diff --git "a/104801/metadata.json" "b/104801/metadata.json" new file mode 100644--- /dev/null +++ "b/104801/metadata.json" @@ -0,0 +1,18177 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "104801", + "quality_score": 0.9507, + "per_segment_quality_scores": [ + { + "start": 97.21, + "end": 106.0, + "probability": 0.815 + }, + { + "start": 110.2, + "end": 111.5, + "probability": 0.7981 + }, + { + "start": 111.56, + "end": 112.74, + "probability": 0.8378 + }, + { + "start": 112.86, + "end": 114.36, + "probability": 0.9122 + }, + { + "start": 115.28, + "end": 116.06, + "probability": 0.7347 + }, + { + "start": 116.1, + "end": 121.7, + "probability": 0.8879 + }, + { + "start": 122.26, + "end": 124.48, + "probability": 0.8753 + }, + { + "start": 125.1, + "end": 126.92, + "probability": 0.2211 + }, + { + "start": 127.86, + "end": 131.22, + "probability": 0.7505 + }, + { + "start": 131.82, + "end": 135.1, + "probability": 0.9131 + }, + { + "start": 135.28, + "end": 141.96, + "probability": 0.9443 + }, + { + "start": 143.37, + "end": 146.02, + "probability": 0.964 + }, + { + "start": 146.66, + "end": 148.78, + "probability": 0.7536 + }, + { + "start": 148.8, + "end": 148.8, + "probability": 0.9223 + }, + { + "start": 148.8, + "end": 148.98, + "probability": 0.5419 + }, + { + "start": 149.68, + "end": 151.1, + "probability": 0.9064 + }, + { + "start": 151.8, + "end": 152.58, + "probability": 0.7362 + }, + { + "start": 153.4, + "end": 155.0, + "probability": 0.5524 + }, + { + "start": 156.66, + "end": 159.36, + "probability": 0.9915 + }, + { + "start": 162.72, + "end": 164.52, + "probability": 0.675 + }, + { + "start": 164.68, + "end": 166.85, + "probability": 0.7607 + }, + { + "start": 167.64, + "end": 170.04, + "probability": 0.7677 + }, + { + "start": 172.24, + "end": 173.38, + "probability": 0.4288 + }, + { + "start": 174.94, + "end": 185.6, + "probability": 0.6138 + }, + { + "start": 185.72, + "end": 186.42, + "probability": 0.7019 + }, + { + "start": 186.54, + "end": 187.68, + "probability": 0.8111 + }, + { + "start": 188.38, + "end": 188.98, + "probability": 0.5079 + }, + { + "start": 189.92, + "end": 192.64, + "probability": 0.9051 + }, + { + "start": 192.64, + "end": 196.86, + "probability": 0.9899 + }, + { + "start": 197.7, + "end": 201.63, + "probability": 0.8204 + }, + { + "start": 202.56, + "end": 205.5, + "probability": 0.9883 + }, + { + "start": 206.14, + "end": 208.42, + "probability": 0.9676 + }, + { + "start": 209.28, + "end": 210.14, + "probability": 0.5373 + }, + { + "start": 210.26, + "end": 210.68, + "probability": 0.7392 + }, + { + "start": 211.26, + "end": 212.76, + "probability": 0.6239 + }, + { + "start": 213.82, + "end": 216.42, + "probability": 0.9411 + }, + { + "start": 217.28, + "end": 218.98, + "probability": 0.6912 + }, + { + "start": 219.02, + "end": 221.16, + "probability": 0.9907 + }, + { + "start": 221.4, + "end": 228.64, + "probability": 0.9862 + }, + { + "start": 228.7, + "end": 230.28, + "probability": 0.998 + }, + { + "start": 230.94, + "end": 231.74, + "probability": 0.501 + }, + { + "start": 231.84, + "end": 233.34, + "probability": 0.9473 + }, + { + "start": 233.42, + "end": 234.78, + "probability": 0.9927 + }, + { + "start": 235.04, + "end": 235.6, + "probability": 0.6395 + }, + { + "start": 236.3, + "end": 240.62, + "probability": 0.9385 + }, + { + "start": 241.48, + "end": 244.56, + "probability": 0.9876 + }, + { + "start": 244.94, + "end": 247.12, + "probability": 0.97 + }, + { + "start": 247.3, + "end": 248.68, + "probability": 0.9905 + }, + { + "start": 249.52, + "end": 251.46, + "probability": 0.9856 + }, + { + "start": 251.52, + "end": 254.8, + "probability": 0.9891 + }, + { + "start": 255.4, + "end": 259.04, + "probability": 0.9669 + }, + { + "start": 259.28, + "end": 262.04, + "probability": 0.9956 + }, + { + "start": 263.26, + "end": 263.36, + "probability": 0.4182 + }, + { + "start": 264.08, + "end": 267.38, + "probability": 0.1059 + }, + { + "start": 267.98, + "end": 270.16, + "probability": 0.2314 + }, + { + "start": 270.96, + "end": 271.18, + "probability": 0.4912 + }, + { + "start": 272.42, + "end": 272.8, + "probability": 0.264 + }, + { + "start": 275.02, + "end": 278.82, + "probability": 0.9863 + }, + { + "start": 279.5, + "end": 283.64, + "probability": 0.9937 + }, + { + "start": 284.16, + "end": 286.0, + "probability": 0.9992 + }, + { + "start": 286.32, + "end": 289.02, + "probability": 0.9846 + }, + { + "start": 289.68, + "end": 290.78, + "probability": 0.9292 + }, + { + "start": 293.36, + "end": 298.32, + "probability": 0.9982 + }, + { + "start": 298.38, + "end": 299.92, + "probability": 0.9522 + }, + { + "start": 300.52, + "end": 304.7, + "probability": 0.9961 + }, + { + "start": 304.86, + "end": 305.4, + "probability": 0.5809 + }, + { + "start": 305.62, + "end": 308.9, + "probability": 0.9952 + }, + { + "start": 309.08, + "end": 309.88, + "probability": 0.4879 + }, + { + "start": 310.04, + "end": 310.68, + "probability": 0.9556 + }, + { + "start": 311.1, + "end": 313.74, + "probability": 0.9949 + }, + { + "start": 314.84, + "end": 319.86, + "probability": 0.9774 + }, + { + "start": 320.02, + "end": 322.34, + "probability": 0.9957 + }, + { + "start": 322.8, + "end": 324.04, + "probability": 0.9009 + }, + { + "start": 324.16, + "end": 327.22, + "probability": 0.9982 + }, + { + "start": 327.78, + "end": 330.4, + "probability": 0.9502 + }, + { + "start": 330.68, + "end": 332.66, + "probability": 0.9824 + }, + { + "start": 332.82, + "end": 334.08, + "probability": 0.8882 + }, + { + "start": 334.76, + "end": 338.44, + "probability": 0.8896 + }, + { + "start": 338.96, + "end": 346.94, + "probability": 0.9126 + }, + { + "start": 347.96, + "end": 350.26, + "probability": 0.9742 + }, + { + "start": 350.32, + "end": 351.86, + "probability": 0.9814 + }, + { + "start": 352.46, + "end": 353.4, + "probability": 0.8739 + }, + { + "start": 353.94, + "end": 355.54, + "probability": 0.9816 + }, + { + "start": 355.66, + "end": 357.12, + "probability": 0.9913 + }, + { + "start": 357.7, + "end": 359.98, + "probability": 0.9949 + }, + { + "start": 360.24, + "end": 362.16, + "probability": 0.923 + }, + { + "start": 362.28, + "end": 363.6, + "probability": 0.8337 + }, + { + "start": 365.4, + "end": 366.4, + "probability": 0.4683 + }, + { + "start": 367.24, + "end": 369.5, + "probability": 0.8276 + }, + { + "start": 370.26, + "end": 373.62, + "probability": 0.9081 + }, + { + "start": 374.2, + "end": 375.26, + "probability": 0.7775 + }, + { + "start": 376.04, + "end": 377.46, + "probability": 0.9783 + }, + { + "start": 377.76, + "end": 383.94, + "probability": 0.7397 + }, + { + "start": 384.2, + "end": 388.36, + "probability": 0.9895 + }, + { + "start": 388.98, + "end": 392.62, + "probability": 0.9995 + }, + { + "start": 393.1, + "end": 395.7, + "probability": 0.8967 + }, + { + "start": 395.76, + "end": 397.7, + "probability": 0.775 + }, + { + "start": 397.92, + "end": 398.6, + "probability": 0.7047 + }, + { + "start": 399.12, + "end": 401.58, + "probability": 0.7213 + }, + { + "start": 402.12, + "end": 404.26, + "probability": 0.8906 + }, + { + "start": 404.36, + "end": 406.08, + "probability": 0.8752 + }, + { + "start": 406.12, + "end": 406.78, + "probability": 0.7877 + }, + { + "start": 407.3, + "end": 411.14, + "probability": 0.9849 + }, + { + "start": 411.18, + "end": 412.5, + "probability": 0.7317 + }, + { + "start": 412.58, + "end": 414.16, + "probability": 0.9377 + }, + { + "start": 414.36, + "end": 416.12, + "probability": 0.9314 + }, + { + "start": 416.62, + "end": 419.78, + "probability": 0.9251 + }, + { + "start": 420.02, + "end": 420.47, + "probability": 0.6733 + }, + { + "start": 421.02, + "end": 421.62, + "probability": 0.8463 + }, + { + "start": 421.64, + "end": 422.28, + "probability": 0.9708 + }, + { + "start": 422.46, + "end": 425.68, + "probability": 0.9927 + }, + { + "start": 426.22, + "end": 429.76, + "probability": 0.9124 + }, + { + "start": 430.46, + "end": 432.14, + "probability": 0.7292 + }, + { + "start": 432.56, + "end": 433.1, + "probability": 0.4486 + }, + { + "start": 433.4, + "end": 434.77, + "probability": 0.9604 + }, + { + "start": 435.74, + "end": 440.06, + "probability": 0.883 + }, + { + "start": 440.8, + "end": 441.32, + "probability": 0.9906 + }, + { + "start": 441.72, + "end": 442.28, + "probability": 0.9812 + }, + { + "start": 442.54, + "end": 443.16, + "probability": 0.9594 + }, + { + "start": 443.62, + "end": 444.64, + "probability": 0.9652 + }, + { + "start": 444.72, + "end": 446.38, + "probability": 0.9058 + }, + { + "start": 446.74, + "end": 449.4, + "probability": 0.9984 + }, + { + "start": 450.04, + "end": 451.96, + "probability": 0.9888 + }, + { + "start": 452.08, + "end": 454.66, + "probability": 0.872 + }, + { + "start": 455.24, + "end": 458.14, + "probability": 0.9914 + }, + { + "start": 458.14, + "end": 463.78, + "probability": 0.9935 + }, + { + "start": 463.78, + "end": 467.3, + "probability": 0.9968 + }, + { + "start": 467.96, + "end": 470.5, + "probability": 0.9982 + }, + { + "start": 471.66, + "end": 475.2, + "probability": 0.999 + }, + { + "start": 475.6, + "end": 478.56, + "probability": 0.9985 + }, + { + "start": 479.54, + "end": 481.68, + "probability": 0.9926 + }, + { + "start": 481.68, + "end": 484.3, + "probability": 0.9889 + }, + { + "start": 484.78, + "end": 485.98, + "probability": 0.939 + }, + { + "start": 486.86, + "end": 490.14, + "probability": 0.9816 + }, + { + "start": 490.78, + "end": 493.94, + "probability": 0.9891 + }, + { + "start": 493.94, + "end": 499.44, + "probability": 0.9571 + }, + { + "start": 500.06, + "end": 505.62, + "probability": 0.9951 + }, + { + "start": 505.8, + "end": 509.35, + "probability": 0.978 + }, + { + "start": 510.4, + "end": 515.32, + "probability": 0.9988 + }, + { + "start": 517.1, + "end": 520.26, + "probability": 0.9985 + }, + { + "start": 520.26, + "end": 523.83, + "probability": 0.9949 + }, + { + "start": 524.46, + "end": 527.78, + "probability": 0.9372 + }, + { + "start": 527.78, + "end": 531.48, + "probability": 0.9813 + }, + { + "start": 531.82, + "end": 534.64, + "probability": 0.9966 + }, + { + "start": 534.74, + "end": 534.98, + "probability": 0.8722 + }, + { + "start": 537.76, + "end": 541.64, + "probability": 0.8569 + }, + { + "start": 541.72, + "end": 542.54, + "probability": 0.9353 + }, + { + "start": 542.72, + "end": 543.22, + "probability": 0.7116 + }, + { + "start": 543.3, + "end": 548.2, + "probability": 0.781 + }, + { + "start": 548.84, + "end": 549.28, + "probability": 0.9807 + }, + { + "start": 550.24, + "end": 551.04, + "probability": 0.8632 + }, + { + "start": 551.28, + "end": 555.06, + "probability": 0.9749 + }, + { + "start": 555.18, + "end": 555.44, + "probability": 0.8619 + }, + { + "start": 555.68, + "end": 557.0, + "probability": 0.7505 + }, + { + "start": 557.52, + "end": 561.32, + "probability": 0.9847 + }, + { + "start": 561.8, + "end": 565.08, + "probability": 0.9981 + }, + { + "start": 565.78, + "end": 568.13, + "probability": 0.9976 + }, + { + "start": 568.56, + "end": 570.12, + "probability": 0.9102 + }, + { + "start": 570.22, + "end": 571.2, + "probability": 0.9596 + }, + { + "start": 571.54, + "end": 575.48, + "probability": 0.991 + }, + { + "start": 576.14, + "end": 580.22, + "probability": 0.9865 + }, + { + "start": 580.22, + "end": 584.12, + "probability": 0.997 + }, + { + "start": 584.12, + "end": 587.52, + "probability": 0.9989 + }, + { + "start": 588.18, + "end": 590.66, + "probability": 0.9548 + }, + { + "start": 591.16, + "end": 593.82, + "probability": 0.8918 + }, + { + "start": 595.06, + "end": 599.16, + "probability": 0.9946 + }, + { + "start": 599.64, + "end": 603.06, + "probability": 0.988 + }, + { + "start": 603.6, + "end": 607.46, + "probability": 0.9839 + }, + { + "start": 608.32, + "end": 611.16, + "probability": 0.989 + }, + { + "start": 611.16, + "end": 614.4, + "probability": 0.9674 + }, + { + "start": 615.16, + "end": 620.36, + "probability": 0.9743 + }, + { + "start": 620.36, + "end": 623.78, + "probability": 0.9933 + }, + { + "start": 624.78, + "end": 628.0, + "probability": 0.9316 + }, + { + "start": 628.0, + "end": 630.64, + "probability": 0.9975 + }, + { + "start": 631.3, + "end": 631.62, + "probability": 0.703 + }, + { + "start": 631.66, + "end": 636.14, + "probability": 0.9984 + }, + { + "start": 636.24, + "end": 640.92, + "probability": 0.8996 + }, + { + "start": 641.0, + "end": 643.38, + "probability": 0.9985 + }, + { + "start": 643.9, + "end": 647.88, + "probability": 0.994 + }, + { + "start": 648.74, + "end": 649.04, + "probability": 0.3596 + }, + { + "start": 649.1, + "end": 653.22, + "probability": 0.9937 + }, + { + "start": 654.22, + "end": 662.32, + "probability": 0.9601 + }, + { + "start": 662.68, + "end": 665.38, + "probability": 0.9958 + }, + { + "start": 665.38, + "end": 669.44, + "probability": 0.9919 + }, + { + "start": 670.3, + "end": 670.82, + "probability": 0.7337 + }, + { + "start": 671.0, + "end": 674.72, + "probability": 0.9918 + }, + { + "start": 674.72, + "end": 677.72, + "probability": 0.9941 + }, + { + "start": 678.1, + "end": 683.22, + "probability": 0.9631 + }, + { + "start": 683.22, + "end": 688.86, + "probability": 0.9951 + }, + { + "start": 689.6, + "end": 692.9, + "probability": 0.9869 + }, + { + "start": 692.9, + "end": 695.84, + "probability": 0.9989 + }, + { + "start": 696.42, + "end": 699.46, + "probability": 0.9943 + }, + { + "start": 699.46, + "end": 701.88, + "probability": 0.9893 + }, + { + "start": 702.32, + "end": 703.54, + "probability": 0.8666 + }, + { + "start": 704.4, + "end": 705.6, + "probability": 0.875 + }, + { + "start": 706.0, + "end": 708.4, + "probability": 0.9912 + }, + { + "start": 708.76, + "end": 712.64, + "probability": 0.9876 + }, + { + "start": 713.54, + "end": 715.7, + "probability": 0.9365 + }, + { + "start": 716.08, + "end": 718.28, + "probability": 0.9644 + }, + { + "start": 718.32, + "end": 720.6, + "probability": 0.9901 + }, + { + "start": 721.2, + "end": 725.92, + "probability": 0.8964 + }, + { + "start": 726.28, + "end": 729.04, + "probability": 0.8428 + }, + { + "start": 729.4, + "end": 731.52, + "probability": 0.996 + }, + { + "start": 731.92, + "end": 732.56, + "probability": 0.8751 + }, + { + "start": 733.1, + "end": 733.4, + "probability": 0.8999 + }, + { + "start": 735.02, + "end": 735.8, + "probability": 0.748 + }, + { + "start": 737.16, + "end": 737.64, + "probability": 0.7574 + }, + { + "start": 738.18, + "end": 738.9, + "probability": 0.8181 + }, + { + "start": 739.6, + "end": 740.68, + "probability": 0.528 + }, + { + "start": 741.48, + "end": 743.56, + "probability": 0.7188 + }, + { + "start": 744.36, + "end": 747.24, + "probability": 0.9435 + }, + { + "start": 748.12, + "end": 751.59, + "probability": 0.9744 + }, + { + "start": 753.48, + "end": 755.08, + "probability": 0.9966 + }, + { + "start": 755.18, + "end": 755.98, + "probability": 0.9614 + }, + { + "start": 756.6, + "end": 757.46, + "probability": 0.9526 + }, + { + "start": 758.36, + "end": 761.22, + "probability": 0.9815 + }, + { + "start": 762.16, + "end": 765.8, + "probability": 0.7507 + }, + { + "start": 766.68, + "end": 767.58, + "probability": 0.6267 + }, + { + "start": 768.86, + "end": 770.89, + "probability": 0.9886 + }, + { + "start": 771.7, + "end": 772.62, + "probability": 0.9409 + }, + { + "start": 772.76, + "end": 773.88, + "probability": 0.9546 + }, + { + "start": 774.02, + "end": 775.28, + "probability": 0.848 + }, + { + "start": 776.76, + "end": 780.3, + "probability": 0.9716 + }, + { + "start": 781.3, + "end": 782.22, + "probability": 0.9915 + }, + { + "start": 782.3, + "end": 783.28, + "probability": 0.946 + }, + { + "start": 783.28, + "end": 783.64, + "probability": 0.7708 + }, + { + "start": 784.44, + "end": 785.82, + "probability": 0.8071 + }, + { + "start": 786.58, + "end": 788.2, + "probability": 0.8926 + }, + { + "start": 788.74, + "end": 789.2, + "probability": 0.7135 + }, + { + "start": 789.9, + "end": 790.83, + "probability": 0.9603 + }, + { + "start": 791.2, + "end": 792.06, + "probability": 0.8876 + }, + { + "start": 792.28, + "end": 793.8, + "probability": 0.8994 + }, + { + "start": 794.1, + "end": 794.74, + "probability": 0.7711 + }, + { + "start": 795.0, + "end": 796.04, + "probability": 0.9692 + }, + { + "start": 796.1, + "end": 798.28, + "probability": 0.777 + }, + { + "start": 799.02, + "end": 800.22, + "probability": 0.9604 + }, + { + "start": 800.4, + "end": 802.04, + "probability": 0.9928 + }, + { + "start": 802.98, + "end": 807.34, + "probability": 0.9708 + }, + { + "start": 807.34, + "end": 808.14, + "probability": 0.7726 + }, + { + "start": 808.74, + "end": 813.26, + "probability": 0.9618 + }, + { + "start": 813.46, + "end": 815.23, + "probability": 0.9646 + }, + { + "start": 815.46, + "end": 817.48, + "probability": 0.8803 + }, + { + "start": 817.62, + "end": 817.96, + "probability": 0.9375 + }, + { + "start": 820.13, + "end": 823.36, + "probability": 0.9331 + }, + { + "start": 823.8, + "end": 824.2, + "probability": 0.8685 + }, + { + "start": 824.56, + "end": 827.86, + "probability": 0.7508 + }, + { + "start": 828.54, + "end": 831.9, + "probability": 0.8867 + }, + { + "start": 833.64, + "end": 834.06, + "probability": 0.0308 + }, + { + "start": 834.06, + "end": 834.57, + "probability": 0.4468 + }, + { + "start": 835.82, + "end": 838.62, + "probability": 0.9609 + }, + { + "start": 839.58, + "end": 840.36, + "probability": 0.7209 + }, + { + "start": 841.1, + "end": 843.16, + "probability": 0.9053 + }, + { + "start": 843.78, + "end": 844.44, + "probability": 0.983 + }, + { + "start": 845.42, + "end": 846.06, + "probability": 0.7237 + }, + { + "start": 846.7, + "end": 848.52, + "probability": 0.9963 + }, + { + "start": 849.2, + "end": 850.36, + "probability": 0.9722 + }, + { + "start": 851.22, + "end": 851.94, + "probability": 0.6789 + }, + { + "start": 853.44, + "end": 854.2, + "probability": 0.9214 + }, + { + "start": 854.84, + "end": 855.3, + "probability": 0.692 + }, + { + "start": 855.4, + "end": 858.48, + "probability": 0.9852 + }, + { + "start": 859.2, + "end": 860.44, + "probability": 0.8126 + }, + { + "start": 861.14, + "end": 861.5, + "probability": 0.7724 + }, + { + "start": 862.02, + "end": 864.16, + "probability": 0.9965 + }, + { + "start": 864.26, + "end": 865.82, + "probability": 0.8555 + }, + { + "start": 865.88, + "end": 866.34, + "probability": 0.7816 + }, + { + "start": 867.66, + "end": 871.84, + "probability": 0.9873 + }, + { + "start": 871.84, + "end": 873.52, + "probability": 0.6755 + }, + { + "start": 875.16, + "end": 877.42, + "probability": 0.8927 + }, + { + "start": 878.18, + "end": 878.95, + "probability": 0.9598 + }, + { + "start": 879.38, + "end": 880.66, + "probability": 0.8116 + }, + { + "start": 881.92, + "end": 884.74, + "probability": 0.8981 + }, + { + "start": 885.8, + "end": 888.74, + "probability": 0.6714 + }, + { + "start": 889.38, + "end": 890.46, + "probability": 0.5089 + }, + { + "start": 894.86, + "end": 898.46, + "probability": 0.99 + }, + { + "start": 898.58, + "end": 899.5, + "probability": 0.3555 + }, + { + "start": 900.77, + "end": 903.16, + "probability": 0.6731 + }, + { + "start": 903.16, + "end": 905.62, + "probability": 0.866 + }, + { + "start": 908.42, + "end": 910.14, + "probability": 0.9971 + }, + { + "start": 911.34, + "end": 912.28, + "probability": 0.6873 + }, + { + "start": 912.46, + "end": 913.7, + "probability": 0.7147 + }, + { + "start": 914.04, + "end": 914.22, + "probability": 0.2806 + }, + { + "start": 914.22, + "end": 914.44, + "probability": 0.915 + }, + { + "start": 914.62, + "end": 915.72, + "probability": 0.8604 + }, + { + "start": 916.26, + "end": 919.08, + "probability": 0.8564 + }, + { + "start": 921.1, + "end": 924.98, + "probability": 0.825 + }, + { + "start": 926.12, + "end": 926.68, + "probability": 0.9648 + }, + { + "start": 926.8, + "end": 927.72, + "probability": 0.9118 + }, + { + "start": 929.0, + "end": 932.86, + "probability": 0.894 + }, + { + "start": 933.26, + "end": 934.0, + "probability": 0.9434 + }, + { + "start": 934.84, + "end": 936.2, + "probability": 0.9919 + }, + { + "start": 937.02, + "end": 937.91, + "probability": 0.9679 + }, + { + "start": 938.5, + "end": 941.46, + "probability": 0.9224 + }, + { + "start": 941.76, + "end": 941.86, + "probability": 0.8259 + }, + { + "start": 943.34, + "end": 945.7, + "probability": 0.9764 + }, + { + "start": 945.9, + "end": 946.54, + "probability": 0.9075 + }, + { + "start": 947.26, + "end": 949.07, + "probability": 0.9965 + }, + { + "start": 950.0, + "end": 951.64, + "probability": 0.8671 + }, + { + "start": 951.85, + "end": 952.26, + "probability": 0.8802 + }, + { + "start": 953.1, + "end": 953.64, + "probability": 0.6221 + }, + { + "start": 954.86, + "end": 955.32, + "probability": 0.6682 + }, + { + "start": 955.66, + "end": 956.22, + "probability": 0.5361 + }, + { + "start": 956.24, + "end": 957.04, + "probability": 0.615 + }, + { + "start": 957.74, + "end": 961.2, + "probability": 0.9922 + }, + { + "start": 961.28, + "end": 963.32, + "probability": 0.998 + }, + { + "start": 963.32, + "end": 967.18, + "probability": 0.9932 + }, + { + "start": 967.86, + "end": 969.74, + "probability": 0.7839 + }, + { + "start": 970.18, + "end": 970.6, + "probability": 0.5947 + }, + { + "start": 970.8, + "end": 971.72, + "probability": 0.8543 + }, + { + "start": 971.84, + "end": 972.64, + "probability": 0.859 + }, + { + "start": 972.78, + "end": 974.22, + "probability": 0.8711 + }, + { + "start": 974.72, + "end": 978.44, + "probability": 0.8825 + }, + { + "start": 978.86, + "end": 979.83, + "probability": 0.4195 + }, + { + "start": 980.28, + "end": 982.98, + "probability": 0.8813 + }, + { + "start": 983.62, + "end": 992.36, + "probability": 0.9424 + }, + { + "start": 992.7, + "end": 993.44, + "probability": 0.7282 + }, + { + "start": 993.8, + "end": 994.5, + "probability": 0.8681 + }, + { + "start": 994.54, + "end": 997.52, + "probability": 0.9485 + }, + { + "start": 997.84, + "end": 998.96, + "probability": 0.7271 + }, + { + "start": 999.68, + "end": 1002.78, + "probability": 0.996 + }, + { + "start": 1003.16, + "end": 1006.36, + "probability": 0.9876 + }, + { + "start": 1006.46, + "end": 1007.14, + "probability": 0.9485 + }, + { + "start": 1007.18, + "end": 1010.16, + "probability": 0.9897 + }, + { + "start": 1010.84, + "end": 1016.08, + "probability": 0.9501 + }, + { + "start": 1016.54, + "end": 1019.13, + "probability": 0.8311 + }, + { + "start": 1019.6, + "end": 1020.52, + "probability": 0.287 + }, + { + "start": 1020.66, + "end": 1023.56, + "probability": 0.8022 + }, + { + "start": 1023.84, + "end": 1028.2, + "probability": 0.9722 + }, + { + "start": 1028.24, + "end": 1031.42, + "probability": 0.9948 + }, + { + "start": 1031.93, + "end": 1034.63, + "probability": 0.9653 + }, + { + "start": 1035.6, + "end": 1037.72, + "probability": 0.9314 + }, + { + "start": 1038.36, + "end": 1039.34, + "probability": 0.9852 + }, + { + "start": 1039.58, + "end": 1042.1, + "probability": 0.8212 + }, + { + "start": 1042.5, + "end": 1049.76, + "probability": 0.984 + }, + { + "start": 1050.24, + "end": 1051.3, + "probability": 0.6644 + }, + { + "start": 1051.38, + "end": 1051.86, + "probability": 0.0075 + }, + { + "start": 1051.86, + "end": 1052.14, + "probability": 0.775 + }, + { + "start": 1052.32, + "end": 1055.22, + "probability": 0.8743 + }, + { + "start": 1055.22, + "end": 1058.98, + "probability": 0.8389 + }, + { + "start": 1059.34, + "end": 1060.32, + "probability": 0.9861 + }, + { + "start": 1061.41, + "end": 1064.8, + "probability": 0.7291 + }, + { + "start": 1065.1, + "end": 1068.28, + "probability": 0.9834 + }, + { + "start": 1068.9, + "end": 1070.36, + "probability": 0.9666 + }, + { + "start": 1070.52, + "end": 1072.82, + "probability": 0.9972 + }, + { + "start": 1072.82, + "end": 1076.5, + "probability": 0.9943 + }, + { + "start": 1077.24, + "end": 1078.26, + "probability": 0.9382 + }, + { + "start": 1078.9, + "end": 1079.76, + "probability": 0.534 + }, + { + "start": 1080.06, + "end": 1080.48, + "probability": 0.6986 + }, + { + "start": 1081.28, + "end": 1084.96, + "probability": 0.847 + }, + { + "start": 1085.0, + "end": 1090.06, + "probability": 0.9233 + }, + { + "start": 1090.98, + "end": 1097.12, + "probability": 0.99 + }, + { + "start": 1097.76, + "end": 1099.94, + "probability": 0.9966 + }, + { + "start": 1101.54, + "end": 1104.1, + "probability": 0.9969 + }, + { + "start": 1104.16, + "end": 1106.86, + "probability": 0.9887 + }, + { + "start": 1107.58, + "end": 1109.72, + "probability": 0.9985 + }, + { + "start": 1109.76, + "end": 1110.66, + "probability": 0.6714 + }, + { + "start": 1111.66, + "end": 1113.56, + "probability": 0.4989 + }, + { + "start": 1113.82, + "end": 1114.0, + "probability": 0.9202 + }, + { + "start": 1114.16, + "end": 1114.97, + "probability": 0.903 + }, + { + "start": 1115.34, + "end": 1115.76, + "probability": 0.8775 + }, + { + "start": 1115.92, + "end": 1117.16, + "probability": 0.9218 + }, + { + "start": 1117.42, + "end": 1119.66, + "probability": 0.8394 + }, + { + "start": 1120.44, + "end": 1123.56, + "probability": 0.9921 + }, + { + "start": 1123.74, + "end": 1124.32, + "probability": 0.6905 + }, + { + "start": 1124.62, + "end": 1127.4, + "probability": 0.8727 + }, + { + "start": 1128.46, + "end": 1130.6, + "probability": 0.9779 + }, + { + "start": 1131.0, + "end": 1132.58, + "probability": 0.9949 + }, + { + "start": 1133.98, + "end": 1135.8, + "probability": 0.9208 + }, + { + "start": 1136.2, + "end": 1140.8, + "probability": 0.9941 + }, + { + "start": 1140.9, + "end": 1142.1, + "probability": 0.9004 + }, + { + "start": 1142.18, + "end": 1146.44, + "probability": 0.915 + }, + { + "start": 1147.04, + "end": 1150.46, + "probability": 0.9936 + }, + { + "start": 1151.22, + "end": 1155.76, + "probability": 0.9824 + }, + { + "start": 1156.22, + "end": 1157.12, + "probability": 0.6296 + }, + { + "start": 1157.22, + "end": 1159.24, + "probability": 0.9902 + }, + { + "start": 1159.86, + "end": 1161.56, + "probability": 0.9167 + }, + { + "start": 1161.74, + "end": 1164.82, + "probability": 0.9945 + }, + { + "start": 1164.96, + "end": 1167.26, + "probability": 0.7208 + }, + { + "start": 1168.02, + "end": 1168.78, + "probability": 0.8136 + }, + { + "start": 1168.88, + "end": 1170.14, + "probability": 0.8901 + }, + { + "start": 1170.58, + "end": 1170.78, + "probability": 0.9279 + }, + { + "start": 1170.84, + "end": 1171.98, + "probability": 0.9407 + }, + { + "start": 1172.2, + "end": 1176.54, + "probability": 0.9838 + }, + { + "start": 1177.72, + "end": 1179.98, + "probability": 0.9264 + }, + { + "start": 1180.1, + "end": 1181.01, + "probability": 0.7997 + }, + { + "start": 1181.18, + "end": 1181.18, + "probability": 0.4657 + }, + { + "start": 1181.22, + "end": 1181.32, + "probability": 0.4652 + }, + { + "start": 1181.94, + "end": 1186.24, + "probability": 0.9686 + }, + { + "start": 1186.88, + "end": 1188.1, + "probability": 0.9497 + }, + { + "start": 1188.38, + "end": 1190.3, + "probability": 0.98 + }, + { + "start": 1191.16, + "end": 1195.04, + "probability": 0.9941 + }, + { + "start": 1195.36, + "end": 1195.92, + "probability": 0.6173 + }, + { + "start": 1196.48, + "end": 1197.06, + "probability": 0.9244 + }, + { + "start": 1197.38, + "end": 1197.58, + "probability": 0.6793 + }, + { + "start": 1198.34, + "end": 1200.0, + "probability": 0.9956 + }, + { + "start": 1200.66, + "end": 1201.45, + "probability": 0.9141 + }, + { + "start": 1202.26, + "end": 1203.3, + "probability": 0.9457 + }, + { + "start": 1204.62, + "end": 1204.84, + "probability": 0.0548 + }, + { + "start": 1207.28, + "end": 1207.86, + "probability": 0.0352 + }, + { + "start": 1207.98, + "end": 1209.66, + "probability": 0.5734 + }, + { + "start": 1210.04, + "end": 1211.98, + "probability": 0.6507 + }, + { + "start": 1212.14, + "end": 1212.34, + "probability": 0.351 + }, + { + "start": 1212.44, + "end": 1213.1, + "probability": 0.7209 + }, + { + "start": 1213.18, + "end": 1216.38, + "probability": 0.9724 + }, + { + "start": 1216.5, + "end": 1217.58, + "probability": 0.3696 + }, + { + "start": 1217.66, + "end": 1221.36, + "probability": 0.7877 + }, + { + "start": 1221.48, + "end": 1222.32, + "probability": 0.8768 + }, + { + "start": 1222.32, + "end": 1224.04, + "probability": 0.3189 + }, + { + "start": 1224.16, + "end": 1224.86, + "probability": 0.1627 + }, + { + "start": 1224.94, + "end": 1225.82, + "probability": 0.741 + }, + { + "start": 1225.86, + "end": 1228.34, + "probability": 0.706 + }, + { + "start": 1228.52, + "end": 1229.68, + "probability": 0.8301 + }, + { + "start": 1229.74, + "end": 1231.0, + "probability": 0.8091 + }, + { + "start": 1231.5, + "end": 1233.3, + "probability": 0.7956 + }, + { + "start": 1233.46, + "end": 1233.74, + "probability": 0.5032 + }, + { + "start": 1233.86, + "end": 1234.63, + "probability": 0.916 + }, + { + "start": 1234.82, + "end": 1236.8, + "probability": 0.9941 + }, + { + "start": 1237.38, + "end": 1240.4, + "probability": 0.9475 + }, + { + "start": 1240.92, + "end": 1241.46, + "probability": 0.9615 + }, + { + "start": 1241.54, + "end": 1242.58, + "probability": 0.7829 + }, + { + "start": 1242.6, + "end": 1243.5, + "probability": 0.7819 + }, + { + "start": 1243.66, + "end": 1244.54, + "probability": 0.9355 + }, + { + "start": 1245.0, + "end": 1246.95, + "probability": 0.9829 + }, + { + "start": 1247.54, + "end": 1252.54, + "probability": 0.9694 + }, + { + "start": 1252.98, + "end": 1253.28, + "probability": 0.9337 + }, + { + "start": 1253.42, + "end": 1255.52, + "probability": 0.9771 + }, + { + "start": 1255.88, + "end": 1259.56, + "probability": 0.9158 + }, + { + "start": 1259.86, + "end": 1261.26, + "probability": 0.6816 + }, + { + "start": 1262.0, + "end": 1264.49, + "probability": 0.9624 + }, + { + "start": 1265.02, + "end": 1267.3, + "probability": 0.9699 + }, + { + "start": 1267.34, + "end": 1268.76, + "probability": 0.6816 + }, + { + "start": 1269.4, + "end": 1272.68, + "probability": 0.9876 + }, + { + "start": 1273.26, + "end": 1276.28, + "probability": 0.9958 + }, + { + "start": 1277.0, + "end": 1278.78, + "probability": 0.9414 + }, + { + "start": 1279.0, + "end": 1279.78, + "probability": 0.8047 + }, + { + "start": 1279.92, + "end": 1284.04, + "probability": 0.9978 + }, + { + "start": 1284.58, + "end": 1284.9, + "probability": 0.9637 + }, + { + "start": 1284.96, + "end": 1287.82, + "probability": 0.8784 + }, + { + "start": 1288.55, + "end": 1293.0, + "probability": 0.916 + }, + { + "start": 1293.34, + "end": 1295.41, + "probability": 0.6096 + }, + { + "start": 1296.38, + "end": 1296.78, + "probability": 0.4801 + }, + { + "start": 1296.88, + "end": 1301.92, + "probability": 0.9779 + }, + { + "start": 1302.02, + "end": 1302.45, + "probability": 0.6663 + }, + { + "start": 1303.22, + "end": 1305.52, + "probability": 0.9971 + }, + { + "start": 1305.66, + "end": 1308.96, + "probability": 0.996 + }, + { + "start": 1308.96, + "end": 1311.06, + "probability": 0.9988 + }, + { + "start": 1311.36, + "end": 1311.56, + "probability": 0.7526 + }, + { + "start": 1312.1, + "end": 1312.7, + "probability": 0.8365 + }, + { + "start": 1313.32, + "end": 1313.74, + "probability": 0.4549 + }, + { + "start": 1314.86, + "end": 1315.78, + "probability": 0.7271 + }, + { + "start": 1315.88, + "end": 1316.56, + "probability": 0.5914 + }, + { + "start": 1316.96, + "end": 1317.06, + "probability": 0.2722 + }, + { + "start": 1317.26, + "end": 1319.98, + "probability": 0.7244 + }, + { + "start": 1321.26, + "end": 1322.18, + "probability": 0.8575 + }, + { + "start": 1322.78, + "end": 1323.46, + "probability": 0.5499 + }, + { + "start": 1323.54, + "end": 1324.2, + "probability": 0.6684 + }, + { + "start": 1324.32, + "end": 1324.58, + "probability": 0.6052 + }, + { + "start": 1325.16, + "end": 1328.26, + "probability": 0.7446 + }, + { + "start": 1328.78, + "end": 1330.38, + "probability": 0.7981 + }, + { + "start": 1332.52, + "end": 1333.94, + "probability": 0.7984 + }, + { + "start": 1333.96, + "end": 1337.54, + "probability": 0.9521 + }, + { + "start": 1337.7, + "end": 1338.54, + "probability": 0.713 + }, + { + "start": 1340.53, + "end": 1344.98, + "probability": 0.9202 + }, + { + "start": 1345.04, + "end": 1345.32, + "probability": 0.3278 + }, + { + "start": 1346.2, + "end": 1348.5, + "probability": 0.5194 + }, + { + "start": 1348.6, + "end": 1348.94, + "probability": 0.5314 + }, + { + "start": 1348.98, + "end": 1349.48, + "probability": 0.9663 + }, + { + "start": 1349.74, + "end": 1350.08, + "probability": 0.5794 + }, + { + "start": 1350.64, + "end": 1351.4, + "probability": 0.7703 + }, + { + "start": 1352.0, + "end": 1356.04, + "probability": 0.7491 + }, + { + "start": 1356.44, + "end": 1358.0, + "probability": 0.9998 + }, + { + "start": 1359.2, + "end": 1362.62, + "probability": 0.8835 + }, + { + "start": 1363.16, + "end": 1365.04, + "probability": 0.7003 + }, + { + "start": 1365.74, + "end": 1367.16, + "probability": 0.998 + }, + { + "start": 1367.92, + "end": 1373.3, + "probability": 0.6657 + }, + { + "start": 1374.44, + "end": 1374.72, + "probability": 0.4469 + }, + { + "start": 1374.72, + "end": 1375.04, + "probability": 0.8713 + }, + { + "start": 1375.2, + "end": 1380.4, + "probability": 0.9471 + }, + { + "start": 1380.56, + "end": 1381.32, + "probability": 0.5703 + }, + { + "start": 1382.44, + "end": 1387.12, + "probability": 0.9674 + }, + { + "start": 1387.9, + "end": 1390.64, + "probability": 0.8869 + }, + { + "start": 1390.76, + "end": 1391.76, + "probability": 0.6961 + }, + { + "start": 1392.42, + "end": 1395.0, + "probability": 0.9072 + }, + { + "start": 1395.46, + "end": 1395.76, + "probability": 0.0567 + }, + { + "start": 1395.76, + "end": 1396.6, + "probability": 0.6122 + }, + { + "start": 1397.24, + "end": 1398.22, + "probability": 0.9077 + }, + { + "start": 1398.36, + "end": 1403.1, + "probability": 0.8725 + }, + { + "start": 1403.48, + "end": 1404.48, + "probability": 0.8358 + }, + { + "start": 1405.14, + "end": 1408.64, + "probability": 0.9718 + }, + { + "start": 1409.58, + "end": 1414.9, + "probability": 0.9775 + }, + { + "start": 1415.36, + "end": 1417.74, + "probability": 0.9528 + }, + { + "start": 1418.46, + "end": 1422.5, + "probability": 0.9849 + }, + { + "start": 1423.06, + "end": 1427.84, + "probability": 0.9137 + }, + { + "start": 1428.08, + "end": 1430.54, + "probability": 0.7215 + }, + { + "start": 1431.16, + "end": 1431.96, + "probability": 0.6829 + }, + { + "start": 1432.66, + "end": 1434.4, + "probability": 0.7581 + }, + { + "start": 1434.48, + "end": 1435.52, + "probability": 0.7674 + }, + { + "start": 1435.66, + "end": 1437.34, + "probability": 0.8485 + }, + { + "start": 1437.64, + "end": 1437.71, + "probability": 0.4646 + }, + { + "start": 1438.9, + "end": 1441.58, + "probability": 0.9812 + }, + { + "start": 1441.76, + "end": 1443.38, + "probability": 0.64 + }, + { + "start": 1443.46, + "end": 1443.86, + "probability": 0.6616 + }, + { + "start": 1443.98, + "end": 1445.18, + "probability": 0.8779 + }, + { + "start": 1445.32, + "end": 1446.66, + "probability": 0.9697 + }, + { + "start": 1446.82, + "end": 1447.24, + "probability": 0.379 + }, + { + "start": 1447.5, + "end": 1448.96, + "probability": 0.2216 + }, + { + "start": 1448.96, + "end": 1449.84, + "probability": 0.776 + }, + { + "start": 1450.9, + "end": 1452.74, + "probability": 0.8835 + }, + { + "start": 1454.14, + "end": 1455.22, + "probability": 0.8866 + }, + { + "start": 1455.3, + "end": 1456.3, + "probability": 0.6083 + }, + { + "start": 1456.34, + "end": 1456.58, + "probability": 0.8548 + }, + { + "start": 1456.66, + "end": 1458.02, + "probability": 0.5025 + }, + { + "start": 1458.74, + "end": 1461.3, + "probability": 0.8978 + }, + { + "start": 1462.34, + "end": 1466.88, + "probability": 0.679 + }, + { + "start": 1467.08, + "end": 1467.76, + "probability": 0.4479 + }, + { + "start": 1467.88, + "end": 1468.6, + "probability": 0.6904 + }, + { + "start": 1480.54, + "end": 1481.38, + "probability": 0.8688 + }, + { + "start": 1482.66, + "end": 1483.16, + "probability": 0.7968 + }, + { + "start": 1483.94, + "end": 1491.86, + "probability": 0.8879 + }, + { + "start": 1492.08, + "end": 1492.38, + "probability": 0.8459 + }, + { + "start": 1492.72, + "end": 1498.04, + "probability": 0.9895 + }, + { + "start": 1498.44, + "end": 1501.88, + "probability": 0.8844 + }, + { + "start": 1502.96, + "end": 1503.24, + "probability": 0.6307 + }, + { + "start": 1503.96, + "end": 1509.16, + "probability": 0.9922 + }, + { + "start": 1509.4, + "end": 1509.7, + "probability": 0.6802 + }, + { + "start": 1509.74, + "end": 1510.26, + "probability": 0.6315 + }, + { + "start": 1510.56, + "end": 1511.12, + "probability": 0.7029 + }, + { + "start": 1511.36, + "end": 1513.96, + "probability": 0.9539 + }, + { + "start": 1516.54, + "end": 1518.34, + "probability": 0.5731 + }, + { + "start": 1520.56, + "end": 1522.72, + "probability": 0.5122 + }, + { + "start": 1523.56, + "end": 1524.12, + "probability": 0.7537 + }, + { + "start": 1524.36, + "end": 1524.8, + "probability": 0.8176 + }, + { + "start": 1524.84, + "end": 1526.15, + "probability": 0.7684 + }, + { + "start": 1527.72, + "end": 1528.62, + "probability": 0.9453 + }, + { + "start": 1530.1, + "end": 1532.8, + "probability": 0.3055 + }, + { + "start": 1532.9, + "end": 1535.23, + "probability": 0.9116 + }, + { + "start": 1535.76, + "end": 1538.92, + "probability": 0.8707 + }, + { + "start": 1539.32, + "end": 1540.0, + "probability": 0.9131 + }, + { + "start": 1540.82, + "end": 1541.7, + "probability": 0.7371 + }, + { + "start": 1542.6, + "end": 1545.26, + "probability": 0.9884 + }, + { + "start": 1546.46, + "end": 1547.42, + "probability": 0.005 + }, + { + "start": 1547.9, + "end": 1554.4, + "probability": 0.9751 + }, + { + "start": 1555.02, + "end": 1557.78, + "probability": 0.9818 + }, + { + "start": 1558.3, + "end": 1561.32, + "probability": 0.7677 + }, + { + "start": 1561.82, + "end": 1563.56, + "probability": 0.9805 + }, + { + "start": 1564.1, + "end": 1565.6, + "probability": 0.76 + }, + { + "start": 1566.24, + "end": 1569.22, + "probability": 0.978 + }, + { + "start": 1570.14, + "end": 1574.04, + "probability": 0.9668 + }, + { + "start": 1574.66, + "end": 1576.9, + "probability": 0.7007 + }, + { + "start": 1578.7, + "end": 1582.34, + "probability": 0.9973 + }, + { + "start": 1583.0, + "end": 1587.54, + "probability": 0.8974 + }, + { + "start": 1588.2, + "end": 1589.8, + "probability": 0.8391 + }, + { + "start": 1590.5, + "end": 1594.1, + "probability": 0.8609 + }, + { + "start": 1594.84, + "end": 1598.18, + "probability": 0.6739 + }, + { + "start": 1598.68, + "end": 1602.84, + "probability": 0.8582 + }, + { + "start": 1603.32, + "end": 1603.46, + "probability": 0.346 + }, + { + "start": 1603.56, + "end": 1603.7, + "probability": 0.5558 + }, + { + "start": 1603.76, + "end": 1606.54, + "probability": 0.9393 + }, + { + "start": 1607.02, + "end": 1611.76, + "probability": 0.9489 + }, + { + "start": 1611.76, + "end": 1614.41, + "probability": 0.949 + }, + { + "start": 1615.58, + "end": 1617.74, + "probability": 0.8823 + }, + { + "start": 1617.94, + "end": 1621.46, + "probability": 0.9018 + }, + { + "start": 1622.06, + "end": 1623.62, + "probability": 0.9619 + }, + { + "start": 1624.26, + "end": 1624.94, + "probability": 0.8534 + }, + { + "start": 1625.9, + "end": 1628.4, + "probability": 0.8964 + }, + { + "start": 1629.14, + "end": 1630.62, + "probability": 0.9641 + }, + { + "start": 1630.72, + "end": 1635.04, + "probability": 0.6944 + }, + { + "start": 1635.96, + "end": 1636.72, + "probability": 0.8456 + }, + { + "start": 1637.82, + "end": 1639.94, + "probability": 0.9591 + }, + { + "start": 1640.18, + "end": 1640.66, + "probability": 0.916 + }, + { + "start": 1641.46, + "end": 1643.6, + "probability": 0.915 + }, + { + "start": 1643.66, + "end": 1644.48, + "probability": 0.9672 + }, + { + "start": 1644.88, + "end": 1645.94, + "probability": 0.9749 + }, + { + "start": 1646.02, + "end": 1648.18, + "probability": 0.6545 + }, + { + "start": 1648.52, + "end": 1651.52, + "probability": 0.9983 + }, + { + "start": 1651.68, + "end": 1652.1, + "probability": 0.89 + }, + { + "start": 1652.4, + "end": 1655.86, + "probability": 0.9938 + }, + { + "start": 1656.34, + "end": 1658.9, + "probability": 0.9171 + }, + { + "start": 1658.98, + "end": 1661.98, + "probability": 0.8989 + }, + { + "start": 1666.4, + "end": 1669.66, + "probability": 0.6401 + }, + { + "start": 1678.94, + "end": 1680.64, + "probability": 0.729 + }, + { + "start": 1682.2, + "end": 1685.26, + "probability": 0.9674 + }, + { + "start": 1686.6, + "end": 1690.16, + "probability": 0.9866 + }, + { + "start": 1690.18, + "end": 1692.86, + "probability": 0.9954 + }, + { + "start": 1692.98, + "end": 1693.88, + "probability": 0.6898 + }, + { + "start": 1693.98, + "end": 1694.3, + "probability": 0.8739 + }, + { + "start": 1694.7, + "end": 1695.6, + "probability": 0.7815 + }, + { + "start": 1696.62, + "end": 1699.5, + "probability": 0.9365 + }, + { + "start": 1700.32, + "end": 1705.26, + "probability": 0.7997 + }, + { + "start": 1706.08, + "end": 1707.68, + "probability": 0.8815 + }, + { + "start": 1708.18, + "end": 1708.78, + "probability": 0.7903 + }, + { + "start": 1708.8, + "end": 1711.12, + "probability": 0.976 + }, + { + "start": 1711.64, + "end": 1714.32, + "probability": 0.9775 + }, + { + "start": 1714.68, + "end": 1715.68, + "probability": 0.9658 + }, + { + "start": 1716.26, + "end": 1717.68, + "probability": 0.8643 + }, + { + "start": 1718.3, + "end": 1718.84, + "probability": 0.9171 + }, + { + "start": 1718.92, + "end": 1723.4, + "probability": 0.9787 + }, + { + "start": 1723.94, + "end": 1728.16, + "probability": 0.9956 + }, + { + "start": 1728.92, + "end": 1730.12, + "probability": 0.9984 + }, + { + "start": 1730.84, + "end": 1735.04, + "probability": 0.9972 + }, + { + "start": 1735.7, + "end": 1737.66, + "probability": 0.9972 + }, + { + "start": 1737.72, + "end": 1741.48, + "probability": 0.897 + }, + { + "start": 1741.82, + "end": 1743.5, + "probability": 0.999 + }, + { + "start": 1743.66, + "end": 1749.18, + "probability": 0.9978 + }, + { + "start": 1749.34, + "end": 1750.62, + "probability": 0.9951 + }, + { + "start": 1750.96, + "end": 1751.38, + "probability": 0.7481 + }, + { + "start": 1751.42, + "end": 1754.76, + "probability": 0.9258 + }, + { + "start": 1755.4, + "end": 1758.4, + "probability": 0.9385 + }, + { + "start": 1759.0, + "end": 1759.68, + "probability": 0.7647 + }, + { + "start": 1760.28, + "end": 1762.0, + "probability": 0.5679 + }, + { + "start": 1762.82, + "end": 1764.08, + "probability": 0.3248 + }, + { + "start": 1764.08, + "end": 1766.26, + "probability": 0.3589 + }, + { + "start": 1766.58, + "end": 1771.12, + "probability": 0.8786 + }, + { + "start": 1771.64, + "end": 1775.02, + "probability": 0.6954 + }, + { + "start": 1775.16, + "end": 1775.64, + "probability": 0.8958 + }, + { + "start": 1776.32, + "end": 1777.63, + "probability": 0.9934 + }, + { + "start": 1778.08, + "end": 1780.16, + "probability": 0.989 + }, + { + "start": 1781.6, + "end": 1786.04, + "probability": 0.7532 + }, + { + "start": 1787.28, + "end": 1788.1, + "probability": 0.6505 + }, + { + "start": 1788.26, + "end": 1790.28, + "probability": 0.8147 + }, + { + "start": 1790.5, + "end": 1791.52, + "probability": 0.9764 + }, + { + "start": 1792.16, + "end": 1792.94, + "probability": 0.4431 + }, + { + "start": 1792.96, + "end": 1796.76, + "probability": 0.665 + }, + { + "start": 1797.14, + "end": 1798.58, + "probability": 0.5184 + }, + { + "start": 1805.08, + "end": 1806.16, + "probability": 0.4723 + }, + { + "start": 1806.52, + "end": 1807.06, + "probability": 0.7198 + }, + { + "start": 1808.26, + "end": 1810.16, + "probability": 0.8352 + }, + { + "start": 1810.18, + "end": 1811.7, + "probability": 0.979 + }, + { + "start": 1811.92, + "end": 1813.64, + "probability": 0.7675 + }, + { + "start": 1813.76, + "end": 1814.46, + "probability": 0.822 + }, + { + "start": 1814.98, + "end": 1817.1, + "probability": 0.93 + }, + { + "start": 1817.44, + "end": 1819.58, + "probability": 0.9778 + }, + { + "start": 1820.24, + "end": 1822.18, + "probability": 0.7792 + }, + { + "start": 1822.26, + "end": 1823.08, + "probability": 0.9368 + }, + { + "start": 1823.68, + "end": 1825.34, + "probability": 0.9502 + }, + { + "start": 1825.94, + "end": 1826.54, + "probability": 0.9006 + }, + { + "start": 1826.7, + "end": 1827.6, + "probability": 0.886 + }, + { + "start": 1827.96, + "end": 1828.62, + "probability": 0.6695 + }, + { + "start": 1828.94, + "end": 1829.18, + "probability": 0.6468 + }, + { + "start": 1829.32, + "end": 1832.2, + "probability": 0.8681 + }, + { + "start": 1832.74, + "end": 1835.08, + "probability": 0.7311 + }, + { + "start": 1835.18, + "end": 1837.04, + "probability": 0.9543 + }, + { + "start": 1837.72, + "end": 1838.0, + "probability": 0.8516 + }, + { + "start": 1838.08, + "end": 1839.41, + "probability": 0.8882 + }, + { + "start": 1839.82, + "end": 1840.0, + "probability": 0.327 + }, + { + "start": 1840.14, + "end": 1841.42, + "probability": 0.8733 + }, + { + "start": 1842.02, + "end": 1844.12, + "probability": 0.9702 + }, + { + "start": 1844.64, + "end": 1848.48, + "probability": 0.93 + }, + { + "start": 1848.48, + "end": 1851.72, + "probability": 0.8769 + }, + { + "start": 1852.14, + "end": 1852.94, + "probability": 0.6348 + }, + { + "start": 1853.54, + "end": 1854.5, + "probability": 0.9805 + }, + { + "start": 1855.36, + "end": 1857.22, + "probability": 0.9697 + }, + { + "start": 1857.26, + "end": 1857.36, + "probability": 0.0851 + }, + { + "start": 1857.36, + "end": 1857.94, + "probability": 0.399 + }, + { + "start": 1858.66, + "end": 1863.14, + "probability": 0.9171 + }, + { + "start": 1863.56, + "end": 1864.44, + "probability": 0.7153 + }, + { + "start": 1864.64, + "end": 1865.32, + "probability": 0.845 + }, + { + "start": 1865.46, + "end": 1868.42, + "probability": 0.939 + }, + { + "start": 1868.96, + "end": 1869.78, + "probability": 0.6401 + }, + { + "start": 1869.78, + "end": 1870.74, + "probability": 0.7903 + }, + { + "start": 1871.3, + "end": 1872.48, + "probability": 0.3472 + }, + { + "start": 1872.64, + "end": 1873.04, + "probability": 0.4419 + }, + { + "start": 1873.16, + "end": 1873.7, + "probability": 0.815 + }, + { + "start": 1874.08, + "end": 1877.84, + "probability": 0.9844 + }, + { + "start": 1878.16, + "end": 1883.48, + "probability": 0.9304 + }, + { + "start": 1883.82, + "end": 1884.04, + "probability": 0.8783 + }, + { + "start": 1884.34, + "end": 1885.48, + "probability": 0.5299 + }, + { + "start": 1885.64, + "end": 1886.06, + "probability": 0.5554 + }, + { + "start": 1886.18, + "end": 1888.12, + "probability": 0.9874 + }, + { + "start": 1888.48, + "end": 1893.0, + "probability": 0.992 + }, + { + "start": 1894.61, + "end": 1896.7, + "probability": 0.9972 + }, + { + "start": 1897.38, + "end": 1897.64, + "probability": 0.0126 + }, + { + "start": 1897.8, + "end": 1900.6, + "probability": 0.6451 + }, + { + "start": 1900.98, + "end": 1903.58, + "probability": 0.5946 + }, + { + "start": 1904.12, + "end": 1905.0, + "probability": 0.619 + }, + { + "start": 1905.58, + "end": 1906.1, + "probability": 0.8056 + }, + { + "start": 1906.24, + "end": 1908.26, + "probability": 0.8792 + }, + { + "start": 1908.36, + "end": 1913.24, + "probability": 0.955 + }, + { + "start": 1914.34, + "end": 1917.6, + "probability": 0.8886 + }, + { + "start": 1918.4, + "end": 1919.64, + "probability": 0.7831 + }, + { + "start": 1920.02, + "end": 1921.72, + "probability": 0.7492 + }, + { + "start": 1921.96, + "end": 1922.86, + "probability": 0.2458 + }, + { + "start": 1922.94, + "end": 1929.98, + "probability": 0.6746 + }, + { + "start": 1930.22, + "end": 1933.38, + "probability": 0.9674 + }, + { + "start": 1933.76, + "end": 1934.44, + "probability": 0.776 + }, + { + "start": 1935.62, + "end": 1936.42, + "probability": 0.9692 + }, + { + "start": 1937.3, + "end": 1938.26, + "probability": 0.9225 + }, + { + "start": 1938.42, + "end": 1943.9, + "probability": 0.5285 + }, + { + "start": 1947.78, + "end": 1948.14, + "probability": 0.0293 + }, + { + "start": 1948.14, + "end": 1948.14, + "probability": 0.5657 + }, + { + "start": 1948.18, + "end": 1952.86, + "probability": 0.9679 + }, + { + "start": 1953.82, + "end": 1954.14, + "probability": 0.6711 + }, + { + "start": 1954.3, + "end": 1956.56, + "probability": 0.7378 + }, + { + "start": 1965.78, + "end": 1967.54, + "probability": 0.6984 + }, + { + "start": 1968.36, + "end": 1972.22, + "probability": 0.4216 + }, + { + "start": 1972.22, + "end": 1973.2, + "probability": 0.9865 + }, + { + "start": 1974.06, + "end": 1974.26, + "probability": 0.7546 + }, + { + "start": 1975.48, + "end": 1979.88, + "probability": 0.9573 + }, + { + "start": 1980.7, + "end": 1986.18, + "probability": 0.9878 + }, + { + "start": 1986.8, + "end": 1987.58, + "probability": 0.8029 + }, + { + "start": 1988.2, + "end": 1989.38, + "probability": 0.6921 + }, + { + "start": 1989.74, + "end": 1994.02, + "probability": 0.8452 + }, + { + "start": 1994.58, + "end": 2000.26, + "probability": 0.9851 + }, + { + "start": 2000.26, + "end": 2007.22, + "probability": 0.9338 + }, + { + "start": 2008.1, + "end": 2009.0, + "probability": 0.5552 + }, + { + "start": 2009.68, + "end": 2014.2, + "probability": 0.9211 + }, + { + "start": 2014.78, + "end": 2017.58, + "probability": 0.9177 + }, + { + "start": 2018.1, + "end": 2023.62, + "probability": 0.9225 + }, + { + "start": 2023.72, + "end": 2025.68, + "probability": 0.9536 + }, + { + "start": 2026.16, + "end": 2030.28, + "probability": 0.825 + }, + { + "start": 2030.28, + "end": 2033.6, + "probability": 0.9981 + }, + { + "start": 2035.0, + "end": 2037.8, + "probability": 0.629 + }, + { + "start": 2038.48, + "end": 2042.9, + "probability": 0.9266 + }, + { + "start": 2043.24, + "end": 2045.4, + "probability": 0.905 + }, + { + "start": 2046.26, + "end": 2048.02, + "probability": 0.8912 + }, + { + "start": 2048.2, + "end": 2053.38, + "probability": 0.5701 + }, + { + "start": 2053.44, + "end": 2056.54, + "probability": 0.8204 + }, + { + "start": 2056.94, + "end": 2058.58, + "probability": 0.9064 + }, + { + "start": 2058.96, + "end": 2061.48, + "probability": 0.9995 + }, + { + "start": 2062.26, + "end": 2064.52, + "probability": 0.9752 + }, + { + "start": 2065.2, + "end": 2068.72, + "probability": 0.9618 + }, + { + "start": 2068.86, + "end": 2069.76, + "probability": 0.9798 + }, + { + "start": 2070.5, + "end": 2072.46, + "probability": 0.9907 + }, + { + "start": 2072.46, + "end": 2076.86, + "probability": 0.9892 + }, + { + "start": 2077.66, + "end": 2078.14, + "probability": 0.7004 + }, + { + "start": 2078.26, + "end": 2081.44, + "probability": 0.8367 + }, + { + "start": 2082.3, + "end": 2082.76, + "probability": 0.7824 + }, + { + "start": 2082.84, + "end": 2083.9, + "probability": 0.6197 + }, + { + "start": 2084.46, + "end": 2085.85, + "probability": 0.5138 + }, + { + "start": 2087.76, + "end": 2087.76, + "probability": 0.0 + }, + { + "start": 2092.02, + "end": 2092.58, + "probability": 0.0597 + }, + { + "start": 2092.72, + "end": 2092.78, + "probability": 0.2359 + }, + { + "start": 2092.78, + "end": 2092.78, + "probability": 0.2959 + }, + { + "start": 2092.78, + "end": 2092.78, + "probability": 0.4572 + }, + { + "start": 2092.78, + "end": 2092.78, + "probability": 0.4845 + }, + { + "start": 2092.78, + "end": 2092.78, + "probability": 0.4857 + }, + { + "start": 2092.78, + "end": 2092.78, + "probability": 0.5243 + }, + { + "start": 2092.78, + "end": 2092.78, + "probability": 0.1579 + }, + { + "start": 2092.78, + "end": 2094.17, + "probability": 0.3829 + }, + { + "start": 2095.94, + "end": 2096.36, + "probability": 0.7855 + }, + { + "start": 2098.42, + "end": 2099.32, + "probability": 0.7843 + }, + { + "start": 2099.9, + "end": 2100.78, + "probability": 0.6992 + }, + { + "start": 2101.92, + "end": 2105.64, + "probability": 0.9963 + }, + { + "start": 2106.82, + "end": 2109.38, + "probability": 0.9641 + }, + { + "start": 2110.14, + "end": 2112.12, + "probability": 0.9567 + }, + { + "start": 2113.46, + "end": 2117.72, + "probability": 0.9741 + }, + { + "start": 2118.18, + "end": 2121.76, + "probability": 0.9886 + }, + { + "start": 2123.14, + "end": 2127.76, + "probability": 0.9926 + }, + { + "start": 2127.8, + "end": 2132.46, + "probability": 0.9621 + }, + { + "start": 2134.06, + "end": 2136.8, + "probability": 0.9006 + }, + { + "start": 2137.92, + "end": 2139.88, + "probability": 0.7843 + }, + { + "start": 2140.82, + "end": 2141.98, + "probability": 0.9685 + }, + { + "start": 2142.7, + "end": 2145.04, + "probability": 0.9622 + }, + { + "start": 2145.7, + "end": 2146.64, + "probability": 0.9824 + }, + { + "start": 2147.92, + "end": 2150.88, + "probability": 0.9146 + }, + { + "start": 2151.76, + "end": 2153.46, + "probability": 0.8056 + }, + { + "start": 2154.08, + "end": 2155.7, + "probability": 0.5466 + }, + { + "start": 2156.96, + "end": 2157.58, + "probability": 0.9938 + }, + { + "start": 2158.48, + "end": 2160.0, + "probability": 0.8363 + }, + { + "start": 2160.82, + "end": 2162.04, + "probability": 0.6455 + }, + { + "start": 2162.24, + "end": 2167.2, + "probability": 0.9907 + }, + { + "start": 2168.28, + "end": 2175.6, + "probability": 0.9832 + }, + { + "start": 2178.6, + "end": 2182.08, + "probability": 0.9304 + }, + { + "start": 2182.08, + "end": 2185.28, + "probability": 0.9915 + }, + { + "start": 2186.48, + "end": 2188.6, + "probability": 0.9935 + }, + { + "start": 2189.28, + "end": 2192.38, + "probability": 0.699 + }, + { + "start": 2192.96, + "end": 2196.3, + "probability": 0.9858 + }, + { + "start": 2197.78, + "end": 2200.58, + "probability": 0.6427 + }, + { + "start": 2201.32, + "end": 2202.94, + "probability": 0.8454 + }, + { + "start": 2203.12, + "end": 2204.44, + "probability": 0.9819 + }, + { + "start": 2206.04, + "end": 2206.54, + "probability": 0.9669 + }, + { + "start": 2207.36, + "end": 2210.1, + "probability": 0.9637 + }, + { + "start": 2210.7, + "end": 2211.66, + "probability": 0.9582 + }, + { + "start": 2212.24, + "end": 2216.94, + "probability": 0.9971 + }, + { + "start": 2219.08, + "end": 2220.36, + "probability": 0.7763 + }, + { + "start": 2220.56, + "end": 2222.26, + "probability": 0.9351 + }, + { + "start": 2222.86, + "end": 2225.5, + "probability": 0.9407 + }, + { + "start": 2226.24, + "end": 2226.56, + "probability": 0.5171 + }, + { + "start": 2226.64, + "end": 2226.78, + "probability": 0.805 + }, + { + "start": 2226.86, + "end": 2229.56, + "probability": 0.9476 + }, + { + "start": 2229.56, + "end": 2232.62, + "probability": 0.9708 + }, + { + "start": 2233.18, + "end": 2233.4, + "probability": 0.5991 + }, + { + "start": 2234.3, + "end": 2234.4, + "probability": 0.7691 + }, + { + "start": 2237.2, + "end": 2240.3, + "probability": 0.6732 + }, + { + "start": 2240.44, + "end": 2242.74, + "probability": 0.6605 + }, + { + "start": 2243.82, + "end": 2249.18, + "probability": 0.8716 + }, + { + "start": 2250.06, + "end": 2253.84, + "probability": 0.8784 + }, + { + "start": 2254.4, + "end": 2256.9, + "probability": 0.9287 + }, + { + "start": 2257.66, + "end": 2258.52, + "probability": 0.8166 + }, + { + "start": 2259.08, + "end": 2260.08, + "probability": 0.9803 + }, + { + "start": 2260.72, + "end": 2262.3, + "probability": 0.8818 + }, + { + "start": 2263.04, + "end": 2264.54, + "probability": 0.9273 + }, + { + "start": 2265.68, + "end": 2266.4, + "probability": 0.5247 + }, + { + "start": 2266.92, + "end": 2271.22, + "probability": 0.9941 + }, + { + "start": 2272.5, + "end": 2276.6, + "probability": 0.7959 + }, + { + "start": 2277.62, + "end": 2280.36, + "probability": 0.922 + }, + { + "start": 2281.48, + "end": 2282.0, + "probability": 0.9753 + }, + { + "start": 2282.74, + "end": 2286.02, + "probability": 0.9453 + }, + { + "start": 2287.1, + "end": 2290.96, + "probability": 0.9906 + }, + { + "start": 2290.96, + "end": 2295.16, + "probability": 0.9973 + }, + { + "start": 2296.1, + "end": 2303.52, + "probability": 0.9954 + }, + { + "start": 2305.92, + "end": 2307.94, + "probability": 0.9536 + }, + { + "start": 2309.14, + "end": 2309.8, + "probability": 0.9981 + }, + { + "start": 2310.54, + "end": 2314.32, + "probability": 0.9934 + }, + { + "start": 2314.76, + "end": 2315.54, + "probability": 0.76 + }, + { + "start": 2316.14, + "end": 2318.7, + "probability": 0.9693 + }, + { + "start": 2319.66, + "end": 2321.64, + "probability": 0.9867 + }, + { + "start": 2323.24, + "end": 2323.98, + "probability": 0.9566 + }, + { + "start": 2324.4, + "end": 2326.5, + "probability": 0.9971 + }, + { + "start": 2327.02, + "end": 2327.94, + "probability": 0.6716 + }, + { + "start": 2329.88, + "end": 2330.76, + "probability": 0.8708 + }, + { + "start": 2331.6, + "end": 2332.7, + "probability": 0.958 + }, + { + "start": 2333.66, + "end": 2335.58, + "probability": 0.9977 + }, + { + "start": 2335.58, + "end": 2338.78, + "probability": 0.9927 + }, + { + "start": 2339.62, + "end": 2342.26, + "probability": 0.9966 + }, + { + "start": 2342.26, + "end": 2344.46, + "probability": 0.9423 + }, + { + "start": 2346.64, + "end": 2350.19, + "probability": 0.8563 + }, + { + "start": 2350.24, + "end": 2352.84, + "probability": 0.9805 + }, + { + "start": 2353.38, + "end": 2354.86, + "probability": 0.9426 + }, + { + "start": 2355.54, + "end": 2357.18, + "probability": 0.8577 + }, + { + "start": 2357.78, + "end": 2358.02, + "probability": 0.7445 + }, + { + "start": 2359.76, + "end": 2360.8, + "probability": 0.9489 + }, + { + "start": 2361.36, + "end": 2364.32, + "probability": 0.8941 + }, + { + "start": 2364.88, + "end": 2368.18, + "probability": 0.9974 + }, + { + "start": 2368.74, + "end": 2374.68, + "probability": 0.9897 + }, + { + "start": 2375.36, + "end": 2375.74, + "probability": 0.8743 + }, + { + "start": 2376.5, + "end": 2378.3, + "probability": 0.9956 + }, + { + "start": 2381.3, + "end": 2382.9, + "probability": 0.9084 + }, + { + "start": 2383.68, + "end": 2385.98, + "probability": 0.8859 + }, + { + "start": 2387.26, + "end": 2387.7, + "probability": 0.9667 + }, + { + "start": 2388.3, + "end": 2389.0, + "probability": 0.9503 + }, + { + "start": 2389.68, + "end": 2394.26, + "probability": 0.9907 + }, + { + "start": 2396.9, + "end": 2397.88, + "probability": 0.84 + }, + { + "start": 2398.44, + "end": 2400.12, + "probability": 0.8459 + }, + { + "start": 2400.2, + "end": 2400.94, + "probability": 0.8414 + }, + { + "start": 2401.38, + "end": 2405.28, + "probability": 0.7906 + }, + { + "start": 2406.72, + "end": 2407.74, + "probability": 0.7479 + }, + { + "start": 2408.26, + "end": 2410.14, + "probability": 0.9365 + }, + { + "start": 2410.94, + "end": 2412.52, + "probability": 0.8804 + }, + { + "start": 2413.54, + "end": 2414.96, + "probability": 0.9824 + }, + { + "start": 2416.26, + "end": 2417.7, + "probability": 0.9661 + }, + { + "start": 2419.04, + "end": 2419.8, + "probability": 0.8596 + }, + { + "start": 2420.34, + "end": 2422.18, + "probability": 0.7293 + }, + { + "start": 2422.84, + "end": 2424.9, + "probability": 0.9991 + }, + { + "start": 2425.46, + "end": 2427.3, + "probability": 0.6956 + }, + { + "start": 2428.0, + "end": 2430.78, + "probability": 0.9946 + }, + { + "start": 2431.28, + "end": 2434.62, + "probability": 0.9678 + }, + { + "start": 2435.4, + "end": 2436.12, + "probability": 0.9988 + }, + { + "start": 2436.74, + "end": 2437.78, + "probability": 0.9157 + }, + { + "start": 2438.4, + "end": 2440.72, + "probability": 0.9865 + }, + { + "start": 2441.24, + "end": 2444.54, + "probability": 0.7764 + }, + { + "start": 2445.12, + "end": 2445.92, + "probability": 0.9765 + }, + { + "start": 2446.52, + "end": 2447.72, + "probability": 0.9341 + }, + { + "start": 2448.48, + "end": 2450.06, + "probability": 0.9828 + }, + { + "start": 2451.7, + "end": 2452.18, + "probability": 0.9272 + }, + { + "start": 2454.72, + "end": 2456.72, + "probability": 0.9692 + }, + { + "start": 2459.22, + "end": 2459.92, + "probability": 0.8766 + }, + { + "start": 2460.48, + "end": 2461.38, + "probability": 0.9241 + }, + { + "start": 2467.02, + "end": 2467.02, + "probability": 0.1591 + }, + { + "start": 2467.02, + "end": 2467.02, + "probability": 0.1909 + }, + { + "start": 2467.02, + "end": 2467.02, + "probability": 0.0914 + }, + { + "start": 2467.02, + "end": 2467.06, + "probability": 0.0361 + }, + { + "start": 2502.92, + "end": 2504.44, + "probability": 0.6316 + }, + { + "start": 2505.04, + "end": 2505.74, + "probability": 0.8134 + }, + { + "start": 2506.52, + "end": 2508.6, + "probability": 0.8268 + }, + { + "start": 2509.32, + "end": 2510.6, + "probability": 0.9797 + }, + { + "start": 2511.24, + "end": 2511.94, + "probability": 0.873 + }, + { + "start": 2513.12, + "end": 2514.26, + "probability": 0.9964 + }, + { + "start": 2515.42, + "end": 2516.38, + "probability": 0.9724 + }, + { + "start": 2517.26, + "end": 2520.28, + "probability": 0.9105 + }, + { + "start": 2520.78, + "end": 2523.9, + "probability": 0.9935 + }, + { + "start": 2525.02, + "end": 2526.44, + "probability": 0.9875 + }, + { + "start": 2527.68, + "end": 2528.34, + "probability": 0.9778 + }, + { + "start": 2529.06, + "end": 2531.28, + "probability": 0.9984 + }, + { + "start": 2532.14, + "end": 2533.64, + "probability": 0.9967 + }, + { + "start": 2534.94, + "end": 2538.0, + "probability": 0.9374 + }, + { + "start": 2539.14, + "end": 2540.62, + "probability": 0.9278 + }, + { + "start": 2541.38, + "end": 2542.04, + "probability": 0.9669 + }, + { + "start": 2543.06, + "end": 2543.92, + "probability": 0.9902 + }, + { + "start": 2544.92, + "end": 2545.66, + "probability": 0.9896 + }, + { + "start": 2546.44, + "end": 2548.84, + "probability": 0.9971 + }, + { + "start": 2549.64, + "end": 2550.3, + "probability": 0.9496 + }, + { + "start": 2551.22, + "end": 2551.88, + "probability": 0.9967 + }, + { + "start": 2552.56, + "end": 2554.66, + "probability": 0.9291 + }, + { + "start": 2554.66, + "end": 2557.38, + "probability": 0.9944 + }, + { + "start": 2558.78, + "end": 2559.4, + "probability": 0.6436 + }, + { + "start": 2560.1, + "end": 2563.96, + "probability": 0.995 + }, + { + "start": 2564.72, + "end": 2565.34, + "probability": 0.7598 + }, + { + "start": 2566.14, + "end": 2568.5, + "probability": 0.9995 + }, + { + "start": 2569.18, + "end": 2569.71, + "probability": 0.9729 + }, + { + "start": 2570.86, + "end": 2571.51, + "probability": 0.9535 + }, + { + "start": 2572.38, + "end": 2574.28, + "probability": 0.985 + }, + { + "start": 2576.2, + "end": 2578.42, + "probability": 0.9641 + }, + { + "start": 2579.36, + "end": 2580.04, + "probability": 0.8664 + }, + { + "start": 2580.64, + "end": 2584.16, + "probability": 0.9983 + }, + { + "start": 2584.68, + "end": 2585.82, + "probability": 0.9761 + }, + { + "start": 2586.78, + "end": 2589.2, + "probability": 0.9989 + }, + { + "start": 2589.88, + "end": 2591.06, + "probability": 0.9952 + }, + { + "start": 2592.04, + "end": 2595.38, + "probability": 0.9888 + }, + { + "start": 2595.38, + "end": 2598.22, + "probability": 0.9982 + }, + { + "start": 2598.86, + "end": 2599.46, + "probability": 0.9425 + }, + { + "start": 2600.3, + "end": 2601.12, + "probability": 0.9922 + }, + { + "start": 2602.34, + "end": 2603.36, + "probability": 0.9893 + }, + { + "start": 2604.38, + "end": 2605.2, + "probability": 0.9763 + }, + { + "start": 2606.26, + "end": 2607.08, + "probability": 0.9987 + }, + { + "start": 2607.96, + "end": 2611.32, + "probability": 0.9956 + }, + { + "start": 2612.06, + "end": 2613.16, + "probability": 0.9897 + }, + { + "start": 2614.14, + "end": 2615.02, + "probability": 0.9307 + }, + { + "start": 2615.84, + "end": 2618.04, + "probability": 0.9972 + }, + { + "start": 2618.7, + "end": 2622.3, + "probability": 0.9993 + }, + { + "start": 2623.32, + "end": 2626.18, + "probability": 0.9928 + }, + { + "start": 2626.78, + "end": 2627.84, + "probability": 0.9224 + }, + { + "start": 2628.78, + "end": 2632.74, + "probability": 0.9869 + }, + { + "start": 2633.62, + "end": 2634.3, + "probability": 0.9881 + }, + { + "start": 2635.0, + "end": 2635.74, + "probability": 0.9938 + }, + { + "start": 2636.46, + "end": 2639.88, + "probability": 0.9966 + }, + { + "start": 2641.24, + "end": 2642.12, + "probability": 0.9969 + }, + { + "start": 2642.74, + "end": 2645.88, + "probability": 0.808 + }, + { + "start": 2646.88, + "end": 2648.74, + "probability": 0.7307 + }, + { + "start": 2649.66, + "end": 2650.46, + "probability": 0.9426 + }, + { + "start": 2651.06, + "end": 2654.0, + "probability": 0.9409 + }, + { + "start": 2655.02, + "end": 2658.3, + "probability": 0.9966 + }, + { + "start": 2659.08, + "end": 2660.58, + "probability": 0.9937 + }, + { + "start": 2661.18, + "end": 2662.64, + "probability": 0.7978 + }, + { + "start": 2663.36, + "end": 2666.29, + "probability": 0.9658 + }, + { + "start": 2666.88, + "end": 2670.18, + "probability": 0.996 + }, + { + "start": 2672.36, + "end": 2674.56, + "probability": 0.855 + }, + { + "start": 2675.62, + "end": 2680.32, + "probability": 0.9875 + }, + { + "start": 2681.24, + "end": 2683.5, + "probability": 0.9971 + }, + { + "start": 2683.5, + "end": 2687.44, + "probability": 0.9917 + }, + { + "start": 2688.28, + "end": 2689.46, + "probability": 0.8758 + }, + { + "start": 2690.1, + "end": 2691.42, + "probability": 0.9925 + }, + { + "start": 2692.34, + "end": 2698.54, + "probability": 0.9982 + }, + { + "start": 2699.82, + "end": 2702.74, + "probability": 0.9932 + }, + { + "start": 2703.46, + "end": 2706.18, + "probability": 0.9571 + }, + { + "start": 2706.84, + "end": 2710.08, + "probability": 0.9884 + }, + { + "start": 2711.12, + "end": 2712.86, + "probability": 0.8583 + }, + { + "start": 2713.6, + "end": 2715.12, + "probability": 0.9876 + }, + { + "start": 2715.9, + "end": 2716.9, + "probability": 0.9971 + }, + { + "start": 2717.46, + "end": 2719.36, + "probability": 0.8017 + }, + { + "start": 2719.92, + "end": 2722.66, + "probability": 0.9908 + }, + { + "start": 2723.5, + "end": 2725.56, + "probability": 0.9937 + }, + { + "start": 2726.74, + "end": 2728.6, + "probability": 0.9991 + }, + { + "start": 2729.3, + "end": 2731.42, + "probability": 0.999 + }, + { + "start": 2731.82, + "end": 2733.96, + "probability": 0.9528 + }, + { + "start": 2735.06, + "end": 2737.56, + "probability": 0.9282 + }, + { + "start": 2737.98, + "end": 2739.84, + "probability": 0.9091 + }, + { + "start": 2741.38, + "end": 2744.32, + "probability": 0.9744 + }, + { + "start": 2745.04, + "end": 2746.52, + "probability": 0.8597 + }, + { + "start": 2748.18, + "end": 2751.8, + "probability": 0.9342 + }, + { + "start": 2752.26, + "end": 2755.64, + "probability": 0.9976 + }, + { + "start": 2756.46, + "end": 2757.48, + "probability": 0.9587 + }, + { + "start": 2758.7, + "end": 2760.9, + "probability": 0.9971 + }, + { + "start": 2760.9, + "end": 2764.04, + "probability": 0.9147 + }, + { + "start": 2765.24, + "end": 2769.08, + "probability": 0.9389 + }, + { + "start": 2769.9, + "end": 2772.48, + "probability": 0.9976 + }, + { + "start": 2773.16, + "end": 2774.28, + "probability": 0.9989 + }, + { + "start": 2774.8, + "end": 2777.66, + "probability": 0.9888 + }, + { + "start": 2778.4, + "end": 2779.78, + "probability": 0.9927 + }, + { + "start": 2780.58, + "end": 2780.9, + "probability": 0.9155 + }, + { + "start": 2781.64, + "end": 2784.6, + "probability": 0.9995 + }, + { + "start": 2785.14, + "end": 2786.04, + "probability": 0.9896 + }, + { + "start": 2786.9, + "end": 2787.69, + "probability": 0.9578 + }, + { + "start": 2788.32, + "end": 2789.54, + "probability": 0.9641 + }, + { + "start": 2790.22, + "end": 2792.26, + "probability": 0.9907 + }, + { + "start": 2792.96, + "end": 2794.6, + "probability": 0.9906 + }, + { + "start": 2795.26, + "end": 2798.33, + "probability": 0.8147 + }, + { + "start": 2799.3, + "end": 2801.12, + "probability": 0.9631 + }, + { + "start": 2802.06, + "end": 2809.18, + "probability": 0.9769 + }, + { + "start": 2809.74, + "end": 2810.72, + "probability": 0.9289 + }, + { + "start": 2811.82, + "end": 2816.26, + "probability": 0.9927 + }, + { + "start": 2817.32, + "end": 2818.9, + "probability": 0.9986 + }, + { + "start": 2819.72, + "end": 2822.02, + "probability": 0.9939 + }, + { + "start": 2822.6, + "end": 2824.1, + "probability": 0.9956 + }, + { + "start": 2824.68, + "end": 2826.94, + "probability": 0.9959 + }, + { + "start": 2827.68, + "end": 2828.76, + "probability": 0.9967 + }, + { + "start": 2829.48, + "end": 2830.18, + "probability": 0.9007 + }, + { + "start": 2831.0, + "end": 2832.24, + "probability": 0.322 + }, + { + "start": 2832.94, + "end": 2834.2, + "probability": 0.6828 + }, + { + "start": 2834.8, + "end": 2835.56, + "probability": 0.7581 + }, + { + "start": 2836.1, + "end": 2836.86, + "probability": 0.6792 + }, + { + "start": 2837.7, + "end": 2839.6, + "probability": 0.7152 + }, + { + "start": 2840.5, + "end": 2841.76, + "probability": 0.8545 + }, + { + "start": 2842.38, + "end": 2843.82, + "probability": 0.9941 + }, + { + "start": 2844.48, + "end": 2846.0, + "probability": 0.9372 + }, + { + "start": 2846.44, + "end": 2849.0, + "probability": 0.9541 + }, + { + "start": 2849.3, + "end": 2849.84, + "probability": 0.7086 + }, + { + "start": 2850.38, + "end": 2851.94, + "probability": 0.9797 + }, + { + "start": 2852.68, + "end": 2854.08, + "probability": 0.9494 + }, + { + "start": 2884.04, + "end": 2884.2, + "probability": 0.3863 + }, + { + "start": 2884.48, + "end": 2885.4, + "probability": 0.7791 + }, + { + "start": 2892.26, + "end": 2895.64, + "probability": 0.7021 + }, + { + "start": 2896.18, + "end": 2898.56, + "probability": 0.9678 + }, + { + "start": 2899.32, + "end": 2902.9, + "probability": 0.9867 + }, + { + "start": 2904.34, + "end": 2904.84, + "probability": 0.9766 + }, + { + "start": 2906.28, + "end": 2907.84, + "probability": 0.9331 + }, + { + "start": 2908.96, + "end": 2912.62, + "probability": 0.9809 + }, + { + "start": 2913.66, + "end": 2914.4, + "probability": 0.8408 + }, + { + "start": 2915.6, + "end": 2919.72, + "probability": 0.9578 + }, + { + "start": 2920.28, + "end": 2924.44, + "probability": 0.8403 + }, + { + "start": 2925.14, + "end": 2928.0, + "probability": 0.8121 + }, + { + "start": 2929.28, + "end": 2932.7, + "probability": 0.9953 + }, + { + "start": 2933.84, + "end": 2935.14, + "probability": 0.9897 + }, + { + "start": 2936.1, + "end": 2937.98, + "probability": 0.9133 + }, + { + "start": 2939.02, + "end": 2942.14, + "probability": 0.7004 + }, + { + "start": 2942.72, + "end": 2946.44, + "probability": 0.9849 + }, + { + "start": 2947.76, + "end": 2949.46, + "probability": 0.9667 + }, + { + "start": 2950.36, + "end": 2952.74, + "probability": 0.9826 + }, + { + "start": 2953.98, + "end": 2954.76, + "probability": 0.7375 + }, + { + "start": 2954.92, + "end": 2955.84, + "probability": 0.9294 + }, + { + "start": 2955.96, + "end": 2957.92, + "probability": 0.9607 + }, + { + "start": 2958.02, + "end": 2958.26, + "probability": 0.8283 + }, + { + "start": 2958.36, + "end": 2958.52, + "probability": 0.9378 + }, + { + "start": 2958.62, + "end": 2959.48, + "probability": 0.952 + }, + { + "start": 2960.04, + "end": 2961.92, + "probability": 0.9444 + }, + { + "start": 2962.78, + "end": 2963.92, + "probability": 0.9824 + }, + { + "start": 2965.26, + "end": 2966.96, + "probability": 0.9628 + }, + { + "start": 2967.84, + "end": 2970.52, + "probability": 0.9263 + }, + { + "start": 2970.52, + "end": 2973.4, + "probability": 0.9871 + }, + { + "start": 2974.3, + "end": 2975.18, + "probability": 0.206 + }, + { + "start": 2976.24, + "end": 2977.96, + "probability": 0.9762 + }, + { + "start": 2978.98, + "end": 2981.1, + "probability": 0.955 + }, + { + "start": 2982.58, + "end": 2986.18, + "probability": 0.7683 + }, + { + "start": 2986.22, + "end": 2987.64, + "probability": 0.9802 + }, + { + "start": 2988.14, + "end": 2989.66, + "probability": 0.9559 + }, + { + "start": 2989.78, + "end": 2990.77, + "probability": 0.9927 + }, + { + "start": 2991.92, + "end": 2994.16, + "probability": 0.9559 + }, + { + "start": 2994.62, + "end": 2995.02, + "probability": 0.5837 + }, + { + "start": 2995.26, + "end": 2995.76, + "probability": 0.9514 + }, + { + "start": 2996.48, + "end": 2997.68, + "probability": 0.8983 + }, + { + "start": 2998.76, + "end": 3002.02, + "probability": 0.9932 + }, + { + "start": 3002.72, + "end": 3005.88, + "probability": 0.9956 + }, + { + "start": 3007.18, + "end": 3008.48, + "probability": 0.9871 + }, + { + "start": 3009.18, + "end": 3010.31, + "probability": 0.9839 + }, + { + "start": 3011.26, + "end": 3013.9, + "probability": 0.9681 + }, + { + "start": 3014.88, + "end": 3016.74, + "probability": 0.9071 + }, + { + "start": 3017.62, + "end": 3020.14, + "probability": 0.9959 + }, + { + "start": 3020.24, + "end": 3021.66, + "probability": 0.5439 + }, + { + "start": 3021.74, + "end": 3023.24, + "probability": 0.9876 + }, + { + "start": 3024.06, + "end": 3025.56, + "probability": 0.9513 + }, + { + "start": 3026.9, + "end": 3030.8, + "probability": 0.9282 + }, + { + "start": 3031.9, + "end": 3035.58, + "probability": 0.9087 + }, + { + "start": 3035.58, + "end": 3038.48, + "probability": 0.7944 + }, + { + "start": 3038.98, + "end": 3040.1, + "probability": 0.7509 + }, + { + "start": 3041.0, + "end": 3043.0, + "probability": 0.9775 + }, + { + "start": 3043.08, + "end": 3045.0, + "probability": 0.7345 + }, + { + "start": 3046.0, + "end": 3049.4, + "probability": 0.9565 + }, + { + "start": 3050.54, + "end": 3052.34, + "probability": 0.9834 + }, + { + "start": 3052.4, + "end": 3053.96, + "probability": 0.5298 + }, + { + "start": 3054.62, + "end": 3056.14, + "probability": 0.8867 + }, + { + "start": 3056.22, + "end": 3058.96, + "probability": 0.8038 + }, + { + "start": 3059.62, + "end": 3060.84, + "probability": 0.8254 + }, + { + "start": 3061.64, + "end": 3066.88, + "probability": 0.9595 + }, + { + "start": 3067.7, + "end": 3070.92, + "probability": 0.9832 + }, + { + "start": 3071.78, + "end": 3075.76, + "probability": 0.9979 + }, + { + "start": 3076.52, + "end": 3079.68, + "probability": 0.9052 + }, + { + "start": 3080.72, + "end": 3083.98, + "probability": 0.9981 + }, + { + "start": 3084.68, + "end": 3087.6, + "probability": 0.9593 + }, + { + "start": 3088.36, + "end": 3090.56, + "probability": 0.86 + }, + { + "start": 3091.24, + "end": 3093.12, + "probability": 0.9849 + }, + { + "start": 3094.16, + "end": 3095.16, + "probability": 0.7355 + }, + { + "start": 3095.7, + "end": 3099.6, + "probability": 0.9951 + }, + { + "start": 3100.46, + "end": 3101.76, + "probability": 0.9167 + }, + { + "start": 3102.74, + "end": 3107.0, + "probability": 0.9701 + }, + { + "start": 3107.36, + "end": 3107.6, + "probability": 0.8363 + }, + { + "start": 3108.88, + "end": 3111.22, + "probability": 0.9676 + }, + { + "start": 3112.18, + "end": 3113.88, + "probability": 0.9841 + }, + { + "start": 3115.44, + "end": 3117.3, + "probability": 0.959 + }, + { + "start": 3118.04, + "end": 3119.02, + "probability": 0.8978 + }, + { + "start": 3119.68, + "end": 3124.46, + "probability": 0.9852 + }, + { + "start": 3125.3, + "end": 3126.28, + "probability": 0.7782 + }, + { + "start": 3126.88, + "end": 3128.78, + "probability": 0.9595 + }, + { + "start": 3129.26, + "end": 3130.46, + "probability": 0.9674 + }, + { + "start": 3132.2, + "end": 3133.58, + "probability": 0.9951 + }, + { + "start": 3133.92, + "end": 3139.02, + "probability": 0.9756 + }, + { + "start": 3140.12, + "end": 3142.04, + "probability": 0.9029 + }, + { + "start": 3142.82, + "end": 3147.52, + "probability": 0.9594 + }, + { + "start": 3148.36, + "end": 3150.66, + "probability": 0.9673 + }, + { + "start": 3151.26, + "end": 3152.84, + "probability": 0.9521 + }, + { + "start": 3153.62, + "end": 3156.5, + "probability": 0.9159 + }, + { + "start": 3156.54, + "end": 3157.28, + "probability": 0.7113 + }, + { + "start": 3157.88, + "end": 3160.42, + "probability": 0.9335 + }, + { + "start": 3161.34, + "end": 3163.92, + "probability": 0.8167 + }, + { + "start": 3163.92, + "end": 3166.48, + "probability": 0.9954 + }, + { + "start": 3167.52, + "end": 3169.56, + "probability": 0.9882 + }, + { + "start": 3169.72, + "end": 3171.02, + "probability": 0.8783 + }, + { + "start": 3171.8, + "end": 3173.42, + "probability": 0.7608 + }, + { + "start": 3174.18, + "end": 3175.52, + "probability": 0.8293 + }, + { + "start": 3176.6, + "end": 3182.24, + "probability": 0.9705 + }, + { + "start": 3183.26, + "end": 3185.9, + "probability": 0.9483 + }, + { + "start": 3186.48, + "end": 3187.36, + "probability": 0.8127 + }, + { + "start": 3189.42, + "end": 3190.12, + "probability": 0.6379 + }, + { + "start": 3191.2, + "end": 3193.0, + "probability": 0.9043 + }, + { + "start": 3193.74, + "end": 3194.92, + "probability": 0.8921 + }, + { + "start": 3195.44, + "end": 3197.1, + "probability": 0.9781 + }, + { + "start": 3197.52, + "end": 3200.52, + "probability": 0.9878 + }, + { + "start": 3201.52, + "end": 3204.98, + "probability": 0.8403 + }, + { + "start": 3205.68, + "end": 3207.0, + "probability": 0.975 + }, + { + "start": 3207.54, + "end": 3210.64, + "probability": 0.8936 + }, + { + "start": 3211.74, + "end": 3213.7, + "probability": 0.9888 + }, + { + "start": 3214.04, + "end": 3214.47, + "probability": 0.9412 + }, + { + "start": 3215.34, + "end": 3216.44, + "probability": 0.9728 + }, + { + "start": 3217.3, + "end": 3219.66, + "probability": 0.9683 + }, + { + "start": 3220.46, + "end": 3222.58, + "probability": 0.7644 + }, + { + "start": 3223.72, + "end": 3226.24, + "probability": 0.9361 + }, + { + "start": 3227.0, + "end": 3227.7, + "probability": 0.6557 + }, + { + "start": 3229.06, + "end": 3230.7, + "probability": 0.987 + }, + { + "start": 3231.02, + "end": 3233.28, + "probability": 0.9966 + }, + { + "start": 3233.28, + "end": 3235.92, + "probability": 0.9618 + }, + { + "start": 3237.42, + "end": 3239.0, + "probability": 0.7684 + }, + { + "start": 3239.68, + "end": 3243.22, + "probability": 0.9787 + }, + { + "start": 3243.22, + "end": 3246.92, + "probability": 0.9881 + }, + { + "start": 3247.6, + "end": 3249.44, + "probability": 0.9286 + }, + { + "start": 3250.66, + "end": 3252.84, + "probability": 0.8374 + }, + { + "start": 3254.14, + "end": 3255.26, + "probability": 0.9146 + }, + { + "start": 3256.12, + "end": 3257.08, + "probability": 0.9397 + }, + { + "start": 3258.3, + "end": 3259.04, + "probability": 0.8013 + }, + { + "start": 3259.64, + "end": 3260.02, + "probability": 0.9107 + }, + { + "start": 3261.48, + "end": 3262.12, + "probability": 0.9412 + }, + { + "start": 3263.02, + "end": 3263.94, + "probability": 0.9602 + }, + { + "start": 3265.32, + "end": 3266.62, + "probability": 0.9414 + }, + { + "start": 3274.76, + "end": 3274.88, + "probability": 0.4575 + }, + { + "start": 3275.78, + "end": 3278.18, + "probability": 0.0064 + }, + { + "start": 3284.48, + "end": 3288.1, + "probability": 0.4969 + }, + { + "start": 3288.62, + "end": 3289.66, + "probability": 0.689 + }, + { + "start": 3289.78, + "end": 3290.62, + "probability": 0.7439 + }, + { + "start": 3291.78, + "end": 3292.64, + "probability": 0.8209 + }, + { + "start": 3293.3, + "end": 3294.72, + "probability": 0.7941 + }, + { + "start": 3295.88, + "end": 3296.62, + "probability": 0.7507 + }, + { + "start": 3298.54, + "end": 3299.68, + "probability": 0.9443 + }, + { + "start": 3299.82, + "end": 3300.08, + "probability": 0.761 + }, + { + "start": 3300.12, + "end": 3303.26, + "probability": 0.9897 + }, + { + "start": 3303.68, + "end": 3305.06, + "probability": 0.9751 + }, + { + "start": 3305.84, + "end": 3307.18, + "probability": 0.8892 + }, + { + "start": 3308.86, + "end": 3315.14, + "probability": 0.9375 + }, + { + "start": 3316.04, + "end": 3317.77, + "probability": 0.8433 + }, + { + "start": 3319.42, + "end": 3323.04, + "probability": 0.9702 + }, + { + "start": 3324.24, + "end": 3328.02, + "probability": 0.999 + }, + { + "start": 3328.02, + "end": 3332.14, + "probability": 0.9984 + }, + { + "start": 3333.48, + "end": 3336.24, + "probability": 0.9624 + }, + { + "start": 3337.12, + "end": 3339.24, + "probability": 0.998 + }, + { + "start": 3339.94, + "end": 3341.22, + "probability": 0.9785 + }, + { + "start": 3342.96, + "end": 3346.62, + "probability": 0.8865 + }, + { + "start": 3348.0, + "end": 3351.84, + "probability": 0.938 + }, + { + "start": 3352.12, + "end": 3360.59, + "probability": 0.7877 + }, + { + "start": 3362.8, + "end": 3366.58, + "probability": 0.9987 + }, + { + "start": 3367.74, + "end": 3371.22, + "probability": 0.8811 + }, + { + "start": 3372.0, + "end": 3377.22, + "probability": 0.9963 + }, + { + "start": 3378.3, + "end": 3378.86, + "probability": 0.88 + }, + { + "start": 3380.28, + "end": 3382.98, + "probability": 0.9966 + }, + { + "start": 3383.72, + "end": 3387.2, + "probability": 0.9572 + }, + { + "start": 3388.22, + "end": 3390.06, + "probability": 0.9655 + }, + { + "start": 3391.28, + "end": 3393.36, + "probability": 0.8984 + }, + { + "start": 3393.88, + "end": 3398.54, + "probability": 0.9917 + }, + { + "start": 3399.64, + "end": 3401.1, + "probability": 0.5087 + }, + { + "start": 3401.7, + "end": 3405.7, + "probability": 0.8814 + }, + { + "start": 3406.44, + "end": 3411.88, + "probability": 0.9608 + }, + { + "start": 3413.18, + "end": 3418.36, + "probability": 0.9805 + }, + { + "start": 3419.16, + "end": 3419.54, + "probability": 0.5595 + }, + { + "start": 3419.62, + "end": 3420.3, + "probability": 0.9523 + }, + { + "start": 3420.76, + "end": 3422.22, + "probability": 0.5568 + }, + { + "start": 3422.54, + "end": 3425.58, + "probability": 0.9205 + }, + { + "start": 3426.18, + "end": 3429.38, + "probability": 0.8643 + }, + { + "start": 3429.46, + "end": 3430.4, + "probability": 0.8662 + }, + { + "start": 3432.1, + "end": 3433.28, + "probability": 0.9017 + }, + { + "start": 3434.04, + "end": 3437.36, + "probability": 0.9275 + }, + { + "start": 3437.44, + "end": 3440.46, + "probability": 0.9941 + }, + { + "start": 3441.36, + "end": 3445.1, + "probability": 0.9937 + }, + { + "start": 3445.59, + "end": 3450.52, + "probability": 0.9766 + }, + { + "start": 3452.0, + "end": 3455.68, + "probability": 0.9103 + }, + { + "start": 3456.24, + "end": 3456.86, + "probability": 0.6009 + }, + { + "start": 3456.96, + "end": 3457.84, + "probability": 0.7262 + }, + { + "start": 3458.32, + "end": 3458.92, + "probability": 0.5611 + }, + { + "start": 3458.92, + "end": 3459.48, + "probability": 0.905 + }, + { + "start": 3459.76, + "end": 3460.66, + "probability": 0.9062 + }, + { + "start": 3461.92, + "end": 3463.0, + "probability": 0.6531 + }, + { + "start": 3463.26, + "end": 3465.84, + "probability": 0.9598 + }, + { + "start": 3465.84, + "end": 3470.52, + "probability": 0.9648 + }, + { + "start": 3471.5, + "end": 3473.36, + "probability": 0.9964 + }, + { + "start": 3474.14, + "end": 3475.5, + "probability": 0.8998 + }, + { + "start": 3475.68, + "end": 3478.78, + "probability": 0.9984 + }, + { + "start": 3479.84, + "end": 3482.16, + "probability": 0.8245 + }, + { + "start": 3482.3, + "end": 3485.12, + "probability": 0.8128 + }, + { + "start": 3486.34, + "end": 3488.86, + "probability": 0.9222 + }, + { + "start": 3488.96, + "end": 3493.62, + "probability": 0.9843 + }, + { + "start": 3494.46, + "end": 3495.92, + "probability": 0.7324 + }, + { + "start": 3496.08, + "end": 3498.19, + "probability": 0.9924 + }, + { + "start": 3499.54, + "end": 3504.1, + "probability": 0.9728 + }, + { + "start": 3505.24, + "end": 3507.34, + "probability": 0.8369 + }, + { + "start": 3508.56, + "end": 3511.78, + "probability": 0.9547 + }, + { + "start": 3512.72, + "end": 3516.36, + "probability": 0.9821 + }, + { + "start": 3517.34, + "end": 3517.6, + "probability": 0.4636 + }, + { + "start": 3518.14, + "end": 3519.58, + "probability": 0.957 + }, + { + "start": 3520.24, + "end": 3525.08, + "probability": 0.9981 + }, + { + "start": 3525.66, + "end": 3526.58, + "probability": 0.8552 + }, + { + "start": 3527.4, + "end": 3529.5, + "probability": 0.9805 + }, + { + "start": 3530.26, + "end": 3530.74, + "probability": 0.9526 + }, + { + "start": 3531.22, + "end": 3531.66, + "probability": 0.9113 + }, + { + "start": 3533.1, + "end": 3535.06, + "probability": 0.7465 + }, + { + "start": 3536.56, + "end": 3538.3, + "probability": 0.9819 + }, + { + "start": 3539.42, + "end": 3539.78, + "probability": 0.6795 + }, + { + "start": 3563.2, + "end": 3564.0, + "probability": 0.4921 + }, + { + "start": 3564.84, + "end": 3565.9, + "probability": 0.8179 + }, + { + "start": 3568.34, + "end": 3572.31, + "probability": 0.9112 + }, + { + "start": 3572.84, + "end": 3576.38, + "probability": 0.9975 + }, + { + "start": 3578.08, + "end": 3579.18, + "probability": 0.9673 + }, + { + "start": 3584.78, + "end": 3589.78, + "probability": 0.9783 + }, + { + "start": 3591.94, + "end": 3594.0, + "probability": 0.8589 + }, + { + "start": 3594.12, + "end": 3601.26, + "probability": 0.8732 + }, + { + "start": 3603.58, + "end": 3606.58, + "probability": 0.9912 + }, + { + "start": 3606.58, + "end": 3611.3, + "probability": 0.9954 + }, + { + "start": 3613.7, + "end": 3615.88, + "probability": 0.9937 + }, + { + "start": 3616.86, + "end": 3618.46, + "probability": 0.9973 + }, + { + "start": 3620.62, + "end": 3623.6, + "probability": 0.9338 + }, + { + "start": 3624.66, + "end": 3627.08, + "probability": 0.9924 + }, + { + "start": 3628.12, + "end": 3629.42, + "probability": 0.9746 + }, + { + "start": 3630.88, + "end": 3633.6, + "probability": 0.9365 + }, + { + "start": 3634.34, + "end": 3637.17, + "probability": 0.9878 + }, + { + "start": 3638.78, + "end": 3639.08, + "probability": 0.7246 + }, + { + "start": 3639.74, + "end": 3640.34, + "probability": 0.737 + }, + { + "start": 3641.0, + "end": 3642.36, + "probability": 0.9927 + }, + { + "start": 3644.06, + "end": 3645.52, + "probability": 0.4731 + }, + { + "start": 3646.04, + "end": 3653.48, + "probability": 0.9742 + }, + { + "start": 3653.52, + "end": 3654.08, + "probability": 0.7461 + }, + { + "start": 3655.08, + "end": 3657.34, + "probability": 0.901 + }, + { + "start": 3657.96, + "end": 3658.62, + "probability": 0.7382 + }, + { + "start": 3659.72, + "end": 3662.9, + "probability": 0.9974 + }, + { + "start": 3665.14, + "end": 3666.7, + "probability": 0.7184 + }, + { + "start": 3667.68, + "end": 3670.44, + "probability": 0.7464 + }, + { + "start": 3670.68, + "end": 3672.76, + "probability": 0.9966 + }, + { + "start": 3674.4, + "end": 3675.48, + "probability": 0.7795 + }, + { + "start": 3676.2, + "end": 3679.88, + "probability": 0.6306 + }, + { + "start": 3680.66, + "end": 3681.24, + "probability": 0.1388 + }, + { + "start": 3681.42, + "end": 3687.04, + "probability": 0.916 + }, + { + "start": 3688.36, + "end": 3690.12, + "probability": 0.8495 + }, + { + "start": 3691.1, + "end": 3697.16, + "probability": 0.96 + }, + { + "start": 3698.54, + "end": 3699.48, + "probability": 0.9942 + }, + { + "start": 3701.04, + "end": 3701.46, + "probability": 0.953 + }, + { + "start": 3702.16, + "end": 3704.02, + "probability": 0.8832 + }, + { + "start": 3704.68, + "end": 3706.4, + "probability": 0.8559 + }, + { + "start": 3706.44, + "end": 3707.53, + "probability": 0.7859 + }, + { + "start": 3708.14, + "end": 3708.82, + "probability": 0.8541 + }, + { + "start": 3709.64, + "end": 3710.96, + "probability": 0.5978 + }, + { + "start": 3711.5, + "end": 3712.22, + "probability": 0.9229 + }, + { + "start": 3713.78, + "end": 3716.42, + "probability": 0.9909 + }, + { + "start": 3718.14, + "end": 3719.06, + "probability": 0.8711 + }, + { + "start": 3719.22, + "end": 3720.1, + "probability": 0.8893 + }, + { + "start": 3720.38, + "end": 3720.89, + "probability": 0.798 + }, + { + "start": 3721.54, + "end": 3723.16, + "probability": 0.9899 + }, + { + "start": 3723.62, + "end": 3725.27, + "probability": 0.9971 + }, + { + "start": 3726.26, + "end": 3728.88, + "probability": 0.8644 + }, + { + "start": 3729.46, + "end": 3732.5, + "probability": 0.6368 + }, + { + "start": 3732.62, + "end": 3735.36, + "probability": 0.98 + }, + { + "start": 3735.86, + "end": 3739.08, + "probability": 0.8912 + }, + { + "start": 3739.8, + "end": 3742.5, + "probability": 0.9344 + }, + { + "start": 3742.94, + "end": 3745.12, + "probability": 0.9825 + }, + { + "start": 3745.26, + "end": 3746.36, + "probability": 0.9873 + }, + { + "start": 3746.48, + "end": 3748.22, + "probability": 0.7555 + }, + { + "start": 3748.96, + "end": 3751.94, + "probability": 0.7202 + }, + { + "start": 3752.42, + "end": 3753.54, + "probability": 0.7168 + }, + { + "start": 3754.3, + "end": 3756.26, + "probability": 0.8319 + }, + { + "start": 3756.48, + "end": 3758.98, + "probability": 0.7494 + }, + { + "start": 3759.1, + "end": 3760.9, + "probability": 0.8704 + }, + { + "start": 3761.48, + "end": 3767.46, + "probability": 0.992 + }, + { + "start": 3767.58, + "end": 3768.76, + "probability": 0.9949 + }, + { + "start": 3768.86, + "end": 3770.72, + "probability": 0.9665 + }, + { + "start": 3771.02, + "end": 3773.74, + "probability": 0.8505 + }, + { + "start": 3774.38, + "end": 3776.24, + "probability": 0.9973 + }, + { + "start": 3776.3, + "end": 3777.46, + "probability": 0.8529 + }, + { + "start": 3777.62, + "end": 3780.18, + "probability": 0.9941 + }, + { + "start": 3780.84, + "end": 3784.58, + "probability": 0.9531 + }, + { + "start": 3784.66, + "end": 3787.12, + "probability": 0.848 + }, + { + "start": 3787.24, + "end": 3788.22, + "probability": 0.8647 + }, + { + "start": 3789.12, + "end": 3790.36, + "probability": 0.8683 + }, + { + "start": 3790.54, + "end": 3791.38, + "probability": 0.5325 + }, + { + "start": 3791.44, + "end": 3792.64, + "probability": 0.4003 + }, + { + "start": 3793.1, + "end": 3797.18, + "probability": 0.9575 + }, + { + "start": 3797.6, + "end": 3800.4, + "probability": 0.9912 + }, + { + "start": 3802.78, + "end": 3807.36, + "probability": 0.759 + }, + { + "start": 3808.88, + "end": 3811.22, + "probability": 0.6356 + }, + { + "start": 3811.74, + "end": 3815.56, + "probability": 0.7512 + }, + { + "start": 3815.76, + "end": 3818.32, + "probability": 0.5367 + }, + { + "start": 3818.9, + "end": 3820.42, + "probability": 0.6174 + }, + { + "start": 3821.48, + "end": 3824.3, + "probability": 0.5449 + }, + { + "start": 3824.46, + "end": 3826.0, + "probability": 0.4067 + }, + { + "start": 3827.62, + "end": 3831.9, + "probability": 0.7612 + }, + { + "start": 3832.94, + "end": 3837.78, + "probability": 0.738 + }, + { + "start": 3837.9, + "end": 3838.8, + "probability": 0.8492 + }, + { + "start": 3839.8, + "end": 3844.54, + "probability": 0.6573 + }, + { + "start": 3844.84, + "end": 3847.14, + "probability": 0.4583 + }, + { + "start": 3847.66, + "end": 3849.66, + "probability": 0.4374 + }, + { + "start": 3850.56, + "end": 3857.0, + "probability": 0.9519 + }, + { + "start": 3857.62, + "end": 3859.2, + "probability": 0.957 + }, + { + "start": 3859.32, + "end": 3861.26, + "probability": 0.9916 + }, + { + "start": 3861.74, + "end": 3862.74, + "probability": 0.8514 + }, + { + "start": 3863.4, + "end": 3867.88, + "probability": 0.9926 + }, + { + "start": 3868.52, + "end": 3870.8, + "probability": 0.9401 + }, + { + "start": 3871.38, + "end": 3876.16, + "probability": 0.9711 + }, + { + "start": 3876.16, + "end": 3881.02, + "probability": 0.9891 + }, + { + "start": 3881.42, + "end": 3881.96, + "probability": 0.827 + }, + { + "start": 3882.54, + "end": 3884.7, + "probability": 0.6522 + }, + { + "start": 3885.36, + "end": 3886.34, + "probability": 0.6426 + }, + { + "start": 3893.58, + "end": 3894.6, + "probability": 0.4131 + }, + { + "start": 3895.98, + "end": 3896.88, + "probability": 0.1454 + }, + { + "start": 3897.32, + "end": 3897.78, + "probability": 0.3044 + }, + { + "start": 3915.64, + "end": 3916.64, + "probability": 0.7842 + }, + { + "start": 3917.84, + "end": 3922.34, + "probability": 0.9447 + }, + { + "start": 3922.68, + "end": 3925.88, + "probability": 0.9329 + }, + { + "start": 3926.82, + "end": 3929.1, + "probability": 0.9487 + }, + { + "start": 3930.06, + "end": 3931.26, + "probability": 0.9557 + }, + { + "start": 3931.62, + "end": 3931.82, + "probability": 0.8199 + }, + { + "start": 3933.18, + "end": 3939.72, + "probability": 0.9547 + }, + { + "start": 3941.12, + "end": 3944.82, + "probability": 0.8249 + }, + { + "start": 3945.5, + "end": 3948.24, + "probability": 0.9272 + }, + { + "start": 3949.74, + "end": 3955.42, + "probability": 0.9767 + }, + { + "start": 3956.56, + "end": 3962.56, + "probability": 0.9974 + }, + { + "start": 3963.26, + "end": 3965.3, + "probability": 0.9778 + }, + { + "start": 3965.84, + "end": 3968.08, + "probability": 0.9707 + }, + { + "start": 3968.96, + "end": 3970.92, + "probability": 0.6529 + }, + { + "start": 3972.2, + "end": 3975.86, + "probability": 0.9878 + }, + { + "start": 3976.48, + "end": 3978.76, + "probability": 0.8975 + }, + { + "start": 3982.06, + "end": 3987.26, + "probability": 0.8638 + }, + { + "start": 3988.64, + "end": 3990.42, + "probability": 0.7684 + }, + { + "start": 3990.88, + "end": 3995.8, + "probability": 0.9941 + }, + { + "start": 3996.62, + "end": 4001.3, + "probability": 0.9663 + }, + { + "start": 4002.56, + "end": 4004.38, + "probability": 0.9263 + }, + { + "start": 4004.6, + "end": 4005.52, + "probability": 0.9706 + }, + { + "start": 4006.02, + "end": 4008.74, + "probability": 0.9939 + }, + { + "start": 4009.9, + "end": 4013.7, + "probability": 0.9718 + }, + { + "start": 4014.38, + "end": 4018.66, + "probability": 0.9956 + }, + { + "start": 4018.66, + "end": 4022.62, + "probability": 0.9951 + }, + { + "start": 4023.54, + "end": 4026.82, + "probability": 0.8962 + }, + { + "start": 4027.34, + "end": 4033.78, + "probability": 0.9901 + }, + { + "start": 4034.42, + "end": 4036.4, + "probability": 0.9918 + }, + { + "start": 4037.22, + "end": 4039.32, + "probability": 0.8701 + }, + { + "start": 4039.9, + "end": 4042.6, + "probability": 0.6377 + }, + { + "start": 4043.14, + "end": 4044.16, + "probability": 0.9104 + }, + { + "start": 4044.68, + "end": 4045.22, + "probability": 0.9785 + }, + { + "start": 4046.4, + "end": 4048.92, + "probability": 0.9923 + }, + { + "start": 4048.92, + "end": 4052.08, + "probability": 0.9919 + }, + { + "start": 4053.16, + "end": 4056.89, + "probability": 0.9972 + }, + { + "start": 4057.7, + "end": 4059.94, + "probability": 0.7986 + }, + { + "start": 4060.66, + "end": 4063.86, + "probability": 0.9157 + }, + { + "start": 4064.84, + "end": 4067.88, + "probability": 0.9758 + }, + { + "start": 4068.48, + "end": 4070.12, + "probability": 0.5801 + }, + { + "start": 4070.84, + "end": 4075.9, + "probability": 0.9812 + }, + { + "start": 4076.5, + "end": 4080.14, + "probability": 0.986 + }, + { + "start": 4080.74, + "end": 4083.06, + "probability": 0.9294 + }, + { + "start": 4083.76, + "end": 4087.28, + "probability": 0.7688 + }, + { + "start": 4089.3, + "end": 4094.14, + "probability": 0.9827 + }, + { + "start": 4095.0, + "end": 4096.88, + "probability": 0.7976 + }, + { + "start": 4097.56, + "end": 4101.58, + "probability": 0.981 + }, + { + "start": 4101.68, + "end": 4105.92, + "probability": 0.979 + }, + { + "start": 4106.5, + "end": 4108.96, + "probability": 0.9917 + }, + { + "start": 4109.94, + "end": 4114.82, + "probability": 0.9678 + }, + { + "start": 4115.38, + "end": 4119.94, + "probability": 0.9949 + }, + { + "start": 4120.94, + "end": 4124.06, + "probability": 0.7637 + }, + { + "start": 4124.7, + "end": 4127.58, + "probability": 0.9066 + }, + { + "start": 4127.58, + "end": 4131.7, + "probability": 0.9932 + }, + { + "start": 4132.46, + "end": 4138.74, + "probability": 0.9785 + }, + { + "start": 4139.46, + "end": 4144.52, + "probability": 0.9968 + }, + { + "start": 4145.06, + "end": 4146.3, + "probability": 0.9933 + }, + { + "start": 4146.96, + "end": 4147.96, + "probability": 0.8281 + }, + { + "start": 4148.62, + "end": 4149.61, + "probability": 0.9783 + }, + { + "start": 4150.46, + "end": 4153.56, + "probability": 0.9908 + }, + { + "start": 4154.08, + "end": 4156.16, + "probability": 0.9905 + }, + { + "start": 4156.68, + "end": 4159.68, + "probability": 0.8556 + }, + { + "start": 4161.34, + "end": 4164.46, + "probability": 0.9966 + }, + { + "start": 4165.34, + "end": 4167.82, + "probability": 0.9961 + }, + { + "start": 4167.98, + "end": 4171.88, + "probability": 0.9175 + }, + { + "start": 4172.38, + "end": 4176.76, + "probability": 0.9731 + }, + { + "start": 4177.5, + "end": 4180.14, + "probability": 0.9977 + }, + { + "start": 4180.14, + "end": 4183.46, + "probability": 0.998 + }, + { + "start": 4184.02, + "end": 4186.4, + "probability": 0.9987 + }, + { + "start": 4187.56, + "end": 4189.38, + "probability": 0.9159 + }, + { + "start": 4189.62, + "end": 4191.08, + "probability": 0.9644 + }, + { + "start": 4191.34, + "end": 4195.48, + "probability": 0.9219 + }, + { + "start": 4196.16, + "end": 4198.82, + "probability": 0.9942 + }, + { + "start": 4199.32, + "end": 4202.8, + "probability": 0.9775 + }, + { + "start": 4203.28, + "end": 4206.44, + "probability": 0.9861 + }, + { + "start": 4207.2, + "end": 4210.52, + "probability": 0.9971 + }, + { + "start": 4210.52, + "end": 4213.24, + "probability": 0.9992 + }, + { + "start": 4214.14, + "end": 4218.78, + "probability": 0.9279 + }, + { + "start": 4218.78, + "end": 4224.06, + "probability": 0.9875 + }, + { + "start": 4224.84, + "end": 4227.92, + "probability": 0.9893 + }, + { + "start": 4228.64, + "end": 4233.02, + "probability": 0.9989 + }, + { + "start": 4233.64, + "end": 4237.24, + "probability": 0.9973 + }, + { + "start": 4238.95, + "end": 4241.0, + "probability": 0.8828 + }, + { + "start": 4242.0, + "end": 4246.6, + "probability": 0.9521 + }, + { + "start": 4247.3, + "end": 4252.34, + "probability": 0.9951 + }, + { + "start": 4253.06, + "end": 4256.6, + "probability": 0.9688 + }, + { + "start": 4257.32, + "end": 4259.54, + "probability": 0.9732 + }, + { + "start": 4260.3, + "end": 4266.26, + "probability": 0.9424 + }, + { + "start": 4266.68, + "end": 4266.96, + "probability": 0.7488 + }, + { + "start": 4267.88, + "end": 4268.28, + "probability": 0.7097 + }, + { + "start": 4268.96, + "end": 4270.88, + "probability": 0.8371 + }, + { + "start": 4303.14, + "end": 4305.16, + "probability": 0.7053 + }, + { + "start": 4305.28, + "end": 4307.12, + "probability": 0.9973 + }, + { + "start": 4308.16, + "end": 4310.7, + "probability": 0.9888 + }, + { + "start": 4311.82, + "end": 4313.02, + "probability": 0.6699 + }, + { + "start": 4313.64, + "end": 4315.92, + "probability": 0.9664 + }, + { + "start": 4317.28, + "end": 4323.84, + "probability": 0.9864 + }, + { + "start": 4324.24, + "end": 4329.48, + "probability": 0.9167 + }, + { + "start": 4331.66, + "end": 4336.24, + "probability": 0.6929 + }, + { + "start": 4336.44, + "end": 4338.36, + "probability": 0.6897 + }, + { + "start": 4338.56, + "end": 4339.5, + "probability": 0.6398 + }, + { + "start": 4340.36, + "end": 4342.26, + "probability": 0.8324 + }, + { + "start": 4343.22, + "end": 4346.24, + "probability": 0.8532 + }, + { + "start": 4348.6, + "end": 4350.58, + "probability": 0.9717 + }, + { + "start": 4352.18, + "end": 4354.9, + "probability": 0.9595 + }, + { + "start": 4355.4, + "end": 4355.66, + "probability": 0.9378 + }, + { + "start": 4357.32, + "end": 4360.1, + "probability": 0.9961 + }, + { + "start": 4360.6, + "end": 4361.09, + "probability": 0.6447 + }, + { + "start": 4361.68, + "end": 4363.64, + "probability": 0.9544 + }, + { + "start": 4364.76, + "end": 4367.02, + "probability": 0.9548 + }, + { + "start": 4367.24, + "end": 4369.76, + "probability": 0.8976 + }, + { + "start": 4370.28, + "end": 4370.74, + "probability": 0.7868 + }, + { + "start": 4371.6, + "end": 4378.02, + "probability": 0.9561 + }, + { + "start": 4378.58, + "end": 4382.68, + "probability": 0.9949 + }, + { + "start": 4384.79, + "end": 4386.95, + "probability": 0.937 + }, + { + "start": 4388.08, + "end": 4390.84, + "probability": 0.9446 + }, + { + "start": 4391.3, + "end": 4392.66, + "probability": 0.9558 + }, + { + "start": 4392.78, + "end": 4393.8, + "probability": 0.9423 + }, + { + "start": 4396.24, + "end": 4398.54, + "probability": 0.93 + }, + { + "start": 4399.08, + "end": 4400.06, + "probability": 0.8965 + }, + { + "start": 4400.66, + "end": 4402.8, + "probability": 0.9517 + }, + { + "start": 4402.8, + "end": 4406.68, + "probability": 0.844 + }, + { + "start": 4406.9, + "end": 4410.32, + "probability": 0.8778 + }, + { + "start": 4411.6, + "end": 4413.98, + "probability": 0.6558 + }, + { + "start": 4415.0, + "end": 4420.7, + "probability": 0.9363 + }, + { + "start": 4421.8, + "end": 4428.1, + "probability": 0.9266 + }, + { + "start": 4429.06, + "end": 4431.02, + "probability": 0.9846 + }, + { + "start": 4432.18, + "end": 4433.34, + "probability": 0.6969 + }, + { + "start": 4434.16, + "end": 4438.1, + "probability": 0.7529 + }, + { + "start": 4439.6, + "end": 4440.56, + "probability": 0.8768 + }, + { + "start": 4441.3, + "end": 4441.92, + "probability": 0.85 + }, + { + "start": 4442.62, + "end": 4444.38, + "probability": 0.9893 + }, + { + "start": 4444.54, + "end": 4445.62, + "probability": 0.9675 + }, + { + "start": 4445.78, + "end": 4446.66, + "probability": 0.9492 + }, + { + "start": 4446.74, + "end": 4447.82, + "probability": 0.9857 + }, + { + "start": 4449.34, + "end": 4453.64, + "probability": 0.9907 + }, + { + "start": 4454.8, + "end": 4456.36, + "probability": 0.9961 + }, + { + "start": 4456.46, + "end": 4458.16, + "probability": 0.8176 + }, + { + "start": 4459.4, + "end": 4461.26, + "probability": 0.9966 + }, + { + "start": 4463.1, + "end": 4463.56, + "probability": 0.5957 + }, + { + "start": 4466.18, + "end": 4469.46, + "probability": 0.4474 + }, + { + "start": 4470.58, + "end": 4475.42, + "probability": 0.9409 + }, + { + "start": 4475.46, + "end": 4479.74, + "probability": 0.9452 + }, + { + "start": 4481.7, + "end": 4485.62, + "probability": 0.841 + }, + { + "start": 4486.22, + "end": 4488.48, + "probability": 0.9948 + }, + { + "start": 4488.9, + "end": 4491.14, + "probability": 0.9863 + }, + { + "start": 4491.9, + "end": 4493.4, + "probability": 0.603 + }, + { + "start": 4494.06, + "end": 4496.72, + "probability": 0.9939 + }, + { + "start": 4497.54, + "end": 4498.56, + "probability": 0.7389 + }, + { + "start": 4498.7, + "end": 4501.82, + "probability": 0.929 + }, + { + "start": 4502.82, + "end": 4505.7, + "probability": 0.8755 + }, + { + "start": 4506.56, + "end": 4509.54, + "probability": 0.9587 + }, + { + "start": 4511.24, + "end": 4513.04, + "probability": 0.9471 + }, + { + "start": 4513.6, + "end": 4515.09, + "probability": 0.9834 + }, + { + "start": 4516.06, + "end": 4516.92, + "probability": 0.9419 + }, + { + "start": 4517.72, + "end": 4520.28, + "probability": 0.985 + }, + { + "start": 4521.32, + "end": 4521.82, + "probability": 0.5303 + }, + { + "start": 4522.08, + "end": 4523.58, + "probability": 0.9909 + }, + { + "start": 4524.24, + "end": 4525.6, + "probability": 0.9802 + }, + { + "start": 4527.1, + "end": 4528.62, + "probability": 0.9607 + }, + { + "start": 4528.84, + "end": 4529.16, + "probability": 0.8738 + }, + { + "start": 4529.3, + "end": 4529.96, + "probability": 0.7544 + }, + { + "start": 4530.46, + "end": 4531.98, + "probability": 0.9645 + }, + { + "start": 4532.08, + "end": 4533.24, + "probability": 0.9451 + }, + { + "start": 4534.18, + "end": 4537.24, + "probability": 0.9892 + }, + { + "start": 4538.14, + "end": 4540.56, + "probability": 0.9928 + }, + { + "start": 4540.68, + "end": 4541.06, + "probability": 0.952 + }, + { + "start": 4541.26, + "end": 4542.06, + "probability": 0.826 + }, + { + "start": 4542.98, + "end": 4544.42, + "probability": 0.9824 + }, + { + "start": 4546.62, + "end": 4549.66, + "probability": 0.8465 + }, + { + "start": 4550.24, + "end": 4551.02, + "probability": 0.5788 + }, + { + "start": 4551.9, + "end": 4553.3, + "probability": 0.9058 + }, + { + "start": 4554.1, + "end": 4556.16, + "probability": 0.9441 + }, + { + "start": 4559.0, + "end": 4561.24, + "probability": 0.8163 + }, + { + "start": 4561.38, + "end": 4562.22, + "probability": 0.7845 + }, + { + "start": 4564.0, + "end": 4564.42, + "probability": 0.4467 + }, + { + "start": 4564.54, + "end": 4569.5, + "probability": 0.8844 + }, + { + "start": 4571.32, + "end": 4573.04, + "probability": 0.8994 + }, + { + "start": 4573.54, + "end": 4575.3, + "probability": 0.5719 + }, + { + "start": 4575.84, + "end": 4577.72, + "probability": 0.9375 + }, + { + "start": 4578.58, + "end": 4579.52, + "probability": 0.6161 + }, + { + "start": 4579.68, + "end": 4581.46, + "probability": 0.9409 + }, + { + "start": 4581.74, + "end": 4583.12, + "probability": 0.6926 + }, + { + "start": 4583.26, + "end": 4583.91, + "probability": 0.8939 + }, + { + "start": 4584.68, + "end": 4587.36, + "probability": 0.9917 + }, + { + "start": 4588.34, + "end": 4591.36, + "probability": 0.8877 + }, + { + "start": 4591.72, + "end": 4596.34, + "probability": 0.9249 + }, + { + "start": 4597.3, + "end": 4600.62, + "probability": 0.6217 + }, + { + "start": 4601.3, + "end": 4605.22, + "probability": 0.9906 + }, + { + "start": 4605.22, + "end": 4607.98, + "probability": 0.7351 + }, + { + "start": 4608.84, + "end": 4610.28, + "probability": 0.9877 + }, + { + "start": 4612.06, + "end": 4613.4, + "probability": 0.8939 + }, + { + "start": 4614.22, + "end": 4615.54, + "probability": 0.9108 + }, + { + "start": 4617.38, + "end": 4618.38, + "probability": 0.9678 + }, + { + "start": 4618.48, + "end": 4619.3, + "probability": 0.9744 + }, + { + "start": 4619.42, + "end": 4623.2, + "probability": 0.9964 + }, + { + "start": 4623.82, + "end": 4625.4, + "probability": 0.9651 + }, + { + "start": 4625.64, + "end": 4626.7, + "probability": 0.8104 + }, + { + "start": 4627.1, + "end": 4631.5, + "probability": 0.9532 + }, + { + "start": 4632.88, + "end": 4635.62, + "probability": 0.9746 + }, + { + "start": 4636.54, + "end": 4641.43, + "probability": 0.9979 + }, + { + "start": 4642.58, + "end": 4645.26, + "probability": 0.9819 + }, + { + "start": 4646.4, + "end": 4650.22, + "probability": 0.9888 + }, + { + "start": 4651.14, + "end": 4655.4, + "probability": 0.8332 + }, + { + "start": 4656.06, + "end": 4658.72, + "probability": 0.9378 + }, + { + "start": 4659.58, + "end": 4663.24, + "probability": 0.9431 + }, + { + "start": 4663.68, + "end": 4665.14, + "probability": 0.7551 + }, + { + "start": 4666.22, + "end": 4668.46, + "probability": 0.9933 + }, + { + "start": 4669.44, + "end": 4670.44, + "probability": 0.8554 + }, + { + "start": 4670.78, + "end": 4673.86, + "probability": 0.9883 + }, + { + "start": 4674.48, + "end": 4677.38, + "probability": 0.9912 + }, + { + "start": 4677.86, + "end": 4680.9, + "probability": 0.9414 + }, + { + "start": 4681.74, + "end": 4682.74, + "probability": 0.9136 + }, + { + "start": 4683.22, + "end": 4685.3, + "probability": 0.6526 + }, + { + "start": 4685.76, + "end": 4687.4, + "probability": 0.8135 + }, + { + "start": 4713.24, + "end": 4713.26, + "probability": 0.2438 + }, + { + "start": 4713.26, + "end": 4714.18, + "probability": 0.6145 + }, + { + "start": 4716.26, + "end": 4718.74, + "probability": 0.7334 + }, + { + "start": 4719.36, + "end": 4720.66, + "probability": 0.9858 + }, + { + "start": 4721.7, + "end": 4723.02, + "probability": 0.7912 + }, + { + "start": 4724.1, + "end": 4725.24, + "probability": 0.8949 + }, + { + "start": 4726.16, + "end": 4727.24, + "probability": 0.4995 + }, + { + "start": 4727.28, + "end": 4731.6, + "probability": 0.9622 + }, + { + "start": 4732.66, + "end": 4736.1, + "probability": 0.8093 + }, + { + "start": 4737.02, + "end": 4737.42, + "probability": 0.779 + }, + { + "start": 4739.28, + "end": 4740.28, + "probability": 0.6846 + }, + { + "start": 4741.36, + "end": 4743.28, + "probability": 0.9391 + }, + { + "start": 4744.44, + "end": 4747.8, + "probability": 0.9883 + }, + { + "start": 4748.9, + "end": 4751.56, + "probability": 0.988 + }, + { + "start": 4752.62, + "end": 4756.72, + "probability": 0.7963 + }, + { + "start": 4757.64, + "end": 4758.3, + "probability": 0.4 + }, + { + "start": 4759.44, + "end": 4760.76, + "probability": 0.8079 + }, + { + "start": 4761.8, + "end": 4764.38, + "probability": 0.9689 + }, + { + "start": 4764.96, + "end": 4765.26, + "probability": 0.6516 + }, + { + "start": 4766.78, + "end": 4769.82, + "probability": 0.9938 + }, + { + "start": 4770.84, + "end": 4773.52, + "probability": 0.9351 + }, + { + "start": 4774.36, + "end": 4775.38, + "probability": 0.8617 + }, + { + "start": 4775.98, + "end": 4777.66, + "probability": 0.8768 + }, + { + "start": 4778.44, + "end": 4780.68, + "probability": 0.9817 + }, + { + "start": 4781.2, + "end": 4783.02, + "probability": 0.9961 + }, + { + "start": 4783.64, + "end": 4786.32, + "probability": 0.9983 + }, + { + "start": 4787.06, + "end": 4792.32, + "probability": 0.9665 + }, + { + "start": 4793.06, + "end": 4793.58, + "probability": 0.9585 + }, + { + "start": 4795.1, + "end": 4795.5, + "probability": 0.8036 + }, + { + "start": 4796.72, + "end": 4799.58, + "probability": 0.6679 + }, + { + "start": 4800.3, + "end": 4802.82, + "probability": 0.9872 + }, + { + "start": 4803.68, + "end": 4804.32, + "probability": 0.4671 + }, + { + "start": 4804.66, + "end": 4808.36, + "probability": 0.9577 + }, + { + "start": 4809.0, + "end": 4811.38, + "probability": 0.9268 + }, + { + "start": 4811.9, + "end": 4812.6, + "probability": 0.8203 + }, + { + "start": 4813.58, + "end": 4816.42, + "probability": 0.8681 + }, + { + "start": 4816.82, + "end": 4820.28, + "probability": 0.9108 + }, + { + "start": 4821.12, + "end": 4823.04, + "probability": 0.8791 + }, + { + "start": 4824.04, + "end": 4826.08, + "probability": 0.9818 + }, + { + "start": 4826.88, + "end": 4832.08, + "probability": 0.934 + }, + { + "start": 4833.04, + "end": 4835.24, + "probability": 0.9742 + }, + { + "start": 4836.38, + "end": 4837.18, + "probability": 0.5748 + }, + { + "start": 4838.02, + "end": 4841.7, + "probability": 0.6895 + }, + { + "start": 4842.28, + "end": 4843.08, + "probability": 0.7918 + }, + { + "start": 4843.62, + "end": 4845.78, + "probability": 0.7 + }, + { + "start": 4846.3, + "end": 4847.52, + "probability": 0.9635 + }, + { + "start": 4848.14, + "end": 4850.88, + "probability": 0.9932 + }, + { + "start": 4851.36, + "end": 4852.96, + "probability": 0.8332 + }, + { + "start": 4853.04, + "end": 4854.44, + "probability": 0.8405 + }, + { + "start": 4854.9, + "end": 4856.18, + "probability": 0.9427 + }, + { + "start": 4856.36, + "end": 4857.04, + "probability": 0.994 + }, + { + "start": 4857.24, + "end": 4858.48, + "probability": 0.9256 + }, + { + "start": 4858.9, + "end": 4860.02, + "probability": 0.989 + }, + { + "start": 4861.36, + "end": 4863.3, + "probability": 0.9507 + }, + { + "start": 4864.06, + "end": 4867.56, + "probability": 0.9964 + }, + { + "start": 4868.3, + "end": 4869.6, + "probability": 0.6525 + }, + { + "start": 4870.54, + "end": 4870.88, + "probability": 0.7708 + }, + { + "start": 4871.9, + "end": 4872.38, + "probability": 0.7402 + }, + { + "start": 4873.08, + "end": 4876.88, + "probability": 0.978 + }, + { + "start": 4877.72, + "end": 4882.08, + "probability": 0.9217 + }, + { + "start": 4883.14, + "end": 4883.54, + "probability": 0.9603 + }, + { + "start": 4884.3, + "end": 4885.36, + "probability": 0.8756 + }, + { + "start": 4886.08, + "end": 4888.12, + "probability": 0.9942 + }, + { + "start": 4888.96, + "end": 4892.9, + "probability": 0.8018 + }, + { + "start": 4893.54, + "end": 4897.72, + "probability": 0.9844 + }, + { + "start": 4898.28, + "end": 4900.62, + "probability": 0.8625 + }, + { + "start": 4901.14, + "end": 4906.54, + "probability": 0.9783 + }, + { + "start": 4908.48, + "end": 4915.32, + "probability": 0.9769 + }, + { + "start": 4915.88, + "end": 4917.64, + "probability": 0.9033 + }, + { + "start": 4918.76, + "end": 4919.54, + "probability": 0.7637 + }, + { + "start": 4920.28, + "end": 4922.3, + "probability": 0.8894 + }, + { + "start": 4922.94, + "end": 4924.2, + "probability": 0.7232 + }, + { + "start": 4924.8, + "end": 4926.54, + "probability": 0.9254 + }, + { + "start": 4927.54, + "end": 4931.12, + "probability": 0.9714 + }, + { + "start": 4931.26, + "end": 4934.3, + "probability": 0.9023 + }, + { + "start": 4935.34, + "end": 4936.22, + "probability": 0.9478 + }, + { + "start": 4936.96, + "end": 4939.04, + "probability": 0.9619 + }, + { + "start": 4939.6, + "end": 4940.52, + "probability": 0.8008 + }, + { + "start": 4941.22, + "end": 4943.4, + "probability": 0.9438 + }, + { + "start": 4944.46, + "end": 4946.32, + "probability": 0.8062 + }, + { + "start": 4947.0, + "end": 4948.92, + "probability": 0.9697 + }, + { + "start": 4950.62, + "end": 4952.22, + "probability": 0.5265 + }, + { + "start": 4952.3, + "end": 4954.6, + "probability": 0.9873 + }, + { + "start": 4955.12, + "end": 4955.48, + "probability": 0.3584 + }, + { + "start": 4956.56, + "end": 4960.72, + "probability": 0.9548 + }, + { + "start": 4960.72, + "end": 4965.52, + "probability": 0.9883 + }, + { + "start": 4965.92, + "end": 4970.66, + "probability": 0.9959 + }, + { + "start": 4970.66, + "end": 4975.46, + "probability": 0.9941 + }, + { + "start": 4976.32, + "end": 4976.78, + "probability": 0.8713 + }, + { + "start": 4977.36, + "end": 4980.42, + "probability": 0.8327 + }, + { + "start": 4981.04, + "end": 4982.9, + "probability": 0.8284 + }, + { + "start": 4984.16, + "end": 4984.46, + "probability": 0.1236 + }, + { + "start": 4985.3, + "end": 4987.74, + "probability": 0.946 + }, + { + "start": 4988.46, + "end": 4991.48, + "probability": 0.968 + }, + { + "start": 4992.88, + "end": 4994.08, + "probability": 0.9814 + }, + { + "start": 4994.86, + "end": 4997.1, + "probability": 0.9842 + }, + { + "start": 4997.76, + "end": 4999.76, + "probability": 0.8038 + }, + { + "start": 5000.44, + "end": 5002.84, + "probability": 0.9304 + }, + { + "start": 5003.92, + "end": 5006.1, + "probability": 0.9724 + }, + { + "start": 5007.08, + "end": 5014.78, + "probability": 0.9271 + }, + { + "start": 5015.54, + "end": 5017.9, + "probability": 0.998 + }, + { + "start": 5018.88, + "end": 5021.72, + "probability": 0.8069 + }, + { + "start": 5022.56, + "end": 5026.32, + "probability": 0.9901 + }, + { + "start": 5026.88, + "end": 5028.78, + "probability": 0.9977 + }, + { + "start": 5029.5, + "end": 5031.86, + "probability": 0.9993 + }, + { + "start": 5032.5, + "end": 5036.48, + "probability": 0.964 + }, + { + "start": 5037.56, + "end": 5040.42, + "probability": 0.8212 + }, + { + "start": 5041.0, + "end": 5044.36, + "probability": 0.9115 + }, + { + "start": 5044.98, + "end": 5047.28, + "probability": 0.8945 + }, + { + "start": 5048.16, + "end": 5051.5, + "probability": 0.9727 + }, + { + "start": 5051.5, + "end": 5055.14, + "probability": 0.9961 + }, + { + "start": 5055.82, + "end": 5059.36, + "probability": 0.9608 + }, + { + "start": 5060.5, + "end": 5060.92, + "probability": 0.5849 + }, + { + "start": 5061.64, + "end": 5064.82, + "probability": 0.8129 + }, + { + "start": 5065.46, + "end": 5070.54, + "probability": 0.97 + }, + { + "start": 5070.98, + "end": 5071.66, + "probability": 0.9666 + }, + { + "start": 5072.1, + "end": 5073.52, + "probability": 0.9426 + }, + { + "start": 5074.14, + "end": 5076.52, + "probability": 0.8121 + }, + { + "start": 5076.86, + "end": 5077.58, + "probability": 0.8829 + }, + { + "start": 5077.88, + "end": 5078.56, + "probability": 0.9561 + }, + { + "start": 5078.98, + "end": 5079.92, + "probability": 0.9651 + }, + { + "start": 5079.98, + "end": 5081.26, + "probability": 0.8713 + }, + { + "start": 5081.3, + "end": 5085.6, + "probability": 0.9136 + }, + { + "start": 5086.44, + "end": 5086.62, + "probability": 0.8533 + }, + { + "start": 5087.94, + "end": 5092.42, + "probability": 0.9708 + }, + { + "start": 5093.06, + "end": 5097.92, + "probability": 0.9108 + }, + { + "start": 5098.8, + "end": 5102.06, + "probability": 0.9464 + }, + { + "start": 5102.3, + "end": 5103.92, + "probability": 0.8135 + }, + { + "start": 5104.56, + "end": 5104.86, + "probability": 0.963 + }, + { + "start": 5105.38, + "end": 5108.58, + "probability": 0.9741 + }, + { + "start": 5109.12, + "end": 5109.64, + "probability": 0.7627 + }, + { + "start": 5110.04, + "end": 5110.56, + "probability": 0.9929 + }, + { + "start": 5110.82, + "end": 5112.16, + "probability": 0.9792 + }, + { + "start": 5112.62, + "end": 5113.58, + "probability": 0.8551 + }, + { + "start": 5113.94, + "end": 5115.18, + "probability": 0.9377 + }, + { + "start": 5115.56, + "end": 5118.52, + "probability": 0.0629 + }, + { + "start": 5119.2, + "end": 5119.2, + "probability": 0.1529 + }, + { + "start": 5119.2, + "end": 5120.0, + "probability": 0.0877 + }, + { + "start": 5120.0, + "end": 5125.38, + "probability": 0.6915 + }, + { + "start": 5125.76, + "end": 5127.3, + "probability": 0.8624 + }, + { + "start": 5129.54, + "end": 5131.2, + "probability": 0.0837 + }, + { + "start": 5131.86, + "end": 5134.62, + "probability": 0.013 + }, + { + "start": 5135.24, + "end": 5138.06, + "probability": 0.7285 + }, + { + "start": 5138.72, + "end": 5142.5, + "probability": 0.4611 + }, + { + "start": 5143.12, + "end": 5145.0, + "probability": 0.5316 + }, + { + "start": 5145.5, + "end": 5146.32, + "probability": 0.7194 + }, + { + "start": 5146.34, + "end": 5147.24, + "probability": 0.6016 + }, + { + "start": 5158.14, + "end": 5159.16, + "probability": 0.0262 + }, + { + "start": 5192.3, + "end": 5193.38, + "probability": 0.0121 + }, + { + "start": 5195.38, + "end": 5196.02, + "probability": 0.0078 + }, + { + "start": 5196.02, + "end": 5196.09, + "probability": 0.0235 + }, + { + "start": 5196.28, + "end": 5196.91, + "probability": 0.0803 + }, + { + "start": 5197.9, + "end": 5201.78, + "probability": 0.1132 + }, + { + "start": 5204.94, + "end": 5207.28, + "probability": 0.0319 + }, + { + "start": 5207.48, + "end": 5207.58, + "probability": 0.0318 + }, + { + "start": 5208.08, + "end": 5209.62, + "probability": 0.1457 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.0, + "end": 5228.0, + "probability": 0.0 + }, + { + "start": 5228.36, + "end": 5228.5, + "probability": 0.0287 + }, + { + "start": 5228.5, + "end": 5228.5, + "probability": 0.0742 + }, + { + "start": 5228.5, + "end": 5230.87, + "probability": 0.2317 + }, + { + "start": 5231.54, + "end": 5232.94, + "probability": 0.7715 + }, + { + "start": 5233.3, + "end": 5233.54, + "probability": 0.6624 + }, + { + "start": 5234.04, + "end": 5235.36, + "probability": 0.5801 + }, + { + "start": 5235.36, + "end": 5236.7, + "probability": 0.8358 + }, + { + "start": 5236.98, + "end": 5238.9, + "probability": 0.5655 + }, + { + "start": 5238.96, + "end": 5238.96, + "probability": 0.5458 + }, + { + "start": 5238.96, + "end": 5239.18, + "probability": 0.7762 + }, + { + "start": 5239.18, + "end": 5239.62, + "probability": 0.7891 + }, + { + "start": 5239.62, + "end": 5242.3, + "probability": 0.8442 + }, + { + "start": 5242.4, + "end": 5242.82, + "probability": 0.8621 + }, + { + "start": 5242.9, + "end": 5247.06, + "probability": 0.1977 + }, + { + "start": 5247.12, + "end": 5247.54, + "probability": 0.5199 + }, + { + "start": 5248.38, + "end": 5248.8, + "probability": 0.7272 + }, + { + "start": 5249.46, + "end": 5250.0, + "probability": 0.5937 + }, + { + "start": 5250.0, + "end": 5252.8, + "probability": 0.4185 + }, + { + "start": 5253.46, + "end": 5258.14, + "probability": 0.5502 + }, + { + "start": 5258.7, + "end": 5258.7, + "probability": 0.0981 + }, + { + "start": 5258.7, + "end": 5259.61, + "probability": 0.0564 + }, + { + "start": 5259.84, + "end": 5260.72, + "probability": 0.09 + }, + { + "start": 5261.38, + "end": 5262.22, + "probability": 0.0329 + }, + { + "start": 5262.5, + "end": 5262.5, + "probability": 0.0327 + }, + { + "start": 5262.52, + "end": 5262.9, + "probability": 0.341 + }, + { + "start": 5262.9, + "end": 5265.12, + "probability": 0.2683 + }, + { + "start": 5265.12, + "end": 5266.42, + "probability": 0.3685 + }, + { + "start": 5268.9, + "end": 5269.26, + "probability": 0.3869 + }, + { + "start": 5269.54, + "end": 5270.6, + "probability": 0.0046 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.0, + "end": 5352.0, + "probability": 0.0 + }, + { + "start": 5352.24, + "end": 5352.24, + "probability": 0.0674 + }, + { + "start": 5352.24, + "end": 5352.76, + "probability": 0.0155 + }, + { + "start": 5353.38, + "end": 5354.4, + "probability": 0.2818 + }, + { + "start": 5355.3, + "end": 5356.22, + "probability": 0.8345 + }, + { + "start": 5356.8, + "end": 5359.9, + "probability": 0.6626 + }, + { + "start": 5361.04, + "end": 5363.14, + "probability": 0.6863 + }, + { + "start": 5363.78, + "end": 5365.26, + "probability": 0.7595 + }, + { + "start": 5366.16, + "end": 5367.88, + "probability": 0.8887 + }, + { + "start": 5368.76, + "end": 5371.04, + "probability": 0.8809 + }, + { + "start": 5372.14, + "end": 5373.52, + "probability": 0.9194 + }, + { + "start": 5373.56, + "end": 5374.42, + "probability": 0.8945 + }, + { + "start": 5375.6, + "end": 5376.77, + "probability": 0.851 + }, + { + "start": 5378.06, + "end": 5380.8, + "probability": 0.8782 + }, + { + "start": 5382.4, + "end": 5384.32, + "probability": 0.3717 + }, + { + "start": 5384.38, + "end": 5384.56, + "probability": 0.525 + }, + { + "start": 5384.62, + "end": 5385.06, + "probability": 0.8157 + }, + { + "start": 5385.46, + "end": 5388.77, + "probability": 0.9937 + }, + { + "start": 5389.46, + "end": 5390.66, + "probability": 0.7117 + }, + { + "start": 5391.6, + "end": 5394.51, + "probability": 0.9512 + }, + { + "start": 5395.56, + "end": 5400.04, + "probability": 0.983 + }, + { + "start": 5400.9, + "end": 5401.28, + "probability": 0.7294 + }, + { + "start": 5401.86, + "end": 5404.56, + "probability": 0.9207 + }, + { + "start": 5405.94, + "end": 5409.3, + "probability": 0.9232 + }, + { + "start": 5410.04, + "end": 5413.92, + "probability": 0.9964 + }, + { + "start": 5414.74, + "end": 5415.52, + "probability": 0.98 + }, + { + "start": 5416.58, + "end": 5418.84, + "probability": 0.7535 + }, + { + "start": 5419.38, + "end": 5420.56, + "probability": 0.7038 + }, + { + "start": 5422.16, + "end": 5424.27, + "probability": 0.9944 + }, + { + "start": 5425.88, + "end": 5427.18, + "probability": 0.7739 + }, + { + "start": 5429.06, + "end": 5433.74, + "probability": 0.9843 + }, + { + "start": 5434.34, + "end": 5437.38, + "probability": 0.98 + }, + { + "start": 5437.92, + "end": 5443.13, + "probability": 0.9851 + }, + { + "start": 5445.04, + "end": 5447.32, + "probability": 0.9897 + }, + { + "start": 5447.92, + "end": 5452.36, + "probability": 0.9169 + }, + { + "start": 5453.54, + "end": 5454.98, + "probability": 0.8512 + }, + { + "start": 5455.58, + "end": 5459.04, + "probability": 0.9051 + }, + { + "start": 5459.66, + "end": 5460.84, + "probability": 0.6265 + }, + { + "start": 5461.26, + "end": 5463.38, + "probability": 0.7678 + }, + { + "start": 5465.9, + "end": 5469.46, + "probability": 0.9769 + }, + { + "start": 5470.18, + "end": 5473.98, + "probability": 0.9563 + }, + { + "start": 5473.98, + "end": 5479.14, + "probability": 0.9948 + }, + { + "start": 5481.18, + "end": 5484.0, + "probability": 0.9635 + }, + { + "start": 5484.68, + "end": 5488.54, + "probability": 0.9934 + }, + { + "start": 5489.28, + "end": 5493.18, + "probability": 0.9985 + }, + { + "start": 5494.6, + "end": 5497.0, + "probability": 0.9965 + }, + { + "start": 5497.42, + "end": 5501.04, + "probability": 0.8923 + }, + { + "start": 5501.56, + "end": 5503.56, + "probability": 0.9946 + }, + { + "start": 5504.58, + "end": 5509.46, + "probability": 0.9968 + }, + { + "start": 5509.92, + "end": 5516.68, + "probability": 0.987 + }, + { + "start": 5517.16, + "end": 5517.88, + "probability": 0.8013 + }, + { + "start": 5518.2, + "end": 5518.9, + "probability": 0.4837 + }, + { + "start": 5519.04, + "end": 5521.6, + "probability": 0.6235 + }, + { + "start": 5522.44, + "end": 5524.8, + "probability": 0.9951 + }, + { + "start": 5525.2, + "end": 5529.06, + "probability": 0.857 + }, + { + "start": 5530.4, + "end": 5531.9, + "probability": 0.9875 + }, + { + "start": 5532.78, + "end": 5534.84, + "probability": 0.9183 + }, + { + "start": 5535.64, + "end": 5538.56, + "probability": 0.9515 + }, + { + "start": 5539.44, + "end": 5545.52, + "probability": 0.98 + }, + { + "start": 5546.06, + "end": 5548.98, + "probability": 0.7491 + }, + { + "start": 5549.58, + "end": 5553.54, + "probability": 0.9904 + }, + { + "start": 5554.06, + "end": 5556.78, + "probability": 0.6672 + }, + { + "start": 5558.28, + "end": 5561.56, + "probability": 0.978 + }, + { + "start": 5561.56, + "end": 5566.16, + "probability": 0.9942 + }, + { + "start": 5566.9, + "end": 5567.78, + "probability": 0.7792 + }, + { + "start": 5568.44, + "end": 5570.52, + "probability": 0.8681 + }, + { + "start": 5570.9, + "end": 5573.7, + "probability": 0.7352 + }, + { + "start": 5574.38, + "end": 5579.76, + "probability": 0.8274 + }, + { + "start": 5579.76, + "end": 5582.6, + "probability": 0.9951 + }, + { + "start": 5583.48, + "end": 5586.7, + "probability": 0.9907 + }, + { + "start": 5587.22, + "end": 5589.72, + "probability": 0.7047 + }, + { + "start": 5590.1, + "end": 5592.0, + "probability": 0.9055 + }, + { + "start": 5592.72, + "end": 5597.04, + "probability": 0.9899 + }, + { + "start": 5597.62, + "end": 5598.4, + "probability": 0.9321 + }, + { + "start": 5598.94, + "end": 5599.86, + "probability": 0.8736 + }, + { + "start": 5600.62, + "end": 5604.82, + "probability": 0.9917 + }, + { + "start": 5605.2, + "end": 5606.44, + "probability": 0.5862 + }, + { + "start": 5606.5, + "end": 5607.83, + "probability": 0.7942 + }, + { + "start": 5608.08, + "end": 5609.33, + "probability": 0.9868 + }, + { + "start": 5609.84, + "end": 5611.04, + "probability": 0.9686 + }, + { + "start": 5611.42, + "end": 5612.01, + "probability": 0.9583 + }, + { + "start": 5612.76, + "end": 5616.2, + "probability": 0.9897 + }, + { + "start": 5616.68, + "end": 5616.96, + "probability": 0.8743 + }, + { + "start": 5618.4, + "end": 5620.58, + "probability": 0.8724 + }, + { + "start": 5621.58, + "end": 5625.28, + "probability": 0.8028 + }, + { + "start": 5654.9, + "end": 5656.2, + "probability": 0.8117 + }, + { + "start": 5656.74, + "end": 5657.46, + "probability": 0.7823 + }, + { + "start": 5659.26, + "end": 5660.26, + "probability": 0.7771 + }, + { + "start": 5660.9, + "end": 5662.68, + "probability": 0.9584 + }, + { + "start": 5663.7, + "end": 5666.72, + "probability": 0.9897 + }, + { + "start": 5667.82, + "end": 5671.18, + "probability": 0.9839 + }, + { + "start": 5671.96, + "end": 5675.28, + "probability": 0.9795 + }, + { + "start": 5676.4, + "end": 5683.76, + "probability": 0.5903 + }, + { + "start": 5684.66, + "end": 5687.44, + "probability": 0.9962 + }, + { + "start": 5688.98, + "end": 5690.92, + "probability": 0.9742 + }, + { + "start": 5691.44, + "end": 5693.34, + "probability": 0.9448 + }, + { + "start": 5694.04, + "end": 5696.6, + "probability": 0.9698 + }, + { + "start": 5697.14, + "end": 5698.8, + "probability": 0.6137 + }, + { + "start": 5699.22, + "end": 5699.8, + "probability": 0.9233 + }, + { + "start": 5701.98, + "end": 5706.22, + "probability": 0.9814 + }, + { + "start": 5706.9, + "end": 5709.36, + "probability": 0.9947 + }, + { + "start": 5710.6, + "end": 5712.46, + "probability": 0.9907 + }, + { + "start": 5713.2, + "end": 5714.7, + "probability": 0.9896 + }, + { + "start": 5715.36, + "end": 5716.4, + "probability": 0.79 + }, + { + "start": 5716.92, + "end": 5718.8, + "probability": 0.8767 + }, + { + "start": 5720.54, + "end": 5723.14, + "probability": 0.9926 + }, + { + "start": 5724.16, + "end": 5728.14, + "probability": 0.9814 + }, + { + "start": 5728.9, + "end": 5733.04, + "probability": 0.9611 + }, + { + "start": 5733.7, + "end": 5735.62, + "probability": 0.8497 + }, + { + "start": 5736.74, + "end": 5738.26, + "probability": 0.981 + }, + { + "start": 5738.78, + "end": 5740.28, + "probability": 0.9388 + }, + { + "start": 5741.16, + "end": 5743.08, + "probability": 0.9163 + }, + { + "start": 5743.74, + "end": 5750.8, + "probability": 0.9703 + }, + { + "start": 5752.5, + "end": 5753.82, + "probability": 0.9458 + }, + { + "start": 5754.54, + "end": 5757.12, + "probability": 0.8745 + }, + { + "start": 5757.28, + "end": 5757.98, + "probability": 0.9521 + }, + { + "start": 5758.06, + "end": 5758.6, + "probability": 0.9858 + }, + { + "start": 5759.02, + "end": 5759.9, + "probability": 0.8675 + }, + { + "start": 5760.08, + "end": 5760.6, + "probability": 0.7134 + }, + { + "start": 5761.26, + "end": 5763.74, + "probability": 0.9845 + }, + { + "start": 5763.88, + "end": 5764.36, + "probability": 0.8407 + }, + { + "start": 5765.24, + "end": 5767.28, + "probability": 0.9883 + }, + { + "start": 5768.26, + "end": 5769.66, + "probability": 0.9235 + }, + { + "start": 5769.78, + "end": 5776.0, + "probability": 0.9826 + }, + { + "start": 5777.14, + "end": 5781.22, + "probability": 0.8942 + }, + { + "start": 5782.5, + "end": 5784.56, + "probability": 0.9492 + }, + { + "start": 5785.22, + "end": 5788.74, + "probability": 0.9907 + }, + { + "start": 5789.52, + "end": 5793.3, + "probability": 0.9855 + }, + { + "start": 5793.92, + "end": 5797.86, + "probability": 0.9971 + }, + { + "start": 5797.96, + "end": 5802.34, + "probability": 0.9916 + }, + { + "start": 5802.9, + "end": 5804.64, + "probability": 0.812 + }, + { + "start": 5805.4, + "end": 5805.82, + "probability": 0.9182 + }, + { + "start": 5806.68, + "end": 5809.62, + "probability": 0.9844 + }, + { + "start": 5810.32, + "end": 5814.56, + "probability": 0.9822 + }, + { + "start": 5814.56, + "end": 5818.62, + "probability": 0.9997 + }, + { + "start": 5819.52, + "end": 5821.26, + "probability": 0.975 + }, + { + "start": 5821.36, + "end": 5826.2, + "probability": 0.9799 + }, + { + "start": 5826.86, + "end": 5827.72, + "probability": 0.9688 + }, + { + "start": 5828.74, + "end": 5833.08, + "probability": 0.9889 + }, + { + "start": 5833.08, + "end": 5836.82, + "probability": 0.9976 + }, + { + "start": 5837.6, + "end": 5838.56, + "probability": 0.6258 + }, + { + "start": 5839.3, + "end": 5840.94, + "probability": 0.9307 + }, + { + "start": 5841.46, + "end": 5843.54, + "probability": 0.9897 + }, + { + "start": 5844.5, + "end": 5847.02, + "probability": 0.8117 + }, + { + "start": 5847.3, + "end": 5848.62, + "probability": 0.7862 + }, + { + "start": 5848.62, + "end": 5850.88, + "probability": 0.7009 + }, + { + "start": 5853.54, + "end": 5859.18, + "probability": 0.9639 + }, + { + "start": 5859.64, + "end": 5860.62, + "probability": 0.8888 + }, + { + "start": 5860.94, + "end": 5864.76, + "probability": 0.9862 + }, + { + "start": 5865.14, + "end": 5868.4, + "probability": 0.9974 + }, + { + "start": 5868.92, + "end": 5870.48, + "probability": 0.9978 + }, + { + "start": 5871.8, + "end": 5873.78, + "probability": 0.7545 + }, + { + "start": 5874.88, + "end": 5875.6, + "probability": 0.7212 + }, + { + "start": 5877.22, + "end": 5880.02, + "probability": 0.6669 + }, + { + "start": 5881.74, + "end": 5886.72, + "probability": 0.8102 + }, + { + "start": 5887.56, + "end": 5890.08, + "probability": 0.9333 + }, + { + "start": 5890.1, + "end": 5894.84, + "probability": 0.7045 + }, + { + "start": 5895.62, + "end": 5900.01, + "probability": 0.8963 + }, + { + "start": 5902.0, + "end": 5908.02, + "probability": 0.9501 + }, + { + "start": 5908.6, + "end": 5910.78, + "probability": 0.9891 + }, + { + "start": 5912.04, + "end": 5915.0, + "probability": 0.9951 + }, + { + "start": 5915.0, + "end": 5918.3, + "probability": 0.9625 + }, + { + "start": 5918.82, + "end": 5923.56, + "probability": 0.9923 + }, + { + "start": 5924.06, + "end": 5926.24, + "probability": 0.9552 + }, + { + "start": 5927.44, + "end": 5934.6, + "probability": 0.7467 + }, + { + "start": 5935.06, + "end": 5941.81, + "probability": 0.8705 + }, + { + "start": 5943.0, + "end": 5944.24, + "probability": 0.4991 + }, + { + "start": 5945.04, + "end": 5947.97, + "probability": 0.8465 + }, + { + "start": 5948.9, + "end": 5949.62, + "probability": 0.6721 + }, + { + "start": 5950.32, + "end": 5950.96, + "probability": 0.3401 + }, + { + "start": 5951.5, + "end": 5952.26, + "probability": 0.676 + }, + { + "start": 5953.24, + "end": 5956.22, + "probability": 0.8029 + }, + { + "start": 5957.6, + "end": 5959.68, + "probability": 0.8555 + }, + { + "start": 5988.48, + "end": 5988.56, + "probability": 0.1932 + }, + { + "start": 5999.46, + "end": 5999.46, + "probability": 0.0176 + }, + { + "start": 5999.46, + "end": 5999.46, + "probability": 0.0663 + }, + { + "start": 5999.46, + "end": 5999.46, + "probability": 0.1593 + }, + { + "start": 5999.46, + "end": 5999.46, + "probability": 0.141 + }, + { + "start": 5999.46, + "end": 5999.46, + "probability": 0.051 + }, + { + "start": 5999.46, + "end": 5999.46, + "probability": 0.1265 + }, + { + "start": 5999.46, + "end": 5999.46, + "probability": 0.0312 + }, + { + "start": 6028.8, + "end": 6030.92, + "probability": 0.221 + }, + { + "start": 6032.04, + "end": 6034.02, + "probability": 0.0003 + }, + { + "start": 6046.08, + "end": 6047.28, + "probability": 0.5874 + }, + { + "start": 6051.26, + "end": 6052.92, + "probability": 0.77 + }, + { + "start": 6054.28, + "end": 6055.96, + "probability": 0.9829 + }, + { + "start": 6057.76, + "end": 6065.04, + "probability": 0.9826 + }, + { + "start": 6065.58, + "end": 6068.88, + "probability": 0.9675 + }, + { + "start": 6070.72, + "end": 6074.16, + "probability": 0.9224 + }, + { + "start": 6074.96, + "end": 6078.22, + "probability": 0.9939 + }, + { + "start": 6079.02, + "end": 6082.16, + "probability": 0.9774 + }, + { + "start": 6082.88, + "end": 6088.22, + "probability": 0.9598 + }, + { + "start": 6088.68, + "end": 6089.86, + "probability": 0.9391 + }, + { + "start": 6090.4, + "end": 6091.64, + "probability": 0.9516 + }, + { + "start": 6091.88, + "end": 6094.6, + "probability": 0.9895 + }, + { + "start": 6095.02, + "end": 6095.8, + "probability": 0.7557 + }, + { + "start": 6096.94, + "end": 6100.2, + "probability": 0.7423 + }, + { + "start": 6100.2, + "end": 6101.44, + "probability": 0.3694 + }, + { + "start": 6102.12, + "end": 6110.56, + "probability": 0.9829 + }, + { + "start": 6112.76, + "end": 6115.12, + "probability": 0.9784 + }, + { + "start": 6115.84, + "end": 6118.64, + "probability": 0.998 + }, + { + "start": 6118.7, + "end": 6123.94, + "probability": 0.9906 + }, + { + "start": 6124.62, + "end": 6126.02, + "probability": 0.999 + }, + { + "start": 6126.62, + "end": 6128.56, + "probability": 0.9469 + }, + { + "start": 6130.6, + "end": 6135.16, + "probability": 0.9962 + }, + { + "start": 6138.04, + "end": 6139.5, + "probability": 0.922 + }, + { + "start": 6140.7, + "end": 6147.06, + "probability": 0.9995 + }, + { + "start": 6148.28, + "end": 6150.3, + "probability": 0.9629 + }, + { + "start": 6150.84, + "end": 6154.26, + "probability": 0.9974 + }, + { + "start": 6156.16, + "end": 6156.32, + "probability": 0.5485 + }, + { + "start": 6156.94, + "end": 6157.9, + "probability": 0.9338 + }, + { + "start": 6158.48, + "end": 6160.72, + "probability": 0.9611 + }, + { + "start": 6161.56, + "end": 6162.92, + "probability": 0.7934 + }, + { + "start": 6163.88, + "end": 6164.22, + "probability": 0.8391 + }, + { + "start": 6164.76, + "end": 6166.52, + "probability": 0.6488 + }, + { + "start": 6167.44, + "end": 6168.54, + "probability": 0.9897 + }, + { + "start": 6170.22, + "end": 6171.29, + "probability": 0.9874 + }, + { + "start": 6172.16, + "end": 6172.88, + "probability": 0.9253 + }, + { + "start": 6173.54, + "end": 6174.48, + "probability": 0.9902 + }, + { + "start": 6175.2, + "end": 6177.88, + "probability": 0.9919 + }, + { + "start": 6178.86, + "end": 6182.48, + "probability": 0.988 + }, + { + "start": 6183.12, + "end": 6184.44, + "probability": 0.9878 + }, + { + "start": 6185.26, + "end": 6188.06, + "probability": 0.9895 + }, + { + "start": 6189.98, + "end": 6192.26, + "probability": 0.8256 + }, + { + "start": 6193.26, + "end": 6194.82, + "probability": 0.9099 + }, + { + "start": 6195.5, + "end": 6196.12, + "probability": 0.9748 + }, + { + "start": 6196.68, + "end": 6197.44, + "probability": 0.9918 + }, + { + "start": 6198.28, + "end": 6203.98, + "probability": 0.9869 + }, + { + "start": 6204.52, + "end": 6206.14, + "probability": 0.9962 + }, + { + "start": 6206.98, + "end": 6208.88, + "probability": 0.6714 + }, + { + "start": 6209.54, + "end": 6214.82, + "probability": 0.96 + }, + { + "start": 6215.36, + "end": 6217.08, + "probability": 0.9973 + }, + { + "start": 6217.62, + "end": 6218.64, + "probability": 0.999 + }, + { + "start": 6220.14, + "end": 6223.5, + "probability": 0.9593 + }, + { + "start": 6225.28, + "end": 6228.5, + "probability": 0.9949 + }, + { + "start": 6229.02, + "end": 6231.9, + "probability": 0.9983 + }, + { + "start": 6232.58, + "end": 6239.86, + "probability": 0.9996 + }, + { + "start": 6240.44, + "end": 6240.96, + "probability": 0.8948 + }, + { + "start": 6242.34, + "end": 6243.04, + "probability": 0.7964 + }, + { + "start": 6244.06, + "end": 6250.56, + "probability": 0.986 + }, + { + "start": 6251.14, + "end": 6252.62, + "probability": 0.9915 + }, + { + "start": 6253.24, + "end": 6254.62, + "probability": 0.7921 + }, + { + "start": 6255.6, + "end": 6259.06, + "probability": 0.9785 + }, + { + "start": 6259.84, + "end": 6263.72, + "probability": 0.9408 + }, + { + "start": 6263.72, + "end": 6266.38, + "probability": 0.9958 + }, + { + "start": 6267.2, + "end": 6269.08, + "probability": 0.9666 + }, + { + "start": 6269.9, + "end": 6270.8, + "probability": 0.5293 + }, + { + "start": 6271.66, + "end": 6272.44, + "probability": 0.8471 + }, + { + "start": 6273.12, + "end": 6278.38, + "probability": 0.9262 + }, + { + "start": 6279.28, + "end": 6281.5, + "probability": 0.8072 + }, + { + "start": 6282.58, + "end": 6283.86, + "probability": 0.9262 + }, + { + "start": 6286.32, + "end": 6288.4, + "probability": 0.9757 + }, + { + "start": 6289.36, + "end": 6291.7, + "probability": 0.9838 + }, + { + "start": 6292.42, + "end": 6295.34, + "probability": 0.9008 + }, + { + "start": 6295.34, + "end": 6300.06, + "probability": 0.9769 + }, + { + "start": 6301.62, + "end": 6303.96, + "probability": 0.9766 + }, + { + "start": 6305.78, + "end": 6310.6, + "probability": 0.981 + }, + { + "start": 6311.84, + "end": 6312.22, + "probability": 0.6338 + }, + { + "start": 6313.84, + "end": 6315.16, + "probability": 0.5095 + }, + { + "start": 6316.56, + "end": 6320.37, + "probability": 0.9749 + }, + { + "start": 6320.96, + "end": 6323.2, + "probability": 0.9213 + }, + { + "start": 6324.0, + "end": 6326.24, + "probability": 0.9543 + }, + { + "start": 6328.9, + "end": 6329.7, + "probability": 0.387 + }, + { + "start": 6330.56, + "end": 6332.14, + "probability": 0.7979 + }, + { + "start": 6333.66, + "end": 6334.2, + "probability": 0.6065 + }, + { + "start": 6335.56, + "end": 6337.94, + "probability": 0.8956 + }, + { + "start": 6339.88, + "end": 6341.56, + "probability": 0.8163 + }, + { + "start": 6343.68, + "end": 6346.24, + "probability": 0.5317 + }, + { + "start": 6361.58, + "end": 6361.58, + "probability": 0.0704 + }, + { + "start": 6361.58, + "end": 6361.62, + "probability": 0.147 + }, + { + "start": 6383.78, + "end": 6384.7, + "probability": 0.392 + }, + { + "start": 6385.4, + "end": 6388.56, + "probability": 0.7799 + }, + { + "start": 6389.58, + "end": 6394.68, + "probability": 0.5588 + }, + { + "start": 6395.5, + "end": 6396.86, + "probability": 0.7963 + }, + { + "start": 6397.66, + "end": 6399.42, + "probability": 0.9762 + }, + { + "start": 6400.6, + "end": 6403.12, + "probability": 0.9902 + }, + { + "start": 6403.84, + "end": 6404.88, + "probability": 0.5293 + }, + { + "start": 6405.8, + "end": 6406.66, + "probability": 0.9514 + }, + { + "start": 6407.7, + "end": 6410.8, + "probability": 0.9878 + }, + { + "start": 6411.52, + "end": 6415.08, + "probability": 0.8572 + }, + { + "start": 6415.68, + "end": 6419.08, + "probability": 0.9961 + }, + { + "start": 6419.9, + "end": 6421.52, + "probability": 0.9731 + }, + { + "start": 6423.86, + "end": 6427.36, + "probability": 0.9989 + }, + { + "start": 6428.0, + "end": 6434.68, + "probability": 0.9968 + }, + { + "start": 6435.2, + "end": 6436.44, + "probability": 0.9951 + }, + { + "start": 6437.7, + "end": 6438.22, + "probability": 0.6915 + }, + { + "start": 6439.54, + "end": 6442.56, + "probability": 0.9965 + }, + { + "start": 6443.28, + "end": 6444.62, + "probability": 0.7994 + }, + { + "start": 6445.3, + "end": 6447.12, + "probability": 0.9932 + }, + { + "start": 6449.44, + "end": 6452.62, + "probability": 0.9772 + }, + { + "start": 6453.36, + "end": 6454.12, + "probability": 0.9888 + }, + { + "start": 6454.64, + "end": 6456.48, + "probability": 0.9587 + }, + { + "start": 6457.4, + "end": 6459.72, + "probability": 0.798 + }, + { + "start": 6460.4, + "end": 6463.62, + "probability": 0.9724 + }, + { + "start": 6464.16, + "end": 6466.9, + "probability": 0.9979 + }, + { + "start": 6468.26, + "end": 6469.76, + "probability": 0.8417 + }, + { + "start": 6470.1, + "end": 6473.6, + "probability": 0.9917 + }, + { + "start": 6474.38, + "end": 6477.38, + "probability": 0.9951 + }, + { + "start": 6478.14, + "end": 6479.2, + "probability": 0.8106 + }, + { + "start": 6479.74, + "end": 6481.08, + "probability": 0.7158 + }, + { + "start": 6481.8, + "end": 6482.68, + "probability": 0.8272 + }, + { + "start": 6483.46, + "end": 6486.18, + "probability": 0.9873 + }, + { + "start": 6486.86, + "end": 6488.46, + "probability": 0.9683 + }, + { + "start": 6489.16, + "end": 6490.28, + "probability": 0.9722 + }, + { + "start": 6490.96, + "end": 6491.16, + "probability": 0.9734 + }, + { + "start": 6492.32, + "end": 6495.78, + "probability": 0.8334 + }, + { + "start": 6496.64, + "end": 6501.62, + "probability": 0.9055 + }, + { + "start": 6502.3, + "end": 6505.0, + "probability": 0.9963 + }, + { + "start": 6506.42, + "end": 6507.92, + "probability": 0.7426 + }, + { + "start": 6508.16, + "end": 6511.3, + "probability": 0.8372 + }, + { + "start": 6511.9, + "end": 6518.32, + "probability": 0.983 + }, + { + "start": 6519.08, + "end": 6520.96, + "probability": 0.9751 + }, + { + "start": 6521.86, + "end": 6526.66, + "probability": 0.9161 + }, + { + "start": 6527.56, + "end": 6530.38, + "probability": 0.922 + }, + { + "start": 6531.38, + "end": 6535.72, + "probability": 0.972 + }, + { + "start": 6536.82, + "end": 6538.18, + "probability": 0.8298 + }, + { + "start": 6538.52, + "end": 6541.6, + "probability": 0.9763 + }, + { + "start": 6541.82, + "end": 6543.56, + "probability": 0.9065 + }, + { + "start": 6544.14, + "end": 6547.78, + "probability": 0.9916 + }, + { + "start": 6547.88, + "end": 6549.36, + "probability": 0.9684 + }, + { + "start": 6550.06, + "end": 6551.94, + "probability": 0.9872 + }, + { + "start": 6553.38, + "end": 6555.74, + "probability": 0.9739 + }, + { + "start": 6556.46, + "end": 6558.12, + "probability": 0.9989 + }, + { + "start": 6559.16, + "end": 6559.9, + "probability": 0.8668 + }, + { + "start": 6560.44, + "end": 6561.04, + "probability": 0.7563 + }, + { + "start": 6562.28, + "end": 6564.5, + "probability": 0.9885 + }, + { + "start": 6565.4, + "end": 6566.7, + "probability": 0.9688 + }, + { + "start": 6567.3, + "end": 6568.76, + "probability": 0.9735 + }, + { + "start": 6569.34, + "end": 6571.7, + "probability": 0.9785 + }, + { + "start": 6572.28, + "end": 6578.46, + "probability": 0.9858 + }, + { + "start": 6579.74, + "end": 6580.6, + "probability": 0.7166 + }, + { + "start": 6582.48, + "end": 6584.46, + "probability": 0.8929 + }, + { + "start": 6585.26, + "end": 6587.82, + "probability": 0.9905 + }, + { + "start": 6587.82, + "end": 6591.22, + "probability": 0.995 + }, + { + "start": 6591.96, + "end": 6595.38, + "probability": 0.9764 + }, + { + "start": 6595.76, + "end": 6596.62, + "probability": 0.5991 + }, + { + "start": 6597.12, + "end": 6601.48, + "probability": 0.9957 + }, + { + "start": 6602.08, + "end": 6604.0, + "probability": 0.9992 + }, + { + "start": 6604.54, + "end": 6605.07, + "probability": 0.8179 + }, + { + "start": 6606.42, + "end": 6609.16, + "probability": 0.9535 + }, + { + "start": 6609.82, + "end": 6610.8, + "probability": 0.9722 + }, + { + "start": 6611.86, + "end": 6615.64, + "probability": 0.9858 + }, + { + "start": 6616.54, + "end": 6620.46, + "probability": 0.7958 + }, + { + "start": 6621.1, + "end": 6625.66, + "probability": 0.9869 + }, + { + "start": 6626.68, + "end": 6629.33, + "probability": 0.8201 + }, + { + "start": 6630.08, + "end": 6636.64, + "probability": 0.9788 + }, + { + "start": 6637.28, + "end": 6639.54, + "probability": 0.4961 + }, + { + "start": 6641.02, + "end": 6645.38, + "probability": 0.9624 + }, + { + "start": 6646.08, + "end": 6646.64, + "probability": 0.9459 + }, + { + "start": 6647.36, + "end": 6648.97, + "probability": 0.9594 + }, + { + "start": 6649.9, + "end": 6654.94, + "probability": 0.9843 + }, + { + "start": 6656.08, + "end": 6657.47, + "probability": 0.7469 + }, + { + "start": 6658.34, + "end": 6661.78, + "probability": 0.9937 + }, + { + "start": 6662.5, + "end": 6665.6, + "probability": 0.9811 + }, + { + "start": 6666.18, + "end": 6672.56, + "probability": 0.9919 + }, + { + "start": 6672.98, + "end": 6674.46, + "probability": 0.6356 + }, + { + "start": 6675.2, + "end": 6680.72, + "probability": 0.9862 + }, + { + "start": 6681.84, + "end": 6682.1, + "probability": 0.9112 + }, + { + "start": 6683.28, + "end": 6686.28, + "probability": 0.8364 + }, + { + "start": 6686.84, + "end": 6688.59, + "probability": 0.9931 + }, + { + "start": 6689.56, + "end": 6690.6, + "probability": 0.7642 + }, + { + "start": 6691.58, + "end": 6692.54, + "probability": 0.7843 + }, + { + "start": 6693.24, + "end": 6698.26, + "probability": 0.9916 + }, + { + "start": 6699.78, + "end": 6700.98, + "probability": 0.9167 + }, + { + "start": 6702.1, + "end": 6703.94, + "probability": 0.9956 + }, + { + "start": 6705.04, + "end": 6708.26, + "probability": 0.9609 + }, + { + "start": 6709.14, + "end": 6712.24, + "probability": 0.9822 + }, + { + "start": 6712.9, + "end": 6716.54, + "probability": 0.9985 + }, + { + "start": 6717.32, + "end": 6721.12, + "probability": 0.9932 + }, + { + "start": 6721.46, + "end": 6724.68, + "probability": 0.9979 + }, + { + "start": 6725.24, + "end": 6726.16, + "probability": 0.9076 + }, + { + "start": 6726.78, + "end": 6728.7, + "probability": 0.9918 + }, + { + "start": 6729.5, + "end": 6731.84, + "probability": 0.9944 + }, + { + "start": 6732.62, + "end": 6735.3, + "probability": 0.9548 + }, + { + "start": 6735.84, + "end": 6738.37, + "probability": 0.999 + }, + { + "start": 6739.76, + "end": 6744.2, + "probability": 0.958 + }, + { + "start": 6745.34, + "end": 6745.62, + "probability": 0.9707 + }, + { + "start": 6746.2, + "end": 6747.02, + "probability": 0.8892 + }, + { + "start": 6747.54, + "end": 6748.26, + "probability": 0.5802 + }, + { + "start": 6749.18, + "end": 6751.04, + "probability": 0.9899 + }, + { + "start": 6751.84, + "end": 6755.98, + "probability": 0.9818 + }, + { + "start": 6756.48, + "end": 6757.55, + "probability": 0.9865 + }, + { + "start": 6758.68, + "end": 6760.56, + "probability": 0.9203 + }, + { + "start": 6761.36, + "end": 6763.9, + "probability": 0.9897 + }, + { + "start": 6764.72, + "end": 6768.48, + "probability": 0.9918 + }, + { + "start": 6769.18, + "end": 6771.48, + "probability": 0.9074 + }, + { + "start": 6772.02, + "end": 6772.64, + "probability": 0.7728 + }, + { + "start": 6773.24, + "end": 6779.74, + "probability": 0.9085 + }, + { + "start": 6780.6, + "end": 6785.98, + "probability": 0.9949 + }, + { + "start": 6786.52, + "end": 6789.54, + "probability": 0.921 + }, + { + "start": 6790.92, + "end": 6792.9, + "probability": 0.9553 + }, + { + "start": 6793.68, + "end": 6795.9, + "probability": 0.9931 + }, + { + "start": 6796.66, + "end": 6798.0, + "probability": 0.8288 + }, + { + "start": 6798.22, + "end": 6802.62, + "probability": 0.9116 + }, + { + "start": 6802.74, + "end": 6804.34, + "probability": 0.9025 + }, + { + "start": 6805.02, + "end": 6806.3, + "probability": 0.9943 + }, + { + "start": 6806.5, + "end": 6809.82, + "probability": 0.8681 + }, + { + "start": 6810.38, + "end": 6811.02, + "probability": 0.8827 + }, + { + "start": 6812.18, + "end": 6813.48, + "probability": 0.8414 + }, + { + "start": 6813.58, + "end": 6814.4, + "probability": 0.9884 + }, + { + "start": 6814.48, + "end": 6819.26, + "probability": 0.8198 + }, + { + "start": 6819.4, + "end": 6819.9, + "probability": 0.4136 + }, + { + "start": 6820.76, + "end": 6823.37, + "probability": 0.9953 + }, + { + "start": 6824.2, + "end": 6829.68, + "probability": 0.9449 + }, + { + "start": 6830.7, + "end": 6833.02, + "probability": 0.4296 + }, + { + "start": 6833.8, + "end": 6834.67, + "probability": 0.9689 + }, + { + "start": 6835.36, + "end": 6839.5, + "probability": 0.9922 + }, + { + "start": 6840.74, + "end": 6842.7, + "probability": 0.7491 + }, + { + "start": 6843.36, + "end": 6847.72, + "probability": 0.9758 + }, + { + "start": 6848.32, + "end": 6849.86, + "probability": 0.9912 + }, + { + "start": 6850.44, + "end": 6854.6, + "probability": 0.9768 + }, + { + "start": 6854.6, + "end": 6859.08, + "probability": 0.9731 + }, + { + "start": 6859.52, + "end": 6860.02, + "probability": 0.6515 + }, + { + "start": 6860.72, + "end": 6864.3, + "probability": 0.9741 + }, + { + "start": 6864.8, + "end": 6865.86, + "probability": 0.8842 + }, + { + "start": 6866.54, + "end": 6869.44, + "probability": 0.9863 + }, + { + "start": 6870.24, + "end": 6872.74, + "probability": 0.9576 + }, + { + "start": 6872.98, + "end": 6873.34, + "probability": 0.8026 + }, + { + "start": 6873.96, + "end": 6874.22, + "probability": 0.7157 + }, + { + "start": 6874.54, + "end": 6876.98, + "probability": 0.6161 + }, + { + "start": 6877.12, + "end": 6879.69, + "probability": 0.978 + }, + { + "start": 6895.56, + "end": 6896.36, + "probability": 0.68 + }, + { + "start": 6898.58, + "end": 6899.92, + "probability": 0.7933 + }, + { + "start": 6906.9, + "end": 6910.58, + "probability": 0.7542 + }, + { + "start": 6911.4, + "end": 6914.5, + "probability": 0.891 + }, + { + "start": 6916.0, + "end": 6921.12, + "probability": 0.9912 + }, + { + "start": 6922.12, + "end": 6924.98, + "probability": 0.865 + }, + { + "start": 6925.44, + "end": 6929.32, + "probability": 0.9561 + }, + { + "start": 6930.36, + "end": 6933.6, + "probability": 0.9478 + }, + { + "start": 6934.18, + "end": 6936.38, + "probability": 0.9668 + }, + { + "start": 6937.02, + "end": 6940.62, + "probability": 0.9982 + }, + { + "start": 6942.0, + "end": 6945.92, + "probability": 0.9914 + }, + { + "start": 6946.54, + "end": 6951.0, + "probability": 0.9965 + }, + { + "start": 6952.08, + "end": 6956.92, + "probability": 0.9956 + }, + { + "start": 6957.5, + "end": 6959.62, + "probability": 0.9741 + }, + { + "start": 6960.92, + "end": 6961.36, + "probability": 0.9513 + }, + { + "start": 6962.02, + "end": 6964.3, + "probability": 0.9989 + }, + { + "start": 6965.26, + "end": 6969.52, + "probability": 0.9924 + }, + { + "start": 6970.84, + "end": 6973.58, + "probability": 0.9968 + }, + { + "start": 6973.58, + "end": 6977.58, + "probability": 0.996 + }, + { + "start": 6979.98, + "end": 6982.12, + "probability": 0.9038 + }, + { + "start": 6982.12, + "end": 6985.06, + "probability": 0.9969 + }, + { + "start": 6985.6, + "end": 6990.38, + "probability": 0.9981 + }, + { + "start": 6991.5, + "end": 6992.88, + "probability": 0.9917 + }, + { + "start": 6993.6, + "end": 6997.7, + "probability": 0.9805 + }, + { + "start": 6999.66, + "end": 7003.42, + "probability": 0.9945 + }, + { + "start": 7004.36, + "end": 7006.04, + "probability": 0.9548 + }, + { + "start": 7006.28, + "end": 7009.9, + "probability": 0.9901 + }, + { + "start": 7011.02, + "end": 7013.06, + "probability": 0.9761 + }, + { + "start": 7013.88, + "end": 7018.52, + "probability": 0.9974 + }, + { + "start": 7018.96, + "end": 7020.44, + "probability": 0.9988 + }, + { + "start": 7020.98, + "end": 7023.26, + "probability": 0.9978 + }, + { + "start": 7023.98, + "end": 7026.66, + "probability": 0.9937 + }, + { + "start": 7028.88, + "end": 7030.3, + "probability": 0.8521 + }, + { + "start": 7030.32, + "end": 7034.04, + "probability": 0.9862 + }, + { + "start": 7034.18, + "end": 7037.78, + "probability": 0.7695 + }, + { + "start": 7038.54, + "end": 7039.82, + "probability": 0.9924 + }, + { + "start": 7040.76, + "end": 7042.56, + "probability": 0.9816 + }, + { + "start": 7043.0, + "end": 7044.16, + "probability": 0.9814 + }, + { + "start": 7045.28, + "end": 7050.18, + "probability": 0.9915 + }, + { + "start": 7051.18, + "end": 7054.62, + "probability": 0.9628 + }, + { + "start": 7054.62, + "end": 7058.78, + "probability": 0.9987 + }, + { + "start": 7059.46, + "end": 7063.98, + "probability": 0.9961 + }, + { + "start": 7064.96, + "end": 7068.6, + "probability": 0.9769 + }, + { + "start": 7070.6, + "end": 7076.08, + "probability": 0.9918 + }, + { + "start": 7076.24, + "end": 7079.18, + "probability": 0.8951 + }, + { + "start": 7079.92, + "end": 7080.88, + "probability": 0.8026 + }, + { + "start": 7081.1, + "end": 7084.92, + "probability": 0.9958 + }, + { + "start": 7085.54, + "end": 7090.6, + "probability": 0.9961 + }, + { + "start": 7091.42, + "end": 7092.76, + "probability": 0.8525 + }, + { + "start": 7093.58, + "end": 7098.74, + "probability": 0.9963 + }, + { + "start": 7099.1, + "end": 7101.18, + "probability": 0.9877 + }, + { + "start": 7102.48, + "end": 7104.58, + "probability": 0.9964 + }, + { + "start": 7104.58, + "end": 7107.22, + "probability": 0.9992 + }, + { + "start": 7107.32, + "end": 7112.02, + "probability": 0.9933 + }, + { + "start": 7113.1, + "end": 7116.4, + "probability": 0.9968 + }, + { + "start": 7116.8, + "end": 7121.56, + "probability": 0.998 + }, + { + "start": 7122.38, + "end": 7124.18, + "probability": 0.9971 + }, + { + "start": 7125.04, + "end": 7126.14, + "probability": 0.9534 + }, + { + "start": 7126.74, + "end": 7130.12, + "probability": 0.9963 + }, + { + "start": 7130.12, + "end": 7134.32, + "probability": 0.9941 + }, + { + "start": 7135.14, + "end": 7138.9, + "probability": 0.9846 + }, + { + "start": 7139.76, + "end": 7145.22, + "probability": 0.9839 + }, + { + "start": 7147.46, + "end": 7149.68, + "probability": 0.9759 + }, + { + "start": 7150.24, + "end": 7153.94, + "probability": 0.9832 + }, + { + "start": 7154.52, + "end": 7157.88, + "probability": 0.9958 + }, + { + "start": 7159.1, + "end": 7162.78, + "probability": 0.9956 + }, + { + "start": 7163.1, + "end": 7164.9, + "probability": 0.9572 + }, + { + "start": 7165.76, + "end": 7167.04, + "probability": 0.9622 + }, + { + "start": 7167.34, + "end": 7171.38, + "probability": 0.9479 + }, + { + "start": 7172.44, + "end": 7173.9, + "probability": 0.9971 + }, + { + "start": 7174.58, + "end": 7176.24, + "probability": 0.9971 + }, + { + "start": 7176.98, + "end": 7178.28, + "probability": 0.9881 + }, + { + "start": 7179.98, + "end": 7183.0, + "probability": 0.9116 + }, + { + "start": 7183.62, + "end": 7189.42, + "probability": 0.9902 + }, + { + "start": 7190.58, + "end": 7194.0, + "probability": 0.9924 + }, + { + "start": 7194.62, + "end": 7195.78, + "probability": 0.8691 + }, + { + "start": 7196.72, + "end": 7197.64, + "probability": 0.8503 + }, + { + "start": 7198.76, + "end": 7199.26, + "probability": 0.6905 + }, + { + "start": 7199.84, + "end": 7202.96, + "probability": 0.9928 + }, + { + "start": 7203.06, + "end": 7204.88, + "probability": 0.6358 + }, + { + "start": 7205.54, + "end": 7208.46, + "probability": 0.9129 + }, + { + "start": 7209.1, + "end": 7210.04, + "probability": 0.9788 + }, + { + "start": 7210.9, + "end": 7214.18, + "probability": 0.9987 + }, + { + "start": 7215.12, + "end": 7217.68, + "probability": 0.6774 + }, + { + "start": 7218.28, + "end": 7221.56, + "probability": 0.9822 + }, + { + "start": 7222.66, + "end": 7223.67, + "probability": 0.5309 + }, + { + "start": 7226.42, + "end": 7227.77, + "probability": 0.6814 + }, + { + "start": 7229.14, + "end": 7231.46, + "probability": 0.9858 + }, + { + "start": 7232.68, + "end": 7235.86, + "probability": 0.7363 + }, + { + "start": 7237.42, + "end": 7237.78, + "probability": 0.5664 + }, + { + "start": 7240.14, + "end": 7241.1, + "probability": 0.0763 + }, + { + "start": 7262.62, + "end": 7263.28, + "probability": 0.0559 + }, + { + "start": 7263.28, + "end": 7266.84, + "probability": 0.7355 + }, + { + "start": 7267.74, + "end": 7269.24, + "probability": 0.9913 + }, + { + "start": 7270.22, + "end": 7272.38, + "probability": 0.8083 + }, + { + "start": 7273.9, + "end": 7274.7, + "probability": 0.7757 + }, + { + "start": 7276.22, + "end": 7282.21, + "probability": 0.9634 + }, + { + "start": 7282.8, + "end": 7284.54, + "probability": 0.9871 + }, + { + "start": 7285.8, + "end": 7286.68, + "probability": 0.9644 + }, + { + "start": 7287.3, + "end": 7293.12, + "probability": 0.9697 + }, + { + "start": 7293.8, + "end": 7294.32, + "probability": 0.5343 + }, + { + "start": 7294.84, + "end": 7296.68, + "probability": 0.8822 + }, + { + "start": 7297.7, + "end": 7300.32, + "probability": 0.7936 + }, + { + "start": 7301.24, + "end": 7303.18, + "probability": 0.9076 + }, + { + "start": 7304.42, + "end": 7307.9, + "probability": 0.9897 + }, + { + "start": 7308.96, + "end": 7312.3, + "probability": 0.9712 + }, + { + "start": 7313.84, + "end": 7320.32, + "probability": 0.9775 + }, + { + "start": 7321.66, + "end": 7324.12, + "probability": 0.9931 + }, + { + "start": 7325.44, + "end": 7327.02, + "probability": 0.8343 + }, + { + "start": 7327.52, + "end": 7328.94, + "probability": 0.9009 + }, + { + "start": 7329.06, + "end": 7330.42, + "probability": 0.9148 + }, + { + "start": 7330.92, + "end": 7331.2, + "probability": 0.7697 + }, + { + "start": 7332.52, + "end": 7335.58, + "probability": 0.9437 + }, + { + "start": 7336.4, + "end": 7339.62, + "probability": 0.9966 + }, + { + "start": 7340.3, + "end": 7341.88, + "probability": 0.9427 + }, + { + "start": 7342.78, + "end": 7344.56, + "probability": 0.9688 + }, + { + "start": 7346.06, + "end": 7347.82, + "probability": 0.9932 + }, + { + "start": 7348.46, + "end": 7351.72, + "probability": 0.9735 + }, + { + "start": 7352.4, + "end": 7352.78, + "probability": 0.8177 + }, + { + "start": 7354.3, + "end": 7357.14, + "probability": 0.9927 + }, + { + "start": 7357.9, + "end": 7359.4, + "probability": 0.9762 + }, + { + "start": 7360.8, + "end": 7362.44, + "probability": 0.9643 + }, + { + "start": 7363.08, + "end": 7363.56, + "probability": 0.9844 + }, + { + "start": 7365.0, + "end": 7366.57, + "probability": 0.6661 + }, + { + "start": 7366.88, + "end": 7368.2, + "probability": 0.916 + }, + { + "start": 7368.8, + "end": 7371.7, + "probability": 0.9899 + }, + { + "start": 7373.02, + "end": 7373.42, + "probability": 0.863 + }, + { + "start": 7373.66, + "end": 7374.22, + "probability": 0.8497 + }, + { + "start": 7374.3, + "end": 7374.94, + "probability": 0.8178 + }, + { + "start": 7375.28, + "end": 7376.2, + "probability": 0.7281 + }, + { + "start": 7376.3, + "end": 7377.38, + "probability": 0.8584 + }, + { + "start": 7378.52, + "end": 7380.52, + "probability": 0.9398 + }, + { + "start": 7380.6, + "end": 7386.08, + "probability": 0.965 + }, + { + "start": 7387.52, + "end": 7390.98, + "probability": 0.9733 + }, + { + "start": 7391.6, + "end": 7392.56, + "probability": 0.8147 + }, + { + "start": 7393.3, + "end": 7393.9, + "probability": 0.8835 + }, + { + "start": 7395.32, + "end": 7399.4, + "probability": 0.8745 + }, + { + "start": 7399.64, + "end": 7401.06, + "probability": 0.9859 + }, + { + "start": 7401.76, + "end": 7403.06, + "probability": 0.9771 + }, + { + "start": 7403.76, + "end": 7406.62, + "probability": 0.9319 + }, + { + "start": 7407.28, + "end": 7408.08, + "probability": 0.7481 + }, + { + "start": 7409.41, + "end": 7410.14, + "probability": 0.8672 + }, + { + "start": 7411.3, + "end": 7416.4, + "probability": 0.9978 + }, + { + "start": 7416.6, + "end": 7417.06, + "probability": 0.8317 + }, + { + "start": 7417.14, + "end": 7421.16, + "probability": 0.9863 + }, + { + "start": 7421.92, + "end": 7423.08, + "probability": 0.8179 + }, + { + "start": 7424.22, + "end": 7428.78, + "probability": 0.9954 + }, + { + "start": 7428.78, + "end": 7433.58, + "probability": 0.9939 + }, + { + "start": 7434.42, + "end": 7438.22, + "probability": 0.9894 + }, + { + "start": 7439.16, + "end": 7441.2, + "probability": 0.9876 + }, + { + "start": 7442.02, + "end": 7443.51, + "probability": 0.9961 + }, + { + "start": 7444.38, + "end": 7448.14, + "probability": 0.968 + }, + { + "start": 7449.12, + "end": 7452.28, + "probability": 0.9347 + }, + { + "start": 7452.66, + "end": 7454.02, + "probability": 0.977 + }, + { + "start": 7455.06, + "end": 7457.6, + "probability": 0.8916 + }, + { + "start": 7458.1, + "end": 7460.18, + "probability": 0.9904 + }, + { + "start": 7461.04, + "end": 7463.82, + "probability": 0.9823 + }, + { + "start": 7465.4, + "end": 7469.62, + "probability": 0.9737 + }, + { + "start": 7469.62, + "end": 7474.72, + "probability": 0.9745 + }, + { + "start": 7475.52, + "end": 7478.12, + "probability": 0.9943 + }, + { + "start": 7478.12, + "end": 7482.18, + "probability": 0.9866 + }, + { + "start": 7482.5, + "end": 7484.26, + "probability": 0.887 + }, + { + "start": 7485.16, + "end": 7485.82, + "probability": 0.7226 + }, + { + "start": 7485.86, + "end": 7488.06, + "probability": 0.9877 + }, + { + "start": 7488.06, + "end": 7491.42, + "probability": 0.9919 + }, + { + "start": 7492.32, + "end": 7495.84, + "probability": 0.9917 + }, + { + "start": 7496.88, + "end": 7500.84, + "probability": 0.8993 + }, + { + "start": 7500.84, + "end": 7504.66, + "probability": 0.9755 + }, + { + "start": 7505.76, + "end": 7510.12, + "probability": 0.996 + }, + { + "start": 7510.5, + "end": 7511.02, + "probability": 0.9509 + }, + { + "start": 7511.12, + "end": 7512.18, + "probability": 0.8439 + }, + { + "start": 7512.62, + "end": 7516.22, + "probability": 0.8835 + }, + { + "start": 7517.1, + "end": 7519.26, + "probability": 0.9956 + }, + { + "start": 7520.32, + "end": 7524.14, + "probability": 0.9927 + }, + { + "start": 7525.3, + "end": 7529.4, + "probability": 0.9855 + }, + { + "start": 7530.1, + "end": 7530.36, + "probability": 0.3522 + }, + { + "start": 7531.48, + "end": 7532.68, + "probability": 0.6754 + }, + { + "start": 7533.22, + "end": 7536.98, + "probability": 0.9 + }, + { + "start": 7537.42, + "end": 7538.82, + "probability": 0.5817 + }, + { + "start": 7539.32, + "end": 7540.0, + "probability": 0.9381 + }, + { + "start": 7540.38, + "end": 7541.04, + "probability": 0.9787 + }, + { + "start": 7541.54, + "end": 7543.66, + "probability": 0.9899 + }, + { + "start": 7544.14, + "end": 7545.14, + "probability": 0.9762 + }, + { + "start": 7546.06, + "end": 7548.48, + "probability": 0.9753 + }, + { + "start": 7548.54, + "end": 7549.92, + "probability": 0.9151 + }, + { + "start": 7550.32, + "end": 7551.7, + "probability": 0.9592 + }, + { + "start": 7552.06, + "end": 7553.32, + "probability": 0.96 + }, + { + "start": 7554.1, + "end": 7557.74, + "probability": 0.9967 + }, + { + "start": 7558.38, + "end": 7559.36, + "probability": 0.9056 + }, + { + "start": 7560.28, + "end": 7561.98, + "probability": 0.9604 + }, + { + "start": 7562.9, + "end": 7564.0, + "probability": 0.9745 + }, + { + "start": 7565.04, + "end": 7568.74, + "probability": 0.9002 + }, + { + "start": 7569.22, + "end": 7569.76, + "probability": 0.8537 + }, + { + "start": 7570.24, + "end": 7571.74, + "probability": 0.9523 + }, + { + "start": 7573.16, + "end": 7575.56, + "probability": 0.9828 + }, + { + "start": 7575.76, + "end": 7576.34, + "probability": 0.9896 + }, + { + "start": 7576.4, + "end": 7577.16, + "probability": 0.9945 + }, + { + "start": 7577.28, + "end": 7577.84, + "probability": 0.6707 + }, + { + "start": 7578.02, + "end": 7583.2, + "probability": 0.9927 + }, + { + "start": 7583.84, + "end": 7584.78, + "probability": 0.9963 + }, + { + "start": 7585.7, + "end": 7590.98, + "probability": 0.9971 + }, + { + "start": 7592.02, + "end": 7592.22, + "probability": 0.9323 + }, + { + "start": 7592.54, + "end": 7593.6, + "probability": 0.817 + }, + { + "start": 7593.84, + "end": 7599.88, + "probability": 0.9385 + }, + { + "start": 7600.44, + "end": 7601.94, + "probability": 0.9501 + }, + { + "start": 7603.88, + "end": 7604.8, + "probability": 0.9741 + }, + { + "start": 7605.14, + "end": 7606.08, + "probability": 0.7576 + }, + { + "start": 7606.2, + "end": 7608.1, + "probability": 0.9636 + }, + { + "start": 7608.8, + "end": 7613.24, + "probability": 0.9324 + }, + { + "start": 7613.66, + "end": 7614.04, + "probability": 0.7203 + }, + { + "start": 7614.68, + "end": 7614.96, + "probability": 0.6521 + }, + { + "start": 7616.2, + "end": 7620.14, + "probability": 0.9584 + }, + { + "start": 7620.42, + "end": 7621.14, + "probability": 0.9258 + }, + { + "start": 7621.56, + "end": 7622.34, + "probability": 0.9537 + }, + { + "start": 7623.28, + "end": 7629.28, + "probability": 0.9923 + }, + { + "start": 7629.72, + "end": 7630.32, + "probability": 0.8668 + }, + { + "start": 7631.22, + "end": 7633.88, + "probability": 0.9174 + }, + { + "start": 7634.0, + "end": 7636.62, + "probability": 0.9891 + }, + { + "start": 7637.66, + "end": 7637.9, + "probability": 0.8218 + }, + { + "start": 7638.24, + "end": 7640.42, + "probability": 0.9742 + }, + { + "start": 7640.76, + "end": 7642.92, + "probability": 0.9741 + }, + { + "start": 7643.88, + "end": 7646.78, + "probability": 0.9258 + }, + { + "start": 7647.6, + "end": 7650.84, + "probability": 0.9551 + }, + { + "start": 7651.76, + "end": 7652.7, + "probability": 0.831 + }, + { + "start": 7653.28, + "end": 7655.0, + "probability": 0.9049 + }, + { + "start": 7655.78, + "end": 7657.6, + "probability": 0.9911 + }, + { + "start": 7657.6, + "end": 7660.06, + "probability": 0.999 + }, + { + "start": 7660.84, + "end": 7662.76, + "probability": 0.9854 + }, + { + "start": 7663.34, + "end": 7663.74, + "probability": 0.7652 + }, + { + "start": 7664.16, + "end": 7668.32, + "probability": 0.9845 + }, + { + "start": 7669.12, + "end": 7671.84, + "probability": 0.9984 + }, + { + "start": 7672.12, + "end": 7675.68, + "probability": 0.9981 + }, + { + "start": 7676.88, + "end": 7681.7, + "probability": 0.9982 + }, + { + "start": 7683.12, + "end": 7686.83, + "probability": 0.9185 + }, + { + "start": 7687.5, + "end": 7689.1, + "probability": 0.9737 + }, + { + "start": 7690.12, + "end": 7692.14, + "probability": 0.8944 + }, + { + "start": 7692.64, + "end": 7696.5, + "probability": 0.9959 + }, + { + "start": 7696.5, + "end": 7700.62, + "probability": 0.9891 + }, + { + "start": 7701.5, + "end": 7706.8, + "probability": 0.998 + }, + { + "start": 7707.86, + "end": 7711.06, + "probability": 0.9973 + }, + { + "start": 7711.4, + "end": 7714.66, + "probability": 0.9709 + }, + { + "start": 7716.0, + "end": 7719.62, + "probability": 0.9833 + }, + { + "start": 7720.66, + "end": 7721.52, + "probability": 0.9855 + }, + { + "start": 7722.06, + "end": 7724.24, + "probability": 0.9675 + }, + { + "start": 7724.24, + "end": 7727.58, + "probability": 0.9973 + }, + { + "start": 7728.38, + "end": 7732.86, + "probability": 0.9965 + }, + { + "start": 7732.86, + "end": 7736.64, + "probability": 0.9989 + }, + { + "start": 7737.82, + "end": 7741.58, + "probability": 0.9303 + }, + { + "start": 7742.4, + "end": 7742.84, + "probability": 0.8832 + }, + { + "start": 7743.6, + "end": 7747.92, + "probability": 0.9929 + }, + { + "start": 7748.72, + "end": 7752.96, + "probability": 0.9937 + }, + { + "start": 7753.1, + "end": 7754.32, + "probability": 0.99 + }, + { + "start": 7755.58, + "end": 7757.0, + "probability": 0.7266 + }, + { + "start": 7757.36, + "end": 7760.52, + "probability": 0.9941 + }, + { + "start": 7760.94, + "end": 7763.52, + "probability": 0.8557 + }, + { + "start": 7764.46, + "end": 7768.32, + "probability": 0.9954 + }, + { + "start": 7769.92, + "end": 7772.9, + "probability": 0.6216 + }, + { + "start": 7773.5, + "end": 7774.6, + "probability": 0.8551 + }, + { + "start": 7775.26, + "end": 7777.52, + "probability": 0.9978 + }, + { + "start": 7778.08, + "end": 7781.08, + "probability": 0.9905 + }, + { + "start": 7781.52, + "end": 7783.64, + "probability": 0.995 + }, + { + "start": 7784.68, + "end": 7787.64, + "probability": 0.8626 + }, + { + "start": 7788.4, + "end": 7793.56, + "probability": 0.9993 + }, + { + "start": 7793.96, + "end": 7796.5, + "probability": 0.9965 + }, + { + "start": 7797.86, + "end": 7802.38, + "probability": 0.9937 + }, + { + "start": 7803.02, + "end": 7806.68, + "probability": 0.9972 + }, + { + "start": 7807.2, + "end": 7812.3, + "probability": 0.9373 + }, + { + "start": 7812.62, + "end": 7815.78, + "probability": 0.9948 + }, + { + "start": 7816.34, + "end": 7818.72, + "probability": 0.9395 + }, + { + "start": 7819.6, + "end": 7819.98, + "probability": 0.7418 + }, + { + "start": 7820.58, + "end": 7821.5, + "probability": 0.9308 + }, + { + "start": 7821.54, + "end": 7822.92, + "probability": 0.8789 + }, + { + "start": 7823.32, + "end": 7826.88, + "probability": 0.9946 + }, + { + "start": 7826.88, + "end": 7831.44, + "probability": 0.9878 + }, + { + "start": 7832.26, + "end": 7835.02, + "probability": 0.9367 + }, + { + "start": 7835.56, + "end": 7836.02, + "probability": 0.7826 + }, + { + "start": 7836.56, + "end": 7836.9, + "probability": 0.7935 + }, + { + "start": 7838.28, + "end": 7841.0, + "probability": 0.9701 + }, + { + "start": 7842.14, + "end": 7843.7, + "probability": 0.9777 + }, + { + "start": 7844.54, + "end": 7844.78, + "probability": 0.8418 + }, + { + "start": 7846.34, + "end": 7848.26, + "probability": 0.9953 + }, + { + "start": 7848.44, + "end": 7853.32, + "probability": 0.8444 + }, + { + "start": 7854.57, + "end": 7855.84, + "probability": 0.7607 + }, + { + "start": 7856.8, + "end": 7859.4, + "probability": 0.9924 + }, + { + "start": 7859.4, + "end": 7861.92, + "probability": 0.9908 + }, + { + "start": 7863.02, + "end": 7866.14, + "probability": 0.9007 + }, + { + "start": 7866.88, + "end": 7868.72, + "probability": 0.9871 + }, + { + "start": 7870.66, + "end": 7874.92, + "probability": 0.9683 + }, + { + "start": 7874.92, + "end": 7882.16, + "probability": 0.9956 + }, + { + "start": 7882.88, + "end": 7886.78, + "probability": 0.6904 + }, + { + "start": 7887.5, + "end": 7888.74, + "probability": 0.9801 + }, + { + "start": 7889.6, + "end": 7890.56, + "probability": 0.9637 + }, + { + "start": 7891.18, + "end": 7893.9, + "probability": 0.952 + }, + { + "start": 7893.9, + "end": 7898.36, + "probability": 0.9598 + }, + { + "start": 7899.44, + "end": 7904.28, + "probability": 0.9849 + }, + { + "start": 7905.02, + "end": 7910.14, + "probability": 0.9893 + }, + { + "start": 7910.96, + "end": 7913.82, + "probability": 0.9954 + }, + { + "start": 7914.08, + "end": 7915.14, + "probability": 0.6093 + }, + { + "start": 7915.24, + "end": 7915.34, + "probability": 0.8567 + }, + { + "start": 7915.62, + "end": 7916.02, + "probability": 0.9834 + }, + { + "start": 7916.48, + "end": 7918.8, + "probability": 0.6506 + }, + { + "start": 7919.35, + "end": 7923.0, + "probability": 0.7346 + }, + { + "start": 7923.68, + "end": 7925.62, + "probability": 0.9538 + }, + { + "start": 7926.44, + "end": 7928.96, + "probability": 0.9739 + }, + { + "start": 7929.38, + "end": 7931.8, + "probability": 0.9881 + }, + { + "start": 7932.72, + "end": 7933.56, + "probability": 0.8965 + }, + { + "start": 7934.64, + "end": 7935.4, + "probability": 0.4941 + }, + { + "start": 7936.56, + "end": 7936.88, + "probability": 0.4936 + }, + { + "start": 7938.6, + "end": 7940.28, + "probability": 0.9249 + }, + { + "start": 7940.4, + "end": 7943.76, + "probability": 0.8955 + }, + { + "start": 7944.24, + "end": 7945.12, + "probability": 0.7354 + }, + { + "start": 7945.52, + "end": 7946.5, + "probability": 0.8877 + }, + { + "start": 7947.4, + "end": 7950.04, + "probability": 0.9899 + }, + { + "start": 7950.8, + "end": 7955.12, + "probability": 0.9721 + }, + { + "start": 7955.88, + "end": 7960.24, + "probability": 0.9987 + }, + { + "start": 7961.64, + "end": 7963.0, + "probability": 0.8853 + }, + { + "start": 7963.74, + "end": 7967.74, + "probability": 0.9993 + }, + { + "start": 7968.2, + "end": 7970.58, + "probability": 0.9558 + }, + { + "start": 7971.68, + "end": 7974.72, + "probability": 0.9959 + }, + { + "start": 7974.72, + "end": 7979.76, + "probability": 0.8501 + }, + { + "start": 7980.54, + "end": 7982.24, + "probability": 0.7209 + }, + { + "start": 7982.98, + "end": 7985.5, + "probability": 0.8515 + }, + { + "start": 7986.04, + "end": 7988.6, + "probability": 0.9552 + }, + { + "start": 7989.2, + "end": 7991.6, + "probability": 0.9233 + }, + { + "start": 7992.28, + "end": 7994.8, + "probability": 0.9916 + }, + { + "start": 7994.8, + "end": 7997.88, + "probability": 0.8704 + }, + { + "start": 7998.38, + "end": 8000.9, + "probability": 0.8176 + }, + { + "start": 8001.2, + "end": 8002.66, + "probability": 0.8527 + }, + { + "start": 8002.72, + "end": 8007.24, + "probability": 0.9764 + }, + { + "start": 8007.7, + "end": 8013.2, + "probability": 0.9853 + }, + { + "start": 8013.2, + "end": 8019.5, + "probability": 0.8771 + }, + { + "start": 8019.98, + "end": 8021.56, + "probability": 0.7436 + }, + { + "start": 8022.3, + "end": 8023.24, + "probability": 0.6132 + }, + { + "start": 8023.36, + "end": 8026.6, + "probability": 0.8793 + }, + { + "start": 8027.46, + "end": 8028.46, + "probability": 0.8777 + }, + { + "start": 8029.04, + "end": 8029.4, + "probability": 0.835 + }, + { + "start": 8030.04, + "end": 8031.72, + "probability": 0.9844 + }, + { + "start": 8032.12, + "end": 8036.2, + "probability": 0.9868 + }, + { + "start": 8036.2, + "end": 8041.14, + "probability": 0.9784 + }, + { + "start": 8042.4, + "end": 8043.22, + "probability": 0.5324 + }, + { + "start": 8043.84, + "end": 8044.26, + "probability": 0.675 + }, + { + "start": 8045.28, + "end": 8049.86, + "probability": 0.9925 + }, + { + "start": 8050.86, + "end": 8051.46, + "probability": 0.6701 + }, + { + "start": 8051.6, + "end": 8054.54, + "probability": 0.9835 + }, + { + "start": 8054.56, + "end": 8059.82, + "probability": 0.9805 + }, + { + "start": 8060.58, + "end": 8062.74, + "probability": 0.9976 + }, + { + "start": 8062.74, + "end": 8066.38, + "probability": 0.9802 + }, + { + "start": 8066.74, + "end": 8069.08, + "probability": 0.9611 + }, + { + "start": 8070.1, + "end": 8071.26, + "probability": 0.518 + }, + { + "start": 8071.34, + "end": 8072.62, + "probability": 0.8459 + }, + { + "start": 8072.92, + "end": 8078.68, + "probability": 0.9576 + }, + { + "start": 8079.36, + "end": 8080.4, + "probability": 0.9618 + }, + { + "start": 8081.56, + "end": 8082.54, + "probability": 0.849 + }, + { + "start": 8082.66, + "end": 8085.12, + "probability": 0.8493 + }, + { + "start": 8085.58, + "end": 8089.86, + "probability": 0.9949 + }, + { + "start": 8090.46, + "end": 8094.42, + "probability": 0.9339 + }, + { + "start": 8095.82, + "end": 8100.54, + "probability": 0.9906 + }, + { + "start": 8101.04, + "end": 8102.16, + "probability": 0.847 + }, + { + "start": 8102.72, + "end": 8104.44, + "probability": 0.8681 + }, + { + "start": 8104.76, + "end": 8106.78, + "probability": 0.9751 + }, + { + "start": 8106.8, + "end": 8110.1, + "probability": 0.9441 + }, + { + "start": 8111.0, + "end": 8114.5, + "probability": 0.9863 + }, + { + "start": 8114.66, + "end": 8119.2, + "probability": 0.9733 + }, + { + "start": 8120.64, + "end": 8121.56, + "probability": 0.8712 + }, + { + "start": 8122.26, + "end": 8123.06, + "probability": 0.8993 + }, + { + "start": 8123.66, + "end": 8123.94, + "probability": 0.9114 + }, + { + "start": 8124.6, + "end": 8129.22, + "probability": 0.9925 + }, + { + "start": 8130.14, + "end": 8130.84, + "probability": 0.9895 + }, + { + "start": 8131.92, + "end": 8134.64, + "probability": 0.9849 + }, + { + "start": 8135.22, + "end": 8136.02, + "probability": 0.9668 + }, + { + "start": 8137.08, + "end": 8137.78, + "probability": 0.9812 + }, + { + "start": 8139.14, + "end": 8141.6, + "probability": 0.9818 + }, + { + "start": 8141.6, + "end": 8145.12, + "probability": 0.7353 + }, + { + "start": 8145.14, + "end": 8148.64, + "probability": 0.991 + }, + { + "start": 8149.18, + "end": 8151.8, + "probability": 0.9992 + }, + { + "start": 8152.82, + "end": 8154.46, + "probability": 0.853 + }, + { + "start": 8155.18, + "end": 8160.64, + "probability": 0.9937 + }, + { + "start": 8160.86, + "end": 8161.28, + "probability": 0.9188 + }, + { + "start": 8162.64, + "end": 8168.1, + "probability": 0.9988 + }, + { + "start": 8169.36, + "end": 8174.24, + "probability": 0.9967 + }, + { + "start": 8174.56, + "end": 8176.06, + "probability": 0.7398 + }, + { + "start": 8176.64, + "end": 8178.36, + "probability": 0.9846 + }, + { + "start": 8179.32, + "end": 8181.44, + "probability": 0.9971 + }, + { + "start": 8181.44, + "end": 8185.02, + "probability": 0.9959 + }, + { + "start": 8185.72, + "end": 8190.92, + "probability": 0.9967 + }, + { + "start": 8191.54, + "end": 8192.28, + "probability": 0.8639 + }, + { + "start": 8192.92, + "end": 8194.44, + "probability": 0.6991 + }, + { + "start": 8195.3, + "end": 8195.8, + "probability": 0.4521 + }, + { + "start": 8196.86, + "end": 8199.12, + "probability": 0.9761 + }, + { + "start": 8199.12, + "end": 8201.98, + "probability": 0.9985 + }, + { + "start": 8202.44, + "end": 8203.66, + "probability": 0.8453 + }, + { + "start": 8204.54, + "end": 8206.56, + "probability": 0.9059 + }, + { + "start": 8206.62, + "end": 8209.14, + "probability": 0.9562 + }, + { + "start": 8209.48, + "end": 8211.52, + "probability": 0.9159 + }, + { + "start": 8212.16, + "end": 8217.74, + "probability": 0.9875 + }, + { + "start": 8218.92, + "end": 8224.96, + "probability": 0.9981 + }, + { + "start": 8226.52, + "end": 8228.28, + "probability": 0.9462 + }, + { + "start": 8228.88, + "end": 8232.2, + "probability": 0.9415 + }, + { + "start": 8232.66, + "end": 8234.27, + "probability": 0.8917 + }, + { + "start": 8235.26, + "end": 8236.32, + "probability": 0.9906 + }, + { + "start": 8237.32, + "end": 8237.84, + "probability": 0.7072 + }, + { + "start": 8238.52, + "end": 8240.9, + "probability": 0.7699 + }, + { + "start": 8242.96, + "end": 8243.5, + "probability": 0.7789 + }, + { + "start": 8244.12, + "end": 8247.44, + "probability": 0.6792 + }, + { + "start": 8248.22, + "end": 8248.72, + "probability": 0.5614 + }, + { + "start": 8249.42, + "end": 8250.32, + "probability": 0.8375 + }, + { + "start": 8252.22, + "end": 8255.76, + "probability": 0.8344 + }, + { + "start": 8256.36, + "end": 8258.98, + "probability": 0.7703 + }, + { + "start": 8259.6, + "end": 8261.14, + "probability": 0.8755 + }, + { + "start": 8261.24, + "end": 8262.64, + "probability": 0.9806 + }, + { + "start": 8263.48, + "end": 8264.95, + "probability": 0.7823 + }, + { + "start": 8284.04, + "end": 8284.5, + "probability": 0.5229 + }, + { + "start": 8285.02, + "end": 8287.32, + "probability": 0.7598 + }, + { + "start": 8288.16, + "end": 8289.88, + "probability": 0.9976 + }, + { + "start": 8291.26, + "end": 8292.6, + "probability": 0.978 + }, + { + "start": 8292.66, + "end": 8295.14, + "probability": 0.8645 + }, + { + "start": 8296.52, + "end": 8296.6, + "probability": 0.19 + }, + { + "start": 8296.6, + "end": 8297.04, + "probability": 0.1389 + }, + { + "start": 8297.08, + "end": 8297.78, + "probability": 0.4662 + }, + { + "start": 8297.88, + "end": 8298.44, + "probability": 0.4586 + }, + { + "start": 8299.48, + "end": 8299.9, + "probability": 0.8749 + }, + { + "start": 8300.9, + "end": 8301.96, + "probability": 0.7102 + }, + { + "start": 8302.54, + "end": 8305.28, + "probability": 0.9932 + }, + { + "start": 8306.82, + "end": 8309.14, + "probability": 0.9834 + }, + { + "start": 8309.84, + "end": 8312.58, + "probability": 0.9961 + }, + { + "start": 8313.68, + "end": 8317.0, + "probability": 0.9967 + }, + { + "start": 8318.32, + "end": 8321.72, + "probability": 0.9878 + }, + { + "start": 8322.3, + "end": 8324.94, + "probability": 0.9899 + }, + { + "start": 8326.36, + "end": 8329.9, + "probability": 0.9188 + }, + { + "start": 8329.92, + "end": 8330.08, + "probability": 0.5864 + }, + { + "start": 8330.12, + "end": 8330.82, + "probability": 0.7448 + }, + { + "start": 8332.18, + "end": 8336.98, + "probability": 0.9922 + }, + { + "start": 8338.58, + "end": 8339.52, + "probability": 0.998 + }, + { + "start": 8339.74, + "end": 8342.5, + "probability": 0.9838 + }, + { + "start": 8342.5, + "end": 8344.94, + "probability": 0.9835 + }, + { + "start": 8345.9, + "end": 8349.26, + "probability": 0.9235 + }, + { + "start": 8349.3, + "end": 8351.16, + "probability": 0.8033 + }, + { + "start": 8351.68, + "end": 8352.54, + "probability": 0.3032 + }, + { + "start": 8353.52, + "end": 8354.26, + "probability": 0.8 + }, + { + "start": 8354.4, + "end": 8355.74, + "probability": 0.964 + }, + { + "start": 8355.8, + "end": 8356.78, + "probability": 0.8254 + }, + { + "start": 8357.46, + "end": 8358.96, + "probability": 0.8548 + }, + { + "start": 8359.68, + "end": 8361.78, + "probability": 0.8006 + }, + { + "start": 8362.44, + "end": 8366.44, + "probability": 0.8145 + }, + { + "start": 8367.06, + "end": 8370.24, + "probability": 0.9966 + }, + { + "start": 8370.92, + "end": 8373.39, + "probability": 0.915 + }, + { + "start": 8375.05, + "end": 8378.54, + "probability": 0.9976 + }, + { + "start": 8378.54, + "end": 8383.34, + "probability": 0.996 + }, + { + "start": 8384.28, + "end": 8386.88, + "probability": 0.9984 + }, + { + "start": 8387.78, + "end": 8388.32, + "probability": 0.4492 + }, + { + "start": 8388.42, + "end": 8389.46, + "probability": 0.9106 + }, + { + "start": 8389.84, + "end": 8392.42, + "probability": 0.9969 + }, + { + "start": 8392.88, + "end": 8393.42, + "probability": 0.4749 + }, + { + "start": 8393.98, + "end": 8395.84, + "probability": 0.9829 + }, + { + "start": 8397.78, + "end": 8405.2, + "probability": 0.9485 + }, + { + "start": 8405.58, + "end": 8407.58, + "probability": 0.9803 + }, + { + "start": 8408.52, + "end": 8412.86, + "probability": 0.947 + }, + { + "start": 8413.66, + "end": 8418.08, + "probability": 0.9937 + }, + { + "start": 8418.72, + "end": 8421.9, + "probability": 0.9826 + }, + { + "start": 8421.9, + "end": 8425.74, + "probability": 0.9104 + }, + { + "start": 8426.96, + "end": 8430.7, + "probability": 0.9408 + }, + { + "start": 8431.46, + "end": 8433.96, + "probability": 0.9932 + }, + { + "start": 8434.46, + "end": 8438.32, + "probability": 0.979 + }, + { + "start": 8439.66, + "end": 8441.84, + "probability": 0.9851 + }, + { + "start": 8443.4, + "end": 8447.72, + "probability": 0.9992 + }, + { + "start": 8448.58, + "end": 8449.44, + "probability": 0.7928 + }, + { + "start": 8449.62, + "end": 8450.18, + "probability": 0.9694 + }, + { + "start": 8450.26, + "end": 8451.86, + "probability": 0.9937 + }, + { + "start": 8452.58, + "end": 8455.34, + "probability": 0.9489 + }, + { + "start": 8456.64, + "end": 8458.52, + "probability": 0.9928 + }, + { + "start": 8460.36, + "end": 8464.46, + "probability": 0.9922 + }, + { + "start": 8465.4, + "end": 8466.5, + "probability": 0.5736 + }, + { + "start": 8466.58, + "end": 8470.26, + "probability": 0.9962 + }, + { + "start": 8470.86, + "end": 8474.52, + "probability": 0.9789 + }, + { + "start": 8474.52, + "end": 8478.3, + "probability": 0.9802 + }, + { + "start": 8479.4, + "end": 8482.5, + "probability": 0.9619 + }, + { + "start": 8482.5, + "end": 8485.88, + "probability": 0.9915 + }, + { + "start": 8486.56, + "end": 8490.58, + "probability": 0.9938 + }, + { + "start": 8490.84, + "end": 8494.14, + "probability": 0.9947 + }, + { + "start": 8494.96, + "end": 8497.52, + "probability": 0.9934 + }, + { + "start": 8497.68, + "end": 8498.58, + "probability": 0.8494 + }, + { + "start": 8499.2, + "end": 8503.7, + "probability": 0.9866 + }, + { + "start": 8505.1, + "end": 8506.18, + "probability": 0.7315 + }, + { + "start": 8506.88, + "end": 8509.0, + "probability": 0.9321 + }, + { + "start": 8509.64, + "end": 8510.66, + "probability": 0.9422 + }, + { + "start": 8511.14, + "end": 8515.28, + "probability": 0.9984 + }, + { + "start": 8515.8, + "end": 8519.2, + "probability": 0.9962 + }, + { + "start": 8519.2, + "end": 8522.94, + "probability": 0.9992 + }, + { + "start": 8524.38, + "end": 8526.34, + "probability": 0.9985 + }, + { + "start": 8526.34, + "end": 8529.64, + "probability": 0.6531 + }, + { + "start": 8530.48, + "end": 8535.5, + "probability": 0.8057 + }, + { + "start": 8536.48, + "end": 8537.32, + "probability": 0.7101 + }, + { + "start": 8537.38, + "end": 8541.48, + "probability": 0.9755 + }, + { + "start": 8541.96, + "end": 8544.1, + "probability": 0.9986 + }, + { + "start": 8544.1, + "end": 8546.88, + "probability": 0.9762 + }, + { + "start": 8547.94, + "end": 8548.38, + "probability": 0.5924 + }, + { + "start": 8549.78, + "end": 8552.26, + "probability": 0.9569 + }, + { + "start": 8553.1, + "end": 8555.08, + "probability": 0.9684 + }, + { + "start": 8556.14, + "end": 8559.24, + "probability": 0.9756 + }, + { + "start": 8559.58, + "end": 8560.18, + "probability": 0.849 + }, + { + "start": 8560.3, + "end": 8561.48, + "probability": 0.9081 + }, + { + "start": 8562.28, + "end": 8565.4, + "probability": 0.9891 + }, + { + "start": 8566.38, + "end": 8570.06, + "probability": 0.9926 + }, + { + "start": 8570.06, + "end": 8574.2, + "probability": 0.9891 + }, + { + "start": 8574.66, + "end": 8577.34, + "probability": 0.9677 + }, + { + "start": 8578.2, + "end": 8581.92, + "probability": 0.9945 + }, + { + "start": 8582.68, + "end": 8583.42, + "probability": 0.8652 + }, + { + "start": 8586.72, + "end": 8589.18, + "probability": 0.9006 + }, + { + "start": 8589.82, + "end": 8591.7, + "probability": 0.819 + }, + { + "start": 8592.24, + "end": 8595.16, + "probability": 0.9901 + }, + { + "start": 8595.16, + "end": 8598.78, + "probability": 0.996 + }, + { + "start": 8599.14, + "end": 8599.58, + "probability": 0.8539 + }, + { + "start": 8600.9, + "end": 8605.22, + "probability": 0.9907 + }, + { + "start": 8605.22, + "end": 8608.52, + "probability": 0.9954 + }, + { + "start": 8609.58, + "end": 8613.78, + "probability": 0.9941 + }, + { + "start": 8613.78, + "end": 8619.24, + "probability": 0.9985 + }, + { + "start": 8619.8, + "end": 8621.78, + "probability": 0.9673 + }, + { + "start": 8622.66, + "end": 8627.54, + "probability": 0.9979 + }, + { + "start": 8627.58, + "end": 8631.16, + "probability": 0.9896 + }, + { + "start": 8631.66, + "end": 8632.68, + "probability": 0.7184 + }, + { + "start": 8633.2, + "end": 8635.58, + "probability": 0.8187 + }, + { + "start": 8636.44, + "end": 8638.8, + "probability": 0.9879 + }, + { + "start": 8639.32, + "end": 8641.44, + "probability": 0.9523 + }, + { + "start": 8642.68, + "end": 8646.38, + "probability": 0.7499 + }, + { + "start": 8647.5, + "end": 8649.56, + "probability": 0.7804 + }, + { + "start": 8650.22, + "end": 8651.16, + "probability": 0.8164 + }, + { + "start": 8651.44, + "end": 8656.0, + "probability": 0.9858 + }, + { + "start": 8656.38, + "end": 8658.32, + "probability": 0.959 + }, + { + "start": 8658.32, + "end": 8659.25, + "probability": 0.7625 + }, + { + "start": 8659.68, + "end": 8660.72, + "probability": 0.9854 + }, + { + "start": 8662.62, + "end": 8667.98, + "probability": 0.9841 + }, + { + "start": 8667.98, + "end": 8671.3, + "probability": 0.9943 + }, + { + "start": 8671.86, + "end": 8674.54, + "probability": 0.9409 + }, + { + "start": 8675.64, + "end": 8679.02, + "probability": 0.9595 + }, + { + "start": 8679.6, + "end": 8682.42, + "probability": 0.8792 + }, + { + "start": 8683.7, + "end": 8688.14, + "probability": 0.9479 + }, + { + "start": 8689.04, + "end": 8693.02, + "probability": 0.9475 + }, + { + "start": 8693.02, + "end": 8697.08, + "probability": 0.9435 + }, + { + "start": 8697.24, + "end": 8697.24, + "probability": 0.0 + }, + { + "start": 8698.16, + "end": 8701.2, + "probability": 0.9338 + }, + { + "start": 8701.2, + "end": 8704.72, + "probability": 0.99 + }, + { + "start": 8705.28, + "end": 8708.28, + "probability": 0.96 + }, + { + "start": 8708.42, + "end": 8711.9, + "probability": 0.9972 + }, + { + "start": 8712.52, + "end": 8715.55, + "probability": 0.9941 + }, + { + "start": 8715.56, + "end": 8719.4, + "probability": 0.6341 + }, + { + "start": 8720.18, + "end": 8723.16, + "probability": 0.9041 + }, + { + "start": 8723.76, + "end": 8724.54, + "probability": 0.8644 + }, + { + "start": 8725.72, + "end": 8727.98, + "probability": 0.9261 + }, + { + "start": 8729.12, + "end": 8731.92, + "probability": 0.9652 + }, + { + "start": 8732.1, + "end": 8735.64, + "probability": 0.9712 + }, + { + "start": 8736.2, + "end": 8736.76, + "probability": 0.7896 + }, + { + "start": 8738.24, + "end": 8740.03, + "probability": 0.7369 + }, + { + "start": 8740.66, + "end": 8741.06, + "probability": 0.8007 + }, + { + "start": 8742.54, + "end": 8743.24, + "probability": 0.9359 + }, + { + "start": 8744.2, + "end": 8746.8, + "probability": 0.9562 + }, + { + "start": 8746.98, + "end": 8749.82, + "probability": 0.9731 + }, + { + "start": 8750.54, + "end": 8753.38, + "probability": 0.5791 + }, + { + "start": 8753.5, + "end": 8755.56, + "probability": 0.9387 + }, + { + "start": 8757.7, + "end": 8758.3, + "probability": 0.9837 + }, + { + "start": 8777.24, + "end": 8780.18, + "probability": 0.7977 + }, + { + "start": 8780.28, + "end": 8781.92, + "probability": 0.7697 + }, + { + "start": 8783.34, + "end": 8785.71, + "probability": 0.823 + }, + { + "start": 8786.52, + "end": 8789.46, + "probability": 0.9826 + }, + { + "start": 8790.84, + "end": 8791.72, + "probability": 0.7041 + }, + { + "start": 8791.92, + "end": 8792.52, + "probability": 0.6779 + }, + { + "start": 8793.8, + "end": 8795.42, + "probability": 0.9849 + }, + { + "start": 8796.54, + "end": 8798.18, + "probability": 0.8517 + }, + { + "start": 8798.9, + "end": 8801.14, + "probability": 0.959 + }, + { + "start": 8802.02, + "end": 8803.42, + "probability": 0.977 + }, + { + "start": 8803.66, + "end": 8805.04, + "probability": 0.8831 + }, + { + "start": 8805.66, + "end": 8808.88, + "probability": 0.9967 + }, + { + "start": 8809.38, + "end": 8812.36, + "probability": 0.7265 + }, + { + "start": 8812.44, + "end": 8816.9, + "probability": 0.9318 + }, + { + "start": 8817.94, + "end": 8821.96, + "probability": 0.816 + }, + { + "start": 8822.98, + "end": 8826.34, + "probability": 0.9672 + }, + { + "start": 8827.18, + "end": 8830.84, + "probability": 0.9619 + }, + { + "start": 8831.54, + "end": 8835.86, + "probability": 0.9652 + }, + { + "start": 8837.02, + "end": 8838.16, + "probability": 0.9655 + }, + { + "start": 8838.76, + "end": 8840.9, + "probability": 0.7485 + }, + { + "start": 8841.8, + "end": 8843.28, + "probability": 0.9269 + }, + { + "start": 8844.26, + "end": 8845.12, + "probability": 0.9011 + }, + { + "start": 8846.26, + "end": 8850.4, + "probability": 0.9902 + }, + { + "start": 8850.42, + "end": 8853.72, + "probability": 0.9878 + }, + { + "start": 8854.46, + "end": 8855.08, + "probability": 0.821 + }, + { + "start": 8855.38, + "end": 8856.34, + "probability": 0.989 + }, + { + "start": 8857.36, + "end": 8861.72, + "probability": 0.9885 + }, + { + "start": 8862.64, + "end": 8866.98, + "probability": 0.9819 + }, + { + "start": 8867.2, + "end": 8870.98, + "probability": 0.9971 + }, + { + "start": 8873.3, + "end": 8873.94, + "probability": 0.8431 + }, + { + "start": 8874.98, + "end": 8878.02, + "probability": 0.9449 + }, + { + "start": 8878.4, + "end": 8878.88, + "probability": 0.8152 + }, + { + "start": 8879.32, + "end": 8879.9, + "probability": 0.8437 + }, + { + "start": 8880.02, + "end": 8880.46, + "probability": 0.6354 + }, + { + "start": 8880.5, + "end": 8880.64, + "probability": 0.532 + }, + { + "start": 8880.84, + "end": 8882.16, + "probability": 0.9764 + }, + { + "start": 8882.58, + "end": 8884.08, + "probability": 0.9531 + }, + { + "start": 8885.08, + "end": 8887.26, + "probability": 0.9966 + }, + { + "start": 8887.76, + "end": 8889.38, + "probability": 0.9941 + }, + { + "start": 8890.34, + "end": 8892.14, + "probability": 0.9214 + }, + { + "start": 8892.22, + "end": 8894.3, + "probability": 0.988 + }, + { + "start": 8895.52, + "end": 8896.33, + "probability": 0.998 + }, + { + "start": 8897.04, + "end": 8898.46, + "probability": 0.9547 + }, + { + "start": 8899.42, + "end": 8903.1, + "probability": 0.9961 + }, + { + "start": 8904.0, + "end": 8906.12, + "probability": 0.9921 + }, + { + "start": 8907.08, + "end": 8907.38, + "probability": 0.9845 + }, + { + "start": 8909.72, + "end": 8911.58, + "probability": 0.9649 + }, + { + "start": 8911.94, + "end": 8915.6, + "probability": 0.7485 + }, + { + "start": 8916.08, + "end": 8918.3, + "probability": 0.9902 + }, + { + "start": 8918.96, + "end": 8920.96, + "probability": 0.9363 + }, + { + "start": 8921.6, + "end": 8922.59, + "probability": 0.928 + }, + { + "start": 8924.0, + "end": 8924.76, + "probability": 0.7917 + }, + { + "start": 8924.92, + "end": 8926.21, + "probability": 0.6919 + }, + { + "start": 8927.32, + "end": 8930.54, + "probability": 0.9521 + }, + { + "start": 8931.26, + "end": 8933.82, + "probability": 0.7562 + }, + { + "start": 8934.34, + "end": 8936.58, + "probability": 0.9968 + }, + { + "start": 8938.16, + "end": 8939.8, + "probability": 0.7867 + }, + { + "start": 8940.38, + "end": 8943.84, + "probability": 0.8061 + }, + { + "start": 8944.74, + "end": 8948.06, + "probability": 0.9931 + }, + { + "start": 8949.1, + "end": 8952.62, + "probability": 0.6624 + }, + { + "start": 8953.48, + "end": 8956.88, + "probability": 0.9902 + }, + { + "start": 8957.72, + "end": 8960.4, + "probability": 0.9996 + }, + { + "start": 8960.54, + "end": 8962.06, + "probability": 0.9943 + }, + { + "start": 8962.16, + "end": 8963.35, + "probability": 0.9683 + }, + { + "start": 8964.06, + "end": 8966.0, + "probability": 0.9906 + }, + { + "start": 8966.66, + "end": 8969.86, + "probability": 0.9644 + }, + { + "start": 8970.36, + "end": 8971.34, + "probability": 0.7721 + }, + { + "start": 8971.4, + "end": 8973.0, + "probability": 0.9897 + }, + { + "start": 8973.86, + "end": 8976.88, + "probability": 0.9575 + }, + { + "start": 8977.24, + "end": 8978.38, + "probability": 0.9814 + }, + { + "start": 8993.22, + "end": 8996.54, + "probability": 0.0747 + }, + { + "start": 8996.64, + "end": 9001.04, + "probability": 0.0949 + }, + { + "start": 9001.04, + "end": 9001.04, + "probability": 0.0442 + }, + { + "start": 9001.04, + "end": 9001.04, + "probability": 0.1384 + }, + { + "start": 9001.04, + "end": 9001.04, + "probability": 0.0986 + }, + { + "start": 9001.04, + "end": 9001.04, + "probability": 0.0186 + }, + { + "start": 9001.04, + "end": 9002.02, + "probability": 0.546 + }, + { + "start": 9002.68, + "end": 9004.5, + "probability": 0.729 + }, + { + "start": 9004.6, + "end": 9007.22, + "probability": 0.982 + }, + { + "start": 9007.9, + "end": 9010.6, + "probability": 0.8516 + }, + { + "start": 9010.6, + "end": 9014.12, + "probability": 0.728 + }, + { + "start": 9014.16, + "end": 9016.02, + "probability": 0.8238 + }, + { + "start": 9016.32, + "end": 9016.86, + "probability": 0.4414 + }, + { + "start": 9016.94, + "end": 9018.44, + "probability": 0.8641 + }, + { + "start": 9019.1, + "end": 9020.8, + "probability": 0.9336 + }, + { + "start": 9021.34, + "end": 9022.38, + "probability": 0.4675 + }, + { + "start": 9022.76, + "end": 9023.16, + "probability": 0.4179 + }, + { + "start": 9023.48, + "end": 9025.58, + "probability": 0.9315 + }, + { + "start": 9025.92, + "end": 9028.36, + "probability": 0.826 + }, + { + "start": 9028.78, + "end": 9029.88, + "probability": 0.9141 + }, + { + "start": 9030.32, + "end": 9030.78, + "probability": 0.9431 + }, + { + "start": 9031.88, + "end": 9032.7, + "probability": 0.9755 + }, + { + "start": 9033.4, + "end": 9034.78, + "probability": 0.9973 + }, + { + "start": 9034.78, + "end": 9034.78, + "probability": 0.402 + }, + { + "start": 9034.78, + "end": 9035.42, + "probability": 0.8406 + }, + { + "start": 9036.42, + "end": 9042.02, + "probability": 0.9739 + }, + { + "start": 9042.88, + "end": 9044.32, + "probability": 0.9695 + }, + { + "start": 9060.18, + "end": 9061.12, + "probability": 0.6657 + }, + { + "start": 9066.58, + "end": 9068.78, + "probability": 0.7446 + }, + { + "start": 9069.9, + "end": 9073.26, + "probability": 0.9675 + }, + { + "start": 9074.6, + "end": 9075.48, + "probability": 0.9182 + }, + { + "start": 9075.88, + "end": 9078.22, + "probability": 0.998 + }, + { + "start": 9078.38, + "end": 9081.9, + "probability": 0.9932 + }, + { + "start": 9082.08, + "end": 9084.2, + "probability": 0.5743 + }, + { + "start": 9084.48, + "end": 9090.94, + "probability": 0.9893 + }, + { + "start": 9091.32, + "end": 9092.98, + "probability": 0.8636 + }, + { + "start": 9094.54, + "end": 9101.2, + "probability": 0.9878 + }, + { + "start": 9101.54, + "end": 9102.6, + "probability": 0.7306 + }, + { + "start": 9103.18, + "end": 9107.54, + "probability": 0.8554 + }, + { + "start": 9108.84, + "end": 9109.67, + "probability": 0.7557 + }, + { + "start": 9110.78, + "end": 9112.19, + "probability": 0.9481 + }, + { + "start": 9113.14, + "end": 9114.54, + "probability": 0.998 + }, + { + "start": 9119.4, + "end": 9121.08, + "probability": 0.8489 + }, + { + "start": 9123.74, + "end": 9126.62, + "probability": 0.8657 + }, + { + "start": 9127.24, + "end": 9129.24, + "probability": 0.9212 + }, + { + "start": 9130.42, + "end": 9134.84, + "probability": 0.9816 + }, + { + "start": 9135.82, + "end": 9139.32, + "probability": 0.9582 + }, + { + "start": 9140.22, + "end": 9140.44, + "probability": 0.6218 + }, + { + "start": 9141.98, + "end": 9142.98, + "probability": 0.903 + }, + { + "start": 9146.02, + "end": 9148.54, + "probability": 0.8812 + }, + { + "start": 9149.76, + "end": 9153.4, + "probability": 0.9397 + }, + { + "start": 9154.34, + "end": 9157.06, + "probability": 0.9962 + }, + { + "start": 9158.22, + "end": 9161.98, + "probability": 0.9872 + }, + { + "start": 9164.62, + "end": 9166.76, + "probability": 0.9131 + }, + { + "start": 9170.25, + "end": 9174.22, + "probability": 0.9922 + }, + { + "start": 9177.24, + "end": 9182.72, + "probability": 0.9899 + }, + { + "start": 9183.68, + "end": 9188.7, + "probability": 0.9587 + }, + { + "start": 9191.54, + "end": 9193.02, + "probability": 0.9863 + }, + { + "start": 9194.28, + "end": 9200.22, + "probability": 0.9961 + }, + { + "start": 9201.72, + "end": 9203.98, + "probability": 0.9528 + }, + { + "start": 9205.14, + "end": 9207.36, + "probability": 0.9543 + }, + { + "start": 9208.54, + "end": 9209.6, + "probability": 0.9507 + }, + { + "start": 9210.18, + "end": 9213.56, + "probability": 0.9979 + }, + { + "start": 9215.22, + "end": 9219.6, + "probability": 0.9815 + }, + { + "start": 9220.88, + "end": 9223.56, + "probability": 0.9034 + }, + { + "start": 9224.7, + "end": 9226.02, + "probability": 0.9691 + }, + { + "start": 9227.74, + "end": 9231.88, + "probability": 0.9603 + }, + { + "start": 9232.68, + "end": 9235.28, + "probability": 0.7366 + }, + { + "start": 9236.86, + "end": 9240.44, + "probability": 0.9705 + }, + { + "start": 9241.22, + "end": 9243.96, + "probability": 0.991 + }, + { + "start": 9244.58, + "end": 9248.28, + "probability": 0.9897 + }, + { + "start": 9249.44, + "end": 9249.98, + "probability": 0.9699 + }, + { + "start": 9251.8, + "end": 9252.86, + "probability": 0.9102 + }, + { + "start": 9253.7, + "end": 9254.56, + "probability": 0.8771 + }, + { + "start": 9256.0, + "end": 9260.27, + "probability": 0.9961 + }, + { + "start": 9260.38, + "end": 9265.62, + "probability": 0.9928 + }, + { + "start": 9267.4, + "end": 9269.2, + "probability": 0.9726 + }, + { + "start": 9271.16, + "end": 9274.6, + "probability": 0.9259 + }, + { + "start": 9274.6, + "end": 9278.38, + "probability": 0.9977 + }, + { + "start": 9278.38, + "end": 9283.04, + "probability": 0.9985 + }, + { + "start": 9283.68, + "end": 9287.5, + "probability": 0.8199 + }, + { + "start": 9288.3, + "end": 9292.42, + "probability": 0.762 + }, + { + "start": 9293.48, + "end": 9295.74, + "probability": 0.7655 + }, + { + "start": 9297.32, + "end": 9302.14, + "probability": 0.982 + }, + { + "start": 9302.14, + "end": 9305.82, + "probability": 0.9956 + }, + { + "start": 9307.62, + "end": 9311.16, + "probability": 0.9982 + }, + { + "start": 9311.16, + "end": 9315.56, + "probability": 0.9848 + }, + { + "start": 9315.8, + "end": 9317.2, + "probability": 0.9518 + }, + { + "start": 9317.38, + "end": 9320.88, + "probability": 0.9876 + }, + { + "start": 9321.04, + "end": 9322.18, + "probability": 0.6109 + }, + { + "start": 9322.4, + "end": 9324.12, + "probability": 0.9784 + }, + { + "start": 9325.44, + "end": 9327.84, + "probability": 0.9603 + }, + { + "start": 9328.54, + "end": 9332.84, + "probability": 0.9919 + }, + { + "start": 9333.28, + "end": 9338.86, + "probability": 0.9922 + }, + { + "start": 9340.12, + "end": 9342.42, + "probability": 0.999 + }, + { + "start": 9343.02, + "end": 9344.3, + "probability": 0.9426 + }, + { + "start": 9345.1, + "end": 9347.92, + "probability": 0.9902 + }, + { + "start": 9347.92, + "end": 9351.6, + "probability": 0.9996 + }, + { + "start": 9352.22, + "end": 9357.54, + "probability": 0.9762 + }, + { + "start": 9359.18, + "end": 9361.48, + "probability": 0.8742 + }, + { + "start": 9361.98, + "end": 9362.2, + "probability": 0.8135 + }, + { + "start": 9363.08, + "end": 9365.0, + "probability": 0.7983 + }, + { + "start": 9365.28, + "end": 9368.22, + "probability": 0.9077 + }, + { + "start": 9368.24, + "end": 9368.34, + "probability": 0.8049 + }, + { + "start": 9371.64, + "end": 9372.36, + "probability": 0.7732 + }, + { + "start": 9373.36, + "end": 9374.0, + "probability": 0.2503 + }, + { + "start": 9374.86, + "end": 9376.08, + "probability": 0.8145 + }, + { + "start": 9376.36, + "end": 9377.34, + "probability": 0.8931 + }, + { + "start": 9379.38, + "end": 9379.72, + "probability": 0.9441 + }, + { + "start": 9386.06, + "end": 9388.76, + "probability": 0.7598 + }, + { + "start": 9389.34, + "end": 9390.94, + "probability": 0.8042 + }, + { + "start": 9391.7, + "end": 9394.52, + "probability": 0.8058 + }, + { + "start": 9394.74, + "end": 9398.34, + "probability": 0.9707 + }, + { + "start": 9398.84, + "end": 9401.0, + "probability": 0.9395 + }, + { + "start": 9401.28, + "end": 9402.7, + "probability": 0.9722 + }, + { + "start": 9403.46, + "end": 9405.74, + "probability": 0.9744 + }, + { + "start": 9405.8, + "end": 9409.06, + "probability": 0.9902 + }, + { + "start": 9409.94, + "end": 9410.94, + "probability": 0.7055 + }, + { + "start": 9411.68, + "end": 9415.48, + "probability": 0.6591 + }, + { + "start": 9415.96, + "end": 9417.26, + "probability": 0.9628 + }, + { + "start": 9418.12, + "end": 9421.98, + "probability": 0.7456 + }, + { + "start": 9422.98, + "end": 9427.08, + "probability": 0.8309 + }, + { + "start": 9427.86, + "end": 9431.36, + "probability": 0.8174 + }, + { + "start": 9431.7, + "end": 9434.44, + "probability": 0.7711 + }, + { + "start": 9435.7, + "end": 9438.32, + "probability": 0.7527 + }, + { + "start": 9438.32, + "end": 9441.9, + "probability": 0.9326 + }, + { + "start": 9442.84, + "end": 9446.02, + "probability": 0.9385 + }, + { + "start": 9446.64, + "end": 9450.02, + "probability": 0.9886 + }, + { + "start": 9450.02, + "end": 9453.76, + "probability": 0.9958 + }, + { + "start": 9454.7, + "end": 9458.26, + "probability": 0.6239 + }, + { + "start": 9458.26, + "end": 9462.5, + "probability": 0.9545 + }, + { + "start": 9463.24, + "end": 9464.06, + "probability": 0.6551 + }, + { + "start": 9464.7, + "end": 9465.38, + "probability": 0.6937 + }, + { + "start": 9465.56, + "end": 9470.92, + "probability": 0.9756 + }, + { + "start": 9471.52, + "end": 9473.6, + "probability": 0.7988 + }, + { + "start": 9474.4, + "end": 9478.94, + "probability": 0.8683 + }, + { + "start": 9480.4, + "end": 9484.82, + "probability": 0.8714 + }, + { + "start": 9485.4, + "end": 9486.5, + "probability": 0.8977 + }, + { + "start": 9486.74, + "end": 9487.74, + "probability": 0.9659 + }, + { + "start": 9487.98, + "end": 9489.06, + "probability": 0.7866 + }, + { + "start": 9489.52, + "end": 9490.24, + "probability": 0.6743 + }, + { + "start": 9490.64, + "end": 9490.9, + "probability": 0.7966 + }, + { + "start": 9490.9, + "end": 9494.12, + "probability": 0.9935 + }, + { + "start": 9495.28, + "end": 9498.76, + "probability": 0.9674 + }, + { + "start": 9499.6, + "end": 9502.7, + "probability": 0.9279 + }, + { + "start": 9503.5, + "end": 9506.54, + "probability": 0.9832 + }, + { + "start": 9506.96, + "end": 9508.46, + "probability": 0.9648 + }, + { + "start": 9508.9, + "end": 9515.28, + "probability": 0.9711 + }, + { + "start": 9515.82, + "end": 9520.6, + "probability": 0.8637 + }, + { + "start": 9520.6, + "end": 9523.4, + "probability": 0.9874 + }, + { + "start": 9523.88, + "end": 9524.88, + "probability": 0.9521 + }, + { + "start": 9525.38, + "end": 9526.36, + "probability": 0.9147 + }, + { + "start": 9527.72, + "end": 9532.58, + "probability": 0.9772 + }, + { + "start": 9533.54, + "end": 9534.36, + "probability": 0.6338 + }, + { + "start": 9535.0, + "end": 9535.82, + "probability": 0.7156 + }, + { + "start": 9536.34, + "end": 9539.54, + "probability": 0.9985 + }, + { + "start": 9539.54, + "end": 9543.6, + "probability": 0.9876 + }, + { + "start": 9544.2, + "end": 9546.22, + "probability": 0.9283 + }, + { + "start": 9546.86, + "end": 9547.26, + "probability": 0.7911 + }, + { + "start": 9547.74, + "end": 9548.7, + "probability": 0.5577 + }, + { + "start": 9548.94, + "end": 9549.16, + "probability": 0.9493 + }, + { + "start": 9549.62, + "end": 9551.52, + "probability": 0.9904 + }, + { + "start": 9552.48, + "end": 9555.78, + "probability": 0.8693 + }, + { + "start": 9556.38, + "end": 9560.4, + "probability": 0.8802 + }, + { + "start": 9561.42, + "end": 9563.98, + "probability": 0.748 + }, + { + "start": 9564.38, + "end": 9569.24, + "probability": 0.9288 + }, + { + "start": 9569.62, + "end": 9571.26, + "probability": 0.9587 + }, + { + "start": 9571.88, + "end": 9575.06, + "probability": 0.7543 + }, + { + "start": 9575.06, + "end": 9578.38, + "probability": 0.984 + }, + { + "start": 9578.64, + "end": 9579.76, + "probability": 0.9833 + }, + { + "start": 9580.16, + "end": 9582.32, + "probability": 0.9973 + }, + { + "start": 9582.82, + "end": 9586.62, + "probability": 0.8643 + }, + { + "start": 9587.04, + "end": 9588.92, + "probability": 0.5365 + }, + { + "start": 9589.36, + "end": 9589.6, + "probability": 0.6875 + }, + { + "start": 9590.42, + "end": 9592.42, + "probability": 0.9473 + }, + { + "start": 9593.06, + "end": 9593.08, + "probability": 0.0385 + }, + { + "start": 9593.08, + "end": 9595.92, + "probability": 0.9541 + }, + { + "start": 9595.92, + "end": 9598.64, + "probability": 0.8043 + }, + { + "start": 9598.7, + "end": 9599.12, + "probability": 0.8631 + }, + { + "start": 9611.18, + "end": 9612.16, + "probability": 0.8075 + }, + { + "start": 9613.38, + "end": 9615.18, + "probability": 0.5862 + }, + { + "start": 9615.82, + "end": 9616.48, + "probability": 0.9531 + }, + { + "start": 9617.5, + "end": 9618.86, + "probability": 0.7294 + }, + { + "start": 9626.1, + "end": 9626.62, + "probability": 0.5789 + }, + { + "start": 9627.64, + "end": 9628.92, + "probability": 0.8607 + }, + { + "start": 9629.24, + "end": 9631.54, + "probability": 0.8594 + }, + { + "start": 9632.3, + "end": 9634.76, + "probability": 0.9956 + }, + { + "start": 9635.84, + "end": 9640.18, + "probability": 0.9947 + }, + { + "start": 9640.8, + "end": 9642.04, + "probability": 0.989 + }, + { + "start": 9642.96, + "end": 9645.38, + "probability": 0.6464 + }, + { + "start": 9646.16, + "end": 9649.54, + "probability": 0.9911 + }, + { + "start": 9649.54, + "end": 9651.74, + "probability": 0.9955 + }, + { + "start": 9652.64, + "end": 9653.8, + "probability": 0.9995 + }, + { + "start": 9654.54, + "end": 9657.04, + "probability": 0.2208 + }, + { + "start": 9657.6, + "end": 9660.28, + "probability": 0.9959 + }, + { + "start": 9660.8, + "end": 9665.23, + "probability": 0.997 + }, + { + "start": 9666.72, + "end": 9667.0, + "probability": 0.9045 + }, + { + "start": 9667.42, + "end": 9669.62, + "probability": 0.957 + }, + { + "start": 9669.78, + "end": 9670.57, + "probability": 0.9775 + }, + { + "start": 9671.08, + "end": 9672.12, + "probability": 0.5947 + }, + { + "start": 9672.7, + "end": 9673.98, + "probability": 0.7489 + }, + { + "start": 9674.88, + "end": 9678.16, + "probability": 0.9924 + }, + { + "start": 9679.22, + "end": 9680.66, + "probability": 0.9532 + }, + { + "start": 9681.34, + "end": 9683.86, + "probability": 0.9867 + }, + { + "start": 9684.3, + "end": 9684.6, + "probability": 0.9553 + }, + { + "start": 9685.26, + "end": 9688.36, + "probability": 0.9743 + }, + { + "start": 9689.0, + "end": 9691.3, + "probability": 0.9814 + }, + { + "start": 9691.86, + "end": 9692.42, + "probability": 0.9629 + }, + { + "start": 9693.36, + "end": 9693.8, + "probability": 0.9282 + }, + { + "start": 9694.88, + "end": 9695.86, + "probability": 0.9099 + }, + { + "start": 9696.58, + "end": 9697.66, + "probability": 0.8919 + }, + { + "start": 9698.04, + "end": 9703.72, + "probability": 0.9575 + }, + { + "start": 9704.34, + "end": 9706.46, + "probability": 0.934 + }, + { + "start": 9706.96, + "end": 9709.92, + "probability": 0.8628 + }, + { + "start": 9710.84, + "end": 9713.74, + "probability": 0.7014 + }, + { + "start": 9714.46, + "end": 9716.19, + "probability": 0.9883 + }, + { + "start": 9717.36, + "end": 9719.09, + "probability": 0.9956 + }, + { + "start": 9719.96, + "end": 9726.08, + "probability": 0.9959 + }, + { + "start": 9726.24, + "end": 9727.0, + "probability": 0.7709 + }, + { + "start": 9727.32, + "end": 9729.28, + "probability": 0.7834 + }, + { + "start": 9729.9, + "end": 9730.62, + "probability": 0.8484 + }, + { + "start": 9731.22, + "end": 9732.4, + "probability": 0.9961 + }, + { + "start": 9732.92, + "end": 9735.0, + "probability": 0.9948 + }, + { + "start": 9735.76, + "end": 9737.04, + "probability": 0.8176 + }, + { + "start": 9738.04, + "end": 9738.96, + "probability": 0.7667 + }, + { + "start": 9739.82, + "end": 9742.24, + "probability": 0.9819 + }, + { + "start": 9742.76, + "end": 9744.16, + "probability": 0.5645 + }, + { + "start": 9744.3, + "end": 9744.4, + "probability": 0.5039 + }, + { + "start": 9744.96, + "end": 9747.66, + "probability": 0.9484 + }, + { + "start": 9748.56, + "end": 9754.82, + "probability": 0.9971 + }, + { + "start": 9755.7, + "end": 9757.36, + "probability": 0.8065 + }, + { + "start": 9757.84, + "end": 9758.24, + "probability": 0.8079 + }, + { + "start": 9759.0, + "end": 9761.14, + "probability": 0.9742 + }, + { + "start": 9761.28, + "end": 9761.74, + "probability": 0.7541 + }, + { + "start": 9762.54, + "end": 9764.56, + "probability": 0.7583 + }, + { + "start": 9765.36, + "end": 9765.74, + "probability": 0.7634 + }, + { + "start": 9765.82, + "end": 9769.64, + "probability": 0.9568 + }, + { + "start": 9769.66, + "end": 9772.7, + "probability": 0.7378 + }, + { + "start": 9773.38, + "end": 9775.32, + "probability": 0.5951 + }, + { + "start": 9776.28, + "end": 9777.34, + "probability": 0.5759 + }, + { + "start": 9777.88, + "end": 9778.6, + "probability": 0.6835 + }, + { + "start": 9778.68, + "end": 9779.94, + "probability": 0.7981 + }, + { + "start": 9797.94, + "end": 9800.74, + "probability": 0.289 + }, + { + "start": 9801.5, + "end": 9802.54, + "probability": 0.1306 + }, + { + "start": 9807.7, + "end": 9809.18, + "probability": 0.6327 + }, + { + "start": 9809.18, + "end": 9810.86, + "probability": 0.6714 + }, + { + "start": 9811.3, + "end": 9813.18, + "probability": 0.0186 + }, + { + "start": 9813.18, + "end": 9814.22, + "probability": 0.3776 + }, + { + "start": 9814.78, + "end": 9816.38, + "probability": 0.2482 + }, + { + "start": 9817.38, + "end": 9819.94, + "probability": 0.0701 + }, + { + "start": 9821.96, + "end": 9822.26, + "probability": 0.1084 + }, + { + "start": 9835.56, + "end": 9840.24, + "probability": 0.9753 + }, + { + "start": 9841.0, + "end": 9845.92, + "probability": 0.8107 + }, + { + "start": 9847.26, + "end": 9848.66, + "probability": 0.078 + }, + { + "start": 9849.38, + "end": 9851.04, + "probability": 0.0494 + }, + { + "start": 9854.14, + "end": 9858.16, + "probability": 0.0316 + }, + { + "start": 9858.22, + "end": 9859.82, + "probability": 0.0261 + }, + { + "start": 9859.82, + "end": 9860.06, + "probability": 0.057 + }, + { + "start": 9860.06, + "end": 9861.46, + "probability": 0.1425 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9876.0, + "end": 9876.0, + "probability": 0.0 + }, + { + "start": 9885.24, + "end": 9885.76, + "probability": 0.37 + }, + { + "start": 9885.88, + "end": 9889.98, + "probability": 0.7999 + }, + { + "start": 9890.8, + "end": 9892.7, + "probability": 0.901 + }, + { + "start": 9893.0, + "end": 9896.44, + "probability": 0.9849 + }, + { + "start": 9897.08, + "end": 9898.98, + "probability": 0.98 + }, + { + "start": 9898.98, + "end": 9902.32, + "probability": 0.7882 + }, + { + "start": 9902.46, + "end": 9906.16, + "probability": 0.9838 + }, + { + "start": 9908.17, + "end": 9913.18, + "probability": 0.9712 + }, + { + "start": 9913.72, + "end": 9914.58, + "probability": 0.8319 + }, + { + "start": 9915.48, + "end": 9916.42, + "probability": 0.9391 + }, + { + "start": 9917.18, + "end": 9921.94, + "probability": 0.7242 + }, + { + "start": 9922.08, + "end": 9923.25, + "probability": 0.4226 + }, + { + "start": 9923.38, + "end": 9924.28, + "probability": 0.7145 + }, + { + "start": 9924.38, + "end": 9925.1, + "probability": 0.8013 + }, + { + "start": 9925.16, + "end": 9925.96, + "probability": 0.9355 + }, + { + "start": 9927.16, + "end": 9928.34, + "probability": 0.6761 + }, + { + "start": 9928.36, + "end": 9929.88, + "probability": 0.9425 + }, + { + "start": 9930.06, + "end": 9933.1, + "probability": 0.9758 + }, + { + "start": 9933.18, + "end": 9936.48, + "probability": 0.9935 + }, + { + "start": 9937.2, + "end": 9938.48, + "probability": 0.8197 + }, + { + "start": 9939.14, + "end": 9939.78, + "probability": 0.9189 + }, + { + "start": 9940.1, + "end": 9943.72, + "probability": 0.9949 + }, + { + "start": 9943.98, + "end": 9946.16, + "probability": 0.9852 + }, + { + "start": 9946.96, + "end": 9949.66, + "probability": 0.9927 + }, + { + "start": 9949.82, + "end": 9951.16, + "probability": 0.8351 + }, + { + "start": 9951.78, + "end": 9957.52, + "probability": 0.9924 + }, + { + "start": 9957.98, + "end": 9958.92, + "probability": 0.8315 + }, + { + "start": 9959.06, + "end": 9959.36, + "probability": 0.5551 + }, + { + "start": 9959.44, + "end": 9959.94, + "probability": 0.9437 + }, + { + "start": 9960.3, + "end": 9965.46, + "probability": 0.9937 + }, + { + "start": 9965.9, + "end": 9969.08, + "probability": 0.9861 + }, + { + "start": 9969.9, + "end": 9974.26, + "probability": 0.913 + }, + { + "start": 9974.26, + "end": 9978.2, + "probability": 0.9911 + }, + { + "start": 9978.96, + "end": 9979.96, + "probability": 0.8319 + }, + { + "start": 9980.22, + "end": 9984.04, + "probability": 0.943 + }, + { + "start": 9984.56, + "end": 9987.22, + "probability": 0.9424 + }, + { + "start": 9987.74, + "end": 9990.42, + "probability": 0.9977 + }, + { + "start": 9991.2, + "end": 9993.26, + "probability": 0.8717 + }, + { + "start": 9993.9, + "end": 9997.84, + "probability": 0.9716 + }, + { + "start": 9998.3, + "end": 9999.32, + "probability": 0.7847 + }, + { + "start": 9999.8, + "end": 10002.72, + "probability": 0.9681 + }, + { + "start": 10003.06, + "end": 10004.42, + "probability": 0.9902 + }, + { + "start": 10004.46, + "end": 10006.42, + "probability": 0.9939 + }, + { + "start": 10006.98, + "end": 10007.78, + "probability": 0.7732 + }, + { + "start": 10007.96, + "end": 10010.34, + "probability": 0.8913 + }, + { + "start": 10011.04, + "end": 10012.54, + "probability": 0.8115 + }, + { + "start": 10013.28, + "end": 10015.64, + "probability": 0.8951 + }, + { + "start": 10015.88, + "end": 10020.02, + "probability": 0.984 + }, + { + "start": 10020.16, + "end": 10020.72, + "probability": 0.4443 + }, + { + "start": 10021.1, + "end": 10022.42, + "probability": 0.9608 + }, + { + "start": 10022.48, + "end": 10024.74, + "probability": 0.996 + }, + { + "start": 10025.08, + "end": 10028.38, + "probability": 0.9928 + }, + { + "start": 10028.5, + "end": 10031.06, + "probability": 0.9536 + }, + { + "start": 10031.82, + "end": 10037.18, + "probability": 0.9958 + }, + { + "start": 10037.64, + "end": 10038.2, + "probability": 0.6991 + }, + { + "start": 10038.36, + "end": 10040.02, + "probability": 0.8682 + }, + { + "start": 10040.5, + "end": 10045.94, + "probability": 0.9896 + }, + { + "start": 10046.86, + "end": 10048.7, + "probability": 0.9718 + }, + { + "start": 10048.7, + "end": 10051.74, + "probability": 0.9119 + }, + { + "start": 10052.34, + "end": 10053.86, + "probability": 0.9906 + }, + { + "start": 10054.06, + "end": 10054.76, + "probability": 0.8535 + }, + { + "start": 10054.78, + "end": 10055.36, + "probability": 0.8751 + }, + { + "start": 10055.72, + "end": 10057.16, + "probability": 0.8392 + }, + { + "start": 10057.32, + "end": 10058.7, + "probability": 0.9699 + }, + { + "start": 10059.26, + "end": 10064.18, + "probability": 0.9959 + }, + { + "start": 10064.85, + "end": 10069.24, + "probability": 0.9969 + }, + { + "start": 10070.2, + "end": 10074.92, + "probability": 0.9539 + }, + { + "start": 10074.92, + "end": 10079.3, + "probability": 0.9922 + }, + { + "start": 10079.94, + "end": 10083.0, + "probability": 0.9432 + }, + { + "start": 10083.14, + "end": 10088.84, + "probability": 0.9987 + }, + { + "start": 10089.26, + "end": 10091.18, + "probability": 0.9939 + }, + { + "start": 10091.86, + "end": 10093.34, + "probability": 0.9119 + }, + { + "start": 10093.42, + "end": 10097.06, + "probability": 0.983 + }, + { + "start": 10097.78, + "end": 10099.64, + "probability": 0.9628 + }, + { + "start": 10099.74, + "end": 10101.84, + "probability": 0.9979 + }, + { + "start": 10101.84, + "end": 10104.94, + "probability": 0.9991 + }, + { + "start": 10105.62, + "end": 10110.82, + "probability": 0.9882 + }, + { + "start": 10110.98, + "end": 10114.72, + "probability": 0.9964 + }, + { + "start": 10115.2, + "end": 10117.02, + "probability": 0.9877 + }, + { + "start": 10117.24, + "end": 10117.52, + "probability": 0.7784 + }, + { + "start": 10118.44, + "end": 10121.04, + "probability": 0.7739 + }, + { + "start": 10121.62, + "end": 10122.66, + "probability": 0.6494 + }, + { + "start": 10122.76, + "end": 10127.0, + "probability": 0.9854 + }, + { + "start": 10127.6, + "end": 10132.78, + "probability": 0.8395 + }, + { + "start": 10132.8, + "end": 10134.89, + "probability": 0.6801 + }, + { + "start": 10135.94, + "end": 10139.0, + "probability": 0.963 + }, + { + "start": 10139.04, + "end": 10141.98, + "probability": 0.9147 + }, + { + "start": 10142.18, + "end": 10143.06, + "probability": 0.7981 + }, + { + "start": 10143.62, + "end": 10148.04, + "probability": 0.9767 + }, + { + "start": 10148.04, + "end": 10148.36, + "probability": 0.1189 + }, + { + "start": 10153.08, + "end": 10155.26, + "probability": 0.9655 + }, + { + "start": 10156.18, + "end": 10157.68, + "probability": 0.8579 + }, + { + "start": 10158.56, + "end": 10161.8, + "probability": 0.9775 + }, + { + "start": 10162.49, + "end": 10164.7, + "probability": 0.3174 + }, + { + "start": 10164.7, + "end": 10165.58, + "probability": 0.4356 + }, + { + "start": 10166.28, + "end": 10168.1, + "probability": 0.9837 + }, + { + "start": 10168.18, + "end": 10174.06, + "probability": 0.9009 + }, + { + "start": 10174.18, + "end": 10177.2, + "probability": 0.922 + }, + { + "start": 10177.32, + "end": 10178.12, + "probability": 0.9856 + }, + { + "start": 10179.94, + "end": 10184.08, + "probability": 0.9438 + }, + { + "start": 10184.7, + "end": 10185.56, + "probability": 0.9958 + }, + { + "start": 10186.18, + "end": 10192.14, + "probability": 0.8583 + }, + { + "start": 10192.56, + "end": 10197.34, + "probability": 0.8266 + }, + { + "start": 10197.88, + "end": 10200.55, + "probability": 0.662 + }, + { + "start": 10200.68, + "end": 10203.76, + "probability": 0.9194 + }, + { + "start": 10203.86, + "end": 10205.26, + "probability": 0.9833 + }, + { + "start": 10205.36, + "end": 10207.2, + "probability": 0.8456 + }, + { + "start": 10207.76, + "end": 10212.48, + "probability": 0.9113 + }, + { + "start": 10212.48, + "end": 10217.18, + "probability": 0.9889 + }, + { + "start": 10217.4, + "end": 10221.9, + "probability": 0.981 + }, + { + "start": 10222.8, + "end": 10224.26, + "probability": 0.9622 + }, + { + "start": 10224.3, + "end": 10226.7, + "probability": 0.9588 + }, + { + "start": 10226.8, + "end": 10229.78, + "probability": 0.9678 + }, + { + "start": 10229.78, + "end": 10233.0, + "probability": 0.9974 + }, + { + "start": 10233.18, + "end": 10233.4, + "probability": 0.5994 + }, + { + "start": 10234.06, + "end": 10236.16, + "probability": 0.8111 + }, + { + "start": 10236.3, + "end": 10237.7, + "probability": 0.7134 + }, + { + "start": 10238.48, + "end": 10239.52, + "probability": 0.7499 + }, + { + "start": 10240.64, + "end": 10241.06, + "probability": 0.7044 + }, + { + "start": 10248.76, + "end": 10251.38, + "probability": 0.7255 + }, + { + "start": 10252.28, + "end": 10255.5, + "probability": 0.9946 + }, + { + "start": 10255.62, + "end": 10259.02, + "probability": 0.9867 + }, + { + "start": 10259.02, + "end": 10262.54, + "probability": 0.9901 + }, + { + "start": 10263.58, + "end": 10264.58, + "probability": 0.991 + }, + { + "start": 10265.1, + "end": 10269.12, + "probability": 0.9177 + }, + { + "start": 10269.12, + "end": 10272.72, + "probability": 0.9969 + }, + { + "start": 10272.72, + "end": 10275.38, + "probability": 0.9639 + }, + { + "start": 10276.44, + "end": 10278.86, + "probability": 0.9374 + }, + { + "start": 10279.48, + "end": 10281.84, + "probability": 0.9925 + }, + { + "start": 10281.96, + "end": 10282.46, + "probability": 0.9261 + }, + { + "start": 10283.38, + "end": 10285.48, + "probability": 0.7538 + }, + { + "start": 10286.7, + "end": 10288.24, + "probability": 0.5884 + }, + { + "start": 10288.26, + "end": 10289.8, + "probability": 0.9437 + }, + { + "start": 10290.58, + "end": 10295.06, + "probability": 0.798 + }, + { + "start": 10296.82, + "end": 10298.62, + "probability": 0.797 + }, + { + "start": 10298.62, + "end": 10301.22, + "probability": 0.6327 + }, + { + "start": 10301.64, + "end": 10304.86, + "probability": 0.558 + }, + { + "start": 10304.9, + "end": 10305.54, + "probability": 0.8855 + }, + { + "start": 10305.92, + "end": 10305.98, + "probability": 0.5243 + }, + { + "start": 10333.26, + "end": 10334.22, + "probability": 0.7584 + }, + { + "start": 10334.7, + "end": 10342.0, + "probability": 0.0943 + }, + { + "start": 10342.0, + "end": 10344.94, + "probability": 0.0185 + }, + { + "start": 10346.34, + "end": 10352.8, + "probability": 0.1038 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.0, + "end": 10450.0, + "probability": 0.0 + }, + { + "start": 10450.38, + "end": 10451.03, + "probability": 0.1958 + }, + { + "start": 10453.42, + "end": 10454.26, + "probability": 0.728 + }, + { + "start": 10455.58, + "end": 10458.76, + "probability": 0.8633 + }, + { + "start": 10459.02, + "end": 10459.9, + "probability": 0.719 + }, + { + "start": 10460.42, + "end": 10462.5, + "probability": 0.9154 + }, + { + "start": 10463.42, + "end": 10466.98, + "probability": 0.9765 + }, + { + "start": 10466.98, + "end": 10470.06, + "probability": 0.9452 + }, + { + "start": 10471.26, + "end": 10474.92, + "probability": 0.9963 + }, + { + "start": 10474.92, + "end": 10478.04, + "probability": 0.9775 + }, + { + "start": 10479.28, + "end": 10480.7, + "probability": 0.7432 + }, + { + "start": 10481.6, + "end": 10482.8, + "probability": 0.815 + }, + { + "start": 10487.5, + "end": 10493.8, + "probability": 0.9927 + }, + { + "start": 10494.54, + "end": 10496.8, + "probability": 0.9767 + }, + { + "start": 10498.4, + "end": 10500.92, + "probability": 0.981 + }, + { + "start": 10501.66, + "end": 10503.0, + "probability": 0.8155 + }, + { + "start": 10503.42, + "end": 10504.88, + "probability": 0.946 + }, + { + "start": 10505.44, + "end": 10508.42, + "probability": 0.9214 + }, + { + "start": 10509.54, + "end": 10512.3, + "probability": 0.9952 + }, + { + "start": 10512.3, + "end": 10516.06, + "probability": 0.9737 + }, + { + "start": 10516.42, + "end": 10519.88, + "probability": 0.9697 + }, + { + "start": 10519.88, + "end": 10523.76, + "probability": 0.9968 + }, + { + "start": 10525.5, + "end": 10525.94, + "probability": 0.8197 + }, + { + "start": 10526.06, + "end": 10527.52, + "probability": 0.854 + }, + { + "start": 10527.92, + "end": 10530.84, + "probability": 0.9248 + }, + { + "start": 10532.44, + "end": 10533.06, + "probability": 0.9857 + }, + { + "start": 10534.28, + "end": 10538.46, + "probability": 0.9785 + }, + { + "start": 10539.58, + "end": 10542.96, + "probability": 0.9866 + }, + { + "start": 10543.52, + "end": 10546.04, + "probability": 0.9942 + }, + { + "start": 10547.22, + "end": 10548.18, + "probability": 0.9475 + }, + { + "start": 10549.0, + "end": 10552.94, + "probability": 0.9933 + }, + { + "start": 10553.7, + "end": 10555.58, + "probability": 0.7882 + }, + { + "start": 10556.26, + "end": 10558.36, + "probability": 0.9734 + }, + { + "start": 10560.22, + "end": 10561.16, + "probability": 0.2677 + }, + { + "start": 10562.32, + "end": 10562.66, + "probability": 0.4107 + }, + { + "start": 10565.06, + "end": 10567.36, + "probability": 0.5907 + }, + { + "start": 10569.16, + "end": 10572.14, + "probability": 0.991 + }, + { + "start": 10572.66, + "end": 10575.82, + "probability": 0.9987 + }, + { + "start": 10576.06, + "end": 10576.5, + "probability": 0.9031 + }, + { + "start": 10576.94, + "end": 10577.38, + "probability": 0.9017 + }, + { + "start": 10580.4, + "end": 10582.58, + "probability": 0.8508 + }, + { + "start": 10582.68, + "end": 10583.23, + "probability": 0.0525 + }, + { + "start": 10585.12, + "end": 10585.82, + "probability": 0.9746 + }, + { + "start": 10586.56, + "end": 10587.84, + "probability": 0.3219 + }, + { + "start": 10587.84, + "end": 10588.86, + "probability": 0.2979 + }, + { + "start": 10590.98, + "end": 10593.3, + "probability": 0.7541 + }, + { + "start": 10594.1, + "end": 10598.3, + "probability": 0.8905 + }, + { + "start": 10598.3, + "end": 10604.47, + "probability": 0.985 + }, + { + "start": 10604.76, + "end": 10613.54, + "probability": 0.9827 + }, + { + "start": 10614.7, + "end": 10616.14, + "probability": 0.5167 + }, + { + "start": 10616.18, + "end": 10623.95, + "probability": 0.9736 + }, + { + "start": 10625.6, + "end": 10626.7, + "probability": 0.7145 + }, + { + "start": 10629.16, + "end": 10631.26, + "probability": 0.9958 + }, + { + "start": 10632.41, + "end": 10635.48, + "probability": 0.9984 + }, + { + "start": 10637.16, + "end": 10640.76, + "probability": 0.9954 + }, + { + "start": 10640.76, + "end": 10643.38, + "probability": 0.9964 + }, + { + "start": 10644.2, + "end": 10645.89, + "probability": 0.9904 + }, + { + "start": 10646.72, + "end": 10647.48, + "probability": 0.9217 + }, + { + "start": 10648.24, + "end": 10652.52, + "probability": 0.1154 + }, + { + "start": 10653.16, + "end": 10654.12, + "probability": 0.3611 + }, + { + "start": 10654.84, + "end": 10655.66, + "probability": 0.6572 + }, + { + "start": 10656.12, + "end": 10658.41, + "probability": 0.926 + }, + { + "start": 10659.36, + "end": 10659.66, + "probability": 0.878 + }, + { + "start": 10660.2, + "end": 10663.0, + "probability": 0.9657 + }, + { + "start": 10663.86, + "end": 10666.0, + "probability": 0.9885 + }, + { + "start": 10666.16, + "end": 10669.8, + "probability": 0.6728 + }, + { + "start": 10670.5, + "end": 10674.52, + "probability": 0.9639 + }, + { + "start": 10674.52, + "end": 10677.88, + "probability": 0.9977 + }, + { + "start": 10678.86, + "end": 10680.48, + "probability": 0.9861 + }, + { + "start": 10681.04, + "end": 10684.96, + "probability": 0.9911 + }, + { + "start": 10685.5, + "end": 10688.94, + "probability": 0.9582 + }, + { + "start": 10688.94, + "end": 10693.7, + "probability": 0.9858 + }, + { + "start": 10694.32, + "end": 10696.3, + "probability": 0.995 + }, + { + "start": 10697.02, + "end": 10697.76, + "probability": 0.751 + }, + { + "start": 10698.78, + "end": 10699.4, + "probability": 0.841 + }, + { + "start": 10700.14, + "end": 10702.39, + "probability": 0.9355 + }, + { + "start": 10702.86, + "end": 10704.76, + "probability": 0.8835 + }, + { + "start": 10705.4, + "end": 10708.0, + "probability": 0.9794 + }, + { + "start": 10708.36, + "end": 10711.72, + "probability": 0.9476 + }, + { + "start": 10712.42, + "end": 10714.84, + "probability": 0.998 + }, + { + "start": 10715.36, + "end": 10716.4, + "probability": 0.9954 + }, + { + "start": 10717.16, + "end": 10718.14, + "probability": 0.9451 + }, + { + "start": 10720.18, + "end": 10720.18, + "probability": 0.2659 + }, + { + "start": 10720.18, + "end": 10720.28, + "probability": 0.2966 + }, + { + "start": 10721.52, + "end": 10722.48, + "probability": 0.7535 + }, + { + "start": 10723.66, + "end": 10724.1, + "probability": 0.9922 + }, + { + "start": 10724.96, + "end": 10728.62, + "probability": 0.9716 + }, + { + "start": 10729.44, + "end": 10733.08, + "probability": 0.9982 + }, + { + "start": 10734.18, + "end": 10736.26, + "probability": 0.9685 + }, + { + "start": 10736.78, + "end": 10739.6, + "probability": 0.8226 + }, + { + "start": 10739.96, + "end": 10742.38, + "probability": 0.9867 + }, + { + "start": 10742.98, + "end": 10745.3, + "probability": 0.8878 + }, + { + "start": 10746.54, + "end": 10749.12, + "probability": 0.9803 + }, + { + "start": 10749.84, + "end": 10752.82, + "probability": 0.8522 + }, + { + "start": 10753.81, + "end": 10759.44, + "probability": 0.8498 + }, + { + "start": 10759.8, + "end": 10762.88, + "probability": 0.9498 + }, + { + "start": 10763.04, + "end": 10764.88, + "probability": 0.0669 + }, + { + "start": 10764.96, + "end": 10765.94, + "probability": 0.9278 + }, + { + "start": 10767.82, + "end": 10768.7, + "probability": 0.6348 + }, + { + "start": 10768.84, + "end": 10772.9, + "probability": 0.9799 + }, + { + "start": 10772.9, + "end": 10776.04, + "probability": 0.9905 + }, + { + "start": 10776.5, + "end": 10776.6, + "probability": 0.2517 + }, + { + "start": 10776.7, + "end": 10779.62, + "probability": 0.9559 + }, + { + "start": 10779.62, + "end": 10782.06, + "probability": 0.9908 + }, + { + "start": 10783.28, + "end": 10785.72, + "probability": 0.7244 + }, + { + "start": 10786.6, + "end": 10787.04, + "probability": 0.8758 + }, + { + "start": 10787.84, + "end": 10792.64, + "probability": 0.9886 + }, + { + "start": 10793.88, + "end": 10797.26, + "probability": 0.9604 + }, + { + "start": 10797.84, + "end": 10798.14, + "probability": 0.3726 + }, + { + "start": 10798.8, + "end": 10802.48, + "probability": 0.9867 + }, + { + "start": 10802.92, + "end": 10804.48, + "probability": 0.9684 + }, + { + "start": 10804.96, + "end": 10807.04, + "probability": 0.9802 + }, + { + "start": 10807.42, + "end": 10808.22, + "probability": 0.9069 + }, + { + "start": 10809.68, + "end": 10811.88, + "probability": 0.3 + }, + { + "start": 10819.46, + "end": 10820.04, + "probability": 0.2607 + }, + { + "start": 10820.12, + "end": 10821.2, + "probability": 0.2196 + }, + { + "start": 10822.19, + "end": 10824.19, + "probability": 0.0529 + }, + { + "start": 10825.38, + "end": 10826.76, + "probability": 0.1369 + }, + { + "start": 10827.4, + "end": 10828.72, + "probability": 0.0576 + }, + { + "start": 10828.72, + "end": 10828.72, + "probability": 0.0586 + }, + { + "start": 10828.72, + "end": 10828.72, + "probability": 0.4826 + }, + { + "start": 10828.72, + "end": 10832.68, + "probability": 0.8164 + }, + { + "start": 10833.86, + "end": 10834.66, + "probability": 0.5151 + }, + { + "start": 10836.04, + "end": 10836.84, + "probability": 0.8477 + }, + { + "start": 10837.7, + "end": 10841.02, + "probability": 0.8709 + }, + { + "start": 10841.02, + "end": 10844.52, + "probability": 0.952 + }, + { + "start": 10844.62, + "end": 10845.3, + "probability": 0.8195 + }, + { + "start": 10846.14, + "end": 10847.8, + "probability": 0.7645 + }, + { + "start": 10848.34, + "end": 10851.5, + "probability": 0.988 + }, + { + "start": 10852.42, + "end": 10854.88, + "probability": 0.9561 + }, + { + "start": 10855.3, + "end": 10856.96, + "probability": 0.9951 + }, + { + "start": 10856.96, + "end": 10860.28, + "probability": 0.9762 + }, + { + "start": 10860.6, + "end": 10861.36, + "probability": 0.9391 + }, + { + "start": 10862.16, + "end": 10863.42, + "probability": 0.7433 + }, + { + "start": 10864.12, + "end": 10867.04, + "probability": 0.8545 + }, + { + "start": 10867.62, + "end": 10869.68, + "probability": 0.7719 + }, + { + "start": 10869.86, + "end": 10870.96, + "probability": 0.6969 + }, + { + "start": 10871.36, + "end": 10874.62, + "probability": 0.9327 + }, + { + "start": 10875.16, + "end": 10876.62, + "probability": 0.7837 + }, + { + "start": 10876.92, + "end": 10880.02, + "probability": 0.8743 + }, + { + "start": 10880.2, + "end": 10884.72, + "probability": 0.1939 + }, + { + "start": 10885.82, + "end": 10886.7, + "probability": 0.9846 + }, + { + "start": 10887.32, + "end": 10895.62, + "probability": 0.8377 + }, + { + "start": 10895.62, + "end": 10899.1, + "probability": 0.9894 + }, + { + "start": 10899.14, + "end": 10899.78, + "probability": 0.6512 + }, + { + "start": 10899.92, + "end": 10900.14, + "probability": 0.5178 + }, + { + "start": 10900.62, + "end": 10903.82, + "probability": 0.8957 + }, + { + "start": 10903.82, + "end": 10906.02, + "probability": 0.8979 + }, + { + "start": 10906.44, + "end": 10907.64, + "probability": 0.4369 + }, + { + "start": 10907.86, + "end": 10908.9, + "probability": 0.6376 + }, + { + "start": 10908.98, + "end": 10913.12, + "probability": 0.9058 + }, + { + "start": 10915.14, + "end": 10916.98, + "probability": 0.8081 + }, + { + "start": 10917.5, + "end": 10919.34, + "probability": 0.8022 + }, + { + "start": 10919.48, + "end": 10920.66, + "probability": 0.5347 + }, + { + "start": 10921.16, + "end": 10921.66, + "probability": 0.772 + }, + { + "start": 10922.42, + "end": 10923.32, + "probability": 0.9729 + }, + { + "start": 10923.36, + "end": 10923.84, + "probability": 0.9783 + }, + { + "start": 10924.02, + "end": 10926.04, + "probability": 0.9893 + }, + { + "start": 10926.22, + "end": 10932.02, + "probability": 0.9789 + }, + { + "start": 10934.28, + "end": 10936.36, + "probability": 0.9815 + }, + { + "start": 10937.64, + "end": 10939.56, + "probability": 0.9609 + }, + { + "start": 10940.7, + "end": 10941.4, + "probability": 0.774 + }, + { + "start": 10941.96, + "end": 10948.0, + "probability": 0.9836 + }, + { + "start": 10949.48, + "end": 10951.8, + "probability": 0.1516 + }, + { + "start": 10952.56, + "end": 10955.44, + "probability": 0.0575 + }, + { + "start": 10955.44, + "end": 10955.44, + "probability": 0.0794 + }, + { + "start": 10955.44, + "end": 10955.92, + "probability": 0.2913 + }, + { + "start": 10957.26, + "end": 10959.14, + "probability": 0.7656 + }, + { + "start": 10959.86, + "end": 10961.64, + "probability": 0.7663 + }, + { + "start": 10961.98, + "end": 10966.5, + "probability": 0.8543 + }, + { + "start": 10967.12, + "end": 10968.46, + "probability": 0.8279 + }, + { + "start": 10969.0, + "end": 10971.58, + "probability": 0.9698 + }, + { + "start": 10971.58, + "end": 10974.34, + "probability": 0.9717 + }, + { + "start": 10974.44, + "end": 10975.66, + "probability": 0.6193 + }, + { + "start": 10976.18, + "end": 10976.36, + "probability": 0.6777 + }, + { + "start": 10976.44, + "end": 10978.0, + "probability": 0.9668 + }, + { + "start": 10979.87, + "end": 10982.3, + "probability": 0.9622 + }, + { + "start": 10982.42, + "end": 10982.86, + "probability": 0.632 + }, + { + "start": 10983.44, + "end": 10984.42, + "probability": 0.6206 + }, + { + "start": 10984.82, + "end": 10985.7, + "probability": 0.9769 + }, + { + "start": 10985.8, + "end": 10986.92, + "probability": 0.884 + }, + { + "start": 10987.28, + "end": 10991.12, + "probability": 0.8949 + }, + { + "start": 10991.56, + "end": 10992.64, + "probability": 0.9718 + }, + { + "start": 10993.04, + "end": 10993.26, + "probability": 0.9172 + }, + { + "start": 10993.42, + "end": 10994.86, + "probability": 0.8135 + }, + { + "start": 10994.86, + "end": 10997.66, + "probability": 0.896 + }, + { + "start": 10998.42, + "end": 10999.56, + "probability": 0.7339 + }, + { + "start": 11000.24, + "end": 11003.72, + "probability": 0.7225 + }, + { + "start": 11004.12, + "end": 11004.72, + "probability": 0.6033 + }, + { + "start": 11005.74, + "end": 11010.3, + "probability": 0.7254 + }, + { + "start": 11010.32, + "end": 11010.96, + "probability": 0.5845 + }, + { + "start": 11011.6, + "end": 11011.74, + "probability": 0.2757 + }, + { + "start": 11011.82, + "end": 11013.36, + "probability": 0.8148 + }, + { + "start": 11013.74, + "end": 11015.64, + "probability": 0.9162 + }, + { + "start": 11015.66, + "end": 11019.07, + "probability": 0.7595 + }, + { + "start": 11019.96, + "end": 11020.3, + "probability": 0.7539 + }, + { + "start": 11020.76, + "end": 11022.38, + "probability": 0.8485 + }, + { + "start": 11022.8, + "end": 11025.0, + "probability": 0.3595 + }, + { + "start": 11029.68, + "end": 11032.28, + "probability": 0.7134 + }, + { + "start": 11036.63, + "end": 11040.18, + "probability": 0.998 + }, + { + "start": 11059.3, + "end": 11060.42, + "probability": 0.3991 + }, + { + "start": 11061.1, + "end": 11062.0, + "probability": 0.8774 + }, + { + "start": 11062.32, + "end": 11063.58, + "probability": 0.81 + }, + { + "start": 11064.04, + "end": 11065.4, + "probability": 0.9261 + }, + { + "start": 11065.58, + "end": 11070.18, + "probability": 0.9255 + }, + { + "start": 11070.72, + "end": 11072.06, + "probability": 0.6252 + }, + { + "start": 11073.46, + "end": 11078.66, + "probability": 0.9502 + }, + { + "start": 11079.0, + "end": 11082.9, + "probability": 0.9961 + }, + { + "start": 11082.9, + "end": 11087.12, + "probability": 0.953 + }, + { + "start": 11087.9, + "end": 11091.02, + "probability": 0.9773 + }, + { + "start": 11091.02, + "end": 11093.66, + "probability": 0.9496 + }, + { + "start": 11094.06, + "end": 11097.68, + "probability": 0.9943 + }, + { + "start": 11098.19, + "end": 11102.48, + "probability": 0.9941 + }, + { + "start": 11103.02, + "end": 11103.72, + "probability": 0.6426 + }, + { + "start": 11103.96, + "end": 11107.46, + "probability": 0.891 + }, + { + "start": 11108.2, + "end": 11112.02, + "probability": 0.8306 + }, + { + "start": 11113.08, + "end": 11113.98, + "probability": 0.9687 + }, + { + "start": 11114.88, + "end": 11116.02, + "probability": 0.6166 + }, + { + "start": 11116.16, + "end": 11120.32, + "probability": 0.8228 + }, + { + "start": 11120.4, + "end": 11120.82, + "probability": 0.7365 + }, + { + "start": 11122.14, + "end": 11122.82, + "probability": 0.7178 + }, + { + "start": 11122.94, + "end": 11125.72, + "probability": 0.752 + }, + { + "start": 11135.54, + "end": 11135.54, + "probability": 0.2564 + }, + { + "start": 11143.82, + "end": 11144.96, + "probability": 0.7968 + }, + { + "start": 11146.58, + "end": 11147.55, + "probability": 0.3069 + }, + { + "start": 11148.7, + "end": 11149.44, + "probability": 0.7305 + }, + { + "start": 11150.42, + "end": 11152.3, + "probability": 0.6628 + }, + { + "start": 11153.2, + "end": 11154.16, + "probability": 0.9402 + }, + { + "start": 11155.04, + "end": 11157.12, + "probability": 0.9308 + }, + { + "start": 11157.64, + "end": 11159.78, + "probability": 0.5648 + }, + { + "start": 11163.06, + "end": 11164.66, + "probability": 0.9796 + }, + { + "start": 11167.86, + "end": 11173.36, + "probability": 0.7559 + }, + { + "start": 11173.36, + "end": 11178.38, + "probability": 0.9907 + }, + { + "start": 11179.58, + "end": 11181.0, + "probability": 0.9941 + }, + { + "start": 11181.64, + "end": 11183.84, + "probability": 0.8708 + }, + { + "start": 11184.44, + "end": 11185.22, + "probability": 0.9197 + }, + { + "start": 11186.16, + "end": 11189.28, + "probability": 0.9937 + }, + { + "start": 11189.92, + "end": 11191.18, + "probability": 0.6302 + }, + { + "start": 11191.22, + "end": 11191.96, + "probability": 0.5081 + }, + { + "start": 11192.04, + "end": 11193.72, + "probability": 0.8572 + }, + { + "start": 11194.08, + "end": 11194.72, + "probability": 0.4901 + }, + { + "start": 11195.7, + "end": 11196.82, + "probability": 0.6976 + }, + { + "start": 11197.56, + "end": 11200.18, + "probability": 0.9297 + }, + { + "start": 11201.26, + "end": 11205.42, + "probability": 0.6662 + }, + { + "start": 11206.92, + "end": 11209.3, + "probability": 0.7064 + }, + { + "start": 11210.02, + "end": 11212.6, + "probability": 0.8923 + }, + { + "start": 11213.5, + "end": 11215.44, + "probability": 0.5433 + }, + { + "start": 11215.44, + "end": 11220.7, + "probability": 0.5384 + }, + { + "start": 11222.24, + "end": 11222.58, + "probability": 0.8687 + }, + { + "start": 11223.96, + "end": 11226.3, + "probability": 0.5748 + }, + { + "start": 11226.44, + "end": 11227.28, + "probability": 0.5731 + }, + { + "start": 11227.5, + "end": 11228.9, + "probability": 0.9641 + }, + { + "start": 11229.58, + "end": 11230.46, + "probability": 0.6629 + }, + { + "start": 11230.66, + "end": 11231.36, + "probability": 0.6167 + }, + { + "start": 11232.9, + "end": 11233.14, + "probability": 0.2695 + }, + { + "start": 11233.3, + "end": 11237.82, + "probability": 0.9315 + }, + { + "start": 11238.18, + "end": 11244.92, + "probability": 0.9727 + }, + { + "start": 11245.76, + "end": 11246.46, + "probability": 0.8178 + }, + { + "start": 11247.72, + "end": 11251.82, + "probability": 0.4646 + }, + { + "start": 11252.76, + "end": 11257.54, + "probability": 0.9532 + }, + { + "start": 11258.3, + "end": 11262.92, + "probability": 0.9597 + }, + { + "start": 11263.12, + "end": 11263.54, + "probability": 0.9045 + }, + { + "start": 11263.66, + "end": 11265.44, + "probability": 0.5116 + }, + { + "start": 11265.58, + "end": 11266.62, + "probability": 0.9683 + }, + { + "start": 11266.7, + "end": 11268.44, + "probability": 0.9226 + }, + { + "start": 11268.74, + "end": 11269.42, + "probability": 0.5492 + }, + { + "start": 11269.78, + "end": 11271.98, + "probability": 0.7883 + }, + { + "start": 11272.9, + "end": 11277.02, + "probability": 0.9782 + }, + { + "start": 11278.46, + "end": 11278.84, + "probability": 0.965 + }, + { + "start": 11280.24, + "end": 11283.56, + "probability": 0.9404 + }, + { + "start": 11283.94, + "end": 11285.23, + "probability": 0.9917 + }, + { + "start": 11287.5, + "end": 11289.96, + "probability": 0.9698 + }, + { + "start": 11290.38, + "end": 11293.38, + "probability": 0.7729 + }, + { + "start": 11294.12, + "end": 11295.04, + "probability": 0.9355 + }, + { + "start": 11296.58, + "end": 11297.06, + "probability": 0.4081 + }, + { + "start": 11297.54, + "end": 11299.14, + "probability": 0.936 + }, + { + "start": 11303.64, + "end": 11307.56, + "probability": 0.2056 + }, + { + "start": 11307.58, + "end": 11308.84, + "probability": 0.8257 + }, + { + "start": 11309.98, + "end": 11312.08, + "probability": 0.7215 + }, + { + "start": 11312.99, + "end": 11316.1, + "probability": 0.7241 + }, + { + "start": 11316.64, + "end": 11317.74, + "probability": 0.8192 + }, + { + "start": 11318.4, + "end": 11323.72, + "probability": 0.9198 + }, + { + "start": 11324.0, + "end": 11326.16, + "probability": 0.7732 + }, + { + "start": 11326.82, + "end": 11330.66, + "probability": 0.9494 + }, + { + "start": 11332.14, + "end": 11333.98, + "probability": 0.4461 + }, + { + "start": 11334.48, + "end": 11334.86, + "probability": 0.8386 + }, + { + "start": 11335.28, + "end": 11338.74, + "probability": 0.8098 + }, + { + "start": 11339.14, + "end": 11341.95, + "probability": 0.9844 + }, + { + "start": 11342.86, + "end": 11348.16, + "probability": 0.9908 + }, + { + "start": 11348.52, + "end": 11350.58, + "probability": 0.749 + }, + { + "start": 11353.36, + "end": 11354.08, + "probability": 0.9204 + }, + { + "start": 11355.16, + "end": 11357.06, + "probability": 0.7862 + }, + { + "start": 11365.16, + "end": 11366.74, + "probability": 0.8441 + }, + { + "start": 11367.16, + "end": 11367.82, + "probability": 0.8438 + }, + { + "start": 11370.59, + "end": 11377.0, + "probability": 0.7753 + }, + { + "start": 11377.85, + "end": 11380.28, + "probability": 0.9139 + }, + { + "start": 11381.92, + "end": 11387.34, + "probability": 0.9124 + }, + { + "start": 11388.2, + "end": 11389.5, + "probability": 0.7173 + }, + { + "start": 11390.72, + "end": 11393.04, + "probability": 0.9973 + }, + { + "start": 11393.18, + "end": 11394.8, + "probability": 0.9958 + }, + { + "start": 11395.38, + "end": 11396.18, + "probability": 0.6478 + }, + { + "start": 11396.2, + "end": 11397.6, + "probability": 0.9702 + }, + { + "start": 11397.6, + "end": 11401.86, + "probability": 0.9941 + }, + { + "start": 11402.5, + "end": 11403.52, + "probability": 0.9249 + }, + { + "start": 11404.04, + "end": 11406.88, + "probability": 0.7798 + }, + { + "start": 11408.12, + "end": 11411.06, + "probability": 0.9051 + }, + { + "start": 11411.06, + "end": 11412.84, + "probability": 0.917 + }, + { + "start": 11414.44, + "end": 11417.44, + "probability": 0.9631 + }, + { + "start": 11417.98, + "end": 11420.1, + "probability": 0.8913 + }, + { + "start": 11420.28, + "end": 11422.54, + "probability": 0.8901 + }, + { + "start": 11423.02, + "end": 11424.62, + "probability": 0.9792 + }, + { + "start": 11425.12, + "end": 11426.32, + "probability": 0.9762 + }, + { + "start": 11426.74, + "end": 11428.48, + "probability": 0.9756 + }, + { + "start": 11428.8, + "end": 11433.36, + "probability": 0.9524 + }, + { + "start": 11433.92, + "end": 11435.72, + "probability": 0.879 + }, + { + "start": 11436.5, + "end": 11438.76, + "probability": 0.9333 + }, + { + "start": 11439.54, + "end": 11442.02, + "probability": 0.9524 + }, + { + "start": 11442.76, + "end": 11445.34, + "probability": 0.9078 + }, + { + "start": 11446.26, + "end": 11447.58, + "probability": 0.8031 + }, + { + "start": 11447.94, + "end": 11450.86, + "probability": 0.7095 + }, + { + "start": 11450.98, + "end": 11452.1, + "probability": 0.6856 + }, + { + "start": 11452.46, + "end": 11453.84, + "probability": 0.9704 + }, + { + "start": 11454.22, + "end": 11456.18, + "probability": 0.743 + }, + { + "start": 11456.6, + "end": 11457.9, + "probability": 0.7007 + }, + { + "start": 11461.86, + "end": 11462.12, + "probability": 0.1867 + }, + { + "start": 11463.86, + "end": 11468.7, + "probability": 0.9469 + }, + { + "start": 11469.34, + "end": 11469.7, + "probability": 0.6018 + }, + { + "start": 11469.78, + "end": 11471.34, + "probability": 0.9829 + }, + { + "start": 11471.86, + "end": 11473.04, + "probability": 0.784 + }, + { + "start": 11473.1, + "end": 11475.02, + "probability": 0.8378 + }, + { + "start": 11476.18, + "end": 11476.74, + "probability": 0.436 + }, + { + "start": 11476.82, + "end": 11477.86, + "probability": 0.7791 + }, + { + "start": 11478.06, + "end": 11480.38, + "probability": 0.9896 + }, + { + "start": 11480.38, + "end": 11482.82, + "probability": 0.9932 + }, + { + "start": 11483.66, + "end": 11485.45, + "probability": 0.9888 + }, + { + "start": 11485.52, + "end": 11486.45, + "probability": 0.8342 + }, + { + "start": 11487.5, + "end": 11488.54, + "probability": 0.7526 + }, + { + "start": 11488.76, + "end": 11489.72, + "probability": 0.7678 + }, + { + "start": 11490.64, + "end": 11492.68, + "probability": 0.875 + }, + { + "start": 11492.72, + "end": 11493.28, + "probability": 0.8635 + }, + { + "start": 11493.46, + "end": 11494.82, + "probability": 0.822 + }, + { + "start": 11494.84, + "end": 11494.86, + "probability": 0.0169 + }, + { + "start": 11494.86, + "end": 11497.34, + "probability": 0.906 + }, + { + "start": 11497.76, + "end": 11498.04, + "probability": 0.6571 + }, + { + "start": 11498.54, + "end": 11499.24, + "probability": 0.6071 + }, + { + "start": 11499.5, + "end": 11501.97, + "probability": 0.9368 + }, + { + "start": 11505.1, + "end": 11506.3, + "probability": 0.8892 + }, + { + "start": 11507.36, + "end": 11509.14, + "probability": 0.8184 + }, + { + "start": 11509.46, + "end": 11510.04, + "probability": 0.9644 + }, + { + "start": 11511.74, + "end": 11513.16, + "probability": 0.0634 + }, + { + "start": 11514.75, + "end": 11519.42, + "probability": 0.0293 + }, + { + "start": 11532.3, + "end": 11532.46, + "probability": 0.2556 + }, + { + "start": 11532.46, + "end": 11532.46, + "probability": 0.0357 + }, + { + "start": 11532.46, + "end": 11532.46, + "probability": 0.0275 + }, + { + "start": 11532.46, + "end": 11532.46, + "probability": 0.5122 + }, + { + "start": 11532.46, + "end": 11532.98, + "probability": 0.4234 + }, + { + "start": 11533.0, + "end": 11534.44, + "probability": 0.5228 + }, + { + "start": 11535.3, + "end": 11536.92, + "probability": 0.8334 + }, + { + "start": 11537.66, + "end": 11540.02, + "probability": 0.5072 + }, + { + "start": 11544.48, + "end": 11545.44, + "probability": 0.0131 + }, + { + "start": 11545.44, + "end": 11548.54, + "probability": 0.9442 + }, + { + "start": 11549.44, + "end": 11551.88, + "probability": 0.9735 + }, + { + "start": 11552.4, + "end": 11553.8, + "probability": 0.8429 + }, + { + "start": 11555.8, + "end": 11556.64, + "probability": 0.8679 + }, + { + "start": 11558.2, + "end": 11559.8, + "probability": 0.9043 + }, + { + "start": 11559.84, + "end": 11561.36, + "probability": 0.672 + }, + { + "start": 11561.48, + "end": 11563.06, + "probability": 0.8597 + }, + { + "start": 11563.44, + "end": 11565.02, + "probability": 0.9573 + }, + { + "start": 11565.68, + "end": 11568.48, + "probability": 0.983 + }, + { + "start": 11569.1, + "end": 11569.34, + "probability": 0.4275 + }, + { + "start": 11569.92, + "end": 11570.16, + "probability": 0.1897 + }, + { + "start": 11570.68, + "end": 11574.48, + "probability": 0.9657 + }, + { + "start": 11575.24, + "end": 11575.58, + "probability": 0.007 + } + ], + "segments_count": 3632, + "words_count": 19177, + "avg_words_per_segment": 5.28, + "avg_segment_duration": 2.2275, + "avg_words_per_minute": 98.366, + "plenum_id": "104801", + "duration": 11697.34, + "title": null, + "plenum_date": "2022-01-26" +} \ No newline at end of file