diff --git "a/128760/metadata.json" "b/128760/metadata.json" new file mode 100644--- /dev/null +++ "b/128760/metadata.json" @@ -0,0 +1,49262 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "128760", + "quality_score": 0.8925, + "per_segment_quality_scores": [ + { + "start": 55.24, + "end": 55.24, + "probability": 0.024 + }, + { + "start": 55.24, + "end": 55.24, + "probability": 0.1508 + }, + { + "start": 55.24, + "end": 55.24, + "probability": 0.2223 + }, + { + "start": 55.26, + "end": 56.6, + "probability": 0.7293 + }, + { + "start": 57.18, + "end": 58.18, + "probability": 0.8499 + }, + { + "start": 58.32, + "end": 64.55, + "probability": 0.7413 + }, + { + "start": 71.44, + "end": 72.08, + "probability": 0.0341 + }, + { + "start": 76.22, + "end": 76.24, + "probability": 0.0467 + }, + { + "start": 76.24, + "end": 76.35, + "probability": 0.0782 + }, + { + "start": 78.13, + "end": 78.25, + "probability": 0.0256 + }, + { + "start": 80.08, + "end": 81.96, + "probability": 0.179 + }, + { + "start": 94.68, + "end": 94.72, + "probability": 0.003 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 139.14, + "end": 141.9, + "probability": 0.9463 + }, + { + "start": 141.9, + "end": 144.32, + "probability": 0.9723 + }, + { + "start": 145.2, + "end": 145.44, + "probability": 0.3046 + }, + { + "start": 145.54, + "end": 146.22, + "probability": 0.6996 + }, + { + "start": 146.48, + "end": 147.48, + "probability": 0.3961 + }, + { + "start": 147.64, + "end": 150.64, + "probability": 0.7805 + }, + { + "start": 151.12, + "end": 153.82, + "probability": 0.8765 + }, + { + "start": 153.82, + "end": 155.04, + "probability": 0.8625 + }, + { + "start": 155.04, + "end": 157.96, + "probability": 0.922 + }, + { + "start": 158.44, + "end": 160.7, + "probability": 0.3855 + }, + { + "start": 161.5, + "end": 164.49, + "probability": 0.8 + }, + { + "start": 164.78, + "end": 167.34, + "probability": 0.9855 + }, + { + "start": 167.42, + "end": 170.16, + "probability": 0.8937 + }, + { + "start": 170.24, + "end": 172.6, + "probability": 0.9974 + }, + { + "start": 172.6, + "end": 176.38, + "probability": 0.8616 + }, + { + "start": 177.44, + "end": 178.04, + "probability": 0.8718 + }, + { + "start": 183.46, + "end": 185.04, + "probability": 0.6483 + }, + { + "start": 186.14, + "end": 187.18, + "probability": 0.6159 + }, + { + "start": 189.48, + "end": 190.18, + "probability": 0.6925 + }, + { + "start": 191.74, + "end": 194.62, + "probability": 0.9873 + }, + { + "start": 194.9, + "end": 196.66, + "probability": 0.9995 + }, + { + "start": 198.02, + "end": 201.58, + "probability": 0.9488 + }, + { + "start": 202.52, + "end": 203.78, + "probability": 0.8959 + }, + { + "start": 205.08, + "end": 206.64, + "probability": 0.403 + }, + { + "start": 207.48, + "end": 209.18, + "probability": 0.9904 + }, + { + "start": 209.98, + "end": 212.84, + "probability": 0.8498 + }, + { + "start": 214.0, + "end": 214.82, + "probability": 0.9453 + }, + { + "start": 215.64, + "end": 222.42, + "probability": 0.9768 + }, + { + "start": 222.42, + "end": 228.44, + "probability": 0.9973 + }, + { + "start": 229.16, + "end": 230.44, + "probability": 0.9932 + }, + { + "start": 230.98, + "end": 232.18, + "probability": 0.9825 + }, + { + "start": 233.06, + "end": 236.62, + "probability": 0.9927 + }, + { + "start": 237.62, + "end": 241.54, + "probability": 0.9749 + }, + { + "start": 242.92, + "end": 247.62, + "probability": 0.7572 + }, + { + "start": 248.4, + "end": 254.16, + "probability": 0.9979 + }, + { + "start": 255.64, + "end": 261.12, + "probability": 0.998 + }, + { + "start": 262.6, + "end": 265.96, + "probability": 0.9979 + }, + { + "start": 267.58, + "end": 268.54, + "probability": 0.9628 + }, + { + "start": 269.7, + "end": 270.72, + "probability": 0.9536 + }, + { + "start": 271.76, + "end": 272.4, + "probability": 0.8865 + }, + { + "start": 273.02, + "end": 273.62, + "probability": 0.5648 + }, + { + "start": 275.08, + "end": 277.6, + "probability": 0.986 + }, + { + "start": 278.26, + "end": 278.92, + "probability": 0.8314 + }, + { + "start": 279.64, + "end": 285.8, + "probability": 0.9471 + }, + { + "start": 286.6, + "end": 288.22, + "probability": 0.9922 + }, + { + "start": 288.8, + "end": 289.56, + "probability": 0.9686 + }, + { + "start": 290.08, + "end": 290.9, + "probability": 0.5014 + }, + { + "start": 291.6, + "end": 292.5, + "probability": 0.858 + }, + { + "start": 293.34, + "end": 294.42, + "probability": 0.9163 + }, + { + "start": 296.0, + "end": 297.5, + "probability": 0.5988 + }, + { + "start": 298.08, + "end": 302.14, + "probability": 0.8545 + }, + { + "start": 303.66, + "end": 308.56, + "probability": 0.8882 + }, + { + "start": 309.54, + "end": 311.52, + "probability": 0.999 + }, + { + "start": 312.3, + "end": 313.0, + "probability": 0.7683 + }, + { + "start": 313.62, + "end": 314.6, + "probability": 0.829 + }, + { + "start": 315.66, + "end": 318.78, + "probability": 0.9937 + }, + { + "start": 319.92, + "end": 320.95, + "probability": 0.7133 + }, + { + "start": 321.48, + "end": 324.16, + "probability": 0.8715 + }, + { + "start": 325.36, + "end": 327.62, + "probability": 0.9442 + }, + { + "start": 328.34, + "end": 332.7, + "probability": 0.9535 + }, + { + "start": 333.18, + "end": 335.7, + "probability": 0.9668 + }, + { + "start": 336.28, + "end": 338.68, + "probability": 0.9904 + }, + { + "start": 339.76, + "end": 340.44, + "probability": 0.8561 + }, + { + "start": 341.3, + "end": 345.2, + "probability": 0.8745 + }, + { + "start": 346.0, + "end": 348.56, + "probability": 0.995 + }, + { + "start": 349.12, + "end": 350.52, + "probability": 0.9269 + }, + { + "start": 351.34, + "end": 354.68, + "probability": 0.9753 + }, + { + "start": 355.4, + "end": 356.4, + "probability": 0.7545 + }, + { + "start": 357.36, + "end": 361.46, + "probability": 0.9896 + }, + { + "start": 362.04, + "end": 367.36, + "probability": 0.9863 + }, + { + "start": 368.96, + "end": 372.98, + "probability": 0.7751 + }, + { + "start": 373.74, + "end": 379.94, + "probability": 0.9646 + }, + { + "start": 381.04, + "end": 388.06, + "probability": 0.9982 + }, + { + "start": 389.5, + "end": 390.34, + "probability": 0.9451 + }, + { + "start": 390.46, + "end": 396.62, + "probability": 0.9605 + }, + { + "start": 397.26, + "end": 399.86, + "probability": 0.9994 + }, + { + "start": 400.58, + "end": 403.8, + "probability": 0.9991 + }, + { + "start": 405.18, + "end": 407.84, + "probability": 0.9844 + }, + { + "start": 409.28, + "end": 412.32, + "probability": 0.9696 + }, + { + "start": 413.6, + "end": 416.52, + "probability": 0.9895 + }, + { + "start": 417.4, + "end": 419.67, + "probability": 0.9987 + }, + { + "start": 420.46, + "end": 425.66, + "probability": 0.9966 + }, + { + "start": 426.34, + "end": 427.44, + "probability": 0.7504 + }, + { + "start": 428.48, + "end": 430.16, + "probability": 0.9858 + }, + { + "start": 431.08, + "end": 436.1, + "probability": 0.9908 + }, + { + "start": 436.62, + "end": 438.58, + "probability": 0.9968 + }, + { + "start": 439.64, + "end": 441.28, + "probability": 0.6693 + }, + { + "start": 442.16, + "end": 443.24, + "probability": 0.9092 + }, + { + "start": 443.78, + "end": 444.62, + "probability": 0.9797 + }, + { + "start": 445.74, + "end": 451.12, + "probability": 0.9446 + }, + { + "start": 451.96, + "end": 456.58, + "probability": 0.9967 + }, + { + "start": 457.12, + "end": 461.66, + "probability": 0.9427 + }, + { + "start": 462.44, + "end": 464.66, + "probability": 0.4482 + }, + { + "start": 465.2, + "end": 466.14, + "probability": 0.9517 + }, + { + "start": 467.18, + "end": 469.58, + "probability": 0.9924 + }, + { + "start": 470.22, + "end": 471.38, + "probability": 0.7829 + }, + { + "start": 472.66, + "end": 473.32, + "probability": 0.7802 + }, + { + "start": 473.98, + "end": 476.08, + "probability": 0.6597 + }, + { + "start": 476.68, + "end": 482.16, + "probability": 0.7633 + }, + { + "start": 482.99, + "end": 486.06, + "probability": 0.9862 + }, + { + "start": 486.88, + "end": 491.24, + "probability": 0.9077 + }, + { + "start": 491.88, + "end": 494.26, + "probability": 0.9919 + }, + { + "start": 495.08, + "end": 497.3, + "probability": 0.9849 + }, + { + "start": 497.86, + "end": 500.34, + "probability": 0.9123 + }, + { + "start": 500.9, + "end": 505.02, + "probability": 0.6821 + }, + { + "start": 505.56, + "end": 506.24, + "probability": 0.7124 + }, + { + "start": 506.52, + "end": 508.36, + "probability": 0.9122 + }, + { + "start": 509.06, + "end": 510.32, + "probability": 0.9736 + }, + { + "start": 511.06, + "end": 512.44, + "probability": 0.9702 + }, + { + "start": 513.02, + "end": 514.7, + "probability": 0.996 + }, + { + "start": 515.16, + "end": 517.3, + "probability": 0.9928 + }, + { + "start": 517.74, + "end": 519.46, + "probability": 0.9971 + }, + { + "start": 519.94, + "end": 520.82, + "probability": 0.9652 + }, + { + "start": 521.46, + "end": 523.72, + "probability": 0.984 + }, + { + "start": 525.1, + "end": 528.8, + "probability": 0.9965 + }, + { + "start": 528.8, + "end": 531.92, + "probability": 0.9882 + }, + { + "start": 532.0, + "end": 534.78, + "probability": 0.9884 + }, + { + "start": 535.32, + "end": 539.16, + "probability": 0.9338 + }, + { + "start": 539.78, + "end": 541.12, + "probability": 0.9862 + }, + { + "start": 542.32, + "end": 544.34, + "probability": 0.8472 + }, + { + "start": 544.34, + "end": 547.44, + "probability": 0.9973 + }, + { + "start": 548.28, + "end": 552.56, + "probability": 0.9952 + }, + { + "start": 553.14, + "end": 554.68, + "probability": 0.8901 + }, + { + "start": 555.36, + "end": 559.34, + "probability": 0.9975 + }, + { + "start": 559.78, + "end": 561.6, + "probability": 0.9356 + }, + { + "start": 562.24, + "end": 565.58, + "probability": 0.8518 + }, + { + "start": 566.52, + "end": 571.58, + "probability": 0.8184 + }, + { + "start": 572.16, + "end": 578.28, + "probability": 0.9956 + }, + { + "start": 578.82, + "end": 582.92, + "probability": 0.9847 + }, + { + "start": 582.92, + "end": 586.42, + "probability": 0.9998 + }, + { + "start": 586.94, + "end": 588.66, + "probability": 0.998 + }, + { + "start": 589.7, + "end": 594.58, + "probability": 0.9632 + }, + { + "start": 595.36, + "end": 600.28, + "probability": 0.9953 + }, + { + "start": 601.08, + "end": 603.38, + "probability": 0.9897 + }, + { + "start": 604.08, + "end": 607.04, + "probability": 0.9785 + }, + { + "start": 607.84, + "end": 612.04, + "probability": 0.9947 + }, + { + "start": 612.04, + "end": 617.42, + "probability": 0.9902 + }, + { + "start": 618.38, + "end": 621.2, + "probability": 0.9975 + }, + { + "start": 621.62, + "end": 624.32, + "probability": 0.9935 + }, + { + "start": 624.58, + "end": 626.72, + "probability": 0.9867 + }, + { + "start": 627.0, + "end": 630.28, + "probability": 0.9994 + }, + { + "start": 644.86, + "end": 645.78, + "probability": 0.0329 + }, + { + "start": 645.78, + "end": 645.78, + "probability": 0.0381 + }, + { + "start": 645.78, + "end": 645.78, + "probability": 0.1007 + }, + { + "start": 645.78, + "end": 645.78, + "probability": 0.2873 + }, + { + "start": 645.78, + "end": 649.58, + "probability": 0.5757 + }, + { + "start": 650.2, + "end": 652.14, + "probability": 0.6547 + }, + { + "start": 652.8, + "end": 656.96, + "probability": 0.9954 + }, + { + "start": 657.58, + "end": 658.55, + "probability": 0.9902 + }, + { + "start": 659.12, + "end": 660.76, + "probability": 0.8799 + }, + { + "start": 661.64, + "end": 663.62, + "probability": 0.9883 + }, + { + "start": 663.7, + "end": 666.2, + "probability": 0.7421 + }, + { + "start": 666.92, + "end": 670.34, + "probability": 0.8947 + }, + { + "start": 670.42, + "end": 671.06, + "probability": 0.7876 + }, + { + "start": 671.64, + "end": 675.84, + "probability": 0.9955 + }, + { + "start": 676.4, + "end": 678.26, + "probability": 0.8262 + }, + { + "start": 678.92, + "end": 679.62, + "probability": 0.9507 + }, + { + "start": 681.37, + "end": 683.42, + "probability": 0.8034 + }, + { + "start": 684.0, + "end": 689.4, + "probability": 0.979 + }, + { + "start": 689.5, + "end": 690.28, + "probability": 0.7826 + }, + { + "start": 691.04, + "end": 693.18, + "probability": 0.9883 + }, + { + "start": 693.86, + "end": 695.41, + "probability": 0.9943 + }, + { + "start": 695.98, + "end": 698.52, + "probability": 0.9656 + }, + { + "start": 699.3, + "end": 701.56, + "probability": 0.7509 + }, + { + "start": 701.92, + "end": 703.34, + "probability": 0.8317 + }, + { + "start": 703.98, + "end": 710.3, + "probability": 0.9971 + }, + { + "start": 710.84, + "end": 713.06, + "probability": 0.9879 + }, + { + "start": 714.1, + "end": 714.78, + "probability": 0.9474 + }, + { + "start": 715.28, + "end": 720.18, + "probability": 0.9961 + }, + { + "start": 720.44, + "end": 724.78, + "probability": 0.9787 + }, + { + "start": 725.32, + "end": 728.66, + "probability": 0.9987 + }, + { + "start": 728.66, + "end": 731.74, + "probability": 0.9812 + }, + { + "start": 732.3, + "end": 733.86, + "probability": 0.999 + }, + { + "start": 734.4, + "end": 736.88, + "probability": 0.6659 + }, + { + "start": 737.52, + "end": 739.76, + "probability": 0.9982 + }, + { + "start": 740.3, + "end": 745.62, + "probability": 0.9977 + }, + { + "start": 746.0, + "end": 748.24, + "probability": 0.9685 + }, + { + "start": 748.88, + "end": 752.16, + "probability": 0.9648 + }, + { + "start": 753.32, + "end": 754.22, + "probability": 0.8228 + }, + { + "start": 754.84, + "end": 758.76, + "probability": 0.9274 + }, + { + "start": 758.9, + "end": 762.46, + "probability": 0.9584 + }, + { + "start": 763.08, + "end": 765.8, + "probability": 0.9949 + }, + { + "start": 766.42, + "end": 772.47, + "probability": 0.9944 + }, + { + "start": 774.0, + "end": 775.84, + "probability": 0.9483 + }, + { + "start": 776.24, + "end": 780.12, + "probability": 0.9987 + }, + { + "start": 780.8, + "end": 783.24, + "probability": 0.7605 + }, + { + "start": 783.76, + "end": 788.54, + "probability": 0.8837 + }, + { + "start": 789.22, + "end": 792.14, + "probability": 0.9939 + }, + { + "start": 792.36, + "end": 793.42, + "probability": 0.7412 + }, + { + "start": 794.12, + "end": 796.26, + "probability": 0.7968 + }, + { + "start": 796.74, + "end": 800.54, + "probability": 0.9914 + }, + { + "start": 800.98, + "end": 803.38, + "probability": 0.9617 + }, + { + "start": 803.82, + "end": 805.09, + "probability": 0.9937 + }, + { + "start": 805.36, + "end": 805.6, + "probability": 0.9231 + }, + { + "start": 806.56, + "end": 808.02, + "probability": 0.6569 + }, + { + "start": 808.12, + "end": 811.75, + "probability": 0.9963 + }, + { + "start": 812.5, + "end": 813.46, + "probability": 0.9915 + }, + { + "start": 813.6, + "end": 819.02, + "probability": 0.9825 + }, + { + "start": 828.48, + "end": 828.56, + "probability": 0.6495 + }, + { + "start": 828.56, + "end": 829.26, + "probability": 0.692 + }, + { + "start": 830.06, + "end": 830.78, + "probability": 0.3154 + }, + { + "start": 830.78, + "end": 831.42, + "probability": 0.6093 + }, + { + "start": 832.0, + "end": 832.47, + "probability": 0.5516 + }, + { + "start": 833.84, + "end": 835.25, + "probability": 0.9467 + }, + { + "start": 836.64, + "end": 838.04, + "probability": 0.9845 + }, + { + "start": 842.26, + "end": 842.82, + "probability": 0.5076 + }, + { + "start": 842.98, + "end": 845.08, + "probability": 0.9114 + }, + { + "start": 845.66, + "end": 845.8, + "probability": 0.7583 + }, + { + "start": 846.32, + "end": 847.12, + "probability": 0.9451 + }, + { + "start": 847.38, + "end": 847.82, + "probability": 0.7873 + }, + { + "start": 847.82, + "end": 850.5, + "probability": 0.1933 + }, + { + "start": 850.78, + "end": 851.88, + "probability": 0.9088 + }, + { + "start": 852.32, + "end": 852.9, + "probability": 0.6559 + }, + { + "start": 853.14, + "end": 855.28, + "probability": 0.9163 + }, + { + "start": 855.28, + "end": 856.98, + "probability": 0.8387 + }, + { + "start": 857.12, + "end": 859.02, + "probability": 0.9675 + }, + { + "start": 859.68, + "end": 866.68, + "probability": 0.5556 + }, + { + "start": 867.72, + "end": 868.7, + "probability": 0.9788 + }, + { + "start": 868.8, + "end": 871.08, + "probability": 0.9541 + }, + { + "start": 871.16, + "end": 871.42, + "probability": 0.8285 + }, + { + "start": 871.96, + "end": 872.54, + "probability": 0.7583 + }, + { + "start": 873.64, + "end": 874.56, + "probability": 0.3582 + }, + { + "start": 874.99, + "end": 876.52, + "probability": 0.8558 + }, + { + "start": 876.52, + "end": 878.52, + "probability": 0.5742 + }, + { + "start": 878.8, + "end": 879.28, + "probability": 0.3205 + }, + { + "start": 879.44, + "end": 882.82, + "probability": 0.825 + }, + { + "start": 883.02, + "end": 884.06, + "probability": 0.1063 + }, + { + "start": 884.34, + "end": 887.78, + "probability": 0.9983 + }, + { + "start": 887.86, + "end": 888.12, + "probability": 0.3649 + }, + { + "start": 888.8, + "end": 891.06, + "probability": 0.6733 + }, + { + "start": 891.64, + "end": 893.8, + "probability": 0.9714 + }, + { + "start": 894.16, + "end": 894.92, + "probability": 0.1576 + }, + { + "start": 895.14, + "end": 898.26, + "probability": 0.5542 + }, + { + "start": 899.28, + "end": 899.9, + "probability": 0.1449 + }, + { + "start": 901.16, + "end": 902.98, + "probability": 0.5207 + }, + { + "start": 903.34, + "end": 904.58, + "probability": 0.9395 + }, + { + "start": 904.78, + "end": 906.2, + "probability": 0.8538 + }, + { + "start": 906.23, + "end": 907.44, + "probability": 0.6138 + }, + { + "start": 907.54, + "end": 908.42, + "probability": 0.8964 + }, + { + "start": 908.48, + "end": 910.2, + "probability": 0.1233 + }, + { + "start": 910.64, + "end": 911.02, + "probability": 0.6826 + }, + { + "start": 911.12, + "end": 912.07, + "probability": 0.4781 + }, + { + "start": 913.32, + "end": 914.8, + "probability": 0.5472 + }, + { + "start": 915.36, + "end": 916.62, + "probability": 0.3428 + }, + { + "start": 917.14, + "end": 920.88, + "probability": 0.9 + }, + { + "start": 920.88, + "end": 924.42, + "probability": 0.9504 + }, + { + "start": 925.1, + "end": 927.42, + "probability": 0.941 + }, + { + "start": 928.28, + "end": 929.08, + "probability": 0.6152 + }, + { + "start": 929.78, + "end": 932.84, + "probability": 0.7123 + }, + { + "start": 933.48, + "end": 935.32, + "probability": 0.9481 + }, + { + "start": 935.56, + "end": 940.84, + "probability": 0.9496 + }, + { + "start": 941.4, + "end": 946.4, + "probability": 0.9378 + }, + { + "start": 946.5, + "end": 946.5, + "probability": 0.0789 + }, + { + "start": 946.5, + "end": 947.26, + "probability": 0.4766 + }, + { + "start": 948.28, + "end": 948.7, + "probability": 0.4185 + }, + { + "start": 948.78, + "end": 949.32, + "probability": 0.9088 + }, + { + "start": 949.38, + "end": 950.52, + "probability": 0.5648 + }, + { + "start": 950.58, + "end": 951.62, + "probability": 0.7381 + }, + { + "start": 951.86, + "end": 953.24, + "probability": 0.7191 + }, + { + "start": 953.5, + "end": 953.68, + "probability": 0.0019 + }, + { + "start": 953.68, + "end": 953.96, + "probability": 0.1553 + }, + { + "start": 954.8, + "end": 957.11, + "probability": 0.6111 + }, + { + "start": 957.16, + "end": 957.62, + "probability": 0.9084 + }, + { + "start": 957.62, + "end": 958.8, + "probability": 0.3408 + }, + { + "start": 960.12, + "end": 963.08, + "probability": 0.9751 + }, + { + "start": 964.46, + "end": 969.16, + "probability": 0.9282 + }, + { + "start": 969.8, + "end": 974.28, + "probability": 0.9199 + }, + { + "start": 975.0, + "end": 981.08, + "probability": 0.9964 + }, + { + "start": 981.22, + "end": 981.92, + "probability": 0.9288 + }, + { + "start": 982.42, + "end": 989.08, + "probability": 0.987 + }, + { + "start": 989.54, + "end": 991.66, + "probability": 0.9867 + }, + { + "start": 992.24, + "end": 992.6, + "probability": 0.9579 + }, + { + "start": 993.28, + "end": 996.1, + "probability": 0.9723 + }, + { + "start": 996.1, + "end": 998.34, + "probability": 0.7849 + }, + { + "start": 999.06, + "end": 1002.9, + "probability": 0.9926 + }, + { + "start": 1002.9, + "end": 1005.58, + "probability": 0.9992 + }, + { + "start": 1006.18, + "end": 1010.06, + "probability": 0.9918 + }, + { + "start": 1010.06, + "end": 1013.22, + "probability": 0.9991 + }, + { + "start": 1013.54, + "end": 1014.31, + "probability": 0.9187 + }, + { + "start": 1015.2, + "end": 1015.34, + "probability": 0.4427 + }, + { + "start": 1015.9, + "end": 1018.36, + "probability": 0.9387 + }, + { + "start": 1018.62, + "end": 1020.3, + "probability": 0.88 + }, + { + "start": 1021.12, + "end": 1025.62, + "probability": 0.9454 + }, + { + "start": 1026.32, + "end": 1030.5, + "probability": 0.9523 + }, + { + "start": 1031.22, + "end": 1032.6, + "probability": 0.9698 + }, + { + "start": 1033.08, + "end": 1033.52, + "probability": 0.9591 + }, + { + "start": 1033.94, + "end": 1037.7, + "probability": 0.9963 + }, + { + "start": 1038.46, + "end": 1043.22, + "probability": 0.9769 + }, + { + "start": 1043.84, + "end": 1045.22, + "probability": 0.9818 + }, + { + "start": 1046.18, + "end": 1047.36, + "probability": 0.8854 + }, + { + "start": 1047.94, + "end": 1048.86, + "probability": 0.6062 + }, + { + "start": 1049.64, + "end": 1050.12, + "probability": 0.8274 + }, + { + "start": 1050.8, + "end": 1054.8, + "probability": 0.9985 + }, + { + "start": 1055.4, + "end": 1055.98, + "probability": 0.8429 + }, + { + "start": 1057.08, + "end": 1057.98, + "probability": 0.687 + }, + { + "start": 1058.72, + "end": 1060.44, + "probability": 0.9977 + }, + { + "start": 1061.2, + "end": 1064.44, + "probability": 0.9972 + }, + { + "start": 1064.44, + "end": 1067.62, + "probability": 0.9974 + }, + { + "start": 1068.46, + "end": 1070.6, + "probability": 0.998 + }, + { + "start": 1070.6, + "end": 1073.62, + "probability": 0.9835 + }, + { + "start": 1073.94, + "end": 1074.56, + "probability": 0.5145 + }, + { + "start": 1075.16, + "end": 1076.22, + "probability": 0.9307 + }, + { + "start": 1077.8, + "end": 1077.96, + "probability": 0.8247 + }, + { + "start": 1078.34, + "end": 1081.62, + "probability": 0.9706 + }, + { + "start": 1082.4, + "end": 1084.02, + "probability": 0.9419 + }, + { + "start": 1084.44, + "end": 1087.64, + "probability": 0.9993 + }, + { + "start": 1087.64, + "end": 1090.82, + "probability": 0.9891 + }, + { + "start": 1091.52, + "end": 1093.48, + "probability": 0.9966 + }, + { + "start": 1093.98, + "end": 1096.7, + "probability": 0.9986 + }, + { + "start": 1096.82, + "end": 1097.88, + "probability": 0.9749 + }, + { + "start": 1098.72, + "end": 1100.76, + "probability": 0.9888 + }, + { + "start": 1100.8, + "end": 1103.0, + "probability": 0.8708 + }, + { + "start": 1103.7, + "end": 1106.22, + "probability": 0.9974 + }, + { + "start": 1106.54, + "end": 1108.22, + "probability": 0.9845 + }, + { + "start": 1109.1, + "end": 1110.66, + "probability": 0.9429 + }, + { + "start": 1111.4, + "end": 1113.18, + "probability": 0.9977 + }, + { + "start": 1114.02, + "end": 1115.24, + "probability": 0.9483 + }, + { + "start": 1115.78, + "end": 1117.76, + "probability": 0.891 + }, + { + "start": 1118.08, + "end": 1118.94, + "probability": 0.7743 + }, + { + "start": 1119.28, + "end": 1121.0, + "probability": 0.9919 + }, + { + "start": 1121.62, + "end": 1122.48, + "probability": 0.813 + }, + { + "start": 1123.78, + "end": 1124.38, + "probability": 0.8652 + }, + { + "start": 1125.34, + "end": 1126.86, + "probability": 0.8258 + }, + { + "start": 1126.98, + "end": 1129.26, + "probability": 0.8648 + }, + { + "start": 1130.06, + "end": 1130.84, + "probability": 0.7698 + }, + { + "start": 1131.36, + "end": 1133.16, + "probability": 0.905 + }, + { + "start": 1133.74, + "end": 1134.22, + "probability": 0.6529 + }, + { + "start": 1135.02, + "end": 1137.26, + "probability": 0.7554 + }, + { + "start": 1138.4, + "end": 1138.94, + "probability": 0.968 + }, + { + "start": 1139.78, + "end": 1141.68, + "probability": 0.9971 + }, + { + "start": 1142.96, + "end": 1145.64, + "probability": 0.9983 + }, + { + "start": 1145.64, + "end": 1148.22, + "probability": 0.998 + }, + { + "start": 1148.76, + "end": 1149.76, + "probability": 0.8329 + }, + { + "start": 1150.74, + "end": 1155.1, + "probability": 0.9585 + }, + { + "start": 1155.44, + "end": 1160.36, + "probability": 0.9833 + }, + { + "start": 1161.32, + "end": 1161.88, + "probability": 0.8165 + }, + { + "start": 1162.5, + "end": 1163.72, + "probability": 0.8014 + }, + { + "start": 1164.2, + "end": 1166.28, + "probability": 0.8849 + }, + { + "start": 1168.22, + "end": 1169.82, + "probability": 0.9833 + }, + { + "start": 1170.4, + "end": 1173.42, + "probability": 0.9894 + }, + { + "start": 1174.0, + "end": 1178.14, + "probability": 0.9954 + }, + { + "start": 1178.14, + "end": 1182.48, + "probability": 0.9992 + }, + { + "start": 1182.84, + "end": 1185.02, + "probability": 0.7976 + }, + { + "start": 1185.66, + "end": 1186.16, + "probability": 0.6889 + }, + { + "start": 1186.18, + "end": 1190.14, + "probability": 0.9658 + }, + { + "start": 1190.14, + "end": 1192.44, + "probability": 0.9846 + }, + { + "start": 1193.16, + "end": 1195.18, + "probability": 0.9978 + }, + { + "start": 1195.72, + "end": 1196.52, + "probability": 0.9663 + }, + { + "start": 1197.26, + "end": 1198.52, + "probability": 0.9452 + }, + { + "start": 1199.1, + "end": 1199.4, + "probability": 0.9189 + }, + { + "start": 1200.84, + "end": 1201.2, + "probability": 0.9866 + }, + { + "start": 1202.34, + "end": 1203.4, + "probability": 0.7307 + }, + { + "start": 1203.94, + "end": 1205.38, + "probability": 0.9962 + }, + { + "start": 1206.36, + "end": 1213.62, + "probability": 0.9963 + }, + { + "start": 1215.18, + "end": 1220.2, + "probability": 0.8116 + }, + { + "start": 1220.8, + "end": 1223.84, + "probability": 0.9723 + }, + { + "start": 1225.0, + "end": 1227.7, + "probability": 0.998 + }, + { + "start": 1228.3, + "end": 1229.46, + "probability": 0.5303 + }, + { + "start": 1230.0, + "end": 1234.3, + "probability": 0.9935 + }, + { + "start": 1235.56, + "end": 1236.96, + "probability": 0.5698 + }, + { + "start": 1237.58, + "end": 1238.5, + "probability": 0.8027 + }, + { + "start": 1239.28, + "end": 1239.72, + "probability": 0.6691 + }, + { + "start": 1240.44, + "end": 1240.68, + "probability": 0.8277 + }, + { + "start": 1241.2, + "end": 1241.36, + "probability": 0.5682 + }, + { + "start": 1241.9, + "end": 1242.42, + "probability": 0.7595 + }, + { + "start": 1243.02, + "end": 1244.42, + "probability": 0.4625 + }, + { + "start": 1245.22, + "end": 1248.08, + "probability": 0.9921 + }, + { + "start": 1248.36, + "end": 1250.68, + "probability": 0.9025 + }, + { + "start": 1251.4, + "end": 1251.98, + "probability": 0.758 + }, + { + "start": 1252.12, + "end": 1254.28, + "probability": 0.7499 + }, + { + "start": 1254.36, + "end": 1255.16, + "probability": 0.8807 + }, + { + "start": 1255.67, + "end": 1258.86, + "probability": 0.8435 + }, + { + "start": 1259.18, + "end": 1259.94, + "probability": 0.88 + }, + { + "start": 1260.04, + "end": 1260.55, + "probability": 0.6821 + }, + { + "start": 1261.34, + "end": 1264.42, + "probability": 0.9267 + }, + { + "start": 1265.76, + "end": 1267.06, + "probability": 0.9798 + }, + { + "start": 1267.94, + "end": 1268.96, + "probability": 0.8464 + }, + { + "start": 1269.8, + "end": 1272.22, + "probability": 0.9956 + }, + { + "start": 1272.28, + "end": 1272.68, + "probability": 0.831 + }, + { + "start": 1272.82, + "end": 1273.98, + "probability": 0.8306 + }, + { + "start": 1274.66, + "end": 1276.38, + "probability": 0.9925 + }, + { + "start": 1276.94, + "end": 1280.32, + "probability": 0.9933 + }, + { + "start": 1280.76, + "end": 1284.16, + "probability": 0.9502 + }, + { + "start": 1284.98, + "end": 1289.06, + "probability": 0.9501 + }, + { + "start": 1289.84, + "end": 1293.6, + "probability": 0.9653 + }, + { + "start": 1294.0, + "end": 1295.06, + "probability": 0.9528 + }, + { + "start": 1295.46, + "end": 1296.22, + "probability": 0.9357 + }, + { + "start": 1296.34, + "end": 1297.12, + "probability": 0.9629 + }, + { + "start": 1297.3, + "end": 1297.94, + "probability": 0.9119 + }, + { + "start": 1298.24, + "end": 1299.68, + "probability": 0.9017 + }, + { + "start": 1300.32, + "end": 1300.8, + "probability": 0.863 + }, + { + "start": 1302.22, + "end": 1304.64, + "probability": 0.9515 + }, + { + "start": 1305.66, + "end": 1306.16, + "probability": 0.9655 + }, + { + "start": 1306.76, + "end": 1308.52, + "probability": 0.9862 + }, + { + "start": 1309.12, + "end": 1312.91, + "probability": 0.9985 + }, + { + "start": 1314.24, + "end": 1317.12, + "probability": 0.996 + }, + { + "start": 1317.12, + "end": 1317.98, + "probability": 0.6504 + }, + { + "start": 1318.94, + "end": 1323.8, + "probability": 0.9977 + }, + { + "start": 1324.44, + "end": 1328.0, + "probability": 0.8623 + }, + { + "start": 1328.56, + "end": 1331.15, + "probability": 0.7088 + }, + { + "start": 1331.74, + "end": 1333.1, + "probability": 0.4122 + }, + { + "start": 1333.66, + "end": 1333.68, + "probability": 0.0176 + }, + { + "start": 1333.68, + "end": 1333.68, + "probability": 0.0743 + }, + { + "start": 1333.68, + "end": 1336.5, + "probability": 0.7433 + }, + { + "start": 1337.32, + "end": 1339.54, + "probability": 0.9904 + }, + { + "start": 1340.3, + "end": 1342.24, + "probability": 0.9194 + }, + { + "start": 1342.88, + "end": 1344.96, + "probability": 0.9891 + }, + { + "start": 1345.82, + "end": 1350.64, + "probability": 0.9793 + }, + { + "start": 1351.4, + "end": 1354.88, + "probability": 0.9932 + }, + { + "start": 1355.82, + "end": 1356.18, + "probability": 0.8713 + }, + { + "start": 1356.74, + "end": 1358.66, + "probability": 0.994 + }, + { + "start": 1360.1, + "end": 1364.24, + "probability": 0.9885 + }, + { + "start": 1364.8, + "end": 1368.3, + "probability": 0.9648 + }, + { + "start": 1368.6, + "end": 1369.42, + "probability": 0.9152 + }, + { + "start": 1369.78, + "end": 1370.42, + "probability": 0.5905 + }, + { + "start": 1371.24, + "end": 1371.58, + "probability": 0.1895 + }, + { + "start": 1371.58, + "end": 1371.58, + "probability": 0.0305 + }, + { + "start": 1371.58, + "end": 1374.78, + "probability": 0.5534 + }, + { + "start": 1376.02, + "end": 1376.84, + "probability": 0.5714 + }, + { + "start": 1377.62, + "end": 1382.02, + "probability": 0.9967 + }, + { + "start": 1382.6, + "end": 1383.46, + "probability": 0.6823 + }, + { + "start": 1384.28, + "end": 1387.79, + "probability": 0.9632 + }, + { + "start": 1388.9, + "end": 1389.98, + "probability": 0.8997 + }, + { + "start": 1390.74, + "end": 1390.8, + "probability": 0.366 + }, + { + "start": 1391.62, + "end": 1394.88, + "probability": 0.9845 + }, + { + "start": 1394.88, + "end": 1397.74, + "probability": 0.9059 + }, + { + "start": 1397.84, + "end": 1398.58, + "probability": 0.8172 + }, + { + "start": 1398.78, + "end": 1399.34, + "probability": 0.3265 + }, + { + "start": 1399.42, + "end": 1399.88, + "probability": 0.8832 + }, + { + "start": 1400.52, + "end": 1401.13, + "probability": 0.9749 + }, + { + "start": 1401.9, + "end": 1404.22, + "probability": 0.9019 + }, + { + "start": 1404.8, + "end": 1408.42, + "probability": 0.6366 + }, + { + "start": 1409.02, + "end": 1410.58, + "probability": 0.9949 + }, + { + "start": 1411.2, + "end": 1412.66, + "probability": 0.7336 + }, + { + "start": 1413.18, + "end": 1414.14, + "probability": 0.9591 + }, + { + "start": 1414.78, + "end": 1415.92, + "probability": 0.1002 + }, + { + "start": 1416.1, + "end": 1416.56, + "probability": 0.6675 + }, + { + "start": 1416.68, + "end": 1416.82, + "probability": 0.8742 + }, + { + "start": 1416.88, + "end": 1418.7, + "probability": 0.9972 + }, + { + "start": 1419.76, + "end": 1422.2, + "probability": 0.0534 + }, + { + "start": 1423.02, + "end": 1423.02, + "probability": 0.2693 + }, + { + "start": 1423.02, + "end": 1423.02, + "probability": 0.6952 + }, + { + "start": 1423.02, + "end": 1425.0, + "probability": 0.9464 + }, + { + "start": 1425.86, + "end": 1428.46, + "probability": 0.8749 + }, + { + "start": 1429.12, + "end": 1430.1, + "probability": 0.929 + }, + { + "start": 1430.18, + "end": 1433.36, + "probability": 0.3125 + }, + { + "start": 1433.9, + "end": 1434.3, + "probability": 0.0559 + }, + { + "start": 1434.3, + "end": 1434.3, + "probability": 0.0566 + }, + { + "start": 1434.3, + "end": 1434.3, + "probability": 0.2953 + }, + { + "start": 1434.3, + "end": 1434.3, + "probability": 0.2345 + }, + { + "start": 1434.3, + "end": 1434.3, + "probability": 0.0776 + }, + { + "start": 1434.3, + "end": 1436.5, + "probability": 0.956 + }, + { + "start": 1437.18, + "end": 1438.9, + "probability": 0.4152 + }, + { + "start": 1438.9, + "end": 1438.9, + "probability": 0.0696 + }, + { + "start": 1438.9, + "end": 1441.76, + "probability": 0.9 + }, + { + "start": 1441.92, + "end": 1445.14, + "probability": 0.7919 + }, + { + "start": 1445.38, + "end": 1445.8, + "probability": 0.01 + }, + { + "start": 1445.8, + "end": 1446.62, + "probability": 0.6555 + }, + { + "start": 1446.7, + "end": 1447.62, + "probability": 0.8303 + }, + { + "start": 1447.7, + "end": 1448.54, + "probability": 0.7318 + }, + { + "start": 1448.94, + "end": 1449.68, + "probability": 0.8656 + }, + { + "start": 1449.68, + "end": 1453.2, + "probability": 0.5698 + }, + { + "start": 1453.66, + "end": 1454.44, + "probability": 0.047 + }, + { + "start": 1454.52, + "end": 1455.66, + "probability": 0.8062 + }, + { + "start": 1456.08, + "end": 1457.59, + "probability": 0.9534 + }, + { + "start": 1457.88, + "end": 1458.12, + "probability": 0.7264 + }, + { + "start": 1458.76, + "end": 1460.44, + "probability": 0.8665 + }, + { + "start": 1461.06, + "end": 1461.72, + "probability": 0.6282 + }, + { + "start": 1462.3, + "end": 1463.18, + "probability": 0.9103 + }, + { + "start": 1463.38, + "end": 1466.56, + "probability": 0.9037 + }, + { + "start": 1467.0, + "end": 1469.0, + "probability": 0.889 + }, + { + "start": 1469.5, + "end": 1472.82, + "probability": 0.9995 + }, + { + "start": 1473.0, + "end": 1473.1, + "probability": 0.3647 + }, + { + "start": 1473.8, + "end": 1475.42, + "probability": 0.8273 + }, + { + "start": 1476.18, + "end": 1478.48, + "probability": 0.9959 + }, + { + "start": 1479.04, + "end": 1479.78, + "probability": 0.9228 + }, + { + "start": 1480.18, + "end": 1481.9, + "probability": 0.9775 + }, + { + "start": 1482.26, + "end": 1483.32, + "probability": 0.9786 + }, + { + "start": 1483.8, + "end": 1484.24, + "probability": 0.9023 + }, + { + "start": 1484.92, + "end": 1488.48, + "probability": 0.8845 + }, + { + "start": 1489.73, + "end": 1494.98, + "probability": 0.9102 + }, + { + "start": 1495.3, + "end": 1497.32, + "probability": 0.984 + }, + { + "start": 1497.5, + "end": 1500.78, + "probability": 0.8307 + }, + { + "start": 1501.32, + "end": 1503.06, + "probability": 0.8955 + }, + { + "start": 1503.98, + "end": 1506.62, + "probability": 0.989 + }, + { + "start": 1507.98, + "end": 1509.92, + "probability": 0.9902 + }, + { + "start": 1510.38, + "end": 1511.38, + "probability": 0.9105 + }, + { + "start": 1511.54, + "end": 1511.96, + "probability": 0.8303 + }, + { + "start": 1512.28, + "end": 1515.24, + "probability": 0.998 + }, + { + "start": 1515.76, + "end": 1516.5, + "probability": 0.4362 + }, + { + "start": 1517.18, + "end": 1521.6, + "probability": 0.99 + }, + { + "start": 1521.6, + "end": 1524.76, + "probability": 0.8203 + }, + { + "start": 1525.5, + "end": 1528.72, + "probability": 0.9674 + }, + { + "start": 1529.22, + "end": 1531.16, + "probability": 0.9666 + }, + { + "start": 1531.72, + "end": 1532.72, + "probability": 0.5798 + }, + { + "start": 1533.1, + "end": 1533.88, + "probability": 0.6513 + }, + { + "start": 1534.96, + "end": 1535.06, + "probability": 0.7676 + }, + { + "start": 1536.4, + "end": 1538.02, + "probability": 0.9898 + }, + { + "start": 1538.18, + "end": 1539.74, + "probability": 0.8981 + }, + { + "start": 1540.46, + "end": 1541.1, + "probability": 0.8882 + }, + { + "start": 1541.64, + "end": 1544.42, + "probability": 0.9001 + }, + { + "start": 1545.02, + "end": 1546.1, + "probability": 0.9889 + }, + { + "start": 1546.28, + "end": 1546.42, + "probability": 0.9834 + }, + { + "start": 1546.58, + "end": 1551.66, + "probability": 0.9509 + }, + { + "start": 1552.1, + "end": 1554.4, + "probability": 0.9674 + }, + { + "start": 1556.12, + "end": 1558.56, + "probability": 0.9937 + }, + { + "start": 1558.56, + "end": 1561.44, + "probability": 0.8862 + }, + { + "start": 1562.44, + "end": 1562.9, + "probability": 0.5446 + }, + { + "start": 1564.1, + "end": 1564.78, + "probability": 0.3576 + }, + { + "start": 1564.9, + "end": 1565.42, + "probability": 0.8469 + }, + { + "start": 1565.56, + "end": 1566.0, + "probability": 0.8468 + }, + { + "start": 1566.08, + "end": 1567.66, + "probability": 0.9348 + }, + { + "start": 1568.88, + "end": 1568.94, + "probability": 0.1969 + }, + { + "start": 1568.94, + "end": 1570.14, + "probability": 0.8845 + }, + { + "start": 1570.26, + "end": 1575.08, + "probability": 0.6851 + }, + { + "start": 1575.16, + "end": 1575.42, + "probability": 0.3157 + }, + { + "start": 1576.04, + "end": 1576.92, + "probability": 0.7555 + }, + { + "start": 1577.52, + "end": 1579.34, + "probability": 0.9446 + }, + { + "start": 1580.28, + "end": 1580.76, + "probability": 0.9708 + }, + { + "start": 1581.28, + "end": 1586.22, + "probability": 0.9875 + }, + { + "start": 1586.72, + "end": 1591.74, + "probability": 0.9619 + }, + { + "start": 1592.94, + "end": 1593.48, + "probability": 0.7062 + }, + { + "start": 1594.12, + "end": 1594.52, + "probability": 0.492 + }, + { + "start": 1595.16, + "end": 1597.0, + "probability": 0.9886 + }, + { + "start": 1597.48, + "end": 1598.08, + "probability": 0.9877 + }, + { + "start": 1598.52, + "end": 1600.12, + "probability": 0.9897 + }, + { + "start": 1600.34, + "end": 1602.06, + "probability": 0.8887 + }, + { + "start": 1602.62, + "end": 1605.14, + "probability": 0.8036 + }, + { + "start": 1605.66, + "end": 1608.38, + "probability": 0.9846 + }, + { + "start": 1609.6, + "end": 1615.92, + "probability": 0.9966 + }, + { + "start": 1616.2, + "end": 1619.72, + "probability": 0.846 + }, + { + "start": 1620.84, + "end": 1622.96, + "probability": 0.9963 + }, + { + "start": 1623.08, + "end": 1625.56, + "probability": 0.9931 + }, + { + "start": 1626.22, + "end": 1628.94, + "probability": 0.9589 + }, + { + "start": 1629.2, + "end": 1629.5, + "probability": 0.0015 + }, + { + "start": 1630.62, + "end": 1631.68, + "probability": 0.9888 + }, + { + "start": 1631.96, + "end": 1632.28, + "probability": 0.3441 + }, + { + "start": 1632.44, + "end": 1633.14, + "probability": 0.6329 + }, + { + "start": 1633.22, + "end": 1635.36, + "probability": 0.9873 + }, + { + "start": 1635.7, + "end": 1636.66, + "probability": 0.9799 + }, + { + "start": 1637.06, + "end": 1637.34, + "probability": 0.9268 + }, + { + "start": 1638.06, + "end": 1638.64, + "probability": 0.0285 + }, + { + "start": 1638.66, + "end": 1639.36, + "probability": 0.8192 + }, + { + "start": 1642.49, + "end": 1644.14, + "probability": 0.9474 + }, + { + "start": 1644.36, + "end": 1645.98, + "probability": 0.8036 + }, + { + "start": 1646.02, + "end": 1646.32, + "probability": 0.2624 + }, + { + "start": 1646.38, + "end": 1647.14, + "probability": 0.8628 + }, + { + "start": 1648.02, + "end": 1651.2, + "probability": 0.994 + }, + { + "start": 1652.08, + "end": 1656.06, + "probability": 0.9663 + }, + { + "start": 1656.54, + "end": 1661.64, + "probability": 0.9941 + }, + { + "start": 1661.76, + "end": 1662.32, + "probability": 0.8313 + }, + { + "start": 1662.42, + "end": 1664.62, + "probability": 0.9189 + }, + { + "start": 1665.0, + "end": 1665.42, + "probability": 0.8024 + }, + { + "start": 1665.78, + "end": 1665.78, + "probability": 0.0507 + }, + { + "start": 1665.78, + "end": 1666.46, + "probability": 0.6244 + }, + { + "start": 1667.0, + "end": 1668.38, + "probability": 0.9789 + }, + { + "start": 1669.42, + "end": 1673.16, + "probability": 0.9136 + }, + { + "start": 1673.98, + "end": 1674.94, + "probability": 0.9676 + }, + { + "start": 1675.02, + "end": 1676.4, + "probability": 0.9768 + }, + { + "start": 1677.56, + "end": 1678.62, + "probability": 0.5498 + }, + { + "start": 1679.44, + "end": 1682.3, + "probability": 0.7343 + }, + { + "start": 1682.3, + "end": 1683.3, + "probability": 0.9478 + }, + { + "start": 1683.92, + "end": 1688.44, + "probability": 0.9933 + }, + { + "start": 1689.14, + "end": 1690.0, + "probability": 0.7961 + }, + { + "start": 1690.68, + "end": 1692.46, + "probability": 0.9875 + }, + { + "start": 1693.24, + "end": 1695.18, + "probability": 0.9819 + }, + { + "start": 1696.12, + "end": 1697.72, + "probability": 0.9411 + }, + { + "start": 1698.48, + "end": 1699.66, + "probability": 0.9785 + }, + { + "start": 1700.22, + "end": 1701.76, + "probability": 0.6989 + }, + { + "start": 1702.4, + "end": 1702.86, + "probability": 0.6976 + }, + { + "start": 1703.74, + "end": 1705.04, + "probability": 0.9872 + }, + { + "start": 1705.48, + "end": 1710.08, + "probability": 0.9694 + }, + { + "start": 1710.74, + "end": 1711.58, + "probability": 0.9707 + }, + { + "start": 1711.9, + "end": 1712.42, + "probability": 0.8697 + }, + { + "start": 1712.92, + "end": 1715.42, + "probability": 0.9736 + }, + { + "start": 1715.54, + "end": 1715.66, + "probability": 0.0796 + }, + { + "start": 1715.66, + "end": 1715.66, + "probability": 0.0633 + }, + { + "start": 1715.66, + "end": 1716.38, + "probability": 0.4141 + }, + { + "start": 1716.5, + "end": 1717.66, + "probability": 0.9166 + }, + { + "start": 1717.94, + "end": 1718.98, + "probability": 0.8439 + }, + { + "start": 1719.86, + "end": 1719.92, + "probability": 0.0007 + }, + { + "start": 1721.88, + "end": 1722.28, + "probability": 0.0845 + }, + { + "start": 1722.28, + "end": 1723.54, + "probability": 0.2455 + }, + { + "start": 1723.62, + "end": 1724.26, + "probability": 0.6391 + }, + { + "start": 1724.76, + "end": 1728.86, + "probability": 0.9841 + }, + { + "start": 1730.32, + "end": 1730.88, + "probability": 0.3451 + }, + { + "start": 1731.58, + "end": 1733.56, + "probability": 0.9954 + }, + { + "start": 1734.14, + "end": 1736.32, + "probability": 0.9038 + }, + { + "start": 1736.92, + "end": 1740.32, + "probability": 0.8068 + }, + { + "start": 1741.58, + "end": 1744.34, + "probability": 0.9626 + }, + { + "start": 1744.88, + "end": 1745.46, + "probability": 0.7562 + }, + { + "start": 1746.2, + "end": 1747.94, + "probability": 0.9922 + }, + { + "start": 1748.6, + "end": 1754.02, + "probability": 0.9803 + }, + { + "start": 1754.56, + "end": 1756.1, + "probability": 0.8766 + }, + { + "start": 1756.46, + "end": 1762.56, + "probability": 0.9792 + }, + { + "start": 1762.84, + "end": 1763.84, + "probability": 0.8602 + }, + { + "start": 1763.92, + "end": 1764.9, + "probability": 0.9814 + }, + { + "start": 1765.66, + "end": 1766.54, + "probability": 0.9762 + }, + { + "start": 1767.18, + "end": 1768.02, + "probability": 0.8687 + }, + { + "start": 1768.28, + "end": 1768.94, + "probability": 0.8951 + }, + { + "start": 1768.96, + "end": 1769.88, + "probability": 0.7896 + }, + { + "start": 1770.36, + "end": 1771.86, + "probability": 0.9473 + }, + { + "start": 1773.02, + "end": 1773.72, + "probability": 0.8989 + }, + { + "start": 1775.2, + "end": 1776.24, + "probability": 0.959 + }, + { + "start": 1776.94, + "end": 1780.44, + "probability": 0.986 + }, + { + "start": 1780.62, + "end": 1781.34, + "probability": 0.9354 + }, + { + "start": 1781.94, + "end": 1783.08, + "probability": 0.9209 + }, + { + "start": 1783.94, + "end": 1784.98, + "probability": 0.9925 + }, + { + "start": 1785.5, + "end": 1786.24, + "probability": 0.9519 + }, + { + "start": 1786.96, + "end": 1787.58, + "probability": 0.763 + }, + { + "start": 1788.22, + "end": 1790.72, + "probability": 0.8641 + }, + { + "start": 1791.14, + "end": 1795.58, + "probability": 0.9549 + }, + { + "start": 1796.42, + "end": 1798.96, + "probability": 0.9433 + }, + { + "start": 1799.16, + "end": 1800.14, + "probability": 0.0934 + }, + { + "start": 1800.14, + "end": 1801.06, + "probability": 0.5682 + }, + { + "start": 1801.98, + "end": 1804.42, + "probability": 0.0142 + }, + { + "start": 1804.42, + "end": 1805.14, + "probability": 0.0678 + }, + { + "start": 1805.64, + "end": 1805.64, + "probability": 0.102 + }, + { + "start": 1805.64, + "end": 1805.64, + "probability": 0.4068 + }, + { + "start": 1805.64, + "end": 1807.66, + "probability": 0.9677 + }, + { + "start": 1808.52, + "end": 1808.82, + "probability": 0.0934 + }, + { + "start": 1809.74, + "end": 1809.74, + "probability": 0.1549 + }, + { + "start": 1809.74, + "end": 1810.08, + "probability": 0.5381 + }, + { + "start": 1810.78, + "end": 1811.24, + "probability": 0.9324 + }, + { + "start": 1811.5, + "end": 1811.54, + "probability": 0.1696 + }, + { + "start": 1811.6, + "end": 1812.7, + "probability": 0.7827 + }, + { + "start": 1812.82, + "end": 1813.58, + "probability": 0.8501 + }, + { + "start": 1813.7, + "end": 1813.7, + "probability": 0.084 + }, + { + "start": 1813.7, + "end": 1814.4, + "probability": 0.5067 + }, + { + "start": 1814.48, + "end": 1815.66, + "probability": 0.5392 + }, + { + "start": 1815.72, + "end": 1816.4, + "probability": 0.9725 + }, + { + "start": 1817.24, + "end": 1817.52, + "probability": 0.0349 + }, + { + "start": 1817.52, + "end": 1817.94, + "probability": 0.6199 + }, + { + "start": 1818.52, + "end": 1818.6, + "probability": 0.0529 + }, + { + "start": 1818.6, + "end": 1819.3, + "probability": 0.8823 + }, + { + "start": 1819.58, + "end": 1819.86, + "probability": 0.5177 + }, + { + "start": 1820.28, + "end": 1821.22, + "probability": 0.8089 + }, + { + "start": 1822.6, + "end": 1826.98, + "probability": 0.8189 + }, + { + "start": 1827.86, + "end": 1829.62, + "probability": 0.8531 + }, + { + "start": 1830.28, + "end": 1833.78, + "probability": 0.9986 + }, + { + "start": 1833.78, + "end": 1837.24, + "probability": 0.9308 + }, + { + "start": 1837.36, + "end": 1838.51, + "probability": 0.9669 + }, + { + "start": 1839.42, + "end": 1840.1, + "probability": 0.8121 + }, + { + "start": 1840.82, + "end": 1841.94, + "probability": 0.8657 + }, + { + "start": 1842.44, + "end": 1848.5, + "probability": 0.9792 + }, + { + "start": 1848.76, + "end": 1851.88, + "probability": 0.9544 + }, + { + "start": 1852.28, + "end": 1854.76, + "probability": 0.7197 + }, + { + "start": 1854.92, + "end": 1854.94, + "probability": 0.0388 + }, + { + "start": 1854.94, + "end": 1856.5, + "probability": 0.6284 + }, + { + "start": 1856.52, + "end": 1859.82, + "probability": 0.9439 + }, + { + "start": 1860.06, + "end": 1863.18, + "probability": 0.0777 + }, + { + "start": 1864.26, + "end": 1864.6, + "probability": 0.1175 + }, + { + "start": 1864.6, + "end": 1864.6, + "probability": 0.0602 + }, + { + "start": 1864.6, + "end": 1864.6, + "probability": 0.185 + }, + { + "start": 1864.6, + "end": 1866.92, + "probability": 0.2664 + }, + { + "start": 1868.52, + "end": 1869.28, + "probability": 0.16 + }, + { + "start": 1869.3, + "end": 1872.88, + "probability": 0.9232 + }, + { + "start": 1873.36, + "end": 1876.62, + "probability": 0.8461 + }, + { + "start": 1877.34, + "end": 1878.22, + "probability": 0.6664 + }, + { + "start": 1878.9, + "end": 1879.68, + "probability": 0.7089 + }, + { + "start": 1880.5, + "end": 1880.76, + "probability": 0.7913 + }, + { + "start": 1881.26, + "end": 1883.72, + "probability": 0.8928 + }, + { + "start": 1884.22, + "end": 1888.12, + "probability": 0.9602 + }, + { + "start": 1888.72, + "end": 1890.9, + "probability": 0.8488 + }, + { + "start": 1891.26, + "end": 1892.18, + "probability": 0.901 + }, + { + "start": 1893.88, + "end": 1896.86, + "probability": 0.9937 + }, + { + "start": 1897.4, + "end": 1899.38, + "probability": 0.8022 + }, + { + "start": 1899.98, + "end": 1901.62, + "probability": 0.6617 + }, + { + "start": 1902.18, + "end": 1904.38, + "probability": 0.7639 + }, + { + "start": 1905.14, + "end": 1908.54, + "probability": 0.9985 + }, + { + "start": 1908.94, + "end": 1909.6, + "probability": 0.7614 + }, + { + "start": 1910.16, + "end": 1913.56, + "probability": 0.999 + }, + { + "start": 1914.0, + "end": 1917.56, + "probability": 0.9989 + }, + { + "start": 1918.68, + "end": 1918.74, + "probability": 0.7438 + }, + { + "start": 1918.88, + "end": 1924.1, + "probability": 0.999 + }, + { + "start": 1924.1, + "end": 1927.53, + "probability": 0.9914 + }, + { + "start": 1927.84, + "end": 1928.16, + "probability": 0.8221 + }, + { + "start": 1928.24, + "end": 1929.12, + "probability": 0.7129 + }, + { + "start": 1929.82, + "end": 1930.28, + "probability": 0.8694 + }, + { + "start": 1930.94, + "end": 1933.98, + "probability": 0.9982 + }, + { + "start": 1934.78, + "end": 1938.18, + "probability": 0.9943 + }, + { + "start": 1939.76, + "end": 1943.98, + "probability": 0.9849 + }, + { + "start": 1945.02, + "end": 1947.98, + "probability": 0.9797 + }, + { + "start": 1948.14, + "end": 1951.4, + "probability": 0.9755 + }, + { + "start": 1952.34, + "end": 1956.0, + "probability": 0.957 + }, + { + "start": 1956.62, + "end": 1959.98, + "probability": 0.8327 + }, + { + "start": 1960.88, + "end": 1961.6, + "probability": 0.7647 + }, + { + "start": 1962.2, + "end": 1962.74, + "probability": 0.7407 + }, + { + "start": 1963.46, + "end": 1964.2, + "probability": 0.721 + }, + { + "start": 1964.92, + "end": 1966.52, + "probability": 0.9541 + }, + { + "start": 1967.18, + "end": 1969.38, + "probability": 0.9938 + }, + { + "start": 1969.38, + "end": 1972.98, + "probability": 0.9091 + }, + { + "start": 1974.02, + "end": 1974.32, + "probability": 0.7039 + }, + { + "start": 1975.04, + "end": 1975.88, + "probability": 0.9225 + }, + { + "start": 1976.34, + "end": 1976.48, + "probability": 0.5801 + }, + { + "start": 1977.74, + "end": 1977.82, + "probability": 0.4789 + }, + { + "start": 1977.98, + "end": 1978.92, + "probability": 0.6815 + }, + { + "start": 1979.28, + "end": 1984.26, + "probability": 0.9795 + }, + { + "start": 1984.94, + "end": 1988.1, + "probability": 0.9219 + }, + { + "start": 1988.64, + "end": 1990.54, + "probability": 0.5908 + }, + { + "start": 1992.88, + "end": 1994.52, + "probability": 0.9568 + }, + { + "start": 1995.26, + "end": 1998.58, + "probability": 0.981 + }, + { + "start": 1998.98, + "end": 2000.0, + "probability": 0.9543 + }, + { + "start": 2000.26, + "end": 2001.98, + "probability": 0.3506 + }, + { + "start": 2001.98, + "end": 2002.2, + "probability": 0.2519 + }, + { + "start": 2002.2, + "end": 2002.8, + "probability": 0.246 + }, + { + "start": 2002.9, + "end": 2005.46, + "probability": 0.992 + }, + { + "start": 2005.56, + "end": 2005.9, + "probability": 0.5397 + }, + { + "start": 2005.9, + "end": 2008.14, + "probability": 0.84 + }, + { + "start": 2008.44, + "end": 2009.46, + "probability": 0.3428 + }, + { + "start": 2009.58, + "end": 2009.62, + "probability": 0.5747 + }, + { + "start": 2009.62, + "end": 2010.02, + "probability": 0.8355 + }, + { + "start": 2010.08, + "end": 2012.26, + "probability": 0.9802 + }, + { + "start": 2012.3, + "end": 2013.08, + "probability": 0.8691 + }, + { + "start": 2013.12, + "end": 2014.14, + "probability": 0.9727 + }, + { + "start": 2014.66, + "end": 2017.4, + "probability": 0.068 + }, + { + "start": 2017.4, + "end": 2017.66, + "probability": 0.253 + }, + { + "start": 2018.06, + "end": 2019.16, + "probability": 0.9731 + }, + { + "start": 2020.94, + "end": 2021.16, + "probability": 0.0841 + }, + { + "start": 2021.16, + "end": 2022.35, + "probability": 0.8195 + }, + { + "start": 2022.86, + "end": 2024.38, + "probability": 0.1136 + }, + { + "start": 2033.62, + "end": 2034.4, + "probability": 0.0372 + }, + { + "start": 2034.4, + "end": 2035.54, + "probability": 0.0667 + }, + { + "start": 2037.26, + "end": 2037.86, + "probability": 0.0902 + }, + { + "start": 2038.2, + "end": 2038.84, + "probability": 0.0337 + }, + { + "start": 2038.88, + "end": 2038.98, + "probability": 0.0364 + }, + { + "start": 2038.98, + "end": 2040.19, + "probability": 0.0301 + }, + { + "start": 2044.5, + "end": 2044.52, + "probability": 0.1753 + }, + { + "start": 2048.48, + "end": 2050.94, + "probability": 0.0519 + }, + { + "start": 2051.16, + "end": 2051.58, + "probability": 0.0375 + }, + { + "start": 2051.62, + "end": 2051.62, + "probability": 0.1388 + }, + { + "start": 2052.8, + "end": 2053.8, + "probability": 0.2574 + }, + { + "start": 2053.8, + "end": 2053.98, + "probability": 0.3088 + }, + { + "start": 2055.3, + "end": 2058.48, + "probability": 0.0334 + }, + { + "start": 2061.08, + "end": 2062.44, + "probability": 0.3436 + }, + { + "start": 2066.86, + "end": 2067.32, + "probability": 0.0973 + }, + { + "start": 2068.0, + "end": 2069.62, + "probability": 0.0181 + }, + { + "start": 2069.62, + "end": 2070.22, + "probability": 0.0624 + }, + { + "start": 2070.22, + "end": 2070.24, + "probability": 0.2347 + }, + { + "start": 2070.24, + "end": 2070.24, + "probability": 0.0135 + }, + { + "start": 2070.24, + "end": 2070.24, + "probability": 0.0628 + }, + { + "start": 2070.86, + "end": 2072.46, + "probability": 0.0215 + }, + { + "start": 2072.56, + "end": 2072.96, + "probability": 0.0379 + }, + { + "start": 2073.14, + "end": 2073.98, + "probability": 0.0905 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.0, + "end": 2074.0, + "probability": 0.0 + }, + { + "start": 2074.86, + "end": 2074.86, + "probability": 0.0709 + }, + { + "start": 2074.86, + "end": 2074.86, + "probability": 0.1391 + }, + { + "start": 2074.86, + "end": 2079.18, + "probability": 0.9941 + }, + { + "start": 2079.68, + "end": 2080.78, + "probability": 0.9394 + }, + { + "start": 2081.6, + "end": 2082.64, + "probability": 0.9929 + }, + { + "start": 2083.16, + "end": 2086.0, + "probability": 0.9991 + }, + { + "start": 2086.5, + "end": 2090.2, + "probability": 0.9927 + }, + { + "start": 2090.96, + "end": 2091.78, + "probability": 0.8329 + }, + { + "start": 2091.86, + "end": 2092.76, + "probability": 0.7822 + }, + { + "start": 2093.06, + "end": 2096.44, + "probability": 0.9397 + }, + { + "start": 2096.54, + "end": 2097.78, + "probability": 0.8487 + }, + { + "start": 2098.62, + "end": 2099.42, + "probability": 0.5467 + }, + { + "start": 2099.98, + "end": 2105.46, + "probability": 0.9886 + }, + { + "start": 2105.7, + "end": 2108.62, + "probability": 0.9929 + }, + { + "start": 2110.22, + "end": 2111.6, + "probability": 0.8627 + }, + { + "start": 2112.12, + "end": 2114.4, + "probability": 0.9718 + }, + { + "start": 2114.86, + "end": 2123.17, + "probability": 0.9328 + }, + { + "start": 2124.4, + "end": 2125.78, + "probability": 0.5377 + }, + { + "start": 2126.46, + "end": 2130.6, + "probability": 0.9882 + }, + { + "start": 2131.46, + "end": 2137.06, + "probability": 0.9945 + }, + { + "start": 2137.66, + "end": 2138.92, + "probability": 0.9984 + }, + { + "start": 2139.66, + "end": 2145.22, + "probability": 0.9858 + }, + { + "start": 2145.54, + "end": 2149.36, + "probability": 0.9956 + }, + { + "start": 2149.36, + "end": 2153.58, + "probability": 0.9958 + }, + { + "start": 2154.18, + "end": 2156.06, + "probability": 0.8235 + }, + { + "start": 2157.86, + "end": 2158.46, + "probability": 0.9168 + }, + { + "start": 2159.1, + "end": 2161.29, + "probability": 0.8717 + }, + { + "start": 2161.86, + "end": 2163.62, + "probability": 0.9968 + }, + { + "start": 2164.02, + "end": 2168.02, + "probability": 0.9918 + }, + { + "start": 2168.84, + "end": 2170.08, + "probability": 0.7994 + }, + { + "start": 2170.56, + "end": 2172.3, + "probability": 0.9802 + }, + { + "start": 2172.52, + "end": 2172.66, + "probability": 0.2092 + }, + { + "start": 2173.48, + "end": 2175.84, + "probability": 0.8516 + }, + { + "start": 2176.78, + "end": 2178.26, + "probability": 0.7861 + }, + { + "start": 2178.84, + "end": 2179.24, + "probability": 0.7918 + }, + { + "start": 2180.22, + "end": 2180.68, + "probability": 0.9201 + }, + { + "start": 2181.6, + "end": 2182.0, + "probability": 0.6922 + }, + { + "start": 2182.08, + "end": 2183.52, + "probability": 0.9967 + }, + { + "start": 2184.28, + "end": 2185.9, + "probability": 0.9964 + }, + { + "start": 2187.28, + "end": 2192.0, + "probability": 0.9893 + }, + { + "start": 2193.42, + "end": 2194.12, + "probability": 0.8253 + }, + { + "start": 2201.8, + "end": 2202.82, + "probability": 0.9116 + }, + { + "start": 2203.26, + "end": 2204.37, + "probability": 0.765 + }, + { + "start": 2205.06, + "end": 2207.79, + "probability": 0.9769 + }, + { + "start": 2208.68, + "end": 2210.18, + "probability": 0.9642 + }, + { + "start": 2210.88, + "end": 2211.48, + "probability": 0.9503 + }, + { + "start": 2212.14, + "end": 2216.36, + "probability": 0.9868 + }, + { + "start": 2217.5, + "end": 2218.44, + "probability": 0.8141 + }, + { + "start": 2219.38, + "end": 2221.84, + "probability": 0.9564 + }, + { + "start": 2222.64, + "end": 2224.56, + "probability": 0.931 + }, + { + "start": 2225.34, + "end": 2226.56, + "probability": 0.9915 + }, + { + "start": 2227.02, + "end": 2230.84, + "probability": 0.9942 + }, + { + "start": 2232.52, + "end": 2238.54, + "probability": 0.978 + }, + { + "start": 2239.44, + "end": 2240.8, + "probability": 0.9993 + }, + { + "start": 2240.86, + "end": 2241.78, + "probability": 0.9995 + }, + { + "start": 2242.52, + "end": 2244.38, + "probability": 0.9956 + }, + { + "start": 2245.42, + "end": 2247.36, + "probability": 0.9943 + }, + { + "start": 2247.44, + "end": 2249.58, + "probability": 0.7106 + }, + { + "start": 2249.76, + "end": 2251.52, + "probability": 0.9159 + }, + { + "start": 2252.76, + "end": 2253.42, + "probability": 0.6922 + }, + { + "start": 2255.86, + "end": 2257.08, + "probability": 0.9062 + }, + { + "start": 2258.0, + "end": 2259.84, + "probability": 0.8848 + }, + { + "start": 2260.74, + "end": 2266.52, + "probability": 0.991 + }, + { + "start": 2266.88, + "end": 2269.76, + "probability": 0.9987 + }, + { + "start": 2271.06, + "end": 2272.7, + "probability": 0.998 + }, + { + "start": 2273.86, + "end": 2276.7, + "probability": 0.998 + }, + { + "start": 2278.26, + "end": 2281.72, + "probability": 0.9985 + }, + { + "start": 2282.62, + "end": 2283.76, + "probability": 0.9752 + }, + { + "start": 2284.28, + "end": 2286.26, + "probability": 0.9884 + }, + { + "start": 2286.6, + "end": 2288.4, + "probability": 0.9895 + }, + { + "start": 2289.24, + "end": 2290.22, + "probability": 0.8624 + }, + { + "start": 2291.14, + "end": 2293.18, + "probability": 0.9987 + }, + { + "start": 2293.86, + "end": 2295.22, + "probability": 0.9769 + }, + { + "start": 2296.64, + "end": 2297.88, + "probability": 0.9976 + }, + { + "start": 2299.36, + "end": 2303.6, + "probability": 0.996 + }, + { + "start": 2304.46, + "end": 2306.2, + "probability": 0.8977 + }, + { + "start": 2308.32, + "end": 2310.78, + "probability": 0.9875 + }, + { + "start": 2311.34, + "end": 2314.5, + "probability": 0.9811 + }, + { + "start": 2314.7, + "end": 2315.32, + "probability": 0.8853 + }, + { + "start": 2315.42, + "end": 2315.86, + "probability": 0.8984 + }, + { + "start": 2316.1, + "end": 2317.0, + "probability": 0.9783 + }, + { + "start": 2317.02, + "end": 2317.87, + "probability": 0.9561 + }, + { + "start": 2318.56, + "end": 2319.56, + "probability": 0.9519 + }, + { + "start": 2320.5, + "end": 2322.72, + "probability": 0.9976 + }, + { + "start": 2323.4, + "end": 2325.78, + "probability": 0.9988 + }, + { + "start": 2327.58, + "end": 2328.32, + "probability": 0.9895 + }, + { + "start": 2329.26, + "end": 2330.3, + "probability": 0.9861 + }, + { + "start": 2332.16, + "end": 2333.14, + "probability": 0.9546 + }, + { + "start": 2334.18, + "end": 2337.28, + "probability": 0.9584 + }, + { + "start": 2338.42, + "end": 2340.12, + "probability": 0.9062 + }, + { + "start": 2341.06, + "end": 2345.3, + "probability": 0.9988 + }, + { + "start": 2346.16, + "end": 2348.54, + "probability": 0.9642 + }, + { + "start": 2349.2, + "end": 2350.34, + "probability": 0.8576 + }, + { + "start": 2351.04, + "end": 2353.0, + "probability": 0.9826 + }, + { + "start": 2353.56, + "end": 2355.42, + "probability": 0.9974 + }, + { + "start": 2355.94, + "end": 2358.46, + "probability": 0.988 + }, + { + "start": 2359.42, + "end": 2361.64, + "probability": 0.991 + }, + { + "start": 2363.6, + "end": 2369.2, + "probability": 0.9772 + }, + { + "start": 2369.26, + "end": 2371.46, + "probability": 0.999 + }, + { + "start": 2372.24, + "end": 2374.94, + "probability": 0.9976 + }, + { + "start": 2375.6, + "end": 2377.14, + "probability": 0.9364 + }, + { + "start": 2377.76, + "end": 2380.8, + "probability": 0.9931 + }, + { + "start": 2381.98, + "end": 2385.44, + "probability": 0.9734 + }, + { + "start": 2386.14, + "end": 2388.66, + "probability": 0.9923 + }, + { + "start": 2389.08, + "end": 2391.76, + "probability": 0.9966 + }, + { + "start": 2392.48, + "end": 2395.84, + "probability": 0.9924 + }, + { + "start": 2397.38, + "end": 2398.56, + "probability": 0.7701 + }, + { + "start": 2400.9, + "end": 2403.06, + "probability": 0.9096 + }, + { + "start": 2403.82, + "end": 2404.64, + "probability": 0.8903 + }, + { + "start": 2405.66, + "end": 2406.74, + "probability": 0.8733 + }, + { + "start": 2407.64, + "end": 2408.32, + "probability": 0.9849 + }, + { + "start": 2409.3, + "end": 2415.64, + "probability": 0.9736 + }, + { + "start": 2416.62, + "end": 2418.38, + "probability": 0.992 + }, + { + "start": 2419.3, + "end": 2420.26, + "probability": 0.7616 + }, + { + "start": 2421.12, + "end": 2421.6, + "probability": 0.8908 + }, + { + "start": 2422.68, + "end": 2427.66, + "probability": 0.9891 + }, + { + "start": 2429.16, + "end": 2430.34, + "probability": 0.852 + }, + { + "start": 2430.34, + "end": 2433.14, + "probability": 0.9731 + }, + { + "start": 2433.14, + "end": 2435.32, + "probability": 0.9982 + }, + { + "start": 2436.3, + "end": 2437.1, + "probability": 0.8057 + }, + { + "start": 2438.4, + "end": 2441.84, + "probability": 0.9946 + }, + { + "start": 2442.54, + "end": 2445.88, + "probability": 0.9972 + }, + { + "start": 2445.88, + "end": 2448.82, + "probability": 0.9931 + }, + { + "start": 2450.04, + "end": 2450.52, + "probability": 0.9898 + }, + { + "start": 2451.42, + "end": 2454.4, + "probability": 0.9766 + }, + { + "start": 2455.74, + "end": 2456.9, + "probability": 0.9707 + }, + { + "start": 2458.14, + "end": 2461.38, + "probability": 0.9974 + }, + { + "start": 2462.42, + "end": 2463.78, + "probability": 0.9478 + }, + { + "start": 2466.18, + "end": 2467.66, + "probability": 0.8093 + }, + { + "start": 2468.34, + "end": 2469.7, + "probability": 0.9835 + }, + { + "start": 2470.4, + "end": 2471.54, + "probability": 0.9939 + }, + { + "start": 2472.3, + "end": 2473.08, + "probability": 0.9287 + }, + { + "start": 2474.12, + "end": 2475.28, + "probability": 0.9893 + }, + { + "start": 2476.44, + "end": 2477.7, + "probability": 0.9877 + }, + { + "start": 2477.86, + "end": 2478.76, + "probability": 0.6741 + }, + { + "start": 2479.14, + "end": 2480.3, + "probability": 0.9912 + }, + { + "start": 2480.86, + "end": 2484.1, + "probability": 0.9729 + }, + { + "start": 2484.36, + "end": 2485.46, + "probability": 0.9917 + }, + { + "start": 2486.3, + "end": 2488.16, + "probability": 0.5382 + }, + { + "start": 2488.74, + "end": 2490.16, + "probability": 0.9972 + }, + { + "start": 2491.56, + "end": 2492.58, + "probability": 0.9961 + }, + { + "start": 2493.82, + "end": 2495.86, + "probability": 0.9949 + }, + { + "start": 2497.0, + "end": 2499.28, + "probability": 0.9968 + }, + { + "start": 2499.28, + "end": 2502.04, + "probability": 0.9868 + }, + { + "start": 2502.12, + "end": 2502.74, + "probability": 0.5775 + }, + { + "start": 2503.2, + "end": 2505.46, + "probability": 0.9978 + }, + { + "start": 2506.84, + "end": 2510.22, + "probability": 0.933 + }, + { + "start": 2510.76, + "end": 2512.6, + "probability": 0.9097 + }, + { + "start": 2512.98, + "end": 2514.7, + "probability": 0.9478 + }, + { + "start": 2516.3, + "end": 2518.24, + "probability": 0.9966 + }, + { + "start": 2519.32, + "end": 2520.92, + "probability": 0.9876 + }, + { + "start": 2522.1, + "end": 2523.6, + "probability": 0.9954 + }, + { + "start": 2525.0, + "end": 2526.14, + "probability": 0.7584 + }, + { + "start": 2527.58, + "end": 2531.0, + "probability": 0.9845 + }, + { + "start": 2531.08, + "end": 2532.16, + "probability": 0.6577 + }, + { + "start": 2533.64, + "end": 2538.79, + "probability": 0.9958 + }, + { + "start": 2539.86, + "end": 2540.38, + "probability": 0.6436 + }, + { + "start": 2542.36, + "end": 2543.38, + "probability": 0.9861 + }, + { + "start": 2544.44, + "end": 2545.39, + "probability": 0.9924 + }, + { + "start": 2546.52, + "end": 2548.56, + "probability": 0.9953 + }, + { + "start": 2550.12, + "end": 2550.5, + "probability": 0.7459 + }, + { + "start": 2551.14, + "end": 2553.82, + "probability": 0.8228 + }, + { + "start": 2555.6, + "end": 2557.08, + "probability": 0.9983 + }, + { + "start": 2558.68, + "end": 2560.88, + "probability": 0.9807 + }, + { + "start": 2561.52, + "end": 2563.44, + "probability": 0.9966 + }, + { + "start": 2564.4, + "end": 2566.65, + "probability": 0.9956 + }, + { + "start": 2568.52, + "end": 2568.78, + "probability": 0.5424 + }, + { + "start": 2570.22, + "end": 2573.84, + "probability": 0.9965 + }, + { + "start": 2573.96, + "end": 2575.2, + "probability": 0.8927 + }, + { + "start": 2575.68, + "end": 2576.86, + "probability": 0.9522 + }, + { + "start": 2576.9, + "end": 2578.33, + "probability": 0.8887 + }, + { + "start": 2579.1, + "end": 2580.88, + "probability": 0.89 + }, + { + "start": 2581.44, + "end": 2583.72, + "probability": 0.9978 + }, + { + "start": 2584.18, + "end": 2586.14, + "probability": 0.9956 + }, + { + "start": 2586.74, + "end": 2589.62, + "probability": 0.9871 + }, + { + "start": 2589.98, + "end": 2590.9, + "probability": 0.8577 + }, + { + "start": 2591.22, + "end": 2592.72, + "probability": 0.9745 + }, + { + "start": 2593.48, + "end": 2594.74, + "probability": 0.9849 + }, + { + "start": 2595.5, + "end": 2596.82, + "probability": 0.9756 + }, + { + "start": 2597.92, + "end": 2599.46, + "probability": 0.9909 + }, + { + "start": 2600.24, + "end": 2600.99, + "probability": 0.8129 + }, + { + "start": 2601.9, + "end": 2603.34, + "probability": 0.9932 + }, + { + "start": 2604.12, + "end": 2605.55, + "probability": 0.882 + }, + { + "start": 2605.74, + "end": 2609.88, + "probability": 0.9854 + }, + { + "start": 2610.56, + "end": 2612.08, + "probability": 0.9981 + }, + { + "start": 2612.74, + "end": 2614.54, + "probability": 0.9979 + }, + { + "start": 2616.32, + "end": 2619.32, + "probability": 0.7923 + }, + { + "start": 2620.6, + "end": 2621.72, + "probability": 0.9915 + }, + { + "start": 2623.1, + "end": 2623.94, + "probability": 0.9927 + }, + { + "start": 2624.9, + "end": 2626.14, + "probability": 0.9861 + }, + { + "start": 2626.9, + "end": 2628.67, + "probability": 0.9973 + }, + { + "start": 2629.28, + "end": 2633.46, + "probability": 0.9996 + }, + { + "start": 2634.12, + "end": 2635.3, + "probability": 0.728 + }, + { + "start": 2636.64, + "end": 2636.88, + "probability": 0.4231 + }, + { + "start": 2639.78, + "end": 2641.49, + "probability": 0.9873 + }, + { + "start": 2642.94, + "end": 2643.88, + "probability": 0.9891 + }, + { + "start": 2644.84, + "end": 2646.62, + "probability": 0.7904 + }, + { + "start": 2647.54, + "end": 2650.28, + "probability": 0.9977 + }, + { + "start": 2650.92, + "end": 2651.92, + "probability": 0.9224 + }, + { + "start": 2653.82, + "end": 2658.56, + "probability": 0.9839 + }, + { + "start": 2658.56, + "end": 2663.7, + "probability": 0.999 + }, + { + "start": 2664.38, + "end": 2669.02, + "probability": 0.9995 + }, + { + "start": 2669.98, + "end": 2671.82, + "probability": 0.9784 + }, + { + "start": 2671.88, + "end": 2673.88, + "probability": 0.9979 + }, + { + "start": 2674.06, + "end": 2677.12, + "probability": 0.9233 + }, + { + "start": 2678.5, + "end": 2679.34, + "probability": 0.7188 + }, + { + "start": 2680.3, + "end": 2681.28, + "probability": 0.995 + }, + { + "start": 2682.1, + "end": 2683.62, + "probability": 0.9683 + }, + { + "start": 2684.46, + "end": 2686.8, + "probability": 0.9979 + }, + { + "start": 2688.22, + "end": 2690.61, + "probability": 0.9316 + }, + { + "start": 2692.16, + "end": 2693.66, + "probability": 0.9908 + }, + { + "start": 2693.76, + "end": 2694.0, + "probability": 0.4877 + }, + { + "start": 2694.74, + "end": 2695.86, + "probability": 0.8766 + }, + { + "start": 2697.02, + "end": 2700.68, + "probability": 0.9912 + }, + { + "start": 2702.3, + "end": 2704.6, + "probability": 0.9969 + }, + { + "start": 2705.32, + "end": 2706.22, + "probability": 0.9874 + }, + { + "start": 2706.6, + "end": 2707.24, + "probability": 0.9153 + }, + { + "start": 2707.34, + "end": 2708.35, + "probability": 0.9857 + }, + { + "start": 2709.1, + "end": 2710.94, + "probability": 0.9851 + }, + { + "start": 2711.98, + "end": 2714.42, + "probability": 0.9901 + }, + { + "start": 2715.1, + "end": 2718.0, + "probability": 0.9458 + }, + { + "start": 2718.46, + "end": 2719.98, + "probability": 0.9717 + }, + { + "start": 2720.58, + "end": 2721.99, + "probability": 0.9959 + }, + { + "start": 2722.58, + "end": 2723.99, + "probability": 0.8096 + }, + { + "start": 2724.52, + "end": 2725.34, + "probability": 0.8618 + }, + { + "start": 2725.54, + "end": 2725.82, + "probability": 0.9644 + }, + { + "start": 2726.68, + "end": 2731.42, + "probability": 0.9949 + }, + { + "start": 2732.16, + "end": 2735.58, + "probability": 0.9902 + }, + { + "start": 2736.42, + "end": 2737.32, + "probability": 0.9744 + }, + { + "start": 2738.62, + "end": 2740.08, + "probability": 0.9969 + }, + { + "start": 2740.9, + "end": 2743.8, + "probability": 0.9985 + }, + { + "start": 2743.9, + "end": 2744.68, + "probability": 0.8129 + }, + { + "start": 2744.76, + "end": 2745.04, + "probability": 0.777 + }, + { + "start": 2746.08, + "end": 2750.44, + "probability": 0.9963 + }, + { + "start": 2750.74, + "end": 2751.88, + "probability": 0.9967 + }, + { + "start": 2752.06, + "end": 2752.76, + "probability": 0.8066 + }, + { + "start": 2753.02, + "end": 2753.92, + "probability": 0.9652 + }, + { + "start": 2754.26, + "end": 2756.68, + "probability": 0.9985 + }, + { + "start": 2757.58, + "end": 2760.2, + "probability": 0.9956 + }, + { + "start": 2760.66, + "end": 2761.92, + "probability": 0.9934 + }, + { + "start": 2762.34, + "end": 2763.66, + "probability": 0.9674 + }, + { + "start": 2764.44, + "end": 2766.68, + "probability": 0.9839 + }, + { + "start": 2767.16, + "end": 2768.98, + "probability": 0.9749 + }, + { + "start": 2769.72, + "end": 2772.98, + "probability": 0.8848 + }, + { + "start": 2773.86, + "end": 2775.12, + "probability": 0.9911 + }, + { + "start": 2775.54, + "end": 2776.64, + "probability": 0.8995 + }, + { + "start": 2777.34, + "end": 2778.92, + "probability": 0.9629 + }, + { + "start": 2778.98, + "end": 2779.88, + "probability": 0.6646 + }, + { + "start": 2780.14, + "end": 2781.48, + "probability": 0.9941 + }, + { + "start": 2783.22, + "end": 2784.04, + "probability": 0.9941 + }, + { + "start": 2785.06, + "end": 2789.14, + "probability": 0.9989 + }, + { + "start": 2790.28, + "end": 2790.98, + "probability": 0.608 + }, + { + "start": 2792.06, + "end": 2792.78, + "probability": 0.5746 + }, + { + "start": 2793.48, + "end": 2796.78, + "probability": 0.9758 + }, + { + "start": 2797.36, + "end": 2797.7, + "probability": 0.8701 + }, + { + "start": 2798.06, + "end": 2801.96, + "probability": 0.9727 + }, + { + "start": 2801.96, + "end": 2805.28, + "probability": 0.9952 + }, + { + "start": 2806.22, + "end": 2807.5, + "probability": 0.9736 + }, + { + "start": 2807.96, + "end": 2809.72, + "probability": 0.8335 + }, + { + "start": 2810.22, + "end": 2813.08, + "probability": 0.9942 + }, + { + "start": 2813.96, + "end": 2814.34, + "probability": 0.5918 + }, + { + "start": 2814.4, + "end": 2819.3, + "probability": 0.9221 + }, + { + "start": 2820.46, + "end": 2822.68, + "probability": 0.9728 + }, + { + "start": 2848.66, + "end": 2852.54, + "probability": 0.743 + }, + { + "start": 2854.34, + "end": 2854.8, + "probability": 0.0267 + }, + { + "start": 2856.46, + "end": 2856.94, + "probability": 0.5876 + }, + { + "start": 2857.66, + "end": 2860.1, + "probability": 0.2263 + }, + { + "start": 2860.1, + "end": 2862.48, + "probability": 0.9836 + }, + { + "start": 2863.0, + "end": 2863.06, + "probability": 0.2577 + }, + { + "start": 2863.86, + "end": 2865.02, + "probability": 0.4824 + }, + { + "start": 2866.82, + "end": 2866.9, + "probability": 0.023 + }, + { + "start": 2866.9, + "end": 2867.72, + "probability": 0.1707 + }, + { + "start": 2867.86, + "end": 2868.16, + "probability": 0.2965 + }, + { + "start": 2868.28, + "end": 2869.5, + "probability": 0.9565 + }, + { + "start": 2872.08, + "end": 2872.5, + "probability": 0.6784 + }, + { + "start": 2873.36, + "end": 2874.84, + "probability": 0.9435 + }, + { + "start": 2875.2, + "end": 2876.82, + "probability": 0.3588 + }, + { + "start": 2877.38, + "end": 2877.76, + "probability": 0.5357 + }, + { + "start": 2878.04, + "end": 2878.64, + "probability": 0.1646 + }, + { + "start": 2881.94, + "end": 2882.68, + "probability": 0.0742 + }, + { + "start": 2882.68, + "end": 2883.54, + "probability": 0.9953 + }, + { + "start": 2885.24, + "end": 2889.86, + "probability": 0.2335 + }, + { + "start": 2891.22, + "end": 2891.76, + "probability": 0.5398 + }, + { + "start": 2893.56, + "end": 2893.7, + "probability": 0.1985 + }, + { + "start": 2894.2, + "end": 2895.43, + "probability": 0.9902 + }, + { + "start": 2898.14, + "end": 2898.24, + "probability": 0.0322 + }, + { + "start": 2898.24, + "end": 2899.24, + "probability": 0.2981 + }, + { + "start": 2900.44, + "end": 2903.7, + "probability": 0.5703 + }, + { + "start": 2905.54, + "end": 2905.56, + "probability": 0.0627 + }, + { + "start": 2905.56, + "end": 2908.28, + "probability": 0.9706 + }, + { + "start": 2908.96, + "end": 2910.52, + "probability": 0.8943 + }, + { + "start": 2911.08, + "end": 2916.4, + "probability": 0.9335 + }, + { + "start": 2917.38, + "end": 2918.88, + "probability": 0.8674 + }, + { + "start": 2919.8, + "end": 2923.14, + "probability": 0.9968 + }, + { + "start": 2923.78, + "end": 2924.4, + "probability": 0.8361 + }, + { + "start": 2925.38, + "end": 2926.36, + "probability": 0.9991 + }, + { + "start": 2927.18, + "end": 2932.92, + "probability": 0.985 + }, + { + "start": 2933.78, + "end": 2936.92, + "probability": 0.999 + }, + { + "start": 2937.6, + "end": 2938.78, + "probability": 0.953 + }, + { + "start": 2939.38, + "end": 2940.82, + "probability": 0.9972 + }, + { + "start": 2941.46, + "end": 2942.5, + "probability": 0.8356 + }, + { + "start": 2943.48, + "end": 2944.22, + "probability": 0.501 + }, + { + "start": 2945.62, + "end": 2946.6, + "probability": 0.9024 + }, + { + "start": 2946.82, + "end": 2950.26, + "probability": 0.9894 + }, + { + "start": 2950.76, + "end": 2951.82, + "probability": 0.9664 + }, + { + "start": 2951.94, + "end": 2952.42, + "probability": 0.5208 + }, + { + "start": 2952.88, + "end": 2953.6, + "probability": 0.92 + }, + { + "start": 2953.64, + "end": 2954.48, + "probability": 0.9173 + }, + { + "start": 2954.78, + "end": 2959.06, + "probability": 0.9944 + }, + { + "start": 2960.2, + "end": 2962.1, + "probability": 0.9797 + }, + { + "start": 2963.2, + "end": 2963.8, + "probability": 0.7119 + }, + { + "start": 2964.46, + "end": 2968.42, + "probability": 0.9972 + }, + { + "start": 2968.42, + "end": 2971.32, + "probability": 0.9984 + }, + { + "start": 2971.6, + "end": 2972.2, + "probability": 0.6633 + }, + { + "start": 2973.22, + "end": 2973.54, + "probability": 0.8582 + }, + { + "start": 2974.46, + "end": 2975.94, + "probability": 0.9815 + }, + { + "start": 2976.74, + "end": 2979.86, + "probability": 0.988 + }, + { + "start": 2979.86, + "end": 2986.02, + "probability": 0.9954 + }, + { + "start": 2986.6, + "end": 2990.14, + "probability": 0.9964 + }, + { + "start": 2990.14, + "end": 2994.36, + "probability": 0.9868 + }, + { + "start": 2994.74, + "end": 2998.0, + "probability": 0.8811 + }, + { + "start": 2999.14, + "end": 2999.24, + "probability": 0.809 + }, + { + "start": 3000.8, + "end": 3002.64, + "probability": 0.9756 + }, + { + "start": 3003.56, + "end": 3006.04, + "probability": 0.6515 + }, + { + "start": 3006.62, + "end": 3008.38, + "probability": 0.9775 + }, + { + "start": 3009.72, + "end": 3010.12, + "probability": 0.7458 + }, + { + "start": 3010.96, + "end": 3012.5, + "probability": 0.9573 + }, + { + "start": 3013.08, + "end": 3015.98, + "probability": 0.9946 + }, + { + "start": 3017.36, + "end": 3021.48, + "probability": 0.9209 + }, + { + "start": 3022.66, + "end": 3024.36, + "probability": 0.9732 + }, + { + "start": 3025.82, + "end": 3026.16, + "probability": 0.6744 + }, + { + "start": 3026.54, + "end": 3030.46, + "probability": 0.9136 + }, + { + "start": 3030.94, + "end": 3032.54, + "probability": 0.8245 + }, + { + "start": 3035.36, + "end": 3038.62, + "probability": 0.9963 + }, + { + "start": 3039.24, + "end": 3040.24, + "probability": 0.9919 + }, + { + "start": 3041.46, + "end": 3044.36, + "probability": 0.9963 + }, + { + "start": 3045.34, + "end": 3045.78, + "probability": 0.9479 + }, + { + "start": 3046.56, + "end": 3046.58, + "probability": 0.3523 + }, + { + "start": 3046.58, + "end": 3051.12, + "probability": 0.8724 + }, + { + "start": 3051.62, + "end": 3052.14, + "probability": 0.9758 + }, + { + "start": 3052.54, + "end": 3054.8, + "probability": 0.7427 + }, + { + "start": 3055.88, + "end": 3061.22, + "probability": 0.9989 + }, + { + "start": 3061.82, + "end": 3066.52, + "probability": 0.9883 + }, + { + "start": 3067.58, + "end": 3068.08, + "probability": 0.9631 + }, + { + "start": 3068.38, + "end": 3069.26, + "probability": 0.6797 + }, + { + "start": 3070.5, + "end": 3070.78, + "probability": 0.1816 + }, + { + "start": 3070.78, + "end": 3070.78, + "probability": 0.3096 + }, + { + "start": 3070.78, + "end": 3071.26, + "probability": 0.5132 + }, + { + "start": 3071.8, + "end": 3072.4, + "probability": 0.5551 + }, + { + "start": 3072.48, + "end": 3075.24, + "probability": 0.8854 + }, + { + "start": 3075.5, + "end": 3076.04, + "probability": 0.1702 + }, + { + "start": 3076.04, + "end": 3076.14, + "probability": 0.4129 + }, + { + "start": 3079.14, + "end": 3079.8, + "probability": 0.9661 + }, + { + "start": 3080.54, + "end": 3082.42, + "probability": 0.9658 + }, + { + "start": 3083.22, + "end": 3084.92, + "probability": 0.9607 + }, + { + "start": 3085.52, + "end": 3087.18, + "probability": 0.6462 + }, + { + "start": 3087.78, + "end": 3091.44, + "probability": 0.9112 + }, + { + "start": 3092.12, + "end": 3094.22, + "probability": 0.9979 + }, + { + "start": 3094.22, + "end": 3098.26, + "probability": 0.9931 + }, + { + "start": 3099.62, + "end": 3103.16, + "probability": 0.9819 + }, + { + "start": 3103.68, + "end": 3105.08, + "probability": 0.999 + }, + { + "start": 3107.16, + "end": 3108.3, + "probability": 0.557 + }, + { + "start": 3109.28, + "end": 3111.34, + "probability": 0.8313 + }, + { + "start": 3111.98, + "end": 3112.48, + "probability": 0.2301 + }, + { + "start": 3114.12, + "end": 3116.84, + "probability": 0.0794 + }, + { + "start": 3116.84, + "end": 3117.1, + "probability": 0.186 + }, + { + "start": 3117.1, + "end": 3117.98, + "probability": 0.794 + }, + { + "start": 3118.68, + "end": 3119.64, + "probability": 0.5114 + }, + { + "start": 3119.98, + "end": 3120.92, + "probability": 0.8228 + }, + { + "start": 3121.0, + "end": 3121.68, + "probability": 0.9893 + }, + { + "start": 3123.42, + "end": 3124.64, + "probability": 0.6392 + }, + { + "start": 3125.38, + "end": 3126.54, + "probability": 0.7985 + }, + { + "start": 3127.56, + "end": 3128.66, + "probability": 0.7305 + }, + { + "start": 3131.76, + "end": 3134.02, + "probability": 0.6308 + }, + { + "start": 3136.08, + "end": 3138.22, + "probability": 0.9673 + }, + { + "start": 3138.52, + "end": 3138.74, + "probability": 0.6209 + }, + { + "start": 3139.26, + "end": 3140.06, + "probability": 0.9978 + }, + { + "start": 3142.3, + "end": 3146.48, + "probability": 0.9303 + }, + { + "start": 3147.02, + "end": 3149.52, + "probability": 0.9976 + }, + { + "start": 3149.52, + "end": 3152.34, + "probability": 0.9922 + }, + { + "start": 3152.84, + "end": 3153.98, + "probability": 0.8808 + }, + { + "start": 3154.56, + "end": 3158.38, + "probability": 0.9332 + }, + { + "start": 3158.98, + "end": 3159.5, + "probability": 0.7691 + }, + { + "start": 3160.08, + "end": 3162.86, + "probability": 0.9873 + }, + { + "start": 3163.3, + "end": 3165.34, + "probability": 0.9336 + }, + { + "start": 3165.88, + "end": 3169.8, + "probability": 0.9871 + }, + { + "start": 3170.36, + "end": 3174.0, + "probability": 0.9976 + }, + { + "start": 3174.38, + "end": 3176.24, + "probability": 0.9096 + }, + { + "start": 3176.64, + "end": 3181.46, + "probability": 0.9955 + }, + { + "start": 3181.86, + "end": 3182.59, + "probability": 0.6268 + }, + { + "start": 3182.9, + "end": 3183.54, + "probability": 0.7552 + }, + { + "start": 3184.48, + "end": 3187.34, + "probability": 0.7809 + }, + { + "start": 3187.96, + "end": 3191.11, + "probability": 0.7013 + }, + { + "start": 3192.12, + "end": 3192.64, + "probability": 0.7558 + }, + { + "start": 3193.14, + "end": 3195.72, + "probability": 0.9789 + }, + { + "start": 3196.02, + "end": 3196.86, + "probability": 0.77 + }, + { + "start": 3198.08, + "end": 3199.34, + "probability": 0.4436 + }, + { + "start": 3199.42, + "end": 3202.12, + "probability": 0.9528 + }, + { + "start": 3202.82, + "end": 3207.62, + "probability": 0.8671 + }, + { + "start": 3207.72, + "end": 3210.58, + "probability": 0.9915 + }, + { + "start": 3211.66, + "end": 3211.94, + "probability": 0.4965 + }, + { + "start": 3212.76, + "end": 3213.3, + "probability": 0.943 + }, + { + "start": 3214.16, + "end": 3215.98, + "probability": 0.9197 + }, + { + "start": 3216.6, + "end": 3219.44, + "probability": 0.9596 + }, + { + "start": 3220.14, + "end": 3223.92, + "probability": 0.928 + }, + { + "start": 3224.32, + "end": 3225.3, + "probability": 0.9216 + }, + { + "start": 3225.86, + "end": 3228.58, + "probability": 0.9854 + }, + { + "start": 3228.58, + "end": 3231.98, + "probability": 0.8796 + }, + { + "start": 3232.4, + "end": 3233.66, + "probability": 0.8988 + }, + { + "start": 3234.24, + "end": 3236.38, + "probability": 0.998 + }, + { + "start": 3236.52, + "end": 3237.28, + "probability": 0.6279 + }, + { + "start": 3237.86, + "end": 3241.98, + "probability": 0.8501 + }, + { + "start": 3242.78, + "end": 3243.5, + "probability": 0.7682 + }, + { + "start": 3243.66, + "end": 3244.88, + "probability": 0.749 + }, + { + "start": 3245.54, + "end": 3245.66, + "probability": 0.7411 + }, + { + "start": 3245.8, + "end": 3249.88, + "probability": 0.9871 + }, + { + "start": 3250.62, + "end": 3251.66, + "probability": 0.832 + }, + { + "start": 3253.06, + "end": 3254.06, + "probability": 0.9887 + }, + { + "start": 3254.86, + "end": 3255.92, + "probability": 0.786 + }, + { + "start": 3257.92, + "end": 3265.42, + "probability": 0.8765 + }, + { + "start": 3266.06, + "end": 3269.55, + "probability": 0.8215 + }, + { + "start": 3269.72, + "end": 3272.37, + "probability": 0.9773 + }, + { + "start": 3274.3, + "end": 3275.84, + "probability": 0.9528 + }, + { + "start": 3276.32, + "end": 3278.58, + "probability": 0.9774 + }, + { + "start": 3278.66, + "end": 3279.44, + "probability": 0.9622 + }, + { + "start": 3279.86, + "end": 3284.04, + "probability": 0.8145 + }, + { + "start": 3284.4, + "end": 3287.18, + "probability": 0.9668 + }, + { + "start": 3288.14, + "end": 3293.44, + "probability": 0.9105 + }, + { + "start": 3293.88, + "end": 3298.1, + "probability": 0.9985 + }, + { + "start": 3298.1, + "end": 3302.46, + "probability": 0.9952 + }, + { + "start": 3305.26, + "end": 3305.8, + "probability": 0.5593 + }, + { + "start": 3308.72, + "end": 3309.32, + "probability": 0.9775 + }, + { + "start": 3309.36, + "end": 3313.64, + "probability": 0.9842 + }, + { + "start": 3313.84, + "end": 3317.94, + "probability": 0.9961 + }, + { + "start": 3318.14, + "end": 3319.32, + "probability": 0.945 + }, + { + "start": 3320.16, + "end": 3320.26, + "probability": 0.7228 + }, + { + "start": 3321.86, + "end": 3323.92, + "probability": 0.9966 + }, + { + "start": 3324.22, + "end": 3325.74, + "probability": 0.8732 + }, + { + "start": 3325.86, + "end": 3325.98, + "probability": 0.479 + }, + { + "start": 3326.08, + "end": 3326.28, + "probability": 0.8433 + }, + { + "start": 3326.84, + "end": 3329.88, + "probability": 0.8025 + }, + { + "start": 3330.14, + "end": 3333.42, + "probability": 0.9937 + }, + { + "start": 3334.08, + "end": 3336.34, + "probability": 0.7714 + }, + { + "start": 3336.86, + "end": 3337.62, + "probability": 0.5826 + }, + { + "start": 3338.0, + "end": 3339.74, + "probability": 0.9718 + }, + { + "start": 3339.86, + "end": 3340.06, + "probability": 0.5842 + }, + { + "start": 3340.16, + "end": 3341.42, + "probability": 0.7707 + }, + { + "start": 3342.78, + "end": 3346.32, + "probability": 0.9946 + }, + { + "start": 3346.44, + "end": 3349.94, + "probability": 0.9948 + }, + { + "start": 3350.74, + "end": 3351.34, + "probability": 0.8459 + }, + { + "start": 3351.94, + "end": 3352.12, + "probability": 0.82 + }, + { + "start": 3352.42, + "end": 3352.68, + "probability": 0.6052 + }, + { + "start": 3353.34, + "end": 3353.6, + "probability": 0.7739 + }, + { + "start": 3354.24, + "end": 3354.68, + "probability": 0.8253 + }, + { + "start": 3354.76, + "end": 3359.64, + "probability": 0.9724 + }, + { + "start": 3359.96, + "end": 3362.38, + "probability": 0.9639 + }, + { + "start": 3363.64, + "end": 3366.0, + "probability": 0.9929 + }, + { + "start": 3368.5, + "end": 3368.98, + "probability": 0.1071 + }, + { + "start": 3369.0, + "end": 3370.1, + "probability": 0.8662 + }, + { + "start": 3370.2, + "end": 3373.38, + "probability": 0.9881 + }, + { + "start": 3373.8, + "end": 3379.14, + "probability": 0.9932 + }, + { + "start": 3390.64, + "end": 3391.4, + "probability": 0.6552 + }, + { + "start": 3391.94, + "end": 3394.56, + "probability": 0.9873 + }, + { + "start": 3394.92, + "end": 3395.98, + "probability": 0.6705 + }, + { + "start": 3396.48, + "end": 3397.06, + "probability": 0.9493 + }, + { + "start": 3397.18, + "end": 3398.02, + "probability": 0.8598 + }, + { + "start": 3398.5, + "end": 3401.26, + "probability": 0.9596 + }, + { + "start": 3401.62, + "end": 3404.26, + "probability": 0.9915 + }, + { + "start": 3405.68, + "end": 3409.5, + "probability": 0.888 + }, + { + "start": 3410.04, + "end": 3410.38, + "probability": 0.7783 + }, + { + "start": 3410.94, + "end": 3412.14, + "probability": 0.8748 + }, + { + "start": 3412.54, + "end": 3416.08, + "probability": 0.9912 + }, + { + "start": 3417.18, + "end": 3419.34, + "probability": 0.9873 + }, + { + "start": 3419.52, + "end": 3424.72, + "probability": 0.9942 + }, + { + "start": 3425.62, + "end": 3427.72, + "probability": 0.8019 + }, + { + "start": 3427.94, + "end": 3428.5, + "probability": 0.8414 + }, + { + "start": 3428.88, + "end": 3429.79, + "probability": 0.7899 + }, + { + "start": 3430.14, + "end": 3433.06, + "probability": 0.9972 + }, + { + "start": 3433.58, + "end": 3437.42, + "probability": 0.9838 + }, + { + "start": 3437.42, + "end": 3442.9, + "probability": 0.9983 + }, + { + "start": 3443.64, + "end": 3444.58, + "probability": 0.7816 + }, + { + "start": 3445.97, + "end": 3448.28, + "probability": 0.8022 + }, + { + "start": 3448.36, + "end": 3449.28, + "probability": 0.9522 + }, + { + "start": 3449.36, + "end": 3450.46, + "probability": 0.9296 + }, + { + "start": 3451.28, + "end": 3454.4, + "probability": 0.9771 + }, + { + "start": 3455.1, + "end": 3457.96, + "probability": 0.9966 + }, + { + "start": 3458.28, + "end": 3459.56, + "probability": 0.812 + }, + { + "start": 3460.3, + "end": 3463.48, + "probability": 0.9861 + }, + { + "start": 3463.8, + "end": 3465.04, + "probability": 0.9204 + }, + { + "start": 3466.08, + "end": 3466.92, + "probability": 0.9124 + }, + { + "start": 3467.54, + "end": 3471.54, + "probability": 0.9958 + }, + { + "start": 3472.44, + "end": 3473.52, + "probability": 0.9881 + }, + { + "start": 3474.36, + "end": 3475.8, + "probability": 0.9096 + }, + { + "start": 3476.58, + "end": 3477.22, + "probability": 0.7748 + }, + { + "start": 3477.64, + "end": 3479.64, + "probability": 0.9758 + }, + { + "start": 3479.68, + "end": 3480.88, + "probability": 0.981 + }, + { + "start": 3481.36, + "end": 3485.48, + "probability": 0.9482 + }, + { + "start": 3485.48, + "end": 3491.1, + "probability": 0.9775 + }, + { + "start": 3491.78, + "end": 3493.04, + "probability": 0.8 + }, + { + "start": 3493.94, + "end": 3494.73, + "probability": 0.8069 + }, + { + "start": 3495.3, + "end": 3496.76, + "probability": 0.7944 + }, + { + "start": 3497.84, + "end": 3498.52, + "probability": 0.9717 + }, + { + "start": 3499.4, + "end": 3502.26, + "probability": 0.9843 + }, + { + "start": 3502.82, + "end": 3504.36, + "probability": 0.9487 + }, + { + "start": 3505.16, + "end": 3506.02, + "probability": 0.7555 + }, + { + "start": 3507.36, + "end": 3510.2, + "probability": 0.7924 + }, + { + "start": 3510.74, + "end": 3514.96, + "probability": 0.7002 + }, + { + "start": 3515.04, + "end": 3517.21, + "probability": 0.9193 + }, + { + "start": 3518.1, + "end": 3520.04, + "probability": 0.8813 + }, + { + "start": 3521.4, + "end": 3526.32, + "probability": 0.9944 + }, + { + "start": 3526.96, + "end": 3529.14, + "probability": 0.9869 + }, + { + "start": 3531.18, + "end": 3531.76, + "probability": 0.783 + }, + { + "start": 3532.46, + "end": 3536.26, + "probability": 0.9431 + }, + { + "start": 3536.76, + "end": 3537.82, + "probability": 0.9743 + }, + { + "start": 3538.22, + "end": 3540.76, + "probability": 0.9685 + }, + { + "start": 3542.46, + "end": 3542.46, + "probability": 0.2039 + }, + { + "start": 3542.46, + "end": 3543.36, + "probability": 0.6475 + }, + { + "start": 3543.82, + "end": 3548.28, + "probability": 0.9863 + }, + { + "start": 3548.28, + "end": 3552.8, + "probability": 0.9661 + }, + { + "start": 3553.3, + "end": 3553.94, + "probability": 0.7034 + }, + { + "start": 3555.18, + "end": 3557.84, + "probability": 0.9529 + }, + { + "start": 3558.36, + "end": 3561.38, + "probability": 0.9946 + }, + { + "start": 3562.0, + "end": 3564.8, + "probability": 0.9824 + }, + { + "start": 3565.34, + "end": 3568.78, + "probability": 0.9849 + }, + { + "start": 3569.84, + "end": 3571.14, + "probability": 0.9974 + }, + { + "start": 3571.66, + "end": 3574.24, + "probability": 0.9502 + }, + { + "start": 3575.0, + "end": 3578.98, + "probability": 0.7315 + }, + { + "start": 3580.18, + "end": 3581.24, + "probability": 0.947 + }, + { + "start": 3582.88, + "end": 3584.72, + "probability": 0.9252 + }, + { + "start": 3585.54, + "end": 3589.18, + "probability": 0.9525 + }, + { + "start": 3589.74, + "end": 3592.08, + "probability": 0.9987 + }, + { + "start": 3592.08, + "end": 3595.1, + "probability": 0.915 + }, + { + "start": 3596.4, + "end": 3602.62, + "probability": 0.9877 + }, + { + "start": 3603.18, + "end": 3604.3, + "probability": 0.9187 + }, + { + "start": 3605.02, + "end": 3608.08, + "probability": 0.9924 + }, + { + "start": 3608.74, + "end": 3609.5, + "probability": 0.9974 + }, + { + "start": 3610.28, + "end": 3611.9, + "probability": 0.9454 + }, + { + "start": 3613.58, + "end": 3615.84, + "probability": 0.9542 + }, + { + "start": 3616.4, + "end": 3618.74, + "probability": 0.9927 + }, + { + "start": 3619.08, + "end": 3621.32, + "probability": 0.9983 + }, + { + "start": 3621.86, + "end": 3623.38, + "probability": 0.778 + }, + { + "start": 3624.28, + "end": 3627.4, + "probability": 0.981 + }, + { + "start": 3627.64, + "end": 3631.52, + "probability": 0.9912 + }, + { + "start": 3632.14, + "end": 3633.0, + "probability": 0.796 + }, + { + "start": 3633.26, + "end": 3633.86, + "probability": 0.6532 + }, + { + "start": 3634.5, + "end": 3636.28, + "probability": 0.9855 + }, + { + "start": 3637.24, + "end": 3638.8, + "probability": 0.4915 + }, + { + "start": 3639.48, + "end": 3642.7, + "probability": 0.9 + }, + { + "start": 3643.36, + "end": 3645.2, + "probability": 0.9313 + }, + { + "start": 3646.56, + "end": 3649.8, + "probability": 0.8583 + }, + { + "start": 3650.64, + "end": 3653.08, + "probability": 0.9944 + }, + { + "start": 3653.78, + "end": 3659.54, + "probability": 0.9988 + }, + { + "start": 3659.54, + "end": 3666.46, + "probability": 0.9986 + }, + { + "start": 3666.78, + "end": 3667.38, + "probability": 0.5512 + }, + { + "start": 3667.56, + "end": 3668.12, + "probability": 0.404 + }, + { + "start": 3669.66, + "end": 3673.72, + "probability": 0.9839 + }, + { + "start": 3673.72, + "end": 3677.16, + "probability": 0.9907 + }, + { + "start": 3677.4, + "end": 3679.68, + "probability": 0.8876 + }, + { + "start": 3679.78, + "end": 3680.6, + "probability": 0.7644 + }, + { + "start": 3683.72, + "end": 3684.98, + "probability": 0.9868 + }, + { + "start": 3685.86, + "end": 3686.18, + "probability": 0.9261 + }, + { + "start": 3687.18, + "end": 3688.42, + "probability": 0.9928 + }, + { + "start": 3689.48, + "end": 3690.7, + "probability": 0.99 + }, + { + "start": 3691.48, + "end": 3692.72, + "probability": 0.9275 + }, + { + "start": 3694.68, + "end": 3695.74, + "probability": 0.5236 + }, + { + "start": 3695.74, + "end": 3697.66, + "probability": 0.733 + }, + { + "start": 3698.24, + "end": 3698.88, + "probability": 0.7931 + }, + { + "start": 3698.9, + "end": 3701.72, + "probability": 0.9875 + }, + { + "start": 3702.2, + "end": 3706.6, + "probability": 0.9469 + }, + { + "start": 3706.98, + "end": 3708.64, + "probability": 0.9851 + }, + { + "start": 3712.0, + "end": 3712.3, + "probability": 0.7922 + }, + { + "start": 3713.06, + "end": 3714.74, + "probability": 0.9119 + }, + { + "start": 3715.3, + "end": 3717.06, + "probability": 0.9922 + }, + { + "start": 3718.02, + "end": 3721.4, + "probability": 0.984 + }, + { + "start": 3721.56, + "end": 3722.7, + "probability": 0.7987 + }, + { + "start": 3722.82, + "end": 3723.42, + "probability": 0.1017 + }, + { + "start": 3724.42, + "end": 3727.46, + "probability": 0.9222 + }, + { + "start": 3728.3, + "end": 3729.52, + "probability": 0.9349 + }, + { + "start": 3730.8, + "end": 3731.52, + "probability": 0.9115 + }, + { + "start": 3732.16, + "end": 3733.26, + "probability": 0.8265 + }, + { + "start": 3733.58, + "end": 3733.84, + "probability": 0.8342 + }, + { + "start": 3734.02, + "end": 3734.68, + "probability": 0.8757 + }, + { + "start": 3734.8, + "end": 3737.7, + "probability": 0.9901 + }, + { + "start": 3738.04, + "end": 3739.36, + "probability": 0.7468 + }, + { + "start": 3739.62, + "end": 3741.18, + "probability": 0.9973 + }, + { + "start": 3741.92, + "end": 3743.0, + "probability": 0.991 + }, + { + "start": 3743.86, + "end": 3747.9, + "probability": 0.9963 + }, + { + "start": 3748.22, + "end": 3750.36, + "probability": 0.9995 + }, + { + "start": 3751.78, + "end": 3752.62, + "probability": 0.9678 + }, + { + "start": 3753.94, + "end": 3756.92, + "probability": 0.9834 + }, + { + "start": 3757.68, + "end": 3757.94, + "probability": 0.4799 + }, + { + "start": 3757.98, + "end": 3758.62, + "probability": 0.8469 + }, + { + "start": 3758.8, + "end": 3762.52, + "probability": 0.9805 + }, + { + "start": 3763.14, + "end": 3765.1, + "probability": 0.9975 + }, + { + "start": 3765.52, + "end": 3766.2, + "probability": 0.9515 + }, + { + "start": 3766.32, + "end": 3766.84, + "probability": 0.682 + }, + { + "start": 3767.42, + "end": 3768.74, + "probability": 0.8626 + }, + { + "start": 3768.84, + "end": 3769.86, + "probability": 0.9912 + }, + { + "start": 3770.4, + "end": 3772.32, + "probability": 0.9945 + }, + { + "start": 3773.06, + "end": 3773.93, + "probability": 0.9624 + }, + { + "start": 3774.78, + "end": 3775.98, + "probability": 0.9717 + }, + { + "start": 3776.16, + "end": 3776.72, + "probability": 0.9644 + }, + { + "start": 3777.68, + "end": 3781.76, + "probability": 0.9956 + }, + { + "start": 3781.76, + "end": 3785.98, + "probability": 0.9945 + }, + { + "start": 3786.5, + "end": 3786.82, + "probability": 0.878 + }, + { + "start": 3787.38, + "end": 3788.42, + "probability": 0.95 + }, + { + "start": 3788.9, + "end": 3789.16, + "probability": 0.9889 + }, + { + "start": 3793.82, + "end": 3794.54, + "probability": 0.8298 + }, + { + "start": 3795.74, + "end": 3798.16, + "probability": 0.9965 + }, + { + "start": 3799.32, + "end": 3800.7, + "probability": 0.9999 + }, + { + "start": 3801.3, + "end": 3802.48, + "probability": 0.98 + }, + { + "start": 3802.86, + "end": 3803.04, + "probability": 0.8262 + }, + { + "start": 3804.48, + "end": 3805.6, + "probability": 0.9985 + }, + { + "start": 3806.9, + "end": 3810.58, + "probability": 0.9655 + }, + { + "start": 3811.1, + "end": 3814.62, + "probability": 0.9834 + }, + { + "start": 3815.86, + "end": 3817.04, + "probability": 0.9925 + }, + { + "start": 3818.04, + "end": 3820.38, + "probability": 0.9917 + }, + { + "start": 3821.04, + "end": 3822.42, + "probability": 0.7512 + }, + { + "start": 3822.58, + "end": 3823.82, + "probability": 0.9971 + }, + { + "start": 3824.42, + "end": 3827.16, + "probability": 0.9934 + }, + { + "start": 3827.32, + "end": 3830.04, + "probability": 0.9328 + }, + { + "start": 3830.46, + "end": 3831.81, + "probability": 0.9397 + }, + { + "start": 3831.98, + "end": 3832.64, + "probability": 0.7707 + }, + { + "start": 3833.54, + "end": 3834.38, + "probability": 0.9349 + }, + { + "start": 3834.96, + "end": 3838.84, + "probability": 0.9415 + }, + { + "start": 3840.38, + "end": 3841.92, + "probability": 0.9539 + }, + { + "start": 3843.0, + "end": 3843.64, + "probability": 0.7251 + }, + { + "start": 3844.62, + "end": 3845.5, + "probability": 0.9422 + }, + { + "start": 3846.52, + "end": 3847.4, + "probability": 0.8172 + }, + { + "start": 3848.04, + "end": 3848.52, + "probability": 0.8719 + }, + { + "start": 3849.22, + "end": 3850.28, + "probability": 0.9175 + }, + { + "start": 3850.88, + "end": 3851.4, + "probability": 0.9725 + }, + { + "start": 3853.12, + "end": 3854.94, + "probability": 0.8531 + }, + { + "start": 3856.08, + "end": 3858.48, + "probability": 0.9523 + }, + { + "start": 3859.84, + "end": 3861.3, + "probability": 0.9978 + }, + { + "start": 3863.52, + "end": 3866.26, + "probability": 0.79 + }, + { + "start": 3866.52, + "end": 3868.91, + "probability": 0.7223 + }, + { + "start": 3869.1, + "end": 3870.42, + "probability": 0.716 + }, + { + "start": 3870.48, + "end": 3871.4, + "probability": 0.8755 + }, + { + "start": 3871.78, + "end": 3872.62, + "probability": 0.8364 + }, + { + "start": 3872.76, + "end": 3874.16, + "probability": 0.9842 + }, + { + "start": 3874.92, + "end": 3879.04, + "probability": 0.9927 + }, + { + "start": 3879.68, + "end": 3880.44, + "probability": 0.7441 + }, + { + "start": 3881.1, + "end": 3881.66, + "probability": 0.7888 + }, + { + "start": 3882.0, + "end": 3882.62, + "probability": 0.9392 + }, + { + "start": 3882.68, + "end": 3883.26, + "probability": 0.8203 + }, + { + "start": 3883.74, + "end": 3884.92, + "probability": 0.8383 + }, + { + "start": 3886.1, + "end": 3886.74, + "probability": 0.99 + }, + { + "start": 3887.68, + "end": 3888.42, + "probability": 0.9875 + }, + { + "start": 3888.98, + "end": 3889.64, + "probability": 0.9268 + }, + { + "start": 3890.22, + "end": 3890.8, + "probability": 0.9785 + }, + { + "start": 3890.88, + "end": 3891.82, + "probability": 0.8882 + }, + { + "start": 3891.88, + "end": 3895.46, + "probability": 0.9936 + }, + { + "start": 3896.0, + "end": 3897.12, + "probability": 0.9966 + }, + { + "start": 3897.28, + "end": 3897.46, + "probability": 0.5895 + }, + { + "start": 3897.46, + "end": 3899.1, + "probability": 0.9907 + }, + { + "start": 3899.92, + "end": 3900.48, + "probability": 0.5779 + }, + { + "start": 3901.34, + "end": 3904.1, + "probability": 0.9824 + }, + { + "start": 3904.2, + "end": 3907.14, + "probability": 0.998 + }, + { + "start": 3907.16, + "end": 3910.7, + "probability": 0.9896 + }, + { + "start": 3911.2, + "end": 3913.24, + "probability": 0.9672 + }, + { + "start": 3913.9, + "end": 3917.62, + "probability": 0.9907 + }, + { + "start": 3918.08, + "end": 3918.44, + "probability": 0.5272 + }, + { + "start": 3918.54, + "end": 3919.62, + "probability": 0.9936 + }, + { + "start": 3919.98, + "end": 3921.2, + "probability": 0.9698 + }, + { + "start": 3921.2, + "end": 3921.3, + "probability": 0.8698 + }, + { + "start": 3923.18, + "end": 3925.6, + "probability": 0.8652 + }, + { + "start": 3926.14, + "end": 3927.48, + "probability": 0.9289 + }, + { + "start": 3928.34, + "end": 3930.26, + "probability": 0.9814 + }, + { + "start": 3930.86, + "end": 3932.08, + "probability": 0.9763 + }, + { + "start": 3932.7, + "end": 3933.64, + "probability": 0.9733 + }, + { + "start": 3934.7, + "end": 3936.59, + "probability": 0.891 + }, + { + "start": 3937.96, + "end": 3940.64, + "probability": 0.9355 + }, + { + "start": 3942.04, + "end": 3943.26, + "probability": 0.9443 + }, + { + "start": 3943.78, + "end": 3944.18, + "probability": 0.8312 + }, + { + "start": 3944.22, + "end": 3944.58, + "probability": 0.8805 + }, + { + "start": 3945.0, + "end": 3947.94, + "probability": 0.9883 + }, + { + "start": 3948.62, + "end": 3949.52, + "probability": 0.9668 + }, + { + "start": 3950.14, + "end": 3950.99, + "probability": 0.9863 + }, + { + "start": 3951.64, + "end": 3952.42, + "probability": 0.6663 + }, + { + "start": 3952.96, + "end": 3954.34, + "probability": 0.7201 + }, + { + "start": 3955.38, + "end": 3956.92, + "probability": 0.8325 + }, + { + "start": 3958.62, + "end": 3959.22, + "probability": 0.8868 + }, + { + "start": 3960.24, + "end": 3961.91, + "probability": 0.9263 + }, + { + "start": 3964.52, + "end": 3969.88, + "probability": 0.9955 + }, + { + "start": 3970.64, + "end": 3973.66, + "probability": 0.9795 + }, + { + "start": 3973.84, + "end": 3974.38, + "probability": 0.6625 + }, + { + "start": 3974.44, + "end": 3975.94, + "probability": 0.955 + }, + { + "start": 3976.72, + "end": 3977.68, + "probability": 0.7094 + }, + { + "start": 3978.44, + "end": 3979.32, + "probability": 0.8825 + }, + { + "start": 3981.12, + "end": 3982.94, + "probability": 0.8914 + }, + { + "start": 3983.48, + "end": 3983.74, + "probability": 0.8369 + }, + { + "start": 3984.24, + "end": 3989.33, + "probability": 0.9896 + }, + { + "start": 3990.1, + "end": 3993.32, + "probability": 0.9739 + }, + { + "start": 3993.42, + "end": 3993.9, + "probability": 0.575 + }, + { + "start": 3994.02, + "end": 3996.06, + "probability": 0.8978 + }, + { + "start": 3997.66, + "end": 3998.24, + "probability": 0.8283 + }, + { + "start": 3998.94, + "end": 4002.36, + "probability": 0.9967 + }, + { + "start": 4003.08, + "end": 4006.06, + "probability": 0.9792 + }, + { + "start": 4008.14, + "end": 4008.58, + "probability": 0.72 + }, + { + "start": 4009.86, + "end": 4010.9, + "probability": 0.8577 + }, + { + "start": 4012.16, + "end": 4014.4, + "probability": 0.9757 + }, + { + "start": 4014.94, + "end": 4018.7, + "probability": 0.9889 + }, + { + "start": 4018.78, + "end": 4019.18, + "probability": 0.213 + }, + { + "start": 4019.94, + "end": 4023.48, + "probability": 0.9947 + }, + { + "start": 4023.76, + "end": 4024.18, + "probability": 0.7005 + }, + { + "start": 4024.32, + "end": 4024.8, + "probability": 0.7585 + }, + { + "start": 4026.0, + "end": 4028.92, + "probability": 0.9965 + }, + { + "start": 4029.72, + "end": 4030.66, + "probability": 0.8071 + }, + { + "start": 4031.28, + "end": 4032.46, + "probability": 0.928 + }, + { + "start": 4034.92, + "end": 4036.74, + "probability": 0.9219 + }, + { + "start": 4037.36, + "end": 4038.86, + "probability": 0.9949 + }, + { + "start": 4039.48, + "end": 4041.22, + "probability": 0.806 + }, + { + "start": 4041.84, + "end": 4044.1, + "probability": 0.9861 + }, + { + "start": 4044.92, + "end": 4046.02, + "probability": 0.9351 + }, + { + "start": 4046.5, + "end": 4048.21, + "probability": 0.9333 + }, + { + "start": 4048.36, + "end": 4050.71, + "probability": 0.9937 + }, + { + "start": 4051.94, + "end": 4052.76, + "probability": 0.9435 + }, + { + "start": 4053.54, + "end": 4056.54, + "probability": 0.9906 + }, + { + "start": 4059.78, + "end": 4060.08, + "probability": 0.7918 + }, + { + "start": 4061.62, + "end": 4063.44, + "probability": 0.995 + }, + { + "start": 4064.48, + "end": 4066.64, + "probability": 0.9929 + }, + { + "start": 4067.4, + "end": 4068.38, + "probability": 0.735 + }, + { + "start": 4070.18, + "end": 4070.78, + "probability": 0.753 + }, + { + "start": 4071.64, + "end": 4074.28, + "probability": 0.9463 + }, + { + "start": 4074.44, + "end": 4074.8, + "probability": 0.864 + }, + { + "start": 4075.8, + "end": 4076.22, + "probability": 0.7142 + }, + { + "start": 4076.94, + "end": 4078.1, + "probability": 0.9749 + }, + { + "start": 4079.12, + "end": 4082.3, + "probability": 0.9253 + }, + { + "start": 4082.56, + "end": 4083.72, + "probability": 0.6738 + }, + { + "start": 4083.86, + "end": 4085.2, + "probability": 0.9578 + }, + { + "start": 4085.34, + "end": 4086.0, + "probability": 0.3508 + }, + { + "start": 4086.36, + "end": 4088.66, + "probability": 0.8614 + }, + { + "start": 4089.1, + "end": 4090.8, + "probability": 0.9683 + }, + { + "start": 4091.38, + "end": 4094.12, + "probability": 0.9945 + }, + { + "start": 4095.0, + "end": 4099.42, + "probability": 0.9651 + }, + { + "start": 4099.88, + "end": 4101.36, + "probability": 0.999 + }, + { + "start": 4101.74, + "end": 4105.6, + "probability": 0.9871 + }, + { + "start": 4107.52, + "end": 4108.34, + "probability": 0.5129 + }, + { + "start": 4109.18, + "end": 4109.76, + "probability": 0.9382 + }, + { + "start": 4110.46, + "end": 4112.04, + "probability": 0.9918 + }, + { + "start": 4112.78, + "end": 4113.84, + "probability": 0.6983 + }, + { + "start": 4114.6, + "end": 4115.92, + "probability": 0.7609 + }, + { + "start": 4116.66, + "end": 4118.68, + "probability": 0.7632 + }, + { + "start": 4119.28, + "end": 4120.5, + "probability": 0.9825 + }, + { + "start": 4121.48, + "end": 4122.16, + "probability": 0.6142 + }, + { + "start": 4122.48, + "end": 4127.24, + "probability": 0.9343 + }, + { + "start": 4127.24, + "end": 4131.78, + "probability": 0.9961 + }, + { + "start": 4132.28, + "end": 4134.88, + "probability": 0.8765 + }, + { + "start": 4135.04, + "end": 4140.12, + "probability": 0.9939 + }, + { + "start": 4140.72, + "end": 4141.96, + "probability": 0.7717 + }, + { + "start": 4142.98, + "end": 4144.96, + "probability": 0.9014 + }, + { + "start": 4145.19, + "end": 4147.1, + "probability": 0.9932 + }, + { + "start": 4148.04, + "end": 4151.76, + "probability": 0.9581 + }, + { + "start": 4152.3, + "end": 4152.7, + "probability": 0.3782 + }, + { + "start": 4154.22, + "end": 4157.68, + "probability": 0.9625 + }, + { + "start": 4157.86, + "end": 4158.64, + "probability": 0.8429 + }, + { + "start": 4159.84, + "end": 4161.64, + "probability": 0.998 + }, + { + "start": 4161.76, + "end": 4162.5, + "probability": 0.9918 + }, + { + "start": 4163.46, + "end": 4165.91, + "probability": 0.9966 + }, + { + "start": 4166.28, + "end": 4170.42, + "probability": 0.8611 + }, + { + "start": 4170.96, + "end": 4172.13, + "probability": 0.8905 + }, + { + "start": 4173.18, + "end": 4173.72, + "probability": 0.8015 + }, + { + "start": 4174.58, + "end": 4175.82, + "probability": 0.9842 + }, + { + "start": 4176.52, + "end": 4177.2, + "probability": 0.9671 + }, + { + "start": 4177.78, + "end": 4182.48, + "probability": 0.9836 + }, + { + "start": 4183.56, + "end": 4184.14, + "probability": 0.8099 + }, + { + "start": 4185.2, + "end": 4187.7, + "probability": 0.9973 + }, + { + "start": 4188.5, + "end": 4193.22, + "probability": 0.9965 + }, + { + "start": 4193.36, + "end": 4193.7, + "probability": 0.8171 + }, + { + "start": 4194.82, + "end": 4195.28, + "probability": 0.9019 + }, + { + "start": 4195.92, + "end": 4196.82, + "probability": 0.8299 + }, + { + "start": 4197.54, + "end": 4199.22, + "probability": 0.9593 + }, + { + "start": 4200.6, + "end": 4202.52, + "probability": 0.9982 + }, + { + "start": 4202.52, + "end": 4205.38, + "probability": 0.9729 + }, + { + "start": 4206.04, + "end": 4208.3, + "probability": 0.8535 + }, + { + "start": 4209.1, + "end": 4212.56, + "probability": 0.9833 + }, + { + "start": 4212.98, + "end": 4213.5, + "probability": 0.7217 + }, + { + "start": 4213.52, + "end": 4214.94, + "probability": 0.4994 + }, + { + "start": 4216.38, + "end": 4221.32, + "probability": 0.9766 + }, + { + "start": 4221.72, + "end": 4223.8, + "probability": 0.6224 + }, + { + "start": 4224.58, + "end": 4226.52, + "probability": 0.9807 + }, + { + "start": 4228.22, + "end": 4228.89, + "probability": 0.9662 + }, + { + "start": 4230.3, + "end": 4233.4, + "probability": 0.9628 + }, + { + "start": 4234.16, + "end": 4234.9, + "probability": 0.5509 + }, + { + "start": 4235.7, + "end": 4236.92, + "probability": 0.9858 + }, + { + "start": 4237.54, + "end": 4238.65, + "probability": 0.7963 + }, + { + "start": 4239.78, + "end": 4240.12, + "probability": 0.4849 + }, + { + "start": 4240.94, + "end": 4241.84, + "probability": 0.8828 + }, + { + "start": 4242.38, + "end": 4245.48, + "probability": 0.9938 + }, + { + "start": 4247.08, + "end": 4247.92, + "probability": 0.7054 + }, + { + "start": 4248.04, + "end": 4249.12, + "probability": 0.9883 + }, + { + "start": 4249.16, + "end": 4251.18, + "probability": 0.9662 + }, + { + "start": 4251.6, + "end": 4252.46, + "probability": 0.9759 + }, + { + "start": 4252.7, + "end": 4254.54, + "probability": 0.8692 + }, + { + "start": 4255.78, + "end": 4259.44, + "probability": 0.6641 + }, + { + "start": 4259.52, + "end": 4263.1, + "probability": 0.9792 + }, + { + "start": 4263.82, + "end": 4265.24, + "probability": 0.8982 + }, + { + "start": 4265.78, + "end": 4266.06, + "probability": 0.7717 + }, + { + "start": 4266.82, + "end": 4268.7, + "probability": 0.9983 + }, + { + "start": 4269.04, + "end": 4269.36, + "probability": 0.9692 + }, + { + "start": 4269.82, + "end": 4270.66, + "probability": 0.9329 + }, + { + "start": 4271.52, + "end": 4273.1, + "probability": 0.741 + }, + { + "start": 4273.72, + "end": 4275.22, + "probability": 0.8398 + }, + { + "start": 4275.92, + "end": 4276.68, + "probability": 0.1927 + }, + { + "start": 4277.5, + "end": 4280.5, + "probability": 0.8971 + }, + { + "start": 4281.54, + "end": 4283.24, + "probability": 0.9978 + }, + { + "start": 4285.14, + "end": 4287.4, + "probability": 0.9977 + }, + { + "start": 4288.2, + "end": 4289.44, + "probability": 0.8872 + }, + { + "start": 4290.7, + "end": 4294.68, + "probability": 0.9926 + }, + { + "start": 4295.62, + "end": 4298.14, + "probability": 0.7051 + }, + { + "start": 4305.14, + "end": 4305.4, + "probability": 0.2192 + }, + { + "start": 4306.74, + "end": 4307.32, + "probability": 0.5051 + }, + { + "start": 4308.46, + "end": 4308.78, + "probability": 0.978 + }, + { + "start": 4308.78, + "end": 4309.55, + "probability": 0.2454 + }, + { + "start": 4310.46, + "end": 4312.2, + "probability": 0.6384 + }, + { + "start": 4312.22, + "end": 4313.6, + "probability": 0.5754 + }, + { + "start": 4313.6, + "end": 4314.34, + "probability": 0.7356 + }, + { + "start": 4314.54, + "end": 4314.66, + "probability": 0.8513 + }, + { + "start": 4314.76, + "end": 4316.35, + "probability": 0.1842 + }, + { + "start": 4316.56, + "end": 4316.82, + "probability": 0.2803 + }, + { + "start": 4316.82, + "end": 4319.74, + "probability": 0.6295 + }, + { + "start": 4330.44, + "end": 4335.42, + "probability": 0.2163 + }, + { + "start": 4335.8, + "end": 4336.36, + "probability": 0.8524 + }, + { + "start": 4343.34, + "end": 4344.22, + "probability": 0.0074 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.0, + "end": 4436.0, + "probability": 0.0 + }, + { + "start": 4436.08, + "end": 4436.76, + "probability": 0.0225 + }, + { + "start": 4437.64, + "end": 4440.48, + "probability": 0.1 + }, + { + "start": 4440.56, + "end": 4441.72, + "probability": 0.158 + }, + { + "start": 4442.48, + "end": 4446.72, + "probability": 0.2056 + }, + { + "start": 4449.2, + "end": 4450.88, + "probability": 0.5843 + }, + { + "start": 4451.82, + "end": 4453.42, + "probability": 0.8874 + }, + { + "start": 4453.5, + "end": 4454.04, + "probability": 0.7644 + }, + { + "start": 4454.48, + "end": 4455.96, + "probability": 0.8243 + }, + { + "start": 4457.14, + "end": 4458.36, + "probability": 0.9949 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.0 + }, + { + "start": 4557.0, + "end": 4557.48, + "probability": 0.0456 + }, + { + "start": 4558.84, + "end": 4561.14, + "probability": 0.9932 + }, + { + "start": 4563.2, + "end": 4563.88, + "probability": 0.9204 + }, + { + "start": 4566.4, + "end": 4567.56, + "probability": 0.899 + }, + { + "start": 4568.88, + "end": 4571.0, + "probability": 0.992 + }, + { + "start": 4572.14, + "end": 4574.68, + "probability": 0.9751 + }, + { + "start": 4574.78, + "end": 4577.54, + "probability": 0.9834 + }, + { + "start": 4578.9, + "end": 4580.2, + "probability": 0.9851 + }, + { + "start": 4580.98, + "end": 4581.96, + "probability": 0.9912 + }, + { + "start": 4582.02, + "end": 4583.44, + "probability": 0.9927 + }, + { + "start": 4583.54, + "end": 4583.94, + "probability": 0.8529 + }, + { + "start": 4584.6, + "end": 4588.32, + "probability": 0.9973 + }, + { + "start": 4588.58, + "end": 4588.76, + "probability": 0.4774 + }, + { + "start": 4589.6, + "end": 4592.52, + "probability": 0.9709 + }, + { + "start": 4593.16, + "end": 4594.5, + "probability": 0.9767 + }, + { + "start": 4595.92, + "end": 4600.48, + "probability": 0.9973 + }, + { + "start": 4601.44, + "end": 4603.1, + "probability": 0.9943 + }, + { + "start": 4603.72, + "end": 4606.2, + "probability": 0.9805 + }, + { + "start": 4607.42, + "end": 4607.54, + "probability": 0.0483 + }, + { + "start": 4607.54, + "end": 4611.06, + "probability": 0.993 + }, + { + "start": 4611.6, + "end": 4614.58, + "probability": 0.954 + }, + { + "start": 4615.36, + "end": 4618.29, + "probability": 0.9951 + }, + { + "start": 4619.66, + "end": 4623.3, + "probability": 0.7929 + }, + { + "start": 4624.28, + "end": 4628.12, + "probability": 0.9931 + }, + { + "start": 4628.76, + "end": 4630.0, + "probability": 0.9424 + }, + { + "start": 4630.3, + "end": 4631.64, + "probability": 0.9525 + }, + { + "start": 4632.1, + "end": 4635.3, + "probability": 0.9706 + }, + { + "start": 4636.12, + "end": 4636.4, + "probability": 0.4337 + }, + { + "start": 4636.66, + "end": 4640.38, + "probability": 0.9582 + }, + { + "start": 4641.58, + "end": 4642.08, + "probability": 0.8451 + }, + { + "start": 4642.62, + "end": 4645.8, + "probability": 0.9963 + }, + { + "start": 4646.18, + "end": 4646.58, + "probability": 0.8179 + }, + { + "start": 4647.42, + "end": 4651.58, + "probability": 0.9923 + }, + { + "start": 4651.9, + "end": 4653.8, + "probability": 0.9365 + }, + { + "start": 4655.02, + "end": 4657.66, + "probability": 0.8834 + }, + { + "start": 4658.46, + "end": 4659.62, + "probability": 0.9073 + }, + { + "start": 4659.64, + "end": 4662.32, + "probability": 0.9727 + }, + { + "start": 4662.38, + "end": 4662.54, + "probability": 0.833 + }, + { + "start": 4663.46, + "end": 4664.84, + "probability": 0.9917 + }, + { + "start": 4665.3, + "end": 4666.22, + "probability": 0.9952 + }, + { + "start": 4666.32, + "end": 4667.68, + "probability": 0.925 + }, + { + "start": 4668.08, + "end": 4670.94, + "probability": 0.9756 + }, + { + "start": 4671.86, + "end": 4675.62, + "probability": 0.9747 + }, + { + "start": 4675.66, + "end": 4676.34, + "probability": 0.971 + }, + { + "start": 4676.42, + "end": 4677.0, + "probability": 0.9464 + }, + { + "start": 4678.2, + "end": 4680.74, + "probability": 0.9844 + }, + { + "start": 4681.94, + "end": 4686.54, + "probability": 0.9829 + }, + { + "start": 4687.5, + "end": 4688.34, + "probability": 0.9819 + }, + { + "start": 4688.44, + "end": 4688.88, + "probability": 0.7842 + }, + { + "start": 4689.26, + "end": 4691.46, + "probability": 0.9982 + }, + { + "start": 4692.58, + "end": 4693.86, + "probability": 0.9814 + }, + { + "start": 4694.18, + "end": 4696.14, + "probability": 0.9976 + }, + { + "start": 4696.78, + "end": 4698.44, + "probability": 0.9886 + }, + { + "start": 4698.86, + "end": 4699.92, + "probability": 0.876 + }, + { + "start": 4700.28, + "end": 4700.84, + "probability": 0.9636 + }, + { + "start": 4700.9, + "end": 4701.62, + "probability": 0.9425 + }, + { + "start": 4702.98, + "end": 4706.38, + "probability": 0.9946 + }, + { + "start": 4706.38, + "end": 4709.18, + "probability": 0.9614 + }, + { + "start": 4709.74, + "end": 4712.98, + "probability": 0.9968 + }, + { + "start": 4713.04, + "end": 4713.58, + "probability": 0.9231 + }, + { + "start": 4713.96, + "end": 4714.55, + "probability": 0.9639 + }, + { + "start": 4715.76, + "end": 4718.48, + "probability": 0.9956 + }, + { + "start": 4718.92, + "end": 4720.38, + "probability": 0.9713 + }, + { + "start": 4720.94, + "end": 4722.88, + "probability": 0.9905 + }, + { + "start": 4723.26, + "end": 4724.06, + "probability": 0.9357 + }, + { + "start": 4724.46, + "end": 4725.2, + "probability": 0.846 + }, + { + "start": 4725.78, + "end": 4725.96, + "probability": 0.9736 + }, + { + "start": 4726.56, + "end": 4730.14, + "probability": 0.9814 + }, + { + "start": 4730.32, + "end": 4731.94, + "probability": 0.993 + }, + { + "start": 4732.62, + "end": 4734.12, + "probability": 0.8625 + }, + { + "start": 4734.2, + "end": 4737.58, + "probability": 0.6822 + }, + { + "start": 4737.76, + "end": 4738.54, + "probability": 0.8508 + }, + { + "start": 4738.96, + "end": 4740.02, + "probability": 0.8595 + }, + { + "start": 4740.32, + "end": 4741.98, + "probability": 0.7221 + }, + { + "start": 4742.32, + "end": 4745.94, + "probability": 0.9986 + }, + { + "start": 4745.94, + "end": 4750.06, + "probability": 0.9942 + }, + { + "start": 4750.96, + "end": 4753.22, + "probability": 0.9965 + }, + { + "start": 4754.2, + "end": 4760.12, + "probability": 0.9631 + }, + { + "start": 4760.78, + "end": 4765.16, + "probability": 0.9958 + }, + { + "start": 4765.56, + "end": 4765.8, + "probability": 0.2541 + }, + { + "start": 4765.82, + "end": 4770.04, + "probability": 0.9808 + }, + { + "start": 4770.42, + "end": 4771.64, + "probability": 0.8804 + }, + { + "start": 4772.26, + "end": 4775.12, + "probability": 0.9971 + }, + { + "start": 4775.5, + "end": 4779.1, + "probability": 0.9787 + }, + { + "start": 4780.02, + "end": 4780.14, + "probability": 0.6835 + }, + { + "start": 4780.24, + "end": 4781.1, + "probability": 0.8972 + }, + { + "start": 4781.16, + "end": 4783.74, + "probability": 0.9071 + }, + { + "start": 4783.94, + "end": 4785.14, + "probability": 0.9912 + }, + { + "start": 4785.3, + "end": 4785.9, + "probability": 0.9734 + }, + { + "start": 4786.98, + "end": 4787.91, + "probability": 0.9829 + }, + { + "start": 4788.16, + "end": 4790.24, + "probability": 0.9663 + }, + { + "start": 4790.72, + "end": 4793.5, + "probability": 0.9856 + }, + { + "start": 4794.06, + "end": 4795.62, + "probability": 0.718 + }, + { + "start": 4796.76, + "end": 4799.28, + "probability": 0.9842 + }, + { + "start": 4799.7, + "end": 4802.3, + "probability": 0.9625 + }, + { + "start": 4803.06, + "end": 4804.06, + "probability": 0.8102 + }, + { + "start": 4804.8, + "end": 4805.24, + "probability": 0.6399 + }, + { + "start": 4805.38, + "end": 4807.2, + "probability": 0.9209 + }, + { + "start": 4807.26, + "end": 4807.86, + "probability": 0.9389 + }, + { + "start": 4807.98, + "end": 4808.54, + "probability": 0.9764 + }, + { + "start": 4808.64, + "end": 4809.48, + "probability": 0.7617 + }, + { + "start": 4810.3, + "end": 4812.12, + "probability": 0.9927 + }, + { + "start": 4812.74, + "end": 4818.3, + "probability": 0.9951 + }, + { + "start": 4818.3, + "end": 4823.58, + "probability": 0.939 + }, + { + "start": 4823.96, + "end": 4824.8, + "probability": 0.5345 + }, + { + "start": 4825.24, + "end": 4826.96, + "probability": 0.9517 + }, + { + "start": 4827.06, + "end": 4827.9, + "probability": 0.739 + }, + { + "start": 4828.34, + "end": 4829.62, + "probability": 0.7368 + }, + { + "start": 4829.74, + "end": 4830.12, + "probability": 0.7409 + }, + { + "start": 4830.6, + "end": 4831.04, + "probability": 0.8119 + }, + { + "start": 4831.46, + "end": 4832.08, + "probability": 0.9828 + }, + { + "start": 4833.1, + "end": 4835.6, + "probability": 0.9873 + }, + { + "start": 4836.98, + "end": 4838.34, + "probability": 0.9927 + }, + { + "start": 4838.96, + "end": 4842.82, + "probability": 0.9451 + }, + { + "start": 4843.34, + "end": 4846.82, + "probability": 0.9826 + }, + { + "start": 4848.52, + "end": 4848.96, + "probability": 0.5331 + }, + { + "start": 4850.22, + "end": 4851.92, + "probability": 0.9425 + }, + { + "start": 4852.6, + "end": 4855.3, + "probability": 0.9971 + }, + { + "start": 4856.18, + "end": 4859.18, + "probability": 0.9971 + }, + { + "start": 4859.82, + "end": 4861.34, + "probability": 0.7675 + }, + { + "start": 4861.44, + "end": 4863.7, + "probability": 0.999 + }, + { + "start": 4864.44, + "end": 4865.26, + "probability": 0.9377 + }, + { + "start": 4865.88, + "end": 4869.44, + "probability": 0.9793 + }, + { + "start": 4870.04, + "end": 4871.56, + "probability": 0.6999 + }, + { + "start": 4872.34, + "end": 4874.0, + "probability": 0.9991 + }, + { + "start": 4875.08, + "end": 4876.28, + "probability": 0.8746 + }, + { + "start": 4877.96, + "end": 4882.36, + "probability": 0.9985 + }, + { + "start": 4883.18, + "end": 4884.84, + "probability": 0.9391 + }, + { + "start": 4885.54, + "end": 4886.18, + "probability": 0.9722 + }, + { + "start": 4886.9, + "end": 4887.74, + "probability": 0.9548 + }, + { + "start": 4890.0, + "end": 4890.52, + "probability": 0.7482 + }, + { + "start": 4890.52, + "end": 4891.88, + "probability": 0.9965 + }, + { + "start": 4893.66, + "end": 4897.17, + "probability": 0.9871 + }, + { + "start": 4898.0, + "end": 4900.28, + "probability": 0.8911 + }, + { + "start": 4901.38, + "end": 4904.73, + "probability": 0.7992 + }, + { + "start": 4905.6, + "end": 4908.16, + "probability": 0.8945 + }, + { + "start": 4908.56, + "end": 4910.1, + "probability": 0.9862 + }, + { + "start": 4911.82, + "end": 4912.5, + "probability": 0.8298 + }, + { + "start": 4913.28, + "end": 4914.66, + "probability": 0.9498 + }, + { + "start": 4915.36, + "end": 4918.82, + "probability": 0.9685 + }, + { + "start": 4919.3, + "end": 4922.92, + "probability": 0.8605 + }, + { + "start": 4923.94, + "end": 4925.16, + "probability": 0.8369 + }, + { + "start": 4925.86, + "end": 4927.48, + "probability": 0.8049 + }, + { + "start": 4928.36, + "end": 4932.36, + "probability": 0.98 + }, + { + "start": 4932.92, + "end": 4933.88, + "probability": 0.9977 + }, + { + "start": 4934.52, + "end": 4937.9, + "probability": 0.9993 + }, + { + "start": 4938.72, + "end": 4942.2, + "probability": 0.5228 + }, + { + "start": 4943.04, + "end": 4944.32, + "probability": 0.8141 + }, + { + "start": 4944.88, + "end": 4945.62, + "probability": 0.883 + }, + { + "start": 4946.26, + "end": 4947.98, + "probability": 0.8612 + }, + { + "start": 4948.96, + "end": 4951.3, + "probability": 0.7131 + }, + { + "start": 4952.42, + "end": 4953.8, + "probability": 0.9739 + }, + { + "start": 4954.56, + "end": 4957.26, + "probability": 0.5115 + }, + { + "start": 4957.96, + "end": 4959.04, + "probability": 0.9705 + }, + { + "start": 4959.58, + "end": 4961.36, + "probability": 0.8106 + }, + { + "start": 4961.92, + "end": 4964.2, + "probability": 0.9425 + }, + { + "start": 4965.54, + "end": 4968.52, + "probability": 0.9827 + }, + { + "start": 4969.9, + "end": 4972.4, + "probability": 0.9867 + }, + { + "start": 4972.88, + "end": 4974.84, + "probability": 0.9929 + }, + { + "start": 4975.24, + "end": 4975.42, + "probability": 0.4823 + }, + { + "start": 4976.02, + "end": 4978.44, + "probability": 0.9678 + }, + { + "start": 4978.96, + "end": 4981.16, + "probability": 0.9409 + }, + { + "start": 4981.64, + "end": 4985.9, + "probability": 0.9844 + }, + { + "start": 4986.78, + "end": 4987.42, + "probability": 0.878 + }, + { + "start": 4987.96, + "end": 4989.5, + "probability": 0.9141 + }, + { + "start": 4989.8, + "end": 4990.17, + "probability": 0.0211 + }, + { + "start": 4991.32, + "end": 4994.63, + "probability": 0.939 + }, + { + "start": 4997.12, + "end": 4997.68, + "probability": 0.9079 + }, + { + "start": 4997.84, + "end": 5000.24, + "probability": 0.9985 + }, + { + "start": 5000.26, + "end": 5004.24, + "probability": 0.6505 + }, + { + "start": 5004.8, + "end": 5006.42, + "probability": 0.8296 + }, + { + "start": 5006.88, + "end": 5009.64, + "probability": 0.996 + }, + { + "start": 5017.92, + "end": 5021.38, + "probability": 0.4832 + }, + { + "start": 5021.38, + "end": 5022.46, + "probability": 0.2927 + }, + { + "start": 5022.46, + "end": 5024.76, + "probability": 0.4782 + }, + { + "start": 5024.96, + "end": 5025.34, + "probability": 0.5289 + }, + { + "start": 5027.08, + "end": 5030.56, + "probability": 0.748 + }, + { + "start": 5030.74, + "end": 5035.64, + "probability": 0.9334 + }, + { + "start": 5036.0, + "end": 5038.14, + "probability": 0.988 + }, + { + "start": 5039.16, + "end": 5044.54, + "probability": 0.95 + }, + { + "start": 5045.22, + "end": 5050.24, + "probability": 0.927 + }, + { + "start": 5050.24, + "end": 5051.94, + "probability": 0.127 + }, + { + "start": 5051.94, + "end": 5053.18, + "probability": 0.6228 + }, + { + "start": 5053.26, + "end": 5055.08, + "probability": 0.8551 + }, + { + "start": 5055.08, + "end": 5056.28, + "probability": 0.4009 + }, + { + "start": 5056.52, + "end": 5057.16, + "probability": 0.0663 + }, + { + "start": 5057.2, + "end": 5061.65, + "probability": 0.8375 + }, + { + "start": 5062.1, + "end": 5063.44, + "probability": 0.2583 + }, + { + "start": 5063.46, + "end": 5063.46, + "probability": 0.1822 + }, + { + "start": 5063.46, + "end": 5063.46, + "probability": 0.0398 + }, + { + "start": 5063.46, + "end": 5063.53, + "probability": 0.2455 + }, + { + "start": 5066.4, + "end": 5066.4, + "probability": 0.2397 + }, + { + "start": 5067.06, + "end": 5067.06, + "probability": 0.203 + }, + { + "start": 5067.06, + "end": 5067.06, + "probability": 0.1335 + }, + { + "start": 5067.06, + "end": 5072.88, + "probability": 0.8717 + }, + { + "start": 5073.1, + "end": 5073.22, + "probability": 0.0554 + }, + { + "start": 5073.52, + "end": 5076.16, + "probability": 0.6743 + }, + { + "start": 5076.54, + "end": 5076.74, + "probability": 0.3492 + }, + { + "start": 5076.76, + "end": 5082.28, + "probability": 0.9861 + }, + { + "start": 5083.02, + "end": 5091.58, + "probability": 0.9817 + }, + { + "start": 5092.02, + "end": 5093.26, + "probability": 0.9816 + }, + { + "start": 5093.52, + "end": 5093.94, + "probability": 0.9356 + }, + { + "start": 5094.62, + "end": 5096.48, + "probability": 0.9983 + }, + { + "start": 5097.02, + "end": 5098.66, + "probability": 0.9533 + }, + { + "start": 5099.92, + "end": 5102.66, + "probability": 0.7739 + }, + { + "start": 5102.94, + "end": 5104.02, + "probability": 0.7726 + }, + { + "start": 5104.1, + "end": 5106.06, + "probability": 0.9061 + }, + { + "start": 5108.21, + "end": 5110.68, + "probability": 0.9967 + }, + { + "start": 5111.3, + "end": 5117.22, + "probability": 0.9869 + }, + { + "start": 5117.46, + "end": 5123.7, + "probability": 0.9667 + }, + { + "start": 5124.52, + "end": 5126.84, + "probability": 0.9607 + }, + { + "start": 5127.5, + "end": 5129.64, + "probability": 0.9095 + }, + { + "start": 5130.56, + "end": 5139.2, + "probability": 0.9924 + }, + { + "start": 5139.66, + "end": 5140.0, + "probability": 0.8844 + }, + { + "start": 5140.02, + "end": 5140.88, + "probability": 0.9216 + }, + { + "start": 5140.96, + "end": 5145.56, + "probability": 0.9944 + }, + { + "start": 5146.08, + "end": 5149.86, + "probability": 0.9941 + }, + { + "start": 5150.8, + "end": 5152.42, + "probability": 0.6599 + }, + { + "start": 5154.12, + "end": 5155.1, + "probability": 0.8033 + }, + { + "start": 5156.2, + "end": 5157.14, + "probability": 0.8847 + }, + { + "start": 5157.88, + "end": 5161.2, + "probability": 0.9705 + }, + { + "start": 5162.32, + "end": 5167.92, + "probability": 0.9274 + }, + { + "start": 5170.34, + "end": 5171.61, + "probability": 0.6095 + }, + { + "start": 5173.04, + "end": 5177.18, + "probability": 0.9783 + }, + { + "start": 5177.84, + "end": 5179.28, + "probability": 0.9861 + }, + { + "start": 5179.92, + "end": 5184.42, + "probability": 0.9985 + }, + { + "start": 5184.42, + "end": 5190.02, + "probability": 0.9979 + }, + { + "start": 5191.42, + "end": 5194.62, + "probability": 0.9066 + }, + { + "start": 5195.34, + "end": 5197.12, + "probability": 0.9766 + }, + { + "start": 5198.4, + "end": 5207.34, + "probability": 0.9754 + }, + { + "start": 5208.24, + "end": 5210.84, + "probability": 0.9921 + }, + { + "start": 5212.32, + "end": 5218.78, + "probability": 0.6916 + }, + { + "start": 5220.18, + "end": 5224.4, + "probability": 0.9915 + }, + { + "start": 5225.74, + "end": 5228.48, + "probability": 0.6879 + }, + { + "start": 5229.36, + "end": 5235.78, + "probability": 0.8737 + }, + { + "start": 5237.16, + "end": 5240.24, + "probability": 0.9563 + }, + { + "start": 5240.98, + "end": 5243.53, + "probability": 0.9133 + }, + { + "start": 5244.28, + "end": 5245.48, + "probability": 0.8555 + }, + { + "start": 5245.96, + "end": 5250.7, + "probability": 0.9722 + }, + { + "start": 5251.64, + "end": 5254.5, + "probability": 0.9459 + }, + { + "start": 5255.46, + "end": 5258.8, + "probability": 0.8398 + }, + { + "start": 5259.94, + "end": 5261.38, + "probability": 0.9741 + }, + { + "start": 5261.96, + "end": 5264.04, + "probability": 0.993 + }, + { + "start": 5264.7, + "end": 5266.22, + "probability": 0.9692 + }, + { + "start": 5266.84, + "end": 5269.68, + "probability": 0.999 + }, + { + "start": 5270.24, + "end": 5271.28, + "probability": 0.6941 + }, + { + "start": 5271.92, + "end": 5272.54, + "probability": 0.5367 + }, + { + "start": 5274.08, + "end": 5274.5, + "probability": 0.8966 + }, + { + "start": 5275.28, + "end": 5275.96, + "probability": 0.9839 + }, + { + "start": 5276.56, + "end": 5279.4, + "probability": 0.9813 + }, + { + "start": 5280.0, + "end": 5285.44, + "probability": 0.9899 + }, + { + "start": 5285.98, + "end": 5287.08, + "probability": 0.9972 + }, + { + "start": 5287.66, + "end": 5289.06, + "probability": 0.0998 + }, + { + "start": 5290.14, + "end": 5292.58, + "probability": 0.9541 + }, + { + "start": 5293.2, + "end": 5302.18, + "probability": 0.9995 + }, + { + "start": 5303.26, + "end": 5309.5, + "probability": 0.9362 + }, + { + "start": 5309.72, + "end": 5311.16, + "probability": 0.8233 + }, + { + "start": 5311.94, + "end": 5315.44, + "probability": 0.8542 + }, + { + "start": 5316.24, + "end": 5322.82, + "probability": 0.9764 + }, + { + "start": 5323.56, + "end": 5327.34, + "probability": 0.9484 + }, + { + "start": 5328.5, + "end": 5331.64, + "probability": 0.7929 + }, + { + "start": 5332.18, + "end": 5333.82, + "probability": 0.9373 + }, + { + "start": 5334.84, + "end": 5335.7, + "probability": 0.7532 + }, + { + "start": 5336.56, + "end": 5340.7, + "probability": 0.8853 + }, + { + "start": 5341.38, + "end": 5348.28, + "probability": 0.9876 + }, + { + "start": 5348.86, + "end": 5353.26, + "probability": 0.9725 + }, + { + "start": 5353.94, + "end": 5357.86, + "probability": 0.994 + }, + { + "start": 5358.4, + "end": 5359.36, + "probability": 0.5013 + }, + { + "start": 5359.98, + "end": 5361.46, + "probability": 0.994 + }, + { + "start": 5361.98, + "end": 5365.9, + "probability": 0.9988 + }, + { + "start": 5366.0, + "end": 5368.76, + "probability": 0.9946 + }, + { + "start": 5369.44, + "end": 5371.12, + "probability": 0.9559 + }, + { + "start": 5371.2, + "end": 5375.27, + "probability": 0.9522 + }, + { + "start": 5377.36, + "end": 5378.34, + "probability": 0.9749 + }, + { + "start": 5379.14, + "end": 5380.04, + "probability": 0.8325 + }, + { + "start": 5380.12, + "end": 5381.24, + "probability": 0.9971 + }, + { + "start": 5381.72, + "end": 5384.7, + "probability": 0.9885 + }, + { + "start": 5386.2, + "end": 5389.6, + "probability": 0.9707 + }, + { + "start": 5390.32, + "end": 5393.86, + "probability": 0.9629 + }, + { + "start": 5393.92, + "end": 5394.49, + "probability": 0.8486 + }, + { + "start": 5394.54, + "end": 5395.54, + "probability": 0.8742 + }, + { + "start": 5395.98, + "end": 5399.24, + "probability": 0.9177 + }, + { + "start": 5399.34, + "end": 5400.6, + "probability": 0.8514 + }, + { + "start": 5401.54, + "end": 5402.04, + "probability": 0.8671 + }, + { + "start": 5402.64, + "end": 5408.66, + "probability": 0.9071 + }, + { + "start": 5409.34, + "end": 5412.04, + "probability": 0.6174 + }, + { + "start": 5413.34, + "end": 5416.78, + "probability": 0.9822 + }, + { + "start": 5417.52, + "end": 5419.34, + "probability": 0.939 + }, + { + "start": 5420.24, + "end": 5422.34, + "probability": 0.8801 + }, + { + "start": 5423.28, + "end": 5424.52, + "probability": 0.3268 + }, + { + "start": 5424.52, + "end": 5424.62, + "probability": 0.3629 + }, + { + "start": 5424.64, + "end": 5425.76, + "probability": 0.9561 + }, + { + "start": 5425.92, + "end": 5429.52, + "probability": 0.984 + }, + { + "start": 5429.98, + "end": 5430.64, + "probability": 0.7105 + }, + { + "start": 5432.52, + "end": 5436.4, + "probability": 0.994 + }, + { + "start": 5436.94, + "end": 5438.74, + "probability": 0.9845 + }, + { + "start": 5439.3, + "end": 5440.0, + "probability": 0.9998 + }, + { + "start": 5440.56, + "end": 5443.16, + "probability": 0.8244 + }, + { + "start": 5444.34, + "end": 5445.98, + "probability": 0.7649 + }, + { + "start": 5446.76, + "end": 5450.86, + "probability": 0.9085 + }, + { + "start": 5451.52, + "end": 5453.61, + "probability": 0.959 + }, + { + "start": 5454.42, + "end": 5457.58, + "probability": 0.9399 + }, + { + "start": 5458.88, + "end": 5463.64, + "probability": 0.8109 + }, + { + "start": 5464.92, + "end": 5469.04, + "probability": 0.9889 + }, + { + "start": 5469.58, + "end": 5472.52, + "probability": 0.9983 + }, + { + "start": 5472.94, + "end": 5473.52, + "probability": 0.9556 + }, + { + "start": 5473.96, + "end": 5479.1, + "probability": 0.8866 + }, + { + "start": 5480.16, + "end": 5482.04, + "probability": 0.9274 + }, + { + "start": 5482.64, + "end": 5485.06, + "probability": 0.9915 + }, + { + "start": 5485.6, + "end": 5486.3, + "probability": 0.9256 + }, + { + "start": 5486.98, + "end": 5489.3, + "probability": 0.8994 + }, + { + "start": 5489.52, + "end": 5489.88, + "probability": 0.8805 + }, + { + "start": 5489.88, + "end": 5491.0, + "probability": 0.9672 + }, + { + "start": 5491.48, + "end": 5492.3, + "probability": 0.7913 + }, + { + "start": 5492.34, + "end": 5492.8, + "probability": 0.9086 + }, + { + "start": 5493.36, + "end": 5496.16, + "probability": 0.9868 + }, + { + "start": 5496.68, + "end": 5499.12, + "probability": 0.9883 + }, + { + "start": 5499.3, + "end": 5500.2, + "probability": 0.9415 + }, + { + "start": 5500.28, + "end": 5501.08, + "probability": 0.7651 + }, + { + "start": 5501.1, + "end": 5504.76, + "probability": 0.9145 + }, + { + "start": 5505.24, + "end": 5508.81, + "probability": 0.9823 + }, + { + "start": 5510.62, + "end": 5514.2, + "probability": 0.6036 + }, + { + "start": 5514.58, + "end": 5517.96, + "probability": 0.9934 + }, + { + "start": 5518.32, + "end": 5527.58, + "probability": 0.9978 + }, + { + "start": 5528.26, + "end": 5528.84, + "probability": 0.8081 + }, + { + "start": 5528.9, + "end": 5532.86, + "probability": 0.9885 + }, + { + "start": 5533.02, + "end": 5533.52, + "probability": 0.1961 + }, + { + "start": 5534.24, + "end": 5535.98, + "probability": 0.8731 + }, + { + "start": 5536.1, + "end": 5537.36, + "probability": 0.9386 + }, + { + "start": 5537.66, + "end": 5539.3, + "probability": 0.5119 + }, + { + "start": 5539.48, + "end": 5541.16, + "probability": 0.749 + }, + { + "start": 5541.72, + "end": 5545.56, + "probability": 0.9684 + }, + { + "start": 5545.68, + "end": 5547.78, + "probability": 0.9963 + }, + { + "start": 5548.38, + "end": 5550.5, + "probability": 0.772 + }, + { + "start": 5551.54, + "end": 5554.08, + "probability": 0.7511 + }, + { + "start": 5554.74, + "end": 5557.69, + "probability": 0.9668 + }, + { + "start": 5558.34, + "end": 5561.08, + "probability": 0.9894 + }, + { + "start": 5562.4, + "end": 5565.34, + "probability": 0.9761 + }, + { + "start": 5565.98, + "end": 5567.28, + "probability": 0.8294 + }, + { + "start": 5567.68, + "end": 5571.22, + "probability": 0.5012 + }, + { + "start": 5572.38, + "end": 5578.14, + "probability": 0.9827 + }, + { + "start": 5578.52, + "end": 5580.28, + "probability": 0.4691 + }, + { + "start": 5580.82, + "end": 5581.56, + "probability": 0.6906 + }, + { + "start": 5582.36, + "end": 5583.06, + "probability": 0.8774 + }, + { + "start": 5583.58, + "end": 5585.2, + "probability": 0.3665 + }, + { + "start": 5585.9, + "end": 5593.6, + "probability": 0.9604 + }, + { + "start": 5594.24, + "end": 5598.52, + "probability": 0.9819 + }, + { + "start": 5599.1, + "end": 5603.36, + "probability": 0.9666 + }, + { + "start": 5604.12, + "end": 5612.36, + "probability": 0.9849 + }, + { + "start": 5613.04, + "end": 5614.6, + "probability": 0.998 + }, + { + "start": 5614.74, + "end": 5615.6, + "probability": 0.8414 + }, + { + "start": 5615.68, + "end": 5616.28, + "probability": 0.8343 + }, + { + "start": 5616.84, + "end": 5617.82, + "probability": 0.7258 + }, + { + "start": 5618.68, + "end": 5622.18, + "probability": 0.7675 + }, + { + "start": 5622.54, + "end": 5624.58, + "probability": 0.9812 + }, + { + "start": 5624.68, + "end": 5627.1, + "probability": 0.6934 + }, + { + "start": 5627.82, + "end": 5631.1, + "probability": 0.9128 + }, + { + "start": 5631.46, + "end": 5632.7, + "probability": 0.9579 + }, + { + "start": 5633.04, + "end": 5634.48, + "probability": 0.9689 + }, + { + "start": 5634.56, + "end": 5637.42, + "probability": 0.9755 + }, + { + "start": 5637.76, + "end": 5639.72, + "probability": 0.9644 + }, + { + "start": 5639.88, + "end": 5640.4, + "probability": 0.507 + }, + { + "start": 5640.54, + "end": 5642.12, + "probability": 0.7927 + }, + { + "start": 5643.38, + "end": 5647.56, + "probability": 0.9897 + }, + { + "start": 5647.94, + "end": 5649.32, + "probability": 0.917 + }, + { + "start": 5656.72, + "end": 5661.72, + "probability": 0.6698 + }, + { + "start": 5662.86, + "end": 5664.72, + "probability": 0.8965 + }, + { + "start": 5665.42, + "end": 5672.7, + "probability": 0.9907 + }, + { + "start": 5673.58, + "end": 5676.05, + "probability": 0.9976 + }, + { + "start": 5677.56, + "end": 5679.14, + "probability": 0.7811 + }, + { + "start": 5680.56, + "end": 5683.46, + "probability": 0.9844 + }, + { + "start": 5684.54, + "end": 5686.1, + "probability": 0.8912 + }, + { + "start": 5687.66, + "end": 5689.66, + "probability": 0.9812 + }, + { + "start": 5690.7, + "end": 5691.94, + "probability": 0.7849 + }, + { + "start": 5692.94, + "end": 5694.12, + "probability": 0.5572 + }, + { + "start": 5695.66, + "end": 5701.56, + "probability": 0.9922 + }, + { + "start": 5702.66, + "end": 5706.16, + "probability": 0.9921 + }, + { + "start": 5707.12, + "end": 5708.7, + "probability": 0.6603 + }, + { + "start": 5708.82, + "end": 5709.34, + "probability": 0.9429 + }, + { + "start": 5709.42, + "end": 5711.05, + "probability": 0.8618 + }, + { + "start": 5711.96, + "end": 5712.42, + "probability": 0.8078 + }, + { + "start": 5712.54, + "end": 5713.74, + "probability": 0.8579 + }, + { + "start": 5714.98, + "end": 5718.08, + "probability": 0.9555 + }, + { + "start": 5720.38, + "end": 5722.38, + "probability": 0.3723 + }, + { + "start": 5725.68, + "end": 5727.36, + "probability": 0.5824 + }, + { + "start": 5728.68, + "end": 5732.62, + "probability": 0.8541 + }, + { + "start": 5734.18, + "end": 5735.4, + "probability": 0.8865 + }, + { + "start": 5735.5, + "end": 5738.92, + "probability": 0.9912 + }, + { + "start": 5739.26, + "end": 5742.28, + "probability": 0.9446 + }, + { + "start": 5743.0, + "end": 5744.24, + "probability": 0.9626 + }, + { + "start": 5744.4, + "end": 5745.66, + "probability": 0.896 + }, + { + "start": 5746.02, + "end": 5747.14, + "probability": 0.9648 + }, + { + "start": 5748.36, + "end": 5749.56, + "probability": 0.8708 + }, + { + "start": 5750.8, + "end": 5752.22, + "probability": 0.9563 + }, + { + "start": 5754.64, + "end": 5756.9, + "probability": 0.8824 + }, + { + "start": 5757.82, + "end": 5758.8, + "probability": 0.9943 + }, + { + "start": 5760.34, + "end": 5761.82, + "probability": 0.9878 + }, + { + "start": 5761.9, + "end": 5763.74, + "probability": 0.9587 + }, + { + "start": 5763.84, + "end": 5767.44, + "probability": 0.9888 + }, + { + "start": 5767.48, + "end": 5767.68, + "probability": 0.2299 + }, + { + "start": 5767.9, + "end": 5769.67, + "probability": 0.9921 + }, + { + "start": 5771.66, + "end": 5772.93, + "probability": 0.7565 + }, + { + "start": 5773.72, + "end": 5775.26, + "probability": 0.9651 + }, + { + "start": 5775.84, + "end": 5777.26, + "probability": 0.9906 + }, + { + "start": 5777.8, + "end": 5778.46, + "probability": 0.7375 + }, + { + "start": 5778.46, + "end": 5781.42, + "probability": 0.8255 + }, + { + "start": 5781.46, + "end": 5781.93, + "probability": 0.7976 + }, + { + "start": 5782.75, + "end": 5785.2, + "probability": 0.7295 + }, + { + "start": 5785.32, + "end": 5785.86, + "probability": 0.0903 + }, + { + "start": 5785.86, + "end": 5785.86, + "probability": 0.1093 + }, + { + "start": 5785.86, + "end": 5785.86, + "probability": 0.2759 + }, + { + "start": 5785.86, + "end": 5786.04, + "probability": 0.179 + }, + { + "start": 5786.18, + "end": 5787.48, + "probability": 0.8503 + }, + { + "start": 5787.72, + "end": 5788.76, + "probability": 0.8406 + }, + { + "start": 5793.26, + "end": 5794.7, + "probability": 0.0958 + }, + { + "start": 5814.92, + "end": 5815.7, + "probability": 0.8423 + }, + { + "start": 5816.14, + "end": 5817.82, + "probability": 0.1116 + }, + { + "start": 5818.38, + "end": 5821.02, + "probability": 0.0363 + }, + { + "start": 5821.2, + "end": 5821.2, + "probability": 0.1558 + }, + { + "start": 5821.2, + "end": 5822.64, + "probability": 0.0508 + }, + { + "start": 5822.64, + "end": 5823.26, + "probability": 0.0612 + }, + { + "start": 5824.38, + "end": 5827.68, + "probability": 0.1219 + }, + { + "start": 5827.72, + "end": 5829.44, + "probability": 0.2641 + }, + { + "start": 5837.08, + "end": 5837.8, + "probability": 0.0724 + }, + { + "start": 5837.8, + "end": 5837.8, + "probability": 0.0148 + }, + { + "start": 5837.98, + "end": 5838.05, + "probability": 0.3763 + }, + { + "start": 5838.84, + "end": 5839.64, + "probability": 0.1877 + }, + { + "start": 5839.76, + "end": 5842.28, + "probability": 0.5156 + }, + { + "start": 5844.92, + "end": 5848.1, + "probability": 0.057 + }, + { + "start": 5848.1, + "end": 5848.1, + "probability": 0.0451 + }, + { + "start": 5848.1, + "end": 5848.1, + "probability": 0.061 + }, + { + "start": 5848.1, + "end": 5849.32, + "probability": 0.0654 + }, + { + "start": 5849.94, + "end": 5851.16, + "probability": 0.0144 + }, + { + "start": 5852.66, + "end": 5853.56, + "probability": 0.4424 + }, + { + "start": 5853.56, + "end": 5853.86, + "probability": 0.3579 + }, + { + "start": 5854.86, + "end": 5856.06, + "probability": 0.126 + }, + { + "start": 5856.34, + "end": 5856.42, + "probability": 0.1024 + }, + { + "start": 5856.42, + "end": 5856.42, + "probability": 0.1326 + }, + { + "start": 5856.42, + "end": 5857.9, + "probability": 0.0599 + }, + { + "start": 5857.9, + "end": 5858.9, + "probability": 0.0297 + }, + { + "start": 5858.9, + "end": 5859.34, + "probability": 0.1028 + }, + { + "start": 5859.34, + "end": 5859.66, + "probability": 0.3499 + }, + { + "start": 5859.66, + "end": 5860.98, + "probability": 0.1985 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.0, + "end": 5861.0, + "probability": 0.0 + }, + { + "start": 5861.84, + "end": 5863.16, + "probability": 0.4124 + }, + { + "start": 5863.16, + "end": 5863.62, + "probability": 0.2098 + }, + { + "start": 5866.24, + "end": 5869.36, + "probability": 0.2855 + }, + { + "start": 5869.96, + "end": 5870.6, + "probability": 0.0061 + }, + { + "start": 5870.74, + "end": 5871.76, + "probability": 0.0287 + }, + { + "start": 5871.76, + "end": 5872.68, + "probability": 0.06 + }, + { + "start": 5872.68, + "end": 5872.68, + "probability": 0.0502 + }, + { + "start": 5872.68, + "end": 5872.72, + "probability": 0.102 + }, + { + "start": 5873.96, + "end": 5875.36, + "probability": 0.2234 + }, + { + "start": 5876.48, + "end": 5879.18, + "probability": 0.0326 + }, + { + "start": 5894.22, + "end": 5894.32, + "probability": 0.0811 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.0, + "probability": 0.0 + }, + { + "start": 5981.0, + "end": 5981.72, + "probability": 0.2782 + }, + { + "start": 5982.18, + "end": 5984.1, + "probability": 0.0187 + }, + { + "start": 5986.48, + "end": 5989.0, + "probability": 0.6634 + }, + { + "start": 5989.34, + "end": 5989.36, + "probability": 0.1092 + }, + { + "start": 5989.36, + "end": 5989.7, + "probability": 0.3107 + }, + { + "start": 5989.7, + "end": 5990.06, + "probability": 0.3854 + }, + { + "start": 5990.1, + "end": 5991.84, + "probability": 0.3214 + }, + { + "start": 5992.46, + "end": 5994.04, + "probability": 0.2476 + }, + { + "start": 5995.22, + "end": 5995.22, + "probability": 0.3196 + }, + { + "start": 5995.22, + "end": 5995.99, + "probability": 0.0567 + }, + { + "start": 5997.16, + "end": 5997.68, + "probability": 0.3648 + }, + { + "start": 5997.68, + "end": 5999.24, + "probability": 0.4968 + }, + { + "start": 5999.52, + "end": 6000.56, + "probability": 0.6098 + }, + { + "start": 6001.27, + "end": 6007.28, + "probability": 0.6043 + }, + { + "start": 6007.28, + "end": 6007.92, + "probability": 0.7104 + }, + { + "start": 6008.46, + "end": 6008.61, + "probability": 0.1878 + }, + { + "start": 6010.18, + "end": 6010.58, + "probability": 0.0347 + }, + { + "start": 6011.72, + "end": 6014.12, + "probability": 0.3764 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.0, + "end": 6116.0, + "probability": 0.0 + }, + { + "start": 6116.38, + "end": 6116.96, + "probability": 0.0306 + }, + { + "start": 6116.96, + "end": 6116.96, + "probability": 0.0211 + }, + { + "start": 6116.96, + "end": 6116.96, + "probability": 0.0457 + }, + { + "start": 6116.96, + "end": 6116.96, + "probability": 0.312 + }, + { + "start": 6116.96, + "end": 6116.96, + "probability": 0.0448 + }, + { + "start": 6116.96, + "end": 6116.96, + "probability": 0.3635 + }, + { + "start": 6116.96, + "end": 6116.96, + "probability": 0.0407 + }, + { + "start": 6116.96, + "end": 6121.7, + "probability": 0.6621 + }, + { + "start": 6121.88, + "end": 6124.46, + "probability": 0.9943 + }, + { + "start": 6124.46, + "end": 6124.9, + "probability": 0.5521 + }, + { + "start": 6125.34, + "end": 6126.34, + "probability": 0.9792 + }, + { + "start": 6126.98, + "end": 6128.74, + "probability": 0.9286 + }, + { + "start": 6129.12, + "end": 6131.04, + "probability": 0.9686 + }, + { + "start": 6131.04, + "end": 6131.46, + "probability": 0.9236 + }, + { + "start": 6131.48, + "end": 6136.52, + "probability": 0.8318 + }, + { + "start": 6136.6, + "end": 6136.76, + "probability": 0.0934 + }, + { + "start": 6136.76, + "end": 6137.52, + "probability": 0.8534 + }, + { + "start": 6137.52, + "end": 6138.38, + "probability": 0.9482 + }, + { + "start": 6138.44, + "end": 6139.78, + "probability": 0.8675 + }, + { + "start": 6140.48, + "end": 6140.64, + "probability": 0.4617 + }, + { + "start": 6140.64, + "end": 6140.64, + "probability": 0.8659 + }, + { + "start": 6140.64, + "end": 6141.45, + "probability": 0.7121 + }, + { + "start": 6141.74, + "end": 6142.76, + "probability": 0.4564 + }, + { + "start": 6142.76, + "end": 6143.82, + "probability": 0.8272 + }, + { + "start": 6145.3, + "end": 6147.22, + "probability": 0.5787 + }, + { + "start": 6147.42, + "end": 6149.16, + "probability": 0.0262 + }, + { + "start": 6149.16, + "end": 6150.1, + "probability": 0.0168 + }, + { + "start": 6150.7, + "end": 6155.74, + "probability": 0.1389 + }, + { + "start": 6156.24, + "end": 6156.98, + "probability": 0.0649 + }, + { + "start": 6157.2, + "end": 6158.66, + "probability": 0.0082 + }, + { + "start": 6158.66, + "end": 6158.7, + "probability": 0.2808 + }, + { + "start": 6158.7, + "end": 6160.6, + "probability": 0.0556 + }, + { + "start": 6160.68, + "end": 6161.7, + "probability": 0.1395 + }, + { + "start": 6163.1, + "end": 6166.54, + "probability": 0.7175 + }, + { + "start": 6166.72, + "end": 6169.74, + "probability": 0.9652 + }, + { + "start": 6169.74, + "end": 6170.57, + "probability": 0.7875 + }, + { + "start": 6171.54, + "end": 6175.28, + "probability": 0.6906 + }, + { + "start": 6175.38, + "end": 6178.12, + "probability": 0.1056 + }, + { + "start": 6178.24, + "end": 6182.02, + "probability": 0.0367 + }, + { + "start": 6182.02, + "end": 6183.24, + "probability": 0.1085 + }, + { + "start": 6183.72, + "end": 6184.52, + "probability": 0.0227 + }, + { + "start": 6184.64, + "end": 6184.78, + "probability": 0.4378 + }, + { + "start": 6184.78, + "end": 6185.63, + "probability": 0.314 + }, + { + "start": 6185.78, + "end": 6186.34, + "probability": 0.4564 + }, + { + "start": 6186.42, + "end": 6189.26, + "probability": 0.6526 + }, + { + "start": 6189.76, + "end": 6190.54, + "probability": 0.9708 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.0, + "end": 6237.0, + "probability": 0.0 + }, + { + "start": 6237.14, + "end": 6237.14, + "probability": 0.0274 + }, + { + "start": 6237.14, + "end": 6239.47, + "probability": 0.7603 + }, + { + "start": 6240.04, + "end": 6243.54, + "probability": 0.7157 + }, + { + "start": 6244.4, + "end": 6245.24, + "probability": 0.0551 + }, + { + "start": 6245.24, + "end": 6247.36, + "probability": 0.9358 + }, + { + "start": 6247.88, + "end": 6250.12, + "probability": 0.9917 + }, + { + "start": 6250.48, + "end": 6251.49, + "probability": 0.939 + }, + { + "start": 6251.72, + "end": 6255.44, + "probability": 0.9073 + }, + { + "start": 6255.44, + "end": 6258.3, + "probability": 0.9788 + }, + { + "start": 6258.3, + "end": 6259.16, + "probability": 0.6078 + }, + { + "start": 6259.2, + "end": 6262.12, + "probability": 0.7035 + }, + { + "start": 6264.74, + "end": 6264.82, + "probability": 0.1377 + }, + { + "start": 6264.82, + "end": 6265.03, + "probability": 0.2875 + }, + { + "start": 6265.82, + "end": 6266.12, + "probability": 0.0495 + }, + { + "start": 6266.12, + "end": 6266.12, + "probability": 0.0323 + }, + { + "start": 6266.12, + "end": 6266.12, + "probability": 0.0521 + }, + { + "start": 6266.12, + "end": 6266.12, + "probability": 0.163 + }, + { + "start": 6266.12, + "end": 6267.76, + "probability": 0.8625 + }, + { + "start": 6267.92, + "end": 6268.94, + "probability": 0.8931 + }, + { + "start": 6269.46, + "end": 6270.42, + "probability": 0.9395 + }, + { + "start": 6270.58, + "end": 6270.96, + "probability": 0.4707 + }, + { + "start": 6271.56, + "end": 6271.96, + "probability": 0.3634 + }, + { + "start": 6272.38, + "end": 6273.98, + "probability": 0.9571 + }, + { + "start": 6274.16, + "end": 6275.76, + "probability": 0.0341 + }, + { + "start": 6275.9, + "end": 6276.14, + "probability": 0.011 + }, + { + "start": 6276.66, + "end": 6278.48, + "probability": 0.8911 + }, + { + "start": 6278.74, + "end": 6280.12, + "probability": 0.9993 + }, + { + "start": 6280.18, + "end": 6281.92, + "probability": 0.7591 + }, + { + "start": 6282.02, + "end": 6284.24, + "probability": 0.9702 + }, + { + "start": 6284.72, + "end": 6288.72, + "probability": 0.9822 + }, + { + "start": 6288.86, + "end": 6292.06, + "probability": 0.9908 + }, + { + "start": 6292.18, + "end": 6293.2, + "probability": 0.4311 + }, + { + "start": 6293.32, + "end": 6293.32, + "probability": 0.7185 + }, + { + "start": 6293.32, + "end": 6293.32, + "probability": 0.853 + }, + { + "start": 6293.34, + "end": 6294.6, + "probability": 0.8622 + }, + { + "start": 6294.94, + "end": 6295.82, + "probability": 0.7556 + }, + { + "start": 6295.9, + "end": 6298.22, + "probability": 0.7467 + }, + { + "start": 6298.52, + "end": 6300.82, + "probability": 0.9113 + }, + { + "start": 6300.82, + "end": 6300.84, + "probability": 0.016 + }, + { + "start": 6300.84, + "end": 6301.26, + "probability": 0.3726 + }, + { + "start": 6301.66, + "end": 6302.78, + "probability": 0.9941 + }, + { + "start": 6303.4, + "end": 6304.48, + "probability": 0.9136 + }, + { + "start": 6304.58, + "end": 6305.2, + "probability": 0.6021 + }, + { + "start": 6305.3, + "end": 6307.58, + "probability": 0.5512 + }, + { + "start": 6307.58, + "end": 6309.19, + "probability": 0.6281 + }, + { + "start": 6309.72, + "end": 6311.88, + "probability": 0.9611 + }, + { + "start": 6313.42, + "end": 6315.26, + "probability": 0.8939 + }, + { + "start": 6315.34, + "end": 6316.48, + "probability": 0.1824 + }, + { + "start": 6316.7, + "end": 6317.0, + "probability": 0.8039 + }, + { + "start": 6317.0, + "end": 6317.66, + "probability": 0.6373 + }, + { + "start": 6319.45, + "end": 6320.44, + "probability": 0.5126 + }, + { + "start": 6320.52, + "end": 6321.64, + "probability": 0.2333 + }, + { + "start": 6321.82, + "end": 6321.82, + "probability": 0.0512 + }, + { + "start": 6321.82, + "end": 6321.82, + "probability": 0.4345 + }, + { + "start": 6321.82, + "end": 6321.82, + "probability": 0.2022 + }, + { + "start": 6321.82, + "end": 6321.82, + "probability": 0.1009 + }, + { + "start": 6321.84, + "end": 6321.88, + "probability": 0.1267 + }, + { + "start": 6321.88, + "end": 6323.36, + "probability": 0.6862 + }, + { + "start": 6323.44, + "end": 6325.0, + "probability": 0.8508 + }, + { + "start": 6325.0, + "end": 6325.51, + "probability": 0.3951 + }, + { + "start": 6326.74, + "end": 6327.76, + "probability": 0.9052 + }, + { + "start": 6328.34, + "end": 6329.56, + "probability": 0.1593 + }, + { + "start": 6329.56, + "end": 6330.86, + "probability": 0.7094 + }, + { + "start": 6331.2, + "end": 6332.0, + "probability": 0.2157 + }, + { + "start": 6332.22, + "end": 6333.08, + "probability": 0.6003 + }, + { + "start": 6333.22, + "end": 6340.36, + "probability": 0.188 + }, + { + "start": 6340.86, + "end": 6340.86, + "probability": 0.2075 + }, + { + "start": 6340.86, + "end": 6340.86, + "probability": 0.0453 + }, + { + "start": 6340.86, + "end": 6340.86, + "probability": 0.1208 + }, + { + "start": 6340.86, + "end": 6342.28, + "probability": 0.3701 + }, + { + "start": 6342.28, + "end": 6343.48, + "probability": 0.3131 + }, + { + "start": 6344.6, + "end": 6346.22, + "probability": 0.6572 + }, + { + "start": 6346.22, + "end": 6347.1, + "probability": 0.7884 + }, + { + "start": 6347.3, + "end": 6348.24, + "probability": 0.9474 + }, + { + "start": 6348.26, + "end": 6349.46, + "probability": 0.0143 + }, + { + "start": 6349.46, + "end": 6350.74, + "probability": 0.358 + }, + { + "start": 6350.74, + "end": 6351.46, + "probability": 0.2319 + }, + { + "start": 6351.46, + "end": 6351.7, + "probability": 0.1218 + }, + { + "start": 6351.7, + "end": 6352.82, + "probability": 0.4648 + }, + { + "start": 6352.88, + "end": 6353.62, + "probability": 0.3373 + }, + { + "start": 6354.14, + "end": 6358.68, + "probability": 0.1127 + }, + { + "start": 6358.74, + "end": 6361.58, + "probability": 0.7368 + }, + { + "start": 6361.96, + "end": 6368.26, + "probability": 0.7413 + }, + { + "start": 6368.48, + "end": 6372.4, + "probability": 0.0585 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6469.0, + "end": 6469.0, + "probability": 0.0 + }, + { + "start": 6470.06, + "end": 6475.16, + "probability": 0.7554 + }, + { + "start": 6475.66, + "end": 6477.76, + "probability": 0.9142 + }, + { + "start": 6478.18, + "end": 6481.86, + "probability": 0.9802 + }, + { + "start": 6482.0, + "end": 6484.16, + "probability": 0.8096 + }, + { + "start": 6485.38, + "end": 6489.24, + "probability": 0.1401 + }, + { + "start": 6489.5, + "end": 6490.03, + "probability": 0.3065 + }, + { + "start": 6490.46, + "end": 6490.46, + "probability": 0.0354 + }, + { + "start": 6490.46, + "end": 6490.46, + "probability": 0.0593 + }, + { + "start": 6490.46, + "end": 6491.94, + "probability": 0.375 + }, + { + "start": 6492.3, + "end": 6495.1, + "probability": 0.7531 + }, + { + "start": 6495.7, + "end": 6499.58, + "probability": 0.827 + }, + { + "start": 6500.1, + "end": 6501.98, + "probability": 0.4967 + }, + { + "start": 6502.0, + "end": 6503.12, + "probability": 0.8298 + }, + { + "start": 6503.24, + "end": 6508.54, + "probability": 0.7307 + }, + { + "start": 6508.6, + "end": 6508.86, + "probability": 0.5933 + }, + { + "start": 6508.98, + "end": 6511.4, + "probability": 0.7646 + }, + { + "start": 6511.9, + "end": 6513.06, + "probability": 0.9165 + }, + { + "start": 6513.44, + "end": 6516.16, + "probability": 0.9249 + }, + { + "start": 6516.68, + "end": 6517.76, + "probability": 0.833 + }, + { + "start": 6518.1, + "end": 6518.88, + "probability": 0.108 + }, + { + "start": 6519.6, + "end": 6519.6, + "probability": 0.6467 + }, + { + "start": 6519.6, + "end": 6520.8, + "probability": 0.7305 + }, + { + "start": 6521.44, + "end": 6523.4, + "probability": 0.766 + }, + { + "start": 6526.3, + "end": 6526.7, + "probability": 0.0381 + }, + { + "start": 6526.7, + "end": 6526.7, + "probability": 0.024 + }, + { + "start": 6526.7, + "end": 6526.7, + "probability": 0.1575 + }, + { + "start": 6526.7, + "end": 6526.7, + "probability": 0.1529 + }, + { + "start": 6526.7, + "end": 6526.7, + "probability": 0.3691 + }, + { + "start": 6526.7, + "end": 6529.94, + "probability": 0.6525 + }, + { + "start": 6530.5, + "end": 6532.14, + "probability": 0.7832 + }, + { + "start": 6532.48, + "end": 6534.76, + "probability": 0.6358 + }, + { + "start": 6534.86, + "end": 6535.56, + "probability": 0.8954 + }, + { + "start": 6536.08, + "end": 6538.66, + "probability": 0.9651 + }, + { + "start": 6538.9, + "end": 6540.06, + "probability": 0.027 + }, + { + "start": 6540.24, + "end": 6543.94, + "probability": 0.9915 + }, + { + "start": 6544.32, + "end": 6545.99, + "probability": 0.0182 + }, + { + "start": 6546.2, + "end": 6551.72, + "probability": 0.0686 + }, + { + "start": 6552.36, + "end": 6552.7, + "probability": 0.0334 + }, + { + "start": 6553.52, + "end": 6553.58, + "probability": 0.1195 + }, + { + "start": 6553.58, + "end": 6553.58, + "probability": 0.0929 + }, + { + "start": 6553.58, + "end": 6553.58, + "probability": 0.0959 + }, + { + "start": 6553.58, + "end": 6554.34, + "probability": 0.6307 + }, + { + "start": 6554.5, + "end": 6556.36, + "probability": 0.827 + }, + { + "start": 6556.76, + "end": 6557.72, + "probability": 0.9773 + }, + { + "start": 6557.84, + "end": 6558.76, + "probability": 0.807 + }, + { + "start": 6559.18, + "end": 6560.52, + "probability": 0.9702 + }, + { + "start": 6560.74, + "end": 6561.84, + "probability": 0.7507 + }, + { + "start": 6562.38, + "end": 6563.98, + "probability": 0.6512 + }, + { + "start": 6564.2, + "end": 6568.82, + "probability": 0.998 + }, + { + "start": 6569.14, + "end": 6569.8, + "probability": 0.7844 + }, + { + "start": 6569.82, + "end": 6571.32, + "probability": 0.9973 + }, + { + "start": 6571.94, + "end": 6572.9, + "probability": 0.9941 + }, + { + "start": 6573.78, + "end": 6575.72, + "probability": 0.5554 + }, + { + "start": 6575.76, + "end": 6576.81, + "probability": 0.0823 + }, + { + "start": 6577.16, + "end": 6581.32, + "probability": 0.91 + }, + { + "start": 6581.38, + "end": 6581.8, + "probability": 0.0333 + }, + { + "start": 6582.36, + "end": 6587.42, + "probability": 0.8839 + }, + { + "start": 6588.46, + "end": 6592.48, + "probability": 0.0489 + }, + { + "start": 6592.48, + "end": 6592.48, + "probability": 0.0126 + }, + { + "start": 6592.48, + "end": 6592.48, + "probability": 0.1758 + }, + { + "start": 6592.48, + "end": 6592.88, + "probability": 0.2735 + }, + { + "start": 6593.54, + "end": 6593.72, + "probability": 0.5055 + }, + { + "start": 6594.26, + "end": 6595.9, + "probability": 0.7478 + }, + { + "start": 6595.9, + "end": 6596.68, + "probability": 0.4416 + }, + { + "start": 6596.82, + "end": 6600.36, + "probability": 0.9427 + }, + { + "start": 6601.86, + "end": 6607.7, + "probability": 0.4056 + }, + { + "start": 6607.76, + "end": 6608.64, + "probability": 0.6933 + }, + { + "start": 6609.2, + "end": 6613.06, + "probability": 0.9103 + }, + { + "start": 6613.2, + "end": 6618.04, + "probability": 0.9966 + }, + { + "start": 6618.38, + "end": 6619.04, + "probability": 0.9611 + }, + { + "start": 6619.72, + "end": 6622.62, + "probability": 0.9954 + }, + { + "start": 6623.5, + "end": 6625.76, + "probability": 0.9756 + }, + { + "start": 6626.38, + "end": 6627.2, + "probability": 0.501 + }, + { + "start": 6627.92, + "end": 6629.4, + "probability": 0.8866 + }, + { + "start": 6629.52, + "end": 6630.98, + "probability": 0.9346 + }, + { + "start": 6631.04, + "end": 6631.44, + "probability": 0.2209 + }, + { + "start": 6631.46, + "end": 6634.44, + "probability": 0.5637 + }, + { + "start": 6634.78, + "end": 6636.22, + "probability": 0.8123 + }, + { + "start": 6637.38, + "end": 6639.96, + "probability": 0.5467 + }, + { + "start": 6639.96, + "end": 6641.56, + "probability": 0.4736 + }, + { + "start": 6641.72, + "end": 6643.22, + "probability": 0.5223 + }, + { + "start": 6644.61, + "end": 6645.52, + "probability": 0.2651 + }, + { + "start": 6645.8, + "end": 6648.16, + "probability": 0.7705 + }, + { + "start": 6648.62, + "end": 6651.36, + "probability": 0.2956 + }, + { + "start": 6652.04, + "end": 6652.04, + "probability": 0.2687 + }, + { + "start": 6652.04, + "end": 6652.04, + "probability": 0.05 + }, + { + "start": 6652.04, + "end": 6654.86, + "probability": 0.8064 + }, + { + "start": 6655.58, + "end": 6660.62, + "probability": 0.8501 + }, + { + "start": 6661.24, + "end": 6664.58, + "probability": 0.86 + }, + { + "start": 6665.28, + "end": 6667.88, + "probability": 0.5515 + }, + { + "start": 6668.8, + "end": 6670.96, + "probability": 0.2736 + }, + { + "start": 6671.06, + "end": 6671.06, + "probability": 0.649 + }, + { + "start": 6671.06, + "end": 6672.3, + "probability": 0.7355 + }, + { + "start": 6673.08, + "end": 6674.22, + "probability": 0.8258 + }, + { + "start": 6674.26, + "end": 6675.12, + "probability": 0.9056 + }, + { + "start": 6675.58, + "end": 6676.48, + "probability": 0.6644 + }, + { + "start": 6676.48, + "end": 6677.8, + "probability": 0.8871 + }, + { + "start": 6679.92, + "end": 6680.38, + "probability": 0.0688 + }, + { + "start": 6680.38, + "end": 6683.53, + "probability": 0.663 + }, + { + "start": 6683.94, + "end": 6684.6, + "probability": 0.4477 + }, + { + "start": 6684.6, + "end": 6685.66, + "probability": 0.8743 + }, + { + "start": 6685.8, + "end": 6686.53, + "probability": 0.9697 + }, + { + "start": 6687.34, + "end": 6688.72, + "probability": 0.8524 + }, + { + "start": 6688.92, + "end": 6690.58, + "probability": 0.9578 + }, + { + "start": 6691.28, + "end": 6692.2, + "probability": 0.764 + }, + { + "start": 6693.0, + "end": 6694.88, + "probability": 0.8406 + }, + { + "start": 6695.06, + "end": 6696.44, + "probability": 0.7545 + }, + { + "start": 6696.96, + "end": 6700.02, + "probability": 0.851 + }, + { + "start": 6700.7, + "end": 6701.3, + "probability": 0.6661 + }, + { + "start": 6701.96, + "end": 6707.26, + "probability": 0.7041 + }, + { + "start": 6707.84, + "end": 6708.46, + "probability": 0.7934 + }, + { + "start": 6709.16, + "end": 6711.3, + "probability": 0.8548 + }, + { + "start": 6712.02, + "end": 6713.06, + "probability": 0.8026 + }, + { + "start": 6713.34, + "end": 6714.9, + "probability": 0.8085 + }, + { + "start": 6715.48, + "end": 6716.88, + "probability": 0.9753 + }, + { + "start": 6717.06, + "end": 6718.0, + "probability": 0.902 + }, + { + "start": 6718.4, + "end": 6719.21, + "probability": 0.9658 + }, + { + "start": 6719.78, + "end": 6723.62, + "probability": 0.6759 + }, + { + "start": 6724.34, + "end": 6725.2, + "probability": 0.9902 + }, + { + "start": 6725.68, + "end": 6727.38, + "probability": 0.751 + }, + { + "start": 6727.48, + "end": 6728.2, + "probability": 0.2882 + }, + { + "start": 6728.46, + "end": 6730.0, + "probability": 0.8169 + }, + { + "start": 6731.23, + "end": 6736.04, + "probability": 0.7431 + }, + { + "start": 6736.16, + "end": 6738.4, + "probability": 0.9441 + }, + { + "start": 6738.64, + "end": 6739.74, + "probability": 0.974 + }, + { + "start": 6740.0, + "end": 6741.62, + "probability": 0.9403 + }, + { + "start": 6741.98, + "end": 6744.54, + "probability": 0.8457 + }, + { + "start": 6744.6, + "end": 6746.36, + "probability": 0.6638 + }, + { + "start": 6746.8, + "end": 6751.74, + "probability": 0.8857 + }, + { + "start": 6752.26, + "end": 6752.84, + "probability": 0.7807 + }, + { + "start": 6753.5, + "end": 6758.4, + "probability": 0.8195 + }, + { + "start": 6758.48, + "end": 6760.72, + "probability": 0.9902 + }, + { + "start": 6761.34, + "end": 6762.58, + "probability": 0.9392 + }, + { + "start": 6762.64, + "end": 6765.04, + "probability": 0.9204 + }, + { + "start": 6770.82, + "end": 6772.6, + "probability": 0.3491 + }, + { + "start": 6773.16, + "end": 6776.44, + "probability": 0.9968 + }, + { + "start": 6780.88, + "end": 6786.22, + "probability": 0.7549 + }, + { + "start": 6786.3, + "end": 6787.44, + "probability": 0.4848 + }, + { + "start": 6788.28, + "end": 6792.98, + "probability": 0.9982 + }, + { + "start": 6793.22, + "end": 6794.92, + "probability": 0.0015 + }, + { + "start": 6795.66, + "end": 6796.36, + "probability": 0.0671 + }, + { + "start": 6796.36, + "end": 6797.02, + "probability": 0.2178 + }, + { + "start": 6797.02, + "end": 6797.1, + "probability": 0.062 + }, + { + "start": 6797.1, + "end": 6797.99, + "probability": 0.7241 + }, + { + "start": 6799.04, + "end": 6800.12, + "probability": 0.5255 + }, + { + "start": 6800.43, + "end": 6803.74, + "probability": 0.7561 + }, + { + "start": 6804.3, + "end": 6805.14, + "probability": 0.6544 + }, + { + "start": 6805.16, + "end": 6805.56, + "probability": 0.9824 + }, + { + "start": 6806.12, + "end": 6807.12, + "probability": 0.9688 + }, + { + "start": 6807.7, + "end": 6808.78, + "probability": 0.9761 + }, + { + "start": 6808.86, + "end": 6809.06, + "probability": 0.0203 + }, + { + "start": 6809.12, + "end": 6810.44, + "probability": 0.7203 + }, + { + "start": 6810.52, + "end": 6811.52, + "probability": 0.4428 + }, + { + "start": 6811.58, + "end": 6812.5, + "probability": 0.378 + }, + { + "start": 6812.5, + "end": 6812.78, + "probability": 0.0887 + }, + { + "start": 6812.78, + "end": 6814.46, + "probability": 0.0543 + }, + { + "start": 6815.42, + "end": 6816.24, + "probability": 0.5803 + }, + { + "start": 6816.47, + "end": 6817.32, + "probability": 0.3226 + }, + { + "start": 6817.42, + "end": 6819.78, + "probability": 0.7065 + }, + { + "start": 6819.96, + "end": 6820.98, + "probability": 0.9017 + }, + { + "start": 6821.32, + "end": 6823.82, + "probability": 0.8879 + }, + { + "start": 6824.32, + "end": 6826.06, + "probability": 0.9034 + }, + { + "start": 6826.32, + "end": 6827.96, + "probability": 0.9856 + }, + { + "start": 6828.24, + "end": 6831.62, + "probability": 0.9964 + }, + { + "start": 6831.9, + "end": 6835.16, + "probability": 0.9639 + }, + { + "start": 6836.02, + "end": 6846.34, + "probability": 0.9844 + }, + { + "start": 6847.08, + "end": 6848.18, + "probability": 0.9619 + }, + { + "start": 6848.3, + "end": 6851.42, + "probability": 0.4486 + }, + { + "start": 6852.28, + "end": 6857.86, + "probability": 0.8259 + }, + { + "start": 6858.46, + "end": 6860.67, + "probability": 0.9073 + }, + { + "start": 6861.46, + "end": 6863.28, + "probability": 0.9846 + }, + { + "start": 6863.62, + "end": 6868.28, + "probability": 0.9926 + }, + { + "start": 6868.84, + "end": 6869.3, + "probability": 0.9126 + }, + { + "start": 6869.86, + "end": 6870.58, + "probability": 0.5792 + }, + { + "start": 6870.66, + "end": 6876.14, + "probability": 0.8994 + }, + { + "start": 6876.2, + "end": 6878.72, + "probability": 0.6945 + }, + { + "start": 6878.86, + "end": 6881.04, + "probability": 0.4957 + }, + { + "start": 6881.08, + "end": 6882.82, + "probability": 0.3178 + }, + { + "start": 6883.0, + "end": 6883.02, + "probability": 0.5876 + }, + { + "start": 6884.94, + "end": 6886.0, + "probability": 0.356 + }, + { + "start": 6886.18, + "end": 6886.58, + "probability": 0.347 + }, + { + "start": 6886.58, + "end": 6889.02, + "probability": 0.178 + }, + { + "start": 6889.1, + "end": 6889.64, + "probability": 0.06 + }, + { + "start": 6889.64, + "end": 6894.76, + "probability": 0.7835 + }, + { + "start": 6894.86, + "end": 6895.04, + "probability": 0.4066 + }, + { + "start": 6895.1, + "end": 6895.36, + "probability": 0.0001 + }, + { + "start": 6896.96, + "end": 6897.62, + "probability": 0.0169 + }, + { + "start": 6897.62, + "end": 6897.62, + "probability": 0.0975 + }, + { + "start": 6897.64, + "end": 6897.7, + "probability": 0.2505 + }, + { + "start": 6897.7, + "end": 6899.34, + "probability": 0.8596 + }, + { + "start": 6899.4, + "end": 6904.1, + "probability": 0.7483 + }, + { + "start": 6904.1, + "end": 6905.76, + "probability": 0.5457 + }, + { + "start": 6905.86, + "end": 6906.28, + "probability": 0.7544 + }, + { + "start": 6906.68, + "end": 6907.94, + "probability": 0.8074 + }, + { + "start": 6913.42, + "end": 6913.54, + "probability": 0.0594 + }, + { + "start": 6913.54, + "end": 6913.54, + "probability": 0.0093 + }, + { + "start": 6913.54, + "end": 6913.86, + "probability": 0.2983 + }, + { + "start": 6914.1, + "end": 6915.38, + "probability": 0.3535 + }, + { + "start": 6915.46, + "end": 6915.8, + "probability": 0.2792 + }, + { + "start": 6915.96, + "end": 6917.48, + "probability": 0.6298 + }, + { + "start": 6917.96, + "end": 6919.26, + "probability": 0.6943 + }, + { + "start": 6919.88, + "end": 6919.88, + "probability": 0.0176 + }, + { + "start": 6919.88, + "end": 6921.61, + "probability": 0.1451 + }, + { + "start": 6922.28, + "end": 6925.68, + "probability": 0.7917 + }, + { + "start": 6926.22, + "end": 6927.72, + "probability": 0.915 + }, + { + "start": 6928.4, + "end": 6931.0, + "probability": 0.6719 + }, + { + "start": 6931.44, + "end": 6931.6, + "probability": 0.2713 + }, + { + "start": 6931.76, + "end": 6932.42, + "probability": 0.6384 + }, + { + "start": 6932.48, + "end": 6933.94, + "probability": 0.991 + }, + { + "start": 6934.28, + "end": 6934.44, + "probability": 0.6897 + }, + { + "start": 6934.54, + "end": 6935.5, + "probability": 0.9625 + }, + { + "start": 6935.9, + "end": 6936.58, + "probability": 0.9398 + }, + { + "start": 6936.68, + "end": 6937.12, + "probability": 0.3416 + }, + { + "start": 6937.12, + "end": 6937.5, + "probability": 0.5659 + }, + { + "start": 6937.94, + "end": 6940.64, + "probability": 0.9738 + }, + { + "start": 6941.16, + "end": 6942.48, + "probability": 0.9379 + }, + { + "start": 6942.94, + "end": 6946.1, + "probability": 0.9806 + }, + { + "start": 6946.64, + "end": 6948.34, + "probability": 0.8765 + }, + { + "start": 6948.9, + "end": 6950.04, + "probability": 0.9616 + }, + { + "start": 6951.0, + "end": 6953.68, + "probability": 0.5095 + }, + { + "start": 6954.34, + "end": 6956.28, + "probability": 0.9625 + }, + { + "start": 6956.36, + "end": 6956.9, + "probability": 0.5852 + }, + { + "start": 6957.24, + "end": 6958.98, + "probability": 0.9215 + }, + { + "start": 6959.52, + "end": 6965.68, + "probability": 0.8956 + }, + { + "start": 6966.12, + "end": 6966.36, + "probability": 0.2549 + }, + { + "start": 6966.5, + "end": 6967.3, + "probability": 0.4031 + }, + { + "start": 6967.42, + "end": 6968.7, + "probability": 0.8003 + }, + { + "start": 6968.84, + "end": 6969.26, + "probability": 0.5544 + }, + { + "start": 6969.76, + "end": 6970.22, + "probability": 0.3168 + }, + { + "start": 6972.04, + "end": 6973.74, + "probability": 0.4548 + }, + { + "start": 6974.42, + "end": 6974.42, + "probability": 0.0729 + }, + { + "start": 6974.42, + "end": 6976.8, + "probability": 0.8822 + }, + { + "start": 6977.38, + "end": 6980.08, + "probability": 0.7803 + }, + { + "start": 6981.14, + "end": 6982.12, + "probability": 0.6158 + }, + { + "start": 6982.32, + "end": 6987.66, + "probability": 0.3988 + }, + { + "start": 6988.8, + "end": 6992.32, + "probability": 0.1568 + }, + { + "start": 6992.32, + "end": 6994.12, + "probability": 0.463 + }, + { + "start": 6994.44, + "end": 6997.88, + "probability": 0.7804 + }, + { + "start": 6998.04, + "end": 6998.74, + "probability": 0.7053 + }, + { + "start": 6998.77, + "end": 6999.24, + "probability": 0.0056 + }, + { + "start": 6999.62, + "end": 7002.36, + "probability": 0.9162 + }, + { + "start": 7002.8, + "end": 7003.74, + "probability": 0.7589 + }, + { + "start": 7004.08, + "end": 7005.76, + "probability": 0.6164 + }, + { + "start": 7005.98, + "end": 7009.6, + "probability": 0.8495 + }, + { + "start": 7010.44, + "end": 7012.06, + "probability": 0.8516 + }, + { + "start": 7012.1, + "end": 7014.98, + "probability": 0.4993 + }, + { + "start": 7015.12, + "end": 7015.97, + "probability": 0.833 + }, + { + "start": 7016.32, + "end": 7016.32, + "probability": 0.356 + }, + { + "start": 7016.32, + "end": 7023.24, + "probability": 0.7119 + }, + { + "start": 7023.6, + "end": 7025.04, + "probability": 0.5069 + }, + { + "start": 7025.16, + "end": 7027.92, + "probability": 0.3182 + }, + { + "start": 7028.6, + "end": 7029.56, + "probability": 0.6384 + }, + { + "start": 7029.56, + "end": 7030.74, + "probability": 0.9931 + }, + { + "start": 7031.06, + "end": 7034.78, + "probability": 0.9162 + }, + { + "start": 7034.8, + "end": 7035.02, + "probability": 0.4359 + }, + { + "start": 7035.02, + "end": 7037.22, + "probability": 0.8967 + }, + { + "start": 7037.78, + "end": 7039.22, + "probability": 0.8276 + }, + { + "start": 7039.32, + "end": 7040.62, + "probability": 0.722 + }, + { + "start": 7040.86, + "end": 7042.16, + "probability": 0.9102 + }, + { + "start": 7042.84, + "end": 7042.96, + "probability": 0.1385 + }, + { + "start": 7042.96, + "end": 7043.12, + "probability": 0.3135 + }, + { + "start": 7043.2, + "end": 7044.1, + "probability": 0.7545 + }, + { + "start": 7046.08, + "end": 7052.34, + "probability": 0.4537 + }, + { + "start": 7053.16, + "end": 7054.24, + "probability": 0.7608 + }, + { + "start": 7055.99, + "end": 7061.7, + "probability": 0.9928 + }, + { + "start": 7061.7, + "end": 7062.85, + "probability": 0.4903 + }, + { + "start": 7063.08, + "end": 7063.08, + "probability": 0.0243 + }, + { + "start": 7063.08, + "end": 7065.54, + "probability": 0.8872 + }, + { + "start": 7065.94, + "end": 7066.56, + "probability": 0.4818 + }, + { + "start": 7067.3, + "end": 7069.62, + "probability": 0.4717 + }, + { + "start": 7069.66, + "end": 7072.2, + "probability": 0.9136 + }, + { + "start": 7072.2, + "end": 7073.14, + "probability": 0.072 + }, + { + "start": 7073.55, + "end": 7077.86, + "probability": 0.6952 + }, + { + "start": 7077.86, + "end": 7079.62, + "probability": 0.0887 + }, + { + "start": 7081.6, + "end": 7081.6, + "probability": 0.0356 + }, + { + "start": 7081.6, + "end": 7081.6, + "probability": 0.1599 + }, + { + "start": 7081.6, + "end": 7082.68, + "probability": 0.5242 + }, + { + "start": 7082.92, + "end": 7083.3, + "probability": 0.2657 + }, + { + "start": 7083.34, + "end": 7084.32, + "probability": 0.9038 + }, + { + "start": 7084.56, + "end": 7085.52, + "probability": 0.8217 + }, + { + "start": 7085.58, + "end": 7085.94, + "probability": 0.791 + }, + { + "start": 7085.98, + "end": 7086.9, + "probability": 0.9898 + }, + { + "start": 7087.08, + "end": 7088.58, + "probability": 0.9812 + }, + { + "start": 7088.7, + "end": 7089.08, + "probability": 0.5445 + }, + { + "start": 7089.08, + "end": 7089.88, + "probability": 0.9946 + }, + { + "start": 7090.34, + "end": 7091.2, + "probability": 0.6534 + }, + { + "start": 7091.24, + "end": 7091.64, + "probability": 0.3786 + }, + { + "start": 7091.7, + "end": 7092.5, + "probability": 0.8516 + }, + { + "start": 7092.8, + "end": 7094.12, + "probability": 0.873 + }, + { + "start": 7094.56, + "end": 7097.38, + "probability": 0.7944 + }, + { + "start": 7097.54, + "end": 7102.03, + "probability": 0.9098 + }, + { + "start": 7104.5, + "end": 7107.6, + "probability": 0.9189 + }, + { + "start": 7107.78, + "end": 7109.04, + "probability": 0.687 + }, + { + "start": 7109.06, + "end": 7110.0, + "probability": 0.931 + }, + { + "start": 7110.06, + "end": 7112.6, + "probability": 0.1954 + }, + { + "start": 7112.8, + "end": 7115.62, + "probability": 0.5525 + }, + { + "start": 7116.26, + "end": 7117.66, + "probability": 0.6655 + }, + { + "start": 7117.72, + "end": 7119.34, + "probability": 0.9246 + }, + { + "start": 7119.76, + "end": 7120.86, + "probability": 0.3231 + }, + { + "start": 7121.02, + "end": 7122.38, + "probability": 0.463 + }, + { + "start": 7122.46, + "end": 7123.08, + "probability": 0.3683 + }, + { + "start": 7123.08, + "end": 7124.78, + "probability": 0.9775 + }, + { + "start": 7125.12, + "end": 7125.38, + "probability": 0.4057 + }, + { + "start": 7125.5, + "end": 7126.32, + "probability": 0.9647 + }, + { + "start": 7126.38, + "end": 7127.92, + "probability": 0.987 + }, + { + "start": 7127.98, + "end": 7131.68, + "probability": 0.8348 + }, + { + "start": 7131.94, + "end": 7133.18, + "probability": 0.995 + }, + { + "start": 7133.68, + "end": 7135.86, + "probability": 0.9819 + }, + { + "start": 7136.28, + "end": 7136.92, + "probability": 0.7541 + }, + { + "start": 7137.84, + "end": 7139.34, + "probability": 0.8757 + }, + { + "start": 7139.8, + "end": 7143.2, + "probability": 0.9868 + }, + { + "start": 7144.14, + "end": 7147.98, + "probability": 0.9249 + }, + { + "start": 7148.52, + "end": 7150.48, + "probability": 0.0576 + }, + { + "start": 7151.9, + "end": 7152.12, + "probability": 0.0024 + }, + { + "start": 7153.18, + "end": 7154.0, + "probability": 0.0918 + }, + { + "start": 7154.0, + "end": 7155.8, + "probability": 0.0835 + }, + { + "start": 7155.84, + "end": 7155.84, + "probability": 0.5185 + }, + { + "start": 7155.96, + "end": 7159.38, + "probability": 0.634 + }, + { + "start": 7159.5, + "end": 7160.44, + "probability": 0.8569 + }, + { + "start": 7160.64, + "end": 7161.58, + "probability": 0.9553 + }, + { + "start": 7161.6, + "end": 7162.58, + "probability": 0.9749 + }, + { + "start": 7162.74, + "end": 7164.0, + "probability": 0.9854 + }, + { + "start": 7164.44, + "end": 7168.62, + "probability": 0.957 + }, + { + "start": 7168.92, + "end": 7170.66, + "probability": 0.9966 + }, + { + "start": 7171.3, + "end": 7173.5, + "probability": 0.998 + }, + { + "start": 7173.85, + "end": 7176.14, + "probability": 0.5337 + }, + { + "start": 7177.98, + "end": 7183.9, + "probability": 0.7632 + }, + { + "start": 7184.04, + "end": 7185.76, + "probability": 0.8788 + }, + { + "start": 7186.42, + "end": 7189.54, + "probability": 0.9597 + }, + { + "start": 7190.18, + "end": 7192.28, + "probability": 0.9847 + }, + { + "start": 7192.82, + "end": 7194.16, + "probability": 0.9219 + }, + { + "start": 7194.62, + "end": 7196.44, + "probability": 0.9946 + }, + { + "start": 7196.7, + "end": 7197.9, + "probability": 0.9893 + }, + { + "start": 7198.4, + "end": 7201.72, + "probability": 0.9058 + }, + { + "start": 7202.02, + "end": 7205.18, + "probability": 0.9961 + }, + { + "start": 7205.68, + "end": 7207.7, + "probability": 0.3958 + }, + { + "start": 7207.86, + "end": 7210.08, + "probability": 0.0296 + }, + { + "start": 7211.24, + "end": 7215.3, + "probability": 0.9427 + }, + { + "start": 7215.48, + "end": 7218.88, + "probability": 0.9816 + }, + { + "start": 7218.88, + "end": 7219.36, + "probability": 0.1808 + }, + { + "start": 7219.96, + "end": 7220.44, + "probability": 0.0545 + }, + { + "start": 7223.25, + "end": 7224.52, + "probability": 0.5145 + }, + { + "start": 7224.52, + "end": 7226.34, + "probability": 0.9653 + }, + { + "start": 7226.54, + "end": 7227.8, + "probability": 0.7009 + }, + { + "start": 7229.16, + "end": 7229.16, + "probability": 0.273 + }, + { + "start": 7229.16, + "end": 7229.82, + "probability": 0.0372 + }, + { + "start": 7229.98, + "end": 7233.38, + "probability": 0.7878 + }, + { + "start": 7234.36, + "end": 7236.56, + "probability": 0.982 + }, + { + "start": 7237.14, + "end": 7239.54, + "probability": 0.2687 + }, + { + "start": 7239.54, + "end": 7241.08, + "probability": 0.4002 + }, + { + "start": 7241.12, + "end": 7241.96, + "probability": 0.8728 + }, + { + "start": 7242.14, + "end": 7242.68, + "probability": 0.937 + }, + { + "start": 7243.04, + "end": 7246.74, + "probability": 0.3857 + }, + { + "start": 7250.24, + "end": 7253.98, + "probability": 0.4407 + }, + { + "start": 7255.12, + "end": 7258.9, + "probability": 0.3186 + }, + { + "start": 7258.98, + "end": 7259.18, + "probability": 0.6174 + }, + { + "start": 7259.4, + "end": 7260.04, + "probability": 0.4777 + }, + { + "start": 7260.1, + "end": 7261.68, + "probability": 0.7452 + }, + { + "start": 7261.9, + "end": 7262.82, + "probability": 0.9118 + }, + { + "start": 7264.87, + "end": 7269.44, + "probability": 0.4317 + }, + { + "start": 7269.6, + "end": 7271.3, + "probability": 0.2048 + }, + { + "start": 7276.32, + "end": 7280.04, + "probability": 0.5216 + }, + { + "start": 7280.06, + "end": 7281.02, + "probability": 0.7433 + }, + { + "start": 7281.36, + "end": 7282.38, + "probability": 0.9185 + }, + { + "start": 7283.36, + "end": 7285.08, + "probability": 0.6455 + }, + { + "start": 7285.1, + "end": 7285.26, + "probability": 0.0576 + }, + { + "start": 7285.26, + "end": 7290.36, + "probability": 0.5729 + }, + { + "start": 7292.08, + "end": 7297.08, + "probability": 0.2421 + }, + { + "start": 7297.36, + "end": 7303.14, + "probability": 0.188 + }, + { + "start": 7304.22, + "end": 7305.42, + "probability": 0.7849 + }, + { + "start": 7305.62, + "end": 7307.68, + "probability": 0.351 + }, + { + "start": 7308.32, + "end": 7310.86, + "probability": 0.9195 + }, + { + "start": 7311.02, + "end": 7312.14, + "probability": 0.8421 + }, + { + "start": 7313.26, + "end": 7314.82, + "probability": 0.9609 + }, + { + "start": 7315.1, + "end": 7318.68, + "probability": 0.8584 + }, + { + "start": 7318.88, + "end": 7319.9, + "probability": 0.9724 + }, + { + "start": 7320.02, + "end": 7321.36, + "probability": 0.6484 + }, + { + "start": 7321.46, + "end": 7322.18, + "probability": 0.9335 + }, + { + "start": 7323.1, + "end": 7324.78, + "probability": 0.9039 + }, + { + "start": 7325.4, + "end": 7327.36, + "probability": 0.9175 + }, + { + "start": 7328.19, + "end": 7331.6, + "probability": 0.075 + }, + { + "start": 7331.64, + "end": 7333.24, + "probability": 0.9263 + }, + { + "start": 7333.37, + "end": 7336.46, + "probability": 0.99 + }, + { + "start": 7336.54, + "end": 7340.12, + "probability": 0.7988 + }, + { + "start": 7340.12, + "end": 7340.12, + "probability": 0.0369 + }, + { + "start": 7340.18, + "end": 7341.84, + "probability": 0.0965 + }, + { + "start": 7341.84, + "end": 7341.88, + "probability": 0.02 + }, + { + "start": 7342.0, + "end": 7342.0, + "probability": 0.1543 + }, + { + "start": 7342.0, + "end": 7342.08, + "probability": 0.4773 + }, + { + "start": 7342.62, + "end": 7344.54, + "probability": 0.5218 + }, + { + "start": 7344.54, + "end": 7346.06, + "probability": 0.8363 + }, + { + "start": 7346.58, + "end": 7346.58, + "probability": 0.0102 + }, + { + "start": 7346.58, + "end": 7348.54, + "probability": 0.8163 + }, + { + "start": 7348.98, + "end": 7350.44, + "probability": 0.9203 + }, + { + "start": 7350.56, + "end": 7352.66, + "probability": 0.1062 + }, + { + "start": 7353.66, + "end": 7355.98, + "probability": 0.2406 + }, + { + "start": 7359.34, + "end": 7359.94, + "probability": 0.0264 + }, + { + "start": 7359.94, + "end": 7362.26, + "probability": 0.027 + }, + { + "start": 7362.38, + "end": 7363.67, + "probability": 0.0191 + }, + { + "start": 7364.66, + "end": 7364.66, + "probability": 0.218 + }, + { + "start": 7364.8, + "end": 7366.28, + "probability": 0.0417 + }, + { + "start": 7366.28, + "end": 7366.28, + "probability": 0.3774 + }, + { + "start": 7366.28, + "end": 7368.16, + "probability": 0.0432 + }, + { + "start": 7368.16, + "end": 7368.76, + "probability": 0.0606 + }, + { + "start": 7369.28, + "end": 7372.44, + "probability": 0.1635 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7441.0, + "end": 7441.0, + "probability": 0.0 + }, + { + "start": 7442.28, + "end": 7449.48, + "probability": 0.8546 + }, + { + "start": 7449.76, + "end": 7450.96, + "probability": 0.6852 + }, + { + "start": 7451.38, + "end": 7453.92, + "probability": 0.8969 + }, + { + "start": 7454.24, + "end": 7457.24, + "probability": 0.939 + }, + { + "start": 7457.34, + "end": 7458.14, + "probability": 0.9064 + }, + { + "start": 7458.16, + "end": 7460.6, + "probability": 0.959 + }, + { + "start": 7460.6, + "end": 7463.24, + "probability": 0.7855 + }, + { + "start": 7463.28, + "end": 7470.48, + "probability": 0.9987 + }, + { + "start": 7471.06, + "end": 7472.4, + "probability": 0.6529 + }, + { + "start": 7472.98, + "end": 7475.18, + "probability": 0.9873 + }, + { + "start": 7475.3, + "end": 7476.14, + "probability": 0.9585 + }, + { + "start": 7476.56, + "end": 7479.32, + "probability": 0.9795 + }, + { + "start": 7479.76, + "end": 7480.2, + "probability": 0.9674 + }, + { + "start": 7480.28, + "end": 7482.8, + "probability": 0.897 + }, + { + "start": 7483.0, + "end": 7484.62, + "probability": 0.0818 + }, + { + "start": 7484.62, + "end": 7484.62, + "probability": 0.3134 + }, + { + "start": 7484.62, + "end": 7485.52, + "probability": 0.3021 + }, + { + "start": 7487.67, + "end": 7490.28, + "probability": 0.5198 + }, + { + "start": 7490.6, + "end": 7494.46, + "probability": 0.4967 + }, + { + "start": 7494.46, + "end": 7494.76, + "probability": 0.2862 + }, + { + "start": 7495.0, + "end": 7497.8, + "probability": 0.3325 + }, + { + "start": 7498.22, + "end": 7500.42, + "probability": 0.423 + }, + { + "start": 7500.42, + "end": 7501.16, + "probability": 0.1432 + }, + { + "start": 7501.16, + "end": 7501.64, + "probability": 0.15 + }, + { + "start": 7501.9, + "end": 7504.22, + "probability": 0.7994 + }, + { + "start": 7504.36, + "end": 7508.69, + "probability": 0.7695 + }, + { + "start": 7509.28, + "end": 7512.26, + "probability": 0.9287 + }, + { + "start": 7512.44, + "end": 7516.18, + "probability": 0.9731 + }, + { + "start": 7516.62, + "end": 7518.6, + "probability": 0.7208 + }, + { + "start": 7521.84, + "end": 7530.72, + "probability": 0.7613 + }, + { + "start": 7531.42, + "end": 7533.24, + "probability": 0.9572 + }, + { + "start": 7533.9, + "end": 7535.52, + "probability": 0.9461 + }, + { + "start": 7535.96, + "end": 7538.78, + "probability": 0.8534 + }, + { + "start": 7539.18, + "end": 7544.18, + "probability": 0.5313 + }, + { + "start": 7544.18, + "end": 7547.24, + "probability": 0.3969 + }, + { + "start": 7547.28, + "end": 7548.08, + "probability": 0.8092 + }, + { + "start": 7548.48, + "end": 7548.74, + "probability": 0.4352 + }, + { + "start": 7549.65, + "end": 7552.9, + "probability": 0.991 + }, + { + "start": 7552.94, + "end": 7557.92, + "probability": 0.7988 + }, + { + "start": 7558.9, + "end": 7560.96, + "probability": 0.8562 + }, + { + "start": 7561.92, + "end": 7564.42, + "probability": 0.6724 + }, + { + "start": 7565.14, + "end": 7567.86, + "probability": 0.8543 + }, + { + "start": 7568.58, + "end": 7570.96, + "probability": 0.6533 + }, + { + "start": 7572.68, + "end": 7576.12, + "probability": 0.8266 + }, + { + "start": 7576.86, + "end": 7576.9, + "probability": 0.0964 + }, + { + "start": 7576.9, + "end": 7578.9, + "probability": 0.9937 + }, + { + "start": 7579.54, + "end": 7581.74, + "probability": 0.9587 + }, + { + "start": 7582.44, + "end": 7583.88, + "probability": 0.9995 + }, + { + "start": 7584.34, + "end": 7587.66, + "probability": 0.9644 + }, + { + "start": 7587.88, + "end": 7589.36, + "probability": 0.999 + }, + { + "start": 7589.44, + "end": 7590.86, + "probability": 0.6986 + }, + { + "start": 7591.86, + "end": 7594.96, + "probability": 0.8715 + }, + { + "start": 7595.04, + "end": 7595.78, + "probability": 0.1428 + }, + { + "start": 7595.78, + "end": 7599.04, + "probability": 0.9538 + }, + { + "start": 7602.44, + "end": 7603.52, + "probability": 0.0079 + }, + { + "start": 7609.2, + "end": 7611.72, + "probability": 0.5265 + }, + { + "start": 7612.98, + "end": 7614.22, + "probability": 0.5829 + }, + { + "start": 7614.22, + "end": 7615.04, + "probability": 0.3303 + }, + { + "start": 7615.1, + "end": 7616.34, + "probability": 0.8564 + }, + { + "start": 7616.44, + "end": 7620.94, + "probability": 0.9635 + }, + { + "start": 7621.04, + "end": 7622.04, + "probability": 0.2977 + }, + { + "start": 7622.18, + "end": 7623.4, + "probability": 0.8079 + }, + { + "start": 7623.92, + "end": 7624.52, + "probability": 0.6435 + }, + { + "start": 7624.64, + "end": 7627.14, + "probability": 0.7276 + }, + { + "start": 7627.14, + "end": 7630.5, + "probability": 0.7824 + }, + { + "start": 7630.52, + "end": 7632.36, + "probability": 0.8789 + }, + { + "start": 7632.96, + "end": 7635.54, + "probability": 0.9891 + }, + { + "start": 7635.54, + "end": 7638.52, + "probability": 0.9974 + }, + { + "start": 7638.98, + "end": 7639.88, + "probability": 0.6582 + }, + { + "start": 7640.34, + "end": 7642.8, + "probability": 0.9384 + }, + { + "start": 7643.58, + "end": 7646.34, + "probability": 0.9976 + }, + { + "start": 7646.34, + "end": 7649.8, + "probability": 0.8974 + }, + { + "start": 7649.8, + "end": 7653.28, + "probability": 0.9902 + }, + { + "start": 7653.38, + "end": 7654.18, + "probability": 0.5674 + }, + { + "start": 7655.0, + "end": 7656.14, + "probability": 0.9597 + }, + { + "start": 7656.22, + "end": 7657.3, + "probability": 0.7282 + }, + { + "start": 7658.3, + "end": 7662.54, + "probability": 0.9961 + }, + { + "start": 7662.54, + "end": 7666.24, + "probability": 0.9752 + }, + { + "start": 7666.34, + "end": 7667.14, + "probability": 0.6701 + }, + { + "start": 7668.04, + "end": 7670.64, + "probability": 0.983 + }, + { + "start": 7670.96, + "end": 7671.24, + "probability": 0.7675 + }, + { + "start": 7674.94, + "end": 7677.28, + "probability": 0.8787 + }, + { + "start": 7678.34, + "end": 7681.02, + "probability": 0.85 + }, + { + "start": 7682.24, + "end": 7685.14, + "probability": 0.8184 + }, + { + "start": 7685.4, + "end": 7686.7, + "probability": 0.8944 + }, + { + "start": 7688.7, + "end": 7690.1, + "probability": 0.5482 + }, + { + "start": 7690.1, + "end": 7690.46, + "probability": 0.4918 + }, + { + "start": 7690.86, + "end": 7691.22, + "probability": 0.9181 + }, + { + "start": 7691.76, + "end": 7692.41, + "probability": 0.8776 + }, + { + "start": 7693.86, + "end": 7696.2, + "probability": 0.9933 + }, + { + "start": 7697.74, + "end": 7699.95, + "probability": 0.6987 + }, + { + "start": 7700.42, + "end": 7701.14, + "probability": 0.8762 + }, + { + "start": 7702.6, + "end": 7703.54, + "probability": 0.9889 + }, + { + "start": 7703.64, + "end": 7704.8, + "probability": 0.8108 + }, + { + "start": 7704.84, + "end": 7705.76, + "probability": 0.9724 + }, + { + "start": 7706.08, + "end": 7707.4, + "probability": 0.3952 + }, + { + "start": 7707.54, + "end": 7707.9, + "probability": 0.8912 + }, + { + "start": 7707.94, + "end": 7709.48, + "probability": 0.9517 + }, + { + "start": 7709.5, + "end": 7709.78, + "probability": 0.2848 + }, + { + "start": 7710.18, + "end": 7712.28, + "probability": 0.5987 + }, + { + "start": 7713.56, + "end": 7716.02, + "probability": 0.9923 + }, + { + "start": 7717.14, + "end": 7718.7, + "probability": 0.1431 + }, + { + "start": 7719.54, + "end": 7722.76, + "probability": 0.8717 + }, + { + "start": 7723.78, + "end": 7725.98, + "probability": 0.9505 + }, + { + "start": 7726.32, + "end": 7727.74, + "probability": 0.9977 + }, + { + "start": 7727.88, + "end": 7729.3, + "probability": 0.9953 + }, + { + "start": 7729.86, + "end": 7730.86, + "probability": 0.8351 + }, + { + "start": 7731.22, + "end": 7732.14, + "probability": 0.9834 + }, + { + "start": 7732.62, + "end": 7736.26, + "probability": 0.9181 + }, + { + "start": 7736.78, + "end": 7738.14, + "probability": 0.634 + }, + { + "start": 7738.22, + "end": 7738.76, + "probability": 0.8685 + }, + { + "start": 7738.86, + "end": 7739.32, + "probability": 0.9485 + }, + { + "start": 7739.4, + "end": 7739.92, + "probability": 0.9868 + }, + { + "start": 7739.94, + "end": 7740.56, + "probability": 0.718 + }, + { + "start": 7740.64, + "end": 7741.8, + "probability": 0.4508 + }, + { + "start": 7742.16, + "end": 7744.1, + "probability": 0.9958 + }, + { + "start": 7745.28, + "end": 7749.98, + "probability": 0.7568 + }, + { + "start": 7750.1, + "end": 7751.34, + "probability": 0.9913 + }, + { + "start": 7751.82, + "end": 7754.86, + "probability": 0.8424 + }, + { + "start": 7755.4, + "end": 7757.66, + "probability": 0.9869 + }, + { + "start": 7757.74, + "end": 7759.92, + "probability": 0.7445 + }, + { + "start": 7760.46, + "end": 7761.2, + "probability": 0.7939 + }, + { + "start": 7761.66, + "end": 7762.2, + "probability": 0.5885 + }, + { + "start": 7762.32, + "end": 7763.93, + "probability": 0.7881 + }, + { + "start": 7764.1, + "end": 7767.32, + "probability": 0.9658 + }, + { + "start": 7767.74, + "end": 7768.7, + "probability": 0.8654 + }, + { + "start": 7769.36, + "end": 7770.88, + "probability": 0.7998 + }, + { + "start": 7770.98, + "end": 7771.42, + "probability": 0.9086 + }, + { + "start": 7771.96, + "end": 7772.26, + "probability": 0.825 + }, + { + "start": 7772.4, + "end": 7776.0, + "probability": 0.9881 + }, + { + "start": 7776.4, + "end": 7777.38, + "probability": 0.9246 + }, + { + "start": 7777.7, + "end": 7778.5, + "probability": 0.9054 + }, + { + "start": 7778.62, + "end": 7784.22, + "probability": 0.9601 + }, + { + "start": 7784.66, + "end": 7786.16, + "probability": 0.7515 + }, + { + "start": 7786.56, + "end": 7789.2, + "probability": 0.8428 + }, + { + "start": 7789.56, + "end": 7792.62, + "probability": 0.8535 + }, + { + "start": 7793.18, + "end": 7795.68, + "probability": 0.9907 + }, + { + "start": 7796.14, + "end": 7797.56, + "probability": 0.999 + }, + { + "start": 7798.04, + "end": 7800.08, + "probability": 0.8557 + }, + { + "start": 7800.46, + "end": 7804.38, + "probability": 0.9783 + }, + { + "start": 7804.54, + "end": 7807.84, + "probability": 0.9343 + }, + { + "start": 7808.46, + "end": 7813.54, + "probability": 0.9566 + }, + { + "start": 7814.06, + "end": 7817.5, + "probability": 0.8718 + }, + { + "start": 7818.1, + "end": 7822.22, + "probability": 0.991 + }, + { + "start": 7823.22, + "end": 7823.26, + "probability": 0.1616 + }, + { + "start": 7823.26, + "end": 7823.26, + "probability": 0.5035 + }, + { + "start": 7824.16, + "end": 7825.96, + "probability": 0.9948 + }, + { + "start": 7826.4, + "end": 7827.36, + "probability": 0.9497 + }, + { + "start": 7827.82, + "end": 7830.2, + "probability": 0.9859 + }, + { + "start": 7830.98, + "end": 7832.9, + "probability": 0.9827 + }, + { + "start": 7833.04, + "end": 7834.54, + "probability": 0.9712 + }, + { + "start": 7835.28, + "end": 7838.84, + "probability": 0.98 + }, + { + "start": 7839.12, + "end": 7840.52, + "probability": 0.9678 + }, + { + "start": 7840.64, + "end": 7842.18, + "probability": 0.9386 + }, + { + "start": 7842.6, + "end": 7843.84, + "probability": 0.9705 + }, + { + "start": 7844.02, + "end": 7846.3, + "probability": 0.9671 + }, + { + "start": 7846.48, + "end": 7846.86, + "probability": 0.0923 + }, + { + "start": 7846.86, + "end": 7851.78, + "probability": 0.9478 + }, + { + "start": 7852.02, + "end": 7854.86, + "probability": 0.1722 + }, + { + "start": 7854.86, + "end": 7854.86, + "probability": 0.0336 + }, + { + "start": 7855.22, + "end": 7857.98, + "probability": 0.2337 + }, + { + "start": 7857.98, + "end": 7859.04, + "probability": 0.4713 + }, + { + "start": 7859.36, + "end": 7861.2, + "probability": 0.5914 + }, + { + "start": 7861.2, + "end": 7861.28, + "probability": 0.0624 + }, + { + "start": 7861.86, + "end": 7863.56, + "probability": 0.6097 + }, + { + "start": 7870.66, + "end": 7871.86, + "probability": 0.0625 + }, + { + "start": 7873.0, + "end": 7874.78, + "probability": 0.0807 + }, + { + "start": 7875.24, + "end": 7876.92, + "probability": 0.0727 + }, + { + "start": 7877.58, + "end": 7877.93, + "probability": 0.0139 + }, + { + "start": 7881.26, + "end": 7884.6, + "probability": 0.0694 + }, + { + "start": 7885.12, + "end": 7891.02, + "probability": 0.3822 + }, + { + "start": 7891.82, + "end": 7896.36, + "probability": 0.2147 + }, + { + "start": 7901.0, + "end": 7901.66, + "probability": 0.0072 + }, + { + "start": 7902.84, + "end": 7905.08, + "probability": 0.3076 + }, + { + "start": 7906.9, + "end": 7909.78, + "probability": 0.1055 + }, + { + "start": 7909.78, + "end": 7909.78, + "probability": 0.0696 + }, + { + "start": 7909.78, + "end": 7912.76, + "probability": 0.0641 + }, + { + "start": 7913.43, + "end": 7914.0, + "probability": 0.0107 + }, + { + "start": 7915.1, + "end": 7915.98, + "probability": 0.0186 + }, + { + "start": 7916.0, + "end": 7916.0, + "probability": 0.0 + }, + { + "start": 7916.0, + "end": 7916.0, + "probability": 0.0 + }, + { + "start": 7916.0, + "end": 7916.0, + "probability": 0.0 + }, + { + "start": 7916.0, + "end": 7916.0, + "probability": 0.0 + }, + { + "start": 7916.0, + "end": 7916.0, + "probability": 0.0 + }, + { + "start": 7916.0, + "end": 7916.0, + "probability": 0.0 + }, + { + "start": 7916.0, + "end": 7916.0, + "probability": 0.0 + }, + { + "start": 7916.0, + "end": 7916.0, + "probability": 0.0 + }, + { + "start": 7916.3, + "end": 7916.36, + "probability": 0.0215 + }, + { + "start": 7916.36, + "end": 7916.76, + "probability": 0.4585 + }, + { + "start": 7916.9, + "end": 7917.36, + "probability": 0.4706 + }, + { + "start": 7917.42, + "end": 7917.82, + "probability": 0.8147 + }, + { + "start": 7918.04, + "end": 7918.34, + "probability": 0.1713 + }, + { + "start": 7918.88, + "end": 7918.96, + "probability": 0.4538 + }, + { + "start": 7919.26, + "end": 7919.84, + "probability": 0.5165 + }, + { + "start": 7921.94, + "end": 7923.88, + "probability": 0.8614 + }, + { + "start": 7933.0, + "end": 7934.52, + "probability": 0.6902 + }, + { + "start": 7936.54, + "end": 7942.12, + "probability": 0.9649 + }, + { + "start": 7945.84, + "end": 7946.63, + "probability": 0.86 + }, + { + "start": 7948.46, + "end": 7950.14, + "probability": 0.9172 + }, + { + "start": 7952.0, + "end": 7953.6, + "probability": 0.9663 + }, + { + "start": 7956.18, + "end": 7957.84, + "probability": 0.9633 + }, + { + "start": 7957.98, + "end": 7959.78, + "probability": 0.9933 + }, + { + "start": 7959.9, + "end": 7961.36, + "probability": 0.9434 + }, + { + "start": 7962.62, + "end": 7963.55, + "probability": 0.6772 + }, + { + "start": 7966.1, + "end": 7967.98, + "probability": 0.9615 + }, + { + "start": 7969.48, + "end": 7975.84, + "probability": 0.7727 + }, + { + "start": 7976.9, + "end": 7979.22, + "probability": 0.9883 + }, + { + "start": 7980.82, + "end": 7987.38, + "probability": 0.9329 + }, + { + "start": 7988.36, + "end": 7993.48, + "probability": 0.9912 + }, + { + "start": 7993.52, + "end": 7993.82, + "probability": 0.6641 + }, + { + "start": 7993.86, + "end": 7995.22, + "probability": 0.2744 + }, + { + "start": 7996.74, + "end": 7998.1, + "probability": 0.7794 + }, + { + "start": 7998.78, + "end": 8000.66, + "probability": 0.7319 + }, + { + "start": 8001.76, + "end": 8002.64, + "probability": 0.9907 + }, + { + "start": 8005.22, + "end": 8006.1, + "probability": 0.9946 + }, + { + "start": 8006.62, + "end": 8011.44, + "probability": 0.991 + }, + { + "start": 8013.56, + "end": 8017.32, + "probability": 0.937 + }, + { + "start": 8020.1, + "end": 8022.46, + "probability": 0.7972 + }, + { + "start": 8024.28, + "end": 8027.04, + "probability": 0.7472 + }, + { + "start": 8028.38, + "end": 8029.98, + "probability": 0.9571 + }, + { + "start": 8031.68, + "end": 8032.62, + "probability": 0.9823 + }, + { + "start": 8033.34, + "end": 8036.76, + "probability": 0.8844 + }, + { + "start": 8036.76, + "end": 8039.28, + "probability": 0.9993 + }, + { + "start": 8039.64, + "end": 8040.6, + "probability": 0.0878 + }, + { + "start": 8040.92, + "end": 8043.14, + "probability": 0.7514 + }, + { + "start": 8043.6, + "end": 8045.0, + "probability": 0.9979 + }, + { + "start": 8046.44, + "end": 8048.92, + "probability": 0.6081 + }, + { + "start": 8052.04, + "end": 8053.42, + "probability": 0.8657 + }, + { + "start": 8053.54, + "end": 8056.46, + "probability": 0.9963 + }, + { + "start": 8057.06, + "end": 8058.4, + "probability": 0.9932 + }, + { + "start": 8059.6, + "end": 8061.84, + "probability": 0.9318 + }, + { + "start": 8063.9, + "end": 8067.36, + "probability": 0.9946 + }, + { + "start": 8068.54, + "end": 8071.06, + "probability": 0.6591 + }, + { + "start": 8075.08, + "end": 8076.68, + "probability": 0.818 + }, + { + "start": 8077.58, + "end": 8080.14, + "probability": 0.9796 + }, + { + "start": 8081.28, + "end": 8085.96, + "probability": 0.9418 + }, + { + "start": 8086.82, + "end": 8088.88, + "probability": 0.9477 + }, + { + "start": 8091.02, + "end": 8092.14, + "probability": 0.9865 + }, + { + "start": 8094.4, + "end": 8096.32, + "probability": 0.9878 + }, + { + "start": 8096.4, + "end": 8098.22, + "probability": 0.9925 + }, + { + "start": 8099.24, + "end": 8100.04, + "probability": 0.6512 + }, + { + "start": 8102.78, + "end": 8105.7, + "probability": 0.9971 + }, + { + "start": 8107.64, + "end": 8109.54, + "probability": 0.9827 + }, + { + "start": 8110.7, + "end": 8114.4, + "probability": 0.9505 + }, + { + "start": 8115.18, + "end": 8116.3, + "probability": 0.5068 + }, + { + "start": 8117.08, + "end": 8118.98, + "probability": 0.9536 + }, + { + "start": 8120.2, + "end": 8121.88, + "probability": 0.796 + }, + { + "start": 8122.44, + "end": 8123.89, + "probability": 0.9435 + }, + { + "start": 8124.58, + "end": 8125.68, + "probability": 0.6387 + }, + { + "start": 8125.84, + "end": 8126.54, + "probability": 0.5762 + }, + { + "start": 8126.76, + "end": 8127.84, + "probability": 0.8662 + }, + { + "start": 8128.38, + "end": 8129.31, + "probability": 0.9791 + }, + { + "start": 8129.4, + "end": 8130.2, + "probability": 0.4657 + }, + { + "start": 8130.26, + "end": 8131.68, + "probability": 0.5466 + }, + { + "start": 8144.86, + "end": 8144.86, + "probability": 0.3548 + }, + { + "start": 8144.86, + "end": 8144.86, + "probability": 0.2672 + }, + { + "start": 8144.86, + "end": 8147.76, + "probability": 0.5953 + }, + { + "start": 8148.74, + "end": 8150.28, + "probability": 0.6168 + }, + { + "start": 8150.58, + "end": 8155.25, + "probability": 0.9911 + }, + { + "start": 8156.2, + "end": 8156.7, + "probability": 0.3195 + }, + { + "start": 8157.88, + "end": 8159.55, + "probability": 0.4973 + }, + { + "start": 8160.68, + "end": 8162.49, + "probability": 0.9958 + }, + { + "start": 8163.7, + "end": 8167.66, + "probability": 0.9941 + }, + { + "start": 8168.8, + "end": 8172.14, + "probability": 0.9849 + }, + { + "start": 8173.6, + "end": 8174.96, + "probability": 0.8325 + }, + { + "start": 8176.48, + "end": 8179.28, + "probability": 0.957 + }, + { + "start": 8180.44, + "end": 8182.78, + "probability": 0.8579 + }, + { + "start": 8183.78, + "end": 8185.08, + "probability": 0.5854 + }, + { + "start": 8185.4, + "end": 8186.0, + "probability": 0.4991 + }, + { + "start": 8186.96, + "end": 8188.4, + "probability": 0.979 + }, + { + "start": 8189.66, + "end": 8194.26, + "probability": 0.998 + }, + { + "start": 8194.4, + "end": 8195.56, + "probability": 0.8862 + }, + { + "start": 8196.08, + "end": 8198.52, + "probability": 0.9627 + }, + { + "start": 8198.8, + "end": 8200.16, + "probability": 0.9404 + }, + { + "start": 8201.82, + "end": 8204.94, + "probability": 0.8417 + }, + { + "start": 8205.98, + "end": 8206.5, + "probability": 0.2699 + }, + { + "start": 8207.58, + "end": 8208.64, + "probability": 0.9717 + }, + { + "start": 8210.8, + "end": 8211.2, + "probability": 0.9594 + }, + { + "start": 8212.4, + "end": 8214.08, + "probability": 0.8799 + }, + { + "start": 8215.02, + "end": 8217.16, + "probability": 0.9603 + }, + { + "start": 8218.32, + "end": 8220.64, + "probability": 0.9132 + }, + { + "start": 8221.06, + "end": 8221.3, + "probability": 0.0217 + }, + { + "start": 8221.9, + "end": 8223.44, + "probability": 0.845 + }, + { + "start": 8223.56, + "end": 8224.48, + "probability": 0.6027 + }, + { + "start": 8225.74, + "end": 8226.92, + "probability": 0.8086 + }, + { + "start": 8227.86, + "end": 8229.48, + "probability": 0.8757 + }, + { + "start": 8230.38, + "end": 8233.86, + "probability": 0.9326 + }, + { + "start": 8234.14, + "end": 8237.14, + "probability": 0.9003 + }, + { + "start": 8237.9, + "end": 8241.38, + "probability": 0.8238 + }, + { + "start": 8243.24, + "end": 8245.42, + "probability": 0.8523 + }, + { + "start": 8246.6, + "end": 8247.24, + "probability": 0.4995 + }, + { + "start": 8248.02, + "end": 8249.12, + "probability": 0.9912 + }, + { + "start": 8250.8, + "end": 8253.12, + "probability": 0.6262 + }, + { + "start": 8256.24, + "end": 8258.24, + "probability": 0.9961 + }, + { + "start": 8260.52, + "end": 8264.04, + "probability": 0.6357 + }, + { + "start": 8265.22, + "end": 8266.96, + "probability": 0.9253 + }, + { + "start": 8267.98, + "end": 8271.24, + "probability": 0.9536 + }, + { + "start": 8271.88, + "end": 8273.78, + "probability": 0.7528 + }, + { + "start": 8274.64, + "end": 8276.66, + "probability": 0.9951 + }, + { + "start": 8277.84, + "end": 8279.0, + "probability": 0.9491 + }, + { + "start": 8279.98, + "end": 8284.66, + "probability": 0.9197 + }, + { + "start": 8286.38, + "end": 8287.42, + "probability": 0.7811 + }, + { + "start": 8289.08, + "end": 8293.18, + "probability": 0.9181 + }, + { + "start": 8294.48, + "end": 8295.28, + "probability": 0.7085 + }, + { + "start": 8296.24, + "end": 8299.22, + "probability": 0.6433 + }, + { + "start": 8300.88, + "end": 8304.4, + "probability": 0.9906 + }, + { + "start": 8305.34, + "end": 8305.36, + "probability": 0.5744 + }, + { + "start": 8305.44, + "end": 8306.7, + "probability": 0.9284 + }, + { + "start": 8319.02, + "end": 8319.26, + "probability": 0.1706 + }, + { + "start": 8319.26, + "end": 8319.26, + "probability": 0.0905 + }, + { + "start": 8319.26, + "end": 8319.26, + "probability": 0.0303 + }, + { + "start": 8319.26, + "end": 8320.23, + "probability": 0.3492 + }, + { + "start": 8322.2, + "end": 8322.98, + "probability": 0.3921 + }, + { + "start": 8323.62, + "end": 8325.86, + "probability": 0.5072 + }, + { + "start": 8327.16, + "end": 8328.52, + "probability": 0.0663 + }, + { + "start": 8329.86, + "end": 8332.95, + "probability": 0.7533 + }, + { + "start": 8333.84, + "end": 8338.22, + "probability": 0.9729 + }, + { + "start": 8338.7, + "end": 8339.2, + "probability": 0.8467 + }, + { + "start": 8339.34, + "end": 8340.5, + "probability": 0.564 + }, + { + "start": 8340.66, + "end": 8342.02, + "probability": 0.9908 + }, + { + "start": 8343.05, + "end": 8345.52, + "probability": 0.8513 + }, + { + "start": 8354.76, + "end": 8354.76, + "probability": 0.1192 + }, + { + "start": 8354.76, + "end": 8354.76, + "probability": 0.1104 + }, + { + "start": 8354.76, + "end": 8354.76, + "probability": 0.012 + }, + { + "start": 8360.36, + "end": 8361.84, + "probability": 0.1465 + }, + { + "start": 8372.66, + "end": 8374.26, + "probability": 0.5566 + }, + { + "start": 8375.88, + "end": 8377.76, + "probability": 0.8766 + }, + { + "start": 8379.92, + "end": 8382.12, + "probability": 0.3406 + }, + { + "start": 8382.7, + "end": 8382.8, + "probability": 0.6374 + }, + { + "start": 8383.68, + "end": 8386.48, + "probability": 0.076 + }, + { + "start": 8386.48, + "end": 8386.82, + "probability": 0.014 + }, + { + "start": 8386.82, + "end": 8386.82, + "probability": 0.0566 + }, + { + "start": 8386.82, + "end": 8389.26, + "probability": 0.2705 + }, + { + "start": 8390.42, + "end": 8395.15, + "probability": 0.2346 + }, + { + "start": 8396.19, + "end": 8396.68, + "probability": 0.0649 + }, + { + "start": 8396.7, + "end": 8401.02, + "probability": 0.0452 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8443.0, + "end": 8443.0, + "probability": 0.0 + }, + { + "start": 8454.98, + "end": 8456.6, + "probability": 0.0257 + }, + { + "start": 8459.02, + "end": 8460.04, + "probability": 0.0311 + }, + { + "start": 8462.66, + "end": 8463.7, + "probability": 0.0717 + }, + { + "start": 8464.67, + "end": 8465.29, + "probability": 0.0091 + }, + { + "start": 8466.48, + "end": 8466.62, + "probability": 0.0897 + }, + { + "start": 8467.24, + "end": 8467.48, + "probability": 0.1234 + }, + { + "start": 8467.48, + "end": 8469.16, + "probability": 0.1622 + }, + { + "start": 8469.16, + "end": 8471.36, + "probability": 0.2429 + }, + { + "start": 8473.04, + "end": 8474.02, + "probability": 0.5712 + }, + { + "start": 8474.9, + "end": 8476.08, + "probability": 0.4187 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8581.0, + "end": 8581.0, + "probability": 0.0 + }, + { + "start": 8582.0, + "end": 8583.46, + "probability": 0.328 + }, + { + "start": 8585.14, + "end": 8585.9, + "probability": 0.9427 + }, + { + "start": 8586.28, + "end": 8587.38, + "probability": 0.7055 + }, + { + "start": 8587.38, + "end": 8587.62, + "probability": 0.5521 + }, + { + "start": 8589.16, + "end": 8590.04, + "probability": 0.7108 + }, + { + "start": 8590.32, + "end": 8591.1, + "probability": 0.6592 + }, + { + "start": 8591.34, + "end": 8594.74, + "probability": 0.9472 + }, + { + "start": 8596.32, + "end": 8599.08, + "probability": 0.9883 + }, + { + "start": 8600.4, + "end": 8603.92, + "probability": 0.9554 + }, + { + "start": 8604.76, + "end": 8607.14, + "probability": 0.9158 + }, + { + "start": 8607.8, + "end": 8611.82, + "probability": 0.9831 + }, + { + "start": 8612.34, + "end": 8615.66, + "probability": 0.9964 + }, + { + "start": 8615.86, + "end": 8616.38, + "probability": 0.6003 + }, + { + "start": 8616.38, + "end": 8618.0, + "probability": 0.9102 + }, + { + "start": 8618.06, + "end": 8621.2, + "probability": 0.9956 + }, + { + "start": 8621.62, + "end": 8624.44, + "probability": 0.7821 + }, + { + "start": 8624.52, + "end": 8625.66, + "probability": 0.9604 + }, + { + "start": 8626.18, + "end": 8628.02, + "probability": 0.9178 + }, + { + "start": 8628.14, + "end": 8628.82, + "probability": 0.7773 + }, + { + "start": 8628.84, + "end": 8629.42, + "probability": 0.0464 + }, + { + "start": 8629.72, + "end": 8633.14, + "probability": 0.9021 + }, + { + "start": 8633.44, + "end": 8635.78, + "probability": 0.0738 + }, + { + "start": 8636.04, + "end": 8637.8, + "probability": 0.9587 + }, + { + "start": 8637.94, + "end": 8640.46, + "probability": 0.9933 + }, + { + "start": 8640.5, + "end": 8640.99, + "probability": 0.8485 + }, + { + "start": 8641.04, + "end": 8641.62, + "probability": 0.8045 + }, + { + "start": 8641.62, + "end": 8643.18, + "probability": 0.6704 + }, + { + "start": 8643.2, + "end": 8644.94, + "probability": 0.3926 + }, + { + "start": 8645.56, + "end": 8646.15, + "probability": 0.6265 + }, + { + "start": 8646.28, + "end": 8646.58, + "probability": 0.8723 + }, + { + "start": 8646.66, + "end": 8647.48, + "probability": 0.9744 + }, + { + "start": 8647.54, + "end": 8649.14, + "probability": 0.9418 + }, + { + "start": 8649.16, + "end": 8650.26, + "probability": 0.5704 + }, + { + "start": 8650.42, + "end": 8654.64, + "probability": 0.9795 + }, + { + "start": 8655.36, + "end": 8657.32, + "probability": 0.9973 + }, + { + "start": 8657.66, + "end": 8660.16, + "probability": 0.9937 + }, + { + "start": 8660.54, + "end": 8661.04, + "probability": 0.624 + }, + { + "start": 8661.28, + "end": 8664.22, + "probability": 0.3419 + }, + { + "start": 8664.8, + "end": 8665.74, + "probability": 0.7471 + }, + { + "start": 8665.74, + "end": 8666.38, + "probability": 0.1145 + }, + { + "start": 8667.58, + "end": 8669.02, + "probability": 0.6935 + }, + { + "start": 8669.6, + "end": 8671.4, + "probability": 0.8122 + }, + { + "start": 8671.48, + "end": 8672.1, + "probability": 0.7128 + }, + { + "start": 8672.42, + "end": 8674.28, + "probability": 0.6069 + }, + { + "start": 8676.14, + "end": 8681.88, + "probability": 0.9803 + }, + { + "start": 8682.04, + "end": 8685.5, + "probability": 0.9976 + }, + { + "start": 8686.44, + "end": 8687.5, + "probability": 0.9324 + }, + { + "start": 8688.08, + "end": 8689.58, + "probability": 0.9509 + }, + { + "start": 8690.52, + "end": 8695.36, + "probability": 0.9946 + }, + { + "start": 8695.88, + "end": 8699.22, + "probability": 0.9969 + }, + { + "start": 8699.24, + "end": 8700.02, + "probability": 0.4436 + }, + { + "start": 8700.18, + "end": 8702.24, + "probability": 0.7245 + }, + { + "start": 8702.3, + "end": 8703.78, + "probability": 0.9505 + }, + { + "start": 8704.02, + "end": 8706.12, + "probability": 0.7739 + }, + { + "start": 8706.52, + "end": 8707.46, + "probability": 0.791 + }, + { + "start": 8707.84, + "end": 8708.1, + "probability": 0.5613 + }, + { + "start": 8708.1, + "end": 8708.96, + "probability": 0.9673 + }, + { + "start": 8709.32, + "end": 8710.9, + "probability": 0.9961 + }, + { + "start": 8711.04, + "end": 8711.52, + "probability": 0.4502 + }, + { + "start": 8711.62, + "end": 8713.56, + "probability": 0.8656 + }, + { + "start": 8713.64, + "end": 8714.32, + "probability": 0.8941 + }, + { + "start": 8714.74, + "end": 8717.02, + "probability": 0.9575 + }, + { + "start": 8718.76, + "end": 8719.52, + "probability": 0.5818 + }, + { + "start": 8719.94, + "end": 8721.98, + "probability": 0.9006 + }, + { + "start": 8722.06, + "end": 8723.01, + "probability": 0.9587 + }, + { + "start": 8723.62, + "end": 8725.68, + "probability": 0.9049 + }, + { + "start": 8726.46, + "end": 8727.9, + "probability": 0.7386 + }, + { + "start": 8728.76, + "end": 8731.02, + "probability": 0.9945 + }, + { + "start": 8732.48, + "end": 8733.94, + "probability": 0.9817 + }, + { + "start": 8734.42, + "end": 8735.24, + "probability": 0.8401 + }, + { + "start": 8736.04, + "end": 8737.7, + "probability": 0.9772 + }, + { + "start": 8738.16, + "end": 8739.97, + "probability": 0.852 + }, + { + "start": 8740.48, + "end": 8745.68, + "probability": 0.923 + }, + { + "start": 8746.04, + "end": 8747.24, + "probability": 0.8983 + }, + { + "start": 8747.86, + "end": 8749.08, + "probability": 0.9646 + }, + { + "start": 8749.66, + "end": 8750.88, + "probability": 0.9904 + }, + { + "start": 8751.84, + "end": 8752.8, + "probability": 0.2788 + }, + { + "start": 8753.36, + "end": 8758.15, + "probability": 0.8457 + }, + { + "start": 8758.48, + "end": 8759.24, + "probability": 0.9924 + }, + { + "start": 8759.42, + "end": 8760.18, + "probability": 0.8989 + }, + { + "start": 8760.22, + "end": 8760.76, + "probability": 0.6484 + }, + { + "start": 8761.38, + "end": 8764.38, + "probability": 0.8266 + }, + { + "start": 8764.8, + "end": 8767.58, + "probability": 0.9841 + }, + { + "start": 8768.0, + "end": 8770.7, + "probability": 0.7939 + }, + { + "start": 8770.78, + "end": 8773.9, + "probability": 0.9788 + }, + { + "start": 8774.8, + "end": 8778.88, + "probability": 0.707 + }, + { + "start": 8779.52, + "end": 8779.76, + "probability": 0.6517 + }, + { + "start": 8779.94, + "end": 8780.42, + "probability": 0.895 + }, + { + "start": 8780.78, + "end": 8786.18, + "probability": 0.7801 + }, + { + "start": 8787.0, + "end": 8788.24, + "probability": 0.9923 + }, + { + "start": 8788.54, + "end": 8790.46, + "probability": 0.9549 + }, + { + "start": 8791.1, + "end": 8793.98, + "probability": 0.8857 + }, + { + "start": 8794.38, + "end": 8796.42, + "probability": 0.7261 + }, + { + "start": 8796.86, + "end": 8798.56, + "probability": 0.8202 + }, + { + "start": 8799.6, + "end": 8804.7, + "probability": 0.7891 + }, + { + "start": 8805.42, + "end": 8807.22, + "probability": 0.972 + }, + { + "start": 8807.7, + "end": 8809.02, + "probability": 0.7653 + }, + { + "start": 8809.94, + "end": 8811.96, + "probability": 0.4672 + }, + { + "start": 8812.02, + "end": 8812.73, + "probability": 0.7637 + }, + { + "start": 8813.2, + "end": 8817.18, + "probability": 0.9098 + }, + { + "start": 8817.62, + "end": 8821.24, + "probability": 0.9805 + }, + { + "start": 8821.92, + "end": 8823.78, + "probability": 0.9902 + }, + { + "start": 8823.84, + "end": 8824.78, + "probability": 0.614 + }, + { + "start": 8824.94, + "end": 8826.54, + "probability": 0.9048 + }, + { + "start": 8827.18, + "end": 8830.34, + "probability": 0.9868 + }, + { + "start": 8830.84, + "end": 8833.42, + "probability": 0.9066 + }, + { + "start": 8833.84, + "end": 8835.17, + "probability": 0.9756 + }, + { + "start": 8835.74, + "end": 8837.24, + "probability": 0.8226 + }, + { + "start": 8837.78, + "end": 8841.24, + "probability": 0.9538 + }, + { + "start": 8841.84, + "end": 8843.0, + "probability": 0.8548 + }, + { + "start": 8843.46, + "end": 8846.36, + "probability": 0.9988 + }, + { + "start": 8846.36, + "end": 8849.68, + "probability": 0.9883 + }, + { + "start": 8849.88, + "end": 8850.22, + "probability": 0.4717 + }, + { + "start": 8850.22, + "end": 8850.32, + "probability": 0.3604 + }, + { + "start": 8850.48, + "end": 8852.16, + "probability": 0.7939 + }, + { + "start": 8852.74, + "end": 8855.86, + "probability": 0.9055 + }, + { + "start": 8857.16, + "end": 8857.9, + "probability": 0.9495 + }, + { + "start": 8882.66, + "end": 8884.04, + "probability": 0.5746 + }, + { + "start": 8885.48, + "end": 8890.5, + "probability": 0.9843 + }, + { + "start": 8891.12, + "end": 8892.16, + "probability": 0.9001 + }, + { + "start": 8892.62, + "end": 8893.7, + "probability": 0.7845 + }, + { + "start": 8893.7, + "end": 8894.06, + "probability": 0.6019 + }, + { + "start": 8894.08, + "end": 8894.26, + "probability": 0.5173 + }, + { + "start": 8894.36, + "end": 8894.72, + "probability": 0.3215 + }, + { + "start": 8894.72, + "end": 8896.94, + "probability": 0.8925 + }, + { + "start": 8897.74, + "end": 8900.18, + "probability": 0.7647 + }, + { + "start": 8900.88, + "end": 8906.54, + "probability": 0.9843 + }, + { + "start": 8907.6, + "end": 8911.92, + "probability": 0.7235 + }, + { + "start": 8912.26, + "end": 8913.1, + "probability": 0.9955 + }, + { + "start": 8913.24, + "end": 8915.24, + "probability": 0.1065 + }, + { + "start": 8915.24, + "end": 8916.6, + "probability": 0.6248 + }, + { + "start": 8917.14, + "end": 8917.68, + "probability": 0.5036 + }, + { + "start": 8918.36, + "end": 8920.08, + "probability": 0.983 + }, + { + "start": 8920.6, + "end": 8922.59, + "probability": 0.9648 + }, + { + "start": 8923.3, + "end": 8923.68, + "probability": 0.7276 + }, + { + "start": 8924.26, + "end": 8926.4, + "probability": 0.9756 + }, + { + "start": 8926.44, + "end": 8928.18, + "probability": 0.986 + }, + { + "start": 8928.24, + "end": 8929.28, + "probability": 0.8722 + }, + { + "start": 8929.44, + "end": 8932.84, + "probability": 0.9809 + }, + { + "start": 8934.2, + "end": 8935.17, + "probability": 0.9313 + }, + { + "start": 8935.74, + "end": 8939.7, + "probability": 0.9462 + }, + { + "start": 8940.48, + "end": 8942.14, + "probability": 0.9977 + }, + { + "start": 8942.48, + "end": 8943.64, + "probability": 0.8331 + }, + { + "start": 8943.8, + "end": 8944.5, + "probability": 0.9285 + }, + { + "start": 8944.56, + "end": 8944.76, + "probability": 0.3528 + }, + { + "start": 8944.82, + "end": 8946.96, + "probability": 0.8349 + }, + { + "start": 8947.28, + "end": 8949.06, + "probability": 0.9457 + }, + { + "start": 8949.64, + "end": 8956.06, + "probability": 0.9971 + }, + { + "start": 8956.06, + "end": 8961.22, + "probability": 0.998 + }, + { + "start": 8961.88, + "end": 8965.98, + "probability": 0.9708 + }, + { + "start": 8966.1, + "end": 8967.82, + "probability": 0.9609 + }, + { + "start": 8968.4, + "end": 8972.02, + "probability": 0.9784 + }, + { + "start": 8972.28, + "end": 8973.7, + "probability": 0.767 + }, + { + "start": 8974.38, + "end": 8975.04, + "probability": 0.6703 + }, + { + "start": 8975.8, + "end": 8979.66, + "probability": 0.9902 + }, + { + "start": 8979.92, + "end": 8983.64, + "probability": 0.9911 + }, + { + "start": 8983.76, + "end": 8985.26, + "probability": 0.8985 + }, + { + "start": 8985.26, + "end": 8987.06, + "probability": 0.9611 + }, + { + "start": 8987.32, + "end": 8989.0, + "probability": 0.9914 + }, + { + "start": 8990.28, + "end": 8994.28, + "probability": 0.9846 + }, + { + "start": 8995.46, + "end": 8997.28, + "probability": 0.9731 + }, + { + "start": 8997.34, + "end": 9002.2, + "probability": 0.9823 + }, + { + "start": 9003.1, + "end": 9003.54, + "probability": 0.9066 + }, + { + "start": 9003.62, + "end": 9006.88, + "probability": 0.9896 + }, + { + "start": 9006.92, + "end": 9010.94, + "probability": 0.9966 + }, + { + "start": 9010.94, + "end": 9015.56, + "probability": 0.9993 + }, + { + "start": 9016.38, + "end": 9017.46, + "probability": 0.0971 + }, + { + "start": 9018.62, + "end": 9021.02, + "probability": 0.8669 + }, + { + "start": 9021.74, + "end": 9024.24, + "probability": 0.9653 + }, + { + "start": 9024.68, + "end": 9028.16, + "probability": 0.8834 + }, + { + "start": 9029.0, + "end": 9034.12, + "probability": 0.9364 + }, + { + "start": 9034.64, + "end": 9038.22, + "probability": 0.9951 + }, + { + "start": 9038.22, + "end": 9041.26, + "probability": 0.9946 + }, + { + "start": 9041.42, + "end": 9043.28, + "probability": 0.9644 + }, + { + "start": 9043.7, + "end": 9048.62, + "probability": 0.9693 + }, + { + "start": 9048.62, + "end": 9054.2, + "probability": 0.9971 + }, + { + "start": 9055.04, + "end": 9056.7, + "probability": 0.6664 + }, + { + "start": 9057.7, + "end": 9059.14, + "probability": 0.9762 + }, + { + "start": 9059.28, + "end": 9060.86, + "probability": 0.9949 + }, + { + "start": 9061.28, + "end": 9062.34, + "probability": 0.9326 + }, + { + "start": 9062.78, + "end": 9063.98, + "probability": 0.9635 + }, + { + "start": 9064.42, + "end": 9066.26, + "probability": 0.8202 + }, + { + "start": 9066.88, + "end": 9069.04, + "probability": 0.9673 + }, + { + "start": 9069.58, + "end": 9074.72, + "probability": 0.9689 + }, + { + "start": 9074.86, + "end": 9076.56, + "probability": 0.7587 + }, + { + "start": 9077.02, + "end": 9079.4, + "probability": 0.8984 + }, + { + "start": 9080.2, + "end": 9081.1, + "probability": 0.4774 + }, + { + "start": 9081.64, + "end": 9082.84, + "probability": 0.8484 + }, + { + "start": 9082.94, + "end": 9085.36, + "probability": 0.9874 + }, + { + "start": 9085.96, + "end": 9087.56, + "probability": 0.9994 + }, + { + "start": 9088.48, + "end": 9092.92, + "probability": 0.999 + }, + { + "start": 9093.62, + "end": 9096.0, + "probability": 0.9285 + }, + { + "start": 9096.0, + "end": 9101.5, + "probability": 0.9927 + }, + { + "start": 9102.2, + "end": 9105.36, + "probability": 0.9634 + }, + { + "start": 9106.32, + "end": 9110.48, + "probability": 0.9463 + }, + { + "start": 9111.42, + "end": 9114.02, + "probability": 0.9598 + }, + { + "start": 9114.16, + "end": 9115.06, + "probability": 0.7232 + }, + { + "start": 9115.16, + "end": 9118.48, + "probability": 0.9872 + }, + { + "start": 9119.24, + "end": 9123.01, + "probability": 0.9947 + }, + { + "start": 9123.12, + "end": 9125.92, + "probability": 0.9215 + }, + { + "start": 9126.26, + "end": 9128.54, + "probability": 0.841 + }, + { + "start": 9128.92, + "end": 9133.98, + "probability": 0.9948 + }, + { + "start": 9134.26, + "end": 9136.96, + "probability": 0.9723 + }, + { + "start": 9137.48, + "end": 9140.26, + "probability": 0.898 + }, + { + "start": 9141.72, + "end": 9144.44, + "probability": 0.8827 + }, + { + "start": 9144.5, + "end": 9147.18, + "probability": 0.9896 + }, + { + "start": 9148.24, + "end": 9150.82, + "probability": 0.9788 + }, + { + "start": 9151.28, + "end": 9153.76, + "probability": 0.7922 + }, + { + "start": 9153.84, + "end": 9153.86, + "probability": 0.325 + }, + { + "start": 9153.86, + "end": 9155.98, + "probability": 0.7986 + }, + { + "start": 9156.4, + "end": 9160.18, + "probability": 0.9515 + }, + { + "start": 9161.08, + "end": 9162.44, + "probability": 0.9985 + }, + { + "start": 9162.86, + "end": 9164.4, + "probability": 0.7482 + }, + { + "start": 9164.54, + "end": 9166.18, + "probability": 0.9189 + }, + { + "start": 9166.52, + "end": 9169.3, + "probability": 0.98 + }, + { + "start": 9169.62, + "end": 9169.98, + "probability": 0.7922 + }, + { + "start": 9170.62, + "end": 9171.4, + "probability": 0.8083 + }, + { + "start": 9173.29, + "end": 9175.33, + "probability": 0.7817 + }, + { + "start": 9176.24, + "end": 9178.16, + "probability": 0.7433 + }, + { + "start": 9179.92, + "end": 9180.44, + "probability": 0.6748 + }, + { + "start": 9181.24, + "end": 9183.32, + "probability": 0.7783 + }, + { + "start": 9184.96, + "end": 9189.4, + "probability": 0.9113 + }, + { + "start": 9190.24, + "end": 9192.6, + "probability": 0.9319 + }, + { + "start": 9193.4, + "end": 9199.74, + "probability": 0.9962 + }, + { + "start": 9200.9, + "end": 9203.58, + "probability": 0.951 + }, + { + "start": 9204.24, + "end": 9206.88, + "probability": 0.9108 + }, + { + "start": 9207.4, + "end": 9210.24, + "probability": 0.9572 + }, + { + "start": 9211.06, + "end": 9214.88, + "probability": 0.8242 + }, + { + "start": 9215.72, + "end": 9218.86, + "probability": 0.9783 + }, + { + "start": 9219.66, + "end": 9222.44, + "probability": 0.9904 + }, + { + "start": 9222.44, + "end": 9225.62, + "probability": 0.9928 + }, + { + "start": 9225.78, + "end": 9227.3, + "probability": 0.9709 + }, + { + "start": 9227.9, + "end": 9230.46, + "probability": 0.995 + }, + { + "start": 9231.08, + "end": 9234.32, + "probability": 0.9249 + }, + { + "start": 9234.32, + "end": 9238.46, + "probability": 0.9907 + }, + { + "start": 9239.36, + "end": 9243.02, + "probability": 0.9728 + }, + { + "start": 9243.54, + "end": 9245.02, + "probability": 0.8962 + }, + { + "start": 9245.88, + "end": 9255.8, + "probability": 0.9416 + }, + { + "start": 9256.32, + "end": 9260.9, + "probability": 0.9858 + }, + { + "start": 9262.02, + "end": 9264.7, + "probability": 0.9917 + }, + { + "start": 9264.7, + "end": 9268.82, + "probability": 0.9963 + }, + { + "start": 9269.42, + "end": 9271.16, + "probability": 0.9976 + }, + { + "start": 9271.72, + "end": 9273.8, + "probability": 0.9962 + }, + { + "start": 9274.74, + "end": 9278.62, + "probability": 0.9103 + }, + { + "start": 9278.62, + "end": 9281.86, + "probability": 0.998 + }, + { + "start": 9282.4, + "end": 9286.98, + "probability": 0.9359 + }, + { + "start": 9287.92, + "end": 9288.52, + "probability": 0.8377 + }, + { + "start": 9289.24, + "end": 9292.92, + "probability": 0.999 + }, + { + "start": 9292.92, + "end": 9296.02, + "probability": 0.9985 + }, + { + "start": 9296.64, + "end": 9302.0, + "probability": 0.9973 + }, + { + "start": 9302.74, + "end": 9306.94, + "probability": 0.9912 + }, + { + "start": 9307.46, + "end": 9311.58, + "probability": 0.9733 + }, + { + "start": 9312.02, + "end": 9317.32, + "probability": 0.9972 + }, + { + "start": 9317.82, + "end": 9318.48, + "probability": 0.9758 + }, + { + "start": 9319.18, + "end": 9321.08, + "probability": 0.8256 + }, + { + "start": 9321.98, + "end": 9323.22, + "probability": 0.5353 + }, + { + "start": 9324.28, + "end": 9329.12, + "probability": 0.9946 + }, + { + "start": 9329.56, + "end": 9331.26, + "probability": 0.9402 + }, + { + "start": 9331.36, + "end": 9332.7, + "probability": 0.9709 + }, + { + "start": 9333.16, + "end": 9335.72, + "probability": 0.9471 + }, + { + "start": 9336.34, + "end": 9338.76, + "probability": 0.9964 + }, + { + "start": 9338.76, + "end": 9342.26, + "probability": 0.9946 + }, + { + "start": 9342.84, + "end": 9348.1, + "probability": 0.9984 + }, + { + "start": 9348.1, + "end": 9354.28, + "probability": 0.9992 + }, + { + "start": 9354.82, + "end": 9356.24, + "probability": 0.9515 + }, + { + "start": 9356.98, + "end": 9364.32, + "probability": 0.9425 + }, + { + "start": 9364.84, + "end": 9366.42, + "probability": 0.7254 + }, + { + "start": 9367.08, + "end": 9367.08, + "probability": 0.0685 + }, + { + "start": 9367.08, + "end": 9371.14, + "probability": 0.6884 + }, + { + "start": 9371.92, + "end": 9374.02, + "probability": 0.937 + }, + { + "start": 9374.9, + "end": 9375.9, + "probability": 0.6995 + }, + { + "start": 9376.48, + "end": 9379.52, + "probability": 0.9738 + }, + { + "start": 9401.46, + "end": 9401.98, + "probability": 0.2064 + }, + { + "start": 9403.76, + "end": 9406.2, + "probability": 0.8756 + }, + { + "start": 9406.24, + "end": 9406.72, + "probability": 0.9268 + }, + { + "start": 9427.64, + "end": 9430.16, + "probability": 0.834 + }, + { + "start": 9431.52, + "end": 9433.46, + "probability": 0.8008 + }, + { + "start": 9434.38, + "end": 9434.72, + "probability": 0.9546 + }, + { + "start": 9435.44, + "end": 9436.08, + "probability": 0.5997 + }, + { + "start": 9438.44, + "end": 9441.84, + "probability": 0.9976 + }, + { + "start": 9442.48, + "end": 9447.72, + "probability": 0.88 + }, + { + "start": 9449.0, + "end": 9452.4, + "probability": 0.9958 + }, + { + "start": 9453.4, + "end": 9454.94, + "probability": 0.9944 + }, + { + "start": 9456.35, + "end": 9462.92, + "probability": 0.9872 + }, + { + "start": 9462.92, + "end": 9468.02, + "probability": 0.9971 + }, + { + "start": 9468.84, + "end": 9474.8, + "probability": 0.997 + }, + { + "start": 9476.04, + "end": 9479.74, + "probability": 0.9493 + }, + { + "start": 9479.84, + "end": 9480.76, + "probability": 0.881 + }, + { + "start": 9481.88, + "end": 9484.2, + "probability": 0.7053 + }, + { + "start": 9485.14, + "end": 9489.64, + "probability": 0.9841 + }, + { + "start": 9489.64, + "end": 9494.72, + "probability": 0.9888 + }, + { + "start": 9495.78, + "end": 9500.01, + "probability": 0.9971 + }, + { + "start": 9501.04, + "end": 9501.7, + "probability": 0.7336 + }, + { + "start": 9501.94, + "end": 9502.84, + "probability": 0.7496 + }, + { + "start": 9502.94, + "end": 9506.18, + "probability": 0.722 + }, + { + "start": 9506.24, + "end": 9506.74, + "probability": 0.9709 + }, + { + "start": 9507.26, + "end": 9507.96, + "probability": 0.9944 + }, + { + "start": 9508.64, + "end": 9509.28, + "probability": 0.6173 + }, + { + "start": 9509.96, + "end": 9511.8, + "probability": 0.9537 + }, + { + "start": 9512.5, + "end": 9515.26, + "probability": 0.9536 + }, + { + "start": 9515.94, + "end": 9517.66, + "probability": 0.9035 + }, + { + "start": 9518.36, + "end": 9521.84, + "probability": 0.9467 + }, + { + "start": 9521.92, + "end": 9526.5, + "probability": 0.9787 + }, + { + "start": 9528.14, + "end": 9529.62, + "probability": 0.6707 + }, + { + "start": 9531.42, + "end": 9535.64, + "probability": 0.8903 + }, + { + "start": 9536.94, + "end": 9541.06, + "probability": 0.991 + }, + { + "start": 9543.38, + "end": 9547.84, + "probability": 0.9465 + }, + { + "start": 9547.9, + "end": 9548.86, + "probability": 0.8739 + }, + { + "start": 9548.9, + "end": 9555.08, + "probability": 0.9701 + }, + { + "start": 9556.1, + "end": 9557.18, + "probability": 0.5157 + }, + { + "start": 9557.92, + "end": 9560.28, + "probability": 0.9946 + }, + { + "start": 9561.26, + "end": 9563.52, + "probability": 0.7905 + }, + { + "start": 9563.64, + "end": 9569.92, + "probability": 0.9482 + }, + { + "start": 9571.14, + "end": 9575.98, + "probability": 0.9957 + }, + { + "start": 9577.4, + "end": 9578.24, + "probability": 0.6842 + }, + { + "start": 9578.96, + "end": 9580.4, + "probability": 0.8543 + }, + { + "start": 9581.22, + "end": 9582.44, + "probability": 0.7245 + }, + { + "start": 9583.28, + "end": 9584.42, + "probability": 0.8036 + }, + { + "start": 9585.28, + "end": 9588.08, + "probability": 0.8802 + }, + { + "start": 9588.76, + "end": 9590.04, + "probability": 0.988 + }, + { + "start": 9590.58, + "end": 9594.24, + "probability": 0.9893 + }, + { + "start": 9595.12, + "end": 9597.38, + "probability": 0.9959 + }, + { + "start": 9598.18, + "end": 9601.32, + "probability": 0.9295 + }, + { + "start": 9602.14, + "end": 9603.44, + "probability": 0.9681 + }, + { + "start": 9604.22, + "end": 9605.52, + "probability": 0.9346 + }, + { + "start": 9606.36, + "end": 9606.96, + "probability": 0.8188 + }, + { + "start": 9608.58, + "end": 9612.04, + "probability": 0.9306 + }, + { + "start": 9612.94, + "end": 9614.7, + "probability": 0.9867 + }, + { + "start": 9614.98, + "end": 9615.72, + "probability": 0.9401 + }, + { + "start": 9616.22, + "end": 9618.32, + "probability": 0.9902 + }, + { + "start": 9619.42, + "end": 9622.02, + "probability": 0.9479 + }, + { + "start": 9622.74, + "end": 9625.82, + "probability": 0.9655 + }, + { + "start": 9626.68, + "end": 9628.04, + "probability": 0.9489 + }, + { + "start": 9628.72, + "end": 9629.36, + "probability": 0.9418 + }, + { + "start": 9629.44, + "end": 9633.18, + "probability": 0.9883 + }, + { + "start": 9633.18, + "end": 9637.82, + "probability": 0.9829 + }, + { + "start": 9638.6, + "end": 9639.4, + "probability": 0.7644 + }, + { + "start": 9646.5, + "end": 9649.83, + "probability": 0.7535 + }, + { + "start": 9650.64, + "end": 9653.88, + "probability": 0.8249 + }, + { + "start": 9655.28, + "end": 9658.26, + "probability": 0.9932 + }, + { + "start": 9658.34, + "end": 9659.56, + "probability": 0.8816 + }, + { + "start": 9659.82, + "end": 9662.82, + "probability": 0.9932 + }, + { + "start": 9663.44, + "end": 9664.12, + "probability": 0.7567 + }, + { + "start": 9664.96, + "end": 9669.75, + "probability": 0.9663 + }, + { + "start": 9669.8, + "end": 9670.52, + "probability": 0.85 + }, + { + "start": 9670.6, + "end": 9671.9, + "probability": 0.7662 + }, + { + "start": 9672.7, + "end": 9673.68, + "probability": 0.8465 + }, + { + "start": 9673.76, + "end": 9675.96, + "probability": 0.9895 + }, + { + "start": 9676.12, + "end": 9676.92, + "probability": 0.655 + }, + { + "start": 9677.52, + "end": 9680.06, + "probability": 0.9863 + }, + { + "start": 9681.2, + "end": 9684.7, + "probability": 0.984 + }, + { + "start": 9685.38, + "end": 9686.4, + "probability": 0.6348 + }, + { + "start": 9686.52, + "end": 9687.54, + "probability": 0.61 + }, + { + "start": 9687.66, + "end": 9689.14, + "probability": 0.9062 + }, + { + "start": 9690.16, + "end": 9693.04, + "probability": 0.9896 + }, + { + "start": 9693.66, + "end": 9695.46, + "probability": 0.7148 + }, + { + "start": 9696.56, + "end": 9699.88, + "probability": 0.9596 + }, + { + "start": 9700.0, + "end": 9701.46, + "probability": 0.8843 + }, + { + "start": 9702.08, + "end": 9705.28, + "probability": 0.9992 + }, + { + "start": 9705.94, + "end": 9708.12, + "probability": 0.8857 + }, + { + "start": 9708.22, + "end": 9710.08, + "probability": 0.9807 + }, + { + "start": 9711.08, + "end": 9711.94, + "probability": 0.9493 + }, + { + "start": 9712.32, + "end": 9714.54, + "probability": 0.6921 + }, + { + "start": 9715.34, + "end": 9717.02, + "probability": 0.9884 + }, + { + "start": 9717.06, + "end": 9718.6, + "probability": 0.9244 + }, + { + "start": 9719.12, + "end": 9721.24, + "probability": 0.792 + }, + { + "start": 9722.02, + "end": 9725.86, + "probability": 0.9875 + }, + { + "start": 9725.86, + "end": 9729.22, + "probability": 0.903 + }, + { + "start": 9730.16, + "end": 9731.44, + "probability": 0.5875 + }, + { + "start": 9731.54, + "end": 9734.38, + "probability": 0.9888 + }, + { + "start": 9735.4, + "end": 9738.32, + "probability": 0.775 + }, + { + "start": 9738.44, + "end": 9740.91, + "probability": 0.823 + }, + { + "start": 9742.76, + "end": 9745.94, + "probability": 0.9794 + }, + { + "start": 9746.52, + "end": 9747.92, + "probability": 0.972 + }, + { + "start": 9748.0, + "end": 9750.2, + "probability": 0.9097 + }, + { + "start": 9750.88, + "end": 9752.84, + "probability": 0.9382 + }, + { + "start": 9753.66, + "end": 9755.54, + "probability": 0.8695 + }, + { + "start": 9756.18, + "end": 9759.52, + "probability": 0.9956 + }, + { + "start": 9759.52, + "end": 9762.74, + "probability": 0.9979 + }, + { + "start": 9763.22, + "end": 9764.94, + "probability": 0.9241 + }, + { + "start": 9766.06, + "end": 9769.58, + "probability": 0.8612 + }, + { + "start": 9770.12, + "end": 9772.68, + "probability": 0.9473 + }, + { + "start": 9773.3, + "end": 9778.22, + "probability": 0.9242 + }, + { + "start": 9779.1, + "end": 9782.2, + "probability": 0.9835 + }, + { + "start": 9782.74, + "end": 9784.34, + "probability": 0.9985 + }, + { + "start": 9784.92, + "end": 9787.9, + "probability": 0.9381 + }, + { + "start": 9788.62, + "end": 9789.68, + "probability": 0.952 + }, + { + "start": 9790.38, + "end": 9790.72, + "probability": 0.8312 + }, + { + "start": 9790.78, + "end": 9791.94, + "probability": 0.9835 + }, + { + "start": 9792.22, + "end": 9795.68, + "probability": 0.9844 + }, + { + "start": 9795.82, + "end": 9796.9, + "probability": 0.8227 + }, + { + "start": 9797.42, + "end": 9799.54, + "probability": 0.9797 + }, + { + "start": 9800.3, + "end": 9802.16, + "probability": 0.9849 + }, + { + "start": 9802.74, + "end": 9805.34, + "probability": 0.9581 + }, + { + "start": 9805.92, + "end": 9808.1, + "probability": 0.9915 + }, + { + "start": 9808.88, + "end": 9812.64, + "probability": 0.93 + }, + { + "start": 9813.44, + "end": 9815.42, + "probability": 0.8873 + }, + { + "start": 9815.52, + "end": 9817.96, + "probability": 0.9544 + }, + { + "start": 9818.84, + "end": 9823.98, + "probability": 0.9805 + }, + { + "start": 9824.56, + "end": 9826.24, + "probability": 0.7517 + }, + { + "start": 9826.76, + "end": 9828.56, + "probability": 0.866 + }, + { + "start": 9829.42, + "end": 9830.51, + "probability": 0.7931 + }, + { + "start": 9831.82, + "end": 9832.86, + "probability": 0.6098 + }, + { + "start": 9833.64, + "end": 9838.19, + "probability": 0.9081 + }, + { + "start": 9839.8, + "end": 9842.94, + "probability": 0.6537 + }, + { + "start": 9844.08, + "end": 9848.12, + "probability": 0.9954 + }, + { + "start": 9848.82, + "end": 9851.53, + "probability": 0.8363 + }, + { + "start": 9852.94, + "end": 9854.84, + "probability": 0.8968 + }, + { + "start": 9855.4, + "end": 9858.5, + "probability": 0.9045 + }, + { + "start": 9858.5, + "end": 9860.56, + "probability": 0.9987 + }, + { + "start": 9861.34, + "end": 9864.22, + "probability": 0.9245 + }, + { + "start": 9864.94, + "end": 9866.9, + "probability": 0.9702 + }, + { + "start": 9867.56, + "end": 9870.42, + "probability": 0.8025 + }, + { + "start": 9870.96, + "end": 9872.88, + "probability": 0.9953 + }, + { + "start": 9873.62, + "end": 9876.5, + "probability": 0.9856 + }, + { + "start": 9877.14, + "end": 9878.9, + "probability": 0.9495 + }, + { + "start": 9878.9, + "end": 9882.3, + "probability": 0.998 + }, + { + "start": 9882.86, + "end": 9885.96, + "probability": 0.9778 + }, + { + "start": 9886.68, + "end": 9888.26, + "probability": 0.9515 + }, + { + "start": 9888.68, + "end": 9890.78, + "probability": 0.8465 + }, + { + "start": 9891.34, + "end": 9891.88, + "probability": 0.5373 + }, + { + "start": 9891.98, + "end": 9893.26, + "probability": 0.9704 + }, + { + "start": 9893.4, + "end": 9896.06, + "probability": 0.9799 + }, + { + "start": 9896.7, + "end": 9900.28, + "probability": 0.9832 + }, + { + "start": 9900.82, + "end": 9902.26, + "probability": 0.9033 + }, + { + "start": 9902.68, + "end": 9903.46, + "probability": 0.7465 + }, + { + "start": 9903.5, + "end": 9904.34, + "probability": 0.925 + }, + { + "start": 9904.42, + "end": 9904.96, + "probability": 0.6775 + }, + { + "start": 9905.42, + "end": 9907.74, + "probability": 0.9918 + }, + { + "start": 9908.24, + "end": 9910.5, + "probability": 0.9912 + }, + { + "start": 9911.02, + "end": 9913.34, + "probability": 0.9988 + }, + { + "start": 9914.22, + "end": 9916.65, + "probability": 0.8216 + }, + { + "start": 9917.9, + "end": 9919.55, + "probability": 0.9995 + }, + { + "start": 9920.32, + "end": 9924.12, + "probability": 0.981 + }, + { + "start": 9924.74, + "end": 9927.38, + "probability": 0.9216 + }, + { + "start": 9927.88, + "end": 9933.1, + "probability": 0.9113 + }, + { + "start": 9934.04, + "end": 9938.58, + "probability": 0.9004 + }, + { + "start": 9939.18, + "end": 9941.34, + "probability": 0.9976 + }, + { + "start": 9942.02, + "end": 9944.44, + "probability": 0.9678 + }, + { + "start": 9945.0, + "end": 9945.88, + "probability": 0.8101 + }, + { + "start": 9946.52, + "end": 9950.32, + "probability": 0.9692 + }, + { + "start": 9955.74, + "end": 9957.03, + "probability": 0.7935 + }, + { + "start": 9958.04, + "end": 9959.59, + "probability": 0.9985 + }, + { + "start": 9960.26, + "end": 9962.34, + "probability": 0.9541 + }, + { + "start": 9963.08, + "end": 9964.04, + "probability": 0.8626 + }, + { + "start": 9964.26, + "end": 9965.64, + "probability": 0.8874 + }, + { + "start": 9965.78, + "end": 9966.24, + "probability": 0.7687 + }, + { + "start": 9966.34, + "end": 9969.4, + "probability": 0.9754 + }, + { + "start": 9969.54, + "end": 9970.88, + "probability": 0.9784 + }, + { + "start": 9971.7, + "end": 9972.72, + "probability": 0.8626 + }, + { + "start": 9973.0, + "end": 9975.76, + "probability": 0.9941 + }, + { + "start": 9975.94, + "end": 9977.72, + "probability": 0.9883 + }, + { + "start": 9978.24, + "end": 9982.64, + "probability": 0.9915 + }, + { + "start": 9982.72, + "end": 9983.52, + "probability": 0.8059 + }, + { + "start": 9984.0, + "end": 9988.28, + "probability": 0.9407 + }, + { + "start": 9988.74, + "end": 9990.32, + "probability": 0.9823 + }, + { + "start": 9991.02, + "end": 9992.96, + "probability": 0.9973 + }, + { + "start": 9992.96, + "end": 9996.3, + "probability": 0.9988 + }, + { + "start": 9996.86, + "end": 9998.5, + "probability": 0.8795 + }, + { + "start": 9999.08, + "end": 9999.72, + "probability": 0.4939 + }, + { + "start": 10000.48, + "end": 10003.66, + "probability": 0.7997 + }, + { + "start": 10004.26, + "end": 10007.02, + "probability": 0.8844 + }, + { + "start": 10007.6, + "end": 10008.5, + "probability": 0.9772 + }, + { + "start": 10009.3, + "end": 10013.52, + "probability": 0.9904 + }, + { + "start": 10014.08, + "end": 10015.86, + "probability": 0.9018 + }, + { + "start": 10016.48, + "end": 10020.42, + "probability": 0.9875 + }, + { + "start": 10021.02, + "end": 10022.72, + "probability": 0.9325 + }, + { + "start": 10022.84, + "end": 10023.9, + "probability": 0.9792 + }, + { + "start": 10024.38, + "end": 10025.84, + "probability": 0.5597 + }, + { + "start": 10026.3, + "end": 10030.16, + "probability": 0.9495 + }, + { + "start": 10031.38, + "end": 10031.92, + "probability": 0.9006 + }, + { + "start": 10032.04, + "end": 10036.02, + "probability": 0.9351 + }, + { + "start": 10036.82, + "end": 10039.16, + "probability": 0.9209 + }, + { + "start": 10039.16, + "end": 10040.06, + "probability": 0.6554 + }, + { + "start": 10041.46, + "end": 10041.94, + "probability": 0.1942 + }, + { + "start": 10042.0, + "end": 10045.52, + "probability": 0.8417 + }, + { + "start": 10047.56, + "end": 10056.8, + "probability": 0.0423 + }, + { + "start": 10059.24, + "end": 10063.26, + "probability": 0.7906 + }, + { + "start": 10064.3, + "end": 10067.96, + "probability": 0.8469 + }, + { + "start": 10068.12, + "end": 10069.58, + "probability": 0.981 + }, + { + "start": 10070.06, + "end": 10071.26, + "probability": 0.8138 + }, + { + "start": 10071.98, + "end": 10072.72, + "probability": 0.8534 + }, + { + "start": 10073.0, + "end": 10074.64, + "probability": 0.9746 + }, + { + "start": 10074.8, + "end": 10077.0, + "probability": 0.9844 + }, + { + "start": 10077.26, + "end": 10079.86, + "probability": 0.9409 + }, + { + "start": 10079.86, + "end": 10084.6, + "probability": 0.8866 + }, + { + "start": 10084.84, + "end": 10085.7, + "probability": 0.7986 + }, + { + "start": 10086.94, + "end": 10089.1, + "probability": 0.0081 + }, + { + "start": 10089.76, + "end": 10091.62, + "probability": 0.0742 + }, + { + "start": 10093.67, + "end": 10094.04, + "probability": 0.0161 + }, + { + "start": 10099.76, + "end": 10100.88, + "probability": 0.1092 + }, + { + "start": 10100.88, + "end": 10103.0, + "probability": 0.4468 + }, + { + "start": 10103.58, + "end": 10105.68, + "probability": 0.9576 + }, + { + "start": 10105.84, + "end": 10108.86, + "probability": 0.9885 + }, + { + "start": 10110.34, + "end": 10111.52, + "probability": 0.9482 + }, + { + "start": 10112.08, + "end": 10113.02, + "probability": 0.4227 + }, + { + "start": 10113.54, + "end": 10119.84, + "probability": 0.9814 + }, + { + "start": 10120.52, + "end": 10121.14, + "probability": 0.8288 + }, + { + "start": 10122.82, + "end": 10128.58, + "probability": 0.2032 + }, + { + "start": 10136.06, + "end": 10138.02, + "probability": 0.4006 + }, + { + "start": 10138.06, + "end": 10140.08, + "probability": 0.8711 + }, + { + "start": 10140.18, + "end": 10143.06, + "probability": 0.9951 + }, + { + "start": 10143.68, + "end": 10145.98, + "probability": 0.9977 + }, + { + "start": 10146.18, + "end": 10147.2, + "probability": 0.8955 + }, + { + "start": 10147.44, + "end": 10148.96, + "probability": 0.93 + }, + { + "start": 10157.14, + "end": 10157.62, + "probability": 0.5807 + }, + { + "start": 10157.78, + "end": 10159.9, + "probability": 0.6961 + }, + { + "start": 10160.68, + "end": 10161.8, + "probability": 0.7109 + }, + { + "start": 10161.8, + "end": 10162.18, + "probability": 0.8527 + }, + { + "start": 10162.28, + "end": 10163.36, + "probability": 0.8118 + }, + { + "start": 10163.74, + "end": 10167.18, + "probability": 0.7497 + }, + { + "start": 10167.38, + "end": 10167.86, + "probability": 0.66 + }, + { + "start": 10168.18, + "end": 10169.4, + "probability": 0.8189 + }, + { + "start": 10170.24, + "end": 10174.16, + "probability": 0.9688 + }, + { + "start": 10174.4, + "end": 10177.78, + "probability": 0.5816 + }, + { + "start": 10178.48, + "end": 10178.62, + "probability": 0.1876 + }, + { + "start": 10179.18, + "end": 10181.64, + "probability": 0.8731 + }, + { + "start": 10183.62, + "end": 10188.86, + "probability": 0.951 + }, + { + "start": 10189.3, + "end": 10190.94, + "probability": 0.7747 + }, + { + "start": 10191.82, + "end": 10194.14, + "probability": 0.9605 + }, + { + "start": 10194.72, + "end": 10195.9, + "probability": 0.9261 + }, + { + "start": 10196.42, + "end": 10197.92, + "probability": 0.6162 + }, + { + "start": 10199.38, + "end": 10201.8, + "probability": 0.7918 + }, + { + "start": 10202.38, + "end": 10206.04, + "probability": 0.967 + }, + { + "start": 10206.56, + "end": 10207.07, + "probability": 0.9653 + }, + { + "start": 10207.88, + "end": 10210.16, + "probability": 0.8856 + }, + { + "start": 10210.72, + "end": 10216.82, + "probability": 0.9945 + }, + { + "start": 10216.94, + "end": 10217.54, + "probability": 0.6865 + }, + { + "start": 10217.7, + "end": 10218.28, + "probability": 0.9334 + }, + { + "start": 10219.04, + "end": 10219.56, + "probability": 0.5049 + }, + { + "start": 10220.06, + "end": 10221.44, + "probability": 0.9894 + }, + { + "start": 10221.82, + "end": 10222.18, + "probability": 0.3052 + }, + { + "start": 10222.22, + "end": 10223.14, + "probability": 0.9919 + }, + { + "start": 10223.32, + "end": 10223.56, + "probability": 0.3878 + }, + { + "start": 10223.62, + "end": 10224.4, + "probability": 0.1498 + }, + { + "start": 10224.66, + "end": 10228.96, + "probability": 0.9927 + }, + { + "start": 10229.7, + "end": 10232.38, + "probability": 0.9905 + }, + { + "start": 10232.38, + "end": 10234.44, + "probability": 0.8291 + }, + { + "start": 10234.94, + "end": 10236.32, + "probability": 0.9946 + }, + { + "start": 10236.72, + "end": 10238.22, + "probability": 0.9428 + }, + { + "start": 10238.84, + "end": 10241.0, + "probability": 0.9338 + }, + { + "start": 10241.54, + "end": 10244.12, + "probability": 0.7025 + }, + { + "start": 10244.48, + "end": 10246.22, + "probability": 0.7182 + }, + { + "start": 10246.62, + "end": 10247.2, + "probability": 0.5565 + }, + { + "start": 10247.42, + "end": 10249.34, + "probability": 0.6686 + }, + { + "start": 10249.76, + "end": 10250.32, + "probability": 0.9303 + }, + { + "start": 10250.66, + "end": 10251.8, + "probability": 0.9517 + }, + { + "start": 10252.38, + "end": 10253.96, + "probability": 0.9659 + }, + { + "start": 10254.44, + "end": 10255.92, + "probability": 0.5541 + }, + { + "start": 10256.18, + "end": 10257.88, + "probability": 0.9966 + }, + { + "start": 10258.3, + "end": 10260.68, + "probability": 0.9668 + }, + { + "start": 10260.84, + "end": 10264.36, + "probability": 0.9834 + }, + { + "start": 10264.96, + "end": 10267.28, + "probability": 0.9426 + }, + { + "start": 10267.88, + "end": 10273.1, + "probability": 0.9944 + }, + { + "start": 10273.88, + "end": 10274.96, + "probability": 0.7624 + }, + { + "start": 10275.26, + "end": 10275.98, + "probability": 0.8469 + }, + { + "start": 10276.08, + "end": 10277.6, + "probability": 0.7795 + }, + { + "start": 10277.74, + "end": 10278.64, + "probability": 0.9794 + }, + { + "start": 10278.74, + "end": 10281.68, + "probability": 0.9059 + }, + { + "start": 10282.2, + "end": 10282.66, + "probability": 0.1631 + }, + { + "start": 10282.9, + "end": 10287.3, + "probability": 0.8861 + }, + { + "start": 10287.3, + "end": 10289.42, + "probability": 0.4471 + }, + { + "start": 10289.42, + "end": 10289.56, + "probability": 0.3317 + }, + { + "start": 10289.66, + "end": 10290.84, + "probability": 0.6138 + }, + { + "start": 10290.9, + "end": 10294.26, + "probability": 0.6145 + }, + { + "start": 10295.06, + "end": 10296.12, + "probability": 0.479 + }, + { + "start": 10296.18, + "end": 10296.18, + "probability": 0.6343 + }, + { + "start": 10296.18, + "end": 10300.74, + "probability": 0.9943 + }, + { + "start": 10301.16, + "end": 10301.96, + "probability": 0.6182 + }, + { + "start": 10302.12, + "end": 10303.78, + "probability": 0.8142 + }, + { + "start": 10304.0, + "end": 10307.06, + "probability": 0.9939 + }, + { + "start": 10307.7, + "end": 10308.56, + "probability": 0.7898 + }, + { + "start": 10309.12, + "end": 10311.6, + "probability": 0.9201 + }, + { + "start": 10312.12, + "end": 10313.96, + "probability": 0.983 + }, + { + "start": 10314.38, + "end": 10317.12, + "probability": 0.9908 + }, + { + "start": 10317.54, + "end": 10319.72, + "probability": 0.9896 + }, + { + "start": 10320.34, + "end": 10320.82, + "probability": 0.8718 + }, + { + "start": 10321.28, + "end": 10321.56, + "probability": 0.5848 + }, + { + "start": 10321.56, + "end": 10326.38, + "probability": 0.9862 + }, + { + "start": 10326.76, + "end": 10327.25, + "probability": 0.9287 + }, + { + "start": 10327.94, + "end": 10328.5, + "probability": 0.9683 + }, + { + "start": 10329.28, + "end": 10332.24, + "probability": 0.9944 + }, + { + "start": 10332.7, + "end": 10334.94, + "probability": 0.9539 + }, + { + "start": 10335.3, + "end": 10339.2, + "probability": 0.9243 + }, + { + "start": 10339.56, + "end": 10340.0, + "probability": 0.3256 + }, + { + "start": 10340.32, + "end": 10341.46, + "probability": 0.8647 + }, + { + "start": 10341.7, + "end": 10342.68, + "probability": 0.9795 + }, + { + "start": 10342.98, + "end": 10344.06, + "probability": 0.5775 + }, + { + "start": 10344.54, + "end": 10346.92, + "probability": 0.8643 + }, + { + "start": 10347.22, + "end": 10348.56, + "probability": 0.9824 + }, + { + "start": 10349.22, + "end": 10352.46, + "probability": 0.8766 + }, + { + "start": 10352.68, + "end": 10356.5, + "probability": 0.918 + }, + { + "start": 10356.8, + "end": 10358.28, + "probability": 0.9199 + }, + { + "start": 10359.0, + "end": 10360.28, + "probability": 0.1329 + }, + { + "start": 10360.3, + "end": 10362.92, + "probability": 0.9843 + }, + { + "start": 10362.98, + "end": 10363.1, + "probability": 0.9622 + }, + { + "start": 10363.58, + "end": 10364.34, + "probability": 0.9061 + }, + { + "start": 10364.48, + "end": 10365.36, + "probability": 0.7937 + }, + { + "start": 10366.99, + "end": 10369.02, + "probability": 0.4853 + }, + { + "start": 10369.08, + "end": 10373.14, + "probability": 0.9177 + }, + { + "start": 10373.68, + "end": 10375.1, + "probability": 0.8991 + }, + { + "start": 10375.94, + "end": 10377.44, + "probability": 0.9867 + }, + { + "start": 10378.08, + "end": 10378.42, + "probability": 0.6086 + }, + { + "start": 10378.52, + "end": 10378.8, + "probability": 0.509 + }, + { + "start": 10379.06, + "end": 10381.14, + "probability": 0.8761 + }, + { + "start": 10381.76, + "end": 10383.86, + "probability": 0.9977 + }, + { + "start": 10383.86, + "end": 10386.46, + "probability": 0.9491 + }, + { + "start": 10386.86, + "end": 10392.34, + "probability": 0.9541 + }, + { + "start": 10392.54, + "end": 10393.7, + "probability": 0.7251 + }, + { + "start": 10394.16, + "end": 10397.78, + "probability": 0.9899 + }, + { + "start": 10398.0, + "end": 10401.24, + "probability": 0.9931 + }, + { + "start": 10401.36, + "end": 10402.28, + "probability": 0.4946 + }, + { + "start": 10402.5, + "end": 10402.76, + "probability": 0.6368 + }, + { + "start": 10402.8, + "end": 10403.28, + "probability": 0.9258 + }, + { + "start": 10404.04, + "end": 10405.28, + "probability": 0.668 + }, + { + "start": 10405.66, + "end": 10408.51, + "probability": 0.9971 + }, + { + "start": 10409.3, + "end": 10410.78, + "probability": 0.8804 + }, + { + "start": 10410.9, + "end": 10411.3, + "probability": 0.7835 + }, + { + "start": 10412.22, + "end": 10414.01, + "probability": 0.9276 + }, + { + "start": 10414.32, + "end": 10416.94, + "probability": 0.9517 + }, + { + "start": 10417.64, + "end": 10419.04, + "probability": 0.4201 + }, + { + "start": 10419.24, + "end": 10424.24, + "probability": 0.9965 + }, + { + "start": 10424.32, + "end": 10424.98, + "probability": 0.4563 + }, + { + "start": 10425.44, + "end": 10427.1, + "probability": 0.9869 + }, + { + "start": 10427.88, + "end": 10428.04, + "probability": 0.1933 + }, + { + "start": 10428.08, + "end": 10428.08, + "probability": 0.2785 + }, + { + "start": 10428.24, + "end": 10430.68, + "probability": 0.7156 + }, + { + "start": 10430.84, + "end": 10433.0, + "probability": 0.8402 + }, + { + "start": 10433.2, + "end": 10435.8, + "probability": 0.8071 + }, + { + "start": 10435.88, + "end": 10438.12, + "probability": 0.3728 + }, + { + "start": 10438.86, + "end": 10439.65, + "probability": 0.6716 + }, + { + "start": 10440.5, + "end": 10445.42, + "probability": 0.9065 + }, + { + "start": 10446.74, + "end": 10449.04, + "probability": 0.5875 + }, + { + "start": 10449.74, + "end": 10451.28, + "probability": 0.7246 + }, + { + "start": 10452.12, + "end": 10454.76, + "probability": 0.9456 + }, + { + "start": 10454.84, + "end": 10456.8, + "probability": 0.8813 + }, + { + "start": 10457.28, + "end": 10460.26, + "probability": 0.9525 + }, + { + "start": 10460.54, + "end": 10462.3, + "probability": 0.922 + }, + { + "start": 10463.04, + "end": 10470.1, + "probability": 0.9547 + }, + { + "start": 10470.8, + "end": 10475.6, + "probability": 0.9243 + }, + { + "start": 10476.14, + "end": 10478.28, + "probability": 0.9922 + }, + { + "start": 10479.14, + "end": 10481.04, + "probability": 0.9179 + }, + { + "start": 10481.98, + "end": 10482.61, + "probability": 0.9832 + }, + { + "start": 10483.96, + "end": 10488.2, + "probability": 0.9774 + }, + { + "start": 10489.0, + "end": 10489.34, + "probability": 0.495 + }, + { + "start": 10489.46, + "end": 10490.18, + "probability": 0.8636 + }, + { + "start": 10490.42, + "end": 10494.08, + "probability": 0.9272 + }, + { + "start": 10494.64, + "end": 10496.2, + "probability": 0.9111 + }, + { + "start": 10497.56, + "end": 10500.74, + "probability": 0.948 + }, + { + "start": 10501.26, + "end": 10503.18, + "probability": 0.9653 + }, + { + "start": 10503.94, + "end": 10506.5, + "probability": 0.9715 + }, + { + "start": 10507.1, + "end": 10509.54, + "probability": 0.7926 + }, + { + "start": 10509.7, + "end": 10512.22, + "probability": 0.8541 + }, + { + "start": 10512.66, + "end": 10513.76, + "probability": 0.8235 + }, + { + "start": 10514.12, + "end": 10515.92, + "probability": 0.9689 + }, + { + "start": 10516.28, + "end": 10519.14, + "probability": 0.9815 + }, + { + "start": 10519.76, + "end": 10520.52, + "probability": 0.7309 + }, + { + "start": 10520.56, + "end": 10526.28, + "probability": 0.9617 + }, + { + "start": 10526.4, + "end": 10528.32, + "probability": 0.7286 + }, + { + "start": 10528.92, + "end": 10530.72, + "probability": 0.9892 + }, + { + "start": 10530.92, + "end": 10532.82, + "probability": 0.9917 + }, + { + "start": 10533.32, + "end": 10537.68, + "probability": 0.995 + }, + { + "start": 10538.18, + "end": 10542.64, + "probability": 0.9723 + }, + { + "start": 10543.06, + "end": 10544.06, + "probability": 0.7566 + }, + { + "start": 10544.18, + "end": 10545.48, + "probability": 0.9435 + }, + { + "start": 10546.22, + "end": 10548.3, + "probability": 0.998 + }, + { + "start": 10549.24, + "end": 10551.44, + "probability": 0.9723 + }, + { + "start": 10551.7, + "end": 10558.5, + "probability": 0.8677 + }, + { + "start": 10558.74, + "end": 10560.46, + "probability": 0.7339 + }, + { + "start": 10560.98, + "end": 10563.36, + "probability": 0.9894 + }, + { + "start": 10564.28, + "end": 10566.4, + "probability": 0.9841 + }, + { + "start": 10567.16, + "end": 10569.94, + "probability": 0.9799 + }, + { + "start": 10570.68, + "end": 10572.94, + "probability": 0.9725 + }, + { + "start": 10573.18, + "end": 10573.94, + "probability": 0.8269 + }, + { + "start": 10574.2, + "end": 10576.02, + "probability": 0.9927 + }, + { + "start": 10576.9, + "end": 10576.9, + "probability": 0.2744 + }, + { + "start": 10576.9, + "end": 10578.16, + "probability": 0.9717 + }, + { + "start": 10579.12, + "end": 10581.7, + "probability": 0.7158 + }, + { + "start": 10581.86, + "end": 10583.76, + "probability": 0.9985 + }, + { + "start": 10584.28, + "end": 10586.59, + "probability": 0.9497 + }, + { + "start": 10587.42, + "end": 10590.14, + "probability": 0.3643 + }, + { + "start": 10590.72, + "end": 10596.34, + "probability": 0.9418 + }, + { + "start": 10596.38, + "end": 10597.74, + "probability": 0.1997 + }, + { + "start": 10598.36, + "end": 10601.58, + "probability": 0.9941 + }, + { + "start": 10601.78, + "end": 10602.98, + "probability": 0.9324 + }, + { + "start": 10603.42, + "end": 10605.24, + "probability": 0.8235 + }, + { + "start": 10605.92, + "end": 10605.92, + "probability": 0.1014 + }, + { + "start": 10605.92, + "end": 10605.92, + "probability": 0.3242 + }, + { + "start": 10605.92, + "end": 10607.92, + "probability": 0.7166 + }, + { + "start": 10608.18, + "end": 10611.46, + "probability": 0.9976 + }, + { + "start": 10612.04, + "end": 10615.86, + "probability": 0.8739 + }, + { + "start": 10616.4, + "end": 10618.68, + "probability": 0.7741 + }, + { + "start": 10619.08, + "end": 10619.46, + "probability": 0.0086 + }, + { + "start": 10619.62, + "end": 10622.78, + "probability": 0.9521 + }, + { + "start": 10623.3, + "end": 10624.32, + "probability": 0.9643 + }, + { + "start": 10624.42, + "end": 10625.94, + "probability": 0.8498 + }, + { + "start": 10626.1, + "end": 10632.08, + "probability": 0.9872 + }, + { + "start": 10632.82, + "end": 10635.94, + "probability": 0.9985 + }, + { + "start": 10636.66, + "end": 10637.82, + "probability": 0.8858 + }, + { + "start": 10638.96, + "end": 10643.5, + "probability": 0.9963 + }, + { + "start": 10644.0, + "end": 10646.1, + "probability": 0.8447 + }, + { + "start": 10647.44, + "end": 10647.56, + "probability": 0.4469 + }, + { + "start": 10647.68, + "end": 10650.46, + "probability": 0.9976 + }, + { + "start": 10650.56, + "end": 10652.48, + "probability": 0.903 + }, + { + "start": 10652.94, + "end": 10654.18, + "probability": 0.8179 + }, + { + "start": 10654.74, + "end": 10656.2, + "probability": 0.9497 + }, + { + "start": 10656.94, + "end": 10659.41, + "probability": 0.8722 + }, + { + "start": 10659.74, + "end": 10661.02, + "probability": 0.9409 + }, + { + "start": 10661.24, + "end": 10665.5, + "probability": 0.9539 + }, + { + "start": 10666.3, + "end": 10667.68, + "probability": 0.9016 + }, + { + "start": 10668.36, + "end": 10675.4, + "probability": 0.9766 + }, + { + "start": 10675.58, + "end": 10676.52, + "probability": 0.5361 + }, + { + "start": 10677.44, + "end": 10678.84, + "probability": 0.8278 + }, + { + "start": 10679.74, + "end": 10685.08, + "probability": 0.9902 + }, + { + "start": 10685.56, + "end": 10687.8, + "probability": 0.9959 + }, + { + "start": 10688.32, + "end": 10689.48, + "probability": 0.7681 + }, + { + "start": 10689.96, + "end": 10691.1, + "probability": 0.9307 + }, + { + "start": 10691.5, + "end": 10693.6, + "probability": 0.4593 + }, + { + "start": 10693.84, + "end": 10695.34, + "probability": 0.7087 + }, + { + "start": 10695.68, + "end": 10696.54, + "probability": 0.326 + }, + { + "start": 10697.0, + "end": 10699.06, + "probability": 0.5199 + }, + { + "start": 10699.48, + "end": 10700.99, + "probability": 0.9244 + }, + { + "start": 10701.56, + "end": 10705.3, + "probability": 0.9404 + }, + { + "start": 10706.0, + "end": 10707.86, + "probability": 0.7937 + }, + { + "start": 10708.62, + "end": 10708.78, + "probability": 0.1315 + }, + { + "start": 10708.78, + "end": 10709.96, + "probability": 0.9031 + }, + { + "start": 10710.08, + "end": 10711.06, + "probability": 0.4525 + }, + { + "start": 10711.66, + "end": 10715.18, + "probability": 0.7435 + }, + { + "start": 10715.21, + "end": 10719.04, + "probability": 0.8618 + }, + { + "start": 10719.92, + "end": 10721.98, + "probability": 0.7309 + }, + { + "start": 10722.5, + "end": 10725.94, + "probability": 0.9113 + }, + { + "start": 10726.86, + "end": 10727.92, + "probability": 0.9681 + }, + { + "start": 10728.0, + "end": 10730.9, + "probability": 0.9399 + }, + { + "start": 10731.16, + "end": 10733.72, + "probability": 0.7577 + }, + { + "start": 10734.0, + "end": 10735.72, + "probability": 0.9971 + }, + { + "start": 10736.36, + "end": 10737.62, + "probability": 0.5988 + }, + { + "start": 10738.54, + "end": 10739.8, + "probability": 0.9097 + }, + { + "start": 10740.76, + "end": 10742.8, + "probability": 0.9047 + }, + { + "start": 10743.22, + "end": 10744.72, + "probability": 0.9941 + }, + { + "start": 10745.24, + "end": 10748.94, + "probability": 0.9521 + }, + { + "start": 10749.7, + "end": 10749.92, + "probability": 0.5693 + }, + { + "start": 10749.92, + "end": 10753.42, + "probability": 0.994 + }, + { + "start": 10753.72, + "end": 10755.1, + "probability": 0.7235 + }, + { + "start": 10755.1, + "end": 10755.42, + "probability": 0.7209 + }, + { + "start": 10756.0, + "end": 10756.54, + "probability": 0.9274 + }, + { + "start": 10756.62, + "end": 10758.46, + "probability": 0.9475 + }, + { + "start": 10758.54, + "end": 10760.2, + "probability": 0.7821 + }, + { + "start": 10760.28, + "end": 10761.06, + "probability": 0.7135 + }, + { + "start": 10761.9, + "end": 10764.64, + "probability": 0.9238 + }, + { + "start": 10766.54, + "end": 10767.7, + "probability": 0.9136 + }, + { + "start": 10767.84, + "end": 10770.68, + "probability": 0.9144 + }, + { + "start": 10770.94, + "end": 10772.1, + "probability": 0.8142 + }, + { + "start": 10773.02, + "end": 10773.9, + "probability": 0.9839 + }, + { + "start": 10774.8, + "end": 10776.74, + "probability": 0.9445 + }, + { + "start": 10776.9, + "end": 10778.68, + "probability": 0.815 + }, + { + "start": 10778.78, + "end": 10779.8, + "probability": 0.9756 + }, + { + "start": 10779.92, + "end": 10783.56, + "probability": 0.9229 + }, + { + "start": 10783.68, + "end": 10785.2, + "probability": 0.9707 + }, + { + "start": 10786.14, + "end": 10788.92, + "probability": 0.9748 + }, + { + "start": 10789.46, + "end": 10792.2, + "probability": 0.9913 + }, + { + "start": 10792.3, + "end": 10794.64, + "probability": 0.8458 + }, + { + "start": 10795.24, + "end": 10797.18, + "probability": 0.9654 + }, + { + "start": 10798.14, + "end": 10800.72, + "probability": 0.8655 + }, + { + "start": 10800.76, + "end": 10802.46, + "probability": 0.9245 + }, + { + "start": 10802.56, + "end": 10803.06, + "probability": 0.8697 + }, + { + "start": 10803.98, + "end": 10805.62, + "probability": 0.9834 + }, + { + "start": 10806.4, + "end": 10807.2, + "probability": 0.5507 + }, + { + "start": 10808.66, + "end": 10809.2, + "probability": 0.6678 + }, + { + "start": 10809.4, + "end": 10813.84, + "probability": 0.9761 + }, + { + "start": 10814.5, + "end": 10816.02, + "probability": 0.8775 + }, + { + "start": 10816.64, + "end": 10818.26, + "probability": 0.9885 + }, + { + "start": 10818.68, + "end": 10820.68, + "probability": 0.9919 + }, + { + "start": 10821.28, + "end": 10822.02, + "probability": 0.9661 + }, + { + "start": 10822.68, + "end": 10824.98, + "probability": 0.9976 + }, + { + "start": 10826.04, + "end": 10829.12, + "probability": 0.741 + }, + { + "start": 10829.74, + "end": 10835.67, + "probability": 0.9951 + }, + { + "start": 10836.64, + "end": 10838.86, + "probability": 0.8433 + }, + { + "start": 10840.56, + "end": 10841.54, + "probability": 0.0081 + }, + { + "start": 10841.78, + "end": 10842.5, + "probability": 0.6735 + }, + { + "start": 10842.68, + "end": 10843.66, + "probability": 0.667 + }, + { + "start": 10844.26, + "end": 10846.04, + "probability": 0.8275 + }, + { + "start": 10846.74, + "end": 10848.16, + "probability": 0.9376 + }, + { + "start": 10848.86, + "end": 10849.74, + "probability": 0.9542 + }, + { + "start": 10850.6, + "end": 10856.32, + "probability": 0.9916 + }, + { + "start": 10856.94, + "end": 10859.58, + "probability": 0.9452 + }, + { + "start": 10860.24, + "end": 10863.36, + "probability": 0.986 + }, + { + "start": 10863.88, + "end": 10865.02, + "probability": 0.8777 + }, + { + "start": 10865.54, + "end": 10866.3, + "probability": 0.8416 + }, + { + "start": 10867.14, + "end": 10869.55, + "probability": 0.9849 + }, + { + "start": 10870.32, + "end": 10872.52, + "probability": 0.9864 + }, + { + "start": 10874.16, + "end": 10877.92, + "probability": 0.8894 + }, + { + "start": 10878.78, + "end": 10880.1, + "probability": 0.8826 + }, + { + "start": 10880.82, + "end": 10882.2, + "probability": 0.9852 + }, + { + "start": 10883.14, + "end": 10884.32, + "probability": 0.9436 + }, + { + "start": 10884.38, + "end": 10885.32, + "probability": 0.9938 + }, + { + "start": 10885.78, + "end": 10888.74, + "probability": 0.8656 + }, + { + "start": 10889.18, + "end": 10893.32, + "probability": 0.9796 + }, + { + "start": 10894.02, + "end": 10895.12, + "probability": 0.6146 + }, + { + "start": 10895.64, + "end": 10896.7, + "probability": 0.9778 + }, + { + "start": 10897.26, + "end": 10901.8, + "probability": 0.9781 + }, + { + "start": 10902.8, + "end": 10905.87, + "probability": 0.9883 + }, + { + "start": 10906.84, + "end": 10910.7, + "probability": 0.9733 + }, + { + "start": 10911.38, + "end": 10913.96, + "probability": 0.9846 + }, + { + "start": 10914.74, + "end": 10916.08, + "probability": 0.9509 + }, + { + "start": 10916.82, + "end": 10919.34, + "probability": 0.9693 + }, + { + "start": 10920.04, + "end": 10924.9, + "probability": 0.9987 + }, + { + "start": 10925.54, + "end": 10927.52, + "probability": 0.8163 + }, + { + "start": 10928.34, + "end": 10929.31, + "probability": 0.9321 + }, + { + "start": 10930.0, + "end": 10935.5, + "probability": 0.9494 + }, + { + "start": 10936.16, + "end": 10939.02, + "probability": 0.9978 + }, + { + "start": 10940.16, + "end": 10943.78, + "probability": 0.8695 + }, + { + "start": 10944.5, + "end": 10947.52, + "probability": 0.9596 + }, + { + "start": 10948.62, + "end": 10949.02, + "probability": 0.5159 + }, + { + "start": 10949.68, + "end": 10950.92, + "probability": 0.9627 + }, + { + "start": 10951.7, + "end": 10952.44, + "probability": 0.8608 + }, + { + "start": 10953.14, + "end": 10955.3, + "probability": 0.9617 + }, + { + "start": 10955.84, + "end": 10957.58, + "probability": 0.9506 + }, + { + "start": 10958.14, + "end": 10959.4, + "probability": 0.9237 + }, + { + "start": 10960.54, + "end": 10963.84, + "probability": 0.9824 + }, + { + "start": 10964.26, + "end": 10965.52, + "probability": 0.8636 + }, + { + "start": 10966.02, + "end": 10969.32, + "probability": 0.9468 + }, + { + "start": 10969.48, + "end": 10970.86, + "probability": 0.9175 + }, + { + "start": 10971.4, + "end": 10972.79, + "probability": 0.9661 + }, + { + "start": 10974.16, + "end": 10975.52, + "probability": 0.9805 + }, + { + "start": 10976.98, + "end": 10979.1, + "probability": 0.8802 + }, + { + "start": 10979.78, + "end": 10981.2, + "probability": 0.9932 + }, + { + "start": 10981.74, + "end": 10984.96, + "probability": 0.9913 + }, + { + "start": 10985.66, + "end": 10987.44, + "probability": 0.9344 + }, + { + "start": 10988.02, + "end": 10991.02, + "probability": 0.9734 + }, + { + "start": 10991.8, + "end": 10996.3, + "probability": 0.9829 + }, + { + "start": 10996.3, + "end": 11001.04, + "probability": 0.9722 + }, + { + "start": 11001.7, + "end": 11005.39, + "probability": 0.9182 + }, + { + "start": 11006.4, + "end": 11006.98, + "probability": 0.7327 + }, + { + "start": 11007.56, + "end": 11014.14, + "probability": 0.9118 + }, + { + "start": 11014.62, + "end": 11017.14, + "probability": 0.8403 + }, + { + "start": 11017.62, + "end": 11020.34, + "probability": 0.959 + }, + { + "start": 11021.12, + "end": 11023.24, + "probability": 0.9963 + }, + { + "start": 11023.78, + "end": 11025.72, + "probability": 0.7979 + }, + { + "start": 11026.34, + "end": 11029.96, + "probability": 0.8956 + }, + { + "start": 11030.84, + "end": 11035.44, + "probability": 0.983 + }, + { + "start": 11036.1, + "end": 11043.76, + "probability": 0.9909 + }, + { + "start": 11044.64, + "end": 11044.98, + "probability": 0.539 + }, + { + "start": 11045.56, + "end": 11048.86, + "probability": 0.9965 + }, + { + "start": 11049.28, + "end": 11055.76, + "probability": 0.9738 + }, + { + "start": 11056.8, + "end": 11061.3, + "probability": 0.9932 + }, + { + "start": 11061.98, + "end": 11063.6, + "probability": 0.8119 + }, + { + "start": 11064.08, + "end": 11068.56, + "probability": 0.8866 + }, + { + "start": 11069.16, + "end": 11071.1, + "probability": 0.9792 + }, + { + "start": 11072.16, + "end": 11072.84, + "probability": 0.6218 + }, + { + "start": 11072.94, + "end": 11075.74, + "probability": 0.9814 + }, + { + "start": 11076.26, + "end": 11079.02, + "probability": 0.9571 + }, + { + "start": 11079.74, + "end": 11081.6, + "probability": 0.9913 + }, + { + "start": 11082.4, + "end": 11083.5, + "probability": 0.6279 + }, + { + "start": 11084.4, + "end": 11090.9, + "probability": 0.9093 + }, + { + "start": 11091.24, + "end": 11091.98, + "probability": 0.8008 + }, + { + "start": 11092.46, + "end": 11094.94, + "probability": 0.9976 + }, + { + "start": 11095.54, + "end": 11098.02, + "probability": 0.8665 + }, + { + "start": 11098.72, + "end": 11099.94, + "probability": 0.752 + }, + { + "start": 11100.5, + "end": 11106.14, + "probability": 0.9413 + }, + { + "start": 11106.64, + "end": 11109.94, + "probability": 0.9939 + }, + { + "start": 11110.92, + "end": 11115.82, + "probability": 0.9989 + }, + { + "start": 11116.52, + "end": 11121.04, + "probability": 0.9436 + }, + { + "start": 11121.98, + "end": 11123.74, + "probability": 0.7367 + }, + { + "start": 11124.36, + "end": 11125.98, + "probability": 0.8523 + }, + { + "start": 11126.56, + "end": 11128.12, + "probability": 0.8906 + }, + { + "start": 11129.1, + "end": 11130.26, + "probability": 0.8531 + }, + { + "start": 11131.42, + "end": 11132.08, + "probability": 0.6913 + }, + { + "start": 11132.72, + "end": 11133.86, + "probability": 0.7781 + }, + { + "start": 11134.6, + "end": 11135.94, + "probability": 0.9634 + }, + { + "start": 11136.56, + "end": 11141.56, + "probability": 0.9307 + }, + { + "start": 11142.16, + "end": 11143.98, + "probability": 0.978 + }, + { + "start": 11144.78, + "end": 11146.76, + "probability": 0.9883 + }, + { + "start": 11147.54, + "end": 11149.02, + "probability": 0.9975 + }, + { + "start": 11149.66, + "end": 11150.18, + "probability": 0.9215 + }, + { + "start": 11150.74, + "end": 11151.92, + "probability": 0.923 + }, + { + "start": 11152.58, + "end": 11158.32, + "probability": 0.943 + }, + { + "start": 11159.26, + "end": 11163.18, + "probability": 0.9629 + }, + { + "start": 11179.3, + "end": 11180.48, + "probability": 0.7023 + }, + { + "start": 11181.42, + "end": 11183.3, + "probability": 0.9658 + }, + { + "start": 11184.0, + "end": 11186.96, + "probability": 0.9458 + }, + { + "start": 11187.56, + "end": 11194.62, + "probability": 0.9808 + }, + { + "start": 11195.96, + "end": 11198.3, + "probability": 0.7572 + }, + { + "start": 11198.48, + "end": 11199.98, + "probability": 0.9435 + }, + { + "start": 11200.02, + "end": 11200.9, + "probability": 0.9092 + }, + { + "start": 11201.32, + "end": 11207.14, + "probability": 0.8748 + }, + { + "start": 11208.0, + "end": 11209.8, + "probability": 0.9055 + }, + { + "start": 11210.72, + "end": 11213.52, + "probability": 0.9985 + }, + { + "start": 11213.52, + "end": 11217.5, + "probability": 0.986 + }, + { + "start": 11218.94, + "end": 11224.6, + "probability": 0.9919 + }, + { + "start": 11225.2, + "end": 11228.6, + "probability": 0.999 + }, + { + "start": 11230.2, + "end": 11232.42, + "probability": 0.8491 + }, + { + "start": 11233.04, + "end": 11237.4, + "probability": 0.9973 + }, + { + "start": 11237.4, + "end": 11241.1, + "probability": 0.9955 + }, + { + "start": 11242.08, + "end": 11246.8, + "probability": 0.9692 + }, + { + "start": 11248.22, + "end": 11251.22, + "probability": 0.9932 + }, + { + "start": 11251.94, + "end": 11255.94, + "probability": 0.9975 + }, + { + "start": 11256.5, + "end": 11258.16, + "probability": 0.9852 + }, + { + "start": 11258.98, + "end": 11260.96, + "probability": 0.9097 + }, + { + "start": 11261.68, + "end": 11262.54, + "probability": 0.5771 + }, + { + "start": 11262.98, + "end": 11265.5, + "probability": 0.9764 + }, + { + "start": 11266.62, + "end": 11272.58, + "probability": 0.9933 + }, + { + "start": 11272.58, + "end": 11279.92, + "probability": 0.9987 + }, + { + "start": 11280.86, + "end": 11284.78, + "probability": 0.7882 + }, + { + "start": 11286.14, + "end": 11286.84, + "probability": 0.8557 + }, + { + "start": 11287.36, + "end": 11289.16, + "probability": 0.9365 + }, + { + "start": 11289.7, + "end": 11290.92, + "probability": 0.777 + }, + { + "start": 11293.08, + "end": 11296.54, + "probability": 0.9974 + }, + { + "start": 11297.0, + "end": 11301.28, + "probability": 0.9982 + }, + { + "start": 11302.42, + "end": 11303.78, + "probability": 0.8659 + }, + { + "start": 11304.56, + "end": 11305.91, + "probability": 0.672 + }, + { + "start": 11306.68, + "end": 11309.26, + "probability": 0.9919 + }, + { + "start": 11309.82, + "end": 11312.24, + "probability": 0.9821 + }, + { + "start": 11314.02, + "end": 11318.0, + "probability": 0.8185 + }, + { + "start": 11318.6, + "end": 11321.64, + "probability": 0.8754 + }, + { + "start": 11323.12, + "end": 11325.58, + "probability": 0.9835 + }, + { + "start": 11326.1, + "end": 11329.88, + "probability": 0.9939 + }, + { + "start": 11330.56, + "end": 11336.16, + "probability": 0.9934 + }, + { + "start": 11337.54, + "end": 11338.36, + "probability": 0.7634 + }, + { + "start": 11339.02, + "end": 11339.78, + "probability": 0.9895 + }, + { + "start": 11341.52, + "end": 11344.88, + "probability": 0.9571 + }, + { + "start": 11345.64, + "end": 11349.16, + "probability": 0.9858 + }, + { + "start": 11350.08, + "end": 11354.0, + "probability": 0.9894 + }, + { + "start": 11354.0, + "end": 11358.76, + "probability": 0.9984 + }, + { + "start": 11359.92, + "end": 11365.1, + "probability": 0.9956 + }, + { + "start": 11365.8, + "end": 11369.38, + "probability": 0.9983 + }, + { + "start": 11370.08, + "end": 11375.46, + "probability": 0.985 + }, + { + "start": 11377.72, + "end": 11384.4, + "probability": 0.9686 + }, + { + "start": 11385.36, + "end": 11390.04, + "probability": 0.9881 + }, + { + "start": 11390.21, + "end": 11395.24, + "probability": 0.998 + }, + { + "start": 11395.94, + "end": 11398.24, + "probability": 0.9722 + }, + { + "start": 11398.96, + "end": 11404.24, + "probability": 0.9867 + }, + { + "start": 11405.54, + "end": 11407.88, + "probability": 0.9939 + }, + { + "start": 11408.66, + "end": 11410.4, + "probability": 0.8994 + }, + { + "start": 11411.0, + "end": 11413.46, + "probability": 0.648 + }, + { + "start": 11414.1, + "end": 11419.04, + "probability": 0.918 + }, + { + "start": 11420.82, + "end": 11421.64, + "probability": 0.4507 + }, + { + "start": 11422.24, + "end": 11428.54, + "probability": 0.9988 + }, + { + "start": 11430.12, + "end": 11433.44, + "probability": 0.9121 + }, + { + "start": 11434.08, + "end": 11435.66, + "probability": 0.7521 + }, + { + "start": 11436.08, + "end": 11438.18, + "probability": 0.9985 + }, + { + "start": 11439.28, + "end": 11441.22, + "probability": 0.998 + }, + { + "start": 11441.78, + "end": 11443.76, + "probability": 0.908 + }, + { + "start": 11445.94, + "end": 11450.74, + "probability": 0.8822 + }, + { + "start": 11451.48, + "end": 11456.36, + "probability": 0.9956 + }, + { + "start": 11457.18, + "end": 11460.4, + "probability": 0.9795 + }, + { + "start": 11461.2, + "end": 11464.14, + "probability": 0.9922 + }, + { + "start": 11465.34, + "end": 11467.1, + "probability": 0.9811 + }, + { + "start": 11467.82, + "end": 11472.84, + "probability": 0.9937 + }, + { + "start": 11473.4, + "end": 11477.14, + "probability": 0.9964 + }, + { + "start": 11477.92, + "end": 11482.22, + "probability": 0.9995 + }, + { + "start": 11482.7, + "end": 11486.48, + "probability": 0.9985 + }, + { + "start": 11486.48, + "end": 11490.5, + "probability": 0.9995 + }, + { + "start": 11491.4, + "end": 11493.38, + "probability": 0.5444 + }, + { + "start": 11493.9, + "end": 11499.56, + "probability": 0.9971 + }, + { + "start": 11500.0, + "end": 11504.48, + "probability": 0.9983 + }, + { + "start": 11504.48, + "end": 11510.56, + "probability": 0.9992 + }, + { + "start": 11512.46, + "end": 11517.4, + "probability": 0.9726 + }, + { + "start": 11518.24, + "end": 11518.86, + "probability": 0.7156 + }, + { + "start": 11518.96, + "end": 11519.48, + "probability": 0.9156 + }, + { + "start": 11519.94, + "end": 11522.12, + "probability": 0.9728 + }, + { + "start": 11522.54, + "end": 11523.26, + "probability": 0.9508 + }, + { + "start": 11523.6, + "end": 11524.38, + "probability": 0.9411 + }, + { + "start": 11526.36, + "end": 11531.46, + "probability": 0.9725 + }, + { + "start": 11531.8, + "end": 11532.7, + "probability": 0.7907 + }, + { + "start": 11533.3, + "end": 11536.86, + "probability": 0.8243 + }, + { + "start": 11537.46, + "end": 11540.28, + "probability": 0.9905 + }, + { + "start": 11541.88, + "end": 11544.28, + "probability": 0.963 + }, + { + "start": 11544.66, + "end": 11547.04, + "probability": 0.9326 + }, + { + "start": 11547.62, + "end": 11550.1, + "probability": 0.7051 + }, + { + "start": 11550.76, + "end": 11554.62, + "probability": 0.9956 + }, + { + "start": 11554.62, + "end": 11559.3, + "probability": 0.9794 + }, + { + "start": 11559.86, + "end": 11562.78, + "probability": 0.9976 + }, + { + "start": 11563.74, + "end": 11567.94, + "probability": 0.9789 + }, + { + "start": 11568.36, + "end": 11571.16, + "probability": 0.9928 + }, + { + "start": 11571.64, + "end": 11574.88, + "probability": 0.9971 + }, + { + "start": 11576.4, + "end": 11582.98, + "probability": 0.9927 + }, + { + "start": 11583.5, + "end": 11586.5, + "probability": 0.9781 + }, + { + "start": 11587.96, + "end": 11590.0, + "probability": 0.9938 + }, + { + "start": 11590.0, + "end": 11593.84, + "probability": 0.9732 + }, + { + "start": 11594.42, + "end": 11596.76, + "probability": 0.999 + }, + { + "start": 11597.3, + "end": 11600.94, + "probability": 0.9954 + }, + { + "start": 11600.94, + "end": 11605.3, + "probability": 0.9906 + }, + { + "start": 11606.22, + "end": 11608.22, + "probability": 0.7702 + }, + { + "start": 11608.9, + "end": 11611.12, + "probability": 0.7453 + }, + { + "start": 11611.74, + "end": 11615.28, + "probability": 0.9854 + }, + { + "start": 11616.14, + "end": 11619.6, + "probability": 0.9858 + }, + { + "start": 11620.74, + "end": 11625.5, + "probability": 0.9762 + }, + { + "start": 11626.54, + "end": 11631.6, + "probability": 0.9919 + }, + { + "start": 11633.26, + "end": 11634.5, + "probability": 0.7535 + }, + { + "start": 11635.46, + "end": 11637.96, + "probability": 0.982 + }, + { + "start": 11637.96, + "end": 11642.22, + "probability": 0.9986 + }, + { + "start": 11642.84, + "end": 11646.66, + "probability": 0.9752 + }, + { + "start": 11647.02, + "end": 11650.18, + "probability": 0.9968 + }, + { + "start": 11650.18, + "end": 11654.24, + "probability": 0.9938 + }, + { + "start": 11655.16, + "end": 11655.76, + "probability": 0.9391 + }, + { + "start": 11656.68, + "end": 11657.34, + "probability": 0.5046 + }, + { + "start": 11657.86, + "end": 11660.12, + "probability": 0.9884 + }, + { + "start": 11660.62, + "end": 11664.4, + "probability": 0.9973 + }, + { + "start": 11665.32, + "end": 11666.04, + "probability": 0.9647 + }, + { + "start": 11666.74, + "end": 11670.86, + "probability": 0.8691 + }, + { + "start": 11671.74, + "end": 11673.94, + "probability": 0.9186 + }, + { + "start": 11674.6, + "end": 11676.9, + "probability": 0.9577 + }, + { + "start": 11677.42, + "end": 11681.28, + "probability": 0.9963 + }, + { + "start": 11683.48, + "end": 11688.76, + "probability": 0.9909 + }, + { + "start": 11689.76, + "end": 11693.56, + "probability": 0.9807 + }, + { + "start": 11695.52, + "end": 11696.56, + "probability": 0.9784 + }, + { + "start": 11697.28, + "end": 11697.78, + "probability": 0.8404 + }, + { + "start": 11698.42, + "end": 11699.7, + "probability": 0.6753 + }, + { + "start": 11700.4, + "end": 11704.48, + "probability": 0.9946 + }, + { + "start": 11705.18, + "end": 11712.06, + "probability": 0.9962 + }, + { + "start": 11713.38, + "end": 11715.7, + "probability": 0.6797 + }, + { + "start": 11716.0, + "end": 11718.88, + "probability": 0.8475 + }, + { + "start": 11721.26, + "end": 11727.82, + "probability": 0.9924 + }, + { + "start": 11728.4, + "end": 11730.52, + "probability": 0.7236 + }, + { + "start": 11731.56, + "end": 11733.56, + "probability": 0.9288 + }, + { + "start": 11734.66, + "end": 11739.2, + "probability": 0.9814 + }, + { + "start": 11740.7, + "end": 11741.52, + "probability": 0.2942 + }, + { + "start": 11742.42, + "end": 11746.04, + "probability": 0.8057 + }, + { + "start": 11746.22, + "end": 11746.96, + "probability": 0.5335 + }, + { + "start": 11747.4, + "end": 11749.16, + "probability": 0.7549 + }, + { + "start": 11749.98, + "end": 11752.42, + "probability": 0.8918 + }, + { + "start": 11752.96, + "end": 11759.18, + "probability": 0.7852 + }, + { + "start": 11760.42, + "end": 11761.76, + "probability": 0.5249 + }, + { + "start": 11761.78, + "end": 11763.64, + "probability": 0.9667 + }, + { + "start": 11763.78, + "end": 11765.38, + "probability": 0.8811 + }, + { + "start": 11765.62, + "end": 11766.14, + "probability": 0.8631 + }, + { + "start": 11771.22, + "end": 11771.98, + "probability": 0.1964 + }, + { + "start": 11772.6, + "end": 11774.56, + "probability": 0.0914 + }, + { + "start": 11774.56, + "end": 11774.84, + "probability": 0.1393 + }, + { + "start": 11776.46, + "end": 11776.72, + "probability": 0.4341 + }, + { + "start": 11777.78, + "end": 11779.58, + "probability": 0.7827 + }, + { + "start": 11781.88, + "end": 11784.96, + "probability": 0.9988 + }, + { + "start": 11784.96, + "end": 11788.36, + "probability": 0.9878 + }, + { + "start": 11788.82, + "end": 11790.28, + "probability": 0.9851 + }, + { + "start": 11790.74, + "end": 11792.22, + "probability": 0.3298 + }, + { + "start": 11792.8, + "end": 11793.82, + "probability": 0.5465 + }, + { + "start": 11793.84, + "end": 11794.62, + "probability": 0.551 + }, + { + "start": 11794.92, + "end": 11796.4, + "probability": 0.9948 + }, + { + "start": 11797.6, + "end": 11799.66, + "probability": 0.9005 + }, + { + "start": 11800.9, + "end": 11804.08, + "probability": 0.9103 + }, + { + "start": 11804.86, + "end": 11807.72, + "probability": 0.9984 + }, + { + "start": 11807.72, + "end": 11810.22, + "probability": 0.9968 + }, + { + "start": 11810.6, + "end": 11814.46, + "probability": 0.8926 + }, + { + "start": 11816.18, + "end": 11819.06, + "probability": 0.9993 + }, + { + "start": 11819.82, + "end": 11821.38, + "probability": 0.9479 + }, + { + "start": 11822.12, + "end": 11823.42, + "probability": 0.8992 + }, + { + "start": 11824.3, + "end": 11826.86, + "probability": 0.9634 + }, + { + "start": 11827.06, + "end": 11828.78, + "probability": 0.9941 + }, + { + "start": 11829.38, + "end": 11830.86, + "probability": 0.871 + }, + { + "start": 11831.42, + "end": 11833.79, + "probability": 0.9021 + }, + { + "start": 11835.02, + "end": 11836.28, + "probability": 0.9639 + }, + { + "start": 11836.42, + "end": 11840.6, + "probability": 0.9722 + }, + { + "start": 11840.68, + "end": 11844.0, + "probability": 0.998 + }, + { + "start": 11846.02, + "end": 11851.42, + "probability": 0.9994 + }, + { + "start": 11852.68, + "end": 11855.34, + "probability": 0.8969 + }, + { + "start": 11855.9, + "end": 11856.54, + "probability": 0.9062 + }, + { + "start": 11857.6, + "end": 11859.36, + "probability": 0.9241 + }, + { + "start": 11860.1, + "end": 11864.86, + "probability": 0.9536 + }, + { + "start": 11866.3, + "end": 11867.18, + "probability": 0.9086 + }, + { + "start": 11868.18, + "end": 11870.42, + "probability": 0.9978 + }, + { + "start": 11870.76, + "end": 11871.82, + "probability": 0.9653 + }, + { + "start": 11873.12, + "end": 11874.8, + "probability": 0.9858 + }, + { + "start": 11875.84, + "end": 11878.3, + "probability": 0.9963 + }, + { + "start": 11879.48, + "end": 11881.83, + "probability": 0.9978 + }, + { + "start": 11883.44, + "end": 11885.24, + "probability": 0.9878 + }, + { + "start": 11885.42, + "end": 11887.1, + "probability": 0.9143 + }, + { + "start": 11887.2, + "end": 11888.16, + "probability": 0.8151 + }, + { + "start": 11888.34, + "end": 11890.5, + "probability": 0.9897 + }, + { + "start": 11891.1, + "end": 11892.62, + "probability": 0.9606 + }, + { + "start": 11893.68, + "end": 11897.5, + "probability": 0.9785 + }, + { + "start": 11898.1, + "end": 11898.5, + "probability": 0.8083 + }, + { + "start": 11899.42, + "end": 11900.96, + "probability": 0.9912 + }, + { + "start": 11901.08, + "end": 11903.04, + "probability": 0.8528 + }, + { + "start": 11903.24, + "end": 11906.86, + "probability": 0.9925 + }, + { + "start": 11908.24, + "end": 11911.2, + "probability": 0.9626 + }, + { + "start": 11912.3, + "end": 11915.26, + "probability": 0.9742 + }, + { + "start": 11915.86, + "end": 11917.76, + "probability": 0.8743 + }, + { + "start": 11918.08, + "end": 11922.12, + "probability": 0.9954 + }, + { + "start": 11923.6, + "end": 11928.82, + "probability": 0.9902 + }, + { + "start": 11930.22, + "end": 11934.52, + "probability": 0.9829 + }, + { + "start": 11935.68, + "end": 11938.26, + "probability": 0.9956 + }, + { + "start": 11939.52, + "end": 11944.64, + "probability": 0.9816 + }, + { + "start": 11945.72, + "end": 11948.12, + "probability": 0.6921 + }, + { + "start": 11948.74, + "end": 11952.08, + "probability": 0.9807 + }, + { + "start": 11952.9, + "end": 11956.58, + "probability": 0.9917 + }, + { + "start": 11957.24, + "end": 11959.28, + "probability": 0.8521 + }, + { + "start": 11959.92, + "end": 11961.0, + "probability": 0.9669 + }, + { + "start": 11962.54, + "end": 11966.38, + "probability": 0.9132 + }, + { + "start": 11967.88, + "end": 11969.64, + "probability": 0.9941 + }, + { + "start": 11969.82, + "end": 11972.04, + "probability": 0.9871 + }, + { + "start": 11973.58, + "end": 11979.48, + "probability": 0.9944 + }, + { + "start": 11980.64, + "end": 11982.54, + "probability": 0.7891 + }, + { + "start": 11982.66, + "end": 11984.02, + "probability": 0.9927 + }, + { + "start": 11985.4, + "end": 11987.96, + "probability": 0.8452 + }, + { + "start": 11988.72, + "end": 11991.64, + "probability": 0.9965 + }, + { + "start": 11991.7, + "end": 11992.42, + "probability": 0.8003 + }, + { + "start": 11992.54, + "end": 11994.98, + "probability": 0.9936 + }, + { + "start": 11995.1, + "end": 11997.02, + "probability": 0.8175 + }, + { + "start": 11998.0, + "end": 11999.24, + "probability": 0.8982 + }, + { + "start": 11999.36, + "end": 12004.02, + "probability": 0.9858 + }, + { + "start": 12005.18, + "end": 12009.76, + "probability": 0.9902 + }, + { + "start": 12009.86, + "end": 12012.32, + "probability": 0.9591 + }, + { + "start": 12012.32, + "end": 12015.72, + "probability": 0.9966 + }, + { + "start": 12016.04, + "end": 12016.86, + "probability": 0.8857 + }, + { + "start": 12017.94, + "end": 12020.8, + "probability": 0.9931 + }, + { + "start": 12022.42, + "end": 12023.46, + "probability": 0.6783 + }, + { + "start": 12024.66, + "end": 12026.74, + "probability": 0.8318 + }, + { + "start": 12027.28, + "end": 12027.88, + "probability": 0.5798 + }, + { + "start": 12028.76, + "end": 12029.81, + "probability": 0.9927 + }, + { + "start": 12030.18, + "end": 12030.6, + "probability": 0.8042 + }, + { + "start": 12030.68, + "end": 12032.38, + "probability": 0.9982 + }, + { + "start": 12032.96, + "end": 12035.24, + "probability": 0.9905 + }, + { + "start": 12037.22, + "end": 12040.68, + "probability": 0.9966 + }, + { + "start": 12041.0, + "end": 12042.18, + "probability": 0.909 + }, + { + "start": 12042.22, + "end": 12045.24, + "probability": 0.9902 + }, + { + "start": 12045.68, + "end": 12047.96, + "probability": 0.999 + }, + { + "start": 12048.9, + "end": 12053.4, + "probability": 0.9631 + }, + { + "start": 12055.06, + "end": 12055.06, + "probability": 0.0341 + }, + { + "start": 12055.06, + "end": 12056.0, + "probability": 0.1581 + }, + { + "start": 12056.94, + "end": 12060.86, + "probability": 0.9521 + }, + { + "start": 12061.38, + "end": 12063.84, + "probability": 0.9893 + }, + { + "start": 12063.86, + "end": 12064.35, + "probability": 0.1231 + }, + { + "start": 12064.64, + "end": 12064.8, + "probability": 0.064 + }, + { + "start": 12064.8, + "end": 12065.84, + "probability": 0.9698 + }, + { + "start": 12066.38, + "end": 12068.0, + "probability": 0.9204 + }, + { + "start": 12068.14, + "end": 12069.96, + "probability": 0.9022 + }, + { + "start": 12071.84, + "end": 12075.22, + "probability": 0.9309 + }, + { + "start": 12076.38, + "end": 12077.98, + "probability": 0.9989 + }, + { + "start": 12078.02, + "end": 12081.44, + "probability": 0.858 + }, + { + "start": 12081.82, + "end": 12082.08, + "probability": 0.0138 + }, + { + "start": 12082.16, + "end": 12086.46, + "probability": 0.9984 + }, + { + "start": 12087.1, + "end": 12088.04, + "probability": 0.989 + }, + { + "start": 12089.38, + "end": 12092.64, + "probability": 0.9936 + }, + { + "start": 12092.78, + "end": 12094.9, + "probability": 0.994 + }, + { + "start": 12095.4, + "end": 12096.08, + "probability": 0.9671 + }, + { + "start": 12096.42, + "end": 12098.0, + "probability": 0.0738 + }, + { + "start": 12098.0, + "end": 12099.58, + "probability": 0.3233 + }, + { + "start": 12101.9, + "end": 12103.04, + "probability": 0.0537 + }, + { + "start": 12105.08, + "end": 12105.08, + "probability": 0.1226 + }, + { + "start": 12105.08, + "end": 12105.08, + "probability": 0.0265 + }, + { + "start": 12105.08, + "end": 12105.22, + "probability": 0.0666 + }, + { + "start": 12105.22, + "end": 12105.22, + "probability": 0.0619 + }, + { + "start": 12105.22, + "end": 12109.68, + "probability": 0.7221 + }, + { + "start": 12109.98, + "end": 12110.95, + "probability": 0.6592 + }, + { + "start": 12111.28, + "end": 12113.08, + "probability": 0.951 + }, + { + "start": 12118.12, + "end": 12120.46, + "probability": 0.6553 + }, + { + "start": 12120.46, + "end": 12120.46, + "probability": 0.1413 + }, + { + "start": 12120.46, + "end": 12120.5, + "probability": 0.218 + }, + { + "start": 12120.5, + "end": 12120.52, + "probability": 0.3478 + }, + { + "start": 12120.52, + "end": 12121.74, + "probability": 0.8887 + }, + { + "start": 12122.16, + "end": 12123.38, + "probability": 0.1718 + }, + { + "start": 12123.86, + "end": 12125.56, + "probability": 0.9922 + }, + { + "start": 12125.92, + "end": 12130.68, + "probability": 0.9928 + }, + { + "start": 12131.22, + "end": 12131.72, + "probability": 0.1067 + }, + { + "start": 12131.72, + "end": 12133.22, + "probability": 0.6651 + }, + { + "start": 12133.28, + "end": 12133.42, + "probability": 0.3058 + }, + { + "start": 12133.44, + "end": 12136.38, + "probability": 0.9701 + }, + { + "start": 12136.82, + "end": 12137.18, + "probability": 0.8353 + }, + { + "start": 12137.44, + "end": 12137.96, + "probability": 0.7045 + }, + { + "start": 12138.22, + "end": 12140.18, + "probability": 0.9945 + }, + { + "start": 12141.45, + "end": 12142.94, + "probability": 0.6201 + }, + { + "start": 12144.46, + "end": 12146.46, + "probability": 0.8289 + }, + { + "start": 12146.84, + "end": 12150.04, + "probability": 0.9365 + }, + { + "start": 12150.38, + "end": 12151.64, + "probability": 0.8875 + }, + { + "start": 12151.82, + "end": 12153.57, + "probability": 0.9658 + }, + { + "start": 12154.18, + "end": 12159.38, + "probability": 0.9922 + }, + { + "start": 12159.5, + "end": 12160.32, + "probability": 0.6764 + }, + { + "start": 12160.86, + "end": 12164.02, + "probability": 0.5325 + }, + { + "start": 12164.92, + "end": 12166.86, + "probability": 0.9933 + }, + { + "start": 12167.66, + "end": 12171.34, + "probability": 0.943 + }, + { + "start": 12181.64, + "end": 12186.6, + "probability": 0.8647 + }, + { + "start": 12187.66, + "end": 12189.14, + "probability": 0.7779 + }, + { + "start": 12189.74, + "end": 12194.16, + "probability": 0.9484 + }, + { + "start": 12194.86, + "end": 12198.89, + "probability": 0.6662 + }, + { + "start": 12199.48, + "end": 12199.76, + "probability": 0.5103 + }, + { + "start": 12199.76, + "end": 12206.1, + "probability": 0.9947 + }, + { + "start": 12207.46, + "end": 12208.92, + "probability": 0.5654 + }, + { + "start": 12209.82, + "end": 12214.52, + "probability": 0.9764 + }, + { + "start": 12215.22, + "end": 12217.38, + "probability": 0.9978 + }, + { + "start": 12218.38, + "end": 12219.43, + "probability": 0.9093 + }, + { + "start": 12220.94, + "end": 12223.14, + "probability": 0.9671 + }, + { + "start": 12224.04, + "end": 12226.66, + "probability": 0.9912 + }, + { + "start": 12226.66, + "end": 12229.66, + "probability": 0.9996 + }, + { + "start": 12229.66, + "end": 12229.66, + "probability": 0.2727 + }, + { + "start": 12229.76, + "end": 12229.8, + "probability": 0.0309 + }, + { + "start": 12229.8, + "end": 12238.6, + "probability": 0.9737 + }, + { + "start": 12238.96, + "end": 12238.96, + "probability": 0.0292 + }, + { + "start": 12238.96, + "end": 12241.3, + "probability": 0.941 + }, + { + "start": 12241.34, + "end": 12241.84, + "probability": 0.0413 + }, + { + "start": 12242.42, + "end": 12243.06, + "probability": 0.211 + }, + { + "start": 12243.06, + "end": 12245.18, + "probability": 0.0743 + }, + { + "start": 12245.18, + "end": 12248.6, + "probability": 0.708 + }, + { + "start": 12249.18, + "end": 12249.18, + "probability": 0.102 + }, + { + "start": 12249.18, + "end": 12249.18, + "probability": 0.0382 + }, + { + "start": 12249.18, + "end": 12249.18, + "probability": 0.027 + }, + { + "start": 12249.18, + "end": 12250.08, + "probability": 0.588 + }, + { + "start": 12250.22, + "end": 12250.22, + "probability": 0.0128 + }, + { + "start": 12250.22, + "end": 12253.48, + "probability": 0.5119 + }, + { + "start": 12266.58, + "end": 12266.94, + "probability": 0.9755 + }, + { + "start": 12272.72, + "end": 12274.3, + "probability": 0.0165 + }, + { + "start": 12276.01, + "end": 12276.82, + "probability": 0.0287 + }, + { + "start": 12277.26, + "end": 12278.57, + "probability": 0.4211 + }, + { + "start": 12279.3, + "end": 12281.24, + "probability": 0.618 + }, + { + "start": 12281.24, + "end": 12282.9, + "probability": 0.3295 + }, + { + "start": 12283.66, + "end": 12283.76, + "probability": 0.0259 + }, + { + "start": 12283.88, + "end": 12286.16, + "probability": 0.0398 + }, + { + "start": 12286.66, + "end": 12289.22, + "probability": 0.0445 + }, + { + "start": 12289.52, + "end": 12291.44, + "probability": 0.2575 + }, + { + "start": 12295.76, + "end": 12296.58, + "probability": 0.1587 + }, + { + "start": 12296.58, + "end": 12296.92, + "probability": 0.0306 + }, + { + "start": 12297.26, + "end": 12297.4, + "probability": 0.0607 + }, + { + "start": 12297.4, + "end": 12298.12, + "probability": 0.179 + }, + { + "start": 12298.12, + "end": 12301.06, + "probability": 0.0946 + }, + { + "start": 12302.2, + "end": 12302.62, + "probability": 0.2044 + }, + { + "start": 12306.48, + "end": 12308.84, + "probability": 0.0464 + }, + { + "start": 12309.1, + "end": 12309.36, + "probability": 0.0526 + }, + { + "start": 12309.78, + "end": 12311.46, + "probability": 0.5252 + }, + { + "start": 12311.46, + "end": 12313.54, + "probability": 0.2258 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12333.0, + "end": 12333.0, + "probability": 0.0 + }, + { + "start": 12339.4, + "end": 12340.18, + "probability": 0.0545 + }, + { + "start": 12340.57, + "end": 12343.82, + "probability": 0.0226 + }, + { + "start": 12343.82, + "end": 12345.72, + "probability": 0.0223 + }, + { + "start": 12347.74, + "end": 12351.62, + "probability": 0.1289 + }, + { + "start": 12351.62, + "end": 12351.62, + "probability": 0.2656 + }, + { + "start": 12351.62, + "end": 12351.62, + "probability": 0.1062 + }, + { + "start": 12351.62, + "end": 12354.36, + "probability": 0.0236 + }, + { + "start": 12354.52, + "end": 12356.18, + "probability": 0.0403 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.0, + "probability": 0.0 + }, + { + "start": 12457.0, + "end": 12457.44, + "probability": 0.1631 + }, + { + "start": 12458.02, + "end": 12460.62, + "probability": 0.7245 + }, + { + "start": 12461.44, + "end": 12468.5, + "probability": 0.9611 + }, + { + "start": 12468.72, + "end": 12469.68, + "probability": 0.6182 + }, + { + "start": 12469.78, + "end": 12470.82, + "probability": 0.3603 + }, + { + "start": 12470.86, + "end": 12476.72, + "probability": 0.9937 + }, + { + "start": 12476.72, + "end": 12479.96, + "probability": 0.9972 + }, + { + "start": 12480.88, + "end": 12485.71, + "probability": 0.9789 + }, + { + "start": 12485.86, + "end": 12489.66, + "probability": 0.9993 + }, + { + "start": 12490.36, + "end": 12497.6, + "probability": 0.998 + }, + { + "start": 12497.6, + "end": 12503.22, + "probability": 0.9958 + }, + { + "start": 12503.22, + "end": 12508.5, + "probability": 0.9974 + }, + { + "start": 12509.02, + "end": 12512.46, + "probability": 0.9995 + }, + { + "start": 12512.96, + "end": 12513.3, + "probability": 0.8923 + }, + { + "start": 12513.96, + "end": 12514.84, + "probability": 0.8627 + }, + { + "start": 12515.72, + "end": 12517.58, + "probability": 0.9595 + }, + { + "start": 12517.86, + "end": 12518.44, + "probability": 0.9631 + }, + { + "start": 12518.86, + "end": 12520.76, + "probability": 0.9895 + }, + { + "start": 12521.12, + "end": 12525.3, + "probability": 0.9971 + }, + { + "start": 12526.02, + "end": 12529.78, + "probability": 0.9882 + }, + { + "start": 12530.34, + "end": 12537.18, + "probability": 0.9927 + }, + { + "start": 12537.6, + "end": 12540.44, + "probability": 0.808 + }, + { + "start": 12540.44, + "end": 12545.62, + "probability": 0.9927 + }, + { + "start": 12545.76, + "end": 12551.76, + "probability": 0.9929 + }, + { + "start": 12552.28, + "end": 12552.94, + "probability": 0.6765 + }, + { + "start": 12553.4, + "end": 12556.28, + "probability": 0.8683 + }, + { + "start": 12556.44, + "end": 12558.66, + "probability": 0.9819 + }, + { + "start": 12559.0, + "end": 12561.44, + "probability": 0.9968 + }, + { + "start": 12561.82, + "end": 12564.86, + "probability": 0.8867 + }, + { + "start": 12565.22, + "end": 12566.26, + "probability": 0.9129 + }, + { + "start": 12567.12, + "end": 12569.54, + "probability": 0.9783 + }, + { + "start": 12569.84, + "end": 12571.52, + "probability": 0.9366 + }, + { + "start": 12571.8, + "end": 12578.76, + "probability": 0.9935 + }, + { + "start": 12579.32, + "end": 12580.42, + "probability": 0.727 + }, + { + "start": 12580.94, + "end": 12583.76, + "probability": 0.981 + }, + { + "start": 12584.26, + "end": 12588.98, + "probability": 0.9978 + }, + { + "start": 12589.42, + "end": 12594.8, + "probability": 0.9961 + }, + { + "start": 12594.8, + "end": 12598.92, + "probability": 0.9982 + }, + { + "start": 12599.5, + "end": 12601.46, + "probability": 0.9985 + }, + { + "start": 12601.82, + "end": 12604.18, + "probability": 0.9777 + }, + { + "start": 12605.35, + "end": 12608.52, + "probability": 0.7943 + }, + { + "start": 12609.36, + "end": 12617.42, + "probability": 0.9987 + }, + { + "start": 12617.42, + "end": 12622.18, + "probability": 0.9931 + }, + { + "start": 12623.0, + "end": 12626.4, + "probability": 0.9968 + }, + { + "start": 12626.4, + "end": 12630.16, + "probability": 0.9958 + }, + { + "start": 12630.62, + "end": 12633.32, + "probability": 0.9507 + }, + { + "start": 12633.64, + "end": 12634.52, + "probability": 0.9787 + }, + { + "start": 12635.04, + "end": 12636.88, + "probability": 0.9863 + }, + { + "start": 12637.22, + "end": 12638.68, + "probability": 0.942 + }, + { + "start": 12639.58, + "end": 12643.04, + "probability": 0.9894 + }, + { + "start": 12643.04, + "end": 12645.76, + "probability": 0.9976 + }, + { + "start": 12645.86, + "end": 12649.6, + "probability": 0.9954 + }, + { + "start": 12649.68, + "end": 12652.24, + "probability": 0.9934 + }, + { + "start": 12652.7, + "end": 12657.32, + "probability": 0.995 + }, + { + "start": 12657.78, + "end": 12658.72, + "probability": 0.9734 + }, + { + "start": 12658.84, + "end": 12660.0, + "probability": 0.8005 + }, + { + "start": 12660.3, + "end": 12663.58, + "probability": 0.8701 + }, + { + "start": 12664.04, + "end": 12664.92, + "probability": 0.6534 + }, + { + "start": 12665.02, + "end": 12669.84, + "probability": 0.9903 + }, + { + "start": 12670.0, + "end": 12670.32, + "probability": 0.4801 + }, + { + "start": 12670.36, + "end": 12671.02, + "probability": 0.8427 + }, + { + "start": 12671.14, + "end": 12671.74, + "probability": 0.981 + }, + { + "start": 12672.46, + "end": 12673.92, + "probability": 0.9438 + }, + { + "start": 12675.08, + "end": 12677.5, + "probability": 0.9733 + }, + { + "start": 12677.62, + "end": 12680.38, + "probability": 0.9978 + }, + { + "start": 12680.8, + "end": 12685.42, + "probability": 0.9863 + }, + { + "start": 12686.12, + "end": 12688.22, + "probability": 0.955 + }, + { + "start": 12688.56, + "end": 12689.94, + "probability": 0.9778 + }, + { + "start": 12690.36, + "end": 12692.58, + "probability": 0.9641 + }, + { + "start": 12693.0, + "end": 12698.3, + "probability": 0.9893 + }, + { + "start": 12698.88, + "end": 12699.6, + "probability": 0.9345 + }, + { + "start": 12699.72, + "end": 12707.12, + "probability": 0.9853 + }, + { + "start": 12707.48, + "end": 12709.68, + "probability": 0.9693 + }, + { + "start": 12710.3, + "end": 12712.8, + "probability": 0.8693 + }, + { + "start": 12713.22, + "end": 12713.84, + "probability": 0.6348 + }, + { + "start": 12713.86, + "end": 12715.12, + "probability": 0.9844 + }, + { + "start": 12715.68, + "end": 12718.24, + "probability": 0.8521 + }, + { + "start": 12734.62, + "end": 12735.38, + "probability": 0.4995 + }, + { + "start": 12736.08, + "end": 12743.6, + "probability": 0.732 + }, + { + "start": 12745.92, + "end": 12747.14, + "probability": 0.3421 + }, + { + "start": 12749.3, + "end": 12750.0, + "probability": 0.7262 + }, + { + "start": 12751.86, + "end": 12758.26, + "probability": 0.8514 + }, + { + "start": 12758.46, + "end": 12760.98, + "probability": 0.6371 + }, + { + "start": 12762.24, + "end": 12766.3, + "probability": 0.9587 + }, + { + "start": 12767.0, + "end": 12769.45, + "probability": 0.9644 + }, + { + "start": 12770.36, + "end": 12771.0, + "probability": 0.9704 + }, + { + "start": 12771.46, + "end": 12772.32, + "probability": 0.9521 + }, + { + "start": 12772.7, + "end": 12775.12, + "probability": 0.8924 + }, + { + "start": 12775.84, + "end": 12780.88, + "probability": 0.9878 + }, + { + "start": 12781.42, + "end": 12783.32, + "probability": 0.9974 + }, + { + "start": 12784.04, + "end": 12790.78, + "probability": 0.9928 + }, + { + "start": 12791.4, + "end": 12793.1, + "probability": 0.796 + }, + { + "start": 12793.58, + "end": 12796.56, + "probability": 0.9872 + }, + { + "start": 12796.9, + "end": 12800.7, + "probability": 0.9766 + }, + { + "start": 12801.22, + "end": 12803.98, + "probability": 0.9752 + }, + { + "start": 12804.76, + "end": 12806.56, + "probability": 0.5621 + }, + { + "start": 12807.28, + "end": 12813.36, + "probability": 0.5383 + }, + { + "start": 12813.64, + "end": 12818.6, + "probability": 0.9899 + }, + { + "start": 12818.64, + "end": 12823.24, + "probability": 0.9951 + }, + { + "start": 12823.24, + "end": 12829.26, + "probability": 0.9559 + }, + { + "start": 12829.26, + "end": 12835.14, + "probability": 0.9846 + }, + { + "start": 12835.14, + "end": 12841.24, + "probability": 0.9033 + }, + { + "start": 12841.24, + "end": 12848.94, + "probability": 0.9887 + }, + { + "start": 12849.44, + "end": 12853.08, + "probability": 0.9341 + }, + { + "start": 12853.18, + "end": 12856.12, + "probability": 0.9902 + }, + { + "start": 12856.66, + "end": 12861.26, + "probability": 0.8748 + }, + { + "start": 12862.0, + "end": 12865.54, + "probability": 0.9919 + }, + { + "start": 12866.1, + "end": 12870.92, + "probability": 0.7014 + }, + { + "start": 12871.08, + "end": 12875.16, + "probability": 0.9795 + }, + { + "start": 12875.9, + "end": 12878.88, + "probability": 0.9818 + }, + { + "start": 12880.14, + "end": 12881.78, + "probability": 0.8936 + }, + { + "start": 12881.96, + "end": 12886.2, + "probability": 0.9927 + }, + { + "start": 12887.04, + "end": 12891.44, + "probability": 0.9753 + }, + { + "start": 12892.14, + "end": 12895.76, + "probability": 0.9736 + }, + { + "start": 12896.06, + "end": 12896.62, + "probability": 0.8302 + }, + { + "start": 12896.86, + "end": 12900.1, + "probability": 0.9172 + }, + { + "start": 12901.0, + "end": 12901.0, + "probability": 0.5127 + }, + { + "start": 12901.0, + "end": 12901.49, + "probability": 0.9766 + }, + { + "start": 12903.83, + "end": 12906.96, + "probability": 0.9022 + }, + { + "start": 12928.16, + "end": 12929.4, + "probability": 0.7767 + }, + { + "start": 12930.28, + "end": 12932.22, + "probability": 0.8976 + }, + { + "start": 12933.24, + "end": 12937.8, + "probability": 0.9917 + }, + { + "start": 12938.66, + "end": 12941.14, + "probability": 0.9313 + }, + { + "start": 12941.5, + "end": 12943.18, + "probability": 0.999 + }, + { + "start": 12944.34, + "end": 12947.94, + "probability": 0.9868 + }, + { + "start": 12948.6, + "end": 12951.36, + "probability": 0.903 + }, + { + "start": 12951.6, + "end": 12953.9, + "probability": 0.9806 + }, + { + "start": 12956.5, + "end": 12959.94, + "probability": 0.6725 + }, + { + "start": 12960.6, + "end": 12965.1, + "probability": 0.9766 + }, + { + "start": 12965.88, + "end": 12970.52, + "probability": 0.9437 + }, + { + "start": 12971.5, + "end": 12974.2, + "probability": 0.6645 + }, + { + "start": 12974.3, + "end": 12975.78, + "probability": 0.9638 + }, + { + "start": 12976.72, + "end": 12981.16, + "probability": 0.9856 + }, + { + "start": 12981.42, + "end": 12985.44, + "probability": 0.9946 + }, + { + "start": 12986.46, + "end": 12990.68, + "probability": 0.9963 + }, + { + "start": 12991.34, + "end": 12994.6, + "probability": 0.988 + }, + { + "start": 12995.18, + "end": 12999.76, + "probability": 0.9968 + }, + { + "start": 13000.78, + "end": 13002.22, + "probability": 0.6589 + }, + { + "start": 13002.34, + "end": 13003.06, + "probability": 0.353 + }, + { + "start": 13003.28, + "end": 13006.34, + "probability": 0.9354 + }, + { + "start": 13007.04, + "end": 13007.88, + "probability": 0.8236 + }, + { + "start": 13008.52, + "end": 13009.06, + "probability": 0.6954 + }, + { + "start": 13009.14, + "end": 13012.3, + "probability": 0.9893 + }, + { + "start": 13013.42, + "end": 13015.24, + "probability": 0.9604 + }, + { + "start": 13016.1, + "end": 13017.44, + "probability": 0.9951 + }, + { + "start": 13018.36, + "end": 13020.42, + "probability": 0.9968 + }, + { + "start": 13021.36, + "end": 13023.46, + "probability": 0.9951 + }, + { + "start": 13024.12, + "end": 13026.22, + "probability": 0.9348 + }, + { + "start": 13026.84, + "end": 13028.92, + "probability": 0.9952 + }, + { + "start": 13028.92, + "end": 13032.34, + "probability": 0.9961 + }, + { + "start": 13032.52, + "end": 13035.4, + "probability": 0.9756 + }, + { + "start": 13036.38, + "end": 13037.38, + "probability": 0.9575 + }, + { + "start": 13038.32, + "end": 13041.12, + "probability": 0.9747 + }, + { + "start": 13041.12, + "end": 13044.2, + "probability": 0.9958 + }, + { + "start": 13044.32, + "end": 13044.52, + "probability": 0.5879 + }, + { + "start": 13044.66, + "end": 13045.44, + "probability": 0.943 + }, + { + "start": 13046.0, + "end": 13048.3, + "probability": 0.9473 + }, + { + "start": 13048.88, + "end": 13050.3, + "probability": 0.9966 + }, + { + "start": 13051.1, + "end": 13055.36, + "probability": 0.9961 + }, + { + "start": 13056.4, + "end": 13057.33, + "probability": 0.8635 + }, + { + "start": 13058.12, + "end": 13059.04, + "probability": 0.921 + }, + { + "start": 13059.18, + "end": 13059.72, + "probability": 0.9125 + }, + { + "start": 13059.78, + "end": 13060.46, + "probability": 0.843 + }, + { + "start": 13060.96, + "end": 13061.64, + "probability": 0.9525 + }, + { + "start": 13062.12, + "end": 13066.06, + "probability": 0.9919 + }, + { + "start": 13066.82, + "end": 13068.4, + "probability": 0.9988 + }, + { + "start": 13068.92, + "end": 13070.04, + "probability": 0.9357 + }, + { + "start": 13070.18, + "end": 13072.3, + "probability": 0.8051 + }, + { + "start": 13073.18, + "end": 13073.58, + "probability": 0.8555 + }, + { + "start": 13073.72, + "end": 13074.3, + "probability": 0.8304 + }, + { + "start": 13074.54, + "end": 13077.9, + "probability": 0.9948 + }, + { + "start": 13078.04, + "end": 13079.76, + "probability": 0.6263 + }, + { + "start": 13079.94, + "end": 13081.4, + "probability": 0.8641 + }, + { + "start": 13082.76, + "end": 13082.96, + "probability": 0.7134 + }, + { + "start": 13082.96, + "end": 13085.6, + "probability": 0.8063 + }, + { + "start": 13085.82, + "end": 13088.22, + "probability": 0.846 + }, + { + "start": 13088.52, + "end": 13089.6, + "probability": 0.9788 + }, + { + "start": 13090.24, + "end": 13095.6, + "probability": 0.6934 + }, + { + "start": 13096.76, + "end": 13097.7, + "probability": 0.108 + }, + { + "start": 13098.56, + "end": 13101.28, + "probability": 0.7017 + }, + { + "start": 13101.66, + "end": 13103.96, + "probability": 0.9976 + }, + { + "start": 13104.06, + "end": 13105.88, + "probability": 0.9927 + }, + { + "start": 13106.6, + "end": 13107.14, + "probability": 0.4803 + }, + { + "start": 13107.62, + "end": 13107.62, + "probability": 0.0224 + }, + { + "start": 13107.62, + "end": 13107.94, + "probability": 0.8476 + }, + { + "start": 13109.19, + "end": 13113.22, + "probability": 0.9038 + }, + { + "start": 13113.84, + "end": 13116.02, + "probability": 0.9912 + }, + { + "start": 13116.18, + "end": 13116.74, + "probability": 0.6139 + }, + { + "start": 13116.86, + "end": 13118.64, + "probability": 0.9904 + }, + { + "start": 13120.0, + "end": 13121.96, + "probability": 0.9835 + }, + { + "start": 13122.12, + "end": 13123.46, + "probability": 0.9551 + }, + { + "start": 13123.98, + "end": 13125.0, + "probability": 0.967 + }, + { + "start": 13125.4, + "end": 13127.52, + "probability": 0.8962 + }, + { + "start": 13129.64, + "end": 13135.02, + "probability": 0.5532 + }, + { + "start": 13135.76, + "end": 13137.5, + "probability": 0.3699 + }, + { + "start": 13137.5, + "end": 13137.86, + "probability": 0.1017 + }, + { + "start": 13137.96, + "end": 13140.62, + "probability": 0.9827 + }, + { + "start": 13143.0, + "end": 13144.64, + "probability": 0.3421 + }, + { + "start": 13144.64, + "end": 13145.22, + "probability": 0.7454 + }, + { + "start": 13145.28, + "end": 13147.74, + "probability": 0.9989 + }, + { + "start": 13148.3, + "end": 13149.42, + "probability": 0.967 + }, + { + "start": 13156.7, + "end": 13157.06, + "probability": 0.5292 + }, + { + "start": 13158.54, + "end": 13159.66, + "probability": 0.698 + }, + { + "start": 13161.52, + "end": 13163.1, + "probability": 0.864 + }, + { + "start": 13163.96, + "end": 13164.22, + "probability": 0.6399 + }, + { + "start": 13164.24, + "end": 13165.6, + "probability": 0.5211 + }, + { + "start": 13166.68, + "end": 13169.22, + "probability": 0.9855 + }, + { + "start": 13170.3, + "end": 13173.8, + "probability": 0.888 + }, + { + "start": 13175.26, + "end": 13177.74, + "probability": 0.8408 + }, + { + "start": 13178.84, + "end": 13179.32, + "probability": 0.8525 + }, + { + "start": 13180.46, + "end": 13183.06, + "probability": 0.9565 + }, + { + "start": 13183.86, + "end": 13185.14, + "probability": 0.8953 + }, + { + "start": 13185.98, + "end": 13189.32, + "probability": 0.9203 + }, + { + "start": 13189.6, + "end": 13192.6, + "probability": 0.9914 + }, + { + "start": 13193.72, + "end": 13196.7, + "probability": 0.9854 + }, + { + "start": 13197.48, + "end": 13201.96, + "probability": 0.9827 + }, + { + "start": 13202.18, + "end": 13203.16, + "probability": 0.9406 + }, + { + "start": 13203.88, + "end": 13205.66, + "probability": 0.9985 + }, + { + "start": 13206.14, + "end": 13207.88, + "probability": 0.9937 + }, + { + "start": 13208.5, + "end": 13211.58, + "probability": 0.894 + }, + { + "start": 13212.24, + "end": 13214.51, + "probability": 0.803 + }, + { + "start": 13215.24, + "end": 13218.18, + "probability": 0.9927 + }, + { + "start": 13219.1, + "end": 13220.54, + "probability": 0.9985 + }, + { + "start": 13221.68, + "end": 13225.08, + "probability": 0.9871 + }, + { + "start": 13225.12, + "end": 13226.06, + "probability": 0.9953 + }, + { + "start": 13227.46, + "end": 13228.78, + "probability": 0.999 + }, + { + "start": 13228.9, + "end": 13230.04, + "probability": 0.8053 + }, + { + "start": 13231.62, + "end": 13236.02, + "probability": 0.9446 + }, + { + "start": 13236.8, + "end": 13239.54, + "probability": 0.8899 + }, + { + "start": 13240.58, + "end": 13242.42, + "probability": 0.9788 + }, + { + "start": 13243.02, + "end": 13243.85, + "probability": 0.936 + }, + { + "start": 13244.06, + "end": 13244.78, + "probability": 0.9842 + }, + { + "start": 13244.92, + "end": 13245.92, + "probability": 0.999 + }, + { + "start": 13247.8, + "end": 13251.32, + "probability": 0.9761 + }, + { + "start": 13253.16, + "end": 13254.5, + "probability": 0.9777 + }, + { + "start": 13255.04, + "end": 13256.18, + "probability": 0.9319 + }, + { + "start": 13256.76, + "end": 13258.56, + "probability": 0.8794 + }, + { + "start": 13258.66, + "end": 13259.82, + "probability": 0.8933 + }, + { + "start": 13261.34, + "end": 13266.58, + "probability": 0.9525 + }, + { + "start": 13269.54, + "end": 13273.74, + "probability": 0.9198 + }, + { + "start": 13275.88, + "end": 13277.94, + "probability": 0.8853 + }, + { + "start": 13278.52, + "end": 13279.64, + "probability": 0.9814 + }, + { + "start": 13280.38, + "end": 13282.06, + "probability": 0.8358 + }, + { + "start": 13283.16, + "end": 13284.23, + "probability": 0.8726 + }, + { + "start": 13287.8, + "end": 13288.58, + "probability": 0.9326 + }, + { + "start": 13288.98, + "end": 13290.74, + "probability": 0.897 + }, + { + "start": 13290.84, + "end": 13293.08, + "probability": 0.8286 + }, + { + "start": 13293.42, + "end": 13294.34, + "probability": 0.9531 + }, + { + "start": 13295.4, + "end": 13297.84, + "probability": 0.9775 + }, + { + "start": 13299.38, + "end": 13300.12, + "probability": 0.5658 + }, + { + "start": 13300.16, + "end": 13301.7, + "probability": 0.805 + }, + { + "start": 13301.8, + "end": 13303.82, + "probability": 0.978 + }, + { + "start": 13305.6, + "end": 13306.42, + "probability": 0.835 + }, + { + "start": 13306.84, + "end": 13307.68, + "probability": 0.6506 + }, + { + "start": 13307.8, + "end": 13308.61, + "probability": 0.7311 + }, + { + "start": 13310.86, + "end": 13311.84, + "probability": 0.9357 + }, + { + "start": 13313.74, + "end": 13316.24, + "probability": 0.9438 + }, + { + "start": 13316.92, + "end": 13319.78, + "probability": 0.829 + }, + { + "start": 13321.26, + "end": 13324.98, + "probability": 0.8501 + }, + { + "start": 13324.98, + "end": 13329.96, + "probability": 0.9962 + }, + { + "start": 13330.14, + "end": 13331.1, + "probability": 0.5273 + }, + { + "start": 13332.56, + "end": 13334.1, + "probability": 0.6187 + }, + { + "start": 13334.38, + "end": 13335.17, + "probability": 0.8311 + }, + { + "start": 13336.54, + "end": 13338.42, + "probability": 0.9903 + }, + { + "start": 13339.3, + "end": 13340.44, + "probability": 0.9785 + }, + { + "start": 13340.52, + "end": 13341.73, + "probability": 0.9917 + }, + { + "start": 13342.18, + "end": 13342.76, + "probability": 0.5945 + }, + { + "start": 13343.34, + "end": 13346.94, + "probability": 0.9985 + }, + { + "start": 13349.48, + "end": 13352.32, + "probability": 0.9867 + }, + { + "start": 13353.54, + "end": 13356.64, + "probability": 0.6841 + }, + { + "start": 13357.24, + "end": 13359.32, + "probability": 0.9811 + }, + { + "start": 13359.58, + "end": 13360.86, + "probability": 0.9297 + }, + { + "start": 13361.32, + "end": 13363.62, + "probability": 0.9896 + }, + { + "start": 13364.7, + "end": 13369.78, + "probability": 0.9245 + }, + { + "start": 13371.58, + "end": 13372.46, + "probability": 0.9651 + }, + { + "start": 13372.76, + "end": 13373.14, + "probability": 0.8379 + }, + { + "start": 13373.46, + "end": 13374.06, + "probability": 0.8391 + }, + { + "start": 13374.72, + "end": 13376.24, + "probability": 0.9841 + }, + { + "start": 13377.28, + "end": 13378.38, + "probability": 0.8654 + }, + { + "start": 13382.5, + "end": 13385.18, + "probability": 0.9468 + }, + { + "start": 13386.7, + "end": 13389.1, + "probability": 0.6765 + }, + { + "start": 13389.36, + "end": 13390.16, + "probability": 0.4047 + }, + { + "start": 13390.3, + "end": 13391.1, + "probability": 0.2864 + }, + { + "start": 13391.24, + "end": 13392.13, + "probability": 0.5508 + }, + { + "start": 13392.46, + "end": 13395.9, + "probability": 0.8671 + }, + { + "start": 13398.1, + "end": 13399.5, + "probability": 0.9774 + }, + { + "start": 13399.86, + "end": 13400.54, + "probability": 0.9289 + }, + { + "start": 13400.6, + "end": 13401.8, + "probability": 0.8228 + }, + { + "start": 13402.7, + "end": 13405.86, + "probability": 0.9716 + }, + { + "start": 13405.98, + "end": 13407.06, + "probability": 0.9817 + }, + { + "start": 13407.14, + "end": 13408.1, + "probability": 0.8344 + }, + { + "start": 13409.66, + "end": 13410.38, + "probability": 0.7427 + }, + { + "start": 13411.96, + "end": 13414.54, + "probability": 0.8583 + }, + { + "start": 13416.2, + "end": 13419.5, + "probability": 0.9934 + }, + { + "start": 13422.65, + "end": 13424.72, + "probability": 0.9955 + }, + { + "start": 13428.62, + "end": 13432.1, + "probability": 0.954 + }, + { + "start": 13432.76, + "end": 13435.36, + "probability": 0.9312 + }, + { + "start": 13436.06, + "end": 13437.12, + "probability": 0.8545 + }, + { + "start": 13439.24, + "end": 13440.52, + "probability": 0.9635 + }, + { + "start": 13442.52, + "end": 13445.02, + "probability": 0.9364 + }, + { + "start": 13446.6, + "end": 13452.28, + "probability": 0.9323 + }, + { + "start": 13453.86, + "end": 13457.58, + "probability": 0.9979 + }, + { + "start": 13458.64, + "end": 13461.42, + "probability": 0.9099 + }, + { + "start": 13462.94, + "end": 13465.82, + "probability": 0.9452 + }, + { + "start": 13466.98, + "end": 13468.64, + "probability": 0.772 + }, + { + "start": 13469.3, + "end": 13470.46, + "probability": 0.9587 + }, + { + "start": 13471.18, + "end": 13472.92, + "probability": 0.7363 + }, + { + "start": 13473.46, + "end": 13478.18, + "probability": 0.9868 + }, + { + "start": 13479.42, + "end": 13482.74, + "probability": 0.9556 + }, + { + "start": 13484.86, + "end": 13489.26, + "probability": 0.9902 + }, + { + "start": 13490.12, + "end": 13497.84, + "probability": 0.9568 + }, + { + "start": 13501.12, + "end": 13502.26, + "probability": 0.7693 + }, + { + "start": 13503.58, + "end": 13504.9, + "probability": 0.9188 + }, + { + "start": 13505.58, + "end": 13507.2, + "probability": 0.9581 + }, + { + "start": 13508.14, + "end": 13510.8, + "probability": 0.9688 + }, + { + "start": 13512.82, + "end": 13514.7, + "probability": 0.9852 + }, + { + "start": 13516.14, + "end": 13517.84, + "probability": 0.9609 + }, + { + "start": 13517.88, + "end": 13519.94, + "probability": 0.9898 + }, + { + "start": 13521.42, + "end": 13522.44, + "probability": 0.9041 + }, + { + "start": 13523.9, + "end": 13525.6, + "probability": 0.8028 + }, + { + "start": 13527.5, + "end": 13531.46, + "probability": 0.9976 + }, + { + "start": 13532.8, + "end": 13535.64, + "probability": 0.984 + }, + { + "start": 13537.42, + "end": 13539.56, + "probability": 0.9062 + }, + { + "start": 13540.34, + "end": 13541.78, + "probability": 0.942 + }, + { + "start": 13543.08, + "end": 13547.92, + "probability": 0.9676 + }, + { + "start": 13549.64, + "end": 13550.94, + "probability": 0.6515 + }, + { + "start": 13552.5, + "end": 13554.8, + "probability": 0.9873 + }, + { + "start": 13556.02, + "end": 13560.8, + "probability": 0.9608 + }, + { + "start": 13562.82, + "end": 13564.08, + "probability": 0.9724 + }, + { + "start": 13564.8, + "end": 13568.72, + "probability": 0.9768 + }, + { + "start": 13569.7, + "end": 13573.06, + "probability": 0.9813 + }, + { + "start": 13573.86, + "end": 13578.34, + "probability": 0.9995 + }, + { + "start": 13579.5, + "end": 13581.48, + "probability": 0.901 + }, + { + "start": 13581.56, + "end": 13584.56, + "probability": 0.8397 + }, + { + "start": 13584.58, + "end": 13584.86, + "probability": 0.3931 + }, + { + "start": 13584.86, + "end": 13584.86, + "probability": 0.0036 + }, + { + "start": 13586.3, + "end": 13588.5, + "probability": 0.9849 + }, + { + "start": 13589.76, + "end": 13592.28, + "probability": 0.9927 + }, + { + "start": 13593.64, + "end": 13594.34, + "probability": 0.7041 + }, + { + "start": 13594.44, + "end": 13596.24, + "probability": 0.9042 + }, + { + "start": 13597.34, + "end": 13598.64, + "probability": 0.9547 + }, + { + "start": 13599.14, + "end": 13604.0, + "probability": 0.9661 + }, + { + "start": 13604.32, + "end": 13605.46, + "probability": 0.9517 + }, + { + "start": 13605.54, + "end": 13607.18, + "probability": 0.9957 + }, + { + "start": 13607.46, + "end": 13612.68, + "probability": 0.979 + }, + { + "start": 13613.68, + "end": 13613.8, + "probability": 0.2903 + }, + { + "start": 13613.96, + "end": 13614.3, + "probability": 0.9915 + }, + { + "start": 13614.38, + "end": 13615.12, + "probability": 0.7901 + }, + { + "start": 13615.26, + "end": 13616.28, + "probability": 0.9286 + }, + { + "start": 13616.78, + "end": 13618.84, + "probability": 0.8786 + }, + { + "start": 13619.34, + "end": 13620.64, + "probability": 0.9562 + }, + { + "start": 13621.1, + "end": 13622.82, + "probability": 0.9893 + }, + { + "start": 13623.34, + "end": 13624.72, + "probability": 0.7861 + }, + { + "start": 13625.94, + "end": 13628.56, + "probability": 0.7494 + }, + { + "start": 13630.5, + "end": 13634.2, + "probability": 0.9843 + }, + { + "start": 13634.82, + "end": 13636.76, + "probability": 0.9326 + }, + { + "start": 13636.9, + "end": 13638.46, + "probability": 0.979 + }, + { + "start": 13638.86, + "end": 13639.22, + "probability": 0.855 + }, + { + "start": 13640.5, + "end": 13640.54, + "probability": 0.0553 + }, + { + "start": 13640.54, + "end": 13642.2, + "probability": 0.6381 + }, + { + "start": 13642.64, + "end": 13644.12, + "probability": 0.0345 + }, + { + "start": 13644.5, + "end": 13646.12, + "probability": 0.7584 + }, + { + "start": 13646.28, + "end": 13647.06, + "probability": 0.9723 + }, + { + "start": 13647.14, + "end": 13647.6, + "probability": 0.8774 + }, + { + "start": 13650.22, + "end": 13651.53, + "probability": 0.1488 + }, + { + "start": 13652.24, + "end": 13652.98, + "probability": 0.4831 + }, + { + "start": 13654.2, + "end": 13655.1, + "probability": 0.0459 + }, + { + "start": 13655.1, + "end": 13655.1, + "probability": 0.0107 + }, + { + "start": 13672.32, + "end": 13673.62, + "probability": 0.0483 + }, + { + "start": 13679.12, + "end": 13680.96, + "probability": 0.9249 + }, + { + "start": 13682.02, + "end": 13683.08, + "probability": 0.6338 + }, + { + "start": 13684.28, + "end": 13685.5, + "probability": 0.7847 + }, + { + "start": 13687.32, + "end": 13692.26, + "probability": 0.9738 + }, + { + "start": 13693.56, + "end": 13696.31, + "probability": 0.8767 + }, + { + "start": 13697.26, + "end": 13698.16, + "probability": 0.8979 + }, + { + "start": 13698.58, + "end": 13699.12, + "probability": 0.3319 + }, + { + "start": 13699.22, + "end": 13704.66, + "probability": 0.9791 + }, + { + "start": 13705.24, + "end": 13706.01, + "probability": 0.8292 + }, + { + "start": 13708.94, + "end": 13715.56, + "probability": 0.9932 + }, + { + "start": 13718.5, + "end": 13718.98, + "probability": 0.8694 + }, + { + "start": 13720.46, + "end": 13721.82, + "probability": 0.9453 + }, + { + "start": 13723.12, + "end": 13726.64, + "probability": 0.9574 + }, + { + "start": 13728.02, + "end": 13730.84, + "probability": 0.9406 + }, + { + "start": 13733.56, + "end": 13733.56, + "probability": 0.6406 + }, + { + "start": 13735.46, + "end": 13736.66, + "probability": 0.999 + }, + { + "start": 13738.82, + "end": 13741.04, + "probability": 0.9981 + }, + { + "start": 13742.58, + "end": 13746.98, + "probability": 0.9752 + }, + { + "start": 13747.78, + "end": 13751.22, + "probability": 0.9709 + }, + { + "start": 13751.86, + "end": 13758.7, + "probability": 0.7717 + }, + { + "start": 13760.64, + "end": 13763.02, + "probability": 0.6643 + }, + { + "start": 13763.72, + "end": 13765.56, + "probability": 0.9946 + }, + { + "start": 13767.04, + "end": 13775.24, + "probability": 0.9607 + }, + { + "start": 13777.02, + "end": 13778.06, + "probability": 0.9647 + }, + { + "start": 13779.02, + "end": 13787.7, + "probability": 0.9975 + }, + { + "start": 13787.78, + "end": 13788.52, + "probability": 0.8345 + }, + { + "start": 13792.88, + "end": 13793.38, + "probability": 0.6566 + }, + { + "start": 13794.7, + "end": 13794.84, + "probability": 0.0476 + }, + { + "start": 13794.84, + "end": 13800.76, + "probability": 0.973 + }, + { + "start": 13803.46, + "end": 13805.8, + "probability": 0.9862 + }, + { + "start": 13810.44, + "end": 13813.42, + "probability": 0.7255 + }, + { + "start": 13814.18, + "end": 13814.98, + "probability": 0.3637 + }, + { + "start": 13815.04, + "end": 13819.98, + "probability": 0.929 + }, + { + "start": 13821.28, + "end": 13822.88, + "probability": 0.8121 + }, + { + "start": 13824.16, + "end": 13824.78, + "probability": 0.6106 + }, + { + "start": 13825.66, + "end": 13826.92, + "probability": 0.6078 + }, + { + "start": 13828.64, + "end": 13830.24, + "probability": 0.8724 + }, + { + "start": 13831.18, + "end": 13832.4, + "probability": 0.9805 + }, + { + "start": 13836.38, + "end": 13840.72, + "probability": 0.9946 + }, + { + "start": 13841.72, + "end": 13847.1, + "probability": 0.7482 + }, + { + "start": 13847.94, + "end": 13852.16, + "probability": 0.7254 + }, + { + "start": 13852.26, + "end": 13852.91, + "probability": 0.9335 + }, + { + "start": 13853.18, + "end": 13854.46, + "probability": 0.5721 + }, + { + "start": 13855.64, + "end": 13858.1, + "probability": 0.9733 + }, + { + "start": 13858.22, + "end": 13859.6, + "probability": 0.999 + }, + { + "start": 13860.18, + "end": 13862.02, + "probability": 0.9829 + }, + { + "start": 13862.7, + "end": 13865.14, + "probability": 0.1279 + }, + { + "start": 13865.14, + "end": 13869.16, + "probability": 0.5797 + }, + { + "start": 13869.46, + "end": 13870.16, + "probability": 0.7336 + }, + { + "start": 13870.18, + "end": 13871.14, + "probability": 0.0964 + }, + { + "start": 13871.14, + "end": 13873.28, + "probability": 0.1977 + }, + { + "start": 13873.53, + "end": 13877.36, + "probability": 0.5153 + }, + { + "start": 13877.48, + "end": 13881.76, + "probability": 0.6529 + }, + { + "start": 13881.76, + "end": 13883.36, + "probability": 0.9561 + }, + { + "start": 13883.44, + "end": 13885.26, + "probability": 0.9893 + }, + { + "start": 13886.74, + "end": 13887.98, + "probability": 0.4102 + }, + { + "start": 13888.9, + "end": 13891.26, + "probability": 0.8134 + }, + { + "start": 13891.4, + "end": 13891.4, + "probability": 0.106 + }, + { + "start": 13891.4, + "end": 13891.4, + "probability": 0.1519 + }, + { + "start": 13891.4, + "end": 13896.54, + "probability": 0.9905 + }, + { + "start": 13897.2, + "end": 13899.2, + "probability": 0.4783 + }, + { + "start": 13899.58, + "end": 13902.24, + "probability": 0.8174 + }, + { + "start": 13902.4, + "end": 13905.64, + "probability": 0.9893 + }, + { + "start": 13905.96, + "end": 13906.9, + "probability": 0.4978 + }, + { + "start": 13907.12, + "end": 13908.1, + "probability": 0.7208 + }, + { + "start": 13908.23, + "end": 13910.2, + "probability": 0.2504 + }, + { + "start": 13910.22, + "end": 13912.72, + "probability": 0.292 + }, + { + "start": 13912.72, + "end": 13913.04, + "probability": 0.004 + }, + { + "start": 13913.04, + "end": 13917.44, + "probability": 0.0736 + }, + { + "start": 13918.56, + "end": 13918.76, + "probability": 0.0535 + }, + { + "start": 13918.76, + "end": 13918.76, + "probability": 0.1238 + }, + { + "start": 13918.76, + "end": 13918.76, + "probability": 0.0568 + }, + { + "start": 13918.76, + "end": 13919.18, + "probability": 0.282 + }, + { + "start": 13919.18, + "end": 13920.96, + "probability": 0.2257 + }, + { + "start": 13921.08, + "end": 13926.42, + "probability": 0.1438 + }, + { + "start": 13926.42, + "end": 13926.52, + "probability": 0.0477 + }, + { + "start": 13926.52, + "end": 13926.52, + "probability": 0.0447 + }, + { + "start": 13926.52, + "end": 13926.52, + "probability": 0.1793 + }, + { + "start": 13926.52, + "end": 13929.18, + "probability": 0.1209 + }, + { + "start": 13929.7, + "end": 13930.42, + "probability": 0.7162 + }, + { + "start": 13930.84, + "end": 13933.88, + "probability": 0.8383 + }, + { + "start": 13935.68, + "end": 13936.32, + "probability": 0.1613 + }, + { + "start": 13939.32, + "end": 13941.02, + "probability": 0.9204 + }, + { + "start": 13941.54, + "end": 13941.92, + "probability": 0.0869 + }, + { + "start": 13942.88, + "end": 13943.88, + "probability": 0.075 + }, + { + "start": 13949.19, + "end": 13951.42, + "probability": 0.0766 + }, + { + "start": 13957.52, + "end": 13958.28, + "probability": 0.1469 + }, + { + "start": 13961.42, + "end": 13963.94, + "probability": 0.0862 + }, + { + "start": 13964.3, + "end": 13964.94, + "probability": 0.0766 + }, + { + "start": 13965.58, + "end": 13965.58, + "probability": 0.3367 + }, + { + "start": 13965.58, + "end": 13966.06, + "probability": 0.4984 + }, + { + "start": 13966.84, + "end": 13967.36, + "probability": 0.8584 + }, + { + "start": 13967.84, + "end": 13969.02, + "probability": 0.7777 + }, + { + "start": 13970.02, + "end": 13971.54, + "probability": 0.9726 + }, + { + "start": 13972.7, + "end": 13972.78, + "probability": 0.8726 + }, + { + "start": 13974.46, + "end": 13976.64, + "probability": 0.9953 + }, + { + "start": 13976.78, + "end": 13979.26, + "probability": 0.8669 + }, + { + "start": 13980.78, + "end": 13982.06, + "probability": 0.9939 + }, + { + "start": 13984.1, + "end": 13985.96, + "probability": 0.9926 + }, + { + "start": 13986.64, + "end": 13987.58, + "probability": 0.9093 + }, + { + "start": 13988.6, + "end": 13989.64, + "probability": 0.992 + }, + { + "start": 13991.08, + "end": 13993.17, + "probability": 0.9338 + }, + { + "start": 13994.48, + "end": 13997.52, + "probability": 0.9627 + }, + { + "start": 13999.04, + "end": 14001.42, + "probability": 0.9559 + }, + { + "start": 14001.94, + "end": 14002.48, + "probability": 0.9921 + }, + { + "start": 14003.44, + "end": 14004.04, + "probability": 0.9678 + }, + { + "start": 14005.22, + "end": 14006.7, + "probability": 0.975 + }, + { + "start": 14007.76, + "end": 14009.22, + "probability": 0.9813 + }, + { + "start": 14009.84, + "end": 14012.66, + "probability": 0.9808 + }, + { + "start": 14013.7, + "end": 14015.46, + "probability": 0.5135 + }, + { + "start": 14016.24, + "end": 14017.1, + "probability": 0.8572 + }, + { + "start": 14018.48, + "end": 14020.96, + "probability": 0.9989 + }, + { + "start": 14021.9, + "end": 14023.08, + "probability": 0.9873 + }, + { + "start": 14024.5, + "end": 14026.12, + "probability": 0.9152 + }, + { + "start": 14027.14, + "end": 14028.78, + "probability": 0.9907 + }, + { + "start": 14029.66, + "end": 14032.5, + "probability": 0.8804 + }, + { + "start": 14033.1, + "end": 14035.3, + "probability": 0.9979 + }, + { + "start": 14036.38, + "end": 14038.24, + "probability": 0.9018 + }, + { + "start": 14039.64, + "end": 14042.68, + "probability": 0.8967 + }, + { + "start": 14042.72, + "end": 14045.15, + "probability": 0.9937 + }, + { + "start": 14045.4, + "end": 14046.2, + "probability": 0.9731 + }, + { + "start": 14046.6, + "end": 14047.16, + "probability": 0.3714 + }, + { + "start": 14048.08, + "end": 14048.88, + "probability": 0.9701 + }, + { + "start": 14050.62, + "end": 14053.22, + "probability": 0.999 + }, + { + "start": 14053.88, + "end": 14057.08, + "probability": 0.9973 + }, + { + "start": 14057.62, + "end": 14059.22, + "probability": 0.9553 + }, + { + "start": 14060.7, + "end": 14062.52, + "probability": 0.9587 + }, + { + "start": 14063.9, + "end": 14064.88, + "probability": 0.7177 + }, + { + "start": 14065.42, + "end": 14067.16, + "probability": 0.9723 + }, + { + "start": 14068.2, + "end": 14069.04, + "probability": 0.8516 + }, + { + "start": 14070.4, + "end": 14073.12, + "probability": 0.9985 + }, + { + "start": 14074.46, + "end": 14074.99, + "probability": 0.3322 + }, + { + "start": 14077.36, + "end": 14081.68, + "probability": 0.9952 + }, + { + "start": 14082.96, + "end": 14085.46, + "probability": 0.9995 + }, + { + "start": 14086.14, + "end": 14087.58, + "probability": 0.9855 + }, + { + "start": 14088.18, + "end": 14090.64, + "probability": 0.8918 + }, + { + "start": 14090.8, + "end": 14094.28, + "probability": 0.9955 + }, + { + "start": 14094.96, + "end": 14097.24, + "probability": 0.9697 + }, + { + "start": 14098.92, + "end": 14099.7, + "probability": 0.9122 + }, + { + "start": 14102.28, + "end": 14105.2, + "probability": 0.9896 + }, + { + "start": 14105.22, + "end": 14108.18, + "probability": 0.9499 + }, + { + "start": 14108.94, + "end": 14110.6, + "probability": 0.9521 + }, + { + "start": 14112.12, + "end": 14114.9, + "probability": 0.9807 + }, + { + "start": 14115.3, + "end": 14116.16, + "probability": 0.8378 + }, + { + "start": 14116.6, + "end": 14120.62, + "probability": 0.9976 + }, + { + "start": 14121.54, + "end": 14122.02, + "probability": 0.7468 + }, + { + "start": 14122.6, + "end": 14125.8, + "probability": 0.9863 + }, + { + "start": 14127.2, + "end": 14131.84, + "probability": 0.9962 + }, + { + "start": 14132.8, + "end": 14133.62, + "probability": 0.7289 + }, + { + "start": 14134.92, + "end": 14135.4, + "probability": 0.4273 + }, + { + "start": 14136.24, + "end": 14137.86, + "probability": 0.9694 + }, + { + "start": 14138.42, + "end": 14139.58, + "probability": 0.938 + }, + { + "start": 14139.72, + "end": 14143.06, + "probability": 0.038 + }, + { + "start": 14143.1, + "end": 14144.02, + "probability": 0.7981 + }, + { + "start": 14145.0, + "end": 14145.62, + "probability": 0.7324 + }, + { + "start": 14146.7, + "end": 14147.66, + "probability": 0.9424 + }, + { + "start": 14148.34, + "end": 14150.86, + "probability": 0.9949 + }, + { + "start": 14150.92, + "end": 14152.22, + "probability": 0.9807 + }, + { + "start": 14152.84, + "end": 14155.92, + "probability": 0.9612 + }, + { + "start": 14156.56, + "end": 14157.88, + "probability": 0.9977 + }, + { + "start": 14158.5, + "end": 14161.34, + "probability": 0.9834 + }, + { + "start": 14161.46, + "end": 14161.94, + "probability": 0.9545 + }, + { + "start": 14162.3, + "end": 14162.54, + "probability": 0.6378 + }, + { + "start": 14162.54, + "end": 14163.06, + "probability": 0.9076 + }, + { + "start": 14164.56, + "end": 14165.7, + "probability": 0.7493 + }, + { + "start": 14166.8, + "end": 14168.66, + "probability": 0.9187 + }, + { + "start": 14169.42, + "end": 14173.12, + "probability": 0.9948 + }, + { + "start": 14173.62, + "end": 14174.9, + "probability": 0.9431 + }, + { + "start": 14175.32, + "end": 14176.58, + "probability": 0.8489 + }, + { + "start": 14176.96, + "end": 14178.26, + "probability": 0.9336 + }, + { + "start": 14178.98, + "end": 14179.66, + "probability": 0.7861 + }, + { + "start": 14181.56, + "end": 14182.9, + "probability": 0.6704 + }, + { + "start": 14198.12, + "end": 14198.66, + "probability": 0.6131 + }, + { + "start": 14199.44, + "end": 14200.36, + "probability": 0.6494 + }, + { + "start": 14201.9, + "end": 14202.94, + "probability": 0.6335 + }, + { + "start": 14204.08, + "end": 14209.26, + "probability": 0.9845 + }, + { + "start": 14210.2, + "end": 14213.12, + "probability": 0.9706 + }, + { + "start": 14213.74, + "end": 14217.04, + "probability": 0.9867 + }, + { + "start": 14218.34, + "end": 14220.72, + "probability": 0.9028 + }, + { + "start": 14221.92, + "end": 14228.15, + "probability": 0.8745 + }, + { + "start": 14228.46, + "end": 14232.81, + "probability": 0.9968 + }, + { + "start": 14234.44, + "end": 14234.96, + "probability": 0.3012 + }, + { + "start": 14235.18, + "end": 14235.58, + "probability": 0.5159 + }, + { + "start": 14236.24, + "end": 14238.28, + "probability": 0.7474 + }, + { + "start": 14239.3, + "end": 14241.06, + "probability": 0.8402 + }, + { + "start": 14241.76, + "end": 14242.64, + "probability": 0.945 + }, + { + "start": 14243.74, + "end": 14244.52, + "probability": 0.9792 + }, + { + "start": 14245.08, + "end": 14247.54, + "probability": 0.9957 + }, + { + "start": 14248.1, + "end": 14250.3, + "probability": 0.7668 + }, + { + "start": 14251.82, + "end": 14253.78, + "probability": 0.7962 + }, + { + "start": 14254.9, + "end": 14255.67, + "probability": 0.9925 + }, + { + "start": 14256.26, + "end": 14259.1, + "probability": 0.7988 + }, + { + "start": 14260.1, + "end": 14260.68, + "probability": 0.7825 + }, + { + "start": 14261.32, + "end": 14263.07, + "probability": 0.9598 + }, + { + "start": 14264.4, + "end": 14269.3, + "probability": 0.9893 + }, + { + "start": 14270.06, + "end": 14277.2, + "probability": 0.9454 + }, + { + "start": 14277.86, + "end": 14280.36, + "probability": 0.9939 + }, + { + "start": 14281.02, + "end": 14283.48, + "probability": 0.9958 + }, + { + "start": 14284.88, + "end": 14285.51, + "probability": 0.8926 + }, + { + "start": 14286.48, + "end": 14292.22, + "probability": 0.985 + }, + { + "start": 14293.1, + "end": 14298.42, + "probability": 0.9867 + }, + { + "start": 14299.18, + "end": 14303.02, + "probability": 0.9831 + }, + { + "start": 14303.16, + "end": 14303.38, + "probability": 0.7936 + }, + { + "start": 14304.04, + "end": 14307.84, + "probability": 0.9034 + }, + { + "start": 14310.22, + "end": 14316.62, + "probability": 0.9673 + }, + { + "start": 14317.38, + "end": 14320.16, + "probability": 0.7279 + }, + { + "start": 14321.2, + "end": 14325.96, + "probability": 0.974 + }, + { + "start": 14326.9, + "end": 14329.96, + "probability": 0.964 + }, + { + "start": 14330.46, + "end": 14332.86, + "probability": 0.9682 + }, + { + "start": 14333.68, + "end": 14335.72, + "probability": 0.966 + }, + { + "start": 14336.26, + "end": 14337.12, + "probability": 0.9202 + }, + { + "start": 14338.02, + "end": 14339.84, + "probability": 0.9054 + }, + { + "start": 14340.48, + "end": 14342.34, + "probability": 0.6121 + }, + { + "start": 14343.04, + "end": 14344.0, + "probability": 0.9539 + }, + { + "start": 14344.76, + "end": 14346.96, + "probability": 0.9777 + }, + { + "start": 14347.38, + "end": 14352.18, + "probability": 0.992 + }, + { + "start": 14352.7, + "end": 14353.76, + "probability": 0.8988 + }, + { + "start": 14354.22, + "end": 14355.64, + "probability": 0.5906 + }, + { + "start": 14355.72, + "end": 14361.24, + "probability": 0.8983 + }, + { + "start": 14361.24, + "end": 14361.56, + "probability": 0.6324 + }, + { + "start": 14362.92, + "end": 14363.32, + "probability": 0.5729 + }, + { + "start": 14363.58, + "end": 14364.56, + "probability": 0.8368 + }, + { + "start": 14368.66, + "end": 14371.44, + "probability": 0.497 + }, + { + "start": 14372.26, + "end": 14372.78, + "probability": 0.4927 + }, + { + "start": 14377.58, + "end": 14378.16, + "probability": 0.0748 + }, + { + "start": 14378.74, + "end": 14380.88, + "probability": 0.7121 + }, + { + "start": 14382.02, + "end": 14382.6, + "probability": 0.7458 + }, + { + "start": 14384.28, + "end": 14387.4, + "probability": 0.9512 + }, + { + "start": 14389.0, + "end": 14391.43, + "probability": 0.9976 + }, + { + "start": 14391.78, + "end": 14393.3, + "probability": 0.9093 + }, + { + "start": 14394.2, + "end": 14395.68, + "probability": 0.9667 + }, + { + "start": 14396.5, + "end": 14396.88, + "probability": 0.377 + }, + { + "start": 14397.88, + "end": 14399.18, + "probability": 0.8276 + }, + { + "start": 14400.92, + "end": 14403.44, + "probability": 0.9818 + }, + { + "start": 14404.38, + "end": 14404.74, + "probability": 0.9269 + }, + { + "start": 14406.1, + "end": 14409.06, + "probability": 0.9825 + }, + { + "start": 14409.2, + "end": 14411.88, + "probability": 0.9803 + }, + { + "start": 14413.08, + "end": 14414.36, + "probability": 0.5499 + }, + { + "start": 14414.46, + "end": 14416.2, + "probability": 0.808 + }, + { + "start": 14417.14, + "end": 14418.06, + "probability": 0.8919 + }, + { + "start": 14418.18, + "end": 14418.74, + "probability": 0.9656 + }, + { + "start": 14418.84, + "end": 14420.74, + "probability": 0.9893 + }, + { + "start": 14420.74, + "end": 14423.44, + "probability": 0.9703 + }, + { + "start": 14424.48, + "end": 14425.64, + "probability": 0.9536 + }, + { + "start": 14425.76, + "end": 14426.56, + "probability": 0.8669 + }, + { + "start": 14427.06, + "end": 14428.26, + "probability": 0.6313 + }, + { + "start": 14428.32, + "end": 14429.32, + "probability": 0.7823 + }, + { + "start": 14429.9, + "end": 14430.5, + "probability": 0.7788 + }, + { + "start": 14431.02, + "end": 14431.72, + "probability": 0.8053 + }, + { + "start": 14432.24, + "end": 14433.72, + "probability": 0.8584 + }, + { + "start": 14434.02, + "end": 14437.72, + "probability": 0.9277 + }, + { + "start": 14439.24, + "end": 14440.23, + "probability": 0.9518 + }, + { + "start": 14440.9, + "end": 14441.2, + "probability": 0.7958 + }, + { + "start": 14442.32, + "end": 14445.96, + "probability": 0.9116 + }, + { + "start": 14446.02, + "end": 14447.08, + "probability": 0.9477 + }, + { + "start": 14448.62, + "end": 14450.3, + "probability": 0.877 + }, + { + "start": 14451.06, + "end": 14453.38, + "probability": 0.639 + }, + { + "start": 14454.54, + "end": 14455.48, + "probability": 0.1492 + }, + { + "start": 14457.64, + "end": 14457.94, + "probability": 0.5636 + }, + { + "start": 14458.68, + "end": 14458.68, + "probability": 0.0158 + }, + { + "start": 14458.68, + "end": 14461.96, + "probability": 0.3544 + }, + { + "start": 14461.96, + "end": 14466.4, + "probability": 0.5211 + }, + { + "start": 14466.9, + "end": 14466.9, + "probability": 0.0258 + }, + { + "start": 14466.9, + "end": 14466.9, + "probability": 0.0432 + }, + { + "start": 14466.9, + "end": 14466.9, + "probability": 0.0131 + }, + { + "start": 14466.9, + "end": 14466.9, + "probability": 0.4396 + }, + { + "start": 14466.9, + "end": 14467.64, + "probability": 0.2364 + }, + { + "start": 14468.98, + "end": 14468.98, + "probability": 0.1914 + }, + { + "start": 14468.98, + "end": 14468.98, + "probability": 0.1325 + }, + { + "start": 14468.98, + "end": 14470.88, + "probability": 0.6223 + }, + { + "start": 14471.69, + "end": 14473.19, + "probability": 0.2114 + }, + { + "start": 14473.6, + "end": 14473.96, + "probability": 0.1111 + }, + { + "start": 14474.14, + "end": 14477.34, + "probability": 0.9958 + }, + { + "start": 14477.62, + "end": 14477.62, + "probability": 0.0302 + }, + { + "start": 14477.62, + "end": 14480.5, + "probability": 0.1819 + }, + { + "start": 14480.56, + "end": 14480.98, + "probability": 0.3256 + }, + { + "start": 14481.08, + "end": 14482.42, + "probability": 0.8462 + }, + { + "start": 14482.54, + "end": 14482.8, + "probability": 0.2843 + }, + { + "start": 14482.84, + "end": 14485.7, + "probability": 0.9897 + }, + { + "start": 14486.18, + "end": 14489.04, + "probability": 0.998 + }, + { + "start": 14489.66, + "end": 14493.5, + "probability": 0.9799 + }, + { + "start": 14493.9, + "end": 14495.63, + "probability": 0.769 + }, + { + "start": 14496.0, + "end": 14497.9, + "probability": 0.9916 + }, + { + "start": 14498.08, + "end": 14499.38, + "probability": 0.8789 + }, + { + "start": 14499.5, + "end": 14500.18, + "probability": 0.7538 + }, + { + "start": 14501.02, + "end": 14501.9, + "probability": 0.6228 + }, + { + "start": 14502.24, + "end": 14503.7, + "probability": 0.7412 + }, + { + "start": 14504.32, + "end": 14505.86, + "probability": 0.7021 + }, + { + "start": 14506.18, + "end": 14507.52, + "probability": 0.9642 + }, + { + "start": 14507.94, + "end": 14509.14, + "probability": 0.8098 + }, + { + "start": 14509.42, + "end": 14510.38, + "probability": 0.799 + }, + { + "start": 14510.42, + "end": 14511.26, + "probability": 0.9915 + }, + { + "start": 14511.56, + "end": 14512.12, + "probability": 0.6443 + }, + { + "start": 14512.38, + "end": 14512.98, + "probability": 0.8553 + }, + { + "start": 14513.4, + "end": 14514.72, + "probability": 0.8022 + }, + { + "start": 14514.9, + "end": 14517.98, + "probability": 0.8267 + }, + { + "start": 14518.2, + "end": 14519.58, + "probability": 0.8503 + }, + { + "start": 14519.86, + "end": 14521.04, + "probability": 0.9648 + }, + { + "start": 14521.1, + "end": 14521.64, + "probability": 0.943 + }, + { + "start": 14522.3, + "end": 14522.76, + "probability": 0.7859 + }, + { + "start": 14524.06, + "end": 14526.08, + "probability": 0.8888 + }, + { + "start": 14527.64, + "end": 14529.42, + "probability": 0.2898 + }, + { + "start": 14529.66, + "end": 14530.22, + "probability": 0.2951 + }, + { + "start": 14532.06, + "end": 14532.92, + "probability": 0.9441 + }, + { + "start": 14533.66, + "end": 14534.3, + "probability": 0.7657 + }, + { + "start": 14535.44, + "end": 14536.77, + "probability": 0.2072 + }, + { + "start": 14538.48, + "end": 14541.26, + "probability": 0.2848 + }, + { + "start": 14541.34, + "end": 14541.88, + "probability": 0.1994 + }, + { + "start": 14542.14, + "end": 14543.2, + "probability": 0.1896 + }, + { + "start": 14544.04, + "end": 14545.14, + "probability": 0.6951 + }, + { + "start": 14546.52, + "end": 14549.18, + "probability": 0.2073 + }, + { + "start": 14549.36, + "end": 14549.6, + "probability": 0.0148 + }, + { + "start": 14551.92, + "end": 14554.02, + "probability": 0.3781 + }, + { + "start": 14556.44, + "end": 14557.36, + "probability": 0.705 + }, + { + "start": 14559.02, + "end": 14559.5, + "probability": 0.4247 + }, + { + "start": 14559.5, + "end": 14560.32, + "probability": 0.1637 + }, + { + "start": 14560.32, + "end": 14561.74, + "probability": 0.6646 + }, + { + "start": 14562.06, + "end": 14563.4, + "probability": 0.2579 + }, + { + "start": 14564.02, + "end": 14564.04, + "probability": 0.0512 + }, + { + "start": 14564.04, + "end": 14565.21, + "probability": 0.2823 + }, + { + "start": 14565.48, + "end": 14567.04, + "probability": 0.885 + }, + { + "start": 14567.24, + "end": 14568.3, + "probability": 0.5734 + }, + { + "start": 14568.7, + "end": 14569.0, + "probability": 0.0063 + }, + { + "start": 14569.28, + "end": 14570.16, + "probability": 0.3874 + }, + { + "start": 14571.3, + "end": 14571.64, + "probability": 0.6903 + }, + { + "start": 14571.84, + "end": 14572.12, + "probability": 0.5802 + }, + { + "start": 14572.7, + "end": 14573.0, + "probability": 0.1057 + }, + { + "start": 14573.0, + "end": 14575.28, + "probability": 0.749 + }, + { + "start": 14578.22, + "end": 14578.22, + "probability": 0.6368 + }, + { + "start": 14578.34, + "end": 14580.82, + "probability": 0.9945 + }, + { + "start": 14581.32, + "end": 14581.78, + "probability": 0.9083 + }, + { + "start": 14581.9, + "end": 14582.62, + "probability": 0.6248 + }, + { + "start": 14583.64, + "end": 14585.76, + "probability": 0.7222 + }, + { + "start": 14586.7, + "end": 14592.8, + "probability": 0.7373 + }, + { + "start": 14593.82, + "end": 14598.54, + "probability": 0.8779 + }, + { + "start": 14599.06, + "end": 14599.88, + "probability": 0.9807 + }, + { + "start": 14600.72, + "end": 14601.5, + "probability": 0.9388 + }, + { + "start": 14601.68, + "end": 14602.4, + "probability": 0.5952 + }, + { + "start": 14602.48, + "end": 14605.66, + "probability": 0.9854 + }, + { + "start": 14605.9, + "end": 14606.42, + "probability": 0.9446 + }, + { + "start": 14606.46, + "end": 14607.02, + "probability": 0.3614 + }, + { + "start": 14607.08, + "end": 14607.52, + "probability": 0.5449 + }, + { + "start": 14608.06, + "end": 14612.14, + "probability": 0.9784 + }, + { + "start": 14612.6, + "end": 14614.18, + "probability": 0.6783 + }, + { + "start": 14614.86, + "end": 14619.06, + "probability": 0.9685 + }, + { + "start": 14620.62, + "end": 14623.36, + "probability": 0.7683 + }, + { + "start": 14623.96, + "end": 14626.72, + "probability": 0.9164 + }, + { + "start": 14627.88, + "end": 14630.08, + "probability": 0.8081 + }, + { + "start": 14630.48, + "end": 14632.36, + "probability": 0.9442 + }, + { + "start": 14634.24, + "end": 14635.74, + "probability": 0.8738 + }, + { + "start": 14636.64, + "end": 14641.64, + "probability": 0.9951 + }, + { + "start": 14643.44, + "end": 14647.76, + "probability": 0.9163 + }, + { + "start": 14648.66, + "end": 14651.32, + "probability": 0.9956 + }, + { + "start": 14652.42, + "end": 14653.48, + "probability": 0.7795 + }, + { + "start": 14655.22, + "end": 14661.04, + "probability": 0.9851 + }, + { + "start": 14662.86, + "end": 14664.48, + "probability": 0.5201 + }, + { + "start": 14665.4, + "end": 14667.36, + "probability": 0.6005 + }, + { + "start": 14668.12, + "end": 14669.94, + "probability": 0.9907 + }, + { + "start": 14670.88, + "end": 14671.76, + "probability": 0.9377 + }, + { + "start": 14674.52, + "end": 14681.06, + "probability": 0.8574 + }, + { + "start": 14681.62, + "end": 14684.9, + "probability": 0.9844 + }, + { + "start": 14685.58, + "end": 14686.84, + "probability": 0.8311 + }, + { + "start": 14687.44, + "end": 14688.74, + "probability": 0.7805 + }, + { + "start": 14688.96, + "end": 14693.42, + "probability": 0.9505 + }, + { + "start": 14694.54, + "end": 14700.56, + "probability": 0.9924 + }, + { + "start": 14701.5, + "end": 14704.78, + "probability": 0.9781 + }, + { + "start": 14706.28, + "end": 14706.74, + "probability": 0.9048 + }, + { + "start": 14707.44, + "end": 14707.76, + "probability": 0.0048 + }, + { + "start": 14707.88, + "end": 14708.48, + "probability": 0.4803 + }, + { + "start": 14709.14, + "end": 14709.14, + "probability": 0.1016 + }, + { + "start": 14709.14, + "end": 14709.14, + "probability": 0.1208 + }, + { + "start": 14709.14, + "end": 14709.74, + "probability": 0.4869 + }, + { + "start": 14711.66, + "end": 14714.16, + "probability": 0.8961 + }, + { + "start": 14714.2, + "end": 14715.86, + "probability": 0.8522 + }, + { + "start": 14716.32, + "end": 14717.16, + "probability": 0.5932 + }, + { + "start": 14717.26, + "end": 14719.22, + "probability": 0.9062 + }, + { + "start": 14719.52, + "end": 14722.06, + "probability": 0.9408 + }, + { + "start": 14723.08, + "end": 14727.76, + "probability": 0.6759 + }, + { + "start": 14728.3, + "end": 14729.08, + "probability": 0.7166 + }, + { + "start": 14729.84, + "end": 14731.26, + "probability": 0.9775 + }, + { + "start": 14732.2, + "end": 14733.28, + "probability": 0.4956 + }, + { + "start": 14735.3, + "end": 14741.34, + "probability": 0.9761 + }, + { + "start": 14742.04, + "end": 14742.58, + "probability": 0.7985 + }, + { + "start": 14743.46, + "end": 14743.7, + "probability": 0.3138 + }, + { + "start": 14744.02, + "end": 14746.04, + "probability": 0.9619 + }, + { + "start": 14749.06, + "end": 14752.26, + "probability": 0.9946 + }, + { + "start": 14752.48, + "end": 14752.92, + "probability": 0.847 + }, + { + "start": 14754.3, + "end": 14754.34, + "probability": 0.056 + }, + { + "start": 14754.34, + "end": 14756.12, + "probability": 0.5008 + }, + { + "start": 14756.58, + "end": 14757.64, + "probability": 0.1925 + }, + { + "start": 14778.82, + "end": 14779.52, + "probability": 0.135 + }, + { + "start": 14781.1, + "end": 14782.36, + "probability": 0.7396 + }, + { + "start": 14784.04, + "end": 14785.64, + "probability": 0.9183 + }, + { + "start": 14787.74, + "end": 14789.64, + "probability": 0.9972 + }, + { + "start": 14792.08, + "end": 14795.75, + "probability": 0.9691 + }, + { + "start": 14797.5, + "end": 14801.54, + "probability": 0.9108 + }, + { + "start": 14803.62, + "end": 14804.04, + "probability": 0.2886 + }, + { + "start": 14805.74, + "end": 14810.26, + "probability": 0.9855 + }, + { + "start": 14813.84, + "end": 14814.84, + "probability": 0.7028 + }, + { + "start": 14816.7, + "end": 14820.92, + "probability": 0.6958 + }, + { + "start": 14822.66, + "end": 14828.36, + "probability": 0.956 + }, + { + "start": 14829.08, + "end": 14831.84, + "probability": 0.7897 + }, + { + "start": 14832.66, + "end": 14836.92, + "probability": 0.9121 + }, + { + "start": 14838.64, + "end": 14841.78, + "probability": 0.8643 + }, + { + "start": 14844.72, + "end": 14845.28, + "probability": 0.6433 + }, + { + "start": 14847.48, + "end": 14850.16, + "probability": 0.9902 + }, + { + "start": 14852.12, + "end": 14857.24, + "probability": 0.9603 + }, + { + "start": 14858.16, + "end": 14858.96, + "probability": 0.7855 + }, + { + "start": 14860.06, + "end": 14862.86, + "probability": 0.9415 + }, + { + "start": 14865.04, + "end": 14865.06, + "probability": 0.5796 + }, + { + "start": 14866.04, + "end": 14867.38, + "probability": 0.8484 + }, + { + "start": 14868.86, + "end": 14869.86, + "probability": 0.9636 + }, + { + "start": 14871.14, + "end": 14872.3, + "probability": 0.9985 + }, + { + "start": 14873.56, + "end": 14874.52, + "probability": 0.5961 + }, + { + "start": 14875.8, + "end": 14876.64, + "probability": 0.722 + }, + { + "start": 14879.26, + "end": 14881.24, + "probability": 0.8297 + }, + { + "start": 14882.36, + "end": 14883.04, + "probability": 0.9496 + }, + { + "start": 14884.68, + "end": 14885.08, + "probability": 0.3616 + }, + { + "start": 14885.18, + "end": 14885.38, + "probability": 0.7075 + }, + { + "start": 14886.06, + "end": 14886.76, + "probability": 0.9772 + }, + { + "start": 14907.52, + "end": 14912.14, + "probability": 0.9945 + }, + { + "start": 14912.88, + "end": 14916.34, + "probability": 0.9978 + }, + { + "start": 14917.62, + "end": 14920.82, + "probability": 0.9922 + }, + { + "start": 14920.88, + "end": 14922.48, + "probability": 0.9354 + }, + { + "start": 14923.44, + "end": 14926.14, + "probability": 0.977 + }, + { + "start": 14927.1, + "end": 14929.78, + "probability": 0.9817 + }, + { + "start": 14931.24, + "end": 14931.96, + "probability": 0.56 + }, + { + "start": 14932.6, + "end": 14936.06, + "probability": 0.9598 + }, + { + "start": 14936.96, + "end": 14937.56, + "probability": 0.9849 + }, + { + "start": 14939.08, + "end": 14941.06, + "probability": 0.9963 + }, + { + "start": 14941.84, + "end": 14942.26, + "probability": 0.8335 + }, + { + "start": 14942.96, + "end": 14949.56, + "probability": 0.9948 + }, + { + "start": 14950.5, + "end": 14955.16, + "probability": 0.9966 + }, + { + "start": 14955.42, + "end": 14959.6, + "probability": 0.9058 + }, + { + "start": 14959.74, + "end": 14963.56, + "probability": 0.8899 + }, + { + "start": 14964.36, + "end": 14964.9, + "probability": 0.4075 + }, + { + "start": 14967.06, + "end": 14973.18, + "probability": 0.995 + }, + { + "start": 14973.72, + "end": 14977.18, + "probability": 0.9916 + }, + { + "start": 14978.14, + "end": 14980.64, + "probability": 0.9979 + }, + { + "start": 14980.78, + "end": 14984.18, + "probability": 0.9895 + }, + { + "start": 14984.94, + "end": 14989.84, + "probability": 0.9982 + }, + { + "start": 14990.62, + "end": 14996.14, + "probability": 0.9951 + }, + { + "start": 14997.28, + "end": 15000.86, + "probability": 0.9875 + }, + { + "start": 15001.7, + "end": 15003.7, + "probability": 0.9686 + }, + { + "start": 15004.46, + "end": 15006.82, + "probability": 0.2227 + }, + { + "start": 15007.7, + "end": 15013.34, + "probability": 0.9952 + }, + { + "start": 15014.94, + "end": 15016.06, + "probability": 0.905 + }, + { + "start": 15017.66, + "end": 15021.74, + "probability": 0.9919 + }, + { + "start": 15022.12, + "end": 15025.74, + "probability": 0.9717 + }, + { + "start": 15027.66, + "end": 15028.92, + "probability": 0.8934 + }, + { + "start": 15030.36, + "end": 15035.24, + "probability": 0.9981 + }, + { + "start": 15036.12, + "end": 15037.92, + "probability": 0.6743 + }, + { + "start": 15038.76, + "end": 15039.55, + "probability": 0.9731 + }, + { + "start": 15040.68, + "end": 15042.3, + "probability": 0.9895 + }, + { + "start": 15043.68, + "end": 15045.9, + "probability": 0.998 + }, + { + "start": 15046.42, + "end": 15049.36, + "probability": 0.7796 + }, + { + "start": 15050.42, + "end": 15054.52, + "probability": 0.914 + }, + { + "start": 15055.18, + "end": 15057.12, + "probability": 0.8361 + }, + { + "start": 15058.28, + "end": 15060.8, + "probability": 0.9111 + }, + { + "start": 15061.68, + "end": 15063.52, + "probability": 0.9606 + }, + { + "start": 15064.28, + "end": 15067.3, + "probability": 0.9866 + }, + { + "start": 15068.04, + "end": 15069.86, + "probability": 0.8742 + }, + { + "start": 15072.6, + "end": 15074.16, + "probability": 0.8156 + }, + { + "start": 15096.28, + "end": 15097.36, + "probability": 0.6044 + }, + { + "start": 15097.96, + "end": 15099.82, + "probability": 0.2595 + }, + { + "start": 15100.1, + "end": 15107.96, + "probability": 0.8292 + }, + { + "start": 15108.82, + "end": 15112.6, + "probability": 0.9777 + }, + { + "start": 15113.78, + "end": 15118.7, + "probability": 0.9115 + }, + { + "start": 15120.02, + "end": 15121.25, + "probability": 0.9727 + }, + { + "start": 15121.9, + "end": 15124.44, + "probability": 0.9868 + }, + { + "start": 15125.14, + "end": 15128.8, + "probability": 0.9588 + }, + { + "start": 15129.28, + "end": 15131.76, + "probability": 0.7705 + }, + { + "start": 15132.64, + "end": 15135.82, + "probability": 0.8014 + }, + { + "start": 15137.76, + "end": 15139.08, + "probability": 0.5315 + }, + { + "start": 15140.33, + "end": 15143.5, + "probability": 0.9336 + }, + { + "start": 15143.78, + "end": 15144.29, + "probability": 0.8291 + }, + { + "start": 15145.42, + "end": 15149.22, + "probability": 0.9921 + }, + { + "start": 15149.27, + "end": 15154.34, + "probability": 0.9492 + }, + { + "start": 15155.3, + "end": 15155.4, + "probability": 0.087 + }, + { + "start": 15155.4, + "end": 15155.4, + "probability": 0.4155 + }, + { + "start": 15155.4, + "end": 15155.4, + "probability": 0.0407 + }, + { + "start": 15155.4, + "end": 15155.4, + "probability": 0.0284 + }, + { + "start": 15155.4, + "end": 15165.42, + "probability": 0.6668 + }, + { + "start": 15165.42, + "end": 15169.34, + "probability": 0.9919 + }, + { + "start": 15169.86, + "end": 15174.62, + "probability": 0.8779 + }, + { + "start": 15175.34, + "end": 15177.26, + "probability": 0.856 + }, + { + "start": 15177.88, + "end": 15181.36, + "probability": 0.9414 + }, + { + "start": 15182.64, + "end": 15186.74, + "probability": 0.9772 + }, + { + "start": 15187.54, + "end": 15189.5, + "probability": 0.6198 + }, + { + "start": 15190.16, + "end": 15199.07, + "probability": 0.8096 + }, + { + "start": 15199.44, + "end": 15201.22, + "probability": 0.8199 + }, + { + "start": 15201.96, + "end": 15204.06, + "probability": 0.9906 + }, + { + "start": 15204.58, + "end": 15210.98, + "probability": 0.98 + }, + { + "start": 15211.18, + "end": 15212.9, + "probability": 0.904 + }, + { + "start": 15213.26, + "end": 15214.76, + "probability": 0.9569 + }, + { + "start": 15214.8, + "end": 15215.66, + "probability": 0.9193 + }, + { + "start": 15215.74, + "end": 15216.62, + "probability": 0.6103 + }, + { + "start": 15217.36, + "end": 15219.7, + "probability": 0.916 + }, + { + "start": 15220.0, + "end": 15223.06, + "probability": 0.9976 + }, + { + "start": 15223.44, + "end": 15225.2, + "probability": 0.9641 + }, + { + "start": 15226.38, + "end": 15226.48, + "probability": 0.0554 + }, + { + "start": 15226.48, + "end": 15230.0, + "probability": 0.7336 + }, + { + "start": 15230.0, + "end": 15230.2, + "probability": 0.2442 + }, + { + "start": 15230.42, + "end": 15231.12, + "probability": 0.2589 + }, + { + "start": 15231.12, + "end": 15231.12, + "probability": 0.4752 + }, + { + "start": 15231.12, + "end": 15232.86, + "probability": 0.1608 + }, + { + "start": 15233.58, + "end": 15237.5, + "probability": 0.1959 + }, + { + "start": 15241.3, + "end": 15244.74, + "probability": 0.0747 + }, + { + "start": 15244.74, + "end": 15245.92, + "probability": 0.0333 + }, + { + "start": 15245.98, + "end": 15247.88, + "probability": 0.0753 + }, + { + "start": 15248.6, + "end": 15248.6, + "probability": 0.0402 + }, + { + "start": 15249.18, + "end": 15249.92, + "probability": 0.4075 + }, + { + "start": 15250.46, + "end": 15251.64, + "probability": 0.0396 + }, + { + "start": 15252.16, + "end": 15256.1, + "probability": 0.2028 + }, + { + "start": 15259.76, + "end": 15266.32, + "probability": 0.062 + }, + { + "start": 15268.92, + "end": 15269.97, + "probability": 0.001 + }, + { + "start": 15270.66, + "end": 15273.16, + "probability": 0.3736 + }, + { + "start": 15273.72, + "end": 15275.18, + "probability": 0.0728 + }, + { + "start": 15275.18, + "end": 15276.44, + "probability": 0.1777 + }, + { + "start": 15276.56, + "end": 15278.96, + "probability": 0.044 + }, + { + "start": 15278.98, + "end": 15280.48, + "probability": 0.0313 + }, + { + "start": 15280.48, + "end": 15282.9, + "probability": 0.0512 + }, + { + "start": 15284.26, + "end": 15285.94, + "probability": 0.0442 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.0, + "end": 15302.0, + "probability": 0.0 + }, + { + "start": 15302.16, + "end": 15302.62, + "probability": 0.1527 + }, + { + "start": 15302.74, + "end": 15304.04, + "probability": 0.6389 + }, + { + "start": 15304.12, + "end": 15305.12, + "probability": 0.2109 + }, + { + "start": 15306.0, + "end": 15307.44, + "probability": 0.5604 + }, + { + "start": 15307.44, + "end": 15309.48, + "probability": 0.0574 + }, + { + "start": 15311.15, + "end": 15311.5, + "probability": 0.0359 + }, + { + "start": 15312.54, + "end": 15313.28, + "probability": 0.0299 + }, + { + "start": 15316.29, + "end": 15316.41, + "probability": 0.0219 + }, + { + "start": 15318.94, + "end": 15321.44, + "probability": 0.0495 + }, + { + "start": 15321.5, + "end": 15323.86, + "probability": 0.1211 + }, + { + "start": 15323.86, + "end": 15324.92, + "probability": 0.1082 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15424.0, + "end": 15424.0, + "probability": 0.0 + }, + { + "start": 15425.64, + "end": 15427.62, + "probability": 0.0017 + }, + { + "start": 15429.22, + "end": 15431.92, + "probability": 0.3111 + }, + { + "start": 15443.22, + "end": 15445.92, + "probability": 0.1378 + }, + { + "start": 15445.92, + "end": 15446.14, + "probability": 0.064 + }, + { + "start": 15446.14, + "end": 15447.42, + "probability": 0.1817 + }, + { + "start": 15451.8, + "end": 15456.78, + "probability": 0.1631 + }, + { + "start": 15457.76, + "end": 15458.52, + "probability": 0.2165 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.0 + }, + { + "start": 15545.64, + "end": 15550.18, + "probability": 0.2826 + }, + { + "start": 15550.18, + "end": 15550.98, + "probability": 0.233 + }, + { + "start": 15551.04, + "end": 15551.04, + "probability": 0.2576 + }, + { + "start": 15551.66, + "end": 15553.3, + "probability": 0.76 + }, + { + "start": 15559.18, + "end": 15561.4, + "probability": 0.6681 + }, + { + "start": 15561.48, + "end": 15561.9, + "probability": 0.8728 + }, + { + "start": 15580.2, + "end": 15580.86, + "probability": 0.7983 + }, + { + "start": 15581.24, + "end": 15581.86, + "probability": 0.1008 + }, + { + "start": 15585.26, + "end": 15586.26, + "probability": 0.9916 + }, + { + "start": 15586.6, + "end": 15589.22, + "probability": 0.8633 + }, + { + "start": 15589.52, + "end": 15590.42, + "probability": 0.9102 + }, + { + "start": 15590.84, + "end": 15590.94, + "probability": 0.8817 + }, + { + "start": 15592.08, + "end": 15592.32, + "probability": 0.8561 + }, + { + "start": 15592.46, + "end": 15594.16, + "probability": 0.7298 + }, + { + "start": 15595.56, + "end": 15597.48, + "probability": 0.927 + }, + { + "start": 15598.98, + "end": 15600.18, + "probability": 0.8183 + }, + { + "start": 15601.38, + "end": 15604.12, + "probability": 0.9711 + }, + { + "start": 15605.48, + "end": 15610.12, + "probability": 0.9887 + }, + { + "start": 15613.1, + "end": 15615.7, + "probability": 0.9993 + }, + { + "start": 15615.72, + "end": 15617.68, + "probability": 0.4582 + }, + { + "start": 15617.84, + "end": 15618.14, + "probability": 0.8863 + }, + { + "start": 15618.18, + "end": 15618.64, + "probability": 0.6693 + }, + { + "start": 15619.26, + "end": 15621.1, + "probability": 0.4921 + }, + { + "start": 15621.5, + "end": 15622.34, + "probability": 0.96 + }, + { + "start": 15622.7, + "end": 15623.58, + "probability": 0.9464 + }, + { + "start": 15623.64, + "end": 15624.36, + "probability": 0.9819 + }, + { + "start": 15624.4, + "end": 15624.88, + "probability": 0.9282 + }, + { + "start": 15628.82, + "end": 15629.42, + "probability": 0.605 + }, + { + "start": 15630.86, + "end": 15633.08, + "probability": 0.9755 + }, + { + "start": 15634.32, + "end": 15635.96, + "probability": 0.7428 + }, + { + "start": 15636.02, + "end": 15636.02, + "probability": 0.0003 + }, + { + "start": 15637.72, + "end": 15643.26, + "probability": 0.9177 + }, + { + "start": 15643.4, + "end": 15644.54, + "probability": 0.7369 + }, + { + "start": 15646.2, + "end": 15652.34, + "probability": 0.9725 + }, + { + "start": 15652.98, + "end": 15654.03, + "probability": 0.6191 + }, + { + "start": 15655.72, + "end": 15658.02, + "probability": 0.7744 + }, + { + "start": 15658.84, + "end": 15660.5, + "probability": 0.7268 + }, + { + "start": 15661.3, + "end": 15662.38, + "probability": 0.9761 + }, + { + "start": 15663.52, + "end": 15664.34, + "probability": 0.869 + }, + { + "start": 15665.82, + "end": 15666.61, + "probability": 0.9978 + }, + { + "start": 15668.54, + "end": 15671.34, + "probability": 0.9318 + }, + { + "start": 15671.88, + "end": 15673.76, + "probability": 0.7423 + }, + { + "start": 15675.68, + "end": 15676.52, + "probability": 0.9055 + }, + { + "start": 15680.14, + "end": 15682.76, + "probability": 0.991 + }, + { + "start": 15683.16, + "end": 15684.64, + "probability": 0.9082 + }, + { + "start": 15684.92, + "end": 15686.0, + "probability": 0.5514 + }, + { + "start": 15686.28, + "end": 15686.28, + "probability": 0.0153 + }, + { + "start": 15687.44, + "end": 15690.16, + "probability": 0.9313 + }, + { + "start": 15691.64, + "end": 15693.24, + "probability": 0.9863 + }, + { + "start": 15694.72, + "end": 15695.46, + "probability": 0.762 + }, + { + "start": 15696.96, + "end": 15697.1, + "probability": 0.0654 + }, + { + "start": 15697.1, + "end": 15698.0, + "probability": 0.9415 + }, + { + "start": 15698.06, + "end": 15698.66, + "probability": 0.6522 + }, + { + "start": 15698.74, + "end": 15699.54, + "probability": 0.8321 + }, + { + "start": 15700.28, + "end": 15701.24, + "probability": 0.8644 + }, + { + "start": 15702.04, + "end": 15703.04, + "probability": 0.6194 + }, + { + "start": 15704.18, + "end": 15706.04, + "probability": 0.8835 + }, + { + "start": 15707.28, + "end": 15712.76, + "probability": 0.9842 + }, + { + "start": 15714.3, + "end": 15715.64, + "probability": 0.9 + }, + { + "start": 15717.62, + "end": 15718.72, + "probability": 0.5918 + }, + { + "start": 15719.14, + "end": 15720.92, + "probability": 0.823 + }, + { + "start": 15721.68, + "end": 15723.68, + "probability": 0.9591 + }, + { + "start": 15725.48, + "end": 15730.56, + "probability": 0.8587 + }, + { + "start": 15733.14, + "end": 15737.3, + "probability": 0.949 + }, + { + "start": 15738.34, + "end": 15739.68, + "probability": 0.8347 + }, + { + "start": 15741.08, + "end": 15741.98, + "probability": 0.9001 + }, + { + "start": 15742.14, + "end": 15744.09, + "probability": 0.9626 + }, + { + "start": 15747.62, + "end": 15749.18, + "probability": 0.9979 + }, + { + "start": 15750.1, + "end": 15750.92, + "probability": 0.8422 + }, + { + "start": 15752.22, + "end": 15753.84, + "probability": 0.9795 + }, + { + "start": 15754.9, + "end": 15755.64, + "probability": 0.9956 + }, + { + "start": 15756.46, + "end": 15758.5, + "probability": 0.9061 + }, + { + "start": 15759.28, + "end": 15760.42, + "probability": 0.9976 + }, + { + "start": 15760.98, + "end": 15762.04, + "probability": 0.9673 + }, + { + "start": 15763.0, + "end": 15765.92, + "probability": 0.8322 + }, + { + "start": 15766.46, + "end": 15767.36, + "probability": 0.9768 + }, + { + "start": 15769.5, + "end": 15770.1, + "probability": 0.6529 + }, + { + "start": 15770.24, + "end": 15771.78, + "probability": 0.603 + }, + { + "start": 15772.14, + "end": 15775.36, + "probability": 0.8858 + }, + { + "start": 15777.04, + "end": 15777.66, + "probability": 0.0608 + }, + { + "start": 15777.74, + "end": 15778.64, + "probability": 0.0949 + }, + { + "start": 15779.62, + "end": 15784.66, + "probability": 0.2629 + }, + { + "start": 15786.84, + "end": 15789.74, + "probability": 0.2806 + }, + { + "start": 15791.2, + "end": 15793.12, + "probability": 0.1194 + }, + { + "start": 15793.86, + "end": 15795.32, + "probability": 0.1031 + }, + { + "start": 15796.48, + "end": 15799.54, + "probability": 0.3397 + }, + { + "start": 15800.76, + "end": 15803.0, + "probability": 0.1701 + }, + { + "start": 15803.66, + "end": 15804.62, + "probability": 0.0104 + }, + { + "start": 15805.42, + "end": 15807.32, + "probability": 0.1058 + }, + { + "start": 15807.32, + "end": 15809.94, + "probability": 0.3052 + }, + { + "start": 15810.81, + "end": 15813.68, + "probability": 0.2037 + }, + { + "start": 15814.9, + "end": 15815.06, + "probability": 0.6333 + }, + { + "start": 15818.06, + "end": 15818.06, + "probability": 0.2151 + }, + { + "start": 15818.06, + "end": 15819.99, + "probability": 0.7811 + }, + { + "start": 15823.46, + "end": 15824.26, + "probability": 0.5052 + }, + { + "start": 15824.56, + "end": 15828.36, + "probability": 0.3883 + }, + { + "start": 15829.44, + "end": 15830.36, + "probability": 0.3142 + }, + { + "start": 15831.08, + "end": 15833.5, + "probability": 0.9014 + }, + { + "start": 15835.9, + "end": 15837.66, + "probability": 0.1551 + }, + { + "start": 15841.72, + "end": 15843.18, + "probability": 0.7964 + }, + { + "start": 15843.38, + "end": 15844.36, + "probability": 0.7126 + }, + { + "start": 15849.14, + "end": 15856.32, + "probability": 0.9976 + }, + { + "start": 15856.42, + "end": 15857.38, + "probability": 0.9757 + }, + { + "start": 15857.52, + "end": 15858.84, + "probability": 0.9953 + }, + { + "start": 15859.78, + "end": 15862.72, + "probability": 0.9908 + }, + { + "start": 15863.74, + "end": 15865.56, + "probability": 0.9756 + }, + { + "start": 15865.68, + "end": 15866.28, + "probability": 0.8085 + }, + { + "start": 15866.48, + "end": 15867.4, + "probability": 0.671 + }, + { + "start": 15868.1, + "end": 15871.58, + "probability": 0.9579 + }, + { + "start": 15872.32, + "end": 15873.4, + "probability": 0.9825 + }, + { + "start": 15874.0, + "end": 15875.62, + "probability": 0.8654 + }, + { + "start": 15875.98, + "end": 15877.46, + "probability": 0.9756 + }, + { + "start": 15877.78, + "end": 15878.3, + "probability": 0.8412 + }, + { + "start": 15878.6, + "end": 15880.62, + "probability": 0.7419 + }, + { + "start": 15880.72, + "end": 15884.7, + "probability": 0.985 + }, + { + "start": 15884.92, + "end": 15887.18, + "probability": 0.9849 + }, + { + "start": 15887.76, + "end": 15889.0, + "probability": 0.939 + }, + { + "start": 15889.32, + "end": 15894.08, + "probability": 0.9611 + }, + { + "start": 15894.46, + "end": 15896.36, + "probability": 0.9975 + }, + { + "start": 15896.48, + "end": 15900.12, + "probability": 0.9951 + }, + { + "start": 15900.62, + "end": 15905.82, + "probability": 0.9697 + }, + { + "start": 15906.46, + "end": 15908.14, + "probability": 0.998 + }, + { + "start": 15908.42, + "end": 15912.68, + "probability": 0.9958 + }, + { + "start": 15913.66, + "end": 15916.32, + "probability": 0.9539 + }, + { + "start": 15917.12, + "end": 15920.18, + "probability": 0.9932 + }, + { + "start": 15920.62, + "end": 15923.04, + "probability": 0.9867 + }, + { + "start": 15923.56, + "end": 15924.36, + "probability": 0.5718 + }, + { + "start": 15924.94, + "end": 15926.64, + "probability": 0.9957 + }, + { + "start": 15927.3, + "end": 15932.02, + "probability": 0.9984 + }, + { + "start": 15932.02, + "end": 15934.58, + "probability": 0.9799 + }, + { + "start": 15935.4, + "end": 15936.76, + "probability": 0.9778 + }, + { + "start": 15937.42, + "end": 15940.02, + "probability": 0.8506 + }, + { + "start": 15940.4, + "end": 15942.68, + "probability": 0.9268 + }, + { + "start": 15943.2, + "end": 15947.82, + "probability": 0.9849 + }, + { + "start": 15948.04, + "end": 15950.04, + "probability": 0.8853 + }, + { + "start": 15950.68, + "end": 15951.82, + "probability": 0.9162 + }, + { + "start": 15952.28, + "end": 15954.14, + "probability": 0.9955 + }, + { + "start": 15956.06, + "end": 15957.26, + "probability": 0.8052 + }, + { + "start": 15957.4, + "end": 15959.08, + "probability": 0.7751 + }, + { + "start": 15959.12, + "end": 15962.0, + "probability": 0.9756 + }, + { + "start": 15962.3, + "end": 15963.4, + "probability": 0.8897 + }, + { + "start": 15963.48, + "end": 15966.32, + "probability": 0.7618 + }, + { + "start": 15966.4, + "end": 15968.4, + "probability": 0.9889 + }, + { + "start": 15968.6, + "end": 15973.46, + "probability": 0.9954 + }, + { + "start": 15973.88, + "end": 15976.24, + "probability": 0.7803 + }, + { + "start": 15976.32, + "end": 15979.96, + "probability": 0.84 + }, + { + "start": 15980.62, + "end": 15985.14, + "probability": 0.9911 + }, + { + "start": 15985.2, + "end": 15986.02, + "probability": 0.5334 + }, + { + "start": 15986.24, + "end": 15988.06, + "probability": 0.9448 + }, + { + "start": 15988.16, + "end": 15990.8, + "probability": 0.9985 + }, + { + "start": 15990.8, + "end": 15993.04, + "probability": 0.929 + }, + { + "start": 15993.18, + "end": 15995.22, + "probability": 0.9474 + }, + { + "start": 15995.34, + "end": 15997.94, + "probability": 0.9891 + }, + { + "start": 15998.7, + "end": 16002.66, + "probability": 0.8828 + }, + { + "start": 16003.18, + "end": 16004.88, + "probability": 0.9172 + }, + { + "start": 16005.0, + "end": 16006.18, + "probability": 0.6149 + }, + { + "start": 16006.38, + "end": 16011.54, + "probability": 0.9389 + }, + { + "start": 16011.88, + "end": 16014.12, + "probability": 0.8485 + }, + { + "start": 16014.14, + "end": 16014.6, + "probability": 0.8697 + }, + { + "start": 16014.68, + "end": 16017.48, + "probability": 0.9982 + }, + { + "start": 16017.72, + "end": 16018.98, + "probability": 0.9961 + }, + { + "start": 16019.24, + "end": 16021.24, + "probability": 0.9956 + }, + { + "start": 16022.16, + "end": 16022.8, + "probability": 0.9897 + }, + { + "start": 16022.9, + "end": 16023.56, + "probability": 0.965 + }, + { + "start": 16023.82, + "end": 16026.06, + "probability": 0.9648 + }, + { + "start": 16026.16, + "end": 16026.88, + "probability": 0.9176 + }, + { + "start": 16027.38, + "end": 16028.12, + "probability": 0.8536 + }, + { + "start": 16028.86, + "end": 16031.72, + "probability": 0.9977 + }, + { + "start": 16032.02, + "end": 16034.94, + "probability": 0.9926 + }, + { + "start": 16035.2, + "end": 16039.64, + "probability": 0.9862 + }, + { + "start": 16040.06, + "end": 16041.58, + "probability": 0.9929 + }, + { + "start": 16042.04, + "end": 16046.0, + "probability": 0.9967 + }, + { + "start": 16046.22, + "end": 16046.44, + "probability": 0.8267 + }, + { + "start": 16046.9, + "end": 16047.28, + "probability": 0.254 + }, + { + "start": 16047.28, + "end": 16048.36, + "probability": 0.5309 + }, + { + "start": 16071.8, + "end": 16072.74, + "probability": 0.6262 + }, + { + "start": 16072.84, + "end": 16073.68, + "probability": 0.7614 + }, + { + "start": 16073.8, + "end": 16078.22, + "probability": 0.9955 + }, + { + "start": 16079.56, + "end": 16081.8, + "probability": 0.9806 + }, + { + "start": 16082.98, + "end": 16086.84, + "probability": 0.9296 + }, + { + "start": 16087.46, + "end": 16090.24, + "probability": 0.9759 + }, + { + "start": 16091.22, + "end": 16092.7, + "probability": 0.9906 + }, + { + "start": 16093.22, + "end": 16096.02, + "probability": 0.9636 + }, + { + "start": 16096.56, + "end": 16101.16, + "probability": 0.9742 + }, + { + "start": 16102.16, + "end": 16104.48, + "probability": 0.9878 + }, + { + "start": 16105.08, + "end": 16106.86, + "probability": 0.9869 + }, + { + "start": 16107.64, + "end": 16109.36, + "probability": 0.916 + }, + { + "start": 16109.42, + "end": 16110.36, + "probability": 0.9839 + }, + { + "start": 16110.8, + "end": 16111.88, + "probability": 0.8307 + }, + { + "start": 16112.9, + "end": 16116.66, + "probability": 0.9962 + }, + { + "start": 16116.66, + "end": 16121.64, + "probability": 0.9938 + }, + { + "start": 16122.56, + "end": 16125.02, + "probability": 0.9399 + }, + { + "start": 16125.16, + "end": 16126.24, + "probability": 0.9549 + }, + { + "start": 16126.6, + "end": 16130.2, + "probability": 0.9753 + }, + { + "start": 16130.98, + "end": 16133.06, + "probability": 0.986 + }, + { + "start": 16133.16, + "end": 16134.36, + "probability": 0.9742 + }, + { + "start": 16134.7, + "end": 16135.22, + "probability": 0.9848 + }, + { + "start": 16135.28, + "end": 16135.82, + "probability": 0.879 + }, + { + "start": 16136.06, + "end": 16136.58, + "probability": 0.8827 + }, + { + "start": 16136.7, + "end": 16136.92, + "probability": 0.6054 + }, + { + "start": 16137.04, + "end": 16138.36, + "probability": 0.8717 + }, + { + "start": 16139.12, + "end": 16140.42, + "probability": 0.9118 + }, + { + "start": 16141.4, + "end": 16141.78, + "probability": 0.9303 + }, + { + "start": 16142.54, + "end": 16143.42, + "probability": 0.984 + }, + { + "start": 16144.5, + "end": 16146.28, + "probability": 0.9907 + }, + { + "start": 16147.32, + "end": 16149.38, + "probability": 0.8982 + }, + { + "start": 16150.0, + "end": 16151.0, + "probability": 0.918 + }, + { + "start": 16151.12, + "end": 16151.54, + "probability": 0.9636 + }, + { + "start": 16151.84, + "end": 16155.62, + "probability": 0.9747 + }, + { + "start": 16156.44, + "end": 16157.52, + "probability": 0.9976 + }, + { + "start": 16158.42, + "end": 16158.7, + "probability": 0.4367 + }, + { + "start": 16158.82, + "end": 16159.46, + "probability": 0.8617 + }, + { + "start": 16160.22, + "end": 16161.4, + "probability": 0.9168 + }, + { + "start": 16162.22, + "end": 16164.78, + "probability": 0.9961 + }, + { + "start": 16164.88, + "end": 16165.86, + "probability": 0.9935 + }, + { + "start": 16166.38, + "end": 16167.36, + "probability": 0.999 + }, + { + "start": 16168.04, + "end": 16169.98, + "probability": 0.9932 + }, + { + "start": 16170.98, + "end": 16172.14, + "probability": 0.8884 + }, + { + "start": 16173.1, + "end": 16173.68, + "probability": 0.6682 + }, + { + "start": 16174.38, + "end": 16176.51, + "probability": 0.9888 + }, + { + "start": 16177.96, + "end": 16179.08, + "probability": 0.9743 + }, + { + "start": 16179.32, + "end": 16183.02, + "probability": 0.9645 + }, + { + "start": 16183.64, + "end": 16185.74, + "probability": 0.9569 + }, + { + "start": 16186.74, + "end": 16188.1, + "probability": 0.8657 + }, + { + "start": 16188.18, + "end": 16189.04, + "probability": 0.9513 + }, + { + "start": 16189.44, + "end": 16190.08, + "probability": 0.7702 + }, + { + "start": 16190.6, + "end": 16191.4, + "probability": 0.9387 + }, + { + "start": 16191.46, + "end": 16192.48, + "probability": 0.9889 + }, + { + "start": 16193.12, + "end": 16194.16, + "probability": 0.9944 + }, + { + "start": 16194.94, + "end": 16195.98, + "probability": 0.8313 + }, + { + "start": 16197.24, + "end": 16201.7, + "probability": 0.9819 + }, + { + "start": 16202.12, + "end": 16203.76, + "probability": 0.9741 + }, + { + "start": 16204.5, + "end": 16205.04, + "probability": 0.7944 + }, + { + "start": 16205.72, + "end": 16208.74, + "probability": 0.9746 + }, + { + "start": 16208.98, + "end": 16209.5, + "probability": 0.9163 + }, + { + "start": 16210.16, + "end": 16216.16, + "probability": 0.9984 + }, + { + "start": 16217.32, + "end": 16219.84, + "probability": 0.9819 + }, + { + "start": 16220.74, + "end": 16223.0, + "probability": 0.9912 + }, + { + "start": 16224.96, + "end": 16230.58, + "probability": 0.9464 + }, + { + "start": 16231.14, + "end": 16232.8, + "probability": 0.9549 + }, + { + "start": 16232.88, + "end": 16235.08, + "probability": 0.9893 + }, + { + "start": 16236.52, + "end": 16239.12, + "probability": 0.9628 + }, + { + "start": 16239.68, + "end": 16243.0, + "probability": 0.9796 + }, + { + "start": 16243.72, + "end": 16245.36, + "probability": 0.9857 + }, + { + "start": 16245.92, + "end": 16251.8, + "probability": 0.9944 + }, + { + "start": 16252.18, + "end": 16253.28, + "probability": 0.861 + }, + { + "start": 16254.5, + "end": 16258.1, + "probability": 0.9902 + }, + { + "start": 16258.64, + "end": 16259.64, + "probability": 0.8634 + }, + { + "start": 16260.54, + "end": 16261.22, + "probability": 0.9341 + }, + { + "start": 16262.12, + "end": 16266.16, + "probability": 0.9997 + }, + { + "start": 16266.86, + "end": 16272.06, + "probability": 0.9994 + }, + { + "start": 16272.18, + "end": 16272.58, + "probability": 0.7514 + }, + { + "start": 16274.66, + "end": 16276.52, + "probability": 0.8289 + }, + { + "start": 16279.5, + "end": 16280.0, + "probability": 0.8192 + }, + { + "start": 16281.6, + "end": 16283.06, + "probability": 0.3203 + }, + { + "start": 16284.1, + "end": 16285.1, + "probability": 0.8853 + }, + { + "start": 16300.14, + "end": 16301.34, + "probability": 0.5907 + }, + { + "start": 16301.42, + "end": 16302.76, + "probability": 0.6925 + }, + { + "start": 16304.2, + "end": 16308.8, + "probability": 0.998 + }, + { + "start": 16309.02, + "end": 16313.42, + "probability": 0.9907 + }, + { + "start": 16314.5, + "end": 16316.46, + "probability": 0.8175 + }, + { + "start": 16316.9, + "end": 16320.06, + "probability": 0.9609 + }, + { + "start": 16320.16, + "end": 16322.98, + "probability": 0.999 + }, + { + "start": 16322.98, + "end": 16325.74, + "probability": 0.9961 + }, + { + "start": 16325.82, + "end": 16327.22, + "probability": 0.9681 + }, + { + "start": 16328.32, + "end": 16332.72, + "probability": 0.9654 + }, + { + "start": 16332.92, + "end": 16333.91, + "probability": 0.5061 + }, + { + "start": 16334.08, + "end": 16335.2, + "probability": 0.8728 + }, + { + "start": 16335.24, + "end": 16337.04, + "probability": 0.9213 + }, + { + "start": 16337.12, + "end": 16339.6, + "probability": 0.9875 + }, + { + "start": 16340.18, + "end": 16342.11, + "probability": 0.8434 + }, + { + "start": 16343.06, + "end": 16344.56, + "probability": 0.4481 + }, + { + "start": 16345.06, + "end": 16346.76, + "probability": 0.8092 + }, + { + "start": 16346.92, + "end": 16348.59, + "probability": 0.9844 + }, + { + "start": 16348.84, + "end": 16350.46, + "probability": 0.961 + }, + { + "start": 16350.5, + "end": 16353.04, + "probability": 0.989 + }, + { + "start": 16354.14, + "end": 16358.8, + "probability": 0.9847 + }, + { + "start": 16359.38, + "end": 16361.08, + "probability": 0.7715 + }, + { + "start": 16361.5, + "end": 16361.74, + "probability": 0.473 + }, + { + "start": 16362.84, + "end": 16364.56, + "probability": 0.8911 + }, + { + "start": 16365.04, + "end": 16365.64, + "probability": 0.5815 + }, + { + "start": 16366.24, + "end": 16367.4, + "probability": 0.8744 + }, + { + "start": 16367.6, + "end": 16367.74, + "probability": 0.3259 + }, + { + "start": 16368.04, + "end": 16369.46, + "probability": 0.8344 + }, + { + "start": 16369.94, + "end": 16372.08, + "probability": 0.9697 + }, + { + "start": 16372.24, + "end": 16373.8, + "probability": 0.8948 + }, + { + "start": 16374.18, + "end": 16376.68, + "probability": 0.8154 + }, + { + "start": 16377.28, + "end": 16380.76, + "probability": 0.9565 + }, + { + "start": 16381.54, + "end": 16385.52, + "probability": 0.9113 + }, + { + "start": 16386.32, + "end": 16388.64, + "probability": 0.9291 + }, + { + "start": 16388.76, + "end": 16388.88, + "probability": 0.6226 + }, + { + "start": 16388.98, + "end": 16389.14, + "probability": 0.4783 + }, + { + "start": 16389.24, + "end": 16390.86, + "probability": 0.9212 + }, + { + "start": 16391.28, + "end": 16392.04, + "probability": 0.8138 + }, + { + "start": 16392.52, + "end": 16395.62, + "probability": 0.9559 + }, + { + "start": 16396.36, + "end": 16400.56, + "probability": 0.8628 + }, + { + "start": 16400.78, + "end": 16401.85, + "probability": 0.9956 + }, + { + "start": 16402.42, + "end": 16404.84, + "probability": 0.9219 + }, + { + "start": 16405.8, + "end": 16406.28, + "probability": 0.7431 + }, + { + "start": 16406.36, + "end": 16407.08, + "probability": 0.9563 + }, + { + "start": 16407.3, + "end": 16408.78, + "probability": 0.9983 + }, + { + "start": 16409.66, + "end": 16411.88, + "probability": 0.9913 + }, + { + "start": 16411.92, + "end": 16413.42, + "probability": 0.9924 + }, + { + "start": 16414.08, + "end": 16417.92, + "probability": 0.9208 + }, + { + "start": 16418.04, + "end": 16422.34, + "probability": 0.8972 + }, + { + "start": 16423.22, + "end": 16424.58, + "probability": 0.9736 + }, + { + "start": 16424.92, + "end": 16425.98, + "probability": 0.8472 + }, + { + "start": 16426.8, + "end": 16428.38, + "probability": 0.9491 + }, + { + "start": 16429.02, + "end": 16430.74, + "probability": 0.9971 + }, + { + "start": 16431.96, + "end": 16434.22, + "probability": 0.9745 + }, + { + "start": 16434.66, + "end": 16437.46, + "probability": 0.9553 + }, + { + "start": 16438.38, + "end": 16438.62, + "probability": 0.5842 + }, + { + "start": 16439.16, + "end": 16441.44, + "probability": 0.9258 + }, + { + "start": 16442.22, + "end": 16442.92, + "probability": 0.7738 + }, + { + "start": 16442.94, + "end": 16443.92, + "probability": 0.6158 + }, + { + "start": 16444.02, + "end": 16444.28, + "probability": 0.7203 + }, + { + "start": 16445.2, + "end": 16448.14, + "probability": 0.9546 + }, + { + "start": 16448.22, + "end": 16449.32, + "probability": 0.9922 + }, + { + "start": 16450.0, + "end": 16450.6, + "probability": 0.9778 + }, + { + "start": 16451.46, + "end": 16452.96, + "probability": 0.7981 + }, + { + "start": 16452.96, + "end": 16455.76, + "probability": 0.842 + }, + { + "start": 16456.52, + "end": 16459.14, + "probability": 0.9654 + }, + { + "start": 16461.14, + "end": 16463.06, + "probability": 0.7826 + }, + { + "start": 16464.4, + "end": 16466.22, + "probability": 0.8792 + }, + { + "start": 16466.24, + "end": 16467.66, + "probability": 0.9738 + }, + { + "start": 16468.0, + "end": 16471.26, + "probability": 0.9987 + }, + { + "start": 16471.98, + "end": 16475.87, + "probability": 0.9866 + }, + { + "start": 16476.0, + "end": 16478.42, + "probability": 0.7322 + }, + { + "start": 16479.14, + "end": 16479.98, + "probability": 0.8075 + }, + { + "start": 16480.2, + "end": 16483.94, + "probability": 0.998 + }, + { + "start": 16484.72, + "end": 16485.92, + "probability": 0.8618 + }, + { + "start": 16486.38, + "end": 16486.96, + "probability": 0.9895 + }, + { + "start": 16487.16, + "end": 16488.32, + "probability": 0.7932 + }, + { + "start": 16488.58, + "end": 16489.56, + "probability": 0.9888 + }, + { + "start": 16490.04, + "end": 16491.64, + "probability": 0.9724 + }, + { + "start": 16491.66, + "end": 16492.94, + "probability": 0.6422 + }, + { + "start": 16493.52, + "end": 16493.52, + "probability": 0.4513 + }, + { + "start": 16493.52, + "end": 16494.34, + "probability": 0.2345 + }, + { + "start": 16494.58, + "end": 16495.0, + "probability": 0.7269 + }, + { + "start": 16496.44, + "end": 16498.66, + "probability": 0.9556 + }, + { + "start": 16525.46, + "end": 16527.38, + "probability": 0.6891 + }, + { + "start": 16529.02, + "end": 16533.02, + "probability": 0.9976 + }, + { + "start": 16533.02, + "end": 16536.9, + "probability": 0.9932 + }, + { + "start": 16538.22, + "end": 16541.04, + "probability": 0.998 + }, + { + "start": 16542.64, + "end": 16544.9, + "probability": 0.8855 + }, + { + "start": 16546.02, + "end": 16549.58, + "probability": 0.9929 + }, + { + "start": 16550.68, + "end": 16551.48, + "probability": 0.8929 + }, + { + "start": 16552.2, + "end": 16554.12, + "probability": 0.9433 + }, + { + "start": 16554.52, + "end": 16555.78, + "probability": 0.9858 + }, + { + "start": 16556.52, + "end": 16558.46, + "probability": 0.9891 + }, + { + "start": 16559.12, + "end": 16563.88, + "probability": 0.9932 + }, + { + "start": 16564.62, + "end": 16566.96, + "probability": 0.8598 + }, + { + "start": 16567.66, + "end": 16571.82, + "probability": 0.9932 + }, + { + "start": 16572.7, + "end": 16573.98, + "probability": 0.9983 + }, + { + "start": 16574.62, + "end": 16576.34, + "probability": 0.9046 + }, + { + "start": 16576.82, + "end": 16580.18, + "probability": 0.9663 + }, + { + "start": 16581.98, + "end": 16586.02, + "probability": 0.9935 + }, + { + "start": 16586.8, + "end": 16588.52, + "probability": 0.8179 + }, + { + "start": 16589.44, + "end": 16592.92, + "probability": 0.9976 + }, + { + "start": 16593.64, + "end": 16597.64, + "probability": 0.9948 + }, + { + "start": 16598.22, + "end": 16600.46, + "probability": 0.9979 + }, + { + "start": 16601.32, + "end": 16605.82, + "probability": 0.9859 + }, + { + "start": 16606.6, + "end": 16610.14, + "probability": 0.9953 + }, + { + "start": 16610.9, + "end": 16614.16, + "probability": 0.992 + }, + { + "start": 16615.44, + "end": 16617.16, + "probability": 0.9993 + }, + { + "start": 16617.7, + "end": 16623.02, + "probability": 0.9984 + }, + { + "start": 16624.72, + "end": 16628.12, + "probability": 0.9938 + }, + { + "start": 16628.12, + "end": 16630.62, + "probability": 0.998 + }, + { + "start": 16630.68, + "end": 16632.62, + "probability": 0.7535 + }, + { + "start": 16633.5, + "end": 16638.96, + "probability": 0.9382 + }, + { + "start": 16638.96, + "end": 16644.08, + "probability": 0.9967 + }, + { + "start": 16644.7, + "end": 16649.8, + "probability": 0.9855 + }, + { + "start": 16650.64, + "end": 16657.7, + "probability": 0.9973 + }, + { + "start": 16657.7, + "end": 16663.26, + "probability": 0.9982 + }, + { + "start": 16664.18, + "end": 16665.68, + "probability": 0.8623 + }, + { + "start": 16666.3, + "end": 16666.72, + "probability": 0.8112 + }, + { + "start": 16667.66, + "end": 16668.24, + "probability": 0.6304 + }, + { + "start": 16668.82, + "end": 16670.34, + "probability": 0.7795 + }, + { + "start": 16670.88, + "end": 16673.2, + "probability": 0.9684 + }, + { + "start": 16674.52, + "end": 16678.68, + "probability": 0.998 + }, + { + "start": 16678.68, + "end": 16682.54, + "probability": 0.9842 + }, + { + "start": 16683.28, + "end": 16683.32, + "probability": 0.11 + }, + { + "start": 16683.32, + "end": 16684.1, + "probability": 0.5775 + }, + { + "start": 16684.74, + "end": 16691.78, + "probability": 0.927 + }, + { + "start": 16692.16, + "end": 16692.7, + "probability": 0.8507 + }, + { + "start": 16692.92, + "end": 16693.34, + "probability": 0.5464 + }, + { + "start": 16693.58, + "end": 16694.8, + "probability": 0.5283 + }, + { + "start": 16696.9, + "end": 16699.18, + "probability": 0.1855 + }, + { + "start": 16700.83, + "end": 16701.68, + "probability": 0.0271 + }, + { + "start": 16703.58, + "end": 16704.12, + "probability": 0.0675 + }, + { + "start": 16706.4, + "end": 16710.68, + "probability": 0.0328 + }, + { + "start": 16711.24, + "end": 16712.06, + "probability": 0.183 + }, + { + "start": 16712.88, + "end": 16713.2, + "probability": 0.319 + }, + { + "start": 16714.62, + "end": 16715.4, + "probability": 0.0148 + }, + { + "start": 16716.86, + "end": 16718.14, + "probability": 0.363 + }, + { + "start": 16718.78, + "end": 16719.4, + "probability": 0.4867 + }, + { + "start": 16719.96, + "end": 16721.6, + "probability": 0.5521 + }, + { + "start": 16724.06, + "end": 16725.3, + "probability": 0.261 + }, + { + "start": 16725.38, + "end": 16726.5, + "probability": 0.153 + }, + { + "start": 16727.2, + "end": 16729.54, + "probability": 0.5227 + }, + { + "start": 16730.2, + "end": 16730.3, + "probability": 0.7697 + }, + { + "start": 16730.3, + "end": 16730.78, + "probability": 0.4957 + }, + { + "start": 16733.26, + "end": 16733.38, + "probability": 0.7946 + }, + { + "start": 16733.38, + "end": 16733.82, + "probability": 0.8503 + }, + { + "start": 16735.2, + "end": 16736.38, + "probability": 0.7783 + }, + { + "start": 16737.36, + "end": 16741.26, + "probability": 0.9909 + }, + { + "start": 16741.26, + "end": 16744.72, + "probability": 0.9977 + }, + { + "start": 16745.2, + "end": 16747.2, + "probability": 0.9873 + }, + { + "start": 16747.94, + "end": 16754.0, + "probability": 0.9805 + }, + { + "start": 16754.24, + "end": 16757.32, + "probability": 0.9852 + }, + { + "start": 16757.52, + "end": 16758.96, + "probability": 0.9874 + }, + { + "start": 16759.78, + "end": 16761.1, + "probability": 0.9277 + }, + { + "start": 16761.94, + "end": 16762.92, + "probability": 0.9869 + }, + { + "start": 16763.76, + "end": 16765.56, + "probability": 0.979 + }, + { + "start": 16765.66, + "end": 16769.76, + "probability": 0.9895 + }, + { + "start": 16769.76, + "end": 16774.56, + "probability": 0.9507 + }, + { + "start": 16775.32, + "end": 16776.74, + "probability": 0.7617 + }, + { + "start": 16777.32, + "end": 16779.2, + "probability": 0.7938 + }, + { + "start": 16779.8, + "end": 16781.6, + "probability": 0.7522 + }, + { + "start": 16781.7, + "end": 16785.58, + "probability": 0.6628 + }, + { + "start": 16786.6, + "end": 16790.46, + "probability": 0.998 + }, + { + "start": 16790.82, + "end": 16792.9, + "probability": 0.7763 + }, + { + "start": 16793.4, + "end": 16796.42, + "probability": 0.8199 + }, + { + "start": 16796.76, + "end": 16803.34, + "probability": 0.9774 + }, + { + "start": 16804.42, + "end": 16807.86, + "probability": 0.9878 + }, + { + "start": 16808.22, + "end": 16811.98, + "probability": 0.8867 + }, + { + "start": 16812.5, + "end": 16817.64, + "probability": 0.9619 + }, + { + "start": 16817.96, + "end": 16818.5, + "probability": 0.8322 + }, + { + "start": 16819.28, + "end": 16822.21, + "probability": 0.9958 + }, + { + "start": 16822.74, + "end": 16823.02, + "probability": 0.9967 + }, + { + "start": 16823.74, + "end": 16825.98, + "probability": 0.9966 + }, + { + "start": 16826.76, + "end": 16829.56, + "probability": 0.9903 + }, + { + "start": 16830.58, + "end": 16833.84, + "probability": 0.9854 + }, + { + "start": 16834.22, + "end": 16839.18, + "probability": 0.9472 + }, + { + "start": 16839.34, + "end": 16840.38, + "probability": 0.7429 + }, + { + "start": 16840.98, + "end": 16842.08, + "probability": 0.9271 + }, + { + "start": 16842.82, + "end": 16844.77, + "probability": 0.9634 + }, + { + "start": 16845.88, + "end": 16847.82, + "probability": 0.9688 + }, + { + "start": 16848.18, + "end": 16848.92, + "probability": 0.9565 + }, + { + "start": 16850.28, + "end": 16851.64, + "probability": 0.97 + }, + { + "start": 16852.24, + "end": 16855.94, + "probability": 0.9509 + }, + { + "start": 16856.58, + "end": 16859.72, + "probability": 0.9789 + }, + { + "start": 16860.0, + "end": 16860.84, + "probability": 0.9539 + }, + { + "start": 16861.78, + "end": 16862.76, + "probability": 0.9246 + }, + { + "start": 16863.04, + "end": 16863.58, + "probability": 0.7301 + }, + { + "start": 16864.42, + "end": 16867.6, + "probability": 0.9902 + }, + { + "start": 16867.82, + "end": 16868.54, + "probability": 0.9754 + }, + { + "start": 16869.04, + "end": 16870.02, + "probability": 0.5879 + }, + { + "start": 16870.58, + "end": 16872.06, + "probability": 0.9577 + }, + { + "start": 16872.94, + "end": 16874.56, + "probability": 0.6357 + }, + { + "start": 16875.02, + "end": 16878.64, + "probability": 0.9878 + }, + { + "start": 16878.64, + "end": 16882.52, + "probability": 0.993 + }, + { + "start": 16884.6, + "end": 16885.62, + "probability": 0.9739 + }, + { + "start": 16886.36, + "end": 16887.56, + "probability": 0.6246 + }, + { + "start": 16888.48, + "end": 16891.3, + "probability": 0.9105 + }, + { + "start": 16892.14, + "end": 16894.36, + "probability": 0.9708 + }, + { + "start": 16894.84, + "end": 16897.32, + "probability": 0.9973 + }, + { + "start": 16897.5, + "end": 16900.3, + "probability": 0.9975 + }, + { + "start": 16900.64, + "end": 16904.36, + "probability": 0.9554 + }, + { + "start": 16904.88, + "end": 16907.16, + "probability": 0.9014 + }, + { + "start": 16907.2, + "end": 16908.3, + "probability": 0.8447 + }, + { + "start": 16908.92, + "end": 16909.28, + "probability": 0.4901 + }, + { + "start": 16910.18, + "end": 16913.92, + "probability": 0.9609 + }, + { + "start": 16914.22, + "end": 16917.74, + "probability": 0.9952 + }, + { + "start": 16918.42, + "end": 16919.7, + "probability": 0.4555 + }, + { + "start": 16919.86, + "end": 16920.79, + "probability": 0.9951 + }, + { + "start": 16921.74, + "end": 16923.98, + "probability": 0.9774 + }, + { + "start": 16923.98, + "end": 16925.12, + "probability": 0.9871 + }, + { + "start": 16925.66, + "end": 16929.44, + "probability": 0.8508 + }, + { + "start": 16929.86, + "end": 16930.38, + "probability": 0.9114 + }, + { + "start": 16931.08, + "end": 16931.5, + "probability": 0.0501 + }, + { + "start": 16931.5, + "end": 16933.6, + "probability": 0.159 + }, + { + "start": 16933.6, + "end": 16934.33, + "probability": 0.3806 + }, + { + "start": 16935.88, + "end": 16936.44, + "probability": 0.3114 + }, + { + "start": 16936.62, + "end": 16940.2, + "probability": 0.6109 + }, + { + "start": 16943.26, + "end": 16943.64, + "probability": 0.1201 + }, + { + "start": 16950.14, + "end": 16955.22, + "probability": 0.2825 + }, + { + "start": 16955.66, + "end": 16961.74, + "probability": 0.4366 + }, + { + "start": 16961.84, + "end": 16964.18, + "probability": 0.998 + }, + { + "start": 16964.18, + "end": 16966.24, + "probability": 0.9919 + }, + { + "start": 16966.34, + "end": 16966.58, + "probability": 0.7568 + }, + { + "start": 16967.28, + "end": 16967.62, + "probability": 0.7161 + }, + { + "start": 16969.22, + "end": 16970.54, + "probability": 0.8379 + }, + { + "start": 16971.56, + "end": 16972.38, + "probability": 0.917 + }, + { + "start": 16973.02, + "end": 16974.24, + "probability": 0.7227 + }, + { + "start": 16977.03, + "end": 16980.0, + "probability": 0.9799 + }, + { + "start": 16981.12, + "end": 16988.7, + "probability": 0.9478 + }, + { + "start": 16990.2, + "end": 16993.27, + "probability": 0.9734 + }, + { + "start": 16993.74, + "end": 16994.28, + "probability": 0.7458 + }, + { + "start": 16994.3, + "end": 16994.44, + "probability": 0.2548 + }, + { + "start": 16996.72, + "end": 17000.82, + "probability": 0.8142 + }, + { + "start": 17001.5, + "end": 17002.18, + "probability": 0.9308 + }, + { + "start": 17002.58, + "end": 17003.52, + "probability": 0.8486 + }, + { + "start": 17004.24, + "end": 17010.6, + "probability": 0.9834 + }, + { + "start": 17010.66, + "end": 17011.2, + "probability": 0.9787 + }, + { + "start": 17012.38, + "end": 17013.64, + "probability": 0.8576 + }, + { + "start": 17014.78, + "end": 17015.76, + "probability": 0.9363 + }, + { + "start": 17016.28, + "end": 17019.8, + "probability": 0.9937 + }, + { + "start": 17020.52, + "end": 17025.72, + "probability": 0.9565 + }, + { + "start": 17026.72, + "end": 17027.62, + "probability": 0.8591 + }, + { + "start": 17027.98, + "end": 17030.33, + "probability": 0.9512 + }, + { + "start": 17031.22, + "end": 17034.04, + "probability": 0.8349 + }, + { + "start": 17034.56, + "end": 17035.32, + "probability": 0.7698 + }, + { + "start": 17035.36, + "end": 17035.86, + "probability": 0.623 + }, + { + "start": 17035.98, + "end": 17038.28, + "probability": 0.9912 + }, + { + "start": 17038.48, + "end": 17039.02, + "probability": 0.7564 + }, + { + "start": 17039.72, + "end": 17040.46, + "probability": 0.9498 + }, + { + "start": 17041.1, + "end": 17042.04, + "probability": 0.9924 + }, + { + "start": 17043.0, + "end": 17044.8, + "probability": 0.9143 + }, + { + "start": 17044.98, + "end": 17049.59, + "probability": 0.8943 + }, + { + "start": 17051.2, + "end": 17054.46, + "probability": 0.9392 + }, + { + "start": 17055.04, + "end": 17055.48, + "probability": 0.5224 + }, + { + "start": 17056.08, + "end": 17058.86, + "probability": 0.9526 + }, + { + "start": 17059.48, + "end": 17061.72, + "probability": 0.8154 + }, + { + "start": 17063.08, + "end": 17063.9, + "probability": 0.5919 + }, + { + "start": 17065.14, + "end": 17066.74, + "probability": 0.4425 + }, + { + "start": 17067.88, + "end": 17072.22, + "probability": 0.8835 + }, + { + "start": 17073.08, + "end": 17075.1, + "probability": 0.4827 + }, + { + "start": 17075.62, + "end": 17077.58, + "probability": 0.8096 + }, + { + "start": 17078.46, + "end": 17079.28, + "probability": 0.9697 + }, + { + "start": 17080.26, + "end": 17083.03, + "probability": 0.9585 + }, + { + "start": 17084.1, + "end": 17085.48, + "probability": 0.9858 + }, + { + "start": 17086.3, + "end": 17089.8, + "probability": 0.5356 + }, + { + "start": 17090.08, + "end": 17091.41, + "probability": 0.4066 + }, + { + "start": 17092.76, + "end": 17093.56, + "probability": 0.6316 + }, + { + "start": 17094.22, + "end": 17095.88, + "probability": 0.75 + }, + { + "start": 17096.16, + "end": 17099.98, + "probability": 0.8758 + }, + { + "start": 17100.46, + "end": 17105.64, + "probability": 0.7704 + }, + { + "start": 17106.28, + "end": 17107.86, + "probability": 0.8015 + }, + { + "start": 17108.7, + "end": 17110.16, + "probability": 0.9399 + }, + { + "start": 17111.7, + "end": 17112.62, + "probability": 0.4921 + }, + { + "start": 17112.62, + "end": 17113.02, + "probability": 0.1795 + }, + { + "start": 17113.84, + "end": 17114.82, + "probability": 0.2185 + }, + { + "start": 17115.34, + "end": 17117.14, + "probability": 0.9982 + }, + { + "start": 17117.62, + "end": 17118.5, + "probability": 0.729 + }, + { + "start": 17119.06, + "end": 17120.44, + "probability": 0.9434 + }, + { + "start": 17120.62, + "end": 17121.58, + "probability": 0.9815 + }, + { + "start": 17121.84, + "end": 17123.22, + "probability": 0.8452 + }, + { + "start": 17123.5, + "end": 17124.08, + "probability": 0.5706 + }, + { + "start": 17124.1, + "end": 17125.04, + "probability": 0.6822 + }, + { + "start": 17125.76, + "end": 17129.26, + "probability": 0.9928 + }, + { + "start": 17130.12, + "end": 17130.76, + "probability": 0.6015 + }, + { + "start": 17130.94, + "end": 17132.33, + "probability": 0.9958 + }, + { + "start": 17134.48, + "end": 17134.94, + "probability": 0.3234 + }, + { + "start": 17134.98, + "end": 17136.0, + "probability": 0.8514 + }, + { + "start": 17150.58, + "end": 17154.68, + "probability": 0.6504 + }, + { + "start": 17154.82, + "end": 17156.18, + "probability": 0.7107 + }, + { + "start": 17156.28, + "end": 17157.0, + "probability": 0.8852 + }, + { + "start": 17157.2, + "end": 17157.56, + "probability": 0.6408 + }, + { + "start": 17158.44, + "end": 17159.34, + "probability": 0.8047 + }, + { + "start": 17160.38, + "end": 17161.88, + "probability": 0.9831 + }, + { + "start": 17162.78, + "end": 17166.02, + "probability": 0.9809 + }, + { + "start": 17167.06, + "end": 17168.88, + "probability": 0.9111 + }, + { + "start": 17169.72, + "end": 17172.6, + "probability": 0.9994 + }, + { + "start": 17173.22, + "end": 17174.93, + "probability": 0.5599 + }, + { + "start": 17175.02, + "end": 17177.84, + "probability": 0.6834 + }, + { + "start": 17178.32, + "end": 17183.58, + "probability": 0.9978 + }, + { + "start": 17184.24, + "end": 17186.18, + "probability": 0.998 + }, + { + "start": 17186.84, + "end": 17190.82, + "probability": 0.8703 + }, + { + "start": 17191.46, + "end": 17194.52, + "probability": 0.9638 + }, + { + "start": 17195.04, + "end": 17202.2, + "probability": 0.994 + }, + { + "start": 17202.92, + "end": 17205.5, + "probability": 0.6347 + }, + { + "start": 17205.92, + "end": 17206.52, + "probability": 0.8378 + }, + { + "start": 17206.56, + "end": 17207.66, + "probability": 0.2353 + }, + { + "start": 17207.78, + "end": 17209.36, + "probability": 0.8321 + }, + { + "start": 17209.58, + "end": 17211.15, + "probability": 0.9716 + }, + { + "start": 17211.5, + "end": 17212.48, + "probability": 0.9233 + }, + { + "start": 17212.56, + "end": 17213.7, + "probability": 0.7884 + }, + { + "start": 17214.2, + "end": 17214.88, + "probability": 0.9614 + }, + { + "start": 17214.92, + "end": 17215.48, + "probability": 0.9115 + }, + { + "start": 17215.52, + "end": 17216.12, + "probability": 0.8531 + }, + { + "start": 17216.22, + "end": 17217.48, + "probability": 0.9741 + }, + { + "start": 17217.98, + "end": 17219.04, + "probability": 0.9446 + }, + { + "start": 17219.1, + "end": 17222.82, + "probability": 0.9839 + }, + { + "start": 17223.42, + "end": 17225.02, + "probability": 0.9705 + }, + { + "start": 17225.52, + "end": 17226.94, + "probability": 0.9692 + }, + { + "start": 17226.94, + "end": 17227.5, + "probability": 0.9093 + }, + { + "start": 17227.58, + "end": 17228.12, + "probability": 0.9813 + }, + { + "start": 17228.16, + "end": 17228.6, + "probability": 0.9684 + }, + { + "start": 17228.68, + "end": 17229.16, + "probability": 0.9652 + }, + { + "start": 17229.32, + "end": 17229.68, + "probability": 0.7741 + }, + { + "start": 17229.82, + "end": 17230.38, + "probability": 0.9785 + }, + { + "start": 17230.78, + "end": 17232.94, + "probability": 0.9003 + }, + { + "start": 17233.0, + "end": 17233.62, + "probability": 0.9918 + }, + { + "start": 17234.44, + "end": 17237.58, + "probability": 0.9863 + }, + { + "start": 17237.58, + "end": 17239.42, + "probability": 0.9978 + }, + { + "start": 17240.64, + "end": 17242.54, + "probability": 0.8971 + }, + { + "start": 17242.66, + "end": 17245.38, + "probability": 0.9345 + }, + { + "start": 17245.94, + "end": 17246.56, + "probability": 0.8285 + }, + { + "start": 17247.08, + "end": 17248.46, + "probability": 0.9971 + }, + { + "start": 17248.84, + "end": 17249.98, + "probability": 0.9814 + }, + { + "start": 17250.36, + "end": 17252.38, + "probability": 0.9507 + }, + { + "start": 17252.56, + "end": 17252.88, + "probability": 0.8011 + }, + { + "start": 17252.94, + "end": 17253.6, + "probability": 0.8904 + }, + { + "start": 17253.88, + "end": 17255.9, + "probability": 0.9951 + }, + { + "start": 17256.18, + "end": 17258.46, + "probability": 0.9972 + }, + { + "start": 17259.2, + "end": 17261.84, + "probability": 0.9979 + }, + { + "start": 17262.3, + "end": 17264.62, + "probability": 0.9974 + }, + { + "start": 17265.04, + "end": 17266.5, + "probability": 0.8663 + }, + { + "start": 17267.08, + "end": 17272.0, + "probability": 0.9802 + }, + { + "start": 17272.46, + "end": 17272.96, + "probability": 0.4582 + }, + { + "start": 17272.96, + "end": 17275.76, + "probability": 0.9287 + }, + { + "start": 17276.44, + "end": 17278.0, + "probability": 0.9604 + }, + { + "start": 17278.1, + "end": 17279.04, + "probability": 0.9805 + }, + { + "start": 17279.52, + "end": 17281.86, + "probability": 0.9409 + }, + { + "start": 17282.2, + "end": 17283.28, + "probability": 0.9268 + }, + { + "start": 17283.66, + "end": 17284.6, + "probability": 0.9666 + }, + { + "start": 17285.3, + "end": 17287.06, + "probability": 0.9767 + }, + { + "start": 17287.4, + "end": 17288.47, + "probability": 0.622 + }, + { + "start": 17289.39, + "end": 17296.6, + "probability": 0.9672 + }, + { + "start": 17297.96, + "end": 17297.96, + "probability": 0.0842 + }, + { + "start": 17297.96, + "end": 17300.65, + "probability": 0.9927 + }, + { + "start": 17301.14, + "end": 17304.25, + "probability": 0.7352 + }, + { + "start": 17304.78, + "end": 17307.18, + "probability": 0.997 + }, + { + "start": 17308.0, + "end": 17310.3, + "probability": 0.9395 + }, + { + "start": 17310.76, + "end": 17317.08, + "probability": 0.9259 + }, + { + "start": 17317.18, + "end": 17318.64, + "probability": 0.4976 + }, + { + "start": 17320.94, + "end": 17323.64, + "probability": 0.9946 + }, + { + "start": 17324.0, + "end": 17325.5, + "probability": 0.7167 + }, + { + "start": 17326.62, + "end": 17329.74, + "probability": 0.9432 + }, + { + "start": 17329.82, + "end": 17331.04, + "probability": 0.8885 + }, + { + "start": 17331.62, + "end": 17332.3, + "probability": 0.7765 + }, + { + "start": 17332.86, + "end": 17334.92, + "probability": 0.5003 + }, + { + "start": 17335.0, + "end": 17336.7, + "probability": 0.8361 + }, + { + "start": 17336.72, + "end": 17336.98, + "probability": 0.8267 + }, + { + "start": 17337.54, + "end": 17337.84, + "probability": 0.7371 + }, + { + "start": 17338.24, + "end": 17339.68, + "probability": 0.906 + }, + { + "start": 17342.3, + "end": 17343.62, + "probability": 0.111 + }, + { + "start": 17344.2, + "end": 17347.08, + "probability": 0.6393 + }, + { + "start": 17349.18, + "end": 17355.56, + "probability": 0.7851 + }, + { + "start": 17357.1, + "end": 17360.14, + "probability": 0.9927 + }, + { + "start": 17361.6, + "end": 17366.31, + "probability": 0.999 + }, + { + "start": 17366.36, + "end": 17369.82, + "probability": 0.999 + }, + { + "start": 17371.04, + "end": 17375.27, + "probability": 0.918 + }, + { + "start": 17376.06, + "end": 17377.04, + "probability": 0.8105 + }, + { + "start": 17377.64, + "end": 17378.9, + "probability": 0.9744 + }, + { + "start": 17379.66, + "end": 17380.98, + "probability": 0.9812 + }, + { + "start": 17381.7, + "end": 17386.36, + "probability": 0.9684 + }, + { + "start": 17387.14, + "end": 17390.96, + "probability": 0.9736 + }, + { + "start": 17391.66, + "end": 17394.34, + "probability": 0.9744 + }, + { + "start": 17396.14, + "end": 17398.76, + "probability": 0.9951 + }, + { + "start": 17398.88, + "end": 17399.72, + "probability": 0.6104 + }, + { + "start": 17400.56, + "end": 17404.24, + "probability": 0.9191 + }, + { + "start": 17404.28, + "end": 17405.06, + "probability": 0.6813 + }, + { + "start": 17405.94, + "end": 17406.84, + "probability": 0.8299 + }, + { + "start": 17407.68, + "end": 17410.06, + "probability": 0.9819 + }, + { + "start": 17410.82, + "end": 17413.74, + "probability": 0.8515 + }, + { + "start": 17414.34, + "end": 17416.36, + "probability": 0.9798 + }, + { + "start": 17417.04, + "end": 17418.18, + "probability": 0.9756 + }, + { + "start": 17419.14, + "end": 17420.86, + "probability": 0.9804 + }, + { + "start": 17421.78, + "end": 17424.48, + "probability": 0.9915 + }, + { + "start": 17425.08, + "end": 17430.52, + "probability": 0.992 + }, + { + "start": 17431.68, + "end": 17436.32, + "probability": 0.9971 + }, + { + "start": 17436.64, + "end": 17438.18, + "probability": 0.5366 + }, + { + "start": 17439.04, + "end": 17439.1, + "probability": 0.0909 + }, + { + "start": 17439.1, + "end": 17439.1, + "probability": 0.2903 + }, + { + "start": 17439.1, + "end": 17443.9, + "probability": 0.7666 + }, + { + "start": 17445.56, + "end": 17445.56, + "probability": 0.1457 + }, + { + "start": 17445.56, + "end": 17447.84, + "probability": 0.6478 + }, + { + "start": 17448.06, + "end": 17455.24, + "probability": 0.9951 + }, + { + "start": 17455.78, + "end": 17457.68, + "probability": 0.9895 + }, + { + "start": 17458.56, + "end": 17461.78, + "probability": 0.9522 + }, + { + "start": 17462.4, + "end": 17463.6, + "probability": 0.5781 + }, + { + "start": 17463.78, + "end": 17465.4, + "probability": 0.9072 + }, + { + "start": 17465.5, + "end": 17466.47, + "probability": 0.9758 + }, + { + "start": 17467.1, + "end": 17467.61, + "probability": 0.9724 + }, + { + "start": 17469.0, + "end": 17471.02, + "probability": 0.9634 + }, + { + "start": 17471.3, + "end": 17472.82, + "probability": 0.7247 + }, + { + "start": 17472.98, + "end": 17473.72, + "probability": 0.7438 + }, + { + "start": 17474.38, + "end": 17477.28, + "probability": 0.9812 + }, + { + "start": 17477.62, + "end": 17483.02, + "probability": 0.9917 + }, + { + "start": 17483.46, + "end": 17485.74, + "probability": 0.8744 + }, + { + "start": 17486.14, + "end": 17488.42, + "probability": 0.6244 + }, + { + "start": 17488.96, + "end": 17493.96, + "probability": 0.9358 + }, + { + "start": 17494.86, + "end": 17495.62, + "probability": 0.8939 + }, + { + "start": 17496.18, + "end": 17497.82, + "probability": 0.9263 + }, + { + "start": 17498.5, + "end": 17500.06, + "probability": 0.9387 + }, + { + "start": 17500.82, + "end": 17504.91, + "probability": 0.8642 + }, + { + "start": 17505.94, + "end": 17507.6, + "probability": 0.9535 + }, + { + "start": 17508.38, + "end": 17509.66, + "probability": 0.8062 + }, + { + "start": 17510.36, + "end": 17516.22, + "probability": 0.965 + }, + { + "start": 17517.16, + "end": 17520.54, + "probability": 0.8985 + }, + { + "start": 17521.06, + "end": 17521.86, + "probability": 0.2062 + }, + { + "start": 17522.62, + "end": 17525.36, + "probability": 0.9543 + }, + { + "start": 17525.76, + "end": 17526.98, + "probability": 0.9825 + }, + { + "start": 17527.48, + "end": 17531.38, + "probability": 0.9863 + }, + { + "start": 17532.04, + "end": 17538.56, + "probability": 0.837 + }, + { + "start": 17538.64, + "end": 17538.64, + "probability": 0.2276 + }, + { + "start": 17538.64, + "end": 17539.3, + "probability": 0.4377 + }, + { + "start": 17540.06, + "end": 17540.44, + "probability": 0.7059 + }, + { + "start": 17541.22, + "end": 17542.13, + "probability": 0.9669 + }, + { + "start": 17543.14, + "end": 17547.54, + "probability": 0.8765 + }, + { + "start": 17548.22, + "end": 17549.8, + "probability": 0.9939 + }, + { + "start": 17550.58, + "end": 17552.84, + "probability": 0.9943 + }, + { + "start": 17553.26, + "end": 17557.12, + "probability": 0.9882 + }, + { + "start": 17557.68, + "end": 17559.94, + "probability": 0.9639 + }, + { + "start": 17560.38, + "end": 17563.78, + "probability": 0.9585 + }, + { + "start": 17564.28, + "end": 17564.54, + "probability": 0.7066 + }, + { + "start": 17564.98, + "end": 17564.98, + "probability": 0.4387 + }, + { + "start": 17564.98, + "end": 17565.78, + "probability": 0.8805 + }, + { + "start": 17584.28, + "end": 17584.54, + "probability": 0.5245 + }, + { + "start": 17585.42, + "end": 17587.96, + "probability": 0.5321 + }, + { + "start": 17588.0, + "end": 17589.14, + "probability": 0.8235 + }, + { + "start": 17589.64, + "end": 17591.46, + "probability": 0.7197 + }, + { + "start": 17592.4, + "end": 17595.48, + "probability": 0.6201 + }, + { + "start": 17595.62, + "end": 17598.78, + "probability": 0.8493 + }, + { + "start": 17600.08, + "end": 17605.0, + "probability": 0.8981 + }, + { + "start": 17606.68, + "end": 17609.4, + "probability": 0.9869 + }, + { + "start": 17609.8, + "end": 17611.16, + "probability": 0.7153 + }, + { + "start": 17611.74, + "end": 17617.8, + "probability": 0.8832 + }, + { + "start": 17617.9, + "end": 17619.08, + "probability": 0.9774 + }, + { + "start": 17620.06, + "end": 17620.52, + "probability": 0.1047 + }, + { + "start": 17620.74, + "end": 17620.76, + "probability": 0.1703 + }, + { + "start": 17620.76, + "end": 17626.18, + "probability": 0.8979 + }, + { + "start": 17626.94, + "end": 17628.58, + "probability": 0.6909 + }, + { + "start": 17629.64, + "end": 17629.92, + "probability": 0.0612 + }, + { + "start": 17630.62, + "end": 17630.86, + "probability": 0.0247 + }, + { + "start": 17630.86, + "end": 17630.86, + "probability": 0.0172 + }, + { + "start": 17630.86, + "end": 17638.0, + "probability": 0.7937 + }, + { + "start": 17638.2, + "end": 17640.6, + "probability": 0.1836 + }, + { + "start": 17640.6, + "end": 17640.68, + "probability": 0.1302 + }, + { + "start": 17640.78, + "end": 17643.86, + "probability": 0.6425 + }, + { + "start": 17644.12, + "end": 17645.08, + "probability": 0.5611 + }, + { + "start": 17645.46, + "end": 17647.68, + "probability": 0.6486 + }, + { + "start": 17647.68, + "end": 17647.8, + "probability": 0.4318 + }, + { + "start": 17647.8, + "end": 17648.28, + "probability": 0.6519 + }, + { + "start": 17648.36, + "end": 17650.4, + "probability": 0.8842 + }, + { + "start": 17650.46, + "end": 17651.04, + "probability": 0.1878 + }, + { + "start": 17651.08, + "end": 17651.88, + "probability": 0.7976 + }, + { + "start": 17652.94, + "end": 17653.82, + "probability": 0.9907 + }, + { + "start": 17653.96, + "end": 17654.64, + "probability": 0.9687 + }, + { + "start": 17655.5, + "end": 17655.88, + "probability": 0.695 + }, + { + "start": 17656.2, + "end": 17657.64, + "probability": 0.8938 + }, + { + "start": 17657.78, + "end": 17658.34, + "probability": 0.8289 + }, + { + "start": 17658.46, + "end": 17660.42, + "probability": 0.9443 + }, + { + "start": 17660.52, + "end": 17662.4, + "probability": 0.7283 + }, + { + "start": 17662.7, + "end": 17663.9, + "probability": 0.0431 + }, + { + "start": 17663.9, + "end": 17663.9, + "probability": 0.0246 + }, + { + "start": 17663.9, + "end": 17663.9, + "probability": 0.2771 + }, + { + "start": 17663.9, + "end": 17663.9, + "probability": 0.154 + }, + { + "start": 17663.9, + "end": 17664.5, + "probability": 0.4226 + }, + { + "start": 17665.16, + "end": 17665.52, + "probability": 0.1138 + }, + { + "start": 17665.52, + "end": 17666.3, + "probability": 0.4461 + }, + { + "start": 17666.84, + "end": 17668.18, + "probability": 0.0813 + }, + { + "start": 17668.72, + "end": 17672.86, + "probability": 0.8625 + }, + { + "start": 17673.26, + "end": 17675.74, + "probability": 0.5752 + }, + { + "start": 17675.94, + "end": 17678.68, + "probability": 0.9875 + }, + { + "start": 17678.74, + "end": 17680.38, + "probability": 0.9547 + }, + { + "start": 17680.78, + "end": 17682.7, + "probability": 0.8767 + }, + { + "start": 17683.08, + "end": 17688.6, + "probability": 0.9831 + }, + { + "start": 17688.98, + "end": 17690.42, + "probability": 0.0849 + }, + { + "start": 17690.46, + "end": 17690.7, + "probability": 0.2698 + }, + { + "start": 17690.7, + "end": 17691.16, + "probability": 0.2257 + }, + { + "start": 17691.28, + "end": 17691.38, + "probability": 0.3572 + }, + { + "start": 17691.38, + "end": 17693.62, + "probability": 0.8614 + }, + { + "start": 17693.62, + "end": 17694.16, + "probability": 0.6499 + }, + { + "start": 17694.16, + "end": 17695.34, + "probability": 0.4448 + }, + { + "start": 17695.42, + "end": 17695.42, + "probability": 0.5089 + }, + { + "start": 17695.52, + "end": 17696.46, + "probability": 0.9758 + }, + { + "start": 17696.64, + "end": 17700.5, + "probability": 0.9634 + }, + { + "start": 17700.82, + "end": 17700.82, + "probability": 0.2787 + }, + { + "start": 17700.84, + "end": 17700.84, + "probability": 0.0139 + }, + { + "start": 17700.84, + "end": 17702.32, + "probability": 0.6951 + }, + { + "start": 17702.6, + "end": 17703.86, + "probability": 0.947 + }, + { + "start": 17703.86, + "end": 17704.16, + "probability": 0.4014 + }, + { + "start": 17704.34, + "end": 17704.4, + "probability": 0.6022 + }, + { + "start": 17704.4, + "end": 17707.18, + "probability": 0.9917 + }, + { + "start": 17707.88, + "end": 17710.0, + "probability": 0.6926 + }, + { + "start": 17710.38, + "end": 17710.38, + "probability": 0.0708 + }, + { + "start": 17710.38, + "end": 17713.52, + "probability": 0.9129 + }, + { + "start": 17713.74, + "end": 17715.0, + "probability": 0.8836 + }, + { + "start": 17715.18, + "end": 17716.98, + "probability": 0.8914 + }, + { + "start": 17717.2, + "end": 17717.5, + "probability": 0.1672 + }, + { + "start": 17717.5, + "end": 17721.82, + "probability": 0.7497 + }, + { + "start": 17722.12, + "end": 17723.26, + "probability": 0.7652 + }, + { + "start": 17723.3, + "end": 17725.27, + "probability": 0.9108 + }, + { + "start": 17725.64, + "end": 17725.88, + "probability": 0.0803 + }, + { + "start": 17725.88, + "end": 17728.96, + "probability": 0.7285 + }, + { + "start": 17729.24, + "end": 17729.24, + "probability": 0.1327 + }, + { + "start": 17729.24, + "end": 17732.54, + "probability": 0.9398 + }, + { + "start": 17733.06, + "end": 17733.5, + "probability": 0.0896 + }, + { + "start": 17733.5, + "end": 17733.5, + "probability": 0.3951 + }, + { + "start": 17733.5, + "end": 17734.26, + "probability": 0.3753 + }, + { + "start": 17734.42, + "end": 17736.28, + "probability": 0.896 + }, + { + "start": 17736.76, + "end": 17736.9, + "probability": 0.0724 + }, + { + "start": 17736.9, + "end": 17738.25, + "probability": 0.4918 + }, + { + "start": 17738.64, + "end": 17739.76, + "probability": 0.608 + }, + { + "start": 17740.06, + "end": 17743.26, + "probability": 0.9085 + }, + { + "start": 17743.64, + "end": 17745.54, + "probability": 0.9915 + }, + { + "start": 17745.85, + "end": 17746.02, + "probability": 0.0258 + }, + { + "start": 17746.14, + "end": 17746.58, + "probability": 0.9674 + }, + { + "start": 17746.78, + "end": 17749.22, + "probability": 0.9095 + }, + { + "start": 17749.28, + "end": 17751.06, + "probability": 0.2383 + }, + { + "start": 17751.06, + "end": 17753.02, + "probability": 0.237 + }, + { + "start": 17753.58, + "end": 17756.14, + "probability": 0.8279 + }, + { + "start": 17756.46, + "end": 17756.5, + "probability": 0.3318 + }, + { + "start": 17756.54, + "end": 17757.82, + "probability": 0.7798 + }, + { + "start": 17758.12, + "end": 17759.36, + "probability": 0.8088 + }, + { + "start": 17759.94, + "end": 17761.3, + "probability": 0.3558 + }, + { + "start": 17761.44, + "end": 17762.68, + "probability": 0.5578 + }, + { + "start": 17762.74, + "end": 17762.84, + "probability": 0.0474 + }, + { + "start": 17762.84, + "end": 17764.56, + "probability": 0.6478 + }, + { + "start": 17764.62, + "end": 17766.02, + "probability": 0.3958 + }, + { + "start": 17766.04, + "end": 17766.32, + "probability": 0.3752 + }, + { + "start": 17766.58, + "end": 17767.0, + "probability": 0.8111 + }, + { + "start": 17767.82, + "end": 17769.24, + "probability": 0.814 + }, + { + "start": 17769.58, + "end": 17769.9, + "probability": 0.4961 + }, + { + "start": 17769.94, + "end": 17771.28, + "probability": 0.8582 + }, + { + "start": 17771.66, + "end": 17772.32, + "probability": 0.7568 + }, + { + "start": 17772.42, + "end": 17774.32, + "probability": 0.8486 + }, + { + "start": 17774.44, + "end": 17775.39, + "probability": 0.9492 + }, + { + "start": 17775.58, + "end": 17776.12, + "probability": 0.8413 + }, + { + "start": 17776.77, + "end": 17777.98, + "probability": 0.1839 + }, + { + "start": 17778.02, + "end": 17782.34, + "probability": 0.2413 + }, + { + "start": 17782.34, + "end": 17782.94, + "probability": 0.3278 + }, + { + "start": 17783.22, + "end": 17786.06, + "probability": 0.8371 + }, + { + "start": 17786.5, + "end": 17789.04, + "probability": 0.9968 + }, + { + "start": 17789.42, + "end": 17791.06, + "probability": 0.9979 + }, + { + "start": 17791.58, + "end": 17791.6, + "probability": 0.0932 + }, + { + "start": 17791.6, + "end": 17794.06, + "probability": 0.7858 + }, + { + "start": 17794.58, + "end": 17796.15, + "probability": 0.9756 + }, + { + "start": 17796.28, + "end": 17800.37, + "probability": 0.9813 + }, + { + "start": 17800.76, + "end": 17801.82, + "probability": 0.9683 + }, + { + "start": 17802.16, + "end": 17803.38, + "probability": 0.8808 + }, + { + "start": 17803.68, + "end": 17805.18, + "probability": 0.9722 + }, + { + "start": 17805.32, + "end": 17805.62, + "probability": 0.7671 + }, + { + "start": 17806.14, + "end": 17808.88, + "probability": 0.5135 + }, + { + "start": 17808.9, + "end": 17810.8, + "probability": 0.8958 + }, + { + "start": 17810.88, + "end": 17813.04, + "probability": 0.6868 + }, + { + "start": 17813.92, + "end": 17816.26, + "probability": 0.8107 + }, + { + "start": 17817.58, + "end": 17818.1, + "probability": 0.3297 + }, + { + "start": 17818.68, + "end": 17819.94, + "probability": 0.1981 + }, + { + "start": 17820.02, + "end": 17822.85, + "probability": 0.2016 + }, + { + "start": 17825.5, + "end": 17826.92, + "probability": 0.2013 + }, + { + "start": 17827.56, + "end": 17830.6, + "probability": 0.5394 + }, + { + "start": 17831.46, + "end": 17834.44, + "probability": 0.1836 + }, + { + "start": 17834.88, + "end": 17835.28, + "probability": 0.0808 + }, + { + "start": 17835.28, + "end": 17835.28, + "probability": 0.1122 + }, + { + "start": 17844.38, + "end": 17846.28, + "probability": 0.6982 + }, + { + "start": 17846.32, + "end": 17851.36, + "probability": 0.9872 + }, + { + "start": 17851.62, + "end": 17856.36, + "probability": 0.9611 + }, + { + "start": 17857.43, + "end": 17860.5, + "probability": 0.6199 + }, + { + "start": 17861.16, + "end": 17863.1, + "probability": 0.9785 + }, + { + "start": 17863.2, + "end": 17863.72, + "probability": 0.9564 + }, + { + "start": 17864.08, + "end": 17864.42, + "probability": 0.017 + }, + { + "start": 17864.42, + "end": 17867.22, + "probability": 0.5601 + }, + { + "start": 17868.06, + "end": 17869.26, + "probability": 0.8364 + }, + { + "start": 17869.38, + "end": 17869.82, + "probability": 0.33 + }, + { + "start": 17870.82, + "end": 17873.08, + "probability": 0.8541 + }, + { + "start": 17873.22, + "end": 17874.73, + "probability": 0.6001 + }, + { + "start": 17874.82, + "end": 17876.16, + "probability": 0.1355 + }, + { + "start": 17876.16, + "end": 17879.28, + "probability": 0.7312 + }, + { + "start": 17879.52, + "end": 17879.64, + "probability": 0.5027 + }, + { + "start": 17879.64, + "end": 17882.14, + "probability": 0.6625 + }, + { + "start": 17882.32, + "end": 17883.64, + "probability": 0.8134 + }, + { + "start": 17883.72, + "end": 17884.98, + "probability": 0.9283 + }, + { + "start": 17885.1, + "end": 17888.42, + "probability": 0.9979 + }, + { + "start": 17888.62, + "end": 17888.84, + "probability": 0.7899 + }, + { + "start": 17888.96, + "end": 17890.1, + "probability": 0.885 + }, + { + "start": 17890.24, + "end": 17892.44, + "probability": 0.9985 + }, + { + "start": 17893.08, + "end": 17900.68, + "probability": 0.9933 + }, + { + "start": 17900.68, + "end": 17906.3, + "probability": 0.9961 + }, + { + "start": 17907.06, + "end": 17909.76, + "probability": 0.8019 + }, + { + "start": 17910.12, + "end": 17910.56, + "probability": 0.3692 + }, + { + "start": 17910.56, + "end": 17911.58, + "probability": 0.5991 + }, + { + "start": 17915.06, + "end": 17915.26, + "probability": 0.0051 + }, + { + "start": 17916.74, + "end": 17919.46, + "probability": 0.6317 + }, + { + "start": 17919.86, + "end": 17921.26, + "probability": 0.0626 + }, + { + "start": 17922.8, + "end": 17923.48, + "probability": 0.0662 + }, + { + "start": 17923.48, + "end": 17923.48, + "probability": 0.0997 + }, + { + "start": 17923.48, + "end": 17923.48, + "probability": 0.125 + }, + { + "start": 17923.48, + "end": 17924.04, + "probability": 0.0017 + }, + { + "start": 17924.04, + "end": 17929.16, + "probability": 0.1777 + }, + { + "start": 17929.84, + "end": 17929.84, + "probability": 0.0967 + }, + { + "start": 17929.84, + "end": 17929.84, + "probability": 0.1655 + }, + { + "start": 17929.84, + "end": 17933.22, + "probability": 0.7752 + }, + { + "start": 17934.26, + "end": 17936.34, + "probability": 0.1012 + }, + { + "start": 17936.34, + "end": 17938.66, + "probability": 0.0621 + }, + { + "start": 17942.52, + "end": 17943.54, + "probability": 0.0539 + }, + { + "start": 17943.56, + "end": 17946.06, + "probability": 0.054 + }, + { + "start": 17946.06, + "end": 17946.06, + "probability": 0.3369 + }, + { + "start": 17946.06, + "end": 17948.12, + "probability": 0.0129 + }, + { + "start": 17948.12, + "end": 17948.12, + "probability": 0.0556 + }, + { + "start": 17948.12, + "end": 17948.62, + "probability": 0.0772 + }, + { + "start": 17948.62, + "end": 17950.72, + "probability": 0.0519 + }, + { + "start": 17955.14, + "end": 17958.42, + "probability": 0.0641 + }, + { + "start": 17961.28, + "end": 17962.98, + "probability": 0.3001 + }, + { + "start": 17963.89, + "end": 17968.64, + "probability": 0.093 + }, + { + "start": 17968.64, + "end": 17972.84, + "probability": 0.1118 + }, + { + "start": 17973.2, + "end": 17975.32, + "probability": 0.0747 + }, + { + "start": 17975.32, + "end": 17976.24, + "probability": 0.1005 + }, + { + "start": 17976.7, + "end": 17977.66, + "probability": 0.0528 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.0, + "end": 17983.0, + "probability": 0.0 + }, + { + "start": 17983.18, + "end": 17983.18, + "probability": 0.0748 + }, + { + "start": 17983.18, + "end": 17983.18, + "probability": 0.0737 + }, + { + "start": 17983.18, + "end": 17984.62, + "probability": 0.2062 + }, + { + "start": 17984.62, + "end": 17985.96, + "probability": 0.5756 + }, + { + "start": 17986.12, + "end": 17987.1, + "probability": 0.4283 + }, + { + "start": 17987.4, + "end": 17989.62, + "probability": 0.6786 + }, + { + "start": 17989.98, + "end": 17990.84, + "probability": 0.034 + }, + { + "start": 17991.14, + "end": 17996.88, + "probability": 0.48 + }, + { + "start": 17997.45, + "end": 17999.34, + "probability": 0.0332 + }, + { + "start": 17999.34, + "end": 17999.34, + "probability": 0.1806 + }, + { + "start": 17999.34, + "end": 18000.8, + "probability": 0.2777 + }, + { + "start": 18000.8, + "end": 18004.64, + "probability": 0.6321 + }, + { + "start": 18005.12, + "end": 18010.56, + "probability": 0.9814 + }, + { + "start": 18010.68, + "end": 18012.62, + "probability": 0.9501 + }, + { + "start": 18012.8, + "end": 18012.88, + "probability": 0.8914 + }, + { + "start": 18013.44, + "end": 18017.76, + "probability": 0.9983 + }, + { + "start": 18017.94, + "end": 18023.76, + "probability": 0.9953 + }, + { + "start": 18023.76, + "end": 18027.12, + "probability": 0.9969 + }, + { + "start": 18027.5, + "end": 18029.34, + "probability": 0.9972 + }, + { + "start": 18029.42, + "end": 18030.44, + "probability": 0.9736 + }, + { + "start": 18030.6, + "end": 18031.12, + "probability": 0.69 + }, + { + "start": 18031.44, + "end": 18034.08, + "probability": 0.8942 + }, + { + "start": 18034.08, + "end": 18037.14, + "probability": 0.3368 + }, + { + "start": 18040.06, + "end": 18041.58, + "probability": 0.1016 + }, + { + "start": 18042.94, + "end": 18043.78, + "probability": 0.2213 + }, + { + "start": 18044.02, + "end": 18045.0, + "probability": 0.0416 + }, + { + "start": 18045.14, + "end": 18046.18, + "probability": 0.0095 + }, + { + "start": 18047.3, + "end": 18048.78, + "probability": 0.0131 + }, + { + "start": 18049.74, + "end": 18052.46, + "probability": 0.0654 + }, + { + "start": 18052.9, + "end": 18055.76, + "probability": 0.2547 + }, + { + "start": 18059.32, + "end": 18060.38, + "probability": 0.2088 + }, + { + "start": 18067.74, + "end": 18068.68, + "probability": 0.1024 + }, + { + "start": 18069.25, + "end": 18071.84, + "probability": 0.6017 + }, + { + "start": 18071.94, + "end": 18072.3, + "probability": 0.6456 + }, + { + "start": 18073.08, + "end": 18074.38, + "probability": 0.525 + }, + { + "start": 18074.38, + "end": 18075.88, + "probability": 0.8387 + }, + { + "start": 18075.88, + "end": 18076.44, + "probability": 0.8206 + }, + { + "start": 18077.98, + "end": 18081.72, + "probability": 0.4448 + }, + { + "start": 18082.6, + "end": 18083.04, + "probability": 0.2394 + }, + { + "start": 18083.04, + "end": 18086.64, + "probability": 0.7012 + }, + { + "start": 18086.9, + "end": 18089.26, + "probability": 0.8649 + }, + { + "start": 18089.72, + "end": 18090.92, + "probability": 0.9481 + }, + { + "start": 18092.08, + "end": 18093.46, + "probability": 0.917 + }, + { + "start": 18094.28, + "end": 18095.7, + "probability": 0.8299 + }, + { + "start": 18096.26, + "end": 18101.04, + "probability": 0.9974 + }, + { + "start": 18101.48, + "end": 18105.15, + "probability": 0.9914 + }, + { + "start": 18105.5, + "end": 18108.12, + "probability": 0.9976 + }, + { + "start": 18108.12, + "end": 18110.26, + "probability": 0.9783 + }, + { + "start": 18110.82, + "end": 18112.5, + "probability": 0.6695 + }, + { + "start": 18112.9, + "end": 18114.16, + "probability": 0.8948 + }, + { + "start": 18114.22, + "end": 18114.76, + "probability": 0.6589 + }, + { + "start": 18114.92, + "end": 18115.94, + "probability": 0.8604 + }, + { + "start": 18116.46, + "end": 18117.98, + "probability": 0.9917 + }, + { + "start": 18118.74, + "end": 18120.03, + "probability": 0.9531 + }, + { + "start": 18120.96, + "end": 18127.2, + "probability": 0.8504 + }, + { + "start": 18127.34, + "end": 18127.34, + "probability": 0.0654 + }, + { + "start": 18127.34, + "end": 18129.96, + "probability": 0.9858 + }, + { + "start": 18130.5, + "end": 18133.4, + "probability": 0.7661 + }, + { + "start": 18133.56, + "end": 18134.44, + "probability": 0.7938 + }, + { + "start": 18134.72, + "end": 18138.38, + "probability": 0.9973 + }, + { + "start": 18139.14, + "end": 18140.02, + "probability": 0.9446 + }, + { + "start": 18140.12, + "end": 18142.84, + "probability": 0.9525 + }, + { + "start": 18143.58, + "end": 18145.14, + "probability": 0.5758 + }, + { + "start": 18145.28, + "end": 18147.78, + "probability": 0.9558 + }, + { + "start": 18148.36, + "end": 18150.6, + "probability": 0.8131 + }, + { + "start": 18151.12, + "end": 18151.8, + "probability": 0.4976 + }, + { + "start": 18152.36, + "end": 18154.38, + "probability": 0.9043 + }, + { + "start": 18155.08, + "end": 18155.82, + "probability": 0.9585 + }, + { + "start": 18156.7, + "end": 18161.7, + "probability": 0.8012 + }, + { + "start": 18162.94, + "end": 18164.9, + "probability": 0.9891 + }, + { + "start": 18165.18, + "end": 18167.36, + "probability": 0.9711 + }, + { + "start": 18167.48, + "end": 18168.88, + "probability": 0.9611 + }, + { + "start": 18169.3, + "end": 18172.4, + "probability": 0.9448 + }, + { + "start": 18172.48, + "end": 18174.34, + "probability": 0.9634 + }, + { + "start": 18174.74, + "end": 18175.94, + "probability": 0.6387 + }, + { + "start": 18176.58, + "end": 18177.76, + "probability": 0.8925 + }, + { + "start": 18177.86, + "end": 18178.5, + "probability": 0.7458 + }, + { + "start": 18178.6, + "end": 18181.5, + "probability": 0.8688 + }, + { + "start": 18182.02, + "end": 18185.96, + "probability": 0.9766 + }, + { + "start": 18186.84, + "end": 18187.54, + "probability": 0.8882 + }, + { + "start": 18187.56, + "end": 18188.82, + "probability": 0.9815 + }, + { + "start": 18189.12, + "end": 18194.12, + "probability": 0.9755 + }, + { + "start": 18194.34, + "end": 18195.92, + "probability": 0.9419 + }, + { + "start": 18196.02, + "end": 18198.36, + "probability": 0.8779 + }, + { + "start": 18198.88, + "end": 18202.58, + "probability": 0.9751 + }, + { + "start": 18203.3, + "end": 18205.08, + "probability": 0.9937 + }, + { + "start": 18205.78, + "end": 18206.84, + "probability": 0.7758 + }, + { + "start": 18207.2, + "end": 18208.52, + "probability": 0.716 + }, + { + "start": 18209.08, + "end": 18210.46, + "probability": 0.9634 + }, + { + "start": 18210.7, + "end": 18212.32, + "probability": 0.8855 + }, + { + "start": 18212.42, + "end": 18212.98, + "probability": 0.4093 + }, + { + "start": 18213.5, + "end": 18216.0, + "probability": 0.919 + }, + { + "start": 18216.42, + "end": 18217.49, + "probability": 0.9585 + }, + { + "start": 18218.54, + "end": 18220.28, + "probability": 0.9966 + }, + { + "start": 18220.5, + "end": 18221.44, + "probability": 0.998 + }, + { + "start": 18222.6, + "end": 18224.26, + "probability": 0.8472 + }, + { + "start": 18224.5, + "end": 18225.65, + "probability": 0.9814 + }, + { + "start": 18226.32, + "end": 18229.08, + "probability": 0.9067 + }, + { + "start": 18229.52, + "end": 18231.16, + "probability": 0.9807 + }, + { + "start": 18231.82, + "end": 18232.94, + "probability": 0.9922 + }, + { + "start": 18232.96, + "end": 18235.4, + "probability": 0.9397 + }, + { + "start": 18235.8, + "end": 18239.62, + "probability": 0.9849 + }, + { + "start": 18239.94, + "end": 18242.58, + "probability": 0.9971 + }, + { + "start": 18242.58, + "end": 18247.84, + "probability": 0.7757 + }, + { + "start": 18248.06, + "end": 18253.86, + "probability": 0.8858 + }, + { + "start": 18254.32, + "end": 18256.16, + "probability": 0.89 + }, + { + "start": 18256.36, + "end": 18257.0, + "probability": 0.4711 + }, + { + "start": 18257.36, + "end": 18260.2, + "probability": 0.9769 + }, + { + "start": 18260.2, + "end": 18263.65, + "probability": 0.9955 + }, + { + "start": 18264.22, + "end": 18265.24, + "probability": 0.9766 + }, + { + "start": 18265.68, + "end": 18266.78, + "probability": 0.8291 + }, + { + "start": 18267.12, + "end": 18268.12, + "probability": 0.7945 + }, + { + "start": 18268.6, + "end": 18269.1, + "probability": 0.7312 + }, + { + "start": 18269.28, + "end": 18271.98, + "probability": 0.9477 + }, + { + "start": 18271.98, + "end": 18274.84, + "probability": 0.9766 + }, + { + "start": 18275.18, + "end": 18277.86, + "probability": 0.9658 + }, + { + "start": 18278.26, + "end": 18279.82, + "probability": 0.8792 + }, + { + "start": 18279.88, + "end": 18281.62, + "probability": 0.7583 + }, + { + "start": 18282.48, + "end": 18285.22, + "probability": 0.9581 + }, + { + "start": 18285.22, + "end": 18287.78, + "probability": 0.7468 + }, + { + "start": 18288.06, + "end": 18289.48, + "probability": 0.6964 + }, + { + "start": 18289.6, + "end": 18289.68, + "probability": 0.7218 + }, + { + "start": 18289.68, + "end": 18290.14, + "probability": 0.8511 + }, + { + "start": 18290.48, + "end": 18290.94, + "probability": 0.7612 + }, + { + "start": 18291.02, + "end": 18291.58, + "probability": 0.8508 + }, + { + "start": 18291.78, + "end": 18292.63, + "probability": 0.7304 + }, + { + "start": 18292.86, + "end": 18294.74, + "probability": 0.916 + }, + { + "start": 18294.88, + "end": 18297.84, + "probability": 0.8208 + }, + { + "start": 18297.84, + "end": 18299.24, + "probability": 0.8645 + }, + { + "start": 18299.26, + "end": 18300.38, + "probability": 0.6187 + }, + { + "start": 18300.38, + "end": 18306.5, + "probability": 0.9353 + }, + { + "start": 18306.58, + "end": 18307.16, + "probability": 0.5848 + }, + { + "start": 18307.66, + "end": 18309.86, + "probability": 0.7012 + }, + { + "start": 18309.98, + "end": 18310.9, + "probability": 0.0872 + }, + { + "start": 18311.0, + "end": 18312.86, + "probability": 0.472 + }, + { + "start": 18314.62, + "end": 18317.76, + "probability": 0.2268 + }, + { + "start": 18321.44, + "end": 18322.98, + "probability": 0.9409 + }, + { + "start": 18323.1, + "end": 18324.61, + "probability": 0.8757 + }, + { + "start": 18325.0, + "end": 18327.62, + "probability": 0.7947 + }, + { + "start": 18328.32, + "end": 18331.1, + "probability": 0.8652 + }, + { + "start": 18331.28, + "end": 18332.6, + "probability": 0.8903 + }, + { + "start": 18332.68, + "end": 18332.86, + "probability": 0.803 + }, + { + "start": 18332.92, + "end": 18333.82, + "probability": 0.8995 + }, + { + "start": 18336.48, + "end": 18337.62, + "probability": 0.826 + }, + { + "start": 18337.74, + "end": 18341.42, + "probability": 0.9478 + }, + { + "start": 18342.46, + "end": 18346.33, + "probability": 0.9745 + }, + { + "start": 18346.68, + "end": 18349.84, + "probability": 0.9194 + }, + { + "start": 18350.96, + "end": 18353.4, + "probability": 0.9169 + }, + { + "start": 18353.94, + "end": 18355.3, + "probability": 0.5264 + }, + { + "start": 18355.3, + "end": 18358.66, + "probability": 0.9544 + }, + { + "start": 18359.22, + "end": 18360.66, + "probability": 0.4336 + }, + { + "start": 18360.74, + "end": 18363.14, + "probability": 0.9629 + }, + { + "start": 18363.24, + "end": 18365.16, + "probability": 0.8231 + }, + { + "start": 18365.66, + "end": 18369.74, + "probability": 0.9732 + }, + { + "start": 18370.72, + "end": 18375.54, + "probability": 0.9823 + }, + { + "start": 18376.36, + "end": 18377.62, + "probability": 0.9002 + }, + { + "start": 18377.64, + "end": 18379.86, + "probability": 0.8117 + }, + { + "start": 18381.16, + "end": 18381.64, + "probability": 0.667 + }, + { + "start": 18381.7, + "end": 18381.98, + "probability": 0.9647 + }, + { + "start": 18382.38, + "end": 18383.22, + "probability": 0.6822 + }, + { + "start": 18383.76, + "end": 18386.96, + "probability": 0.9806 + }, + { + "start": 18387.74, + "end": 18392.16, + "probability": 0.9988 + }, + { + "start": 18392.16, + "end": 18396.54, + "probability": 0.9993 + }, + { + "start": 18397.08, + "end": 18397.92, + "probability": 0.9751 + }, + { + "start": 18398.69, + "end": 18401.0, + "probability": 0.8526 + }, + { + "start": 18401.52, + "end": 18401.62, + "probability": 0.3812 + }, + { + "start": 18402.16, + "end": 18404.02, + "probability": 0.9207 + }, + { + "start": 18404.48, + "end": 18406.84, + "probability": 0.3414 + }, + { + "start": 18408.0, + "end": 18409.06, + "probability": 0.5664 + }, + { + "start": 18409.46, + "end": 18409.76, + "probability": 0.1944 + }, + { + "start": 18409.88, + "end": 18410.28, + "probability": 0.4657 + }, + { + "start": 18410.46, + "end": 18410.88, + "probability": 0.9495 + }, + { + "start": 18411.32, + "end": 18414.12, + "probability": 0.9834 + }, + { + "start": 18414.36, + "end": 18419.44, + "probability": 0.9674 + }, + { + "start": 18420.0, + "end": 18422.12, + "probability": 0.9683 + }, + { + "start": 18422.12, + "end": 18425.12, + "probability": 0.9975 + }, + { + "start": 18425.88, + "end": 18428.38, + "probability": 0.9916 + }, + { + "start": 18429.04, + "end": 18432.42, + "probability": 0.8545 + }, + { + "start": 18432.98, + "end": 18435.92, + "probability": 0.9846 + }, + { + "start": 18435.92, + "end": 18439.3, + "probability": 0.9996 + }, + { + "start": 18440.02, + "end": 18442.1, + "probability": 0.7181 + }, + { + "start": 18442.22, + "end": 18444.92, + "probability": 0.9832 + }, + { + "start": 18444.92, + "end": 18447.56, + "probability": 0.988 + }, + { + "start": 18448.24, + "end": 18451.08, + "probability": 0.9926 + }, + { + "start": 18451.58, + "end": 18454.42, + "probability": 0.9723 + }, + { + "start": 18454.98, + "end": 18456.96, + "probability": 0.977 + }, + { + "start": 18456.96, + "end": 18459.72, + "probability": 0.9884 + }, + { + "start": 18459.92, + "end": 18463.5, + "probability": 0.9097 + }, + { + "start": 18463.94, + "end": 18465.88, + "probability": 0.991 + }, + { + "start": 18466.34, + "end": 18471.02, + "probability": 0.9939 + }, + { + "start": 18472.02, + "end": 18474.9, + "probability": 0.9154 + }, + { + "start": 18475.42, + "end": 18476.38, + "probability": 0.9644 + }, + { + "start": 18476.46, + "end": 18481.6, + "probability": 0.981 + }, + { + "start": 18482.1, + "end": 18485.08, + "probability": 0.9916 + }, + { + "start": 18485.2, + "end": 18488.64, + "probability": 0.9953 + }, + { + "start": 18488.68, + "end": 18489.6, + "probability": 0.8006 + }, + { + "start": 18489.68, + "end": 18492.54, + "probability": 0.9867 + }, + { + "start": 18492.92, + "end": 18494.44, + "probability": 0.9988 + }, + { + "start": 18494.96, + "end": 18497.65, + "probability": 0.9971 + }, + { + "start": 18498.76, + "end": 18502.14, + "probability": 0.9969 + }, + { + "start": 18502.76, + "end": 18502.92, + "probability": 0.7244 + }, + { + "start": 18503.34, + "end": 18508.74, + "probability": 0.9821 + }, + { + "start": 18509.16, + "end": 18512.82, + "probability": 0.9849 + }, + { + "start": 18513.8, + "end": 18517.56, + "probability": 0.9987 + }, + { + "start": 18517.94, + "end": 18518.32, + "probability": 0.7507 + }, + { + "start": 18518.9, + "end": 18521.32, + "probability": 0.4044 + }, + { + "start": 18522.16, + "end": 18524.88, + "probability": 0.9887 + }, + { + "start": 18524.88, + "end": 18528.46, + "probability": 0.9954 + }, + { + "start": 18528.98, + "end": 18532.74, + "probability": 0.9964 + }, + { + "start": 18533.18, + "end": 18537.44, + "probability": 0.948 + }, + { + "start": 18537.56, + "end": 18542.38, + "probability": 0.994 + }, + { + "start": 18543.1, + "end": 18546.84, + "probability": 0.9984 + }, + { + "start": 18547.24, + "end": 18550.26, + "probability": 0.8796 + }, + { + "start": 18550.28, + "end": 18554.98, + "probability": 0.9995 + }, + { + "start": 18554.98, + "end": 18555.54, + "probability": 0.7829 + }, + { + "start": 18555.54, + "end": 18556.1, + "probability": 0.7532 + }, + { + "start": 18556.3, + "end": 18559.8, + "probability": 0.9564 + }, + { + "start": 18560.2, + "end": 18563.58, + "probability": 0.9607 + }, + { + "start": 18564.3, + "end": 18565.36, + "probability": 0.6103 + }, + { + "start": 18566.12, + "end": 18566.12, + "probability": 0.0808 + }, + { + "start": 18566.12, + "end": 18566.12, + "probability": 0.4014 + }, + { + "start": 18566.12, + "end": 18567.48, + "probability": 0.53 + }, + { + "start": 18569.16, + "end": 18569.92, + "probability": 0.6393 + }, + { + "start": 18573.12, + "end": 18576.62, + "probability": 0.8167 + }, + { + "start": 18577.08, + "end": 18578.04, + "probability": 0.4945 + }, + { + "start": 18579.08, + "end": 18580.46, + "probability": 0.6938 + }, + { + "start": 18580.52, + "end": 18581.02, + "probability": 0.8532 + }, + { + "start": 18589.82, + "end": 18591.64, + "probability": 0.9374 + }, + { + "start": 18595.96, + "end": 18597.3, + "probability": 0.6634 + }, + { + "start": 18598.32, + "end": 18601.52, + "probability": 0.9951 + }, + { + "start": 18602.32, + "end": 18607.98, + "probability": 0.9946 + }, + { + "start": 18608.9, + "end": 18611.47, + "probability": 0.9943 + }, + { + "start": 18612.3, + "end": 18615.5, + "probability": 0.9989 + }, + { + "start": 18615.5, + "end": 18620.46, + "probability": 0.9993 + }, + { + "start": 18621.88, + "end": 18624.12, + "probability": 0.8769 + }, + { + "start": 18625.14, + "end": 18629.52, + "probability": 0.8962 + }, + { + "start": 18631.06, + "end": 18633.0, + "probability": 0.972 + }, + { + "start": 18633.94, + "end": 18639.62, + "probability": 0.9916 + }, + { + "start": 18640.5, + "end": 18645.28, + "probability": 0.998 + }, + { + "start": 18645.74, + "end": 18648.34, + "probability": 0.999 + }, + { + "start": 18649.46, + "end": 18651.12, + "probability": 0.9945 + }, + { + "start": 18651.92, + "end": 18657.48, + "probability": 0.7935 + }, + { + "start": 18657.88, + "end": 18658.6, + "probability": 0.8743 + }, + { + "start": 18664.46, + "end": 18668.58, + "probability": 0.9919 + }, + { + "start": 18669.1, + "end": 18671.54, + "probability": 0.8051 + }, + { + "start": 18672.8, + "end": 18675.48, + "probability": 0.9409 + }, + { + "start": 18676.68, + "end": 18678.68, + "probability": 0.9514 + }, + { + "start": 18679.58, + "end": 18682.68, + "probability": 0.9971 + }, + { + "start": 18683.2, + "end": 18686.66, + "probability": 0.999 + }, + { + "start": 18687.96, + "end": 18688.56, + "probability": 0.5331 + }, + { + "start": 18689.42, + "end": 18691.88, + "probability": 0.9985 + }, + { + "start": 18692.72, + "end": 18694.72, + "probability": 0.9989 + }, + { + "start": 18695.32, + "end": 18700.86, + "probability": 0.9901 + }, + { + "start": 18700.86, + "end": 18705.92, + "probability": 0.9971 + }, + { + "start": 18707.16, + "end": 18708.62, + "probability": 0.9309 + }, + { + "start": 18709.9, + "end": 18713.94, + "probability": 0.9948 + }, + { + "start": 18714.72, + "end": 18715.94, + "probability": 0.9785 + }, + { + "start": 18716.46, + "end": 18718.54, + "probability": 0.8388 + }, + { + "start": 18719.38, + "end": 18721.0, + "probability": 0.9564 + }, + { + "start": 18721.54, + "end": 18723.58, + "probability": 0.996 + }, + { + "start": 18723.58, + "end": 18727.16, + "probability": 0.9902 + }, + { + "start": 18727.62, + "end": 18729.82, + "probability": 0.982 + }, + { + "start": 18730.5, + "end": 18733.16, + "probability": 0.991 + }, + { + "start": 18734.7, + "end": 18735.02, + "probability": 0.5289 + }, + { + "start": 18735.12, + "end": 18737.82, + "probability": 0.8518 + }, + { + "start": 18738.22, + "end": 18739.14, + "probability": 0.9694 + }, + { + "start": 18739.96, + "end": 18741.25, + "probability": 0.98 + }, + { + "start": 18741.92, + "end": 18745.18, + "probability": 0.6199 + }, + { + "start": 18745.46, + "end": 18748.82, + "probability": 0.9598 + }, + { + "start": 18749.52, + "end": 18750.78, + "probability": 0.9813 + }, + { + "start": 18752.04, + "end": 18754.26, + "probability": 0.9151 + }, + { + "start": 18754.9, + "end": 18756.63, + "probability": 0.8103 + }, + { + "start": 18757.96, + "end": 18759.12, + "probability": 0.9697 + }, + { + "start": 18760.86, + "end": 18762.18, + "probability": 0.9712 + }, + { + "start": 18762.48, + "end": 18765.1, + "probability": 0.9883 + }, + { + "start": 18766.32, + "end": 18766.74, + "probability": 0.9545 + }, + { + "start": 18767.08, + "end": 18768.42, + "probability": 0.9795 + }, + { + "start": 18769.46, + "end": 18776.86, + "probability": 0.9974 + }, + { + "start": 18777.34, + "end": 18778.94, + "probability": 0.6884 + }, + { + "start": 18779.36, + "end": 18781.12, + "probability": 0.9036 + }, + { + "start": 18782.06, + "end": 18784.78, + "probability": 0.9679 + }, + { + "start": 18785.84, + "end": 18787.22, + "probability": 0.9871 + }, + { + "start": 18788.8, + "end": 18794.38, + "probability": 0.9878 + }, + { + "start": 18795.6, + "end": 18799.8, + "probability": 0.9943 + }, + { + "start": 18799.8, + "end": 18804.44, + "probability": 0.9982 + }, + { + "start": 18804.44, + "end": 18808.22, + "probability": 0.9954 + }, + { + "start": 18808.66, + "end": 18810.82, + "probability": 0.99 + }, + { + "start": 18811.32, + "end": 18813.62, + "probability": 0.9971 + }, + { + "start": 18814.52, + "end": 18817.32, + "probability": 0.9065 + }, + { + "start": 18817.9, + "end": 18820.02, + "probability": 0.9679 + }, + { + "start": 18820.78, + "end": 18821.74, + "probability": 0.8213 + }, + { + "start": 18822.28, + "end": 18826.26, + "probability": 0.9128 + }, + { + "start": 18829.1, + "end": 18829.1, + "probability": 0.4563 + }, + { + "start": 18829.1, + "end": 18830.74, + "probability": 0.6526 + }, + { + "start": 18851.3, + "end": 18854.06, + "probability": 0.7472 + }, + { + "start": 18855.2, + "end": 18857.16, + "probability": 0.8092 + }, + { + "start": 18857.26, + "end": 18859.65, + "probability": 0.9897 + }, + { + "start": 18860.8, + "end": 18866.16, + "probability": 0.9883 + }, + { + "start": 18866.18, + "end": 18867.16, + "probability": 0.8023 + }, + { + "start": 18867.92, + "end": 18871.66, + "probability": 0.8794 + }, + { + "start": 18872.46, + "end": 18874.05, + "probability": 0.9697 + }, + { + "start": 18874.56, + "end": 18875.29, + "probability": 0.9174 + }, + { + "start": 18875.66, + "end": 18876.79, + "probability": 0.9225 + }, + { + "start": 18877.94, + "end": 18880.56, + "probability": 0.9774 + }, + { + "start": 18881.14, + "end": 18883.08, + "probability": 0.9771 + }, + { + "start": 18883.16, + "end": 18883.9, + "probability": 0.4269 + }, + { + "start": 18884.4, + "end": 18885.76, + "probability": 0.9576 + }, + { + "start": 18885.92, + "end": 18887.53, + "probability": 0.5817 + }, + { + "start": 18888.04, + "end": 18890.54, + "probability": 0.9179 + }, + { + "start": 18891.98, + "end": 18896.74, + "probability": 0.9954 + }, + { + "start": 18897.24, + "end": 18897.86, + "probability": 0.869 + }, + { + "start": 18897.92, + "end": 18900.2, + "probability": 0.9914 + }, + { + "start": 18901.04, + "end": 18907.5, + "probability": 0.8334 + }, + { + "start": 18908.32, + "end": 18913.44, + "probability": 0.8458 + }, + { + "start": 18913.8, + "end": 18915.36, + "probability": 0.9742 + }, + { + "start": 18916.14, + "end": 18916.94, + "probability": 0.9451 + }, + { + "start": 18917.0, + "end": 18922.34, + "probability": 0.9671 + }, + { + "start": 18922.78, + "end": 18924.02, + "probability": 0.9642 + }, + { + "start": 18924.18, + "end": 18924.94, + "probability": 0.6575 + }, + { + "start": 18925.02, + "end": 18925.84, + "probability": 0.4359 + }, + { + "start": 18925.94, + "end": 18927.84, + "probability": 0.9418 + }, + { + "start": 18928.46, + "end": 18929.22, + "probability": 0.8245 + }, + { + "start": 18929.7, + "end": 18930.42, + "probability": 0.4447 + }, + { + "start": 18931.16, + "end": 18934.03, + "probability": 0.9883 + }, + { + "start": 18935.76, + "end": 18936.58, + "probability": 0.8416 + }, + { + "start": 18936.74, + "end": 18940.88, + "probability": 0.8801 + }, + { + "start": 18941.46, + "end": 18943.27, + "probability": 0.9984 + }, + { + "start": 18943.76, + "end": 18945.62, + "probability": 0.6889 + }, + { + "start": 18946.4, + "end": 18950.56, + "probability": 0.9727 + }, + { + "start": 18950.72, + "end": 18952.44, + "probability": 0.9894 + }, + { + "start": 18952.58, + "end": 18954.88, + "probability": 0.9825 + }, + { + "start": 18954.96, + "end": 18957.86, + "probability": 0.8691 + }, + { + "start": 18958.52, + "end": 18960.44, + "probability": 0.9119 + }, + { + "start": 18960.86, + "end": 18961.96, + "probability": 0.9435 + }, + { + "start": 18962.4, + "end": 18967.8, + "probability": 0.9198 + }, + { + "start": 18967.96, + "end": 18972.28, + "probability": 0.9992 + }, + { + "start": 18973.02, + "end": 18975.26, + "probability": 0.6659 + }, + { + "start": 18975.84, + "end": 18976.25, + "probability": 0.6582 + }, + { + "start": 18977.2, + "end": 18979.44, + "probability": 0.9677 + }, + { + "start": 18980.55, + "end": 18982.21, + "probability": 0.9971 + }, + { + "start": 18983.04, + "end": 18988.4, + "probability": 0.8972 + }, + { + "start": 18989.22, + "end": 18991.12, + "probability": 0.8649 + }, + { + "start": 18991.84, + "end": 18994.4, + "probability": 0.913 + }, + { + "start": 18994.52, + "end": 18998.8, + "probability": 0.9873 + }, + { + "start": 19000.2, + "end": 19003.46, + "probability": 0.9966 + }, + { + "start": 19003.6, + "end": 19004.6, + "probability": 0.5369 + }, + { + "start": 19005.36, + "end": 19008.76, + "probability": 0.8371 + }, + { + "start": 19009.42, + "end": 19010.56, + "probability": 0.9424 + }, + { + "start": 19010.98, + "end": 19011.24, + "probability": 0.4309 + }, + { + "start": 19011.36, + "end": 19012.82, + "probability": 0.8465 + }, + { + "start": 19013.26, + "end": 19016.54, + "probability": 0.9915 + }, + { + "start": 19016.54, + "end": 19020.96, + "probability": 0.9968 + }, + { + "start": 19022.1, + "end": 19023.06, + "probability": 0.7257 + }, + { + "start": 19023.74, + "end": 19024.3, + "probability": 0.8332 + }, + { + "start": 19025.02, + "end": 19028.08, + "probability": 0.8761 + }, + { + "start": 19028.68, + "end": 19030.66, + "probability": 0.9907 + }, + { + "start": 19031.4, + "end": 19032.76, + "probability": 0.9967 + }, + { + "start": 19033.84, + "end": 19035.14, + "probability": 0.4847 + }, + { + "start": 19035.14, + "end": 19036.62, + "probability": 0.3991 + }, + { + "start": 19036.9, + "end": 19040.52, + "probability": 0.8314 + }, + { + "start": 19041.18, + "end": 19043.64, + "probability": 0.8682 + }, + { + "start": 19044.48, + "end": 19046.8, + "probability": 0.9533 + }, + { + "start": 19047.04, + "end": 19047.12, + "probability": 0.7225 + }, + { + "start": 19047.2, + "end": 19050.4, + "probability": 0.9958 + }, + { + "start": 19050.42, + "end": 19050.72, + "probability": 0.5993 + }, + { + "start": 19050.8, + "end": 19051.88, + "probability": 0.9756 + }, + { + "start": 19052.46, + "end": 19054.62, + "probability": 0.9168 + }, + { + "start": 19055.16, + "end": 19056.12, + "probability": 0.5757 + }, + { + "start": 19056.36, + "end": 19057.96, + "probability": 0.8496 + }, + { + "start": 19058.1, + "end": 19059.18, + "probability": 0.9172 + }, + { + "start": 19059.66, + "end": 19060.42, + "probability": 0.9436 + }, + { + "start": 19060.74, + "end": 19062.68, + "probability": 0.9695 + }, + { + "start": 19062.84, + "end": 19064.2, + "probability": 0.5219 + }, + { + "start": 19064.64, + "end": 19070.72, + "probability": 0.8852 + }, + { + "start": 19070.76, + "end": 19073.5, + "probability": 0.9941 + }, + { + "start": 19073.98, + "end": 19075.7, + "probability": 0.772 + }, + { + "start": 19075.88, + "end": 19077.02, + "probability": 0.5736 + }, + { + "start": 19078.26, + "end": 19078.28, + "probability": 0.7178 + }, + { + "start": 19078.92, + "end": 19080.9, + "probability": 0.8413 + }, + { + "start": 19081.52, + "end": 19083.7, + "probability": 0.9655 + }, + { + "start": 19083.74, + "end": 19084.08, + "probability": 0.7346 + }, + { + "start": 19086.54, + "end": 19088.58, + "probability": 0.8417 + }, + { + "start": 19090.06, + "end": 19090.06, + "probability": 0.2547 + }, + { + "start": 19106.52, + "end": 19108.78, + "probability": 0.6656 + }, + { + "start": 19112.26, + "end": 19114.42, + "probability": 0.7333 + }, + { + "start": 19116.2, + "end": 19117.24, + "probability": 0.9973 + }, + { + "start": 19120.48, + "end": 19123.02, + "probability": 0.9462 + }, + { + "start": 19123.9, + "end": 19125.52, + "probability": 0.8778 + }, + { + "start": 19128.28, + "end": 19130.98, + "probability": 0.6688 + }, + { + "start": 19131.92, + "end": 19134.36, + "probability": 0.8831 + }, + { + "start": 19135.34, + "end": 19137.54, + "probability": 0.9802 + }, + { + "start": 19138.26, + "end": 19139.3, + "probability": 0.886 + }, + { + "start": 19140.48, + "end": 19142.38, + "probability": 0.9502 + }, + { + "start": 19143.88, + "end": 19146.62, + "probability": 0.9989 + }, + { + "start": 19148.48, + "end": 19152.66, + "probability": 0.9642 + }, + { + "start": 19153.28, + "end": 19155.46, + "probability": 0.7068 + }, + { + "start": 19156.58, + "end": 19157.64, + "probability": 0.7232 + }, + { + "start": 19158.72, + "end": 19160.72, + "probability": 0.9544 + }, + { + "start": 19162.46, + "end": 19166.36, + "probability": 0.6639 + }, + { + "start": 19167.42, + "end": 19171.14, + "probability": 0.991 + }, + { + "start": 19172.92, + "end": 19178.48, + "probability": 0.9613 + }, + { + "start": 19179.64, + "end": 19181.14, + "probability": 0.9898 + }, + { + "start": 19181.8, + "end": 19183.68, + "probability": 0.8911 + }, + { + "start": 19185.78, + "end": 19188.16, + "probability": 0.9788 + }, + { + "start": 19190.98, + "end": 19191.82, + "probability": 0.6374 + }, + { + "start": 19192.82, + "end": 19193.72, + "probability": 0.203 + }, + { + "start": 19194.86, + "end": 19198.04, + "probability": 0.9845 + }, + { + "start": 19200.34, + "end": 19204.8, + "probability": 0.9918 + }, + { + "start": 19205.54, + "end": 19207.86, + "probability": 0.5828 + }, + { + "start": 19209.16, + "end": 19212.64, + "probability": 0.9419 + }, + { + "start": 19214.0, + "end": 19215.54, + "probability": 0.9995 + }, + { + "start": 19216.86, + "end": 19217.0, + "probability": 0.9761 + }, + { + "start": 19217.68, + "end": 19219.82, + "probability": 0.9944 + }, + { + "start": 19220.8, + "end": 19222.68, + "probability": 0.9972 + }, + { + "start": 19223.72, + "end": 19230.36, + "probability": 0.9812 + }, + { + "start": 19231.2, + "end": 19234.5, + "probability": 0.998 + }, + { + "start": 19236.04, + "end": 19240.48, + "probability": 0.9799 + }, + { + "start": 19242.96, + "end": 19243.86, + "probability": 0.985 + }, + { + "start": 19245.5, + "end": 19246.86, + "probability": 0.9795 + }, + { + "start": 19247.74, + "end": 19249.06, + "probability": 0.9771 + }, + { + "start": 19249.64, + "end": 19255.34, + "probability": 0.9922 + }, + { + "start": 19255.68, + "end": 19257.2, + "probability": 0.9903 + }, + { + "start": 19260.06, + "end": 19260.84, + "probability": 0.7555 + }, + { + "start": 19260.94, + "end": 19261.57, + "probability": 0.4877 + }, + { + "start": 19262.64, + "end": 19264.14, + "probability": 0.9298 + }, + { + "start": 19264.94, + "end": 19266.0, + "probability": 0.8862 + }, + { + "start": 19267.06, + "end": 19270.44, + "probability": 0.9878 + }, + { + "start": 19270.48, + "end": 19272.08, + "probability": 0.9803 + }, + { + "start": 19272.34, + "end": 19274.54, + "probability": 0.9681 + }, + { + "start": 19274.64, + "end": 19274.8, + "probability": 0.8173 + }, + { + "start": 19274.84, + "end": 19275.26, + "probability": 0.9028 + }, + { + "start": 19276.8, + "end": 19280.74, + "probability": 0.963 + }, + { + "start": 19282.02, + "end": 19283.38, + "probability": 0.9888 + }, + { + "start": 19284.16, + "end": 19286.1, + "probability": 0.9718 + }, + { + "start": 19286.28, + "end": 19287.64, + "probability": 0.9927 + }, + { + "start": 19287.98, + "end": 19288.86, + "probability": 0.7837 + }, + { + "start": 19288.92, + "end": 19289.86, + "probability": 0.9717 + }, + { + "start": 19290.24, + "end": 19291.1, + "probability": 0.6977 + }, + { + "start": 19292.92, + "end": 19294.36, + "probability": 0.8721 + }, + { + "start": 19294.68, + "end": 19295.44, + "probability": 0.7466 + }, + { + "start": 19296.34, + "end": 19298.64, + "probability": 0.887 + }, + { + "start": 19299.54, + "end": 19302.14, + "probability": 0.9422 + }, + { + "start": 19302.76, + "end": 19303.1, + "probability": 0.8771 + }, + { + "start": 19303.64, + "end": 19304.12, + "probability": 0.8378 + }, + { + "start": 19305.7, + "end": 19306.96, + "probability": 0.9329 + }, + { + "start": 19312.82, + "end": 19315.38, + "probability": 0.9948 + }, + { + "start": 19316.46, + "end": 19316.94, + "probability": 0.0824 + }, + { + "start": 19317.84, + "end": 19318.1, + "probability": 0.0294 + }, + { + "start": 19321.22, + "end": 19323.9, + "probability": 0.1352 + }, + { + "start": 19325.1, + "end": 19326.32, + "probability": 0.0496 + }, + { + "start": 19326.32, + "end": 19330.94, + "probability": 0.0488 + }, + { + "start": 19357.34, + "end": 19360.56, + "probability": 0.9705 + }, + { + "start": 19360.88, + "end": 19362.38, + "probability": 0.8653 + }, + { + "start": 19362.8, + "end": 19365.26, + "probability": 0.0205 + }, + { + "start": 19365.62, + "end": 19369.42, + "probability": 0.9976 + }, + { + "start": 19369.56, + "end": 19371.9, + "probability": 0.9889 + }, + { + "start": 19372.56, + "end": 19373.38, + "probability": 0.636 + }, + { + "start": 19373.92, + "end": 19375.7, + "probability": 0.9893 + }, + { + "start": 19376.8, + "end": 19377.4, + "probability": 0.618 + }, + { + "start": 19377.5, + "end": 19379.36, + "probability": 0.8269 + }, + { + "start": 19379.42, + "end": 19381.12, + "probability": 0.8503 + }, + { + "start": 19381.26, + "end": 19382.46, + "probability": 0.9421 + }, + { + "start": 19382.56, + "end": 19383.1, + "probability": 0.9482 + }, + { + "start": 19383.26, + "end": 19384.44, + "probability": 0.8834 + }, + { + "start": 19384.92, + "end": 19386.72, + "probability": 0.9824 + }, + { + "start": 19387.42, + "end": 19389.38, + "probability": 0.9663 + }, + { + "start": 19389.48, + "end": 19392.06, + "probability": 0.884 + }, + { + "start": 19392.72, + "end": 19393.36, + "probability": 0.5397 + }, + { + "start": 19393.52, + "end": 19394.14, + "probability": 0.7067 + }, + { + "start": 19394.2, + "end": 19397.0, + "probability": 0.9958 + }, + { + "start": 19398.68, + "end": 19401.53, + "probability": 0.9292 + }, + { + "start": 19402.26, + "end": 19403.72, + "probability": 0.9633 + }, + { + "start": 19403.76, + "end": 19405.08, + "probability": 0.8344 + }, + { + "start": 19405.12, + "end": 19407.36, + "probability": 0.8176 + }, + { + "start": 19407.46, + "end": 19408.82, + "probability": 0.9387 + }, + { + "start": 19409.3, + "end": 19410.76, + "probability": 0.965 + }, + { + "start": 19410.88, + "end": 19412.34, + "probability": 0.9561 + }, + { + "start": 19413.98, + "end": 19417.54, + "probability": 0.9844 + }, + { + "start": 19417.6, + "end": 19417.88, + "probability": 0.7172 + }, + { + "start": 19419.28, + "end": 19421.64, + "probability": 0.8284 + }, + { + "start": 19422.58, + "end": 19426.88, + "probability": 0.9857 + }, + { + "start": 19427.38, + "end": 19429.66, + "probability": 0.9508 + }, + { + "start": 19430.8, + "end": 19431.74, + "probability": 0.2884 + }, + { + "start": 19431.84, + "end": 19434.08, + "probability": 0.9239 + }, + { + "start": 19434.34, + "end": 19436.68, + "probability": 0.981 + }, + { + "start": 19436.86, + "end": 19438.08, + "probability": 0.9531 + }, + { + "start": 19438.42, + "end": 19439.66, + "probability": 0.9769 + }, + { + "start": 19440.3, + "end": 19442.3, + "probability": 0.9602 + }, + { + "start": 19442.5, + "end": 19443.14, + "probability": 0.8648 + }, + { + "start": 19443.24, + "end": 19443.78, + "probability": 0.9236 + }, + { + "start": 19444.14, + "end": 19445.16, + "probability": 0.6287 + }, + { + "start": 19445.16, + "end": 19446.6, + "probability": 0.9371 + }, + { + "start": 19446.92, + "end": 19447.68, + "probability": 0.9878 + }, + { + "start": 19447.74, + "end": 19448.8, + "probability": 0.9465 + }, + { + "start": 19449.42, + "end": 19451.72, + "probability": 0.959 + }, + { + "start": 19452.08, + "end": 19453.63, + "probability": 0.9634 + }, + { + "start": 19453.74, + "end": 19455.06, + "probability": 0.9928 + }, + { + "start": 19455.44, + "end": 19460.42, + "probability": 0.9824 + }, + { + "start": 19460.66, + "end": 19461.54, + "probability": 0.3796 + }, + { + "start": 19461.72, + "end": 19463.7, + "probability": 0.9913 + }, + { + "start": 19464.54, + "end": 19467.44, + "probability": 0.8436 + }, + { + "start": 19467.72, + "end": 19471.94, + "probability": 0.7929 + }, + { + "start": 19473.24, + "end": 19474.9, + "probability": 0.9352 + }, + { + "start": 19474.96, + "end": 19477.12, + "probability": 0.9584 + }, + { + "start": 19477.46, + "end": 19478.28, + "probability": 0.9905 + }, + { + "start": 19478.32, + "end": 19479.52, + "probability": 0.9394 + }, + { + "start": 19480.64, + "end": 19482.88, + "probability": 0.8801 + }, + { + "start": 19483.1, + "end": 19484.28, + "probability": 0.8698 + }, + { + "start": 19484.68, + "end": 19487.94, + "probability": 0.9891 + }, + { + "start": 19487.98, + "end": 19488.58, + "probability": 0.8896 + }, + { + "start": 19488.6, + "end": 19489.28, + "probability": 0.8013 + }, + { + "start": 19489.8, + "end": 19491.04, + "probability": 0.9761 + }, + { + "start": 19491.16, + "end": 19491.61, + "probability": 0.8686 + }, + { + "start": 19491.96, + "end": 19493.36, + "probability": 0.8745 + }, + { + "start": 19494.1, + "end": 19494.86, + "probability": 0.4597 + }, + { + "start": 19494.88, + "end": 19494.98, + "probability": 0.4368 + }, + { + "start": 19495.72, + "end": 19497.74, + "probability": 0.7115 + }, + { + "start": 19497.98, + "end": 19498.82, + "probability": 0.843 + }, + { + "start": 19498.84, + "end": 19498.94, + "probability": 0.6517 + }, + { + "start": 19499.92, + "end": 19501.18, + "probability": 0.903 + }, + { + "start": 19501.3, + "end": 19504.14, + "probability": 0.9445 + }, + { + "start": 19504.4, + "end": 19506.66, + "probability": 0.9704 + }, + { + "start": 19506.74, + "end": 19507.5, + "probability": 0.9551 + }, + { + "start": 19507.84, + "end": 19507.96, + "probability": 0.7703 + }, + { + "start": 19508.5, + "end": 19510.15, + "probability": 0.9874 + }, + { + "start": 19511.18, + "end": 19513.12, + "probability": 0.9431 + }, + { + "start": 19513.16, + "end": 19515.92, + "probability": 0.9373 + }, + { + "start": 19516.02, + "end": 19516.78, + "probability": 0.9966 + }, + { + "start": 19516.9, + "end": 19519.0, + "probability": 0.9798 + }, + { + "start": 19519.28, + "end": 19520.28, + "probability": 0.6768 + }, + { + "start": 19522.08, + "end": 19523.06, + "probability": 0.9941 + }, + { + "start": 19523.24, + "end": 19524.76, + "probability": 0.9818 + }, + { + "start": 19526.22, + "end": 19528.24, + "probability": 0.9736 + }, + { + "start": 19529.1, + "end": 19530.94, + "probability": 0.6614 + }, + { + "start": 19533.44, + "end": 19534.62, + "probability": 0.9739 + }, + { + "start": 19534.76, + "end": 19537.72, + "probability": 0.8641 + }, + { + "start": 19538.26, + "end": 19539.44, + "probability": 0.7947 + }, + { + "start": 19539.52, + "end": 19540.4, + "probability": 0.8614 + }, + { + "start": 19541.18, + "end": 19542.08, + "probability": 0.7034 + }, + { + "start": 19542.2, + "end": 19544.72, + "probability": 0.8415 + }, + { + "start": 19544.86, + "end": 19546.7, + "probability": 0.9449 + }, + { + "start": 19546.7, + "end": 19550.82, + "probability": 0.6723 + }, + { + "start": 19551.48, + "end": 19552.04, + "probability": 0.7818 + }, + { + "start": 19552.06, + "end": 19554.3, + "probability": 0.977 + }, + { + "start": 19555.78, + "end": 19556.92, + "probability": 0.9818 + }, + { + "start": 19557.56, + "end": 19558.58, + "probability": 0.6338 + }, + { + "start": 19558.72, + "end": 19559.38, + "probability": 0.4157 + }, + { + "start": 19559.44, + "end": 19562.02, + "probability": 0.968 + }, + { + "start": 19562.56, + "end": 19563.88, + "probability": 0.9889 + }, + { + "start": 19563.98, + "end": 19564.78, + "probability": 0.9653 + }, + { + "start": 19564.88, + "end": 19565.98, + "probability": 0.9406 + }, + { + "start": 19566.24, + "end": 19566.42, + "probability": 0.5971 + }, + { + "start": 19566.56, + "end": 19569.12, + "probability": 0.3653 + }, + { + "start": 19569.2, + "end": 19569.7, + "probability": 0.5468 + }, + { + "start": 19569.7, + "end": 19570.82, + "probability": 0.9043 + }, + { + "start": 19570.82, + "end": 19572.52, + "probability": 0.9874 + }, + { + "start": 19572.74, + "end": 19573.66, + "probability": 0.6894 + }, + { + "start": 19573.76, + "end": 19574.34, + "probability": 0.8203 + }, + { + "start": 19574.42, + "end": 19575.09, + "probability": 0.9489 + }, + { + "start": 19575.5, + "end": 19577.64, + "probability": 0.9781 + }, + { + "start": 19578.26, + "end": 19580.3, + "probability": 0.8742 + }, + { + "start": 19580.38, + "end": 19581.42, + "probability": 0.9535 + }, + { + "start": 19582.36, + "end": 19584.3, + "probability": 0.9796 + }, + { + "start": 19584.38, + "end": 19585.12, + "probability": 0.8693 + }, + { + "start": 19585.16, + "end": 19585.86, + "probability": 0.9524 + }, + { + "start": 19586.32, + "end": 19587.76, + "probability": 0.9985 + }, + { + "start": 19587.84, + "end": 19588.84, + "probability": 0.9906 + }, + { + "start": 19588.86, + "end": 19589.44, + "probability": 0.7364 + }, + { + "start": 19589.8, + "end": 19590.56, + "probability": 0.8208 + }, + { + "start": 19590.82, + "end": 19591.72, + "probability": 0.7651 + }, + { + "start": 19592.12, + "end": 19592.78, + "probability": 0.907 + }, + { + "start": 19593.24, + "end": 19594.8, + "probability": 0.97 + }, + { + "start": 19595.18, + "end": 19597.22, + "probability": 0.9242 + }, + { + "start": 19597.22, + "end": 19598.16, + "probability": 0.7127 + }, + { + "start": 19599.08, + "end": 19599.62, + "probability": 0.9626 + }, + { + "start": 19599.82, + "end": 19600.78, + "probability": 0.9954 + }, + { + "start": 19600.88, + "end": 19601.6, + "probability": 0.8997 + }, + { + "start": 19602.06, + "end": 19602.62, + "probability": 0.8564 + }, + { + "start": 19603.1, + "end": 19604.56, + "probability": 0.9819 + }, + { + "start": 19604.72, + "end": 19605.77, + "probability": 0.9515 + }, + { + "start": 19606.56, + "end": 19607.86, + "probability": 0.8744 + }, + { + "start": 19607.94, + "end": 19608.73, + "probability": 0.902 + }, + { + "start": 19609.14, + "end": 19610.26, + "probability": 0.8095 + }, + { + "start": 19610.34, + "end": 19611.46, + "probability": 0.9513 + }, + { + "start": 19611.98, + "end": 19613.04, + "probability": 0.7607 + }, + { + "start": 19613.26, + "end": 19613.47, + "probability": 0.836 + }, + { + "start": 19613.86, + "end": 19615.58, + "probability": 0.9386 + }, + { + "start": 19616.0, + "end": 19617.32, + "probability": 0.8113 + }, + { + "start": 19618.14, + "end": 19619.62, + "probability": 0.811 + }, + { + "start": 19619.72, + "end": 19620.22, + "probability": 0.9739 + }, + { + "start": 19620.4, + "end": 19621.32, + "probability": 0.7814 + }, + { + "start": 19621.46, + "end": 19624.02, + "probability": 0.7765 + }, + { + "start": 19624.46, + "end": 19625.36, + "probability": 0.9803 + }, + { + "start": 19625.94, + "end": 19626.94, + "probability": 0.8911 + }, + { + "start": 19627.62, + "end": 19629.26, + "probability": 0.903 + }, + { + "start": 19629.34, + "end": 19629.86, + "probability": 0.5182 + }, + { + "start": 19630.04, + "end": 19630.4, + "probability": 0.4155 + }, + { + "start": 19630.44, + "end": 19631.96, + "probability": 0.9293 + }, + { + "start": 19632.14, + "end": 19634.9, + "probability": 0.9626 + }, + { + "start": 19634.98, + "end": 19636.22, + "probability": 0.9319 + }, + { + "start": 19636.96, + "end": 19638.78, + "probability": 0.7501 + }, + { + "start": 19638.96, + "end": 19640.98, + "probability": 0.9736 + }, + { + "start": 19641.56, + "end": 19645.18, + "probability": 0.9836 + }, + { + "start": 19645.36, + "end": 19645.72, + "probability": 0.4302 + }, + { + "start": 19645.78, + "end": 19647.18, + "probability": 0.9959 + }, + { + "start": 19647.88, + "end": 19649.86, + "probability": 0.8916 + }, + { + "start": 19650.22, + "end": 19651.78, + "probability": 0.9861 + }, + { + "start": 19651.8, + "end": 19652.08, + "probability": 0.8059 + }, + { + "start": 19652.68, + "end": 19653.02, + "probability": 0.7858 + }, + { + "start": 19653.08, + "end": 19654.46, + "probability": 0.6685 + }, + { + "start": 19655.0, + "end": 19655.52, + "probability": 0.5426 + }, + { + "start": 19656.2, + "end": 19657.56, + "probability": 0.9419 + }, + { + "start": 19658.56, + "end": 19659.42, + "probability": 0.7334 + }, + { + "start": 19660.24, + "end": 19661.46, + "probability": 0.9961 + }, + { + "start": 19671.42, + "end": 19672.57, + "probability": 0.4707 + }, + { + "start": 19673.78, + "end": 19674.7, + "probability": 0.7937 + }, + { + "start": 19675.94, + "end": 19678.46, + "probability": 0.7208 + }, + { + "start": 19679.46, + "end": 19683.46, + "probability": 0.961 + }, + { + "start": 19684.6, + "end": 19688.12, + "probability": 0.9801 + }, + { + "start": 19688.12, + "end": 19688.48, + "probability": 0.7625 + }, + { + "start": 19688.58, + "end": 19690.93, + "probability": 0.7784 + }, + { + "start": 19692.86, + "end": 19696.38, + "probability": 0.8499 + }, + { + "start": 19699.0, + "end": 19701.06, + "probability": 0.8857 + }, + { + "start": 19701.82, + "end": 19702.99, + "probability": 0.9067 + }, + { + "start": 19703.98, + "end": 19706.6, + "probability": 0.924 + }, + { + "start": 19707.06, + "end": 19711.14, + "probability": 0.9984 + }, + { + "start": 19711.14, + "end": 19713.98, + "probability": 0.9995 + }, + { + "start": 19714.54, + "end": 19717.64, + "probability": 0.9363 + }, + { + "start": 19718.2, + "end": 19720.0, + "probability": 0.9482 + }, + { + "start": 19720.7, + "end": 19723.26, + "probability": 0.9207 + }, + { + "start": 19723.88, + "end": 19725.66, + "probability": 0.7607 + }, + { + "start": 19725.78, + "end": 19727.79, + "probability": 0.9976 + }, + { + "start": 19728.24, + "end": 19731.26, + "probability": 0.9903 + }, + { + "start": 19731.28, + "end": 19734.02, + "probability": 0.7253 + }, + { + "start": 19735.3, + "end": 19739.1, + "probability": 0.9826 + }, + { + "start": 19739.64, + "end": 19740.7, + "probability": 0.959 + }, + { + "start": 19741.26, + "end": 19742.1, + "probability": 0.9515 + }, + { + "start": 19742.22, + "end": 19745.9, + "probability": 0.6684 + }, + { + "start": 19747.08, + "end": 19751.18, + "probability": 0.0781 + }, + { + "start": 19752.58, + "end": 19752.7, + "probability": 0.0018 + }, + { + "start": 19752.7, + "end": 19752.8, + "probability": 0.092 + }, + { + "start": 19752.8, + "end": 19753.3, + "probability": 0.0268 + }, + { + "start": 19753.3, + "end": 19755.44, + "probability": 0.4238 + }, + { + "start": 19756.3, + "end": 19759.7, + "probability": 0.8584 + }, + { + "start": 19760.18, + "end": 19761.66, + "probability": 0.9862 + }, + { + "start": 19762.24, + "end": 19762.73, + "probability": 0.9303 + }, + { + "start": 19763.84, + "end": 19767.0, + "probability": 0.9879 + }, + { + "start": 19767.56, + "end": 19771.68, + "probability": 0.9112 + }, + { + "start": 19772.22, + "end": 19777.42, + "probability": 0.9656 + }, + { + "start": 19778.04, + "end": 19783.8, + "probability": 0.9148 + }, + { + "start": 19783.9, + "end": 19789.28, + "probability": 0.9866 + }, + { + "start": 19789.96, + "end": 19792.56, + "probability": 0.6992 + }, + { + "start": 19793.06, + "end": 19795.1, + "probability": 0.86 + }, + { + "start": 19795.28, + "end": 19800.96, + "probability": 0.8592 + }, + { + "start": 19801.82, + "end": 19805.88, + "probability": 0.8464 + }, + { + "start": 19806.68, + "end": 19812.32, + "probability": 0.9914 + }, + { + "start": 19812.32, + "end": 19817.78, + "probability": 0.9987 + }, + { + "start": 19817.88, + "end": 19818.92, + "probability": 0.8301 + }, + { + "start": 19819.08, + "end": 19820.94, + "probability": 0.9415 + }, + { + "start": 19821.66, + "end": 19827.16, + "probability": 0.9995 + }, + { + "start": 19827.6, + "end": 19829.6, + "probability": 0.8069 + }, + { + "start": 19830.22, + "end": 19832.1, + "probability": 0.5787 + }, + { + "start": 19832.56, + "end": 19833.76, + "probability": 0.9762 + }, + { + "start": 19833.86, + "end": 19834.56, + "probability": 0.7281 + }, + { + "start": 19834.64, + "end": 19836.46, + "probability": 0.883 + }, + { + "start": 19837.14, + "end": 19837.98, + "probability": 0.8579 + }, + { + "start": 19838.98, + "end": 19844.06, + "probability": 0.978 + }, + { + "start": 19844.44, + "end": 19846.08, + "probability": 0.9919 + }, + { + "start": 19846.54, + "end": 19847.82, + "probability": 0.9839 + }, + { + "start": 19848.32, + "end": 19854.26, + "probability": 0.9893 + }, + { + "start": 19854.74, + "end": 19857.6, + "probability": 0.9945 + }, + { + "start": 19858.1, + "end": 19859.56, + "probability": 0.835 + }, + { + "start": 19860.14, + "end": 19861.12, + "probability": 0.8906 + }, + { + "start": 19862.0, + "end": 19865.02, + "probability": 0.9918 + }, + { + "start": 19865.02, + "end": 19868.34, + "probability": 0.9819 + }, + { + "start": 19868.4, + "end": 19869.4, + "probability": 0.9442 + }, + { + "start": 19869.46, + "end": 19869.88, + "probability": 0.7538 + }, + { + "start": 19870.48, + "end": 19870.9, + "probability": 0.757 + }, + { + "start": 19872.2, + "end": 19874.22, + "probability": 0.8914 + }, + { + "start": 19880.06, + "end": 19886.26, + "probability": 0.8586 + }, + { + "start": 19887.3, + "end": 19887.48, + "probability": 0.7162 + }, + { + "start": 19888.26, + "end": 19888.84, + "probability": 0.2648 + }, + { + "start": 19888.84, + "end": 19889.8, + "probability": 0.954 + }, + { + "start": 19890.16, + "end": 19890.26, + "probability": 0.6206 + }, + { + "start": 19890.88, + "end": 19891.92, + "probability": 0.9852 + }, + { + "start": 19893.16, + "end": 19895.96, + "probability": 0.7211 + }, + { + "start": 19898.76, + "end": 19899.98, + "probability": 0.6161 + }, + { + "start": 19901.6, + "end": 19903.4, + "probability": 0.9861 + }, + { + "start": 19904.58, + "end": 19905.12, + "probability": 0.4958 + }, + { + "start": 19907.12, + "end": 19907.48, + "probability": 0.0808 + }, + { + "start": 19908.94, + "end": 19909.85, + "probability": 0.9515 + }, + { + "start": 19910.74, + "end": 19912.06, + "probability": 0.9501 + }, + { + "start": 19913.46, + "end": 19914.38, + "probability": 0.9309 + }, + { + "start": 19915.16, + "end": 19916.74, + "probability": 0.9642 + }, + { + "start": 19917.42, + "end": 19918.3, + "probability": 0.7807 + }, + { + "start": 19919.14, + "end": 19923.38, + "probability": 0.9783 + }, + { + "start": 19924.64, + "end": 19925.44, + "probability": 0.9159 + }, + { + "start": 19926.1, + "end": 19927.98, + "probability": 0.8848 + }, + { + "start": 19928.76, + "end": 19930.58, + "probability": 0.8403 + }, + { + "start": 19931.34, + "end": 19932.66, + "probability": 0.9242 + }, + { + "start": 19933.34, + "end": 19934.28, + "probability": 0.928 + }, + { + "start": 19936.2, + "end": 19939.82, + "probability": 0.9374 + }, + { + "start": 19940.34, + "end": 19943.1, + "probability": 0.9943 + }, + { + "start": 19944.64, + "end": 19946.62, + "probability": 0.9199 + }, + { + "start": 19947.9, + "end": 19951.4, + "probability": 0.9688 + }, + { + "start": 19952.32, + "end": 19954.18, + "probability": 0.272 + }, + { + "start": 19955.66, + "end": 19956.58, + "probability": 0.8639 + }, + { + "start": 19958.6, + "end": 19960.68, + "probability": 0.8493 + }, + { + "start": 19962.26, + "end": 19963.32, + "probability": 0.7192 + }, + { + "start": 19963.98, + "end": 19966.8, + "probability": 0.9795 + }, + { + "start": 19967.7, + "end": 19969.6, + "probability": 0.9634 + }, + { + "start": 19970.64, + "end": 19971.72, + "probability": 0.9868 + }, + { + "start": 19972.72, + "end": 19973.46, + "probability": 0.8747 + }, + { + "start": 19974.16, + "end": 19974.92, + "probability": 0.4479 + }, + { + "start": 19975.54, + "end": 19976.62, + "probability": 0.7347 + }, + { + "start": 19976.78, + "end": 19978.66, + "probability": 0.9602 + }, + { + "start": 19980.3, + "end": 19981.92, + "probability": 0.8943 + }, + { + "start": 19982.62, + "end": 19985.44, + "probability": 0.9331 + }, + { + "start": 19986.58, + "end": 19987.46, + "probability": 0.8354 + }, + { + "start": 19987.98, + "end": 19989.36, + "probability": 0.9475 + }, + { + "start": 19989.82, + "end": 19991.24, + "probability": 0.9922 + }, + { + "start": 19992.44, + "end": 19993.42, + "probability": 0.9895 + }, + { + "start": 19994.66, + "end": 19995.68, + "probability": 0.7343 + }, + { + "start": 19996.7, + "end": 20000.78, + "probability": 0.9763 + }, + { + "start": 20002.54, + "end": 20003.68, + "probability": 0.8849 + }, + { + "start": 20004.56, + "end": 20006.24, + "probability": 0.9883 + }, + { + "start": 20006.5, + "end": 20008.42, + "probability": 0.9547 + }, + { + "start": 20009.14, + "end": 20012.86, + "probability": 0.9241 + }, + { + "start": 20013.58, + "end": 20016.2, + "probability": 0.5697 + }, + { + "start": 20019.64, + "end": 20021.7, + "probability": 0.9558 + }, + { + "start": 20023.76, + "end": 20024.26, + "probability": 0.5267 + }, + { + "start": 20026.28, + "end": 20029.04, + "probability": 0.7129 + }, + { + "start": 20029.34, + "end": 20031.6, + "probability": 0.884 + }, + { + "start": 20031.88, + "end": 20032.44, + "probability": 0.6685 + }, + { + "start": 20032.58, + "end": 20033.26, + "probability": 0.7396 + }, + { + "start": 20033.42, + "end": 20036.08, + "probability": 0.7819 + }, + { + "start": 20037.64, + "end": 20037.86, + "probability": 0.7418 + }, + { + "start": 20039.08, + "end": 20040.86, + "probability": 0.9956 + }, + { + "start": 20042.1, + "end": 20045.04, + "probability": 0.9519 + }, + { + "start": 20045.22, + "end": 20049.02, + "probability": 0.9315 + }, + { + "start": 20049.88, + "end": 20051.28, + "probability": 0.9893 + }, + { + "start": 20051.82, + "end": 20055.62, + "probability": 0.6455 + }, + { + "start": 20057.32, + "end": 20057.78, + "probability": 0.4848 + }, + { + "start": 20058.84, + "end": 20063.5, + "probability": 0.9749 + }, + { + "start": 20063.72, + "end": 20064.46, + "probability": 0.9701 + }, + { + "start": 20064.94, + "end": 20068.14, + "probability": 0.8094 + }, + { + "start": 20069.2, + "end": 20072.6, + "probability": 0.991 + }, + { + "start": 20073.46, + "end": 20077.56, + "probability": 0.8569 + }, + { + "start": 20078.16, + "end": 20079.0, + "probability": 0.8858 + }, + { + "start": 20079.7, + "end": 20080.98, + "probability": 0.5606 + }, + { + "start": 20081.32, + "end": 20084.06, + "probability": 0.9619 + }, + { + "start": 20085.64, + "end": 20085.86, + "probability": 0.8291 + }, + { + "start": 20086.48, + "end": 20088.92, + "probability": 0.9255 + }, + { + "start": 20089.94, + "end": 20090.68, + "probability": 0.5596 + }, + { + "start": 20091.94, + "end": 20092.32, + "probability": 0.6013 + }, + { + "start": 20092.34, + "end": 20093.86, + "probability": 0.6716 + }, + { + "start": 20094.3, + "end": 20094.8, + "probability": 0.944 + }, + { + "start": 20097.98, + "end": 20100.52, + "probability": 0.7847 + }, + { + "start": 20119.54, + "end": 20122.52, + "probability": 0.7496 + }, + { + "start": 20123.94, + "end": 20126.62, + "probability": 0.9912 + }, + { + "start": 20127.3, + "end": 20127.64, + "probability": 0.6656 + }, + { + "start": 20127.76, + "end": 20128.16, + "probability": 0.9378 + }, + { + "start": 20128.26, + "end": 20128.86, + "probability": 0.4548 + }, + { + "start": 20128.86, + "end": 20131.86, + "probability": 0.9836 + }, + { + "start": 20132.56, + "end": 20137.38, + "probability": 0.9844 + }, + { + "start": 20137.46, + "end": 20138.38, + "probability": 0.5365 + }, + { + "start": 20138.58, + "end": 20139.56, + "probability": 0.915 + }, + { + "start": 20140.12, + "end": 20141.9, + "probability": 0.7319 + }, + { + "start": 20142.9, + "end": 20147.92, + "probability": 0.9842 + }, + { + "start": 20148.78, + "end": 20156.02, + "probability": 0.769 + }, + { + "start": 20156.64, + "end": 20158.72, + "probability": 0.718 + }, + { + "start": 20159.48, + "end": 20163.5, + "probability": 0.537 + }, + { + "start": 20163.74, + "end": 20164.98, + "probability": 0.9938 + }, + { + "start": 20165.5, + "end": 20170.04, + "probability": 0.9808 + }, + { + "start": 20170.35, + "end": 20173.34, + "probability": 0.9888 + }, + { + "start": 20173.46, + "end": 20174.56, + "probability": 0.9944 + }, + { + "start": 20174.68, + "end": 20175.28, + "probability": 0.8859 + }, + { + "start": 20175.5, + "end": 20178.78, + "probability": 0.9654 + }, + { + "start": 20180.26, + "end": 20182.42, + "probability": 0.6664 + }, + { + "start": 20182.66, + "end": 20187.16, + "probability": 0.9922 + }, + { + "start": 20187.56, + "end": 20189.22, + "probability": 0.9818 + }, + { + "start": 20190.36, + "end": 20192.04, + "probability": 0.9946 + }, + { + "start": 20192.92, + "end": 20197.66, + "probability": 0.9858 + }, + { + "start": 20198.66, + "end": 20202.76, + "probability": 0.8278 + }, + { + "start": 20203.56, + "end": 20210.06, + "probability": 0.9822 + }, + { + "start": 20210.84, + "end": 20214.14, + "probability": 0.906 + }, + { + "start": 20215.3, + "end": 20217.98, + "probability": 0.9877 + }, + { + "start": 20218.4, + "end": 20219.22, + "probability": 0.7062 + }, + { + "start": 20219.5, + "end": 20223.28, + "probability": 0.998 + }, + { + "start": 20223.76, + "end": 20224.32, + "probability": 0.7247 + }, + { + "start": 20224.52, + "end": 20226.14, + "probability": 0.9892 + }, + { + "start": 20227.72, + "end": 20228.54, + "probability": 0.9428 + }, + { + "start": 20230.0, + "end": 20233.76, + "probability": 0.793 + }, + { + "start": 20233.84, + "end": 20238.26, + "probability": 0.9768 + }, + { + "start": 20239.5, + "end": 20243.7, + "probability": 0.9648 + }, + { + "start": 20244.16, + "end": 20247.42, + "probability": 0.9967 + }, + { + "start": 20247.96, + "end": 20248.68, + "probability": 0.3118 + }, + { + "start": 20248.8, + "end": 20250.12, + "probability": 0.9213 + }, + { + "start": 20250.5, + "end": 20252.1, + "probability": 0.867 + }, + { + "start": 20253.86, + "end": 20254.56, + "probability": 0.7621 + }, + { + "start": 20254.74, + "end": 20257.88, + "probability": 0.8783 + }, + { + "start": 20257.96, + "end": 20262.18, + "probability": 0.9977 + }, + { + "start": 20262.58, + "end": 20265.02, + "probability": 0.9429 + }, + { + "start": 20265.78, + "end": 20266.82, + "probability": 0.928 + }, + { + "start": 20266.88, + "end": 20267.92, + "probability": 0.3664 + }, + { + "start": 20268.02, + "end": 20268.71, + "probability": 0.7346 + }, + { + "start": 20269.08, + "end": 20270.86, + "probability": 0.0382 + }, + { + "start": 20270.94, + "end": 20270.94, + "probability": 0.0903 + }, + { + "start": 20270.94, + "end": 20271.44, + "probability": 0.1911 + }, + { + "start": 20271.82, + "end": 20275.06, + "probability": 0.9858 + }, + { + "start": 20275.06, + "end": 20278.5, + "probability": 0.9424 + }, + { + "start": 20279.42, + "end": 20280.7, + "probability": 0.8013 + }, + { + "start": 20280.86, + "end": 20286.0, + "probability": 0.985 + }, + { + "start": 20286.22, + "end": 20287.86, + "probability": 0.8967 + }, + { + "start": 20288.02, + "end": 20290.64, + "probability": 0.8905 + }, + { + "start": 20290.74, + "end": 20293.42, + "probability": 0.9657 + }, + { + "start": 20294.42, + "end": 20296.78, + "probability": 0.992 + }, + { + "start": 20297.52, + "end": 20301.2, + "probability": 0.9542 + }, + { + "start": 20301.46, + "end": 20302.24, + "probability": 0.8542 + }, + { + "start": 20302.28, + "end": 20303.24, + "probability": 0.9747 + }, + { + "start": 20304.52, + "end": 20307.43, + "probability": 0.8818 + }, + { + "start": 20307.9, + "end": 20310.72, + "probability": 0.9849 + }, + { + "start": 20310.9, + "end": 20313.56, + "probability": 0.9878 + }, + { + "start": 20314.42, + "end": 20320.54, + "probability": 0.9771 + }, + { + "start": 20322.36, + "end": 20324.41, + "probability": 0.925 + }, + { + "start": 20324.74, + "end": 20328.1, + "probability": 0.9842 + }, + { + "start": 20328.82, + "end": 20332.58, + "probability": 0.8687 + }, + { + "start": 20333.06, + "end": 20337.38, + "probability": 0.9303 + }, + { + "start": 20337.62, + "end": 20342.6, + "probability": 0.9852 + }, + { + "start": 20343.06, + "end": 20346.37, + "probability": 0.6658 + }, + { + "start": 20347.38, + "end": 20348.82, + "probability": 0.9421 + }, + { + "start": 20348.94, + "end": 20350.0, + "probability": 0.7593 + }, + { + "start": 20350.56, + "end": 20353.86, + "probability": 0.996 + }, + { + "start": 20353.86, + "end": 20357.34, + "probability": 0.738 + }, + { + "start": 20357.7, + "end": 20361.66, + "probability": 0.9844 + }, + { + "start": 20362.28, + "end": 20362.84, + "probability": 0.6037 + }, + { + "start": 20363.66, + "end": 20366.54, + "probability": 0.9382 + }, + { + "start": 20387.58, + "end": 20389.48, + "probability": 0.7725 + }, + { + "start": 20394.98, + "end": 20397.54, + "probability": 0.7401 + }, + { + "start": 20398.92, + "end": 20403.08, + "probability": 0.9937 + }, + { + "start": 20403.08, + "end": 20408.68, + "probability": 0.9981 + }, + { + "start": 20409.2, + "end": 20410.66, + "probability": 0.9856 + }, + { + "start": 20411.66, + "end": 20412.26, + "probability": 0.9262 + }, + { + "start": 20413.08, + "end": 20417.78, + "probability": 0.9973 + }, + { + "start": 20419.22, + "end": 20422.58, + "probability": 0.998 + }, + { + "start": 20422.59, + "end": 20429.1, + "probability": 0.9731 + }, + { + "start": 20429.68, + "end": 20430.88, + "probability": 0.8294 + }, + { + "start": 20432.74, + "end": 20436.54, + "probability": 0.9984 + }, + { + "start": 20436.56, + "end": 20440.02, + "probability": 0.9995 + }, + { + "start": 20440.6, + "end": 20445.68, + "probability": 0.9927 + }, + { + "start": 20446.62, + "end": 20452.96, + "probability": 0.9719 + }, + { + "start": 20453.8, + "end": 20455.44, + "probability": 0.9883 + }, + { + "start": 20458.14, + "end": 20459.58, + "probability": 0.1235 + }, + { + "start": 20459.58, + "end": 20461.45, + "probability": 0.7356 + }, + { + "start": 20462.0, + "end": 20466.9, + "probability": 0.995 + }, + { + "start": 20467.98, + "end": 20469.78, + "probability": 0.9907 + }, + { + "start": 20470.42, + "end": 20472.88, + "probability": 0.9185 + }, + { + "start": 20474.2, + "end": 20477.1, + "probability": 0.9793 + }, + { + "start": 20477.1, + "end": 20481.78, + "probability": 0.9774 + }, + { + "start": 20482.02, + "end": 20490.72, + "probability": 0.9816 + }, + { + "start": 20490.8, + "end": 20492.18, + "probability": 0.507 + }, + { + "start": 20492.68, + "end": 20496.06, + "probability": 0.9575 + }, + { + "start": 20497.6, + "end": 20501.48, + "probability": 0.9716 + }, + { + "start": 20502.08, + "end": 20507.3, + "probability": 0.9976 + }, + { + "start": 20508.6, + "end": 20512.28, + "probability": 0.999 + }, + { + "start": 20512.38, + "end": 20513.88, + "probability": 0.982 + }, + { + "start": 20515.0, + "end": 20516.16, + "probability": 0.877 + }, + { + "start": 20516.68, + "end": 20519.66, + "probability": 0.8623 + }, + { + "start": 20520.12, + "end": 20523.36, + "probability": 0.8523 + }, + { + "start": 20523.96, + "end": 20527.66, + "probability": 0.9884 + }, + { + "start": 20527.84, + "end": 20528.42, + "probability": 0.9561 + }, + { + "start": 20530.0, + "end": 20533.42, + "probability": 0.9989 + }, + { + "start": 20533.42, + "end": 20538.1, + "probability": 0.9699 + }, + { + "start": 20538.9, + "end": 20539.7, + "probability": 0.8708 + }, + { + "start": 20540.54, + "end": 20541.24, + "probability": 0.9794 + }, + { + "start": 20541.78, + "end": 20549.88, + "probability": 0.9782 + }, + { + "start": 20550.24, + "end": 20550.8, + "probability": 0.8896 + }, + { + "start": 20551.86, + "end": 20552.92, + "probability": 0.9891 + }, + { + "start": 20553.24, + "end": 20554.04, + "probability": 0.9799 + }, + { + "start": 20554.46, + "end": 20560.7, + "probability": 0.9975 + }, + { + "start": 20562.28, + "end": 20565.22, + "probability": 0.9915 + }, + { + "start": 20565.98, + "end": 20567.98, + "probability": 0.9535 + }, + { + "start": 20568.72, + "end": 20571.46, + "probability": 0.9673 + }, + { + "start": 20572.18, + "end": 20575.04, + "probability": 0.9526 + }, + { + "start": 20575.74, + "end": 20579.0, + "probability": 0.9599 + }, + { + "start": 20580.44, + "end": 20580.82, + "probability": 0.7147 + }, + { + "start": 20580.82, + "end": 20581.24, + "probability": 0.8058 + }, + { + "start": 20582.6, + "end": 20584.32, + "probability": 0.9556 + }, + { + "start": 20600.92, + "end": 20602.88, + "probability": 0.6115 + }, + { + "start": 20605.04, + "end": 20607.1, + "probability": 0.9875 + }, + { + "start": 20607.28, + "end": 20607.88, + "probability": 0.9712 + }, + { + "start": 20608.04, + "end": 20609.04, + "probability": 0.9119 + }, + { + "start": 20609.8, + "end": 20612.37, + "probability": 0.8581 + }, + { + "start": 20612.84, + "end": 20617.28, + "probability": 0.9191 + }, + { + "start": 20618.08, + "end": 20619.98, + "probability": 0.994 + }, + { + "start": 20620.68, + "end": 20622.02, + "probability": 0.5633 + }, + { + "start": 20622.62, + "end": 20626.68, + "probability": 0.9975 + }, + { + "start": 20626.68, + "end": 20634.14, + "probability": 0.8004 + }, + { + "start": 20634.6, + "end": 20635.88, + "probability": 0.5185 + }, + { + "start": 20636.64, + "end": 20641.92, + "probability": 0.9854 + }, + { + "start": 20642.42, + "end": 20645.4, + "probability": 0.9391 + }, + { + "start": 20646.16, + "end": 20646.5, + "probability": 0.9193 + }, + { + "start": 20646.98, + "end": 20651.22, + "probability": 0.9974 + }, + { + "start": 20652.62, + "end": 20655.08, + "probability": 0.6411 + }, + { + "start": 20656.33, + "end": 20659.6, + "probability": 0.9648 + }, + { + "start": 20660.72, + "end": 20666.68, + "probability": 0.9674 + }, + { + "start": 20666.9, + "end": 20667.9, + "probability": 0.7261 + }, + { + "start": 20667.96, + "end": 20668.98, + "probability": 0.8999 + }, + { + "start": 20670.2, + "end": 20673.44, + "probability": 0.9937 + }, + { + "start": 20674.2, + "end": 20676.06, + "probability": 0.9979 + }, + { + "start": 20676.78, + "end": 20681.12, + "probability": 0.9924 + }, + { + "start": 20681.26, + "end": 20682.22, + "probability": 0.6685 + }, + { + "start": 20683.28, + "end": 20685.72, + "probability": 0.9401 + }, + { + "start": 20686.26, + "end": 20689.62, + "probability": 0.9805 + }, + { + "start": 20690.6, + "end": 20694.88, + "probability": 0.9627 + }, + { + "start": 20696.08, + "end": 20697.64, + "probability": 0.5376 + }, + { + "start": 20698.6, + "end": 20700.2, + "probability": 0.9941 + }, + { + "start": 20701.38, + "end": 20704.92, + "probability": 0.981 + }, + { + "start": 20706.08, + "end": 20709.54, + "probability": 0.9915 + }, + { + "start": 20710.54, + "end": 20714.43, + "probability": 0.9135 + }, + { + "start": 20714.98, + "end": 20720.36, + "probability": 0.9955 + }, + { + "start": 20721.66, + "end": 20723.52, + "probability": 0.6216 + }, + { + "start": 20723.98, + "end": 20727.54, + "probability": 0.7255 + }, + { + "start": 20728.26, + "end": 20729.48, + "probability": 0.8352 + }, + { + "start": 20730.14, + "end": 20731.21, + "probability": 0.9087 + }, + { + "start": 20733.0, + "end": 20735.86, + "probability": 0.9858 + }, + { + "start": 20735.96, + "end": 20737.0, + "probability": 0.6858 + }, + { + "start": 20737.76, + "end": 20738.76, + "probability": 0.9817 + }, + { + "start": 20739.5, + "end": 20739.96, + "probability": 0.514 + }, + { + "start": 20740.72, + "end": 20742.7, + "probability": 0.9059 + }, + { + "start": 20743.56, + "end": 20744.08, + "probability": 0.994 + }, + { + "start": 20744.68, + "end": 20748.0, + "probability": 0.9962 + }, + { + "start": 20749.36, + "end": 20752.49, + "probability": 0.9666 + }, + { + "start": 20754.06, + "end": 20754.66, + "probability": 0.8374 + }, + { + "start": 20756.5, + "end": 20758.15, + "probability": 0.9945 + }, + { + "start": 20759.14, + "end": 20761.64, + "probability": 0.9491 + }, + { + "start": 20762.16, + "end": 20764.18, + "probability": 0.88 + }, + { + "start": 20764.78, + "end": 20766.72, + "probability": 0.9922 + }, + { + "start": 20768.62, + "end": 20770.3, + "probability": 0.85 + }, + { + "start": 20770.76, + "end": 20773.1, + "probability": 0.9941 + }, + { + "start": 20773.54, + "end": 20776.8, + "probability": 0.9678 + }, + { + "start": 20777.96, + "end": 20782.42, + "probability": 0.995 + }, + { + "start": 20782.94, + "end": 20784.78, + "probability": 0.9631 + }, + { + "start": 20785.44, + "end": 20791.64, + "probability": 0.9851 + }, + { + "start": 20792.2, + "end": 20797.22, + "probability": 0.9978 + }, + { + "start": 20797.3, + "end": 20797.98, + "probability": 0.9187 + }, + { + "start": 20798.42, + "end": 20798.94, + "probability": 0.7738 + }, + { + "start": 20800.4, + "end": 20802.76, + "probability": 0.8226 + }, + { + "start": 20820.64, + "end": 20822.64, + "probability": 0.7391 + }, + { + "start": 20823.54, + "end": 20826.34, + "probability": 0.9744 + }, + { + "start": 20826.42, + "end": 20830.8, + "probability": 0.979 + }, + { + "start": 20832.58, + "end": 20835.52, + "probability": 0.9941 + }, + { + "start": 20835.52, + "end": 20839.38, + "probability": 0.8423 + }, + { + "start": 20840.22, + "end": 20843.28, + "probability": 0.8533 + }, + { + "start": 20844.02, + "end": 20847.26, + "probability": 0.9005 + }, + { + "start": 20847.42, + "end": 20848.78, + "probability": 0.9483 + }, + { + "start": 20849.5, + "end": 20851.78, + "probability": 0.9764 + }, + { + "start": 20852.84, + "end": 20854.16, + "probability": 0.9922 + }, + { + "start": 20854.7, + "end": 20857.24, + "probability": 0.4885 + }, + { + "start": 20857.7, + "end": 20860.42, + "probability": 0.9966 + }, + { + "start": 20861.1, + "end": 20864.38, + "probability": 0.9691 + }, + { + "start": 20864.88, + "end": 20870.16, + "probability": 0.9783 + }, + { + "start": 20870.64, + "end": 20872.24, + "probability": 0.9672 + }, + { + "start": 20872.9, + "end": 20876.96, + "probability": 0.9938 + }, + { + "start": 20877.7, + "end": 20880.4, + "probability": 0.7846 + }, + { + "start": 20881.1, + "end": 20882.5, + "probability": 0.7414 + }, + { + "start": 20882.76, + "end": 20883.34, + "probability": 0.8427 + }, + { + "start": 20883.56, + "end": 20886.24, + "probability": 0.9746 + }, + { + "start": 20886.8, + "end": 20888.44, + "probability": 0.9891 + }, + { + "start": 20889.24, + "end": 20891.86, + "probability": 0.9733 + }, + { + "start": 20893.02, + "end": 20895.3, + "probability": 0.986 + }, + { + "start": 20895.98, + "end": 20898.94, + "probability": 0.9966 + }, + { + "start": 20898.94, + "end": 20903.42, + "probability": 0.884 + }, + { + "start": 20903.98, + "end": 20905.4, + "probability": 0.9858 + }, + { + "start": 20905.92, + "end": 20910.3, + "probability": 0.9401 + }, + { + "start": 20911.5, + "end": 20913.14, + "probability": 0.996 + }, + { + "start": 20913.2, + "end": 20916.38, + "probability": 0.9414 + }, + { + "start": 20916.96, + "end": 20919.3, + "probability": 0.9845 + }, + { + "start": 20919.76, + "end": 20922.18, + "probability": 0.8346 + }, + { + "start": 20922.56, + "end": 20926.34, + "probability": 0.9964 + }, + { + "start": 20926.88, + "end": 20931.3, + "probability": 0.9763 + }, + { + "start": 20931.7, + "end": 20933.6, + "probability": 0.9685 + }, + { + "start": 20934.3, + "end": 20935.42, + "probability": 0.9824 + }, + { + "start": 20936.14, + "end": 20937.94, + "probability": 0.7449 + }, + { + "start": 20938.4, + "end": 20940.88, + "probability": 0.9963 + }, + { + "start": 20941.28, + "end": 20943.38, + "probability": 0.968 + }, + { + "start": 20943.86, + "end": 20947.72, + "probability": 0.9474 + }, + { + "start": 20948.3, + "end": 20950.32, + "probability": 0.9659 + }, + { + "start": 20950.82, + "end": 20956.24, + "probability": 0.9788 + }, + { + "start": 20956.8, + "end": 20958.34, + "probability": 0.9177 + }, + { + "start": 20959.1, + "end": 20960.87, + "probability": 0.8149 + }, + { + "start": 20961.36, + "end": 20964.72, + "probability": 0.9883 + }, + { + "start": 20964.72, + "end": 20967.56, + "probability": 0.9964 + }, + { + "start": 20968.18, + "end": 20971.7, + "probability": 0.9896 + }, + { + "start": 20972.72, + "end": 20978.46, + "probability": 0.9976 + }, + { + "start": 20979.1, + "end": 20984.16, + "probability": 0.9707 + }, + { + "start": 20984.6, + "end": 20984.6, + "probability": 0.3004 + }, + { + "start": 20984.6, + "end": 20986.14, + "probability": 0.9561 + }, + { + "start": 20986.86, + "end": 20988.16, + "probability": 0.6602 + }, + { + "start": 20989.12, + "end": 20990.52, + "probability": 0.9919 + }, + { + "start": 20991.3, + "end": 20994.28, + "probability": 0.9706 + }, + { + "start": 20994.74, + "end": 20996.32, + "probability": 0.9884 + }, + { + "start": 20996.74, + "end": 21000.34, + "probability": 0.9642 + }, + { + "start": 21001.06, + "end": 21003.02, + "probability": 0.7814 + }, + { + "start": 21003.7, + "end": 21005.88, + "probability": 0.8798 + }, + { + "start": 21006.82, + "end": 21007.38, + "probability": 0.9357 + }, + { + "start": 21007.56, + "end": 21008.78, + "probability": 0.9187 + }, + { + "start": 21009.2, + "end": 21012.9, + "probability": 0.9782 + }, + { + "start": 21013.54, + "end": 21016.49, + "probability": 0.7875 + }, + { + "start": 21016.94, + "end": 21018.44, + "probability": 0.5484 + }, + { + "start": 21019.32, + "end": 21020.3, + "probability": 0.6014 + }, + { + "start": 21020.48, + "end": 21021.0, + "probability": 0.8 + }, + { + "start": 21021.08, + "end": 21021.92, + "probability": 0.9291 + }, + { + "start": 21022.3, + "end": 21022.88, + "probability": 0.8741 + }, + { + "start": 21023.3, + "end": 21024.16, + "probability": 0.7808 + }, + { + "start": 21024.2, + "end": 21024.94, + "probability": 0.8661 + }, + { + "start": 21025.04, + "end": 21025.74, + "probability": 0.4568 + }, + { + "start": 21025.84, + "end": 21026.32, + "probability": 0.2691 + }, + { + "start": 21026.52, + "end": 21026.62, + "probability": 0.8831 + }, + { + "start": 21027.16, + "end": 21027.46, + "probability": 0.7446 + }, + { + "start": 21027.6, + "end": 21028.27, + "probability": 0.9834 + }, + { + "start": 21028.44, + "end": 21029.1, + "probability": 0.8893 + }, + { + "start": 21029.46, + "end": 21030.46, + "probability": 0.96 + }, + { + "start": 21030.52, + "end": 21031.44, + "probability": 0.8459 + }, + { + "start": 21031.48, + "end": 21033.48, + "probability": 0.9323 + }, + { + "start": 21034.48, + "end": 21034.48, + "probability": 0.212 + }, + { + "start": 21034.48, + "end": 21037.16, + "probability": 0.7575 + }, + { + "start": 21037.6, + "end": 21041.37, + "probability": 0.993 + }, + { + "start": 21041.72, + "end": 21042.81, + "probability": 0.9547 + }, + { + "start": 21043.34, + "end": 21047.86, + "probability": 0.8052 + }, + { + "start": 21048.46, + "end": 21050.66, + "probability": 0.7835 + }, + { + "start": 21051.0, + "end": 21053.48, + "probability": 0.5941 + }, + { + "start": 21053.48, + "end": 21054.5, + "probability": 0.3588 + }, + { + "start": 21054.52, + "end": 21055.12, + "probability": 0.516 + }, + { + "start": 21056.2, + "end": 21056.2, + "probability": 0.1668 + }, + { + "start": 21056.2, + "end": 21060.52, + "probability": 0.9836 + }, + { + "start": 21060.52, + "end": 21064.72, + "probability": 0.9856 + }, + { + "start": 21065.12, + "end": 21066.6, + "probability": 0.9627 + }, + { + "start": 21067.36, + "end": 21068.8, + "probability": 0.8483 + }, + { + "start": 21069.26, + "end": 21072.54, + "probability": 0.931 + }, + { + "start": 21073.06, + "end": 21073.24, + "probability": 0.7336 + }, + { + "start": 21075.08, + "end": 21077.26, + "probability": 0.7931 + }, + { + "start": 21077.42, + "end": 21079.46, + "probability": 0.8912 + }, + { + "start": 21081.76, + "end": 21083.6, + "probability": 0.4589 + }, + { + "start": 21083.66, + "end": 21084.16, + "probability": 0.329 + }, + { + "start": 21084.18, + "end": 21085.32, + "probability": 0.7548 + }, + { + "start": 21085.44, + "end": 21086.64, + "probability": 0.6154 + }, + { + "start": 21086.66, + "end": 21088.38, + "probability": 0.961 + }, + { + "start": 21088.48, + "end": 21089.92, + "probability": 0.9892 + }, + { + "start": 21090.46, + "end": 21091.82, + "probability": 0.8839 + }, + { + "start": 21091.92, + "end": 21094.52, + "probability": 0.6248 + }, + { + "start": 21094.62, + "end": 21095.34, + "probability": 0.8384 + }, + { + "start": 21095.8, + "end": 21097.24, + "probability": 0.777 + }, + { + "start": 21097.44, + "end": 21098.44, + "probability": 0.9641 + }, + { + "start": 21098.52, + "end": 21099.06, + "probability": 0.8932 + }, + { + "start": 21099.18, + "end": 21099.4, + "probability": 0.8959 + }, + { + "start": 21100.14, + "end": 21100.66, + "probability": 0.6508 + }, + { + "start": 21100.74, + "end": 21101.66, + "probability": 0.962 + }, + { + "start": 21103.28, + "end": 21103.96, + "probability": 0.6158 + }, + { + "start": 21104.0, + "end": 21105.16, + "probability": 0.7149 + }, + { + "start": 21105.42, + "end": 21106.82, + "probability": 0.8724 + }, + { + "start": 21107.12, + "end": 21109.74, + "probability": 0.967 + }, + { + "start": 21110.32, + "end": 21113.9, + "probability": 0.9027 + }, + { + "start": 21113.9, + "end": 21116.7, + "probability": 0.9834 + }, + { + "start": 21116.8, + "end": 21120.1, + "probability": 0.8907 + }, + { + "start": 21120.28, + "end": 21120.98, + "probability": 0.8311 + }, + { + "start": 21121.34, + "end": 21125.76, + "probability": 0.9797 + }, + { + "start": 21126.42, + "end": 21127.38, + "probability": 0.7158 + }, + { + "start": 21127.6, + "end": 21128.82, + "probability": 0.9113 + }, + { + "start": 21129.32, + "end": 21133.54, + "probability": 0.9738 + }, + { + "start": 21134.02, + "end": 21136.14, + "probability": 0.7991 + }, + { + "start": 21136.52, + "end": 21139.76, + "probability": 0.6642 + }, + { + "start": 21140.16, + "end": 21142.5, + "probability": 0.9876 + }, + { + "start": 21142.86, + "end": 21145.72, + "probability": 0.9835 + }, + { + "start": 21145.8, + "end": 21150.52, + "probability": 0.8581 + }, + { + "start": 21151.02, + "end": 21151.58, + "probability": 0.6466 + }, + { + "start": 21151.62, + "end": 21154.37, + "probability": 0.909 + }, + { + "start": 21154.44, + "end": 21155.78, + "probability": 0.9397 + }, + { + "start": 21156.18, + "end": 21158.63, + "probability": 0.9888 + }, + { + "start": 21160.34, + "end": 21160.34, + "probability": 0.5424 + }, + { + "start": 21160.34, + "end": 21162.92, + "probability": 0.9951 + }, + { + "start": 21162.92, + "end": 21167.02, + "probability": 0.981 + }, + { + "start": 21167.58, + "end": 21168.36, + "probability": 0.8412 + }, + { + "start": 21168.5, + "end": 21169.42, + "probability": 0.6118 + }, + { + "start": 21169.58, + "end": 21171.62, + "probability": 0.8958 + }, + { + "start": 21171.76, + "end": 21174.7, + "probability": 0.934 + }, + { + "start": 21175.26, + "end": 21178.34, + "probability": 0.95 + }, + { + "start": 21178.66, + "end": 21179.92, + "probability": 0.9208 + }, + { + "start": 21180.28, + "end": 21184.22, + "probability": 0.9287 + }, + { + "start": 21184.92, + "end": 21189.14, + "probability": 0.9978 + }, + { + "start": 21190.36, + "end": 21193.9, + "probability": 0.9962 + }, + { + "start": 21194.3, + "end": 21194.8, + "probability": 0.4953 + }, + { + "start": 21194.98, + "end": 21195.2, + "probability": 0.88 + }, + { + "start": 21195.32, + "end": 21197.76, + "probability": 0.7848 + }, + { + "start": 21198.34, + "end": 21199.68, + "probability": 0.7837 + }, + { + "start": 21199.8, + "end": 21204.56, + "probability": 0.904 + }, + { + "start": 21204.6, + "end": 21205.4, + "probability": 0.5266 + }, + { + "start": 21205.78, + "end": 21210.82, + "probability": 0.994 + }, + { + "start": 21211.46, + "end": 21213.42, + "probability": 0.6703 + }, + { + "start": 21213.62, + "end": 21214.58, + "probability": 0.7122 + }, + { + "start": 21214.66, + "end": 21215.44, + "probability": 0.4179 + }, + { + "start": 21215.78, + "end": 21219.62, + "probability": 0.8794 + }, + { + "start": 21220.08, + "end": 21225.24, + "probability": 0.577 + }, + { + "start": 21225.4, + "end": 21225.54, + "probability": 0.3681 + }, + { + "start": 21225.78, + "end": 21226.22, + "probability": 0.6985 + }, + { + "start": 21226.22, + "end": 21226.76, + "probability": 0.7395 + }, + { + "start": 21227.0, + "end": 21229.98, + "probability": 0.9115 + }, + { + "start": 21230.42, + "end": 21231.68, + "probability": 0.9475 + }, + { + "start": 21231.88, + "end": 21233.7, + "probability": 0.9873 + }, + { + "start": 21233.88, + "end": 21234.1, + "probability": 0.7054 + }, + { + "start": 21234.14, + "end": 21234.82, + "probability": 0.6211 + }, + { + "start": 21234.86, + "end": 21236.56, + "probability": 0.998 + }, + { + "start": 21237.04, + "end": 21238.4, + "probability": 0.9224 + }, + { + "start": 21238.84, + "end": 21242.07, + "probability": 0.9817 + }, + { + "start": 21242.74, + "end": 21244.8, + "probability": 0.5455 + }, + { + "start": 21244.9, + "end": 21246.4, + "probability": 0.9932 + }, + { + "start": 21246.54, + "end": 21248.5, + "probability": 0.9731 + }, + { + "start": 21248.68, + "end": 21250.0, + "probability": 0.9374 + }, + { + "start": 21250.1, + "end": 21251.74, + "probability": 0.9536 + }, + { + "start": 21251.98, + "end": 21254.94, + "probability": 0.7706 + }, + { + "start": 21255.02, + "end": 21256.4, + "probability": 0.9961 + }, + { + "start": 21256.96, + "end": 21262.04, + "probability": 0.9614 + }, + { + "start": 21262.26, + "end": 21262.7, + "probability": 0.8281 + }, + { + "start": 21262.94, + "end": 21266.22, + "probability": 0.9854 + }, + { + "start": 21266.56, + "end": 21267.06, + "probability": 0.6928 + }, + { + "start": 21267.1, + "end": 21270.72, + "probability": 0.9689 + }, + { + "start": 21271.22, + "end": 21271.58, + "probability": 0.7769 + }, + { + "start": 21272.14, + "end": 21273.24, + "probability": 0.9161 + }, + { + "start": 21299.82, + "end": 21303.32, + "probability": 0.7505 + }, + { + "start": 21304.24, + "end": 21308.54, + "probability": 0.9867 + }, + { + "start": 21308.6, + "end": 21312.4, + "probability": 0.9255 + }, + { + "start": 21313.38, + "end": 21314.68, + "probability": 0.8656 + }, + { + "start": 21315.7, + "end": 21319.08, + "probability": 0.9382 + }, + { + "start": 21321.26, + "end": 21321.74, + "probability": 0.7902 + }, + { + "start": 21323.36, + "end": 21326.08, + "probability": 0.9958 + }, + { + "start": 21327.04, + "end": 21332.62, + "probability": 0.9948 + }, + { + "start": 21333.44, + "end": 21338.42, + "probability": 0.9917 + }, + { + "start": 21338.7, + "end": 21340.86, + "probability": 0.8007 + }, + { + "start": 21341.8, + "end": 21344.78, + "probability": 0.9969 + }, + { + "start": 21344.78, + "end": 21349.98, + "probability": 0.9987 + }, + { + "start": 21350.5, + "end": 21351.32, + "probability": 0.932 + }, + { + "start": 21352.54, + "end": 21356.62, + "probability": 0.9846 + }, + { + "start": 21357.18, + "end": 21359.58, + "probability": 0.5215 + }, + { + "start": 21360.22, + "end": 21364.44, + "probability": 0.9523 + }, + { + "start": 21364.44, + "end": 21368.66, + "probability": 0.9988 + }, + { + "start": 21369.04, + "end": 21372.24, + "probability": 0.9936 + }, + { + "start": 21372.52, + "end": 21375.84, + "probability": 0.5259 + }, + { + "start": 21376.62, + "end": 21381.08, + "probability": 0.9474 + }, + { + "start": 21381.16, + "end": 21382.36, + "probability": 0.8564 + }, + { + "start": 21382.88, + "end": 21387.4, + "probability": 0.9303 + }, + { + "start": 21387.4, + "end": 21394.16, + "probability": 0.9958 + }, + { + "start": 21394.32, + "end": 21395.36, + "probability": 0.9771 + }, + { + "start": 21395.5, + "end": 21398.14, + "probability": 0.998 + }, + { + "start": 21398.78, + "end": 21403.77, + "probability": 0.9974 + }, + { + "start": 21404.62, + "end": 21405.42, + "probability": 0.7772 + }, + { + "start": 21405.8, + "end": 21407.08, + "probability": 0.5049 + }, + { + "start": 21407.5, + "end": 21411.42, + "probability": 0.2396 + }, + { + "start": 21411.84, + "end": 21417.1, + "probability": 0.9563 + }, + { + "start": 21417.1, + "end": 21423.9, + "probability": 0.9965 + }, + { + "start": 21425.36, + "end": 21426.9, + "probability": 0.9673 + }, + { + "start": 21428.26, + "end": 21435.22, + "probability": 0.9816 + }, + { + "start": 21436.18, + "end": 21436.74, + "probability": 0.0354 + }, + { + "start": 21436.96, + "end": 21439.98, + "probability": 0.9954 + }, + { + "start": 21440.7, + "end": 21444.14, + "probability": 0.969 + }, + { + "start": 21445.2, + "end": 21445.48, + "probability": 0.6116 + }, + { + "start": 21446.2, + "end": 21447.7, + "probability": 0.5299 + }, + { + "start": 21448.2, + "end": 21452.86, + "probability": 0.9873 + }, + { + "start": 21453.06, + "end": 21457.1, + "probability": 0.9939 + }, + { + "start": 21457.1, + "end": 21460.2, + "probability": 0.9989 + }, + { + "start": 21460.62, + "end": 21461.7, + "probability": 0.5052 + }, + { + "start": 21462.4, + "end": 21466.06, + "probability": 0.9328 + }, + { + "start": 21466.32, + "end": 21467.62, + "probability": 0.9717 + }, + { + "start": 21468.02, + "end": 21469.42, + "probability": 0.8366 + }, + { + "start": 21469.8, + "end": 21474.32, + "probability": 0.9924 + }, + { + "start": 21475.06, + "end": 21476.92, + "probability": 0.9713 + }, + { + "start": 21477.26, + "end": 21480.07, + "probability": 0.9893 + }, + { + "start": 21481.04, + "end": 21484.94, + "probability": 0.8051 + }, + { + "start": 21485.3, + "end": 21487.1, + "probability": 0.9878 + }, + { + "start": 21487.58, + "end": 21491.64, + "probability": 0.9794 + }, + { + "start": 21492.18, + "end": 21494.42, + "probability": 0.7864 + }, + { + "start": 21494.98, + "end": 21496.94, + "probability": 0.7064 + }, + { + "start": 21497.24, + "end": 21499.36, + "probability": 0.8818 + }, + { + "start": 21499.72, + "end": 21502.3, + "probability": 0.9821 + }, + { + "start": 21502.64, + "end": 21504.72, + "probability": 0.9602 + }, + { + "start": 21504.96, + "end": 21505.66, + "probability": 0.9079 + }, + { + "start": 21505.84, + "end": 21506.54, + "probability": 0.6303 + }, + { + "start": 21506.56, + "end": 21508.22, + "probability": 0.9096 + }, + { + "start": 21508.58, + "end": 21510.12, + "probability": 0.434 + }, + { + "start": 21510.14, + "end": 21510.14, + "probability": 0.0343 + }, + { + "start": 21510.14, + "end": 21510.14, + "probability": 0.6359 + }, + { + "start": 21510.14, + "end": 21511.76, + "probability": 0.8859 + }, + { + "start": 21511.82, + "end": 21512.4, + "probability": 0.6877 + }, + { + "start": 21512.4, + "end": 21515.68, + "probability": 0.9586 + }, + { + "start": 21515.7, + "end": 21517.3, + "probability": 0.8061 + }, + { + "start": 21517.64, + "end": 21519.7, + "probability": 0.7566 + }, + { + "start": 21520.28, + "end": 21520.46, + "probability": 0.2173 + }, + { + "start": 21520.46, + "end": 21521.34, + "probability": 0.8771 + }, + { + "start": 21521.36, + "end": 21522.44, + "probability": 0.6694 + }, + { + "start": 21525.58, + "end": 21529.8, + "probability": 0.7775 + }, + { + "start": 21530.56, + "end": 21533.32, + "probability": 0.9718 + }, + { + "start": 21535.84, + "end": 21537.98, + "probability": 0.1341 + }, + { + "start": 21537.98, + "end": 21541.0, + "probability": 0.1069 + }, + { + "start": 21554.0, + "end": 21554.22, + "probability": 0.0382 + }, + { + "start": 21554.22, + "end": 21554.22, + "probability": 0.2145 + }, + { + "start": 21554.22, + "end": 21554.79, + "probability": 0.3971 + }, + { + "start": 21555.72, + "end": 21558.54, + "probability": 0.7649 + }, + { + "start": 21559.68, + "end": 21561.06, + "probability": 0.9417 + }, + { + "start": 21562.2, + "end": 21565.78, + "probability": 0.9784 + }, + { + "start": 21566.36, + "end": 21568.0, + "probability": 0.9707 + }, + { + "start": 21569.1, + "end": 21573.4, + "probability": 0.9912 + }, + { + "start": 21574.04, + "end": 21575.02, + "probability": 0.6035 + }, + { + "start": 21575.88, + "end": 21578.68, + "probability": 0.9268 + }, + { + "start": 21579.68, + "end": 21581.38, + "probability": 0.9873 + }, + { + "start": 21582.46, + "end": 21585.26, + "probability": 0.9894 + }, + { + "start": 21585.84, + "end": 21586.58, + "probability": 0.8737 + }, + { + "start": 21587.68, + "end": 21590.16, + "probability": 0.8223 + }, + { + "start": 21590.84, + "end": 21591.38, + "probability": 0.6491 + }, + { + "start": 21592.44, + "end": 21593.32, + "probability": 0.8887 + }, + { + "start": 21594.4, + "end": 21595.44, + "probability": 0.9368 + }, + { + "start": 21596.04, + "end": 21597.14, + "probability": 0.9627 + }, + { + "start": 21597.78, + "end": 21601.02, + "probability": 0.9626 + }, + { + "start": 21602.0, + "end": 21603.96, + "probability": 0.9189 + }, + { + "start": 21604.52, + "end": 21605.72, + "probability": 0.9867 + }, + { + "start": 21606.12, + "end": 21607.34, + "probability": 0.9725 + }, + { + "start": 21608.34, + "end": 21611.28, + "probability": 0.9868 + }, + { + "start": 21612.36, + "end": 21613.7, + "probability": 0.911 + }, + { + "start": 21614.26, + "end": 21616.48, + "probability": 0.9885 + }, + { + "start": 21617.58, + "end": 21618.26, + "probability": 0.9963 + }, + { + "start": 21620.48, + "end": 21621.88, + "probability": 0.791 + }, + { + "start": 21623.48, + "end": 21628.2, + "probability": 0.9829 + }, + { + "start": 21629.26, + "end": 21631.64, + "probability": 0.9538 + }, + { + "start": 21632.82, + "end": 21634.96, + "probability": 0.9911 + }, + { + "start": 21635.68, + "end": 21639.82, + "probability": 0.9953 + }, + { + "start": 21640.28, + "end": 21642.64, + "probability": 0.742 + }, + { + "start": 21643.46, + "end": 21644.14, + "probability": 0.7668 + }, + { + "start": 21644.7, + "end": 21646.52, + "probability": 0.7191 + }, + { + "start": 21646.8, + "end": 21650.56, + "probability": 0.8763 + }, + { + "start": 21650.56, + "end": 21654.32, + "probability": 0.9028 + }, + { + "start": 21654.8, + "end": 21655.36, + "probability": 0.7997 + }, + { + "start": 21655.9, + "end": 21657.3, + "probability": 0.9869 + }, + { + "start": 21658.44, + "end": 21661.24, + "probability": 0.989 + }, + { + "start": 21661.88, + "end": 21662.42, + "probability": 0.2392 + }, + { + "start": 21663.22, + "end": 21667.42, + "probability": 0.9323 + }, + { + "start": 21668.22, + "end": 21671.86, + "probability": 0.9849 + }, + { + "start": 21672.7, + "end": 21675.9, + "probability": 0.994 + }, + { + "start": 21676.6, + "end": 21680.6, + "probability": 0.9963 + }, + { + "start": 21681.04, + "end": 21682.64, + "probability": 0.6658 + }, + { + "start": 21683.96, + "end": 21685.28, + "probability": 0.8154 + }, + { + "start": 21686.7, + "end": 21690.06, + "probability": 0.9231 + }, + { + "start": 21690.7, + "end": 21692.16, + "probability": 0.774 + }, + { + "start": 21692.72, + "end": 21693.44, + "probability": 0.9479 + }, + { + "start": 21693.8, + "end": 21697.57, + "probability": 0.9466 + }, + { + "start": 21698.44, + "end": 21699.46, + "probability": 0.9042 + }, + { + "start": 21700.86, + "end": 21702.72, + "probability": 0.9971 + }, + { + "start": 21703.32, + "end": 21706.04, + "probability": 0.9727 + }, + { + "start": 21706.78, + "end": 21707.0, + "probability": 0.5729 + }, + { + "start": 21707.58, + "end": 21709.06, + "probability": 0.8707 + }, + { + "start": 21709.48, + "end": 21713.2, + "probability": 0.9756 + }, + { + "start": 21713.72, + "end": 21719.02, + "probability": 0.9769 + }, + { + "start": 21719.12, + "end": 21721.76, + "probability": 0.8431 + }, + { + "start": 21722.36, + "end": 21722.46, + "probability": 0.1087 + }, + { + "start": 21722.58, + "end": 21724.84, + "probability": 0.6587 + }, + { + "start": 21725.32, + "end": 21727.6, + "probability": 0.3914 + }, + { + "start": 21728.24, + "end": 21730.5, + "probability": 0.4824 + }, + { + "start": 21731.3, + "end": 21734.0, + "probability": 0.439 + }, + { + "start": 21734.56, + "end": 21736.76, + "probability": 0.8667 + }, + { + "start": 21737.3, + "end": 21739.92, + "probability": 0.8 + }, + { + "start": 21740.62, + "end": 21742.44, + "probability": 0.644 + }, + { + "start": 21743.48, + "end": 21747.02, + "probability": 0.8508 + }, + { + "start": 21747.58, + "end": 21750.06, + "probability": 0.6109 + }, + { + "start": 21750.42, + "end": 21751.62, + "probability": 0.9401 + }, + { + "start": 21752.36, + "end": 21754.3, + "probability": 0.8331 + }, + { + "start": 21755.52, + "end": 21758.04, + "probability": 0.6661 + }, + { + "start": 21758.84, + "end": 21762.4, + "probability": 0.5828 + }, + { + "start": 21763.24, + "end": 21765.7, + "probability": 0.6265 + }, + { + "start": 21766.18, + "end": 21767.86, + "probability": 0.9159 + }, + { + "start": 21768.34, + "end": 21770.7, + "probability": 0.6894 + }, + { + "start": 21771.56, + "end": 21774.04, + "probability": 0.6044 + }, + { + "start": 21774.66, + "end": 21778.62, + "probability": 0.73 + }, + { + "start": 21779.02, + "end": 21781.34, + "probability": 0.9244 + }, + { + "start": 21781.78, + "end": 21781.92, + "probability": 0.5645 + }, + { + "start": 21782.04, + "end": 21782.36, + "probability": 0.8142 + }, + { + "start": 21788.22, + "end": 21788.22, + "probability": 0.7233 + }, + { + "start": 21788.22, + "end": 21790.02, + "probability": 0.5938 + }, + { + "start": 21806.08, + "end": 21806.08, + "probability": 0.2302 + }, + { + "start": 21806.08, + "end": 21806.94, + "probability": 0.6753 + }, + { + "start": 21807.02, + "end": 21808.02, + "probability": 0.7076 + }, + { + "start": 21808.38, + "end": 21809.28, + "probability": 0.6868 + }, + { + "start": 21809.34, + "end": 21815.28, + "probability": 0.9573 + }, + { + "start": 21815.82, + "end": 21817.48, + "probability": 0.9846 + }, + { + "start": 21818.52, + "end": 21820.1, + "probability": 0.9722 + }, + { + "start": 21821.44, + "end": 21824.0, + "probability": 0.8396 + }, + { + "start": 21824.2, + "end": 21826.4, + "probability": 0.5321 + }, + { + "start": 21827.24, + "end": 21830.04, + "probability": 0.9687 + }, + { + "start": 21830.86, + "end": 21834.66, + "probability": 0.9956 + }, + { + "start": 21835.2, + "end": 21839.86, + "probability": 0.8356 + }, + { + "start": 21840.56, + "end": 21842.1, + "probability": 0.9974 + }, + { + "start": 21842.22, + "end": 21846.9, + "probability": 0.985 + }, + { + "start": 21849.1, + "end": 21850.72, + "probability": 0.9494 + }, + { + "start": 21850.78, + "end": 21852.22, + "probability": 0.9726 + }, + { + "start": 21852.34, + "end": 21856.94, + "probability": 0.9978 + }, + { + "start": 21857.82, + "end": 21861.52, + "probability": 0.8136 + }, + { + "start": 21861.64, + "end": 21864.92, + "probability": 0.7454 + }, + { + "start": 21864.92, + "end": 21868.76, + "probability": 0.7074 + }, + { + "start": 21869.9, + "end": 21870.66, + "probability": 0.5494 + }, + { + "start": 21870.8, + "end": 21872.46, + "probability": 0.96 + }, + { + "start": 21873.28, + "end": 21875.0, + "probability": 0.795 + }, + { + "start": 21875.84, + "end": 21879.44, + "probability": 0.8804 + }, + { + "start": 21879.44, + "end": 21884.26, + "probability": 0.9886 + }, + { + "start": 21884.56, + "end": 21885.24, + "probability": 0.9018 + }, + { + "start": 21885.76, + "end": 21890.52, + "probability": 0.9963 + }, + { + "start": 21891.14, + "end": 21891.91, + "probability": 0.7985 + }, + { + "start": 21894.56, + "end": 21895.02, + "probability": 0.4944 + }, + { + "start": 21895.3, + "end": 21895.72, + "probability": 0.445 + }, + { + "start": 21896.08, + "end": 21898.44, + "probability": 0.9529 + }, + { + "start": 21899.54, + "end": 21900.46, + "probability": 0.5748 + }, + { + "start": 21900.52, + "end": 21901.78, + "probability": 0.7698 + }, + { + "start": 21902.42, + "end": 21903.78, + "probability": 0.7155 + }, + { + "start": 21904.68, + "end": 21910.64, + "probability": 0.9447 + }, + { + "start": 21911.42, + "end": 21914.08, + "probability": 0.9943 + }, + { + "start": 21914.08, + "end": 21916.7, + "probability": 0.9972 + }, + { + "start": 21917.46, + "end": 21919.78, + "probability": 0.9932 + }, + { + "start": 21919.82, + "end": 21920.38, + "probability": 0.9995 + }, + { + "start": 21921.18, + "end": 21922.58, + "probability": 0.9048 + }, + { + "start": 21922.66, + "end": 21925.32, + "probability": 0.9967 + }, + { + "start": 21925.32, + "end": 21928.72, + "probability": 0.9955 + }, + { + "start": 21929.56, + "end": 21931.58, + "probability": 0.9979 + }, + { + "start": 21932.48, + "end": 21935.52, + "probability": 0.9951 + }, + { + "start": 21936.02, + "end": 21938.6, + "probability": 0.7215 + }, + { + "start": 21939.16, + "end": 21944.28, + "probability": 0.9932 + }, + { + "start": 21945.06, + "end": 21946.3, + "probability": 0.7049 + }, + { + "start": 21946.94, + "end": 21947.84, + "probability": 0.9324 + }, + { + "start": 21948.4, + "end": 21951.48, + "probability": 0.8707 + }, + { + "start": 21952.02, + "end": 21953.88, + "probability": 0.8195 + }, + { + "start": 21954.42, + "end": 21956.8, + "probability": 0.9717 + }, + { + "start": 21957.66, + "end": 21958.56, + "probability": 0.8261 + }, + { + "start": 21959.3, + "end": 21965.42, + "probability": 0.9954 + }, + { + "start": 21965.72, + "end": 21965.98, + "probability": 0.8297 + }, + { + "start": 21968.2, + "end": 21968.52, + "probability": 0.6608 + }, + { + "start": 21970.2, + "end": 21971.84, + "probability": 0.7911 + }, + { + "start": 21972.64, + "end": 21973.22, + "probability": 0.939 + }, + { + "start": 21973.24, + "end": 21977.3, + "probability": 0.743 + }, + { + "start": 21978.52, + "end": 21979.32, + "probability": 0.6934 + }, + { + "start": 21979.52, + "end": 21980.2, + "probability": 0.8623 + }, + { + "start": 21980.24, + "end": 21981.5, + "probability": 0.9526 + }, + { + "start": 21981.56, + "end": 21982.74, + "probability": 0.9969 + }, + { + "start": 21983.52, + "end": 21987.46, + "probability": 0.6792 + }, + { + "start": 21988.02, + "end": 21988.6, + "probability": 0.752 + }, + { + "start": 21990.34, + "end": 21993.24, + "probability": 0.8633 + }, + { + "start": 21997.08, + "end": 21998.86, + "probability": 0.7383 + }, + { + "start": 21999.48, + "end": 22000.16, + "probability": 0.8132 + }, + { + "start": 22000.48, + "end": 22001.44, + "probability": 0.9726 + }, + { + "start": 22002.3, + "end": 22002.66, + "probability": 0.8244 + }, + { + "start": 22010.18, + "end": 22010.62, + "probability": 0.1812 + }, + { + "start": 22010.62, + "end": 22010.62, + "probability": 0.158 + }, + { + "start": 22010.62, + "end": 22010.7, + "probability": 0.093 + }, + { + "start": 22010.7, + "end": 22010.7, + "probability": 0.0178 + }, + { + "start": 22011.74, + "end": 22012.58, + "probability": 0.2585 + }, + { + "start": 22018.88, + "end": 22022.08, + "probability": 0.0838 + }, + { + "start": 22042.64, + "end": 22047.64, + "probability": 0.9122 + }, + { + "start": 22047.96, + "end": 22049.21, + "probability": 0.9954 + }, + { + "start": 22050.12, + "end": 22054.86, + "probability": 0.9851 + }, + { + "start": 22055.86, + "end": 22060.8, + "probability": 0.9824 + }, + { + "start": 22061.74, + "end": 22063.58, + "probability": 0.8409 + }, + { + "start": 22063.88, + "end": 22064.36, + "probability": 0.9441 + }, + { + "start": 22065.78, + "end": 22074.46, + "probability": 0.8958 + }, + { + "start": 22074.46, + "end": 22074.94, + "probability": 0.7551 + }, + { + "start": 22075.2, + "end": 22075.34, + "probability": 0.7498 + }, + { + "start": 22076.18, + "end": 22081.52, + "probability": 0.9897 + }, + { + "start": 22081.52, + "end": 22085.62, + "probability": 0.9785 + }, + { + "start": 22086.3, + "end": 22092.68, + "probability": 0.999 + }, + { + "start": 22093.46, + "end": 22094.82, + "probability": 0.8165 + }, + { + "start": 22095.76, + "end": 22096.44, + "probability": 0.8315 + }, + { + "start": 22096.54, + "end": 22098.52, + "probability": 0.7402 + }, + { + "start": 22099.28, + "end": 22099.82, + "probability": 0.9117 + }, + { + "start": 22099.92, + "end": 22105.88, + "probability": 0.964 + }, + { + "start": 22106.42, + "end": 22106.42, + "probability": 0.0827 + }, + { + "start": 22106.42, + "end": 22106.42, + "probability": 0.0358 + }, + { + "start": 22106.42, + "end": 22111.46, + "probability": 0.9788 + }, + { + "start": 22112.02, + "end": 22114.64, + "probability": 0.9661 + }, + { + "start": 22116.42, + "end": 22117.26, + "probability": 0.5995 + }, + { + "start": 22117.84, + "end": 22120.6, + "probability": 0.972 + }, + { + "start": 22120.76, + "end": 22122.4, + "probability": 0.9092 + }, + { + "start": 22123.94, + "end": 22124.86, + "probability": 0.1098 + }, + { + "start": 22125.02, + "end": 22126.84, + "probability": 0.7903 + }, + { + "start": 22127.42, + "end": 22131.6, + "probability": 0.4752 + }, + { + "start": 22132.36, + "end": 22133.2, + "probability": 0.759 + }, + { + "start": 22133.22, + "end": 22134.18, + "probability": 0.4038 + }, + { + "start": 22134.24, + "end": 22136.48, + "probability": 0.9952 + }, + { + "start": 22136.9, + "end": 22137.84, + "probability": 0.9645 + }, + { + "start": 22138.04, + "end": 22144.22, + "probability": 0.9857 + }, + { + "start": 22145.06, + "end": 22147.94, + "probability": 0.986 + }, + { + "start": 22148.76, + "end": 22149.44, + "probability": 0.4908 + }, + { + "start": 22149.52, + "end": 22154.72, + "probability": 0.9954 + }, + { + "start": 22155.26, + "end": 22156.92, + "probability": 0.974 + }, + { + "start": 22157.54, + "end": 22159.06, + "probability": 0.9036 + }, + { + "start": 22159.66, + "end": 22160.4, + "probability": 0.7781 + }, + { + "start": 22160.68, + "end": 22162.3, + "probability": 0.9888 + }, + { + "start": 22162.6, + "end": 22165.08, + "probability": 0.9951 + }, + { + "start": 22165.4, + "end": 22167.82, + "probability": 0.9876 + }, + { + "start": 22167.9, + "end": 22172.62, + "probability": 0.9822 + }, + { + "start": 22173.26, + "end": 22175.2, + "probability": 0.8579 + }, + { + "start": 22175.58, + "end": 22180.16, + "probability": 0.9611 + }, + { + "start": 22180.24, + "end": 22182.06, + "probability": 0.9946 + }, + { + "start": 22182.62, + "end": 22185.38, + "probability": 0.9725 + }, + { + "start": 22185.82, + "end": 22190.88, + "probability": 0.9697 + }, + { + "start": 22191.26, + "end": 22191.74, + "probability": 0.4783 + }, + { + "start": 22191.92, + "end": 22194.07, + "probability": 0.7745 + }, + { + "start": 22196.46, + "end": 22201.06, + "probability": 0.988 + }, + { + "start": 22201.06, + "end": 22204.68, + "probability": 0.9443 + }, + { + "start": 22204.76, + "end": 22205.88, + "probability": 0.9737 + }, + { + "start": 22206.12, + "end": 22210.0, + "probability": 0.9971 + }, + { + "start": 22210.0, + "end": 22212.32, + "probability": 0.9906 + }, + { + "start": 22212.52, + "end": 22213.1, + "probability": 0.7147 + }, + { + "start": 22213.88, + "end": 22218.22, + "probability": 0.9938 + }, + { + "start": 22218.56, + "end": 22218.92, + "probability": 0.607 + }, + { + "start": 22220.02, + "end": 22220.02, + "probability": 0.212 + }, + { + "start": 22220.02, + "end": 22222.88, + "probability": 0.7141 + }, + { + "start": 22223.74, + "end": 22224.3, + "probability": 0.4423 + }, + { + "start": 22225.48, + "end": 22228.36, + "probability": 0.54 + }, + { + "start": 22230.6, + "end": 22232.08, + "probability": 0.9824 + }, + { + "start": 22258.58, + "end": 22260.24, + "probability": 0.7368 + }, + { + "start": 22261.86, + "end": 22263.0, + "probability": 0.7815 + }, + { + "start": 22264.08, + "end": 22266.9, + "probability": 0.9834 + }, + { + "start": 22267.91, + "end": 22271.36, + "probability": 0.9335 + }, + { + "start": 22272.72, + "end": 22277.12, + "probability": 0.9913 + }, + { + "start": 22277.12, + "end": 22281.6, + "probability": 0.9931 + }, + { + "start": 22282.3, + "end": 22286.24, + "probability": 0.8636 + }, + { + "start": 22287.44, + "end": 22290.16, + "probability": 0.9971 + }, + { + "start": 22290.8, + "end": 22292.16, + "probability": 0.9863 + }, + { + "start": 22293.4, + "end": 22296.7, + "probability": 0.8986 + }, + { + "start": 22298.68, + "end": 22300.38, + "probability": 0.936 + }, + { + "start": 22300.66, + "end": 22301.42, + "probability": 0.7431 + }, + { + "start": 22301.52, + "end": 22303.12, + "probability": 0.9927 + }, + { + "start": 22303.72, + "end": 22305.48, + "probability": 0.994 + }, + { + "start": 22305.84, + "end": 22307.64, + "probability": 0.9977 + }, + { + "start": 22308.46, + "end": 22309.52, + "probability": 0.9263 + }, + { + "start": 22310.52, + "end": 22312.4, + "probability": 0.7839 + }, + { + "start": 22313.14, + "end": 22316.18, + "probability": 0.6141 + }, + { + "start": 22317.38, + "end": 22320.22, + "probability": 0.7339 + }, + { + "start": 22321.08, + "end": 22321.6, + "probability": 0.6215 + }, + { + "start": 22321.7, + "end": 22322.9, + "probability": 0.8498 + }, + { + "start": 22322.96, + "end": 22325.5, + "probability": 0.9907 + }, + { + "start": 22326.46, + "end": 22327.06, + "probability": 0.6677 + }, + { + "start": 22328.18, + "end": 22330.41, + "probability": 0.9976 + }, + { + "start": 22332.44, + "end": 22333.18, + "probability": 0.7699 + }, + { + "start": 22334.04, + "end": 22336.72, + "probability": 0.9329 + }, + { + "start": 22337.48, + "end": 22343.76, + "probability": 0.9922 + }, + { + "start": 22345.48, + "end": 22349.5, + "probability": 0.9883 + }, + { + "start": 22350.36, + "end": 22353.26, + "probability": 0.9121 + }, + { + "start": 22353.92, + "end": 22357.44, + "probability": 0.8973 + }, + { + "start": 22357.52, + "end": 22358.0, + "probability": 0.8377 + }, + { + "start": 22358.08, + "end": 22359.72, + "probability": 0.9438 + }, + { + "start": 22360.56, + "end": 22361.8, + "probability": 0.9458 + }, + { + "start": 22362.92, + "end": 22367.7, + "probability": 0.9295 + }, + { + "start": 22368.34, + "end": 22370.72, + "probability": 0.998 + }, + { + "start": 22371.22, + "end": 22371.72, + "probability": 0.9281 + }, + { + "start": 22373.02, + "end": 22377.62, + "probability": 0.9836 + }, + { + "start": 22378.28, + "end": 22381.68, + "probability": 0.9116 + }, + { + "start": 22382.34, + "end": 22385.08, + "probability": 0.9408 + }, + { + "start": 22386.14, + "end": 22389.46, + "probability": 0.9424 + }, + { + "start": 22390.1, + "end": 22390.83, + "probability": 0.6256 + }, + { + "start": 22391.78, + "end": 22393.4, + "probability": 0.9802 + }, + { + "start": 22393.92, + "end": 22395.3, + "probability": 0.8009 + }, + { + "start": 22395.88, + "end": 22396.92, + "probability": 0.99 + }, + { + "start": 22398.24, + "end": 22399.34, + "probability": 0.7777 + }, + { + "start": 22400.12, + "end": 22402.1, + "probability": 0.9938 + }, + { + "start": 22402.9, + "end": 22403.44, + "probability": 0.8963 + }, + { + "start": 22405.16, + "end": 22407.04, + "probability": 0.9805 + }, + { + "start": 22407.46, + "end": 22410.5, + "probability": 0.9263 + }, + { + "start": 22411.2, + "end": 22411.7, + "probability": 0.8905 + }, + { + "start": 22411.8, + "end": 22412.08, + "probability": 0.7725 + }, + { + "start": 22412.12, + "end": 22414.02, + "probability": 0.995 + }, + { + "start": 22414.02, + "end": 22416.54, + "probability": 0.9715 + }, + { + "start": 22417.0, + "end": 22419.92, + "probability": 0.9471 + }, + { + "start": 22421.1, + "end": 22422.72, + "probability": 0.9622 + }, + { + "start": 22423.26, + "end": 22426.94, + "probability": 0.9665 + }, + { + "start": 22428.06, + "end": 22432.06, + "probability": 0.839 + }, + { + "start": 22432.74, + "end": 22434.1, + "probability": 0.9716 + }, + { + "start": 22435.3, + "end": 22435.64, + "probability": 0.8253 + }, + { + "start": 22435.96, + "end": 22436.54, + "probability": 0.7512 + }, + { + "start": 22436.56, + "end": 22438.62, + "probability": 0.7933 + }, + { + "start": 22439.02, + "end": 22442.42, + "probability": 0.9843 + }, + { + "start": 22443.2, + "end": 22447.86, + "probability": 0.7975 + }, + { + "start": 22449.18, + "end": 22450.58, + "probability": 0.9385 + }, + { + "start": 22452.36, + "end": 22453.58, + "probability": 0.9521 + }, + { + "start": 22453.94, + "end": 22454.92, + "probability": 0.9585 + }, + { + "start": 22455.02, + "end": 22455.9, + "probability": 0.9626 + }, + { + "start": 22456.58, + "end": 22459.46, + "probability": 0.9637 + }, + { + "start": 22460.16, + "end": 22461.54, + "probability": 0.9719 + }, + { + "start": 22462.74, + "end": 22466.3, + "probability": 0.9827 + }, + { + "start": 22466.46, + "end": 22466.94, + "probability": 0.8633 + }, + { + "start": 22467.0, + "end": 22467.4, + "probability": 0.788 + }, + { + "start": 22470.54, + "end": 22471.8, + "probability": 0.8547 + }, + { + "start": 22472.38, + "end": 22473.28, + "probability": 0.149 + }, + { + "start": 22491.18, + "end": 22493.72, + "probability": 0.8133 + }, + { + "start": 22494.34, + "end": 22498.88, + "probability": 0.9957 + }, + { + "start": 22500.06, + "end": 22504.96, + "probability": 0.9928 + }, + { + "start": 22505.74, + "end": 22506.4, + "probability": 0.9032 + }, + { + "start": 22507.62, + "end": 22509.88, + "probability": 0.9932 + }, + { + "start": 22511.0, + "end": 22514.88, + "probability": 0.967 + }, + { + "start": 22515.9, + "end": 22517.12, + "probability": 0.9253 + }, + { + "start": 22517.96, + "end": 22518.46, + "probability": 0.7552 + }, + { + "start": 22518.96, + "end": 22520.92, + "probability": 0.9844 + }, + { + "start": 22521.78, + "end": 22523.2, + "probability": 0.9806 + }, + { + "start": 22523.84, + "end": 22525.18, + "probability": 0.9881 + }, + { + "start": 22526.52, + "end": 22531.72, + "probability": 0.9432 + }, + { + "start": 22532.66, + "end": 22533.5, + "probability": 0.7401 + }, + { + "start": 22533.58, + "end": 22536.06, + "probability": 0.7051 + }, + { + "start": 22536.1, + "end": 22539.4, + "probability": 0.9434 + }, + { + "start": 22540.14, + "end": 22540.6, + "probability": 0.7155 + }, + { + "start": 22541.16, + "end": 22541.96, + "probability": 0.8539 + }, + { + "start": 22542.04, + "end": 22547.12, + "probability": 0.9735 + }, + { + "start": 22547.98, + "end": 22548.46, + "probability": 0.881 + }, + { + "start": 22548.54, + "end": 22551.48, + "probability": 0.9527 + }, + { + "start": 22551.94, + "end": 22553.24, + "probability": 0.9897 + }, + { + "start": 22553.94, + "end": 22556.9, + "probability": 0.9571 + }, + { + "start": 22557.44, + "end": 22559.68, + "probability": 0.8782 + }, + { + "start": 22560.26, + "end": 22563.9, + "probability": 0.8813 + }, + { + "start": 22564.66, + "end": 22566.92, + "probability": 0.4887 + }, + { + "start": 22567.66, + "end": 22572.8, + "probability": 0.9019 + }, + { + "start": 22573.42, + "end": 22575.12, + "probability": 0.8365 + }, + { + "start": 22576.62, + "end": 22577.9, + "probability": 0.82 + }, + { + "start": 22578.54, + "end": 22580.02, + "probability": 0.9855 + }, + { + "start": 22580.74, + "end": 22581.26, + "probability": 0.6667 + }, + { + "start": 22581.56, + "end": 22583.28, + "probability": 0.8387 + }, + { + "start": 22584.62, + "end": 22585.72, + "probability": 0.9534 + }, + { + "start": 22587.72, + "end": 22589.32, + "probability": 0.7695 + }, + { + "start": 22592.18, + "end": 22595.02, + "probability": 0.9509 + }, + { + "start": 22596.88, + "end": 22600.1, + "probability": 0.9976 + }, + { + "start": 22601.1, + "end": 22603.24, + "probability": 0.8778 + }, + { + "start": 22604.24, + "end": 22605.78, + "probability": 0.4019 + }, + { + "start": 22606.34, + "end": 22608.56, + "probability": 0.9507 + }, + { + "start": 22609.34, + "end": 22610.7, + "probability": 0.9333 + }, + { + "start": 22612.0, + "end": 22612.72, + "probability": 0.718 + }, + { + "start": 22613.08, + "end": 22618.0, + "probability": 0.9805 + }, + { + "start": 22618.66, + "end": 22619.33, + "probability": 0.9316 + }, + { + "start": 22620.44, + "end": 22624.98, + "probability": 0.6128 + }, + { + "start": 22625.8, + "end": 22626.85, + "probability": 0.6841 + }, + { + "start": 22627.78, + "end": 22628.9, + "probability": 0.6735 + }, + { + "start": 22629.62, + "end": 22634.16, + "probability": 0.957 + }, + { + "start": 22635.6, + "end": 22638.02, + "probability": 0.8084 + }, + { + "start": 22639.08, + "end": 22641.88, + "probability": 0.9709 + }, + { + "start": 22642.54, + "end": 22653.0, + "probability": 0.9837 + }, + { + "start": 22653.78, + "end": 22655.08, + "probability": 0.9172 + }, + { + "start": 22656.74, + "end": 22658.86, + "probability": 0.909 + }, + { + "start": 22659.7, + "end": 22663.34, + "probability": 0.9551 + }, + { + "start": 22663.9, + "end": 22666.36, + "probability": 0.9471 + }, + { + "start": 22668.42, + "end": 22670.12, + "probability": 0.9544 + }, + { + "start": 22670.2, + "end": 22675.7, + "probability": 0.0977 + }, + { + "start": 22675.7, + "end": 22676.19, + "probability": 0.0636 + }, + { + "start": 22676.68, + "end": 22677.14, + "probability": 0.3864 + }, + { + "start": 22677.14, + "end": 22677.14, + "probability": 0.6221 + }, + { + "start": 22677.14, + "end": 22678.8, + "probability": 0.5047 + }, + { + "start": 22679.36, + "end": 22680.76, + "probability": 0.4279 + }, + { + "start": 22680.82, + "end": 22682.5, + "probability": 0.5304 + }, + { + "start": 22682.58, + "end": 22684.34, + "probability": 0.9574 + }, + { + "start": 22684.44, + "end": 22685.25, + "probability": 0.915 + }, + { + "start": 22685.34, + "end": 22687.32, + "probability": 0.9079 + }, + { + "start": 22687.74, + "end": 22688.32, + "probability": 0.886 + }, + { + "start": 22688.6, + "end": 22689.98, + "probability": 0.9453 + }, + { + "start": 22691.8, + "end": 22694.14, + "probability": 0.8531 + }, + { + "start": 22695.44, + "end": 22695.58, + "probability": 0.0188 + }, + { + "start": 22696.62, + "end": 22699.92, + "probability": 0.1939 + }, + { + "start": 22700.18, + "end": 22701.34, + "probability": 0.643 + }, + { + "start": 22701.52, + "end": 22701.96, + "probability": 0.5876 + }, + { + "start": 22702.72, + "end": 22706.04, + "probability": 0.8374 + }, + { + "start": 22706.16, + "end": 22708.32, + "probability": 0.7419 + }, + { + "start": 22711.6, + "end": 22711.82, + "probability": 0.7145 + }, + { + "start": 22712.06, + "end": 22716.1, + "probability": 0.7763 + }, + { + "start": 22716.72, + "end": 22717.78, + "probability": 0.9439 + }, + { + "start": 22719.58, + "end": 22725.1, + "probability": 0.85 + }, + { + "start": 22725.12, + "end": 22725.42, + "probability": 0.4113 + }, + { + "start": 22725.42, + "end": 22726.08, + "probability": 0.9197 + }, + { + "start": 22726.14, + "end": 22728.44, + "probability": 0.9927 + }, + { + "start": 22729.26, + "end": 22733.5, + "probability": 0.9983 + }, + { + "start": 22733.76, + "end": 22736.26, + "probability": 0.997 + }, + { + "start": 22736.36, + "end": 22736.94, + "probability": 0.7626 + }, + { + "start": 22736.94, + "end": 22737.96, + "probability": 0.1498 + }, + { + "start": 22738.24, + "end": 22740.08, + "probability": 0.8733 + }, + { + "start": 22740.66, + "end": 22741.3, + "probability": 0.9261 + }, + { + "start": 22743.62, + "end": 22743.62, + "probability": 0.1637 + }, + { + "start": 22743.62, + "end": 22744.72, + "probability": 0.8379 + }, + { + "start": 22745.02, + "end": 22745.58, + "probability": 0.9883 + }, + { + "start": 22745.72, + "end": 22746.98, + "probability": 0.4938 + }, + { + "start": 22747.3, + "end": 22748.74, + "probability": 0.7673 + }, + { + "start": 22748.82, + "end": 22751.92, + "probability": 0.9202 + }, + { + "start": 22753.02, + "end": 22756.9, + "probability": 0.8698 + }, + { + "start": 22757.12, + "end": 22758.7, + "probability": 0.9601 + }, + { + "start": 22758.82, + "end": 22762.12, + "probability": 0.9775 + }, + { + "start": 22762.14, + "end": 22763.0, + "probability": 0.8199 + }, + { + "start": 22763.9, + "end": 22764.36, + "probability": 0.6026 + }, + { + "start": 22764.56, + "end": 22765.99, + "probability": 0.9889 + }, + { + "start": 22766.46, + "end": 22768.7, + "probability": 0.8618 + }, + { + "start": 22769.36, + "end": 22772.24, + "probability": 0.9696 + }, + { + "start": 22772.84, + "end": 22780.8, + "probability": 0.9834 + }, + { + "start": 22781.02, + "end": 22783.18, + "probability": 0.999 + }, + { + "start": 22785.72, + "end": 22785.72, + "probability": 0.148 + }, + { + "start": 22785.72, + "end": 22787.46, + "probability": 0.3345 + }, + { + "start": 22787.62, + "end": 22791.3, + "probability": 0.9632 + }, + { + "start": 22791.68, + "end": 22795.5, + "probability": 0.9531 + }, + { + "start": 22795.92, + "end": 22795.92, + "probability": 0.2254 + }, + { + "start": 22796.22, + "end": 22796.24, + "probability": 0.3058 + }, + { + "start": 22796.24, + "end": 22802.48, + "probability": 0.9779 + }, + { + "start": 22802.58, + "end": 22803.7, + "probability": 0.9958 + }, + { + "start": 22803.84, + "end": 22805.04, + "probability": 0.9507 + }, + { + "start": 22805.36, + "end": 22807.0, + "probability": 0.8951 + }, + { + "start": 22807.62, + "end": 22810.32, + "probability": 0.9784 + }, + { + "start": 22810.86, + "end": 22813.18, + "probability": 0.9187 + }, + { + "start": 22813.38, + "end": 22815.6, + "probability": 0.9839 + }, + { + "start": 22816.22, + "end": 22819.98, + "probability": 0.9932 + }, + { + "start": 22819.98, + "end": 22822.68, + "probability": 0.8144 + }, + { + "start": 22823.6, + "end": 22828.04, + "probability": 0.9817 + }, + { + "start": 22828.26, + "end": 22834.2, + "probability": 0.9969 + }, + { + "start": 22834.24, + "end": 22837.36, + "probability": 0.998 + }, + { + "start": 22838.24, + "end": 22840.92, + "probability": 0.9317 + }, + { + "start": 22841.76, + "end": 22843.02, + "probability": 0.9849 + }, + { + "start": 22843.94, + "end": 22846.26, + "probability": 0.979 + }, + { + "start": 22847.04, + "end": 22847.74, + "probability": 0.9506 + }, + { + "start": 22848.22, + "end": 22848.96, + "probability": 0.4029 + }, + { + "start": 22849.16, + "end": 22849.98, + "probability": 0.3615 + }, + { + "start": 22850.0, + "end": 22851.66, + "probability": 0.6485 + }, + { + "start": 22852.4, + "end": 22857.36, + "probability": 0.9867 + }, + { + "start": 22858.0, + "end": 22862.12, + "probability": 0.9942 + }, + { + "start": 22862.72, + "end": 22865.28, + "probability": 0.9824 + }, + { + "start": 22866.51, + "end": 22867.0, + "probability": 0.0474 + }, + { + "start": 22867.0, + "end": 22867.1, + "probability": 0.0598 + }, + { + "start": 22867.68, + "end": 22873.96, + "probability": 0.8736 + }, + { + "start": 22874.28, + "end": 22876.16, + "probability": 0.9916 + }, + { + "start": 22876.28, + "end": 22879.38, + "probability": 0.9766 + }, + { + "start": 22879.46, + "end": 22882.42, + "probability": 0.5431 + }, + { + "start": 22882.98, + "end": 22884.1, + "probability": 0.7632 + }, + { + "start": 22884.34, + "end": 22889.6, + "probability": 0.9917 + }, + { + "start": 22889.6, + "end": 22892.08, + "probability": 0.4844 + }, + { + "start": 22892.26, + "end": 22893.02, + "probability": 0.7042 + }, + { + "start": 22893.44, + "end": 22898.56, + "probability": 0.8699 + }, + { + "start": 22898.96, + "end": 22902.5, + "probability": 0.9445 + }, + { + "start": 22902.52, + "end": 22905.36, + "probability": 0.9193 + }, + { + "start": 22905.96, + "end": 22906.54, + "probability": 0.6998 + }, + { + "start": 22906.76, + "end": 22910.66, + "probability": 0.9941 + }, + { + "start": 22911.02, + "end": 22912.24, + "probability": 0.9343 + }, + { + "start": 22913.12, + "end": 22914.48, + "probability": 0.8113 + }, + { + "start": 22914.56, + "end": 22918.08, + "probability": 0.992 + }, + { + "start": 22918.08, + "end": 22921.34, + "probability": 0.7302 + }, + { + "start": 22921.86, + "end": 22922.38, + "probability": 0.0064 + }, + { + "start": 22922.38, + "end": 22923.18, + "probability": 0.0842 + }, + { + "start": 22923.24, + "end": 22925.12, + "probability": 0.0616 + }, + { + "start": 22925.9, + "end": 22926.08, + "probability": 0.0027 + }, + { + "start": 22926.08, + "end": 22926.08, + "probability": 0.0323 + }, + { + "start": 22926.08, + "end": 22926.08, + "probability": 0.0502 + }, + { + "start": 22926.08, + "end": 22926.08, + "probability": 0.0222 + }, + { + "start": 22926.08, + "end": 22926.08, + "probability": 0.0245 + }, + { + "start": 22926.08, + "end": 22926.08, + "probability": 0.4685 + }, + { + "start": 22926.08, + "end": 22929.1, + "probability": 0.7164 + }, + { + "start": 22929.62, + "end": 22934.7, + "probability": 0.7397 + }, + { + "start": 22934.7, + "end": 22935.1, + "probability": 0.7436 + }, + { + "start": 22935.14, + "end": 22936.34, + "probability": 0.1108 + }, + { + "start": 22936.4, + "end": 22936.4, + "probability": 0.2925 + }, + { + "start": 22936.42, + "end": 22937.9, + "probability": 0.3879 + }, + { + "start": 22939.84, + "end": 22939.84, + "probability": 0.1052 + }, + { + "start": 22940.2, + "end": 22941.08, + "probability": 0.654 + }, + { + "start": 22941.08, + "end": 22943.05, + "probability": 0.9595 + }, + { + "start": 22944.47, + "end": 22946.32, + "probability": 0.9608 + }, + { + "start": 22946.94, + "end": 22951.74, + "probability": 0.9907 + }, + { + "start": 22951.86, + "end": 22952.34, + "probability": 0.4049 + }, + { + "start": 22953.86, + "end": 22954.68, + "probability": 0.199 + }, + { + "start": 22955.24, + "end": 22955.6, + "probability": 0.7112 + }, + { + "start": 22957.27, + "end": 22961.22, + "probability": 0.1487 + }, + { + "start": 22976.86, + "end": 22980.9, + "probability": 0.9268 + }, + { + "start": 22981.02, + "end": 22981.84, + "probability": 0.4188 + }, + { + "start": 22982.22, + "end": 22983.12, + "probability": 0.1987 + }, + { + "start": 22985.21, + "end": 22987.3, + "probability": 0.9693 + }, + { + "start": 22988.58, + "end": 22989.02, + "probability": 0.0366 + }, + { + "start": 22990.86, + "end": 22991.82, + "probability": 0.1159 + }, + { + "start": 22994.32, + "end": 22995.26, + "probability": 0.0125 + }, + { + "start": 22995.26, + "end": 22997.75, + "probability": 0.0361 + }, + { + "start": 22999.72, + "end": 23002.2, + "probability": 0.0373 + }, + { + "start": 23006.68, + "end": 23010.08, + "probability": 0.0263 + }, + { + "start": 23010.68, + "end": 23010.98, + "probability": 0.0828 + }, + { + "start": 23011.0, + "end": 23011.0, + "probability": 0.0 + }, + { + "start": 23011.0, + "end": 23011.0, + "probability": 0.0 + }, + { + "start": 23011.0, + "end": 23011.0, + "probability": 0.0 + }, + { + "start": 23011.0, + "end": 23011.0, + "probability": 0.0 + }, + { + "start": 23011.0, + "end": 23011.0, + "probability": 0.0 + }, + { + "start": 23013.14, + "end": 23013.8, + "probability": 0.0544 + }, + { + "start": 23013.8, + "end": 23013.8, + "probability": 0.054 + }, + { + "start": 23013.8, + "end": 23013.8, + "probability": 0.491 + }, + { + "start": 23013.8, + "end": 23015.28, + "probability": 0.9048 + }, + { + "start": 23015.44, + "end": 23017.86, + "probability": 0.7194 + }, + { + "start": 23017.94, + "end": 23019.28, + "probability": 0.7121 + }, + { + "start": 23019.5, + "end": 23020.64, + "probability": 0.7382 + }, + { + "start": 23022.0, + "end": 23025.52, + "probability": 0.9932 + }, + { + "start": 23025.52, + "end": 23031.32, + "probability": 0.8664 + }, + { + "start": 23031.4, + "end": 23034.58, + "probability": 0.9942 + }, + { + "start": 23035.34, + "end": 23037.1, + "probability": 0.9839 + }, + { + "start": 23037.74, + "end": 23038.96, + "probability": 0.9428 + }, + { + "start": 23040.16, + "end": 23041.68, + "probability": 0.5789 + }, + { + "start": 23041.76, + "end": 23042.58, + "probability": 0.7946 + }, + { + "start": 23043.58, + "end": 23044.5, + "probability": 0.9511 + }, + { + "start": 23045.16, + "end": 23045.94, + "probability": 0.9188 + }, + { + "start": 23057.3, + "end": 23058.48, + "probability": 0.7982 + }, + { + "start": 23059.44, + "end": 23060.0, + "probability": 0.0035 + }, + { + "start": 23060.58, + "end": 23060.96, + "probability": 0.6456 + }, + { + "start": 23061.18, + "end": 23062.32, + "probability": 0.5673 + }, + { + "start": 23062.36, + "end": 23062.86, + "probability": 0.7709 + }, + { + "start": 23064.42, + "end": 23065.6, + "probability": 0.7904 + }, + { + "start": 23069.18, + "end": 23071.36, + "probability": 0.4969 + }, + { + "start": 23073.4, + "end": 23074.1, + "probability": 0.8513 + }, + { + "start": 23074.78, + "end": 23076.12, + "probability": 0.9875 + }, + { + "start": 23078.52, + "end": 23079.56, + "probability": 0.9737 + }, + { + "start": 23082.05, + "end": 23083.36, + "probability": 0.9692 + }, + { + "start": 23083.6, + "end": 23085.62, + "probability": 0.1721 + }, + { + "start": 23086.2, + "end": 23087.54, + "probability": 0.8781 + }, + { + "start": 23087.58, + "end": 23090.76, + "probability": 0.659 + }, + { + "start": 23093.38, + "end": 23094.46, + "probability": 0.9956 + }, + { + "start": 23094.74, + "end": 23095.52, + "probability": 0.9809 + }, + { + "start": 23096.28, + "end": 23096.44, + "probability": 0.0249 + }, + { + "start": 23097.6, + "end": 23098.8, + "probability": 0.4392 + }, + { + "start": 23107.72, + "end": 23109.1, + "probability": 0.2529 + }, + { + "start": 23109.1, + "end": 23110.08, + "probability": 0.7952 + }, + { + "start": 23110.08, + "end": 23111.74, + "probability": 0.9096 + }, + { + "start": 23113.7, + "end": 23118.62, + "probability": 0.8459 + }, + { + "start": 23118.94, + "end": 23120.52, + "probability": 0.5099 + }, + { + "start": 23127.52, + "end": 23128.66, + "probability": 0.0025 + }, + { + "start": 23130.36, + "end": 23145.32, + "probability": 0.0501 + }, + { + "start": 23148.72, + "end": 23149.9, + "probability": 0.0595 + }, + { + "start": 23150.44, + "end": 23151.24, + "probability": 0.6641 + }, + { + "start": 23151.92, + "end": 23155.22, + "probability": 0.7101 + }, + { + "start": 23155.3, + "end": 23156.26, + "probability": 0.5596 + }, + { + "start": 23156.56, + "end": 23157.66, + "probability": 0.9604 + }, + { + "start": 23159.02, + "end": 23160.04, + "probability": 0.8158 + }, + { + "start": 23160.1, + "end": 23163.74, + "probability": 0.8796 + }, + { + "start": 23163.84, + "end": 23167.44, + "probability": 0.6261 + }, + { + "start": 23172.53, + "end": 23174.4, + "probability": 0.2237 + }, + { + "start": 23182.4, + "end": 23182.72, + "probability": 0.1111 + }, + { + "start": 23182.72, + "end": 23184.42, + "probability": 0.7312 + }, + { + "start": 23184.64, + "end": 23187.38, + "probability": 0.9419 + }, + { + "start": 23187.46, + "end": 23188.54, + "probability": 0.5521 + }, + { + "start": 23188.8, + "end": 23190.32, + "probability": 0.9774 + }, + { + "start": 23190.38, + "end": 23192.52, + "probability": 0.9965 + }, + { + "start": 23193.36, + "end": 23196.06, + "probability": 0.7688 + }, + { + "start": 23196.78, + "end": 23200.72, + "probability": 0.9896 + }, + { + "start": 23202.44, + "end": 23205.16, + "probability": 0.6947 + }, + { + "start": 23205.26, + "end": 23210.04, + "probability": 0.8728 + }, + { + "start": 23210.64, + "end": 23213.48, + "probability": 0.8108 + }, + { + "start": 23213.56, + "end": 23214.12, + "probability": 0.927 + }, + { + "start": 23214.98, + "end": 23215.54, + "probability": 0.541 + }, + { + "start": 23215.58, + "end": 23216.26, + "probability": 0.6889 + }, + { + "start": 23216.32, + "end": 23217.02, + "probability": 0.8439 + }, + { + "start": 23217.06, + "end": 23218.38, + "probability": 0.7559 + }, + { + "start": 23218.84, + "end": 23219.54, + "probability": 0.9812 + }, + { + "start": 23225.76, + "end": 23226.78, + "probability": 0.4048 + }, + { + "start": 23226.92, + "end": 23229.56, + "probability": 0.996 + }, + { + "start": 23229.56, + "end": 23232.34, + "probability": 0.8874 + }, + { + "start": 23232.34, + "end": 23236.32, + "probability": 0.8626 + }, + { + "start": 23236.48, + "end": 23240.54, + "probability": 0.6431 + }, + { + "start": 23240.62, + "end": 23243.0, + "probability": 0.9537 + }, + { + "start": 23243.84, + "end": 23245.34, + "probability": 0.919 + }, + { + "start": 23245.4, + "end": 23246.38, + "probability": 0.8479 + }, + { + "start": 23246.42, + "end": 23248.4, + "probability": 0.8723 + }, + { + "start": 23248.4, + "end": 23251.62, + "probability": 0.5031 + }, + { + "start": 23252.2, + "end": 23253.54, + "probability": 0.7392 + }, + { + "start": 23253.74, + "end": 23254.12, + "probability": 0.6681 + }, + { + "start": 23254.44, + "end": 23255.32, + "probability": 0.7505 + }, + { + "start": 23255.88, + "end": 23257.72, + "probability": 0.639 + }, + { + "start": 23258.46, + "end": 23258.62, + "probability": 0.7288 + }, + { + "start": 23258.7, + "end": 23261.46, + "probability": 0.99 + }, + { + "start": 23261.56, + "end": 23264.46, + "probability": 0.9927 + }, + { + "start": 23264.88, + "end": 23268.1, + "probability": 0.9337 + }, + { + "start": 23268.12, + "end": 23271.78, + "probability": 0.9316 + }, + { + "start": 23272.38, + "end": 23275.88, + "probability": 0.9614 + }, + { + "start": 23275.88, + "end": 23280.7, + "probability": 0.9716 + }, + { + "start": 23281.12, + "end": 23283.06, + "probability": 0.9724 + }, + { + "start": 23283.06, + "end": 23285.82, + "probability": 0.988 + }, + { + "start": 23285.94, + "end": 23288.1, + "probability": 0.9901 + }, + { + "start": 23288.54, + "end": 23290.82, + "probability": 0.9666 + }, + { + "start": 23291.26, + "end": 23293.8, + "probability": 0.9038 + }, + { + "start": 23293.8, + "end": 23295.78, + "probability": 0.9958 + }, + { + "start": 23296.18, + "end": 23298.82, + "probability": 0.8002 + }, + { + "start": 23298.9, + "end": 23301.3, + "probability": 0.6866 + }, + { + "start": 23301.78, + "end": 23304.18, + "probability": 0.7491 + }, + { + "start": 23305.1, + "end": 23307.3, + "probability": 0.9851 + }, + { + "start": 23307.36, + "end": 23309.06, + "probability": 0.991 + }, + { + "start": 23309.06, + "end": 23311.64, + "probability": 0.9838 + }, + { + "start": 23312.04, + "end": 23315.58, + "probability": 0.9139 + }, + { + "start": 23315.62, + "end": 23318.52, + "probability": 0.9592 + }, + { + "start": 23319.32, + "end": 23323.1, + "probability": 0.9445 + }, + { + "start": 23323.1, + "end": 23325.92, + "probability": 0.9539 + }, + { + "start": 23326.48, + "end": 23328.36, + "probability": 0.9384 + }, + { + "start": 23328.46, + "end": 23331.1, + "probability": 0.9501 + }, + { + "start": 23331.18, + "end": 23334.66, + "probability": 0.994 + }, + { + "start": 23335.34, + "end": 23337.94, + "probability": 0.8175 + }, + { + "start": 23339.96, + "end": 23341.18, + "probability": 0.4284 + }, + { + "start": 23341.84, + "end": 23344.74, + "probability": 0.946 + }, + { + "start": 23344.8, + "end": 23347.34, + "probability": 0.9526 + }, + { + "start": 23347.76, + "end": 23352.48, + "probability": 0.9844 + }, + { + "start": 23353.46, + "end": 23358.98, + "probability": 0.9971 + }, + { + "start": 23359.6, + "end": 23363.0, + "probability": 0.9993 + }, + { + "start": 23363.2, + "end": 23367.64, + "probability": 0.9451 + }, + { + "start": 23367.76, + "end": 23368.46, + "probability": 0.9704 + }, + { + "start": 23368.86, + "end": 23372.32, + "probability": 0.9204 + }, + { + "start": 23373.36, + "end": 23374.38, + "probability": 0.9932 + }, + { + "start": 23374.78, + "end": 23375.84, + "probability": 0.9097 + }, + { + "start": 23376.24, + "end": 23380.22, + "probability": 0.9631 + }, + { + "start": 23381.24, + "end": 23381.96, + "probability": 0.7265 + }, + { + "start": 23382.9, + "end": 23383.26, + "probability": 0.8054 + }, + { + "start": 23383.34, + "end": 23384.3, + "probability": 0.7953 + }, + { + "start": 23384.42, + "end": 23390.92, + "probability": 0.9912 + }, + { + "start": 23390.92, + "end": 23394.08, + "probability": 0.9987 + }, + { + "start": 23394.44, + "end": 23396.0, + "probability": 0.8743 + }, + { + "start": 23396.68, + "end": 23398.8, + "probability": 0.9818 + }, + { + "start": 23400.14, + "end": 23405.62, + "probability": 0.9976 + }, + { + "start": 23405.8, + "end": 23406.32, + "probability": 0.6829 + }, + { + "start": 23407.28, + "end": 23409.0, + "probability": 0.4201 + }, + { + "start": 23409.76, + "end": 23411.38, + "probability": 0.5072 + }, + { + "start": 23411.9, + "end": 23414.32, + "probability": 0.9863 + }, + { + "start": 23414.38, + "end": 23415.62, + "probability": 0.9475 + }, + { + "start": 23416.2, + "end": 23417.32, + "probability": 0.9973 + }, + { + "start": 23418.1, + "end": 23419.66, + "probability": 0.999 + }, + { + "start": 23421.3, + "end": 23426.24, + "probability": 0.9913 + }, + { + "start": 23426.24, + "end": 23428.92, + "probability": 0.9963 + }, + { + "start": 23430.02, + "end": 23431.7, + "probability": 0.9945 + }, + { + "start": 23433.02, + "end": 23434.54, + "probability": 0.7358 + }, + { + "start": 23435.48, + "end": 23436.7, + "probability": 0.9976 + }, + { + "start": 23436.72, + "end": 23438.92, + "probability": 0.696 + }, + { + "start": 23439.9, + "end": 23441.8, + "probability": 0.9528 + }, + { + "start": 23442.36, + "end": 23444.0, + "probability": 0.8916 + }, + { + "start": 23445.46, + "end": 23449.02, + "probability": 0.7049 + }, + { + "start": 23449.54, + "end": 23450.54, + "probability": 0.9799 + }, + { + "start": 23450.58, + "end": 23454.4, + "probability": 0.9907 + }, + { + "start": 23454.5, + "end": 23455.1, + "probability": 0.9414 + }, + { + "start": 23455.16, + "end": 23455.64, + "probability": 0.9161 + }, + { + "start": 23456.1, + "end": 23456.74, + "probability": 0.8491 + }, + { + "start": 23456.8, + "end": 23457.48, + "probability": 0.749 + }, + { + "start": 23457.92, + "end": 23460.08, + "probability": 0.832 + }, + { + "start": 23461.4, + "end": 23462.22, + "probability": 0.7067 + }, + { + "start": 23463.46, + "end": 23464.3, + "probability": 0.987 + }, + { + "start": 23464.56, + "end": 23466.54, + "probability": 0.9911 + }, + { + "start": 23466.84, + "end": 23467.7, + "probability": 0.8199 + }, + { + "start": 23469.46, + "end": 23471.58, + "probability": 0.9644 + }, + { + "start": 23471.98, + "end": 23478.38, + "probability": 0.991 + }, + { + "start": 23478.48, + "end": 23480.1, + "probability": 0.8829 + }, + { + "start": 23480.56, + "end": 23482.16, + "probability": 0.9382 + }, + { + "start": 23482.3, + "end": 23483.06, + "probability": 0.5029 + }, + { + "start": 23483.9, + "end": 23486.2, + "probability": 0.9011 + }, + { + "start": 23487.16, + "end": 23490.9, + "probability": 0.9409 + }, + { + "start": 23492.16, + "end": 23495.94, + "probability": 0.9352 + }, + { + "start": 23496.96, + "end": 23498.54, + "probability": 0.9797 + }, + { + "start": 23499.94, + "end": 23503.82, + "probability": 0.9847 + }, + { + "start": 23505.24, + "end": 23506.88, + "probability": 0.9919 + }, + { + "start": 23508.28, + "end": 23509.54, + "probability": 0.7412 + }, + { + "start": 23509.66, + "end": 23515.98, + "probability": 0.7924 + }, + { + "start": 23516.54, + "end": 23517.7, + "probability": 0.8604 + }, + { + "start": 23518.02, + "end": 23519.26, + "probability": 0.8266 + }, + { + "start": 23519.42, + "end": 23520.1, + "probability": 0.5782 + }, + { + "start": 23520.6, + "end": 23525.01, + "probability": 0.9601 + }, + { + "start": 23526.32, + "end": 23528.16, + "probability": 0.9757 + }, + { + "start": 23528.92, + "end": 23531.43, + "probability": 0.998 + }, + { + "start": 23531.62, + "end": 23532.78, + "probability": 0.9925 + }, + { + "start": 23533.96, + "end": 23535.28, + "probability": 0.7031 + }, + { + "start": 23535.9, + "end": 23538.0, + "probability": 0.4756 + }, + { + "start": 23538.04, + "end": 23538.6, + "probability": 0.9197 + }, + { + "start": 23538.76, + "end": 23542.2, + "probability": 0.9753 + }, + { + "start": 23543.14, + "end": 23544.22, + "probability": 0.9717 + }, + { + "start": 23544.86, + "end": 23546.74, + "probability": 0.9862 + }, + { + "start": 23547.72, + "end": 23548.65, + "probability": 0.877 + }, + { + "start": 23549.92, + "end": 23555.68, + "probability": 0.9923 + }, + { + "start": 23557.06, + "end": 23560.84, + "probability": 0.822 + }, + { + "start": 23560.96, + "end": 23561.54, + "probability": 0.9213 + }, + { + "start": 23562.84, + "end": 23566.6, + "probability": 0.985 + }, + { + "start": 23566.66, + "end": 23569.06, + "probability": 0.9985 + }, + { + "start": 23569.44, + "end": 23570.8, + "probability": 0.9268 + }, + { + "start": 23572.2, + "end": 23573.46, + "probability": 0.7056 + }, + { + "start": 23573.68, + "end": 23574.72, + "probability": 0.8082 + }, + { + "start": 23575.22, + "end": 23576.32, + "probability": 0.9481 + }, + { + "start": 23577.0, + "end": 23579.8, + "probability": 0.9963 + }, + { + "start": 23580.98, + "end": 23582.38, + "probability": 0.996 + }, + { + "start": 23584.0, + "end": 23585.98, + "probability": 0.9958 + }, + { + "start": 23587.38, + "end": 23588.96, + "probability": 0.504 + }, + { + "start": 23589.74, + "end": 23591.36, + "probability": 0.8188 + }, + { + "start": 23591.46, + "end": 23593.34, + "probability": 0.7133 + }, + { + "start": 23593.68, + "end": 23596.78, + "probability": 0.9933 + }, + { + "start": 23597.44, + "end": 23599.44, + "probability": 0.9205 + }, + { + "start": 23599.48, + "end": 23603.18, + "probability": 0.986 + }, + { + "start": 23603.56, + "end": 23606.8, + "probability": 0.9979 + }, + { + "start": 23607.12, + "end": 23608.14, + "probability": 0.735 + }, + { + "start": 23609.12, + "end": 23609.62, + "probability": 0.6645 + }, + { + "start": 23609.74, + "end": 23611.9, + "probability": 0.7911 + }, + { + "start": 23612.52, + "end": 23615.56, + "probability": 0.8548 + }, + { + "start": 23615.82, + "end": 23617.08, + "probability": 0.368 + }, + { + "start": 23617.82, + "end": 23618.62, + "probability": 0.6701 + }, + { + "start": 23622.91, + "end": 23625.48, + "probability": 0.6913 + }, + { + "start": 23625.8, + "end": 23626.49, + "probability": 0.8454 + }, + { + "start": 23627.4, + "end": 23629.88, + "probability": 0.7512 + }, + { + "start": 23631.44, + "end": 23632.76, + "probability": 0.8143 + }, + { + "start": 23634.42, + "end": 23637.07, + "probability": 0.8862 + }, + { + "start": 23644.3, + "end": 23646.98, + "probability": 0.0202 + }, + { + "start": 23648.58, + "end": 23651.04, + "probability": 0.4623 + }, + { + "start": 23651.32, + "end": 23653.02, + "probability": 0.9004 + }, + { + "start": 23653.64, + "end": 23654.28, + "probability": 0.2862 + }, + { + "start": 23654.42, + "end": 23656.94, + "probability": 0.7965 + }, + { + "start": 23657.22, + "end": 23657.76, + "probability": 0.9531 + }, + { + "start": 23657.86, + "end": 23659.44, + "probability": 0.7262 + }, + { + "start": 23659.98, + "end": 23660.6, + "probability": 0.5756 + }, + { + "start": 23661.16, + "end": 23662.94, + "probability": 0.9275 + }, + { + "start": 23663.58, + "end": 23664.92, + "probability": 0.6491 + }, + { + "start": 23665.02, + "end": 23665.52, + "probability": 0.6962 + }, + { + "start": 23665.62, + "end": 23666.62, + "probability": 0.6334 + }, + { + "start": 23666.7, + "end": 23667.2, + "probability": 0.4788 + }, + { + "start": 23668.7, + "end": 23670.56, + "probability": 0.954 + }, + { + "start": 23670.76, + "end": 23671.38, + "probability": 0.9613 + }, + { + "start": 23671.5, + "end": 23672.52, + "probability": 0.819 + }, + { + "start": 23672.58, + "end": 23674.58, + "probability": 0.9566 + }, + { + "start": 23675.3, + "end": 23676.04, + "probability": 0.5183 + }, + { + "start": 23676.04, + "end": 23676.04, + "probability": 0.2735 + }, + { + "start": 23676.04, + "end": 23677.22, + "probability": 0.7485 + }, + { + "start": 23678.58, + "end": 23679.18, + "probability": 0.7455 + }, + { + "start": 23680.58, + "end": 23682.14, + "probability": 0.9187 + }, + { + "start": 23682.86, + "end": 23683.38, + "probability": 0.9038 + }, + { + "start": 23684.0, + "end": 23685.42, + "probability": 0.8305 + }, + { + "start": 23685.96, + "end": 23688.32, + "probability": 0.7789 + }, + { + "start": 23689.24, + "end": 23691.46, + "probability": 0.5026 + }, + { + "start": 23692.16, + "end": 23694.86, + "probability": 0.0322 + }, + { + "start": 23710.2, + "end": 23711.52, + "probability": 0.0949 + }, + { + "start": 23712.18, + "end": 23714.52, + "probability": 0.6664 + }, + { + "start": 23714.7, + "end": 23716.6, + "probability": 0.9889 + }, + { + "start": 23716.66, + "end": 23720.32, + "probability": 0.9965 + }, + { + "start": 23720.32, + "end": 23723.82, + "probability": 0.8857 + }, + { + "start": 23723.96, + "end": 23726.86, + "probability": 0.3924 + }, + { + "start": 23727.56, + "end": 23729.88, + "probability": 0.5432 + }, + { + "start": 23749.5, + "end": 23752.38, + "probability": 0.8682 + }, + { + "start": 23752.38, + "end": 23755.2, + "probability": 0.9045 + }, + { + "start": 23756.02, + "end": 23757.72, + "probability": 0.4215 + }, + { + "start": 23757.76, + "end": 23758.68, + "probability": 0.4667 + }, + { + "start": 23758.84, + "end": 23758.94, + "probability": 0.167 + }, + { + "start": 23759.42, + "end": 23759.64, + "probability": 0.007 + }, + { + "start": 23760.64, + "end": 23761.5, + "probability": 0.0064 + }, + { + "start": 23763.68, + "end": 23764.32, + "probability": 0.1618 + }, + { + "start": 23764.38, + "end": 23766.32, + "probability": 0.3329 + }, + { + "start": 23767.68, + "end": 23772.08, + "probability": 0.8687 + }, + { + "start": 23772.08, + "end": 23774.22, + "probability": 0.0834 + }, + { + "start": 23774.24, + "end": 23776.0, + "probability": 0.4866 + }, + { + "start": 23777.54, + "end": 23779.22, + "probability": 0.0669 + }, + { + "start": 23779.22, + "end": 23782.68, + "probability": 0.1299 + }, + { + "start": 23785.0, + "end": 23785.42, + "probability": 0.1292 + }, + { + "start": 23788.55, + "end": 23790.34, + "probability": 0.0635 + }, + { + "start": 23790.55, + "end": 23793.07, + "probability": 0.0718 + }, + { + "start": 23793.08, + "end": 23793.98, + "probability": 0.0288 + }, + { + "start": 23794.0, + "end": 23794.0, + "probability": 0.0 + }, + { + "start": 23794.0, + "end": 23794.0, + "probability": 0.0 + }, + { + "start": 23794.0, + "end": 23794.0, + "probability": 0.0 + }, + { + "start": 23794.0, + "end": 23794.0, + "probability": 0.0 + }, + { + "start": 23794.0, + "end": 23794.0, + "probability": 0.0 + }, + { + "start": 23803.66, + "end": 23804.0, + "probability": 0.0619 + }, + { + "start": 23813.48, + "end": 23817.3, + "probability": 0.2508 + }, + { + "start": 23817.52, + "end": 23819.5, + "probability": 0.042 + }, + { + "start": 23819.5, + "end": 23819.62, + "probability": 0.1621 + }, + { + "start": 23819.62, + "end": 23819.62, + "probability": 0.2187 + }, + { + "start": 23819.62, + "end": 23819.62, + "probability": 0.1659 + }, + { + "start": 23819.62, + "end": 23820.9, + "probability": 0.0979 + }, + { + "start": 23825.98, + "end": 23826.88, + "probability": 0.0964 + }, + { + "start": 23826.88, + "end": 23829.76, + "probability": 0.0277 + }, + { + "start": 23830.58, + "end": 23832.56, + "probability": 0.0104 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23914.0, + "end": 23914.0, + "probability": 0.0 + }, + { + "start": 23915.02, + "end": 23915.8, + "probability": 0.0005 + }, + { + "start": 23916.88, + "end": 23917.68, + "probability": 0.534 + }, + { + "start": 23919.22, + "end": 23919.78, + "probability": 0.4869 + }, + { + "start": 23919.78, + "end": 23920.16, + "probability": 0.0974 + }, + { + "start": 23921.58, + "end": 23922.88, + "probability": 0.0916 + }, + { + "start": 23926.4, + "end": 23928.32, + "probability": 0.1921 + }, + { + "start": 23931.27, + "end": 23936.56, + "probability": 0.8219 + }, + { + "start": 23936.7, + "end": 23940.46, + "probability": 0.7349 + }, + { + "start": 23940.54, + "end": 23941.06, + "probability": 0.43 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.0, + "end": 24037.0, + "probability": 0.0 + }, + { + "start": 24037.02, + "end": 24037.38, + "probability": 0.0901 + }, + { + "start": 24037.86, + "end": 24043.4, + "probability": 0.7842 + }, + { + "start": 24043.62, + "end": 24046.86, + "probability": 0.9956 + }, + { + "start": 24046.86, + "end": 24050.8, + "probability": 0.9592 + }, + { + "start": 24050.84, + "end": 24054.6, + "probability": 0.9344 + }, + { + "start": 24054.7, + "end": 24058.46, + "probability": 0.9483 + }, + { + "start": 24058.46, + "end": 24061.6, + "probability": 0.8072 + }, + { + "start": 24062.14, + "end": 24066.1, + "probability": 0.8199 + }, + { + "start": 24066.1, + "end": 24069.8, + "probability": 0.9956 + }, + { + "start": 24069.86, + "end": 24072.56, + "probability": 0.983 + }, + { + "start": 24072.56, + "end": 24076.4, + "probability": 0.9937 + }, + { + "start": 24076.44, + "end": 24082.0, + "probability": 0.9897 + }, + { + "start": 24082.58, + "end": 24084.12, + "probability": 0.9976 + }, + { + "start": 24084.68, + "end": 24088.34, + "probability": 0.8572 + }, + { + "start": 24089.06, + "end": 24093.78, + "probability": 0.9952 + }, + { + "start": 24094.36, + "end": 24100.4, + "probability": 0.897 + }, + { + "start": 24100.96, + "end": 24102.24, + "probability": 0.8441 + }, + { + "start": 24102.72, + "end": 24107.64, + "probability": 0.9041 + }, + { + "start": 24107.82, + "end": 24109.36, + "probability": 0.9443 + }, + { + "start": 24109.86, + "end": 24111.66, + "probability": 0.991 + }, + { + "start": 24112.36, + "end": 24116.44, + "probability": 0.7152 + }, + { + "start": 24117.02, + "end": 24120.92, + "probability": 0.9922 + }, + { + "start": 24121.98, + "end": 24125.36, + "probability": 0.9939 + }, + { + "start": 24125.36, + "end": 24127.9, + "probability": 0.9362 + }, + { + "start": 24128.3, + "end": 24130.52, + "probability": 0.9775 + }, + { + "start": 24131.26, + "end": 24133.7, + "probability": 0.9753 + }, + { + "start": 24134.5, + "end": 24137.58, + "probability": 0.9893 + }, + { + "start": 24138.18, + "end": 24139.58, + "probability": 0.6178 + }, + { + "start": 24139.72, + "end": 24142.68, + "probability": 0.9805 + }, + { + "start": 24143.12, + "end": 24146.88, + "probability": 0.9939 + }, + { + "start": 24147.32, + "end": 24151.26, + "probability": 0.9622 + }, + { + "start": 24151.84, + "end": 24154.7, + "probability": 0.8272 + }, + { + "start": 24155.44, + "end": 24155.7, + "probability": 0.3346 + }, + { + "start": 24155.92, + "end": 24158.22, + "probability": 0.9819 + }, + { + "start": 24158.76, + "end": 24163.94, + "probability": 0.8395 + }, + { + "start": 24163.94, + "end": 24168.24, + "probability": 0.9713 + }, + { + "start": 24168.76, + "end": 24171.84, + "probability": 0.9818 + }, + { + "start": 24172.06, + "end": 24174.56, + "probability": 0.9424 + }, + { + "start": 24174.56, + "end": 24177.98, + "probability": 0.9917 + }, + { + "start": 24178.6, + "end": 24180.38, + "probability": 0.8238 + }, + { + "start": 24180.96, + "end": 24185.42, + "probability": 0.9937 + }, + { + "start": 24185.76, + "end": 24191.84, + "probability": 0.9954 + }, + { + "start": 24191.84, + "end": 24197.2, + "probability": 0.9875 + }, + { + "start": 24197.34, + "end": 24197.5, + "probability": 0.0681 + }, + { + "start": 24198.28, + "end": 24201.22, + "probability": 0.9932 + }, + { + "start": 24201.22, + "end": 24203.92, + "probability": 0.9972 + }, + { + "start": 24204.46, + "end": 24208.16, + "probability": 0.9898 + }, + { + "start": 24208.24, + "end": 24211.5, + "probability": 0.972 + }, + { + "start": 24212.06, + "end": 24213.16, + "probability": 0.9041 + }, + { + "start": 24213.68, + "end": 24217.4, + "probability": 0.925 + }, + { + "start": 24217.86, + "end": 24220.1, + "probability": 0.9752 + }, + { + "start": 24220.78, + "end": 24221.76, + "probability": 0.8451 + }, + { + "start": 24222.32, + "end": 24226.0, + "probability": 0.9933 + }, + { + "start": 24226.7, + "end": 24227.22, + "probability": 0.9884 + }, + { + "start": 24228.42, + "end": 24231.2, + "probability": 0.6203 + }, + { + "start": 24231.7, + "end": 24233.42, + "probability": 0.8102 + }, + { + "start": 24233.74, + "end": 24236.86, + "probability": 0.9681 + }, + { + "start": 24237.42, + "end": 24239.96, + "probability": 0.979 + }, + { + "start": 24240.38, + "end": 24243.72, + "probability": 0.9987 + }, + { + "start": 24244.6, + "end": 24245.78, + "probability": 0.9895 + }, + { + "start": 24245.86, + "end": 24246.36, + "probability": 0.7496 + }, + { + "start": 24247.46, + "end": 24248.1, + "probability": 0.7746 + }, + { + "start": 24248.24, + "end": 24250.74, + "probability": 0.9856 + }, + { + "start": 24252.12, + "end": 24252.48, + "probability": 0.4249 + }, + { + "start": 24252.48, + "end": 24252.48, + "probability": 0.5857 + }, + { + "start": 24252.62, + "end": 24254.8, + "probability": 0.834 + }, + { + "start": 24255.38, + "end": 24258.42, + "probability": 0.9562 + }, + { + "start": 24259.0, + "end": 24261.36, + "probability": 0.9921 + }, + { + "start": 24261.4, + "end": 24263.07, + "probability": 0.9818 + }, + { + "start": 24266.92, + "end": 24267.1, + "probability": 0.0003 + }, + { + "start": 24278.04, + "end": 24279.24, + "probability": 0.1183 + }, + { + "start": 24280.18, + "end": 24282.12, + "probability": 0.6367 + }, + { + "start": 24282.26, + "end": 24283.76, + "probability": 0.9894 + }, + { + "start": 24283.82, + "end": 24286.4, + "probability": 0.9806 + }, + { + "start": 24304.3, + "end": 24308.46, + "probability": 0.855 + }, + { + "start": 24308.46, + "end": 24310.64, + "probability": 0.4524 + }, + { + "start": 24311.22, + "end": 24312.76, + "probability": 0.384 + }, + { + "start": 24313.34, + "end": 24315.62, + "probability": 0.6919 + }, + { + "start": 24316.5, + "end": 24317.2, + "probability": 0.8446 + }, + { + "start": 24318.14, + "end": 24320.88, + "probability": 0.0068 + }, + { + "start": 24321.48, + "end": 24322.32, + "probability": 0.2335 + }, + { + "start": 24323.18, + "end": 24324.1, + "probability": 0.5489 + }, + { + "start": 24324.8, + "end": 24325.9, + "probability": 0.1651 + }, + { + "start": 24327.7, + "end": 24329.54, + "probability": 0.0805 + }, + { + "start": 24330.22, + "end": 24331.02, + "probability": 0.0883 + }, + { + "start": 24337.92, + "end": 24340.54, + "probability": 0.437 + }, + { + "start": 24341.26, + "end": 24341.54, + "probability": 0.0617 + }, + { + "start": 24342.1, + "end": 24342.3, + "probability": 0.0495 + }, + { + "start": 24342.3, + "end": 24342.88, + "probability": 0.0549 + }, + { + "start": 24342.88, + "end": 24346.64, + "probability": 0.1116 + }, + { + "start": 24381.0, + "end": 24381.0, + "probability": 0.0 + }, + { + "start": 24381.0, + "end": 24381.0, + "probability": 0.0 + }, + { + "start": 24381.0, + "end": 24381.0, + "probability": 0.0 + }, + { + "start": 24381.0, + "end": 24381.0, + "probability": 0.0 + }, + { + "start": 24381.0, + "end": 24381.0, + "probability": 0.0 + }, + { + "start": 24381.0, + "end": 24381.0, + "probability": 0.0 + }, + { + "start": 24381.0, + "end": 24381.0, + "probability": 0.0 + }, + { + "start": 24381.0, + "end": 24381.0, + "probability": 0.0 + }, + { + "start": 24381.0, + "end": 24381.0, + "probability": 0.0 + }, + { + "start": 24381.0, + "end": 24381.0, + "probability": 0.0 + }, + { + "start": 24381.0, + "end": 24381.0, + "probability": 0.0 + }, + { + "start": 24381.0, + "end": 24381.0, + "probability": 0.0 + }, + { + "start": 24381.0, + "end": 24381.12, + "probability": 0.0688 + }, + { + "start": 24381.12, + "end": 24383.18, + "probability": 0.9336 + }, + { + "start": 24383.94, + "end": 24387.22, + "probability": 0.8586 + }, + { + "start": 24387.22, + "end": 24391.08, + "probability": 0.984 + }, + { + "start": 24392.0, + "end": 24393.33, + "probability": 0.8643 + }, + { + "start": 24394.28, + "end": 24396.58, + "probability": 0.9922 + }, + { + "start": 24397.16, + "end": 24399.58, + "probability": 0.7265 + }, + { + "start": 24399.8, + "end": 24403.66, + "probability": 0.9608 + }, + { + "start": 24403.98, + "end": 24405.28, + "probability": 0.9391 + }, + { + "start": 24406.36, + "end": 24407.1, + "probability": 0.9621 + }, + { + "start": 24407.16, + "end": 24409.88, + "probability": 0.9227 + }, + { + "start": 24410.04, + "end": 24411.52, + "probability": 0.9596 + }, + { + "start": 24411.54, + "end": 24412.43, + "probability": 0.9412 + }, + { + "start": 24412.6, + "end": 24413.62, + "probability": 0.6299 + }, + { + "start": 24414.58, + "end": 24415.54, + "probability": 0.7956 + }, + { + "start": 24416.4, + "end": 24417.99, + "probability": 0.971 + }, + { + "start": 24418.28, + "end": 24420.46, + "probability": 0.724 + }, + { + "start": 24420.62, + "end": 24425.14, + "probability": 0.9956 + }, + { + "start": 24426.32, + "end": 24428.54, + "probability": 0.8495 + }, + { + "start": 24429.14, + "end": 24429.91, + "probability": 0.9062 + }, + { + "start": 24430.0, + "end": 24431.1, + "probability": 0.8164 + }, + { + "start": 24431.16, + "end": 24432.62, + "probability": 0.9891 + }, + { + "start": 24433.2, + "end": 24433.64, + "probability": 0.9453 + }, + { + "start": 24433.76, + "end": 24436.66, + "probability": 0.9744 + }, + { + "start": 24438.5, + "end": 24439.38, + "probability": 0.9831 + }, + { + "start": 24440.28, + "end": 24441.38, + "probability": 0.6697 + }, + { + "start": 24441.4, + "end": 24442.18, + "probability": 0.9173 + }, + { + "start": 24443.24, + "end": 24444.8, + "probability": 0.8019 + }, + { + "start": 24445.04, + "end": 24447.78, + "probability": 0.7379 + }, + { + "start": 24447.92, + "end": 24448.7, + "probability": 0.9121 + }, + { + "start": 24449.44, + "end": 24453.34, + "probability": 0.9883 + }, + { + "start": 24454.82, + "end": 24456.4, + "probability": 0.9093 + }, + { + "start": 24456.56, + "end": 24460.24, + "probability": 0.9832 + }, + { + "start": 24460.86, + "end": 24463.96, + "probability": 0.5797 + }, + { + "start": 24464.06, + "end": 24466.28, + "probability": 0.9119 + }, + { + "start": 24466.32, + "end": 24467.88, + "probability": 0.9636 + }, + { + "start": 24468.08, + "end": 24473.7, + "probability": 0.9777 + }, + { + "start": 24473.78, + "end": 24474.68, + "probability": 0.9985 + }, + { + "start": 24475.14, + "end": 24479.52, + "probability": 0.9562 + }, + { + "start": 24479.58, + "end": 24481.94, + "probability": 0.8938 + }, + { + "start": 24482.88, + "end": 24484.38, + "probability": 0.8198 + }, + { + "start": 24484.52, + "end": 24485.52, + "probability": 0.9807 + }, + { + "start": 24485.62, + "end": 24487.34, + "probability": 0.6685 + }, + { + "start": 24488.5, + "end": 24491.12, + "probability": 0.9531 + }, + { + "start": 24491.22, + "end": 24492.38, + "probability": 0.8282 + }, + { + "start": 24492.68, + "end": 24496.36, + "probability": 0.99 + }, + { + "start": 24496.48, + "end": 24498.12, + "probability": 0.8453 + }, + { + "start": 24498.2, + "end": 24499.74, + "probability": 0.8586 + }, + { + "start": 24500.5, + "end": 24502.92, + "probability": 0.7176 + }, + { + "start": 24503.02, + "end": 24505.48, + "probability": 0.9863 + }, + { + "start": 24506.34, + "end": 24508.02, + "probability": 0.7481 + }, + { + "start": 24508.94, + "end": 24513.14, + "probability": 0.6522 + }, + { + "start": 24513.76, + "end": 24514.72, + "probability": 0.8011 + }, + { + "start": 24514.88, + "end": 24515.6, + "probability": 0.7129 + }, + { + "start": 24516.14, + "end": 24516.86, + "probability": 0.9618 + }, + { + "start": 24516.92, + "end": 24519.0, + "probability": 0.863 + }, + { + "start": 24519.02, + "end": 24519.9, + "probability": 0.9674 + }, + { + "start": 24521.06, + "end": 24521.86, + "probability": 0.9263 + }, + { + "start": 24521.96, + "end": 24524.24, + "probability": 0.9255 + }, + { + "start": 24524.64, + "end": 24526.12, + "probability": 0.991 + }, + { + "start": 24526.64, + "end": 24527.76, + "probability": 0.9907 + }, + { + "start": 24528.52, + "end": 24531.5, + "probability": 0.8439 + }, + { + "start": 24531.98, + "end": 24532.66, + "probability": 0.8756 + }, + { + "start": 24532.68, + "end": 24537.02, + "probability": 0.9837 + }, + { + "start": 24537.8, + "end": 24538.16, + "probability": 0.6871 + }, + { + "start": 24538.16, + "end": 24539.22, + "probability": 0.8489 + }, + { + "start": 24540.07, + "end": 24543.26, + "probability": 0.9849 + }, + { + "start": 24543.38, + "end": 24546.57, + "probability": 0.9833 + }, + { + "start": 24547.6, + "end": 24550.56, + "probability": 0.9254 + }, + { + "start": 24551.16, + "end": 24552.7, + "probability": 0.9766 + }, + { + "start": 24553.38, + "end": 24553.58, + "probability": 0.1402 + }, + { + "start": 24554.46, + "end": 24559.0, + "probability": 0.9894 + }, + { + "start": 24560.0, + "end": 24560.16, + "probability": 0.7148 + }, + { + "start": 24560.44, + "end": 24563.3, + "probability": 0.801 + }, + { + "start": 24563.58, + "end": 24565.12, + "probability": 0.9969 + }, + { + "start": 24565.12, + "end": 24568.96, + "probability": 0.993 + }, + { + "start": 24569.14, + "end": 24570.56, + "probability": 0.9627 + }, + { + "start": 24570.96, + "end": 24572.06, + "probability": 0.9517 + }, + { + "start": 24572.68, + "end": 24573.82, + "probability": 0.5796 + }, + { + "start": 24574.76, + "end": 24575.49, + "probability": 0.4802 + }, + { + "start": 24575.84, + "end": 24577.7, + "probability": 0.9009 + }, + { + "start": 24578.18, + "end": 24579.88, + "probability": 0.999 + }, + { + "start": 24580.02, + "end": 24584.78, + "probability": 0.8571 + }, + { + "start": 24584.82, + "end": 24587.78, + "probability": 0.8999 + }, + { + "start": 24588.64, + "end": 24590.54, + "probability": 0.876 + }, + { + "start": 24590.58, + "end": 24592.36, + "probability": 0.9956 + }, + { + "start": 24592.36, + "end": 24593.94, + "probability": 0.9946 + }, + { + "start": 24593.96, + "end": 24598.68, + "probability": 0.8596 + }, + { + "start": 24599.26, + "end": 24600.42, + "probability": 0.4977 + }, + { + "start": 24601.14, + "end": 24602.46, + "probability": 0.9912 + }, + { + "start": 24602.84, + "end": 24603.42, + "probability": 0.9391 + }, + { + "start": 24603.48, + "end": 24604.92, + "probability": 0.9929 + }, + { + "start": 24604.96, + "end": 24605.54, + "probability": 0.5085 + }, + { + "start": 24605.6, + "end": 24605.95, + "probability": 0.9535 + }, + { + "start": 24606.58, + "end": 24607.82, + "probability": 0.9814 + }, + { + "start": 24608.24, + "end": 24610.8, + "probability": 0.965 + }, + { + "start": 24611.88, + "end": 24613.44, + "probability": 0.7509 + }, + { + "start": 24613.98, + "end": 24617.1, + "probability": 0.923 + }, + { + "start": 24618.0, + "end": 24621.34, + "probability": 0.9922 + }, + { + "start": 24621.98, + "end": 24623.8, + "probability": 0.8976 + }, + { + "start": 24624.74, + "end": 24625.22, + "probability": 0.9751 + }, + { + "start": 24625.82, + "end": 24627.16, + "probability": 0.9979 + }, + { + "start": 24627.32, + "end": 24628.38, + "probability": 0.9612 + }, + { + "start": 24628.76, + "end": 24629.76, + "probability": 0.6651 + }, + { + "start": 24630.28, + "end": 24631.58, + "probability": 0.9386 + }, + { + "start": 24632.42, + "end": 24634.02, + "probability": 0.9014 + }, + { + "start": 24634.41, + "end": 24636.4, + "probability": 0.7937 + }, + { + "start": 24636.72, + "end": 24638.06, + "probability": 0.9971 + }, + { + "start": 24638.82, + "end": 24639.56, + "probability": 0.6202 + }, + { + "start": 24639.82, + "end": 24642.88, + "probability": 0.5865 + }, + { + "start": 24643.1, + "end": 24643.76, + "probability": 0.8995 + }, + { + "start": 24643.9, + "end": 24645.18, + "probability": 0.9561 + }, + { + "start": 24645.3, + "end": 24646.73, + "probability": 0.8315 + }, + { + "start": 24647.58, + "end": 24652.12, + "probability": 0.9886 + }, + { + "start": 24652.64, + "end": 24656.7, + "probability": 0.7443 + }, + { + "start": 24656.7, + "end": 24657.68, + "probability": 0.7845 + }, + { + "start": 24658.3, + "end": 24660.62, + "probability": 0.9457 + }, + { + "start": 24661.18, + "end": 24664.5, + "probability": 0.9754 + }, + { + "start": 24665.1, + "end": 24667.38, + "probability": 0.9835 + }, + { + "start": 24668.78, + "end": 24670.9, + "probability": 0.6757 + }, + { + "start": 24670.98, + "end": 24672.54, + "probability": 0.882 + }, + { + "start": 24673.28, + "end": 24674.5, + "probability": 0.8615 + }, + { + "start": 24674.8, + "end": 24675.96, + "probability": 0.5535 + }, + { + "start": 24675.96, + "end": 24676.96, + "probability": 0.9261 + }, + { + "start": 24677.0, + "end": 24677.94, + "probability": 0.9736 + }, + { + "start": 24678.08, + "end": 24679.0, + "probability": 0.9688 + }, + { + "start": 24679.48, + "end": 24680.7, + "probability": 0.9722 + }, + { + "start": 24680.8, + "end": 24681.96, + "probability": 0.9698 + }, + { + "start": 24682.52, + "end": 24683.9, + "probability": 0.8121 + }, + { + "start": 24684.44, + "end": 24685.34, + "probability": 0.8596 + }, + { + "start": 24686.3, + "end": 24689.34, + "probability": 0.6669 + }, + { + "start": 24689.46, + "end": 24690.6, + "probability": 0.946 + }, + { + "start": 24691.84, + "end": 24692.44, + "probability": 0.0128 + }, + { + "start": 24692.6, + "end": 24692.92, + "probability": 0.0422 + }, + { + "start": 24692.92, + "end": 24693.36, + "probability": 0.3393 + }, + { + "start": 24693.46, + "end": 24694.25, + "probability": 0.5997 + }, + { + "start": 24695.1, + "end": 24697.56, + "probability": 0.6281 + }, + { + "start": 24697.56, + "end": 24698.38, + "probability": 0.6219 + }, + { + "start": 24698.7, + "end": 24699.79, + "probability": 0.9267 + }, + { + "start": 24700.38, + "end": 24701.18, + "probability": 0.4847 + }, + { + "start": 24701.84, + "end": 24703.62, + "probability": 0.7332 + }, + { + "start": 24704.26, + "end": 24705.42, + "probability": 0.9858 + }, + { + "start": 24705.54, + "end": 24706.05, + "probability": 0.5767 + }, + { + "start": 24706.42, + "end": 24707.14, + "probability": 0.4496 + }, + { + "start": 24707.24, + "end": 24707.76, + "probability": 0.5947 + }, + { + "start": 24708.68, + "end": 24708.88, + "probability": 0.0162 + }, + { + "start": 24708.88, + "end": 24709.6, + "probability": 0.7603 + }, + { + "start": 24710.08, + "end": 24710.46, + "probability": 0.458 + }, + { + "start": 24711.39, + "end": 24713.2, + "probability": 0.7941 + }, + { + "start": 24713.3, + "end": 24714.18, + "probability": 0.7778 + }, + { + "start": 24714.68, + "end": 24715.6, + "probability": 0.7117 + }, + { + "start": 24715.7, + "end": 24717.64, + "probability": 0.7909 + }, + { + "start": 24717.78, + "end": 24719.02, + "probability": 0.772 + }, + { + "start": 24719.58, + "end": 24720.76, + "probability": 0.7784 + }, + { + "start": 24721.0, + "end": 24722.24, + "probability": 0.7575 + }, + { + "start": 24722.3, + "end": 24723.34, + "probability": 0.5747 + }, + { + "start": 24723.38, + "end": 24725.46, + "probability": 0.7629 + }, + { + "start": 24725.88, + "end": 24727.48, + "probability": 0.625 + }, + { + "start": 24727.56, + "end": 24728.68, + "probability": 0.9722 + }, + { + "start": 24729.58, + "end": 24732.28, + "probability": 0.9035 + }, + { + "start": 24732.34, + "end": 24733.82, + "probability": 0.5985 + }, + { + "start": 24734.0, + "end": 24734.78, + "probability": 0.9048 + }, + { + "start": 24735.5, + "end": 24736.58, + "probability": 0.6626 + }, + { + "start": 24736.68, + "end": 24737.3, + "probability": 0.8643 + }, + { + "start": 24737.8, + "end": 24738.16, + "probability": 0.7764 + }, + { + "start": 24738.22, + "end": 24739.46, + "probability": 0.8742 + }, + { + "start": 24739.82, + "end": 24742.56, + "probability": 0.9742 + }, + { + "start": 24742.88, + "end": 24743.84, + "probability": 0.973 + }, + { + "start": 24743.84, + "end": 24745.18, + "probability": 0.8717 + }, + { + "start": 24745.28, + "end": 24746.34, + "probability": 0.6311 + }, + { + "start": 24746.9, + "end": 24747.9, + "probability": 0.4159 + }, + { + "start": 24748.52, + "end": 24749.1, + "probability": 0.5507 + }, + { + "start": 24749.16, + "end": 24751.2, + "probability": 0.598 + }, + { + "start": 24751.62, + "end": 24753.9, + "probability": 0.8604 + }, + { + "start": 24754.4, + "end": 24754.58, + "probability": 0.2523 + }, + { + "start": 24754.84, + "end": 24756.08, + "probability": 0.946 + }, + { + "start": 24756.4, + "end": 24757.4, + "probability": 0.509 + }, + { + "start": 24757.86, + "end": 24759.84, + "probability": 0.7985 + }, + { + "start": 24759.92, + "end": 24760.48, + "probability": 0.8092 + }, + { + "start": 24760.56, + "end": 24761.22, + "probability": 0.9924 + }, + { + "start": 24762.14, + "end": 24762.78, + "probability": 0.8364 + }, + { + "start": 24763.44, + "end": 24765.86, + "probability": 0.9391 + }, + { + "start": 24766.08, + "end": 24767.16, + "probability": 0.6353 + }, + { + "start": 24767.22, + "end": 24767.84, + "probability": 0.0003 + }, + { + "start": 24769.38, + "end": 24771.5, + "probability": 0.5017 + }, + { + "start": 24778.26, + "end": 24779.08, + "probability": 0.3044 + }, + { + "start": 24780.4, + "end": 24780.86, + "probability": 0.833 + }, + { + "start": 24789.18, + "end": 24790.88, + "probability": 0.474 + }, + { + "start": 24791.02, + "end": 24792.94, + "probability": 0.3946 + }, + { + "start": 24793.16, + "end": 24793.88, + "probability": 0.661 + }, + { + "start": 24793.98, + "end": 24795.1, + "probability": 0.6446 + }, + { + "start": 24795.18, + "end": 24795.6, + "probability": 0.7734 + }, + { + "start": 24796.48, + "end": 24799.08, + "probability": 0.9495 + }, + { + "start": 24799.92, + "end": 24801.76, + "probability": 0.8985 + }, + { + "start": 24802.8, + "end": 24804.72, + "probability": 0.949 + }, + { + "start": 24806.52, + "end": 24808.1, + "probability": 0.8999 + }, + { + "start": 24809.04, + "end": 24810.78, + "probability": 0.9938 + }, + { + "start": 24811.72, + "end": 24813.38, + "probability": 0.9769 + }, + { + "start": 24814.16, + "end": 24817.92, + "probability": 0.9977 + }, + { + "start": 24818.31, + "end": 24823.64, + "probability": 0.9971 + }, + { + "start": 24824.6, + "end": 24827.78, + "probability": 0.9798 + }, + { + "start": 24827.78, + "end": 24830.76, + "probability": 0.9853 + }, + { + "start": 24831.44, + "end": 24838.56, + "probability": 0.5729 + }, + { + "start": 24838.76, + "end": 24839.7, + "probability": 0.3565 + }, + { + "start": 24839.7, + "end": 24842.3, + "probability": 0.948 + }, + { + "start": 24842.68, + "end": 24845.3, + "probability": 0.9239 + }, + { + "start": 24845.84, + "end": 24849.02, + "probability": 0.7634 + }, + { + "start": 24849.54, + "end": 24850.21, + "probability": 0.5223 + }, + { + "start": 24851.16, + "end": 24855.86, + "probability": 0.8785 + }, + { + "start": 24856.26, + "end": 24860.6, + "probability": 0.9229 + }, + { + "start": 24861.46, + "end": 24863.62, + "probability": 0.5846 + }, + { + "start": 24863.7, + "end": 24863.98, + "probability": 0.6786 + }, + { + "start": 24864.62, + "end": 24867.52, + "probability": 0.7329 + }, + { + "start": 24868.08, + "end": 24871.7, + "probability": 0.7315 + }, + { + "start": 24871.78, + "end": 24872.46, + "probability": 0.7696 + }, + { + "start": 24872.78, + "end": 24873.64, + "probability": 0.7092 + }, + { + "start": 24873.88, + "end": 24875.38, + "probability": 0.998 + }, + { + "start": 24875.78, + "end": 24878.78, + "probability": 0.9293 + }, + { + "start": 24879.96, + "end": 24882.72, + "probability": 0.7555 + }, + { + "start": 24882.98, + "end": 24883.84, + "probability": 0.8184 + }, + { + "start": 24884.42, + "end": 24885.34, + "probability": 0.8412 + }, + { + "start": 24885.6, + "end": 24886.7, + "probability": 0.9629 + }, + { + "start": 24887.08, + "end": 24889.24, + "probability": 0.7596 + }, + { + "start": 24889.54, + "end": 24890.26, + "probability": 0.8264 + }, + { + "start": 24891.22, + "end": 24895.34, + "probability": 0.9727 + }, + { + "start": 24896.08, + "end": 24902.4, + "probability": 0.9856 + }, + { + "start": 24902.78, + "end": 24908.18, + "probability": 0.8597 + }, + { + "start": 24908.56, + "end": 24911.4, + "probability": 0.6661 + }, + { + "start": 24911.92, + "end": 24913.51, + "probability": 0.9641 + }, + { + "start": 24914.4, + "end": 24919.38, + "probability": 0.9922 + }, + { + "start": 24919.52, + "end": 24919.9, + "probability": 0.6755 + }, + { + "start": 24921.08, + "end": 24923.11, + "probability": 0.9097 + }, + { + "start": 24923.76, + "end": 24928.3, + "probability": 0.4544 + }, + { + "start": 24928.8, + "end": 24929.76, + "probability": 0.8399 + }, + { + "start": 24930.36, + "end": 24932.68, + "probability": 0.9976 + }, + { + "start": 24933.44, + "end": 24935.26, + "probability": 0.9912 + }, + { + "start": 24935.76, + "end": 24941.18, + "probability": 0.9834 + }, + { + "start": 24941.18, + "end": 24947.68, + "probability": 0.9979 + }, + { + "start": 24947.9, + "end": 24948.42, + "probability": 0.7349 + }, + { + "start": 24951.1, + "end": 24952.92, + "probability": 0.7916 + }, + { + "start": 24952.92, + "end": 24954.06, + "probability": 0.1087 + }, + { + "start": 24954.18, + "end": 24955.34, + "probability": 0.9065 + }, + { + "start": 24956.68, + "end": 24958.74, + "probability": 0.9719 + }, + { + "start": 24959.14, + "end": 24959.26, + "probability": 0.4653 + }, + { + "start": 24959.86, + "end": 24960.78, + "probability": 0.8617 + }, + { + "start": 24961.04, + "end": 24963.24, + "probability": 0.7104 + }, + { + "start": 24964.5, + "end": 24967.54, + "probability": 0.7315 + }, + { + "start": 24970.73, + "end": 24972.6, + "probability": 0.5845 + }, + { + "start": 24974.28, + "end": 24977.48, + "probability": 0.8786 + }, + { + "start": 24978.02, + "end": 24979.54, + "probability": 0.8243 + }, + { + "start": 24980.16, + "end": 24980.66, + "probability": 0.9659 + }, + { + "start": 24980.7, + "end": 24981.77, + "probability": 0.9943 + }, + { + "start": 24981.98, + "end": 24982.5, + "probability": 0.9633 + }, + { + "start": 24982.56, + "end": 24983.9, + "probability": 0.7126 + }, + { + "start": 24984.12, + "end": 24986.54, + "probability": 0.7045 + }, + { + "start": 24986.64, + "end": 24987.74, + "probability": 0.9915 + }, + { + "start": 24989.0, + "end": 24990.34, + "probability": 0.9556 + }, + { + "start": 24991.9, + "end": 24993.0, + "probability": 0.8579 + }, + { + "start": 24994.24, + "end": 24995.62, + "probability": 0.503 + }, + { + "start": 24996.25, + "end": 24998.2, + "probability": 0.5762 + }, + { + "start": 24998.2, + "end": 24998.66, + "probability": 0.0246 + }, + { + "start": 25001.08, + "end": 25001.18, + "probability": 0.0323 + }, + { + "start": 25001.24, + "end": 25001.24, + "probability": 0.003 + }, + { + "start": 25001.24, + "end": 25002.24, + "probability": 0.8386 + }, + { + "start": 25002.4, + "end": 25004.24, + "probability": 0.7113 + }, + { + "start": 25004.32, + "end": 25006.04, + "probability": 0.8522 + }, + { + "start": 25006.66, + "end": 25008.24, + "probability": 0.8354 + }, + { + "start": 25012.72, + "end": 25013.12, + "probability": 0.7531 + }, + { + "start": 25025.36, + "end": 25026.54, + "probability": 0.4948 + }, + { + "start": 25028.3, + "end": 25031.3, + "probability": 0.7176 + }, + { + "start": 25032.3, + "end": 25034.44, + "probability": 0.9924 + }, + { + "start": 25035.62, + "end": 25037.5, + "probability": 0.9117 + }, + { + "start": 25039.38, + "end": 25040.72, + "probability": 0.7233 + }, + { + "start": 25042.34, + "end": 25043.66, + "probability": 0.4793 + }, + { + "start": 25044.3, + "end": 25045.9, + "probability": 0.8265 + }, + { + "start": 25047.42, + "end": 25048.56, + "probability": 0.994 + }, + { + "start": 25050.92, + "end": 25054.66, + "probability": 0.6593 + }, + { + "start": 25055.98, + "end": 25060.08, + "probability": 0.9231 + }, + { + "start": 25062.63, + "end": 25068.1, + "probability": 0.9908 + }, + { + "start": 25069.28, + "end": 25070.4, + "probability": 0.788 + }, + { + "start": 25072.64, + "end": 25075.64, + "probability": 0.7965 + }, + { + "start": 25077.2, + "end": 25080.12, + "probability": 0.8752 + }, + { + "start": 25082.2, + "end": 25088.7, + "probability": 0.843 + }, + { + "start": 25089.8, + "end": 25093.44, + "probability": 0.9597 + }, + { + "start": 25094.5, + "end": 25097.32, + "probability": 0.8275 + }, + { + "start": 25099.04, + "end": 25103.62, + "probability": 0.9717 + }, + { + "start": 25104.64, + "end": 25109.56, + "probability": 0.6759 + }, + { + "start": 25111.04, + "end": 25112.04, + "probability": 0.7688 + }, + { + "start": 25113.58, + "end": 25117.1, + "probability": 0.8584 + }, + { + "start": 25118.02, + "end": 25119.98, + "probability": 0.4136 + }, + { + "start": 25121.36, + "end": 25123.16, + "probability": 0.8482 + }, + { + "start": 25124.08, + "end": 25125.74, + "probability": 0.9528 + }, + { + "start": 25126.38, + "end": 25128.2, + "probability": 0.9277 + }, + { + "start": 25130.92, + "end": 25136.52, + "probability": 0.893 + }, + { + "start": 25137.36, + "end": 25138.38, + "probability": 0.5118 + }, + { + "start": 25139.62, + "end": 25143.86, + "probability": 0.9849 + }, + { + "start": 25146.26, + "end": 25151.53, + "probability": 0.9322 + }, + { + "start": 25153.16, + "end": 25155.56, + "probability": 0.9386 + }, + { + "start": 25156.96, + "end": 25158.42, + "probability": 0.8341 + }, + { + "start": 25160.0, + "end": 25163.12, + "probability": 0.9755 + }, + { + "start": 25164.52, + "end": 25170.58, + "probability": 0.9341 + }, + { + "start": 25171.56, + "end": 25174.22, + "probability": 0.9491 + }, + { + "start": 25175.0, + "end": 25176.82, + "probability": 0.7793 + }, + { + "start": 25178.56, + "end": 25182.32, + "probability": 0.9908 + }, + { + "start": 25183.04, + "end": 25184.14, + "probability": 0.9561 + }, + { + "start": 25186.86, + "end": 25187.8, + "probability": 0.51 + }, + { + "start": 25188.74, + "end": 25194.14, + "probability": 0.9971 + }, + { + "start": 25195.56, + "end": 25198.52, + "probability": 0.9808 + }, + { + "start": 25200.1, + "end": 25201.04, + "probability": 0.998 + }, + { + "start": 25202.44, + "end": 25206.78, + "probability": 0.8984 + }, + { + "start": 25209.34, + "end": 25211.24, + "probability": 0.9998 + }, + { + "start": 25212.4, + "end": 25221.62, + "probability": 0.9575 + }, + { + "start": 25223.26, + "end": 25225.24, + "probability": 0.822 + }, + { + "start": 25225.82, + "end": 25227.28, + "probability": 0.8437 + }, + { + "start": 25227.92, + "end": 25229.54, + "probability": 0.7458 + }, + { + "start": 25231.32, + "end": 25234.76, + "probability": 0.8672 + }, + { + "start": 25236.08, + "end": 25238.28, + "probability": 0.9976 + }, + { + "start": 25239.68, + "end": 25239.92, + "probability": 0.9709 + }, + { + "start": 25242.84, + "end": 25244.26, + "probability": 0.9951 + }, + { + "start": 25245.74, + "end": 25247.94, + "probability": 0.748 + }, + { + "start": 25249.1, + "end": 25249.96, + "probability": 0.6624 + }, + { + "start": 25251.22, + "end": 25254.76, + "probability": 0.9854 + }, + { + "start": 25256.08, + "end": 25257.98, + "probability": 0.9859 + }, + { + "start": 25259.12, + "end": 25263.19, + "probability": 0.989 + }, + { + "start": 25264.66, + "end": 25267.26, + "probability": 0.9833 + }, + { + "start": 25268.68, + "end": 25272.64, + "probability": 0.9949 + }, + { + "start": 25272.8, + "end": 25273.36, + "probability": 0.7385 + }, + { + "start": 25274.8, + "end": 25275.36, + "probability": 0.8251 + }, + { + "start": 25276.14, + "end": 25277.56, + "probability": 0.604 + }, + { + "start": 25282.14, + "end": 25284.16, + "probability": 0.6263 + }, + { + "start": 25286.32, + "end": 25290.66, + "probability": 0.2144 + }, + { + "start": 25302.36, + "end": 25306.42, + "probability": 0.579 + }, + { + "start": 25308.65, + "end": 25311.6, + "probability": 0.9348 + }, + { + "start": 25312.58, + "end": 25313.78, + "probability": 0.931 + }, + { + "start": 25314.5, + "end": 25315.65, + "probability": 0.7761 + }, + { + "start": 25316.8, + "end": 25319.2, + "probability": 0.9951 + }, + { + "start": 25320.64, + "end": 25324.58, + "probability": 0.5037 + }, + { + "start": 25325.9, + "end": 25327.76, + "probability": 0.9909 + }, + { + "start": 25328.04, + "end": 25329.06, + "probability": 0.9844 + }, + { + "start": 25330.0, + "end": 25331.72, + "probability": 0.4566 + }, + { + "start": 25331.82, + "end": 25334.54, + "probability": 0.8288 + }, + { + "start": 25335.66, + "end": 25337.94, + "probability": 0.9479 + }, + { + "start": 25338.26, + "end": 25340.88, + "probability": 0.9319 + }, + { + "start": 25342.2, + "end": 25345.92, + "probability": 0.9419 + }, + { + "start": 25349.56, + "end": 25352.02, + "probability": 0.7583 + }, + { + "start": 25353.04, + "end": 25353.98, + "probability": 0.9718 + }, + { + "start": 25354.26, + "end": 25357.8, + "probability": 0.98 + }, + { + "start": 25358.9, + "end": 25361.62, + "probability": 0.9558 + }, + { + "start": 25362.4, + "end": 25364.38, + "probability": 0.8662 + }, + { + "start": 25365.14, + "end": 25366.04, + "probability": 0.4944 + }, + { + "start": 25366.76, + "end": 25368.14, + "probability": 0.9978 + }, + { + "start": 25368.82, + "end": 25370.0, + "probability": 0.945 + }, + { + "start": 25371.08, + "end": 25372.42, + "probability": 0.9772 + }, + { + "start": 25374.2, + "end": 25376.12, + "probability": 0.8785 + }, + { + "start": 25376.88, + "end": 25377.8, + "probability": 0.9522 + }, + { + "start": 25379.02, + "end": 25379.63, + "probability": 0.9062 + }, + { + "start": 25380.2, + "end": 25381.8, + "probability": 0.9762 + }, + { + "start": 25384.72, + "end": 25385.62, + "probability": 0.9912 + }, + { + "start": 25386.38, + "end": 25388.56, + "probability": 0.9016 + }, + { + "start": 25389.26, + "end": 25390.34, + "probability": 0.9672 + }, + { + "start": 25393.96, + "end": 25395.04, + "probability": 0.8802 + }, + { + "start": 25396.54, + "end": 25398.58, + "probability": 0.9901 + }, + { + "start": 25399.52, + "end": 25401.82, + "probability": 0.9458 + }, + { + "start": 25402.16, + "end": 25403.7, + "probability": 0.9546 + }, + { + "start": 25404.44, + "end": 25405.66, + "probability": 0.8984 + }, + { + "start": 25407.18, + "end": 25408.56, + "probability": 0.9778 + }, + { + "start": 25410.04, + "end": 25413.2, + "probability": 0.9939 + }, + { + "start": 25414.5, + "end": 25415.42, + "probability": 0.7754 + }, + { + "start": 25416.0, + "end": 25418.08, + "probability": 0.6584 + }, + { + "start": 25420.6, + "end": 25423.44, + "probability": 0.9929 + }, + { + "start": 25424.86, + "end": 25427.78, + "probability": 0.9229 + }, + { + "start": 25428.6, + "end": 25431.92, + "probability": 0.9689 + }, + { + "start": 25432.52, + "end": 25434.98, + "probability": 0.8112 + }, + { + "start": 25435.14, + "end": 25435.82, + "probability": 0.8297 + }, + { + "start": 25436.78, + "end": 25436.78, + "probability": 0.3881 + }, + { + "start": 25436.78, + "end": 25438.52, + "probability": 0.7171 + }, + { + "start": 25438.7, + "end": 25440.8, + "probability": 0.8235 + }, + { + "start": 25441.12, + "end": 25442.06, + "probability": 0.6203 + }, + { + "start": 25442.22, + "end": 25445.72, + "probability": 0.1159 + }, + { + "start": 25446.26, + "end": 25446.28, + "probability": 0.0071 + }, + { + "start": 25446.28, + "end": 25446.28, + "probability": 0.0687 + }, + { + "start": 25446.28, + "end": 25447.28, + "probability": 0.5376 + }, + { + "start": 25447.34, + "end": 25449.43, + "probability": 0.8801 + }, + { + "start": 25449.88, + "end": 25453.32, + "probability": 0.3025 + }, + { + "start": 25453.56, + "end": 25455.9, + "probability": 0.7271 + }, + { + "start": 25456.52, + "end": 25459.56, + "probability": 0.9615 + }, + { + "start": 25460.1, + "end": 25461.22, + "probability": 0.9849 + }, + { + "start": 25462.26, + "end": 25467.14, + "probability": 0.9864 + }, + { + "start": 25467.34, + "end": 25467.8, + "probability": 0.7538 + }, + { + "start": 25469.18, + "end": 25470.12, + "probability": 0.6013 + }, + { + "start": 25471.22, + "end": 25473.04, + "probability": 0.3104 + }, + { + "start": 25473.14, + "end": 25475.08, + "probability": 0.8273 + }, + { + "start": 25476.98, + "end": 25479.46, + "probability": 0.9746 + }, + { + "start": 25480.14, + "end": 25481.1, + "probability": 0.9459 + }, + { + "start": 25481.14, + "end": 25481.92, + "probability": 0.9654 + }, + { + "start": 25481.94, + "end": 25482.68, + "probability": 0.7346 + }, + { + "start": 25482.68, + "end": 25482.9, + "probability": 0.8249 + }, + { + "start": 25482.9, + "end": 25483.42, + "probability": 0.5751 + }, + { + "start": 25485.94, + "end": 25487.02, + "probability": 0.9224 + }, + { + "start": 25491.6, + "end": 25491.88, + "probability": 0.7034 + }, + { + "start": 25492.02, + "end": 25493.46, + "probability": 0.1026 + }, + { + "start": 25493.6, + "end": 25495.24, + "probability": 0.7476 + }, + { + "start": 25498.82, + "end": 25500.02, + "probability": 0.3562 + }, + { + "start": 25500.84, + "end": 25502.8, + "probability": 0.7195 + }, + { + "start": 25504.18, + "end": 25504.8, + "probability": 0.6324 + }, + { + "start": 25505.24, + "end": 25506.77, + "probability": 0.7022 + }, + { + "start": 25506.86, + "end": 25507.26, + "probability": 0.9088 + }, + { + "start": 25507.34, + "end": 25508.24, + "probability": 0.9757 + }, + { + "start": 25508.34, + "end": 25508.84, + "probability": 0.8911 + }, + { + "start": 25509.42, + "end": 25510.8, + "probability": 0.8495 + }, + { + "start": 25510.86, + "end": 25511.32, + "probability": 0.9133 + }, + { + "start": 25511.46, + "end": 25513.4, + "probability": 0.6738 + }, + { + "start": 25513.5, + "end": 25514.06, + "probability": 0.6326 + }, + { + "start": 25514.74, + "end": 25517.12, + "probability": 0.9645 + }, + { + "start": 25517.66, + "end": 25518.66, + "probability": 0.7308 + }, + { + "start": 25518.8, + "end": 25519.32, + "probability": 0.7273 + }, + { + "start": 25519.78, + "end": 25521.12, + "probability": 0.8582 + }, + { + "start": 25521.2, + "end": 25521.66, + "probability": 0.4099 + }, + { + "start": 25521.74, + "end": 25522.94, + "probability": 0.5896 + }, + { + "start": 25522.96, + "end": 25523.5, + "probability": 0.8933 + }, + { + "start": 25523.56, + "end": 25524.6, + "probability": 0.8318 + }, + { + "start": 25525.08, + "end": 25525.64, + "probability": 0.7467 + }, + { + "start": 25526.44, + "end": 25528.76, + "probability": 0.8857 + }, + { + "start": 25529.86, + "end": 25530.8, + "probability": 0.9864 + }, + { + "start": 25532.2, + "end": 25532.86, + "probability": 0.5008 + }, + { + "start": 25533.64, + "end": 25534.95, + "probability": 0.6858 + }, + { + "start": 25535.92, + "end": 25536.56, + "probability": 0.6081 + }, + { + "start": 25537.1, + "end": 25538.36, + "probability": 0.8793 + }, + { + "start": 25539.52, + "end": 25540.42, + "probability": 0.792 + }, + { + "start": 25542.04, + "end": 25543.4, + "probability": 0.3542 + }, + { + "start": 25543.76, + "end": 25544.4, + "probability": 0.5076 + }, + { + "start": 25544.4, + "end": 25546.66, + "probability": 0.5455 + }, + { + "start": 25548.34, + "end": 25549.48, + "probability": 0.0014 + }, + { + "start": 25550.48, + "end": 25550.7, + "probability": 0.0006 + }, + { + "start": 25561.84, + "end": 25562.6, + "probability": 0.0978 + }, + { + "start": 25563.7, + "end": 25565.54, + "probability": 0.5991 + }, + { + "start": 25565.76, + "end": 25567.92, + "probability": 0.9898 + }, + { + "start": 25568.0, + "end": 25569.68, + "probability": 0.9535 + }, + { + "start": 25573.48, + "end": 25575.54, + "probability": 0.4391 + }, + { + "start": 25586.62, + "end": 25587.1, + "probability": 0.2786 + }, + { + "start": 25587.1, + "end": 25589.16, + "probability": 0.8034 + }, + { + "start": 25589.66, + "end": 25593.87, + "probability": 0.8036 + }, + { + "start": 25594.08, + "end": 25595.46, + "probability": 0.8031 + }, + { + "start": 25596.1, + "end": 25598.28, + "probability": 0.9337 + }, + { + "start": 25600.42, + "end": 25600.42, + "probability": 0.1749 + }, + { + "start": 25600.42, + "end": 25604.62, + "probability": 0.8916 + }, + { + "start": 25608.68, + "end": 25610.58, + "probability": 0.5756 + }, + { + "start": 25610.64, + "end": 25611.58, + "probability": 0.6977 + }, + { + "start": 25611.8, + "end": 25612.46, + "probability": 0.6802 + }, + { + "start": 25612.54, + "end": 25613.68, + "probability": 0.939 + }, + { + "start": 25614.26, + "end": 25614.5, + "probability": 0.5648 + }, + { + "start": 25614.56, + "end": 25618.32, + "probability": 0.8981 + }, + { + "start": 25618.4, + "end": 25619.24, + "probability": 0.8271 + }, + { + "start": 25619.3, + "end": 25619.8, + "probability": 0.9316 + }, + { + "start": 25620.32, + "end": 25621.49, + "probability": 0.739 + }, + { + "start": 25621.66, + "end": 25624.04, + "probability": 0.7105 + }, + { + "start": 25624.48, + "end": 25626.62, + "probability": 0.9624 + }, + { + "start": 25629.82, + "end": 25630.78, + "probability": 0.1543 + }, + { + "start": 25631.72, + "end": 25633.24, + "probability": 0.6331 + }, + { + "start": 25633.88, + "end": 25634.48, + "probability": 0.9941 + }, + { + "start": 25635.28, + "end": 25637.28, + "probability": 0.9895 + }, + { + "start": 25637.74, + "end": 25638.6, + "probability": 0.9404 + }, + { + "start": 25639.04, + "end": 25641.36, + "probability": 0.9791 + }, + { + "start": 25641.52, + "end": 25643.58, + "probability": 0.9932 + }, + { + "start": 25644.0, + "end": 25645.1, + "probability": 0.824 + }, + { + "start": 25645.46, + "end": 25648.68, + "probability": 0.9838 + }, + { + "start": 25649.46, + "end": 25653.7, + "probability": 0.5293 + }, + { + "start": 25653.78, + "end": 25655.4, + "probability": 0.8612 + }, + { + "start": 25656.08, + "end": 25656.62, + "probability": 0.6874 + }, + { + "start": 25656.74, + "end": 25658.05, + "probability": 0.9873 + }, + { + "start": 25658.32, + "end": 25658.8, + "probability": 0.6792 + }, + { + "start": 25658.86, + "end": 25659.6, + "probability": 0.9329 + }, + { + "start": 25660.62, + "end": 25662.26, + "probability": 0.5207 + }, + { + "start": 25662.5, + "end": 25663.64, + "probability": 0.7372 + }, + { + "start": 25663.68, + "end": 25665.84, + "probability": 0.877 + }, + { + "start": 25665.92, + "end": 25667.26, + "probability": 0.8258 + }, + { + "start": 25667.32, + "end": 25668.82, + "probability": 0.9066 + }, + { + "start": 25668.88, + "end": 25670.86, + "probability": 0.8611 + }, + { + "start": 25670.86, + "end": 25671.52, + "probability": 0.4494 + }, + { + "start": 25671.98, + "end": 25672.8, + "probability": 0.7395 + }, + { + "start": 25672.86, + "end": 25675.98, + "probability": 0.9852 + }, + { + "start": 25676.02, + "end": 25677.04, + "probability": 0.3978 + }, + { + "start": 25677.46, + "end": 25680.52, + "probability": 0.8168 + }, + { + "start": 25681.08, + "end": 25682.96, + "probability": 0.0955 + }, + { + "start": 25683.06, + "end": 25683.83, + "probability": 0.072 + }, + { + "start": 25686.0, + "end": 25687.06, + "probability": 0.3985 + }, + { + "start": 25687.54, + "end": 25689.24, + "probability": 0.664 + }, + { + "start": 25689.36, + "end": 25691.02, + "probability": 0.9348 + }, + { + "start": 25691.1, + "end": 25694.34, + "probability": 0.9932 + }, + { + "start": 25694.62, + "end": 25696.06, + "probability": 0.9244 + }, + { + "start": 25698.46, + "end": 25699.3, + "probability": 0.9227 + }, + { + "start": 25699.58, + "end": 25700.36, + "probability": 0.8753 + }, + { + "start": 25700.54, + "end": 25701.12, + "probability": 0.3863 + }, + { + "start": 25701.26, + "end": 25701.96, + "probability": 0.9112 + }, + { + "start": 25702.1, + "end": 25704.56, + "probability": 0.9756 + }, + { + "start": 25704.96, + "end": 25707.44, + "probability": 0.2649 + }, + { + "start": 25707.46, + "end": 25707.9, + "probability": 0.9801 + }, + { + "start": 25708.3, + "end": 25708.7, + "probability": 0.8132 + }, + { + "start": 25708.94, + "end": 25709.72, + "probability": 0.984 + }, + { + "start": 25713.25, + "end": 25716.0, + "probability": 0.8412 + }, + { + "start": 25716.14, + "end": 25716.64, + "probability": 0.3987 + }, + { + "start": 25716.76, + "end": 25718.08, + "probability": 0.8381 + }, + { + "start": 25718.18, + "end": 25719.56, + "probability": 0.5833 + }, + { + "start": 25719.68, + "end": 25721.54, + "probability": 0.9634 + }, + { + "start": 25721.66, + "end": 25722.38, + "probability": 0.7391 + }, + { + "start": 25722.42, + "end": 25723.38, + "probability": 0.8316 + }, + { + "start": 25723.58, + "end": 25727.56, + "probability": 0.8299 + }, + { + "start": 25727.72, + "end": 25728.64, + "probability": 0.7638 + }, + { + "start": 25730.28, + "end": 25730.9, + "probability": 0.7291 + }, + { + "start": 25730.96, + "end": 25732.54, + "probability": 0.8801 + }, + { + "start": 25732.6, + "end": 25736.18, + "probability": 0.9785 + }, + { + "start": 25736.18, + "end": 25737.36, + "probability": 0.6869 + }, + { + "start": 25738.8, + "end": 25740.0, + "probability": 0.8008 + }, + { + "start": 25740.2, + "end": 25743.0, + "probability": 0.9688 + }, + { + "start": 25744.86, + "end": 25746.44, + "probability": 0.7998 + }, + { + "start": 25746.5, + "end": 25747.54, + "probability": 0.9721 + }, + { + "start": 25747.92, + "end": 25748.5, + "probability": 0.9484 + }, + { + "start": 25758.76, + "end": 25762.5, + "probability": 0.9922 + }, + { + "start": 25763.0, + "end": 25763.36, + "probability": 0.5678 + }, + { + "start": 25763.48, + "end": 25763.7, + "probability": 0.7301 + }, + { + "start": 25764.98, + "end": 25766.3, + "probability": 0.8542 + }, + { + "start": 25767.28, + "end": 25768.22, + "probability": 0.8225 + }, + { + "start": 25768.56, + "end": 25773.98, + "probability": 0.9199 + }, + { + "start": 25774.7, + "end": 25776.72, + "probability": 0.5173 + }, + { + "start": 25776.9, + "end": 25778.4, + "probability": 0.8648 + }, + { + "start": 25778.58, + "end": 25779.84, + "probability": 0.9983 + }, + { + "start": 25780.62, + "end": 25784.66, + "probability": 0.9698 + }, + { + "start": 25784.84, + "end": 25787.12, + "probability": 0.535 + }, + { + "start": 25787.78, + "end": 25789.94, + "probability": 0.9689 + }, + { + "start": 25791.36, + "end": 25792.1, + "probability": 0.7627 + }, + { + "start": 25792.64, + "end": 25793.64, + "probability": 0.7901 + }, + { + "start": 25794.26, + "end": 25800.22, + "probability": 0.9827 + }, + { + "start": 25800.78, + "end": 25803.82, + "probability": 0.9635 + }, + { + "start": 25804.78, + "end": 25808.82, + "probability": 0.9958 + }, + { + "start": 25809.42, + "end": 25811.52, + "probability": 0.9861 + }, + { + "start": 25812.04, + "end": 25814.82, + "probability": 0.8773 + }, + { + "start": 25815.42, + "end": 25819.66, + "probability": 0.9902 + }, + { + "start": 25820.38, + "end": 25821.08, + "probability": 0.9726 + }, + { + "start": 25821.64, + "end": 25828.18, + "probability": 0.9983 + }, + { + "start": 25828.94, + "end": 25830.98, + "probability": 0.9455 + }, + { + "start": 25831.58, + "end": 25835.22, + "probability": 0.8951 + }, + { + "start": 25836.1, + "end": 25839.62, + "probability": 0.9976 + }, + { + "start": 25839.62, + "end": 25844.5, + "probability": 0.997 + }, + { + "start": 25845.26, + "end": 25849.02, + "probability": 0.9972 + }, + { + "start": 25849.78, + "end": 25850.22, + "probability": 0.2779 + }, + { + "start": 25850.32, + "end": 25855.08, + "probability": 0.9215 + }, + { + "start": 25855.08, + "end": 25861.2, + "probability": 0.9938 + }, + { + "start": 25861.58, + "end": 25865.66, + "probability": 0.9465 + }, + { + "start": 25865.66, + "end": 25868.78, + "probability": 0.9958 + }, + { + "start": 25869.32, + "end": 25870.74, + "probability": 0.9833 + }, + { + "start": 25871.1, + "end": 25872.38, + "probability": 0.9898 + }, + { + "start": 25872.66, + "end": 25874.46, + "probability": 0.9915 + }, + { + "start": 25875.0, + "end": 25877.92, + "probability": 0.996 + }, + { + "start": 25877.92, + "end": 25882.46, + "probability": 0.9752 + }, + { + "start": 25882.92, + "end": 25886.26, + "probability": 0.9706 + }, + { + "start": 25886.26, + "end": 25890.1, + "probability": 0.998 + }, + { + "start": 25890.8, + "end": 25891.58, + "probability": 0.8928 + }, + { + "start": 25892.16, + "end": 25893.38, + "probability": 0.8535 + }, + { + "start": 25893.58, + "end": 25896.62, + "probability": 0.7729 + }, + { + "start": 25897.7, + "end": 25899.2, + "probability": 0.9453 + }, + { + "start": 25899.3, + "end": 25900.18, + "probability": 0.7539 + }, + { + "start": 25900.64, + "end": 25904.2, + "probability": 0.984 + }, + { + "start": 25904.2, + "end": 25909.24, + "probability": 0.9467 + }, + { + "start": 25911.34, + "end": 25913.98, + "probability": 0.5653 + }, + { + "start": 25914.52, + "end": 25919.15, + "probability": 0.9885 + }, + { + "start": 25919.32, + "end": 25925.56, + "probability": 0.9844 + }, + { + "start": 25926.02, + "end": 25926.44, + "probability": 0.499 + }, + { + "start": 25927.12, + "end": 25930.46, + "probability": 0.9357 + }, + { + "start": 25931.14, + "end": 25934.66, + "probability": 0.9741 + }, + { + "start": 25934.66, + "end": 25939.32, + "probability": 0.9886 + }, + { + "start": 25939.86, + "end": 25940.34, + "probability": 0.526 + }, + { + "start": 25940.5, + "end": 25941.52, + "probability": 0.6523 + }, + { + "start": 25942.0, + "end": 25946.6, + "probability": 0.9927 + }, + { + "start": 25947.06, + "end": 25948.62, + "probability": 0.9863 + }, + { + "start": 25949.28, + "end": 25952.52, + "probability": 0.873 + }, + { + "start": 25953.28, + "end": 25955.66, + "probability": 0.7181 + }, + { + "start": 25956.46, + "end": 25959.3, + "probability": 0.7064 + }, + { + "start": 25959.7, + "end": 25963.26, + "probability": 0.9964 + }, + { + "start": 25963.26, + "end": 25965.92, + "probability": 0.9992 + }, + { + "start": 25966.48, + "end": 25969.66, + "probability": 0.9978 + }, + { + "start": 25970.42, + "end": 25970.88, + "probability": 0.7617 + }, + { + "start": 25970.98, + "end": 25975.62, + "probability": 0.9984 + }, + { + "start": 25976.38, + "end": 25976.88, + "probability": 0.4554 + }, + { + "start": 25978.2, + "end": 25982.24, + "probability": 0.9603 + }, + { + "start": 25982.24, + "end": 25985.02, + "probability": 0.9927 + }, + { + "start": 25985.56, + "end": 25986.1, + "probability": 0.7498 + }, + { + "start": 25986.76, + "end": 25989.3, + "probability": 0.9868 + }, + { + "start": 25990.18, + "end": 25990.98, + "probability": 0.4834 + }, + { + "start": 25991.1, + "end": 25995.62, + "probability": 0.9947 + }, + { + "start": 25995.62, + "end": 26001.18, + "probability": 0.9982 + }, + { + "start": 26001.8, + "end": 26002.68, + "probability": 0.884 + }, + { + "start": 26003.4, + "end": 26008.92, + "probability": 0.9915 + }, + { + "start": 26009.46, + "end": 26010.86, + "probability": 0.9805 + }, + { + "start": 26012.1, + "end": 26013.56, + "probability": 0.9446 + }, + { + "start": 26014.22, + "end": 26014.54, + "probability": 0.0918 + }, + { + "start": 26015.1, + "end": 26018.74, + "probability": 0.9271 + }, + { + "start": 26019.32, + "end": 26019.84, + "probability": 0.724 + }, + { + "start": 26020.34, + "end": 26023.12, + "probability": 0.6373 + }, + { + "start": 26023.9, + "end": 26026.18, + "probability": 0.7839 + }, + { + "start": 26026.6, + "end": 26027.6, + "probability": 0.8653 + }, + { + "start": 26027.96, + "end": 26028.68, + "probability": 0.9175 + }, + { + "start": 26029.64, + "end": 26030.2, + "probability": 0.7071 + }, + { + "start": 26030.24, + "end": 26035.56, + "probability": 0.9625 + }, + { + "start": 26035.56, + "end": 26041.04, + "probability": 0.9856 + }, + { + "start": 26041.62, + "end": 26044.98, + "probability": 0.9907 + }, + { + "start": 26045.44, + "end": 26047.86, + "probability": 0.9961 + }, + { + "start": 26047.86, + "end": 26051.76, + "probability": 0.9744 + }, + { + "start": 26053.02, + "end": 26053.58, + "probability": 0.8059 + }, + { + "start": 26054.26, + "end": 26057.88, + "probability": 0.954 + }, + { + "start": 26057.88, + "end": 26061.7, + "probability": 0.9957 + }, + { + "start": 26062.28, + "end": 26066.14, + "probability": 0.8502 + }, + { + "start": 26066.14, + "end": 26072.3, + "probability": 0.9726 + }, + { + "start": 26073.1, + "end": 26078.0, + "probability": 0.9877 + }, + { + "start": 26078.0, + "end": 26082.78, + "probability": 0.993 + }, + { + "start": 26083.54, + "end": 26084.86, + "probability": 0.8894 + }, + { + "start": 26085.4, + "end": 26090.74, + "probability": 0.9979 + }, + { + "start": 26091.38, + "end": 26095.34, + "probability": 0.8585 + }, + { + "start": 26095.96, + "end": 26097.7, + "probability": 0.644 + }, + { + "start": 26098.68, + "end": 26100.52, + "probability": 0.9968 + }, + { + "start": 26101.98, + "end": 26102.54, + "probability": 0.5149 + }, + { + "start": 26102.72, + "end": 26106.06, + "probability": 0.9974 + }, + { + "start": 26106.06, + "end": 26111.72, + "probability": 0.9994 + }, + { + "start": 26112.12, + "end": 26113.78, + "probability": 0.8376 + }, + { + "start": 26114.42, + "end": 26117.98, + "probability": 0.9984 + }, + { + "start": 26117.98, + "end": 26120.78, + "probability": 0.9967 + }, + { + "start": 26121.88, + "end": 26122.38, + "probability": 0.677 + }, + { + "start": 26122.5, + "end": 26126.5, + "probability": 0.5776 + }, + { + "start": 26127.14, + "end": 26129.48, + "probability": 0.748 + }, + { + "start": 26131.19, + "end": 26133.76, + "probability": 0.9402 + }, + { + "start": 26134.52, + "end": 26135.78, + "probability": 0.4964 + }, + { + "start": 26137.86, + "end": 26139.66, + "probability": 0.6987 + }, + { + "start": 26139.78, + "end": 26140.56, + "probability": 0.6689 + }, + { + "start": 26144.78, + "end": 26146.52, + "probability": 0.5189 + }, + { + "start": 26147.28, + "end": 26148.52, + "probability": 0.978 + }, + { + "start": 26153.92, + "end": 26157.5, + "probability": 0.7576 + }, + { + "start": 26158.4, + "end": 26158.82, + "probability": 0.8062 + }, + { + "start": 26167.14, + "end": 26172.96, + "probability": 0.004 + }, + { + "start": 26172.96, + "end": 26174.96, + "probability": 0.4256 + }, + { + "start": 26175.72, + "end": 26178.14, + "probability": 0.9851 + }, + { + "start": 26178.28, + "end": 26179.34, + "probability": 0.9064 + }, + { + "start": 26180.36, + "end": 26181.94, + "probability": 0.8164 + }, + { + "start": 26184.92, + "end": 26186.56, + "probability": 0.0181 + }, + { + "start": 26188.54, + "end": 26190.19, + "probability": 0.0214 + }, + { + "start": 26194.68, + "end": 26195.3, + "probability": 0.1224 + }, + { + "start": 26195.3, + "end": 26197.02, + "probability": 0.5629 + }, + { + "start": 26197.16, + "end": 26198.8, + "probability": 0.9702 + }, + { + "start": 26198.8, + "end": 26200.78, + "probability": 0.8931 + }, + { + "start": 26200.86, + "end": 26201.82, + "probability": 0.4949 + }, + { + "start": 26202.6, + "end": 26204.56, + "probability": 0.9447 + }, + { + "start": 26204.64, + "end": 26206.8, + "probability": 0.9854 + }, + { + "start": 26207.78, + "end": 26207.9, + "probability": 0.6127 + }, + { + "start": 26208.9, + "end": 26209.24, + "probability": 0.3042 + }, + { + "start": 26213.28, + "end": 26213.82, + "probability": 0.3012 + }, + { + "start": 26214.84, + "end": 26215.44, + "probability": 0.4972 + }, + { + "start": 26219.12, + "end": 26219.64, + "probability": 0.5147 + }, + { + "start": 26227.76, + "end": 26228.7, + "probability": 0.7919 + }, + { + "start": 26229.6, + "end": 26234.0, + "probability": 0.3811 + }, + { + "start": 26234.12, + "end": 26236.52, + "probability": 0.7887 + }, + { + "start": 26236.76, + "end": 26237.28, + "probability": 0.0981 + }, + { + "start": 26237.46, + "end": 26238.78, + "probability": 0.888 + }, + { + "start": 26239.62, + "end": 26240.0, + "probability": 0.0525 + }, + { + "start": 26240.24, + "end": 26241.48, + "probability": 0.9451 + }, + { + "start": 26241.54, + "end": 26242.69, + "probability": 0.9468 + }, + { + "start": 26245.5, + "end": 26246.98, + "probability": 0.8478 + }, + { + "start": 26250.8, + "end": 26251.74, + "probability": 0.809 + }, + { + "start": 26252.22, + "end": 26255.12, + "probability": 0.6402 + }, + { + "start": 26255.3, + "end": 26256.56, + "probability": 0.7555 + }, + { + "start": 26256.76, + "end": 26260.74, + "probability": 0.9819 + }, + { + "start": 26260.76, + "end": 26261.46, + "probability": 0.4893 + }, + { + "start": 26262.06, + "end": 26266.54, + "probability": 0.796 + }, + { + "start": 26266.7, + "end": 26268.62, + "probability": 0.7548 + }, + { + "start": 26269.18, + "end": 26272.32, + "probability": 0.988 + }, + { + "start": 26272.32, + "end": 26276.68, + "probability": 0.8981 + }, + { + "start": 26276.88, + "end": 26277.26, + "probability": 0.4253 + }, + { + "start": 26277.3, + "end": 26278.38, + "probability": 0.9657 + }, + { + "start": 26279.24, + "end": 26283.58, + "probability": 0.9292 + }, + { + "start": 26283.7, + "end": 26285.34, + "probability": 0.9717 + }, + { + "start": 26286.12, + "end": 26286.2, + "probability": 0.1166 + }, + { + "start": 26286.2, + "end": 26288.8, + "probability": 0.9642 + }, + { + "start": 26289.26, + "end": 26289.8, + "probability": 0.5181 + }, + { + "start": 26289.9, + "end": 26293.38, + "probability": 0.8615 + }, + { + "start": 26293.54, + "end": 26295.22, + "probability": 0.966 + }, + { + "start": 26295.82, + "end": 26297.5, + "probability": 0.9987 + }, + { + "start": 26297.64, + "end": 26300.78, + "probability": 0.9877 + }, + { + "start": 26301.24, + "end": 26305.64, + "probability": 0.9876 + }, + { + "start": 26305.64, + "end": 26310.1, + "probability": 0.9992 + }, + { + "start": 26310.6, + "end": 26312.22, + "probability": 0.9888 + }, + { + "start": 26313.04, + "end": 26316.96, + "probability": 0.9924 + }, + { + "start": 26317.32, + "end": 26318.3, + "probability": 0.865 + }, + { + "start": 26318.42, + "end": 26319.96, + "probability": 0.8942 + }, + { + "start": 26320.14, + "end": 26324.28, + "probability": 0.9932 + }, + { + "start": 26325.24, + "end": 26328.78, + "probability": 0.8169 + }, + { + "start": 26329.26, + "end": 26332.62, + "probability": 0.831 + }, + { + "start": 26333.4, + "end": 26337.98, + "probability": 0.99 + }, + { + "start": 26337.98, + "end": 26344.31, + "probability": 0.9927 + }, + { + "start": 26344.64, + "end": 26346.7, + "probability": 0.995 + }, + { + "start": 26346.7, + "end": 26349.58, + "probability": 0.9528 + }, + { + "start": 26349.7, + "end": 26353.6, + "probability": 0.853 + }, + { + "start": 26354.18, + "end": 26354.48, + "probability": 0.4978 + }, + { + "start": 26354.66, + "end": 26360.4, + "probability": 0.9473 + }, + { + "start": 26360.88, + "end": 26362.56, + "probability": 0.9038 + }, + { + "start": 26363.06, + "end": 26364.32, + "probability": 0.9739 + }, + { + "start": 26364.4, + "end": 26365.0, + "probability": 0.8444 + }, + { + "start": 26365.1, + "end": 26366.5, + "probability": 0.8028 + }, + { + "start": 26366.82, + "end": 26372.1, + "probability": 0.9198 + }, + { + "start": 26372.6, + "end": 26376.0, + "probability": 0.9048 + }, + { + "start": 26376.06, + "end": 26379.98, + "probability": 0.9865 + }, + { + "start": 26380.26, + "end": 26382.66, + "probability": 0.8035 + }, + { + "start": 26383.22, + "end": 26388.66, + "probability": 0.9382 + }, + { + "start": 26388.88, + "end": 26390.96, + "probability": 0.8915 + }, + { + "start": 26391.56, + "end": 26394.16, + "probability": 0.9766 + }, + { + "start": 26394.5, + "end": 26399.64, + "probability": 0.9912 + }, + { + "start": 26400.14, + "end": 26402.92, + "probability": 0.9912 + }, + { + "start": 26403.02, + "end": 26403.94, + "probability": 0.5512 + }, + { + "start": 26404.38, + "end": 26405.52, + "probability": 0.8948 + }, + { + "start": 26405.54, + "end": 26406.08, + "probability": 0.8012 + }, + { + "start": 26406.84, + "end": 26408.89, + "probability": 0.9824 + }, + { + "start": 26409.52, + "end": 26410.56, + "probability": 0.993 + }, + { + "start": 26411.12, + "end": 26411.82, + "probability": 0.9394 + }, + { + "start": 26411.94, + "end": 26418.38, + "probability": 0.9891 + }, + { + "start": 26418.88, + "end": 26421.82, + "probability": 0.9418 + }, + { + "start": 26421.82, + "end": 26426.62, + "probability": 0.9992 + }, + { + "start": 26427.16, + "end": 26428.08, + "probability": 0.5405 + }, + { + "start": 26428.38, + "end": 26428.6, + "probability": 0.5302 + }, + { + "start": 26428.64, + "end": 26435.72, + "probability": 0.9906 + }, + { + "start": 26436.76, + "end": 26440.54, + "probability": 0.8796 + }, + { + "start": 26441.12, + "end": 26445.04, + "probability": 0.9852 + }, + { + "start": 26445.52, + "end": 26446.92, + "probability": 0.9657 + }, + { + "start": 26446.96, + "end": 26449.54, + "probability": 0.9922 + }, + { + "start": 26449.98, + "end": 26451.86, + "probability": 0.7755 + }, + { + "start": 26451.94, + "end": 26453.64, + "probability": 0.8043 + }, + { + "start": 26454.04, + "end": 26458.28, + "probability": 0.9709 + }, + { + "start": 26459.02, + "end": 26459.68, + "probability": 0.9919 + }, + { + "start": 26460.6, + "end": 26462.74, + "probability": 0.8374 + }, + { + "start": 26462.88, + "end": 26463.94, + "probability": 0.7706 + }, + { + "start": 26464.18, + "end": 26466.16, + "probability": 0.933 + }, + { + "start": 26466.24, + "end": 26468.16, + "probability": 0.9555 + }, + { + "start": 26468.34, + "end": 26468.98, + "probability": 0.7861 + }, + { + "start": 26469.1, + "end": 26469.74, + "probability": 0.6522 + }, + { + "start": 26469.8, + "end": 26470.9, + "probability": 0.9249 + }, + { + "start": 26470.98, + "end": 26473.7, + "probability": 0.943 + }, + { + "start": 26473.72, + "end": 26474.16, + "probability": 0.8382 + }, + { + "start": 26474.22, + "end": 26475.3, + "probability": 0.9133 + }, + { + "start": 26475.92, + "end": 26477.34, + "probability": 0.487 + }, + { + "start": 26477.46, + "end": 26479.68, + "probability": 0.9907 + }, + { + "start": 26480.16, + "end": 26483.1, + "probability": 0.9363 + }, + { + "start": 26483.14, + "end": 26486.16, + "probability": 0.827 + }, + { + "start": 26486.62, + "end": 26488.06, + "probability": 0.8842 + }, + { + "start": 26488.1, + "end": 26489.0, + "probability": 0.8022 + }, + { + "start": 26489.16, + "end": 26491.94, + "probability": 0.9917 + }, + { + "start": 26492.04, + "end": 26495.08, + "probability": 0.9956 + }, + { + "start": 26495.16, + "end": 26496.78, + "probability": 0.9001 + }, + { + "start": 26497.34, + "end": 26499.68, + "probability": 0.9873 + }, + { + "start": 26499.76, + "end": 26500.22, + "probability": 0.7425 + }, + { + "start": 26501.44, + "end": 26502.16, + "probability": 0.7931 + }, + { + "start": 26502.48, + "end": 26503.24, + "probability": 0.424 + }, + { + "start": 26503.26, + "end": 26504.48, + "probability": 0.8794 + }, + { + "start": 26504.58, + "end": 26506.71, + "probability": 0.9028 + }, + { + "start": 26507.54, + "end": 26511.62, + "probability": 0.7023 + }, + { + "start": 26513.2, + "end": 26513.62, + "probability": 0.1451 + } + ], + "segments_count": 9849, + "words_count": 47984, + "avg_words_per_segment": 4.872, + "avg_segment_duration": 1.8535, + "avg_words_per_minute": 108.3737, + "plenum_id": "128760", + "duration": 26565.85, + "title": null, + "plenum_date": "2024-07-15" +} \ No newline at end of file