diff --git "a/102050/metadata.json" "b/102050/metadata.json" new file mode 100644--- /dev/null +++ "b/102050/metadata.json" @@ -0,0 +1,9727 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "102050", + "quality_score": 0.9321, + "per_segment_quality_scores": [ + { + "start": 59.14, + "end": 63.14, + "probability": 0.7784 + }, + { + "start": 67.9, + "end": 69.26, + "probability": 0.8929 + }, + { + "start": 69.82, + "end": 70.82, + "probability": 0.7963 + }, + { + "start": 71.7, + "end": 77.98, + "probability": 0.9958 + }, + { + "start": 79.02, + "end": 86.26, + "probability": 0.9863 + }, + { + "start": 86.32, + "end": 90.84, + "probability": 0.9914 + }, + { + "start": 92.22, + "end": 96.82, + "probability": 0.8721 + }, + { + "start": 96.82, + "end": 102.38, + "probability": 0.9996 + }, + { + "start": 103.46, + "end": 107.36, + "probability": 0.985 + }, + { + "start": 108.46, + "end": 111.62, + "probability": 0.9567 + }, + { + "start": 112.4, + "end": 113.34, + "probability": 0.8463 + }, + { + "start": 113.86, + "end": 116.3, + "probability": 0.9939 + }, + { + "start": 117.38, + "end": 121.16, + "probability": 0.995 + }, + { + "start": 121.16, + "end": 125.88, + "probability": 0.9988 + }, + { + "start": 126.68, + "end": 131.08, + "probability": 0.9985 + }, + { + "start": 132.0, + "end": 134.72, + "probability": 0.9993 + }, + { + "start": 135.6, + "end": 140.26, + "probability": 0.9883 + }, + { + "start": 140.26, + "end": 145.9, + "probability": 0.9954 + }, + { + "start": 146.76, + "end": 147.5, + "probability": 0.9771 + }, + { + "start": 148.16, + "end": 155.94, + "probability": 0.9974 + }, + { + "start": 155.94, + "end": 162.76, + "probability": 0.9958 + }, + { + "start": 162.76, + "end": 170.04, + "probability": 0.9982 + }, + { + "start": 171.76, + "end": 177.06, + "probability": 0.9995 + }, + { + "start": 177.6, + "end": 178.94, + "probability": 0.989 + }, + { + "start": 179.64, + "end": 180.34, + "probability": 0.5257 + }, + { + "start": 180.72, + "end": 181.64, + "probability": 0.9032 + }, + { + "start": 183.08, + "end": 184.26, + "probability": 0.7578 + }, + { + "start": 184.3, + "end": 186.66, + "probability": 0.8184 + }, + { + "start": 186.7, + "end": 188.0, + "probability": 0.8102 + }, + { + "start": 210.12, + "end": 213.4, + "probability": 0.653 + }, + { + "start": 214.69, + "end": 217.02, + "probability": 0.9129 + }, + { + "start": 232.28, + "end": 233.34, + "probability": 0.7832 + }, + { + "start": 233.94, + "end": 235.12, + "probability": 0.8135 + }, + { + "start": 236.14, + "end": 241.02, + "probability": 0.9045 + }, + { + "start": 241.02, + "end": 244.94, + "probability": 0.8705 + }, + { + "start": 245.62, + "end": 247.16, + "probability": 0.9382 + }, + { + "start": 247.28, + "end": 248.48, + "probability": 0.9985 + }, + { + "start": 249.42, + "end": 250.42, + "probability": 0.6628 + }, + { + "start": 250.98, + "end": 252.7, + "probability": 0.9844 + }, + { + "start": 252.88, + "end": 254.5, + "probability": 0.9256 + }, + { + "start": 254.7, + "end": 255.38, + "probability": 0.5228 + }, + { + "start": 255.96, + "end": 256.92, + "probability": 0.6849 + }, + { + "start": 257.02, + "end": 257.76, + "probability": 0.7613 + }, + { + "start": 257.88, + "end": 259.54, + "probability": 0.9797 + }, + { + "start": 259.9, + "end": 264.96, + "probability": 0.9281 + }, + { + "start": 265.12, + "end": 269.24, + "probability": 0.922 + }, + { + "start": 269.36, + "end": 271.62, + "probability": 0.9453 + }, + { + "start": 271.96, + "end": 272.76, + "probability": 0.9311 + }, + { + "start": 272.84, + "end": 276.92, + "probability": 0.988 + }, + { + "start": 277.0, + "end": 278.98, + "probability": 0.601 + }, + { + "start": 279.26, + "end": 279.9, + "probability": 0.5444 + }, + { + "start": 280.12, + "end": 283.98, + "probability": 0.9245 + }, + { + "start": 284.52, + "end": 286.34, + "probability": 0.8586 + }, + { + "start": 286.4, + "end": 287.24, + "probability": 0.9539 + }, + { + "start": 287.72, + "end": 288.56, + "probability": 0.7893 + }, + { + "start": 288.62, + "end": 289.5, + "probability": 0.9309 + }, + { + "start": 289.8, + "end": 290.56, + "probability": 0.6719 + }, + { + "start": 290.64, + "end": 291.38, + "probability": 0.5247 + }, + { + "start": 291.46, + "end": 292.65, + "probability": 0.7969 + }, + { + "start": 292.92, + "end": 298.14, + "probability": 0.9775 + }, + { + "start": 298.58, + "end": 301.68, + "probability": 0.8531 + }, + { + "start": 302.16, + "end": 305.12, + "probability": 0.9932 + }, + { + "start": 305.64, + "end": 309.56, + "probability": 0.9809 + }, + { + "start": 309.74, + "end": 310.94, + "probability": 0.6497 + }, + { + "start": 311.42, + "end": 314.5, + "probability": 0.9657 + }, + { + "start": 318.18, + "end": 319.38, + "probability": 0.6338 + }, + { + "start": 321.08, + "end": 323.86, + "probability": 0.9313 + }, + { + "start": 335.12, + "end": 337.22, + "probability": 0.7163 + }, + { + "start": 338.54, + "end": 343.1, + "probability": 0.974 + }, + { + "start": 343.94, + "end": 347.32, + "probability": 0.9742 + }, + { + "start": 347.46, + "end": 348.3, + "probability": 0.9695 + }, + { + "start": 349.48, + "end": 350.1, + "probability": 0.6543 + }, + { + "start": 351.44, + "end": 355.66, + "probability": 0.9985 + }, + { + "start": 357.0, + "end": 360.14, + "probability": 0.9724 + }, + { + "start": 361.56, + "end": 364.34, + "probability": 0.8639 + }, + { + "start": 365.02, + "end": 369.9, + "probability": 0.9971 + }, + { + "start": 370.88, + "end": 373.38, + "probability": 0.9899 + }, + { + "start": 373.9, + "end": 374.54, + "probability": 0.8088 + }, + { + "start": 375.66, + "end": 376.1, + "probability": 0.9475 + }, + { + "start": 376.42, + "end": 380.5, + "probability": 0.9941 + }, + { + "start": 381.42, + "end": 384.66, + "probability": 0.9948 + }, + { + "start": 385.76, + "end": 386.22, + "probability": 0.667 + }, + { + "start": 386.78, + "end": 389.14, + "probability": 0.9959 + }, + { + "start": 390.04, + "end": 394.28, + "probability": 0.9983 + }, + { + "start": 394.94, + "end": 395.57, + "probability": 0.7858 + }, + { + "start": 397.04, + "end": 397.46, + "probability": 0.7295 + }, + { + "start": 398.04, + "end": 400.08, + "probability": 0.9657 + }, + { + "start": 400.12, + "end": 400.92, + "probability": 0.9009 + }, + { + "start": 401.32, + "end": 402.4, + "probability": 0.6822 + }, + { + "start": 402.46, + "end": 403.34, + "probability": 0.8201 + }, + { + "start": 404.86, + "end": 409.8, + "probability": 0.9089 + }, + { + "start": 410.42, + "end": 414.3, + "probability": 0.9835 + }, + { + "start": 415.38, + "end": 416.02, + "probability": 0.8454 + }, + { + "start": 417.06, + "end": 417.4, + "probability": 0.5985 + }, + { + "start": 419.06, + "end": 420.96, + "probability": 0.9928 + }, + { + "start": 421.6, + "end": 426.54, + "probability": 0.9985 + }, + { + "start": 426.54, + "end": 429.66, + "probability": 0.9668 + }, + { + "start": 430.66, + "end": 434.84, + "probability": 0.9478 + }, + { + "start": 435.94, + "end": 439.32, + "probability": 0.9942 + }, + { + "start": 439.9, + "end": 442.64, + "probability": 0.9995 + }, + { + "start": 442.86, + "end": 446.18, + "probability": 0.9993 + }, + { + "start": 446.26, + "end": 446.58, + "probability": 0.7575 + }, + { + "start": 447.4, + "end": 449.21, + "probability": 0.9703 + }, + { + "start": 449.38, + "end": 451.22, + "probability": 0.9968 + }, + { + "start": 451.64, + "end": 454.04, + "probability": 0.786 + }, + { + "start": 454.6, + "end": 456.1, + "probability": 0.9855 + }, + { + "start": 456.34, + "end": 458.28, + "probability": 0.7911 + }, + { + "start": 459.4, + "end": 460.78, + "probability": 0.98 + }, + { + "start": 461.32, + "end": 463.86, + "probability": 0.9287 + }, + { + "start": 464.52, + "end": 465.4, + "probability": 0.7933 + }, + { + "start": 465.72, + "end": 468.06, + "probability": 0.8053 + }, + { + "start": 468.14, + "end": 469.02, + "probability": 0.9221 + }, + { + "start": 469.6, + "end": 472.08, + "probability": 0.9827 + }, + { + "start": 472.82, + "end": 476.38, + "probability": 0.8436 + }, + { + "start": 477.5, + "end": 480.42, + "probability": 0.9575 + }, + { + "start": 480.64, + "end": 484.1, + "probability": 0.9951 + }, + { + "start": 484.54, + "end": 485.8, + "probability": 0.2243 + }, + { + "start": 487.6, + "end": 487.81, + "probability": 0.3709 + }, + { + "start": 489.4, + "end": 490.68, + "probability": 0.6647 + }, + { + "start": 502.3, + "end": 505.14, + "probability": 0.7229 + }, + { + "start": 506.34, + "end": 508.96, + "probability": 0.7729 + }, + { + "start": 510.64, + "end": 512.64, + "probability": 0.9711 + }, + { + "start": 512.7, + "end": 514.44, + "probability": 0.9964 + }, + { + "start": 515.14, + "end": 517.98, + "probability": 0.8165 + }, + { + "start": 519.32, + "end": 523.58, + "probability": 0.9949 + }, + { + "start": 524.16, + "end": 528.42, + "probability": 0.9837 + }, + { + "start": 528.42, + "end": 532.6, + "probability": 0.9745 + }, + { + "start": 533.42, + "end": 538.62, + "probability": 0.9258 + }, + { + "start": 539.08, + "end": 544.08, + "probability": 0.9849 + }, + { + "start": 544.28, + "end": 546.26, + "probability": 0.9337 + }, + { + "start": 546.64, + "end": 547.14, + "probability": 0.9077 + }, + { + "start": 547.8, + "end": 551.94, + "probability": 0.9722 + }, + { + "start": 552.76, + "end": 555.42, + "probability": 0.9952 + }, + { + "start": 556.0, + "end": 560.54, + "probability": 0.9966 + }, + { + "start": 561.02, + "end": 565.42, + "probability": 0.9296 + }, + { + "start": 566.04, + "end": 569.34, + "probability": 0.9951 + }, + { + "start": 569.34, + "end": 574.08, + "probability": 0.9938 + }, + { + "start": 574.64, + "end": 576.16, + "probability": 0.6809 + }, + { + "start": 576.54, + "end": 579.02, + "probability": 0.9774 + }, + { + "start": 579.46, + "end": 580.76, + "probability": 0.8021 + }, + { + "start": 581.32, + "end": 581.86, + "probability": 0.8634 + }, + { + "start": 582.36, + "end": 586.66, + "probability": 0.9546 + }, + { + "start": 586.66, + "end": 590.74, + "probability": 0.9845 + }, + { + "start": 591.32, + "end": 596.02, + "probability": 0.9984 + }, + { + "start": 596.52, + "end": 598.78, + "probability": 0.7973 + }, + { + "start": 599.24, + "end": 603.56, + "probability": 0.9921 + }, + { + "start": 604.06, + "end": 607.82, + "probability": 0.5546 + }, + { + "start": 608.48, + "end": 614.36, + "probability": 0.9897 + }, + { + "start": 614.9, + "end": 619.74, + "probability": 0.9953 + }, + { + "start": 619.74, + "end": 624.88, + "probability": 0.9776 + }, + { + "start": 625.1, + "end": 625.2, + "probability": 0.555 + }, + { + "start": 626.06, + "end": 626.58, + "probability": 0.5709 + }, + { + "start": 626.62, + "end": 629.44, + "probability": 0.736 + }, + { + "start": 631.38, + "end": 634.08, + "probability": 0.8103 + }, + { + "start": 634.88, + "end": 635.96, + "probability": 0.8212 + }, + { + "start": 644.76, + "end": 645.54, + "probability": 0.7605 + }, + { + "start": 647.76, + "end": 648.66, + "probability": 0.9644 + }, + { + "start": 649.86, + "end": 650.98, + "probability": 0.889 + }, + { + "start": 651.86, + "end": 656.45, + "probability": 0.9629 + }, + { + "start": 657.02, + "end": 658.38, + "probability": 0.9976 + }, + { + "start": 659.16, + "end": 660.4, + "probability": 0.9441 + }, + { + "start": 661.2, + "end": 662.14, + "probability": 0.6949 + }, + { + "start": 663.4, + "end": 665.76, + "probability": 0.9759 + }, + { + "start": 666.12, + "end": 667.85, + "probability": 0.9565 + }, + { + "start": 668.56, + "end": 669.66, + "probability": 0.6674 + }, + { + "start": 669.98, + "end": 675.24, + "probability": 0.979 + }, + { + "start": 675.66, + "end": 677.98, + "probability": 0.6597 + }, + { + "start": 678.04, + "end": 679.76, + "probability": 0.7433 + }, + { + "start": 680.5, + "end": 681.82, + "probability": 0.7951 + }, + { + "start": 682.2, + "end": 685.32, + "probability": 0.1585 + }, + { + "start": 685.34, + "end": 686.9, + "probability": 0.5861 + }, + { + "start": 687.16, + "end": 689.7, + "probability": 0.9438 + }, + { + "start": 690.52, + "end": 694.62, + "probability": 0.9248 + }, + { + "start": 694.82, + "end": 698.54, + "probability": 0.8701 + }, + { + "start": 699.25, + "end": 701.12, + "probability": 0.8846 + }, + { + "start": 701.22, + "end": 701.92, + "probability": 0.4696 + }, + { + "start": 702.36, + "end": 705.92, + "probability": 0.9935 + }, + { + "start": 705.92, + "end": 710.96, + "probability": 0.9669 + }, + { + "start": 711.54, + "end": 714.1, + "probability": 0.6543 + }, + { + "start": 714.48, + "end": 717.64, + "probability": 0.751 + }, + { + "start": 718.16, + "end": 722.9, + "probability": 0.9873 + }, + { + "start": 723.32, + "end": 725.22, + "probability": 0.7352 + }, + { + "start": 725.34, + "end": 725.44, + "probability": 0.7515 + }, + { + "start": 726.32, + "end": 727.42, + "probability": 0.4876 + }, + { + "start": 727.84, + "end": 731.18, + "probability": 0.968 + }, + { + "start": 731.54, + "end": 733.94, + "probability": 0.8731 + }, + { + "start": 734.28, + "end": 737.8, + "probability": 0.9809 + }, + { + "start": 739.34, + "end": 742.06, + "probability": 0.5297 + }, + { + "start": 742.42, + "end": 744.62, + "probability": 0.4532 + }, + { + "start": 744.64, + "end": 746.13, + "probability": 0.6339 + }, + { + "start": 746.22, + "end": 751.24, + "probability": 0.9961 + }, + { + "start": 751.66, + "end": 755.92, + "probability": 0.9682 + }, + { + "start": 756.32, + "end": 756.74, + "probability": 0.7545 + }, + { + "start": 759.24, + "end": 759.94, + "probability": 0.8781 + }, + { + "start": 761.22, + "end": 761.78, + "probability": 0.7134 + }, + { + "start": 761.84, + "end": 763.88, + "probability": 0.9612 + }, + { + "start": 763.9, + "end": 764.64, + "probability": 0.7373 + }, + { + "start": 764.8, + "end": 765.62, + "probability": 0.9746 + }, + { + "start": 773.4, + "end": 775.52, + "probability": 0.8266 + }, + { + "start": 776.24, + "end": 779.6, + "probability": 0.4243 + }, + { + "start": 779.64, + "end": 780.26, + "probability": 0.5568 + }, + { + "start": 780.44, + "end": 784.74, + "probability": 0.7213 + }, + { + "start": 785.08, + "end": 787.18, + "probability": 0.9239 + }, + { + "start": 788.24, + "end": 788.72, + "probability": 0.3804 + }, + { + "start": 788.74, + "end": 789.0, + "probability": 0.662 + }, + { + "start": 789.1, + "end": 792.3, + "probability": 0.9559 + }, + { + "start": 792.3, + "end": 796.14, + "probability": 0.8709 + }, + { + "start": 796.3, + "end": 799.09, + "probability": 0.9753 + }, + { + "start": 799.68, + "end": 802.56, + "probability": 0.628 + }, + { + "start": 803.3, + "end": 808.5, + "probability": 0.9443 + }, + { + "start": 808.58, + "end": 812.72, + "probability": 0.9548 + }, + { + "start": 813.16, + "end": 814.09, + "probability": 0.6688 + }, + { + "start": 814.9, + "end": 821.6, + "probability": 0.7472 + }, + { + "start": 822.02, + "end": 822.9, + "probability": 0.9202 + }, + { + "start": 823.06, + "end": 824.12, + "probability": 0.7837 + }, + { + "start": 824.26, + "end": 826.86, + "probability": 0.8953 + }, + { + "start": 826.86, + "end": 829.74, + "probability": 0.991 + }, + { + "start": 830.14, + "end": 834.8, + "probability": 0.9911 + }, + { + "start": 835.84, + "end": 838.12, + "probability": 0.5872 + }, + { + "start": 838.28, + "end": 840.16, + "probability": 0.9597 + }, + { + "start": 840.68, + "end": 842.38, + "probability": 0.9922 + }, + { + "start": 842.82, + "end": 845.92, + "probability": 0.5139 + }, + { + "start": 845.92, + "end": 849.12, + "probability": 0.9896 + }, + { + "start": 849.5, + "end": 852.38, + "probability": 0.9962 + }, + { + "start": 852.9, + "end": 855.22, + "probability": 0.6471 + }, + { + "start": 855.6, + "end": 858.88, + "probability": 0.9915 + }, + { + "start": 859.42, + "end": 863.18, + "probability": 0.7724 + }, + { + "start": 863.98, + "end": 863.98, + "probability": 0.0023 + }, + { + "start": 863.98, + "end": 864.4, + "probability": 0.5819 + }, + { + "start": 864.8, + "end": 865.96, + "probability": 0.7655 + }, + { + "start": 866.32, + "end": 869.52, + "probability": 0.948 + }, + { + "start": 869.98, + "end": 870.86, + "probability": 0.7363 + }, + { + "start": 871.12, + "end": 872.76, + "probability": 0.8988 + }, + { + "start": 873.22, + "end": 877.72, + "probability": 0.9177 + }, + { + "start": 877.9, + "end": 880.7, + "probability": 0.9637 + }, + { + "start": 881.16, + "end": 882.28, + "probability": 0.7758 + }, + { + "start": 882.38, + "end": 884.16, + "probability": 0.5092 + }, + { + "start": 884.48, + "end": 885.6, + "probability": 0.6981 + }, + { + "start": 885.6, + "end": 888.42, + "probability": 0.5975 + }, + { + "start": 888.42, + "end": 890.94, + "probability": 0.697 + }, + { + "start": 892.28, + "end": 894.1, + "probability": 0.6993 + }, + { + "start": 908.22, + "end": 909.0, + "probability": 0.5135 + }, + { + "start": 913.28, + "end": 913.28, + "probability": 0.3967 + }, + { + "start": 913.28, + "end": 914.32, + "probability": 0.6644 + }, + { + "start": 915.26, + "end": 917.24, + "probability": 0.7461 + }, + { + "start": 918.36, + "end": 920.38, + "probability": 0.9715 + }, + { + "start": 921.54, + "end": 925.22, + "probability": 0.9328 + }, + { + "start": 925.22, + "end": 928.12, + "probability": 0.9922 + }, + { + "start": 929.24, + "end": 931.66, + "probability": 0.9966 + }, + { + "start": 932.24, + "end": 934.98, + "probability": 0.9985 + }, + { + "start": 935.86, + "end": 937.88, + "probability": 0.686 + }, + { + "start": 938.68, + "end": 943.38, + "probability": 0.9192 + }, + { + "start": 944.06, + "end": 945.76, + "probability": 0.7418 + }, + { + "start": 946.26, + "end": 950.88, + "probability": 0.8358 + }, + { + "start": 951.72, + "end": 959.18, + "probability": 0.9959 + }, + { + "start": 960.02, + "end": 964.64, + "probability": 0.9719 + }, + { + "start": 965.46, + "end": 970.44, + "probability": 0.9889 + }, + { + "start": 970.44, + "end": 976.14, + "probability": 0.9967 + }, + { + "start": 976.66, + "end": 981.94, + "probability": 0.9917 + }, + { + "start": 981.94, + "end": 987.8, + "probability": 0.9961 + }, + { + "start": 987.92, + "end": 988.16, + "probability": 0.6774 + }, + { + "start": 989.32, + "end": 990.06, + "probability": 0.6832 + }, + { + "start": 990.36, + "end": 993.38, + "probability": 0.8709 + }, + { + "start": 994.8, + "end": 996.84, + "probability": 0.9029 + }, + { + "start": 999.64, + "end": 1002.12, + "probability": 0.7992 + }, + { + "start": 1003.06, + "end": 1008.32, + "probability": 0.9801 + }, + { + "start": 1009.26, + "end": 1010.08, + "probability": 0.5424 + }, + { + "start": 1010.48, + "end": 1011.78, + "probability": 0.9724 + }, + { + "start": 1012.28, + "end": 1016.52, + "probability": 0.9535 + }, + { + "start": 1017.4, + "end": 1020.02, + "probability": 0.9461 + }, + { + "start": 1020.96, + "end": 1023.88, + "probability": 0.9583 + }, + { + "start": 1024.78, + "end": 1029.26, + "probability": 0.9501 + }, + { + "start": 1029.7, + "end": 1033.92, + "probability": 0.9749 + }, + { + "start": 1034.98, + "end": 1039.78, + "probability": 0.9936 + }, + { + "start": 1040.28, + "end": 1047.06, + "probability": 0.9576 + }, + { + "start": 1047.94, + "end": 1051.74, + "probability": 0.9385 + }, + { + "start": 1052.18, + "end": 1054.3, + "probability": 0.9982 + }, + { + "start": 1054.94, + "end": 1057.82, + "probability": 0.8034 + }, + { + "start": 1058.52, + "end": 1059.56, + "probability": 0.9557 + }, + { + "start": 1060.32, + "end": 1065.94, + "probability": 0.9842 + }, + { + "start": 1066.3, + "end": 1069.72, + "probability": 0.9902 + }, + { + "start": 1069.72, + "end": 1073.32, + "probability": 0.9944 + }, + { + "start": 1073.92, + "end": 1074.16, + "probability": 0.6543 + }, + { + "start": 1076.04, + "end": 1076.92, + "probability": 0.7905 + }, + { + "start": 1077.36, + "end": 1079.98, + "probability": 0.1636 + }, + { + "start": 1080.56, + "end": 1082.64, + "probability": 0.0522 + }, + { + "start": 1083.02, + "end": 1086.08, + "probability": 0.5056 + }, + { + "start": 1086.58, + "end": 1088.05, + "probability": 0.1806 + }, + { + "start": 1088.38, + "end": 1088.38, + "probability": 0.1302 + }, + { + "start": 1088.38, + "end": 1088.64, + "probability": 0.7148 + }, + { + "start": 1088.64, + "end": 1090.6, + "probability": 0.5771 + }, + { + "start": 1090.6, + "end": 1091.66, + "probability": 0.176 + }, + { + "start": 1091.74, + "end": 1092.78, + "probability": 0.7063 + }, + { + "start": 1093.04, + "end": 1098.06, + "probability": 0.6334 + }, + { + "start": 1098.22, + "end": 1098.28, + "probability": 0.2414 + }, + { + "start": 1098.28, + "end": 1098.28, + "probability": 0.0325 + }, + { + "start": 1098.28, + "end": 1098.28, + "probability": 0.0789 + }, + { + "start": 1098.28, + "end": 1100.38, + "probability": 0.6194 + }, + { + "start": 1100.52, + "end": 1101.84, + "probability": 0.8682 + }, + { + "start": 1102.0, + "end": 1106.1, + "probability": 0.9828 + }, + { + "start": 1106.12, + "end": 1107.06, + "probability": 0.1765 + }, + { + "start": 1107.24, + "end": 1112.72, + "probability": 0.9761 + }, + { + "start": 1114.46, + "end": 1115.48, + "probability": 0.0429 + }, + { + "start": 1115.48, + "end": 1115.48, + "probability": 0.0196 + }, + { + "start": 1115.48, + "end": 1115.48, + "probability": 0.0641 + }, + { + "start": 1115.48, + "end": 1118.1, + "probability": 0.182 + }, + { + "start": 1119.22, + "end": 1120.02, + "probability": 0.2178 + }, + { + "start": 1120.02, + "end": 1120.02, + "probability": 0.3864 + }, + { + "start": 1120.02, + "end": 1120.26, + "probability": 0.18 + }, + { + "start": 1120.36, + "end": 1122.44, + "probability": 0.6473 + }, + { + "start": 1122.56, + "end": 1124.5, + "probability": 0.7704 + }, + { + "start": 1124.92, + "end": 1125.38, + "probability": 0.9017 + }, + { + "start": 1125.54, + "end": 1126.26, + "probability": 0.6438 + }, + { + "start": 1126.34, + "end": 1127.2, + "probability": 0.7739 + }, + { + "start": 1127.32, + "end": 1128.02, + "probability": 0.7575 + }, + { + "start": 1128.22, + "end": 1131.6, + "probability": 0.9869 + }, + { + "start": 1132.14, + "end": 1133.88, + "probability": 0.9598 + }, + { + "start": 1135.68, + "end": 1141.1, + "probability": 0.9054 + }, + { + "start": 1141.1, + "end": 1143.98, + "probability": 0.9911 + }, + { + "start": 1144.76, + "end": 1146.9, + "probability": 0.8989 + }, + { + "start": 1146.98, + "end": 1148.84, + "probability": 0.8623 + }, + { + "start": 1148.92, + "end": 1150.18, + "probability": 0.9125 + }, + { + "start": 1150.96, + "end": 1156.99, + "probability": 0.9912 + }, + { + "start": 1158.1, + "end": 1162.44, + "probability": 0.9741 + }, + { + "start": 1163.02, + "end": 1172.66, + "probability": 0.875 + }, + { + "start": 1173.86, + "end": 1175.5, + "probability": 0.7822 + }, + { + "start": 1175.56, + "end": 1177.56, + "probability": 0.7828 + }, + { + "start": 1178.28, + "end": 1181.6, + "probability": 0.993 + }, + { + "start": 1181.7, + "end": 1183.74, + "probability": 0.9976 + }, + { + "start": 1184.32, + "end": 1190.08, + "probability": 0.9932 + }, + { + "start": 1190.1, + "end": 1193.46, + "probability": 0.9373 + }, + { + "start": 1194.24, + "end": 1196.96, + "probability": 0.9915 + }, + { + "start": 1196.98, + "end": 1198.24, + "probability": 0.9455 + }, + { + "start": 1198.54, + "end": 1198.76, + "probability": 0.5395 + }, + { + "start": 1199.54, + "end": 1200.02, + "probability": 0.6057 + }, + { + "start": 1200.12, + "end": 1201.82, + "probability": 0.8695 + }, + { + "start": 1202.66, + "end": 1203.52, + "probability": 0.9236 + }, + { + "start": 1209.76, + "end": 1210.24, + "probability": 0.3698 + }, + { + "start": 1210.26, + "end": 1211.12, + "probability": 0.6588 + }, + { + "start": 1211.24, + "end": 1212.46, + "probability": 0.6227 + }, + { + "start": 1212.62, + "end": 1213.8, + "probability": 0.8477 + }, + { + "start": 1213.92, + "end": 1217.41, + "probability": 0.8937 + }, + { + "start": 1217.5, + "end": 1220.34, + "probability": 0.9409 + }, + { + "start": 1220.94, + "end": 1221.43, + "probability": 0.4741 + }, + { + "start": 1222.58, + "end": 1224.72, + "probability": 0.7112 + }, + { + "start": 1224.76, + "end": 1225.86, + "probability": 0.9276 + }, + { + "start": 1226.52, + "end": 1229.42, + "probability": 0.9799 + }, + { + "start": 1229.78, + "end": 1232.27, + "probability": 0.9714 + }, + { + "start": 1233.46, + "end": 1234.88, + "probability": 0.6128 + }, + { + "start": 1235.64, + "end": 1236.84, + "probability": 0.9883 + }, + { + "start": 1237.32, + "end": 1238.8, + "probability": 0.9716 + }, + { + "start": 1239.32, + "end": 1242.08, + "probability": 0.9893 + }, + { + "start": 1242.62, + "end": 1243.16, + "probability": 0.8719 + }, + { + "start": 1243.28, + "end": 1244.54, + "probability": 0.7621 + }, + { + "start": 1244.86, + "end": 1249.42, + "probability": 0.7771 + }, + { + "start": 1250.44, + "end": 1254.4, + "probability": 0.8997 + }, + { + "start": 1255.14, + "end": 1257.3, + "probability": 0.7997 + }, + { + "start": 1258.24, + "end": 1258.66, + "probability": 0.3911 + }, + { + "start": 1258.92, + "end": 1260.24, + "probability": 0.6564 + }, + { + "start": 1260.62, + "end": 1262.22, + "probability": 0.9381 + }, + { + "start": 1262.56, + "end": 1263.37, + "probability": 0.9684 + }, + { + "start": 1264.4, + "end": 1265.84, + "probability": 0.8965 + }, + { + "start": 1266.84, + "end": 1267.48, + "probability": 0.8092 + }, + { + "start": 1268.08, + "end": 1269.56, + "probability": 0.8057 + }, + { + "start": 1270.02, + "end": 1272.08, + "probability": 0.9109 + }, + { + "start": 1272.28, + "end": 1274.12, + "probability": 0.9614 + }, + { + "start": 1274.94, + "end": 1275.44, + "probability": 0.8455 + }, + { + "start": 1275.56, + "end": 1276.88, + "probability": 0.959 + }, + { + "start": 1277.28, + "end": 1278.9, + "probability": 0.9848 + }, + { + "start": 1279.12, + "end": 1280.16, + "probability": 0.9402 + }, + { + "start": 1280.24, + "end": 1281.6, + "probability": 0.9872 + }, + { + "start": 1282.3, + "end": 1283.98, + "probability": 0.5676 + }, + { + "start": 1284.7, + "end": 1285.24, + "probability": 0.8094 + }, + { + "start": 1285.78, + "end": 1287.48, + "probability": 0.6694 + }, + { + "start": 1288.0, + "end": 1289.6, + "probability": 0.8563 + }, + { + "start": 1290.38, + "end": 1292.44, + "probability": 0.9821 + }, + { + "start": 1292.78, + "end": 1293.74, + "probability": 0.9161 + }, + { + "start": 1294.22, + "end": 1296.84, + "probability": 0.9771 + }, + { + "start": 1296.94, + "end": 1301.62, + "probability": 0.9474 + }, + { + "start": 1302.26, + "end": 1305.7, + "probability": 0.8106 + }, + { + "start": 1306.46, + "end": 1310.6, + "probability": 0.9539 + }, + { + "start": 1312.14, + "end": 1314.25, + "probability": 0.9504 + }, + { + "start": 1315.96, + "end": 1318.3, + "probability": 0.9947 + }, + { + "start": 1319.38, + "end": 1322.76, + "probability": 0.0725 + }, + { + "start": 1322.76, + "end": 1325.25, + "probability": 0.6076 + }, + { + "start": 1325.78, + "end": 1325.9, + "probability": 0.0004 + }, + { + "start": 1326.58, + "end": 1327.02, + "probability": 0.0989 + }, + { + "start": 1327.06, + "end": 1328.08, + "probability": 0.8334 + }, + { + "start": 1351.58, + "end": 1351.58, + "probability": 0.4121 + }, + { + "start": 1351.58, + "end": 1351.58, + "probability": 0.1551 + }, + { + "start": 1351.58, + "end": 1351.58, + "probability": 0.058 + }, + { + "start": 1351.58, + "end": 1351.58, + "probability": 0.1388 + }, + { + "start": 1351.58, + "end": 1351.58, + "probability": 0.0528 + }, + { + "start": 1351.58, + "end": 1351.58, + "probability": 0.0203 + }, + { + "start": 1359.72, + "end": 1360.96, + "probability": 0.5737 + }, + { + "start": 1372.34, + "end": 1379.54, + "probability": 0.95 + }, + { + "start": 1380.76, + "end": 1386.2, + "probability": 0.9881 + }, + { + "start": 1387.04, + "end": 1387.8, + "probability": 0.8896 + }, + { + "start": 1388.48, + "end": 1389.04, + "probability": 0.9219 + }, + { + "start": 1390.58, + "end": 1393.34, + "probability": 0.9752 + }, + { + "start": 1394.36, + "end": 1399.38, + "probability": 0.9262 + }, + { + "start": 1399.64, + "end": 1400.43, + "probability": 0.9679 + }, + { + "start": 1401.18, + "end": 1403.8, + "probability": 0.9944 + }, + { + "start": 1405.08, + "end": 1409.0, + "probability": 0.9957 + }, + { + "start": 1409.7, + "end": 1410.46, + "probability": 0.3261 + }, + { + "start": 1412.5, + "end": 1414.08, + "probability": 0.9877 + }, + { + "start": 1414.18, + "end": 1419.86, + "probability": 0.9807 + }, + { + "start": 1420.86, + "end": 1421.44, + "probability": 0.8755 + }, + { + "start": 1422.6, + "end": 1423.44, + "probability": 0.9299 + }, + { + "start": 1423.58, + "end": 1424.84, + "probability": 0.7978 + }, + { + "start": 1426.22, + "end": 1431.38, + "probability": 0.9975 + }, + { + "start": 1432.22, + "end": 1433.38, + "probability": 0.9214 + }, + { + "start": 1434.56, + "end": 1436.02, + "probability": 0.8331 + }, + { + "start": 1436.22, + "end": 1438.32, + "probability": 0.977 + }, + { + "start": 1439.4, + "end": 1443.16, + "probability": 0.9608 + }, + { + "start": 1443.9, + "end": 1444.92, + "probability": 0.9789 + }, + { + "start": 1445.86, + "end": 1449.16, + "probability": 0.9935 + }, + { + "start": 1450.04, + "end": 1450.9, + "probability": 0.9257 + }, + { + "start": 1452.32, + "end": 1455.96, + "probability": 0.9479 + }, + { + "start": 1455.96, + "end": 1458.6, + "probability": 0.8949 + }, + { + "start": 1459.36, + "end": 1459.98, + "probability": 0.9281 + }, + { + "start": 1461.7, + "end": 1462.86, + "probability": 0.9712 + }, + { + "start": 1463.82, + "end": 1467.5, + "probability": 0.9937 + }, + { + "start": 1468.91, + "end": 1471.22, + "probability": 0.3459 + }, + { + "start": 1471.22, + "end": 1475.88, + "probability": 0.9013 + }, + { + "start": 1476.32, + "end": 1478.36, + "probability": 0.9904 + }, + { + "start": 1480.02, + "end": 1480.02, + "probability": 0.0373 + }, + { + "start": 1480.04, + "end": 1484.92, + "probability": 0.95 + }, + { + "start": 1485.14, + "end": 1485.3, + "probability": 0.4039 + }, + { + "start": 1485.98, + "end": 1488.82, + "probability": 0.8882 + }, + { + "start": 1489.46, + "end": 1492.1, + "probability": 0.7325 + }, + { + "start": 1492.74, + "end": 1494.66, + "probability": 0.972 + }, + { + "start": 1495.98, + "end": 1498.81, + "probability": 0.9249 + }, + { + "start": 1499.44, + "end": 1500.16, + "probability": 0.8301 + }, + { + "start": 1500.94, + "end": 1501.7, + "probability": 0.9546 + }, + { + "start": 1503.14, + "end": 1504.92, + "probability": 0.8364 + }, + { + "start": 1507.18, + "end": 1507.68, + "probability": 0.8177 + }, + { + "start": 1508.68, + "end": 1510.64, + "probability": 0.9979 + }, + { + "start": 1510.72, + "end": 1515.6, + "probability": 0.9886 + }, + { + "start": 1515.6, + "end": 1519.64, + "probability": 0.806 + }, + { + "start": 1520.28, + "end": 1524.28, + "probability": 0.8907 + }, + { + "start": 1524.28, + "end": 1527.34, + "probability": 0.9993 + }, + { + "start": 1527.56, + "end": 1528.4, + "probability": 0.9666 + }, + { + "start": 1529.08, + "end": 1531.6, + "probability": 0.9979 + }, + { + "start": 1532.44, + "end": 1534.2, + "probability": 0.9966 + }, + { + "start": 1534.64, + "end": 1535.1, + "probability": 0.9496 + }, + { + "start": 1535.52, + "end": 1536.14, + "probability": 0.9882 + }, + { + "start": 1536.24, + "end": 1537.2, + "probability": 0.9258 + }, + { + "start": 1537.84, + "end": 1539.38, + "probability": 0.9742 + }, + { + "start": 1541.39, + "end": 1547.12, + "probability": 0.9102 + }, + { + "start": 1548.26, + "end": 1551.16, + "probability": 0.9401 + }, + { + "start": 1551.16, + "end": 1553.96, + "probability": 0.9946 + }, + { + "start": 1555.48, + "end": 1557.74, + "probability": 0.9629 + }, + { + "start": 1558.28, + "end": 1563.82, + "probability": 0.9971 + }, + { + "start": 1564.54, + "end": 1564.84, + "probability": 0.0363 + }, + { + "start": 1564.94, + "end": 1566.16, + "probability": 0.9431 + }, + { + "start": 1566.26, + "end": 1567.64, + "probability": 0.8907 + }, + { + "start": 1568.54, + "end": 1572.38, + "probability": 0.9663 + }, + { + "start": 1572.52, + "end": 1574.98, + "probability": 0.9795 + }, + { + "start": 1575.1, + "end": 1576.46, + "probability": 0.7602 + }, + { + "start": 1576.58, + "end": 1578.34, + "probability": 0.9878 + }, + { + "start": 1578.38, + "end": 1579.88, + "probability": 0.9734 + }, + { + "start": 1579.96, + "end": 1580.38, + "probability": 0.9651 + }, + { + "start": 1581.44, + "end": 1582.08, + "probability": 0.6865 + }, + { + "start": 1582.2, + "end": 1584.28, + "probability": 0.9931 + }, + { + "start": 1585.34, + "end": 1588.22, + "probability": 0.9943 + }, + { + "start": 1589.26, + "end": 1592.2, + "probability": 0.9976 + }, + { + "start": 1593.3, + "end": 1595.44, + "probability": 0.5405 + }, + { + "start": 1595.52, + "end": 1598.18, + "probability": 0.9929 + }, + { + "start": 1598.46, + "end": 1599.45, + "probability": 0.9977 + }, + { + "start": 1600.18, + "end": 1602.84, + "probability": 0.9722 + }, + { + "start": 1603.44, + "end": 1607.16, + "probability": 0.9384 + }, + { + "start": 1607.64, + "end": 1609.66, + "probability": 0.9574 + }, + { + "start": 1610.16, + "end": 1611.12, + "probability": 0.6375 + }, + { + "start": 1611.58, + "end": 1612.9, + "probability": 0.9124 + }, + { + "start": 1614.4, + "end": 1615.58, + "probability": 0.7075 + }, + { + "start": 1615.72, + "end": 1615.96, + "probability": 0.8413 + }, + { + "start": 1616.38, + "end": 1618.68, + "probability": 0.9816 + }, + { + "start": 1619.26, + "end": 1622.5, + "probability": 0.9743 + }, + { + "start": 1623.0, + "end": 1628.34, + "probability": 0.9915 + }, + { + "start": 1628.84, + "end": 1630.9, + "probability": 0.9727 + }, + { + "start": 1631.68, + "end": 1633.28, + "probability": 0.8631 + }, + { + "start": 1634.02, + "end": 1635.82, + "probability": 0.7607 + }, + { + "start": 1636.46, + "end": 1636.96, + "probability": 0.922 + }, + { + "start": 1637.2, + "end": 1638.78, + "probability": 0.9855 + }, + { + "start": 1639.26, + "end": 1641.36, + "probability": 0.8524 + }, + { + "start": 1642.22, + "end": 1645.84, + "probability": 0.9374 + }, + { + "start": 1646.26, + "end": 1648.28, + "probability": 0.9325 + }, + { + "start": 1649.04, + "end": 1654.36, + "probability": 0.9849 + }, + { + "start": 1655.76, + "end": 1657.98, + "probability": 0.9962 + }, + { + "start": 1658.52, + "end": 1659.78, + "probability": 0.999 + }, + { + "start": 1660.44, + "end": 1662.58, + "probability": 0.9839 + }, + { + "start": 1663.2, + "end": 1664.78, + "probability": 0.7906 + }, + { + "start": 1665.4, + "end": 1668.28, + "probability": 0.9897 + }, + { + "start": 1668.38, + "end": 1671.48, + "probability": 0.9988 + }, + { + "start": 1671.7, + "end": 1672.06, + "probability": 0.7446 + }, + { + "start": 1673.38, + "end": 1674.02, + "probability": 0.733 + }, + { + "start": 1674.14, + "end": 1675.84, + "probability": 0.9779 + }, + { + "start": 1681.76, + "end": 1682.18, + "probability": 0.1479 + }, + { + "start": 1700.08, + "end": 1702.68, + "probability": 0.7843 + }, + { + "start": 1706.26, + "end": 1713.14, + "probability": 0.913 + }, + { + "start": 1713.14, + "end": 1717.08, + "probability": 0.8832 + }, + { + "start": 1719.22, + "end": 1720.6, + "probability": 0.9412 + }, + { + "start": 1721.44, + "end": 1724.04, + "probability": 0.9366 + }, + { + "start": 1726.44, + "end": 1728.36, + "probability": 0.9126 + }, + { + "start": 1729.32, + "end": 1732.92, + "probability": 0.992 + }, + { + "start": 1735.1, + "end": 1735.52, + "probability": 0.9725 + }, + { + "start": 1737.44, + "end": 1739.28, + "probability": 0.593 + }, + { + "start": 1739.44, + "end": 1739.8, + "probability": 0.8319 + }, + { + "start": 1740.26, + "end": 1741.26, + "probability": 0.9097 + }, + { + "start": 1741.42, + "end": 1742.1, + "probability": 0.7449 + }, + { + "start": 1743.22, + "end": 1746.38, + "probability": 0.9629 + }, + { + "start": 1747.0, + "end": 1750.92, + "probability": 0.9263 + }, + { + "start": 1754.96, + "end": 1757.64, + "probability": 0.9569 + }, + { + "start": 1759.24, + "end": 1759.74, + "probability": 0.9914 + }, + { + "start": 1761.28, + "end": 1762.15, + "probability": 0.8 + }, + { + "start": 1764.78, + "end": 1765.74, + "probability": 0.6659 + }, + { + "start": 1766.67, + "end": 1769.18, + "probability": 0.9715 + }, + { + "start": 1770.12, + "end": 1771.16, + "probability": 0.7821 + }, + { + "start": 1771.28, + "end": 1772.48, + "probability": 0.6299 + }, + { + "start": 1774.36, + "end": 1776.8, + "probability": 0.48 + }, + { + "start": 1777.14, + "end": 1778.66, + "probability": 0.9099 + }, + { + "start": 1779.3, + "end": 1785.74, + "probability": 0.979 + }, + { + "start": 1786.58, + "end": 1788.16, + "probability": 0.4985 + }, + { + "start": 1788.68, + "end": 1791.66, + "probability": 0.938 + }, + { + "start": 1791.66, + "end": 1793.32, + "probability": 0.949 + }, + { + "start": 1793.32, + "end": 1793.66, + "probability": 0.0752 + }, + { + "start": 1793.66, + "end": 1794.1, + "probability": 0.435 + }, + { + "start": 1795.36, + "end": 1799.1, + "probability": 0.9223 + }, + { + "start": 1802.1, + "end": 1802.54, + "probability": 0.7252 + }, + { + "start": 1803.02, + "end": 1804.76, + "probability": 0.0147 + }, + { + "start": 1804.9, + "end": 1804.96, + "probability": 0.0385 + }, + { + "start": 1804.96, + "end": 1806.18, + "probability": 0.4841 + }, + { + "start": 1806.74, + "end": 1807.4, + "probability": 0.0979 + }, + { + "start": 1807.48, + "end": 1808.34, + "probability": 0.4744 + }, + { + "start": 1809.96, + "end": 1815.14, + "probability": 0.9915 + }, + { + "start": 1815.92, + "end": 1817.4, + "probability": 0.5073 + }, + { + "start": 1818.86, + "end": 1825.23, + "probability": 0.9785 + }, + { + "start": 1826.42, + "end": 1827.68, + "probability": 0.7742 + }, + { + "start": 1828.92, + "end": 1830.18, + "probability": 0.9158 + }, + { + "start": 1831.32, + "end": 1831.98, + "probability": 0.9429 + }, + { + "start": 1833.72, + "end": 1834.52, + "probability": 0.6233 + }, + { + "start": 1835.08, + "end": 1839.28, + "probability": 0.9833 + }, + { + "start": 1839.38, + "end": 1840.7, + "probability": 0.921 + }, + { + "start": 1841.76, + "end": 1842.28, + "probability": 0.9457 + }, + { + "start": 1843.5, + "end": 1845.82, + "probability": 0.9033 + }, + { + "start": 1846.28, + "end": 1849.68, + "probability": 0.9459 + }, + { + "start": 1850.34, + "end": 1851.48, + "probability": 0.6002 + }, + { + "start": 1852.84, + "end": 1853.86, + "probability": 0.7343 + }, + { + "start": 1854.54, + "end": 1856.46, + "probability": 0.6645 + }, + { + "start": 1856.48, + "end": 1857.6, + "probability": 0.1104 + }, + { + "start": 1858.56, + "end": 1859.7, + "probability": 0.2673 + }, + { + "start": 1860.32, + "end": 1861.36, + "probability": 0.2501 + }, + { + "start": 1863.32, + "end": 1864.02, + "probability": 0.2498 + }, + { + "start": 1864.51, + "end": 1865.14, + "probability": 0.0762 + }, + { + "start": 1865.14, + "end": 1867.22, + "probability": 0.338 + }, + { + "start": 1867.22, + "end": 1869.3, + "probability": 0.5786 + }, + { + "start": 1869.68, + "end": 1870.36, + "probability": 0.4616 + }, + { + "start": 1870.5, + "end": 1872.42, + "probability": 0.0659 + }, + { + "start": 1873.24, + "end": 1874.34, + "probability": 0.0299 + }, + { + "start": 1875.06, + "end": 1875.16, + "probability": 0.3578 + }, + { + "start": 1876.2, + "end": 1877.32, + "probability": 0.1802 + }, + { + "start": 1877.32, + "end": 1877.32, + "probability": 0.0375 + }, + { + "start": 1877.32, + "end": 1877.32, + "probability": 0.3011 + }, + { + "start": 1877.32, + "end": 1881.12, + "probability": 0.7076 + }, + { + "start": 1884.08, + "end": 1884.28, + "probability": 0.1278 + }, + { + "start": 1884.28, + "end": 1885.72, + "probability": 0.2067 + }, + { + "start": 1885.8, + "end": 1886.74, + "probability": 0.6877 + }, + { + "start": 1887.74, + "end": 1890.38, + "probability": 0.9504 + }, + { + "start": 1890.78, + "end": 1891.4, + "probability": 0.9023 + }, + { + "start": 1891.9, + "end": 1892.63, + "probability": 0.939 + }, + { + "start": 1893.06, + "end": 1893.8, + "probability": 0.8695 + }, + { + "start": 1894.8, + "end": 1896.0, + "probability": 0.865 + }, + { + "start": 1896.66, + "end": 1897.22, + "probability": 0.9816 + }, + { + "start": 1898.08, + "end": 1898.96, + "probability": 0.8758 + }, + { + "start": 1901.32, + "end": 1902.96, + "probability": 0.4449 + }, + { + "start": 1903.1, + "end": 1906.26, + "probability": 0.9944 + }, + { + "start": 1906.34, + "end": 1907.16, + "probability": 0.6474 + }, + { + "start": 1907.22, + "end": 1910.98, + "probability": 0.7479 + }, + { + "start": 1911.14, + "end": 1912.14, + "probability": 0.0194 + }, + { + "start": 1913.02, + "end": 1913.84, + "probability": 0.3199 + }, + { + "start": 1914.42, + "end": 1915.1, + "probability": 0.5063 + }, + { + "start": 1916.56, + "end": 1919.84, + "probability": 0.7334 + }, + { + "start": 1921.46, + "end": 1924.68, + "probability": 0.9546 + }, + { + "start": 1925.64, + "end": 1927.74, + "probability": 0.9886 + }, + { + "start": 1928.48, + "end": 1935.14, + "probability": 0.9739 + }, + { + "start": 1936.2, + "end": 1938.22, + "probability": 0.7427 + }, + { + "start": 1939.3, + "end": 1941.72, + "probability": 0.6251 + }, + { + "start": 1943.38, + "end": 1945.02, + "probability": 0.9874 + }, + { + "start": 1945.94, + "end": 1948.72, + "probability": 0.8331 + }, + { + "start": 1949.68, + "end": 1953.34, + "probability": 0.6882 + }, + { + "start": 1954.16, + "end": 1956.86, + "probability": 0.6146 + }, + { + "start": 1957.66, + "end": 1958.7, + "probability": 0.9348 + }, + { + "start": 1960.06, + "end": 1962.86, + "probability": 0.9839 + }, + { + "start": 1963.78, + "end": 1964.06, + "probability": 0.6329 + }, + { + "start": 1966.82, + "end": 1968.12, + "probability": 0.9393 + }, + { + "start": 1968.72, + "end": 1970.6, + "probability": 0.7562 + }, + { + "start": 1971.28, + "end": 1973.14, + "probability": 0.9678 + }, + { + "start": 1974.18, + "end": 1975.44, + "probability": 0.9857 + }, + { + "start": 1978.07, + "end": 1980.86, + "probability": 0.9902 + }, + { + "start": 1980.96, + "end": 1982.16, + "probability": 0.8448 + }, + { + "start": 1982.26, + "end": 1982.64, + "probability": 0.8597 + }, + { + "start": 1983.86, + "end": 1985.24, + "probability": 0.9667 + }, + { + "start": 1986.26, + "end": 1993.68, + "probability": 0.9282 + }, + { + "start": 1993.96, + "end": 1994.26, + "probability": 0.1085 + }, + { + "start": 1994.48, + "end": 1994.9, + "probability": 0.222 + }, + { + "start": 1995.36, + "end": 1998.0, + "probability": 0.8684 + }, + { + "start": 1998.38, + "end": 1999.64, + "probability": 0.9719 + }, + { + "start": 2000.34, + "end": 2000.54, + "probability": 0.0805 + }, + { + "start": 2000.7, + "end": 2000.96, + "probability": 0.1947 + }, + { + "start": 2000.96, + "end": 2002.54, + "probability": 0.5966 + }, + { + "start": 2004.42, + "end": 2006.86, + "probability": 0.2705 + }, + { + "start": 2007.44, + "end": 2008.82, + "probability": 0.5121 + }, + { + "start": 2008.9, + "end": 2011.38, + "probability": 0.5455 + }, + { + "start": 2012.2, + "end": 2012.42, + "probability": 0.725 + }, + { + "start": 2016.94, + "end": 2019.36, + "probability": 0.8782 + }, + { + "start": 2029.44, + "end": 2030.7, + "probability": 0.3238 + }, + { + "start": 2031.82, + "end": 2034.94, + "probability": 0.0475 + }, + { + "start": 2036.1, + "end": 2037.67, + "probability": 0.6242 + }, + { + "start": 2037.72, + "end": 2041.44, + "probability": 0.4941 + }, + { + "start": 2042.6, + "end": 2043.62, + "probability": 0.0722 + }, + { + "start": 2048.16, + "end": 2048.54, + "probability": 0.5834 + }, + { + "start": 2048.62, + "end": 2049.58, + "probability": 0.9475 + }, + { + "start": 2049.78, + "end": 2049.96, + "probability": 0.8029 + }, + { + "start": 2050.12, + "end": 2052.48, + "probability": 0.8948 + }, + { + "start": 2053.56, + "end": 2055.3, + "probability": 0.949 + }, + { + "start": 2055.6, + "end": 2058.46, + "probability": 0.8956 + }, + { + "start": 2059.0, + "end": 2060.32, + "probability": 0.9198 + }, + { + "start": 2060.56, + "end": 2062.04, + "probability": 0.947 + }, + { + "start": 2062.22, + "end": 2062.56, + "probability": 0.4411 + }, + { + "start": 2062.92, + "end": 2064.36, + "probability": 0.8969 + }, + { + "start": 2064.98, + "end": 2067.2, + "probability": 0.6727 + }, + { + "start": 2067.24, + "end": 2068.1, + "probability": 0.8241 + }, + { + "start": 2068.44, + "end": 2069.28, + "probability": 0.5851 + }, + { + "start": 2069.42, + "end": 2071.3, + "probability": 0.8735 + }, + { + "start": 2071.64, + "end": 2073.74, + "probability": 0.9285 + }, + { + "start": 2074.02, + "end": 2077.74, + "probability": 0.8789 + }, + { + "start": 2077.74, + "end": 2081.18, + "probability": 0.991 + }, + { + "start": 2081.22, + "end": 2083.72, + "probability": 0.8374 + }, + { + "start": 2084.2, + "end": 2084.98, + "probability": 0.8737 + }, + { + "start": 2085.54, + "end": 2086.81, + "probability": 0.3305 + }, + { + "start": 2087.58, + "end": 2088.9, + "probability": 0.9951 + }, + { + "start": 2089.3, + "end": 2092.44, + "probability": 0.9956 + }, + { + "start": 2094.2, + "end": 2098.42, + "probability": 0.6888 + }, + { + "start": 2100.5, + "end": 2102.0, + "probability": 0.652 + }, + { + "start": 2102.78, + "end": 2107.54, + "probability": 0.9861 + }, + { + "start": 2108.92, + "end": 2110.34, + "probability": 0.917 + }, + { + "start": 2110.44, + "end": 2114.56, + "probability": 0.9978 + }, + { + "start": 2114.94, + "end": 2118.4, + "probability": 0.989 + }, + { + "start": 2118.46, + "end": 2119.54, + "probability": 0.5682 + }, + { + "start": 2120.14, + "end": 2123.96, + "probability": 0.984 + }, + { + "start": 2124.12, + "end": 2127.6, + "probability": 0.8398 + }, + { + "start": 2128.56, + "end": 2129.02, + "probability": 0.9003 + }, + { + "start": 2129.46, + "end": 2130.76, + "probability": 0.9569 + }, + { + "start": 2130.98, + "end": 2134.56, + "probability": 0.9863 + }, + { + "start": 2135.06, + "end": 2136.28, + "probability": 0.9034 + }, + { + "start": 2136.34, + "end": 2137.02, + "probability": 0.4695 + }, + { + "start": 2137.4, + "end": 2137.44, + "probability": 0.9092 + }, + { + "start": 2138.16, + "end": 2142.18, + "probability": 0.9088 + }, + { + "start": 2142.98, + "end": 2145.56, + "probability": 0.9135 + }, + { + "start": 2146.32, + "end": 2146.9, + "probability": 0.5437 + }, + { + "start": 2147.22, + "end": 2150.52, + "probability": 0.9682 + }, + { + "start": 2150.56, + "end": 2155.02, + "probability": 0.744 + }, + { + "start": 2155.06, + "end": 2159.6, + "probability": 0.9443 + }, + { + "start": 2159.66, + "end": 2162.9, + "probability": 0.7925 + }, + { + "start": 2163.66, + "end": 2170.1, + "probability": 0.8384 + }, + { + "start": 2170.62, + "end": 2171.93, + "probability": 0.9736 + }, + { + "start": 2172.72, + "end": 2176.36, + "probability": 0.8838 + }, + { + "start": 2176.92, + "end": 2179.26, + "probability": 0.8421 + }, + { + "start": 2179.78, + "end": 2186.76, + "probability": 0.952 + }, + { + "start": 2187.54, + "end": 2188.46, + "probability": 0.5094 + }, + { + "start": 2188.78, + "end": 2191.76, + "probability": 0.9264 + }, + { + "start": 2191.88, + "end": 2194.58, + "probability": 0.8091 + }, + { + "start": 2195.08, + "end": 2196.5, + "probability": 0.5181 + }, + { + "start": 2197.1, + "end": 2197.84, + "probability": 0.2517 + }, + { + "start": 2198.16, + "end": 2204.04, + "probability": 0.9674 + }, + { + "start": 2204.12, + "end": 2208.7, + "probability": 0.9781 + }, + { + "start": 2208.78, + "end": 2209.8, + "probability": 0.9199 + }, + { + "start": 2210.54, + "end": 2213.76, + "probability": 0.9777 + }, + { + "start": 2213.92, + "end": 2215.98, + "probability": 0.7538 + }, + { + "start": 2216.1, + "end": 2218.64, + "probability": 0.6882 + }, + { + "start": 2219.76, + "end": 2221.44, + "probability": 0.0478 + }, + { + "start": 2221.44, + "end": 2225.92, + "probability": 0.892 + }, + { + "start": 2225.96, + "end": 2230.8, + "probability": 0.9862 + }, + { + "start": 2230.8, + "end": 2235.24, + "probability": 0.9979 + }, + { + "start": 2235.62, + "end": 2238.96, + "probability": 0.8644 + }, + { + "start": 2240.02, + "end": 2243.7, + "probability": 0.9788 + }, + { + "start": 2243.78, + "end": 2245.32, + "probability": 0.6789 + }, + { + "start": 2245.68, + "end": 2246.62, + "probability": 0.9425 + }, + { + "start": 2246.72, + "end": 2250.22, + "probability": 0.966 + }, + { + "start": 2251.2, + "end": 2258.32, + "probability": 0.647 + }, + { + "start": 2258.52, + "end": 2263.02, + "probability": 0.9547 + }, + { + "start": 2263.12, + "end": 2267.56, + "probability": 0.9543 + }, + { + "start": 2267.75, + "end": 2272.7, + "probability": 0.9792 + }, + { + "start": 2272.78, + "end": 2274.86, + "probability": 0.6652 + }, + { + "start": 2275.04, + "end": 2278.92, + "probability": 0.6998 + }, + { + "start": 2279.1, + "end": 2280.48, + "probability": 0.6478 + }, + { + "start": 2280.6, + "end": 2283.62, + "probability": 0.9871 + }, + { + "start": 2283.78, + "end": 2290.5, + "probability": 0.7935 + }, + { + "start": 2290.97, + "end": 2294.1, + "probability": 0.9849 + }, + { + "start": 2294.68, + "end": 2297.1, + "probability": 0.9832 + }, + { + "start": 2297.56, + "end": 2299.66, + "probability": 0.8457 + }, + { + "start": 2299.7, + "end": 2301.6, + "probability": 0.9461 + }, + { + "start": 2301.62, + "end": 2306.0, + "probability": 0.8826 + }, + { + "start": 2306.3, + "end": 2308.62, + "probability": 0.848 + }, + { + "start": 2309.28, + "end": 2312.3, + "probability": 0.9885 + }, + { + "start": 2312.3, + "end": 2314.96, + "probability": 0.907 + }, + { + "start": 2315.33, + "end": 2318.88, + "probability": 0.5873 + }, + { + "start": 2319.06, + "end": 2323.84, + "probability": 0.8434 + }, + { + "start": 2324.06, + "end": 2325.38, + "probability": 0.9612 + }, + { + "start": 2325.86, + "end": 2329.72, + "probability": 0.9009 + }, + { + "start": 2329.9, + "end": 2330.6, + "probability": 0.5768 + }, + { + "start": 2331.04, + "end": 2333.36, + "probability": 0.5895 + }, + { + "start": 2333.9, + "end": 2338.38, + "probability": 0.9217 + }, + { + "start": 2338.64, + "end": 2339.38, + "probability": 0.9147 + }, + { + "start": 2339.9, + "end": 2340.5, + "probability": 0.5664 + }, + { + "start": 2341.14, + "end": 2345.88, + "probability": 0.8887 + }, + { + "start": 2346.34, + "end": 2349.1, + "probability": 0.5554 + }, + { + "start": 2349.26, + "end": 2350.72, + "probability": 0.9719 + }, + { + "start": 2350.8, + "end": 2351.82, + "probability": 0.9395 + }, + { + "start": 2352.3, + "end": 2354.88, + "probability": 0.9956 + }, + { + "start": 2355.4, + "end": 2357.18, + "probability": 0.7602 + }, + { + "start": 2357.38, + "end": 2359.66, + "probability": 0.8693 + }, + { + "start": 2360.12, + "end": 2363.05, + "probability": 0.9957 + }, + { + "start": 2363.12, + "end": 2368.18, + "probability": 0.9708 + }, + { + "start": 2368.68, + "end": 2369.92, + "probability": 0.8472 + }, + { + "start": 2370.24, + "end": 2376.02, + "probability": 0.9292 + }, + { + "start": 2376.46, + "end": 2379.48, + "probability": 0.9681 + }, + { + "start": 2379.96, + "end": 2381.64, + "probability": 0.9969 + }, + { + "start": 2382.7, + "end": 2387.66, + "probability": 0.991 + }, + { + "start": 2388.02, + "end": 2394.08, + "probability": 0.993 + }, + { + "start": 2394.22, + "end": 2394.62, + "probability": 0.7366 + }, + { + "start": 2394.78, + "end": 2396.4, + "probability": 0.5892 + }, + { + "start": 2397.92, + "end": 2400.4, + "probability": 0.948 + }, + { + "start": 2402.66, + "end": 2403.64, + "probability": 0.8454 + }, + { + "start": 2404.74, + "end": 2405.18, + "probability": 0.0629 + }, + { + "start": 2423.88, + "end": 2424.48, + "probability": 0.1637 + }, + { + "start": 2424.48, + "end": 2424.82, + "probability": 0.3475 + }, + { + "start": 2424.84, + "end": 2424.94, + "probability": 0.0795 + }, + { + "start": 2440.04, + "end": 2442.04, + "probability": 0.3172 + }, + { + "start": 2443.86, + "end": 2445.42, + "probability": 0.8424 + }, + { + "start": 2447.0, + "end": 2451.12, + "probability": 0.9439 + }, + { + "start": 2453.0, + "end": 2454.22, + "probability": 0.8693 + }, + { + "start": 2455.3, + "end": 2456.88, + "probability": 0.9727 + }, + { + "start": 2457.96, + "end": 2459.2, + "probability": 0.8453 + }, + { + "start": 2459.72, + "end": 2462.18, + "probability": 0.9708 + }, + { + "start": 2463.34, + "end": 2463.76, + "probability": 0.8605 + }, + { + "start": 2464.42, + "end": 2465.72, + "probability": 0.9729 + }, + { + "start": 2469.06, + "end": 2480.22, + "probability": 0.9924 + }, + { + "start": 2480.86, + "end": 2483.82, + "probability": 0.9977 + }, + { + "start": 2484.5, + "end": 2485.6, + "probability": 0.9773 + }, + { + "start": 2487.66, + "end": 2490.0, + "probability": 0.9963 + }, + { + "start": 2491.62, + "end": 2493.62, + "probability": 0.5146 + }, + { + "start": 2495.64, + "end": 2496.55, + "probability": 0.7903 + }, + { + "start": 2497.44, + "end": 2498.66, + "probability": 0.9932 + }, + { + "start": 2500.46, + "end": 2510.24, + "probability": 0.9817 + }, + { + "start": 2512.18, + "end": 2514.38, + "probability": 0.8229 + }, + { + "start": 2516.02, + "end": 2519.5, + "probability": 0.9924 + }, + { + "start": 2520.62, + "end": 2521.6, + "probability": 0.7497 + }, + { + "start": 2522.38, + "end": 2524.64, + "probability": 0.9139 + }, + { + "start": 2526.68, + "end": 2528.8, + "probability": 0.9034 + }, + { + "start": 2529.84, + "end": 2530.72, + "probability": 0.7389 + }, + { + "start": 2533.08, + "end": 2534.56, + "probability": 0.7193 + }, + { + "start": 2535.46, + "end": 2539.48, + "probability": 0.9624 + }, + { + "start": 2540.3, + "end": 2545.64, + "probability": 0.843 + }, + { + "start": 2546.34, + "end": 2547.42, + "probability": 0.6026 + }, + { + "start": 2548.12, + "end": 2552.82, + "probability": 0.9258 + }, + { + "start": 2553.74, + "end": 2555.24, + "probability": 0.8892 + }, + { + "start": 2556.0, + "end": 2557.46, + "probability": 0.9547 + }, + { + "start": 2558.34, + "end": 2559.36, + "probability": 0.9665 + }, + { + "start": 2559.5, + "end": 2560.84, + "probability": 0.9298 + }, + { + "start": 2561.24, + "end": 2563.48, + "probability": 0.8747 + }, + { + "start": 2564.08, + "end": 2569.84, + "probability": 0.8426 + }, + { + "start": 2570.48, + "end": 2574.62, + "probability": 0.9597 + }, + { + "start": 2575.2, + "end": 2578.42, + "probability": 0.9932 + }, + { + "start": 2579.48, + "end": 2580.66, + "probability": 0.9399 + }, + { + "start": 2581.44, + "end": 2582.82, + "probability": 0.9913 + }, + { + "start": 2584.38, + "end": 2587.72, + "probability": 0.8386 + }, + { + "start": 2588.42, + "end": 2589.91, + "probability": 0.5055 + }, + { + "start": 2591.42, + "end": 2593.22, + "probability": 0.8062 + }, + { + "start": 2593.88, + "end": 2595.1, + "probability": 0.9512 + }, + { + "start": 2596.24, + "end": 2604.28, + "probability": 0.8467 + }, + { + "start": 2604.8, + "end": 2605.16, + "probability": 0.1879 + }, + { + "start": 2606.42, + "end": 2610.2, + "probability": 0.2195 + }, + { + "start": 2618.36, + "end": 2619.96, + "probability": 0.6277 + }, + { + "start": 2621.1, + "end": 2622.56, + "probability": 0.8906 + }, + { + "start": 2625.16, + "end": 2625.66, + "probability": 0.8312 + }, + { + "start": 2626.76, + "end": 2627.4, + "probability": 0.9585 + }, + { + "start": 2628.08, + "end": 2629.16, + "probability": 0.9855 + }, + { + "start": 2630.56, + "end": 2634.54, + "probability": 0.9803 + }, + { + "start": 2635.86, + "end": 2638.74, + "probability": 0.9432 + }, + { + "start": 2639.3, + "end": 2639.8, + "probability": 0.5159 + }, + { + "start": 2640.68, + "end": 2644.5, + "probability": 0.9709 + }, + { + "start": 2646.34, + "end": 2653.3, + "probability": 0.9304 + }, + { + "start": 2653.66, + "end": 2654.9, + "probability": 0.8092 + }, + { + "start": 2656.0, + "end": 2658.34, + "probability": 0.9461 + }, + { + "start": 2659.86, + "end": 2661.08, + "probability": 0.818 + }, + { + "start": 2662.46, + "end": 2663.48, + "probability": 0.9072 + }, + { + "start": 2664.84, + "end": 2669.39, + "probability": 0.928 + }, + { + "start": 2670.2, + "end": 2671.44, + "probability": 0.5803 + }, + { + "start": 2672.46, + "end": 2673.96, + "probability": 0.9872 + }, + { + "start": 2675.58, + "end": 2675.68, + "probability": 0.4637 + }, + { + "start": 2677.76, + "end": 2679.72, + "probability": 0.7199 + }, + { + "start": 2680.14, + "end": 2682.76, + "probability": 0.9152 + }, + { + "start": 2682.76, + "end": 2686.96, + "probability": 0.7368 + }, + { + "start": 2686.96, + "end": 2687.54, + "probability": 0.0004 + }, + { + "start": 2687.72, + "end": 2692.66, + "probability": 0.8892 + }, + { + "start": 2694.54, + "end": 2695.14, + "probability": 0.4 + }, + { + "start": 2695.74, + "end": 2696.66, + "probability": 0.9512 + }, + { + "start": 2696.86, + "end": 2697.86, + "probability": 0.8524 + }, + { + "start": 2698.4, + "end": 2700.62, + "probability": 0.9844 + }, + { + "start": 2701.52, + "end": 2709.74, + "probability": 0.9753 + }, + { + "start": 2710.08, + "end": 2715.24, + "probability": 0.9932 + }, + { + "start": 2716.26, + "end": 2721.98, + "probability": 0.9972 + }, + { + "start": 2722.4, + "end": 2723.08, + "probability": 0.8538 + }, + { + "start": 2723.58, + "end": 2725.01, + "probability": 0.9609 + }, + { + "start": 2725.78, + "end": 2728.79, + "probability": 0.9715 + }, + { + "start": 2729.52, + "end": 2736.16, + "probability": 0.9327 + }, + { + "start": 2736.62, + "end": 2737.28, + "probability": 0.7744 + }, + { + "start": 2737.38, + "end": 2738.5, + "probability": 0.9583 + }, + { + "start": 2742.72, + "end": 2744.86, + "probability": 0.7018 + }, + { + "start": 2746.94, + "end": 2750.24, + "probability": 0.9867 + }, + { + "start": 2751.78, + "end": 2752.82, + "probability": 0.7816 + }, + { + "start": 2753.8, + "end": 2754.18, + "probability": 0.9608 + }, + { + "start": 2755.28, + "end": 2755.68, + "probability": 0.3537 + }, + { + "start": 2755.76, + "end": 2757.06, + "probability": 0.6788 + }, + { + "start": 2757.12, + "end": 2758.24, + "probability": 0.8687 + }, + { + "start": 2780.62, + "end": 2780.7, + "probability": 0.0147 + }, + { + "start": 2780.7, + "end": 2781.04, + "probability": 0.797 + }, + { + "start": 2781.58, + "end": 2784.36, + "probability": 0.6652 + }, + { + "start": 2785.3, + "end": 2786.66, + "probability": 0.8765 + }, + { + "start": 2788.18, + "end": 2792.72, + "probability": 0.9236 + }, + { + "start": 2793.76, + "end": 2797.0, + "probability": 0.998 + }, + { + "start": 2797.0, + "end": 2802.08, + "probability": 0.9873 + }, + { + "start": 2803.36, + "end": 2808.56, + "probability": 0.8128 + }, + { + "start": 2809.72, + "end": 2811.74, + "probability": 0.9933 + }, + { + "start": 2812.24, + "end": 2813.48, + "probability": 0.9249 + }, + { + "start": 2813.88, + "end": 2816.22, + "probability": 0.9378 + }, + { + "start": 2817.3, + "end": 2819.8, + "probability": 0.9749 + }, + { + "start": 2820.32, + "end": 2820.68, + "probability": 0.7692 + }, + { + "start": 2820.78, + "end": 2821.4, + "probability": 0.8857 + }, + { + "start": 2821.88, + "end": 2826.96, + "probability": 0.9375 + }, + { + "start": 2827.36, + "end": 2829.64, + "probability": 0.9469 + }, + { + "start": 2830.16, + "end": 2832.24, + "probability": 0.9852 + }, + { + "start": 2832.62, + "end": 2833.8, + "probability": 0.8354 + }, + { + "start": 2834.18, + "end": 2835.42, + "probability": 0.8168 + }, + { + "start": 2835.58, + "end": 2836.64, + "probability": 0.9495 + }, + { + "start": 2837.0, + "end": 2838.5, + "probability": 0.9575 + }, + { + "start": 2839.68, + "end": 2840.24, + "probability": 0.9631 + }, + { + "start": 2841.26, + "end": 2844.74, + "probability": 0.9875 + }, + { + "start": 2844.74, + "end": 2850.14, + "probability": 0.9774 + }, + { + "start": 2851.2, + "end": 2854.94, + "probability": 0.4052 + }, + { + "start": 2855.4, + "end": 2857.66, + "probability": 0.9257 + }, + { + "start": 2857.76, + "end": 2859.92, + "probability": 0.7141 + }, + { + "start": 2860.7, + "end": 2864.6, + "probability": 0.8753 + }, + { + "start": 2865.72, + "end": 2868.52, + "probability": 0.9028 + }, + { + "start": 2869.24, + "end": 2872.2, + "probability": 0.8547 + }, + { + "start": 2872.46, + "end": 2876.94, + "probability": 0.9851 + }, + { + "start": 2877.88, + "end": 2880.72, + "probability": 0.9398 + }, + { + "start": 2881.08, + "end": 2885.98, + "probability": 0.9827 + }, + { + "start": 2886.52, + "end": 2888.68, + "probability": 0.7761 + }, + { + "start": 2889.36, + "end": 2890.82, + "probability": 0.8361 + }, + { + "start": 2891.04, + "end": 2892.08, + "probability": 0.9107 + }, + { + "start": 2892.78, + "end": 2895.74, + "probability": 0.9984 + }, + { + "start": 2896.24, + "end": 2897.64, + "probability": 0.7818 + }, + { + "start": 2898.06, + "end": 2902.02, + "probability": 0.907 + }, + { + "start": 2902.52, + "end": 2907.12, + "probability": 0.9531 + }, + { + "start": 2908.32, + "end": 2910.1, + "probability": 0.9941 + }, + { + "start": 2910.94, + "end": 2916.3, + "probability": 0.9573 + }, + { + "start": 2917.44, + "end": 2922.1, + "probability": 0.9053 + }, + { + "start": 2922.54, + "end": 2924.36, + "probability": 0.9823 + }, + { + "start": 2925.2, + "end": 2929.5, + "probability": 0.7084 + }, + { + "start": 2929.52, + "end": 2929.96, + "probability": 0.3533 + }, + { + "start": 2930.54, + "end": 2933.72, + "probability": 0.9745 + }, + { + "start": 2934.48, + "end": 2936.52, + "probability": 0.8644 + }, + { + "start": 2937.04, + "end": 2940.6, + "probability": 0.8083 + }, + { + "start": 2941.38, + "end": 2945.44, + "probability": 0.9904 + }, + { + "start": 2946.0, + "end": 2946.66, + "probability": 0.8768 + }, + { + "start": 2947.48, + "end": 2948.96, + "probability": 0.9548 + }, + { + "start": 2949.44, + "end": 2953.24, + "probability": 0.9893 + }, + { + "start": 2953.9, + "end": 2955.54, + "probability": 0.8881 + }, + { + "start": 2955.8, + "end": 2957.67, + "probability": 0.7452 + }, + { + "start": 2957.84, + "end": 2960.72, + "probability": 0.9606 + }, + { + "start": 2961.26, + "end": 2963.76, + "probability": 0.8762 + }, + { + "start": 2963.86, + "end": 2964.74, + "probability": 0.7229 + }, + { + "start": 2964.78, + "end": 2966.76, + "probability": 0.958 + }, + { + "start": 2967.48, + "end": 2970.6, + "probability": 0.6816 + }, + { + "start": 2971.08, + "end": 2973.76, + "probability": 0.9061 + }, + { + "start": 2973.8, + "end": 2976.74, + "probability": 0.9956 + }, + { + "start": 2977.12, + "end": 2981.18, + "probability": 0.7879 + }, + { + "start": 2982.34, + "end": 2983.86, + "probability": 0.7495 + }, + { + "start": 2983.96, + "end": 2988.7, + "probability": 0.8612 + }, + { + "start": 2989.5, + "end": 2995.86, + "probability": 0.9253 + }, + { + "start": 2996.56, + "end": 3000.58, + "probability": 0.9697 + }, + { + "start": 3001.2, + "end": 3003.76, + "probability": 0.9989 + }, + { + "start": 3003.76, + "end": 3006.34, + "probability": 0.9881 + }, + { + "start": 3006.84, + "end": 3007.14, + "probability": 0.8312 + }, + { + "start": 3007.58, + "end": 3008.4, + "probability": 0.9489 + }, + { + "start": 3009.18, + "end": 3011.36, + "probability": 0.9813 + }, + { + "start": 3011.76, + "end": 3017.74, + "probability": 0.9323 + }, + { + "start": 3018.68, + "end": 3021.96, + "probability": 0.9429 + }, + { + "start": 3022.62, + "end": 3024.46, + "probability": 0.6272 + }, + { + "start": 3024.92, + "end": 3026.42, + "probability": 0.9402 + }, + { + "start": 3026.68, + "end": 3028.95, + "probability": 0.9919 + }, + { + "start": 3030.04, + "end": 3033.22, + "probability": 0.9351 + }, + { + "start": 3033.22, + "end": 3037.54, + "probability": 0.9895 + }, + { + "start": 3039.7, + "end": 3043.24, + "probability": 0.9948 + }, + { + "start": 3043.32, + "end": 3044.82, + "probability": 0.9574 + }, + { + "start": 3044.94, + "end": 3046.94, + "probability": 0.8372 + }, + { + "start": 3047.56, + "end": 3049.56, + "probability": 0.9907 + }, + { + "start": 3050.76, + "end": 3051.84, + "probability": 0.8802 + }, + { + "start": 3052.78, + "end": 3055.32, + "probability": 0.979 + }, + { + "start": 3055.32, + "end": 3060.16, + "probability": 0.8359 + }, + { + "start": 3061.06, + "end": 3065.32, + "probability": 0.9633 + }, + { + "start": 3066.3, + "end": 3070.16, + "probability": 0.8498 + }, + { + "start": 3071.12, + "end": 3071.44, + "probability": 0.5726 + }, + { + "start": 3072.66, + "end": 3074.62, + "probability": 0.9605 + }, + { + "start": 3076.06, + "end": 3078.66, + "probability": 0.6868 + }, + { + "start": 3079.38, + "end": 3079.68, + "probability": 0.409 + }, + { + "start": 3079.8, + "end": 3080.72, + "probability": 0.9254 + }, + { + "start": 3080.88, + "end": 3082.7, + "probability": 0.9545 + }, + { + "start": 3083.22, + "end": 3083.68, + "probability": 0.9514 + }, + { + "start": 3084.7, + "end": 3087.88, + "probability": 0.8487 + }, + { + "start": 3087.88, + "end": 3090.42, + "probability": 0.9552 + }, + { + "start": 3091.36, + "end": 3093.0, + "probability": 0.7299 + }, + { + "start": 3093.62, + "end": 3098.4, + "probability": 0.9916 + }, + { + "start": 3100.54, + "end": 3104.14, + "probability": 0.988 + }, + { + "start": 3105.3, + "end": 3109.64, + "probability": 0.9169 + }, + { + "start": 3110.84, + "end": 3114.32, + "probability": 0.9912 + }, + { + "start": 3114.32, + "end": 3119.9, + "probability": 0.9463 + }, + { + "start": 3120.02, + "end": 3124.28, + "probability": 0.986 + }, + { + "start": 3124.86, + "end": 3126.5, + "probability": 0.8794 + }, + { + "start": 3127.64, + "end": 3127.88, + "probability": 0.5054 + }, + { + "start": 3128.58, + "end": 3129.2, + "probability": 0.9617 + }, + { + "start": 3129.76, + "end": 3130.24, + "probability": 0.4144 + }, + { + "start": 3130.32, + "end": 3130.94, + "probability": 0.6675 + }, + { + "start": 3131.56, + "end": 3131.92, + "probability": 0.7525 + }, + { + "start": 3132.4, + "end": 3134.1, + "probability": 0.8681 + }, + { + "start": 3134.6, + "end": 3137.5, + "probability": 0.9966 + }, + { + "start": 3137.5, + "end": 3142.56, + "probability": 0.9914 + }, + { + "start": 3142.94, + "end": 3144.18, + "probability": 0.7206 + }, + { + "start": 3144.76, + "end": 3147.3, + "probability": 0.9521 + }, + { + "start": 3147.82, + "end": 3150.14, + "probability": 0.9395 + }, + { + "start": 3150.26, + "end": 3153.76, + "probability": 0.9788 + }, + { + "start": 3155.16, + "end": 3155.74, + "probability": 0.7598 + }, + { + "start": 3158.1, + "end": 3158.7, + "probability": 0.9283 + }, + { + "start": 3159.38, + "end": 3163.64, + "probability": 0.933 + }, + { + "start": 3164.88, + "end": 3167.22, + "probability": 0.7748 + }, + { + "start": 3213.92, + "end": 3214.26, + "probability": 0.5502 + }, + { + "start": 3215.32, + "end": 3217.28, + "probability": 0.0064 + }, + { + "start": 3218.14, + "end": 3222.74, + "probability": 0.995 + }, + { + "start": 3223.7, + "end": 3227.2, + "probability": 0.8398 + }, + { + "start": 3227.68, + "end": 3231.2, + "probability": 0.8158 + }, + { + "start": 3231.6, + "end": 3232.72, + "probability": 0.9414 + }, + { + "start": 3232.94, + "end": 3233.78, + "probability": 0.8224 + }, + { + "start": 3234.36, + "end": 3236.74, + "probability": 0.9913 + }, + { + "start": 3237.92, + "end": 3241.6, + "probability": 0.9751 + }, + { + "start": 3241.7, + "end": 3242.06, + "probability": 0.4065 + }, + { + "start": 3242.16, + "end": 3245.3, + "probability": 0.9825 + }, + { + "start": 3245.36, + "end": 3247.18, + "probability": 0.9717 + }, + { + "start": 3248.44, + "end": 3253.06, + "probability": 0.9973 + }, + { + "start": 3253.06, + "end": 3259.14, + "probability": 0.998 + }, + { + "start": 3260.14, + "end": 3263.22, + "probability": 0.9847 + }, + { + "start": 3263.76, + "end": 3267.92, + "probability": 0.9954 + }, + { + "start": 3269.08, + "end": 3269.78, + "probability": 0.876 + }, + { + "start": 3270.46, + "end": 3273.84, + "probability": 0.9703 + }, + { + "start": 3273.84, + "end": 3276.86, + "probability": 0.9927 + }, + { + "start": 3276.96, + "end": 3278.94, + "probability": 0.973 + }, + { + "start": 3279.56, + "end": 3283.4, + "probability": 0.9969 + }, + { + "start": 3283.46, + "end": 3286.8, + "probability": 0.9986 + }, + { + "start": 3287.36, + "end": 3290.82, + "probability": 0.998 + }, + { + "start": 3292.28, + "end": 3293.84, + "probability": 0.7554 + }, + { + "start": 3293.88, + "end": 3295.14, + "probability": 0.9864 + }, + { + "start": 3295.22, + "end": 3298.54, + "probability": 0.988 + }, + { + "start": 3299.7, + "end": 3305.88, + "probability": 0.8387 + }, + { + "start": 3306.16, + "end": 3309.88, + "probability": 0.7981 + }, + { + "start": 3310.66, + "end": 3312.1, + "probability": 0.8777 + }, + { + "start": 3312.62, + "end": 3313.68, + "probability": 0.978 + }, + { + "start": 3314.84, + "end": 3315.46, + "probability": 0.9081 + }, + { + "start": 3315.6, + "end": 3320.32, + "probability": 0.9835 + }, + { + "start": 3320.72, + "end": 3321.44, + "probability": 0.8724 + }, + { + "start": 3321.48, + "end": 3323.7, + "probability": 0.9419 + }, + { + "start": 3324.32, + "end": 3326.48, + "probability": 0.9988 + }, + { + "start": 3326.7, + "end": 3330.14, + "probability": 0.9946 + }, + { + "start": 3330.14, + "end": 3334.54, + "probability": 0.9962 + }, + { + "start": 3336.06, + "end": 3338.18, + "probability": 0.9784 + }, + { + "start": 3338.38, + "end": 3339.56, + "probability": 0.5562 + }, + { + "start": 3340.78, + "end": 3345.96, + "probability": 0.9968 + }, + { + "start": 3346.16, + "end": 3347.12, + "probability": 0.9413 + }, + { + "start": 3348.1, + "end": 3353.24, + "probability": 0.9843 + }, + { + "start": 3353.74, + "end": 3355.24, + "probability": 0.9748 + }, + { + "start": 3355.94, + "end": 3357.8, + "probability": 0.9846 + }, + { + "start": 3358.9, + "end": 3361.14, + "probability": 0.8936 + }, + { + "start": 3362.4, + "end": 3365.48, + "probability": 0.9991 + }, + { + "start": 3366.44, + "end": 3372.02, + "probability": 0.9924 + }, + { + "start": 3372.14, + "end": 3376.98, + "probability": 0.9912 + }, + { + "start": 3378.36, + "end": 3380.8, + "probability": 0.9985 + }, + { + "start": 3380.8, + "end": 3382.88, + "probability": 0.98 + }, + { + "start": 3383.12, + "end": 3384.06, + "probability": 0.8762 + }, + { + "start": 3384.72, + "end": 3385.78, + "probability": 0.9213 + }, + { + "start": 3386.32, + "end": 3387.24, + "probability": 0.9334 + }, + { + "start": 3387.88, + "end": 3388.74, + "probability": 0.814 + }, + { + "start": 3389.5, + "end": 3394.72, + "probability": 0.9827 + }, + { + "start": 3395.02, + "end": 3395.98, + "probability": 0.7659 + }, + { + "start": 3396.56, + "end": 3398.32, + "probability": 0.993 + }, + { + "start": 3398.84, + "end": 3401.08, + "probability": 0.972 + }, + { + "start": 3401.42, + "end": 3404.84, + "probability": 0.7656 + }, + { + "start": 3405.6, + "end": 3408.71, + "probability": 0.9903 + }, + { + "start": 3409.24, + "end": 3410.1, + "probability": 0.8103 + }, + { + "start": 3410.86, + "end": 3415.7, + "probability": 0.814 + }, + { + "start": 3417.22, + "end": 3419.62, + "probability": 0.9975 + }, + { + "start": 3420.2, + "end": 3420.58, + "probability": 0.6586 + }, + { + "start": 3420.66, + "end": 3424.16, + "probability": 0.9909 + }, + { + "start": 3424.32, + "end": 3425.56, + "probability": 0.8889 + }, + { + "start": 3426.18, + "end": 3427.7, + "probability": 0.7866 + }, + { + "start": 3428.3, + "end": 3429.28, + "probability": 0.8511 + }, + { + "start": 3429.56, + "end": 3429.98, + "probability": 0.7525 + }, + { + "start": 3430.02, + "end": 3435.5, + "probability": 0.9362 + }, + { + "start": 3436.56, + "end": 3438.52, + "probability": 0.8176 + }, + { + "start": 3438.52, + "end": 3439.44, + "probability": 0.5415 + }, + { + "start": 3440.4, + "end": 3444.8, + "probability": 0.9692 + }, + { + "start": 3445.26, + "end": 3448.4, + "probability": 0.9839 + }, + { + "start": 3449.58, + "end": 3454.12, + "probability": 0.9966 + }, + { + "start": 3454.62, + "end": 3459.36, + "probability": 0.9911 + }, + { + "start": 3460.12, + "end": 3462.52, + "probability": 0.9688 + }, + { + "start": 3462.52, + "end": 3465.62, + "probability": 0.998 + }, + { + "start": 3466.24, + "end": 3466.68, + "probability": 0.9336 + }, + { + "start": 3467.8, + "end": 3472.84, + "probability": 0.9845 + }, + { + "start": 3472.98, + "end": 3476.7, + "probability": 0.9938 + }, + { + "start": 3476.7, + "end": 3481.38, + "probability": 0.9957 + }, + { + "start": 3481.94, + "end": 3484.66, + "probability": 0.9951 + }, + { + "start": 3484.66, + "end": 3488.66, + "probability": 0.9917 + }, + { + "start": 3490.42, + "end": 3492.22, + "probability": 0.9505 + }, + { + "start": 3493.58, + "end": 3497.88, + "probability": 0.9987 + }, + { + "start": 3498.58, + "end": 3499.76, + "probability": 0.9878 + }, + { + "start": 3499.96, + "end": 3502.28, + "probability": 0.9707 + }, + { + "start": 3503.32, + "end": 3506.0, + "probability": 0.9789 + }, + { + "start": 3506.88, + "end": 3507.84, + "probability": 0.9869 + }, + { + "start": 3508.54, + "end": 3509.9, + "probability": 0.9797 + }, + { + "start": 3510.8, + "end": 3514.14, + "probability": 0.9822 + }, + { + "start": 3514.14, + "end": 3519.92, + "probability": 0.9906 + }, + { + "start": 3520.6, + "end": 3522.42, + "probability": 0.9993 + }, + { + "start": 3523.18, + "end": 3525.42, + "probability": 0.7113 + }, + { + "start": 3526.74, + "end": 3529.86, + "probability": 0.9518 + }, + { + "start": 3530.64, + "end": 3531.38, + "probability": 0.9749 + }, + { + "start": 3532.04, + "end": 3532.66, + "probability": 0.4559 + }, + { + "start": 3533.38, + "end": 3535.98, + "probability": 0.9178 + }, + { + "start": 3536.5, + "end": 3536.9, + "probability": 0.9616 + }, + { + "start": 3538.3, + "end": 3540.82, + "probability": 0.9917 + }, + { + "start": 3540.82, + "end": 3543.96, + "probability": 0.9757 + }, + { + "start": 3544.84, + "end": 3547.06, + "probability": 0.8413 + }, + { + "start": 3548.14, + "end": 3550.0, + "probability": 0.6259 + }, + { + "start": 3551.28, + "end": 3551.78, + "probability": 0.8264 + }, + { + "start": 3552.12, + "end": 3552.6, + "probability": 0.7103 + }, + { + "start": 3554.58, + "end": 3559.14, + "probability": 0.5068 + }, + { + "start": 3560.42, + "end": 3561.54, + "probability": 0.016 + }, + { + "start": 3562.06, + "end": 3562.8, + "probability": 0.0213 + }, + { + "start": 3562.86, + "end": 3567.23, + "probability": 0.0103 + }, + { + "start": 3575.58, + "end": 3576.22, + "probability": 0.0848 + }, + { + "start": 3578.12, + "end": 3578.12, + "probability": 0.047 + }, + { + "start": 3578.12, + "end": 3578.12, + "probability": 0.0766 + }, + { + "start": 3578.12, + "end": 3579.94, + "probability": 0.6252 + }, + { + "start": 3580.08, + "end": 3582.62, + "probability": 0.9428 + }, + { + "start": 3582.86, + "end": 3584.02, + "probability": 0.9692 + }, + { + "start": 3584.64, + "end": 3585.88, + "probability": 0.989 + }, + { + "start": 3587.22, + "end": 3592.1, + "probability": 0.9952 + }, + { + "start": 3592.1, + "end": 3598.46, + "probability": 0.7976 + }, + { + "start": 3599.02, + "end": 3602.98, + "probability": 0.9741 + }, + { + "start": 3602.98, + "end": 3606.42, + "probability": 0.9946 + }, + { + "start": 3606.94, + "end": 3614.14, + "probability": 0.9989 + }, + { + "start": 3615.02, + "end": 3618.24, + "probability": 0.9093 + }, + { + "start": 3618.88, + "end": 3623.24, + "probability": 0.9929 + }, + { + "start": 3623.24, + "end": 3628.28, + "probability": 0.9829 + }, + { + "start": 3629.0, + "end": 3633.78, + "probability": 0.9756 + }, + { + "start": 3633.78, + "end": 3638.56, + "probability": 0.9955 + }, + { + "start": 3639.98, + "end": 3645.08, + "probability": 0.994 + }, + { + "start": 3645.6, + "end": 3650.78, + "probability": 0.9995 + }, + { + "start": 3650.94, + "end": 3656.1, + "probability": 0.999 + }, + { + "start": 3656.96, + "end": 3660.06, + "probability": 0.9984 + }, + { + "start": 3660.96, + "end": 3662.66, + "probability": 0.7771 + }, + { + "start": 3663.22, + "end": 3665.56, + "probability": 0.8267 + }, + { + "start": 3665.6, + "end": 3668.42, + "probability": 0.9824 + }, + { + "start": 3669.22, + "end": 3669.58, + "probability": 0.7864 + }, + { + "start": 3670.16, + "end": 3674.26, + "probability": 0.9918 + }, + { + "start": 3675.08, + "end": 3675.48, + "probability": 0.6849 + }, + { + "start": 3675.68, + "end": 3677.1, + "probability": 0.9886 + }, + { + "start": 3677.18, + "end": 3681.46, + "probability": 0.9929 + }, + { + "start": 3681.98, + "end": 3682.96, + "probability": 0.953 + }, + { + "start": 3683.52, + "end": 3686.2, + "probability": 0.9965 + }, + { + "start": 3686.2, + "end": 3690.06, + "probability": 0.9889 + }, + { + "start": 3690.76, + "end": 3691.2, + "probability": 0.6191 + }, + { + "start": 3691.26, + "end": 3695.56, + "probability": 0.9562 + }, + { + "start": 3696.16, + "end": 3698.38, + "probability": 0.9832 + }, + { + "start": 3698.38, + "end": 3702.58, + "probability": 0.9963 + }, + { + "start": 3703.38, + "end": 3703.9, + "probability": 0.7538 + }, + { + "start": 3703.96, + "end": 3705.96, + "probability": 0.9889 + }, + { + "start": 3706.06, + "end": 3707.68, + "probability": 0.8364 + }, + { + "start": 3707.8, + "end": 3709.6, + "probability": 0.9832 + }, + { + "start": 3710.12, + "end": 3715.36, + "probability": 0.9861 + }, + { + "start": 3715.6, + "end": 3719.64, + "probability": 0.9924 + }, + { + "start": 3720.18, + "end": 3723.66, + "probability": 0.9845 + }, + { + "start": 3724.22, + "end": 3726.96, + "probability": 0.9958 + }, + { + "start": 3726.96, + "end": 3730.22, + "probability": 0.9949 + }, + { + "start": 3731.02, + "end": 3731.8, + "probability": 0.6109 + }, + { + "start": 3731.96, + "end": 3736.22, + "probability": 0.9937 + }, + { + "start": 3736.74, + "end": 3737.74, + "probability": 0.9513 + }, + { + "start": 3738.19, + "end": 3742.98, + "probability": 0.936 + }, + { + "start": 3742.98, + "end": 3747.32, + "probability": 0.9551 + }, + { + "start": 3747.32, + "end": 3752.06, + "probability": 0.9861 + }, + { + "start": 3752.46, + "end": 3755.94, + "probability": 0.9925 + }, + { + "start": 3756.86, + "end": 3760.46, + "probability": 0.9951 + }, + { + "start": 3760.46, + "end": 3763.16, + "probability": 0.8139 + }, + { + "start": 3763.76, + "end": 3765.98, + "probability": 0.991 + }, + { + "start": 3766.4, + "end": 3770.06, + "probability": 0.9939 + }, + { + "start": 3770.52, + "end": 3774.24, + "probability": 0.9881 + }, + { + "start": 3775.2, + "end": 3777.62, + "probability": 0.9541 + }, + { + "start": 3777.86, + "end": 3782.86, + "probability": 0.8287 + }, + { + "start": 3783.64, + "end": 3789.3, + "probability": 0.9922 + }, + { + "start": 3790.28, + "end": 3790.98, + "probability": 0.683 + }, + { + "start": 3791.06, + "end": 3793.94, + "probability": 0.9049 + }, + { + "start": 3794.26, + "end": 3796.94, + "probability": 0.9027 + }, + { + "start": 3797.1, + "end": 3800.78, + "probability": 0.9742 + }, + { + "start": 3801.28, + "end": 3803.94, + "probability": 0.9922 + }, + { + "start": 3804.64, + "end": 3807.92, + "probability": 0.9175 + }, + { + "start": 3808.34, + "end": 3812.48, + "probability": 0.9568 + }, + { + "start": 3813.42, + "end": 3818.22, + "probability": 0.9907 + }, + { + "start": 3818.26, + "end": 3822.38, + "probability": 0.9971 + }, + { + "start": 3823.38, + "end": 3827.76, + "probability": 0.9639 + }, + { + "start": 3827.76, + "end": 3832.14, + "probability": 0.9937 + }, + { + "start": 3832.14, + "end": 3835.94, + "probability": 0.9974 + }, + { + "start": 3836.58, + "end": 3841.72, + "probability": 0.9982 + }, + { + "start": 3842.46, + "end": 3847.76, + "probability": 0.9972 + }, + { + "start": 3848.28, + "end": 3850.7, + "probability": 0.9719 + }, + { + "start": 3851.7, + "end": 3855.1, + "probability": 0.967 + }, + { + "start": 3856.24, + "end": 3860.3, + "probability": 0.9939 + }, + { + "start": 3860.3, + "end": 3864.84, + "probability": 0.9987 + }, + { + "start": 3865.48, + "end": 3868.86, + "probability": 0.9856 + }, + { + "start": 3868.86, + "end": 3873.08, + "probability": 0.9973 + }, + { + "start": 3873.7, + "end": 3874.4, + "probability": 0.4895 + }, + { + "start": 3874.54, + "end": 3878.18, + "probability": 0.997 + }, + { + "start": 3879.34, + "end": 3883.76, + "probability": 0.992 + }, + { + "start": 3884.86, + "end": 3885.4, + "probability": 0.8504 + }, + { + "start": 3885.96, + "end": 3888.78, + "probability": 0.9968 + }, + { + "start": 3888.78, + "end": 3891.9, + "probability": 0.9501 + }, + { + "start": 3892.46, + "end": 3896.7, + "probability": 0.9883 + }, + { + "start": 3897.2, + "end": 3899.82, + "probability": 0.9609 + }, + { + "start": 3900.24, + "end": 3902.82, + "probability": 0.97 + }, + { + "start": 3903.98, + "end": 3907.1, + "probability": 0.9825 + }, + { + "start": 3907.18, + "end": 3911.62, + "probability": 0.9686 + }, + { + "start": 3912.44, + "end": 3917.86, + "probability": 0.9874 + }, + { + "start": 3918.34, + "end": 3922.18, + "probability": 0.9873 + }, + { + "start": 3922.9, + "end": 3925.36, + "probability": 0.9958 + }, + { + "start": 3925.36, + "end": 3929.0, + "probability": 0.9927 + }, + { + "start": 3929.04, + "end": 3931.72, + "probability": 0.9882 + }, + { + "start": 3932.2, + "end": 3934.0, + "probability": 0.9898 + }, + { + "start": 3934.14, + "end": 3936.8, + "probability": 0.9901 + }, + { + "start": 3936.8, + "end": 3939.08, + "probability": 0.9792 + }, + { + "start": 3939.8, + "end": 3943.4, + "probability": 0.998 + }, + { + "start": 3944.26, + "end": 3944.56, + "probability": 0.2358 + }, + { + "start": 3944.56, + "end": 3947.28, + "probability": 0.967 + }, + { + "start": 3947.28, + "end": 3951.66, + "probability": 0.9904 + }, + { + "start": 3952.28, + "end": 3956.36, + "probability": 0.9944 + }, + { + "start": 3957.18, + "end": 3957.8, + "probability": 0.5267 + }, + { + "start": 3958.22, + "end": 3960.22, + "probability": 0.9934 + }, + { + "start": 3960.44, + "end": 3965.68, + "probability": 0.9937 + }, + { + "start": 3966.44, + "end": 3968.32, + "probability": 0.9877 + }, + { + "start": 3968.84, + "end": 3971.32, + "probability": 0.9479 + }, + { + "start": 3971.8, + "end": 3976.82, + "probability": 0.9888 + }, + { + "start": 3976.82, + "end": 3979.58, + "probability": 0.9894 + }, + { + "start": 3980.04, + "end": 3983.04, + "probability": 0.9943 + }, + { + "start": 3983.04, + "end": 3985.96, + "probability": 0.9948 + }, + { + "start": 3986.8, + "end": 3987.28, + "probability": 0.6661 + }, + { + "start": 3987.32, + "end": 3990.46, + "probability": 0.9915 + }, + { + "start": 3990.98, + "end": 3994.08, + "probability": 0.9917 + }, + { + "start": 3994.16, + "end": 3997.38, + "probability": 0.9139 + }, + { + "start": 3998.14, + "end": 3998.68, + "probability": 0.9217 + }, + { + "start": 3998.9, + "end": 4005.81, + "probability": 0.9126 + }, + { + "start": 4006.26, + "end": 4011.76, + "probability": 0.9967 + }, + { + "start": 4012.54, + "end": 4016.68, + "probability": 0.9946 + }, + { + "start": 4017.22, + "end": 4018.76, + "probability": 0.7931 + }, + { + "start": 4019.24, + "end": 4023.06, + "probability": 0.9896 + }, + { + "start": 4024.0, + "end": 4025.36, + "probability": 0.5862 + }, + { + "start": 4025.62, + "end": 4028.02, + "probability": 0.9503 + }, + { + "start": 4028.12, + "end": 4031.8, + "probability": 0.9773 + }, + { + "start": 4032.44, + "end": 4035.1, + "probability": 0.9671 + }, + { + "start": 4035.66, + "end": 4044.22, + "probability": 0.9951 + }, + { + "start": 4044.84, + "end": 4046.76, + "probability": 0.9954 + }, + { + "start": 4046.84, + "end": 4048.16, + "probability": 0.9152 + }, + { + "start": 4048.46, + "end": 4050.66, + "probability": 0.9196 + }, + { + "start": 4051.1, + "end": 4052.57, + "probability": 0.9722 + }, + { + "start": 4057.2, + "end": 4062.48, + "probability": 0.9966 + }, + { + "start": 4063.56, + "end": 4065.14, + "probability": 0.7099 + }, + { + "start": 4065.66, + "end": 4067.26, + "probability": 0.5614 + }, + { + "start": 4067.48, + "end": 4074.5, + "probability": 0.8519 + }, + { + "start": 4075.24, + "end": 4082.1, + "probability": 0.9741 + }, + { + "start": 4082.1, + "end": 4088.66, + "probability": 0.9938 + }, + { + "start": 4088.66, + "end": 4094.06, + "probability": 0.9866 + }, + { + "start": 4094.26, + "end": 4097.0, + "probability": 0.996 + }, + { + "start": 4097.96, + "end": 4098.68, + "probability": 0.6103 + }, + { + "start": 4098.8, + "end": 4103.48, + "probability": 0.959 + }, + { + "start": 4103.48, + "end": 4108.56, + "probability": 0.9971 + }, + { + "start": 4109.16, + "end": 4112.12, + "probability": 0.9957 + }, + { + "start": 4112.94, + "end": 4117.78, + "probability": 0.9977 + }, + { + "start": 4117.78, + "end": 4125.64, + "probability": 0.9907 + }, + { + "start": 4126.54, + "end": 4129.07, + "probability": 0.9493 + }, + { + "start": 4129.9, + "end": 4135.8, + "probability": 0.9955 + }, + { + "start": 4135.98, + "end": 4138.64, + "probability": 0.9889 + }, + { + "start": 4139.18, + "end": 4144.42, + "probability": 0.9885 + }, + { + "start": 4144.42, + "end": 4149.02, + "probability": 0.9863 + }, + { + "start": 4149.78, + "end": 4151.74, + "probability": 0.9927 + }, + { + "start": 4152.16, + "end": 4154.02, + "probability": 0.92 + }, + { + "start": 4154.4, + "end": 4163.44, + "probability": 0.9753 + }, + { + "start": 4163.48, + "end": 4170.9, + "probability": 0.9634 + }, + { + "start": 4171.44, + "end": 4174.82, + "probability": 0.9895 + }, + { + "start": 4175.58, + "end": 4177.12, + "probability": 0.9818 + }, + { + "start": 4177.8, + "end": 4178.16, + "probability": 0.5546 + }, + { + "start": 4178.3, + "end": 4178.98, + "probability": 0.8529 + }, + { + "start": 4179.14, + "end": 4179.98, + "probability": 0.8948 + }, + { + "start": 4180.1, + "end": 4182.66, + "probability": 0.997 + }, + { + "start": 4183.02, + "end": 4186.14, + "probability": 0.9934 + }, + { + "start": 4186.6, + "end": 4187.1, + "probability": 0.4557 + }, + { + "start": 4187.22, + "end": 4191.48, + "probability": 0.9792 + }, + { + "start": 4192.14, + "end": 4197.02, + "probability": 0.973 + }, + { + "start": 4198.28, + "end": 4204.12, + "probability": 0.9596 + }, + { + "start": 4204.7, + "end": 4205.02, + "probability": 0.8067 + }, + { + "start": 4205.12, + "end": 4205.2, + "probability": 0.2804 + }, + { + "start": 4205.2, + "end": 4210.8, + "probability": 0.9846 + }, + { + "start": 4211.38, + "end": 4214.54, + "probability": 0.9845 + }, + { + "start": 4214.88, + "end": 4215.14, + "probability": 0.8069 + }, + { + "start": 4217.44, + "end": 4218.1, + "probability": 0.6971 + }, + { + "start": 4222.62, + "end": 4224.12, + "probability": 0.8915 + }, + { + "start": 4225.96, + "end": 4226.5, + "probability": 0.6526 + }, + { + "start": 4229.74, + "end": 4230.72, + "probability": 0.9137 + }, + { + "start": 4232.08, + "end": 4232.24, + "probability": 0.0982 + }, + { + "start": 4235.84, + "end": 4236.72, + "probability": 0.2817 + }, + { + "start": 4238.5, + "end": 4242.24, + "probability": 0.891 + }, + { + "start": 4242.98, + "end": 4244.74, + "probability": 0.2993 + }, + { + "start": 4245.12, + "end": 4245.96, + "probability": 0.4915 + }, + { + "start": 4246.06, + "end": 4246.5, + "probability": 0.0987 + }, + { + "start": 4246.52, + "end": 4248.54, + "probability": 0.6591 + }, + { + "start": 4248.62, + "end": 4249.56, + "probability": 0.6978 + }, + { + "start": 4250.02, + "end": 4252.94, + "probability": 0.9829 + }, + { + "start": 4252.94, + "end": 4255.94, + "probability": 0.9952 + }, + { + "start": 4255.96, + "end": 4256.18, + "probability": 0.0125 + }, + { + "start": 4256.18, + "end": 4258.4, + "probability": 0.7936 + }, + { + "start": 4258.46, + "end": 4258.86, + "probability": 0.4591 + }, + { + "start": 4259.08, + "end": 4260.72, + "probability": 0.8847 + }, + { + "start": 4260.84, + "end": 4264.37, + "probability": 0.6475 + }, + { + "start": 4264.58, + "end": 4264.96, + "probability": 0.2746 + }, + { + "start": 4265.34, + "end": 4266.02, + "probability": 0.8857 + }, + { + "start": 4266.28, + "end": 4269.08, + "probability": 0.9631 + }, + { + "start": 4269.28, + "end": 4269.28, + "probability": 0.008 + }, + { + "start": 4269.28, + "end": 4271.64, + "probability": 0.9258 + }, + { + "start": 4271.76, + "end": 4272.32, + "probability": 0.8812 + }, + { + "start": 4273.08, + "end": 4274.26, + "probability": 0.5645 + }, + { + "start": 4274.94, + "end": 4277.54, + "probability": 0.823 + }, + { + "start": 4278.24, + "end": 4280.86, + "probability": 0.7783 + }, + { + "start": 4280.94, + "end": 4284.56, + "probability": 0.8667 + }, + { + "start": 4285.0, + "end": 4285.98, + "probability": 0.8766 + }, + { + "start": 4286.12, + "end": 4286.64, + "probability": 0.6891 + }, + { + "start": 4287.18, + "end": 4288.44, + "probability": 0.7044 + }, + { + "start": 4288.6, + "end": 4290.38, + "probability": 0.8235 + }, + { + "start": 4290.44, + "end": 4291.62, + "probability": 0.9834 + }, + { + "start": 4291.76, + "end": 4292.7, + "probability": 0.7566 + }, + { + "start": 4293.06, + "end": 4294.04, + "probability": 0.884 + }, + { + "start": 4294.18, + "end": 4294.56, + "probability": 0.9584 + }, + { + "start": 4294.92, + "end": 4298.54, + "probability": 0.9938 + }, + { + "start": 4298.6, + "end": 4302.6, + "probability": 0.7726 + }, + { + "start": 4303.52, + "end": 4304.74, + "probability": 0.7069 + }, + { + "start": 4304.8, + "end": 4305.46, + "probability": 0.6533 + }, + { + "start": 4305.48, + "end": 4308.24, + "probability": 0.9681 + }, + { + "start": 4308.58, + "end": 4310.78, + "probability": 0.988 + }, + { + "start": 4311.04, + "end": 4312.49, + "probability": 0.6594 + }, + { + "start": 4312.86, + "end": 4316.2, + "probability": 0.9828 + }, + { + "start": 4316.82, + "end": 4318.9, + "probability": 0.9487 + }, + { + "start": 4318.94, + "end": 4321.22, + "probability": 0.7568 + }, + { + "start": 4321.26, + "end": 4323.26, + "probability": 0.9684 + }, + { + "start": 4323.46, + "end": 4324.5, + "probability": 0.8595 + }, + { + "start": 4324.62, + "end": 4326.54, + "probability": 0.8217 + }, + { + "start": 4327.1, + "end": 4327.24, + "probability": 0.6014 + }, + { + "start": 4328.16, + "end": 4331.9, + "probability": 0.6751 + }, + { + "start": 4331.92, + "end": 4333.34, + "probability": 0.8226 + }, + { + "start": 4333.42, + "end": 4334.52, + "probability": 0.6461 + }, + { + "start": 4335.06, + "end": 4335.38, + "probability": 0.6668 + }, + { + "start": 4335.88, + "end": 4336.54, + "probability": 0.9366 + }, + { + "start": 4337.12, + "end": 4338.88, + "probability": 0.9388 + }, + { + "start": 4339.04, + "end": 4341.98, + "probability": 0.9496 + }, + { + "start": 4342.55, + "end": 4343.84, + "probability": 0.9842 + }, + { + "start": 4344.52, + "end": 4347.02, + "probability": 0.818 + }, + { + "start": 4347.18, + "end": 4348.28, + "probability": 0.9303 + }, + { + "start": 4348.64, + "end": 4353.34, + "probability": 0.9796 + }, + { + "start": 4353.34, + "end": 4356.2, + "probability": 0.9277 + }, + { + "start": 4356.28, + "end": 4358.86, + "probability": 0.9525 + }, + { + "start": 4359.58, + "end": 4360.58, + "probability": 0.7179 + }, + { + "start": 4361.36, + "end": 4362.38, + "probability": 0.6508 + }, + { + "start": 4362.58, + "end": 4363.92, + "probability": 0.3937 + }, + { + "start": 4364.34, + "end": 4369.58, + "probability": 0.7379 + }, + { + "start": 4369.6, + "end": 4370.44, + "probability": 0.7118 + }, + { + "start": 4370.48, + "end": 4371.48, + "probability": 0.7502 + }, + { + "start": 4371.52, + "end": 4372.44, + "probability": 0.8374 + }, + { + "start": 4372.48, + "end": 4373.36, + "probability": 0.831 + }, + { + "start": 4373.38, + "end": 4374.86, + "probability": 0.7141 + }, + { + "start": 4374.98, + "end": 4376.73, + "probability": 0.8401 + }, + { + "start": 4377.46, + "end": 4377.78, + "probability": 0.4615 + }, + { + "start": 4378.86, + "end": 4380.22, + "probability": 0.0846 + }, + { + "start": 4380.22, + "end": 4380.74, + "probability": 0.4556 + }, + { + "start": 4380.86, + "end": 4381.28, + "probability": 0.3418 + }, + { + "start": 4381.34, + "end": 4383.28, + "probability": 0.4851 + }, + { + "start": 4383.28, + "end": 4386.06, + "probability": 0.701 + }, + { + "start": 4387.3, + "end": 4387.6, + "probability": 0.2035 + }, + { + "start": 4387.6, + "end": 4389.1, + "probability": 0.9536 + }, + { + "start": 4389.24, + "end": 4389.82, + "probability": 0.8278 + }, + { + "start": 4389.92, + "end": 4391.44, + "probability": 0.7315 + }, + { + "start": 4392.22, + "end": 4393.4, + "probability": 0.264 + }, + { + "start": 4393.52, + "end": 4394.02, + "probability": 0.9514 + }, + { + "start": 4394.18, + "end": 4394.24, + "probability": 0.3785 + }, + { + "start": 4394.24, + "end": 4394.68, + "probability": 0.6819 + }, + { + "start": 4394.72, + "end": 4396.4, + "probability": 0.5645 + }, + { + "start": 4396.7, + "end": 4398.74, + "probability": 0.65 + }, + { + "start": 4399.22, + "end": 4399.86, + "probability": 0.7829 + }, + { + "start": 4399.92, + "end": 4401.18, + "probability": 0.8478 + }, + { + "start": 4401.5, + "end": 4402.76, + "probability": 0.3847 + }, + { + "start": 4402.9, + "end": 4404.76, + "probability": 0.893 + }, + { + "start": 4405.31, + "end": 4406.72, + "probability": 0.584 + }, + { + "start": 4407.52, + "end": 4407.74, + "probability": 0.5074 + }, + { + "start": 4407.88, + "end": 4407.98, + "probability": 0.6563 + }, + { + "start": 4408.26, + "end": 4408.54, + "probability": 0.9353 + }, + { + "start": 4408.64, + "end": 4409.22, + "probability": 0.5337 + }, + { + "start": 4409.54, + "end": 4410.6, + "probability": 0.7516 + }, + { + "start": 4411.42, + "end": 4413.9, + "probability": 0.7776 + }, + { + "start": 4414.22, + "end": 4416.84, + "probability": 0.7103 + }, + { + "start": 4416.94, + "end": 4420.16, + "probability": 0.4411 + }, + { + "start": 4420.3, + "end": 4423.08, + "probability": 0.7797 + }, + { + "start": 4423.18, + "end": 4424.86, + "probability": 0.4866 + }, + { + "start": 4424.98, + "end": 4428.98, + "probability": 0.8931 + }, + { + "start": 4428.98, + "end": 4429.4, + "probability": 0.784 + }, + { + "start": 4430.08, + "end": 4432.66, + "probability": 0.4405 + }, + { + "start": 4432.74, + "end": 4433.28, + "probability": 0.3898 + }, + { + "start": 4433.64, + "end": 4437.5, + "probability": 0.9587 + }, + { + "start": 4437.6, + "end": 4438.88, + "probability": 0.9346 + }, + { + "start": 4439.26, + "end": 4441.22, + "probability": 0.8967 + }, + { + "start": 4441.34, + "end": 4441.98, + "probability": 0.4568 + }, + { + "start": 4442.3, + "end": 4443.04, + "probability": 0.847 + }, + { + "start": 4443.12, + "end": 4444.38, + "probability": 0.8618 + }, + { + "start": 4444.76, + "end": 4450.14, + "probability": 0.8345 + }, + { + "start": 4450.22, + "end": 4450.66, + "probability": 0.61 + }, + { + "start": 4450.66, + "end": 4453.04, + "probability": 0.9405 + }, + { + "start": 4453.58, + "end": 4454.28, + "probability": 0.4885 + }, + { + "start": 4455.18, + "end": 4456.24, + "probability": 0.7752 + }, + { + "start": 4456.44, + "end": 4458.52, + "probability": 0.5571 + }, + { + "start": 4459.14, + "end": 4460.12, + "probability": 0.7566 + }, + { + "start": 4460.3, + "end": 4461.72, + "probability": 0.5741 + }, + { + "start": 4462.1, + "end": 4462.94, + "probability": 0.4885 + }, + { + "start": 4463.26, + "end": 4465.1, + "probability": 0.22 + }, + { + "start": 4466.92, + "end": 4467.1, + "probability": 0.0285 + }, + { + "start": 4467.1, + "end": 4467.89, + "probability": 0.3972 + }, + { + "start": 4468.7, + "end": 4470.54, + "probability": 0.4043 + }, + { + "start": 4471.58, + "end": 4477.88, + "probability": 0.9207 + }, + { + "start": 4477.98, + "end": 4484.0, + "probability": 0.693 + }, + { + "start": 4484.22, + "end": 4484.56, + "probability": 0.0113 + }, + { + "start": 4484.78, + "end": 4487.18, + "probability": 0.6089 + }, + { + "start": 4487.34, + "end": 4488.06, + "probability": 0.7451 + }, + { + "start": 4488.56, + "end": 4490.24, + "probability": 0.4424 + }, + { + "start": 4490.38, + "end": 4494.44, + "probability": 0.565 + }, + { + "start": 4496.27, + "end": 4497.99, + "probability": 0.9031 + }, + { + "start": 4498.08, + "end": 4499.76, + "probability": 0.6646 + }, + { + "start": 4499.78, + "end": 4500.68, + "probability": 0.6635 + }, + { + "start": 4500.8, + "end": 4502.06, + "probability": 0.9814 + }, + { + "start": 4502.16, + "end": 4503.5, + "probability": 0.6725 + }, + { + "start": 4503.84, + "end": 4505.62, + "probability": 0.9885 + }, + { + "start": 4507.95, + "end": 4515.1, + "probability": 0.8386 + }, + { + "start": 4515.26, + "end": 4515.7, + "probability": 0.7258 + }, + { + "start": 4515.84, + "end": 4520.22, + "probability": 0.9016 + }, + { + "start": 4520.26, + "end": 4524.5, + "probability": 0.8894 + }, + { + "start": 4525.24, + "end": 4526.68, + "probability": 0.7954 + }, + { + "start": 4527.24, + "end": 4527.46, + "probability": 0.3083 + }, + { + "start": 4527.46, + "end": 4529.12, + "probability": 0.7998 + }, + { + "start": 4529.18, + "end": 4529.52, + "probability": 0.3544 + }, + { + "start": 4529.56, + "end": 4531.76, + "probability": 0.5014 + }, + { + "start": 4532.6, + "end": 4533.8, + "probability": 0.8105 + }, + { + "start": 4533.92, + "end": 4534.88, + "probability": 0.9569 + }, + { + "start": 4535.0, + "end": 4537.04, + "probability": 0.9398 + }, + { + "start": 4537.5, + "end": 4541.68, + "probability": 0.8521 + }, + { + "start": 4541.88, + "end": 4543.56, + "probability": 0.8029 + }, + { + "start": 4543.6, + "end": 4545.78, + "probability": 0.889 + }, + { + "start": 4546.12, + "end": 4547.38, + "probability": 0.8734 + }, + { + "start": 4547.46, + "end": 4548.16, + "probability": 0.9401 + }, + { + "start": 4548.86, + "end": 4549.88, + "probability": 0.9126 + }, + { + "start": 4549.9, + "end": 4551.74, + "probability": 0.8003 + }, + { + "start": 4551.78, + "end": 4553.8, + "probability": 0.9209 + }, + { + "start": 4554.02, + "end": 4555.84, + "probability": 0.356 + }, + { + "start": 4556.18, + "end": 4557.58, + "probability": 0.8721 + }, + { + "start": 4559.0, + "end": 4559.48, + "probability": 0.095 + }, + { + "start": 4559.48, + "end": 4560.98, + "probability": 0.9541 + }, + { + "start": 4561.12, + "end": 4564.14, + "probability": 0.9745 + }, + { + "start": 4564.52, + "end": 4565.42, + "probability": 0.5764 + }, + { + "start": 4565.44, + "end": 4565.98, + "probability": 0.6233 + }, + { + "start": 4566.5, + "end": 4568.05, + "probability": 0.9598 + }, + { + "start": 4568.7, + "end": 4569.62, + "probability": 0.512 + }, + { + "start": 4570.16, + "end": 4571.76, + "probability": 0.8219 + }, + { + "start": 4571.84, + "end": 4573.82, + "probability": 0.958 + }, + { + "start": 4574.2, + "end": 4575.18, + "probability": 0.8389 + }, + { + "start": 4576.04, + "end": 4576.5, + "probability": 0.6057 + }, + { + "start": 4576.5, + "end": 4577.04, + "probability": 0.0609 + }, + { + "start": 4577.92, + "end": 4580.2, + "probability": 0.9488 + }, + { + "start": 4580.32, + "end": 4581.16, + "probability": 0.8625 + }, + { + "start": 4581.26, + "end": 4582.76, + "probability": 0.6359 + }, + { + "start": 4583.06, + "end": 4583.88, + "probability": 0.9541 + }, + { + "start": 4584.04, + "end": 4586.44, + "probability": 0.7334 + }, + { + "start": 4586.82, + "end": 4591.92, + "probability": 0.8755 + }, + { + "start": 4592.64, + "end": 4596.42, + "probability": 0.6918 + }, + { + "start": 4596.68, + "end": 4598.58, + "probability": 0.8447 + }, + { + "start": 4598.78, + "end": 4600.08, + "probability": 0.8778 + }, + { + "start": 4600.12, + "end": 4602.28, + "probability": 0.8975 + }, + { + "start": 4602.76, + "end": 4605.52, + "probability": 0.9082 + }, + { + "start": 4605.64, + "end": 4607.18, + "probability": 0.7283 + }, + { + "start": 4607.68, + "end": 4609.54, + "probability": 0.9411 + }, + { + "start": 4610.5, + "end": 4610.54, + "probability": 0.0157 + }, + { + "start": 4610.54, + "end": 4611.82, + "probability": 0.9156 + }, + { + "start": 4612.14, + "end": 4612.44, + "probability": 0.0839 + }, + { + "start": 4613.66, + "end": 4614.42, + "probability": 0.593 + }, + { + "start": 4614.42, + "end": 4615.34, + "probability": 0.8613 + }, + { + "start": 4615.82, + "end": 4617.09, + "probability": 0.8984 + }, + { + "start": 4617.14, + "end": 4618.08, + "probability": 0.9292 + }, + { + "start": 4618.14, + "end": 4618.8, + "probability": 0.3906 + }, + { + "start": 4619.16, + "end": 4620.04, + "probability": 0.9358 + }, + { + "start": 4620.96, + "end": 4624.58, + "probability": 0.7872 + }, + { + "start": 4624.62, + "end": 4625.3, + "probability": 0.7839 + }, + { + "start": 4625.38, + "end": 4625.78, + "probability": 0.8537 + }, + { + "start": 4625.92, + "end": 4626.28, + "probability": 0.8942 + }, + { + "start": 4626.32, + "end": 4626.82, + "probability": 0.9575 + }, + { + "start": 4627.66, + "end": 4630.16, + "probability": 0.9135 + }, + { + "start": 4632.94, + "end": 4634.84, + "probability": 0.0519 + }, + { + "start": 4634.84, + "end": 4635.3, + "probability": 0.3717 + }, + { + "start": 4635.42, + "end": 4637.8, + "probability": 0.9708 + }, + { + "start": 4638.56, + "end": 4639.24, + "probability": 0.5168 + }, + { + "start": 4639.28, + "end": 4643.61, + "probability": 0.7165 + }, + { + "start": 4647.02, + "end": 4649.02, + "probability": 0.9343 + }, + { + "start": 4651.12, + "end": 4652.48, + "probability": 0.9554 + }, + { + "start": 4653.32, + "end": 4655.2, + "probability": 0.8826 + }, + { + "start": 4655.76, + "end": 4656.1, + "probability": 0.9821 + }, + { + "start": 4657.08, + "end": 4657.58, + "probability": 0.4505 + }, + { + "start": 4659.08, + "end": 4659.68, + "probability": 0.5032 + }, + { + "start": 4660.36, + "end": 4661.04, + "probability": 0.5591 + }, + { + "start": 4661.58, + "end": 4664.42, + "probability": 0.9691 + }, + { + "start": 4664.92, + "end": 4667.9, + "probability": 0.8134 + }, + { + "start": 4669.06, + "end": 4670.62, + "probability": 0.5926 + }, + { + "start": 4674.4, + "end": 4676.6, + "probability": 0.7237 + }, + { + "start": 4676.96, + "end": 4678.29, + "probability": 0.2487 + }, + { + "start": 4679.14, + "end": 4681.62, + "probability": 0.4996 + }, + { + "start": 4682.08, + "end": 4684.7, + "probability": 0.9508 + }, + { + "start": 4685.06, + "end": 4691.9, + "probability": 0.8302 + }, + { + "start": 4693.12, + "end": 4698.16, + "probability": 0.9585 + }, + { + "start": 4698.74, + "end": 4701.18, + "probability": 0.9132 + }, + { + "start": 4701.72, + "end": 4702.26, + "probability": 0.7241 + }, + { + "start": 4702.92, + "end": 4703.5, + "probability": 0.7068 + }, + { + "start": 4703.58, + "end": 4704.12, + "probability": 0.9241 + }, + { + "start": 4704.16, + "end": 4708.58, + "probability": 0.9766 + }, + { + "start": 4711.3, + "end": 4711.96, + "probability": 0.7041 + }, + { + "start": 4712.74, + "end": 4714.42, + "probability": 0.8929 + }, + { + "start": 4715.14, + "end": 4715.78, + "probability": 0.0635 + }, + { + "start": 4716.64, + "end": 4719.5, + "probability": 0.0875 + }, + { + "start": 4720.22, + "end": 4726.32, + "probability": 0.2358 + }, + { + "start": 4727.02, + "end": 4728.0, + "probability": 0.211 + }, + { + "start": 4728.0, + "end": 4730.6, + "probability": 0.3022 + }, + { + "start": 4731.76, + "end": 4735.6, + "probability": 0.7896 + }, + { + "start": 4736.56, + "end": 4740.98, + "probability": 0.686 + }, + { + "start": 4742.16, + "end": 4742.24, + "probability": 0.137 + }, + { + "start": 4742.98, + "end": 4745.06, + "probability": 0.2557 + }, + { + "start": 4745.62, + "end": 4750.28, + "probability": 0.3452 + }, + { + "start": 4750.44, + "end": 4752.06, + "probability": 0.6365 + }, + { + "start": 4752.16, + "end": 4753.02, + "probability": 0.8497 + }, + { + "start": 4753.96, + "end": 4753.96, + "probability": 0.3571 + }, + { + "start": 4754.0, + "end": 4757.7, + "probability": 0.7556 + }, + { + "start": 4772.44, + "end": 4773.91, + "probability": 0.3795 + }, + { + "start": 4775.48, + "end": 4779.74, + "probability": 0.5277 + }, + { + "start": 4780.14, + "end": 4782.6, + "probability": 0.7517 + }, + { + "start": 4783.64, + "end": 4786.34, + "probability": 0.9733 + }, + { + "start": 4786.42, + "end": 4790.88, + "probability": 0.823 + }, + { + "start": 4791.42, + "end": 4792.5, + "probability": 0.7436 + }, + { + "start": 4792.62, + "end": 4793.86, + "probability": 0.9102 + }, + { + "start": 4794.62, + "end": 4798.18, + "probability": 0.899 + }, + { + "start": 4798.84, + "end": 4799.9, + "probability": 0.9876 + }, + { + "start": 4800.42, + "end": 4802.82, + "probability": 0.8174 + }, + { + "start": 4803.66, + "end": 4808.8, + "probability": 0.9849 + }, + { + "start": 4809.22, + "end": 4815.36, + "probability": 0.9949 + }, + { + "start": 4815.36, + "end": 4817.26, + "probability": 0.3897 + }, + { + "start": 4817.6, + "end": 4820.32, + "probability": 0.7123 + }, + { + "start": 4820.48, + "end": 4822.56, + "probability": 0.2084 + }, + { + "start": 4825.08, + "end": 4828.02, + "probability": 0.5963 + }, + { + "start": 4828.14, + "end": 4832.22, + "probability": 0.1474 + }, + { + "start": 4832.22, + "end": 4832.22, + "probability": 0.1816 + }, + { + "start": 4832.22, + "end": 4832.68, + "probability": 0.4205 + }, + { + "start": 4833.16, + "end": 4835.56, + "probability": 0.7732 + }, + { + "start": 4836.06, + "end": 4836.82, + "probability": 0.2956 + }, + { + "start": 4837.12, + "end": 4839.81, + "probability": 0.1826 + }, + { + "start": 4840.16, + "end": 4841.45, + "probability": 0.3617 + }, + { + "start": 4842.72, + "end": 4843.48, + "probability": 0.1149 + }, + { + "start": 4843.98, + "end": 4846.74, + "probability": 0.5628 + }, + { + "start": 4846.76, + "end": 4847.4, + "probability": 0.1133 + }, + { + "start": 4847.56, + "end": 4847.56, + "probability": 0.1174 + }, + { + "start": 4847.7, + "end": 4848.22, + "probability": 0.5342 + }, + { + "start": 4848.66, + "end": 4854.06, + "probability": 0.8193 + }, + { + "start": 4854.06, + "end": 4856.94, + "probability": 0.9984 + }, + { + "start": 4857.06, + "end": 4859.18, + "probability": 0.6669 + }, + { + "start": 4860.38, + "end": 4861.1, + "probability": 0.7143 + }, + { + "start": 4861.62, + "end": 4862.88, + "probability": 0.1339 + }, + { + "start": 4863.18, + "end": 4864.66, + "probability": 0.7847 + }, + { + "start": 4864.86, + "end": 4869.32, + "probability": 0.0621 + }, + { + "start": 4869.54, + "end": 4870.52, + "probability": 0.7489 + }, + { + "start": 4871.09, + "end": 4875.08, + "probability": 0.3629 + }, + { + "start": 4875.44, + "end": 4876.16, + "probability": 0.7017 + }, + { + "start": 4876.46, + "end": 4880.24, + "probability": 0.502 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 5003.86, + "end": 5003.86, + "probability": 0.1516 + }, + { + "start": 5003.86, + "end": 5003.86, + "probability": 0.1727 + }, + { + "start": 5003.86, + "end": 5003.86, + "probability": 0.0339 + }, + { + "start": 5003.86, + "end": 5003.86, + "probability": 0.0405 + }, + { + "start": 5003.86, + "end": 5003.86, + "probability": 0.0975 + }, + { + "start": 5010.88, + "end": 5010.88, + "probability": 0.0438 + }, + { + "start": 5022.5, + "end": 5023.04, + "probability": 0.0353 + }, + { + "start": 5042.7, + "end": 5043.66, + "probability": 0.1655 + }, + { + "start": 5048.8, + "end": 5052.78, + "probability": 0.9705 + }, + { + "start": 5053.68, + "end": 5055.08, + "probability": 0.8334 + }, + { + "start": 5055.86, + "end": 5058.62, + "probability": 0.9985 + }, + { + "start": 5061.88, + "end": 5063.82, + "probability": 0.8232 + }, + { + "start": 5064.88, + "end": 5065.6, + "probability": 0.5652 + }, + { + "start": 5067.16, + "end": 5069.26, + "probability": 0.9938 + }, + { + "start": 5069.88, + "end": 5074.7, + "probability": 0.665 + }, + { + "start": 5074.78, + "end": 5077.98, + "probability": 0.818 + }, + { + "start": 5078.7, + "end": 5081.18, + "probability": 0.0401 + }, + { + "start": 5082.66, + "end": 5088.52, + "probability": 0.9234 + }, + { + "start": 5089.58, + "end": 5091.46, + "probability": 0.7559 + }, + { + "start": 5092.32, + "end": 5092.48, + "probability": 0.0116 + }, + { + "start": 5094.94, + "end": 5095.86, + "probability": 0.2331 + }, + { + "start": 5096.96, + "end": 5099.48, + "probability": 0.9954 + }, + { + "start": 5100.44, + "end": 5105.16, + "probability": 0.8286 + }, + { + "start": 5105.18, + "end": 5109.1, + "probability": 0.9053 + }, + { + "start": 5109.6, + "end": 5110.74, + "probability": 0.9566 + }, + { + "start": 5112.3, + "end": 5113.09, + "probability": 0.8712 + }, + { + "start": 5114.02, + "end": 5120.2, + "probability": 0.9904 + }, + { + "start": 5120.9, + "end": 5125.84, + "probability": 0.9821 + }, + { + "start": 5125.84, + "end": 5131.56, + "probability": 0.9941 + }, + { + "start": 5136.34, + "end": 5137.64, + "probability": 0.9985 + }, + { + "start": 5140.24, + "end": 5141.24, + "probability": 0.2533 + }, + { + "start": 5145.5, + "end": 5146.74, + "probability": 0.1974 + }, + { + "start": 5146.8, + "end": 5148.16, + "probability": 0.7561 + }, + { + "start": 5149.52, + "end": 5151.68, + "probability": 0.9969 + }, + { + "start": 5151.94, + "end": 5153.66, + "probability": 0.9836 + }, + { + "start": 5154.56, + "end": 5156.96, + "probability": 0.9871 + }, + { + "start": 5157.76, + "end": 5161.78, + "probability": 0.9978 + }, + { + "start": 5162.2, + "end": 5164.08, + "probability": 0.565 + }, + { + "start": 5164.84, + "end": 5167.4, + "probability": 0.9916 + }, + { + "start": 5168.26, + "end": 5170.92, + "probability": 0.9564 + }, + { + "start": 5172.08, + "end": 5173.68, + "probability": 0.9961 + }, + { + "start": 5174.62, + "end": 5175.72, + "probability": 0.8231 + }, + { + "start": 5176.18, + "end": 5181.38, + "probability": 0.9852 + }, + { + "start": 5182.44, + "end": 5184.04, + "probability": 0.84 + }, + { + "start": 5184.14, + "end": 5186.13, + "probability": 0.7502 + }, + { + "start": 5186.38, + "end": 5188.56, + "probability": 0.9206 + }, + { + "start": 5189.34, + "end": 5190.48, + "probability": 0.9458 + }, + { + "start": 5191.04, + "end": 5193.84, + "probability": 0.9883 + }, + { + "start": 5194.18, + "end": 5195.7, + "probability": 0.9768 + }, + { + "start": 5196.42, + "end": 5198.96, + "probability": 0.8106 + }, + { + "start": 5199.42, + "end": 5202.5, + "probability": 0.9411 + }, + { + "start": 5202.5, + "end": 5206.44, + "probability": 0.9829 + }, + { + "start": 5206.76, + "end": 5208.34, + "probability": 0.885 + }, + { + "start": 5209.18, + "end": 5211.06, + "probability": 0.9878 + }, + { + "start": 5212.24, + "end": 5213.32, + "probability": 0.5512 + }, + { + "start": 5213.82, + "end": 5218.16, + "probability": 0.9873 + }, + { + "start": 5218.6, + "end": 5220.78, + "probability": 0.9842 + }, + { + "start": 5221.28, + "end": 5223.28, + "probability": 0.9188 + }, + { + "start": 5223.96, + "end": 5230.28, + "probability": 0.9577 + }, + { + "start": 5231.4, + "end": 5233.7, + "probability": 0.6437 + }, + { + "start": 5233.88, + "end": 5234.58, + "probability": 0.6951 + }, + { + "start": 5235.18, + "end": 5236.8, + "probability": 0.5599 + }, + { + "start": 5237.3, + "end": 5238.8, + "probability": 0.9834 + }, + { + "start": 5239.08, + "end": 5240.26, + "probability": 0.5424 + }, + { + "start": 5240.84, + "end": 5242.22, + "probability": 0.8423 + }, + { + "start": 5242.76, + "end": 5244.36, + "probability": 0.9648 + }, + { + "start": 5244.78, + "end": 5246.66, + "probability": 0.997 + }, + { + "start": 5247.02, + "end": 5247.86, + "probability": 0.7306 + }, + { + "start": 5248.72, + "end": 5252.2, + "probability": 0.7196 + }, + { + "start": 5252.62, + "end": 5253.28, + "probability": 0.3762 + }, + { + "start": 5253.4, + "end": 5254.84, + "probability": 0.8921 + }, + { + "start": 5254.92, + "end": 5256.48, + "probability": 0.9237 + }, + { + "start": 5256.48, + "end": 5257.36, + "probability": 0.4246 + }, + { + "start": 5258.02, + "end": 5262.22, + "probability": 0.7363 + }, + { + "start": 5263.08, + "end": 5265.18, + "probability": 0.8705 + }, + { + "start": 5265.58, + "end": 5266.52, + "probability": 0.7953 + }, + { + "start": 5266.92, + "end": 5269.27, + "probability": 0.9922 + }, + { + "start": 5270.52, + "end": 5274.26, + "probability": 0.9767 + }, + { + "start": 5274.44, + "end": 5276.78, + "probability": 0.2755 + }, + { + "start": 5277.22, + "end": 5278.6, + "probability": 0.419 + }, + { + "start": 5278.7, + "end": 5280.28, + "probability": 0.6947 + }, + { + "start": 5280.7, + "end": 5282.22, + "probability": 0.8146 + }, + { + "start": 5282.26, + "end": 5283.34, + "probability": 0.8707 + }, + { + "start": 5284.18, + "end": 5286.06, + "probability": 0.4397 + }, + { + "start": 5286.74, + "end": 5288.26, + "probability": 0.8557 + }, + { + "start": 5288.5, + "end": 5290.1, + "probability": 0.9928 + }, + { + "start": 5290.98, + "end": 5292.34, + "probability": 0.9545 + }, + { + "start": 5293.82, + "end": 5296.08, + "probability": 0.9593 + }, + { + "start": 5296.58, + "end": 5299.42, + "probability": 0.9058 + }, + { + "start": 5300.64, + "end": 5301.32, + "probability": 0.8753 + }, + { + "start": 5301.88, + "end": 5304.44, + "probability": 0.6753 + }, + { + "start": 5305.02, + "end": 5306.22, + "probability": 0.8296 + }, + { + "start": 5306.86, + "end": 5307.51, + "probability": 0.9595 + }, + { + "start": 5307.74, + "end": 5308.22, + "probability": 0.7311 + }, + { + "start": 5308.9, + "end": 5309.74, + "probability": 0.8415 + }, + { + "start": 5309.84, + "end": 5310.16, + "probability": 0.8429 + }, + { + "start": 5310.54, + "end": 5311.32, + "probability": 0.9391 + }, + { + "start": 5311.36, + "end": 5312.74, + "probability": 0.9705 + }, + { + "start": 5313.96, + "end": 5315.14, + "probability": 0.6955 + }, + { + "start": 5315.56, + "end": 5319.74, + "probability": 0.892 + }, + { + "start": 5320.42, + "end": 5325.04, + "probability": 0.9919 + }, + { + "start": 5326.58, + "end": 5327.42, + "probability": 0.6187 + }, + { + "start": 5327.56, + "end": 5330.32, + "probability": 0.7855 + }, + { + "start": 5330.88, + "end": 5332.62, + "probability": 0.9527 + }, + { + "start": 5332.98, + "end": 5335.18, + "probability": 0.9769 + }, + { + "start": 5335.7, + "end": 5338.16, + "probability": 0.9839 + }, + { + "start": 5338.56, + "end": 5339.7, + "probability": 0.9683 + }, + { + "start": 5340.18, + "end": 5342.82, + "probability": 0.7637 + }, + { + "start": 5343.84, + "end": 5347.5, + "probability": 0.9658 + }, + { + "start": 5347.5, + "end": 5351.22, + "probability": 0.9943 + }, + { + "start": 5351.3, + "end": 5353.78, + "probability": 0.8987 + }, + { + "start": 5354.18, + "end": 5356.68, + "probability": 0.8791 + }, + { + "start": 5356.8, + "end": 5358.88, + "probability": 0.9528 + }, + { + "start": 5359.58, + "end": 5363.06, + "probability": 0.896 + }, + { + "start": 5363.54, + "end": 5364.24, + "probability": 0.8692 + }, + { + "start": 5364.56, + "end": 5367.28, + "probability": 0.9694 + }, + { + "start": 5367.68, + "end": 5368.5, + "probability": 0.6088 + }, + { + "start": 5369.04, + "end": 5370.5, + "probability": 0.9675 + }, + { + "start": 5370.58, + "end": 5371.78, + "probability": 0.9614 + }, + { + "start": 5372.3, + "end": 5373.12, + "probability": 0.9951 + }, + { + "start": 5373.84, + "end": 5377.64, + "probability": 0.8931 + }, + { + "start": 5377.82, + "end": 5378.54, + "probability": 0.8821 + }, + { + "start": 5379.08, + "end": 5380.0, + "probability": 0.7579 + }, + { + "start": 5381.16, + "end": 5381.9, + "probability": 0.7038 + }, + { + "start": 5382.02, + "end": 5382.46, + "probability": 0.4858 + }, + { + "start": 5383.78, + "end": 5385.02, + "probability": 0.462 + }, + { + "start": 5386.6, + "end": 5387.3, + "probability": 0.9087 + }, + { + "start": 5388.58, + "end": 5389.42, + "probability": 0.8403 + }, + { + "start": 5390.28, + "end": 5392.66, + "probability": 0.7599 + }, + { + "start": 5396.24, + "end": 5397.68, + "probability": 0.1678 + }, + { + "start": 5400.66, + "end": 5402.8, + "probability": 0.8596 + }, + { + "start": 5403.5, + "end": 5406.64, + "probability": 0.7748 + }, + { + "start": 5406.8, + "end": 5408.86, + "probability": 0.9534 + }, + { + "start": 5409.42, + "end": 5410.26, + "probability": 0.6619 + }, + { + "start": 5410.92, + "end": 5414.46, + "probability": 0.9803 + }, + { + "start": 5414.46, + "end": 5416.54, + "probability": 0.9991 + }, + { + "start": 5417.66, + "end": 5423.56, + "probability": 0.8058 + }, + { + "start": 5423.56, + "end": 5426.54, + "probability": 0.9895 + }, + { + "start": 5427.76, + "end": 5432.66, + "probability": 0.8883 + }, + { + "start": 5432.9, + "end": 5435.46, + "probability": 0.9766 + }, + { + "start": 5436.8, + "end": 5438.8, + "probability": 0.9891 + }, + { + "start": 5440.5, + "end": 5441.16, + "probability": 0.7183 + }, + { + "start": 5442.28, + "end": 5446.04, + "probability": 0.9156 + }, + { + "start": 5446.04, + "end": 5449.04, + "probability": 0.9002 + }, + { + "start": 5450.92, + "end": 5452.2, + "probability": 0.9361 + }, + { + "start": 5455.7, + "end": 5459.62, + "probability": 0.9731 + }, + { + "start": 5459.96, + "end": 5461.42, + "probability": 0.9983 + }, + { + "start": 5462.86, + "end": 5464.22, + "probability": 0.9554 + }, + { + "start": 5465.38, + "end": 5466.32, + "probability": 0.9249 + }, + { + "start": 5466.52, + "end": 5467.58, + "probability": 0.8906 + }, + { + "start": 5467.72, + "end": 5471.6, + "probability": 0.9502 + }, + { + "start": 5472.02, + "end": 5475.7, + "probability": 0.9946 + }, + { + "start": 5475.78, + "end": 5479.82, + "probability": 0.7711 + }, + { + "start": 5480.44, + "end": 5482.64, + "probability": 0.936 + }, + { + "start": 5482.88, + "end": 5484.28, + "probability": 0.9178 + }, + { + "start": 5485.24, + "end": 5489.02, + "probability": 0.9433 + }, + { + "start": 5489.6, + "end": 5491.94, + "probability": 0.9353 + }, + { + "start": 5492.46, + "end": 5492.9, + "probability": 0.5714 + }, + { + "start": 5493.04, + "end": 5493.72, + "probability": 0.799 + }, + { + "start": 5493.76, + "end": 5495.1, + "probability": 0.9684 + }, + { + "start": 5495.22, + "end": 5499.12, + "probability": 0.9797 + }, + { + "start": 5499.62, + "end": 5500.92, + "probability": 0.9948 + }, + { + "start": 5501.84, + "end": 5502.38, + "probability": 0.8322 + }, + { + "start": 5502.46, + "end": 5503.74, + "probability": 0.9005 + }, + { + "start": 5504.26, + "end": 5505.18, + "probability": 0.6498 + }, + { + "start": 5505.98, + "end": 5507.68, + "probability": 0.947 + }, + { + "start": 5513.1, + "end": 5514.82, + "probability": 0.6171 + }, + { + "start": 5515.12, + "end": 5515.86, + "probability": 0.6757 + }, + { + "start": 5516.74, + "end": 5519.88, + "probability": 0.9881 + }, + { + "start": 5520.2, + "end": 5526.44, + "probability": 0.891 + }, + { + "start": 5526.98, + "end": 5532.1, + "probability": 0.9849 + }, + { + "start": 5532.1, + "end": 5535.44, + "probability": 0.9917 + }, + { + "start": 5535.98, + "end": 5540.78, + "probability": 0.9764 + }, + { + "start": 5541.12, + "end": 5545.54, + "probability": 0.6511 + }, + { + "start": 5546.0, + "end": 5546.78, + "probability": 0.7501 + }, + { + "start": 5547.44, + "end": 5550.3, + "probability": 0.8703 + }, + { + "start": 5552.03, + "end": 5560.14, + "probability": 0.4091 + }, + { + "start": 5560.72, + "end": 5561.02, + "probability": 0.3115 + }, + { + "start": 5561.78, + "end": 5562.72, + "probability": 0.8015 + }, + { + "start": 5563.2, + "end": 5566.78, + "probability": 0.7945 + }, + { + "start": 5569.94, + "end": 5571.58, + "probability": 0.69 + }, + { + "start": 5572.66, + "end": 5576.4, + "probability": 0.6829 + }, + { + "start": 5576.82, + "end": 5577.28, + "probability": 0.8725 + }, + { + "start": 5577.82, + "end": 5581.16, + "probability": 0.9361 + }, + { + "start": 5582.1, + "end": 5583.68, + "probability": 0.646 + }, + { + "start": 5584.5, + "end": 5585.7, + "probability": 0.9992 + }, + { + "start": 5587.12, + "end": 5587.54, + "probability": 0.6571 + }, + { + "start": 5590.22, + "end": 5591.02, + "probability": 0.936 + }, + { + "start": 5592.86, + "end": 5596.74, + "probability": 0.8398 + }, + { + "start": 5597.68, + "end": 5601.14, + "probability": 0.8717 + }, + { + "start": 5602.5, + "end": 5604.24, + "probability": 0.9682 + }, + { + "start": 5605.76, + "end": 5608.42, + "probability": 0.9597 + }, + { + "start": 5608.94, + "end": 5609.92, + "probability": 0.9907 + }, + { + "start": 5610.7, + "end": 5612.3, + "probability": 0.9494 + }, + { + "start": 5613.52, + "end": 5617.42, + "probability": 0.952 + }, + { + "start": 5620.68, + "end": 5621.42, + "probability": 0.5871 + }, + { + "start": 5622.0, + "end": 5626.72, + "probability": 0.9176 + }, + { + "start": 5627.8, + "end": 5630.8, + "probability": 0.9628 + }, + { + "start": 5631.64, + "end": 5632.1, + "probability": 0.8505 + }, + { + "start": 5632.62, + "end": 5634.9, + "probability": 0.6706 + }, + { + "start": 5635.42, + "end": 5635.82, + "probability": 0.9769 + }, + { + "start": 5637.58, + "end": 5639.72, + "probability": 0.988 + }, + { + "start": 5639.86, + "end": 5642.9, + "probability": 0.9623 + }, + { + "start": 5645.8, + "end": 5646.26, + "probability": 0.7051 + }, + { + "start": 5647.58, + "end": 5649.16, + "probability": 0.6729 + }, + { + "start": 5649.56, + "end": 5649.86, + "probability": 0.7347 + }, + { + "start": 5649.96, + "end": 5650.9, + "probability": 0.9217 + }, + { + "start": 5651.04, + "end": 5653.0, + "probability": 0.985 + }, + { + "start": 5653.32, + "end": 5654.06, + "probability": 0.5123 + }, + { + "start": 5654.4, + "end": 5657.1, + "probability": 0.9771 + }, + { + "start": 5657.84, + "end": 5660.32, + "probability": 0.9592 + }, + { + "start": 5661.06, + "end": 5661.92, + "probability": 0.7483 + }, + { + "start": 5662.24, + "end": 5666.64, + "probability": 0.7892 + }, + { + "start": 5667.5, + "end": 5670.86, + "probability": 0.8551 + }, + { + "start": 5671.76, + "end": 5675.06, + "probability": 0.9888 + }, + { + "start": 5676.14, + "end": 5678.9, + "probability": 0.866 + }, + { + "start": 5682.02, + "end": 5686.16, + "probability": 0.9888 + }, + { + "start": 5687.68, + "end": 5688.54, + "probability": 0.9215 + }, + { + "start": 5688.68, + "end": 5689.56, + "probability": 0.9063 + }, + { + "start": 5689.66, + "end": 5691.32, + "probability": 0.9824 + }, + { + "start": 5692.7, + "end": 5694.55, + "probability": 0.9878 + }, + { + "start": 5695.32, + "end": 5700.64, + "probability": 0.9881 + }, + { + "start": 5702.16, + "end": 5705.98, + "probability": 0.7997 + }, + { + "start": 5706.98, + "end": 5707.66, + "probability": 0.986 + }, + { + "start": 5712.0, + "end": 5716.78, + "probability": 0.9626 + }, + { + "start": 5717.22, + "end": 5720.62, + "probability": 0.9945 + }, + { + "start": 5721.54, + "end": 5722.14, + "probability": 0.6938 + }, + { + "start": 5722.92, + "end": 5726.0, + "probability": 0.7685 + }, + { + "start": 5726.0, + "end": 5729.54, + "probability": 0.9915 + }, + { + "start": 5730.06, + "end": 5734.46, + "probability": 0.6055 + }, + { + "start": 5735.44, + "end": 5739.54, + "probability": 0.9468 + }, + { + "start": 5740.1, + "end": 5744.62, + "probability": 0.8322 + }, + { + "start": 5746.2, + "end": 5751.18, + "probability": 0.9731 + }, + { + "start": 5751.98, + "end": 5754.24, + "probability": 0.9969 + }, + { + "start": 5755.22, + "end": 5758.5, + "probability": 0.5931 + }, + { + "start": 5759.08, + "end": 5761.44, + "probability": 0.997 + }, + { + "start": 5764.84, + "end": 5765.56, + "probability": 0.6441 + }, + { + "start": 5766.76, + "end": 5767.84, + "probability": 0.5598 + }, + { + "start": 5767.94, + "end": 5773.3, + "probability": 0.9927 + }, + { + "start": 5774.04, + "end": 5775.26, + "probability": 0.9616 + }, + { + "start": 5775.46, + "end": 5776.74, + "probability": 0.9293 + }, + { + "start": 5776.78, + "end": 5777.18, + "probability": 0.8209 + }, + { + "start": 5777.48, + "end": 5779.78, + "probability": 0.8283 + }, + { + "start": 5780.54, + "end": 5781.5, + "probability": 0.9259 + }, + { + "start": 5781.76, + "end": 5785.08, + "probability": 0.9637 + }, + { + "start": 5785.82, + "end": 5786.34, + "probability": 0.887 + }, + { + "start": 5787.22, + "end": 5792.72, + "probability": 0.958 + }, + { + "start": 5792.88, + "end": 5799.3, + "probability": 0.9959 + }, + { + "start": 5799.56, + "end": 5802.0, + "probability": 0.7857 + }, + { + "start": 5802.1, + "end": 5805.24, + "probability": 0.9246 + }, + { + "start": 5805.36, + "end": 5807.94, + "probability": 0.9946 + }, + { + "start": 5808.7, + "end": 5811.26, + "probability": 0.9777 + }, + { + "start": 5812.06, + "end": 5814.56, + "probability": 0.9659 + }, + { + "start": 5814.84, + "end": 5815.02, + "probability": 0.7106 + }, + { + "start": 5815.48, + "end": 5816.48, + "probability": 0.8674 + }, + { + "start": 5816.84, + "end": 5819.02, + "probability": 0.9038 + }, + { + "start": 5819.14, + "end": 5821.6, + "probability": 0.7445 + }, + { + "start": 5822.66, + "end": 5826.4, + "probability": 0.705 + }, + { + "start": 5826.78, + "end": 5827.8, + "probability": 0.9812 + }, + { + "start": 5827.94, + "end": 5828.18, + "probability": 0.2075 + }, + { + "start": 5828.64, + "end": 5829.4, + "probability": 0.7684 + }, + { + "start": 5829.74, + "end": 5831.64, + "probability": 0.8986 + }, + { + "start": 5832.04, + "end": 5833.36, + "probability": 0.8542 + }, + { + "start": 5834.3, + "end": 5837.7, + "probability": 0.8576 + }, + { + "start": 5838.38, + "end": 5842.4, + "probability": 0.9945 + }, + { + "start": 5844.2, + "end": 5845.44, + "probability": 0.5179 + }, + { + "start": 5846.04, + "end": 5847.6, + "probability": 0.8371 + }, + { + "start": 5847.78, + "end": 5849.76, + "probability": 0.9698 + }, + { + "start": 5850.1, + "end": 5851.5, + "probability": 0.6907 + }, + { + "start": 5851.9, + "end": 5852.42, + "probability": 0.6971 + }, + { + "start": 5852.82, + "end": 5858.98, + "probability": 0.9723 + }, + { + "start": 5858.98, + "end": 5861.46, + "probability": 0.9761 + }, + { + "start": 5864.78, + "end": 5865.42, + "probability": 0.7208 + }, + { + "start": 5865.8, + "end": 5869.43, + "probability": 0.8774 + }, + { + "start": 5870.06, + "end": 5872.16, + "probability": 0.9434 + }, + { + "start": 5873.06, + "end": 5873.2, + "probability": 0.6459 + }, + { + "start": 5873.98, + "end": 5875.8, + "probability": 0.8132 + }, + { + "start": 5875.9, + "end": 5876.66, + "probability": 0.6594 + }, + { + "start": 5877.2, + "end": 5881.66, + "probability": 0.9817 + }, + { + "start": 5882.44, + "end": 5887.92, + "probability": 0.9633 + }, + { + "start": 5888.36, + "end": 5890.24, + "probability": 0.9727 + }, + { + "start": 5891.02, + "end": 5893.52, + "probability": 0.9128 + }, + { + "start": 5894.06, + "end": 5897.22, + "probability": 0.9985 + }, + { + "start": 5897.86, + "end": 5898.08, + "probability": 0.6663 + }, + { + "start": 5899.56, + "end": 5900.64, + "probability": 0.9061 + }, + { + "start": 5901.4, + "end": 5902.28, + "probability": 0.629 + }, + { + "start": 5902.8, + "end": 5908.2, + "probability": 0.89 + }, + { + "start": 5909.6, + "end": 5915.1, + "probability": 0.9282 + }, + { + "start": 5916.22, + "end": 5918.36, + "probability": 0.9885 + }, + { + "start": 5918.92, + "end": 5920.98, + "probability": 0.9968 + }, + { + "start": 5921.5, + "end": 5922.44, + "probability": 0.8667 + }, + { + "start": 5924.04, + "end": 5926.62, + "probability": 0.8707 + }, + { + "start": 5926.66, + "end": 5928.76, + "probability": 0.9852 + }, + { + "start": 5929.56, + "end": 5930.6, + "probability": 0.9292 + }, + { + "start": 5931.46, + "end": 5931.9, + "probability": 0.6501 + }, + { + "start": 5933.2, + "end": 5935.0, + "probability": 0.9906 + }, + { + "start": 5935.6, + "end": 5937.99, + "probability": 0.8186 + }, + { + "start": 5939.14, + "end": 5941.62, + "probability": 0.9737 + }, + { + "start": 5942.32, + "end": 5944.62, + "probability": 0.9928 + }, + { + "start": 5945.94, + "end": 5947.12, + "probability": 0.9208 + }, + { + "start": 5953.86, + "end": 5959.72, + "probability": 0.9967 + }, + { + "start": 5960.56, + "end": 5962.82, + "probability": 0.9187 + }, + { + "start": 5963.34, + "end": 5965.32, + "probability": 0.9993 + }, + { + "start": 5965.96, + "end": 5968.84, + "probability": 0.9935 + }, + { + "start": 5969.58, + "end": 5970.06, + "probability": 0.2107 + }, + { + "start": 5970.14, + "end": 5973.38, + "probability": 0.9639 + }, + { + "start": 5973.68, + "end": 5977.08, + "probability": 0.9713 + }, + { + "start": 5977.6, + "end": 5978.18, + "probability": 0.8479 + }, + { + "start": 5980.28, + "end": 5984.08, + "probability": 0.985 + }, + { + "start": 5984.08, + "end": 5987.92, + "probability": 0.9987 + }, + { + "start": 5988.46, + "end": 5990.74, + "probability": 0.9463 + }, + { + "start": 5991.26, + "end": 5994.78, + "probability": 0.9963 + }, + { + "start": 5995.46, + "end": 5996.28, + "probability": 0.959 + }, + { + "start": 5996.86, + "end": 6000.22, + "probability": 0.8835 + }, + { + "start": 6000.94, + "end": 6005.62, + "probability": 0.8382 + }, + { + "start": 6006.51, + "end": 6009.74, + "probability": 0.9959 + }, + { + "start": 6011.94, + "end": 6017.42, + "probability": 0.9932 + }, + { + "start": 6018.42, + "end": 6019.16, + "probability": 0.6155 + }, + { + "start": 6020.18, + "end": 6023.12, + "probability": 0.5772 + }, + { + "start": 6023.26, + "end": 6025.2, + "probability": 0.6078 + }, + { + "start": 6025.42, + "end": 6030.68, + "probability": 0.9521 + }, + { + "start": 6031.46, + "end": 6032.94, + "probability": 0.9212 + }, + { + "start": 6034.04, + "end": 6039.44, + "probability": 0.9962 + }, + { + "start": 6040.46, + "end": 6040.87, + "probability": 0.9685 + }, + { + "start": 6041.9, + "end": 6044.91, + "probability": 0.8635 + }, + { + "start": 6046.5, + "end": 6047.62, + "probability": 0.8756 + }, + { + "start": 6047.72, + "end": 6051.04, + "probability": 0.9688 + }, + { + "start": 6051.8, + "end": 6056.2, + "probability": 0.993 + }, + { + "start": 6056.2, + "end": 6059.64, + "probability": 0.9984 + }, + { + "start": 6059.8, + "end": 6060.7, + "probability": 0.7376 + }, + { + "start": 6060.82, + "end": 6061.88, + "probability": 0.3821 + }, + { + "start": 6062.44, + "end": 6066.2, + "probability": 0.9658 + }, + { + "start": 6066.5, + "end": 6067.86, + "probability": 0.9901 + }, + { + "start": 6069.24, + "end": 6071.94, + "probability": 0.9863 + }, + { + "start": 6073.0, + "end": 6078.04, + "probability": 0.9412 + }, + { + "start": 6078.56, + "end": 6079.44, + "probability": 0.6997 + }, + { + "start": 6080.0, + "end": 6081.08, + "probability": 0.9946 + }, + { + "start": 6081.92, + "end": 6082.82, + "probability": 0.9551 + }, + { + "start": 6082.96, + "end": 6091.12, + "probability": 0.9653 + }, + { + "start": 6091.72, + "end": 6093.06, + "probability": 0.9147 + }, + { + "start": 6093.14, + "end": 6096.94, + "probability": 0.9784 + }, + { + "start": 6097.7, + "end": 6099.54, + "probability": 0.7043 + }, + { + "start": 6100.98, + "end": 6103.45, + "probability": 0.7559 + }, + { + "start": 6106.76, + "end": 6108.18, + "probability": 0.9749 + }, + { + "start": 6113.02, + "end": 6114.98, + "probability": 0.7889 + }, + { + "start": 6114.98, + "end": 6118.62, + "probability": 0.988 + }, + { + "start": 6119.18, + "end": 6122.78, + "probability": 0.9956 + }, + { + "start": 6123.56, + "end": 6125.24, + "probability": 0.8794 + }, + { + "start": 6126.46, + "end": 6129.84, + "probability": 0.989 + }, + { + "start": 6129.84, + "end": 6133.96, + "probability": 0.9059 + }, + { + "start": 6134.1, + "end": 6134.76, + "probability": 0.7758 + }, + { + "start": 6136.0, + "end": 6137.12, + "probability": 0.7968 + }, + { + "start": 6137.46, + "end": 6138.52, + "probability": 0.9412 + }, + { + "start": 6138.72, + "end": 6143.36, + "probability": 0.9879 + }, + { + "start": 6143.94, + "end": 6145.46, + "probability": 0.9433 + }, + { + "start": 6146.08, + "end": 6150.5, + "probability": 0.9049 + }, + { + "start": 6151.08, + "end": 6151.76, + "probability": 0.751 + }, + { + "start": 6152.64, + "end": 6156.54, + "probability": 0.9842 + }, + { + "start": 6157.86, + "end": 6159.96, + "probability": 0.9189 + }, + { + "start": 6161.36, + "end": 6163.56, + "probability": 0.9699 + }, + { + "start": 6163.68, + "end": 6165.9, + "probability": 0.992 + }, + { + "start": 6166.36, + "end": 6168.02, + "probability": 0.9392 + }, + { + "start": 6168.6, + "end": 6171.64, + "probability": 0.6956 + }, + { + "start": 6172.0, + "end": 6173.76, + "probability": 0.9138 + }, + { + "start": 6174.58, + "end": 6178.28, + "probability": 0.9514 + }, + { + "start": 6178.28, + "end": 6181.74, + "probability": 0.9843 + }, + { + "start": 6181.92, + "end": 6183.5, + "probability": 0.9857 + }, + { + "start": 6184.78, + "end": 6191.08, + "probability": 0.9989 + }, + { + "start": 6191.92, + "end": 6193.68, + "probability": 0.9149 + }, + { + "start": 6194.58, + "end": 6197.28, + "probability": 0.9983 + }, + { + "start": 6198.3, + "end": 6204.34, + "probability": 0.9884 + }, + { + "start": 6205.62, + "end": 6212.12, + "probability": 0.9353 + }, + { + "start": 6212.96, + "end": 6219.3, + "probability": 0.9482 + }, + { + "start": 6219.3, + "end": 6227.04, + "probability": 0.9803 + }, + { + "start": 6227.9, + "end": 6228.66, + "probability": 0.5966 + }, + { + "start": 6228.92, + "end": 6229.74, + "probability": 0.7629 + }, + { + "start": 6231.16, + "end": 6232.6, + "probability": 0.7248 + }, + { + "start": 6232.88, + "end": 6237.36, + "probability": 0.9023 + }, + { + "start": 6237.38, + "end": 6238.12, + "probability": 0.9193 + }, + { + "start": 6238.2, + "end": 6239.92, + "probability": 0.9829 + }, + { + "start": 6240.3, + "end": 6242.02, + "probability": 0.9609 + }, + { + "start": 6243.78, + "end": 6247.86, + "probability": 0.9234 + }, + { + "start": 6248.7, + "end": 6249.34, + "probability": 0.7594 + }, + { + "start": 6250.94, + "end": 6255.12, + "probability": 0.7431 + }, + { + "start": 6255.18, + "end": 6261.62, + "probability": 0.9901 + }, + { + "start": 6262.38, + "end": 6267.68, + "probability": 0.9891 + }, + { + "start": 6267.68, + "end": 6271.46, + "probability": 0.9935 + }, + { + "start": 6271.94, + "end": 6272.3, + "probability": 0.8248 + }, + { + "start": 6272.42, + "end": 6274.28, + "probability": 0.8072 + }, + { + "start": 6274.5, + "end": 6275.66, + "probability": 0.9795 + }, + { + "start": 6276.08, + "end": 6277.02, + "probability": 0.6395 + }, + { + "start": 6277.76, + "end": 6278.08, + "probability": 0.8169 + }, + { + "start": 6278.9, + "end": 6279.96, + "probability": 0.9796 + }, + { + "start": 6280.16, + "end": 6281.26, + "probability": 0.9633 + }, + { + "start": 6281.76, + "end": 6283.41, + "probability": 0.917 + }, + { + "start": 6284.3, + "end": 6285.66, + "probability": 0.6157 + }, + { + "start": 6285.76, + "end": 6286.72, + "probability": 0.9368 + }, + { + "start": 6287.88, + "end": 6288.18, + "probability": 0.8203 + }, + { + "start": 6288.88, + "end": 6291.74, + "probability": 0.7532 + }, + { + "start": 6292.68, + "end": 6293.52, + "probability": 0.4035 + }, + { + "start": 6294.04, + "end": 6295.64, + "probability": 0.9355 + }, + { + "start": 6295.68, + "end": 6296.34, + "probability": 0.8543 + }, + { + "start": 6296.46, + "end": 6297.54, + "probability": 0.5749 + }, + { + "start": 6299.0, + "end": 6301.44, + "probability": 0.6509 + }, + { + "start": 6302.02, + "end": 6306.5, + "probability": 0.5334 + } + ], + "segments_count": 1942, + "words_count": 10173, + "avg_words_per_segment": 5.2384, + "avg_segment_duration": 2.3404, + "avg_words_per_minute": 95.4461, + "plenum_id": "102050", + "duration": 6395.02, + "title": null, + "plenum_date": "2021-11-30" +} \ No newline at end of file