 20383.26, + "probability": 0.7095 + }, + { + "start": 20383.26, + "end": 20388.06, + "probability": 0.9941 + }, + { + "start": 20388.18, + "end": 20388.46, + "probability": 0.9211 + }, + { + "start": 20388.48, + "end": 20389.08, + "probability": 0.7345 + }, + { + "start": 20389.46, + "end": 20391.4, + "probability": 0.9419 + }, + { + "start": 20394.78, + "end": 20395.44, + "probability": 0.5781 + }, + { + "start": 20396.16, + "end": 20397.82, + "probability": 0.6498 + }, + { + "start": 20398.58, + "end": 20401.3, + "probability": 0.8238 + }, + { + "start": 20420.12, + "end": 20421.38, + "probability": 0.7589 + }, + { + "start": 20422.14, + "end": 20424.98, + "probability": 0.7582 + }, + { + "start": 20425.8, + "end": 20426.36, + "probability": 0.3219 + }, + { + "start": 20427.8, + "end": 20430.1, + "probability": 0.9575 + }, + { + "start": 20437.58, + "end": 20438.82, + "probability": 0.5391 + }, + { + "start": 20439.1, + "end": 20441.93, + "probability": 0.7708 + }, + { + "start": 20442.56, + "end": 20445.48, + "probability": 0.9753 + }, + { + "start": 20445.54, + "end": 20447.1, + "probability": 0.7806 + }, + { + "start": 20448.0, + "end": 20449.02, + "probability": 0.1399 + }, + { + "start": 20451.48, + "end": 20453.6, + "probability": 0.3065 + }, + { + "start": 20453.66, + "end": 20455.46, + "probability": 0.1677 + }, + { + "start": 20455.72, + "end": 20455.94, + "probability": 0.0301 + }, + { + "start": 20456.22, + "end": 20457.2, + "probability": 0.438 + }, + { + "start": 20457.41, + "end": 20459.2, + "probability": 0.5917 + }, + { + "start": 20459.28, + "end": 20459.94, + "probability": 0.7666 + }, + { + "start": 20460.08, + "end": 20461.58, + "probability": 0.8543 + }, + { + "start": 20463.91, + "end": 20466.8, + "probability": 0.4989 + }, + { + "start": 20466.8, + "end": 20470.08, + "probability": 0.9908 + }, + { + "start": 20471.34, + "end": 20472.14, + "probability": 0.5431 + }, + { + "start": 20473.34, + "end": 20474.5, + "probability": 0.8413 + }, + { + "start": 20481.06, + "end": 20481.28, + "probability": 0.1466 + }, + { + "start": 20481.28, + "end": 20481.64, + "probability": 0.1843 + }, + { + "start": 20483.58, + "end": 20484.23, + "probability": 0.0285 + }, + { + "start": 20485.34, + "end": 20486.0, + "probability": 0.7277 + }, + { + "start": 20486.76, + "end": 20489.7, + "probability": 0.6217 + }, + { + "start": 20490.12, + "end": 20491.94, + "probability": 0.6642 + }, + { + "start": 20492.64, + "end": 20495.36, + "probability": 0.8957 + }, + { + "start": 20495.92, + "end": 20496.3, + "probability": 0.0312 + }, + { + "start": 20496.3, + "end": 20496.3, + "probability": 0.0871 + }, + { + "start": 20496.3, + "end": 20496.3, + "probability": 0.2113 + }, + { + "start": 20496.3, + "end": 20497.18, + "probability": 0.423 + }, + { + "start": 20497.44, + "end": 20498.4, + "probability": 0.6107 + }, + { + "start": 20499.06, + "end": 20503.36, + "probability": 0.978 + }, + { + "start": 20503.68, + "end": 20504.38, + "probability": 0.4933 + }, + { + "start": 20504.66, + "end": 20505.8, + "probability": 0.3544 + }, + { + "start": 20506.18, + "end": 20508.3, + "probability": 0.8134 + }, + { + "start": 20508.42, + "end": 20512.48, + "probability": 0.9699 + }, + { + "start": 20512.78, + "end": 20514.58, + "probability": 0.0537 + }, + { + "start": 20514.78, + "end": 20516.54, + "probability": 0.8187 + }, + { + "start": 20516.74, + "end": 20518.16, + "probability": 0.2881 + }, + { + "start": 20518.26, + "end": 20518.92, + "probability": 0.4717 + }, + { + "start": 20519.0, + "end": 20520.06, + "probability": 0.5048 + }, + { + "start": 20520.06, + "end": 20521.56, + "probability": 0.7285 + }, + { + "start": 20521.82, + "end": 20523.74, + "probability": 0.2065 + }, + { + "start": 20524.96, + "end": 20525.2, + "probability": 0.0524 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20638.0, + "end": 20638.0, + "probability": 0.0 + }, + { + "start": 20642.46, + "end": 20642.66, + "probability": 0.0105 + }, + { + "start": 20642.66, + "end": 20642.96, + "probability": 0.1511 + }, + { + "start": 20643.46, + "end": 20643.7, + "probability": 0.1397 + }, + { + "start": 20643.7, + "end": 20645.2, + "probability": 0.0737 + }, + { + "start": 20648.54, + "end": 20648.92, + "probability": 0.1692 + }, + { + "start": 20650.52, + "end": 20651.44, + "probability": 0.1765 + }, + { + "start": 20652.84, + "end": 20654.35, + "probability": 0.0464 + }, + { + "start": 20659.39, + "end": 20660.38, + "probability": 0.023 + }, + { + "start": 20661.65, + "end": 20663.2, + "probability": 0.1431 + }, + { + "start": 20663.9, + "end": 20666.26, + "probability": 0.1129 + }, + { + "start": 20666.26, + "end": 20668.3, + "probability": 0.012 + }, + { + "start": 20668.3, + "end": 20671.26, + "probability": 0.0862 + }, + { + "start": 20672.04, + "end": 20674.66, + "probability": 0.0697 + }, + { + "start": 20686.1, + "end": 20686.98, + "probability": 0.1694 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.0, + "end": 20787.0, + "probability": 0.0 + }, + { + "start": 20787.43, + "end": 20789.8, + "probability": 0.7029 + }, + { + "start": 20790.56, + "end": 20791.04, + "probability": 0.7061 + }, + { + "start": 20792.72, + "end": 20793.46, + "probability": 0.7085 + }, + { + "start": 20794.96, + "end": 20795.84, + "probability": 0.8139 + }, + { + "start": 20797.76, + "end": 20798.5, + "probability": 0.7766 + }, + { + "start": 20801.7, + "end": 20804.48, + "probability": 0.5688 + }, + { + "start": 20805.06, + "end": 20808.2, + "probability": 0.9368 + }, + { + "start": 20811.96, + "end": 20812.7, + "probability": 0.7085 + }, + { + "start": 20814.08, + "end": 20814.94, + "probability": 0.7991 + }, + { + "start": 20819.02, + "end": 20821.0, + "probability": 0.9464 + }, + { + "start": 20822.32, + "end": 20824.38, + "probability": 0.9264 + }, + { + "start": 20825.28, + "end": 20826.52, + "probability": 0.4898 + }, + { + "start": 20828.56, + "end": 20829.68, + "probability": 0.1962 + }, + { + "start": 20830.28, + "end": 20830.82, + "probability": 0.769 + }, + { + "start": 20832.06, + "end": 20837.62, + "probability": 0.8412 + }, + { + "start": 20840.97, + "end": 20843.16, + "probability": 0.97 + }, + { + "start": 20845.48, + "end": 20846.34, + "probability": 0.6623 + }, + { + "start": 20848.1, + "end": 20848.98, + "probability": 0.8292 + }, + { + "start": 20850.3, + "end": 20850.84, + "probability": 0.9727 + }, + { + "start": 20852.4, + "end": 20853.42, + "probability": 0.9235 + }, + { + "start": 20855.58, + "end": 20856.66, + "probability": 0.9325 + }, + { + "start": 20857.7, + "end": 20858.66, + "probability": 0.9866 + }, + { + "start": 20859.52, + "end": 20860.86, + "probability": 0.5893 + }, + { + "start": 20862.26, + "end": 20863.84, + "probability": 0.817 + }, + { + "start": 20863.86, + "end": 20865.57, + "probability": 0.8442 + }, + { + "start": 20866.52, + "end": 20867.0, + "probability": 0.9871 + }, + { + "start": 20868.36, + "end": 20871.98, + "probability": 0.7994 + }, + { + "start": 20874.26, + "end": 20876.36, + "probability": 0.7413 + }, + { + "start": 20876.88, + "end": 20877.34, + "probability": 0.9059 + }, + { + "start": 20878.12, + "end": 20878.8, + "probability": 0.5186 + }, + { + "start": 20878.84, + "end": 20880.28, + "probability": 0.5584 + }, + { + "start": 20880.32, + "end": 20881.68, + "probability": 0.7297 + }, + { + "start": 20883.72, + "end": 20885.28, + "probability": 0.8389 + }, + { + "start": 20887.26, + "end": 20888.98, + "probability": 0.7637 + }, + { + "start": 20890.0, + "end": 20892.92, + "probability": 0.6697 + }, + { + "start": 20893.66, + "end": 20895.3, + "probability": 0.9067 + }, + { + "start": 20896.48, + "end": 20898.86, + "probability": 0.9675 + }, + { + "start": 20900.84, + "end": 20903.2, + "probability": 0.8349 + }, + { + "start": 20904.64, + "end": 20906.66, + "probability": 0.7986 + }, + { + "start": 20907.94, + "end": 20908.76, + "probability": 0.9359 + }, + { + "start": 20910.7, + "end": 20912.4, + "probability": 0.9233 + }, + { + "start": 20913.7, + "end": 20915.54, + "probability": 0.5347 + }, + { + "start": 20916.8, + "end": 20918.44, + "probability": 0.8314 + }, + { + "start": 20919.86, + "end": 20920.44, + "probability": 0.9795 + }, + { + "start": 20922.02, + "end": 20922.62, + "probability": 0.8578 + }, + { + "start": 20924.06, + "end": 20924.6, + "probability": 0.7451 + }, + { + "start": 20925.32, + "end": 20926.08, + "probability": 0.9237 + }, + { + "start": 20929.98, + "end": 20930.52, + "probability": 0.9744 + }, + { + "start": 20931.72, + "end": 20932.28, + "probability": 0.9235 + }, + { + "start": 20937.7, + "end": 20938.36, + "probability": 0.7646 + }, + { + "start": 20939.32, + "end": 20940.5, + "probability": 0.7175 + }, + { + "start": 20942.58, + "end": 20943.3, + "probability": 0.7532 + }, + { + "start": 20944.1, + "end": 20944.88, + "probability": 0.8376 + }, + { + "start": 20946.16, + "end": 20947.62, + "probability": 0.8885 + }, + { + "start": 20949.42, + "end": 20949.94, + "probability": 0.9229 + }, + { + "start": 20951.86, + "end": 20952.92, + "probability": 0.8082 + }, + { + "start": 20955.22, + "end": 20957.3, + "probability": 0.8972 + }, + { + "start": 20957.84, + "end": 20958.94, + "probability": 0.9608 + }, + { + "start": 20959.88, + "end": 20960.26, + "probability": 0.994 + }, + { + "start": 20960.98, + "end": 20962.62, + "probability": 0.029 + }, + { + "start": 20964.72, + "end": 20966.76, + "probability": 0.5384 + }, + { + "start": 20967.76, + "end": 20970.22, + "probability": 0.7651 + }, + { + "start": 20972.3, + "end": 20974.06, + "probability": 0.8139 + }, + { + "start": 20975.24, + "end": 20975.92, + "probability": 0.9554 + }, + { + "start": 20976.94, + "end": 20978.02, + "probability": 0.8918 + }, + { + "start": 20985.14, + "end": 20986.04, + "probability": 0.7821 + }, + { + "start": 20986.9, + "end": 20987.9, + "probability": 0.5211 + }, + { + "start": 20988.56, + "end": 20989.04, + "probability": 0.7661 + }, + { + "start": 20989.88, + "end": 20991.18, + "probability": 0.9241 + }, + { + "start": 20991.98, + "end": 20993.64, + "probability": 0.9797 + }, + { + "start": 20994.5, + "end": 20996.96, + "probability": 0.9452 + }, + { + "start": 20998.96, + "end": 21000.78, + "probability": 0.9356 + }, + { + "start": 21003.42, + "end": 21003.98, + "probability": 0.991 + }, + { + "start": 21005.78, + "end": 21006.7, + "probability": 0.8355 + }, + { + "start": 21009.78, + "end": 21011.42, + "probability": 0.7727 + }, + { + "start": 21012.62, + "end": 21013.34, + "probability": 0.629 + }, + { + "start": 21015.02, + "end": 21015.5, + "probability": 0.5501 + }, + { + "start": 21016.84, + "end": 21017.64, + "probability": 0.8221 + }, + { + "start": 21019.14, + "end": 21020.06, + "probability": 0.7032 + }, + { + "start": 21020.74, + "end": 21021.86, + "probability": 0.8563 + }, + { + "start": 21023.14, + "end": 21024.88, + "probability": 0.7015 + }, + { + "start": 21025.64, + "end": 21027.3, + "probability": 0.9194 + }, + { + "start": 21029.32, + "end": 21031.36, + "probability": 0.8674 + }, + { + "start": 21032.4, + "end": 21032.9, + "probability": 0.9609 + }, + { + "start": 21034.28, + "end": 21035.3, + "probability": 0.7914 + }, + { + "start": 21036.56, + "end": 21037.02, + "probability": 0.979 + }, + { + "start": 21037.72, + "end": 21038.92, + "probability": 0.7542 + }, + { + "start": 21042.0, + "end": 21042.88, + "probability": 0.5525 + }, + { + "start": 21044.48, + "end": 21045.36, + "probability": 0.7198 + }, + { + "start": 21048.68, + "end": 21049.24, + "probability": 0.5747 + }, + { + "start": 21051.3, + "end": 21052.24, + "probability": 0.9502 + }, + { + "start": 21053.02, + "end": 21054.64, + "probability": 0.9148 + }, + { + "start": 21055.75, + "end": 21057.76, + "probability": 0.934 + }, + { + "start": 21059.46, + "end": 21060.94, + "probability": 0.8964 + }, + { + "start": 21062.84, + "end": 21063.44, + "probability": 0.993 + }, + { + "start": 21065.44, + "end": 21066.14, + "probability": 0.9173 + }, + { + "start": 21066.78, + "end": 21069.02, + "probability": 0.8867 + }, + { + "start": 21069.6, + "end": 21070.18, + "probability": 0.9943 + }, + { + "start": 21070.88, + "end": 21071.66, + "probability": 0.4259 + }, + { + "start": 21073.2, + "end": 21074.0, + "probability": 0.3904 + }, + { + "start": 21078.0, + "end": 21079.48, + "probability": 0.0095 + }, + { + "start": 21080.32, + "end": 21080.76, + "probability": 0.5983 + }, + { + "start": 21081.54, + "end": 21082.4, + "probability": 0.8389 + }, + { + "start": 21083.64, + "end": 21085.54, + "probability": 0.7533 + }, + { + "start": 21090.92, + "end": 21092.92, + "probability": 0.9077 + }, + { + "start": 21094.4, + "end": 21094.82, + "probability": 0.9834 + }, + { + "start": 21095.82, + "end": 21096.86, + "probability": 0.8279 + }, + { + "start": 21098.32, + "end": 21100.28, + "probability": 0.8465 + }, + { + "start": 21101.0, + "end": 21103.02, + "probability": 0.8972 + }, + { + "start": 21104.06, + "end": 21105.08, + "probability": 0.6559 + }, + { + "start": 21108.96, + "end": 21110.68, + "probability": 0.8411 + }, + { + "start": 21111.56, + "end": 21112.06, + "probability": 0.7045 + }, + { + "start": 21113.48, + "end": 21114.52, + "probability": 0.9113 + }, + { + "start": 21116.45, + "end": 21118.32, + "probability": 0.9487 + }, + { + "start": 21119.58, + "end": 21120.18, + "probability": 0.9631 + }, + { + "start": 21120.76, + "end": 21121.54, + "probability": 0.7867 + }, + { + "start": 21123.76, + "end": 21125.4, + "probability": 0.9659 + }, + { + "start": 21127.72, + "end": 21128.24, + "probability": 0.9705 + }, + { + "start": 21130.16, + "end": 21130.8, + "probability": 0.8653 + }, + { + "start": 21131.6, + "end": 21132.32, + "probability": 0.99 + }, + { + "start": 21133.06, + "end": 21133.94, + "probability": 0.9824 + }, + { + "start": 21134.6, + "end": 21135.28, + "probability": 0.4616 + }, + { + "start": 21139.62, + "end": 21140.32, + "probability": 0.0448 + }, + { + "start": 21141.72, + "end": 21142.48, + "probability": 0.5135 + }, + { + "start": 21144.4, + "end": 21145.54, + "probability": 0.8098 + }, + { + "start": 21147.28, + "end": 21149.12, + "probability": 0.7955 + }, + { + "start": 21150.56, + "end": 21152.24, + "probability": 0.8891 + }, + { + "start": 21154.4, + "end": 21156.5, + "probability": 0.9238 + }, + { + "start": 21157.62, + "end": 21158.12, + "probability": 0.5536 + }, + { + "start": 21158.82, + "end": 21159.76, + "probability": 0.7549 + }, + { + "start": 21161.22, + "end": 21163.5, + "probability": 0.8376 + }, + { + "start": 21164.72, + "end": 21166.26, + "probability": 0.793 + }, + { + "start": 21167.94, + "end": 21169.42, + "probability": 0.8083 + }, + { + "start": 21170.16, + "end": 21173.34, + "probability": 0.8563 + }, + { + "start": 21176.22, + "end": 21176.8, + "probability": 0.9782 + }, + { + "start": 21177.86, + "end": 21178.82, + "probability": 0.7118 + }, + { + "start": 21180.38, + "end": 21181.24, + "probability": 0.9715 + }, + { + "start": 21182.56, + "end": 21185.16, + "probability": 0.585 + }, + { + "start": 21186.69, + "end": 21187.04, + "probability": 0.0161 + }, + { + "start": 21188.06, + "end": 21188.32, + "probability": 0.0579 + }, + { + "start": 21190.14, + "end": 21191.04, + "probability": 0.6688 + }, + { + "start": 21193.1, + "end": 21195.66, + "probability": 0.6123 + }, + { + "start": 21196.48, + "end": 21196.96, + "probability": 0.9831 + }, + { + "start": 21198.78, + "end": 21199.68, + "probability": 0.5982 + }, + { + "start": 21201.6, + "end": 21203.3, + "probability": 0.8266 + }, + { + "start": 21204.98, + "end": 21205.58, + "probability": 0.9932 + }, + { + "start": 21207.54, + "end": 21208.34, + "probability": 0.9264 + }, + { + "start": 21209.32, + "end": 21209.88, + "probability": 0.9561 + }, + { + "start": 21211.4, + "end": 21212.86, + "probability": 0.8454 + }, + { + "start": 21213.6, + "end": 21214.04, + "probability": 0.8987 + }, + { + "start": 21215.12, + "end": 21215.98, + "probability": 0.478 + }, + { + "start": 21216.92, + "end": 21217.38, + "probability": 0.7533 + }, + { + "start": 21218.78, + "end": 21219.52, + "probability": 0.7772 + }, + { + "start": 21222.32, + "end": 21222.94, + "probability": 0.9829 + }, + { + "start": 21224.3, + "end": 21225.02, + "probability": 0.9778 + }, + { + "start": 21227.0, + "end": 21228.76, + "probability": 0.9928 + }, + { + "start": 21229.68, + "end": 21230.72, + "probability": 0.9578 + }, + { + "start": 21235.6, + "end": 21236.04, + "probability": 0.5017 + }, + { + "start": 21237.72, + "end": 21238.66, + "probability": 0.5201 + }, + { + "start": 21239.44, + "end": 21239.86, + "probability": 0.7555 + }, + { + "start": 21241.28, + "end": 21242.0, + "probability": 0.7755 + }, + { + "start": 21243.82, + "end": 21244.62, + "probability": 0.5393 + }, + { + "start": 21246.62, + "end": 21247.4, + "probability": 0.8524 + }, + { + "start": 21251.44, + "end": 21252.82, + "probability": 0.5173 + }, + { + "start": 21255.38, + "end": 21256.18, + "probability": 0.7749 + }, + { + "start": 21259.04, + "end": 21260.86, + "probability": 0.9268 + }, + { + "start": 21263.04, + "end": 21264.12, + "probability": 0.7679 + }, + { + "start": 21265.86, + "end": 21266.6, + "probability": 0.798 + }, + { + "start": 21268.4, + "end": 21270.74, + "probability": 0.9521 + }, + { + "start": 21272.32, + "end": 21274.28, + "probability": 0.8304 + }, + { + "start": 21275.32, + "end": 21275.82, + "probability": 0.9938 + }, + { + "start": 21277.5, + "end": 21278.08, + "probability": 0.5373 + }, + { + "start": 21278.16, + "end": 21279.38, + "probability": 0.3549 + }, + { + "start": 21279.44, + "end": 21280.76, + "probability": 0.6979 + }, + { + "start": 21280.84, + "end": 21282.44, + "probability": 0.7057 + }, + { + "start": 21283.8, + "end": 21285.78, + "probability": 0.9564 + }, + { + "start": 21289.18, + "end": 21289.94, + "probability": 0.7143 + }, + { + "start": 21291.58, + "end": 21292.4, + "probability": 0.866 + }, + { + "start": 21293.36, + "end": 21293.92, + "probability": 0.9937 + }, + { + "start": 21296.3, + "end": 21297.04, + "probability": 0.9467 + }, + { + "start": 21297.58, + "end": 21298.52, + "probability": 0.9873 + }, + { + "start": 21299.6, + "end": 21299.96, + "probability": 0.6427 + }, + { + "start": 21300.76, + "end": 21301.22, + "probability": 0.7029 + }, + { + "start": 21302.66, + "end": 21303.58, + "probability": 0.7628 + }, + { + "start": 21304.16, + "end": 21305.76, + "probability": 0.9826 + }, + { + "start": 21306.58, + "end": 21307.8, + "probability": 0.8619 + }, + { + "start": 21308.34, + "end": 21309.72, + "probability": 0.9964 + }, + { + "start": 21310.24, + "end": 21311.0, + "probability": 0.9076 + }, + { + "start": 21313.25, + "end": 21315.78, + "probability": 0.9725 + }, + { + "start": 21317.68, + "end": 21318.26, + "probability": 0.9964 + }, + { + "start": 21320.12, + "end": 21320.88, + "probability": 0.9635 + }, + { + "start": 21322.36, + "end": 21324.82, + "probability": 0.8988 + }, + { + "start": 21325.44, + "end": 21325.9, + "probability": 0.9902 + }, + { + "start": 21327.5, + "end": 21328.54, + "probability": 0.873 + }, + { + "start": 21335.98, + "end": 21336.5, + "probability": 0.7348 + }, + { + "start": 21338.8, + "end": 21339.8, + "probability": 0.5397 + }, + { + "start": 21340.56, + "end": 21341.2, + "probability": 0.9759 + }, + { + "start": 21342.52, + "end": 21343.38, + "probability": 0.801 + }, + { + "start": 21344.26, + "end": 21344.78, + "probability": 0.9128 + }, + { + "start": 21346.4, + "end": 21347.0, + "probability": 0.9597 + }, + { + "start": 21348.32, + "end": 21349.94, + "probability": 0.9777 + }, + { + "start": 21350.98, + "end": 21352.08, + "probability": 0.9714 + }, + { + "start": 21352.7, + "end": 21354.24, + "probability": 0.6849 + }, + { + "start": 21355.06, + "end": 21355.6, + "probability": 0.9956 + }, + { + "start": 21356.86, + "end": 21357.72, + "probability": 0.9251 + }, + { + "start": 21358.06, + "end": 21358.48, + "probability": 0.6936 + }, + { + "start": 21360.3, + "end": 21361.14, + "probability": 0.543 + }, + { + "start": 21362.58, + "end": 21363.76, + "probability": 0.9858 + }, + { + "start": 21364.9, + "end": 21365.7, + "probability": 0.6163 + }, + { + "start": 21367.54, + "end": 21368.14, + "probability": 0.9399 + }, + { + "start": 21369.98, + "end": 21371.04, + "probability": 0.6762 + }, + { + "start": 21371.72, + "end": 21372.32, + "probability": 0.9622 + }, + { + "start": 21373.5, + "end": 21374.76, + "probability": 0.7091 + }, + { + "start": 21376.58, + "end": 21378.7, + "probability": 0.8745 + }, + { + "start": 21379.78, + "end": 21380.36, + "probability": 0.992 + }, + { + "start": 21381.64, + "end": 21382.24, + "probability": 0.9011 + }, + { + "start": 21383.26, + "end": 21383.68, + "probability": 0.9255 + }, + { + "start": 21385.04, + "end": 21385.88, + "probability": 0.7658 + }, + { + "start": 21388.22, + "end": 21389.5, + "probability": 0.7578 + }, + { + "start": 21390.46, + "end": 21391.08, + "probability": 0.9669 + }, + { + "start": 21392.46, + "end": 21393.02, + "probability": 0.9969 + }, + { + "start": 21395.28, + "end": 21396.54, + "probability": 0.9639 + }, + { + "start": 21397.24, + "end": 21397.8, + "probability": 0.9971 + }, + { + "start": 21399.58, + "end": 21400.7, + "probability": 0.48 + }, + { + "start": 21403.84, + "end": 21404.42, + "probability": 0.9824 + }, + { + "start": 21405.66, + "end": 21409.68, + "probability": 0.8919 + }, + { + "start": 21414.7, + "end": 21417.36, + "probability": 0.8391 + }, + { + "start": 21418.14, + "end": 21418.78, + "probability": 0.9865 + }, + { + "start": 21420.5, + "end": 21421.3, + "probability": 0.954 + }, + { + "start": 21421.98, + "end": 21422.62, + "probability": 0.9927 + }, + { + "start": 21424.52, + "end": 21425.46, + "probability": 0.8964 + }, + { + "start": 21426.58, + "end": 21427.48, + "probability": 0.4994 + }, + { + "start": 21429.24, + "end": 21432.26, + "probability": 0.993 + }, + { + "start": 21435.74, + "end": 21436.76, + "probability": 0.426 + }, + { + "start": 21436.92, + "end": 21437.46, + "probability": 0.8238 + }, + { + "start": 21441.7, + "end": 21443.05, + "probability": 0.0963 + }, + { + "start": 21607.1, + "end": 21607.6, + "probability": 0.0854 + }, + { + "start": 21607.6, + "end": 21607.6, + "probability": 0.1802 + }, + { + "start": 21607.6, + "end": 21609.33, + "probability": 0.335 + }, + { + "start": 21610.5, + "end": 21611.56, + "probability": 0.9864 + }, + { + "start": 21612.44, + "end": 21613.36, + "probability": 0.2209 + }, + { + "start": 21614.04, + "end": 21618.88, + "probability": 0.6405 + }, + { + "start": 21618.88, + "end": 21622.2, + "probability": 0.6111 + }, + { + "start": 21623.84, + "end": 21627.96, + "probability": 0.9093 + }, + { + "start": 21628.56, + "end": 21630.04, + "probability": 0.7356 + }, + { + "start": 21641.86, + "end": 21641.88, + "probability": 0.5668 + }, + { + "start": 21641.88, + "end": 21642.78, + "probability": 0.7868 + }, + { + "start": 21644.4, + "end": 21644.84, + "probability": 0.6138 + }, + { + "start": 21644.88, + "end": 21649.08, + "probability": 0.6623 + }, + { + "start": 21650.56, + "end": 21654.1, + "probability": 0.8394 + }, + { + "start": 21654.98, + "end": 21657.98, + "probability": 0.9755 + }, + { + "start": 21658.82, + "end": 21660.34, + "probability": 0.6539 + }, + { + "start": 21661.8, + "end": 21665.76, + "probability": 0.9869 + }, + { + "start": 21666.34, + "end": 21667.68, + "probability": 0.9029 + }, + { + "start": 21668.7, + "end": 21672.96, + "probability": 0.9664 + }, + { + "start": 21673.96, + "end": 21676.24, + "probability": 0.9884 + }, + { + "start": 21676.3, + "end": 21681.18, + "probability": 0.6665 + }, + { + "start": 21681.34, + "end": 21681.98, + "probability": 0.8359 + }, + { + "start": 21682.66, + "end": 21683.32, + "probability": 0.9716 + }, + { + "start": 21684.86, + "end": 21686.84, + "probability": 0.8222 + }, + { + "start": 21687.5, + "end": 21692.04, + "probability": 0.8392 + }, + { + "start": 21692.32, + "end": 21694.68, + "probability": 0.8008 + }, + { + "start": 21697.48, + "end": 21700.92, + "probability": 0.9811 + }, + { + "start": 21700.92, + "end": 21703.04, + "probability": 0.9623 + }, + { + "start": 21704.06, + "end": 21704.42, + "probability": 0.5469 + }, + { + "start": 21705.06, + "end": 21707.24, + "probability": 0.9186 + }, + { + "start": 21708.3, + "end": 21711.42, + "probability": 0.8643 + }, + { + "start": 21712.14, + "end": 21714.22, + "probability": 0.9921 + }, + { + "start": 21716.14, + "end": 21720.68, + "probability": 0.8446 + }, + { + "start": 21720.7, + "end": 21723.28, + "probability": 0.9851 + }, + { + "start": 21723.42, + "end": 21724.82, + "probability": 0.9186 + }, + { + "start": 21725.42, + "end": 21726.84, + "probability": 0.5817 + }, + { + "start": 21727.96, + "end": 21733.1, + "probability": 0.9921 + }, + { + "start": 21733.36, + "end": 21738.16, + "probability": 0.9954 + }, + { + "start": 21739.34, + "end": 21743.38, + "probability": 0.927 + }, + { + "start": 21743.78, + "end": 21748.48, + "probability": 0.983 + }, + { + "start": 21749.84, + "end": 21750.54, + "probability": 0.9274 + }, + { + "start": 21751.24, + "end": 21759.58, + "probability": 0.9851 + }, + { + "start": 21760.1, + "end": 21762.35, + "probability": 0.9648 + }, + { + "start": 21763.16, + "end": 21766.38, + "probability": 0.9628 + }, + { + "start": 21767.74, + "end": 21768.6, + "probability": 0.9956 + }, + { + "start": 21769.94, + "end": 21773.44, + "probability": 0.9935 + }, + { + "start": 21773.6, + "end": 21775.8, + "probability": 0.9413 + }, + { + "start": 21776.54, + "end": 21779.66, + "probability": 0.9934 + }, + { + "start": 21781.24, + "end": 21784.06, + "probability": 0.9448 + }, + { + "start": 21784.54, + "end": 21787.18, + "probability": 0.997 + }, + { + "start": 21787.76, + "end": 21791.16, + "probability": 0.9686 + }, + { + "start": 21791.96, + "end": 21793.5, + "probability": 0.9841 + }, + { + "start": 21794.2, + "end": 21795.1, + "probability": 0.962 + }, + { + "start": 21796.0, + "end": 21798.78, + "probability": 0.9961 + }, + { + "start": 21798.78, + "end": 21802.1, + "probability": 0.9961 + }, + { + "start": 21802.4, + "end": 21803.0, + "probability": 0.7376 + }, + { + "start": 21803.86, + "end": 21804.56, + "probability": 0.639 + }, + { + "start": 21804.62, + "end": 21808.24, + "probability": 0.7593 + }, + { + "start": 21811.28, + "end": 21811.96, + "probability": 0.8936 + }, + { + "start": 21814.62, + "end": 21815.52, + "probability": 0.8087 + }, + { + "start": 21815.68, + "end": 21816.88, + "probability": 0.9022 + }, + { + "start": 21817.24, + "end": 21820.48, + "probability": 0.8894 + }, + { + "start": 21820.72, + "end": 21821.32, + "probability": 0.9559 + }, + { + "start": 21821.4, + "end": 21822.0, + "probability": 0.9141 + }, + { + "start": 21822.68, + "end": 21825.48, + "probability": 0.9899 + }, + { + "start": 21825.5, + "end": 21830.4, + "probability": 0.9779 + }, + { + "start": 21831.22, + "end": 21832.02, + "probability": 0.7842 + }, + { + "start": 21832.12, + "end": 21835.94, + "probability": 0.9934 + }, + { + "start": 21836.7, + "end": 21838.1, + "probability": 0.8213 + }, + { + "start": 21838.44, + "end": 21844.26, + "probability": 0.9966 + }, + { + "start": 21844.86, + "end": 21845.5, + "probability": 0.7767 + }, + { + "start": 21846.02, + "end": 21847.38, + "probability": 0.9337 + }, + { + "start": 21848.12, + "end": 21852.86, + "probability": 0.936 + }, + { + "start": 21853.3, + "end": 21855.62, + "probability": 0.9639 + }, + { + "start": 21856.74, + "end": 21858.74, + "probability": 0.9497 + }, + { + "start": 21858.9, + "end": 21861.22, + "probability": 0.9866 + }, + { + "start": 21861.64, + "end": 21862.56, + "probability": 0.7114 + }, + { + "start": 21862.66, + "end": 21863.48, + "probability": 0.916 + }, + { + "start": 21864.62, + "end": 21865.22, + "probability": 0.6342 + }, + { + "start": 21866.14, + "end": 21868.18, + "probability": 0.8865 + }, + { + "start": 21868.64, + "end": 21869.66, + "probability": 0.9097 + }, + { + "start": 21870.04, + "end": 21875.86, + "probability": 0.9107 + }, + { + "start": 21875.88, + "end": 21876.26, + "probability": 0.8204 + }, + { + "start": 21876.32, + "end": 21876.92, + "probability": 0.403 + }, + { + "start": 21877.02, + "end": 21879.1, + "probability": 0.8491 + }, + { + "start": 21881.12, + "end": 21884.4, + "probability": 0.7855 + }, + { + "start": 21885.1, + "end": 21889.0, + "probability": 0.8681 + }, + { + "start": 21889.64, + "end": 21892.52, + "probability": 0.9644 + }, + { + "start": 21892.62, + "end": 21893.84, + "probability": 0.9448 + }, + { + "start": 21893.84, + "end": 21896.3, + "probability": 0.9628 + }, + { + "start": 21897.3, + "end": 21902.04, + "probability": 0.9624 + }, + { + "start": 21902.6, + "end": 21908.68, + "probability": 0.995 + }, + { + "start": 21909.34, + "end": 21910.72, + "probability": 0.9966 + }, + { + "start": 21911.46, + "end": 21912.7, + "probability": 0.988 + }, + { + "start": 21914.0, + "end": 21916.38, + "probability": 0.9888 + }, + { + "start": 21916.7, + "end": 21917.26, + "probability": 0.8546 + }, + { + "start": 21917.64, + "end": 21918.5, + "probability": 0.6798 + }, + { + "start": 21918.94, + "end": 21920.2, + "probability": 0.8865 + }, + { + "start": 21920.46, + "end": 21921.36, + "probability": 0.7726 + }, + { + "start": 21922.18, + "end": 21924.1, + "probability": 0.5759 + }, + { + "start": 21924.76, + "end": 21925.65, + "probability": 0.6413 + }, + { + "start": 21926.64, + "end": 21928.56, + "probability": 0.8072 + }, + { + "start": 21929.12, + "end": 21931.96, + "probability": 0.9851 + }, + { + "start": 21933.08, + "end": 21937.52, + "probability": 0.6545 + }, + { + "start": 21937.54, + "end": 21939.68, + "probability": 0.9716 + }, + { + "start": 21940.36, + "end": 21941.72, + "probability": 0.7262 + }, + { + "start": 21942.24, + "end": 21943.44, + "probability": 0.5911 + }, + { + "start": 21944.18, + "end": 21945.32, + "probability": 0.954 + }, + { + "start": 21946.02, + "end": 21947.28, + "probability": 0.9668 + }, + { + "start": 21949.39, + "end": 21951.71, + "probability": 0.5763 + }, + { + "start": 21962.58, + "end": 21964.58, + "probability": 0.9897 + }, + { + "start": 21965.36, + "end": 21967.58, + "probability": 0.9521 + }, + { + "start": 21977.9, + "end": 21978.76, + "probability": 0.6564 + }, + { + "start": 21978.96, + "end": 21980.0, + "probability": 0.8207 + }, + { + "start": 21980.34, + "end": 21981.0, + "probability": 0.8283 + }, + { + "start": 21981.18, + "end": 21982.08, + "probability": 0.9995 + }, + { + "start": 21982.28, + "end": 21983.72, + "probability": 0.9334 + }, + { + "start": 21986.5, + "end": 21988.32, + "probability": 0.9849 + }, + { + "start": 21988.68, + "end": 21991.66, + "probability": 0.8727 + }, + { + "start": 21992.18, + "end": 21994.0, + "probability": 0.8564 + }, + { + "start": 21994.7, + "end": 21997.47, + "probability": 0.9384 + }, + { + "start": 21998.14, + "end": 22001.18, + "probability": 0.9888 + }, + { + "start": 22002.38, + "end": 22007.38, + "probability": 0.8857 + }, + { + "start": 22008.16, + "end": 22012.82, + "probability": 0.9968 + }, + { + "start": 22013.98, + "end": 22017.66, + "probability": 0.9829 + }, + { + "start": 22017.66, + "end": 22021.3, + "probability": 0.9649 + }, + { + "start": 22022.0, + "end": 22025.1, + "probability": 0.959 + }, + { + "start": 22025.38, + "end": 22026.6, + "probability": 0.9297 + }, + { + "start": 22027.02, + "end": 22028.2, + "probability": 0.8331 + }, + { + "start": 22028.9, + "end": 22029.78, + "probability": 0.876 + }, + { + "start": 22030.38, + "end": 22031.54, + "probability": 0.9644 + }, + { + "start": 22032.18, + "end": 22033.44, + "probability": 0.9412 + }, + { + "start": 22033.88, + "end": 22038.14, + "probability": 0.9058 + }, + { + "start": 22038.82, + "end": 22040.94, + "probability": 0.9934 + }, + { + "start": 22041.62, + "end": 22044.2, + "probability": 0.9851 + }, + { + "start": 22044.78, + "end": 22047.24, + "probability": 0.9331 + }, + { + "start": 22048.92, + "end": 22052.04, + "probability": 0.4889 + }, + { + "start": 22052.88, + "end": 22055.66, + "probability": 0.9706 + }, + { + "start": 22055.66, + "end": 22057.98, + "probability": 0.9058 + }, + { + "start": 22058.14, + "end": 22058.36, + "probability": 0.3158 + }, + { + "start": 22058.52, + "end": 22059.06, + "probability": 0.6337 + }, + { + "start": 22059.26, + "end": 22061.24, + "probability": 0.7613 + }, + { + "start": 22061.58, + "end": 22061.84, + "probability": 0.4431 + }, + { + "start": 22062.5, + "end": 22064.74, + "probability": 0.8942 + }, + { + "start": 22064.76, + "end": 22066.92, + "probability": 0.7512 + }, + { + "start": 22066.94, + "end": 22068.09, + "probability": 0.9875 + }, + { + "start": 22068.32, + "end": 22068.84, + "probability": 0.5897 + }, + { + "start": 22069.56, + "end": 22070.86, + "probability": 0.6862 + }, + { + "start": 22071.14, + "end": 22072.0, + "probability": 0.2182 + }, + { + "start": 22075.04, + "end": 22078.3, + "probability": 0.9984 + }, + { + "start": 22079.14, + "end": 22081.94, + "probability": 0.9689 + }, + { + "start": 22081.94, + "end": 22086.74, + "probability": 0.9757 + }, + { + "start": 22087.22, + "end": 22090.64, + "probability": 0.9942 + }, + { + "start": 22091.22, + "end": 22093.21, + "probability": 0.9973 + }, + { + "start": 22094.26, + "end": 22097.68, + "probability": 0.998 + }, + { + "start": 22098.68, + "end": 22101.12, + "probability": 0.9955 + }, + { + "start": 22101.22, + "end": 22102.1, + "probability": 0.884 + }, + { + "start": 22102.62, + "end": 22103.72, + "probability": 0.9958 + }, + { + "start": 22104.38, + "end": 22109.2, + "probability": 0.994 + }, + { + "start": 22109.2, + "end": 22113.98, + "probability": 0.9915 + }, + { + "start": 22114.74, + "end": 22117.88, + "probability": 0.9964 + }, + { + "start": 22118.52, + "end": 22121.65, + "probability": 0.9984 + }, + { + "start": 22122.5, + "end": 22123.94, + "probability": 0.9977 + }, + { + "start": 22125.14, + "end": 22128.82, + "probability": 0.968 + }, + { + "start": 22128.82, + "end": 22133.08, + "probability": 0.9702 + }, + { + "start": 22133.64, + "end": 22136.12, + "probability": 0.9519 + }, + { + "start": 22136.82, + "end": 22139.58, + "probability": 0.9849 + }, + { + "start": 22140.14, + "end": 22142.64, + "probability": 0.8693 + }, + { + "start": 22143.94, + "end": 22148.04, + "probability": 0.9855 + }, + { + "start": 22148.06, + "end": 22151.62, + "probability": 0.9768 + }, + { + "start": 22152.24, + "end": 22154.24, + "probability": 0.9779 + }, + { + "start": 22154.78, + "end": 22158.98, + "probability": 0.9836 + }, + { + "start": 22158.98, + "end": 22162.8, + "probability": 0.9922 + }, + { + "start": 22163.78, + "end": 22168.72, + "probability": 0.9712 + }, + { + "start": 22168.72, + "end": 22172.9, + "probability": 0.997 + }, + { + "start": 22173.34, + "end": 22176.6, + "probability": 0.9824 + }, + { + "start": 22177.28, + "end": 22180.78, + "probability": 0.9668 + }, + { + "start": 22181.8, + "end": 22182.29, + "probability": 0.4775 + }, + { + "start": 22184.56, + "end": 22184.58, + "probability": 0.6248 + }, + { + "start": 22184.58, + "end": 22186.6, + "probability": 0.9639 + }, + { + "start": 22186.6, + "end": 22189.76, + "probability": 0.999 + }, + { + "start": 22190.32, + "end": 22192.74, + "probability": 0.9986 + }, + { + "start": 22192.74, + "end": 22196.44, + "probability": 0.9894 + }, + { + "start": 22196.78, + "end": 22197.5, + "probability": 0.6051 + }, + { + "start": 22197.94, + "end": 22199.32, + "probability": 0.6154 + }, + { + "start": 22199.46, + "end": 22201.1, + "probability": 0.8926 + }, + { + "start": 22220.4, + "end": 22222.38, + "probability": 0.6004 + }, + { + "start": 22223.72, + "end": 22227.26, + "probability": 0.9721 + }, + { + "start": 22227.26, + "end": 22236.12, + "probability": 0.8011 + }, + { + "start": 22236.38, + "end": 22237.84, + "probability": 0.9092 + }, + { + "start": 22238.46, + "end": 22243.58, + "probability": 0.9976 + }, + { + "start": 22244.3, + "end": 22249.18, + "probability": 0.9791 + }, + { + "start": 22249.26, + "end": 22254.32, + "probability": 0.96 + }, + { + "start": 22254.32, + "end": 22257.64, + "probability": 0.8637 + }, + { + "start": 22259.72, + "end": 22260.7, + "probability": 0.95 + }, + { + "start": 22261.3, + "end": 22262.34, + "probability": 0.744 + }, + { + "start": 22263.0, + "end": 22266.7, + "probability": 0.9905 + }, + { + "start": 22267.66, + "end": 22268.5, + "probability": 0.7002 + }, + { + "start": 22269.76, + "end": 22273.34, + "probability": 0.9878 + }, + { + "start": 22274.06, + "end": 22278.06, + "probability": 0.9525 + }, + { + "start": 22278.12, + "end": 22278.54, + "probability": 0.9178 + }, + { + "start": 22279.54, + "end": 22281.46, + "probability": 0.932 + }, + { + "start": 22282.1, + "end": 22286.62, + "probability": 0.9912 + }, + { + "start": 22287.74, + "end": 22291.06, + "probability": 0.869 + }, + { + "start": 22291.4, + "end": 22293.62, + "probability": 0.6455 + }, + { + "start": 22294.26, + "end": 22296.94, + "probability": 0.9958 + }, + { + "start": 22297.64, + "end": 22300.5, + "probability": 0.9987 + }, + { + "start": 22301.26, + "end": 22303.44, + "probability": 0.6945 + }, + { + "start": 22303.72, + "end": 22309.1, + "probability": 0.9896 + }, + { + "start": 22310.64, + "end": 22312.7, + "probability": 0.5078 + }, + { + "start": 22313.16, + "end": 22316.1, + "probability": 0.8503 + }, + { + "start": 22317.2, + "end": 22319.6, + "probability": 0.8163 + }, + { + "start": 22320.12, + "end": 22322.42, + "probability": 0.8905 + }, + { + "start": 22323.04, + "end": 22323.9, + "probability": 0.9746 + }, + { + "start": 22324.84, + "end": 22328.7, + "probability": 0.9869 + }, + { + "start": 22328.98, + "end": 22329.6, + "probability": 0.5743 + }, + { + "start": 22330.26, + "end": 22331.02, + "probability": 0.388 + }, + { + "start": 22332.19, + "end": 22335.72, + "probability": 0.9861 + }, + { + "start": 22337.3, + "end": 22339.2, + "probability": 0.9854 + }, + { + "start": 22340.16, + "end": 22342.52, + "probability": 0.7621 + }, + { + "start": 22342.62, + "end": 22343.62, + "probability": 0.7806 + }, + { + "start": 22344.5, + "end": 22347.16, + "probability": 0.9944 + }, + { + "start": 22347.58, + "end": 22348.68, + "probability": 0.6101 + }, + { + "start": 22349.62, + "end": 22352.44, + "probability": 0.9819 + }, + { + "start": 22352.66, + "end": 22354.76, + "probability": 0.973 + }, + { + "start": 22355.76, + "end": 22359.1, + "probability": 0.9728 + }, + { + "start": 22359.24, + "end": 22360.2, + "probability": 0.8901 + }, + { + "start": 22360.64, + "end": 22362.34, + "probability": 0.7876 + }, + { + "start": 22363.04, + "end": 22365.84, + "probability": 0.8588 + }, + { + "start": 22366.48, + "end": 22369.56, + "probability": 0.9771 + }, + { + "start": 22372.59, + "end": 22376.44, + "probability": 0.5171 + }, + { + "start": 22377.94, + "end": 22377.96, + "probability": 0.0406 + }, + { + "start": 22378.0, + "end": 22380.48, + "probability": 0.9827 + }, + { + "start": 22380.98, + "end": 22383.26, + "probability": 0.9828 + }, + { + "start": 22384.28, + "end": 22386.04, + "probability": 0.9939 + }, + { + "start": 22386.14, + "end": 22388.71, + "probability": 0.8306 + }, + { + "start": 22390.26, + "end": 22395.34, + "probability": 0.9942 + }, + { + "start": 22396.06, + "end": 22396.36, + "probability": 0.6436 + }, + { + "start": 22397.06, + "end": 22401.7, + "probability": 0.9792 + }, + { + "start": 22402.36, + "end": 22407.52, + "probability": 0.8078 + }, + { + "start": 22407.94, + "end": 22410.0, + "probability": 0.5982 + }, + { + "start": 22411.66, + "end": 22412.32, + "probability": 0.5793 + }, + { + "start": 22412.54, + "end": 22413.82, + "probability": 0.7488 + }, + { + "start": 22435.34, + "end": 22436.14, + "probability": 0.7507 + }, + { + "start": 22437.2, + "end": 22438.76, + "probability": 0.7387 + }, + { + "start": 22440.28, + "end": 22441.3, + "probability": 0.8802 + }, + { + "start": 22441.96, + "end": 22442.82, + "probability": 0.8975 + }, + { + "start": 22443.72, + "end": 22445.92, + "probability": 0.6122 + }, + { + "start": 22446.76, + "end": 22448.08, + "probability": 0.8421 + }, + { + "start": 22450.24, + "end": 22452.4, + "probability": 0.9936 + }, + { + "start": 22453.52, + "end": 22457.7, + "probability": 0.9962 + }, + { + "start": 22458.84, + "end": 22460.57, + "probability": 0.758 + }, + { + "start": 22462.16, + "end": 22468.22, + "probability": 0.9602 + }, + { + "start": 22469.28, + "end": 22469.82, + "probability": 0.7693 + }, + { + "start": 22470.76, + "end": 22472.5, + "probability": 0.8603 + }, + { + "start": 22474.14, + "end": 22476.86, + "probability": 0.9489 + }, + { + "start": 22477.14, + "end": 22478.64, + "probability": 0.8033 + }, + { + "start": 22479.26, + "end": 22481.52, + "probability": 0.7367 + }, + { + "start": 22482.94, + "end": 22486.56, + "probability": 0.9875 + }, + { + "start": 22487.72, + "end": 22491.2, + "probability": 0.9315 + }, + { + "start": 22491.84, + "end": 22493.58, + "probability": 0.7239 + }, + { + "start": 22494.85, + "end": 22497.82, + "probability": 0.6815 + }, + { + "start": 22498.18, + "end": 22498.32, + "probability": 0.5732 + }, + { + "start": 22498.4, + "end": 22498.66, + "probability": 0.8836 + }, + { + "start": 22498.72, + "end": 22499.74, + "probability": 0.8663 + }, + { + "start": 22499.96, + "end": 22500.42, + "probability": 0.7408 + }, + { + "start": 22501.42, + "end": 22503.8, + "probability": 0.958 + }, + { + "start": 22506.22, + "end": 22507.58, + "probability": 0.9752 + }, + { + "start": 22508.44, + "end": 22513.82, + "probability": 0.9407 + }, + { + "start": 22514.5, + "end": 22516.9, + "probability": 0.6738 + }, + { + "start": 22517.74, + "end": 22519.76, + "probability": 0.7972 + }, + { + "start": 22520.76, + "end": 22523.88, + "probability": 0.9558 + }, + { + "start": 22530.36, + "end": 22533.1, + "probability": 0.8287 + }, + { + "start": 22534.16, + "end": 22536.92, + "probability": 0.9548 + }, + { + "start": 22537.74, + "end": 22540.67, + "probability": 0.8121 + }, + { + "start": 22542.1, + "end": 22545.2, + "probability": 0.8643 + }, + { + "start": 22545.94, + "end": 22547.38, + "probability": 0.9956 + }, + { + "start": 22549.02, + "end": 22553.14, + "probability": 0.8713 + }, + { + "start": 22554.14, + "end": 22557.94, + "probability": 0.3271 + }, + { + "start": 22558.92, + "end": 22560.28, + "probability": 0.7355 + }, + { + "start": 22560.44, + "end": 22561.64, + "probability": 0.9865 + }, + { + "start": 22561.9, + "end": 22562.96, + "probability": 0.9512 + }, + { + "start": 22563.02, + "end": 22563.3, + "probability": 0.4993 + }, + { + "start": 22563.34, + "end": 22564.18, + "probability": 0.8139 + }, + { + "start": 22565.08, + "end": 22565.92, + "probability": 0.9429 + }, + { + "start": 22567.22, + "end": 22569.27, + "probability": 0.8848 + }, + { + "start": 22570.34, + "end": 22573.38, + "probability": 0.986 + }, + { + "start": 22574.38, + "end": 22575.32, + "probability": 0.9762 + }, + { + "start": 22576.2, + "end": 22577.42, + "probability": 0.8991 + }, + { + "start": 22578.6, + "end": 22579.0, + "probability": 0.9139 + }, + { + "start": 22579.58, + "end": 22581.12, + "probability": 0.864 + }, + { + "start": 22582.18, + "end": 22583.8, + "probability": 0.9658 + }, + { + "start": 22585.7, + "end": 22589.02, + "probability": 0.9161 + }, + { + "start": 22589.82, + "end": 22592.36, + "probability": 0.9608 + }, + { + "start": 22593.18, + "end": 22597.12, + "probability": 0.9917 + }, + { + "start": 22598.36, + "end": 22600.18, + "probability": 0.389 + }, + { + "start": 22600.84, + "end": 22603.3, + "probability": 0.7981 + }, + { + "start": 22604.3, + "end": 22606.76, + "probability": 0.9545 + }, + { + "start": 22607.44, + "end": 22608.14, + "probability": 0.855 + }, + { + "start": 22608.44, + "end": 22610.6, + "probability": 0.9956 + }, + { + "start": 22611.84, + "end": 22615.44, + "probability": 0.4914 + }, + { + "start": 22617.06, + "end": 22618.28, + "probability": 0.9989 + }, + { + "start": 22618.88, + "end": 22621.22, + "probability": 0.96 + }, + { + "start": 22621.22, + "end": 22625.14, + "probability": 0.9912 + }, + { + "start": 22625.52, + "end": 22626.06, + "probability": 0.7086 + }, + { + "start": 22626.24, + "end": 22627.98, + "probability": 0.7397 + }, + { + "start": 22629.06, + "end": 22633.3, + "probability": 0.5395 + }, + { + "start": 22633.3, + "end": 22634.74, + "probability": 0.7203 + }, + { + "start": 22635.08, + "end": 22636.2, + "probability": 0.9928 + }, + { + "start": 22637.14, + "end": 22639.16, + "probability": 0.9863 + }, + { + "start": 22639.62, + "end": 22642.32, + "probability": 0.9251 + }, + { + "start": 22643.7, + "end": 22645.28, + "probability": 0.0206 + }, + { + "start": 22646.82, + "end": 22648.02, + "probability": 0.6514 + }, + { + "start": 22657.92, + "end": 22658.18, + "probability": 0.455 + }, + { + "start": 22658.34, + "end": 22658.34, + "probability": 0.0853 + }, + { + "start": 22658.34, + "end": 22658.76, + "probability": 0.4215 + }, + { + "start": 22662.58, + "end": 22665.4, + "probability": 0.9724 + }, + { + "start": 22669.5, + "end": 22671.38, + "probability": 0.9277 + }, + { + "start": 22673.22, + "end": 22675.58, + "probability": 0.8055 + }, + { + "start": 22678.92, + "end": 22679.72, + "probability": 0.6076 + }, + { + "start": 22680.76, + "end": 22681.46, + "probability": 0.5399 + }, + { + "start": 22682.18, + "end": 22682.94, + "probability": 0.8824 + }, + { + "start": 22688.08, + "end": 22689.85, + "probability": 0.5345 + }, + { + "start": 22690.52, + "end": 22691.1, + "probability": 0.1118 + }, + { + "start": 22691.74, + "end": 22692.68, + "probability": 0.0011 + }, + { + "start": 22693.32, + "end": 22694.8, + "probability": 0.4744 + }, + { + "start": 22695.06, + "end": 22695.48, + "probability": 0.3296 + }, + { + "start": 22696.08, + "end": 22696.22, + "probability": 0.2052 + }, + { + "start": 22696.94, + "end": 22700.18, + "probability": 0.8232 + }, + { + "start": 22701.1, + "end": 22706.48, + "probability": 0.8312 + }, + { + "start": 22707.0, + "end": 22707.1, + "probability": 0.757 + }, + { + "start": 22708.64, + "end": 22709.18, + "probability": 0.9597 + }, + { + "start": 22710.04, + "end": 22711.74, + "probability": 0.7175 + }, + { + "start": 22711.92, + "end": 22712.8, + "probability": 0.8239 + }, + { + "start": 22713.26, + "end": 22713.52, + "probability": 0.6847 + }, + { + "start": 22713.64, + "end": 22717.96, + "probability": 0.9986 + }, + { + "start": 22718.84, + "end": 22720.63, + "probability": 0.3909 + }, + { + "start": 22722.0, + "end": 22726.64, + "probability": 0.9855 + }, + { + "start": 22727.5, + "end": 22732.14, + "probability": 0.9847 + }, + { + "start": 22732.88, + "end": 22735.74, + "probability": 0.9208 + }, + { + "start": 22736.42, + "end": 22738.54, + "probability": 0.9075 + }, + { + "start": 22738.64, + "end": 22739.36, + "probability": 0.911 + }, + { + "start": 22740.28, + "end": 22743.08, + "probability": 0.9878 + }, + { + "start": 22743.18, + "end": 22744.86, + "probability": 0.8363 + }, + { + "start": 22745.38, + "end": 22748.76, + "probability": 0.9763 + }, + { + "start": 22749.5, + "end": 22750.64, + "probability": 0.8879 + }, + { + "start": 22751.62, + "end": 22755.98, + "probability": 0.9328 + }, + { + "start": 22757.1, + "end": 22761.28, + "probability": 0.9807 + }, + { + "start": 22762.04, + "end": 22766.24, + "probability": 0.9909 + }, + { + "start": 22767.24, + "end": 22769.62, + "probability": 0.9972 + }, + { + "start": 22770.92, + "end": 22773.22, + "probability": 0.9335 + }, + { + "start": 22773.34, + "end": 22775.98, + "probability": 0.9167 + }, + { + "start": 22776.78, + "end": 22778.98, + "probability": 0.8477 + }, + { + "start": 22779.12, + "end": 22780.76, + "probability": 0.988 + }, + { + "start": 22782.22, + "end": 22786.76, + "probability": 0.9944 + }, + { + "start": 22787.42, + "end": 22789.78, + "probability": 0.9725 + }, + { + "start": 22790.3, + "end": 22792.62, + "probability": 0.9076 + }, + { + "start": 22793.3, + "end": 22794.82, + "probability": 0.7959 + }, + { + "start": 22795.52, + "end": 22798.54, + "probability": 0.9736 + }, + { + "start": 22799.2, + "end": 22799.74, + "probability": 0.6815 + }, + { + "start": 22799.84, + "end": 22799.96, + "probability": 0.8548 + }, + { + "start": 22800.1, + "end": 22801.02, + "probability": 0.9282 + }, + { + "start": 22801.14, + "end": 22803.52, + "probability": 0.9677 + }, + { + "start": 22804.44, + "end": 22807.88, + "probability": 0.9874 + }, + { + "start": 22807.88, + "end": 22810.54, + "probability": 0.9983 + }, + { + "start": 22811.2, + "end": 22814.64, + "probability": 0.8872 + }, + { + "start": 22815.24, + "end": 22819.6, + "probability": 0.9953 + }, + { + "start": 22819.62, + "end": 22820.44, + "probability": 0.888 + }, + { + "start": 22821.26, + "end": 22822.8, + "probability": 0.6985 + }, + { + "start": 22823.1, + "end": 22823.32, + "probability": 0.7234 + }, + { + "start": 22825.12, + "end": 22825.64, + "probability": 0.5105 + }, + { + "start": 22825.72, + "end": 22826.28, + "probability": 0.8228 + }, + { + "start": 22826.62, + "end": 22832.0, + "probability": 0.9961 + }, + { + "start": 22832.06, + "end": 22833.82, + "probability": 0.9658 + }, + { + "start": 22834.42, + "end": 22835.36, + "probability": 0.9979 + }, + { + "start": 22836.28, + "end": 22837.96, + "probability": 0.6183 + }, + { + "start": 22838.18, + "end": 22839.1, + "probability": 0.4608 + }, + { + "start": 22839.18, + "end": 22840.0, + "probability": 0.9357 + }, + { + "start": 22840.84, + "end": 22842.8, + "probability": 0.9391 + }, + { + "start": 22843.2, + "end": 22844.42, + "probability": 0.8884 + }, + { + "start": 22844.44, + "end": 22846.02, + "probability": 0.9393 + }, + { + "start": 22846.48, + "end": 22847.84, + "probability": 0.946 + }, + { + "start": 22847.92, + "end": 22848.56, + "probability": 0.6282 + }, + { + "start": 22848.8, + "end": 22849.34, + "probability": 0.8773 + }, + { + "start": 22849.4, + "end": 22850.3, + "probability": 0.9946 + }, + { + "start": 22850.8, + "end": 22851.24, + "probability": 0.8121 + }, + { + "start": 22851.7, + "end": 22853.26, + "probability": 0.9745 + }, + { + "start": 22854.22, + "end": 22855.96, + "probability": 0.882 + }, + { + "start": 22879.22, + "end": 22881.52, + "probability": 0.6978 + }, + { + "start": 22884.02, + "end": 22887.3, + "probability": 0.8801 + }, + { + "start": 22888.62, + "end": 22892.74, + "probability": 0.9883 + }, + { + "start": 22894.04, + "end": 22898.3, + "probability": 0.9934 + }, + { + "start": 22900.2, + "end": 22904.84, + "probability": 0.9585 + }, + { + "start": 22908.88, + "end": 22916.58, + "probability": 0.9792 + }, + { + "start": 22918.88, + "end": 22922.2, + "probability": 0.8778 + }, + { + "start": 22923.0, + "end": 22929.2, + "probability": 0.9321 + }, + { + "start": 22929.22, + "end": 22929.76, + "probability": 0.5509 + }, + { + "start": 22930.78, + "end": 22935.64, + "probability": 0.9681 + }, + { + "start": 22939.46, + "end": 22943.36, + "probability": 0.8007 + }, + { + "start": 22944.14, + "end": 22946.4, + "probability": 0.8009 + }, + { + "start": 22949.88, + "end": 22952.28, + "probability": 0.8887 + }, + { + "start": 22952.9, + "end": 22956.12, + "probability": 0.689 + }, + { + "start": 22957.42, + "end": 22959.9, + "probability": 0.8225 + }, + { + "start": 22960.84, + "end": 22963.68, + "probability": 0.9651 + }, + { + "start": 22965.0, + "end": 22967.18, + "probability": 0.9811 + }, + { + "start": 22968.1, + "end": 22970.92, + "probability": 0.9716 + }, + { + "start": 22971.7, + "end": 22975.06, + "probability": 0.982 + }, + { + "start": 22976.34, + "end": 22984.04, + "probability": 0.9944 + }, + { + "start": 22985.6, + "end": 22988.0, + "probability": 0.922 + }, + { + "start": 22988.94, + "end": 22990.7, + "probability": 0.9664 + }, + { + "start": 22991.36, + "end": 22993.62, + "probability": 0.9976 + }, + { + "start": 22994.22, + "end": 22997.6, + "probability": 0.9857 + }, + { + "start": 22999.26, + "end": 23000.82, + "probability": 0.9609 + }, + { + "start": 23001.58, + "end": 23004.82, + "probability": 0.9782 + }, + { + "start": 23005.66, + "end": 23010.26, + "probability": 0.9962 + }, + { + "start": 23010.26, + "end": 23015.74, + "probability": 0.998 + }, + { + "start": 23016.52, + "end": 23017.46, + "probability": 0.6082 + }, + { + "start": 23018.1, + "end": 23018.74, + "probability": 0.9451 + }, + { + "start": 23021.94, + "end": 23022.5, + "probability": 0.6401 + }, + { + "start": 23022.58, + "end": 23024.14, + "probability": 0.8396 + }, + { + "start": 23051.98, + "end": 23052.91, + "probability": 0.8704 + }, + { + "start": 23053.51, + "end": 23053.97, + "probability": 0.8587 + }, + { + "start": 23054.09, + "end": 23059.55, + "probability": 0.9912 + }, + { + "start": 23059.75, + "end": 23060.97, + "probability": 0.905 + }, + { + "start": 23061.61, + "end": 23063.23, + "probability": 0.9014 + }, + { + "start": 23064.25, + "end": 23066.87, + "probability": 0.9956 + }, + { + "start": 23067.03, + "end": 23068.57, + "probability": 0.9943 + }, + { + "start": 23069.23, + "end": 23070.91, + "probability": 0.9922 + }, + { + "start": 23070.99, + "end": 23072.21, + "probability": 0.9858 + }, + { + "start": 23072.27, + "end": 23073.19, + "probability": 0.7187 + }, + { + "start": 23074.33, + "end": 23074.77, + "probability": 0.9263 + }, + { + "start": 23074.85, + "end": 23078.53, + "probability": 0.9966 + }, + { + "start": 23079.11, + "end": 23082.03, + "probability": 0.9946 + }, + { + "start": 23082.63, + "end": 23083.67, + "probability": 0.9903 + }, + { + "start": 23084.43, + "end": 23085.01, + "probability": 0.4817 + }, + { + "start": 23085.69, + "end": 23088.37, + "probability": 0.9093 + }, + { + "start": 23089.07, + "end": 23093.79, + "probability": 0.7107 + }, + { + "start": 23093.89, + "end": 23094.65, + "probability": 0.9382 + }, + { + "start": 23095.39, + "end": 23098.55, + "probability": 0.9893 + }, + { + "start": 23099.31, + "end": 23099.65, + "probability": 0.4771 + }, + { + "start": 23100.99, + "end": 23103.83, + "probability": 0.9316 + }, + { + "start": 23104.03, + "end": 23105.15, + "probability": 0.72 + }, + { + "start": 23105.15, + "end": 23105.8, + "probability": 0.8584 + }, + { + "start": 23106.27, + "end": 23106.81, + "probability": 0.7954 + }, + { + "start": 23106.95, + "end": 23108.81, + "probability": 0.6943 + }, + { + "start": 23109.09, + "end": 23111.01, + "probability": 0.9243 + }, + { + "start": 23111.03, + "end": 23112.27, + "probability": 0.996 + }, + { + "start": 23112.63, + "end": 23114.35, + "probability": 0.8561 + }, + { + "start": 23114.37, + "end": 23115.81, + "probability": 0.533 + }, + { + "start": 23115.87, + "end": 23116.79, + "probability": 0.8474 + }, + { + "start": 23116.91, + "end": 23117.95, + "probability": 0.9039 + }, + { + "start": 23118.07, + "end": 23119.45, + "probability": 0.978 + }, + { + "start": 23119.49, + "end": 23120.67, + "probability": 0.939 + }, + { + "start": 23120.87, + "end": 23121.05, + "probability": 0.7949 + }, + { + "start": 23121.33, + "end": 23121.43, + "probability": 0.4283 + }, + { + "start": 23121.59, + "end": 23121.59, + "probability": 0.1495 + }, + { + "start": 23121.69, + "end": 23123.35, + "probability": 0.7925 + }, + { + "start": 23123.65, + "end": 23124.43, + "probability": 0.7578 + }, + { + "start": 23124.69, + "end": 23125.13, + "probability": 0.2713 + }, + { + "start": 23125.19, + "end": 23127.39, + "probability": 0.7903 + }, + { + "start": 23127.49, + "end": 23132.31, + "probability": 0.9858 + }, + { + "start": 23132.35, + "end": 23137.77, + "probability": 0.9978 + }, + { + "start": 23138.23, + "end": 23139.29, + "probability": 0.9992 + }, + { + "start": 23139.41, + "end": 23139.59, + "probability": 0.0735 + }, + { + "start": 23139.69, + "end": 23141.71, + "probability": 0.9559 + }, + { + "start": 23141.71, + "end": 23142.54, + "probability": 0.4286 + }, + { + "start": 23143.45, + "end": 23144.83, + "probability": 0.7195 + }, + { + "start": 23145.01, + "end": 23148.21, + "probability": 0.7712 + }, + { + "start": 23148.25, + "end": 23149.71, + "probability": 0.9688 + }, + { + "start": 23149.99, + "end": 23150.07, + "probability": 0.2704 + }, + { + "start": 23150.07, + "end": 23150.07, + "probability": 0.4273 + }, + { + "start": 23150.73, + "end": 23151.85, + "probability": 0.7299 + }, + { + "start": 23151.93, + "end": 23154.07, + "probability": 0.9889 + }, + { + "start": 23154.39, + "end": 23159.17, + "probability": 0.9634 + }, + { + "start": 23159.23, + "end": 23159.23, + "probability": 0.8248 + }, + { + "start": 23159.37, + "end": 23159.37, + "probability": 0.3251 + }, + { + "start": 23159.37, + "end": 23159.37, + "probability": 0.0347 + }, + { + "start": 23159.37, + "end": 23160.27, + "probability": 0.8594 + }, + { + "start": 23160.33, + "end": 23163.21, + "probability": 0.24 + }, + { + "start": 23164.17, + "end": 23165.89, + "probability": 0.9883 + }, + { + "start": 23166.55, + "end": 23167.69, + "probability": 0.9395 + }, + { + "start": 23168.71, + "end": 23169.13, + "probability": 0.0407 + }, + { + "start": 23169.19, + "end": 23169.19, + "probability": 0.0312 + }, + { + "start": 23169.19, + "end": 23170.65, + "probability": 0.7007 + }, + { + "start": 23171.01, + "end": 23173.71, + "probability": 0.9962 + }, + { + "start": 23173.95, + "end": 23176.07, + "probability": 0.7744 + }, + { + "start": 23176.31, + "end": 23177.33, + "probability": 0.6549 + }, + { + "start": 23177.33, + "end": 23178.89, + "probability": 0.5768 + }, + { + "start": 23179.11, + "end": 23180.43, + "probability": 0.8281 + }, + { + "start": 23180.43, + "end": 23180.55, + "probability": 0.5831 + }, + { + "start": 23180.55, + "end": 23183.16, + "probability": 0.9463 + }, + { + "start": 23183.53, + "end": 23185.57, + "probability": 0.6366 + }, + { + "start": 23185.63, + "end": 23185.63, + "probability": 0.8574 + }, + { + "start": 23185.63, + "end": 23189.15, + "probability": 0.7535 + }, + { + "start": 23189.53, + "end": 23189.53, + "probability": 0.2886 + }, + { + "start": 23192.17, + "end": 23192.25, + "probability": 0.0167 + }, + { + "start": 23192.25, + "end": 23195.42, + "probability": 0.3298 + }, + { + "start": 23196.25, + "end": 23201.97, + "probability": 0.9893 + }, + { + "start": 23202.73, + "end": 23207.53, + "probability": 0.9386 + }, + { + "start": 23208.26, + "end": 23209.71, + "probability": 0.8404 + }, + { + "start": 23210.37, + "end": 23213.21, + "probability": 0.9953 + }, + { + "start": 23213.21, + "end": 23216.29, + "probability": 0.9722 + }, + { + "start": 23217.15, + "end": 23220.45, + "probability": 0.9454 + }, + { + "start": 23221.25, + "end": 23221.35, + "probability": 0.676 + }, + { + "start": 23221.43, + "end": 23222.71, + "probability": 0.8542 + }, + { + "start": 23222.79, + "end": 23226.75, + "probability": 0.983 + }, + { + "start": 23227.85, + "end": 23228.95, + "probability": 0.4136 + }, + { + "start": 23230.68, + "end": 23231.05, + "probability": 0.1685 + }, + { + "start": 23231.25, + "end": 23232.55, + "probability": 0.1207 + }, + { + "start": 23232.55, + "end": 23233.57, + "probability": 0.2565 + }, + { + "start": 23233.71, + "end": 23234.67, + "probability": 0.6042 + }, + { + "start": 23234.75, + "end": 23236.59, + "probability": 0.9005 + }, + { + "start": 23236.63, + "end": 23241.31, + "probability": 0.9561 + }, + { + "start": 23241.41, + "end": 23243.47, + "probability": 0.1919 + }, + { + "start": 23243.59, + "end": 23244.25, + "probability": 0.3029 + }, + { + "start": 23244.71, + "end": 23245.01, + "probability": 0.1204 + }, + { + "start": 23245.01, + "end": 23245.11, + "probability": 0.0486 + }, + { + "start": 23245.27, + "end": 23245.49, + "probability": 0.337 + }, + { + "start": 23245.53, + "end": 23246.29, + "probability": 0.7725 + }, + { + "start": 23246.37, + "end": 23247.05, + "probability": 0.4585 + }, + { + "start": 23247.21, + "end": 23249.61, + "probability": 0.7469 + }, + { + "start": 23249.71, + "end": 23249.91, + "probability": 0.5106 + }, + { + "start": 23250.33, + "end": 23251.05, + "probability": 0.282 + }, + { + "start": 23251.11, + "end": 23252.31, + "probability": 0.0704 + }, + { + "start": 23252.31, + "end": 23252.49, + "probability": 0.0495 + }, + { + "start": 23252.61, + "end": 23257.81, + "probability": 0.9177 + }, + { + "start": 23258.11, + "end": 23259.85, + "probability": 0.8856 + }, + { + "start": 23259.87, + "end": 23262.79, + "probability": 0.3197 + }, + { + "start": 23263.69, + "end": 23265.53, + "probability": 0.2744 + }, + { + "start": 23266.09, + "end": 23268.12, + "probability": 0.1228 + }, + { + "start": 23268.61, + "end": 23272.19, + "probability": 0.132 + }, + { + "start": 23273.26, + "end": 23276.07, + "probability": 0.3498 + }, + { + "start": 23276.49, + "end": 23277.49, + "probability": 0.4666 + }, + { + "start": 23277.49, + "end": 23279.75, + "probability": 0.027 + }, + { + "start": 23281.33, + "end": 23285.55, + "probability": 0.6948 + }, + { + "start": 23286.17, + "end": 23287.61, + "probability": 0.799 + }, + { + "start": 23294.85, + "end": 23297.73, + "probability": 0.1259 + }, + { + "start": 23300.39, + "end": 23303.21, + "probability": 0.0476 + }, + { + "start": 23303.47, + "end": 23303.91, + "probability": 0.0479 + }, + { + "start": 23305.53, + "end": 23306.47, + "probability": 0.0735 + }, + { + "start": 23306.95, + "end": 23314.07, + "probability": 0.1344 + }, + { + "start": 23314.87, + "end": 23317.51, + "probability": 0.0451 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.0, + "end": 23324.0, + "probability": 0.0 + }, + { + "start": 23324.16, + "end": 23325.36, + "probability": 0.2077 + }, + { + "start": 23326.24, + "end": 23327.56, + "probability": 0.7212 + }, + { + "start": 23327.58, + "end": 23328.52, + "probability": 0.1929 + }, + { + "start": 23328.58, + "end": 23330.1, + "probability": 0.9869 + }, + { + "start": 23330.2, + "end": 23331.64, + "probability": 0.8591 + }, + { + "start": 23331.71, + "end": 23333.12, + "probability": 0.9115 + }, + { + "start": 23341.04, + "end": 23345.34, + "probability": 0.5074 + }, + { + "start": 23353.96, + "end": 23354.66, + "probability": 0.3642 + }, + { + "start": 23355.4, + "end": 23359.62, + "probability": 0.0406 + }, + { + "start": 23368.98, + "end": 23372.6, + "probability": 0.0997 + }, + { + "start": 23374.68, + "end": 23376.98, + "probability": 0.0878 + }, + { + "start": 23377.2, + "end": 23379.29, + "probability": 0.1004 + }, + { + "start": 23381.24, + "end": 23382.1, + "probability": 0.0185 + }, + { + "start": 23382.18, + "end": 23382.7, + "probability": 0.19 + }, + { + "start": 23382.76, + "end": 23384.36, + "probability": 0.1197 + }, + { + "start": 23384.66, + "end": 23386.24, + "probability": 0.1847 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.0, + "end": 23445.0, + "probability": 0.0 + }, + { + "start": 23445.22, + "end": 23446.64, + "probability": 0.3609 + }, + { + "start": 23447.54, + "end": 23451.92, + "probability": 0.9435 + }, + { + "start": 23453.0, + "end": 23454.06, + "probability": 0.9734 + }, + { + "start": 23455.4, + "end": 23459.1, + "probability": 0.9706 + }, + { + "start": 23460.06, + "end": 23461.56, + "probability": 0.7365 + }, + { + "start": 23462.3, + "end": 23463.56, + "probability": 0.9594 + }, + { + "start": 23464.14, + "end": 23464.92, + "probability": 0.8502 + }, + { + "start": 23466.68, + "end": 23470.1, + "probability": 0.9249 + }, + { + "start": 23471.06, + "end": 23471.68, + "probability": 0.9009 + }, + { + "start": 23472.3, + "end": 23473.68, + "probability": 0.7807 + }, + { + "start": 23474.6, + "end": 23475.78, + "probability": 0.9508 + }, + { + "start": 23476.62, + "end": 23477.66, + "probability": 0.9872 + }, + { + "start": 23478.38, + "end": 23479.58, + "probability": 0.9131 + }, + { + "start": 23480.3, + "end": 23481.74, + "probability": 0.9866 + }, + { + "start": 23483.98, + "end": 23484.86, + "probability": 0.9432 + }, + { + "start": 23485.5, + "end": 23486.22, + "probability": 0.7515 + }, + { + "start": 23487.9, + "end": 23492.24, + "probability": 0.9758 + }, + { + "start": 23493.32, + "end": 23495.4, + "probability": 0.9738 + }, + { + "start": 23496.54, + "end": 23498.08, + "probability": 0.9679 + }, + { + "start": 23498.82, + "end": 23499.86, + "probability": 0.7386 + }, + { + "start": 23500.74, + "end": 23502.92, + "probability": 0.8565 + }, + { + "start": 23503.72, + "end": 23504.86, + "probability": 0.9638 + }, + { + "start": 23505.68, + "end": 23507.06, + "probability": 0.8304 + }, + { + "start": 23507.86, + "end": 23510.92, + "probability": 0.9926 + }, + { + "start": 23511.72, + "end": 23514.0, + "probability": 0.9986 + }, + { + "start": 23514.72, + "end": 23517.26, + "probability": 0.9752 + }, + { + "start": 23518.88, + "end": 23520.1, + "probability": 0.8646 + }, + { + "start": 23520.26, + "end": 23524.18, + "probability": 0.9961 + }, + { + "start": 23525.0, + "end": 23527.62, + "probability": 0.9972 + }, + { + "start": 23528.54, + "end": 23531.18, + "probability": 0.9961 + }, + { + "start": 23531.18, + "end": 23534.46, + "probability": 0.9953 + }, + { + "start": 23534.7, + "end": 23536.14, + "probability": 0.895 + }, + { + "start": 23537.24, + "end": 23539.34, + "probability": 0.9849 + }, + { + "start": 23540.08, + "end": 23542.1, + "probability": 0.9519 + }, + { + "start": 23542.84, + "end": 23544.08, + "probability": 0.9384 + }, + { + "start": 23544.98, + "end": 23547.44, + "probability": 0.9763 + }, + { + "start": 23548.24, + "end": 23552.38, + "probability": 0.9899 + }, + { + "start": 23553.1, + "end": 23555.34, + "probability": 0.939 + }, + { + "start": 23557.12, + "end": 23557.9, + "probability": 0.6992 + }, + { + "start": 23558.06, + "end": 23560.64, + "probability": 0.893 + }, + { + "start": 23561.46, + "end": 23562.74, + "probability": 0.9803 + }, + { + "start": 23563.58, + "end": 23566.38, + "probability": 0.9906 + }, + { + "start": 23568.22, + "end": 23570.38, + "probability": 0.9935 + }, + { + "start": 23571.4, + "end": 23573.06, + "probability": 0.6751 + }, + { + "start": 23574.3, + "end": 23575.9, + "probability": 0.4237 + }, + { + "start": 23576.88, + "end": 23577.76, + "probability": 0.9268 + }, + { + "start": 23577.92, + "end": 23579.78, + "probability": 0.9934 + }, + { + "start": 23579.82, + "end": 23580.24, + "probability": 0.8584 + }, + { + "start": 23581.36, + "end": 23583.98, + "probability": 0.9373 + }, + { + "start": 23584.76, + "end": 23585.72, + "probability": 0.9932 + }, + { + "start": 23587.0, + "end": 23590.88, + "probability": 0.9873 + }, + { + "start": 23591.48, + "end": 23592.24, + "probability": 0.8602 + }, + { + "start": 23593.36, + "end": 23595.02, + "probability": 0.847 + }, + { + "start": 23596.08, + "end": 23599.44, + "probability": 0.9866 + }, + { + "start": 23600.52, + "end": 23603.42, + "probability": 0.9946 + }, + { + "start": 23604.2, + "end": 23606.62, + "probability": 0.9855 + }, + { + "start": 23607.22, + "end": 23610.2, + "probability": 0.979 + }, + { + "start": 23611.84, + "end": 23614.34, + "probability": 0.9969 + }, + { + "start": 23614.76, + "end": 23617.38, + "probability": 0.9492 + }, + { + "start": 23618.2, + "end": 23620.62, + "probability": 0.9957 + }, + { + "start": 23620.62, + "end": 23625.28, + "probability": 0.9839 + }, + { + "start": 23625.46, + "end": 23626.04, + "probability": 0.5521 + }, + { + "start": 23626.12, + "end": 23627.08, + "probability": 0.8322 + }, + { + "start": 23627.74, + "end": 23628.02, + "probability": 0.6753 + }, + { + "start": 23628.06, + "end": 23630.02, + "probability": 0.9326 + }, + { + "start": 23630.68, + "end": 23631.3, + "probability": 0.8048 + }, + { + "start": 23631.94, + "end": 23633.24, + "probability": 0.9788 + }, + { + "start": 23633.84, + "end": 23635.54, + "probability": 0.897 + }, + { + "start": 23636.4, + "end": 23637.38, + "probability": 0.6314 + }, + { + "start": 23638.02, + "end": 23638.82, + "probability": 0.8328 + }, + { + "start": 23640.2, + "end": 23656.7, + "probability": 0.5936 + }, + { + "start": 23666.16, + "end": 23667.48, + "probability": 0.7891 + }, + { + "start": 23669.08, + "end": 23671.08, + "probability": 0.917 + }, + { + "start": 23672.26, + "end": 23673.98, + "probability": 0.9647 + }, + { + "start": 23674.98, + "end": 23675.86, + "probability": 0.9004 + }, + { + "start": 23677.72, + "end": 23681.72, + "probability": 0.027 + }, + { + "start": 23685.6, + "end": 23690.78, + "probability": 0.1995 + }, + { + "start": 23695.15, + "end": 23698.51, + "probability": 0.0768 + }, + { + "start": 23703.78, + "end": 23709.96, + "probability": 0.0571 + }, + { + "start": 23713.16, + "end": 23715.1, + "probability": 0.0396 + }, + { + "start": 23715.1, + "end": 23717.88, + "probability": 0.2179 + }, + { + "start": 23718.16, + "end": 23719.24, + "probability": 0.063 + }, + { + "start": 23720.2, + "end": 23720.42, + "probability": 0.3047 + }, + { + "start": 23722.75, + "end": 23723.79, + "probability": 0.0843 + }, + { + "start": 23725.72, + "end": 23725.76, + "probability": 0.0771 + }, + { + "start": 23725.76, + "end": 23725.76, + "probability": 0.0303 + }, + { + "start": 23725.76, + "end": 23725.76, + "probability": 0.1517 + }, + { + "start": 23725.76, + "end": 23725.76, + "probability": 0.0596 + }, + { + "start": 23725.76, + "end": 23725.76, + "probability": 0.046 + }, + { + "start": 23725.76, + "end": 23726.46, + "probability": 0.4381 + }, + { + "start": 23727.0, + "end": 23727.0, + "probability": 0.0 + }, + { + "start": 23727.0, + "end": 23727.0, + "probability": 0.0 + }, + { + "start": 23727.39, + "end": 23728.85, + "probability": 0.5986 + }, + { + "start": 23729.28, + "end": 23732.7, + "probability": 0.0394 + }, + { + "start": 23734.28, + "end": 23734.38, + "probability": 0.0542 + }, + { + "start": 23734.38, + "end": 23737.18, + "probability": 0.2281 + }, + { + "start": 23738.56, + "end": 23740.52, + "probability": 0.3781 + }, + { + "start": 23745.36, + "end": 23750.42, + "probability": 0.4038 + }, + { + "start": 23751.0, + "end": 23751.8, + "probability": 0.3486 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.0, + "end": 23857.0, + "probability": 0.0 + }, + { + "start": 23857.96, + "end": 23857.98, + "probability": 0.1133 + }, + { + "start": 23858.02, + "end": 23859.1, + "probability": 0.8953 + }, + { + "start": 23859.28, + "end": 23860.14, + "probability": 0.734 + }, + { + "start": 23860.22, + "end": 23862.16, + "probability": 0.8182 + }, + { + "start": 23862.24, + "end": 23863.3, + "probability": 0.7869 + }, + { + "start": 23863.3, + "end": 23864.06, + "probability": 0.9912 + }, + { + "start": 23864.82, + "end": 23866.94, + "probability": 0.9927 + }, + { + "start": 23867.68, + "end": 23869.26, + "probability": 0.2235 + }, + { + "start": 23869.44, + "end": 23872.7, + "probability": 0.6365 + }, + { + "start": 23873.58, + "end": 23877.46, + "probability": 0.8706 + }, + { + "start": 23878.18, + "end": 23884.98, + "probability": 0.8745 + }, + { + "start": 23886.26, + "end": 23888.2, + "probability": 0.7476 + }, + { + "start": 23889.5, + "end": 23891.28, + "probability": 0.8135 + }, + { + "start": 23892.46, + "end": 23895.3, + "probability": 0.2483 + }, + { + "start": 23916.66, + "end": 23916.84, + "probability": 0.0935 + }, + { + "start": 23916.84, + "end": 23917.94, + "probability": 0.7597 + }, + { + "start": 23918.12, + "end": 23919.08, + "probability": 0.6944 + }, + { + "start": 23921.54, + "end": 23923.36, + "probability": 0.7825 + }, + { + "start": 23923.96, + "end": 23928.02, + "probability": 0.9643 + }, + { + "start": 23929.08, + "end": 23932.86, + "probability": 0.9902 + }, + { + "start": 23934.26, + "end": 23935.14, + "probability": 0.9566 + }, + { + "start": 23937.92, + "end": 23938.54, + "probability": 0.4618 + }, + { + "start": 23940.12, + "end": 23943.07, + "probability": 0.967 + }, + { + "start": 23943.84, + "end": 23944.58, + "probability": 0.7491 + }, + { + "start": 23947.34, + "end": 23950.0, + "probability": 0.9693 + }, + { + "start": 23950.84, + "end": 23954.48, + "probability": 0.995 + }, + { + "start": 23955.12, + "end": 23956.96, + "probability": 0.9921 + }, + { + "start": 23957.82, + "end": 23959.24, + "probability": 0.9984 + }, + { + "start": 23960.72, + "end": 23962.16, + "probability": 0.998 + }, + { + "start": 23962.7, + "end": 23966.42, + "probability": 0.9995 + }, + { + "start": 23967.76, + "end": 23971.16, + "probability": 0.9941 + }, + { + "start": 23971.84, + "end": 23977.88, + "probability": 0.9369 + }, + { + "start": 23979.2, + "end": 23981.44, + "probability": 0.4967 + }, + { + "start": 23982.89, + "end": 23989.1, + "probability": 0.9771 + }, + { + "start": 23989.42, + "end": 23990.78, + "probability": 0.7462 + }, + { + "start": 23991.5, + "end": 23998.66, + "probability": 0.9973 + }, + { + "start": 23999.74, + "end": 24000.08, + "probability": 0.8016 + }, + { + "start": 24001.68, + "end": 24002.2, + "probability": 0.5021 + }, + { + "start": 24002.34, + "end": 24009.26, + "probability": 0.938 + }, + { + "start": 24009.48, + "end": 24014.36, + "probability": 0.9863 + }, + { + "start": 24015.68, + "end": 24018.84, + "probability": 0.9453 + }, + { + "start": 24019.06, + "end": 24022.18, + "probability": 0.9023 + }, + { + "start": 24023.74, + "end": 24028.42, + "probability": 0.8381 + }, + { + "start": 24029.4, + "end": 24036.02, + "probability": 0.972 + }, + { + "start": 24036.78, + "end": 24038.3, + "probability": 0.9974 + }, + { + "start": 24039.9, + "end": 24040.8, + "probability": 0.6554 + }, + { + "start": 24041.54, + "end": 24043.8, + "probability": 0.995 + }, + { + "start": 24045.14, + "end": 24049.2, + "probability": 0.9778 + }, + { + "start": 24050.26, + "end": 24054.0, + "probability": 0.949 + }, + { + "start": 24055.78, + "end": 24056.76, + "probability": 0.9989 + }, + { + "start": 24059.32, + "end": 24062.4, + "probability": 0.878 + }, + { + "start": 24063.34, + "end": 24064.7, + "probability": 0.9927 + }, + { + "start": 24064.76, + "end": 24066.86, + "probability": 0.9826 + }, + { + "start": 24067.36, + "end": 24070.16, + "probability": 0.7929 + }, + { + "start": 24071.3, + "end": 24072.8, + "probability": 0.9114 + }, + { + "start": 24073.16, + "end": 24073.62, + "probability": 0.3687 + }, + { + "start": 24073.84, + "end": 24074.08, + "probability": 0.579 + }, + { + "start": 24074.2, + "end": 24075.72, + "probability": 0.9636 + }, + { + "start": 24076.06, + "end": 24078.56, + "probability": 0.9146 + }, + { + "start": 24079.84, + "end": 24082.1, + "probability": 0.7646 + }, + { + "start": 24084.04, + "end": 24089.14, + "probability": 0.9964 + }, + { + "start": 24089.66, + "end": 24093.68, + "probability": 0.9921 + }, + { + "start": 24094.54, + "end": 24097.16, + "probability": 0.9771 + }, + { + "start": 24097.68, + "end": 24099.6, + "probability": 0.9867 + }, + { + "start": 24100.78, + "end": 24102.18, + "probability": 0.5002 + }, + { + "start": 24102.92, + "end": 24104.52, + "probability": 0.6357 + }, + { + "start": 24105.52, + "end": 24106.76, + "probability": 0.6689 + }, + { + "start": 24107.6, + "end": 24108.86, + "probability": 0.3759 + }, + { + "start": 24109.14, + "end": 24110.14, + "probability": 0.8877 + }, + { + "start": 24110.48, + "end": 24111.2, + "probability": 0.7505 + }, + { + "start": 24111.4, + "end": 24111.5, + "probability": 0.3121 + }, + { + "start": 24112.26, + "end": 24114.78, + "probability": 0.9641 + }, + { + "start": 24115.36, + "end": 24117.4, + "probability": 0.9814 + }, + { + "start": 24118.8, + "end": 24122.78, + "probability": 0.9932 + }, + { + "start": 24123.84, + "end": 24126.58, + "probability": 0.5229 + }, + { + "start": 24127.5, + "end": 24129.58, + "probability": 0.9325 + }, + { + "start": 24130.78, + "end": 24134.08, + "probability": 0.8904 + }, + { + "start": 24134.68, + "end": 24136.12, + "probability": 0.7002 + }, + { + "start": 24136.96, + "end": 24138.34, + "probability": 0.9991 + }, + { + "start": 24139.6, + "end": 24140.78, + "probability": 0.6606 + }, + { + "start": 24141.1, + "end": 24141.24, + "probability": 0.7262 + }, + { + "start": 24141.48, + "end": 24143.06, + "probability": 0.8649 + }, + { + "start": 24143.32, + "end": 24144.32, + "probability": 0.3274 + }, + { + "start": 24144.64, + "end": 24145.56, + "probability": 0.8363 + }, + { + "start": 24146.06, + "end": 24146.72, + "probability": 0.7728 + }, + { + "start": 24146.78, + "end": 24150.18, + "probability": 0.8875 + }, + { + "start": 24150.54, + "end": 24151.8, + "probability": 0.9507 + }, + { + "start": 24152.44, + "end": 24153.8, + "probability": 0.7607 + }, + { + "start": 24154.32, + "end": 24157.1, + "probability": 0.7828 + }, + { + "start": 24157.14, + "end": 24158.3, + "probability": 0.6182 + }, + { + "start": 24158.3, + "end": 24158.42, + "probability": 0.4589 + }, + { + "start": 24159.02, + "end": 24160.22, + "probability": 0.9193 + }, + { + "start": 24173.06, + "end": 24173.83, + "probability": 0.2801 + }, + { + "start": 24175.94, + "end": 24177.02, + "probability": 0.5641 + }, + { + "start": 24177.7, + "end": 24178.94, + "probability": 0.6595 + }, + { + "start": 24179.5, + "end": 24181.42, + "probability": 0.6644 + }, + { + "start": 24181.52, + "end": 24183.66, + "probability": 0.9976 + }, + { + "start": 24185.78, + "end": 24189.76, + "probability": 0.8311 + }, + { + "start": 24190.26, + "end": 24191.0, + "probability": 0.8452 + }, + { + "start": 24191.18, + "end": 24192.19, + "probability": 0.9319 + }, + { + "start": 24193.54, + "end": 24195.5, + "probability": 0.8802 + }, + { + "start": 24195.66, + "end": 24196.61, + "probability": 0.8843 + }, + { + "start": 24197.92, + "end": 24201.02, + "probability": 0.896 + }, + { + "start": 24201.7, + "end": 24204.15, + "probability": 0.9946 + }, + { + "start": 24205.04, + "end": 24207.5, + "probability": 0.9964 + }, + { + "start": 24208.52, + "end": 24210.86, + "probability": 0.9465 + }, + { + "start": 24213.64, + "end": 24215.14, + "probability": 0.9302 + }, + { + "start": 24217.26, + "end": 24221.9, + "probability": 0.8144 + }, + { + "start": 24222.68, + "end": 24223.8, + "probability": 0.9307 + }, + { + "start": 24224.58, + "end": 24225.58, + "probability": 0.9878 + }, + { + "start": 24226.38, + "end": 24228.4, + "probability": 0.8795 + }, + { + "start": 24229.66, + "end": 24231.08, + "probability": 0.8896 + }, + { + "start": 24231.92, + "end": 24235.4, + "probability": 0.7644 + }, + { + "start": 24236.08, + "end": 24238.76, + "probability": 0.8292 + }, + { + "start": 24239.72, + "end": 24240.06, + "probability": 0.9485 + }, + { + "start": 24242.5, + "end": 24243.12, + "probability": 0.676 + }, + { + "start": 24243.5, + "end": 24244.74, + "probability": 0.5185 + }, + { + "start": 24244.86, + "end": 24245.54, + "probability": 0.5973 + }, + { + "start": 24245.64, + "end": 24248.34, + "probability": 0.8744 + }, + { + "start": 24248.94, + "end": 24250.48, + "probability": 0.7422 + }, + { + "start": 24251.48, + "end": 24253.28, + "probability": 0.9894 + }, + { + "start": 24253.36, + "end": 24255.26, + "probability": 0.9923 + }, + { + "start": 24255.74, + "end": 24256.82, + "probability": 0.7029 + }, + { + "start": 24256.96, + "end": 24261.84, + "probability": 0.7512 + }, + { + "start": 24261.9, + "end": 24262.96, + "probability": 0.9738 + }, + { + "start": 24263.68, + "end": 24266.4, + "probability": 0.9941 + }, + { + "start": 24266.5, + "end": 24267.2, + "probability": 0.9331 + }, + { + "start": 24268.14, + "end": 24270.38, + "probability": 0.9625 + }, + { + "start": 24271.0, + "end": 24271.22, + "probability": 0.77 + }, + { + "start": 24272.14, + "end": 24272.73, + "probability": 0.52 + }, + { + "start": 24273.32, + "end": 24273.32, + "probability": 0.686 + }, + { + "start": 24273.46, + "end": 24273.86, + "probability": 0.8722 + }, + { + "start": 24273.96, + "end": 24276.12, + "probability": 0.8761 + }, + { + "start": 24276.64, + "end": 24277.56, + "probability": 0.9217 + }, + { + "start": 24278.24, + "end": 24281.28, + "probability": 0.7667 + }, + { + "start": 24281.64, + "end": 24285.36, + "probability": 0.7866 + }, + { + "start": 24285.88, + "end": 24287.16, + "probability": 0.8925 + }, + { + "start": 24287.28, + "end": 24289.68, + "probability": 0.9723 + }, + { + "start": 24291.24, + "end": 24293.64, + "probability": 0.9966 + }, + { + "start": 24294.34, + "end": 24295.92, + "probability": 0.79 + }, + { + "start": 24296.1, + "end": 24297.18, + "probability": 0.7863 + }, + { + "start": 24297.68, + "end": 24301.5, + "probability": 0.8613 + }, + { + "start": 24301.6, + "end": 24303.56, + "probability": 0.9692 + }, + { + "start": 24303.98, + "end": 24307.7, + "probability": 0.8696 + }, + { + "start": 24308.58, + "end": 24312.18, + "probability": 0.9652 + }, + { + "start": 24312.98, + "end": 24313.7, + "probability": 0.8684 + }, + { + "start": 24314.42, + "end": 24315.8, + "probability": 0.9158 + }, + { + "start": 24317.22, + "end": 24321.32, + "probability": 0.8792 + }, + { + "start": 24321.4, + "end": 24322.24, + "probability": 0.7114 + }, + { + "start": 24323.2, + "end": 24324.98, + "probability": 0.9907 + }, + { + "start": 24325.64, + "end": 24327.08, + "probability": 0.9875 + }, + { + "start": 24331.18, + "end": 24332.98, + "probability": 0.9206 + }, + { + "start": 24333.68, + "end": 24335.42, + "probability": 0.961 + }, + { + "start": 24336.32, + "end": 24337.62, + "probability": 0.8496 + }, + { + "start": 24338.24, + "end": 24340.98, + "probability": 0.9861 + }, + { + "start": 24341.66, + "end": 24342.54, + "probability": 0.9971 + }, + { + "start": 24343.78, + "end": 24344.24, + "probability": 0.8633 + }, + { + "start": 24345.14, + "end": 24345.82, + "probability": 0.6406 + }, + { + "start": 24346.9, + "end": 24348.06, + "probability": 0.8568 + }, + { + "start": 24371.32, + "end": 24372.06, + "probability": 0.6329 + }, + { + "start": 24372.16, + "end": 24373.14, + "probability": 0.6792 + }, + { + "start": 24373.32, + "end": 24377.22, + "probability": 0.9934 + }, + { + "start": 24377.22, + "end": 24382.32, + "probability": 0.9985 + }, + { + "start": 24383.02, + "end": 24385.2, + "probability": 0.8789 + }, + { + "start": 24385.44, + "end": 24389.02, + "probability": 0.9768 + }, + { + "start": 24389.88, + "end": 24390.72, + "probability": 0.7301 + }, + { + "start": 24390.92, + "end": 24393.68, + "probability": 0.998 + }, + { + "start": 24394.2, + "end": 24397.66, + "probability": 0.9927 + }, + { + "start": 24398.64, + "end": 24402.32, + "probability": 0.9963 + }, + { + "start": 24402.88, + "end": 24405.68, + "probability": 0.9866 + }, + { + "start": 24406.3, + "end": 24408.5, + "probability": 0.9697 + }, + { + "start": 24409.48, + "end": 24414.12, + "probability": 0.9977 + }, + { + "start": 24414.12, + "end": 24418.7, + "probability": 0.9957 + }, + { + "start": 24419.3, + "end": 24422.02, + "probability": 0.9486 + }, + { + "start": 24423.02, + "end": 24429.62, + "probability": 0.985 + }, + { + "start": 24429.68, + "end": 24434.84, + "probability": 0.9976 + }, + { + "start": 24436.06, + "end": 24439.54, + "probability": 0.9973 + }, + { + "start": 24440.28, + "end": 24444.48, + "probability": 0.9893 + }, + { + "start": 24445.22, + "end": 24448.18, + "probability": 0.9852 + }, + { + "start": 24448.84, + "end": 24452.82, + "probability": 0.9284 + }, + { + "start": 24453.68, + "end": 24455.98, + "probability": 0.9974 + }, + { + "start": 24456.66, + "end": 24458.9, + "probability": 0.9955 + }, + { + "start": 24459.1, + "end": 24464.66, + "probability": 0.9971 + }, + { + "start": 24465.2, + "end": 24470.58, + "probability": 0.9927 + }, + { + "start": 24471.72, + "end": 24475.06, + "probability": 0.996 + }, + { + "start": 24475.84, + "end": 24478.82, + "probability": 0.9933 + }, + { + "start": 24480.02, + "end": 24483.9, + "probability": 0.9959 + }, + { + "start": 24484.4, + "end": 24486.52, + "probability": 0.4925 + }, + { + "start": 24487.12, + "end": 24492.92, + "probability": 0.9968 + }, + { + "start": 24493.46, + "end": 24496.48, + "probability": 0.9536 + }, + { + "start": 24496.52, + "end": 24497.26, + "probability": 0.8368 + }, + { + "start": 24497.4, + "end": 24498.84, + "probability": 0.8646 + }, + { + "start": 24499.36, + "end": 24500.52, + "probability": 0.9916 + }, + { + "start": 24502.0, + "end": 24505.84, + "probability": 0.9922 + }, + { + "start": 24506.64, + "end": 24509.3, + "probability": 0.9742 + }, + { + "start": 24509.3, + "end": 24513.08, + "probability": 0.986 + }, + { + "start": 24513.9, + "end": 24519.14, + "probability": 0.9971 + }, + { + "start": 24519.92, + "end": 24523.58, + "probability": 0.9927 + }, + { + "start": 24524.16, + "end": 24526.52, + "probability": 0.8528 + }, + { + "start": 24526.98, + "end": 24531.64, + "probability": 0.9252 + }, + { + "start": 24532.24, + "end": 24536.7, + "probability": 0.995 + }, + { + "start": 24536.7, + "end": 24540.92, + "probability": 0.9975 + }, + { + "start": 24541.84, + "end": 24546.56, + "probability": 0.9938 + }, + { + "start": 24546.92, + "end": 24550.74, + "probability": 0.9912 + }, + { + "start": 24551.16, + "end": 24551.52, + "probability": 0.6976 + }, + { + "start": 24551.77, + "end": 24553.88, + "probability": 0.6639 + }, + { + "start": 24554.32, + "end": 24555.86, + "probability": 0.7881 + }, + { + "start": 24556.42, + "end": 24560.22, + "probability": 0.9914 + }, + { + "start": 24560.86, + "end": 24565.84, + "probability": 0.9933 + }, + { + "start": 24565.84, + "end": 24572.36, + "probability": 0.9995 + }, + { + "start": 24572.82, + "end": 24577.9, + "probability": 0.9958 + }, + { + "start": 24578.28, + "end": 24579.02, + "probability": 0.5802 + }, + { + "start": 24579.06, + "end": 24580.4, + "probability": 0.9216 + }, + { + "start": 24599.16, + "end": 24600.98, + "probability": 0.6877 + }, + { + "start": 24602.06, + "end": 24606.06, + "probability": 0.9642 + }, + { + "start": 24607.14, + "end": 24608.35, + "probability": 0.9517 + }, + { + "start": 24611.76, + "end": 24616.0, + "probability": 0.998 + }, + { + "start": 24616.54, + "end": 24619.26, + "probability": 0.9875 + }, + { + "start": 24619.7, + "end": 24622.1, + "probability": 0.9504 + }, + { + "start": 24622.2, + "end": 24625.24, + "probability": 0.9657 + }, + { + "start": 24625.66, + "end": 24627.4, + "probability": 0.7847 + }, + { + "start": 24628.04, + "end": 24630.02, + "probability": 0.9529 + }, + { + "start": 24630.14, + "end": 24630.88, + "probability": 0.8447 + }, + { + "start": 24631.38, + "end": 24636.04, + "probability": 0.9932 + }, + { + "start": 24636.98, + "end": 24638.52, + "probability": 0.9128 + }, + { + "start": 24638.58, + "end": 24638.8, + "probability": 0.8217 + }, + { + "start": 24638.9, + "end": 24639.44, + "probability": 0.8564 + }, + { + "start": 24639.52, + "end": 24640.29, + "probability": 0.74 + }, + { + "start": 24641.04, + "end": 24641.4, + "probability": 0.0746 + }, + { + "start": 24641.88, + "end": 24647.56, + "probability": 0.9855 + }, + { + "start": 24648.72, + "end": 24651.48, + "probability": 0.8065 + }, + { + "start": 24652.56, + "end": 24653.98, + "probability": 0.9102 + }, + { + "start": 24654.1, + "end": 24656.84, + "probability": 0.1106 + }, + { + "start": 24659.7, + "end": 24663.28, + "probability": 0.9019 + }, + { + "start": 24663.64, + "end": 24665.03, + "probability": 0.5283 + }, + { + "start": 24668.44, + "end": 24670.26, + "probability": 0.999 + }, + { + "start": 24670.36, + "end": 24671.52, + "probability": 0.8309 + }, + { + "start": 24671.62, + "end": 24674.7, + "probability": 0.7844 + }, + { + "start": 24674.7, + "end": 24677.9, + "probability": 0.7992 + }, + { + "start": 24678.54, + "end": 24682.48, + "probability": 0.9911 + }, + { + "start": 24682.82, + "end": 24683.82, + "probability": 0.4201 + }, + { + "start": 24683.96, + "end": 24684.08, + "probability": 0.5729 + }, + { + "start": 24684.08, + "end": 24685.28, + "probability": 0.6792 + }, + { + "start": 24685.6, + "end": 24692.6, + "probability": 0.9553 + }, + { + "start": 24692.6, + "end": 24696.56, + "probability": 0.9724 + }, + { + "start": 24697.2, + "end": 24698.16, + "probability": 0.9546 + }, + { + "start": 24698.16, + "end": 24699.2, + "probability": 0.9614 + }, + { + "start": 24700.28, + "end": 24700.28, + "probability": 0.0004 + }, + { + "start": 24700.96, + "end": 24701.2, + "probability": 0.0002 + }, + { + "start": 24701.2, + "end": 24701.74, + "probability": 0.2988 + }, + { + "start": 24701.78, + "end": 24702.34, + "probability": 0.6077 + }, + { + "start": 24703.64, + "end": 24707.98, + "probability": 0.3924 + }, + { + "start": 24708.06, + "end": 24713.5, + "probability": 0.9919 + }, + { + "start": 24714.32, + "end": 24717.1, + "probability": 0.9985 + }, + { + "start": 24717.42, + "end": 24718.18, + "probability": 0.6576 + }, + { + "start": 24718.52, + "end": 24720.7, + "probability": 0.8021 + }, + { + "start": 24721.08, + "end": 24723.71, + "probability": 0.9229 + }, + { + "start": 24724.18, + "end": 24724.2, + "probability": 0.8662 + }, + { + "start": 24724.36, + "end": 24726.36, + "probability": 0.9941 + }, + { + "start": 24726.7, + "end": 24728.42, + "probability": 0.9874 + }, + { + "start": 24728.88, + "end": 24730.38, + "probability": 0.9926 + }, + { + "start": 24730.8, + "end": 24732.74, + "probability": 0.9331 + }, + { + "start": 24733.18, + "end": 24735.04, + "probability": 0.9955 + }, + { + "start": 24735.1, + "end": 24740.6, + "probability": 0.9771 + }, + { + "start": 24740.94, + "end": 24742.08, + "probability": 0.9871 + }, + { + "start": 24742.5, + "end": 24743.82, + "probability": 0.8575 + }, + { + "start": 24744.46, + "end": 24747.64, + "probability": 0.9714 + }, + { + "start": 24748.18, + "end": 24750.12, + "probability": 0.7811 + }, + { + "start": 24750.3, + "end": 24754.04, + "probability": 0.9652 + }, + { + "start": 24754.04, + "end": 24756.96, + "probability": 0.9824 + }, + { + "start": 24757.3, + "end": 24761.4, + "probability": 0.944 + }, + { + "start": 24761.86, + "end": 24763.53, + "probability": 0.9983 + }, + { + "start": 24764.02, + "end": 24765.6, + "probability": 0.9878 + }, + { + "start": 24765.96, + "end": 24767.46, + "probability": 0.989 + }, + { + "start": 24767.7, + "end": 24769.88, + "probability": 0.9969 + }, + { + "start": 24770.28, + "end": 24771.22, + "probability": 0.7056 + }, + { + "start": 24771.6, + "end": 24773.54, + "probability": 0.9555 + }, + { + "start": 24774.62, + "end": 24775.02, + "probability": 0.6923 + }, + { + "start": 24775.14, + "end": 24776.78, + "probability": 0.792 + }, + { + "start": 24778.36, + "end": 24780.84, + "probability": 0.9319 + }, + { + "start": 24780.84, + "end": 24783.36, + "probability": 0.1091 + }, + { + "start": 24785.1, + "end": 24789.38, + "probability": 0.5746 + }, + { + "start": 24790.94, + "end": 24792.18, + "probability": 0.7281 + }, + { + "start": 24794.18, + "end": 24795.02, + "probability": 0.6724 + }, + { + "start": 24795.74, + "end": 24800.9, + "probability": 0.727 + }, + { + "start": 24800.96, + "end": 24802.92, + "probability": 0.9824 + }, + { + "start": 24803.84, + "end": 24809.7, + "probability": 0.9871 + }, + { + "start": 24809.78, + "end": 24812.04, + "probability": 0.9713 + }, + { + "start": 24813.82, + "end": 24814.26, + "probability": 0.8399 + }, + { + "start": 24815.68, + "end": 24819.82, + "probability": 0.9652 + }, + { + "start": 24820.46, + "end": 24822.82, + "probability": 0.9959 + }, + { + "start": 24824.56, + "end": 24825.44, + "probability": 0.7161 + }, + { + "start": 24826.0, + "end": 24826.94, + "probability": 0.9709 + }, + { + "start": 24828.54, + "end": 24830.18, + "probability": 0.9812 + }, + { + "start": 24831.34, + "end": 24832.24, + "probability": 0.9621 + }, + { + "start": 24833.4, + "end": 24834.96, + "probability": 0.7576 + }, + { + "start": 24836.72, + "end": 24838.08, + "probability": 0.7819 + }, + { + "start": 24838.78, + "end": 24839.78, + "probability": 0.8497 + }, + { + "start": 24840.96, + "end": 24843.14, + "probability": 0.9584 + }, + { + "start": 24844.08, + "end": 24845.24, + "probability": 0.7855 + }, + { + "start": 24847.62, + "end": 24852.28, + "probability": 0.9814 + }, + { + "start": 24852.82, + "end": 24855.8, + "probability": 0.9948 + }, + { + "start": 24857.2, + "end": 24858.75, + "probability": 0.9702 + }, + { + "start": 24860.18, + "end": 24862.12, + "probability": 0.9634 + }, + { + "start": 24864.12, + "end": 24868.94, + "probability": 0.9703 + }, + { + "start": 24869.96, + "end": 24877.6, + "probability": 0.9896 + }, + { + "start": 24878.78, + "end": 24879.92, + "probability": 0.7904 + }, + { + "start": 24880.58, + "end": 24882.76, + "probability": 0.9753 + }, + { + "start": 24883.22, + "end": 24885.04, + "probability": 0.8285 + }, + { + "start": 24886.04, + "end": 24886.4, + "probability": 0.0451 + }, + { + "start": 24886.54, + "end": 24890.55, + "probability": 0.8807 + }, + { + "start": 24892.28, + "end": 24894.33, + "probability": 0.9653 + }, + { + "start": 24895.86, + "end": 24899.74, + "probability": 0.9448 + }, + { + "start": 24900.58, + "end": 24905.1, + "probability": 0.9983 + }, + { + "start": 24906.26, + "end": 24911.6, + "probability": 0.9746 + }, + { + "start": 24911.9, + "end": 24912.52, + "probability": 0.4784 + }, + { + "start": 24912.9, + "end": 24915.58, + "probability": 0.9887 + }, + { + "start": 24917.28, + "end": 24918.14, + "probability": 0.5316 + }, + { + "start": 24919.48, + "end": 24920.34, + "probability": 0.2941 + }, + { + "start": 24920.34, + "end": 24920.42, + "probability": 0.6076 + }, + { + "start": 24920.42, + "end": 24922.18, + "probability": 0.7024 + }, + { + "start": 24922.64, + "end": 24923.64, + "probability": 0.943 + }, + { + "start": 24923.86, + "end": 24925.58, + "probability": 0.6948 + }, + { + "start": 24926.12, + "end": 24926.14, + "probability": 0.715 + }, + { + "start": 24926.14, + "end": 24928.06, + "probability": 0.7754 + }, + { + "start": 24928.18, + "end": 24928.92, + "probability": 0.8594 + }, + { + "start": 24929.26, + "end": 24930.32, + "probability": 0.7577 + }, + { + "start": 24930.4, + "end": 24930.4, + "probability": 0.1511 + }, + { + "start": 24930.4, + "end": 24931.21, + "probability": 0.3224 + }, + { + "start": 24931.52, + "end": 24933.7, + "probability": 0.6828 + }, + { + "start": 24933.76, + "end": 24934.06, + "probability": 0.2633 + }, + { + "start": 24934.12, + "end": 24936.62, + "probability": 0.9123 + }, + { + "start": 24936.76, + "end": 24938.6, + "probability": 0.1266 + }, + { + "start": 24941.0, + "end": 24947.88, + "probability": 0.8016 + }, + { + "start": 24949.36, + "end": 24951.3, + "probability": 0.4993 + }, + { + "start": 24952.12, + "end": 24953.38, + "probability": 0.9534 + }, + { + "start": 24953.98, + "end": 24955.98, + "probability": 0.4832 + }, + { + "start": 24958.34, + "end": 24963.78, + "probability": 0.9839 + }, + { + "start": 24964.44, + "end": 24964.74, + "probability": 0.785 + }, + { + "start": 24964.84, + "end": 24967.16, + "probability": 0.6573 + }, + { + "start": 24967.54, + "end": 24968.54, + "probability": 0.94 + }, + { + "start": 24970.16, + "end": 24973.72, + "probability": 0.8336 + }, + { + "start": 24974.06, + "end": 24976.22, + "probability": 0.9741 + }, + { + "start": 24976.86, + "end": 24978.74, + "probability": 0.7456 + }, + { + "start": 24979.56, + "end": 24980.58, + "probability": 0.0161 + }, + { + "start": 24981.26, + "end": 24982.84, + "probability": 0.4309 + }, + { + "start": 24983.92, + "end": 24989.54, + "probability": 0.9569 + }, + { + "start": 24989.9, + "end": 24992.74, + "probability": 0.9495 + }, + { + "start": 24993.12, + "end": 24993.86, + "probability": 0.8456 + }, + { + "start": 24993.86, + "end": 24994.24, + "probability": 0.635 + }, + { + "start": 24994.3, + "end": 24997.74, + "probability": 0.8362 + }, + { + "start": 24999.86, + "end": 25003.2, + "probability": 0.8174 + }, + { + "start": 25004.68, + "end": 25005.7, + "probability": 0.5988 + }, + { + "start": 25006.91, + "end": 25009.2, + "probability": 0.8726 + }, + { + "start": 25031.84, + "end": 25033.8, + "probability": 0.7057 + }, + { + "start": 25035.34, + "end": 25036.46, + "probability": 0.9177 + }, + { + "start": 25037.98, + "end": 25038.48, + "probability": 0.8707 + }, + { + "start": 25039.88, + "end": 25041.22, + "probability": 0.9704 + }, + { + "start": 25042.3, + "end": 25043.54, + "probability": 0.9307 + }, + { + "start": 25044.78, + "end": 25045.42, + "probability": 0.835 + }, + { + "start": 25046.74, + "end": 25048.48, + "probability": 0.8167 + }, + { + "start": 25048.92, + "end": 25049.66, + "probability": 0.6651 + }, + { + "start": 25049.76, + "end": 25051.44, + "probability": 0.998 + }, + { + "start": 25052.52, + "end": 25054.14, + "probability": 0.7797 + }, + { + "start": 25055.4, + "end": 25056.3, + "probability": 0.9971 + }, + { + "start": 25057.62, + "end": 25061.0, + "probability": 0.9351 + }, + { + "start": 25061.76, + "end": 25065.66, + "probability": 0.9972 + }, + { + "start": 25067.42, + "end": 25068.43, + "probability": 0.9961 + }, + { + "start": 25068.56, + "end": 25069.02, + "probability": 0.841 + }, + { + "start": 25069.14, + "end": 25071.52, + "probability": 0.9783 + }, + { + "start": 25072.6, + "end": 25074.54, + "probability": 0.9751 + }, + { + "start": 25076.1, + "end": 25076.83, + "probability": 0.9947 + }, + { + "start": 25076.96, + "end": 25079.52, + "probability": 0.8458 + }, + { + "start": 25079.6, + "end": 25080.16, + "probability": 0.9739 + }, + { + "start": 25080.9, + "end": 25082.6, + "probability": 0.8298 + }, + { + "start": 25083.18, + "end": 25084.74, + "probability": 0.8958 + }, + { + "start": 25085.56, + "end": 25085.76, + "probability": 0.7947 + }, + { + "start": 25087.46, + "end": 25088.64, + "probability": 0.974 + }, + { + "start": 25088.78, + "end": 25089.44, + "probability": 0.9961 + }, + { + "start": 25089.8, + "end": 25090.36, + "probability": 0.9907 + }, + { + "start": 25091.28, + "end": 25093.58, + "probability": 0.9106 + }, + { + "start": 25094.12, + "end": 25094.32, + "probability": 0.9663 + }, + { + "start": 25096.08, + "end": 25098.38, + "probability": 0.9963 + }, + { + "start": 25099.28, + "end": 25101.22, + "probability": 0.8688 + }, + { + "start": 25101.26, + "end": 25102.14, + "probability": 0.1187 + }, + { + "start": 25103.04, + "end": 25104.34, + "probability": 0.3067 + }, + { + "start": 25104.34, + "end": 25105.12, + "probability": 0.0554 + }, + { + "start": 25105.12, + "end": 25106.58, + "probability": 0.4904 + }, + { + "start": 25107.0, + "end": 25107.48, + "probability": 0.5319 + }, + { + "start": 25107.7, + "end": 25110.08, + "probability": 0.9281 + }, + { + "start": 25110.7, + "end": 25111.88, + "probability": 0.8903 + }, + { + "start": 25112.48, + "end": 25115.42, + "probability": 0.9221 + }, + { + "start": 25117.16, + "end": 25117.52, + "probability": 0.4946 + }, + { + "start": 25118.91, + "end": 25122.32, + "probability": 0.9768 + }, + { + "start": 25123.18, + "end": 25123.68, + "probability": 0.7632 + }, + { + "start": 25125.56, + "end": 25128.16, + "probability": 0.9953 + }, + { + "start": 25128.16, + "end": 25132.34, + "probability": 0.9912 + }, + { + "start": 25132.74, + "end": 25137.32, + "probability": 0.9932 + }, + { + "start": 25139.2, + "end": 25139.52, + "probability": 0.4648 + }, + { + "start": 25139.56, + "end": 25139.78, + "probability": 0.8198 + }, + { + "start": 25139.92, + "end": 25142.32, + "probability": 0.9572 + }, + { + "start": 25142.74, + "end": 25143.26, + "probability": 0.7947 + }, + { + "start": 25143.96, + "end": 25146.72, + "probability": 0.9811 + }, + { + "start": 25146.9, + "end": 25147.0, + "probability": 0.3977 + }, + { + "start": 25147.78, + "end": 25150.22, + "probability": 0.7535 + }, + { + "start": 25151.24, + "end": 25152.86, + "probability": 0.1141 + }, + { + "start": 25154.24, + "end": 25155.5, + "probability": 0.5765 + }, + { + "start": 25156.02, + "end": 25156.96, + "probability": 0.0106 + }, + { + "start": 25156.98, + "end": 25157.36, + "probability": 0.0884 + }, + { + "start": 25157.74, + "end": 25157.84, + "probability": 0.0921 + }, + { + "start": 25157.84, + "end": 25160.21, + "probability": 0.5378 + }, + { + "start": 25161.18, + "end": 25161.7, + "probability": 0.8359 + }, + { + "start": 25163.8, + "end": 25166.0, + "probability": 0.898 + }, + { + "start": 25167.02, + "end": 25167.8, + "probability": 0.9069 + }, + { + "start": 25168.74, + "end": 25170.0, + "probability": 0.9834 + }, + { + "start": 25170.96, + "end": 25171.8, + "probability": 0.9068 + }, + { + "start": 25172.58, + "end": 25173.35, + "probability": 0.9289 + }, + { + "start": 25175.06, + "end": 25177.76, + "probability": 0.6921 + }, + { + "start": 25178.3, + "end": 25180.3, + "probability": 0.9823 + }, + { + "start": 25181.38, + "end": 25184.32, + "probability": 0.9995 + }, + { + "start": 25184.88, + "end": 25185.12, + "probability": 0.9112 + }, + { + "start": 25186.66, + "end": 25189.48, + "probability": 0.9985 + }, + { + "start": 25190.12, + "end": 25191.6, + "probability": 0.9972 + }, + { + "start": 25192.86, + "end": 25194.92, + "probability": 0.998 + }, + { + "start": 25195.86, + "end": 25196.62, + "probability": 0.9658 + }, + { + "start": 25197.26, + "end": 25200.52, + "probability": 0.9987 + }, + { + "start": 25203.32, + "end": 25205.14, + "probability": 0.951 + }, + { + "start": 25205.54, + "end": 25205.74, + "probability": 0.3611 + }, + { + "start": 25207.58, + "end": 25209.16, + "probability": 0.8417 + }, + { + "start": 25211.06, + "end": 25211.94, + "probability": 0.9378 + }, + { + "start": 25212.86, + "end": 25213.18, + "probability": 0.4808 + }, + { + "start": 25214.16, + "end": 25216.06, + "probability": 0.8715 + }, + { + "start": 25217.24, + "end": 25218.28, + "probability": 0.9843 + }, + { + "start": 25219.26, + "end": 25220.78, + "probability": 0.9813 + }, + { + "start": 25221.84, + "end": 25225.36, + "probability": 0.9947 + }, + { + "start": 25225.96, + "end": 25226.98, + "probability": 0.9284 + }, + { + "start": 25230.2, + "end": 25231.2, + "probability": 0.8764 + }, + { + "start": 25232.52, + "end": 25233.58, + "probability": 0.9565 + }, + { + "start": 25234.54, + "end": 25236.28, + "probability": 0.9788 + }, + { + "start": 25237.44, + "end": 25238.82, + "probability": 0.9138 + }, + { + "start": 25240.12, + "end": 25242.42, + "probability": 0.9927 + }, + { + "start": 25243.28, + "end": 25244.64, + "probability": 0.9537 + }, + { + "start": 25247.6, + "end": 25248.7, + "probability": 0.2649 + }, + { + "start": 25250.1, + "end": 25251.84, + "probability": 0.8629 + }, + { + "start": 25253.84, + "end": 25256.02, + "probability": 0.9603 + }, + { + "start": 25256.74, + "end": 25257.86, + "probability": 0.9965 + }, + { + "start": 25259.36, + "end": 25260.68, + "probability": 0.9887 + }, + { + "start": 25264.12, + "end": 25264.92, + "probability": 0.7434 + }, + { + "start": 25265.08, + "end": 25267.18, + "probability": 0.9698 + }, + { + "start": 25267.98, + "end": 25269.18, + "probability": 0.788 + }, + { + "start": 25292.8, + "end": 25294.72, + "probability": 0.4987 + }, + { + "start": 25294.74, + "end": 25295.96, + "probability": 0.6244 + }, + { + "start": 25297.44, + "end": 25298.78, + "probability": 0.7506 + }, + { + "start": 25298.88, + "end": 25300.12, + "probability": 0.8917 + }, + { + "start": 25300.14, + "end": 25301.3, + "probability": 0.9265 + }, + { + "start": 25301.36, + "end": 25303.12, + "probability": 0.9966 + }, + { + "start": 25305.06, + "end": 25309.28, + "probability": 0.7158 + }, + { + "start": 25310.74, + "end": 25313.84, + "probability": 0.8024 + }, + { + "start": 25314.76, + "end": 25318.42, + "probability": 0.9663 + }, + { + "start": 25319.82, + "end": 25320.3, + "probability": 0.9941 + }, + { + "start": 25321.72, + "end": 25323.28, + "probability": 0.9806 + }, + { + "start": 25324.5, + "end": 25326.74, + "probability": 0.971 + }, + { + "start": 25327.8, + "end": 25328.76, + "probability": 0.8366 + }, + { + "start": 25329.48, + "end": 25330.24, + "probability": 0.9929 + }, + { + "start": 25332.04, + "end": 25333.87, + "probability": 0.8191 + }, + { + "start": 25335.82, + "end": 25339.94, + "probability": 0.9784 + }, + { + "start": 25341.78, + "end": 25341.88, + "probability": 0.7349 + }, + { + "start": 25341.92, + "end": 25343.78, + "probability": 0.9978 + }, + { + "start": 25344.1, + "end": 25345.44, + "probability": 0.9989 + }, + { + "start": 25348.34, + "end": 25349.46, + "probability": 0.9557 + }, + { + "start": 25351.18, + "end": 25355.08, + "probability": 0.9845 + }, + { + "start": 25355.48, + "end": 25360.0, + "probability": 0.6844 + }, + { + "start": 25361.1, + "end": 25362.38, + "probability": 0.9956 + }, + { + "start": 25363.32, + "end": 25366.16, + "probability": 0.9985 + }, + { + "start": 25367.2, + "end": 25370.76, + "probability": 0.7727 + }, + { + "start": 25374.64, + "end": 25375.44, + "probability": 0.5263 + }, + { + "start": 25378.46, + "end": 25380.44, + "probability": 0.6038 + }, + { + "start": 25382.34, + "end": 25385.22, + "probability": 0.8877 + }, + { + "start": 25385.38, + "end": 25387.16, + "probability": 0.9799 + }, + { + "start": 25387.2, + "end": 25388.16, + "probability": 0.9839 + }, + { + "start": 25388.28, + "end": 25388.58, + "probability": 0.8915 + }, + { + "start": 25391.66, + "end": 25395.78, + "probability": 0.9567 + }, + { + "start": 25396.5, + "end": 25397.88, + "probability": 0.9142 + }, + { + "start": 25401.5, + "end": 25403.44, + "probability": 0.8702 + }, + { + "start": 25403.62, + "end": 25405.38, + "probability": 0.9971 + }, + { + "start": 25405.9, + "end": 25407.38, + "probability": 0.9971 + }, + { + "start": 25407.46, + "end": 25407.92, + "probability": 0.8866 + }, + { + "start": 25408.42, + "end": 25409.26, + "probability": 0.8559 + }, + { + "start": 25410.92, + "end": 25413.98, + "probability": 0.9561 + }, + { + "start": 25414.6, + "end": 25416.84, + "probability": 0.9337 + }, + { + "start": 25417.82, + "end": 25420.62, + "probability": 0.9043 + }, + { + "start": 25421.82, + "end": 25423.62, + "probability": 0.9938 + }, + { + "start": 25423.76, + "end": 25425.78, + "probability": 0.8351 + }, + { + "start": 25427.2, + "end": 25429.96, + "probability": 0.9972 + }, + { + "start": 25430.08, + "end": 25431.58, + "probability": 0.9862 + }, + { + "start": 25432.68, + "end": 25434.98, + "probability": 0.9907 + }, + { + "start": 25436.08, + "end": 25437.94, + "probability": 0.821 + }, + { + "start": 25439.28, + "end": 25440.74, + "probability": 0.9733 + }, + { + "start": 25441.18, + "end": 25442.62, + "probability": 0.982 + }, + { + "start": 25442.78, + "end": 25444.34, + "probability": 0.8495 + }, + { + "start": 25446.56, + "end": 25447.9, + "probability": 0.9862 + }, + { + "start": 25447.98, + "end": 25453.08, + "probability": 0.9257 + }, + { + "start": 25453.42, + "end": 25454.66, + "probability": 0.9825 + }, + { + "start": 25454.72, + "end": 25456.1, + "probability": 0.9346 + }, + { + "start": 25456.1, + "end": 25457.26, + "probability": 0.9639 + }, + { + "start": 25457.84, + "end": 25458.84, + "probability": 0.8116 + }, + { + "start": 25459.24, + "end": 25461.94, + "probability": 0.9647 + }, + { + "start": 25462.26, + "end": 25463.16, + "probability": 0.8254 + }, + { + "start": 25463.24, + "end": 25464.7, + "probability": 0.8252 + }, + { + "start": 25465.12, + "end": 25465.77, + "probability": 0.9527 + }, + { + "start": 25466.28, + "end": 25468.2, + "probability": 0.7842 + }, + { + "start": 25471.62, + "end": 25472.1, + "probability": 0.7466 + }, + { + "start": 25473.8, + "end": 25474.78, + "probability": 0.7508 + }, + { + "start": 25475.8, + "end": 25478.32, + "probability": 0.9962 + }, + { + "start": 25481.44, + "end": 25481.54, + "probability": 0.0001 + }, + { + "start": 25486.32, + "end": 25487.06, + "probability": 0.3331 + }, + { + "start": 25487.06, + "end": 25487.69, + "probability": 0.7148 + }, + { + "start": 25489.12, + "end": 25489.9, + "probability": 0.5633 + }, + { + "start": 25490.1, + "end": 25491.66, + "probability": 0.7949 + }, + { + "start": 25508.04, + "end": 25508.1, + "probability": 0.7095 + }, + { + "start": 25508.1, + "end": 25509.48, + "probability": 0.7507 + }, + { + "start": 25511.22, + "end": 25522.1, + "probability": 0.6652 + }, + { + "start": 25527.22, + "end": 25528.5, + "probability": 0.5175 + }, + { + "start": 25529.94, + "end": 25533.4, + "probability": 0.9417 + }, + { + "start": 25534.26, + "end": 25538.26, + "probability": 0.9867 + }, + { + "start": 25538.92, + "end": 25542.0, + "probability": 0.9949 + }, + { + "start": 25542.6, + "end": 25546.04, + "probability": 0.9334 + }, + { + "start": 25547.16, + "end": 25550.3, + "probability": 0.874 + }, + { + "start": 25552.34, + "end": 25553.32, + "probability": 0.8933 + }, + { + "start": 25553.9, + "end": 25559.18, + "probability": 0.9517 + }, + { + "start": 25559.82, + "end": 25563.9, + "probability": 0.9887 + }, + { + "start": 25564.34, + "end": 25566.04, + "probability": 0.764 + }, + { + "start": 25566.4, + "end": 25567.14, + "probability": 0.7648 + }, + { + "start": 25567.18, + "end": 25568.4, + "probability": 0.8754 + }, + { + "start": 25568.54, + "end": 25570.56, + "probability": 0.9693 + }, + { + "start": 25571.54, + "end": 25573.11, + "probability": 0.8325 + }, + { + "start": 25573.52, + "end": 25577.82, + "probability": 0.8533 + }, + { + "start": 25579.66, + "end": 25580.5, + "probability": 0.7639 + }, + { + "start": 25581.44, + "end": 25582.61, + "probability": 0.8171 + }, + { + "start": 25583.28, + "end": 25584.92, + "probability": 0.5511 + }, + { + "start": 25585.96, + "end": 25587.3, + "probability": 0.9841 + }, + { + "start": 25587.78, + "end": 25590.5, + "probability": 0.4807 + }, + { + "start": 25591.06, + "end": 25594.22, + "probability": 0.8065 + }, + { + "start": 25595.06, + "end": 25598.06, + "probability": 0.6911 + }, + { + "start": 25599.08, + "end": 25602.26, + "probability": 0.9404 + }, + { + "start": 25602.38, + "end": 25604.96, + "probability": 0.9326 + }, + { + "start": 25607.0, + "end": 25607.58, + "probability": 0.4238 + }, + { + "start": 25608.28, + "end": 25612.06, + "probability": 0.9194 + }, + { + "start": 25613.02, + "end": 25613.94, + "probability": 0.6651 + }, + { + "start": 25614.1, + "end": 25615.88, + "probability": 0.9028 + }, + { + "start": 25616.28, + "end": 25619.48, + "probability": 0.9012 + }, + { + "start": 25619.56, + "end": 25620.91, + "probability": 0.6772 + }, + { + "start": 25621.16, + "end": 25621.94, + "probability": 0.8854 + }, + { + "start": 25622.08, + "end": 25623.54, + "probability": 0.538 + }, + { + "start": 25624.4, + "end": 25626.74, + "probability": 0.7498 + }, + { + "start": 25627.02, + "end": 25629.02, + "probability": 0.5577 + }, + { + "start": 25629.02, + "end": 25631.42, + "probability": 0.8797 + }, + { + "start": 25631.86, + "end": 25632.2, + "probability": 0.5725 + }, + { + "start": 25632.26, + "end": 25633.42, + "probability": 0.744 + }, + { + "start": 25633.92, + "end": 25634.93, + "probability": 0.8664 + }, + { + "start": 25635.08, + "end": 25635.66, + "probability": 0.9391 + }, + { + "start": 25636.24, + "end": 25637.53, + "probability": 0.8482 + }, + { + "start": 25638.94, + "end": 25640.88, + "probability": 0.6441 + }, + { + "start": 25641.1, + "end": 25643.02, + "probability": 0.9604 + }, + { + "start": 25643.54, + "end": 25646.19, + "probability": 0.7278 + }, + { + "start": 25646.7, + "end": 25648.4, + "probability": 0.907 + }, + { + "start": 25649.42, + "end": 25652.02, + "probability": 0.98 + }, + { + "start": 25652.32, + "end": 25653.58, + "probability": 0.7823 + }, + { + "start": 25653.76, + "end": 25654.92, + "probability": 0.6437 + }, + { + "start": 25654.92, + "end": 25656.08, + "probability": 0.2609 + }, + { + "start": 25656.12, + "end": 25657.27, + "probability": 0.9873 + }, + { + "start": 25657.92, + "end": 25660.38, + "probability": 0.9988 + }, + { + "start": 25660.58, + "end": 25663.04, + "probability": 0.9483 + }, + { + "start": 25663.06, + "end": 25664.82, + "probability": 0.9595 + }, + { + "start": 25665.44, + "end": 25666.74, + "probability": 0.9889 + }, + { + "start": 25668.04, + "end": 25669.02, + "probability": 0.6098 + }, + { + "start": 25669.62, + "end": 25670.5, + "probability": 0.4975 + }, + { + "start": 25670.56, + "end": 25674.26, + "probability": 0.6967 + }, + { + "start": 25675.0, + "end": 25675.88, + "probability": 0.9019 + }, + { + "start": 25676.02, + "end": 25676.84, + "probability": 0.595 + }, + { + "start": 25677.28, + "end": 25679.88, + "probability": 0.9946 + }, + { + "start": 25680.02, + "end": 25684.02, + "probability": 0.9773 + }, + { + "start": 25684.9, + "end": 25688.08, + "probability": 0.8483 + }, + { + "start": 25688.72, + "end": 25691.16, + "probability": 0.9715 + }, + { + "start": 25691.94, + "end": 25692.74, + "probability": 0.6947 + }, + { + "start": 25692.98, + "end": 25697.26, + "probability": 0.8205 + }, + { + "start": 25697.54, + "end": 25698.3, + "probability": 0.0532 + }, + { + "start": 25698.34, + "end": 25701.24, + "probability": 0.7311 + }, + { + "start": 25701.46, + "end": 25704.8, + "probability": 0.7361 + }, + { + "start": 25705.06, + "end": 25705.84, + "probability": 0.7336 + }, + { + "start": 25705.94, + "end": 25706.3, + "probability": 0.3221 + }, + { + "start": 25706.56, + "end": 25711.88, + "probability": 0.924 + }, + { + "start": 25712.08, + "end": 25716.66, + "probability": 0.8755 + }, + { + "start": 25716.7, + "end": 25718.54, + "probability": 0.905 + }, + { + "start": 25718.64, + "end": 25720.84, + "probability": 0.5054 + }, + { + "start": 25721.22, + "end": 25724.06, + "probability": 0.9071 + }, + { + "start": 25724.18, + "end": 25725.3, + "probability": 0.9191 + }, + { + "start": 25725.48, + "end": 25727.2, + "probability": 0.8682 + }, + { + "start": 25727.26, + "end": 25727.34, + "probability": 0.1204 + }, + { + "start": 25727.34, + "end": 25727.69, + "probability": 0.3293 + }, + { + "start": 25727.88, + "end": 25728.66, + "probability": 0.2447 + }, + { + "start": 25728.78, + "end": 25729.58, + "probability": 0.5797 + }, + { + "start": 25730.08, + "end": 25730.76, + "probability": 0.8665 + }, + { + "start": 25730.96, + "end": 25731.9, + "probability": 0.9795 + }, + { + "start": 25732.0, + "end": 25733.08, + "probability": 0.9546 + }, + { + "start": 25735.14, + "end": 25736.92, + "probability": 0.1029 + }, + { + "start": 25736.92, + "end": 25736.92, + "probability": 0.1294 + }, + { + "start": 25736.92, + "end": 25738.4, + "probability": 0.3557 + }, + { + "start": 25739.22, + "end": 25740.64, + "probability": 0.971 + }, + { + "start": 25741.36, + "end": 25742.34, + "probability": 0.9438 + }, + { + "start": 25742.78, + "end": 25744.81, + "probability": 0.9497 + }, + { + "start": 25745.38, + "end": 25746.2, + "probability": 0.9658 + }, + { + "start": 25747.16, + "end": 25747.6, + "probability": 0.8736 + }, + { + "start": 25748.06, + "end": 25750.46, + "probability": 0.9971 + }, + { + "start": 25750.62, + "end": 25755.6, + "probability": 0.8612 + }, + { + "start": 25755.84, + "end": 25756.24, + "probability": 0.8114 + }, + { + "start": 25756.42, + "end": 25757.3, + "probability": 0.72 + }, + { + "start": 25757.84, + "end": 25759.42, + "probability": 0.9505 + }, + { + "start": 25760.6, + "end": 25761.26, + "probability": 0.3692 + }, + { + "start": 25761.46, + "end": 25762.3, + "probability": 0.8291 + }, + { + "start": 25788.56, + "end": 25790.14, + "probability": 0.7606 + }, + { + "start": 25791.92, + "end": 25792.24, + "probability": 0.6598 + }, + { + "start": 25800.9, + "end": 25801.08, + "probability": 0.4872 + }, + { + "start": 25802.56, + "end": 25803.96, + "probability": 0.6669 + }, + { + "start": 25804.72, + "end": 25807.54, + "probability": 0.9976 + }, + { + "start": 25808.88, + "end": 25815.04, + "probability": 0.7066 + }, + { + "start": 25815.96, + "end": 25818.64, + "probability": 0.8191 + }, + { + "start": 25819.66, + "end": 25821.36, + "probability": 0.9409 + }, + { + "start": 25823.4, + "end": 25829.38, + "probability": 0.9818 + }, + { + "start": 25830.44, + "end": 25831.5, + "probability": 0.895 + }, + { + "start": 25832.16, + "end": 25837.0, + "probability": 0.9874 + }, + { + "start": 25838.34, + "end": 25846.22, + "probability": 0.9878 + }, + { + "start": 25847.8, + "end": 25854.48, + "probability": 0.9185 + }, + { + "start": 25855.6, + "end": 25864.18, + "probability": 0.8123 + }, + { + "start": 25865.22, + "end": 25871.48, + "probability": 0.9858 + }, + { + "start": 25872.38, + "end": 25874.32, + "probability": 0.9969 + }, + { + "start": 25875.32, + "end": 25876.11, + "probability": 0.96 + }, + { + "start": 25877.8, + "end": 25883.0, + "probability": 0.978 + }, + { + "start": 25883.94, + "end": 25885.66, + "probability": 0.9878 + }, + { + "start": 25886.7, + "end": 25889.12, + "probability": 0.8672 + }, + { + "start": 25889.54, + "end": 25891.76, + "probability": 0.8849 + }, + { + "start": 25892.46, + "end": 25895.48, + "probability": 0.7734 + }, + { + "start": 25896.28, + "end": 25899.08, + "probability": 0.8237 + }, + { + "start": 25899.7, + "end": 25902.88, + "probability": 0.5894 + }, + { + "start": 25904.38, + "end": 25905.54, + "probability": 0.78 + }, + { + "start": 25907.2, + "end": 25909.24, + "probability": 0.9274 + }, + { + "start": 25910.24, + "end": 25911.34, + "probability": 0.9021 + }, + { + "start": 25912.12, + "end": 25917.4, + "probability": 0.8163 + }, + { + "start": 25917.4, + "end": 25923.22, + "probability": 0.9195 + }, + { + "start": 25923.88, + "end": 25925.18, + "probability": 0.9628 + }, + { + "start": 25926.44, + "end": 25931.06, + "probability": 0.9275 + }, + { + "start": 25931.78, + "end": 25932.96, + "probability": 0.7962 + }, + { + "start": 25933.56, + "end": 25936.24, + "probability": 0.9471 + }, + { + "start": 25937.46, + "end": 25942.3, + "probability": 0.9872 + }, + { + "start": 25943.0, + "end": 25946.24, + "probability": 0.9262 + }, + { + "start": 25947.16, + "end": 25953.68, + "probability": 0.7686 + }, + { + "start": 25954.52, + "end": 25958.86, + "probability": 0.9736 + }, + { + "start": 25960.16, + "end": 25963.46, + "probability": 0.9762 + }, + { + "start": 25964.02, + "end": 25965.78, + "probability": 0.9895 + }, + { + "start": 25966.68, + "end": 25970.68, + "probability": 0.9893 + }, + { + "start": 25970.68, + "end": 25975.84, + "probability": 0.955 + }, + { + "start": 25976.28, + "end": 25976.32, + "probability": 0.2425 + }, + { + "start": 25976.32, + "end": 25983.96, + "probability": 0.9717 + }, + { + "start": 25984.16, + "end": 25990.34, + "probability": 0.982 + }, + { + "start": 25990.6, + "end": 25991.12, + "probability": 0.7516 + }, + { + "start": 25991.8, + "end": 25992.54, + "probability": 0.6508 + }, + { + "start": 25993.14, + "end": 25994.46, + "probability": 0.9608 + }, + { + "start": 25996.36, + "end": 25998.34, + "probability": 0.446 + }, + { + "start": 25998.8, + "end": 26003.1, + "probability": 0.1248 + }, + { + "start": 26008.43, + "end": 26008.78, + "probability": 0.056 + }, + { + "start": 26023.64, + "end": 26025.86, + "probability": 0.0509 + }, + { + "start": 26025.86, + "end": 26026.1, + "probability": 0.0364 + }, + { + "start": 26026.96, + "end": 26027.1, + "probability": 0.0265 + }, + { + "start": 26046.78, + "end": 26047.88, + "probability": 0.6348 + }, + { + "start": 26048.14, + "end": 26049.74, + "probability": 0.76 + }, + { + "start": 26050.2, + "end": 26052.74, + "probability": 0.7992 + }, + { + "start": 26052.9, + "end": 26053.58, + "probability": 0.9679 + }, + { + "start": 26054.16, + "end": 26055.86, + "probability": 0.9487 + }, + { + "start": 26056.04, + "end": 26056.3, + "probability": 0.4985 + }, + { + "start": 26062.82, + "end": 26065.46, + "probability": 0.2203 + }, + { + "start": 26067.14, + "end": 26068.0, + "probability": 0.5358 + }, + { + "start": 26069.32, + "end": 26070.28, + "probability": 0.6786 + }, + { + "start": 26071.64, + "end": 26074.48, + "probability": 0.9898 + }, + { + "start": 26075.84, + "end": 26077.36, + "probability": 0.9831 + }, + { + "start": 26077.5, + "end": 26078.03, + "probability": 0.9868 + }, + { + "start": 26079.4, + "end": 26084.95, + "probability": 0.9774 + }, + { + "start": 26085.94, + "end": 26089.4, + "probability": 0.9917 + }, + { + "start": 26090.36, + "end": 26093.64, + "probability": 0.9565 + }, + { + "start": 26095.6, + "end": 26099.27, + "probability": 0.994 + }, + { + "start": 26101.08, + "end": 26104.52, + "probability": 0.9643 + }, + { + "start": 26107.28, + "end": 26111.28, + "probability": 0.9932 + }, + { + "start": 26112.22, + "end": 26114.2, + "probability": 0.7949 + }, + { + "start": 26115.84, + "end": 26117.22, + "probability": 0.7648 + }, + { + "start": 26118.7, + "end": 26119.04, + "probability": 0.9226 + }, + { + "start": 26120.4, + "end": 26122.88, + "probability": 0.9301 + }, + { + "start": 26124.56, + "end": 26125.26, + "probability": 0.6731 + }, + { + "start": 26126.76, + "end": 26128.08, + "probability": 0.7197 + }, + { + "start": 26130.44, + "end": 26132.96, + "probability": 0.9927 + }, + { + "start": 26133.94, + "end": 26135.26, + "probability": 0.8879 + }, + { + "start": 26135.36, + "end": 26137.76, + "probability": 0.811 + }, + { + "start": 26139.02, + "end": 26139.68, + "probability": 0.6529 + }, + { + "start": 26141.12, + "end": 26143.52, + "probability": 0.8632 + }, + { + "start": 26144.82, + "end": 26147.0, + "probability": 0.9917 + }, + { + "start": 26148.36, + "end": 26149.14, + "probability": 0.9783 + }, + { + "start": 26150.16, + "end": 26152.78, + "probability": 0.972 + }, + { + "start": 26154.38, + "end": 26157.52, + "probability": 0.9465 + }, + { + "start": 26157.68, + "end": 26159.26, + "probability": 0.562 + }, + { + "start": 26159.26, + "end": 26160.62, + "probability": 0.784 + }, + { + "start": 26161.5, + "end": 26162.48, + "probability": 0.9946 + }, + { + "start": 26163.36, + "end": 26164.16, + "probability": 0.9247 + }, + { + "start": 26164.92, + "end": 26165.78, + "probability": 0.9158 + }, + { + "start": 26168.4, + "end": 26170.16, + "probability": 0.8441 + }, + { + "start": 26171.38, + "end": 26172.44, + "probability": 0.6644 + }, + { + "start": 26172.58, + "end": 26174.36, + "probability": 0.8131 + }, + { + "start": 26174.68, + "end": 26176.24, + "probability": 0.7489 + }, + { + "start": 26177.52, + "end": 26178.64, + "probability": 0.9161 + }, + { + "start": 26180.12, + "end": 26182.3, + "probability": 0.8764 + }, + { + "start": 26183.48, + "end": 26184.26, + "probability": 0.993 + }, + { + "start": 26184.88, + "end": 26186.7, + "probability": 0.9846 + }, + { + "start": 26186.9, + "end": 26187.78, + "probability": 0.978 + }, + { + "start": 26189.36, + "end": 26191.28, + "probability": 0.9563 + }, + { + "start": 26191.34, + "end": 26194.02, + "probability": 0.9762 + }, + { + "start": 26194.16, + "end": 26195.08, + "probability": 0.6061 + }, + { + "start": 26195.6, + "end": 26199.58, + "probability": 0.9835 + }, + { + "start": 26199.7, + "end": 26200.32, + "probability": 0.8029 + }, + { + "start": 26201.34, + "end": 26203.54, + "probability": 0.9415 + }, + { + "start": 26203.88, + "end": 26204.54, + "probability": 0.9272 + }, + { + "start": 26205.52, + "end": 26205.98, + "probability": 0.9528 + }, + { + "start": 26206.92, + "end": 26210.56, + "probability": 0.9965 + }, + { + "start": 26211.24, + "end": 26212.94, + "probability": 0.6342 + }, + { + "start": 26214.34, + "end": 26217.2, + "probability": 0.965 + }, + { + "start": 26217.82, + "end": 26218.76, + "probability": 0.9788 + }, + { + "start": 26220.02, + "end": 26221.16, + "probability": 0.8392 + }, + { + "start": 26222.06, + "end": 26222.18, + "probability": 0.3256 + }, + { + "start": 26222.18, + "end": 26224.12, + "probability": 0.7385 + }, + { + "start": 26224.26, + "end": 26225.22, + "probability": 0.9895 + }, + { + "start": 26225.28, + "end": 26227.08, + "probability": 0.9678 + }, + { + "start": 26227.48, + "end": 26227.72, + "probability": 0.8583 + }, + { + "start": 26228.82, + "end": 26229.68, + "probability": 0.688 + }, + { + "start": 26229.88, + "end": 26232.22, + "probability": 0.9388 + }, + { + "start": 26244.1, + "end": 26245.28, + "probability": 0.5749 + }, + { + "start": 26246.3, + "end": 26247.5, + "probability": 0.9948 + }, + { + "start": 26249.14, + "end": 26252.58, + "probability": 0.8213 + }, + { + "start": 26253.22, + "end": 26253.78, + "probability": 0.9381 + }, + { + "start": 26254.74, + "end": 26257.18, + "probability": 0.8938 + }, + { + "start": 26258.36, + "end": 26260.92, + "probability": 0.9977 + }, + { + "start": 26263.52, + "end": 26265.06, + "probability": 0.9957 + }, + { + "start": 26267.7, + "end": 26269.72, + "probability": 0.8981 + }, + { + "start": 26270.38, + "end": 26271.12, + "probability": 0.8363 + }, + { + "start": 26272.98, + "end": 26274.48, + "probability": 0.867 + }, + { + "start": 26275.3, + "end": 26279.94, + "probability": 0.8919 + }, + { + "start": 26279.96, + "end": 26284.56, + "probability": 0.9939 + }, + { + "start": 26285.96, + "end": 26291.9, + "probability": 0.9839 + }, + { + "start": 26292.96, + "end": 26293.66, + "probability": 0.766 + }, + { + "start": 26294.54, + "end": 26300.22, + "probability": 0.8986 + }, + { + "start": 26301.0, + "end": 26304.28, + "probability": 0.9593 + }, + { + "start": 26304.94, + "end": 26310.3, + "probability": 0.9819 + }, + { + "start": 26311.32, + "end": 26314.74, + "probability": 0.9707 + }, + { + "start": 26315.42, + "end": 26318.32, + "probability": 0.9992 + }, + { + "start": 26318.98, + "end": 26324.74, + "probability": 0.999 + }, + { + "start": 26325.92, + "end": 26327.68, + "probability": 0.9934 + }, + { + "start": 26328.82, + "end": 26330.32, + "probability": 0.9077 + }, + { + "start": 26331.08, + "end": 26334.24, + "probability": 0.9902 + }, + { + "start": 26334.24, + "end": 26338.54, + "probability": 0.9985 + }, + { + "start": 26339.74, + "end": 26342.34, + "probability": 0.9551 + }, + { + "start": 26342.86, + "end": 26345.46, + "probability": 0.9987 + }, + { + "start": 26346.62, + "end": 26353.48, + "probability": 0.999 + }, + { + "start": 26355.24, + "end": 26359.18, + "probability": 0.9988 + }, + { + "start": 26359.9, + "end": 26362.94, + "probability": 0.8917 + }, + { + "start": 26364.1, + "end": 26365.5, + "probability": 0.9758 + }, + { + "start": 26366.2, + "end": 26369.7, + "probability": 0.5111 + }, + { + "start": 26370.4, + "end": 26371.02, + "probability": 0.9303 + }, + { + "start": 26371.78, + "end": 26372.82, + "probability": 0.9674 + }, + { + "start": 26373.46, + "end": 26377.54, + "probability": 0.9607 + }, + { + "start": 26378.0, + "end": 26384.56, + "probability": 0.9917 + }, + { + "start": 26385.26, + "end": 26386.96, + "probability": 0.9132 + }, + { + "start": 26387.96, + "end": 26389.86, + "probability": 0.9692 + }, + { + "start": 26390.12, + "end": 26396.12, + "probability": 0.9923 + }, + { + "start": 26396.84, + "end": 26401.38, + "probability": 0.995 + }, + { + "start": 26402.12, + "end": 26403.96, + "probability": 0.9368 + }, + { + "start": 26404.96, + "end": 26408.68, + "probability": 0.9925 + }, + { + "start": 26409.32, + "end": 26410.32, + "probability": 0.7199 + }, + { + "start": 26411.14, + "end": 26414.82, + "probability": 0.9824 + }, + { + "start": 26415.38, + "end": 26416.08, + "probability": 0.9247 + }, + { + "start": 26416.62, + "end": 26417.34, + "probability": 0.7968 + }, + { + "start": 26418.88, + "end": 26422.46, + "probability": 0.7502 + }, + { + "start": 26422.98, + "end": 26424.38, + "probability": 0.9353 + }, + { + "start": 26425.32, + "end": 26428.89, + "probability": 0.9429 + }, + { + "start": 26430.66, + "end": 26435.48, + "probability": 0.923 + }, + { + "start": 26436.12, + "end": 26439.0, + "probability": 0.979 + }, + { + "start": 26439.66, + "end": 26442.66, + "probability": 0.6663 + }, + { + "start": 26443.3, + "end": 26445.16, + "probability": 0.8308 + }, + { + "start": 26445.8, + "end": 26447.3, + "probability": 0.8705 + }, + { + "start": 26447.84, + "end": 26451.3, + "probability": 0.9006 + }, + { + "start": 26451.3, + "end": 26455.38, + "probability": 0.9885 + }, + { + "start": 26456.16, + "end": 26457.66, + "probability": 0.9667 + }, + { + "start": 26458.18, + "end": 26458.64, + "probability": 0.8886 + }, + { + "start": 26458.86, + "end": 26459.82, + "probability": 0.7555 + }, + { + "start": 26460.46, + "end": 26462.18, + "probability": 0.9604 + }, + { + "start": 26463.58, + "end": 26464.28, + "probability": 0.6502 + }, + { + "start": 26464.38, + "end": 26466.56, + "probability": 0.8918 + }, + { + "start": 26483.66, + "end": 26484.3, + "probability": 0.5651 + }, + { + "start": 26486.18, + "end": 26487.64, + "probability": 0.7533 + }, + { + "start": 26488.78, + "end": 26490.16, + "probability": 0.9977 + }, + { + "start": 26492.64, + "end": 26493.8, + "probability": 0.3982 + }, + { + "start": 26493.86, + "end": 26493.86, + "probability": 0.3246 + }, + { + "start": 26494.16, + "end": 26496.24, + "probability": 0.991 + }, + { + "start": 26497.68, + "end": 26499.18, + "probability": 0.9146 + }, + { + "start": 26500.02, + "end": 26501.14, + "probability": 0.9856 + }, + { + "start": 26502.12, + "end": 26505.06, + "probability": 0.8799 + }, + { + "start": 26506.66, + "end": 26507.16, + "probability": 0.9846 + }, + { + "start": 26509.14, + "end": 26510.06, + "probability": 0.7745 + }, + { + "start": 26511.18, + "end": 26511.98, + "probability": 0.2756 + }, + { + "start": 26513.06, + "end": 26515.38, + "probability": 0.3386 + }, + { + "start": 26515.38, + "end": 26516.86, + "probability": 0.4352 + }, + { + "start": 26519.26, + "end": 26522.3, + "probability": 0.6412 + }, + { + "start": 26522.34, + "end": 26524.2, + "probability": 0.803 + }, + { + "start": 26524.24, + "end": 26524.92, + "probability": 0.4644 + }, + { + "start": 26525.44, + "end": 26526.32, + "probability": 0.7059 + }, + { + "start": 26527.1, + "end": 26528.82, + "probability": 0.7575 + }, + { + "start": 26528.86, + "end": 26530.9, + "probability": 0.9064 + }, + { + "start": 26531.02, + "end": 26533.3, + "probability": 0.9576 + }, + { + "start": 26533.94, + "end": 26537.6, + "probability": 0.8424 + }, + { + "start": 26538.3, + "end": 26538.68, + "probability": 0.3448 + }, + { + "start": 26538.82, + "end": 26542.24, + "probability": 0.9243 + }, + { + "start": 26543.08, + "end": 26544.86, + "probability": 0.9814 + }, + { + "start": 26545.66, + "end": 26546.72, + "probability": 0.7826 + }, + { + "start": 26547.8, + "end": 26551.34, + "probability": 0.9349 + }, + { + "start": 26553.0, + "end": 26553.49, + "probability": 0.9292 + }, + { + "start": 26553.74, + "end": 26557.76, + "probability": 0.8783 + }, + { + "start": 26559.7, + "end": 26560.52, + "probability": 0.8517 + }, + { + "start": 26560.64, + "end": 26561.08, + "probability": 0.7141 + }, + { + "start": 26561.2, + "end": 26561.98, + "probability": 0.7155 + }, + { + "start": 26562.96, + "end": 26564.4, + "probability": 0.8186 + }, + { + "start": 26564.94, + "end": 26565.58, + "probability": 0.7556 + }, + { + "start": 26566.56, + "end": 26567.26, + "probability": 0.4917 + }, + { + "start": 26567.26, + "end": 26568.12, + "probability": 0.5677 + }, + { + "start": 26568.12, + "end": 26569.64, + "probability": 0.7954 + }, + { + "start": 26569.92, + "end": 26571.1, + "probability": 0.6596 + }, + { + "start": 26571.76, + "end": 26572.44, + "probability": 0.4073 + }, + { + "start": 26573.0, + "end": 26575.18, + "probability": 0.8267 + }, + { + "start": 26576.26, + "end": 26578.34, + "probability": 0.9502 + }, + { + "start": 26578.64, + "end": 26578.78, + "probability": 0.7692 + }, + { + "start": 26579.02, + "end": 26579.72, + "probability": 0.9002 + }, + { + "start": 26579.9, + "end": 26581.16, + "probability": 0.9268 + }, + { + "start": 26581.5, + "end": 26583.34, + "probability": 0.749 + }, + { + "start": 26584.18, + "end": 26589.48, + "probability": 0.9886 + }, + { + "start": 26590.56, + "end": 26591.46, + "probability": 0.857 + }, + { + "start": 26592.42, + "end": 26593.3, + "probability": 0.8992 + }, + { + "start": 26593.54, + "end": 26596.04, + "probability": 0.7776 + }, + { + "start": 26596.66, + "end": 26598.12, + "probability": 0.8117 + }, + { + "start": 26598.74, + "end": 26600.3, + "probability": 0.9907 + }, + { + "start": 26601.52, + "end": 26602.46, + "probability": 0.7426 + }, + { + "start": 26603.62, + "end": 26605.66, + "probability": 0.9366 + }, + { + "start": 26606.32, + "end": 26609.48, + "probability": 0.9941 + }, + { + "start": 26609.88, + "end": 26610.8, + "probability": 0.9053 + }, + { + "start": 26611.18, + "end": 26612.0, + "probability": 0.9575 + }, + { + "start": 26612.04, + "end": 26613.22, + "probability": 0.7139 + }, + { + "start": 26613.52, + "end": 26614.36, + "probability": 0.5119 + }, + { + "start": 26614.42, + "end": 26614.88, + "probability": 0.9605 + }, + { + "start": 26615.58, + "end": 26617.04, + "probability": 0.8252 + }, + { + "start": 26617.86, + "end": 26621.94, + "probability": 0.9129 + }, + { + "start": 26624.12, + "end": 26624.82, + "probability": 0.8667 + }, + { + "start": 26625.26, + "end": 26627.08, + "probability": 0.989 + }, + { + "start": 26627.2, + "end": 26627.54, + "probability": 0.9789 + }, + { + "start": 26629.0, + "end": 26630.82, + "probability": 0.84 + }, + { + "start": 26630.92, + "end": 26636.24, + "probability": 0.9826 + }, + { + "start": 26637.26, + "end": 26638.8, + "probability": 0.9671 + }, + { + "start": 26639.6, + "end": 26642.7, + "probability": 0.9754 + }, + { + "start": 26643.06, + "end": 26643.42, + "probability": 0.835 + }, + { + "start": 26643.92, + "end": 26646.73, + "probability": 0.9927 + }, + { + "start": 26646.96, + "end": 26648.58, + "probability": 0.7435 + }, + { + "start": 26649.2, + "end": 26650.16, + "probability": 0.617 + }, + { + "start": 26650.7, + "end": 26651.16, + "probability": 0.5968 + }, + { + "start": 26651.78, + "end": 26653.06, + "probability": 0.9377 + }, + { + "start": 26653.64, + "end": 26654.56, + "probability": 0.9119 + }, + { + "start": 26655.42, + "end": 26658.91, + "probability": 0.9403 + }, + { + "start": 26659.62, + "end": 26661.68, + "probability": 0.9961 + }, + { + "start": 26661.96, + "end": 26665.68, + "probability": 0.9619 + }, + { + "start": 26666.22, + "end": 26668.36, + "probability": 0.8546 + }, + { + "start": 26669.9, + "end": 26674.92, + "probability": 0.9591 + }, + { + "start": 26675.82, + "end": 26677.26, + "probability": 0.6677 + }, + { + "start": 26677.32, + "end": 26681.7, + "probability": 0.7742 + }, + { + "start": 26682.28, + "end": 26683.34, + "probability": 0.8259 + }, + { + "start": 26684.7, + "end": 26687.58, + "probability": 0.9852 + }, + { + "start": 26687.94, + "end": 26692.1, + "probability": 0.7464 + }, + { + "start": 26693.76, + "end": 26694.44, + "probability": 0.6044 + }, + { + "start": 26694.58, + "end": 26696.16, + "probability": 0.9436 + }, + { + "start": 26697.36, + "end": 26698.26, + "probability": 0.8172 + }, + { + "start": 26698.44, + "end": 26699.66, + "probability": 0.9861 + }, + { + "start": 26712.1, + "end": 26713.6, + "probability": 0.6484 + }, + { + "start": 26713.66, + "end": 26716.32, + "probability": 0.9002 + }, + { + "start": 26718.08, + "end": 26721.28, + "probability": 0.5872 + }, + { + "start": 26721.56, + "end": 26724.26, + "probability": 0.7681 + }, + { + "start": 26727.16, + "end": 26728.36, + "probability": 0.6408 + }, + { + "start": 26729.48, + "end": 26733.64, + "probability": 0.9925 + }, + { + "start": 26734.54, + "end": 26736.3, + "probability": 0.9041 + }, + { + "start": 26737.76, + "end": 26740.5, + "probability": 0.9641 + }, + { + "start": 26742.08, + "end": 26746.84, + "probability": 0.8988 + }, + { + "start": 26748.64, + "end": 26753.52, + "probability": 0.9974 + }, + { + "start": 26753.74, + "end": 26754.48, + "probability": 0.765 + }, + { + "start": 26755.02, + "end": 26756.18, + "probability": 0.8691 + }, + { + "start": 26757.54, + "end": 26760.38, + "probability": 0.9966 + }, + { + "start": 26761.76, + "end": 26762.8, + "probability": 0.9947 + }, + { + "start": 26763.84, + "end": 26764.9, + "probability": 0.7659 + }, + { + "start": 26766.0, + "end": 26773.14, + "probability": 0.9255 + }, + { + "start": 26774.64, + "end": 26775.08, + "probability": 0.9756 + }, + { + "start": 26776.46, + "end": 26777.74, + "probability": 0.9851 + }, + { + "start": 26777.8, + "end": 26779.7, + "probability": 0.998 + }, + { + "start": 26780.76, + "end": 26782.6, + "probability": 0.7656 + }, + { + "start": 26783.16, + "end": 26785.58, + "probability": 0.9838 + }, + { + "start": 26786.24, + "end": 26787.04, + "probability": 0.8833 + }, + { + "start": 26787.64, + "end": 26788.4, + "probability": 0.9777 + }, + { + "start": 26789.7, + "end": 26795.52, + "probability": 0.9856 + }, + { + "start": 26796.56, + "end": 26798.22, + "probability": 0.9828 + }, + { + "start": 26800.86, + "end": 26803.74, + "probability": 0.9908 + }, + { + "start": 26803.74, + "end": 26806.56, + "probability": 0.9385 + }, + { + "start": 26807.04, + "end": 26809.38, + "probability": 0.9941 + }, + { + "start": 26810.0, + "end": 26812.78, + "probability": 0.8946 + }, + { + "start": 26813.04, + "end": 26819.94, + "probability": 0.9222 + }, + { + "start": 26821.52, + "end": 26822.78, + "probability": 0.7984 + }, + { + "start": 26824.76, + "end": 26827.06, + "probability": 0.9361 + }, + { + "start": 26828.1, + "end": 26828.26, + "probability": 0.7446 + }, + { + "start": 26829.28, + "end": 26830.88, + "probability": 0.8408 + }, + { + "start": 26831.66, + "end": 26833.06, + "probability": 0.9629 + }, + { + "start": 26834.12, + "end": 26837.82, + "probability": 0.9953 + }, + { + "start": 26837.9, + "end": 26839.5, + "probability": 0.963 + }, + { + "start": 26840.98, + "end": 26845.18, + "probability": 0.9967 + }, + { + "start": 26846.0, + "end": 26848.22, + "probability": 0.9976 + }, + { + "start": 26849.52, + "end": 26851.5, + "probability": 0.985 + }, + { + "start": 26852.26, + "end": 26853.7, + "probability": 0.9983 + }, + { + "start": 26854.56, + "end": 26857.05, + "probability": 0.9296 + }, + { + "start": 26862.79, + "end": 26865.06, + "probability": 0.9653 + }, + { + "start": 26866.2, + "end": 26867.76, + "probability": 0.7548 + }, + { + "start": 26869.08, + "end": 26872.44, + "probability": 0.9561 + }, + { + "start": 26873.1, + "end": 26874.9, + "probability": 0.8785 + }, + { + "start": 26876.54, + "end": 26877.96, + "probability": 0.8522 + }, + { + "start": 26879.02, + "end": 26884.08, + "probability": 0.9928 + }, + { + "start": 26884.66, + "end": 26885.6, + "probability": 0.9963 + }, + { + "start": 26886.8, + "end": 26889.56, + "probability": 0.8672 + }, + { + "start": 26890.22, + "end": 26890.88, + "probability": 0.9052 + }, + { + "start": 26892.6, + "end": 26893.62, + "probability": 0.5697 + }, + { + "start": 26894.02, + "end": 26895.18, + "probability": 0.652 + }, + { + "start": 26895.42, + "end": 26896.58, + "probability": 0.9805 + }, + { + "start": 26896.84, + "end": 26898.26, + "probability": 0.8586 + }, + { + "start": 26898.44, + "end": 26898.9, + "probability": 0.5589 + }, + { + "start": 26898.96, + "end": 26902.54, + "probability": 0.9863 + }, + { + "start": 26902.94, + "end": 26904.18, + "probability": 0.7131 + }, + { + "start": 26904.32, + "end": 26905.32, + "probability": 0.9014 + }, + { + "start": 26906.26, + "end": 26909.26, + "probability": 0.9905 + }, + { + "start": 26910.78, + "end": 26913.04, + "probability": 0.9993 + }, + { + "start": 26913.86, + "end": 26915.18, + "probability": 0.8147 + }, + { + "start": 26915.34, + "end": 26917.62, + "probability": 0.6863 + }, + { + "start": 26918.06, + "end": 26918.24, + "probability": 0.5841 + }, + { + "start": 26919.7, + "end": 26924.8, + "probability": 0.9349 + }, + { + "start": 26925.6, + "end": 26926.64, + "probability": 0.915 + }, + { + "start": 26927.22, + "end": 26927.72, + "probability": 0.6235 + }, + { + "start": 26928.66, + "end": 26929.9, + "probability": 0.9097 + }, + { + "start": 26931.18, + "end": 26936.02, + "probability": 0.9863 + }, + { + "start": 26937.82, + "end": 26938.3, + "probability": 0.8632 + }, + { + "start": 26939.68, + "end": 26941.26, + "probability": 0.8385 + }, + { + "start": 26942.42, + "end": 26943.08, + "probability": 0.4724 + }, + { + "start": 26943.2, + "end": 26944.4, + "probability": 0.9952 + }, + { + "start": 26956.76, + "end": 26958.22, + "probability": 0.8633 + }, + { + "start": 26959.84, + "end": 26960.91, + "probability": 0.7389 + }, + { + "start": 26962.1, + "end": 26963.62, + "probability": 0.7145 + }, + { + "start": 26965.48, + "end": 26971.2, + "probability": 0.8716 + }, + { + "start": 26972.26, + "end": 26979.38, + "probability": 0.9761 + }, + { + "start": 26979.56, + "end": 26985.44, + "probability": 0.9886 + }, + { + "start": 26986.66, + "end": 26987.4, + "probability": 0.8574 + }, + { + "start": 26988.36, + "end": 26989.36, + "probability": 0.7814 + }, + { + "start": 26990.42, + "end": 26990.96, + "probability": 0.1598 + }, + { + "start": 26991.14, + "end": 26993.22, + "probability": 0.2384 + }, + { + "start": 26994.1, + "end": 26997.74, + "probability": 0.0392 + }, + { + "start": 26999.56, + "end": 27000.19, + "probability": 0.0366 + }, + { + "start": 27001.78, + "end": 27003.02, + "probability": 0.0272 + }, + { + "start": 27005.02, + "end": 27011.4, + "probability": 0.0764 + }, + { + "start": 27012.62, + "end": 27013.5, + "probability": 0.0158 + }, + { + "start": 27016.14, + "end": 27016.14, + "probability": 0.0123 + }, + { + "start": 27017.6, + "end": 27020.34, + "probability": 0.1398 + }, + { + "start": 27020.34, + "end": 27020.62, + "probability": 0.0081 + }, + { + "start": 27022.78, + "end": 27026.46, + "probability": 0.0205 + }, + { + "start": 27038.42, + "end": 27038.58, + "probability": 0.3871 + }, + { + "start": 27043.88, + "end": 27046.94, + "probability": 0.045 + }, + { + "start": 27046.94, + "end": 27049.74, + "probability": 0.0459 + }, + { + "start": 27050.04, + "end": 27052.54, + "probability": 0.1016 + }, + { + "start": 27052.6, + "end": 27053.06, + "probability": 0.1996 + }, + { + "start": 27053.36, + "end": 27053.36, + "probability": 0.0981 + }, + { + "start": 27053.36, + "end": 27054.42, + "probability": 0.1842 + }, + { + "start": 27054.42, + "end": 27055.42, + "probability": 0.0431 + }, + { + "start": 27055.82, + "end": 27056.48, + "probability": 0.0565 + }, + { + "start": 27057.0, + "end": 27057.52, + "probability": 0.0954 + }, + { + "start": 27059.0, + "end": 27059.0, + "probability": 0.0 + }, + { + "start": 27059.0, + "end": 27059.0, + "probability": 0.0 + }, + { + "start": 27059.0, + "end": 27059.0, + "probability": 0.0 + }, + { + "start": 27059.0, + "end": 27059.0, + "probability": 0.0 + }, + { + "start": 27059.22, + "end": 27059.34, + "probability": 0.0408 + }, + { + "start": 27059.34, + "end": 27059.34, + "probability": 0.0727 + }, + { + "start": 27059.34, + "end": 27060.1, + "probability": 0.2353 + }, + { + "start": 27060.72, + "end": 27063.74, + "probability": 0.6284 + }, + { + "start": 27064.9, + "end": 27065.75, + "probability": 0.5364 + }, + { + "start": 27066.8, + "end": 27067.78, + "probability": 0.8004 + }, + { + "start": 27068.86, + "end": 27070.4, + "probability": 0.9349 + }, + { + "start": 27070.98, + "end": 27074.7, + "probability": 0.782 + }, + { + "start": 27075.3, + "end": 27078.74, + "probability": 0.9784 + }, + { + "start": 27079.56, + "end": 27082.46, + "probability": 0.9805 + }, + { + "start": 27083.72, + "end": 27085.18, + "probability": 0.9958 + }, + { + "start": 27087.04, + "end": 27087.94, + "probability": 0.6407 + }, + { + "start": 27088.56, + "end": 27090.7, + "probability": 0.9883 + }, + { + "start": 27090.82, + "end": 27091.46, + "probability": 0.9808 + }, + { + "start": 27091.46, + "end": 27092.38, + "probability": 0.993 + }, + { + "start": 27092.62, + "end": 27093.52, + "probability": 0.9566 + }, + { + "start": 27093.92, + "end": 27094.46, + "probability": 0.6103 + }, + { + "start": 27096.06, + "end": 27096.65, + "probability": 0.8345 + }, + { + "start": 27098.04, + "end": 27099.2, + "probability": 0.9764 + }, + { + "start": 27100.2, + "end": 27100.9, + "probability": 0.8097 + }, + { + "start": 27101.52, + "end": 27102.18, + "probability": 0.6281 + }, + { + "start": 27103.08, + "end": 27108.16, + "probability": 0.9796 + }, + { + "start": 27108.72, + "end": 27113.78, + "probability": 0.9994 + }, + { + "start": 27114.52, + "end": 27117.12, + "probability": 0.9937 + }, + { + "start": 27118.52, + "end": 27123.42, + "probability": 0.9869 + }, + { + "start": 27124.42, + "end": 27125.62, + "probability": 0.1935 + }, + { + "start": 27126.92, + "end": 27128.68, + "probability": 0.7095 + }, + { + "start": 27129.94, + "end": 27133.06, + "probability": 0.88 + }, + { + "start": 27133.68, + "end": 27138.86, + "probability": 0.9878 + }, + { + "start": 27139.2, + "end": 27142.04, + "probability": 0.9832 + }, + { + "start": 27142.96, + "end": 27143.46, + "probability": 0.7418 + }, + { + "start": 27143.58, + "end": 27147.3, + "probability": 0.9575 + }, + { + "start": 27147.84, + "end": 27149.92, + "probability": 0.9559 + }, + { + "start": 27150.1, + "end": 27150.38, + "probability": 0.9567 + }, + { + "start": 27150.98, + "end": 27151.56, + "probability": 0.6246 + }, + { + "start": 27151.94, + "end": 27153.64, + "probability": 0.9376 + }, + { + "start": 27167.84, + "end": 27168.58, + "probability": 0.6404 + }, + { + "start": 27169.16, + "end": 27169.68, + "probability": 0.9251 + }, + { + "start": 27170.62, + "end": 27170.82, + "probability": 0.9703 + }, + { + "start": 27173.18, + "end": 27175.24, + "probability": 0.9925 + }, + { + "start": 27177.66, + "end": 27181.36, + "probability": 0.9842 + }, + { + "start": 27182.76, + "end": 27185.26, + "probability": 0.9263 + }, + { + "start": 27187.32, + "end": 27188.06, + "probability": 0.7296 + }, + { + "start": 27189.42, + "end": 27190.28, + "probability": 0.9993 + }, + { + "start": 27191.28, + "end": 27192.64, + "probability": 0.6376 + }, + { + "start": 27194.64, + "end": 27198.5, + "probability": 0.9858 + }, + { + "start": 27198.5, + "end": 27205.24, + "probability": 0.7682 + }, + { + "start": 27205.42, + "end": 27205.9, + "probability": 0.6388 + }, + { + "start": 27206.54, + "end": 27207.5, + "probability": 0.8875 + }, + { + "start": 27207.92, + "end": 27210.58, + "probability": 0.8841 + }, + { + "start": 27210.8, + "end": 27212.28, + "probability": 0.7902 + }, + { + "start": 27212.38, + "end": 27212.38, + "probability": 0.3681 + }, + { + "start": 27212.5, + "end": 27214.28, + "probability": 0.9524 + }, + { + "start": 27215.78, + "end": 27218.02, + "probability": 0.9552 + }, + { + "start": 27219.2, + "end": 27221.56, + "probability": 0.959 + }, + { + "start": 27223.22, + "end": 27224.48, + "probability": 0.798 + }, + { + "start": 27225.96, + "end": 27229.44, + "probability": 0.8856 + }, + { + "start": 27230.48, + "end": 27231.9, + "probability": 0.9731 + }, + { + "start": 27232.82, + "end": 27238.62, + "probability": 0.8738 + }, + { + "start": 27239.14, + "end": 27240.94, + "probability": 0.7608 + }, + { + "start": 27241.48, + "end": 27242.52, + "probability": 0.8443 + }, + { + "start": 27243.16, + "end": 27243.42, + "probability": 0.736 + }, + { + "start": 27244.56, + "end": 27246.12, + "probability": 0.9104 + }, + { + "start": 27247.58, + "end": 27249.06, + "probability": 0.8833 + }, + { + "start": 27250.34, + "end": 27257.46, + "probability": 0.9968 + }, + { + "start": 27259.62, + "end": 27264.7, + "probability": 0.9883 + }, + { + "start": 27264.72, + "end": 27268.5, + "probability": 0.856 + }, + { + "start": 27269.88, + "end": 27270.72, + "probability": 0.9458 + }, + { + "start": 27271.48, + "end": 27273.3, + "probability": 0.9912 + }, + { + "start": 27275.18, + "end": 27277.56, + "probability": 0.9539 + }, + { + "start": 27278.4, + "end": 27279.74, + "probability": 0.7054 + }, + { + "start": 27280.32, + "end": 27283.62, + "probability": 0.8507 + }, + { + "start": 27283.88, + "end": 27285.32, + "probability": 0.3887 + }, + { + "start": 27285.38, + "end": 27286.58, + "probability": 0.946 + }, + { + "start": 27287.86, + "end": 27288.34, + "probability": 0.8847 + }, + { + "start": 27289.18, + "end": 27289.72, + "probability": 0.8552 + }, + { + "start": 27290.72, + "end": 27292.36, + "probability": 0.9916 + }, + { + "start": 27293.12, + "end": 27294.16, + "probability": 0.9141 + }, + { + "start": 27295.3, + "end": 27298.32, + "probability": 0.9976 + }, + { + "start": 27298.32, + "end": 27300.68, + "probability": 0.9524 + }, + { + "start": 27301.36, + "end": 27302.88, + "probability": 0.959 + }, + { + "start": 27304.02, + "end": 27306.28, + "probability": 0.9648 + }, + { + "start": 27307.4, + "end": 27309.62, + "probability": 0.9484 + }, + { + "start": 27310.22, + "end": 27312.5, + "probability": 0.6714 + }, + { + "start": 27313.54, + "end": 27314.52, + "probability": 0.9915 + }, + { + "start": 27315.8, + "end": 27316.46, + "probability": 0.9613 + }, + { + "start": 27317.6, + "end": 27322.58, + "probability": 0.9866 + }, + { + "start": 27323.32, + "end": 27324.72, + "probability": 0.9186 + }, + { + "start": 27325.5, + "end": 27327.52, + "probability": 0.8076 + }, + { + "start": 27328.34, + "end": 27330.1, + "probability": 0.801 + }, + { + "start": 27330.72, + "end": 27333.48, + "probability": 0.9956 + }, + { + "start": 27334.08, + "end": 27339.02, + "probability": 0.8772 + }, + { + "start": 27339.02, + "end": 27339.62, + "probability": 0.082 + }, + { + "start": 27340.44, + "end": 27341.4, + "probability": 0.8348 + }, + { + "start": 27342.14, + "end": 27343.08, + "probability": 0.9846 + }, + { + "start": 27343.64, + "end": 27344.7, + "probability": 0.9641 + }, + { + "start": 27346.34, + "end": 27347.22, + "probability": 0.9935 + }, + { + "start": 27347.92, + "end": 27349.56, + "probability": 0.8714 + }, + { + "start": 27350.0, + "end": 27350.64, + "probability": 0.2392 + }, + { + "start": 27352.74, + "end": 27354.24, + "probability": 0.9963 + }, + { + "start": 27355.0, + "end": 27356.76, + "probability": 0.7658 + }, + { + "start": 27357.82, + "end": 27361.76, + "probability": 0.8091 + }, + { + "start": 27362.22, + "end": 27363.44, + "probability": 0.9965 + }, + { + "start": 27364.1, + "end": 27366.64, + "probability": 0.9882 + }, + { + "start": 27366.98, + "end": 27369.2, + "probability": 0.7621 + }, + { + "start": 27370.48, + "end": 27370.82, + "probability": 0.0266 + }, + { + "start": 27370.82, + "end": 27371.82, + "probability": 0.8691 + }, + { + "start": 27372.16, + "end": 27372.78, + "probability": 0.8234 + }, + { + "start": 27373.02, + "end": 27375.12, + "probability": 0.9038 + }, + { + "start": 27376.06, + "end": 27378.14, + "probability": 0.9155 + }, + { + "start": 27379.06, + "end": 27379.68, + "probability": 0.6405 + }, + { + "start": 27381.1, + "end": 27381.64, + "probability": 0.8909 + }, + { + "start": 27381.84, + "end": 27382.06, + "probability": 0.8021 + }, + { + "start": 27382.64, + "end": 27383.34, + "probability": 0.6417 + }, + { + "start": 27383.46, + "end": 27385.34, + "probability": 0.885 + }, + { + "start": 27390.46, + "end": 27393.46, + "probability": 0.5182 + }, + { + "start": 27393.94, + "end": 27395.08, + "probability": 0.7055 + }, + { + "start": 27395.26, + "end": 27396.24, + "probability": 0.9187 + }, + { + "start": 27396.3, + "end": 27397.64, + "probability": 0.527 + }, + { + "start": 27397.72, + "end": 27398.43, + "probability": 0.5775 + }, + { + "start": 27401.28, + "end": 27403.64, + "probability": 0.8328 + }, + { + "start": 27405.84, + "end": 27409.6, + "probability": 0.7254 + }, + { + "start": 27410.76, + "end": 27417.02, + "probability": 0.8318 + }, + { + "start": 27417.22, + "end": 27417.84, + "probability": 0.8234 + }, + { + "start": 27419.1, + "end": 27421.36, + "probability": 0.9966 + }, + { + "start": 27421.36, + "end": 27423.94, + "probability": 0.8206 + }, + { + "start": 27424.56, + "end": 27426.48, + "probability": 0.9101 + }, + { + "start": 27427.7, + "end": 27433.0, + "probability": 0.9856 + }, + { + "start": 27433.0, + "end": 27438.48, + "probability": 0.844 + }, + { + "start": 27439.18, + "end": 27443.14, + "probability": 0.9762 + }, + { + "start": 27444.22, + "end": 27447.5, + "probability": 0.7954 + }, + { + "start": 27448.24, + "end": 27451.4, + "probability": 0.9434 + }, + { + "start": 27451.96, + "end": 27453.76, + "probability": 0.9407 + }, + { + "start": 27454.54, + "end": 27457.24, + "probability": 0.95 + }, + { + "start": 27457.68, + "end": 27460.22, + "probability": 0.9974 + }, + { + "start": 27460.88, + "end": 27463.28, + "probability": 0.892 + }, + { + "start": 27463.84, + "end": 27469.5, + "probability": 0.931 + }, + { + "start": 27471.82, + "end": 27478.56, + "probability": 0.9945 + }, + { + "start": 27478.7, + "end": 27480.36, + "probability": 0.9714 + }, + { + "start": 27481.4, + "end": 27485.48, + "probability": 0.9829 + }, + { + "start": 27486.08, + "end": 27488.28, + "probability": 0.9507 + }, + { + "start": 27488.94, + "end": 27494.28, + "probability": 0.9856 + }, + { + "start": 27494.9, + "end": 27498.54, + "probability": 0.9592 + }, + { + "start": 27499.06, + "end": 27501.12, + "probability": 0.9449 + }, + { + "start": 27501.96, + "end": 27502.66, + "probability": 0.824 + }, + { + "start": 27503.24, + "end": 27506.86, + "probability": 0.998 + }, + { + "start": 27507.14, + "end": 27508.38, + "probability": 0.9622 + }, + { + "start": 27509.28, + "end": 27510.78, + "probability": 0.999 + }, + { + "start": 27511.62, + "end": 27515.9, + "probability": 0.9988 + }, + { + "start": 27516.5, + "end": 27519.96, + "probability": 0.9989 + }, + { + "start": 27520.28, + "end": 27521.32, + "probability": 0.6751 + }, + { + "start": 27521.76, + "end": 27525.18, + "probability": 0.9946 + }, + { + "start": 27526.14, + "end": 27528.96, + "probability": 0.9961 + }, + { + "start": 27528.96, + "end": 27531.54, + "probability": 0.9996 + }, + { + "start": 27531.74, + "end": 27533.48, + "probability": 0.9956 + }, + { + "start": 27534.12, + "end": 27535.72, + "probability": 0.9136 + }, + { + "start": 27536.16, + "end": 27539.52, + "probability": 0.9738 + }, + { + "start": 27540.6, + "end": 27545.22, + "probability": 0.995 + }, + { + "start": 27546.22, + "end": 27549.92, + "probability": 0.819 + }, + { + "start": 27550.6, + "end": 27551.38, + "probability": 0.8025 + }, + { + "start": 27551.94, + "end": 27552.22, + "probability": 0.3336 + }, + { + "start": 27553.72, + "end": 27556.92, + "probability": 0.9899 + }, + { + "start": 27557.04, + "end": 27559.32, + "probability": 0.9134 + }, + { + "start": 27560.16, + "end": 27563.72, + "probability": 0.9955 + }, + { + "start": 27563.72, + "end": 27566.96, + "probability": 0.9996 + }, + { + "start": 27567.36, + "end": 27568.4, + "probability": 0.6912 + }, + { + "start": 27568.58, + "end": 27570.24, + "probability": 0.8935 + }, + { + "start": 27570.9, + "end": 27574.62, + "probability": 0.9674 + }, + { + "start": 27575.22, + "end": 27578.06, + "probability": 0.9843 + }, + { + "start": 27578.54, + "end": 27582.98, + "probability": 0.6987 + }, + { + "start": 27583.64, + "end": 27587.64, + "probability": 0.9724 + }, + { + "start": 27588.74, + "end": 27591.22, + "probability": 0.8201 + }, + { + "start": 27592.12, + "end": 27594.88, + "probability": 0.895 + }, + { + "start": 27595.9, + "end": 27602.54, + "probability": 0.978 + }, + { + "start": 27603.06, + "end": 27603.6, + "probability": 0.837 + }, + { + "start": 27604.28, + "end": 27604.58, + "probability": 0.4883 + }, + { + "start": 27605.32, + "end": 27606.04, + "probability": 0.6539 + }, + { + "start": 27606.24, + "end": 27607.86, + "probability": 0.9534 + }, + { + "start": 27622.12, + "end": 27624.28, + "probability": 0.848 + }, + { + "start": 27625.72, + "end": 27627.26, + "probability": 0.719 + }, + { + "start": 27627.8, + "end": 27628.76, + "probability": 0.7016 + }, + { + "start": 27631.1, + "end": 27634.46, + "probability": 0.9355 + }, + { + "start": 27639.3, + "end": 27643.48, + "probability": 0.6013 + }, + { + "start": 27644.22, + "end": 27649.15, + "probability": 0.6993 + }, + { + "start": 27650.96, + "end": 27653.02, + "probability": 0.9971 + }, + { + "start": 27654.06, + "end": 27655.54, + "probability": 0.7651 + }, + { + "start": 27655.64, + "end": 27657.12, + "probability": 0.9941 + }, + { + "start": 27657.82, + "end": 27659.24, + "probability": 0.8908 + }, + { + "start": 27660.32, + "end": 27661.52, + "probability": 0.7582 + }, + { + "start": 27661.6, + "end": 27663.06, + "probability": 0.9077 + }, + { + "start": 27663.68, + "end": 27665.5, + "probability": 0.9355 + }, + { + "start": 27666.86, + "end": 27668.7, + "probability": 0.4341 + }, + { + "start": 27670.0, + "end": 27670.4, + "probability": 0.8817 + }, + { + "start": 27670.76, + "end": 27671.96, + "probability": 0.8276 + }, + { + "start": 27672.14, + "end": 27674.78, + "probability": 0.7371 + }, + { + "start": 27675.4, + "end": 27676.88, + "probability": 0.9921 + }, + { + "start": 27677.44, + "end": 27677.72, + "probability": 0.7986 + }, + { + "start": 27677.78, + "end": 27683.86, + "probability": 0.7459 + }, + { + "start": 27683.86, + "end": 27687.76, + "probability": 0.9916 + }, + { + "start": 27688.66, + "end": 27689.92, + "probability": 0.5989 + }, + { + "start": 27690.44, + "end": 27691.08, + "probability": 0.5148 + }, + { + "start": 27693.72, + "end": 27698.94, + "probability": 0.9744 + }, + { + "start": 27699.86, + "end": 27701.72, + "probability": 0.8484 + }, + { + "start": 27702.6, + "end": 27707.86, + "probability": 0.9912 + }, + { + "start": 27708.88, + "end": 27712.78, + "probability": 0.9558 + }, + { + "start": 27712.98, + "end": 27714.24, + "probability": 0.771 + }, + { + "start": 27714.78, + "end": 27715.62, + "probability": 0.733 + }, + { + "start": 27716.12, + "end": 27721.76, + "probability": 0.9849 + }, + { + "start": 27722.56, + "end": 27727.76, + "probability": 0.9968 + }, + { + "start": 27728.44, + "end": 27729.12, + "probability": 0.9984 + }, + { + "start": 27729.66, + "end": 27732.1, + "probability": 0.8684 + }, + { + "start": 27732.98, + "end": 27738.62, + "probability": 0.9988 + }, + { + "start": 27739.14, + "end": 27743.14, + "probability": 0.9763 + }, + { + "start": 27744.64, + "end": 27750.92, + "probability": 0.9914 + }, + { + "start": 27751.2, + "end": 27751.36, + "probability": 0.7841 + }, + { + "start": 27751.98, + "end": 27752.88, + "probability": 0.9005 + }, + { + "start": 27753.08, + "end": 27753.98, + "probability": 0.6999 + }, + { + "start": 27754.14, + "end": 27758.1, + "probability": 0.9458 + }, + { + "start": 27759.02, + "end": 27760.86, + "probability": 0.7498 + }, + { + "start": 27761.7, + "end": 27765.98, + "probability": 0.3497 + }, + { + "start": 27766.54, + "end": 27769.64, + "probability": 0.9155 + }, + { + "start": 27770.6, + "end": 27774.24, + "probability": 0.9326 + }, + { + "start": 27775.26, + "end": 27777.12, + "probability": 0.8259 + }, + { + "start": 27777.4, + "end": 27780.96, + "probability": 0.9971 + }, + { + "start": 27781.58, + "end": 27785.46, + "probability": 0.9938 + }, + { + "start": 27786.1, + "end": 27792.86, + "probability": 0.938 + }, + { + "start": 27794.06, + "end": 27795.18, + "probability": 0.7289 + }, + { + "start": 27796.22, + "end": 27799.64, + "probability": 0.9888 + }, + { + "start": 27800.54, + "end": 27803.1, + "probability": 0.8534 + }, + { + "start": 27803.9, + "end": 27806.42, + "probability": 0.2761 + }, + { + "start": 27806.54, + "end": 27807.02, + "probability": 0.2352 + }, + { + "start": 27807.64, + "end": 27809.43, + "probability": 0.8049 + }, + { + "start": 27809.72, + "end": 27811.1, + "probability": 0.9929 + }, + { + "start": 27811.8, + "end": 27813.2, + "probability": 0.915 + }, + { + "start": 27814.72, + "end": 27816.22, + "probability": 0.7056 + }, + { + "start": 27816.26, + "end": 27816.64, + "probability": 0.7132 + }, + { + "start": 27816.88, + "end": 27817.68, + "probability": 0.6813 + }, + { + "start": 27818.58, + "end": 27820.88, + "probability": 0.7993 + }, + { + "start": 27822.56, + "end": 27825.92, + "probability": 0.7166 + }, + { + "start": 27825.92, + "end": 27827.08, + "probability": 0.8286 + }, + { + "start": 27827.62, + "end": 27829.58, + "probability": 0.2841 + }, + { + "start": 27839.28, + "end": 27841.18, + "probability": 0.1464 + }, + { + "start": 27844.04, + "end": 27846.72, + "probability": 0.7261 + }, + { + "start": 27848.04, + "end": 27853.76, + "probability": 0.9683 + }, + { + "start": 27854.0, + "end": 27856.93, + "probability": 0.9941 + }, + { + "start": 27858.36, + "end": 27863.22, + "probability": 0.7453 + }, + { + "start": 27863.52, + "end": 27864.9, + "probability": 0.5009 + }, + { + "start": 27865.64, + "end": 27871.18, + "probability": 0.8856 + }, + { + "start": 27871.6, + "end": 27872.98, + "probability": 0.7953 + }, + { + "start": 27873.6, + "end": 27878.2, + "probability": 0.9941 + }, + { + "start": 27878.68, + "end": 27880.44, + "probability": 0.9836 + }, + { + "start": 27881.96, + "end": 27882.42, + "probability": 0.4245 + }, + { + "start": 27883.12, + "end": 27885.2, + "probability": 0.6578 + }, + { + "start": 27885.78, + "end": 27887.26, + "probability": 0.915 + }, + { + "start": 27889.04, + "end": 27890.46, + "probability": 0.327 + }, + { + "start": 27890.46, + "end": 27893.46, + "probability": 0.6495 + }, + { + "start": 27893.66, + "end": 27896.56, + "probability": 0.9858 + }, + { + "start": 27897.18, + "end": 27900.84, + "probability": 0.9694 + }, + { + "start": 27900.96, + "end": 27901.72, + "probability": 0.9663 + }, + { + "start": 27901.92, + "end": 27903.25, + "probability": 0.9404 + }, + { + "start": 27903.76, + "end": 27904.06, + "probability": 0.441 + }, + { + "start": 27904.28, + "end": 27906.8, + "probability": 0.9243 + }, + { + "start": 27906.8, + "end": 27910.84, + "probability": 0.987 + }, + { + "start": 27910.88, + "end": 27911.96, + "probability": 0.8112 + }, + { + "start": 27912.5, + "end": 27916.06, + "probability": 0.9871 + }, + { + "start": 27916.9, + "end": 27918.14, + "probability": 0.6891 + }, + { + "start": 27918.78, + "end": 27921.68, + "probability": 0.8487 + }, + { + "start": 27922.6, + "end": 27924.1, + "probability": 0.6821 + }, + { + "start": 27925.5, + "end": 27928.64, + "probability": 0.96 + }, + { + "start": 27929.38, + "end": 27934.14, + "probability": 0.8548 + }, + { + "start": 27934.82, + "end": 27935.54, + "probability": 0.6509 + }, + { + "start": 27936.2, + "end": 27936.62, + "probability": 0.9736 + }, + { + "start": 27936.88, + "end": 27944.36, + "probability": 0.9883 + }, + { + "start": 27945.06, + "end": 27946.12, + "probability": 0.8216 + }, + { + "start": 27946.54, + "end": 27949.26, + "probability": 0.7709 + }, + { + "start": 27949.36, + "end": 27950.1, + "probability": 0.6886 + }, + { + "start": 27950.24, + "end": 27952.16, + "probability": 0.888 + }, + { + "start": 27953.0, + "end": 27953.94, + "probability": 0.8364 + }, + { + "start": 27954.72, + "end": 27955.56, + "probability": 0.5107 + }, + { + "start": 27956.06, + "end": 27957.32, + "probability": 0.6772 + }, + { + "start": 27957.44, + "end": 27958.28, + "probability": 0.4647 + }, + { + "start": 27958.52, + "end": 27959.62, + "probability": 0.7614 + }, + { + "start": 27960.4, + "end": 27962.22, + "probability": 0.9953 + }, + { + "start": 27962.46, + "end": 27962.46, + "probability": 0.9248 + }, + { + "start": 27963.22, + "end": 27965.42, + "probability": 0.8213 + }, + { + "start": 27966.58, + "end": 27968.04, + "probability": 0.7617 + }, + { + "start": 27968.66, + "end": 27969.25, + "probability": 0.8876 + }, + { + "start": 27969.38, + "end": 27972.74, + "probability": 0.9038 + }, + { + "start": 27972.88, + "end": 27973.42, + "probability": 0.9359 + }, + { + "start": 27973.84, + "end": 27974.7, + "probability": 0.8393 + }, + { + "start": 27974.8, + "end": 27975.34, + "probability": 0.9598 + }, + { + "start": 27976.4, + "end": 27980.54, + "probability": 0.9614 + }, + { + "start": 27981.34, + "end": 27981.76, + "probability": 0.9137 + }, + { + "start": 27982.22, + "end": 27983.12, + "probability": 0.9437 + }, + { + "start": 27983.7, + "end": 27988.76, + "probability": 0.9448 + }, + { + "start": 27990.24, + "end": 27993.42, + "probability": 0.9658 + }, + { + "start": 27994.16, + "end": 27995.96, + "probability": 0.9409 + }, + { + "start": 27996.58, + "end": 27997.1, + "probability": 0.8312 + }, + { + "start": 27997.88, + "end": 27998.78, + "probability": 0.9021 + }, + { + "start": 27999.66, + "end": 28000.3, + "probability": 0.6126 + }, + { + "start": 28000.4, + "end": 28001.66, + "probability": 0.7229 + }, + { + "start": 28001.76, + "end": 28002.36, + "probability": 0.8195 + }, + { + "start": 28002.54, + "end": 28003.3, + "probability": 0.5098 + }, + { + "start": 28003.94, + "end": 28005.08, + "probability": 0.9009 + }, + { + "start": 28005.68, + "end": 28008.64, + "probability": 0.6579 + }, + { + "start": 28008.96, + "end": 28009.82, + "probability": 0.4558 + }, + { + "start": 28010.18, + "end": 28011.6, + "probability": 0.9992 + }, + { + "start": 28012.3, + "end": 28016.18, + "probability": 0.8783 + }, + { + "start": 28017.06, + "end": 28018.34, + "probability": 0.9956 + }, + { + "start": 28019.42, + "end": 28021.8, + "probability": 0.9595 + }, + { + "start": 28022.32, + "end": 28023.8, + "probability": 0.9968 + }, + { + "start": 28023.82, + "end": 28024.2, + "probability": 0.9769 + }, + { + "start": 28025.19, + "end": 28027.14, + "probability": 0.5828 + }, + { + "start": 28027.14, + "end": 28029.08, + "probability": 0.6255 + }, + { + "start": 28029.42, + "end": 28030.26, + "probability": 0.7974 + }, + { + "start": 28030.62, + "end": 28031.4, + "probability": 0.9303 + }, + { + "start": 28031.76, + "end": 28032.12, + "probability": 0.9517 + }, + { + "start": 28032.8, + "end": 28035.0, + "probability": 0.9814 + }, + { + "start": 28035.18, + "end": 28036.56, + "probability": 0.7688 + }, + { + "start": 28037.14, + "end": 28039.16, + "probability": 0.9392 + }, + { + "start": 28039.76, + "end": 28043.78, + "probability": 0.9586 + }, + { + "start": 28043.8, + "end": 28047.28, + "probability": 0.9683 + }, + { + "start": 28047.72, + "end": 28049.74, + "probability": 0.8655 + }, + { + "start": 28050.08, + "end": 28051.32, + "probability": 0.7811 + }, + { + "start": 28051.76, + "end": 28053.26, + "probability": 0.9863 + }, + { + "start": 28053.52, + "end": 28053.92, + "probability": 0.4392 + }, + { + "start": 28054.18, + "end": 28054.44, + "probability": 0.7677 + }, + { + "start": 28055.02, + "end": 28055.92, + "probability": 0.6784 + }, + { + "start": 28056.48, + "end": 28058.42, + "probability": 0.9479 + }, + { + "start": 28079.08, + "end": 28081.04, + "probability": 0.9946 + }, + { + "start": 28081.62, + "end": 28084.68, + "probability": 0.9957 + }, + { + "start": 28085.92, + "end": 28086.98, + "probability": 0.9941 + }, + { + "start": 28088.24, + "end": 28090.86, + "probability": 0.9666 + }, + { + "start": 28092.04, + "end": 28094.62, + "probability": 0.9531 + }, + { + "start": 28094.74, + "end": 28099.48, + "probability": 0.9659 + }, + { + "start": 28100.26, + "end": 28103.16, + "probability": 0.9207 + }, + { + "start": 28103.22, + "end": 28106.2, + "probability": 0.9834 + }, + { + "start": 28106.74, + "end": 28110.3, + "probability": 0.9962 + }, + { + "start": 28110.55, + "end": 28114.69, + "probability": 0.9849 + }, + { + "start": 28115.56, + "end": 28117.62, + "probability": 0.8784 + }, + { + "start": 28117.72, + "end": 28118.58, + "probability": 0.7651 + }, + { + "start": 28118.6, + "end": 28122.32, + "probability": 0.9584 + }, + { + "start": 28123.76, + "end": 28124.58, + "probability": 0.9558 + }, + { + "start": 28124.72, + "end": 28128.44, + "probability": 0.9987 + }, + { + "start": 28128.44, + "end": 28132.74, + "probability": 0.9967 + }, + { + "start": 28132.82, + "end": 28136.5, + "probability": 0.8037 + }, + { + "start": 28136.56, + "end": 28137.78, + "probability": 0.9531 + }, + { + "start": 28138.52, + "end": 28140.34, + "probability": 0.8264 + }, + { + "start": 28140.84, + "end": 28143.42, + "probability": 0.9638 + }, + { + "start": 28144.14, + "end": 28147.24, + "probability": 0.9984 + }, + { + "start": 28147.24, + "end": 28151.56, + "probability": 0.9992 + }, + { + "start": 28152.16, + "end": 28153.96, + "probability": 0.9081 + }, + { + "start": 28154.52, + "end": 28154.78, + "probability": 0.7575 + }, + { + "start": 28155.1, + "end": 28160.58, + "probability": 0.9399 + }, + { + "start": 28161.18, + "end": 28163.38, + "probability": 0.9885 + }, + { + "start": 28164.2, + "end": 28169.88, + "probability": 0.9936 + }, + { + "start": 28170.32, + "end": 28174.44, + "probability": 0.9943 + }, + { + "start": 28174.82, + "end": 28178.82, + "probability": 0.9561 + }, + { + "start": 28179.62, + "end": 28182.66, + "probability": 0.8039 + }, + { + "start": 28183.24, + "end": 28185.74, + "probability": 0.8767 + }, + { + "start": 28185.78, + "end": 28186.82, + "probability": 0.8772 + }, + { + "start": 28187.44, + "end": 28192.04, + "probability": 0.9831 + }, + { + "start": 28192.74, + "end": 28196.5, + "probability": 0.953 + }, + { + "start": 28196.68, + "end": 28198.48, + "probability": 0.7213 + }, + { + "start": 28199.02, + "end": 28200.58, + "probability": 0.8335 + }, + { + "start": 28201.88, + "end": 28202.56, + "probability": 0.9413 + }, + { + "start": 28204.14, + "end": 28205.0, + "probability": 0.7314 + }, + { + "start": 28205.18, + "end": 28209.62, + "probability": 0.851 + }, + { + "start": 28209.76, + "end": 28212.1, + "probability": 0.9557 + }, + { + "start": 28212.5, + "end": 28216.23, + "probability": 0.9396 + }, + { + "start": 28216.48, + "end": 28217.48, + "probability": 0.84 + }, + { + "start": 28218.28, + "end": 28219.88, + "probability": 0.8669 + }, + { + "start": 28220.74, + "end": 28222.02, + "probability": 0.8097 + }, + { + "start": 28222.28, + "end": 28223.0, + "probability": 0.9673 + }, + { + "start": 28223.74, + "end": 28224.28, + "probability": 0.4568 + }, + { + "start": 28224.3, + "end": 28225.62, + "probability": 0.8073 + }, + { + "start": 28225.76, + "end": 28226.94, + "probability": 0.7635 + }, + { + "start": 28227.16, + "end": 28228.32, + "probability": 0.9395 + }, + { + "start": 28229.04, + "end": 28231.26, + "probability": 0.9839 + }, + { + "start": 28231.82, + "end": 28234.34, + "probability": 0.9892 + }, + { + "start": 28235.76, + "end": 28236.06, + "probability": 0.9553 + }, + { + "start": 28236.58, + "end": 28240.16, + "probability": 0.9994 + }, + { + "start": 28240.76, + "end": 28243.84, + "probability": 0.8838 + }, + { + "start": 28244.08, + "end": 28244.94, + "probability": 0.7647 + }, + { + "start": 28245.42, + "end": 28246.2, + "probability": 0.8044 + }, + { + "start": 28247.9, + "end": 28255.68, + "probability": 0.9935 + }, + { + "start": 28256.46, + "end": 28257.1, + "probability": 0.8806 + }, + { + "start": 28257.36, + "end": 28260.32, + "probability": 0.9925 + }, + { + "start": 28260.9, + "end": 28262.84, + "probability": 0.9987 + }, + { + "start": 28263.56, + "end": 28264.58, + "probability": 0.938 + }, + { + "start": 28265.12, + "end": 28266.74, + "probability": 0.9875 + }, + { + "start": 28267.28, + "end": 28269.94, + "probability": 0.998 + }, + { + "start": 28270.16, + "end": 28270.74, + "probability": 0.9801 + }, + { + "start": 28270.84, + "end": 28271.3, + "probability": 0.5575 + }, + { + "start": 28271.94, + "end": 28274.4, + "probability": 0.9935 + }, + { + "start": 28274.52, + "end": 28277.94, + "probability": 0.9976 + }, + { + "start": 28278.48, + "end": 28280.06, + "probability": 0.7936 + }, + { + "start": 28280.62, + "end": 28281.14, + "probability": 0.8094 + }, + { + "start": 28281.6, + "end": 28283.36, + "probability": 0.9788 + }, + { + "start": 28283.84, + "end": 28286.16, + "probability": 0.9928 + }, + { + "start": 28286.5, + "end": 28286.76, + "probability": 0.6823 + }, + { + "start": 28287.42, + "end": 28288.22, + "probability": 0.8088 + }, + { + "start": 28290.16, + "end": 28292.16, + "probability": 0.9591 + }, + { + "start": 28304.4, + "end": 28304.72, + "probability": 0.697 + }, + { + "start": 28304.72, + "end": 28304.98, + "probability": 0.5758 + }, + { + "start": 28309.22, + "end": 28309.62, + "probability": 0.6673 + }, + { + "start": 28310.76, + "end": 28313.44, + "probability": 0.6569 + }, + { + "start": 28313.96, + "end": 28315.12, + "probability": 0.5778 + }, + { + "start": 28315.4, + "end": 28316.14, + "probability": 0.6527 + }, + { + "start": 28317.7, + "end": 28321.8, + "probability": 0.7982 + }, + { + "start": 28323.23, + "end": 28326.46, + "probability": 0.9936 + }, + { + "start": 28326.68, + "end": 28327.52, + "probability": 0.7779 + }, + { + "start": 28327.68, + "end": 28330.14, + "probability": 0.9854 + }, + { + "start": 28331.5, + "end": 28332.18, + "probability": 0.7614 + }, + { + "start": 28332.28, + "end": 28332.76, + "probability": 0.8477 + }, + { + "start": 28332.94, + "end": 28337.5, + "probability": 0.9504 + }, + { + "start": 28337.6, + "end": 28341.12, + "probability": 0.9948 + }, + { + "start": 28341.64, + "end": 28344.9, + "probability": 0.9867 + }, + { + "start": 28345.86, + "end": 28346.64, + "probability": 0.8135 + }, + { + "start": 28347.54, + "end": 28348.98, + "probability": 0.9872 + }, + { + "start": 28350.2, + "end": 28352.34, + "probability": 0.9951 + }, + { + "start": 28352.38, + "end": 28354.52, + "probability": 0.9891 + }, + { + "start": 28356.24, + "end": 28359.06, + "probability": 0.998 + }, + { + "start": 28359.52, + "end": 28363.22, + "probability": 0.8848 + }, + { + "start": 28363.88, + "end": 28365.68, + "probability": 0.9832 + }, + { + "start": 28366.06, + "end": 28367.72, + "probability": 0.9852 + }, + { + "start": 28367.78, + "end": 28368.72, + "probability": 0.9194 + }, + { + "start": 28368.8, + "end": 28370.2, + "probability": 0.9719 + }, + { + "start": 28371.62, + "end": 28373.93, + "probability": 0.9771 + }, + { + "start": 28375.58, + "end": 28378.78, + "probability": 0.9971 + }, + { + "start": 28378.78, + "end": 28381.16, + "probability": 0.9992 + }, + { + "start": 28382.52, + "end": 28383.42, + "probability": 0.8757 + }, + { + "start": 28385.3, + "end": 28388.1, + "probability": 0.9765 + }, + { + "start": 28388.74, + "end": 28391.54, + "probability": 0.9928 + }, + { + "start": 28392.16, + "end": 28393.36, + "probability": 0.8689 + }, + { + "start": 28394.4, + "end": 28396.44, + "probability": 0.9721 + }, + { + "start": 28398.6, + "end": 28399.92, + "probability": 0.7014 + }, + { + "start": 28400.44, + "end": 28402.46, + "probability": 0.9886 + }, + { + "start": 28403.94, + "end": 28408.3, + "probability": 0.9854 + }, + { + "start": 28408.88, + "end": 28411.5, + "probability": 0.9851 + }, + { + "start": 28411.9, + "end": 28415.62, + "probability": 0.9915 + }, + { + "start": 28416.46, + "end": 28418.58, + "probability": 0.9968 + }, + { + "start": 28418.98, + "end": 28422.06, + "probability": 0.9978 + }, + { + "start": 28422.58, + "end": 28423.44, + "probability": 0.7934 + }, + { + "start": 28425.38, + "end": 28426.36, + "probability": 0.9769 + }, + { + "start": 28427.98, + "end": 28431.6, + "probability": 0.8982 + }, + { + "start": 28431.6, + "end": 28434.34, + "probability": 0.938 + }, + { + "start": 28435.52, + "end": 28437.84, + "probability": 0.9809 + }, + { + "start": 28438.18, + "end": 28438.72, + "probability": 0.9934 + }, + { + "start": 28440.04, + "end": 28441.9, + "probability": 0.9664 + }, + { + "start": 28442.5, + "end": 28445.84, + "probability": 0.9938 + }, + { + "start": 28446.56, + "end": 28449.74, + "probability": 0.9921 + }, + { + "start": 28450.26, + "end": 28454.14, + "probability": 0.9854 + }, + { + "start": 28455.14, + "end": 28455.58, + "probability": 0.8971 + }, + { + "start": 28457.44, + "end": 28459.28, + "probability": 0.881 + }, + { + "start": 28459.68, + "end": 28462.14, + "probability": 0.9939 + }, + { + "start": 28462.66, + "end": 28464.8, + "probability": 0.9949 + }, + { + "start": 28465.54, + "end": 28469.2, + "probability": 0.996 + }, + { + "start": 28470.16, + "end": 28472.68, + "probability": 0.7514 + }, + { + "start": 28473.08, + "end": 28473.34, + "probability": 0.7983 + }, + { + "start": 28474.6, + "end": 28475.5, + "probability": 0.7525 + }, + { + "start": 28476.42, + "end": 28478.36, + "probability": 0.7955 + }, + { + "start": 28479.02, + "end": 28480.02, + "probability": 0.3411 + }, + { + "start": 28480.88, + "end": 28485.42, + "probability": 0.6763 + }, + { + "start": 28497.4, + "end": 28497.4, + "probability": 0.171 + }, + { + "start": 28497.42, + "end": 28498.9, + "probability": 0.5364 + }, + { + "start": 28499.0, + "end": 28500.2, + "probability": 0.7603 + }, + { + "start": 28500.76, + "end": 28501.7, + "probability": 0.8035 + }, + { + "start": 28502.3, + "end": 28503.28, + "probability": 0.8881 + }, + { + "start": 28503.96, + "end": 28505.88, + "probability": 0.7731 + }, + { + "start": 28506.84, + "end": 28507.28, + "probability": 0.9483 + }, + { + "start": 28508.78, + "end": 28512.9, + "probability": 0.9685 + }, + { + "start": 28513.38, + "end": 28517.46, + "probability": 0.8359 + }, + { + "start": 28518.4, + "end": 28523.54, + "probability": 0.9518 + }, + { + "start": 28524.26, + "end": 28528.32, + "probability": 0.9515 + }, + { + "start": 28529.4, + "end": 28533.84, + "probability": 0.9007 + }, + { + "start": 28534.38, + "end": 28535.58, + "probability": 0.8482 + }, + { + "start": 28535.88, + "end": 28536.92, + "probability": 0.9289 + }, + { + "start": 28538.24, + "end": 28543.5, + "probability": 0.9028 + }, + { + "start": 28543.98, + "end": 28545.4, + "probability": 0.9833 + }, + { + "start": 28545.82, + "end": 28546.74, + "probability": 0.7414 + }, + { + "start": 28547.14, + "end": 28548.64, + "probability": 0.7543 + }, + { + "start": 28548.88, + "end": 28552.9, + "probability": 0.9801 + }, + { + "start": 28553.6, + "end": 28556.02, + "probability": 0.939 + }, + { + "start": 28556.56, + "end": 28559.86, + "probability": 0.9606 + }, + { + "start": 28560.8, + "end": 28564.56, + "probability": 0.998 + }, + { + "start": 28564.56, + "end": 28570.5, + "probability": 0.9978 + }, + { + "start": 28571.04, + "end": 28575.06, + "probability": 0.9834 + }, + { + "start": 28576.28, + "end": 28579.16, + "probability": 0.6842 + }, + { + "start": 28580.12, + "end": 28584.9, + "probability": 0.9678 + }, + { + "start": 28586.4, + "end": 28590.2, + "probability": 0.9864 + }, + { + "start": 28590.84, + "end": 28593.4, + "probability": 0.9666 + }, + { + "start": 28595.04, + "end": 28598.78, + "probability": 0.9978 + }, + { + "start": 28599.16, + "end": 28602.16, + "probability": 0.9867 + }, + { + "start": 28603.34, + "end": 28609.5, + "probability": 0.9576 + }, + { + "start": 28610.1, + "end": 28612.96, + "probability": 0.8282 + }, + { + "start": 28613.48, + "end": 28616.46, + "probability": 0.9934 + }, + { + "start": 28617.14, + "end": 28624.34, + "probability": 0.9904 + }, + { + "start": 28624.34, + "end": 28631.4, + "probability": 0.9919 + }, + { + "start": 28632.06, + "end": 28634.28, + "probability": 0.9917 + }, + { + "start": 28634.86, + "end": 28639.56, + "probability": 0.9226 + }, + { + "start": 28640.32, + "end": 28643.44, + "probability": 0.9811 + }, + { + "start": 28644.22, + "end": 28648.9, + "probability": 0.9377 + }, + { + "start": 28649.3, + "end": 28650.42, + "probability": 0.9118 + }, + { + "start": 28653.13, + "end": 28657.72, + "probability": 0.9815 + }, + { + "start": 28658.58, + "end": 28659.74, + "probability": 0.4856 + }, + { + "start": 28659.96, + "end": 28664.64, + "probability": 0.9569 + }, + { + "start": 28667.68, + "end": 28672.3, + "probability": 0.9912 + }, + { + "start": 28672.72, + "end": 28674.32, + "probability": 0.9976 + }, + { + "start": 28674.86, + "end": 28676.34, + "probability": 0.9961 + }, + { + "start": 28676.78, + "end": 28677.12, + "probability": 0.4186 + }, + { + "start": 28677.2, + "end": 28680.64, + "probability": 0.8956 + }, + { + "start": 28680.7, + "end": 28682.56, + "probability": 0.6364 + }, + { + "start": 28682.74, + "end": 28682.74, + "probability": 0.0172 + }, + { + "start": 28682.74, + "end": 28683.96, + "probability": 0.2496 + }, + { + "start": 28684.4, + "end": 28688.92, + "probability": 0.894 + }, + { + "start": 28689.56, + "end": 28694.14, + "probability": 0.9846 + }, + { + "start": 28694.56, + "end": 28699.34, + "probability": 0.9993 + }, + { + "start": 28699.34, + "end": 28705.28, + "probability": 0.9881 + }, + { + "start": 28705.58, + "end": 28705.78, + "probability": 0.7201 + }, + { + "start": 28706.56, + "end": 28707.4, + "probability": 0.6605 + }, + { + "start": 28707.76, + "end": 28714.42, + "probability": 0.9992 + }, + { + "start": 28714.98, + "end": 28716.44, + "probability": 0.8882 + }, + { + "start": 28717.46, + "end": 28718.3, + "probability": 0.6434 + }, + { + "start": 28718.68, + "end": 28718.68, + "probability": 0.4738 + }, + { + "start": 28719.16, + "end": 28720.92, + "probability": 0.9865 + }, + { + "start": 28721.72, + "end": 28723.96, + "probability": 0.9877 + }, + { + "start": 28724.94, + "end": 28725.7, + "probability": 0.7411 + }, + { + "start": 28725.7, + "end": 28726.94, + "probability": 0.9944 + }, + { + "start": 28743.36, + "end": 28743.56, + "probability": 0.5257 + }, + { + "start": 28744.26, + "end": 28745.04, + "probability": 0.4291 + }, + { + "start": 28746.44, + "end": 28747.82, + "probability": 0.4999 + }, + { + "start": 28752.44, + "end": 28754.72, + "probability": 0.723 + }, + { + "start": 28756.2, + "end": 28761.48, + "probability": 0.8784 + }, + { + "start": 28762.08, + "end": 28762.32, + "probability": 0.8191 + }, + { + "start": 28763.18, + "end": 28764.74, + "probability": 0.9881 + }, + { + "start": 28764.74, + "end": 28766.66, + "probability": 0.5792 + }, + { + "start": 28766.68, + "end": 28771.2, + "probability": 0.9805 + }, + { + "start": 28771.46, + "end": 28771.92, + "probability": 0.8163 + }, + { + "start": 28773.26, + "end": 28775.18, + "probability": 0.9805 + }, + { + "start": 28777.16, + "end": 28780.28, + "probability": 0.9267 + }, + { + "start": 28781.0, + "end": 28786.98, + "probability": 0.9134 + }, + { + "start": 28787.88, + "end": 28788.82, + "probability": 0.8369 + }, + { + "start": 28789.02, + "end": 28790.98, + "probability": 0.8674 + }, + { + "start": 28792.36, + "end": 28794.38, + "probability": 0.9814 + }, + { + "start": 28795.22, + "end": 28797.94, + "probability": 0.9313 + }, + { + "start": 28799.26, + "end": 28802.7, + "probability": 0.98 + }, + { + "start": 28802.74, + "end": 28805.86, + "probability": 0.9795 + }, + { + "start": 28805.98, + "end": 28806.22, + "probability": 0.6031 + }, + { + "start": 28806.26, + "end": 28807.24, + "probability": 0.6941 + }, + { + "start": 28807.92, + "end": 28808.94, + "probability": 0.9587 + }, + { + "start": 28809.86, + "end": 28811.24, + "probability": 0.6624 + }, + { + "start": 28811.58, + "end": 28813.0, + "probability": 0.9683 + }, + { + "start": 28813.9, + "end": 28819.46, + "probability": 0.9948 + }, + { + "start": 28819.58, + "end": 28820.86, + "probability": 0.9987 + }, + { + "start": 28821.9, + "end": 28823.83, + "probability": 0.9966 + }, + { + "start": 28824.64, + "end": 28826.54, + "probability": 0.748 + }, + { + "start": 28826.81, + "end": 28829.14, + "probability": 0.8331 + }, + { + "start": 28829.28, + "end": 28830.28, + "probability": 0.9257 + }, + { + "start": 28831.18, + "end": 28833.04, + "probability": 0.9951 + }, + { + "start": 28833.2, + "end": 28833.98, + "probability": 0.9928 + }, + { + "start": 28835.9, + "end": 28838.28, + "probability": 0.9585 + }, + { + "start": 28838.48, + "end": 28840.04, + "probability": 0.9812 + }, + { + "start": 28840.46, + "end": 28841.92, + "probability": 0.8429 + }, + { + "start": 28842.22, + "end": 28844.26, + "probability": 0.7812 + }, + { + "start": 28844.32, + "end": 28845.04, + "probability": 0.8369 + }, + { + "start": 28845.68, + "end": 28846.14, + "probability": 0.9817 + }, + { + "start": 28847.52, + "end": 28848.46, + "probability": 0.8955 + }, + { + "start": 28848.6, + "end": 28850.78, + "probability": 0.8938 + }, + { + "start": 28851.44, + "end": 28851.54, + "probability": 0.0311 + }, + { + "start": 28851.54, + "end": 28853.71, + "probability": 0.7695 + }, + { + "start": 28854.34, + "end": 28854.44, + "probability": 0.2149 + }, + { + "start": 28854.76, + "end": 28855.54, + "probability": 0.0892 + }, + { + "start": 28855.6, + "end": 28855.6, + "probability": 0.3122 + }, + { + "start": 28855.7, + "end": 28857.64, + "probability": 0.7562 + }, + { + "start": 28857.64, + "end": 28858.74, + "probability": 0.8888 + }, + { + "start": 28858.92, + "end": 28860.68, + "probability": 0.9761 + }, + { + "start": 28860.8, + "end": 28862.02, + "probability": 0.9541 + }, + { + "start": 28864.1, + "end": 28866.52, + "probability": 0.9978 + }, + { + "start": 28867.98, + "end": 28869.48, + "probability": 0.9951 + }, + { + "start": 28869.66, + "end": 28873.4, + "probability": 0.9984 + }, + { + "start": 28873.6, + "end": 28877.06, + "probability": 0.9965 + }, + { + "start": 28877.32, + "end": 28879.2, + "probability": 0.9991 + }, + { + "start": 28880.28, + "end": 28884.84, + "probability": 0.9922 + }, + { + "start": 28885.54, + "end": 28887.58, + "probability": 0.9124 + }, + { + "start": 28888.58, + "end": 28890.24, + "probability": 0.95 + }, + { + "start": 28890.32, + "end": 28892.82, + "probability": 0.9194 + }, + { + "start": 28893.28, + "end": 28894.72, + "probability": 0.9995 + }, + { + "start": 28895.2, + "end": 28896.38, + "probability": 0.8636 + }, + { + "start": 28897.3, + "end": 28898.12, + "probability": 0.9058 + }, + { + "start": 28899.52, + "end": 28903.58, + "probability": 0.9919 + }, + { + "start": 28903.92, + "end": 28904.14, + "probability": 0.7465 + }, + { + "start": 28904.82, + "end": 28908.74, + "probability": 0.9849 + }, + { + "start": 28909.12, + "end": 28911.16, + "probability": 0.933 + }, + { + "start": 28911.32, + "end": 28912.31, + "probability": 0.9992 + }, + { + "start": 28912.9, + "end": 28915.43, + "probability": 0.9952 + }, + { + "start": 28915.66, + "end": 28920.42, + "probability": 0.978 + }, + { + "start": 28920.52, + "end": 28922.7, + "probability": 0.9508 + }, + { + "start": 28923.68, + "end": 28926.18, + "probability": 0.9949 + }, + { + "start": 28926.26, + "end": 28928.24, + "probability": 0.9512 + }, + { + "start": 28928.36, + "end": 28931.16, + "probability": 0.9989 + }, + { + "start": 28931.56, + "end": 28931.6, + "probability": 0.0852 + }, + { + "start": 28931.64, + "end": 28933.34, + "probability": 0.9919 + }, + { + "start": 28933.54, + "end": 28937.53, + "probability": 0.9945 + }, + { + "start": 28937.64, + "end": 28938.08, + "probability": 0.405 + }, + { + "start": 28938.34, + "end": 28940.08, + "probability": 0.9441 + }, + { + "start": 28940.56, + "end": 28943.48, + "probability": 0.9847 + }, + { + "start": 28943.58, + "end": 28943.88, + "probability": 0.8076 + }, + { + "start": 28944.44, + "end": 28945.34, + "probability": 0.4919 + }, + { + "start": 28945.56, + "end": 28949.12, + "probability": 0.7827 + }, + { + "start": 28949.24, + "end": 28950.2, + "probability": 0.952 + }, + { + "start": 28950.4, + "end": 28952.0, + "probability": 0.9154 + }, + { + "start": 28952.34, + "end": 28952.34, + "probability": 0.1849 + }, + { + "start": 28952.54, + "end": 28953.48, + "probability": 0.9438 + }, + { + "start": 28954.48, + "end": 28955.04, + "probability": 0.8385 + }, + { + "start": 28955.4, + "end": 28957.78, + "probability": 0.9567 + }, + { + "start": 28958.46, + "end": 28962.48, + "probability": 0.9932 + }, + { + "start": 28962.66, + "end": 28965.62, + "probability": 0.9538 + }, + { + "start": 28966.32, + "end": 28968.22, + "probability": 0.9108 + }, + { + "start": 28968.68, + "end": 28969.2, + "probability": 0.6301 + }, + { + "start": 28969.78, + "end": 28970.44, + "probability": 0.1469 + }, + { + "start": 28970.54, + "end": 28972.02, + "probability": 0.9531 + }, + { + "start": 28972.86, + "end": 28973.38, + "probability": 0.73 + }, + { + "start": 28973.46, + "end": 28975.5, + "probability": 0.9285 + }, + { + "start": 28976.08, + "end": 28978.4, + "probability": 0.9958 + }, + { + "start": 28979.26, + "end": 28981.22, + "probability": 0.7279 + }, + { + "start": 28981.66, + "end": 28982.64, + "probability": 0.6885 + }, + { + "start": 28982.94, + "end": 28983.92, + "probability": 0.9331 + }, + { + "start": 28985.0, + "end": 28986.66, + "probability": 0.1649 + }, + { + "start": 28986.98, + "end": 28987.14, + "probability": 0.1591 + }, + { + "start": 28987.68, + "end": 28991.8, + "probability": 0.6329 + }, + { + "start": 28992.06, + "end": 28993.16, + "probability": 0.6268 + }, + { + "start": 28994.6, + "end": 28995.16, + "probability": 0.0333 + }, + { + "start": 28995.98, + "end": 28997.56, + "probability": 0.0156 + }, + { + "start": 28999.92, + "end": 29000.82, + "probability": 0.0621 + }, + { + "start": 29002.08, + "end": 29003.84, + "probability": 0.1676 + }, + { + "start": 29007.16, + "end": 29009.12, + "probability": 0.4941 + }, + { + "start": 29016.09, + "end": 29020.9, + "probability": 0.5381 + }, + { + "start": 29020.96, + "end": 29021.56, + "probability": 0.0007 + }, + { + "start": 29032.3, + "end": 29033.48, + "probability": 0.0458 + }, + { + "start": 29035.38, + "end": 29036.64, + "probability": 0.2628 + }, + { + "start": 29036.64, + "end": 29037.18, + "probability": 0.033 + }, + { + "start": 29038.02, + "end": 29041.06, + "probability": 0.1505 + }, + { + "start": 29041.06, + "end": 29042.1, + "probability": 0.0648 + }, + { + "start": 29043.68, + "end": 29044.42, + "probability": 0.2309 + }, + { + "start": 29044.42, + "end": 29048.14, + "probability": 0.1888 + }, + { + "start": 29048.14, + "end": 29048.44, + "probability": 0.0676 + }, + { + "start": 29048.44, + "end": 29048.98, + "probability": 0.0207 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.0, + "end": 29049.0, + "probability": 0.0 + }, + { + "start": 29049.4, + "end": 29049.44, + "probability": 0.0252 + }, + { + "start": 29049.44, + "end": 29049.44, + "probability": 0.0308 + }, + { + "start": 29049.44, + "end": 29052.4, + "probability": 0.5728 + }, + { + "start": 29052.68, + "end": 29057.0, + "probability": 0.9692 + }, + { + "start": 29057.22, + "end": 29057.88, + "probability": 0.6701 + }, + { + "start": 29058.6, + "end": 29060.76, + "probability": 0.9136 + }, + { + "start": 29060.92, + "end": 29061.92, + "probability": 0.0559 + }, + { + "start": 29061.92, + "end": 29063.56, + "probability": 0.8469 + }, + { + "start": 29064.1, + "end": 29066.32, + "probability": 0.946 + }, + { + "start": 29066.84, + "end": 29071.1, + "probability": 0.8762 + }, + { + "start": 29071.8, + "end": 29074.36, + "probability": 0.8351 + }, + { + "start": 29074.54, + "end": 29075.9, + "probability": 0.6827 + }, + { + "start": 29076.08, + "end": 29079.7, + "probability": 0.9915 + }, + { + "start": 29080.22, + "end": 29080.7, + "probability": 0.8416 + }, + { + "start": 29082.74, + "end": 29083.54, + "probability": 0.0888 + }, + { + "start": 29083.54, + "end": 29084.4, + "probability": 0.6197 + }, + { + "start": 29084.4, + "end": 29085.2, + "probability": 0.7537 + }, + { + "start": 29085.84, + "end": 29087.08, + "probability": 0.9906 + }, + { + "start": 29087.16, + "end": 29089.58, + "probability": 0.1116 + }, + { + "start": 29089.58, + "end": 29089.9, + "probability": 0.1044 + }, + { + "start": 29090.56, + "end": 29091.6, + "probability": 0.4761 + }, + { + "start": 29092.78, + "end": 29093.06, + "probability": 0.0103 + }, + { + "start": 29093.06, + "end": 29093.06, + "probability": 0.0309 + }, + { + "start": 29093.06, + "end": 29093.06, + "probability": 0.2456 + }, + { + "start": 29093.06, + "end": 29097.96, + "probability": 0.9741 + }, + { + "start": 29098.82, + "end": 29101.16, + "probability": 0.9954 + }, + { + "start": 29101.16, + "end": 29103.62, + "probability": 0.9991 + }, + { + "start": 29103.76, + "end": 29106.12, + "probability": 0.9926 + }, + { + "start": 29106.72, + "end": 29108.54, + "probability": 0.9937 + }, + { + "start": 29109.74, + "end": 29110.48, + "probability": 0.0794 + }, + { + "start": 29110.9, + "end": 29112.72, + "probability": 0.7446 + }, + { + "start": 29112.98, + "end": 29116.62, + "probability": 0.9258 + }, + { + "start": 29116.66, + "end": 29118.28, + "probability": 0.7887 + }, + { + "start": 29118.5, + "end": 29119.16, + "probability": 0.3887 + }, + { + "start": 29119.22, + "end": 29120.14, + "probability": 0.8251 + }, + { + "start": 29120.16, + "end": 29120.8, + "probability": 0.5815 + }, + { + "start": 29121.34, + "end": 29122.8, + "probability": 0.8706 + }, + { + "start": 29122.92, + "end": 29124.48, + "probability": 0.5646 + }, + { + "start": 29124.56, + "end": 29124.56, + "probability": 0.1113 + }, + { + "start": 29124.56, + "end": 29125.24, + "probability": 0.0725 + }, + { + "start": 29128.36, + "end": 29128.7, + "probability": 0.0233 + }, + { + "start": 29128.88, + "end": 29128.88, + "probability": 0.0464 + }, + { + "start": 29128.88, + "end": 29132.38, + "probability": 0.9564 + }, + { + "start": 29133.02, + "end": 29134.98, + "probability": 0.801 + }, + { + "start": 29135.9, + "end": 29136.88, + "probability": 0.685 + }, + { + "start": 29136.96, + "end": 29139.58, + "probability": 0.9819 + }, + { + "start": 29139.86, + "end": 29141.38, + "probability": 0.915 + }, + { + "start": 29141.86, + "end": 29142.5, + "probability": 0.8098 + }, + { + "start": 29142.56, + "end": 29143.1, + "probability": 0.6853 + }, + { + "start": 29143.18, + "end": 29144.3, + "probability": 0.9694 + }, + { + "start": 29145.1, + "end": 29146.86, + "probability": 0.8148 + }, + { + "start": 29147.62, + "end": 29151.24, + "probability": 0.8875 + }, + { + "start": 29151.94, + "end": 29153.48, + "probability": 0.9933 + }, + { + "start": 29153.72, + "end": 29154.97, + "probability": 0.9438 + }, + { + "start": 29155.86, + "end": 29157.54, + "probability": 0.875 + }, + { + "start": 29158.7, + "end": 29159.86, + "probability": 0.9893 + }, + { + "start": 29161.16, + "end": 29162.82, + "probability": 0.7882 + }, + { + "start": 29163.52, + "end": 29164.52, + "probability": 0.6436 + }, + { + "start": 29165.62, + "end": 29168.38, + "probability": 0.9955 + }, + { + "start": 29168.76, + "end": 29169.72, + "probability": 0.9131 + }, + { + "start": 29170.5, + "end": 29175.4, + "probability": 0.9755 + }, + { + "start": 29175.72, + "end": 29178.1, + "probability": 0.5276 + }, + { + "start": 29178.26, + "end": 29178.96, + "probability": 0.7996 + }, + { + "start": 29179.4, + "end": 29180.84, + "probability": 0.9839 + }, + { + "start": 29181.6, + "end": 29185.4, + "probability": 0.9549 + }, + { + "start": 29186.28, + "end": 29186.28, + "probability": 0.629 + }, + { + "start": 29186.46, + "end": 29189.63, + "probability": 0.835 + }, + { + "start": 29190.5, + "end": 29193.28, + "probability": 0.9438 + }, + { + "start": 29194.0, + "end": 29195.34, + "probability": 0.9032 + }, + { + "start": 29196.22, + "end": 29198.52, + "probability": 0.9506 + }, + { + "start": 29199.54, + "end": 29203.58, + "probability": 0.8796 + }, + { + "start": 29203.62, + "end": 29203.62, + "probability": 0.1941 + }, + { + "start": 29203.62, + "end": 29204.64, + "probability": 0.5146 + }, + { + "start": 29205.24, + "end": 29206.86, + "probability": 0.8489 + }, + { + "start": 29207.92, + "end": 29211.52, + "probability": 0.9722 + }, + { + "start": 29211.58, + "end": 29212.24, + "probability": 0.7654 + }, + { + "start": 29212.74, + "end": 29214.04, + "probability": 0.9591 + }, + { + "start": 29214.64, + "end": 29216.2, + "probability": 0.9894 + }, + { + "start": 29216.82, + "end": 29217.66, + "probability": 0.7688 + }, + { + "start": 29218.02, + "end": 29219.42, + "probability": 0.984 + }, + { + "start": 29219.94, + "end": 29222.34, + "probability": 0.9709 + }, + { + "start": 29223.1, + "end": 29225.38, + "probability": 0.9883 + }, + { + "start": 29226.02, + "end": 29228.28, + "probability": 0.9962 + }, + { + "start": 29228.44, + "end": 29231.5, + "probability": 0.9481 + }, + { + "start": 29232.18, + "end": 29233.64, + "probability": 0.9966 + }, + { + "start": 29234.26, + "end": 29236.76, + "probability": 0.9321 + }, + { + "start": 29237.2, + "end": 29238.2, + "probability": 0.977 + }, + { + "start": 29238.42, + "end": 29240.66, + "probability": 0.9971 + }, + { + "start": 29241.2, + "end": 29242.8, + "probability": 0.9602 + }, + { + "start": 29243.04, + "end": 29245.22, + "probability": 0.9782 + }, + { + "start": 29246.24, + "end": 29247.1, + "probability": 0.6963 + }, + { + "start": 29247.5, + "end": 29247.5, + "probability": 0.5871 + }, + { + "start": 29247.9, + "end": 29249.2, + "probability": 0.9557 + }, + { + "start": 29270.14, + "end": 29271.44, + "probability": 0.7118 + }, + { + "start": 29272.28, + "end": 29274.27, + "probability": 0.6816 + }, + { + "start": 29274.92, + "end": 29276.8, + "probability": 0.8359 + }, + { + "start": 29277.1, + "end": 29279.6, + "probability": 0.9718 + }, + { + "start": 29279.72, + "end": 29282.12, + "probability": 0.9628 + }, + { + "start": 29286.82, + "end": 29288.98, + "probability": 0.8902 + }, + { + "start": 29290.04, + "end": 29296.54, + "probability": 0.9958 + }, + { + "start": 29296.62, + "end": 29297.38, + "probability": 0.8691 + }, + { + "start": 29298.06, + "end": 29302.2, + "probability": 0.9442 + }, + { + "start": 29302.88, + "end": 29303.72, + "probability": 0.8582 + }, + { + "start": 29304.44, + "end": 29305.0, + "probability": 0.8953 + }, + { + "start": 29306.97, + "end": 29312.32, + "probability": 0.9469 + }, + { + "start": 29312.32, + "end": 29317.0, + "probability": 0.8457 + }, + { + "start": 29317.12, + "end": 29317.66, + "probability": 0.7364 + }, + { + "start": 29318.88, + "end": 29321.18, + "probability": 0.9563 + }, + { + "start": 29321.5, + "end": 29322.54, + "probability": 0.9884 + }, + { + "start": 29323.26, + "end": 29324.82, + "probability": 0.9907 + }, + { + "start": 29325.82, + "end": 29329.8, + "probability": 0.9978 + }, + { + "start": 29331.08, + "end": 29332.38, + "probability": 0.8079 + }, + { + "start": 29332.76, + "end": 29333.86, + "probability": 0.926 + }, + { + "start": 29334.14, + "end": 29334.96, + "probability": 0.7868 + }, + { + "start": 29335.42, + "end": 29336.58, + "probability": 0.8215 + }, + { + "start": 29337.54, + "end": 29341.3, + "probability": 0.9702 + }, + { + "start": 29342.04, + "end": 29343.6, + "probability": 0.9824 + }, + { + "start": 29343.74, + "end": 29345.62, + "probability": 0.6853 + }, + { + "start": 29345.8, + "end": 29347.73, + "probability": 0.8258 + }, + { + "start": 29348.34, + "end": 29350.4, + "probability": 0.9739 + }, + { + "start": 29350.5, + "end": 29353.1, + "probability": 0.9519 + }, + { + "start": 29354.34, + "end": 29354.76, + "probability": 0.4199 + }, + { + "start": 29355.18, + "end": 29357.73, + "probability": 0.967 + }, + { + "start": 29358.38, + "end": 29362.48, + "probability": 0.8472 + }, + { + "start": 29362.48, + "end": 29366.76, + "probability": 0.988 + }, + { + "start": 29367.0, + "end": 29370.42, + "probability": 0.9847 + }, + { + "start": 29371.78, + "end": 29375.28, + "probability": 0.9946 + }, + { + "start": 29375.72, + "end": 29379.92, + "probability": 0.9906 + }, + { + "start": 29380.22, + "end": 29381.72, + "probability": 0.7715 + }, + { + "start": 29381.98, + "end": 29383.24, + "probability": 0.5896 + }, + { + "start": 29383.36, + "end": 29383.78, + "probability": 0.9146 + }, + { + "start": 29384.0, + "end": 29385.62, + "probability": 0.6523 + }, + { + "start": 29386.06, + "end": 29389.23, + "probability": 0.8115 + }, + { + "start": 29391.66, + "end": 29392.68, + "probability": 0.9946 + }, + { + "start": 29393.32, + "end": 29398.52, + "probability": 0.9907 + }, + { + "start": 29399.2, + "end": 29400.46, + "probability": 0.9412 + }, + { + "start": 29401.5, + "end": 29403.36, + "probability": 0.9929 + }, + { + "start": 29403.74, + "end": 29405.5, + "probability": 0.9739 + }, + { + "start": 29406.2, + "end": 29408.24, + "probability": 0.7411 + }, + { + "start": 29408.58, + "end": 29411.4, + "probability": 0.981 + }, + { + "start": 29412.44, + "end": 29414.22, + "probability": 0.732 + }, + { + "start": 29415.4, + "end": 29418.1, + "probability": 0.9597 + }, + { + "start": 29418.42, + "end": 29420.57, + "probability": 0.9961 + }, + { + "start": 29420.88, + "end": 29422.16, + "probability": 0.9932 + }, + { + "start": 29422.72, + "end": 29426.04, + "probability": 0.9932 + }, + { + "start": 29426.44, + "end": 29428.44, + "probability": 0.9472 + }, + { + "start": 29428.86, + "end": 29430.94, + "probability": 0.7543 + }, + { + "start": 29431.98, + "end": 29432.46, + "probability": 0.6409 + }, + { + "start": 29432.76, + "end": 29434.96, + "probability": 0.4764 + }, + { + "start": 29435.22, + "end": 29437.96, + "probability": 0.959 + }, + { + "start": 29438.5, + "end": 29442.92, + "probability": 0.9972 + }, + { + "start": 29444.38, + "end": 29445.46, + "probability": 0.9232 + }, + { + "start": 29446.34, + "end": 29451.79, + "probability": 0.998 + }, + { + "start": 29452.82, + "end": 29453.32, + "probability": 0.2835 + }, + { + "start": 29453.98, + "end": 29454.18, + "probability": 0.4088 + }, + { + "start": 29454.24, + "end": 29456.87, + "probability": 0.9609 + }, + { + "start": 29457.3, + "end": 29460.12, + "probability": 0.9282 + }, + { + "start": 29461.1, + "end": 29466.48, + "probability": 0.9898 + }, + { + "start": 29466.64, + "end": 29468.56, + "probability": 0.938 + }, + { + "start": 29468.86, + "end": 29474.62, + "probability": 0.9178 + }, + { + "start": 29475.12, + "end": 29476.05, + "probability": 0.8394 + }, + { + "start": 29476.5, + "end": 29478.42, + "probability": 0.9631 + }, + { + "start": 29478.62, + "end": 29480.54, + "probability": 0.9901 + }, + { + "start": 29481.36, + "end": 29482.12, + "probability": 0.5775 + }, + { + "start": 29482.22, + "end": 29483.02, + "probability": 0.7534 + }, + { + "start": 29483.84, + "end": 29485.46, + "probability": 0.9211 + }, + { + "start": 29486.46, + "end": 29489.18, + "probability": 0.7651 + }, + { + "start": 29490.28, + "end": 29492.8, + "probability": 0.9147 + }, + { + "start": 29493.88, + "end": 29494.66, + "probability": 0.7421 + }, + { + "start": 29495.48, + "end": 29496.52, + "probability": 0.9255 + }, + { + "start": 29499.1, + "end": 29499.14, + "probability": 0.0 + }, + { + "start": 29523.38, + "end": 29523.56, + "probability": 0.0638 + }, + { + "start": 29523.56, + "end": 29523.56, + "probability": 0.0664 + }, + { + "start": 29523.56, + "end": 29523.56, + "probability": 0.1677 + }, + { + "start": 29523.56, + "end": 29523.56, + "probability": 0.2214 + }, + { + "start": 29523.56, + "end": 29525.06, + "probability": 0.1498 + }, + { + "start": 29526.22, + "end": 29526.4, + "probability": 0.6335 + }, + { + "start": 29529.64, + "end": 29529.74, + "probability": 0.3059 + }, + { + "start": 29529.74, + "end": 29530.8, + "probability": 0.4804 + }, + { + "start": 29531.34, + "end": 29533.98, + "probability": 0.7217 + }, + { + "start": 29534.56, + "end": 29536.18, + "probability": 0.7715 + }, + { + "start": 29536.28, + "end": 29539.04, + "probability": 0.8233 + }, + { + "start": 29539.54, + "end": 29542.2, + "probability": 0.9948 + }, + { + "start": 29542.94, + "end": 29543.66, + "probability": 0.5905 + }, + { + "start": 29544.62, + "end": 29547.04, + "probability": 0.8657 + }, + { + "start": 29547.82, + "end": 29550.28, + "probability": 0.9347 + }, + { + "start": 29550.68, + "end": 29555.52, + "probability": 0.9652 + }, + { + "start": 29556.16, + "end": 29560.68, + "probability": 0.9951 + }, + { + "start": 29561.22, + "end": 29562.82, + "probability": 0.7525 + }, + { + "start": 29564.26, + "end": 29565.49, + "probability": 0.7439 + }, + { + "start": 29566.84, + "end": 29569.56, + "probability": 0.9404 + }, + { + "start": 29569.78, + "end": 29570.88, + "probability": 0.915 + }, + { + "start": 29571.0, + "end": 29573.0, + "probability": 0.98 + }, + { + "start": 29573.94, + "end": 29579.04, + "probability": 0.8155 + }, + { + "start": 29579.04, + "end": 29581.88, + "probability": 0.9954 + }, + { + "start": 29582.8, + "end": 29585.64, + "probability": 0.9684 + }, + { + "start": 29587.04, + "end": 29587.98, + "probability": 0.7777 + }, + { + "start": 29588.94, + "end": 29591.38, + "probability": 0.9954 + }, + { + "start": 29592.16, + "end": 29592.92, + "probability": 0.9187 + }, + { + "start": 29594.12, + "end": 29595.94, + "probability": 0.9777 + }, + { + "start": 29596.7, + "end": 29598.42, + "probability": 0.7626 + }, + { + "start": 29598.5, + "end": 29599.92, + "probability": 0.9457 + }, + { + "start": 29600.7, + "end": 29603.66, + "probability": 0.9408 + }, + { + "start": 29604.42, + "end": 29608.9, + "probability": 0.6475 + }, + { + "start": 29609.4, + "end": 29609.88, + "probability": 0.8687 + }, + { + "start": 29610.9, + "end": 29614.82, + "probability": 0.9582 + }, + { + "start": 29615.52, + "end": 29618.96, + "probability": 0.9479 + }, + { + "start": 29619.9, + "end": 29620.86, + "probability": 0.981 + }, + { + "start": 29621.56, + "end": 29623.96, + "probability": 0.9902 + }, + { + "start": 29624.68, + "end": 29626.28, + "probability": 0.9924 + }, + { + "start": 29626.38, + "end": 29628.62, + "probability": 0.9932 + }, + { + "start": 29631.44, + "end": 29632.0, + "probability": 0.0797 + }, + { + "start": 29632.0, + "end": 29633.8, + "probability": 0.5585 + }, + { + "start": 29635.18, + "end": 29639.5, + "probability": 0.9614 + }, + { + "start": 29639.5, + "end": 29643.68, + "probability": 0.9966 + }, + { + "start": 29644.48, + "end": 29644.98, + "probability": 0.4813 + }, + { + "start": 29645.06, + "end": 29645.58, + "probability": 0.7251 + }, + { + "start": 29645.66, + "end": 29652.09, + "probability": 0.8514 + }, + { + "start": 29652.92, + "end": 29653.76, + "probability": 0.7667 + }, + { + "start": 29654.34, + "end": 29657.34, + "probability": 0.9983 + }, + { + "start": 29657.86, + "end": 29659.68, + "probability": 0.9777 + }, + { + "start": 29660.8, + "end": 29661.68, + "probability": 0.9277 + }, + { + "start": 29662.04, + "end": 29663.4, + "probability": 0.9751 + }, + { + "start": 29663.68, + "end": 29668.12, + "probability": 0.9598 + }, + { + "start": 29668.16, + "end": 29669.8, + "probability": 0.9982 + }, + { + "start": 29670.96, + "end": 29671.9, + "probability": 0.7393 + }, + { + "start": 29672.94, + "end": 29673.76, + "probability": 0.9705 + }, + { + "start": 29675.6, + "end": 29677.06, + "probability": 0.9495 + }, + { + "start": 29677.28, + "end": 29677.84, + "probability": 0.8509 + }, + { + "start": 29677.96, + "end": 29678.73, + "probability": 0.9973 + }, + { + "start": 29680.14, + "end": 29681.26, + "probability": 0.8776 + }, + { + "start": 29682.26, + "end": 29685.5, + "probability": 0.7104 + }, + { + "start": 29685.5, + "end": 29690.78, + "probability": 0.9741 + }, + { + "start": 29690.88, + "end": 29693.26, + "probability": 0.9869 + }, + { + "start": 29694.7, + "end": 29697.94, + "probability": 0.8439 + }, + { + "start": 29698.06, + "end": 29699.12, + "probability": 0.843 + }, + { + "start": 29699.74, + "end": 29702.34, + "probability": 0.798 + }, + { + "start": 29702.44, + "end": 29706.16, + "probability": 0.8486 + }, + { + "start": 29706.76, + "end": 29712.04, + "probability": 0.6893 + }, + { + "start": 29712.08, + "end": 29712.6, + "probability": 0.5859 + }, + { + "start": 29713.12, + "end": 29716.0, + "probability": 0.9951 + }, + { + "start": 29716.44, + "end": 29718.76, + "probability": 0.5155 + }, + { + "start": 29719.26, + "end": 29722.42, + "probability": 0.9824 + }, + { + "start": 29722.78, + "end": 29724.26, + "probability": 0.9382 + }, + { + "start": 29725.22, + "end": 29727.52, + "probability": 0.8253 + }, + { + "start": 29728.18, + "end": 29730.62, + "probability": 0.9877 + }, + { + "start": 29731.38, + "end": 29732.78, + "probability": 0.7767 + }, + { + "start": 29733.58, + "end": 29735.54, + "probability": 0.8282 + }, + { + "start": 29736.12, + "end": 29738.42, + "probability": 0.7746 + }, + { + "start": 29739.71, + "end": 29742.52, + "probability": 0.9921 + }, + { + "start": 29743.2, + "end": 29745.92, + "probability": 0.8136 + }, + { + "start": 29746.88, + "end": 29749.86, + "probability": 0.6802 + }, + { + "start": 29750.38, + "end": 29751.19, + "probability": 0.8263 + }, + { + "start": 29751.36, + "end": 29753.76, + "probability": 0.8423 + }, + { + "start": 29754.2, + "end": 29755.5, + "probability": 0.3013 + }, + { + "start": 29755.98, + "end": 29756.76, + "probability": 0.6539 + }, + { + "start": 29756.92, + "end": 29758.78, + "probability": 0.5671 + }, + { + "start": 29771.6, + "end": 29772.78, + "probability": 0.7964 + }, + { + "start": 29773.42, + "end": 29774.5, + "probability": 0.7972 + }, + { + "start": 29775.18, + "end": 29776.34, + "probability": 0.7155 + }, + { + "start": 29777.8, + "end": 29779.62, + "probability": 0.9983 + }, + { + "start": 29781.32, + "end": 29783.82, + "probability": 0.7799 + }, + { + "start": 29785.36, + "end": 29788.2, + "probability": 0.9678 + }, + { + "start": 29788.92, + "end": 29793.06, + "probability": 0.9815 + }, + { + "start": 29793.18, + "end": 29795.84, + "probability": 0.9962 + }, + { + "start": 29797.04, + "end": 29802.72, + "probability": 0.991 + }, + { + "start": 29803.72, + "end": 29806.46, + "probability": 0.7891 + }, + { + "start": 29807.92, + "end": 29812.1, + "probability": 0.8344 + }, + { + "start": 29813.28, + "end": 29816.02, + "probability": 0.9016 + }, + { + "start": 29816.68, + "end": 29821.46, + "probability": 0.8679 + }, + { + "start": 29822.54, + "end": 29825.16, + "probability": 0.8782 + }, + { + "start": 29826.28, + "end": 29828.88, + "probability": 0.6467 + }, + { + "start": 29828.88, + "end": 29833.18, + "probability": 0.9163 + }, + { + "start": 29833.76, + "end": 29835.32, + "probability": 0.9803 + }, + { + "start": 29835.7, + "end": 29837.24, + "probability": 0.8228 + }, + { + "start": 29837.32, + "end": 29839.66, + "probability": 0.9297 + }, + { + "start": 29840.88, + "end": 29845.64, + "probability": 0.9904 + }, + { + "start": 29846.38, + "end": 29850.62, + "probability": 0.9227 + }, + { + "start": 29851.7, + "end": 29853.74, + "probability": 0.9908 + }, + { + "start": 29854.52, + "end": 29857.2, + "probability": 0.9667 + }, + { + "start": 29858.14, + "end": 29861.8, + "probability": 0.9619 + }, + { + "start": 29861.8, + "end": 29865.96, + "probability": 0.835 + }, + { + "start": 29866.22, + "end": 29866.72, + "probability": 0.8606 + }, + { + "start": 29866.86, + "end": 29867.42, + "probability": 0.8654 + }, + { + "start": 29867.48, + "end": 29868.06, + "probability": 0.7358 + }, + { + "start": 29869.12, + "end": 29873.54, + "probability": 0.9771 + }, + { + "start": 29874.84, + "end": 29879.56, + "probability": 0.9553 + }, + { + "start": 29880.18, + "end": 29882.82, + "probability": 0.981 + }, + { + "start": 29883.54, + "end": 29886.9, + "probability": 0.8709 + }, + { + "start": 29887.7, + "end": 29895.28, + "probability": 0.8708 + }, + { + "start": 29895.36, + "end": 29900.58, + "probability": 0.9894 + }, + { + "start": 29901.64, + "end": 29906.36, + "probability": 0.9982 + }, + { + "start": 29907.36, + "end": 29908.44, + "probability": 0.4339 + }, + { + "start": 29908.6, + "end": 29911.62, + "probability": 0.9625 + }, + { + "start": 29911.72, + "end": 29912.32, + "probability": 0.8787 + }, + { + "start": 29912.5, + "end": 29913.98, + "probability": 0.8249 + }, + { + "start": 29914.48, + "end": 29918.24, + "probability": 0.9841 + }, + { + "start": 29920.92, + "end": 29923.84, + "probability": 0.9815 + }, + { + "start": 29924.58, + "end": 29928.84, + "probability": 0.9902 + }, + { + "start": 29929.94, + "end": 29932.03, + "probability": 0.9648 + }, + { + "start": 29932.28, + "end": 29933.41, + "probability": 0.5861 + }, + { + "start": 29934.68, + "end": 29935.22, + "probability": 0.7303 + }, + { + "start": 29936.1, + "end": 29938.38, + "probability": 0.9652 + }, + { + "start": 29938.68, + "end": 29942.6, + "probability": 0.8103 + }, + { + "start": 29943.02, + "end": 29950.76, + "probability": 0.9486 + }, + { + "start": 29950.94, + "end": 29951.72, + "probability": 0.8205 + }, + { + "start": 29952.4, + "end": 29953.36, + "probability": 0.9524 + }, + { + "start": 29953.88, + "end": 29954.46, + "probability": 0.9935 + }, + { + "start": 29955.34, + "end": 29956.2, + "probability": 0.7147 + }, + { + "start": 29957.28, + "end": 29959.08, + "probability": 0.9254 + }, + { + "start": 29960.06, + "end": 29960.86, + "probability": 0.366 + }, + { + "start": 29961.72, + "end": 29963.08, + "probability": 0.9558 + }, + { + "start": 29978.92, + "end": 29980.0, + "probability": 0.8321 + }, + { + "start": 29981.02, + "end": 29983.12, + "probability": 0.7479 + }, + { + "start": 29984.36, + "end": 29987.8, + "probability": 0.993 + }, + { + "start": 29988.76, + "end": 29991.38, + "probability": 0.9983 + }, + { + "start": 29992.54, + "end": 29994.3, + "probability": 0.7229 + }, + { + "start": 29995.58, + "end": 29998.38, + "probability": 0.9614 + }, + { + "start": 29999.48, + "end": 30001.9, + "probability": 0.9616 + }, + { + "start": 30002.82, + "end": 30008.3, + "probability": 0.9979 + }, + { + "start": 30008.64, + "end": 30013.1, + "probability": 0.8861 + }, + { + "start": 30015.3, + "end": 30018.9, + "probability": 0.9985 + }, + { + "start": 30019.96, + "end": 30022.44, + "probability": 0.9639 + }, + { + "start": 30023.0, + "end": 30024.1, + "probability": 0.9054 + }, + { + "start": 30027.24, + "end": 30028.96, + "probability": 0.7681 + }, + { + "start": 30029.98, + "end": 30033.44, + "probability": 0.9974 + }, + { + "start": 30034.98, + "end": 30039.72, + "probability": 0.996 + }, + { + "start": 30040.86, + "end": 30045.66, + "probability": 0.9849 + }, + { + "start": 30046.52, + "end": 30047.5, + "probability": 0.9738 + }, + { + "start": 30049.04, + "end": 30051.38, + "probability": 0.9971 + }, + { + "start": 30051.99, + "end": 30055.84, + "probability": 0.9825 + }, + { + "start": 30057.76, + "end": 30060.44, + "probability": 0.961 + }, + { + "start": 30060.5, + "end": 30063.16, + "probability": 0.725 + }, + { + "start": 30063.64, + "end": 30065.5, + "probability": 0.8478 + }, + { + "start": 30065.8, + "end": 30066.84, + "probability": 0.9492 + }, + { + "start": 30068.08, + "end": 30070.74, + "probability": 0.9907 + }, + { + "start": 30071.62, + "end": 30074.32, + "probability": 0.6902 + }, + { + "start": 30075.38, + "end": 30077.68, + "probability": 0.8673 + }, + { + "start": 30079.12, + "end": 30081.28, + "probability": 0.9878 + }, + { + "start": 30082.1, + "end": 30084.76, + "probability": 0.9875 + }, + { + "start": 30085.66, + "end": 30088.76, + "probability": 0.9937 + }, + { + "start": 30089.64, + "end": 30092.86, + "probability": 0.9779 + }, + { + "start": 30093.6, + "end": 30094.64, + "probability": 0.981 + }, + { + "start": 30095.84, + "end": 30099.54, + "probability": 0.9966 + }, + { + "start": 30100.52, + "end": 30101.92, + "probability": 0.9845 + }, + { + "start": 30103.32, + "end": 30106.24, + "probability": 0.98 + }, + { + "start": 30106.24, + "end": 30110.99, + "probability": 0.9984 + }, + { + "start": 30112.0, + "end": 30115.1, + "probability": 0.9944 + }, + { + "start": 30115.78, + "end": 30117.36, + "probability": 0.6604 + }, + { + "start": 30117.66, + "end": 30121.34, + "probability": 0.8255 + }, + { + "start": 30121.48, + "end": 30122.24, + "probability": 0.9703 + }, + { + "start": 30123.8, + "end": 30127.02, + "probability": 0.9919 + }, + { + "start": 30127.02, + "end": 30131.68, + "probability": 0.9507 + }, + { + "start": 30133.12, + "end": 30137.34, + "probability": 0.9833 + }, + { + "start": 30139.6, + "end": 30143.02, + "probability": 0.9966 + }, + { + "start": 30144.06, + "end": 30147.88, + "probability": 0.9548 + }, + { + "start": 30148.76, + "end": 30149.84, + "probability": 0.9956 + }, + { + "start": 30150.04, + "end": 30152.54, + "probability": 0.9367 + }, + { + "start": 30152.66, + "end": 30155.76, + "probability": 0.9946 + }, + { + "start": 30156.64, + "end": 30158.12, + "probability": 0.9529 + }, + { + "start": 30159.12, + "end": 30162.36, + "probability": 0.9871 + }, + { + "start": 30163.45, + "end": 30167.76, + "probability": 0.988 + }, + { + "start": 30168.1, + "end": 30168.1, + "probability": 0.1535 + }, + { + "start": 30168.46, + "end": 30169.72, + "probability": 0.791 + }, + { + "start": 30170.6, + "end": 30175.6, + "probability": 0.9889 + }, + { + "start": 30176.3, + "end": 30180.04, + "probability": 0.9965 + }, + { + "start": 30180.62, + "end": 30180.96, + "probability": 0.6378 + }, + { + "start": 30181.34, + "end": 30182.16, + "probability": 0.7407 + }, + { + "start": 30182.74, + "end": 30184.54, + "probability": 0.7664 + }, + { + "start": 30199.64, + "end": 30200.9, + "probability": 0.6089 + }, + { + "start": 30201.12, + "end": 30203.34, + "probability": 0.8844 + }, + { + "start": 30203.44, + "end": 30205.1, + "probability": 0.9316 + }, + { + "start": 30206.78, + "end": 30209.64, + "probability": 0.9902 + }, + { + "start": 30210.34, + "end": 30215.96, + "probability": 0.8936 + }, + { + "start": 30216.1, + "end": 30220.36, + "probability": 0.8792 + }, + { + "start": 30221.52, + "end": 30226.28, + "probability": 0.8494 + }, + { + "start": 30227.7, + "end": 30229.04, + "probability": 0.9893 + }, + { + "start": 30230.42, + "end": 30231.52, + "probability": 0.8285 + }, + { + "start": 30233.99, + "end": 30239.6, + "probability": 0.9486 + }, + { + "start": 30240.66, + "end": 30244.52, + "probability": 0.9445 + }, + { + "start": 30246.1, + "end": 30246.8, + "probability": 0.9644 + }, + { + "start": 30248.38, + "end": 30250.02, + "probability": 0.999 + }, + { + "start": 30251.04, + "end": 30251.98, + "probability": 0.9883 + }, + { + "start": 30253.26, + "end": 30260.04, + "probability": 0.9038 + }, + { + "start": 30261.14, + "end": 30262.62, + "probability": 0.8434 + }, + { + "start": 30263.52, + "end": 30264.18, + "probability": 0.9954 + }, + { + "start": 30265.06, + "end": 30266.18, + "probability": 0.8761 + }, + { + "start": 30267.42, + "end": 30269.62, + "probability": 0.9753 + }, + { + "start": 30270.76, + "end": 30273.56, + "probability": 0.998 + }, + { + "start": 30274.72, + "end": 30276.36, + "probability": 0.9269 + }, + { + "start": 30276.88, + "end": 30278.0, + "probability": 0.8534 + }, + { + "start": 30280.54, + "end": 30287.28, + "probability": 0.9382 + }, + { + "start": 30287.42, + "end": 30289.38, + "probability": 0.9395 + }, + { + "start": 30289.62, + "end": 30290.9, + "probability": 0.8782 + }, + { + "start": 30292.22, + "end": 30294.14, + "probability": 0.9941 + }, + { + "start": 30295.1, + "end": 30296.02, + "probability": 0.7859 + }, + { + "start": 30296.04, + "end": 30296.18, + "probability": 0.5654 + }, + { + "start": 30299.8, + "end": 30303.52, + "probability": 0.9175 + }, + { + "start": 30304.6, + "end": 30308.1, + "probability": 0.9868 + }, + { + "start": 30308.3, + "end": 30309.56, + "probability": 0.9742 + }, + { + "start": 30309.64, + "end": 30312.06, + "probability": 0.9718 + }, + { + "start": 30312.82, + "end": 30313.62, + "probability": 0.6357 + }, + { + "start": 30314.76, + "end": 30316.18, + "probability": 0.9094 + }, + { + "start": 30316.24, + "end": 30317.44, + "probability": 0.8657 + }, + { + "start": 30320.16, + "end": 30321.04, + "probability": 0.9983 + }, + { + "start": 30322.2, + "end": 30323.88, + "probability": 0.8031 + }, + { + "start": 30325.66, + "end": 30327.3, + "probability": 0.9445 + }, + { + "start": 30328.0, + "end": 30330.9, + "probability": 0.9995 + }, + { + "start": 30332.46, + "end": 30333.22, + "probability": 0.9799 + }, + { + "start": 30334.16, + "end": 30335.8, + "probability": 0.9983 + }, + { + "start": 30337.24, + "end": 30338.94, + "probability": 0.9976 + }, + { + "start": 30339.14, + "end": 30340.18, + "probability": 0.9824 + }, + { + "start": 30340.38, + "end": 30345.22, + "probability": 0.9874 + }, + { + "start": 30345.74, + "end": 30346.72, + "probability": 0.7908 + }, + { + "start": 30346.84, + "end": 30350.58, + "probability": 0.9501 + }, + { + "start": 30350.58, + "end": 30353.38, + "probability": 0.994 + }, + { + "start": 30354.2, + "end": 30354.88, + "probability": 0.9253 + }, + { + "start": 30355.6, + "end": 30356.5, + "probability": 0.9642 + }, + { + "start": 30357.16, + "end": 30361.84, + "probability": 0.9868 + }, + { + "start": 30362.7, + "end": 30364.26, + "probability": 0.9562 + }, + { + "start": 30365.16, + "end": 30366.04, + "probability": 0.3198 + }, + { + "start": 30367.38, + "end": 30371.42, + "probability": 0.8734 + }, + { + "start": 30373.3, + "end": 30375.34, + "probability": 0.9343 + }, + { + "start": 30376.56, + "end": 30380.16, + "probability": 0.9242 + }, + { + "start": 30380.2, + "end": 30381.72, + "probability": 0.9103 + }, + { + "start": 30381.76, + "end": 30382.32, + "probability": 0.4837 + }, + { + "start": 30382.46, + "end": 30385.9, + "probability": 0.9588 + }, + { + "start": 30386.88, + "end": 30387.86, + "probability": 0.9132 + }, + { + "start": 30388.22, + "end": 30390.2, + "probability": 0.9969 + }, + { + "start": 30390.24, + "end": 30394.38, + "probability": 0.9757 + }, + { + "start": 30397.54, + "end": 30400.1, + "probability": 0.5399 + }, + { + "start": 30400.96, + "end": 30402.62, + "probability": 0.9255 + }, + { + "start": 30402.82, + "end": 30403.54, + "probability": 0.7474 + }, + { + "start": 30403.6, + "end": 30405.16, + "probability": 0.6854 + }, + { + "start": 30405.78, + "end": 30409.02, + "probability": 0.9871 + }, + { + "start": 30409.82, + "end": 30413.82, + "probability": 0.9899 + }, + { + "start": 30414.0, + "end": 30416.82, + "probability": 0.9643 + }, + { + "start": 30416.86, + "end": 30420.3, + "probability": 0.7478 + }, + { + "start": 30420.34, + "end": 30421.1, + "probability": 0.697 + }, + { + "start": 30421.52, + "end": 30422.18, + "probability": 0.9094 + }, + { + "start": 30422.2, + "end": 30422.56, + "probability": 0.7683 + }, + { + "start": 30422.96, + "end": 30423.8, + "probability": 0.6622 + }, + { + "start": 30423.96, + "end": 30425.32, + "probability": 0.7511 + }, + { + "start": 30443.36, + "end": 30445.32, + "probability": 0.8086 + }, + { + "start": 30447.8, + "end": 30448.34, + "probability": 0.6029 + }, + { + "start": 30448.6, + "end": 30449.56, + "probability": 0.6476 + }, + { + "start": 30450.08, + "end": 30451.86, + "probability": 0.7817 + }, + { + "start": 30453.28, + "end": 30461.28, + "probability": 0.9666 + }, + { + "start": 30461.54, + "end": 30463.48, + "probability": 0.975 + }, + { + "start": 30464.4, + "end": 30467.46, + "probability": 0.9819 + }, + { + "start": 30468.04, + "end": 30470.68, + "probability": 0.9963 + }, + { + "start": 30472.26, + "end": 30473.98, + "probability": 0.998 + }, + { + "start": 30475.04, + "end": 30477.5, + "probability": 0.8059 + }, + { + "start": 30478.24, + "end": 30479.64, + "probability": 0.922 + }, + { + "start": 30480.56, + "end": 30481.24, + "probability": 0.9795 + }, + { + "start": 30481.78, + "end": 30482.8, + "probability": 0.6604 + }, + { + "start": 30483.66, + "end": 30484.6, + "probability": 0.9877 + }, + { + "start": 30485.76, + "end": 30487.36, + "probability": 0.6733 + }, + { + "start": 30488.18, + "end": 30491.42, + "probability": 0.9797 + }, + { + "start": 30492.32, + "end": 30495.76, + "probability": 0.9967 + }, + { + "start": 30497.32, + "end": 30499.14, + "probability": 0.8834 + }, + { + "start": 30499.78, + "end": 30500.28, + "probability": 0.7031 + }, + { + "start": 30502.02, + "end": 30507.64, + "probability": 0.9788 + }, + { + "start": 30509.8, + "end": 30514.08, + "probability": 0.997 + }, + { + "start": 30515.18, + "end": 30515.8, + "probability": 0.4893 + }, + { + "start": 30517.04, + "end": 30519.42, + "probability": 0.9942 + }, + { + "start": 30520.4, + "end": 30521.52, + "probability": 0.85 + }, + { + "start": 30522.24, + "end": 30525.62, + "probability": 0.999 + }, + { + "start": 30525.84, + "end": 30526.9, + "probability": 0.9897 + }, + { + "start": 30527.72, + "end": 30530.86, + "probability": 0.9539 + }, + { + "start": 30533.32, + "end": 30538.98, + "probability": 0.9954 + }, + { + "start": 30539.18, + "end": 30544.92, + "probability": 0.9987 + }, + { + "start": 30546.18, + "end": 30549.54, + "probability": 0.9916 + }, + { + "start": 30549.68, + "end": 30554.14, + "probability": 0.996 + }, + { + "start": 30555.04, + "end": 30557.34, + "probability": 0.9893 + }, + { + "start": 30557.34, + "end": 30559.9, + "probability": 0.9697 + }, + { + "start": 30560.0, + "end": 30563.2, + "probability": 0.8022 + }, + { + "start": 30564.84, + "end": 30566.06, + "probability": 0.7682 + }, + { + "start": 30567.16, + "end": 30568.82, + "probability": 0.7293 + }, + { + "start": 30570.28, + "end": 30572.48, + "probability": 0.9901 + }, + { + "start": 30572.84, + "end": 30574.26, + "probability": 0.9619 + }, + { + "start": 30574.76, + "end": 30576.04, + "probability": 0.9192 + }, + { + "start": 30576.32, + "end": 30577.76, + "probability": 0.9591 + }, + { + "start": 30578.44, + "end": 30581.98, + "probability": 0.9496 + }, + { + "start": 30582.52, + "end": 30585.18, + "probability": 0.9917 + }, + { + "start": 30585.86, + "end": 30587.06, + "probability": 0.9342 + }, + { + "start": 30587.92, + "end": 30589.36, + "probability": 0.9878 + }, + { + "start": 30589.56, + "end": 30590.82, + "probability": 0.7492 + }, + { + "start": 30591.0, + "end": 30592.7, + "probability": 0.7962 + }, + { + "start": 30593.44, + "end": 30595.24, + "probability": 0.9851 + }, + { + "start": 30595.82, + "end": 30597.84, + "probability": 0.8973 + }, + { + "start": 30598.7, + "end": 30599.93, + "probability": 0.958 + }, + { + "start": 30600.18, + "end": 30600.82, + "probability": 0.9099 + }, + { + "start": 30601.28, + "end": 30607.12, + "probability": 0.9929 + }, + { + "start": 30607.78, + "end": 30609.88, + "probability": 0.8838 + }, + { + "start": 30610.46, + "end": 30611.92, + "probability": 0.9219 + }, + { + "start": 30612.2, + "end": 30612.6, + "probability": 0.8514 + }, + { + "start": 30613.74, + "end": 30614.66, + "probability": 0.6586 + }, + { + "start": 30615.78, + "end": 30617.58, + "probability": 0.9687 + }, + { + "start": 30618.22, + "end": 30619.22, + "probability": 0.9048 + }, + { + "start": 30620.02, + "end": 30622.88, + "probability": 0.0707 + }, + { + "start": 30622.88, + "end": 30625.54, + "probability": 0.0246 + }, + { + "start": 30636.92, + "end": 30637.38, + "probability": 0.3086 + }, + { + "start": 30637.61, + "end": 30638.52, + "probability": 0.0538 + }, + { + "start": 30638.52, + "end": 30638.52, + "probability": 0.1157 + }, + { + "start": 30638.52, + "end": 30638.7, + "probability": 0.0415 + }, + { + "start": 30638.7, + "end": 30638.7, + "probability": 0.0381 + }, + { + "start": 30638.76, + "end": 30638.76, + "probability": 0.2603 + }, + { + "start": 30645.24, + "end": 30645.28, + "probability": 0.9465 + }, + { + "start": 30645.28, + "end": 30645.28, + "probability": 0.0775 + }, + { + "start": 30645.28, + "end": 30646.26, + "probability": 0.7617 + }, + { + "start": 30647.66, + "end": 30649.58, + "probability": 0.7911 + }, + { + "start": 30651.32, + "end": 30654.06, + "probability": 0.9976 + }, + { + "start": 30655.44, + "end": 30656.68, + "probability": 0.8942 + }, + { + "start": 30658.98, + "end": 30665.34, + "probability": 0.507 + }, + { + "start": 30666.72, + "end": 30667.46, + "probability": 0.1782 + }, + { + "start": 30668.18, + "end": 30669.66, + "probability": 0.1634 + }, + { + "start": 30674.9, + "end": 30676.4, + "probability": 0.6566 + }, + { + "start": 30692.56, + "end": 30694.52, + "probability": 0.9924 + }, + { + "start": 30695.58, + "end": 30696.14, + "probability": 0.7418 + }, + { + "start": 30697.2, + "end": 30698.62, + "probability": 0.9644 + }, + { + "start": 30699.54, + "end": 30700.2, + "probability": 0.718 + }, + { + "start": 30701.06, + "end": 30701.86, + "probability": 0.6068 + }, + { + "start": 30702.52, + "end": 30704.52, + "probability": 0.9891 + }, + { + "start": 30705.48, + "end": 30705.8, + "probability": 0.9738 + }, + { + "start": 30706.96, + "end": 30709.38, + "probability": 0.8703 + }, + { + "start": 30710.16, + "end": 30715.7, + "probability": 0.988 + }, + { + "start": 30716.94, + "end": 30719.28, + "probability": 0.9414 + }, + { + "start": 30720.28, + "end": 30724.9, + "probability": 0.9606 + }, + { + "start": 30726.02, + "end": 30728.08, + "probability": 0.8372 + }, + { + "start": 30729.38, + "end": 30730.62, + "probability": 0.9922 + }, + { + "start": 30732.54, + "end": 30738.4, + "probability": 0.94 + }, + { + "start": 30739.36, + "end": 30740.9, + "probability": 0.9951 + }, + { + "start": 30741.7, + "end": 30743.44, + "probability": 0.9198 + }, + { + "start": 30743.52, + "end": 30744.72, + "probability": 0.9425 + }, + { + "start": 30744.8, + "end": 30745.56, + "probability": 0.7693 + }, + { + "start": 30745.7, + "end": 30746.36, + "probability": 0.9612 + }, + { + "start": 30746.42, + "end": 30747.0, + "probability": 0.9781 + }, + { + "start": 30747.56, + "end": 30748.24, + "probability": 0.8034 + }, + { + "start": 30749.48, + "end": 30752.82, + "probability": 0.9339 + }, + { + "start": 30753.6, + "end": 30754.76, + "probability": 0.6104 + }, + { + "start": 30758.4, + "end": 30759.36, + "probability": 0.7399 + }, + { + "start": 30760.84, + "end": 30761.4, + "probability": 0.4509 + }, + { + "start": 30762.5, + "end": 30765.5, + "probability": 0.9861 + }, + { + "start": 30766.22, + "end": 30769.36, + "probability": 0.9669 + }, + { + "start": 30769.96, + "end": 30771.94, + "probability": 0.9824 + }, + { + "start": 30772.78, + "end": 30774.36, + "probability": 0.9417 + }, + { + "start": 30775.04, + "end": 30776.6, + "probability": 0.8958 + }, + { + "start": 30777.26, + "end": 30778.96, + "probability": 0.9474 + }, + { + "start": 30779.76, + "end": 30781.26, + "probability": 0.7171 + }, + { + "start": 30782.0, + "end": 30782.68, + "probability": 0.765 + }, + { + "start": 30783.82, + "end": 30784.76, + "probability": 0.8723 + }, + { + "start": 30786.08, + "end": 30788.94, + "probability": 0.5778 + }, + { + "start": 30789.62, + "end": 30791.58, + "probability": 0.9691 + }, + { + "start": 30792.38, + "end": 30795.06, + "probability": 0.924 + }, + { + "start": 30795.8, + "end": 30796.64, + "probability": 0.9608 + }, + { + "start": 30797.42, + "end": 30798.04, + "probability": 0.9619 + }, + { + "start": 30798.86, + "end": 30800.22, + "probability": 0.4862 + }, + { + "start": 30800.96, + "end": 30802.09, + "probability": 0.9749 + }, + { + "start": 30802.7, + "end": 30808.2, + "probability": 0.9831 + }, + { + "start": 30809.58, + "end": 30813.88, + "probability": 0.9122 + }, + { + "start": 30814.54, + "end": 30815.08, + "probability": 0.2937 + }, + { + "start": 30815.98, + "end": 30818.26, + "probability": 0.9915 + }, + { + "start": 30819.1, + "end": 30821.16, + "probability": 0.9725 + }, + { + "start": 30821.76, + "end": 30824.04, + "probability": 0.7394 + }, + { + "start": 30824.94, + "end": 30826.69, + "probability": 0.7891 + }, + { + "start": 30827.4, + "end": 30829.36, + "probability": 0.6461 + }, + { + "start": 30830.08, + "end": 30831.4, + "probability": 0.9797 + }, + { + "start": 30832.3, + "end": 30833.64, + "probability": 0.8484 + }, + { + "start": 30834.16, + "end": 30834.4, + "probability": 0.7604 + }, + { + "start": 30834.82, + "end": 30835.72, + "probability": 0.6701 + }, + { + "start": 30836.42, + "end": 30838.94, + "probability": 0.9196 + }, + { + "start": 30856.7, + "end": 30858.02, + "probability": 0.7438 + }, + { + "start": 30858.05, + "end": 30858.52, + "probability": 0.1798 + }, + { + "start": 30859.06, + "end": 30859.72, + "probability": 0.7539 + }, + { + "start": 30859.86, + "end": 30861.22, + "probability": 0.6792 + }, + { + "start": 30861.6, + "end": 30861.74, + "probability": 0.8721 + }, + { + "start": 30865.82, + "end": 30867.9, + "probability": 0.6177 + }, + { + "start": 30867.9, + "end": 30870.2, + "probability": 0.9809 + }, + { + "start": 30870.88, + "end": 30872.04, + "probability": 0.9555 + }, + { + "start": 30872.16, + "end": 30873.64, + "probability": 0.9841 + }, + { + "start": 30874.56, + "end": 30883.04, + "probability": 0.465 + }, + { + "start": 30883.82, + "end": 30884.6, + "probability": 0.1427 + }, + { + "start": 30885.7, + "end": 30885.9, + "probability": 0.0408 + }, + { + "start": 30885.9, + "end": 30885.9, + "probability": 0.0738 + }, + { + "start": 30885.9, + "end": 30887.94, + "probability": 0.1868 + }, + { + "start": 30889.9, + "end": 30892.81, + "probability": 0.5658 + }, + { + "start": 30892.9, + "end": 30898.28, + "probability": 0.7688 + }, + { + "start": 30899.64, + "end": 30905.12, + "probability": 0.9904 + }, + { + "start": 30905.84, + "end": 30909.44, + "probability": 0.9951 + }, + { + "start": 30910.12, + "end": 30913.72, + "probability": 0.915 + }, + { + "start": 30914.5, + "end": 30917.98, + "probability": 0.9035 + }, + { + "start": 30918.38, + "end": 30921.78, + "probability": 0.7748 + }, + { + "start": 30923.32, + "end": 30924.14, + "probability": 0.6777 + }, + { + "start": 30924.48, + "end": 30929.24, + "probability": 0.8708 + }, + { + "start": 30930.78, + "end": 30931.7, + "probability": 0.9175 + }, + { + "start": 30935.32, + "end": 30937.62, + "probability": 0.8991 + }, + { + "start": 30938.26, + "end": 30941.64, + "probability": 0.6485 + }, + { + "start": 30941.82, + "end": 30944.38, + "probability": 0.8788 + }, + { + "start": 30945.36, + "end": 30949.96, + "probability": 0.9961 + }, + { + "start": 30950.6, + "end": 30955.08, + "probability": 0.9959 + }, + { + "start": 30955.22, + "end": 30959.86, + "probability": 0.9425 + }, + { + "start": 30960.5, + "end": 30965.1, + "probability": 0.9552 + }, + { + "start": 30965.32, + "end": 30970.56, + "probability": 0.9962 + }, + { + "start": 30971.26, + "end": 30977.02, + "probability": 0.9388 + }, + { + "start": 30977.62, + "end": 30983.8, + "probability": 0.9927 + }, + { + "start": 30984.36, + "end": 30987.26, + "probability": 0.8438 + }, + { + "start": 30988.32, + "end": 30989.26, + "probability": 0.8608 + }, + { + "start": 30990.08, + "end": 30991.84, + "probability": 0.9267 + }, + { + "start": 30991.98, + "end": 30993.02, + "probability": 0.9214 + }, + { + "start": 30994.2, + "end": 30998.54, + "probability": 0.9751 + }, + { + "start": 30999.18, + "end": 31000.68, + "probability": 0.22 + }, + { + "start": 31001.42, + "end": 31003.1, + "probability": 0.5989 + }, + { + "start": 31003.3, + "end": 31004.18, + "probability": 0.701 + }, + { + "start": 31004.88, + "end": 31005.28, + "probability": 0.5492 + }, + { + "start": 31005.38, + "end": 31007.8, + "probability": 0.9062 + }, + { + "start": 31007.96, + "end": 31010.0, + "probability": 0.8521 + }, + { + "start": 31010.22, + "end": 31012.24, + "probability": 0.9697 + }, + { + "start": 31012.68, + "end": 31013.04, + "probability": 0.9769 + }, + { + "start": 31013.66, + "end": 31014.86, + "probability": 0.9902 + }, + { + "start": 31015.32, + "end": 31016.34, + "probability": 0.8468 + }, + { + "start": 31016.38, + "end": 31017.58, + "probability": 0.914 + }, + { + "start": 31018.02, + "end": 31019.22, + "probability": 0.985 + }, + { + "start": 31019.6, + "end": 31025.8, + "probability": 0.9132 + }, + { + "start": 31026.46, + "end": 31029.4, + "probability": 0.8017 + }, + { + "start": 31029.94, + "end": 31033.44, + "probability": 0.6757 + }, + { + "start": 31034.08, + "end": 31034.7, + "probability": 0.6566 + }, + { + "start": 31035.32, + "end": 31038.18, + "probability": 0.8481 + }, + { + "start": 31038.2, + "end": 31038.22, + "probability": 0.4366 + }, + { + "start": 31038.22, + "end": 31041.0, + "probability": 0.9107 + }, + { + "start": 31041.54, + "end": 31045.6, + "probability": 0.9551 + }, + { + "start": 31046.28, + "end": 31048.1, + "probability": 0.9893 + }, + { + "start": 31048.8, + "end": 31050.82, + "probability": 0.9697 + }, + { + "start": 31051.6, + "end": 31054.86, + "probability": 0.9366 + }, + { + "start": 31055.8, + "end": 31056.92, + "probability": 0.8296 + }, + { + "start": 31057.88, + "end": 31059.52, + "probability": 0.9935 + }, + { + "start": 31059.94, + "end": 31060.22, + "probability": 0.5373 + }, + { + "start": 31060.64, + "end": 31061.2, + "probability": 0.6904 + }, + { + "start": 31061.3, + "end": 31063.28, + "probability": 0.8561 + }, + { + "start": 31064.24, + "end": 31067.04, + "probability": 0.9359 + }, + { + "start": 31068.14, + "end": 31069.02, + "probability": 0.6083 + }, + { + "start": 31069.86, + "end": 31071.62, + "probability": 0.7615 + }, + { + "start": 31072.22, + "end": 31072.32, + "probability": 0.5716 + }, + { + "start": 31073.44, + "end": 31074.28, + "probability": 0.527 + }, + { + "start": 31075.06, + "end": 31076.24, + "probability": 0.6688 + }, + { + "start": 31086.1, + "end": 31088.56, + "probability": 0.6392 + }, + { + "start": 31102.86, + "end": 31104.58, + "probability": 0.8864 + }, + { + "start": 31106.52, + "end": 31106.72, + "probability": 0.6855 + }, + { + "start": 31108.42, + "end": 31109.56, + "probability": 0.7174 + }, + { + "start": 31111.06, + "end": 31113.0, + "probability": 0.968 + }, + { + "start": 31113.14, + "end": 31113.68, + "probability": 0.8397 + }, + { + "start": 31113.86, + "end": 31118.42, + "probability": 0.9545 + }, + { + "start": 31120.18, + "end": 31124.54, + "probability": 0.9664 + }, + { + "start": 31126.16, + "end": 31127.28, + "probability": 0.9897 + }, + { + "start": 31128.98, + "end": 31131.14, + "probability": 0.7217 + }, + { + "start": 31132.7, + "end": 31136.44, + "probability": 0.9792 + }, + { + "start": 31136.96, + "end": 31140.72, + "probability": 0.7669 + }, + { + "start": 31141.4, + "end": 31143.76, + "probability": 0.944 + }, + { + "start": 31144.86, + "end": 31150.66, + "probability": 0.9595 + }, + { + "start": 31151.4, + "end": 31151.78, + "probability": 0.9574 + }, + { + "start": 31154.86, + "end": 31157.26, + "probability": 0.916 + }, + { + "start": 31158.46, + "end": 31159.74, + "probability": 0.5803 + }, + { + "start": 31160.64, + "end": 31161.34, + "probability": 0.8047 + }, + { + "start": 31162.5, + "end": 31163.08, + "probability": 0.8315 + }, + { + "start": 31164.72, + "end": 31165.78, + "probability": 0.9708 + }, + { + "start": 31166.64, + "end": 31168.52, + "probability": 0.9752 + }, + { + "start": 31169.88, + "end": 31170.38, + "probability": 0.9554 + }, + { + "start": 31170.98, + "end": 31172.62, + "probability": 0.9911 + }, + { + "start": 31174.12, + "end": 31177.74, + "probability": 0.9786 + }, + { + "start": 31178.6, + "end": 31181.78, + "probability": 0.9854 + }, + { + "start": 31184.02, + "end": 31185.52, + "probability": 0.9229 + }, + { + "start": 31186.14, + "end": 31186.62, + "probability": 0.9163 + }, + { + "start": 31187.4, + "end": 31188.44, + "probability": 0.8557 + }, + { + "start": 31189.48, + "end": 31191.26, + "probability": 0.9839 + }, + { + "start": 31192.76, + "end": 31195.74, + "probability": 0.9766 + }, + { + "start": 31196.88, + "end": 31200.3, + "probability": 0.9797 + }, + { + "start": 31201.2, + "end": 31205.1, + "probability": 0.9925 + }, + { + "start": 31206.74, + "end": 31209.86, + "probability": 0.9384 + }, + { + "start": 31210.68, + "end": 31213.4, + "probability": 0.9661 + }, + { + "start": 31214.7, + "end": 31218.48, + "probability": 0.9655 + }, + { + "start": 31220.38, + "end": 31221.42, + "probability": 0.9963 + }, + { + "start": 31222.84, + "end": 31223.76, + "probability": 0.9951 + }, + { + "start": 31224.7, + "end": 31226.5, + "probability": 0.9897 + }, + { + "start": 31227.46, + "end": 31231.02, + "probability": 0.9907 + }, + { + "start": 31232.82, + "end": 31235.5, + "probability": 0.9901 + }, + { + "start": 31236.76, + "end": 31238.0, + "probability": 0.8977 + }, + { + "start": 31239.46, + "end": 31240.8, + "probability": 0.9654 + }, + { + "start": 31241.56, + "end": 31243.48, + "probability": 0.8925 + }, + { + "start": 31244.12, + "end": 31246.1, + "probability": 0.934 + }, + { + "start": 31247.18, + "end": 31249.38, + "probability": 0.9958 + }, + { + "start": 31250.84, + "end": 31251.42, + "probability": 0.8154 + }, + { + "start": 31252.54, + "end": 31254.3, + "probability": 0.9743 + }, + { + "start": 31255.0, + "end": 31257.28, + "probability": 0.9743 + }, + { + "start": 31258.52, + "end": 31262.5, + "probability": 0.9787 + }, + { + "start": 31263.44, + "end": 31264.54, + "probability": 0.9902 + }, + { + "start": 31266.5, + "end": 31268.22, + "probability": 0.9753 + }, + { + "start": 31268.92, + "end": 31269.4, + "probability": 0.9904 + }, + { + "start": 31270.52, + "end": 31272.8, + "probability": 0.9724 + }, + { + "start": 31273.32, + "end": 31275.74, + "probability": 0.9636 + }, + { + "start": 31277.62, + "end": 31284.94, + "probability": 0.8961 + }, + { + "start": 31285.96, + "end": 31286.48, + "probability": 0.4973 + }, + { + "start": 31286.48, + "end": 31287.1, + "probability": 0.9173 + }, + { + "start": 31287.88, + "end": 31289.88, + "probability": 0.9944 + }, + { + "start": 31290.78, + "end": 31292.94, + "probability": 0.9872 + }, + { + "start": 31293.8, + "end": 31294.26, + "probability": 0.9017 + }, + { + "start": 31294.64, + "end": 31295.34, + "probability": 0.746 + }, + { + "start": 31295.5, + "end": 31296.42, + "probability": 0.7074 + }, + { + "start": 31296.58, + "end": 31300.58, + "probability": 0.9769 + }, + { + "start": 31314.6, + "end": 31315.78, + "probability": 0.9038 + }, + { + "start": 31332.88, + "end": 31336.48, + "probability": 0.6797 + }, + { + "start": 31337.94, + "end": 31338.8, + "probability": 0.7872 + }, + { + "start": 31340.42, + "end": 31343.34, + "probability": 0.9973 + }, + { + "start": 31344.24, + "end": 31345.98, + "probability": 0.9081 + }, + { + "start": 31347.64, + "end": 31348.93, + "probability": 0.9712 + }, + { + "start": 31349.34, + "end": 31350.02, + "probability": 0.6479 + }, + { + "start": 31350.78, + "end": 31353.56, + "probability": 0.8711 + }, + { + "start": 31354.88, + "end": 31356.14, + "probability": 0.7717 + }, + { + "start": 31356.98, + "end": 31361.92, + "probability": 0.9902 + }, + { + "start": 31362.6, + "end": 31364.28, + "probability": 0.5757 + }, + { + "start": 31365.42, + "end": 31369.04, + "probability": 0.9416 + }, + { + "start": 31369.92, + "end": 31374.04, + "probability": 0.8607 + }, + { + "start": 31374.64, + "end": 31375.54, + "probability": 0.8775 + }, + { + "start": 31376.58, + "end": 31379.14, + "probability": 0.9103 + }, + { + "start": 31380.36, + "end": 31383.06, + "probability": 0.8974 + }, + { + "start": 31383.6, + "end": 31385.02, + "probability": 0.9945 + }, + { + "start": 31385.76, + "end": 31388.88, + "probability": 0.8936 + }, + { + "start": 31390.14, + "end": 31391.36, + "probability": 0.55 + }, + { + "start": 31391.92, + "end": 31394.0, + "probability": 0.6301 + }, + { + "start": 31394.84, + "end": 31395.68, + "probability": 0.8011 + }, + { + "start": 31396.34, + "end": 31399.96, + "probability": 0.9943 + }, + { + "start": 31400.88, + "end": 31402.64, + "probability": 0.9491 + }, + { + "start": 31403.2, + "end": 31405.76, + "probability": 0.9741 + }, + { + "start": 31406.96, + "end": 31412.2, + "probability": 0.9873 + }, + { + "start": 31413.0, + "end": 31413.53, + "probability": 0.9034 + }, + { + "start": 31414.62, + "end": 31417.54, + "probability": 0.9731 + }, + { + "start": 31417.54, + "end": 31419.96, + "probability": 0.9975 + }, + { + "start": 31420.68, + "end": 31423.92, + "probability": 0.9796 + }, + { + "start": 31424.42, + "end": 31424.74, + "probability": 0.0524 + }, + { + "start": 31424.94, + "end": 31425.08, + "probability": 0.044 + }, + { + "start": 31425.08, + "end": 31428.92, + "probability": 0.9524 + }, + { + "start": 31429.86, + "end": 31431.68, + "probability": 0.9612 + }, + { + "start": 31432.58, + "end": 31432.58, + "probability": 0.087 + }, + { + "start": 31432.58, + "end": 31438.12, + "probability": 0.2387 + }, + { + "start": 31438.9, + "end": 31440.88, + "probability": 0.8787 + }, + { + "start": 31441.88, + "end": 31442.32, + "probability": 0.9553 + }, + { + "start": 31443.48, + "end": 31444.0, + "probability": 0.8438 + }, + { + "start": 31444.52, + "end": 31446.02, + "probability": 0.9434 + }, + { + "start": 31446.56, + "end": 31447.84, + "probability": 0.7646 + }, + { + "start": 31448.44, + "end": 31450.28, + "probability": 0.9849 + }, + { + "start": 31451.1, + "end": 31454.82, + "probability": 0.957 + }, + { + "start": 31456.66, + "end": 31456.66, + "probability": 0.1999 + }, + { + "start": 31456.66, + "end": 31457.06, + "probability": 0.1712 + }, + { + "start": 31457.62, + "end": 31459.32, + "probability": 0.7799 + }, + { + "start": 31459.92, + "end": 31460.28, + "probability": 0.9233 + }, + { + "start": 31460.86, + "end": 31462.9, + "probability": 0.9778 + }, + { + "start": 31463.68, + "end": 31465.54, + "probability": 0.967 + }, + { + "start": 31466.2, + "end": 31469.7, + "probability": 0.9819 + }, + { + "start": 31470.76, + "end": 31473.84, + "probability": 0.9897 + }, + { + "start": 31474.4, + "end": 31475.43, + "probability": 0.9679 + }, + { + "start": 31476.34, + "end": 31480.98, + "probability": 0.9933 + }, + { + "start": 31481.64, + "end": 31482.56, + "probability": 0.9077 + }, + { + "start": 31483.1, + "end": 31483.86, + "probability": 0.8173 + }, + { + "start": 31484.3, + "end": 31484.74, + "probability": 0.156 + }, + { + "start": 31484.9, + "end": 31486.48, + "probability": 0.352 + }, + { + "start": 31488.26, + "end": 31488.26, + "probability": 0.2248 + }, + { + "start": 31488.26, + "end": 31488.26, + "probability": 0.0379 + }, + { + "start": 31488.26, + "end": 31488.98, + "probability": 0.0938 + }, + { + "start": 31490.1, + "end": 31491.0, + "probability": 0.4476 + }, + { + "start": 31491.08, + "end": 31492.62, + "probability": 0.9484 + }, + { + "start": 31492.94, + "end": 31497.28, + "probability": 0.513 + }, + { + "start": 31501.26, + "end": 31501.26, + "probability": 0.0001 + }, + { + "start": 31502.24, + "end": 31502.72, + "probability": 0.0881 + }, + { + "start": 31502.72, + "end": 31503.46, + "probability": 0.056 + }, + { + "start": 31503.84, + "end": 31505.24, + "probability": 0.5182 + }, + { + "start": 31505.24, + "end": 31505.24, + "probability": 0.0351 + }, + { + "start": 31505.24, + "end": 31510.64, + "probability": 0.1719 + }, + { + "start": 31512.8, + "end": 31514.52, + "probability": 0.8777 + }, + { + "start": 31515.26, + "end": 31516.82, + "probability": 0.7249 + }, + { + "start": 31517.88, + "end": 31519.24, + "probability": 0.0135 + }, + { + "start": 31519.52, + "end": 31519.68, + "probability": 0.2834 + }, + { + "start": 31519.68, + "end": 31521.66, + "probability": 0.3863 + }, + { + "start": 31521.68, + "end": 31524.42, + "probability": 0.9646 + }, + { + "start": 31525.04, + "end": 31525.78, + "probability": 0.8729 + }, + { + "start": 31525.98, + "end": 31526.9, + "probability": 0.5739 + }, + { + "start": 31527.48, + "end": 31528.54, + "probability": 0.9607 + }, + { + "start": 31529.82, + "end": 31530.44, + "probability": 0.9708 + }, + { + "start": 31532.66, + "end": 31534.08, + "probability": 0.7835 + }, + { + "start": 31534.7, + "end": 31535.6, + "probability": 0.7292 + }, + { + "start": 31537.18, + "end": 31539.62, + "probability": 0.9443 + }, + { + "start": 31540.56, + "end": 31541.32, + "probability": 0.9822 + }, + { + "start": 31542.0, + "end": 31542.78, + "probability": 0.9798 + }, + { + "start": 31544.02, + "end": 31544.78, + "probability": 0.9116 + }, + { + "start": 31546.1, + "end": 31549.2, + "probability": 0.6998 + }, + { + "start": 31549.76, + "end": 31550.34, + "probability": 0.528 + }, + { + "start": 31551.66, + "end": 31552.42, + "probability": 0.8597 + }, + { + "start": 31553.77, + "end": 31557.66, + "probability": 0.91 + }, + { + "start": 31558.48, + "end": 31559.28, + "probability": 0.9346 + }, + { + "start": 31560.6, + "end": 31563.54, + "probability": 0.9692 + }, + { + "start": 31563.62, + "end": 31565.26, + "probability": 0.9932 + }, + { + "start": 31565.72, + "end": 31567.09, + "probability": 0.5964 + }, + { + "start": 31568.6, + "end": 31570.68, + "probability": 0.9277 + }, + { + "start": 31571.82, + "end": 31575.84, + "probability": 0.9885 + }, + { + "start": 31576.8, + "end": 31579.1, + "probability": 0.959 + }, + { + "start": 31580.06, + "end": 31583.24, + "probability": 0.9111 + }, + { + "start": 31583.94, + "end": 31586.0, + "probability": 0.8065 + }, + { + "start": 31586.54, + "end": 31587.12, + "probability": 0.7461 + }, + { + "start": 31588.36, + "end": 31590.82, + "probability": 0.4612 + }, + { + "start": 31592.36, + "end": 31593.72, + "probability": 0.7365 + }, + { + "start": 31595.02, + "end": 31596.26, + "probability": 0.8263 + }, + { + "start": 31596.94, + "end": 31597.44, + "probability": 0.5021 + }, + { + "start": 31598.2, + "end": 31598.8, + "probability": 0.5368 + }, + { + "start": 31599.82, + "end": 31603.32, + "probability": 0.9485 + }, + { + "start": 31604.02, + "end": 31605.7, + "probability": 0.9622 + }, + { + "start": 31606.24, + "end": 31608.04, + "probability": 0.9912 + }, + { + "start": 31609.68, + "end": 31610.47, + "probability": 0.9819 + }, + { + "start": 31611.16, + "end": 31613.87, + "probability": 0.9897 + }, + { + "start": 31615.18, + "end": 31617.17, + "probability": 0.9893 + }, + { + "start": 31618.22, + "end": 31619.4, + "probability": 0.9671 + }, + { + "start": 31619.9, + "end": 31621.16, + "probability": 0.8784 + }, + { + "start": 31621.92, + "end": 31625.1, + "probability": 0.9199 + }, + { + "start": 31625.72, + "end": 31626.78, + "probability": 0.9345 + }, + { + "start": 31627.76, + "end": 31630.26, + "probability": 0.953 + }, + { + "start": 31631.68, + "end": 31632.98, + "probability": 0.9977 + }, + { + "start": 31633.34, + "end": 31634.8, + "probability": 0.9739 + }, + { + "start": 31635.48, + "end": 31636.02, + "probability": 0.7389 + }, + { + "start": 31636.22, + "end": 31636.88, + "probability": 0.8971 + }, + { + "start": 31637.14, + "end": 31638.64, + "probability": 0.9801 + }, + { + "start": 31639.16, + "end": 31643.12, + "probability": 0.976 + }, + { + "start": 31644.24, + "end": 31646.04, + "probability": 0.9772 + }, + { + "start": 31646.1, + "end": 31647.04, + "probability": 0.8941 + }, + { + "start": 31647.54, + "end": 31649.64, + "probability": 0.9844 + }, + { + "start": 31651.14, + "end": 31654.54, + "probability": 0.9983 + }, + { + "start": 31655.06, + "end": 31656.7, + "probability": 0.9692 + }, + { + "start": 31657.46, + "end": 31659.4, + "probability": 0.6389 + }, + { + "start": 31661.98, + "end": 31664.2, + "probability": 0.9348 + }, + { + "start": 31666.16, + "end": 31667.76, + "probability": 0.8092 + }, + { + "start": 31668.34, + "end": 31669.2, + "probability": 0.9841 + }, + { + "start": 31669.98, + "end": 31670.95, + "probability": 0.9753 + }, + { + "start": 31671.64, + "end": 31673.98, + "probability": 0.9799 + }, + { + "start": 31674.6, + "end": 31675.87, + "probability": 0.9946 + }, + { + "start": 31676.46, + "end": 31676.7, + "probability": 0.8737 + }, + { + "start": 31677.28, + "end": 31678.14, + "probability": 0.7974 + }, + { + "start": 31678.82, + "end": 31679.82, + "probability": 0.9162 + }, + { + "start": 31679.92, + "end": 31683.08, + "probability": 0.998 + }, + { + "start": 31684.8, + "end": 31685.12, + "probability": 0.5054 + }, + { + "start": 31686.44, + "end": 31690.32, + "probability": 0.9232 + }, + { + "start": 31691.22, + "end": 31692.66, + "probability": 0.7346 + }, + { + "start": 31694.74, + "end": 31696.46, + "probability": 0.9541 + }, + { + "start": 31697.58, + "end": 31698.38, + "probability": 0.9688 + }, + { + "start": 31708.9, + "end": 31711.44, + "probability": 0.3214 + }, + { + "start": 31711.5, + "end": 31712.86, + "probability": 0.7086 + }, + { + "start": 31713.88, + "end": 31714.16, + "probability": 0.1941 + }, + { + "start": 31714.32, + "end": 31714.88, + "probability": 0.8209 + }, + { + "start": 31730.86, + "end": 31732.04, + "probability": 0.5564 + }, + { + "start": 31733.44, + "end": 31734.52, + "probability": 0.6487 + }, + { + "start": 31742.68, + "end": 31744.04, + "probability": 0.6706 + }, + { + "start": 31746.37, + "end": 31748.48, + "probability": 0.6664 + }, + { + "start": 31751.86, + "end": 31752.64, + "probability": 0.7371 + }, + { + "start": 31756.18, + "end": 31760.72, + "probability": 0.9934 + }, + { + "start": 31760.82, + "end": 31763.82, + "probability": 0.9946 + }, + { + "start": 31764.16, + "end": 31765.95, + "probability": 0.9655 + }, + { + "start": 31766.02, + "end": 31768.0, + "probability": 0.9971 + }, + { + "start": 31770.42, + "end": 31771.66, + "probability": 0.769 + }, + { + "start": 31772.72, + "end": 31773.3, + "probability": 0.8232 + }, + { + "start": 31773.38, + "end": 31773.52, + "probability": 0.7434 + }, + { + "start": 31774.3, + "end": 31774.64, + "probability": 0.8798 + }, + { + "start": 31779.38, + "end": 31781.12, + "probability": 0.5423 + }, + { + "start": 31781.36, + "end": 31782.44, + "probability": 0.8615 + }, + { + "start": 31782.52, + "end": 31786.72, + "probability": 0.9899 + }, + { + "start": 31786.92, + "end": 31790.02, + "probability": 0.449 + }, + { + "start": 31790.1, + "end": 31794.5, + "probability": 0.6239 + }, + { + "start": 31795.32, + "end": 31796.8, + "probability": 0.9717 + }, + { + "start": 31796.86, + "end": 31798.48, + "probability": 0.7444 + }, + { + "start": 31799.16, + "end": 31803.14, + "probability": 0.9334 + }, + { + "start": 31804.0, + "end": 31806.66, + "probability": 0.9185 + }, + { + "start": 31806.72, + "end": 31807.16, + "probability": 0.8661 + }, + { + "start": 31808.42, + "end": 31808.74, + "probability": 0.0115 + }, + { + "start": 31809.86, + "end": 31810.3, + "probability": 0.5459 + }, + { + "start": 31811.36, + "end": 31812.18, + "probability": 0.6438 + }, + { + "start": 31813.24, + "end": 31816.68, + "probability": 0.8761 + }, + { + "start": 31817.52, + "end": 31817.94, + "probability": 0.9553 + }, + { + "start": 31819.18, + "end": 31820.06, + "probability": 0.7603 + }, + { + "start": 31821.14, + "end": 31821.58, + "probability": 0.9839 + }, + { + "start": 31823.0, + "end": 31823.82, + "probability": 0.8159 + }, + { + "start": 31826.32, + "end": 31827.32, + "probability": 0.9213 + }, + { + "start": 31828.76, + "end": 31829.26, + "probability": 0.3377 + }, + { + "start": 31829.98, + "end": 31830.46, + "probability": 0.5555 + }, + { + "start": 31831.58, + "end": 31832.58, + "probability": 0.3706 + }, + { + "start": 31837.38, + "end": 31838.9, + "probability": 0.5014 + }, + { + "start": 31839.5, + "end": 31841.0, + "probability": 0.6791 + }, + { + "start": 31843.5, + "end": 31846.28, + "probability": 0.838 + }, + { + "start": 31847.02, + "end": 31848.78, + "probability": 0.9757 + }, + { + "start": 31850.56, + "end": 31852.5, + "probability": 0.9603 + }, + { + "start": 31854.96, + "end": 31856.6, + "probability": 0.9774 + }, + { + "start": 31858.14, + "end": 31858.58, + "probability": 0.9189 + }, + { + "start": 31859.92, + "end": 31860.8, + "probability": 0.6629 + }, + { + "start": 31862.0, + "end": 31863.7, + "probability": 0.6691 + }, + { + "start": 31865.04, + "end": 31865.58, + "probability": 0.9681 + }, + { + "start": 31867.48, + "end": 31868.28, + "probability": 0.7406 + }, + { + "start": 31869.7, + "end": 31872.6, + "probability": 0.7231 + }, + { + "start": 31873.58, + "end": 31874.54, + "probability": 0.8431 + }, + { + "start": 31875.2, + "end": 31875.74, + "probability": 0.9601 + }, + { + "start": 31876.76, + "end": 31877.6, + "probability": 0.9664 + }, + { + "start": 31878.46, + "end": 31879.82, + "probability": 0.9387 + }, + { + "start": 31883.38, + "end": 31888.06, + "probability": 0.7986 + }, + { + "start": 31888.74, + "end": 31889.2, + "probability": 0.6545 + }, + { + "start": 31890.58, + "end": 31891.6, + "probability": 0.7196 + }, + { + "start": 31894.94, + "end": 31895.98, + "probability": 0.9794 + }, + { + "start": 31896.68, + "end": 31897.62, + "probability": 0.8869 + }, + { + "start": 31898.56, + "end": 31900.5, + "probability": 0.9359 + }, + { + "start": 31901.74, + "end": 31902.66, + "probability": 0.9725 + }, + { + "start": 31904.38, + "end": 31905.2, + "probability": 0.8732 + }, + { + "start": 31907.0, + "end": 31907.48, + "probability": 0.9824 + }, + { + "start": 31908.22, + "end": 31909.02, + "probability": 0.8696 + }, + { + "start": 31910.04, + "end": 31910.5, + "probability": 0.9897 + }, + { + "start": 31911.08, + "end": 31911.88, + "probability": 0.9634 + }, + { + "start": 31914.0, + "end": 31915.42, + "probability": 0.7347 + }, + { + "start": 31916.62, + "end": 31917.08, + "probability": 0.5483 + }, + { + "start": 31918.2, + "end": 31919.0, + "probability": 0.8442 + }, + { + "start": 31920.92, + "end": 31922.42, + "probability": 0.7524 + }, + { + "start": 31924.34, + "end": 31926.3, + "probability": 0.8326 + }, + { + "start": 31927.1, + "end": 31927.62, + "probability": 0.9756 + }, + { + "start": 31929.2, + "end": 31930.06, + "probability": 0.8388 + }, + { + "start": 31933.48, + "end": 31934.46, + "probability": 0.5981 + }, + { + "start": 31935.34, + "end": 31937.88, + "probability": 0.7684 + }, + { + "start": 31940.86, + "end": 31941.36, + "probability": 0.9768 + }, + { + "start": 31942.6, + "end": 31943.32, + "probability": 0.7844 + }, + { + "start": 31943.86, + "end": 31944.14, + "probability": 0.9746 + }, + { + "start": 31945.66, + "end": 31946.5, + "probability": 0.8057 + }, + { + "start": 31947.98, + "end": 31949.64, + "probability": 0.7006 + }, + { + "start": 31950.42, + "end": 31950.96, + "probability": 0.8411 + }, + { + "start": 31951.58, + "end": 31954.28, + "probability": 0.8901 + }, + { + "start": 31958.86, + "end": 31959.12, + "probability": 0.5944 + }, + { + "start": 31959.76, + "end": 31960.68, + "probability": 0.1895 + }, + { + "start": 31962.66, + "end": 31964.68, + "probability": 0.5922 + }, + { + "start": 31964.72, + "end": 31966.38, + "probability": 0.9335 + }, + { + "start": 31967.12, + "end": 31967.62, + "probability": 0.834 + }, + { + "start": 31969.28, + "end": 31970.34, + "probability": 0.9256 + }, + { + "start": 31971.16, + "end": 31973.34, + "probability": 0.9507 + }, + { + "start": 31978.24, + "end": 31978.6, + "probability": 0.6482 + }, + { + "start": 31983.06, + "end": 31984.14, + "probability": 0.6109 + }, + { + "start": 31984.94, + "end": 31985.42, + "probability": 0.8844 + }, + { + "start": 31985.98, + "end": 31988.38, + "probability": 0.2058 + }, + { + "start": 31988.42, + "end": 31990.0, + "probability": 0.6498 + }, + { + "start": 31990.06, + "end": 31991.4, + "probability": 0.6554 + }, + { + "start": 31991.78, + "end": 31992.92, + "probability": 0.9134 + }, + { + "start": 31993.46, + "end": 31994.2, + "probability": 0.8444 + }, + { + "start": 31995.52, + "end": 31996.38, + "probability": 0.9918 + }, + { + "start": 31997.06, + "end": 31997.82, + "probability": 0.8756 + }, + { + "start": 31998.62, + "end": 31999.14, + "probability": 0.9561 + }, + { + "start": 31999.74, + "end": 32000.36, + "probability": 0.8685 + }, + { + "start": 32002.64, + "end": 32003.1, + "probability": 0.9739 + }, + { + "start": 32003.74, + "end": 32004.04, + "probability": 0.9565 + }, + { + "start": 32006.98, + "end": 32008.04, + "probability": 0.5879 + }, + { + "start": 32008.62, + "end": 32009.44, + "probability": 0.766 + }, + { + "start": 32011.22, + "end": 32012.08, + "probability": 0.6839 + }, + { + "start": 32014.94, + "end": 32015.84, + "probability": 0.9771 + }, + { + "start": 32016.36, + "end": 32017.12, + "probability": 0.8626 + }, + { + "start": 32018.88, + "end": 32019.4, + "probability": 0.9268 + }, + { + "start": 32020.38, + "end": 32021.18, + "probability": 0.9523 + }, + { + "start": 32023.1, + "end": 32024.58, + "probability": 0.9445 + }, + { + "start": 32026.08, + "end": 32026.68, + "probability": 0.9836 + }, + { + "start": 32029.6, + "end": 32030.38, + "probability": 0.5044 + }, + { + "start": 32033.02, + "end": 32034.26, + "probability": 0.7343 + }, + { + "start": 32035.98, + "end": 32036.88, + "probability": 0.9805 + }, + { + "start": 32037.62, + "end": 32038.12, + "probability": 0.8607 + }, + { + "start": 32040.14, + "end": 32041.16, + "probability": 0.6008 + }, + { + "start": 32042.82, + "end": 32043.48, + "probability": 0.86 + }, + { + "start": 32044.22, + "end": 32044.54, + "probability": 0.8311 + }, + { + "start": 32045.12, + "end": 32045.34, + "probability": 0.9473 + }, + { + "start": 32048.54, + "end": 32050.32, + "probability": 0.4072 + }, + { + "start": 32050.86, + "end": 32053.02, + "probability": 0.7177 + }, + { + "start": 32053.68, + "end": 32054.3, + "probability": 0.8908 + }, + { + "start": 32055.34, + "end": 32057.22, + "probability": 0.9507 + }, + { + "start": 32059.38, + "end": 32061.08, + "probability": 0.8298 + }, + { + "start": 32062.54, + "end": 32064.18, + "probability": 0.967 + }, + { + "start": 32064.3, + "end": 32066.2, + "probability": 0.952 + }, + { + "start": 32066.24, + "end": 32066.9, + "probability": 0.9311 + }, + { + "start": 32067.5, + "end": 32068.54, + "probability": 0.6783 + }, + { + "start": 32069.54, + "end": 32070.02, + "probability": 0.5584 + }, + { + "start": 32071.34, + "end": 32073.22, + "probability": 0.8516 + }, + { + "start": 32075.16, + "end": 32076.14, + "probability": 0.717 + }, + { + "start": 32078.16, + "end": 32079.9, + "probability": 0.8264 + }, + { + "start": 32081.04, + "end": 32081.66, + "probability": 0.9915 + }, + { + "start": 32082.86, + "end": 32083.88, + "probability": 0.8159 + }, + { + "start": 32084.78, + "end": 32085.28, + "probability": 0.9863 + }, + { + "start": 32086.64, + "end": 32087.75, + "probability": 0.9294 + }, + { + "start": 32088.58, + "end": 32090.32, + "probability": 0.9902 + }, + { + "start": 32091.62, + "end": 32093.66, + "probability": 0.834 + }, + { + "start": 32094.9, + "end": 32095.42, + "probability": 0.7133 + }, + { + "start": 32096.64, + "end": 32097.72, + "probability": 0.8052 + }, + { + "start": 32098.66, + "end": 32100.44, + "probability": 0.7104 + }, + { + "start": 32104.9, + "end": 32105.44, + "probability": 0.5938 + }, + { + "start": 32106.92, + "end": 32107.5, + "probability": 0.7505 + }, + { + "start": 32108.64, + "end": 32110.2, + "probability": 0.9377 + }, + { + "start": 32111.12, + "end": 32111.7, + "probability": 0.875 + }, + { + "start": 32112.86, + "end": 32115.8, + "probability": 0.83 + }, + { + "start": 32118.4, + "end": 32120.06, + "probability": 0.9205 + }, + { + "start": 32120.86, + "end": 32121.34, + "probability": 0.9779 + }, + { + "start": 32122.72, + "end": 32123.74, + "probability": 0.9506 + }, + { + "start": 32126.36, + "end": 32126.92, + "probability": 0.9783 + }, + { + "start": 32128.7, + "end": 32129.74, + "probability": 0.861 + }, + { + "start": 32131.36, + "end": 32131.84, + "probability": 0.5871 + }, + { + "start": 32132.48, + "end": 32133.58, + "probability": 0.6362 + }, + { + "start": 32134.48, + "end": 32136.04, + "probability": 0.9666 + }, + { + "start": 32137.36, + "end": 32137.84, + "probability": 0.9849 + }, + { + "start": 32138.6, + "end": 32139.28, + "probability": 0.9596 + }, + { + "start": 32140.08, + "end": 32141.62, + "probability": 0.9842 + }, + { + "start": 32142.38, + "end": 32142.66, + "probability": 0.9827 + }, + { + "start": 32143.24, + "end": 32144.04, + "probability": 0.9478 + }, + { + "start": 32145.36, + "end": 32145.98, + "probability": 0.992 + }, + { + "start": 32146.66, + "end": 32147.44, + "probability": 0.8509 + }, + { + "start": 32149.98, + "end": 32150.68, + "probability": 0.3973 + }, + { + "start": 32152.34, + "end": 32153.92, + "probability": 0.239 + }, + { + "start": 32155.1, + "end": 32155.86, + "probability": 0.4853 + }, + { + "start": 32158.02, + "end": 32158.96, + "probability": 0.6758 + }, + { + "start": 32159.56, + "end": 32163.74, + "probability": 0.66 + }, + { + "start": 32167.3, + "end": 32167.8, + "probability": 0.7612 + }, + { + "start": 32169.84, + "end": 32170.68, + "probability": 0.7488 + }, + { + "start": 32172.86, + "end": 32174.5, + "probability": 0.933 + }, + { + "start": 32175.54, + "end": 32176.04, + "probability": 0.8225 + }, + { + "start": 32177.14, + "end": 32178.0, + "probability": 0.8556 + }, + { + "start": 32180.46, + "end": 32182.02, + "probability": 0.7634 + }, + { + "start": 32184.2, + "end": 32185.12, + "probability": 0.9374 + }, + { + "start": 32185.74, + "end": 32186.56, + "probability": 0.8425 + }, + { + "start": 32187.44, + "end": 32187.92, + "probability": 0.9827 + }, + { + "start": 32189.2, + "end": 32192.3, + "probability": 0.8038 + }, + { + "start": 32193.04, + "end": 32193.6, + "probability": 0.9953 + }, + { + "start": 32194.44, + "end": 32195.22, + "probability": 0.9198 + }, + { + "start": 32196.32, + "end": 32198.18, + "probability": 0.9828 + }, + { + "start": 32198.98, + "end": 32199.44, + "probability": 0.9927 + }, + { + "start": 32200.08, + "end": 32200.96, + "probability": 0.9195 + }, + { + "start": 32201.9, + "end": 32202.38, + "probability": 0.5372 + }, + { + "start": 32202.96, + "end": 32203.74, + "probability": 0.5327 + }, + { + "start": 32205.14, + "end": 32205.74, + "probability": 0.8929 + }, + { + "start": 32206.82, + "end": 32207.66, + "probability": 0.6644 + }, + { + "start": 32209.58, + "end": 32211.38, + "probability": 0.877 + }, + { + "start": 32213.2, + "end": 32213.74, + "probability": 0.9583 + }, + { + "start": 32215.6, + "end": 32216.2, + "probability": 0.8303 + }, + { + "start": 32217.3, + "end": 32219.24, + "probability": 0.9563 + }, + { + "start": 32220.06, + "end": 32220.54, + "probability": 0.9956 + }, + { + "start": 32221.12, + "end": 32221.84, + "probability": 0.9762 + }, + { + "start": 32223.14, + "end": 32223.7, + "probability": 0.9893 + }, + { + "start": 32224.28, + "end": 32225.44, + "probability": 0.9637 + }, + { + "start": 32226.04, + "end": 32228.12, + "probability": 0.9254 + }, + { + "start": 32229.24, + "end": 32229.32, + "probability": 0.0038 + }, + { + "start": 32231.02, + "end": 32232.84, + "probability": 0.5436 + }, + { + "start": 32234.58, + "end": 32235.4, + "probability": 0.5019 + }, + { + "start": 32236.38, + "end": 32236.94, + "probability": 0.7204 + }, + { + "start": 32238.2, + "end": 32239.24, + "probability": 0.7521 + }, + { + "start": 32241.96, + "end": 32244.08, + "probability": 0.5112 + }, + { + "start": 32244.82, + "end": 32245.74, + "probability": 0.6991 + }, + { + "start": 32247.82, + "end": 32249.62, + "probability": 0.8185 + }, + { + "start": 32251.36, + "end": 32252.9, + "probability": 0.9223 + }, + { + "start": 32253.56, + "end": 32254.08, + "probability": 0.9795 + }, + { + "start": 32255.26, + "end": 32256.08, + "probability": 0.8447 + }, + { + "start": 32257.18, + "end": 32261.04, + "probability": 0.8086 + }, + { + "start": 32266.44, + "end": 32266.74, + "probability": 0.6814 + }, + { + "start": 32270.84, + "end": 32272.16, + "probability": 0.7414 + }, + { + "start": 32272.2, + "end": 32274.18, + "probability": 0.6118 + }, + { + "start": 32274.48, + "end": 32274.72, + "probability": 0.536 + }, + { + "start": 32274.8, + "end": 32275.17, + "probability": 0.2751 + }, + { + "start": 32275.84, + "end": 32279.1, + "probability": 0.7747 + }, + { + "start": 32279.82, + "end": 32280.6, + "probability": 0.9688 + }, + { + "start": 32281.3, + "end": 32282.34, + "probability": 0.888 + }, + { + "start": 32284.97, + "end": 32286.58, + "probability": 0.4479 + }, + { + "start": 32286.58, + "end": 32287.14, + "probability": 0.4359 + }, + { + "start": 32287.22, + "end": 32288.48, + "probability": 0.7627 + }, + { + "start": 32289.36, + "end": 32295.06, + "probability": 0.8853 + }, + { + "start": 32297.16, + "end": 32300.66, + "probability": 0.9435 + }, + { + "start": 32301.9, + "end": 32303.3, + "probability": 0.998 + }, + { + "start": 32304.34, + "end": 32306.82, + "probability": 0.7882 + }, + { + "start": 32307.76, + "end": 32309.1, + "probability": 0.8455 + }, + { + "start": 32310.66, + "end": 32312.12, + "probability": 0.9761 + }, + { + "start": 32312.18, + "end": 32313.62, + "probability": 0.8596 + }, + { + "start": 32314.86, + "end": 32315.42, + "probability": 0.9858 + }, + { + "start": 32316.94, + "end": 32318.76, + "probability": 0.9332 + }, + { + "start": 32320.1, + "end": 32320.94, + "probability": 0.9379 + }, + { + "start": 32322.5, + "end": 32324.46, + "probability": 0.865 + }, + { + "start": 32325.04, + "end": 32326.2, + "probability": 0.7432 + }, + { + "start": 32327.12, + "end": 32328.62, + "probability": 0.9574 + }, + { + "start": 32328.76, + "end": 32330.24, + "probability": 0.9288 + }, + { + "start": 32330.36, + "end": 32331.9, + "probability": 0.9224 + }, + { + "start": 32332.0, + "end": 32333.68, + "probability": 0.5128 + }, + { + "start": 32334.92, + "end": 32336.2, + "probability": 0.8605 + }, + { + "start": 32336.24, + "end": 32337.38, + "probability": 0.5233 + }, + { + "start": 32337.38, + "end": 32338.52, + "probability": 0.4881 + }, + { + "start": 32338.58, + "end": 32339.72, + "probability": 0.8548 + }, + { + "start": 32340.74, + "end": 32342.5, + "probability": 0.918 + }, + { + "start": 32344.32, + "end": 32345.3, + "probability": 0.9742 + }, + { + "start": 32347.36, + "end": 32348.04, + "probability": 0.8086 + }, + { + "start": 32348.76, + "end": 32349.26, + "probability": 0.9928 + }, + { + "start": 32351.32, + "end": 32352.0, + "probability": 0.8504 + }, + { + "start": 32352.6, + "end": 32353.12, + "probability": 0.9883 + }, + { + "start": 32354.5, + "end": 32355.38, + "probability": 0.951 + }, + { + "start": 32356.04, + "end": 32356.62, + "probability": 0.9933 + }, + { + "start": 32358.32, + "end": 32359.08, + "probability": 0.9316 + }, + { + "start": 32360.2, + "end": 32361.52, + "probability": 0.6192 + }, + { + "start": 32363.64, + "end": 32365.02, + "probability": 0.8125 + }, + { + "start": 32365.8, + "end": 32367.08, + "probability": 0.8241 + }, + { + "start": 32367.18, + "end": 32368.6, + "probability": 0.9127 + }, + { + "start": 32368.62, + "end": 32369.64, + "probability": 0.9049 + }, + { + "start": 32369.68, + "end": 32371.72, + "probability": 0.8614 + }, + { + "start": 32372.72, + "end": 32373.78, + "probability": 0.8198 + }, + { + "start": 32374.66, + "end": 32376.04, + "probability": 0.6588 + }, + { + "start": 32377.7, + "end": 32378.04, + "probability": 0.739 + }, + { + "start": 32380.56, + "end": 32381.42, + "probability": 0.959 + }, + { + "start": 32382.0, + "end": 32384.6, + "probability": 0.8996 + }, + { + "start": 32385.56, + "end": 32386.94, + "probability": 0.9043 + }, + { + "start": 32388.1, + "end": 32389.08, + "probability": 0.9915 + }, + { + "start": 32389.96, + "end": 32390.82, + "probability": 0.671 + }, + { + "start": 32391.78, + "end": 32393.28, + "probability": 0.8105 + }, + { + "start": 32395.44, + "end": 32397.58, + "probability": 0.6813 + }, + { + "start": 32397.68, + "end": 32398.9, + "probability": 0.6829 + }, + { + "start": 32399.02, + "end": 32399.64, + "probability": 0.8213 + }, + { + "start": 32401.52, + "end": 32404.52, + "probability": 0.7489 + }, + { + "start": 32406.04, + "end": 32407.64, + "probability": 0.8857 + }, + { + "start": 32407.74, + "end": 32409.52, + "probability": 0.9308 + }, + { + "start": 32409.62, + "end": 32410.28, + "probability": 0.9379 + }, + { + "start": 32412.12, + "end": 32414.46, + "probability": 0.7164 + }, + { + "start": 32415.34, + "end": 32416.34, + "probability": 0.3802 + }, + { + "start": 32419.2, + "end": 32419.96, + "probability": 0.4956 + }, + { + "start": 32420.26, + "end": 32420.92, + "probability": 0.6589 + }, + { + "start": 32421.66, + "end": 32422.15, + "probability": 0.2967 + }, + { + "start": 32431.42, + "end": 32432.43, + "probability": 0.5474 + }, + { + "start": 32434.2, + "end": 32439.22, + "probability": 0.8882 + }, + { + "start": 32442.5, + "end": 32443.28, + "probability": 0.7083 + }, + { + "start": 32443.52, + "end": 32444.12, + "probability": 0.5826 + }, + { + "start": 32463.78, + "end": 32465.18, + "probability": 0.1332 + }, + { + "start": 32465.18, + "end": 32469.5, + "probability": 0.0273 + }, + { + "start": 32482.44, + "end": 32483.46, + "probability": 0.0076 + }, + { + "start": 32485.98, + "end": 32488.32, + "probability": 0.0218 + }, + { + "start": 32550.98, + "end": 32551.24, + "probability": 0.3513 + }, + { + "start": 32551.88, + "end": 32553.36, + "probability": 0.5814 + }, + { + "start": 32553.9, + "end": 32554.38, + "probability": 0.563 + }, + { + "start": 32554.54, + "end": 32556.12, + "probability": 0.9838 + }, + { + "start": 32557.72, + "end": 32561.53, + "probability": 0.9382 + }, + { + "start": 32562.38, + "end": 32565.42, + "probability": 0.9945 + }, + { + "start": 32566.74, + "end": 32567.82, + "probability": 0.6468 + }, + { + "start": 32567.96, + "end": 32569.16, + "probability": 0.6983 + }, + { + "start": 32569.62, + "end": 32570.62, + "probability": 0.7734 + }, + { + "start": 32572.76, + "end": 32574.42, + "probability": 0.7271 + }, + { + "start": 32576.52, + "end": 32580.24, + "probability": 0.7 + }, + { + "start": 32581.14, + "end": 32583.28, + "probability": 0.8665 + }, + { + "start": 32585.1, + "end": 32585.36, + "probability": 0.2504 + }, + { + "start": 32593.97, + "end": 32598.97, + "probability": 0.9968 + }, + { + "start": 32599.61, + "end": 32602.22, + "probability": 0.8453 + }, + { + "start": 32602.52, + "end": 32605.9, + "probability": 0.9987 + }, + { + "start": 32605.9, + "end": 32610.56, + "probability": 0.7523 + }, + { + "start": 32611.36, + "end": 32612.0, + "probability": 0.6144 + }, + { + "start": 32612.96, + "end": 32615.96, + "probability": 0.9715 + }, + { + "start": 32616.04, + "end": 32620.52, + "probability": 0.8154 + }, + { + "start": 32621.42, + "end": 32624.72, + "probability": 0.9481 + }, + { + "start": 32625.62, + "end": 32629.06, + "probability": 0.9066 + }, + { + "start": 32629.92, + "end": 32632.96, + "probability": 0.9877 + }, + { + "start": 32634.02, + "end": 32635.76, + "probability": 0.8947 + }, + { + "start": 32638.0, + "end": 32638.98, + "probability": 0.9871 + }, + { + "start": 32639.56, + "end": 32641.84, + "probability": 0.9938 + }, + { + "start": 32642.5, + "end": 32643.64, + "probability": 0.9079 + }, + { + "start": 32643.96, + "end": 32645.24, + "probability": 0.9625 + }, + { + "start": 32645.58, + "end": 32645.96, + "probability": 0.9837 + }, + { + "start": 32648.04, + "end": 32648.66, + "probability": 0.7562 + }, + { + "start": 32649.82, + "end": 32654.06, + "probability": 0.9938 + }, + { + "start": 32654.06, + "end": 32657.82, + "probability": 0.9932 + }, + { + "start": 32658.38, + "end": 32658.94, + "probability": 0.7928 + }, + { + "start": 32659.18, + "end": 32662.38, + "probability": 0.9984 + }, + { + "start": 32662.9, + "end": 32665.66, + "probability": 0.9714 + }, + { + "start": 32666.14, + "end": 32669.4, + "probability": 0.9959 + }, + { + "start": 32669.4, + "end": 32673.72, + "probability": 0.9951 + }, + { + "start": 32674.34, + "end": 32676.82, + "probability": 0.7405 + }, + { + "start": 32677.42, + "end": 32679.8, + "probability": 0.9802 + }, + { + "start": 32680.14, + "end": 32681.94, + "probability": 0.9706 + }, + { + "start": 32684.94, + "end": 32687.26, + "probability": 0.8757 + }, + { + "start": 32687.7, + "end": 32688.34, + "probability": 0.5155 + }, + { + "start": 32688.84, + "end": 32693.1, + "probability": 0.9979 + }, + { + "start": 32693.1, + "end": 32697.0, + "probability": 0.9927 + }, + { + "start": 32697.46, + "end": 32700.0, + "probability": 0.9974 + }, + { + "start": 32700.0, + "end": 32703.36, + "probability": 0.9941 + }, + { + "start": 32703.98, + "end": 32704.94, + "probability": 0.6374 + }, + { + "start": 32705.08, + "end": 32708.22, + "probability": 0.9359 + }, + { + "start": 32708.22, + "end": 32711.24, + "probability": 0.9225 + }, + { + "start": 32711.94, + "end": 32712.3, + "probability": 0.8487 + }, + { + "start": 32712.88, + "end": 32715.78, + "probability": 0.9956 + }, + { + "start": 32715.78, + "end": 32719.56, + "probability": 0.9964 + }, + { + "start": 32720.04, + "end": 32723.8, + "probability": 0.9958 + }, + { + "start": 32723.8, + "end": 32727.56, + "probability": 0.9995 + }, + { + "start": 32728.1, + "end": 32729.66, + "probability": 0.9638 + }, + { + "start": 32730.68, + "end": 32731.24, + "probability": 0.7336 + }, + { + "start": 32731.78, + "end": 32735.54, + "probability": 0.9957 + }, + { + "start": 32735.66, + "end": 32743.2, + "probability": 0.9921 + }, + { + "start": 32744.0, + "end": 32751.16, + "probability": 0.9951 + }, + { + "start": 32751.3, + "end": 32753.22, + "probability": 0.9285 + }, + { + "start": 32753.72, + "end": 32758.44, + "probability": 0.9457 + }, + { + "start": 32758.44, + "end": 32763.1, + "probability": 0.9683 + }, + { + "start": 32763.66, + "end": 32763.88, + "probability": 0.4346 + }, + { + "start": 32763.9, + "end": 32767.56, + "probability": 0.9684 + }, + { + "start": 32768.2, + "end": 32770.92, + "probability": 0.9925 + }, + { + "start": 32771.42, + "end": 32774.18, + "probability": 0.9926 + }, + { + "start": 32774.66, + "end": 32777.82, + "probability": 0.9911 + }, + { + "start": 32778.06, + "end": 32782.28, + "probability": 0.8722 + }, + { + "start": 32782.68, + "end": 32783.02, + "probability": 0.7624 + }, + { + "start": 32783.56, + "end": 32785.0, + "probability": 0.7673 + }, + { + "start": 32786.16, + "end": 32786.66, + "probability": 0.8417 + }, + { + "start": 32787.74, + "end": 32792.94, + "probability": 0.9964 + }, + { + "start": 32793.16, + "end": 32800.7, + "probability": 0.9685 + }, + { + "start": 32801.38, + "end": 32805.26, + "probability": 0.9976 + }, + { + "start": 32805.98, + "end": 32811.38, + "probability": 0.9978 + }, + { + "start": 32812.08, + "end": 32813.04, + "probability": 0.3581 + }, + { + "start": 32813.12, + "end": 32819.28, + "probability": 0.9012 + }, + { + "start": 32819.52, + "end": 32824.6, + "probability": 0.9969 + }, + { + "start": 32825.16, + "end": 32828.84, + "probability": 0.9846 + }, + { + "start": 32828.84, + "end": 32833.16, + "probability": 0.9995 + }, + { + "start": 32833.64, + "end": 32837.1, + "probability": 0.9775 + }, + { + "start": 32837.1, + "end": 32839.9, + "probability": 0.9976 + }, + { + "start": 32840.68, + "end": 32842.62, + "probability": 0.7078 + }, + { + "start": 32843.8, + "end": 32846.98, + "probability": 0.9644 + }, + { + "start": 32847.12, + "end": 32848.9, + "probability": 0.9407 + }, + { + "start": 32849.42, + "end": 32854.4, + "probability": 0.9978 + }, + { + "start": 32855.52, + "end": 32859.52, + "probability": 0.9811 + }, + { + "start": 32860.06, + "end": 32865.06, + "probability": 0.9899 + }, + { + "start": 32865.84, + "end": 32869.98, + "probability": 0.9893 + }, + { + "start": 32870.06, + "end": 32873.68, + "probability": 0.9952 + }, + { + "start": 32873.98, + "end": 32878.38, + "probability": 0.9973 + }, + { + "start": 32879.22, + "end": 32882.22, + "probability": 0.9914 + }, + { + "start": 32882.22, + "end": 32886.98, + "probability": 0.9914 + }, + { + "start": 32887.44, + "end": 32890.63, + "probability": 0.9867 + }, + { + "start": 32890.68, + "end": 32894.44, + "probability": 0.9847 + }, + { + "start": 32895.86, + "end": 32896.4, + "probability": 0.6227 + }, + { + "start": 32897.22, + "end": 32900.98, + "probability": 0.9932 + }, + { + "start": 32900.98, + "end": 32905.06, + "probability": 0.9966 + }, + { + "start": 32905.06, + "end": 32910.38, + "probability": 0.9967 + }, + { + "start": 32910.7, + "end": 32913.92, + "probability": 0.9839 + }, + { + "start": 32913.92, + "end": 32917.8, + "probability": 0.9987 + }, + { + "start": 32917.8, + "end": 32922.64, + "probability": 0.9961 + }, + { + "start": 32923.12, + "end": 32923.42, + "probability": 0.4015 + }, + { + "start": 32923.54, + "end": 32926.14, + "probability": 0.9881 + }, + { + "start": 32926.16, + "end": 32929.1, + "probability": 0.9489 + }, + { + "start": 32930.18, + "end": 32934.62, + "probability": 0.7781 + }, + { + "start": 32935.16, + "end": 32936.38, + "probability": 0.9906 + }, + { + "start": 32937.06, + "end": 32939.18, + "probability": 0.9438 + }, + { + "start": 32939.48, + "end": 32941.98, + "probability": 0.9788 + }, + { + "start": 32942.34, + "end": 32945.48, + "probability": 0.9964 + }, + { + "start": 32946.08, + "end": 32948.78, + "probability": 0.9981 + }, + { + "start": 32949.0, + "end": 32952.08, + "probability": 0.9897 + }, + { + "start": 32952.48, + "end": 32955.86, + "probability": 0.9904 + }, + { + "start": 32956.26, + "end": 32961.0, + "probability": 0.87 + }, + { + "start": 32961.0, + "end": 32964.3, + "probability": 0.9979 + }, + { + "start": 32964.8, + "end": 32965.28, + "probability": 0.9152 + }, + { + "start": 32965.86, + "end": 32967.32, + "probability": 0.881 + }, + { + "start": 32967.74, + "end": 32970.74, + "probability": 0.7978 + }, + { + "start": 32971.38, + "end": 32975.02, + "probability": 0.9986 + }, + { + "start": 32975.76, + "end": 32977.82, + "probability": 0.9878 + }, + { + "start": 32978.6, + "end": 32982.54, + "probability": 0.997 + }, + { + "start": 32982.92, + "end": 32988.2, + "probability": 0.9586 + }, + { + "start": 32988.52, + "end": 32990.55, + "probability": 0.9846 + }, + { + "start": 32990.94, + "end": 32991.94, + "probability": 0.9539 + }, + { + "start": 32992.04, + "end": 32993.54, + "probability": 0.9677 + }, + { + "start": 32993.98, + "end": 32994.36, + "probability": 0.6376 + }, + { + "start": 32995.0, + "end": 32995.44, + "probability": 0.5761 + }, + { + "start": 32996.14, + "end": 32999.92, + "probability": 0.9895 + }, + { + "start": 32999.92, + "end": 33005.6, + "probability": 0.998 + }, + { + "start": 33006.22, + "end": 33010.56, + "probability": 0.8734 + }, + { + "start": 33010.94, + "end": 33012.48, + "probability": 0.9722 + }, + { + "start": 33013.04, + "end": 33013.66, + "probability": 0.6514 + }, + { + "start": 33014.14, + "end": 33019.04, + "probability": 0.9966 + }, + { + "start": 33019.04, + "end": 33023.04, + "probability": 0.9988 + }, + { + "start": 33023.58, + "end": 33024.82, + "probability": 0.9962 + }, + { + "start": 33025.04, + "end": 33025.34, + "probability": 0.7635 + }, + { + "start": 33026.7, + "end": 33028.4, + "probability": 0.8134 + }, + { + "start": 33028.72, + "end": 33030.36, + "probability": 0.9296 + }, + { + "start": 33031.78, + "end": 33035.56, + "probability": 0.8924 + }, + { + "start": 33042.94, + "end": 33049.38, + "probability": 0.0592 + }, + { + "start": 33050.94, + "end": 33052.0, + "probability": 0.1531 + }, + { + "start": 33052.98, + "end": 33054.66, + "probability": 0.0087 + }, + { + "start": 33054.78, + "end": 33055.34, + "probability": 0.018 + }, + { + "start": 33065.56, + "end": 33066.46, + "probability": 0.065 + }, + { + "start": 33068.46, + "end": 33068.88, + "probability": 0.5032 + }, + { + "start": 33069.56, + "end": 33074.56, + "probability": 0.9907 + }, + { + "start": 33076.54, + "end": 33078.34, + "probability": 0.7568 + }, + { + "start": 33079.62, + "end": 33081.68, + "probability": 0.8864 + }, + { + "start": 33083.0, + "end": 33084.52, + "probability": 0.6417 + }, + { + "start": 33085.08, + "end": 33086.4, + "probability": 0.9643 + }, + { + "start": 33086.78, + "end": 33088.76, + "probability": 0.8573 + }, + { + "start": 33089.48, + "end": 33091.74, + "probability": 0.9976 + }, + { + "start": 33092.42, + "end": 33097.22, + "probability": 0.9644 + }, + { + "start": 33097.76, + "end": 33101.36, + "probability": 0.9941 + }, + { + "start": 33101.94, + "end": 33102.72, + "probability": 0.4846 + }, + { + "start": 33103.6, + "end": 33106.2, + "probability": 0.8686 + }, + { + "start": 33107.22, + "end": 33109.42, + "probability": 0.9869 + }, + { + "start": 33109.74, + "end": 33110.14, + "probability": 0.8946 + }, + { + "start": 33110.22, + "end": 33112.38, + "probability": 0.6237 + }, + { + "start": 33112.62, + "end": 33113.98, + "probability": 0.8203 + }, + { + "start": 33115.32, + "end": 33119.44, + "probability": 0.9973 + }, + { + "start": 33119.44, + "end": 33125.02, + "probability": 0.9106 + }, + { + "start": 33126.81, + "end": 33128.7, + "probability": 0.9487 + }, + { + "start": 33129.52, + "end": 33130.14, + "probability": 0.6205 + }, + { + "start": 33131.38, + "end": 33134.4, + "probability": 0.9965 + }, + { + "start": 33134.7, + "end": 33135.98, + "probability": 0.715 + }, + { + "start": 33136.12, + "end": 33136.74, + "probability": 0.5646 + }, + { + "start": 33137.24, + "end": 33139.58, + "probability": 0.9893 + }, + { + "start": 33140.1, + "end": 33141.92, + "probability": 0.8389 + }, + { + "start": 33143.24, + "end": 33146.1, + "probability": 0.8091 + }, + { + "start": 33146.96, + "end": 33148.93, + "probability": 0.995 + }, + { + "start": 33149.26, + "end": 33150.98, + "probability": 0.9263 + }, + { + "start": 33151.76, + "end": 33155.38, + "probability": 0.7453 + }, + { + "start": 33156.54, + "end": 33161.84, + "probability": 0.9842 + }, + { + "start": 33162.32, + "end": 33163.0, + "probability": 0.8631 + }, + { + "start": 33163.74, + "end": 33164.84, + "probability": 0.963 + }, + { + "start": 33165.54, + "end": 33168.12, + "probability": 0.8741 + }, + { + "start": 33169.22, + "end": 33171.26, + "probability": 0.9912 + }, + { + "start": 33171.6, + "end": 33174.46, + "probability": 0.9868 + }, + { + "start": 33175.84, + "end": 33178.36, + "probability": 0.9932 + }, + { + "start": 33178.94, + "end": 33180.22, + "probability": 0.9923 + }, + { + "start": 33180.74, + "end": 33185.74, + "probability": 0.9878 + }, + { + "start": 33187.2, + "end": 33191.95, + "probability": 0.9932 + }, + { + "start": 33192.96, + "end": 33195.64, + "probability": 0.1825 + }, + { + "start": 33196.84, + "end": 33197.88, + "probability": 0.0704 + }, + { + "start": 33198.18, + "end": 33200.73, + "probability": 0.8384 + }, + { + "start": 33202.72, + "end": 33204.34, + "probability": 0.9883 + }, + { + "start": 33205.12, + "end": 33210.66, + "probability": 0.9435 + }, + { + "start": 33210.92, + "end": 33210.92, + "probability": 0.0794 + }, + { + "start": 33210.92, + "end": 33212.28, + "probability": 0.9069 + }, + { + "start": 33213.98, + "end": 33218.78, + "probability": 0.9862 + }, + { + "start": 33218.78, + "end": 33222.3, + "probability": 0.998 + }, + { + "start": 33223.2, + "end": 33223.94, + "probability": 0.6141 + }, + { + "start": 33224.02, + "end": 33227.0, + "probability": 0.9721 + }, + { + "start": 33227.72, + "end": 33233.2, + "probability": 0.9945 + }, + { + "start": 33233.2, + "end": 33239.16, + "probability": 0.9956 + }, + { + "start": 33239.6, + "end": 33240.54, + "probability": 0.8178 + }, + { + "start": 33241.54, + "end": 33246.42, + "probability": 0.9549 + }, + { + "start": 33247.12, + "end": 33248.86, + "probability": 0.4906 + }, + { + "start": 33249.12, + "end": 33250.3, + "probability": 0.4073 + }, + { + "start": 33251.02, + "end": 33251.6, + "probability": 0.3045 + }, + { + "start": 33251.7, + "end": 33255.78, + "probability": 0.9036 + }, + { + "start": 33255.78, + "end": 33256.9, + "probability": 0.3426 + }, + { + "start": 33257.38, + "end": 33258.3, + "probability": 0.5145 + }, + { + "start": 33258.3, + "end": 33260.06, + "probability": 0.6609 + }, + { + "start": 33260.16, + "end": 33261.34, + "probability": 0.754 + }, + { + "start": 33262.58, + "end": 33263.92, + "probability": 0.1978 + }, + { + "start": 33263.92, + "end": 33264.66, + "probability": 0.4229 + }, + { + "start": 33264.94, + "end": 33267.7, + "probability": 0.9956 + }, + { + "start": 33267.82, + "end": 33268.38, + "probability": 0.023 + }, + { + "start": 33268.58, + "end": 33268.78, + "probability": 0.06 + }, + { + "start": 33268.78, + "end": 33268.8, + "probability": 0.1577 + }, + { + "start": 33268.8, + "end": 33270.18, + "probability": 0.1824 + }, + { + "start": 33270.26, + "end": 33270.26, + "probability": 0.065 + }, + { + "start": 33270.28, + "end": 33271.58, + "probability": 0.2032 + }, + { + "start": 33271.58, + "end": 33271.68, + "probability": 0.1445 + }, + { + "start": 33271.68, + "end": 33274.32, + "probability": 0.7649 + }, + { + "start": 33274.32, + "end": 33275.24, + "probability": 0.1279 + }, + { + "start": 33275.3, + "end": 33275.56, + "probability": 0.1671 + }, + { + "start": 33276.22, + "end": 33276.94, + "probability": 0.7502 + }, + { + "start": 33279.24, + "end": 33279.34, + "probability": 0.685 + }, + { + "start": 33281.28, + "end": 33281.94, + "probability": 0.6567 + }, + { + "start": 33282.08, + "end": 33282.8, + "probability": 0.8619 + }, + { + "start": 33282.9, + "end": 33285.3, + "probability": 0.9422 + }, + { + "start": 33285.38, + "end": 33286.42, + "probability": 0.8479 + }, + { + "start": 33286.74, + "end": 33286.92, + "probability": 0.6586 + }, + { + "start": 33287.26, + "end": 33288.16, + "probability": 0.6846 + }, + { + "start": 33288.42, + "end": 33290.11, + "probability": 0.883 + }, + { + "start": 33300.24, + "end": 33300.38, + "probability": 0.7193 + }, + { + "start": 33300.44, + "end": 33303.08, + "probability": 0.7374 + }, + { + "start": 33303.14, + "end": 33303.78, + "probability": 0.8489 + }, + { + "start": 33307.1, + "end": 33309.96, + "probability": 0.7046 + }, + { + "start": 33310.64, + "end": 33312.82, + "probability": 0.6865 + }, + { + "start": 33314.04, + "end": 33314.44, + "probability": 0.9471 + }, + { + "start": 33315.24, + "end": 33315.59, + "probability": 0.0906 + }, + { + "start": 33317.82, + "end": 33319.38, + "probability": 0.0556 + }, + { + "start": 33320.81, + "end": 33321.02, + "probability": 0.0466 + }, + { + "start": 33322.32, + "end": 33322.7, + "probability": 0.8195 + }, + { + "start": 33323.02, + "end": 33327.98, + "probability": 0.4988 + }, + { + "start": 33328.14, + "end": 33331.96, + "probability": 0.7975 + }, + { + "start": 33332.4, + "end": 33335.56, + "probability": 0.9302 + }, + { + "start": 33336.72, + "end": 33338.7, + "probability": 0.935 + }, + { + "start": 33339.62, + "end": 33345.24, + "probability": 0.9814 + }, + { + "start": 33345.32, + "end": 33347.02, + "probability": 0.695 + }, + { + "start": 33347.16, + "end": 33349.04, + "probability": 0.7593 + }, + { + "start": 33349.04, + "end": 33351.56, + "probability": 0.9918 + }, + { + "start": 33351.92, + "end": 33355.7, + "probability": 0.9556 + }, + { + "start": 33355.7, + "end": 33360.74, + "probability": 0.9854 + }, + { + "start": 33361.32, + "end": 33362.91, + "probability": 0.9888 + }, + { + "start": 33363.34, + "end": 33364.96, + "probability": 0.8579 + }, + { + "start": 33365.74, + "end": 33365.92, + "probability": 0.912 + }, + { + "start": 33366.76, + "end": 33367.02, + "probability": 0.8958 + }, + { + "start": 33369.04, + "end": 33369.48, + "probability": 0.7849 + }, + { + "start": 33370.8, + "end": 33373.36, + "probability": 0.7217 + }, + { + "start": 33373.46, + "end": 33375.38, + "probability": 0.8264 + }, + { + "start": 33375.46, + "end": 33375.7, + "probability": 0.3732 + }, + { + "start": 33375.88, + "end": 33377.66, + "probability": 0.2391 + }, + { + "start": 33378.53, + "end": 33379.97, + "probability": 0.0222 + }, + { + "start": 33380.32, + "end": 33380.86, + "probability": 0.4361 + }, + { + "start": 33380.94, + "end": 33380.94, + "probability": 0.0506 + }, + { + "start": 33380.94, + "end": 33381.3, + "probability": 0.7414 + }, + { + "start": 33381.64, + "end": 33382.6, + "probability": 0.8923 + }, + { + "start": 33382.72, + "end": 33384.16, + "probability": 0.8073 + }, + { + "start": 33385.74, + "end": 33386.56, + "probability": 0.6441 + }, + { + "start": 33386.78, + "end": 33388.52, + "probability": 0.991 + }, + { + "start": 33388.72, + "end": 33389.82, + "probability": 0.9946 + }, + { + "start": 33390.5, + "end": 33391.78, + "probability": 0.6387 + }, + { + "start": 33393.26, + "end": 33393.26, + "probability": 0.2368 + }, + { + "start": 33393.28, + "end": 33398.72, + "probability": 0.984 + }, + { + "start": 33399.52, + "end": 33400.86, + "probability": 0.8929 + }, + { + "start": 33400.98, + "end": 33405.76, + "probability": 0.9132 + }, + { + "start": 33406.9, + "end": 33413.64, + "probability": 0.9978 + }, + { + "start": 33414.18, + "end": 33414.86, + "probability": 0.6207 + }, + { + "start": 33416.06, + "end": 33420.4, + "probability": 0.973 + }, + { + "start": 33421.06, + "end": 33424.34, + "probability": 0.9618 + }, + { + "start": 33424.58, + "end": 33427.93, + "probability": 0.991 + }, + { + "start": 33427.94, + "end": 33430.6, + "probability": 0.9985 + }, + { + "start": 33430.7, + "end": 33431.64, + "probability": 0.5061 + }, + { + "start": 33432.24, + "end": 33436.98, + "probability": 0.9949 + }, + { + "start": 33437.44, + "end": 33439.44, + "probability": 0.7039 + }, + { + "start": 33439.82, + "end": 33442.1, + "probability": 0.9685 + }, + { + "start": 33443.08, + "end": 33448.02, + "probability": 0.9752 + }, + { + "start": 33448.12, + "end": 33449.1, + "probability": 0.8276 + }, + { + "start": 33449.48, + "end": 33450.21, + "probability": 0.9479 + }, + { + "start": 33451.0, + "end": 33451.96, + "probability": 0.9375 + }, + { + "start": 33453.16, + "end": 33456.16, + "probability": 0.9536 + }, + { + "start": 33456.76, + "end": 33460.24, + "probability": 0.9949 + }, + { + "start": 33460.44, + "end": 33462.54, + "probability": 0.988 + }, + { + "start": 33462.94, + "end": 33466.58, + "probability": 0.7643 + }, + { + "start": 33467.08, + "end": 33468.82, + "probability": 0.9373 + }, + { + "start": 33468.86, + "end": 33475.68, + "probability": 0.9415 + }, + { + "start": 33476.18, + "end": 33476.68, + "probability": 0.9673 + }, + { + "start": 33477.34, + "end": 33478.48, + "probability": 0.9844 + }, + { + "start": 33479.08, + "end": 33480.02, + "probability": 0.8145 + }, + { + "start": 33480.4, + "end": 33485.2, + "probability": 0.9875 + }, + { + "start": 33486.32, + "end": 33486.56, + "probability": 0.9442 + }, + { + "start": 33487.12, + "end": 33490.36, + "probability": 0.9912 + }, + { + "start": 33490.62, + "end": 33492.86, + "probability": 0.9154 + }, + { + "start": 33493.48, + "end": 33494.0, + "probability": 0.9696 + }, + { + "start": 33494.88, + "end": 33496.9, + "probability": 0.9968 + }, + { + "start": 33497.72, + "end": 33499.4, + "probability": 0.5434 + }, + { + "start": 33499.6, + "end": 33500.0, + "probability": 0.299 + }, + { + "start": 33500.0, + "end": 33500.68, + "probability": 0.9532 + }, + { + "start": 33500.88, + "end": 33501.36, + "probability": 0.8984 + }, + { + "start": 33501.44, + "end": 33501.8, + "probability": 0.8281 + }, + { + "start": 33501.84, + "end": 33503.54, + "probability": 0.7521 + }, + { + "start": 33503.92, + "end": 33504.46, + "probability": 0.9491 + }, + { + "start": 33505.22, + "end": 33506.6, + "probability": 0.7552 + }, + { + "start": 33507.12, + "end": 33508.72, + "probability": 0.868 + }, + { + "start": 33509.44, + "end": 33509.48, + "probability": 0.1607 + }, + { + "start": 33509.48, + "end": 33509.82, + "probability": 0.4841 + }, + { + "start": 33511.14, + "end": 33512.24, + "probability": 0.7941 + }, + { + "start": 33512.88, + "end": 33513.28, + "probability": 0.5497 + }, + { + "start": 33513.38, + "end": 33516.19, + "probability": 0.976 + }, + { + "start": 33516.9, + "end": 33518.68, + "probability": 0.8714 + }, + { + "start": 33519.3, + "end": 33522.72, + "probability": 0.9351 + }, + { + "start": 33523.24, + "end": 33526.2, + "probability": 0.8574 + }, + { + "start": 33526.92, + "end": 33529.04, + "probability": 0.9574 + }, + { + "start": 33529.12, + "end": 33530.5, + "probability": 0.7782 + }, + { + "start": 33531.42, + "end": 33532.36, + "probability": 0.5921 + }, + { + "start": 33532.38, + "end": 33533.76, + "probability": 0.9096 + }, + { + "start": 33549.96, + "end": 33551.3, + "probability": 0.7071 + }, + { + "start": 33552.22, + "end": 33553.16, + "probability": 0.8294 + }, + { + "start": 33554.4, + "end": 33556.42, + "probability": 0.8948 + }, + { + "start": 33558.54, + "end": 33561.7, + "probability": 0.9036 + }, + { + "start": 33561.82, + "end": 33562.64, + "probability": 0.9303 + }, + { + "start": 33562.78, + "end": 33566.46, + "probability": 0.9933 + }, + { + "start": 33566.74, + "end": 33569.93, + "probability": 0.9896 + }, + { + "start": 33570.98, + "end": 33576.86, + "probability": 0.9918 + }, + { + "start": 33577.06, + "end": 33577.64, + "probability": 0.7685 + }, + { + "start": 33577.74, + "end": 33577.74, + "probability": 0.0206 + }, + { + "start": 33578.78, + "end": 33579.74, + "probability": 0.3417 + }, + { + "start": 33581.58, + "end": 33584.78, + "probability": 0.9854 + }, + { + "start": 33586.9, + "end": 33590.78, + "probability": 0.993 + }, + { + "start": 33591.02, + "end": 33594.9, + "probability": 0.9755 + }, + { + "start": 33595.64, + "end": 33596.1, + "probability": 0.9609 + }, + { + "start": 33597.64, + "end": 33599.2, + "probability": 0.9951 + }, + { + "start": 33599.36, + "end": 33600.7, + "probability": 0.9304 + }, + { + "start": 33600.98, + "end": 33601.62, + "probability": 0.8254 + }, + { + "start": 33603.18, + "end": 33605.94, + "probability": 0.9897 + }, + { + "start": 33606.78, + "end": 33612.18, + "probability": 0.9971 + }, + { + "start": 33613.42, + "end": 33621.6, + "probability": 0.994 + }, + { + "start": 33621.76, + "end": 33622.84, + "probability": 0.7445 + }, + { + "start": 33623.36, + "end": 33624.18, + "probability": 0.7801 + }, + { + "start": 33627.18, + "end": 33630.78, + "probability": 0.9995 + }, + { + "start": 33630.98, + "end": 33635.68, + "probability": 0.9532 + }, + { + "start": 33635.9, + "end": 33636.64, + "probability": 0.8925 + }, + { + "start": 33637.4, + "end": 33639.96, + "probability": 0.9956 + }, + { + "start": 33640.58, + "end": 33643.7, + "probability": 0.9585 + }, + { + "start": 33644.72, + "end": 33649.1, + "probability": 0.9719 + }, + { + "start": 33649.94, + "end": 33650.38, + "probability": 0.5668 + }, + { + "start": 33650.88, + "end": 33651.38, + "probability": 0.8346 + }, + { + "start": 33651.42, + "end": 33652.72, + "probability": 0.5323 + }, + { + "start": 33652.84, + "end": 33653.38, + "probability": 0.8029 + }, + { + "start": 33653.66, + "end": 33654.36, + "probability": 0.8171 + }, + { + "start": 33654.5, + "end": 33655.56, + "probability": 0.854 + }, + { + "start": 33657.45, + "end": 33660.98, + "probability": 0.9922 + }, + { + "start": 33661.22, + "end": 33663.56, + "probability": 0.9953 + }, + { + "start": 33663.56, + "end": 33666.34, + "probability": 0.9956 + }, + { + "start": 33666.46, + "end": 33666.92, + "probability": 0.8629 + }, + { + "start": 33667.52, + "end": 33668.24, + "probability": 0.9068 + }, + { + "start": 33668.94, + "end": 33672.06, + "probability": 0.9977 + }, + { + "start": 33672.68, + "end": 33673.26, + "probability": 0.6564 + }, + { + "start": 33674.4, + "end": 33674.84, + "probability": 0.7597 + }, + { + "start": 33675.5, + "end": 33677.04, + "probability": 0.7803 + }, + { + "start": 33679.94, + "end": 33683.4, + "probability": 0.9382 + }, + { + "start": 33683.48, + "end": 33685.1, + "probability": 0.98 + }, + { + "start": 33686.8, + "end": 33692.7, + "probability": 0.7047 + }, + { + "start": 33693.96, + "end": 33697.18, + "probability": 0.977 + }, + { + "start": 33697.94, + "end": 33701.92, + "probability": 0.9746 + }, + { + "start": 33702.88, + "end": 33706.14, + "probability": 0.9797 + }, + { + "start": 33706.78, + "end": 33707.39, + "probability": 0.8474 + }, + { + "start": 33708.14, + "end": 33709.3, + "probability": 0.9734 + }, + { + "start": 33709.9, + "end": 33711.7, + "probability": 0.9233 + }, + { + "start": 33712.2, + "end": 33714.44, + "probability": 0.7274 + }, + { + "start": 33714.62, + "end": 33719.52, + "probability": 0.9915 + }, + { + "start": 33721.0, + "end": 33725.56, + "probability": 0.9842 + }, + { + "start": 33726.66, + "end": 33731.56, + "probability": 0.9913 + }, + { + "start": 33732.0, + "end": 33733.5, + "probability": 0.2355 + }, + { + "start": 33734.02, + "end": 33734.76, + "probability": 0.8105 + }, + { + "start": 33735.87, + "end": 33740.82, + "probability": 0.9976 + }, + { + "start": 33741.36, + "end": 33746.02, + "probability": 0.9858 + }, + { + "start": 33746.6, + "end": 33747.09, + "probability": 0.6396 + }, + { + "start": 33747.12, + "end": 33747.86, + "probability": 0.8172 + }, + { + "start": 33748.2, + "end": 33749.2, + "probability": 0.94 + }, + { + "start": 33749.38, + "end": 33750.44, + "probability": 0.8344 + }, + { + "start": 33751.16, + "end": 33754.72, + "probability": 0.8234 + }, + { + "start": 33755.36, + "end": 33755.82, + "probability": 0.4608 + }, + { + "start": 33756.44, + "end": 33757.84, + "probability": 0.0816 + }, + { + "start": 33758.52, + "end": 33759.4, + "probability": 0.1424 + }, + { + "start": 33760.06, + "end": 33761.42, + "probability": 0.9019 + }, + { + "start": 33761.68, + "end": 33762.8, + "probability": 0.9832 + }, + { + "start": 33762.9, + "end": 33764.96, + "probability": 0.7547 + }, + { + "start": 33765.5, + "end": 33768.28, + "probability": 0.9374 + }, + { + "start": 33768.28, + "end": 33771.1, + "probability": 0.7288 + }, + { + "start": 33771.98, + "end": 33772.44, + "probability": 0.0357 + }, + { + "start": 33772.44, + "end": 33772.44, + "probability": 0.1334 + }, + { + "start": 33772.44, + "end": 33776.82, + "probability": 0.514 + }, + { + "start": 33777.04, + "end": 33783.3, + "probability": 0.9901 + }, + { + "start": 33783.3, + "end": 33784.5, + "probability": 0.1362 + }, + { + "start": 33784.5, + "end": 33784.66, + "probability": 0.085 + }, + { + "start": 33784.98, + "end": 33787.54, + "probability": 0.993 + }, + { + "start": 33787.54, + "end": 33791.58, + "probability": 0.9874 + }, + { + "start": 33791.84, + "end": 33793.52, + "probability": 0.9142 + }, + { + "start": 33794.0, + "end": 33796.18, + "probability": 0.9993 + }, + { + "start": 33796.72, + "end": 33801.34, + "probability": 0.9993 + }, + { + "start": 33801.34, + "end": 33805.26, + "probability": 0.9932 + }, + { + "start": 33805.3, + "end": 33807.32, + "probability": 0.8062 + }, + { + "start": 33807.44, + "end": 33811.32, + "probability": 0.9952 + }, + { + "start": 33811.32, + "end": 33815.34, + "probability": 0.9523 + }, + { + "start": 33815.76, + "end": 33815.94, + "probability": 0.3881 + }, + { + "start": 33815.94, + "end": 33816.4, + "probability": 0.5484 + }, + { + "start": 33816.88, + "end": 33818.68, + "probability": 0.7406 + }, + { + "start": 33824.46, + "end": 33824.56, + "probability": 0.3571 + }, + { + "start": 33824.56, + "end": 33825.0, + "probability": 0.3014 + }, + { + "start": 33825.02, + "end": 33825.68, + "probability": 0.7095 + }, + { + "start": 33825.74, + "end": 33826.64, + "probability": 0.9056 + }, + { + "start": 33826.82, + "end": 33827.22, + "probability": 0.8878 + }, + { + "start": 33838.14, + "end": 33838.88, + "probability": 0.8832 + }, + { + "start": 33839.46, + "end": 33839.66, + "probability": 0.8248 + }, + { + "start": 33839.86, + "end": 33841.52, + "probability": 0.7481 + }, + { + "start": 33841.62, + "end": 33842.62, + "probability": 0.8808 + }, + { + "start": 33842.72, + "end": 33845.34, + "probability": 0.7091 + }, + { + "start": 33845.96, + "end": 33850.88, + "probability": 0.9749 + }, + { + "start": 33851.5, + "end": 33851.5, + "probability": 0.9819 + }, + { + "start": 33852.62, + "end": 33855.01, + "probability": 0.9492 + }, + { + "start": 33855.78, + "end": 33856.64, + "probability": 0.6292 + }, + { + "start": 33857.76, + "end": 33859.82, + "probability": 0.8075 + }, + { + "start": 33860.2, + "end": 33860.68, + "probability": 0.8259 + }, + { + "start": 33860.86, + "end": 33867.22, + "probability": 0.9333 + }, + { + "start": 33867.28, + "end": 33868.14, + "probability": 0.9762 + }, + { + "start": 33868.4, + "end": 33871.0, + "probability": 0.7529 + }, + { + "start": 33872.9, + "end": 33874.82, + "probability": 0.8226 + }, + { + "start": 33875.68, + "end": 33876.3, + "probability": 0.5902 + }, + { + "start": 33877.34, + "end": 33878.68, + "probability": 0.8101 + }, + { + "start": 33878.78, + "end": 33879.9, + "probability": 0.9355 + }, + { + "start": 33880.14, + "end": 33882.79, + "probability": 0.9922 + }, + { + "start": 33883.46, + "end": 33884.6, + "probability": 0.9489 + }, + { + "start": 33884.72, + "end": 33886.44, + "probability": 0.9196 + }, + { + "start": 33887.22, + "end": 33887.72, + "probability": 0.8209 + }, + { + "start": 33887.9, + "end": 33888.36, + "probability": 0.7508 + }, + { + "start": 33888.64, + "end": 33889.08, + "probability": 0.9375 + }, + { + "start": 33889.36, + "end": 33893.78, + "probability": 0.9941 + }, + { + "start": 33895.96, + "end": 33897.32, + "probability": 0.779 + }, + { + "start": 33897.44, + "end": 33903.18, + "probability": 0.9941 + }, + { + "start": 33903.24, + "end": 33903.88, + "probability": 0.6157 + }, + { + "start": 33904.86, + "end": 33908.34, + "probability": 0.9877 + }, + { + "start": 33909.78, + "end": 33913.2, + "probability": 0.9687 + }, + { + "start": 33913.4, + "end": 33913.74, + "probability": 0.8097 + }, + { + "start": 33914.42, + "end": 33914.92, + "probability": 0.5782 + }, + { + "start": 33915.7, + "end": 33920.54, + "probability": 0.9646 + }, + { + "start": 33921.7, + "end": 33922.84, + "probability": 0.67 + }, + { + "start": 33923.38, + "end": 33926.3, + "probability": 0.963 + }, + { + "start": 33927.12, + "end": 33932.5, + "probability": 0.9945 + }, + { + "start": 33933.36, + "end": 33935.42, + "probability": 0.9989 + }, + { + "start": 33935.86, + "end": 33936.7, + "probability": 0.7816 + }, + { + "start": 33937.34, + "end": 33940.5, + "probability": 0.6131 + }, + { + "start": 33941.2, + "end": 33942.76, + "probability": 0.8525 + }, + { + "start": 33942.88, + "end": 33944.06, + "probability": 0.6434 + }, + { + "start": 33944.98, + "end": 33945.73, + "probability": 0.8323 + }, + { + "start": 33946.28, + "end": 33949.32, + "probability": 0.9697 + }, + { + "start": 33950.08, + "end": 33954.62, + "probability": 0.9846 + }, + { + "start": 33955.2, + "end": 33955.9, + "probability": 0.9749 + }, + { + "start": 33956.62, + "end": 33962.46, + "probability": 0.968 + }, + { + "start": 33962.86, + "end": 33965.28, + "probability": 0.9983 + }, + { + "start": 33967.2, + "end": 33971.46, + "probability": 0.9958 + }, + { + "start": 33972.24, + "end": 33974.72, + "probability": 0.9977 + }, + { + "start": 33975.24, + "end": 33979.2, + "probability": 0.9989 + }, + { + "start": 33979.9, + "end": 33980.42, + "probability": 0.8943 + }, + { + "start": 33980.72, + "end": 33985.2, + "probability": 0.9823 + }, + { + "start": 33985.74, + "end": 33987.32, + "probability": 0.8056 + }, + { + "start": 33988.52, + "end": 33990.2, + "probability": 0.9976 + }, + { + "start": 33990.96, + "end": 33991.5, + "probability": 0.7323 + }, + { + "start": 33991.93, + "end": 33995.86, + "probability": 0.9397 + }, + { + "start": 33996.22, + "end": 34000.88, + "probability": 0.9883 + }, + { + "start": 34002.42, + "end": 34006.79, + "probability": 0.9977 + }, + { + "start": 34008.38, + "end": 34009.08, + "probability": 0.7514 + }, + { + "start": 34009.76, + "end": 34014.38, + "probability": 0.9596 + }, + { + "start": 34014.52, + "end": 34016.74, + "probability": 0.998 + }, + { + "start": 34017.86, + "end": 34022.24, + "probability": 0.9477 + }, + { + "start": 34022.6, + "end": 34023.06, + "probability": 0.5986 + }, + { + "start": 34023.16, + "end": 34026.28, + "probability": 0.9902 + }, + { + "start": 34027.14, + "end": 34028.16, + "probability": 0.5105 + }, + { + "start": 34028.38, + "end": 34029.28, + "probability": 0.8234 + }, + { + "start": 34029.36, + "end": 34032.66, + "probability": 0.992 + }, + { + "start": 34033.36, + "end": 34034.62, + "probability": 0.9985 + }, + { + "start": 34035.32, + "end": 34037.74, + "probability": 0.9932 + }, + { + "start": 34039.14, + "end": 34042.0, + "probability": 0.8927 + }, + { + "start": 34042.48, + "end": 34042.84, + "probability": 0.7906 + }, + { + "start": 34043.16, + "end": 34043.82, + "probability": 0.6258 + }, + { + "start": 34043.86, + "end": 34045.58, + "probability": 0.979 + }, + { + "start": 34061.12, + "end": 34063.08, + "probability": 0.7293 + }, + { + "start": 34063.76, + "end": 34068.04, + "probability": 0.9023 + }, + { + "start": 34069.76, + "end": 34070.6, + "probability": 0.8179 + }, + { + "start": 34070.72, + "end": 34072.0, + "probability": 0.8732 + }, + { + "start": 34073.06, + "end": 34075.76, + "probability": 0.8376 + }, + { + "start": 34075.82, + "end": 34077.44, + "probability": 0.8647 + }, + { + "start": 34077.54, + "end": 34080.84, + "probability": 0.9906 + }, + { + "start": 34081.04, + "end": 34081.7, + "probability": 0.7922 + }, + { + "start": 34082.72, + "end": 34083.74, + "probability": 0.7654 + }, + { + "start": 34084.8, + "end": 34085.5, + "probability": 0.9751 + }, + { + "start": 34086.34, + "end": 34086.7, + "probability": 0.8381 + }, + { + "start": 34086.74, + "end": 34088.76, + "probability": 0.9916 + }, + { + "start": 34089.02, + "end": 34090.74, + "probability": 0.9581 + }, + { + "start": 34090.84, + "end": 34092.56, + "probability": 0.3181 + }, + { + "start": 34095.61, + "end": 34096.38, + "probability": 0.9507 + }, + { + "start": 34097.28, + "end": 34097.72, + "probability": 0.0735 + }, + { + "start": 34097.72, + "end": 34097.72, + "probability": 0.0306 + }, + { + "start": 34097.72, + "end": 34098.7, + "probability": 0.0789 + }, + { + "start": 34098.9, + "end": 34099.28, + "probability": 0.67 + }, + { + "start": 34099.3, + "end": 34101.44, + "probability": 0.9275 + }, + { + "start": 34101.5, + "end": 34102.72, + "probability": 0.9695 + }, + { + "start": 34103.86, + "end": 34103.96, + "probability": 0.0 + }, + { + "start": 34105.7, + "end": 34106.62, + "probability": 0.1005 + }, + { + "start": 34107.56, + "end": 34109.96, + "probability": 0.5278 + }, + { + "start": 34110.92, + "end": 34113.64, + "probability": 0.7879 + }, + { + "start": 34113.7, + "end": 34115.56, + "probability": 0.9412 + }, + { + "start": 34115.84, + "end": 34116.1, + "probability": 0.6374 + }, + { + "start": 34116.2, + "end": 34117.2, + "probability": 0.8959 + }, + { + "start": 34117.34, + "end": 34118.9, + "probability": 0.9255 + }, + { + "start": 34119.02, + "end": 34120.26, + "probability": 0.9551 + }, + { + "start": 34120.4, + "end": 34121.34, + "probability": 0.688 + }, + { + "start": 34122.32, + "end": 34122.92, + "probability": 0.5066 + }, + { + "start": 34123.34, + "end": 34124.3, + "probability": 0.7688 + }, + { + "start": 34124.32, + "end": 34124.7, + "probability": 0.6987 + }, + { + "start": 34124.82, + "end": 34125.96, + "probability": 0.9826 + }, + { + "start": 34127.36, + "end": 34127.78, + "probability": 0.1526 + }, + { + "start": 34127.78, + "end": 34128.19, + "probability": 0.3862 + }, + { + "start": 34128.36, + "end": 34130.8, + "probability": 0.7539 + }, + { + "start": 34131.34, + "end": 34133.7, + "probability": 0.5244 + }, + { + "start": 34133.84, + "end": 34134.94, + "probability": 0.8792 + }, + { + "start": 34134.98, + "end": 34136.76, + "probability": 0.5299 + }, + { + "start": 34136.94, + "end": 34142.0, + "probability": 0.9808 + }, + { + "start": 34142.26, + "end": 34142.26, + "probability": 0.264 + }, + { + "start": 34142.3, + "end": 34144.78, + "probability": 0.8765 + }, + { + "start": 34144.86, + "end": 34145.68, + "probability": 0.6251 + }, + { + "start": 34146.68, + "end": 34148.9, + "probability": 0.8266 + }, + { + "start": 34149.82, + "end": 34150.42, + "probability": 0.7533 + }, + { + "start": 34150.58, + "end": 34151.31, + "probability": 0.9824 + }, + { + "start": 34151.68, + "end": 34152.04, + "probability": 0.7987 + }, + { + "start": 34152.2, + "end": 34154.22, + "probability": 0.9772 + }, + { + "start": 34154.3, + "end": 34154.72, + "probability": 0.5881 + }, + { + "start": 34154.82, + "end": 34155.88, + "probability": 0.9854 + }, + { + "start": 34155.9, + "end": 34156.54, + "probability": 0.6487 + }, + { + "start": 34156.62, + "end": 34158.38, + "probability": 0.8677 + }, + { + "start": 34158.84, + "end": 34160.15, + "probability": 0.9386 + }, + { + "start": 34160.68, + "end": 34161.29, + "probability": 0.8916 + }, + { + "start": 34162.42, + "end": 34163.64, + "probability": 0.9939 + }, + { + "start": 34164.02, + "end": 34164.76, + "probability": 0.9873 + }, + { + "start": 34165.7, + "end": 34170.34, + "probability": 0.9934 + }, + { + "start": 34170.46, + "end": 34173.6, + "probability": 0.9834 + }, + { + "start": 34174.72, + "end": 34178.98, + "probability": 0.9873 + }, + { + "start": 34180.14, + "end": 34182.18, + "probability": 0.9852 + }, + { + "start": 34182.34, + "end": 34185.2, + "probability": 0.8796 + }, + { + "start": 34185.76, + "end": 34189.98, + "probability": 0.7047 + }, + { + "start": 34191.06, + "end": 34191.32, + "probability": 0.6778 + }, + { + "start": 34191.36, + "end": 34194.2, + "probability": 0.9678 + }, + { + "start": 34194.36, + "end": 34194.84, + "probability": 0.5039 + }, + { + "start": 34194.94, + "end": 34196.62, + "probability": 0.933 + }, + { + "start": 34196.76, + "end": 34198.16, + "probability": 0.5484 + }, + { + "start": 34198.56, + "end": 34200.86, + "probability": 0.9595 + }, + { + "start": 34200.86, + "end": 34204.0, + "probability": 0.9475 + }, + { + "start": 34204.7, + "end": 34207.25, + "probability": 0.624 + }, + { + "start": 34210.38, + "end": 34212.45, + "probability": 0.7711 + }, + { + "start": 34212.84, + "end": 34215.28, + "probability": 0.9717 + }, + { + "start": 34215.28, + "end": 34216.78, + "probability": 0.8901 + }, + { + "start": 34217.12, + "end": 34218.02, + "probability": 0.7018 + }, + { + "start": 34218.8, + "end": 34220.38, + "probability": 0.892 + }, + { + "start": 34220.48, + "end": 34224.52, + "probability": 0.5335 + }, + { + "start": 34224.6, + "end": 34225.19, + "probability": 0.7327 + }, + { + "start": 34225.74, + "end": 34229.44, + "probability": 0.9841 + }, + { + "start": 34229.68, + "end": 34231.84, + "probability": 0.9989 + }, + { + "start": 34232.44, + "end": 34237.22, + "probability": 0.7862 + }, + { + "start": 34237.86, + "end": 34240.16, + "probability": 0.3609 + }, + { + "start": 34240.8, + "end": 34242.34, + "probability": 0.9453 + }, + { + "start": 34243.76, + "end": 34245.4, + "probability": 0.0005 + }, + { + "start": 34245.4, + "end": 34247.12, + "probability": 0.701 + }, + { + "start": 34247.52, + "end": 34247.82, + "probability": 0.9823 + }, + { + "start": 34249.44, + "end": 34249.54, + "probability": 0.0151 + }, + { + "start": 34249.54, + "end": 34249.54, + "probability": 0.4549 + }, + { + "start": 34249.54, + "end": 34251.36, + "probability": 0.585 + }, + { + "start": 34251.86, + "end": 34253.4, + "probability": 0.6566 + }, + { + "start": 34253.72, + "end": 34254.8, + "probability": 0.1917 + }, + { + "start": 34255.71, + "end": 34258.18, + "probability": 0.957 + }, + { + "start": 34258.36, + "end": 34258.74, + "probability": 0.8282 + }, + { + "start": 34258.96, + "end": 34259.24, + "probability": 0.8053 + }, + { + "start": 34259.28, + "end": 34260.66, + "probability": 0.4633 + }, + { + "start": 34261.02, + "end": 34264.4, + "probability": 0.9645 + }, + { + "start": 34264.68, + "end": 34265.56, + "probability": 0.8986 + }, + { + "start": 34266.34, + "end": 34267.76, + "probability": 0.8271 + }, + { + "start": 34267.84, + "end": 34268.96, + "probability": 0.979 + }, + { + "start": 34269.32, + "end": 34272.52, + "probability": 0.9812 + }, + { + "start": 34272.9, + "end": 34274.5, + "probability": 0.9964 + }, + { + "start": 34275.82, + "end": 34278.7, + "probability": 0.9758 + }, + { + "start": 34279.24, + "end": 34283.92, + "probability": 0.9811 + }, + { + "start": 34284.7, + "end": 34285.2, + "probability": 0.8535 + }, + { + "start": 34285.86, + "end": 34288.12, + "probability": 0.8862 + }, + { + "start": 34289.08, + "end": 34290.44, + "probability": 0.8044 + }, + { + "start": 34290.98, + "end": 34291.22, + "probability": 0.8868 + }, + { + "start": 34292.36, + "end": 34293.92, + "probability": 0.9658 + }, + { + "start": 34295.14, + "end": 34298.0, + "probability": 0.9917 + }, + { + "start": 34299.76, + "end": 34300.32, + "probability": 0.9341 + }, + { + "start": 34301.52, + "end": 34304.88, + "probability": 0.9932 + }, + { + "start": 34305.56, + "end": 34307.58, + "probability": 0.9181 + }, + { + "start": 34308.44, + "end": 34309.44, + "probability": 0.9844 + }, + { + "start": 34310.16, + "end": 34314.04, + "probability": 0.9943 + }, + { + "start": 34314.22, + "end": 34315.3, + "probability": 0.9458 + }, + { + "start": 34316.38, + "end": 34317.48, + "probability": 0.8165 + }, + { + "start": 34318.0, + "end": 34318.94, + "probability": 0.9694 + }, + { + "start": 34319.12, + "end": 34319.92, + "probability": 0.9385 + }, + { + "start": 34320.06, + "end": 34321.22, + "probability": 0.6631 + }, + { + "start": 34321.82, + "end": 34323.46, + "probability": 0.5827 + }, + { + "start": 34324.03, + "end": 34324.1, + "probability": 0.028 + }, + { + "start": 34324.1, + "end": 34324.14, + "probability": 0.3021 + }, + { + "start": 34324.94, + "end": 34324.94, + "probability": 0.1061 + }, + { + "start": 34324.94, + "end": 34326.74, + "probability": 0.7063 + }, + { + "start": 34328.08, + "end": 34329.06, + "probability": 0.6666 + }, + { + "start": 34329.7, + "end": 34333.78, + "probability": 0.8776 + }, + { + "start": 34334.22, + "end": 34335.04, + "probability": 0.8455 + }, + { + "start": 34335.66, + "end": 34336.66, + "probability": 0.9817 + }, + { + "start": 34336.78, + "end": 34338.92, + "probability": 0.9395 + }, + { + "start": 34339.26, + "end": 34339.62, + "probability": 0.8306 + }, + { + "start": 34340.38, + "end": 34340.7, + "probability": 0.8063 + }, + { + "start": 34340.9, + "end": 34341.9, + "probability": 0.6205 + }, + { + "start": 34343.13, + "end": 34345.04, + "probability": 0.6741 + }, + { + "start": 34347.02, + "end": 34348.42, + "probability": 0.7772 + }, + { + "start": 34362.56, + "end": 34362.56, + "probability": 0.5056 + }, + { + "start": 34362.56, + "end": 34364.62, + "probability": 0.274 + }, + { + "start": 34364.98, + "end": 34365.16, + "probability": 0.8004 + }, + { + "start": 34365.2, + "end": 34366.08, + "probability": 0.4958 + }, + { + "start": 34367.1, + "end": 34373.42, + "probability": 0.9653 + }, + { + "start": 34374.3, + "end": 34376.38, + "probability": 0.5895 + }, + { + "start": 34376.52, + "end": 34377.28, + "probability": 0.7439 + }, + { + "start": 34378.2, + "end": 34379.22, + "probability": 0.8872 + }, + { + "start": 34379.46, + "end": 34380.95, + "probability": 0.9985 + }, + { + "start": 34381.74, + "end": 34385.5, + "probability": 0.957 + }, + { + "start": 34386.26, + "end": 34388.22, + "probability": 0.8481 + }, + { + "start": 34389.16, + "end": 34390.72, + "probability": 0.9542 + }, + { + "start": 34391.74, + "end": 34395.02, + "probability": 0.202 + }, + { + "start": 34395.18, + "end": 34397.5, + "probability": 0.9235 + }, + { + "start": 34399.74, + "end": 34404.36, + "probability": 0.8945 + }, + { + "start": 34405.7, + "end": 34407.24, + "probability": 0.8761 + }, + { + "start": 34408.32, + "end": 34412.78, + "probability": 0.9567 + }, + { + "start": 34413.12, + "end": 34413.28, + "probability": 0.6841 + }, + { + "start": 34413.92, + "end": 34414.24, + "probability": 0.4965 + }, + { + "start": 34414.46, + "end": 34414.56, + "probability": 0.6251 + }, + { + "start": 34414.56, + "end": 34419.82, + "probability": 0.6378 + }, + { + "start": 34421.04, + "end": 34425.04, + "probability": 0.9219 + }, + { + "start": 34425.18, + "end": 34426.85, + "probability": 0.967 + }, + { + "start": 34428.06, + "end": 34429.9, + "probability": 0.9217 + }, + { + "start": 34430.62, + "end": 34432.34, + "probability": 0.8416 + }, + { + "start": 34433.14, + "end": 34439.42, + "probability": 0.9759 + }, + { + "start": 34440.16, + "end": 34441.2, + "probability": 0.4961 + }, + { + "start": 34442.38, + "end": 34447.04, + "probability": 0.9831 + }, + { + "start": 34447.72, + "end": 34449.2, + "probability": 0.9966 + }, + { + "start": 34450.6, + "end": 34454.5, + "probability": 0.9994 + }, + { + "start": 34455.38, + "end": 34457.18, + "probability": 0.7846 + }, + { + "start": 34457.7, + "end": 34461.56, + "probability": 0.9496 + }, + { + "start": 34462.96, + "end": 34465.94, + "probability": 0.8284 + }, + { + "start": 34466.66, + "end": 34468.8, + "probability": 0.9941 + }, + { + "start": 34469.74, + "end": 34469.92, + "probability": 0.9802 + }, + { + "start": 34470.52, + "end": 34471.36, + "probability": 0.9939 + }, + { + "start": 34471.94, + "end": 34475.66, + "probability": 0.9946 + }, + { + "start": 34476.86, + "end": 34478.08, + "probability": 0.8139 + }, + { + "start": 34478.66, + "end": 34481.2, + "probability": 0.9832 + }, + { + "start": 34481.8, + "end": 34484.92, + "probability": 0.9688 + }, + { + "start": 34485.28, + "end": 34485.48, + "probability": 0.7981 + }, + { + "start": 34486.08, + "end": 34486.9, + "probability": 0.6829 + }, + { + "start": 34487.0, + "end": 34489.49, + "probability": 0.9554 + }, + { + "start": 34499.74, + "end": 34502.8, + "probability": 0.7775 + }, + { + "start": 34503.46, + "end": 34504.48, + "probability": 0.6173 + }, + { + "start": 34508.3, + "end": 34510.96, + "probability": 0.8816 + }, + { + "start": 34511.02, + "end": 34515.06, + "probability": 0.972 + }, + { + "start": 34515.7, + "end": 34516.46, + "probability": 0.8072 + }, + { + "start": 34517.92, + "end": 34520.58, + "probability": 0.9593 + }, + { + "start": 34524.6, + "end": 34525.84, + "probability": 0.8599 + }, + { + "start": 34526.12, + "end": 34529.26, + "probability": 0.9617 + }, + { + "start": 34530.1, + "end": 34531.26, + "probability": 0.8749 + }, + { + "start": 34533.0, + "end": 34534.07, + "probability": 0.9954 + }, + { + "start": 34535.58, + "end": 34536.62, + "probability": 0.9343 + }, + { + "start": 34537.92, + "end": 34540.96, + "probability": 0.9979 + }, + { + "start": 34544.58, + "end": 34546.22, + "probability": 0.8575 + }, + { + "start": 34547.08, + "end": 34548.54, + "probability": 0.894 + }, + { + "start": 34550.22, + "end": 34552.24, + "probability": 0.9893 + }, + { + "start": 34555.36, + "end": 34558.92, + "probability": 0.9739 + }, + { + "start": 34559.02, + "end": 34561.92, + "probability": 0.8828 + }, + { + "start": 34563.3, + "end": 34565.19, + "probability": 0.3658 + }, + { + "start": 34566.22, + "end": 34567.74, + "probability": 0.5375 + }, + { + "start": 34570.76, + "end": 34570.78, + "probability": 0.1068 + }, + { + "start": 34570.78, + "end": 34575.44, + "probability": 0.9803 + }, + { + "start": 34577.48, + "end": 34581.14, + "probability": 0.1738 + }, + { + "start": 34582.82, + "end": 34583.62, + "probability": 0.6286 + }, + { + "start": 34585.02, + "end": 34588.58, + "probability": 0.6658 + }, + { + "start": 34589.42, + "end": 34589.86, + "probability": 0.5973 + }, + { + "start": 34591.7, + "end": 34592.7, + "probability": 0.7714 + }, + { + "start": 34594.34, + "end": 34594.86, + "probability": 0.9814 + }, + { + "start": 34597.7, + "end": 34598.36, + "probability": 0.8889 + }, + { + "start": 34599.04, + "end": 34601.42, + "probability": 0.9991 + }, + { + "start": 34604.0, + "end": 34606.52, + "probability": 0.9968 + }, + { + "start": 34606.84, + "end": 34608.94, + "probability": 0.969 + }, + { + "start": 34609.7, + "end": 34611.3, + "probability": 0.863 + }, + { + "start": 34612.56, + "end": 34615.98, + "probability": 0.9414 + }, + { + "start": 34617.7, + "end": 34618.36, + "probability": 0.9825 + }, + { + "start": 34619.94, + "end": 34623.24, + "probability": 0.9829 + }, + { + "start": 34624.32, + "end": 34625.48, + "probability": 0.8057 + }, + { + "start": 34626.98, + "end": 34628.6, + "probability": 0.8428 + }, + { + "start": 34629.12, + "end": 34634.32, + "probability": 0.9783 + }, + { + "start": 34636.94, + "end": 34640.16, + "probability": 0.9946 + }, + { + "start": 34640.4, + "end": 34641.04, + "probability": 0.6732 + }, + { + "start": 34643.76, + "end": 34646.5, + "probability": 0.887 + }, + { + "start": 34646.54, + "end": 34649.46, + "probability": 0.9182 + }, + { + "start": 34650.06, + "end": 34653.12, + "probability": 0.9327 + }, + { + "start": 34654.64, + "end": 34658.24, + "probability": 0.9297 + }, + { + "start": 34658.8, + "end": 34660.28, + "probability": 0.8537 + }, + { + "start": 34661.86, + "end": 34665.32, + "probability": 0.9766 + }, + { + "start": 34667.56, + "end": 34672.56, + "probability": 0.8329 + }, + { + "start": 34673.38, + "end": 34676.86, + "probability": 0.776 + }, + { + "start": 34678.76, + "end": 34680.58, + "probability": 0.4154 + }, + { + "start": 34682.46, + "end": 34686.14, + "probability": 0.978 + }, + { + "start": 34686.52, + "end": 34688.18, + "probability": 0.9532 + }, + { + "start": 34689.34, + "end": 34690.38, + "probability": 0.6126 + }, + { + "start": 34691.28, + "end": 34691.8, + "probability": 0.8455 + }, + { + "start": 34692.64, + "end": 34694.2, + "probability": 0.928 + }, + { + "start": 34694.72, + "end": 34694.82, + "probability": 0.3967 + }, + { + "start": 34695.4, + "end": 34695.88, + "probability": 0.8452 + }, + { + "start": 34696.4, + "end": 34697.1, + "probability": 0.87 + }, + { + "start": 34698.16, + "end": 34700.54, + "probability": 0.78 + }, + { + "start": 34701.48, + "end": 34702.02, + "probability": 0.8725 + }, + { + "start": 34702.92, + "end": 34705.48, + "probability": 0.9521 + }, + { + "start": 34706.48, + "end": 34708.62, + "probability": 0.8176 + }, + { + "start": 34711.28, + "end": 34715.38, + "probability": 0.9796 + }, + { + "start": 34715.56, + "end": 34716.38, + "probability": 0.86 + }, + { + "start": 34716.58, + "end": 34717.0, + "probability": 0.5375 + }, + { + "start": 34718.44, + "end": 34720.74, + "probability": 0.9359 + }, + { + "start": 34722.54, + "end": 34726.54, + "probability": 0.9395 + }, + { + "start": 34728.28, + "end": 34730.08, + "probability": 0.9109 + }, + { + "start": 34730.72, + "end": 34731.47, + "probability": 0.9867 + }, + { + "start": 34732.8, + "end": 34734.06, + "probability": 0.98 + }, + { + "start": 34735.34, + "end": 34735.96, + "probability": 0.8918 + }, + { + "start": 34737.18, + "end": 34737.9, + "probability": 0.7347 + }, + { + "start": 34738.9, + "end": 34739.1, + "probability": 0.7924 + }, + { + "start": 34739.94, + "end": 34740.78, + "probability": 0.697 + }, + { + "start": 34741.6, + "end": 34743.02, + "probability": 0.9851 + }, + { + "start": 34759.76, + "end": 34761.84, + "probability": 0.8046 + }, + { + "start": 34762.7, + "end": 34763.36, + "probability": 0.8804 + }, + { + "start": 34763.94, + "end": 34769.7, + "probability": 0.9741 + }, + { + "start": 34770.82, + "end": 34773.08, + "probability": 0.8433 + }, + { + "start": 34773.6, + "end": 34776.16, + "probability": 0.9764 + }, + { + "start": 34776.96, + "end": 34779.08, + "probability": 0.9993 + }, + { + "start": 34779.22, + "end": 34780.14, + "probability": 0.791 + }, + { + "start": 34780.62, + "end": 34783.0, + "probability": 0.9933 + }, + { + "start": 34784.12, + "end": 34787.94, + "probability": 0.9406 + }, + { + "start": 34788.78, + "end": 34791.2, + "probability": 0.9979 + }, + { + "start": 34791.52, + "end": 34794.88, + "probability": 0.873 + }, + { + "start": 34795.94, + "end": 34797.2, + "probability": 0.6539 + }, + { + "start": 34797.82, + "end": 34802.52, + "probability": 0.9851 + }, + { + "start": 34803.18, + "end": 34805.62, + "probability": 0.9977 + }, + { + "start": 34806.8, + "end": 34808.48, + "probability": 0.9238 + }, + { + "start": 34809.68, + "end": 34812.38, + "probability": 0.9619 + }, + { + "start": 34813.48, + "end": 34815.92, + "probability": 0.9877 + }, + { + "start": 34816.56, + "end": 34817.62, + "probability": 0.9862 + }, + { + "start": 34818.42, + "end": 34820.48, + "probability": 0.9626 + }, + { + "start": 34821.78, + "end": 34825.98, + "probability": 0.9973 + }, + { + "start": 34825.98, + "end": 34829.58, + "probability": 0.9854 + }, + { + "start": 34830.06, + "end": 34831.74, + "probability": 0.9908 + }, + { + "start": 34833.32, + "end": 34836.24, + "probability": 0.9979 + }, + { + "start": 34837.68, + "end": 34839.4, + "probability": 0.896 + }, + { + "start": 34840.78, + "end": 34841.92, + "probability": 0.9844 + }, + { + "start": 34842.6, + "end": 34844.68, + "probability": 0.9981 + }, + { + "start": 34845.44, + "end": 34847.06, + "probability": 0.9912 + }, + { + "start": 34848.08, + "end": 34851.5, + "probability": 0.9877 + }, + { + "start": 34853.0, + "end": 34854.28, + "probability": 0.6133 + }, + { + "start": 34854.92, + "end": 34855.56, + "probability": 0.9126 + }, + { + "start": 34856.5, + "end": 34860.84, + "probability": 0.9786 + }, + { + "start": 34862.18, + "end": 34865.82, + "probability": 0.9937 + }, + { + "start": 34866.2, + "end": 34867.92, + "probability": 0.8562 + }, + { + "start": 34868.5, + "end": 34870.62, + "probability": 0.6542 + }, + { + "start": 34871.3, + "end": 34871.94, + "probability": 0.8462 + }, + { + "start": 34872.66, + "end": 34873.64, + "probability": 0.9866 + }, + { + "start": 34875.3, + "end": 34875.54, + "probability": 0.7831 + }, + { + "start": 34876.76, + "end": 34877.66, + "probability": 0.7672 + }, + { + "start": 34878.58, + "end": 34880.24, + "probability": 0.9662 + }, + { + "start": 34894.2, + "end": 34894.42, + "probability": 0.6943 + }, + { + "start": 34894.42, + "end": 34895.64, + "probability": 0.8218 + }, + { + "start": 34899.02, + "end": 34902.08, + "probability": 0.6606 + }, + { + "start": 34902.98, + "end": 34908.68, + "probability": 0.9291 + }, + { + "start": 34908.68, + "end": 34910.54, + "probability": 0.5889 + }, + { + "start": 34911.22, + "end": 34916.12, + "probability": 0.8118 + }, + { + "start": 34916.78, + "end": 34918.8, + "probability": 0.5289 + }, + { + "start": 34919.64, + "end": 34920.53, + "probability": 0.8412 + }, + { + "start": 34920.73, + "end": 34922.85, + "probability": 0.9971 + }, + { + "start": 34923.31, + "end": 34926.21, + "probability": 0.999 + }, + { + "start": 34927.13, + "end": 34927.83, + "probability": 0.445 + }, + { + "start": 34927.97, + "end": 34928.81, + "probability": 0.9355 + }, + { + "start": 34928.91, + "end": 34931.67, + "probability": 0.9559 + }, + { + "start": 34931.83, + "end": 34934.41, + "probability": 0.993 + }, + { + "start": 34935.67, + "end": 34938.81, + "probability": 0.7016 + }, + { + "start": 34942.49, + "end": 34944.11, + "probability": 0.1095 + }, + { + "start": 34944.81, + "end": 34944.81, + "probability": 0.0294 + }, + { + "start": 34944.81, + "end": 34944.81, + "probability": 0.0536 + }, + { + "start": 34944.81, + "end": 34946.65, + "probability": 0.8161 + }, + { + "start": 34947.25, + "end": 34951.15, + "probability": 0.8402 + }, + { + "start": 34951.85, + "end": 34952.69, + "probability": 0.8888 + }, + { + "start": 34952.89, + "end": 34957.91, + "probability": 0.9748 + }, + { + "start": 34959.59, + "end": 34960.21, + "probability": 0.9298 + }, + { + "start": 34960.51, + "end": 34961.15, + "probability": 0.9535 + }, + { + "start": 34961.37, + "end": 34961.97, + "probability": 0.6945 + }, + { + "start": 34962.15, + "end": 34963.27, + "probability": 0.6431 + }, + { + "start": 34963.59, + "end": 34965.23, + "probability": 0.2576 + }, + { + "start": 34965.37, + "end": 34967.25, + "probability": 0.8984 + }, + { + "start": 34967.43, + "end": 34970.94, + "probability": 0.0186 + }, + { + "start": 34971.31, + "end": 34973.08, + "probability": 0.0584 + }, + { + "start": 34975.13, + "end": 34975.69, + "probability": 0.1763 + }, + { + "start": 34975.81, + "end": 34978.77, + "probability": 0.1516 + }, + { + "start": 34979.17, + "end": 34979.91, + "probability": 0.0481 + }, + { + "start": 34980.15, + "end": 34981.74, + "probability": 0.1685 + }, + { + "start": 34981.87, + "end": 34985.74, + "probability": 0.0438 + }, + { + "start": 34987.81, + "end": 34990.23, + "probability": 0.0661 + }, + { + "start": 34990.23, + "end": 34990.45, + "probability": 0.2441 + }, + { + "start": 34991.55, + "end": 34994.71, + "probability": 0.0847 + }, + { + "start": 34995.27, + "end": 34995.27, + "probability": 0.0011 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.0, + "end": 35046.0, + "probability": 0.0 + }, + { + "start": 35046.4, + "end": 35046.64, + "probability": 0.0659 + }, + { + "start": 35047.24, + "end": 35048.48, + "probability": 0.888 + }, + { + "start": 35049.0, + "end": 35050.08, + "probability": 0.8113 + }, + { + "start": 35050.46, + "end": 35051.51, + "probability": 0.9651 + }, + { + "start": 35052.68, + "end": 35053.54, + "probability": 0.696 + }, + { + "start": 35054.26, + "end": 35055.1, + "probability": 0.7986 + }, + { + "start": 35055.62, + "end": 35059.48, + "probability": 0.9755 + }, + { + "start": 35060.04, + "end": 35063.5, + "probability": 0.9959 + }, + { + "start": 35064.18, + "end": 35066.95, + "probability": 0.9601 + }, + { + "start": 35067.22, + "end": 35070.1, + "probability": 0.8632 + }, + { + "start": 35071.26, + "end": 35072.36, + "probability": 0.5478 + }, + { + "start": 35073.06, + "end": 35073.28, + "probability": 0.033 + }, + { + "start": 35073.32, + "end": 35081.48, + "probability": 0.7884 + }, + { + "start": 35081.7, + "end": 35082.26, + "probability": 0.4837 + }, + { + "start": 35083.02, + "end": 35083.84, + "probability": 0.6362 + }, + { + "start": 35084.76, + "end": 35086.34, + "probability": 0.9704 + }, + { + "start": 35086.88, + "end": 35088.14, + "probability": 0.9611 + }, + { + "start": 35088.6, + "end": 35090.0, + "probability": 0.6923 + }, + { + "start": 35090.26, + "end": 35094.1, + "probability": 0.9649 + }, + { + "start": 35094.1, + "end": 35095.7, + "probability": 0.8865 + }, + { + "start": 35096.28, + "end": 35097.52, + "probability": 0.9303 + }, + { + "start": 35097.88, + "end": 35100.72, + "probability": 0.9113 + }, + { + "start": 35101.3, + "end": 35102.2, + "probability": 0.8918 + }, + { + "start": 35102.96, + "end": 35105.64, + "probability": 0.8039 + }, + { + "start": 35106.7, + "end": 35107.12, + "probability": 0.5068 + }, + { + "start": 35107.42, + "end": 35107.74, + "probability": 0.7877 + }, + { + "start": 35108.42, + "end": 35109.18, + "probability": 0.832 + }, + { + "start": 35109.56, + "end": 35111.72, + "probability": 0.7068 + }, + { + "start": 35114.22, + "end": 35121.1, + "probability": 0.0843 + }, + { + "start": 35121.1, + "end": 35121.8, + "probability": 0.2909 + }, + { + "start": 35137.66, + "end": 35139.04, + "probability": 0.4635 + }, + { + "start": 35139.14, + "end": 35140.16, + "probability": 0.6231 + }, + { + "start": 35140.76, + "end": 35142.8, + "probability": 0.8778 + }, + { + "start": 35143.62, + "end": 35147.52, + "probability": 0.9574 + }, + { + "start": 35148.42, + "end": 35150.28, + "probability": 0.9531 + }, + { + "start": 35151.78, + "end": 35155.62, + "probability": 0.9668 + }, + { + "start": 35156.12, + "end": 35156.56, + "probability": 0.7764 + }, + { + "start": 35156.76, + "end": 35158.44, + "probability": 0.5314 + }, + { + "start": 35158.5, + "end": 35160.84, + "probability": 0.8487 + }, + { + "start": 35161.96, + "end": 35166.8, + "probability": 0.9375 + }, + { + "start": 35167.54, + "end": 35170.94, + "probability": 0.9263 + }, + { + "start": 35171.6, + "end": 35173.36, + "probability": 0.9768 + }, + { + "start": 35174.2, + "end": 35177.56, + "probability": 0.9298 + }, + { + "start": 35178.28, + "end": 35179.64, + "probability": 0.814 + }, + { + "start": 35180.18, + "end": 35182.06, + "probability": 0.9919 + }, + { + "start": 35182.78, + "end": 35185.82, + "probability": 0.8301 + }, + { + "start": 35188.42, + "end": 35191.73, + "probability": 0.3197 + }, + { + "start": 35192.4, + "end": 35192.64, + "probability": 0.197 + }, + { + "start": 35192.64, + "end": 35192.71, + "probability": 0.1075 + }, + { + "start": 35193.14, + "end": 35193.86, + "probability": 0.0847 + }, + { + "start": 35194.29, + "end": 35196.0, + "probability": 0.1066 + }, + { + "start": 35196.14, + "end": 35196.52, + "probability": 0.0103 + }, + { + "start": 35196.54, + "end": 35196.54, + "probability": 0.5833 + }, + { + "start": 35196.54, + "end": 35198.35, + "probability": 0.3835 + }, + { + "start": 35199.62, + "end": 35201.38, + "probability": 0.2023 + }, + { + "start": 35201.38, + "end": 35205.82, + "probability": 0.722 + }, + { + "start": 35206.66, + "end": 35207.78, + "probability": 0.9159 + }, + { + "start": 35207.9, + "end": 35210.6, + "probability": 0.993 + }, + { + "start": 35210.66, + "end": 35211.76, + "probability": 0.9733 + }, + { + "start": 35212.44, + "end": 35215.8, + "probability": 0.9956 + }, + { + "start": 35216.52, + "end": 35218.11, + "probability": 0.8296 + }, + { + "start": 35218.8, + "end": 35220.36, + "probability": 0.9021 + }, + { + "start": 35220.82, + "end": 35231.68, + "probability": 0.9954 + }, + { + "start": 35231.68, + "end": 35236.64, + "probability": 0.986 + }, + { + "start": 35237.52, + "end": 35237.88, + "probability": 0.5829 + }, + { + "start": 35238.48, + "end": 35244.08, + "probability": 0.9556 + }, + { + "start": 35244.72, + "end": 35247.88, + "probability": 0.9728 + }, + { + "start": 35248.48, + "end": 35251.22, + "probability": 0.995 + }, + { + "start": 35251.92, + "end": 35254.48, + "probability": 0.9322 + }, + { + "start": 35255.46, + "end": 35259.68, + "probability": 0.9931 + }, + { + "start": 35259.68, + "end": 35262.94, + "probability": 0.9722 + }, + { + "start": 35264.06, + "end": 35265.3, + "probability": 0.7819 + }, + { + "start": 35266.02, + "end": 35268.08, + "probability": 0.9088 + }, + { + "start": 35269.08, + "end": 35271.56, + "probability": 0.9793 + }, + { + "start": 35272.2, + "end": 35274.6, + "probability": 0.9969 + }, + { + "start": 35276.44, + "end": 35280.44, + "probability": 0.978 + }, + { + "start": 35280.44, + "end": 35284.86, + "probability": 0.9957 + }, + { + "start": 35285.2, + "end": 35288.12, + "probability": 0.999 + }, + { + "start": 35288.44, + "end": 35291.36, + "probability": 0.9983 + }, + { + "start": 35291.96, + "end": 35293.1, + "probability": 0.9433 + }, + { + "start": 35293.94, + "end": 35297.92, + "probability": 0.995 + }, + { + "start": 35298.46, + "end": 35301.68, + "probability": 0.9897 + }, + { + "start": 35301.68, + "end": 35304.8, + "probability": 0.9966 + }, + { + "start": 35305.7, + "end": 35308.3, + "probability": 0.9988 + }, + { + "start": 35308.3, + "end": 35310.84, + "probability": 0.9988 + }, + { + "start": 35312.16, + "end": 35315.22, + "probability": 0.9641 + }, + { + "start": 35315.34, + "end": 35316.9, + "probability": 0.807 + }, + { + "start": 35317.66, + "end": 35321.58, + "probability": 0.9648 + }, + { + "start": 35322.54, + "end": 35326.62, + "probability": 0.9869 + }, + { + "start": 35327.08, + "end": 35329.26, + "probability": 0.9594 + }, + { + "start": 35329.64, + "end": 35331.71, + "probability": 0.9587 + }, + { + "start": 35332.26, + "end": 35336.32, + "probability": 0.9986 + }, + { + "start": 35336.82, + "end": 35341.8, + "probability": 0.9927 + }, + { + "start": 35342.55, + "end": 35344.3, + "probability": 0.7754 + }, + { + "start": 35344.86, + "end": 35345.42, + "probability": 0.8923 + }, + { + "start": 35346.18, + "end": 35348.5, + "probability": 0.8707 + }, + { + "start": 35359.68, + "end": 35360.86, + "probability": 0.7496 + }, + { + "start": 35362.5, + "end": 35363.02, + "probability": 0.4084 + }, + { + "start": 35363.16, + "end": 35364.42, + "probability": 0.5638 + }, + { + "start": 35364.5, + "end": 35369.26, + "probability": 0.9917 + }, + { + "start": 35370.04, + "end": 35373.28, + "probability": 0.9977 + }, + { + "start": 35374.32, + "end": 35378.46, + "probability": 0.9873 + }, + { + "start": 35379.46, + "end": 35381.58, + "probability": 0.7854 + }, + { + "start": 35381.68, + "end": 35384.48, + "probability": 0.9774 + }, + { + "start": 35385.24, + "end": 35389.12, + "probability": 0.9946 + }, + { + "start": 35389.96, + "end": 35390.72, + "probability": 0.6581 + }, + { + "start": 35391.22, + "end": 35393.02, + "probability": 0.9679 + }, + { + "start": 35393.3, + "end": 35395.62, + "probability": 0.9908 + }, + { + "start": 35396.3, + "end": 35398.24, + "probability": 0.9648 + }, + { + "start": 35399.34, + "end": 35403.02, + "probability": 0.9937 + }, + { + "start": 35403.98, + "end": 35405.84, + "probability": 0.9988 + }, + { + "start": 35407.87, + "end": 35410.62, + "probability": 0.9741 + }, + { + "start": 35411.24, + "end": 35412.79, + "probability": 0.8669 + }, + { + "start": 35414.28, + "end": 35416.54, + "probability": 0.9931 + }, + { + "start": 35416.82, + "end": 35419.42, + "probability": 0.9269 + }, + { + "start": 35420.08, + "end": 35423.38, + "probability": 0.7103 + }, + { + "start": 35423.98, + "end": 35424.68, + "probability": 0.8153 + }, + { + "start": 35424.78, + "end": 35425.52, + "probability": 0.9739 + }, + { + "start": 35425.68, + "end": 35426.24, + "probability": 0.7696 + }, + { + "start": 35426.32, + "end": 35426.94, + "probability": 0.8723 + }, + { + "start": 35427.0, + "end": 35427.9, + "probability": 0.9346 + }, + { + "start": 35428.54, + "end": 35431.24, + "probability": 0.8779 + }, + { + "start": 35431.92, + "end": 35434.08, + "probability": 0.9009 + }, + { + "start": 35434.74, + "end": 35437.96, + "probability": 0.9429 + }, + { + "start": 35438.48, + "end": 35439.82, + "probability": 0.9812 + }, + { + "start": 35440.64, + "end": 35443.62, + "probability": 0.9897 + }, + { + "start": 35444.44, + "end": 35446.68, + "probability": 0.9616 + }, + { + "start": 35447.08, + "end": 35447.52, + "probability": 0.7741 + }, + { + "start": 35448.44, + "end": 35450.58, + "probability": 0.9863 + }, + { + "start": 35451.44, + "end": 35453.0, + "probability": 0.9479 + }, + { + "start": 35453.52, + "end": 35457.56, + "probability": 0.9839 + }, + { + "start": 35458.12, + "end": 35460.68, + "probability": 0.9268 + }, + { + "start": 35461.24, + "end": 35462.3, + "probability": 0.964 + }, + { + "start": 35463.22, + "end": 35465.72, + "probability": 0.9891 + }, + { + "start": 35466.5, + "end": 35466.7, + "probability": 0.4785 + }, + { + "start": 35466.72, + "end": 35466.94, + "probability": 0.4494 + }, + { + "start": 35467.0, + "end": 35468.18, + "probability": 0.8428 + }, + { + "start": 35468.24, + "end": 35469.02, + "probability": 0.8065 + }, + { + "start": 35469.16, + "end": 35470.54, + "probability": 0.9811 + }, + { + "start": 35471.24, + "end": 35471.62, + "probability": 0.8478 + }, + { + "start": 35472.16, + "end": 35473.84, + "probability": 0.9729 + }, + { + "start": 35474.6, + "end": 35476.48, + "probability": 0.9955 + }, + { + "start": 35477.22, + "end": 35479.36, + "probability": 0.9757 + }, + { + "start": 35479.6, + "end": 35481.56, + "probability": 0.9311 + }, + { + "start": 35482.52, + "end": 35485.54, + "probability": 0.9798 + }, + { + "start": 35486.34, + "end": 35487.66, + "probability": 0.894 + }, + { + "start": 35489.0, + "end": 35490.15, + "probability": 0.8881 + }, + { + "start": 35490.76, + "end": 35491.64, + "probability": 0.9061 + }, + { + "start": 35492.42, + "end": 35493.44, + "probability": 0.9752 + }, + { + "start": 35494.24, + "end": 35497.22, + "probability": 0.9847 + }, + { + "start": 35498.12, + "end": 35501.3, + "probability": 0.9452 + }, + { + "start": 35501.84, + "end": 35505.56, + "probability": 0.9576 + }, + { + "start": 35506.14, + "end": 35507.04, + "probability": 0.5562 + }, + { + "start": 35508.42, + "end": 35509.34, + "probability": 0.7406 + }, + { + "start": 35511.18, + "end": 35513.28, + "probability": 0.6643 + }, + { + "start": 35513.82, + "end": 35516.06, + "probability": 0.0139 + }, + { + "start": 35517.16, + "end": 35517.44, + "probability": 0.5684 + }, + { + "start": 35517.44, + "end": 35517.58, + "probability": 0.1684 + }, + { + "start": 35522.12, + "end": 35523.62, + "probability": 0.2649 + }, + { + "start": 35538.4, + "end": 35540.06, + "probability": 0.0394 + }, + { + "start": 35540.2, + "end": 35540.2, + "probability": 0.068 + }, + { + "start": 35540.2, + "end": 35540.2, + "probability": 0.2186 + }, + { + "start": 35540.2, + "end": 35540.7, + "probability": 0.0328 + }, + { + "start": 35569.94, + "end": 35572.02, + "probability": 0.69 + }, + { + "start": 35572.9, + "end": 35577.46, + "probability": 0.9813 + }, + { + "start": 35578.08, + "end": 35583.16, + "probability": 0.9819 + }, + { + "start": 35583.24, + "end": 35584.64, + "probability": 0.8923 + }, + { + "start": 35584.66, + "end": 35587.84, + "probability": 0.9773 + }, + { + "start": 35588.48, + "end": 35590.4, + "probability": 0.8392 + }, + { + "start": 35591.48, + "end": 35594.6, + "probability": 0.9551 + }, + { + "start": 35596.78, + "end": 35599.34, + "probability": 0.9985 + }, + { + "start": 35600.36, + "end": 35604.58, + "probability": 0.8319 + }, + { + "start": 35605.84, + "end": 35608.87, + "probability": 0.9932 + }, + { + "start": 35609.04, + "end": 35610.22, + "probability": 0.9326 + }, + { + "start": 35614.06, + "end": 35616.26, + "probability": 0.93 + }, + { + "start": 35617.26, + "end": 35619.9, + "probability": 0.9988 + }, + { + "start": 35620.08, + "end": 35620.92, + "probability": 0.9891 + }, + { + "start": 35621.54, + "end": 35622.98, + "probability": 0.9773 + }, + { + "start": 35623.12, + "end": 35624.24, + "probability": 0.985 + }, + { + "start": 35624.76, + "end": 35626.86, + "probability": 0.9873 + }, + { + "start": 35626.86, + "end": 35630.4, + "probability": 0.9742 + }, + { + "start": 35631.02, + "end": 35635.44, + "probability": 0.9954 + }, + { + "start": 35635.66, + "end": 35637.16, + "probability": 0.9959 + }, + { + "start": 35638.98, + "end": 35641.0, + "probability": 0.8512 + }, + { + "start": 35642.22, + "end": 35644.24, + "probability": 0.9924 + }, + { + "start": 35644.24, + "end": 35646.38, + "probability": 0.9941 + }, + { + "start": 35647.28, + "end": 35648.16, + "probability": 0.8148 + }, + { + "start": 35649.02, + "end": 35651.1, + "probability": 0.9834 + }, + { + "start": 35651.5, + "end": 35652.86, + "probability": 0.9413 + }, + { + "start": 35653.64, + "end": 35656.46, + "probability": 0.9971 + }, + { + "start": 35656.62, + "end": 35658.76, + "probability": 0.8693 + }, + { + "start": 35658.9, + "end": 35661.88, + "probability": 0.9819 + }, + { + "start": 35661.98, + "end": 35662.5, + "probability": 0.8965 + }, + { + "start": 35662.6, + "end": 35665.18, + "probability": 0.9875 + }, + { + "start": 35665.38, + "end": 35666.66, + "probability": 0.922 + }, + { + "start": 35667.42, + "end": 35668.7, + "probability": 0.8279 + }, + { + "start": 35670.08, + "end": 35670.52, + "probability": 0.8649 + }, + { + "start": 35671.16, + "end": 35671.28, + "probability": 0.4979 + }, + { + "start": 35671.84, + "end": 35672.48, + "probability": 0.7883 + }, + { + "start": 35673.24, + "end": 35673.94, + "probability": 0.8872 + }, + { + "start": 35674.54, + "end": 35676.64, + "probability": 0.9916 + }, + { + "start": 35677.06, + "end": 35678.3, + "probability": 0.868 + }, + { + "start": 35678.86, + "end": 35681.04, + "probability": 0.9961 + }, + { + "start": 35681.32, + "end": 35683.06, + "probability": 0.9957 + }, + { + "start": 35684.08, + "end": 35691.86, + "probability": 0.9851 + }, + { + "start": 35693.18, + "end": 35693.84, + "probability": 0.7546 + }, + { + "start": 35695.04, + "end": 35695.16, + "probability": 0.5647 + }, + { + "start": 35696.06, + "end": 35696.94, + "probability": 0.5084 + }, + { + "start": 35697.68, + "end": 35699.44, + "probability": 0.8633 + }, + { + "start": 35700.44, + "end": 35702.8, + "probability": 0.8093 + }, + { + "start": 35703.1, + "end": 35703.7, + "probability": 0.7852 + }, + { + "start": 35703.74, + "end": 35706.06, + "probability": 0.9888 + }, + { + "start": 35706.58, + "end": 35707.42, + "probability": 0.9308 + }, + { + "start": 35707.62, + "end": 35708.12, + "probability": 0.7715 + }, + { + "start": 35708.76, + "end": 35711.16, + "probability": 0.9746 + }, + { + "start": 35712.2, + "end": 35714.1, + "probability": 0.9337 + }, + { + "start": 35716.66, + "end": 35719.14, + "probability": 0.8118 + }, + { + "start": 35719.48, + "end": 35720.24, + "probability": 0.9317 + }, + { + "start": 35720.34, + "end": 35721.72, + "probability": 0.854 + }, + { + "start": 35722.12, + "end": 35723.1, + "probability": 0.9404 + }, + { + "start": 35723.22, + "end": 35724.52, + "probability": 0.9976 + }, + { + "start": 35725.14, + "end": 35725.64, + "probability": 0.3758 + }, + { + "start": 35725.74, + "end": 35726.18, + "probability": 0.9395 + }, + { + "start": 35726.74, + "end": 35727.56, + "probability": 0.5323 + }, + { + "start": 35729.66, + "end": 35731.82, + "probability": 0.9873 + }, + { + "start": 35732.0, + "end": 35732.54, + "probability": 0.8791 + }, + { + "start": 35733.52, + "end": 35734.88, + "probability": 0.9981 + }, + { + "start": 35735.72, + "end": 35736.88, + "probability": 0.9602 + }, + { + "start": 35737.7, + "end": 35738.04, + "probability": 0.729 + }, + { + "start": 35738.18, + "end": 35739.44, + "probability": 0.9685 + }, + { + "start": 35740.3, + "end": 35741.4, + "probability": 0.9564 + }, + { + "start": 35741.66, + "end": 35742.42, + "probability": 0.8335 + }, + { + "start": 35742.8, + "end": 35743.34, + "probability": 0.9092 + }, + { + "start": 35743.46, + "end": 35743.76, + "probability": 0.7446 + }, + { + "start": 35743.84, + "end": 35745.04, + "probability": 0.7185 + }, + { + "start": 35746.06, + "end": 35746.44, + "probability": 0.6702 + }, + { + "start": 35747.04, + "end": 35748.76, + "probability": 0.9199 + }, + { + "start": 35749.8, + "end": 35751.42, + "probability": 0.9617 + }, + { + "start": 35751.96, + "end": 35755.22, + "probability": 0.9628 + }, + { + "start": 35755.8, + "end": 35757.96, + "probability": 0.9946 + }, + { + "start": 35758.24, + "end": 35759.64, + "probability": 0.9841 + }, + { + "start": 35759.84, + "end": 35761.71, + "probability": 0.9952 + }, + { + "start": 35762.62, + "end": 35763.16, + "probability": 0.8274 + }, + { + "start": 35763.24, + "end": 35763.98, + "probability": 0.705 + }, + { + "start": 35764.32, + "end": 35769.06, + "probability": 0.9863 + }, + { + "start": 35769.28, + "end": 35769.38, + "probability": 0.9011 + }, + { + "start": 35769.56, + "end": 35771.12, + "probability": 0.7476 + }, + { + "start": 35771.96, + "end": 35772.66, + "probability": 0.9787 + }, + { + "start": 35773.26, + "end": 35774.58, + "probability": 0.903 + }, + { + "start": 35774.74, + "end": 35778.9, + "probability": 0.9176 + }, + { + "start": 35779.0, + "end": 35780.82, + "probability": 0.9722 + }, + { + "start": 35781.94, + "end": 35786.26, + "probability": 0.9819 + }, + { + "start": 35787.08, + "end": 35790.24, + "probability": 0.9756 + }, + { + "start": 35790.66, + "end": 35791.48, + "probability": 0.7832 + }, + { + "start": 35791.8, + "end": 35793.8, + "probability": 0.9921 + }, + { + "start": 35794.14, + "end": 35795.58, + "probability": 0.9958 + }, + { + "start": 35795.76, + "end": 35798.72, + "probability": 0.9766 + }, + { + "start": 35799.24, + "end": 35803.5, + "probability": 0.9781 + }, + { + "start": 35804.02, + "end": 35804.36, + "probability": 0.6959 + }, + { + "start": 35804.78, + "end": 35805.58, + "probability": 0.5617 + }, + { + "start": 35805.78, + "end": 35806.64, + "probability": 0.8035 + }, + { + "start": 35830.38, + "end": 35832.56, + "probability": 0.8569 + }, + { + "start": 35834.36, + "end": 35835.28, + "probability": 0.6637 + }, + { + "start": 35836.12, + "end": 35836.96, + "probability": 0.8084 + }, + { + "start": 35838.56, + "end": 35840.4, + "probability": 0.9516 + }, + { + "start": 35842.0, + "end": 35842.84, + "probability": 0.9399 + }, + { + "start": 35843.74, + "end": 35844.58, + "probability": 0.9935 + }, + { + "start": 35845.76, + "end": 35851.22, + "probability": 0.9636 + }, + { + "start": 35852.14, + "end": 35854.22, + "probability": 0.7952 + }, + { + "start": 35854.94, + "end": 35858.04, + "probability": 0.9282 + }, + { + "start": 35859.5, + "end": 35866.64, + "probability": 0.9951 + }, + { + "start": 35868.0, + "end": 35868.64, + "probability": 0.7642 + }, + { + "start": 35870.04, + "end": 35875.78, + "probability": 0.9954 + }, + { + "start": 35876.78, + "end": 35878.26, + "probability": 0.717 + }, + { + "start": 35879.98, + "end": 35880.96, + "probability": 0.7887 + }, + { + "start": 35881.92, + "end": 35883.14, + "probability": 0.7802 + }, + { + "start": 35884.02, + "end": 35884.46, + "probability": 0.9089 + }, + { + "start": 35885.06, + "end": 35888.34, + "probability": 0.9788 + }, + { + "start": 35890.32, + "end": 35890.44, + "probability": 0.3301 + }, + { + "start": 35890.44, + "end": 35891.84, + "probability": 0.483 + }, + { + "start": 35893.34, + "end": 35894.76, + "probability": 0.9897 + }, + { + "start": 35895.58, + "end": 35898.76, + "probability": 0.946 + }, + { + "start": 35899.48, + "end": 35902.7, + "probability": 0.9643 + }, + { + "start": 35904.42, + "end": 35906.58, + "probability": 0.9653 + }, + { + "start": 35907.3, + "end": 35908.3, + "probability": 0.326 + }, + { + "start": 35910.12, + "end": 35915.82, + "probability": 0.99 + }, + { + "start": 35916.46, + "end": 35923.56, + "probability": 0.9636 + }, + { + "start": 35924.1, + "end": 35928.74, + "probability": 0.9754 + }, + { + "start": 35929.6, + "end": 35930.48, + "probability": 0.8859 + }, + { + "start": 35930.8, + "end": 35934.38, + "probability": 0.9978 + }, + { + "start": 35935.28, + "end": 35939.84, + "probability": 0.9723 + }, + { + "start": 35940.46, + "end": 35940.82, + "probability": 0.974 + }, + { + "start": 35941.76, + "end": 35942.82, + "probability": 0.9292 + }, + { + "start": 35943.16, + "end": 35945.2, + "probability": 0.6863 + }, + { + "start": 35945.64, + "end": 35947.62, + "probability": 0.5915 + }, + { + "start": 35948.5, + "end": 35951.96, + "probability": 0.8801 + }, + { + "start": 35952.72, + "end": 35953.24, + "probability": 0.8654 + }, + { + "start": 35955.0, + "end": 35963.22, + "probability": 0.8294 + }, + { + "start": 35964.06, + "end": 35966.26, + "probability": 0.7755 + }, + { + "start": 35968.06, + "end": 35972.42, + "probability": 0.9773 + }, + { + "start": 35972.72, + "end": 35979.42, + "probability": 0.6317 + }, + { + "start": 35980.18, + "end": 35980.52, + "probability": 0.7023 + }, + { + "start": 35981.62, + "end": 35983.06, + "probability": 0.9948 + }, + { + "start": 35983.88, + "end": 35985.32, + "probability": 0.9282 + }, + { + "start": 35987.38, + "end": 35987.72, + "probability": 0.3781 + }, + { + "start": 35988.48, + "end": 35989.22, + "probability": 0.4294 + }, + { + "start": 35990.24, + "end": 35992.64, + "probability": 0.7524 + }, + { + "start": 35993.32, + "end": 35996.66, + "probability": 0.9084 + }, + { + "start": 35997.42, + "end": 35998.7, + "probability": 0.9628 + }, + { + "start": 36000.3, + "end": 36001.46, + "probability": 0.5841 + }, + { + "start": 36001.98, + "end": 36005.42, + "probability": 0.9817 + }, + { + "start": 36007.46, + "end": 36008.74, + "probability": 0.3798 + }, + { + "start": 36009.64, + "end": 36012.06, + "probability": 0.9131 + }, + { + "start": 36013.96, + "end": 36014.78, + "probability": 0.8445 + }, + { + "start": 36015.74, + "end": 36017.86, + "probability": 0.9839 + }, + { + "start": 36018.62, + "end": 36020.32, + "probability": 0.927 + }, + { + "start": 36021.44, + "end": 36024.44, + "probability": 0.9183 + }, + { + "start": 36025.72, + "end": 36025.74, + "probability": 0.225 + }, + { + "start": 36025.74, + "end": 36027.3, + "probability": 0.7514 + }, + { + "start": 36027.74, + "end": 36031.6, + "probability": 0.9744 + }, + { + "start": 36032.02, + "end": 36037.04, + "probability": 0.4545 + }, + { + "start": 36037.14, + "end": 36038.32, + "probability": 0.8366 + }, + { + "start": 36038.8, + "end": 36046.72, + "probability": 0.951 + }, + { + "start": 36047.42, + "end": 36048.96, + "probability": 0.8048 + }, + { + "start": 36049.7, + "end": 36050.98, + "probability": 0.773 + }, + { + "start": 36055.14, + "end": 36057.49, + "probability": 0.6853 + }, + { + "start": 36058.5, + "end": 36058.96, + "probability": 0.7618 + }, + { + "start": 36059.54, + "end": 36060.1, + "probability": 0.7579 + }, + { + "start": 36062.64, + "end": 36069.08, + "probability": 0.6462 + }, + { + "start": 36069.82, + "end": 36073.84, + "probability": 0.7846 + }, + { + "start": 36074.68, + "end": 36078.12, + "probability": 0.8675 + }, + { + "start": 36078.66, + "end": 36084.36, + "probability": 0.9852 + }, + { + "start": 36084.62, + "end": 36087.64, + "probability": 0.9111 + }, + { + "start": 36088.22, + "end": 36090.32, + "probability": 0.7644 + }, + { + "start": 36090.76, + "end": 36092.24, + "probability": 0.9401 + }, + { + "start": 36092.7, + "end": 36095.02, + "probability": 0.8728 + }, + { + "start": 36095.82, + "end": 36098.18, + "probability": 0.5768 + }, + { + "start": 36099.12, + "end": 36102.06, + "probability": 0.9641 + }, + { + "start": 36102.32, + "end": 36104.12, + "probability": 0.4961 + }, + { + "start": 36104.64, + "end": 36108.34, + "probability": 0.8978 + }, + { + "start": 36109.4, + "end": 36109.7, + "probability": 0.8655 + }, + { + "start": 36110.12, + "end": 36110.84, + "probability": 0.8124 + }, + { + "start": 36112.0, + "end": 36113.96, + "probability": 0.9076 + }, + { + "start": 36123.44, + "end": 36123.5, + "probability": 0.6861 + }, + { + "start": 36123.5, + "end": 36124.9, + "probability": 0.8633 + }, + { + "start": 36125.08, + "end": 36125.4, + "probability": 0.5755 + }, + { + "start": 36125.84, + "end": 36127.52, + "probability": 0.615 + }, + { + "start": 36128.66, + "end": 36130.0, + "probability": 0.6802 + }, + { + "start": 36130.12, + "end": 36132.44, + "probability": 0.4552 + }, + { + "start": 36132.56, + "end": 36133.28, + "probability": 0.8525 + }, + { + "start": 36133.96, + "end": 36136.62, + "probability": 0.9697 + }, + { + "start": 36137.12, + "end": 36139.8, + "probability": 0.9965 + }, + { + "start": 36140.66, + "end": 36141.92, + "probability": 0.851 + }, + { + "start": 36143.08, + "end": 36143.84, + "probability": 0.7641 + }, + { + "start": 36144.14, + "end": 36148.48, + "probability": 0.8624 + }, + { + "start": 36149.08, + "end": 36150.0, + "probability": 0.8053 + }, + { + "start": 36150.68, + "end": 36151.86, + "probability": 0.9911 + }, + { + "start": 36153.34, + "end": 36153.62, + "probability": 0.597 + }, + { + "start": 36156.07, + "end": 36156.69, + "probability": 0.3774 + }, + { + "start": 36157.02, + "end": 36157.46, + "probability": 0.4644 + }, + { + "start": 36157.46, + "end": 36158.12, + "probability": 0.7272 + }, + { + "start": 36159.36, + "end": 36160.12, + "probability": 0.7337 + }, + { + "start": 36160.32, + "end": 36161.2, + "probability": 0.9238 + }, + { + "start": 36161.34, + "end": 36162.06, + "probability": 0.9367 + }, + { + "start": 36162.14, + "end": 36163.12, + "probability": 0.4406 + }, + { + "start": 36163.76, + "end": 36164.65, + "probability": 0.9634 + }, + { + "start": 36165.76, + "end": 36166.88, + "probability": 0.9921 + }, + { + "start": 36168.06, + "end": 36168.68, + "probability": 0.8966 + }, + { + "start": 36169.52, + "end": 36171.88, + "probability": 0.9599 + }, + { + "start": 36172.86, + "end": 36174.62, + "probability": 0.8234 + }, + { + "start": 36175.34, + "end": 36177.68, + "probability": 0.973 + }, + { + "start": 36179.72, + "end": 36181.66, + "probability": 0.6823 + }, + { + "start": 36183.08, + "end": 36184.46, + "probability": 0.9974 + }, + { + "start": 36184.74, + "end": 36187.13, + "probability": 0.9005 + }, + { + "start": 36188.02, + "end": 36189.64, + "probability": 0.709 + }, + { + "start": 36191.12, + "end": 36192.0, + "probability": 0.8127 + }, + { + "start": 36193.12, + "end": 36193.92, + "probability": 0.8875 + }, + { + "start": 36195.02, + "end": 36199.5, + "probability": 0.8636 + }, + { + "start": 36200.58, + "end": 36202.84, + "probability": 0.9019 + }, + { + "start": 36203.92, + "end": 36207.66, + "probability": 0.9837 + }, + { + "start": 36207.98, + "end": 36209.91, + "probability": 0.981 + }, + { + "start": 36210.48, + "end": 36215.02, + "probability": 0.9688 + }, + { + "start": 36215.14, + "end": 36215.74, + "probability": 0.9784 + }, + { + "start": 36215.88, + "end": 36217.86, + "probability": 0.9863 + }, + { + "start": 36218.6, + "end": 36219.84, + "probability": 0.982 + }, + { + "start": 36220.76, + "end": 36225.16, + "probability": 0.9948 + }, + { + "start": 36225.92, + "end": 36226.62, + "probability": 0.9993 + }, + { + "start": 36228.22, + "end": 36229.56, + "probability": 0.7036 + }, + { + "start": 36230.16, + "end": 36230.92, + "probability": 0.8875 + }, + { + "start": 36231.48, + "end": 36232.02, + "probability": 0.9102 + }, + { + "start": 36232.14, + "end": 36234.57, + "probability": 0.9946 + }, + { + "start": 36235.82, + "end": 36237.68, + "probability": 0.8944 + }, + { + "start": 36238.64, + "end": 36238.85, + "probability": 0.7498 + }, + { + "start": 36241.2, + "end": 36244.34, + "probability": 0.9281 + }, + { + "start": 36245.66, + "end": 36247.42, + "probability": 0.9916 + }, + { + "start": 36247.98, + "end": 36249.22, + "probability": 0.9967 + }, + { + "start": 36250.58, + "end": 36251.84, + "probability": 0.9617 + }, + { + "start": 36252.48, + "end": 36253.86, + "probability": 0.9834 + }, + { + "start": 36254.56, + "end": 36255.64, + "probability": 0.825 + }, + { + "start": 36256.54, + "end": 36258.58, + "probability": 0.8987 + }, + { + "start": 36259.14, + "end": 36260.28, + "probability": 0.8171 + }, + { + "start": 36261.32, + "end": 36262.2, + "probability": 0.8378 + }, + { + "start": 36262.22, + "end": 36265.26, + "probability": 0.9946 + }, + { + "start": 36265.62, + "end": 36266.42, + "probability": 0.9727 + }, + { + "start": 36267.28, + "end": 36269.84, + "probability": 0.9717 + }, + { + "start": 36270.3, + "end": 36270.58, + "probability": 0.9352 + }, + { + "start": 36271.7, + "end": 36272.36, + "probability": 0.7717 + }, + { + "start": 36273.16, + "end": 36274.12, + "probability": 0.8881 + }, + { + "start": 36274.74, + "end": 36276.96, + "probability": 0.8879 + }, + { + "start": 36277.72, + "end": 36279.37, + "probability": 0.6918 + }, + { + "start": 36280.56, + "end": 36281.44, + "probability": 0.5597 + }, + { + "start": 36281.48, + "end": 36285.3, + "probability": 0.9845 + }, + { + "start": 36286.72, + "end": 36289.3, + "probability": 0.991 + }, + { + "start": 36289.46, + "end": 36289.86, + "probability": 0.5237 + }, + { + "start": 36290.0, + "end": 36290.7, + "probability": 0.845 + }, + { + "start": 36291.8, + "end": 36295.64, + "probability": 0.7459 + }, + { + "start": 36296.0, + "end": 36298.6, + "probability": 0.9657 + }, + { + "start": 36299.06, + "end": 36300.1, + "probability": 0.9934 + }, + { + "start": 36300.94, + "end": 36301.28, + "probability": 0.3805 + }, + { + "start": 36301.34, + "end": 36302.36, + "probability": 0.6399 + }, + { + "start": 36303.87, + "end": 36304.36, + "probability": 0.1671 + }, + { + "start": 36304.36, + "end": 36305.28, + "probability": 0.6348 + }, + { + "start": 36305.94, + "end": 36308.62, + "probability": 0.9529 + }, + { + "start": 36309.8, + "end": 36315.56, + "probability": 0.8228 + }, + { + "start": 36315.64, + "end": 36316.53, + "probability": 0.9971 + }, + { + "start": 36316.62, + "end": 36317.8, + "probability": 0.9992 + }, + { + "start": 36318.02, + "end": 36318.44, + "probability": 0.7981 + }, + { + "start": 36318.9, + "end": 36321.38, + "probability": 0.6038 + }, + { + "start": 36321.46, + "end": 36323.94, + "probability": 0.9634 + }, + { + "start": 36335.96, + "end": 36337.61, + "probability": 0.975 + }, + { + "start": 36341.56, + "end": 36345.04, + "probability": 0.671 + }, + { + "start": 36345.7, + "end": 36346.68, + "probability": 0.4761 + }, + { + "start": 36347.36, + "end": 36350.34, + "probability": 0.9116 + }, + { + "start": 36351.08, + "end": 36352.74, + "probability": 0.9499 + }, + { + "start": 36352.98, + "end": 36353.72, + "probability": 0.166 + }, + { + "start": 36353.72, + "end": 36354.76, + "probability": 0.5571 + }, + { + "start": 36355.82, + "end": 36356.0, + "probability": 0.2133 + }, + { + "start": 36356.0, + "end": 36356.24, + "probability": 0.6221 + }, + { + "start": 36356.8, + "end": 36360.12, + "probability": 0.9292 + }, + { + "start": 36360.9, + "end": 36361.72, + "probability": 0.8492 + }, + { + "start": 36363.12, + "end": 36364.28, + "probability": 0.8787 + }, + { + "start": 36364.86, + "end": 36366.98, + "probability": 0.6599 + }, + { + "start": 36368.1, + "end": 36370.46, + "probability": 0.9578 + }, + { + "start": 36370.64, + "end": 36372.18, + "probability": 0.9712 + }, + { + "start": 36372.44, + "end": 36374.52, + "probability": 0.9653 + }, + { + "start": 36375.44, + "end": 36375.48, + "probability": 0.0665 + }, + { + "start": 36376.1, + "end": 36380.78, + "probability": 0.9247 + }, + { + "start": 36380.8, + "end": 36383.94, + "probability": 0.7222 + }, + { + "start": 36385.32, + "end": 36387.92, + "probability": 0.84 + }, + { + "start": 36392.32, + "end": 36393.68, + "probability": 0.91 + }, + { + "start": 36395.48, + "end": 36396.88, + "probability": 0.9792 + }, + { + "start": 36397.44, + "end": 36397.72, + "probability": 0.5605 + }, + { + "start": 36398.06, + "end": 36402.22, + "probability": 0.9934 + }, + { + "start": 36403.4, + "end": 36406.58, + "probability": 0.9097 + }, + { + "start": 36407.28, + "end": 36409.54, + "probability": 0.9893 + }, + { + "start": 36410.94, + "end": 36415.5, + "probability": 0.9858 + }, + { + "start": 36415.5, + "end": 36420.32, + "probability": 0.9985 + }, + { + "start": 36421.6, + "end": 36425.7, + "probability": 0.9022 + }, + { + "start": 36426.48, + "end": 36427.64, + "probability": 0.7105 + }, + { + "start": 36428.16, + "end": 36430.14, + "probability": 0.9951 + }, + { + "start": 36430.62, + "end": 36432.02, + "probability": 0.9922 + }, + { + "start": 36432.06, + "end": 36433.04, + "probability": 0.8826 + }, + { + "start": 36434.44, + "end": 36435.88, + "probability": 0.8318 + }, + { + "start": 36436.44, + "end": 36437.38, + "probability": 0.799 + }, + { + "start": 36438.16, + "end": 36443.76, + "probability": 0.9849 + }, + { + "start": 36444.88, + "end": 36447.8, + "probability": 0.9771 + }, + { + "start": 36450.6, + "end": 36451.68, + "probability": 0.8761 + }, + { + "start": 36452.18, + "end": 36456.78, + "probability": 0.9937 + }, + { + "start": 36458.34, + "end": 36461.06, + "probability": 0.978 + }, + { + "start": 36461.38, + "end": 36462.3, + "probability": 0.7513 + }, + { + "start": 36462.34, + "end": 36465.22, + "probability": 0.9935 + }, + { + "start": 36466.1, + "end": 36467.18, + "probability": 0.8413 + }, + { + "start": 36468.92, + "end": 36470.5, + "probability": 0.9865 + }, + { + "start": 36470.74, + "end": 36471.72, + "probability": 0.9022 + }, + { + "start": 36472.14, + "end": 36476.3, + "probability": 0.6966 + }, + { + "start": 36477.22, + "end": 36480.98, + "probability": 0.8333 + }, + { + "start": 36482.2, + "end": 36486.2, + "probability": 0.9991 + }, + { + "start": 36486.58, + "end": 36488.8, + "probability": 0.943 + }, + { + "start": 36490.08, + "end": 36493.5, + "probability": 0.9985 + }, + { + "start": 36493.5, + "end": 36498.3, + "probability": 0.9771 + }, + { + "start": 36499.08, + "end": 36502.62, + "probability": 0.9545 + }, + { + "start": 36503.18, + "end": 36505.5, + "probability": 0.8884 + }, + { + "start": 36506.2, + "end": 36508.2, + "probability": 0.996 + }, + { + "start": 36509.5, + "end": 36510.64, + "probability": 0.9508 + }, + { + "start": 36510.72, + "end": 36512.86, + "probability": 0.9781 + }, + { + "start": 36513.24, + "end": 36517.11, + "probability": 0.9958 + }, + { + "start": 36519.16, + "end": 36521.75, + "probability": 0.9308 + }, + { + "start": 36523.46, + "end": 36524.28, + "probability": 0.7151 + }, + { + "start": 36524.36, + "end": 36524.8, + "probability": 0.83 + }, + { + "start": 36525.7, + "end": 36528.72, + "probability": 0.9875 + }, + { + "start": 36529.12, + "end": 36530.4, + "probability": 0.8271 + }, + { + "start": 36530.68, + "end": 36530.92, + "probability": 0.7859 + }, + { + "start": 36531.74, + "end": 36534.8, + "probability": 0.9294 + }, + { + "start": 36534.94, + "end": 36536.2, + "probability": 0.9117 + }, + { + "start": 36538.52, + "end": 36539.38, + "probability": 0.7271 + }, + { + "start": 36539.76, + "end": 36541.76, + "probability": 0.8958 + }, + { + "start": 36550.12, + "end": 36551.36, + "probability": 0.6627 + }, + { + "start": 36551.76, + "end": 36552.24, + "probability": 0.5585 + }, + { + "start": 36553.84, + "end": 36556.48, + "probability": 0.9839 + }, + { + "start": 36557.22, + "end": 36558.02, + "probability": 0.258 + }, + { + "start": 36558.58, + "end": 36559.54, + "probability": 0.7156 + }, + { + "start": 36560.6, + "end": 36563.02, + "probability": 0.7995 + }, + { + "start": 36563.66, + "end": 36569.0, + "probability": 0.9918 + }, + { + "start": 36569.0, + "end": 36573.14, + "probability": 0.9983 + }, + { + "start": 36574.9, + "end": 36576.72, + "probability": 0.7136 + }, + { + "start": 36577.04, + "end": 36580.72, + "probability": 0.9989 + }, + { + "start": 36581.84, + "end": 36586.44, + "probability": 0.9884 + }, + { + "start": 36587.04, + "end": 36593.04, + "probability": 0.9906 + }, + { + "start": 36593.9, + "end": 36594.66, + "probability": 0.9216 + }, + { + "start": 36595.36, + "end": 36596.04, + "probability": 0.7668 + }, + { + "start": 36596.82, + "end": 36599.0, + "probability": 0.9059 + }, + { + "start": 36599.08, + "end": 36604.61, + "probability": 0.9338 + }, + { + "start": 36605.84, + "end": 36607.66, + "probability": 0.9956 + }, + { + "start": 36610.36, + "end": 36615.0, + "probability": 0.9597 + }, + { + "start": 36616.72, + "end": 36620.58, + "probability": 0.9136 + }, + { + "start": 36621.96, + "end": 36625.1, + "probability": 0.9751 + }, + { + "start": 36625.1, + "end": 36628.22, + "probability": 0.9563 + }, + { + "start": 36628.8, + "end": 36634.26, + "probability": 0.996 + }, + { + "start": 36634.26, + "end": 36641.38, + "probability": 0.9963 + }, + { + "start": 36642.24, + "end": 36642.5, + "probability": 0.1876 + }, + { + "start": 36642.52, + "end": 36646.74, + "probability": 0.9235 + }, + { + "start": 36647.32, + "end": 36650.08, + "probability": 0.9402 + }, + { + "start": 36651.24, + "end": 36651.74, + "probability": 0.8175 + }, + { + "start": 36652.38, + "end": 36655.49, + "probability": 0.9508 + }, + { + "start": 36655.94, + "end": 36660.32, + "probability": 0.9491 + }, + { + "start": 36661.34, + "end": 36665.03, + "probability": 0.9367 + }, + { + "start": 36665.72, + "end": 36669.1, + "probability": 0.9795 + }, + { + "start": 36670.08, + "end": 36672.32, + "probability": 0.9919 + }, + { + "start": 36672.68, + "end": 36679.36, + "probability": 0.8075 + }, + { + "start": 36680.12, + "end": 36684.76, + "probability": 0.9951 + }, + { + "start": 36685.3, + "end": 36687.36, + "probability": 0.9566 + }, + { + "start": 36688.28, + "end": 36694.54, + "probability": 0.8239 + }, + { + "start": 36694.7, + "end": 36697.8, + "probability": 0.9574 + }, + { + "start": 36698.18, + "end": 36704.64, + "probability": 0.9757 + }, + { + "start": 36705.62, + "end": 36710.2, + "probability": 0.7881 + }, + { + "start": 36710.22, + "end": 36712.84, + "probability": 0.9053 + }, + { + "start": 36714.24, + "end": 36715.72, + "probability": 0.9148 + }, + { + "start": 36715.9, + "end": 36716.78, + "probability": 0.8552 + }, + { + "start": 36716.9, + "end": 36719.96, + "probability": 0.9922 + }, + { + "start": 36721.1, + "end": 36723.22, + "probability": 0.9642 + }, + { + "start": 36723.38, + "end": 36725.86, + "probability": 0.9861 + }, + { + "start": 36727.16, + "end": 36729.6, + "probability": 0.912 + }, + { + "start": 36730.28, + "end": 36735.42, + "probability": 0.961 + }, + { + "start": 36736.18, + "end": 36737.87, + "probability": 0.9801 + }, + { + "start": 36739.12, + "end": 36740.26, + "probability": 0.1543 + }, + { + "start": 36741.52, + "end": 36747.72, + "probability": 0.98 + }, + { + "start": 36748.5, + "end": 36753.66, + "probability": 0.7629 + }, + { + "start": 36753.66, + "end": 36758.18, + "probability": 0.9656 + }, + { + "start": 36759.48, + "end": 36762.1, + "probability": 0.8525 + }, + { + "start": 36762.8, + "end": 36764.2, + "probability": 0.4731 + }, + { + "start": 36765.9, + "end": 36767.38, + "probability": 0.6504 + }, + { + "start": 36767.78, + "end": 36770.84, + "probability": 0.9335 + }, + { + "start": 36775.0, + "end": 36776.26, + "probability": 0.5915 + }, + { + "start": 36780.34, + "end": 36781.42, + "probability": 0.9171 + }, + { + "start": 36782.54, + "end": 36782.76, + "probability": 0.0318 + }, + { + "start": 36783.9, + "end": 36785.18, + "probability": 0.8037 + }, + { + "start": 36786.0, + "end": 36786.64, + "probability": 0.0248 + }, + { + "start": 36786.64, + "end": 36786.64, + "probability": 0.0177 + }, + { + "start": 36786.64, + "end": 36788.04, + "probability": 0.8015 + }, + { + "start": 36788.18, + "end": 36788.4, + "probability": 0.8412 + }, + { + "start": 36789.76, + "end": 36791.32, + "probability": 0.8163 + }, + { + "start": 36791.52, + "end": 36792.88, + "probability": 0.7245 + }, + { + "start": 36794.06, + "end": 36797.4, + "probability": 0.891 + }, + { + "start": 36798.92, + "end": 36801.72, + "probability": 0.9701 + }, + { + "start": 36801.94, + "end": 36804.76, + "probability": 0.7084 + }, + { + "start": 36804.86, + "end": 36805.46, + "probability": 0.69 + }, + { + "start": 36806.26, + "end": 36808.0, + "probability": 0.6989 + }, + { + "start": 36808.7, + "end": 36811.86, + "probability": 0.9938 + }, + { + "start": 36811.88, + "end": 36814.48, + "probability": 0.9974 + }, + { + "start": 36814.62, + "end": 36818.08, + "probability": 0.8718 + }, + { + "start": 36818.7, + "end": 36819.6, + "probability": 0.8986 + }, + { + "start": 36820.9, + "end": 36824.66, + "probability": 0.8338 + }, + { + "start": 36825.92, + "end": 36830.6, + "probability": 0.9854 + }, + { + "start": 36831.62, + "end": 36833.24, + "probability": 0.9875 + }, + { + "start": 36833.9, + "end": 36834.48, + "probability": 0.9682 + }, + { + "start": 36835.84, + "end": 36836.56, + "probability": 0.7918 + }, + { + "start": 36836.72, + "end": 36838.18, + "probability": 0.6865 + }, + { + "start": 36838.42, + "end": 36840.76, + "probability": 0.9148 + }, + { + "start": 36841.32, + "end": 36844.1, + "probability": 0.9886 + }, + { + "start": 36844.9, + "end": 36846.88, + "probability": 0.9878 + }, + { + "start": 36847.56, + "end": 36850.88, + "probability": 0.9966 + }, + { + "start": 36851.54, + "end": 36852.74, + "probability": 0.4986 + }, + { + "start": 36853.22, + "end": 36855.24, + "probability": 0.9971 + }, + { + "start": 36856.6, + "end": 36859.86, + "probability": 0.9579 + }, + { + "start": 36860.26, + "end": 36860.6, + "probability": 0.9687 + }, + { + "start": 36861.32, + "end": 36864.38, + "probability": 0.9964 + }, + { + "start": 36865.18, + "end": 36868.47, + "probability": 0.9971 + }, + { + "start": 36869.28, + "end": 36874.6, + "probability": 0.776 + }, + { + "start": 36875.68, + "end": 36879.12, + "probability": 0.9857 + }, + { + "start": 36879.22, + "end": 36882.52, + "probability": 0.9409 + }, + { + "start": 36882.6, + "end": 36884.88, + "probability": 0.9963 + }, + { + "start": 36884.98, + "end": 36885.96, + "probability": 0.6025 + }, + { + "start": 36886.34, + "end": 36888.52, + "probability": 0.912 + }, + { + "start": 36888.86, + "end": 36889.32, + "probability": 0.7343 + }, + { + "start": 36889.88, + "end": 36891.66, + "probability": 0.9393 + }, + { + "start": 36892.16, + "end": 36893.58, + "probability": 0.4201 + }, + { + "start": 36893.7, + "end": 36894.61, + "probability": 0.9476 + }, + { + "start": 36895.22, + "end": 36897.74, + "probability": 0.9087 + }, + { + "start": 36898.24, + "end": 36900.05, + "probability": 0.8215 + }, + { + "start": 36900.56, + "end": 36904.5, + "probability": 0.9446 + }, + { + "start": 36904.64, + "end": 36905.04, + "probability": 0.9114 + }, + { + "start": 36905.14, + "end": 36906.16, + "probability": 0.9315 + }, + { + "start": 36906.24, + "end": 36906.46, + "probability": 0.9963 + }, + { + "start": 36907.06, + "end": 36908.08, + "probability": 0.8533 + }, + { + "start": 36908.14, + "end": 36909.9, + "probability": 0.9897 + }, + { + "start": 36910.72, + "end": 36913.46, + "probability": 0.5916 + }, + { + "start": 36913.78, + "end": 36914.58, + "probability": 0.7678 + }, + { + "start": 36914.7, + "end": 36915.0, + "probability": 0.7074 + }, + { + "start": 36915.68, + "end": 36919.22, + "probability": 0.9141 + }, + { + "start": 36919.86, + "end": 36921.56, + "probability": 0.998 + }, + { + "start": 36921.62, + "end": 36923.12, + "probability": 0.9961 + }, + { + "start": 36923.96, + "end": 36926.7, + "probability": 0.9453 + }, + { + "start": 36927.06, + "end": 36929.46, + "probability": 0.9655 + }, + { + "start": 36929.7, + "end": 36930.96, + "probability": 0.9951 + }, + { + "start": 36931.06, + "end": 36931.56, + "probability": 0.8657 + }, + { + "start": 36931.64, + "end": 36932.68, + "probability": 0.9783 + }, + { + "start": 36933.56, + "end": 36935.3, + "probability": 0.5689 + }, + { + "start": 36935.38, + "end": 36936.76, + "probability": 0.9705 + }, + { + "start": 36936.88, + "end": 36938.32, + "probability": 0.988 + }, + { + "start": 36938.74, + "end": 36939.22, + "probability": 0.6028 + }, + { + "start": 36939.26, + "end": 36939.84, + "probability": 0.9078 + }, + { + "start": 36940.18, + "end": 36941.26, + "probability": 0.958 + }, + { + "start": 36941.38, + "end": 36942.2, + "probability": 0.9696 + }, + { + "start": 36942.28, + "end": 36942.83, + "probability": 0.9376 + }, + { + "start": 36943.48, + "end": 36944.46, + "probability": 0.9747 + }, + { + "start": 36944.6, + "end": 36946.57, + "probability": 0.9893 + }, + { + "start": 36947.28, + "end": 36947.94, + "probability": 0.5157 + }, + { + "start": 36948.06, + "end": 36950.44, + "probability": 0.9946 + }, + { + "start": 36950.58, + "end": 36951.46, + "probability": 0.7511 + }, + { + "start": 36951.66, + "end": 36954.76, + "probability": 0.9822 + }, + { + "start": 36955.74, + "end": 36956.86, + "probability": 0.8625 + }, + { + "start": 36957.3, + "end": 36958.48, + "probability": 0.8736 + }, + { + "start": 36959.22, + "end": 36961.34, + "probability": 0.9396 + }, + { + "start": 36962.2, + "end": 36964.12, + "probability": 0.9249 + }, + { + "start": 36964.62, + "end": 36965.18, + "probability": 0.4954 + }, + { + "start": 36967.66, + "end": 36968.54, + "probability": 0.9692 + }, + { + "start": 36969.14, + "end": 36969.88, + "probability": 0.9487 + }, + { + "start": 36970.92, + "end": 36971.58, + "probability": 0.9329 + }, + { + "start": 36972.08, + "end": 36974.26, + "probability": 0.4693 + }, + { + "start": 36974.4, + "end": 36975.18, + "probability": 0.9888 + }, + { + "start": 36975.36, + "end": 36975.93, + "probability": 0.8656 + }, + { + "start": 36977.48, + "end": 36978.76, + "probability": 0.777 + }, + { + "start": 36978.98, + "end": 36980.3, + "probability": 0.8315 + }, + { + "start": 36980.5, + "end": 36981.42, + "probability": 0.7424 + }, + { + "start": 36982.6, + "end": 36983.24, + "probability": 0.9091 + }, + { + "start": 36983.36, + "end": 36983.64, + "probability": 0.9071 + }, + { + "start": 36984.06, + "end": 36985.94, + "probability": 0.9594 + }, + { + "start": 36986.92, + "end": 36989.82, + "probability": 0.9693 + }, + { + "start": 36990.66, + "end": 36992.09, + "probability": 0.8608 + }, + { + "start": 36992.46, + "end": 36993.86, + "probability": 0.8851 + }, + { + "start": 36994.62, + "end": 36997.0, + "probability": 0.8601 + }, + { + "start": 36997.06, + "end": 36998.14, + "probability": 0.8242 + }, + { + "start": 36998.62, + "end": 37001.56, + "probability": 0.9431 + }, + { + "start": 37001.56, + "end": 37004.5, + "probability": 0.8461 + }, + { + "start": 37005.08, + "end": 37005.08, + "probability": 0.0389 + }, + { + "start": 37005.12, + "end": 37005.8, + "probability": 0.7725 + }, + { + "start": 37006.0, + "end": 37008.54, + "probability": 0.9784 + }, + { + "start": 37009.02, + "end": 37010.4, + "probability": 0.9448 + }, + { + "start": 37010.62, + "end": 37014.64, + "probability": 0.9868 + }, + { + "start": 37014.84, + "end": 37015.04, + "probability": 0.9249 + }, + { + "start": 37015.4, + "end": 37018.36, + "probability": 0.6583 + }, + { + "start": 37018.78, + "end": 37021.06, + "probability": 0.6644 + }, + { + "start": 37021.94, + "end": 37023.08, + "probability": 0.9227 + }, + { + "start": 37028.58, + "end": 37030.32, + "probability": 0.6155 + }, + { + "start": 37031.6, + "end": 37033.32, + "probability": 0.9395 + }, + { + "start": 37035.04, + "end": 37036.86, + "probability": 0.9919 + }, + { + "start": 37037.42, + "end": 37039.76, + "probability": 0.922 + }, + { + "start": 37040.44, + "end": 37042.62, + "probability": 0.9489 + }, + { + "start": 37043.38, + "end": 37047.02, + "probability": 0.987 + }, + { + "start": 37047.18, + "end": 37048.58, + "probability": 0.937 + }, + { + "start": 37049.46, + "end": 37051.04, + "probability": 0.9785 + }, + { + "start": 37051.96, + "end": 37053.44, + "probability": 0.9883 + }, + { + "start": 37054.34, + "end": 37055.92, + "probability": 0.9889 + }, + { + "start": 37056.1, + "end": 37058.52, + "probability": 0.8816 + }, + { + "start": 37060.27, + "end": 37062.52, + "probability": 0.9509 + }, + { + "start": 37063.12, + "end": 37066.94, + "probability": 0.7427 + }, + { + "start": 37067.06, + "end": 37068.2, + "probability": 0.1241 + }, + { + "start": 37068.86, + "end": 37071.04, + "probability": 0.744 + }, + { + "start": 37071.5, + "end": 37071.54, + "probability": 0.4263 + }, + { + "start": 37071.54, + "end": 37074.09, + "probability": 0.9537 + }, + { + "start": 37074.44, + "end": 37078.72, + "probability": 0.9455 + }, + { + "start": 37079.12, + "end": 37080.9, + "probability": 0.9771 + }, + { + "start": 37081.4, + "end": 37085.58, + "probability": 0.9708 + }, + { + "start": 37086.06, + "end": 37086.6, + "probability": 0.6934 + }, + { + "start": 37086.66, + "end": 37088.34, + "probability": 0.8463 + }, + { + "start": 37088.72, + "end": 37090.34, + "probability": 0.9846 + }, + { + "start": 37090.46, + "end": 37092.54, + "probability": 0.8887 + }, + { + "start": 37092.64, + "end": 37094.08, + "probability": 0.9834 + }, + { + "start": 37094.88, + "end": 37099.8, + "probability": 0.9884 + }, + { + "start": 37099.8, + "end": 37103.44, + "probability": 0.9445 + }, + { + "start": 37104.1, + "end": 37108.4, + "probability": 0.9456 + }, + { + "start": 37108.4, + "end": 37111.38, + "probability": 0.9977 + }, + { + "start": 37111.98, + "end": 37113.42, + "probability": 0.9083 + }, + { + "start": 37114.86, + "end": 37115.54, + "probability": 0.8221 + }, + { + "start": 37115.72, + "end": 37116.36, + "probability": 0.9081 + }, + { + "start": 37116.48, + "end": 37117.54, + "probability": 0.9969 + }, + { + "start": 37117.68, + "end": 37118.22, + "probability": 0.2584 + }, + { + "start": 37118.92, + "end": 37119.34, + "probability": 0.4883 + }, + { + "start": 37120.56, + "end": 37121.14, + "probability": 0.9897 + }, + { + "start": 37122.3, + "end": 37126.44, + "probability": 0.9667 + }, + { + "start": 37127.38, + "end": 37128.7, + "probability": 0.9906 + }, + { + "start": 37129.22, + "end": 37130.6, + "probability": 0.9937 + }, + { + "start": 37131.5, + "end": 37133.68, + "probability": 0.9919 + }, + { + "start": 37133.82, + "end": 37137.36, + "probability": 0.9888 + }, + { + "start": 37138.1, + "end": 37139.2, + "probability": 0.9463 + }, + { + "start": 37139.3, + "end": 37143.7, + "probability": 0.9946 + }, + { + "start": 37144.48, + "end": 37146.34, + "probability": 0.6074 + }, + { + "start": 37147.06, + "end": 37148.84, + "probability": 0.9823 + }, + { + "start": 37149.44, + "end": 37151.84, + "probability": 0.9939 + }, + { + "start": 37152.54, + "end": 37156.96, + "probability": 0.9971 + }, + { + "start": 37157.54, + "end": 37159.66, + "probability": 0.9965 + }, + { + "start": 37160.3, + "end": 37161.84, + "probability": 0.632 + }, + { + "start": 37162.4, + "end": 37162.5, + "probability": 0.0768 + }, + { + "start": 37162.88, + "end": 37167.38, + "probability": 0.9965 + }, + { + "start": 37167.9, + "end": 37169.64, + "probability": 0.9453 + }, + { + "start": 37170.38, + "end": 37170.62, + "probability": 0.3731 + }, + { + "start": 37170.8, + "end": 37171.58, + "probability": 0.7804 + }, + { + "start": 37171.72, + "end": 37172.64, + "probability": 0.9019 + }, + { + "start": 37173.4, + "end": 37174.84, + "probability": 0.8936 + }, + { + "start": 37175.46, + "end": 37177.7, + "probability": 0.9126 + }, + { + "start": 37177.76, + "end": 37179.32, + "probability": 0.9972 + }, + { + "start": 37180.08, + "end": 37183.44, + "probability": 0.9751 + }, + { + "start": 37183.56, + "end": 37184.78, + "probability": 0.982 + }, + { + "start": 37185.12, + "end": 37186.28, + "probability": 0.9487 + }, + { + "start": 37186.76, + "end": 37188.44, + "probability": 0.9839 + }, + { + "start": 37189.08, + "end": 37190.32, + "probability": 0.9904 + }, + { + "start": 37190.48, + "end": 37193.12, + "probability": 0.9626 + }, + { + "start": 37193.9, + "end": 37197.32, + "probability": 0.8447 + }, + { + "start": 37197.9, + "end": 37199.84, + "probability": 0.9538 + }, + { + "start": 37200.5, + "end": 37200.84, + "probability": 0.8229 + }, + { + "start": 37201.92, + "end": 37202.66, + "probability": 0.9678 + }, + { + "start": 37202.76, + "end": 37204.48, + "probability": 0.968 + }, + { + "start": 37204.9, + "end": 37206.68, + "probability": 0.9556 + }, + { + "start": 37207.48, + "end": 37209.08, + "probability": 0.9516 + }, + { + "start": 37209.28, + "end": 37209.96, + "probability": 0.571 + }, + { + "start": 37210.12, + "end": 37211.42, + "probability": 0.9269 + }, + { + "start": 37211.9, + "end": 37213.14, + "probability": 0.6699 + }, + { + "start": 37213.18, + "end": 37214.44, + "probability": 0.9769 + }, + { + "start": 37215.3, + "end": 37216.82, + "probability": 0.9307 + }, + { + "start": 37217.42, + "end": 37219.52, + "probability": 0.9785 + }, + { + "start": 37219.92, + "end": 37220.9, + "probability": 0.7686 + }, + { + "start": 37220.92, + "end": 37222.74, + "probability": 0.9932 + }, + { + "start": 37223.16, + "end": 37224.17, + "probability": 0.9689 + }, + { + "start": 37225.04, + "end": 37228.46, + "probability": 0.8671 + }, + { + "start": 37228.86, + "end": 37229.3, + "probability": 0.8298 + }, + { + "start": 37229.74, + "end": 37232.84, + "probability": 0.7137 + }, + { + "start": 37233.52, + "end": 37235.66, + "probability": 0.9739 + }, + { + "start": 37236.96, + "end": 37237.84, + "probability": 0.6755 + }, + { + "start": 37238.2, + "end": 37240.76, + "probability": 0.9626 + }, + { + "start": 37257.86, + "end": 37257.86, + "probability": 0.0727 + }, + { + "start": 37257.86, + "end": 37259.88, + "probability": 0.6395 + }, + { + "start": 37260.36, + "end": 37264.58, + "probability": 0.7759 + }, + { + "start": 37265.78, + "end": 37267.94, + "probability": 0.8813 + }, + { + "start": 37269.08, + "end": 37270.22, + "probability": 0.813 + }, + { + "start": 37270.44, + "end": 37271.68, + "probability": 0.5554 + }, + { + "start": 37271.68, + "end": 37273.1, + "probability": 0.9443 + }, + { + "start": 37273.84, + "end": 37274.36, + "probability": 0.7514 + }, + { + "start": 37275.84, + "end": 37277.2, + "probability": 0.8061 + }, + { + "start": 37278.32, + "end": 37283.02, + "probability": 0.9968 + }, + { + "start": 37283.76, + "end": 37286.3, + "probability": 0.98 + }, + { + "start": 37287.16, + "end": 37290.13, + "probability": 0.9891 + }, + { + "start": 37290.82, + "end": 37295.48, + "probability": 0.9948 + }, + { + "start": 37296.68, + "end": 37297.64, + "probability": 0.9969 + }, + { + "start": 37298.98, + "end": 37300.46, + "probability": 0.6685 + }, + { + "start": 37302.08, + "end": 37305.48, + "probability": 0.9355 + }, + { + "start": 37306.06, + "end": 37306.6, + "probability": 0.7525 + }, + { + "start": 37307.26, + "end": 37311.16, + "probability": 0.9785 + }, + { + "start": 37312.5, + "end": 37315.28, + "probability": 0.9797 + }, + { + "start": 37316.4, + "end": 37318.93, + "probability": 0.9417 + }, + { + "start": 37319.14, + "end": 37322.74, + "probability": 0.9651 + }, + { + "start": 37322.94, + "end": 37326.12, + "probability": 0.9966 + }, + { + "start": 37327.04, + "end": 37331.92, + "probability": 0.9917 + }, + { + "start": 37331.92, + "end": 37336.22, + "probability": 0.9937 + }, + { + "start": 37336.34, + "end": 37341.14, + "probability": 0.9766 + }, + { + "start": 37342.7, + "end": 37348.24, + "probability": 0.9766 + }, + { + "start": 37348.46, + "end": 37350.08, + "probability": 0.7445 + }, + { + "start": 37350.78, + "end": 37356.46, + "probability": 0.9814 + }, + { + "start": 37356.46, + "end": 37362.18, + "probability": 0.9945 + }, + { + "start": 37363.94, + "end": 37364.48, + "probability": 0.8116 + }, + { + "start": 37364.56, + "end": 37365.72, + "probability": 0.9773 + }, + { + "start": 37365.8, + "end": 37368.6, + "probability": 0.9314 + }, + { + "start": 37369.28, + "end": 37371.08, + "probability": 0.7773 + }, + { + "start": 37371.96, + "end": 37373.7, + "probability": 0.7869 + }, + { + "start": 37373.92, + "end": 37374.28, + "probability": 0.8581 + }, + { + "start": 37374.36, + "end": 37378.34, + "probability": 0.9552 + }, + { + "start": 37379.44, + "end": 37382.4, + "probability": 0.9626 + }, + { + "start": 37383.56, + "end": 37391.32, + "probability": 0.9969 + }, + { + "start": 37391.32, + "end": 37399.08, + "probability": 0.9971 + }, + { + "start": 37400.92, + "end": 37403.4, + "probability": 0.9967 + }, + { + "start": 37404.56, + "end": 37406.16, + "probability": 0.7382 + }, + { + "start": 37406.74, + "end": 37412.84, + "probability": 0.9926 + }, + { + "start": 37414.02, + "end": 37420.22, + "probability": 0.9989 + }, + { + "start": 37420.66, + "end": 37425.44, + "probability": 0.9847 + }, + { + "start": 37425.54, + "end": 37430.86, + "probability": 0.968 + }, + { + "start": 37432.0, + "end": 37438.48, + "probability": 0.8993 + }, + { + "start": 37439.08, + "end": 37440.41, + "probability": 0.9995 + }, + { + "start": 37441.28, + "end": 37449.52, + "probability": 0.9902 + }, + { + "start": 37449.52, + "end": 37455.9, + "probability": 0.9906 + }, + { + "start": 37456.98, + "end": 37456.98, + "probability": 0.4582 + }, + { + "start": 37456.98, + "end": 37459.9, + "probability": 0.6326 + }, + { + "start": 37460.56, + "end": 37461.86, + "probability": 0.9051 + }, + { + "start": 37462.92, + "end": 37468.22, + "probability": 0.9898 + }, + { + "start": 37468.23, + "end": 37470.76, + "probability": 0.9631 + }, + { + "start": 37472.06, + "end": 37472.34, + "probability": 0.7834 + }, + { + "start": 37473.54, + "end": 37475.16, + "probability": 0.6719 + }, + { + "start": 37476.62, + "end": 37478.6, + "probability": 0.9174 + }, + { + "start": 37479.46, + "end": 37480.26, + "probability": 0.7066 + }, + { + "start": 37480.64, + "end": 37482.14, + "probability": 0.9252 + }, + { + "start": 37495.68, + "end": 37496.54, + "probability": 0.8967 + }, + { + "start": 37497.1, + "end": 37497.58, + "probability": 0.7376 + }, + { + "start": 37497.66, + "end": 37498.7, + "probability": 0.7586 + }, + { + "start": 37500.2, + "end": 37501.66, + "probability": 0.5193 + }, + { + "start": 37502.22, + "end": 37504.78, + "probability": 0.7925 + }, + { + "start": 37504.84, + "end": 37506.88, + "probability": 0.8729 + }, + { + "start": 37507.28, + "end": 37508.38, + "probability": 0.7019 + }, + { + "start": 37508.8, + "end": 37512.34, + "probability": 0.9729 + }, + { + "start": 37513.9, + "end": 37515.84, + "probability": 0.9866 + }, + { + "start": 37515.96, + "end": 37516.34, + "probability": 0.447 + }, + { + "start": 37516.42, + "end": 37516.68, + "probability": 0.864 + }, + { + "start": 37516.78, + "end": 37517.4, + "probability": 0.4786 + }, + { + "start": 37517.78, + "end": 37519.14, + "probability": 0.9404 + }, + { + "start": 37519.3, + "end": 37519.7, + "probability": 0.0761 + }, + { + "start": 37519.7, + "end": 37519.94, + "probability": 0.0338 + }, + { + "start": 37520.1, + "end": 37520.54, + "probability": 0.045 + }, + { + "start": 37520.78, + "end": 37520.84, + "probability": 0.1339 + }, + { + "start": 37520.84, + "end": 37521.3, + "probability": 0.7205 + }, + { + "start": 37521.34, + "end": 37522.6, + "probability": 0.9688 + }, + { + "start": 37522.78, + "end": 37523.34, + "probability": 0.9194 + }, + { + "start": 37523.44, + "end": 37525.58, + "probability": 0.9832 + }, + { + "start": 37527.71, + "end": 37529.64, + "probability": 0.1078 + }, + { + "start": 37529.64, + "end": 37530.5, + "probability": 0.5252 + }, + { + "start": 37530.68, + "end": 37532.88, + "probability": 0.9668 + }, + { + "start": 37534.02, + "end": 37540.6, + "probability": 0.9978 + }, + { + "start": 37541.14, + "end": 37541.58, + "probability": 0.9998 + }, + { + "start": 37542.44, + "end": 37544.18, + "probability": 0.9509 + }, + { + "start": 37546.8, + "end": 37550.24, + "probability": 0.96 + }, + { + "start": 37552.52, + "end": 37555.5, + "probability": 0.8339 + }, + { + "start": 37556.2, + "end": 37558.74, + "probability": 0.9858 + }, + { + "start": 37559.28, + "end": 37559.86, + "probability": 0.8839 + }, + { + "start": 37560.86, + "end": 37562.88, + "probability": 0.9861 + }, + { + "start": 37563.08, + "end": 37564.86, + "probability": 0.9554 + }, + { + "start": 37565.1, + "end": 37568.22, + "probability": 0.9905 + }, + { + "start": 37569.28, + "end": 37571.06, + "probability": 0.98 + }, + { + "start": 37572.16, + "end": 37576.46, + "probability": 0.9836 + }, + { + "start": 37576.6, + "end": 37578.86, + "probability": 0.964 + }, + { + "start": 37580.06, + "end": 37581.52, + "probability": 0.9435 + }, + { + "start": 37582.64, + "end": 37585.68, + "probability": 0.895 + }, + { + "start": 37586.28, + "end": 37590.32, + "probability": 0.9668 + }, + { + "start": 37590.54, + "end": 37591.7, + "probability": 0.7179 + }, + { + "start": 37592.22, + "end": 37594.44, + "probability": 0.9407 + }, + { + "start": 37595.3, + "end": 37597.62, + "probability": 0.9462 + }, + { + "start": 37598.08, + "end": 37601.06, + "probability": 0.991 + }, + { + "start": 37601.74, + "end": 37604.96, + "probability": 0.971 + }, + { + "start": 37605.52, + "end": 37608.14, + "probability": 0.7447 + }, + { + "start": 37608.3, + "end": 37612.86, + "probability": 0.9538 + }, + { + "start": 37612.9, + "end": 37614.6, + "probability": 0.7071 + }, + { + "start": 37615.44, + "end": 37617.06, + "probability": 0.846 + }, + { + "start": 37617.82, + "end": 37619.78, + "probability": 0.8731 + }, + { + "start": 37619.88, + "end": 37622.68, + "probability": 0.9937 + }, + { + "start": 37622.68, + "end": 37626.06, + "probability": 0.9419 + }, + { + "start": 37626.12, + "end": 37626.56, + "probability": 0.7256 + }, + { + "start": 37627.0, + "end": 37627.78, + "probability": 0.5598 + }, + { + "start": 37627.82, + "end": 37628.79, + "probability": 0.8711 + }, + { + "start": 37629.56, + "end": 37630.76, + "probability": 0.8026 + }, + { + "start": 37630.9, + "end": 37635.14, + "probability": 0.9889 + }, + { + "start": 37635.76, + "end": 37639.02, + "probability": 0.9739 + }, + { + "start": 37639.14, + "end": 37640.1, + "probability": 0.8791 + }, + { + "start": 37641.62, + "end": 37643.22, + "probability": 0.969 + }, + { + "start": 37643.38, + "end": 37644.87, + "probability": 0.9973 + }, + { + "start": 37645.06, + "end": 37647.34, + "probability": 0.9861 + }, + { + "start": 37648.74, + "end": 37652.92, + "probability": 0.9982 + }, + { + "start": 37653.24, + "end": 37654.62, + "probability": 0.7182 + }, + { + "start": 37655.08, + "end": 37658.48, + "probability": 0.9746 + }, + { + "start": 37658.68, + "end": 37659.78, + "probability": 0.8262 + }, + { + "start": 37660.26, + "end": 37661.06, + "probability": 0.9449 + }, + { + "start": 37661.78, + "end": 37662.24, + "probability": 0.7534 + }, + { + "start": 37662.28, + "end": 37663.34, + "probability": 0.7265 + }, + { + "start": 37663.5, + "end": 37664.93, + "probability": 0.9922 + }, + { + "start": 37665.56, + "end": 37670.68, + "probability": 0.7817 + }, + { + "start": 37671.28, + "end": 37673.22, + "probability": 0.7431 + }, + { + "start": 37673.26, + "end": 37675.45, + "probability": 0.9788 + }, + { + "start": 37676.72, + "end": 37679.74, + "probability": 0.8819 + }, + { + "start": 37680.46, + "end": 37682.52, + "probability": 0.9966 + }, + { + "start": 37683.02, + "end": 37687.5, + "probability": 0.9758 + }, + { + "start": 37687.6, + "end": 37688.61, + "probability": 0.9746 + }, + { + "start": 37688.92, + "end": 37691.08, + "probability": 0.9961 + }, + { + "start": 37691.92, + "end": 37692.32, + "probability": 0.7964 + }, + { + "start": 37692.4, + "end": 37696.54, + "probability": 0.999 + }, + { + "start": 37697.04, + "end": 37697.04, + "probability": 0.4127 + }, + { + "start": 37697.16, + "end": 37699.12, + "probability": 0.9966 + }, + { + "start": 37700.22, + "end": 37701.0, + "probability": 0.5509 + }, + { + "start": 37701.0, + "end": 37701.94, + "probability": 0.9355 + }, + { + "start": 37701.98, + "end": 37702.88, + "probability": 0.9282 + }, + { + "start": 37702.9, + "end": 37703.22, + "probability": 0.9038 + }, + { + "start": 37703.66, + "end": 37704.42, + "probability": 0.9753 + }, + { + "start": 37704.92, + "end": 37706.08, + "probability": 0.9663 + }, + { + "start": 37707.56, + "end": 37710.6, + "probability": 0.9131 + }, + { + "start": 37710.6, + "end": 37713.88, + "probability": 0.9971 + }, + { + "start": 37713.92, + "end": 37714.56, + "probability": 0.7108 + }, + { + "start": 37715.34, + "end": 37716.88, + "probability": 0.6871 + }, + { + "start": 37716.96, + "end": 37719.04, + "probability": 0.927 + }, + { + "start": 37719.9, + "end": 37721.9, + "probability": 0.9901 + }, + { + "start": 37722.88, + "end": 37723.4, + "probability": 0.941 + }, + { + "start": 37724.5, + "end": 37724.8, + "probability": 0.5642 + }, + { + "start": 37724.8, + "end": 37727.14, + "probability": 0.7187 + }, + { + "start": 37727.3, + "end": 37729.36, + "probability": 0.9587 + }, + { + "start": 37730.86, + "end": 37731.78, + "probability": 0.5382 + }, + { + "start": 37733.08, + "end": 37735.08, + "probability": 0.9961 + }, + { + "start": 37735.94, + "end": 37738.9, + "probability": 0.9161 + }, + { + "start": 37740.36, + "end": 37741.08, + "probability": 0.9538 + }, + { + "start": 37742.2, + "end": 37743.52, + "probability": 0.733 + }, + { + "start": 37745.08, + "end": 37749.04, + "probability": 0.9518 + }, + { + "start": 37750.26, + "end": 37751.2, + "probability": 0.7244 + }, + { + "start": 37752.02, + "end": 37753.52, + "probability": 0.9968 + }, + { + "start": 37754.64, + "end": 37755.38, + "probability": 0.6933 + }, + { + "start": 37756.0, + "end": 37758.34, + "probability": 0.915 + }, + { + "start": 37759.56, + "end": 37760.04, + "probability": 0.4148 + }, + { + "start": 37760.34, + "end": 37760.9, + "probability": 0.4047 + }, + { + "start": 37762.34, + "end": 37763.37, + "probability": 0.9718 + }, + { + "start": 37774.74, + "end": 37776.38, + "probability": 0.8564 + }, + { + "start": 37780.06, + "end": 37782.76, + "probability": 0.8993 + }, + { + "start": 37783.28, + "end": 37783.48, + "probability": 0.5893 + }, + { + "start": 37784.92, + "end": 37788.2, + "probability": 0.8167 + }, + { + "start": 37788.86, + "end": 37789.58, + "probability": 0.9939 + }, + { + "start": 37790.7, + "end": 37792.56, + "probability": 0.9954 + }, + { + "start": 37793.84, + "end": 37798.7, + "probability": 0.9385 + }, + { + "start": 37798.88, + "end": 37799.76, + "probability": 0.9619 + }, + { + "start": 37800.8, + "end": 37801.48, + "probability": 0.6168 + }, + { + "start": 37802.24, + "end": 37803.58, + "probability": 0.9098 + }, + { + "start": 37804.38, + "end": 37805.02, + "probability": 0.8616 + }, + { + "start": 37806.24, + "end": 37806.54, + "probability": 0.8408 + }, + { + "start": 37807.78, + "end": 37811.38, + "probability": 0.9666 + }, + { + "start": 37812.82, + "end": 37814.92, + "probability": 0.9673 + }, + { + "start": 37817.3, + "end": 37819.64, + "probability": 0.9749 + }, + { + "start": 37820.3, + "end": 37822.72, + "probability": 0.9809 + }, + { + "start": 37823.62, + "end": 37825.35, + "probability": 0.9689 + }, + { + "start": 37825.44, + "end": 37827.42, + "probability": 0.9618 + }, + { + "start": 37828.72, + "end": 37830.74, + "probability": 0.9567 + }, + { + "start": 37831.5, + "end": 37832.66, + "probability": 0.8235 + }, + { + "start": 37835.0, + "end": 37837.22, + "probability": 0.9491 + }, + { + "start": 37837.4, + "end": 37838.6, + "probability": 0.9647 + }, + { + "start": 37838.88, + "end": 37840.82, + "probability": 0.9808 + }, + { + "start": 37840.86, + "end": 37841.88, + "probability": 0.7476 + }, + { + "start": 37842.4, + "end": 37843.46, + "probability": 0.9014 + }, + { + "start": 37844.66, + "end": 37845.38, + "probability": 0.9535 + }, + { + "start": 37846.58, + "end": 37849.38, + "probability": 0.9844 + }, + { + "start": 37851.66, + "end": 37854.28, + "probability": 0.9856 + }, + { + "start": 37854.9, + "end": 37856.0, + "probability": 0.9689 + }, + { + "start": 37856.2, + "end": 37857.82, + "probability": 0.9988 + }, + { + "start": 37857.98, + "end": 37858.52, + "probability": 0.7298 + }, + { + "start": 37859.16, + "end": 37862.88, + "probability": 0.9968 + }, + { + "start": 37863.46, + "end": 37865.02, + "probability": 0.975 + }, + { + "start": 37866.28, + "end": 37868.84, + "probability": 0.9927 + }, + { + "start": 37870.64, + "end": 37872.12, + "probability": 0.9976 + }, + { + "start": 37872.28, + "end": 37874.7, + "probability": 0.988 + }, + { + "start": 37874.88, + "end": 37876.22, + "probability": 0.9939 + }, + { + "start": 37876.28, + "end": 37877.9, + "probability": 0.9973 + }, + { + "start": 37879.9, + "end": 37882.74, + "probability": 0.9554 + }, + { + "start": 37883.36, + "end": 37885.88, + "probability": 0.8673 + }, + { + "start": 37887.86, + "end": 37891.9, + "probability": 0.9954 + }, + { + "start": 37893.54, + "end": 37895.8, + "probability": 0.9916 + }, + { + "start": 37896.68, + "end": 37898.3, + "probability": 0.9929 + }, + { + "start": 37898.36, + "end": 37899.62, + "probability": 0.8059 + }, + { + "start": 37899.78, + "end": 37901.94, + "probability": 0.8198 + }, + { + "start": 37902.86, + "end": 37906.22, + "probability": 0.9985 + }, + { + "start": 37907.5, + "end": 37910.52, + "probability": 0.9685 + }, + { + "start": 37913.96, + "end": 37914.94, + "probability": 0.9475 + }, + { + "start": 37914.98, + "end": 37915.48, + "probability": 0.9481 + }, + { + "start": 37915.8, + "end": 37918.59, + "probability": 0.9868 + }, + { + "start": 37919.62, + "end": 37922.62, + "probability": 0.9985 + }, + { + "start": 37923.32, + "end": 37929.78, + "probability": 0.9932 + }, + { + "start": 37930.86, + "end": 37933.0, + "probability": 0.9993 + }, + { + "start": 37934.8, + "end": 37938.54, + "probability": 0.9985 + }, + { + "start": 37939.22, + "end": 37940.06, + "probability": 0.696 + }, + { + "start": 37941.14, + "end": 37942.24, + "probability": 0.9263 + }, + { + "start": 37942.72, + "end": 37947.24, + "probability": 0.9961 + }, + { + "start": 37947.24, + "end": 37952.5, + "probability": 0.9328 + }, + { + "start": 37954.28, + "end": 37957.18, + "probability": 0.9986 + }, + { + "start": 37957.24, + "end": 37961.26, + "probability": 0.9976 + }, + { + "start": 37961.62, + "end": 37961.62, + "probability": 0.3536 + }, + { + "start": 37961.66, + "end": 37961.86, + "probability": 0.9032 + }, + { + "start": 37964.02, + "end": 37965.2, + "probability": 0.9985 + }, + { + "start": 37965.3, + "end": 37968.8, + "probability": 0.9715 + }, + { + "start": 37969.62, + "end": 37973.4, + "probability": 0.9981 + }, + { + "start": 37974.62, + "end": 37977.32, + "probability": 0.9989 + }, + { + "start": 37978.9, + "end": 37980.8, + "probability": 0.9946 + }, + { + "start": 37982.4, + "end": 37983.15, + "probability": 0.9858 + }, + { + "start": 37983.56, + "end": 37985.16, + "probability": 0.9347 + }, + { + "start": 37986.0, + "end": 37986.84, + "probability": 0.988 + }, + { + "start": 37987.56, + "end": 37987.9, + "probability": 0.8223 + }, + { + "start": 37988.5, + "end": 37991.3, + "probability": 0.6851 + }, + { + "start": 37992.4, + "end": 37994.25, + "probability": 0.9048 + }, + { + "start": 37995.26, + "end": 37997.9, + "probability": 0.8924 + }, + { + "start": 37999.5, + "end": 38000.32, + "probability": 0.3725 + }, + { + "start": 38000.96, + "end": 38002.62, + "probability": 0.7609 + }, + { + "start": 38015.42, + "end": 38019.5, + "probability": 0.5574 + }, + { + "start": 38024.54, + "end": 38024.54, + "probability": 0.3173 + }, + { + "start": 38024.54, + "end": 38025.61, + "probability": 0.4589 + }, + { + "start": 38029.72, + "end": 38030.64, + "probability": 0.6118 + }, + { + "start": 38032.8, + "end": 38035.08, + "probability": 0.8861 + }, + { + "start": 38037.1, + "end": 38041.68, + "probability": 0.9806 + }, + { + "start": 38043.24, + "end": 38046.36, + "probability": 0.9854 + }, + { + "start": 38047.66, + "end": 38048.28, + "probability": 0.7447 + }, + { + "start": 38050.7, + "end": 38053.24, + "probability": 0.9876 + }, + { + "start": 38054.24, + "end": 38055.94, + "probability": 0.9881 + }, + { + "start": 38056.62, + "end": 38061.16, + "probability": 0.994 + }, + { + "start": 38062.3, + "end": 38064.26, + "probability": 0.7998 + }, + { + "start": 38065.04, + "end": 38065.9, + "probability": 0.3071 + }, + { + "start": 38067.24, + "end": 38068.28, + "probability": 0.9918 + }, + { + "start": 38068.86, + "end": 38069.54, + "probability": 0.9119 + }, + { + "start": 38070.78, + "end": 38071.5, + "probability": 0.815 + }, + { + "start": 38073.94, + "end": 38076.38, + "probability": 0.976 + }, + { + "start": 38078.28, + "end": 38080.5, + "probability": 0.7315 + }, + { + "start": 38081.16, + "end": 38085.86, + "probability": 0.9895 + }, + { + "start": 38086.32, + "end": 38088.92, + "probability": 0.9858 + }, + { + "start": 38089.48, + "end": 38091.46, + "probability": 0.987 + }, + { + "start": 38091.84, + "end": 38094.88, + "probability": 0.9899 + }, + { + "start": 38094.94, + "end": 38095.64, + "probability": 0.9077 + }, + { + "start": 38095.78, + "end": 38096.28, + "probability": 0.9706 + }, + { + "start": 38096.32, + "end": 38096.96, + "probability": 0.9839 + }, + { + "start": 38097.1, + "end": 38097.2, + "probability": 0.8904 + }, + { + "start": 38098.66, + "end": 38098.96, + "probability": 0.9705 + }, + { + "start": 38102.96, + "end": 38104.14, + "probability": 0.7975 + }, + { + "start": 38105.26, + "end": 38108.74, + "probability": 0.9778 + }, + { + "start": 38110.52, + "end": 38114.98, + "probability": 0.9635 + }, + { + "start": 38115.2, + "end": 38116.4, + "probability": 0.9624 + }, + { + "start": 38116.58, + "end": 38117.0, + "probability": 0.722 + }, + { + "start": 38117.16, + "end": 38117.54, + "probability": 0.4151 + }, + { + "start": 38118.9, + "end": 38121.26, + "probability": 0.8177 + }, + { + "start": 38122.4, + "end": 38127.28, + "probability": 0.9904 + }, + { + "start": 38128.52, + "end": 38129.76, + "probability": 0.9521 + }, + { + "start": 38130.4, + "end": 38132.16, + "probability": 0.9874 + }, + { + "start": 38132.42, + "end": 38136.68, + "probability": 0.9849 + }, + { + "start": 38138.0, + "end": 38139.36, + "probability": 0.9886 + }, + { + "start": 38139.94, + "end": 38141.2, + "probability": 0.981 + }, + { + "start": 38143.12, + "end": 38144.12, + "probability": 0.9836 + }, + { + "start": 38145.64, + "end": 38147.76, + "probability": 0.7795 + }, + { + "start": 38149.18, + "end": 38151.02, + "probability": 0.9954 + }, + { + "start": 38152.08, + "end": 38153.56, + "probability": 0.6838 + }, + { + "start": 38154.78, + "end": 38159.7, + "probability": 0.9858 + }, + { + "start": 38160.54, + "end": 38164.94, + "probability": 0.9823 + }, + { + "start": 38164.98, + "end": 38168.02, + "probability": 0.9994 + }, + { + "start": 38168.82, + "end": 38171.12, + "probability": 0.9832 + }, + { + "start": 38171.66, + "end": 38173.74, + "probability": 0.9977 + }, + { + "start": 38174.32, + "end": 38176.8, + "probability": 0.6577 + }, + { + "start": 38177.86, + "end": 38180.84, + "probability": 0.9407 + }, + { + "start": 38182.98, + "end": 38184.9, + "probability": 0.9979 + }, + { + "start": 38185.24, + "end": 38186.74, + "probability": 0.9897 + }, + { + "start": 38187.14, + "end": 38189.0, + "probability": 0.9791 + }, + { + "start": 38190.3, + "end": 38194.24, + "probability": 0.9812 + }, + { + "start": 38195.16, + "end": 38197.7, + "probability": 0.9834 + }, + { + "start": 38199.5, + "end": 38203.22, + "probability": 0.9982 + }, + { + "start": 38204.18, + "end": 38206.64, + "probability": 0.9901 + }, + { + "start": 38207.46, + "end": 38207.82, + "probability": 0.7594 + }, + { + "start": 38208.58, + "end": 38211.48, + "probability": 0.8188 + }, + { + "start": 38211.86, + "end": 38214.18, + "probability": 0.988 + }, + { + "start": 38215.32, + "end": 38216.2, + "probability": 0.5988 + }, + { + "start": 38216.94, + "end": 38218.9, + "probability": 0.9687 + }, + { + "start": 38220.18, + "end": 38220.74, + "probability": 0.4164 + }, + { + "start": 38221.5, + "end": 38223.16, + "probability": 0.7019 + }, + { + "start": 38224.42, + "end": 38225.26, + "probability": 0.8477 + }, + { + "start": 38226.18, + "end": 38227.88, + "probability": 0.9937 + }, + { + "start": 38229.7, + "end": 38230.6, + "probability": 0.9847 + }, + { + "start": 38231.7, + "end": 38233.66, + "probability": 0.9969 + }, + { + "start": 38234.96, + "end": 38235.82, + "probability": 0.9907 + }, + { + "start": 38236.64, + "end": 38238.68, + "probability": 0.9926 + }, + { + "start": 38239.74, + "end": 38240.56, + "probability": 0.9882 + }, + { + "start": 38241.32, + "end": 38242.94, + "probability": 0.9017 + }, + { + "start": 38244.54, + "end": 38245.3, + "probability": 0.7108 + }, + { + "start": 38246.2, + "end": 38247.9, + "probability": 0.995 + }, + { + "start": 38249.56, + "end": 38250.36, + "probability": 0.9756 + }, + { + "start": 38251.24, + "end": 38253.26, + "probability": 0.9428 + }, + { + "start": 38254.84, + "end": 38255.7, + "probability": 0.9921 + }, + { + "start": 38256.4, + "end": 38258.3, + "probability": 0.9875 + }, + { + "start": 38259.66, + "end": 38260.68, + "probability": 0.9922 + }, + { + "start": 38261.32, + "end": 38263.08, + "probability": 0.9911 + }, + { + "start": 38263.88, + "end": 38266.06, + "probability": 0.9412 + }, + { + "start": 38267.94, + "end": 38270.84, + "probability": 0.992 + }, + { + "start": 38272.18, + "end": 38275.32, + "probability": 0.9956 + }, + { + "start": 38276.04, + "end": 38276.76, + "probability": 0.7042 + }, + { + "start": 38276.98, + "end": 38280.8, + "probability": 0.7697 + }, + { + "start": 38311.78, + "end": 38311.78, + "probability": 0.4031 + }, + { + "start": 38311.78, + "end": 38312.96, + "probability": 0.3835 + }, + { + "start": 38313.9, + "end": 38314.44, + "probability": 0.5382 + }, + { + "start": 38314.64, + "end": 38319.46, + "probability": 0.9681 + }, + { + "start": 38319.6, + "end": 38323.58, + "probability": 0.9526 + }, + { + "start": 38325.42, + "end": 38327.86, + "probability": 0.8438 + }, + { + "start": 38329.24, + "end": 38331.58, + "probability": 0.9297 + }, + { + "start": 38332.22, + "end": 38334.44, + "probability": 0.9533 + }, + { + "start": 38336.42, + "end": 38340.74, + "probability": 0.9772 + }, + { + "start": 38340.94, + "end": 38343.31, + "probability": 0.9874 + }, + { + "start": 38343.82, + "end": 38348.0, + "probability": 0.9131 + }, + { + "start": 38348.92, + "end": 38352.6, + "probability": 0.9956 + }, + { + "start": 38353.9, + "end": 38357.84, + "probability": 0.7175 + }, + { + "start": 38357.84, + "end": 38360.5, + "probability": 0.6577 + }, + { + "start": 38361.38, + "end": 38363.92, + "probability": 0.9024 + }, + { + "start": 38364.64, + "end": 38370.8, + "probability": 0.9951 + }, + { + "start": 38371.34, + "end": 38377.84, + "probability": 0.9308 + }, + { + "start": 38378.16, + "end": 38379.3, + "probability": 0.0617 + }, + { + "start": 38383.06, + "end": 38385.2, + "probability": 0.0662 + }, + { + "start": 38385.2, + "end": 38385.84, + "probability": 0.0225 + }, + { + "start": 38386.38, + "end": 38388.94, + "probability": 0.3824 + }, + { + "start": 38389.54, + "end": 38390.4, + "probability": 0.7639 + }, + { + "start": 38392.73, + "end": 38393.69, + "probability": 0.1709 + }, + { + "start": 38394.34, + "end": 38394.88, + "probability": 0.9672 + }, + { + "start": 38394.9, + "end": 38400.22, + "probability": 0.9841 + }, + { + "start": 38400.74, + "end": 38404.1, + "probability": 0.5446 + }, + { + "start": 38405.1, + "end": 38406.62, + "probability": 0.8662 + }, + { + "start": 38406.92, + "end": 38412.6, + "probability": 0.9308 + }, + { + "start": 38413.28, + "end": 38419.68, + "probability": 0.7869 + }, + { + "start": 38419.68, + "end": 38426.08, + "probability": 0.9712 + }, + { + "start": 38426.54, + "end": 38427.26, + "probability": 0.7554 + }, + { + "start": 38427.74, + "end": 38428.0, + "probability": 0.4473 + }, + { + "start": 38428.14, + "end": 38431.08, + "probability": 0.9873 + }, + { + "start": 38435.0, + "end": 38438.56, + "probability": 0.6563 + }, + { + "start": 38439.22, + "end": 38442.14, + "probability": 0.9544 + }, + { + "start": 38442.88, + "end": 38444.78, + "probability": 0.0184 + }, + { + "start": 38444.88, + "end": 38449.4, + "probability": 0.672 + }, + { + "start": 38449.46, + "end": 38450.12, + "probability": 0.8187 + }, + { + "start": 38450.66, + "end": 38455.2, + "probability": 0.7485 + }, + { + "start": 38455.74, + "end": 38458.22, + "probability": 0.5426 + }, + { + "start": 38458.22, + "end": 38458.6, + "probability": 0.6805 + }, + { + "start": 38459.48, + "end": 38464.4, + "probability": 0.782 + }, + { + "start": 38464.82, + "end": 38468.68, + "probability": 0.9696 + }, + { + "start": 38469.2, + "end": 38471.4, + "probability": 0.9984 + }, + { + "start": 38471.98, + "end": 38473.16, + "probability": 0.7024 + }, + { + "start": 38473.44, + "end": 38476.78, + "probability": 0.9899 + }, + { + "start": 38477.46, + "end": 38480.82, + "probability": 0.9954 + }, + { + "start": 38481.46, + "end": 38484.74, + "probability": 0.9927 + }, + { + "start": 38485.54, + "end": 38488.7, + "probability": 0.9181 + }, + { + "start": 38489.36, + "end": 38496.14, + "probability": 0.989 + }, + { + "start": 38496.3, + "end": 38504.66, + "probability": 0.9714 + }, + { + "start": 38505.48, + "end": 38505.86, + "probability": 0.5595 + }, + { + "start": 38506.4, + "end": 38510.58, + "probability": 0.9873 + }, + { + "start": 38511.28, + "end": 38513.2, + "probability": 0.5737 + }, + { + "start": 38513.26, + "end": 38515.46, + "probability": 0.8535 + }, + { + "start": 38515.5, + "end": 38517.36, + "probability": 0.9294 + }, + { + "start": 38517.4, + "end": 38520.0, + "probability": 0.5057 + }, + { + "start": 38520.9, + "end": 38527.18, + "probability": 0.9803 + }, + { + "start": 38527.56, + "end": 38532.08, + "probability": 0.8979 + }, + { + "start": 38532.24, + "end": 38532.88, + "probability": 0.8499 + }, + { + "start": 38532.94, + "end": 38534.26, + "probability": 0.9755 + }, + { + "start": 38534.5, + "end": 38536.76, + "probability": 0.6868 + }, + { + "start": 38545.02, + "end": 38545.44, + "probability": 0.045 + }, + { + "start": 38545.44, + "end": 38545.44, + "probability": 0.1696 + }, + { + "start": 38545.44, + "end": 38545.84, + "probability": 0.24 + }, + { + "start": 38545.84, + "end": 38545.84, + "probability": 0.3991 + }, + { + "start": 38545.84, + "end": 38546.85, + "probability": 0.6373 + }, + { + "start": 38547.62, + "end": 38548.62, + "probability": 0.8994 + }, + { + "start": 38550.6, + "end": 38552.68, + "probability": 0.932 + }, + { + "start": 38566.82, + "end": 38567.58, + "probability": 0.7386 + }, + { + "start": 38570.48, + "end": 38572.34, + "probability": 0.2604 + }, + { + "start": 38573.32, + "end": 38573.42, + "probability": 0.2942 + }, + { + "start": 38573.6, + "end": 38576.06, + "probability": 0.1139 + }, + { + "start": 38576.24, + "end": 38579.3, + "probability": 0.0208 + }, + { + "start": 38579.36, + "end": 38580.06, + "probability": 0.0539 + }, + { + "start": 38580.28, + "end": 38580.34, + "probability": 0.059 + }, + { + "start": 38580.56, + "end": 38580.63, + "probability": 0.1906 + }, + { + "start": 38580.96, + "end": 38580.96, + "probability": 0.1093 + }, + { + "start": 38580.96, + "end": 38582.42, + "probability": 0.415 + }, + { + "start": 38582.58, + "end": 38584.12, + "probability": 0.013 + }, + { + "start": 38585.24, + "end": 38587.24, + "probability": 0.075 + }, + { + "start": 38587.66, + "end": 38589.58, + "probability": 0.0937 + }, + { + "start": 38591.84, + "end": 38593.72, + "probability": 0.0737 + }, + { + "start": 38594.66, + "end": 38594.66, + "probability": 0.0238 + }, + { + "start": 38594.66, + "end": 38594.66, + "probability": 0.4626 + }, + { + "start": 38594.78, + "end": 38597.0, + "probability": 0.7034 + }, + { + "start": 38597.0, + "end": 38597.07, + "probability": 0.5553 + }, + { + "start": 38599.06, + "end": 38602.06, + "probability": 0.9775 + }, + { + "start": 38602.08, + "end": 38604.06, + "probability": 0.8134 + }, + { + "start": 38605.12, + "end": 38609.98, + "probability": 0.9541 + }, + { + "start": 38610.46, + "end": 38610.84, + "probability": 0.3824 + }, + { + "start": 38610.94, + "end": 38611.68, + "probability": 0.8804 + }, + { + "start": 38611.76, + "end": 38612.7, + "probability": 0.95 + }, + { + "start": 38613.96, + "end": 38618.62, + "probability": 0.9874 + }, + { + "start": 38618.62, + "end": 38622.18, + "probability": 0.9871 + }, + { + "start": 38622.26, + "end": 38624.2, + "probability": 0.9642 + }, + { + "start": 38624.52, + "end": 38625.94, + "probability": 0.9558 + }, + { + "start": 38626.04, + "end": 38626.4, + "probability": 0.8318 + }, + { + "start": 38627.12, + "end": 38627.48, + "probability": 0.9976 + }, + { + "start": 38628.62, + "end": 38629.44, + "probability": 0.3707 + }, + { + "start": 38631.5, + "end": 38636.88, + "probability": 0.4056 + }, + { + "start": 38638.38, + "end": 38639.76, + "probability": 0.4417 + }, + { + "start": 38639.86, + "end": 38642.28, + "probability": 0.9844 + }, + { + "start": 38642.38, + "end": 38642.66, + "probability": 0.8147 + }, + { + "start": 38642.66, + "end": 38646.18, + "probability": 0.6712 + }, + { + "start": 38646.84, + "end": 38647.98, + "probability": 0.7543 + }, + { + "start": 38649.74, + "end": 38650.02, + "probability": 0.9192 + }, + { + "start": 38651.3, + "end": 38652.42, + "probability": 0.3743 + }, + { + "start": 38653.22, + "end": 38653.72, + "probability": 0.2514 + }, + { + "start": 38653.74, + "end": 38654.23, + "probability": 0.6593 + }, + { + "start": 38654.76, + "end": 38655.38, + "probability": 0.9824 + }, + { + "start": 38656.4, + "end": 38656.4, + "probability": 0.2259 + }, + { + "start": 38656.82, + "end": 38658.32, + "probability": 0.9729 + }, + { + "start": 38658.76, + "end": 38659.1, + "probability": 0.5295 + }, + { + "start": 38659.68, + "end": 38660.56, + "probability": 0.9633 + }, + { + "start": 38660.7, + "end": 38661.34, + "probability": 0.1058 + }, + { + "start": 38661.5, + "end": 38662.34, + "probability": 0.0366 + }, + { + "start": 38662.62, + "end": 38664.98, + "probability": 0.3564 + }, + { + "start": 38667.24, + "end": 38667.24, + "probability": 0.1669 + }, + { + "start": 38667.24, + "end": 38667.24, + "probability": 0.154 + }, + { + "start": 38667.24, + "end": 38667.24, + "probability": 0.0978 + }, + { + "start": 38667.24, + "end": 38667.24, + "probability": 0.1209 + }, + { + "start": 38667.24, + "end": 38668.98, + "probability": 0.0601 + }, + { + "start": 38669.92, + "end": 38669.92, + "probability": 0.6852 + }, + { + "start": 38669.92, + "end": 38671.02, + "probability": 0.9346 + }, + { + "start": 38671.88, + "end": 38676.66, + "probability": 0.9878 + }, + { + "start": 38677.44, + "end": 38680.18, + "probability": 0.9984 + }, + { + "start": 38680.18, + "end": 38683.26, + "probability": 0.9991 + }, + { + "start": 38683.86, + "end": 38686.06, + "probability": 0.9836 + }, + { + "start": 38686.06, + "end": 38689.24, + "probability": 0.9667 + }, + { + "start": 38689.94, + "end": 38691.0, + "probability": 0.9548 + }, + { + "start": 38691.54, + "end": 38693.38, + "probability": 0.9201 + }, + { + "start": 38694.02, + "end": 38695.12, + "probability": 0.8998 + }, + { + "start": 38695.88, + "end": 38702.32, + "probability": 0.9976 + }, + { + "start": 38702.82, + "end": 38703.63, + "probability": 0.6901 + }, + { + "start": 38704.7, + "end": 38706.64, + "probability": 0.9779 + }, + { + "start": 38707.22, + "end": 38708.92, + "probability": 0.9693 + }, + { + "start": 38709.58, + "end": 38712.32, + "probability": 0.9879 + }, + { + "start": 38712.32, + "end": 38714.48, + "probability": 0.9795 + }, + { + "start": 38715.28, + "end": 38718.44, + "probability": 0.998 + }, + { + "start": 38719.22, + "end": 38721.38, + "probability": 0.9902 + }, + { + "start": 38721.38, + "end": 38723.98, + "probability": 0.9944 + }, + { + "start": 38724.62, + "end": 38727.72, + "probability": 0.968 + }, + { + "start": 38728.32, + "end": 38729.47, + "probability": 0.9414 + }, + { + "start": 38730.26, + "end": 38733.72, + "probability": 0.9929 + }, + { + "start": 38734.52, + "end": 38738.02, + "probability": 0.8285 + }, + { + "start": 38738.68, + "end": 38740.88, + "probability": 0.9762 + }, + { + "start": 38741.42, + "end": 38742.34, + "probability": 0.9138 + }, + { + "start": 38742.82, + "end": 38746.02, + "probability": 0.9975 + }, + { + "start": 38746.64, + "end": 38749.86, + "probability": 0.9976 + }, + { + "start": 38750.58, + "end": 38752.58, + "probability": 0.9575 + }, + { + "start": 38753.08, + "end": 38756.06, + "probability": 0.996 + }, + { + "start": 38756.2, + "end": 38760.08, + "probability": 0.9958 + }, + { + "start": 38760.7, + "end": 38763.16, + "probability": 0.9661 + }, + { + "start": 38763.62, + "end": 38766.62, + "probability": 0.996 + }, + { + "start": 38767.08, + "end": 38767.84, + "probability": 0.8481 + }, + { + "start": 38768.38, + "end": 38769.12, + "probability": 0.8168 + }, + { + "start": 38769.78, + "end": 38772.12, + "probability": 0.9769 + }, + { + "start": 38772.12, + "end": 38776.0, + "probability": 0.9966 + }, + { + "start": 38777.06, + "end": 38782.58, + "probability": 0.9229 + }, + { + "start": 38783.14, + "end": 38787.34, + "probability": 0.9876 + }, + { + "start": 38788.12, + "end": 38790.4, + "probability": 0.7349 + }, + { + "start": 38791.24, + "end": 38792.08, + "probability": 0.561 + }, + { + "start": 38792.68, + "end": 38792.88, + "probability": 0.774 + }, + { + "start": 38794.48, + "end": 38795.06, + "probability": 0.7592 + }, + { + "start": 38795.36, + "end": 38796.02, + "probability": 0.5758 + }, + { + "start": 38796.6, + "end": 38800.22, + "probability": 0.9009 + }, + { + "start": 38800.38, + "end": 38803.54, + "probability": 0.9875 + }, + { + "start": 38804.16, + "end": 38806.34, + "probability": 0.9867 + }, + { + "start": 38806.34, + "end": 38809.06, + "probability": 0.9271 + }, + { + "start": 38809.64, + "end": 38811.56, + "probability": 0.9214 + }, + { + "start": 38812.14, + "end": 38814.54, + "probability": 0.905 + }, + { + "start": 38815.08, + "end": 38818.64, + "probability": 0.8694 + }, + { + "start": 38819.28, + "end": 38819.73, + "probability": 0.9443 + }, + { + "start": 38820.28, + "end": 38823.96, + "probability": 0.8081 + }, + { + "start": 38824.54, + "end": 38826.14, + "probability": 0.3461 + }, + { + "start": 38826.24, + "end": 38826.92, + "probability": 0.8593 + }, + { + "start": 38827.0, + "end": 38828.14, + "probability": 0.9318 + }, + { + "start": 38828.44, + "end": 38829.14, + "probability": 0.6508 + }, + { + "start": 38829.52, + "end": 38831.64, + "probability": 0.8232 + }, + { + "start": 38832.12, + "end": 38833.56, + "probability": 0.9919 + }, + { + "start": 38834.1, + "end": 38834.5, + "probability": 0.0964 + }, + { + "start": 38834.5, + "end": 38838.73, + "probability": 0.7698 + }, + { + "start": 38839.88, + "end": 38844.85, + "probability": 0.9801 + }, + { + "start": 38845.48, + "end": 38846.07, + "probability": 0.9943 + }, + { + "start": 38855.82, + "end": 38857.16, + "probability": 0.501 + }, + { + "start": 38857.4, + "end": 38862.6, + "probability": 0.7227 + }, + { + "start": 38863.98, + "end": 38865.96, + "probability": 0.9272 + }, + { + "start": 38867.16, + "end": 38869.04, + "probability": 0.9883 + }, + { + "start": 38869.96, + "end": 38871.14, + "probability": 0.3285 + }, + { + "start": 38871.3, + "end": 38872.16, + "probability": 0.0302 + }, + { + "start": 38872.84, + "end": 38873.06, + "probability": 0.4097 + }, + { + "start": 38873.5, + "end": 38874.4, + "probability": 0.1208 + }, + { + "start": 38877.08, + "end": 38883.88, + "probability": 0.7694 + }, + { + "start": 38884.92, + "end": 38885.76, + "probability": 0.8346 + }, + { + "start": 38885.84, + "end": 38887.8, + "probability": 0.8676 + }, + { + "start": 38889.06, + "end": 38890.5, + "probability": 0.4436 + }, + { + "start": 38891.8, + "end": 38896.62, + "probability": 0.9771 + }, + { + "start": 38896.76, + "end": 38897.22, + "probability": 0.6016 + }, + { + "start": 38897.92, + "end": 38901.44, + "probability": 0.9973 + }, + { + "start": 38902.52, + "end": 38906.98, + "probability": 0.9552 + }, + { + "start": 38907.98, + "end": 38908.96, + "probability": 0.7935 + }, + { + "start": 38910.2, + "end": 38911.36, + "probability": 0.8791 + }, + { + "start": 38912.08, + "end": 38914.58, + "probability": 0.9932 + }, + { + "start": 38914.84, + "end": 38916.88, + "probability": 0.9724 + }, + { + "start": 38918.44, + "end": 38919.82, + "probability": 0.9783 + }, + { + "start": 38920.6, + "end": 38924.22, + "probability": 0.9904 + }, + { + "start": 38924.92, + "end": 38925.5, + "probability": 0.9365 + }, + { + "start": 38925.64, + "end": 38927.26, + "probability": 0.9864 + }, + { + "start": 38928.48, + "end": 38931.96, + "probability": 0.996 + }, + { + "start": 38933.06, + "end": 38934.46, + "probability": 0.8936 + }, + { + "start": 38935.22, + "end": 38937.48, + "probability": 0.9799 + }, + { + "start": 38940.14, + "end": 38940.2, + "probability": 0.0039 + }, + { + "start": 38940.2, + "end": 38945.12, + "probability": 0.9077 + }, + { + "start": 38945.96, + "end": 38949.98, + "probability": 0.9979 + }, + { + "start": 38951.16, + "end": 38952.4, + "probability": 0.8086 + }, + { + "start": 38952.48, + "end": 38954.62, + "probability": 0.9963 + }, + { + "start": 38954.8, + "end": 38955.24, + "probability": 0.7653 + }, + { + "start": 38956.08, + "end": 38960.24, + "probability": 0.9978 + }, + { + "start": 38960.94, + "end": 38962.62, + "probability": 0.9906 + }, + { + "start": 38963.88, + "end": 38964.78, + "probability": 0.8687 + }, + { + "start": 38965.36, + "end": 38967.09, + "probability": 0.8851 + }, + { + "start": 38967.34, + "end": 38969.68, + "probability": 0.9985 + }, + { + "start": 38970.42, + "end": 38972.18, + "probability": 0.9977 + }, + { + "start": 38972.76, + "end": 38975.0, + "probability": 0.9998 + }, + { + "start": 38976.06, + "end": 38978.42, + "probability": 0.998 + }, + { + "start": 38979.14, + "end": 38981.18, + "probability": 0.9795 + }, + { + "start": 38981.74, + "end": 38982.5, + "probability": 0.8724 + }, + { + "start": 38983.08, + "end": 38983.74, + "probability": 0.8663 + }, + { + "start": 38984.28, + "end": 38984.5, + "probability": 0.973 + }, + { + "start": 38985.3, + "end": 38990.44, + "probability": 0.9987 + }, + { + "start": 38991.52, + "end": 38996.0, + "probability": 0.9883 + }, + { + "start": 38997.94, + "end": 39002.22, + "probability": 0.9912 + }, + { + "start": 39002.52, + "end": 39003.76, + "probability": 0.9368 + }, + { + "start": 39004.66, + "end": 39007.9, + "probability": 0.9072 + }, + { + "start": 39008.44, + "end": 39010.16, + "probability": 0.866 + }, + { + "start": 39010.84, + "end": 39012.98, + "probability": 0.9994 + }, + { + "start": 39013.84, + "end": 39014.76, + "probability": 0.7258 + }, + { + "start": 39015.02, + "end": 39018.1, + "probability": 0.9084 + }, + { + "start": 39018.1, + "end": 39021.38, + "probability": 0.9958 + }, + { + "start": 39021.48, + "end": 39022.96, + "probability": 0.7577 + }, + { + "start": 39023.1, + "end": 39024.54, + "probability": 0.9244 + }, + { + "start": 39024.62, + "end": 39025.18, + "probability": 0.7434 + }, + { + "start": 39025.58, + "end": 39026.08, + "probability": 0.5925 + }, + { + "start": 39026.44, + "end": 39026.92, + "probability": 0.6463 + }, + { + "start": 39027.18, + "end": 39027.8, + "probability": 0.1984 + }, + { + "start": 39028.38, + "end": 39031.74, + "probability": 0.9866 + }, + { + "start": 39033.6, + "end": 39036.54, + "probability": 0.603 + }, + { + "start": 39037.26, + "end": 39038.16, + "probability": 0.6839 + }, + { + "start": 39038.26, + "end": 39041.51, + "probability": 0.0776 + }, + { + "start": 39042.36, + "end": 39046.74, + "probability": 0.2892 + }, + { + "start": 39048.84, + "end": 39049.8, + "probability": 0.9146 + }, + { + "start": 39050.52, + "end": 39051.64, + "probability": 0.0625 + }, + { + "start": 39051.9, + "end": 39052.02, + "probability": 0.7529 + }, + { + "start": 39052.02, + "end": 39052.5, + "probability": 0.8403 + }, + { + "start": 39052.8, + "end": 39055.08, + "probability": 0.9875 + }, + { + "start": 39055.8, + "end": 39057.5, + "probability": 0.8828 + }, + { + "start": 39058.3, + "end": 39063.6, + "probability": 0.9756 + }, + { + "start": 39063.9, + "end": 39064.88, + "probability": 0.6573 + }, + { + "start": 39065.12, + "end": 39070.06, + "probability": 0.9899 + }, + { + "start": 39070.64, + "end": 39073.94, + "probability": 0.8632 + }, + { + "start": 39074.5, + "end": 39078.52, + "probability": 0.9574 + }, + { + "start": 39078.52, + "end": 39082.1, + "probability": 0.9984 + }, + { + "start": 39083.58, + "end": 39084.88, + "probability": 0.0366 + }, + { + "start": 39084.88, + "end": 39085.84, + "probability": 0.7433 + }, + { + "start": 39086.64, + "end": 39091.22, + "probability": 0.9892 + }, + { + "start": 39091.22, + "end": 39095.3, + "probability": 0.998 + }, + { + "start": 39098.2, + "end": 39102.16, + "probability": 0.6532 + }, + { + "start": 39103.42, + "end": 39104.58, + "probability": 0.7654 + }, + { + "start": 39104.62, + "end": 39107.81, + "probability": 0.9934 + }, + { + "start": 39108.08, + "end": 39108.58, + "probability": 0.4897 + }, + { + "start": 39109.18, + "end": 39110.04, + "probability": 0.4442 + }, + { + "start": 39110.7, + "end": 39113.98, + "probability": 0.9918 + }, + { + "start": 39113.98, + "end": 39118.12, + "probability": 0.9949 + }, + { + "start": 39119.4, + "end": 39120.88, + "probability": 0.773 + }, + { + "start": 39121.86, + "end": 39124.88, + "probability": 0.9909 + }, + { + "start": 39126.64, + "end": 39128.9, + "probability": 0.9481 + }, + { + "start": 39129.36, + "end": 39131.2, + "probability": 0.4804 + }, + { + "start": 39132.5, + "end": 39134.6, + "probability": 0.2863 + }, + { + "start": 39135.06, + "end": 39135.88, + "probability": 0.0077 + }, + { + "start": 39136.58, + "end": 39136.66, + "probability": 0.0041 + }, + { + "start": 39136.66, + "end": 39138.82, + "probability": 0.9386 + }, + { + "start": 39139.3, + "end": 39141.66, + "probability": 0.6159 + }, + { + "start": 39144.76, + "end": 39148.66, + "probability": 0.9862 + }, + { + "start": 39149.58, + "end": 39151.15, + "probability": 0.7436 + }, + { + "start": 39152.88, + "end": 39156.84, + "probability": 0.5302 + }, + { + "start": 39157.48, + "end": 39160.88, + "probability": 0.9813 + }, + { + "start": 39161.56, + "end": 39161.56, + "probability": 0.0 + }, + { + "start": 39162.16, + "end": 39164.57, + "probability": 0.9226 + }, + { + "start": 39166.34, + "end": 39166.88, + "probability": 0.4381 + }, + { + "start": 39169.22, + "end": 39170.06, + "probability": 0.7769 + }, + { + "start": 39170.16, + "end": 39173.58, + "probability": 0.8297 + }, + { + "start": 39174.24, + "end": 39177.1, + "probability": 0.215 + }, + { + "start": 39177.78, + "end": 39177.94, + "probability": 0.0559 + }, + { + "start": 39177.94, + "end": 39177.94, + "probability": 0.0349 + }, + { + "start": 39177.94, + "end": 39183.4, + "probability": 0.9075 + }, + { + "start": 39184.04, + "end": 39186.16, + "probability": 0.9889 + }, + { + "start": 39186.26, + "end": 39187.13, + "probability": 0.9828 + }, + { + "start": 39187.88, + "end": 39188.44, + "probability": 0.525 + }, + { + "start": 39190.18, + "end": 39194.14, + "probability": 0.8971 + }, + { + "start": 39194.3, + "end": 39196.02, + "probability": 0.9878 + }, + { + "start": 39196.94, + "end": 39199.56, + "probability": 0.783 + }, + { + "start": 39200.22, + "end": 39203.4, + "probability": 0.9818 + }, + { + "start": 39204.06, + "end": 39206.86, + "probability": 0.9819 + }, + { + "start": 39207.72, + "end": 39208.32, + "probability": 0.9321 + }, + { + "start": 39209.62, + "end": 39210.7, + "probability": 0.6781 + }, + { + "start": 39210.82, + "end": 39213.9, + "probability": 0.9751 + }, + { + "start": 39214.6, + "end": 39216.8, + "probability": 0.9005 + }, + { + "start": 39218.26, + "end": 39221.08, + "probability": 0.7627 + }, + { + "start": 39221.9, + "end": 39223.62, + "probability": 0.9072 + }, + { + "start": 39224.28, + "end": 39224.76, + "probability": 0.6265 + }, + { + "start": 39225.26, + "end": 39226.12, + "probability": 0.8127 + }, + { + "start": 39226.72, + "end": 39226.8, + "probability": 0.236 + }, + { + "start": 39226.8, + "end": 39228.42, + "probability": 0.9877 + }, + { + "start": 39229.56, + "end": 39230.46, + "probability": 0.8299 + }, + { + "start": 39232.08, + "end": 39237.32, + "probability": 0.8505 + }, + { + "start": 39237.38, + "end": 39238.26, + "probability": 0.7017 + }, + { + "start": 39238.88, + "end": 39241.28, + "probability": 0.873 + }, + { + "start": 39242.24, + "end": 39246.84, + "probability": 0.9823 + }, + { + "start": 39249.24, + "end": 39250.29, + "probability": 0.0071 + }, + { + "start": 39252.26, + "end": 39254.26, + "probability": 0.7636 + }, + { + "start": 39255.58, + "end": 39256.02, + "probability": 0.1752 + }, + { + "start": 39256.02, + "end": 39257.24, + "probability": 0.9692 + }, + { + "start": 39257.62, + "end": 39258.66, + "probability": 0.2101 + }, + { + "start": 39259.96, + "end": 39259.96, + "probability": 0.0363 + }, + { + "start": 39259.96, + "end": 39259.96, + "probability": 0.894 + }, + { + "start": 39260.36, + "end": 39260.9, + "probability": 0.7638 + }, + { + "start": 39263.1, + "end": 39263.1, + "probability": 0.9796 + }, + { + "start": 39263.1, + "end": 39265.62, + "probability": 0.0842 + }, + { + "start": 39265.98, + "end": 39266.98, + "probability": 0.0488 + }, + { + "start": 39266.98, + "end": 39269.04, + "probability": 0.2516 + }, + { + "start": 39269.28, + "end": 39271.46, + "probability": 0.9276 + }, + { + "start": 39271.58, + "end": 39275.68, + "probability": 0.9753 + }, + { + "start": 39276.0, + "end": 39276.02, + "probability": 0.0019 + }, + { + "start": 39276.98, + "end": 39279.12, + "probability": 0.3284 + }, + { + "start": 39279.18, + "end": 39280.18, + "probability": 0.0936 + }, + { + "start": 39280.18, + "end": 39282.04, + "probability": 0.4545 + }, + { + "start": 39284.86, + "end": 39286.66, + "probability": 0.8816 + }, + { + "start": 39286.96, + "end": 39287.48, + "probability": 0.4531 + }, + { + "start": 39288.1, + "end": 39289.8, + "probability": 0.4807 + }, + { + "start": 39289.82, + "end": 39290.74, + "probability": 0.7908 + }, + { + "start": 39291.78, + "end": 39292.48, + "probability": 0.2303 + }, + { + "start": 39294.8, + "end": 39295.24, + "probability": 0.843 + }, + { + "start": 39297.54, + "end": 39298.78, + "probability": 0.8509 + }, + { + "start": 39300.22, + "end": 39300.98, + "probability": 0.7428 + }, + { + "start": 39301.96, + "end": 39302.62, + "probability": 0.7557 + }, + { + "start": 39312.28, + "end": 39313.84, + "probability": 0.4526 + }, + { + "start": 39314.78, + "end": 39315.16, + "probability": 0.7932 + }, + { + "start": 39316.06, + "end": 39319.04, + "probability": 0.877 + }, + { + "start": 39320.3, + "end": 39321.78, + "probability": 0.8903 + }, + { + "start": 39322.58, + "end": 39325.42, + "probability": 0.7571 + }, + { + "start": 39326.78, + "end": 39328.6, + "probability": 0.8104 + }, + { + "start": 39329.44, + "end": 39331.14, + "probability": 0.8923 + }, + { + "start": 39336.82, + "end": 39339.54, + "probability": 0.6783 + }, + { + "start": 39341.1, + "end": 39342.6, + "probability": 0.9332 + }, + { + "start": 39344.36, + "end": 39346.52, + "probability": 0.956 + }, + { + "start": 39348.08, + "end": 39349.16, + "probability": 0.9657 + }, + { + "start": 39351.32, + "end": 39353.36, + "probability": 0.972 + }, + { + "start": 39353.68, + "end": 39356.58, + "probability": 0.8988 + }, + { + "start": 39356.58, + "end": 39358.04, + "probability": 0.9408 + }, + { + "start": 39359.0, + "end": 39360.56, + "probability": 0.7357 + }, + { + "start": 39361.16, + "end": 39361.5, + "probability": 0.6941 + }, + { + "start": 39362.9, + "end": 39363.48, + "probability": 0.8767 + }, + { + "start": 39364.22, + "end": 39365.94, + "probability": 0.9825 + }, + { + "start": 39366.36, + "end": 39368.08, + "probability": 0.9546 + }, + { + "start": 39368.26, + "end": 39369.94, + "probability": 0.9778 + }, + { + "start": 39370.64, + "end": 39372.36, + "probability": 0.9918 + }, + { + "start": 39373.62, + "end": 39373.96, + "probability": 0.8535 + }, + { + "start": 39375.14, + "end": 39377.94, + "probability": 0.7332 + }, + { + "start": 39378.84, + "end": 39379.2, + "probability": 0.7961 + }, + { + "start": 39380.48, + "end": 39382.22, + "probability": 0.8575 + }, + { + "start": 39384.86, + "end": 39385.64, + "probability": 0.776 + }, + { + "start": 39387.26, + "end": 39387.62, + "probability": 0.9468 + }, + { + "start": 39388.44, + "end": 39390.84, + "probability": 0.9922 + }, + { + "start": 39392.18, + "end": 39395.6, + "probability": 0.9894 + }, + { + "start": 39396.44, + "end": 39398.0, + "probability": 0.6294 + }, + { + "start": 39398.96, + "end": 39400.68, + "probability": 0.9454 + }, + { + "start": 39401.76, + "end": 39403.36, + "probability": 0.9882 + }, + { + "start": 39403.82, + "end": 39406.01, + "probability": 0.9105 + }, + { + "start": 39406.14, + "end": 39406.98, + "probability": 0.9152 + }, + { + "start": 39407.82, + "end": 39408.58, + "probability": 0.5273 + }, + { + "start": 39410.52, + "end": 39410.84, + "probability": 0.946 + }, + { + "start": 39412.06, + "end": 39414.72, + "probability": 0.9209 + }, + { + "start": 39415.42, + "end": 39415.76, + "probability": 0.9746 + }, + { + "start": 39416.88, + "end": 39420.26, + "probability": 0.6791 + }, + { + "start": 39421.08, + "end": 39422.16, + "probability": 0.7444 + }, + { + "start": 39423.76, + "end": 39424.94, + "probability": 0.7472 + }, + { + "start": 39425.44, + "end": 39427.36, + "probability": 0.777 + }, + { + "start": 39427.44, + "end": 39430.02, + "probability": 0.9491 + }, + { + "start": 39431.46, + "end": 39432.36, + "probability": 0.9641 + }, + { + "start": 39434.64, + "end": 39436.26, + "probability": 0.9832 + }, + { + "start": 39437.52, + "end": 39439.22, + "probability": 0.769 + }, + { + "start": 39441.18, + "end": 39443.22, + "probability": 0.7357 + }, + { + "start": 39443.38, + "end": 39444.96, + "probability": 0.5212 + }, + { + "start": 39445.54, + "end": 39448.64, + "probability": 0.842 + }, + { + "start": 39449.78, + "end": 39451.22, + "probability": 0.9731 + }, + { + "start": 39451.86, + "end": 39452.58, + "probability": 0.974 + }, + { + "start": 39453.34, + "end": 39453.92, + "probability": 0.6555 + }, + { + "start": 39454.96, + "end": 39455.28, + "probability": 0.5274 + }, + { + "start": 39456.7, + "end": 39457.18, + "probability": 0.8134 + }, + { + "start": 39459.34, + "end": 39459.74, + "probability": 0.9373 + }, + { + "start": 39460.92, + "end": 39461.86, + "probability": 0.8759 + }, + { + "start": 39463.26, + "end": 39464.0, + "probability": 0.8083 + }, + { + "start": 39468.34, + "end": 39470.62, + "probability": 0.6406 + }, + { + "start": 39472.34, + "end": 39472.6, + "probability": 0.8413 + }, + { + "start": 39474.2, + "end": 39475.02, + "probability": 0.6761 + }, + { + "start": 39475.28, + "end": 39476.86, + "probability": 0.7029 + }, + { + "start": 39476.92, + "end": 39478.68, + "probability": 0.9008 + }, + { + "start": 39479.4, + "end": 39480.48, + "probability": 0.8749 + }, + { + "start": 39482.86, + "end": 39483.94, + "probability": 0.9399 + }, + { + "start": 39485.32, + "end": 39485.98, + "probability": 0.8571 + }, + { + "start": 39486.8, + "end": 39487.08, + "probability": 0.9702 + }, + { + "start": 39488.2, + "end": 39489.36, + "probability": 0.9229 + }, + { + "start": 39489.38, + "end": 39490.96, + "probability": 0.8899 + }, + { + "start": 39490.98, + "end": 39493.38, + "probability": 0.8238 + }, + { + "start": 39493.56, + "end": 39495.06, + "probability": 0.9316 + }, + { + "start": 39495.6, + "end": 39497.18, + "probability": 0.8956 + }, + { + "start": 39497.92, + "end": 39499.58, + "probability": 0.8621 + }, + { + "start": 39501.36, + "end": 39503.2, + "probability": 0.9634 + }, + { + "start": 39503.26, + "end": 39504.6, + "probability": 0.9543 + }, + { + "start": 39504.7, + "end": 39505.24, + "probability": 0.5696 + }, + { + "start": 39505.96, + "end": 39507.06, + "probability": 0.6697 + }, + { + "start": 39508.04, + "end": 39508.42, + "probability": 0.7551 + }, + { + "start": 39510.04, + "end": 39513.44, + "probability": 0.7912 + }, + { + "start": 39514.16, + "end": 39515.72, + "probability": 0.8647 + }, + { + "start": 39516.68, + "end": 39518.72, + "probability": 0.927 + }, + { + "start": 39519.44, + "end": 39519.78, + "probability": 0.9841 + }, + { + "start": 39521.26, + "end": 39522.42, + "probability": 0.9061 + }, + { + "start": 39523.14, + "end": 39523.5, + "probability": 0.9841 + }, + { + "start": 39524.38, + "end": 39525.12, + "probability": 0.794 + }, + { + "start": 39526.06, + "end": 39526.44, + "probability": 0.532 + }, + { + "start": 39527.66, + "end": 39530.88, + "probability": 0.6604 + }, + { + "start": 39532.58, + "end": 39534.8, + "probability": 0.8341 + }, + { + "start": 39541.1, + "end": 39541.72, + "probability": 0.4969 + }, + { + "start": 39543.28, + "end": 39543.96, + "probability": 0.5559 + }, + { + "start": 39545.94, + "end": 39547.02, + "probability": 0.7704 + }, + { + "start": 39548.32, + "end": 39550.48, + "probability": 0.8574 + }, + { + "start": 39553.8, + "end": 39554.68, + "probability": 0.7089 + }, + { + "start": 39554.76, + "end": 39558.44, + "probability": 0.7963 + }, + { + "start": 39559.92, + "end": 39561.84, + "probability": 0.9395 + }, + { + "start": 39563.42, + "end": 39563.74, + "probability": 0.8372 + }, + { + "start": 39565.28, + "end": 39566.14, + "probability": 0.6613 + }, + { + "start": 39568.42, + "end": 39570.28, + "probability": 0.8689 + }, + { + "start": 39574.92, + "end": 39575.34, + "probability": 0.5964 + }, + { + "start": 39576.88, + "end": 39577.72, + "probability": 0.6186 + }, + { + "start": 39581.02, + "end": 39583.0, + "probability": 0.9141 + }, + { + "start": 39583.86, + "end": 39585.9, + "probability": 0.7427 + }, + { + "start": 39587.16, + "end": 39587.58, + "probability": 0.9746 + }, + { + "start": 39588.8, + "end": 39591.24, + "probability": 0.8989 + }, + { + "start": 39592.34, + "end": 39593.84, + "probability": 0.8948 + }, + { + "start": 39595.1, + "end": 39595.48, + "probability": 0.9867 + }, + { + "start": 39597.0, + "end": 39598.02, + "probability": 0.8049 + }, + { + "start": 39599.2, + "end": 39599.58, + "probability": 0.6802 + }, + { + "start": 39600.56, + "end": 39601.52, + "probability": 0.3667 + }, + { + "start": 39602.08, + "end": 39602.48, + "probability": 0.9236 + }, + { + "start": 39604.1, + "end": 39607.32, + "probability": 0.848 + }, + { + "start": 39608.88, + "end": 39610.06, + "probability": 0.9575 + }, + { + "start": 39610.88, + "end": 39612.06, + "probability": 0.9647 + }, + { + "start": 39613.92, + "end": 39615.68, + "probability": 0.9605 + }, + { + "start": 39615.84, + "end": 39617.86, + "probability": 0.8276 + }, + { + "start": 39617.86, + "end": 39618.68, + "probability": 0.6497 + }, + { + "start": 39619.22, + "end": 39622.18, + "probability": 0.7619 + }, + { + "start": 39623.92, + "end": 39625.9, + "probability": 0.8792 + }, + { + "start": 39626.66, + "end": 39626.94, + "probability": 0.8682 + }, + { + "start": 39628.52, + "end": 39629.42, + "probability": 0.9506 + }, + { + "start": 39630.62, + "end": 39630.9, + "probability": 0.9714 + }, + { + "start": 39631.68, + "end": 39632.38, + "probability": 0.8691 + }, + { + "start": 39634.74, + "end": 39635.18, + "probability": 0.9849 + }, + { + "start": 39636.7, + "end": 39639.3, + "probability": 0.882 + }, + { + "start": 39642.56, + "end": 39643.48, + "probability": 0.5001 + }, + { + "start": 39648.8, + "end": 39649.14, + "probability": 0.4399 + }, + { + "start": 39649.74, + "end": 39651.46, + "probability": 0.7691 + }, + { + "start": 39652.86, + "end": 39656.62, + "probability": 0.9563 + }, + { + "start": 39657.24, + "end": 39657.58, + "probability": 0.9735 + }, + { + "start": 39658.92, + "end": 39659.8, + "probability": 0.6374 + }, + { + "start": 39660.82, + "end": 39661.94, + "probability": 0.1713 + }, + { + "start": 39663.06, + "end": 39664.8, + "probability": 0.8566 + }, + { + "start": 39665.5, + "end": 39665.68, + "probability": 0.7698 + }, + { + "start": 39669.04, + "end": 39669.8, + "probability": 0.258 + }, + { + "start": 39670.64, + "end": 39671.0, + "probability": 0.5828 + }, + { + "start": 39672.32, + "end": 39672.82, + "probability": 0.574 + }, + { + "start": 39673.28, + "end": 39675.26, + "probability": 0.8057 + }, + { + "start": 39675.36, + "end": 39676.88, + "probability": 0.8776 + }, + { + "start": 39676.9, + "end": 39677.5, + "probability": 0.6827 + }, + { + "start": 39678.24, + "end": 39679.06, + "probability": 0.9396 + }, + { + "start": 39679.78, + "end": 39682.56, + "probability": 0.8638 + }, + { + "start": 39683.28, + "end": 39683.56, + "probability": 0.9181 + }, + { + "start": 39684.36, + "end": 39685.22, + "probability": 0.8097 + }, + { + "start": 39685.92, + "end": 39686.74, + "probability": 0.989 + }, + { + "start": 39691.3, + "end": 39692.16, + "probability": 0.0684 + }, + { + "start": 39692.34, + "end": 39695.1, + "probability": 0.8655 + }, + { + "start": 39695.86, + "end": 39696.04, + "probability": 0.4964 + }, + { + "start": 39696.04, + "end": 39697.18, + "probability": 0.4839 + }, + { + "start": 39697.34, + "end": 39698.86, + "probability": 0.7425 + }, + { + "start": 39698.86, + "end": 39699.62, + "probability": 0.827 + }, + { + "start": 39700.26, + "end": 39704.12, + "probability": 0.6071 + }, + { + "start": 39704.74, + "end": 39705.72, + "probability": 0.5896 + }, + { + "start": 39706.58, + "end": 39706.9, + "probability": 0.9779 + }, + { + "start": 39708.78, + "end": 39712.54, + "probability": 0.7967 + }, + { + "start": 39713.16, + "end": 39715.6, + "probability": 0.9636 + }, + { + "start": 39716.46, + "end": 39719.24, + "probability": 0.8725 + }, + { + "start": 39720.16, + "end": 39721.58, + "probability": 0.9515 + }, + { + "start": 39722.54, + "end": 39724.66, + "probability": 0.9244 + }, + { + "start": 39724.72, + "end": 39726.28, + "probability": 0.849 + }, + { + "start": 39727.24, + "end": 39730.6, + "probability": 0.9404 + }, + { + "start": 39731.52, + "end": 39734.4, + "probability": 0.8481 + }, + { + "start": 39735.2, + "end": 39736.86, + "probability": 0.8366 + }, + { + "start": 39737.0, + "end": 39738.78, + "probability": 0.8407 + }, + { + "start": 39738.98, + "end": 39739.7, + "probability": 0.7777 + }, + { + "start": 39742.2, + "end": 39744.16, + "probability": 0.9037 + }, + { + "start": 39745.04, + "end": 39746.62, + "probability": 0.7771 + }, + { + "start": 39747.6, + "end": 39750.84, + "probability": 0.8562 + }, + { + "start": 39753.72, + "end": 39755.72, + "probability": 0.9264 + }, + { + "start": 39756.92, + "end": 39757.96, + "probability": 0.9727 + }, + { + "start": 39758.42, + "end": 39760.56, + "probability": 0.9131 + }, + { + "start": 39760.84, + "end": 39762.72, + "probability": 0.499 + }, + { + "start": 39764.38, + "end": 39766.92, + "probability": 0.672 + }, + { + "start": 39768.02, + "end": 39769.24, + "probability": 0.8674 + }, + { + "start": 39769.32, + "end": 39770.9, + "probability": 0.8616 + }, + { + "start": 39770.96, + "end": 39771.5, + "probability": 0.8585 + }, + { + "start": 39772.6, + "end": 39773.69, + "probability": 0.8457 + }, + { + "start": 39773.8, + "end": 39776.42, + "probability": 0.9253 + }, + { + "start": 39776.92, + "end": 39777.62, + "probability": 0.691 + }, + { + "start": 39778.5, + "end": 39779.42, + "probability": 0.6075 + }, + { + "start": 39779.7, + "end": 39781.34, + "probability": 0.7677 + }, + { + "start": 39781.48, + "end": 39782.76, + "probability": 0.2965 + }, + { + "start": 39782.8, + "end": 39784.32, + "probability": 0.6547 + }, + { + "start": 39784.4, + "end": 39784.96, + "probability": 0.802 + }, + { + "start": 39785.7, + "end": 39786.6, + "probability": 0.7954 + }, + { + "start": 39787.8, + "end": 39789.82, + "probability": 0.6652 + }, + { + "start": 39790.66, + "end": 39792.82, + "probability": 0.8764 + }, + { + "start": 39794.92, + "end": 39795.62, + "probability": 0.8382 + }, + { + "start": 39795.72, + "end": 39797.06, + "probability": 0.9531 + }, + { + "start": 39797.44, + "end": 39798.96, + "probability": 0.9045 + }, + { + "start": 39799.48, + "end": 39802.02, + "probability": 0.9579 + }, + { + "start": 39803.0, + "end": 39803.26, + "probability": 0.9613 + }, + { + "start": 39804.2, + "end": 39806.4, + "probability": 0.4087 + }, + { + "start": 39806.4, + "end": 39807.17, + "probability": 0.3087 + }, + { + "start": 39807.38, + "end": 39808.04, + "probability": 0.8171 + }, + { + "start": 39809.44, + "end": 39812.58, + "probability": 0.8017 + }, + { + "start": 39813.16, + "end": 39814.0, + "probability": 0.7172 + }, + { + "start": 39814.1, + "end": 39815.88, + "probability": 0.9293 + }, + { + "start": 39816.06, + "end": 39817.2, + "probability": 0.9586 + }, + { + "start": 39817.78, + "end": 39818.32, + "probability": 0.5055 + }, + { + "start": 39819.2, + "end": 39823.22, + "probability": 0.8578 + }, + { + "start": 39823.88, + "end": 39825.92, + "probability": 0.9365 + }, + { + "start": 39826.48, + "end": 39829.54, + "probability": 0.922 + }, + { + "start": 39830.6, + "end": 39832.34, + "probability": 0.9775 + }, + { + "start": 39833.34, + "end": 39837.34, + "probability": 0.5972 + }, + { + "start": 39838.74, + "end": 39839.66, + "probability": 0.8482 + }, + { + "start": 39839.74, + "end": 39842.7, + "probability": 0.844 + }, + { + "start": 39843.74, + "end": 39845.94, + "probability": 0.8344 + }, + { + "start": 39847.46, + "end": 39848.78, + "probability": 0.9438 + }, + { + "start": 39850.86, + "end": 39852.22, + "probability": 0.8157 + }, + { + "start": 39852.56, + "end": 39854.02, + "probability": 0.8068 + }, + { + "start": 39854.14, + "end": 39855.52, + "probability": 0.9525 + }, + { + "start": 39855.84, + "end": 39856.38, + "probability": 0.8521 + }, + { + "start": 39857.52, + "end": 39859.9, + "probability": 0.9363 + }, + { + "start": 39861.24, + "end": 39863.26, + "probability": 0.9601 + }, + { + "start": 39866.42, + "end": 39867.1, + "probability": 0.7645 + }, + { + "start": 39867.78, + "end": 39870.18, + "probability": 0.7572 + }, + { + "start": 39870.84, + "end": 39871.98, + "probability": 0.7204 + }, + { + "start": 39872.18, + "end": 39874.52, + "probability": 0.9432 + }, + { + "start": 39874.62, + "end": 39875.82, + "probability": 0.9238 + }, + { + "start": 39876.9, + "end": 39877.72, + "probability": 0.9676 + }, + { + "start": 39878.82, + "end": 39881.6, + "probability": 0.6805 + }, + { + "start": 39882.72, + "end": 39883.54, + "probability": 0.9679 + }, + { + "start": 39887.8, + "end": 39890.26, + "probability": 0.5999 + }, + { + "start": 39891.08, + "end": 39893.18, + "probability": 0.8913 + }, + { + "start": 39893.9, + "end": 39894.78, + "probability": 0.7914 + }, + { + "start": 39894.84, + "end": 39896.5, + "probability": 0.9339 + }, + { + "start": 39896.5, + "end": 39898.21, + "probability": 0.7593 + }, + { + "start": 39898.28, + "end": 39899.06, + "probability": 0.9345 + }, + { + "start": 39899.62, + "end": 39900.3, + "probability": 0.9161 + }, + { + "start": 39901.2, + "end": 39903.04, + "probability": 0.8925 + }, + { + "start": 39903.72, + "end": 39905.78, + "probability": 0.6247 + }, + { + "start": 39907.18, + "end": 39910.9, + "probability": 0.9509 + }, + { + "start": 39910.98, + "end": 39912.24, + "probability": 0.5145 + }, + { + "start": 39912.53, + "end": 39912.65, + "probability": 0.2126 + }, + { + "start": 39914.4, + "end": 39914.8, + "probability": 0.9535 + }, + { + "start": 39916.58, + "end": 39920.24, + "probability": 0.9518 + }, + { + "start": 39921.66, + "end": 39922.64, + "probability": 0.9448 + }, + { + "start": 39937.66, + "end": 39938.48, + "probability": 0.1312 + }, + { + "start": 39940.1, + "end": 39941.16, + "probability": 0.0261 + }, + { + "start": 39942.98, + "end": 39942.98, + "probability": 0.1195 + }, + { + "start": 39945.5, + "end": 39946.7, + "probability": 0.2085 + }, + { + "start": 39947.7, + "end": 39948.48, + "probability": 0.0493 + }, + { + "start": 39950.88, + "end": 39952.1, + "probability": 0.0088 + }, + { + "start": 39952.12, + "end": 39955.52, + "probability": 0.0248 + }, + { + "start": 39957.96, + "end": 39958.84, + "probability": 0.0918 + }, + { + "start": 39962.88, + "end": 39963.4, + "probability": 0.0479 + }, + { + "start": 39992.14, + "end": 39993.14, + "probability": 0.4126 + }, + { + "start": 40003.9, + "end": 40007.8, + "probability": 0.9819 + }, + { + "start": 40010.64, + "end": 40013.9, + "probability": 0.9199 + }, + { + "start": 40014.92, + "end": 40017.78, + "probability": 0.8008 + }, + { + "start": 40018.1, + "end": 40019.26, + "probability": 0.5486 + }, + { + "start": 40019.86, + "end": 40021.9, + "probability": 0.8326 + }, + { + "start": 40022.76, + "end": 40023.34, + "probability": 0.5241 + }, + { + "start": 40026.3, + "end": 40026.4, + "probability": 0.6338 + }, + { + "start": 40029.68, + "end": 40035.3, + "probability": 0.9888 + }, + { + "start": 40045.88, + "end": 40046.7, + "probability": 0.4353 + }, + { + "start": 40048.9, + "end": 40050.98, + "probability": 0.7723 + }, + { + "start": 40054.9, + "end": 40056.15, + "probability": 0.5005 + }, + { + "start": 40056.76, + "end": 40057.86, + "probability": 0.5269 + }, + { + "start": 40058.06, + "end": 40059.72, + "probability": 0.8728 + }, + { + "start": 40059.86, + "end": 40062.22, + "probability": 0.9305 + }, + { + "start": 40068.12, + "end": 40072.64, + "probability": 0.7701 + }, + { + "start": 40073.36, + "end": 40075.78, + "probability": 0.9877 + }, + { + "start": 40076.56, + "end": 40078.96, + "probability": 0.887 + }, + { + "start": 40079.5, + "end": 40082.6, + "probability": 0.9854 + }, + { + "start": 40084.5, + "end": 40087.0, + "probability": 0.9844 + }, + { + "start": 40087.62, + "end": 40088.9, + "probability": 0.9814 + }, + { + "start": 40090.28, + "end": 40095.04, + "probability": 0.8963 + }, + { + "start": 40096.0, + "end": 40097.08, + "probability": 0.7411 + }, + { + "start": 40097.2, + "end": 40097.94, + "probability": 0.913 + }, + { + "start": 40098.04, + "end": 40101.36, + "probability": 0.9442 + }, + { + "start": 40102.56, + "end": 40107.14, + "probability": 0.996 + }, + { + "start": 40107.82, + "end": 40108.56, + "probability": 0.5374 + }, + { + "start": 40109.1, + "end": 40110.72, + "probability": 0.9814 + }, + { + "start": 40111.48, + "end": 40114.36, + "probability": 0.9826 + }, + { + "start": 40114.88, + "end": 40121.72, + "probability": 0.988 + }, + { + "start": 40122.56, + "end": 40125.34, + "probability": 0.997 + }, + { + "start": 40125.94, + "end": 40129.66, + "probability": 0.998 + }, + { + "start": 40129.66, + "end": 40133.34, + "probability": 0.9951 + }, + { + "start": 40133.96, + "end": 40139.18, + "probability": 0.9083 + }, + { + "start": 40139.6, + "end": 40139.92, + "probability": 0.8445 + }, + { + "start": 40140.08, + "end": 40143.38, + "probability": 0.9718 + }, + { + "start": 40143.38, + "end": 40147.4, + "probability": 0.9977 + }, + { + "start": 40147.98, + "end": 40151.24, + "probability": 0.9386 + }, + { + "start": 40151.72, + "end": 40156.34, + "probability": 0.9937 + }, + { + "start": 40157.18, + "end": 40163.14, + "probability": 0.9048 + }, + { + "start": 40163.8, + "end": 40167.08, + "probability": 0.5925 + }, + { + "start": 40167.62, + "end": 40169.04, + "probability": 0.9434 + }, + { + "start": 40169.68, + "end": 40172.47, + "probability": 0.7886 + }, + { + "start": 40173.2, + "end": 40175.5, + "probability": 0.7862 + }, + { + "start": 40178.08, + "end": 40180.54, + "probability": 0.9917 + }, + { + "start": 40181.14, + "end": 40184.3, + "probability": 0.9991 + }, + { + "start": 40184.34, + "end": 40186.76, + "probability": 0.9738 + }, + { + "start": 40187.2, + "end": 40194.1, + "probability": 0.9579 + }, + { + "start": 40194.94, + "end": 40200.18, + "probability": 0.9922 + }, + { + "start": 40200.8, + "end": 40205.8, + "probability": 0.951 + }, + { + "start": 40206.3, + "end": 40212.08, + "probability": 0.9071 + }, + { + "start": 40212.08, + "end": 40216.22, + "probability": 0.9216 + }, + { + "start": 40216.78, + "end": 40221.72, + "probability": 0.994 + }, + { + "start": 40221.72, + "end": 40225.98, + "probability": 0.9929 + }, + { + "start": 40225.98, + "end": 40232.06, + "probability": 0.9932 + }, + { + "start": 40233.14, + "end": 40235.52, + "probability": 0.8959 + }, + { + "start": 40236.14, + "end": 40237.46, + "probability": 0.8095 + }, + { + "start": 40237.94, + "end": 40240.1, + "probability": 0.9187 + }, + { + "start": 40240.56, + "end": 40242.34, + "probability": 0.8821 + }, + { + "start": 40242.88, + "end": 40243.46, + "probability": 0.5099 + }, + { + "start": 40243.62, + "end": 40246.48, + "probability": 0.9849 + }, + { + "start": 40246.48, + "end": 40249.98, + "probability": 0.802 + }, + { + "start": 40250.5, + "end": 40252.1, + "probability": 0.9326 + }, + { + "start": 40252.64, + "end": 40259.52, + "probability": 0.9297 + }, + { + "start": 40260.14, + "end": 40264.79, + "probability": 0.9749 + }, + { + "start": 40265.12, + "end": 40273.12, + "probability": 0.9666 + }, + { + "start": 40273.7, + "end": 40279.84, + "probability": 0.9976 + }, + { + "start": 40279.84, + "end": 40284.32, + "probability": 0.9527 + }, + { + "start": 40285.08, + "end": 40288.22, + "probability": 0.9942 + }, + { + "start": 40289.1, + "end": 40290.28, + "probability": 0.863 + }, + { + "start": 40290.46, + "end": 40295.68, + "probability": 0.989 + }, + { + "start": 40295.68, + "end": 40300.88, + "probability": 0.9741 + }, + { + "start": 40302.6, + "end": 40305.36, + "probability": 0.779 + }, + { + "start": 40306.62, + "end": 40307.12, + "probability": 0.8989 + }, + { + "start": 40307.72, + "end": 40309.1, + "probability": 0.9008 + }, + { + "start": 40311.22, + "end": 40314.8, + "probability": 0.9279 + }, + { + "start": 40316.32, + "end": 40318.26, + "probability": 0.8861 + }, + { + "start": 40323.58, + "end": 40323.8, + "probability": 0.001 + }, + { + "start": 40325.9, + "end": 40328.16, + "probability": 0.7002 + }, + { + "start": 40328.8, + "end": 40331.46, + "probability": 0.8756 + }, + { + "start": 40332.42, + "end": 40335.28, + "probability": 0.7965 + }, + { + "start": 40336.2, + "end": 40337.82, + "probability": 0.9019 + }, + { + "start": 40337.94, + "end": 40338.42, + "probability": 0.7136 + }, + { + "start": 40340.64, + "end": 40341.16, + "probability": 0.6468 + }, + { + "start": 40341.16, + "end": 40342.5, + "probability": 0.7504 + }, + { + "start": 40342.52, + "end": 40343.76, + "probability": 0.0336 + }, + { + "start": 40344.44, + "end": 40345.12, + "probability": 0.1158 + }, + { + "start": 40347.0, + "end": 40350.4, + "probability": 0.0226 + }, + { + "start": 40351.12, + "end": 40351.34, + "probability": 0.0637 + }, + { + "start": 40351.34, + "end": 40352.18, + "probability": 0.2764 + }, + { + "start": 40355.42, + "end": 40355.62, + "probability": 0.0782 + }, + { + "start": 40356.9, + "end": 40361.74, + "probability": 0.7636 + }, + { + "start": 40362.28, + "end": 40363.28, + "probability": 0.963 + }, + { + "start": 40363.46, + "end": 40366.64, + "probability": 0.9617 + }, + { + "start": 40367.78, + "end": 40371.26, + "probability": 0.0216 + }, + { + "start": 40371.78, + "end": 40374.76, + "probability": 0.5889 + }, + { + "start": 40374.92, + "end": 40375.04, + "probability": 0.1384 + }, + { + "start": 40375.14, + "end": 40376.68, + "probability": 0.863 + }, + { + "start": 40377.2, + "end": 40379.5, + "probability": 0.8994 + }, + { + "start": 40381.32, + "end": 40384.9, + "probability": 0.9887 + }, + { + "start": 40384.9, + "end": 40387.3, + "probability": 0.9988 + }, + { + "start": 40388.12, + "end": 40389.34, + "probability": 0.9259 + }, + { + "start": 40389.44, + "end": 40390.23, + "probability": 0.5955 + }, + { + "start": 40391.02, + "end": 40391.2, + "probability": 0.916 + }, + { + "start": 40392.44, + "end": 40393.0, + "probability": 0.0211 + }, + { + "start": 40393.0, + "end": 40393.32, + "probability": 0.3858 + }, + { + "start": 40394.36, + "end": 40397.0, + "probability": 0.9987 + }, + { + "start": 40397.74, + "end": 40401.52, + "probability": 0.7294 + }, + { + "start": 40401.88, + "end": 40402.46, + "probability": 0.6143 + }, + { + "start": 40403.42, + "end": 40405.02, + "probability": 0.7352 + }, + { + "start": 40405.82, + "end": 40405.9, + "probability": 0.2013 + }, + { + "start": 40405.9, + "end": 40411.38, + "probability": 0.9946 + }, + { + "start": 40412.52, + "end": 40414.7, + "probability": 0.9976 + }, + { + "start": 40415.3, + "end": 40416.5, + "probability": 0.9301 + }, + { + "start": 40417.2, + "end": 40418.58, + "probability": 0.9883 + }, + { + "start": 40419.7, + "end": 40423.07, + "probability": 0.9963 + }, + { + "start": 40423.48, + "end": 40424.58, + "probability": 0.9467 + }, + { + "start": 40425.26, + "end": 40427.38, + "probability": 0.9985 + }, + { + "start": 40427.72, + "end": 40428.26, + "probability": 0.7865 + }, + { + "start": 40428.32, + "end": 40428.8, + "probability": 0.4427 + }, + { + "start": 40429.24, + "end": 40430.38, + "probability": 0.9849 + }, + { + "start": 40430.46, + "end": 40432.22, + "probability": 0.9783 + }, + { + "start": 40432.92, + "end": 40433.82, + "probability": 0.9966 + }, + { + "start": 40435.24, + "end": 40436.2, + "probability": 0.8397 + }, + { + "start": 40437.04, + "end": 40438.54, + "probability": 0.9901 + }, + { + "start": 40438.84, + "end": 40439.78, + "probability": 0.9465 + }, + { + "start": 40440.26, + "end": 40445.42, + "probability": 0.9557 + }, + { + "start": 40446.52, + "end": 40450.58, + "probability": 0.994 + }, + { + "start": 40451.28, + "end": 40454.38, + "probability": 0.9982 + }, + { + "start": 40456.58, + "end": 40458.38, + "probability": 0.9966 + }, + { + "start": 40459.14, + "end": 40460.16, + "probability": 0.733 + }, + { + "start": 40460.24, + "end": 40461.14, + "probability": 0.836 + }, + { + "start": 40461.26, + "end": 40462.36, + "probability": 0.9945 + }, + { + "start": 40462.52, + "end": 40463.46, + "probability": 0.7309 + }, + { + "start": 40464.44, + "end": 40467.02, + "probability": 0.9958 + }, + { + "start": 40467.62, + "end": 40469.18, + "probability": 0.8847 + }, + { + "start": 40470.04, + "end": 40473.84, + "probability": 0.975 + }, + { + "start": 40474.62, + "end": 40476.34, + "probability": 0.3384 + }, + { + "start": 40477.02, + "end": 40477.9, + "probability": 0.9782 + }, + { + "start": 40478.18, + "end": 40480.44, + "probability": 0.7118 + }, + { + "start": 40480.57, + "end": 40481.49, + "probability": 0.145 + }, + { + "start": 40482.5, + "end": 40484.72, + "probability": 0.7046 + }, + { + "start": 40489.02, + "end": 40489.98, + "probability": 0.1382 + }, + { + "start": 40490.12, + "end": 40491.18, + "probability": 0.8253 + }, + { + "start": 40492.12, + "end": 40492.72, + "probability": 0.4965 + }, + { + "start": 40493.24, + "end": 40494.7, + "probability": 0.4999 + }, + { + "start": 40495.1, + "end": 40498.16, + "probability": 0.9944 + }, + { + "start": 40498.66, + "end": 40501.37, + "probability": 0.9891 + }, + { + "start": 40501.96, + "end": 40503.16, + "probability": 0.68 + }, + { + "start": 40503.56, + "end": 40504.54, + "probability": 0.6514 + }, + { + "start": 40504.62, + "end": 40505.64, + "probability": 0.7139 + }, + { + "start": 40505.8, + "end": 40506.28, + "probability": 0.7045 + }, + { + "start": 40508.4, + "end": 40513.64, + "probability": 0.9131 + }, + { + "start": 40514.18, + "end": 40514.96, + "probability": 0.6941 + }, + { + "start": 40515.2, + "end": 40517.96, + "probability": 0.961 + }, + { + "start": 40518.52, + "end": 40521.16, + "probability": 0.6945 + }, + { + "start": 40521.74, + "end": 40522.32, + "probability": 0.7598 + }, + { + "start": 40522.92, + "end": 40525.34, + "probability": 0.92 + }, + { + "start": 40525.44, + "end": 40526.52, + "probability": 0.6814 + }, + { + "start": 40527.26, + "end": 40530.22, + "probability": 0.9391 + }, + { + "start": 40530.48, + "end": 40531.74, + "probability": 0.0774 + }, + { + "start": 40532.7, + "end": 40532.74, + "probability": 0.2397 + }, + { + "start": 40532.74, + "end": 40533.26, + "probability": 0.3437 + }, + { + "start": 40533.6, + "end": 40534.2, + "probability": 0.9751 + }, + { + "start": 40535.56, + "end": 40539.68, + "probability": 0.97 + }, + { + "start": 40539.72, + "end": 40540.7, + "probability": 0.769 + }, + { + "start": 40541.02, + "end": 40542.78, + "probability": 0.9785 + }, + { + "start": 40544.13, + "end": 40544.92, + "probability": 0.7134 + }, + { + "start": 40546.47, + "end": 40548.66, + "probability": 0.968 + }, + { + "start": 40548.74, + "end": 40549.2, + "probability": 0.7645 + }, + { + "start": 40549.3, + "end": 40549.86, + "probability": 0.7696 + }, + { + "start": 40550.16, + "end": 40551.72, + "probability": 0.561 + }, + { + "start": 40554.12, + "end": 40556.08, + "probability": 0.8439 + }, + { + "start": 40556.12, + "end": 40558.66, + "probability": 0.9879 + }, + { + "start": 40558.66, + "end": 40562.76, + "probability": 0.9683 + }, + { + "start": 40563.14, + "end": 40564.42, + "probability": 0.9917 + }, + { + "start": 40565.92, + "end": 40569.34, + "probability": 0.9005 + }, + { + "start": 40570.16, + "end": 40570.9, + "probability": 0.9299 + }, + { + "start": 40572.08, + "end": 40575.52, + "probability": 0.8479 + }, + { + "start": 40575.58, + "end": 40576.96, + "probability": 0.723 + }, + { + "start": 40577.54, + "end": 40578.7, + "probability": 0.6579 + }, + { + "start": 40578.86, + "end": 40579.8, + "probability": 0.9057 + }, + { + "start": 40579.88, + "end": 40580.8, + "probability": 0.9708 + }, + { + "start": 40580.86, + "end": 40581.98, + "probability": 0.9403 + }, + { + "start": 40582.34, + "end": 40586.7, + "probability": 0.9434 + }, + { + "start": 40586.9, + "end": 40587.7, + "probability": 0.8705 + }, + { + "start": 40587.76, + "end": 40589.64, + "probability": 0.8935 + }, + { + "start": 40590.04, + "end": 40590.9, + "probability": 0.9946 + }, + { + "start": 40591.92, + "end": 40593.01, + "probability": 0.9221 + }, + { + "start": 40593.3, + "end": 40595.65, + "probability": 0.8711 + }, + { + "start": 40596.48, + "end": 40597.04, + "probability": 0.7799 + }, + { + "start": 40599.68, + "end": 40603.5, + "probability": 0.8013 + }, + { + "start": 40603.92, + "end": 40608.1, + "probability": 0.9856 + }, + { + "start": 40609.16, + "end": 40610.74, + "probability": 0.9931 + }, + { + "start": 40611.28, + "end": 40614.44, + "probability": 0.9887 + }, + { + "start": 40614.46, + "end": 40614.9, + "probability": 0.609 + }, + { + "start": 40615.72, + "end": 40618.16, + "probability": 0.9632 + }, + { + "start": 40619.52, + "end": 40622.08, + "probability": 0.9861 + }, + { + "start": 40624.06, + "end": 40625.5, + "probability": 0.9115 + }, + { + "start": 40626.34, + "end": 40628.56, + "probability": 0.9773 + }, + { + "start": 40629.06, + "end": 40630.7, + "probability": 0.7521 + }, + { + "start": 40631.26, + "end": 40634.84, + "probability": 0.9327 + }, + { + "start": 40635.04, + "end": 40635.56, + "probability": 0.5213 + }, + { + "start": 40636.38, + "end": 40637.46, + "probability": 0.9751 + }, + { + "start": 40639.42, + "end": 40640.24, + "probability": 0.7336 + }, + { + "start": 40640.82, + "end": 40642.28, + "probability": 0.6836 + }, + { + "start": 40642.34, + "end": 40644.32, + "probability": 0.0297 + }, + { + "start": 40644.32, + "end": 40645.77, + "probability": 0.3579 + }, + { + "start": 40646.66, + "end": 40647.26, + "probability": 0.3122 + }, + { + "start": 40647.76, + "end": 40650.72, + "probability": 0.7714 + }, + { + "start": 40651.82, + "end": 40653.06, + "probability": 0.7793 + }, + { + "start": 40653.72, + "end": 40654.58, + "probability": 0.7332 + }, + { + "start": 40655.3, + "end": 40656.22, + "probability": 0.532 + }, + { + "start": 40656.36, + "end": 40660.56, + "probability": 0.8543 + }, + { + "start": 40660.6, + "end": 40661.19, + "probability": 0.874 + }, + { + "start": 40661.62, + "end": 40662.56, + "probability": 0.638 + }, + { + "start": 40663.28, + "end": 40664.14, + "probability": 0.8677 + }, + { + "start": 40664.2, + "end": 40665.18, + "probability": 0.9521 + }, + { + "start": 40665.66, + "end": 40669.48, + "probability": 0.904 + }, + { + "start": 40671.12, + "end": 40671.88, + "probability": 0.945 + }, + { + "start": 40673.28, + "end": 40676.12, + "probability": 0.996 + }, + { + "start": 40677.18, + "end": 40678.32, + "probability": 0.7633 + }, + { + "start": 40679.06, + "end": 40679.66, + "probability": 0.9441 + }, + { + "start": 40681.2, + "end": 40683.88, + "probability": 0.9052 + }, + { + "start": 40684.38, + "end": 40687.32, + "probability": 0.8028 + }, + { + "start": 40687.4, + "end": 40688.4, + "probability": 0.822 + }, + { + "start": 40688.48, + "end": 40690.46, + "probability": 0.9849 + }, + { + "start": 40690.72, + "end": 40690.88, + "probability": 0.9741 + }, + { + "start": 40691.46, + "end": 40691.74, + "probability": 0.7495 + }, + { + "start": 40691.92, + "end": 40693.34, + "probability": 0.5476 + }, + { + "start": 40693.5, + "end": 40694.26, + "probability": 0.8037 + }, + { + "start": 40694.76, + "end": 40696.54, + "probability": 0.9851 + }, + { + "start": 40699.1, + "end": 40701.22, + "probability": 0.9451 + }, + { + "start": 40701.48, + "end": 40704.32, + "probability": 0.7977 + }, + { + "start": 40704.76, + "end": 40709.02, + "probability": 0.9763 + }, + { + "start": 40709.46, + "end": 40710.82, + "probability": 0.9907 + }, + { + "start": 40711.24, + "end": 40713.1, + "probability": 0.9752 + }, + { + "start": 40714.06, + "end": 40716.58, + "probability": 0.9069 + }, + { + "start": 40717.08, + "end": 40717.85, + "probability": 0.986 + }, + { + "start": 40719.06, + "end": 40719.92, + "probability": 0.8472 + }, + { + "start": 40720.88, + "end": 40723.1, + "probability": 0.8938 + }, + { + "start": 40724.2, + "end": 40726.92, + "probability": 0.9424 + }, + { + "start": 40727.44, + "end": 40729.1, + "probability": 0.8271 + }, + { + "start": 40729.52, + "end": 40732.56, + "probability": 0.9908 + }, + { + "start": 40732.76, + "end": 40734.0, + "probability": 0.6501 + }, + { + "start": 40734.12, + "end": 40736.12, + "probability": 0.9669 + }, + { + "start": 40736.48, + "end": 40737.22, + "probability": 0.9324 + }, + { + "start": 40738.56, + "end": 40739.26, + "probability": 0.8782 + }, + { + "start": 40739.82, + "end": 40742.7, + "probability": 0.8979 + }, + { + "start": 40743.42, + "end": 40746.24, + "probability": 0.8083 + }, + { + "start": 40747.5, + "end": 40748.64, + "probability": 0.6857 + }, + { + "start": 40749.18, + "end": 40750.94, + "probability": 0.9862 + }, + { + "start": 40751.64, + "end": 40754.4, + "probability": 0.6318 + }, + { + "start": 40754.56, + "end": 40755.12, + "probability": 0.6837 + }, + { + "start": 40756.0, + "end": 40757.12, + "probability": 0.9477 + }, + { + "start": 40757.86, + "end": 40759.14, + "probability": 0.9923 + }, + { + "start": 40759.86, + "end": 40761.84, + "probability": 0.9761 + }, + { + "start": 40762.0, + "end": 40763.78, + "probability": 0.5288 + }, + { + "start": 40764.32, + "end": 40765.88, + "probability": 0.8545 + }, + { + "start": 40766.4, + "end": 40768.76, + "probability": 0.9344 + }, + { + "start": 40769.34, + "end": 40772.58, + "probability": 0.628 + }, + { + "start": 40773.7, + "end": 40776.34, + "probability": 0.3796 + }, + { + "start": 40776.34, + "end": 40779.0, + "probability": 0.5135 + }, + { + "start": 40779.32, + "end": 40780.74, + "probability": 0.9644 + }, + { + "start": 40781.52, + "end": 40784.14, + "probability": 0.9838 + }, + { + "start": 40784.68, + "end": 40787.34, + "probability": 0.9736 + }, + { + "start": 40787.88, + "end": 40788.98, + "probability": 0.9543 + }, + { + "start": 40789.1, + "end": 40789.24, + "probability": 0.4662 + }, + { + "start": 40789.26, + "end": 40791.16, + "probability": 0.9309 + }, + { + "start": 40792.58, + "end": 40793.26, + "probability": 0.7548 + }, + { + "start": 40793.44, + "end": 40794.24, + "probability": 0.6388 + }, + { + "start": 40795.54, + "end": 40797.94, + "probability": 0.9648 + }, + { + "start": 40798.52, + "end": 40800.38, + "probability": 0.7966 + }, + { + "start": 40801.18, + "end": 40802.12, + "probability": 0.6951 + }, + { + "start": 40803.0, + "end": 40803.56, + "probability": 0.8544 + }, + { + "start": 40803.68, + "end": 40805.4, + "probability": 0.991 + }, + { + "start": 40806.26, + "end": 40807.42, + "probability": 0.8244 + }, + { + "start": 40807.92, + "end": 40808.68, + "probability": 0.9391 + }, + { + "start": 40809.42, + "end": 40811.54, + "probability": 0.8212 + }, + { + "start": 40812.08, + "end": 40814.32, + "probability": 0.8712 + }, + { + "start": 40815.14, + "end": 40817.52, + "probability": 0.9909 + }, + { + "start": 40817.56, + "end": 40819.4, + "probability": 0.9964 + }, + { + "start": 40821.38, + "end": 40824.62, + "probability": 0.9242 + }, + { + "start": 40825.48, + "end": 40829.58, + "probability": 0.8694 + }, + { + "start": 40829.62, + "end": 40829.96, + "probability": 0.4767 + }, + { + "start": 40830.04, + "end": 40830.69, + "probability": 0.8829 + }, + { + "start": 40830.8, + "end": 40832.44, + "probability": 0.9824 + }, + { + "start": 40832.58, + "end": 40832.7, + "probability": 0.27 + }, + { + "start": 40832.74, + "end": 40835.14, + "probability": 0.6106 + }, + { + "start": 40835.24, + "end": 40836.54, + "probability": 0.9639 + }, + { + "start": 40837.04, + "end": 40838.26, + "probability": 0.6395 + }, + { + "start": 40839.3, + "end": 40841.3, + "probability": 0.9351 + }, + { + "start": 40841.38, + "end": 40842.06, + "probability": 0.7858 + }, + { + "start": 40842.2, + "end": 40842.68, + "probability": 0.6365 + }, + { + "start": 40843.0, + "end": 40843.34, + "probability": 0.5985 + }, + { + "start": 40843.36, + "end": 40846.5, + "probability": 0.6309 + }, + { + "start": 40847.4, + "end": 40849.4, + "probability": 0.7439 + }, + { + "start": 40850.08, + "end": 40850.8, + "probability": 0.6868 + }, + { + "start": 40850.94, + "end": 40851.72, + "probability": 0.6329 + }, + { + "start": 40852.26, + "end": 40853.78, + "probability": 0.7309 + }, + { + "start": 40854.74, + "end": 40855.72, + "probability": 0.7868 + }, + { + "start": 40856.26, + "end": 40858.56, + "probability": 0.66 + }, + { + "start": 40858.62, + "end": 40860.08, + "probability": 0.3881 + }, + { + "start": 40861.8, + "end": 40862.64, + "probability": 0.9951 + }, + { + "start": 40863.08, + "end": 40863.84, + "probability": 0.2705 + }, + { + "start": 40864.1, + "end": 40864.38, + "probability": 0.5811 + }, + { + "start": 40864.6, + "end": 40864.86, + "probability": 0.9151 + }, + { + "start": 40865.8, + "end": 40871.66, + "probability": 0.9685 + }, + { + "start": 40871.82, + "end": 40872.78, + "probability": 0.6305 + }, + { + "start": 40873.74, + "end": 40876.48, + "probability": 0.729 + }, + { + "start": 40877.24, + "end": 40880.26, + "probability": 0.8447 + }, + { + "start": 40880.92, + "end": 40881.77, + "probability": 0.9448 + }, + { + "start": 40882.0, + "end": 40882.48, + "probability": 0.8997 + }, + { + "start": 40882.66, + "end": 40883.64, + "probability": 0.9912 + }, + { + "start": 40884.12, + "end": 40886.48, + "probability": 0.991 + }, + { + "start": 40887.52, + "end": 40888.76, + "probability": 0.9408 + }, + { + "start": 40888.78, + "end": 40890.02, + "probability": 0.9012 + }, + { + "start": 40890.42, + "end": 40891.08, + "probability": 0.7229 + }, + { + "start": 40891.8, + "end": 40895.76, + "probability": 0.985 + }, + { + "start": 40896.26, + "end": 40896.65, + "probability": 0.9888 + }, + { + "start": 40897.22, + "end": 40897.94, + "probability": 0.9745 + }, + { + "start": 40898.48, + "end": 40899.27, + "probability": 0.9907 + }, + { + "start": 40900.62, + "end": 40901.74, + "probability": 0.8734 + }, + { + "start": 40901.96, + "end": 40906.08, + "probability": 0.9906 + }, + { + "start": 40906.96, + "end": 40909.04, + "probability": 0.4499 + }, + { + "start": 40909.82, + "end": 40917.6, + "probability": 0.6457 + }, + { + "start": 40918.14, + "end": 40919.0, + "probability": 0.2903 + }, + { + "start": 40920.54, + "end": 40925.2, + "probability": 0.9807 + }, + { + "start": 40925.72, + "end": 40925.94, + "probability": 0.9882 + }, + { + "start": 40926.6, + "end": 40927.48, + "probability": 0.8657 + }, + { + "start": 40927.98, + "end": 40928.24, + "probability": 0.2477 + }, + { + "start": 40928.8, + "end": 40929.68, + "probability": 0.048 + }, + { + "start": 40929.68, + "end": 40929.74, + "probability": 0.0013 + }, + { + "start": 40929.74, + "end": 40931.58, + "probability": 0.9772 + }, + { + "start": 40931.58, + "end": 40933.56, + "probability": 0.847 + }, + { + "start": 40933.98, + "end": 40935.32, + "probability": 0.7224 + }, + { + "start": 40936.2, + "end": 40937.42, + "probability": 0.844 + }, + { + "start": 40938.66, + "end": 40938.78, + "probability": 0.4678 + }, + { + "start": 40938.78, + "end": 40939.13, + "probability": 0.3864 + }, + { + "start": 40940.08, + "end": 40940.56, + "probability": 0.8592 + }, + { + "start": 40941.44, + "end": 40943.68, + "probability": 0.9458 + }, + { + "start": 40943.8, + "end": 40946.4, + "probability": 0.9301 + }, + { + "start": 40946.92, + "end": 40949.96, + "probability": 0.2834 + }, + { + "start": 40950.62, + "end": 40951.86, + "probability": 0.0342 + }, + { + "start": 40951.86, + "end": 40956.18, + "probability": 0.5836 + }, + { + "start": 40956.74, + "end": 40959.99, + "probability": 0.9845 + }, + { + "start": 40960.56, + "end": 40961.34, + "probability": 0.8733 + }, + { + "start": 40961.72, + "end": 40962.48, + "probability": 0.5941 + }, + { + "start": 40962.64, + "end": 40963.96, + "probability": 0.9539 + }, + { + "start": 40964.34, + "end": 40967.36, + "probability": 0.9824 + }, + { + "start": 40968.5, + "end": 40971.08, + "probability": 0.9861 + }, + { + "start": 40971.52, + "end": 40972.12, + "probability": 0.5572 + }, + { + "start": 40972.16, + "end": 40973.92, + "probability": 0.9966 + }, + { + "start": 40974.06, + "end": 40974.55, + "probability": 0.938 + }, + { + "start": 40975.24, + "end": 40977.44, + "probability": 0.9839 + }, + { + "start": 40977.9, + "end": 40979.98, + "probability": 0.9948 + }, + { + "start": 40980.38, + "end": 40984.36, + "probability": 0.9935 + }, + { + "start": 40984.44, + "end": 40985.86, + "probability": 0.8784 + }, + { + "start": 40986.36, + "end": 40989.56, + "probability": 0.8779 + }, + { + "start": 40989.62, + "end": 40991.8, + "probability": 0.8251 + }, + { + "start": 40992.36, + "end": 40993.68, + "probability": 0.1249 + }, + { + "start": 40993.72, + "end": 40995.18, + "probability": 0.7315 + }, + { + "start": 40995.3, + "end": 40999.74, + "probability": 0.6514 + }, + { + "start": 41000.88, + "end": 41003.88, + "probability": 0.9873 + }, + { + "start": 41004.06, + "end": 41006.72, + "probability": 0.9792 + }, + { + "start": 41007.14, + "end": 41009.42, + "probability": 0.9855 + }, + { + "start": 41010.08, + "end": 41014.82, + "probability": 0.4067 + }, + { + "start": 41014.92, + "end": 41015.52, + "probability": 0.1483 + }, + { + "start": 41015.84, + "end": 41018.38, + "probability": 0.364 + }, + { + "start": 41018.46, + "end": 41018.76, + "probability": 0.8181 + }, + { + "start": 41019.0, + "end": 41019.6, + "probability": 0.7953 + }, + { + "start": 41020.04, + "end": 41020.3, + "probability": 0.2231 + }, + { + "start": 41020.46, + "end": 41021.87, + "probability": 0.8896 + }, + { + "start": 41022.32, + "end": 41023.32, + "probability": 0.3705 + }, + { + "start": 41023.58, + "end": 41026.74, + "probability": 0.8027 + }, + { + "start": 41026.8, + "end": 41028.52, + "probability": 0.8229 + }, + { + "start": 41028.56, + "end": 41030.64, + "probability": 0.7258 + }, + { + "start": 41030.64, + "end": 41035.86, + "probability": 0.6396 + }, + { + "start": 41036.08, + "end": 41039.1, + "probability": 0.3518 + }, + { + "start": 41039.12, + "end": 41039.66, + "probability": 0.0387 + }, + { + "start": 41039.66, + "end": 41040.24, + "probability": 0.1441 + }, + { + "start": 41040.66, + "end": 41041.46, + "probability": 0.508 + }, + { + "start": 41041.82, + "end": 41044.32, + "probability": 0.6642 + }, + { + "start": 41045.04, + "end": 41046.61, + "probability": 0.9597 + }, + { + "start": 41047.34, + "end": 41048.5, + "probability": 0.9334 + }, + { + "start": 41048.6, + "end": 41050.46, + "probability": 0.6759 + }, + { + "start": 41050.81, + "end": 41053.92, + "probability": 0.9824 + }, + { + "start": 41054.24, + "end": 41055.9, + "probability": 0.6445 + }, + { + "start": 41055.9, + "end": 41056.88, + "probability": 0.3646 + }, + { + "start": 41057.52, + "end": 41059.24, + "probability": 0.8739 + }, + { + "start": 41059.56, + "end": 41062.32, + "probability": 0.4781 + }, + { + "start": 41062.32, + "end": 41063.26, + "probability": 0.2438 + }, + { + "start": 41063.34, + "end": 41064.87, + "probability": 0.6827 + }, + { + "start": 41065.42, + "end": 41066.21, + "probability": 0.9863 + }, + { + "start": 41067.26, + "end": 41068.32, + "probability": 0.8746 + }, + { + "start": 41069.0, + "end": 41069.76, + "probability": 0.55 + }, + { + "start": 41070.44, + "end": 41070.82, + "probability": 0.8301 + }, + { + "start": 41070.88, + "end": 41072.72, + "probability": 0.6943 + }, + { + "start": 41073.16, + "end": 41073.92, + "probability": 0.9951 + }, + { + "start": 41074.6, + "end": 41074.94, + "probability": 0.4511 + }, + { + "start": 41074.94, + "end": 41075.1, + "probability": 0.476 + }, + { + "start": 41075.16, + "end": 41075.82, + "probability": 0.7736 + }, + { + "start": 41075.88, + "end": 41076.46, + "probability": 0.6152 + }, + { + "start": 41076.6, + "end": 41077.62, + "probability": 0.9792 + }, + { + "start": 41077.78, + "end": 41078.99, + "probability": 0.9569 + }, + { + "start": 41079.34, + "end": 41084.16, + "probability": 0.9717 + }, + { + "start": 41085.3, + "end": 41085.7, + "probability": 0.5031 + }, + { + "start": 41085.92, + "end": 41087.46, + "probability": 0.9655 + }, + { + "start": 41087.88, + "end": 41089.78, + "probability": 0.9479 + }, + { + "start": 41090.9, + "end": 41092.84, + "probability": 0.988 + }, + { + "start": 41093.02, + "end": 41094.86, + "probability": 0.9796 + }, + { + "start": 41095.94, + "end": 41097.42, + "probability": 0.9362 + }, + { + "start": 41097.68, + "end": 41099.94, + "probability": 0.9822 + }, + { + "start": 41100.44, + "end": 41102.36, + "probability": 0.9697 + }, + { + "start": 41103.0, + "end": 41104.46, + "probability": 0.9891 + }, + { + "start": 41105.54, + "end": 41108.56, + "probability": 0.253 + }, + { + "start": 41109.3, + "end": 41110.36, + "probability": 0.9863 + }, + { + "start": 41110.44, + "end": 41112.98, + "probability": 0.8569 + }, + { + "start": 41113.32, + "end": 41114.56, + "probability": 0.923 + }, + { + "start": 41114.92, + "end": 41115.6, + "probability": 0.7077 + }, + { + "start": 41116.58, + "end": 41117.82, + "probability": 0.8012 + }, + { + "start": 41118.4, + "end": 41119.32, + "probability": 0.9834 + }, + { + "start": 41120.08, + "end": 41123.3, + "probability": 0.9378 + }, + { + "start": 41123.3, + "end": 41125.62, + "probability": 0.9914 + }, + { + "start": 41126.28, + "end": 41127.62, + "probability": 0.9971 + }, + { + "start": 41127.98, + "end": 41129.22, + "probability": 0.9712 + }, + { + "start": 41130.18, + "end": 41130.98, + "probability": 0.9872 + }, + { + "start": 41131.04, + "end": 41132.46, + "probability": 0.5631 + }, + { + "start": 41133.08, + "end": 41135.36, + "probability": 0.9864 + }, + { + "start": 41135.98, + "end": 41136.24, + "probability": 0.7603 + }, + { + "start": 41136.3, + "end": 41141.62, + "probability": 0.9893 + }, + { + "start": 41142.48, + "end": 41143.46, + "probability": 0.9738 + }, + { + "start": 41144.38, + "end": 41145.32, + "probability": 0.6878 + }, + { + "start": 41146.32, + "end": 41146.58, + "probability": 0.2661 + }, + { + "start": 41146.96, + "end": 41147.54, + "probability": 0.4599 + }, + { + "start": 41148.48, + "end": 41151.93, + "probability": 0.8389 + }, + { + "start": 41152.7, + "end": 41154.32, + "probability": 0.692 + }, + { + "start": 41154.36, + "end": 41156.22, + "probability": 0.7826 + }, + { + "start": 41157.47, + "end": 41159.26, + "probability": 0.9724 + }, + { + "start": 41159.82, + "end": 41162.8, + "probability": 0.9613 + }, + { + "start": 41163.62, + "end": 41165.99, + "probability": 0.6747 + }, + { + "start": 41166.78, + "end": 41167.66, + "probability": 0.9626 + }, + { + "start": 41168.2, + "end": 41168.58, + "probability": 0.0609 + }, + { + "start": 41169.2, + "end": 41170.56, + "probability": 0.8894 + }, + { + "start": 41170.74, + "end": 41170.96, + "probability": 0.6544 + }, + { + "start": 41171.14, + "end": 41172.16, + "probability": 0.8809 + }, + { + "start": 41172.18, + "end": 41177.5, + "probability": 0.9781 + }, + { + "start": 41177.96, + "end": 41180.46, + "probability": 0.8797 + }, + { + "start": 41181.26, + "end": 41183.32, + "probability": 0.8947 + }, + { + "start": 41183.92, + "end": 41186.91, + "probability": 0.9856 + }, + { + "start": 41187.84, + "end": 41189.14, + "probability": 0.9311 + }, + { + "start": 41190.24, + "end": 41190.74, + "probability": 0.5748 + }, + { + "start": 41191.48, + "end": 41194.02, + "probability": 0.9781 + }, + { + "start": 41194.16, + "end": 41194.52, + "probability": 0.6383 + }, + { + "start": 41195.18, + "end": 41196.14, + "probability": 0.786 + }, + { + "start": 41196.28, + "end": 41199.4, + "probability": 0.99 + }, + { + "start": 41199.4, + "end": 41202.06, + "probability": 0.9635 + }, + { + "start": 41202.68, + "end": 41205.92, + "probability": 0.9984 + }, + { + "start": 41205.98, + "end": 41209.46, + "probability": 0.8159 + }, + { + "start": 41209.64, + "end": 41209.86, + "probability": 0.473 + }, + { + "start": 41209.94, + "end": 41210.37, + "probability": 0.9863 + }, + { + "start": 41210.96, + "end": 41213.46, + "probability": 0.7653 + }, + { + "start": 41213.54, + "end": 41214.08, + "probability": 0.4162 + }, + { + "start": 41214.34, + "end": 41217.04, + "probability": 0.9528 + }, + { + "start": 41217.14, + "end": 41218.35, + "probability": 0.8341 + }, + { + "start": 41218.69, + "end": 41221.68, + "probability": 0.749 + }, + { + "start": 41221.76, + "end": 41224.62, + "probability": 0.296 + }, + { + "start": 41225.12, + "end": 41228.25, + "probability": 0.9144 + }, + { + "start": 41228.88, + "end": 41231.04, + "probability": 0.8466 + }, + { + "start": 41231.82, + "end": 41233.8, + "probability": 0.9566 + }, + { + "start": 41234.36, + "end": 41239.08, + "probability": 0.9326 + }, + { + "start": 41239.62, + "end": 41240.62, + "probability": 0.9397 + }, + { + "start": 41240.72, + "end": 41241.64, + "probability": 0.9157 + }, + { + "start": 41241.66, + "end": 41243.96, + "probability": 0.6926 + }, + { + "start": 41244.0, + "end": 41244.44, + "probability": 0.692 + }, + { + "start": 41244.98, + "end": 41245.94, + "probability": 0.7614 + }, + { + "start": 41246.92, + "end": 41251.66, + "probability": 0.9953 + }, + { + "start": 41251.92, + "end": 41252.36, + "probability": 0.4272 + }, + { + "start": 41252.62, + "end": 41254.86, + "probability": 0.84 + }, + { + "start": 41255.58, + "end": 41256.76, + "probability": 0.9839 + }, + { + "start": 41257.32, + "end": 41260.7, + "probability": 0.9584 + }, + { + "start": 41261.0, + "end": 41261.48, + "probability": 0.5145 + }, + { + "start": 41261.6, + "end": 41264.4, + "probability": 0.995 + }, + { + "start": 41264.48, + "end": 41266.76, + "probability": 0.828 + }, + { + "start": 41268.1, + "end": 41269.54, + "probability": 0.8598 + }, + { + "start": 41270.2, + "end": 41271.7, + "probability": 0.9409 + }, + { + "start": 41272.16, + "end": 41273.12, + "probability": 0.3439 + }, + { + "start": 41274.06, + "end": 41274.72, + "probability": 0.4364 + }, + { + "start": 41275.08, + "end": 41275.54, + "probability": 0.965 + }, + { + "start": 41275.66, + "end": 41280.88, + "probability": 0.9653 + }, + { + "start": 41280.88, + "end": 41285.86, + "probability": 0.9917 + }, + { + "start": 41286.12, + "end": 41287.32, + "probability": 0.2003 + }, + { + "start": 41287.36, + "end": 41288.94, + "probability": 0.2713 + }, + { + "start": 41288.94, + "end": 41292.78, + "probability": 0.1981 + }, + { + "start": 41293.0, + "end": 41298.4, + "probability": 0.9974 + }, + { + "start": 41298.52, + "end": 41299.98, + "probability": 0.8772 + }, + { + "start": 41300.08, + "end": 41300.76, + "probability": 0.6733 + }, + { + "start": 41300.86, + "end": 41302.6, + "probability": 0.7882 + }, + { + "start": 41302.68, + "end": 41303.3, + "probability": 0.9689 + }, + { + "start": 41304.88, + "end": 41306.98, + "probability": 0.5761 + }, + { + "start": 41307.28, + "end": 41308.08, + "probability": 0.777 + }, + { + "start": 41308.98, + "end": 41309.42, + "probability": 0.8074 + }, + { + "start": 41310.61, + "end": 41316.26, + "probability": 0.8035 + }, + { + "start": 41316.84, + "end": 41318.84, + "probability": 0.8836 + }, + { + "start": 41319.24, + "end": 41320.26, + "probability": 0.761 + }, + { + "start": 41320.3, + "end": 41321.5, + "probability": 0.8862 + }, + { + "start": 41322.14, + "end": 41325.42, + "probability": 0.9878 + }, + { + "start": 41325.8, + "end": 41327.22, + "probability": 0.7706 + }, + { + "start": 41327.7, + "end": 41329.48, + "probability": 0.8657 + }, + { + "start": 41330.18, + "end": 41330.72, + "probability": 0.4738 + }, + { + "start": 41331.44, + "end": 41331.72, + "probability": 0.9452 + }, + { + "start": 41332.96, + "end": 41333.1, + "probability": 0.3422 + }, + { + "start": 41333.12, + "end": 41334.1, + "probability": 0.8165 + }, + { + "start": 41334.22, + "end": 41334.87, + "probability": 0.8576 + }, + { + "start": 41335.16, + "end": 41336.0, + "probability": 0.6753 + }, + { + "start": 41336.12, + "end": 41337.66, + "probability": 0.9038 + }, + { + "start": 41337.72, + "end": 41338.72, + "probability": 0.7274 + }, + { + "start": 41339.04, + "end": 41340.4, + "probability": 0.6504 + }, + { + "start": 41340.92, + "end": 41342.94, + "probability": 0.9751 + }, + { + "start": 41343.44, + "end": 41344.06, + "probability": 0.9414 + }, + { + "start": 41344.14, + "end": 41346.66, + "probability": 0.8787 + }, + { + "start": 41347.06, + "end": 41347.45, + "probability": 0.833 + }, + { + "start": 41347.58, + "end": 41349.06, + "probability": 0.7959 + }, + { + "start": 41349.52, + "end": 41352.2, + "probability": 0.9679 + }, + { + "start": 41352.28, + "end": 41353.94, + "probability": 0.8379 + }, + { + "start": 41354.22, + "end": 41356.36, + "probability": 0.9624 + }, + { + "start": 41357.28, + "end": 41359.18, + "probability": 0.9696 + }, + { + "start": 41359.38, + "end": 41362.32, + "probability": 0.8684 + }, + { + "start": 41362.6, + "end": 41364.34, + "probability": 0.9006 + }, + { + "start": 41364.44, + "end": 41367.1, + "probability": 0.8679 + }, + { + "start": 41367.54, + "end": 41370.76, + "probability": 0.984 + }, + { + "start": 41370.76, + "end": 41374.02, + "probability": 0.9788 + }, + { + "start": 41374.34, + "end": 41377.46, + "probability": 0.9984 + }, + { + "start": 41378.34, + "end": 41382.64, + "probability": 0.8433 + }, + { + "start": 41383.38, + "end": 41386.46, + "probability": 0.8154 + }, + { + "start": 41387.42, + "end": 41387.44, + "probability": 0.1542 + }, + { + "start": 41387.44, + "end": 41395.5, + "probability": 0.9967 + }, + { + "start": 41396.26, + "end": 41401.14, + "probability": 0.9984 + }, + { + "start": 41401.14, + "end": 41404.12, + "probability": 0.9987 + }, + { + "start": 41405.6, + "end": 41409.28, + "probability": 0.9163 + }, + { + "start": 41409.46, + "end": 41410.18, + "probability": 0.8887 + }, + { + "start": 41411.02, + "end": 41411.5, + "probability": 0.6598 + }, + { + "start": 41412.2, + "end": 41414.26, + "probability": 0.7928 + }, + { + "start": 41414.68, + "end": 41415.28, + "probability": 0.3169 + }, + { + "start": 41415.72, + "end": 41415.9, + "probability": 0.0517 + }, + { + "start": 41415.94, + "end": 41419.72, + "probability": 0.8753 + }, + { + "start": 41419.8, + "end": 41421.17, + "probability": 0.9801 + }, + { + "start": 41421.92, + "end": 41422.95, + "probability": 0.7161 + }, + { + "start": 41423.9, + "end": 41424.7, + "probability": 0.7441 + }, + { + "start": 41424.74, + "end": 41425.82, + "probability": 0.9834 + }, + { + "start": 41425.98, + "end": 41427.58, + "probability": 0.7998 + }, + { + "start": 41427.96, + "end": 41430.12, + "probability": 0.7446 + }, + { + "start": 41430.38, + "end": 41431.64, + "probability": 0.8979 + }, + { + "start": 41432.0, + "end": 41432.61, + "probability": 0.9614 + }, + { + "start": 41433.1, + "end": 41436.18, + "probability": 0.9468 + }, + { + "start": 41436.8, + "end": 41437.88, + "probability": 0.8382 + }, + { + "start": 41438.46, + "end": 41442.32, + "probability": 0.8626 + }, + { + "start": 41443.19, + "end": 41445.82, + "probability": 0.6315 + }, + { + "start": 41446.06, + "end": 41446.6, + "probability": 0.4473 + }, + { + "start": 41447.18, + "end": 41448.52, + "probability": 0.3182 + }, + { + "start": 41450.48, + "end": 41453.12, + "probability": 0.6119 + }, + { + "start": 41453.28, + "end": 41456.8, + "probability": 0.6621 + }, + { + "start": 41456.8, + "end": 41460.2, + "probability": 0.9919 + }, + { + "start": 41461.1, + "end": 41462.58, + "probability": 0.6256 + }, + { + "start": 41463.18, + "end": 41465.36, + "probability": 0.9509 + }, + { + "start": 41465.46, + "end": 41466.12, + "probability": 0.7153 + }, + { + "start": 41466.92, + "end": 41468.52, + "probability": 0.759 + }, + { + "start": 41468.78, + "end": 41472.04, + "probability": 0.9265 + }, + { + "start": 41472.54, + "end": 41473.18, + "probability": 0.8951 + }, + { + "start": 41473.9, + "end": 41476.89, + "probability": 0.9295 + }, + { + "start": 41477.18, + "end": 41478.4, + "probability": 0.7189 + }, + { + "start": 41478.5, + "end": 41479.88, + "probability": 0.9047 + }, + { + "start": 41480.08, + "end": 41485.56, + "probability": 0.9274 + }, + { + "start": 41487.46, + "end": 41491.77, + "probability": 0.7804 + }, + { + "start": 41493.44, + "end": 41495.8, + "probability": 0.9952 + }, + { + "start": 41495.8, + "end": 41497.64, + "probability": 0.9793 + }, + { + "start": 41498.22, + "end": 41499.86, + "probability": 0.8389 + }, + { + "start": 41500.32, + "end": 41503.16, + "probability": 0.6601 + }, + { + "start": 41503.28, + "end": 41504.84, + "probability": 0.955 + }, + { + "start": 41505.16, + "end": 41506.12, + "probability": 0.8289 + }, + { + "start": 41506.54, + "end": 41508.08, + "probability": 0.7827 + }, + { + "start": 41508.78, + "end": 41510.24, + "probability": 0.9697 + }, + { + "start": 41510.38, + "end": 41511.08, + "probability": 0.887 + }, + { + "start": 41511.44, + "end": 41512.38, + "probability": 0.9126 + }, + { + "start": 41512.84, + "end": 41514.84, + "probability": 0.9617 + }, + { + "start": 41514.94, + "end": 41515.96, + "probability": 0.5501 + }, + { + "start": 41516.26, + "end": 41516.87, + "probability": 0.6826 + }, + { + "start": 41517.8, + "end": 41520.26, + "probability": 0.8452 + }, + { + "start": 41520.26, + "end": 41523.98, + "probability": 0.9884 + }, + { + "start": 41524.74, + "end": 41527.34, + "probability": 0.9908 + }, + { + "start": 41527.96, + "end": 41529.58, + "probability": 0.9985 + }, + { + "start": 41529.94, + "end": 41531.68, + "probability": 0.4558 + }, + { + "start": 41531.72, + "end": 41532.9, + "probability": 0.4341 + }, + { + "start": 41532.9, + "end": 41534.18, + "probability": 0.8002 + }, + { + "start": 41534.4, + "end": 41535.3, + "probability": 0.9475 + }, + { + "start": 41535.9, + "end": 41537.09, + "probability": 0.5279 + }, + { + "start": 41537.34, + "end": 41537.94, + "probability": 0.7451 + }, + { + "start": 41538.08, + "end": 41539.06, + "probability": 0.8353 + }, + { + "start": 41539.08, + "end": 41539.98, + "probability": 0.2487 + }, + { + "start": 41540.36, + "end": 41541.08, + "probability": 0.4468 + }, + { + "start": 41541.08, + "end": 41541.28, + "probability": 0.4078 + }, + { + "start": 41541.7, + "end": 41543.4, + "probability": 0.8038 + }, + { + "start": 41543.76, + "end": 41544.32, + "probability": 0.9873 + }, + { + "start": 41544.58, + "end": 41547.08, + "probability": 0.9005 + }, + { + "start": 41547.2, + "end": 41547.8, + "probability": 0.8667 + }, + { + "start": 41548.46, + "end": 41549.3, + "probability": 0.7975 + }, + { + "start": 41550.54, + "end": 41552.52, + "probability": 0.853 + }, + { + "start": 41553.44, + "end": 41553.98, + "probability": 0.4177 + }, + { + "start": 41554.86, + "end": 41558.58, + "probability": 0.9459 + }, + { + "start": 41558.7, + "end": 41560.1, + "probability": 0.9763 + }, + { + "start": 41560.18, + "end": 41561.54, + "probability": 0.8336 + }, + { + "start": 41561.56, + "end": 41563.4, + "probability": 0.7769 + }, + { + "start": 41564.26, + "end": 41566.06, + "probability": 0.9895 + }, + { + "start": 41566.78, + "end": 41569.15, + "probability": 0.915 + }, + { + "start": 41569.64, + "end": 41574.07, + "probability": 0.7847 + }, + { + "start": 41574.28, + "end": 41576.5, + "probability": 0.8434 + }, + { + "start": 41576.98, + "end": 41578.02, + "probability": 0.4217 + }, + { + "start": 41578.74, + "end": 41579.25, + "probability": 0.9338 + }, + { + "start": 41579.5, + "end": 41579.96, + "probability": 0.806 + }, + { + "start": 41580.36, + "end": 41580.58, + "probability": 0.1716 + }, + { + "start": 41580.82, + "end": 41581.72, + "probability": 0.9587 + }, + { + "start": 41584.52, + "end": 41586.24, + "probability": 0.7308 + }, + { + "start": 41586.52, + "end": 41587.11, + "probability": 0.5999 + }, + { + "start": 41587.7, + "end": 41590.24, + "probability": 0.2526 + }, + { + "start": 41590.44, + "end": 41591.72, + "probability": 0.5225 + }, + { + "start": 41591.86, + "end": 41593.16, + "probability": 0.4872 + }, + { + "start": 41593.24, + "end": 41593.86, + "probability": 0.619 + }, + { + "start": 41593.96, + "end": 41594.8, + "probability": 0.894 + }, + { + "start": 41594.84, + "end": 41595.2, + "probability": 0.7828 + }, + { + "start": 41597.2, + "end": 41597.42, + "probability": 0.1584 + }, + { + "start": 41597.42, + "end": 41597.5, + "probability": 0.1544 + }, + { + "start": 41597.5, + "end": 41597.5, + "probability": 0.1338 + }, + { + "start": 41597.5, + "end": 41597.5, + "probability": 0.1694 + }, + { + "start": 41597.5, + "end": 41597.78, + "probability": 0.3376 + }, + { + "start": 41600.78, + "end": 41603.56, + "probability": 0.9825 + }, + { + "start": 41603.98, + "end": 41604.88, + "probability": 0.7385 + }, + { + "start": 41605.22, + "end": 41607.03, + "probability": 0.8979 + }, + { + "start": 41607.56, + "end": 41608.1, + "probability": 0.0437 + }, + { + "start": 41608.24, + "end": 41609.2, + "probability": 0.6216 + }, + { + "start": 41610.06, + "end": 41613.8, + "probability": 0.9357 + }, + { + "start": 41613.92, + "end": 41614.92, + "probability": 0.5292 + }, + { + "start": 41614.92, + "end": 41614.92, + "probability": 0.6016 + }, + { + "start": 41614.92, + "end": 41614.92, + "probability": 0.5284 + }, + { + "start": 41614.92, + "end": 41617.48, + "probability": 0.3508 + }, + { + "start": 41617.58, + "end": 41619.68, + "probability": 0.9328 + }, + { + "start": 41619.76, + "end": 41621.1, + "probability": 0.8203 + }, + { + "start": 41621.1, + "end": 41622.52, + "probability": 0.5564 + }, + { + "start": 41622.82, + "end": 41625.72, + "probability": 0.5489 + }, + { + "start": 41625.76, + "end": 41627.48, + "probability": 0.7223 + }, + { + "start": 41627.6, + "end": 41628.39, + "probability": 0.505 + }, + { + "start": 41628.8, + "end": 41630.84, + "probability": 0.9161 + }, + { + "start": 41630.9, + "end": 41631.32, + "probability": 0.6806 + }, + { + "start": 41631.4, + "end": 41632.88, + "probability": 0.677 + }, + { + "start": 41633.08, + "end": 41634.18, + "probability": 0.0384 + }, + { + "start": 41634.18, + "end": 41634.86, + "probability": 0.378 + }, + { + "start": 41634.92, + "end": 41635.86, + "probability": 0.4032 + }, + { + "start": 41635.88, + "end": 41635.88, + "probability": 0.1763 + }, + { + "start": 41635.88, + "end": 41640.08, + "probability": 0.8315 + }, + { + "start": 41640.08, + "end": 41642.3, + "probability": 0.832 + }, + { + "start": 41642.6, + "end": 41643.29, + "probability": 0.9719 + }, + { + "start": 41644.34, + "end": 41646.2, + "probability": 0.9812 + }, + { + "start": 41646.38, + "end": 41648.12, + "probability": 0.9959 + }, + { + "start": 41648.52, + "end": 41651.3, + "probability": 0.9784 + }, + { + "start": 41651.52, + "end": 41654.74, + "probability": 0.9847 + }, + { + "start": 41654.88, + "end": 41658.3, + "probability": 0.0763 + }, + { + "start": 41660.46, + "end": 41660.56, + "probability": 0.0475 + }, + { + "start": 41660.56, + "end": 41660.92, + "probability": 0.4528 + }, + { + "start": 41660.92, + "end": 41661.04, + "probability": 0.534 + }, + { + "start": 41661.1, + "end": 41663.78, + "probability": 0.4244 + }, + { + "start": 41663.86, + "end": 41664.66, + "probability": 0.7202 + }, + { + "start": 41666.02, + "end": 41666.7, + "probability": 0.5103 + }, + { + "start": 41667.0, + "end": 41669.92, + "probability": 0.9661 + }, + { + "start": 41670.12, + "end": 41670.46, + "probability": 0.5145 + }, + { + "start": 41671.32, + "end": 41672.72, + "probability": 0.9045 + }, + { + "start": 41673.32, + "end": 41675.12, + "probability": 0.8755 + }, + { + "start": 41678.36, + "end": 41679.22, + "probability": 0.9589 + }, + { + "start": 41679.4, + "end": 41679.96, + "probability": 0.643 + }, + { + "start": 41680.0, + "end": 41686.26, + "probability": 0.9933 + }, + { + "start": 41686.36, + "end": 41688.16, + "probability": 0.6703 + }, + { + "start": 41688.32, + "end": 41688.64, + "probability": 0.2953 + }, + { + "start": 41689.12, + "end": 41689.12, + "probability": 0.1996 + }, + { + "start": 41689.12, + "end": 41689.14, + "probability": 0.4302 + }, + { + "start": 41689.36, + "end": 41689.96, + "probability": 0.3162 + }, + { + "start": 41689.96, + "end": 41692.84, + "probability": 0.6664 + }, + { + "start": 41693.08, + "end": 41693.34, + "probability": 0.3874 + }, + { + "start": 41693.64, + "end": 41694.08, + "probability": 0.3963 + }, + { + "start": 41694.22, + "end": 41695.86, + "probability": 0.79 + }, + { + "start": 41699.06, + "end": 41703.04, + "probability": 0.8316 + }, + { + "start": 41704.2, + "end": 41705.32, + "probability": 0.3938 + }, + { + "start": 41706.88, + "end": 41708.38, + "probability": 0.274 + }, + { + "start": 41709.48, + "end": 41712.16, + "probability": 0.8757 + }, + { + "start": 41712.94, + "end": 41713.98, + "probability": 0.7522 + }, + { + "start": 41714.26, + "end": 41717.86, + "probability": 0.1775 + }, + { + "start": 41718.0, + "end": 41719.62, + "probability": 0.9954 + }, + { + "start": 41719.72, + "end": 41722.12, + "probability": 0.9498 + }, + { + "start": 41724.02, + "end": 41730.0, + "probability": 0.9941 + }, + { + "start": 41730.78, + "end": 41733.3, + "probability": 0.9645 + }, + { + "start": 41735.88, + "end": 41738.7, + "probability": 0.992 + }, + { + "start": 41740.34, + "end": 41743.6, + "probability": 0.669 + }, + { + "start": 41745.62, + "end": 41746.44, + "probability": 0.9875 + }, + { + "start": 41747.32, + "end": 41747.74, + "probability": 0.9408 + }, + { + "start": 41748.94, + "end": 41749.62, + "probability": 0.9722 + }, + { + "start": 41751.08, + "end": 41752.86, + "probability": 0.9845 + }, + { + "start": 41754.1, + "end": 41754.76, + "probability": 0.9673 + }, + { + "start": 41756.9, + "end": 41757.84, + "probability": 0.9569 + }, + { + "start": 41758.76, + "end": 41760.51, + "probability": 0.819 + }, + { + "start": 41761.54, + "end": 41763.72, + "probability": 0.8 + }, + { + "start": 41764.3, + "end": 41765.54, + "probability": 0.9849 + }, + { + "start": 41765.7, + "end": 41766.06, + "probability": 0.7075 + }, + { + "start": 41766.14, + "end": 41767.46, + "probability": 0.76 + }, + { + "start": 41767.98, + "end": 41768.2, + "probability": 0.7802 + }, + { + "start": 41769.44, + "end": 41772.12, + "probability": 0.775 + }, + { + "start": 41772.22, + "end": 41773.76, + "probability": 0.9758 + }, + { + "start": 41773.76, + "end": 41775.48, + "probability": 0.9067 + }, + { + "start": 41775.48, + "end": 41780.34, + "probability": 0.9058 + }, + { + "start": 41780.82, + "end": 41782.71, + "probability": 0.6707 + }, + { + "start": 41785.46, + "end": 41785.94, + "probability": 0.9556 + }, + { + "start": 41787.68, + "end": 41789.16, + "probability": 0.7997 + }, + { + "start": 41789.2, + "end": 41789.8, + "probability": 0.4469 + }, + { + "start": 41789.98, + "end": 41790.48, + "probability": 0.8193 + }, + { + "start": 41790.88, + "end": 41795.98, + "probability": 0.9902 + }, + { + "start": 41798.94, + "end": 41802.12, + "probability": 0.9141 + }, + { + "start": 41803.84, + "end": 41805.56, + "probability": 0.9779 + }, + { + "start": 41806.74, + "end": 41810.96, + "probability": 0.9702 + }, + { + "start": 41811.88, + "end": 41812.06, + "probability": 0.6705 + }, + { + "start": 41812.2, + "end": 41812.58, + "probability": 0.4534 + }, + { + "start": 41812.72, + "end": 41813.34, + "probability": 0.3845 + }, + { + "start": 41813.86, + "end": 41814.12, + "probability": 0.8401 + }, + { + "start": 41815.14, + "end": 41816.72, + "probability": 0.6923 + }, + { + "start": 41816.8, + "end": 41817.9, + "probability": 0.7641 + }, + { + "start": 41818.06, + "end": 41818.8, + "probability": 0.9094 + }, + { + "start": 41819.96, + "end": 41821.54, + "probability": 0.8318 + }, + { + "start": 41824.32, + "end": 41824.76, + "probability": 0.6928 + }, + { + "start": 41826.04, + "end": 41830.98, + "probability": 0.9847 + }, + { + "start": 41831.5, + "end": 41834.58, + "probability": 0.282 + }, + { + "start": 41835.9, + "end": 41837.8, + "probability": 0.9305 + }, + { + "start": 41838.96, + "end": 41840.34, + "probability": 0.9537 + }, + { + "start": 41842.44, + "end": 41843.44, + "probability": 0.9221 + }, + { + "start": 41844.88, + "end": 41846.58, + "probability": 0.6985 + }, + { + "start": 41847.3, + "end": 41848.22, + "probability": 0.555 + }, + { + "start": 41849.4, + "end": 41851.64, + "probability": 0.985 + }, + { + "start": 41851.86, + "end": 41851.96, + "probability": 0.7859 + }, + { + "start": 41853.6, + "end": 41861.5, + "probability": 0.9569 + }, + { + "start": 41861.6, + "end": 41862.96, + "probability": 0.8121 + }, + { + "start": 41863.22, + "end": 41863.54, + "probability": 0.9105 + }, + { + "start": 41864.34, + "end": 41870.64, + "probability": 0.9091 + }, + { + "start": 41871.66, + "end": 41872.64, + "probability": 0.9644 + }, + { + "start": 41873.56, + "end": 41873.86, + "probability": 0.2938 + }, + { + "start": 41873.98, + "end": 41875.98, + "probability": 0.99 + }, + { + "start": 41875.98, + "end": 41878.1, + "probability": 0.8308 + }, + { + "start": 41878.66, + "end": 41879.14, + "probability": 0.6239 + }, + { + "start": 41881.38, + "end": 41883.86, + "probability": 0.9599 + }, + { + "start": 41885.22, + "end": 41886.02, + "probability": 0.8315 + }, + { + "start": 41886.18, + "end": 41888.86, + "probability": 0.9801 + }, + { + "start": 41889.62, + "end": 41890.8, + "probability": 0.8504 + }, + { + "start": 41892.34, + "end": 41893.64, + "probability": 0.8983 + }, + { + "start": 41893.94, + "end": 41896.3, + "probability": 0.9927 + }, + { + "start": 41896.6, + "end": 41897.54, + "probability": 0.9647 + }, + { + "start": 41898.96, + "end": 41899.42, + "probability": 0.5573 + }, + { + "start": 41900.56, + "end": 41901.2, + "probability": 0.9751 + }, + { + "start": 41902.58, + "end": 41903.18, + "probability": 0.9497 + }, + { + "start": 41903.36, + "end": 41905.82, + "probability": 0.7783 + }, + { + "start": 41906.48, + "end": 41907.16, + "probability": 0.8701 + }, + { + "start": 41907.68, + "end": 41910.89, + "probability": 0.7276 + }, + { + "start": 41912.06, + "end": 41912.82, + "probability": 0.729 + }, + { + "start": 41913.78, + "end": 41916.76, + "probability": 0.9714 + }, + { + "start": 41917.02, + "end": 41917.68, + "probability": 0.9594 + }, + { + "start": 41918.48, + "end": 41921.46, + "probability": 0.3527 + }, + { + "start": 41923.2, + "end": 41926.25, + "probability": 0.614 + }, + { + "start": 41927.76, + "end": 41929.0, + "probability": 0.1361 + }, + { + "start": 41929.0, + "end": 41929.42, + "probability": 0.4705 + }, + { + "start": 41930.24, + "end": 41933.24, + "probability": 0.7409 + }, + { + "start": 41933.6, + "end": 41935.24, + "probability": 0.8706 + }, + { + "start": 41936.54, + "end": 41937.5, + "probability": 0.9694 + }, + { + "start": 41938.34, + "end": 41939.14, + "probability": 0.9041 + }, + { + "start": 41939.5, + "end": 41940.34, + "probability": 0.6895 + }, + { + "start": 41940.5, + "end": 41941.88, + "probability": 0.8709 + }, + { + "start": 41942.12, + "end": 41948.76, + "probability": 0.8586 + }, + { + "start": 41949.18, + "end": 41952.68, + "probability": 0.726 + }, + { + "start": 41953.62, + "end": 41956.14, + "probability": 0.6446 + }, + { + "start": 41956.96, + "end": 41957.84, + "probability": 0.6179 + }, + { + "start": 41958.12, + "end": 41959.3, + "probability": 0.7245 + }, + { + "start": 41959.68, + "end": 41961.44, + "probability": 0.7285 + }, + { + "start": 41961.86, + "end": 41962.94, + "probability": 0.6787 + }, + { + "start": 41963.1, + "end": 41964.5, + "probability": 0.729 + }, + { + "start": 41964.58, + "end": 41964.62, + "probability": 0.0023 + }, + { + "start": 41964.62, + "end": 41966.18, + "probability": 0.8059 + }, + { + "start": 41966.38, + "end": 41967.22, + "probability": 0.9846 + }, + { + "start": 41967.68, + "end": 41969.46, + "probability": 0.9948 + }, + { + "start": 41969.88, + "end": 41971.7, + "probability": 0.9466 + }, + { + "start": 41971.78, + "end": 41972.26, + "probability": 0.9552 + }, + { + "start": 41972.4, + "end": 41974.44, + "probability": 0.9716 + }, + { + "start": 41974.84, + "end": 41976.8, + "probability": 0.9854 + }, + { + "start": 41977.38, + "end": 41983.86, + "probability": 0.8086 + }, + { + "start": 41984.3, + "end": 41985.62, + "probability": 0.7889 + }, + { + "start": 41986.12, + "end": 41987.8, + "probability": 0.9122 + }, + { + "start": 41988.08, + "end": 41990.92, + "probability": 0.9971 + }, + { + "start": 41991.66, + "end": 41994.7, + "probability": 0.8674 + }, + { + "start": 41994.76, + "end": 41996.56, + "probability": 0.6905 + }, + { + "start": 41996.56, + "end": 41997.36, + "probability": 0.4965 + }, + { + "start": 41997.46, + "end": 41998.62, + "probability": 0.7027 + }, + { + "start": 41998.84, + "end": 41999.04, + "probability": 0.4691 + }, + { + "start": 41999.04, + "end": 42004.06, + "probability": 0.6326 + }, + { + "start": 42004.12, + "end": 42005.33, + "probability": 0.663 + }, + { + "start": 42005.82, + "end": 42006.32, + "probability": 0.4065 + }, + { + "start": 42006.32, + "end": 42007.28, + "probability": 0.6233 + }, + { + "start": 42007.62, + "end": 42009.96, + "probability": 0.9799 + }, + { + "start": 42010.68, + "end": 42010.88, + "probability": 0.8513 + }, + { + "start": 42011.02, + "end": 42011.24, + "probability": 0.9268 + }, + { + "start": 42011.34, + "end": 42015.18, + "probability": 0.9924 + }, + { + "start": 42015.6, + "end": 42018.86, + "probability": 0.9475 + }, + { + "start": 42019.42, + "end": 42024.3, + "probability": 0.8783 + }, + { + "start": 42025.82, + "end": 42028.22, + "probability": 0.8843 + }, + { + "start": 42028.52, + "end": 42028.72, + "probability": 0.505 + }, + { + "start": 42028.92, + "end": 42031.44, + "probability": 0.7563 + }, + { + "start": 42031.82, + "end": 42032.96, + "probability": 0.9676 + }, + { + "start": 42033.04, + "end": 42033.74, + "probability": 0.7916 + }, + { + "start": 42035.12, + "end": 42038.54, + "probability": 0.711 + }, + { + "start": 42040.84, + "end": 42043.3, + "probability": 0.511 + }, + { + "start": 42044.4, + "end": 42047.78, + "probability": 0.8292 + }, + { + "start": 42049.1, + "end": 42050.54, + "probability": 0.6508 + }, + { + "start": 42051.76, + "end": 42054.1, + "probability": 0.9694 + }, + { + "start": 42054.26, + "end": 42054.79, + "probability": 0.8577 + }, + { + "start": 42054.94, + "end": 42055.82, + "probability": 0.6095 + }, + { + "start": 42057.68, + "end": 42059.08, + "probability": 0.9193 + }, + { + "start": 42061.2, + "end": 42063.24, + "probability": 0.7939 + }, + { + "start": 42064.34, + "end": 42064.7, + "probability": 0.8315 + }, + { + "start": 42065.76, + "end": 42065.86, + "probability": 0.9695 + }, + { + "start": 42066.48, + "end": 42066.9, + "probability": 0.2731 + }, + { + "start": 42066.9, + "end": 42067.48, + "probability": 0.5374 + }, + { + "start": 42067.66, + "end": 42068.32, + "probability": 0.731 + }, + { + "start": 42068.34, + "end": 42070.64, + "probability": 0.7315 + }, + { + "start": 42071.92, + "end": 42073.32, + "probability": 0.8877 + }, + { + "start": 42074.34, + "end": 42075.33, + "probability": 0.8648 + }, + { + "start": 42075.98, + "end": 42077.29, + "probability": 0.7982 + }, + { + "start": 42077.3, + "end": 42080.68, + "probability": 0.7717 + }, + { + "start": 42080.96, + "end": 42082.02, + "probability": 0.9201 + }, + { + "start": 42082.52, + "end": 42083.36, + "probability": 0.8022 + }, + { + "start": 42083.44, + "end": 42084.46, + "probability": 0.946 + }, + { + "start": 42085.56, + "end": 42087.0, + "probability": 0.9344 + }, + { + "start": 42089.22, + "end": 42089.56, + "probability": 0.661 + }, + { + "start": 42089.82, + "end": 42091.36, + "probability": 0.9532 + }, + { + "start": 42092.1, + "end": 42093.14, + "probability": 0.7246 + }, + { + "start": 42093.64, + "end": 42097.71, + "probability": 0.8051 + }, + { + "start": 42099.22, + "end": 42100.02, + "probability": 0.9447 + }, + { + "start": 42101.6, + "end": 42105.02, + "probability": 0.9727 + }, + { + "start": 42105.69, + "end": 42109.9, + "probability": 0.8087 + }, + { + "start": 42109.9, + "end": 42111.16, + "probability": 0.5515 + }, + { + "start": 42111.94, + "end": 42112.5, + "probability": 0.5342 + }, + { + "start": 42112.72, + "end": 42117.48, + "probability": 0.8784 + }, + { + "start": 42118.82, + "end": 42121.66, + "probability": 0.8388 + }, + { + "start": 42122.64, + "end": 42123.76, + "probability": 0.9159 + }, + { + "start": 42125.44, + "end": 42129.08, + "probability": 0.9973 + }, + { + "start": 42129.2, + "end": 42129.79, + "probability": 0.9263 + }, + { + "start": 42130.66, + "end": 42133.1, + "probability": 0.7325 + }, + { + "start": 42133.2, + "end": 42134.4, + "probability": 0.7368 + }, + { + "start": 42134.4, + "end": 42136.14, + "probability": 0.8897 + }, + { + "start": 42137.16, + "end": 42138.9, + "probability": 0.957 + }, + { + "start": 42139.44, + "end": 42140.98, + "probability": 0.6104 + }, + { + "start": 42142.74, + "end": 42145.9, + "probability": 0.7772 + }, + { + "start": 42146.14, + "end": 42146.14, + "probability": 0.4432 + }, + { + "start": 42146.14, + "end": 42146.42, + "probability": 0.6315 + }, + { + "start": 42146.5, + "end": 42149.05, + "probability": 0.251 + }, + { + "start": 42149.18, + "end": 42149.72, + "probability": 0.3018 + }, + { + "start": 42149.8, + "end": 42151.9, + "probability": 0.7243 + }, + { + "start": 42152.52, + "end": 42155.52, + "probability": 0.6541 + }, + { + "start": 42155.66, + "end": 42159.3, + "probability": 0.2441 + }, + { + "start": 42159.82, + "end": 42160.7, + "probability": 0.4976 + }, + { + "start": 42161.48, + "end": 42161.87, + "probability": 0.998 + }, + { + "start": 42162.7, + "end": 42164.2, + "probability": 0.9127 + }, + { + "start": 42164.68, + "end": 42165.66, + "probability": 0.4852 + }, + { + "start": 42166.76, + "end": 42168.74, + "probability": 0.4958 + }, + { + "start": 42168.86, + "end": 42169.9, + "probability": 0.7027 + }, + { + "start": 42170.46, + "end": 42173.0, + "probability": 0.6327 + }, + { + "start": 42173.22, + "end": 42174.76, + "probability": 0.5771 + }, + { + "start": 42175.04, + "end": 42175.53, + "probability": 0.8237 + }, + { + "start": 42177.1, + "end": 42177.36, + "probability": 0.0254 + }, + { + "start": 42177.36, + "end": 42177.36, + "probability": 0.0792 + }, + { + "start": 42177.36, + "end": 42177.57, + "probability": 0.0299 + }, + { + "start": 42178.54, + "end": 42178.54, + "probability": 0.6254 + }, + { + "start": 42178.66, + "end": 42181.3, + "probability": 0.9314 + }, + { + "start": 42181.44, + "end": 42185.94, + "probability": 0.9621 + }, + { + "start": 42186.36, + "end": 42188.06, + "probability": 0.9388 + }, + { + "start": 42189.38, + "end": 42189.96, + "probability": 0.9622 + }, + { + "start": 42190.78, + "end": 42194.56, + "probability": 0.9889 + }, + { + "start": 42194.84, + "end": 42197.72, + "probability": 0.9962 + }, + { + "start": 42198.28, + "end": 42198.54, + "probability": 0.3251 + }, + { + "start": 42198.64, + "end": 42200.44, + "probability": 0.6637 + }, + { + "start": 42200.92, + "end": 42202.92, + "probability": 0.9818 + }, + { + "start": 42203.58, + "end": 42204.3, + "probability": 0.7641 + }, + { + "start": 42204.92, + "end": 42205.78, + "probability": 0.9967 + }, + { + "start": 42206.6, + "end": 42208.78, + "probability": 0.7855 + }, + { + "start": 42209.38, + "end": 42210.54, + "probability": 0.2835 + }, + { + "start": 42210.54, + "end": 42210.76, + "probability": 0.4667 + }, + { + "start": 42211.2, + "end": 42212.68, + "probability": 0.9185 + }, + { + "start": 42212.96, + "end": 42215.64, + "probability": 0.8493 + }, + { + "start": 42215.64, + "end": 42216.96, + "probability": 0.7275 + }, + { + "start": 42219.12, + "end": 42219.36, + "probability": 0.0124 + }, + { + "start": 42219.36, + "end": 42221.52, + "probability": 0.99 + }, + { + "start": 42221.74, + "end": 42223.14, + "probability": 0.4975 + }, + { + "start": 42223.28, + "end": 42225.0, + "probability": 0.499 + }, + { + "start": 42225.58, + "end": 42226.76, + "probability": 0.4134 + }, + { + "start": 42227.7, + "end": 42228.2, + "probability": 0.8477 + }, + { + "start": 42228.26, + "end": 42229.14, + "probability": 0.7889 + }, + { + "start": 42230.6, + "end": 42231.62, + "probability": 0.2137 + }, + { + "start": 42231.84, + "end": 42232.7, + "probability": 0.16 + }, + { + "start": 42232.7, + "end": 42234.12, + "probability": 0.6593 + }, + { + "start": 42234.24, + "end": 42235.22, + "probability": 0.9363 + }, + { + "start": 42235.7, + "end": 42236.4, + "probability": 0.9819 + }, + { + "start": 42236.52, + "end": 42239.68, + "probability": 0.3031 + }, + { + "start": 42239.78, + "end": 42241.54, + "probability": 0.2831 + }, + { + "start": 42241.56, + "end": 42245.82, + "probability": 0.7536 + }, + { + "start": 42246.12, + "end": 42247.24, + "probability": 0.509 + }, + { + "start": 42248.04, + "end": 42250.67, + "probability": 0.9198 + }, + { + "start": 42251.66, + "end": 42253.64, + "probability": 0.9388 + }, + { + "start": 42254.26, + "end": 42257.5, + "probability": 0.8574 + }, + { + "start": 42257.72, + "end": 42259.6, + "probability": 0.6948 + }, + { + "start": 42259.7, + "end": 42264.48, + "probability": 0.964 + }, + { + "start": 42265.14, + "end": 42265.7, + "probability": 0.7598 + }, + { + "start": 42266.34, + "end": 42268.62, + "probability": 0.9376 + }, + { + "start": 42269.0, + "end": 42276.42, + "probability": 0.9219 + }, + { + "start": 42277.34, + "end": 42280.98, + "probability": 0.4238 + }, + { + "start": 42281.04, + "end": 42282.26, + "probability": 0.6643 + }, + { + "start": 42282.34, + "end": 42286.94, + "probability": 0.951 + }, + { + "start": 42287.18, + "end": 42288.94, + "probability": 0.9683 + }, + { + "start": 42289.22, + "end": 42289.92, + "probability": 0.9338 + }, + { + "start": 42290.34, + "end": 42290.84, + "probability": 0.2821 + }, + { + "start": 42291.18, + "end": 42293.8, + "probability": 0.9902 + }, + { + "start": 42294.78, + "end": 42295.61, + "probability": 0.9849 + }, + { + "start": 42298.6, + "end": 42301.76, + "probability": 0.9839 + }, + { + "start": 42303.6, + "end": 42305.0, + "probability": 0.6391 + }, + { + "start": 42306.86, + "end": 42309.86, + "probability": 0.8712 + }, + { + "start": 42311.46, + "end": 42314.7, + "probability": 0.9436 + }, + { + "start": 42315.42, + "end": 42316.3, + "probability": 0.9972 + }, + { + "start": 42317.46, + "end": 42318.58, + "probability": 0.8159 + }, + { + "start": 42319.4, + "end": 42320.64, + "probability": 0.9714 + }, + { + "start": 42321.36, + "end": 42323.3, + "probability": 0.9839 + }, + { + "start": 42324.32, + "end": 42327.62, + "probability": 0.7555 + }, + { + "start": 42329.34, + "end": 42332.24, + "probability": 0.998 + }, + { + "start": 42332.48, + "end": 42333.26, + "probability": 0.9036 + }, + { + "start": 42333.34, + "end": 42336.8, + "probability": 0.6017 + }, + { + "start": 42337.1, + "end": 42337.16, + "probability": 0.3509 + }, + { + "start": 42337.16, + "end": 42337.94, + "probability": 0.2827 + }, + { + "start": 42338.08, + "end": 42341.34, + "probability": 0.3088 + }, + { + "start": 42341.34, + "end": 42343.14, + "probability": 0.5013 + }, + { + "start": 42343.4, + "end": 42344.2, + "probability": 0.7337 + }, + { + "start": 42344.7, + "end": 42346.13, + "probability": 0.5597 + }, + { + "start": 42347.08, + "end": 42347.72, + "probability": 0.0108 + }, + { + "start": 42348.4, + "end": 42349.94, + "probability": 0.1247 + }, + { + "start": 42350.06, + "end": 42351.62, + "probability": 0.9075 + }, + { + "start": 42353.02, + "end": 42353.96, + "probability": 0.7844 + }, + { + "start": 42354.6, + "end": 42355.12, + "probability": 0.7861 + }, + { + "start": 42355.92, + "end": 42356.7, + "probability": 0.5049 + }, + { + "start": 42357.24, + "end": 42358.88, + "probability": 0.5794 + }, + { + "start": 42358.88, + "end": 42363.36, + "probability": 0.7473 + }, + { + "start": 42363.36, + "end": 42368.66, + "probability": 0.9951 + }, + { + "start": 42368.66, + "end": 42368.73, + "probability": 0.1705 + }, + { + "start": 42369.56, + "end": 42370.63, + "probability": 0.0768 + }, + { + "start": 42372.42, + "end": 42373.4, + "probability": 0.96 + }, + { + "start": 42375.94, + "end": 42379.4, + "probability": 0.9903 + }, + { + "start": 42379.9, + "end": 42380.54, + "probability": 0.7579 + }, + { + "start": 42381.28, + "end": 42383.84, + "probability": 0.835 + }, + { + "start": 42384.1, + "end": 42384.5, + "probability": 0.4062 + }, + { + "start": 42386.22, + "end": 42386.6, + "probability": 0.4606 + }, + { + "start": 42387.26, + "end": 42389.08, + "probability": 0.3546 + }, + { + "start": 42389.78, + "end": 42391.56, + "probability": 0.8934 + }, + { + "start": 42392.46, + "end": 42392.46, + "probability": 0.2869 + }, + { + "start": 42392.46, + "end": 42395.56, + "probability": 0.8945 + }, + { + "start": 42395.56, + "end": 42400.84, + "probability": 0.564 + }, + { + "start": 42401.08, + "end": 42403.57, + "probability": 0.988 + }, + { + "start": 42404.48, + "end": 42407.99, + "probability": 0.9164 + }, + { + "start": 42408.74, + "end": 42409.12, + "probability": 0.4426 + }, + { + "start": 42410.46, + "end": 42410.74, + "probability": 0.8937 + }, + { + "start": 42412.02, + "end": 42412.54, + "probability": 0.9812 + }, + { + "start": 42412.72, + "end": 42415.38, + "probability": 0.9827 + }, + { + "start": 42416.62, + "end": 42417.04, + "probability": 0.9761 + }, + { + "start": 42417.06, + "end": 42423.36, + "probability": 0.9928 + }, + { + "start": 42423.52, + "end": 42423.92, + "probability": 0.6875 + }, + { + "start": 42424.18, + "end": 42425.62, + "probability": 0.5299 + }, + { + "start": 42426.32, + "end": 42428.56, + "probability": 0.8143 + }, + { + "start": 42428.62, + "end": 42431.9, + "probability": 0.8159 + }, + { + "start": 42431.92, + "end": 42433.02, + "probability": 0.5674 + }, + { + "start": 42433.04, + "end": 42433.08, + "probability": 0.3245 + }, + { + "start": 42433.16, + "end": 42433.16, + "probability": 0.5923 + }, + { + "start": 42433.16, + "end": 42433.72, + "probability": 0.2378 + }, + { + "start": 42434.74, + "end": 42436.36, + "probability": 0.295 + }, + { + "start": 42436.55, + "end": 42438.76, + "probability": 0.8905 + }, + { + "start": 42438.9, + "end": 42440.3, + "probability": 0.986 + }, + { + "start": 42440.92, + "end": 42441.44, + "probability": 0.1318 + }, + { + "start": 42441.44, + "end": 42441.98, + "probability": 0.2737 + }, + { + "start": 42442.18, + "end": 42445.6, + "probability": 0.9495 + }, + { + "start": 42446.16, + "end": 42449.1, + "probability": 0.9734 + }, + { + "start": 42449.64, + "end": 42450.96, + "probability": 0.9249 + }, + { + "start": 42452.24, + "end": 42454.82, + "probability": 0.9686 + }, + { + "start": 42455.54, + "end": 42457.48, + "probability": 0.9395 + }, + { + "start": 42458.38, + "end": 42458.68, + "probability": 0.8679 + }, + { + "start": 42459.62, + "end": 42464.66, + "probability": 0.9532 + }, + { + "start": 42465.56, + "end": 42466.06, + "probability": 0.7265 + }, + { + "start": 42467.26, + "end": 42468.2, + "probability": 0.8718 + }, + { + "start": 42470.5, + "end": 42473.44, + "probability": 0.9807 + }, + { + "start": 42474.1, + "end": 42476.68, + "probability": 0.9941 + }, + { + "start": 42477.3, + "end": 42481.28, + "probability": 0.999 + }, + { + "start": 42485.0, + "end": 42486.02, + "probability": 0.4833 + }, + { + "start": 42486.28, + "end": 42486.78, + "probability": 0.9729 + }, + { + "start": 42487.84, + "end": 42490.84, + "probability": 0.8532 + }, + { + "start": 42491.48, + "end": 42492.46, + "probability": 0.8145 + }, + { + "start": 42493.18, + "end": 42494.02, + "probability": 0.1227 + }, + { + "start": 42494.6, + "end": 42495.02, + "probability": 0.288 + }, + { + "start": 42495.62, + "end": 42495.8, + "probability": 0.1576 + }, + { + "start": 42495.8, + "end": 42496.38, + "probability": 0.2441 + }, + { + "start": 42496.5, + "end": 42497.92, + "probability": 0.3872 + }, + { + "start": 42498.36, + "end": 42499.13, + "probability": 0.8838 + }, + { + "start": 42499.22, + "end": 42502.66, + "probability": 0.9557 + }, + { + "start": 42503.36, + "end": 42505.2, + "probability": 0.2522 + }, + { + "start": 42505.26, + "end": 42506.78, + "probability": 0.703 + }, + { + "start": 42507.46, + "end": 42510.48, + "probability": 0.6001 + }, + { + "start": 42510.7, + "end": 42516.14, + "probability": 0.6998 + }, + { + "start": 42516.86, + "end": 42516.9, + "probability": 0.0171 + }, + { + "start": 42516.9, + "end": 42517.8, + "probability": 0.5836 + }, + { + "start": 42519.16, + "end": 42519.56, + "probability": 0.8892 + }, + { + "start": 42520.34, + "end": 42522.4, + "probability": 0.8231 + }, + { + "start": 42522.58, + "end": 42523.0, + "probability": 0.6889 + }, + { + "start": 42523.68, + "end": 42524.42, + "probability": 0.4979 + }, + { + "start": 42525.02, + "end": 42527.69, + "probability": 0.7945 + }, + { + "start": 42528.84, + "end": 42531.32, + "probability": 0.8213 + }, + { + "start": 42532.42, + "end": 42533.8, + "probability": 0.6237 + }, + { + "start": 42535.98, + "end": 42536.48, + "probability": 0.9534 + }, + { + "start": 42536.9, + "end": 42537.92, + "probability": 0.6157 + }, + { + "start": 42538.04, + "end": 42538.72, + "probability": 0.9877 + }, + { + "start": 42539.28, + "end": 42540.6, + "probability": 0.9307 + }, + { + "start": 42542.4, + "end": 42544.03, + "probability": 0.9619 + }, + { + "start": 42545.2, + "end": 42546.22, + "probability": 0.954 + }, + { + "start": 42547.18, + "end": 42549.62, + "probability": 0.7996 + }, + { + "start": 42549.72, + "end": 42551.2, + "probability": 0.3762 + }, + { + "start": 42551.38, + "end": 42551.98, + "probability": 0.487 + }, + { + "start": 42552.66, + "end": 42554.88, + "probability": 0.8127 + }, + { + "start": 42556.6, + "end": 42560.32, + "probability": 0.9937 + }, + { + "start": 42561.88, + "end": 42562.76, + "probability": 0.8559 + }, + { + "start": 42564.44, + "end": 42567.48, + "probability": 0.9639 + }, + { + "start": 42569.26, + "end": 42570.34, + "probability": 0.8804 + }, + { + "start": 42571.36, + "end": 42573.48, + "probability": 0.9341 + }, + { + "start": 42574.52, + "end": 42576.18, + "probability": 0.9923 + }, + { + "start": 42576.28, + "end": 42578.38, + "probability": 0.9426 + }, + { + "start": 42578.38, + "end": 42580.18, + "probability": 0.9903 + }, + { + "start": 42580.36, + "end": 42583.56, + "probability": 0.9807 + }, + { + "start": 42586.22, + "end": 42587.74, + "probability": 0.9659 + }, + { + "start": 42587.74, + "end": 42588.37, + "probability": 0.5467 + }, + { + "start": 42589.4, + "end": 42590.34, + "probability": 0.9849 + }, + { + "start": 42591.48, + "end": 42593.74, + "probability": 0.6985 + }, + { + "start": 42594.82, + "end": 42595.54, + "probability": 0.8881 + }, + { + "start": 42597.48, + "end": 42598.6, + "probability": 0.9564 + }, + { + "start": 42600.02, + "end": 42605.34, + "probability": 0.9722 + }, + { + "start": 42606.16, + "end": 42609.98, + "probability": 0.8325 + }, + { + "start": 42611.46, + "end": 42612.12, + "probability": 0.4442 + }, + { + "start": 42612.2, + "end": 42615.9, + "probability": 0.9964 + }, + { + "start": 42617.3, + "end": 42622.44, + "probability": 0.99 + }, + { + "start": 42623.48, + "end": 42624.58, + "probability": 0.7201 + }, + { + "start": 42626.72, + "end": 42628.8, + "probability": 0.7827 + }, + { + "start": 42630.04, + "end": 42632.05, + "probability": 0.9958 + }, + { + "start": 42632.72, + "end": 42633.68, + "probability": 0.995 + }, + { + "start": 42635.8, + "end": 42637.38, + "probability": 0.9751 + }, + { + "start": 42637.4, + "end": 42637.82, + "probability": 0.556 + }, + { + "start": 42639.66, + "end": 42641.46, + "probability": 0.5501 + }, + { + "start": 42641.9, + "end": 42643.5, + "probability": 0.5804 + }, + { + "start": 42643.72, + "end": 42646.68, + "probability": 0.8201 + }, + { + "start": 42646.86, + "end": 42647.32, + "probability": 0.2461 + }, + { + "start": 42648.0, + "end": 42651.28, + "probability": 0.9053 + }, + { + "start": 42652.1, + "end": 42654.38, + "probability": 0.9709 + }, + { + "start": 42654.82, + "end": 42657.18, + "probability": 0.9974 + }, + { + "start": 42657.28, + "end": 42657.72, + "probability": 0.5426 + }, + { + "start": 42657.92, + "end": 42659.18, + "probability": 0.8684 + }, + { + "start": 42660.86, + "end": 42661.66, + "probability": 0.8313 + }, + { + "start": 42662.84, + "end": 42664.08, + "probability": 0.8215 + }, + { + "start": 42666.74, + "end": 42669.82, + "probability": 0.9282 + }, + { + "start": 42671.64, + "end": 42674.4, + "probability": 0.9065 + }, + { + "start": 42674.4, + "end": 42676.98, + "probability": 0.055 + }, + { + "start": 42678.1, + "end": 42679.77, + "probability": 0.9866 + }, + { + "start": 42680.2, + "end": 42683.06, + "probability": 0.9927 + }, + { + "start": 42684.82, + "end": 42685.9, + "probability": 0.9895 + }, + { + "start": 42687.12, + "end": 42688.78, + "probability": 0.6817 + }, + { + "start": 42691.68, + "end": 42692.24, + "probability": 0.7983 + }, + { + "start": 42693.0, + "end": 42693.02, + "probability": 0.0576 + }, + { + "start": 42693.79, + "end": 42694.06, + "probability": 0.3745 + }, + { + "start": 42694.06, + "end": 42694.44, + "probability": 0.3198 + }, + { + "start": 42694.46, + "end": 42695.74, + "probability": 0.7028 + }, + { + "start": 42695.74, + "end": 42695.74, + "probability": 0.7088 + }, + { + "start": 42695.74, + "end": 42696.06, + "probability": 0.5514 + }, + { + "start": 42696.16, + "end": 42697.04, + "probability": 0.9102 + }, + { + "start": 42697.2, + "end": 42698.44, + "probability": 0.8738 + }, + { + "start": 42698.58, + "end": 42699.62, + "probability": 0.2043 + }, + { + "start": 42699.74, + "end": 42700.1, + "probability": 0.5377 + }, + { + "start": 42700.26, + "end": 42703.8, + "probability": 0.8008 + }, + { + "start": 42704.52, + "end": 42705.1, + "probability": 0.3948 + }, + { + "start": 42707.5, + "end": 42707.84, + "probability": 0.5401 + }, + { + "start": 42708.56, + "end": 42712.46, + "probability": 0.877 + }, + { + "start": 42713.48, + "end": 42713.48, + "probability": 0.0689 + }, + { + "start": 42713.48, + "end": 42713.48, + "probability": 0.0317 + }, + { + "start": 42713.48, + "end": 42713.74, + "probability": 0.5457 + }, + { + "start": 42715.16, + "end": 42716.96, + "probability": 0.9106 + }, + { + "start": 42718.7, + "end": 42719.82, + "probability": 0.8529 + }, + { + "start": 42720.06, + "end": 42722.58, + "probability": 0.6681 + }, + { + "start": 42724.16, + "end": 42725.48, + "probability": 0.6648 + }, + { + "start": 42725.74, + "end": 42727.24, + "probability": 0.8169 + }, + { + "start": 42727.24, + "end": 42727.28, + "probability": 0.1476 + }, + { + "start": 42727.28, + "end": 42727.7, + "probability": 0.4351 + }, + { + "start": 42728.02, + "end": 42730.98, + "probability": 0.1776 + }, + { + "start": 42731.22, + "end": 42731.78, + "probability": 0.7377 + }, + { + "start": 42733.56, + "end": 42735.46, + "probability": 0.5089 + }, + { + "start": 42735.6, + "end": 42736.54, + "probability": 0.7568 + }, + { + "start": 42736.62, + "end": 42736.94, + "probability": 0.9256 + }, + { + "start": 42736.98, + "end": 42740.9, + "probability": 0.95 + }, + { + "start": 42741.1, + "end": 42743.38, + "probability": 0.9939 + }, + { + "start": 42743.46, + "end": 42745.62, + "probability": 0.9688 + }, + { + "start": 42747.62, + "end": 42748.85, + "probability": 0.8463 + }, + { + "start": 42750.72, + "end": 42753.18, + "probability": 0.8677 + }, + { + "start": 42753.8, + "end": 42755.18, + "probability": 0.974 + }, + { + "start": 42757.06, + "end": 42758.46, + "probability": 0.979 + }, + { + "start": 42758.46, + "end": 42761.34, + "probability": 0.9474 + }, + { + "start": 42763.64, + "end": 42764.92, + "probability": 0.8792 + }, + { + "start": 42766.48, + "end": 42767.26, + "probability": 0.8813 + }, + { + "start": 42767.62, + "end": 42767.8, + "probability": 0.5503 + }, + { + "start": 42768.02, + "end": 42769.54, + "probability": 0.9855 + }, + { + "start": 42769.6, + "end": 42771.12, + "probability": 0.9868 + }, + { + "start": 42772.26, + "end": 42773.33, + "probability": 0.5265 + }, + { + "start": 42775.64, + "end": 42777.88, + "probability": 0.9211 + }, + { + "start": 42778.44, + "end": 42781.8, + "probability": 0.9153 + }, + { + "start": 42782.38, + "end": 42783.28, + "probability": 0.9637 + }, + { + "start": 42784.74, + "end": 42786.38, + "probability": 0.8471 + }, + { + "start": 42787.54, + "end": 42788.9, + "probability": 0.7192 + }, + { + "start": 42791.56, + "end": 42792.42, + "probability": 0.8835 + }, + { + "start": 42794.38, + "end": 42798.62, + "probability": 0.9781 + }, + { + "start": 42798.76, + "end": 42800.31, + "probability": 0.9468 + }, + { + "start": 42800.76, + "end": 42802.6, + "probability": 0.5643 + }, + { + "start": 42804.02, + "end": 42805.22, + "probability": 0.8955 + }, + { + "start": 42805.84, + "end": 42806.54, + "probability": 0.4685 + }, + { + "start": 42807.06, + "end": 42812.26, + "probability": 0.746 + }, + { + "start": 42812.3, + "end": 42812.84, + "probability": 0.512 + }, + { + "start": 42813.0, + "end": 42813.9, + "probability": 0.747 + }, + { + "start": 42814.02, + "end": 42814.7, + "probability": 0.9329 + }, + { + "start": 42814.78, + "end": 42817.97, + "probability": 0.6278 + }, + { + "start": 42818.86, + "end": 42820.88, + "probability": 0.9541 + }, + { + "start": 42821.44, + "end": 42824.54, + "probability": 0.8937 + }, + { + "start": 42824.66, + "end": 42826.94, + "probability": 0.6777 + }, + { + "start": 42827.78, + "end": 42828.6, + "probability": 0.9031 + }, + { + "start": 42830.2, + "end": 42830.78, + "probability": 0.8656 + }, + { + "start": 42831.56, + "end": 42832.94, + "probability": 0.9678 + }, + { + "start": 42834.84, + "end": 42836.39, + "probability": 0.9954 + }, + { + "start": 42838.84, + "end": 42839.58, + "probability": 0.8943 + }, + { + "start": 42842.1, + "end": 42843.8, + "probability": 0.7507 + }, + { + "start": 42845.34, + "end": 42846.26, + "probability": 0.992 + }, + { + "start": 42847.04, + "end": 42850.05, + "probability": 0.8237 + }, + { + "start": 42851.66, + "end": 42854.04, + "probability": 0.9063 + }, + { + "start": 42857.2, + "end": 42858.76, + "probability": 0.9609 + }, + { + "start": 42860.06, + "end": 42860.42, + "probability": 0.7974 + }, + { + "start": 42860.6, + "end": 42860.78, + "probability": 0.7309 + }, + { + "start": 42860.86, + "end": 42863.82, + "probability": 0.9922 + }, + { + "start": 42864.52, + "end": 42867.34, + "probability": 0.871 + }, + { + "start": 42867.4, + "end": 42867.79, + "probability": 0.0025 + }, + { + "start": 42868.2, + "end": 42870.86, + "probability": 0.3018 + }, + { + "start": 42873.57, + "end": 42874.6, + "probability": 0.6121 + }, + { + "start": 42874.66, + "end": 42874.66, + "probability": 0.0222 + }, + { + "start": 42874.66, + "end": 42874.66, + "probability": 0.4355 + }, + { + "start": 42874.66, + "end": 42874.72, + "probability": 0.68 + }, + { + "start": 42875.04, + "end": 42876.86, + "probability": 0.8851 + }, + { + "start": 42877.52, + "end": 42880.74, + "probability": 0.5966 + }, + { + "start": 42880.82, + "end": 42881.56, + "probability": 0.378 + }, + { + "start": 42881.8, + "end": 42882.3, + "probability": 0.7301 + }, + { + "start": 42882.54, + "end": 42884.28, + "probability": 0.689 + }, + { + "start": 42884.34, + "end": 42885.2, + "probability": 0.4674 + }, + { + "start": 42885.2, + "end": 42889.26, + "probability": 0.5938 + }, + { + "start": 42889.82, + "end": 42894.26, + "probability": 0.9746 + }, + { + "start": 42894.46, + "end": 42895.88, + "probability": 0.0631 + }, + { + "start": 42895.88, + "end": 42899.54, + "probability": 0.9369 + }, + { + "start": 42899.54, + "end": 42902.32, + "probability": 0.6701 + }, + { + "start": 42902.34, + "end": 42902.34, + "probability": 0.4953 + }, + { + "start": 42902.34, + "end": 42902.34, + "probability": 0.0774 + }, + { + "start": 42902.34, + "end": 42902.62, + "probability": 0.8835 + }, + { + "start": 42903.44, + "end": 42903.87, + "probability": 0.8472 + }, + { + "start": 42904.84, + "end": 42907.14, + "probability": 0.7549 + }, + { + "start": 42907.88, + "end": 42908.64, + "probability": 0.9054 + }, + { + "start": 42909.2, + "end": 42916.14, + "probability": 0.7119 + }, + { + "start": 42916.14, + "end": 42916.2, + "probability": 0.052 + }, + { + "start": 42916.2, + "end": 42917.02, + "probability": 0.6762 + }, + { + "start": 42918.16, + "end": 42918.84, + "probability": 0.9678 + }, + { + "start": 42919.36, + "end": 42920.61, + "probability": 0.8153 + }, + { + "start": 42921.28, + "end": 42922.2, + "probability": 0.7807 + }, + { + "start": 42922.78, + "end": 42925.1, + "probability": 0.9985 + }, + { + "start": 42925.1, + "end": 42929.56, + "probability": 0.9933 + }, + { + "start": 42930.14, + "end": 42931.6, + "probability": 0.8039 + }, + { + "start": 42932.48, + "end": 42933.94, + "probability": 0.9809 + }, + { + "start": 42934.24, + "end": 42935.42, + "probability": 0.9587 + }, + { + "start": 42936.1, + "end": 42940.51, + "probability": 0.9551 + }, + { + "start": 42942.52, + "end": 42944.24, + "probability": 0.9875 + }, + { + "start": 42944.4, + "end": 42944.68, + "probability": 0.8378 + }, + { + "start": 42945.78, + "end": 42946.7, + "probability": 0.9932 + }, + { + "start": 42947.72, + "end": 42949.68, + "probability": 0.9603 + }, + { + "start": 42950.74, + "end": 42952.86, + "probability": 0.8322 + }, + { + "start": 42954.84, + "end": 42956.02, + "probability": 0.4767 + }, + { + "start": 42956.78, + "end": 42959.38, + "probability": 0.7301 + }, + { + "start": 42960.72, + "end": 42961.04, + "probability": 0.884 + }, + { + "start": 42962.8, + "end": 42963.5, + "probability": 0.9832 + }, + { + "start": 42966.3, + "end": 42967.62, + "probability": 0.9868 + }, + { + "start": 42968.76, + "end": 42970.06, + "probability": 0.5475 + }, + { + "start": 42970.2, + "end": 42970.62, + "probability": 0.9694 + }, + { + "start": 42971.38, + "end": 42974.18, + "probability": 0.9954 + }, + { + "start": 42974.54, + "end": 42975.52, + "probability": 0.917 + }, + { + "start": 42976.06, + "end": 42977.74, + "probability": 0.9864 + }, + { + "start": 42978.3, + "end": 42979.7, + "probability": 0.9994 + }, + { + "start": 42980.62, + "end": 42982.94, + "probability": 0.9013 + }, + { + "start": 42983.68, + "end": 42984.46, + "probability": 0.9321 + }, + { + "start": 42986.24, + "end": 42988.16, + "probability": 0.9314 + }, + { + "start": 42988.9, + "end": 42989.74, + "probability": 0.5272 + }, + { + "start": 42991.46, + "end": 42993.9, + "probability": 0.6151 + }, + { + "start": 42995.94, + "end": 42997.16, + "probability": 0.9473 + }, + { + "start": 42999.8, + "end": 43002.8, + "probability": 0.9971 + }, + { + "start": 43006.68, + "end": 43007.96, + "probability": 0.8901 + }, + { + "start": 43009.18, + "end": 43011.6, + "probability": 0.6112 + }, + { + "start": 43014.98, + "end": 43015.66, + "probability": 0.8259 + }, + { + "start": 43017.42, + "end": 43018.04, + "probability": 0.4957 + }, + { + "start": 43020.04, + "end": 43020.3, + "probability": 0.9785 + }, + { + "start": 43021.06, + "end": 43021.7, + "probability": 0.7048 + }, + { + "start": 43025.58, + "end": 43026.04, + "probability": 0.6499 + }, + { + "start": 43027.56, + "end": 43029.71, + "probability": 0.9771 + }, + { + "start": 43031.62, + "end": 43033.46, + "probability": 0.6086 + }, + { + "start": 43033.7, + "end": 43038.44, + "probability": 0.9227 + }, + { + "start": 43039.52, + "end": 43040.44, + "probability": 0.4723 + }, + { + "start": 43042.36, + "end": 43043.3, + "probability": 0.9497 + }, + { + "start": 43046.26, + "end": 43048.07, + "probability": 0.9526 + }, + { + "start": 43050.52, + "end": 43053.24, + "probability": 0.6787 + }, + { + "start": 43054.08, + "end": 43055.78, + "probability": 0.925 + }, + { + "start": 43057.14, + "end": 43058.98, + "probability": 0.9812 + }, + { + "start": 43059.02, + "end": 43062.74, + "probability": 0.9907 + }, + { + "start": 43064.52, + "end": 43070.06, + "probability": 0.6413 + }, + { + "start": 43071.46, + "end": 43072.18, + "probability": 0.7291 + }, + { + "start": 43072.84, + "end": 43073.16, + "probability": 0.9394 + }, + { + "start": 43073.84, + "end": 43074.28, + "probability": 0.9604 + }, + { + "start": 43075.34, + "end": 43076.48, + "probability": 0.7704 + }, + { + "start": 43076.6, + "end": 43077.26, + "probability": 0.7945 + }, + { + "start": 43077.34, + "end": 43077.7, + "probability": 0.7833 + }, + { + "start": 43078.02, + "end": 43079.16, + "probability": 0.9845 + }, + { + "start": 43079.4, + "end": 43080.18, + "probability": 0.7314 + }, + { + "start": 43080.54, + "end": 43081.44, + "probability": 0.3831 + }, + { + "start": 43081.48, + "end": 43082.42, + "probability": 0.3397 + }, + { + "start": 43083.26, + "end": 43083.9, + "probability": 0.9935 + }, + { + "start": 43085.06, + "end": 43085.8, + "probability": 0.666 + }, + { + "start": 43086.78, + "end": 43090.04, + "probability": 0.9951 + }, + { + "start": 43091.76, + "end": 43093.5, + "probability": 0.9956 + }, + { + "start": 43093.76, + "end": 43095.52, + "probability": 0.9619 + }, + { + "start": 43095.92, + "end": 43097.2, + "probability": 0.9419 + }, + { + "start": 43098.44, + "end": 43100.04, + "probability": 0.8116 + }, + { + "start": 43101.14, + "end": 43101.8, + "probability": 0.6981 + }, + { + "start": 43103.34, + "end": 43103.88, + "probability": 0.6456 + }, + { + "start": 43103.9, + "end": 43104.52, + "probability": 0.7954 + }, + { + "start": 43105.24, + "end": 43106.2, + "probability": 0.9332 + }, + { + "start": 43106.26, + "end": 43108.94, + "probability": 0.9755 + }, + { + "start": 43109.02, + "end": 43109.76, + "probability": 0.98 + }, + { + "start": 43109.86, + "end": 43110.64, + "probability": 0.9832 + }, + { + "start": 43110.74, + "end": 43111.22, + "probability": 0.7378 + }, + { + "start": 43112.16, + "end": 43113.15, + "probability": 0.9624 + }, + { + "start": 43113.92, + "end": 43114.64, + "probability": 0.8015 + }, + { + "start": 43115.88, + "end": 43118.32, + "probability": 0.9782 + }, + { + "start": 43119.06, + "end": 43121.16, + "probability": 0.9568 + }, + { + "start": 43122.36, + "end": 43123.08, + "probability": 0.4554 + }, + { + "start": 43124.16, + "end": 43124.84, + "probability": 0.9836 + }, + { + "start": 43126.66, + "end": 43128.24, + "probability": 0.6916 + }, + { + "start": 43128.26, + "end": 43129.16, + "probability": 0.8461 + }, + { + "start": 43129.88, + "end": 43130.62, + "probability": 0.7767 + }, + { + "start": 43131.96, + "end": 43134.22, + "probability": 0.9907 + }, + { + "start": 43135.86, + "end": 43136.46, + "probability": 0.2651 + }, + { + "start": 43137.18, + "end": 43138.96, + "probability": 0.565 + }, + { + "start": 43139.94, + "end": 43141.04, + "probability": 0.9023 + }, + { + "start": 43142.24, + "end": 43142.9, + "probability": 0.8469 + }, + { + "start": 43143.44, + "end": 43145.6, + "probability": 0.6127 + }, + { + "start": 43145.66, + "end": 43146.08, + "probability": 0.6838 + }, + { + "start": 43146.98, + "end": 43149.86, + "probability": 0.8009 + }, + { + "start": 43150.08, + "end": 43150.84, + "probability": 0.8247 + }, + { + "start": 43150.94, + "end": 43151.4, + "probability": 0.7132 + }, + { + "start": 43151.48, + "end": 43153.04, + "probability": 0.9639 + }, + { + "start": 43153.62, + "end": 43155.12, + "probability": 0.895 + }, + { + "start": 43155.5, + "end": 43156.6, + "probability": 0.9333 + }, + { + "start": 43156.64, + "end": 43158.16, + "probability": 0.9995 + }, + { + "start": 43160.94, + "end": 43163.86, + "probability": 0.974 + }, + { + "start": 43164.46, + "end": 43167.04, + "probability": 0.9945 + }, + { + "start": 43168.32, + "end": 43172.18, + "probability": 0.8722 + }, + { + "start": 43172.34, + "end": 43172.74, + "probability": 0.754 + }, + { + "start": 43174.22, + "end": 43174.64, + "probability": 0.623 + }, + { + "start": 43175.58, + "end": 43176.31, + "probability": 0.7953 + }, + { + "start": 43179.0, + "end": 43185.5, + "probability": 0.9688 + }, + { + "start": 43187.52, + "end": 43187.82, + "probability": 0.7183 + }, + { + "start": 43189.3, + "end": 43194.04, + "probability": 0.9651 + }, + { + "start": 43197.28, + "end": 43201.32, + "probability": 0.648 + }, + { + "start": 43201.7, + "end": 43202.0, + "probability": 0.3423 + }, + { + "start": 43202.46, + "end": 43204.02, + "probability": 0.7448 + }, + { + "start": 43204.08, + "end": 43205.92, + "probability": 0.9922 + }, + { + "start": 43206.0, + "end": 43206.64, + "probability": 0.8848 + }, + { + "start": 43208.46, + "end": 43212.1, + "probability": 0.855 + }, + { + "start": 43212.52, + "end": 43213.52, + "probability": 0.684 + }, + { + "start": 43215.5, + "end": 43216.84, + "probability": 0.9888 + }, + { + "start": 43218.16, + "end": 43220.16, + "probability": 0.8739 + }, + { + "start": 43222.42, + "end": 43223.14, + "probability": 0.646 + }, + { + "start": 43223.24, + "end": 43224.96, + "probability": 0.9243 + }, + { + "start": 43226.54, + "end": 43226.88, + "probability": 0.9182 + }, + { + "start": 43227.68, + "end": 43231.51, + "probability": 0.206 + }, + { + "start": 43234.84, + "end": 43235.04, + "probability": 0.4324 + }, + { + "start": 43235.72, + "end": 43237.64, + "probability": 0.8534 + }, + { + "start": 43237.74, + "end": 43238.98, + "probability": 0.9362 + }, + { + "start": 43239.04, + "end": 43240.44, + "probability": 0.9901 + }, + { + "start": 43241.46, + "end": 43242.54, + "probability": 0.8268 + }, + { + "start": 43242.68, + "end": 43242.78, + "probability": 0.8192 + }, + { + "start": 43243.0, + "end": 43243.12, + "probability": 0.4353 + }, + { + "start": 43243.22, + "end": 43243.54, + "probability": 0.46 + }, + { + "start": 43243.62, + "end": 43244.12, + "probability": 0.5157 + }, + { + "start": 43245.4, + "end": 43248.62, + "probability": 0.7567 + }, + { + "start": 43249.12, + "end": 43251.5, + "probability": 0.0333 + }, + { + "start": 43251.5, + "end": 43253.96, + "probability": 0.8632 + }, + { + "start": 43254.06, + "end": 43255.9, + "probability": 0.9623 + }, + { + "start": 43255.94, + "end": 43256.34, + "probability": 0.5138 + }, + { + "start": 43257.3, + "end": 43257.76, + "probability": 0.8325 + }, + { + "start": 43259.44, + "end": 43263.08, + "probability": 0.996 + }, + { + "start": 43263.58, + "end": 43265.12, + "probability": 0.8942 + }, + { + "start": 43265.78, + "end": 43267.58, + "probability": 0.9795 + }, + { + "start": 43268.42, + "end": 43272.62, + "probability": 0.9962 + }, + { + "start": 43273.68, + "end": 43274.28, + "probability": 0.2417 + }, + { + "start": 43274.36, + "end": 43275.98, + "probability": 0.9653 + }, + { + "start": 43276.3, + "end": 43276.87, + "probability": 0.5346 + }, + { + "start": 43277.5, + "end": 43278.94, + "probability": 0.9634 + }, + { + "start": 43281.06, + "end": 43284.6, + "probability": 0.9469 + }, + { + "start": 43284.64, + "end": 43285.92, + "probability": 0.375 + }, + { + "start": 43286.28, + "end": 43287.8, + "probability": 0.6553 + }, + { + "start": 43288.22, + "end": 43288.56, + "probability": 0.8813 + }, + { + "start": 43288.62, + "end": 43288.9, + "probability": 0.79 + }, + { + "start": 43288.96, + "end": 43289.54, + "probability": 0.6953 + }, + { + "start": 43289.94, + "end": 43290.6, + "probability": 0.9595 + }, + { + "start": 43290.96, + "end": 43292.16, + "probability": 0.993 + }, + { + "start": 43293.12, + "end": 43294.62, + "probability": 0.9704 + }, + { + "start": 43294.92, + "end": 43297.08, + "probability": 0.8028 + }, + { + "start": 43298.04, + "end": 43299.4, + "probability": 0.9856 + }, + { + "start": 43300.14, + "end": 43302.96, + "probability": 0.9979 + }, + { + "start": 43303.04, + "end": 43304.04, + "probability": 0.855 + }, + { + "start": 43306.22, + "end": 43307.76, + "probability": 0.822 + }, + { + "start": 43309.22, + "end": 43313.44, + "probability": 0.7468 + }, + { + "start": 43314.58, + "end": 43317.66, + "probability": 0.839 + }, + { + "start": 43319.16, + "end": 43319.16, + "probability": 0.0926 + }, + { + "start": 43319.16, + "end": 43324.58, + "probability": 0.6275 + }, + { + "start": 43324.72, + "end": 43328.18, + "probability": 0.7728 + }, + { + "start": 43329.72, + "end": 43332.66, + "probability": 0.4085 + }, + { + "start": 43334.8, + "end": 43336.38, + "probability": 0.7328 + }, + { + "start": 43336.48, + "end": 43337.78, + "probability": 0.9178 + }, + { + "start": 43337.8, + "end": 43338.94, + "probability": 0.1778 + }, + { + "start": 43341.66, + "end": 43342.82, + "probability": 0.2678 + }, + { + "start": 43343.34, + "end": 43343.9, + "probability": 0.9716 + }, + { + "start": 43345.3, + "end": 43348.74, + "probability": 0.9766 + }, + { + "start": 43350.24, + "end": 43350.82, + "probability": 0.7863 + }, + { + "start": 43351.7, + "end": 43352.54, + "probability": 0.967 + }, + { + "start": 43352.62, + "end": 43355.1, + "probability": 0.9633 + }, + { + "start": 43356.72, + "end": 43358.37, + "probability": 0.8585 + }, + { + "start": 43359.52, + "end": 43359.58, + "probability": 0.1496 + }, + { + "start": 43359.58, + "end": 43361.12, + "probability": 0.7579 + }, + { + "start": 43363.84, + "end": 43364.76, + "probability": 0.6641 + }, + { + "start": 43364.82, + "end": 43366.1, + "probability": 0.9971 + }, + { + "start": 43366.18, + "end": 43367.68, + "probability": 0.7814 + }, + { + "start": 43369.64, + "end": 43371.98, + "probability": 0.9197 + }, + { + "start": 43372.52, + "end": 43374.48, + "probability": 0.7889 + }, + { + "start": 43374.48, + "end": 43376.55, + "probability": 0.9932 + }, + { + "start": 43379.26, + "end": 43383.72, + "probability": 0.964 + }, + { + "start": 43384.46, + "end": 43387.09, + "probability": 0.9273 + }, + { + "start": 43388.16, + "end": 43389.71, + "probability": 0.9359 + }, + { + "start": 43390.54, + "end": 43392.18, + "probability": 0.688 + }, + { + "start": 43393.22, + "end": 43394.06, + "probability": 0.9235 + }, + { + "start": 43395.08, + "end": 43397.54, + "probability": 0.9871 + }, + { + "start": 43398.3, + "end": 43399.28, + "probability": 0.7863 + }, + { + "start": 43401.22, + "end": 43403.99, + "probability": 0.8312 + }, + { + "start": 43404.36, + "end": 43407.22, + "probability": 0.5995 + }, + { + "start": 43408.46, + "end": 43408.82, + "probability": 0.153 + }, + { + "start": 43408.82, + "end": 43409.5, + "probability": 0.9033 + }, + { + "start": 43409.66, + "end": 43413.84, + "probability": 0.9305 + }, + { + "start": 43414.12, + "end": 43414.94, + "probability": 0.4801 + }, + { + "start": 43415.68, + "end": 43416.46, + "probability": 0.924 + }, + { + "start": 43417.49, + "end": 43420.36, + "probability": 0.9946 + }, + { + "start": 43421.26, + "end": 43421.42, + "probability": 0.9922 + }, + { + "start": 43422.06, + "end": 43423.4, + "probability": 0.921 + }, + { + "start": 43424.71, + "end": 43427.12, + "probability": 0.9492 + }, + { + "start": 43427.76, + "end": 43429.45, + "probability": 0.9751 + }, + { + "start": 43429.66, + "end": 43429.94, + "probability": 0.5984 + }, + { + "start": 43430.72, + "end": 43432.4, + "probability": 0.1257 + }, + { + "start": 43432.4, + "end": 43432.9, + "probability": 0.0426 + }, + { + "start": 43432.92, + "end": 43436.12, + "probability": 0.9863 + }, + { + "start": 43436.12, + "end": 43440.93, + "probability": 0.199 + }, + { + "start": 43441.34, + "end": 43446.32, + "probability": 0.9716 + }, + { + "start": 43446.42, + "end": 43446.72, + "probability": 0.9568 + }, + { + "start": 43447.16, + "end": 43448.58, + "probability": 0.9617 + }, + { + "start": 43449.84, + "end": 43450.19, + "probability": 0.9829 + }, + { + "start": 43451.08, + "end": 43452.04, + "probability": 0.032 + }, + { + "start": 43452.04, + "end": 43454.64, + "probability": 0.7477 + }, + { + "start": 43455.66, + "end": 43456.66, + "probability": 0.9641 + }, + { + "start": 43457.4, + "end": 43458.14, + "probability": 0.996 + }, + { + "start": 43459.0, + "end": 43459.72, + "probability": 0.9823 + }, + { + "start": 43460.56, + "end": 43462.32, + "probability": 0.8425 + }, + { + "start": 43463.94, + "end": 43464.72, + "probability": 0.2479 + }, + { + "start": 43466.58, + "end": 43470.82, + "probability": 0.9671 + }, + { + "start": 43472.52, + "end": 43473.4, + "probability": 0.7753 + }, + { + "start": 43474.78, + "end": 43475.38, + "probability": 0.9766 + }, + { + "start": 43476.78, + "end": 43478.42, + "probability": 0.9722 + }, + { + "start": 43480.14, + "end": 43480.68, + "probability": 0.8003 + }, + { + "start": 43481.74, + "end": 43482.36, + "probability": 0.5812 + }, + { + "start": 43483.2, + "end": 43483.6, + "probability": 0.8864 + }, + { + "start": 43484.58, + "end": 43485.82, + "probability": 0.7917 + }, + { + "start": 43486.37, + "end": 43488.27, + "probability": 0.1672 + }, + { + "start": 43489.08, + "end": 43491.52, + "probability": 0.1777 + }, + { + "start": 43492.27, + "end": 43495.02, + "probability": 0.6461 + }, + { + "start": 43495.12, + "end": 43496.1, + "probability": 0.6854 + }, + { + "start": 43496.36, + "end": 43497.26, + "probability": 0.9609 + }, + { + "start": 43497.3, + "end": 43499.48, + "probability": 0.9847 + }, + { + "start": 43499.48, + "end": 43502.92, + "probability": 0.766 + }, + { + "start": 43503.56, + "end": 43504.8, + "probability": 0.7986 + }, + { + "start": 43505.02, + "end": 43506.38, + "probability": 0.9889 + }, + { + "start": 43509.08, + "end": 43510.12, + "probability": 0.9905 + }, + { + "start": 43510.68, + "end": 43511.7, + "probability": 0.4998 + }, + { + "start": 43513.4, + "end": 43513.5, + "probability": 0.9688 + }, + { + "start": 43518.21, + "end": 43518.63, + "probability": 0.4744 + }, + { + "start": 43519.74, + "end": 43522.87, + "probability": 0.9638 + }, + { + "start": 43523.84, + "end": 43524.71, + "probability": 0.6349 + }, + { + "start": 43525.75, + "end": 43526.49, + "probability": 0.8531 + }, + { + "start": 43527.99, + "end": 43529.03, + "probability": 0.7781 + }, + { + "start": 43530.11, + "end": 43530.77, + "probability": 0.9161 + }, + { + "start": 43531.29, + "end": 43536.2, + "probability": 0.9937 + }, + { + "start": 43536.83, + "end": 43537.53, + "probability": 0.9443 + }, + { + "start": 43537.57, + "end": 43541.32, + "probability": 0.9238 + }, + { + "start": 43541.45, + "end": 43542.39, + "probability": 0.9956 + }, + { + "start": 43542.93, + "end": 43543.89, + "probability": 0.7948 + }, + { + "start": 43544.01, + "end": 43546.61, + "probability": 0.9584 + }, + { + "start": 43547.21, + "end": 43549.51, + "probability": 0.9779 + }, + { + "start": 43553.08, + "end": 43554.45, + "probability": 0.1368 + }, + { + "start": 43554.45, + "end": 43554.51, + "probability": 0.4354 + }, + { + "start": 43554.51, + "end": 43559.55, + "probability": 0.9848 + }, + { + "start": 43560.27, + "end": 43562.27, + "probability": 0.9809 + }, + { + "start": 43562.33, + "end": 43565.09, + "probability": 0.9507 + }, + { + "start": 43566.25, + "end": 43568.69, + "probability": 0.8835 + }, + { + "start": 43569.87, + "end": 43570.97, + "probability": 0.9946 + }, + { + "start": 43571.67, + "end": 43572.55, + "probability": 0.8103 + }, + { + "start": 43573.35, + "end": 43576.37, + "probability": 0.9891 + }, + { + "start": 43577.47, + "end": 43581.05, + "probability": 0.939 + }, + { + "start": 43582.11, + "end": 43585.27, + "probability": 0.9609 + }, + { + "start": 43585.95, + "end": 43586.57, + "probability": 0.9589 + }, + { + "start": 43587.43, + "end": 43590.33, + "probability": 0.9554 + }, + { + "start": 43590.35, + "end": 43593.13, + "probability": 0.961 + }, + { + "start": 43594.65, + "end": 43596.27, + "probability": 0.8984 + }, + { + "start": 43596.71, + "end": 43598.22, + "probability": 0.8538 + }, + { + "start": 43598.59, + "end": 43598.79, + "probability": 0.7694 + }, + { + "start": 43599.71, + "end": 43602.67, + "probability": 0.7799 + }, + { + "start": 43603.25, + "end": 43606.11, + "probability": 0.959 + }, + { + "start": 43606.19, + "end": 43608.47, + "probability": 0.9585 + }, + { + "start": 43608.61, + "end": 43609.67, + "probability": 0.9302 + }, + { + "start": 43609.69, + "end": 43614.37, + "probability": 0.9746 + }, + { + "start": 43614.87, + "end": 43615.23, + "probability": 0.4367 + }, + { + "start": 43615.33, + "end": 43615.43, + "probability": 0.8101 + }, + { + "start": 43616.27, + "end": 43616.37, + "probability": 0.5716 + }, + { + "start": 43616.93, + "end": 43620.47, + "probability": 0.8503 + }, + { + "start": 43621.67, + "end": 43626.09, + "probability": 0.4211 + }, + { + "start": 43626.23, + "end": 43628.09, + "probability": 0.8266 + }, + { + "start": 43628.19, + "end": 43628.35, + "probability": 0.63 + }, + { + "start": 43628.41, + "end": 43630.19, + "probability": 0.9397 + }, + { + "start": 43630.19, + "end": 43632.26, + "probability": 0.4122 + }, + { + "start": 43633.35, + "end": 43636.38, + "probability": 0.8409 + }, + { + "start": 43638.49, + "end": 43639.51, + "probability": 0.696 + }, + { + "start": 43639.69, + "end": 43640.49, + "probability": 0.4767 + }, + { + "start": 43640.63, + "end": 43642.51, + "probability": 0.8542 + }, + { + "start": 43642.61, + "end": 43643.85, + "probability": 0.7856 + }, + { + "start": 43644.31, + "end": 43647.71, + "probability": 0.9875 + }, + { + "start": 43648.07, + "end": 43651.69, + "probability": 0.7487 + }, + { + "start": 43651.77, + "end": 43654.71, + "probability": 0.8882 + }, + { + "start": 43655.17, + "end": 43656.29, + "probability": 0.5347 + }, + { + "start": 43656.31, + "end": 43658.13, + "probability": 0.9096 + }, + { + "start": 43658.19, + "end": 43660.11, + "probability": 0.9308 + }, + { + "start": 43660.51, + "end": 43664.27, + "probability": 0.9077 + }, + { + "start": 43664.29, + "end": 43665.64, + "probability": 0.0137 + }, + { + "start": 43666.99, + "end": 43667.23, + "probability": 0.7669 + }, + { + "start": 43667.29, + "end": 43675.03, + "probability": 0.9288 + }, + { + "start": 43675.27, + "end": 43676.26, + "probability": 0.7431 + }, + { + "start": 43677.73, + "end": 43679.91, + "probability": 0.8977 + }, + { + "start": 43680.39, + "end": 43683.53, + "probability": 0.9824 + }, + { + "start": 43683.89, + "end": 43688.87, + "probability": 0.7869 + }, + { + "start": 43689.47, + "end": 43693.55, + "probability": 0.8687 + }, + { + "start": 43693.61, + "end": 43694.99, + "probability": 0.981 + }, + { + "start": 43695.19, + "end": 43696.05, + "probability": 0.7252 + }, + { + "start": 43696.37, + "end": 43698.25, + "probability": 0.9614 + }, + { + "start": 43698.83, + "end": 43699.75, + "probability": 0.9045 + }, + { + "start": 43700.01, + "end": 43700.41, + "probability": 0.8102 + }, + { + "start": 43700.49, + "end": 43702.07, + "probability": 0.3776 + }, + { + "start": 43702.21, + "end": 43704.81, + "probability": 0.8711 + }, + { + "start": 43704.81, + "end": 43709.05, + "probability": 0.7581 + }, + { + "start": 43709.15, + "end": 43711.19, + "probability": 0.9945 + }, + { + "start": 43711.65, + "end": 43713.49, + "probability": 0.9553 + }, + { + "start": 43713.57, + "end": 43716.81, + "probability": 0.9546 + }, + { + "start": 43716.81, + "end": 43719.55, + "probability": 0.993 + }, + { + "start": 43720.51, + "end": 43722.63, + "probability": 0.488 + }, + { + "start": 43723.39, + "end": 43725.09, + "probability": 0.8777 + }, + { + "start": 43725.41, + "end": 43726.11, + "probability": 0.7941 + }, + { + "start": 43726.63, + "end": 43732.19, + "probability": 0.7976 + }, + { + "start": 43732.69, + "end": 43733.93, + "probability": 0.8905 + }, + { + "start": 43734.43, + "end": 43735.49, + "probability": 0.9265 + }, + { + "start": 43736.21, + "end": 43742.85, + "probability": 0.9326 + }, + { + "start": 43742.85, + "end": 43745.82, + "probability": 0.9995 + }, + { + "start": 43747.21, + "end": 43749.79, + "probability": 0.8765 + }, + { + "start": 43749.93, + "end": 43752.5, + "probability": 0.9929 + }, + { + "start": 43752.85, + "end": 43753.25, + "probability": 0.3841 + }, + { + "start": 43753.27, + "end": 43757.33, + "probability": 0.989 + }, + { + "start": 43759.41, + "end": 43763.37, + "probability": 0.9935 + }, + { + "start": 43763.37, + "end": 43768.15, + "probability": 0.996 + }, + { + "start": 43769.71, + "end": 43774.57, + "probability": 0.9946 + }, + { + "start": 43774.61, + "end": 43776.05, + "probability": 0.8835 + }, + { + "start": 43776.33, + "end": 43780.59, + "probability": 0.968 + }, + { + "start": 43781.55, + "end": 43787.69, + "probability": 0.9784 + }, + { + "start": 43787.89, + "end": 43788.99, + "probability": 0.9117 + }, + { + "start": 43789.43, + "end": 43791.27, + "probability": 0.9754 + }, + { + "start": 43791.27, + "end": 43794.05, + "probability": 0.9133 + }, + { + "start": 43794.59, + "end": 43795.23, + "probability": 0.9332 + }, + { + "start": 43795.77, + "end": 43796.29, + "probability": 0.8916 + }, + { + "start": 43797.27, + "end": 43800.25, + "probability": 0.9961 + }, + { + "start": 43800.83, + "end": 43806.23, + "probability": 0.9901 + }, + { + "start": 43806.29, + "end": 43807.47, + "probability": 0.8348 + }, + { + "start": 43807.53, + "end": 43809.92, + "probability": 0.6922 + }, + { + "start": 43811.59, + "end": 43812.01, + "probability": 0.9289 + }, + { + "start": 43812.69, + "end": 43812.89, + "probability": 0.2053 + }, + { + "start": 43812.89, + "end": 43815.23, + "probability": 0.6728 + }, + { + "start": 43815.89, + "end": 43817.25, + "probability": 0.6876 + }, + { + "start": 43817.41, + "end": 43818.61, + "probability": 0.6467 + }, + { + "start": 43818.73, + "end": 43821.21, + "probability": 0.9554 + }, + { + "start": 43821.83, + "end": 43823.55, + "probability": 0.6954 + }, + { + "start": 43824.11, + "end": 43827.43, + "probability": 0.9902 + }, + { + "start": 43827.43, + "end": 43832.27, + "probability": 0.9933 + }, + { + "start": 43832.95, + "end": 43838.89, + "probability": 0.9951 + }, + { + "start": 43839.45, + "end": 43840.39, + "probability": 0.332 + }, + { + "start": 43840.61, + "end": 43843.61, + "probability": 0.8603 + }, + { + "start": 43844.36, + "end": 43851.41, + "probability": 0.9336 + }, + { + "start": 43851.41, + "end": 43857.11, + "probability": 0.998 + }, + { + "start": 43857.71, + "end": 43860.43, + "probability": 0.9928 + }, + { + "start": 43860.43, + "end": 43863.93, + "probability": 0.9947 + }, + { + "start": 43864.07, + "end": 43867.93, + "probability": 0.9964 + }, + { + "start": 43869.01, + "end": 43874.95, + "probability": 0.9604 + }, + { + "start": 43874.95, + "end": 43878.19, + "probability": 0.9839 + }, + { + "start": 43878.73, + "end": 43885.21, + "probability": 0.997 + }, + { + "start": 43885.21, + "end": 43890.77, + "probability": 0.999 + }, + { + "start": 43891.07, + "end": 43893.99, + "probability": 0.9927 + }, + { + "start": 43894.37, + "end": 43897.03, + "probability": 0.909 + }, + { + "start": 43897.81, + "end": 43898.71, + "probability": 0.0717 + }, + { + "start": 43900.05, + "end": 43901.4, + "probability": 0.9277 + }, + { + "start": 43902.23, + "end": 43903.81, + "probability": 0.9362 + }, + { + "start": 43904.21, + "end": 43905.67, + "probability": 0.8915 + }, + { + "start": 43906.07, + "end": 43907.29, + "probability": 0.7359 + }, + { + "start": 43907.43, + "end": 43908.31, + "probability": 0.9692 + }, + { + "start": 43908.33, + "end": 43909.41, + "probability": 0.9813 + }, + { + "start": 43909.47, + "end": 43910.49, + "probability": 0.9278 + }, + { + "start": 43910.53, + "end": 43911.31, + "probability": 0.8609 + }, + { + "start": 43911.33, + "end": 43920.49, + "probability": 0.9811 + }, + { + "start": 43921.43, + "end": 43925.35, + "probability": 0.9808 + }, + { + "start": 43925.49, + "end": 43926.26, + "probability": 0.726 + }, + { + "start": 43927.25, + "end": 43931.57, + "probability": 0.8965 + }, + { + "start": 43931.67, + "end": 43932.93, + "probability": 0.8867 + }, + { + "start": 43932.99, + "end": 43935.93, + "probability": 0.9755 + }, + { + "start": 43936.63, + "end": 43937.89, + "probability": 0.7931 + }, + { + "start": 43938.75, + "end": 43942.31, + "probability": 0.7317 + }, + { + "start": 43943.51, + "end": 43945.57, + "probability": 0.7735 + }, + { + "start": 43946.27, + "end": 43952.35, + "probability": 0.9894 + }, + { + "start": 43953.97, + "end": 43958.01, + "probability": 0.9471 + }, + { + "start": 43958.01, + "end": 43965.67, + "probability": 0.9897 + }, + { + "start": 43966.15, + "end": 43971.13, + "probability": 0.957 + }, + { + "start": 43971.25, + "end": 43975.13, + "probability": 0.9816 + }, + { + "start": 43975.13, + "end": 43978.03, + "probability": 0.9299 + }, + { + "start": 43980.61, + "end": 43981.19, + "probability": 0.4159 + }, + { + "start": 43981.21, + "end": 43984.79, + "probability": 0.7126 + }, + { + "start": 43985.11, + "end": 43989.83, + "probability": 0.9993 + }, + { + "start": 43990.35, + "end": 43993.95, + "probability": 0.9749 + }, + { + "start": 43993.97, + "end": 43998.53, + "probability": 0.8495 + }, + { + "start": 43999.19, + "end": 44002.11, + "probability": 0.7206 + }, + { + "start": 44002.65, + "end": 44008.03, + "probability": 0.9908 + }, + { + "start": 44008.43, + "end": 44012.13, + "probability": 0.9641 + }, + { + "start": 44012.21, + "end": 44012.79, + "probability": 0.5528 + }, + { + "start": 44012.89, + "end": 44015.33, + "probability": 0.4718 + }, + { + "start": 44015.43, + "end": 44016.01, + "probability": 0.9912 + }, + { + "start": 44016.99, + "end": 44018.79, + "probability": 0.9442 + }, + { + "start": 44019.45, + "end": 44020.65, + "probability": 0.9326 + }, + { + "start": 44020.73, + "end": 44023.85, + "probability": 0.9926 + }, + { + "start": 44024.95, + "end": 44027.13, + "probability": 0.9429 + }, + { + "start": 44027.45, + "end": 44027.63, + "probability": 0.1317 + }, + { + "start": 44027.67, + "end": 44029.63, + "probability": 0.8184 + }, + { + "start": 44030.27, + "end": 44037.21, + "probability": 0.8106 + }, + { + "start": 44037.47, + "end": 44039.67, + "probability": 0.8641 + }, + { + "start": 44039.69, + "end": 44040.17, + "probability": 0.4152 + }, + { + "start": 44040.63, + "end": 44042.57, + "probability": 0.8558 + }, + { + "start": 44042.99, + "end": 44045.25, + "probability": 0.8555 + }, + { + "start": 44045.45, + "end": 44046.23, + "probability": 0.7837 + }, + { + "start": 44046.67, + "end": 44047.95, + "probability": 0.761 + }, + { + "start": 44048.27, + "end": 44049.65, + "probability": 0.8206 + }, + { + "start": 44050.21, + "end": 44052.91, + "probability": 0.8197 + }, + { + "start": 44053.77, + "end": 44056.15, + "probability": 0.9858 + }, + { + "start": 44056.51, + "end": 44059.41, + "probability": 0.9893 + }, + { + "start": 44060.01, + "end": 44062.93, + "probability": 0.8884 + }, + { + "start": 44063.73, + "end": 44065.17, + "probability": 0.9612 + }, + { + "start": 44065.29, + "end": 44070.45, + "probability": 0.9573 + }, + { + "start": 44070.45, + "end": 44074.63, + "probability": 0.9934 + }, + { + "start": 44075.09, + "end": 44076.39, + "probability": 0.9351 + }, + { + "start": 44076.53, + "end": 44081.51, + "probability": 0.9869 + }, + { + "start": 44081.67, + "end": 44082.77, + "probability": 0.8385 + }, + { + "start": 44083.39, + "end": 44087.39, + "probability": 0.9692 + }, + { + "start": 44088.95, + "end": 44091.97, + "probability": 0.9892 + }, + { + "start": 44091.97, + "end": 44095.53, + "probability": 0.998 + }, + { + "start": 44095.85, + "end": 44097.91, + "probability": 0.9551 + }, + { + "start": 44098.11, + "end": 44100.93, + "probability": 0.9952 + }, + { + "start": 44101.37, + "end": 44101.97, + "probability": 0.9661 + }, + { + "start": 44102.09, + "end": 44104.07, + "probability": 0.9974 + }, + { + "start": 44104.37, + "end": 44104.57, + "probability": 0.4926 + }, + { + "start": 44105.55, + "end": 44107.45, + "probability": 0.9687 + }, + { + "start": 44107.87, + "end": 44108.89, + "probability": 0.3341 + }, + { + "start": 44110.25, + "end": 44110.53, + "probability": 0.7658 + }, + { + "start": 44110.93, + "end": 44114.25, + "probability": 0.9873 + }, + { + "start": 44114.65, + "end": 44116.21, + "probability": 0.9961 + }, + { + "start": 44116.31, + "end": 44120.69, + "probability": 0.9973 + }, + { + "start": 44121.61, + "end": 44125.19, + "probability": 0.9941 + }, + { + "start": 44125.37, + "end": 44129.21, + "probability": 0.9937 + }, + { + "start": 44129.95, + "end": 44132.91, + "probability": 0.8289 + }, + { + "start": 44132.99, + "end": 44135.17, + "probability": 0.7954 + }, + { + "start": 44136.64, + "end": 44140.49, + "probability": 0.8599 + }, + { + "start": 44141.17, + "end": 44144.81, + "probability": 0.9705 + }, + { + "start": 44144.87, + "end": 44147.31, + "probability": 0.9519 + }, + { + "start": 44149.57, + "end": 44151.33, + "probability": 0.9385 + }, + { + "start": 44152.31, + "end": 44153.13, + "probability": 0.868 + }, + { + "start": 44153.65, + "end": 44159.27, + "probability": 0.9513 + }, + { + "start": 44159.95, + "end": 44163.95, + "probability": 0.9946 + }, + { + "start": 44164.41, + "end": 44170.15, + "probability": 0.9658 + }, + { + "start": 44170.23, + "end": 44171.27, + "probability": 0.7867 + }, + { + "start": 44172.69, + "end": 44175.59, + "probability": 0.9462 + }, + { + "start": 44176.33, + "end": 44185.13, + "probability": 0.9673 + }, + { + "start": 44185.61, + "end": 44188.23, + "probability": 0.9715 + }, + { + "start": 44188.39, + "end": 44192.37, + "probability": 0.9448 + }, + { + "start": 44192.71, + "end": 44195.81, + "probability": 0.9951 + }, + { + "start": 44195.81, + "end": 44198.65, + "probability": 0.953 + }, + { + "start": 44198.93, + "end": 44199.67, + "probability": 0.7589 + }, + { + "start": 44199.79, + "end": 44200.79, + "probability": 0.5157 + }, + { + "start": 44201.39, + "end": 44203.57, + "probability": 0.918 + }, + { + "start": 44203.69, + "end": 44204.31, + "probability": 0.8997 + }, + { + "start": 44204.41, + "end": 44207.87, + "probability": 0.9873 + }, + { + "start": 44208.15, + "end": 44209.19, + "probability": 0.6716 + }, + { + "start": 44209.75, + "end": 44212.37, + "probability": 0.8996 + }, + { + "start": 44212.43, + "end": 44213.98, + "probability": 0.9941 + }, + { + "start": 44214.85, + "end": 44216.18, + "probability": 0.6679 + }, + { + "start": 44216.59, + "end": 44217.57, + "probability": 0.9512 + }, + { + "start": 44217.67, + "end": 44219.09, + "probability": 0.9847 + }, + { + "start": 44219.19, + "end": 44221.63, + "probability": 0.9678 + }, + { + "start": 44222.25, + "end": 44223.65, + "probability": 0.7127 + }, + { + "start": 44223.73, + "end": 44225.35, + "probability": 0.763 + }, + { + "start": 44225.79, + "end": 44227.67, + "probability": 0.8055 + }, + { + "start": 44228.23, + "end": 44229.05, + "probability": 0.9807 + }, + { + "start": 44231.94, + "end": 44233.33, + "probability": 0.9844 + }, + { + "start": 44233.54, + "end": 44236.5, + "probability": 0.9907 + }, + { + "start": 44236.56, + "end": 44239.55, + "probability": 0.9814 + }, + { + "start": 44239.84, + "end": 44242.48, + "probability": 0.9517 + }, + { + "start": 44243.56, + "end": 44245.35, + "probability": 0.9385 + }, + { + "start": 44245.88, + "end": 44248.98, + "probability": 0.8602 + }, + { + "start": 44248.98, + "end": 44252.1, + "probability": 0.999 + }, + { + "start": 44252.7, + "end": 44256.72, + "probability": 0.9361 + }, + { + "start": 44257.18, + "end": 44257.6, + "probability": 0.7689 + }, + { + "start": 44257.88, + "end": 44259.3, + "probability": 0.9982 + }, + { + "start": 44259.46, + "end": 44261.14, + "probability": 0.8534 + }, + { + "start": 44262.26, + "end": 44263.3, + "probability": 0.7379 + }, + { + "start": 44263.42, + "end": 44265.55, + "probability": 0.6704 + }, + { + "start": 44266.5, + "end": 44267.7, + "probability": 0.5996 + }, + { + "start": 44267.8, + "end": 44270.48, + "probability": 0.9039 + }, + { + "start": 44271.38, + "end": 44275.98, + "probability": 0.943 + }, + { + "start": 44276.2, + "end": 44278.9, + "probability": 0.9909 + }, + { + "start": 44278.9, + "end": 44283.36, + "probability": 0.9977 + }, + { + "start": 44283.92, + "end": 44285.5, + "probability": 0.9189 + }, + { + "start": 44286.12, + "end": 44293.94, + "probability": 0.7451 + }, + { + "start": 44294.5, + "end": 44298.22, + "probability": 0.9851 + }, + { + "start": 44298.28, + "end": 44300.98, + "probability": 0.9983 + }, + { + "start": 44301.0, + "end": 44301.16, + "probability": 0.637 + }, + { + "start": 44302.02, + "end": 44303.48, + "probability": 0.8845 + }, + { + "start": 44303.9, + "end": 44306.6, + "probability": 0.9886 + }, + { + "start": 44307.0, + "end": 44309.8, + "probability": 0.9242 + }, + { + "start": 44310.38, + "end": 44311.06, + "probability": 0.6428 + }, + { + "start": 44311.2, + "end": 44316.1, + "probability": 0.9785 + }, + { + "start": 44316.5, + "end": 44319.02, + "probability": 0.9357 + }, + { + "start": 44319.18, + "end": 44320.96, + "probability": 0.984 + }, + { + "start": 44323.52, + "end": 44324.24, + "probability": 0.8168 + }, + { + "start": 44324.9, + "end": 44330.31, + "probability": 0.9736 + }, + { + "start": 44331.74, + "end": 44337.84, + "probability": 0.989 + }, + { + "start": 44338.46, + "end": 44342.58, + "probability": 0.9966 + }, + { + "start": 44342.58, + "end": 44348.42, + "probability": 0.8403 + }, + { + "start": 44348.88, + "end": 44349.7, + "probability": 0.588 + }, + { + "start": 44349.78, + "end": 44354.68, + "probability": 0.9878 + }, + { + "start": 44355.24, + "end": 44359.04, + "probability": 0.9453 + }, + { + "start": 44359.82, + "end": 44362.3, + "probability": 0.6427 + }, + { + "start": 44362.96, + "end": 44365.02, + "probability": 0.7283 + }, + { + "start": 44365.1, + "end": 44368.04, + "probability": 0.9616 + }, + { + "start": 44368.12, + "end": 44371.08, + "probability": 0.98 + }, + { + "start": 44372.14, + "end": 44373.72, + "probability": 0.9736 + }, + { + "start": 44374.6, + "end": 44375.1, + "probability": 0.7625 + }, + { + "start": 44375.26, + "end": 44375.84, + "probability": 0.7404 + }, + { + "start": 44375.9, + "end": 44376.96, + "probability": 0.7154 + }, + { + "start": 44377.04, + "end": 44380.42, + "probability": 0.7599 + }, + { + "start": 44381.24, + "end": 44386.08, + "probability": 0.7904 + }, + { + "start": 44386.08, + "end": 44391.22, + "probability": 0.9881 + }, + { + "start": 44392.08, + "end": 44394.36, + "probability": 0.9223 + }, + { + "start": 44394.58, + "end": 44395.16, + "probability": 0.6227 + }, + { + "start": 44395.26, + "end": 44395.62, + "probability": 0.228 + }, + { + "start": 44395.74, + "end": 44396.3, + "probability": 0.815 + }, + { + "start": 44397.24, + "end": 44400.24, + "probability": 0.9602 + }, + { + "start": 44400.32, + "end": 44403.74, + "probability": 0.9385 + }, + { + "start": 44404.4, + "end": 44410.74, + "probability": 0.9919 + }, + { + "start": 44411.44, + "end": 44416.4, + "probability": 0.9912 + }, + { + "start": 44416.72, + "end": 44419.24, + "probability": 0.923 + }, + { + "start": 44419.82, + "end": 44421.96, + "probability": 0.8803 + }, + { + "start": 44422.04, + "end": 44422.88, + "probability": 0.9742 + }, + { + "start": 44423.0, + "end": 44424.0, + "probability": 0.8979 + }, + { + "start": 44424.58, + "end": 44427.12, + "probability": 0.9862 + }, + { + "start": 44427.78, + "end": 44430.08, + "probability": 0.8804 + }, + { + "start": 44430.96, + "end": 44433.76, + "probability": 0.8936 + }, + { + "start": 44434.62, + "end": 44440.1, + "probability": 0.9226 + }, + { + "start": 44441.28, + "end": 44446.58, + "probability": 0.8127 + }, + { + "start": 44447.08, + "end": 44449.0, + "probability": 0.652 + }, + { + "start": 44449.92, + "end": 44451.94, + "probability": 0.9907 + }, + { + "start": 44452.5, + "end": 44455.52, + "probability": 0.949 + }, + { + "start": 44456.94, + "end": 44461.92, + "probability": 0.9983 + }, + { + "start": 44462.52, + "end": 44467.24, + "probability": 0.9541 + }, + { + "start": 44467.44, + "end": 44474.0, + "probability": 0.7792 + }, + { + "start": 44474.58, + "end": 44476.38, + "probability": 0.6443 + }, + { + "start": 44476.94, + "end": 44480.8, + "probability": 0.9092 + }, + { + "start": 44481.8, + "end": 44483.06, + "probability": 0.9707 + }, + { + "start": 44483.4, + "end": 44487.12, + "probability": 0.9463 + }, + { + "start": 44487.2, + "end": 44492.6, + "probability": 0.9385 + }, + { + "start": 44493.46, + "end": 44495.74, + "probability": 0.9053 + }, + { + "start": 44497.34, + "end": 44501.31, + "probability": 0.9922 + }, + { + "start": 44501.44, + "end": 44509.16, + "probability": 0.7831 + }, + { + "start": 44510.84, + "end": 44517.14, + "probability": 0.991 + }, + { + "start": 44518.1, + "end": 44522.18, + "probability": 0.9792 + }, + { + "start": 44522.34, + "end": 44525.06, + "probability": 0.7753 + }, + { + "start": 44525.78, + "end": 44529.92, + "probability": 0.9932 + }, + { + "start": 44530.1, + "end": 44531.18, + "probability": 0.8246 + }, + { + "start": 44531.92, + "end": 44535.66, + "probability": 0.9873 + }, + { + "start": 44536.08, + "end": 44539.32, + "probability": 0.9274 + }, + { + "start": 44540.43, + "end": 44542.69, + "probability": 0.333 + }, + { + "start": 44543.26, + "end": 44544.34, + "probability": 0.6747 + }, + { + "start": 44545.62, + "end": 44548.34, + "probability": 0.9616 + }, + { + "start": 44548.8, + "end": 44553.3, + "probability": 0.9834 + }, + { + "start": 44553.8, + "end": 44556.8, + "probability": 0.9839 + }, + { + "start": 44557.88, + "end": 44560.04, + "probability": 0.9459 + }, + { + "start": 44560.72, + "end": 44563.16, + "probability": 0.8502 + }, + { + "start": 44563.8, + "end": 44564.08, + "probability": 0.8821 + }, + { + "start": 44564.78, + "end": 44566.64, + "probability": 0.9198 + }, + { + "start": 44568.25, + "end": 44572.28, + "probability": 0.9041 + }, + { + "start": 44572.92, + "end": 44579.38, + "probability": 0.988 + }, + { + "start": 44580.56, + "end": 44586.42, + "probability": 0.974 + }, + { + "start": 44586.6, + "end": 44588.4, + "probability": 0.8583 + }, + { + "start": 44588.48, + "end": 44591.76, + "probability": 0.9979 + }, + { + "start": 44592.12, + "end": 44592.88, + "probability": 0.2341 + }, + { + "start": 44592.88, + "end": 44596.08, + "probability": 0.9651 + }, + { + "start": 44597.2, + "end": 44600.62, + "probability": 0.9756 + }, + { + "start": 44601.16, + "end": 44604.16, + "probability": 0.9952 + }, + { + "start": 44604.36, + "end": 44604.96, + "probability": 0.6511 + }, + { + "start": 44605.92, + "end": 44612.4, + "probability": 0.9273 + }, + { + "start": 44613.16, + "end": 44614.26, + "probability": 0.995 + }, + { + "start": 44614.78, + "end": 44619.78, + "probability": 0.9941 + }, + { + "start": 44621.04, + "end": 44627.86, + "probability": 0.9958 + }, + { + "start": 44629.2, + "end": 44632.18, + "probability": 0.9422 + }, + { + "start": 44632.8, + "end": 44638.34, + "probability": 0.9899 + }, + { + "start": 44639.38, + "end": 44641.0, + "probability": 0.8848 + }, + { + "start": 44641.38, + "end": 44642.36, + "probability": 0.8284 + }, + { + "start": 44642.42, + "end": 44644.7, + "probability": 0.9747 + }, + { + "start": 44645.7, + "end": 44649.6, + "probability": 0.9949 + }, + { + "start": 44650.46, + "end": 44651.44, + "probability": 0.9842 + }, + { + "start": 44651.54, + "end": 44654.8, + "probability": 0.907 + }, + { + "start": 44655.76, + "end": 44658.48, + "probability": 0.9111 + }, + { + "start": 44659.64, + "end": 44662.26, + "probability": 0.915 + }, + { + "start": 44662.26, + "end": 44666.66, + "probability": 0.9535 + }, + { + "start": 44666.72, + "end": 44670.58, + "probability": 0.9939 + }, + { + "start": 44671.2, + "end": 44674.04, + "probability": 0.8354 + }, + { + "start": 44674.88, + "end": 44676.88, + "probability": 0.9919 + }, + { + "start": 44677.76, + "end": 44681.12, + "probability": 0.9919 + }, + { + "start": 44684.6, + "end": 44687.38, + "probability": 0.9311 + }, + { + "start": 44688.5, + "end": 44689.62, + "probability": 0.4684 + }, + { + "start": 44689.96, + "end": 44690.36, + "probability": 0.8738 + }, + { + "start": 44690.44, + "end": 44693.62, + "probability": 0.9216 + }, + { + "start": 44693.62, + "end": 44698.46, + "probability": 0.9913 + }, + { + "start": 44699.84, + "end": 44705.18, + "probability": 0.9928 + }, + { + "start": 44705.78, + "end": 44708.82, + "probability": 0.9952 + }, + { + "start": 44708.82, + "end": 44712.12, + "probability": 0.9609 + }, + { + "start": 44712.14, + "end": 44717.16, + "probability": 0.924 + }, + { + "start": 44717.32, + "end": 44720.64, + "probability": 0.931 + }, + { + "start": 44721.04, + "end": 44724.04, + "probability": 0.9807 + }, + { + "start": 44724.06, + "end": 44727.74, + "probability": 0.9944 + }, + { + "start": 44728.52, + "end": 44729.52, + "probability": 0.9287 + }, + { + "start": 44730.16, + "end": 44734.56, + "probability": 0.9872 + }, + { + "start": 44735.22, + "end": 44738.44, + "probability": 0.8652 + }, + { + "start": 44739.1, + "end": 44742.22, + "probability": 0.8139 + }, + { + "start": 44742.52, + "end": 44743.32, + "probability": 0.7064 + }, + { + "start": 44743.72, + "end": 44746.42, + "probability": 0.9513 + }, + { + "start": 44747.18, + "end": 44748.74, + "probability": 0.7638 + }, + { + "start": 44749.4, + "end": 44750.52, + "probability": 0.9436 + }, + { + "start": 44750.9, + "end": 44751.66, + "probability": 0.985 + }, + { + "start": 44752.12, + "end": 44754.26, + "probability": 0.9833 + }, + { + "start": 44754.48, + "end": 44754.86, + "probability": 0.5558 + }, + { + "start": 44755.4, + "end": 44762.66, + "probability": 0.9956 + }, + { + "start": 44762.78, + "end": 44763.88, + "probability": 0.4708 + }, + { + "start": 44764.6, + "end": 44767.66, + "probability": 0.933 + }, + { + "start": 44767.86, + "end": 44772.8, + "probability": 0.9544 + }, + { + "start": 44773.58, + "end": 44774.64, + "probability": 0.6282 + }, + { + "start": 44775.46, + "end": 44781.28, + "probability": 0.8121 + }, + { + "start": 44781.42, + "end": 44784.7, + "probability": 0.7415 + }, + { + "start": 44785.42, + "end": 44786.26, + "probability": 0.5949 + }, + { + "start": 44787.06, + "end": 44789.86, + "probability": 0.8206 + }, + { + "start": 44790.48, + "end": 44791.92, + "probability": 0.8673 + }, + { + "start": 44792.48, + "end": 44793.86, + "probability": 0.8539 + }, + { + "start": 44794.94, + "end": 44800.6, + "probability": 0.9709 + }, + { + "start": 44800.64, + "end": 44804.56, + "probability": 0.8222 + }, + { + "start": 44805.08, + "end": 44808.18, + "probability": 0.9785 + }, + { + "start": 44808.9, + "end": 44811.48, + "probability": 0.9927 + }, + { + "start": 44812.7, + "end": 44813.32, + "probability": 0.8638 + }, + { + "start": 44814.54, + "end": 44816.84, + "probability": 0.9971 + }, + { + "start": 44816.9, + "end": 44823.72, + "probability": 0.9836 + }, + { + "start": 44824.12, + "end": 44825.56, + "probability": 0.709 + }, + { + "start": 44826.1, + "end": 44827.18, + "probability": 0.9459 + }, + { + "start": 44828.6, + "end": 44832.66, + "probability": 0.9536 + }, + { + "start": 44833.0, + "end": 44835.82, + "probability": 0.9972 + }, + { + "start": 44835.82, + "end": 44838.66, + "probability": 0.9945 + }, + { + "start": 44839.0, + "end": 44840.98, + "probability": 0.8538 + }, + { + "start": 44841.44, + "end": 44843.12, + "probability": 0.7225 + }, + { + "start": 44843.28, + "end": 44845.1, + "probability": 0.5187 + }, + { + "start": 44845.76, + "end": 44846.25, + "probability": 0.1241 + }, + { + "start": 44846.98, + "end": 44847.8, + "probability": 0.9806 + }, + { + "start": 44849.18, + "end": 44849.38, + "probability": 0.0155 + }, + { + "start": 44850.38, + "end": 44854.52, + "probability": 0.9932 + }, + { + "start": 44854.56, + "end": 44858.28, + "probability": 0.9601 + }, + { + "start": 44858.5, + "end": 44859.84, + "probability": 0.798 + }, + { + "start": 44860.68, + "end": 44862.68, + "probability": 0.7552 + }, + { + "start": 44862.68, + "end": 44864.64, + "probability": 0.8636 + }, + { + "start": 44865.18, + "end": 44866.31, + "probability": 0.9948 + }, + { + "start": 44867.0, + "end": 44869.88, + "probability": 0.9966 + }, + { + "start": 44870.32, + "end": 44873.9, + "probability": 0.9983 + }, + { + "start": 44873.9, + "end": 44877.2, + "probability": 0.998 + }, + { + "start": 44877.2, + "end": 44881.74, + "probability": 0.9482 + }, + { + "start": 44882.28, + "end": 44885.52, + "probability": 0.9933 + }, + { + "start": 44886.02, + "end": 44888.54, + "probability": 0.9993 + }, + { + "start": 44888.72, + "end": 44890.84, + "probability": 0.9878 + }, + { + "start": 44891.62, + "end": 44893.14, + "probability": 0.9495 + }, + { + "start": 44893.2, + "end": 44896.98, + "probability": 0.9871 + }, + { + "start": 44896.98, + "end": 44901.14, + "probability": 0.9902 + }, + { + "start": 44902.56, + "end": 44907.4, + "probability": 0.9694 + }, + { + "start": 44908.06, + "end": 44912.5, + "probability": 0.9974 + }, + { + "start": 44912.5, + "end": 44917.96, + "probability": 0.9907 + }, + { + "start": 44918.86, + "end": 44919.82, + "probability": 0.9993 + }, + { + "start": 44920.48, + "end": 44921.68, + "probability": 0.9951 + }, + { + "start": 44922.69, + "end": 44925.28, + "probability": 0.9807 + }, + { + "start": 44925.28, + "end": 44928.7, + "probability": 0.7107 + }, + { + "start": 44929.58, + "end": 44932.2, + "probability": 0.9882 + }, + { + "start": 44932.62, + "end": 44933.26, + "probability": 0.8056 + }, + { + "start": 44933.72, + "end": 44934.72, + "probability": 0.9764 + }, + { + "start": 44935.38, + "end": 44936.6, + "probability": 0.8612 + }, + { + "start": 44937.5, + "end": 44938.66, + "probability": 0.8926 + }, + { + "start": 44938.72, + "end": 44939.16, + "probability": 0.7648 + }, + { + "start": 44939.38, + "end": 44940.96, + "probability": 0.9351 + }, + { + "start": 44941.08, + "end": 44941.64, + "probability": 0.866 + }, + { + "start": 44942.04, + "end": 44944.6, + "probability": 0.9901 + }, + { + "start": 44945.14, + "end": 44947.96, + "probability": 0.8297 + }, + { + "start": 44948.88, + "end": 44950.02, + "probability": 0.9434 + }, + { + "start": 44950.52, + "end": 44952.02, + "probability": 0.9363 + }, + { + "start": 44952.5, + "end": 44953.46, + "probability": 0.7363 + }, + { + "start": 44954.1, + "end": 44958.08, + "probability": 0.9105 + }, + { + "start": 44960.05, + "end": 44963.38, + "probability": 0.8705 + }, + { + "start": 44963.7, + "end": 44965.54, + "probability": 0.7644 + }, + { + "start": 44966.16, + "end": 44968.12, + "probability": 0.5365 + }, + { + "start": 44969.58, + "end": 44971.44, + "probability": 0.6275 + }, + { + "start": 44971.54, + "end": 44972.76, + "probability": 0.9486 + }, + { + "start": 44973.12, + "end": 44973.22, + "probability": 0.7145 + }, + { + "start": 44974.2, + "end": 44976.06, + "probability": 0.875 + }, + { + "start": 44976.52, + "end": 44977.0, + "probability": 0.789 + }, + { + "start": 44977.08, + "end": 44978.14, + "probability": 0.9074 + }, + { + "start": 44979.33, + "end": 44984.55, + "probability": 0.9807 + }, + { + "start": 44985.36, + "end": 44989.38, + "probability": 0.9963 + }, + { + "start": 44990.06, + "end": 44993.92, + "probability": 0.7661 + }, + { + "start": 44996.96, + "end": 44999.76, + "probability": 0.9166 + }, + { + "start": 45000.85, + "end": 45005.14, + "probability": 0.9392 + }, + { + "start": 45005.6, + "end": 45010.72, + "probability": 0.9812 + }, + { + "start": 45011.38, + "end": 45016.2, + "probability": 0.9956 + }, + { + "start": 45017.16, + "end": 45018.58, + "probability": 0.994 + }, + { + "start": 45019.24, + "end": 45021.26, + "probability": 0.9829 + }, + { + "start": 45021.84, + "end": 45022.96, + "probability": 0.9944 + }, + { + "start": 45023.1, + "end": 45026.14, + "probability": 0.9545 + }, + { + "start": 45026.14, + "end": 45028.76, + "probability": 0.9014 + }, + { + "start": 45037.28, + "end": 45040.22, + "probability": 0.7325 + }, + { + "start": 45041.04, + "end": 45042.88, + "probability": 0.7231 + }, + { + "start": 45044.12, + "end": 45047.7, + "probability": 0.965 + }, + { + "start": 45049.36, + "end": 45055.1, + "probability": 0.8865 + }, + { + "start": 45055.82, + "end": 45057.66, + "probability": 0.9348 + }, + { + "start": 45058.14, + "end": 45061.94, + "probability": 0.9788 + }, + { + "start": 45062.5, + "end": 45065.86, + "probability": 0.9836 + }, + { + "start": 45065.86, + "end": 45076.34, + "probability": 0.9508 + }, + { + "start": 45077.1, + "end": 45080.28, + "probability": 0.9889 + }, + { + "start": 45080.38, + "end": 45085.04, + "probability": 0.9714 + }, + { + "start": 45085.72, + "end": 45089.64, + "probability": 0.9941 + }, + { + "start": 45090.86, + "end": 45094.94, + "probability": 0.7178 + }, + { + "start": 45095.52, + "end": 45095.8, + "probability": 0.9867 + }, + { + "start": 45096.4, + "end": 45098.98, + "probability": 0.9976 + }, + { + "start": 45100.0, + "end": 45102.14, + "probability": 0.5374 + }, + { + "start": 45102.68, + "end": 45107.62, + "probability": 0.8155 + }, + { + "start": 45108.1, + "end": 45110.34, + "probability": 0.6712 + }, + { + "start": 45110.38, + "end": 45115.1, + "probability": 0.9221 + }, + { + "start": 45116.06, + "end": 45118.2, + "probability": 0.9942 + }, + { + "start": 45119.3, + "end": 45122.64, + "probability": 0.9902 + }, + { + "start": 45122.7, + "end": 45124.28, + "probability": 0.9844 + }, + { + "start": 45126.1, + "end": 45129.94, + "probability": 0.9662 + }, + { + "start": 45132.59, + "end": 45138.04, + "probability": 0.8379 + }, + { + "start": 45139.2, + "end": 45142.86, + "probability": 0.9961 + }, + { + "start": 45143.4, + "end": 45144.16, + "probability": 0.7796 + }, + { + "start": 45145.34, + "end": 45146.2, + "probability": 0.6382 + }, + { + "start": 45146.34, + "end": 45148.22, + "probability": 0.8228 + }, + { + "start": 45148.3, + "end": 45149.14, + "probability": 0.7425 + }, + { + "start": 45149.24, + "end": 45150.96, + "probability": 0.984 + }, + { + "start": 45151.52, + "end": 45151.84, + "probability": 0.4208 + }, + { + "start": 45151.94, + "end": 45153.04, + "probability": 0.9411 + }, + { + "start": 45153.06, + "end": 45153.96, + "probability": 0.9778 + }, + { + "start": 45154.14, + "end": 45154.94, + "probability": 0.8146 + }, + { + "start": 45155.24, + "end": 45156.04, + "probability": 0.6034 + }, + { + "start": 45156.48, + "end": 45160.74, + "probability": 0.9863 + }, + { + "start": 45161.16, + "end": 45161.76, + "probability": 0.4997 + }, + { + "start": 45161.88, + "end": 45162.54, + "probability": 0.9818 + }, + { + "start": 45163.18, + "end": 45165.82, + "probability": 0.9953 + }, + { + "start": 45165.98, + "end": 45168.39, + "probability": 0.9578 + }, + { + "start": 45169.72, + "end": 45171.86, + "probability": 0.7881 + }, + { + "start": 45172.62, + "end": 45173.02, + "probability": 0.4145 + }, + { + "start": 45177.1, + "end": 45178.36, + "probability": 0.9667 + }, + { + "start": 45178.94, + "end": 45180.4, + "probability": 0.895 + }, + { + "start": 45180.58, + "end": 45181.26, + "probability": 0.7699 + }, + { + "start": 45181.56, + "end": 45184.94, + "probability": 0.9906 + }, + { + "start": 45184.98, + "end": 45186.56, + "probability": 0.985 + }, + { + "start": 45187.1, + "end": 45190.8, + "probability": 0.9899 + }, + { + "start": 45191.88, + "end": 45196.32, + "probability": 0.9848 + }, + { + "start": 45196.32, + "end": 45201.24, + "probability": 0.9988 + }, + { + "start": 45202.68, + "end": 45203.58, + "probability": 0.5404 + }, + { + "start": 45203.98, + "end": 45205.9, + "probability": 0.9758 + }, + { + "start": 45205.9, + "end": 45208.06, + "probability": 0.9948 + }, + { + "start": 45208.24, + "end": 45209.86, + "probability": 0.9122 + }, + { + "start": 45209.9, + "end": 45213.52, + "probability": 0.9265 + }, + { + "start": 45214.26, + "end": 45217.84, + "probability": 0.9946 + }, + { + "start": 45218.2, + "end": 45219.24, + "probability": 0.9731 + }, + { + "start": 45219.72, + "end": 45221.68, + "probability": 0.9907 + }, + { + "start": 45222.36, + "end": 45229.58, + "probability": 0.9576 + }, + { + "start": 45229.78, + "end": 45231.02, + "probability": 0.6966 + }, + { + "start": 45231.54, + "end": 45235.06, + "probability": 0.9893 + }, + { + "start": 45235.42, + "end": 45237.24, + "probability": 0.9896 + }, + { + "start": 45237.46, + "end": 45237.9, + "probability": 0.9323 + }, + { + "start": 45238.44, + "end": 45239.06, + "probability": 0.667 + }, + { + "start": 45239.98, + "end": 45241.58, + "probability": 0.989 + }, + { + "start": 45241.96, + "end": 45246.58, + "probability": 0.9694 + }, + { + "start": 45246.62, + "end": 45248.38, + "probability": 0.8594 + }, + { + "start": 45249.1, + "end": 45250.12, + "probability": 0.998 + }, + { + "start": 45250.6, + "end": 45252.98, + "probability": 0.9895 + }, + { + "start": 45253.54, + "end": 45257.22, + "probability": 0.9822 + }, + { + "start": 45257.51, + "end": 45262.38, + "probability": 0.9934 + }, + { + "start": 45263.02, + "end": 45266.22, + "probability": 0.9375 + }, + { + "start": 45266.32, + "end": 45267.82, + "probability": 0.518 + }, + { + "start": 45268.48, + "end": 45270.5, + "probability": 0.9745 + }, + { + "start": 45272.92, + "end": 45273.22, + "probability": 0.5185 + }, + { + "start": 45275.2, + "end": 45276.14, + "probability": 0.5026 + }, + { + "start": 45276.78, + "end": 45283.28, + "probability": 0.8656 + }, + { + "start": 45284.08, + "end": 45284.26, + "probability": 0.3806 + }, + { + "start": 45284.26, + "end": 45287.88, + "probability": 0.9252 + }, + { + "start": 45289.32, + "end": 45291.76, + "probability": 0.958 + }, + { + "start": 45292.5, + "end": 45293.02, + "probability": 0.7965 + }, + { + "start": 45293.16, + "end": 45296.32, + "probability": 0.9936 + }, + { + "start": 45297.04, + "end": 45298.14, + "probability": 0.9763 + }, + { + "start": 45298.46, + "end": 45301.42, + "probability": 0.8845 + }, + { + "start": 45301.44, + "end": 45303.68, + "probability": 0.9753 + }, + { + "start": 45305.06, + "end": 45308.12, + "probability": 0.8923 + }, + { + "start": 45308.18, + "end": 45310.54, + "probability": 0.7312 + }, + { + "start": 45310.68, + "end": 45311.45, + "probability": 0.9269 + }, + { + "start": 45311.56, + "end": 45312.06, + "probability": 0.9364 + }, + { + "start": 45312.16, + "end": 45312.68, + "probability": 0.4366 + }, + { + "start": 45313.18, + "end": 45313.68, + "probability": 0.9203 + }, + { + "start": 45313.9, + "end": 45314.55, + "probability": 0.9834 + }, + { + "start": 45314.8, + "end": 45315.5, + "probability": 0.6418 + }, + { + "start": 45315.72, + "end": 45319.6, + "probability": 0.859 + }, + { + "start": 45320.0, + "end": 45322.86, + "probability": 0.8262 + }, + { + "start": 45323.48, + "end": 45324.26, + "probability": 0.8611 + }, + { + "start": 45324.26, + "end": 45328.62, + "probability": 0.9022 + }, + { + "start": 45329.62, + "end": 45333.24, + "probability": 0.9411 + }, + { + "start": 45333.34, + "end": 45334.0, + "probability": 0.7891 + }, + { + "start": 45334.54, + "end": 45334.8, + "probability": 0.9366 + }, + { + "start": 45335.84, + "end": 45337.38, + "probability": 0.7432 + }, + { + "start": 45337.94, + "end": 45339.2, + "probability": 0.9912 + }, + { + "start": 45339.64, + "end": 45340.95, + "probability": 0.9956 + }, + { + "start": 45341.88, + "end": 45344.42, + "probability": 0.8739 + }, + { + "start": 45344.72, + "end": 45345.9, + "probability": 0.9309 + }, + { + "start": 45346.66, + "end": 45348.66, + "probability": 0.9933 + }, + { + "start": 45349.44, + "end": 45350.38, + "probability": 0.9425 + }, + { + "start": 45350.6, + "end": 45352.56, + "probability": 0.9447 + }, + { + "start": 45352.72, + "end": 45353.54, + "probability": 0.5055 + }, + { + "start": 45353.66, + "end": 45354.5, + "probability": 0.5969 + }, + { + "start": 45355.06, + "end": 45356.06, + "probability": 0.8333 + }, + { + "start": 45358.25, + "end": 45361.26, + "probability": 0.9553 + }, + { + "start": 45362.68, + "end": 45365.62, + "probability": 0.9506 + }, + { + "start": 45367.48, + "end": 45368.05, + "probability": 0.7964 + }, + { + "start": 45371.52, + "end": 45375.78, + "probability": 0.7642 + }, + { + "start": 45377.54, + "end": 45380.38, + "probability": 0.9609 + }, + { + "start": 45381.18, + "end": 45382.64, + "probability": 0.8983 + }, + { + "start": 45382.76, + "end": 45383.9, + "probability": 0.7626 + }, + { + "start": 45384.02, + "end": 45386.04, + "probability": 0.9405 + }, + { + "start": 45386.76, + "end": 45387.08, + "probability": 0.4252 + }, + { + "start": 45388.32, + "end": 45389.08, + "probability": 0.8053 + }, + { + "start": 45390.3, + "end": 45394.29, + "probability": 0.9777 + }, + { + "start": 45395.22, + "end": 45398.32, + "probability": 0.9958 + }, + { + "start": 45399.27, + "end": 45403.36, + "probability": 0.9365 + }, + { + "start": 45404.28, + "end": 45404.94, + "probability": 0.9789 + }, + { + "start": 45405.02, + "end": 45405.42, + "probability": 0.8381 + }, + { + "start": 45405.6, + "end": 45406.06, + "probability": 0.7041 + }, + { + "start": 45406.5, + "end": 45408.54, + "probability": 0.989 + }, + { + "start": 45409.12, + "end": 45411.12, + "probability": 0.9982 + }, + { + "start": 45411.66, + "end": 45415.48, + "probability": 0.9081 + }, + { + "start": 45417.08, + "end": 45420.32, + "probability": 0.993 + }, + { + "start": 45421.0, + "end": 45422.02, + "probability": 0.8471 + }, + { + "start": 45423.46, + "end": 45424.22, + "probability": 0.6553 + }, + { + "start": 45424.7, + "end": 45424.7, + "probability": 0.732 + }, + { + "start": 45424.98, + "end": 45425.3, + "probability": 0.7768 + }, + { + "start": 45426.4, + "end": 45426.64, + "probability": 0.8617 + }, + { + "start": 45428.2, + "end": 45428.68, + "probability": 0.866 + }, + { + "start": 45428.76, + "end": 45431.84, + "probability": 0.9065 + }, + { + "start": 45431.98, + "end": 45433.68, + "probability": 0.8864 + }, + { + "start": 45434.2, + "end": 45435.06, + "probability": 0.9858 + }, + { + "start": 45435.34, + "end": 45439.24, + "probability": 0.9927 + }, + { + "start": 45439.24, + "end": 45442.36, + "probability": 0.9437 + }, + { + "start": 45444.06, + "end": 45445.4, + "probability": 0.1659 + }, + { + "start": 45446.84, + "end": 45447.94, + "probability": 0.1874 + }, + { + "start": 45447.94, + "end": 45450.7, + "probability": 0.9031 + }, + { + "start": 45451.7, + "end": 45454.72, + "probability": 0.975 + }, + { + "start": 45455.34, + "end": 45458.04, + "probability": 0.8455 + }, + { + "start": 45458.26, + "end": 45459.18, + "probability": 0.3262 + }, + { + "start": 45459.58, + "end": 45462.06, + "probability": 0.8116 + }, + { + "start": 45462.66, + "end": 45466.06, + "probability": 0.9868 + }, + { + "start": 45466.3, + "end": 45469.94, + "probability": 0.9653 + }, + { + "start": 45470.58, + "end": 45471.84, + "probability": 0.8421 + }, + { + "start": 45472.72, + "end": 45476.04, + "probability": 0.7671 + }, + { + "start": 45476.2, + "end": 45476.86, + "probability": 0.5034 + }, + { + "start": 45476.92, + "end": 45477.81, + "probability": 0.1958 + }, + { + "start": 45479.42, + "end": 45482.61, + "probability": 0.7692 + }, + { + "start": 45484.22, + "end": 45486.65, + "probability": 0.4071 + }, + { + "start": 45487.52, + "end": 45488.06, + "probability": 0.0339 + }, + { + "start": 45488.98, + "end": 45490.0, + "probability": 0.2521 + }, + { + "start": 45490.6, + "end": 45492.7, + "probability": 0.5704 + }, + { + "start": 45495.77, + "end": 45499.48, + "probability": 0.9882 + }, + { + "start": 45499.48, + "end": 45503.53, + "probability": 0.9374 + }, + { + "start": 45503.78, + "end": 45506.08, + "probability": 0.8042 + }, + { + "start": 45506.4, + "end": 45507.88, + "probability": 0.6539 + }, + { + "start": 45508.38, + "end": 45511.5, + "probability": 0.9446 + }, + { + "start": 45511.58, + "end": 45513.0, + "probability": 0.8828 + }, + { + "start": 45513.42, + "end": 45515.62, + "probability": 0.9983 + }, + { + "start": 45515.9, + "end": 45519.84, + "probability": 0.9819 + }, + { + "start": 45520.56, + "end": 45522.34, + "probability": 0.7725 + }, + { + "start": 45523.02, + "end": 45523.5, + "probability": 0.6671 + }, + { + "start": 45523.74, + "end": 45527.52, + "probability": 0.9857 + }, + { + "start": 45528.14, + "end": 45533.54, + "probability": 0.9885 + }, + { + "start": 45533.54, + "end": 45533.96, + "probability": 0.8163 + }, + { + "start": 45534.5, + "end": 45535.16, + "probability": 0.8905 + }, + { + "start": 45535.2, + "end": 45541.42, + "probability": 0.98 + }, + { + "start": 45541.8, + "end": 45543.2, + "probability": 0.6284 + }, + { + "start": 45543.36, + "end": 45544.16, + "probability": 0.1279 + }, + { + "start": 45545.38, + "end": 45547.06, + "probability": 0.9842 + }, + { + "start": 45547.88, + "end": 45548.5, + "probability": 0.3471 + }, + { + "start": 45548.7, + "end": 45549.84, + "probability": 0.6926 + }, + { + "start": 45550.84, + "end": 45551.6, + "probability": 0.3788 + }, + { + "start": 45551.8, + "end": 45551.82, + "probability": 0.2716 + }, + { + "start": 45551.82, + "end": 45551.82, + "probability": 0.1095 + }, + { + "start": 45551.82, + "end": 45560.02, + "probability": 0.7629 + }, + { + "start": 45560.44, + "end": 45565.54, + "probability": 0.949 + }, + { + "start": 45566.76, + "end": 45569.66, + "probability": 0.9375 + }, + { + "start": 45569.66, + "end": 45574.28, + "probability": 0.7365 + }, + { + "start": 45575.1, + "end": 45579.4, + "probability": 0.8654 + }, + { + "start": 45579.42, + "end": 45582.84, + "probability": 0.6741 + }, + { + "start": 45583.04, + "end": 45584.4, + "probability": 0.8764 + }, + { + "start": 45584.4, + "end": 45588.2, + "probability": 0.867 + }, + { + "start": 45588.42, + "end": 45588.86, + "probability": 0.8049 + }, + { + "start": 45588.96, + "end": 45589.74, + "probability": 0.2889 + }, + { + "start": 45590.04, + "end": 45591.62, + "probability": 0.788 + }, + { + "start": 45594.16, + "end": 45597.7, + "probability": 0.907 + }, + { + "start": 45597.91, + "end": 45600.43, + "probability": 0.8975 + }, + { + "start": 45600.58, + "end": 45603.32, + "probability": 0.9884 + }, + { + "start": 45603.46, + "end": 45606.18, + "probability": 0.9791 + }, + { + "start": 45606.26, + "end": 45607.04, + "probability": 0.7641 + }, + { + "start": 45607.1, + "end": 45608.48, + "probability": 0.9712 + }, + { + "start": 45608.7, + "end": 45610.82, + "probability": 0.9902 + }, + { + "start": 45611.06, + "end": 45615.46, + "probability": 0.9311 + }, + { + "start": 45616.1, + "end": 45619.42, + "probability": 0.6145 + }, + { + "start": 45619.5, + "end": 45620.24, + "probability": 0.767 + }, + { + "start": 45620.3, + "end": 45621.28, + "probability": 0.8829 + }, + { + "start": 45621.74, + "end": 45622.02, + "probability": 0.3831 + }, + { + "start": 45622.08, + "end": 45622.66, + "probability": 0.8798 + }, + { + "start": 45623.0, + "end": 45627.02, + "probability": 0.6719 + }, + { + "start": 45627.98, + "end": 45629.9, + "probability": 0.7937 + }, + { + "start": 45630.94, + "end": 45631.26, + "probability": 0.2588 + }, + { + "start": 45632.62, + "end": 45633.1, + "probability": 0.9492 + }, + { + "start": 45633.54, + "end": 45634.3, + "probability": 0.9562 + }, + { + "start": 45634.86, + "end": 45636.62, + "probability": 0.5005 + }, + { + "start": 45636.8, + "end": 45639.46, + "probability": 0.6564 + }, + { + "start": 45639.96, + "end": 45642.84, + "probability": 0.647 + }, + { + "start": 45643.46, + "end": 45646.68, + "probability": 0.7945 + }, + { + "start": 45646.76, + "end": 45648.18, + "probability": 0.8764 + }, + { + "start": 45649.6, + "end": 45650.36, + "probability": 0.0682 + }, + { + "start": 45655.58, + "end": 45658.52, + "probability": 0.7034 + }, + { + "start": 45660.48, + "end": 45664.98, + "probability": 0.9871 + }, + { + "start": 45664.98, + "end": 45668.78, + "probability": 0.9797 + }, + { + "start": 45669.06, + "end": 45671.12, + "probability": 0.876 + }, + { + "start": 45673.12, + "end": 45674.48, + "probability": 0.9083 + }, + { + "start": 45675.46, + "end": 45677.59, + "probability": 0.9971 + }, + { + "start": 45681.24, + "end": 45685.24, + "probability": 0.9598 + }, + { + "start": 45686.52, + "end": 45688.46, + "probability": 0.9114 + }, + { + "start": 45689.14, + "end": 45690.61, + "probability": 0.9492 + }, + { + "start": 45691.62, + "end": 45692.78, + "probability": 0.7756 + }, + { + "start": 45694.52, + "end": 45699.04, + "probability": 0.9374 + }, + { + "start": 45700.2, + "end": 45703.5, + "probability": 0.9799 + }, + { + "start": 45703.5, + "end": 45706.52, + "probability": 0.9705 + }, + { + "start": 45709.82, + "end": 45713.04, + "probability": 0.8799 + }, + { + "start": 45714.3, + "end": 45714.72, + "probability": 0.668 + }, + { + "start": 45717.98, + "end": 45719.12, + "probability": 0.7254 + }, + { + "start": 45720.84, + "end": 45721.3, + "probability": 0.6261 + }, + { + "start": 45724.42, + "end": 45727.98, + "probability": 0.5743 + }, + { + "start": 45729.24, + "end": 45731.52, + "probability": 0.0828 + }, + { + "start": 45733.24, + "end": 45736.06, + "probability": 0.4519 + }, + { + "start": 45736.06, + "end": 45738.88, + "probability": 0.8318 + }, + { + "start": 45739.5, + "end": 45740.84, + "probability": 0.9712 + }, + { + "start": 45741.14, + "end": 45745.08, + "probability": 0.4641 + }, + { + "start": 45745.32, + "end": 45750.25, + "probability": 0.9894 + }, + { + "start": 45752.82, + "end": 45754.14, + "probability": 0.4151 + }, + { + "start": 45755.28, + "end": 45760.32, + "probability": 0.979 + }, + { + "start": 45761.04, + "end": 45761.39, + "probability": 0.7891 + }, + { + "start": 45762.72, + "end": 45763.68, + "probability": 0.5317 + }, + { + "start": 45765.71, + "end": 45766.5, + "probability": 0.5729 + }, + { + "start": 45766.9, + "end": 45769.36, + "probability": 0.5911 + }, + { + "start": 45771.64, + "end": 45773.8, + "probability": 0.8688 + }, + { + "start": 45774.34, + "end": 45777.5, + "probability": 0.9746 + }, + { + "start": 45781.28, + "end": 45783.46, + "probability": 0.9852 + }, + { + "start": 45784.18, + "end": 45784.9, + "probability": 0.7711 + }, + { + "start": 45784.9, + "end": 45787.96, + "probability": 0.5008 + }, + { + "start": 45787.98, + "end": 45788.3, + "probability": 0.8936 + }, + { + "start": 45788.4, + "end": 45789.45, + "probability": 0.8936 + }, + { + "start": 45791.02, + "end": 45791.38, + "probability": 0.3614 + }, + { + "start": 45792.52, + "end": 45796.06, + "probability": 0.9937 + }, + { + "start": 45796.52, + "end": 45799.22, + "probability": 0.838 + }, + { + "start": 45800.22, + "end": 45801.44, + "probability": 0.4077 + }, + { + "start": 45802.28, + "end": 45802.62, + "probability": 0.2262 + }, + { + "start": 45802.62, + "end": 45803.18, + "probability": 0.1726 + }, + { + "start": 45803.54, + "end": 45809.88, + "probability": 0.9514 + }, + { + "start": 45810.1, + "end": 45811.6, + "probability": 0.8003 + }, + { + "start": 45813.34, + "end": 45816.11, + "probability": 0.5958 + }, + { + "start": 45820.44, + "end": 45825.56, + "probability": 0.9796 + }, + { + "start": 45826.4, + "end": 45826.94, + "probability": 0.7676 + }, + { + "start": 45827.5, + "end": 45828.0, + "probability": 0.9862 + }, + { + "start": 45828.14, + "end": 45829.08, + "probability": 0.8461 + }, + { + "start": 45829.2, + "end": 45829.94, + "probability": 0.9053 + }, + { + "start": 45830.02, + "end": 45830.7, + "probability": 0.9427 + }, + { + "start": 45830.8, + "end": 45834.14, + "probability": 0.9927 + }, + { + "start": 45836.18, + "end": 45840.32, + "probability": 0.7489 + }, + { + "start": 45840.72, + "end": 45841.62, + "probability": 0.7946 + }, + { + "start": 45842.52, + "end": 45844.12, + "probability": 0.9275 + }, + { + "start": 45844.42, + "end": 45848.07, + "probability": 0.9766 + }, + { + "start": 45851.0, + "end": 45855.1, + "probability": 0.9973 + }, + { + "start": 45855.66, + "end": 45857.9, + "probability": 0.9365 + }, + { + "start": 45858.46, + "end": 45860.24, + "probability": 0.8737 + }, + { + "start": 45861.75, + "end": 45864.18, + "probability": 0.7471 + }, + { + "start": 45864.52, + "end": 45866.3, + "probability": 0.8254 + }, + { + "start": 45866.3, + "end": 45868.3, + "probability": 0.7227 + }, + { + "start": 45869.46, + "end": 45873.2, + "probability": 0.915 + }, + { + "start": 45874.48, + "end": 45876.04, + "probability": 0.6934 + }, + { + "start": 45876.04, + "end": 45876.98, + "probability": 0.9739 + }, + { + "start": 45877.44, + "end": 45877.86, + "probability": 0.9868 + }, + { + "start": 45879.99, + "end": 45882.35, + "probability": 0.9961 + }, + { + "start": 45883.04, + "end": 45883.98, + "probability": 0.9924 + }, + { + "start": 45884.64, + "end": 45885.62, + "probability": 0.9897 + }, + { + "start": 45885.72, + "end": 45886.74, + "probability": 0.9754 + }, + { + "start": 45887.14, + "end": 45888.44, + "probability": 0.9951 + }, + { + "start": 45889.94, + "end": 45890.84, + "probability": 0.8707 + }, + { + "start": 45892.52, + "end": 45895.16, + "probability": 0.5127 + }, + { + "start": 45895.28, + "end": 45896.52, + "probability": 0.9663 + }, + { + "start": 45897.48, + "end": 45898.64, + "probability": 0.9734 + }, + { + "start": 45898.82, + "end": 45899.96, + "probability": 0.9325 + }, + { + "start": 45900.44, + "end": 45902.74, + "probability": 0.9118 + }, + { + "start": 45904.6, + "end": 45905.9, + "probability": 0.9595 + }, + { + "start": 45905.96, + "end": 45908.88, + "probability": 0.9897 + }, + { + "start": 45910.82, + "end": 45912.74, + "probability": 0.995 + }, + { + "start": 45913.52, + "end": 45914.84, + "probability": 0.6919 + }, + { + "start": 45916.5, + "end": 45917.12, + "probability": 0.7931 + }, + { + "start": 45917.68, + "end": 45918.5, + "probability": 0.956 + }, + { + "start": 45919.9, + "end": 45920.84, + "probability": 0.8437 + }, + { + "start": 45921.98, + "end": 45923.48, + "probability": 0.968 + }, + { + "start": 45925.5, + "end": 45929.46, + "probability": 0.7677 + }, + { + "start": 45929.92, + "end": 45930.64, + "probability": 0.2683 + }, + { + "start": 45931.4, + "end": 45933.42, + "probability": 0.8295 + }, + { + "start": 45934.6, + "end": 45937.72, + "probability": 0.8696 + }, + { + "start": 45939.26, + "end": 45940.68, + "probability": 0.9882 + }, + { + "start": 45942.36, + "end": 45945.7, + "probability": 0.9343 + }, + { + "start": 45947.6, + "end": 45949.22, + "probability": 0.973 + }, + { + "start": 45949.88, + "end": 45950.56, + "probability": 0.6973 + }, + { + "start": 45952.48, + "end": 45953.5, + "probability": 0.8955 + }, + { + "start": 45953.9, + "end": 45955.75, + "probability": 0.9454 + }, + { + "start": 45956.7, + "end": 45957.38, + "probability": 0.9066 + }, + { + "start": 45957.64, + "end": 45960.44, + "probability": 0.9604 + }, + { + "start": 45962.14, + "end": 45963.86, + "probability": 0.9812 + }, + { + "start": 45964.46, + "end": 45965.32, + "probability": 0.9631 + }, + { + "start": 45967.52, + "end": 45969.04, + "probability": 0.96 + }, + { + "start": 45970.9, + "end": 45972.48, + "probability": 0.9622 + }, + { + "start": 45974.12, + "end": 45975.1, + "probability": 0.9737 + }, + { + "start": 45977.1, + "end": 45980.96, + "probability": 0.9868 + }, + { + "start": 45984.92, + "end": 45985.45, + "probability": 0.2923 + }, + { + "start": 45986.57, + "end": 45987.96, + "probability": 0.6942 + }, + { + "start": 45988.06, + "end": 45988.72, + "probability": 0.9844 + }, + { + "start": 45992.77, + "end": 45995.12, + "probability": 0.4269 + }, + { + "start": 45998.4, + "end": 46003.64, + "probability": 0.9917 + }, + { + "start": 46007.26, + "end": 46009.14, + "probability": 0.998 + }, + { + "start": 46009.8, + "end": 46010.88, + "probability": 0.6926 + }, + { + "start": 46011.8, + "end": 46013.13, + "probability": 0.9894 + }, + { + "start": 46014.18, + "end": 46015.24, + "probability": 0.8085 + }, + { + "start": 46017.14, + "end": 46018.28, + "probability": 0.881 + }, + { + "start": 46018.34, + "end": 46018.44, + "probability": 0.4007 + }, + { + "start": 46019.34, + "end": 46019.83, + "probability": 0.5207 + }, + { + "start": 46022.06, + "end": 46023.82, + "probability": 0.9834 + }, + { + "start": 46026.04, + "end": 46031.6, + "probability": 0.8992 + }, + { + "start": 46033.06, + "end": 46039.66, + "probability": 0.9786 + }, + { + "start": 46040.46, + "end": 46042.14, + "probability": 0.8695 + }, + { + "start": 46044.1, + "end": 46047.54, + "probability": 0.9385 + }, + { + "start": 46049.68, + "end": 46053.36, + "probability": 0.9954 + }, + { + "start": 46055.82, + "end": 46057.06, + "probability": 0.7708 + }, + { + "start": 46060.34, + "end": 46060.74, + "probability": 0.7809 + }, + { + "start": 46064.08, + "end": 46066.85, + "probability": 0.9998 + }, + { + "start": 46069.8, + "end": 46072.98, + "probability": 0.9972 + }, + { + "start": 46075.96, + "end": 46077.92, + "probability": 0.8792 + }, + { + "start": 46079.46, + "end": 46079.94, + "probability": 0.9092 + }, + { + "start": 46081.84, + "end": 46082.68, + "probability": 0.9785 + }, + { + "start": 46086.7, + "end": 46088.14, + "probability": 0.9004 + }, + { + "start": 46091.06, + "end": 46095.02, + "probability": 0.99 + }, + { + "start": 46096.7, + "end": 46099.4, + "probability": 0.9722 + }, + { + "start": 46099.48, + "end": 46100.76, + "probability": 0.6568 + }, + { + "start": 46102.04, + "end": 46102.68, + "probability": 0.9553 + }, + { + "start": 46103.22, + "end": 46104.22, + "probability": 0.7882 + }, + { + "start": 46104.98, + "end": 46106.5, + "probability": 0.9865 + }, + { + "start": 46110.52, + "end": 46112.44, + "probability": 0.6783 + }, + { + "start": 46113.1, + "end": 46117.6, + "probability": 0.9854 + }, + { + "start": 46118.7, + "end": 46121.26, + "probability": 0.9731 + }, + { + "start": 46122.72, + "end": 46123.32, + "probability": 0.5367 + }, + { + "start": 46124.56, + "end": 46125.67, + "probability": 0.7708 + }, + { + "start": 46128.18, + "end": 46128.74, + "probability": 0.995 + }, + { + "start": 46130.38, + "end": 46132.6, + "probability": 0.9872 + }, + { + "start": 46133.72, + "end": 46133.98, + "probability": 0.4297 + }, + { + "start": 46136.78, + "end": 46138.04, + "probability": 0.63 + }, + { + "start": 46139.3, + "end": 46143.1, + "probability": 0.8286 + }, + { + "start": 46144.7, + "end": 46147.54, + "probability": 0.714 + }, + { + "start": 46147.98, + "end": 46149.68, + "probability": 0.9115 + }, + { + "start": 46149.68, + "end": 46150.68, + "probability": 0.6929 + }, + { + "start": 46151.92, + "end": 46152.58, + "probability": 0.9481 + }, + { + "start": 46154.62, + "end": 46155.88, + "probability": 0.9989 + }, + { + "start": 46156.7, + "end": 46157.88, + "probability": 0.4532 + }, + { + "start": 46159.54, + "end": 46163.08, + "probability": 0.7144 + }, + { + "start": 46164.5, + "end": 46168.4, + "probability": 0.9904 + }, + { + "start": 46169.2, + "end": 46171.12, + "probability": 0.7492 + }, + { + "start": 46172.52, + "end": 46174.26, + "probability": 0.9157 + }, + { + "start": 46175.96, + "end": 46177.64, + "probability": 0.8778 + }, + { + "start": 46177.86, + "end": 46180.66, + "probability": 0.9811 + }, + { + "start": 46181.46, + "end": 46183.3, + "probability": 0.9354 + }, + { + "start": 46184.84, + "end": 46186.88, + "probability": 0.9031 + }, + { + "start": 46188.02, + "end": 46194.44, + "probability": 0.9962 + }, + { + "start": 46196.6, + "end": 46198.66, + "probability": 0.9785 + }, + { + "start": 46198.84, + "end": 46201.8, + "probability": 0.9981 + }, + { + "start": 46202.08, + "end": 46206.2, + "probability": 0.9746 + }, + { + "start": 46207.32, + "end": 46209.4, + "probability": 0.9705 + }, + { + "start": 46211.46, + "end": 46212.82, + "probability": 0.8247 + }, + { + "start": 46213.76, + "end": 46216.0, + "probability": 0.8224 + }, + { + "start": 46216.6, + "end": 46217.6, + "probability": 0.5833 + }, + { + "start": 46218.64, + "end": 46220.88, + "probability": 0.9895 + }, + { + "start": 46222.7, + "end": 46223.5, + "probability": 0.9448 + }, + { + "start": 46225.36, + "end": 46226.32, + "probability": 0.7321 + }, + { + "start": 46227.42, + "end": 46229.0, + "probability": 0.9976 + }, + { + "start": 46230.94, + "end": 46233.3, + "probability": 0.9977 + }, + { + "start": 46234.72, + "end": 46236.82, + "probability": 0.8542 + }, + { + "start": 46237.62, + "end": 46238.72, + "probability": 0.7441 + }, + { + "start": 46239.32, + "end": 46242.54, + "probability": 0.8696 + }, + { + "start": 46243.5, + "end": 46245.72, + "probability": 0.7433 + }, + { + "start": 46246.66, + "end": 46246.76, + "probability": 0.0193 + }, + { + "start": 46247.94, + "end": 46250.0, + "probability": 0.979 + }, + { + "start": 46250.82, + "end": 46253.08, + "probability": 0.9451 + }, + { + "start": 46253.46, + "end": 46254.78, + "probability": 0.9946 + }, + { + "start": 46256.7, + "end": 46258.04, + "probability": 0.9965 + }, + { + "start": 46259.18, + "end": 46261.84, + "probability": 0.9883 + }, + { + "start": 46262.94, + "end": 46267.68, + "probability": 0.9728 + }, + { + "start": 46268.32, + "end": 46269.18, + "probability": 0.8381 + }, + { + "start": 46269.22, + "end": 46271.24, + "probability": 0.9922 + }, + { + "start": 46273.0, + "end": 46275.2, + "probability": 0.9528 + }, + { + "start": 46275.84, + "end": 46278.0, + "probability": 0.9991 + }, + { + "start": 46278.96, + "end": 46281.42, + "probability": 0.9901 + }, + { + "start": 46283.24, + "end": 46284.46, + "probability": 0.9989 + }, + { + "start": 46287.16, + "end": 46287.88, + "probability": 0.4249 + }, + { + "start": 46288.96, + "end": 46291.68, + "probability": 0.9956 + }, + { + "start": 46292.48, + "end": 46295.12, + "probability": 0.7917 + }, + { + "start": 46296.74, + "end": 46297.62, + "probability": 0.7747 + }, + { + "start": 46298.18, + "end": 46299.14, + "probability": 0.9053 + }, + { + "start": 46299.66, + "end": 46304.14, + "probability": 0.9067 + }, + { + "start": 46304.46, + "end": 46305.56, + "probability": 0.8332 + }, + { + "start": 46305.76, + "end": 46306.56, + "probability": 0.9912 + }, + { + "start": 46307.32, + "end": 46307.66, + "probability": 0.8268 + }, + { + "start": 46310.16, + "end": 46311.46, + "probability": 0.9404 + }, + { + "start": 46313.35, + "end": 46314.78, + "probability": 0.4994 + }, + { + "start": 46315.48, + "end": 46316.66, + "probability": 0.9526 + }, + { + "start": 46317.22, + "end": 46319.06, + "probability": 0.9668 + }, + { + "start": 46321.84, + "end": 46322.94, + "probability": 0.9985 + }, + { + "start": 46325.5, + "end": 46327.76, + "probability": 0.9829 + }, + { + "start": 46327.76, + "end": 46331.2, + "probability": 0.9966 + }, + { + "start": 46332.38, + "end": 46333.82, + "probability": 0.8897 + }, + { + "start": 46335.18, + "end": 46337.96, + "probability": 0.9889 + }, + { + "start": 46339.28, + "end": 46341.18, + "probability": 0.8848 + }, + { + "start": 46341.88, + "end": 46342.26, + "probability": 0.6854 + }, + { + "start": 46343.4, + "end": 46345.48, + "probability": 0.9524 + }, + { + "start": 46346.32, + "end": 46347.18, + "probability": 0.6314 + }, + { + "start": 46347.28, + "end": 46349.3, + "probability": 0.7402 + }, + { + "start": 46349.34, + "end": 46349.6, + "probability": 0.8989 + }, + { + "start": 46351.5, + "end": 46353.24, + "probability": 0.8571 + }, + { + "start": 46354.34, + "end": 46354.96, + "probability": 0.9899 + }, + { + "start": 46355.9, + "end": 46358.0, + "probability": 0.9975 + }, + { + "start": 46358.98, + "end": 46359.64, + "probability": 0.8362 + }, + { + "start": 46360.2, + "end": 46360.8, + "probability": 0.8234 + }, + { + "start": 46362.16, + "end": 46363.89, + "probability": 0.9977 + }, + { + "start": 46365.08, + "end": 46365.76, + "probability": 0.8359 + }, + { + "start": 46366.48, + "end": 46367.18, + "probability": 0.9834 + }, + { + "start": 46368.68, + "end": 46369.56, + "probability": 0.9901 + }, + { + "start": 46370.6, + "end": 46371.64, + "probability": 0.8008 + }, + { + "start": 46373.04, + "end": 46373.54, + "probability": 0.726 + }, + { + "start": 46374.46, + "end": 46375.3, + "probability": 0.3074 + }, + { + "start": 46376.2, + "end": 46379.16, + "probability": 0.9532 + }, + { + "start": 46379.24, + "end": 46381.77, + "probability": 0.9677 + }, + { + "start": 46383.46, + "end": 46384.12, + "probability": 0.8296 + }, + { + "start": 46385.0, + "end": 46386.92, + "probability": 0.963 + }, + { + "start": 46388.94, + "end": 46389.72, + "probability": 0.9766 + }, + { + "start": 46390.4, + "end": 46391.16, + "probability": 0.0474 + }, + { + "start": 46392.94, + "end": 46393.26, + "probability": 0.0168 + }, + { + "start": 46393.26, + "end": 46393.82, + "probability": 0.6833 + }, + { + "start": 46395.2, + "end": 46399.74, + "probability": 0.1649 + }, + { + "start": 46400.1, + "end": 46400.54, + "probability": 0.6213 + }, + { + "start": 46401.74, + "end": 46402.22, + "probability": 0.7656 + }, + { + "start": 46402.62, + "end": 46403.52, + "probability": 0.9988 + }, + { + "start": 46403.64, + "end": 46404.44, + "probability": 0.9945 + }, + { + "start": 46407.02, + "end": 46410.54, + "probability": 0.7841 + }, + { + "start": 46411.26, + "end": 46413.83, + "probability": 0.7644 + }, + { + "start": 46414.2, + "end": 46415.04, + "probability": 0.4812 + }, + { + "start": 46415.54, + "end": 46416.3, + "probability": 0.594 + }, + { + "start": 46418.16, + "end": 46418.76, + "probability": 0.651 + }, + { + "start": 46421.2, + "end": 46422.84, + "probability": 0.6938 + }, + { + "start": 46424.1, + "end": 46424.54, + "probability": 0.7763 + }, + { + "start": 46426.08, + "end": 46427.3, + "probability": 0.6362 + }, + { + "start": 46428.08, + "end": 46430.21, + "probability": 0.8934 + }, + { + "start": 46431.08, + "end": 46431.8, + "probability": 0.8408 + }, + { + "start": 46432.58, + "end": 46433.16, + "probability": 0.7314 + }, + { + "start": 46433.7, + "end": 46435.64, + "probability": 0.7085 + }, + { + "start": 46437.3, + "end": 46438.1, + "probability": 0.649 + }, + { + "start": 46439.26, + "end": 46440.3, + "probability": 0.8654 + }, + { + "start": 46443.14, + "end": 46443.99, + "probability": 0.9457 + }, + { + "start": 46445.9, + "end": 46446.51, + "probability": 0.9928 + }, + { + "start": 46447.04, + "end": 46450.07, + "probability": 0.9002 + }, + { + "start": 46450.88, + "end": 46451.76, + "probability": 0.8826 + }, + { + "start": 46453.84, + "end": 46454.48, + "probability": 0.8665 + }, + { + "start": 46456.6, + "end": 46463.84, + "probability": 0.778 + }, + { + "start": 46467.3, + "end": 46469.42, + "probability": 0.9961 + }, + { + "start": 46471.78, + "end": 46474.34, + "probability": 0.9979 + }, + { + "start": 46476.2, + "end": 46478.44, + "probability": 0.995 + }, + { + "start": 46480.22, + "end": 46482.38, + "probability": 0.9935 + }, + { + "start": 46483.22, + "end": 46485.42, + "probability": 0.8706 + }, + { + "start": 46486.96, + "end": 46488.18, + "probability": 0.9917 + }, + { + "start": 46490.54, + "end": 46491.66, + "probability": 0.9878 + }, + { + "start": 46493.16, + "end": 46495.62, + "probability": 0.9961 + }, + { + "start": 46496.82, + "end": 46502.22, + "probability": 0.9775 + }, + { + "start": 46502.32, + "end": 46502.9, + "probability": 0.9419 + }, + { + "start": 46503.48, + "end": 46505.75, + "probability": 0.9406 + }, + { + "start": 46507.48, + "end": 46510.0, + "probability": 0.9647 + }, + { + "start": 46511.72, + "end": 46512.52, + "probability": 0.9071 + }, + { + "start": 46513.12, + "end": 46514.64, + "probability": 0.8849 + }, + { + "start": 46515.32, + "end": 46517.05, + "probability": 0.9707 + }, + { + "start": 46517.24, + "end": 46517.62, + "probability": 0.8943 + }, + { + "start": 46518.3, + "end": 46519.3, + "probability": 0.8314 + }, + { + "start": 46520.54, + "end": 46521.24, + "probability": 0.7923 + }, + { + "start": 46522.8, + "end": 46523.86, + "probability": 0.9345 + }, + { + "start": 46524.64, + "end": 46525.28, + "probability": 0.9517 + }, + { + "start": 46525.88, + "end": 46526.98, + "probability": 0.8562 + }, + { + "start": 46527.92, + "end": 46530.02, + "probability": 0.9392 + }, + { + "start": 46530.14, + "end": 46531.16, + "probability": 0.4523 + }, + { + "start": 46532.12, + "end": 46532.18, + "probability": 0.0357 + }, + { + "start": 46532.18, + "end": 46536.0, + "probability": 0.9521 + }, + { + "start": 46536.72, + "end": 46541.65, + "probability": 0.9036 + }, + { + "start": 46543.24, + "end": 46544.52, + "probability": 0.9593 + }, + { + "start": 46546.12, + "end": 46547.77, + "probability": 0.8688 + }, + { + "start": 46549.46, + "end": 46550.6, + "probability": 0.8318 + }, + { + "start": 46551.92, + "end": 46552.98, + "probability": 0.8388 + }, + { + "start": 46554.66, + "end": 46556.22, + "probability": 0.9725 + }, + { + "start": 46556.26, + "end": 46556.92, + "probability": 0.9091 + }, + { + "start": 46558.36, + "end": 46560.58, + "probability": 0.9741 + }, + { + "start": 46563.52, + "end": 46564.88, + "probability": 0.9909 + }, + { + "start": 46566.56, + "end": 46567.18, + "probability": 0.9599 + }, + { + "start": 46569.54, + "end": 46570.46, + "probability": 0.9319 + }, + { + "start": 46573.26, + "end": 46574.2, + "probability": 0.9823 + }, + { + "start": 46576.86, + "end": 46579.62, + "probability": 0.9133 + }, + { + "start": 46580.84, + "end": 46582.6, + "probability": 0.959 + }, + { + "start": 46583.24, + "end": 46584.78, + "probability": 0.9927 + }, + { + "start": 46584.88, + "end": 46585.32, + "probability": 0.9082 + }, + { + "start": 46587.06, + "end": 46590.1, + "probability": 0.9775 + }, + { + "start": 46592.24, + "end": 46593.5, + "probability": 0.9446 + }, + { + "start": 46595.04, + "end": 46596.8, + "probability": 0.9883 + }, + { + "start": 46597.42, + "end": 46598.56, + "probability": 0.6422 + }, + { + "start": 46600.1, + "end": 46602.16, + "probability": 0.9419 + }, + { + "start": 46603.58, + "end": 46605.1, + "probability": 0.9447 + }, + { + "start": 46607.62, + "end": 46609.0, + "probability": 0.9235 + }, + { + "start": 46610.58, + "end": 46611.34, + "probability": 0.5551 + }, + { + "start": 46611.38, + "end": 46611.66, + "probability": 0.5935 + }, + { + "start": 46611.74, + "end": 46612.1, + "probability": 0.9603 + }, + { + "start": 46612.2, + "end": 46612.7, + "probability": 0.9374 + }, + { + "start": 46612.76, + "end": 46614.46, + "probability": 0.9946 + }, + { + "start": 46617.2, + "end": 46619.44, + "probability": 0.9922 + }, + { + "start": 46621.84, + "end": 46624.78, + "probability": 0.9917 + }, + { + "start": 46627.34, + "end": 46629.3, + "probability": 0.9916 + }, + { + "start": 46631.48, + "end": 46636.02, + "probability": 0.9262 + }, + { + "start": 46637.8, + "end": 46641.82, + "probability": 0.9977 + }, + { + "start": 46642.12, + "end": 46642.82, + "probability": 0.9761 + }, + { + "start": 46644.9, + "end": 46645.38, + "probability": 0.9732 + }, + { + "start": 46645.6, + "end": 46647.76, + "probability": 0.9785 + }, + { + "start": 46648.24, + "end": 46648.42, + "probability": 0.7659 + }, + { + "start": 46648.54, + "end": 46649.52, + "probability": 0.6648 + }, + { + "start": 46650.44, + "end": 46650.98, + "probability": 0.5352 + }, + { + "start": 46651.52, + "end": 46652.3, + "probability": 0.9869 + }, + { + "start": 46654.18, + "end": 46655.8, + "probability": 0.9924 + }, + { + "start": 46656.92, + "end": 46657.56, + "probability": 0.8079 + }, + { + "start": 46658.5, + "end": 46659.8, + "probability": 0.9954 + }, + { + "start": 46661.0, + "end": 46662.22, + "probability": 0.9633 + }, + { + "start": 46663.88, + "end": 46664.86, + "probability": 0.9592 + }, + { + "start": 46666.94, + "end": 46667.76, + "probability": 0.8855 + }, + { + "start": 46669.92, + "end": 46670.94, + "probability": 0.7733 + }, + { + "start": 46672.38, + "end": 46675.99, + "probability": 0.9856 + }, + { + "start": 46679.8, + "end": 46680.02, + "probability": 0.683 + }, + { + "start": 46682.16, + "end": 46689.54, + "probability": 0.9029 + }, + { + "start": 46691.72, + "end": 46693.18, + "probability": 0.8947 + }, + { + "start": 46695.46, + "end": 46699.62, + "probability": 0.9858 + }, + { + "start": 46701.22, + "end": 46704.94, + "probability": 0.9875 + }, + { + "start": 46708.69, + "end": 46710.24, + "probability": 0.8623 + }, + { + "start": 46711.1, + "end": 46711.34, + "probability": 0.7287 + }, + { + "start": 46712.84, + "end": 46713.4, + "probability": 0.855 + }, + { + "start": 46714.8, + "end": 46715.28, + "probability": 0.9081 + }, + { + "start": 46715.4, + "end": 46716.28, + "probability": 0.9249 + }, + { + "start": 46718.36, + "end": 46718.72, + "probability": 0.9692 + }, + { + "start": 46720.92, + "end": 46721.78, + "probability": 0.9409 + }, + { + "start": 46721.88, + "end": 46723.06, + "probability": 0.6254 + }, + { + "start": 46723.08, + "end": 46726.74, + "probability": 0.9073 + }, + { + "start": 46727.36, + "end": 46728.91, + "probability": 0.6117 + }, + { + "start": 46730.04, + "end": 46733.38, + "probability": 0.9032 + }, + { + "start": 46733.9, + "end": 46736.8, + "probability": 0.9317 + }, + { + "start": 46738.04, + "end": 46738.62, + "probability": 0.8369 + }, + { + "start": 46740.0, + "end": 46742.22, + "probability": 0.9624 + }, + { + "start": 46743.26, + "end": 46745.0, + "probability": 0.9826 + }, + { + "start": 46747.8, + "end": 46748.36, + "probability": 0.8462 + }, + { + "start": 46751.04, + "end": 46751.44, + "probability": 0.9288 + }, + { + "start": 46752.72, + "end": 46753.72, + "probability": 0.9372 + }, + { + "start": 46754.04, + "end": 46756.5, + "probability": 0.9771 + }, + { + "start": 46757.04, + "end": 46757.26, + "probability": 0.9764 + }, + { + "start": 46761.56, + "end": 46766.82, + "probability": 0.9882 + }, + { + "start": 46768.18, + "end": 46771.39, + "probability": 0.5216 + }, + { + "start": 46773.22, + "end": 46774.2, + "probability": 0.6845 + }, + { + "start": 46774.68, + "end": 46775.62, + "probability": 0.9739 + }, + { + "start": 46777.3, + "end": 46777.46, + "probability": 0.6851 + }, + { + "start": 46779.12, + "end": 46780.2, + "probability": 0.6652 + }, + { + "start": 46781.06, + "end": 46784.92, + "probability": 0.9953 + }, + { + "start": 46784.92, + "end": 46787.76, + "probability": 0.9435 + }, + { + "start": 46788.6, + "end": 46788.82, + "probability": 0.8571 + }, + { + "start": 46790.94, + "end": 46792.22, + "probability": 0.7634 + }, + { + "start": 46793.56, + "end": 46795.48, + "probability": 0.9886 + }, + { + "start": 46797.52, + "end": 46799.12, + "probability": 0.6229 + }, + { + "start": 46799.3, + "end": 46799.7, + "probability": 0.8867 + }, + { + "start": 46799.8, + "end": 46802.98, + "probability": 0.996 + }, + { + "start": 46805.8, + "end": 46807.5, + "probability": 0.9567 + }, + { + "start": 46808.92, + "end": 46813.0, + "probability": 0.9979 + }, + { + "start": 46814.86, + "end": 46817.04, + "probability": 0.8293 + }, + { + "start": 46818.0, + "end": 46820.14, + "probability": 0.6603 + }, + { + "start": 46821.28, + "end": 46822.24, + "probability": 0.998 + }, + { + "start": 46823.88, + "end": 46825.42, + "probability": 0.9372 + }, + { + "start": 46825.58, + "end": 46828.12, + "probability": 0.9888 + }, + { + "start": 46828.2, + "end": 46829.16, + "probability": 0.9922 + }, + { + "start": 46830.44, + "end": 46831.6, + "probability": 0.7031 + }, + { + "start": 46832.52, + "end": 46833.26, + "probability": 0.8037 + }, + { + "start": 46833.82, + "end": 46834.46, + "probability": 0.9279 + }, + { + "start": 46834.54, + "end": 46838.56, + "probability": 0.8975 + }, + { + "start": 46841.28, + "end": 46841.8, + "probability": 0.9753 + }, + { + "start": 46842.72, + "end": 46845.48, + "probability": 0.9986 + }, + { + "start": 46847.62, + "end": 46849.42, + "probability": 0.9929 + }, + { + "start": 46850.68, + "end": 46852.72, + "probability": 0.9961 + }, + { + "start": 46854.08, + "end": 46854.94, + "probability": 0.9377 + }, + { + "start": 46855.9, + "end": 46856.92, + "probability": 0.9971 + }, + { + "start": 46857.44, + "end": 46857.9, + "probability": 0.5764 + }, + { + "start": 46860.16, + "end": 46862.11, + "probability": 0.9912 + }, + { + "start": 46863.16, + "end": 46864.04, + "probability": 0.8641 + }, + { + "start": 46866.14, + "end": 46868.18, + "probability": 0.4261 + }, + { + "start": 46869.42, + "end": 46874.32, + "probability": 0.963 + }, + { + "start": 46874.52, + "end": 46875.32, + "probability": 0.887 + }, + { + "start": 46876.48, + "end": 46879.08, + "probability": 0.6443 + }, + { + "start": 46879.96, + "end": 46881.5, + "probability": 0.9699 + }, + { + "start": 46882.06, + "end": 46883.82, + "probability": 0.6298 + }, + { + "start": 46884.46, + "end": 46884.64, + "probability": 0.8654 + }, + { + "start": 46885.54, + "end": 46886.64, + "probability": 0.9498 + }, + { + "start": 46886.86, + "end": 46887.74, + "probability": 0.9696 + }, + { + "start": 46889.26, + "end": 46891.59, + "probability": 0.9103 + }, + { + "start": 46897.94, + "end": 46898.7, + "probability": 0.9648 + }, + { + "start": 46899.36, + "end": 46903.42, + "probability": 0.9062 + }, + { + "start": 46904.56, + "end": 46907.94, + "probability": 0.8184 + }, + { + "start": 46908.96, + "end": 46911.21, + "probability": 0.9917 + }, + { + "start": 46912.34, + "end": 46913.04, + "probability": 0.829 + }, + { + "start": 46914.78, + "end": 46916.54, + "probability": 0.9465 + }, + { + "start": 46919.88, + "end": 46922.98, + "probability": 0.386 + }, + { + "start": 46923.56, + "end": 46925.34, + "probability": 0.5594 + }, + { + "start": 46927.04, + "end": 46928.34, + "probability": 0.9941 + }, + { + "start": 46929.62, + "end": 46932.92, + "probability": 0.9522 + }, + { + "start": 46933.62, + "end": 46934.7, + "probability": 0.8762 + }, + { + "start": 46938.0, + "end": 46940.9, + "probability": 0.9816 + }, + { + "start": 46941.1, + "end": 46942.86, + "probability": 0.7078 + }, + { + "start": 46943.94, + "end": 46945.44, + "probability": 0.282 + }, + { + "start": 46946.0, + "end": 46949.92, + "probability": 0.9583 + }, + { + "start": 46951.8, + "end": 46954.6, + "probability": 0.9683 + }, + { + "start": 46955.34, + "end": 46956.48, + "probability": 0.9862 + }, + { + "start": 46957.5, + "end": 46957.91, + "probability": 0.5387 + }, + { + "start": 46959.88, + "end": 46961.14, + "probability": 0.9214 + }, + { + "start": 46963.16, + "end": 46963.78, + "probability": 0.9624 + }, + { + "start": 46964.5, + "end": 46965.1, + "probability": 0.8514 + }, + { + "start": 46966.56, + "end": 46968.12, + "probability": 0.9461 + }, + { + "start": 46969.6, + "end": 46971.24, + "probability": 0.9885 + }, + { + "start": 46972.46, + "end": 46973.98, + "probability": 0.7562 + }, + { + "start": 46974.18, + "end": 46975.54, + "probability": 0.6426 + }, + { + "start": 46976.6, + "end": 46978.0, + "probability": 0.6843 + }, + { + "start": 46979.36, + "end": 46980.7, + "probability": 0.9345 + }, + { + "start": 46981.46, + "end": 46982.56, + "probability": 0.9722 + }, + { + "start": 46983.4, + "end": 46983.9, + "probability": 0.9672 + }, + { + "start": 46984.92, + "end": 46986.3, + "probability": 0.8755 + }, + { + "start": 46987.98, + "end": 46988.86, + "probability": 0.6124 + }, + { + "start": 46990.84, + "end": 46992.9, + "probability": 0.9907 + }, + { + "start": 46993.28, + "end": 46994.18, + "probability": 0.9548 + }, + { + "start": 46996.08, + "end": 46998.02, + "probability": 0.9835 + }, + { + "start": 46999.72, + "end": 47000.72, + "probability": 0.996 + }, + { + "start": 47003.96, + "end": 47005.4, + "probability": 0.8969 + }, + { + "start": 47006.76, + "end": 47007.02, + "probability": 0.5077 + }, + { + "start": 47007.64, + "end": 47008.3, + "probability": 0.7986 + }, + { + "start": 47010.3, + "end": 47010.98, + "probability": 0.9536 + }, + { + "start": 47012.26, + "end": 47013.42, + "probability": 0.9497 + }, + { + "start": 47016.26, + "end": 47016.76, + "probability": 0.7449 + }, + { + "start": 47018.1, + "end": 47019.94, + "probability": 0.9937 + }, + { + "start": 47021.78, + "end": 47025.36, + "probability": 0.9939 + }, + { + "start": 47027.28, + "end": 47031.58, + "probability": 0.8354 + }, + { + "start": 47033.72, + "end": 47035.98, + "probability": 0.8696 + }, + { + "start": 47036.08, + "end": 47039.54, + "probability": 0.9663 + }, + { + "start": 47039.76, + "end": 47040.2, + "probability": 0.8574 + }, + { + "start": 47040.26, + "end": 47041.52, + "probability": 0.5346 + }, + { + "start": 47042.62, + "end": 47044.5, + "probability": 0.9967 + }, + { + "start": 47045.8, + "end": 47048.2, + "probability": 0.9546 + }, + { + "start": 47048.84, + "end": 47049.68, + "probability": 0.9021 + }, + { + "start": 47051.3, + "end": 47053.68, + "probability": 0.9952 + }, + { + "start": 47054.76, + "end": 47056.36, + "probability": 0.9614 + }, + { + "start": 47057.72, + "end": 47061.26, + "probability": 0.9678 + }, + { + "start": 47064.32, + "end": 47065.22, + "probability": 0.777 + }, + { + "start": 47066.64, + "end": 47067.67, + "probability": 0.9708 + }, + { + "start": 47069.72, + "end": 47070.82, + "probability": 0.9377 + }, + { + "start": 47075.44, + "end": 47075.98, + "probability": 0.5889 + }, + { + "start": 47076.95, + "end": 47078.32, + "probability": 0.6942 + }, + { + "start": 47081.05, + "end": 47081.48, + "probability": 0.0295 + }, + { + "start": 47081.48, + "end": 47081.76, + "probability": 0.146 + }, + { + "start": 47084.42, + "end": 47085.0, + "probability": 0.6926 + }, + { + "start": 47087.04, + "end": 47090.23, + "probability": 0.9594 + }, + { + "start": 47093.2, + "end": 47093.88, + "probability": 0.8202 + }, + { + "start": 47097.26, + "end": 47099.44, + "probability": 0.8921 + }, + { + "start": 47099.48, + "end": 47100.8, + "probability": 0.6724 + }, + { + "start": 47101.68, + "end": 47102.72, + "probability": 0.8826 + }, + { + "start": 47103.94, + "end": 47104.44, + "probability": 0.7108 + }, + { + "start": 47108.08, + "end": 47111.98, + "probability": 0.9889 + }, + { + "start": 47112.12, + "end": 47113.16, + "probability": 0.9897 + }, + { + "start": 47113.38, + "end": 47114.4, + "probability": 0.9997 + }, + { + "start": 47116.56, + "end": 47117.22, + "probability": 0.9922 + }, + { + "start": 47119.76, + "end": 47122.7, + "probability": 0.9919 + }, + { + "start": 47125.3, + "end": 47126.12, + "probability": 0.7711 + }, + { + "start": 47127.16, + "end": 47128.54, + "probability": 0.9985 + }, + { + "start": 47129.86, + "end": 47131.26, + "probability": 0.9888 + }, + { + "start": 47132.68, + "end": 47133.36, + "probability": 0.9908 + }, + { + "start": 47134.62, + "end": 47136.12, + "probability": 0.9863 + }, + { + "start": 47138.6, + "end": 47140.02, + "probability": 0.9937 + }, + { + "start": 47140.88, + "end": 47142.92, + "probability": 0.6987 + }, + { + "start": 47146.18, + "end": 47146.68, + "probability": 0.9195 + }, + { + "start": 47150.48, + "end": 47153.4, + "probability": 0.991 + }, + { + "start": 47153.44, + "end": 47156.68, + "probability": 0.8916 + }, + { + "start": 47159.32, + "end": 47163.04, + "probability": 0.9915 + }, + { + "start": 47163.18, + "end": 47163.95, + "probability": 0.974 + }, + { + "start": 47168.0, + "end": 47169.26, + "probability": 0.9464 + }, + { + "start": 47170.28, + "end": 47172.16, + "probability": 0.9421 + }, + { + "start": 47174.06, + "end": 47175.12, + "probability": 0.6773 + }, + { + "start": 47175.44, + "end": 47176.2, + "probability": 0.7282 + }, + { + "start": 47176.24, + "end": 47179.88, + "probability": 0.9276 + }, + { + "start": 47181.26, + "end": 47182.9, + "probability": 0.9216 + }, + { + "start": 47183.16, + "end": 47185.62, + "probability": 0.3765 + }, + { + "start": 47185.62, + "end": 47185.74, + "probability": 0.0067 + }, + { + "start": 47185.74, + "end": 47185.74, + "probability": 0.0366 + }, + { + "start": 47185.98, + "end": 47186.38, + "probability": 0.6119 + }, + { + "start": 47187.88, + "end": 47188.1, + "probability": 0.5886 + }, + { + "start": 47188.64, + "end": 47192.06, + "probability": 0.9936 + }, + { + "start": 47193.1, + "end": 47194.06, + "probability": 0.8452 + }, + { + "start": 47194.38, + "end": 47195.64, + "probability": 0.9822 + }, + { + "start": 47198.9, + "end": 47200.26, + "probability": 0.9024 + }, + { + "start": 47202.16, + "end": 47203.5, + "probability": 0.9971 + }, + { + "start": 47204.78, + "end": 47206.48, + "probability": 0.9985 + }, + { + "start": 47207.76, + "end": 47209.3, + "probability": 0.9903 + }, + { + "start": 47210.48, + "end": 47211.34, + "probability": 0.7247 + }, + { + "start": 47211.48, + "end": 47212.46, + "probability": 0.9687 + }, + { + "start": 47212.56, + "end": 47213.3, + "probability": 0.6913 + }, + { + "start": 47213.4, + "end": 47213.82, + "probability": 0.7556 + }, + { + "start": 47215.32, + "end": 47216.98, + "probability": 0.9489 + }, + { + "start": 47217.52, + "end": 47217.76, + "probability": 0.9948 + }, + { + "start": 47218.38, + "end": 47219.18, + "probability": 0.9102 + }, + { + "start": 47219.72, + "end": 47220.6, + "probability": 0.8994 + }, + { + "start": 47220.7, + "end": 47222.02, + "probability": 0.9172 + }, + { + "start": 47222.14, + "end": 47223.62, + "probability": 0.8737 + }, + { + "start": 47225.8, + "end": 47228.86, + "probability": 0.9963 + }, + { + "start": 47228.86, + "end": 47231.12, + "probability": 0.999 + }, + { + "start": 47231.32, + "end": 47234.62, + "probability": 0.9754 + }, + { + "start": 47236.52, + "end": 47239.48, + "probability": 0.9749 + }, + { + "start": 47242.52, + "end": 47243.28, + "probability": 0.8357 + }, + { + "start": 47244.62, + "end": 47245.06, + "probability": 0.9675 + }, + { + "start": 47246.44, + "end": 47247.64, + "probability": 0.3553 + }, + { + "start": 47247.94, + "end": 47249.22, + "probability": 0.9187 + }, + { + "start": 47249.28, + "end": 47249.72, + "probability": 0.6381 + }, + { + "start": 47251.22, + "end": 47254.36, + "probability": 0.9926 + }, + { + "start": 47254.44, + "end": 47256.13, + "probability": 0.9929 + }, + { + "start": 47256.96, + "end": 47258.62, + "probability": 0.9729 + }, + { + "start": 47260.7, + "end": 47261.76, + "probability": 0.9802 + }, + { + "start": 47263.5, + "end": 47263.92, + "probability": 0.3183 + }, + { + "start": 47264.16, + "end": 47265.66, + "probability": 0.4615 + }, + { + "start": 47265.88, + "end": 47269.18, + "probability": 0.6006 + }, + { + "start": 47270.6, + "end": 47271.98, + "probability": 0.8525 + }, + { + "start": 47272.64, + "end": 47273.2, + "probability": 0.5135 + }, + { + "start": 47274.68, + "end": 47275.6, + "probability": 0.8838 + }, + { + "start": 47277.9, + "end": 47281.1, + "probability": 0.8732 + }, + { + "start": 47281.52, + "end": 47281.96, + "probability": 0.8922 + }, + { + "start": 47283.42, + "end": 47284.34, + "probability": 0.9374 + }, + { + "start": 47285.24, + "end": 47287.81, + "probability": 0.8205 + }, + { + "start": 47290.56, + "end": 47291.05, + "probability": 0.6577 + }, + { + "start": 47291.88, + "end": 47292.32, + "probability": 0.6294 + }, + { + "start": 47295.22, + "end": 47297.34, + "probability": 0.7504 + }, + { + "start": 47298.9, + "end": 47303.16, + "probability": 0.9304 + }, + { + "start": 47305.48, + "end": 47308.36, + "probability": 0.9639 + }, + { + "start": 47309.54, + "end": 47310.96, + "probability": 0.701 + }, + { + "start": 47311.92, + "end": 47317.08, + "probability": 0.8922 + }, + { + "start": 47318.26, + "end": 47320.62, + "probability": 0.8823 + }, + { + "start": 47320.7, + "end": 47320.94, + "probability": 0.7844 + }, + { + "start": 47321.32, + "end": 47322.58, + "probability": 0.9623 + }, + { + "start": 47323.64, + "end": 47325.66, + "probability": 0.7275 + }, + { + "start": 47327.12, + "end": 47328.0, + "probability": 0.9167 + }, + { + "start": 47328.98, + "end": 47330.64, + "probability": 0.9912 + }, + { + "start": 47332.38, + "end": 47334.5, + "probability": 0.8824 + }, + { + "start": 47335.28, + "end": 47336.72, + "probability": 0.6833 + }, + { + "start": 47337.3, + "end": 47338.82, + "probability": 0.7676 + }, + { + "start": 47340.38, + "end": 47341.71, + "probability": 0.9614 + }, + { + "start": 47342.0, + "end": 47343.38, + "probability": 0.9946 + }, + { + "start": 47344.68, + "end": 47345.58, + "probability": 0.9653 + }, + { + "start": 47346.6, + "end": 47348.34, + "probability": 0.8589 + }, + { + "start": 47350.96, + "end": 47352.02, + "probability": 0.9696 + }, + { + "start": 47353.22, + "end": 47355.21, + "probability": 0.9629 + }, + { + "start": 47356.18, + "end": 47358.08, + "probability": 0.9746 + }, + { + "start": 47359.78, + "end": 47360.56, + "probability": 0.3044 + }, + { + "start": 47361.86, + "end": 47363.28, + "probability": 0.9443 + }, + { + "start": 47364.98, + "end": 47365.66, + "probability": 0.9679 + }, + { + "start": 47366.94, + "end": 47367.96, + "probability": 0.8046 + }, + { + "start": 47369.54, + "end": 47370.9, + "probability": 0.9758 + }, + { + "start": 47371.98, + "end": 47374.3, + "probability": 0.9962 + }, + { + "start": 47376.28, + "end": 47376.74, + "probability": 0.8896 + }, + { + "start": 47379.04, + "end": 47384.92, + "probability": 0.9258 + }, + { + "start": 47386.52, + "end": 47386.76, + "probability": 0.8772 + }, + { + "start": 47388.56, + "end": 47389.8, + "probability": 0.9739 + }, + { + "start": 47391.08, + "end": 47391.48, + "probability": 0.9387 + }, + { + "start": 47392.08, + "end": 47393.5, + "probability": 0.8037 + }, + { + "start": 47394.86, + "end": 47397.36, + "probability": 0.9606 + }, + { + "start": 47398.14, + "end": 47399.44, + "probability": 0.9669 + }, + { + "start": 47400.8, + "end": 47404.56, + "probability": 0.9886 + }, + { + "start": 47405.38, + "end": 47405.62, + "probability": 0.7747 + }, + { + "start": 47407.64, + "end": 47409.1, + "probability": 0.73 + }, + { + "start": 47412.42, + "end": 47414.48, + "probability": 0.9482 + }, + { + "start": 47415.8, + "end": 47417.32, + "probability": 0.7827 + }, + { + "start": 47418.08, + "end": 47418.74, + "probability": 0.91 + }, + { + "start": 47419.96, + "end": 47421.64, + "probability": 0.6616 + }, + { + "start": 47422.12, + "end": 47423.68, + "probability": 0.9264 + }, + { + "start": 47424.88, + "end": 47426.46, + "probability": 0.768 + }, + { + "start": 47428.72, + "end": 47430.16, + "probability": 0.9814 + }, + { + "start": 47430.68, + "end": 47431.84, + "probability": 0.9875 + }, + { + "start": 47432.26, + "end": 47433.92, + "probability": 0.9269 + }, + { + "start": 47434.14, + "end": 47436.44, + "probability": 0.9916 + }, + { + "start": 47437.62, + "end": 47438.58, + "probability": 0.9429 + }, + { + "start": 47438.8, + "end": 47439.14, + "probability": 0.9377 + }, + { + "start": 47440.56, + "end": 47442.24, + "probability": 0.9435 + }, + { + "start": 47444.6, + "end": 47444.68, + "probability": 0.155 + }, + { + "start": 47444.72, + "end": 47445.98, + "probability": 0.8233 + }, + { + "start": 47452.44, + "end": 47453.1, + "probability": 0.9514 + }, + { + "start": 47453.78, + "end": 47457.2, + "probability": 0.9419 + }, + { + "start": 47457.32, + "end": 47458.48, + "probability": 0.7448 + }, + { + "start": 47459.36, + "end": 47459.72, + "probability": 0.9658 + }, + { + "start": 47461.1, + "end": 47462.64, + "probability": 0.9907 + }, + { + "start": 47463.16, + "end": 47463.79, + "probability": 0.9114 + }, + { + "start": 47465.38, + "end": 47466.02, + "probability": 0.7267 + }, + { + "start": 47466.12, + "end": 47467.24, + "probability": 0.9811 + }, + { + "start": 47468.3, + "end": 47472.14, + "probability": 0.9905 + }, + { + "start": 47473.3, + "end": 47477.12, + "probability": 0.9762 + }, + { + "start": 47478.76, + "end": 47480.08, + "probability": 0.5139 + }, + { + "start": 47481.6, + "end": 47486.22, + "probability": 0.9799 + }, + { + "start": 47486.4, + "end": 47487.22, + "probability": 0.9463 + }, + { + "start": 47487.98, + "end": 47488.2, + "probability": 0.5659 + }, + { + "start": 47488.58, + "end": 47490.5, + "probability": 0.8411 + }, + { + "start": 47491.8, + "end": 47492.2, + "probability": 0.7063 + }, + { + "start": 47492.2, + "end": 47493.24, + "probability": 0.826 + }, + { + "start": 47493.36, + "end": 47495.64, + "probability": 0.9902 + }, + { + "start": 47495.88, + "end": 47498.4, + "probability": 0.9565 + }, + { + "start": 47499.24, + "end": 47500.06, + "probability": 0.9751 + }, + { + "start": 47500.7, + "end": 47502.7, + "probability": 0.7849 + }, + { + "start": 47503.7, + "end": 47504.67, + "probability": 0.8363 + }, + { + "start": 47506.2, + "end": 47510.04, + "probability": 0.9952 + }, + { + "start": 47510.34, + "end": 47513.33, + "probability": 0.9946 + }, + { + "start": 47513.84, + "end": 47514.16, + "probability": 0.9064 + }, + { + "start": 47515.0, + "end": 47517.33, + "probability": 0.5991 + }, + { + "start": 47518.18, + "end": 47521.28, + "probability": 0.8975 + }, + { + "start": 47521.38, + "end": 47521.64, + "probability": 0.5212 + }, + { + "start": 47521.64, + "end": 47521.66, + "probability": 0.4951 + }, + { + "start": 47521.66, + "end": 47521.66, + "probability": 0.6338 + }, + { + "start": 47521.68, + "end": 47522.64, + "probability": 0.812 + }, + { + "start": 47523.06, + "end": 47524.5, + "probability": 0.9714 + }, + { + "start": 47524.54, + "end": 47524.72, + "probability": 0.8195 + }, + { + "start": 47525.1, + "end": 47525.26, + "probability": 0.767 + }, + { + "start": 47525.64, + "end": 47528.32, + "probability": 0.897 + }, + { + "start": 47528.48, + "end": 47531.02, + "probability": 0.8887 + }, + { + "start": 47541.29, + "end": 47544.5, + "probability": 0.943 + }, + { + "start": 47547.02, + "end": 47549.6, + "probability": 0.7703 + }, + { + "start": 47550.18, + "end": 47551.49, + "probability": 0.6973 + }, + { + "start": 47551.82, + "end": 47553.12, + "probability": 0.804 + }, + { + "start": 47553.12, + "end": 47554.02, + "probability": 0.5406 + }, + { + "start": 47554.02, + "end": 47554.82, + "probability": 0.7016 + }, + { + "start": 47556.44, + "end": 47559.14, + "probability": 0.7738 + }, + { + "start": 47560.3, + "end": 47561.36, + "probability": 0.6031 + }, + { + "start": 47562.62, + "end": 47569.64, + "probability": 0.9819 + }, + { + "start": 47571.66, + "end": 47572.66, + "probability": 0.7082 + }, + { + "start": 47574.1, + "end": 47574.94, + "probability": 0.6903 + }, + { + "start": 47575.46, + "end": 47575.96, + "probability": 0.9651 + }, + { + "start": 47576.68, + "end": 47577.08, + "probability": 0.9229 + }, + { + "start": 47578.36, + "end": 47579.22, + "probability": 0.597 + }, + { + "start": 47579.98, + "end": 47580.86, + "probability": 0.9937 + }, + { + "start": 47581.62, + "end": 47586.0, + "probability": 0.8685 + }, + { + "start": 47586.78, + "end": 47588.18, + "probability": 0.9686 + }, + { + "start": 47589.42, + "end": 47590.34, + "probability": 0.7788 + }, + { + "start": 47592.28, + "end": 47594.86, + "probability": 0.9946 + }, + { + "start": 47595.56, + "end": 47597.46, + "probability": 0.983 + }, + { + "start": 47599.9, + "end": 47601.17, + "probability": 0.9271 + }, + { + "start": 47602.72, + "end": 47604.14, + "probability": 0.8375 + }, + { + "start": 47605.66, + "end": 47607.32, + "probability": 0.8347 + }, + { + "start": 47608.0, + "end": 47609.46, + "probability": 0.9715 + }, + { + "start": 47610.92, + "end": 47613.24, + "probability": 0.6865 + }, + { + "start": 47614.52, + "end": 47616.62, + "probability": 0.9207 + }, + { + "start": 47617.97, + "end": 47621.06, + "probability": 0.9914 + }, + { + "start": 47622.7, + "end": 47627.61, + "probability": 0.9749 + }, + { + "start": 47628.62, + "end": 47630.29, + "probability": 0.8757 + }, + { + "start": 47631.22, + "end": 47633.72, + "probability": 0.9858 + }, + { + "start": 47635.44, + "end": 47639.24, + "probability": 0.9712 + }, + { + "start": 47640.46, + "end": 47641.86, + "probability": 0.9318 + }, + { + "start": 47642.42, + "end": 47650.38, + "probability": 0.9621 + }, + { + "start": 47651.86, + "end": 47655.26, + "probability": 0.9641 + }, + { + "start": 47656.36, + "end": 47658.46, + "probability": 0.89 + }, + { + "start": 47658.88, + "end": 47660.02, + "probability": 0.9639 + }, + { + "start": 47662.68, + "end": 47665.86, + "probability": 0.9584 + }, + { + "start": 47666.66, + "end": 47668.16, + "probability": 0.9834 + }, + { + "start": 47669.18, + "end": 47671.06, + "probability": 0.995 + }, + { + "start": 47671.58, + "end": 47672.66, + "probability": 0.9846 + }, + { + "start": 47674.3, + "end": 47675.07, + "probability": 0.9878 + }, + { + "start": 47676.52, + "end": 47677.15, + "probability": 0.9683 + }, + { + "start": 47678.1, + "end": 47679.66, + "probability": 0.9755 + }, + { + "start": 47680.52, + "end": 47681.34, + "probability": 0.619 + }, + { + "start": 47682.72, + "end": 47686.66, + "probability": 0.9725 + }, + { + "start": 47686.66, + "end": 47693.04, + "probability": 0.9604 + }, + { + "start": 47693.72, + "end": 47694.4, + "probability": 0.9666 + }, + { + "start": 47695.5, + "end": 47697.78, + "probability": 0.7323 + }, + { + "start": 47698.74, + "end": 47699.44, + "probability": 0.6808 + }, + { + "start": 47700.7, + "end": 47705.04, + "probability": 0.9592 + }, + { + "start": 47705.36, + "end": 47707.72, + "probability": 0.869 + }, + { + "start": 47708.48, + "end": 47709.7, + "probability": 0.9739 + }, + { + "start": 47711.42, + "end": 47712.1, + "probability": 0.9888 + }, + { + "start": 47713.32, + "end": 47713.91, + "probability": 0.9746 + }, + { + "start": 47715.2, + "end": 47717.92, + "probability": 0.8209 + }, + { + "start": 47719.24, + "end": 47720.42, + "probability": 0.7688 + }, + { + "start": 47721.14, + "end": 47722.16, + "probability": 0.9644 + }, + { + "start": 47723.42, + "end": 47726.24, + "probability": 0.9953 + }, + { + "start": 47728.3, + "end": 47729.34, + "probability": 0.6371 + }, + { + "start": 47730.0, + "end": 47732.25, + "probability": 0.9956 + }, + { + "start": 47733.14, + "end": 47733.38, + "probability": 0.4844 + }, + { + "start": 47733.62, + "end": 47734.46, + "probability": 0.8375 + }, + { + "start": 47736.5, + "end": 47741.06, + "probability": 0.9938 + }, + { + "start": 47741.14, + "end": 47743.04, + "probability": 0.9763 + }, + { + "start": 47743.1, + "end": 47743.16, + "probability": 0.5635 + }, + { + "start": 47743.86, + "end": 47744.54, + "probability": 0.9902 + }, + { + "start": 47747.18, + "end": 47749.42, + "probability": 0.8431 + }, + { + "start": 47750.36, + "end": 47751.18, + "probability": 0.7681 + }, + { + "start": 47751.72, + "end": 47753.38, + "probability": 0.9579 + }, + { + "start": 47754.7, + "end": 47755.36, + "probability": 0.985 + }, + { + "start": 47757.1, + "end": 47761.86, + "probability": 0.8801 + }, + { + "start": 47762.54, + "end": 47763.4, + "probability": 0.9803 + }, + { + "start": 47764.54, + "end": 47764.84, + "probability": 0.9958 + }, + { + "start": 47766.92, + "end": 47767.46, + "probability": 0.7312 + }, + { + "start": 47769.88, + "end": 47773.82, + "probability": 0.9916 + }, + { + "start": 47774.98, + "end": 47775.94, + "probability": 0.7452 + }, + { + "start": 47777.22, + "end": 47779.4, + "probability": 0.96 + }, + { + "start": 47780.08, + "end": 47782.96, + "probability": 0.9897 + }, + { + "start": 47782.96, + "end": 47786.82, + "probability": 0.98 + }, + { + "start": 47787.74, + "end": 47789.42, + "probability": 0.9875 + }, + { + "start": 47790.14, + "end": 47791.02, + "probability": 0.8742 + }, + { + "start": 47791.96, + "end": 47795.84, + "probability": 0.9893 + }, + { + "start": 47796.58, + "end": 47799.72, + "probability": 0.957 + }, + { + "start": 47800.62, + "end": 47800.94, + "probability": 0.6263 + }, + { + "start": 47802.36, + "end": 47805.32, + "probability": 0.9551 + }, + { + "start": 47805.52, + "end": 47806.32, + "probability": 0.811 + }, + { + "start": 47807.6, + "end": 47810.62, + "probability": 0.8477 + }, + { + "start": 47811.8, + "end": 47812.94, + "probability": 0.9297 + }, + { + "start": 47813.0, + "end": 47815.76, + "probability": 0.8596 + }, + { + "start": 47815.76, + "end": 47820.99, + "probability": 0.9944 + }, + { + "start": 47822.28, + "end": 47823.28, + "probability": 0.8032 + }, + { + "start": 47824.66, + "end": 47825.52, + "probability": 0.9245 + }, + { + "start": 47826.94, + "end": 47827.34, + "probability": 0.7687 + }, + { + "start": 47828.14, + "end": 47828.48, + "probability": 0.9393 + }, + { + "start": 47830.26, + "end": 47832.62, + "probability": 0.9898 + }, + { + "start": 47833.6, + "end": 47835.54, + "probability": 0.8262 + }, + { + "start": 47838.52, + "end": 47840.08, + "probability": 0.7645 + }, + { + "start": 47840.2, + "end": 47840.76, + "probability": 0.8505 + }, + { + "start": 47840.94, + "end": 47843.22, + "probability": 0.9104 + }, + { + "start": 47843.38, + "end": 47845.11, + "probability": 0.9906 + }, + { + "start": 47845.8, + "end": 47851.26, + "probability": 0.9947 + }, + { + "start": 47853.64, + "end": 47857.36, + "probability": 0.7386 + }, + { + "start": 47859.0, + "end": 47863.0, + "probability": 0.9495 + }, + { + "start": 47863.18, + "end": 47864.14, + "probability": 0.9048 + }, + { + "start": 47864.54, + "end": 47865.58, + "probability": 0.7212 + }, + { + "start": 47866.88, + "end": 47869.82, + "probability": 0.9951 + }, + { + "start": 47870.34, + "end": 47871.7, + "probability": 0.8909 + }, + { + "start": 47872.3, + "end": 47873.36, + "probability": 0.814 + }, + { + "start": 47874.78, + "end": 47880.06, + "probability": 0.99 + }, + { + "start": 47883.34, + "end": 47883.84, + "probability": 0.9304 + }, + { + "start": 47885.18, + "end": 47889.0, + "probability": 0.9557 + }, + { + "start": 47890.14, + "end": 47891.92, + "probability": 0.8407 + }, + { + "start": 47893.2, + "end": 47897.32, + "probability": 0.9908 + }, + { + "start": 47898.24, + "end": 47898.44, + "probability": 0.7624 + }, + { + "start": 47898.78, + "end": 47899.46, + "probability": 0.9663 + }, + { + "start": 47899.66, + "end": 47901.42, + "probability": 0.8794 + }, + { + "start": 47901.54, + "end": 47904.58, + "probability": 0.9567 + }, + { + "start": 47905.98, + "end": 47906.22, + "probability": 0.6208 + }, + { + "start": 47907.92, + "end": 47912.44, + "probability": 0.9937 + }, + { + "start": 47912.44, + "end": 47915.6, + "probability": 0.9673 + }, + { + "start": 47918.74, + "end": 47925.94, + "probability": 0.8533 + }, + { + "start": 47927.58, + "end": 47932.36, + "probability": 0.9756 + }, + { + "start": 47933.4, + "end": 47935.7, + "probability": 0.9643 + }, + { + "start": 47936.46, + "end": 47938.76, + "probability": 0.9949 + }, + { + "start": 47939.86, + "end": 47940.86, + "probability": 0.9863 + }, + { + "start": 47944.28, + "end": 47945.1, + "probability": 0.9517 + }, + { + "start": 47946.06, + "end": 47947.26, + "probability": 0.9882 + }, + { + "start": 47948.88, + "end": 47950.5, + "probability": 0.8553 + }, + { + "start": 47950.56, + "end": 47957.57, + "probability": 0.9315 + }, + { + "start": 47957.94, + "end": 47958.22, + "probability": 0.7479 + }, + { + "start": 47958.84, + "end": 47959.57, + "probability": 0.9078 + }, + { + "start": 47960.42, + "end": 47963.08, + "probability": 0.9187 + }, + { + "start": 47963.8, + "end": 47965.64, + "probability": 0.8472 + }, + { + "start": 47966.76, + "end": 47967.24, + "probability": 0.9561 + }, + { + "start": 47968.32, + "end": 47969.32, + "probability": 0.8339 + }, + { + "start": 47972.6, + "end": 47974.96, + "probability": 0.9899 + }, + { + "start": 47975.82, + "end": 47978.02, + "probability": 0.9598 + }, + { + "start": 47979.0, + "end": 47981.36, + "probability": 0.8778 + }, + { + "start": 47982.42, + "end": 47984.58, + "probability": 0.9953 + }, + { + "start": 47985.72, + "end": 47990.04, + "probability": 0.7709 + }, + { + "start": 47992.16, + "end": 47993.56, + "probability": 0.9303 + }, + { + "start": 47993.8, + "end": 47994.4, + "probability": 0.8016 + }, + { + "start": 47994.4, + "end": 47995.34, + "probability": 0.5222 + }, + { + "start": 47995.44, + "end": 47998.36, + "probability": 0.7839 + }, + { + "start": 47998.64, + "end": 47999.48, + "probability": 0.988 + }, + { + "start": 48000.7, + "end": 48006.1, + "probability": 0.9739 + }, + { + "start": 48006.56, + "end": 48010.09, + "probability": 0.9951 + }, + { + "start": 48011.72, + "end": 48015.42, + "probability": 0.972 + }, + { + "start": 48015.7, + "end": 48019.34, + "probability": 0.9566 + }, + { + "start": 48020.04, + "end": 48020.84, + "probability": 0.9284 + }, + { + "start": 48022.46, + "end": 48026.78, + "probability": 0.9758 + }, + { + "start": 48028.18, + "end": 48029.12, + "probability": 0.9083 + }, + { + "start": 48030.2, + "end": 48034.7, + "probability": 0.9677 + }, + { + "start": 48035.46, + "end": 48037.1, + "probability": 0.9925 + }, + { + "start": 48037.64, + "end": 48039.48, + "probability": 0.9921 + }, + { + "start": 48041.06, + "end": 48043.88, + "probability": 0.9787 + }, + { + "start": 48044.9, + "end": 48045.78, + "probability": 0.9074 + }, + { + "start": 48046.3, + "end": 48046.98, + "probability": 0.8849 + }, + { + "start": 48048.98, + "end": 48049.88, + "probability": 0.6466 + }, + { + "start": 48051.22, + "end": 48053.24, + "probability": 0.98 + }, + { + "start": 48054.56, + "end": 48055.28, + "probability": 0.9438 + }, + { + "start": 48056.46, + "end": 48058.26, + "probability": 0.9824 + }, + { + "start": 48059.32, + "end": 48063.86, + "probability": 0.9832 + }, + { + "start": 48064.62, + "end": 48069.56, + "probability": 0.9795 + }, + { + "start": 48070.16, + "end": 48070.56, + "probability": 0.5273 + }, + { + "start": 48071.36, + "end": 48072.12, + "probability": 0.914 + }, + { + "start": 48072.48, + "end": 48077.34, + "probability": 0.6303 + }, + { + "start": 48078.44, + "end": 48080.92, + "probability": 0.9046 + }, + { + "start": 48081.96, + "end": 48082.12, + "probability": 0.8516 + }, + { + "start": 48082.84, + "end": 48085.7, + "probability": 0.9803 + }, + { + "start": 48086.44, + "end": 48087.38, + "probability": 0.8913 + }, + { + "start": 48088.3, + "end": 48093.66, + "probability": 0.9834 + }, + { + "start": 48094.88, + "end": 48095.34, + "probability": 0.8044 + }, + { + "start": 48096.02, + "end": 48096.58, + "probability": 0.8927 + }, + { + "start": 48097.28, + "end": 48102.4, + "probability": 0.956 + }, + { + "start": 48103.36, + "end": 48103.74, + "probability": 0.9764 + }, + { + "start": 48104.72, + "end": 48105.26, + "probability": 0.9837 + }, + { + "start": 48107.16, + "end": 48107.42, + "probability": 0.4681 + }, + { + "start": 48107.5, + "end": 48108.08, + "probability": 0.8772 + }, + { + "start": 48109.3, + "end": 48109.98, + "probability": 0.9865 + }, + { + "start": 48111.14, + "end": 48111.92, + "probability": 0.9731 + }, + { + "start": 48112.96, + "end": 48114.4, + "probability": 0.9956 + }, + { + "start": 48115.56, + "end": 48117.88, + "probability": 0.9656 + }, + { + "start": 48118.06, + "end": 48122.86, + "probability": 0.904 + }, + { + "start": 48124.1, + "end": 48125.56, + "probability": 0.941 + }, + { + "start": 48128.36, + "end": 48129.48, + "probability": 0.8617 + }, + { + "start": 48130.02, + "end": 48130.52, + "probability": 0.5125 + }, + { + "start": 48131.18, + "end": 48134.38, + "probability": 0.7788 + }, + { + "start": 48135.02, + "end": 48138.72, + "probability": 0.9902 + }, + { + "start": 48139.56, + "end": 48142.42, + "probability": 0.9789 + }, + { + "start": 48143.42, + "end": 48144.86, + "probability": 0.7627 + }, + { + "start": 48145.9, + "end": 48147.36, + "probability": 0.7261 + }, + { + "start": 48149.74, + "end": 48151.94, + "probability": 0.9663 + }, + { + "start": 48152.82, + "end": 48153.52, + "probability": 0.9166 + }, + { + "start": 48154.22, + "end": 48155.44, + "probability": 0.9577 + }, + { + "start": 48157.7, + "end": 48158.96, + "probability": 0.9651 + }, + { + "start": 48159.76, + "end": 48162.24, + "probability": 0.6022 + }, + { + "start": 48162.34, + "end": 48163.01, + "probability": 0.9497 + }, + { + "start": 48163.7, + "end": 48170.92, + "probability": 0.8284 + }, + { + "start": 48172.34, + "end": 48172.98, + "probability": 0.7969 + }, + { + "start": 48173.72, + "end": 48176.6, + "probability": 0.7499 + }, + { + "start": 48177.9, + "end": 48178.58, + "probability": 0.95 + }, + { + "start": 48179.38, + "end": 48184.52, + "probability": 0.9434 + }, + { + "start": 48187.24, + "end": 48189.68, + "probability": 0.9896 + }, + { + "start": 48190.24, + "end": 48191.26, + "probability": 0.7547 + }, + { + "start": 48192.08, + "end": 48192.56, + "probability": 0.5003 + }, + { + "start": 48193.82, + "end": 48194.0, + "probability": 0.4042 + }, + { + "start": 48194.14, + "end": 48200.5, + "probability": 0.6511 + }, + { + "start": 48200.66, + "end": 48201.1, + "probability": 0.3708 + }, + { + "start": 48202.3, + "end": 48203.4, + "probability": 0.8889 + }, + { + "start": 48205.4, + "end": 48205.8, + "probability": 0.9619 + }, + { + "start": 48206.42, + "end": 48207.82, + "probability": 0.8996 + }, + { + "start": 48209.4, + "end": 48214.04, + "probability": 0.9283 + }, + { + "start": 48215.1, + "end": 48216.26, + "probability": 0.8017 + }, + { + "start": 48220.42, + "end": 48220.88, + "probability": 0.9136 + }, + { + "start": 48221.56, + "end": 48224.58, + "probability": 0.9434 + }, + { + "start": 48227.56, + "end": 48232.84, + "probability": 0.9988 + }, + { + "start": 48234.0, + "end": 48234.5, + "probability": 0.4965 + }, + { + "start": 48240.22, + "end": 48242.46, + "probability": 0.7246 + }, + { + "start": 48242.52, + "end": 48245.34, + "probability": 0.9772 + }, + { + "start": 48246.12, + "end": 48248.46, + "probability": 0.9044 + }, + { + "start": 48250.72, + "end": 48254.83, + "probability": 0.8595 + }, + { + "start": 48256.42, + "end": 48260.54, + "probability": 0.9045 + }, + { + "start": 48262.68, + "end": 48265.86, + "probability": 0.9772 + }, + { + "start": 48268.06, + "end": 48270.18, + "probability": 0.5813 + }, + { + "start": 48271.22, + "end": 48277.32, + "probability": 0.9214 + }, + { + "start": 48279.72, + "end": 48282.78, + "probability": 0.9424 + }, + { + "start": 48284.6, + "end": 48285.72, + "probability": 0.967 + }, + { + "start": 48287.28, + "end": 48288.02, + "probability": 0.978 + }, + { + "start": 48289.48, + "end": 48291.1, + "probability": 0.9584 + }, + { + "start": 48292.62, + "end": 48298.02, + "probability": 0.9633 + }, + { + "start": 48300.68, + "end": 48302.28, + "probability": 0.9845 + }, + { + "start": 48303.44, + "end": 48310.4, + "probability": 0.7538 + }, + { + "start": 48311.08, + "end": 48313.88, + "probability": 0.9747 + }, + { + "start": 48314.84, + "end": 48315.54, + "probability": 0.7476 + }, + { + "start": 48317.32, + "end": 48321.7, + "probability": 0.9857 + }, + { + "start": 48323.54, + "end": 48324.5, + "probability": 0.9697 + }, + { + "start": 48325.74, + "end": 48326.58, + "probability": 0.9139 + }, + { + "start": 48327.74, + "end": 48328.66, + "probability": 0.9916 + }, + { + "start": 48329.22, + "end": 48331.82, + "probability": 0.8457 + }, + { + "start": 48333.58, + "end": 48333.86, + "probability": 0.9041 + }, + { + "start": 48334.82, + "end": 48335.7, + "probability": 0.7212 + }, + { + "start": 48338.18, + "end": 48341.48, + "probability": 0.9904 + }, + { + "start": 48343.48, + "end": 48348.04, + "probability": 0.9917 + }, + { + "start": 48348.32, + "end": 48348.84, + "probability": 0.9709 + }, + { + "start": 48349.46, + "end": 48349.82, + "probability": 0.9923 + }, + { + "start": 48351.14, + "end": 48351.88, + "probability": 0.9912 + }, + { + "start": 48353.88, + "end": 48356.3, + "probability": 0.8928 + }, + { + "start": 48357.9, + "end": 48362.62, + "probability": 0.9912 + }, + { + "start": 48363.72, + "end": 48364.24, + "probability": 0.8422 + }, + { + "start": 48365.72, + "end": 48367.0, + "probability": 0.9886 + }, + { + "start": 48369.12, + "end": 48371.06, + "probability": 0.9993 + }, + { + "start": 48371.94, + "end": 48375.24, + "probability": 0.9967 + }, + { + "start": 48376.28, + "end": 48377.04, + "probability": 0.9386 + }, + { + "start": 48377.76, + "end": 48378.14, + "probability": 0.4558 + }, + { + "start": 48379.72, + "end": 48383.12, + "probability": 0.9717 + }, + { + "start": 48383.42, + "end": 48385.91, + "probability": 0.9812 + }, + { + "start": 48387.7, + "end": 48391.34, + "probability": 0.9918 + }, + { + "start": 48392.06, + "end": 48397.04, + "probability": 0.984 + }, + { + "start": 48397.78, + "end": 48398.74, + "probability": 0.9644 + }, + { + "start": 48401.4, + "end": 48405.62, + "probability": 0.8136 + }, + { + "start": 48408.4, + "end": 48410.76, + "probability": 0.9636 + }, + { + "start": 48412.1, + "end": 48413.18, + "probability": 0.9864 + }, + { + "start": 48415.44, + "end": 48416.06, + "probability": 0.9629 + }, + { + "start": 48418.38, + "end": 48422.78, + "probability": 0.9937 + }, + { + "start": 48424.38, + "end": 48425.1, + "probability": 0.7827 + }, + { + "start": 48426.06, + "end": 48428.2, + "probability": 0.9385 + }, + { + "start": 48429.64, + "end": 48430.54, + "probability": 0.9859 + }, + { + "start": 48432.0, + "end": 48432.56, + "probability": 0.9001 + }, + { + "start": 48433.64, + "end": 48433.94, + "probability": 0.9431 + }, + { + "start": 48434.8, + "end": 48436.66, + "probability": 0.9565 + }, + { + "start": 48439.02, + "end": 48440.08, + "probability": 0.9792 + }, + { + "start": 48440.7, + "end": 48440.96, + "probability": 0.8874 + }, + { + "start": 48442.04, + "end": 48442.4, + "probability": 0.9873 + }, + { + "start": 48443.06, + "end": 48443.7, + "probability": 0.3184 + }, + { + "start": 48446.1, + "end": 48454.74, + "probability": 0.993 + }, + { + "start": 48457.12, + "end": 48458.2, + "probability": 0.8478 + }, + { + "start": 48459.02, + "end": 48460.12, + "probability": 0.784 + }, + { + "start": 48462.96, + "end": 48465.58, + "probability": 0.7136 + }, + { + "start": 48467.58, + "end": 48473.04, + "probability": 0.9729 + }, + { + "start": 48473.94, + "end": 48475.38, + "probability": 0.9819 + }, + { + "start": 48476.16, + "end": 48478.42, + "probability": 0.9046 + }, + { + "start": 48479.14, + "end": 48483.1, + "probability": 0.9565 + }, + { + "start": 48483.9, + "end": 48485.96, + "probability": 0.8377 + }, + { + "start": 48486.04, + "end": 48488.9, + "probability": 0.8645 + }, + { + "start": 48491.68, + "end": 48496.76, + "probability": 0.9889 + }, + { + "start": 48500.35, + "end": 48500.84, + "probability": 0.0284 + }, + { + "start": 48503.06, + "end": 48505.48, + "probability": 0.7518 + }, + { + "start": 48506.8, + "end": 48508.44, + "probability": 0.8772 + }, + { + "start": 48509.86, + "end": 48510.66, + "probability": 0.7585 + }, + { + "start": 48512.44, + "end": 48513.26, + "probability": 0.9897 + }, + { + "start": 48513.82, + "end": 48514.22, + "probability": 0.9388 + }, + { + "start": 48515.44, + "end": 48518.04, + "probability": 0.9377 + }, + { + "start": 48520.12, + "end": 48525.99, + "probability": 0.9775 + }, + { + "start": 48527.06, + "end": 48531.72, + "probability": 0.9956 + }, + { + "start": 48532.32, + "end": 48532.92, + "probability": 0.8683 + }, + { + "start": 48538.64, + "end": 48540.08, + "probability": 0.6183 + }, + { + "start": 48543.0, + "end": 48547.86, + "probability": 0.9129 + }, + { + "start": 48549.52, + "end": 48550.48, + "probability": 0.9609 + }, + { + "start": 48552.42, + "end": 48552.92, + "probability": 0.4161 + }, + { + "start": 48553.62, + "end": 48554.16, + "probability": 0.3896 + }, + { + "start": 48554.98, + "end": 48556.64, + "probability": 0.9512 + }, + { + "start": 48557.66, + "end": 48559.97, + "probability": 0.96 + }, + { + "start": 48560.58, + "end": 48561.3, + "probability": 0.9769 + }, + { + "start": 48562.68, + "end": 48562.78, + "probability": 0.6726 + }, + { + "start": 48564.52, + "end": 48569.3, + "probability": 0.995 + }, + { + "start": 48572.04, + "end": 48574.6, + "probability": 0.98 + }, + { + "start": 48575.28, + "end": 48576.5, + "probability": 0.9927 + }, + { + "start": 48577.26, + "end": 48577.76, + "probability": 0.976 + }, + { + "start": 48578.4, + "end": 48579.16, + "probability": 0.6343 + }, + { + "start": 48580.52, + "end": 48583.12, + "probability": 0.7141 + }, + { + "start": 48584.24, + "end": 48585.38, + "probability": 0.9232 + }, + { + "start": 48586.12, + "end": 48586.88, + "probability": 0.9597 + }, + { + "start": 48587.98, + "end": 48589.02, + "probability": 0.9941 + }, + { + "start": 48590.36, + "end": 48590.88, + "probability": 0.8371 + }, + { + "start": 48592.9, + "end": 48595.16, + "probability": 0.9937 + }, + { + "start": 48596.54, + "end": 48597.56, + "probability": 0.9873 + }, + { + "start": 48597.64, + "end": 48600.6, + "probability": 0.9565 + }, + { + "start": 48600.74, + "end": 48602.82, + "probability": 0.9564 + }, + { + "start": 48602.98, + "end": 48603.92, + "probability": 0.6567 + }, + { + "start": 48605.04, + "end": 48608.16, + "probability": 0.7782 + }, + { + "start": 48609.52, + "end": 48610.52, + "probability": 0.8719 + }, + { + "start": 48611.32, + "end": 48612.34, + "probability": 0.9442 + }, + { + "start": 48612.74, + "end": 48614.62, + "probability": 0.9542 + }, + { + "start": 48615.28, + "end": 48616.36, + "probability": 0.9946 + }, + { + "start": 48617.02, + "end": 48619.02, + "probability": 0.8577 + }, + { + "start": 48619.2, + "end": 48622.92, + "probability": 0.9451 + }, + { + "start": 48625.72, + "end": 48626.44, + "probability": 0.6462 + }, + { + "start": 48627.94, + "end": 48628.58, + "probability": 0.8932 + }, + { + "start": 48630.0, + "end": 48631.14, + "probability": 0.9662 + }, + { + "start": 48632.96, + "end": 48634.78, + "probability": 0.8632 + }, + { + "start": 48636.7, + "end": 48638.3, + "probability": 0.744 + }, + { + "start": 48639.4, + "end": 48640.38, + "probability": 0.8861 + }, + { + "start": 48641.58, + "end": 48643.18, + "probability": 0.8713 + }, + { + "start": 48644.76, + "end": 48648.34, + "probability": 0.9094 + }, + { + "start": 48649.04, + "end": 48650.58, + "probability": 0.877 + }, + { + "start": 48652.1, + "end": 48652.9, + "probability": 0.9784 + }, + { + "start": 48655.56, + "end": 48659.16, + "probability": 0.9933 + }, + { + "start": 48659.16, + "end": 48663.04, + "probability": 0.9958 + }, + { + "start": 48665.52, + "end": 48665.86, + "probability": 0.6607 + }, + { + "start": 48667.66, + "end": 48671.22, + "probability": 0.9392 + }, + { + "start": 48672.26, + "end": 48675.82, + "probability": 0.9908 + }, + { + "start": 48676.48, + "end": 48679.16, + "probability": 0.9918 + }, + { + "start": 48679.66, + "end": 48683.0, + "probability": 0.8912 + }, + { + "start": 48683.76, + "end": 48686.26, + "probability": 0.9316 + }, + { + "start": 48687.0, + "end": 48688.0, + "probability": 0.9963 + }, + { + "start": 48689.96, + "end": 48690.62, + "probability": 0.8262 + }, + { + "start": 48691.92, + "end": 48692.52, + "probability": 0.875 + }, + { + "start": 48693.38, + "end": 48694.0, + "probability": 0.7985 + }, + { + "start": 48694.1, + "end": 48694.66, + "probability": 0.5956 + }, + { + "start": 48694.78, + "end": 48697.91, + "probability": 0.9629 + }, + { + "start": 48698.54, + "end": 48702.95, + "probability": 0.7906 + }, + { + "start": 48705.02, + "end": 48707.8, + "probability": 0.9893 + }, + { + "start": 48710.7, + "end": 48713.22, + "probability": 0.9681 + }, + { + "start": 48713.28, + "end": 48714.72, + "probability": 0.7943 + }, + { + "start": 48714.96, + "end": 48715.82, + "probability": 0.9512 + }, + { + "start": 48716.7, + "end": 48718.76, + "probability": 0.998 + }, + { + "start": 48719.62, + "end": 48721.28, + "probability": 0.922 + }, + { + "start": 48723.86, + "end": 48725.84, + "probability": 0.9066 + }, + { + "start": 48728.6, + "end": 48731.48, + "probability": 0.9921 + }, + { + "start": 48732.72, + "end": 48734.36, + "probability": 0.9113 + }, + { + "start": 48735.14, + "end": 48736.12, + "probability": 0.6017 + }, + { + "start": 48738.74, + "end": 48739.74, + "probability": 0.97 + }, + { + "start": 48740.34, + "end": 48744.96, + "probability": 0.9924 + }, + { + "start": 48745.16, + "end": 48750.92, + "probability": 0.9759 + }, + { + "start": 48752.44, + "end": 48753.76, + "probability": 0.8833 + }, + { + "start": 48755.24, + "end": 48757.82, + "probability": 0.9264 + }, + { + "start": 48758.5, + "end": 48762.24, + "probability": 0.994 + }, + { + "start": 48764.22, + "end": 48766.24, + "probability": 0.9732 + }, + { + "start": 48767.44, + "end": 48770.58, + "probability": 0.8656 + }, + { + "start": 48771.8, + "end": 48774.36, + "probability": 0.9858 + }, + { + "start": 48774.52, + "end": 48775.22, + "probability": 0.5082 + }, + { + "start": 48775.98, + "end": 48776.74, + "probability": 0.9696 + }, + { + "start": 48777.02, + "end": 48781.78, + "probability": 0.9442 + }, + { + "start": 48783.82, + "end": 48785.78, + "probability": 0.9766 + }, + { + "start": 48786.3, + "end": 48786.68, + "probability": 0.9911 + }, + { + "start": 48789.22, + "end": 48790.32, + "probability": 0.9226 + }, + { + "start": 48791.96, + "end": 48792.94, + "probability": 0.4863 + }, + { + "start": 48795.2, + "end": 48796.18, + "probability": 0.8285 + }, + { + "start": 48797.64, + "end": 48798.17, + "probability": 0.9403 + }, + { + "start": 48799.52, + "end": 48800.48, + "probability": 0.8315 + }, + { + "start": 48801.2, + "end": 48807.06, + "probability": 0.9802 + }, + { + "start": 48807.62, + "end": 48808.84, + "probability": 0.9551 + }, + { + "start": 48810.6, + "end": 48813.96, + "probability": 0.9473 + }, + { + "start": 48813.98, + "end": 48817.84, + "probability": 0.895 + }, + { + "start": 48818.38, + "end": 48819.9, + "probability": 0.617 + }, + { + "start": 48820.62, + "end": 48822.3, + "probability": 0.7229 + }, + { + "start": 48823.86, + "end": 48826.38, + "probability": 0.9946 + }, + { + "start": 48828.48, + "end": 48830.3, + "probability": 0.7852 + }, + { + "start": 48830.34, + "end": 48831.42, + "probability": 0.8731 + }, + { + "start": 48831.56, + "end": 48834.84, + "probability": 0.9822 + }, + { + "start": 48836.32, + "end": 48838.06, + "probability": 0.7987 + }, + { + "start": 48839.72, + "end": 48840.92, + "probability": 0.9937 + }, + { + "start": 48841.46, + "end": 48843.14, + "probability": 0.8662 + }, + { + "start": 48844.64, + "end": 48849.32, + "probability": 0.9878 + }, + { + "start": 48850.32, + "end": 48852.12, + "probability": 0.9793 + }, + { + "start": 48854.32, + "end": 48855.7, + "probability": 0.9788 + }, + { + "start": 48856.44, + "end": 48859.52, + "probability": 0.9609 + }, + { + "start": 48859.68, + "end": 48859.96, + "probability": 0.599 + }, + { + "start": 48861.06, + "end": 48862.87, + "probability": 0.7723 + }, + { + "start": 48864.12, + "end": 48868.42, + "probability": 0.9332 + }, + { + "start": 48870.06, + "end": 48872.36, + "probability": 0.9917 + }, + { + "start": 48873.42, + "end": 48874.76, + "probability": 0.9427 + }, + { + "start": 48875.4, + "end": 48877.38, + "probability": 0.9888 + }, + { + "start": 48878.78, + "end": 48879.38, + "probability": 0.4139 + }, + { + "start": 48880.44, + "end": 48881.88, + "probability": 0.9519 + }, + { + "start": 48883.74, + "end": 48884.58, + "probability": 0.9846 + }, + { + "start": 48886.32, + "end": 48887.9, + "probability": 0.9651 + }, + { + "start": 48888.44, + "end": 48891.48, + "probability": 0.9916 + }, + { + "start": 48893.18, + "end": 48897.64, + "probability": 0.9633 + }, + { + "start": 48898.4, + "end": 48899.1, + "probability": 0.7826 + }, + { + "start": 48899.42, + "end": 48903.26, + "probability": 0.9868 + }, + { + "start": 48904.98, + "end": 48906.02, + "probability": 0.676 + }, + { + "start": 48906.3, + "end": 48908.1, + "probability": 0.9711 + }, + { + "start": 48908.24, + "end": 48909.36, + "probability": 0.9897 + }, + { + "start": 48910.98, + "end": 48914.92, + "probability": 0.9588 + }, + { + "start": 48915.56, + "end": 48918.52, + "probability": 0.9722 + }, + { + "start": 48920.96, + "end": 48925.53, + "probability": 0.9722 + }, + { + "start": 48928.92, + "end": 48930.38, + "probability": 0.8757 + }, + { + "start": 48931.52, + "end": 48932.86, + "probability": 0.629 + }, + { + "start": 48934.0, + "end": 48935.64, + "probability": 0.9473 + }, + { + "start": 48936.72, + "end": 48939.0, + "probability": 0.9436 + }, + { + "start": 48940.14, + "end": 48942.2, + "probability": 0.9543 + }, + { + "start": 48943.22, + "end": 48945.92, + "probability": 0.9348 + }, + { + "start": 48946.56, + "end": 48947.92, + "probability": 0.9674 + }, + { + "start": 48949.0, + "end": 48951.86, + "probability": 0.9761 + }, + { + "start": 48953.04, + "end": 48956.62, + "probability": 0.9683 + }, + { + "start": 48957.2, + "end": 48958.08, + "probability": 0.9516 + }, + { + "start": 48958.98, + "end": 48959.74, + "probability": 0.8156 + }, + { + "start": 48961.9, + "end": 48962.92, + "probability": 0.8567 + }, + { + "start": 48963.58, + "end": 48964.34, + "probability": 0.954 + }, + { + "start": 48965.7, + "end": 48970.64, + "probability": 0.9993 + }, + { + "start": 48971.66, + "end": 48972.8, + "probability": 0.8831 + }, + { + "start": 48973.64, + "end": 48974.4, + "probability": 0.8611 + }, + { + "start": 48975.3, + "end": 48977.06, + "probability": 0.9644 + }, + { + "start": 48978.72, + "end": 48981.1, + "probability": 0.9902 + }, + { + "start": 48981.64, + "end": 48983.94, + "probability": 0.9971 + }, + { + "start": 48984.88, + "end": 48986.38, + "probability": 0.7842 + }, + { + "start": 48987.64, + "end": 48988.78, + "probability": 0.8104 + }, + { + "start": 48991.38, + "end": 48991.88, + "probability": 0.7669 + }, + { + "start": 48992.32, + "end": 48993.36, + "probability": 0.9736 + }, + { + "start": 48993.84, + "end": 48996.04, + "probability": 0.9717 + }, + { + "start": 48997.28, + "end": 48999.44, + "probability": 0.9231 + }, + { + "start": 49001.84, + "end": 49002.86, + "probability": 0.9575 + }, + { + "start": 49003.08, + "end": 49003.96, + "probability": 0.907 + }, + { + "start": 49004.48, + "end": 49008.54, + "probability": 0.9966 + }, + { + "start": 49009.06, + "end": 49012.08, + "probability": 0.9991 + }, + { + "start": 49013.7, + "end": 49016.02, + "probability": 0.9674 + }, + { + "start": 49016.96, + "end": 49020.12, + "probability": 0.8931 + }, + { + "start": 49021.9, + "end": 49023.6, + "probability": 0.8008 + }, + { + "start": 49024.88, + "end": 49026.18, + "probability": 0.8016 + }, + { + "start": 49028.0, + "end": 49028.22, + "probability": 0.9599 + }, + { + "start": 49028.68, + "end": 49032.72, + "probability": 0.9446 + }, + { + "start": 49033.42, + "end": 49033.98, + "probability": 0.8091 + }, + { + "start": 49035.64, + "end": 49038.16, + "probability": 0.9744 + }, + { + "start": 49038.58, + "end": 49041.72, + "probability": 0.8898 + }, + { + "start": 49042.48, + "end": 49045.4, + "probability": 0.9317 + }, + { + "start": 49047.9, + "end": 49048.98, + "probability": 0.9911 + }, + { + "start": 49049.16, + "end": 49049.76, + "probability": 0.9376 + }, + { + "start": 49053.42, + "end": 49054.62, + "probability": 0.9564 + }, + { + "start": 49054.7, + "end": 49056.52, + "probability": 0.9751 + }, + { + "start": 49057.56, + "end": 49058.02, + "probability": 0.9824 + }, + { + "start": 49058.14, + "end": 49061.93, + "probability": 0.9707 + }, + { + "start": 49061.98, + "end": 49065.1, + "probability": 0.9992 + }, + { + "start": 49065.36, + "end": 49065.74, + "probability": 0.7006 + }, + { + "start": 49066.74, + "end": 49070.3, + "probability": 0.9181 + }, + { + "start": 49071.18, + "end": 49073.12, + "probability": 0.9961 + }, + { + "start": 49073.8, + "end": 49076.12, + "probability": 0.9925 + }, + { + "start": 49079.42, + "end": 49080.44, + "probability": 0.9564 + }, + { + "start": 49081.1, + "end": 49083.94, + "probability": 0.9789 + }, + { + "start": 49085.48, + "end": 49086.1, + "probability": 0.577 + }, + { + "start": 49086.72, + "end": 49087.16, + "probability": 0.9038 + }, + { + "start": 49088.7, + "end": 49092.06, + "probability": 0.9847 + }, + { + "start": 49093.66, + "end": 49096.7, + "probability": 0.8507 + }, + { + "start": 49098.04, + "end": 49101.3, + "probability": 0.9322 + }, + { + "start": 49101.96, + "end": 49102.8, + "probability": 0.9921 + }, + { + "start": 49103.0, + "end": 49103.86, + "probability": 0.5993 + }, + { + "start": 49104.3, + "end": 49105.08, + "probability": 0.814 + }, + { + "start": 49105.52, + "end": 49105.92, + "probability": 0.7744 + }, + { + "start": 49106.5, + "end": 49109.28, + "probability": 0.7956 + }, + { + "start": 49110.12, + "end": 49112.52, + "probability": 0.9792 + }, + { + "start": 49113.34, + "end": 49115.04, + "probability": 0.8264 + }, + { + "start": 49115.64, + "end": 49116.88, + "probability": 0.9644 + }, + { + "start": 49118.18, + "end": 49121.42, + "probability": 0.958 + }, + { + "start": 49122.06, + "end": 49122.9, + "probability": 0.9631 + }, + { + "start": 49123.48, + "end": 49125.56, + "probability": 0.9839 + }, + { + "start": 49126.2, + "end": 49129.18, + "probability": 0.9905 + }, + { + "start": 49131.14, + "end": 49133.84, + "probability": 0.9114 + }, + { + "start": 49135.26, + "end": 49138.78, + "probability": 0.9784 + }, + { + "start": 49140.86, + "end": 49142.66, + "probability": 0.9971 + }, + { + "start": 49143.62, + "end": 49147.18, + "probability": 0.9501 + }, + { + "start": 49148.52, + "end": 49150.68, + "probability": 0.998 + }, + { + "start": 49151.2, + "end": 49154.12, + "probability": 0.9974 + }, + { + "start": 49155.54, + "end": 49156.74, + "probability": 0.984 + }, + { + "start": 49158.1, + "end": 49159.06, + "probability": 0.9922 + }, + { + "start": 49160.26, + "end": 49160.94, + "probability": 0.8454 + }, + { + "start": 49161.88, + "end": 49163.25, + "probability": 0.9724 + }, + { + "start": 49164.66, + "end": 49167.8, + "probability": 0.9196 + }, + { + "start": 49168.34, + "end": 49169.8, + "probability": 0.9596 + }, + { + "start": 49170.68, + "end": 49173.24, + "probability": 0.9905 + }, + { + "start": 49175.74, + "end": 49176.44, + "probability": 0.9709 + }, + { + "start": 49177.66, + "end": 49180.58, + "probability": 0.7924 + }, + { + "start": 49181.24, + "end": 49182.18, + "probability": 0.9941 + }, + { + "start": 49182.44, + "end": 49183.02, + "probability": 0.9546 + }, + { + "start": 49185.22, + "end": 49186.56, + "probability": 0.9139 + }, + { + "start": 49187.46, + "end": 49188.06, + "probability": 0.9367 + }, + { + "start": 49188.88, + "end": 49189.56, + "probability": 0.9934 + }, + { + "start": 49190.96, + "end": 49193.84, + "probability": 0.9914 + }, + { + "start": 49193.9, + "end": 49194.34, + "probability": 0.8787 + }, + { + "start": 49194.48, + "end": 49194.94, + "probability": 0.7146 + }, + { + "start": 49195.92, + "end": 49199.48, + "probability": 0.8885 + }, + { + "start": 49200.0, + "end": 49202.1, + "probability": 0.8811 + }, + { + "start": 49202.68, + "end": 49203.92, + "probability": 0.8967 + }, + { + "start": 49204.84, + "end": 49208.96, + "probability": 0.8506 + }, + { + "start": 49209.62, + "end": 49210.74, + "probability": 0.9205 + }, + { + "start": 49211.48, + "end": 49211.84, + "probability": 0.9666 + }, + { + "start": 49213.42, + "end": 49216.28, + "probability": 0.969 + }, + { + "start": 49216.28, + "end": 49221.02, + "probability": 0.991 + }, + { + "start": 49223.16, + "end": 49225.42, + "probability": 0.8752 + }, + { + "start": 49226.82, + "end": 49227.34, + "probability": 0.9104 + }, + { + "start": 49228.32, + "end": 49231.82, + "probability": 0.8973 + }, + { + "start": 49233.02, + "end": 49233.52, + "probability": 0.7768 + }, + { + "start": 49235.32, + "end": 49236.82, + "probability": 0.9728 + }, + { + "start": 49236.84, + "end": 49239.66, + "probability": 0.9873 + }, + { + "start": 49241.88, + "end": 49242.78, + "probability": 0.9497 + }, + { + "start": 49243.54, + "end": 49244.88, + "probability": 0.9264 + }, + { + "start": 49245.5, + "end": 49246.48, + "probability": 0.8717 + }, + { + "start": 49248.12, + "end": 49248.99, + "probability": 0.8399 + }, + { + "start": 49251.16, + "end": 49253.13, + "probability": 0.9946 + }, + { + "start": 49255.72, + "end": 49256.72, + "probability": 0.9631 + }, + { + "start": 49256.92, + "end": 49258.9, + "probability": 0.8435 + }, + { + "start": 49259.82, + "end": 49262.5, + "probability": 0.9851 + }, + { + "start": 49262.94, + "end": 49264.06, + "probability": 0.9105 + }, + { + "start": 49264.88, + "end": 49266.98, + "probability": 0.7056 + }, + { + "start": 49267.19, + "end": 49268.3, + "probability": 0.9827 + }, + { + "start": 49269.68, + "end": 49273.24, + "probability": 0.9716 + }, + { + "start": 49274.14, + "end": 49276.96, + "probability": 0.8286 + }, + { + "start": 49278.06, + "end": 49282.6, + "probability": 0.9822 + }, + { + "start": 49284.38, + "end": 49289.38, + "probability": 0.4777 + }, + { + "start": 49290.9, + "end": 49292.48, + "probability": 0.9871 + }, + { + "start": 49293.1, + "end": 49295.02, + "probability": 0.9911 + }, + { + "start": 49295.1, + "end": 49297.12, + "probability": 0.7764 + }, + { + "start": 49298.22, + "end": 49299.94, + "probability": 0.9717 + }, + { + "start": 49300.96, + "end": 49302.82, + "probability": 0.9961 + }, + { + "start": 49302.92, + "end": 49305.02, + "probability": 0.9984 + }, + { + "start": 49305.12, + "end": 49306.5, + "probability": 0.6773 + }, + { + "start": 49306.64, + "end": 49307.06, + "probability": 0.8412 + }, + { + "start": 49308.16, + "end": 49310.72, + "probability": 0.9937 + }, + { + "start": 49311.8, + "end": 49313.06, + "probability": 0.7669 + }, + { + "start": 49313.96, + "end": 49316.0, + "probability": 0.9592 + }, + { + "start": 49319.44, + "end": 49320.44, + "probability": 0.9402 + }, + { + "start": 49321.92, + "end": 49324.3, + "probability": 0.8839 + }, + { + "start": 49326.76, + "end": 49327.94, + "probability": 0.9966 + }, + { + "start": 49328.0, + "end": 49331.62, + "probability": 0.8652 + }, + { + "start": 49331.76, + "end": 49333.68, + "probability": 0.946 + }, + { + "start": 49334.54, + "end": 49335.9, + "probability": 0.9616 + }, + { + "start": 49336.94, + "end": 49339.93, + "probability": 0.9683 + }, + { + "start": 49342.78, + "end": 49343.4, + "probability": 0.7317 + }, + { + "start": 49343.98, + "end": 49346.06, + "probability": 0.997 + }, + { + "start": 49346.96, + "end": 49348.04, + "probability": 0.973 + }, + { + "start": 49349.8, + "end": 49351.48, + "probability": 0.8888 + }, + { + "start": 49352.08, + "end": 49352.96, + "probability": 0.7247 + }, + { + "start": 49353.6, + "end": 49354.46, + "probability": 0.2251 + }, + { + "start": 49355.02, + "end": 49356.02, + "probability": 0.6054 + }, + { + "start": 49356.78, + "end": 49357.58, + "probability": 0.5781 + }, + { + "start": 49358.22, + "end": 49358.98, + "probability": 0.8836 + }, + { + "start": 49359.72, + "end": 49360.64, + "probability": 0.7381 + }, + { + "start": 49360.8, + "end": 49362.58, + "probability": 0.8892 + }, + { + "start": 49363.16, + "end": 49364.98, + "probability": 0.8806 + }, + { + "start": 49365.9, + "end": 49367.78, + "probability": 0.9658 + }, + { + "start": 49368.7, + "end": 49369.0, + "probability": 0.8829 + }, + { + "start": 49370.22, + "end": 49373.06, + "probability": 0.8856 + }, + { + "start": 49373.86, + "end": 49374.96, + "probability": 0.9202 + }, + { + "start": 49411.5, + "end": 49411.96, + "probability": 0.6615 + }, + { + "start": 49413.36, + "end": 49415.0, + "probability": 0.7873 + }, + { + "start": 49415.84, + "end": 49416.2, + "probability": 0.5387 + }, + { + "start": 49416.46, + "end": 49417.82, + "probability": 0.9854 + }, + { + "start": 49420.02, + "end": 49422.44, + "probability": 0.8846 + }, + { + "start": 49424.0, + "end": 49428.22, + "probability": 0.8314 + }, + { + "start": 49428.64, + "end": 49431.4, + "probability": 0.9066 + }, + { + "start": 49433.38, + "end": 49439.16, + "probability": 0.991 + }, + { + "start": 49442.76, + "end": 49443.42, + "probability": 0.2712 + }, + { + "start": 49444.68, + "end": 49447.1, + "probability": 0.7948 + }, + { + "start": 49449.4, + "end": 49451.68, + "probability": 0.8223 + }, + { + "start": 49452.74, + "end": 49457.22, + "probability": 0.8711 + }, + { + "start": 49458.98, + "end": 49461.1, + "probability": 0.8347 + }, + { + "start": 49462.44, + "end": 49463.02, + "probability": 0.3532 + }, + { + "start": 49464.18, + "end": 49465.6, + "probability": 0.494 + }, + { + "start": 49467.27, + "end": 49470.64, + "probability": 0.6659 + }, + { + "start": 49470.9, + "end": 49474.36, + "probability": 0.9675 + }, + { + "start": 49474.44, + "end": 49477.42, + "probability": 0.9727 + }, + { + "start": 49478.04, + "end": 49479.26, + "probability": 0.1835 + }, + { + "start": 49480.16, + "end": 49483.82, + "probability": 0.972 + }, + { + "start": 49484.68, + "end": 49485.62, + "probability": 0.8642 + }, + { + "start": 49491.42, + "end": 49496.04, + "probability": 0.9162 + }, + { + "start": 49497.45, + "end": 49502.64, + "probability": 0.9634 + }, + { + "start": 49503.48, + "end": 49507.5, + "probability": 0.9709 + }, + { + "start": 49507.7, + "end": 49509.28, + "probability": 0.8096 + }, + { + "start": 49509.36, + "end": 49510.24, + "probability": 0.4426 + }, + { + "start": 49511.15, + "end": 49512.44, + "probability": 0.8152 + }, + { + "start": 49513.8, + "end": 49517.62, + "probability": 0.9857 + }, + { + "start": 49518.38, + "end": 49522.32, + "probability": 0.7887 + }, + { + "start": 49522.46, + "end": 49522.76, + "probability": 0.65 + }, + { + "start": 49522.88, + "end": 49525.46, + "probability": 0.3875 + }, + { + "start": 49525.98, + "end": 49528.78, + "probability": 0.886 + }, + { + "start": 49529.54, + "end": 49530.46, + "probability": 0.9621 + }, + { + "start": 49531.96, + "end": 49533.34, + "probability": 0.7511 + }, + { + "start": 49534.0, + "end": 49534.9, + "probability": 0.9351 + }, + { + "start": 49535.58, + "end": 49537.93, + "probability": 0.7576 + }, + { + "start": 49539.4, + "end": 49541.42, + "probability": 0.78 + }, + { + "start": 49542.34, + "end": 49543.22, + "probability": 0.6291 + }, + { + "start": 49543.46, + "end": 49545.13, + "probability": 0.7707 + }, + { + "start": 49548.43, + "end": 49550.4, + "probability": 0.9897 + }, + { + "start": 49551.1, + "end": 49559.0, + "probability": 0.9771 + }, + { + "start": 49559.76, + "end": 49560.76, + "probability": 0.9672 + }, + { + "start": 49561.3, + "end": 49563.12, + "probability": 0.5056 + }, + { + "start": 49563.44, + "end": 49566.84, + "probability": 0.9183 + }, + { + "start": 49567.74, + "end": 49570.72, + "probability": 0.8149 + }, + { + "start": 49571.66, + "end": 49575.68, + "probability": 0.9771 + }, + { + "start": 49576.2, + "end": 49576.8, + "probability": 0.9702 + }, + { + "start": 49577.48, + "end": 49580.5, + "probability": 0.9985 + }, + { + "start": 49582.56, + "end": 49585.92, + "probability": 0.9801 + }, + { + "start": 49586.62, + "end": 49589.16, + "probability": 0.9932 + }, + { + "start": 49590.48, + "end": 49592.94, + "probability": 0.7524 + }, + { + "start": 49594.08, + "end": 49594.62, + "probability": 0.5861 + }, + { + "start": 49594.82, + "end": 49604.82, + "probability": 0.9517 + }, + { + "start": 49605.7, + "end": 49606.58, + "probability": 0.9951 + }, + { + "start": 49607.12, + "end": 49614.04, + "probability": 0.9132 + }, + { + "start": 49614.56, + "end": 49620.28, + "probability": 0.9167 + }, + { + "start": 49621.2, + "end": 49623.72, + "probability": 0.7465 + }, + { + "start": 49625.08, + "end": 49628.62, + "probability": 0.9183 + }, + { + "start": 49629.14, + "end": 49630.42, + "probability": 0.8016 + }, + { + "start": 49630.54, + "end": 49634.56, + "probability": 0.9801 + }, + { + "start": 49636.4, + "end": 49638.02, + "probability": 0.8474 + }, + { + "start": 49639.16, + "end": 49640.56, + "probability": 0.9832 + }, + { + "start": 49641.24, + "end": 49651.98, + "probability": 0.9873 + }, + { + "start": 49652.24, + "end": 49653.44, + "probability": 0.5522 + }, + { + "start": 49653.48, + "end": 49657.34, + "probability": 0.7498 + }, + { + "start": 49658.68, + "end": 49662.78, + "probability": 0.9221 + }, + { + "start": 49663.3, + "end": 49664.64, + "probability": 0.9976 + }, + { + "start": 49664.84, + "end": 49668.68, + "probability": 0.9388 + }, + { + "start": 49670.52, + "end": 49672.12, + "probability": 0.9762 + }, + { + "start": 49673.1, + "end": 49679.18, + "probability": 0.7519 + }, + { + "start": 49680.52, + "end": 49686.04, + "probability": 0.9673 + }, + { + "start": 49689.92, + "end": 49690.7, + "probability": 0.4963 + }, + { + "start": 49694.42, + "end": 49695.32, + "probability": 0.7474 + }, + { + "start": 49696.44, + "end": 49699.54, + "probability": 0.5513 + }, + { + "start": 49699.8, + "end": 49705.84, + "probability": 0.9574 + }, + { + "start": 49705.94, + "end": 49706.73, + "probability": 0.9087 + }, + { + "start": 49707.62, + "end": 49711.34, + "probability": 0.9886 + }, + { + "start": 49712.62, + "end": 49715.34, + "probability": 0.7031 + }, + { + "start": 49716.42, + "end": 49718.06, + "probability": 0.9921 + }, + { + "start": 49718.88, + "end": 49721.0, + "probability": 0.8271 + }, + { + "start": 49722.38, + "end": 49723.94, + "probability": 0.733 + }, + { + "start": 49724.3, + "end": 49729.5, + "probability": 0.9464 + }, + { + "start": 49732.52, + "end": 49736.24, + "probability": 0.7559 + }, + { + "start": 49737.02, + "end": 49740.46, + "probability": 0.9977 + }, + { + "start": 49740.52, + "end": 49744.56, + "probability": 0.9797 + }, + { + "start": 49745.08, + "end": 49749.22, + "probability": 0.5706 + }, + { + "start": 49752.22, + "end": 49754.22, + "probability": 0.7727 + }, + { + "start": 49755.2, + "end": 49758.04, + "probability": 0.8473 + }, + { + "start": 49758.6, + "end": 49762.78, + "probability": 0.8707 + }, + { + "start": 49763.6, + "end": 49765.92, + "probability": 0.9909 + }, + { + "start": 49767.06, + "end": 49769.66, + "probability": 0.9856 + }, + { + "start": 49770.2, + "end": 49774.0, + "probability": 0.7561 + }, + { + "start": 49775.1, + "end": 49778.24, + "probability": 0.9351 + }, + { + "start": 49780.14, + "end": 49785.6, + "probability": 0.7519 + }, + { + "start": 49786.62, + "end": 49791.86, + "probability": 0.9692 + }, + { + "start": 49793.28, + "end": 49797.54, + "probability": 0.9717 + }, + { + "start": 49798.1, + "end": 49799.38, + "probability": 0.9248 + }, + { + "start": 49800.04, + "end": 49803.22, + "probability": 0.936 + }, + { + "start": 49803.22, + "end": 49806.24, + "probability": 0.9968 + }, + { + "start": 49807.3, + "end": 49808.18, + "probability": 0.9985 + }, + { + "start": 49810.96, + "end": 49815.78, + "probability": 0.9971 + }, + { + "start": 49816.74, + "end": 49818.84, + "probability": 0.8719 + }, + { + "start": 49819.48, + "end": 49821.82, + "probability": 0.9054 + }, + { + "start": 49822.82, + "end": 49825.16, + "probability": 0.9351 + }, + { + "start": 49826.16, + "end": 49826.76, + "probability": 0.3121 + }, + { + "start": 49826.84, + "end": 49827.83, + "probability": 0.9869 + }, + { + "start": 49828.56, + "end": 49830.24, + "probability": 0.9956 + }, + { + "start": 49830.92, + "end": 49833.27, + "probability": 0.9853 + }, + { + "start": 49834.13, + "end": 49836.64, + "probability": 0.8981 + }, + { + "start": 49837.62, + "end": 49838.86, + "probability": 0.747 + }, + { + "start": 49839.48, + "end": 49840.64, + "probability": 0.8629 + }, + { + "start": 49842.04, + "end": 49846.52, + "probability": 0.9147 + }, + { + "start": 49848.02, + "end": 49848.9, + "probability": 0.981 + }, + { + "start": 49849.02, + "end": 49851.14, + "probability": 0.8507 + }, + { + "start": 49852.16, + "end": 49856.22, + "probability": 0.8261 + }, + { + "start": 49857.26, + "end": 49860.82, + "probability": 0.6101 + }, + { + "start": 49861.48, + "end": 49864.34, + "probability": 0.9714 + }, + { + "start": 49864.42, + "end": 49864.92, + "probability": 0.3024 + }, + { + "start": 49866.38, + "end": 49870.46, + "probability": 0.7939 + }, + { + "start": 49871.64, + "end": 49872.65, + "probability": 0.9886 + }, + { + "start": 49872.8, + "end": 49873.24, + "probability": 0.7762 + }, + { + "start": 49873.6, + "end": 49878.94, + "probability": 0.9945 + }, + { + "start": 49879.64, + "end": 49883.22, + "probability": 0.9594 + }, + { + "start": 49883.22, + "end": 49886.62, + "probability": 0.9368 + }, + { + "start": 49886.68, + "end": 49888.04, + "probability": 0.6975 + }, + { + "start": 49888.8, + "end": 49890.04, + "probability": 0.8737 + }, + { + "start": 49890.58, + "end": 49895.22, + "probability": 0.9934 + }, + { + "start": 49896.38, + "end": 49898.5, + "probability": 0.9866 + }, + { + "start": 49899.06, + "end": 49901.54, + "probability": 0.9961 + }, + { + "start": 49903.2, + "end": 49906.7, + "probability": 0.9127 + }, + { + "start": 49906.9, + "end": 49909.1, + "probability": 0.9092 + }, + { + "start": 49909.52, + "end": 49909.78, + "probability": 0.7165 + }, + { + "start": 49911.78, + "end": 49915.0, + "probability": 0.5896 + }, + { + "start": 49915.68, + "end": 49917.06, + "probability": 0.9414 + }, + { + "start": 49917.62, + "end": 49920.38, + "probability": 0.9846 + }, + { + "start": 49920.82, + "end": 49925.08, + "probability": 0.9854 + }, + { + "start": 49925.5, + "end": 49927.84, + "probability": 0.9852 + }, + { + "start": 49929.48, + "end": 49929.8, + "probability": 0.6811 + }, + { + "start": 49932.14, + "end": 49932.98, + "probability": 0.7493 + }, + { + "start": 49933.24, + "end": 49937.64, + "probability": 0.974 + }, + { + "start": 49938.2, + "end": 49941.08, + "probability": 0.9888 + }, + { + "start": 49943.7, + "end": 49945.12, + "probability": 0.9299 + }, + { + "start": 49945.68, + "end": 49946.8, + "probability": 0.5839 + }, + { + "start": 49947.92, + "end": 49948.37, + "probability": 0.5428 + }, + { + "start": 49949.42, + "end": 49952.46, + "probability": 0.7497 + }, + { + "start": 49954.8, + "end": 49956.14, + "probability": 0.4943 + }, + { + "start": 49957.32, + "end": 49959.78, + "probability": 0.8095 + }, + { + "start": 49960.98, + "end": 49961.88, + "probability": 0.9147 + }, + { + "start": 49962.24, + "end": 49963.43, + "probability": 0.9193 + }, + { + "start": 49964.3, + "end": 49966.26, + "probability": 0.9734 + }, + { + "start": 49967.64, + "end": 49968.88, + "probability": 0.7807 + }, + { + "start": 49970.84, + "end": 49972.38, + "probability": 0.9563 + }, + { + "start": 49972.76, + "end": 49977.18, + "probability": 0.9415 + }, + { + "start": 49978.0, + "end": 49982.02, + "probability": 0.9489 + }, + { + "start": 49982.7, + "end": 49988.2, + "probability": 0.9955 + }, + { + "start": 49988.68, + "end": 49991.66, + "probability": 0.8964 + }, + { + "start": 49992.32, + "end": 49996.8, + "probability": 0.7537 + }, + { + "start": 49997.52, + "end": 49998.55, + "probability": 0.9927 + }, + { + "start": 49999.6, + "end": 50000.56, + "probability": 0.9972 + }, + { + "start": 50001.26, + "end": 50002.02, + "probability": 0.905 + }, + { + "start": 50003.94, + "end": 50005.2, + "probability": 0.7863 + }, + { + "start": 50006.22, + "end": 50010.95, + "probability": 0.9928 + }, + { + "start": 50012.26, + "end": 50013.24, + "probability": 0.9333 + }, + { + "start": 50014.06, + "end": 50015.82, + "probability": 0.9869 + }, + { + "start": 50015.94, + "end": 50018.84, + "probability": 0.9801 + }, + { + "start": 50019.58, + "end": 50020.8, + "probability": 0.7472 + }, + { + "start": 50021.58, + "end": 50024.2, + "probability": 0.9953 + }, + { + "start": 50027.28, + "end": 50029.94, + "probability": 0.7182 + }, + { + "start": 50030.74, + "end": 50032.56, + "probability": 0.9536 + }, + { + "start": 50034.72, + "end": 50036.98, + "probability": 0.9345 + }, + { + "start": 50037.64, + "end": 50038.8, + "probability": 0.9318 + }, + { + "start": 50040.2, + "end": 50042.64, + "probability": 0.8725 + }, + { + "start": 50043.6, + "end": 50044.78, + "probability": 0.886 + }, + { + "start": 50046.2, + "end": 50050.28, + "probability": 0.6069 + }, + { + "start": 50050.98, + "end": 50051.42, + "probability": 0.4087 + }, + { + "start": 50051.66, + "end": 50056.46, + "probability": 0.7294 + }, + { + "start": 50056.5, + "end": 50059.84, + "probability": 0.9511 + }, + { + "start": 50060.84, + "end": 50062.76, + "probability": 0.6834 + }, + { + "start": 50064.06, + "end": 50064.64, + "probability": 0.8432 + }, + { + "start": 50065.24, + "end": 50067.9, + "probability": 0.9215 + }, + { + "start": 50068.44, + "end": 50069.28, + "probability": 0.9604 + }, + { + "start": 50071.92, + "end": 50074.72, + "probability": 0.9857 + }, + { + "start": 50076.06, + "end": 50078.81, + "probability": 0.9753 + }, + { + "start": 50080.8, + "end": 50082.38, + "probability": 0.9724 + }, + { + "start": 50082.66, + "end": 50084.58, + "probability": 0.2362 + }, + { + "start": 50084.68, + "end": 50086.34, + "probability": 0.9552 + }, + { + "start": 50087.32, + "end": 50094.2, + "probability": 0.9766 + }, + { + "start": 50095.57, + "end": 50099.06, + "probability": 0.9941 + }, + { + "start": 50100.18, + "end": 50103.4, + "probability": 0.9834 + }, + { + "start": 50103.9, + "end": 50106.1, + "probability": 0.9908 + }, + { + "start": 50106.64, + "end": 50111.26, + "probability": 0.9706 + }, + { + "start": 50113.26, + "end": 50115.7, + "probability": 0.9209 + }, + { + "start": 50118.48, + "end": 50122.74, + "probability": 0.7097 + }, + { + "start": 50123.3, + "end": 50123.6, + "probability": 0.7439 + }, + { + "start": 50124.66, + "end": 50128.84, + "probability": 0.9581 + }, + { + "start": 50131.8, + "end": 50136.4, + "probability": 0.9258 + }, + { + "start": 50138.2, + "end": 50149.9, + "probability": 0.9887 + }, + { + "start": 50152.56, + "end": 50157.6, + "probability": 0.996 + }, + { + "start": 50158.7, + "end": 50160.44, + "probability": 0.874 + }, + { + "start": 50161.12, + "end": 50163.3, + "probability": 0.9374 + }, + { + "start": 50164.04, + "end": 50164.14, + "probability": 0.6099 + }, + { + "start": 50165.74, + "end": 50169.48, + "probability": 0.8847 + }, + { + "start": 50170.58, + "end": 50171.02, + "probability": 0.9984 + }, + { + "start": 50171.62, + "end": 50174.02, + "probability": 0.9609 + }, + { + "start": 50174.42, + "end": 50176.48, + "probability": 0.8486 + }, + { + "start": 50176.64, + "end": 50178.04, + "probability": 0.9351 + }, + { + "start": 50178.16, + "end": 50179.0, + "probability": 0.9552 + }, + { + "start": 50179.52, + "end": 50182.3, + "probability": 0.9711 + }, + { + "start": 50183.38, + "end": 50186.22, + "probability": 0.9508 + }, + { + "start": 50187.0, + "end": 50195.66, + "probability": 0.972 + }, + { + "start": 50195.66, + "end": 50200.78, + "probability": 0.9897 + }, + { + "start": 50201.06, + "end": 50204.52, + "probability": 0.7337 + }, + { + "start": 50205.14, + "end": 50206.88, + "probability": 0.5327 + }, + { + "start": 50207.64, + "end": 50216.76, + "probability": 0.9139 + }, + { + "start": 50218.74, + "end": 50220.44, + "probability": 0.9834 + }, + { + "start": 50222.28, + "end": 50225.72, + "probability": 0.8182 + }, + { + "start": 50228.5, + "end": 50229.56, + "probability": 0.9119 + }, + { + "start": 50230.28, + "end": 50230.84, + "probability": 0.9261 + }, + { + "start": 50231.92, + "end": 50235.94, + "probability": 0.8947 + }, + { + "start": 50236.64, + "end": 50238.8, + "probability": 0.9932 + }, + { + "start": 50239.48, + "end": 50243.44, + "probability": 0.9529 + }, + { + "start": 50244.36, + "end": 50247.22, + "probability": 0.964 + }, + { + "start": 50248.94, + "end": 50249.64, + "probability": 0.8698 + }, + { + "start": 50251.12, + "end": 50257.4, + "probability": 0.9387 + }, + { + "start": 50257.72, + "end": 50260.02, + "probability": 0.8952 + }, + { + "start": 50260.1, + "end": 50262.0, + "probability": 0.9869 + }, + { + "start": 50262.28, + "end": 50265.78, + "probability": 0.9585 + }, + { + "start": 50266.32, + "end": 50267.44, + "probability": 0.9927 + }, + { + "start": 50268.34, + "end": 50269.42, + "probability": 0.9075 + }, + { + "start": 50270.48, + "end": 50271.42, + "probability": 0.9515 + }, + { + "start": 50272.66, + "end": 50277.1, + "probability": 0.9771 + }, + { + "start": 50279.14, + "end": 50283.41, + "probability": 0.9526 + }, + { + "start": 50284.68, + "end": 50286.91, + "probability": 0.9448 + }, + { + "start": 50288.57, + "end": 50292.16, + "probability": 0.9955 + }, + { + "start": 50293.62, + "end": 50294.18, + "probability": 0.476 + }, + { + "start": 50295.79, + "end": 50305.3, + "probability": 0.9178 + }, + { + "start": 50305.38, + "end": 50305.88, + "probability": 0.4877 + }, + { + "start": 50306.94, + "end": 50310.32, + "probability": 0.9591 + }, + { + "start": 50311.32, + "end": 50313.14, + "probability": 0.6345 + }, + { + "start": 50314.08, + "end": 50314.9, + "probability": 0.787 + }, + { + "start": 50315.1, + "end": 50319.84, + "probability": 0.9487 + }, + { + "start": 50320.81, + "end": 50322.82, + "probability": 0.9232 + }, + { + "start": 50324.2, + "end": 50329.0, + "probability": 0.9909 + }, + { + "start": 50330.04, + "end": 50332.42, + "probability": 0.9858 + }, + { + "start": 50333.18, + "end": 50334.8, + "probability": 0.9862 + }, + { + "start": 50335.52, + "end": 50336.4, + "probability": 0.9376 + }, + { + "start": 50337.1, + "end": 50338.02, + "probability": 0.962 + }, + { + "start": 50338.12, + "end": 50338.74, + "probability": 0.5037 + }, + { + "start": 50338.78, + "end": 50339.26, + "probability": 0.8276 + }, + { + "start": 50339.76, + "end": 50340.26, + "probability": 0.8334 + }, + { + "start": 50340.32, + "end": 50340.68, + "probability": 0.9094 + }, + { + "start": 50340.7, + "end": 50341.13, + "probability": 0.9517 + }, + { + "start": 50342.18, + "end": 50351.05, + "probability": 0.7724 + }, + { + "start": 50351.66, + "end": 50352.5, + "probability": 0.9941 + }, + { + "start": 50354.62, + "end": 50357.04, + "probability": 0.7484 + }, + { + "start": 50357.84, + "end": 50361.9, + "probability": 0.9907 + }, + { + "start": 50362.02, + "end": 50363.14, + "probability": 0.7128 + }, + { + "start": 50363.46, + "end": 50364.16, + "probability": 0.936 + }, + { + "start": 50364.94, + "end": 50367.62, + "probability": 0.9417 + }, + { + "start": 50368.42, + "end": 50370.48, + "probability": 0.6969 + }, + { + "start": 50372.32, + "end": 50373.86, + "probability": 0.5215 + }, + { + "start": 50374.52, + "end": 50380.8, + "probability": 0.9384 + }, + { + "start": 50381.88, + "end": 50387.82, + "probability": 0.998 + }, + { + "start": 50388.74, + "end": 50389.78, + "probability": 0.9302 + }, + { + "start": 50390.94, + "end": 50391.78, + "probability": 0.6435 + }, + { + "start": 50392.4, + "end": 50396.42, + "probability": 0.7524 + }, + { + "start": 50396.46, + "end": 50402.08, + "probability": 0.8701 + }, + { + "start": 50403.3, + "end": 50405.46, + "probability": 0.8574 + }, + { + "start": 50406.76, + "end": 50407.36, + "probability": 0.5563 + }, + { + "start": 50407.88, + "end": 50408.38, + "probability": 0.6518 + }, + { + "start": 50409.08, + "end": 50413.32, + "probability": 0.9095 + }, + { + "start": 50415.53, + "end": 50419.64, + "probability": 0.9603 + }, + { + "start": 50420.4, + "end": 50423.26, + "probability": 0.9906 + }, + { + "start": 50424.48, + "end": 50427.2, + "probability": 0.935 + }, + { + "start": 50427.3, + "end": 50430.06, + "probability": 0.9348 + }, + { + "start": 50430.6, + "end": 50432.36, + "probability": 0.8401 + }, + { + "start": 50433.26, + "end": 50440.12, + "probability": 0.9142 + }, + { + "start": 50441.6, + "end": 50442.86, + "probability": 0.3384 + }, + { + "start": 50443.58, + "end": 50452.18, + "probability": 0.9922 + }, + { + "start": 50452.96, + "end": 50457.56, + "probability": 0.9965 + }, + { + "start": 50458.02, + "end": 50461.24, + "probability": 0.8925 + }, + { + "start": 50461.64, + "end": 50467.0, + "probability": 0.975 + }, + { + "start": 50475.36, + "end": 50479.57, + "probability": 0.9411 + }, + { + "start": 50481.14, + "end": 50485.16, + "probability": 0.8757 + }, + { + "start": 50485.56, + "end": 50494.02, + "probability": 0.7964 + }, + { + "start": 50495.04, + "end": 50496.61, + "probability": 0.9343 + }, + { + "start": 50498.22, + "end": 50503.3, + "probability": 0.6785 + }, + { + "start": 50504.2, + "end": 50506.32, + "probability": 0.856 + }, + { + "start": 50507.6, + "end": 50511.26, + "probability": 0.9989 + }, + { + "start": 50513.84, + "end": 50520.28, + "probability": 0.7256 + }, + { + "start": 50521.58, + "end": 50524.82, + "probability": 0.9549 + }, + { + "start": 50526.0, + "end": 50530.24, + "probability": 0.5457 + }, + { + "start": 50530.76, + "end": 50532.22, + "probability": 0.7819 + }, + { + "start": 50533.08, + "end": 50536.5, + "probability": 0.991 + }, + { + "start": 50537.38, + "end": 50540.1, + "probability": 0.8499 + }, + { + "start": 50540.82, + "end": 50545.0, + "probability": 0.7845 + }, + { + "start": 50545.48, + "end": 50547.74, + "probability": 0.897 + }, + { + "start": 50549.15, + "end": 50549.62, + "probability": 0.9601 + }, + { + "start": 50550.3, + "end": 50550.54, + "probability": 0.8553 + }, + { + "start": 50552.34, + "end": 50555.8, + "probability": 0.8475 + }, + { + "start": 50556.62, + "end": 50562.0, + "probability": 0.8409 + }, + { + "start": 50562.04, + "end": 50563.52, + "probability": 0.9784 + }, + { + "start": 50564.54, + "end": 50565.34, + "probability": 0.9045 + }, + { + "start": 50566.02, + "end": 50566.96, + "probability": 0.8622 + }, + { + "start": 50569.7, + "end": 50570.0, + "probability": 0.3345 + }, + { + "start": 50571.04, + "end": 50573.26, + "probability": 0.981 + }, + { + "start": 50575.46, + "end": 50575.98, + "probability": 0.3803 + }, + { + "start": 50577.94, + "end": 50580.26, + "probability": 0.9417 + }, + { + "start": 50581.34, + "end": 50587.86, + "probability": 0.8293 + }, + { + "start": 50588.42, + "end": 50593.76, + "probability": 0.7041 + }, + { + "start": 50594.42, + "end": 50596.24, + "probability": 0.8281 + }, + { + "start": 50597.32, + "end": 50603.82, + "probability": 0.9824 + }, + { + "start": 50604.46, + "end": 50605.96, + "probability": 0.9927 + }, + { + "start": 50606.52, + "end": 50607.9, + "probability": 0.7593 + }, + { + "start": 50608.3, + "end": 50609.48, + "probability": 0.8538 + }, + { + "start": 50609.8, + "end": 50611.88, + "probability": 0.9722 + }, + { + "start": 50612.38, + "end": 50613.18, + "probability": 0.8774 + }, + { + "start": 50613.82, + "end": 50614.54, + "probability": 0.9325 + }, + { + "start": 50615.3, + "end": 50618.22, + "probability": 0.8277 + }, + { + "start": 50618.92, + "end": 50619.28, + "probability": 0.9749 + }, + { + "start": 50619.4, + "end": 50619.98, + "probability": 0.9458 + }, + { + "start": 50620.36, + "end": 50623.86, + "probability": 0.9799 + }, + { + "start": 50623.96, + "end": 50624.38, + "probability": 0.8523 + }, + { + "start": 50624.56, + "end": 50626.2, + "probability": 0.7502 + }, + { + "start": 50627.92, + "end": 50631.16, + "probability": 0.9587 + }, + { + "start": 50632.04, + "end": 50635.52, + "probability": 0.9673 + }, + { + "start": 50636.28, + "end": 50636.74, + "probability": 0.6301 + }, + { + "start": 50637.34, + "end": 50642.5, + "probability": 0.9862 + }, + { + "start": 50642.54, + "end": 50649.02, + "probability": 0.889 + }, + { + "start": 50649.52, + "end": 50650.32, + "probability": 0.9084 + }, + { + "start": 50652.18, + "end": 50652.5, + "probability": 0.926 + }, + { + "start": 50652.92, + "end": 50654.96, + "probability": 0.9712 + }, + { + "start": 50655.26, + "end": 50660.32, + "probability": 0.9258 + }, + { + "start": 50660.92, + "end": 50665.92, + "probability": 0.8478 + }, + { + "start": 50666.42, + "end": 50671.38, + "probability": 0.979 + }, + { + "start": 50672.44, + "end": 50672.98, + "probability": 0.7523 + }, + { + "start": 50674.06, + "end": 50685.18, + "probability": 0.998 + }, + { + "start": 50685.84, + "end": 50687.68, + "probability": 0.8901 + }, + { + "start": 50689.48, + "end": 50690.1, + "probability": 0.8623 + }, + { + "start": 50690.72, + "end": 50696.62, + "probability": 0.9989 + }, + { + "start": 50696.72, + "end": 50701.14, + "probability": 0.9748 + }, + { + "start": 50701.6, + "end": 50702.34, + "probability": 0.7166 + }, + { + "start": 50703.58, + "end": 50707.46, + "probability": 0.7027 + }, + { + "start": 50708.54, + "end": 50710.34, + "probability": 0.7592 + }, + { + "start": 50711.42, + "end": 50717.18, + "probability": 0.8696 + }, + { + "start": 50718.54, + "end": 50722.58, + "probability": 0.9966 + }, + { + "start": 50723.4, + "end": 50724.16, + "probability": 0.509 + }, + { + "start": 50724.9, + "end": 50730.34, + "probability": 0.9215 + }, + { + "start": 50730.74, + "end": 50737.14, + "probability": 0.9968 + }, + { + "start": 50737.56, + "end": 50739.38, + "probability": 0.896 + }, + { + "start": 50739.52, + "end": 50740.22, + "probability": 0.7778 + }, + { + "start": 50741.16, + "end": 50744.44, + "probability": 0.9913 + }, + { + "start": 50745.54, + "end": 50749.5, + "probability": 0.9392 + }, + { + "start": 50750.7, + "end": 50754.44, + "probability": 0.8512 + }, + { + "start": 50754.52, + "end": 50760.56, + "probability": 0.9876 + }, + { + "start": 50761.8, + "end": 50764.3, + "probability": 0.8042 + }, + { + "start": 50764.38, + "end": 50764.89, + "probability": 0.999 + }, + { + "start": 50765.58, + "end": 50768.86, + "probability": 0.7702 + }, + { + "start": 50770.92, + "end": 50773.78, + "probability": 0.6102 + }, + { + "start": 50774.48, + "end": 50777.36, + "probability": 0.896 + }, + { + "start": 50778.74, + "end": 50780.06, + "probability": 0.8652 + }, + { + "start": 50781.0, + "end": 50782.32, + "probability": 0.9618 + }, + { + "start": 50782.4, + "end": 50788.68, + "probability": 0.9951 + }, + { + "start": 50788.74, + "end": 50796.62, + "probability": 0.9746 + }, + { + "start": 50798.45, + "end": 50804.08, + "probability": 0.7173 + }, + { + "start": 50804.6, + "end": 50810.14, + "probability": 0.9167 + }, + { + "start": 50812.92, + "end": 50820.5, + "probability": 0.9363 + }, + { + "start": 50821.38, + "end": 50824.92, + "probability": 0.9836 + }, + { + "start": 50825.16, + "end": 50829.52, + "probability": 0.884 + }, + { + "start": 50829.76, + "end": 50831.12, + "probability": 0.9553 + }, + { + "start": 50831.6, + "end": 50832.12, + "probability": 0.9272 + }, + { + "start": 50832.42, + "end": 50839.02, + "probability": 0.9989 + }, + { + "start": 50839.16, + "end": 50840.82, + "probability": 0.8828 + }, + { + "start": 50841.26, + "end": 50844.12, + "probability": 0.9884 + }, + { + "start": 50844.92, + "end": 50848.08, + "probability": 0.9637 + }, + { + "start": 50848.88, + "end": 50852.46, + "probability": 0.9348 + }, + { + "start": 50853.0, + "end": 50855.46, + "probability": 0.9931 + }, + { + "start": 50856.0, + "end": 50856.58, + "probability": 0.5122 + }, + { + "start": 50856.72, + "end": 50857.7, + "probability": 0.9438 + }, + { + "start": 50858.22, + "end": 50861.16, + "probability": 0.8708 + }, + { + "start": 50862.1, + "end": 50863.68, + "probability": 0.6753 + }, + { + "start": 50864.22, + "end": 50866.92, + "probability": 0.9888 + }, + { + "start": 50867.58, + "end": 50874.39, + "probability": 0.9438 + }, + { + "start": 50875.94, + "end": 50877.38, + "probability": 0.6403 + }, + { + "start": 50877.5, + "end": 50878.12, + "probability": 0.641 + }, + { + "start": 50878.54, + "end": 50880.16, + "probability": 0.9542 + }, + { + "start": 50880.64, + "end": 50881.0, + "probability": 0.7715 + }, + { + "start": 50881.02, + "end": 50883.16, + "probability": 0.9676 + }, + { + "start": 50883.32, + "end": 50885.26, + "probability": 0.9941 + }, + { + "start": 50886.1, + "end": 50893.54, + "probability": 0.9818 + }, + { + "start": 50894.12, + "end": 50896.1, + "probability": 0.998 + }, + { + "start": 50897.4, + "end": 50900.14, + "probability": 0.9769 + }, + { + "start": 50900.76, + "end": 50901.58, + "probability": 0.8384 + }, + { + "start": 50901.78, + "end": 50905.76, + "probability": 0.9884 + }, + { + "start": 50906.14, + "end": 50907.43, + "probability": 0.908 + }, + { + "start": 50908.62, + "end": 50914.06, + "probability": 0.9772 + }, + { + "start": 50914.22, + "end": 50916.06, + "probability": 0.8528 + }, + { + "start": 50916.24, + "end": 50917.32, + "probability": 0.4606 + }, + { + "start": 50917.36, + "end": 50921.38, + "probability": 0.5972 + }, + { + "start": 50922.16, + "end": 50926.22, + "probability": 0.9866 + }, + { + "start": 50927.46, + "end": 50932.96, + "probability": 0.9907 + }, + { + "start": 50933.76, + "end": 50935.06, + "probability": 0.9656 + }, + { + "start": 50935.5, + "end": 50937.01, + "probability": 0.8418 + }, + { + "start": 50937.3, + "end": 50938.76, + "probability": 0.9721 + }, + { + "start": 50938.92, + "end": 50939.9, + "probability": 0.6665 + }, + { + "start": 50940.68, + "end": 50948.84, + "probability": 0.9926 + }, + { + "start": 50949.3, + "end": 50951.23, + "probability": 0.9904 + }, + { + "start": 50952.42, + "end": 50954.66, + "probability": 0.9635 + }, + { + "start": 50954.86, + "end": 50955.62, + "probability": 0.9237 + }, + { + "start": 50955.7, + "end": 50957.14, + "probability": 0.8903 + }, + { + "start": 50957.34, + "end": 50960.42, + "probability": 0.9443 + }, + { + "start": 50961.36, + "end": 50962.56, + "probability": 0.946 + }, + { + "start": 50964.0, + "end": 50969.46, + "probability": 0.9665 + }, + { + "start": 50970.02, + "end": 50971.16, + "probability": 0.6257 + }, + { + "start": 50971.16, + "end": 50972.9, + "probability": 0.8353 + }, + { + "start": 50973.8, + "end": 50978.4, + "probability": 0.9697 + }, + { + "start": 50978.46, + "end": 50981.7, + "probability": 0.9081 + }, + { + "start": 50982.76, + "end": 50983.7, + "probability": 0.6771 + }, + { + "start": 50985.34, + "end": 50989.82, + "probability": 0.9811 + }, + { + "start": 50989.84, + "end": 50993.1, + "probability": 0.9984 + }, + { + "start": 50994.08, + "end": 50997.04, + "probability": 0.9187 + }, + { + "start": 50998.58, + "end": 51000.95, + "probability": 0.9124 + }, + { + "start": 51003.2, + "end": 51004.6, + "probability": 0.9944 + }, + { + "start": 51005.4, + "end": 51008.38, + "probability": 0.7956 + }, + { + "start": 51008.8, + "end": 51010.14, + "probability": 0.7766 + }, + { + "start": 51011.28, + "end": 51013.6, + "probability": 0.8235 + }, + { + "start": 51014.18, + "end": 51016.13, + "probability": 0.917 + }, + { + "start": 51016.76, + "end": 51017.76, + "probability": 0.7653 + }, + { + "start": 51018.92, + "end": 51021.26, + "probability": 0.6432 + }, + { + "start": 51021.86, + "end": 51027.56, + "probability": 0.574 + }, + { + "start": 51028.34, + "end": 51033.58, + "probability": 0.934 + }, + { + "start": 51033.58, + "end": 51037.93, + "probability": 0.9924 + }, + { + "start": 51041.78, + "end": 51043.48, + "probability": 0.815 + }, + { + "start": 51044.02, + "end": 51047.34, + "probability": 0.9598 + }, + { + "start": 51048.02, + "end": 51051.36, + "probability": 0.99 + }, + { + "start": 51051.44, + "end": 51051.96, + "probability": 0.8269 + }, + { + "start": 51052.1, + "end": 51053.16, + "probability": 0.1821 + }, + { + "start": 51053.16, + "end": 51057.16, + "probability": 0.9765 + }, + { + "start": 51057.72, + "end": 51058.52, + "probability": 0.8352 + }, + { + "start": 51061.3, + "end": 51067.78, + "probability": 0.8948 + }, + { + "start": 51068.04, + "end": 51068.62, + "probability": 0.741 + }, + { + "start": 51069.3, + "end": 51070.62, + "probability": 0.9945 + }, + { + "start": 51071.9, + "end": 51075.4, + "probability": 0.9963 + }, + { + "start": 51076.16, + "end": 51079.26, + "probability": 0.8784 + }, + { + "start": 51079.94, + "end": 51081.02, + "probability": 0.9935 + }, + { + "start": 51081.64, + "end": 51087.18, + "probability": 0.982 + }, + { + "start": 51087.78, + "end": 51090.18, + "probability": 0.5528 + }, + { + "start": 51090.28, + "end": 51090.58, + "probability": 0.8379 + }, + { + "start": 51090.8, + "end": 51091.48, + "probability": 0.7659 + }, + { + "start": 51092.18, + "end": 51095.96, + "probability": 0.7928 + }, + { + "start": 51096.42, + "end": 51097.56, + "probability": 0.7316 + }, + { + "start": 51098.14, + "end": 51100.34, + "probability": 0.9528 + }, + { + "start": 51101.02, + "end": 51104.96, + "probability": 0.9731 + }, + { + "start": 51105.68, + "end": 51107.0, + "probability": 0.9097 + }, + { + "start": 51107.92, + "end": 51110.28, + "probability": 0.9071 + }, + { + "start": 51110.78, + "end": 51112.82, + "probability": 0.9854 + }, + { + "start": 51113.66, + "end": 51116.5, + "probability": 0.9905 + }, + { + "start": 51116.66, + "end": 51117.78, + "probability": 0.9268 + }, + { + "start": 51117.96, + "end": 51119.8, + "probability": 0.9072 + }, + { + "start": 51119.9, + "end": 51120.56, + "probability": 0.8682 + }, + { + "start": 51121.26, + "end": 51122.74, + "probability": 0.8328 + }, + { + "start": 51123.97, + "end": 51131.41, + "probability": 0.8417 + }, + { + "start": 51132.4, + "end": 51135.62, + "probability": 0.9862 + }, + { + "start": 51135.94, + "end": 51138.54, + "probability": 0.9985 + }, + { + "start": 51138.7, + "end": 51139.66, + "probability": 0.6583 + }, + { + "start": 51139.96, + "end": 51140.68, + "probability": 0.7448 + }, + { + "start": 51141.48, + "end": 51144.04, + "probability": 0.7385 + }, + { + "start": 51145.2, + "end": 51147.92, + "probability": 0.9564 + }, + { + "start": 51148.56, + "end": 51150.14, + "probability": 0.662 + }, + { + "start": 51150.88, + "end": 51153.72, + "probability": 0.9541 + }, + { + "start": 51154.2, + "end": 51157.9, + "probability": 0.813 + }, + { + "start": 51158.44, + "end": 51163.7, + "probability": 0.9411 + }, + { + "start": 51164.38, + "end": 51168.44, + "probability": 0.9971 + }, + { + "start": 51169.22, + "end": 51174.66, + "probability": 0.9234 + }, + { + "start": 51176.28, + "end": 51182.62, + "probability": 0.7223 + }, + { + "start": 51183.14, + "end": 51186.12, + "probability": 0.9648 + }, + { + "start": 51186.54, + "end": 51192.16, + "probability": 0.9564 + }, + { + "start": 51193.58, + "end": 51199.36, + "probability": 0.9821 + }, + { + "start": 51199.6, + "end": 51200.28, + "probability": 0.5806 + }, + { + "start": 51200.84, + "end": 51202.48, + "probability": 0.4086 + }, + { + "start": 51203.8, + "end": 51205.78, + "probability": 0.7154 + }, + { + "start": 51206.8, + "end": 51207.82, + "probability": 0.7446 + }, + { + "start": 51208.64, + "end": 51214.16, + "probability": 0.8569 + }, + { + "start": 51214.5, + "end": 51215.24, + "probability": 0.8067 + }, + { + "start": 51215.84, + "end": 51220.22, + "probability": 0.9157 + }, + { + "start": 51221.14, + "end": 51221.7, + "probability": 0.6879 + }, + { + "start": 51223.02, + "end": 51224.16, + "probability": 0.9961 + }, + { + "start": 51224.84, + "end": 51228.02, + "probability": 0.9028 + }, + { + "start": 51228.7, + "end": 51231.45, + "probability": 0.9904 + }, + { + "start": 51233.08, + "end": 51236.2, + "probability": 0.9891 + }, + { + "start": 51236.8, + "end": 51243.56, + "probability": 0.9819 + }, + { + "start": 51244.1, + "end": 51246.4, + "probability": 0.508 + }, + { + "start": 51247.18, + "end": 51249.06, + "probability": 0.8647 + }, + { + "start": 51249.76, + "end": 51250.16, + "probability": 0.9087 + }, + { + "start": 51250.8, + "end": 51252.24, + "probability": 0.8941 + }, + { + "start": 51253.18, + "end": 51255.96, + "probability": 0.993 + }, + { + "start": 51256.72, + "end": 51259.48, + "probability": 0.7681 + }, + { + "start": 51259.58, + "end": 51261.17, + "probability": 0.9811 + }, + { + "start": 51262.58, + "end": 51263.33, + "probability": 0.6336 + }, + { + "start": 51263.93, + "end": 51268.32, + "probability": 0.9003 + }, + { + "start": 51268.98, + "end": 51272.72, + "probability": 0.978 + }, + { + "start": 51272.86, + "end": 51274.76, + "probability": 0.9889 + }, + { + "start": 51275.04, + "end": 51277.1, + "probability": 0.9053 + }, + { + "start": 51278.98, + "end": 51282.69, + "probability": 0.911 + }, + { + "start": 51283.6, + "end": 51286.78, + "probability": 0.9572 + }, + { + "start": 51287.5, + "end": 51295.83, + "probability": 0.9762 + }, + { + "start": 51296.12, + "end": 51304.76, + "probability": 0.9891 + }, + { + "start": 51311.96, + "end": 51312.86, + "probability": 0.6795 + }, + { + "start": 51313.46, + "end": 51313.48, + "probability": 0.032 + }, + { + "start": 51314.1, + "end": 51317.91, + "probability": 0.8787 + }, + { + "start": 51319.02, + "end": 51319.76, + "probability": 0.9927 + }, + { + "start": 51321.16, + "end": 51329.98, + "probability": 0.9199 + }, + { + "start": 51330.2, + "end": 51330.34, + "probability": 0.7292 + }, + { + "start": 51330.72, + "end": 51332.43, + "probability": 0.9507 + }, + { + "start": 51333.86, + "end": 51335.44, + "probability": 0.8571 + }, + { + "start": 51336.2, + "end": 51341.36, + "probability": 0.8215 + }, + { + "start": 51342.14, + "end": 51348.98, + "probability": 0.9303 + }, + { + "start": 51349.52, + "end": 51356.86, + "probability": 0.9736 + }, + { + "start": 51357.56, + "end": 51363.1, + "probability": 0.9987 + }, + { + "start": 51363.92, + "end": 51367.12, + "probability": 0.8271 + }, + { + "start": 51367.72, + "end": 51374.56, + "probability": 0.9795 + }, + { + "start": 51375.06, + "end": 51379.88, + "probability": 0.9943 + }, + { + "start": 51380.6, + "end": 51386.98, + "probability": 0.91 + }, + { + "start": 51387.7, + "end": 51389.38, + "probability": 0.9971 + }, + { + "start": 51390.04, + "end": 51396.08, + "probability": 0.929 + }, + { + "start": 51396.16, + "end": 51402.46, + "probability": 0.9805 + }, + { + "start": 51403.38, + "end": 51413.04, + "probability": 0.9889 + }, + { + "start": 51413.12, + "end": 51414.54, + "probability": 0.8031 + }, + { + "start": 51415.28, + "end": 51415.84, + "probability": 0.6554 + }, + { + "start": 51416.78, + "end": 51420.32, + "probability": 0.8892 + }, + { + "start": 51420.4, + "end": 51421.02, + "probability": 0.6432 + }, + { + "start": 51421.48, + "end": 51425.42, + "probability": 0.9692 + }, + { + "start": 51426.14, + "end": 51426.9, + "probability": 0.7538 + }, + { + "start": 51427.96, + "end": 51433.92, + "probability": 0.9897 + }, + { + "start": 51434.66, + "end": 51442.66, + "probability": 0.9766 + }, + { + "start": 51443.44, + "end": 51447.78, + "probability": 0.7521 + }, + { + "start": 51447.92, + "end": 51448.36, + "probability": 0.6858 + }, + { + "start": 51449.18, + "end": 51453.38, + "probability": 0.987 + }, + { + "start": 51454.92, + "end": 51456.36, + "probability": 0.9843 + }, + { + "start": 51457.22, + "end": 51460.28, + "probability": 0.9717 + }, + { + "start": 51460.76, + "end": 51461.22, + "probability": 0.5658 + }, + { + "start": 51461.22, + "end": 51463.32, + "probability": 0.8008 + }, + { + "start": 51464.51, + "end": 51471.34, + "probability": 0.9026 + }, + { + "start": 51471.42, + "end": 51473.92, + "probability": 0.9186 + }, + { + "start": 51474.54, + "end": 51480.36, + "probability": 0.8879 + }, + { + "start": 51483.84, + "end": 51484.84, + "probability": 0.6139 + }, + { + "start": 51485.18, + "end": 51491.04, + "probability": 0.9901 + }, + { + "start": 51492.14, + "end": 51497.16, + "probability": 0.9948 + }, + { + "start": 51497.76, + "end": 51500.0, + "probability": 0.8147 + }, + { + "start": 51500.72, + "end": 51501.42, + "probability": 0.7346 + }, + { + "start": 51502.06, + "end": 51504.94, + "probability": 0.8278 + }, + { + "start": 51506.72, + "end": 51509.6, + "probability": 0.9914 + }, + { + "start": 51510.12, + "end": 51515.82, + "probability": 0.9907 + }, + { + "start": 51515.96, + "end": 51518.92, + "probability": 0.6671 + }, + { + "start": 51520.26, + "end": 51521.0, + "probability": 0.7332 + }, + { + "start": 51521.64, + "end": 51525.58, + "probability": 0.9674 + }, + { + "start": 51526.53, + "end": 51529.3, + "probability": 0.9528 + }, + { + "start": 51530.0, + "end": 51533.0, + "probability": 0.8877 + }, + { + "start": 51534.14, + "end": 51536.44, + "probability": 0.9084 + }, + { + "start": 51537.22, + "end": 51541.8, + "probability": 0.9624 + }, + { + "start": 51542.24, + "end": 51543.03, + "probability": 0.4488 + }, + { + "start": 51544.02, + "end": 51552.42, + "probability": 0.9662 + }, + { + "start": 51553.52, + "end": 51555.22, + "probability": 0.3011 + }, + { + "start": 51555.28, + "end": 51558.24, + "probability": 0.7738 + }, + { + "start": 51558.64, + "end": 51559.12, + "probability": 0.3133 + }, + { + "start": 51559.12, + "end": 51560.68, + "probability": 0.8028 + }, + { + "start": 51560.74, + "end": 51561.24, + "probability": 0.8975 + }, + { + "start": 51561.8, + "end": 51567.2, + "probability": 0.9565 + }, + { + "start": 51567.24, + "end": 51568.44, + "probability": 0.9702 + }, + { + "start": 51569.29, + "end": 51570.62, + "probability": 0.9587 + }, + { + "start": 51570.7, + "end": 51572.38, + "probability": 0.8637 + }, + { + "start": 51572.44, + "end": 51573.28, + "probability": 0.7544 + }, + { + "start": 51576.1, + "end": 51578.3, + "probability": 0.6208 + }, + { + "start": 51578.38, + "end": 51578.94, + "probability": 0.8788 + }, + { + "start": 51579.68, + "end": 51589.2, + "probability": 0.9609 + }, + { + "start": 51589.32, + "end": 51590.68, + "probability": 0.9854 + }, + { + "start": 51592.14, + "end": 51594.36, + "probability": 0.7247 + }, + { + "start": 51596.38, + "end": 51597.39, + "probability": 0.9453 + }, + { + "start": 51598.16, + "end": 51599.98, + "probability": 0.7836 + }, + { + "start": 51600.3, + "end": 51600.6, + "probability": 0.5577 + }, + { + "start": 51600.74, + "end": 51600.98, + "probability": 0.4107 + }, + { + "start": 51601.9, + "end": 51602.7, + "probability": 0.2824 + }, + { + "start": 51603.46, + "end": 51608.32, + "probability": 0.9883 + }, + { + "start": 51609.16, + "end": 51613.42, + "probability": 0.8182 + }, + { + "start": 51614.58, + "end": 51616.06, + "probability": 0.8437 + }, + { + "start": 51616.78, + "end": 51618.04, + "probability": 0.8293 + }, + { + "start": 51618.34, + "end": 51622.2, + "probability": 0.7998 + }, + { + "start": 51623.06, + "end": 51624.82, + "probability": 0.9989 + }, + { + "start": 51625.56, + "end": 51633.14, + "probability": 0.9956 + }, + { + "start": 51633.62, + "end": 51639.87, + "probability": 0.9941 + }, + { + "start": 51642.64, + "end": 51646.2, + "probability": 0.732 + }, + { + "start": 51646.8, + "end": 51651.38, + "probability": 0.9921 + }, + { + "start": 51652.98, + "end": 51656.5, + "probability": 0.994 + }, + { + "start": 51657.3, + "end": 51661.8, + "probability": 0.526 + }, + { + "start": 51662.98, + "end": 51663.28, + "probability": 0.2696 + }, + { + "start": 51664.04, + "end": 51664.5, + "probability": 0.5368 + }, + { + "start": 51665.84, + "end": 51670.02, + "probability": 0.9822 + }, + { + "start": 51670.7, + "end": 51672.06, + "probability": 0.8668 + }, + { + "start": 51672.7, + "end": 51673.7, + "probability": 0.6975 + }, + { + "start": 51674.76, + "end": 51674.86, + "probability": 0.1491 + }, + { + "start": 51674.86, + "end": 51675.42, + "probability": 0.6482 + }, + { + "start": 51676.12, + "end": 51677.36, + "probability": 0.7442 + }, + { + "start": 51677.5, + "end": 51682.78, + "probability": 0.6406 + }, + { + "start": 51682.84, + "end": 51684.8, + "probability": 0.9027 + }, + { + "start": 51685.04, + "end": 51685.8, + "probability": 0.7711 + }, + { + "start": 51686.08, + "end": 51690.38, + "probability": 0.6129 + }, + { + "start": 51690.46, + "end": 51691.51, + "probability": 0.8859 + }, + { + "start": 51692.78, + "end": 51694.6, + "probability": 0.7991 + }, + { + "start": 51695.56, + "end": 51698.38, + "probability": 0.9751 + }, + { + "start": 51698.9, + "end": 51699.76, + "probability": 0.9229 + }, + { + "start": 51700.84, + "end": 51705.96, + "probability": 0.9377 + }, + { + "start": 51708.16, + "end": 51714.78, + "probability": 0.7524 + }, + { + "start": 51715.4, + "end": 51718.62, + "probability": 0.5371 + }, + { + "start": 51719.34, + "end": 51720.12, + "probability": 0.7312 + }, + { + "start": 51720.76, + "end": 51722.14, + "probability": 0.4912 + }, + { + "start": 51722.2, + "end": 51722.32, + "probability": 0.1973 + }, + { + "start": 51722.44, + "end": 51726.42, + "probability": 0.7707 + }, + { + "start": 51727.42, + "end": 51729.22, + "probability": 0.9656 + }, + { + "start": 51729.88, + "end": 51732.94, + "probability": 0.9585 + }, + { + "start": 51734.0, + "end": 51736.54, + "probability": 0.7841 + }, + { + "start": 51737.1, + "end": 51739.56, + "probability": 0.6934 + }, + { + "start": 51739.9, + "end": 51742.06, + "probability": 0.9575 + }, + { + "start": 51742.1, + "end": 51743.5, + "probability": 0.943 + }, + { + "start": 51743.62, + "end": 51744.91, + "probability": 0.7449 + }, + { + "start": 51744.98, + "end": 51745.3, + "probability": 0.07 + }, + { + "start": 51746.2, + "end": 51747.08, + "probability": 0.5835 + }, + { + "start": 51748.82, + "end": 51752.5, + "probability": 0.9213 + }, + { + "start": 51753.6, + "end": 51754.5, + "probability": 0.505 + }, + { + "start": 51754.72, + "end": 51759.02, + "probability": 0.903 + }, + { + "start": 51759.06, + "end": 51763.18, + "probability": 0.9263 + }, + { + "start": 51764.34, + "end": 51768.32, + "probability": 0.9798 + }, + { + "start": 51768.88, + "end": 51771.62, + "probability": 0.9474 + }, + { + "start": 51772.74, + "end": 51780.0, + "probability": 0.7872 + }, + { + "start": 51780.96, + "end": 51782.92, + "probability": 0.5779 + }, + { + "start": 51784.12, + "end": 51787.66, + "probability": 0.9509 + }, + { + "start": 51787.76, + "end": 51790.82, + "probability": 0.9883 + }, + { + "start": 51795.78, + "end": 51800.0, + "probability": 0.8377 + }, + { + "start": 51801.32, + "end": 51802.52, + "probability": 0.7549 + }, + { + "start": 51803.3, + "end": 51804.48, + "probability": 0.978 + }, + { + "start": 51805.22, + "end": 51806.18, + "probability": 0.6673 + }, + { + "start": 51807.54, + "end": 51811.58, + "probability": 0.889 + }, + { + "start": 51812.42, + "end": 51813.54, + "probability": 0.5845 + }, + { + "start": 51814.14, + "end": 51819.18, + "probability": 0.964 + }, + { + "start": 51820.36, + "end": 51826.2, + "probability": 0.6008 + }, + { + "start": 51826.42, + "end": 51828.74, + "probability": 0.7985 + }, + { + "start": 51830.04, + "end": 51836.1, + "probability": 0.7254 + }, + { + "start": 51837.5, + "end": 51839.38, + "probability": 0.9301 + }, + { + "start": 51840.26, + "end": 51845.02, + "probability": 0.7092 + }, + { + "start": 51845.62, + "end": 51846.12, + "probability": 0.9602 + }, + { + "start": 51846.72, + "end": 51849.82, + "probability": 0.9828 + }, + { + "start": 51850.7, + "end": 51855.68, + "probability": 0.6756 + }, + { + "start": 51856.46, + "end": 51857.14, + "probability": 0.61 + }, + { + "start": 51857.34, + "end": 51859.08, + "probability": 0.796 + }, + { + "start": 51859.2, + "end": 51859.9, + "probability": 0.9733 + }, + { + "start": 51862.26, + "end": 51863.54, + "probability": 0.7725 + }, + { + "start": 51864.96, + "end": 51867.14, + "probability": 0.5695 + }, + { + "start": 51868.06, + "end": 51877.7, + "probability": 0.6197 + }, + { + "start": 51880.48, + "end": 51883.03, + "probability": 0.8711 + }, + { + "start": 51884.56, + "end": 51886.74, + "probability": 0.9976 + }, + { + "start": 51887.28, + "end": 51891.88, + "probability": 0.9724 + }, + { + "start": 51892.48, + "end": 51894.86, + "probability": 0.7328 + }, + { + "start": 51896.26, + "end": 51899.96, + "probability": 0.9584 + }, + { + "start": 51900.54, + "end": 51902.78, + "probability": 0.996 + }, + { + "start": 51903.34, + "end": 51904.22, + "probability": 0.9922 + }, + { + "start": 51905.74, + "end": 51912.86, + "probability": 0.9662 + }, + { + "start": 51912.92, + "end": 51917.2, + "probability": 0.9727 + }, + { + "start": 51919.22, + "end": 51920.02, + "probability": 0.537 + }, + { + "start": 51920.3, + "end": 51923.44, + "probability": 0.9341 + }, + { + "start": 51924.1, + "end": 51927.32, + "probability": 0.6934 + }, + { + "start": 51929.22, + "end": 51934.98, + "probability": 0.9138 + }, + { + "start": 51935.08, + "end": 51936.46, + "probability": 0.9421 + }, + { + "start": 51937.98, + "end": 51938.4, + "probability": 0.2829 + }, + { + "start": 51938.98, + "end": 51943.74, + "probability": 0.8799 + }, + { + "start": 51944.24, + "end": 51948.44, + "probability": 0.9668 + }, + { + "start": 51948.96, + "end": 51951.86, + "probability": 0.9414 + }, + { + "start": 51953.56, + "end": 51954.48, + "probability": 0.8015 + }, + { + "start": 51955.44, + "end": 51961.24, + "probability": 0.9863 + }, + { + "start": 51961.3, + "end": 51965.44, + "probability": 0.9976 + }, + { + "start": 51966.04, + "end": 51966.8, + "probability": 0.9985 + }, + { + "start": 51967.46, + "end": 51975.48, + "probability": 0.9963 + }, + { + "start": 51976.04, + "end": 51977.86, + "probability": 0.9924 + }, + { + "start": 51978.46, + "end": 51981.28, + "probability": 0.9991 + }, + { + "start": 51982.36, + "end": 51983.62, + "probability": 0.9784 + }, + { + "start": 51984.74, + "end": 51987.44, + "probability": 0.9443 + }, + { + "start": 51988.1, + "end": 51998.49, + "probability": 0.9404 + }, + { + "start": 51998.96, + "end": 52000.02, + "probability": 0.851 + }, + { + "start": 52000.72, + "end": 52002.06, + "probability": 0.6745 + }, + { + "start": 52002.74, + "end": 52005.49, + "probability": 0.9904 + }, + { + "start": 52005.74, + "end": 52008.68, + "probability": 0.7494 + }, + { + "start": 52009.92, + "end": 52010.78, + "probability": 0.9514 + }, + { + "start": 52011.94, + "end": 52012.98, + "probability": 0.8864 + }, + { + "start": 52014.7, + "end": 52018.26, + "probability": 0.9258 + }, + { + "start": 52019.04, + "end": 52022.36, + "probability": 0.9777 + }, + { + "start": 52023.28, + "end": 52030.32, + "probability": 0.9993 + }, + { + "start": 52030.88, + "end": 52032.52, + "probability": 0.9945 + }, + { + "start": 52033.04, + "end": 52034.24, + "probability": 0.5888 + }, + { + "start": 52035.78, + "end": 52037.26, + "probability": 0.7746 + }, + { + "start": 52044.3, + "end": 52053.1, + "probability": 0.9431 + }, + { + "start": 52054.32, + "end": 52058.2, + "probability": 0.7491 + }, + { + "start": 52059.02, + "end": 52061.94, + "probability": 0.9697 + }, + { + "start": 52062.34, + "end": 52066.8, + "probability": 0.9945 + }, + { + "start": 52068.08, + "end": 52069.96, + "probability": 0.9978 + }, + { + "start": 52071.08, + "end": 52074.86, + "probability": 0.889 + }, + { + "start": 52075.9, + "end": 52077.74, + "probability": 0.6999 + }, + { + "start": 52078.56, + "end": 52079.06, + "probability": 0.7292 + }, + { + "start": 52080.2, + "end": 52084.5, + "probability": 0.9809 + }, + { + "start": 52084.78, + "end": 52089.68, + "probability": 0.954 + }, + { + "start": 52091.52, + "end": 52094.76, + "probability": 0.7487 + }, + { + "start": 52096.04, + "end": 52096.84, + "probability": 0.3017 + }, + { + "start": 52097.4, + "end": 52098.2, + "probability": 0.7674 + }, + { + "start": 52099.37, + "end": 52106.0, + "probability": 0.9581 + }, + { + "start": 52107.04, + "end": 52108.96, + "probability": 0.8595 + }, + { + "start": 52110.02, + "end": 52110.8, + "probability": 0.9121 + }, + { + "start": 52111.66, + "end": 52121.18, + "probability": 0.958 + }, + { + "start": 52121.6, + "end": 52123.28, + "probability": 0.695 + }, + { + "start": 52125.47, + "end": 52131.49, + "probability": 0.6646 + }, + { + "start": 52133.38, + "end": 52136.44, + "probability": 0.9697 + }, + { + "start": 52137.24, + "end": 52138.62, + "probability": 0.6945 + }, + { + "start": 52139.72, + "end": 52140.34, + "probability": 0.8615 + }, + { + "start": 52140.48, + "end": 52143.26, + "probability": 0.8924 + }, + { + "start": 52144.12, + "end": 52150.1, + "probability": 0.8926 + }, + { + "start": 52151.77, + "end": 52155.48, + "probability": 0.3599 + }, + { + "start": 52157.6, + "end": 52159.94, + "probability": 0.952 + }, + { + "start": 52161.46, + "end": 52163.52, + "probability": 0.6974 + }, + { + "start": 52164.16, + "end": 52166.86, + "probability": 0.9761 + }, + { + "start": 52167.84, + "end": 52169.44, + "probability": 0.7848 + }, + { + "start": 52170.04, + "end": 52173.06, + "probability": 0.9547 + }, + { + "start": 52173.42, + "end": 52178.72, + "probability": 0.9714 + }, + { + "start": 52178.72, + "end": 52186.3, + "probability": 0.997 + }, + { + "start": 52187.06, + "end": 52191.74, + "probability": 0.9556 + }, + { + "start": 52191.96, + "end": 52192.68, + "probability": 0.9549 + }, + { + "start": 52192.8, + "end": 52194.7, + "probability": 0.9507 + }, + { + "start": 52195.34, + "end": 52199.22, + "probability": 0.9982 + }, + { + "start": 52199.92, + "end": 52203.2, + "probability": 0.9919 + }, + { + "start": 52204.1, + "end": 52204.56, + "probability": 0.578 + }, + { + "start": 52205.56, + "end": 52211.2, + "probability": 0.9692 + }, + { + "start": 52211.96, + "end": 52214.66, + "probability": 0.8943 + }, + { + "start": 52215.62, + "end": 52216.54, + "probability": 0.903 + }, + { + "start": 52217.52, + "end": 52222.38, + "probability": 0.9922 + }, + { + "start": 52223.46, + "end": 52225.66, + "probability": 0.998 + }, + { + "start": 52226.0, + "end": 52228.18, + "probability": 0.66 + }, + { + "start": 52228.9, + "end": 52232.08, + "probability": 0.9238 + }, + { + "start": 52232.52, + "end": 52233.78, + "probability": 0.705 + }, + { + "start": 52234.52, + "end": 52239.48, + "probability": 0.937 + }, + { + "start": 52240.0, + "end": 52244.66, + "probability": 0.9742 + }, + { + "start": 52244.9, + "end": 52247.12, + "probability": 0.8976 + }, + { + "start": 52247.9, + "end": 52251.36, + "probability": 0.9723 + }, + { + "start": 52252.2, + "end": 52254.92, + "probability": 0.9651 + }, + { + "start": 52255.22, + "end": 52258.68, + "probability": 0.8608 + }, + { + "start": 52259.66, + "end": 52264.02, + "probability": 0.6161 + }, + { + "start": 52264.88, + "end": 52265.48, + "probability": 0.6106 + }, + { + "start": 52265.74, + "end": 52266.46, + "probability": 0.927 + }, + { + "start": 52266.54, + "end": 52267.72, + "probability": 0.9408 + }, + { + "start": 52267.82, + "end": 52272.1, + "probability": 0.9266 + }, + { + "start": 52273.66, + "end": 52274.86, + "probability": 0.9649 + }, + { + "start": 52275.92, + "end": 52278.04, + "probability": 0.894 + }, + { + "start": 52278.58, + "end": 52281.8, + "probability": 0.9044 + }, + { + "start": 52282.48, + "end": 52284.9, + "probability": 0.9915 + }, + { + "start": 52285.6, + "end": 52290.32, + "probability": 0.978 + }, + { + "start": 52290.78, + "end": 52292.54, + "probability": 0.9913 + }, + { + "start": 52293.26, + "end": 52297.12, + "probability": 0.8202 + }, + { + "start": 52298.08, + "end": 52298.8, + "probability": 0.8751 + }, + { + "start": 52299.64, + "end": 52305.24, + "probability": 0.975 + }, + { + "start": 52305.94, + "end": 52307.26, + "probability": 0.8142 + }, + { + "start": 52307.98, + "end": 52310.92, + "probability": 0.8999 + }, + { + "start": 52311.9, + "end": 52313.92, + "probability": 0.8346 + }, + { + "start": 52314.24, + "end": 52315.08, + "probability": 0.8259 + }, + { + "start": 52316.12, + "end": 52316.44, + "probability": 0.9307 + }, + { + "start": 52316.96, + "end": 52324.32, + "probability": 0.9355 + }, + { + "start": 52324.86, + "end": 52325.94, + "probability": 0.9165 + }, + { + "start": 52326.94, + "end": 52329.72, + "probability": 0.7517 + }, + { + "start": 52330.34, + "end": 52333.34, + "probability": 0.9183 + }, + { + "start": 52334.2, + "end": 52334.96, + "probability": 0.6877 + }, + { + "start": 52335.54, + "end": 52340.06, + "probability": 0.9937 + }, + { + "start": 52341.16, + "end": 52341.78, + "probability": 0.9868 + }, + { + "start": 52341.96, + "end": 52342.68, + "probability": 0.9448 + }, + { + "start": 52343.16, + "end": 52343.76, + "probability": 0.9764 + }, + { + "start": 52343.78, + "end": 52344.6, + "probability": 0.9821 + }, + { + "start": 52345.22, + "end": 52348.64, + "probability": 0.903 + }, + { + "start": 52349.9, + "end": 52352.56, + "probability": 0.6318 + }, + { + "start": 52353.3, + "end": 52358.1, + "probability": 0.9984 + }, + { + "start": 52358.21, + "end": 52359.12, + "probability": 0.4838 + }, + { + "start": 52359.6, + "end": 52361.52, + "probability": 0.7802 + }, + { + "start": 52363.22, + "end": 52366.88, + "probability": 0.7723 + }, + { + "start": 52367.78, + "end": 52367.92, + "probability": 0.7778 + }, + { + "start": 52369.6, + "end": 52370.66, + "probability": 0.938 + }, + { + "start": 52371.18, + "end": 52372.86, + "probability": 0.7413 + }, + { + "start": 52373.84, + "end": 52377.5, + "probability": 0.8239 + }, + { + "start": 52377.7, + "end": 52382.19, + "probability": 0.9939 + }, + { + "start": 52383.78, + "end": 52384.32, + "probability": 0.7165 + }, + { + "start": 52384.46, + "end": 52386.54, + "probability": 0.9385 + }, + { + "start": 52387.08, + "end": 52390.95, + "probability": 0.9329 + }, + { + "start": 52392.16, + "end": 52393.92, + "probability": 0.6544 + }, + { + "start": 52394.4, + "end": 52395.74, + "probability": 0.9521 + }, + { + "start": 52396.46, + "end": 52400.18, + "probability": 0.924 + }, + { + "start": 52400.83, + "end": 52406.44, + "probability": 0.9775 + }, + { + "start": 52406.92, + "end": 52407.44, + "probability": 0.422 + }, + { + "start": 52408.54, + "end": 52410.66, + "probability": 0.9767 + }, + { + "start": 52411.62, + "end": 52413.4, + "probability": 0.8442 + }, + { + "start": 52414.88, + "end": 52419.08, + "probability": 0.9472 + }, + { + "start": 52420.06, + "end": 52422.32, + "probability": 0.9046 + }, + { + "start": 52422.84, + "end": 52423.82, + "probability": 0.9301 + }, + { + "start": 52424.6, + "end": 52425.26, + "probability": 0.988 + }, + { + "start": 52425.94, + "end": 52428.92, + "probability": 0.9836 + }, + { + "start": 52429.98, + "end": 52432.56, + "probability": 0.9297 + }, + { + "start": 52432.9, + "end": 52433.5, + "probability": 0.8632 + }, + { + "start": 52433.84, + "end": 52440.58, + "probability": 0.9097 + }, + { + "start": 52441.22, + "end": 52441.9, + "probability": 0.574 + }, + { + "start": 52442.7, + "end": 52445.7, + "probability": 0.992 + }, + { + "start": 52446.26, + "end": 52453.92, + "probability": 0.9932 + }, + { + "start": 52454.7, + "end": 52457.04, + "probability": 0.9222 + }, + { + "start": 52457.72, + "end": 52458.98, + "probability": 0.8328 + }, + { + "start": 52460.34, + "end": 52461.72, + "probability": 0.9085 + }, + { + "start": 52467.52, + "end": 52468.1, + "probability": 0.523 + }, + { + "start": 52468.82, + "end": 52475.28, + "probability": 0.8773 + }, + { + "start": 52476.36, + "end": 52481.22, + "probability": 0.946 + }, + { + "start": 52481.64, + "end": 52484.24, + "probability": 0.9011 + }, + { + "start": 52484.76, + "end": 52485.22, + "probability": 0.8393 + }, + { + "start": 52485.8, + "end": 52492.54, + "probability": 0.9282 + }, + { + "start": 52493.68, + "end": 52498.4, + "probability": 0.9838 + }, + { + "start": 52498.94, + "end": 52505.15, + "probability": 0.8855 + }, + { + "start": 52507.56, + "end": 52509.72, + "probability": 0.4746 + }, + { + "start": 52511.0, + "end": 52512.51, + "probability": 0.9614 + }, + { + "start": 52513.76, + "end": 52514.26, + "probability": 0.794 + }, + { + "start": 52514.8, + "end": 52518.3, + "probability": 0.9883 + }, + { + "start": 52518.62, + "end": 52522.06, + "probability": 0.9824 + }, + { + "start": 52523.52, + "end": 52530.8, + "probability": 0.8649 + }, + { + "start": 52533.86, + "end": 52535.34, + "probability": 0.8379 + }, + { + "start": 52535.92, + "end": 52537.46, + "probability": 0.8938 + }, + { + "start": 52540.54, + "end": 52541.66, + "probability": 0.7927 + }, + { + "start": 52541.78, + "end": 52544.9, + "probability": 0.9765 + }, + { + "start": 52545.16, + "end": 52545.84, + "probability": 0.8799 + }, + { + "start": 52546.28, + "end": 52547.32, + "probability": 0.8197 + }, + { + "start": 52547.52, + "end": 52552.68, + "probability": 0.9833 + }, + { + "start": 52552.78, + "end": 52555.14, + "probability": 0.8559 + }, + { + "start": 52555.7, + "end": 52559.6, + "probability": 0.858 + }, + { + "start": 52560.24, + "end": 52567.22, + "probability": 0.9702 + }, + { + "start": 52567.22, + "end": 52573.4, + "probability": 0.8889 + }, + { + "start": 52573.9, + "end": 52574.84, + "probability": 0.9162 + }, + { + "start": 52575.16, + "end": 52578.62, + "probability": 0.8861 + }, + { + "start": 52579.28, + "end": 52581.38, + "probability": 0.8976 + }, + { + "start": 52582.46, + "end": 52587.4, + "probability": 0.9722 + }, + { + "start": 52587.42, + "end": 52588.46, + "probability": 0.8752 + }, + { + "start": 52588.84, + "end": 52590.22, + "probability": 0.8984 + }, + { + "start": 52591.02, + "end": 52594.26, + "probability": 0.9489 + }, + { + "start": 52595.5, + "end": 52596.12, + "probability": 0.9419 + }, + { + "start": 52596.7, + "end": 52604.87, + "probability": 0.9945 + }, + { + "start": 52606.68, + "end": 52613.0, + "probability": 0.9977 + }, + { + "start": 52613.78, + "end": 52620.18, + "probability": 0.9929 + }, + { + "start": 52620.18, + "end": 52625.04, + "probability": 0.9851 + }, + { + "start": 52626.6, + "end": 52633.88, + "probability": 0.84 + }, + { + "start": 52636.14, + "end": 52637.0, + "probability": 0.7243 + }, + { + "start": 52637.52, + "end": 52640.42, + "probability": 0.6867 + }, + { + "start": 52641.42, + "end": 52644.66, + "probability": 0.9929 + }, + { + "start": 52645.98, + "end": 52646.62, + "probability": 0.7443 + }, + { + "start": 52647.38, + "end": 52649.46, + "probability": 0.992 + }, + { + "start": 52650.16, + "end": 52653.48, + "probability": 0.9793 + }, + { + "start": 52654.36, + "end": 52657.0, + "probability": 0.9865 + }, + { + "start": 52657.68, + "end": 52659.98, + "probability": 0.9911 + }, + { + "start": 52661.98, + "end": 52669.36, + "probability": 0.9985 + }, + { + "start": 52669.58, + "end": 52671.52, + "probability": 0.6178 + }, + { + "start": 52671.7, + "end": 52674.44, + "probability": 0.9888 + }, + { + "start": 52675.02, + "end": 52676.08, + "probability": 0.9569 + }, + { + "start": 52676.2, + "end": 52681.74, + "probability": 0.9735 + }, + { + "start": 52681.74, + "end": 52684.8, + "probability": 0.9802 + }, + { + "start": 52685.6, + "end": 52689.88, + "probability": 0.9715 + }, + { + "start": 52690.92, + "end": 52694.0, + "probability": 0.8522 + }, + { + "start": 52694.18, + "end": 52700.08, + "probability": 0.9118 + }, + { + "start": 52700.76, + "end": 52705.98, + "probability": 0.9798 + }, + { + "start": 52706.98, + "end": 52709.86, + "probability": 0.7409 + }, + { + "start": 52711.33, + "end": 52714.32, + "probability": 0.9634 + }, + { + "start": 52714.94, + "end": 52717.88, + "probability": 0.9461 + }, + { + "start": 52718.42, + "end": 52724.98, + "probability": 0.958 + }, + { + "start": 52725.82, + "end": 52728.9, + "probability": 0.9965 + }, + { + "start": 52728.9, + "end": 52734.07, + "probability": 0.998 + }, + { + "start": 52734.98, + "end": 52735.7, + "probability": 0.4567 + }, + { + "start": 52735.98, + "end": 52738.76, + "probability": 0.9163 + }, + { + "start": 52738.96, + "end": 52744.68, + "probability": 0.976 + }, + { + "start": 52744.68, + "end": 52756.66, + "probability": 0.9965 + }, + { + "start": 52757.62, + "end": 52761.78, + "probability": 0.9865 + }, + { + "start": 52763.24, + "end": 52773.38, + "probability": 0.9726 + }, + { + "start": 52776.12, + "end": 52779.18, + "probability": 0.9922 + }, + { + "start": 52779.96, + "end": 52782.1, + "probability": 0.8682 + }, + { + "start": 52783.32, + "end": 52789.94, + "probability": 0.9816 + }, + { + "start": 52790.22, + "end": 52794.34, + "probability": 0.9329 + }, + { + "start": 52794.54, + "end": 52794.86, + "probability": 0.6857 + }, + { + "start": 52797.24, + "end": 52800.81, + "probability": 0.9764 + }, + { + "start": 52801.42, + "end": 52807.08, + "probability": 0.8324 + }, + { + "start": 52808.36, + "end": 52810.02, + "probability": 0.9668 + }, + { + "start": 52810.86, + "end": 52812.48, + "probability": 0.9734 + }, + { + "start": 52813.24, + "end": 52813.7, + "probability": 0.9711 + }, + { + "start": 52814.52, + "end": 52817.14, + "probability": 0.9858 + }, + { + "start": 52817.68, + "end": 52820.7, + "probability": 0.9077 + }, + { + "start": 52820.8, + "end": 52821.86, + "probability": 0.8692 + }, + { + "start": 52821.94, + "end": 52822.46, + "probability": 0.7023 + }, + { + "start": 52822.86, + "end": 52823.98, + "probability": 0.9849 + }, + { + "start": 52824.06, + "end": 52827.86, + "probability": 0.8835 + }, + { + "start": 52828.56, + "end": 52830.3, + "probability": 0.9497 + }, + { + "start": 52831.16, + "end": 52833.2, + "probability": 0.8517 + }, + { + "start": 52833.26, + "end": 52834.98, + "probability": 0.9688 + }, + { + "start": 52835.18, + "end": 52838.58, + "probability": 0.9575 + }, + { + "start": 52839.5, + "end": 52841.12, + "probability": 0.5903 + }, + { + "start": 52841.8, + "end": 52842.04, + "probability": 0.6373 + }, + { + "start": 52842.14, + "end": 52844.36, + "probability": 0.9868 + }, + { + "start": 52845.02, + "end": 52851.24, + "probability": 0.9652 + }, + { + "start": 52852.0, + "end": 52852.54, + "probability": 0.8079 + }, + { + "start": 52852.6, + "end": 52852.7, + "probability": 0.8988 + }, + { + "start": 52853.36, + "end": 52854.24, + "probability": 0.8967 + }, + { + "start": 52854.78, + "end": 52856.42, + "probability": 0.9106 + }, + { + "start": 52857.16, + "end": 52860.05, + "probability": 0.9399 + }, + { + "start": 52860.8, + "end": 52862.98, + "probability": 0.4175 + }, + { + "start": 52863.42, + "end": 52867.8, + "probability": 0.9897 + }, + { + "start": 52868.34, + "end": 52872.44, + "probability": 0.9741 + }, + { + "start": 52873.02, + "end": 52876.02, + "probability": 0.8872 + }, + { + "start": 52876.8, + "end": 52878.52, + "probability": 0.9556 + }, + { + "start": 52879.14, + "end": 52880.38, + "probability": 0.8319 + }, + { + "start": 52880.8, + "end": 52886.11, + "probability": 0.9883 + }, + { + "start": 52886.26, + "end": 52886.86, + "probability": 0.4568 + }, + { + "start": 52888.06, + "end": 52890.69, + "probability": 0.0819 + }, + { + "start": 52891.4, + "end": 52891.86, + "probability": 0.4928 + }, + { + "start": 52891.9, + "end": 52891.9, + "probability": 0.0116 + }, + { + "start": 52892.52, + "end": 52896.83, + "probability": 0.8094 + }, + { + "start": 52898.44, + "end": 52900.88, + "probability": 0.9421 + }, + { + "start": 52901.84, + "end": 52903.28, + "probability": 0.9954 + }, + { + "start": 52903.78, + "end": 52911.14, + "probability": 0.8146 + }, + { + "start": 52911.5, + "end": 52911.5, + "probability": 0.6085 + }, + { + "start": 52911.5, + "end": 52913.44, + "probability": 0.7796 + }, + { + "start": 52913.94, + "end": 52919.59, + "probability": 0.966 + }, + { + "start": 52920.72, + "end": 52921.55, + "probability": 0.9363 + }, + { + "start": 52922.24, + "end": 52924.54, + "probability": 0.874 + }, + { + "start": 52925.04, + "end": 52927.52, + "probability": 0.811 + }, + { + "start": 52927.62, + "end": 52929.26, + "probability": 0.9322 + }, + { + "start": 52931.08, + "end": 52932.32, + "probability": 0.7873 + }, + { + "start": 52932.86, + "end": 52935.52, + "probability": 0.9468 + }, + { + "start": 52936.3, + "end": 52937.94, + "probability": 0.9071 + }, + { + "start": 52938.64, + "end": 52943.24, + "probability": 0.6921 + }, + { + "start": 52945.18, + "end": 52951.56, + "probability": 0.8063 + }, + { + "start": 52952.1, + "end": 52953.88, + "probability": 0.9362 + }, + { + "start": 52954.78, + "end": 52957.0, + "probability": 0.9221 + }, + { + "start": 52957.42, + "end": 52960.01, + "probability": 0.7453 + }, + { + "start": 52960.56, + "end": 52964.26, + "probability": 0.6667 + }, + { + "start": 52964.78, + "end": 52967.18, + "probability": 0.875 + }, + { + "start": 52967.74, + "end": 52970.46, + "probability": 0.8458 + }, + { + "start": 52971.81, + "end": 52975.56, + "probability": 0.7395 + }, + { + "start": 52976.67, + "end": 52981.6, + "probability": 0.5699 + }, + { + "start": 52981.78, + "end": 52983.4, + "probability": 0.9961 + }, + { + "start": 52983.52, + "end": 52986.1, + "probability": 0.9548 + }, + { + "start": 52986.22, + "end": 52987.06, + "probability": 0.8236 + }, + { + "start": 52987.4, + "end": 52987.94, + "probability": 0.7413 + }, + { + "start": 52988.6, + "end": 52988.7, + "probability": 0.9764 + }, + { + "start": 52990.54, + "end": 52992.52, + "probability": 0.9142 + }, + { + "start": 52994.94, + "end": 53001.08, + "probability": 0.9397 + }, + { + "start": 53001.36, + "end": 53001.8, + "probability": 0.715 + }, + { + "start": 53001.92, + "end": 53007.84, + "probability": 0.9557 + }, + { + "start": 53008.6, + "end": 53012.7, + "probability": 0.9156 + }, + { + "start": 53012.82, + "end": 53013.68, + "probability": 0.8673 + }, + { + "start": 53013.74, + "end": 53015.44, + "probability": 0.7549 + }, + { + "start": 53015.54, + "end": 53016.48, + "probability": 0.6329 + }, + { + "start": 53017.1, + "end": 53019.34, + "probability": 0.7382 + }, + { + "start": 53019.56, + "end": 53020.22, + "probability": 0.8287 + }, + { + "start": 53020.86, + "end": 53025.86, + "probability": 0.9446 + }, + { + "start": 53026.42, + "end": 53028.32, + "probability": 0.9558 + }, + { + "start": 53028.84, + "end": 53029.1, + "probability": 0.8713 + }, + { + "start": 53029.38, + "end": 53029.64, + "probability": 0.375 + }, + { + "start": 53029.88, + "end": 53032.74, + "probability": 0.892 + }, + { + "start": 53033.3, + "end": 53037.58, + "probability": 0.9585 + }, + { + "start": 53038.6, + "end": 53039.06, + "probability": 0.2715 + }, + { + "start": 53039.3, + "end": 53041.28, + "probability": 0.0156 + }, + { + "start": 53041.4, + "end": 53042.52, + "probability": 0.1956 + }, + { + "start": 53042.52, + "end": 53046.82, + "probability": 0.0676 + }, + { + "start": 53059.98, + "end": 53059.98, + "probability": 0.1139 + }, + { + "start": 53059.98, + "end": 53059.98, + "probability": 0.1255 + }, + { + "start": 53081.7, + "end": 53084.9, + "probability": 0.8966 + }, + { + "start": 53085.62, + "end": 53087.28, + "probability": 0.998 + }, + { + "start": 53088.06, + "end": 53090.02, + "probability": 0.9694 + }, + { + "start": 53090.66, + "end": 53092.7, + "probability": 0.9669 + }, + { + "start": 53093.9, + "end": 53095.9, + "probability": 0.9874 + }, + { + "start": 53096.58, + "end": 53097.64, + "probability": 0.9853 + }, + { + "start": 53098.54, + "end": 53099.86, + "probability": 0.9883 + }, + { + "start": 53101.02, + "end": 53103.22, + "probability": 0.7792 + }, + { + "start": 53103.98, + "end": 53105.16, + "probability": 0.9973 + }, + { + "start": 53106.88, + "end": 53107.2, + "probability": 0.6388 + }, + { + "start": 53108.22, + "end": 53109.44, + "probability": 0.9482 + }, + { + "start": 53111.3, + "end": 53111.91, + "probability": 0.9746 + }, + { + "start": 53114.68, + "end": 53115.2, + "probability": 0.979 + }, + { + "start": 53116.32, + "end": 53117.84, + "probability": 0.9993 + }, + { + "start": 53118.78, + "end": 53121.02, + "probability": 0.8971 + }, + { + "start": 53121.74, + "end": 53126.12, + "probability": 0.9836 + }, + { + "start": 53126.86, + "end": 53128.02, + "probability": 0.9918 + }, + { + "start": 53128.58, + "end": 53131.4, + "probability": 0.9671 + }, + { + "start": 53133.56, + "end": 53135.16, + "probability": 0.902 + }, + { + "start": 53135.92, + "end": 53136.68, + "probability": 0.615 + }, + { + "start": 53137.6, + "end": 53141.72, + "probability": 0.9752 + }, + { + "start": 53143.02, + "end": 53143.8, + "probability": 0.975 + }, + { + "start": 53144.68, + "end": 53145.06, + "probability": 0.96 + }, + { + "start": 53146.0, + "end": 53147.12, + "probability": 0.9622 + }, + { + "start": 53147.66, + "end": 53148.56, + "probability": 0.8594 + }, + { + "start": 53149.48, + "end": 53151.62, + "probability": 0.9254 + }, + { + "start": 53152.98, + "end": 53154.04, + "probability": 0.9912 + }, + { + "start": 53155.84, + "end": 53159.42, + "probability": 0.8594 + }, + { + "start": 53161.18, + "end": 53163.7, + "probability": 0.997 + }, + { + "start": 53164.5, + "end": 53166.42, + "probability": 0.979 + }, + { + "start": 53167.88, + "end": 53168.78, + "probability": 0.9756 + }, + { + "start": 53170.34, + "end": 53173.8, + "probability": 0.9541 + }, + { + "start": 53175.18, + "end": 53175.8, + "probability": 0.7246 + }, + { + "start": 53177.62, + "end": 53178.3, + "probability": 0.8105 + }, + { + "start": 53179.6, + "end": 53182.16, + "probability": 0.9939 + }, + { + "start": 53182.86, + "end": 53185.24, + "probability": 0.9475 + }, + { + "start": 53185.78, + "end": 53187.72, + "probability": 0.9532 + }, + { + "start": 53189.22, + "end": 53191.88, + "probability": 0.818 + }, + { + "start": 53193.58, + "end": 53194.56, + "probability": 0.8731 + }, + { + "start": 53196.18, + "end": 53196.9, + "probability": 0.733 + }, + { + "start": 53198.3, + "end": 53199.92, + "probability": 0.736 + }, + { + "start": 53200.42, + "end": 53207.7, + "probability": 0.9324 + }, + { + "start": 53208.98, + "end": 53210.24, + "probability": 0.8532 + }, + { + "start": 53211.02, + "end": 53213.04, + "probability": 0.958 + }, + { + "start": 53215.68, + "end": 53216.02, + "probability": 0.7315 + }, + { + "start": 53217.84, + "end": 53219.6, + "probability": 0.5981 + }, + { + "start": 53221.3, + "end": 53222.3, + "probability": 0.9421 + }, + { + "start": 53223.06, + "end": 53225.56, + "probability": 0.9382 + }, + { + "start": 53227.02, + "end": 53228.06, + "probability": 0.8926 + }, + { + "start": 53228.82, + "end": 53231.76, + "probability": 0.8943 + }, + { + "start": 53232.98, + "end": 53237.78, + "probability": 0.9958 + }, + { + "start": 53241.76, + "end": 53242.24, + "probability": 0.9324 + }, + { + "start": 53243.68, + "end": 53244.8, + "probability": 0.9707 + }, + { + "start": 53245.44, + "end": 53246.46, + "probability": 0.9666 + }, + { + "start": 53247.66, + "end": 53248.58, + "probability": 0.9788 + }, + { + "start": 53249.12, + "end": 53250.34, + "probability": 0.9521 + }, + { + "start": 53251.52, + "end": 53252.22, + "probability": 0.7672 + }, + { + "start": 53254.7, + "end": 53256.42, + "probability": 0.9884 + }, + { + "start": 53257.08, + "end": 53262.78, + "probability": 0.7043 + }, + { + "start": 53263.56, + "end": 53264.92, + "probability": 0.8457 + }, + { + "start": 53266.18, + "end": 53268.76, + "probability": 0.9937 + }, + { + "start": 53269.28, + "end": 53271.7, + "probability": 0.9966 + }, + { + "start": 53273.78, + "end": 53274.9, + "probability": 0.9984 + }, + { + "start": 53275.82, + "end": 53277.4, + "probability": 1.0 + }, + { + "start": 53278.72, + "end": 53279.24, + "probability": 0.7943 + }, + { + "start": 53280.56, + "end": 53282.02, + "probability": 0.9759 + }, + { + "start": 53282.42, + "end": 53283.7, + "probability": 0.9935 + }, + { + "start": 53284.02, + "end": 53285.38, + "probability": 0.9919 + }, + { + "start": 53286.46, + "end": 53289.44, + "probability": 0.9969 + }, + { + "start": 53291.42, + "end": 53294.4, + "probability": 0.9935 + }, + { + "start": 53296.56, + "end": 53303.44, + "probability": 0.9951 + }, + { + "start": 53305.28, + "end": 53306.78, + "probability": 0.9985 + }, + { + "start": 53308.52, + "end": 53312.06, + "probability": 0.9965 + }, + { + "start": 53312.06, + "end": 53317.86, + "probability": 0.9925 + }, + { + "start": 53318.94, + "end": 53320.06, + "probability": 0.8103 + }, + { + "start": 53321.64, + "end": 53322.49, + "probability": 0.9717 + }, + { + "start": 53324.26, + "end": 53328.32, + "probability": 0.9612 + }, + { + "start": 53329.16, + "end": 53330.44, + "probability": 0.9953 + }, + { + "start": 53331.5, + "end": 53331.86, + "probability": 0.3174 + }, + { + "start": 53331.96, + "end": 53332.44, + "probability": 0.8156 + }, + { + "start": 53334.04, + "end": 53336.02, + "probability": 0.9819 + }, + { + "start": 53337.22, + "end": 53338.74, + "probability": 0.9989 + }, + { + "start": 53340.0, + "end": 53340.62, + "probability": 0.9893 + }, + { + "start": 53341.66, + "end": 53343.74, + "probability": 0.9896 + }, + { + "start": 53344.98, + "end": 53347.0, + "probability": 0.9817 + }, + { + "start": 53348.64, + "end": 53349.68, + "probability": 0.9207 + }, + { + "start": 53351.6, + "end": 53356.96, + "probability": 0.9991 + }, + { + "start": 53358.4, + "end": 53359.36, + "probability": 0.8307 + }, + { + "start": 53360.9, + "end": 53362.2, + "probability": 0.9824 + }, + { + "start": 53364.66, + "end": 53367.6, + "probability": 0.975 + }, + { + "start": 53368.74, + "end": 53372.48, + "probability": 0.9977 + }, + { + "start": 53372.9, + "end": 53376.9, + "probability": 0.9954 + }, + { + "start": 53378.18, + "end": 53378.28, + "probability": 0.4526 + }, + { + "start": 53379.7, + "end": 53381.18, + "probability": 0.9961 + }, + { + "start": 53382.1, + "end": 53384.6, + "probability": 0.6281 + }, + { + "start": 53385.4, + "end": 53391.5, + "probability": 0.993 + }, + { + "start": 53392.4, + "end": 53392.62, + "probability": 0.6262 + }, + { + "start": 53392.88, + "end": 53395.9, + "probability": 0.9974 + }, + { + "start": 53396.28, + "end": 53397.14, + "probability": 0.9566 + }, + { + "start": 53397.52, + "end": 53399.94, + "probability": 0.9846 + }, + { + "start": 53400.42, + "end": 53402.92, + "probability": 0.9618 + }, + { + "start": 53403.56, + "end": 53406.58, + "probability": 0.9518 + }, + { + "start": 53406.72, + "end": 53412.24, + "probability": 0.9906 + }, + { + "start": 53412.48, + "end": 53413.18, + "probability": 0.5851 + }, + { + "start": 53415.74, + "end": 53417.26, + "probability": 0.9801 + }, + { + "start": 53417.7, + "end": 53420.12, + "probability": 0.991 + }, + { + "start": 53420.86, + "end": 53425.76, + "probability": 0.9976 + }, + { + "start": 53426.46, + "end": 53429.14, + "probability": 0.9001 + }, + { + "start": 53430.0, + "end": 53431.28, + "probability": 0.9988 + }, + { + "start": 53431.88, + "end": 53435.46, + "probability": 0.9642 + }, + { + "start": 53436.26, + "end": 53437.14, + "probability": 0.9362 + }, + { + "start": 53437.7, + "end": 53438.68, + "probability": 0.8573 + }, + { + "start": 53439.76, + "end": 53443.76, + "probability": 0.9952 + }, + { + "start": 53444.52, + "end": 53445.74, + "probability": 0.8128 + }, + { + "start": 53446.56, + "end": 53450.66, + "probability": 0.9968 + }, + { + "start": 53454.7, + "end": 53456.28, + "probability": 0.9812 + }, + { + "start": 53456.88, + "end": 53457.7, + "probability": 0.9863 + }, + { + "start": 53458.34, + "end": 53459.92, + "probability": 0.9972 + }, + { + "start": 53461.04, + "end": 53462.0, + "probability": 0.8882 + }, + { + "start": 53462.98, + "end": 53463.3, + "probability": 0.5892 + }, + { + "start": 53464.66, + "end": 53465.98, + "probability": 0.793 + }, + { + "start": 53467.22, + "end": 53467.96, + "probability": 0.8947 + }, + { + "start": 53468.54, + "end": 53469.12, + "probability": 0.7017 + }, + { + "start": 53470.02, + "end": 53471.34, + "probability": 0.992 + }, + { + "start": 53472.24, + "end": 53475.86, + "probability": 0.9945 + }, + { + "start": 53478.74, + "end": 53482.04, + "probability": 0.986 + }, + { + "start": 53482.38, + "end": 53483.26, + "probability": 0.8687 + }, + { + "start": 53484.54, + "end": 53485.82, + "probability": 0.8971 + }, + { + "start": 53486.42, + "end": 53488.28, + "probability": 0.9667 + }, + { + "start": 53488.92, + "end": 53490.04, + "probability": 0.998 + }, + { + "start": 53490.86, + "end": 53495.72, + "probability": 0.9893 + }, + { + "start": 53497.24, + "end": 53500.82, + "probability": 0.9988 + }, + { + "start": 53501.52, + "end": 53503.62, + "probability": 0.9982 + }, + { + "start": 53505.14, + "end": 53505.5, + "probability": 0.7628 + }, + { + "start": 53506.44, + "end": 53508.64, + "probability": 0.9635 + }, + { + "start": 53509.16, + "end": 53510.48, + "probability": 0.9568 + }, + { + "start": 53511.44, + "end": 53514.5, + "probability": 0.8938 + }, + { + "start": 53516.32, + "end": 53518.92, + "probability": 0.8973 + }, + { + "start": 53519.8, + "end": 53522.48, + "probability": 0.9686 + }, + { + "start": 53523.26, + "end": 53523.8, + "probability": 0.5222 + }, + { + "start": 53524.34, + "end": 53525.04, + "probability": 0.9662 + }, + { + "start": 53526.8, + "end": 53531.1, + "probability": 0.9789 + }, + { + "start": 53531.88, + "end": 53535.36, + "probability": 0.8491 + }, + { + "start": 53535.94, + "end": 53538.2, + "probability": 0.9935 + }, + { + "start": 53542.58, + "end": 53543.24, + "probability": 0.9586 + }, + { + "start": 53544.14, + "end": 53547.3, + "probability": 0.9958 + }, + { + "start": 53547.98, + "end": 53548.86, + "probability": 0.8201 + }, + { + "start": 53550.58, + "end": 53551.1, + "probability": 0.6296 + }, + { + "start": 53552.62, + "end": 53556.8, + "probability": 0.9836 + }, + { + "start": 53556.8, + "end": 53560.08, + "probability": 0.8587 + }, + { + "start": 53560.7, + "end": 53561.42, + "probability": 0.9959 + }, + { + "start": 53563.0, + "end": 53564.73, + "probability": 0.9976 + }, + { + "start": 53565.62, + "end": 53568.32, + "probability": 0.967 + }, + { + "start": 53569.64, + "end": 53570.76, + "probability": 0.9956 + }, + { + "start": 53571.86, + "end": 53574.48, + "probability": 0.9686 + }, + { + "start": 53575.76, + "end": 53577.79, + "probability": 0.9969 + }, + { + "start": 53578.46, + "end": 53581.16, + "probability": 0.9961 + }, + { + "start": 53581.94, + "end": 53585.08, + "probability": 0.9942 + }, + { + "start": 53586.56, + "end": 53587.12, + "probability": 0.9731 + }, + { + "start": 53587.84, + "end": 53589.2, + "probability": 0.9993 + }, + { + "start": 53590.02, + "end": 53590.54, + "probability": 0.9448 + }, + { + "start": 53591.66, + "end": 53592.4, + "probability": 0.9954 + }, + { + "start": 53594.24, + "end": 53595.94, + "probability": 0.9954 + }, + { + "start": 53596.98, + "end": 53599.68, + "probability": 0.9565 + }, + { + "start": 53601.46, + "end": 53604.1, + "probability": 0.9985 + }, + { + "start": 53604.94, + "end": 53608.18, + "probability": 0.9912 + }, + { + "start": 53608.94, + "end": 53609.56, + "probability": 0.9258 + }, + { + "start": 53610.56, + "end": 53613.34, + "probability": 0.9961 + }, + { + "start": 53614.2, + "end": 53614.69, + "probability": 0.6759 + }, + { + "start": 53614.94, + "end": 53622.0, + "probability": 0.8868 + }, + { + "start": 53625.68, + "end": 53626.56, + "probability": 0.9627 + }, + { + "start": 53627.1, + "end": 53628.62, + "probability": 0.9898 + }, + { + "start": 53629.64, + "end": 53631.54, + "probability": 0.8701 + }, + { + "start": 53633.22, + "end": 53633.56, + "probability": 0.8452 + }, + { + "start": 53634.6, + "end": 53636.46, + "probability": 0.9884 + }, + { + "start": 53638.94, + "end": 53640.72, + "probability": 0.9992 + }, + { + "start": 53641.34, + "end": 53644.84, + "probability": 0.9819 + }, + { + "start": 53645.82, + "end": 53647.14, + "probability": 0.9905 + }, + { + "start": 53647.9, + "end": 53649.62, + "probability": 0.987 + }, + { + "start": 53650.16, + "end": 53656.22, + "probability": 0.9966 + }, + { + "start": 53658.32, + "end": 53659.1, + "probability": 0.9312 + }, + { + "start": 53660.28, + "end": 53661.0, + "probability": 0.9971 + }, + { + "start": 53662.32, + "end": 53666.4, + "probability": 0.9989 + }, + { + "start": 53666.94, + "end": 53668.42, + "probability": 0.9983 + }, + { + "start": 53669.66, + "end": 53670.62, + "probability": 0.8369 + }, + { + "start": 53671.88, + "end": 53673.56, + "probability": 0.998 + }, + { + "start": 53674.04, + "end": 53675.4, + "probability": 0.9985 + }, + { + "start": 53675.46, + "end": 53676.36, + "probability": 0.9636 + }, + { + "start": 53676.42, + "end": 53677.08, + "probability": 0.9115 + }, + { + "start": 53677.14, + "end": 53677.42, + "probability": 0.2802 + }, + { + "start": 53677.56, + "end": 53677.88, + "probability": 0.629 + }, + { + "start": 53678.46, + "end": 53681.4, + "probability": 0.9961 + }, + { + "start": 53681.8, + "end": 53684.0, + "probability": 0.9977 + }, + { + "start": 53684.12, + "end": 53686.92, + "probability": 0.8451 + }, + { + "start": 53687.36, + "end": 53688.42, + "probability": 0.967 + }, + { + "start": 53688.9, + "end": 53689.94, + "probability": 0.9812 + }, + { + "start": 53691.44, + "end": 53691.68, + "probability": 0.8589 + }, + { + "start": 53692.68, + "end": 53693.16, + "probability": 0.78 + }, + { + "start": 53694.64, + "end": 53695.98, + "probability": 0.973 + }, + { + "start": 53696.68, + "end": 53697.46, + "probability": 0.9986 + }, + { + "start": 53698.28, + "end": 53701.36, + "probability": 0.9911 + }, + { + "start": 53706.66, + "end": 53708.74, + "probability": 0.8017 + }, + { + "start": 53710.74, + "end": 53712.62, + "probability": 0.9976 + }, + { + "start": 53713.4, + "end": 53714.88, + "probability": 0.9154 + }, + { + "start": 53715.78, + "end": 53717.54, + "probability": 0.9209 + }, + { + "start": 53723.28, + "end": 53724.48, + "probability": 0.8232 + }, + { + "start": 53725.56, + "end": 53726.12, + "probability": 0.6375 + }, + { + "start": 53726.94, + "end": 53727.88, + "probability": 0.7529 + }, + { + "start": 53728.66, + "end": 53729.28, + "probability": 0.9773 + }, + { + "start": 53729.82, + "end": 53730.34, + "probability": 0.9066 + }, + { + "start": 53730.94, + "end": 53732.74, + "probability": 0.9971 + }, + { + "start": 53733.6, + "end": 53734.5, + "probability": 0.873 + }, + { + "start": 53735.78, + "end": 53737.8, + "probability": 0.875 + }, + { + "start": 53738.74, + "end": 53739.58, + "probability": 0.8859 + }, + { + "start": 53740.02, + "end": 53745.36, + "probability": 0.9823 + }, + { + "start": 53745.74, + "end": 53746.7, + "probability": 0.7949 + }, + { + "start": 53747.82, + "end": 53748.98, + "probability": 0.9654 + }, + { + "start": 53749.6, + "end": 53751.38, + "probability": 0.9486 + }, + { + "start": 53752.04, + "end": 53752.9, + "probability": 0.8845 + }, + { + "start": 53753.78, + "end": 53754.2, + "probability": 0.9633 + }, + { + "start": 53755.38, + "end": 53758.42, + "probability": 0.9985 + }, + { + "start": 53759.74, + "end": 53761.82, + "probability": 0.9957 + }, + { + "start": 53761.88, + "end": 53765.02, + "probability": 0.995 + }, + { + "start": 53765.64, + "end": 53767.0, + "probability": 0.8385 + }, + { + "start": 53768.68, + "end": 53768.68, + "probability": 0.981 + }, + { + "start": 53769.38, + "end": 53771.5, + "probability": 0.987 + }, + { + "start": 53772.82, + "end": 53774.0, + "probability": 0.979 + }, + { + "start": 53775.1, + "end": 53778.04, + "probability": 0.9867 + }, + { + "start": 53778.72, + "end": 53782.12, + "probability": 0.9979 + }, + { + "start": 53783.18, + "end": 53783.78, + "probability": 0.9017 + }, + { + "start": 53785.04, + "end": 53786.62, + "probability": 0.9466 + }, + { + "start": 53788.52, + "end": 53790.08, + "probability": 0.9956 + }, + { + "start": 53791.44, + "end": 53792.36, + "probability": 0.9761 + }, + { + "start": 53793.48, + "end": 53795.28, + "probability": 0.9827 + }, + { + "start": 53796.4, + "end": 53801.66, + "probability": 0.951 + }, + { + "start": 53802.36, + "end": 53803.18, + "probability": 0.7951 + }, + { + "start": 53804.52, + "end": 53805.67, + "probability": 0.9773 + }, + { + "start": 53806.98, + "end": 53813.14, + "probability": 0.997 + }, + { + "start": 53813.72, + "end": 53815.52, + "probability": 0.9865 + }, + { + "start": 53820.52, + "end": 53821.54, + "probability": 0.9 + }, + { + "start": 53822.6, + "end": 53824.3, + "probability": 0.9926 + }, + { + "start": 53824.84, + "end": 53825.32, + "probability": 0.9075 + }, + { + "start": 53826.22, + "end": 53826.88, + "probability": 0.7897 + }, + { + "start": 53828.82, + "end": 53830.91, + "probability": 0.9892 + }, + { + "start": 53832.98, + "end": 53836.84, + "probability": 0.9937 + }, + { + "start": 53838.18, + "end": 53840.92, + "probability": 0.998 + }, + { + "start": 53842.44, + "end": 53843.98, + "probability": 0.9976 + }, + { + "start": 53844.9, + "end": 53846.08, + "probability": 0.6767 + }, + { + "start": 53846.78, + "end": 53847.3, + "probability": 0.8604 + }, + { + "start": 53848.58, + "end": 53850.12, + "probability": 0.8627 + }, + { + "start": 53851.06, + "end": 53851.8, + "probability": 0.7362 + }, + { + "start": 53854.54, + "end": 53854.96, + "probability": 0.9668 + }, + { + "start": 53858.46, + "end": 53860.2, + "probability": 0.981 + }, + { + "start": 53861.28, + "end": 53862.86, + "probability": 0.9917 + }, + { + "start": 53863.62, + "end": 53864.97, + "probability": 0.9933 + }, + { + "start": 53866.96, + "end": 53871.58, + "probability": 0.998 + }, + { + "start": 53872.22, + "end": 53872.46, + "probability": 0.8952 + }, + { + "start": 53875.26, + "end": 53876.18, + "probability": 0.8874 + }, + { + "start": 53878.7, + "end": 53879.52, + "probability": 0.9464 + }, + { + "start": 53880.62, + "end": 53881.48, + "probability": 0.9879 + }, + { + "start": 53882.52, + "end": 53885.18, + "probability": 0.9813 + }, + { + "start": 53888.06, + "end": 53889.28, + "probability": 0.9988 + }, + { + "start": 53890.2, + "end": 53893.56, + "probability": 0.9985 + }, + { + "start": 53897.64, + "end": 53899.98, + "probability": 0.9821 + }, + { + "start": 53900.74, + "end": 53901.3, + "probability": 0.9885 + }, + { + "start": 53901.3, + "end": 53903.33, + "probability": 0.8936 + }, + { + "start": 53904.5, + "end": 53905.16, + "probability": 0.9011 + }, + { + "start": 53905.5, + "end": 53906.26, + "probability": 0.9218 + }, + { + "start": 53907.1, + "end": 53909.09, + "probability": 0.998 + }, + { + "start": 53911.84, + "end": 53913.48, + "probability": 0.9904 + }, + { + "start": 53914.34, + "end": 53916.76, + "probability": 0.9989 + }, + { + "start": 53917.4, + "end": 53920.74, + "probability": 0.9526 + }, + { + "start": 53922.66, + "end": 53925.44, + "probability": 0.9385 + }, + { + "start": 53926.22, + "end": 53927.34, + "probability": 0.8984 + }, + { + "start": 53928.5, + "end": 53929.64, + "probability": 0.9971 + }, + { + "start": 53931.02, + "end": 53933.34, + "probability": 0.9247 + }, + { + "start": 53933.92, + "end": 53938.74, + "probability": 0.999 + }, + { + "start": 53939.46, + "end": 53940.98, + "probability": 0.7339 + }, + { + "start": 53941.3, + "end": 53942.36, + "probability": 0.9995 + }, + { + "start": 53942.5, + "end": 53943.96, + "probability": 0.978 + }, + { + "start": 53944.54, + "end": 53946.08, + "probability": 0.9983 + }, + { + "start": 53946.78, + "end": 53949.56, + "probability": 0.9951 + }, + { + "start": 53952.24, + "end": 53953.54, + "probability": 0.988 + }, + { + "start": 53953.64, + "end": 53958.34, + "probability": 0.999 + }, + { + "start": 53960.44, + "end": 53961.94, + "probability": 0.9991 + }, + { + "start": 53962.8, + "end": 53963.6, + "probability": 0.9726 + }, + { + "start": 53964.26, + "end": 53965.12, + "probability": 0.9849 + }, + { + "start": 53965.66, + "end": 53969.1, + "probability": 0.9207 + }, + { + "start": 53969.84, + "end": 53971.06, + "probability": 0.9336 + }, + { + "start": 53972.42, + "end": 53973.86, + "probability": 0.9681 + }, + { + "start": 53975.34, + "end": 53976.21, + "probability": 0.988 + }, + { + "start": 53977.32, + "end": 53977.92, + "probability": 0.9014 + }, + { + "start": 53978.7, + "end": 53980.24, + "probability": 0.9987 + }, + { + "start": 53980.8, + "end": 53981.68, + "probability": 0.9837 + }, + { + "start": 53981.78, + "end": 53985.15, + "probability": 0.9995 + }, + { + "start": 53986.64, + "end": 53988.52, + "probability": 0.9984 + }, + { + "start": 53989.46, + "end": 53990.74, + "probability": 0.999 + }, + { + "start": 53991.28, + "end": 53992.56, + "probability": 0.9985 + }, + { + "start": 53994.0, + "end": 53996.18, + "probability": 0.9678 + }, + { + "start": 53997.08, + "end": 53998.54, + "probability": 0.8166 + }, + { + "start": 53999.42, + "end": 54000.98, + "probability": 0.8221 + }, + { + "start": 54002.64, + "end": 54004.3, + "probability": 0.819 + }, + { + "start": 54004.76, + "end": 54006.56, + "probability": 0.9676 + }, + { + "start": 54007.64, + "end": 54010.93, + "probability": 0.9818 + }, + { + "start": 54013.72, + "end": 54014.3, + "probability": 0.8478 + }, + { + "start": 54014.86, + "end": 54015.9, + "probability": 0.9163 + }, + { + "start": 54017.18, + "end": 54018.74, + "probability": 0.9658 + }, + { + "start": 54018.92, + "end": 54021.14, + "probability": 0.9432 + }, + { + "start": 54022.14, + "end": 54022.58, + "probability": 0.9401 + }, + { + "start": 54023.42, + "end": 54024.58, + "probability": 0.9919 + }, + { + "start": 54025.02, + "end": 54025.82, + "probability": 0.9991 + }, + { + "start": 54026.92, + "end": 54030.18, + "probability": 0.9954 + }, + { + "start": 54031.46, + "end": 54031.84, + "probability": 0.5268 + }, + { + "start": 54033.38, + "end": 54037.74, + "probability": 0.9834 + }, + { + "start": 54038.1, + "end": 54039.16, + "probability": 0.9993 + }, + { + "start": 54039.96, + "end": 54040.64, + "probability": 0.9907 + }, + { + "start": 54043.76, + "end": 54044.54, + "probability": 0.9092 + }, + { + "start": 54045.94, + "end": 54047.7, + "probability": 0.9937 + }, + { + "start": 54050.46, + "end": 54052.24, + "probability": 1.0 + }, + { + "start": 54052.6, + "end": 54055.52, + "probability": 0.9917 + }, + { + "start": 54056.16, + "end": 54057.22, + "probability": 0.8212 + }, + { + "start": 54057.4, + "end": 54059.3, + "probability": 0.8281 + }, + { + "start": 54059.34, + "end": 54060.14, + "probability": 0.9509 + }, + { + "start": 54060.66, + "end": 54061.78, + "probability": 0.9874 + }, + { + "start": 54062.54, + "end": 54064.28, + "probability": 0.9383 + }, + { + "start": 54064.66, + "end": 54065.7, + "probability": 0.5084 + }, + { + "start": 54066.32, + "end": 54068.18, + "probability": 0.9798 + }, + { + "start": 54068.98, + "end": 54072.74, + "probability": 0.9922 + }, + { + "start": 54073.3, + "end": 54073.66, + "probability": 0.9346 + }, + { + "start": 54074.44, + "end": 54076.8, + "probability": 0.9726 + }, + { + "start": 54077.86, + "end": 54080.42, + "probability": 0.9506 + }, + { + "start": 54080.94, + "end": 54082.9, + "probability": 0.9901 + }, + { + "start": 54083.9, + "end": 54087.94, + "probability": 0.9943 + }, + { + "start": 54088.64, + "end": 54092.1, + "probability": 0.9986 + }, + { + "start": 54092.2, + "end": 54095.18, + "probability": 0.9902 + }, + { + "start": 54095.7, + "end": 54097.48, + "probability": 0.9961 + }, + { + "start": 54104.54, + "end": 54104.62, + "probability": 0.0266 + }, + { + "start": 54104.62, + "end": 54104.9, + "probability": 0.2581 + }, + { + "start": 54105.28, + "end": 54105.36, + "probability": 0.5327 + }, + { + "start": 54105.58, + "end": 54105.68, + "probability": 0.4124 + }, + { + "start": 54105.68, + "end": 54105.68, + "probability": 0.379 + }, + { + "start": 54105.82, + "end": 54107.96, + "probability": 0.9744 + }, + { + "start": 54108.02, + "end": 54108.68, + "probability": 0.4677 + }, + { + "start": 54109.56, + "end": 54112.96, + "probability": 0.6103 + }, + { + "start": 54113.04, + "end": 54115.68, + "probability": 0.2165 + }, + { + "start": 54115.76, + "end": 54116.9, + "probability": 0.4135 + }, + { + "start": 54117.24, + "end": 54117.24, + "probability": 0.0419 + }, + { + "start": 54117.24, + "end": 54117.24, + "probability": 0.038 + }, + { + "start": 54117.24, + "end": 54118.35, + "probability": 0.4974 + }, + { + "start": 54118.56, + "end": 54121.74, + "probability": 0.9784 + }, + { + "start": 54121.94, + "end": 54124.3, + "probability": 0.7842 + }, + { + "start": 54124.66, + "end": 54126.04, + "probability": 0.7411 + }, + { + "start": 54126.08, + "end": 54126.38, + "probability": 0.7559 + }, + { + "start": 54126.6, + "end": 54128.16, + "probability": 0.4839 + }, + { + "start": 54128.82, + "end": 54130.04, + "probability": 0.0924 + }, + { + "start": 54131.04, + "end": 54133.62, + "probability": 0.1182 + }, + { + "start": 54134.14, + "end": 54135.55, + "probability": 0.3759 + }, + { + "start": 54136.24, + "end": 54139.06, + "probability": 0.0209 + }, + { + "start": 54139.3, + "end": 54143.04, + "probability": 0.4445 + }, + { + "start": 54143.28, + "end": 54143.44, + "probability": 0.1805 + }, + { + "start": 54143.62, + "end": 54144.16, + "probability": 0.8501 + }, + { + "start": 54144.22, + "end": 54148.14, + "probability": 0.9592 + }, + { + "start": 54148.34, + "end": 54148.86, + "probability": 0.7064 + }, + { + "start": 54149.0, + "end": 54149.16, + "probability": 0.4678 + }, + { + "start": 54149.34, + "end": 54152.0, + "probability": 0.9695 + }, + { + "start": 54152.48, + "end": 54155.52, + "probability": 0.2515 + }, + { + "start": 54155.82, + "end": 54156.66, + "probability": 0.4035 + }, + { + "start": 54156.82, + "end": 54159.64, + "probability": 0.2231 + }, + { + "start": 54159.78, + "end": 54161.32, + "probability": 0.9848 + }, + { + "start": 54161.84, + "end": 54163.64, + "probability": 0.6211 + }, + { + "start": 54163.8, + "end": 54165.86, + "probability": 0.081 + }, + { + "start": 54166.46, + "end": 54167.72, + "probability": 0.248 + }, + { + "start": 54167.88, + "end": 54168.04, + "probability": 0.4764 + }, + { + "start": 54168.04, + "end": 54168.38, + "probability": 0.6942 + }, + { + "start": 54168.56, + "end": 54169.64, + "probability": 0.9116 + }, + { + "start": 54169.64, + "end": 54170.68, + "probability": 0.6474 + }, + { + "start": 54170.82, + "end": 54172.01, + "probability": 0.9087 + }, + { + "start": 54174.05, + "end": 54178.66, + "probability": 0.3016 + }, + { + "start": 54179.24, + "end": 54180.84, + "probability": 0.8673 + }, + { + "start": 54181.9, + "end": 54184.68, + "probability": 0.6152 + }, + { + "start": 54184.7, + "end": 54186.32, + "probability": 0.3967 + }, + { + "start": 54186.68, + "end": 54188.68, + "probability": 0.8455 + }, + { + "start": 54189.96, + "end": 54191.84, + "probability": 0.9661 + }, + { + "start": 54192.52, + "end": 54193.96, + "probability": 0.6685 + }, + { + "start": 54194.59, + "end": 54197.12, + "probability": 0.7645 + }, + { + "start": 54199.34, + "end": 54201.3, + "probability": 0.7084 + }, + { + "start": 54204.76, + "end": 54207.6, + "probability": 0.9116 + }, + { + "start": 54209.2, + "end": 54210.28, + "probability": 0.9159 + }, + { + "start": 54211.06, + "end": 54212.48, + "probability": 0.9927 + }, + { + "start": 54215.4, + "end": 54217.46, + "probability": 0.902 + }, + { + "start": 54218.5, + "end": 54219.32, + "probability": 0.9871 + }, + { + "start": 54220.32, + "end": 54221.48, + "probability": 0.9977 + }, + { + "start": 54223.04, + "end": 54228.29, + "probability": 0.9973 + }, + { + "start": 54230.86, + "end": 54231.72, + "probability": 0.962 + }, + { + "start": 54234.74, + "end": 54240.04, + "probability": 0.9925 + }, + { + "start": 54240.84, + "end": 54242.68, + "probability": 0.9935 + }, + { + "start": 54243.32, + "end": 54244.1, + "probability": 0.9739 + }, + { + "start": 54245.48, + "end": 54247.02, + "probability": 0.9925 + }, + { + "start": 54247.06, + "end": 54248.14, + "probability": 0.9407 + }, + { + "start": 54248.46, + "end": 54249.0, + "probability": 0.6912 + }, + { + "start": 54249.98, + "end": 54255.6, + "probability": 0.9714 + }, + { + "start": 54256.66, + "end": 54257.56, + "probability": 0.9763 + }, + { + "start": 54258.78, + "end": 54260.14, + "probability": 0.453 + }, + { + "start": 54262.14, + "end": 54264.84, + "probability": 0.9555 + }, + { + "start": 54267.32, + "end": 54268.08, + "probability": 0.8304 + }, + { + "start": 54270.72, + "end": 54273.16, + "probability": 0.9883 + }, + { + "start": 54274.91, + "end": 54278.88, + "probability": 0.9966 + }, + { + "start": 54279.04, + "end": 54280.72, + "probability": 0.9954 + }, + { + "start": 54282.42, + "end": 54283.2, + "probability": 0.9805 + }, + { + "start": 54284.42, + "end": 54289.72, + "probability": 0.998 + }, + { + "start": 54290.5, + "end": 54291.54, + "probability": 0.8884 + }, + { + "start": 54291.62, + "end": 54299.14, + "probability": 0.9972 + }, + { + "start": 54299.64, + "end": 54300.38, + "probability": 0.735 + }, + { + "start": 54301.46, + "end": 54305.08, + "probability": 0.9445 + }, + { + "start": 54306.8, + "end": 54311.74, + "probability": 0.9528 + }, + { + "start": 54313.0, + "end": 54313.84, + "probability": 0.9137 + }, + { + "start": 54315.12, + "end": 54319.7, + "probability": 0.9822 + }, + { + "start": 54320.6, + "end": 54321.12, + "probability": 0.5854 + }, + { + "start": 54322.44, + "end": 54323.62, + "probability": 0.9977 + }, + { + "start": 54325.86, + "end": 54330.38, + "probability": 0.7725 + }, + { + "start": 54331.44, + "end": 54332.78, + "probability": 0.4199 + }, + { + "start": 54334.14, + "end": 54334.8, + "probability": 0.7707 + }, + { + "start": 54336.4, + "end": 54338.08, + "probability": 0.9552 + }, + { + "start": 54340.18, + "end": 54340.72, + "probability": 0.9924 + }, + { + "start": 54341.76, + "end": 54342.52, + "probability": 0.9751 + }, + { + "start": 54342.62, + "end": 54343.66, + "probability": 0.8077 + }, + { + "start": 54344.12, + "end": 54345.69, + "probability": 0.981 + }, + { + "start": 54346.78, + "end": 54348.22, + "probability": 0.9949 + }, + { + "start": 54349.12, + "end": 54351.75, + "probability": 0.944 + }, + { + "start": 54353.32, + "end": 54354.34, + "probability": 0.9956 + }, + { + "start": 54355.42, + "end": 54358.34, + "probability": 0.9921 + }, + { + "start": 54359.24, + "end": 54361.72, + "probability": 0.9846 + }, + { + "start": 54363.34, + "end": 54368.16, + "probability": 0.9731 + }, + { + "start": 54369.4, + "end": 54371.86, + "probability": 0.9907 + }, + { + "start": 54371.98, + "end": 54373.66, + "probability": 0.9976 + }, + { + "start": 54374.18, + "end": 54375.48, + "probability": 0.9985 + }, + { + "start": 54377.08, + "end": 54378.98, + "probability": 0.9665 + }, + { + "start": 54380.42, + "end": 54381.76, + "probability": 0.9864 + }, + { + "start": 54381.86, + "end": 54383.97, + "probability": 0.9832 + }, + { + "start": 54384.14, + "end": 54386.02, + "probability": 0.9954 + }, + { + "start": 54387.14, + "end": 54387.82, + "probability": 0.8783 + }, + { + "start": 54389.28, + "end": 54390.62, + "probability": 0.3341 + }, + { + "start": 54391.54, + "end": 54392.62, + "probability": 0.9692 + }, + { + "start": 54393.56, + "end": 54399.56, + "probability": 0.9961 + }, + { + "start": 54400.18, + "end": 54403.84, + "probability": 0.9988 + }, + { + "start": 54405.02, + "end": 54408.9, + "probability": 0.9961 + }, + { + "start": 54409.9, + "end": 54411.54, + "probability": 0.8575 + }, + { + "start": 54412.54, + "end": 54414.2, + "probability": 0.9858 + }, + { + "start": 54415.4, + "end": 54416.86, + "probability": 0.9873 + }, + { + "start": 54417.0, + "end": 54418.6, + "probability": 0.9172 + }, + { + "start": 54418.74, + "end": 54419.68, + "probability": 0.8949 + }, + { + "start": 54420.26, + "end": 54422.26, + "probability": 0.9595 + }, + { + "start": 54423.04, + "end": 54425.42, + "probability": 0.974 + }, + { + "start": 54426.0, + "end": 54427.62, + "probability": 0.9766 + }, + { + "start": 54429.26, + "end": 54432.66, + "probability": 0.967 + }, + { + "start": 54434.32, + "end": 54436.8, + "probability": 0.999 + }, + { + "start": 54438.02, + "end": 54441.9, + "probability": 0.9998 + }, + { + "start": 54441.9, + "end": 54444.04, + "probability": 0.9941 + }, + { + "start": 54445.98, + "end": 54446.22, + "probability": 0.5002 + }, + { + "start": 54447.8, + "end": 54448.48, + "probability": 0.9556 + }, + { + "start": 54449.02, + "end": 54451.8, + "probability": 0.9925 + }, + { + "start": 54452.92, + "end": 54453.28, + "probability": 0.7106 + }, + { + "start": 54453.92, + "end": 54455.66, + "probability": 0.9987 + }, + { + "start": 54456.5, + "end": 54457.72, + "probability": 0.9973 + }, + { + "start": 54458.74, + "end": 54461.28, + "probability": 0.999 + }, + { + "start": 54462.3, + "end": 54467.06, + "probability": 0.9985 + }, + { + "start": 54468.64, + "end": 54469.1, + "probability": 0.9819 + }, + { + "start": 54469.68, + "end": 54470.72, + "probability": 0.9961 + }, + { + "start": 54471.38, + "end": 54474.48, + "probability": 0.9934 + }, + { + "start": 54476.06, + "end": 54477.5, + "probability": 0.9943 + }, + { + "start": 54478.28, + "end": 54483.08, + "probability": 0.9987 + }, + { + "start": 54483.76, + "end": 54485.78, + "probability": 0.9988 + }, + { + "start": 54486.12, + "end": 54487.58, + "probability": 0.9844 + }, + { + "start": 54488.6, + "end": 54491.96, + "probability": 0.95 + }, + { + "start": 54492.64, + "end": 54494.16, + "probability": 0.9212 + }, + { + "start": 54494.96, + "end": 54497.06, + "probability": 0.9949 + }, + { + "start": 54497.6, + "end": 54500.46, + "probability": 0.9678 + }, + { + "start": 54501.84, + "end": 54502.37, + "probability": 0.9832 + }, + { + "start": 54503.84, + "end": 54506.9, + "probability": 0.8385 + }, + { + "start": 54507.82, + "end": 54509.24, + "probability": 0.8498 + }, + { + "start": 54510.3, + "end": 54510.86, + "probability": 0.5891 + }, + { + "start": 54512.22, + "end": 54512.86, + "probability": 0.9734 + }, + { + "start": 54514.3, + "end": 54515.08, + "probability": 0.9939 + }, + { + "start": 54515.82, + "end": 54518.62, + "probability": 0.9946 + }, + { + "start": 54519.92, + "end": 54521.34, + "probability": 0.592 + }, + { + "start": 54522.96, + "end": 54524.86, + "probability": 0.9915 + }, + { + "start": 54526.6, + "end": 54527.6, + "probability": 0.7956 + }, + { + "start": 54528.48, + "end": 54529.3, + "probability": 0.9399 + }, + { + "start": 54530.6, + "end": 54531.42, + "probability": 0.944 + }, + { + "start": 54532.18, + "end": 54533.04, + "probability": 0.9941 + }, + { + "start": 54534.6, + "end": 54535.72, + "probability": 0.97 + }, + { + "start": 54536.66, + "end": 54539.9, + "probability": 0.9888 + }, + { + "start": 54540.36, + "end": 54542.48, + "probability": 0.996 + }, + { + "start": 54543.08, + "end": 54547.88, + "probability": 0.9922 + }, + { + "start": 54548.46, + "end": 54549.84, + "probability": 0.9827 + }, + { + "start": 54550.52, + "end": 54552.68, + "probability": 0.9932 + }, + { + "start": 54553.92, + "end": 54554.86, + "probability": 0.9978 + }, + { + "start": 54556.56, + "end": 54562.7, + "probability": 0.9953 + }, + { + "start": 54563.84, + "end": 54565.92, + "probability": 0.9756 + }, + { + "start": 54566.78, + "end": 54567.58, + "probability": 0.9521 + }, + { + "start": 54568.1, + "end": 54568.92, + "probability": 0.5124 + }, + { + "start": 54569.34, + "end": 54570.3, + "probability": 0.9457 + }, + { + "start": 54571.18, + "end": 54571.32, + "probability": 0.6675 + }, + { + "start": 54572.76, + "end": 54574.14, + "probability": 0.931 + }, + { + "start": 54574.74, + "end": 54575.54, + "probability": 0.8798 + }, + { + "start": 54575.6, + "end": 54578.94, + "probability": 0.9014 + }, + { + "start": 54579.42, + "end": 54581.92, + "probability": 0.9834 + }, + { + "start": 54583.81, + "end": 54585.16, + "probability": 0.3663 + }, + { + "start": 54585.92, + "end": 54586.28, + "probability": 0.6121 + }, + { + "start": 54586.7, + "end": 54588.38, + "probability": 0.9739 + }, + { + "start": 54589.3, + "end": 54590.06, + "probability": 0.9956 + }, + { + "start": 54592.7, + "end": 54593.94, + "probability": 0.988 + }, + { + "start": 54595.0, + "end": 54597.82, + "probability": 0.9973 + }, + { + "start": 54598.5, + "end": 54598.98, + "probability": 0.9694 + }, + { + "start": 54599.9, + "end": 54600.56, + "probability": 0.9102 + }, + { + "start": 54602.36, + "end": 54607.48, + "probability": 0.999 + }, + { + "start": 54609.16, + "end": 54611.88, + "probability": 0.9985 + }, + { + "start": 54613.72, + "end": 54614.28, + "probability": 0.9902 + }, + { + "start": 54615.16, + "end": 54616.62, + "probability": 0.9995 + }, + { + "start": 54617.88, + "end": 54619.2, + "probability": 0.9976 + }, + { + "start": 54621.06, + "end": 54624.48, + "probability": 0.998 + }, + { + "start": 54625.86, + "end": 54630.12, + "probability": 0.9996 + }, + { + "start": 54632.36, + "end": 54633.78, + "probability": 0.8953 + }, + { + "start": 54634.62, + "end": 54635.6, + "probability": 0.916 + }, + { + "start": 54636.78, + "end": 54637.66, + "probability": 0.7792 + }, + { + "start": 54638.36, + "end": 54640.74, + "probability": 0.9904 + }, + { + "start": 54642.02, + "end": 54648.14, + "probability": 0.9655 + }, + { + "start": 54649.14, + "end": 54652.7, + "probability": 0.9853 + }, + { + "start": 54653.36, + "end": 54654.68, + "probability": 0.998 + }, + { + "start": 54656.26, + "end": 54657.32, + "probability": 0.9683 + }, + { + "start": 54660.02, + "end": 54661.8, + "probability": 0.9978 + }, + { + "start": 54663.58, + "end": 54666.08, + "probability": 0.9958 + }, + { + "start": 54667.56, + "end": 54670.29, + "probability": 0.9479 + }, + { + "start": 54670.96, + "end": 54673.64, + "probability": 0.9939 + }, + { + "start": 54675.34, + "end": 54677.98, + "probability": 0.9678 + }, + { + "start": 54678.54, + "end": 54679.22, + "probability": 0.7264 + }, + { + "start": 54680.18, + "end": 54683.14, + "probability": 0.9969 + }, + { + "start": 54683.14, + "end": 54686.52, + "probability": 0.9904 + }, + { + "start": 54687.72, + "end": 54688.56, + "probability": 0.9224 + }, + { + "start": 54689.42, + "end": 54690.01, + "probability": 0.9224 + }, + { + "start": 54691.44, + "end": 54691.79, + "probability": 0.9794 + }, + { + "start": 54692.1, + "end": 54692.49, + "probability": 0.9905 + }, + { + "start": 54693.0, + "end": 54693.42, + "probability": 0.9644 + }, + { + "start": 54693.66, + "end": 54694.44, + "probability": 0.979 + }, + { + "start": 54695.14, + "end": 54696.65, + "probability": 0.9956 + }, + { + "start": 54697.7, + "end": 54699.37, + "probability": 0.9985 + }, + { + "start": 54700.72, + "end": 54701.28, + "probability": 0.9274 + }, + { + "start": 54701.92, + "end": 54702.46, + "probability": 0.9948 + }, + { + "start": 54702.9, + "end": 54704.06, + "probability": 0.7083 + }, + { + "start": 54705.48, + "end": 54708.18, + "probability": 0.9614 + }, + { + "start": 54708.8, + "end": 54709.84, + "probability": 0.991 + }, + { + "start": 54710.52, + "end": 54712.52, + "probability": 0.9753 + }, + { + "start": 54714.96, + "end": 54715.82, + "probability": 0.9907 + }, + { + "start": 54716.98, + "end": 54718.16, + "probability": 0.9992 + }, + { + "start": 54720.68, + "end": 54721.74, + "probability": 0.9875 + }, + { + "start": 54722.28, + "end": 54723.22, + "probability": 0.9977 + }, + { + "start": 54724.74, + "end": 54727.18, + "probability": 0.8814 + }, + { + "start": 54727.82, + "end": 54730.52, + "probability": 0.968 + }, + { + "start": 54731.58, + "end": 54732.1, + "probability": 0.6734 + }, + { + "start": 54733.66, + "end": 54736.36, + "probability": 0.9928 + }, + { + "start": 54737.76, + "end": 54741.34, + "probability": 0.999 + }, + { + "start": 54742.02, + "end": 54746.16, + "probability": 0.9929 + }, + { + "start": 54747.14, + "end": 54748.34, + "probability": 0.9727 + }, + { + "start": 54750.24, + "end": 54754.72, + "probability": 0.9875 + }, + { + "start": 54755.94, + "end": 54756.64, + "probability": 0.5543 + }, + { + "start": 54757.24, + "end": 54759.12, + "probability": 0.979 + }, + { + "start": 54761.12, + "end": 54762.74, + "probability": 0.9899 + }, + { + "start": 54763.48, + "end": 54766.22, + "probability": 0.988 + }, + { + "start": 54767.02, + "end": 54771.7, + "probability": 0.9017 + }, + { + "start": 54773.02, + "end": 54775.2, + "probability": 0.9976 + }, + { + "start": 54776.82, + "end": 54777.7, + "probability": 0.9305 + }, + { + "start": 54779.1, + "end": 54782.68, + "probability": 0.9972 + }, + { + "start": 54782.68, + "end": 54785.78, + "probability": 0.9982 + }, + { + "start": 54786.36, + "end": 54787.5, + "probability": 0.9914 + }, + { + "start": 54788.14, + "end": 54791.27, + "probability": 0.9681 + }, + { + "start": 54792.36, + "end": 54796.48, + "probability": 0.9911 + }, + { + "start": 54797.08, + "end": 54799.76, + "probability": 0.9985 + }, + { + "start": 54800.82, + "end": 54801.44, + "probability": 0.5162 + }, + { + "start": 54802.14, + "end": 54803.43, + "probability": 0.9991 + }, + { + "start": 54804.7, + "end": 54806.42, + "probability": 0.9979 + }, + { + "start": 54806.58, + "end": 54808.66, + "probability": 0.999 + }, + { + "start": 54810.22, + "end": 54811.02, + "probability": 0.9906 + }, + { + "start": 54812.18, + "end": 54813.08, + "probability": 0.9948 + }, + { + "start": 54813.72, + "end": 54815.08, + "probability": 0.9652 + }, + { + "start": 54816.64, + "end": 54818.24, + "probability": 0.9856 + }, + { + "start": 54819.26, + "end": 54822.92, + "probability": 0.9855 + }, + { + "start": 54823.76, + "end": 54825.1, + "probability": 0.9816 + }, + { + "start": 54826.46, + "end": 54827.32, + "probability": 0.5909 + }, + { + "start": 54828.46, + "end": 54830.98, + "probability": 0.5411 + }, + { + "start": 54832.48, + "end": 54833.86, + "probability": 0.8016 + }, + { + "start": 54834.5, + "end": 54836.56, + "probability": 0.9839 + }, + { + "start": 54837.12, + "end": 54840.14, + "probability": 0.9507 + }, + { + "start": 54841.62, + "end": 54843.66, + "probability": 0.9867 + }, + { + "start": 54844.72, + "end": 54846.0, + "probability": 0.9507 + }, + { + "start": 54847.14, + "end": 54849.06, + "probability": 0.5127 + }, + { + "start": 54849.4, + "end": 54850.7, + "probability": 0.7915 + }, + { + "start": 54851.4, + "end": 54853.52, + "probability": 0.5764 + }, + { + "start": 54854.46, + "end": 54856.86, + "probability": 0.9707 + }, + { + "start": 54857.7, + "end": 54858.86, + "probability": 0.9355 + }, + { + "start": 54859.44, + "end": 54860.06, + "probability": 0.8039 + }, + { + "start": 54860.72, + "end": 54861.66, + "probability": 0.9287 + }, + { + "start": 54863.06, + "end": 54866.12, + "probability": 0.9779 + }, + { + "start": 54867.14, + "end": 54867.4, + "probability": 0.5208 + }, + { + "start": 54867.98, + "end": 54868.86, + "probability": 0.9995 + }, + { + "start": 54870.12, + "end": 54872.78, + "probability": 0.826 + }, + { + "start": 54872.92, + "end": 54875.08, + "probability": 0.9711 + }, + { + "start": 54875.42, + "end": 54879.0, + "probability": 0.9922 + }, + { + "start": 54879.52, + "end": 54882.54, + "probability": 0.9967 + }, + { + "start": 54883.82, + "end": 54885.86, + "probability": 0.9097 + }, + { + "start": 54886.0, + "end": 54887.54, + "probability": 0.9454 + }, + { + "start": 54887.76, + "end": 54888.38, + "probability": 0.9057 + }, + { + "start": 54889.14, + "end": 54890.9, + "probability": 0.9909 + }, + { + "start": 54891.56, + "end": 54892.48, + "probability": 0.9598 + }, + { + "start": 54893.68, + "end": 54895.64, + "probability": 0.9985 + }, + { + "start": 54896.0, + "end": 54896.28, + "probability": 0.8844 + }, + { + "start": 54898.35, + "end": 54900.82, + "probability": 0.5165 + }, + { + "start": 54901.28, + "end": 54902.6, + "probability": 0.6759 + }, + { + "start": 54903.26, + "end": 54904.68, + "probability": 0.7974 + }, + { + "start": 54913.06, + "end": 54913.58, + "probability": 0.767 + }, + { + "start": 54915.82, + "end": 54917.04, + "probability": 0.5038 + }, + { + "start": 54918.44, + "end": 54920.94, + "probability": 0.8538 + }, + { + "start": 54922.92, + "end": 54926.62, + "probability": 0.9971 + }, + { + "start": 54928.0, + "end": 54929.84, + "probability": 0.8869 + }, + { + "start": 54929.94, + "end": 54930.38, + "probability": 0.843 + }, + { + "start": 54930.8, + "end": 54931.94, + "probability": 0.9521 + }, + { + "start": 54932.52, + "end": 54935.6, + "probability": 0.9264 + }, + { + "start": 54935.74, + "end": 54936.22, + "probability": 0.9775 + }, + { + "start": 54936.9, + "end": 54938.08, + "probability": 0.7576 + }, + { + "start": 54938.1, + "end": 54938.6, + "probability": 0.2143 + }, + { + "start": 54938.88, + "end": 54941.5, + "probability": 0.9263 + }, + { + "start": 54942.48, + "end": 54944.66, + "probability": 0.6928 + }, + { + "start": 54945.08, + "end": 54948.26, + "probability": 0.9475 + }, + { + "start": 54948.44, + "end": 54949.1, + "probability": 0.7721 + }, + { + "start": 54949.26, + "end": 54950.38, + "probability": 0.9253 + }, + { + "start": 54950.46, + "end": 54950.84, + "probability": 0.8148 + }, + { + "start": 54952.32, + "end": 54955.25, + "probability": 0.7959 + }, + { + "start": 54956.8, + "end": 54959.22, + "probability": 0.9881 + }, + { + "start": 54959.52, + "end": 54960.98, + "probability": 0.7689 + }, + { + "start": 54961.96, + "end": 54965.26, + "probability": 0.897 + }, + { + "start": 54965.9, + "end": 54969.46, + "probability": 0.9792 + }, + { + "start": 54969.66, + "end": 54970.28, + "probability": 0.9238 + }, + { + "start": 54970.52, + "end": 54973.28, + "probability": 0.7953 + }, + { + "start": 54974.88, + "end": 54976.07, + "probability": 0.9146 + }, + { + "start": 54976.24, + "end": 54976.42, + "probability": 0.4974 + }, + { + "start": 54976.74, + "end": 54976.98, + "probability": 0.696 + }, + { + "start": 54977.16, + "end": 54977.88, + "probability": 0.7063 + }, + { + "start": 54978.04, + "end": 54980.78, + "probability": 0.9873 + }, + { + "start": 54980.98, + "end": 54983.5, + "probability": 0.8158 + }, + { + "start": 54983.84, + "end": 54988.24, + "probability": 0.6053 + }, + { + "start": 54988.42, + "end": 54988.92, + "probability": 0.6846 + }, + { + "start": 54989.04, + "end": 54992.74, + "probability": 0.9578 + }, + { + "start": 54993.24, + "end": 54994.96, + "probability": 0.8682 + }, + { + "start": 54995.3, + "end": 54996.64, + "probability": 0.951 + }, + { + "start": 54996.82, + "end": 54998.22, + "probability": 0.9888 + }, + { + "start": 54999.26, + "end": 55001.2, + "probability": 0.8589 + }, + { + "start": 55001.72, + "end": 55004.78, + "probability": 0.7264 + }, + { + "start": 55005.44, + "end": 55007.46, + "probability": 0.9488 + }, + { + "start": 55007.56, + "end": 55008.04, + "probability": 0.7431 + }, + { + "start": 55008.08, + "end": 55009.92, + "probability": 0.8117 + }, + { + "start": 55010.08, + "end": 55010.8, + "probability": 0.6633 + }, + { + "start": 55010.84, + "end": 55012.92, + "probability": 0.9759 + }, + { + "start": 55013.54, + "end": 55014.71, + "probability": 0.7275 + }, + { + "start": 55015.18, + "end": 55017.72, + "probability": 0.9182 + }, + { + "start": 55018.66, + "end": 55019.48, + "probability": 0.6135 + }, + { + "start": 55019.66, + "end": 55021.06, + "probability": 0.9383 + }, + { + "start": 55021.7, + "end": 55023.44, + "probability": 0.6651 + }, + { + "start": 55023.62, + "end": 55024.26, + "probability": 0.1628 + }, + { + "start": 55024.34, + "end": 55026.36, + "probability": 0.9318 + }, + { + "start": 55026.6, + "end": 55027.9, + "probability": 0.921 + }, + { + "start": 55027.94, + "end": 55028.62, + "probability": 0.7588 + }, + { + "start": 55028.7, + "end": 55029.64, + "probability": 0.9719 + }, + { + "start": 55030.24, + "end": 55030.8, + "probability": 0.5319 + }, + { + "start": 55031.32, + "end": 55031.54, + "probability": 0.8689 + }, + { + "start": 55031.66, + "end": 55032.02, + "probability": 0.8892 + }, + { + "start": 55032.22, + "end": 55032.4, + "probability": 0.6077 + }, + { + "start": 55032.42, + "end": 55033.2, + "probability": 0.9355 + }, + { + "start": 55033.68, + "end": 55035.22, + "probability": 0.9777 + }, + { + "start": 55035.28, + "end": 55036.94, + "probability": 0.7913 + }, + { + "start": 55037.18, + "end": 55038.64, + "probability": 0.9878 + }, + { + "start": 55038.7, + "end": 55041.2, + "probability": 0.9734 + }, + { + "start": 55041.5, + "end": 55042.68, + "probability": 0.8131 + }, + { + "start": 55043.22, + "end": 55044.64, + "probability": 0.6718 + }, + { + "start": 55046.74, + "end": 55048.04, + "probability": 0.938 + }, + { + "start": 55048.26, + "end": 55052.72, + "probability": 0.7937 + }, + { + "start": 55052.8, + "end": 55057.28, + "probability": 0.9737 + }, + { + "start": 55057.84, + "end": 55060.6, + "probability": 0.9924 + }, + { + "start": 55060.78, + "end": 55060.96, + "probability": 0.2675 + }, + { + "start": 55061.02, + "end": 55062.36, + "probability": 0.9167 + }, + { + "start": 55062.5, + "end": 55065.46, + "probability": 0.9438 + }, + { + "start": 55065.94, + "end": 55067.48, + "probability": 0.9264 + }, + { + "start": 55068.02, + "end": 55069.72, + "probability": 0.7158 + }, + { + "start": 55070.05, + "end": 55074.9, + "probability": 0.9274 + }, + { + "start": 55075.6, + "end": 55078.96, + "probability": 0.9565 + }, + { + "start": 55078.96, + "end": 55082.66, + "probability": 0.9851 + }, + { + "start": 55082.68, + "end": 55083.84, + "probability": 0.9869 + }, + { + "start": 55084.06, + "end": 55087.24, + "probability": 0.9441 + }, + { + "start": 55087.36, + "end": 55088.2, + "probability": 0.4432 + }, + { + "start": 55088.66, + "end": 55089.5, + "probability": 0.9526 + }, + { + "start": 55089.92, + "end": 55091.77, + "probability": 0.9332 + }, + { + "start": 55092.88, + "end": 55093.44, + "probability": 0.6294 + }, + { + "start": 55093.5, + "end": 55094.72, + "probability": 0.8765 + }, + { + "start": 55094.84, + "end": 55095.94, + "probability": 0.929 + }, + { + "start": 55096.18, + "end": 55097.22, + "probability": 0.7265 + }, + { + "start": 55097.78, + "end": 55099.28, + "probability": 0.8969 + }, + { + "start": 55099.54, + "end": 55100.7, + "probability": 0.6631 + }, + { + "start": 55100.88, + "end": 55101.68, + "probability": 0.8186 + }, + { + "start": 55102.12, + "end": 55106.16, + "probability": 0.7607 + }, + { + "start": 55106.22, + "end": 55107.22, + "probability": 0.8994 + }, + { + "start": 55107.26, + "end": 55109.93, + "probability": 0.9829 + }, + { + "start": 55110.22, + "end": 55111.24, + "probability": 0.8334 + }, + { + "start": 55112.43, + "end": 55115.0, + "probability": 0.8662 + }, + { + "start": 55116.54, + "end": 55117.26, + "probability": 0.7363 + }, + { + "start": 55118.1, + "end": 55119.14, + "probability": 0.7274 + }, + { + "start": 55119.22, + "end": 55120.84, + "probability": 0.9879 + }, + { + "start": 55122.31, + "end": 55125.2, + "probability": 0.8343 + }, + { + "start": 55125.34, + "end": 55127.6, + "probability": 0.624 + }, + { + "start": 55127.8, + "end": 55128.8, + "probability": 0.8604 + }, + { + "start": 55129.3, + "end": 55132.48, + "probability": 0.9395 + }, + { + "start": 55133.48, + "end": 55134.84, + "probability": 0.9121 + }, + { + "start": 55134.98, + "end": 55135.4, + "probability": 0.4953 + }, + { + "start": 55135.56, + "end": 55135.76, + "probability": 0.8289 + }, + { + "start": 55135.78, + "end": 55137.54, + "probability": 0.8918 + }, + { + "start": 55138.46, + "end": 55141.24, + "probability": 0.7277 + }, + { + "start": 55142.56, + "end": 55143.25, + "probability": 0.9825 + }, + { + "start": 55144.4, + "end": 55144.68, + "probability": 0.8749 + }, + { + "start": 55144.72, + "end": 55147.58, + "probability": 0.9193 + }, + { + "start": 55147.96, + "end": 55149.86, + "probability": 0.9726 + }, + { + "start": 55150.34, + "end": 55153.88, + "probability": 0.9952 + }, + { + "start": 55154.36, + "end": 55155.8, + "probability": 0.6692 + }, + { + "start": 55155.86, + "end": 55157.18, + "probability": 0.6622 + }, + { + "start": 55157.26, + "end": 55157.64, + "probability": 0.4721 + }, + { + "start": 55157.68, + "end": 55157.92, + "probability": 0.7527 + }, + { + "start": 55158.75, + "end": 55161.44, + "probability": 0.9633 + }, + { + "start": 55162.2, + "end": 55163.26, + "probability": 0.8316 + }, + { + "start": 55163.32, + "end": 55165.36, + "probability": 0.7941 + }, + { + "start": 55165.52, + "end": 55169.1, + "probability": 0.9775 + }, + { + "start": 55170.54, + "end": 55174.26, + "probability": 0.7668 + }, + { + "start": 55174.48, + "end": 55176.5, + "probability": 0.9462 + }, + { + "start": 55176.78, + "end": 55178.94, + "probability": 0.935 + }, + { + "start": 55179.08, + "end": 55181.68, + "probability": 0.8735 + }, + { + "start": 55182.32, + "end": 55185.14, + "probability": 0.865 + }, + { + "start": 55185.36, + "end": 55187.4, + "probability": 0.927 + }, + { + "start": 55187.5, + "end": 55189.33, + "probability": 0.7265 + }, + { + "start": 55189.7, + "end": 55191.66, + "probability": 0.9072 + }, + { + "start": 55192.36, + "end": 55193.94, + "probability": 0.9851 + }, + { + "start": 55194.34, + "end": 55196.9, + "probability": 0.9167 + }, + { + "start": 55197.44, + "end": 55200.75, + "probability": 0.9625 + }, + { + "start": 55202.32, + "end": 55207.06, + "probability": 0.9818 + }, + { + "start": 55207.64, + "end": 55209.88, + "probability": 0.9636 + }, + { + "start": 55210.0, + "end": 55210.3, + "probability": 0.3967 + }, + { + "start": 55210.38, + "end": 55213.24, + "probability": 0.9408 + }, + { + "start": 55214.22, + "end": 55215.38, + "probability": 0.8272 + }, + { + "start": 55215.52, + "end": 55220.24, + "probability": 0.9073 + }, + { + "start": 55221.14, + "end": 55223.38, + "probability": 0.9341 + }, + { + "start": 55223.4, + "end": 55225.5, + "probability": 0.6213 + }, + { + "start": 55227.06, + "end": 55229.12, + "probability": 0.8612 + }, + { + "start": 55229.88, + "end": 55231.28, + "probability": 0.9507 + }, + { + "start": 55232.0, + "end": 55233.46, + "probability": 0.7891 + }, + { + "start": 55233.56, + "end": 55233.74, + "probability": 0.7385 + }, + { + "start": 55233.92, + "end": 55235.94, + "probability": 0.9744 + }, + { + "start": 55236.02, + "end": 55237.66, + "probability": 0.4915 + }, + { + "start": 55239.18, + "end": 55241.18, + "probability": 0.5727 + }, + { + "start": 55241.26, + "end": 55241.38, + "probability": 0.689 + }, + { + "start": 55241.62, + "end": 55244.18, + "probability": 0.7257 + }, + { + "start": 55244.64, + "end": 55244.96, + "probability": 0.7319 + }, + { + "start": 55245.38, + "end": 55246.0, + "probability": 0.7811 + }, + { + "start": 55246.18, + "end": 55246.38, + "probability": 0.4918 + }, + { + "start": 55246.46, + "end": 55248.02, + "probability": 0.9304 + }, + { + "start": 55248.92, + "end": 55250.26, + "probability": 0.7869 + }, + { + "start": 55250.4, + "end": 55251.68, + "probability": 0.7369 + }, + { + "start": 55252.44, + "end": 55252.9, + "probability": 0.6588 + }, + { + "start": 55253.06, + "end": 55253.68, + "probability": 0.8827 + }, + { + "start": 55253.7, + "end": 55253.96, + "probability": 0.6667 + }, + { + "start": 55254.1, + "end": 55256.22, + "probability": 0.7059 + }, + { + "start": 55257.0, + "end": 55261.02, + "probability": 0.8979 + }, + { + "start": 55261.12, + "end": 55262.84, + "probability": 0.9849 + }, + { + "start": 55263.52, + "end": 55267.9, + "probability": 0.8355 + }, + { + "start": 55268.82, + "end": 55269.24, + "probability": 0.6212 + }, + { + "start": 55269.34, + "end": 55269.36, + "probability": 0.544 + }, + { + "start": 55269.36, + "end": 55270.56, + "probability": 0.603 + }, + { + "start": 55270.56, + "end": 55273.42, + "probability": 0.7498 + }, + { + "start": 55274.88, + "end": 55276.29, + "probability": 0.924 + }, + { + "start": 55276.52, + "end": 55276.94, + "probability": 0.6315 + }, + { + "start": 55277.6, + "end": 55277.8, + "probability": 0.6462 + }, + { + "start": 55278.8, + "end": 55283.74, + "probability": 0.9728 + }, + { + "start": 55284.68, + "end": 55285.32, + "probability": 0.8907 + }, + { + "start": 55285.42, + "end": 55285.98, + "probability": 0.9442 + }, + { + "start": 55286.1, + "end": 55290.4, + "probability": 0.9735 + }, + { + "start": 55290.96, + "end": 55292.0, + "probability": 0.9816 + }, + { + "start": 55293.56, + "end": 55295.54, + "probability": 0.5746 + }, + { + "start": 55296.22, + "end": 55298.12, + "probability": 0.9974 + }, + { + "start": 55299.87, + "end": 55302.28, + "probability": 0.6701 + }, + { + "start": 55303.06, + "end": 55303.86, + "probability": 0.8767 + }, + { + "start": 55304.2, + "end": 55304.4, + "probability": 0.8601 + }, + { + "start": 55304.66, + "end": 55309.48, + "probability": 0.8586 + }, + { + "start": 55309.64, + "end": 55310.18, + "probability": 0.6764 + }, + { + "start": 55310.74, + "end": 55313.16, + "probability": 0.8363 + }, + { + "start": 55313.9, + "end": 55314.96, + "probability": 0.7699 + }, + { + "start": 55315.58, + "end": 55315.86, + "probability": 0.5066 + }, + { + "start": 55316.02, + "end": 55316.96, + "probability": 0.3707 + }, + { + "start": 55317.04, + "end": 55318.48, + "probability": 0.934 + }, + { + "start": 55318.58, + "end": 55319.16, + "probability": 0.6225 + }, + { + "start": 55319.26, + "end": 55320.88, + "probability": 0.762 + }, + { + "start": 55321.57, + "end": 55324.69, + "probability": 0.5149 + }, + { + "start": 55327.18, + "end": 55328.5, + "probability": 0.4689 + }, + { + "start": 55330.12, + "end": 55330.6, + "probability": 0.4825 + }, + { + "start": 55330.72, + "end": 55331.34, + "probability": 0.3951 + }, + { + "start": 55331.34, + "end": 55334.44, + "probability": 0.777 + }, + { + "start": 55335.36, + "end": 55335.68, + "probability": 0.7546 + }, + { + "start": 55335.86, + "end": 55338.28, + "probability": 0.9578 + }, + { + "start": 55338.7, + "end": 55342.66, + "probability": 0.9747 + }, + { + "start": 55343.86, + "end": 55346.46, + "probability": 0.7587 + }, + { + "start": 55347.1, + "end": 55349.16, + "probability": 0.7023 + }, + { + "start": 55349.7, + "end": 55352.66, + "probability": 0.9395 + }, + { + "start": 55354.27, + "end": 55356.4, + "probability": 0.8289 + }, + { + "start": 55356.62, + "end": 55358.74, + "probability": 0.9963 + }, + { + "start": 55359.12, + "end": 55359.8, + "probability": 0.4828 + }, + { + "start": 55360.3, + "end": 55364.58, + "probability": 0.9814 + }, + { + "start": 55365.92, + "end": 55366.28, + "probability": 0.8228 + }, + { + "start": 55366.98, + "end": 55371.52, + "probability": 0.9714 + }, + { + "start": 55371.56, + "end": 55372.59, + "probability": 0.6552 + }, + { + "start": 55373.22, + "end": 55374.2, + "probability": 0.9184 + }, + { + "start": 55374.74, + "end": 55376.2, + "probability": 0.9171 + }, + { + "start": 55378.18, + "end": 55379.48, + "probability": 0.8122 + }, + { + "start": 55379.66, + "end": 55380.24, + "probability": 0.7307 + }, + { + "start": 55380.56, + "end": 55384.88, + "probability": 0.7575 + }, + { + "start": 55384.92, + "end": 55385.56, + "probability": 0.9753 + }, + { + "start": 55385.78, + "end": 55387.0, + "probability": 0.932 + }, + { + "start": 55387.88, + "end": 55388.66, + "probability": 0.8398 + }, + { + "start": 55389.16, + "end": 55392.16, + "probability": 0.9902 + }, + { + "start": 55392.36, + "end": 55395.74, + "probability": 0.0398 + }, + { + "start": 55396.02, + "end": 55396.54, + "probability": 0.5226 + }, + { + "start": 55396.72, + "end": 55397.76, + "probability": 0.1831 + }, + { + "start": 55398.38, + "end": 55399.16, + "probability": 0.0492 + }, + { + "start": 55399.78, + "end": 55400.58, + "probability": 0.715 + }, + { + "start": 55400.98, + "end": 55404.0, + "probability": 0.7521 + }, + { + "start": 55404.6, + "end": 55408.3, + "probability": 0.9443 + }, + { + "start": 55408.72, + "end": 55410.4, + "probability": 0.6071 + }, + { + "start": 55410.72, + "end": 55413.12, + "probability": 0.9577 + }, + { + "start": 55413.74, + "end": 55417.26, + "probability": 0.7507 + }, + { + "start": 55418.4, + "end": 55420.94, + "probability": 0.981 + }, + { + "start": 55421.8, + "end": 55422.14, + "probability": 0.7935 + }, + { + "start": 55422.22, + "end": 55424.26, + "probability": 0.9445 + }, + { + "start": 55424.6, + "end": 55425.98, + "probability": 0.9704 + }, + { + "start": 55426.32, + "end": 55427.82, + "probability": 0.806 + }, + { + "start": 55429.6, + "end": 55429.81, + "probability": 0.6132 + }, + { + "start": 55431.92, + "end": 55432.98, + "probability": 0.817 + }, + { + "start": 55433.08, + "end": 55433.98, + "probability": 0.9767 + }, + { + "start": 55434.16, + "end": 55437.18, + "probability": 0.7405 + }, + { + "start": 55437.72, + "end": 55439.93, + "probability": 0.7626 + }, + { + "start": 55440.46, + "end": 55441.18, + "probability": 0.5706 + }, + { + "start": 55441.8, + "end": 55444.92, + "probability": 0.6772 + }, + { + "start": 55444.92, + "end": 55447.44, + "probability": 0.5561 + }, + { + "start": 55447.52, + "end": 55448.38, + "probability": 0.572 + }, + { + "start": 55448.74, + "end": 55450.38, + "probability": 0.7366 + }, + { + "start": 55450.38, + "end": 55454.1, + "probability": 0.8855 + }, + { + "start": 55454.4, + "end": 55455.34, + "probability": 0.8204 + }, + { + "start": 55456.1, + "end": 55456.76, + "probability": 0.8005 + }, + { + "start": 55457.96, + "end": 55463.54, + "probability": 0.6301 + }, + { + "start": 55464.76, + "end": 55465.72, + "probability": 0.8057 + }, + { + "start": 55465.86, + "end": 55467.34, + "probability": 0.9611 + }, + { + "start": 55467.62, + "end": 55468.78, + "probability": 0.7981 + }, + { + "start": 55469.16, + "end": 55470.44, + "probability": 0.9751 + }, + { + "start": 55470.82, + "end": 55472.96, + "probability": 0.5491 + }, + { + "start": 55473.38, + "end": 55473.64, + "probability": 0.2789 + }, + { + "start": 55474.72, + "end": 55476.83, + "probability": 0.8837 + }, + { + "start": 55477.86, + "end": 55479.9, + "probability": 0.8948 + }, + { + "start": 55481.52, + "end": 55482.72, + "probability": 0.3656 + }, + { + "start": 55482.76, + "end": 55484.14, + "probability": 0.8479 + }, + { + "start": 55484.5, + "end": 55486.4, + "probability": 0.7352 + }, + { + "start": 55486.56, + "end": 55490.6, + "probability": 0.7457 + }, + { + "start": 55490.74, + "end": 55491.6, + "probability": 0.723 + }, + { + "start": 55492.86, + "end": 55496.38, + "probability": 0.7495 + }, + { + "start": 55496.9, + "end": 55498.98, + "probability": 0.9698 + }, + { + "start": 55500.32, + "end": 55503.56, + "probability": 0.9908 + }, + { + "start": 55504.6, + "end": 55506.74, + "probability": 0.9888 + }, + { + "start": 55507.76, + "end": 55509.62, + "probability": 0.8623 + }, + { + "start": 55509.74, + "end": 55510.36, + "probability": 0.8813 + }, + { + "start": 55511.38, + "end": 55516.62, + "probability": 0.995 + }, + { + "start": 55517.56, + "end": 55518.44, + "probability": 0.3868 + }, + { + "start": 55519.26, + "end": 55523.6, + "probability": 0.998 + }, + { + "start": 55524.7, + "end": 55525.82, + "probability": 0.9556 + }, + { + "start": 55527.81, + "end": 55530.18, + "probability": 0.993 + }, + { + "start": 55530.92, + "end": 55532.88, + "probability": 0.9891 + }, + { + "start": 55533.34, + "end": 55535.52, + "probability": 0.9793 + }, + { + "start": 55537.48, + "end": 55538.8, + "probability": 0.7711 + }, + { + "start": 55539.94, + "end": 55543.3, + "probability": 0.9641 + }, + { + "start": 55544.06, + "end": 55544.66, + "probability": 0.4622 + }, + { + "start": 55544.94, + "end": 55547.97, + "probability": 0.9807 + }, + { + "start": 55549.32, + "end": 55551.72, + "probability": 0.8091 + }, + { + "start": 55553.4, + "end": 55555.1, + "probability": 0.9287 + }, + { + "start": 55556.2, + "end": 55557.24, + "probability": 0.4931 + }, + { + "start": 55558.94, + "end": 55561.48, + "probability": 0.8152 + }, + { + "start": 55562.16, + "end": 55562.72, + "probability": 0.9836 + }, + { + "start": 55563.62, + "end": 55564.96, + "probability": 0.7728 + }, + { + "start": 55565.84, + "end": 55567.68, + "probability": 0.7439 + }, + { + "start": 55568.38, + "end": 55569.06, + "probability": 0.908 + }, + { + "start": 55569.46, + "end": 55570.34, + "probability": 0.8622 + }, + { + "start": 55571.28, + "end": 55571.84, + "probability": 0.6457 + }, + { + "start": 55571.88, + "end": 55574.34, + "probability": 0.5403 + }, + { + "start": 55576.69, + "end": 55577.6, + "probability": 0.0375 + }, + { + "start": 55577.6, + "end": 55577.6, + "probability": 0.0204 + }, + { + "start": 55577.6, + "end": 55578.69, + "probability": 0.4002 + }, + { + "start": 55579.52, + "end": 55582.14, + "probability": 0.8605 + }, + { + "start": 55582.14, + "end": 55582.84, + "probability": 0.7707 + }, + { + "start": 55582.96, + "end": 55583.6, + "probability": 0.8624 + }, + { + "start": 55584.32, + "end": 55586.0, + "probability": 0.9028 + }, + { + "start": 55587.48, + "end": 55588.26, + "probability": 0.4932 + }, + { + "start": 55589.12, + "end": 55589.4, + "probability": 0.0265 + }, + { + "start": 55590.32, + "end": 55593.14, + "probability": 0.7519 + }, + { + "start": 55593.2, + "end": 55595.65, + "probability": 0.9663 + }, + { + "start": 55596.18, + "end": 55596.82, + "probability": 0.8627 + }, + { + "start": 55597.32, + "end": 55601.86, + "probability": 0.8745 + }, + { + "start": 55601.96, + "end": 55602.72, + "probability": 0.6757 + }, + { + "start": 55603.08, + "end": 55609.08, + "probability": 0.7679 + }, + { + "start": 55609.56, + "end": 55612.28, + "probability": 0.9473 + }, + { + "start": 55612.78, + "end": 55614.07, + "probability": 0.4853 + }, + { + "start": 55614.82, + "end": 55616.8, + "probability": 0.9814 + }, + { + "start": 55617.18, + "end": 55619.26, + "probability": 0.6973 + }, + { + "start": 55619.64, + "end": 55621.48, + "probability": 0.9766 + }, + { + "start": 55621.94, + "end": 55623.38, + "probability": 0.6183 + }, + { + "start": 55623.42, + "end": 55625.82, + "probability": 0.8713 + }, + { + "start": 55625.88, + "end": 55626.4, + "probability": 0.6342 + }, + { + "start": 55626.76, + "end": 55630.1, + "probability": 0.2672 + }, + { + "start": 55630.48, + "end": 55632.32, + "probability": 0.8413 + }, + { + "start": 55632.64, + "end": 55635.06, + "probability": 0.7532 + }, + { + "start": 55635.62, + "end": 55636.36, + "probability": 0.4569 + }, + { + "start": 55636.36, + "end": 55640.9, + "probability": 0.8074 + }, + { + "start": 55641.42, + "end": 55641.42, + "probability": 0.6276 + }, + { + "start": 55641.46, + "end": 55643.8, + "probability": 0.6818 + }, + { + "start": 55643.92, + "end": 55645.28, + "probability": 0.5428 + }, + { + "start": 55645.58, + "end": 55646.07, + "probability": 0.0917 + }, + { + "start": 55646.66, + "end": 55649.2, + "probability": 0.9312 + }, + { + "start": 55649.94, + "end": 55650.85, + "probability": 0.526 + }, + { + "start": 55652.1, + "end": 55652.36, + "probability": 0.0953 + }, + { + "start": 55653.22, + "end": 55655.18, + "probability": 0.5801 + }, + { + "start": 55655.36, + "end": 55658.37, + "probability": 0.3214 + }, + { + "start": 55658.52, + "end": 55659.91, + "probability": 0.3746 + }, + { + "start": 55660.26, + "end": 55662.64, + "probability": 0.0295 + }, + { + "start": 55662.64, + "end": 55663.86, + "probability": 0.7387 + }, + { + "start": 55663.86, + "end": 55665.1, + "probability": 0.0879 + }, + { + "start": 55666.04, + "end": 55666.8, + "probability": 0.5864 + }, + { + "start": 55666.88, + "end": 55668.5, + "probability": 0.7419 + }, + { + "start": 55668.94, + "end": 55672.38, + "probability": 0.798 + }, + { + "start": 55672.54, + "end": 55674.4, + "probability": 0.9473 + }, + { + "start": 55674.72, + "end": 55676.64, + "probability": 0.911 + }, + { + "start": 55676.72, + "end": 55678.56, + "probability": 0.7812 + }, + { + "start": 55678.64, + "end": 55680.4, + "probability": 0.8721 + }, + { + "start": 55680.72, + "end": 55682.82, + "probability": 0.9268 + }, + { + "start": 55682.82, + "end": 55685.96, + "probability": 0.7333 + }, + { + "start": 55686.4, + "end": 55687.86, + "probability": 0.7158 + }, + { + "start": 55688.18, + "end": 55688.6, + "probability": 0.493 + }, + { + "start": 55688.62, + "end": 55692.78, + "probability": 0.6718 + }, + { + "start": 55693.0, + "end": 55695.12, + "probability": 0.7963 + }, + { + "start": 55696.0, + "end": 55698.66, + "probability": 0.9514 + }, + { + "start": 55698.76, + "end": 55699.58, + "probability": 0.7833 + }, + { + "start": 55701.38, + "end": 55702.84, + "probability": 0.9216 + }, + { + "start": 55702.94, + "end": 55703.46, + "probability": 0.9875 + }, + { + "start": 55704.22, + "end": 55707.22, + "probability": 0.7583 + }, + { + "start": 55708.18, + "end": 55708.94, + "probability": 0.8404 + }, + { + "start": 55709.86, + "end": 55710.14, + "probability": 0.978 + }, + { + "start": 55711.51, + "end": 55713.44, + "probability": 0.5276 + }, + { + "start": 55714.04, + "end": 55715.3, + "probability": 0.627 + }, + { + "start": 55715.4, + "end": 55715.4, + "probability": 0.6006 + }, + { + "start": 55715.4, + "end": 55716.14, + "probability": 0.6279 + }, + { + "start": 55716.14, + "end": 55717.39, + "probability": 0.3082 + }, + { + "start": 55719.63, + "end": 55720.7, + "probability": 0.7607 + }, + { + "start": 55720.82, + "end": 55722.42, + "probability": 0.7281 + }, + { + "start": 55722.92, + "end": 55724.64, + "probability": 0.5564 + }, + { + "start": 55724.76, + "end": 55725.5, + "probability": 0.7666 + }, + { + "start": 55726.2, + "end": 55726.94, + "probability": 0.7453 + }, + { + "start": 55726.94, + "end": 55731.58, + "probability": 0.9878 + }, + { + "start": 55732.06, + "end": 55733.36, + "probability": 0.1221 + }, + { + "start": 55733.78, + "end": 55734.02, + "probability": 0.3332 + }, + { + "start": 55734.06, + "end": 55735.4, + "probability": 0.5824 + }, + { + "start": 55735.66, + "end": 55737.46, + "probability": 0.9707 + }, + { + "start": 55738.0, + "end": 55740.78, + "probability": 0.9824 + }, + { + "start": 55741.08, + "end": 55742.2, + "probability": 0.8023 + }, + { + "start": 55742.38, + "end": 55743.04, + "probability": 0.4921 + }, + { + "start": 55743.26, + "end": 55743.5, + "probability": 0.3115 + }, + { + "start": 55743.84, + "end": 55745.28, + "probability": 0.9122 + }, + { + "start": 55746.2, + "end": 55748.22, + "probability": 0.9946 + }, + { + "start": 55749.2, + "end": 55751.2, + "probability": 0.7612 + }, + { + "start": 55751.26, + "end": 55753.12, + "probability": 0.833 + }, + { + "start": 55753.22, + "end": 55757.54, + "probability": 0.9835 + }, + { + "start": 55758.04, + "end": 55758.63, + "probability": 0.6117 + }, + { + "start": 55758.7, + "end": 55759.7, + "probability": 0.6922 + }, + { + "start": 55760.34, + "end": 55760.78, + "probability": 0.8309 + }, + { + "start": 55761.46, + "end": 55761.76, + "probability": 0.4983 + }, + { + "start": 55761.76, + "end": 55762.14, + "probability": 0.8959 + }, + { + "start": 55762.66, + "end": 55762.86, + "probability": 0.9421 + }, + { + "start": 55763.94, + "end": 55764.18, + "probability": 0.2483 + }, + { + "start": 55764.3, + "end": 55765.3, + "probability": 0.9062 + }, + { + "start": 55765.4, + "end": 55767.38, + "probability": 0.4062 + }, + { + "start": 55767.52, + "end": 55767.52, + "probability": 0.4429 + }, + { + "start": 55767.62, + "end": 55768.04, + "probability": 0.4979 + }, + { + "start": 55768.12, + "end": 55768.94, + "probability": 0.829 + }, + { + "start": 55769.12, + "end": 55773.9, + "probability": 0.9939 + }, + { + "start": 55774.74, + "end": 55779.36, + "probability": 0.9775 + }, + { + "start": 55779.72, + "end": 55781.9, + "probability": 0.9397 + }, + { + "start": 55782.5, + "end": 55784.22, + "probability": 0.7504 + }, + { + "start": 55784.26, + "end": 55784.86, + "probability": 0.7049 + }, + { + "start": 55784.86, + "end": 55785.88, + "probability": 0.6894 + }, + { + "start": 55785.98, + "end": 55786.18, + "probability": 0.3265 + }, + { + "start": 55786.22, + "end": 55787.07, + "probability": 0.1442 + }, + { + "start": 55787.36, + "end": 55788.12, + "probability": 0.2964 + }, + { + "start": 55788.16, + "end": 55788.66, + "probability": 0.6555 + }, + { + "start": 55788.76, + "end": 55789.46, + "probability": 0.8903 + }, + { + "start": 55789.7, + "end": 55793.72, + "probability": 0.88 + }, + { + "start": 55793.76, + "end": 55795.42, + "probability": 0.9915 + }, + { + "start": 55795.66, + "end": 55796.4, + "probability": 0.7728 + }, + { + "start": 55796.5, + "end": 55797.94, + "probability": 0.8173 + }, + { + "start": 55798.6, + "end": 55803.3, + "probability": 0.9165 + }, + { + "start": 55804.48, + "end": 55807.74, + "probability": 0.9458 + }, + { + "start": 55808.06, + "end": 55810.38, + "probability": 0.9852 + }, + { + "start": 55810.84, + "end": 55811.78, + "probability": 0.8533 + }, + { + "start": 55811.9, + "end": 55813.29, + "probability": 0.9868 + }, + { + "start": 55813.84, + "end": 55816.01, + "probability": 0.8001 + }, + { + "start": 55816.62, + "end": 55818.68, + "probability": 0.5468 + }, + { + "start": 55819.52, + "end": 55822.6, + "probability": 0.7471 + }, + { + "start": 55823.88, + "end": 55827.84, + "probability": 0.8169 + }, + { + "start": 55828.18, + "end": 55828.42, + "probability": 0.8735 + }, + { + "start": 55828.5, + "end": 55829.14, + "probability": 0.9294 + }, + { + "start": 55829.96, + "end": 55832.16, + "probability": 0.953 + }, + { + "start": 55832.26, + "end": 55834.02, + "probability": 0.9792 + }, + { + "start": 55834.82, + "end": 55836.88, + "probability": 0.8037 + }, + { + "start": 55837.08, + "end": 55838.18, + "probability": 0.8422 + }, + { + "start": 55838.26, + "end": 55838.6, + "probability": 0.3874 + }, + { + "start": 55839.6, + "end": 55841.86, + "probability": 0.6358 + }, + { + "start": 55842.06, + "end": 55845.62, + "probability": 0.8297 + }, + { + "start": 55845.62, + "end": 55848.26, + "probability": 0.4632 + }, + { + "start": 55848.74, + "end": 55849.92, + "probability": 0.8386 + }, + { + "start": 55853.52, + "end": 55853.62, + "probability": 0.3342 + }, + { + "start": 55853.86, + "end": 55854.26, + "probability": 0.5816 + }, + { + "start": 55854.46, + "end": 55858.4, + "probability": 0.7686 + }, + { + "start": 55858.74, + "end": 55862.44, + "probability": 0.8383 + }, + { + "start": 55862.98, + "end": 55863.08, + "probability": 0.3874 + }, + { + "start": 55863.1, + "end": 55863.66, + "probability": 0.8118 + }, + { + "start": 55863.72, + "end": 55866.0, + "probability": 0.8379 + }, + { + "start": 55866.1, + "end": 55867.23, + "probability": 0.5899 + }, + { + "start": 55867.7, + "end": 55868.78, + "probability": 0.783 + }, + { + "start": 55868.86, + "end": 55869.4, + "probability": 0.4991 + }, + { + "start": 55870.37, + "end": 55872.25, + "probability": 0.9146 + }, + { + "start": 55872.3, + "end": 55872.74, + "probability": 0.2641 + }, + { + "start": 55873.26, + "end": 55873.5, + "probability": 0.5935 + }, + { + "start": 55873.73, + "end": 55875.34, + "probability": 0.4893 + }, + { + "start": 55875.34, + "end": 55876.42, + "probability": 0.4968 + }, + { + "start": 55876.66, + "end": 55879.08, + "probability": 0.7428 + }, + { + "start": 55879.2, + "end": 55880.2, + "probability": 0.5547 + }, + { + "start": 55880.26, + "end": 55881.7, + "probability": 0.8402 + }, + { + "start": 55884.4, + "end": 55885.0, + "probability": 0.4774 + }, + { + "start": 55885.0, + "end": 55886.3, + "probability": 0.7116 + }, + { + "start": 55886.34, + "end": 55889.02, + "probability": 0.8516 + }, + { + "start": 55891.38, + "end": 55896.71, + "probability": 0.8452 + }, + { + "start": 55897.56, + "end": 55900.2, + "probability": 0.9212 + }, + { + "start": 55900.62, + "end": 55906.52, + "probability": 0.9923 + }, + { + "start": 55906.64, + "end": 55908.26, + "probability": 0.9009 + }, + { + "start": 55909.12, + "end": 55911.2, + "probability": 0.8884 + }, + { + "start": 55911.44, + "end": 55913.7, + "probability": 0.8984 + }, + { + "start": 55913.74, + "end": 55914.92, + "probability": 0.7777 + }, + { + "start": 55915.36, + "end": 55917.02, + "probability": 0.888 + }, + { + "start": 55917.18, + "end": 55917.38, + "probability": 0.7367 + }, + { + "start": 55917.46, + "end": 55918.69, + "probability": 0.8442 + }, + { + "start": 55919.5, + "end": 55924.04, + "probability": 0.9794 + }, + { + "start": 55924.54, + "end": 55926.04, + "probability": 0.9467 + }, + { + "start": 55927.42, + "end": 55928.78, + "probability": 0.7991 + }, + { + "start": 55929.44, + "end": 55934.72, + "probability": 0.987 + }, + { + "start": 55935.5, + "end": 55939.18, + "probability": 0.9127 + }, + { + "start": 55939.72, + "end": 55941.46, + "probability": 0.6918 + }, + { + "start": 55941.74, + "end": 55945.04, + "probability": 0.9526 + }, + { + "start": 55945.8, + "end": 55953.28, + "probability": 0.8529 + }, + { + "start": 55954.34, + "end": 55957.3, + "probability": 0.5162 + }, + { + "start": 55958.2, + "end": 55959.72, + "probability": 0.604 + }, + { + "start": 55960.3, + "end": 55965.59, + "probability": 0.9556 + }, + { + "start": 55965.74, + "end": 55968.9, + "probability": 0.9769 + }, + { + "start": 55969.42, + "end": 55972.98, + "probability": 0.9827 + }, + { + "start": 55974.0, + "end": 55975.68, + "probability": 0.7577 + }, + { + "start": 55976.1, + "end": 55977.06, + "probability": 0.7375 + }, + { + "start": 55977.52, + "end": 55979.8, + "probability": 0.9543 + }, + { + "start": 55982.38, + "end": 55987.72, + "probability": 0.6731 + }, + { + "start": 55993.66, + "end": 55996.2, + "probability": 0.7765 + }, + { + "start": 55996.32, + "end": 55999.5, + "probability": 0.8432 + }, + { + "start": 55999.72, + "end": 56000.56, + "probability": 0.5699 + }, + { + "start": 56001.1, + "end": 56002.96, + "probability": 0.8884 + }, + { + "start": 56003.88, + "end": 56008.42, + "probability": 0.9998 + }, + { + "start": 56008.54, + "end": 56009.84, + "probability": 0.2062 + }, + { + "start": 56010.22, + "end": 56011.86, + "probability": 0.9033 + }, + { + "start": 56013.02, + "end": 56013.56, + "probability": 0.1956 + }, + { + "start": 56014.34, + "end": 56015.4, + "probability": 0.8176 + }, + { + "start": 56015.62, + "end": 56017.9, + "probability": 0.972 + }, + { + "start": 56018.24, + "end": 56019.36, + "probability": 0.8962 + }, + { + "start": 56022.02, + "end": 56023.1, + "probability": 0.7975 + }, + { + "start": 56023.3, + "end": 56024.9, + "probability": 0.9755 + }, + { + "start": 56025.12, + "end": 56025.88, + "probability": 0.9332 + }, + { + "start": 56026.04, + "end": 56026.46, + "probability": 0.8149 + }, + { + "start": 56026.96, + "end": 56029.38, + "probability": 0.9981 + }, + { + "start": 56029.86, + "end": 56031.49, + "probability": 0.9707 + }, + { + "start": 56033.48, + "end": 56037.22, + "probability": 0.9043 + }, + { + "start": 56037.66, + "end": 56039.4, + "probability": 0.5347 + }, + { + "start": 56040.02, + "end": 56044.1, + "probability": 0.7368 + }, + { + "start": 56044.16, + "end": 56045.56, + "probability": 0.8844 + }, + { + "start": 56046.44, + "end": 56048.0, + "probability": 0.8669 + }, + { + "start": 56048.18, + "end": 56050.38, + "probability": 0.9835 + }, + { + "start": 56050.66, + "end": 56052.48, + "probability": 0.9954 + }, + { + "start": 56053.46, + "end": 56057.32, + "probability": 0.9913 + }, + { + "start": 56057.8, + "end": 56058.34, + "probability": 0.1533 + }, + { + "start": 56059.3, + "end": 56059.82, + "probability": 0.2713 + }, + { + "start": 56059.96, + "end": 56063.05, + "probability": 0.9424 + }, + { + "start": 56064.16, + "end": 56065.8, + "probability": 0.9688 + }, + { + "start": 56066.0, + "end": 56067.58, + "probability": 0.9678 + }, + { + "start": 56067.92, + "end": 56071.02, + "probability": 0.7285 + }, + { + "start": 56071.2, + "end": 56073.6, + "probability": 0.9556 + }, + { + "start": 56074.94, + "end": 56075.58, + "probability": 0.8165 + }, + { + "start": 56075.72, + "end": 56076.26, + "probability": 0.944 + }, + { + "start": 56076.62, + "end": 56080.66, + "probability": 0.8682 + }, + { + "start": 56081.18, + "end": 56082.14, + "probability": 0.9025 + }, + { + "start": 56082.7, + "end": 56084.77, + "probability": 0.4119 + }, + { + "start": 56084.82, + "end": 56085.74, + "probability": 0.2119 + }, + { + "start": 56086.2, + "end": 56089.9, + "probability": 0.6598 + }, + { + "start": 56091.54, + "end": 56093.18, + "probability": 0.4193 + }, + { + "start": 56093.18, + "end": 56094.48, + "probability": 0.4823 + }, + { + "start": 56094.86, + "end": 56096.18, + "probability": 0.7167 + }, + { + "start": 56096.94, + "end": 56098.22, + "probability": 0.7635 + }, + { + "start": 56098.74, + "end": 56104.18, + "probability": 0.3238 + }, + { + "start": 56104.38, + "end": 56107.42, + "probability": 0.863 + }, + { + "start": 56107.58, + "end": 56108.22, + "probability": 0.8459 + }, + { + "start": 56108.5, + "end": 56109.56, + "probability": 0.851 + }, + { + "start": 56109.64, + "end": 56110.84, + "probability": 0.1603 + }, + { + "start": 56110.94, + "end": 56111.54, + "probability": 0.2934 + }, + { + "start": 56111.86, + "end": 56113.06, + "probability": 0.6715 + }, + { + "start": 56113.06, + "end": 56113.62, + "probability": 0.5865 + }, + { + "start": 56113.84, + "end": 56115.45, + "probability": 0.3108 + }, + { + "start": 56117.78, + "end": 56119.26, + "probability": 0.8818 + }, + { + "start": 56119.28, + "end": 56121.36, + "probability": 0.4317 + }, + { + "start": 56122.26, + "end": 56122.54, + "probability": 0.0368 + }, + { + "start": 56122.54, + "end": 56124.49, + "probability": 0.3521 + }, + { + "start": 56124.78, + "end": 56127.12, + "probability": 0.1074 + }, + { + "start": 56127.14, + "end": 56133.88, + "probability": 0.9205 + }, + { + "start": 56134.2, + "end": 56137.92, + "probability": 0.999 + }, + { + "start": 56138.18, + "end": 56138.76, + "probability": 0.6953 + }, + { + "start": 56138.78, + "end": 56140.64, + "probability": 0.8893 + }, + { + "start": 56141.06, + "end": 56142.62, + "probability": 0.9949 + }, + { + "start": 56143.52, + "end": 56147.78, + "probability": 0.4104 + }, + { + "start": 56148.3, + "end": 56150.8, + "probability": 0.6413 + }, + { + "start": 56151.08, + "end": 56152.28, + "probability": 0.5439 + }, + { + "start": 56152.36, + "end": 56155.0, + "probability": 0.8863 + }, + { + "start": 56155.08, + "end": 56158.72, + "probability": 0.8651 + }, + { + "start": 56160.14, + "end": 56162.26, + "probability": 0.9431 + }, + { + "start": 56162.88, + "end": 56164.16, + "probability": 0.979 + }, + { + "start": 56164.56, + "end": 56165.56, + "probability": 0.8525 + }, + { + "start": 56165.68, + "end": 56166.68, + "probability": 0.8464 + }, + { + "start": 56167.59, + "end": 56170.8, + "probability": 0.7152 + }, + { + "start": 56171.12, + "end": 56171.4, + "probability": 0.7884 + }, + { + "start": 56171.44, + "end": 56172.53, + "probability": 0.5994 + }, + { + "start": 56172.68, + "end": 56173.7, + "probability": 0.9716 + }, + { + "start": 56173.76, + "end": 56174.26, + "probability": 0.6578 + }, + { + "start": 56174.32, + "end": 56175.02, + "probability": 0.8979 + }, + { + "start": 56175.24, + "end": 56176.4, + "probability": 0.6554 + }, + { + "start": 56177.1, + "end": 56179.1, + "probability": 0.8356 + }, + { + "start": 56180.12, + "end": 56184.06, + "probability": 0.7694 + }, + { + "start": 56184.62, + "end": 56187.02, + "probability": 0.6885 + }, + { + "start": 56188.18, + "end": 56192.32, + "probability": 0.8026 + }, + { + "start": 56192.64, + "end": 56196.02, + "probability": 0.5588 + }, + { + "start": 56196.38, + "end": 56197.86, + "probability": 0.3449 + }, + { + "start": 56197.86, + "end": 56198.36, + "probability": 0.597 + }, + { + "start": 56198.36, + "end": 56199.78, + "probability": 0.7921 + }, + { + "start": 56199.92, + "end": 56201.64, + "probability": 0.8091 + }, + { + "start": 56202.32, + "end": 56202.82, + "probability": 0.4187 + }, + { + "start": 56202.94, + "end": 56204.72, + "probability": 0.6043 + }, + { + "start": 56205.34, + "end": 56205.34, + "probability": 0.1691 + }, + { + "start": 56205.86, + "end": 56206.58, + "probability": 0.7476 + }, + { + "start": 56207.04, + "end": 56210.68, + "probability": 0.9182 + }, + { + "start": 56211.12, + "end": 56211.6, + "probability": 0.8105 + }, + { + "start": 56212.02, + "end": 56212.72, + "probability": 0.7171 + }, + { + "start": 56212.84, + "end": 56213.52, + "probability": 0.4573 + }, + { + "start": 56213.58, + "end": 56214.64, + "probability": 0.7031 + }, + { + "start": 56214.76, + "end": 56215.44, + "probability": 0.6717 + }, + { + "start": 56215.6, + "end": 56216.5, + "probability": 0.8126 + }, + { + "start": 56216.7, + "end": 56217.68, + "probability": 0.607 + }, + { + "start": 56217.8, + "end": 56219.0, + "probability": 0.4227 + }, + { + "start": 56219.08, + "end": 56220.02, + "probability": 0.7239 + }, + { + "start": 56220.04, + "end": 56220.68, + "probability": 0.2236 + }, + { + "start": 56220.74, + "end": 56221.52, + "probability": 0.8153 + }, + { + "start": 56221.6, + "end": 56222.28, + "probability": 0.3951 + }, + { + "start": 56223.0, + "end": 56223.78, + "probability": 0.6163 + }, + { + "start": 56223.78, + "end": 56224.62, + "probability": 0.1154 + }, + { + "start": 56224.62, + "end": 56227.56, + "probability": 0.0342 + }, + { + "start": 56228.34, + "end": 56232.92, + "probability": 0.4209 + }, + { + "start": 56233.78, + "end": 56235.08, + "probability": 0.7014 + }, + { + "start": 56235.34, + "end": 56236.02, + "probability": 0.804 + }, + { + "start": 56236.12, + "end": 56237.08, + "probability": 0.8584 + }, + { + "start": 56237.24, + "end": 56239.4, + "probability": 0.78 + }, + { + "start": 56240.1, + "end": 56244.48, + "probability": 0.7706 + }, + { + "start": 56245.04, + "end": 56246.7, + "probability": 0.2691 + }, + { + "start": 56246.82, + "end": 56247.72, + "probability": 0.6062 + }, + { + "start": 56247.72, + "end": 56251.4, + "probability": 0.9969 + }, + { + "start": 56251.4, + "end": 56254.86, + "probability": 0.8681 + }, + { + "start": 56254.86, + "end": 56255.68, + "probability": 0.8005 + }, + { + "start": 56255.76, + "end": 56257.12, + "probability": 0.9917 + }, + { + "start": 56257.62, + "end": 56258.4, + "probability": 0.6748 + }, + { + "start": 56258.66, + "end": 56259.92, + "probability": 0.6636 + }, + { + "start": 56260.1, + "end": 56262.48, + "probability": 0.6675 + }, + { + "start": 56262.54, + "end": 56264.43, + "probability": 0.5886 + }, + { + "start": 56265.04, + "end": 56267.64, + "probability": 0.5253 + }, + { + "start": 56267.84, + "end": 56268.0, + "probability": 0.145 + }, + { + "start": 56268.06, + "end": 56269.4, + "probability": 0.5721 + }, + { + "start": 56269.5, + "end": 56273.22, + "probability": 0.2145 + }, + { + "start": 56274.82, + "end": 56275.32, + "probability": 0.151 + }, + { + "start": 56275.4, + "end": 56277.14, + "probability": 0.4564 + }, + { + "start": 56277.14, + "end": 56278.2, + "probability": 0.5952 + }, + { + "start": 56278.24, + "end": 56278.76, + "probability": 0.566 + }, + { + "start": 56278.86, + "end": 56281.46, + "probability": 0.7181 + }, + { + "start": 56281.54, + "end": 56281.82, + "probability": 0.5234 + }, + { + "start": 56281.96, + "end": 56284.62, + "probability": 0.8583 + }, + { + "start": 56285.24, + "end": 56285.36, + "probability": 0.6023 + }, + { + "start": 56285.42, + "end": 56287.98, + "probability": 0.7735 + }, + { + "start": 56288.02, + "end": 56291.66, + "probability": 0.5582 + }, + { + "start": 56292.2, + "end": 56292.66, + "probability": 0.4228 + }, + { + "start": 56293.74, + "end": 56293.84, + "probability": 0.0399 + }, + { + "start": 56293.84, + "end": 56293.84, + "probability": 0.0569 + }, + { + "start": 56293.84, + "end": 56294.44, + "probability": 0.4298 + }, + { + "start": 56295.59, + "end": 56299.06, + "probability": 0.8586 + }, + { + "start": 56299.48, + "end": 56300.98, + "probability": 0.6997 + }, + { + "start": 56301.56, + "end": 56303.12, + "probability": 0.8231 + }, + { + "start": 56303.74, + "end": 56304.46, + "probability": 0.885 + }, + { + "start": 56305.72, + "end": 56307.46, + "probability": 0.7513 + }, + { + "start": 56308.38, + "end": 56310.16, + "probability": 0.9622 + }, + { + "start": 56310.3, + "end": 56310.99, + "probability": 0.9232 + }, + { + "start": 56311.8, + "end": 56312.66, + "probability": 0.8975 + }, + { + "start": 56313.46, + "end": 56314.0, + "probability": 0.6337 + }, + { + "start": 56314.3, + "end": 56315.04, + "probability": 0.7436 + }, + { + "start": 56315.78, + "end": 56318.86, + "probability": 0.6862 + }, + { + "start": 56319.6, + "end": 56320.34, + "probability": 0.9738 + }, + { + "start": 56321.32, + "end": 56325.02, + "probability": 0.9452 + }, + { + "start": 56326.76, + "end": 56327.86, + "probability": 0.8134 + }, + { + "start": 56328.36, + "end": 56330.64, + "probability": 0.4112 + }, + { + "start": 56330.84, + "end": 56331.74, + "probability": 0.7253 + }, + { + "start": 56331.74, + "end": 56333.2, + "probability": 0.5007 + }, + { + "start": 56333.88, + "end": 56336.08, + "probability": 0.9432 + }, + { + "start": 56336.62, + "end": 56337.92, + "probability": 0.7481 + }, + { + "start": 56338.78, + "end": 56341.04, + "probability": 0.7697 + }, + { + "start": 56341.58, + "end": 56343.16, + "probability": 0.806 + }, + { + "start": 56343.26, + "end": 56346.32, + "probability": 0.9778 + }, + { + "start": 56347.1, + "end": 56348.74, + "probability": 0.9246 + }, + { + "start": 56348.78, + "end": 56349.38, + "probability": 0.2077 + }, + { + "start": 56351.56, + "end": 56352.86, + "probability": 0.1103 + }, + { + "start": 56353.88, + "end": 56356.38, + "probability": 0.1178 + }, + { + "start": 56356.94, + "end": 56357.32, + "probability": 0.1659 + }, + { + "start": 56357.52, + "end": 56357.56, + "probability": 0.0469 + }, + { + "start": 56357.56, + "end": 56357.56, + "probability": 0.0816 + }, + { + "start": 56357.56, + "end": 56362.16, + "probability": 0.3129 + }, + { + "start": 56363.5, + "end": 56365.48, + "probability": 0.787 + }, + { + "start": 56367.54, + "end": 56368.22, + "probability": 0.4458 + }, + { + "start": 56369.06, + "end": 56369.8, + "probability": 0.0177 + }, + { + "start": 56370.1, + "end": 56372.32, + "probability": 0.5033 + }, + { + "start": 56372.76, + "end": 56374.56, + "probability": 0.8057 + }, + { + "start": 56375.72, + "end": 56377.66, + "probability": 0.9576 + }, + { + "start": 56379.42, + "end": 56384.62, + "probability": 0.9375 + }, + { + "start": 56386.24, + "end": 56390.26, + "probability": 0.9392 + }, + { + "start": 56390.92, + "end": 56394.82, + "probability": 0.8067 + }, + { + "start": 56395.18, + "end": 56395.68, + "probability": 0.7922 + }, + { + "start": 56396.8, + "end": 56399.62, + "probability": 0.9984 + }, + { + "start": 56400.22, + "end": 56401.34, + "probability": 0.9152 + }, + { + "start": 56402.68, + "end": 56404.68, + "probability": 0.9987 + }, + { + "start": 56405.68, + "end": 56408.74, + "probability": 0.8404 + }, + { + "start": 56409.88, + "end": 56412.82, + "probability": 0.9674 + }, + { + "start": 56414.2, + "end": 56418.2, + "probability": 0.9973 + }, + { + "start": 56418.58, + "end": 56419.64, + "probability": 0.9748 + }, + { + "start": 56420.3, + "end": 56421.35, + "probability": 0.9817 + }, + { + "start": 56422.18, + "end": 56423.55, + "probability": 0.7568 + }, + { + "start": 56425.52, + "end": 56428.24, + "probability": 0.9728 + }, + { + "start": 56428.72, + "end": 56431.02, + "probability": 0.9984 + }, + { + "start": 56431.52, + "end": 56433.96, + "probability": 0.9253 + }, + { + "start": 56434.67, + "end": 56436.64, + "probability": 0.4569 + }, + { + "start": 56437.0, + "end": 56438.6, + "probability": 0.8567 + }, + { + "start": 56438.8, + "end": 56441.76, + "probability": 0.8183 + }, + { + "start": 56443.04, + "end": 56444.03, + "probability": 0.0749 + }, + { + "start": 56444.6, + "end": 56446.63, + "probability": 0.704 + }, + { + "start": 56446.78, + "end": 56449.9, + "probability": 0.1126 + }, + { + "start": 56450.18, + "end": 56450.34, + "probability": 0.6082 + }, + { + "start": 56450.46, + "end": 56454.06, + "probability": 0.9781 + }, + { + "start": 56454.56, + "end": 56455.41, + "probability": 0.6257 + }, + { + "start": 56456.52, + "end": 56458.7, + "probability": 0.7397 + }, + { + "start": 56458.76, + "end": 56458.94, + "probability": 0.0121 + }, + { + "start": 56458.94, + "end": 56461.2, + "probability": 0.0804 + }, + { + "start": 56461.2, + "end": 56462.72, + "probability": 0.3309 + }, + { + "start": 56463.0, + "end": 56463.76, + "probability": 0.4265 + }, + { + "start": 56463.76, + "end": 56470.72, + "probability": 0.9567 + }, + { + "start": 56471.08, + "end": 56473.82, + "probability": 0.1138 + }, + { + "start": 56474.8, + "end": 56474.8, + "probability": 0.0967 + }, + { + "start": 56474.8, + "end": 56479.0, + "probability": 0.643 + }, + { + "start": 56479.34, + "end": 56482.58, + "probability": 0.7108 + }, + { + "start": 56483.94, + "end": 56486.22, + "probability": 0.965 + }, + { + "start": 56487.34, + "end": 56488.86, + "probability": 0.7258 + }, + { + "start": 56489.28, + "end": 56489.56, + "probability": 0.7285 + }, + { + "start": 56489.6, + "end": 56490.64, + "probability": 0.9894 + }, + { + "start": 56490.72, + "end": 56493.1, + "probability": 0.7502 + }, + { + "start": 56493.6, + "end": 56494.22, + "probability": 0.2935 + }, + { + "start": 56494.48, + "end": 56495.14, + "probability": 0.23 + }, + { + "start": 56495.74, + "end": 56496.0, + "probability": 0.4056 + }, + { + "start": 56496.06, + "end": 56499.78, + "probability": 0.8496 + }, + { + "start": 56500.4, + "end": 56501.81, + "probability": 0.6532 + }, + { + "start": 56502.1, + "end": 56503.64, + "probability": 0.7606 + }, + { + "start": 56503.72, + "end": 56505.41, + "probability": 0.481 + }, + { + "start": 56505.78, + "end": 56507.28, + "probability": 0.7988 + }, + { + "start": 56507.44, + "end": 56509.68, + "probability": 0.2872 + }, + { + "start": 56510.2, + "end": 56510.32, + "probability": 0.0097 + }, + { + "start": 56510.62, + "end": 56510.62, + "probability": 0.6484 + }, + { + "start": 56510.77, + "end": 56512.15, + "probability": 0.7542 + }, + { + "start": 56512.6, + "end": 56517.18, + "probability": 0.7446 + }, + { + "start": 56517.3, + "end": 56518.4, + "probability": 0.6233 + }, + { + "start": 56518.4, + "end": 56518.64, + "probability": 0.8361 + }, + { + "start": 56519.12, + "end": 56520.16, + "probability": 0.629 + }, + { + "start": 56520.22, + "end": 56522.88, + "probability": 0.9445 + }, + { + "start": 56523.42, + "end": 56524.7, + "probability": 0.9486 + }, + { + "start": 56524.88, + "end": 56528.52, + "probability": 0.9411 + }, + { + "start": 56528.78, + "end": 56530.76, + "probability": 0.8838 + }, + { + "start": 56530.76, + "end": 56532.6, + "probability": 0.9142 + }, + { + "start": 56532.6, + "end": 56534.48, + "probability": 0.9904 + }, + { + "start": 56534.82, + "end": 56536.04, + "probability": 0.9146 + }, + { + "start": 56536.14, + "end": 56537.36, + "probability": 0.963 + }, + { + "start": 56538.16, + "end": 56540.56, + "probability": 0.9932 + }, + { + "start": 56542.4, + "end": 56543.1, + "probability": 0.6206 + }, + { + "start": 56543.16, + "end": 56543.78, + "probability": 0.8628 + }, + { + "start": 56543.96, + "end": 56545.5, + "probability": 0.2921 + }, + { + "start": 56545.68, + "end": 56549.98, + "probability": 0.9723 + }, + { + "start": 56550.42, + "end": 56555.94, + "probability": 0.9814 + }, + { + "start": 56556.16, + "end": 56557.46, + "probability": 0.7788 + }, + { + "start": 56558.04, + "end": 56559.7, + "probability": 0.9634 + }, + { + "start": 56560.48, + "end": 56560.7, + "probability": 0.2506 + }, + { + "start": 56560.8, + "end": 56564.46, + "probability": 0.8339 + }, + { + "start": 56564.94, + "end": 56567.5, + "probability": 0.5207 + }, + { + "start": 56568.34, + "end": 56570.94, + "probability": 0.8678 + }, + { + "start": 56572.32, + "end": 56573.52, + "probability": 0.6454 + }, + { + "start": 56574.54, + "end": 56576.28, + "probability": 0.6849 + }, + { + "start": 56576.94, + "end": 56581.84, + "probability": 0.9428 + }, + { + "start": 56582.28, + "end": 56582.74, + "probability": 0.2758 + }, + { + "start": 56582.78, + "end": 56583.76, + "probability": 0.5015 + }, + { + "start": 56585.18, + "end": 56587.62, + "probability": 0.595 + }, + { + "start": 56588.02, + "end": 56591.14, + "probability": 0.8854 + }, + { + "start": 56591.68, + "end": 56595.78, + "probability": 0.9714 + }, + { + "start": 56597.28, + "end": 56602.52, + "probability": 0.9889 + }, + { + "start": 56603.06, + "end": 56603.84, + "probability": 0.7976 + }, + { + "start": 56603.9, + "end": 56604.18, + "probability": 0.8667 + }, + { + "start": 56604.38, + "end": 56605.38, + "probability": 0.4595 + }, + { + "start": 56605.42, + "end": 56608.78, + "probability": 0.9884 + }, + { + "start": 56609.76, + "end": 56610.52, + "probability": 0.5723 + }, + { + "start": 56611.68, + "end": 56616.22, + "probability": 0.9353 + }, + { + "start": 56616.62, + "end": 56616.64, + "probability": 0.4155 + }, + { + "start": 56616.8, + "end": 56619.18, + "probability": 0.9854 + }, + { + "start": 56619.36, + "end": 56621.06, + "probability": 0.7666 + }, + { + "start": 56621.64, + "end": 56623.74, + "probability": 0.981 + }, + { + "start": 56624.46, + "end": 56625.32, + "probability": 0.753 + }, + { + "start": 56626.18, + "end": 56629.28, + "probability": 0.9355 + }, + { + "start": 56629.6, + "end": 56632.38, + "probability": 0.9824 + }, + { + "start": 56632.8, + "end": 56634.45, + "probability": 0.849 + }, + { + "start": 56635.32, + "end": 56637.74, + "probability": 0.9338 + }, + { + "start": 56638.1, + "end": 56639.22, + "probability": 0.4831 + }, + { + "start": 56639.68, + "end": 56641.66, + "probability": 0.9956 + }, + { + "start": 56642.5, + "end": 56645.1, + "probability": 0.9609 + }, + { + "start": 56645.6, + "end": 56648.3, + "probability": 0.9587 + }, + { + "start": 56648.4, + "end": 56648.62, + "probability": 0.74 + }, + { + "start": 56649.18, + "end": 56652.2, + "probability": 0.4913 + }, + { + "start": 56659.86, + "end": 56659.88, + "probability": 0.0296 + }, + { + "start": 56659.88, + "end": 56662.42, + "probability": 0.9646 + }, + { + "start": 56662.78, + "end": 56666.44, + "probability": 0.8661 + }, + { + "start": 56668.48, + "end": 56668.52, + "probability": 0.3637 + }, + { + "start": 56668.52, + "end": 56670.78, + "probability": 0.4704 + }, + { + "start": 56671.48, + "end": 56673.14, + "probability": 0.5892 + }, + { + "start": 56675.26, + "end": 56676.26, + "probability": 0.7499 + }, + { + "start": 56677.12, + "end": 56679.5, + "probability": 0.7357 + }, + { + "start": 56693.0, + "end": 56694.36, + "probability": 0.1673 + }, + { + "start": 56695.14, + "end": 56698.78, + "probability": 0.1196 + }, + { + "start": 56699.26, + "end": 56699.54, + "probability": 0.4055 + }, + { + "start": 56699.68, + "end": 56700.32, + "probability": 0.853 + }, + { + "start": 56701.42, + "end": 56703.6, + "probability": 0.5107 + }, + { + "start": 56704.12, + "end": 56706.86, + "probability": 0.7791 + }, + { + "start": 56707.88, + "end": 56708.08, + "probability": 0.1738 + }, + { + "start": 56708.08, + "end": 56708.4, + "probability": 0.0489 + }, + { + "start": 56708.4, + "end": 56708.48, + "probability": 0.2797 + }, + { + "start": 56712.78, + "end": 56716.26, + "probability": 0.9973 + }, + { + "start": 56716.48, + "end": 56717.98, + "probability": 0.9553 + }, + { + "start": 56718.28, + "end": 56721.92, + "probability": 0.9791 + }, + { + "start": 56722.58, + "end": 56725.22, + "probability": 0.9926 + }, + { + "start": 56725.91, + "end": 56729.02, + "probability": 0.8648 + }, + { + "start": 56729.98, + "end": 56732.2, + "probability": 0.8519 + }, + { + "start": 56732.24, + "end": 56733.82, + "probability": 0.7669 + }, + { + "start": 56733.88, + "end": 56736.32, + "probability": 0.8822 + }, + { + "start": 56736.9, + "end": 56738.6, + "probability": 0.931 + }, + { + "start": 56738.7, + "end": 56741.6, + "probability": 0.9385 + }, + { + "start": 56742.0, + "end": 56744.12, + "probability": 0.8669 + }, + { + "start": 56744.66, + "end": 56748.01, + "probability": 0.9678 + }, + { + "start": 56748.72, + "end": 56749.5, + "probability": 0.7273 + }, + { + "start": 56749.66, + "end": 56754.44, + "probability": 0.9945 + }, + { + "start": 56755.02, + "end": 56755.98, + "probability": 0.7965 + }, + { + "start": 56756.1, + "end": 56756.52, + "probability": 0.7905 + }, + { + "start": 56756.6, + "end": 56760.82, + "probability": 0.9811 + }, + { + "start": 56760.94, + "end": 56761.38, + "probability": 0.8088 + }, + { + "start": 56762.54, + "end": 56765.5, + "probability": 0.907 + }, + { + "start": 56766.44, + "end": 56769.06, + "probability": 0.6379 + }, + { + "start": 56769.28, + "end": 56769.72, + "probability": 0.4124 + }, + { + "start": 56769.86, + "end": 56770.02, + "probability": 0.9747 + }, + { + "start": 56770.44, + "end": 56772.1, + "probability": 0.8078 + }, + { + "start": 56774.26, + "end": 56777.64, + "probability": 0.9559 + }, + { + "start": 56778.6, + "end": 56782.72, + "probability": 0.5828 + }, + { + "start": 56782.86, + "end": 56783.64, + "probability": 0.8666 + }, + { + "start": 56785.7, + "end": 56787.74, + "probability": 0.9984 + }, + { + "start": 56787.9, + "end": 56788.84, + "probability": 0.907 + }, + { + "start": 56792.6, + "end": 56794.41, + "probability": 0.5337 + }, + { + "start": 56795.16, + "end": 56795.95, + "probability": 0.9443 + }, + { + "start": 56797.16, + "end": 56799.5, + "probability": 0.7371 + }, + { + "start": 56799.58, + "end": 56801.02, + "probability": 0.749 + }, + { + "start": 56801.06, + "end": 56802.1, + "probability": 0.8195 + }, + { + "start": 56802.82, + "end": 56803.66, + "probability": 0.0293 + }, + { + "start": 56803.82, + "end": 56806.77, + "probability": 0.4976 + }, + { + "start": 56809.54, + "end": 56812.44, + "probability": 0.5023 + }, + { + "start": 56813.66, + "end": 56816.1, + "probability": 0.8861 + }, + { + "start": 56816.78, + "end": 56820.44, + "probability": 0.7405 + }, + { + "start": 56826.07, + "end": 56826.56, + "probability": 0.4278 + }, + { + "start": 56828.82, + "end": 56832.35, + "probability": 0.8004 + }, + { + "start": 56834.64, + "end": 56836.29, + "probability": 0.7395 + }, + { + "start": 56836.74, + "end": 56840.22, + "probability": 0.9063 + }, + { + "start": 56841.46, + "end": 56845.04, + "probability": 0.9473 + }, + { + "start": 56846.38, + "end": 56848.26, + "probability": 0.9 + }, + { + "start": 56850.24, + "end": 56858.92, + "probability": 0.6451 + }, + { + "start": 56860.14, + "end": 56867.34, + "probability": 0.9734 + }, + { + "start": 56867.46, + "end": 56869.44, + "probability": 0.7899 + }, + { + "start": 56869.5, + "end": 56871.84, + "probability": 0.9429 + }, + { + "start": 56871.9, + "end": 56874.68, + "probability": 0.9578 + }, + { + "start": 56875.5, + "end": 56876.38, + "probability": 0.7081 + }, + { + "start": 56878.42, + "end": 56879.66, + "probability": 0.621 + }, + { + "start": 56882.5, + "end": 56883.18, + "probability": 0.7316 + }, + { + "start": 56896.6, + "end": 56899.16, + "probability": 0.2066 + }, + { + "start": 56902.92, + "end": 56904.18, + "probability": 0.2543 + }, + { + "start": 56904.76, + "end": 56905.92, + "probability": 0.5394 + }, + { + "start": 56906.96, + "end": 56910.08, + "probability": 0.9097 + }, + { + "start": 56911.08, + "end": 56916.45, + "probability": 0.844 + }, + { + "start": 56917.82, + "end": 56919.18, + "probability": 0.3855 + }, + { + "start": 56921.1, + "end": 56923.9, + "probability": 0.929 + }, + { + "start": 56924.18, + "end": 56926.04, + "probability": 0.7998 + }, + { + "start": 56926.12, + "end": 56930.12, + "probability": 0.9832 + }, + { + "start": 56930.48, + "end": 56932.78, + "probability": 0.9976 + }, + { + "start": 56933.44, + "end": 56936.0, + "probability": 0.9718 + }, + { + "start": 56936.32, + "end": 56937.08, + "probability": 0.0109 + }, + { + "start": 56944.08, + "end": 56944.2, + "probability": 0.0108 + }, + { + "start": 56944.2, + "end": 56944.28, + "probability": 0.0278 + }, + { + "start": 56944.28, + "end": 56944.3, + "probability": 0.1253 + }, + { + "start": 56958.28, + "end": 56958.78, + "probability": 0.2555 + }, + { + "start": 56959.42, + "end": 56960.34, + "probability": 0.6539 + }, + { + "start": 56961.7, + "end": 56965.3, + "probability": 0.9196 + }, + { + "start": 56965.68, + "end": 56965.96, + "probability": 0.7093 + }, + { + "start": 56967.4, + "end": 56970.22, + "probability": 0.9778 + }, + { + "start": 56970.78, + "end": 56971.66, + "probability": 0.9797 + }, + { + "start": 56975.44, + "end": 56979.24, + "probability": 0.7747 + }, + { + "start": 56986.9, + "end": 56989.64, + "probability": 0.6138 + }, + { + "start": 56989.64, + "end": 56992.56, + "probability": 0.9601 + }, + { + "start": 56993.42, + "end": 56995.32, + "probability": 0.7771 + }, + { + "start": 56995.32, + "end": 56996.31, + "probability": 0.986 + }, + { + "start": 56996.79, + "end": 56997.59, + "probability": 0.0108 + }, + { + "start": 56998.31, + "end": 56998.93, + "probability": 0.2924 + }, + { + "start": 56999.01, + "end": 56999.01, + "probability": 0.268 + }, + { + "start": 56999.07, + "end": 56999.93, + "probability": 0.8984 + }, + { + "start": 57000.99, + "end": 57004.73, + "probability": 0.5999 + }, + { + "start": 57004.97, + "end": 57007.67, + "probability": 0.9458 + }, + { + "start": 57007.77, + "end": 57009.21, + "probability": 0.6863 + }, + { + "start": 57009.27, + "end": 57013.17, + "probability": 0.7632 + }, + { + "start": 57013.23, + "end": 57019.43, + "probability": 0.8706 + }, + { + "start": 57024.6, + "end": 57027.09, + "probability": 0.7216 + }, + { + "start": 57028.71, + "end": 57033.04, + "probability": 0.9917 + }, + { + "start": 57033.4, + "end": 57036.98, + "probability": 0.9922 + }, + { + "start": 57037.48, + "end": 57038.42, + "probability": 0.4977 + }, + { + "start": 57040.18, + "end": 57044.2, + "probability": 0.5304 + }, + { + "start": 57044.54, + "end": 57046.9, + "probability": 0.8341 + }, + { + "start": 57047.36, + "end": 57049.84, + "probability": 0.609 + }, + { + "start": 57051.4, + "end": 57052.66, + "probability": 0.2025 + }, + { + "start": 57053.3, + "end": 57053.42, + "probability": 0.0009 + }, + { + "start": 57068.22, + "end": 57071.68, + "probability": 0.3931 + }, + { + "start": 57072.54, + "end": 57076.58, + "probability": 0.5261 + }, + { + "start": 57079.7, + "end": 57080.04, + "probability": 0.0996 + }, + { + "start": 57080.08, + "end": 57080.2, + "probability": 0.0106 + }, + { + "start": 57080.2, + "end": 57081.14, + "probability": 0.0735 + }, + { + "start": 57094.22, + "end": 57094.78, + "probability": 0.2599 + }, + { + "start": 57096.14, + "end": 57096.76, + "probability": 0.7365 + }, + { + "start": 57100.18, + "end": 57105.04, + "probability": 0.1456 + }, + { + "start": 57105.06, + "end": 57105.82, + "probability": 0.0095 + }, + { + "start": 57106.6, + "end": 57112.54, + "probability": 0.0733 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.0, + "end": 57155.0, + "probability": 0.0 + }, + { + "start": 57155.18, + "end": 57159.44, + "probability": 0.6937 + }, + { + "start": 57160.0, + "end": 57160.66, + "probability": 0.017 + } + ], + "segments_count": 19796, + "words_count": 93720, + "avg_words_per_segment": 4.7343, + "avg_segment_duration": 1.8668, + "avg_words_per_minute": 98.1077, + "plenum_id": "114483", + "duration": 57316.58, + "title": null, + "plenum_date": "2023-02-27" +} \ No newline at end of file