diff --git "a/111849/metadata.json" "b/111849/metadata.json" new file mode 100644--- /dev/null +++ "b/111849/metadata.json" @@ -0,0 +1,103877 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "111849", + "quality_score": 0.9261, + "per_segment_quality_scores": [ + { + "start": 65.88, + "end": 69.0, + "probability": 0.847 + }, + { + "start": 80.4, + "end": 84.14, + "probability": 0.7887 + }, + { + "start": 85.24, + "end": 86.6, + "probability": 0.7607 + }, + { + "start": 86.98, + "end": 87.32, + "probability": 0.8759 + }, + { + "start": 89.22, + "end": 91.34, + "probability": 0.5759 + }, + { + "start": 91.38, + "end": 95.26, + "probability": 0.9906 + }, + { + "start": 96.82, + "end": 98.3, + "probability": 0.9693 + }, + { + "start": 99.62, + "end": 99.83, + "probability": 0.0014 + }, + { + "start": 102.86, + "end": 103.36, + "probability": 0.4125 + }, + { + "start": 103.36, + "end": 104.04, + "probability": 0.3852 + }, + { + "start": 104.56, + "end": 106.38, + "probability": 0.4457 + }, + { + "start": 107.4, + "end": 109.74, + "probability": 0.8061 + }, + { + "start": 110.58, + "end": 118.72, + "probability": 0.9059 + }, + { + "start": 119.56, + "end": 122.5, + "probability": 0.9939 + }, + { + "start": 122.5, + "end": 126.8, + "probability": 0.9513 + }, + { + "start": 127.66, + "end": 130.24, + "probability": 0.8438 + }, + { + "start": 132.18, + "end": 134.74, + "probability": 0.4122 + }, + { + "start": 135.08, + "end": 136.0, + "probability": 0.5061 + }, + { + "start": 136.44, + "end": 140.18, + "probability": 0.9985 + }, + { + "start": 140.96, + "end": 146.5, + "probability": 0.9514 + }, + { + "start": 147.5, + "end": 148.32, + "probability": 0.8604 + }, + { + "start": 148.9, + "end": 152.0, + "probability": 0.8339 + }, + { + "start": 153.04, + "end": 155.5, + "probability": 0.9707 + }, + { + "start": 155.54, + "end": 158.72, + "probability": 0.9829 + }, + { + "start": 159.24, + "end": 161.74, + "probability": 0.9448 + }, + { + "start": 162.52, + "end": 164.78, + "probability": 0.7207 + }, + { + "start": 165.42, + "end": 171.7, + "probability": 0.8328 + }, + { + "start": 172.48, + "end": 173.14, + "probability": 0.7561 + }, + { + "start": 173.7, + "end": 178.8, + "probability": 0.993 + }, + { + "start": 179.42, + "end": 182.78, + "probability": 0.9852 + }, + { + "start": 183.4, + "end": 185.4, + "probability": 0.9247 + }, + { + "start": 186.16, + "end": 188.62, + "probability": 0.9946 + }, + { + "start": 188.62, + "end": 193.02, + "probability": 0.9886 + }, + { + "start": 193.92, + "end": 194.72, + "probability": 0.7745 + }, + { + "start": 195.02, + "end": 196.84, + "probability": 0.6814 + }, + { + "start": 197.38, + "end": 200.88, + "probability": 0.9671 + }, + { + "start": 201.18, + "end": 201.94, + "probability": 0.7284 + }, + { + "start": 202.44, + "end": 203.36, + "probability": 0.8067 + }, + { + "start": 203.84, + "end": 205.72, + "probability": 0.952 + }, + { + "start": 206.48, + "end": 211.26, + "probability": 0.925 + }, + { + "start": 211.7, + "end": 214.58, + "probability": 0.9285 + }, + { + "start": 215.12, + "end": 216.8, + "probability": 0.9936 + }, + { + "start": 217.16, + "end": 220.68, + "probability": 0.9869 + }, + { + "start": 221.4, + "end": 222.56, + "probability": 0.7778 + }, + { + "start": 223.04, + "end": 227.66, + "probability": 0.9983 + }, + { + "start": 227.78, + "end": 228.3, + "probability": 0.7414 + }, + { + "start": 229.42, + "end": 230.18, + "probability": 0.7137 + }, + { + "start": 230.48, + "end": 232.22, + "probability": 0.8166 + }, + { + "start": 238.42, + "end": 242.14, + "probability": 0.7639 + }, + { + "start": 242.26, + "end": 245.32, + "probability": 0.9515 + }, + { + "start": 245.84, + "end": 249.36, + "probability": 0.9736 + }, + { + "start": 249.88, + "end": 252.12, + "probability": 0.9867 + }, + { + "start": 252.62, + "end": 254.58, + "probability": 0.743 + }, + { + "start": 254.9, + "end": 257.56, + "probability": 0.9723 + }, + { + "start": 257.92, + "end": 259.28, + "probability": 0.6691 + }, + { + "start": 259.8, + "end": 261.12, + "probability": 0.9834 + }, + { + "start": 261.16, + "end": 261.74, + "probability": 0.7185 + }, + { + "start": 262.3, + "end": 265.04, + "probability": 0.8406 + }, + { + "start": 265.62, + "end": 266.48, + "probability": 0.6593 + }, + { + "start": 267.24, + "end": 270.26, + "probability": 0.9605 + }, + { + "start": 270.6, + "end": 272.38, + "probability": 0.9338 + }, + { + "start": 272.48, + "end": 272.8, + "probability": 0.8649 + }, + { + "start": 272.86, + "end": 273.36, + "probability": 0.7311 + }, + { + "start": 273.86, + "end": 276.52, + "probability": 0.9951 + }, + { + "start": 276.98, + "end": 277.98, + "probability": 0.553 + }, + { + "start": 278.6, + "end": 279.8, + "probability": 0.9852 + }, + { + "start": 279.88, + "end": 281.24, + "probability": 0.958 + }, + { + "start": 281.66, + "end": 285.84, + "probability": 0.9512 + }, + { + "start": 286.32, + "end": 292.8, + "probability": 0.9521 + }, + { + "start": 292.8, + "end": 298.14, + "probability": 0.9985 + }, + { + "start": 298.6, + "end": 301.31, + "probability": 0.995 + }, + { + "start": 301.96, + "end": 305.34, + "probability": 0.9836 + }, + { + "start": 305.34, + "end": 308.08, + "probability": 0.9823 + }, + { + "start": 308.6, + "end": 313.12, + "probability": 0.9351 + }, + { + "start": 313.68, + "end": 314.5, + "probability": 0.8656 + }, + { + "start": 314.96, + "end": 319.24, + "probability": 0.9829 + }, + { + "start": 319.32, + "end": 321.4, + "probability": 0.9732 + }, + { + "start": 321.86, + "end": 323.16, + "probability": 0.8776 + }, + { + "start": 323.22, + "end": 324.12, + "probability": 0.9256 + }, + { + "start": 324.92, + "end": 325.88, + "probability": 0.9535 + }, + { + "start": 326.78, + "end": 328.56, + "probability": 0.957 + }, + { + "start": 329.0, + "end": 333.62, + "probability": 0.9799 + }, + { + "start": 335.28, + "end": 337.06, + "probability": 0.563 + }, + { + "start": 337.26, + "end": 337.66, + "probability": 0.6331 + }, + { + "start": 337.7, + "end": 339.14, + "probability": 0.2951 + }, + { + "start": 339.46, + "end": 341.66, + "probability": 0.9262 + }, + { + "start": 342.86, + "end": 347.42, + "probability": 0.9933 + }, + { + "start": 347.54, + "end": 349.88, + "probability": 0.9937 + }, + { + "start": 350.14, + "end": 352.54, + "probability": 0.992 + }, + { + "start": 352.76, + "end": 358.48, + "probability": 0.8912 + }, + { + "start": 359.1, + "end": 359.32, + "probability": 0.1971 + }, + { + "start": 359.32, + "end": 362.28, + "probability": 0.9838 + }, + { + "start": 362.88, + "end": 367.44, + "probability": 0.9982 + }, + { + "start": 368.08, + "end": 368.94, + "probability": 0.7562 + }, + { + "start": 370.92, + "end": 374.28, + "probability": 0.9941 + }, + { + "start": 374.28, + "end": 380.1, + "probability": 0.9899 + }, + { + "start": 387.5, + "end": 392.2, + "probability": 0.2347 + }, + { + "start": 393.06, + "end": 394.82, + "probability": 0.7561 + }, + { + "start": 395.08, + "end": 396.36, + "probability": 0.9627 + }, + { + "start": 396.54, + "end": 400.26, + "probability": 0.9946 + }, + { + "start": 400.36, + "end": 402.28, + "probability": 0.9922 + }, + { + "start": 402.5, + "end": 404.72, + "probability": 0.9883 + }, + { + "start": 405.28, + "end": 408.44, + "probability": 0.9961 + }, + { + "start": 408.68, + "end": 409.64, + "probability": 0.985 + }, + { + "start": 410.04, + "end": 411.78, + "probability": 0.9242 + }, + { + "start": 411.8, + "end": 411.8, + "probability": 0.0143 + }, + { + "start": 413.99, + "end": 419.78, + "probability": 0.2504 + }, + { + "start": 420.36, + "end": 420.98, + "probability": 0.59 + }, + { + "start": 421.06, + "end": 421.66, + "probability": 0.915 + }, + { + "start": 422.14, + "end": 424.39, + "probability": 0.998 + }, + { + "start": 424.8, + "end": 425.02, + "probability": 0.0822 + }, + { + "start": 425.2, + "end": 427.52, + "probability": 0.9576 + }, + { + "start": 428.26, + "end": 428.78, + "probability": 0.8374 + }, + { + "start": 428.86, + "end": 430.12, + "probability": 0.6638 + }, + { + "start": 430.22, + "end": 438.0, + "probability": 0.9915 + }, + { + "start": 438.34, + "end": 447.54, + "probability": 0.5424 + }, + { + "start": 448.56, + "end": 450.54, + "probability": 0.9401 + }, + { + "start": 450.62, + "end": 452.81, + "probability": 0.9953 + }, + { + "start": 453.08, + "end": 455.36, + "probability": 0.9951 + }, + { + "start": 456.42, + "end": 459.86, + "probability": 0.8975 + }, + { + "start": 460.1, + "end": 463.96, + "probability": 0.8174 + }, + { + "start": 472.64, + "end": 474.48, + "probability": 0.6033 + }, + { + "start": 475.42, + "end": 478.86, + "probability": 0.6217 + }, + { + "start": 479.0, + "end": 483.26, + "probability": 0.7734 + }, + { + "start": 483.56, + "end": 485.15, + "probability": 0.4735 + }, + { + "start": 486.02, + "end": 487.36, + "probability": 0.8193 + }, + { + "start": 488.36, + "end": 490.16, + "probability": 0.9563 + }, + { + "start": 490.6, + "end": 494.86, + "probability": 0.9883 + }, + { + "start": 495.56, + "end": 498.3, + "probability": 0.8105 + }, + { + "start": 498.3, + "end": 502.0, + "probability": 0.9966 + }, + { + "start": 502.26, + "end": 505.72, + "probability": 0.8993 + }, + { + "start": 506.44, + "end": 506.9, + "probability": 0.5373 + }, + { + "start": 507.0, + "end": 510.08, + "probability": 0.7703 + }, + { + "start": 510.66, + "end": 511.76, + "probability": 0.7101 + }, + { + "start": 511.98, + "end": 516.46, + "probability": 0.744 + }, + { + "start": 517.3, + "end": 522.22, + "probability": 0.8495 + }, + { + "start": 522.84, + "end": 526.6, + "probability": 0.9331 + }, + { + "start": 528.1, + "end": 531.69, + "probability": 0.9819 + }, + { + "start": 532.48, + "end": 536.52, + "probability": 0.9058 + }, + { + "start": 536.94, + "end": 541.38, + "probability": 0.9531 + }, + { + "start": 541.38, + "end": 545.02, + "probability": 0.91 + }, + { + "start": 545.12, + "end": 547.26, + "probability": 0.9981 + }, + { + "start": 547.32, + "end": 552.16, + "probability": 0.9762 + }, + { + "start": 553.7, + "end": 554.9, + "probability": 0.7256 + }, + { + "start": 556.16, + "end": 559.44, + "probability": 0.9953 + }, + { + "start": 560.06, + "end": 563.32, + "probability": 0.8268 + }, + { + "start": 563.44, + "end": 564.48, + "probability": 0.97 + }, + { + "start": 565.42, + "end": 567.58, + "probability": 0.9505 + }, + { + "start": 568.38, + "end": 570.68, + "probability": 0.9626 + }, + { + "start": 570.76, + "end": 572.66, + "probability": 0.9712 + }, + { + "start": 574.0, + "end": 578.74, + "probability": 0.9467 + }, + { + "start": 579.22, + "end": 583.92, + "probability": 0.9317 + }, + { + "start": 584.04, + "end": 588.52, + "probability": 0.8851 + }, + { + "start": 588.68, + "end": 590.14, + "probability": 0.9897 + }, + { + "start": 591.04, + "end": 595.84, + "probability": 0.9913 + }, + { + "start": 596.0, + "end": 597.6, + "probability": 0.4853 + }, + { + "start": 598.04, + "end": 601.02, + "probability": 0.5809 + }, + { + "start": 601.18, + "end": 601.38, + "probability": 0.7223 + }, + { + "start": 601.92, + "end": 602.48, + "probability": 0.6273 + }, + { + "start": 602.64, + "end": 604.64, + "probability": 0.8269 + }, + { + "start": 609.74, + "end": 611.56, + "probability": 0.6111 + }, + { + "start": 612.86, + "end": 614.24, + "probability": 0.7531 + }, + { + "start": 615.38, + "end": 617.48, + "probability": 0.6861 + }, + { + "start": 617.76, + "end": 618.0, + "probability": 0.7035 + }, + { + "start": 618.02, + "end": 621.16, + "probability": 0.9445 + }, + { + "start": 622.7, + "end": 624.66, + "probability": 0.9944 + }, + { + "start": 625.54, + "end": 628.04, + "probability": 0.8173 + }, + { + "start": 628.78, + "end": 630.02, + "probability": 0.9788 + }, + { + "start": 630.26, + "end": 636.0, + "probability": 0.99 + }, + { + "start": 637.3, + "end": 642.64, + "probability": 0.9737 + }, + { + "start": 642.82, + "end": 646.3, + "probability": 0.9628 + }, + { + "start": 646.86, + "end": 648.5, + "probability": 0.9413 + }, + { + "start": 649.32, + "end": 653.98, + "probability": 0.8893 + }, + { + "start": 654.66, + "end": 660.8, + "probability": 0.9976 + }, + { + "start": 660.8, + "end": 664.48, + "probability": 0.999 + }, + { + "start": 665.34, + "end": 669.91, + "probability": 0.9976 + }, + { + "start": 670.84, + "end": 672.42, + "probability": 0.9995 + }, + { + "start": 673.88, + "end": 677.88, + "probability": 0.8162 + }, + { + "start": 678.62, + "end": 681.58, + "probability": 0.801 + }, + { + "start": 682.36, + "end": 684.12, + "probability": 0.8721 + }, + { + "start": 684.26, + "end": 684.76, + "probability": 0.5905 + }, + { + "start": 684.84, + "end": 688.74, + "probability": 0.9604 + }, + { + "start": 689.9, + "end": 692.84, + "probability": 0.9919 + }, + { + "start": 693.38, + "end": 697.18, + "probability": 0.9574 + }, + { + "start": 697.48, + "end": 697.7, + "probability": 0.6805 + }, + { + "start": 698.46, + "end": 699.16, + "probability": 0.7175 + }, + { + "start": 700.02, + "end": 701.66, + "probability": 0.9691 + }, + { + "start": 701.8, + "end": 702.77, + "probability": 0.979 + }, + { + "start": 703.82, + "end": 705.8, + "probability": 0.8091 + }, + { + "start": 707.2, + "end": 708.7, + "probability": 0.7252 + }, + { + "start": 708.9, + "end": 711.08, + "probability": 0.9885 + }, + { + "start": 711.3, + "end": 712.28, + "probability": 0.8391 + }, + { + "start": 712.62, + "end": 716.82, + "probability": 0.8251 + }, + { + "start": 719.6, + "end": 723.98, + "probability": 0.8784 + }, + { + "start": 724.1, + "end": 724.12, + "probability": 0.055 + }, + { + "start": 724.12, + "end": 724.98, + "probability": 0.5595 + }, + { + "start": 725.98, + "end": 728.18, + "probability": 0.5988 + }, + { + "start": 728.24, + "end": 730.08, + "probability": 0.1431 + }, + { + "start": 731.28, + "end": 733.7, + "probability": 0.0412 + }, + { + "start": 733.7, + "end": 733.7, + "probability": 0.1228 + }, + { + "start": 733.7, + "end": 733.72, + "probability": 0.0717 + }, + { + "start": 733.82, + "end": 734.1, + "probability": 0.488 + }, + { + "start": 734.64, + "end": 735.86, + "probability": 0.9147 + }, + { + "start": 736.38, + "end": 736.38, + "probability": 0.707 + }, + { + "start": 736.98, + "end": 738.64, + "probability": 0.9621 + }, + { + "start": 740.74, + "end": 745.24, + "probability": 0.9847 + }, + { + "start": 745.24, + "end": 748.84, + "probability": 0.9987 + }, + { + "start": 749.26, + "end": 749.98, + "probability": 0.7406 + }, + { + "start": 750.1, + "end": 752.58, + "probability": 0.9844 + }, + { + "start": 752.58, + "end": 756.32, + "probability": 0.9605 + }, + { + "start": 756.9, + "end": 762.72, + "probability": 0.9903 + }, + { + "start": 763.34, + "end": 770.92, + "probability": 0.9789 + }, + { + "start": 770.92, + "end": 776.32, + "probability": 0.9812 + }, + { + "start": 776.52, + "end": 779.04, + "probability": 0.5323 + }, + { + "start": 779.28, + "end": 780.82, + "probability": 0.7722 + }, + { + "start": 781.44, + "end": 784.04, + "probability": 0.9373 + }, + { + "start": 784.52, + "end": 791.04, + "probability": 0.9842 + }, + { + "start": 791.22, + "end": 792.62, + "probability": 0.92 + }, + { + "start": 793.12, + "end": 794.24, + "probability": 0.9169 + }, + { + "start": 794.66, + "end": 796.1, + "probability": 0.9796 + }, + { + "start": 796.84, + "end": 800.3, + "probability": 0.9871 + }, + { + "start": 800.3, + "end": 804.44, + "probability": 0.9967 + }, + { + "start": 805.0, + "end": 808.54, + "probability": 0.9961 + }, + { + "start": 809.08, + "end": 810.96, + "probability": 0.8012 + }, + { + "start": 811.62, + "end": 815.9, + "probability": 0.9895 + }, + { + "start": 817.06, + "end": 820.4, + "probability": 0.9347 + }, + { + "start": 820.4, + "end": 823.7, + "probability": 0.9983 + }, + { + "start": 824.12, + "end": 828.76, + "probability": 0.9766 + }, + { + "start": 829.26, + "end": 830.58, + "probability": 0.9551 + }, + { + "start": 830.96, + "end": 833.78, + "probability": 0.9969 + }, + { + "start": 833.88, + "end": 838.16, + "probability": 0.9951 + }, + { + "start": 838.76, + "end": 844.26, + "probability": 0.9943 + }, + { + "start": 845.0, + "end": 847.0, + "probability": 0.9292 + }, + { + "start": 847.0, + "end": 851.44, + "probability": 0.9939 + }, + { + "start": 852.04, + "end": 854.64, + "probability": 0.9915 + }, + { + "start": 854.64, + "end": 857.46, + "probability": 0.9992 + }, + { + "start": 857.92, + "end": 859.62, + "probability": 0.9291 + }, + { + "start": 860.16, + "end": 863.66, + "probability": 0.9922 + }, + { + "start": 864.5, + "end": 866.58, + "probability": 0.6926 + }, + { + "start": 868.06, + "end": 869.46, + "probability": 0.8923 + }, + { + "start": 869.6, + "end": 870.48, + "probability": 0.6748 + }, + { + "start": 870.88, + "end": 873.7, + "probability": 0.9963 + }, + { + "start": 874.36, + "end": 880.38, + "probability": 0.9976 + }, + { + "start": 881.28, + "end": 883.02, + "probability": 0.7031 + }, + { + "start": 884.28, + "end": 885.04, + "probability": 0.696 + }, + { + "start": 885.32, + "end": 887.12, + "probability": 0.8766 + }, + { + "start": 898.5, + "end": 899.28, + "probability": 0.7456 + }, + { + "start": 901.18, + "end": 902.44, + "probability": 0.7574 + }, + { + "start": 903.44, + "end": 904.3, + "probability": 0.9597 + }, + { + "start": 904.98, + "end": 906.98, + "probability": 0.976 + }, + { + "start": 907.66, + "end": 909.03, + "probability": 0.7382 + }, + { + "start": 909.5, + "end": 910.34, + "probability": 0.7899 + }, + { + "start": 910.64, + "end": 914.77, + "probability": 0.9723 + }, + { + "start": 915.5, + "end": 916.32, + "probability": 0.9988 + }, + { + "start": 916.98, + "end": 917.92, + "probability": 0.4454 + }, + { + "start": 918.04, + "end": 919.92, + "probability": 0.9663 + }, + { + "start": 920.82, + "end": 921.68, + "probability": 0.5047 + }, + { + "start": 922.54, + "end": 925.08, + "probability": 0.936 + }, + { + "start": 925.88, + "end": 929.34, + "probability": 0.9082 + }, + { + "start": 929.34, + "end": 934.08, + "probability": 0.9512 + }, + { + "start": 935.36, + "end": 938.18, + "probability": 0.9635 + }, + { + "start": 938.28, + "end": 939.66, + "probability": 0.8124 + }, + { + "start": 940.3, + "end": 940.66, + "probability": 0.8696 + }, + { + "start": 942.58, + "end": 945.3, + "probability": 0.9783 + }, + { + "start": 945.3, + "end": 948.98, + "probability": 0.9768 + }, + { + "start": 950.04, + "end": 953.16, + "probability": 0.9653 + }, + { + "start": 954.38, + "end": 955.38, + "probability": 0.8062 + }, + { + "start": 955.92, + "end": 962.23, + "probability": 0.9724 + }, + { + "start": 963.24, + "end": 967.86, + "probability": 0.8199 + }, + { + "start": 968.5, + "end": 970.44, + "probability": 0.6292 + }, + { + "start": 971.12, + "end": 975.42, + "probability": 0.9541 + }, + { + "start": 975.42, + "end": 979.74, + "probability": 0.8878 + }, + { + "start": 980.22, + "end": 983.58, + "probability": 0.8541 + }, + { + "start": 983.94, + "end": 984.74, + "probability": 0.6692 + }, + { + "start": 984.88, + "end": 986.26, + "probability": 0.6969 + }, + { + "start": 986.76, + "end": 987.94, + "probability": 0.9268 + }, + { + "start": 988.22, + "end": 989.8, + "probability": 0.7168 + }, + { + "start": 990.62, + "end": 992.92, + "probability": 0.9197 + }, + { + "start": 993.56, + "end": 995.72, + "probability": 0.6735 + }, + { + "start": 996.2, + "end": 996.96, + "probability": 0.4563 + }, + { + "start": 997.46, + "end": 999.98, + "probability": 0.9771 + }, + { + "start": 1000.48, + "end": 1000.7, + "probability": 0.7392 + }, + { + "start": 1001.48, + "end": 1002.22, + "probability": 0.5777 + }, + { + "start": 1002.4, + "end": 1006.54, + "probability": 0.9922 + }, + { + "start": 1006.7, + "end": 1007.67, + "probability": 0.8544 + }, + { + "start": 1007.86, + "end": 1013.14, + "probability": 0.9326 + }, + { + "start": 1013.82, + "end": 1016.66, + "probability": 0.9875 + }, + { + "start": 1017.74, + "end": 1022.32, + "probability": 0.9172 + }, + { + "start": 1023.44, + "end": 1030.38, + "probability": 0.9698 + }, + { + "start": 1030.38, + "end": 1034.46, + "probability": 0.9951 + }, + { + "start": 1034.54, + "end": 1036.18, + "probability": 0.6552 + }, + { + "start": 1037.22, + "end": 1042.44, + "probability": 0.9072 + }, + { + "start": 1043.02, + "end": 1045.56, + "probability": 0.9388 + }, + { + "start": 1046.26, + "end": 1049.29, + "probability": 0.8512 + }, + { + "start": 1055.74, + "end": 1058.06, + "probability": 0.9954 + }, + { + "start": 1059.82, + "end": 1064.58, + "probability": 0.9889 + }, + { + "start": 1066.4, + "end": 1066.86, + "probability": 0.8917 + }, + { + "start": 1066.92, + "end": 1068.84, + "probability": 0.9749 + }, + { + "start": 1069.26, + "end": 1072.22, + "probability": 0.9978 + }, + { + "start": 1072.78, + "end": 1078.02, + "probability": 0.9888 + }, + { + "start": 1078.12, + "end": 1079.62, + "probability": 0.6747 + }, + { + "start": 1080.68, + "end": 1082.54, + "probability": 0.9888 + }, + { + "start": 1083.22, + "end": 1086.24, + "probability": 0.8799 + }, + { + "start": 1087.48, + "end": 1091.72, + "probability": 0.9825 + }, + { + "start": 1093.14, + "end": 1095.86, + "probability": 0.9964 + }, + { + "start": 1095.86, + "end": 1099.88, + "probability": 0.9948 + }, + { + "start": 1100.02, + "end": 1100.98, + "probability": 0.9954 + }, + { + "start": 1102.34, + "end": 1103.7, + "probability": 0.999 + }, + { + "start": 1104.82, + "end": 1105.78, + "probability": 0.7099 + }, + { + "start": 1106.04, + "end": 1107.44, + "probability": 0.8807 + }, + { + "start": 1107.58, + "end": 1109.64, + "probability": 0.9817 + }, + { + "start": 1110.54, + "end": 1111.84, + "probability": 0.957 + }, + { + "start": 1112.62, + "end": 1115.76, + "probability": 0.9624 + }, + { + "start": 1116.74, + "end": 1120.56, + "probability": 0.9943 + }, + { + "start": 1120.7, + "end": 1124.74, + "probability": 0.998 + }, + { + "start": 1125.68, + "end": 1129.08, + "probability": 0.9947 + }, + { + "start": 1129.9, + "end": 1131.06, + "probability": 0.9857 + }, + { + "start": 1131.7, + "end": 1133.56, + "probability": 0.9905 + }, + { + "start": 1134.54, + "end": 1138.64, + "probability": 0.9969 + }, + { + "start": 1138.64, + "end": 1143.02, + "probability": 0.9976 + }, + { + "start": 1143.94, + "end": 1145.9, + "probability": 0.997 + }, + { + "start": 1145.9, + "end": 1148.28, + "probability": 0.9917 + }, + { + "start": 1148.82, + "end": 1153.58, + "probability": 0.9608 + }, + { + "start": 1154.42, + "end": 1157.5, + "probability": 0.9826 + }, + { + "start": 1157.7, + "end": 1160.75, + "probability": 0.9878 + }, + { + "start": 1161.02, + "end": 1163.48, + "probability": 0.6053 + }, + { + "start": 1163.52, + "end": 1163.92, + "probability": 0.7745 + }, + { + "start": 1164.16, + "end": 1166.0, + "probability": 0.9961 + }, + { + "start": 1166.4, + "end": 1168.0, + "probability": 0.9974 + }, + { + "start": 1168.16, + "end": 1168.8, + "probability": 0.7214 + }, + { + "start": 1169.28, + "end": 1173.32, + "probability": 0.9805 + }, + { + "start": 1173.84, + "end": 1175.76, + "probability": 0.9852 + }, + { + "start": 1176.8, + "end": 1179.2, + "probability": 0.9859 + }, + { + "start": 1179.68, + "end": 1179.9, + "probability": 0.9222 + }, + { + "start": 1181.1, + "end": 1184.7, + "probability": 0.4787 + }, + { + "start": 1184.96, + "end": 1188.52, + "probability": 0.9343 + }, + { + "start": 1188.76, + "end": 1192.56, + "probability": 0.9866 + }, + { + "start": 1193.8, + "end": 1202.14, + "probability": 0.9697 + }, + { + "start": 1202.16, + "end": 1203.82, + "probability": 0.7395 + }, + { + "start": 1204.22, + "end": 1207.28, + "probability": 0.9697 + }, + { + "start": 1208.38, + "end": 1213.02, + "probability": 0.9887 + }, + { + "start": 1213.14, + "end": 1219.08, + "probability": 0.9899 + }, + { + "start": 1220.36, + "end": 1225.88, + "probability": 0.9979 + }, + { + "start": 1225.96, + "end": 1230.36, + "probability": 0.9991 + }, + { + "start": 1230.42, + "end": 1234.38, + "probability": 0.9492 + }, + { + "start": 1234.46, + "end": 1237.54, + "probability": 0.9984 + }, + { + "start": 1238.36, + "end": 1238.76, + "probability": 0.4935 + }, + { + "start": 1238.96, + "end": 1240.72, + "probability": 0.1663 + }, + { + "start": 1241.08, + "end": 1241.26, + "probability": 0.2044 + }, + { + "start": 1241.32, + "end": 1242.1, + "probability": 0.5294 + }, + { + "start": 1242.12, + "end": 1244.76, + "probability": 0.9878 + }, + { + "start": 1245.54, + "end": 1248.26, + "probability": 0.9916 + }, + { + "start": 1248.32, + "end": 1250.56, + "probability": 0.9606 + }, + { + "start": 1250.64, + "end": 1253.87, + "probability": 0.9978 + }, + { + "start": 1255.15, + "end": 1258.41, + "probability": 0.9292 + }, + { + "start": 1258.67, + "end": 1259.77, + "probability": 0.7349 + }, + { + "start": 1259.83, + "end": 1261.55, + "probability": 0.9761 + }, + { + "start": 1261.69, + "end": 1263.49, + "probability": 0.9899 + }, + { + "start": 1263.67, + "end": 1263.87, + "probability": 0.9828 + }, + { + "start": 1263.91, + "end": 1268.57, + "probability": 0.9866 + }, + { + "start": 1269.39, + "end": 1271.99, + "probability": 0.9891 + }, + { + "start": 1273.13, + "end": 1276.61, + "probability": 0.986 + }, + { + "start": 1276.91, + "end": 1278.61, + "probability": 0.8667 + }, + { + "start": 1279.25, + "end": 1282.05, + "probability": 0.9954 + }, + { + "start": 1282.25, + "end": 1285.93, + "probability": 0.9941 + }, + { + "start": 1286.13, + "end": 1287.91, + "probability": 0.9606 + }, + { + "start": 1289.55, + "end": 1292.31, + "probability": 0.9889 + }, + { + "start": 1293.13, + "end": 1296.23, + "probability": 0.9984 + }, + { + "start": 1296.27, + "end": 1302.89, + "probability": 0.9879 + }, + { + "start": 1303.93, + "end": 1306.87, + "probability": 0.7108 + }, + { + "start": 1315.85, + "end": 1316.13, + "probability": 0.0383 + }, + { + "start": 1316.13, + "end": 1320.59, + "probability": 0.0174 + }, + { + "start": 1321.39, + "end": 1327.74, + "probability": 0.0922 + }, + { + "start": 1328.33, + "end": 1335.49, + "probability": 0.1099 + }, + { + "start": 1335.59, + "end": 1342.17, + "probability": 0.2143 + }, + { + "start": 1342.41, + "end": 1342.71, + "probability": 0.1483 + }, + { + "start": 1342.71, + "end": 1343.43, + "probability": 0.7506 + }, + { + "start": 1343.65, + "end": 1344.25, + "probability": 0.8521 + }, + { + "start": 1345.74, + "end": 1348.31, + "probability": 0.1748 + }, + { + "start": 1353.24, + "end": 1357.25, + "probability": 0.0489 + }, + { + "start": 1358.49, + "end": 1359.09, + "probability": 0.1 + }, + { + "start": 1359.09, + "end": 1360.47, + "probability": 0.0948 + }, + { + "start": 1362.81, + "end": 1364.07, + "probability": 0.0117 + }, + { + "start": 1364.62, + "end": 1367.75, + "probability": 0.0563 + }, + { + "start": 1368.83, + "end": 1370.81, + "probability": 0.0562 + }, + { + "start": 1370.81, + "end": 1372.25, + "probability": 0.15 + }, + { + "start": 1372.25, + "end": 1373.57, + "probability": 0.0347 + }, + { + "start": 1373.57, + "end": 1373.77, + "probability": 0.0276 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.0, + "end": 1374.0, + "probability": 0.0 + }, + { + "start": 1374.66, + "end": 1376.98, + "probability": 0.0348 + }, + { + "start": 1377.08, + "end": 1377.28, + "probability": 0.2045 + }, + { + "start": 1377.28, + "end": 1377.28, + "probability": 0.4911 + }, + { + "start": 1377.28, + "end": 1378.9, + "probability": 0.4709 + }, + { + "start": 1379.02, + "end": 1380.14, + "probability": 0.5595 + }, + { + "start": 1380.64, + "end": 1380.78, + "probability": 0.8867 + }, + { + "start": 1384.36, + "end": 1386.38, + "probability": 0.6192 + }, + { + "start": 1386.78, + "end": 1386.78, + "probability": 0.1096 + }, + { + "start": 1386.78, + "end": 1386.9, + "probability": 0.4105 + }, + { + "start": 1386.9, + "end": 1391.44, + "probability": 0.9479 + }, + { + "start": 1392.26, + "end": 1395.74, + "probability": 0.8725 + }, + { + "start": 1396.3, + "end": 1396.64, + "probability": 0.0857 + }, + { + "start": 1397.12, + "end": 1400.86, + "probability": 0.6127 + }, + { + "start": 1401.1, + "end": 1401.42, + "probability": 0.086 + }, + { + "start": 1401.42, + "end": 1402.74, + "probability": 0.3561 + }, + { + "start": 1403.4, + "end": 1405.88, + "probability": 0.5616 + }, + { + "start": 1406.02, + "end": 1406.64, + "probability": 0.2092 + }, + { + "start": 1406.64, + "end": 1406.7, + "probability": 0.3116 + }, + { + "start": 1406.72, + "end": 1406.9, + "probability": 0.511 + }, + { + "start": 1407.32, + "end": 1408.22, + "probability": 0.7575 + }, + { + "start": 1409.26, + "end": 1410.82, + "probability": 0.2933 + }, + { + "start": 1412.18, + "end": 1414.36, + "probability": 0.1797 + }, + { + "start": 1414.68, + "end": 1416.72, + "probability": 0.0595 + }, + { + "start": 1416.72, + "end": 1417.52, + "probability": 0.0211 + }, + { + "start": 1417.8, + "end": 1417.92, + "probability": 0.3747 + }, + { + "start": 1418.44, + "end": 1419.32, + "probability": 0.2093 + }, + { + "start": 1422.24, + "end": 1422.85, + "probability": 0.181 + }, + { + "start": 1424.16, + "end": 1424.56, + "probability": 0.4907 + }, + { + "start": 1426.48, + "end": 1427.28, + "probability": 0.12 + }, + { + "start": 1429.17, + "end": 1434.78, + "probability": 0.6166 + }, + { + "start": 1434.98, + "end": 1437.04, + "probability": 0.3809 + }, + { + "start": 1437.12, + "end": 1438.82, + "probability": 0.4494 + }, + { + "start": 1438.84, + "end": 1440.62, + "probability": 0.9006 + }, + { + "start": 1440.82, + "end": 1441.74, + "probability": 0.734 + }, + { + "start": 1441.92, + "end": 1443.3, + "probability": 0.9188 + }, + { + "start": 1444.14, + "end": 1449.24, + "probability": 0.0533 + }, + { + "start": 1450.22, + "end": 1450.32, + "probability": 0.043 + }, + { + "start": 1450.32, + "end": 1450.32, + "probability": 0.0244 + }, + { + "start": 1450.32, + "end": 1451.28, + "probability": 0.1821 + }, + { + "start": 1451.86, + "end": 1452.18, + "probability": 0.1281 + }, + { + "start": 1454.8, + "end": 1460.08, + "probability": 0.0167 + }, + { + "start": 1461.64, + "end": 1462.5, + "probability": 0.7765 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1532.0, + "end": 1532.0, + "probability": 0.0 + }, + { + "start": 1534.11, + "end": 1535.36, + "probability": 0.4221 + }, + { + "start": 1535.88, + "end": 1536.34, + "probability": 0.8675 + }, + { + "start": 1536.8, + "end": 1541.34, + "probability": 0.9917 + }, + { + "start": 1541.64, + "end": 1543.76, + "probability": 0.9928 + }, + { + "start": 1544.3, + "end": 1548.52, + "probability": 0.9886 + }, + { + "start": 1548.92, + "end": 1549.24, + "probability": 0.7805 + }, + { + "start": 1550.82, + "end": 1555.22, + "probability": 0.9625 + }, + { + "start": 1555.62, + "end": 1556.78, + "probability": 0.6844 + }, + { + "start": 1557.24, + "end": 1557.54, + "probability": 0.8109 + }, + { + "start": 1557.86, + "end": 1558.38, + "probability": 0.7372 + }, + { + "start": 1558.68, + "end": 1559.4, + "probability": 0.6482 + }, + { + "start": 1560.28, + "end": 1564.9, + "probability": 0.9792 + }, + { + "start": 1564.98, + "end": 1567.45, + "probability": 0.998 + }, + { + "start": 1568.4, + "end": 1571.94, + "probability": 0.555 + }, + { + "start": 1573.71, + "end": 1578.22, + "probability": 0.0831 + }, + { + "start": 1578.86, + "end": 1579.7, + "probability": 0.4273 + }, + { + "start": 1581.64, + "end": 1585.08, + "probability": 0.2836 + }, + { + "start": 1585.28, + "end": 1585.66, + "probability": 0.2588 + }, + { + "start": 1585.66, + "end": 1586.14, + "probability": 0.2375 + }, + { + "start": 1586.18, + "end": 1588.17, + "probability": 0.8914 + }, + { + "start": 1588.46, + "end": 1589.0, + "probability": 0.3973 + }, + { + "start": 1589.8, + "end": 1592.06, + "probability": 0.0942 + }, + { + "start": 1594.58, + "end": 1595.46, + "probability": 0.0253 + }, + { + "start": 1595.84, + "end": 1596.74, + "probability": 0.1078 + }, + { + "start": 1604.54, + "end": 1606.78, + "probability": 0.4701 + }, + { + "start": 1608.99, + "end": 1609.71, + "probability": 0.0559 + }, + { + "start": 1610.84, + "end": 1612.0, + "probability": 0.0182 + }, + { + "start": 1612.0, + "end": 1613.38, + "probability": 0.0142 + }, + { + "start": 1613.78, + "end": 1614.2, + "probability": 0.0286 + }, + { + "start": 1615.18, + "end": 1618.02, + "probability": 0.0552 + }, + { + "start": 1619.0, + "end": 1619.78, + "probability": 0.2938 + }, + { + "start": 1620.28, + "end": 1626.5, + "probability": 0.1928 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1655.0, + "end": 1655.0, + "probability": 0.0 + }, + { + "start": 1666.78, + "end": 1670.58, + "probability": 0.9067 + }, + { + "start": 1670.76, + "end": 1674.39, + "probability": 0.9988 + }, + { + "start": 1675.66, + "end": 1676.6, + "probability": 0.8986 + }, + { + "start": 1677.22, + "end": 1677.82, + "probability": 0.7949 + }, + { + "start": 1677.98, + "end": 1679.4, + "probability": 0.9402 + }, + { + "start": 1679.6, + "end": 1681.44, + "probability": 0.783 + }, + { + "start": 1681.77, + "end": 1684.02, + "probability": 0.6066 + }, + { + "start": 1684.4, + "end": 1685.9, + "probability": 0.9935 + }, + { + "start": 1686.38, + "end": 1688.26, + "probability": 0.7847 + }, + { + "start": 1688.72, + "end": 1690.44, + "probability": 0.6851 + }, + { + "start": 1691.02, + "end": 1693.78, + "probability": 0.7605 + }, + { + "start": 1693.9, + "end": 1702.2, + "probability": 0.6656 + }, + { + "start": 1702.2, + "end": 1705.12, + "probability": 0.8996 + }, + { + "start": 1705.3, + "end": 1708.1, + "probability": 0.9976 + }, + { + "start": 1708.68, + "end": 1708.68, + "probability": 0.0957 + }, + { + "start": 1708.68, + "end": 1709.73, + "probability": 0.8833 + }, + { + "start": 1710.26, + "end": 1711.98, + "probability": 0.7274 + }, + { + "start": 1712.1, + "end": 1717.76, + "probability": 0.9493 + }, + { + "start": 1717.98, + "end": 1719.0, + "probability": 0.6832 + }, + { + "start": 1719.48, + "end": 1720.12, + "probability": 0.959 + }, + { + "start": 1720.48, + "end": 1721.38, + "probability": 0.8601 + }, + { + "start": 1721.5, + "end": 1723.4, + "probability": 0.5589 + }, + { + "start": 1724.4, + "end": 1729.78, + "probability": 0.9958 + }, + { + "start": 1730.82, + "end": 1734.98, + "probability": 0.9495 + }, + { + "start": 1738.3, + "end": 1739.32, + "probability": 0.456 + }, + { + "start": 1739.8, + "end": 1741.36, + "probability": 0.7316 + }, + { + "start": 1742.2, + "end": 1744.82, + "probability": 0.9441 + }, + { + "start": 1745.44, + "end": 1747.62, + "probability": 0.8605 + }, + { + "start": 1748.9, + "end": 1751.42, + "probability": 0.9401 + }, + { + "start": 1752.0, + "end": 1753.68, + "probability": 0.2112 + }, + { + "start": 1754.72, + "end": 1756.4, + "probability": 0.3914 + }, + { + "start": 1757.16, + "end": 1758.72, + "probability": 0.9584 + }, + { + "start": 1758.8, + "end": 1759.36, + "probability": 0.8888 + }, + { + "start": 1759.98, + "end": 1762.82, + "probability": 0.512 + }, + { + "start": 1764.12, + "end": 1765.68, + "probability": 0.7443 + }, + { + "start": 1765.8, + "end": 1766.66, + "probability": 0.1202 + }, + { + "start": 1767.24, + "end": 1767.74, + "probability": 0.7832 + }, + { + "start": 1768.44, + "end": 1771.78, + "probability": 0.973 + }, + { + "start": 1772.28, + "end": 1772.92, + "probability": 0.3199 + }, + { + "start": 1773.04, + "end": 1778.94, + "probability": 0.9709 + }, + { + "start": 1779.0, + "end": 1779.74, + "probability": 0.7464 + }, + { + "start": 1780.88, + "end": 1783.12, + "probability": 0.3797 + }, + { + "start": 1783.12, + "end": 1786.5, + "probability": 0.9895 + }, + { + "start": 1786.86, + "end": 1787.99, + "probability": 0.273 + }, + { + "start": 1788.22, + "end": 1789.35, + "probability": 0.4426 + }, + { + "start": 1790.38, + "end": 1790.38, + "probability": 0.5145 + }, + { + "start": 1790.38, + "end": 1793.3, + "probability": 0.9679 + }, + { + "start": 1793.44, + "end": 1794.1, + "probability": 0.8522 + }, + { + "start": 1795.45, + "end": 1797.86, + "probability": 0.9847 + }, + { + "start": 1798.22, + "end": 1799.36, + "probability": 0.9738 + }, + { + "start": 1799.56, + "end": 1800.94, + "probability": 0.8677 + }, + { + "start": 1802.46, + "end": 1803.06, + "probability": 0.7218 + }, + { + "start": 1803.58, + "end": 1809.54, + "probability": 0.9733 + }, + { + "start": 1810.24, + "end": 1812.38, + "probability": 0.9565 + }, + { + "start": 1812.5, + "end": 1818.22, + "probability": 0.8276 + }, + { + "start": 1819.04, + "end": 1824.47, + "probability": 0.9816 + }, + { + "start": 1824.56, + "end": 1828.94, + "probability": 0.994 + }, + { + "start": 1829.18, + "end": 1832.48, + "probability": 0.616 + }, + { + "start": 1833.3, + "end": 1835.54, + "probability": 0.7494 + }, + { + "start": 1836.32, + "end": 1839.06, + "probability": 0.9602 + }, + { + "start": 1840.1, + "end": 1842.06, + "probability": 0.0818 + }, + { + "start": 3674.0, + "end": 3674.0, + "probability": 0.0 + }, + { + "start": 3674.0, + "end": 3674.0, + "probability": 0.0 + }, + { + "start": 3674.0, + "end": 3674.0, + "probability": 0.0 + }, + { + "start": 3674.16, + "end": 3674.72, + "probability": 0.5068 + }, + { + "start": 3675.36, + "end": 3679.0, + "probability": 0.8989 + }, + { + "start": 3679.6, + "end": 3682.0, + "probability": 0.9127 + }, + { + "start": 3682.54, + "end": 3684.58, + "probability": 0.5699 + }, + { + "start": 3685.7, + "end": 3689.44, + "probability": 0.9963 + }, + { + "start": 3689.5, + "end": 3692.22, + "probability": 0.9722 + }, + { + "start": 3693.0, + "end": 3697.52, + "probability": 0.8277 + }, + { + "start": 3698.4, + "end": 3700.44, + "probability": 0.6749 + }, + { + "start": 3701.1, + "end": 3703.54, + "probability": 0.9342 + }, + { + "start": 3716.22, + "end": 3718.54, + "probability": 0.7484 + }, + { + "start": 3720.3, + "end": 3722.2, + "probability": 0.9569 + }, + { + "start": 3722.48, + "end": 3723.58, + "probability": 0.9692 + }, + { + "start": 3723.98, + "end": 3726.92, + "probability": 0.9663 + }, + { + "start": 3727.48, + "end": 3728.68, + "probability": 0.7397 + }, + { + "start": 3729.28, + "end": 3731.28, + "probability": 0.9869 + }, + { + "start": 3732.84, + "end": 3733.52, + "probability": 0.7302 + }, + { + "start": 3733.66, + "end": 3735.6, + "probability": 0.9794 + }, + { + "start": 3735.64, + "end": 3736.74, + "probability": 0.7595 + }, + { + "start": 3736.94, + "end": 3740.64, + "probability": 0.9941 + }, + { + "start": 3740.64, + "end": 3745.2, + "probability": 0.9763 + }, + { + "start": 3745.8, + "end": 3747.22, + "probability": 0.9929 + }, + { + "start": 3749.02, + "end": 3751.88, + "probability": 0.9974 + }, + { + "start": 3751.88, + "end": 3757.02, + "probability": 0.997 + }, + { + "start": 3757.6, + "end": 3761.4, + "probability": 0.9976 + }, + { + "start": 3762.1, + "end": 3767.48, + "probability": 0.998 + }, + { + "start": 3769.4, + "end": 3770.9, + "probability": 0.6913 + }, + { + "start": 3771.76, + "end": 3772.06, + "probability": 0.7809 + }, + { + "start": 3772.82, + "end": 3773.88, + "probability": 0.9798 + }, + { + "start": 3774.4, + "end": 3777.12, + "probability": 0.9977 + }, + { + "start": 3777.8, + "end": 3781.3, + "probability": 0.9883 + }, + { + "start": 3783.2, + "end": 3783.42, + "probability": 0.7484 + }, + { + "start": 3783.98, + "end": 3786.58, + "probability": 0.9756 + }, + { + "start": 3787.4, + "end": 3789.36, + "probability": 0.9963 + }, + { + "start": 3789.36, + "end": 3792.76, + "probability": 0.9978 + }, + { + "start": 3793.28, + "end": 3796.56, + "probability": 0.995 + }, + { + "start": 3797.4, + "end": 3798.32, + "probability": 0.98 + }, + { + "start": 3800.6, + "end": 3801.5, + "probability": 0.8892 + }, + { + "start": 3801.74, + "end": 3802.7, + "probability": 0.8684 + }, + { + "start": 3802.96, + "end": 3803.82, + "probability": 0.8907 + }, + { + "start": 3804.22, + "end": 3808.78, + "probability": 0.9844 + }, + { + "start": 3809.24, + "end": 3811.92, + "probability": 0.998 + }, + { + "start": 3814.24, + "end": 3818.54, + "probability": 0.9812 + }, + { + "start": 3819.04, + "end": 3819.46, + "probability": 0.6209 + }, + { + "start": 3820.34, + "end": 3822.74, + "probability": 0.9961 + }, + { + "start": 3823.6, + "end": 3827.94, + "probability": 0.9934 + }, + { + "start": 3827.94, + "end": 3832.72, + "probability": 0.999 + }, + { + "start": 3833.32, + "end": 3835.56, + "probability": 0.9866 + }, + { + "start": 3836.54, + "end": 3840.84, + "probability": 0.9818 + }, + { + "start": 3841.4, + "end": 3844.14, + "probability": 0.9957 + }, + { + "start": 3844.14, + "end": 3846.82, + "probability": 0.9722 + }, + { + "start": 3847.6, + "end": 3849.54, + "probability": 0.9819 + }, + { + "start": 3849.54, + "end": 3852.06, + "probability": 0.9893 + }, + { + "start": 3852.48, + "end": 3854.18, + "probability": 0.9871 + }, + { + "start": 3856.14, + "end": 3856.92, + "probability": 0.9583 + }, + { + "start": 3857.14, + "end": 3860.52, + "probability": 0.9985 + }, + { + "start": 3860.52, + "end": 3865.08, + "probability": 0.9988 + }, + { + "start": 3865.52, + "end": 3867.66, + "probability": 0.9977 + }, + { + "start": 3867.66, + "end": 3870.82, + "probability": 0.9834 + }, + { + "start": 3871.22, + "end": 3874.68, + "probability": 0.9985 + }, + { + "start": 3874.7, + "end": 3880.28, + "probability": 0.9992 + }, + { + "start": 3882.66, + "end": 3885.26, + "probability": 0.6077 + }, + { + "start": 3885.34, + "end": 3890.15, + "probability": 0.9972 + }, + { + "start": 3890.9, + "end": 3891.58, + "probability": 0.8811 + }, + { + "start": 3892.12, + "end": 3895.52, + "probability": 0.9963 + }, + { + "start": 3895.56, + "end": 3900.3, + "probability": 0.9926 + }, + { + "start": 3901.4, + "end": 3901.52, + "probability": 0.4041 + }, + { + "start": 3901.68, + "end": 3902.0, + "probability": 0.8989 + }, + { + "start": 3902.06, + "end": 3905.66, + "probability": 0.9815 + }, + { + "start": 3905.66, + "end": 3909.72, + "probability": 0.995 + }, + { + "start": 3910.6, + "end": 3915.38, + "probability": 0.9976 + }, + { + "start": 3915.38, + "end": 3919.32, + "probability": 0.9985 + }, + { + "start": 3922.0, + "end": 3926.34, + "probability": 0.8221 + }, + { + "start": 3926.6, + "end": 3930.84, + "probability": 0.9182 + }, + { + "start": 3931.58, + "end": 3933.26, + "probability": 0.9737 + }, + { + "start": 3933.76, + "end": 3934.52, + "probability": 0.8705 + }, + { + "start": 3934.9, + "end": 3935.82, + "probability": 0.8508 + }, + { + "start": 3936.28, + "end": 3940.36, + "probability": 0.9796 + }, + { + "start": 3942.7, + "end": 3945.82, + "probability": 0.9829 + }, + { + "start": 3946.68, + "end": 3948.56, + "probability": 0.9905 + }, + { + "start": 3949.36, + "end": 3951.24, + "probability": 0.9967 + }, + { + "start": 3951.5, + "end": 3954.5, + "probability": 0.9944 + }, + { + "start": 3955.16, + "end": 3958.02, + "probability": 0.9641 + }, + { + "start": 3959.32, + "end": 3961.22, + "probability": 0.8711 + }, + { + "start": 3961.74, + "end": 3965.36, + "probability": 0.9934 + }, + { + "start": 3965.36, + "end": 3969.58, + "probability": 0.9941 + }, + { + "start": 3969.96, + "end": 3975.68, + "probability": 0.9937 + }, + { + "start": 3977.4, + "end": 3980.4, + "probability": 0.9663 + }, + { + "start": 3980.4, + "end": 3983.4, + "probability": 0.9973 + }, + { + "start": 3984.7, + "end": 3987.16, + "probability": 0.9977 + }, + { + "start": 3987.48, + "end": 3990.28, + "probability": 0.9982 + }, + { + "start": 3991.14, + "end": 3995.0, + "probability": 0.9951 + }, + { + "start": 3995.58, + "end": 3996.82, + "probability": 0.9543 + }, + { + "start": 3997.7, + "end": 4002.06, + "probability": 0.9854 + }, + { + "start": 4005.04, + "end": 4007.92, + "probability": 0.9964 + }, + { + "start": 4008.18, + "end": 4010.72, + "probability": 0.9974 + }, + { + "start": 4010.72, + "end": 4013.46, + "probability": 0.9771 + }, + { + "start": 4014.18, + "end": 4016.46, + "probability": 0.9924 + }, + { + "start": 4017.08, + "end": 4020.98, + "probability": 0.9948 + }, + { + "start": 4020.98, + "end": 4024.14, + "probability": 0.9932 + }, + { + "start": 4025.32, + "end": 4028.86, + "probability": 0.9958 + }, + { + "start": 4028.94, + "end": 4033.02, + "probability": 0.995 + }, + { + "start": 4033.32, + "end": 4037.06, + "probability": 0.9917 + }, + { + "start": 4039.1, + "end": 4040.46, + "probability": 0.9281 + }, + { + "start": 4040.68, + "end": 4041.1, + "probability": 0.9722 + }, + { + "start": 4041.36, + "end": 4044.22, + "probability": 0.9416 + }, + { + "start": 4044.76, + "end": 4046.8, + "probability": 0.9966 + }, + { + "start": 4047.48, + "end": 4050.36, + "probability": 0.9982 + }, + { + "start": 4050.82, + "end": 4053.05, + "probability": 0.9978 + }, + { + "start": 4053.6, + "end": 4055.96, + "probability": 0.9985 + }, + { + "start": 4056.86, + "end": 4060.56, + "probability": 0.9966 + }, + { + "start": 4062.22, + "end": 4066.22, + "probability": 0.9988 + }, + { + "start": 4066.22, + "end": 4070.86, + "probability": 0.9975 + }, + { + "start": 4071.36, + "end": 4074.5, + "probability": 0.9971 + }, + { + "start": 4075.48, + "end": 4078.9, + "probability": 0.9971 + }, + { + "start": 4079.46, + "end": 4080.68, + "probability": 0.9915 + }, + { + "start": 4082.54, + "end": 4085.58, + "probability": 0.9913 + }, + { + "start": 4086.36, + "end": 4090.28, + "probability": 0.9741 + }, + { + "start": 4090.7, + "end": 4092.36, + "probability": 0.956 + }, + { + "start": 4092.48, + "end": 4093.7, + "probability": 0.9791 + }, + { + "start": 4094.1, + "end": 4096.08, + "probability": 0.9951 + }, + { + "start": 4096.42, + "end": 4099.03, + "probability": 0.9242 + }, + { + "start": 4099.98, + "end": 4102.24, + "probability": 0.9941 + }, + { + "start": 4102.24, + "end": 4105.48, + "probability": 0.996 + }, + { + "start": 4105.96, + "end": 4106.63, + "probability": 0.8347 + }, + { + "start": 4106.96, + "end": 4108.64, + "probability": 0.9734 + }, + { + "start": 4109.1, + "end": 4110.58, + "probability": 0.9918 + }, + { + "start": 4112.82, + "end": 4116.18, + "probability": 0.983 + }, + { + "start": 4117.04, + "end": 4119.04, + "probability": 0.855 + }, + { + "start": 4119.56, + "end": 4121.6, + "probability": 0.9874 + }, + { + "start": 4124.4, + "end": 4128.6, + "probability": 0.998 + }, + { + "start": 4129.32, + "end": 4130.58, + "probability": 0.9341 + }, + { + "start": 4130.74, + "end": 4131.74, + "probability": 0.9274 + }, + { + "start": 4131.88, + "end": 4132.56, + "probability": 0.9475 + }, + { + "start": 4132.64, + "end": 4134.06, + "probability": 0.9954 + }, + { + "start": 4134.4, + "end": 4137.06, + "probability": 0.9785 + }, + { + "start": 4137.52, + "end": 4139.82, + "probability": 0.9424 + }, + { + "start": 4140.52, + "end": 4144.16, + "probability": 0.9805 + }, + { + "start": 4145.76, + "end": 4149.98, + "probability": 0.989 + }, + { + "start": 4150.46, + "end": 4154.02, + "probability": 0.9754 + }, + { + "start": 4154.58, + "end": 4159.14, + "probability": 0.9941 + }, + { + "start": 4160.68, + "end": 4160.84, + "probability": 0.7053 + }, + { + "start": 4161.38, + "end": 4164.52, + "probability": 0.9735 + }, + { + "start": 4166.24, + "end": 4168.02, + "probability": 0.5512 + }, + { + "start": 4168.48, + "end": 4170.58, + "probability": 0.8361 + }, + { + "start": 4171.08, + "end": 4174.4, + "probability": 0.9927 + }, + { + "start": 4174.96, + "end": 4177.92, + "probability": 0.9955 + }, + { + "start": 4178.62, + "end": 4179.98, + "probability": 0.9717 + }, + { + "start": 4181.12, + "end": 4183.28, + "probability": 0.9417 + }, + { + "start": 4183.28, + "end": 4185.08, + "probability": 0.8325 + }, + { + "start": 4185.56, + "end": 4186.98, + "probability": 0.986 + }, + { + "start": 4188.52, + "end": 4191.62, + "probability": 0.9951 + }, + { + "start": 4192.68, + "end": 4192.96, + "probability": 0.535 + }, + { + "start": 4193.4, + "end": 4198.58, + "probability": 0.9687 + }, + { + "start": 4198.58, + "end": 4202.98, + "probability": 0.9929 + }, + { + "start": 4203.5, + "end": 4206.52, + "probability": 0.987 + }, + { + "start": 4207.76, + "end": 4208.22, + "probability": 0.8412 + }, + { + "start": 4208.42, + "end": 4211.64, + "probability": 0.9937 + }, + { + "start": 4212.14, + "end": 4213.4, + "probability": 0.9595 + }, + { + "start": 4214.14, + "end": 4218.08, + "probability": 0.9858 + }, + { + "start": 4218.08, + "end": 4221.12, + "probability": 0.9988 + }, + { + "start": 4221.8, + "end": 4222.12, + "probability": 0.4431 + }, + { + "start": 4222.58, + "end": 4227.52, + "probability": 0.9653 + }, + { + "start": 4228.6, + "end": 4231.32, + "probability": 0.95 + }, + { + "start": 4231.82, + "end": 4236.5, + "probability": 0.9944 + }, + { + "start": 4238.48, + "end": 4239.3, + "probability": 0.8309 + }, + { + "start": 4239.9, + "end": 4243.0, + "probability": 0.9643 + }, + { + "start": 4243.46, + "end": 4244.74, + "probability": 0.9045 + }, + { + "start": 4245.48, + "end": 4247.88, + "probability": 0.9656 + }, + { + "start": 4248.24, + "end": 4249.46, + "probability": 0.9029 + }, + { + "start": 4249.84, + "end": 4250.2, + "probability": 0.7941 + }, + { + "start": 4250.4, + "end": 4251.56, + "probability": 0.954 + }, + { + "start": 4252.42, + "end": 4256.56, + "probability": 0.9957 + }, + { + "start": 4257.08, + "end": 4259.76, + "probability": 0.9968 + }, + { + "start": 4260.24, + "end": 4263.08, + "probability": 0.9982 + }, + { + "start": 4263.08, + "end": 4265.6, + "probability": 0.9955 + }, + { + "start": 4266.12, + "end": 4267.58, + "probability": 0.9908 + }, + { + "start": 4267.94, + "end": 4270.2, + "probability": 0.9818 + }, + { + "start": 4272.08, + "end": 4272.9, + "probability": 0.8479 + }, + { + "start": 4273.04, + "end": 4275.0, + "probability": 0.9421 + }, + { + "start": 4275.18, + "end": 4276.64, + "probability": 0.9417 + }, + { + "start": 4277.06, + "end": 4277.71, + "probability": 0.9847 + }, + { + "start": 4278.92, + "end": 4280.38, + "probability": 0.8634 + }, + { + "start": 4280.62, + "end": 4282.64, + "probability": 0.9504 + }, + { + "start": 4283.0, + "end": 4285.6, + "probability": 0.9979 + }, + { + "start": 4287.08, + "end": 4288.36, + "probability": 0.6349 + }, + { + "start": 4288.76, + "end": 4292.54, + "probability": 0.9921 + }, + { + "start": 4292.64, + "end": 4294.75, + "probability": 0.906 + }, + { + "start": 4295.66, + "end": 4298.96, + "probability": 0.7633 + }, + { + "start": 4299.18, + "end": 4300.92, + "probability": 0.8001 + }, + { + "start": 4305.86, + "end": 4307.72, + "probability": 0.5803 + }, + { + "start": 4308.18, + "end": 4308.82, + "probability": 0.7278 + }, + { + "start": 4309.6, + "end": 4310.9, + "probability": 0.6553 + }, + { + "start": 4312.02, + "end": 4316.86, + "probability": 0.9508 + }, + { + "start": 4317.68, + "end": 4320.14, + "probability": 0.9112 + }, + { + "start": 4321.22, + "end": 4325.36, + "probability": 0.9771 + }, + { + "start": 4326.06, + "end": 4328.44, + "probability": 0.9716 + }, + { + "start": 4328.9, + "end": 4329.63, + "probability": 0.6503 + }, + { + "start": 4330.18, + "end": 4330.84, + "probability": 0.58 + }, + { + "start": 4330.96, + "end": 4332.48, + "probability": 0.8299 + }, + { + "start": 4332.9, + "end": 4333.6, + "probability": 0.907 + }, + { + "start": 4333.62, + "end": 4335.1, + "probability": 0.9751 + }, + { + "start": 4335.48, + "end": 4336.04, + "probability": 0.6635 + }, + { + "start": 4337.34, + "end": 4341.06, + "probability": 0.9741 + }, + { + "start": 4341.94, + "end": 4345.28, + "probability": 0.9352 + }, + { + "start": 4347.58, + "end": 4353.52, + "probability": 0.5786 + }, + { + "start": 4353.74, + "end": 4355.0, + "probability": 0.9829 + }, + { + "start": 4355.54, + "end": 4356.5, + "probability": 0.8548 + }, + { + "start": 4356.54, + "end": 4356.82, + "probability": 0.5608 + }, + { + "start": 4357.86, + "end": 4361.78, + "probability": 0.9954 + }, + { + "start": 4362.7, + "end": 4364.96, + "probability": 0.8824 + }, + { + "start": 4365.74, + "end": 4366.54, + "probability": 0.8876 + }, + { + "start": 4367.96, + "end": 4370.44, + "probability": 0.8875 + }, + { + "start": 4371.02, + "end": 4371.46, + "probability": 0.9773 + }, + { + "start": 4371.94, + "end": 4373.04, + "probability": 0.9639 + }, + { + "start": 4373.64, + "end": 4375.14, + "probability": 0.6307 + }, + { + "start": 4376.24, + "end": 4378.62, + "probability": 0.7904 + }, + { + "start": 4378.74, + "end": 4379.8, + "probability": 0.6356 + }, + { + "start": 4379.88, + "end": 4382.2, + "probability": 0.9124 + }, + { + "start": 4382.9, + "end": 4385.54, + "probability": 0.954 + }, + { + "start": 4386.48, + "end": 4387.24, + "probability": 0.9471 + }, + { + "start": 4387.3, + "end": 4387.96, + "probability": 0.9773 + }, + { + "start": 4388.44, + "end": 4389.38, + "probability": 0.7847 + }, + { + "start": 4389.42, + "end": 4389.7, + "probability": 0.8383 + }, + { + "start": 4389.82, + "end": 4390.42, + "probability": 0.9288 + }, + { + "start": 4391.54, + "end": 4394.14, + "probability": 0.9434 + }, + { + "start": 4394.82, + "end": 4396.64, + "probability": 0.9595 + }, + { + "start": 4397.18, + "end": 4398.83, + "probability": 0.9982 + }, + { + "start": 4399.56, + "end": 4400.42, + "probability": 0.8499 + }, + { + "start": 4401.2, + "end": 4403.14, + "probability": 0.9178 + }, + { + "start": 4404.04, + "end": 4405.16, + "probability": 0.8597 + }, + { + "start": 4406.18, + "end": 4408.64, + "probability": 0.998 + }, + { + "start": 4409.8, + "end": 4410.78, + "probability": 0.8207 + }, + { + "start": 4411.94, + "end": 4414.5, + "probability": 0.9631 + }, + { + "start": 4414.8, + "end": 4415.9, + "probability": 0.9854 + }, + { + "start": 4417.48, + "end": 4418.72, + "probability": 0.9724 + }, + { + "start": 4419.54, + "end": 4421.44, + "probability": 0.9742 + }, + { + "start": 4422.46, + "end": 4423.02, + "probability": 0.7815 + }, + { + "start": 4423.06, + "end": 4425.12, + "probability": 0.9977 + }, + { + "start": 4425.16, + "end": 4426.08, + "probability": 0.6415 + }, + { + "start": 4426.78, + "end": 4428.24, + "probability": 0.9587 + }, + { + "start": 4429.02, + "end": 4430.12, + "probability": 0.9562 + }, + { + "start": 4431.06, + "end": 4432.16, + "probability": 0.9954 + }, + { + "start": 4432.68, + "end": 4435.3, + "probability": 0.9956 + }, + { + "start": 4435.98, + "end": 4437.64, + "probability": 0.9842 + }, + { + "start": 4438.62, + "end": 4439.08, + "probability": 0.7041 + }, + { + "start": 4439.74, + "end": 4441.82, + "probability": 0.9963 + }, + { + "start": 4442.08, + "end": 4444.18, + "probability": 0.9097 + }, + { + "start": 4444.56, + "end": 4445.36, + "probability": 0.9719 + }, + { + "start": 4445.98, + "end": 4446.94, + "probability": 0.9956 + }, + { + "start": 4447.32, + "end": 4449.12, + "probability": 0.9901 + }, + { + "start": 4449.18, + "end": 4449.66, + "probability": 0.938 + }, + { + "start": 4451.42, + "end": 4452.18, + "probability": 0.8601 + }, + { + "start": 4453.14, + "end": 4455.3, + "probability": 0.8796 + }, + { + "start": 4456.14, + "end": 4460.64, + "probability": 0.9875 + }, + { + "start": 4460.72, + "end": 4461.7, + "probability": 0.8167 + }, + { + "start": 4461.78, + "end": 4464.48, + "probability": 0.9636 + }, + { + "start": 4465.42, + "end": 4466.12, + "probability": 0.9473 + }, + { + "start": 4467.18, + "end": 4469.12, + "probability": 0.998 + }, + { + "start": 4469.96, + "end": 4471.9, + "probability": 0.9386 + }, + { + "start": 4474.04, + "end": 4474.94, + "probability": 0.8158 + }, + { + "start": 4475.8, + "end": 4478.5, + "probability": 0.9717 + }, + { + "start": 4479.12, + "end": 4482.82, + "probability": 0.9863 + }, + { + "start": 4483.56, + "end": 4484.7, + "probability": 0.9856 + }, + { + "start": 4485.6, + "end": 4490.56, + "probability": 0.952 + }, + { + "start": 4491.44, + "end": 4494.56, + "probability": 0.9475 + }, + { + "start": 4495.2, + "end": 4496.72, + "probability": 0.9664 + }, + { + "start": 4496.78, + "end": 4499.32, + "probability": 0.9902 + }, + { + "start": 4500.02, + "end": 4503.3, + "probability": 0.9982 + }, + { + "start": 4503.96, + "end": 4504.5, + "probability": 0.5005 + }, + { + "start": 4505.06, + "end": 4507.9, + "probability": 0.9192 + }, + { + "start": 4508.38, + "end": 4509.86, + "probability": 0.9634 + }, + { + "start": 4510.82, + "end": 4514.52, + "probability": 0.9946 + }, + { + "start": 4515.28, + "end": 4518.22, + "probability": 0.9806 + }, + { + "start": 4519.54, + "end": 4520.3, + "probability": 0.9891 + }, + { + "start": 4521.03, + "end": 4521.78, + "probability": 0.9523 + }, + { + "start": 4522.66, + "end": 4524.88, + "probability": 0.7645 + }, + { + "start": 4526.08, + "end": 4527.32, + "probability": 0.8154 + }, + { + "start": 4527.44, + "end": 4527.84, + "probability": 0.9713 + }, + { + "start": 4528.38, + "end": 4530.1, + "probability": 0.789 + }, + { + "start": 4531.04, + "end": 4532.24, + "probability": 0.9491 + }, + { + "start": 4532.36, + "end": 4536.52, + "probability": 0.9902 + }, + { + "start": 4536.52, + "end": 4541.72, + "probability": 0.9338 + }, + { + "start": 4542.9, + "end": 4543.6, + "probability": 0.6077 + }, + { + "start": 4544.14, + "end": 4544.9, + "probability": 0.995 + }, + { + "start": 4544.96, + "end": 4546.34, + "probability": 0.9983 + }, + { + "start": 4546.78, + "end": 4548.02, + "probability": 0.811 + }, + { + "start": 4549.16, + "end": 4553.28, + "probability": 0.984 + }, + { + "start": 4554.0, + "end": 4554.9, + "probability": 0.3812 + }, + { + "start": 4554.98, + "end": 4555.64, + "probability": 0.9531 + }, + { + "start": 4555.66, + "end": 4556.85, + "probability": 0.9188 + }, + { + "start": 4557.68, + "end": 4558.94, + "probability": 0.6667 + }, + { + "start": 4559.2, + "end": 4559.92, + "probability": 0.981 + }, + { + "start": 4560.12, + "end": 4561.8, + "probability": 0.9645 + }, + { + "start": 4561.8, + "end": 4563.48, + "probability": 0.9646 + }, + { + "start": 4565.89, + "end": 4568.78, + "probability": 0.5994 + }, + { + "start": 4569.18, + "end": 4570.16, + "probability": 0.9425 + }, + { + "start": 4571.06, + "end": 4571.84, + "probability": 0.9966 + }, + { + "start": 4572.96, + "end": 4575.84, + "probability": 0.9928 + }, + { + "start": 4576.42, + "end": 4578.5, + "probability": 0.3207 + }, + { + "start": 4579.04, + "end": 4582.86, + "probability": 0.9922 + }, + { + "start": 4583.56, + "end": 4584.94, + "probability": 0.8668 + }, + { + "start": 4585.32, + "end": 4586.64, + "probability": 0.942 + }, + { + "start": 4586.7, + "end": 4587.66, + "probability": 0.9893 + }, + { + "start": 4588.2, + "end": 4591.42, + "probability": 0.8853 + }, + { + "start": 4591.68, + "end": 4592.3, + "probability": 0.9699 + }, + { + "start": 4594.0, + "end": 4596.94, + "probability": 0.6717 + }, + { + "start": 4597.82, + "end": 4599.06, + "probability": 0.7572 + }, + { + "start": 4599.76, + "end": 4601.0, + "probability": 0.8223 + }, + { + "start": 4601.1, + "end": 4601.68, + "probability": 0.946 + }, + { + "start": 4602.88, + "end": 4604.92, + "probability": 0.9755 + }, + { + "start": 4605.8, + "end": 4607.4, + "probability": 0.9932 + }, + { + "start": 4608.16, + "end": 4610.38, + "probability": 0.9876 + }, + { + "start": 4611.56, + "end": 4612.78, + "probability": 0.8837 + }, + { + "start": 4613.64, + "end": 4616.96, + "probability": 0.9738 + }, + { + "start": 4617.96, + "end": 4619.1, + "probability": 0.5484 + }, + { + "start": 4619.22, + "end": 4619.62, + "probability": 0.4788 + }, + { + "start": 4620.12, + "end": 4621.28, + "probability": 0.7905 + }, + { + "start": 4621.38, + "end": 4621.96, + "probability": 0.8024 + }, + { + "start": 4622.7, + "end": 4626.22, + "probability": 0.9973 + }, + { + "start": 4626.74, + "end": 4628.54, + "probability": 0.9972 + }, + { + "start": 4629.76, + "end": 4630.92, + "probability": 0.8066 + }, + { + "start": 4632.04, + "end": 4632.48, + "probability": 0.7203 + }, + { + "start": 4633.08, + "end": 4636.05, + "probability": 0.99 + }, + { + "start": 4636.56, + "end": 4638.66, + "probability": 0.9929 + }, + { + "start": 4638.66, + "end": 4640.76, + "probability": 0.9153 + }, + { + "start": 4641.8, + "end": 4643.3, + "probability": 0.8714 + }, + { + "start": 4643.84, + "end": 4647.08, + "probability": 0.9525 + }, + { + "start": 4647.82, + "end": 4649.26, + "probability": 0.8345 + }, + { + "start": 4650.1, + "end": 4651.88, + "probability": 0.864 + }, + { + "start": 4652.52, + "end": 4653.7, + "probability": 0.9764 + }, + { + "start": 4653.94, + "end": 4656.08, + "probability": 0.9903 + }, + { + "start": 4656.12, + "end": 4658.08, + "probability": 0.748 + }, + { + "start": 4658.24, + "end": 4661.22, + "probability": 0.992 + }, + { + "start": 4661.54, + "end": 4663.7, + "probability": 0.9976 + }, + { + "start": 4665.3, + "end": 4665.81, + "probability": 0.9644 + }, + { + "start": 4666.6, + "end": 4668.96, + "probability": 0.957 + }, + { + "start": 4669.32, + "end": 4670.64, + "probability": 0.9549 + }, + { + "start": 4670.9, + "end": 4674.28, + "probability": 0.8347 + }, + { + "start": 4675.66, + "end": 4676.62, + "probability": 0.8705 + }, + { + "start": 4677.4, + "end": 4678.64, + "probability": 0.9958 + }, + { + "start": 4679.62, + "end": 4680.14, + "probability": 0.8835 + }, + { + "start": 4680.68, + "end": 4682.76, + "probability": 0.9768 + }, + { + "start": 4684.38, + "end": 4686.54, + "probability": 0.895 + }, + { + "start": 4687.44, + "end": 4690.12, + "probability": 0.97 + }, + { + "start": 4691.26, + "end": 4694.84, + "probability": 0.9775 + }, + { + "start": 4696.54, + "end": 4697.15, + "probability": 0.5714 + }, + { + "start": 4698.9, + "end": 4700.72, + "probability": 0.9657 + }, + { + "start": 4701.52, + "end": 4703.74, + "probability": 0.9875 + }, + { + "start": 4704.58, + "end": 4708.13, + "probability": 0.9904 + }, + { + "start": 4708.9, + "end": 4713.92, + "probability": 0.9865 + }, + { + "start": 4714.48, + "end": 4718.72, + "probability": 0.949 + }, + { + "start": 4720.3, + "end": 4724.3, + "probability": 0.9915 + }, + { + "start": 4725.48, + "end": 4727.96, + "probability": 0.9967 + }, + { + "start": 4728.58, + "end": 4731.1, + "probability": 0.9909 + }, + { + "start": 4732.16, + "end": 4733.84, + "probability": 0.9988 + }, + { + "start": 4735.18, + "end": 4736.42, + "probability": 0.9986 + }, + { + "start": 4738.16, + "end": 4739.84, + "probability": 0.9648 + }, + { + "start": 4740.88, + "end": 4743.82, + "probability": 0.9969 + }, + { + "start": 4744.66, + "end": 4745.86, + "probability": 0.9232 + }, + { + "start": 4747.12, + "end": 4750.02, + "probability": 0.8414 + }, + { + "start": 4750.18, + "end": 4751.4, + "probability": 0.5774 + }, + { + "start": 4752.14, + "end": 4754.56, + "probability": 0.9946 + }, + { + "start": 4755.14, + "end": 4755.74, + "probability": 0.7256 + }, + { + "start": 4756.92, + "end": 4758.36, + "probability": 0.9937 + }, + { + "start": 4758.82, + "end": 4760.78, + "probability": 0.9574 + }, + { + "start": 4761.24, + "end": 4765.9, + "probability": 0.9712 + }, + { + "start": 4767.8, + "end": 4769.36, + "probability": 0.9627 + }, + { + "start": 4770.48, + "end": 4773.1, + "probability": 0.9947 + }, + { + "start": 4773.84, + "end": 4774.58, + "probability": 0.9995 + }, + { + "start": 4775.72, + "end": 4776.74, + "probability": 0.9359 + }, + { + "start": 4777.16, + "end": 4777.4, + "probability": 0.8253 + }, + { + "start": 4778.54, + "end": 4781.9, + "probability": 0.9476 + }, + { + "start": 4782.22, + "end": 4784.82, + "probability": 0.9973 + }, + { + "start": 4789.04, + "end": 4791.9, + "probability": 0.7372 + }, + { + "start": 4813.18, + "end": 4813.88, + "probability": 0.4181 + }, + { + "start": 4813.96, + "end": 4814.86, + "probability": 0.645 + }, + { + "start": 4815.94, + "end": 4820.78, + "probability": 0.9932 + }, + { + "start": 4821.7, + "end": 4822.84, + "probability": 0.9347 + }, + { + "start": 4823.38, + "end": 4824.46, + "probability": 0.9584 + }, + { + "start": 4825.78, + "end": 4826.38, + "probability": 0.9583 + }, + { + "start": 4828.16, + "end": 4829.38, + "probability": 0.9105 + }, + { + "start": 4829.58, + "end": 4830.2, + "probability": 0.7412 + }, + { + "start": 4830.32, + "end": 4832.14, + "probability": 0.9567 + }, + { + "start": 4832.22, + "end": 4837.78, + "probability": 0.9023 + }, + { + "start": 4840.04, + "end": 4840.5, + "probability": 0.9354 + }, + { + "start": 4843.17, + "end": 4844.56, + "probability": 0.9966 + }, + { + "start": 4845.96, + "end": 4848.46, + "probability": 0.9894 + }, + { + "start": 4849.26, + "end": 4851.72, + "probability": 0.9851 + }, + { + "start": 4854.9, + "end": 4859.24, + "probability": 0.9954 + }, + { + "start": 4860.14, + "end": 4860.92, + "probability": 0.9843 + }, + { + "start": 4861.62, + "end": 4863.42, + "probability": 0.9983 + }, + { + "start": 4864.1, + "end": 4864.58, + "probability": 0.7642 + }, + { + "start": 4865.62, + "end": 4866.36, + "probability": 0.9927 + }, + { + "start": 4867.94, + "end": 4874.02, + "probability": 0.9811 + }, + { + "start": 4875.68, + "end": 4877.02, + "probability": 0.7992 + }, + { + "start": 4878.14, + "end": 4886.06, + "probability": 0.9708 + }, + { + "start": 4886.84, + "end": 4889.04, + "probability": 0.989 + }, + { + "start": 4890.42, + "end": 4891.66, + "probability": 0.905 + }, + { + "start": 4892.76, + "end": 4893.54, + "probability": 0.9985 + }, + { + "start": 4894.08, + "end": 4895.26, + "probability": 0.9915 + }, + { + "start": 4895.8, + "end": 4896.74, + "probability": 0.9534 + }, + { + "start": 4897.48, + "end": 4898.3, + "probability": 0.9749 + }, + { + "start": 4898.86, + "end": 4902.62, + "probability": 0.9923 + }, + { + "start": 4903.18, + "end": 4904.16, + "probability": 0.9963 + }, + { + "start": 4905.06, + "end": 4909.44, + "probability": 0.9882 + }, + { + "start": 4910.26, + "end": 4910.82, + "probability": 0.9639 + }, + { + "start": 4912.2, + "end": 4914.48, + "probability": 0.7893 + }, + { + "start": 4914.92, + "end": 4917.58, + "probability": 0.8722 + }, + { + "start": 4918.52, + "end": 4924.22, + "probability": 0.9993 + }, + { + "start": 4924.76, + "end": 4925.86, + "probability": 0.9928 + }, + { + "start": 4927.44, + "end": 4928.54, + "probability": 0.9351 + }, + { + "start": 4929.32, + "end": 4930.26, + "probability": 0.8151 + }, + { + "start": 4931.5, + "end": 4933.68, + "probability": 0.9618 + }, + { + "start": 4934.32, + "end": 4937.68, + "probability": 0.9801 + }, + { + "start": 4939.44, + "end": 4940.56, + "probability": 0.9313 + }, + { + "start": 4941.66, + "end": 4944.24, + "probability": 0.667 + }, + { + "start": 4947.6, + "end": 4949.94, + "probability": 0.9632 + }, + { + "start": 4951.04, + "end": 4952.58, + "probability": 0.9025 + }, + { + "start": 4953.9, + "end": 4956.7, + "probability": 0.9479 + }, + { + "start": 4957.4, + "end": 4961.06, + "probability": 0.9884 + }, + { + "start": 4962.48, + "end": 4963.7, + "probability": 0.7133 + }, + { + "start": 4964.6, + "end": 4965.42, + "probability": 0.9047 + }, + { + "start": 4966.46, + "end": 4971.16, + "probability": 0.9559 + }, + { + "start": 4971.68, + "end": 4974.04, + "probability": 0.957 + }, + { + "start": 4974.64, + "end": 4976.38, + "probability": 0.9915 + }, + { + "start": 4977.14, + "end": 4977.98, + "probability": 0.9856 + }, + { + "start": 4979.48, + "end": 4980.02, + "probability": 0.9763 + }, + { + "start": 4980.8, + "end": 4982.8, + "probability": 0.984 + }, + { + "start": 4983.4, + "end": 4984.32, + "probability": 0.9337 + }, + { + "start": 4985.08, + "end": 4988.66, + "probability": 0.9479 + }, + { + "start": 4989.42, + "end": 4993.08, + "probability": 0.9915 + }, + { + "start": 4993.58, + "end": 4995.64, + "probability": 0.998 + }, + { + "start": 4996.84, + "end": 4999.1, + "probability": 0.9944 + }, + { + "start": 5000.84, + "end": 5003.34, + "probability": 0.8964 + }, + { + "start": 5003.86, + "end": 5005.1, + "probability": 0.7014 + }, + { + "start": 5005.64, + "end": 5007.54, + "probability": 0.9055 + }, + { + "start": 5008.64, + "end": 5009.82, + "probability": 0.9966 + }, + { + "start": 5010.58, + "end": 5011.74, + "probability": 0.9964 + }, + { + "start": 5012.5, + "end": 5013.86, + "probability": 0.8939 + }, + { + "start": 5014.66, + "end": 5017.32, + "probability": 0.9566 + }, + { + "start": 5018.98, + "end": 5020.48, + "probability": 0.6895 + }, + { + "start": 5021.22, + "end": 5023.05, + "probability": 0.9834 + }, + { + "start": 5023.54, + "end": 5024.04, + "probability": 0.6744 + }, + { + "start": 5024.88, + "end": 5026.92, + "probability": 0.9546 + }, + { + "start": 5028.12, + "end": 5030.56, + "probability": 0.6806 + }, + { + "start": 5031.6, + "end": 5032.54, + "probability": 0.7122 + }, + { + "start": 5033.72, + "end": 5034.66, + "probability": 0.7857 + }, + { + "start": 5035.4, + "end": 5036.28, + "probability": 0.7947 + }, + { + "start": 5037.2, + "end": 5038.02, + "probability": 0.9879 + }, + { + "start": 5039.2, + "end": 5042.32, + "probability": 0.9362 + }, + { + "start": 5043.24, + "end": 5044.64, + "probability": 0.9905 + }, + { + "start": 5045.78, + "end": 5046.44, + "probability": 0.7579 + }, + { + "start": 5048.1, + "end": 5049.84, + "probability": 0.9895 + }, + { + "start": 5050.02, + "end": 5052.22, + "probability": 0.8974 + }, + { + "start": 5052.82, + "end": 5055.78, + "probability": 0.8333 + }, + { + "start": 5056.76, + "end": 5059.78, + "probability": 0.9953 + }, + { + "start": 5061.06, + "end": 5062.43, + "probability": 0.9904 + }, + { + "start": 5064.48, + "end": 5065.3, + "probability": 0.984 + }, + { + "start": 5066.54, + "end": 5069.7, + "probability": 0.9938 + }, + { + "start": 5070.54, + "end": 5073.0, + "probability": 0.9914 + }, + { + "start": 5073.7, + "end": 5075.54, + "probability": 0.9985 + }, + { + "start": 5076.7, + "end": 5080.34, + "probability": 0.9863 + }, + { + "start": 5081.08, + "end": 5082.54, + "probability": 0.9994 + }, + { + "start": 5082.88, + "end": 5084.96, + "probability": 0.8889 + }, + { + "start": 5085.34, + "end": 5086.82, + "probability": 0.9961 + }, + { + "start": 5087.74, + "end": 5090.14, + "probability": 0.9545 + }, + { + "start": 5090.14, + "end": 5092.96, + "probability": 0.9871 + }, + { + "start": 5093.92, + "end": 5098.72, + "probability": 0.9821 + }, + { + "start": 5099.36, + "end": 5100.36, + "probability": 0.7511 + }, + { + "start": 5101.44, + "end": 5102.78, + "probability": 0.8375 + }, + { + "start": 5103.94, + "end": 5106.46, + "probability": 0.9912 + }, + { + "start": 5107.0, + "end": 5109.34, + "probability": 0.9622 + }, + { + "start": 5110.52, + "end": 5112.92, + "probability": 0.9751 + }, + { + "start": 5114.26, + "end": 5115.25, + "probability": 0.9971 + }, + { + "start": 5116.22, + "end": 5119.99, + "probability": 0.9971 + }, + { + "start": 5122.46, + "end": 5125.26, + "probability": 0.9862 + }, + { + "start": 5127.18, + "end": 5127.68, + "probability": 0.9949 + }, + { + "start": 5128.48, + "end": 5131.48, + "probability": 0.9995 + }, + { + "start": 5132.46, + "end": 5133.48, + "probability": 0.9888 + }, + { + "start": 5134.4, + "end": 5139.52, + "probability": 0.9994 + }, + { + "start": 5141.16, + "end": 5144.64, + "probability": 0.6017 + }, + { + "start": 5144.64, + "end": 5145.24, + "probability": 0.6737 + }, + { + "start": 5146.16, + "end": 5146.53, + "probability": 0.9761 + }, + { + "start": 5147.82, + "end": 5149.4, + "probability": 0.9876 + }, + { + "start": 5150.04, + "end": 5151.5, + "probability": 0.9977 + }, + { + "start": 5152.68, + "end": 5156.08, + "probability": 0.9976 + }, + { + "start": 5157.16, + "end": 5157.93, + "probability": 0.6754 + }, + { + "start": 5158.8, + "end": 5162.9, + "probability": 0.9928 + }, + { + "start": 5163.84, + "end": 5165.28, + "probability": 0.9976 + }, + { + "start": 5166.04, + "end": 5167.04, + "probability": 0.998 + }, + { + "start": 5167.56, + "end": 5172.88, + "probability": 0.9958 + }, + { + "start": 5173.58, + "end": 5176.06, + "probability": 0.6839 + }, + { + "start": 5176.06, + "end": 5176.96, + "probability": 0.5164 + }, + { + "start": 5177.64, + "end": 5179.12, + "probability": 0.9993 + }, + { + "start": 5180.02, + "end": 5181.64, + "probability": 0.9677 + }, + { + "start": 5182.58, + "end": 5184.88, + "probability": 0.9852 + }, + { + "start": 5185.42, + "end": 5185.96, + "probability": 0.9038 + }, + { + "start": 5187.28, + "end": 5189.42, + "probability": 0.9266 + }, + { + "start": 5189.52, + "end": 5190.26, + "probability": 0.6909 + }, + { + "start": 5191.0, + "end": 5193.22, + "probability": 0.6403 + }, + { + "start": 5194.5, + "end": 5197.45, + "probability": 0.8842 + }, + { + "start": 5199.24, + "end": 5200.56, + "probability": 0.9966 + }, + { + "start": 5201.06, + "end": 5205.34, + "probability": 0.9295 + }, + { + "start": 5208.78, + "end": 5210.28, + "probability": 0.5031 + }, + { + "start": 5213.12, + "end": 5214.4, + "probability": 0.9771 + }, + { + "start": 5215.3, + "end": 5216.46, + "probability": 0.9372 + }, + { + "start": 5217.7, + "end": 5218.28, + "probability": 0.969 + }, + { + "start": 5219.3, + "end": 5221.62, + "probability": 0.995 + }, + { + "start": 5222.58, + "end": 5223.28, + "probability": 0.6537 + }, + { + "start": 5224.1, + "end": 5226.56, + "probability": 0.9863 + }, + { + "start": 5226.56, + "end": 5231.04, + "probability": 0.997 + }, + { + "start": 5231.52, + "end": 5232.12, + "probability": 0.7018 + }, + { + "start": 5233.28, + "end": 5235.02, + "probability": 0.9373 + }, + { + "start": 5235.88, + "end": 5237.06, + "probability": 0.989 + }, + { + "start": 5238.08, + "end": 5240.76, + "probability": 0.996 + }, + { + "start": 5241.36, + "end": 5243.56, + "probability": 0.9682 + }, + { + "start": 5244.22, + "end": 5244.56, + "probability": 0.4815 + }, + { + "start": 5245.64, + "end": 5246.48, + "probability": 0.9474 + }, + { + "start": 5246.94, + "end": 5249.82, + "probability": 0.7612 + }, + { + "start": 5250.74, + "end": 5252.9, + "probability": 0.9927 + }, + { + "start": 5253.34, + "end": 5255.04, + "probability": 0.9952 + }, + { + "start": 5255.76, + "end": 5256.06, + "probability": 0.9835 + }, + { + "start": 5258.6, + "end": 5261.14, + "probability": 0.8855 + }, + { + "start": 5262.86, + "end": 5265.64, + "probability": 0.9974 + }, + { + "start": 5266.46, + "end": 5269.22, + "probability": 0.9939 + }, + { + "start": 5270.24, + "end": 5271.92, + "probability": 0.995 + }, + { + "start": 5272.72, + "end": 5274.38, + "probability": 0.9977 + }, + { + "start": 5275.08, + "end": 5276.42, + "probability": 0.9932 + }, + { + "start": 5277.1, + "end": 5279.82, + "probability": 0.9756 + }, + { + "start": 5281.02, + "end": 5281.74, + "probability": 0.8097 + }, + { + "start": 5282.42, + "end": 5283.38, + "probability": 0.9271 + }, + { + "start": 5284.06, + "end": 5284.94, + "probability": 0.9807 + }, + { + "start": 5286.2, + "end": 5291.13, + "probability": 0.952 + }, + { + "start": 5291.26, + "end": 5293.78, + "probability": 0.9189 + }, + { + "start": 5295.02, + "end": 5296.38, + "probability": 0.7504 + }, + { + "start": 5297.12, + "end": 5298.38, + "probability": 0.9909 + }, + { + "start": 5299.2, + "end": 5301.76, + "probability": 0.9415 + }, + { + "start": 5302.18, + "end": 5304.66, + "probability": 0.9819 + }, + { + "start": 5305.22, + "end": 5306.22, + "probability": 0.9149 + }, + { + "start": 5306.74, + "end": 5309.2, + "probability": 0.9695 + }, + { + "start": 5309.92, + "end": 5312.66, + "probability": 0.7286 + }, + { + "start": 5313.1, + "end": 5313.8, + "probability": 0.8375 + }, + { + "start": 5314.24, + "end": 5314.86, + "probability": 0.9832 + }, + { + "start": 5315.58, + "end": 5317.24, + "probability": 0.9961 + }, + { + "start": 5317.84, + "end": 5321.9, + "probability": 0.9365 + }, + { + "start": 5322.92, + "end": 5326.18, + "probability": 0.9675 + }, + { + "start": 5327.0, + "end": 5329.96, + "probability": 0.9991 + }, + { + "start": 5330.66, + "end": 5331.2, + "probability": 0.9919 + }, + { + "start": 5332.4, + "end": 5334.18, + "probability": 0.9378 + }, + { + "start": 5335.24, + "end": 5335.24, + "probability": 0.9814 + }, + { + "start": 5336.04, + "end": 5337.04, + "probability": 0.9967 + }, + { + "start": 5337.96, + "end": 5338.78, + "probability": 0.9656 + }, + { + "start": 5339.54, + "end": 5341.0, + "probability": 0.9592 + }, + { + "start": 5341.58, + "end": 5342.35, + "probability": 0.9943 + }, + { + "start": 5343.5, + "end": 5344.04, + "probability": 0.9846 + }, + { + "start": 5345.26, + "end": 5346.7, + "probability": 0.702 + }, + { + "start": 5348.12, + "end": 5350.6, + "probability": 0.9917 + }, + { + "start": 5351.96, + "end": 5352.6, + "probability": 0.9956 + }, + { + "start": 5353.2, + "end": 5354.88, + "probability": 0.9395 + }, + { + "start": 5355.52, + "end": 5356.36, + "probability": 0.9904 + }, + { + "start": 5357.0, + "end": 5359.0, + "probability": 0.9585 + }, + { + "start": 5359.68, + "end": 5360.98, + "probability": 0.9995 + }, + { + "start": 5361.58, + "end": 5362.58, + "probability": 0.9113 + }, + { + "start": 5363.58, + "end": 5365.96, + "probability": 0.9709 + }, + { + "start": 5367.28, + "end": 5369.2, + "probability": 0.9978 + }, + { + "start": 5369.32, + "end": 5369.94, + "probability": 0.7387 + }, + { + "start": 5370.6, + "end": 5371.58, + "probability": 0.9914 + }, + { + "start": 5372.54, + "end": 5374.8, + "probability": 0.9953 + }, + { + "start": 5375.52, + "end": 5376.62, + "probability": 0.9497 + }, + { + "start": 5377.38, + "end": 5377.98, + "probability": 0.7581 + }, + { + "start": 5379.3, + "end": 5382.6, + "probability": 0.9768 + }, + { + "start": 5382.68, + "end": 5383.24, + "probability": 0.7946 + }, + { + "start": 5384.18, + "end": 5385.04, + "probability": 0.9792 + }, + { + "start": 5385.96, + "end": 5390.94, + "probability": 0.9771 + }, + { + "start": 5392.48, + "end": 5392.96, + "probability": 0.5763 + }, + { + "start": 5393.96, + "end": 5394.66, + "probability": 0.6437 + }, + { + "start": 5394.8, + "end": 5396.58, + "probability": 0.8223 + }, + { + "start": 5396.76, + "end": 5397.3, + "probability": 0.2493 + }, + { + "start": 5397.42, + "end": 5397.78, + "probability": 0.3906 + }, + { + "start": 5397.78, + "end": 5398.72, + "probability": 0.9956 + }, + { + "start": 5399.3, + "end": 5399.8, + "probability": 0.9688 + }, + { + "start": 5400.56, + "end": 5401.46, + "probability": 0.9742 + }, + { + "start": 5401.74, + "end": 5404.76, + "probability": 0.993 + }, + { + "start": 5405.04, + "end": 5408.72, + "probability": 0.9927 + }, + { + "start": 5409.38, + "end": 5410.26, + "probability": 0.7748 + }, + { + "start": 5410.88, + "end": 5411.68, + "probability": 0.9741 + }, + { + "start": 5412.86, + "end": 5414.96, + "probability": 0.8703 + }, + { + "start": 5415.68, + "end": 5418.32, + "probability": 0.9964 + }, + { + "start": 5418.94, + "end": 5420.42, + "probability": 0.9513 + }, + { + "start": 5421.0, + "end": 5421.7, + "probability": 0.9444 + }, + { + "start": 5422.32, + "end": 5423.7, + "probability": 0.9969 + }, + { + "start": 5424.28, + "end": 5425.38, + "probability": 0.6863 + }, + { + "start": 5426.6, + "end": 5427.9, + "probability": 0.981 + }, + { + "start": 5428.46, + "end": 5433.6, + "probability": 0.9819 + }, + { + "start": 5434.24, + "end": 5436.18, + "probability": 0.9985 + }, + { + "start": 5436.48, + "end": 5438.4, + "probability": 0.9879 + }, + { + "start": 5439.0, + "end": 5440.06, + "probability": 0.9127 + }, + { + "start": 5440.98, + "end": 5443.72, + "probability": 0.807 + }, + { + "start": 5445.8, + "end": 5448.88, + "probability": 0.9806 + }, + { + "start": 5449.42, + "end": 5451.88, + "probability": 0.9662 + }, + { + "start": 5452.46, + "end": 5455.96, + "probability": 0.9264 + }, + { + "start": 5456.7, + "end": 5458.16, + "probability": 0.9396 + }, + { + "start": 5458.64, + "end": 5460.02, + "probability": 0.9683 + }, + { + "start": 5460.72, + "end": 5464.46, + "probability": 0.8656 + }, + { + "start": 5465.68, + "end": 5466.32, + "probability": 0.9566 + }, + { + "start": 5467.48, + "end": 5469.62, + "probability": 0.9961 + }, + { + "start": 5469.9, + "end": 5470.85, + "probability": 0.9727 + }, + { + "start": 5471.68, + "end": 5473.72, + "probability": 0.9009 + }, + { + "start": 5474.1, + "end": 5474.56, + "probability": 0.8599 + }, + { + "start": 5475.7, + "end": 5477.76, + "probability": 0.8903 + }, + { + "start": 5478.64, + "end": 5478.96, + "probability": 0.9543 + }, + { + "start": 5479.9, + "end": 5481.04, + "probability": 0.827 + }, + { + "start": 5482.56, + "end": 5483.74, + "probability": 0.9644 + }, + { + "start": 5484.2, + "end": 5485.46, + "probability": 0.9956 + }, + { + "start": 5486.94, + "end": 5488.7, + "probability": 0.673 + }, + { + "start": 5489.44, + "end": 5490.22, + "probability": 0.8605 + }, + { + "start": 5490.98, + "end": 5491.86, + "probability": 0.9014 + }, + { + "start": 5492.58, + "end": 5496.9, + "probability": 0.9985 + }, + { + "start": 5497.42, + "end": 5498.48, + "probability": 0.7493 + }, + { + "start": 5499.22, + "end": 5500.2, + "probability": 0.9504 + }, + { + "start": 5501.18, + "end": 5502.02, + "probability": 0.9858 + }, + { + "start": 5502.54, + "end": 5504.24, + "probability": 0.8875 + }, + { + "start": 5505.56, + "end": 5506.48, + "probability": 0.9993 + }, + { + "start": 5507.7, + "end": 5509.02, + "probability": 0.9719 + }, + { + "start": 5509.54, + "end": 5510.7, + "probability": 0.999 + }, + { + "start": 5511.48, + "end": 5512.14, + "probability": 0.9358 + }, + { + "start": 5512.58, + "end": 5513.58, + "probability": 0.9985 + }, + { + "start": 5514.22, + "end": 5516.4, + "probability": 0.8648 + }, + { + "start": 5517.08, + "end": 5517.6, + "probability": 0.6752 + }, + { + "start": 5518.46, + "end": 5519.62, + "probability": 0.9971 + }, + { + "start": 5520.42, + "end": 5523.26, + "probability": 0.9844 + }, + { + "start": 5524.12, + "end": 5525.24, + "probability": 0.999 + }, + { + "start": 5525.94, + "end": 5526.46, + "probability": 0.9966 + }, + { + "start": 5527.82, + "end": 5528.28, + "probability": 0.9963 + }, + { + "start": 5528.94, + "end": 5530.4, + "probability": 0.9742 + }, + { + "start": 5530.98, + "end": 5531.96, + "probability": 0.9967 + }, + { + "start": 5532.52, + "end": 5534.06, + "probability": 0.9951 + }, + { + "start": 5534.68, + "end": 5536.0, + "probability": 0.9979 + }, + { + "start": 5536.56, + "end": 5540.36, + "probability": 0.9846 + }, + { + "start": 5541.52, + "end": 5543.34, + "probability": 0.9771 + }, + { + "start": 5544.1, + "end": 5546.86, + "probability": 0.6006 + }, + { + "start": 5547.4, + "end": 5548.94, + "probability": 0.9939 + }, + { + "start": 5549.48, + "end": 5552.72, + "probability": 0.9956 + }, + { + "start": 5554.02, + "end": 5556.12, + "probability": 0.8726 + }, + { + "start": 5556.88, + "end": 5557.37, + "probability": 0.8831 + }, + { + "start": 5558.26, + "end": 5559.24, + "probability": 0.9829 + }, + { + "start": 5560.1, + "end": 5562.02, + "probability": 0.9986 + }, + { + "start": 5562.68, + "end": 5566.15, + "probability": 0.9698 + }, + { + "start": 5566.74, + "end": 5569.44, + "probability": 0.9785 + }, + { + "start": 5570.44, + "end": 5573.8, + "probability": 0.9921 + }, + { + "start": 5574.24, + "end": 5575.62, + "probability": 0.7798 + }, + { + "start": 5576.38, + "end": 5578.02, + "probability": 0.8929 + }, + { + "start": 5579.08, + "end": 5581.58, + "probability": 0.9966 + }, + { + "start": 5582.06, + "end": 5583.16, + "probability": 0.9417 + }, + { + "start": 5583.64, + "end": 5583.92, + "probability": 0.8971 + }, + { + "start": 5584.46, + "end": 5584.78, + "probability": 0.3836 + }, + { + "start": 5585.06, + "end": 5585.78, + "probability": 0.8784 + }, + { + "start": 5586.96, + "end": 5588.84, + "probability": 0.968 + }, + { + "start": 5589.38, + "end": 5590.28, + "probability": 0.7817 + }, + { + "start": 5590.78, + "end": 5592.18, + "probability": 0.9659 + }, + { + "start": 5592.52, + "end": 5593.38, + "probability": 0.9891 + }, + { + "start": 5593.46, + "end": 5594.12, + "probability": 0.9185 + }, + { + "start": 5595.32, + "end": 5596.54, + "probability": 0.9714 + }, + { + "start": 5597.52, + "end": 5598.16, + "probability": 0.4254 + }, + { + "start": 5598.8, + "end": 5599.26, + "probability": 0.9854 + }, + { + "start": 5601.16, + "end": 5605.04, + "probability": 0.9937 + }, + { + "start": 5605.46, + "end": 5606.14, + "probability": 0.8609 + }, + { + "start": 5608.19, + "end": 5609.02, + "probability": 0.9468 + }, + { + "start": 5609.98, + "end": 5611.76, + "probability": 0.9949 + }, + { + "start": 5612.82, + "end": 5615.17, + "probability": 0.8901 + }, + { + "start": 5615.88, + "end": 5616.86, + "probability": 0.9968 + }, + { + "start": 5617.86, + "end": 5618.3, + "probability": 0.9531 + }, + { + "start": 5619.02, + "end": 5620.46, + "probability": 0.9763 + }, + { + "start": 5620.58, + "end": 5622.22, + "probability": 0.9787 + }, + { + "start": 5623.14, + "end": 5624.56, + "probability": 0.9805 + }, + { + "start": 5625.72, + "end": 5626.68, + "probability": 0.9595 + }, + { + "start": 5627.4, + "end": 5628.06, + "probability": 0.8693 + }, + { + "start": 5628.64, + "end": 5632.4, + "probability": 0.9751 + }, + { + "start": 5633.14, + "end": 5634.02, + "probability": 0.8396 + }, + { + "start": 5635.54, + "end": 5636.48, + "probability": 0.9683 + }, + { + "start": 5637.76, + "end": 5638.28, + "probability": 0.9105 + }, + { + "start": 5640.5, + "end": 5643.88, + "probability": 0.9635 + }, + { + "start": 5644.54, + "end": 5644.98, + "probability": 0.8298 + }, + { + "start": 5645.78, + "end": 5648.24, + "probability": 0.8589 + }, + { + "start": 5648.48, + "end": 5650.04, + "probability": 0.9941 + }, + { + "start": 5651.5, + "end": 5652.52, + "probability": 0.981 + }, + { + "start": 5653.08, + "end": 5655.0, + "probability": 0.974 + }, + { + "start": 5655.62, + "end": 5656.82, + "probability": 0.9703 + }, + { + "start": 5657.58, + "end": 5662.7, + "probability": 0.9585 + }, + { + "start": 5662.74, + "end": 5665.52, + "probability": 0.9495 + }, + { + "start": 5666.16, + "end": 5669.76, + "probability": 0.9696 + }, + { + "start": 5670.4, + "end": 5670.9, + "probability": 0.5049 + }, + { + "start": 5671.66, + "end": 5673.06, + "probability": 0.998 + }, + { + "start": 5674.7, + "end": 5676.25, + "probability": 0.9973 + }, + { + "start": 5677.08, + "end": 5679.1, + "probability": 0.9894 + }, + { + "start": 5679.2, + "end": 5681.04, + "probability": 0.9585 + }, + { + "start": 5681.68, + "end": 5684.06, + "probability": 0.9514 + }, + { + "start": 5684.64, + "end": 5688.18, + "probability": 0.9927 + }, + { + "start": 5689.32, + "end": 5690.2, + "probability": 0.9908 + }, + { + "start": 5690.58, + "end": 5691.74, + "probability": 0.999 + }, + { + "start": 5692.36, + "end": 5693.32, + "probability": 0.9976 + }, + { + "start": 5694.04, + "end": 5695.94, + "probability": 0.987 + }, + { + "start": 5696.82, + "end": 5697.26, + "probability": 0.9946 + }, + { + "start": 5698.4, + "end": 5700.4, + "probability": 0.9144 + }, + { + "start": 5701.64, + "end": 5703.04, + "probability": 0.5066 + }, + { + "start": 5703.36, + "end": 5704.56, + "probability": 0.9069 + }, + { + "start": 5705.8, + "end": 5706.7, + "probability": 0.9436 + }, + { + "start": 5706.82, + "end": 5707.82, + "probability": 0.9879 + }, + { + "start": 5708.6, + "end": 5709.28, + "probability": 0.998 + }, + { + "start": 5711.3, + "end": 5713.2, + "probability": 0.9917 + }, + { + "start": 5713.76, + "end": 5714.62, + "probability": 0.9561 + }, + { + "start": 5715.12, + "end": 5715.76, + "probability": 0.6431 + }, + { + "start": 5715.78, + "end": 5719.42, + "probability": 0.987 + }, + { + "start": 5721.08, + "end": 5723.14, + "probability": 0.916 + }, + { + "start": 5724.36, + "end": 5724.91, + "probability": 0.67 + }, + { + "start": 5725.78, + "end": 5727.3, + "probability": 0.6937 + }, + { + "start": 5727.86, + "end": 5729.84, + "probability": 0.6513 + }, + { + "start": 5730.7, + "end": 5731.58, + "probability": 0.9619 + }, + { + "start": 5732.54, + "end": 5736.24, + "probability": 0.9182 + }, + { + "start": 5737.1, + "end": 5738.81, + "probability": 0.6664 + }, + { + "start": 5740.02, + "end": 5743.22, + "probability": 0.9777 + }, + { + "start": 5744.96, + "end": 5747.32, + "probability": 0.6313 + }, + { + "start": 5748.04, + "end": 5750.94, + "probability": 0.9923 + }, + { + "start": 5751.94, + "end": 5754.6, + "probability": 0.998 + }, + { + "start": 5755.34, + "end": 5756.98, + "probability": 0.8268 + }, + { + "start": 5757.64, + "end": 5758.46, + "probability": 0.928 + }, + { + "start": 5759.2, + "end": 5760.6, + "probability": 0.896 + }, + { + "start": 5760.94, + "end": 5762.32, + "probability": 0.9659 + }, + { + "start": 5762.38, + "end": 5762.92, + "probability": 0.7551 + }, + { + "start": 5763.64, + "end": 5764.8, + "probability": 0.7889 + }, + { + "start": 5764.98, + "end": 5765.22, + "probability": 0.7809 + }, + { + "start": 5765.36, + "end": 5765.68, + "probability": 0.5621 + }, + { + "start": 5766.64, + "end": 5767.22, + "probability": 0.7947 + }, + { + "start": 5767.7, + "end": 5767.7, + "probability": 0.924 + }, + { + "start": 5767.82, + "end": 5768.32, + "probability": 0.9055 + }, + { + "start": 5768.66, + "end": 5773.12, + "probability": 0.9846 + }, + { + "start": 5773.74, + "end": 5774.9, + "probability": 0.9979 + }, + { + "start": 5776.2, + "end": 5777.4, + "probability": 0.9052 + }, + { + "start": 5777.98, + "end": 5778.66, + "probability": 0.2091 + }, + { + "start": 5780.2, + "end": 5785.28, + "probability": 0.6948 + }, + { + "start": 5786.58, + "end": 5788.0, + "probability": 0.9443 + }, + { + "start": 5788.06, + "end": 5789.0, + "probability": 0.8169 + }, + { + "start": 5789.82, + "end": 5790.32, + "probability": 0.8382 + }, + { + "start": 5791.76, + "end": 5793.52, + "probability": 0.9994 + }, + { + "start": 5794.06, + "end": 5795.46, + "probability": 0.9849 + }, + { + "start": 5796.14, + "end": 5796.68, + "probability": 0.9746 + }, + { + "start": 5798.46, + "end": 5801.44, + "probability": 0.9159 + }, + { + "start": 5801.88, + "end": 5806.08, + "probability": 0.9985 + }, + { + "start": 5806.82, + "end": 5807.88, + "probability": 0.9736 + }, + { + "start": 5808.44, + "end": 5809.1, + "probability": 0.8608 + }, + { + "start": 5809.9, + "end": 5810.68, + "probability": 0.9346 + }, + { + "start": 5811.36, + "end": 5812.58, + "probability": 0.9946 + }, + { + "start": 5812.66, + "end": 5813.7, + "probability": 0.9949 + }, + { + "start": 5814.62, + "end": 5816.04, + "probability": 0.8885 + }, + { + "start": 5816.8, + "end": 5817.52, + "probability": 0.9665 + }, + { + "start": 5818.18, + "end": 5818.7, + "probability": 0.4727 + }, + { + "start": 5819.26, + "end": 5819.89, + "probability": 0.9448 + }, + { + "start": 5820.04, + "end": 5820.72, + "probability": 0.7105 + }, + { + "start": 5821.42, + "end": 5822.22, + "probability": 0.8905 + }, + { + "start": 5822.9, + "end": 5825.68, + "probability": 0.948 + }, + { + "start": 5827.76, + "end": 5828.36, + "probability": 0.7146 + }, + { + "start": 5828.48, + "end": 5828.93, + "probability": 0.7851 + }, + { + "start": 5829.58, + "end": 5831.6, + "probability": 0.7871 + }, + { + "start": 5832.66, + "end": 5834.5, + "probability": 0.1669 + }, + { + "start": 5834.5, + "end": 5836.34, + "probability": 0.0304 + }, + { + "start": 5836.34, + "end": 5839.31, + "probability": 0.8442 + }, + { + "start": 5839.68, + "end": 5840.17, + "probability": 0.0078 + }, + { + "start": 5840.4, + "end": 5841.34, + "probability": 0.9087 + }, + { + "start": 5841.42, + "end": 5842.96, + "probability": 0.9924 + }, + { + "start": 5843.78, + "end": 5848.3, + "probability": 0.3497 + }, + { + "start": 5849.04, + "end": 5849.04, + "probability": 0.0537 + }, + { + "start": 5849.04, + "end": 5849.04, + "probability": 0.0191 + }, + { + "start": 5849.04, + "end": 5849.04, + "probability": 0.0048 + }, + { + "start": 5849.04, + "end": 5850.0, + "probability": 0.7058 + }, + { + "start": 5851.84, + "end": 5852.33, + "probability": 0.1746 + }, + { + "start": 5852.98, + "end": 5854.5, + "probability": 0.8857 + }, + { + "start": 5855.78, + "end": 5858.18, + "probability": 0.7176 + }, + { + "start": 5858.62, + "end": 5860.08, + "probability": 0.993 + }, + { + "start": 5860.36, + "end": 5863.06, + "probability": 0.9978 + }, + { + "start": 5863.62, + "end": 5866.34, + "probability": 0.9894 + }, + { + "start": 5866.66, + "end": 5870.18, + "probability": 0.9958 + }, + { + "start": 5870.28, + "end": 5872.08, + "probability": 0.981 + }, + { + "start": 5873.08, + "end": 5875.04, + "probability": 0.8688 + }, + { + "start": 5875.22, + "end": 5875.86, + "probability": 0.7241 + }, + { + "start": 5876.1, + "end": 5880.2, + "probability": 0.7746 + }, + { + "start": 5880.28, + "end": 5881.6, + "probability": 0.9188 + }, + { + "start": 5881.68, + "end": 5882.9, + "probability": 0.8469 + }, + { + "start": 5882.96, + "end": 5883.56, + "probability": 0.9946 + }, + { + "start": 5884.22, + "end": 5885.26, + "probability": 0.8712 + }, + { + "start": 5886.18, + "end": 5887.4, + "probability": 0.8843 + }, + { + "start": 5887.58, + "end": 5888.46, + "probability": 0.5853 + }, + { + "start": 5888.6, + "end": 5890.4, + "probability": 0.8436 + }, + { + "start": 5890.54, + "end": 5890.82, + "probability": 0.8868 + }, + { + "start": 5890.94, + "end": 5892.82, + "probability": 0.9062 + }, + { + "start": 5892.9, + "end": 5894.76, + "probability": 0.9949 + }, + { + "start": 5894.9, + "end": 5897.18, + "probability": 0.0915 + }, + { + "start": 5897.38, + "end": 5897.9, + "probability": 0.7435 + }, + { + "start": 5898.6, + "end": 5899.54, + "probability": 0.8901 + }, + { + "start": 5899.68, + "end": 5902.02, + "probability": 0.8595 + }, + { + "start": 5902.56, + "end": 5905.7, + "probability": 0.1592 + }, + { + "start": 5905.78, + "end": 5908.65, + "probability": 0.9917 + }, + { + "start": 5909.92, + "end": 5911.31, + "probability": 0.9932 + }, + { + "start": 5912.0, + "end": 5914.28, + "probability": 0.9313 + }, + { + "start": 5914.84, + "end": 5915.7, + "probability": 0.9904 + }, + { + "start": 5916.08, + "end": 5917.32, + "probability": 0.9763 + }, + { + "start": 5917.36, + "end": 5917.94, + "probability": 0.9092 + }, + { + "start": 5918.28, + "end": 5918.82, + "probability": 0.1871 + }, + { + "start": 5918.9, + "end": 5920.84, + "probability": 0.8994 + }, + { + "start": 5921.24, + "end": 5925.66, + "probability": 0.9985 + }, + { + "start": 5926.08, + "end": 5928.36, + "probability": 0.9966 + }, + { + "start": 5928.78, + "end": 5930.22, + "probability": 0.9855 + }, + { + "start": 5930.52, + "end": 5932.18, + "probability": 0.916 + }, + { + "start": 5932.32, + "end": 5933.86, + "probability": 0.9757 + }, + { + "start": 5934.2, + "end": 5934.94, + "probability": 0.8505 + }, + { + "start": 5935.06, + "end": 5936.24, + "probability": 0.953 + }, + { + "start": 5936.74, + "end": 5938.44, + "probability": 0.8024 + }, + { + "start": 5939.05, + "end": 5939.54, + "probability": 0.0236 + }, + { + "start": 5939.98, + "end": 5940.46, + "probability": 0.8358 + }, + { + "start": 5940.54, + "end": 5942.9, + "probability": 0.9724 + }, + { + "start": 5943.26, + "end": 5945.6, + "probability": 0.9775 + }, + { + "start": 5946.12, + "end": 5946.7, + "probability": 0.8282 + }, + { + "start": 5947.12, + "end": 5949.88, + "probability": 0.9711 + }, + { + "start": 5950.4, + "end": 5950.92, + "probability": 0.9868 + }, + { + "start": 5951.64, + "end": 5952.8, + "probability": 0.9592 + }, + { + "start": 5953.34, + "end": 5954.66, + "probability": 0.9309 + }, + { + "start": 5955.12, + "end": 5955.72, + "probability": 0.8501 + }, + { + "start": 5955.72, + "end": 5957.96, + "probability": 0.836 + }, + { + "start": 5958.4, + "end": 5959.52, + "probability": 0.8995 + }, + { + "start": 5960.12, + "end": 5962.58, + "probability": 0.9397 + }, + { + "start": 5963.24, + "end": 5963.82, + "probability": 0.9398 + }, + { + "start": 5964.64, + "end": 5965.68, + "probability": 0.9985 + }, + { + "start": 5967.18, + "end": 5968.24, + "probability": 0.7996 + }, + { + "start": 5968.4, + "end": 5968.92, + "probability": 0.4961 + }, + { + "start": 5969.1, + "end": 5969.78, + "probability": 0.96 + }, + { + "start": 5970.16, + "end": 5972.72, + "probability": 0.9878 + }, + { + "start": 5972.82, + "end": 5975.12, + "probability": 0.8347 + }, + { + "start": 5975.98, + "end": 5978.34, + "probability": 0.9413 + }, + { + "start": 5978.76, + "end": 5981.17, + "probability": 0.9714 + }, + { + "start": 5982.34, + "end": 5983.88, + "probability": 0.9466 + }, + { + "start": 5984.16, + "end": 5987.72, + "probability": 0.7372 + }, + { + "start": 5988.16, + "end": 5988.2, + "probability": 0.6807 + }, + { + "start": 5988.2, + "end": 5988.24, + "probability": 0.1979 + }, + { + "start": 5988.32, + "end": 5988.96, + "probability": 0.5284 + }, + { + "start": 5989.06, + "end": 5989.74, + "probability": 0.2762 + }, + { + "start": 5989.74, + "end": 5990.98, + "probability": 0.9629 + }, + { + "start": 5991.22, + "end": 5993.8, + "probability": 0.4619 + }, + { + "start": 5993.9, + "end": 5996.06, + "probability": 0.3018 + }, + { + "start": 5996.06, + "end": 5997.16, + "probability": 0.9722 + }, + { + "start": 5997.74, + "end": 5999.22, + "probability": 0.9907 + }, + { + "start": 5999.6, + "end": 6001.44, + "probability": 0.9963 + }, + { + "start": 6001.96, + "end": 6003.42, + "probability": 0.4907 + }, + { + "start": 6003.54, + "end": 6004.69, + "probability": 0.9451 + }, + { + "start": 6004.86, + "end": 6006.46, + "probability": 0.7039 + }, + { + "start": 6006.48, + "end": 6007.08, + "probability": 0.5021 + }, + { + "start": 6007.38, + "end": 6008.14, + "probability": 0.7751 + }, + { + "start": 6008.2, + "end": 6010.3, + "probability": 0.8908 + }, + { + "start": 6010.42, + "end": 6011.8, + "probability": 0.9939 + }, + { + "start": 6011.88, + "end": 6013.42, + "probability": 0.9769 + }, + { + "start": 6013.42, + "end": 6014.74, + "probability": 0.3251 + }, + { + "start": 6015.68, + "end": 6016.22, + "probability": 0.7719 + }, + { + "start": 6016.66, + "end": 6017.7, + "probability": 0.8551 + }, + { + "start": 6017.7, + "end": 6018.36, + "probability": 0.4935 + }, + { + "start": 6018.36, + "end": 6019.08, + "probability": 0.8867 + }, + { + "start": 6026.54, + "end": 6026.88, + "probability": 0.1481 + }, + { + "start": 6028.22, + "end": 6028.7, + "probability": 0.0601 + }, + { + "start": 6029.28, + "end": 6029.92, + "probability": 0.0541 + }, + { + "start": 6030.0, + "end": 6030.58, + "probability": 0.1057 + }, + { + "start": 6030.78, + "end": 6031.5, + "probability": 0.3173 + }, + { + "start": 6032.04, + "end": 6037.24, + "probability": 0.0338 + }, + { + "start": 6038.48, + "end": 6041.68, + "probability": 0.0768 + }, + { + "start": 6041.68, + "end": 6041.75, + "probability": 0.044 + }, + { + "start": 6042.58, + "end": 6043.85, + "probability": 0.2469 + }, + { + "start": 6044.36, + "end": 6045.86, + "probability": 0.2983 + }, + { + "start": 6045.98, + "end": 6048.28, + "probability": 0.0338 + }, + { + "start": 6050.72, + "end": 6053.81, + "probability": 0.0264 + }, + { + "start": 6054.8, + "end": 6054.8, + "probability": 0.1364 + }, + { + "start": 6055.04, + "end": 6060.02, + "probability": 0.1967 + }, + { + "start": 6060.92, + "end": 6062.04, + "probability": 0.2449 + }, + { + "start": 6062.52, + "end": 6064.36, + "probability": 0.1998 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.0, + "end": 6111.0, + "probability": 0.0 + }, + { + "start": 6111.22, + "end": 6116.24, + "probability": 0.1328 + }, + { + "start": 6118.41, + "end": 6118.9, + "probability": 0.4014 + }, + { + "start": 6119.46, + "end": 6120.04, + "probability": 0.0127 + }, + { + "start": 6122.94, + "end": 6123.98, + "probability": 0.0269 + }, + { + "start": 6124.58, + "end": 6126.9, + "probability": 0.2766 + }, + { + "start": 6127.52, + "end": 6132.26, + "probability": 0.0515 + }, + { + "start": 6132.26, + "end": 6134.94, + "probability": 0.0565 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.0, + "end": 6231.0, + "probability": 0.0 + }, + { + "start": 6231.22, + "end": 6234.12, + "probability": 0.332 + }, + { + "start": 6234.24, + "end": 6235.42, + "probability": 0.8795 + }, + { + "start": 6235.88, + "end": 6238.42, + "probability": 0.994 + }, + { + "start": 6239.0, + "end": 6241.54, + "probability": 0.9149 + }, + { + "start": 6241.68, + "end": 6245.4, + "probability": 0.9925 + }, + { + "start": 6245.56, + "end": 6246.12, + "probability": 0.964 + }, + { + "start": 6246.18, + "end": 6246.46, + "probability": 0.5213 + }, + { + "start": 6246.84, + "end": 6247.38, + "probability": 0.7574 + }, + { + "start": 6247.4, + "end": 6248.64, + "probability": 0.8774 + }, + { + "start": 6248.72, + "end": 6249.84, + "probability": 0.9564 + }, + { + "start": 6249.96, + "end": 6250.74, + "probability": 0.0162 + }, + { + "start": 6250.74, + "end": 6252.0, + "probability": 0.2509 + }, + { + "start": 6252.0, + "end": 6253.36, + "probability": 0.702 + }, + { + "start": 6253.58, + "end": 6254.28, + "probability": 0.8444 + }, + { + "start": 6254.28, + "end": 6255.92, + "probability": 0.9379 + }, + { + "start": 6256.46, + "end": 6258.94, + "probability": 0.9854 + }, + { + "start": 6259.04, + "end": 6260.5, + "probability": 0.99 + }, + { + "start": 6260.52, + "end": 6262.2, + "probability": 0.2379 + }, + { + "start": 6270.88, + "end": 6273.1, + "probability": 0.0871 + }, + { + "start": 6273.2, + "end": 6274.7, + "probability": 0.0534 + }, + { + "start": 6276.42, + "end": 6278.24, + "probability": 0.0533 + }, + { + "start": 6278.68, + "end": 6279.34, + "probability": 0.1299 + }, + { + "start": 6279.34, + "end": 6279.34, + "probability": 0.1229 + }, + { + "start": 6280.98, + "end": 6281.54, + "probability": 0.205 + }, + { + "start": 6282.16, + "end": 6282.88, + "probability": 0.5087 + }, + { + "start": 6284.41, + "end": 6287.58, + "probability": 0.0301 + }, + { + "start": 6287.6, + "end": 6290.24, + "probability": 0.0299 + }, + { + "start": 6290.24, + "end": 6291.66, + "probability": 0.1756 + }, + { + "start": 6292.16, + "end": 6293.24, + "probability": 0.16 + }, + { + "start": 6293.34, + "end": 6294.02, + "probability": 0.1055 + }, + { + "start": 6294.58, + "end": 6298.22, + "probability": 0.1073 + }, + { + "start": 6298.78, + "end": 6299.64, + "probability": 0.202 + }, + { + "start": 6307.72, + "end": 6311.14, + "probability": 0.036 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.0, + "end": 6351.0, + "probability": 0.0 + }, + { + "start": 6351.6, + "end": 6351.7, + "probability": 0.093 + }, + { + "start": 6351.7, + "end": 6352.74, + "probability": 0.4962 + }, + { + "start": 6353.3, + "end": 6355.82, + "probability": 0.9976 + }, + { + "start": 6356.2, + "end": 6356.88, + "probability": 0.5596 + }, + { + "start": 6356.92, + "end": 6357.38, + "probability": 0.844 + }, + { + "start": 6357.56, + "end": 6358.96, + "probability": 0.6927 + }, + { + "start": 6359.48, + "end": 6359.62, + "probability": 0.6777 + }, + { + "start": 6359.68, + "end": 6360.8, + "probability": 0.926 + }, + { + "start": 6360.9, + "end": 6361.98, + "probability": 0.7439 + }, + { + "start": 6362.24, + "end": 6362.96, + "probability": 0.535 + }, + { + "start": 6363.26, + "end": 6365.34, + "probability": 0.9753 + }, + { + "start": 6365.84, + "end": 6366.9, + "probability": 0.7314 + }, + { + "start": 6367.16, + "end": 6369.88, + "probability": 0.9105 + }, + { + "start": 6370.08, + "end": 6370.92, + "probability": 0.8956 + }, + { + "start": 6372.93, + "end": 6373.46, + "probability": 0.3517 + }, + { + "start": 6373.46, + "end": 6373.46, + "probability": 0.1467 + }, + { + "start": 6373.46, + "end": 6374.88, + "probability": 0.7887 + }, + { + "start": 6375.2, + "end": 6376.56, + "probability": 0.8124 + }, + { + "start": 6376.62, + "end": 6378.08, + "probability": 0.6618 + }, + { + "start": 6378.44, + "end": 6378.8, + "probability": 0.6286 + }, + { + "start": 6379.26, + "end": 6380.3, + "probability": 0.9036 + }, + { + "start": 6380.48, + "end": 6382.1, + "probability": 0.7158 + }, + { + "start": 6382.2, + "end": 6382.6, + "probability": 0.8849 + }, + { + "start": 6382.64, + "end": 6383.06, + "probability": 0.6819 + }, + { + "start": 6383.08, + "end": 6384.64, + "probability": 0.8075 + }, + { + "start": 6384.64, + "end": 6385.3, + "probability": 0.7271 + }, + { + "start": 6385.3, + "end": 6385.46, + "probability": 0.0252 + }, + { + "start": 6385.46, + "end": 6385.72, + "probability": 0.4365 + }, + { + "start": 6385.72, + "end": 6386.54, + "probability": 0.8692 + }, + { + "start": 6386.74, + "end": 6387.84, + "probability": 0.7693 + }, + { + "start": 6388.02, + "end": 6389.33, + "probability": 0.7393 + }, + { + "start": 6389.52, + "end": 6389.52, + "probability": 0.3319 + }, + { + "start": 6389.52, + "end": 6389.52, + "probability": 0.7463 + }, + { + "start": 6389.52, + "end": 6391.36, + "probability": 0.8459 + }, + { + "start": 6391.36, + "end": 6392.26, + "probability": 0.9453 + }, + { + "start": 6392.72, + "end": 6394.08, + "probability": 0.9951 + }, + { + "start": 6394.22, + "end": 6396.86, + "probability": 0.8529 + }, + { + "start": 6397.4, + "end": 6398.06, + "probability": 0.2293 + }, + { + "start": 6398.34, + "end": 6399.22, + "probability": 0.0429 + }, + { + "start": 6399.22, + "end": 6400.72, + "probability": 0.8932 + }, + { + "start": 6400.8, + "end": 6401.04, + "probability": 0.6034 + }, + { + "start": 6401.12, + "end": 6401.36, + "probability": 0.6255 + }, + { + "start": 6401.6, + "end": 6404.26, + "probability": 0.6643 + }, + { + "start": 6404.76, + "end": 6405.04, + "probability": 0.1084 + }, + { + "start": 6405.04, + "end": 6405.06, + "probability": 0.2353 + }, + { + "start": 6405.06, + "end": 6405.08, + "probability": 0.5869 + }, + { + "start": 6405.08, + "end": 6408.48, + "probability": 0.711 + }, + { + "start": 6408.54, + "end": 6409.38, + "probability": 0.8925 + }, + { + "start": 6410.24, + "end": 6411.5, + "probability": 0.7556 + }, + { + "start": 6411.8, + "end": 6413.16, + "probability": 0.7976 + }, + { + "start": 6413.16, + "end": 6414.92, + "probability": 0.8524 + }, + { + "start": 6415.3, + "end": 6417.28, + "probability": 0.9221 + }, + { + "start": 6418.26, + "end": 6419.86, + "probability": 0.4153 + }, + { + "start": 6420.34, + "end": 6420.95, + "probability": 0.4599 + }, + { + "start": 6420.98, + "end": 6422.9, + "probability": 0.2309 + }, + { + "start": 6422.92, + "end": 6422.92, + "probability": 0.7656 + }, + { + "start": 6422.94, + "end": 6424.38, + "probability": 0.8875 + }, + { + "start": 6424.48, + "end": 6426.78, + "probability": 0.9954 + }, + { + "start": 6426.8, + "end": 6426.82, + "probability": 0.5901 + }, + { + "start": 6426.86, + "end": 6427.1, + "probability": 0.9401 + }, + { + "start": 6427.74, + "end": 6428.52, + "probability": 0.8713 + }, + { + "start": 6433.28, + "end": 6433.46, + "probability": 0.0448 + }, + { + "start": 6433.46, + "end": 6435.5, + "probability": 0.7733 + }, + { + "start": 6436.4, + "end": 6438.86, + "probability": 0.9536 + }, + { + "start": 6438.96, + "end": 6439.7, + "probability": 0.5693 + }, + { + "start": 6440.0, + "end": 6440.0, + "probability": 0.626 + }, + { + "start": 6440.28, + "end": 6442.12, + "probability": 0.9963 + }, + { + "start": 6444.02, + "end": 6444.48, + "probability": 0.4922 + }, + { + "start": 6444.48, + "end": 6445.04, + "probability": 0.5739 + }, + { + "start": 6445.92, + "end": 6447.4, + "probability": 0.9966 + }, + { + "start": 6453.46, + "end": 6460.0, + "probability": 0.9744 + }, + { + "start": 6460.74, + "end": 6463.18, + "probability": 0.9973 + }, + { + "start": 6463.58, + "end": 6465.9, + "probability": 0.9738 + }, + { + "start": 6466.36, + "end": 6468.52, + "probability": 0.9928 + }, + { + "start": 6469.4, + "end": 6472.44, + "probability": 0.9884 + }, + { + "start": 6473.08, + "end": 6477.1, + "probability": 0.9922 + }, + { + "start": 6478.04, + "end": 6478.26, + "probability": 0.7009 + }, + { + "start": 6478.34, + "end": 6478.74, + "probability": 0.8419 + }, + { + "start": 6478.82, + "end": 6480.82, + "probability": 0.9909 + }, + { + "start": 6481.1, + "end": 6481.58, + "probability": 0.9543 + }, + { + "start": 6481.84, + "end": 6482.24, + "probability": 0.8486 + }, + { + "start": 6482.92, + "end": 6483.42, + "probability": 0.9815 + }, + { + "start": 6484.18, + "end": 6484.52, + "probability": 0.9252 + }, + { + "start": 6485.38, + "end": 6487.74, + "probability": 0.9568 + }, + { + "start": 6490.1, + "end": 6494.48, + "probability": 0.9921 + }, + { + "start": 6511.38, + "end": 6516.92, + "probability": 0.3192 + }, + { + "start": 6520.12, + "end": 6520.6, + "probability": 0.1361 + }, + { + "start": 6534.94, + "end": 6536.1, + "probability": 0.5942 + }, + { + "start": 6536.98, + "end": 6542.06, + "probability": 0.9985 + }, + { + "start": 6542.08, + "end": 6545.96, + "probability": 0.9918 + }, + { + "start": 6546.4, + "end": 6547.64, + "probability": 0.6505 + }, + { + "start": 6548.32, + "end": 6551.72, + "probability": 0.9905 + }, + { + "start": 6551.72, + "end": 6555.74, + "probability": 0.9804 + }, + { + "start": 6556.5, + "end": 6557.42, + "probability": 0.6666 + }, + { + "start": 6557.96, + "end": 6561.9, + "probability": 0.8768 + }, + { + "start": 6562.32, + "end": 6565.44, + "probability": 0.9624 + }, + { + "start": 6566.56, + "end": 6573.24, + "probability": 0.9839 + }, + { + "start": 6573.3, + "end": 6580.16, + "probability": 0.9966 + }, + { + "start": 6580.74, + "end": 6584.48, + "probability": 0.9998 + }, + { + "start": 6584.48, + "end": 6588.7, + "probability": 0.9993 + }, + { + "start": 6589.7, + "end": 6594.7, + "probability": 0.9944 + }, + { + "start": 6594.7, + "end": 6597.88, + "probability": 0.9973 + }, + { + "start": 6598.42, + "end": 6599.44, + "probability": 0.5603 + }, + { + "start": 6600.3, + "end": 6607.38, + "probability": 0.9677 + }, + { + "start": 6608.0, + "end": 6614.26, + "probability": 0.991 + }, + { + "start": 6615.02, + "end": 6621.64, + "probability": 0.9964 + }, + { + "start": 6622.14, + "end": 6623.82, + "probability": 0.9984 + }, + { + "start": 6624.44, + "end": 6628.92, + "probability": 0.9967 + }, + { + "start": 6629.62, + "end": 6637.74, + "probability": 0.9483 + }, + { + "start": 6638.78, + "end": 6640.4, + "probability": 0.9975 + }, + { + "start": 6641.12, + "end": 6646.32, + "probability": 0.9979 + }, + { + "start": 6646.86, + "end": 6648.68, + "probability": 0.8987 + }, + { + "start": 6649.64, + "end": 6651.6, + "probability": 0.9982 + }, + { + "start": 6652.18, + "end": 6654.74, + "probability": 0.8375 + }, + { + "start": 6655.34, + "end": 6661.0, + "probability": 0.9905 + }, + { + "start": 6661.54, + "end": 6662.12, + "probability": 0.8133 + }, + { + "start": 6662.8, + "end": 6665.96, + "probability": 0.9901 + }, + { + "start": 6666.08, + "end": 6667.26, + "probability": 0.842 + }, + { + "start": 6667.8, + "end": 6668.9, + "probability": 0.998 + }, + { + "start": 6669.64, + "end": 6676.28, + "probability": 0.9476 + }, + { + "start": 6676.28, + "end": 6682.44, + "probability": 0.9995 + }, + { + "start": 6683.48, + "end": 6684.36, + "probability": 0.7307 + }, + { + "start": 6684.64, + "end": 6689.74, + "probability": 0.8719 + }, + { + "start": 6690.34, + "end": 6695.18, + "probability": 0.999 + }, + { + "start": 6695.18, + "end": 6702.26, + "probability": 0.9976 + }, + { + "start": 6703.1, + "end": 6710.28, + "probability": 0.9946 + }, + { + "start": 6710.96, + "end": 6715.48, + "probability": 0.9587 + }, + { + "start": 6716.62, + "end": 6718.76, + "probability": 0.9028 + }, + { + "start": 6719.22, + "end": 6720.12, + "probability": 0.7777 + }, + { + "start": 6720.22, + "end": 6724.46, + "probability": 0.9406 + }, + { + "start": 6725.04, + "end": 6727.62, + "probability": 0.9651 + }, + { + "start": 6728.52, + "end": 6731.62, + "probability": 0.996 + }, + { + "start": 6733.26, + "end": 6738.7, + "probability": 0.9933 + }, + { + "start": 6738.7, + "end": 6743.14, + "probability": 0.9971 + }, + { + "start": 6744.52, + "end": 6749.68, + "probability": 0.9822 + }, + { + "start": 6749.68, + "end": 6754.94, + "probability": 0.9994 + }, + { + "start": 6755.52, + "end": 6758.82, + "probability": 0.9967 + }, + { + "start": 6759.92, + "end": 6761.84, + "probability": 0.8848 + }, + { + "start": 6763.44, + "end": 6768.94, + "probability": 0.9968 + }, + { + "start": 6769.8, + "end": 6771.42, + "probability": 0.6785 + }, + { + "start": 6771.64, + "end": 6773.02, + "probability": 0.7168 + }, + { + "start": 6773.34, + "end": 6775.3, + "probability": 0.9844 + }, + { + "start": 6776.14, + "end": 6777.36, + "probability": 0.8993 + }, + { + "start": 6777.98, + "end": 6780.34, + "probability": 0.9984 + }, + { + "start": 6781.0, + "end": 6783.34, + "probability": 0.8786 + }, + { + "start": 6783.96, + "end": 6786.86, + "probability": 0.9741 + }, + { + "start": 6787.9, + "end": 6790.38, + "probability": 0.5004 + }, + { + "start": 6791.22, + "end": 6796.2, + "probability": 0.994 + }, + { + "start": 6796.2, + "end": 6801.08, + "probability": 0.9554 + }, + { + "start": 6802.18, + "end": 6803.18, + "probability": 0.763 + }, + { + "start": 6803.3, + "end": 6809.08, + "probability": 0.8406 + }, + { + "start": 6810.02, + "end": 6811.74, + "probability": 0.8652 + }, + { + "start": 6812.44, + "end": 6816.7, + "probability": 0.9977 + }, + { + "start": 6817.4, + "end": 6823.16, + "probability": 0.9997 + }, + { + "start": 6823.42, + "end": 6824.08, + "probability": 0.4041 + }, + { + "start": 6824.8, + "end": 6828.9, + "probability": 0.955 + }, + { + "start": 6829.42, + "end": 6832.08, + "probability": 0.9622 + }, + { + "start": 6832.92, + "end": 6836.68, + "probability": 0.9891 + }, + { + "start": 6837.26, + "end": 6840.58, + "probability": 0.7676 + }, + { + "start": 6840.98, + "end": 6841.92, + "probability": 0.7492 + }, + { + "start": 6842.5, + "end": 6844.56, + "probability": 0.9888 + }, + { + "start": 6844.98, + "end": 6849.94, + "probability": 0.9961 + }, + { + "start": 6849.94, + "end": 6854.74, + "probability": 0.9926 + }, + { + "start": 6854.74, + "end": 6860.08, + "probability": 0.9907 + }, + { + "start": 6860.34, + "end": 6863.42, + "probability": 0.9909 + }, + { + "start": 6864.58, + "end": 6864.8, + "probability": 0.4515 + }, + { + "start": 6864.94, + "end": 6866.38, + "probability": 0.6568 + }, + { + "start": 6866.76, + "end": 6870.6, + "probability": 0.9921 + }, + { + "start": 6870.84, + "end": 6871.46, + "probability": 0.9226 + }, + { + "start": 6872.0, + "end": 6873.54, + "probability": 0.9827 + }, + { + "start": 6874.14, + "end": 6875.52, + "probability": 0.894 + }, + { + "start": 6877.08, + "end": 6884.55, + "probability": 0.8401 + }, + { + "start": 6886.84, + "end": 6888.34, + "probability": 0.8641 + }, + { + "start": 6888.92, + "end": 6892.64, + "probability": 0.9681 + }, + { + "start": 6893.88, + "end": 6900.1, + "probability": 0.9421 + }, + { + "start": 6900.66, + "end": 6902.74, + "probability": 0.9995 + }, + { + "start": 6903.68, + "end": 6904.76, + "probability": 0.9631 + }, + { + "start": 6904.86, + "end": 6905.3, + "probability": 0.8387 + }, + { + "start": 6905.48, + "end": 6913.3, + "probability": 0.9956 + }, + { + "start": 6913.38, + "end": 6914.6, + "probability": 0.9396 + }, + { + "start": 6915.28, + "end": 6920.32, + "probability": 0.9771 + }, + { + "start": 6920.32, + "end": 6925.06, + "probability": 0.9981 + }, + { + "start": 6926.14, + "end": 6933.52, + "probability": 0.9975 + }, + { + "start": 6933.52, + "end": 6940.84, + "probability": 0.999 + }, + { + "start": 6941.92, + "end": 6947.3, + "probability": 0.9987 + }, + { + "start": 6948.38, + "end": 6950.12, + "probability": 0.994 + }, + { + "start": 6950.8, + "end": 6951.78, + "probability": 0.8287 + }, + { + "start": 6952.44, + "end": 6953.9, + "probability": 0.9741 + }, + { + "start": 6954.08, + "end": 6959.12, + "probability": 0.997 + }, + { + "start": 6959.12, + "end": 6963.62, + "probability": 0.998 + }, + { + "start": 6964.46, + "end": 6970.1, + "probability": 0.998 + }, + { + "start": 6970.36, + "end": 6971.64, + "probability": 0.7754 + }, + { + "start": 6972.44, + "end": 6974.34, + "probability": 0.9026 + }, + { + "start": 6974.46, + "end": 6975.22, + "probability": 0.4997 + }, + { + "start": 6975.58, + "end": 6978.46, + "probability": 0.9821 + }, + { + "start": 6978.54, + "end": 6982.8, + "probability": 0.9985 + }, + { + "start": 6983.28, + "end": 6985.26, + "probability": 0.9766 + }, + { + "start": 6986.22, + "end": 6989.04, + "probability": 0.9992 + }, + { + "start": 6990.34, + "end": 6995.22, + "probability": 0.9745 + }, + { + "start": 6995.22, + "end": 6998.86, + "probability": 0.9966 + }, + { + "start": 6999.94, + "end": 7000.3, + "probability": 0.7107 + }, + { + "start": 7000.86, + "end": 7004.44, + "probability": 0.9928 + }, + { + "start": 7004.94, + "end": 7008.58, + "probability": 0.9919 + }, + { + "start": 7008.76, + "end": 7011.62, + "probability": 0.9843 + }, + { + "start": 7012.62, + "end": 7013.0, + "probability": 0.8694 + }, + { + "start": 7013.8, + "end": 7020.52, + "probability": 0.9922 + }, + { + "start": 7020.84, + "end": 7027.06, + "probability": 0.9995 + }, + { + "start": 7027.84, + "end": 7029.38, + "probability": 0.9985 + }, + { + "start": 7030.04, + "end": 7037.3, + "probability": 0.9987 + }, + { + "start": 7038.58, + "end": 7040.72, + "probability": 0.9973 + }, + { + "start": 7041.4, + "end": 7045.36, + "probability": 0.9984 + }, + { + "start": 7046.82, + "end": 7050.8, + "probability": 0.9362 + }, + { + "start": 7051.46, + "end": 7052.78, + "probability": 0.7544 + }, + { + "start": 7053.24, + "end": 7057.04, + "probability": 0.9889 + }, + { + "start": 7057.8, + "end": 7061.22, + "probability": 0.8259 + }, + { + "start": 7061.24, + "end": 7066.14, + "probability": 0.9788 + }, + { + "start": 7067.02, + "end": 7069.46, + "probability": 0.7296 + }, + { + "start": 7070.2, + "end": 7070.96, + "probability": 0.9494 + }, + { + "start": 7071.68, + "end": 7073.78, + "probability": 0.9855 + }, + { + "start": 7074.54, + "end": 7074.86, + "probability": 0.8031 + }, + { + "start": 7075.84, + "end": 7079.86, + "probability": 0.9857 + }, + { + "start": 7080.5, + "end": 7082.74, + "probability": 0.9608 + }, + { + "start": 7083.26, + "end": 7087.16, + "probability": 0.9814 + }, + { + "start": 7087.72, + "end": 7090.22, + "probability": 0.9824 + }, + { + "start": 7091.08, + "end": 7095.28, + "probability": 0.9823 + }, + { + "start": 7095.28, + "end": 7100.1, + "probability": 0.9975 + }, + { + "start": 7100.74, + "end": 7104.52, + "probability": 0.9727 + }, + { + "start": 7105.32, + "end": 7106.82, + "probability": 0.8284 + }, + { + "start": 7107.38, + "end": 7111.12, + "probability": 0.9961 + }, + { + "start": 7111.9, + "end": 7115.2, + "probability": 0.9761 + }, + { + "start": 7115.22, + "end": 7117.98, + "probability": 0.9979 + }, + { + "start": 7119.28, + "end": 7123.24, + "probability": 0.991 + }, + { + "start": 7123.74, + "end": 7124.44, + "probability": 0.5068 + }, + { + "start": 7124.82, + "end": 7126.38, + "probability": 0.5868 + }, + { + "start": 7126.62, + "end": 7129.08, + "probability": 0.931 + }, + { + "start": 7130.4, + "end": 7138.78, + "probability": 0.8933 + }, + { + "start": 7139.88, + "end": 7142.28, + "probability": 0.9972 + }, + { + "start": 7143.36, + "end": 7148.22, + "probability": 0.9954 + }, + { + "start": 7148.28, + "end": 7152.44, + "probability": 0.9986 + }, + { + "start": 7152.56, + "end": 7156.76, + "probability": 0.964 + }, + { + "start": 7157.06, + "end": 7158.06, + "probability": 0.2277 + }, + { + "start": 7158.38, + "end": 7159.04, + "probability": 0.6113 + }, + { + "start": 7159.38, + "end": 7159.64, + "probability": 0.9049 + }, + { + "start": 7159.76, + "end": 7162.32, + "probability": 0.945 + }, + { + "start": 7162.32, + "end": 7165.56, + "probability": 0.9952 + }, + { + "start": 7167.7, + "end": 7172.84, + "probability": 0.9988 + }, + { + "start": 7172.9, + "end": 7175.42, + "probability": 0.9987 + }, + { + "start": 7175.42, + "end": 7180.0, + "probability": 0.9921 + }, + { + "start": 7180.12, + "end": 7181.48, + "probability": 0.8999 + }, + { + "start": 7181.68, + "end": 7182.58, + "probability": 0.8177 + }, + { + "start": 7183.2, + "end": 7186.08, + "probability": 0.9878 + }, + { + "start": 7186.2, + "end": 7188.22, + "probability": 0.9446 + }, + { + "start": 7188.9, + "end": 7189.74, + "probability": 0.7418 + }, + { + "start": 7189.78, + "end": 7191.08, + "probability": 0.8256 + }, + { + "start": 7191.46, + "end": 7191.64, + "probability": 0.2763 + }, + { + "start": 7192.36, + "end": 7192.36, + "probability": 0.4738 + }, + { + "start": 7192.38, + "end": 7194.58, + "probability": 0.9402 + }, + { + "start": 7195.06, + "end": 7196.98, + "probability": 0.8348 + }, + { + "start": 7198.16, + "end": 7200.82, + "probability": 0.9702 + }, + { + "start": 7201.46, + "end": 7203.22, + "probability": 0.98 + }, + { + "start": 7203.3, + "end": 7205.34, + "probability": 0.9953 + }, + { + "start": 7205.94, + "end": 7209.92, + "probability": 0.9954 + }, + { + "start": 7209.92, + "end": 7213.64, + "probability": 0.9974 + }, + { + "start": 7214.3, + "end": 7217.87, + "probability": 0.995 + }, + { + "start": 7218.84, + "end": 7218.94, + "probability": 0.3829 + }, + { + "start": 7219.12, + "end": 7220.0, + "probability": 0.9795 + }, + { + "start": 7220.06, + "end": 7222.84, + "probability": 0.9791 + }, + { + "start": 7224.22, + "end": 7225.54, + "probability": 0.9845 + }, + { + "start": 7226.1, + "end": 7227.92, + "probability": 0.9897 + }, + { + "start": 7228.18, + "end": 7229.0, + "probability": 0.6381 + }, + { + "start": 7229.1, + "end": 7229.98, + "probability": 0.8339 + }, + { + "start": 7230.46, + "end": 7232.5, + "probability": 0.9031 + }, + { + "start": 7234.42, + "end": 7237.8, + "probability": 0.9848 + }, + { + "start": 7238.4, + "end": 7243.52, + "probability": 0.9783 + }, + { + "start": 7244.46, + "end": 7246.58, + "probability": 0.8942 + }, + { + "start": 7247.62, + "end": 7252.0, + "probability": 0.8596 + }, + { + "start": 7252.66, + "end": 7257.82, + "probability": 0.9355 + }, + { + "start": 7258.52, + "end": 7263.14, + "probability": 0.9951 + }, + { + "start": 7263.3, + "end": 7268.3, + "probability": 0.9964 + }, + { + "start": 7268.55, + "end": 7269.86, + "probability": 0.9819 + }, + { + "start": 7270.06, + "end": 7270.48, + "probability": 0.2361 + }, + { + "start": 7270.76, + "end": 7271.12, + "probability": 0.4903 + }, + { + "start": 7271.62, + "end": 7271.74, + "probability": 0.3485 + }, + { + "start": 7271.74, + "end": 7271.74, + "probability": 0.1506 + }, + { + "start": 7271.74, + "end": 7271.84, + "probability": 0.1223 + }, + { + "start": 7272.08, + "end": 7273.94, + "probability": 0.9753 + }, + { + "start": 7274.5, + "end": 7275.8, + "probability": 0.9749 + }, + { + "start": 7276.52, + "end": 7282.2, + "probability": 0.9968 + }, + { + "start": 7282.96, + "end": 7287.02, + "probability": 0.8994 + }, + { + "start": 7287.18, + "end": 7292.32, + "probability": 0.9966 + }, + { + "start": 7292.7, + "end": 7297.64, + "probability": 0.9938 + }, + { + "start": 7298.12, + "end": 7299.36, + "probability": 0.5364 + }, + { + "start": 7300.1, + "end": 7303.4, + "probability": 0.9943 + }, + { + "start": 7303.84, + "end": 7306.68, + "probability": 0.9669 + }, + { + "start": 7307.18, + "end": 7307.76, + "probability": 0.7374 + }, + { + "start": 7307.98, + "end": 7308.66, + "probability": 0.5226 + }, + { + "start": 7308.74, + "end": 7309.24, + "probability": 0.8089 + }, + { + "start": 7309.24, + "end": 7312.76, + "probability": 0.8191 + }, + { + "start": 7312.82, + "end": 7316.54, + "probability": 0.9722 + }, + { + "start": 7316.84, + "end": 7317.62, + "probability": 0.788 + }, + { + "start": 7318.16, + "end": 7321.06, + "probability": 0.8619 + }, + { + "start": 7321.06, + "end": 7321.4, + "probability": 0.392 + }, + { + "start": 7321.76, + "end": 7325.22, + "probability": 0.6448 + }, + { + "start": 7325.66, + "end": 7330.8, + "probability": 0.9956 + }, + { + "start": 7331.4, + "end": 7333.26, + "probability": 0.8652 + }, + { + "start": 7333.6, + "end": 7336.24, + "probability": 0.959 + }, + { + "start": 7336.66, + "end": 7337.14, + "probability": 0.911 + }, + { + "start": 7338.32, + "end": 7339.1, + "probability": 0.8251 + }, + { + "start": 7339.72, + "end": 7343.84, + "probability": 0.7998 + }, + { + "start": 7344.88, + "end": 7350.46, + "probability": 0.9598 + }, + { + "start": 7350.46, + "end": 7358.24, + "probability": 0.9758 + }, + { + "start": 7358.52, + "end": 7361.16, + "probability": 0.9391 + }, + { + "start": 7361.74, + "end": 7366.0, + "probability": 0.998 + }, + { + "start": 7366.24, + "end": 7366.98, + "probability": 0.874 + }, + { + "start": 7367.52, + "end": 7371.68, + "probability": 0.9656 + }, + { + "start": 7371.78, + "end": 7372.92, + "probability": 0.8658 + }, + { + "start": 7373.24, + "end": 7378.52, + "probability": 0.9888 + }, + { + "start": 7379.52, + "end": 7384.34, + "probability": 0.9907 + }, + { + "start": 7385.34, + "end": 7389.24, + "probability": 0.9968 + }, + { + "start": 7389.24, + "end": 7393.58, + "probability": 0.9939 + }, + { + "start": 7394.36, + "end": 7396.78, + "probability": 0.9751 + }, + { + "start": 7397.66, + "end": 7399.58, + "probability": 0.9988 + }, + { + "start": 7400.58, + "end": 7405.18, + "probability": 0.9614 + }, + { + "start": 7406.34, + "end": 7410.92, + "probability": 0.9974 + }, + { + "start": 7412.28, + "end": 7415.88, + "probability": 0.9987 + }, + { + "start": 7416.5, + "end": 7417.4, + "probability": 0.5215 + }, + { + "start": 7417.66, + "end": 7423.48, + "probability": 0.9934 + }, + { + "start": 7424.04, + "end": 7424.4, + "probability": 0.8236 + }, + { + "start": 7425.02, + "end": 7426.02, + "probability": 0.7415 + }, + { + "start": 7426.14, + "end": 7426.52, + "probability": 0.8398 + }, + { + "start": 7426.74, + "end": 7427.92, + "probability": 0.8887 + }, + { + "start": 7428.06, + "end": 7429.8, + "probability": 0.9207 + }, + { + "start": 7429.94, + "end": 7431.29, + "probability": 0.8708 + }, + { + "start": 7431.46, + "end": 7432.66, + "probability": 0.7316 + }, + { + "start": 7432.72, + "end": 7432.76, + "probability": 0.3972 + }, + { + "start": 7432.76, + "end": 7434.52, + "probability": 0.7939 + }, + { + "start": 7434.78, + "end": 7439.7, + "probability": 0.8264 + }, + { + "start": 7439.7, + "end": 7439.78, + "probability": 0.8209 + }, + { + "start": 7439.78, + "end": 7440.44, + "probability": 0.7791 + }, + { + "start": 7440.73, + "end": 7442.06, + "probability": 0.3421 + }, + { + "start": 7442.06, + "end": 7442.82, + "probability": 0.689 + }, + { + "start": 7443.26, + "end": 7444.22, + "probability": 0.8486 + }, + { + "start": 7445.19, + "end": 7449.3, + "probability": 0.9803 + }, + { + "start": 7450.38, + "end": 7453.14, + "probability": 0.9274 + }, + { + "start": 7453.62, + "end": 7458.58, + "probability": 0.9439 + }, + { + "start": 7458.86, + "end": 7460.14, + "probability": 0.9658 + }, + { + "start": 7460.18, + "end": 7464.14, + "probability": 0.8108 + }, + { + "start": 7464.98, + "end": 7470.5, + "probability": 0.958 + }, + { + "start": 7470.52, + "end": 7474.96, + "probability": 0.997 + }, + { + "start": 7475.08, + "end": 7475.84, + "probability": 0.7959 + }, + { + "start": 7476.16, + "end": 7478.74, + "probability": 0.9214 + }, + { + "start": 7479.12, + "end": 7481.24, + "probability": 0.9406 + }, + { + "start": 7481.38, + "end": 7482.3, + "probability": 0.2516 + }, + { + "start": 7482.3, + "end": 7486.1, + "probability": 0.7926 + }, + { + "start": 7486.1, + "end": 7486.1, + "probability": 0.8141 + }, + { + "start": 7486.1, + "end": 7490.38, + "probability": 0.9822 + }, + { + "start": 7490.38, + "end": 7490.38, + "probability": 0.098 + }, + { + "start": 7490.38, + "end": 7490.38, + "probability": 0.0248 + }, + { + "start": 7490.4, + "end": 7490.76, + "probability": 0.7817 + }, + { + "start": 7490.82, + "end": 7493.92, + "probability": 0.9044 + }, + { + "start": 7493.98, + "end": 7494.58, + "probability": 0.8903 + }, + { + "start": 7494.78, + "end": 7494.8, + "probability": 0.6945 + }, + { + "start": 7494.8, + "end": 7495.36, + "probability": 0.8403 + }, + { + "start": 7496.14, + "end": 7499.82, + "probability": 0.9867 + }, + { + "start": 7500.76, + "end": 7501.16, + "probability": 0.9024 + }, + { + "start": 7503.22, + "end": 7504.82, + "probability": 0.8746 + }, + { + "start": 7505.94, + "end": 7508.5, + "probability": 0.9961 + }, + { + "start": 7509.14, + "end": 7510.8, + "probability": 0.719 + }, + { + "start": 7511.0, + "end": 7513.38, + "probability": 0.8311 + }, + { + "start": 7513.46, + "end": 7515.06, + "probability": 0.6862 + }, + { + "start": 7515.46, + "end": 7515.86, + "probability": 0.6823 + }, + { + "start": 7515.92, + "end": 7518.34, + "probability": 0.9836 + }, + { + "start": 7519.34, + "end": 7522.88, + "probability": 0.9829 + }, + { + "start": 7523.44, + "end": 7524.34, + "probability": 0.8813 + }, + { + "start": 7525.88, + "end": 7529.0, + "probability": 0.9984 + }, + { + "start": 7529.74, + "end": 7529.96, + "probability": 0.8103 + }, + { + "start": 7531.0, + "end": 7532.38, + "probability": 0.9644 + }, + { + "start": 7532.92, + "end": 7537.82, + "probability": 0.9648 + }, + { + "start": 7538.34, + "end": 7538.86, + "probability": 0.5447 + }, + { + "start": 7540.02, + "end": 7540.7, + "probability": 0.8917 + }, + { + "start": 7541.44, + "end": 7544.14, + "probability": 0.9785 + }, + { + "start": 7544.7, + "end": 7548.56, + "probability": 0.9958 + }, + { + "start": 7548.56, + "end": 7552.44, + "probability": 0.9919 + }, + { + "start": 7553.08, + "end": 7556.02, + "probability": 0.9709 + }, + { + "start": 7557.3, + "end": 7563.86, + "probability": 0.9973 + }, + { + "start": 7564.6, + "end": 7565.66, + "probability": 0.6795 + }, + { + "start": 7566.56, + "end": 7570.64, + "probability": 0.9947 + }, + { + "start": 7570.88, + "end": 7572.62, + "probability": 0.6118 + }, + { + "start": 7572.68, + "end": 7577.42, + "probability": 0.996 + }, + { + "start": 7577.42, + "end": 7580.68, + "probability": 0.9988 + }, + { + "start": 7581.48, + "end": 7584.02, + "probability": 0.9981 + }, + { + "start": 7584.02, + "end": 7586.7, + "probability": 0.9992 + }, + { + "start": 7587.18, + "end": 7588.34, + "probability": 0.9219 + }, + { + "start": 7589.86, + "end": 7591.7, + "probability": 0.9982 + }, + { + "start": 7592.16, + "end": 7594.76, + "probability": 0.9978 + }, + { + "start": 7594.94, + "end": 7600.12, + "probability": 0.9876 + }, + { + "start": 7600.38, + "end": 7600.98, + "probability": 0.7904 + }, + { + "start": 7601.52, + "end": 7602.32, + "probability": 0.7662 + }, + { + "start": 7604.48, + "end": 7610.52, + "probability": 0.9941 + }, + { + "start": 7611.36, + "end": 7613.0, + "probability": 0.8804 + }, + { + "start": 7614.12, + "end": 7620.96, + "probability": 0.9788 + }, + { + "start": 7621.48, + "end": 7626.86, + "probability": 0.9976 + }, + { + "start": 7627.86, + "end": 7632.06, + "probability": 0.9977 + }, + { + "start": 7632.58, + "end": 7634.02, + "probability": 0.9937 + }, + { + "start": 7634.9, + "end": 7636.1, + "probability": 0.8395 + }, + { + "start": 7636.9, + "end": 7637.58, + "probability": 0.6115 + }, + { + "start": 7637.72, + "end": 7638.94, + "probability": 0.9855 + }, + { + "start": 7639.2, + "end": 7642.32, + "probability": 0.981 + }, + { + "start": 7642.38, + "end": 7644.34, + "probability": 0.9548 + }, + { + "start": 7644.86, + "end": 7645.92, + "probability": 0.7039 + }, + { + "start": 7646.84, + "end": 7650.72, + "probability": 0.9985 + }, + { + "start": 7650.84, + "end": 7653.82, + "probability": 0.9976 + }, + { + "start": 7653.82, + "end": 7656.4, + "probability": 0.988 + }, + { + "start": 7656.56, + "end": 7657.12, + "probability": 0.8491 + }, + { + "start": 7658.2, + "end": 7658.36, + "probability": 0.3914 + }, + { + "start": 7658.44, + "end": 7659.4, + "probability": 0.794 + }, + { + "start": 7659.46, + "end": 7663.04, + "probability": 0.9849 + }, + { + "start": 7663.06, + "end": 7668.0, + "probability": 0.9966 + }, + { + "start": 7668.16, + "end": 7669.4, + "probability": 0.987 + }, + { + "start": 7669.66, + "end": 7672.34, + "probability": 0.9498 + }, + { + "start": 7672.46, + "end": 7672.94, + "probability": 0.4573 + }, + { + "start": 7673.14, + "end": 7677.84, + "probability": 0.9797 + }, + { + "start": 7680.56, + "end": 7683.36, + "probability": 0.9763 + }, + { + "start": 7683.48, + "end": 7686.6, + "probability": 0.9979 + }, + { + "start": 7687.7, + "end": 7692.04, + "probability": 0.996 + }, + { + "start": 7692.9, + "end": 7692.94, + "probability": 0.0521 + }, + { + "start": 7692.94, + "end": 7694.1, + "probability": 0.9546 + }, + { + "start": 7694.54, + "end": 7699.76, + "probability": 0.9875 + }, + { + "start": 7699.9, + "end": 7700.64, + "probability": 0.9581 + }, + { + "start": 7700.86, + "end": 7704.32, + "probability": 0.8381 + }, + { + "start": 7705.22, + "end": 7707.32, + "probability": 0.8322 + }, + { + "start": 7707.48, + "end": 7709.38, + "probability": 0.8024 + }, + { + "start": 7709.92, + "end": 7711.62, + "probability": 0.9595 + }, + { + "start": 7712.0, + "end": 7715.82, + "probability": 0.9974 + }, + { + "start": 7715.82, + "end": 7719.9, + "probability": 0.9923 + }, + { + "start": 7720.4, + "end": 7724.16, + "probability": 0.9927 + }, + { + "start": 7724.16, + "end": 7728.62, + "probability": 0.998 + }, + { + "start": 7729.3, + "end": 7730.14, + "probability": 0.9663 + }, + { + "start": 7730.76, + "end": 7732.52, + "probability": 0.9052 + }, + { + "start": 7733.56, + "end": 7735.44, + "probability": 0.9893 + }, + { + "start": 7735.54, + "end": 7736.52, + "probability": 0.8865 + }, + { + "start": 7737.3, + "end": 7744.12, + "probability": 0.9506 + }, + { + "start": 7744.92, + "end": 7747.44, + "probability": 0.7756 + }, + { + "start": 7748.36, + "end": 7752.3, + "probability": 0.9354 + }, + { + "start": 7752.36, + "end": 7754.62, + "probability": 0.8579 + }, + { + "start": 7755.4, + "end": 7755.78, + "probability": 0.5724 + }, + { + "start": 7756.02, + "end": 7757.04, + "probability": 0.9329 + }, + { + "start": 7758.12, + "end": 7759.32, + "probability": 0.9878 + }, + { + "start": 7759.8, + "end": 7765.78, + "probability": 0.9872 + }, + { + "start": 7766.4, + "end": 7768.38, + "probability": 0.7701 + }, + { + "start": 7768.54, + "end": 7771.08, + "probability": 0.9423 + }, + { + "start": 7771.46, + "end": 7773.12, + "probability": 0.7067 + }, + { + "start": 7773.94, + "end": 7777.98, + "probability": 0.9935 + }, + { + "start": 7778.04, + "end": 7781.0, + "probability": 0.9976 + }, + { + "start": 7781.74, + "end": 7783.1, + "probability": 0.8875 + }, + { + "start": 7783.24, + "end": 7783.62, + "probability": 0.8068 + }, + { + "start": 7783.96, + "end": 7786.8, + "probability": 0.9599 + }, + { + "start": 7787.12, + "end": 7793.16, + "probability": 0.9647 + }, + { + "start": 7793.28, + "end": 7796.56, + "probability": 0.8662 + }, + { + "start": 7797.2, + "end": 7798.88, + "probability": 0.9854 + }, + { + "start": 7799.8, + "end": 7803.82, + "probability": 0.9837 + }, + { + "start": 7804.02, + "end": 7805.15, + "probability": 0.8875 + }, + { + "start": 7806.02, + "end": 7806.62, + "probability": 0.709 + }, + { + "start": 7807.3, + "end": 7809.76, + "probability": 0.9969 + }, + { + "start": 7810.16, + "end": 7811.94, + "probability": 0.9867 + }, + { + "start": 7812.72, + "end": 7813.42, + "probability": 0.8691 + }, + { + "start": 7814.6, + "end": 7816.22, + "probability": 0.7362 + }, + { + "start": 7817.32, + "end": 7821.1, + "probability": 0.9775 + }, + { + "start": 7822.12, + "end": 7827.08, + "probability": 0.9919 + }, + { + "start": 7828.16, + "end": 7831.02, + "probability": 0.9982 + }, + { + "start": 7831.82, + "end": 7835.48, + "probability": 0.9813 + }, + { + "start": 7836.22, + "end": 7839.42, + "probability": 0.8738 + }, + { + "start": 7839.94, + "end": 7841.64, + "probability": 0.9633 + }, + { + "start": 7842.68, + "end": 7847.86, + "probability": 0.9958 + }, + { + "start": 7848.46, + "end": 7854.44, + "probability": 0.9388 + }, + { + "start": 7856.22, + "end": 7859.14, + "probability": 0.9912 + }, + { + "start": 7860.86, + "end": 7863.7, + "probability": 0.9473 + }, + { + "start": 7864.72, + "end": 7869.2, + "probability": 0.9854 + }, + { + "start": 7870.92, + "end": 7873.68, + "probability": 0.9049 + }, + { + "start": 7875.2, + "end": 7880.72, + "probability": 0.9678 + }, + { + "start": 7881.36, + "end": 7882.66, + "probability": 0.9766 + }, + { + "start": 7883.66, + "end": 7886.64, + "probability": 0.9836 + }, + { + "start": 7887.82, + "end": 7889.14, + "probability": 0.7576 + }, + { + "start": 7889.28, + "end": 7892.48, + "probability": 0.9917 + }, + { + "start": 7893.54, + "end": 7898.78, + "probability": 0.8078 + }, + { + "start": 7899.66, + "end": 7902.6, + "probability": 0.9977 + }, + { + "start": 7903.7, + "end": 7905.28, + "probability": 0.9415 + }, + { + "start": 7906.74, + "end": 7908.74, + "probability": 0.9951 + }, + { + "start": 7909.52, + "end": 7913.7, + "probability": 0.9955 + }, + { + "start": 7913.7, + "end": 7919.18, + "probability": 0.9989 + }, + { + "start": 7919.96, + "end": 7921.0, + "probability": 0.6287 + }, + { + "start": 7921.6, + "end": 7923.84, + "probability": 0.7264 + }, + { + "start": 7924.76, + "end": 7928.54, + "probability": 0.9915 + }, + { + "start": 7928.54, + "end": 7932.82, + "probability": 0.9976 + }, + { + "start": 7933.06, + "end": 7934.06, + "probability": 0.7486 + }, + { + "start": 7934.58, + "end": 7939.59, + "probability": 0.996 + }, + { + "start": 7941.6, + "end": 7944.66, + "probability": 0.7191 + }, + { + "start": 7944.98, + "end": 7945.12, + "probability": 0.0436 + }, + { + "start": 7945.14, + "end": 7946.08, + "probability": 0.754 + }, + { + "start": 7946.9, + "end": 7948.64, + "probability": 0.7537 + }, + { + "start": 7949.74, + "end": 7955.44, + "probability": 0.9208 + }, + { + "start": 7955.46, + "end": 7958.9, + "probability": 0.8536 + }, + { + "start": 7959.68, + "end": 7960.56, + "probability": 0.6387 + }, + { + "start": 7960.7, + "end": 7961.08, + "probability": 0.4787 + }, + { + "start": 7961.54, + "end": 7966.3, + "probability": 0.8914 + }, + { + "start": 7966.82, + "end": 7968.13, + "probability": 0.8817 + }, + { + "start": 7968.74, + "end": 7971.74, + "probability": 0.9451 + }, + { + "start": 7971.74, + "end": 7974.88, + "probability": 0.986 + }, + { + "start": 7976.52, + "end": 7982.8, + "probability": 0.9729 + }, + { + "start": 7982.8, + "end": 7984.26, + "probability": 0.8468 + }, + { + "start": 7985.94, + "end": 7989.44, + "probability": 0.9568 + }, + { + "start": 7989.44, + "end": 7991.04, + "probability": 0.8853 + }, + { + "start": 7991.28, + "end": 7991.28, + "probability": 0.5264 + }, + { + "start": 7991.74, + "end": 7994.44, + "probability": 0.9561 + }, + { + "start": 7994.62, + "end": 7995.14, + "probability": 0.1344 + }, + { + "start": 7995.58, + "end": 7996.7, + "probability": 0.492 + }, + { + "start": 7996.7, + "end": 7996.7, + "probability": 0.2431 + }, + { + "start": 7996.7, + "end": 7997.68, + "probability": 0.8674 + }, + { + "start": 7997.68, + "end": 8000.98, + "probability": 0.8992 + }, + { + "start": 8001.08, + "end": 8003.9, + "probability": 0.7162 + }, + { + "start": 8003.98, + "end": 8005.94, + "probability": 0.4759 + }, + { + "start": 8006.56, + "end": 8006.92, + "probability": 0.3148 + }, + { + "start": 8006.92, + "end": 8011.14, + "probability": 0.233 + }, + { + "start": 8011.24, + "end": 8013.1, + "probability": 0.9489 + }, + { + "start": 8013.2, + "end": 8015.02, + "probability": 0.6541 + }, + { + "start": 8015.24, + "end": 8016.58, + "probability": 0.0485 + }, + { + "start": 8020.44, + "end": 8024.66, + "probability": 0.7717 + }, + { + "start": 8025.06, + "end": 8025.3, + "probability": 0.6086 + }, + { + "start": 8025.36, + "end": 8028.46, + "probability": 0.9854 + }, + { + "start": 8028.46, + "end": 8029.44, + "probability": 0.8186 + }, + { + "start": 8029.54, + "end": 8031.76, + "probability": 0.7037 + }, + { + "start": 8031.8, + "end": 8032.36, + "probability": 0.9502 + }, + { + "start": 8032.4, + "end": 8034.36, + "probability": 0.5698 + }, + { + "start": 8034.54, + "end": 8036.38, + "probability": 0.5433 + }, + { + "start": 8036.44, + "end": 8038.02, + "probability": 0.7286 + }, + { + "start": 8038.2, + "end": 8038.54, + "probability": 0.4431 + }, + { + "start": 8038.56, + "end": 8039.9, + "probability": 0.7194 + }, + { + "start": 8040.1, + "end": 8041.02, + "probability": 0.8319 + }, + { + "start": 8041.16, + "end": 8044.0, + "probability": 0.9927 + }, + { + "start": 8044.0, + "end": 8047.54, + "probability": 0.8878 + }, + { + "start": 8048.18, + "end": 8049.86, + "probability": 0.6969 + }, + { + "start": 8050.12, + "end": 8050.9, + "probability": 0.4673 + }, + { + "start": 8051.38, + "end": 8052.2, + "probability": 0.8464 + }, + { + "start": 8052.86, + "end": 8054.32, + "probability": 0.8336 + }, + { + "start": 8054.32, + "end": 8054.92, + "probability": 0.5692 + }, + { + "start": 8054.96, + "end": 8057.92, + "probability": 0.9545 + }, + { + "start": 8058.94, + "end": 8063.1, + "probability": 0.994 + }, + { + "start": 8063.16, + "end": 8070.2, + "probability": 0.9944 + }, + { + "start": 8070.72, + "end": 8073.02, + "probability": 0.5819 + }, + { + "start": 8073.6, + "end": 8076.9, + "probability": 0.9813 + }, + { + "start": 8076.9, + "end": 8081.36, + "probability": 0.9829 + }, + { + "start": 8081.62, + "end": 8082.12, + "probability": 0.7556 + }, + { + "start": 8082.38, + "end": 8082.58, + "probability": 0.8988 + }, + { + "start": 8082.74, + "end": 8083.12, + "probability": 0.4248 + }, + { + "start": 8083.34, + "end": 8084.95, + "probability": 0.9985 + }, + { + "start": 8085.46, + "end": 8087.16, + "probability": 0.999 + }, + { + "start": 8087.24, + "end": 8091.76, + "probability": 0.9989 + }, + { + "start": 8093.02, + "end": 8096.4, + "probability": 0.8775 + }, + { + "start": 8097.16, + "end": 8098.8, + "probability": 0.8698 + }, + { + "start": 8098.86, + "end": 8101.52, + "probability": 0.9956 + }, + { + "start": 8101.66, + "end": 8105.3, + "probability": 0.7101 + }, + { + "start": 8105.3, + "end": 8109.86, + "probability": 0.973 + }, + { + "start": 8110.04, + "end": 8113.08, + "probability": 0.9262 + }, + { + "start": 8113.37, + "end": 8116.94, + "probability": 0.5681 + }, + { + "start": 8117.0, + "end": 8117.92, + "probability": 0.7603 + }, + { + "start": 8118.02, + "end": 8118.64, + "probability": 0.9016 + }, + { + "start": 8118.76, + "end": 8119.18, + "probability": 0.7585 + }, + { + "start": 8119.18, + "end": 8122.1, + "probability": 0.5121 + }, + { + "start": 8122.48, + "end": 8122.7, + "probability": 0.2548 + }, + { + "start": 8122.82, + "end": 8126.78, + "probability": 0.9697 + }, + { + "start": 8126.88, + "end": 8131.08, + "probability": 0.9714 + }, + { + "start": 8131.16, + "end": 8132.34, + "probability": 0.8514 + }, + { + "start": 8132.8, + "end": 8135.46, + "probability": 0.9951 + }, + { + "start": 8135.62, + "end": 8136.26, + "probability": 0.9754 + }, + { + "start": 8136.6, + "end": 8138.5, + "probability": 0.9276 + }, + { + "start": 8139.08, + "end": 8142.98, + "probability": 0.991 + }, + { + "start": 8143.58, + "end": 8147.62, + "probability": 0.9979 + }, + { + "start": 8148.52, + "end": 8149.8, + "probability": 0.9049 + }, + { + "start": 8150.38, + "end": 8151.06, + "probability": 0.8466 + }, + { + "start": 8152.2, + "end": 8152.84, + "probability": 0.972 + }, + { + "start": 8153.56, + "end": 8155.34, + "probability": 0.9976 + }, + { + "start": 8156.9, + "end": 8160.2, + "probability": 0.9963 + }, + { + "start": 8162.6, + "end": 8166.78, + "probability": 0.999 + }, + { + "start": 8168.12, + "end": 8172.46, + "probability": 0.9978 + }, + { + "start": 8173.64, + "end": 8179.48, + "probability": 0.9951 + }, + { + "start": 8179.68, + "end": 8182.24, + "probability": 0.9481 + }, + { + "start": 8182.8, + "end": 8184.6, + "probability": 0.9756 + }, + { + "start": 8185.18, + "end": 8186.52, + "probability": 0.8347 + }, + { + "start": 8187.98, + "end": 8191.7, + "probability": 0.9107 + }, + { + "start": 8191.76, + "end": 8192.74, + "probability": 0.7641 + }, + { + "start": 8193.2, + "end": 8194.72, + "probability": 0.9578 + }, + { + "start": 8195.12, + "end": 8198.08, + "probability": 0.9517 + }, + { + "start": 8198.84, + "end": 8199.14, + "probability": 0.4948 + }, + { + "start": 8199.76, + "end": 8205.58, + "probability": 0.9949 + }, + { + "start": 8205.58, + "end": 8210.46, + "probability": 0.9977 + }, + { + "start": 8210.62, + "end": 8210.8, + "probability": 0.4002 + }, + { + "start": 8211.08, + "end": 8214.48, + "probability": 0.9978 + }, + { + "start": 8214.48, + "end": 8217.32, + "probability": 0.9979 + }, + { + "start": 8218.32, + "end": 8222.34, + "probability": 0.7986 + }, + { + "start": 8223.24, + "end": 8226.64, + "probability": 0.9949 + }, + { + "start": 8226.64, + "end": 8232.2, + "probability": 0.9957 + }, + { + "start": 8232.56, + "end": 8234.08, + "probability": 0.5279 + }, + { + "start": 8234.84, + "end": 8239.1, + "probability": 0.9912 + }, + { + "start": 8240.36, + "end": 8241.28, + "probability": 0.7261 + }, + { + "start": 8241.28, + "end": 8243.0, + "probability": 0.9967 + }, + { + "start": 8243.3, + "end": 8246.68, + "probability": 0.7671 + }, + { + "start": 8246.9, + "end": 8248.66, + "probability": 0.635 + }, + { + "start": 8249.34, + "end": 8250.1, + "probability": 0.7738 + }, + { + "start": 8250.56, + "end": 8253.54, + "probability": 0.9948 + }, + { + "start": 8254.22, + "end": 8258.32, + "probability": 0.9672 + }, + { + "start": 8259.06, + "end": 8262.34, + "probability": 0.9889 + }, + { + "start": 8262.34, + "end": 8266.9, + "probability": 0.9702 + }, + { + "start": 8266.9, + "end": 8271.0, + "probability": 0.9991 + }, + { + "start": 8271.52, + "end": 8272.18, + "probability": 0.6385 + }, + { + "start": 8272.32, + "end": 8273.78, + "probability": 0.9858 + }, + { + "start": 8273.86, + "end": 8276.74, + "probability": 0.9305 + }, + { + "start": 8276.74, + "end": 8279.94, + "probability": 0.8631 + }, + { + "start": 8280.2, + "end": 8283.12, + "probability": 0.9976 + }, + { + "start": 8283.12, + "end": 8286.54, + "probability": 0.9917 + }, + { + "start": 8287.28, + "end": 8287.92, + "probability": 0.9822 + }, + { + "start": 8288.54, + "end": 8292.84, + "probability": 0.968 + }, + { + "start": 8293.94, + "end": 8299.08, + "probability": 0.9957 + }, + { + "start": 8299.46, + "end": 8301.24, + "probability": 0.8469 + }, + { + "start": 8301.84, + "end": 8306.3, + "probability": 0.9635 + }, + { + "start": 8306.3, + "end": 8311.34, + "probability": 0.9983 + }, + { + "start": 8311.46, + "end": 8316.54, + "probability": 0.9977 + }, + { + "start": 8317.66, + "end": 8318.06, + "probability": 0.5704 + }, + { + "start": 8318.82, + "end": 8320.16, + "probability": 0.8787 + }, + { + "start": 8321.08, + "end": 8323.34, + "probability": 0.7912 + }, + { + "start": 8325.42, + "end": 8330.2, + "probability": 0.9893 + }, + { + "start": 8330.2, + "end": 8334.8, + "probability": 0.9546 + }, + { + "start": 8335.5, + "end": 8339.04, + "probability": 0.9799 + }, + { + "start": 8339.6, + "end": 8342.78, + "probability": 0.9843 + }, + { + "start": 8343.48, + "end": 8344.36, + "probability": 0.8625 + }, + { + "start": 8345.12, + "end": 8346.11, + "probability": 0.9421 + }, + { + "start": 8346.6, + "end": 8351.04, + "probability": 0.993 + }, + { + "start": 8351.5, + "end": 8354.42, + "probability": 0.921 + }, + { + "start": 8354.52, + "end": 8355.18, + "probability": 0.9419 + }, + { + "start": 8355.34, + "end": 8357.48, + "probability": 0.5686 + }, + { + "start": 8357.94, + "end": 8358.36, + "probability": 0.5311 + }, + { + "start": 8358.4, + "end": 8362.08, + "probability": 0.9588 + }, + { + "start": 8362.68, + "end": 8364.38, + "probability": 0.9356 + }, + { + "start": 8364.4, + "end": 8371.86, + "probability": 0.9745 + }, + { + "start": 8372.06, + "end": 8372.18, + "probability": 0.3996 + }, + { + "start": 8373.86, + "end": 8374.5, + "probability": 0.3407 + }, + { + "start": 8374.5, + "end": 8378.36, + "probability": 0.7979 + }, + { + "start": 8378.8, + "end": 8383.6, + "probability": 0.9906 + }, + { + "start": 8384.0, + "end": 8391.16, + "probability": 0.9854 + }, + { + "start": 8391.92, + "end": 8393.24, + "probability": 0.9199 + }, + { + "start": 8393.54, + "end": 8396.42, + "probability": 0.9929 + }, + { + "start": 8396.42, + "end": 8399.74, + "probability": 0.9988 + }, + { + "start": 8400.14, + "end": 8402.02, + "probability": 0.9949 + }, + { + "start": 8405.08, + "end": 8408.2, + "probability": 0.78 + }, + { + "start": 8408.29, + "end": 8408.36, + "probability": 0.1184 + }, + { + "start": 8408.46, + "end": 8414.2, + "probability": 0.0828 + }, + { + "start": 8414.46, + "end": 8417.04, + "probability": 0.8925 + }, + { + "start": 8417.98, + "end": 8421.86, + "probability": 0.9546 + }, + { + "start": 8421.9, + "end": 8423.04, + "probability": 0.3735 + }, + { + "start": 8423.4, + "end": 8425.38, + "probability": 0.9246 + }, + { + "start": 8425.5, + "end": 8426.69, + "probability": 0.7046 + }, + { + "start": 8426.86, + "end": 8431.2, + "probability": 0.978 + }, + { + "start": 8431.26, + "end": 8432.32, + "probability": 0.8582 + }, + { + "start": 8432.34, + "end": 8434.1, + "probability": 0.9135 + }, + { + "start": 8434.32, + "end": 8435.68, + "probability": 0.5669 + }, + { + "start": 8435.98, + "end": 8436.94, + "probability": 0.668 + }, + { + "start": 8437.1, + "end": 8437.64, + "probability": 0.3274 + }, + { + "start": 8437.64, + "end": 8438.14, + "probability": 0.7136 + }, + { + "start": 8438.26, + "end": 8438.5, + "probability": 0.4216 + }, + { + "start": 8438.6, + "end": 8443.04, + "probability": 0.9865 + }, + { + "start": 8443.26, + "end": 8446.72, + "probability": 0.9773 + }, + { + "start": 8447.02, + "end": 8448.3, + "probability": 0.9897 + }, + { + "start": 8448.3, + "end": 8451.04, + "probability": 0.2886 + }, + { + "start": 8451.18, + "end": 8453.38, + "probability": 0.5455 + }, + { + "start": 8454.28, + "end": 8454.38, + "probability": 0.478 + }, + { + "start": 8456.09, + "end": 8458.88, + "probability": 0.9932 + }, + { + "start": 8460.28, + "end": 8460.72, + "probability": 0.4791 + }, + { + "start": 8470.3, + "end": 8471.06, + "probability": 0.4699 + }, + { + "start": 8478.1, + "end": 8482.58, + "probability": 0.8024 + }, + { + "start": 8482.76, + "end": 8485.08, + "probability": 0.6129 + }, + { + "start": 8486.06, + "end": 8488.84, + "probability": 0.9417 + }, + { + "start": 8489.64, + "end": 8492.72, + "probability": 0.9976 + }, + { + "start": 8492.78, + "end": 8494.28, + "probability": 0.9951 + }, + { + "start": 8494.68, + "end": 8496.04, + "probability": 0.8182 + }, + { + "start": 8496.14, + "end": 8496.72, + "probability": 0.6065 + }, + { + "start": 8496.82, + "end": 8500.92, + "probability": 0.8167 + }, + { + "start": 8502.29, + "end": 8504.7, + "probability": 0.962 + }, + { + "start": 8505.06, + "end": 8506.26, + "probability": 0.8081 + }, + { + "start": 8506.38, + "end": 8508.84, + "probability": 0.9539 + }, + { + "start": 8509.5, + "end": 8511.54, + "probability": 0.3268 + }, + { + "start": 8511.98, + "end": 8512.68, + "probability": 0.912 + }, + { + "start": 8512.92, + "end": 8516.22, + "probability": 0.9167 + }, + { + "start": 8516.38, + "end": 8518.7, + "probability": 0.8901 + }, + { + "start": 8519.0, + "end": 8521.9, + "probability": 0.7323 + }, + { + "start": 8521.9, + "end": 8526.96, + "probability": 0.9211 + }, + { + "start": 8527.74, + "end": 8528.98, + "probability": 0.6643 + }, + { + "start": 8529.96, + "end": 8532.2, + "probability": 0.617 + }, + { + "start": 8532.76, + "end": 8534.86, + "probability": 0.9323 + }, + { + "start": 8535.22, + "end": 8539.98, + "probability": 0.8909 + }, + { + "start": 8539.98, + "end": 8546.28, + "probability": 0.9881 + }, + { + "start": 8546.4, + "end": 8547.98, + "probability": 0.9424 + }, + { + "start": 8548.1, + "end": 8550.16, + "probability": 0.6944 + }, + { + "start": 8550.48, + "end": 8551.99, + "probability": 0.8268 + }, + { + "start": 8552.54, + "end": 8555.8, + "probability": 0.9687 + }, + { + "start": 8556.3, + "end": 8558.22, + "probability": 0.9646 + }, + { + "start": 8559.52, + "end": 8561.86, + "probability": 0.6354 + }, + { + "start": 8562.46, + "end": 8564.96, + "probability": 0.8932 + }, + { + "start": 8565.16, + "end": 8567.2, + "probability": 0.9398 + }, + { + "start": 8567.58, + "end": 8571.52, + "probability": 0.8121 + }, + { + "start": 8571.94, + "end": 8573.18, + "probability": 0.7842 + }, + { + "start": 8573.44, + "end": 8576.82, + "probability": 0.6669 + }, + { + "start": 8576.82, + "end": 8579.44, + "probability": 0.9981 + }, + { + "start": 8580.74, + "end": 8584.78, + "probability": 0.9972 + }, + { + "start": 8584.78, + "end": 8588.12, + "probability": 0.993 + }, + { + "start": 8588.4, + "end": 8589.21, + "probability": 0.9159 + }, + { + "start": 8589.92, + "end": 8590.66, + "probability": 0.9951 + }, + { + "start": 8590.88, + "end": 8591.3, + "probability": 0.9919 + }, + { + "start": 8591.78, + "end": 8592.94, + "probability": 0.981 + }, + { + "start": 8593.68, + "end": 8594.72, + "probability": 0.9171 + }, + { + "start": 8595.06, + "end": 8596.32, + "probability": 0.9229 + }, + { + "start": 8596.34, + "end": 8597.34, + "probability": 0.8418 + }, + { + "start": 8597.46, + "end": 8601.4, + "probability": 0.9253 + }, + { + "start": 8601.56, + "end": 8604.61, + "probability": 0.9941 + }, + { + "start": 8605.74, + "end": 8608.72, + "probability": 0.776 + }, + { + "start": 8610.26, + "end": 8612.1, + "probability": 0.7095 + }, + { + "start": 8612.7, + "end": 8615.5, + "probability": 0.9456 + }, + { + "start": 8615.92, + "end": 8618.18, + "probability": 0.8494 + }, + { + "start": 8619.12, + "end": 8620.94, + "probability": 0.8331 + }, + { + "start": 8621.04, + "end": 8622.38, + "probability": 0.6633 + }, + { + "start": 8622.58, + "end": 8625.26, + "probability": 0.5168 + }, + { + "start": 8625.48, + "end": 8626.43, + "probability": 0.9026 + }, + { + "start": 8626.58, + "end": 8628.4, + "probability": 0.9587 + }, + { + "start": 8628.46, + "end": 8629.64, + "probability": 0.8484 + }, + { + "start": 8629.72, + "end": 8630.55, + "probability": 0.908 + }, + { + "start": 8631.4, + "end": 8634.68, + "probability": 0.9229 + }, + { + "start": 8635.2, + "end": 8637.08, + "probability": 0.9379 + }, + { + "start": 8637.5, + "end": 8644.46, + "probability": 0.9862 + }, + { + "start": 8644.76, + "end": 8649.36, + "probability": 0.991 + }, + { + "start": 8650.32, + "end": 8653.38, + "probability": 0.9022 + }, + { + "start": 8654.32, + "end": 8656.1, + "probability": 0.8055 + }, + { + "start": 8656.52, + "end": 8659.74, + "probability": 0.732 + }, + { + "start": 8660.02, + "end": 8661.04, + "probability": 0.5054 + }, + { + "start": 8661.22, + "end": 8662.96, + "probability": 0.7839 + }, + { + "start": 8663.04, + "end": 8664.06, + "probability": 0.7479 + }, + { + "start": 8664.42, + "end": 8665.28, + "probability": 0.7843 + }, + { + "start": 8665.92, + "end": 8671.14, + "probability": 0.8687 + }, + { + "start": 8672.02, + "end": 8673.24, + "probability": 0.9108 + }, + { + "start": 8673.74, + "end": 8677.4, + "probability": 0.8926 + }, + { + "start": 8678.14, + "end": 8680.5, + "probability": 0.9546 + }, + { + "start": 8681.1, + "end": 8682.74, + "probability": 0.9539 + }, + { + "start": 8683.02, + "end": 8685.54, + "probability": 0.751 + }, + { + "start": 8685.78, + "end": 8686.54, + "probability": 0.8378 + }, + { + "start": 8686.77, + "end": 8690.56, + "probability": 0.9702 + }, + { + "start": 8690.56, + "end": 8695.0, + "probability": 0.9896 + }, + { + "start": 8695.44, + "end": 8697.64, + "probability": 0.9905 + }, + { + "start": 8697.7, + "end": 8698.6, + "probability": 0.9423 + }, + { + "start": 8698.68, + "end": 8699.02, + "probability": 0.7427 + }, + { + "start": 8700.24, + "end": 8703.48, + "probability": 0.9666 + }, + { + "start": 8703.78, + "end": 8704.2, + "probability": 0.6042 + }, + { + "start": 8704.26, + "end": 8705.14, + "probability": 0.9819 + }, + { + "start": 8705.62, + "end": 8707.88, + "probability": 0.6311 + }, + { + "start": 8708.26, + "end": 8712.76, + "probability": 0.7497 + }, + { + "start": 8713.0, + "end": 8714.18, + "probability": 0.882 + }, + { + "start": 8715.2, + "end": 8717.64, + "probability": 0.8785 + }, + { + "start": 8717.64, + "end": 8720.76, + "probability": 0.9483 + }, + { + "start": 8721.64, + "end": 8725.58, + "probability": 0.9897 + }, + { + "start": 8725.58, + "end": 8728.78, + "probability": 0.9942 + }, + { + "start": 8729.12, + "end": 8730.32, + "probability": 0.8748 + }, + { + "start": 8730.88, + "end": 8738.8, + "probability": 0.9209 + }, + { + "start": 8738.8, + "end": 8743.54, + "probability": 0.9957 + }, + { + "start": 8743.94, + "end": 8746.98, + "probability": 0.7053 + }, + { + "start": 8747.46, + "end": 8753.28, + "probability": 0.9578 + }, + { + "start": 8754.0, + "end": 8757.14, + "probability": 0.9941 + }, + { + "start": 8757.76, + "end": 8758.94, + "probability": 0.8306 + }, + { + "start": 8759.1, + "end": 8760.96, + "probability": 0.938 + }, + { + "start": 8761.1, + "end": 8763.76, + "probability": 0.9351 + }, + { + "start": 8763.8, + "end": 8764.7, + "probability": 0.8218 + }, + { + "start": 8765.25, + "end": 8770.0, + "probability": 0.8686 + }, + { + "start": 8770.1, + "end": 8771.55, + "probability": 0.9932 + }, + { + "start": 8772.8, + "end": 8773.94, + "probability": 0.8615 + }, + { + "start": 8775.49, + "end": 8778.26, + "probability": 0.9671 + }, + { + "start": 8778.34, + "end": 8780.22, + "probability": 0.9888 + }, + { + "start": 8780.26, + "end": 8781.44, + "probability": 0.798 + }, + { + "start": 8781.8, + "end": 8785.12, + "probability": 0.9326 + }, + { + "start": 8785.74, + "end": 8787.58, + "probability": 0.8165 + }, + { + "start": 8787.86, + "end": 8789.1, + "probability": 0.746 + }, + { + "start": 8789.18, + "end": 8791.74, + "probability": 0.6529 + }, + { + "start": 8791.9, + "end": 8792.46, + "probability": 0.5862 + }, + { + "start": 8792.62, + "end": 8796.82, + "probability": 0.7921 + }, + { + "start": 8797.04, + "end": 8802.1, + "probability": 0.9867 + }, + { + "start": 8803.18, + "end": 8804.78, + "probability": 0.7494 + }, + { + "start": 8805.56, + "end": 8806.82, + "probability": 0.7576 + }, + { + "start": 8806.86, + "end": 8808.52, + "probability": 0.7695 + }, + { + "start": 8808.64, + "end": 8818.76, + "probability": 0.9846 + }, + { + "start": 8818.82, + "end": 8822.06, + "probability": 0.9096 + }, + { + "start": 8822.28, + "end": 8824.8, + "probability": 0.9526 + }, + { + "start": 8824.84, + "end": 8825.38, + "probability": 0.4647 + }, + { + "start": 8826.04, + "end": 8829.91, + "probability": 0.9005 + }, + { + "start": 8830.76, + "end": 8832.52, + "probability": 0.7495 + }, + { + "start": 8832.6, + "end": 8833.52, + "probability": 0.7622 + }, + { + "start": 8833.6, + "end": 8835.2, + "probability": 0.6943 + }, + { + "start": 8835.26, + "end": 8836.26, + "probability": 0.9493 + }, + { + "start": 8837.08, + "end": 8839.72, + "probability": 0.7476 + }, + { + "start": 8839.8, + "end": 8841.14, + "probability": 0.6622 + }, + { + "start": 8841.52, + "end": 8842.53, + "probability": 0.7385 + }, + { + "start": 8842.96, + "end": 8850.06, + "probability": 0.8444 + }, + { + "start": 8850.2, + "end": 8850.48, + "probability": 0.7918 + }, + { + "start": 8851.22, + "end": 8853.16, + "probability": 0.9008 + }, + { + "start": 8853.46, + "end": 8854.69, + "probability": 0.5707 + }, + { + "start": 8855.68, + "end": 8860.46, + "probability": 0.9537 + }, + { + "start": 8861.22, + "end": 8863.08, + "probability": 0.5993 + }, + { + "start": 8863.38, + "end": 8864.98, + "probability": 0.9644 + }, + { + "start": 8865.48, + "end": 8867.32, + "probability": 0.7984 + }, + { + "start": 8867.44, + "end": 8871.26, + "probability": 0.901 + }, + { + "start": 8871.58, + "end": 8872.68, + "probability": 0.9336 + }, + { + "start": 8872.98, + "end": 8877.26, + "probability": 0.8828 + }, + { + "start": 8877.66, + "end": 8882.18, + "probability": 0.9905 + }, + { + "start": 8883.46, + "end": 8886.82, + "probability": 0.9855 + }, + { + "start": 8887.4, + "end": 8890.08, + "probability": 0.7244 + }, + { + "start": 8890.44, + "end": 8891.46, + "probability": 0.9915 + }, + { + "start": 8892.06, + "end": 8893.2, + "probability": 0.9871 + }, + { + "start": 8893.8, + "end": 8895.48, + "probability": 0.9072 + }, + { + "start": 8895.98, + "end": 8896.5, + "probability": 0.8441 + }, + { + "start": 8896.76, + "end": 8900.34, + "probability": 0.9873 + }, + { + "start": 8900.38, + "end": 8903.98, + "probability": 0.6747 + }, + { + "start": 8904.58, + "end": 8905.42, + "probability": 0.4597 + }, + { + "start": 8905.64, + "end": 8906.9, + "probability": 0.4857 + }, + { + "start": 8907.32, + "end": 8908.78, + "probability": 0.7909 + }, + { + "start": 8909.02, + "end": 8910.26, + "probability": 0.9613 + }, + { + "start": 8911.43, + "end": 8912.66, + "probability": 0.909 + }, + { + "start": 8912.82, + "end": 8916.54, + "probability": 0.9883 + }, + { + "start": 8916.98, + "end": 8919.96, + "probability": 0.9877 + }, + { + "start": 8920.52, + "end": 8924.66, + "probability": 0.7323 + }, + { + "start": 8925.9, + "end": 8931.84, + "probability": 0.6267 + }, + { + "start": 8932.4, + "end": 8938.06, + "probability": 0.9568 + }, + { + "start": 8940.46, + "end": 8944.64, + "probability": 0.9617 + }, + { + "start": 8945.24, + "end": 8946.08, + "probability": 0.8692 + }, + { + "start": 8947.36, + "end": 8950.45, + "probability": 0.9553 + }, + { + "start": 8950.8, + "end": 8952.7, + "probability": 0.9924 + }, + { + "start": 8953.14, + "end": 8953.88, + "probability": 0.79 + }, + { + "start": 8954.48, + "end": 8959.32, + "probability": 0.9456 + }, + { + "start": 8959.64, + "end": 8961.08, + "probability": 0.9535 + }, + { + "start": 8961.18, + "end": 8962.06, + "probability": 0.8333 + }, + { + "start": 8962.14, + "end": 8963.54, + "probability": 0.9932 + }, + { + "start": 8963.86, + "end": 8964.5, + "probability": 0.9942 + }, + { + "start": 8964.72, + "end": 8966.95, + "probability": 0.9928 + }, + { + "start": 8968.0, + "end": 8968.9, + "probability": 0.9904 + }, + { + "start": 8968.98, + "end": 8970.99, + "probability": 0.9964 + }, + { + "start": 8971.48, + "end": 8974.25, + "probability": 0.9352 + }, + { + "start": 8975.42, + "end": 8977.34, + "probability": 0.8219 + }, + { + "start": 8977.48, + "end": 8979.74, + "probability": 0.9682 + }, + { + "start": 8980.34, + "end": 8985.16, + "probability": 0.9498 + }, + { + "start": 8985.46, + "end": 8987.3, + "probability": 0.9279 + }, + { + "start": 8987.4, + "end": 8987.84, + "probability": 0.5516 + }, + { + "start": 8987.86, + "end": 8988.78, + "probability": 0.5311 + }, + { + "start": 8989.34, + "end": 8992.12, + "probability": 0.8633 + }, + { + "start": 8992.92, + "end": 8994.8, + "probability": 0.9904 + }, + { + "start": 8996.54, + "end": 8997.24, + "probability": 0.8154 + }, + { + "start": 8997.38, + "end": 8998.28, + "probability": 0.9769 + }, + { + "start": 8998.64, + "end": 9000.4, + "probability": 0.9084 + }, + { + "start": 9000.56, + "end": 9003.48, + "probability": 0.9435 + }, + { + "start": 9003.56, + "end": 9005.7, + "probability": 0.849 + }, + { + "start": 9005.78, + "end": 9006.72, + "probability": 0.6456 + }, + { + "start": 9007.04, + "end": 9008.3, + "probability": 0.8809 + }, + { + "start": 9008.92, + "end": 9012.62, + "probability": 0.9149 + }, + { + "start": 9013.79, + "end": 9024.58, + "probability": 0.9826 + }, + { + "start": 9024.66, + "end": 9030.84, + "probability": 0.9978 + }, + { + "start": 9031.38, + "end": 9038.04, + "probability": 0.8621 + }, + { + "start": 9038.04, + "end": 9042.6, + "probability": 0.9985 + }, + { + "start": 9043.04, + "end": 9051.86, + "probability": 0.9937 + }, + { + "start": 9052.04, + "end": 9053.78, + "probability": 0.8992 + }, + { + "start": 9054.38, + "end": 9055.42, + "probability": 0.9571 + }, + { + "start": 9056.08, + "end": 9056.98, + "probability": 0.9609 + }, + { + "start": 9057.58, + "end": 9062.48, + "probability": 0.9674 + }, + { + "start": 9063.74, + "end": 9065.48, + "probability": 0.82 + }, + { + "start": 9067.54, + "end": 9069.98, + "probability": 0.4681 + }, + { + "start": 9070.18, + "end": 9076.32, + "probability": 0.9092 + }, + { + "start": 9076.46, + "end": 9080.72, + "probability": 0.9419 + }, + { + "start": 9081.63, + "end": 9086.44, + "probability": 0.9985 + }, + { + "start": 9086.62, + "end": 9089.7, + "probability": 0.9441 + }, + { + "start": 9089.88, + "end": 9092.04, + "probability": 0.7081 + }, + { + "start": 9092.26, + "end": 9093.84, + "probability": 0.9811 + }, + { + "start": 9094.28, + "end": 9096.52, + "probability": 0.9758 + }, + { + "start": 9096.58, + "end": 9100.78, + "probability": 0.9971 + }, + { + "start": 9102.32, + "end": 9106.68, + "probability": 0.9818 + }, + { + "start": 9107.8, + "end": 9109.54, + "probability": 0.7598 + }, + { + "start": 9110.18, + "end": 9113.34, + "probability": 0.8071 + }, + { + "start": 9113.34, + "end": 9116.9, + "probability": 0.9824 + }, + { + "start": 9117.12, + "end": 9117.59, + "probability": 0.8672 + }, + { + "start": 9118.91, + "end": 9121.08, + "probability": 0.9985 + }, + { + "start": 9121.64, + "end": 9123.68, + "probability": 0.8595 + }, + { + "start": 9123.8, + "end": 9125.63, + "probability": 0.8281 + }, + { + "start": 9126.34, + "end": 9128.32, + "probability": 0.5674 + }, + { + "start": 9128.32, + "end": 9130.6, + "probability": 0.9331 + }, + { + "start": 9130.74, + "end": 9132.78, + "probability": 0.9933 + }, + { + "start": 9136.46, + "end": 9139.94, + "probability": 0.7695 + }, + { + "start": 9140.08, + "end": 9141.08, + "probability": 0.8783 + }, + { + "start": 9141.44, + "end": 9144.9, + "probability": 0.9007 + }, + { + "start": 9145.0, + "end": 9149.3, + "probability": 0.7023 + }, + { + "start": 9149.54, + "end": 9150.34, + "probability": 0.9359 + }, + { + "start": 9150.92, + "end": 9155.32, + "probability": 0.9917 + }, + { + "start": 9155.42, + "end": 9159.82, + "probability": 0.998 + }, + { + "start": 9159.9, + "end": 9160.83, + "probability": 0.6646 + }, + { + "start": 9161.7, + "end": 9164.44, + "probability": 0.8133 + }, + { + "start": 9164.52, + "end": 9167.74, + "probability": 0.9725 + }, + { + "start": 9168.26, + "end": 9170.9, + "probability": 0.9875 + }, + { + "start": 9171.7, + "end": 9174.68, + "probability": 0.9577 + }, + { + "start": 9175.42, + "end": 9176.58, + "probability": 0.7066 + }, + { + "start": 9176.62, + "end": 9178.31, + "probability": 0.9667 + }, + { + "start": 9179.06, + "end": 9180.36, + "probability": 0.959 + }, + { + "start": 9180.4, + "end": 9181.82, + "probability": 0.9993 + }, + { + "start": 9182.12, + "end": 9183.48, + "probability": 0.8031 + }, + { + "start": 9183.56, + "end": 9184.32, + "probability": 0.7419 + }, + { + "start": 9184.8, + "end": 9190.12, + "probability": 0.8975 + }, + { + "start": 9190.24, + "end": 9190.98, + "probability": 0.7639 + }, + { + "start": 9191.4, + "end": 9192.38, + "probability": 0.8695 + }, + { + "start": 9192.78, + "end": 9193.42, + "probability": 0.939 + }, + { + "start": 9194.84, + "end": 9198.24, + "probability": 0.9709 + }, + { + "start": 9199.18, + "end": 9200.98, + "probability": 0.8707 + }, + { + "start": 9201.1, + "end": 9201.72, + "probability": 0.8484 + }, + { + "start": 9201.84, + "end": 9204.38, + "probability": 0.9963 + }, + { + "start": 9204.62, + "end": 9207.0, + "probability": 0.9855 + }, + { + "start": 9208.08, + "end": 9210.86, + "probability": 0.9104 + }, + { + "start": 9212.46, + "end": 9212.89, + "probability": 0.9648 + }, + { + "start": 9213.74, + "end": 9216.48, + "probability": 0.9611 + }, + { + "start": 9216.56, + "end": 9218.9, + "probability": 0.9639 + }, + { + "start": 9218.96, + "end": 9219.66, + "probability": 0.9087 + }, + { + "start": 9220.2, + "end": 9220.82, + "probability": 0.9034 + }, + { + "start": 9221.7, + "end": 9223.2, + "probability": 0.9801 + }, + { + "start": 9223.64, + "end": 9229.24, + "probability": 0.7987 + }, + { + "start": 9230.0, + "end": 9236.12, + "probability": 0.9055 + }, + { + "start": 9236.12, + "end": 9244.34, + "probability": 0.6468 + }, + { + "start": 9244.62, + "end": 9245.3, + "probability": 0.5414 + }, + { + "start": 9245.4, + "end": 9246.84, + "probability": 0.9486 + }, + { + "start": 9247.36, + "end": 9249.58, + "probability": 0.9294 + }, + { + "start": 9250.98, + "end": 9251.66, + "probability": 0.5685 + }, + { + "start": 9252.86, + "end": 9254.94, + "probability": 0.9673 + }, + { + "start": 9255.46, + "end": 9257.18, + "probability": 0.9272 + }, + { + "start": 9257.28, + "end": 9257.44, + "probability": 0.5069 + }, + { + "start": 9257.56, + "end": 9260.4, + "probability": 0.7372 + }, + { + "start": 9260.78, + "end": 9268.06, + "probability": 0.5607 + }, + { + "start": 9268.24, + "end": 9274.04, + "probability": 0.8867 + }, + { + "start": 9274.08, + "end": 9275.1, + "probability": 0.9541 + }, + { + "start": 9276.08, + "end": 9279.88, + "probability": 0.9888 + }, + { + "start": 9280.28, + "end": 9282.69, + "probability": 0.5367 + }, + { + "start": 9283.94, + "end": 9285.8, + "probability": 0.9391 + }, + { + "start": 9286.32, + "end": 9293.24, + "probability": 0.9119 + }, + { + "start": 9293.94, + "end": 9297.02, + "probability": 0.7869 + }, + { + "start": 9297.27, + "end": 9301.58, + "probability": 0.9523 + }, + { + "start": 9301.96, + "end": 9302.68, + "probability": 0.7865 + }, + { + "start": 9302.74, + "end": 9303.56, + "probability": 0.7108 + }, + { + "start": 9303.92, + "end": 9304.94, + "probability": 0.8926 + }, + { + "start": 9306.48, + "end": 9312.54, + "probability": 0.6948 + }, + { + "start": 9313.22, + "end": 9314.24, + "probability": 0.7506 + }, + { + "start": 9314.32, + "end": 9315.52, + "probability": 0.9418 + }, + { + "start": 9316.4, + "end": 9319.4, + "probability": 0.9761 + }, + { + "start": 9319.88, + "end": 9321.12, + "probability": 0.767 + }, + { + "start": 9321.52, + "end": 9323.72, + "probability": 0.8728 + }, + { + "start": 9324.12, + "end": 9325.56, + "probability": 0.9059 + }, + { + "start": 9325.68, + "end": 9327.52, + "probability": 0.6404 + }, + { + "start": 9327.86, + "end": 9328.74, + "probability": 0.6903 + }, + { + "start": 9329.36, + "end": 9334.02, + "probability": 0.5675 + }, + { + "start": 9334.54, + "end": 9337.24, + "probability": 0.6665 + }, + { + "start": 9339.98, + "end": 9341.72, + "probability": 0.6834 + }, + { + "start": 9342.54, + "end": 9343.28, + "probability": 0.7451 + }, + { + "start": 9343.86, + "end": 9347.94, + "probability": 0.924 + }, + { + "start": 9348.46, + "end": 9349.86, + "probability": 0.9319 + }, + { + "start": 9351.26, + "end": 9357.1, + "probability": 0.9927 + }, + { + "start": 9357.24, + "end": 9360.46, + "probability": 0.9876 + }, + { + "start": 9360.78, + "end": 9361.24, + "probability": 0.6925 + }, + { + "start": 9361.92, + "end": 9363.76, + "probability": 0.9932 + }, + { + "start": 9364.18, + "end": 9367.94, + "probability": 0.8736 + }, + { + "start": 9368.06, + "end": 9369.26, + "probability": 0.6223 + }, + { + "start": 9369.36, + "end": 9370.82, + "probability": 0.7456 + }, + { + "start": 9371.38, + "end": 9375.22, + "probability": 0.9321 + }, + { + "start": 9375.8, + "end": 9377.64, + "probability": 0.6573 + }, + { + "start": 9377.94, + "end": 9378.86, + "probability": 0.9695 + }, + { + "start": 9378.92, + "end": 9380.04, + "probability": 0.9569 + }, + { + "start": 9380.46, + "end": 9381.46, + "probability": 0.9675 + }, + { + "start": 9381.78, + "end": 9383.64, + "probability": 0.7846 + }, + { + "start": 9384.18, + "end": 9385.8, + "probability": 0.8015 + }, + { + "start": 9387.14, + "end": 9389.67, + "probability": 0.5909 + }, + { + "start": 9389.94, + "end": 9390.04, + "probability": 0.3645 + }, + { + "start": 9390.16, + "end": 9391.56, + "probability": 0.5908 + }, + { + "start": 9392.26, + "end": 9393.12, + "probability": 0.9956 + }, + { + "start": 9393.24, + "end": 9397.32, + "probability": 0.9345 + }, + { + "start": 9397.88, + "end": 9399.7, + "probability": 0.4172 + }, + { + "start": 9399.8, + "end": 9399.92, + "probability": 0.2501 + }, + { + "start": 9400.7, + "end": 9401.16, + "probability": 0.0805 + }, + { + "start": 9401.76, + "end": 9402.6, + "probability": 0.7405 + }, + { + "start": 9402.76, + "end": 9405.36, + "probability": 0.9772 + }, + { + "start": 9405.54, + "end": 9407.02, + "probability": 0.457 + }, + { + "start": 9407.86, + "end": 9408.36, + "probability": 0.8181 + }, + { + "start": 9408.6, + "end": 9408.78, + "probability": 0.6393 + }, + { + "start": 9408.8, + "end": 9410.3, + "probability": 0.8372 + }, + { + "start": 9410.94, + "end": 9412.5, + "probability": 0.8616 + }, + { + "start": 9413.12, + "end": 9414.94, + "probability": 0.8833 + }, + { + "start": 9418.78, + "end": 9418.8, + "probability": 0.344 + }, + { + "start": 9418.8, + "end": 9420.64, + "probability": 0.7624 + }, + { + "start": 9422.98, + "end": 9424.12, + "probability": 0.3308 + }, + { + "start": 9424.12, + "end": 9424.9, + "probability": 0.9128 + }, + { + "start": 9429.93, + "end": 9432.78, + "probability": 0.9701 + }, + { + "start": 9433.2, + "end": 9434.53, + "probability": 0.4729 + }, + { + "start": 9436.24, + "end": 9437.91, + "probability": 0.698 + }, + { + "start": 9439.98, + "end": 9443.32, + "probability": 0.6804 + }, + { + "start": 9443.5, + "end": 9448.94, + "probability": 0.9893 + }, + { + "start": 9450.06, + "end": 9452.66, + "probability": 0.9766 + }, + { + "start": 9453.48, + "end": 9457.94, + "probability": 0.6311 + }, + { + "start": 9458.76, + "end": 9459.74, + "probability": 0.6619 + }, + { + "start": 9460.0, + "end": 9461.88, + "probability": 0.9403 + }, + { + "start": 9463.08, + "end": 9463.76, + "probability": 0.8394 + }, + { + "start": 9465.02, + "end": 9467.12, + "probability": 0.8283 + }, + { + "start": 9467.72, + "end": 9469.14, + "probability": 0.9531 + }, + { + "start": 9470.22, + "end": 9472.32, + "probability": 0.8486 + }, + { + "start": 9472.54, + "end": 9475.04, + "probability": 0.9861 + }, + { + "start": 9475.58, + "end": 9476.06, + "probability": 0.9757 + }, + { + "start": 9476.86, + "end": 9477.48, + "probability": 0.9263 + }, + { + "start": 9478.18, + "end": 9478.8, + "probability": 0.9785 + }, + { + "start": 9479.18, + "end": 9479.71, + "probability": 0.9777 + }, + { + "start": 9480.04, + "end": 9481.74, + "probability": 0.9805 + }, + { + "start": 9481.96, + "end": 9483.2, + "probability": 0.9413 + }, + { + "start": 9483.3, + "end": 9484.28, + "probability": 0.7437 + }, + { + "start": 9484.48, + "end": 9484.78, + "probability": 0.8208 + }, + { + "start": 9485.44, + "end": 9486.78, + "probability": 0.9265 + }, + { + "start": 9487.98, + "end": 9488.8, + "probability": 0.7768 + }, + { + "start": 9490.64, + "end": 9491.66, + "probability": 0.8955 + }, + { + "start": 9492.54, + "end": 9494.28, + "probability": 0.8252 + }, + { + "start": 9495.78, + "end": 9497.16, + "probability": 0.8081 + }, + { + "start": 9497.92, + "end": 9503.24, + "probability": 0.9805 + }, + { + "start": 9504.12, + "end": 9507.0, + "probability": 0.9586 + }, + { + "start": 9507.82, + "end": 9510.2, + "probability": 0.9344 + }, + { + "start": 9511.08, + "end": 9514.96, + "probability": 0.9786 + }, + { + "start": 9515.66, + "end": 9518.6, + "probability": 0.9902 + }, + { + "start": 9518.6, + "end": 9519.44, + "probability": 0.5917 + }, + { + "start": 9520.06, + "end": 9521.31, + "probability": 0.9209 + }, + { + "start": 9523.56, + "end": 9524.97, + "probability": 0.9009 + }, + { + "start": 9525.22, + "end": 9526.97, + "probability": 0.8086 + }, + { + "start": 9529.38, + "end": 9529.88, + "probability": 0.9352 + }, + { + "start": 9530.78, + "end": 9531.78, + "probability": 0.9253 + }, + { + "start": 9532.32, + "end": 9534.08, + "probability": 0.9608 + }, + { + "start": 9534.86, + "end": 9535.98, + "probability": 0.9727 + }, + { + "start": 9536.82, + "end": 9538.44, + "probability": 0.9923 + }, + { + "start": 9538.58, + "end": 9540.42, + "probability": 0.9663 + }, + { + "start": 9541.14, + "end": 9544.56, + "probability": 0.9298 + }, + { + "start": 9545.74, + "end": 9549.28, + "probability": 0.9713 + }, + { + "start": 9549.86, + "end": 9550.4, + "probability": 0.7823 + }, + { + "start": 9551.28, + "end": 9553.32, + "probability": 0.9714 + }, + { + "start": 9554.16, + "end": 9556.14, + "probability": 0.7208 + }, + { + "start": 9557.52, + "end": 9558.6, + "probability": 0.8458 + }, + { + "start": 9559.2, + "end": 9562.98, + "probability": 0.9858 + }, + { + "start": 9563.8, + "end": 9565.76, + "probability": 0.9374 + }, + { + "start": 9566.7, + "end": 9568.42, + "probability": 0.8404 + }, + { + "start": 9569.0, + "end": 9570.38, + "probability": 0.4726 + }, + { + "start": 9570.96, + "end": 9571.64, + "probability": 0.6843 + }, + { + "start": 9571.72, + "end": 9573.08, + "probability": 0.8987 + }, + { + "start": 9573.56, + "end": 9575.72, + "probability": 0.938 + }, + { + "start": 9579.52, + "end": 9580.56, + "probability": 0.2249 + }, + { + "start": 9580.66, + "end": 9581.32, + "probability": 0.7632 + }, + { + "start": 9582.16, + "end": 9584.22, + "probability": 0.8445 + }, + { + "start": 9585.1, + "end": 9588.42, + "probability": 0.919 + }, + { + "start": 9588.42, + "end": 9591.22, + "probability": 0.9736 + }, + { + "start": 9592.04, + "end": 9594.32, + "probability": 0.9289 + }, + { + "start": 9594.86, + "end": 9597.82, + "probability": 0.793 + }, + { + "start": 9599.6, + "end": 9602.68, + "probability": 0.7567 + }, + { + "start": 9604.6, + "end": 9606.0, + "probability": 0.889 + }, + { + "start": 9606.62, + "end": 9608.1, + "probability": 0.998 + }, + { + "start": 9608.94, + "end": 9611.34, + "probability": 0.7858 + }, + { + "start": 9611.84, + "end": 9614.18, + "probability": 0.938 + }, + { + "start": 9615.2, + "end": 9616.22, + "probability": 0.7919 + }, + { + "start": 9617.02, + "end": 9618.52, + "probability": 0.8506 + }, + { + "start": 9618.62, + "end": 9620.34, + "probability": 0.9151 + }, + { + "start": 9620.46, + "end": 9621.2, + "probability": 0.7568 + }, + { + "start": 9621.26, + "end": 9622.02, + "probability": 0.9214 + }, + { + "start": 9622.14, + "end": 9622.92, + "probability": 0.9116 + }, + { + "start": 9623.42, + "end": 9623.7, + "probability": 0.8305 + }, + { + "start": 9623.7, + "end": 9627.24, + "probability": 0.9385 + }, + { + "start": 9627.24, + "end": 9628.07, + "probability": 0.4728 + }, + { + "start": 9629.38, + "end": 9630.16, + "probability": 0.6314 + }, + { + "start": 9630.24, + "end": 9630.66, + "probability": 0.4119 + }, + { + "start": 9631.26, + "end": 9634.16, + "probability": 0.8977 + }, + { + "start": 9634.28, + "end": 9634.4, + "probability": 0.6537 + }, + { + "start": 9634.5, + "end": 9634.96, + "probability": 0.933 + }, + { + "start": 9635.3, + "end": 9636.7, + "probability": 0.9236 + }, + { + "start": 9637.19, + "end": 9641.56, + "probability": 0.7913 + }, + { + "start": 9642.58, + "end": 9645.16, + "probability": 0.9961 + }, + { + "start": 9645.22, + "end": 9646.19, + "probability": 0.8629 + }, + { + "start": 9646.38, + "end": 9648.54, + "probability": 0.9777 + }, + { + "start": 9648.62, + "end": 9649.16, + "probability": 0.8796 + }, + { + "start": 9651.28, + "end": 9654.38, + "probability": 0.46 + }, + { + "start": 9654.38, + "end": 9656.48, + "probability": 0.9425 + }, + { + "start": 9657.0, + "end": 9659.86, + "probability": 0.816 + }, + { + "start": 9660.1, + "end": 9661.18, + "probability": 0.9617 + }, + { + "start": 9661.56, + "end": 9662.58, + "probability": 0.9816 + }, + { + "start": 9662.78, + "end": 9663.74, + "probability": 0.9741 + }, + { + "start": 9664.08, + "end": 9664.58, + "probability": 0.9808 + }, + { + "start": 9665.16, + "end": 9665.98, + "probability": 0.7864 + }, + { + "start": 9665.98, + "end": 9666.91, + "probability": 0.7894 + }, + { + "start": 9667.7, + "end": 9670.92, + "probability": 0.9199 + }, + { + "start": 9671.42, + "end": 9675.1, + "probability": 0.9542 + }, + { + "start": 9676.38, + "end": 9677.2, + "probability": 0.7165 + }, + { + "start": 9678.18, + "end": 9679.84, + "probability": 0.8218 + }, + { + "start": 9680.92, + "end": 9683.16, + "probability": 0.9547 + }, + { + "start": 9683.32, + "end": 9683.77, + "probability": 0.9185 + }, + { + "start": 9684.52, + "end": 9685.95, + "probability": 0.9189 + }, + { + "start": 9686.9, + "end": 9688.02, + "probability": 0.8832 + }, + { + "start": 9688.76, + "end": 9690.94, + "probability": 0.7009 + }, + { + "start": 9691.72, + "end": 9694.6, + "probability": 0.9637 + }, + { + "start": 9694.98, + "end": 9698.18, + "probability": 0.9919 + }, + { + "start": 9698.82, + "end": 9699.92, + "probability": 0.9422 + }, + { + "start": 9700.1, + "end": 9704.12, + "probability": 0.8054 + }, + { + "start": 9704.24, + "end": 9704.4, + "probability": 0.0061 + }, + { + "start": 9705.78, + "end": 9706.78, + "probability": 0.7201 + }, + { + "start": 9706.88, + "end": 9709.92, + "probability": 0.9706 + }, + { + "start": 9710.38, + "end": 9710.74, + "probability": 0.949 + }, + { + "start": 9710.8, + "end": 9712.62, + "probability": 0.9824 + }, + { + "start": 9715.22, + "end": 9716.88, + "probability": 0.9827 + }, + { + "start": 9717.4, + "end": 9718.72, + "probability": 0.6696 + }, + { + "start": 9719.4, + "end": 9719.5, + "probability": 0.5735 + }, + { + "start": 9719.74, + "end": 9719.96, + "probability": 0.7786 + }, + { + "start": 9720.18, + "end": 9720.28, + "probability": 0.2467 + }, + { + "start": 9720.6, + "end": 9721.92, + "probability": 0.9811 + }, + { + "start": 9722.04, + "end": 9724.62, + "probability": 0.7806 + }, + { + "start": 9725.52, + "end": 9730.82, + "probability": 0.9477 + }, + { + "start": 9731.54, + "end": 9732.9, + "probability": 0.8737 + }, + { + "start": 9733.68, + "end": 9735.28, + "probability": 0.7126 + }, + { + "start": 9736.48, + "end": 9740.13, + "probability": 0.9736 + }, + { + "start": 9741.48, + "end": 9742.28, + "probability": 0.9976 + }, + { + "start": 9742.94, + "end": 9744.32, + "probability": 0.9974 + }, + { + "start": 9744.8, + "end": 9745.6, + "probability": 0.7472 + }, + { + "start": 9746.21, + "end": 9751.94, + "probability": 0.6898 + }, + { + "start": 9752.44, + "end": 9754.34, + "probability": 0.7677 + }, + { + "start": 9755.5, + "end": 9758.7, + "probability": 0.9682 + }, + { + "start": 9759.14, + "end": 9760.46, + "probability": 0.9285 + }, + { + "start": 9761.56, + "end": 9762.4, + "probability": 0.8281 + }, + { + "start": 9764.44, + "end": 9768.64, + "probability": 0.9919 + }, + { + "start": 9769.26, + "end": 9770.9, + "probability": 0.9866 + }, + { + "start": 9771.84, + "end": 9776.26, + "probability": 0.9768 + }, + { + "start": 9776.64, + "end": 9776.74, + "probability": 0.2471 + }, + { + "start": 9777.5, + "end": 9783.78, + "probability": 0.9917 + }, + { + "start": 9784.18, + "end": 9784.78, + "probability": 0.7632 + }, + { + "start": 9784.86, + "end": 9787.54, + "probability": 0.9291 + }, + { + "start": 9789.64, + "end": 9790.62, + "probability": 0.5076 + }, + { + "start": 9791.64, + "end": 9792.5, + "probability": 0.2916 + }, + { + "start": 9793.26, + "end": 9797.3, + "probability": 0.8407 + }, + { + "start": 9798.34, + "end": 9799.24, + "probability": 0.569 + }, + { + "start": 9800.06, + "end": 9801.12, + "probability": 0.9707 + }, + { + "start": 9802.82, + "end": 9804.32, + "probability": 0.7872 + }, + { + "start": 9804.48, + "end": 9807.35, + "probability": 0.902 + }, + { + "start": 9808.02, + "end": 9808.62, + "probability": 0.8556 + }, + { + "start": 9808.96, + "end": 9809.28, + "probability": 0.535 + }, + { + "start": 9809.48, + "end": 9810.42, + "probability": 0.5347 + }, + { + "start": 9814.56, + "end": 9815.44, + "probability": 0.8176 + }, + { + "start": 9816.64, + "end": 9817.64, + "probability": 0.7691 + }, + { + "start": 9818.04, + "end": 9818.28, + "probability": 0.868 + }, + { + "start": 9818.68, + "end": 9821.18, + "probability": 0.9943 + }, + { + "start": 9821.18, + "end": 9825.34, + "probability": 0.9991 + }, + { + "start": 9826.18, + "end": 9828.32, + "probability": 0.9995 + }, + { + "start": 9830.18, + "end": 9832.56, + "probability": 0.9381 + }, + { + "start": 9832.84, + "end": 9834.04, + "probability": 0.9007 + }, + { + "start": 9834.1, + "end": 9834.62, + "probability": 0.751 + }, + { + "start": 9835.24, + "end": 9836.45, + "probability": 0.8857 + }, + { + "start": 9837.08, + "end": 9838.7, + "probability": 0.9813 + }, + { + "start": 9839.7, + "end": 9841.68, + "probability": 0.8401 + }, + { + "start": 9843.32, + "end": 9845.34, + "probability": 0.9165 + }, + { + "start": 9845.36, + "end": 9847.34, + "probability": 0.9799 + }, + { + "start": 9847.96, + "end": 9849.04, + "probability": 0.9937 + }, + { + "start": 9849.24, + "end": 9850.22, + "probability": 0.9871 + }, + { + "start": 9850.42, + "end": 9851.82, + "probability": 0.7249 + }, + { + "start": 9852.14, + "end": 9854.4, + "probability": 0.9769 + }, + { + "start": 9856.06, + "end": 9857.21, + "probability": 0.9521 + }, + { + "start": 9857.3, + "end": 9857.94, + "probability": 0.9156 + }, + { + "start": 9858.04, + "end": 9859.18, + "probability": 0.9893 + }, + { + "start": 9860.96, + "end": 9861.44, + "probability": 0.7817 + }, + { + "start": 9862.26, + "end": 9863.0, + "probability": 0.6111 + }, + { + "start": 9863.7, + "end": 9866.96, + "probability": 0.8429 + }, + { + "start": 9867.04, + "end": 9870.9, + "probability": 0.7387 + }, + { + "start": 9872.02, + "end": 9872.84, + "probability": 0.8494 + }, + { + "start": 9874.28, + "end": 9880.36, + "probability": 0.8886 + }, + { + "start": 9881.02, + "end": 9885.16, + "probability": 0.9855 + }, + { + "start": 9885.16, + "end": 9890.52, + "probability": 0.9987 + }, + { + "start": 9891.2, + "end": 9897.75, + "probability": 0.9966 + }, + { + "start": 9899.68, + "end": 9902.78, + "probability": 0.4719 + }, + { + "start": 9903.46, + "end": 9906.36, + "probability": 0.8607 + }, + { + "start": 9907.0, + "end": 9910.44, + "probability": 0.8644 + }, + { + "start": 9911.28, + "end": 9914.56, + "probability": 0.9858 + }, + { + "start": 9915.42, + "end": 9918.0, + "probability": 0.9184 + }, + { + "start": 9918.64, + "end": 9919.94, + "probability": 0.9746 + }, + { + "start": 9920.86, + "end": 9924.88, + "probability": 0.9953 + }, + { + "start": 9926.02, + "end": 9926.44, + "probability": 0.7153 + }, + { + "start": 9927.02, + "end": 9927.76, + "probability": 0.8464 + }, + { + "start": 9928.04, + "end": 9929.7, + "probability": 0.9775 + }, + { + "start": 9930.18, + "end": 9932.28, + "probability": 0.9894 + }, + { + "start": 9933.42, + "end": 9935.04, + "probability": 0.7233 + }, + { + "start": 9936.12, + "end": 9939.46, + "probability": 0.9916 + }, + { + "start": 9940.42, + "end": 9942.85, + "probability": 0.9985 + }, + { + "start": 9943.6, + "end": 9945.04, + "probability": 0.9939 + }, + { + "start": 9946.86, + "end": 9948.12, + "probability": 0.7985 + }, + { + "start": 9948.34, + "end": 9949.1, + "probability": 0.8334 + }, + { + "start": 9949.58, + "end": 9956.6, + "probability": 0.9722 + }, + { + "start": 9957.62, + "end": 9959.22, + "probability": 0.9749 + }, + { + "start": 9960.64, + "end": 9961.24, + "probability": 0.2402 + }, + { + "start": 9962.84, + "end": 9965.4, + "probability": 0.9958 + }, + { + "start": 9965.48, + "end": 9966.82, + "probability": 0.9646 + }, + { + "start": 9967.66, + "end": 9970.3, + "probability": 0.8776 + }, + { + "start": 9971.66, + "end": 9975.92, + "probability": 0.9928 + }, + { + "start": 9976.7, + "end": 9978.6, + "probability": 0.9837 + }, + { + "start": 9979.26, + "end": 9979.58, + "probability": 0.9126 + }, + { + "start": 9980.2, + "end": 9982.16, + "probability": 0.9863 + }, + { + "start": 9983.8, + "end": 9984.94, + "probability": 0.9715 + }, + { + "start": 9985.64, + "end": 9988.7, + "probability": 0.9826 + }, + { + "start": 9989.44, + "end": 9990.94, + "probability": 0.5645 + }, + { + "start": 9993.54, + "end": 9994.76, + "probability": 0.8478 + }, + { + "start": 9995.28, + "end": 9997.54, + "probability": 0.9749 + }, + { + "start": 9999.34, + "end": 10000.0, + "probability": 0.8562 + }, + { + "start": 10001.36, + "end": 10002.0, + "probability": 0.8494 + }, + { + "start": 10003.82, + "end": 10005.52, + "probability": 0.9118 + }, + { + "start": 10006.62, + "end": 10008.56, + "probability": 0.97 + }, + { + "start": 10009.06, + "end": 10013.98, + "probability": 0.9729 + }, + { + "start": 10014.74, + "end": 10015.66, + "probability": 0.7807 + }, + { + "start": 10018.48, + "end": 10020.42, + "probability": 0.9473 + }, + { + "start": 10022.28, + "end": 10022.7, + "probability": 0.7023 + }, + { + "start": 10023.92, + "end": 10024.14, + "probability": 0.3387 + }, + { + "start": 10024.18, + "end": 10025.16, + "probability": 0.9196 + }, + { + "start": 10025.26, + "end": 10030.02, + "probability": 0.9646 + }, + { + "start": 10030.62, + "end": 10031.6, + "probability": 0.8315 + }, + { + "start": 10032.66, + "end": 10034.24, + "probability": 0.9787 + }, + { + "start": 10034.3, + "end": 10037.14, + "probability": 0.7944 + }, + { + "start": 10038.2, + "end": 10039.86, + "probability": 0.9806 + }, + { + "start": 10041.96, + "end": 10046.0, + "probability": 0.5837 + }, + { + "start": 10047.02, + "end": 10051.2, + "probability": 0.9912 + }, + { + "start": 10051.86, + "end": 10053.88, + "probability": 0.8619 + }, + { + "start": 10054.26, + "end": 10054.86, + "probability": 0.7764 + }, + { + "start": 10054.92, + "end": 10056.24, + "probability": 0.9399 + }, + { + "start": 10057.48, + "end": 10061.0, + "probability": 0.9956 + }, + { + "start": 10062.12, + "end": 10064.23, + "probability": 0.8607 + }, + { + "start": 10065.18, + "end": 10067.2, + "probability": 0.8133 + }, + { + "start": 10067.32, + "end": 10070.02, + "probability": 0.9268 + }, + { + "start": 10070.52, + "end": 10071.08, + "probability": 0.537 + }, + { + "start": 10071.26, + "end": 10073.24, + "probability": 0.8758 + }, + { + "start": 10073.3, + "end": 10075.58, + "probability": 0.0679 + }, + { + "start": 10076.74, + "end": 10079.64, + "probability": 0.7501 + }, + { + "start": 10080.54, + "end": 10083.62, + "probability": 0.8835 + }, + { + "start": 10084.64, + "end": 10086.71, + "probability": 0.9509 + }, + { + "start": 10087.44, + "end": 10090.86, + "probability": 0.9798 + }, + { + "start": 10091.34, + "end": 10095.66, + "probability": 0.9644 + }, + { + "start": 10095.7, + "end": 10097.92, + "probability": 0.8601 + }, + { + "start": 10099.3, + "end": 10100.92, + "probability": 0.7471 + }, + { + "start": 10101.08, + "end": 10105.96, + "probability": 0.9722 + }, + { + "start": 10107.2, + "end": 10107.3, + "probability": 0.0004 + }, + { + "start": 10109.3, + "end": 10110.4, + "probability": 0.993 + }, + { + "start": 10112.2, + "end": 10114.96, + "probability": 0.917 + }, + { + "start": 10115.22, + "end": 10116.24, + "probability": 0.9941 + }, + { + "start": 10116.86, + "end": 10116.96, + "probability": 0.2292 + }, + { + "start": 10116.98, + "end": 10117.42, + "probability": 0.308 + }, + { + "start": 10117.42, + "end": 10119.62, + "probability": 0.8865 + }, + { + "start": 10119.7, + "end": 10120.4, + "probability": 0.6882 + }, + { + "start": 10120.4, + "end": 10121.06, + "probability": 0.413 + }, + { + "start": 10122.78, + "end": 10122.86, + "probability": 0.3513 + }, + { + "start": 10122.86, + "end": 10125.22, + "probability": 0.6061 + }, + { + "start": 10125.48, + "end": 10129.58, + "probability": 0.855 + }, + { + "start": 10130.16, + "end": 10132.2, + "probability": 0.8762 + }, + { + "start": 10133.02, + "end": 10133.9, + "probability": 0.7054 + }, + { + "start": 10134.82, + "end": 10135.54, + "probability": 0.7507 + }, + { + "start": 10136.0, + "end": 10137.54, + "probability": 0.9948 + }, + { + "start": 10137.7, + "end": 10138.62, + "probability": 0.8882 + }, + { + "start": 10139.14, + "end": 10140.84, + "probability": 0.9462 + }, + { + "start": 10141.38, + "end": 10143.93, + "probability": 0.9963 + }, + { + "start": 10144.6, + "end": 10145.54, + "probability": 0.8434 + }, + { + "start": 10146.26, + "end": 10147.38, + "probability": 0.9498 + }, + { + "start": 10148.08, + "end": 10151.58, + "probability": 0.97 + }, + { + "start": 10151.84, + "end": 10152.18, + "probability": 0.7661 + }, + { + "start": 10153.06, + "end": 10156.14, + "probability": 0.9203 + }, + { + "start": 10156.56, + "end": 10158.82, + "probability": 0.9718 + }, + { + "start": 10159.0, + "end": 10159.46, + "probability": 0.1951 + }, + { + "start": 10160.52, + "end": 10164.9, + "probability": 0.9711 + }, + { + "start": 10165.46, + "end": 10170.2, + "probability": 0.9958 + }, + { + "start": 10171.75, + "end": 10174.34, + "probability": 0.8535 + }, + { + "start": 10175.22, + "end": 10176.92, + "probability": 0.9987 + }, + { + "start": 10177.08, + "end": 10179.06, + "probability": 0.9954 + }, + { + "start": 10179.14, + "end": 10180.16, + "probability": 0.9863 + }, + { + "start": 10180.56, + "end": 10181.92, + "probability": 0.9785 + }, + { + "start": 10182.1, + "end": 10185.56, + "probability": 0.9773 + }, + { + "start": 10185.7, + "end": 10187.02, + "probability": 0.9067 + }, + { + "start": 10188.08, + "end": 10193.88, + "probability": 0.9596 + }, + { + "start": 10194.3, + "end": 10195.16, + "probability": 0.887 + }, + { + "start": 10195.56, + "end": 10195.56, + "probability": 0.3678 + }, + { + "start": 10195.64, + "end": 10196.7, + "probability": 0.6861 + }, + { + "start": 10196.76, + "end": 10199.64, + "probability": 0.9964 + }, + { + "start": 10200.7, + "end": 10203.0, + "probability": 0.9756 + }, + { + "start": 10203.48, + "end": 10206.3, + "probability": 0.6775 + }, + { + "start": 10206.94, + "end": 10209.4, + "probability": 0.8474 + }, + { + "start": 10210.0, + "end": 10213.14, + "probability": 0.9199 + }, + { + "start": 10214.2, + "end": 10220.18, + "probability": 0.9938 + }, + { + "start": 10221.34, + "end": 10223.2, + "probability": 0.9698 + }, + { + "start": 10224.14, + "end": 10227.08, + "probability": 0.9753 + }, + { + "start": 10228.0, + "end": 10229.04, + "probability": 0.8307 + }, + { + "start": 10229.66, + "end": 10230.3, + "probability": 0.5403 + }, + { + "start": 10230.78, + "end": 10231.8, + "probability": 0.91 + }, + { + "start": 10231.9, + "end": 10232.56, + "probability": 0.5821 + }, + { + "start": 10232.98, + "end": 10236.6, + "probability": 0.9805 + }, + { + "start": 10236.92, + "end": 10238.84, + "probability": 0.9138 + }, + { + "start": 10238.94, + "end": 10239.94, + "probability": 0.7585 + }, + { + "start": 10240.66, + "end": 10242.0, + "probability": 0.7573 + }, + { + "start": 10242.52, + "end": 10244.76, + "probability": 0.6831 + }, + { + "start": 10245.62, + "end": 10247.98, + "probability": 0.8885 + }, + { + "start": 10249.06, + "end": 10251.72, + "probability": 0.9973 + }, + { + "start": 10252.72, + "end": 10254.58, + "probability": 0.9129 + }, + { + "start": 10254.9, + "end": 10257.2, + "probability": 0.964 + }, + { + "start": 10257.22, + "end": 10258.2, + "probability": 0.524 + }, + { + "start": 10258.8, + "end": 10259.1, + "probability": 0.9922 + }, + { + "start": 10259.64, + "end": 10261.52, + "probability": 0.9938 + }, + { + "start": 10262.18, + "end": 10265.42, + "probability": 0.9966 + }, + { + "start": 10265.96, + "end": 10268.55, + "probability": 0.9896 + }, + { + "start": 10269.32, + "end": 10269.98, + "probability": 0.7461 + }, + { + "start": 10270.54, + "end": 10273.6, + "probability": 0.9922 + }, + { + "start": 10275.3, + "end": 10277.94, + "probability": 0.9211 + }, + { + "start": 10279.96, + "end": 10281.62, + "probability": 0.8491 + }, + { + "start": 10282.96, + "end": 10284.82, + "probability": 0.8043 + }, + { + "start": 10285.94, + "end": 10289.04, + "probability": 0.7665 + }, + { + "start": 10290.28, + "end": 10292.68, + "probability": 0.9716 + }, + { + "start": 10292.94, + "end": 10294.78, + "probability": 0.9869 + }, + { + "start": 10295.82, + "end": 10297.6, + "probability": 0.9985 + }, + { + "start": 10298.8, + "end": 10301.94, + "probability": 0.9905 + }, + { + "start": 10303.6, + "end": 10303.86, + "probability": 0.9033 + }, + { + "start": 10304.56, + "end": 10305.5, + "probability": 0.9821 + }, + { + "start": 10307.18, + "end": 10309.62, + "probability": 0.9067 + }, + { + "start": 10309.86, + "end": 10310.66, + "probability": 0.9855 + }, + { + "start": 10310.8, + "end": 10312.1, + "probability": 0.615 + }, + { + "start": 10314.52, + "end": 10317.32, + "probability": 0.9988 + }, + { + "start": 10317.84, + "end": 10318.68, + "probability": 0.7465 + }, + { + "start": 10319.5, + "end": 10320.88, + "probability": 0.9706 + }, + { + "start": 10321.62, + "end": 10324.92, + "probability": 0.9863 + }, + { + "start": 10326.32, + "end": 10329.46, + "probability": 0.9881 + }, + { + "start": 10330.12, + "end": 10336.46, + "probability": 0.9781 + }, + { + "start": 10337.22, + "end": 10337.62, + "probability": 0.1731 + }, + { + "start": 10339.04, + "end": 10341.12, + "probability": 0.7909 + }, + { + "start": 10344.6, + "end": 10346.44, + "probability": 0.8126 + }, + { + "start": 10354.64, + "end": 10359.46, + "probability": 0.9945 + }, + { + "start": 10360.18, + "end": 10362.5, + "probability": 0.9342 + }, + { + "start": 10363.82, + "end": 10364.88, + "probability": 0.9855 + }, + { + "start": 10365.9, + "end": 10366.9, + "probability": 0.8322 + }, + { + "start": 10367.94, + "end": 10369.14, + "probability": 0.9661 + }, + { + "start": 10370.96, + "end": 10374.08, + "probability": 0.8499 + }, + { + "start": 10374.7, + "end": 10376.06, + "probability": 0.9984 + }, + { + "start": 10380.12, + "end": 10383.08, + "probability": 0.9989 + }, + { + "start": 10383.98, + "end": 10385.22, + "probability": 0.9669 + }, + { + "start": 10385.74, + "end": 10393.18, + "probability": 0.9893 + }, + { + "start": 10394.94, + "end": 10395.74, + "probability": 0.9985 + }, + { + "start": 10396.52, + "end": 10399.92, + "probability": 0.759 + }, + { + "start": 10400.02, + "end": 10403.83, + "probability": 0.906 + }, + { + "start": 10403.98, + "end": 10405.76, + "probability": 0.6814 + }, + { + "start": 10406.3, + "end": 10408.34, + "probability": 0.9847 + }, + { + "start": 10408.92, + "end": 10411.2, + "probability": 0.9785 + }, + { + "start": 10411.2, + "end": 10413.54, + "probability": 0.9954 + }, + { + "start": 10414.9, + "end": 10415.7, + "probability": 0.9746 + }, + { + "start": 10416.24, + "end": 10418.06, + "probability": 0.8065 + }, + { + "start": 10419.62, + "end": 10423.15, + "probability": 0.979 + }, + { + "start": 10425.78, + "end": 10425.96, + "probability": 0.2983 + }, + { + "start": 10426.64, + "end": 10429.24, + "probability": 0.911 + }, + { + "start": 10430.04, + "end": 10431.06, + "probability": 0.8692 + }, + { + "start": 10431.22, + "end": 10432.1, + "probability": 0.7743 + }, + { + "start": 10433.94, + "end": 10436.1, + "probability": 0.9447 + }, + { + "start": 10437.0, + "end": 10437.2, + "probability": 0.5006 + }, + { + "start": 10437.94, + "end": 10438.78, + "probability": 0.7789 + }, + { + "start": 10439.52, + "end": 10442.8, + "probability": 0.8528 + }, + { + "start": 10443.56, + "end": 10446.0, + "probability": 0.927 + }, + { + "start": 10446.64, + "end": 10447.48, + "probability": 0.9348 + }, + { + "start": 10448.54, + "end": 10452.64, + "probability": 0.715 + }, + { + "start": 10453.7, + "end": 10456.46, + "probability": 0.9913 + }, + { + "start": 10456.6, + "end": 10458.34, + "probability": 0.9392 + }, + { + "start": 10458.48, + "end": 10460.98, + "probability": 0.9309 + }, + { + "start": 10462.24, + "end": 10462.26, + "probability": 0.2655 + }, + { + "start": 10462.26, + "end": 10464.9, + "probability": 0.9705 + }, + { + "start": 10465.24, + "end": 10468.44, + "probability": 0.9854 + }, + { + "start": 10469.08, + "end": 10473.0, + "probability": 0.7918 + }, + { + "start": 10473.0, + "end": 10474.08, + "probability": 0.4412 + }, + { + "start": 10474.22, + "end": 10474.98, + "probability": 0.8188 + }, + { + "start": 10475.1, + "end": 10476.02, + "probability": 0.7788 + }, + { + "start": 10476.14, + "end": 10477.24, + "probability": 0.9227 + }, + { + "start": 10478.46, + "end": 10480.42, + "probability": 0.9829 + }, + { + "start": 10480.48, + "end": 10481.3, + "probability": 0.8273 + }, + { + "start": 10481.96, + "end": 10483.42, + "probability": 0.7996 + }, + { + "start": 10484.6, + "end": 10485.04, + "probability": 0.9497 + }, + { + "start": 10485.74, + "end": 10486.46, + "probability": 0.991 + }, + { + "start": 10486.54, + "end": 10488.64, + "probability": 0.958 + }, + { + "start": 10489.16, + "end": 10491.38, + "probability": 0.9985 + }, + { + "start": 10491.92, + "end": 10495.06, + "probability": 0.939 + }, + { + "start": 10496.18, + "end": 10497.14, + "probability": 0.7168 + }, + { + "start": 10497.36, + "end": 10497.66, + "probability": 0.896 + }, + { + "start": 10497.76, + "end": 10498.85, + "probability": 0.9072 + }, + { + "start": 10499.08, + "end": 10500.74, + "probability": 0.6724 + }, + { + "start": 10502.42, + "end": 10505.26, + "probability": 0.7625 + }, + { + "start": 10505.86, + "end": 10509.84, + "probability": 0.9896 + }, + { + "start": 10510.42, + "end": 10513.16, + "probability": 0.9815 + }, + { + "start": 10528.6, + "end": 10529.0, + "probability": 0.6698 + }, + { + "start": 10530.2, + "end": 10532.94, + "probability": 0.9146 + }, + { + "start": 10536.02, + "end": 10538.4, + "probability": 0.5804 + }, + { + "start": 10538.62, + "end": 10538.62, + "probability": 0.5438 + }, + { + "start": 10538.62, + "end": 10538.82, + "probability": 0.6606 + }, + { + "start": 10539.18, + "end": 10539.68, + "probability": 0.9216 + }, + { + "start": 10539.8, + "end": 10540.8, + "probability": 0.9316 + }, + { + "start": 10545.18, + "end": 10547.46, + "probability": 0.9704 + }, + { + "start": 10548.36, + "end": 10549.16, + "probability": 0.9876 + }, + { + "start": 10550.4, + "end": 10554.68, + "probability": 0.8572 + }, + { + "start": 10555.68, + "end": 10560.2, + "probability": 0.7035 + }, + { + "start": 10561.66, + "end": 10564.9, + "probability": 0.957 + }, + { + "start": 10565.2, + "end": 10567.18, + "probability": 0.6933 + }, + { + "start": 10568.18, + "end": 10573.84, + "probability": 0.9883 + }, + { + "start": 10576.2, + "end": 10577.68, + "probability": 0.9068 + }, + { + "start": 10578.0, + "end": 10580.46, + "probability": 0.9234 + }, + { + "start": 10582.4, + "end": 10585.44, + "probability": 0.825 + }, + { + "start": 10586.46, + "end": 10588.77, + "probability": 0.994 + }, + { + "start": 10589.54, + "end": 10589.9, + "probability": 0.6982 + }, + { + "start": 10590.84, + "end": 10592.16, + "probability": 0.9734 + }, + { + "start": 10593.42, + "end": 10597.41, + "probability": 0.9722 + }, + { + "start": 10598.48, + "end": 10601.44, + "probability": 0.8917 + }, + { + "start": 10602.68, + "end": 10603.36, + "probability": 0.9946 + }, + { + "start": 10604.78, + "end": 10609.04, + "probability": 0.9876 + }, + { + "start": 10609.18, + "end": 10613.3, + "probability": 0.9983 + }, + { + "start": 10614.08, + "end": 10615.98, + "probability": 0.9951 + }, + { + "start": 10617.52, + "end": 10617.96, + "probability": 0.8771 + }, + { + "start": 10619.32, + "end": 10620.08, + "probability": 0.8004 + }, + { + "start": 10621.58, + "end": 10622.31, + "probability": 0.9011 + }, + { + "start": 10623.44, + "end": 10625.38, + "probability": 0.7456 + }, + { + "start": 10626.06, + "end": 10629.08, + "probability": 0.9374 + }, + { + "start": 10629.6, + "end": 10631.24, + "probability": 0.9648 + }, + { + "start": 10631.74, + "end": 10633.24, + "probability": 0.8359 + }, + { + "start": 10634.34, + "end": 10636.02, + "probability": 0.7997 + }, + { + "start": 10636.88, + "end": 10639.76, + "probability": 0.9885 + }, + { + "start": 10641.12, + "end": 10642.06, + "probability": 0.818 + }, + { + "start": 10642.54, + "end": 10645.52, + "probability": 0.895 + }, + { + "start": 10646.22, + "end": 10648.02, + "probability": 0.8137 + }, + { + "start": 10648.58, + "end": 10650.02, + "probability": 0.9525 + }, + { + "start": 10650.8, + "end": 10652.96, + "probability": 0.9272 + }, + { + "start": 10653.28, + "end": 10653.44, + "probability": 0.3249 + }, + { + "start": 10654.28, + "end": 10654.94, + "probability": 0.8405 + }, + { + "start": 10654.94, + "end": 10657.06, + "probability": 0.9847 + }, + { + "start": 10657.16, + "end": 10657.98, + "probability": 0.9849 + }, + { + "start": 10661.22, + "end": 10663.64, + "probability": 0.978 + }, + { + "start": 10666.24, + "end": 10670.46, + "probability": 0.8352 + }, + { + "start": 10671.31, + "end": 10673.4, + "probability": 0.9945 + }, + { + "start": 10673.54, + "end": 10674.56, + "probability": 0.8228 + }, + { + "start": 10674.7, + "end": 10676.4, + "probability": 0.929 + }, + { + "start": 10677.2, + "end": 10679.28, + "probability": 0.9904 + }, + { + "start": 10679.92, + "end": 10681.3, + "probability": 0.9529 + }, + { + "start": 10682.26, + "end": 10683.2, + "probability": 0.9598 + }, + { + "start": 10683.52, + "end": 10684.12, + "probability": 0.7863 + }, + { + "start": 10684.66, + "end": 10685.48, + "probability": 0.8881 + }, + { + "start": 10686.86, + "end": 10689.67, + "probability": 0.9059 + }, + { + "start": 10691.02, + "end": 10692.28, + "probability": 0.9756 + }, + { + "start": 10693.06, + "end": 10693.7, + "probability": 0.7538 + }, + { + "start": 10694.42, + "end": 10694.8, + "probability": 0.751 + }, + { + "start": 10695.44, + "end": 10698.1, + "probability": 0.8052 + }, + { + "start": 10698.68, + "end": 10700.5, + "probability": 0.7729 + }, + { + "start": 10701.16, + "end": 10702.92, + "probability": 0.9868 + }, + { + "start": 10705.08, + "end": 10706.66, + "probability": 0.999 + }, + { + "start": 10706.96, + "end": 10709.78, + "probability": 0.978 + }, + { + "start": 10710.26, + "end": 10710.78, + "probability": 0.8927 + }, + { + "start": 10712.12, + "end": 10713.74, + "probability": 0.9341 + }, + { + "start": 10716.96, + "end": 10717.66, + "probability": 0.7941 + }, + { + "start": 10718.52, + "end": 10720.78, + "probability": 0.9905 + }, + { + "start": 10721.8, + "end": 10722.35, + "probability": 0.8779 + }, + { + "start": 10723.48, + "end": 10725.82, + "probability": 0.8975 + }, + { + "start": 10733.34, + "end": 10734.64, + "probability": 0.088 + }, + { + "start": 10734.64, + "end": 10734.86, + "probability": 0.0528 + }, + { + "start": 10735.08, + "end": 10735.9, + "probability": 0.0234 + }, + { + "start": 10735.9, + "end": 10737.2, + "probability": 0.0826 + }, + { + "start": 10737.2, + "end": 10737.78, + "probability": 0.0119 + }, + { + "start": 10792.96, + "end": 10793.78, + "probability": 0.3162 + }, + { + "start": 10794.96, + "end": 10795.68, + "probability": 0.5422 + }, + { + "start": 10797.36, + "end": 10798.22, + "probability": 0.4002 + }, + { + "start": 10798.3, + "end": 10802.26, + "probability": 0.842 + }, + { + "start": 10802.42, + "end": 10804.72, + "probability": 0.8764 + }, + { + "start": 10805.66, + "end": 10807.8, + "probability": 0.9729 + }, + { + "start": 10809.46, + "end": 10809.98, + "probability": 0.9356 + }, + { + "start": 10811.18, + "end": 10812.2, + "probability": 0.8545 + }, + { + "start": 10813.42, + "end": 10818.64, + "probability": 0.9739 + }, + { + "start": 10820.84, + "end": 10824.45, + "probability": 0.9607 + }, + { + "start": 10825.32, + "end": 10826.5, + "probability": 0.998 + }, + { + "start": 10827.1, + "end": 10830.06, + "probability": 0.7296 + }, + { + "start": 10831.74, + "end": 10832.86, + "probability": 0.9984 + }, + { + "start": 10832.96, + "end": 10833.94, + "probability": 0.6881 + }, + { + "start": 10834.44, + "end": 10835.1, + "probability": 0.6865 + }, + { + "start": 10835.36, + "end": 10837.36, + "probability": 0.7046 + }, + { + "start": 10838.46, + "end": 10840.48, + "probability": 0.8597 + }, + { + "start": 10842.0, + "end": 10842.8, + "probability": 0.6037 + }, + { + "start": 10842.94, + "end": 10845.58, + "probability": 0.9053 + }, + { + "start": 10845.88, + "end": 10848.88, + "probability": 0.8081 + }, + { + "start": 10848.88, + "end": 10848.9, + "probability": 0.1697 + }, + { + "start": 10849.56, + "end": 10849.96, + "probability": 0.0438 + }, + { + "start": 10849.96, + "end": 10851.04, + "probability": 0.327 + }, + { + "start": 10853.64, + "end": 10856.04, + "probability": 0.6863 + }, + { + "start": 10856.92, + "end": 10858.88, + "probability": 0.8515 + }, + { + "start": 10860.24, + "end": 10867.42, + "probability": 0.9742 + }, + { + "start": 10867.7, + "end": 10868.68, + "probability": 0.6074 + }, + { + "start": 10869.32, + "end": 10873.49, + "probability": 0.9926 + }, + { + "start": 10874.44, + "end": 10876.94, + "probability": 0.9106 + }, + { + "start": 10877.78, + "end": 10880.16, + "probability": 0.9786 + }, + { + "start": 10880.8, + "end": 10883.58, + "probability": 0.9902 + }, + { + "start": 10884.08, + "end": 10886.7, + "probability": 0.972 + }, + { + "start": 10890.72, + "end": 10891.36, + "probability": 0.6837 + }, + { + "start": 10892.34, + "end": 10894.42, + "probability": 0.8676 + }, + { + "start": 10895.04, + "end": 10896.04, + "probability": 0.9722 + }, + { + "start": 10896.52, + "end": 10898.02, + "probability": 0.938 + }, + { + "start": 10898.08, + "end": 10898.8, + "probability": 0.996 + }, + { + "start": 10899.2, + "end": 10899.86, + "probability": 0.9489 + }, + { + "start": 10900.72, + "end": 10902.48, + "probability": 0.9551 + }, + { + "start": 10902.48, + "end": 10902.56, + "probability": 0.8015 + }, + { + "start": 10902.56, + "end": 10904.3, + "probability": 0.838 + }, + { + "start": 10904.58, + "end": 10905.64, + "probability": 0.4951 + }, + { + "start": 10906.12, + "end": 10906.16, + "probability": 0.4562 + }, + { + "start": 10906.5, + "end": 10909.28, + "probability": 0.9565 + }, + { + "start": 10909.38, + "end": 10911.3, + "probability": 0.9976 + }, + { + "start": 10912.06, + "end": 10914.98, + "probability": 0.9858 + }, + { + "start": 10915.62, + "end": 10916.56, + "probability": 0.9758 + }, + { + "start": 10917.9, + "end": 10920.5, + "probability": 0.9974 + }, + { + "start": 10921.02, + "end": 10925.92, + "probability": 0.9917 + }, + { + "start": 10927.14, + "end": 10931.36, + "probability": 0.85 + }, + { + "start": 10932.0, + "end": 10933.42, + "probability": 0.9915 + }, + { + "start": 10934.06, + "end": 10939.44, + "probability": 0.9977 + }, + { + "start": 10939.86, + "end": 10943.06, + "probability": 0.9714 + }, + { + "start": 10944.14, + "end": 10944.6, + "probability": 0.6009 + }, + { + "start": 10944.62, + "end": 10945.94, + "probability": 0.9913 + }, + { + "start": 10946.04, + "end": 10949.7, + "probability": 0.994 + }, + { + "start": 10950.14, + "end": 10952.14, + "probability": 0.9955 + }, + { + "start": 10952.4, + "end": 10954.4, + "probability": 0.9644 + }, + { + "start": 10954.92, + "end": 10958.14, + "probability": 0.6326 + }, + { + "start": 10958.28, + "end": 10960.54, + "probability": 0.9025 + }, + { + "start": 10960.56, + "end": 10962.92, + "probability": 0.7178 + }, + { + "start": 10963.16, + "end": 10965.56, + "probability": 0.6669 + }, + { + "start": 10965.56, + "end": 10965.6, + "probability": 0.6889 + }, + { + "start": 10965.6, + "end": 10966.62, + "probability": 0.8427 + }, + { + "start": 10967.34, + "end": 10969.32, + "probability": 0.8504 + }, + { + "start": 10969.42, + "end": 10970.58, + "probability": 0.394 + }, + { + "start": 10971.1, + "end": 10974.56, + "probability": 0.7462 + }, + { + "start": 10974.58, + "end": 10974.58, + "probability": 0.1515 + }, + { + "start": 10974.58, + "end": 10975.76, + "probability": 0.9706 + }, + { + "start": 10976.48, + "end": 10976.72, + "probability": 0.6882 + }, + { + "start": 10977.92, + "end": 10979.56, + "probability": 0.8945 + }, + { + "start": 10980.62, + "end": 10982.7, + "probability": 0.9302 + }, + { + "start": 10983.16, + "end": 10984.14, + "probability": 0.7734 + }, + { + "start": 10984.46, + "end": 10984.92, + "probability": 0.6746 + }, + { + "start": 10984.96, + "end": 10985.76, + "probability": 0.9565 + }, + { + "start": 10986.04, + "end": 10986.66, + "probability": 0.7296 + }, + { + "start": 10986.66, + "end": 10987.92, + "probability": 0.7603 + }, + { + "start": 10988.32, + "end": 10989.26, + "probability": 0.9616 + }, + { + "start": 10989.42, + "end": 10989.52, + "probability": 0.2 + }, + { + "start": 10989.54, + "end": 10989.92, + "probability": 0.2644 + }, + { + "start": 10990.52, + "end": 10991.16, + "probability": 0.3908 + }, + { + "start": 10991.16, + "end": 10991.6, + "probability": 0.5246 + }, + { + "start": 10991.76, + "end": 10993.02, + "probability": 0.8024 + }, + { + "start": 10993.04, + "end": 10996.04, + "probability": 0.1853 + }, + { + "start": 10996.2, + "end": 10996.5, + "probability": 0.5153 + }, + { + "start": 10999.18, + "end": 11000.12, + "probability": 0.0541 + }, + { + "start": 11000.12, + "end": 11000.84, + "probability": 0.1261 + }, + { + "start": 11000.96, + "end": 11001.36, + "probability": 0.5833 + }, + { + "start": 11001.54, + "end": 11002.24, + "probability": 0.8442 + }, + { + "start": 11002.54, + "end": 11004.8, + "probability": 0.9513 + }, + { + "start": 11004.96, + "end": 11006.02, + "probability": 0.9865 + }, + { + "start": 11006.26, + "end": 11006.82, + "probability": 0.4839 + }, + { + "start": 11007.26, + "end": 11007.84, + "probability": 0.4931 + }, + { + "start": 11007.86, + "end": 11009.14, + "probability": 0.9851 + }, + { + "start": 11009.22, + "end": 11010.16, + "probability": 0.8724 + }, + { + "start": 11010.6, + "end": 11012.72, + "probability": 0.9925 + }, + { + "start": 11013.36, + "end": 11013.9, + "probability": 0.614 + }, + { + "start": 11014.76, + "end": 11017.34, + "probability": 0.9961 + }, + { + "start": 11018.36, + "end": 11023.68, + "probability": 0.9594 + }, + { + "start": 11024.2, + "end": 11027.74, + "probability": 0.9787 + }, + { + "start": 11028.14, + "end": 11033.2, + "probability": 0.9941 + }, + { + "start": 11033.48, + "end": 11035.22, + "probability": 0.9977 + }, + { + "start": 11035.8, + "end": 11038.9, + "probability": 0.3262 + }, + { + "start": 11038.9, + "end": 11039.32, + "probability": 0.6398 + }, + { + "start": 11039.4, + "end": 11041.08, + "probability": 0.6502 + }, + { + "start": 11041.32, + "end": 11041.96, + "probability": 0.8232 + }, + { + "start": 11042.0, + "end": 11043.74, + "probability": 0.946 + }, + { + "start": 11043.78, + "end": 11044.52, + "probability": 0.5177 + }, + { + "start": 11044.62, + "end": 11044.96, + "probability": 0.7031 + }, + { + "start": 11045.44, + "end": 11046.25, + "probability": 0.7571 + }, + { + "start": 11046.88, + "end": 11048.4, + "probability": 0.9531 + }, + { + "start": 11048.48, + "end": 11048.7, + "probability": 0.1073 + }, + { + "start": 11048.76, + "end": 11050.42, + "probability": 0.8101 + }, + { + "start": 11050.42, + "end": 11052.16, + "probability": 0.9609 + }, + { + "start": 11052.26, + "end": 11052.26, + "probability": 0.8019 + }, + { + "start": 11052.26, + "end": 11052.26, + "probability": 0.6925 + }, + { + "start": 11052.36, + "end": 11053.48, + "probability": 0.8071 + }, + { + "start": 11053.48, + "end": 11055.66, + "probability": 0.6926 + }, + { + "start": 11056.26, + "end": 11057.14, + "probability": 0.8801 + }, + { + "start": 11057.14, + "end": 11058.54, + "probability": 0.9329 + }, + { + "start": 11058.6, + "end": 11060.14, + "probability": 0.7324 + }, + { + "start": 11060.66, + "end": 11060.76, + "probability": 0.6215 + }, + { + "start": 11060.76, + "end": 11062.48, + "probability": 0.9677 + }, + { + "start": 11062.72, + "end": 11065.06, + "probability": 0.9971 + }, + { + "start": 11065.36, + "end": 11069.46, + "probability": 0.9951 + }, + { + "start": 11069.84, + "end": 11071.88, + "probability": 0.9076 + }, + { + "start": 11071.92, + "end": 11073.08, + "probability": 0.3767 + }, + { + "start": 11073.32, + "end": 11073.4, + "probability": 0.1204 + }, + { + "start": 11073.4, + "end": 11075.36, + "probability": 0.3899 + }, + { + "start": 11075.36, + "end": 11078.04, + "probability": 0.9994 + }, + { + "start": 11078.56, + "end": 11084.58, + "probability": 0.9989 + }, + { + "start": 11084.58, + "end": 11089.36, + "probability": 0.9956 + }, + { + "start": 11090.12, + "end": 11091.94, + "probability": 0.9762 + }, + { + "start": 11092.46, + "end": 11094.28, + "probability": 0.9289 + }, + { + "start": 11094.8, + "end": 11097.32, + "probability": 0.8696 + }, + { + "start": 11097.96, + "end": 11099.48, + "probability": 0.9555 + }, + { + "start": 11101.12, + "end": 11102.94, + "probability": 0.9911 + }, + { + "start": 11102.98, + "end": 11104.73, + "probability": 0.9956 + }, + { + "start": 11105.3, + "end": 11107.34, + "probability": 0.834 + }, + { + "start": 11111.44, + "end": 11113.02, + "probability": 0.8284 + }, + { + "start": 11113.8, + "end": 11114.44, + "probability": 0.1345 + }, + { + "start": 11114.82, + "end": 11115.86, + "probability": 0.7374 + }, + { + "start": 11116.42, + "end": 11118.4, + "probability": 0.9918 + }, + { + "start": 11118.64, + "end": 11119.84, + "probability": 0.8774 + }, + { + "start": 11121.0, + "end": 11124.8, + "probability": 0.9838 + }, + { + "start": 11124.8, + "end": 11124.9, + "probability": 0.1255 + }, + { + "start": 11125.24, + "end": 11129.44, + "probability": 0.9859 + }, + { + "start": 11129.98, + "end": 11132.26, + "probability": 0.996 + }, + { + "start": 11132.92, + "end": 11134.44, + "probability": 0.998 + }, + { + "start": 11134.88, + "end": 11135.7, + "probability": 0.9051 + }, + { + "start": 11135.78, + "end": 11138.08, + "probability": 0.9978 + }, + { + "start": 11138.68, + "end": 11141.88, + "probability": 0.6829 + }, + { + "start": 11142.82, + "end": 11144.22, + "probability": 0.9714 + }, + { + "start": 11145.14, + "end": 11146.84, + "probability": 0.9717 + }, + { + "start": 11147.7, + "end": 11152.04, + "probability": 0.8976 + }, + { + "start": 11153.08, + "end": 11155.72, + "probability": 0.9199 + }, + { + "start": 11156.44, + "end": 11157.32, + "probability": 0.5222 + }, + { + "start": 11158.02, + "end": 11160.32, + "probability": 0.9844 + }, + { + "start": 11160.7, + "end": 11161.26, + "probability": 0.984 + }, + { + "start": 11166.08, + "end": 11166.98, + "probability": 0.5224 + }, + { + "start": 11167.96, + "end": 11168.18, + "probability": 0.5997 + }, + { + "start": 11168.18, + "end": 11171.0, + "probability": 0.966 + }, + { + "start": 11171.74, + "end": 11173.4, + "probability": 0.8085 + }, + { + "start": 11174.08, + "end": 11175.68, + "probability": 0.9763 + }, + { + "start": 11177.7, + "end": 11179.3, + "probability": 0.9556 + }, + { + "start": 11179.3, + "end": 11181.1, + "probability": 0.9809 + }, + { + "start": 11181.7, + "end": 11183.6, + "probability": 0.986 + }, + { + "start": 11183.96, + "end": 11188.52, + "probability": 0.9878 + }, + { + "start": 11189.04, + "end": 11190.48, + "probability": 0.6345 + }, + { + "start": 11191.4, + "end": 11193.44, + "probability": 0.9509 + }, + { + "start": 11193.96, + "end": 11195.68, + "probability": 0.984 + }, + { + "start": 11196.14, + "end": 11197.76, + "probability": 0.9743 + }, + { + "start": 11198.24, + "end": 11201.8, + "probability": 0.9834 + }, + { + "start": 11202.26, + "end": 11204.6, + "probability": 0.9761 + }, + { + "start": 11204.96, + "end": 11207.85, + "probability": 0.9963 + }, + { + "start": 11208.22, + "end": 11210.16, + "probability": 0.9473 + }, + { + "start": 11210.58, + "end": 11213.04, + "probability": 0.981 + }, + { + "start": 11213.68, + "end": 11217.14, + "probability": 0.976 + }, + { + "start": 11217.36, + "end": 11220.16, + "probability": 0.1968 + }, + { + "start": 11221.72, + "end": 11223.96, + "probability": 0.6265 + }, + { + "start": 11223.96, + "end": 11224.16, + "probability": 0.0948 + }, + { + "start": 11224.16, + "end": 11224.16, + "probability": 0.0608 + }, + { + "start": 11224.16, + "end": 11224.16, + "probability": 0.1176 + }, + { + "start": 11224.16, + "end": 11224.16, + "probability": 0.1833 + }, + { + "start": 11224.16, + "end": 11225.06, + "probability": 0.4556 + }, + { + "start": 11225.3, + "end": 11229.78, + "probability": 0.954 + }, + { + "start": 11230.14, + "end": 11231.06, + "probability": 0.9231 + }, + { + "start": 11231.54, + "end": 11232.46, + "probability": 0.7477 + }, + { + "start": 11233.76, + "end": 11235.58, + "probability": 0.9828 + }, + { + "start": 11236.7, + "end": 11239.22, + "probability": 0.9668 + }, + { + "start": 11239.44, + "end": 11240.18, + "probability": 0.8868 + }, + { + "start": 11240.3, + "end": 11241.94, + "probability": 0.5745 + }, + { + "start": 11242.06, + "end": 11243.06, + "probability": 0.5389 + }, + { + "start": 11243.24, + "end": 11243.76, + "probability": 0.6744 + }, + { + "start": 11244.46, + "end": 11245.3, + "probability": 0.9106 + }, + { + "start": 11245.96, + "end": 11248.38, + "probability": 0.9867 + }, + { + "start": 11249.26, + "end": 11249.64, + "probability": 0.8008 + }, + { + "start": 11250.44, + "end": 11252.9, + "probability": 0.7974 + }, + { + "start": 11253.52, + "end": 11254.04, + "probability": 0.8251 + }, + { + "start": 11255.62, + "end": 11256.66, + "probability": 0.9832 + }, + { + "start": 11257.22, + "end": 11261.4, + "probability": 0.9807 + }, + { + "start": 11261.98, + "end": 11264.38, + "probability": 0.9895 + }, + { + "start": 11265.52, + "end": 11266.34, + "probability": 0.9724 + }, + { + "start": 11267.46, + "end": 11269.3, + "probability": 0.7884 + }, + { + "start": 11270.16, + "end": 11271.78, + "probability": 0.8949 + }, + { + "start": 11272.72, + "end": 11274.02, + "probability": 0.7988 + }, + { + "start": 11277.4, + "end": 11278.22, + "probability": 0.1411 + }, + { + "start": 11285.32, + "end": 11287.2, + "probability": 0.3306 + }, + { + "start": 11299.86, + "end": 11300.92, + "probability": 0.4264 + }, + { + "start": 11302.04, + "end": 11303.85, + "probability": 0.9963 + }, + { + "start": 11304.84, + "end": 11310.1, + "probability": 0.9944 + }, + { + "start": 11310.48, + "end": 11312.36, + "probability": 0.7633 + }, + { + "start": 11313.52, + "end": 11317.98, + "probability": 0.7795 + }, + { + "start": 11319.08, + "end": 11321.52, + "probability": 0.569 + }, + { + "start": 11322.38, + "end": 11326.7, + "probability": 0.5858 + }, + { + "start": 11327.02, + "end": 11330.7, + "probability": 0.991 + }, + { + "start": 11331.96, + "end": 11333.88, + "probability": 0.9924 + }, + { + "start": 11334.68, + "end": 11339.94, + "probability": 0.9951 + }, + { + "start": 11340.5, + "end": 11343.04, + "probability": 0.9927 + }, + { + "start": 11343.74, + "end": 11347.38, + "probability": 0.9954 + }, + { + "start": 11347.38, + "end": 11351.22, + "probability": 0.9997 + }, + { + "start": 11352.14, + "end": 11353.49, + "probability": 0.8394 + }, + { + "start": 11353.78, + "end": 11355.36, + "probability": 0.7644 + }, + { + "start": 11355.42, + "end": 11361.3, + "probability": 0.8531 + }, + { + "start": 11361.48, + "end": 11362.76, + "probability": 0.9884 + }, + { + "start": 11363.92, + "end": 11364.2, + "probability": 0.3098 + }, + { + "start": 11364.26, + "end": 11367.16, + "probability": 0.8345 + }, + { + "start": 11367.24, + "end": 11368.66, + "probability": 0.7384 + }, + { + "start": 11369.68, + "end": 11373.82, + "probability": 0.9408 + }, + { + "start": 11374.72, + "end": 11378.46, + "probability": 0.9352 + }, + { + "start": 11379.26, + "end": 11380.48, + "probability": 0.7218 + }, + { + "start": 11381.3, + "end": 11382.12, + "probability": 0.9343 + }, + { + "start": 11382.44, + "end": 11383.72, + "probability": 0.8789 + }, + { + "start": 11383.84, + "end": 11387.5, + "probability": 0.9851 + }, + { + "start": 11388.64, + "end": 11390.14, + "probability": 0.9023 + }, + { + "start": 11393.02, + "end": 11394.46, + "probability": 0.54 + }, + { + "start": 11396.5, + "end": 11398.2, + "probability": 0.9406 + }, + { + "start": 11399.38, + "end": 11402.46, + "probability": 0.8054 + }, + { + "start": 11403.0, + "end": 11403.96, + "probability": 0.9708 + }, + { + "start": 11404.94, + "end": 11409.56, + "probability": 0.9508 + }, + { + "start": 11411.18, + "end": 11413.74, + "probability": 0.7879 + }, + { + "start": 11415.16, + "end": 11418.4, + "probability": 0.8777 + }, + { + "start": 11418.84, + "end": 11421.98, + "probability": 0.9487 + }, + { + "start": 11423.32, + "end": 11429.02, + "probability": 0.9927 + }, + { + "start": 11431.48, + "end": 11434.64, + "probability": 0.9615 + }, + { + "start": 11434.86, + "end": 11436.38, + "probability": 0.6451 + }, + { + "start": 11436.76, + "end": 11437.52, + "probability": 0.9102 + }, + { + "start": 11438.66, + "end": 11440.56, + "probability": 0.98 + }, + { + "start": 11441.52, + "end": 11446.44, + "probability": 0.9763 + }, + { + "start": 11446.96, + "end": 11448.12, + "probability": 0.8384 + }, + { + "start": 11449.64, + "end": 11457.28, + "probability": 0.9172 + }, + { + "start": 11459.46, + "end": 11460.48, + "probability": 0.5907 + }, + { + "start": 11461.38, + "end": 11467.98, + "probability": 0.9873 + }, + { + "start": 11469.0, + "end": 11471.0, + "probability": 0.8209 + }, + { + "start": 11472.1, + "end": 11476.51, + "probability": 0.953 + }, + { + "start": 11478.26, + "end": 11479.26, + "probability": 0.8329 + }, + { + "start": 11480.44, + "end": 11481.72, + "probability": 0.924 + }, + { + "start": 11482.24, + "end": 11482.92, + "probability": 0.947 + }, + { + "start": 11483.98, + "end": 11487.54, + "probability": 0.9906 + }, + { + "start": 11488.66, + "end": 11491.0, + "probability": 0.9984 + }, + { + "start": 11491.88, + "end": 11495.86, + "probability": 0.9316 + }, + { + "start": 11497.52, + "end": 11499.5, + "probability": 0.7147 + }, + { + "start": 11500.16, + "end": 11500.8, + "probability": 0.91 + }, + { + "start": 11501.6, + "end": 11505.34, + "probability": 0.9816 + }, + { + "start": 11506.24, + "end": 11507.62, + "probability": 0.9989 + }, + { + "start": 11508.5, + "end": 11509.71, + "probability": 0.962 + }, + { + "start": 11512.98, + "end": 11515.44, + "probability": 0.8289 + }, + { + "start": 11516.12, + "end": 11519.42, + "probability": 0.991 + }, + { + "start": 11520.7, + "end": 11528.32, + "probability": 0.8388 + }, + { + "start": 11529.12, + "end": 11530.62, + "probability": 0.8946 + }, + { + "start": 11531.18, + "end": 11531.9, + "probability": 0.9826 + }, + { + "start": 11532.46, + "end": 11535.78, + "probability": 0.9876 + }, + { + "start": 11536.42, + "end": 11538.36, + "probability": 0.5289 + }, + { + "start": 11538.9, + "end": 11541.68, + "probability": 0.8637 + }, + { + "start": 11542.08, + "end": 11543.28, + "probability": 0.9661 + }, + { + "start": 11543.72, + "end": 11546.38, + "probability": 0.9877 + }, + { + "start": 11547.86, + "end": 11552.68, + "probability": 0.9496 + }, + { + "start": 11554.52, + "end": 11556.16, + "probability": 0.9885 + }, + { + "start": 11556.92, + "end": 11560.94, + "probability": 0.9917 + }, + { + "start": 11561.92, + "end": 11565.84, + "probability": 0.9974 + }, + { + "start": 11566.64, + "end": 11568.52, + "probability": 0.9955 + }, + { + "start": 11569.94, + "end": 11570.76, + "probability": 0.9471 + }, + { + "start": 11571.38, + "end": 11575.72, + "probability": 0.9923 + }, + { + "start": 11576.46, + "end": 11577.0, + "probability": 0.9879 + }, + { + "start": 11577.62, + "end": 11578.2, + "probability": 0.9819 + }, + { + "start": 11578.82, + "end": 11581.36, + "probability": 0.7839 + }, + { + "start": 11582.06, + "end": 11587.5, + "probability": 0.9895 + }, + { + "start": 11588.04, + "end": 11588.72, + "probability": 0.81 + }, + { + "start": 11589.24, + "end": 11591.66, + "probability": 0.6176 + }, + { + "start": 11593.94, + "end": 11599.3, + "probability": 0.993 + }, + { + "start": 11599.64, + "end": 11601.8, + "probability": 0.9316 + }, + { + "start": 11603.08, + "end": 11604.52, + "probability": 0.6395 + }, + { + "start": 11604.92, + "end": 11606.74, + "probability": 0.993 + }, + { + "start": 11607.28, + "end": 11608.3, + "probability": 0.8989 + }, + { + "start": 11608.66, + "end": 11610.12, + "probability": 0.968 + }, + { + "start": 11611.54, + "end": 11614.24, + "probability": 0.9963 + }, + { + "start": 11614.8, + "end": 11616.0, + "probability": 0.9972 + }, + { + "start": 11616.9, + "end": 11619.7, + "probability": 0.9927 + }, + { + "start": 11620.5, + "end": 11622.94, + "probability": 0.8355 + }, + { + "start": 11624.32, + "end": 11627.92, + "probability": 0.9822 + }, + { + "start": 11629.08, + "end": 11630.94, + "probability": 0.7861 + }, + { + "start": 11631.28, + "end": 11632.06, + "probability": 0.6619 + }, + { + "start": 11632.52, + "end": 11635.36, + "probability": 0.9727 + }, + { + "start": 11635.56, + "end": 11636.2, + "probability": 0.8775 + }, + { + "start": 11636.74, + "end": 11639.2, + "probability": 0.9945 + }, + { + "start": 11639.74, + "end": 11641.05, + "probability": 0.9478 + }, + { + "start": 11641.84, + "end": 11646.74, + "probability": 0.9789 + }, + { + "start": 11648.6, + "end": 11649.9, + "probability": 0.663 + }, + { + "start": 11650.94, + "end": 11656.94, + "probability": 0.9761 + }, + { + "start": 11657.14, + "end": 11662.12, + "probability": 0.8931 + }, + { + "start": 11662.84, + "end": 11664.36, + "probability": 0.9783 + }, + { + "start": 11665.98, + "end": 11670.72, + "probability": 0.9811 + }, + { + "start": 11670.97, + "end": 11673.74, + "probability": 0.8815 + }, + { + "start": 11674.26, + "end": 11675.94, + "probability": 0.9992 + }, + { + "start": 11677.24, + "end": 11683.6, + "probability": 0.8327 + }, + { + "start": 11686.14, + "end": 11687.4, + "probability": 0.8953 + }, + { + "start": 11688.44, + "end": 11692.76, + "probability": 0.9878 + }, + { + "start": 11692.76, + "end": 11697.26, + "probability": 0.8218 + }, + { + "start": 11697.84, + "end": 11699.8, + "probability": 0.8313 + }, + { + "start": 11700.34, + "end": 11701.26, + "probability": 0.49 + }, + { + "start": 11701.66, + "end": 11705.88, + "probability": 0.5378 + }, + { + "start": 11706.38, + "end": 11707.26, + "probability": 0.8522 + }, + { + "start": 11707.72, + "end": 11708.84, + "probability": 0.7925 + }, + { + "start": 11709.52, + "end": 11712.42, + "probability": 0.9816 + }, + { + "start": 11712.94, + "end": 11714.52, + "probability": 0.9956 + }, + { + "start": 11714.86, + "end": 11716.8, + "probability": 0.9956 + }, + { + "start": 11717.12, + "end": 11718.84, + "probability": 0.2019 + }, + { + "start": 11718.88, + "end": 11720.32, + "probability": 0.6039 + }, + { + "start": 11720.32, + "end": 11723.7, + "probability": 0.9351 + }, + { + "start": 11723.7, + "end": 11726.82, + "probability": 0.9141 + }, + { + "start": 11727.27, + "end": 11727.83, + "probability": 0.334 + }, + { + "start": 11728.22, + "end": 11728.7, + "probability": 0.5329 + }, + { + "start": 11729.12, + "end": 11729.54, + "probability": 0.8283 + }, + { + "start": 11730.2, + "end": 11731.2, + "probability": 0.804 + }, + { + "start": 11731.92, + "end": 11732.68, + "probability": 0.5664 + }, + { + "start": 11733.24, + "end": 11738.02, + "probability": 0.9683 + }, + { + "start": 11738.56, + "end": 11740.46, + "probability": 0.7984 + }, + { + "start": 11740.54, + "end": 11743.16, + "probability": 0.9755 + }, + { + "start": 11743.64, + "end": 11746.98, + "probability": 0.9828 + }, + { + "start": 11747.3, + "end": 11748.2, + "probability": 0.9226 + }, + { + "start": 11748.6, + "end": 11754.28, + "probability": 0.9434 + }, + { + "start": 11754.7, + "end": 11757.64, + "probability": 0.6911 + }, + { + "start": 11758.06, + "end": 11761.98, + "probability": 0.9815 + }, + { + "start": 11763.38, + "end": 11765.22, + "probability": 0.6447 + }, + { + "start": 11766.0, + "end": 11768.98, + "probability": 0.7915 + }, + { + "start": 11769.4, + "end": 11770.36, + "probability": 0.5086 + }, + { + "start": 11771.18, + "end": 11772.62, + "probability": 0.6851 + }, + { + "start": 11773.5, + "end": 11775.2, + "probability": 0.6333 + }, + { + "start": 11775.7, + "end": 11777.9, + "probability": 0.9482 + }, + { + "start": 11778.9, + "end": 11779.72, + "probability": 0.9846 + }, + { + "start": 11779.96, + "end": 11782.44, + "probability": 0.9468 + }, + { + "start": 11783.06, + "end": 11783.36, + "probability": 0.3834 + }, + { + "start": 11784.1, + "end": 11784.48, + "probability": 0.7263 + }, + { + "start": 11785.04, + "end": 11786.52, + "probability": 0.7087 + }, + { + "start": 11786.94, + "end": 11787.64, + "probability": 0.9412 + }, + { + "start": 11787.72, + "end": 11787.94, + "probability": 0.7008 + }, + { + "start": 11788.0, + "end": 11788.4, + "probability": 0.4409 + }, + { + "start": 11788.46, + "end": 11789.02, + "probability": 0.9526 + }, + { + "start": 11789.5, + "end": 11794.0, + "probability": 0.9937 + }, + { + "start": 11794.32, + "end": 11798.64, + "probability": 0.9932 + }, + { + "start": 11799.04, + "end": 11802.08, + "probability": 0.9966 + }, + { + "start": 11802.65, + "end": 11806.74, + "probability": 0.9181 + }, + { + "start": 11807.74, + "end": 11808.18, + "probability": 0.7673 + }, + { + "start": 11808.26, + "end": 11809.86, + "probability": 0.973 + }, + { + "start": 11810.34, + "end": 11812.9, + "probability": 0.8677 + }, + { + "start": 11813.48, + "end": 11814.64, + "probability": 0.8083 + }, + { + "start": 11815.5, + "end": 11817.28, + "probability": 0.9135 + }, + { + "start": 11817.46, + "end": 11818.86, + "probability": 0.9043 + }, + { + "start": 11818.9, + "end": 11821.1, + "probability": 0.8353 + }, + { + "start": 11821.54, + "end": 11821.98, + "probability": 0.7535 + }, + { + "start": 11822.22, + "end": 11826.44, + "probability": 0.8802 + }, + { + "start": 11826.54, + "end": 11827.4, + "probability": 0.9814 + }, + { + "start": 11828.28, + "end": 11829.88, + "probability": 0.6987 + }, + { + "start": 11830.06, + "end": 11830.76, + "probability": 0.0209 + }, + { + "start": 11830.9, + "end": 11832.3, + "probability": 0.8873 + }, + { + "start": 11832.6, + "end": 11834.04, + "probability": 0.9319 + }, + { + "start": 11834.5, + "end": 11835.64, + "probability": 0.9491 + }, + { + "start": 11836.34, + "end": 11838.55, + "probability": 0.9546 + }, + { + "start": 11838.56, + "end": 11840.82, + "probability": 0.985 + }, + { + "start": 11840.96, + "end": 11841.64, + "probability": 0.8193 + }, + { + "start": 11841.7, + "end": 11843.16, + "probability": 0.995 + }, + { + "start": 11843.22, + "end": 11843.7, + "probability": 0.7347 + }, + { + "start": 11844.72, + "end": 11848.0, + "probability": 0.9776 + }, + { + "start": 11848.38, + "end": 11850.1, + "probability": 0.8945 + }, + { + "start": 11850.24, + "end": 11852.92, + "probability": 0.8168 + }, + { + "start": 11852.98, + "end": 11853.8, + "probability": 0.8881 + }, + { + "start": 11854.26, + "end": 11854.66, + "probability": 0.8361 + }, + { + "start": 11854.86, + "end": 11858.86, + "probability": 0.9183 + }, + { + "start": 11858.86, + "end": 11860.11, + "probability": 0.5023 + }, + { + "start": 11860.5, + "end": 11862.02, + "probability": 0.8911 + }, + { + "start": 11862.54, + "end": 11863.12, + "probability": 0.6911 + }, + { + "start": 11863.3, + "end": 11864.06, + "probability": 0.7047 + }, + { + "start": 11864.28, + "end": 11866.46, + "probability": 0.9141 + }, + { + "start": 11866.86, + "end": 11868.1, + "probability": 0.9607 + }, + { + "start": 11868.8, + "end": 11871.66, + "probability": 0.9187 + }, + { + "start": 11872.28, + "end": 11875.92, + "probability": 0.8254 + }, + { + "start": 11876.68, + "end": 11878.32, + "probability": 0.895 + }, + { + "start": 11878.82, + "end": 11879.64, + "probability": 0.9217 + }, + { + "start": 11880.0, + "end": 11883.14, + "probability": 0.9402 + }, + { + "start": 11883.66, + "end": 11885.56, + "probability": 0.84 + }, + { + "start": 11886.04, + "end": 11886.26, + "probability": 0.9151 + }, + { + "start": 11886.32, + "end": 11887.32, + "probability": 0.8557 + }, + { + "start": 11887.44, + "end": 11888.15, + "probability": 0.9558 + }, + { + "start": 11888.36, + "end": 11890.42, + "probability": 0.9922 + }, + { + "start": 11891.28, + "end": 11892.4, + "probability": 0.4776 + }, + { + "start": 11893.0, + "end": 11895.92, + "probability": 0.6618 + }, + { + "start": 11896.28, + "end": 11897.22, + "probability": 0.649 + }, + { + "start": 11898.14, + "end": 11899.04, + "probability": 0.71 + }, + { + "start": 11899.98, + "end": 11902.22, + "probability": 0.9138 + }, + { + "start": 11902.38, + "end": 11903.72, + "probability": 0.9946 + }, + { + "start": 11904.3, + "end": 11906.84, + "probability": 0.992 + }, + { + "start": 11907.2, + "end": 11908.12, + "probability": 0.7802 + }, + { + "start": 11908.62, + "end": 11911.78, + "probability": 0.7336 + }, + { + "start": 11912.02, + "end": 11912.94, + "probability": 0.8991 + }, + { + "start": 11913.16, + "end": 11914.32, + "probability": 0.9266 + }, + { + "start": 11914.78, + "end": 11917.18, + "probability": 0.8784 + }, + { + "start": 11917.5, + "end": 11919.4, + "probability": 0.7776 + }, + { + "start": 11920.14, + "end": 11923.02, + "probability": 0.9253 + }, + { + "start": 11923.44, + "end": 11925.5, + "probability": 0.9639 + }, + { + "start": 11925.9, + "end": 11928.4, + "probability": 0.8508 + }, + { + "start": 11928.54, + "end": 11928.84, + "probability": 0.6108 + }, + { + "start": 11929.32, + "end": 11932.1, + "probability": 0.744 + }, + { + "start": 11932.22, + "end": 11934.04, + "probability": 0.6326 + }, + { + "start": 11934.44, + "end": 11936.84, + "probability": 0.9072 + }, + { + "start": 11937.5, + "end": 11938.02, + "probability": 0.9059 + }, + { + "start": 11938.16, + "end": 11939.28, + "probability": 0.7122 + }, + { + "start": 11939.38, + "end": 11941.32, + "probability": 0.9978 + }, + { + "start": 11941.78, + "end": 11942.88, + "probability": 0.9579 + }, + { + "start": 11943.32, + "end": 11944.32, + "probability": 0.6681 + }, + { + "start": 11944.32, + "end": 11944.93, + "probability": 0.3357 + }, + { + "start": 11945.2, + "end": 11945.86, + "probability": 0.5335 + }, + { + "start": 11945.86, + "end": 11945.97, + "probability": 0.5721 + }, + { + "start": 11946.08, + "end": 11947.14, + "probability": 0.9761 + }, + { + "start": 11947.54, + "end": 11948.1, + "probability": 0.7788 + }, + { + "start": 11948.24, + "end": 11950.52, + "probability": 0.979 + }, + { + "start": 11951.3, + "end": 11952.42, + "probability": 0.993 + }, + { + "start": 11953.96, + "end": 11955.08, + "probability": 0.7027 + }, + { + "start": 11955.18, + "end": 11957.14, + "probability": 0.998 + }, + { + "start": 11957.96, + "end": 11964.26, + "probability": 0.9984 + }, + { + "start": 11964.44, + "end": 11964.94, + "probability": 0.7448 + }, + { + "start": 11965.38, + "end": 11965.92, + "probability": 0.4861 + }, + { + "start": 11966.04, + "end": 11969.0, + "probability": 0.9856 + }, + { + "start": 11969.95, + "end": 11970.56, + "probability": 0.0367 + }, + { + "start": 11970.94, + "end": 11971.5, + "probability": 0.764 + }, + { + "start": 11971.64, + "end": 11973.74, + "probability": 0.424 + }, + { + "start": 11974.0, + "end": 11975.62, + "probability": 0.6003 + }, + { + "start": 11975.98, + "end": 11977.38, + "probability": 0.8664 + }, + { + "start": 11978.02, + "end": 11979.02, + "probability": 0.6993 + }, + { + "start": 11981.76, + "end": 11982.94, + "probability": 0.268 + }, + { + "start": 11983.16, + "end": 11986.88, + "probability": 0.3497 + }, + { + "start": 11987.1, + "end": 11987.4, + "probability": 0.7467 + }, + { + "start": 11988.32, + "end": 11991.6, + "probability": 0.0116 + }, + { + "start": 11991.66, + "end": 11992.14, + "probability": 0.8456 + }, + { + "start": 11992.2, + "end": 11995.68, + "probability": 0.8085 + }, + { + "start": 11995.78, + "end": 11997.76, + "probability": 0.8501 + }, + { + "start": 11997.76, + "end": 11998.22, + "probability": 0.5267 + }, + { + "start": 11998.36, + "end": 11998.64, + "probability": 0.446 + }, + { + "start": 11998.7, + "end": 11998.9, + "probability": 0.5393 + }, + { + "start": 11999.1, + "end": 12003.74, + "probability": 0.0854 + }, + { + "start": 12003.74, + "end": 12004.33, + "probability": 0.6002 + }, + { + "start": 12005.57, + "end": 12006.71, + "probability": 0.8665 + }, + { + "start": 12007.35, + "end": 12011.52, + "probability": 0.3865 + }, + { + "start": 12011.6, + "end": 12013.38, + "probability": 0.8912 + }, + { + "start": 12013.88, + "end": 12014.16, + "probability": 0.5192 + }, + { + "start": 12014.24, + "end": 12014.76, + "probability": 0.8774 + }, + { + "start": 12015.47, + "end": 12017.08, + "probability": 0.3811 + }, + { + "start": 12017.54, + "end": 12019.28, + "probability": 0.7837 + }, + { + "start": 12019.68, + "end": 12019.92, + "probability": 0.027 + }, + { + "start": 12019.92, + "end": 12020.54, + "probability": 0.4048 + }, + { + "start": 12020.72, + "end": 12021.62, + "probability": 0.6765 + }, + { + "start": 12021.86, + "end": 12026.02, + "probability": 0.1519 + }, + { + "start": 12026.18, + "end": 12028.96, + "probability": 0.5859 + }, + { + "start": 12029.2, + "end": 12030.62, + "probability": 0.5414 + }, + { + "start": 12031.08, + "end": 12031.34, + "probability": 0.4653 + }, + { + "start": 12031.58, + "end": 12032.82, + "probability": 0.7666 + }, + { + "start": 12033.26, + "end": 12033.6, + "probability": 0.2383 + }, + { + "start": 12033.6, + "end": 12035.01, + "probability": 0.1419 + }, + { + "start": 12035.44, + "end": 12036.66, + "probability": 0.0988 + }, + { + "start": 12037.29, + "end": 12038.84, + "probability": 0.0393 + }, + { + "start": 12039.02, + "end": 12039.08, + "probability": 0.0591 + }, + { + "start": 12039.08, + "end": 12041.06, + "probability": 0.9765 + }, + { + "start": 12041.66, + "end": 12045.76, + "probability": 0.9786 + }, + { + "start": 12046.1, + "end": 12047.74, + "probability": 0.0397 + }, + { + "start": 12047.74, + "end": 12047.74, + "probability": 0.3157 + }, + { + "start": 12047.74, + "end": 12048.84, + "probability": 0.0689 + }, + { + "start": 12048.98, + "end": 12050.04, + "probability": 0.3001 + }, + { + "start": 12050.36, + "end": 12050.6, + "probability": 0.474 + }, + { + "start": 12050.62, + "end": 12050.94, + "probability": 0.1568 + }, + { + "start": 12050.94, + "end": 12054.88, + "probability": 0.7764 + }, + { + "start": 12055.0, + "end": 12055.56, + "probability": 0.9883 + }, + { + "start": 12056.48, + "end": 12058.78, + "probability": 0.9934 + }, + { + "start": 12059.16, + "end": 12060.63, + "probability": 0.8057 + }, + { + "start": 12061.22, + "end": 12063.94, + "probability": 0.8988 + }, + { + "start": 12064.18, + "end": 12065.44, + "probability": 0.6575 + }, + { + "start": 12066.48, + "end": 12068.12, + "probability": 0.3607 + }, + { + "start": 12068.12, + "end": 12070.26, + "probability": 0.3241 + }, + { + "start": 12070.8, + "end": 12074.48, + "probability": 0.609 + }, + { + "start": 12074.7, + "end": 12075.64, + "probability": 0.5546 + }, + { + "start": 12075.84, + "end": 12076.74, + "probability": 0.6965 + }, + { + "start": 12076.82, + "end": 12078.06, + "probability": 0.3011 + }, + { + "start": 12079.06, + "end": 12079.54, + "probability": 0.2402 + }, + { + "start": 12079.56, + "end": 12083.42, + "probability": 0.4356 + }, + { + "start": 12083.42, + "end": 12086.61, + "probability": 0.2761 + }, + { + "start": 12086.98, + "end": 12091.36, + "probability": 0.9673 + }, + { + "start": 12093.24, + "end": 12094.93, + "probability": 0.5006 + }, + { + "start": 12095.1, + "end": 12096.62, + "probability": 0.0464 + }, + { + "start": 12096.62, + "end": 12096.98, + "probability": 0.0542 + }, + { + "start": 12097.04, + "end": 12098.74, + "probability": 0.2877 + }, + { + "start": 12099.9, + "end": 12103.58, + "probability": 0.4696 + }, + { + "start": 12104.38, + "end": 12105.3, + "probability": 0.8362 + }, + { + "start": 12105.5, + "end": 12110.02, + "probability": 0.7122 + }, + { + "start": 12110.52, + "end": 12113.38, + "probability": 0.6474 + }, + { + "start": 12114.24, + "end": 12117.9, + "probability": 0.9878 + }, + { + "start": 12118.16, + "end": 12119.0, + "probability": 0.9392 + }, + { + "start": 12119.06, + "end": 12120.28, + "probability": 0.9761 + }, + { + "start": 12120.54, + "end": 12121.18, + "probability": 0.908 + }, + { + "start": 12121.42, + "end": 12123.02, + "probability": 0.9077 + }, + { + "start": 12123.6, + "end": 12127.0, + "probability": 0.1373 + }, + { + "start": 12127.0, + "end": 12127.0, + "probability": 0.0833 + }, + { + "start": 12127.0, + "end": 12127.32, + "probability": 0.0314 + }, + { + "start": 12127.32, + "end": 12131.32, + "probability": 0.2245 + }, + { + "start": 12132.4, + "end": 12133.12, + "probability": 0.063 + }, + { + "start": 12133.36, + "end": 12135.68, + "probability": 0.3212 + }, + { + "start": 12135.68, + "end": 12137.16, + "probability": 0.3882 + }, + { + "start": 12137.34, + "end": 12137.56, + "probability": 0.6151 + }, + { + "start": 12137.66, + "end": 12139.82, + "probability": 0.6009 + }, + { + "start": 12140.14, + "end": 12140.76, + "probability": 0.2127 + }, + { + "start": 12141.6, + "end": 12143.16, + "probability": 0.1597 + }, + { + "start": 12143.16, + "end": 12143.36, + "probability": 0.2278 + }, + { + "start": 12143.36, + "end": 12143.36, + "probability": 0.4478 + }, + { + "start": 12143.36, + "end": 12143.36, + "probability": 0.1146 + }, + { + "start": 12143.36, + "end": 12143.36, + "probability": 0.099 + }, + { + "start": 12143.36, + "end": 12145.5, + "probability": 0.3171 + }, + { + "start": 12145.76, + "end": 12146.84, + "probability": 0.6941 + }, + { + "start": 12147.38, + "end": 12149.22, + "probability": 0.0366 + }, + { + "start": 12149.22, + "end": 12149.86, + "probability": 0.3206 + }, + { + "start": 12150.12, + "end": 12151.3, + "probability": 0.3199 + }, + { + "start": 12151.46, + "end": 12155.0, + "probability": 0.5545 + }, + { + "start": 12155.14, + "end": 12155.46, + "probability": 0.4709 + }, + { + "start": 12155.46, + "end": 12155.76, + "probability": 0.7291 + }, + { + "start": 12155.86, + "end": 12159.98, + "probability": 0.9501 + }, + { + "start": 12175.44, + "end": 12182.34, + "probability": 0.027 + }, + { + "start": 12184.28, + "end": 12185.3, + "probability": 0.0268 + }, + { + "start": 12189.08, + "end": 12190.74, + "probability": 0.1068 + }, + { + "start": 12190.74, + "end": 12192.07, + "probability": 0.0367 + }, + { + "start": 12192.84, + "end": 12197.38, + "probability": 0.1149 + }, + { + "start": 12197.56, + "end": 12198.82, + "probability": 0.0288 + }, + { + "start": 12198.98, + "end": 12200.32, + "probability": 0.0397 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.12, + "end": 12280.56, + "probability": 0.0881 + }, + { + "start": 12280.56, + "end": 12280.56, + "probability": 0.0852 + }, + { + "start": 12280.56, + "end": 12285.22, + "probability": 0.3898 + }, + { + "start": 12285.82, + "end": 12288.66, + "probability": 0.5298 + }, + { + "start": 12288.66, + "end": 12291.1, + "probability": 0.9417 + }, + { + "start": 12291.74, + "end": 12293.0, + "probability": 0.8377 + }, + { + "start": 12293.04, + "end": 12298.44, + "probability": 0.9366 + }, + { + "start": 12299.08, + "end": 12301.38, + "probability": 0.7581 + }, + { + "start": 12301.7, + "end": 12303.52, + "probability": 0.6237 + }, + { + "start": 12303.7, + "end": 12305.2, + "probability": 0.5022 + }, + { + "start": 12305.26, + "end": 12308.04, + "probability": 0.9545 + }, + { + "start": 12308.54, + "end": 12309.84, + "probability": 0.6792 + }, + { + "start": 12309.86, + "end": 12310.16, + "probability": 0.2403 + }, + { + "start": 12310.54, + "end": 12313.22, + "probability": 0.2329 + }, + { + "start": 12313.24, + "end": 12313.9, + "probability": 0.1285 + }, + { + "start": 12313.9, + "end": 12318.49, + "probability": 0.0279 + }, + { + "start": 12321.26, + "end": 12321.36, + "probability": 0.1127 + }, + { + "start": 12321.36, + "end": 12321.36, + "probability": 0.0582 + }, + { + "start": 12321.36, + "end": 12321.9, + "probability": 0.5259 + }, + { + "start": 12322.14, + "end": 12323.35, + "probability": 0.6706 + }, + { + "start": 12323.44, + "end": 12326.14, + "probability": 0.656 + }, + { + "start": 12326.98, + "end": 12327.62, + "probability": 0.0683 + }, + { + "start": 12327.64, + "end": 12329.5, + "probability": 0.1234 + }, + { + "start": 12329.5, + "end": 12329.5, + "probability": 0.0428 + }, + { + "start": 12329.5, + "end": 12330.82, + "probability": 0.2352 + }, + { + "start": 12331.02, + "end": 12332.04, + "probability": 0.86 + }, + { + "start": 12332.92, + "end": 12333.04, + "probability": 0.0473 + }, + { + "start": 12335.5, + "end": 12339.44, + "probability": 0.8292 + }, + { + "start": 12339.66, + "end": 12341.06, + "probability": 0.6087 + }, + { + "start": 12341.08, + "end": 12342.64, + "probability": 0.5673 + }, + { + "start": 12343.94, + "end": 12345.56, + "probability": 0.5106 + }, + { + "start": 12346.38, + "end": 12346.86, + "probability": 0.5163 + }, + { + "start": 12347.0, + "end": 12348.26, + "probability": 0.5177 + }, + { + "start": 12348.54, + "end": 12352.04, + "probability": 0.4543 + }, + { + "start": 12352.86, + "end": 12354.12, + "probability": 0.3292 + }, + { + "start": 12354.12, + "end": 12354.28, + "probability": 0.3273 + }, + { + "start": 12354.9, + "end": 12357.88, + "probability": 0.2306 + }, + { + "start": 12357.88, + "end": 12357.88, + "probability": 0.2752 + }, + { + "start": 12357.88, + "end": 12357.88, + "probability": 0.3702 + }, + { + "start": 12357.88, + "end": 12358.48, + "probability": 0.2351 + }, + { + "start": 12358.58, + "end": 12360.46, + "probability": 0.534 + }, + { + "start": 12360.54, + "end": 12363.36, + "probability": 0.9489 + }, + { + "start": 12363.76, + "end": 12366.04, + "probability": 0.9587 + }, + { + "start": 12366.16, + "end": 12367.42, + "probability": 0.7273 + }, + { + "start": 12367.52, + "end": 12369.86, + "probability": 0.8015 + }, + { + "start": 12370.22, + "end": 12370.62, + "probability": 0.3414 + }, + { + "start": 12370.7, + "end": 12372.78, + "probability": 0.7249 + }, + { + "start": 12373.08, + "end": 12375.92, + "probability": 0.9487 + }, + { + "start": 12376.3, + "end": 12379.06, + "probability": 0.9905 + }, + { + "start": 12379.26, + "end": 12380.74, + "probability": 0.9976 + }, + { + "start": 12381.08, + "end": 12383.6, + "probability": 0.3539 + }, + { + "start": 12384.08, + "end": 12385.82, + "probability": 0.8291 + }, + { + "start": 12386.42, + "end": 12387.3, + "probability": 0.9896 + }, + { + "start": 12387.9, + "end": 12388.6, + "probability": 0.4263 + }, + { + "start": 12388.7, + "end": 12393.6, + "probability": 0.9652 + }, + { + "start": 12393.6, + "end": 12396.06, + "probability": 0.9417 + }, + { + "start": 12396.62, + "end": 12398.32, + "probability": 0.5847 + }, + { + "start": 12398.58, + "end": 12400.0, + "probability": 0.9044 + }, + { + "start": 12400.24, + "end": 12403.56, + "probability": 0.736 + }, + { + "start": 12403.98, + "end": 12404.88, + "probability": 0.6705 + }, + { + "start": 12405.36, + "end": 12406.06, + "probability": 0.8174 + }, + { + "start": 12406.36, + "end": 12407.02, + "probability": 0.8176 + }, + { + "start": 12409.26, + "end": 12410.42, + "probability": 0.7741 + }, + { + "start": 12411.14, + "end": 12411.72, + "probability": 0.5552 + }, + { + "start": 12435.12, + "end": 12437.26, + "probability": 0.6993 + }, + { + "start": 12438.72, + "end": 12441.76, + "probability": 0.8813 + }, + { + "start": 12441.76, + "end": 12444.8, + "probability": 0.9819 + }, + { + "start": 12445.28, + "end": 12448.14, + "probability": 0.9946 + }, + { + "start": 12448.56, + "end": 12452.16, + "probability": 0.9482 + }, + { + "start": 12452.16, + "end": 12454.92, + "probability": 0.9985 + }, + { + "start": 12455.46, + "end": 12455.95, + "probability": 0.5168 + }, + { + "start": 12456.92, + "end": 12458.26, + "probability": 0.9988 + }, + { + "start": 12459.44, + "end": 12462.72, + "probability": 0.9932 + }, + { + "start": 12463.5, + "end": 12465.29, + "probability": 0.9831 + }, + { + "start": 12466.36, + "end": 12466.7, + "probability": 0.7101 + }, + { + "start": 12466.9, + "end": 12468.26, + "probability": 0.9852 + }, + { + "start": 12470.06, + "end": 12474.47, + "probability": 0.9504 + }, + { + "start": 12475.44, + "end": 12479.26, + "probability": 0.9952 + }, + { + "start": 12479.6, + "end": 12480.54, + "probability": 0.9883 + }, + { + "start": 12480.54, + "end": 12481.64, + "probability": 0.9138 + }, + { + "start": 12481.78, + "end": 12484.76, + "probability": 0.8939 + }, + { + "start": 12485.06, + "end": 12485.7, + "probability": 0.3602 + }, + { + "start": 12486.28, + "end": 12490.36, + "probability": 0.987 + }, + { + "start": 12491.14, + "end": 12492.56, + "probability": 0.7809 + }, + { + "start": 12493.3, + "end": 12494.2, + "probability": 0.9859 + }, + { + "start": 12494.94, + "end": 12495.98, + "probability": 0.919 + }, + { + "start": 12496.72, + "end": 12498.72, + "probability": 0.9977 + }, + { + "start": 12499.36, + "end": 12500.7, + "probability": 0.999 + }, + { + "start": 12501.74, + "end": 12506.0, + "probability": 0.9912 + }, + { + "start": 12507.42, + "end": 12511.54, + "probability": 0.9908 + }, + { + "start": 12512.18, + "end": 12514.76, + "probability": 0.9145 + }, + { + "start": 12515.76, + "end": 12516.38, + "probability": 0.9139 + }, + { + "start": 12517.2, + "end": 12517.9, + "probability": 0.8659 + }, + { + "start": 12518.86, + "end": 12519.18, + "probability": 0.8883 + }, + { + "start": 12521.12, + "end": 12525.54, + "probability": 0.9127 + }, + { + "start": 12526.96, + "end": 12527.28, + "probability": 0.5527 + }, + { + "start": 12527.4, + "end": 12531.44, + "probability": 0.9887 + }, + { + "start": 12531.8, + "end": 12532.44, + "probability": 0.8687 + }, + { + "start": 12533.26, + "end": 12536.9, + "probability": 0.9879 + }, + { + "start": 12537.98, + "end": 12539.34, + "probability": 0.9785 + }, + { + "start": 12540.32, + "end": 12544.18, + "probability": 0.9521 + }, + { + "start": 12544.5, + "end": 12545.92, + "probability": 0.7841 + }, + { + "start": 12546.52, + "end": 12548.22, + "probability": 0.8979 + }, + { + "start": 12548.36, + "end": 12552.0, + "probability": 0.9945 + }, + { + "start": 12552.92, + "end": 12554.58, + "probability": 0.9842 + }, + { + "start": 12555.04, + "end": 12557.8, + "probability": 0.9536 + }, + { + "start": 12558.06, + "end": 12558.56, + "probability": 0.5073 + }, + { + "start": 12559.16, + "end": 12560.78, + "probability": 0.9416 + }, + { + "start": 12561.68, + "end": 12564.5, + "probability": 0.9526 + }, + { + "start": 12564.8, + "end": 12568.36, + "probability": 0.9348 + }, + { + "start": 12568.54, + "end": 12569.44, + "probability": 0.9419 + }, + { + "start": 12569.98, + "end": 12570.78, + "probability": 0.782 + }, + { + "start": 12571.86, + "end": 12574.38, + "probability": 0.8238 + }, + { + "start": 12574.42, + "end": 12578.72, + "probability": 0.9868 + }, + { + "start": 12578.94, + "end": 12581.74, + "probability": 0.9936 + }, + { + "start": 12582.58, + "end": 12584.62, + "probability": 0.9626 + }, + { + "start": 12585.78, + "end": 12586.26, + "probability": 0.9123 + }, + { + "start": 12586.86, + "end": 12590.64, + "probability": 0.9982 + }, + { + "start": 12591.74, + "end": 12593.64, + "probability": 0.9395 + }, + { + "start": 12596.62, + "end": 12596.82, + "probability": 0.7015 + }, + { + "start": 12596.88, + "end": 12600.1, + "probability": 0.9836 + }, + { + "start": 12600.58, + "end": 12601.46, + "probability": 0.7637 + }, + { + "start": 12601.58, + "end": 12602.2, + "probability": 0.9652 + }, + { + "start": 12602.3, + "end": 12602.86, + "probability": 0.9864 + }, + { + "start": 12602.96, + "end": 12603.68, + "probability": 0.9197 + }, + { + "start": 12604.4, + "end": 12609.0, + "probability": 0.981 + }, + { + "start": 12609.0, + "end": 12614.16, + "probability": 0.9938 + }, + { + "start": 12614.36, + "end": 12617.28, + "probability": 0.9487 + }, + { + "start": 12618.04, + "end": 12622.94, + "probability": 0.9958 + }, + { + "start": 12623.52, + "end": 12625.86, + "probability": 0.996 + }, + { + "start": 12626.82, + "end": 12631.96, + "probability": 0.9959 + }, + { + "start": 12632.56, + "end": 12634.96, + "probability": 0.9987 + }, + { + "start": 12634.96, + "end": 12638.12, + "probability": 0.9972 + }, + { + "start": 12640.4, + "end": 12645.24, + "probability": 0.9941 + }, + { + "start": 12645.42, + "end": 12646.5, + "probability": 0.7101 + }, + { + "start": 12646.6, + "end": 12647.96, + "probability": 0.8852 + }, + { + "start": 12648.48, + "end": 12652.38, + "probability": 0.9989 + }, + { + "start": 12653.22, + "end": 12654.64, + "probability": 0.8912 + }, + { + "start": 12655.3, + "end": 12662.02, + "probability": 0.9987 + }, + { + "start": 12662.38, + "end": 12664.1, + "probability": 0.9878 + }, + { + "start": 12665.26, + "end": 12665.94, + "probability": 0.5966 + }, + { + "start": 12666.74, + "end": 12667.64, + "probability": 0.9464 + }, + { + "start": 12669.62, + "end": 12673.06, + "probability": 0.998 + }, + { + "start": 12673.42, + "end": 12674.6, + "probability": 0.5336 + }, + { + "start": 12675.54, + "end": 12677.2, + "probability": 0.9544 + }, + { + "start": 12677.6, + "end": 12681.5, + "probability": 0.9862 + }, + { + "start": 12681.5, + "end": 12685.36, + "probability": 0.9921 + }, + { + "start": 12686.42, + "end": 12687.2, + "probability": 0.9491 + }, + { + "start": 12688.0, + "end": 12693.02, + "probability": 0.9983 + }, + { + "start": 12694.8, + "end": 12696.6, + "probability": 0.9541 + }, + { + "start": 12697.36, + "end": 12702.42, + "probability": 0.9426 + }, + { + "start": 12703.16, + "end": 12707.3, + "probability": 0.9971 + }, + { + "start": 12709.24, + "end": 12713.12, + "probability": 0.9653 + }, + { + "start": 12713.18, + "end": 12713.62, + "probability": 0.8001 + }, + { + "start": 12713.7, + "end": 12714.3, + "probability": 0.5269 + }, + { + "start": 12715.22, + "end": 12718.24, + "probability": 0.9927 + }, + { + "start": 12719.04, + "end": 12721.48, + "probability": 0.8983 + }, + { + "start": 12722.5, + "end": 12725.7, + "probability": 0.9935 + }, + { + "start": 12726.68, + "end": 12729.99, + "probability": 0.9784 + }, + { + "start": 12730.98, + "end": 12731.9, + "probability": 0.9969 + }, + { + "start": 12732.54, + "end": 12733.4, + "probability": 0.9965 + }, + { + "start": 12734.14, + "end": 12737.6, + "probability": 0.9917 + }, + { + "start": 12737.9, + "end": 12741.66, + "probability": 0.9817 + }, + { + "start": 12742.72, + "end": 12747.22, + "probability": 0.9952 + }, + { + "start": 12748.02, + "end": 12750.76, + "probability": 0.9888 + }, + { + "start": 12752.14, + "end": 12754.28, + "probability": 0.7167 + }, + { + "start": 12754.8, + "end": 12758.74, + "probability": 0.9878 + }, + { + "start": 12759.42, + "end": 12760.66, + "probability": 0.9561 + }, + { + "start": 12762.06, + "end": 12766.44, + "probability": 0.9902 + }, + { + "start": 12767.86, + "end": 12771.28, + "probability": 0.9748 + }, + { + "start": 12772.0, + "end": 12774.1, + "probability": 0.9923 + }, + { + "start": 12775.3, + "end": 12776.74, + "probability": 0.9856 + }, + { + "start": 12777.52, + "end": 12779.58, + "probability": 0.7447 + }, + { + "start": 12780.36, + "end": 12781.96, + "probability": 0.8655 + }, + { + "start": 12782.72, + "end": 12785.1, + "probability": 0.988 + }, + { + "start": 12785.8, + "end": 12788.2, + "probability": 0.9795 + }, + { + "start": 12788.56, + "end": 12789.02, + "probability": 0.8345 + }, + { + "start": 12789.5, + "end": 12790.24, + "probability": 0.9457 + }, + { + "start": 12791.1, + "end": 12791.8, + "probability": 0.7268 + }, + { + "start": 12795.56, + "end": 12800.1, + "probability": 0.9942 + }, + { + "start": 12800.28, + "end": 12801.34, + "probability": 0.8603 + }, + { + "start": 12802.32, + "end": 12805.64, + "probability": 0.9971 + }, + { + "start": 12805.96, + "end": 12806.16, + "probability": 0.7314 + }, + { + "start": 12807.54, + "end": 12808.92, + "probability": 0.9371 + }, + { + "start": 12809.6, + "end": 12810.7, + "probability": 0.5072 + }, + { + "start": 12810.78, + "end": 12810.86, + "probability": 0.0066 + }, + { + "start": 12810.86, + "end": 12811.26, + "probability": 0.4104 + }, + { + "start": 12811.84, + "end": 12812.8, + "probability": 0.3212 + }, + { + "start": 12814.66, + "end": 12817.4, + "probability": 0.7766 + }, + { + "start": 12818.62, + "end": 12822.1, + "probability": 0.9841 + }, + { + "start": 12837.36, + "end": 12838.32, + "probability": 0.7615 + }, + { + "start": 12838.72, + "end": 12840.76, + "probability": 0.9194 + }, + { + "start": 12841.98, + "end": 12849.22, + "probability": 0.9922 + }, + { + "start": 12849.34, + "end": 12850.12, + "probability": 0.9907 + }, + { + "start": 12851.08, + "end": 12853.76, + "probability": 0.981 + }, + { + "start": 12855.04, + "end": 12857.92, + "probability": 0.9727 + }, + { + "start": 12858.96, + "end": 12862.35, + "probability": 0.9982 + }, + { + "start": 12863.14, + "end": 12864.84, + "probability": 0.9806 + }, + { + "start": 12864.94, + "end": 12866.18, + "probability": 0.9918 + }, + { + "start": 12866.76, + "end": 12869.56, + "probability": 0.9839 + }, + { + "start": 12870.24, + "end": 12871.46, + "probability": 0.9963 + }, + { + "start": 12872.72, + "end": 12874.72, + "probability": 0.8384 + }, + { + "start": 12875.8, + "end": 12878.58, + "probability": 0.882 + }, + { + "start": 12879.56, + "end": 12882.88, + "probability": 0.9955 + }, + { + "start": 12883.74, + "end": 12887.66, + "probability": 0.9966 + }, + { + "start": 12888.88, + "end": 12891.16, + "probability": 0.9614 + }, + { + "start": 12892.66, + "end": 12894.4, + "probability": 0.7005 + }, + { + "start": 12895.44, + "end": 12896.18, + "probability": 0.5105 + }, + { + "start": 12897.34, + "end": 12898.16, + "probability": 0.6904 + }, + { + "start": 12899.43, + "end": 12905.58, + "probability": 0.7437 + }, + { + "start": 12907.86, + "end": 12909.84, + "probability": 0.704 + }, + { + "start": 12911.78, + "end": 12915.66, + "probability": 0.9963 + }, + { + "start": 12916.24, + "end": 12918.06, + "probability": 0.8439 + }, + { + "start": 12918.88, + "end": 12919.08, + "probability": 0.0711 + }, + { + "start": 12919.08, + "end": 12920.82, + "probability": 0.6915 + }, + { + "start": 12922.84, + "end": 12926.62, + "probability": 0.9888 + }, + { + "start": 12927.12, + "end": 12929.28, + "probability": 0.9634 + }, + { + "start": 12929.42, + "end": 12929.78, + "probability": 0.7596 + }, + { + "start": 12930.78, + "end": 12936.52, + "probability": 0.9596 + }, + { + "start": 12937.22, + "end": 12940.98, + "probability": 0.9832 + }, + { + "start": 12941.78, + "end": 12945.9, + "probability": 0.9557 + }, + { + "start": 12946.66, + "end": 12948.28, + "probability": 0.9974 + }, + { + "start": 12948.88, + "end": 12952.22, + "probability": 0.8063 + }, + { + "start": 12953.06, + "end": 12954.24, + "probability": 0.9158 + }, + { + "start": 12954.58, + "end": 12959.74, + "probability": 0.969 + }, + { + "start": 12959.8, + "end": 12960.62, + "probability": 0.9961 + }, + { + "start": 12960.7, + "end": 12963.12, + "probability": 0.9963 + }, + { + "start": 12963.32, + "end": 12963.86, + "probability": 0.9219 + }, + { + "start": 12963.98, + "end": 12964.68, + "probability": 0.8627 + }, + { + "start": 12964.78, + "end": 12965.52, + "probability": 0.6705 + }, + { + "start": 12966.24, + "end": 12971.76, + "probability": 0.9606 + }, + { + "start": 12971.9, + "end": 12973.88, + "probability": 0.9946 + }, + { + "start": 12974.5, + "end": 12980.12, + "probability": 0.9599 + }, + { + "start": 12980.12, + "end": 12985.66, + "probability": 0.9907 + }, + { + "start": 12987.26, + "end": 12989.08, + "probability": 0.8981 + }, + { + "start": 12989.22, + "end": 12993.22, + "probability": 0.994 + }, + { + "start": 12993.52, + "end": 12995.81, + "probability": 0.9896 + }, + { + "start": 12996.4, + "end": 13000.4, + "probability": 0.9025 + }, + { + "start": 13001.54, + "end": 13006.88, + "probability": 0.8985 + }, + { + "start": 13006.94, + "end": 13010.26, + "probability": 0.9526 + }, + { + "start": 13010.26, + "end": 13013.0, + "probability": 0.9934 + }, + { + "start": 13014.04, + "end": 13017.0, + "probability": 0.9878 + }, + { + "start": 13017.66, + "end": 13021.5, + "probability": 0.8771 + }, + { + "start": 13022.04, + "end": 13024.44, + "probability": 0.9527 + }, + { + "start": 13025.46, + "end": 13026.26, + "probability": 0.9119 + }, + { + "start": 13026.34, + "end": 13027.68, + "probability": 0.8805 + }, + { + "start": 13028.47, + "end": 13030.98, + "probability": 0.9364 + }, + { + "start": 13031.56, + "end": 13033.44, + "probability": 0.8921 + }, + { + "start": 13034.84, + "end": 13036.78, + "probability": 0.9635 + }, + { + "start": 13036.9, + "end": 13038.94, + "probability": 0.984 + }, + { + "start": 13039.68, + "end": 13041.68, + "probability": 0.7213 + }, + { + "start": 13042.74, + "end": 13044.22, + "probability": 0.8822 + }, + { + "start": 13044.32, + "end": 13045.28, + "probability": 0.9797 + }, + { + "start": 13045.42, + "end": 13047.26, + "probability": 0.8353 + }, + { + "start": 13048.4, + "end": 13051.98, + "probability": 0.9873 + }, + { + "start": 13053.38, + "end": 13056.72, + "probability": 0.9715 + }, + { + "start": 13057.36, + "end": 13060.36, + "probability": 0.9951 + }, + { + "start": 13061.18, + "end": 13064.0, + "probability": 0.9392 + }, + { + "start": 13064.76, + "end": 13065.8, + "probability": 0.9546 + }, + { + "start": 13066.72, + "end": 13072.52, + "probability": 0.9699 + }, + { + "start": 13073.46, + "end": 13078.0, + "probability": 0.924 + }, + { + "start": 13078.76, + "end": 13080.06, + "probability": 0.8191 + }, + { + "start": 13080.64, + "end": 13082.08, + "probability": 0.9816 + }, + { + "start": 13082.18, + "end": 13083.88, + "probability": 0.9848 + }, + { + "start": 13084.62, + "end": 13086.02, + "probability": 0.9603 + }, + { + "start": 13087.52, + "end": 13090.78, + "probability": 0.8941 + }, + { + "start": 13091.42, + "end": 13092.28, + "probability": 0.6834 + }, + { + "start": 13092.72, + "end": 13095.16, + "probability": 0.8464 + }, + { + "start": 13095.74, + "end": 13096.88, + "probability": 0.9283 + }, + { + "start": 13097.78, + "end": 13099.94, + "probability": 0.9695 + }, + { + "start": 13100.6, + "end": 13102.26, + "probability": 0.9418 + }, + { + "start": 13103.2, + "end": 13104.41, + "probability": 0.9492 + }, + { + "start": 13107.04, + "end": 13109.66, + "probability": 0.8309 + }, + { + "start": 13110.1, + "end": 13111.82, + "probability": 0.9783 + }, + { + "start": 13115.46, + "end": 13117.1, + "probability": 0.7077 + }, + { + "start": 13117.22, + "end": 13119.76, + "probability": 0.9969 + }, + { + "start": 13120.52, + "end": 13121.9, + "probability": 0.9967 + }, + { + "start": 13122.08, + "end": 13122.8, + "probability": 0.9905 + }, + { + "start": 13123.58, + "end": 13125.66, + "probability": 0.7368 + }, + { + "start": 13126.52, + "end": 13131.4, + "probability": 0.982 + }, + { + "start": 13132.3, + "end": 13134.36, + "probability": 0.9614 + }, + { + "start": 13134.64, + "end": 13135.8, + "probability": 0.9956 + }, + { + "start": 13136.58, + "end": 13137.24, + "probability": 0.7911 + }, + { + "start": 13137.3, + "end": 13140.18, + "probability": 0.9886 + }, + { + "start": 13140.88, + "end": 13144.6, + "probability": 0.9639 + }, + { + "start": 13145.24, + "end": 13147.28, + "probability": 0.9966 + }, + { + "start": 13148.58, + "end": 13152.9, + "probability": 0.9626 + }, + { + "start": 13153.88, + "end": 13156.16, + "probability": 0.9932 + }, + { + "start": 13157.02, + "end": 13161.24, + "probability": 0.9227 + }, + { + "start": 13162.12, + "end": 13166.8, + "probability": 0.9989 + }, + { + "start": 13167.28, + "end": 13168.42, + "probability": 0.9762 + }, + { + "start": 13169.24, + "end": 13171.1, + "probability": 0.9622 + }, + { + "start": 13172.48, + "end": 13176.15, + "probability": 0.9408 + }, + { + "start": 13176.56, + "end": 13178.36, + "probability": 0.9813 + }, + { + "start": 13178.98, + "end": 13180.92, + "probability": 0.9846 + }, + { + "start": 13181.84, + "end": 13186.1, + "probability": 0.9933 + }, + { + "start": 13187.04, + "end": 13189.98, + "probability": 0.9946 + }, + { + "start": 13190.62, + "end": 13193.58, + "probability": 0.9927 + }, + { + "start": 13194.4, + "end": 13196.54, + "probability": 0.9954 + }, + { + "start": 13197.32, + "end": 13201.41, + "probability": 0.9805 + }, + { + "start": 13201.84, + "end": 13204.78, + "probability": 0.8456 + }, + { + "start": 13205.62, + "end": 13211.24, + "probability": 0.818 + }, + { + "start": 13211.34, + "end": 13212.7, + "probability": 0.9976 + }, + { + "start": 13212.9, + "end": 13214.56, + "probability": 0.9958 + }, + { + "start": 13215.14, + "end": 13216.46, + "probability": 0.9223 + }, + { + "start": 13216.64, + "end": 13219.26, + "probability": 0.9594 + }, + { + "start": 13221.84, + "end": 13222.0, + "probability": 0.579 + }, + { + "start": 13222.08, + "end": 13225.66, + "probability": 0.9901 + }, + { + "start": 13225.66, + "end": 13228.26, + "probability": 0.9951 + }, + { + "start": 13229.12, + "end": 13231.9, + "probability": 0.9985 + }, + { + "start": 13233.18, + "end": 13234.06, + "probability": 0.8666 + }, + { + "start": 13234.58, + "end": 13236.18, + "probability": 0.995 + }, + { + "start": 13236.92, + "end": 13238.18, + "probability": 0.9897 + }, + { + "start": 13238.98, + "end": 13240.8, + "probability": 0.7556 + }, + { + "start": 13241.64, + "end": 13244.7, + "probability": 0.9526 + }, + { + "start": 13245.6, + "end": 13249.86, + "probability": 0.998 + }, + { + "start": 13250.6, + "end": 13251.62, + "probability": 0.9229 + }, + { + "start": 13252.44, + "end": 13253.66, + "probability": 0.8467 + }, + { + "start": 13254.18, + "end": 13255.84, + "probability": 0.9783 + }, + { + "start": 13256.55, + "end": 13258.84, + "probability": 0.9772 + }, + { + "start": 13259.44, + "end": 13261.54, + "probability": 0.983 + }, + { + "start": 13262.16, + "end": 13263.18, + "probability": 0.9541 + }, + { + "start": 13264.3, + "end": 13266.74, + "probability": 0.889 + }, + { + "start": 13267.1, + "end": 13272.04, + "probability": 0.9427 + }, + { + "start": 13272.22, + "end": 13272.7, + "probability": 0.9817 + }, + { + "start": 13274.14, + "end": 13276.02, + "probability": 0.739 + }, + { + "start": 13276.64, + "end": 13279.7, + "probability": 0.9977 + }, + { + "start": 13279.86, + "end": 13282.0, + "probability": 0.9955 + }, + { + "start": 13283.26, + "end": 13288.42, + "probability": 0.9195 + }, + { + "start": 13289.58, + "end": 13293.16, + "probability": 0.9705 + }, + { + "start": 13293.92, + "end": 13296.48, + "probability": 0.988 + }, + { + "start": 13297.8, + "end": 13302.76, + "probability": 0.9983 + }, + { + "start": 13303.38, + "end": 13305.46, + "probability": 0.998 + }, + { + "start": 13306.38, + "end": 13309.06, + "probability": 0.9937 + }, + { + "start": 13310.1, + "end": 13313.58, + "probability": 0.9973 + }, + { + "start": 13314.16, + "end": 13317.27, + "probability": 0.9739 + }, + { + "start": 13317.98, + "end": 13319.18, + "probability": 0.7355 + }, + { + "start": 13319.4, + "end": 13320.54, + "probability": 0.6857 + }, + { + "start": 13320.66, + "end": 13321.36, + "probability": 0.9803 + }, + { + "start": 13323.5, + "end": 13325.6, + "probability": 0.9232 + }, + { + "start": 13326.56, + "end": 13329.12, + "probability": 0.9841 + }, + { + "start": 13330.02, + "end": 13333.34, + "probability": 0.9924 + }, + { + "start": 13333.38, + "end": 13334.82, + "probability": 0.8477 + }, + { + "start": 13335.5, + "end": 13337.88, + "probability": 0.9142 + }, + { + "start": 13338.66, + "end": 13339.42, + "probability": 0.6484 + }, + { + "start": 13339.56, + "end": 13340.76, + "probability": 0.9256 + }, + { + "start": 13340.9, + "end": 13343.98, + "probability": 0.9812 + }, + { + "start": 13344.08, + "end": 13348.72, + "probability": 0.9858 + }, + { + "start": 13349.36, + "end": 13349.76, + "probability": 0.7019 + }, + { + "start": 13351.1, + "end": 13352.46, + "probability": 0.6066 + }, + { + "start": 13352.6, + "end": 13355.3, + "probability": 0.8004 + }, + { + "start": 13355.38, + "end": 13357.64, + "probability": 0.9902 + }, + { + "start": 13357.68, + "end": 13358.48, + "probability": 0.8727 + }, + { + "start": 13358.54, + "end": 13360.48, + "probability": 0.9468 + }, + { + "start": 13361.12, + "end": 13363.78, + "probability": 0.972 + }, + { + "start": 13363.92, + "end": 13365.08, + "probability": 0.9972 + }, + { + "start": 13365.44, + "end": 13365.72, + "probability": 0.4776 + }, + { + "start": 13366.68, + "end": 13368.07, + "probability": 0.9828 + }, + { + "start": 13369.28, + "end": 13371.88, + "probability": 0.9492 + }, + { + "start": 13372.36, + "end": 13374.3, + "probability": 0.9698 + }, + { + "start": 13375.34, + "end": 13376.24, + "probability": 0.9932 + }, + { + "start": 13376.84, + "end": 13379.08, + "probability": 0.9971 + }, + { + "start": 13379.96, + "end": 13382.54, + "probability": 0.8828 + }, + { + "start": 13382.7, + "end": 13384.18, + "probability": 0.9689 + }, + { + "start": 13384.96, + "end": 13390.28, + "probability": 0.9967 + }, + { + "start": 13390.28, + "end": 13394.56, + "probability": 0.9989 + }, + { + "start": 13395.58, + "end": 13399.74, + "probability": 0.9916 + }, + { + "start": 13400.76, + "end": 13406.24, + "probability": 0.998 + }, + { + "start": 13406.42, + "end": 13410.38, + "probability": 0.9743 + }, + { + "start": 13411.44, + "end": 13420.66, + "probability": 0.9678 + }, + { + "start": 13421.84, + "end": 13422.28, + "probability": 0.9343 + }, + { + "start": 13422.36, + "end": 13428.04, + "probability": 0.8883 + }, + { + "start": 13428.98, + "end": 13430.02, + "probability": 0.8398 + }, + { + "start": 13430.12, + "end": 13432.54, + "probability": 0.9985 + }, + { + "start": 13433.06, + "end": 13434.54, + "probability": 0.9558 + }, + { + "start": 13435.58, + "end": 13438.76, + "probability": 0.9961 + }, + { + "start": 13439.6, + "end": 13441.78, + "probability": 0.9685 + }, + { + "start": 13443.1, + "end": 13446.94, + "probability": 0.9985 + }, + { + "start": 13447.92, + "end": 13448.99, + "probability": 0.9861 + }, + { + "start": 13449.76, + "end": 13453.96, + "probability": 0.9646 + }, + { + "start": 13454.74, + "end": 13461.26, + "probability": 0.9931 + }, + { + "start": 13461.36, + "end": 13462.16, + "probability": 0.7303 + }, + { + "start": 13463.34, + "end": 13465.98, + "probability": 0.9944 + }, + { + "start": 13467.16, + "end": 13470.52, + "probability": 0.9891 + }, + { + "start": 13471.32, + "end": 13475.06, + "probability": 0.9875 + }, + { + "start": 13475.8, + "end": 13481.06, + "probability": 0.9714 + }, + { + "start": 13481.34, + "end": 13482.42, + "probability": 0.8719 + }, + { + "start": 13483.26, + "end": 13486.32, + "probability": 0.9674 + }, + { + "start": 13487.35, + "end": 13490.14, + "probability": 0.9908 + }, + { + "start": 13491.02, + "end": 13494.64, + "probability": 0.8197 + }, + { + "start": 13495.88, + "end": 13501.06, + "probability": 0.9934 + }, + { + "start": 13502.52, + "end": 13507.58, + "probability": 0.9969 + }, + { + "start": 13507.66, + "end": 13508.06, + "probability": 0.9717 + }, + { + "start": 13508.74, + "end": 13510.44, + "probability": 0.8381 + }, + { + "start": 13510.6, + "end": 13512.91, + "probability": 0.9757 + }, + { + "start": 13513.14, + "end": 13515.82, + "probability": 0.9908 + }, + { + "start": 13515.82, + "end": 13518.3, + "probability": 0.9976 + }, + { + "start": 13519.12, + "end": 13519.94, + "probability": 0.5027 + }, + { + "start": 13520.16, + "end": 13522.66, + "probability": 0.9124 + }, + { + "start": 13523.6, + "end": 13527.56, + "probability": 0.8984 + }, + { + "start": 13527.72, + "end": 13528.0, + "probability": 0.833 + }, + { + "start": 13528.16, + "end": 13530.62, + "probability": 0.5357 + }, + { + "start": 13531.28, + "end": 13535.64, + "probability": 0.9954 + }, + { + "start": 13536.5, + "end": 13544.58, + "probability": 0.9871 + }, + { + "start": 13546.82, + "end": 13553.52, + "probability": 0.9258 + }, + { + "start": 13555.02, + "end": 13555.56, + "probability": 0.4276 + }, + { + "start": 13555.72, + "end": 13558.58, + "probability": 0.8342 + }, + { + "start": 13560.08, + "end": 13564.9, + "probability": 0.8591 + }, + { + "start": 13565.0, + "end": 13567.02, + "probability": 0.996 + }, + { + "start": 13567.7, + "end": 13569.26, + "probability": 0.8453 + }, + { + "start": 13569.44, + "end": 13571.72, + "probability": 0.9197 + }, + { + "start": 13571.9, + "end": 13573.2, + "probability": 0.9418 + }, + { + "start": 13573.28, + "end": 13574.46, + "probability": 0.9526 + }, + { + "start": 13574.82, + "end": 13577.46, + "probability": 0.9438 + }, + { + "start": 13578.1, + "end": 13581.59, + "probability": 0.9633 + }, + { + "start": 13582.46, + "end": 13586.34, + "probability": 0.998 + }, + { + "start": 13587.18, + "end": 13588.52, + "probability": 0.9928 + }, + { + "start": 13588.78, + "end": 13592.28, + "probability": 0.9933 + }, + { + "start": 13592.4, + "end": 13593.5, + "probability": 0.983 + }, + { + "start": 13593.98, + "end": 13594.1, + "probability": 0.5534 + }, + { + "start": 13594.94, + "end": 13599.5, + "probability": 0.9815 + }, + { + "start": 13600.52, + "end": 13605.06, + "probability": 0.964 + }, + { + "start": 13605.22, + "end": 13605.8, + "probability": 0.9787 + }, + { + "start": 13606.46, + "end": 13608.6, + "probability": 0.9893 + }, + { + "start": 13609.44, + "end": 13612.28, + "probability": 0.8667 + }, + { + "start": 13613.2, + "end": 13614.18, + "probability": 0.8538 + }, + { + "start": 13614.3, + "end": 13616.25, + "probability": 0.9938 + }, + { + "start": 13617.42, + "end": 13620.16, + "probability": 0.8543 + }, + { + "start": 13620.25, + "end": 13622.14, + "probability": 0.9206 + }, + { + "start": 13622.88, + "end": 13627.82, + "probability": 0.9825 + }, + { + "start": 13628.36, + "end": 13632.44, + "probability": 0.9919 + }, + { + "start": 13633.76, + "end": 13639.36, + "probability": 0.8669 + }, + { + "start": 13640.48, + "end": 13645.28, + "probability": 0.9467 + }, + { + "start": 13645.4, + "end": 13645.86, + "probability": 0.3537 + }, + { + "start": 13646.6, + "end": 13650.18, + "probability": 0.5108 + }, + { + "start": 13650.96, + "end": 13654.06, + "probability": 0.9881 + }, + { + "start": 13654.24, + "end": 13654.66, + "probability": 0.9878 + }, + { + "start": 13655.44, + "end": 13657.88, + "probability": 0.8249 + }, + { + "start": 13658.72, + "end": 13661.75, + "probability": 0.994 + }, + { + "start": 13663.99, + "end": 13664.58, + "probability": 0.9368 + }, + { + "start": 13664.74, + "end": 13670.34, + "probability": 0.9902 + }, + { + "start": 13670.42, + "end": 13675.42, + "probability": 0.9634 + }, + { + "start": 13677.44, + "end": 13679.78, + "probability": 0.9982 + }, + { + "start": 13680.54, + "end": 13686.16, + "probability": 0.9937 + }, + { + "start": 13687.12, + "end": 13693.04, + "probability": 0.9665 + }, + { + "start": 13693.1, + "end": 13693.4, + "probability": 0.5988 + }, + { + "start": 13693.56, + "end": 13694.92, + "probability": 0.9598 + }, + { + "start": 13696.14, + "end": 13699.42, + "probability": 0.8824 + }, + { + "start": 13699.52, + "end": 13704.02, + "probability": 0.9895 + }, + { + "start": 13704.14, + "end": 13706.72, + "probability": 0.9113 + }, + { + "start": 13707.08, + "end": 13708.22, + "probability": 0.8435 + }, + { + "start": 13708.24, + "end": 13708.68, + "probability": 0.9515 + }, + { + "start": 13708.84, + "end": 13710.54, + "probability": 0.8342 + }, + { + "start": 13711.2, + "end": 13716.48, + "probability": 0.9517 + }, + { + "start": 13716.64, + "end": 13719.9, + "probability": 0.9901 + }, + { + "start": 13720.0, + "end": 13721.88, + "probability": 0.958 + }, + { + "start": 13723.52, + "end": 13726.74, + "probability": 0.9758 + }, + { + "start": 13727.4, + "end": 13729.06, + "probability": 0.9994 + }, + { + "start": 13729.66, + "end": 13733.22, + "probability": 0.9888 + }, + { + "start": 13733.86, + "end": 13738.04, + "probability": 0.9974 + }, + { + "start": 13738.68, + "end": 13739.98, + "probability": 0.9569 + }, + { + "start": 13741.06, + "end": 13742.86, + "probability": 0.8208 + }, + { + "start": 13743.54, + "end": 13745.78, + "probability": 0.9668 + }, + { + "start": 13745.8, + "end": 13746.24, + "probability": 0.9249 + }, + { + "start": 13746.3, + "end": 13746.96, + "probability": 0.7959 + }, + { + "start": 13747.82, + "end": 13750.02, + "probability": 0.8749 + }, + { + "start": 13750.78, + "end": 13752.5, + "probability": 0.9683 + }, + { + "start": 13753.4, + "end": 13757.0, + "probability": 0.9932 + }, + { + "start": 13757.6, + "end": 13758.34, + "probability": 0.8775 + }, + { + "start": 13758.54, + "end": 13760.06, + "probability": 0.9985 + }, + { + "start": 13760.24, + "end": 13765.56, + "probability": 0.9958 + }, + { + "start": 13766.42, + "end": 13767.06, + "probability": 0.672 + }, + { + "start": 13767.84, + "end": 13768.58, + "probability": 0.4838 + }, + { + "start": 13769.04, + "end": 13769.88, + "probability": 0.8297 + }, + { + "start": 13769.96, + "end": 13772.79, + "probability": 0.8562 + }, + { + "start": 13772.88, + "end": 13776.9, + "probability": 0.4897 + }, + { + "start": 13777.22, + "end": 13781.54, + "probability": 0.9057 + }, + { + "start": 13781.86, + "end": 13784.5, + "probability": 0.9919 + }, + { + "start": 13785.52, + "end": 13789.36, + "probability": 0.9968 + }, + { + "start": 13790.18, + "end": 13794.38, + "probability": 0.9954 + }, + { + "start": 13794.44, + "end": 13796.14, + "probability": 0.6522 + }, + { + "start": 13796.92, + "end": 13800.74, + "probability": 0.9697 + }, + { + "start": 13801.48, + "end": 13803.0, + "probability": 0.7649 + }, + { + "start": 13803.58, + "end": 13804.8, + "probability": 0.4246 + }, + { + "start": 13805.12, + "end": 13805.98, + "probability": 0.6834 + }, + { + "start": 13806.58, + "end": 13808.14, + "probability": 0.52 + }, + { + "start": 13808.62, + "end": 13811.44, + "probability": 0.9597 + }, + { + "start": 13812.0, + "end": 13814.46, + "probability": 0.9918 + }, + { + "start": 13815.08, + "end": 13815.9, + "probability": 0.7612 + }, + { + "start": 13815.94, + "end": 13818.48, + "probability": 0.906 + }, + { + "start": 13818.6, + "end": 13819.76, + "probability": 0.8748 + }, + { + "start": 13819.82, + "end": 13822.56, + "probability": 0.9972 + }, + { + "start": 13822.56, + "end": 13827.06, + "probability": 0.967 + }, + { + "start": 13828.14, + "end": 13832.38, + "probability": 0.993 + }, + { + "start": 13833.04, + "end": 13835.4, + "probability": 0.853 + }, + { + "start": 13838.0, + "end": 13843.1, + "probability": 0.8681 + }, + { + "start": 13843.58, + "end": 13847.58, + "probability": 0.9993 + }, + { + "start": 13847.62, + "end": 13852.4, + "probability": 0.9973 + }, + { + "start": 13853.44, + "end": 13856.74, + "probability": 0.992 + }, + { + "start": 13856.8, + "end": 13860.06, + "probability": 0.8955 + }, + { + "start": 13861.2, + "end": 13863.2, + "probability": 0.9725 + }, + { + "start": 13863.3, + "end": 13864.38, + "probability": 0.9718 + }, + { + "start": 13864.48, + "end": 13865.08, + "probability": 0.5788 + }, + { + "start": 13865.84, + "end": 13868.64, + "probability": 0.9995 + }, + { + "start": 13868.78, + "end": 13869.76, + "probability": 0.9482 + }, + { + "start": 13870.28, + "end": 13873.56, + "probability": 0.9979 + }, + { + "start": 13874.2, + "end": 13876.58, + "probability": 0.9932 + }, + { + "start": 13876.74, + "end": 13878.54, + "probability": 0.981 + }, + { + "start": 13879.06, + "end": 13880.86, + "probability": 0.9711 + }, + { + "start": 13881.62, + "end": 13883.92, + "probability": 0.9989 + }, + { + "start": 13884.72, + "end": 13888.28, + "probability": 0.9932 + }, + { + "start": 13888.84, + "end": 13889.6, + "probability": 0.9458 + }, + { + "start": 13889.78, + "end": 13892.4, + "probability": 0.9936 + }, + { + "start": 13893.06, + "end": 13898.46, + "probability": 0.9956 + }, + { + "start": 13898.63, + "end": 13902.52, + "probability": 0.9995 + }, + { + "start": 13903.2, + "end": 13904.82, + "probability": 0.9972 + }, + { + "start": 13905.14, + "end": 13910.76, + "probability": 0.9946 + }, + { + "start": 13911.16, + "end": 13913.92, + "probability": 0.9442 + }, + { + "start": 13914.06, + "end": 13916.74, + "probability": 0.969 + }, + { + "start": 13917.28, + "end": 13918.74, + "probability": 0.8647 + }, + { + "start": 13918.9, + "end": 13920.4, + "probability": 0.7266 + }, + { + "start": 13921.04, + "end": 13923.34, + "probability": 0.9959 + }, + { + "start": 13923.56, + "end": 13925.02, + "probability": 0.6007 + }, + { + "start": 13925.54, + "end": 13927.62, + "probability": 0.6903 + }, + { + "start": 13928.66, + "end": 13931.2, + "probability": 0.9574 + }, + { + "start": 13931.28, + "end": 13932.96, + "probability": 0.9919 + }, + { + "start": 13934.8, + "end": 13935.44, + "probability": 0.9085 + }, + { + "start": 13935.62, + "end": 13940.04, + "probability": 0.9905 + }, + { + "start": 13941.18, + "end": 13946.88, + "probability": 0.9912 + }, + { + "start": 13947.3, + "end": 13951.78, + "probability": 0.9797 + }, + { + "start": 13951.9, + "end": 13954.84, + "probability": 0.9481 + }, + { + "start": 13954.96, + "end": 13956.56, + "probability": 0.9237 + }, + { + "start": 13956.7, + "end": 13957.98, + "probability": 0.9908 + }, + { + "start": 13958.54, + "end": 13963.8, + "probability": 0.9797 + }, + { + "start": 13964.96, + "end": 13969.42, + "probability": 0.9985 + }, + { + "start": 13970.56, + "end": 13972.92, + "probability": 0.9938 + }, + { + "start": 13973.76, + "end": 13976.4, + "probability": 0.9505 + }, + { + "start": 13977.14, + "end": 13980.5, + "probability": 0.9963 + }, + { + "start": 13981.04, + "end": 13982.28, + "probability": 0.9466 + }, + { + "start": 13984.0, + "end": 13986.36, + "probability": 0.9485 + }, + { + "start": 13986.5, + "end": 13987.48, + "probability": 0.8456 + }, + { + "start": 13987.62, + "end": 13996.86, + "probability": 0.979 + }, + { + "start": 13997.44, + "end": 13997.54, + "probability": 0.523 + }, + { + "start": 13997.54, + "end": 13997.96, + "probability": 0.5609 + }, + { + "start": 13999.08, + "end": 14001.76, + "probability": 0.7569 + }, + { + "start": 14003.8, + "end": 14005.48, + "probability": 0.9442 + }, + { + "start": 14006.72, + "end": 14006.98, + "probability": 0.7374 + }, + { + "start": 14016.5, + "end": 14016.62, + "probability": 0.1653 + }, + { + "start": 14024.32, + "end": 14025.14, + "probability": 0.2334 + }, + { + "start": 14025.68, + "end": 14026.64, + "probability": 0.4774 + }, + { + "start": 14027.46, + "end": 14027.88, + "probability": 0.5411 + }, + { + "start": 14029.36, + "end": 14032.82, + "probability": 0.6986 + }, + { + "start": 14034.42, + "end": 14037.1, + "probability": 0.9937 + }, + { + "start": 14037.82, + "end": 14038.82, + "probability": 0.917 + }, + { + "start": 14039.7, + "end": 14040.74, + "probability": 0.9128 + }, + { + "start": 14041.32, + "end": 14042.6, + "probability": 0.9951 + }, + { + "start": 14043.54, + "end": 14047.95, + "probability": 0.9943 + }, + { + "start": 14048.32, + "end": 14050.86, + "probability": 0.9656 + }, + { + "start": 14051.62, + "end": 14053.94, + "probability": 0.9877 + }, + { + "start": 14054.12, + "end": 14056.42, + "probability": 0.9204 + }, + { + "start": 14057.04, + "end": 14059.16, + "probability": 0.9625 + }, + { + "start": 14060.06, + "end": 14061.88, + "probability": 0.9736 + }, + { + "start": 14062.72, + "end": 14068.76, + "probability": 0.8664 + }, + { + "start": 14069.74, + "end": 14072.3, + "probability": 0.8807 + }, + { + "start": 14073.28, + "end": 14075.78, + "probability": 0.7507 + }, + { + "start": 14076.32, + "end": 14078.0, + "probability": 0.996 + }, + { + "start": 14078.24, + "end": 14081.3, + "probability": 0.9917 + }, + { + "start": 14083.96, + "end": 14084.1, + "probability": 0.302 + }, + { + "start": 14086.86, + "end": 14091.38, + "probability": 0.9974 + }, + { + "start": 14091.44, + "end": 14093.14, + "probability": 0.9416 + }, + { + "start": 14095.04, + "end": 14096.08, + "probability": 0.6387 + }, + { + "start": 14096.22, + "end": 14097.1, + "probability": 0.7753 + }, + { + "start": 14097.18, + "end": 14097.92, + "probability": 0.7172 + }, + { + "start": 14097.92, + "end": 14097.94, + "probability": 0.4592 + }, + { + "start": 14097.94, + "end": 14098.96, + "probability": 0.7122 + }, + { + "start": 14099.36, + "end": 14100.36, + "probability": 0.9763 + }, + { + "start": 14100.94, + "end": 14101.18, + "probability": 0.7759 + }, + { + "start": 14101.24, + "end": 14105.48, + "probability": 0.9203 + }, + { + "start": 14105.48, + "end": 14105.86, + "probability": 0.5677 + }, + { + "start": 14107.22, + "end": 14109.46, + "probability": 0.8216 + }, + { + "start": 14109.54, + "end": 14111.18, + "probability": 0.6532 + }, + { + "start": 14111.26, + "end": 14113.74, + "probability": 0.8 + }, + { + "start": 14114.7, + "end": 14118.22, + "probability": 0.0783 + }, + { + "start": 14118.22, + "end": 14119.54, + "probability": 0.1274 + }, + { + "start": 14119.72, + "end": 14120.44, + "probability": 0.445 + }, + { + "start": 14121.79, + "end": 14125.84, + "probability": 0.8019 + }, + { + "start": 14125.88, + "end": 14125.94, + "probability": 0.0116 + }, + { + "start": 14125.96, + "end": 14126.45, + "probability": 0.5615 + }, + { + "start": 14127.26, + "end": 14128.54, + "probability": 0.5331 + }, + { + "start": 14129.82, + "end": 14130.78, + "probability": 0.7144 + }, + { + "start": 14131.18, + "end": 14131.55, + "probability": 0.9839 + }, + { + "start": 14133.76, + "end": 14134.32, + "probability": 0.7216 + }, + { + "start": 14134.96, + "end": 14137.59, + "probability": 0.9151 + }, + { + "start": 14138.06, + "end": 14141.74, + "probability": 0.9683 + }, + { + "start": 14144.08, + "end": 14146.28, + "probability": 0.4782 + }, + { + "start": 14146.86, + "end": 14147.4, + "probability": 0.5809 + }, + { + "start": 14148.14, + "end": 14149.86, + "probability": 0.8061 + }, + { + "start": 14150.86, + "end": 14152.58, + "probability": 0.8635 + }, + { + "start": 14153.76, + "end": 14157.78, + "probability": 0.9968 + }, + { + "start": 14158.72, + "end": 14163.44, + "probability": 0.9871 + }, + { + "start": 14163.88, + "end": 14164.42, + "probability": 0.9324 + }, + { + "start": 14164.5, + "end": 14164.96, + "probability": 0.5639 + }, + { + "start": 14165.06, + "end": 14167.59, + "probability": 0.9638 + }, + { + "start": 14167.7, + "end": 14168.18, + "probability": 0.9937 + }, + { + "start": 14169.06, + "end": 14170.66, + "probability": 0.8818 + }, + { + "start": 14171.06, + "end": 14172.94, + "probability": 0.6705 + }, + { + "start": 14173.1, + "end": 14177.46, + "probability": 0.936 + }, + { + "start": 14177.56, + "end": 14178.04, + "probability": 0.9374 + }, + { + "start": 14178.14, + "end": 14178.56, + "probability": 0.6034 + }, + { + "start": 14178.56, + "end": 14179.0, + "probability": 0.6723 + }, + { + "start": 14179.44, + "end": 14181.94, + "probability": 0.6351 + }, + { + "start": 14182.02, + "end": 14185.3, + "probability": 0.4737 + }, + { + "start": 14185.44, + "end": 14185.84, + "probability": 0.4917 + }, + { + "start": 14185.86, + "end": 14186.84, + "probability": 0.5223 + }, + { + "start": 14186.94, + "end": 14187.74, + "probability": 0.9887 + }, + { + "start": 14187.8, + "end": 14188.96, + "probability": 0.7767 + }, + { + "start": 14189.02, + "end": 14190.23, + "probability": 0.8448 + }, + { + "start": 14191.7, + "end": 14191.98, + "probability": 0.0031 + }, + { + "start": 14192.44, + "end": 14194.28, + "probability": 0.9937 + }, + { + "start": 14194.36, + "end": 14196.16, + "probability": 0.9813 + }, + { + "start": 14196.34, + "end": 14196.68, + "probability": 0.7915 + }, + { + "start": 14196.84, + "end": 14197.84, + "probability": 0.9437 + }, + { + "start": 14198.26, + "end": 14199.2, + "probability": 0.3568 + }, + { + "start": 14199.2, + "end": 14200.32, + "probability": 0.8578 + }, + { + "start": 14200.32, + "end": 14201.16, + "probability": 0.5514 + }, + { + "start": 14201.24, + "end": 14201.74, + "probability": 0.4901 + }, + { + "start": 14201.8, + "end": 14203.26, + "probability": 0.805 + }, + { + "start": 14203.28, + "end": 14204.52, + "probability": 0.7095 + }, + { + "start": 14204.62, + "end": 14205.7, + "probability": 0.5721 + }, + { + "start": 14205.92, + "end": 14206.16, + "probability": 0.5576 + }, + { + "start": 14206.16, + "end": 14207.02, + "probability": 0.5739 + }, + { + "start": 14207.5, + "end": 14210.02, + "probability": 0.9755 + }, + { + "start": 14210.66, + "end": 14211.92, + "probability": 0.9801 + }, + { + "start": 14212.3, + "end": 14213.1, + "probability": 0.8578 + }, + { + "start": 14213.8, + "end": 14214.08, + "probability": 0.5328 + }, + { + "start": 14214.2, + "end": 14217.52, + "probability": 0.9486 + }, + { + "start": 14217.84, + "end": 14220.26, + "probability": 0.9035 + }, + { + "start": 14220.44, + "end": 14221.32, + "probability": 0.9042 + }, + { + "start": 14221.4, + "end": 14222.34, + "probability": 0.5302 + }, + { + "start": 14222.5, + "end": 14222.92, + "probability": 0.6219 + }, + { + "start": 14222.96, + "end": 14224.3, + "probability": 0.9132 + }, + { + "start": 14225.2, + "end": 14226.4, + "probability": 0.9932 + }, + { + "start": 14227.24, + "end": 14229.0, + "probability": 0.7967 + }, + { + "start": 14229.84, + "end": 14231.8, + "probability": 0.9883 + }, + { + "start": 14232.26, + "end": 14238.08, + "probability": 0.9728 + }, + { + "start": 14238.86, + "end": 14241.18, + "probability": 0.9925 + }, + { + "start": 14241.32, + "end": 14243.06, + "probability": 0.9585 + }, + { + "start": 14243.24, + "end": 14243.46, + "probability": 0.4039 + }, + { + "start": 14243.6, + "end": 14244.08, + "probability": 0.5026 + }, + { + "start": 14244.1, + "end": 14244.9, + "probability": 0.908 + }, + { + "start": 14246.16, + "end": 14248.28, + "probability": 0.9365 + }, + { + "start": 14248.94, + "end": 14249.38, + "probability": 0.8484 + }, + { + "start": 14249.48, + "end": 14252.22, + "probability": 0.9609 + }, + { + "start": 14252.24, + "end": 14252.36, + "probability": 0.7693 + }, + { + "start": 14252.54, + "end": 14253.12, + "probability": 0.9549 + }, + { + "start": 14253.18, + "end": 14253.48, + "probability": 0.9621 + }, + { + "start": 14253.68, + "end": 14254.0, + "probability": 0.9625 + }, + { + "start": 14254.06, + "end": 14256.68, + "probability": 0.819 + }, + { + "start": 14257.68, + "end": 14258.27, + "probability": 0.6144 + }, + { + "start": 14258.82, + "end": 14263.3, + "probability": 0.7706 + }, + { + "start": 14263.3, + "end": 14264.4, + "probability": 0.8122 + }, + { + "start": 14264.98, + "end": 14266.02, + "probability": 0.7798 + }, + { + "start": 14266.26, + "end": 14266.84, + "probability": 0.6434 + }, + { + "start": 14266.84, + "end": 14268.14, + "probability": 0.8899 + }, + { + "start": 14268.28, + "end": 14271.08, + "probability": 0.9841 + }, + { + "start": 14271.3, + "end": 14271.5, + "probability": 0.6374 + }, + { + "start": 14271.58, + "end": 14272.56, + "probability": 0.9392 + }, + { + "start": 14272.84, + "end": 14274.26, + "probability": 0.9951 + }, + { + "start": 14275.04, + "end": 14275.52, + "probability": 0.349 + }, + { + "start": 14275.69, + "end": 14276.76, + "probability": 0.9425 + }, + { + "start": 14276.84, + "end": 14277.19, + "probability": 0.8843 + }, + { + "start": 14277.42, + "end": 14278.2, + "probability": 0.9385 + }, + { + "start": 14278.22, + "end": 14278.84, + "probability": 0.7453 + }, + { + "start": 14278.94, + "end": 14279.78, + "probability": 0.8635 + }, + { + "start": 14281.95, + "end": 14283.68, + "probability": 0.0123 + }, + { + "start": 14283.68, + "end": 14283.88, + "probability": 0.1335 + }, + { + "start": 14283.88, + "end": 14283.88, + "probability": 0.0452 + }, + { + "start": 14283.88, + "end": 14283.88, + "probability": 0.0377 + }, + { + "start": 14283.88, + "end": 14286.28, + "probability": 0.3679 + }, + { + "start": 14286.38, + "end": 14286.96, + "probability": 0.6608 + }, + { + "start": 14287.06, + "end": 14288.62, + "probability": 0.8013 + }, + { + "start": 14288.72, + "end": 14290.46, + "probability": 0.9146 + }, + { + "start": 14293.72, + "end": 14293.84, + "probability": 0.0847 + }, + { + "start": 14293.84, + "end": 14295.92, + "probability": 0.622 + }, + { + "start": 14297.02, + "end": 14302.9, + "probability": 0.992 + }, + { + "start": 14303.0, + "end": 14303.57, + "probability": 0.896 + }, + { + "start": 14303.7, + "end": 14304.02, + "probability": 0.6794 + }, + { + "start": 14304.56, + "end": 14304.56, + "probability": 0.0773 + }, + { + "start": 14304.56, + "end": 14307.22, + "probability": 0.9972 + }, + { + "start": 14307.32, + "end": 14308.26, + "probability": 0.9174 + }, + { + "start": 14308.26, + "end": 14308.28, + "probability": 0.6243 + }, + { + "start": 14308.36, + "end": 14310.46, + "probability": 0.7345 + }, + { + "start": 14311.72, + "end": 14314.9, + "probability": 0.8278 + }, + { + "start": 14315.32, + "end": 14315.32, + "probability": 0.0505 + }, + { + "start": 14315.32, + "end": 14317.54, + "probability": 0.4839 + }, + { + "start": 14317.54, + "end": 14323.4, + "probability": 0.9888 + }, + { + "start": 14323.64, + "end": 14325.98, + "probability": 0.9185 + }, + { + "start": 14326.06, + "end": 14327.86, + "probability": 0.8726 + }, + { + "start": 14328.26, + "end": 14329.1, + "probability": 0.9853 + }, + { + "start": 14329.58, + "end": 14331.06, + "probability": 0.9192 + }, + { + "start": 14332.08, + "end": 14335.48, + "probability": 0.9971 + }, + { + "start": 14336.36, + "end": 14337.14, + "probability": 0.7384 + }, + { + "start": 14338.38, + "end": 14338.96, + "probability": 0.6763 + }, + { + "start": 14339.22, + "end": 14340.96, + "probability": 0.919 + }, + { + "start": 14341.12, + "end": 14342.48, + "probability": 0.6702 + }, + { + "start": 14343.52, + "end": 14347.44, + "probability": 0.8627 + }, + { + "start": 14347.46, + "end": 14347.69, + "probability": 0.8486 + }, + { + "start": 14348.52, + "end": 14349.4, + "probability": 0.3843 + }, + { + "start": 14349.56, + "end": 14350.44, + "probability": 0.5702 + }, + { + "start": 14351.18, + "end": 14352.46, + "probability": 0.9102 + }, + { + "start": 14352.64, + "end": 14358.72, + "probability": 0.8848 + }, + { + "start": 14358.98, + "end": 14359.64, + "probability": 0.6121 + }, + { + "start": 14359.7, + "end": 14360.32, + "probability": 0.8195 + }, + { + "start": 14360.94, + "end": 14363.56, + "probability": 0.7198 + }, + { + "start": 14364.24, + "end": 14365.13, + "probability": 0.9768 + }, + { + "start": 14365.42, + "end": 14367.26, + "probability": 0.8931 + }, + { + "start": 14367.44, + "end": 14369.28, + "probability": 0.5875 + }, + { + "start": 14369.28, + "end": 14370.06, + "probability": 0.6887 + }, + { + "start": 14370.12, + "end": 14371.26, + "probability": 0.868 + }, + { + "start": 14371.94, + "end": 14373.4, + "probability": 0.6402 + }, + { + "start": 14374.76, + "end": 14375.2, + "probability": 0.868 + }, + { + "start": 14375.3, + "end": 14380.3, + "probability": 0.7493 + }, + { + "start": 14380.98, + "end": 14382.86, + "probability": 0.8282 + }, + { + "start": 14383.18, + "end": 14386.4, + "probability": 0.9914 + }, + { + "start": 14388.24, + "end": 14389.94, + "probability": 0.9966 + }, + { + "start": 14389.94, + "end": 14391.78, + "probability": 0.7747 + }, + { + "start": 14392.36, + "end": 14392.54, + "probability": 0.3006 + }, + { + "start": 14392.64, + "end": 14392.9, + "probability": 0.9773 + }, + { + "start": 14393.06, + "end": 14393.98, + "probability": 0.943 + }, + { + "start": 14394.08, + "end": 14396.91, + "probability": 0.9475 + }, + { + "start": 14397.4, + "end": 14399.58, + "probability": 0.708 + }, + { + "start": 14400.12, + "end": 14403.44, + "probability": 0.9739 + }, + { + "start": 14403.6, + "end": 14404.74, + "probability": 0.8276 + }, + { + "start": 14405.38, + "end": 14405.58, + "probability": 0.8671 + }, + { + "start": 14406.34, + "end": 14407.32, + "probability": 0.9359 + }, + { + "start": 14408.66, + "end": 14412.6, + "probability": 0.9692 + }, + { + "start": 14414.14, + "end": 14417.68, + "probability": 0.9966 + }, + { + "start": 14417.76, + "end": 14418.78, + "probability": 0.9766 + }, + { + "start": 14419.32, + "end": 14422.44, + "probability": 0.9893 + }, + { + "start": 14423.02, + "end": 14423.32, + "probability": 0.689 + }, + { + "start": 14423.4, + "end": 14423.6, + "probability": 0.9128 + }, + { + "start": 14423.68, + "end": 14425.13, + "probability": 0.958 + }, + { + "start": 14425.64, + "end": 14426.18, + "probability": 0.9464 + }, + { + "start": 14426.26, + "end": 14427.16, + "probability": 0.8645 + }, + { + "start": 14427.74, + "end": 14429.77, + "probability": 0.4879 + }, + { + "start": 14430.06, + "end": 14431.2, + "probability": 0.4347 + }, + { + "start": 14431.2, + "end": 14432.96, + "probability": 0.9679 + }, + { + "start": 14433.04, + "end": 14433.92, + "probability": 0.7331 + }, + { + "start": 14434.12, + "end": 14437.96, + "probability": 0.9243 + }, + { + "start": 14438.8, + "end": 14441.86, + "probability": 0.978 + }, + { + "start": 14442.18, + "end": 14443.37, + "probability": 0.9803 + }, + { + "start": 14443.66, + "end": 14445.18, + "probability": 0.9658 + }, + { + "start": 14447.11, + "end": 14448.28, + "probability": 0.9625 + }, + { + "start": 14448.7, + "end": 14450.14, + "probability": 0.9942 + }, + { + "start": 14450.68, + "end": 14453.42, + "probability": 0.9785 + }, + { + "start": 14453.94, + "end": 14456.24, + "probability": 0.9976 + }, + { + "start": 14456.44, + "end": 14457.08, + "probability": 0.7981 + }, + { + "start": 14457.56, + "end": 14458.46, + "probability": 0.98 + }, + { + "start": 14459.4, + "end": 14460.96, + "probability": 0.488 + }, + { + "start": 14462.02, + "end": 14466.2, + "probability": 0.9761 + }, + { + "start": 14467.56, + "end": 14470.34, + "probability": 0.998 + }, + { + "start": 14470.38, + "end": 14472.8, + "probability": 0.999 + }, + { + "start": 14474.76, + "end": 14476.68, + "probability": 0.8943 + }, + { + "start": 14477.46, + "end": 14480.4, + "probability": 0.9677 + }, + { + "start": 14481.02, + "end": 14482.0, + "probability": 0.8746 + }, + { + "start": 14482.04, + "end": 14486.02, + "probability": 0.9796 + }, + { + "start": 14486.96, + "end": 14487.52, + "probability": 0.6386 + }, + { + "start": 14488.14, + "end": 14489.06, + "probability": 0.97 + }, + { + "start": 14490.2, + "end": 14493.66, + "probability": 0.9968 + }, + { + "start": 14496.68, + "end": 14497.38, + "probability": 0.9572 + }, + { + "start": 14498.34, + "end": 14499.78, + "probability": 0.9969 + }, + { + "start": 14501.94, + "end": 14504.68, + "probability": 0.6152 + }, + { + "start": 14511.96, + "end": 14512.62, + "probability": 0.4701 + }, + { + "start": 14514.0, + "end": 14514.54, + "probability": 0.5156 + }, + { + "start": 14516.2, + "end": 14518.44, + "probability": 0.8862 + }, + { + "start": 14518.8, + "end": 14522.98, + "probability": 0.9754 + }, + { + "start": 14524.44, + "end": 14524.81, + "probability": 0.2722 + }, + { + "start": 14527.14, + "end": 14529.62, + "probability": 0.9012 + }, + { + "start": 14531.08, + "end": 14532.8, + "probability": 0.6112 + }, + { + "start": 14532.92, + "end": 14535.28, + "probability": 0.9873 + }, + { + "start": 14535.36, + "end": 14537.11, + "probability": 0.911 + }, + { + "start": 14538.92, + "end": 14540.42, + "probability": 0.9602 + }, + { + "start": 14541.5, + "end": 14542.13, + "probability": 0.2881 + }, + { + "start": 14544.78, + "end": 14545.26, + "probability": 0.5209 + }, + { + "start": 14545.92, + "end": 14548.92, + "probability": 0.9011 + }, + { + "start": 14549.08, + "end": 14550.26, + "probability": 0.9249 + }, + { + "start": 14551.22, + "end": 14554.92, + "probability": 0.8301 + }, + { + "start": 14556.18, + "end": 14556.82, + "probability": 0.7239 + }, + { + "start": 14557.84, + "end": 14558.8, + "probability": 0.9988 + }, + { + "start": 14559.38, + "end": 14560.42, + "probability": 0.4431 + }, + { + "start": 14562.62, + "end": 14564.0, + "probability": 0.3647 + }, + { + "start": 14565.62, + "end": 14565.66, + "probability": 0.7701 + }, + { + "start": 14565.98, + "end": 14567.88, + "probability": 0.7993 + }, + { + "start": 14569.0, + "end": 14570.84, + "probability": 0.506 + }, + { + "start": 14571.78, + "end": 14575.3, + "probability": 0.8301 + }, + { + "start": 14575.86, + "end": 14577.38, + "probability": 0.8838 + }, + { + "start": 14579.14, + "end": 14579.74, + "probability": 0.7753 + }, + { + "start": 14580.74, + "end": 14584.5, + "probability": 0.9836 + }, + { + "start": 14584.5, + "end": 14588.34, + "probability": 0.9729 + }, + { + "start": 14588.82, + "end": 14591.6, + "probability": 0.9986 + }, + { + "start": 14593.28, + "end": 14596.46, + "probability": 0.9204 + }, + { + "start": 14596.46, + "end": 14600.48, + "probability": 0.9964 + }, + { + "start": 14601.32, + "end": 14607.0, + "probability": 0.9893 + }, + { + "start": 14609.14, + "end": 14610.02, + "probability": 0.8271 + }, + { + "start": 14611.46, + "end": 14616.84, + "probability": 0.949 + }, + { + "start": 14617.78, + "end": 14620.3, + "probability": 0.7695 + }, + { + "start": 14620.76, + "end": 14621.26, + "probability": 0.9172 + }, + { + "start": 14621.88, + "end": 14623.36, + "probability": 0.4232 + }, + { + "start": 14623.78, + "end": 14624.12, + "probability": 0.5823 + }, + { + "start": 14624.14, + "end": 14626.9, + "probability": 0.9845 + }, + { + "start": 14627.08, + "end": 14628.52, + "probability": 0.988 + }, + { + "start": 14628.82, + "end": 14630.02, + "probability": 0.7842 + }, + { + "start": 14630.9, + "end": 14636.18, + "probability": 0.913 + }, + { + "start": 14636.78, + "end": 14638.08, + "probability": 0.9635 + }, + { + "start": 14638.16, + "end": 14639.04, + "probability": 0.8074 + }, + { + "start": 14639.18, + "end": 14641.48, + "probability": 0.9154 + }, + { + "start": 14642.14, + "end": 14643.6, + "probability": 0.9451 + }, + { + "start": 14643.7, + "end": 14645.68, + "probability": 0.6327 + }, + { + "start": 14646.7, + "end": 14648.54, + "probability": 0.8762 + }, + { + "start": 14648.72, + "end": 14649.04, + "probability": 0.5695 + }, + { + "start": 14649.16, + "end": 14650.64, + "probability": 0.9397 + }, + { + "start": 14651.4, + "end": 14652.56, + "probability": 0.8586 + }, + { + "start": 14652.96, + "end": 14653.94, + "probability": 0.7144 + }, + { + "start": 14653.98, + "end": 14656.76, + "probability": 0.8345 + }, + { + "start": 14656.86, + "end": 14658.78, + "probability": 0.8179 + }, + { + "start": 14662.62, + "end": 14662.82, + "probability": 0.3235 + }, + { + "start": 14662.82, + "end": 14663.34, + "probability": 0.6828 + }, + { + "start": 14664.44, + "end": 14665.08, + "probability": 0.0565 + }, + { + "start": 14666.26, + "end": 14668.88, + "probability": 0.4736 + }, + { + "start": 14668.94, + "end": 14669.74, + "probability": 0.3832 + }, + { + "start": 14672.54, + "end": 14674.12, + "probability": 0.8846 + }, + { + "start": 14675.28, + "end": 14676.11, + "probability": 0.8711 + }, + { + "start": 14679.72, + "end": 14680.66, + "probability": 0.1402 + }, + { + "start": 14682.08, + "end": 14688.96, + "probability": 0.0872 + }, + { + "start": 14693.86, + "end": 14695.56, + "probability": 0.2107 + }, + { + "start": 14696.54, + "end": 14696.82, + "probability": 0.6942 + }, + { + "start": 14696.9, + "end": 14700.5, + "probability": 0.9878 + }, + { + "start": 14700.84, + "end": 14701.58, + "probability": 0.6886 + }, + { + "start": 14702.3, + "end": 14706.2, + "probability": 0.7169 + }, + { + "start": 14708.23, + "end": 14713.18, + "probability": 0.9664 + }, + { + "start": 14714.82, + "end": 14718.28, + "probability": 0.7079 + }, + { + "start": 14719.36, + "end": 14720.1, + "probability": 0.6978 + }, + { + "start": 14721.04, + "end": 14722.04, + "probability": 0.8868 + }, + { + "start": 14723.48, + "end": 14725.14, + "probability": 0.8334 + }, + { + "start": 14725.74, + "end": 14727.32, + "probability": 0.9908 + }, + { + "start": 14728.12, + "end": 14732.04, + "probability": 0.9153 + }, + { + "start": 14733.06, + "end": 14736.88, + "probability": 0.9914 + }, + { + "start": 14736.88, + "end": 14739.2, + "probability": 0.9824 + }, + { + "start": 14740.34, + "end": 14741.92, + "probability": 0.7076 + }, + { + "start": 14742.38, + "end": 14746.26, + "probability": 0.9602 + }, + { + "start": 14747.04, + "end": 14748.14, + "probability": 0.8646 + }, + { + "start": 14748.66, + "end": 14749.68, + "probability": 0.33 + }, + { + "start": 14749.72, + "end": 14750.75, + "probability": 0.9304 + }, + { + "start": 14751.4, + "end": 14753.66, + "probability": 0.6898 + }, + { + "start": 14753.78, + "end": 14755.2, + "probability": 0.9465 + }, + { + "start": 14755.2, + "end": 14756.93, + "probability": 0.9932 + }, + { + "start": 14757.36, + "end": 14758.96, + "probability": 0.8442 + }, + { + "start": 14761.58, + "end": 14764.04, + "probability": 0.9362 + }, + { + "start": 14764.04, + "end": 14765.3, + "probability": 0.535 + }, + { + "start": 14765.92, + "end": 14767.47, + "probability": 0.8315 + }, + { + "start": 14768.18, + "end": 14769.77, + "probability": 0.9722 + }, + { + "start": 14770.44, + "end": 14771.98, + "probability": 0.2748 + }, + { + "start": 14772.08, + "end": 14776.26, + "probability": 0.7229 + }, + { + "start": 14776.38, + "end": 14777.12, + "probability": 0.7617 + }, + { + "start": 14777.3, + "end": 14780.52, + "probability": 0.8132 + }, + { + "start": 14781.54, + "end": 14784.14, + "probability": 0.9749 + }, + { + "start": 14784.3, + "end": 14785.78, + "probability": 0.7107 + }, + { + "start": 14786.82, + "end": 14788.68, + "probability": 0.6553 + }, + { + "start": 14790.38, + "end": 14792.68, + "probability": 0.5762 + }, + { + "start": 14792.76, + "end": 14794.94, + "probability": 0.7512 + }, + { + "start": 14796.24, + "end": 14801.0, + "probability": 0.6655 + }, + { + "start": 14801.34, + "end": 14803.42, + "probability": 0.9856 + }, + { + "start": 14804.26, + "end": 14806.24, + "probability": 0.7376 + }, + { + "start": 14806.44, + "end": 14810.06, + "probability": 0.955 + }, + { + "start": 14810.06, + "end": 14810.9, + "probability": 0.7167 + }, + { + "start": 14810.94, + "end": 14811.92, + "probability": 0.781 + }, + { + "start": 14812.02, + "end": 14813.84, + "probability": 0.9409 + }, + { + "start": 14814.14, + "end": 14822.28, + "probability": 0.7607 + }, + { + "start": 14823.4, + "end": 14823.54, + "probability": 0.2812 + }, + { + "start": 14823.54, + "end": 14823.54, + "probability": 0.7971 + }, + { + "start": 14823.54, + "end": 14823.54, + "probability": 0.6831 + }, + { + "start": 14823.68, + "end": 14825.42, + "probability": 0.9705 + }, + { + "start": 14826.32, + "end": 14829.9, + "probability": 0.3602 + }, + { + "start": 14830.02, + "end": 14830.9, + "probability": 0.6773 + }, + { + "start": 14831.24, + "end": 14835.22, + "probability": 0.9817 + }, + { + "start": 14835.78, + "end": 14837.29, + "probability": 0.8145 + }, + { + "start": 14837.88, + "end": 14839.8, + "probability": 0.8139 + }, + { + "start": 14840.34, + "end": 14841.5, + "probability": 0.7017 + }, + { + "start": 14845.29, + "end": 14847.06, + "probability": 0.9392 + }, + { + "start": 14847.32, + "end": 14850.14, + "probability": 0.691 + }, + { + "start": 14851.28, + "end": 14852.24, + "probability": 0.9176 + }, + { + "start": 14852.36, + "end": 14855.19, + "probability": 0.9771 + }, + { + "start": 14856.1, + "end": 14861.08, + "probability": 0.9905 + }, + { + "start": 14861.6, + "end": 14863.12, + "probability": 0.5663 + }, + { + "start": 14863.2, + "end": 14865.12, + "probability": 0.8184 + }, + { + "start": 14866.1, + "end": 14868.04, + "probability": 0.6357 + }, + { + "start": 14868.62, + "end": 14870.54, + "probability": 0.9445 + }, + { + "start": 14871.24, + "end": 14873.58, + "probability": 0.9782 + }, + { + "start": 14874.5, + "end": 14876.32, + "probability": 0.9256 + }, + { + "start": 14877.14, + "end": 14878.64, + "probability": 0.9745 + }, + { + "start": 14878.92, + "end": 14881.32, + "probability": 0.9286 + }, + { + "start": 14883.63, + "end": 14886.4, + "probability": 0.9946 + }, + { + "start": 14887.7, + "end": 14892.14, + "probability": 0.9467 + }, + { + "start": 14893.0, + "end": 14899.32, + "probability": 0.9406 + }, + { + "start": 14899.5, + "end": 14902.64, + "probability": 0.8216 + }, + { + "start": 14903.98, + "end": 14905.3, + "probability": 0.9926 + }, + { + "start": 14906.16, + "end": 14907.69, + "probability": 0.9541 + }, + { + "start": 14909.08, + "end": 14911.88, + "probability": 0.8449 + }, + { + "start": 14912.66, + "end": 14916.5, + "probability": 0.9757 + }, + { + "start": 14917.22, + "end": 14918.42, + "probability": 0.9138 + }, + { + "start": 14919.0, + "end": 14919.24, + "probability": 0.8838 + }, + { + "start": 14919.36, + "end": 14919.78, + "probability": 0.9514 + }, + { + "start": 14919.86, + "end": 14922.6, + "probability": 0.9941 + }, + { + "start": 14922.94, + "end": 14923.14, + "probability": 0.6035 + }, + { + "start": 14923.98, + "end": 14925.58, + "probability": 0.824 + }, + { + "start": 14926.3, + "end": 14926.88, + "probability": 0.7949 + }, + { + "start": 14928.06, + "end": 14929.12, + "probability": 0.6727 + }, + { + "start": 14929.22, + "end": 14929.58, + "probability": 0.7449 + }, + { + "start": 14929.62, + "end": 14931.87, + "probability": 0.7284 + }, + { + "start": 14933.56, + "end": 14935.36, + "probability": 0.8485 + }, + { + "start": 14935.66, + "end": 14936.44, + "probability": 0.8998 + }, + { + "start": 14937.54, + "end": 14939.16, + "probability": 0.6759 + }, + { + "start": 14939.58, + "end": 14941.4, + "probability": 0.968 + }, + { + "start": 14941.5, + "end": 14944.92, + "probability": 0.9673 + }, + { + "start": 14945.18, + "end": 14946.24, + "probability": 0.9685 + }, + { + "start": 14946.76, + "end": 14948.52, + "probability": 0.9708 + }, + { + "start": 14949.5, + "end": 14952.58, + "probability": 0.7652 + }, + { + "start": 14953.5, + "end": 14953.74, + "probability": 0.6629 + }, + { + "start": 14953.86, + "end": 14957.36, + "probability": 0.9917 + }, + { + "start": 14957.76, + "end": 14963.4, + "probability": 0.8496 + }, + { + "start": 14964.48, + "end": 14965.24, + "probability": 0.5915 + }, + { + "start": 14965.84, + "end": 14968.72, + "probability": 0.5317 + }, + { + "start": 14968.74, + "end": 14970.46, + "probability": 0.8357 + }, + { + "start": 14970.48, + "end": 14974.16, + "probability": 0.9897 + }, + { + "start": 14974.72, + "end": 14979.64, + "probability": 0.5542 + }, + { + "start": 14981.74, + "end": 14984.46, + "probability": 0.76 + }, + { + "start": 14986.36, + "end": 14988.38, + "probability": 0.9674 + }, + { + "start": 14989.38, + "end": 14990.52, + "probability": 0.5092 + }, + { + "start": 14990.64, + "end": 14994.88, + "probability": 0.99 + }, + { + "start": 14995.3, + "end": 14995.66, + "probability": 0.5412 + }, + { + "start": 14996.89, + "end": 14998.3, + "probability": 0.4998 + }, + { + "start": 14998.86, + "end": 14999.04, + "probability": 0.7483 + }, + { + "start": 14999.82, + "end": 15001.8, + "probability": 0.9928 + }, + { + "start": 15001.9, + "end": 15002.94, + "probability": 0.9904 + }, + { + "start": 15003.14, + "end": 15004.56, + "probability": 0.9316 + }, + { + "start": 15005.5, + "end": 15006.66, + "probability": 0.9769 + }, + { + "start": 15007.68, + "end": 15008.72, + "probability": 0.8337 + }, + { + "start": 15009.86, + "end": 15010.78, + "probability": 0.9124 + }, + { + "start": 15011.44, + "end": 15014.56, + "probability": 0.9614 + }, + { + "start": 15014.64, + "end": 15017.16, + "probability": 0.6893 + }, + { + "start": 15017.76, + "end": 15019.12, + "probability": 0.8501 + }, + { + "start": 15019.66, + "end": 15023.0, + "probability": 0.9626 + }, + { + "start": 15023.18, + "end": 15025.52, + "probability": 0.9723 + }, + { + "start": 15026.26, + "end": 15029.0, + "probability": 0.8545 + }, + { + "start": 15031.18, + "end": 15033.32, + "probability": 0.7773 + }, + { + "start": 15033.9, + "end": 15035.22, + "probability": 0.9398 + }, + { + "start": 15035.82, + "end": 15040.14, + "probability": 0.8831 + }, + { + "start": 15041.04, + "end": 15043.08, + "probability": 0.6309 + }, + { + "start": 15043.12, + "end": 15045.52, + "probability": 0.9082 + }, + { + "start": 15045.94, + "end": 15046.28, + "probability": 0.9303 + }, + { + "start": 15048.5, + "end": 15050.22, + "probability": 0.8671 + }, + { + "start": 15050.38, + "end": 15051.6, + "probability": 0.9763 + }, + { + "start": 15051.68, + "end": 15052.76, + "probability": 0.9266 + }, + { + "start": 15053.16, + "end": 15054.36, + "probability": 0.6035 + }, + { + "start": 15054.44, + "end": 15056.58, + "probability": 0.9832 + }, + { + "start": 15057.2, + "end": 15058.76, + "probability": 0.8265 + }, + { + "start": 15059.18, + "end": 15062.24, + "probability": 0.9937 + }, + { + "start": 15062.86, + "end": 15065.8, + "probability": 0.8829 + }, + { + "start": 15066.4, + "end": 15068.0, + "probability": 0.998 + }, + { + "start": 15068.18, + "end": 15069.42, + "probability": 0.9971 + }, + { + "start": 15071.14, + "end": 15074.58, + "probability": 0.8159 + }, + { + "start": 15074.74, + "end": 15076.06, + "probability": 0.9795 + }, + { + "start": 15076.4, + "end": 15080.24, + "probability": 0.9556 + }, + { + "start": 15080.96, + "end": 15081.5, + "probability": 0.3924 + }, + { + "start": 15082.36, + "end": 15083.0, + "probability": 0.6474 + }, + { + "start": 15083.3, + "end": 15087.72, + "probability": 0.9658 + }, + { + "start": 15088.8, + "end": 15093.2, + "probability": 0.9663 + }, + { + "start": 15094.22, + "end": 15094.76, + "probability": 0.9347 + }, + { + "start": 15095.54, + "end": 15096.06, + "probability": 0.7644 + }, + { + "start": 15097.0, + "end": 15099.33, + "probability": 0.9821 + }, + { + "start": 15101.0, + "end": 15104.04, + "probability": 0.8063 + }, + { + "start": 15105.7, + "end": 15109.82, + "probability": 0.9348 + }, + { + "start": 15109.9, + "end": 15110.44, + "probability": 0.9634 + }, + { + "start": 15111.42, + "end": 15113.16, + "probability": 0.972 + }, + { + "start": 15113.58, + "end": 15114.12, + "probability": 0.6397 + }, + { + "start": 15114.56, + "end": 15116.68, + "probability": 0.9024 + }, + { + "start": 15117.52, + "end": 15118.24, + "probability": 0.5028 + }, + { + "start": 15119.46, + "end": 15120.04, + "probability": 0.9135 + }, + { + "start": 15121.14, + "end": 15121.84, + "probability": 0.9202 + }, + { + "start": 15122.54, + "end": 15123.32, + "probability": 0.945 + }, + { + "start": 15124.0, + "end": 15124.8, + "probability": 0.7192 + }, + { + "start": 15126.02, + "end": 15129.8, + "probability": 0.9596 + }, + { + "start": 15130.28, + "end": 15132.42, + "probability": 0.8795 + }, + { + "start": 15132.6, + "end": 15133.86, + "probability": 0.9406 + }, + { + "start": 15134.74, + "end": 15135.02, + "probability": 0.6111 + }, + { + "start": 15136.32, + "end": 15138.24, + "probability": 0.9688 + }, + { + "start": 15138.82, + "end": 15140.82, + "probability": 0.8584 + }, + { + "start": 15140.88, + "end": 15142.2, + "probability": 0.6541 + }, + { + "start": 15142.2, + "end": 15142.58, + "probability": 0.7614 + }, + { + "start": 15143.28, + "end": 15144.44, + "probability": 0.7234 + }, + { + "start": 15145.04, + "end": 15147.05, + "probability": 0.9688 + }, + { + "start": 15150.82, + "end": 15151.32, + "probability": 0.2079 + }, + { + "start": 15151.32, + "end": 15154.62, + "probability": 0.1938 + }, + { + "start": 15155.86, + "end": 15157.5, + "probability": 0.7197 + }, + { + "start": 15158.14, + "end": 15160.52, + "probability": 0.8848 + }, + { + "start": 15161.58, + "end": 15162.62, + "probability": 0.9912 + }, + { + "start": 15163.22, + "end": 15164.32, + "probability": 0.8916 + }, + { + "start": 15165.48, + "end": 15167.58, + "probability": 0.9913 + }, + { + "start": 15168.48, + "end": 15169.52, + "probability": 0.8228 + }, + { + "start": 15170.5, + "end": 15171.76, + "probability": 0.8784 + }, + { + "start": 15173.42, + "end": 15174.46, + "probability": 0.638 + }, + { + "start": 15175.28, + "end": 15179.28, + "probability": 0.9306 + }, + { + "start": 15179.5, + "end": 15184.56, + "probability": 0.9437 + }, + { + "start": 15184.88, + "end": 15187.3, + "probability": 0.9835 + }, + { + "start": 15188.0, + "end": 15188.72, + "probability": 0.9049 + }, + { + "start": 15190.42, + "end": 15194.62, + "probability": 0.9835 + }, + { + "start": 15195.34, + "end": 15197.28, + "probability": 0.8191 + }, + { + "start": 15198.32, + "end": 15199.94, + "probability": 0.9966 + }, + { + "start": 15200.5, + "end": 15201.18, + "probability": 0.4447 + }, + { + "start": 15201.3, + "end": 15205.14, + "probability": 0.9092 + }, + { + "start": 15206.24, + "end": 15208.7, + "probability": 0.8691 + }, + { + "start": 15208.9, + "end": 15210.56, + "probability": 0.6939 + }, + { + "start": 15211.2, + "end": 15212.36, + "probability": 0.8433 + }, + { + "start": 15213.12, + "end": 15216.52, + "probability": 0.9963 + }, + { + "start": 15216.84, + "end": 15218.26, + "probability": 0.9927 + }, + { + "start": 15219.14, + "end": 15220.2, + "probability": 0.7596 + }, + { + "start": 15220.32, + "end": 15221.58, + "probability": 0.8096 + }, + { + "start": 15221.96, + "end": 15223.7, + "probability": 0.7588 + }, + { + "start": 15223.84, + "end": 15224.36, + "probability": 0.7533 + }, + { + "start": 15225.02, + "end": 15225.84, + "probability": 0.8029 + }, + { + "start": 15227.28, + "end": 15230.28, + "probability": 0.75 + }, + { + "start": 15232.72, + "end": 15233.96, + "probability": 0.338 + }, + { + "start": 15234.9, + "end": 15235.22, + "probability": 0.9043 + }, + { + "start": 15235.32, + "end": 15239.56, + "probability": 0.98 + }, + { + "start": 15240.18, + "end": 15240.56, + "probability": 0.6432 + }, + { + "start": 15242.92, + "end": 15246.36, + "probability": 0.9958 + }, + { + "start": 15246.92, + "end": 15252.2, + "probability": 0.9673 + }, + { + "start": 15252.86, + "end": 15254.12, + "probability": 0.5073 + }, + { + "start": 15254.28, + "end": 15254.42, + "probability": 0.4475 + }, + { + "start": 15254.88, + "end": 15255.32, + "probability": 0.9535 + }, + { + "start": 15255.6, + "end": 15256.22, + "probability": 0.8223 + }, + { + "start": 15256.38, + "end": 15256.82, + "probability": 0.4203 + }, + { + "start": 15257.24, + "end": 15259.12, + "probability": 0.8691 + }, + { + "start": 15259.8, + "end": 15260.74, + "probability": 0.8545 + }, + { + "start": 15261.52, + "end": 15263.4, + "probability": 0.7617 + }, + { + "start": 15263.46, + "end": 15265.4, + "probability": 0.9345 + }, + { + "start": 15266.06, + "end": 15268.08, + "probability": 0.733 + }, + { + "start": 15268.66, + "end": 15270.32, + "probability": 0.9757 + }, + { + "start": 15270.36, + "end": 15270.82, + "probability": 0.6956 + }, + { + "start": 15271.16, + "end": 15271.96, + "probability": 0.9857 + }, + { + "start": 15272.44, + "end": 15275.9, + "probability": 0.9084 + }, + { + "start": 15277.06, + "end": 15277.74, + "probability": 0.4593 + }, + { + "start": 15279.44, + "end": 15281.52, + "probability": 0.751 + }, + { + "start": 15281.52, + "end": 15285.68, + "probability": 0.7494 + }, + { + "start": 15286.3, + "end": 15288.86, + "probability": 0.9907 + }, + { + "start": 15290.78, + "end": 15291.78, + "probability": 0.9417 + }, + { + "start": 15292.12, + "end": 15292.96, + "probability": 0.826 + }, + { + "start": 15293.08, + "end": 15293.73, + "probability": 0.9229 + }, + { + "start": 15294.04, + "end": 15294.43, + "probability": 0.9038 + }, + { + "start": 15295.38, + "end": 15296.46, + "probability": 0.8316 + }, + { + "start": 15297.8, + "end": 15299.42, + "probability": 0.7899 + }, + { + "start": 15299.9, + "end": 15300.78, + "probability": 0.9534 + }, + { + "start": 15301.82, + "end": 15304.58, + "probability": 0.9961 + }, + { + "start": 15306.92, + "end": 15309.38, + "probability": 0.5203 + }, + { + "start": 15310.96, + "end": 15312.98, + "probability": 0.4695 + }, + { + "start": 15313.88, + "end": 15314.57, + "probability": 0.9473 + }, + { + "start": 15315.16, + "end": 15316.86, + "probability": 0.9658 + }, + { + "start": 15317.5, + "end": 15319.36, + "probability": 0.9779 + }, + { + "start": 15320.54, + "end": 15321.94, + "probability": 0.9731 + }, + { + "start": 15322.04, + "end": 15325.06, + "probability": 0.7898 + }, + { + "start": 15325.16, + "end": 15327.16, + "probability": 0.9827 + }, + { + "start": 15327.66, + "end": 15328.28, + "probability": 0.9537 + }, + { + "start": 15328.58, + "end": 15328.74, + "probability": 0.5379 + }, + { + "start": 15329.28, + "end": 15330.78, + "probability": 0.6066 + }, + { + "start": 15331.24, + "end": 15332.04, + "probability": 0.9707 + }, + { + "start": 15332.7, + "end": 15333.19, + "probability": 0.8705 + }, + { + "start": 15333.3, + "end": 15334.19, + "probability": 0.9922 + }, + { + "start": 15336.12, + "end": 15338.06, + "probability": 0.5287 + }, + { + "start": 15338.14, + "end": 15338.94, + "probability": 0.7139 + }, + { + "start": 15339.16, + "end": 15341.26, + "probability": 0.899 + }, + { + "start": 15341.7, + "end": 15343.37, + "probability": 0.6874 + }, + { + "start": 15343.6, + "end": 15345.04, + "probability": 0.8708 + }, + { + "start": 15346.6, + "end": 15350.02, + "probability": 0.8734 + }, + { + "start": 15351.04, + "end": 15352.08, + "probability": 0.8761 + }, + { + "start": 15352.72, + "end": 15353.16, + "probability": 0.895 + }, + { + "start": 15353.18, + "end": 15353.76, + "probability": 0.6489 + }, + { + "start": 15353.82, + "end": 15355.32, + "probability": 0.6613 + }, + { + "start": 15355.4, + "end": 15356.58, + "probability": 0.9958 + }, + { + "start": 15357.56, + "end": 15357.98, + "probability": 0.504 + }, + { + "start": 15357.98, + "end": 15360.82, + "probability": 0.5294 + }, + { + "start": 15361.66, + "end": 15366.14, + "probability": 0.4025 + }, + { + "start": 15366.78, + "end": 15373.24, + "probability": 0.8779 + }, + { + "start": 15374.12, + "end": 15374.62, + "probability": 0.5232 + }, + { + "start": 15375.4, + "end": 15377.1, + "probability": 0.6962 + }, + { + "start": 15377.74, + "end": 15379.18, + "probability": 0.7492 + }, + { + "start": 15379.8, + "end": 15382.36, + "probability": 0.7712 + }, + { + "start": 15383.5, + "end": 15385.54, + "probability": 0.5151 + }, + { + "start": 15387.3, + "end": 15387.3, + "probability": 0.0808 + }, + { + "start": 15387.3, + "end": 15387.3, + "probability": 0.0109 + }, + { + "start": 15387.3, + "end": 15390.9, + "probability": 0.6846 + }, + { + "start": 15391.46, + "end": 15394.64, + "probability": 0.8047 + }, + { + "start": 15396.02, + "end": 15397.22, + "probability": 0.7809 + }, + { + "start": 15398.1, + "end": 15399.88, + "probability": 0.7901 + }, + { + "start": 15400.76, + "end": 15402.82, + "probability": 0.8399 + }, + { + "start": 15404.05, + "end": 15406.8, + "probability": 0.9136 + }, + { + "start": 15407.22, + "end": 15409.5, + "probability": 0.9762 + }, + { + "start": 15410.36, + "end": 15412.58, + "probability": 0.9895 + }, + { + "start": 15413.28, + "end": 15414.88, + "probability": 0.9381 + }, + { + "start": 15416.44, + "end": 15417.46, + "probability": 0.8774 + }, + { + "start": 15418.4, + "end": 15423.24, + "probability": 0.8154 + }, + { + "start": 15424.92, + "end": 15425.75, + "probability": 0.9868 + }, + { + "start": 15426.56, + "end": 15430.08, + "probability": 0.5003 + }, + { + "start": 15430.6, + "end": 15432.11, + "probability": 0.8913 + }, + { + "start": 15433.0, + "end": 15433.64, + "probability": 0.8482 + }, + { + "start": 15434.54, + "end": 15435.6, + "probability": 0.8433 + }, + { + "start": 15437.12, + "end": 15438.1, + "probability": 0.8589 + }, + { + "start": 15438.7, + "end": 15439.92, + "probability": 0.8516 + }, + { + "start": 15440.58, + "end": 15441.54, + "probability": 0.9757 + }, + { + "start": 15441.66, + "end": 15442.44, + "probability": 0.9632 + }, + { + "start": 15442.5, + "end": 15443.23, + "probability": 0.9358 + }, + { + "start": 15443.42, + "end": 15444.26, + "probability": 0.9609 + }, + { + "start": 15444.42, + "end": 15445.02, + "probability": 0.6499 + }, + { + "start": 15445.66, + "end": 15447.42, + "probability": 0.9907 + }, + { + "start": 15449.34, + "end": 15450.86, + "probability": 0.9875 + }, + { + "start": 15451.32, + "end": 15452.14, + "probability": 0.5318 + }, + { + "start": 15452.82, + "end": 15455.04, + "probability": 0.9754 + }, + { + "start": 15455.32, + "end": 15456.74, + "probability": 0.9416 + }, + { + "start": 15456.86, + "end": 15460.8, + "probability": 0.9117 + }, + { + "start": 15460.84, + "end": 15461.82, + "probability": 0.5023 + }, + { + "start": 15461.98, + "end": 15462.82, + "probability": 0.7948 + }, + { + "start": 15464.56, + "end": 15465.58, + "probability": 0.9476 + }, + { + "start": 15468.28, + "end": 15470.74, + "probability": 0.9167 + }, + { + "start": 15471.7, + "end": 15474.64, + "probability": 0.6849 + }, + { + "start": 15475.68, + "end": 15476.64, + "probability": 0.9199 + }, + { + "start": 15477.18, + "end": 15481.6, + "probability": 0.7877 + }, + { + "start": 15483.5, + "end": 15486.63, + "probability": 0.9368 + }, + { + "start": 15487.66, + "end": 15488.32, + "probability": 0.6854 + }, + { + "start": 15489.06, + "end": 15490.62, + "probability": 0.9896 + }, + { + "start": 15491.26, + "end": 15493.86, + "probability": 0.9827 + }, + { + "start": 15494.78, + "end": 15499.04, + "probability": 0.8358 + }, + { + "start": 15499.56, + "end": 15500.4, + "probability": 0.7646 + }, + { + "start": 15501.2, + "end": 15504.12, + "probability": 0.7765 + }, + { + "start": 15504.32, + "end": 15504.6, + "probability": 0.6378 + }, + { + "start": 15505.02, + "end": 15505.98, + "probability": 0.9567 + }, + { + "start": 15507.1, + "end": 15507.88, + "probability": 0.7559 + }, + { + "start": 15509.26, + "end": 15509.96, + "probability": 0.7926 + }, + { + "start": 15510.88, + "end": 15513.34, + "probability": 0.9626 + }, + { + "start": 15514.48, + "end": 15516.7, + "probability": 0.7255 + }, + { + "start": 15517.12, + "end": 15518.5, + "probability": 0.5648 + }, + { + "start": 15518.98, + "end": 15520.52, + "probability": 0.697 + }, + { + "start": 15520.6, + "end": 15522.54, + "probability": 0.8721 + }, + { + "start": 15522.92, + "end": 15523.38, + "probability": 0.8892 + }, + { + "start": 15524.18, + "end": 15525.42, + "probability": 0.9077 + }, + { + "start": 15527.08, + "end": 15530.85, + "probability": 0.9326 + }, + { + "start": 15532.04, + "end": 15535.52, + "probability": 0.8817 + }, + { + "start": 15536.16, + "end": 15538.52, + "probability": 0.8933 + }, + { + "start": 15539.66, + "end": 15541.5, + "probability": 0.7669 + }, + { + "start": 15542.62, + "end": 15545.98, + "probability": 0.7545 + }, + { + "start": 15546.66, + "end": 15549.7, + "probability": 0.7399 + }, + { + "start": 15550.86, + "end": 15553.36, + "probability": 0.7361 + }, + { + "start": 15554.32, + "end": 15555.97, + "probability": 0.5746 + }, + { + "start": 15558.64, + "end": 15560.5, + "probability": 0.9292 + }, + { + "start": 15561.92, + "end": 15562.3, + "probability": 0.9518 + }, + { + "start": 15563.96, + "end": 15566.1, + "probability": 0.7998 + }, + { + "start": 15566.2, + "end": 15566.54, + "probability": 0.4156 + }, + { + "start": 15566.66, + "end": 15567.68, + "probability": 0.8107 + }, + { + "start": 15567.96, + "end": 15568.54, + "probability": 0.727 + }, + { + "start": 15568.7, + "end": 15569.9, + "probability": 0.8101 + }, + { + "start": 15570.18, + "end": 15570.38, + "probability": 0.8188 + }, + { + "start": 15570.38, + "end": 15571.86, + "probability": 0.7941 + }, + { + "start": 15572.28, + "end": 15572.7, + "probability": 0.9779 + }, + { + "start": 15572.98, + "end": 15574.48, + "probability": 0.8569 + }, + { + "start": 15574.5, + "end": 15574.9, + "probability": 0.4143 + }, + { + "start": 15575.44, + "end": 15579.4, + "probability": 0.861 + }, + { + "start": 15579.58, + "end": 15580.24, + "probability": 0.8521 + }, + { + "start": 15580.8, + "end": 15582.4, + "probability": 0.9615 + }, + { + "start": 15582.96, + "end": 15587.44, + "probability": 0.9694 + }, + { + "start": 15587.96, + "end": 15589.44, + "probability": 0.8778 + }, + { + "start": 15590.2, + "end": 15591.34, + "probability": 0.9268 + }, + { + "start": 15592.54, + "end": 15598.58, + "probability": 0.9578 + }, + { + "start": 15599.54, + "end": 15601.8, + "probability": 0.9279 + }, + { + "start": 15601.88, + "end": 15603.24, + "probability": 0.7493 + }, + { + "start": 15603.34, + "end": 15605.62, + "probability": 0.9839 + }, + { + "start": 15605.74, + "end": 15606.68, + "probability": 0.8152 + }, + { + "start": 15607.92, + "end": 15609.88, + "probability": 0.6646 + }, + { + "start": 15610.18, + "end": 15611.1, + "probability": 0.9701 + }, + { + "start": 15611.82, + "end": 15614.54, + "probability": 0.9827 + }, + { + "start": 15614.58, + "end": 15615.4, + "probability": 0.9369 + }, + { + "start": 15616.06, + "end": 15620.44, + "probability": 0.9543 + }, + { + "start": 15621.38, + "end": 15622.68, + "probability": 0.6353 + }, + { + "start": 15622.72, + "end": 15626.2, + "probability": 0.884 + }, + { + "start": 15626.8, + "end": 15631.2, + "probability": 0.7728 + }, + { + "start": 15631.72, + "end": 15634.0, + "probability": 0.8708 + }, + { + "start": 15634.52, + "end": 15635.64, + "probability": 0.7351 + }, + { + "start": 15636.36, + "end": 15637.0, + "probability": 0.719 + }, + { + "start": 15637.88, + "end": 15638.68, + "probability": 0.9442 + }, + { + "start": 15639.44, + "end": 15640.34, + "probability": 0.8644 + }, + { + "start": 15640.74, + "end": 15644.54, + "probability": 0.966 + }, + { + "start": 15645.4, + "end": 15646.26, + "probability": 0.502 + }, + { + "start": 15647.08, + "end": 15653.64, + "probability": 0.9471 + }, + { + "start": 15654.22, + "end": 15654.48, + "probability": 0.9052 + }, + { + "start": 15655.08, + "end": 15657.56, + "probability": 0.9521 + }, + { + "start": 15658.64, + "end": 15662.18, + "probability": 0.9785 + }, + { + "start": 15663.1, + "end": 15664.16, + "probability": 0.6513 + }, + { + "start": 15664.3, + "end": 15666.06, + "probability": 0.8755 + }, + { + "start": 15669.1, + "end": 15672.08, + "probability": 0.9957 + }, + { + "start": 15673.4, + "end": 15674.64, + "probability": 0.8521 + }, + { + "start": 15675.82, + "end": 15676.98, + "probability": 0.8759 + }, + { + "start": 15677.38, + "end": 15679.0, + "probability": 0.9685 + }, + { + "start": 15680.12, + "end": 15681.5, + "probability": 0.969 + }, + { + "start": 15682.02, + "end": 15683.28, + "probability": 0.9896 + }, + { + "start": 15684.32, + "end": 15685.08, + "probability": 0.4612 + }, + { + "start": 15685.24, + "end": 15685.6, + "probability": 0.4768 + }, + { + "start": 15686.05, + "end": 15687.96, + "probability": 0.871 + }, + { + "start": 15688.38, + "end": 15689.4, + "probability": 0.9292 + }, + { + "start": 15690.24, + "end": 15691.02, + "probability": 0.904 + }, + { + "start": 15691.6, + "end": 15693.86, + "probability": 0.8258 + }, + { + "start": 15694.02, + "end": 15694.86, + "probability": 0.8869 + }, + { + "start": 15694.9, + "end": 15697.56, + "probability": 0.7971 + }, + { + "start": 15697.86, + "end": 15698.7, + "probability": 0.9097 + }, + { + "start": 15699.2, + "end": 15700.48, + "probability": 0.7385 + }, + { + "start": 15701.46, + "end": 15702.6, + "probability": 0.8193 + }, + { + "start": 15703.42, + "end": 15704.33, + "probability": 0.9129 + }, + { + "start": 15705.74, + "end": 15708.3, + "probability": 0.8704 + }, + { + "start": 15708.88, + "end": 15708.98, + "probability": 0.8788 + }, + { + "start": 15709.94, + "end": 15711.16, + "probability": 0.7979 + }, + { + "start": 15711.42, + "end": 15712.64, + "probability": 0.9893 + }, + { + "start": 15713.04, + "end": 15717.08, + "probability": 0.9901 + }, + { + "start": 15718.76, + "end": 15720.52, + "probability": 0.5241 + }, + { + "start": 15721.36, + "end": 15722.06, + "probability": 0.7727 + }, + { + "start": 15722.72, + "end": 15724.68, + "probability": 0.9972 + }, + { + "start": 15724.8, + "end": 15725.58, + "probability": 0.9532 + }, + { + "start": 15726.3, + "end": 15726.74, + "probability": 0.9661 + }, + { + "start": 15727.46, + "end": 15730.8, + "probability": 0.9871 + }, + { + "start": 15731.32, + "end": 15734.1, + "probability": 0.8966 + }, + { + "start": 15736.06, + "end": 15739.4, + "probability": 0.9735 + }, + { + "start": 15740.4, + "end": 15744.38, + "probability": 0.9286 + }, + { + "start": 15744.92, + "end": 15745.28, + "probability": 0.9422 + }, + { + "start": 15746.08, + "end": 15748.32, + "probability": 0.99 + }, + { + "start": 15748.74, + "end": 15752.58, + "probability": 0.9935 + }, + { + "start": 15752.72, + "end": 15753.2, + "probability": 0.7105 + }, + { + "start": 15754.58, + "end": 15757.1, + "probability": 0.9849 + }, + { + "start": 15757.86, + "end": 15761.16, + "probability": 0.9128 + }, + { + "start": 15761.28, + "end": 15762.31, + "probability": 0.943 + }, + { + "start": 15762.98, + "end": 15763.78, + "probability": 0.8195 + }, + { + "start": 15763.88, + "end": 15764.78, + "probability": 0.661 + }, + { + "start": 15765.3, + "end": 15765.99, + "probability": 0.9443 + }, + { + "start": 15767.1, + "end": 15771.06, + "probability": 0.9795 + }, + { + "start": 15771.48, + "end": 15772.36, + "probability": 0.6747 + }, + { + "start": 15772.38, + "end": 15772.94, + "probability": 0.6977 + }, + { + "start": 15773.3, + "end": 15775.02, + "probability": 0.8884 + }, + { + "start": 15777.69, + "end": 15783.28, + "probability": 0.8923 + }, + { + "start": 15783.48, + "end": 15784.5, + "probability": 0.9813 + }, + { + "start": 15785.58, + "end": 15787.98, + "probability": 0.8818 + }, + { + "start": 15788.92, + "end": 15792.42, + "probability": 0.7695 + }, + { + "start": 15792.74, + "end": 15793.6, + "probability": 0.9487 + }, + { + "start": 15794.88, + "end": 15795.64, + "probability": 0.8594 + }, + { + "start": 15795.92, + "end": 15796.72, + "probability": 0.8724 + }, + { + "start": 15797.06, + "end": 15799.04, + "probability": 0.853 + }, + { + "start": 15801.72, + "end": 15804.32, + "probability": 0.7056 + }, + { + "start": 15806.18, + "end": 15808.82, + "probability": 0.7458 + }, + { + "start": 15810.82, + "end": 15812.1, + "probability": 0.9722 + }, + { + "start": 15812.82, + "end": 15814.32, + "probability": 0.8109 + }, + { + "start": 15814.88, + "end": 15815.68, + "probability": 0.9492 + }, + { + "start": 15816.6, + "end": 15822.34, + "probability": 0.9103 + }, + { + "start": 15822.86, + "end": 15825.98, + "probability": 0.7857 + }, + { + "start": 15827.12, + "end": 15831.8, + "probability": 0.9129 + }, + { + "start": 15832.42, + "end": 15832.86, + "probability": 0.6859 + }, + { + "start": 15833.52, + "end": 15834.52, + "probability": 0.8486 + }, + { + "start": 15835.56, + "end": 15836.74, + "probability": 0.4587 + }, + { + "start": 15837.74, + "end": 15838.95, + "probability": 0.8325 + }, + { + "start": 15839.38, + "end": 15842.78, + "probability": 0.8856 + }, + { + "start": 15843.94, + "end": 15845.32, + "probability": 0.617 + }, + { + "start": 15846.38, + "end": 15846.66, + "probability": 0.7887 + }, + { + "start": 15847.86, + "end": 15848.58, + "probability": 0.8606 + }, + { + "start": 15850.22, + "end": 15854.44, + "probability": 0.998 + }, + { + "start": 15855.24, + "end": 15856.72, + "probability": 0.9913 + }, + { + "start": 15857.6, + "end": 15857.98, + "probability": 0.9705 + }, + { + "start": 15858.54, + "end": 15858.8, + "probability": 0.9363 + }, + { + "start": 15858.92, + "end": 15860.0, + "probability": 0.8735 + }, + { + "start": 15860.4, + "end": 15862.72, + "probability": 0.9644 + }, + { + "start": 15863.48, + "end": 15868.38, + "probability": 0.9729 + }, + { + "start": 15869.0, + "end": 15870.18, + "probability": 0.9901 + }, + { + "start": 15870.82, + "end": 15873.18, + "probability": 0.9971 + }, + { + "start": 15873.18, + "end": 15875.96, + "probability": 0.9841 + }, + { + "start": 15877.3, + "end": 15879.76, + "probability": 0.9924 + }, + { + "start": 15882.4, + "end": 15884.21, + "probability": 0.9958 + }, + { + "start": 15884.96, + "end": 15886.76, + "probability": 0.9442 + }, + { + "start": 15887.22, + "end": 15894.68, + "probability": 0.9365 + }, + { + "start": 15895.22, + "end": 15896.14, + "probability": 0.5988 + }, + { + "start": 15896.82, + "end": 15896.96, + "probability": 0.5355 + }, + { + "start": 15897.72, + "end": 15899.1, + "probability": 0.9414 + }, + { + "start": 15899.96, + "end": 15901.02, + "probability": 0.9146 + }, + { + "start": 15901.22, + "end": 15902.5, + "probability": 0.7846 + }, + { + "start": 15902.82, + "end": 15904.58, + "probability": 0.6624 + }, + { + "start": 15904.6, + "end": 15905.46, + "probability": 0.5695 + }, + { + "start": 15906.18, + "end": 15907.1, + "probability": 0.6039 + }, + { + "start": 15907.7, + "end": 15909.44, + "probability": 0.7739 + }, + { + "start": 15910.26, + "end": 15914.12, + "probability": 0.9043 + }, + { + "start": 15914.16, + "end": 15915.02, + "probability": 0.811 + }, + { + "start": 15916.56, + "end": 15918.74, + "probability": 0.9474 + }, + { + "start": 15919.04, + "end": 15922.7, + "probability": 0.6592 + }, + { + "start": 15923.46, + "end": 15927.66, + "probability": 0.7761 + }, + { + "start": 15928.3, + "end": 15929.98, + "probability": 0.9978 + }, + { + "start": 15930.82, + "end": 15932.0, + "probability": 0.7898 + }, + { + "start": 15932.9, + "end": 15935.14, + "probability": 0.9618 + }, + { + "start": 15935.38, + "end": 15937.02, + "probability": 0.9764 + }, + { + "start": 15937.54, + "end": 15941.28, + "probability": 0.9946 + }, + { + "start": 15942.02, + "end": 15945.66, + "probability": 0.9709 + }, + { + "start": 15946.16, + "end": 15946.64, + "probability": 0.5539 + }, + { + "start": 15947.52, + "end": 15950.52, + "probability": 0.9852 + }, + { + "start": 15950.74, + "end": 15953.54, + "probability": 0.917 + }, + { + "start": 15953.84, + "end": 15954.18, + "probability": 0.7912 + }, + { + "start": 15955.48, + "end": 15955.84, + "probability": 0.7394 + }, + { + "start": 15956.5, + "end": 15958.9, + "probability": 0.9629 + }, + { + "start": 15959.36, + "end": 15960.86, + "probability": 0.9844 + }, + { + "start": 15963.44, + "end": 15964.74, + "probability": 0.5211 + }, + { + "start": 15965.48, + "end": 15966.66, + "probability": 0.6559 + }, + { + "start": 15967.36, + "end": 15967.9, + "probability": 0.8772 + }, + { + "start": 15968.22, + "end": 15969.88, + "probability": 0.445 + }, + { + "start": 15969.96, + "end": 15970.44, + "probability": 0.2671 + }, + { + "start": 15970.62, + "end": 15972.88, + "probability": 0.8651 + }, + { + "start": 15974.46, + "end": 15976.32, + "probability": 0.8623 + }, + { + "start": 15977.8, + "end": 15979.74, + "probability": 0.1685 + }, + { + "start": 15981.58, + "end": 15984.2, + "probability": 0.6499 + }, + { + "start": 15985.52, + "end": 15985.7, + "probability": 0.886 + }, + { + "start": 15991.02, + "end": 15991.26, + "probability": 0.1407 + }, + { + "start": 15992.04, + "end": 15992.72, + "probability": 0.1014 + }, + { + "start": 16009.8, + "end": 16010.61, + "probability": 0.5325 + }, + { + "start": 16010.9, + "end": 16011.7, + "probability": 0.5679 + }, + { + "start": 16013.0, + "end": 16014.12, + "probability": 0.7262 + }, + { + "start": 16017.42, + "end": 16017.94, + "probability": 0.6721 + }, + { + "start": 16018.16, + "end": 16018.98, + "probability": 0.5069 + }, + { + "start": 16019.16, + "end": 16019.78, + "probability": 0.7465 + }, + { + "start": 16019.92, + "end": 16025.56, + "probability": 0.9697 + }, + { + "start": 16025.94, + "end": 16031.44, + "probability": 0.9946 + }, + { + "start": 16032.32, + "end": 16037.32, + "probability": 0.9931 + }, + { + "start": 16038.48, + "end": 16041.64, + "probability": 0.9575 + }, + { + "start": 16042.32, + "end": 16047.96, + "probability": 0.8342 + }, + { + "start": 16048.74, + "end": 16054.52, + "probability": 0.9898 + }, + { + "start": 16056.67, + "end": 16058.25, + "probability": 0.2001 + }, + { + "start": 16058.96, + "end": 16061.36, + "probability": 0.9586 + }, + { + "start": 16061.46, + "end": 16067.94, + "probability": 0.9897 + }, + { + "start": 16068.68, + "end": 16069.54, + "probability": 0.7361 + }, + { + "start": 16069.58, + "end": 16074.23, + "probability": 0.9885 + }, + { + "start": 16075.12, + "end": 16076.44, + "probability": 0.7688 + }, + { + "start": 16077.1, + "end": 16080.64, + "probability": 0.951 + }, + { + "start": 16081.04, + "end": 16086.32, + "probability": 0.9946 + }, + { + "start": 16086.96, + "end": 16089.74, + "probability": 0.9915 + }, + { + "start": 16089.9, + "end": 16095.16, + "probability": 0.9959 + }, + { + "start": 16097.31, + "end": 16100.5, + "probability": 0.8591 + }, + { + "start": 16100.56, + "end": 16103.3, + "probability": 0.9924 + }, + { + "start": 16104.22, + "end": 16110.64, + "probability": 0.8948 + }, + { + "start": 16110.76, + "end": 16111.12, + "probability": 0.967 + }, + { + "start": 16112.6, + "end": 16115.4, + "probability": 0.8406 + }, + { + "start": 16117.5, + "end": 16121.02, + "probability": 0.9941 + }, + { + "start": 16121.36, + "end": 16124.51, + "probability": 0.7822 + }, + { + "start": 16124.94, + "end": 16130.8, + "probability": 0.8583 + }, + { + "start": 16131.08, + "end": 16135.74, + "probability": 0.9383 + }, + { + "start": 16135.8, + "end": 16138.48, + "probability": 0.9817 + }, + { + "start": 16141.24, + "end": 16143.94, + "probability": 0.8905 + }, + { + "start": 16143.94, + "end": 16148.12, + "probability": 0.9893 + }, + { + "start": 16148.84, + "end": 16150.24, + "probability": 0.9849 + }, + { + "start": 16150.62, + "end": 16150.96, + "probability": 0.7583 + }, + { + "start": 16151.62, + "end": 16153.2, + "probability": 0.9396 + }, + { + "start": 16153.26, + "end": 16154.42, + "probability": 0.9813 + }, + { + "start": 16154.52, + "end": 16157.1, + "probability": 0.9991 + }, + { + "start": 16158.16, + "end": 16159.84, + "probability": 0.9511 + }, + { + "start": 16159.84, + "end": 16164.14, + "probability": 0.9935 + }, + { + "start": 16165.1, + "end": 16167.1, + "probability": 0.9836 + }, + { + "start": 16168.38, + "end": 16172.34, + "probability": 0.9895 + }, + { + "start": 16173.92, + "end": 16177.24, + "probability": 0.8219 + }, + { + "start": 16177.64, + "end": 16181.82, + "probability": 0.9924 + }, + { + "start": 16183.52, + "end": 16188.56, + "probability": 0.6158 + }, + { + "start": 16189.84, + "end": 16193.78, + "probability": 0.9447 + }, + { + "start": 16194.32, + "end": 16198.34, + "probability": 0.9703 + }, + { + "start": 16199.48, + "end": 16201.96, + "probability": 0.4802 + }, + { + "start": 16202.16, + "end": 16206.6, + "probability": 0.9088 + }, + { + "start": 16207.16, + "end": 16208.9, + "probability": 0.8621 + }, + { + "start": 16209.74, + "end": 16214.84, + "probability": 0.9871 + }, + { + "start": 16214.88, + "end": 16217.34, + "probability": 0.8431 + }, + { + "start": 16218.12, + "end": 16219.58, + "probability": 0.6227 + }, + { + "start": 16221.08, + "end": 16221.76, + "probability": 0.579 + }, + { + "start": 16222.26, + "end": 16224.96, + "probability": 0.9516 + }, + { + "start": 16225.14, + "end": 16227.0, + "probability": 0.9178 + }, + { + "start": 16227.7, + "end": 16229.68, + "probability": 0.9533 + }, + { + "start": 16230.48, + "end": 16233.46, + "probability": 0.9865 + }, + { + "start": 16233.46, + "end": 16236.19, + "probability": 0.9895 + }, + { + "start": 16236.96, + "end": 16239.82, + "probability": 0.8575 + }, + { + "start": 16240.74, + "end": 16244.28, + "probability": 0.9991 + }, + { + "start": 16245.14, + "end": 16248.64, + "probability": 0.8828 + }, + { + "start": 16248.78, + "end": 16250.1, + "probability": 0.9647 + }, + { + "start": 16250.28, + "end": 16250.6, + "probability": 0.7968 + }, + { + "start": 16250.64, + "end": 16251.1, + "probability": 0.7389 + }, + { + "start": 16251.18, + "end": 16252.3, + "probability": 0.9698 + }, + { + "start": 16252.42, + "end": 16255.48, + "probability": 0.9868 + }, + { + "start": 16256.14, + "end": 16258.36, + "probability": 0.8323 + }, + { + "start": 16260.24, + "end": 16264.0, + "probability": 0.9919 + }, + { + "start": 16264.56, + "end": 16269.36, + "probability": 0.9698 + }, + { + "start": 16270.78, + "end": 16271.04, + "probability": 0.923 + }, + { + "start": 16271.1, + "end": 16275.34, + "probability": 0.9969 + }, + { + "start": 16275.44, + "end": 16276.72, + "probability": 0.826 + }, + { + "start": 16276.9, + "end": 16279.87, + "probability": 0.646 + }, + { + "start": 16280.62, + "end": 16284.66, + "probability": 0.9905 + }, + { + "start": 16285.86, + "end": 16287.54, + "probability": 0.9421 + }, + { + "start": 16288.22, + "end": 16289.86, + "probability": 0.9585 + }, + { + "start": 16290.94, + "end": 16296.92, + "probability": 0.9404 + }, + { + "start": 16297.02, + "end": 16298.42, + "probability": 0.7086 + }, + { + "start": 16299.88, + "end": 16303.62, + "probability": 0.9963 + }, + { + "start": 16303.78, + "end": 16305.14, + "probability": 0.9004 + }, + { + "start": 16305.24, + "end": 16306.32, + "probability": 0.7335 + }, + { + "start": 16306.74, + "end": 16309.98, + "probability": 0.9316 + }, + { + "start": 16310.74, + "end": 16312.97, + "probability": 0.9957 + }, + { + "start": 16314.04, + "end": 16318.04, + "probability": 0.7809 + }, + { + "start": 16318.04, + "end": 16323.82, + "probability": 0.9794 + }, + { + "start": 16325.22, + "end": 16328.68, + "probability": 0.7522 + }, + { + "start": 16328.84, + "end": 16330.02, + "probability": 0.7037 + }, + { + "start": 16330.52, + "end": 16333.82, + "probability": 0.9826 + }, + { + "start": 16334.46, + "end": 16337.76, + "probability": 0.9785 + }, + { + "start": 16337.88, + "end": 16338.96, + "probability": 0.9971 + }, + { + "start": 16340.3, + "end": 16342.86, + "probability": 0.9521 + }, + { + "start": 16344.16, + "end": 16346.4, + "probability": 0.7584 + }, + { + "start": 16346.92, + "end": 16347.18, + "probability": 0.9363 + }, + { + "start": 16347.8, + "end": 16352.06, + "probability": 0.9633 + }, + { + "start": 16352.84, + "end": 16354.06, + "probability": 0.753 + }, + { + "start": 16354.3, + "end": 16358.9, + "probability": 0.9115 + }, + { + "start": 16359.46, + "end": 16361.44, + "probability": 0.9978 + }, + { + "start": 16361.5, + "end": 16361.74, + "probability": 0.8875 + }, + { + "start": 16362.98, + "end": 16364.46, + "probability": 0.9523 + }, + { + "start": 16364.58, + "end": 16365.92, + "probability": 0.9952 + }, + { + "start": 16366.02, + "end": 16367.0, + "probability": 0.9324 + }, + { + "start": 16367.24, + "end": 16368.06, + "probability": 0.9505 + }, + { + "start": 16369.02, + "end": 16373.7, + "probability": 0.8795 + }, + { + "start": 16373.7, + "end": 16378.3, + "probability": 0.9641 + }, + { + "start": 16379.1, + "end": 16380.5, + "probability": 0.9968 + }, + { + "start": 16381.02, + "end": 16384.66, + "probability": 0.9867 + }, + { + "start": 16385.08, + "end": 16385.94, + "probability": 0.6686 + }, + { + "start": 16387.16, + "end": 16388.98, + "probability": 0.9358 + }, + { + "start": 16390.34, + "end": 16391.36, + "probability": 0.9348 + }, + { + "start": 16392.82, + "end": 16396.86, + "probability": 0.9385 + }, + { + "start": 16399.14, + "end": 16401.9, + "probability": 0.9956 + }, + { + "start": 16401.9, + "end": 16406.06, + "probability": 0.9955 + }, + { + "start": 16406.82, + "end": 16413.78, + "probability": 0.9969 + }, + { + "start": 16413.82, + "end": 16415.66, + "probability": 0.8616 + }, + { + "start": 16416.44, + "end": 16417.42, + "probability": 0.7809 + }, + { + "start": 16418.04, + "end": 16420.36, + "probability": 0.9602 + }, + { + "start": 16421.48, + "end": 16423.68, + "probability": 0.697 + }, + { + "start": 16423.84, + "end": 16424.46, + "probability": 0.5361 + }, + { + "start": 16424.48, + "end": 16425.18, + "probability": 0.9952 + }, + { + "start": 16426.56, + "end": 16428.46, + "probability": 0.9496 + }, + { + "start": 16428.86, + "end": 16429.46, + "probability": 0.8128 + }, + { + "start": 16429.58, + "end": 16432.94, + "probability": 0.9869 + }, + { + "start": 16433.12, + "end": 16434.44, + "probability": 0.9931 + }, + { + "start": 16434.48, + "end": 16435.36, + "probability": 0.9701 + }, + { + "start": 16435.46, + "end": 16436.38, + "probability": 0.8315 + }, + { + "start": 16436.56, + "end": 16438.34, + "probability": 0.8644 + }, + { + "start": 16439.16, + "end": 16442.64, + "probability": 0.9845 + }, + { + "start": 16444.72, + "end": 16445.26, + "probability": 0.6461 + }, + { + "start": 16445.94, + "end": 16448.06, + "probability": 0.9773 + }, + { + "start": 16449.16, + "end": 16452.18, + "probability": 0.9487 + }, + { + "start": 16452.86, + "end": 16455.96, + "probability": 0.9226 + }, + { + "start": 16456.74, + "end": 16457.66, + "probability": 0.6471 + }, + { + "start": 16457.7, + "end": 16463.3, + "probability": 0.7796 + }, + { + "start": 16463.48, + "end": 16464.62, + "probability": 0.9495 + }, + { + "start": 16465.06, + "end": 16470.02, + "probability": 0.9671 + }, + { + "start": 16471.54, + "end": 16473.3, + "probability": 0.3516 + }, + { + "start": 16474.9, + "end": 16476.98, + "probability": 0.4752 + }, + { + "start": 16477.7, + "end": 16480.3, + "probability": 0.7802 + }, + { + "start": 16480.5, + "end": 16482.4, + "probability": 0.9801 + }, + { + "start": 16483.16, + "end": 16487.12, + "probability": 0.926 + }, + { + "start": 16487.74, + "end": 16489.54, + "probability": 0.9851 + }, + { + "start": 16489.88, + "end": 16493.62, + "probability": 0.9715 + }, + { + "start": 16493.82, + "end": 16494.92, + "probability": 0.3353 + }, + { + "start": 16495.66, + "end": 16497.14, + "probability": 0.7474 + }, + { + "start": 16497.94, + "end": 16503.6, + "probability": 0.98 + }, + { + "start": 16504.82, + "end": 16506.02, + "probability": 0.8838 + }, + { + "start": 16506.02, + "end": 16508.14, + "probability": 0.982 + }, + { + "start": 16508.34, + "end": 16513.34, + "probability": 0.9312 + }, + { + "start": 16513.86, + "end": 16517.16, + "probability": 0.8679 + }, + { + "start": 16517.32, + "end": 16518.5, + "probability": 0.9399 + }, + { + "start": 16518.94, + "end": 16521.34, + "probability": 0.9802 + }, + { + "start": 16521.88, + "end": 16525.98, + "probability": 0.9979 + }, + { + "start": 16526.1, + "end": 16530.7, + "probability": 0.9777 + }, + { + "start": 16531.52, + "end": 16538.46, + "probability": 0.9173 + }, + { + "start": 16539.32, + "end": 16544.82, + "probability": 0.9844 + }, + { + "start": 16544.86, + "end": 16548.44, + "probability": 0.9875 + }, + { + "start": 16548.58, + "end": 16548.96, + "probability": 0.7902 + }, + { + "start": 16549.64, + "end": 16550.52, + "probability": 0.9042 + }, + { + "start": 16550.6, + "end": 16550.96, + "probability": 0.7684 + }, + { + "start": 16551.0, + "end": 16551.2, + "probability": 0.8146 + }, + { + "start": 16551.4, + "end": 16552.58, + "probability": 0.9662 + }, + { + "start": 16552.84, + "end": 16552.98, + "probability": 0.8906 + }, + { + "start": 16553.5, + "end": 16555.8, + "probability": 0.9395 + }, + { + "start": 16556.12, + "end": 16560.04, + "probability": 0.9627 + }, + { + "start": 16562.16, + "end": 16562.84, + "probability": 0.6143 + }, + { + "start": 16563.94, + "end": 16566.1, + "probability": 0.9946 + }, + { + "start": 16566.38, + "end": 16570.28, + "probability": 0.9834 + }, + { + "start": 16571.06, + "end": 16575.36, + "probability": 0.9951 + }, + { + "start": 16576.6, + "end": 16577.26, + "probability": 0.6754 + }, + { + "start": 16578.3, + "end": 16585.16, + "probability": 0.8836 + }, + { + "start": 16585.16, + "end": 16590.34, + "probability": 0.9817 + }, + { + "start": 16591.18, + "end": 16595.52, + "probability": 0.8269 + }, + { + "start": 16596.46, + "end": 16596.68, + "probability": 0.0944 + }, + { + "start": 16596.68, + "end": 16602.34, + "probability": 0.999 + }, + { + "start": 16603.24, + "end": 16610.46, + "probability": 0.9756 + }, + { + "start": 16611.22, + "end": 16612.64, + "probability": 0.6924 + }, + { + "start": 16612.88, + "end": 16614.97, + "probability": 0.8456 + }, + { + "start": 16615.16, + "end": 16617.46, + "probability": 0.9736 + }, + { + "start": 16617.98, + "end": 16621.68, + "probability": 0.9613 + }, + { + "start": 16623.02, + "end": 16626.04, + "probability": 0.9985 + }, + { + "start": 16626.04, + "end": 16630.46, + "probability": 0.9966 + }, + { + "start": 16630.68, + "end": 16631.38, + "probability": 0.5876 + }, + { + "start": 16631.52, + "end": 16632.46, + "probability": 0.7714 + }, + { + "start": 16632.8, + "end": 16633.14, + "probability": 0.5729 + }, + { + "start": 16633.6, + "end": 16635.3, + "probability": 0.7999 + }, + { + "start": 16636.38, + "end": 16637.16, + "probability": 0.952 + }, + { + "start": 16637.82, + "end": 16638.42, + "probability": 0.3493 + }, + { + "start": 16639.36, + "end": 16642.9, + "probability": 0.9909 + }, + { + "start": 16643.06, + "end": 16645.52, + "probability": 0.9816 + }, + { + "start": 16646.16, + "end": 16648.52, + "probability": 0.9813 + }, + { + "start": 16648.6, + "end": 16650.06, + "probability": 0.8302 + }, + { + "start": 16650.6, + "end": 16653.94, + "probability": 0.9658 + }, + { + "start": 16653.94, + "end": 16660.38, + "probability": 0.9985 + }, + { + "start": 16661.96, + "end": 16662.42, + "probability": 0.63 + }, + { + "start": 16663.36, + "end": 16667.98, + "probability": 0.9426 + }, + { + "start": 16668.12, + "end": 16673.78, + "probability": 0.9323 + }, + { + "start": 16674.28, + "end": 16677.8, + "probability": 0.8224 + }, + { + "start": 16678.54, + "end": 16681.26, + "probability": 0.9628 + }, + { + "start": 16681.78, + "end": 16682.86, + "probability": 0.901 + }, + { + "start": 16683.1, + "end": 16683.2, + "probability": 0.3872 + }, + { + "start": 16683.6, + "end": 16688.26, + "probability": 0.9639 + }, + { + "start": 16689.16, + "end": 16691.67, + "probability": 0.9878 + }, + { + "start": 16691.88, + "end": 16695.66, + "probability": 0.9948 + }, + { + "start": 16696.5, + "end": 16699.22, + "probability": 0.861 + }, + { + "start": 16701.32, + "end": 16702.96, + "probability": 0.9968 + }, + { + "start": 16703.2, + "end": 16704.72, + "probability": 0.91 + }, + { + "start": 16705.1, + "end": 16706.73, + "probability": 0.9525 + }, + { + "start": 16707.58, + "end": 16710.04, + "probability": 0.9466 + }, + { + "start": 16710.72, + "end": 16712.0, + "probability": 0.9163 + }, + { + "start": 16713.62, + "end": 16716.04, + "probability": 0.9631 + }, + { + "start": 16716.6, + "end": 16720.46, + "probability": 0.977 + }, + { + "start": 16721.44, + "end": 16723.18, + "probability": 0.8926 + }, + { + "start": 16723.8, + "end": 16725.92, + "probability": 0.9985 + }, + { + "start": 16726.58, + "end": 16727.76, + "probability": 0.999 + }, + { + "start": 16728.02, + "end": 16728.74, + "probability": 0.8061 + }, + { + "start": 16728.82, + "end": 16731.04, + "probability": 0.9435 + }, + { + "start": 16731.6, + "end": 16732.72, + "probability": 0.8723 + }, + { + "start": 16733.36, + "end": 16737.48, + "probability": 0.9179 + }, + { + "start": 16738.3, + "end": 16746.92, + "probability": 0.9659 + }, + { + "start": 16747.02, + "end": 16749.36, + "probability": 0.9907 + }, + { + "start": 16750.08, + "end": 16754.9, + "probability": 0.8883 + }, + { + "start": 16755.06, + "end": 16756.64, + "probability": 0.8495 + }, + { + "start": 16758.04, + "end": 16760.14, + "probability": 0.7288 + }, + { + "start": 16760.82, + "end": 16764.08, + "probability": 0.9503 + }, + { + "start": 16764.08, + "end": 16767.6, + "probability": 0.9956 + }, + { + "start": 16768.18, + "end": 16769.04, + "probability": 0.627 + }, + { + "start": 16769.6, + "end": 16771.84, + "probability": 0.8856 + }, + { + "start": 16772.46, + "end": 16777.41, + "probability": 0.7474 + }, + { + "start": 16779.08, + "end": 16783.22, + "probability": 0.9403 + }, + { + "start": 16783.22, + "end": 16785.84, + "probability": 0.9859 + }, + { + "start": 16788.04, + "end": 16791.88, + "probability": 0.9868 + }, + { + "start": 16792.02, + "end": 16795.14, + "probability": 0.9953 + }, + { + "start": 16795.52, + "end": 16799.28, + "probability": 0.9756 + }, + { + "start": 16800.54, + "end": 16803.84, + "probability": 0.9904 + }, + { + "start": 16804.36, + "end": 16805.26, + "probability": 0.6878 + }, + { + "start": 16805.52, + "end": 16811.26, + "probability": 0.9646 + }, + { + "start": 16811.78, + "end": 16814.62, + "probability": 0.8864 + }, + { + "start": 16815.44, + "end": 16820.92, + "probability": 0.9698 + }, + { + "start": 16821.48, + "end": 16824.0, + "probability": 0.9045 + }, + { + "start": 16824.62, + "end": 16828.4, + "probability": 0.9795 + }, + { + "start": 16829.1, + "end": 16831.9, + "probability": 0.9981 + }, + { + "start": 16832.42, + "end": 16835.4, + "probability": 0.7125 + }, + { + "start": 16836.04, + "end": 16837.02, + "probability": 0.6239 + }, + { + "start": 16837.58, + "end": 16839.04, + "probability": 0.6612 + }, + { + "start": 16839.64, + "end": 16841.12, + "probability": 0.9897 + }, + { + "start": 16841.4, + "end": 16843.76, + "probability": 0.9646 + }, + { + "start": 16844.7, + "end": 16849.74, + "probability": 0.9563 + }, + { + "start": 16850.16, + "end": 16853.52, + "probability": 0.8411 + }, + { + "start": 16854.38, + "end": 16856.26, + "probability": 0.7707 + }, + { + "start": 16856.5, + "end": 16861.08, + "probability": 0.9543 + }, + { + "start": 16861.16, + "end": 16861.72, + "probability": 0.7155 + }, + { + "start": 16861.98, + "end": 16862.82, + "probability": 0.7785 + }, + { + "start": 16863.2, + "end": 16866.04, + "probability": 0.9137 + }, + { + "start": 16866.42, + "end": 16869.18, + "probability": 0.9724 + }, + { + "start": 16869.18, + "end": 16873.3, + "probability": 0.9827 + }, + { + "start": 16873.7, + "end": 16877.28, + "probability": 0.9581 + }, + { + "start": 16877.84, + "end": 16878.95, + "probability": 0.9577 + }, + { + "start": 16879.28, + "end": 16883.56, + "probability": 0.9806 + }, + { + "start": 16883.66, + "end": 16884.1, + "probability": 0.6392 + }, + { + "start": 16884.6, + "end": 16886.53, + "probability": 0.7694 + }, + { + "start": 16886.94, + "end": 16888.7, + "probability": 0.8909 + }, + { + "start": 16889.68, + "end": 16891.48, + "probability": 0.8783 + }, + { + "start": 16892.2, + "end": 16895.04, + "probability": 0.7143 + }, + { + "start": 16895.58, + "end": 16896.8, + "probability": 0.9603 + }, + { + "start": 16898.56, + "end": 16901.98, + "probability": 0.7997 + }, + { + "start": 16902.56, + "end": 16906.62, + "probability": 0.8969 + }, + { + "start": 16907.56, + "end": 16911.54, + "probability": 0.8269 + }, + { + "start": 16911.54, + "end": 16916.38, + "probability": 0.9921 + }, + { + "start": 16916.96, + "end": 16919.3, + "probability": 0.8515 + }, + { + "start": 16919.74, + "end": 16920.08, + "probability": 0.9441 + }, + { + "start": 16920.66, + "end": 16924.44, + "probability": 0.9932 + }, + { + "start": 16924.54, + "end": 16927.1, + "probability": 0.9282 + }, + { + "start": 16927.78, + "end": 16928.46, + "probability": 0.9873 + }, + { + "start": 16929.48, + "end": 16932.22, + "probability": 0.8571 + }, + { + "start": 16932.74, + "end": 16933.52, + "probability": 0.5702 + }, + { + "start": 16933.9, + "end": 16937.62, + "probability": 0.9934 + }, + { + "start": 16938.16, + "end": 16942.5, + "probability": 0.9399 + }, + { + "start": 16943.28, + "end": 16944.8, + "probability": 0.9476 + }, + { + "start": 16945.28, + "end": 16946.32, + "probability": 0.5121 + }, + { + "start": 16946.5, + "end": 16949.1, + "probability": 0.9919 + }, + { + "start": 16949.3, + "end": 16950.34, + "probability": 0.9814 + }, + { + "start": 16950.64, + "end": 16953.36, + "probability": 0.5814 + }, + { + "start": 16954.0, + "end": 16956.24, + "probability": 0.9465 + }, + { + "start": 16956.62, + "end": 16961.28, + "probability": 0.8807 + }, + { + "start": 16962.06, + "end": 16964.38, + "probability": 0.9945 + }, + { + "start": 16964.42, + "end": 16964.94, + "probability": 0.407 + }, + { + "start": 16964.94, + "end": 16971.06, + "probability": 0.9898 + }, + { + "start": 16971.78, + "end": 16973.0, + "probability": 0.8612 + }, + { + "start": 16975.04, + "end": 16975.62, + "probability": 0.221 + }, + { + "start": 16975.62, + "end": 16981.84, + "probability": 0.9679 + }, + { + "start": 16982.64, + "end": 16986.2, + "probability": 0.9985 + }, + { + "start": 16986.2, + "end": 16989.04, + "probability": 0.9992 + }, + { + "start": 16990.86, + "end": 16991.9, + "probability": 0.6702 + }, + { + "start": 16991.98, + "end": 16993.64, + "probability": 0.998 + }, + { + "start": 16993.74, + "end": 16995.54, + "probability": 0.7497 + }, + { + "start": 16995.94, + "end": 16998.48, + "probability": 0.9711 + }, + { + "start": 16998.6, + "end": 17004.94, + "probability": 0.9343 + }, + { + "start": 17006.3, + "end": 17008.06, + "probability": 0.7026 + }, + { + "start": 17008.22, + "end": 17012.36, + "probability": 0.9709 + }, + { + "start": 17012.44, + "end": 17013.74, + "probability": 0.8192 + }, + { + "start": 17014.5, + "end": 17017.14, + "probability": 0.9961 + }, + { + "start": 17017.56, + "end": 17021.24, + "probability": 0.9736 + }, + { + "start": 17021.74, + "end": 17022.12, + "probability": 0.8409 + }, + { + "start": 17023.82, + "end": 17025.56, + "probability": 0.9513 + }, + { + "start": 17026.56, + "end": 17031.12, + "probability": 0.9935 + }, + { + "start": 17032.12, + "end": 17036.62, + "probability": 0.9324 + }, + { + "start": 17036.62, + "end": 17040.19, + "probability": 0.9601 + }, + { + "start": 17040.9, + "end": 17042.82, + "probability": 0.868 + }, + { + "start": 17043.24, + "end": 17043.74, + "probability": 0.7892 + }, + { + "start": 17043.88, + "end": 17044.22, + "probability": 0.8751 + }, + { + "start": 17044.42, + "end": 17045.02, + "probability": 0.7655 + }, + { + "start": 17045.16, + "end": 17045.58, + "probability": 0.7182 + }, + { + "start": 17046.46, + "end": 17048.44, + "probability": 0.9666 + }, + { + "start": 17048.9, + "end": 17052.34, + "probability": 0.9959 + }, + { + "start": 17052.34, + "end": 17056.02, + "probability": 0.9989 + }, + { + "start": 17056.88, + "end": 17059.4, + "probability": 0.9976 + }, + { + "start": 17059.98, + "end": 17063.56, + "probability": 0.9965 + }, + { + "start": 17063.74, + "end": 17065.0, + "probability": 0.8967 + }, + { + "start": 17065.24, + "end": 17068.46, + "probability": 0.9194 + }, + { + "start": 17068.9, + "end": 17070.24, + "probability": 0.7229 + }, + { + "start": 17070.46, + "end": 17071.18, + "probability": 0.9837 + }, + { + "start": 17071.34, + "end": 17077.02, + "probability": 0.978 + }, + { + "start": 17078.22, + "end": 17082.68, + "probability": 0.9961 + }, + { + "start": 17083.3, + "end": 17086.94, + "probability": 0.9134 + }, + { + "start": 17087.06, + "end": 17087.32, + "probability": 0.9411 + }, + { + "start": 17087.38, + "end": 17088.06, + "probability": 0.9224 + }, + { + "start": 17088.14, + "end": 17088.9, + "probability": 0.9813 + }, + { + "start": 17089.74, + "end": 17089.96, + "probability": 0.9317 + }, + { + "start": 17092.82, + "end": 17095.68, + "probability": 0.9927 + }, + { + "start": 17096.04, + "end": 17096.4, + "probability": 0.2859 + }, + { + "start": 17096.52, + "end": 17097.02, + "probability": 0.7522 + }, + { + "start": 17097.5, + "end": 17098.76, + "probability": 0.8744 + }, + { + "start": 17099.92, + "end": 17102.54, + "probability": 0.9959 + }, + { + "start": 17102.68, + "end": 17103.64, + "probability": 0.9628 + }, + { + "start": 17103.7, + "end": 17108.9, + "probability": 0.8648 + }, + { + "start": 17109.66, + "end": 17112.92, + "probability": 0.9594 + }, + { + "start": 17113.62, + "end": 17115.88, + "probability": 0.8826 + }, + { + "start": 17116.72, + "end": 17117.42, + "probability": 0.767 + }, + { + "start": 17118.36, + "end": 17121.7, + "probability": 0.996 + }, + { + "start": 17121.7, + "end": 17124.98, + "probability": 0.999 + }, + { + "start": 17125.44, + "end": 17129.24, + "probability": 0.8216 + }, + { + "start": 17129.34, + "end": 17131.68, + "probability": 0.6986 + }, + { + "start": 17132.08, + "end": 17132.38, + "probability": 0.3941 + }, + { + "start": 17132.38, + "end": 17135.64, + "probability": 0.9893 + }, + { + "start": 17136.66, + "end": 17139.98, + "probability": 0.9835 + }, + { + "start": 17140.1, + "end": 17142.92, + "probability": 0.9829 + }, + { + "start": 17142.92, + "end": 17145.24, + "probability": 0.9996 + }, + { + "start": 17146.7, + "end": 17149.2, + "probability": 0.9263 + }, + { + "start": 17150.1, + "end": 17150.98, + "probability": 0.9877 + }, + { + "start": 17151.72, + "end": 17152.02, + "probability": 0.6747 + }, + { + "start": 17152.04, + "end": 17157.54, + "probability": 0.9817 + }, + { + "start": 17157.54, + "end": 17162.08, + "probability": 0.9671 + }, + { + "start": 17162.76, + "end": 17164.06, + "probability": 0.9327 + }, + { + "start": 17165.58, + "end": 17170.82, + "probability": 0.9941 + }, + { + "start": 17170.82, + "end": 17175.04, + "probability": 0.9976 + }, + { + "start": 17175.6, + "end": 17177.06, + "probability": 0.9858 + }, + { + "start": 17178.06, + "end": 17178.72, + "probability": 0.8652 + }, + { + "start": 17179.42, + "end": 17180.33, + "probability": 0.9818 + }, + { + "start": 17180.62, + "end": 17181.92, + "probability": 0.9263 + }, + { + "start": 17182.76, + "end": 17186.78, + "probability": 0.9505 + }, + { + "start": 17186.84, + "end": 17187.82, + "probability": 0.7137 + }, + { + "start": 17188.16, + "end": 17192.04, + "probability": 0.9536 + }, + { + "start": 17192.94, + "end": 17193.58, + "probability": 0.9695 + }, + { + "start": 17195.46, + "end": 17202.92, + "probability": 0.9935 + }, + { + "start": 17203.1, + "end": 17206.44, + "probability": 0.988 + }, + { + "start": 17206.72, + "end": 17207.9, + "probability": 0.673 + }, + { + "start": 17209.38, + "end": 17209.78, + "probability": 0.8717 + }, + { + "start": 17209.86, + "end": 17213.92, + "probability": 0.9788 + }, + { + "start": 17214.0, + "end": 17216.58, + "probability": 0.8168 + }, + { + "start": 17216.64, + "end": 17221.18, + "probability": 0.9827 + }, + { + "start": 17221.18, + "end": 17221.58, + "probability": 0.4161 + }, + { + "start": 17222.54, + "end": 17226.58, + "probability": 0.9932 + }, + { + "start": 17226.74, + "end": 17227.38, + "probability": 0.7569 + }, + { + "start": 17228.88, + "end": 17231.08, + "probability": 0.9316 + }, + { + "start": 17231.14, + "end": 17231.48, + "probability": 0.8801 + }, + { + "start": 17232.18, + "end": 17234.1, + "probability": 0.543 + }, + { + "start": 17234.32, + "end": 17234.52, + "probability": 0.1426 + }, + { + "start": 17235.02, + "end": 17236.04, + "probability": 0.3211 + }, + { + "start": 17236.1, + "end": 17237.08, + "probability": 0.9888 + }, + { + "start": 17237.16, + "end": 17238.28, + "probability": 0.9392 + }, + { + "start": 17238.3, + "end": 17242.24, + "probability": 0.7641 + }, + { + "start": 17243.08, + "end": 17243.5, + "probability": 0.9437 + }, + { + "start": 17243.68, + "end": 17245.28, + "probability": 0.8625 + }, + { + "start": 17246.3, + "end": 17248.8, + "probability": 0.9765 + }, + { + "start": 17248.84, + "end": 17255.12, + "probability": 0.9736 + }, + { + "start": 17255.72, + "end": 17259.52, + "probability": 0.985 + }, + { + "start": 17260.28, + "end": 17265.68, + "probability": 0.9609 + }, + { + "start": 17266.0, + "end": 17267.4, + "probability": 0.8749 + }, + { + "start": 17267.88, + "end": 17269.56, + "probability": 0.8693 + }, + { + "start": 17269.68, + "end": 17270.84, + "probability": 0.8197 + }, + { + "start": 17270.96, + "end": 17278.12, + "probability": 0.9081 + }, + { + "start": 17278.12, + "end": 17281.68, + "probability": 0.9025 + }, + { + "start": 17282.7, + "end": 17285.98, + "probability": 0.9931 + }, + { + "start": 17286.78, + "end": 17289.43, + "probability": 0.9922 + }, + { + "start": 17290.34, + "end": 17291.78, + "probability": 0.8341 + }, + { + "start": 17291.82, + "end": 17293.5, + "probability": 0.8697 + }, + { + "start": 17293.68, + "end": 17294.52, + "probability": 0.824 + }, + { + "start": 17294.68, + "end": 17296.62, + "probability": 0.8501 + }, + { + "start": 17298.02, + "end": 17298.78, + "probability": 0.908 + }, + { + "start": 17298.88, + "end": 17304.68, + "probability": 0.9653 + }, + { + "start": 17305.22, + "end": 17307.36, + "probability": 0.9895 + }, + { + "start": 17307.36, + "end": 17310.36, + "probability": 0.9951 + }, + { + "start": 17311.48, + "end": 17314.72, + "probability": 0.989 + }, + { + "start": 17315.76, + "end": 17322.38, + "probability": 0.9556 + }, + { + "start": 17322.92, + "end": 17324.46, + "probability": 0.652 + }, + { + "start": 17325.0, + "end": 17325.6, + "probability": 0.6972 + }, + { + "start": 17325.76, + "end": 17327.16, + "probability": 0.9375 + }, + { + "start": 17327.34, + "end": 17331.8, + "probability": 0.9973 + }, + { + "start": 17331.98, + "end": 17337.34, + "probability": 0.9903 + }, + { + "start": 17337.9, + "end": 17339.74, + "probability": 0.9701 + }, + { + "start": 17339.94, + "end": 17340.06, + "probability": 0.709 + }, + { + "start": 17340.28, + "end": 17342.96, + "probability": 0.9755 + }, + { + "start": 17343.5, + "end": 17345.42, + "probability": 0.8553 + }, + { + "start": 17345.48, + "end": 17347.9, + "probability": 0.9826 + }, + { + "start": 17348.0, + "end": 17348.8, + "probability": 0.9802 + }, + { + "start": 17348.88, + "end": 17349.58, + "probability": 0.9077 + }, + { + "start": 17350.0, + "end": 17352.84, + "probability": 0.7419 + }, + { + "start": 17353.38, + "end": 17357.6, + "probability": 0.8503 + }, + { + "start": 17357.76, + "end": 17359.14, + "probability": 0.8123 + }, + { + "start": 17359.24, + "end": 17360.46, + "probability": 0.8633 + }, + { + "start": 17361.42, + "end": 17362.48, + "probability": 0.8183 + }, + { + "start": 17364.42, + "end": 17367.42, + "probability": 0.9877 + }, + { + "start": 17369.3, + "end": 17372.06, + "probability": 0.8955 + }, + { + "start": 17373.56, + "end": 17376.26, + "probability": 0.7068 + }, + { + "start": 17376.68, + "end": 17378.04, + "probability": 0.8619 + }, + { + "start": 17379.76, + "end": 17381.5, + "probability": 0.3023 + }, + { + "start": 17384.04, + "end": 17384.76, + "probability": 0.1811 + }, + { + "start": 17386.9, + "end": 17387.5, + "probability": 0.1339 + }, + { + "start": 17387.82, + "end": 17388.28, + "probability": 0.1747 + }, + { + "start": 17388.86, + "end": 17392.8, + "probability": 0.066 + }, + { + "start": 17402.0, + "end": 17404.12, + "probability": 0.064 + }, + { + "start": 17404.4, + "end": 17404.48, + "probability": 0.0233 + }, + { + "start": 17406.77, + "end": 17408.54, + "probability": 0.0669 + }, + { + "start": 17409.58, + "end": 17410.34, + "probability": 0.0424 + }, + { + "start": 17414.1, + "end": 17414.54, + "probability": 0.0 + }, + { + "start": 17418.3, + "end": 17422.12, + "probability": 0.5395 + }, + { + "start": 17422.88, + "end": 17424.4, + "probability": 0.0309 + }, + { + "start": 17429.33, + "end": 17431.5, + "probability": 0.3123 + }, + { + "start": 17457.58, + "end": 17458.98, + "probability": 0.2724 + }, + { + "start": 17460.28, + "end": 17460.64, + "probability": 0.1627 + }, + { + "start": 17465.4, + "end": 17468.33, + "probability": 0.2984 + }, + { + "start": 17470.06, + "end": 17471.74, + "probability": 0.9896 + }, + { + "start": 17473.06, + "end": 17474.8, + "probability": 0.8124 + }, + { + "start": 17475.9, + "end": 17478.48, + "probability": 0.986 + }, + { + "start": 17479.78, + "end": 17484.18, + "probability": 0.9856 + }, + { + "start": 17485.1, + "end": 17490.14, + "probability": 0.9865 + }, + { + "start": 17491.76, + "end": 17492.44, + "probability": 0.7158 + }, + { + "start": 17494.36, + "end": 17495.68, + "probability": 0.6341 + }, + { + "start": 17496.9, + "end": 17498.32, + "probability": 0.9538 + }, + { + "start": 17499.74, + "end": 17504.7, + "probability": 0.86 + }, + { + "start": 17505.94, + "end": 17507.36, + "probability": 0.999 + }, + { + "start": 17509.88, + "end": 17515.96, + "probability": 0.9971 + }, + { + "start": 17517.9, + "end": 17520.62, + "probability": 0.8824 + }, + { + "start": 17522.52, + "end": 17528.02, + "probability": 0.9661 + }, + { + "start": 17529.82, + "end": 17530.3, + "probability": 0.8578 + }, + { + "start": 17532.16, + "end": 17533.12, + "probability": 0.5859 + }, + { + "start": 17534.52, + "end": 17535.9, + "probability": 0.9899 + }, + { + "start": 17536.9, + "end": 17542.02, + "probability": 0.7436 + }, + { + "start": 17542.94, + "end": 17543.62, + "probability": 0.7832 + }, + { + "start": 17544.2, + "end": 17545.02, + "probability": 0.8527 + }, + { + "start": 17545.74, + "end": 17546.38, + "probability": 0.8489 + }, + { + "start": 17547.12, + "end": 17547.88, + "probability": 0.862 + }, + { + "start": 17548.4, + "end": 17549.24, + "probability": 0.7184 + }, + { + "start": 17550.0, + "end": 17550.7, + "probability": 0.7398 + }, + { + "start": 17552.3, + "end": 17555.26, + "probability": 0.8793 + }, + { + "start": 17557.28, + "end": 17558.92, + "probability": 0.9861 + }, + { + "start": 17559.98, + "end": 17563.84, + "probability": 0.6494 + }, + { + "start": 17565.04, + "end": 17566.82, + "probability": 0.7442 + }, + { + "start": 17567.38, + "end": 17572.02, + "probability": 0.8304 + }, + { + "start": 17573.46, + "end": 17575.0, + "probability": 0.7845 + }, + { + "start": 17576.26, + "end": 17578.44, + "probability": 0.8952 + }, + { + "start": 17579.82, + "end": 17580.48, + "probability": 0.9663 + }, + { + "start": 17581.26, + "end": 17584.04, + "probability": 0.9725 + }, + { + "start": 17585.78, + "end": 17588.44, + "probability": 0.9094 + }, + { + "start": 17589.38, + "end": 17597.34, + "probability": 0.9812 + }, + { + "start": 17599.04, + "end": 17604.04, + "probability": 0.8914 + }, + { + "start": 17604.98, + "end": 17606.6, + "probability": 0.8816 + }, + { + "start": 17608.22, + "end": 17615.62, + "probability": 0.2609 + }, + { + "start": 17616.54, + "end": 17617.12, + "probability": 0.9479 + }, + { + "start": 17618.12, + "end": 17619.06, + "probability": 0.7669 + }, + { + "start": 17619.6, + "end": 17620.02, + "probability": 0.9615 + }, + { + "start": 17621.08, + "end": 17622.04, + "probability": 0.898 + }, + { + "start": 17622.76, + "end": 17625.1, + "probability": 0.5142 + }, + { + "start": 17627.18, + "end": 17631.68, + "probability": 0.8739 + }, + { + "start": 17633.42, + "end": 17635.28, + "probability": 0.9875 + }, + { + "start": 17636.06, + "end": 17638.48, + "probability": 0.8833 + }, + { + "start": 17639.22, + "end": 17644.34, + "probability": 0.8523 + }, + { + "start": 17644.72, + "end": 17645.78, + "probability": 0.6735 + }, + { + "start": 17646.32, + "end": 17648.9, + "probability": 0.8673 + }, + { + "start": 17649.3, + "end": 17650.04, + "probability": 0.8888 + }, + { + "start": 17650.34, + "end": 17651.4, + "probability": 0.8546 + }, + { + "start": 17651.86, + "end": 17653.44, + "probability": 0.9666 + }, + { + "start": 17654.9, + "end": 17657.12, + "probability": 0.6261 + }, + { + "start": 17658.34, + "end": 17667.06, + "probability": 0.9055 + }, + { + "start": 17668.32, + "end": 17669.56, + "probability": 0.937 + }, + { + "start": 17670.58, + "end": 17671.6, + "probability": 0.9973 + }, + { + "start": 17672.76, + "end": 17677.58, + "probability": 0.9702 + }, + { + "start": 17678.64, + "end": 17680.16, + "probability": 0.679 + }, + { + "start": 17681.92, + "end": 17689.22, + "probability": 0.9573 + }, + { + "start": 17690.84, + "end": 17693.36, + "probability": 0.9785 + }, + { + "start": 17695.74, + "end": 17702.26, + "probability": 0.9961 + }, + { + "start": 17703.76, + "end": 17705.42, + "probability": 0.9998 + }, + { + "start": 17707.42, + "end": 17708.1, + "probability": 0.8695 + }, + { + "start": 17709.16, + "end": 17710.12, + "probability": 0.7168 + }, + { + "start": 17711.32, + "end": 17712.64, + "probability": 0.8403 + }, + { + "start": 17714.66, + "end": 17716.2, + "probability": 0.8483 + }, + { + "start": 17717.2, + "end": 17721.21, + "probability": 0.8651 + }, + { + "start": 17721.84, + "end": 17732.06, + "probability": 0.9697 + }, + { + "start": 17732.06, + "end": 17736.1, + "probability": 0.9688 + }, + { + "start": 17736.78, + "end": 17740.32, + "probability": 0.7948 + }, + { + "start": 17741.04, + "end": 17743.72, + "probability": 0.999 + }, + { + "start": 17747.2, + "end": 17747.64, + "probability": 0.5289 + }, + { + "start": 17748.86, + "end": 17751.0, + "probability": 0.765 + }, + { + "start": 17751.06, + "end": 17754.74, + "probability": 0.7817 + }, + { + "start": 17755.42, + "end": 17756.48, + "probability": 0.6976 + }, + { + "start": 17757.3, + "end": 17758.64, + "probability": 0.6804 + }, + { + "start": 17758.66, + "end": 17758.68, + "probability": 0.4658 + }, + { + "start": 17758.82, + "end": 17760.2, + "probability": 0.9229 + }, + { + "start": 17760.78, + "end": 17763.64, + "probability": 0.8763 + }, + { + "start": 17764.32, + "end": 17767.38, + "probability": 0.568 + }, + { + "start": 17768.88, + "end": 17773.04, + "probability": 0.9256 + }, + { + "start": 17773.2, + "end": 17773.9, + "probability": 0.5894 + }, + { + "start": 17773.9, + "end": 17774.14, + "probability": 0.7534 + }, + { + "start": 17774.26, + "end": 17777.96, + "probability": 0.8532 + }, + { + "start": 17778.04, + "end": 17779.36, + "probability": 0.9327 + }, + { + "start": 17779.58, + "end": 17780.12, + "probability": 0.9 + }, + { + "start": 17780.44, + "end": 17785.56, + "probability": 0.981 + }, + { + "start": 17785.72, + "end": 17788.0, + "probability": 0.9914 + }, + { + "start": 17788.58, + "end": 17789.16, + "probability": 0.6648 + }, + { + "start": 17789.34, + "end": 17790.02, + "probability": 0.829 + }, + { + "start": 17790.38, + "end": 17792.68, + "probability": 0.9323 + }, + { + "start": 17793.56, + "end": 17794.02, + "probability": 0.431 + }, + { + "start": 17795.16, + "end": 17796.62, + "probability": 0.9119 + }, + { + "start": 17797.08, + "end": 17798.37, + "probability": 0.5847 + }, + { + "start": 17798.56, + "end": 17801.26, + "probability": 0.9659 + }, + { + "start": 17801.92, + "end": 17804.78, + "probability": 0.918 + }, + { + "start": 17805.08, + "end": 17807.82, + "probability": 0.967 + }, + { + "start": 17808.68, + "end": 17810.92, + "probability": 0.8704 + }, + { + "start": 17811.54, + "end": 17812.72, + "probability": 0.9979 + }, + { + "start": 17813.58, + "end": 17816.42, + "probability": 0.9661 + }, + { + "start": 17817.08, + "end": 17817.64, + "probability": 0.8105 + }, + { + "start": 17818.98, + "end": 17820.52, + "probability": 0.9532 + }, + { + "start": 17820.6, + "end": 17820.9, + "probability": 0.4643 + }, + { + "start": 17821.92, + "end": 17823.08, + "probability": 0.9664 + }, + { + "start": 17823.68, + "end": 17824.42, + "probability": 0.9384 + }, + { + "start": 17825.44, + "end": 17833.18, + "probability": 0.9421 + }, + { + "start": 17834.02, + "end": 17834.5, + "probability": 0.9866 + }, + { + "start": 17835.7, + "end": 17835.96, + "probability": 0.0001 + }, + { + "start": 17838.01, + "end": 17840.76, + "probability": 0.706 + }, + { + "start": 17840.88, + "end": 17842.64, + "probability": 0.6434 + }, + { + "start": 17842.88, + "end": 17843.89, + "probability": 0.2561 + }, + { + "start": 17844.08, + "end": 17845.01, + "probability": 0.4312 + }, + { + "start": 17847.12, + "end": 17852.42, + "probability": 0.6298 + }, + { + "start": 17856.08, + "end": 17858.92, + "probability": 0.3694 + }, + { + "start": 17859.58, + "end": 17859.96, + "probability": 0.3378 + }, + { + "start": 17861.98, + "end": 17863.52, + "probability": 0.8406 + }, + { + "start": 17864.38, + "end": 17865.86, + "probability": 0.775 + }, + { + "start": 17865.86, + "end": 17869.22, + "probability": 0.6371 + }, + { + "start": 17869.32, + "end": 17870.24, + "probability": 0.9331 + }, + { + "start": 17870.78, + "end": 17871.18, + "probability": 0.7295 + }, + { + "start": 17872.62, + "end": 17873.28, + "probability": 0.772 + }, + { + "start": 17874.02, + "end": 17877.09, + "probability": 0.9176 + }, + { + "start": 17878.18, + "end": 17880.86, + "probability": 0.4028 + }, + { + "start": 17883.86, + "end": 17885.88, + "probability": 0.064 + }, + { + "start": 17885.88, + "end": 17886.34, + "probability": 0.8265 + }, + { + "start": 17887.76, + "end": 17890.98, + "probability": 0.9731 + }, + { + "start": 17892.36, + "end": 17898.66, + "probability": 0.9301 + }, + { + "start": 17900.86, + "end": 17905.75, + "probability": 0.8076 + }, + { + "start": 17907.08, + "end": 17907.32, + "probability": 0.6726 + }, + { + "start": 17907.98, + "end": 17908.98, + "probability": 0.5338 + }, + { + "start": 17909.62, + "end": 17910.16, + "probability": 0.495 + }, + { + "start": 17910.86, + "end": 17911.68, + "probability": 0.8944 + }, + { + "start": 17912.28, + "end": 17913.96, + "probability": 0.9335 + }, + { + "start": 17914.62, + "end": 17919.58, + "probability": 0.9729 + }, + { + "start": 17920.06, + "end": 17924.66, + "probability": 0.7472 + }, + { + "start": 17925.06, + "end": 17927.08, + "probability": 0.8027 + }, + { + "start": 17927.74, + "end": 17928.08, + "probability": 0.6767 + }, + { + "start": 17929.02, + "end": 17930.32, + "probability": 0.9614 + }, + { + "start": 17930.96, + "end": 17932.24, + "probability": 0.9859 + }, + { + "start": 17932.6, + "end": 17935.86, + "probability": 0.9131 + }, + { + "start": 17936.3, + "end": 17937.28, + "probability": 0.9659 + }, + { + "start": 17937.9, + "end": 17940.32, + "probability": 0.9476 + }, + { + "start": 17940.74, + "end": 17943.06, + "probability": 0.7954 + }, + { + "start": 17943.26, + "end": 17943.62, + "probability": 0.6601 + }, + { + "start": 17944.16, + "end": 17950.34, + "probability": 0.9258 + }, + { + "start": 17951.72, + "end": 17952.06, + "probability": 0.9794 + }, + { + "start": 17952.6, + "end": 17955.4, + "probability": 0.7104 + }, + { + "start": 17955.94, + "end": 17958.26, + "probability": 0.7352 + }, + { + "start": 17960.24, + "end": 17962.0, + "probability": 0.8157 + }, + { + "start": 17964.1, + "end": 17964.82, + "probability": 0.6593 + }, + { + "start": 17965.86, + "end": 17966.66, + "probability": 0.8751 + }, + { + "start": 17967.68, + "end": 17968.66, + "probability": 0.9468 + }, + { + "start": 17970.06, + "end": 17971.06, + "probability": 0.9503 + }, + { + "start": 17971.78, + "end": 17972.52, + "probability": 0.9728 + }, + { + "start": 17973.6, + "end": 17982.04, + "probability": 0.9818 + }, + { + "start": 17984.2, + "end": 17984.8, + "probability": 0.8826 + }, + { + "start": 17985.26, + "end": 17985.66, + "probability": 0.5393 + }, + { + "start": 17988.0, + "end": 17989.46, + "probability": 0.0987 + }, + { + "start": 17990.98, + "end": 17992.92, + "probability": 0.7012 + }, + { + "start": 17993.54, + "end": 17997.56, + "probability": 0.9802 + }, + { + "start": 17998.16, + "end": 17999.06, + "probability": 0.9962 + }, + { + "start": 17999.66, + "end": 18002.66, + "probability": 0.939 + }, + { + "start": 18003.9, + "end": 18007.2, + "probability": 0.5694 + }, + { + "start": 18007.2, + "end": 18009.15, + "probability": 0.6253 + }, + { + "start": 18009.56, + "end": 18009.98, + "probability": 0.8156 + }, + { + "start": 18011.16, + "end": 18013.2, + "probability": 0.9912 + }, + { + "start": 18013.98, + "end": 18014.68, + "probability": 0.9482 + }, + { + "start": 18014.9, + "end": 18015.08, + "probability": 0.7865 + }, + { + "start": 18015.2, + "end": 18019.66, + "probability": 0.9662 + }, + { + "start": 18019.66, + "end": 18019.8, + "probability": 0.5551 + }, + { + "start": 18021.42, + "end": 18029.22, + "probability": 0.9978 + }, + { + "start": 18029.84, + "end": 18032.26, + "probability": 0.9131 + }, + { + "start": 18033.4, + "end": 18034.1, + "probability": 0.8393 + }, + { + "start": 18035.04, + "end": 18035.88, + "probability": 0.9898 + }, + { + "start": 18036.64, + "end": 18039.04, + "probability": 0.902 + }, + { + "start": 18039.88, + "end": 18041.24, + "probability": 0.5833 + }, + { + "start": 18042.26, + "end": 18049.66, + "probability": 0.9867 + }, + { + "start": 18050.38, + "end": 18053.34, + "probability": 0.995 + }, + { + "start": 18054.44, + "end": 18056.22, + "probability": 0.9926 + }, + { + "start": 18056.94, + "end": 18058.72, + "probability": 0.7961 + }, + { + "start": 18059.66, + "end": 18062.62, + "probability": 0.9958 + }, + { + "start": 18063.4, + "end": 18065.36, + "probability": 0.5315 + }, + { + "start": 18065.9, + "end": 18066.5, + "probability": 0.9556 + }, + { + "start": 18067.64, + "end": 18070.64, + "probability": 0.5889 + }, + { + "start": 18071.92, + "end": 18074.72, + "probability": 0.8882 + }, + { + "start": 18076.0, + "end": 18077.96, + "probability": 0.8599 + }, + { + "start": 18078.92, + "end": 18083.1, + "probability": 0.614 + }, + { + "start": 18083.84, + "end": 18084.18, + "probability": 0.0923 + }, + { + "start": 18084.7, + "end": 18090.32, + "probability": 0.7108 + }, + { + "start": 18091.62, + "end": 18092.92, + "probability": 0.9606 + }, + { + "start": 18093.76, + "end": 18095.74, + "probability": 0.8638 + }, + { + "start": 18097.5, + "end": 18097.7, + "probability": 0.1407 + }, + { + "start": 18097.7, + "end": 18099.5, + "probability": 0.8917 + }, + { + "start": 18099.6, + "end": 18099.94, + "probability": 0.5016 + }, + { + "start": 18100.02, + "end": 18100.38, + "probability": 0.9059 + }, + { + "start": 18100.76, + "end": 18102.48, + "probability": 0.8233 + }, + { + "start": 18102.48, + "end": 18103.7, + "probability": 0.5983 + }, + { + "start": 18103.72, + "end": 18104.6, + "probability": 0.7064 + }, + { + "start": 18104.6, + "end": 18104.98, + "probability": 0.4492 + }, + { + "start": 18105.0, + "end": 18105.56, + "probability": 0.9031 + }, + { + "start": 18105.66, + "end": 18106.0, + "probability": 0.2277 + }, + { + "start": 18106.08, + "end": 18107.24, + "probability": 0.9587 + }, + { + "start": 18107.4, + "end": 18107.4, + "probability": 0.9497 + }, + { + "start": 18107.98, + "end": 18111.48, + "probability": 0.9573 + }, + { + "start": 18112.64, + "end": 18116.2, + "probability": 0.9892 + }, + { + "start": 18118.12, + "end": 18121.9, + "probability": 0.9118 + }, + { + "start": 18122.44, + "end": 18125.6, + "probability": 0.9713 + }, + { + "start": 18127.04, + "end": 18127.4, + "probability": 0.4175 + }, + { + "start": 18128.78, + "end": 18129.48, + "probability": 0.8038 + }, + { + "start": 18130.9, + "end": 18131.86, + "probability": 0.965 + }, + { + "start": 18133.04, + "end": 18134.0, + "probability": 0.6902 + }, + { + "start": 18135.32, + "end": 18137.46, + "probability": 0.7128 + }, + { + "start": 18138.36, + "end": 18140.68, + "probability": 0.9696 + }, + { + "start": 18141.54, + "end": 18143.72, + "probability": 0.8311 + }, + { + "start": 18146.08, + "end": 18146.88, + "probability": 0.9597 + }, + { + "start": 18148.14, + "end": 18150.04, + "probability": 0.9904 + }, + { + "start": 18152.38, + "end": 18154.0, + "probability": 0.938 + }, + { + "start": 18154.8, + "end": 18155.32, + "probability": 0.9398 + }, + { + "start": 18156.14, + "end": 18160.02, + "probability": 0.981 + }, + { + "start": 18160.64, + "end": 18160.74, + "probability": 0.708 + }, + { + "start": 18161.98, + "end": 18163.06, + "probability": 0.7601 + }, + { + "start": 18163.58, + "end": 18166.72, + "probability": 0.995 + }, + { + "start": 18168.32, + "end": 18173.22, + "probability": 0.9928 + }, + { + "start": 18174.16, + "end": 18175.46, + "probability": 0.75 + }, + { + "start": 18177.12, + "end": 18178.1, + "probability": 0.8316 + }, + { + "start": 18179.52, + "end": 18182.46, + "probability": 0.8617 + }, + { + "start": 18183.16, + "end": 18186.34, + "probability": 0.7444 + }, + { + "start": 18187.18, + "end": 18187.92, + "probability": 0.8207 + }, + { + "start": 18189.06, + "end": 18191.22, + "probability": 0.6206 + }, + { + "start": 18191.22, + "end": 18191.62, + "probability": 0.6479 + }, + { + "start": 18191.74, + "end": 18194.42, + "probability": 0.9028 + }, + { + "start": 18195.12, + "end": 18200.46, + "probability": 0.9766 + }, + { + "start": 18200.54, + "end": 18201.66, + "probability": 0.9263 + }, + { + "start": 18202.34, + "end": 18204.38, + "probability": 0.9907 + }, + { + "start": 18205.06, + "end": 18207.36, + "probability": 0.9655 + }, + { + "start": 18208.12, + "end": 18208.68, + "probability": 0.8816 + }, + { + "start": 18209.26, + "end": 18211.02, + "probability": 0.6183 + }, + { + "start": 18211.77, + "end": 18216.56, + "probability": 0.7593 + }, + { + "start": 18216.56, + "end": 18217.67, + "probability": 0.9944 + }, + { + "start": 18218.5, + "end": 18219.5, + "probability": 0.8016 + }, + { + "start": 18219.5, + "end": 18220.34, + "probability": 0.5941 + }, + { + "start": 18220.36, + "end": 18220.66, + "probability": 0.5049 + }, + { + "start": 18220.72, + "end": 18221.42, + "probability": 0.0808 + }, + { + "start": 18221.9, + "end": 18225.52, + "probability": 0.9642 + }, + { + "start": 18226.06, + "end": 18227.58, + "probability": 0.9586 + }, + { + "start": 18228.46, + "end": 18229.82, + "probability": 0.7368 + }, + { + "start": 18230.78, + "end": 18231.12, + "probability": 0.9661 + }, + { + "start": 18231.9, + "end": 18235.2, + "probability": 0.991 + }, + { + "start": 18235.96, + "end": 18239.2, + "probability": 0.9949 + }, + { + "start": 18239.84, + "end": 18240.37, + "probability": 0.9474 + }, + { + "start": 18241.86, + "end": 18246.06, + "probability": 0.9883 + }, + { + "start": 18247.2, + "end": 18248.04, + "probability": 0.9499 + }, + { + "start": 18248.58, + "end": 18250.6, + "probability": 0.9377 + }, + { + "start": 18251.76, + "end": 18253.72, + "probability": 0.9707 + }, + { + "start": 18255.08, + "end": 18255.5, + "probability": 0.5382 + }, + { + "start": 18256.3, + "end": 18258.36, + "probability": 0.9909 + }, + { + "start": 18259.34, + "end": 18260.1, + "probability": 0.9251 + }, + { + "start": 18261.06, + "end": 18262.02, + "probability": 0.9861 + }, + { + "start": 18263.88, + "end": 18264.68, + "probability": 0.2965 + }, + { + "start": 18266.4, + "end": 18266.94, + "probability": 0.8719 + }, + { + "start": 18268.66, + "end": 18269.82, + "probability": 0.959 + }, + { + "start": 18270.66, + "end": 18271.9, + "probability": 0.5659 + }, + { + "start": 18273.96, + "end": 18275.64, + "probability": 0.663 + }, + { + "start": 18276.42, + "end": 18278.9, + "probability": 0.9933 + }, + { + "start": 18279.96, + "end": 18281.02, + "probability": 0.7798 + }, + { + "start": 18282.46, + "end": 18282.96, + "probability": 0.6362 + }, + { + "start": 18284.06, + "end": 18285.66, + "probability": 0.9346 + }, + { + "start": 18286.38, + "end": 18288.24, + "probability": 0.2396 + }, + { + "start": 18289.46, + "end": 18290.02, + "probability": 0.4143 + }, + { + "start": 18290.58, + "end": 18291.6, + "probability": 0.6853 + }, + { + "start": 18292.42, + "end": 18294.64, + "probability": 0.9286 + }, + { + "start": 18296.38, + "end": 18298.03, + "probability": 0.9683 + }, + { + "start": 18298.8, + "end": 18301.2, + "probability": 0.6875 + }, + { + "start": 18302.66, + "end": 18304.24, + "probability": 0.6845 + }, + { + "start": 18305.56, + "end": 18306.64, + "probability": 0.9562 + }, + { + "start": 18307.78, + "end": 18311.06, + "probability": 0.6996 + }, + { + "start": 18312.74, + "end": 18315.42, + "probability": 0.9111 + }, + { + "start": 18322.18, + "end": 18324.32, + "probability": 0.7859 + }, + { + "start": 18324.9, + "end": 18325.76, + "probability": 0.7395 + }, + { + "start": 18326.58, + "end": 18327.66, + "probability": 0.9141 + }, + { + "start": 18328.26, + "end": 18330.4, + "probability": 0.8313 + }, + { + "start": 18331.08, + "end": 18333.68, + "probability": 0.9893 + }, + { + "start": 18335.86, + "end": 18336.52, + "probability": 0.5337 + }, + { + "start": 18336.68, + "end": 18337.02, + "probability": 0.0994 + }, + { + "start": 18337.14, + "end": 18341.16, + "probability": 0.9439 + }, + { + "start": 18341.9, + "end": 18342.58, + "probability": 0.7298 + }, + { + "start": 18343.84, + "end": 18345.68, + "probability": 0.7914 + }, + { + "start": 18346.38, + "end": 18347.38, + "probability": 0.8538 + }, + { + "start": 18349.24, + "end": 18351.31, + "probability": 0.9601 + }, + { + "start": 18353.16, + "end": 18353.98, + "probability": 0.7673 + }, + { + "start": 18355.72, + "end": 18360.2, + "probability": 0.996 + }, + { + "start": 18361.02, + "end": 18362.52, + "probability": 0.6143 + }, + { + "start": 18365.02, + "end": 18366.54, + "probability": 0.9733 + }, + { + "start": 18367.96, + "end": 18369.48, + "probability": 0.9858 + }, + { + "start": 18371.82, + "end": 18377.93, + "probability": 0.7549 + }, + { + "start": 18388.34, + "end": 18388.74, + "probability": 0.1671 + }, + { + "start": 18389.58, + "end": 18390.9, + "probability": 0.3158 + }, + { + "start": 18390.9, + "end": 18392.96, + "probability": 0.6209 + }, + { + "start": 18394.16, + "end": 18395.4, + "probability": 0.3495 + }, + { + "start": 18395.7, + "end": 18396.54, + "probability": 0.8929 + }, + { + "start": 18396.9, + "end": 18396.94, + "probability": 0.7462 + }, + { + "start": 18396.94, + "end": 18397.76, + "probability": 0.6351 + }, + { + "start": 18398.12, + "end": 18398.82, + "probability": 0.7436 + }, + { + "start": 18398.82, + "end": 18401.56, + "probability": 0.656 + }, + { + "start": 18402.1, + "end": 18406.42, + "probability": 0.9805 + }, + { + "start": 18406.9, + "end": 18407.68, + "probability": 0.3024 + }, + { + "start": 18408.12, + "end": 18411.08, + "probability": 0.6808 + }, + { + "start": 18411.74, + "end": 18413.82, + "probability": 0.7803 + }, + { + "start": 18414.7, + "end": 18416.62, + "probability": 0.9771 + }, + { + "start": 18416.68, + "end": 18422.01, + "probability": 0.9762 + }, + { + "start": 18423.32, + "end": 18425.64, + "probability": 0.8393 + }, + { + "start": 18426.36, + "end": 18428.8, + "probability": 0.668 + }, + { + "start": 18429.12, + "end": 18429.84, + "probability": 0.899 + }, + { + "start": 18430.22, + "end": 18430.98, + "probability": 0.9687 + }, + { + "start": 18431.42, + "end": 18434.38, + "probability": 0.9568 + }, + { + "start": 18435.0, + "end": 18436.02, + "probability": 0.777 + }, + { + "start": 18436.96, + "end": 18439.88, + "probability": 0.9731 + }, + { + "start": 18440.4, + "end": 18442.14, + "probability": 0.6684 + }, + { + "start": 18442.78, + "end": 18443.98, + "probability": 0.6432 + }, + { + "start": 18444.52, + "end": 18445.72, + "probability": 0.781 + }, + { + "start": 18446.26, + "end": 18446.8, + "probability": 0.8579 + }, + { + "start": 18447.56, + "end": 18451.32, + "probability": 0.7463 + }, + { + "start": 18451.93, + "end": 18453.3, + "probability": 0.3769 + }, + { + "start": 18454.38, + "end": 18454.82, + "probability": 0.9219 + }, + { + "start": 18455.8, + "end": 18456.71, + "probability": 0.9568 + }, + { + "start": 18457.36, + "end": 18458.96, + "probability": 0.8904 + }, + { + "start": 18459.5, + "end": 18462.76, + "probability": 0.8222 + }, + { + "start": 18463.28, + "end": 18465.26, + "probability": 0.9803 + }, + { + "start": 18465.8, + "end": 18467.16, + "probability": 0.9407 + }, + { + "start": 18468.06, + "end": 18468.66, + "probability": 0.9722 + }, + { + "start": 18469.5, + "end": 18472.82, + "probability": 0.7487 + }, + { + "start": 18474.36, + "end": 18476.64, + "probability": 0.716 + }, + { + "start": 18477.52, + "end": 18480.86, + "probability": 0.9812 + }, + { + "start": 18482.08, + "end": 18483.06, + "probability": 0.7641 + }, + { + "start": 18483.9, + "end": 18484.78, + "probability": 0.7675 + }, + { + "start": 18485.86, + "end": 18486.98, + "probability": 0.7647 + }, + { + "start": 18487.6, + "end": 18488.67, + "probability": 0.8477 + }, + { + "start": 18489.36, + "end": 18490.4, + "probability": 0.9655 + }, + { + "start": 18490.88, + "end": 18491.84, + "probability": 0.9679 + }, + { + "start": 18492.34, + "end": 18493.66, + "probability": 0.8763 + }, + { + "start": 18494.4, + "end": 18495.68, + "probability": 0.5577 + }, + { + "start": 18497.82, + "end": 18499.58, + "probability": 0.9183 + }, + { + "start": 18500.62, + "end": 18501.34, + "probability": 0.8349 + }, + { + "start": 18502.7, + "end": 18506.28, + "probability": 0.7109 + }, + { + "start": 18507.4, + "end": 18508.06, + "probability": 0.9357 + }, + { + "start": 18508.76, + "end": 18510.42, + "probability": 0.7976 + }, + { + "start": 18511.58, + "end": 18512.56, + "probability": 0.9259 + }, + { + "start": 18513.58, + "end": 18515.5, + "probability": 0.8945 + }, + { + "start": 18516.34, + "end": 18517.72, + "probability": 0.7061 + }, + { + "start": 18519.34, + "end": 18520.28, + "probability": 0.8922 + }, + { + "start": 18521.8, + "end": 18523.54, + "probability": 0.6053 + }, + { + "start": 18524.66, + "end": 18527.9, + "probability": 0.625 + }, + { + "start": 18528.04, + "end": 18530.04, + "probability": 0.9412 + }, + { + "start": 18531.1, + "end": 18532.3, + "probability": 0.916 + }, + { + "start": 18533.04, + "end": 18534.08, + "probability": 0.6617 + }, + { + "start": 18535.64, + "end": 18536.48, + "probability": 0.9341 + }, + { + "start": 18537.62, + "end": 18539.2, + "probability": 0.9629 + }, + { + "start": 18540.0, + "end": 18542.54, + "probability": 0.7806 + }, + { + "start": 18543.06, + "end": 18543.86, + "probability": 0.5334 + }, + { + "start": 18545.06, + "end": 18548.06, + "probability": 0.6671 + }, + { + "start": 18548.9, + "end": 18549.68, + "probability": 0.7394 + }, + { + "start": 18550.47, + "end": 18551.68, + "probability": 0.8574 + }, + { + "start": 18553.64, + "end": 18555.42, + "probability": 0.552 + }, + { + "start": 18556.28, + "end": 18557.02, + "probability": 0.6674 + }, + { + "start": 18558.24, + "end": 18561.62, + "probability": 0.9834 + }, + { + "start": 18563.58, + "end": 18564.96, + "probability": 0.9091 + }, + { + "start": 18565.64, + "end": 18573.72, + "probability": 0.9283 + }, + { + "start": 18575.27, + "end": 18577.96, + "probability": 0.9729 + }, + { + "start": 18578.64, + "end": 18579.72, + "probability": 0.7644 + }, + { + "start": 18581.96, + "end": 18584.14, + "probability": 0.9631 + }, + { + "start": 18584.94, + "end": 18585.68, + "probability": 0.9102 + }, + { + "start": 18586.96, + "end": 18588.98, + "probability": 0.9958 + }, + { + "start": 18590.04, + "end": 18591.36, + "probability": 0.8061 + }, + { + "start": 18592.36, + "end": 18592.7, + "probability": 0.8979 + }, + { + "start": 18594.64, + "end": 18595.68, + "probability": 0.7027 + }, + { + "start": 18596.58, + "end": 18597.76, + "probability": 0.8252 + }, + { + "start": 18598.52, + "end": 18601.66, + "probability": 0.7256 + }, + { + "start": 18602.86, + "end": 18606.92, + "probability": 0.9779 + }, + { + "start": 18608.5, + "end": 18609.9, + "probability": 0.6911 + }, + { + "start": 18610.72, + "end": 18618.62, + "probability": 0.9715 + }, + { + "start": 18619.68, + "end": 18620.96, + "probability": 0.9962 + }, + { + "start": 18621.6, + "end": 18627.02, + "probability": 0.9604 + }, + { + "start": 18628.2, + "end": 18630.2, + "probability": 0.6159 + }, + { + "start": 18631.0, + "end": 18632.84, + "probability": 0.9862 + }, + { + "start": 18634.18, + "end": 18639.1, + "probability": 0.3889 + }, + { + "start": 18639.34, + "end": 18643.14, + "probability": 0.8778 + }, + { + "start": 18643.92, + "end": 18647.96, + "probability": 0.9875 + }, + { + "start": 18648.9, + "end": 18649.52, + "probability": 0.8088 + }, + { + "start": 18650.04, + "end": 18652.68, + "probability": 0.9449 + }, + { + "start": 18653.48, + "end": 18654.56, + "probability": 0.7357 + }, + { + "start": 18656.52, + "end": 18656.84, + "probability": 0.6571 + }, + { + "start": 18668.32, + "end": 18668.48, + "probability": 0.1708 + }, + { + "start": 18668.48, + "end": 18668.5, + "probability": 0.1159 + }, + { + "start": 18668.5, + "end": 18668.5, + "probability": 0.0162 + }, + { + "start": 18668.5, + "end": 18668.52, + "probability": 0.0693 + }, + { + "start": 18695.62, + "end": 18697.38, + "probability": 0.5604 + }, + { + "start": 18698.04, + "end": 18698.88, + "probability": 0.9893 + }, + { + "start": 18700.26, + "end": 18702.84, + "probability": 0.9765 + }, + { + "start": 18705.42, + "end": 18708.54, + "probability": 0.894 + }, + { + "start": 18710.26, + "end": 18711.72, + "probability": 0.8052 + }, + { + "start": 18712.28, + "end": 18713.76, + "probability": 0.7714 + }, + { + "start": 18714.84, + "end": 18716.72, + "probability": 0.902 + }, + { + "start": 18717.86, + "end": 18720.56, + "probability": 0.8585 + }, + { + "start": 18721.82, + "end": 18724.88, + "probability": 0.994 + }, + { + "start": 18726.04, + "end": 18729.56, + "probability": 0.9165 + }, + { + "start": 18731.66, + "end": 18733.36, + "probability": 0.8394 + }, + { + "start": 18734.82, + "end": 18736.86, + "probability": 0.9514 + }, + { + "start": 18738.96, + "end": 18742.44, + "probability": 0.8638 + }, + { + "start": 18744.94, + "end": 18747.04, + "probability": 0.8506 + }, + { + "start": 18748.74, + "end": 18750.7, + "probability": 0.8673 + }, + { + "start": 18753.58, + "end": 18754.98, + "probability": 0.9689 + }, + { + "start": 18755.52, + "end": 18757.96, + "probability": 0.9815 + }, + { + "start": 18758.8, + "end": 18761.46, + "probability": 0.9841 + }, + { + "start": 18762.18, + "end": 18762.96, + "probability": 0.8818 + }, + { + "start": 18764.32, + "end": 18767.16, + "probability": 0.9959 + }, + { + "start": 18768.14, + "end": 18769.82, + "probability": 0.9618 + }, + { + "start": 18771.12, + "end": 18775.76, + "probability": 0.9855 + }, + { + "start": 18776.8, + "end": 18779.8, + "probability": 0.9935 + }, + { + "start": 18780.96, + "end": 18783.02, + "probability": 0.9896 + }, + { + "start": 18783.12, + "end": 18785.5, + "probability": 0.8669 + }, + { + "start": 18786.96, + "end": 18788.06, + "probability": 0.6244 + }, + { + "start": 18789.06, + "end": 18793.18, + "probability": 0.9799 + }, + { + "start": 18794.22, + "end": 18795.88, + "probability": 0.9039 + }, + { + "start": 18797.14, + "end": 18798.98, + "probability": 0.7279 + }, + { + "start": 18799.98, + "end": 18800.92, + "probability": 0.8704 + }, + { + "start": 18803.3, + "end": 18805.12, + "probability": 0.7854 + }, + { + "start": 18806.5, + "end": 18809.16, + "probability": 0.9927 + }, + { + "start": 18809.96, + "end": 18812.22, + "probability": 0.9973 + }, + { + "start": 18813.38, + "end": 18813.9, + "probability": 0.4615 + }, + { + "start": 18813.96, + "end": 18816.08, + "probability": 0.9906 + }, + { + "start": 18816.64, + "end": 18817.6, + "probability": 0.8451 + }, + { + "start": 18818.24, + "end": 18820.74, + "probability": 0.974 + }, + { + "start": 18822.6, + "end": 18824.48, + "probability": 0.6119 + }, + { + "start": 18825.8, + "end": 18830.0, + "probability": 0.9945 + }, + { + "start": 18830.0, + "end": 18834.58, + "probability": 0.9596 + }, + { + "start": 18835.18, + "end": 18840.02, + "probability": 0.7625 + }, + { + "start": 18840.92, + "end": 18844.06, + "probability": 0.8323 + }, + { + "start": 18845.36, + "end": 18849.16, + "probability": 0.9781 + }, + { + "start": 18849.16, + "end": 18851.54, + "probability": 0.9238 + }, + { + "start": 18852.44, + "end": 18854.96, + "probability": 0.9459 + }, + { + "start": 18855.76, + "end": 18857.4, + "probability": 0.732 + }, + { + "start": 18857.7, + "end": 18860.38, + "probability": 0.9299 + }, + { + "start": 18861.06, + "end": 18864.24, + "probability": 0.9821 + }, + { + "start": 18864.96, + "end": 18866.48, + "probability": 0.95 + }, + { + "start": 18867.58, + "end": 18870.46, + "probability": 0.9789 + }, + { + "start": 18871.62, + "end": 18873.96, + "probability": 0.7012 + }, + { + "start": 18874.64, + "end": 18876.58, + "probability": 0.3145 + }, + { + "start": 18877.28, + "end": 18880.86, + "probability": 0.9206 + }, + { + "start": 18881.68, + "end": 18883.77, + "probability": 0.9719 + }, + { + "start": 18884.38, + "end": 18885.8, + "probability": 0.9738 + }, + { + "start": 18888.02, + "end": 18889.64, + "probability": 0.7428 + }, + { + "start": 18890.62, + "end": 18894.5, + "probability": 0.9976 + }, + { + "start": 18895.08, + "end": 18896.94, + "probability": 0.9945 + }, + { + "start": 18897.8, + "end": 18899.98, + "probability": 0.9271 + }, + { + "start": 18900.96, + "end": 18903.62, + "probability": 0.9985 + }, + { + "start": 18905.6, + "end": 18906.9, + "probability": 0.7705 + }, + { + "start": 18907.24, + "end": 18911.72, + "probability": 0.984 + }, + { + "start": 18912.9, + "end": 18913.96, + "probability": 0.9932 + }, + { + "start": 18914.88, + "end": 18916.78, + "probability": 0.51 + }, + { + "start": 18917.84, + "end": 18922.27, + "probability": 0.994 + }, + { + "start": 18923.12, + "end": 18924.52, + "probability": 0.8058 + }, + { + "start": 18925.08, + "end": 18927.3, + "probability": 0.9112 + }, + { + "start": 18927.82, + "end": 18928.74, + "probability": 0.6748 + }, + { + "start": 18929.78, + "end": 18933.86, + "probability": 0.99 + }, + { + "start": 18934.58, + "end": 18936.98, + "probability": 0.8045 + }, + { + "start": 18937.7, + "end": 18939.48, + "probability": 0.7409 + }, + { + "start": 18939.9, + "end": 18940.28, + "probability": 0.7571 + }, + { + "start": 18942.16, + "end": 18944.59, + "probability": 0.9199 + }, + { + "start": 18946.24, + "end": 18948.04, + "probability": 0.7748 + }, + { + "start": 18951.52, + "end": 18953.2, + "probability": 0.7017 + }, + { + "start": 18955.06, + "end": 18956.46, + "probability": 0.7001 + }, + { + "start": 18958.9, + "end": 18961.36, + "probability": 0.954 + }, + { + "start": 18962.48, + "end": 18963.94, + "probability": 0.2983 + }, + { + "start": 18974.68, + "end": 18976.3, + "probability": 0.6698 + }, + { + "start": 18977.02, + "end": 18977.12, + "probability": 0.0265 + }, + { + "start": 18977.3, + "end": 18979.84, + "probability": 0.9852 + }, + { + "start": 18980.16, + "end": 18982.22, + "probability": 0.9814 + }, + { + "start": 18983.44, + "end": 18988.65, + "probability": 0.9615 + }, + { + "start": 18989.34, + "end": 18995.94, + "probability": 0.9428 + }, + { + "start": 18997.36, + "end": 19001.02, + "probability": 0.9691 + }, + { + "start": 19002.06, + "end": 19003.06, + "probability": 0.8211 + }, + { + "start": 19003.88, + "end": 19005.12, + "probability": 0.999 + }, + { + "start": 19006.64, + "end": 19008.92, + "probability": 0.97 + }, + { + "start": 19009.34, + "end": 19010.54, + "probability": 0.9307 + }, + { + "start": 19010.68, + "end": 19012.98, + "probability": 0.9931 + }, + { + "start": 19013.74, + "end": 19015.22, + "probability": 0.9059 + }, + { + "start": 19015.96, + "end": 19017.26, + "probability": 0.9666 + }, + { + "start": 19018.42, + "end": 19018.96, + "probability": 0.7272 + }, + { + "start": 19019.22, + "end": 19022.14, + "probability": 0.6695 + }, + { + "start": 19022.42, + "end": 19024.36, + "probability": 0.9286 + }, + { + "start": 19024.44, + "end": 19025.1, + "probability": 0.7026 + }, + { + "start": 19025.46, + "end": 19025.74, + "probability": 0.8169 + }, + { + "start": 19028.94, + "end": 19032.18, + "probability": 0.6659 + }, + { + "start": 19034.78, + "end": 19038.9, + "probability": 0.855 + }, + { + "start": 19040.98, + "end": 19041.95, + "probability": 0.9976 + }, + { + "start": 19043.22, + "end": 19044.16, + "probability": 0.9887 + }, + { + "start": 19045.08, + "end": 19047.14, + "probability": 0.9416 + }, + { + "start": 19049.5, + "end": 19054.32, + "probability": 0.99 + }, + { + "start": 19055.12, + "end": 19056.68, + "probability": 0.9186 + }, + { + "start": 19057.86, + "end": 19060.4, + "probability": 0.8559 + }, + { + "start": 19061.22, + "end": 19061.72, + "probability": 0.7271 + }, + { + "start": 19064.2, + "end": 19071.1, + "probability": 0.9992 + }, + { + "start": 19072.12, + "end": 19077.02, + "probability": 0.9893 + }, + { + "start": 19077.66, + "end": 19082.06, + "probability": 0.9902 + }, + { + "start": 19082.8, + "end": 19087.5, + "probability": 0.9581 + }, + { + "start": 19088.26, + "end": 19088.6, + "probability": 0.6365 + }, + { + "start": 19089.86, + "end": 19090.74, + "probability": 0.5645 + }, + { + "start": 19091.42, + "end": 19095.0, + "probability": 0.9952 + }, + { + "start": 19095.88, + "end": 19103.78, + "probability": 0.9697 + }, + { + "start": 19104.42, + "end": 19107.96, + "probability": 0.9959 + }, + { + "start": 19108.76, + "end": 19113.1, + "probability": 0.8169 + }, + { + "start": 19115.1, + "end": 19117.46, + "probability": 0.6067 + }, + { + "start": 19118.14, + "end": 19121.58, + "probability": 0.9421 + }, + { + "start": 19122.74, + "end": 19127.54, + "probability": 0.9642 + }, + { + "start": 19129.72, + "end": 19132.34, + "probability": 0.9918 + }, + { + "start": 19134.18, + "end": 19137.6, + "probability": 0.9626 + }, + { + "start": 19138.42, + "end": 19141.34, + "probability": 0.9873 + }, + { + "start": 19141.94, + "end": 19142.08, + "probability": 0.5332 + }, + { + "start": 19142.72, + "end": 19145.66, + "probability": 0.9707 + }, + { + "start": 19146.34, + "end": 19149.46, + "probability": 0.933 + }, + { + "start": 19150.3, + "end": 19152.44, + "probability": 0.9612 + }, + { + "start": 19153.06, + "end": 19154.12, + "probability": 0.9748 + }, + { + "start": 19155.28, + "end": 19155.92, + "probability": 0.7108 + }, + { + "start": 19156.74, + "end": 19159.84, + "probability": 0.9857 + }, + { + "start": 19160.36, + "end": 19161.52, + "probability": 0.8701 + }, + { + "start": 19162.74, + "end": 19163.74, + "probability": 0.9118 + }, + { + "start": 19164.38, + "end": 19166.12, + "probability": 0.9933 + }, + { + "start": 19167.82, + "end": 19170.16, + "probability": 0.874 + }, + { + "start": 19170.74, + "end": 19177.34, + "probability": 0.9487 + }, + { + "start": 19177.34, + "end": 19182.14, + "probability": 0.9173 + }, + { + "start": 19184.16, + "end": 19184.72, + "probability": 0.8189 + }, + { + "start": 19185.14, + "end": 19186.34, + "probability": 0.9048 + }, + { + "start": 19187.1, + "end": 19193.3, + "probability": 0.7374 + }, + { + "start": 19195.44, + "end": 19197.92, + "probability": 0.897 + }, + { + "start": 19197.96, + "end": 19198.88, + "probability": 0.7483 + }, + { + "start": 19200.68, + "end": 19204.54, + "probability": 0.9737 + }, + { + "start": 19206.08, + "end": 19206.6, + "probability": 0.6416 + }, + { + "start": 19207.72, + "end": 19209.5, + "probability": 0.9861 + }, + { + "start": 19210.44, + "end": 19211.78, + "probability": 0.8341 + }, + { + "start": 19212.58, + "end": 19215.28, + "probability": 0.7201 + }, + { + "start": 19215.78, + "end": 19216.52, + "probability": 0.4868 + }, + { + "start": 19216.94, + "end": 19218.16, + "probability": 0.7329 + }, + { + "start": 19218.82, + "end": 19221.18, + "probability": 0.9661 + }, + { + "start": 19221.96, + "end": 19225.46, + "probability": 0.9944 + }, + { + "start": 19226.7, + "end": 19228.0, + "probability": 0.9988 + }, + { + "start": 19228.86, + "end": 19229.44, + "probability": 0.8805 + }, + { + "start": 19230.62, + "end": 19231.86, + "probability": 0.8668 + }, + { + "start": 19232.6, + "end": 19238.34, + "probability": 0.9735 + }, + { + "start": 19239.8, + "end": 19240.74, + "probability": 0.7524 + }, + { + "start": 19241.3, + "end": 19242.62, + "probability": 0.8893 + }, + { + "start": 19243.62, + "end": 19246.7, + "probability": 0.8191 + }, + { + "start": 19248.18, + "end": 19256.8, + "probability": 0.9592 + }, + { + "start": 19256.92, + "end": 19259.0, + "probability": 0.955 + }, + { + "start": 19261.62, + "end": 19263.54, + "probability": 0.516 + }, + { + "start": 19264.14, + "end": 19267.8, + "probability": 0.9085 + }, + { + "start": 19268.96, + "end": 19269.48, + "probability": 0.7499 + }, + { + "start": 19270.12, + "end": 19271.78, + "probability": 0.7515 + }, + { + "start": 19272.68, + "end": 19276.0, + "probability": 0.6768 + }, + { + "start": 19276.14, + "end": 19277.12, + "probability": 0.8894 + }, + { + "start": 19277.36, + "end": 19278.22, + "probability": 0.8589 + }, + { + "start": 19279.08, + "end": 19279.54, + "probability": 0.6696 + }, + { + "start": 19280.14, + "end": 19283.78, + "probability": 0.6375 + }, + { + "start": 19285.36, + "end": 19287.92, + "probability": 0.5189 + }, + { + "start": 19288.88, + "end": 19289.2, + "probability": 0.4899 + }, + { + "start": 19289.96, + "end": 19293.28, + "probability": 0.8595 + }, + { + "start": 19293.46, + "end": 19296.7, + "probability": 0.9441 + }, + { + "start": 19297.9, + "end": 19306.94, + "probability": 0.9714 + }, + { + "start": 19307.7, + "end": 19309.14, + "probability": 0.9946 + }, + { + "start": 19310.52, + "end": 19310.7, + "probability": 0.7224 + }, + { + "start": 19311.66, + "end": 19316.94, + "probability": 0.9966 + }, + { + "start": 19317.86, + "end": 19318.68, + "probability": 0.9072 + }, + { + "start": 19319.28, + "end": 19319.92, + "probability": 0.9136 + }, + { + "start": 19321.38, + "end": 19321.5, + "probability": 0.7175 + }, + { + "start": 19321.54, + "end": 19326.52, + "probability": 0.9874 + }, + { + "start": 19327.62, + "end": 19328.56, + "probability": 0.943 + }, + { + "start": 19329.48, + "end": 19330.52, + "probability": 0.8939 + }, + { + "start": 19331.18, + "end": 19331.48, + "probability": 0.9407 + }, + { + "start": 19332.12, + "end": 19336.22, + "probability": 0.9844 + }, + { + "start": 19337.36, + "end": 19337.58, + "probability": 0.7324 + }, + { + "start": 19339.2, + "end": 19339.84, + "probability": 0.7492 + }, + { + "start": 19343.08, + "end": 19345.1, + "probability": 0.9387 + }, + { + "start": 19346.46, + "end": 19348.62, + "probability": 0.8517 + }, + { + "start": 19380.58, + "end": 19381.9, + "probability": 0.6465 + }, + { + "start": 19383.22, + "end": 19384.16, + "probability": 0.8098 + }, + { + "start": 19384.96, + "end": 19385.58, + "probability": 0.8474 + }, + { + "start": 19387.23, + "end": 19389.85, + "probability": 0.9445 + }, + { + "start": 19390.62, + "end": 19394.76, + "probability": 0.9446 + }, + { + "start": 19394.96, + "end": 19397.22, + "probability": 0.9368 + }, + { + "start": 19398.2, + "end": 19399.25, + "probability": 0.7065 + }, + { + "start": 19400.24, + "end": 19402.48, + "probability": 0.9725 + }, + { + "start": 19403.88, + "end": 19406.28, + "probability": 0.7673 + }, + { + "start": 19407.8, + "end": 19408.15, + "probability": 0.8462 + }, + { + "start": 19408.5, + "end": 19408.89, + "probability": 0.7155 + }, + { + "start": 19409.14, + "end": 19413.34, + "probability": 0.941 + }, + { + "start": 19413.42, + "end": 19413.96, + "probability": 0.8595 + }, + { + "start": 19414.0, + "end": 19415.52, + "probability": 0.9737 + }, + { + "start": 19415.74, + "end": 19416.27, + "probability": 0.3082 + }, + { + "start": 19416.52, + "end": 19417.25, + "probability": 0.9219 + }, + { + "start": 19417.94, + "end": 19418.46, + "probability": 0.8593 + }, + { + "start": 19418.56, + "end": 19419.1, + "probability": 0.9538 + }, + { + "start": 19419.54, + "end": 19422.34, + "probability": 0.793 + }, + { + "start": 19423.26, + "end": 19428.26, + "probability": 0.7151 + }, + { + "start": 19428.26, + "end": 19434.98, + "probability": 0.6043 + }, + { + "start": 19435.04, + "end": 19435.78, + "probability": 0.8611 + }, + { + "start": 19435.92, + "end": 19436.57, + "probability": 0.7294 + }, + { + "start": 19438.22, + "end": 19438.86, + "probability": 0.9344 + }, + { + "start": 19438.92, + "end": 19442.78, + "probability": 0.9945 + }, + { + "start": 19444.0, + "end": 19450.2, + "probability": 0.8679 + }, + { + "start": 19451.08, + "end": 19452.26, + "probability": 0.8394 + }, + { + "start": 19453.94, + "end": 19454.92, + "probability": 0.8668 + }, + { + "start": 19455.2, + "end": 19458.14, + "probability": 0.9663 + }, + { + "start": 19458.18, + "end": 19459.02, + "probability": 0.7073 + }, + { + "start": 19460.12, + "end": 19465.66, + "probability": 0.816 + }, + { + "start": 19467.18, + "end": 19469.14, + "probability": 0.958 + }, + { + "start": 19469.98, + "end": 19470.24, + "probability": 0.3537 + }, + { + "start": 19470.92, + "end": 19472.62, + "probability": 0.422 + }, + { + "start": 19473.64, + "end": 19476.78, + "probability": 0.4942 + }, + { + "start": 19477.34, + "end": 19480.78, + "probability": 0.9785 + }, + { + "start": 19481.44, + "end": 19483.74, + "probability": 0.7354 + }, + { + "start": 19484.28, + "end": 19487.22, + "probability": 0.9073 + }, + { + "start": 19488.62, + "end": 19493.64, + "probability": 0.8158 + }, + { + "start": 19494.32, + "end": 19495.82, + "probability": 0.7726 + }, + { + "start": 19496.32, + "end": 19499.06, + "probability": 0.9728 + }, + { + "start": 19500.18, + "end": 19502.66, + "probability": 0.9518 + }, + { + "start": 19503.24, + "end": 19504.96, + "probability": 0.8916 + }, + { + "start": 19506.14, + "end": 19511.08, + "probability": 0.9521 + }, + { + "start": 19512.0, + "end": 19514.48, + "probability": 0.8282 + }, + { + "start": 19514.48, + "end": 19517.08, + "probability": 0.8213 + }, + { + "start": 19519.18, + "end": 19523.2, + "probability": 0.9449 + }, + { + "start": 19523.2, + "end": 19526.5, + "probability": 0.9897 + }, + { + "start": 19526.68, + "end": 19528.72, + "probability": 0.9128 + }, + { + "start": 19529.68, + "end": 19529.84, + "probability": 0.0003 + }, + { + "start": 19530.92, + "end": 19532.44, + "probability": 0.6201 + }, + { + "start": 19533.04, + "end": 19535.14, + "probability": 0.9625 + }, + { + "start": 19535.28, + "end": 19535.84, + "probability": 0.8645 + }, + { + "start": 19536.2, + "end": 19538.4, + "probability": 0.7527 + }, + { + "start": 19539.26, + "end": 19540.0, + "probability": 0.9403 + }, + { + "start": 19541.06, + "end": 19542.0, + "probability": 0.6569 + }, + { + "start": 19543.16, + "end": 19546.98, + "probability": 0.8742 + }, + { + "start": 19547.4, + "end": 19548.44, + "probability": 0.9759 + }, + { + "start": 19548.96, + "end": 19549.76, + "probability": 0.9783 + }, + { + "start": 19550.48, + "end": 19551.68, + "probability": 0.9907 + }, + { + "start": 19552.73, + "end": 19556.64, + "probability": 0.9438 + }, + { + "start": 19558.18, + "end": 19563.36, + "probability": 0.9777 + }, + { + "start": 19564.32, + "end": 19565.98, + "probability": 0.9902 + }, + { + "start": 19566.14, + "end": 19568.88, + "probability": 0.9787 + }, + { + "start": 19571.38, + "end": 19573.4, + "probability": 0.9911 + }, + { + "start": 19574.52, + "end": 19576.72, + "probability": 0.528 + }, + { + "start": 19578.14, + "end": 19579.34, + "probability": 0.6498 + }, + { + "start": 19580.78, + "end": 19586.02, + "probability": 0.8162 + }, + { + "start": 19587.8, + "end": 19590.92, + "probability": 0.9523 + }, + { + "start": 19591.96, + "end": 19592.74, + "probability": 0.8888 + }, + { + "start": 19595.24, + "end": 19598.22, + "probability": 0.9646 + }, + { + "start": 19598.66, + "end": 19600.98, + "probability": 0.9628 + }, + { + "start": 19601.86, + "end": 19602.26, + "probability": 0.7009 + }, + { + "start": 19603.08, + "end": 19606.2, + "probability": 0.9188 + }, + { + "start": 19606.42, + "end": 19607.72, + "probability": 0.9819 + }, + { + "start": 19608.8, + "end": 19613.42, + "probability": 0.9883 + }, + { + "start": 19613.62, + "end": 19618.96, + "probability": 0.9785 + }, + { + "start": 19619.72, + "end": 19620.64, + "probability": 0.6571 + }, + { + "start": 19621.16, + "end": 19622.0, + "probability": 0.9803 + }, + { + "start": 19623.8, + "end": 19625.74, + "probability": 0.6446 + }, + { + "start": 19626.74, + "end": 19628.09, + "probability": 0.7301 + }, + { + "start": 19628.82, + "end": 19631.4, + "probability": 0.9241 + }, + { + "start": 19631.4, + "end": 19634.7, + "probability": 0.9015 + }, + { + "start": 19635.76, + "end": 19639.22, + "probability": 0.9187 + }, + { + "start": 19640.52, + "end": 19644.88, + "probability": 0.9672 + }, + { + "start": 19645.4, + "end": 19645.92, + "probability": 0.9319 + }, + { + "start": 19646.68, + "end": 19648.18, + "probability": 0.9843 + }, + { + "start": 19650.4, + "end": 19650.8, + "probability": 0.566 + }, + { + "start": 19650.86, + "end": 19655.18, + "probability": 0.9622 + }, + { + "start": 19655.18, + "end": 19658.5, + "probability": 0.9665 + }, + { + "start": 19659.48, + "end": 19662.0, + "probability": 0.7485 + }, + { + "start": 19662.38, + "end": 19663.54, + "probability": 0.708 + }, + { + "start": 19664.24, + "end": 19668.56, + "probability": 0.9439 + }, + { + "start": 19669.12, + "end": 19670.54, + "probability": 0.6241 + }, + { + "start": 19671.74, + "end": 19672.12, + "probability": 0.4257 + }, + { + "start": 19673.22, + "end": 19676.96, + "probability": 0.991 + }, + { + "start": 19678.14, + "end": 19679.26, + "probability": 0.6668 + }, + { + "start": 19679.7, + "end": 19681.8, + "probability": 0.9889 + }, + { + "start": 19682.08, + "end": 19685.11, + "probability": 0.5674 + }, + { + "start": 19685.92, + "end": 19688.18, + "probability": 0.7996 + }, + { + "start": 19688.82, + "end": 19692.08, + "probability": 0.934 + }, + { + "start": 19693.12, + "end": 19695.5, + "probability": 0.8694 + }, + { + "start": 19696.24, + "end": 19696.46, + "probability": 0.5273 + }, + { + "start": 19697.88, + "end": 19698.96, + "probability": 0.9726 + }, + { + "start": 19699.9, + "end": 19701.14, + "probability": 0.9908 + }, + { + "start": 19705.82, + "end": 19710.6, + "probability": 0.9756 + }, + { + "start": 19710.98, + "end": 19711.63, + "probability": 0.9863 + }, + { + "start": 19712.66, + "end": 19719.08, + "probability": 0.9888 + }, + { + "start": 19719.6, + "end": 19722.7, + "probability": 0.9746 + }, + { + "start": 19723.26, + "end": 19724.66, + "probability": 0.9962 + }, + { + "start": 19725.0, + "end": 19728.0, + "probability": 0.9482 + }, + { + "start": 19728.0, + "end": 19730.8, + "probability": 0.995 + }, + { + "start": 19731.86, + "end": 19732.38, + "probability": 0.5418 + }, + { + "start": 19733.22, + "end": 19735.06, + "probability": 0.8167 + }, + { + "start": 19736.72, + "end": 19737.6, + "probability": 0.4247 + }, + { + "start": 19738.66, + "end": 19742.08, + "probability": 0.7867 + }, + { + "start": 19760.4, + "end": 19760.6, + "probability": 0.3032 + }, + { + "start": 19760.6, + "end": 19761.78, + "probability": 0.1995 + }, + { + "start": 19762.16, + "end": 19762.91, + "probability": 0.4821 + }, + { + "start": 19763.74, + "end": 19765.56, + "probability": 0.897 + }, + { + "start": 19765.68, + "end": 19767.99, + "probability": 0.9697 + }, + { + "start": 19768.32, + "end": 19771.96, + "probability": 0.8274 + }, + { + "start": 19773.16, + "end": 19775.38, + "probability": 0.7135 + }, + { + "start": 19776.06, + "end": 19779.43, + "probability": 0.6077 + }, + { + "start": 19780.32, + "end": 19782.3, + "probability": 0.1287 + }, + { + "start": 19783.64, + "end": 19786.4, + "probability": 0.416 + }, + { + "start": 19788.3, + "end": 19790.24, + "probability": 0.0004 + }, + { + "start": 19791.86, + "end": 19793.18, + "probability": 0.4918 + }, + { + "start": 19793.88, + "end": 19793.88, + "probability": 0.0171 + }, + { + "start": 19793.88, + "end": 19793.88, + "probability": 0.1514 + }, + { + "start": 19793.88, + "end": 19794.46, + "probability": 0.6081 + }, + { + "start": 19795.96, + "end": 19796.92, + "probability": 0.5519 + }, + { + "start": 19797.12, + "end": 19798.5, + "probability": 0.8335 + }, + { + "start": 19798.56, + "end": 19799.48, + "probability": 0.6552 + }, + { + "start": 19800.24, + "end": 19802.78, + "probability": 0.8317 + }, + { + "start": 19802.9, + "end": 19806.66, + "probability": 0.7936 + }, + { + "start": 19807.9, + "end": 19809.06, + "probability": 0.9448 + }, + { + "start": 19810.74, + "end": 19812.32, + "probability": 0.8481 + }, + { + "start": 19812.56, + "end": 19813.34, + "probability": 0.9167 + }, + { + "start": 19814.28, + "end": 19817.78, + "probability": 0.9878 + }, + { + "start": 19818.06, + "end": 19823.66, + "probability": 0.4575 + }, + { + "start": 19825.1, + "end": 19832.68, + "probability": 0.9727 + }, + { + "start": 19833.64, + "end": 19835.52, + "probability": 0.9899 + }, + { + "start": 19838.1, + "end": 19842.34, + "probability": 0.6663 + }, + { + "start": 19844.14, + "end": 19848.56, + "probability": 0.8651 + }, + { + "start": 19849.26, + "end": 19850.54, + "probability": 0.5086 + }, + { + "start": 19851.54, + "end": 19859.02, + "probability": 0.9536 + }, + { + "start": 19859.32, + "end": 19862.69, + "probability": 0.9649 + }, + { + "start": 19864.7, + "end": 19868.94, + "probability": 0.9838 + }, + { + "start": 19870.3, + "end": 19871.2, + "probability": 0.6826 + }, + { + "start": 19871.76, + "end": 19877.34, + "probability": 0.8823 + }, + { + "start": 19877.6, + "end": 19878.72, + "probability": 0.5045 + }, + { + "start": 19879.76, + "end": 19884.24, + "probability": 0.9417 + }, + { + "start": 19884.9, + "end": 19887.48, + "probability": 0.942 + }, + { + "start": 19888.3, + "end": 19889.8, + "probability": 0.7804 + }, + { + "start": 19890.44, + "end": 19896.32, + "probability": 0.9915 + }, + { + "start": 19897.94, + "end": 19902.48, + "probability": 0.7278 + }, + { + "start": 19903.84, + "end": 19905.7, + "probability": 0.7585 + }, + { + "start": 19906.64, + "end": 19908.26, + "probability": 0.5093 + }, + { + "start": 19911.44, + "end": 19916.7, + "probability": 0.9876 + }, + { + "start": 19916.7, + "end": 19919.36, + "probability": 0.9136 + }, + { + "start": 19920.02, + "end": 19922.72, + "probability": 0.9634 + }, + { + "start": 19923.54, + "end": 19926.66, + "probability": 0.9534 + }, + { + "start": 19927.24, + "end": 19928.86, + "probability": 0.9801 + }, + { + "start": 19930.12, + "end": 19932.1, + "probability": 0.9598 + }, + { + "start": 19932.92, + "end": 19938.14, + "probability": 0.8123 + }, + { + "start": 19938.18, + "end": 19941.52, + "probability": 0.971 + }, + { + "start": 19946.72, + "end": 19947.38, + "probability": 0.3829 + }, + { + "start": 19948.12, + "end": 19948.22, + "probability": 0.4668 + }, + { + "start": 19948.88, + "end": 19949.56, + "probability": 0.9105 + }, + { + "start": 19951.02, + "end": 19955.7, + "probability": 0.9388 + }, + { + "start": 19957.16, + "end": 19960.38, + "probability": 0.9325 + }, + { + "start": 19961.08, + "end": 19961.98, + "probability": 0.9778 + }, + { + "start": 19965.28, + "end": 19971.34, + "probability": 0.9971 + }, + { + "start": 19971.46, + "end": 19976.06, + "probability": 0.9624 + }, + { + "start": 19976.26, + "end": 19980.5, + "probability": 0.9813 + }, + { + "start": 19981.98, + "end": 19982.88, + "probability": 0.4757 + }, + { + "start": 19983.92, + "end": 19986.96, + "probability": 0.5789 + }, + { + "start": 19988.9, + "end": 19991.18, + "probability": 0.8184 + }, + { + "start": 19991.42, + "end": 19994.54, + "probability": 0.9676 + }, + { + "start": 19995.24, + "end": 20000.32, + "probability": 0.9698 + }, + { + "start": 20002.44, + "end": 20003.6, + "probability": 0.9692 + }, + { + "start": 20004.42, + "end": 20007.58, + "probability": 0.8794 + }, + { + "start": 20009.5, + "end": 20011.8, + "probability": 0.8877 + }, + { + "start": 20012.36, + "end": 20015.96, + "probability": 0.9641 + }, + { + "start": 20016.7, + "end": 20019.06, + "probability": 0.9957 + }, + { + "start": 20019.78, + "end": 20020.74, + "probability": 0.8636 + }, + { + "start": 20022.1, + "end": 20023.84, + "probability": 0.8998 + }, + { + "start": 20023.98, + "end": 20029.0, + "probability": 0.9969 + }, + { + "start": 20029.92, + "end": 20036.96, + "probability": 0.9519 + }, + { + "start": 20038.38, + "end": 20040.38, + "probability": 0.7801 + }, + { + "start": 20040.48, + "end": 20044.0, + "probability": 0.9234 + }, + { + "start": 20044.0, + "end": 20047.94, + "probability": 0.9266 + }, + { + "start": 20048.4, + "end": 20051.0, + "probability": 0.9655 + }, + { + "start": 20051.66, + "end": 20053.34, + "probability": 0.82 + }, + { + "start": 20053.34, + "end": 20053.34, + "probability": 0.3496 + }, + { + "start": 20053.34, + "end": 20054.62, + "probability": 0.7796 + }, + { + "start": 20054.66, + "end": 20055.52, + "probability": 0.6176 + }, + { + "start": 20056.12, + "end": 20060.62, + "probability": 0.5341 + }, + { + "start": 20061.36, + "end": 20063.9, + "probability": 0.2359 + }, + { + "start": 20064.48, + "end": 20067.76, + "probability": 0.9924 + }, + { + "start": 20068.48, + "end": 20071.5, + "probability": 0.992 + }, + { + "start": 20071.68, + "end": 20075.8, + "probability": 0.9841 + }, + { + "start": 20077.02, + "end": 20084.26, + "probability": 0.9031 + }, + { + "start": 20085.4, + "end": 20089.06, + "probability": 0.9072 + }, + { + "start": 20089.12, + "end": 20092.54, + "probability": 0.7576 + }, + { + "start": 20093.16, + "end": 20093.58, + "probability": 0.8963 + }, + { + "start": 20093.68, + "end": 20094.84, + "probability": 0.8775 + }, + { + "start": 20094.9, + "end": 20095.54, + "probability": 0.7641 + }, + { + "start": 20095.66, + "end": 20100.08, + "probability": 0.9795 + }, + { + "start": 20101.14, + "end": 20101.48, + "probability": 0.4973 + }, + { + "start": 20102.78, + "end": 20105.48, + "probability": 0.9424 + }, + { + "start": 20106.06, + "end": 20109.8, + "probability": 0.9802 + }, + { + "start": 20110.48, + "end": 20117.72, + "probability": 0.937 + }, + { + "start": 20119.2, + "end": 20124.2, + "probability": 0.9913 + }, + { + "start": 20126.4, + "end": 20130.5, + "probability": 0.9478 + }, + { + "start": 20131.84, + "end": 20134.74, + "probability": 0.9951 + }, + { + "start": 20135.72, + "end": 20137.56, + "probability": 0.9988 + }, + { + "start": 20138.64, + "end": 20141.92, + "probability": 0.9863 + }, + { + "start": 20142.92, + "end": 20145.54, + "probability": 0.9902 + }, + { + "start": 20146.26, + "end": 20150.58, + "probability": 0.9974 + }, + { + "start": 20151.7, + "end": 20157.68, + "probability": 0.9951 + }, + { + "start": 20158.06, + "end": 20158.56, + "probability": 0.9971 + }, + { + "start": 20160.18, + "end": 20163.52, + "probability": 0.9917 + }, + { + "start": 20164.56, + "end": 20165.88, + "probability": 0.8088 + }, + { + "start": 20166.44, + "end": 20166.93, + "probability": 0.8455 + }, + { + "start": 20167.62, + "end": 20171.34, + "probability": 0.7962 + }, + { + "start": 20172.55, + "end": 20179.46, + "probability": 0.9077 + }, + { + "start": 20180.02, + "end": 20184.42, + "probability": 0.8293 + }, + { + "start": 20185.26, + "end": 20189.62, + "probability": 0.9846 + }, + { + "start": 20189.62, + "end": 20193.24, + "probability": 0.9864 + }, + { + "start": 20193.56, + "end": 20197.88, + "probability": 0.7795 + }, + { + "start": 20199.22, + "end": 20202.7, + "probability": 0.9931 + }, + { + "start": 20202.7, + "end": 20206.48, + "probability": 0.8015 + }, + { + "start": 20206.64, + "end": 20208.52, + "probability": 0.9937 + }, + { + "start": 20209.18, + "end": 20214.3, + "probability": 0.8127 + }, + { + "start": 20215.26, + "end": 20218.04, + "probability": 0.9047 + }, + { + "start": 20218.94, + "end": 20219.48, + "probability": 0.4909 + }, + { + "start": 20221.72, + "end": 20229.36, + "probability": 0.978 + }, + { + "start": 20230.58, + "end": 20235.88, + "probability": 0.9572 + }, + { + "start": 20237.92, + "end": 20239.74, + "probability": 0.4549 + }, + { + "start": 20240.36, + "end": 20242.48, + "probability": 0.9418 + }, + { + "start": 20243.28, + "end": 20245.22, + "probability": 0.9873 + }, + { + "start": 20246.36, + "end": 20252.22, + "probability": 0.6659 + }, + { + "start": 20252.94, + "end": 20257.98, + "probability": 0.9658 + }, + { + "start": 20258.58, + "end": 20259.82, + "probability": 0.7541 + }, + { + "start": 20261.58, + "end": 20264.08, + "probability": 0.5827 + }, + { + "start": 20264.84, + "end": 20267.74, + "probability": 0.9461 + }, + { + "start": 20268.48, + "end": 20270.98, + "probability": 0.7499 + }, + { + "start": 20271.56, + "end": 20273.16, + "probability": 0.9887 + }, + { + "start": 20273.18, + "end": 20273.98, + "probability": 0.8221 + }, + { + "start": 20275.68, + "end": 20278.68, + "probability": 0.5803 + }, + { + "start": 20279.38, + "end": 20285.54, + "probability": 0.9336 + }, + { + "start": 20286.7, + "end": 20288.12, + "probability": 0.7587 + }, + { + "start": 20289.2, + "end": 20293.8, + "probability": 0.9906 + }, + { + "start": 20294.76, + "end": 20297.88, + "probability": 0.98 + }, + { + "start": 20299.7, + "end": 20300.74, + "probability": 0.7593 + }, + { + "start": 20301.34, + "end": 20302.54, + "probability": 0.9942 + }, + { + "start": 20303.18, + "end": 20304.1, + "probability": 0.7843 + }, + { + "start": 20305.04, + "end": 20307.08, + "probability": 0.9878 + }, + { + "start": 20308.02, + "end": 20308.72, + "probability": 0.4711 + }, + { + "start": 20310.7, + "end": 20315.0, + "probability": 0.9933 + }, + { + "start": 20316.08, + "end": 20319.44, + "probability": 0.9738 + }, + { + "start": 20319.92, + "end": 20325.22, + "probability": 0.9946 + }, + { + "start": 20325.48, + "end": 20327.16, + "probability": 0.8273 + }, + { + "start": 20328.13, + "end": 20330.26, + "probability": 0.6735 + }, + { + "start": 20330.92, + "end": 20332.94, + "probability": 0.8025 + }, + { + "start": 20333.49, + "end": 20337.0, + "probability": 0.8502 + }, + { + "start": 20337.76, + "end": 20340.18, + "probability": 0.9929 + }, + { + "start": 20340.7, + "end": 20342.54, + "probability": 0.9201 + }, + { + "start": 20342.82, + "end": 20344.78, + "probability": 0.9932 + }, + { + "start": 20346.1, + "end": 20348.68, + "probability": 0.9528 + }, + { + "start": 20349.38, + "end": 20350.42, + "probability": 0.9625 + }, + { + "start": 20352.16, + "end": 20352.8, + "probability": 0.9124 + }, + { + "start": 20353.88, + "end": 20356.06, + "probability": 0.9813 + }, + { + "start": 20356.86, + "end": 20358.12, + "probability": 0.9458 + }, + { + "start": 20358.66, + "end": 20361.8, + "probability": 0.7391 + }, + { + "start": 20363.58, + "end": 20364.22, + "probability": 0.4935 + }, + { + "start": 20365.1, + "end": 20370.0, + "probability": 0.9942 + }, + { + "start": 20370.82, + "end": 20372.46, + "probability": 0.7818 + }, + { + "start": 20373.42, + "end": 20377.62, + "probability": 0.8672 + }, + { + "start": 20379.44, + "end": 20381.18, + "probability": 0.7781 + }, + { + "start": 20382.06, + "end": 20385.72, + "probability": 0.8606 + }, + { + "start": 20387.72, + "end": 20391.42, + "probability": 0.9798 + }, + { + "start": 20391.66, + "end": 20396.2, + "probability": 0.9922 + }, + { + "start": 20396.46, + "end": 20401.42, + "probability": 0.9375 + }, + { + "start": 20401.64, + "end": 20406.36, + "probability": 0.9221 + }, + { + "start": 20406.42, + "end": 20407.84, + "probability": 0.9971 + }, + { + "start": 20408.56, + "end": 20410.34, + "probability": 0.9626 + }, + { + "start": 20411.24, + "end": 20412.12, + "probability": 0.8461 + }, + { + "start": 20412.94, + "end": 20414.12, + "probability": 0.833 + }, + { + "start": 20415.2, + "end": 20418.4, + "probability": 0.6957 + }, + { + "start": 20419.16, + "end": 20419.86, + "probability": 0.7411 + }, + { + "start": 20420.68, + "end": 20424.8, + "probability": 0.9983 + }, + { + "start": 20426.5, + "end": 20430.74, + "probability": 0.9963 + }, + { + "start": 20431.42, + "end": 20435.22, + "probability": 0.9974 + }, + { + "start": 20437.54, + "end": 20439.86, + "probability": 0.909 + }, + { + "start": 20441.06, + "end": 20443.58, + "probability": 0.9944 + }, + { + "start": 20445.08, + "end": 20451.2, + "probability": 0.8188 + }, + { + "start": 20452.4, + "end": 20454.06, + "probability": 0.9937 + }, + { + "start": 20454.88, + "end": 20458.52, + "probability": 0.9632 + }, + { + "start": 20458.52, + "end": 20460.28, + "probability": 0.8717 + }, + { + "start": 20460.94, + "end": 20462.23, + "probability": 0.9922 + }, + { + "start": 20463.88, + "end": 20467.86, + "probability": 0.8667 + }, + { + "start": 20468.7, + "end": 20470.5, + "probability": 0.9668 + }, + { + "start": 20470.56, + "end": 20471.1, + "probability": 0.7594 + }, + { + "start": 20472.76, + "end": 20473.76, + "probability": 0.9229 + }, + { + "start": 20474.82, + "end": 20478.44, + "probability": 0.9873 + }, + { + "start": 20480.54, + "end": 20484.06, + "probability": 0.9473 + }, + { + "start": 20484.1, + "end": 20486.18, + "probability": 0.8223 + }, + { + "start": 20486.32, + "end": 20487.8, + "probability": 0.9869 + }, + { + "start": 20488.68, + "end": 20491.1, + "probability": 0.93 + }, + { + "start": 20491.6, + "end": 20496.08, + "probability": 0.7884 + }, + { + "start": 20496.2, + "end": 20497.54, + "probability": 0.9725 + }, + { + "start": 20498.22, + "end": 20501.42, + "probability": 0.856 + }, + { + "start": 20502.34, + "end": 20506.88, + "probability": 0.9927 + }, + { + "start": 20507.52, + "end": 20508.36, + "probability": 0.752 + }, + { + "start": 20508.78, + "end": 20511.22, + "probability": 0.7677 + }, + { + "start": 20511.76, + "end": 20515.4, + "probability": 0.9845 + }, + { + "start": 20515.62, + "end": 20517.3, + "probability": 0.8281 + }, + { + "start": 20517.92, + "end": 20518.94, + "probability": 0.9868 + }, + { + "start": 20521.01, + "end": 20524.76, + "probability": 0.6334 + }, + { + "start": 20525.98, + "end": 20527.92, + "probability": 0.8739 + }, + { + "start": 20529.4, + "end": 20533.14, + "probability": 0.9914 + }, + { + "start": 20533.8, + "end": 20537.08, + "probability": 0.9138 + }, + { + "start": 20537.24, + "end": 20538.76, + "probability": 0.9966 + }, + { + "start": 20539.3, + "end": 20540.2, + "probability": 0.7503 + }, + { + "start": 20540.98, + "end": 20542.64, + "probability": 0.9094 + }, + { + "start": 20543.62, + "end": 20547.98, + "probability": 0.9174 + }, + { + "start": 20549.22, + "end": 20552.73, + "probability": 0.8307 + }, + { + "start": 20554.3, + "end": 20555.4, + "probability": 0.9594 + }, + { + "start": 20556.32, + "end": 20557.0, + "probability": 0.9879 + }, + { + "start": 20557.96, + "end": 20565.18, + "probability": 0.9897 + }, + { + "start": 20565.86, + "end": 20566.98, + "probability": 0.8929 + }, + { + "start": 20567.7, + "end": 20569.68, + "probability": 0.9996 + }, + { + "start": 20570.5, + "end": 20571.88, + "probability": 0.9951 + }, + { + "start": 20571.96, + "end": 20573.6, + "probability": 0.6647 + }, + { + "start": 20573.68, + "end": 20574.4, + "probability": 0.9243 + }, + { + "start": 20574.56, + "end": 20577.14, + "probability": 0.9819 + }, + { + "start": 20578.12, + "end": 20581.82, + "probability": 0.9451 + }, + { + "start": 20582.56, + "end": 20584.68, + "probability": 0.955 + }, + { + "start": 20586.32, + "end": 20589.58, + "probability": 0.9956 + }, + { + "start": 20589.82, + "end": 20593.58, + "probability": 0.799 + }, + { + "start": 20594.1, + "end": 20595.16, + "probability": 0.9929 + }, + { + "start": 20595.88, + "end": 20596.72, + "probability": 0.4969 + }, + { + "start": 20597.88, + "end": 20599.56, + "probability": 0.9178 + }, + { + "start": 20600.36, + "end": 20602.64, + "probability": 0.7474 + }, + { + "start": 20603.26, + "end": 20604.84, + "probability": 0.9717 + }, + { + "start": 20607.44, + "end": 20607.86, + "probability": 0.4738 + }, + { + "start": 20610.06, + "end": 20613.58, + "probability": 0.991 + }, + { + "start": 20613.98, + "end": 20614.86, + "probability": 0.5622 + }, + { + "start": 20616.3, + "end": 20618.18, + "probability": 0.664 + }, + { + "start": 20619.0, + "end": 20621.32, + "probability": 0.9426 + }, + { + "start": 20621.7, + "end": 20626.0, + "probability": 0.8346 + }, + { + "start": 20628.36, + "end": 20629.3, + "probability": 0.5387 + }, + { + "start": 20630.24, + "end": 20630.94, + "probability": 0.5648 + }, + { + "start": 20631.52, + "end": 20634.34, + "probability": 0.8923 + }, + { + "start": 20634.6, + "end": 20637.1, + "probability": 0.9399 + }, + { + "start": 20637.56, + "end": 20638.82, + "probability": 0.7024 + }, + { + "start": 20638.92, + "end": 20638.92, + "probability": 0.587 + }, + { + "start": 20639.04, + "end": 20639.65, + "probability": 0.9198 + }, + { + "start": 20640.56, + "end": 20643.24, + "probability": 0.5028 + }, + { + "start": 20643.34, + "end": 20644.04, + "probability": 0.9111 + }, + { + "start": 20645.74, + "end": 20648.08, + "probability": 0.9949 + }, + { + "start": 20649.06, + "end": 20650.12, + "probability": 0.8586 + }, + { + "start": 20650.14, + "end": 20651.22, + "probability": 0.8603 + }, + { + "start": 20651.9, + "end": 20653.16, + "probability": 0.9958 + }, + { + "start": 20653.68, + "end": 20654.4, + "probability": 0.3617 + }, + { + "start": 20655.06, + "end": 20656.24, + "probability": 0.5017 + }, + { + "start": 20656.46, + "end": 20658.04, + "probability": 0.9971 + }, + { + "start": 20658.78, + "end": 20662.14, + "probability": 0.9792 + }, + { + "start": 20663.68, + "end": 20666.92, + "probability": 0.8691 + }, + { + "start": 20669.08, + "end": 20670.42, + "probability": 0.7991 + }, + { + "start": 20673.27, + "end": 20676.52, + "probability": 0.671 + }, + { + "start": 20676.68, + "end": 20680.06, + "probability": 0.9822 + }, + { + "start": 20681.34, + "end": 20686.2, + "probability": 0.9961 + }, + { + "start": 20687.54, + "end": 20693.34, + "probability": 0.9878 + }, + { + "start": 20694.28, + "end": 20696.34, + "probability": 0.8468 + }, + { + "start": 20697.22, + "end": 20698.2, + "probability": 0.8604 + }, + { + "start": 20698.38, + "end": 20699.4, + "probability": 0.5042 + }, + { + "start": 20699.94, + "end": 20700.82, + "probability": 0.9041 + }, + { + "start": 20702.34, + "end": 20705.82, + "probability": 0.8844 + }, + { + "start": 20706.02, + "end": 20708.38, + "probability": 0.938 + }, + { + "start": 20709.2, + "end": 20711.02, + "probability": 0.7617 + }, + { + "start": 20711.12, + "end": 20712.88, + "probability": 0.9951 + }, + { + "start": 20713.0, + "end": 20713.88, + "probability": 0.5113 + }, + { + "start": 20714.0, + "end": 20717.08, + "probability": 0.636 + }, + { + "start": 20717.28, + "end": 20718.7, + "probability": 0.7091 + }, + { + "start": 20719.5, + "end": 20725.02, + "probability": 0.9766 + }, + { + "start": 20725.16, + "end": 20728.7, + "probability": 0.5399 + }, + { + "start": 20729.22, + "end": 20733.24, + "probability": 0.6747 + }, + { + "start": 20733.24, + "end": 20734.28, + "probability": 0.5037 + }, + { + "start": 20734.48, + "end": 20734.62, + "probability": 0.3685 + }, + { + "start": 20734.68, + "end": 20737.26, + "probability": 0.9991 + }, + { + "start": 20737.96, + "end": 20740.18, + "probability": 0.9629 + }, + { + "start": 20740.9, + "end": 20747.8, + "probability": 0.9465 + }, + { + "start": 20748.76, + "end": 20750.37, + "probability": 0.7553 + }, + { + "start": 20750.84, + "end": 20752.82, + "probability": 0.6367 + }, + { + "start": 20753.06, + "end": 20755.32, + "probability": 0.8218 + }, + { + "start": 20756.04, + "end": 20759.73, + "probability": 0.9844 + }, + { + "start": 20759.96, + "end": 20761.76, + "probability": 0.4906 + }, + { + "start": 20761.76, + "end": 20763.48, + "probability": 0.7695 + }, + { + "start": 20764.22, + "end": 20769.08, + "probability": 0.9589 + }, + { + "start": 20769.62, + "end": 20773.3, + "probability": 0.6996 + }, + { + "start": 20773.58, + "end": 20773.58, + "probability": 0.3468 + }, + { + "start": 20773.86, + "end": 20775.68, + "probability": 0.9048 + }, + { + "start": 20776.4, + "end": 20778.36, + "probability": 0.8294 + }, + { + "start": 20779.48, + "end": 20782.7, + "probability": 0.492 + }, + { + "start": 20783.38, + "end": 20787.36, + "probability": 0.7071 + }, + { + "start": 20787.62, + "end": 20789.5, + "probability": 0.8559 + }, + { + "start": 20790.32, + "end": 20792.28, + "probability": 0.9589 + }, + { + "start": 20792.92, + "end": 20795.48, + "probability": 0.9962 + }, + { + "start": 20796.0, + "end": 20796.64, + "probability": 0.5768 + }, + { + "start": 20797.52, + "end": 20800.94, + "probability": 0.5722 + }, + { + "start": 20801.78, + "end": 20803.58, + "probability": 0.9851 + }, + { + "start": 20804.16, + "end": 20804.4, + "probability": 0.9897 + }, + { + "start": 20804.92, + "end": 20807.06, + "probability": 0.6689 + }, + { + "start": 20808.5, + "end": 20809.04, + "probability": 0.5639 + }, + { + "start": 20809.1, + "end": 20810.86, + "probability": 0.9908 + }, + { + "start": 20810.94, + "end": 20812.42, + "probability": 0.7864 + }, + { + "start": 20812.52, + "end": 20814.22, + "probability": 0.8691 + }, + { + "start": 20814.28, + "end": 20818.8, + "probability": 0.9111 + }, + { + "start": 20818.86, + "end": 20821.26, + "probability": 0.9622 + }, + { + "start": 20821.98, + "end": 20824.58, + "probability": 0.9585 + }, + { + "start": 20824.6, + "end": 20829.1, + "probability": 0.9525 + }, + { + "start": 20830.02, + "end": 20833.7, + "probability": 0.8309 + }, + { + "start": 20834.34, + "end": 20835.02, + "probability": 0.5856 + }, + { + "start": 20835.56, + "end": 20836.14, + "probability": 0.4726 + }, + { + "start": 20836.14, + "end": 20837.3, + "probability": 0.637 + }, + { + "start": 20838.06, + "end": 20838.52, + "probability": 0.8091 + }, + { + "start": 20839.78, + "end": 20840.88, + "probability": 0.2461 + }, + { + "start": 20841.52, + "end": 20842.76, + "probability": 0.4908 + }, + { + "start": 20843.34, + "end": 20844.48, + "probability": 0.4284 + }, + { + "start": 20844.5, + "end": 20845.52, + "probability": 0.9311 + }, + { + "start": 20855.12, + "end": 20856.26, + "probability": 0.5726 + }, + { + "start": 20857.36, + "end": 20859.81, + "probability": 0.2608 + }, + { + "start": 20861.06, + "end": 20864.42, + "probability": 0.9812 + }, + { + "start": 20864.54, + "end": 20866.98, + "probability": 0.4073 + }, + { + "start": 20866.98, + "end": 20867.08, + "probability": 0.5873 + }, + { + "start": 20870.68, + "end": 20871.06, + "probability": 0.5667 + }, + { + "start": 20872.72, + "end": 20873.74, + "probability": 0.5773 + }, + { + "start": 20873.96, + "end": 20877.04, + "probability": 0.9399 + }, + { + "start": 20877.92, + "end": 20879.8, + "probability": 0.8882 + }, + { + "start": 20880.58, + "end": 20885.86, + "probability": 0.9941 + }, + { + "start": 20885.98, + "end": 20886.08, + "probability": 0.0 + }, + { + "start": 20886.62, + "end": 20889.28, + "probability": 0.8996 + }, + { + "start": 20889.52, + "end": 20891.59, + "probability": 0.8025 + }, + { + "start": 20892.4, + "end": 20895.68, + "probability": 0.9693 + }, + { + "start": 20895.96, + "end": 20897.22, + "probability": 0.8875 + }, + { + "start": 20897.96, + "end": 20900.22, + "probability": 0.9954 + }, + { + "start": 20900.42, + "end": 20901.52, + "probability": 0.8004 + }, + { + "start": 20901.98, + "end": 20902.97, + "probability": 0.855 + }, + { + "start": 20903.68, + "end": 20906.1, + "probability": 0.9669 + }, + { + "start": 20906.72, + "end": 20910.3, + "probability": 0.9205 + }, + { + "start": 20910.4, + "end": 20911.98, + "probability": 0.856 + }, + { + "start": 20912.52, + "end": 20913.74, + "probability": 0.9199 + }, + { + "start": 20914.38, + "end": 20915.48, + "probability": 0.967 + }, + { + "start": 20915.82, + "end": 20916.98, + "probability": 0.353 + }, + { + "start": 20918.26, + "end": 20923.17, + "probability": 0.4088 + }, + { + "start": 20923.38, + "end": 20926.3, + "probability": 0.7454 + }, + { + "start": 20926.5, + "end": 20929.42, + "probability": 0.0294 + }, + { + "start": 20929.42, + "end": 20933.9, + "probability": 0.8713 + }, + { + "start": 20934.66, + "end": 20935.7, + "probability": 0.8758 + }, + { + "start": 20936.2, + "end": 20938.5, + "probability": 0.9591 + }, + { + "start": 20938.92, + "end": 20942.08, + "probability": 0.976 + }, + { + "start": 20942.38, + "end": 20944.8, + "probability": 0.9794 + }, + { + "start": 20945.68, + "end": 20947.11, + "probability": 0.8441 + }, + { + "start": 20947.8, + "end": 20953.64, + "probability": 0.9219 + }, + { + "start": 20954.92, + "end": 20957.49, + "probability": 0.9906 + }, + { + "start": 20960.76, + "end": 20962.6, + "probability": 0.9191 + }, + { + "start": 20963.18, + "end": 20964.68, + "probability": 0.7704 + }, + { + "start": 20964.88, + "end": 20965.9, + "probability": 0.8445 + }, + { + "start": 20966.14, + "end": 20967.74, + "probability": 0.9474 + }, + { + "start": 20968.36, + "end": 20969.38, + "probability": 0.9789 + }, + { + "start": 20970.68, + "end": 20975.8, + "probability": 0.9601 + }, + { + "start": 20976.74, + "end": 20977.99, + "probability": 0.9506 + }, + { + "start": 20978.3, + "end": 20983.6, + "probability": 0.9639 + }, + { + "start": 20983.6, + "end": 20986.84, + "probability": 0.9945 + }, + { + "start": 20986.84, + "end": 20991.44, + "probability": 0.9976 + }, + { + "start": 20992.7, + "end": 20996.8, + "probability": 0.9993 + }, + { + "start": 20996.85, + "end": 21000.58, + "probability": 0.9981 + }, + { + "start": 21001.52, + "end": 21001.82, + "probability": 0.4814 + }, + { + "start": 21002.72, + "end": 21003.48, + "probability": 0.9377 + }, + { + "start": 21004.22, + "end": 21005.86, + "probability": 0.4749 + }, + { + "start": 21006.94, + "end": 21009.6, + "probability": 0.9909 + }, + { + "start": 21010.12, + "end": 21010.5, + "probability": 0.3803 + }, + { + "start": 21011.02, + "end": 21012.38, + "probability": 0.8015 + }, + { + "start": 21013.48, + "end": 21014.86, + "probability": 0.9335 + }, + { + "start": 21015.22, + "end": 21017.0, + "probability": 0.9477 + }, + { + "start": 21017.88, + "end": 21020.82, + "probability": 0.9697 + }, + { + "start": 21021.78, + "end": 21024.0, + "probability": 0.8778 + }, + { + "start": 21024.5, + "end": 21026.32, + "probability": 0.9816 + }, + { + "start": 21026.94, + "end": 21028.02, + "probability": 0.6717 + }, + { + "start": 21028.8, + "end": 21029.9, + "probability": 0.821 + }, + { + "start": 21030.56, + "end": 21034.1, + "probability": 0.9984 + }, + { + "start": 21035.1, + "end": 21035.6, + "probability": 0.9454 + }, + { + "start": 21036.36, + "end": 21036.86, + "probability": 0.8069 + }, + { + "start": 21037.0, + "end": 21037.44, + "probability": 0.8018 + }, + { + "start": 21037.92, + "end": 21040.02, + "probability": 0.9951 + }, + { + "start": 21040.92, + "end": 21041.52, + "probability": 0.9858 + }, + { + "start": 21042.46, + "end": 21044.28, + "probability": 0.8691 + }, + { + "start": 21044.94, + "end": 21045.5, + "probability": 0.5169 + }, + { + "start": 21046.18, + "end": 21048.74, + "probability": 0.7441 + }, + { + "start": 21049.56, + "end": 21050.98, + "probability": 0.6846 + }, + { + "start": 21051.42, + "end": 21055.36, + "probability": 0.9637 + }, + { + "start": 21056.4, + "end": 21057.0, + "probability": 0.9359 + }, + { + "start": 21057.88, + "end": 21062.8, + "probability": 0.9978 + }, + { + "start": 21063.94, + "end": 21066.88, + "probability": 0.9938 + }, + { + "start": 21067.82, + "end": 21068.24, + "probability": 0.4812 + }, + { + "start": 21068.84, + "end": 21069.56, + "probability": 0.943 + }, + { + "start": 21070.36, + "end": 21071.08, + "probability": 0.621 + }, + { + "start": 21071.7, + "end": 21075.9, + "probability": 0.692 + }, + { + "start": 21076.54, + "end": 21078.26, + "probability": 0.967 + }, + { + "start": 21078.88, + "end": 21079.98, + "probability": 0.955 + }, + { + "start": 21081.08, + "end": 21082.56, + "probability": 0.7598 + }, + { + "start": 21083.6, + "end": 21085.14, + "probability": 0.9741 + }, + { + "start": 21085.18, + "end": 21087.68, + "probability": 0.9557 + }, + { + "start": 21087.68, + "end": 21091.1, + "probability": 0.9956 + }, + { + "start": 21091.72, + "end": 21092.2, + "probability": 0.5191 + }, + { + "start": 21092.82, + "end": 21094.52, + "probability": 0.9971 + }, + { + "start": 21095.3, + "end": 21095.72, + "probability": 0.421 + }, + { + "start": 21096.48, + "end": 21097.18, + "probability": 0.4916 + }, + { + "start": 21098.0, + "end": 21101.76, + "probability": 0.998 + }, + { + "start": 21102.52, + "end": 21103.88, + "probability": 0.592 + }, + { + "start": 21104.44, + "end": 21105.14, + "probability": 0.5302 + }, + { + "start": 21105.82, + "end": 21108.4, + "probability": 0.8776 + }, + { + "start": 21108.92, + "end": 21111.48, + "probability": 0.9487 + }, + { + "start": 21111.9, + "end": 21115.42, + "probability": 0.9839 + }, + { + "start": 21116.24, + "end": 21117.47, + "probability": 0.9919 + }, + { + "start": 21118.36, + "end": 21120.7, + "probability": 0.8486 + }, + { + "start": 21125.82, + "end": 21128.9, + "probability": 0.9336 + }, + { + "start": 21129.8, + "end": 21133.08, + "probability": 0.9238 + }, + { + "start": 21133.52, + "end": 21135.64, + "probability": 0.9461 + }, + { + "start": 21135.94, + "end": 21136.58, + "probability": 0.9899 + }, + { + "start": 21137.06, + "end": 21139.3, + "probability": 0.9938 + }, + { + "start": 21140.0, + "end": 21140.88, + "probability": 0.9135 + }, + { + "start": 21141.46, + "end": 21143.08, + "probability": 0.9221 + }, + { + "start": 21143.26, + "end": 21145.06, + "probability": 0.9351 + }, + { + "start": 21145.52, + "end": 21149.42, + "probability": 0.9915 + }, + { + "start": 21150.5, + "end": 21151.1, + "probability": 0.3432 + }, + { + "start": 21151.9, + "end": 21153.3, + "probability": 0.9893 + }, + { + "start": 21154.06, + "end": 21156.04, + "probability": 0.9729 + }, + { + "start": 21156.96, + "end": 21158.06, + "probability": 0.8142 + }, + { + "start": 21159.86, + "end": 21163.28, + "probability": 0.7992 + }, + { + "start": 21163.84, + "end": 21165.14, + "probability": 0.9888 + }, + { + "start": 21166.48, + "end": 21171.02, + "probability": 0.9115 + }, + { + "start": 21171.52, + "end": 21174.1, + "probability": 0.7492 + }, + { + "start": 21174.6, + "end": 21176.2, + "probability": 0.9746 + }, + { + "start": 21176.28, + "end": 21178.42, + "probability": 0.9724 + }, + { + "start": 21179.56, + "end": 21181.54, + "probability": 0.5067 + }, + { + "start": 21181.64, + "end": 21183.72, + "probability": 0.9959 + }, + { + "start": 21184.44, + "end": 21187.56, + "probability": 0.9979 + }, + { + "start": 21188.68, + "end": 21192.6, + "probability": 0.9949 + }, + { + "start": 21193.28, + "end": 21195.3, + "probability": 0.9634 + }, + { + "start": 21196.32, + "end": 21197.78, + "probability": 0.9888 + }, + { + "start": 21199.67, + "end": 21205.72, + "probability": 0.9968 + }, + { + "start": 21206.32, + "end": 21208.0, + "probability": 0.9749 + }, + { + "start": 21209.4, + "end": 21212.78, + "probability": 0.9853 + }, + { + "start": 21212.98, + "end": 21213.66, + "probability": 0.8913 + }, + { + "start": 21213.76, + "end": 21214.66, + "probability": 0.9392 + }, + { + "start": 21215.0, + "end": 21218.36, + "probability": 0.9781 + }, + { + "start": 21219.04, + "end": 21220.3, + "probability": 0.9658 + }, + { + "start": 21221.22, + "end": 21225.56, + "probability": 0.9308 + }, + { + "start": 21226.08, + "end": 21226.84, + "probability": 0.953 + }, + { + "start": 21227.84, + "end": 21229.34, + "probability": 0.9884 + }, + { + "start": 21229.82, + "end": 21231.18, + "probability": 0.9941 + }, + { + "start": 21231.54, + "end": 21231.94, + "probability": 0.9921 + }, + { + "start": 21233.12, + "end": 21234.16, + "probability": 0.7488 + }, + { + "start": 21234.52, + "end": 21235.3, + "probability": 0.9009 + }, + { + "start": 21235.92, + "end": 21238.26, + "probability": 0.9902 + }, + { + "start": 21239.12, + "end": 21240.7, + "probability": 0.9469 + }, + { + "start": 21242.02, + "end": 21244.1, + "probability": 0.9834 + }, + { + "start": 21244.9, + "end": 21248.66, + "probability": 0.9837 + }, + { + "start": 21250.28, + "end": 21253.44, + "probability": 0.98 + }, + { + "start": 21253.96, + "end": 21255.62, + "probability": 0.6971 + }, + { + "start": 21257.49, + "end": 21259.86, + "probability": 0.7093 + }, + { + "start": 21260.72, + "end": 21263.56, + "probability": 0.8798 + }, + { + "start": 21264.34, + "end": 21268.98, + "probability": 0.9595 + }, + { + "start": 21269.44, + "end": 21271.14, + "probability": 0.9768 + }, + { + "start": 21271.92, + "end": 21273.16, + "probability": 0.9907 + }, + { + "start": 21274.26, + "end": 21275.09, + "probability": 0.9797 + }, + { + "start": 21275.92, + "end": 21278.94, + "probability": 0.9935 + }, + { + "start": 21280.22, + "end": 21281.68, + "probability": 0.8301 + }, + { + "start": 21282.26, + "end": 21284.66, + "probability": 0.9613 + }, + { + "start": 21285.56, + "end": 21287.0, + "probability": 0.7332 + }, + { + "start": 21287.94, + "end": 21289.9, + "probability": 0.8836 + }, + { + "start": 21290.3, + "end": 21291.04, + "probability": 0.9014 + }, + { + "start": 21291.68, + "end": 21292.62, + "probability": 0.8142 + }, + { + "start": 21293.18, + "end": 21294.36, + "probability": 0.7607 + }, + { + "start": 21295.16, + "end": 21298.08, + "probability": 0.986 + }, + { + "start": 21299.06, + "end": 21302.0, + "probability": 0.7796 + }, + { + "start": 21302.54, + "end": 21305.72, + "probability": 0.9571 + }, + { + "start": 21306.62, + "end": 21310.36, + "probability": 0.9916 + }, + { + "start": 21311.08, + "end": 21315.48, + "probability": 0.9949 + }, + { + "start": 21316.38, + "end": 21321.12, + "probability": 0.9626 + }, + { + "start": 21322.0, + "end": 21322.78, + "probability": 0.9703 + }, + { + "start": 21323.38, + "end": 21325.42, + "probability": 0.9648 + }, + { + "start": 21326.14, + "end": 21330.2, + "probability": 0.9952 + }, + { + "start": 21330.36, + "end": 21331.27, + "probability": 0.9539 + }, + { + "start": 21332.04, + "end": 21332.95, + "probability": 0.7784 + }, + { + "start": 21333.58, + "end": 21336.89, + "probability": 0.8896 + }, + { + "start": 21339.2, + "end": 21341.84, + "probability": 0.9343 + }, + { + "start": 21342.0, + "end": 21345.18, + "probability": 0.8354 + }, + { + "start": 21345.28, + "end": 21345.88, + "probability": 0.2887 + }, + { + "start": 21347.14, + "end": 21352.22, + "probability": 0.879 + }, + { + "start": 21352.88, + "end": 21354.48, + "probability": 0.8169 + }, + { + "start": 21355.72, + "end": 21357.94, + "probability": 0.7228 + }, + { + "start": 21358.36, + "end": 21362.82, + "probability": 0.8281 + }, + { + "start": 21362.84, + "end": 21364.5, + "probability": 0.5609 + }, + { + "start": 21365.14, + "end": 21370.9, + "probability": 0.9938 + }, + { + "start": 21371.48, + "end": 21372.02, + "probability": 0.7062 + }, + { + "start": 21373.06, + "end": 21377.0, + "probability": 0.946 + }, + { + "start": 21377.7, + "end": 21380.08, + "probability": 0.9721 + }, + { + "start": 21380.56, + "end": 21381.7, + "probability": 0.9368 + }, + { + "start": 21382.44, + "end": 21383.6, + "probability": 0.8924 + }, + { + "start": 21384.42, + "end": 21385.78, + "probability": 0.9945 + }, + { + "start": 21385.82, + "end": 21387.0, + "probability": 0.9937 + }, + { + "start": 21387.48, + "end": 21387.8, + "probability": 0.395 + }, + { + "start": 21387.96, + "end": 21388.2, + "probability": 0.1762 + }, + { + "start": 21388.2, + "end": 21389.18, + "probability": 0.995 + }, + { + "start": 21389.32, + "end": 21391.1, + "probability": 0.4176 + }, + { + "start": 21391.34, + "end": 21393.74, + "probability": 0.9103 + }, + { + "start": 21393.74, + "end": 21395.28, + "probability": 0.9165 + }, + { + "start": 21395.62, + "end": 21396.3, + "probability": 0.6801 + }, + { + "start": 21396.98, + "end": 21397.38, + "probability": 0.7441 + }, + { + "start": 21397.6, + "end": 21398.64, + "probability": 0.6512 + }, + { + "start": 21398.66, + "end": 21399.29, + "probability": 0.9264 + }, + { + "start": 21400.02, + "end": 21403.4, + "probability": 0.9736 + }, + { + "start": 21403.4, + "end": 21404.82, + "probability": 0.7636 + }, + { + "start": 21404.86, + "end": 21408.32, + "probability": 0.8567 + }, + { + "start": 21408.58, + "end": 21411.38, + "probability": 0.9097 + }, + { + "start": 21412.04, + "end": 21413.08, + "probability": 0.5083 + }, + { + "start": 21413.54, + "end": 21414.4, + "probability": 0.9693 + }, + { + "start": 21415.14, + "end": 21415.36, + "probability": 0.9551 + }, + { + "start": 21416.18, + "end": 21416.88, + "probability": 0.656 + }, + { + "start": 21417.92, + "end": 21419.36, + "probability": 0.7172 + }, + { + "start": 21419.5, + "end": 21420.28, + "probability": 0.8183 + }, + { + "start": 21420.38, + "end": 21424.36, + "probability": 0.9514 + }, + { + "start": 21425.7, + "end": 21427.52, + "probability": 0.9702 + }, + { + "start": 21428.32, + "end": 21432.06, + "probability": 0.975 + }, + { + "start": 21432.6, + "end": 21436.76, + "probability": 0.7602 + }, + { + "start": 21436.76, + "end": 21437.9, + "probability": 0.5115 + }, + { + "start": 21438.52, + "end": 21439.86, + "probability": 0.9465 + }, + { + "start": 21440.38, + "end": 21442.76, + "probability": 0.7071 + }, + { + "start": 21443.48, + "end": 21444.28, + "probability": 0.8371 + }, + { + "start": 21444.62, + "end": 21445.48, + "probability": 0.7861 + }, + { + "start": 21447.16, + "end": 21450.12, + "probability": 0.8309 + }, + { + "start": 21450.12, + "end": 21454.6, + "probability": 0.9985 + }, + { + "start": 21454.68, + "end": 21455.22, + "probability": 0.5221 + }, + { + "start": 21455.42, + "end": 21456.48, + "probability": 0.8599 + }, + { + "start": 21457.08, + "end": 21460.52, + "probability": 0.9846 + }, + { + "start": 21461.52, + "end": 21465.02, + "probability": 0.8185 + }, + { + "start": 21465.64, + "end": 21467.0, + "probability": 0.8622 + }, + { + "start": 21467.88, + "end": 21471.22, + "probability": 0.9946 + }, + { + "start": 21471.28, + "end": 21473.22, + "probability": 0.9664 + }, + { + "start": 21473.92, + "end": 21474.75, + "probability": 0.9669 + }, + { + "start": 21475.36, + "end": 21475.8, + "probability": 0.847 + }, + { + "start": 21476.92, + "end": 21478.02, + "probability": 0.8682 + }, + { + "start": 21481.22, + "end": 21481.54, + "probability": 0.0282 + }, + { + "start": 21481.6, + "end": 21482.48, + "probability": 0.7746 + }, + { + "start": 21483.06, + "end": 21485.96, + "probability": 0.8064 + }, + { + "start": 21487.1, + "end": 21488.78, + "probability": 0.9987 + }, + { + "start": 21489.9, + "end": 21490.24, + "probability": 0.4545 + }, + { + "start": 21490.34, + "end": 21490.72, + "probability": 0.9903 + }, + { + "start": 21490.74, + "end": 21492.06, + "probability": 0.7848 + }, + { + "start": 21492.24, + "end": 21493.18, + "probability": 0.9847 + }, + { + "start": 21494.04, + "end": 21494.82, + "probability": 0.9951 + }, + { + "start": 21496.06, + "end": 21500.92, + "probability": 0.9636 + }, + { + "start": 21501.74, + "end": 21503.74, + "probability": 0.9367 + }, + { + "start": 21506.22, + "end": 21508.32, + "probability": 0.9858 + }, + { + "start": 21508.96, + "end": 21511.82, + "probability": 0.9944 + }, + { + "start": 21512.24, + "end": 21514.76, + "probability": 0.9924 + }, + { + "start": 21515.58, + "end": 21519.0, + "probability": 0.8432 + }, + { + "start": 21519.34, + "end": 21520.62, + "probability": 0.7981 + }, + { + "start": 21521.1, + "end": 21522.12, + "probability": 0.9852 + }, + { + "start": 21522.24, + "end": 21523.58, + "probability": 0.9856 + }, + { + "start": 21523.98, + "end": 21528.82, + "probability": 0.986 + }, + { + "start": 21529.18, + "end": 21529.8, + "probability": 0.8342 + }, + { + "start": 21530.06, + "end": 21530.36, + "probability": 0.6894 + }, + { + "start": 21530.44, + "end": 21532.68, + "probability": 0.7055 + }, + { + "start": 21533.3, + "end": 21537.14, + "probability": 0.8528 + }, + { + "start": 21538.2, + "end": 21541.1, + "probability": 0.9801 + }, + { + "start": 21541.64, + "end": 21542.08, + "probability": 0.481 + }, + { + "start": 21542.7, + "end": 21544.92, + "probability": 0.9701 + }, + { + "start": 21546.0, + "end": 21548.16, + "probability": 0.9915 + }, + { + "start": 21548.38, + "end": 21552.66, + "probability": 0.6414 + }, + { + "start": 21553.72, + "end": 21556.14, + "probability": 0.5516 + }, + { + "start": 21556.3, + "end": 21558.3, + "probability": 0.9492 + }, + { + "start": 21558.84, + "end": 21561.06, + "probability": 0.9932 + }, + { + "start": 21561.38, + "end": 21562.89, + "probability": 0.998 + }, + { + "start": 21563.7, + "end": 21565.3, + "probability": 0.724 + }, + { + "start": 21565.42, + "end": 21567.86, + "probability": 0.947 + }, + { + "start": 21568.4, + "end": 21569.34, + "probability": 0.8831 + }, + { + "start": 21570.02, + "end": 21571.46, + "probability": 0.6927 + }, + { + "start": 21571.46, + "end": 21572.8, + "probability": 0.958 + }, + { + "start": 21574.28, + "end": 21575.52, + "probability": 0.9809 + }, + { + "start": 21576.1, + "end": 21576.7, + "probability": 0.6988 + }, + { + "start": 21576.84, + "end": 21577.9, + "probability": 0.9096 + }, + { + "start": 21578.0, + "end": 21578.62, + "probability": 0.5192 + }, + { + "start": 21579.04, + "end": 21581.44, + "probability": 0.9864 + }, + { + "start": 21581.52, + "end": 21582.26, + "probability": 0.8474 + }, + { + "start": 21582.58, + "end": 21582.9, + "probability": 0.8484 + }, + { + "start": 21582.98, + "end": 21584.34, + "probability": 0.8215 + }, + { + "start": 21584.86, + "end": 21586.1, + "probability": 0.8516 + }, + { + "start": 21586.14, + "end": 21591.14, + "probability": 0.9463 + }, + { + "start": 21591.3, + "end": 21591.32, + "probability": 0.3868 + }, + { + "start": 21591.32, + "end": 21593.44, + "probability": 0.9513 + }, + { + "start": 21593.46, + "end": 21599.04, + "probability": 0.9106 + }, + { + "start": 21599.56, + "end": 21603.62, + "probability": 0.9185 + }, + { + "start": 21604.6, + "end": 21606.56, + "probability": 0.8496 + }, + { + "start": 21606.98, + "end": 21608.5, + "probability": 0.6056 + }, + { + "start": 21608.52, + "end": 21608.62, + "probability": 0.8205 + }, + { + "start": 21608.64, + "end": 21610.64, + "probability": 0.9295 + }, + { + "start": 21610.7, + "end": 21613.74, + "probability": 0.9631 + }, + { + "start": 21613.82, + "end": 21615.2, + "probability": 0.9225 + }, + { + "start": 21615.38, + "end": 21620.0, + "probability": 0.9572 + }, + { + "start": 21620.24, + "end": 21623.24, + "probability": 0.9341 + }, + { + "start": 21623.98, + "end": 21627.1, + "probability": 0.9968 + }, + { + "start": 21627.82, + "end": 21628.38, + "probability": 0.7073 + }, + { + "start": 21629.22, + "end": 21634.36, + "probability": 0.9897 + }, + { + "start": 21634.36, + "end": 21639.48, + "probability": 0.9912 + }, + { + "start": 21639.88, + "end": 21642.24, + "probability": 0.8739 + }, + { + "start": 21642.64, + "end": 21643.38, + "probability": 0.9399 + }, + { + "start": 21644.38, + "end": 21646.04, + "probability": 0.9875 + }, + { + "start": 21646.68, + "end": 21650.1, + "probability": 0.957 + }, + { + "start": 21650.98, + "end": 21652.4, + "probability": 0.9579 + }, + { + "start": 21653.08, + "end": 21655.08, + "probability": 0.9773 + }, + { + "start": 21656.04, + "end": 21661.6, + "probability": 0.9229 + }, + { + "start": 21662.6, + "end": 21665.28, + "probability": 0.7853 + }, + { + "start": 21666.1, + "end": 21671.56, + "probability": 0.9769 + }, + { + "start": 21672.14, + "end": 21673.84, + "probability": 0.9922 + }, + { + "start": 21674.62, + "end": 21677.8, + "probability": 0.9939 + }, + { + "start": 21678.66, + "end": 21685.8, + "probability": 0.9734 + }, + { + "start": 21685.88, + "end": 21686.76, + "probability": 0.7565 + }, + { + "start": 21686.88, + "end": 21691.12, + "probability": 0.9956 + }, + { + "start": 21691.3, + "end": 21694.92, + "probability": 0.6612 + }, + { + "start": 21694.96, + "end": 21695.44, + "probability": 0.6468 + }, + { + "start": 21697.62, + "end": 21702.38, + "probability": 0.5658 + }, + { + "start": 21703.18, + "end": 21704.4, + "probability": 0.9616 + }, + { + "start": 21705.76, + "end": 21707.2, + "probability": 0.9835 + }, + { + "start": 21708.14, + "end": 21712.3, + "probability": 0.8455 + }, + { + "start": 21713.12, + "end": 21716.4, + "probability": 0.9937 + }, + { + "start": 21716.4, + "end": 21720.3, + "probability": 0.9685 + }, + { + "start": 21720.42, + "end": 21721.7, + "probability": 0.998 + }, + { + "start": 21722.58, + "end": 21725.7, + "probability": 0.8017 + }, + { + "start": 21726.22, + "end": 21728.06, + "probability": 0.6739 + }, + { + "start": 21728.44, + "end": 21729.98, + "probability": 0.6725 + }, + { + "start": 21730.46, + "end": 21732.2, + "probability": 0.892 + }, + { + "start": 21732.24, + "end": 21732.88, + "probability": 0.7167 + }, + { + "start": 21733.52, + "end": 21737.08, + "probability": 0.9479 + }, + { + "start": 21737.48, + "end": 21737.82, + "probability": 0.5302 + }, + { + "start": 21737.88, + "end": 21740.36, + "probability": 0.8523 + }, + { + "start": 21741.1, + "end": 21745.7, + "probability": 0.951 + }, + { + "start": 21746.34, + "end": 21751.58, + "probability": 0.9347 + }, + { + "start": 21752.22, + "end": 21754.0, + "probability": 0.9919 + }, + { + "start": 21754.88, + "end": 21760.54, + "probability": 0.9493 + }, + { + "start": 21761.48, + "end": 21765.0, + "probability": 0.9496 + }, + { + "start": 21765.98, + "end": 21768.6, + "probability": 0.9556 + }, + { + "start": 21769.24, + "end": 21771.52, + "probability": 0.9976 + }, + { + "start": 21772.32, + "end": 21776.2, + "probability": 0.9387 + }, + { + "start": 21776.52, + "end": 21777.52, + "probability": 0.8902 + }, + { + "start": 21777.82, + "end": 21779.32, + "probability": 0.9453 + }, + { + "start": 21780.2, + "end": 21782.68, + "probability": 0.9917 + }, + { + "start": 21783.44, + "end": 21786.24, + "probability": 0.9851 + }, + { + "start": 21786.94, + "end": 21790.48, + "probability": 0.9832 + }, + { + "start": 21792.2, + "end": 21795.52, + "probability": 0.8994 + }, + { + "start": 21796.66, + "end": 21798.3, + "probability": 0.896 + }, + { + "start": 21798.86, + "end": 21800.12, + "probability": 0.9329 + }, + { + "start": 21800.26, + "end": 21802.02, + "probability": 0.9897 + }, + { + "start": 21802.84, + "end": 21804.14, + "probability": 0.9086 + }, + { + "start": 21805.44, + "end": 21806.86, + "probability": 0.9712 + }, + { + "start": 21807.48, + "end": 21810.64, + "probability": 0.9677 + }, + { + "start": 21811.42, + "end": 21814.0, + "probability": 0.9547 + }, + { + "start": 21816.12, + "end": 21818.4, + "probability": 0.7666 + }, + { + "start": 21819.22, + "end": 21821.24, + "probability": 0.9236 + }, + { + "start": 21821.54, + "end": 21824.34, + "probability": 0.9903 + }, + { + "start": 21824.96, + "end": 21828.2, + "probability": 0.9448 + }, + { + "start": 21829.02, + "end": 21829.42, + "probability": 0.6875 + }, + { + "start": 21830.12, + "end": 21831.92, + "probability": 0.9902 + }, + { + "start": 21832.48, + "end": 21836.42, + "probability": 0.9749 + }, + { + "start": 21837.12, + "end": 21839.26, + "probability": 0.8891 + }, + { + "start": 21840.06, + "end": 21842.52, + "probability": 0.9828 + }, + { + "start": 21843.74, + "end": 21846.14, + "probability": 0.7996 + }, + { + "start": 21846.9, + "end": 21848.67, + "probability": 0.9974 + }, + { + "start": 21849.24, + "end": 21854.08, + "probability": 0.9871 + }, + { + "start": 21854.64, + "end": 21861.84, + "probability": 0.8419 + }, + { + "start": 21862.36, + "end": 21864.42, + "probability": 0.8377 + }, + { + "start": 21864.82, + "end": 21868.75, + "probability": 0.9884 + }, + { + "start": 21869.56, + "end": 21871.4, + "probability": 0.9862 + }, + { + "start": 21871.52, + "end": 21872.3, + "probability": 0.7764 + }, + { + "start": 21872.4, + "end": 21877.4, + "probability": 0.9492 + }, + { + "start": 21877.98, + "end": 21883.36, + "probability": 0.9883 + }, + { + "start": 21883.84, + "end": 21884.92, + "probability": 0.9141 + }, + { + "start": 21885.06, + "end": 21888.08, + "probability": 0.9883 + }, + { + "start": 21888.64, + "end": 21894.02, + "probability": 0.971 + }, + { + "start": 21894.02, + "end": 21898.5, + "probability": 0.9756 + }, + { + "start": 21899.02, + "end": 21905.88, + "probability": 0.8775 + }, + { + "start": 21906.8, + "end": 21908.46, + "probability": 0.9127 + }, + { + "start": 21909.26, + "end": 21911.68, + "probability": 0.8296 + }, + { + "start": 21912.58, + "end": 21913.82, + "probability": 0.7869 + }, + { + "start": 21914.84, + "end": 21917.8, + "probability": 0.8381 + }, + { + "start": 21918.54, + "end": 21919.58, + "probability": 0.4925 + }, + { + "start": 21920.26, + "end": 21923.28, + "probability": 0.955 + }, + { + "start": 21924.06, + "end": 21925.32, + "probability": 0.9543 + }, + { + "start": 21926.12, + "end": 21929.2, + "probability": 0.9862 + }, + { + "start": 21929.24, + "end": 21930.74, + "probability": 0.9893 + }, + { + "start": 21931.22, + "end": 21932.56, + "probability": 0.9604 + }, + { + "start": 21932.98, + "end": 21935.62, + "probability": 0.9944 + }, + { + "start": 21936.16, + "end": 21938.76, + "probability": 0.9976 + }, + { + "start": 21939.36, + "end": 21941.78, + "probability": 0.9814 + }, + { + "start": 21942.5, + "end": 21943.32, + "probability": 0.9607 + }, + { + "start": 21943.76, + "end": 21947.64, + "probability": 0.9824 + }, + { + "start": 21948.14, + "end": 21948.64, + "probability": 0.743 + }, + { + "start": 21949.78, + "end": 21953.74, + "probability": 0.894 + }, + { + "start": 21955.31, + "end": 21956.2, + "probability": 0.8505 + }, + { + "start": 21958.84, + "end": 21960.46, + "probability": 0.8704 + }, + { + "start": 21961.22, + "end": 21964.14, + "probability": 0.9643 + }, + { + "start": 21964.58, + "end": 21967.9, + "probability": 0.9949 + }, + { + "start": 21968.14, + "end": 21972.3, + "probability": 0.9979 + }, + { + "start": 21972.36, + "end": 21974.34, + "probability": 0.6319 + }, + { + "start": 21974.44, + "end": 21978.56, + "probability": 0.8314 + }, + { + "start": 21978.94, + "end": 21980.28, + "probability": 0.8782 + }, + { + "start": 21980.74, + "end": 21982.78, + "probability": 0.9394 + }, + { + "start": 21983.02, + "end": 21983.24, + "probability": 0.7273 + }, + { + "start": 21983.36, + "end": 21984.28, + "probability": 0.9821 + }, + { + "start": 21984.68, + "end": 21985.58, + "probability": 0.7935 + }, + { + "start": 21986.16, + "end": 21987.14, + "probability": 0.8258 + }, + { + "start": 21987.24, + "end": 21987.82, + "probability": 0.9583 + }, + { + "start": 21988.39, + "end": 21994.52, + "probability": 0.9722 + }, + { + "start": 21995.54, + "end": 21998.98, + "probability": 0.9879 + }, + { + "start": 21999.62, + "end": 22000.7, + "probability": 0.7581 + }, + { + "start": 22000.74, + "end": 22002.66, + "probability": 0.9566 + }, + { + "start": 22003.2, + "end": 22005.16, + "probability": 0.9729 + }, + { + "start": 22005.72, + "end": 22007.66, + "probability": 0.9883 + }, + { + "start": 22007.76, + "end": 22008.68, + "probability": 0.9584 + }, + { + "start": 22008.76, + "end": 22010.94, + "probability": 0.9905 + }, + { + "start": 22011.3, + "end": 22014.54, + "probability": 0.9486 + }, + { + "start": 22014.7, + "end": 22015.58, + "probability": 0.8229 + }, + { + "start": 22017.35, + "end": 22019.46, + "probability": 0.9813 + }, + { + "start": 22020.2, + "end": 22020.76, + "probability": 0.8149 + }, + { + "start": 22021.34, + "end": 22023.28, + "probability": 0.8039 + }, + { + "start": 22038.51, + "end": 22039.62, + "probability": 0.946 + }, + { + "start": 22039.62, + "end": 22039.62, + "probability": 0.1559 + }, + { + "start": 22039.62, + "end": 22039.62, + "probability": 0.0454 + }, + { + "start": 22039.62, + "end": 22039.62, + "probability": 0.1788 + }, + { + "start": 22039.62, + "end": 22039.9, + "probability": 0.0742 + }, + { + "start": 22039.9, + "end": 22039.96, + "probability": 0.1401 + }, + { + "start": 22059.5, + "end": 22059.5, + "probability": 0.0023 + }, + { + "start": 22060.7, + "end": 22062.6, + "probability": 0.9785 + }, + { + "start": 22062.7, + "end": 22063.62, + "probability": 0.9912 + }, + { + "start": 22064.66, + "end": 22065.76, + "probability": 0.998 + }, + { + "start": 22065.88, + "end": 22067.3, + "probability": 0.9976 + }, + { + "start": 22068.6, + "end": 22070.14, + "probability": 0.8927 + }, + { + "start": 22070.86, + "end": 22073.28, + "probability": 0.8973 + }, + { + "start": 22073.64, + "end": 22077.58, + "probability": 0.9864 + }, + { + "start": 22078.56, + "end": 22082.18, + "probability": 0.9558 + }, + { + "start": 22082.38, + "end": 22082.98, + "probability": 0.6026 + }, + { + "start": 22083.04, + "end": 22085.92, + "probability": 0.9852 + }, + { + "start": 22086.98, + "end": 22090.08, + "probability": 0.9492 + }, + { + "start": 22091.92, + "end": 22094.8, + "probability": 0.9948 + }, + { + "start": 22095.86, + "end": 22097.16, + "probability": 0.9995 + }, + { + "start": 22097.16, + "end": 22098.34, + "probability": 0.9976 + }, + { + "start": 22098.72, + "end": 22100.14, + "probability": 0.9632 + }, + { + "start": 22100.7, + "end": 22101.65, + "probability": 0.9614 + }, + { + "start": 22102.86, + "end": 22108.28, + "probability": 0.9759 + }, + { + "start": 22109.18, + "end": 22111.02, + "probability": 0.9309 + }, + { + "start": 22112.36, + "end": 22114.12, + "probability": 0.7862 + }, + { + "start": 22114.72, + "end": 22117.14, + "probability": 0.5676 + }, + { + "start": 22117.44, + "end": 22119.27, + "probability": 0.9829 + }, + { + "start": 22120.24, + "end": 22120.84, + "probability": 0.8251 + }, + { + "start": 22121.78, + "end": 22124.38, + "probability": 0.8887 + }, + { + "start": 22125.3, + "end": 22129.66, + "probability": 0.9722 + }, + { + "start": 22132.76, + "end": 22133.64, + "probability": 0.1597 + }, + { + "start": 22133.64, + "end": 22135.11, + "probability": 0.299 + }, + { + "start": 22136.52, + "end": 22138.04, + "probability": 0.7582 + }, + { + "start": 22139.14, + "end": 22141.4, + "probability": 0.6003 + }, + { + "start": 22142.58, + "end": 22143.94, + "probability": 0.8607 + }, + { + "start": 22145.0, + "end": 22149.87, + "probability": 0.9526 + }, + { + "start": 22151.34, + "end": 22154.22, + "probability": 0.7914 + }, + { + "start": 22155.12, + "end": 22160.46, + "probability": 0.9704 + }, + { + "start": 22160.46, + "end": 22161.02, + "probability": 0.4885 + }, + { + "start": 22161.06, + "end": 22164.52, + "probability": 0.9939 + }, + { + "start": 22165.4, + "end": 22170.26, + "probability": 0.9973 + }, + { + "start": 22170.4, + "end": 22171.22, + "probability": 0.7178 + }, + { + "start": 22172.82, + "end": 22176.94, + "probability": 0.4939 + }, + { + "start": 22178.12, + "end": 22182.02, + "probability": 0.9902 + }, + { + "start": 22182.14, + "end": 22183.28, + "probability": 0.845 + }, + { + "start": 22183.38, + "end": 22184.97, + "probability": 0.8474 + }, + { + "start": 22185.96, + "end": 22188.6, + "probability": 0.9755 + }, + { + "start": 22189.96, + "end": 22191.76, + "probability": 0.7698 + }, + { + "start": 22192.88, + "end": 22194.22, + "probability": 0.98 + }, + { + "start": 22194.34, + "end": 22198.1, + "probability": 0.6559 + }, + { + "start": 22198.38, + "end": 22198.48, + "probability": 0.9023 + }, + { + "start": 22199.18, + "end": 22200.02, + "probability": 0.7249 + }, + { + "start": 22200.28, + "end": 22202.82, + "probability": 0.7943 + }, + { + "start": 22202.98, + "end": 22203.78, + "probability": 0.7054 + }, + { + "start": 22203.84, + "end": 22204.76, + "probability": 0.9478 + }, + { + "start": 22205.88, + "end": 22207.33, + "probability": 0.968 + }, + { + "start": 22209.38, + "end": 22211.22, + "probability": 0.9293 + }, + { + "start": 22212.14, + "end": 22212.5, + "probability": 0.613 + }, + { + "start": 22212.54, + "end": 22212.86, + "probability": 0.4023 + }, + { + "start": 22212.9, + "end": 22215.84, + "probability": 0.8527 + }, + { + "start": 22216.98, + "end": 22216.98, + "probability": 0.1383 + }, + { + "start": 22216.98, + "end": 22220.35, + "probability": 0.7101 + }, + { + "start": 22221.74, + "end": 22223.92, + "probability": 0.8265 + }, + { + "start": 22224.24, + "end": 22224.98, + "probability": 0.6971 + }, + { + "start": 22224.98, + "end": 22225.08, + "probability": 0.9006 + }, + { + "start": 22225.3, + "end": 22228.78, + "probability": 0.675 + }, + { + "start": 22229.0, + "end": 22230.42, + "probability": 0.9885 + }, + { + "start": 22231.1, + "end": 22232.9, + "probability": 0.9941 + }, + { + "start": 22234.1, + "end": 22235.42, + "probability": 0.988 + }, + { + "start": 22236.36, + "end": 22240.32, + "probability": 0.9854 + }, + { + "start": 22240.5, + "end": 22242.58, + "probability": 0.9871 + }, + { + "start": 22246.2, + "end": 22248.08, + "probability": 0.9823 + }, + { + "start": 22248.86, + "end": 22249.5, + "probability": 0.6938 + }, + { + "start": 22250.04, + "end": 22251.72, + "probability": 0.9832 + }, + { + "start": 22252.52, + "end": 22255.98, + "probability": 0.8962 + }, + { + "start": 22257.61, + "end": 22260.7, + "probability": 0.9921 + }, + { + "start": 22262.51, + "end": 22264.27, + "probability": 0.8013 + }, + { + "start": 22264.82, + "end": 22268.74, + "probability": 0.8237 + }, + { + "start": 22268.76, + "end": 22269.74, + "probability": 0.2971 + }, + { + "start": 22270.26, + "end": 22270.66, + "probability": 0.6262 + }, + { + "start": 22271.5, + "end": 22275.38, + "probability": 0.9365 + }, + { + "start": 22276.32, + "end": 22278.96, + "probability": 0.999 + }, + { + "start": 22280.0, + "end": 22280.64, + "probability": 0.693 + }, + { + "start": 22281.4, + "end": 22285.94, + "probability": 0.8481 + }, + { + "start": 22286.94, + "end": 22287.71, + "probability": 0.9158 + }, + { + "start": 22288.54, + "end": 22289.29, + "probability": 0.9867 + }, + { + "start": 22289.52, + "end": 22290.74, + "probability": 0.9055 + }, + { + "start": 22290.94, + "end": 22292.54, + "probability": 0.8523 + }, + { + "start": 22293.42, + "end": 22294.81, + "probability": 0.9907 + }, + { + "start": 22295.96, + "end": 22299.02, + "probability": 0.9866 + }, + { + "start": 22299.62, + "end": 22301.62, + "probability": 0.9743 + }, + { + "start": 22302.14, + "end": 22305.32, + "probability": 0.991 + }, + { + "start": 22306.36, + "end": 22308.66, + "probability": 0.9912 + }, + { + "start": 22309.52, + "end": 22311.8, + "probability": 0.9984 + }, + { + "start": 22312.7, + "end": 22316.38, + "probability": 0.9926 + }, + { + "start": 22317.7, + "end": 22318.87, + "probability": 0.7883 + }, + { + "start": 22319.34, + "end": 22322.84, + "probability": 0.9458 + }, + { + "start": 22323.34, + "end": 22326.0, + "probability": 0.9969 + }, + { + "start": 22327.92, + "end": 22330.48, + "probability": 0.9503 + }, + { + "start": 22331.2, + "end": 22333.12, + "probability": 0.9882 + }, + { + "start": 22333.12, + "end": 22334.94, + "probability": 0.7437 + }, + { + "start": 22335.06, + "end": 22337.48, + "probability": 0.9912 + }, + { + "start": 22337.68, + "end": 22338.8, + "probability": 0.9336 + }, + { + "start": 22339.72, + "end": 22340.83, + "probability": 0.959 + }, + { + "start": 22341.04, + "end": 22341.4, + "probability": 0.9681 + }, + { + "start": 22341.92, + "end": 22344.32, + "probability": 0.9994 + }, + { + "start": 22344.92, + "end": 22346.22, + "probability": 0.8734 + }, + { + "start": 22346.28, + "end": 22346.72, + "probability": 0.9338 + }, + { + "start": 22346.92, + "end": 22347.5, + "probability": 0.7033 + }, + { + "start": 22347.6, + "end": 22348.46, + "probability": 0.668 + }, + { + "start": 22348.78, + "end": 22351.88, + "probability": 0.9668 + }, + { + "start": 22351.98, + "end": 22354.97, + "probability": 0.9248 + }, + { + "start": 22355.66, + "end": 22356.96, + "probability": 0.9218 + }, + { + "start": 22357.3, + "end": 22358.26, + "probability": 0.8364 + }, + { + "start": 22358.3, + "end": 22359.08, + "probability": 0.9264 + }, + { + "start": 22359.18, + "end": 22359.6, + "probability": 0.6793 + }, + { + "start": 22359.94, + "end": 22361.66, + "probability": 0.8864 + }, + { + "start": 22363.22, + "end": 22365.14, + "probability": 0.8446 + }, + { + "start": 22365.64, + "end": 22366.58, + "probability": 0.9954 + }, + { + "start": 22367.02, + "end": 22367.87, + "probability": 0.4617 + }, + { + "start": 22368.62, + "end": 22369.58, + "probability": 0.9312 + }, + { + "start": 22369.8, + "end": 22370.18, + "probability": 0.6349 + }, + { + "start": 22370.3, + "end": 22370.74, + "probability": 0.6483 + }, + { + "start": 22370.86, + "end": 22371.98, + "probability": 0.2509 + }, + { + "start": 22372.1, + "end": 22372.89, + "probability": 0.9204 + }, + { + "start": 22373.98, + "end": 22375.36, + "probability": 0.6804 + }, + { + "start": 22376.14, + "end": 22378.4, + "probability": 0.6389 + }, + { + "start": 22379.18, + "end": 22380.68, + "probability": 0.9983 + }, + { + "start": 22381.8, + "end": 22382.86, + "probability": 0.7783 + }, + { + "start": 22383.68, + "end": 22387.06, + "probability": 0.8818 + }, + { + "start": 22387.66, + "end": 22388.84, + "probability": 0.998 + }, + { + "start": 22389.5, + "end": 22390.38, + "probability": 0.9741 + }, + { + "start": 22391.1, + "end": 22391.46, + "probability": 0.8778 + }, + { + "start": 22392.34, + "end": 22393.8, + "probability": 0.6868 + }, + { + "start": 22394.4, + "end": 22395.64, + "probability": 0.8439 + }, + { + "start": 22397.22, + "end": 22399.34, + "probability": 0.9634 + }, + { + "start": 22399.78, + "end": 22401.02, + "probability": 0.8521 + }, + { + "start": 22401.16, + "end": 22401.56, + "probability": 0.6469 + }, + { + "start": 22401.64, + "end": 22402.14, + "probability": 0.7167 + }, + { + "start": 22402.5, + "end": 22403.32, + "probability": 0.9651 + }, + { + "start": 22404.42, + "end": 22405.58, + "probability": 0.6778 + }, + { + "start": 22405.6, + "end": 22407.7, + "probability": 0.9759 + }, + { + "start": 22408.34, + "end": 22408.64, + "probability": 0.2484 + }, + { + "start": 22408.72, + "end": 22408.72, + "probability": 0.2044 + }, + { + "start": 22408.72, + "end": 22409.1, + "probability": 0.5141 + }, + { + "start": 22409.54, + "end": 22411.72, + "probability": 0.6711 + }, + { + "start": 22411.74, + "end": 22412.82, + "probability": 0.7883 + }, + { + "start": 22412.82, + "end": 22412.86, + "probability": 0.382 + }, + { + "start": 22412.92, + "end": 22413.86, + "probability": 0.5761 + }, + { + "start": 22415.0, + "end": 22418.08, + "probability": 0.8923 + }, + { + "start": 22418.24, + "end": 22418.74, + "probability": 0.2921 + }, + { + "start": 22418.84, + "end": 22420.76, + "probability": 0.9896 + }, + { + "start": 22420.76, + "end": 22423.31, + "probability": 0.9631 + }, + { + "start": 22424.44, + "end": 22424.88, + "probability": 0.8568 + }, + { + "start": 22426.14, + "end": 22426.58, + "probability": 0.8507 + }, + { + "start": 22427.22, + "end": 22427.74, + "probability": 0.6554 + }, + { + "start": 22427.82, + "end": 22428.2, + "probability": 0.664 + }, + { + "start": 22428.38, + "end": 22429.62, + "probability": 0.7546 + }, + { + "start": 22429.66, + "end": 22430.98, + "probability": 0.7158 + }, + { + "start": 22431.78, + "end": 22433.72, + "probability": 0.8004 + }, + { + "start": 22434.22, + "end": 22435.5, + "probability": 0.7599 + }, + { + "start": 22435.66, + "end": 22437.56, + "probability": 0.9927 + }, + { + "start": 22438.12, + "end": 22441.1, + "probability": 0.978 + }, + { + "start": 22441.22, + "end": 22442.44, + "probability": 0.9382 + }, + { + "start": 22443.24, + "end": 22445.54, + "probability": 0.927 + }, + { + "start": 22445.68, + "end": 22448.36, + "probability": 0.9819 + }, + { + "start": 22448.46, + "end": 22448.81, + "probability": 0.6186 + }, + { + "start": 22448.98, + "end": 22449.22, + "probability": 0.7792 + }, + { + "start": 22449.62, + "end": 22451.96, + "probability": 0.9665 + }, + { + "start": 22452.07, + "end": 22456.29, + "probability": 0.7089 + }, + { + "start": 22456.78, + "end": 22457.18, + "probability": 0.4815 + }, + { + "start": 22457.3, + "end": 22457.68, + "probability": 0.4873 + }, + { + "start": 22457.7, + "end": 22458.1, + "probability": 0.8302 + }, + { + "start": 22458.34, + "end": 22459.56, + "probability": 0.7461 + }, + { + "start": 22459.96, + "end": 22463.52, + "probability": 0.8348 + }, + { + "start": 22464.06, + "end": 22466.5, + "probability": 0.7641 + }, + { + "start": 22467.06, + "end": 22467.87, + "probability": 0.9844 + }, + { + "start": 22468.36, + "end": 22470.13, + "probability": 0.8388 + }, + { + "start": 22471.22, + "end": 22473.9, + "probability": 0.9927 + }, + { + "start": 22474.86, + "end": 22476.6, + "probability": 0.9918 + }, + { + "start": 22477.42, + "end": 22483.46, + "probability": 0.8816 + }, + { + "start": 22483.76, + "end": 22485.1, + "probability": 0.7772 + }, + { + "start": 22486.46, + "end": 22489.76, + "probability": 0.8374 + }, + { + "start": 22489.86, + "end": 22490.75, + "probability": 0.5877 + }, + { + "start": 22491.8, + "end": 22493.54, + "probability": 0.9627 + }, + { + "start": 22493.54, + "end": 22495.8, + "probability": 0.9877 + }, + { + "start": 22496.46, + "end": 22496.72, + "probability": 0.745 + }, + { + "start": 22496.8, + "end": 22497.57, + "probability": 0.8645 + }, + { + "start": 22498.2, + "end": 22498.32, + "probability": 0.5761 + }, + { + "start": 22498.66, + "end": 22500.02, + "probability": 0.735 + }, + { + "start": 22500.22, + "end": 22505.76, + "probability": 0.9529 + }, + { + "start": 22506.7, + "end": 22507.0, + "probability": 0.5074 + }, + { + "start": 22507.12, + "end": 22508.1, + "probability": 0.8798 + }, + { + "start": 22508.36, + "end": 22513.54, + "probability": 0.9796 + }, + { + "start": 22513.88, + "end": 22514.74, + "probability": 0.842 + }, + { + "start": 22515.32, + "end": 22516.14, + "probability": 0.6929 + }, + { + "start": 22516.48, + "end": 22517.0, + "probability": 0.9392 + }, + { + "start": 22517.38, + "end": 22518.62, + "probability": 0.8978 + }, + { + "start": 22519.44, + "end": 22522.98, + "probability": 0.9822 + }, + { + "start": 22524.48, + "end": 22525.97, + "probability": 0.7754 + }, + { + "start": 22526.28, + "end": 22526.98, + "probability": 0.8071 + }, + { + "start": 22527.22, + "end": 22531.0, + "probability": 0.8081 + }, + { + "start": 22531.7, + "end": 22535.14, + "probability": 0.9532 + }, + { + "start": 22535.4, + "end": 22537.74, + "probability": 0.9364 + }, + { + "start": 22537.86, + "end": 22540.12, + "probability": 0.9775 + }, + { + "start": 22540.52, + "end": 22545.48, + "probability": 0.8101 + }, + { + "start": 22546.74, + "end": 22551.82, + "probability": 0.8175 + }, + { + "start": 22552.36, + "end": 22553.15, + "probability": 0.6742 + }, + { + "start": 22553.26, + "end": 22553.38, + "probability": 0.616 + }, + { + "start": 22553.74, + "end": 22555.64, + "probability": 0.9731 + }, + { + "start": 22557.58, + "end": 22557.9, + "probability": 0.5083 + }, + { + "start": 22557.9, + "end": 22558.28, + "probability": 0.3672 + }, + { + "start": 22558.94, + "end": 22559.82, + "probability": 0.3973 + }, + { + "start": 22560.34, + "end": 22562.32, + "probability": 0.5108 + }, + { + "start": 22562.32, + "end": 22564.78, + "probability": 0.4893 + }, + { + "start": 22565.14, + "end": 22566.21, + "probability": 0.9127 + }, + { + "start": 22566.64, + "end": 22567.84, + "probability": 0.9092 + }, + { + "start": 22568.08, + "end": 22571.54, + "probability": 0.9972 + }, + { + "start": 22572.84, + "end": 22577.8, + "probability": 0.9027 + }, + { + "start": 22578.5, + "end": 22582.62, + "probability": 0.9987 + }, + { + "start": 22583.6, + "end": 22584.83, + "probability": 0.7999 + }, + { + "start": 22586.84, + "end": 22589.48, + "probability": 0.6278 + }, + { + "start": 22590.52, + "end": 22591.38, + "probability": 0.8042 + }, + { + "start": 22592.6, + "end": 22593.24, + "probability": 0.7946 + }, + { + "start": 22594.02, + "end": 22595.04, + "probability": 0.8264 + }, + { + "start": 22595.98, + "end": 22598.9, + "probability": 0.9436 + }, + { + "start": 22599.6, + "end": 22601.18, + "probability": 0.9473 + }, + { + "start": 22602.86, + "end": 22603.2, + "probability": 0.5741 + }, + { + "start": 22603.42, + "end": 22605.76, + "probability": 0.8733 + }, + { + "start": 22606.78, + "end": 22609.94, + "probability": 0.8684 + }, + { + "start": 22610.06, + "end": 22611.96, + "probability": 0.9898 + }, + { + "start": 22612.08, + "end": 22612.88, + "probability": 0.8066 + }, + { + "start": 22613.36, + "end": 22614.0, + "probability": 0.9458 + }, + { + "start": 22614.12, + "end": 22616.9, + "probability": 0.9641 + }, + { + "start": 22617.06, + "end": 22619.12, + "probability": 0.9993 + }, + { + "start": 22619.12, + "end": 22619.44, + "probability": 0.7479 + }, + { + "start": 22619.5, + "end": 22621.01, + "probability": 0.9932 + }, + { + "start": 22621.46, + "end": 22622.55, + "probability": 0.9575 + }, + { + "start": 22622.9, + "end": 22623.26, + "probability": 0.1192 + }, + { + "start": 22623.36, + "end": 22624.6, + "probability": 0.786 + }, + { + "start": 22624.66, + "end": 22625.52, + "probability": 0.2686 + }, + { + "start": 22625.54, + "end": 22625.6, + "probability": 0.4867 + }, + { + "start": 22625.6, + "end": 22627.45, + "probability": 0.9385 + }, + { + "start": 22627.86, + "end": 22628.12, + "probability": 0.5852 + }, + { + "start": 22628.12, + "end": 22629.2, + "probability": 0.8848 + }, + { + "start": 22629.58, + "end": 22630.44, + "probability": 0.69 + }, + { + "start": 22630.54, + "end": 22630.78, + "probability": 0.5755 + }, + { + "start": 22630.98, + "end": 22631.22, + "probability": 0.2317 + }, + { + "start": 22631.22, + "end": 22636.0, + "probability": 0.9717 + }, + { + "start": 22636.47, + "end": 22637.76, + "probability": 0.5174 + }, + { + "start": 22637.82, + "end": 22640.9, + "probability": 0.9602 + }, + { + "start": 22641.04, + "end": 22642.4, + "probability": 0.9619 + }, + { + "start": 22642.48, + "end": 22643.17, + "probability": 0.8379 + }, + { + "start": 22643.74, + "end": 22646.52, + "probability": 0.8927 + }, + { + "start": 22647.22, + "end": 22648.48, + "probability": 0.5826 + }, + { + "start": 22648.98, + "end": 22649.46, + "probability": 0.6174 + }, + { + "start": 22649.56, + "end": 22651.92, + "probability": 0.9197 + }, + { + "start": 22652.66, + "end": 22653.11, + "probability": 0.9009 + }, + { + "start": 22654.18, + "end": 22657.6, + "probability": 0.9753 + }, + { + "start": 22658.16, + "end": 22661.16, + "probability": 0.9539 + }, + { + "start": 22662.08, + "end": 22663.7, + "probability": 0.7025 + }, + { + "start": 22664.62, + "end": 22666.68, + "probability": 0.8535 + }, + { + "start": 22668.04, + "end": 22669.06, + "probability": 0.9727 + }, + { + "start": 22673.08, + "end": 22676.4, + "probability": 0.3493 + }, + { + "start": 22676.65, + "end": 22678.68, + "probability": 0.9731 + }, + { + "start": 22679.9, + "end": 22683.38, + "probability": 0.9388 + }, + { + "start": 22683.5, + "end": 22685.94, + "probability": 0.9689 + }, + { + "start": 22686.08, + "end": 22687.0, + "probability": 0.7457 + }, + { + "start": 22687.76, + "end": 22693.1, + "probability": 0.8704 + }, + { + "start": 22694.51, + "end": 22696.42, + "probability": 0.7515 + }, + { + "start": 22697.38, + "end": 22699.98, + "probability": 0.9846 + }, + { + "start": 22700.08, + "end": 22701.32, + "probability": 0.8675 + }, + { + "start": 22701.74, + "end": 22704.22, + "probability": 0.736 + }, + { + "start": 22704.84, + "end": 22707.3, + "probability": 0.9355 + }, + { + "start": 22708.45, + "end": 22710.56, + "probability": 0.8538 + }, + { + "start": 22711.3, + "end": 22711.66, + "probability": 0.9253 + }, + { + "start": 22711.66, + "end": 22713.16, + "probability": 0.701 + }, + { + "start": 22713.24, + "end": 22713.72, + "probability": 0.9359 + }, + { + "start": 22713.88, + "end": 22715.42, + "probability": 0.9842 + }, + { + "start": 22715.46, + "end": 22715.76, + "probability": 0.9047 + }, + { + "start": 22716.99, + "end": 22720.6, + "probability": 0.9451 + }, + { + "start": 22720.76, + "end": 22726.48, + "probability": 0.6626 + }, + { + "start": 22726.78, + "end": 22728.56, + "probability": 0.9974 + }, + { + "start": 22729.24, + "end": 22732.8, + "probability": 0.8116 + }, + { + "start": 22734.08, + "end": 22734.2, + "probability": 0.1837 + }, + { + "start": 22734.2, + "end": 22734.5, + "probability": 0.6236 + }, + { + "start": 22734.52, + "end": 22736.56, + "probability": 0.8397 + }, + { + "start": 22736.6, + "end": 22737.04, + "probability": 0.5593 + }, + { + "start": 22737.18, + "end": 22737.5, + "probability": 0.6539 + }, + { + "start": 22737.62, + "end": 22739.66, + "probability": 0.8487 + }, + { + "start": 22740.18, + "end": 22742.98, + "probability": 0.9485 + }, + { + "start": 22743.36, + "end": 22747.5, + "probability": 0.7944 + }, + { + "start": 22748.28, + "end": 22754.42, + "probability": 0.9277 + }, + { + "start": 22754.84, + "end": 22757.2, + "probability": 0.7304 + }, + { + "start": 22758.26, + "end": 22759.86, + "probability": 0.7453 + }, + { + "start": 22761.0, + "end": 22763.64, + "probability": 0.6373 + }, + { + "start": 22763.8, + "end": 22764.46, + "probability": 0.4404 + }, + { + "start": 22764.52, + "end": 22764.7, + "probability": 0.3271 + }, + { + "start": 22764.8, + "end": 22765.26, + "probability": 0.7135 + }, + { + "start": 22765.82, + "end": 22768.82, + "probability": 0.9989 + }, + { + "start": 22769.18, + "end": 22769.28, + "probability": 0.1243 + }, + { + "start": 22770.33, + "end": 22772.64, + "probability": 0.769 + }, + { + "start": 22772.7, + "end": 22775.5, + "probability": 0.9841 + }, + { + "start": 22776.04, + "end": 22777.8, + "probability": 0.9432 + }, + { + "start": 22777.84, + "end": 22778.36, + "probability": 0.6775 + }, + { + "start": 22778.74, + "end": 22779.9, + "probability": 0.813 + }, + { + "start": 22779.96, + "end": 22781.24, + "probability": 0.9369 + }, + { + "start": 22781.42, + "end": 22784.02, + "probability": 0.9735 + }, + { + "start": 22784.38, + "end": 22787.76, + "probability": 0.8514 + }, + { + "start": 22787.78, + "end": 22790.44, + "probability": 0.4926 + }, + { + "start": 22791.08, + "end": 22793.78, + "probability": 0.9863 + }, + { + "start": 22794.64, + "end": 22795.12, + "probability": 0.8863 + }, + { + "start": 22795.74, + "end": 22797.56, + "probability": 0.9628 + }, + { + "start": 22798.52, + "end": 22801.32, + "probability": 0.765 + }, + { + "start": 22801.76, + "end": 22803.24, + "probability": 0.6994 + }, + { + "start": 22803.42, + "end": 22804.26, + "probability": 0.9489 + }, + { + "start": 22807.24, + "end": 22810.6, + "probability": 0.967 + }, + { + "start": 22811.28, + "end": 22812.72, + "probability": 0.8365 + }, + { + "start": 22812.86, + "end": 22813.26, + "probability": 0.472 + }, + { + "start": 22813.32, + "end": 22813.52, + "probability": 0.8138 + }, + { + "start": 22813.88, + "end": 22817.94, + "probability": 0.8718 + }, + { + "start": 22817.94, + "end": 22821.96, + "probability": 0.7837 + }, + { + "start": 22822.08, + "end": 22823.14, + "probability": 0.5456 + }, + { + "start": 22823.68, + "end": 22826.98, + "probability": 0.6835 + }, + { + "start": 22827.62, + "end": 22833.22, + "probability": 0.9128 + }, + { + "start": 22833.84, + "end": 22834.74, + "probability": 0.7673 + }, + { + "start": 22835.62, + "end": 22838.56, + "probability": 0.7889 + }, + { + "start": 22839.2, + "end": 22842.86, + "probability": 0.8312 + }, + { + "start": 22843.42, + "end": 22845.62, + "probability": 0.9439 + }, + { + "start": 22846.26, + "end": 22849.7, + "probability": 0.7784 + }, + { + "start": 22850.08, + "end": 22852.12, + "probability": 0.9284 + }, + { + "start": 22853.32, + "end": 22856.98, + "probability": 0.8977 + }, + { + "start": 22857.1, + "end": 22859.82, + "probability": 0.8539 + }, + { + "start": 22860.78, + "end": 22866.08, + "probability": 0.747 + }, + { + "start": 22867.12, + "end": 22869.3, + "probability": 0.8156 + }, + { + "start": 22870.34, + "end": 22875.36, + "probability": 0.9099 + }, + { + "start": 22875.76, + "end": 22877.14, + "probability": 0.9584 + }, + { + "start": 22877.88, + "end": 22878.18, + "probability": 0.4962 + }, + { + "start": 22878.74, + "end": 22878.96, + "probability": 0.3726 + }, + { + "start": 22878.96, + "end": 22880.72, + "probability": 0.4842 + }, + { + "start": 22880.72, + "end": 22883.76, + "probability": 0.8424 + }, + { + "start": 22884.74, + "end": 22885.64, + "probability": 0.5066 + }, + { + "start": 22886.58, + "end": 22889.8, + "probability": 0.9188 + }, + { + "start": 22890.04, + "end": 22893.98, + "probability": 0.9593 + }, + { + "start": 22894.06, + "end": 22895.11, + "probability": 0.9233 + }, + { + "start": 22895.54, + "end": 22897.4, + "probability": 0.7513 + }, + { + "start": 22897.84, + "end": 22898.94, + "probability": 0.5477 + }, + { + "start": 22899.54, + "end": 22899.78, + "probability": 0.5152 + }, + { + "start": 22901.32, + "end": 22902.76, + "probability": 0.8163 + }, + { + "start": 22904.4, + "end": 22906.46, + "probability": 0.8723 + }, + { + "start": 22907.56, + "end": 22908.98, + "probability": 0.9268 + }, + { + "start": 22909.24, + "end": 22915.9, + "probability": 0.9592 + }, + { + "start": 22916.52, + "end": 22918.36, + "probability": 0.9012 + }, + { + "start": 22918.38, + "end": 22919.16, + "probability": 0.3432 + }, + { + "start": 22919.5, + "end": 22920.64, + "probability": 0.9956 + }, + { + "start": 22921.0, + "end": 22921.56, + "probability": 0.5321 + }, + { + "start": 22922.5, + "end": 22924.88, + "probability": 0.8901 + }, + { + "start": 22925.36, + "end": 22926.12, + "probability": 0.99 + }, + { + "start": 22926.8, + "end": 22928.4, + "probability": 0.8397 + }, + { + "start": 22929.14, + "end": 22930.28, + "probability": 0.9062 + }, + { + "start": 22930.32, + "end": 22931.74, + "probability": 0.9779 + }, + { + "start": 22932.32, + "end": 22933.08, + "probability": 0.7554 + }, + { + "start": 22933.66, + "end": 22935.5, + "probability": 0.9783 + }, + { + "start": 22936.36, + "end": 22937.12, + "probability": 0.7628 + }, + { + "start": 22937.16, + "end": 22940.12, + "probability": 0.9172 + }, + { + "start": 22940.9, + "end": 22943.24, + "probability": 0.8535 + }, + { + "start": 22943.76, + "end": 22944.6, + "probability": 0.9987 + }, + { + "start": 22945.2, + "end": 22946.48, + "probability": 0.8358 + }, + { + "start": 22946.88, + "end": 22948.56, + "probability": 0.9359 + }, + { + "start": 22948.7, + "end": 22951.98, + "probability": 0.9437 + }, + { + "start": 22952.96, + "end": 22953.5, + "probability": 0.5649 + }, + { + "start": 22953.62, + "end": 22954.26, + "probability": 0.4784 + }, + { + "start": 22954.66, + "end": 22960.4, + "probability": 0.9014 + }, + { + "start": 22960.56, + "end": 22961.96, + "probability": 0.9849 + }, + { + "start": 22962.54, + "end": 22963.42, + "probability": 0.729 + }, + { + "start": 22964.26, + "end": 22966.98, + "probability": 0.9911 + }, + { + "start": 22967.94, + "end": 22970.12, + "probability": 0.7816 + }, + { + "start": 22970.56, + "end": 22971.38, + "probability": 0.9091 + }, + { + "start": 22972.3, + "end": 22974.1, + "probability": 0.8956 + }, + { + "start": 22974.14, + "end": 22975.68, + "probability": 0.8429 + }, + { + "start": 22976.28, + "end": 22978.26, + "probability": 0.982 + }, + { + "start": 22978.59, + "end": 22982.82, + "probability": 0.9035 + }, + { + "start": 22983.08, + "end": 22983.72, + "probability": 0.9565 + }, + { + "start": 22983.88, + "end": 22986.3, + "probability": 0.9833 + }, + { + "start": 22987.38, + "end": 22990.62, + "probability": 0.9577 + }, + { + "start": 22990.78, + "end": 22991.04, + "probability": 0.6654 + }, + { + "start": 22991.62, + "end": 22992.66, + "probability": 0.361 + }, + { + "start": 22993.06, + "end": 22995.86, + "probability": 0.6257 + }, + { + "start": 22995.96, + "end": 22998.34, + "probability": 0.6896 + }, + { + "start": 22998.34, + "end": 22998.36, + "probability": 0.1587 + }, + { + "start": 22998.36, + "end": 22999.84, + "probability": 0.8002 + }, + { + "start": 23000.06, + "end": 23001.86, + "probability": 0.9167 + }, + { + "start": 23002.46, + "end": 23005.02, + "probability": 0.9917 + }, + { + "start": 23005.4, + "end": 23005.9, + "probability": 0.9686 + }, + { + "start": 23006.04, + "end": 23010.88, + "probability": 0.9807 + }, + { + "start": 23011.18, + "end": 23011.87, + "probability": 0.6782 + }, + { + "start": 23012.28, + "end": 23012.9, + "probability": 0.7392 + }, + { + "start": 23013.44, + "end": 23014.86, + "probability": 0.8277 + }, + { + "start": 23015.33, + "end": 23018.42, + "probability": 0.8717 + }, + { + "start": 23018.84, + "end": 23020.54, + "probability": 0.8818 + }, + { + "start": 23020.9, + "end": 23022.0, + "probability": 0.9835 + }, + { + "start": 23022.0, + "end": 23024.8, + "probability": 0.9186 + }, + { + "start": 23025.66, + "end": 23028.32, + "probability": 0.9927 + }, + { + "start": 23029.06, + "end": 23031.92, + "probability": 0.6529 + }, + { + "start": 23032.68, + "end": 23033.62, + "probability": 0.8805 + }, + { + "start": 23034.06, + "end": 23034.58, + "probability": 0.9097 + }, + { + "start": 23034.68, + "end": 23036.8, + "probability": 0.9686 + }, + { + "start": 23037.16, + "end": 23037.8, + "probability": 0.6316 + }, + { + "start": 23037.98, + "end": 23038.28, + "probability": 0.9382 + }, + { + "start": 23038.52, + "end": 23039.16, + "probability": 0.9741 + }, + { + "start": 23039.32, + "end": 23039.78, + "probability": 0.6996 + }, + { + "start": 23039.88, + "end": 23041.68, + "probability": 0.6262 + }, + { + "start": 23042.58, + "end": 23043.38, + "probability": 0.7541 + }, + { + "start": 23044.64, + "end": 23046.5, + "probability": 0.7707 + }, + { + "start": 23047.22, + "end": 23052.54, + "probability": 0.9688 + }, + { + "start": 23054.16, + "end": 23055.0, + "probability": 0.5573 + }, + { + "start": 23056.5, + "end": 23058.76, + "probability": 0.7305 + }, + { + "start": 23060.8, + "end": 23061.7, + "probability": 0.8129 + }, + { + "start": 23062.44, + "end": 23062.54, + "probability": 0.3661 + }, + { + "start": 23063.6, + "end": 23064.88, + "probability": 0.4353 + }, + { + "start": 23065.74, + "end": 23066.84, + "probability": 0.7579 + }, + { + "start": 23066.96, + "end": 23067.08, + "probability": 0.8535 + }, + { + "start": 23067.2, + "end": 23070.56, + "probability": 0.7786 + }, + { + "start": 23070.7, + "end": 23071.6, + "probability": 0.7055 + }, + { + "start": 23072.24, + "end": 23073.22, + "probability": 0.8098 + }, + { + "start": 23073.62, + "end": 23074.0, + "probability": 0.3678 + }, + { + "start": 23075.58, + "end": 23077.86, + "probability": 0.7947 + }, + { + "start": 23078.38, + "end": 23080.8, + "probability": 0.835 + }, + { + "start": 23080.84, + "end": 23081.47, + "probability": 0.6747 + }, + { + "start": 23082.34, + "end": 23083.8, + "probability": 0.9963 + }, + { + "start": 23084.64, + "end": 23084.82, + "probability": 0.6157 + }, + { + "start": 23085.64, + "end": 23087.36, + "probability": 0.8805 + }, + { + "start": 23088.42, + "end": 23089.54, + "probability": 0.6191 + }, + { + "start": 23090.66, + "end": 23094.2, + "probability": 0.9246 + }, + { + "start": 23095.02, + "end": 23095.68, + "probability": 0.8933 + }, + { + "start": 23096.46, + "end": 23097.14, + "probability": 0.7702 + }, + { + "start": 23098.8, + "end": 23101.46, + "probability": 0.6885 + }, + { + "start": 23102.02, + "end": 23103.36, + "probability": 0.6392 + }, + { + "start": 23104.96, + "end": 23105.06, + "probability": 0.0289 + }, + { + "start": 23105.66, + "end": 23107.3, + "probability": 0.5901 + }, + { + "start": 23107.42, + "end": 23107.76, + "probability": 0.8729 + }, + { + "start": 23108.26, + "end": 23112.38, + "probability": 0.8288 + }, + { + "start": 23113.72, + "end": 23115.58, + "probability": 0.9425 + }, + { + "start": 23117.04, + "end": 23118.16, + "probability": 0.9941 + }, + { + "start": 23118.64, + "end": 23118.94, + "probability": 0.9691 + }, + { + "start": 23119.02, + "end": 23124.6, + "probability": 0.8399 + }, + { + "start": 23125.44, + "end": 23128.42, + "probability": 0.9848 + }, + { + "start": 23128.5, + "end": 23129.56, + "probability": 0.998 + }, + { + "start": 23130.46, + "end": 23131.2, + "probability": 0.886 + }, + { + "start": 23131.52, + "end": 23134.28, + "probability": 0.918 + }, + { + "start": 23134.8, + "end": 23136.58, + "probability": 0.973 + }, + { + "start": 23136.94, + "end": 23137.54, + "probability": 0.884 + }, + { + "start": 23137.72, + "end": 23137.9, + "probability": 0.8667 + }, + { + "start": 23137.96, + "end": 23139.9, + "probability": 0.9797 + }, + { + "start": 23140.9, + "end": 23143.96, + "probability": 0.9931 + }, + { + "start": 23144.0, + "end": 23144.62, + "probability": 0.5631 + }, + { + "start": 23144.68, + "end": 23145.2, + "probability": 0.495 + }, + { + "start": 23146.06, + "end": 23147.14, + "probability": 0.6855 + }, + { + "start": 23147.34, + "end": 23150.12, + "probability": 0.9853 + }, + { + "start": 23150.32, + "end": 23150.84, + "probability": 0.791 + }, + { + "start": 23151.16, + "end": 23153.8, + "probability": 0.9754 + }, + { + "start": 23154.74, + "end": 23155.54, + "probability": 0.516 + }, + { + "start": 23155.66, + "end": 23156.04, + "probability": 0.7783 + }, + { + "start": 23157.0, + "end": 23158.66, + "probability": 0.9609 + }, + { + "start": 23159.08, + "end": 23159.36, + "probability": 0.4727 + }, + { + "start": 23160.62, + "end": 23161.86, + "probability": 0.7124 + }, + { + "start": 23162.18, + "end": 23162.98, + "probability": 0.9584 + }, + { + "start": 23165.67, + "end": 23166.8, + "probability": 0.9743 + }, + { + "start": 23166.92, + "end": 23168.38, + "probability": 0.8379 + }, + { + "start": 23170.1, + "end": 23172.3, + "probability": 0.9836 + }, + { + "start": 23173.44, + "end": 23174.72, + "probability": 0.8496 + }, + { + "start": 23174.84, + "end": 23177.08, + "probability": 0.9753 + }, + { + "start": 23177.12, + "end": 23179.68, + "probability": 0.9956 + }, + { + "start": 23180.28, + "end": 23182.72, + "probability": 0.9906 + }, + { + "start": 23183.04, + "end": 23184.08, + "probability": 0.5775 + }, + { + "start": 23184.26, + "end": 23185.5, + "probability": 0.985 + }, + { + "start": 23185.9, + "end": 23186.78, + "probability": 0.8428 + }, + { + "start": 23186.94, + "end": 23187.6, + "probability": 0.5477 + }, + { + "start": 23187.66, + "end": 23193.12, + "probability": 0.9945 + }, + { + "start": 23193.78, + "end": 23193.96, + "probability": 0.4755 + }, + { + "start": 23194.4, + "end": 23194.78, + "probability": 0.6765 + }, + { + "start": 23194.8, + "end": 23197.5, + "probability": 0.9009 + }, + { + "start": 23198.1, + "end": 23199.54, + "probability": 0.8395 + }, + { + "start": 23200.86, + "end": 23201.26, + "probability": 0.9639 + }, + { + "start": 23202.02, + "end": 23205.36, + "probability": 0.9464 + }, + { + "start": 23205.5, + "end": 23205.6, + "probability": 0.5165 + }, + { + "start": 23205.68, + "end": 23205.9, + "probability": 0.8942 + }, + { + "start": 23206.72, + "end": 23206.9, + "probability": 0.2403 + }, + { + "start": 23207.06, + "end": 23210.16, + "probability": 0.9647 + }, + { + "start": 23211.06, + "end": 23214.5, + "probability": 0.8952 + }, + { + "start": 23214.66, + "end": 23215.54, + "probability": 0.977 + }, + { + "start": 23215.96, + "end": 23216.66, + "probability": 0.9639 + }, + { + "start": 23217.92, + "end": 23218.88, + "probability": 0.9199 + }, + { + "start": 23219.46, + "end": 23222.87, + "probability": 0.5086 + }, + { + "start": 23223.96, + "end": 23227.94, + "probability": 0.9066 + }, + { + "start": 23228.48, + "end": 23229.97, + "probability": 0.9888 + }, + { + "start": 23231.08, + "end": 23232.57, + "probability": 0.9934 + }, + { + "start": 23233.9, + "end": 23238.3, + "probability": 0.8377 + }, + { + "start": 23239.06, + "end": 23240.86, + "probability": 0.9524 + }, + { + "start": 23241.12, + "end": 23241.28, + "probability": 0.7888 + }, + { + "start": 23241.46, + "end": 23247.38, + "probability": 0.9929 + }, + { + "start": 23247.98, + "end": 23249.12, + "probability": 0.9338 + }, + { + "start": 23249.66, + "end": 23251.62, + "probability": 0.9938 + }, + { + "start": 23252.2, + "end": 23254.96, + "probability": 0.9446 + }, + { + "start": 23257.44, + "end": 23258.74, + "probability": 0.5417 + }, + { + "start": 23258.92, + "end": 23260.98, + "probability": 0.6294 + }, + { + "start": 23261.2, + "end": 23261.92, + "probability": 0.6149 + }, + { + "start": 23262.52, + "end": 23263.58, + "probability": 0.7642 + }, + { + "start": 23263.68, + "end": 23264.7, + "probability": 0.9529 + }, + { + "start": 23265.2, + "end": 23268.42, + "probability": 0.9782 + }, + { + "start": 23268.42, + "end": 23271.54, + "probability": 0.9717 + }, + { + "start": 23272.04, + "end": 23276.18, + "probability": 0.6797 + }, + { + "start": 23276.62, + "end": 23278.76, + "probability": 0.513 + }, + { + "start": 23280.02, + "end": 23281.74, + "probability": 0.9352 + }, + { + "start": 23281.8, + "end": 23282.46, + "probability": 0.7626 + }, + { + "start": 23282.58, + "end": 23284.59, + "probability": 0.9492 + }, + { + "start": 23285.7, + "end": 23289.1, + "probability": 0.8579 + }, + { + "start": 23289.22, + "end": 23289.6, + "probability": 0.6169 + }, + { + "start": 23289.72, + "end": 23291.4, + "probability": 0.9082 + }, + { + "start": 23291.94, + "end": 23295.5, + "probability": 0.9918 + }, + { + "start": 23296.52, + "end": 23303.96, + "probability": 0.897 + }, + { + "start": 23303.96, + "end": 23308.1, + "probability": 0.9735 + }, + { + "start": 23308.56, + "end": 23309.82, + "probability": 0.5925 + }, + { + "start": 23310.32, + "end": 23311.11, + "probability": 0.4442 + }, + { + "start": 23312.26, + "end": 23315.08, + "probability": 0.9491 + }, + { + "start": 23315.16, + "end": 23316.92, + "probability": 0.9956 + }, + { + "start": 23317.78, + "end": 23318.32, + "probability": 0.7519 + }, + { + "start": 23323.94, + "end": 23326.54, + "probability": 0.6841 + }, + { + "start": 23327.68, + "end": 23329.02, + "probability": 0.9346 + }, + { + "start": 23330.22, + "end": 23331.78, + "probability": 0.963 + }, + { + "start": 23332.34, + "end": 23333.36, + "probability": 0.7672 + }, + { + "start": 23334.0, + "end": 23335.49, + "probability": 0.9478 + }, + { + "start": 23336.92, + "end": 23338.4, + "probability": 0.7432 + }, + { + "start": 23338.8, + "end": 23339.84, + "probability": 0.663 + }, + { + "start": 23340.14, + "end": 23345.44, + "probability": 0.8677 + }, + { + "start": 23345.68, + "end": 23347.98, + "probability": 0.9398 + }, + { + "start": 23348.72, + "end": 23351.4, + "probability": 0.8687 + }, + { + "start": 23352.06, + "end": 23353.38, + "probability": 0.833 + }, + { + "start": 23354.26, + "end": 23359.2, + "probability": 0.7086 + }, + { + "start": 23360.32, + "end": 23362.52, + "probability": 0.7369 + }, + { + "start": 23362.86, + "end": 23364.42, + "probability": 0.8023 + }, + { + "start": 23365.04, + "end": 23366.14, + "probability": 0.9091 + }, + { + "start": 23368.88, + "end": 23370.12, + "probability": 0.7392 + }, + { + "start": 23370.68, + "end": 23373.62, + "probability": 0.9913 + }, + { + "start": 23374.6, + "end": 23376.4, + "probability": 0.9116 + }, + { + "start": 23377.76, + "end": 23379.14, + "probability": 0.9961 + }, + { + "start": 23380.14, + "end": 23384.46, + "probability": 0.9836 + }, + { + "start": 23385.06, + "end": 23387.88, + "probability": 0.9968 + }, + { + "start": 23387.88, + "end": 23390.68, + "probability": 0.9921 + }, + { + "start": 23391.72, + "end": 23393.34, + "probability": 0.8938 + }, + { + "start": 23393.8, + "end": 23394.8, + "probability": 0.9774 + }, + { + "start": 23395.44, + "end": 23402.82, + "probability": 0.9826 + }, + { + "start": 23403.38, + "end": 23404.04, + "probability": 0.6712 + }, + { + "start": 23405.69, + "end": 23410.88, + "probability": 0.5603 + }, + { + "start": 23411.4, + "end": 23411.9, + "probability": 0.8798 + }, + { + "start": 23412.5, + "end": 23413.68, + "probability": 0.9362 + }, + { + "start": 23414.34, + "end": 23415.02, + "probability": 0.9313 + }, + { + "start": 23416.58, + "end": 23417.78, + "probability": 0.7927 + }, + { + "start": 23418.08, + "end": 23419.66, + "probability": 0.9185 + }, + { + "start": 23420.6, + "end": 23424.08, + "probability": 0.9798 + }, + { + "start": 23425.52, + "end": 23427.56, + "probability": 0.681 + }, + { + "start": 23428.64, + "end": 23430.96, + "probability": 0.9052 + }, + { + "start": 23431.44, + "end": 23433.18, + "probability": 0.9369 + }, + { + "start": 23433.24, + "end": 23434.7, + "probability": 0.9865 + }, + { + "start": 23435.12, + "end": 23436.85, + "probability": 0.769 + }, + { + "start": 23437.02, + "end": 23439.18, + "probability": 0.916 + }, + { + "start": 23439.3, + "end": 23440.08, + "probability": 0.874 + }, + { + "start": 23440.18, + "end": 23442.8, + "probability": 0.7371 + }, + { + "start": 23444.0, + "end": 23446.4, + "probability": 0.9068 + }, + { + "start": 23446.46, + "end": 23449.78, + "probability": 0.7107 + }, + { + "start": 23450.32, + "end": 23455.16, + "probability": 0.979 + }, + { + "start": 23455.24, + "end": 23457.1, + "probability": 0.9943 + }, + { + "start": 23458.94, + "end": 23462.73, + "probability": 0.9812 + }, + { + "start": 23464.5, + "end": 23469.68, + "probability": 0.9871 + }, + { + "start": 23472.88, + "end": 23475.52, + "probability": 0.5263 + }, + { + "start": 23476.28, + "end": 23481.62, + "probability": 0.8107 + }, + { + "start": 23483.22, + "end": 23485.36, + "probability": 0.9519 + }, + { + "start": 23485.46, + "end": 23488.86, + "probability": 0.7832 + }, + { + "start": 23489.3, + "end": 23493.46, + "probability": 0.8889 + }, + { + "start": 23493.6, + "end": 23497.36, + "probability": 0.8242 + }, + { + "start": 23498.18, + "end": 23499.76, + "probability": 0.786 + }, + { + "start": 23500.36, + "end": 23504.06, + "probability": 0.9722 + }, + { + "start": 23504.3, + "end": 23505.7, + "probability": 0.8174 + }, + { + "start": 23506.24, + "end": 23506.88, + "probability": 0.8472 + }, + { + "start": 23507.62, + "end": 23512.52, + "probability": 0.7816 + }, + { + "start": 23512.78, + "end": 23517.5, + "probability": 0.8549 + }, + { + "start": 23518.04, + "end": 23521.8, + "probability": 0.9225 + }, + { + "start": 23524.58, + "end": 23528.74, + "probability": 0.7544 + }, + { + "start": 23529.88, + "end": 23533.74, + "probability": 0.966 + }, + { + "start": 23534.3, + "end": 23536.36, + "probability": 0.9505 + }, + { + "start": 23536.72, + "end": 23538.18, + "probability": 0.9265 + }, + { + "start": 23538.96, + "end": 23539.54, + "probability": 0.7243 + }, + { + "start": 23539.74, + "end": 23542.88, + "probability": 0.9938 + }, + { + "start": 23543.08, + "end": 23543.48, + "probability": 0.4087 + }, + { + "start": 23543.74, + "end": 23546.78, + "probability": 0.9366 + }, + { + "start": 23547.66, + "end": 23549.76, + "probability": 0.9946 + }, + { + "start": 23549.92, + "end": 23551.32, + "probability": 0.7021 + }, + { + "start": 23553.18, + "end": 23554.18, + "probability": 0.7154 + }, + { + "start": 23554.4, + "end": 23555.38, + "probability": 0.899 + }, + { + "start": 23555.5, + "end": 23556.48, + "probability": 0.9139 + }, + { + "start": 23557.26, + "end": 23560.42, + "probability": 0.9473 + }, + { + "start": 23561.06, + "end": 23568.56, + "probability": 0.9888 + }, + { + "start": 23569.08, + "end": 23572.36, + "probability": 0.9977 + }, + { + "start": 23573.2, + "end": 23573.26, + "probability": 0.4508 + }, + { + "start": 23573.36, + "end": 23573.72, + "probability": 0.8387 + }, + { + "start": 23573.82, + "end": 23578.72, + "probability": 0.9905 + }, + { + "start": 23581.93, + "end": 23584.9, + "probability": 0.5269 + }, + { + "start": 23588.83, + "end": 23590.47, + "probability": 0.9425 + }, + { + "start": 23590.92, + "end": 23592.88, + "probability": 0.9673 + }, + { + "start": 23594.43, + "end": 23601.5, + "probability": 0.9883 + }, + { + "start": 23602.2, + "end": 23603.72, + "probability": 0.4835 + }, + { + "start": 23604.94, + "end": 23605.12, + "probability": 0.0722 + }, + { + "start": 23605.12, + "end": 23605.7, + "probability": 0.3517 + }, + { + "start": 23607.04, + "end": 23615.62, + "probability": 0.7136 + }, + { + "start": 23619.22, + "end": 23621.87, + "probability": 0.7493 + }, + { + "start": 23623.22, + "end": 23624.24, + "probability": 0.4605 + }, + { + "start": 23624.3, + "end": 23627.56, + "probability": 0.6909 + }, + { + "start": 23627.86, + "end": 23630.84, + "probability": 0.7758 + }, + { + "start": 23631.72, + "end": 23633.3, + "probability": 0.9907 + }, + { + "start": 23633.64, + "end": 23637.22, + "probability": 0.9619 + }, + { + "start": 23638.3, + "end": 23639.66, + "probability": 0.7401 + }, + { + "start": 23640.52, + "end": 23644.46, + "probability": 0.723 + }, + { + "start": 23645.04, + "end": 23646.26, + "probability": 0.7241 + }, + { + "start": 23647.1, + "end": 23648.99, + "probability": 0.665 + }, + { + "start": 23650.8, + "end": 23652.78, + "probability": 0.8533 + }, + { + "start": 23653.64, + "end": 23654.06, + "probability": 0.8111 + }, + { + "start": 23655.54, + "end": 23657.34, + "probability": 0.9391 + }, + { + "start": 23657.96, + "end": 23662.92, + "probability": 0.8523 + }, + { + "start": 23664.45, + "end": 23666.15, + "probability": 0.811 + }, + { + "start": 23667.2, + "end": 23676.16, + "probability": 0.6159 + }, + { + "start": 23676.16, + "end": 23681.96, + "probability": 0.8339 + }, + { + "start": 23682.38, + "end": 23688.56, + "probability": 0.5195 + }, + { + "start": 23688.56, + "end": 23689.04, + "probability": 0.5756 + }, + { + "start": 23689.56, + "end": 23691.88, + "probability": 0.7832 + }, + { + "start": 23692.0, + "end": 23692.79, + "probability": 0.7651 + }, + { + "start": 23693.04, + "end": 23697.9, + "probability": 0.7591 + }, + { + "start": 23698.14, + "end": 23699.84, + "probability": 0.7991 + }, + { + "start": 23700.14, + "end": 23702.7, + "probability": 0.7055 + }, + { + "start": 23703.34, + "end": 23703.8, + "probability": 0.9588 + }, + { + "start": 23703.9, + "end": 23704.36, + "probability": 0.774 + }, + { + "start": 23704.86, + "end": 23706.02, + "probability": 0.8027 + }, + { + "start": 23706.22, + "end": 23706.22, + "probability": 0.0448 + }, + { + "start": 23706.22, + "end": 23710.66, + "probability": 0.8289 + }, + { + "start": 23711.04, + "end": 23711.48, + "probability": 0.7087 + }, + { + "start": 23712.54, + "end": 23716.28, + "probability": 0.9819 + }, + { + "start": 23716.38, + "end": 23717.83, + "probability": 0.9599 + }, + { + "start": 23718.14, + "end": 23719.9, + "probability": 0.9376 + }, + { + "start": 23720.68, + "end": 23721.92, + "probability": 0.8395 + }, + { + "start": 23722.3, + "end": 23726.12, + "probability": 0.939 + }, + { + "start": 23726.26, + "end": 23730.52, + "probability": 0.8098 + }, + { + "start": 23731.6, + "end": 23731.7, + "probability": 0.834 + }, + { + "start": 23732.5, + "end": 23733.75, + "probability": 0.9886 + }, + { + "start": 23734.14, + "end": 23734.76, + "probability": 0.9044 + }, + { + "start": 23734.9, + "end": 23737.48, + "probability": 0.9412 + }, + { + "start": 23738.96, + "end": 23740.6, + "probability": 0.7565 + }, + { + "start": 23741.02, + "end": 23742.5, + "probability": 0.597 + }, + { + "start": 23742.98, + "end": 23746.32, + "probability": 0.8197 + }, + { + "start": 23746.4, + "end": 23747.11, + "probability": 0.4614 + }, + { + "start": 23747.5, + "end": 23747.94, + "probability": 0.5591 + }, + { + "start": 23748.46, + "end": 23751.08, + "probability": 0.8312 + }, + { + "start": 23753.87, + "end": 23755.7, + "probability": 0.5654 + }, + { + "start": 23755.7, + "end": 23761.26, + "probability": 0.9651 + }, + { + "start": 23761.9, + "end": 23762.84, + "probability": 0.7876 + }, + { + "start": 23766.32, + "end": 23767.28, + "probability": 0.4727 + }, + { + "start": 23767.46, + "end": 23768.8, + "probability": 0.4956 + }, + { + "start": 23768.94, + "end": 23770.78, + "probability": 0.9214 + }, + { + "start": 23770.78, + "end": 23772.48, + "probability": 0.9271 + }, + { + "start": 23772.48, + "end": 23775.72, + "probability": 0.8563 + }, + { + "start": 23776.22, + "end": 23779.56, + "probability": 0.9785 + }, + { + "start": 23780.34, + "end": 23781.18, + "probability": 0.5959 + }, + { + "start": 23781.78, + "end": 23785.06, + "probability": 0.3931 + }, + { + "start": 23785.64, + "end": 23786.36, + "probability": 0.5502 + }, + { + "start": 23786.36, + "end": 23786.36, + "probability": 0.7405 + }, + { + "start": 23786.36, + "end": 23786.36, + "probability": 0.1286 + }, + { + "start": 23786.36, + "end": 23786.36, + "probability": 0.2491 + }, + { + "start": 23786.36, + "end": 23786.88, + "probability": 0.1389 + }, + { + "start": 23786.92, + "end": 23788.32, + "probability": 0.4978 + }, + { + "start": 23788.7, + "end": 23791.74, + "probability": 0.9376 + }, + { + "start": 23791.76, + "end": 23793.98, + "probability": 0.7275 + }, + { + "start": 23794.64, + "end": 23797.8, + "probability": 0.6571 + }, + { + "start": 23799.89, + "end": 23804.82, + "probability": 0.9963 + }, + { + "start": 23804.88, + "end": 23805.9, + "probability": 0.4756 + }, + { + "start": 23805.94, + "end": 23806.28, + "probability": 0.4246 + }, + { + "start": 23806.46, + "end": 23808.26, + "probability": 0.3971 + }, + { + "start": 23808.44, + "end": 23810.68, + "probability": 0.8053 + }, + { + "start": 23811.24, + "end": 23813.62, + "probability": 0.9973 + }, + { + "start": 23814.26, + "end": 23817.67, + "probability": 0.9498 + }, + { + "start": 23817.98, + "end": 23818.64, + "probability": 0.3567 + }, + { + "start": 23818.7, + "end": 23819.48, + "probability": 0.7307 + }, + { + "start": 23820.12, + "end": 23823.98, + "probability": 0.5912 + }, + { + "start": 23824.84, + "end": 23829.82, + "probability": 0.6713 + }, + { + "start": 23830.96, + "end": 23832.75, + "probability": 0.9792 + }, + { + "start": 23833.54, + "end": 23834.24, + "probability": 0.634 + }, + { + "start": 23835.64, + "end": 23836.95, + "probability": 0.7646 + }, + { + "start": 23837.12, + "end": 23840.5, + "probability": 0.9985 + }, + { + "start": 23840.98, + "end": 23841.8, + "probability": 0.8012 + }, + { + "start": 23842.54, + "end": 23843.72, + "probability": 0.8739 + }, + { + "start": 23844.16, + "end": 23844.5, + "probability": 0.5449 + }, + { + "start": 23844.58, + "end": 23848.98, + "probability": 0.9972 + }, + { + "start": 23849.34, + "end": 23849.8, + "probability": 0.8555 + }, + { + "start": 23850.42, + "end": 23851.92, + "probability": 0.8503 + }, + { + "start": 23852.62, + "end": 23854.86, + "probability": 0.9764 + }, + { + "start": 23854.86, + "end": 23857.78, + "probability": 0.9162 + }, + { + "start": 23858.1, + "end": 23859.22, + "probability": 0.9954 + }, + { + "start": 23860.02, + "end": 23861.68, + "probability": 0.8834 + }, + { + "start": 23862.85, + "end": 23864.32, + "probability": 0.5038 + }, + { + "start": 23864.48, + "end": 23865.07, + "probability": 0.5216 + }, + { + "start": 23865.6, + "end": 23866.58, + "probability": 0.2318 + }, + { + "start": 23866.66, + "end": 23866.98, + "probability": 0.1455 + }, + { + "start": 23867.58, + "end": 23868.38, + "probability": 0.7288 + }, + { + "start": 23869.35, + "end": 23872.0, + "probability": 0.9116 + }, + { + "start": 23873.0, + "end": 23873.76, + "probability": 0.9236 + }, + { + "start": 23873.96, + "end": 23875.38, + "probability": 0.8879 + }, + { + "start": 23875.6, + "end": 23875.9, + "probability": 0.8879 + }, + { + "start": 23875.98, + "end": 23877.56, + "probability": 0.8328 + }, + { + "start": 23877.64, + "end": 23880.84, + "probability": 0.2566 + }, + { + "start": 23880.98, + "end": 23881.26, + "probability": 0.5461 + }, + { + "start": 23881.32, + "end": 23882.0, + "probability": 0.7158 + }, + { + "start": 23882.06, + "end": 23884.2, + "probability": 0.843 + }, + { + "start": 23884.56, + "end": 23885.96, + "probability": 0.9838 + }, + { + "start": 23886.32, + "end": 23888.48, + "probability": 0.9797 + }, + { + "start": 23889.22, + "end": 23894.1, + "probability": 0.7843 + }, + { + "start": 23894.94, + "end": 23897.68, + "probability": 0.1913 + }, + { + "start": 23898.64, + "end": 23900.16, + "probability": 0.9059 + }, + { + "start": 23900.24, + "end": 23901.7, + "probability": 0.9866 + }, + { + "start": 23902.38, + "end": 23904.46, + "probability": 0.9493 + }, + { + "start": 23905.1, + "end": 23906.74, + "probability": 0.4861 + }, + { + "start": 23907.0, + "end": 23908.08, + "probability": 0.8757 + }, + { + "start": 23911.23, + "end": 23916.2, + "probability": 0.8971 + }, + { + "start": 23916.2, + "end": 23918.04, + "probability": 0.6565 + }, + { + "start": 23918.3, + "end": 23918.44, + "probability": 0.8261 + }, + { + "start": 23918.66, + "end": 23920.34, + "probability": 0.922 + }, + { + "start": 23920.98, + "end": 23922.1, + "probability": 0.9469 + }, + { + "start": 23922.36, + "end": 23924.22, + "probability": 0.8926 + }, + { + "start": 23924.46, + "end": 23925.95, + "probability": 0.6102 + }, + { + "start": 23926.52, + "end": 23929.07, + "probability": 0.9045 + }, + { + "start": 23930.15, + "end": 23932.59, + "probability": 0.6289 + }, + { + "start": 23932.66, + "end": 23934.52, + "probability": 0.4387 + }, + { + "start": 23934.66, + "end": 23942.1, + "probability": 0.8691 + }, + { + "start": 23943.62, + "end": 23945.71, + "probability": 0.6429 + }, + { + "start": 23945.88, + "end": 23946.34, + "probability": 0.8525 + }, + { + "start": 23946.36, + "end": 23946.96, + "probability": 0.3823 + }, + { + "start": 23947.24, + "end": 23948.34, + "probability": 0.3755 + }, + { + "start": 23948.44, + "end": 23949.3, + "probability": 0.6734 + }, + { + "start": 23950.18, + "end": 23950.88, + "probability": 0.5999 + }, + { + "start": 23950.96, + "end": 23953.64, + "probability": 0.6956 + }, + { + "start": 23953.72, + "end": 23953.76, + "probability": 0.5689 + }, + { + "start": 23953.94, + "end": 23956.0, + "probability": 0.895 + }, + { + "start": 23956.22, + "end": 23958.74, + "probability": 0.9379 + }, + { + "start": 23959.02, + "end": 23961.46, + "probability": 0.9912 + }, + { + "start": 23962.02, + "end": 23964.72, + "probability": 0.921 + }, + { + "start": 23965.26, + "end": 23969.3, + "probability": 0.9245 + }, + { + "start": 23969.88, + "end": 23970.88, + "probability": 0.7116 + }, + { + "start": 23970.94, + "end": 23971.12, + "probability": 0.6974 + }, + { + "start": 23971.18, + "end": 23972.36, + "probability": 0.9178 + }, + { + "start": 23972.42, + "end": 23974.14, + "probability": 0.9873 + }, + { + "start": 23974.6, + "end": 23976.1, + "probability": 0.6417 + }, + { + "start": 23976.6, + "end": 23980.66, + "probability": 0.6284 + }, + { + "start": 23981.04, + "end": 23981.78, + "probability": 0.9701 + }, + { + "start": 23981.94, + "end": 23982.88, + "probability": 0.2278 + }, + { + "start": 23982.96, + "end": 23983.84, + "probability": 0.4544 + }, + { + "start": 23984.0, + "end": 23986.6, + "probability": 0.8801 + }, + { + "start": 23987.24, + "end": 23988.48, + "probability": 0.5378 + }, + { + "start": 23989.74, + "end": 23991.93, + "probability": 0.7422 + }, + { + "start": 23993.42, + "end": 23995.96, + "probability": 0.9596 + }, + { + "start": 23996.9, + "end": 23998.9, + "probability": 0.9333 + }, + { + "start": 23999.08, + "end": 24000.24, + "probability": 0.5966 + }, + { + "start": 24000.48, + "end": 24004.04, + "probability": 0.9775 + }, + { + "start": 24004.58, + "end": 24008.92, + "probability": 0.9834 + }, + { + "start": 24009.42, + "end": 24015.64, + "probability": 0.9927 + }, + { + "start": 24016.0, + "end": 24019.36, + "probability": 0.9078 + }, + { + "start": 24020.19, + "end": 24024.46, + "probability": 0.9921 + }, + { + "start": 24026.02, + "end": 24026.58, + "probability": 0.6705 + }, + { + "start": 24026.9, + "end": 24027.42, + "probability": 0.664 + }, + { + "start": 24027.48, + "end": 24027.68, + "probability": 0.8263 + }, + { + "start": 24028.14, + "end": 24028.46, + "probability": 0.8468 + }, + { + "start": 24028.58, + "end": 24030.3, + "probability": 0.8487 + }, + { + "start": 24030.5, + "end": 24030.6, + "probability": 0.4735 + }, + { + "start": 24030.88, + "end": 24032.14, + "probability": 0.9188 + }, + { + "start": 24032.62, + "end": 24036.64, + "probability": 0.8669 + }, + { + "start": 24036.66, + "end": 24036.84, + "probability": 0.73 + }, + { + "start": 24037.16, + "end": 24039.82, + "probability": 0.8833 + }, + { + "start": 24039.86, + "end": 24040.14, + "probability": 0.7111 + }, + { + "start": 24040.2, + "end": 24041.0, + "probability": 0.7835 + }, + { + "start": 24041.38, + "end": 24044.22, + "probability": 0.9976 + }, + { + "start": 24044.64, + "end": 24046.54, + "probability": 0.7454 + }, + { + "start": 24047.1, + "end": 24051.26, + "probability": 0.9352 + }, + { + "start": 24052.0, + "end": 24054.86, + "probability": 0.6361 + }, + { + "start": 24055.38, + "end": 24056.02, + "probability": 0.7537 + }, + { + "start": 24056.76, + "end": 24057.38, + "probability": 0.7305 + }, + { + "start": 24057.5, + "end": 24059.22, + "probability": 0.6766 + }, + { + "start": 24059.42, + "end": 24059.54, + "probability": 0.8682 + }, + { + "start": 24059.74, + "end": 24063.3, + "probability": 0.8644 + }, + { + "start": 24063.72, + "end": 24066.36, + "probability": 0.992 + }, + { + "start": 24066.44, + "end": 24066.58, + "probability": 0.8541 + }, + { + "start": 24067.42, + "end": 24069.64, + "probability": 0.968 + }, + { + "start": 24069.96, + "end": 24074.83, + "probability": 0.8596 + }, + { + "start": 24075.46, + "end": 24076.7, + "probability": 0.7942 + }, + { + "start": 24076.7, + "end": 24076.7, + "probability": 0.5317 + }, + { + "start": 24076.7, + "end": 24078.8, + "probability": 0.6743 + }, + { + "start": 24078.94, + "end": 24081.0, + "probability": 0.9967 + }, + { + "start": 24081.08, + "end": 24081.08, + "probability": 0.0056 + }, + { + "start": 24081.08, + "end": 24081.62, + "probability": 0.6254 + }, + { + "start": 24083.04, + "end": 24084.58, + "probability": 0.9927 + }, + { + "start": 24087.46, + "end": 24090.04, + "probability": 0.7825 + }, + { + "start": 24090.08, + "end": 24093.44, + "probability": 0.7688 + }, + { + "start": 24093.44, + "end": 24096.52, + "probability": 0.9014 + }, + { + "start": 24096.64, + "end": 24098.6, + "probability": 0.8112 + }, + { + "start": 24099.2, + "end": 24103.02, + "probability": 0.7291 + }, + { + "start": 24104.24, + "end": 24110.1, + "probability": 0.9862 + }, + { + "start": 24110.8, + "end": 24111.9, + "probability": 0.0032 + }, + { + "start": 24113.92, + "end": 24114.88, + "probability": 0.9429 + }, + { + "start": 24115.72, + "end": 24119.22, + "probability": 0.965 + }, + { + "start": 24120.18, + "end": 24120.76, + "probability": 0.9673 + }, + { + "start": 24121.6, + "end": 24124.14, + "probability": 0.5211 + }, + { + "start": 24124.24, + "end": 24125.98, + "probability": 0.9957 + }, + { + "start": 24125.98, + "end": 24127.52, + "probability": 0.6124 + }, + { + "start": 24127.64, + "end": 24132.12, + "probability": 0.7577 + }, + { + "start": 24132.12, + "end": 24132.12, + "probability": 0.6975 + }, + { + "start": 24132.12, + "end": 24132.39, + "probability": 0.9946 + }, + { + "start": 24132.96, + "end": 24133.64, + "probability": 0.7558 + }, + { + "start": 24133.76, + "end": 24135.9, + "probability": 0.8164 + }, + { + "start": 24136.42, + "end": 24137.59, + "probability": 0.9932 + }, + { + "start": 24137.88, + "end": 24140.96, + "probability": 0.8863 + }, + { + "start": 24140.96, + "end": 24141.24, + "probability": 0.4607 + }, + { + "start": 24141.34, + "end": 24141.64, + "probability": 0.9298 + }, + { + "start": 24141.72, + "end": 24143.44, + "probability": 0.9364 + }, + { + "start": 24143.54, + "end": 24143.54, + "probability": 0.1397 + }, + { + "start": 24143.54, + "end": 24148.54, + "probability": 0.7479 + }, + { + "start": 24149.18, + "end": 24150.38, + "probability": 0.824 + }, + { + "start": 24150.72, + "end": 24152.18, + "probability": 0.9823 + }, + { + "start": 24152.32, + "end": 24153.9, + "probability": 0.1843 + }, + { + "start": 24153.94, + "end": 24154.9, + "probability": 0.7681 + }, + { + "start": 24156.84, + "end": 24157.04, + "probability": 0.4752 + }, + { + "start": 24157.26, + "end": 24157.76, + "probability": 0.9851 + }, + { + "start": 24158.1, + "end": 24161.44, + "probability": 0.6974 + }, + { + "start": 24161.48, + "end": 24162.18, + "probability": 0.5546 + }, + { + "start": 24162.96, + "end": 24165.34, + "probability": 0.8229 + }, + { + "start": 24165.34, + "end": 24165.34, + "probability": 0.3447 + }, + { + "start": 24165.34, + "end": 24167.22, + "probability": 0.9949 + }, + { + "start": 24167.46, + "end": 24167.48, + "probability": 0.6136 + }, + { + "start": 24167.5, + "end": 24170.04, + "probability": 0.8923 + }, + { + "start": 24170.52, + "end": 24173.36, + "probability": 0.9525 + }, + { + "start": 24174.48, + "end": 24177.66, + "probability": 0.7264 + }, + { + "start": 24177.78, + "end": 24182.34, + "probability": 0.9897 + }, + { + "start": 24182.94, + "end": 24184.02, + "probability": 0.9858 + }, + { + "start": 24184.98, + "end": 24187.14, + "probability": 0.8975 + }, + { + "start": 24187.78, + "end": 24189.26, + "probability": 0.8665 + }, + { + "start": 24189.6, + "end": 24190.02, + "probability": 0.9254 + }, + { + "start": 24190.34, + "end": 24190.58, + "probability": 0.7211 + }, + { + "start": 24190.68, + "end": 24194.66, + "probability": 0.9849 + }, + { + "start": 24194.74, + "end": 24196.46, + "probability": 0.9619 + }, + { + "start": 24196.58, + "end": 24197.94, + "probability": 0.9819 + }, + { + "start": 24198.02, + "end": 24198.94, + "probability": 0.8726 + }, + { + "start": 24199.34, + "end": 24200.12, + "probability": 0.7025 + }, + { + "start": 24200.14, + "end": 24202.12, + "probability": 0.8119 + }, + { + "start": 24202.22, + "end": 24203.96, + "probability": 0.9969 + }, + { + "start": 24204.52, + "end": 24206.22, + "probability": 0.9048 + }, + { + "start": 24206.74, + "end": 24208.64, + "probability": 0.9616 + }, + { + "start": 24208.78, + "end": 24210.9, + "probability": 0.8425 + }, + { + "start": 24211.32, + "end": 24211.99, + "probability": 0.9832 + }, + { + "start": 24213.7, + "end": 24215.44, + "probability": 0.92 + }, + { + "start": 24215.98, + "end": 24216.35, + "probability": 0.3979 + }, + { + "start": 24216.36, + "end": 24218.84, + "probability": 0.8409 + }, + { + "start": 24218.84, + "end": 24222.62, + "probability": 0.9984 + }, + { + "start": 24223.52, + "end": 24223.76, + "probability": 0.8892 + }, + { + "start": 24224.4, + "end": 24226.72, + "probability": 0.9795 + }, + { + "start": 24227.38, + "end": 24228.62, + "probability": 0.9119 + }, + { + "start": 24228.62, + "end": 24228.74, + "probability": 0.7756 + }, + { + "start": 24228.74, + "end": 24230.7, + "probability": 0.6991 + }, + { + "start": 24230.72, + "end": 24232.22, + "probability": 0.9956 + }, + { + "start": 24232.56, + "end": 24232.84, + "probability": 0.5184 + }, + { + "start": 24232.84, + "end": 24233.47, + "probability": 0.8125 + }, + { + "start": 24233.52, + "end": 24233.84, + "probability": 0.7171 + }, + { + "start": 24233.9, + "end": 24236.06, + "probability": 0.7853 + }, + { + "start": 24236.06, + "end": 24236.06, + "probability": 0.1224 + }, + { + "start": 24236.06, + "end": 24236.48, + "probability": 0.5588 + }, + { + "start": 24236.58, + "end": 24237.64, + "probability": 0.9728 + }, + { + "start": 24237.78, + "end": 24238.9, + "probability": 0.992 + }, + { + "start": 24239.26, + "end": 24240.7, + "probability": 0.9709 + }, + { + "start": 24242.51, + "end": 24244.66, + "probability": 0.9775 + }, + { + "start": 24246.1, + "end": 24247.52, + "probability": 0.6951 + }, + { + "start": 24247.66, + "end": 24248.19, + "probability": 0.8342 + }, + { + "start": 24248.28, + "end": 24248.8, + "probability": 0.6077 + }, + { + "start": 24248.82, + "end": 24250.76, + "probability": 0.8711 + }, + { + "start": 24251.26, + "end": 24253.38, + "probability": 0.9778 + }, + { + "start": 24253.6, + "end": 24254.09, + "probability": 0.7217 + }, + { + "start": 24254.38, + "end": 24258.02, + "probability": 0.9604 + }, + { + "start": 24258.3, + "end": 24262.96, + "probability": 0.9961 + }, + { + "start": 24263.26, + "end": 24264.52, + "probability": 0.8318 + }, + { + "start": 24264.58, + "end": 24269.68, + "probability": 0.9259 + }, + { + "start": 24270.18, + "end": 24275.52, + "probability": 0.7497 + }, + { + "start": 24275.52, + "end": 24275.56, + "probability": 0.5839 + }, + { + "start": 24275.56, + "end": 24276.94, + "probability": 0.9535 + }, + { + "start": 24277.12, + "end": 24280.92, + "probability": 0.8694 + }, + { + "start": 24280.92, + "end": 24280.92, + "probability": 0.6993 + }, + { + "start": 24280.92, + "end": 24281.83, + "probability": 0.749 + }, + { + "start": 24282.04, + "end": 24282.62, + "probability": 0.2095 + }, + { + "start": 24282.62, + "end": 24283.4, + "probability": 0.6797 + }, + { + "start": 24283.5, + "end": 24284.68, + "probability": 0.5465 + }, + { + "start": 24284.74, + "end": 24284.88, + "probability": 0.9181 + }, + { + "start": 24284.9, + "end": 24289.04, + "probability": 0.9773 + }, + { + "start": 24289.04, + "end": 24290.88, + "probability": 0.7245 + }, + { + "start": 24290.88, + "end": 24293.18, + "probability": 0.5785 + }, + { + "start": 24293.32, + "end": 24293.6, + "probability": 0.4023 + }, + { + "start": 24293.88, + "end": 24294.66, + "probability": 0.5879 + }, + { + "start": 24294.88, + "end": 24295.52, + "probability": 0.7231 + }, + { + "start": 24295.74, + "end": 24297.68, + "probability": 0.9514 + }, + { + "start": 24297.98, + "end": 24302.54, + "probability": 0.9604 + }, + { + "start": 24302.58, + "end": 24304.3, + "probability": 0.7174 + }, + { + "start": 24304.66, + "end": 24304.88, + "probability": 0.1411 + }, + { + "start": 24304.94, + "end": 24305.4, + "probability": 0.1936 + }, + { + "start": 24305.4, + "end": 24305.54, + "probability": 0.7465 + }, + { + "start": 24305.96, + "end": 24308.82, + "probability": 0.9916 + }, + { + "start": 24309.38, + "end": 24309.72, + "probability": 0.9954 + }, + { + "start": 24310.4, + "end": 24312.26, + "probability": 0.7179 + }, + { + "start": 24312.46, + "end": 24314.35, + "probability": 0.9048 + }, + { + "start": 24314.86, + "end": 24317.16, + "probability": 0.9773 + }, + { + "start": 24317.72, + "end": 24319.95, + "probability": 0.8098 + }, + { + "start": 24320.46, + "end": 24321.75, + "probability": 0.8064 + }, + { + "start": 24322.96, + "end": 24326.95, + "probability": 0.9956 + }, + { + "start": 24327.42, + "end": 24327.82, + "probability": 0.5702 + }, + { + "start": 24327.86, + "end": 24332.34, + "probability": 0.7684 + }, + { + "start": 24332.6, + "end": 24335.84, + "probability": 0.9376 + }, + { + "start": 24336.26, + "end": 24337.52, + "probability": 0.984 + }, + { + "start": 24338.12, + "end": 24342.86, + "probability": 0.623 + }, + { + "start": 24343.14, + "end": 24343.14, + "probability": 0.0913 + }, + { + "start": 24343.14, + "end": 24344.54, + "probability": 0.8892 + }, + { + "start": 24344.7, + "end": 24345.5, + "probability": 0.4119 + }, + { + "start": 24346.62, + "end": 24348.9, + "probability": 0.3791 + }, + { + "start": 24349.54, + "end": 24354.2, + "probability": 0.9022 + }, + { + "start": 24354.58, + "end": 24359.12, + "probability": 0.3652 + }, + { + "start": 24359.74, + "end": 24361.56, + "probability": 0.3388 + }, + { + "start": 24361.6, + "end": 24361.62, + "probability": 0.3507 + }, + { + "start": 24361.62, + "end": 24363.2, + "probability": 0.8245 + }, + { + "start": 24363.34, + "end": 24365.08, + "probability": 0.6564 + }, + { + "start": 24365.1, + "end": 24368.4, + "probability": 0.9813 + }, + { + "start": 24369.18, + "end": 24371.56, + "probability": 0.6466 + }, + { + "start": 24371.68, + "end": 24373.44, + "probability": 0.9397 + }, + { + "start": 24373.54, + "end": 24374.64, + "probability": 0.6274 + }, + { + "start": 24375.1, + "end": 24377.4, + "probability": 0.952 + }, + { + "start": 24377.66, + "end": 24382.56, + "probability": 0.95 + }, + { + "start": 24383.4, + "end": 24386.8, + "probability": 0.4361 + }, + { + "start": 24387.02, + "end": 24387.32, + "probability": 0.5486 + }, + { + "start": 24387.52, + "end": 24388.4, + "probability": 0.749 + }, + { + "start": 24388.86, + "end": 24393.74, + "probability": 0.9949 + }, + { + "start": 24394.12, + "end": 24395.84, + "probability": 0.9485 + }, + { + "start": 24396.18, + "end": 24397.5, + "probability": 0.9837 + }, + { + "start": 24397.94, + "end": 24404.18, + "probability": 0.9795 + }, + { + "start": 24404.72, + "end": 24406.86, + "probability": 0.9154 + }, + { + "start": 24407.06, + "end": 24407.88, + "probability": 0.5242 + }, + { + "start": 24407.88, + "end": 24410.48, + "probability": 0.8757 + }, + { + "start": 24410.68, + "end": 24411.66, + "probability": 0.6999 + }, + { + "start": 24411.76, + "end": 24412.36, + "probability": 0.403 + }, + { + "start": 24412.69, + "end": 24414.5, + "probability": 0.7033 + }, + { + "start": 24414.5, + "end": 24416.62, + "probability": 0.9585 + }, + { + "start": 24416.77, + "end": 24419.08, + "probability": 0.9337 + }, + { + "start": 24419.34, + "end": 24424.54, + "probability": 0.6198 + }, + { + "start": 24424.78, + "end": 24426.32, + "probability": 0.9941 + }, + { + "start": 24426.92, + "end": 24427.44, + "probability": 0.8193 + }, + { + "start": 24428.5, + "end": 24431.04, + "probability": 0.9871 + }, + { + "start": 24431.26, + "end": 24434.24, + "probability": 0.8835 + }, + { + "start": 24434.26, + "end": 24435.44, + "probability": 0.7918 + }, + { + "start": 24435.94, + "end": 24439.2, + "probability": 0.9475 + }, + { + "start": 24440.08, + "end": 24441.22, + "probability": 0.9315 + }, + { + "start": 24443.3, + "end": 24447.17, + "probability": 0.9844 + }, + { + "start": 24447.58, + "end": 24447.86, + "probability": 0.6522 + }, + { + "start": 24447.86, + "end": 24449.26, + "probability": 0.945 + }, + { + "start": 24451.0, + "end": 24451.0, + "probability": 0.054 + }, + { + "start": 24451.0, + "end": 24451.87, + "probability": 0.19 + }, + { + "start": 24452.1, + "end": 24452.1, + "probability": 0.8263 + }, + { + "start": 24452.1, + "end": 24452.98, + "probability": 0.0233 + }, + { + "start": 24453.14, + "end": 24453.14, + "probability": 0.0513 + }, + { + "start": 24453.26, + "end": 24455.28, + "probability": 0.8423 + }, + { + "start": 24455.4, + "end": 24459.7, + "probability": 0.8512 + }, + { + "start": 24459.78, + "end": 24460.66, + "probability": 0.6382 + }, + { + "start": 24461.18, + "end": 24462.52, + "probability": 0.4988 + }, + { + "start": 24462.9, + "end": 24463.36, + "probability": 0.7504 + }, + { + "start": 24463.8, + "end": 24466.18, + "probability": 0.9939 + }, + { + "start": 24466.74, + "end": 24470.06, + "probability": 0.6648 + }, + { + "start": 24470.82, + "end": 24471.1, + "probability": 0.8764 + }, + { + "start": 24471.1, + "end": 24471.7, + "probability": 0.7232 + }, + { + "start": 24471.8, + "end": 24475.64, + "probability": 0.978 + }, + { + "start": 24475.92, + "end": 24476.92, + "probability": 0.9937 + }, + { + "start": 24478.5, + "end": 24479.96, + "probability": 0.6801 + }, + { + "start": 24480.22, + "end": 24482.14, + "probability": 0.662 + }, + { + "start": 24482.58, + "end": 24483.56, + "probability": 0.5409 + }, + { + "start": 24485.94, + "end": 24486.38, + "probability": 0.3744 + }, + { + "start": 24486.5, + "end": 24487.0, + "probability": 0.2654 + }, + { + "start": 24487.02, + "end": 24490.7, + "probability": 0.7975 + }, + { + "start": 24491.02, + "end": 24491.3, + "probability": 0.4078 + }, + { + "start": 24491.34, + "end": 24496.04, + "probability": 0.883 + }, + { + "start": 24496.56, + "end": 24496.99, + "probability": 0.9854 + }, + { + "start": 24497.42, + "end": 24497.58, + "probability": 0.7959 + }, + { + "start": 24497.68, + "end": 24497.68, + "probability": 0.9619 + }, + { + "start": 24498.4, + "end": 24502.98, + "probability": 0.9792 + }, + { + "start": 24503.42, + "end": 24508.3, + "probability": 0.9902 + }, + { + "start": 24510.44, + "end": 24512.64, + "probability": 0.9588 + }, + { + "start": 24514.78, + "end": 24517.02, + "probability": 0.4911 + }, + { + "start": 24517.42, + "end": 24521.58, + "probability": 0.8452 + }, + { + "start": 24521.58, + "end": 24525.58, + "probability": 0.9346 + }, + { + "start": 24525.66, + "end": 24526.12, + "probability": 0.9498 + }, + { + "start": 24526.92, + "end": 24528.96, + "probability": 0.8711 + }, + { + "start": 24529.56, + "end": 24529.92, + "probability": 0.7067 + }, + { + "start": 24530.02, + "end": 24533.8, + "probability": 0.8673 + }, + { + "start": 24534.28, + "end": 24537.66, + "probability": 0.8928 + }, + { + "start": 24538.74, + "end": 24539.02, + "probability": 0.8085 + }, + { + "start": 24540.08, + "end": 24542.1, + "probability": 0.504 + }, + { + "start": 24542.68, + "end": 24544.06, + "probability": 0.8559 + }, + { + "start": 24544.46, + "end": 24546.42, + "probability": 0.9031 + }, + { + "start": 24547.57, + "end": 24550.32, + "probability": 0.6787 + }, + { + "start": 24551.02, + "end": 24552.12, + "probability": 0.671 + }, + { + "start": 24552.2, + "end": 24553.32, + "probability": 0.7056 + }, + { + "start": 24553.44, + "end": 24555.42, + "probability": 0.9531 + }, + { + "start": 24556.1, + "end": 24561.14, + "probability": 0.9928 + }, + { + "start": 24561.63, + "end": 24563.16, + "probability": 0.8799 + }, + { + "start": 24564.84, + "end": 24567.88, + "probability": 0.9785 + }, + { + "start": 24568.28, + "end": 24568.88, + "probability": 0.5446 + }, + { + "start": 24569.12, + "end": 24573.9, + "probability": 0.9948 + }, + { + "start": 24574.36, + "end": 24577.6, + "probability": 0.8209 + }, + { + "start": 24577.9, + "end": 24579.18, + "probability": 0.7636 + }, + { + "start": 24580.58, + "end": 24584.3, + "probability": 0.9033 + }, + { + "start": 24584.4, + "end": 24585.92, + "probability": 0.7124 + }, + { + "start": 24586.22, + "end": 24589.44, + "probability": 0.9971 + }, + { + "start": 24589.44, + "end": 24592.24, + "probability": 0.9884 + }, + { + "start": 24592.32, + "end": 24595.84, + "probability": 0.9681 + }, + { + "start": 24596.58, + "end": 24597.98, + "probability": 0.808 + }, + { + "start": 24598.52, + "end": 24599.74, + "probability": 0.9424 + }, + { + "start": 24600.34, + "end": 24600.92, + "probability": 0.9261 + }, + { + "start": 24601.46, + "end": 24603.12, + "probability": 0.8892 + }, + { + "start": 24603.42, + "end": 24606.02, + "probability": 0.8345 + }, + { + "start": 24608.3, + "end": 24611.4, + "probability": 0.9984 + }, + { + "start": 24613.24, + "end": 24614.2, + "probability": 0.4654 + }, + { + "start": 24614.56, + "end": 24616.6, + "probability": 0.9548 + }, + { + "start": 24616.95, + "end": 24622.9, + "probability": 0.9917 + }, + { + "start": 24623.58, + "end": 24627.8, + "probability": 0.677 + }, + { + "start": 24627.86, + "end": 24629.09, + "probability": 0.9311 + }, + { + "start": 24629.96, + "end": 24632.46, + "probability": 0.9015 + }, + { + "start": 24633.09, + "end": 24635.66, + "probability": 0.9979 + }, + { + "start": 24636.7, + "end": 24639.46, + "probability": 0.8131 + }, + { + "start": 24640.28, + "end": 24642.59, + "probability": 0.9098 + }, + { + "start": 24643.62, + "end": 24644.44, + "probability": 0.9863 + }, + { + "start": 24645.5, + "end": 24647.76, + "probability": 0.9884 + }, + { + "start": 24647.76, + "end": 24653.04, + "probability": 0.9893 + }, + { + "start": 24653.68, + "end": 24659.3, + "probability": 0.9902 + }, + { + "start": 24660.52, + "end": 24660.72, + "probability": 0.9705 + }, + { + "start": 24661.36, + "end": 24666.0, + "probability": 0.9985 + }, + { + "start": 24666.7, + "end": 24668.0, + "probability": 0.9998 + }, + { + "start": 24669.0, + "end": 24670.38, + "probability": 0.7021 + }, + { + "start": 24671.08, + "end": 24673.46, + "probability": 0.766 + }, + { + "start": 24673.84, + "end": 24678.28, + "probability": 0.7102 + }, + { + "start": 24678.82, + "end": 24680.92, + "probability": 0.9932 + }, + { + "start": 24681.76, + "end": 24685.34, + "probability": 0.976 + }, + { + "start": 24686.66, + "end": 24689.26, + "probability": 0.7681 + }, + { + "start": 24689.66, + "end": 24691.78, + "probability": 0.6829 + }, + { + "start": 24692.02, + "end": 24693.0, + "probability": 0.9284 + }, + { + "start": 24693.5, + "end": 24698.86, + "probability": 0.9764 + }, + { + "start": 24699.52, + "end": 24703.72, + "probability": 0.7302 + }, + { + "start": 24704.02, + "end": 24709.74, + "probability": 0.998 + }, + { + "start": 24710.2, + "end": 24712.38, + "probability": 0.9084 + }, + { + "start": 24713.18, + "end": 24714.44, + "probability": 0.9802 + }, + { + "start": 24715.24, + "end": 24721.54, + "probability": 0.776 + }, + { + "start": 24721.6, + "end": 24723.46, + "probability": 0.9446 + }, + { + "start": 24724.36, + "end": 24728.94, + "probability": 0.9487 + }, + { + "start": 24728.96, + "end": 24730.76, + "probability": 0.7381 + }, + { + "start": 24731.68, + "end": 24732.2, + "probability": 0.8537 + }, + { + "start": 24732.26, + "end": 24737.36, + "probability": 0.9478 + }, + { + "start": 24738.4, + "end": 24739.48, + "probability": 0.6524 + }, + { + "start": 24740.26, + "end": 24740.96, + "probability": 0.9468 + }, + { + "start": 24741.66, + "end": 24745.76, + "probability": 0.8978 + }, + { + "start": 24746.04, + "end": 24748.34, + "probability": 0.4513 + }, + { + "start": 24749.0, + "end": 24753.36, + "probability": 0.9735 + }, + { + "start": 24753.6, + "end": 24755.26, + "probability": 0.722 + }, + { + "start": 24756.3, + "end": 24758.62, + "probability": 0.8768 + }, + { + "start": 24758.72, + "end": 24761.06, + "probability": 0.9292 + }, + { + "start": 24761.82, + "end": 24762.57, + "probability": 0.8234 + }, + { + "start": 24763.52, + "end": 24766.5, + "probability": 0.9816 + }, + { + "start": 24767.06, + "end": 24768.38, + "probability": 0.4714 + }, + { + "start": 24769.9, + "end": 24770.46, + "probability": 0.9781 + }, + { + "start": 24774.22, + "end": 24776.54, + "probability": 0.9711 + }, + { + "start": 24776.76, + "end": 24776.86, + "probability": 0.3887 + }, + { + "start": 24777.26, + "end": 24778.16, + "probability": 0.9055 + }, + { + "start": 24778.4, + "end": 24780.43, + "probability": 0.8809 + }, + { + "start": 24781.04, + "end": 24781.64, + "probability": 0.9783 + }, + { + "start": 24782.32, + "end": 24783.72, + "probability": 0.9686 + }, + { + "start": 24784.12, + "end": 24786.18, + "probability": 0.9418 + }, + { + "start": 24786.84, + "end": 24787.7, + "probability": 0.9784 + }, + { + "start": 24788.46, + "end": 24791.54, + "probability": 0.9984 + }, + { + "start": 24791.98, + "end": 24794.95, + "probability": 0.9938 + }, + { + "start": 24795.66, + "end": 24797.12, + "probability": 0.998 + }, + { + "start": 24797.68, + "end": 24798.5, + "probability": 0.6689 + }, + { + "start": 24798.84, + "end": 24800.61, + "probability": 0.9717 + }, + { + "start": 24801.04, + "end": 24803.8, + "probability": 0.9982 + }, + { + "start": 24804.74, + "end": 24806.8, + "probability": 0.8653 + }, + { + "start": 24806.86, + "end": 24809.02, + "probability": 0.9255 + }, + { + "start": 24809.16, + "end": 24812.46, + "probability": 0.9852 + }, + { + "start": 24812.98, + "end": 24814.42, + "probability": 0.9302 + }, + { + "start": 24814.58, + "end": 24815.71, + "probability": 0.9945 + }, + { + "start": 24816.12, + "end": 24816.58, + "probability": 0.7563 + }, + { + "start": 24816.68, + "end": 24821.26, + "probability": 0.9381 + }, + { + "start": 24821.76, + "end": 24822.7, + "probability": 0.8842 + }, + { + "start": 24822.84, + "end": 24823.96, + "probability": 0.7982 + }, + { + "start": 24824.0, + "end": 24824.1, + "probability": 0.6963 + }, + { + "start": 24824.3, + "end": 24829.0, + "probability": 0.9524 + }, + { + "start": 24829.58, + "end": 24831.33, + "probability": 0.9717 + }, + { + "start": 24831.58, + "end": 24833.8, + "probability": 0.9945 + }, + { + "start": 24833.8, + "end": 24834.22, + "probability": 0.8767 + }, + { + "start": 24834.28, + "end": 24834.3, + "probability": 0.0814 + }, + { + "start": 24834.3, + "end": 24835.88, + "probability": 0.7743 + }, + { + "start": 24836.65, + "end": 24838.4, + "probability": 0.9706 + }, + { + "start": 24838.5, + "end": 24838.76, + "probability": 0.3809 + }, + { + "start": 24838.8, + "end": 24842.06, + "probability": 0.8907 + }, + { + "start": 24842.5, + "end": 24842.5, + "probability": 0.7915 + }, + { + "start": 24842.82, + "end": 24846.68, + "probability": 0.8169 + }, + { + "start": 24846.81, + "end": 24850.96, + "probability": 0.891 + }, + { + "start": 24851.08, + "end": 24852.68, + "probability": 0.5351 + }, + { + "start": 24853.16, + "end": 24854.12, + "probability": 0.7198 + }, + { + "start": 24854.46, + "end": 24854.5, + "probability": 0.4874 + }, + { + "start": 24854.5, + "end": 24854.8, + "probability": 0.5093 + }, + { + "start": 24854.82, + "end": 24855.12, + "probability": 0.8362 + }, + { + "start": 24856.64, + "end": 24857.36, + "probability": 0.7969 + }, + { + "start": 24857.4, + "end": 24859.08, + "probability": 0.9854 + }, + { + "start": 24859.42, + "end": 24860.9, + "probability": 0.9549 + }, + { + "start": 24861.42, + "end": 24863.98, + "probability": 0.7158 + }, + { + "start": 24864.06, + "end": 24866.14, + "probability": 0.9421 + }, + { + "start": 24866.3, + "end": 24867.04, + "probability": 0.9541 + }, + { + "start": 24867.04, + "end": 24868.04, + "probability": 0.7973 + }, + { + "start": 24868.1, + "end": 24869.0, + "probability": 0.8723 + }, + { + "start": 24869.04, + "end": 24871.7, + "probability": 0.9511 + }, + { + "start": 24871.94, + "end": 24874.94, + "probability": 0.8823 + }, + { + "start": 24875.14, + "end": 24875.58, + "probability": 0.8517 + }, + { + "start": 24876.02, + "end": 24877.34, + "probability": 0.9829 + }, + { + "start": 24877.78, + "end": 24881.06, + "probability": 0.9769 + }, + { + "start": 24881.94, + "end": 24883.38, + "probability": 0.517 + }, + { + "start": 24883.66, + "end": 24885.56, + "probability": 0.9545 + }, + { + "start": 24885.68, + "end": 24885.8, + "probability": 0.0179 + }, + { + "start": 24885.82, + "end": 24886.26, + "probability": 0.6444 + }, + { + "start": 24886.34, + "end": 24888.58, + "probability": 0.515 + }, + { + "start": 24888.58, + "end": 24889.5, + "probability": 0.8936 + }, + { + "start": 24890.2, + "end": 24891.68, + "probability": 0.6388 + }, + { + "start": 24892.1, + "end": 24895.82, + "probability": 0.7866 + }, + { + "start": 24895.82, + "end": 24897.88, + "probability": 0.9937 + }, + { + "start": 24898.78, + "end": 24900.54, + "probability": 0.726 + }, + { + "start": 24901.42, + "end": 24903.66, + "probability": 0.9608 + }, + { + "start": 24904.04, + "end": 24908.32, + "probability": 0.979 + }, + { + "start": 24908.72, + "end": 24910.02, + "probability": 0.9354 + }, + { + "start": 24910.7, + "end": 24911.58, + "probability": 0.6888 + }, + { + "start": 24911.74, + "end": 24915.46, + "probability": 0.7835 + }, + { + "start": 24917.0, + "end": 24918.56, + "probability": 0.4058 + }, + { + "start": 24918.56, + "end": 24918.56, + "probability": 0.467 + }, + { + "start": 24918.56, + "end": 24919.98, + "probability": 0.9144 + }, + { + "start": 24920.2, + "end": 24924.82, + "probability": 0.6859 + }, + { + "start": 24924.82, + "end": 24926.38, + "probability": 0.8067 + }, + { + "start": 24926.9, + "end": 24926.9, + "probability": 0.0364 + }, + { + "start": 24926.9, + "end": 24928.48, + "probability": 0.6592 + }, + { + "start": 24928.48, + "end": 24933.54, + "probability": 0.9424 + }, + { + "start": 24934.32, + "end": 24940.06, + "probability": 0.9968 + }, + { + "start": 24940.32, + "end": 24942.02, + "probability": 0.9672 + }, + { + "start": 24942.52, + "end": 24947.52, + "probability": 0.981 + }, + { + "start": 24948.58, + "end": 24948.64, + "probability": 0.1633 + }, + { + "start": 24948.64, + "end": 24948.92, + "probability": 0.3123 + }, + { + "start": 24948.92, + "end": 24949.04, + "probability": 0.8184 + }, + { + "start": 24949.04, + "end": 24949.1, + "probability": 0.5782 + }, + { + "start": 24949.22, + "end": 24949.76, + "probability": 0.3913 + }, + { + "start": 24949.96, + "end": 24952.76, + "probability": 0.979 + }, + { + "start": 24952.96, + "end": 24953.3, + "probability": 0.8923 + }, + { + "start": 24953.34, + "end": 24953.92, + "probability": 0.9845 + }, + { + "start": 24954.0, + "end": 24954.34, + "probability": 0.6782 + }, + { + "start": 24954.44, + "end": 24955.38, + "probability": 0.8115 + }, + { + "start": 24955.68, + "end": 24956.62, + "probability": 0.9943 + }, + { + "start": 24957.44, + "end": 24959.4, + "probability": 0.6514 + }, + { + "start": 24959.4, + "end": 24961.54, + "probability": 0.6005 + }, + { + "start": 24962.04, + "end": 24962.1, + "probability": 0.5522 + }, + { + "start": 24962.1, + "end": 24962.2, + "probability": 0.4965 + }, + { + "start": 24962.3, + "end": 24965.6, + "probability": 0.9569 + }, + { + "start": 24965.98, + "end": 24967.98, + "probability": 0.4794 + }, + { + "start": 24967.98, + "end": 24968.88, + "probability": 0.9954 + }, + { + "start": 24969.18, + "end": 24970.3, + "probability": 0.9106 + }, + { + "start": 24971.08, + "end": 24974.32, + "probability": 0.8184 + }, + { + "start": 24974.34, + "end": 24978.16, + "probability": 0.9814 + }, + { + "start": 24978.26, + "end": 24980.96, + "probability": 0.2947 + }, + { + "start": 24981.02, + "end": 24982.53, + "probability": 0.8109 + }, + { + "start": 24982.64, + "end": 24985.2, + "probability": 0.9815 + }, + { + "start": 24985.34, + "end": 24988.48, + "probability": 0.7998 + }, + { + "start": 24989.18, + "end": 24990.16, + "probability": 0.495 + }, + { + "start": 24990.56, + "end": 24991.04, + "probability": 0.8998 + }, + { + "start": 24991.18, + "end": 24991.64, + "probability": 0.5167 + }, + { + "start": 24991.82, + "end": 24992.36, + "probability": 0.5078 + }, + { + "start": 24992.78, + "end": 24992.88, + "probability": 0.7838 + }, + { + "start": 24992.98, + "end": 24993.72, + "probability": 0.9805 + }, + { + "start": 24993.82, + "end": 24994.88, + "probability": 0.7646 + }, + { + "start": 24994.96, + "end": 24997.34, + "probability": 0.9579 + }, + { + "start": 24997.44, + "end": 24998.63, + "probability": 0.9554 + }, + { + "start": 24998.88, + "end": 25000.1, + "probability": 0.7648 + }, + { + "start": 25000.18, + "end": 25003.02, + "probability": 0.8644 + }, + { + "start": 25003.97, + "end": 25006.72, + "probability": 0.9427 + }, + { + "start": 25008.4, + "end": 25010.49, + "probability": 0.9896 + }, + { + "start": 25010.96, + "end": 25011.76, + "probability": 0.6093 + }, + { + "start": 25011.76, + "end": 25012.18, + "probability": 0.8716 + }, + { + "start": 25013.16, + "end": 25016.62, + "probability": 0.9987 + }, + { + "start": 25016.72, + "end": 25017.3, + "probability": 0.9933 + }, + { + "start": 25017.36, + "end": 25017.88, + "probability": 0.3665 + }, + { + "start": 25018.94, + "end": 25022.34, + "probability": 0.8503 + }, + { + "start": 25022.78, + "end": 25023.94, + "probability": 0.855 + }, + { + "start": 25024.06, + "end": 25024.2, + "probability": 0.8853 + }, + { + "start": 25024.28, + "end": 25026.3, + "probability": 0.6793 + }, + { + "start": 25026.5, + "end": 25027.04, + "probability": 0.7055 + }, + { + "start": 25027.62, + "end": 25028.24, + "probability": 0.9907 + }, + { + "start": 25028.58, + "end": 25028.86, + "probability": 0.5536 + }, + { + "start": 25028.88, + "end": 25029.6, + "probability": 0.6679 + }, + { + "start": 25029.64, + "end": 25030.04, + "probability": 0.4758 + }, + { + "start": 25030.16, + "end": 25030.77, + "probability": 0.8306 + }, + { + "start": 25030.8, + "end": 25031.28, + "probability": 0.5304 + }, + { + "start": 25031.68, + "end": 25032.34, + "probability": 0.627 + }, + { + "start": 25032.52, + "end": 25033.44, + "probability": 0.2988 + }, + { + "start": 25033.46, + "end": 25035.36, + "probability": 0.9334 + }, + { + "start": 25035.5, + "end": 25036.58, + "probability": 0.8903 + }, + { + "start": 25037.24, + "end": 25039.02, + "probability": 0.8529 + }, + { + "start": 25039.02, + "end": 25039.56, + "probability": 0.4635 + }, + { + "start": 25039.62, + "end": 25043.2, + "probability": 0.9547 + }, + { + "start": 25043.2, + "end": 25046.54, + "probability": 0.9983 + }, + { + "start": 25046.58, + "end": 25047.48, + "probability": 0.115 + }, + { + "start": 25047.5, + "end": 25048.24, + "probability": 0.5406 + }, + { + "start": 25049.08, + "end": 25051.94, + "probability": 0.9663 + }, + { + "start": 25051.94, + "end": 25052.94, + "probability": 0.7634 + }, + { + "start": 25053.06, + "end": 25053.34, + "probability": 0.1785 + }, + { + "start": 25053.36, + "end": 25055.58, + "probability": 0.9727 + }, + { + "start": 25055.98, + "end": 25058.22, + "probability": 0.8608 + }, + { + "start": 25059.12, + "end": 25060.68, + "probability": 0.6827 + }, + { + "start": 25060.78, + "end": 25061.32, + "probability": 0.8184 + }, + { + "start": 25061.56, + "end": 25063.04, + "probability": 0.5657 + }, + { + "start": 25064.66, + "end": 25064.94, + "probability": 0.484 + }, + { + "start": 25064.94, + "end": 25065.66, + "probability": 0.9702 + }, + { + "start": 25065.78, + "end": 25066.88, + "probability": 0.7377 + }, + { + "start": 25067.0, + "end": 25067.36, + "probability": 0.89 + }, + { + "start": 25067.44, + "end": 25069.46, + "probability": 0.8217 + }, + { + "start": 25069.92, + "end": 25070.34, + "probability": 0.0334 + }, + { + "start": 25070.34, + "end": 25072.24, + "probability": 0.6658 + }, + { + "start": 25072.54, + "end": 25073.4, + "probability": 0.8421 + }, + { + "start": 25073.46, + "end": 25075.14, + "probability": 0.8953 + }, + { + "start": 25075.28, + "end": 25075.92, + "probability": 0.9824 + }, + { + "start": 25076.16, + "end": 25078.72, + "probability": 0.9323 + }, + { + "start": 25079.8, + "end": 25080.82, + "probability": 0.9377 + }, + { + "start": 25080.94, + "end": 25082.64, + "probability": 0.9222 + }, + { + "start": 25083.34, + "end": 25084.86, + "probability": 0.3131 + }, + { + "start": 25085.0, + "end": 25086.44, + "probability": 0.7158 + }, + { + "start": 25086.52, + "end": 25087.28, + "probability": 0.719 + }, + { + "start": 25089.65, + "end": 25090.66, + "probability": 0.6407 + }, + { + "start": 25090.72, + "end": 25090.72, + "probability": 0.0421 + }, + { + "start": 25090.72, + "end": 25094.54, + "probability": 0.9712 + }, + { + "start": 25094.62, + "end": 25095.5, + "probability": 0.7733 + }, + { + "start": 25096.12, + "end": 25098.72, + "probability": 0.5574 + }, + { + "start": 25099.14, + "end": 25099.58, + "probability": 0.8223 + }, + { + "start": 25100.22, + "end": 25101.0, + "probability": 0.5344 + }, + { + "start": 25101.4, + "end": 25103.56, + "probability": 0.8835 + }, + { + "start": 25104.16, + "end": 25106.8, + "probability": 0.9897 + }, + { + "start": 25107.4, + "end": 25108.24, + "probability": 0.9688 + }, + { + "start": 25108.84, + "end": 25110.32, + "probability": 0.6286 + }, + { + "start": 25110.38, + "end": 25111.12, + "probability": 0.9729 + }, + { + "start": 25111.28, + "end": 25113.08, + "probability": 0.5022 + }, + { + "start": 25113.12, + "end": 25113.94, + "probability": 0.835 + }, + { + "start": 25114.04, + "end": 25116.92, + "probability": 0.7348 + }, + { + "start": 25116.92, + "end": 25120.46, + "probability": 0.9763 + }, + { + "start": 25120.88, + "end": 25121.14, + "probability": 0.4469 + }, + { + "start": 25121.18, + "end": 25122.58, + "probability": 0.9983 + }, + { + "start": 25122.86, + "end": 25123.22, + "probability": 0.2597 + }, + { + "start": 25123.66, + "end": 25131.52, + "probability": 0.7993 + }, + { + "start": 25131.78, + "end": 25131.9, + "probability": 0.0631 + }, + { + "start": 25131.9, + "end": 25132.66, + "probability": 0.6956 + }, + { + "start": 25132.82, + "end": 25132.88, + "probability": 0.1369 + }, + { + "start": 25133.0, + "end": 25136.9, + "probability": 0.9863 + }, + { + "start": 25137.08, + "end": 25138.2, + "probability": 0.4854 + }, + { + "start": 25140.82, + "end": 25141.16, + "probability": 0.4665 + }, + { + "start": 25141.16, + "end": 25141.16, + "probability": 0.1451 + }, + { + "start": 25141.16, + "end": 25141.16, + "probability": 0.0918 + }, + { + "start": 25141.16, + "end": 25141.68, + "probability": 0.3724 + }, + { + "start": 25142.44, + "end": 25142.54, + "probability": 0.3408 + }, + { + "start": 25142.7, + "end": 25143.8, + "probability": 0.7685 + }, + { + "start": 25143.86, + "end": 25144.06, + "probability": 0.8564 + }, + { + "start": 25144.16, + "end": 25147.28, + "probability": 0.9597 + }, + { + "start": 25147.58, + "end": 25147.74, + "probability": 0.6547 + }, + { + "start": 25147.8, + "end": 25148.66, + "probability": 0.864 + }, + { + "start": 25148.74, + "end": 25150.04, + "probability": 0.9526 + }, + { + "start": 25150.04, + "end": 25150.98, + "probability": 0.2818 + }, + { + "start": 25151.12, + "end": 25152.9, + "probability": 0.9887 + }, + { + "start": 25153.14, + "end": 25153.36, + "probability": 0.8142 + }, + { + "start": 25153.46, + "end": 25157.0, + "probability": 0.9402 + }, + { + "start": 25157.56, + "end": 25158.1, + "probability": 0.9205 + }, + { + "start": 25158.94, + "end": 25162.06, + "probability": 0.9676 + }, + { + "start": 25162.06, + "end": 25162.08, + "probability": 0.1129 + }, + { + "start": 25162.08, + "end": 25162.26, + "probability": 0.9224 + }, + { + "start": 25162.36, + "end": 25162.6, + "probability": 0.5724 + }, + { + "start": 25162.7, + "end": 25162.84, + "probability": 0.363 + }, + { + "start": 25162.98, + "end": 25163.72, + "probability": 0.9937 + }, + { + "start": 25163.8, + "end": 25164.55, + "probability": 0.6716 + }, + { + "start": 25165.0, + "end": 25166.86, + "probability": 0.7692 + }, + { + "start": 25166.94, + "end": 25168.7, + "probability": 0.3579 + }, + { + "start": 25168.7, + "end": 25174.12, + "probability": 0.8908 + }, + { + "start": 25174.94, + "end": 25176.18, + "probability": 0.8598 + }, + { + "start": 25176.7, + "end": 25178.18, + "probability": 0.8653 + }, + { + "start": 25178.42, + "end": 25180.66, + "probability": 0.4848 + }, + { + "start": 25180.86, + "end": 25182.26, + "probability": 0.9662 + }, + { + "start": 25182.54, + "end": 25183.32, + "probability": 0.9667 + }, + { + "start": 25183.76, + "end": 25184.68, + "probability": 0.9519 + }, + { + "start": 25185.06, + "end": 25185.24, + "probability": 0.8882 + }, + { + "start": 25185.36, + "end": 25186.46, + "probability": 0.9816 + }, + { + "start": 25186.56, + "end": 25186.74, + "probability": 0.6681 + }, + { + "start": 25186.78, + "end": 25187.44, + "probability": 0.5949 + }, + { + "start": 25187.54, + "end": 25189.12, + "probability": 0.3443 + }, + { + "start": 25189.38, + "end": 25190.48, + "probability": 0.8412 + }, + { + "start": 25190.88, + "end": 25190.88, + "probability": 0.0268 + }, + { + "start": 25190.88, + "end": 25193.58, + "probability": 0.958 + }, + { + "start": 25194.02, + "end": 25198.32, + "probability": 0.9924 + }, + { + "start": 25198.5, + "end": 25202.52, + "probability": 0.984 + }, + { + "start": 25202.88, + "end": 25203.38, + "probability": 0.8889 + }, + { + "start": 25203.5, + "end": 25204.66, + "probability": 0.9254 + }, + { + "start": 25205.04, + "end": 25206.62, + "probability": 0.9932 + }, + { + "start": 25206.78, + "end": 25207.38, + "probability": 0.6704 + }, + { + "start": 25207.62, + "end": 25209.56, + "probability": 0.9979 + }, + { + "start": 25210.44, + "end": 25212.04, + "probability": 0.8476 + }, + { + "start": 25212.44, + "end": 25214.82, + "probability": 0.9021 + }, + { + "start": 25215.52, + "end": 25219.14, + "probability": 0.7766 + }, + { + "start": 25219.72, + "end": 25222.92, + "probability": 0.9746 + }, + { + "start": 25223.24, + "end": 25227.56, + "probability": 0.9147 + }, + { + "start": 25228.2, + "end": 25230.7, + "probability": 0.9927 + }, + { + "start": 25230.78, + "end": 25232.9, + "probability": 0.9993 + }, + { + "start": 25233.22, + "end": 25234.3, + "probability": 0.8171 + }, + { + "start": 25234.44, + "end": 25235.48, + "probability": 0.9541 + }, + { + "start": 25236.08, + "end": 25237.04, + "probability": 0.645 + }, + { + "start": 25237.84, + "end": 25239.07, + "probability": 0.6758 + }, + { + "start": 25239.42, + "end": 25241.64, + "probability": 0.8749 + }, + { + "start": 25241.74, + "end": 25243.2, + "probability": 0.7748 + }, + { + "start": 25243.86, + "end": 25245.32, + "probability": 0.8804 + }, + { + "start": 25245.8, + "end": 25248.34, + "probability": 0.9598 + }, + { + "start": 25248.46, + "end": 25248.92, + "probability": 0.7311 + }, + { + "start": 25249.32, + "end": 25249.42, + "probability": 0.523 + }, + { + "start": 25249.44, + "end": 25251.78, + "probability": 0.8944 + }, + { + "start": 25252.0, + "end": 25254.29, + "probability": 0.89 + }, + { + "start": 25255.28, + "end": 25256.92, + "probability": 0.9807 + }, + { + "start": 25257.12, + "end": 25259.46, + "probability": 0.9731 + }, + { + "start": 25259.68, + "end": 25260.76, + "probability": 0.8198 + }, + { + "start": 25260.86, + "end": 25265.06, + "probability": 0.9801 + }, + { + "start": 25265.46, + "end": 25266.08, + "probability": 0.9432 + }, + { + "start": 25266.16, + "end": 25266.36, + "probability": 0.345 + }, + { + "start": 25266.44, + "end": 25266.5, + "probability": 0.8633 + }, + { + "start": 25266.92, + "end": 25269.36, + "probability": 0.7252 + }, + { + "start": 25269.46, + "end": 25269.7, + "probability": 0.8118 + }, + { + "start": 25269.88, + "end": 25271.04, + "probability": 0.9948 + }, + { + "start": 25271.92, + "end": 25274.44, + "probability": 0.8928 + }, + { + "start": 25275.04, + "end": 25277.54, + "probability": 0.946 + }, + { + "start": 25277.98, + "end": 25279.42, + "probability": 0.5825 + }, + { + "start": 25279.42, + "end": 25280.21, + "probability": 0.8953 + }, + { + "start": 25280.28, + "end": 25280.8, + "probability": 0.6155 + }, + { + "start": 25281.16, + "end": 25281.54, + "probability": 0.981 + }, + { + "start": 25281.62, + "end": 25283.21, + "probability": 0.9724 + }, + { + "start": 25284.1, + "end": 25285.46, + "probability": 0.9551 + }, + { + "start": 25286.2, + "end": 25287.34, + "probability": 0.9266 + }, + { + "start": 25287.64, + "end": 25287.84, + "probability": 0.8 + }, + { + "start": 25287.88, + "end": 25289.97, + "probability": 0.9844 + }, + { + "start": 25290.0, + "end": 25291.1, + "probability": 0.8083 + }, + { + "start": 25291.12, + "end": 25293.06, + "probability": 0.6193 + }, + { + "start": 25293.12, + "end": 25293.24, + "probability": 0.1269 + }, + { + "start": 25293.24, + "end": 25293.98, + "probability": 0.4326 + }, + { + "start": 25293.98, + "end": 25294.38, + "probability": 0.5752 + }, + { + "start": 25294.62, + "end": 25295.4, + "probability": 0.669 + }, + { + "start": 25295.82, + "end": 25298.72, + "probability": 0.761 + }, + { + "start": 25299.12, + "end": 25299.52, + "probability": 0.5872 + }, + { + "start": 25299.54, + "end": 25300.02, + "probability": 0.7385 + }, + { + "start": 25300.04, + "end": 25301.9, + "probability": 0.8649 + }, + { + "start": 25301.94, + "end": 25302.4, + "probability": 0.8253 + }, + { + "start": 25302.4, + "end": 25304.54, + "probability": 0.5495 + }, + { + "start": 25305.08, + "end": 25305.86, + "probability": 0.7278 + }, + { + "start": 25306.54, + "end": 25308.94, + "probability": 0.8313 + }, + { + "start": 25309.08, + "end": 25309.3, + "probability": 0.3554 + }, + { + "start": 25310.14, + "end": 25311.0, + "probability": 0.9888 + }, + { + "start": 25311.14, + "end": 25311.86, + "probability": 0.7573 + }, + { + "start": 25311.98, + "end": 25312.32, + "probability": 0.9073 + }, + { + "start": 25312.44, + "end": 25312.66, + "probability": 0.7542 + }, + { + "start": 25313.5, + "end": 25316.08, + "probability": 0.7789 + }, + { + "start": 25316.9, + "end": 25317.26, + "probability": 0.6799 + }, + { + "start": 25318.08, + "end": 25321.7, + "probability": 0.526 + }, + { + "start": 25321.7, + "end": 25322.36, + "probability": 0.3053 + }, + { + "start": 25322.4, + "end": 25323.4, + "probability": 0.9089 + }, + { + "start": 25323.84, + "end": 25326.74, + "probability": 0.9077 + }, + { + "start": 25326.74, + "end": 25329.18, + "probability": 0.9937 + }, + { + "start": 25329.86, + "end": 25330.66, + "probability": 0.5759 + }, + { + "start": 25330.68, + "end": 25331.24, + "probability": 0.769 + }, + { + "start": 25331.88, + "end": 25332.82, + "probability": 0.8167 + }, + { + "start": 25333.42, + "end": 25333.8, + "probability": 0.5547 + }, + { + "start": 25334.62, + "end": 25335.54, + "probability": 0.5316 + }, + { + "start": 25335.6, + "end": 25337.28, + "probability": 0.9774 + }, + { + "start": 25337.3, + "end": 25340.46, + "probability": 0.9956 + }, + { + "start": 25341.12, + "end": 25346.8, + "probability": 0.8617 + }, + { + "start": 25347.34, + "end": 25348.1, + "probability": 0.9619 + }, + { + "start": 25348.56, + "end": 25348.64, + "probability": 0.9143 + }, + { + "start": 25348.72, + "end": 25351.36, + "probability": 0.9933 + }, + { + "start": 25351.8, + "end": 25352.88, + "probability": 0.7278 + }, + { + "start": 25352.92, + "end": 25352.92, + "probability": 0.4143 + }, + { + "start": 25352.92, + "end": 25353.34, + "probability": 0.8542 + }, + { + "start": 25353.62, + "end": 25353.8, + "probability": 0.3993 + }, + { + "start": 25353.92, + "end": 25354.52, + "probability": 0.1114 + }, + { + "start": 25354.88, + "end": 25355.92, + "probability": 0.6921 + }, + { + "start": 25356.2, + "end": 25358.88, + "probability": 0.9556 + }, + { + "start": 25359.04, + "end": 25359.16, + "probability": 0.2969 + }, + { + "start": 25359.88, + "end": 25360.88, + "probability": 0.7654 + }, + { + "start": 25361.02, + "end": 25361.12, + "probability": 0.3779 + }, + { + "start": 25361.72, + "end": 25367.16, + "probability": 0.8971 + }, + { + "start": 25367.2, + "end": 25367.52, + "probability": 0.2772 + }, + { + "start": 25367.52, + "end": 25367.88, + "probability": 0.6274 + }, + { + "start": 25368.3, + "end": 25369.79, + "probability": 0.8095 + }, + { + "start": 25370.1, + "end": 25372.0, + "probability": 0.9659 + }, + { + "start": 25373.26, + "end": 25373.4, + "probability": 0.1316 + }, + { + "start": 25373.58, + "end": 25376.14, + "probability": 0.8785 + }, + { + "start": 25376.46, + "end": 25380.08, + "probability": 0.8569 + }, + { + "start": 25380.14, + "end": 25382.08, + "probability": 0.6575 + }, + { + "start": 25382.18, + "end": 25385.28, + "probability": 0.9618 + }, + { + "start": 25386.52, + "end": 25389.24, + "probability": 0.9401 + }, + { + "start": 25390.04, + "end": 25392.37, + "probability": 0.9931 + }, + { + "start": 25393.06, + "end": 25394.1, + "probability": 0.3226 + }, + { + "start": 25394.62, + "end": 25398.32, + "probability": 0.9965 + }, + { + "start": 25399.52, + "end": 25400.2, + "probability": 0.8844 + }, + { + "start": 25400.52, + "end": 25402.14, + "probability": 0.7063 + }, + { + "start": 25402.62, + "end": 25404.24, + "probability": 0.8323 + }, + { + "start": 25404.75, + "end": 25406.54, + "probability": 0.412 + }, + { + "start": 25406.54, + "end": 25407.16, + "probability": 0.7086 + }, + { + "start": 25407.16, + "end": 25407.38, + "probability": 0.3324 + }, + { + "start": 25407.4, + "end": 25407.88, + "probability": 0.5321 + }, + { + "start": 25408.37, + "end": 25410.1, + "probability": 0.9606 + }, + { + "start": 25410.2, + "end": 25411.35, + "probability": 0.8887 + }, + { + "start": 25411.62, + "end": 25413.72, + "probability": 0.9722 + }, + { + "start": 25414.5, + "end": 25414.5, + "probability": 0.0014 + }, + { + "start": 25414.6, + "end": 25416.14, + "probability": 0.5754 + }, + { + "start": 25416.78, + "end": 25417.71, + "probability": 0.8187 + }, + { + "start": 25418.64, + "end": 25419.44, + "probability": 0.9323 + }, + { + "start": 25419.56, + "end": 25420.19, + "probability": 0.9659 + }, + { + "start": 25420.66, + "end": 25420.74, + "probability": 0.1418 + }, + { + "start": 25420.74, + "end": 25422.9, + "probability": 0.498 + }, + { + "start": 25423.58, + "end": 25423.8, + "probability": 0.5381 + }, + { + "start": 25423.82, + "end": 25424.58, + "probability": 0.5147 + }, + { + "start": 25424.94, + "end": 25425.12, + "probability": 0.0431 + }, + { + "start": 25425.18, + "end": 25426.16, + "probability": 0.2495 + }, + { + "start": 25426.22, + "end": 25427.06, + "probability": 0.5895 + }, + { + "start": 25427.16, + "end": 25427.38, + "probability": 0.3776 + }, + { + "start": 25427.8, + "end": 25428.58, + "probability": 0.4935 + }, + { + "start": 25428.58, + "end": 25429.91, + "probability": 0.7327 + }, + { + "start": 25430.22, + "end": 25431.81, + "probability": 0.9297 + }, + { + "start": 25431.9, + "end": 25434.1, + "probability": 0.9479 + }, + { + "start": 25434.72, + "end": 25435.36, + "probability": 0.9662 + }, + { + "start": 25436.5, + "end": 25437.12, + "probability": 0.7621 + }, + { + "start": 25437.22, + "end": 25437.54, + "probability": 0.5043 + }, + { + "start": 25437.88, + "end": 25441.68, + "probability": 0.9591 + }, + { + "start": 25441.7, + "end": 25444.28, + "probability": 0.9674 + }, + { + "start": 25444.42, + "end": 25446.51, + "probability": 0.9854 + }, + { + "start": 25447.5, + "end": 25447.95, + "probability": 0.9824 + }, + { + "start": 25448.46, + "end": 25450.82, + "probability": 0.9396 + }, + { + "start": 25450.96, + "end": 25451.34, + "probability": 0.8301 + }, + { + "start": 25451.38, + "end": 25452.78, + "probability": 0.8994 + }, + { + "start": 25452.82, + "end": 25455.9, + "probability": 0.9793 + }, + { + "start": 25458.98, + "end": 25459.5, + "probability": 0.4738 + }, + { + "start": 25460.24, + "end": 25461.86, + "probability": 0.8133 + }, + { + "start": 25462.32, + "end": 25462.5, + "probability": 0.9713 + }, + { + "start": 25462.6, + "end": 25463.5, + "probability": 0.9712 + }, + { + "start": 25463.84, + "end": 25465.52, + "probability": 0.9073 + }, + { + "start": 25465.98, + "end": 25466.81, + "probability": 0.9758 + }, + { + "start": 25466.98, + "end": 25469.02, + "probability": 0.8655 + }, + { + "start": 25469.04, + "end": 25470.2, + "probability": 0.9379 + }, + { + "start": 25470.58, + "end": 25470.92, + "probability": 0.3339 + }, + { + "start": 25471.04, + "end": 25472.62, + "probability": 0.7437 + }, + { + "start": 25472.62, + "end": 25476.8, + "probability": 0.9031 + }, + { + "start": 25477.4, + "end": 25477.98, + "probability": 0.9068 + }, + { + "start": 25478.02, + "end": 25478.2, + "probability": 0.8519 + }, + { + "start": 25478.44, + "end": 25480.14, + "probability": 0.9893 + }, + { + "start": 25480.66, + "end": 25482.68, + "probability": 0.6438 + }, + { + "start": 25482.8, + "end": 25484.48, + "probability": 0.9173 + }, + { + "start": 25484.6, + "end": 25484.92, + "probability": 0.0908 + }, + { + "start": 25485.04, + "end": 25487.16, + "probability": 0.5784 + }, + { + "start": 25487.24, + "end": 25491.5, + "probability": 0.8475 + }, + { + "start": 25491.88, + "end": 25492.61, + "probability": 0.9927 + }, + { + "start": 25493.32, + "end": 25494.28, + "probability": 0.6529 + }, + { + "start": 25494.5, + "end": 25495.74, + "probability": 0.676 + }, + { + "start": 25495.88, + "end": 25496.4, + "probability": 0.5254 + }, + { + "start": 25496.4, + "end": 25496.58, + "probability": 0.6332 + }, + { + "start": 25496.64, + "end": 25501.04, + "probability": 0.9215 + }, + { + "start": 25501.48, + "end": 25503.18, + "probability": 0.727 + }, + { + "start": 25503.6, + "end": 25504.38, + "probability": 0.922 + }, + { + "start": 25504.42, + "end": 25504.5, + "probability": 0.0818 + }, + { + "start": 25504.62, + "end": 25504.98, + "probability": 0.8177 + }, + { + "start": 25505.1, + "end": 25506.38, + "probability": 0.4071 + }, + { + "start": 25506.8, + "end": 25507.7, + "probability": 0.8833 + }, + { + "start": 25507.97, + "end": 25508.88, + "probability": 0.6367 + }, + { + "start": 25509.0, + "end": 25510.62, + "probability": 0.9148 + }, + { + "start": 25510.68, + "end": 25511.32, + "probability": 0.8784 + }, + { + "start": 25511.98, + "end": 25513.92, + "probability": 0.9861 + }, + { + "start": 25514.4, + "end": 25520.78, + "probability": 0.9705 + }, + { + "start": 25521.36, + "end": 25524.52, + "probability": 0.9599 + }, + { + "start": 25525.04, + "end": 25527.06, + "probability": 0.9793 + }, + { + "start": 25527.54, + "end": 25528.98, + "probability": 0.7713 + }, + { + "start": 25531.16, + "end": 25533.12, + "probability": 0.6428 + }, + { + "start": 25533.7, + "end": 25534.12, + "probability": 0.9761 + }, + { + "start": 25534.34, + "end": 25537.66, + "probability": 0.9776 + }, + { + "start": 25537.86, + "end": 25537.86, + "probability": 0.0591 + }, + { + "start": 25537.86, + "end": 25539.36, + "probability": 0.9078 + }, + { + "start": 25539.98, + "end": 25543.96, + "probability": 0.9872 + }, + { + "start": 25544.78, + "end": 25546.72, + "probability": 0.6328 + }, + { + "start": 25547.56, + "end": 25548.34, + "probability": 0.734 + }, + { + "start": 25548.98, + "end": 25551.32, + "probability": 0.9467 + }, + { + "start": 25552.06, + "end": 25555.3, + "probability": 0.9915 + }, + { + "start": 25556.2, + "end": 25557.8, + "probability": 0.8849 + }, + { + "start": 25557.88, + "end": 25558.5, + "probability": 0.5396 + }, + { + "start": 25559.42, + "end": 25563.78, + "probability": 0.8066 + }, + { + "start": 25564.5, + "end": 25565.42, + "probability": 0.8292 + }, + { + "start": 25565.54, + "end": 25566.32, + "probability": 0.9697 + }, + { + "start": 25566.44, + "end": 25566.88, + "probability": 0.5025 + }, + { + "start": 25566.92, + "end": 25568.73, + "probability": 0.9138 + }, + { + "start": 25569.44, + "end": 25573.18, + "probability": 0.955 + }, + { + "start": 25573.18, + "end": 25573.18, + "probability": 0.1513 + }, + { + "start": 25573.5, + "end": 25573.6, + "probability": 0.6893 + }, + { + "start": 25573.6, + "end": 25574.96, + "probability": 0.9355 + }, + { + "start": 25576.56, + "end": 25577.1, + "probability": 0.9762 + }, + { + "start": 25577.38, + "end": 25579.16, + "probability": 0.806 + }, + { + "start": 25579.16, + "end": 25582.3, + "probability": 0.9985 + }, + { + "start": 25582.42, + "end": 25584.86, + "probability": 0.8967 + }, + { + "start": 25584.86, + "end": 25587.4, + "probability": 0.7622 + }, + { + "start": 25587.5, + "end": 25587.62, + "probability": 0.6509 + }, + { + "start": 25587.62, + "end": 25590.1, + "probability": 0.9972 + }, + { + "start": 25590.1, + "end": 25592.8, + "probability": 0.999 + }, + { + "start": 25593.24, + "end": 25595.22, + "probability": 0.6741 + }, + { + "start": 25595.82, + "end": 25596.68, + "probability": 0.9537 + }, + { + "start": 25597.28, + "end": 25597.28, + "probability": 0.1602 + }, + { + "start": 25597.76, + "end": 25598.38, + "probability": 0.9449 + }, + { + "start": 25598.46, + "end": 25599.59, + "probability": 0.7926 + }, + { + "start": 25600.28, + "end": 25600.64, + "probability": 0.7358 + }, + { + "start": 25600.74, + "end": 25600.8, + "probability": 0.1108 + }, + { + "start": 25600.8, + "end": 25601.66, + "probability": 0.9062 + }, + { + "start": 25601.76, + "end": 25605.76, + "probability": 0.914 + }, + { + "start": 25605.86, + "end": 25606.0, + "probability": 0.0384 + }, + { + "start": 25606.0, + "end": 25606.0, + "probability": 0.1336 + }, + { + "start": 25606.0, + "end": 25606.63, + "probability": 0.1181 + }, + { + "start": 25606.96, + "end": 25607.88, + "probability": 0.8552 + }, + { + "start": 25608.22, + "end": 25608.49, + "probability": 0.6462 + }, + { + "start": 25608.78, + "end": 25610.68, + "probability": 0.9713 + }, + { + "start": 25611.04, + "end": 25611.14, + "probability": 0.0272 + }, + { + "start": 25611.2, + "end": 25614.0, + "probability": 0.9435 + }, + { + "start": 25614.24, + "end": 25615.7, + "probability": 0.9196 + }, + { + "start": 25615.72, + "end": 25616.02, + "probability": 0.6917 + }, + { + "start": 25616.12, + "end": 25617.4, + "probability": 0.7475 + }, + { + "start": 25617.7, + "end": 25621.98, + "probability": 0.9011 + }, + { + "start": 25622.6, + "end": 25625.2, + "probability": 0.8288 + }, + { + "start": 25625.5, + "end": 25626.52, + "probability": 0.8135 + }, + { + "start": 25626.62, + "end": 25626.72, + "probability": 0.5175 + }, + { + "start": 25626.72, + "end": 25627.36, + "probability": 0.8666 + }, + { + "start": 25627.66, + "end": 25628.15, + "probability": 0.3829 + }, + { + "start": 25628.7, + "end": 25630.48, + "probability": 0.8966 + }, + { + "start": 25630.64, + "end": 25633.96, + "probability": 0.1251 + }, + { + "start": 25633.96, + "end": 25637.42, + "probability": 0.591 + }, + { + "start": 25641.12, + "end": 25641.66, + "probability": 0.5339 + }, + { + "start": 25643.08, + "end": 25645.28, + "probability": 0.9733 + }, + { + "start": 25646.32, + "end": 25648.18, + "probability": 0.9873 + }, + { + "start": 25649.0, + "end": 25651.58, + "probability": 0.9438 + }, + { + "start": 25653.08, + "end": 25656.46, + "probability": 0.6111 + }, + { + "start": 25656.82, + "end": 25657.44, + "probability": 0.6585 + }, + { + "start": 25657.86, + "end": 25659.26, + "probability": 0.7077 + }, + { + "start": 25659.38, + "end": 25660.88, + "probability": 0.9779 + }, + { + "start": 25662.84, + "end": 25663.46, + "probability": 0.951 + }, + { + "start": 25663.6, + "end": 25665.24, + "probability": 0.9943 + }, + { + "start": 25665.58, + "end": 25667.2, + "probability": 0.8509 + }, + { + "start": 25667.42, + "end": 25668.3, + "probability": 0.7087 + }, + { + "start": 25668.34, + "end": 25669.12, + "probability": 0.8826 + }, + { + "start": 25669.16, + "end": 25672.72, + "probability": 0.8656 + }, + { + "start": 25673.66, + "end": 25678.04, + "probability": 0.9019 + }, + { + "start": 25678.2, + "end": 25678.9, + "probability": 0.6659 + }, + { + "start": 25678.98, + "end": 25678.98, + "probability": 0.1368 + }, + { + "start": 25681.6, + "end": 25683.12, + "probability": 0.9941 + }, + { + "start": 25683.22, + "end": 25684.08, + "probability": 0.8469 + }, + { + "start": 25684.26, + "end": 25687.44, + "probability": 0.9374 + }, + { + "start": 25687.82, + "end": 25689.02, + "probability": 0.9601 + }, + { + "start": 25690.04, + "end": 25693.92, + "probability": 0.9654 + }, + { + "start": 25694.34, + "end": 25695.66, + "probability": 0.989 + }, + { + "start": 25695.76, + "end": 25698.34, + "probability": 0.9972 + }, + { + "start": 25699.02, + "end": 25700.76, + "probability": 0.8864 + }, + { + "start": 25701.12, + "end": 25701.38, + "probability": 0.9263 + }, + { + "start": 25701.48, + "end": 25701.8, + "probability": 0.8498 + }, + { + "start": 25702.3, + "end": 25707.08, + "probability": 0.9409 + }, + { + "start": 25707.58, + "end": 25708.62, + "probability": 0.9668 + }, + { + "start": 25708.7, + "end": 25709.12, + "probability": 0.9616 + }, + { + "start": 25709.22, + "end": 25711.1, + "probability": 0.7749 + }, + { + "start": 25711.3, + "end": 25715.06, + "probability": 0.9444 + }, + { + "start": 25715.76, + "end": 25718.41, + "probability": 0.6677 + }, + { + "start": 25718.7, + "end": 25722.1, + "probability": 0.9053 + }, + { + "start": 25722.42, + "end": 25726.44, + "probability": 0.9338 + }, + { + "start": 25726.76, + "end": 25729.32, + "probability": 0.6214 + }, + { + "start": 25729.52, + "end": 25732.15, + "probability": 0.7576 + }, + { + "start": 25732.66, + "end": 25739.24, + "probability": 0.9539 + }, + { + "start": 25740.04, + "end": 25740.42, + "probability": 0.7219 + }, + { + "start": 25742.13, + "end": 25744.2, + "probability": 0.9951 + }, + { + "start": 25744.52, + "end": 25746.52, + "probability": 0.9351 + }, + { + "start": 25746.58, + "end": 25746.68, + "probability": 0.7466 + }, + { + "start": 25746.78, + "end": 25750.46, + "probability": 0.9297 + }, + { + "start": 25750.58, + "end": 25752.26, + "probability": 0.9419 + }, + { + "start": 25752.26, + "end": 25755.1, + "probability": 0.9048 + }, + { + "start": 25755.46, + "end": 25759.58, + "probability": 0.924 + }, + { + "start": 25759.82, + "end": 25761.68, + "probability": 0.9105 + }, + { + "start": 25761.7, + "end": 25764.88, + "probability": 0.9766 + }, + { + "start": 25765.04, + "end": 25766.58, + "probability": 0.8047 + }, + { + "start": 25766.94, + "end": 25769.56, + "probability": 0.9929 + }, + { + "start": 25769.9, + "end": 25771.2, + "probability": 0.945 + }, + { + "start": 25771.8, + "end": 25772.82, + "probability": 0.7713 + }, + { + "start": 25772.96, + "end": 25774.6, + "probability": 0.9873 + }, + { + "start": 25775.32, + "end": 25777.06, + "probability": 0.8634 + }, + { + "start": 25777.62, + "end": 25778.22, + "probability": 0.7451 + }, + { + "start": 25778.78, + "end": 25780.14, + "probability": 0.8761 + }, + { + "start": 25780.8, + "end": 25784.2, + "probability": 0.9377 + }, + { + "start": 25784.2, + "end": 25786.0, + "probability": 0.92 + }, + { + "start": 25786.12, + "end": 25787.2, + "probability": 0.9988 + }, + { + "start": 25787.46, + "end": 25787.8, + "probability": 0.5374 + }, + { + "start": 25787.88, + "end": 25791.02, + "probability": 0.8553 + }, + { + "start": 25791.44, + "end": 25791.92, + "probability": 0.6389 + }, + { + "start": 25792.38, + "end": 25793.42, + "probability": 0.8353 + }, + { + "start": 25794.4, + "end": 25797.06, + "probability": 0.9027 + }, + { + "start": 25798.12, + "end": 25799.9, + "probability": 0.9854 + }, + { + "start": 25799.9, + "end": 25800.0, + "probability": 0.4663 + }, + { + "start": 25800.46, + "end": 25801.22, + "probability": 0.9724 + }, + { + "start": 25801.44, + "end": 25803.42, + "probability": 0.975 + }, + { + "start": 25803.76, + "end": 25805.84, + "probability": 0.9988 + }, + { + "start": 25806.48, + "end": 25810.46, + "probability": 0.9681 + }, + { + "start": 25810.54, + "end": 25810.74, + "probability": 0.7757 + }, + { + "start": 25811.36, + "end": 25813.58, + "probability": 0.7964 + }, + { + "start": 25813.88, + "end": 25818.42, + "probability": 0.9779 + }, + { + "start": 25820.32, + "end": 25820.82, + "probability": 0.7908 + }, + { + "start": 25820.94, + "end": 25823.62, + "probability": 0.8791 + }, + { + "start": 25823.76, + "end": 25825.08, + "probability": 0.813 + }, + { + "start": 25825.6, + "end": 25826.78, + "probability": 0.6832 + }, + { + "start": 25827.88, + "end": 25829.72, + "probability": 0.9838 + }, + { + "start": 25831.08, + "end": 25832.88, + "probability": 0.481 + }, + { + "start": 25833.24, + "end": 25833.24, + "probability": 0.2797 + }, + { + "start": 25833.24, + "end": 25833.34, + "probability": 0.4804 + }, + { + "start": 25833.8, + "end": 25835.32, + "probability": 0.8889 + }, + { + "start": 25837.9, + "end": 25838.72, + "probability": 0.9375 + }, + { + "start": 25844.44, + "end": 25844.94, + "probability": 0.1242 + }, + { + "start": 25849.66, + "end": 25850.9, + "probability": 0.0679 + }, + { + "start": 25853.34, + "end": 25855.68, + "probability": 0.308 + }, + { + "start": 25856.6, + "end": 25856.96, + "probability": 0.028 + }, + { + "start": 25873.52, + "end": 25874.86, + "probability": 0.1392 + }, + { + "start": 25876.26, + "end": 25877.58, + "probability": 0.405 + }, + { + "start": 25883.84, + "end": 25884.8, + "probability": 0.6088 + }, + { + "start": 25889.56, + "end": 25892.1, + "probability": 0.9912 + }, + { + "start": 25893.58, + "end": 25896.3, + "probability": 0.8852 + }, + { + "start": 25897.34, + "end": 25899.38, + "probability": 0.9919 + }, + { + "start": 25900.5, + "end": 25900.86, + "probability": 0.9755 + }, + { + "start": 25901.38, + "end": 25903.54, + "probability": 0.9888 + }, + { + "start": 25904.32, + "end": 25905.8, + "probability": 0.9543 + }, + { + "start": 25907.18, + "end": 25909.74, + "probability": 0.9338 + }, + { + "start": 25910.86, + "end": 25911.92, + "probability": 0.7566 + }, + { + "start": 25913.02, + "end": 25914.08, + "probability": 0.8354 + }, + { + "start": 25915.2, + "end": 25917.44, + "probability": 0.9628 + }, + { + "start": 25918.52, + "end": 25921.2, + "probability": 0.8743 + }, + { + "start": 25922.24, + "end": 25925.64, + "probability": 0.6672 + }, + { + "start": 25926.48, + "end": 25927.62, + "probability": 0.7598 + }, + { + "start": 25928.38, + "end": 25928.86, + "probability": 0.3925 + }, + { + "start": 25930.52, + "end": 25932.32, + "probability": 0.9982 + }, + { + "start": 25933.76, + "end": 25935.96, + "probability": 0.9902 + }, + { + "start": 25936.98, + "end": 25937.4, + "probability": 0.9832 + }, + { + "start": 25939.52, + "end": 25943.4, + "probability": 0.9414 + }, + { + "start": 25944.48, + "end": 25945.18, + "probability": 0.8892 + }, + { + "start": 25946.96, + "end": 25951.26, + "probability": 0.7868 + }, + { + "start": 25953.04, + "end": 25955.14, + "probability": 0.9922 + }, + { + "start": 25957.0, + "end": 25959.42, + "probability": 0.9691 + }, + { + "start": 25960.46, + "end": 25962.38, + "probability": 0.7068 + }, + { + "start": 25963.78, + "end": 25966.22, + "probability": 0.6089 + }, + { + "start": 25967.56, + "end": 25969.42, + "probability": 0.9955 + }, + { + "start": 25970.58, + "end": 25972.02, + "probability": 0.4702 + }, + { + "start": 25972.36, + "end": 25973.06, + "probability": 0.7318 + }, + { + "start": 25973.12, + "end": 25973.58, + "probability": 0.5791 + }, + { + "start": 25974.46, + "end": 25975.12, + "probability": 0.5026 + }, + { + "start": 25975.52, + "end": 25978.72, + "probability": 0.41 + }, + { + "start": 25979.22, + "end": 25979.64, + "probability": 0.7471 + }, + { + "start": 25979.66, + "end": 25980.22, + "probability": 0.7905 + }, + { + "start": 25980.46, + "end": 25984.7, + "probability": 0.6076 + }, + { + "start": 25985.22, + "end": 25986.48, + "probability": 0.7391 + }, + { + "start": 25987.08, + "end": 25987.8, + "probability": 0.5737 + }, + { + "start": 25988.44, + "end": 25989.94, + "probability": 0.7443 + }, + { + "start": 25990.66, + "end": 25994.76, + "probability": 0.9181 + }, + { + "start": 25995.74, + "end": 25998.38, + "probability": 0.8094 + }, + { + "start": 25999.34, + "end": 26000.08, + "probability": 0.8242 + }, + { + "start": 26000.6, + "end": 26004.04, + "probability": 0.9341 + }, + { + "start": 26005.26, + "end": 26008.16, + "probability": 0.9858 + }, + { + "start": 26008.8, + "end": 26009.42, + "probability": 0.693 + }, + { + "start": 26010.02, + "end": 26011.96, + "probability": 0.9753 + }, + { + "start": 26012.86, + "end": 26015.98, + "probability": 0.9905 + }, + { + "start": 26016.68, + "end": 26017.44, + "probability": 0.5837 + }, + { + "start": 26018.08, + "end": 26019.22, + "probability": 0.9891 + }, + { + "start": 26020.66, + "end": 26023.82, + "probability": 0.9634 + }, + { + "start": 26025.12, + "end": 26027.9, + "probability": 0.994 + }, + { + "start": 26029.0, + "end": 26032.76, + "probability": 0.6662 + }, + { + "start": 26034.44, + "end": 26037.26, + "probability": 0.9976 + }, + { + "start": 26038.68, + "end": 26039.26, + "probability": 0.8708 + }, + { + "start": 26039.8, + "end": 26042.74, + "probability": 0.9696 + }, + { + "start": 26044.6, + "end": 26047.02, + "probability": 0.9843 + }, + { + "start": 26048.94, + "end": 26050.42, + "probability": 0.9685 + }, + { + "start": 26050.94, + "end": 26051.92, + "probability": 0.4968 + }, + { + "start": 26052.5, + "end": 26054.64, + "probability": 0.5339 + }, + { + "start": 26054.7, + "end": 26055.24, + "probability": 0.3663 + }, + { + "start": 26055.38, + "end": 26056.46, + "probability": 0.7394 + }, + { + "start": 26057.96, + "end": 26059.6, + "probability": 0.9644 + }, + { + "start": 26060.7, + "end": 26064.48, + "probability": 0.8443 + }, + { + "start": 26064.48, + "end": 26069.34, + "probability": 0.9814 + }, + { + "start": 26071.76, + "end": 26075.16, + "probability": 0.9014 + }, + { + "start": 26075.3, + "end": 26075.92, + "probability": 0.7793 + }, + { + "start": 26077.94, + "end": 26080.04, + "probability": 0.9921 + }, + { + "start": 26080.56, + "end": 26082.97, + "probability": 0.8914 + }, + { + "start": 26084.3, + "end": 26084.76, + "probability": 0.9888 + }, + { + "start": 26084.88, + "end": 26085.8, + "probability": 0.8547 + }, + { + "start": 26085.88, + "end": 26088.58, + "probability": 0.9355 + }, + { + "start": 26089.96, + "end": 26099.04, + "probability": 0.9155 + }, + { + "start": 26099.04, + "end": 26099.96, + "probability": 0.7155 + }, + { + "start": 26100.18, + "end": 26100.3, + "probability": 0.1243 + }, + { + "start": 26100.44, + "end": 26101.86, + "probability": 0.998 + }, + { + "start": 26102.42, + "end": 26107.54, + "probability": 0.7039 + }, + { + "start": 26108.24, + "end": 26109.16, + "probability": 0.9184 + }, + { + "start": 26109.84, + "end": 26111.24, + "probability": 0.999 + }, + { + "start": 26113.02, + "end": 26118.3, + "probability": 0.9882 + }, + { + "start": 26118.86, + "end": 26121.98, + "probability": 0.9883 + }, + { + "start": 26122.86, + "end": 26124.56, + "probability": 0.9708 + }, + { + "start": 26126.88, + "end": 26129.56, + "probability": 0.8879 + }, + { + "start": 26130.42, + "end": 26132.4, + "probability": 0.9935 + }, + { + "start": 26132.46, + "end": 26133.1, + "probability": 0.5698 + }, + { + "start": 26133.32, + "end": 26135.46, + "probability": 0.8318 + }, + { + "start": 26137.5, + "end": 26140.26, + "probability": 0.9719 + }, + { + "start": 26140.84, + "end": 26143.42, + "probability": 0.7488 + }, + { + "start": 26144.8, + "end": 26146.76, + "probability": 0.9615 + }, + { + "start": 26148.2, + "end": 26151.28, + "probability": 0.9982 + }, + { + "start": 26151.28, + "end": 26155.54, + "probability": 0.9271 + }, + { + "start": 26155.9, + "end": 26156.5, + "probability": 0.6002 + }, + { + "start": 26157.04, + "end": 26159.98, + "probability": 0.8875 + }, + { + "start": 26160.64, + "end": 26164.0, + "probability": 0.9897 + }, + { + "start": 26164.68, + "end": 26165.9, + "probability": 0.9692 + }, + { + "start": 26166.32, + "end": 26172.42, + "probability": 0.9862 + }, + { + "start": 26172.92, + "end": 26175.68, + "probability": 0.7893 + }, + { + "start": 26176.44, + "end": 26179.12, + "probability": 0.9906 + }, + { + "start": 26182.0, + "end": 26183.98, + "probability": 0.8975 + }, + { + "start": 26186.88, + "end": 26188.06, + "probability": 0.5128 + }, + { + "start": 26188.64, + "end": 26190.4, + "probability": 0.9551 + }, + { + "start": 26191.12, + "end": 26195.3, + "probability": 0.7896 + }, + { + "start": 26195.3, + "end": 26198.98, + "probability": 0.9848 + }, + { + "start": 26199.72, + "end": 26200.98, + "probability": 0.9487 + }, + { + "start": 26202.2, + "end": 26203.58, + "probability": 0.9783 + }, + { + "start": 26204.78, + "end": 26205.32, + "probability": 0.7968 + }, + { + "start": 26207.44, + "end": 26210.2, + "probability": 0.988 + }, + { + "start": 26211.94, + "end": 26214.12, + "probability": 0.9916 + }, + { + "start": 26215.12, + "end": 26216.96, + "probability": 0.9813 + }, + { + "start": 26217.94, + "end": 26219.54, + "probability": 0.8267 + }, + { + "start": 26220.5, + "end": 26223.48, + "probability": 0.8501 + }, + { + "start": 26224.9, + "end": 26227.16, + "probability": 0.9976 + }, + { + "start": 26228.54, + "end": 26229.64, + "probability": 0.9705 + }, + { + "start": 26231.14, + "end": 26232.1, + "probability": 0.8564 + }, + { + "start": 26232.84, + "end": 26233.72, + "probability": 0.6454 + }, + { + "start": 26234.5, + "end": 26234.88, + "probability": 0.7818 + }, + { + "start": 26235.04, + "end": 26235.36, + "probability": 0.8055 + }, + { + "start": 26235.44, + "end": 26239.72, + "probability": 0.8271 + }, + { + "start": 26239.8, + "end": 26240.34, + "probability": 0.5607 + }, + { + "start": 26241.62, + "end": 26243.92, + "probability": 0.9935 + }, + { + "start": 26244.6, + "end": 26246.0, + "probability": 0.986 + }, + { + "start": 26246.5, + "end": 26247.29, + "probability": 0.8922 + }, + { + "start": 26248.06, + "end": 26249.2, + "probability": 0.8689 + }, + { + "start": 26250.14, + "end": 26254.3, + "probability": 0.925 + }, + { + "start": 26254.58, + "end": 26255.6, + "probability": 0.8672 + }, + { + "start": 26255.98, + "end": 26257.04, + "probability": 0.9092 + }, + { + "start": 26257.68, + "end": 26259.28, + "probability": 0.9651 + }, + { + "start": 26260.56, + "end": 26262.62, + "probability": 0.9781 + }, + { + "start": 26263.3, + "end": 26264.46, + "probability": 0.9951 + }, + { + "start": 26266.28, + "end": 26267.54, + "probability": 0.9599 + }, + { + "start": 26267.6, + "end": 26272.96, + "probability": 0.8975 + }, + { + "start": 26273.3, + "end": 26274.04, + "probability": 0.2214 + }, + { + "start": 26274.16, + "end": 26275.02, + "probability": 0.9888 + }, + { + "start": 26275.8, + "end": 26276.46, + "probability": 0.0713 + }, + { + "start": 26276.54, + "end": 26279.44, + "probability": 0.9963 + }, + { + "start": 26280.54, + "end": 26281.06, + "probability": 0.9413 + }, + { + "start": 26283.07, + "end": 26283.54, + "probability": 0.7594 + }, + { + "start": 26284.88, + "end": 26285.32, + "probability": 0.836 + }, + { + "start": 26285.82, + "end": 26286.54, + "probability": 0.798 + }, + { + "start": 26287.6, + "end": 26289.2, + "probability": 0.9414 + }, + { + "start": 26289.28, + "end": 26289.38, + "probability": 0.7974 + }, + { + "start": 26289.6, + "end": 26290.18, + "probability": 0.9514 + }, + { + "start": 26292.06, + "end": 26292.82, + "probability": 0.9824 + }, + { + "start": 26292.88, + "end": 26293.83, + "probability": 0.9478 + }, + { + "start": 26294.04, + "end": 26294.68, + "probability": 0.8119 + }, + { + "start": 26295.34, + "end": 26296.68, + "probability": 0.9402 + }, + { + "start": 26297.94, + "end": 26300.8, + "probability": 0.2821 + }, + { + "start": 26301.64, + "end": 26304.32, + "probability": 0.978 + }, + { + "start": 26305.16, + "end": 26305.8, + "probability": 0.6477 + }, + { + "start": 26305.8, + "end": 26305.84, + "probability": 0.4279 + }, + { + "start": 26305.96, + "end": 26306.82, + "probability": 0.993 + }, + { + "start": 26307.52, + "end": 26308.44, + "probability": 0.7886 + }, + { + "start": 26309.6, + "end": 26312.44, + "probability": 0.9989 + }, + { + "start": 26313.4, + "end": 26313.8, + "probability": 0.4019 + }, + { + "start": 26313.8, + "end": 26315.1, + "probability": 0.5099 + }, + { + "start": 26315.12, + "end": 26315.76, + "probability": 0.116 + }, + { + "start": 26316.36, + "end": 26317.6, + "probability": 0.546 + }, + { + "start": 26317.86, + "end": 26317.98, + "probability": 0.3081 + }, + { + "start": 26317.98, + "end": 26319.02, + "probability": 0.4111 + }, + { + "start": 26319.7, + "end": 26321.8, + "probability": 0.9416 + }, + { + "start": 26321.96, + "end": 26325.46, + "probability": 0.8872 + }, + { + "start": 26329.12, + "end": 26331.2, + "probability": 0.5232 + }, + { + "start": 26331.82, + "end": 26332.69, + "probability": 0.6675 + }, + { + "start": 26333.72, + "end": 26334.38, + "probability": 0.967 + }, + { + "start": 26335.0, + "end": 26336.92, + "probability": 0.8069 + }, + { + "start": 26336.92, + "end": 26337.66, + "probability": 0.9141 + }, + { + "start": 26338.08, + "end": 26339.34, + "probability": 0.5645 + }, + { + "start": 26339.8, + "end": 26340.98, + "probability": 0.9823 + }, + { + "start": 26341.24, + "end": 26347.38, + "probability": 0.9026 + }, + { + "start": 26348.0, + "end": 26350.46, + "probability": 0.9771 + }, + { + "start": 26351.58, + "end": 26353.8, + "probability": 0.8794 + }, + { + "start": 26354.32, + "end": 26355.55, + "probability": 0.9658 + }, + { + "start": 26356.92, + "end": 26363.5, + "probability": 0.9299 + }, + { + "start": 26363.92, + "end": 26365.91, + "probability": 0.7775 + }, + { + "start": 26366.38, + "end": 26367.5, + "probability": 0.6329 + }, + { + "start": 26368.32, + "end": 26369.98, + "probability": 0.9505 + }, + { + "start": 26371.06, + "end": 26372.5, + "probability": 0.9956 + }, + { + "start": 26373.04, + "end": 26376.76, + "probability": 0.961 + }, + { + "start": 26377.66, + "end": 26381.72, + "probability": 0.9121 + }, + { + "start": 26384.07, + "end": 26387.32, + "probability": 0.6665 + }, + { + "start": 26387.84, + "end": 26389.4, + "probability": 0.6704 + }, + { + "start": 26390.26, + "end": 26390.28, + "probability": 0.5288 + }, + { + "start": 26391.06, + "end": 26395.24, + "probability": 0.9781 + }, + { + "start": 26395.7, + "end": 26396.98, + "probability": 0.8747 + }, + { + "start": 26397.6, + "end": 26399.84, + "probability": 0.9759 + }, + { + "start": 26401.72, + "end": 26402.62, + "probability": 0.999 + }, + { + "start": 26403.0, + "end": 26404.96, + "probability": 0.9795 + }, + { + "start": 26406.2, + "end": 26407.12, + "probability": 0.7241 + }, + { + "start": 26408.56, + "end": 26410.74, + "probability": 0.9866 + }, + { + "start": 26411.54, + "end": 26412.4, + "probability": 0.7827 + }, + { + "start": 26413.6, + "end": 26415.48, + "probability": 0.9568 + }, + { + "start": 26416.02, + "end": 26417.82, + "probability": 0.7909 + }, + { + "start": 26417.82, + "end": 26421.08, + "probability": 0.9707 + }, + { + "start": 26421.2, + "end": 26421.2, + "probability": 0.0008 + }, + { + "start": 26423.89, + "end": 26428.64, + "probability": 0.8973 + }, + { + "start": 26430.4, + "end": 26431.27, + "probability": 0.9956 + }, + { + "start": 26432.66, + "end": 26433.3, + "probability": 0.2759 + }, + { + "start": 26433.92, + "end": 26435.16, + "probability": 0.9956 + }, + { + "start": 26435.5, + "end": 26436.34, + "probability": 0.9876 + }, + { + "start": 26437.02, + "end": 26438.38, + "probability": 0.6978 + }, + { + "start": 26438.48, + "end": 26439.44, + "probability": 0.7361 + }, + { + "start": 26439.94, + "end": 26440.96, + "probability": 0.5344 + }, + { + "start": 26441.58, + "end": 26444.0, + "probability": 0.724 + }, + { + "start": 26444.1, + "end": 26444.94, + "probability": 0.7504 + }, + { + "start": 26445.64, + "end": 26448.42, + "probability": 0.9902 + }, + { + "start": 26448.82, + "end": 26451.48, + "probability": 0.9636 + }, + { + "start": 26451.82, + "end": 26455.58, + "probability": 0.7856 + }, + { + "start": 26455.6, + "end": 26455.94, + "probability": 0.4426 + }, + { + "start": 26456.0, + "end": 26457.38, + "probability": 0.6271 + }, + { + "start": 26457.44, + "end": 26462.74, + "probability": 0.6604 + }, + { + "start": 26462.8, + "end": 26464.72, + "probability": 0.8452 + }, + { + "start": 26465.38, + "end": 26467.57, + "probability": 0.8954 + }, + { + "start": 26467.72, + "end": 26468.62, + "probability": 0.7631 + }, + { + "start": 26468.98, + "end": 26470.76, + "probability": 0.8909 + }, + { + "start": 26470.8, + "end": 26473.12, + "probability": 0.8118 + }, + { + "start": 26474.42, + "end": 26476.41, + "probability": 0.7492 + }, + { + "start": 26477.3, + "end": 26479.72, + "probability": 0.5979 + }, + { + "start": 26480.6, + "end": 26481.66, + "probability": 0.5946 + }, + { + "start": 26483.06, + "end": 26486.4, + "probability": 0.9658 + }, + { + "start": 26487.48, + "end": 26489.24, + "probability": 0.9492 + }, + { + "start": 26490.3, + "end": 26493.32, + "probability": 0.9404 + }, + { + "start": 26495.2, + "end": 26498.52, + "probability": 0.9824 + }, + { + "start": 26499.7, + "end": 26504.78, + "probability": 0.9518 + }, + { + "start": 26505.44, + "end": 26509.74, + "probability": 0.8235 + }, + { + "start": 26512.18, + "end": 26513.18, + "probability": 0.732 + }, + { + "start": 26514.18, + "end": 26516.76, + "probability": 0.9372 + }, + { + "start": 26516.88, + "end": 26517.4, + "probability": 0.585 + }, + { + "start": 26517.52, + "end": 26518.68, + "probability": 0.9564 + }, + { + "start": 26518.76, + "end": 26520.9, + "probability": 0.9271 + }, + { + "start": 26521.34, + "end": 26523.25, + "probability": 0.988 + }, + { + "start": 26525.0, + "end": 26530.12, + "probability": 0.9806 + }, + { + "start": 26530.64, + "end": 26531.45, + "probability": 0.3598 + }, + { + "start": 26532.94, + "end": 26534.78, + "probability": 0.9911 + }, + { + "start": 26535.98, + "end": 26539.6, + "probability": 0.9861 + }, + { + "start": 26540.02, + "end": 26541.06, + "probability": 0.777 + }, + { + "start": 26541.64, + "end": 26543.34, + "probability": 0.9976 + }, + { + "start": 26544.2, + "end": 26544.4, + "probability": 0.9043 + }, + { + "start": 26546.72, + "end": 26548.2, + "probability": 0.3886 + }, + { + "start": 26549.06, + "end": 26549.74, + "probability": 0.6218 + }, + { + "start": 26550.13, + "end": 26553.56, + "probability": 0.8961 + }, + { + "start": 26554.12, + "end": 26556.92, + "probability": 0.8068 + }, + { + "start": 26558.26, + "end": 26559.41, + "probability": 0.1537 + }, + { + "start": 26560.28, + "end": 26562.64, + "probability": 0.976 + }, + { + "start": 26563.52, + "end": 26566.22, + "probability": 0.9505 + }, + { + "start": 26566.36, + "end": 26566.98, + "probability": 0.7673 + }, + { + "start": 26567.74, + "end": 26568.42, + "probability": 0.625 + }, + { + "start": 26569.42, + "end": 26576.59, + "probability": 0.9798 + }, + { + "start": 26576.98, + "end": 26581.98, + "probability": 0.9751 + }, + { + "start": 26585.5, + "end": 26587.98, + "probability": 0.6115 + }, + { + "start": 26588.44, + "end": 26589.3, + "probability": 0.7137 + }, + { + "start": 26589.84, + "end": 26591.04, + "probability": 0.6114 + }, + { + "start": 26591.76, + "end": 26593.34, + "probability": 0.9158 + }, + { + "start": 26593.64, + "end": 26598.4, + "probability": 0.9924 + }, + { + "start": 26602.84, + "end": 26603.46, + "probability": 0.618 + }, + { + "start": 26604.42, + "end": 26605.28, + "probability": 0.5514 + }, + { + "start": 26607.42, + "end": 26611.54, + "probability": 0.7989 + }, + { + "start": 26612.4, + "end": 26614.04, + "probability": 0.9451 + }, + { + "start": 26614.24, + "end": 26614.92, + "probability": 0.8508 + }, + { + "start": 26615.04, + "end": 26619.26, + "probability": 0.9787 + }, + { + "start": 26620.28, + "end": 26625.37, + "probability": 0.9728 + }, + { + "start": 26625.84, + "end": 26626.56, + "probability": 0.9752 + }, + { + "start": 26626.68, + "end": 26627.3, + "probability": 0.9194 + }, + { + "start": 26627.8, + "end": 26628.76, + "probability": 0.5502 + }, + { + "start": 26629.34, + "end": 26630.08, + "probability": 0.7044 + }, + { + "start": 26630.98, + "end": 26632.24, + "probability": 0.9634 + }, + { + "start": 26632.82, + "end": 26638.1, + "probability": 0.8334 + }, + { + "start": 26638.58, + "end": 26639.86, + "probability": 0.9367 + }, + { + "start": 26640.26, + "end": 26646.82, + "probability": 0.9029 + }, + { + "start": 26646.98, + "end": 26646.98, + "probability": 0.3531 + }, + { + "start": 26646.98, + "end": 26650.08, + "probability": 0.8133 + }, + { + "start": 26650.08, + "end": 26652.44, + "probability": 0.9758 + }, + { + "start": 26653.54, + "end": 26656.14, + "probability": 0.8843 + }, + { + "start": 26657.84, + "end": 26662.78, + "probability": 0.9961 + }, + { + "start": 26662.78, + "end": 26666.94, + "probability": 0.991 + }, + { + "start": 26667.36, + "end": 26668.26, + "probability": 0.7755 + }, + { + "start": 26668.86, + "end": 26669.91, + "probability": 0.8213 + }, + { + "start": 26670.74, + "end": 26673.33, + "probability": 0.8172 + }, + { + "start": 26673.88, + "end": 26674.38, + "probability": 0.8833 + }, + { + "start": 26674.42, + "end": 26674.82, + "probability": 0.8175 + }, + { + "start": 26675.56, + "end": 26680.16, + "probability": 0.9762 + }, + { + "start": 26680.2, + "end": 26680.86, + "probability": 0.3566 + }, + { + "start": 26681.36, + "end": 26682.78, + "probability": 0.7764 + }, + { + "start": 26682.92, + "end": 26683.18, + "probability": 0.4432 + }, + { + "start": 26683.28, + "end": 26686.0, + "probability": 0.8785 + }, + { + "start": 26686.48, + "end": 26690.54, + "probability": 0.9716 + }, + { + "start": 26690.92, + "end": 26691.88, + "probability": 0.9502 + }, + { + "start": 26692.18, + "end": 26694.1, + "probability": 0.8989 + }, + { + "start": 26695.02, + "end": 26695.66, + "probability": 0.6898 + }, + { + "start": 26696.2, + "end": 26697.74, + "probability": 0.5771 + }, + { + "start": 26698.44, + "end": 26700.42, + "probability": 0.9211 + }, + { + "start": 26701.22, + "end": 26702.32, + "probability": 0.7565 + }, + { + "start": 26703.06, + "end": 26706.02, + "probability": 0.8482 + }, + { + "start": 26706.66, + "end": 26708.88, + "probability": 0.8612 + }, + { + "start": 26710.38, + "end": 26711.0, + "probability": 0.4199 + }, + { + "start": 26711.82, + "end": 26712.06, + "probability": 0.4392 + }, + { + "start": 26712.06, + "end": 26712.69, + "probability": 0.6981 + }, + { + "start": 26713.06, + "end": 26713.82, + "probability": 0.6455 + }, + { + "start": 26714.3, + "end": 26714.8, + "probability": 0.6881 + }, + { + "start": 26715.42, + "end": 26718.44, + "probability": 0.7159 + }, + { + "start": 26718.86, + "end": 26722.6, + "probability": 0.9775 + }, + { + "start": 26724.54, + "end": 26725.16, + "probability": 0.7455 + }, + { + "start": 26727.56, + "end": 26733.58, + "probability": 0.9432 + }, + { + "start": 26734.12, + "end": 26735.06, + "probability": 0.9655 + }, + { + "start": 26736.5, + "end": 26739.0, + "probability": 0.8936 + }, + { + "start": 26740.66, + "end": 26741.06, + "probability": 0.7798 + }, + { + "start": 26741.46, + "end": 26743.76, + "probability": 0.7673 + }, + { + "start": 26744.12, + "end": 26745.17, + "probability": 0.9465 + }, + { + "start": 26746.04, + "end": 26747.44, + "probability": 0.3453 + }, + { + "start": 26748.28, + "end": 26748.76, + "probability": 0.8335 + }, + { + "start": 26749.56, + "end": 26751.36, + "probability": 0.9661 + }, + { + "start": 26752.22, + "end": 26753.38, + "probability": 0.9497 + }, + { + "start": 26755.82, + "end": 26757.86, + "probability": 0.3696 + }, + { + "start": 26758.34, + "end": 26768.66, + "probability": 0.1246 + }, + { + "start": 26783.82, + "end": 26785.06, + "probability": 0.0208 + }, + { + "start": 26787.66, + "end": 26788.65, + "probability": 0.8311 + }, + { + "start": 26790.1, + "end": 26795.12, + "probability": 0.9751 + }, + { + "start": 26795.52, + "end": 26797.56, + "probability": 0.6596 + }, + { + "start": 26798.62, + "end": 26799.94, + "probability": 0.8016 + }, + { + "start": 26800.56, + "end": 26802.22, + "probability": 0.9039 + }, + { + "start": 26802.8, + "end": 26804.64, + "probability": 0.9435 + }, + { + "start": 26805.18, + "end": 26806.12, + "probability": 0.8773 + }, + { + "start": 26806.7, + "end": 26809.16, + "probability": 0.4971 + }, + { + "start": 26810.28, + "end": 26811.68, + "probability": 0.7318 + }, + { + "start": 26812.98, + "end": 26815.58, + "probability": 0.8662 + }, + { + "start": 26816.46, + "end": 26819.12, + "probability": 0.9673 + }, + { + "start": 26819.54, + "end": 26821.18, + "probability": 0.166 + }, + { + "start": 26821.18, + "end": 26821.5, + "probability": 0.7092 + }, + { + "start": 26822.26, + "end": 26822.96, + "probability": 0.5026 + }, + { + "start": 26825.14, + "end": 26826.66, + "probability": 0.4438 + }, + { + "start": 26827.04, + "end": 26827.9, + "probability": 0.4196 + }, + { + "start": 26828.04, + "end": 26829.04, + "probability": 0.6691 + }, + { + "start": 26829.18, + "end": 26830.28, + "probability": 0.8864 + }, + { + "start": 26830.32, + "end": 26831.14, + "probability": 0.4488 + }, + { + "start": 26831.4, + "end": 26833.16, + "probability": 0.259 + }, + { + "start": 26834.9, + "end": 26836.33, + "probability": 0.2919 + }, + { + "start": 26837.18, + "end": 26839.54, + "probability": 0.883 + }, + { + "start": 26840.16, + "end": 26841.44, + "probability": 0.748 + }, + { + "start": 26842.3, + "end": 26842.64, + "probability": 0.6031 + }, + { + "start": 26842.88, + "end": 26848.12, + "probability": 0.308 + }, + { + "start": 26848.86, + "end": 26849.18, + "probability": 0.4127 + }, + { + "start": 26850.36, + "end": 26852.92, + "probability": 0.6666 + }, + { + "start": 26854.64, + "end": 26861.28, + "probability": 0.9258 + }, + { + "start": 26861.4, + "end": 26862.36, + "probability": 0.4766 + }, + { + "start": 26862.84, + "end": 26867.82, + "probability": 0.8395 + }, + { + "start": 26869.04, + "end": 26869.66, + "probability": 0.9042 + }, + { + "start": 26870.62, + "end": 26872.36, + "probability": 0.9966 + }, + { + "start": 26873.5, + "end": 26878.82, + "probability": 0.7517 + }, + { + "start": 26879.16, + "end": 26883.1, + "probability": 0.7232 + }, + { + "start": 26883.98, + "end": 26885.2, + "probability": 0.9431 + }, + { + "start": 26885.84, + "end": 26887.78, + "probability": 0.7924 + }, + { + "start": 26888.38, + "end": 26889.56, + "probability": 0.8804 + }, + { + "start": 26889.76, + "end": 26890.92, + "probability": 0.9663 + }, + { + "start": 26891.42, + "end": 26892.26, + "probability": 0.9414 + }, + { + "start": 26892.64, + "end": 26894.02, + "probability": 0.9487 + }, + { + "start": 26894.1, + "end": 26895.38, + "probability": 0.9897 + }, + { + "start": 26895.72, + "end": 26898.52, + "probability": 0.9724 + }, + { + "start": 26899.32, + "end": 26899.86, + "probability": 0.8245 + }, + { + "start": 26901.38, + "end": 26902.15, + "probability": 0.9359 + }, + { + "start": 26903.02, + "end": 26903.88, + "probability": 0.9537 + }, + { + "start": 26905.16, + "end": 26905.55, + "probability": 0.9528 + }, + { + "start": 26906.74, + "end": 26909.34, + "probability": 0.9873 + }, + { + "start": 26910.9, + "end": 26913.74, + "probability": 0.9854 + }, + { + "start": 26914.64, + "end": 26918.65, + "probability": 0.6803 + }, + { + "start": 26919.72, + "end": 26921.54, + "probability": 0.6726 + }, + { + "start": 26922.52, + "end": 26924.82, + "probability": 0.989 + }, + { + "start": 26925.46, + "end": 26928.66, + "probability": 0.9976 + }, + { + "start": 26929.5, + "end": 26930.72, + "probability": 0.912 + }, + { + "start": 26931.18, + "end": 26932.42, + "probability": 0.7994 + }, + { + "start": 26934.68, + "end": 26935.86, + "probability": 0.6458 + }, + { + "start": 26937.03, + "end": 26939.12, + "probability": 0.8038 + }, + { + "start": 26939.72, + "end": 26942.48, + "probability": 0.7428 + }, + { + "start": 26942.84, + "end": 26944.1, + "probability": 0.7003 + }, + { + "start": 26944.6, + "end": 26946.96, + "probability": 0.9176 + }, + { + "start": 26947.56, + "end": 26948.94, + "probability": 0.8324 + }, + { + "start": 26949.76, + "end": 26951.84, + "probability": 0.6658 + }, + { + "start": 26952.22, + "end": 26954.52, + "probability": 0.5202 + }, + { + "start": 26955.4, + "end": 26958.1, + "probability": 0.882 + }, + { + "start": 26959.42, + "end": 26961.1, + "probability": 0.581 + }, + { + "start": 26961.26, + "end": 26962.18, + "probability": 0.9625 + }, + { + "start": 26963.96, + "end": 26964.48, + "probability": 0.7396 + }, + { + "start": 26965.12, + "end": 26969.4, + "probability": 0.8457 + }, + { + "start": 26970.7, + "end": 26973.78, + "probability": 0.9365 + }, + { + "start": 26974.44, + "end": 26977.26, + "probability": 0.5458 + }, + { + "start": 26977.52, + "end": 26978.48, + "probability": 0.2314 + }, + { + "start": 26978.52, + "end": 26978.92, + "probability": 0.4479 + }, + { + "start": 26979.56, + "end": 26980.1, + "probability": 0.563 + }, + { + "start": 26980.78, + "end": 26981.3, + "probability": 0.6172 + }, + { + "start": 26981.42, + "end": 26981.76, + "probability": 0.4208 + }, + { + "start": 26982.36, + "end": 26982.54, + "probability": 0.5866 + }, + { + "start": 26982.54, + "end": 26983.34, + "probability": 0.4026 + }, + { + "start": 26983.34, + "end": 26984.29, + "probability": 0.7695 + }, + { + "start": 26984.84, + "end": 26985.38, + "probability": 0.8124 + }, + { + "start": 26986.4, + "end": 26990.2, + "probability": 0.6102 + }, + { + "start": 26990.3, + "end": 26991.7, + "probability": 0.5882 + }, + { + "start": 26992.4, + "end": 26995.0, + "probability": 0.4008 + }, + { + "start": 26995.02, + "end": 26995.02, + "probability": 0.5751 + }, + { + "start": 26995.02, + "end": 26995.92, + "probability": 0.588 + }, + { + "start": 26995.92, + "end": 26996.76, + "probability": 0.079 + }, + { + "start": 26997.62, + "end": 26998.82, + "probability": 0.6828 + }, + { + "start": 26998.98, + "end": 27001.84, + "probability": 0.7031 + }, + { + "start": 27001.84, + "end": 27003.42, + "probability": 0.4265 + }, + { + "start": 27003.52, + "end": 27004.4, + "probability": 0.6906 + }, + { + "start": 27004.68, + "end": 27005.44, + "probability": 0.8149 + }, + { + "start": 27005.92, + "end": 27006.48, + "probability": 0.7707 + }, + { + "start": 27006.66, + "end": 27006.98, + "probability": 0.918 + }, + { + "start": 27007.0, + "end": 27008.48, + "probability": 0.6283 + }, + { + "start": 27009.86, + "end": 27009.88, + "probability": 0.97 + }, + { + "start": 27009.88, + "end": 27010.88, + "probability": 0.0362 + }, + { + "start": 27010.92, + "end": 27011.8, + "probability": 0.9444 + }, + { + "start": 27011.84, + "end": 27012.6, + "probability": 0.416 + }, + { + "start": 27013.03, + "end": 27014.46, + "probability": 0.6646 + }, + { + "start": 27014.72, + "end": 27015.72, + "probability": 0.2812 + }, + { + "start": 27016.3, + "end": 27017.32, + "probability": 0.7093 + }, + { + "start": 27017.42, + "end": 27017.44, + "probability": 0.0964 + }, + { + "start": 27017.44, + "end": 27018.52, + "probability": 0.8258 + }, + { + "start": 27020.36, + "end": 27023.62, + "probability": 0.7983 + }, + { + "start": 27023.62, + "end": 27024.04, + "probability": 0.3577 + }, + { + "start": 27027.0, + "end": 27027.76, + "probability": 0.1016 + }, + { + "start": 27027.78, + "end": 27027.98, + "probability": 0.6554 + }, + { + "start": 27028.76, + "end": 27030.04, + "probability": 0.6519 + }, + { + "start": 27030.94, + "end": 27031.08, + "probability": 0.0021 + }, + { + "start": 27031.08, + "end": 27031.14, + "probability": 0.1657 + }, + { + "start": 27031.16, + "end": 27031.26, + "probability": 0.0507 + }, + { + "start": 27031.44, + "end": 27031.74, + "probability": 0.4423 + }, + { + "start": 27031.78, + "end": 27032.14, + "probability": 0.0362 + }, + { + "start": 27032.14, + "end": 27032.85, + "probability": 0.9697 + }, + { + "start": 27034.04, + "end": 27037.26, + "probability": 0.8456 + }, + { + "start": 27037.48, + "end": 27041.32, + "probability": 0.946 + }, + { + "start": 27041.54, + "end": 27042.74, + "probability": 0.0269 + }, + { + "start": 27042.96, + "end": 27044.38, + "probability": 0.2651 + }, + { + "start": 27044.96, + "end": 27046.2, + "probability": 0.6887 + }, + { + "start": 27046.54, + "end": 27049.68, + "probability": 0.9838 + }, + { + "start": 27050.66, + "end": 27055.26, + "probability": 0.9734 + }, + { + "start": 27056.12, + "end": 27061.66, + "probability": 0.6683 + }, + { + "start": 27061.7, + "end": 27065.34, + "probability": 0.9954 + }, + { + "start": 27066.38, + "end": 27072.56, + "probability": 0.9485 + }, + { + "start": 27072.92, + "end": 27078.12, + "probability": 0.9432 + }, + { + "start": 27078.66, + "end": 27079.72, + "probability": 0.9894 + }, + { + "start": 27080.38, + "end": 27082.16, + "probability": 0.9648 + }, + { + "start": 27082.94, + "end": 27083.87, + "probability": 0.9087 + }, + { + "start": 27084.4, + "end": 27085.26, + "probability": 0.9414 + }, + { + "start": 27085.28, + "end": 27086.37, + "probability": 0.9872 + }, + { + "start": 27087.24, + "end": 27088.7, + "probability": 0.9222 + }, + { + "start": 27089.16, + "end": 27089.84, + "probability": 0.567 + }, + { + "start": 27090.38, + "end": 27091.18, + "probability": 0.9746 + }, + { + "start": 27091.82, + "end": 27092.88, + "probability": 0.9402 + }, + { + "start": 27093.64, + "end": 27097.06, + "probability": 0.7987 + }, + { + "start": 27098.14, + "end": 27099.02, + "probability": 0.709 + }, + { + "start": 27099.72, + "end": 27101.96, + "probability": 0.9702 + }, + { + "start": 27102.36, + "end": 27103.26, + "probability": 0.9896 + }, + { + "start": 27103.76, + "end": 27105.0, + "probability": 0.9724 + }, + { + "start": 27106.12, + "end": 27107.0, + "probability": 0.9958 + }, + { + "start": 27107.48, + "end": 27109.9, + "probability": 0.8519 + }, + { + "start": 27111.4, + "end": 27112.26, + "probability": 0.9081 + }, + { + "start": 27112.54, + "end": 27115.4, + "probability": 0.185 + }, + { + "start": 27115.4, + "end": 27116.28, + "probability": 0.154 + }, + { + "start": 27116.54, + "end": 27119.3, + "probability": 0.7086 + }, + { + "start": 27119.48, + "end": 27119.72, + "probability": 0.1362 + }, + { + "start": 27120.24, + "end": 27123.28, + "probability": 0.7891 + }, + { + "start": 27123.96, + "end": 27126.7, + "probability": 0.1663 + }, + { + "start": 27127.06, + "end": 27127.62, + "probability": 0.1702 + }, + { + "start": 27128.18, + "end": 27128.86, + "probability": 0.0886 + }, + { + "start": 27129.18, + "end": 27129.46, + "probability": 0.0728 + }, + { + "start": 27129.46, + "end": 27130.24, + "probability": 0.2108 + }, + { + "start": 27130.24, + "end": 27131.12, + "probability": 0.5942 + }, + { + "start": 27131.78, + "end": 27132.84, + "probability": 0.3594 + }, + { + "start": 27133.36, + "end": 27134.18, + "probability": 0.3863 + }, + { + "start": 27134.18, + "end": 27136.62, + "probability": 0.343 + }, + { + "start": 27137.38, + "end": 27137.6, + "probability": 0.0049 + }, + { + "start": 27137.66, + "end": 27137.66, + "probability": 0.1829 + }, + { + "start": 27137.66, + "end": 27137.66, + "probability": 0.0549 + }, + { + "start": 27137.66, + "end": 27138.48, + "probability": 0.4003 + }, + { + "start": 27139.14, + "end": 27140.48, + "probability": 0.9626 + }, + { + "start": 27140.84, + "end": 27142.67, + "probability": 0.7947 + }, + { + "start": 27143.26, + "end": 27144.04, + "probability": 0.3359 + }, + { + "start": 27144.16, + "end": 27145.18, + "probability": 0.6355 + }, + { + "start": 27146.14, + "end": 27147.2, + "probability": 0.4711 + }, + { + "start": 27147.44, + "end": 27149.47, + "probability": 0.1578 + }, + { + "start": 27150.34, + "end": 27152.04, + "probability": 0.7362 + }, + { + "start": 27152.04, + "end": 27152.38, + "probability": 0.2761 + }, + { + "start": 27153.04, + "end": 27153.8, + "probability": 0.8765 + }, + { + "start": 27154.0, + "end": 27154.28, + "probability": 0.855 + }, + { + "start": 27154.64, + "end": 27155.9, + "probability": 0.5999 + }, + { + "start": 27156.06, + "end": 27157.2, + "probability": 0.8227 + }, + { + "start": 27157.26, + "end": 27158.84, + "probability": 0.6248 + }, + { + "start": 27159.28, + "end": 27162.36, + "probability": 0.7354 + }, + { + "start": 27162.38, + "end": 27163.08, + "probability": 0.2319 + }, + { + "start": 27163.24, + "end": 27165.12, + "probability": 0.5925 + }, + { + "start": 27165.18, + "end": 27168.04, + "probability": 0.6743 + }, + { + "start": 27168.46, + "end": 27173.66, + "probability": 0.9399 + }, + { + "start": 27173.74, + "end": 27174.8, + "probability": 0.5439 + }, + { + "start": 27175.02, + "end": 27175.6, + "probability": 0.5746 + }, + { + "start": 27176.9, + "end": 27177.34, + "probability": 0.7872 + }, + { + "start": 27179.0, + "end": 27180.14, + "probability": 0.6931 + }, + { + "start": 27180.6, + "end": 27181.26, + "probability": 0.7578 + }, + { + "start": 27181.96, + "end": 27183.1, + "probability": 0.9163 + }, + { + "start": 27183.88, + "end": 27189.82, + "probability": 0.9035 + }, + { + "start": 27190.45, + "end": 27193.68, + "probability": 0.7373 + }, + { + "start": 27193.68, + "end": 27193.8, + "probability": 0.0133 + }, + { + "start": 27194.04, + "end": 27195.42, + "probability": 0.6873 + }, + { + "start": 27195.54, + "end": 27196.18, + "probability": 0.9467 + }, + { + "start": 27196.32, + "end": 27200.34, + "probability": 0.7161 + }, + { + "start": 27200.8, + "end": 27202.16, + "probability": 0.8004 + }, + { + "start": 27202.5, + "end": 27208.8, + "probability": 0.591 + }, + { + "start": 27208.96, + "end": 27209.86, + "probability": 0.4533 + }, + { + "start": 27210.42, + "end": 27211.5, + "probability": 0.7932 + }, + { + "start": 27211.86, + "end": 27213.21, + "probability": 0.2289 + }, + { + "start": 27213.28, + "end": 27213.28, + "probability": 0.4312 + }, + { + "start": 27213.28, + "end": 27213.8, + "probability": 0.521 + }, + { + "start": 27214.56, + "end": 27215.1, + "probability": 0.6876 + }, + { + "start": 27216.14, + "end": 27217.94, + "probability": 0.936 + }, + { + "start": 27219.62, + "end": 27222.26, + "probability": 0.7925 + }, + { + "start": 27222.52, + "end": 27225.94, + "probability": 0.8699 + }, + { + "start": 27226.18, + "end": 27227.06, + "probability": 0.8398 + }, + { + "start": 27228.02, + "end": 27228.3, + "probability": 0.8309 + }, + { + "start": 27229.14, + "end": 27230.52, + "probability": 0.4996 + }, + { + "start": 27231.6, + "end": 27232.26, + "probability": 0.9385 + }, + { + "start": 27232.44, + "end": 27235.8, + "probability": 0.8384 + }, + { + "start": 27236.74, + "end": 27237.56, + "probability": 0.4677 + }, + { + "start": 27238.66, + "end": 27243.88, + "probability": 0.7449 + }, + { + "start": 27244.12, + "end": 27245.11, + "probability": 0.478 + }, + { + "start": 27245.38, + "end": 27247.7, + "probability": 0.6691 + }, + { + "start": 27248.04, + "end": 27249.64, + "probability": 0.2506 + }, + { + "start": 27251.1, + "end": 27255.04, + "probability": 0.6047 + }, + { + "start": 27255.68, + "end": 27256.92, + "probability": 0.3153 + }, + { + "start": 27257.38, + "end": 27262.31, + "probability": 0.6932 + }, + { + "start": 27264.2, + "end": 27265.92, + "probability": 0.6868 + }, + { + "start": 27266.8, + "end": 27268.36, + "probability": 0.9657 + }, + { + "start": 27268.86, + "end": 27270.4, + "probability": 0.3321 + }, + { + "start": 27271.24, + "end": 27276.06, + "probability": 0.8892 + }, + { + "start": 27277.22, + "end": 27280.3, + "probability": 0.9746 + }, + { + "start": 27280.78, + "end": 27281.04, + "probability": 0.7379 + }, + { + "start": 27281.42, + "end": 27282.0, + "probability": 0.689 + }, + { + "start": 27282.3, + "end": 27282.9, + "probability": 0.1126 + }, + { + "start": 27282.9, + "end": 27287.1, + "probability": 0.176 + }, + { + "start": 27287.24, + "end": 27288.08, + "probability": 0.2918 + }, + { + "start": 27288.34, + "end": 27290.14, + "probability": 0.0894 + }, + { + "start": 27290.34, + "end": 27293.7, + "probability": 0.728 + }, + { + "start": 27294.22, + "end": 27298.76, + "probability": 0.8374 + }, + { + "start": 27298.82, + "end": 27299.12, + "probability": 0.5775 + }, + { + "start": 27299.4, + "end": 27300.08, + "probability": 0.7922 + }, + { + "start": 27300.34, + "end": 27300.54, + "probability": 0.512 + }, + { + "start": 27301.66, + "end": 27302.42, + "probability": 0.9087 + }, + { + "start": 27303.78, + "end": 27304.82, + "probability": 0.5487 + }, + { + "start": 27305.34, + "end": 27306.74, + "probability": 0.0844 + }, + { + "start": 27307.76, + "end": 27307.78, + "probability": 0.1371 + }, + { + "start": 27307.84, + "end": 27311.48, + "probability": 0.1367 + }, + { + "start": 27311.48, + "end": 27314.44, + "probability": 0.814 + }, + { + "start": 27315.14, + "end": 27319.52, + "probability": 0.8924 + }, + { + "start": 27320.8, + "end": 27324.86, + "probability": 0.9884 + }, + { + "start": 27325.32, + "end": 27325.44, + "probability": 0.2123 + }, + { + "start": 27325.66, + "end": 27326.98, + "probability": 0.9816 + }, + { + "start": 27327.9, + "end": 27328.54, + "probability": 0.5364 + }, + { + "start": 27328.64, + "end": 27328.74, + "probability": 0.2851 + }, + { + "start": 27329.36, + "end": 27329.82, + "probability": 0.972 + }, + { + "start": 27330.38, + "end": 27330.48, + "probability": 0.5559 + }, + { + "start": 27331.04, + "end": 27331.24, + "probability": 0.6251 + }, + { + "start": 27331.66, + "end": 27333.66, + "probability": 0.2162 + }, + { + "start": 27335.57, + "end": 27337.86, + "probability": 0.6081 + }, + { + "start": 27338.74, + "end": 27340.1, + "probability": 0.3962 + }, + { + "start": 27340.5, + "end": 27341.24, + "probability": 0.3311 + }, + { + "start": 27343.74, + "end": 27346.98, + "probability": 0.9279 + }, + { + "start": 27346.98, + "end": 27353.7, + "probability": 0.9478 + }, + { + "start": 27354.9, + "end": 27358.08, + "probability": 0.4999 + }, + { + "start": 27358.58, + "end": 27359.22, + "probability": 0.5758 + }, + { + "start": 27359.64, + "end": 27361.31, + "probability": 0.7193 + }, + { + "start": 27361.54, + "end": 27362.21, + "probability": 0.8381 + }, + { + "start": 27363.3, + "end": 27364.26, + "probability": 0.9104 + }, + { + "start": 27365.4, + "end": 27366.18, + "probability": 0.9963 + }, + { + "start": 27366.86, + "end": 27367.7, + "probability": 0.864 + }, + { + "start": 27368.98, + "end": 27370.18, + "probability": 0.8545 + }, + { + "start": 27370.76, + "end": 27373.12, + "probability": 0.9424 + }, + { + "start": 27374.1, + "end": 27374.38, + "probability": 0.7103 + }, + { + "start": 27375.5, + "end": 27376.56, + "probability": 0.6382 + }, + { + "start": 27377.52, + "end": 27379.76, + "probability": 0.9744 + }, + { + "start": 27381.06, + "end": 27384.6, + "probability": 0.8879 + }, + { + "start": 27385.48, + "end": 27386.68, + "probability": 0.6181 + }, + { + "start": 27387.62, + "end": 27391.34, + "probability": 0.6724 + }, + { + "start": 27392.2, + "end": 27393.24, + "probability": 0.9227 + }, + { + "start": 27393.54, + "end": 27395.26, + "probability": 0.8234 + }, + { + "start": 27396.08, + "end": 27400.26, + "probability": 0.9744 + }, + { + "start": 27400.46, + "end": 27401.7, + "probability": 0.9158 + }, + { + "start": 27402.46, + "end": 27409.38, + "probability": 0.9873 + }, + { + "start": 27409.38, + "end": 27414.04, + "probability": 0.9745 + }, + { + "start": 27414.04, + "end": 27419.24, + "probability": 0.9909 + }, + { + "start": 27420.18, + "end": 27420.64, + "probability": 0.7266 + }, + { + "start": 27422.38, + "end": 27422.68, + "probability": 0.8235 + }, + { + "start": 27423.88, + "end": 27425.08, + "probability": 0.9761 + }, + { + "start": 27426.56, + "end": 27432.06, + "probability": 0.9576 + }, + { + "start": 27432.2, + "end": 27434.22, + "probability": 0.9493 + }, + { + "start": 27434.62, + "end": 27436.74, + "probability": 0.7326 + }, + { + "start": 27438.4, + "end": 27438.82, + "probability": 0.9386 + }, + { + "start": 27442.48, + "end": 27444.35, + "probability": 0.9972 + }, + { + "start": 27444.66, + "end": 27448.94, + "probability": 0.8016 + }, + { + "start": 27449.3, + "end": 27455.18, + "probability": 0.9792 + }, + { + "start": 27455.62, + "end": 27455.94, + "probability": 0.8049 + }, + { + "start": 27456.62, + "end": 27457.26, + "probability": 0.9741 + }, + { + "start": 27459.62, + "end": 27462.28, + "probability": 0.6296 + }, + { + "start": 27462.36, + "end": 27464.34, + "probability": 0.864 + }, + { + "start": 27464.34, + "end": 27464.34, + "probability": 0.4374 + }, + { + "start": 27464.34, + "end": 27465.94, + "probability": 0.7314 + }, + { + "start": 27466.1, + "end": 27466.66, + "probability": 0.9636 + }, + { + "start": 27466.78, + "end": 27467.44, + "probability": 0.7231 + }, + { + "start": 27468.38, + "end": 27470.26, + "probability": 0.8447 + }, + { + "start": 27470.32, + "end": 27471.0, + "probability": 0.4804 + }, + { + "start": 27471.0, + "end": 27474.36, + "probability": 0.885 + }, + { + "start": 27474.48, + "end": 27475.2, + "probability": 0.8428 + }, + { + "start": 27475.28, + "end": 27475.52, + "probability": 0.4476 + }, + { + "start": 27475.54, + "end": 27477.08, + "probability": 0.7183 + }, + { + "start": 27478.12, + "end": 27480.28, + "probability": 0.4993 + }, + { + "start": 27482.22, + "end": 27482.24, + "probability": 0.0157 + }, + { + "start": 27482.24, + "end": 27483.02, + "probability": 0.2875 + }, + { + "start": 27483.02, + "end": 27483.12, + "probability": 0.026 + }, + { + "start": 27483.76, + "end": 27483.9, + "probability": 0.3997 + }, + { + "start": 27484.02, + "end": 27485.32, + "probability": 0.9847 + }, + { + "start": 27485.8, + "end": 27485.96, + "probability": 0.4907 + }, + { + "start": 27485.96, + "end": 27491.12, + "probability": 0.9463 + }, + { + "start": 27491.2, + "end": 27492.16, + "probability": 0.6072 + }, + { + "start": 27492.2, + "end": 27492.36, + "probability": 0.9247 + }, + { + "start": 27492.52, + "end": 27492.6, + "probability": 0.4313 + }, + { + "start": 27492.7, + "end": 27492.86, + "probability": 0.4853 + }, + { + "start": 27492.98, + "end": 27493.6, + "probability": 0.7716 + }, + { + "start": 27493.78, + "end": 27496.66, + "probability": 0.8849 + }, + { + "start": 27496.92, + "end": 27496.92, + "probability": 0.3223 + }, + { + "start": 27496.92, + "end": 27496.92, + "probability": 0.4146 + }, + { + "start": 27496.94, + "end": 27498.37, + "probability": 0.5842 + }, + { + "start": 27498.9, + "end": 27501.14, + "probability": 0.8915 + }, + { + "start": 27502.18, + "end": 27502.96, + "probability": 0.8248 + }, + { + "start": 27503.52, + "end": 27504.26, + "probability": 0.8834 + }, + { + "start": 27505.28, + "end": 27506.04, + "probability": 0.98 + }, + { + "start": 27507.08, + "end": 27508.32, + "probability": 0.512 + }, + { + "start": 27508.92, + "end": 27513.86, + "probability": 0.9766 + }, + { + "start": 27514.72, + "end": 27517.48, + "probability": 0.9761 + }, + { + "start": 27518.1, + "end": 27519.14, + "probability": 0.7603 + }, + { + "start": 27520.22, + "end": 27524.46, + "probability": 0.6445 + }, + { + "start": 27524.92, + "end": 27525.74, + "probability": 0.9543 + }, + { + "start": 27526.36, + "end": 27529.34, + "probability": 0.5735 + }, + { + "start": 27530.02, + "end": 27531.76, + "probability": 0.8408 + }, + { + "start": 27532.38, + "end": 27533.98, + "probability": 0.6813 + }, + { + "start": 27534.7, + "end": 27535.61, + "probability": 0.3047 + }, + { + "start": 27536.76, + "end": 27539.8, + "probability": 0.7489 + }, + { + "start": 27540.28, + "end": 27541.98, + "probability": 0.895 + }, + { + "start": 27542.3, + "end": 27542.3, + "probability": 0.8613 + }, + { + "start": 27543.36, + "end": 27545.23, + "probability": 0.8403 + }, + { + "start": 27546.48, + "end": 27549.8, + "probability": 0.7692 + }, + { + "start": 27550.56, + "end": 27553.18, + "probability": 0.8914 + }, + { + "start": 27554.28, + "end": 27557.54, + "probability": 0.8128 + }, + { + "start": 27558.44, + "end": 27558.92, + "probability": 0.8395 + }, + { + "start": 27559.42, + "end": 27560.76, + "probability": 0.9451 + }, + { + "start": 27561.26, + "end": 27563.74, + "probability": 0.6472 + }, + { + "start": 27563.91, + "end": 27564.5, + "probability": 0.6895 + }, + { + "start": 27565.14, + "end": 27567.64, + "probability": 0.9868 + }, + { + "start": 27569.59, + "end": 27570.8, + "probability": 0.7047 + }, + { + "start": 27571.26, + "end": 27574.54, + "probability": 0.6575 + }, + { + "start": 27575.7, + "end": 27579.6, + "probability": 0.9797 + }, + { + "start": 27579.66, + "end": 27581.36, + "probability": 0.9922 + }, + { + "start": 27583.52, + "end": 27589.12, + "probability": 0.9551 + }, + { + "start": 27590.34, + "end": 27591.76, + "probability": 0.8246 + }, + { + "start": 27592.84, + "end": 27595.44, + "probability": 0.8826 + }, + { + "start": 27596.04, + "end": 27598.32, + "probability": 0.987 + }, + { + "start": 27598.32, + "end": 27601.5, + "probability": 0.9774 + }, + { + "start": 27603.44, + "end": 27603.8, + "probability": 0.8368 + }, + { + "start": 27604.12, + "end": 27605.1, + "probability": 0.6855 + }, + { + "start": 27609.96, + "end": 27611.56, + "probability": 0.9387 + }, + { + "start": 27612.3, + "end": 27615.15, + "probability": 0.608 + }, + { + "start": 27615.96, + "end": 27617.3, + "probability": 0.375 + }, + { + "start": 27617.38, + "end": 27617.7, + "probability": 0.6715 + }, + { + "start": 27621.56, + "end": 27622.54, + "probability": 0.5258 + }, + { + "start": 27622.94, + "end": 27625.98, + "probability": 0.5028 + }, + { + "start": 27629.22, + "end": 27632.42, + "probability": 0.5265 + }, + { + "start": 27632.82, + "end": 27633.0, + "probability": 0.1383 + }, + { + "start": 27633.98, + "end": 27635.42, + "probability": 0.7394 + }, + { + "start": 27638.4, + "end": 27640.86, + "probability": 0.5828 + }, + { + "start": 27647.36, + "end": 27651.08, + "probability": 0.7732 + }, + { + "start": 27652.72, + "end": 27657.67, + "probability": 0.9867 + }, + { + "start": 27658.8, + "end": 27660.34, + "probability": 0.9968 + }, + { + "start": 27661.28, + "end": 27667.44, + "probability": 0.9989 + }, + { + "start": 27669.02, + "end": 27670.46, + "probability": 0.9756 + }, + { + "start": 27671.88, + "end": 27674.78, + "probability": 0.9806 + }, + { + "start": 27676.62, + "end": 27679.36, + "probability": 0.9692 + }, + { + "start": 27680.42, + "end": 27681.86, + "probability": 0.9968 + }, + { + "start": 27683.04, + "end": 27683.62, + "probability": 0.9913 + }, + { + "start": 27683.9, + "end": 27684.64, + "probability": 0.9979 + }, + { + "start": 27684.76, + "end": 27685.32, + "probability": 0.9795 + }, + { + "start": 27685.34, + "end": 27685.94, + "probability": 0.996 + }, + { + "start": 27686.08, + "end": 27686.46, + "probability": 0.8933 + }, + { + "start": 27686.7, + "end": 27687.24, + "probability": 0.9764 + }, + { + "start": 27687.5, + "end": 27689.66, + "probability": 0.8203 + }, + { + "start": 27690.26, + "end": 27694.06, + "probability": 0.9981 + }, + { + "start": 27694.92, + "end": 27695.82, + "probability": 0.9587 + }, + { + "start": 27696.78, + "end": 27698.92, + "probability": 0.9128 + }, + { + "start": 27699.7, + "end": 27704.72, + "probability": 0.9935 + }, + { + "start": 27705.64, + "end": 27708.18, + "probability": 0.9908 + }, + { + "start": 27709.76, + "end": 27711.76, + "probability": 0.8937 + }, + { + "start": 27712.6, + "end": 27714.26, + "probability": 0.9779 + }, + { + "start": 27715.34, + "end": 27716.94, + "probability": 0.9823 + }, + { + "start": 27717.62, + "end": 27723.0, + "probability": 0.9763 + }, + { + "start": 27723.74, + "end": 27725.08, + "probability": 0.9339 + }, + { + "start": 27725.98, + "end": 27727.3, + "probability": 0.7623 + }, + { + "start": 27728.16, + "end": 27729.91, + "probability": 0.9941 + }, + { + "start": 27731.06, + "end": 27732.84, + "probability": 0.8203 + }, + { + "start": 27733.4, + "end": 27734.02, + "probability": 0.9695 + }, + { + "start": 27734.54, + "end": 27736.68, + "probability": 0.8634 + }, + { + "start": 27737.22, + "end": 27739.02, + "probability": 0.9753 + }, + { + "start": 27739.96, + "end": 27741.7, + "probability": 0.9993 + }, + { + "start": 27742.72, + "end": 27744.14, + "probability": 0.9703 + }, + { + "start": 27744.8, + "end": 27745.64, + "probability": 0.7614 + }, + { + "start": 27746.96, + "end": 27748.06, + "probability": 0.5814 + }, + { + "start": 27748.88, + "end": 27750.54, + "probability": 0.9403 + }, + { + "start": 27753.0, + "end": 27756.06, + "probability": 0.9817 + }, + { + "start": 27757.04, + "end": 27758.52, + "probability": 0.9732 + }, + { + "start": 27759.02, + "end": 27764.76, + "probability": 0.9504 + }, + { + "start": 27765.58, + "end": 27767.08, + "probability": 0.4887 + }, + { + "start": 27767.78, + "end": 27774.42, + "probability": 0.9906 + }, + { + "start": 27776.28, + "end": 27777.06, + "probability": 0.4852 + }, + { + "start": 27778.58, + "end": 27779.14, + "probability": 0.901 + }, + { + "start": 27779.98, + "end": 27781.32, + "probability": 0.9702 + }, + { + "start": 27781.9, + "end": 27785.3, + "probability": 0.9907 + }, + { + "start": 27786.1, + "end": 27788.12, + "probability": 0.9635 + }, + { + "start": 27788.86, + "end": 27790.34, + "probability": 0.9728 + }, + { + "start": 27791.14, + "end": 27792.02, + "probability": 0.7515 + }, + { + "start": 27792.7, + "end": 27795.0, + "probability": 0.9847 + }, + { + "start": 27795.92, + "end": 27798.2, + "probability": 0.8142 + }, + { + "start": 27799.36, + "end": 27800.96, + "probability": 0.9897 + }, + { + "start": 27801.04, + "end": 27801.86, + "probability": 0.8697 + }, + { + "start": 27801.98, + "end": 27803.74, + "probability": 0.9293 + }, + { + "start": 27804.64, + "end": 27807.94, + "probability": 0.9823 + }, + { + "start": 27808.06, + "end": 27812.72, + "probability": 0.9857 + }, + { + "start": 27813.84, + "end": 27817.54, + "probability": 0.973 + }, + { + "start": 27818.72, + "end": 27819.62, + "probability": 0.714 + }, + { + "start": 27819.74, + "end": 27821.92, + "probability": 0.8696 + }, + { + "start": 27821.96, + "end": 27823.48, + "probability": 0.9401 + }, + { + "start": 27823.82, + "end": 27825.28, + "probability": 0.9809 + }, + { + "start": 27825.7, + "end": 27827.89, + "probability": 0.7564 + }, + { + "start": 27828.4, + "end": 27828.4, + "probability": 0.0747 + }, + { + "start": 27828.42, + "end": 27829.14, + "probability": 0.7802 + }, + { + "start": 27829.32, + "end": 27829.98, + "probability": 0.322 + }, + { + "start": 27830.34, + "end": 27834.2, + "probability": 0.9115 + }, + { + "start": 27834.46, + "end": 27835.78, + "probability": 0.991 + }, + { + "start": 27835.88, + "end": 27837.82, + "probability": 0.9631 + }, + { + "start": 27837.82, + "end": 27840.6, + "probability": 0.9595 + }, + { + "start": 27842.16, + "end": 27843.04, + "probability": 0.4936 + }, + { + "start": 27843.1, + "end": 27845.62, + "probability": 0.5993 + }, + { + "start": 27845.7, + "end": 27846.32, + "probability": 0.26 + }, + { + "start": 27846.96, + "end": 27848.06, + "probability": 0.7122 + }, + { + "start": 27848.76, + "end": 27848.9, + "probability": 0.4288 + }, + { + "start": 27848.96, + "end": 27851.16, + "probability": 0.8249 + }, + { + "start": 27851.86, + "end": 27855.78, + "probability": 0.9972 + }, + { + "start": 27856.36, + "end": 27861.08, + "probability": 0.9974 + }, + { + "start": 27861.08, + "end": 27864.38, + "probability": 0.9977 + }, + { + "start": 27865.16, + "end": 27867.52, + "probability": 0.6547 + }, + { + "start": 27868.18, + "end": 27871.4, + "probability": 0.9986 + }, + { + "start": 27872.26, + "end": 27875.48, + "probability": 0.9988 + }, + { + "start": 27876.48, + "end": 27879.34, + "probability": 0.9956 + }, + { + "start": 27880.4, + "end": 27885.24, + "probability": 0.9939 + }, + { + "start": 27885.76, + "end": 27886.6, + "probability": 0.9513 + }, + { + "start": 27887.26, + "end": 27888.26, + "probability": 0.6027 + }, + { + "start": 27888.86, + "end": 27889.0, + "probability": 0.7552 + }, + { + "start": 27891.28, + "end": 27893.64, + "probability": 0.8132 + }, + { + "start": 27894.0, + "end": 27896.16, + "probability": 0.866 + }, + { + "start": 27897.04, + "end": 27900.44, + "probability": 0.4959 + }, + { + "start": 27901.32, + "end": 27903.24, + "probability": 0.5915 + }, + { + "start": 27904.08, + "end": 27907.58, + "probability": 0.9968 + }, + { + "start": 27908.58, + "end": 27912.88, + "probability": 0.8053 + }, + { + "start": 27912.96, + "end": 27917.42, + "probability": 0.9705 + }, + { + "start": 27917.68, + "end": 27919.9, + "probability": 0.158 + }, + { + "start": 27919.9, + "end": 27921.26, + "probability": 0.1865 + }, + { + "start": 27925.97, + "end": 27926.09, + "probability": 0.0206 + }, + { + "start": 27944.1, + "end": 27945.46, + "probability": 0.1145 + }, + { + "start": 27947.09, + "end": 27947.74, + "probability": 0.1133 + }, + { + "start": 36091.0, + "end": 36091.0, + "probability": 0.0 + }, + { + "start": 36091.0, + "end": 36091.0, + "probability": 0.0 + }, + { + "start": 36091.0, + "end": 36091.0, + "probability": 0.0 + }, + { + "start": 36091.0, + "end": 36091.0, + "probability": 0.0 + }, + { + "start": 36091.02, + "end": 36091.79, + "probability": 0.1262 + }, + { + "start": 36092.62, + "end": 36096.44, + "probability": 0.812 + }, + { + "start": 36097.14, + "end": 36099.26, + "probability": 0.8296 + }, + { + "start": 36100.52, + "end": 36104.44, + "probability": 0.9577 + }, + { + "start": 36104.66, + "end": 36105.86, + "probability": 0.9884 + }, + { + "start": 36107.68, + "end": 36109.78, + "probability": 0.3095 + }, + { + "start": 36109.78, + "end": 36113.59, + "probability": 0.9982 + }, + { + "start": 36114.84, + "end": 36117.1, + "probability": 0.5239 + }, + { + "start": 36118.9, + "end": 36119.44, + "probability": 0.7043 + }, + { + "start": 36121.62, + "end": 36123.44, + "probability": 0.6688 + }, + { + "start": 36124.84, + "end": 36127.66, + "probability": 0.9791 + }, + { + "start": 36127.8, + "end": 36129.92, + "probability": 0.9635 + }, + { + "start": 36130.44, + "end": 36130.82, + "probability": 0.9761 + }, + { + "start": 36131.8, + "end": 36138.28, + "probability": 0.9733 + }, + { + "start": 36139.54, + "end": 36142.04, + "probability": 0.8949 + }, + { + "start": 36145.78, + "end": 36146.98, + "probability": 0.7437 + }, + { + "start": 36147.5, + "end": 36150.78, + "probability": 0.9199 + }, + { + "start": 36152.28, + "end": 36154.55, + "probability": 0.6451 + }, + { + "start": 36154.82, + "end": 36157.32, + "probability": 0.9218 + }, + { + "start": 36158.32, + "end": 36159.92, + "probability": 0.6683 + }, + { + "start": 36160.06, + "end": 36166.36, + "probability": 0.831 + }, + { + "start": 36166.44, + "end": 36166.88, + "probability": 0.8431 + }, + { + "start": 36168.6, + "end": 36172.32, + "probability": 0.9886 + }, + { + "start": 36173.4, + "end": 36178.32, + "probability": 0.9897 + }, + { + "start": 36180.04, + "end": 36185.6, + "probability": 0.8287 + }, + { + "start": 36186.48, + "end": 36192.29, + "probability": 0.9736 + }, + { + "start": 36192.98, + "end": 36198.52, + "probability": 0.9968 + }, + { + "start": 36199.28, + "end": 36201.24, + "probability": 0.8906 + }, + { + "start": 36203.28, + "end": 36206.52, + "probability": 0.9036 + }, + { + "start": 36208.06, + "end": 36209.3, + "probability": 0.6907 + }, + { + "start": 36211.42, + "end": 36212.84, + "probability": 0.4446 + }, + { + "start": 36214.56, + "end": 36217.6, + "probability": 0.5724 + }, + { + "start": 36217.76, + "end": 36221.1, + "probability": 0.8884 + }, + { + "start": 36222.2, + "end": 36225.84, + "probability": 0.9899 + }, + { + "start": 36226.52, + "end": 36228.12, + "probability": 0.78 + }, + { + "start": 36229.68, + "end": 36230.96, + "probability": 0.7476 + }, + { + "start": 36231.26, + "end": 36234.74, + "probability": 0.6771 + }, + { + "start": 36236.34, + "end": 36240.16, + "probability": 0.995 + }, + { + "start": 36241.06, + "end": 36244.98, + "probability": 0.9629 + }, + { + "start": 36246.24, + "end": 36250.42, + "probability": 0.9349 + }, + { + "start": 36252.44, + "end": 36256.1, + "probability": 0.9976 + }, + { + "start": 36256.48, + "end": 36260.5, + "probability": 0.9977 + }, + { + "start": 36261.52, + "end": 36270.62, + "probability": 0.9828 + }, + { + "start": 36271.9, + "end": 36272.34, + "probability": 0.9119 + }, + { + "start": 36273.54, + "end": 36275.16, + "probability": 0.5978 + }, + { + "start": 36276.9, + "end": 36279.98, + "probability": 0.9831 + }, + { + "start": 36281.24, + "end": 36284.52, + "probability": 0.9567 + }, + { + "start": 36286.24, + "end": 36290.08, + "probability": 0.9953 + }, + { + "start": 36290.98, + "end": 36291.8, + "probability": 0.7265 + }, + { + "start": 36293.7, + "end": 36299.14, + "probability": 0.9939 + }, + { + "start": 36299.14, + "end": 36302.74, + "probability": 0.9995 + }, + { + "start": 36303.88, + "end": 36307.9, + "probability": 0.9734 + }, + { + "start": 36308.64, + "end": 36311.18, + "probability": 0.973 + }, + { + "start": 36312.18, + "end": 36312.82, + "probability": 0.8992 + }, + { + "start": 36315.08, + "end": 36318.54, + "probability": 0.9959 + }, + { + "start": 36319.52, + "end": 36320.58, + "probability": 0.8769 + }, + { + "start": 36323.18, + "end": 36324.2, + "probability": 0.4612 + }, + { + "start": 36326.44, + "end": 36331.64, + "probability": 0.9924 + }, + { + "start": 36331.64, + "end": 36337.62, + "probability": 0.8142 + }, + { + "start": 36339.32, + "end": 36342.58, + "probability": 0.9865 + }, + { + "start": 36343.66, + "end": 36344.68, + "probability": 0.5596 + }, + { + "start": 36346.78, + "end": 36348.12, + "probability": 0.6909 + }, + { + "start": 36348.22, + "end": 36352.84, + "probability": 0.8841 + }, + { + "start": 36352.94, + "end": 36354.02, + "probability": 0.7281 + }, + { + "start": 36355.18, + "end": 36358.94, + "probability": 0.7597 + }, + { + "start": 36360.12, + "end": 36363.36, + "probability": 0.7351 + }, + { + "start": 36365.94, + "end": 36367.72, + "probability": 0.8668 + }, + { + "start": 36367.88, + "end": 36372.72, + "probability": 0.9324 + }, + { + "start": 36373.14, + "end": 36379.04, + "probability": 0.9774 + }, + { + "start": 36381.52, + "end": 36386.06, + "probability": 0.9923 + }, + { + "start": 36386.12, + "end": 36391.14, + "probability": 0.9656 + }, + { + "start": 36391.48, + "end": 36392.08, + "probability": 0.7222 + }, + { + "start": 36392.7, + "end": 36394.98, + "probability": 0.9795 + }, + { + "start": 36395.54, + "end": 36396.96, + "probability": 0.873 + }, + { + "start": 36398.62, + "end": 36404.42, + "probability": 0.9472 + }, + { + "start": 36404.5, + "end": 36405.62, + "probability": 0.5653 + }, + { + "start": 36406.36, + "end": 36407.15, + "probability": 0.9248 + }, + { + "start": 36408.32, + "end": 36409.22, + "probability": 0.6977 + }, + { + "start": 36410.48, + "end": 36414.82, + "probability": 0.8853 + }, + { + "start": 36415.46, + "end": 36419.18, + "probability": 0.9723 + }, + { + "start": 36420.48, + "end": 36423.84, + "probability": 0.9374 + }, + { + "start": 36424.24, + "end": 36432.04, + "probability": 0.9928 + }, + { + "start": 36432.76, + "end": 36433.9, + "probability": 0.9512 + }, + { + "start": 36434.48, + "end": 36434.94, + "probability": 0.9849 + }, + { + "start": 36435.96, + "end": 36437.76, + "probability": 0.9904 + }, + { + "start": 36439.02, + "end": 36441.97, + "probability": 0.9738 + }, + { + "start": 36442.84, + "end": 36447.46, + "probability": 0.9916 + }, + { + "start": 36448.06, + "end": 36449.06, + "probability": 0.7516 + }, + { + "start": 36449.2, + "end": 36450.72, + "probability": 0.925 + }, + { + "start": 36451.38, + "end": 36453.46, + "probability": 0.9988 + }, + { + "start": 36454.2, + "end": 36461.18, + "probability": 0.8978 + }, + { + "start": 36463.92, + "end": 36464.42, + "probability": 0.3398 + }, + { + "start": 36465.66, + "end": 36472.04, + "probability": 0.8751 + }, + { + "start": 36473.4, + "end": 36474.74, + "probability": 0.9055 + }, + { + "start": 36476.04, + "end": 36477.62, + "probability": 0.8374 + }, + { + "start": 36482.16, + "end": 36483.44, + "probability": 0.978 + }, + { + "start": 36483.96, + "end": 36484.88, + "probability": 0.7935 + }, + { + "start": 36485.66, + "end": 36489.06, + "probability": 0.9808 + }, + { + "start": 36489.78, + "end": 36490.28, + "probability": 0.985 + }, + { + "start": 36492.16, + "end": 36492.82, + "probability": 0.9753 + }, + { + "start": 36493.64, + "end": 36497.7, + "probability": 0.9919 + }, + { + "start": 36499.12, + "end": 36500.76, + "probability": 0.9869 + }, + { + "start": 36504.32, + "end": 36509.44, + "probability": 0.962 + }, + { + "start": 36509.96, + "end": 36512.94, + "probability": 0.7029 + }, + { + "start": 36514.06, + "end": 36515.3, + "probability": 0.8195 + }, + { + "start": 36516.06, + "end": 36523.46, + "probability": 0.7974 + }, + { + "start": 36524.16, + "end": 36526.02, + "probability": 0.8884 + }, + { + "start": 36526.68, + "end": 36531.92, + "probability": 0.742 + }, + { + "start": 36532.14, + "end": 36532.94, + "probability": 0.9044 + }, + { + "start": 36533.1, + "end": 36535.24, + "probability": 0.9839 + }, + { + "start": 36535.66, + "end": 36539.27, + "probability": 0.7745 + }, + { + "start": 36539.58, + "end": 36542.4, + "probability": 0.8918 + }, + { + "start": 36543.28, + "end": 36545.34, + "probability": 0.9125 + }, + { + "start": 36546.38, + "end": 36547.04, + "probability": 0.9771 + }, + { + "start": 36549.02, + "end": 36549.96, + "probability": 0.9391 + }, + { + "start": 36550.58, + "end": 36551.72, + "probability": 0.7016 + }, + { + "start": 36551.86, + "end": 36552.68, + "probability": 0.999 + }, + { + "start": 36553.32, + "end": 36554.0, + "probability": 0.999 + }, + { + "start": 36555.96, + "end": 36558.4, + "probability": 0.9957 + }, + { + "start": 36559.06, + "end": 36560.76, + "probability": 0.9889 + }, + { + "start": 36563.48, + "end": 36563.64, + "probability": 0.854 + }, + { + "start": 36563.72, + "end": 36569.22, + "probability": 0.9107 + }, + { + "start": 36569.4, + "end": 36571.6, + "probability": 0.7219 + }, + { + "start": 36572.39, + "end": 36578.46, + "probability": 0.9582 + }, + { + "start": 36580.2, + "end": 36581.98, + "probability": 0.8595 + }, + { + "start": 36583.22, + "end": 36588.94, + "probability": 0.9966 + }, + { + "start": 36590.96, + "end": 36591.26, + "probability": 0.6912 + }, + { + "start": 36591.34, + "end": 36594.64, + "probability": 0.9874 + }, + { + "start": 36594.68, + "end": 36598.52, + "probability": 0.9332 + }, + { + "start": 36599.2, + "end": 36601.96, + "probability": 0.8894 + }, + { + "start": 36604.14, + "end": 36607.26, + "probability": 0.976 + }, + { + "start": 36607.74, + "end": 36608.8, + "probability": 0.7816 + }, + { + "start": 36608.88, + "end": 36609.3, + "probability": 0.802 + }, + { + "start": 36610.22, + "end": 36611.26, + "probability": 0.8848 + }, + { + "start": 36612.06, + "end": 36612.94, + "probability": 0.9555 + }, + { + "start": 36613.0, + "end": 36614.92, + "probability": 0.9726 + }, + { + "start": 36615.18, + "end": 36616.08, + "probability": 0.9673 + }, + { + "start": 36616.26, + "end": 36616.48, + "probability": 0.6975 + }, + { + "start": 36617.56, + "end": 36619.38, + "probability": 0.9499 + }, + { + "start": 36619.58, + "end": 36619.58, + "probability": 0.9053 + }, + { + "start": 36620.18, + "end": 36623.3, + "probability": 0.9102 + }, + { + "start": 36623.3, + "end": 36630.12, + "probability": 0.8874 + }, + { + "start": 36631.18, + "end": 36635.88, + "probability": 0.971 + }, + { + "start": 36636.78, + "end": 36638.02, + "probability": 0.8193 + }, + { + "start": 36639.22, + "end": 36641.1, + "probability": 0.9299 + }, + { + "start": 36641.36, + "end": 36644.48, + "probability": 0.7639 + }, + { + "start": 36645.88, + "end": 36647.84, + "probability": 0.9692 + }, + { + "start": 36649.12, + "end": 36654.14, + "probability": 0.9117 + }, + { + "start": 36655.72, + "end": 36657.9, + "probability": 0.3706 + }, + { + "start": 36658.94, + "end": 36661.28, + "probability": 0.9587 + }, + { + "start": 36663.54, + "end": 36666.7, + "probability": 0.986 + }, + { + "start": 36667.74, + "end": 36669.66, + "probability": 0.9688 + }, + { + "start": 36670.56, + "end": 36678.2, + "probability": 0.9834 + }, + { + "start": 36678.72, + "end": 36679.28, + "probability": 0.8472 + }, + { + "start": 36680.74, + "end": 36685.3, + "probability": 0.9768 + }, + { + "start": 36685.46, + "end": 36691.84, + "probability": 0.9937 + }, + { + "start": 36692.65, + "end": 36700.12, + "probability": 0.972 + }, + { + "start": 36701.28, + "end": 36702.68, + "probability": 0.96 + }, + { + "start": 36705.3, + "end": 36711.51, + "probability": 0.987 + }, + { + "start": 36713.08, + "end": 36714.94, + "probability": 0.894 + }, + { + "start": 36715.54, + "end": 36720.16, + "probability": 0.9771 + }, + { + "start": 36721.36, + "end": 36724.82, + "probability": 0.8798 + }, + { + "start": 36725.58, + "end": 36725.82, + "probability": 0.656 + }, + { + "start": 36726.44, + "end": 36728.08, + "probability": 0.9995 + }, + { + "start": 36729.62, + "end": 36732.22, + "probability": 0.9943 + }, + { + "start": 36735.34, + "end": 36744.47, + "probability": 0.9621 + }, + { + "start": 36746.52, + "end": 36747.92, + "probability": 0.9958 + }, + { + "start": 36749.32, + "end": 36755.12, + "probability": 0.9849 + }, + { + "start": 36757.74, + "end": 36757.96, + "probability": 0.6335 + }, + { + "start": 36758.1, + "end": 36762.22, + "probability": 0.985 + }, + { + "start": 36762.24, + "end": 36765.54, + "probability": 0.9214 + }, + { + "start": 36765.58, + "end": 36768.82, + "probability": 0.957 + }, + { + "start": 36769.86, + "end": 36772.82, + "probability": 0.958 + }, + { + "start": 36772.98, + "end": 36777.88, + "probability": 0.9868 + }, + { + "start": 36779.28, + "end": 36781.4, + "probability": 0.9673 + }, + { + "start": 36782.0, + "end": 36783.19, + "probability": 0.9852 + }, + { + "start": 36783.66, + "end": 36786.16, + "probability": 0.999 + }, + { + "start": 36786.82, + "end": 36790.6, + "probability": 0.9977 + }, + { + "start": 36791.7, + "end": 36794.5, + "probability": 0.9684 + }, + { + "start": 36795.12, + "end": 36802.28, + "probability": 0.9442 + }, + { + "start": 36805.24, + "end": 36807.5, + "probability": 0.7581 + }, + { + "start": 36808.26, + "end": 36811.3, + "probability": 0.9722 + }, + { + "start": 36811.38, + "end": 36812.66, + "probability": 0.9807 + }, + { + "start": 36813.84, + "end": 36814.42, + "probability": 0.9448 + }, + { + "start": 36815.7, + "end": 36823.86, + "probability": 0.9858 + }, + { + "start": 36825.36, + "end": 36828.58, + "probability": 0.9958 + }, + { + "start": 36828.64, + "end": 36832.1, + "probability": 0.9971 + }, + { + "start": 36833.54, + "end": 36837.14, + "probability": 0.9937 + }, + { + "start": 36837.14, + "end": 36841.28, + "probability": 0.9949 + }, + { + "start": 36843.86, + "end": 36844.58, + "probability": 0.5379 + }, + { + "start": 36844.8, + "end": 36845.62, + "probability": 0.381 + }, + { + "start": 36846.42, + "end": 36849.82, + "probability": 0.7705 + }, + { + "start": 36851.12, + "end": 36853.3, + "probability": 0.8876 + }, + { + "start": 36855.78, + "end": 36857.38, + "probability": 0.9297 + }, + { + "start": 36857.56, + "end": 36861.11, + "probability": 0.9705 + }, + { + "start": 36863.44, + "end": 36868.86, + "probability": 0.9738 + }, + { + "start": 36869.12, + "end": 36870.58, + "probability": 0.948 + }, + { + "start": 36872.0, + "end": 36879.18, + "probability": 0.9844 + }, + { + "start": 36881.66, + "end": 36883.74, + "probability": 0.6524 + }, + { + "start": 36883.8, + "end": 36892.34, + "probability": 0.88 + }, + { + "start": 36892.52, + "end": 36896.98, + "probability": 0.8317 + }, + { + "start": 36897.5, + "end": 36898.84, + "probability": 0.9738 + }, + { + "start": 36905.42, + "end": 36907.72, + "probability": 0.898 + }, + { + "start": 36907.78, + "end": 36908.74, + "probability": 0.8403 + }, + { + "start": 36909.16, + "end": 36913.08, + "probability": 0.9536 + }, + { + "start": 36914.12, + "end": 36917.1, + "probability": 0.9956 + }, + { + "start": 36918.28, + "end": 36921.5, + "probability": 0.9832 + }, + { + "start": 36924.16, + "end": 36928.34, + "probability": 0.9316 + }, + { + "start": 36929.02, + "end": 36930.86, + "probability": 0.8856 + }, + { + "start": 36931.48, + "end": 36935.5, + "probability": 0.9402 + }, + { + "start": 36937.2, + "end": 36938.02, + "probability": 0.9734 + }, + { + "start": 36942.76, + "end": 36947.04, + "probability": 0.9402 + }, + { + "start": 36948.94, + "end": 36950.86, + "probability": 0.8549 + }, + { + "start": 36952.96, + "end": 36955.12, + "probability": 0.8559 + }, + { + "start": 36955.5, + "end": 36959.41, + "probability": 0.9544 + }, + { + "start": 36960.88, + "end": 36961.9, + "probability": 0.9783 + }, + { + "start": 36962.02, + "end": 36967.22, + "probability": 0.8846 + }, + { + "start": 36967.8, + "end": 36972.02, + "probability": 0.9387 + }, + { + "start": 36972.06, + "end": 36974.9, + "probability": 0.9978 + }, + { + "start": 36976.18, + "end": 36976.44, + "probability": 0.9766 + }, + { + "start": 36978.5, + "end": 36982.94, + "probability": 0.9413 + }, + { + "start": 36983.18, + "end": 36990.92, + "probability": 0.9486 + }, + { + "start": 36992.28, + "end": 36996.93, + "probability": 0.9408 + }, + { + "start": 36998.9, + "end": 37000.1, + "probability": 0.7393 + }, + { + "start": 37000.9, + "end": 37001.36, + "probability": 0.4877 + }, + { + "start": 37001.98, + "end": 37002.64, + "probability": 0.8638 + }, + { + "start": 37003.82, + "end": 37004.32, + "probability": 0.7576 + }, + { + "start": 37005.14, + "end": 37006.5, + "probability": 0.7029 + }, + { + "start": 37007.62, + "end": 37008.6, + "probability": 0.9811 + }, + { + "start": 37010.44, + "end": 37014.88, + "probability": 0.9776 + }, + { + "start": 37015.72, + "end": 37017.72, + "probability": 0.5813 + }, + { + "start": 37018.78, + "end": 37020.56, + "probability": 0.8911 + }, + { + "start": 37023.68, + "end": 37025.1, + "probability": 0.9649 + }, + { + "start": 37028.28, + "end": 37033.56, + "probability": 0.9927 + }, + { + "start": 37033.64, + "end": 37036.2, + "probability": 0.9971 + }, + { + "start": 37036.34, + "end": 37037.66, + "probability": 0.9897 + }, + { + "start": 37038.44, + "end": 37040.04, + "probability": 0.8199 + }, + { + "start": 37040.94, + "end": 37046.74, + "probability": 0.9917 + }, + { + "start": 37048.44, + "end": 37049.56, + "probability": 0.7171 + }, + { + "start": 37050.1, + "end": 37052.54, + "probability": 0.6515 + }, + { + "start": 37052.56, + "end": 37053.47, + "probability": 0.9937 + }, + { + "start": 37055.82, + "end": 37057.84, + "probability": 0.9185 + }, + { + "start": 37058.7, + "end": 37061.04, + "probability": 0.9708 + }, + { + "start": 37063.04, + "end": 37070.28, + "probability": 0.9762 + }, + { + "start": 37070.64, + "end": 37071.3, + "probability": 0.9946 + }, + { + "start": 37072.4, + "end": 37079.08, + "probability": 0.9819 + }, + { + "start": 37079.76, + "end": 37081.1, + "probability": 0.9985 + }, + { + "start": 37081.76, + "end": 37084.2, + "probability": 0.9966 + }, + { + "start": 37085.1, + "end": 37086.26, + "probability": 0.8756 + }, + { + "start": 37087.32, + "end": 37089.72, + "probability": 0.9891 + }, + { + "start": 37090.68, + "end": 37091.64, + "probability": 0.7769 + }, + { + "start": 37091.64, + "end": 37092.1, + "probability": 0.4617 + }, + { + "start": 37092.26, + "end": 37092.4, + "probability": 0.0863 + }, + { + "start": 37095.6, + "end": 37104.5, + "probability": 0.956 + }, + { + "start": 37105.86, + "end": 37111.82, + "probability": 0.6642 + }, + { + "start": 37111.86, + "end": 37115.8, + "probability": 0.9548 + }, + { + "start": 37116.64, + "end": 37117.97, + "probability": 0.9191 + }, + { + "start": 37120.42, + "end": 37121.86, + "probability": 0.6658 + }, + { + "start": 37122.46, + "end": 37123.14, + "probability": 0.8383 + }, + { + "start": 37125.58, + "end": 37130.86, + "probability": 0.9849 + }, + { + "start": 37131.22, + "end": 37132.62, + "probability": 0.8257 + }, + { + "start": 37133.38, + "end": 37136.8, + "probability": 0.9954 + }, + { + "start": 37137.64, + "end": 37140.1, + "probability": 0.9774 + }, + { + "start": 37141.68, + "end": 37142.3, + "probability": 0.6123 + }, + { + "start": 37145.14, + "end": 37146.92, + "probability": 0.9653 + }, + { + "start": 37146.96, + "end": 37147.96, + "probability": 0.9871 + }, + { + "start": 37147.98, + "end": 37152.34, + "probability": 0.9559 + }, + { + "start": 37152.52, + "end": 37153.2, + "probability": 0.9414 + }, + { + "start": 37155.34, + "end": 37155.82, + "probability": 0.9832 + }, + { + "start": 37156.5, + "end": 37158.78, + "probability": 0.5043 + }, + { + "start": 37159.42, + "end": 37161.96, + "probability": 0.9805 + }, + { + "start": 37164.54, + "end": 37168.22, + "probability": 0.9932 + }, + { + "start": 37169.04, + "end": 37171.18, + "probability": 0.9942 + }, + { + "start": 37172.0, + "end": 37173.96, + "probability": 0.9793 + }, + { + "start": 37175.94, + "end": 37178.96, + "probability": 0.9424 + }, + { + "start": 37180.32, + "end": 37186.5, + "probability": 0.7888 + }, + { + "start": 37187.34, + "end": 37190.28, + "probability": 0.9438 + }, + { + "start": 37190.88, + "end": 37194.58, + "probability": 0.8707 + }, + { + "start": 37195.28, + "end": 37199.68, + "probability": 0.9325 + }, + { + "start": 37200.6, + "end": 37203.74, + "probability": 0.9663 + }, + { + "start": 37205.08, + "end": 37210.6, + "probability": 0.9729 + }, + { + "start": 37212.86, + "end": 37214.88, + "probability": 0.9961 + }, + { + "start": 37214.88, + "end": 37218.2, + "probability": 0.9953 + }, + { + "start": 37221.58, + "end": 37223.92, + "probability": 0.9927 + }, + { + "start": 37225.74, + "end": 37226.22, + "probability": 0.8075 + }, + { + "start": 37226.46, + "end": 37229.0, + "probability": 0.9268 + }, + { + "start": 37229.26, + "end": 37230.84, + "probability": 0.9985 + }, + { + "start": 37231.44, + "end": 37235.46, + "probability": 0.9958 + }, + { + "start": 37237.64, + "end": 37238.5, + "probability": 0.83 + }, + { + "start": 37239.02, + "end": 37241.18, + "probability": 0.9624 + }, + { + "start": 37241.18, + "end": 37245.7, + "probability": 0.9454 + }, + { + "start": 37246.52, + "end": 37250.4, + "probability": 0.9845 + }, + { + "start": 37251.84, + "end": 37253.24, + "probability": 0.948 + }, + { + "start": 37253.96, + "end": 37257.58, + "probability": 0.993 + }, + { + "start": 37258.76, + "end": 37262.84, + "probability": 0.9921 + }, + { + "start": 37264.16, + "end": 37269.04, + "probability": 0.9557 + }, + { + "start": 37271.28, + "end": 37272.9, + "probability": 0.8233 + }, + { + "start": 37274.36, + "end": 37277.12, + "probability": 0.9902 + }, + { + "start": 37277.3, + "end": 37280.9, + "probability": 0.9368 + }, + { + "start": 37282.24, + "end": 37283.5, + "probability": 0.814 + }, + { + "start": 37284.46, + "end": 37285.38, + "probability": 0.6719 + }, + { + "start": 37285.52, + "end": 37286.0, + "probability": 0.9478 + }, + { + "start": 37286.76, + "end": 37291.28, + "probability": 0.9637 + }, + { + "start": 37304.01, + "end": 37304.68, + "probability": 0.0097 + }, + { + "start": 37304.68, + "end": 37304.68, + "probability": 0.0915 + }, + { + "start": 37304.68, + "end": 37304.68, + "probability": 0.0675 + }, + { + "start": 37304.68, + "end": 37304.68, + "probability": 0.0893 + }, + { + "start": 37304.68, + "end": 37304.68, + "probability": 0.2205 + }, + { + "start": 37304.68, + "end": 37305.54, + "probability": 0.1116 + }, + { + "start": 37308.66, + "end": 37310.62, + "probability": 0.4098 + }, + { + "start": 37311.78, + "end": 37313.32, + "probability": 0.6058 + }, + { + "start": 37313.32, + "end": 37315.5, + "probability": 0.9246 + }, + { + "start": 37316.38, + "end": 37317.62, + "probability": 0.9434 + }, + { + "start": 37318.74, + "end": 37319.56, + "probability": 0.5197 + }, + { + "start": 37319.74, + "end": 37322.0, + "probability": 0.9746 + }, + { + "start": 37322.58, + "end": 37323.46, + "probability": 0.9252 + }, + { + "start": 37324.64, + "end": 37326.9, + "probability": 0.9917 + }, + { + "start": 37327.36, + "end": 37331.1, + "probability": 0.9559 + }, + { + "start": 37331.88, + "end": 37332.28, + "probability": 0.074 + }, + { + "start": 37333.14, + "end": 37334.44, + "probability": 0.0077 + }, + { + "start": 37335.42, + "end": 37336.96, + "probability": 0.9749 + }, + { + "start": 37337.16, + "end": 37339.02, + "probability": 0.9966 + }, + { + "start": 37339.02, + "end": 37342.58, + "probability": 0.9539 + }, + { + "start": 37343.16, + "end": 37345.5, + "probability": 0.9816 + }, + { + "start": 37346.14, + "end": 37347.62, + "probability": 0.9329 + }, + { + "start": 37349.62, + "end": 37350.72, + "probability": 0.7589 + }, + { + "start": 37354.12, + "end": 37356.38, + "probability": 0.9734 + }, + { + "start": 37356.68, + "end": 37361.98, + "probability": 0.9583 + }, + { + "start": 37362.16, + "end": 37364.2, + "probability": 0.8661 + }, + { + "start": 37364.76, + "end": 37366.84, + "probability": 0.7933 + }, + { + "start": 37367.82, + "end": 37369.74, + "probability": 0.9556 + }, + { + "start": 37371.34, + "end": 37377.1, + "probability": 0.903 + }, + { + "start": 37377.22, + "end": 37381.76, + "probability": 0.9899 + }, + { + "start": 37383.0, + "end": 37384.52, + "probability": 0.6515 + }, + { + "start": 37384.64, + "end": 37384.88, + "probability": 0.4758 + }, + { + "start": 37387.2, + "end": 37393.16, + "probability": 0.6562 + }, + { + "start": 37394.94, + "end": 37398.98, + "probability": 0.95 + }, + { + "start": 37400.32, + "end": 37402.3, + "probability": 0.7096 + }, + { + "start": 37402.84, + "end": 37404.64, + "probability": 0.8914 + }, + { + "start": 37406.9, + "end": 37410.9, + "probability": 0.9722 + }, + { + "start": 37413.84, + "end": 37415.8, + "probability": 0.9937 + }, + { + "start": 37416.32, + "end": 37417.8, + "probability": 0.8623 + }, + { + "start": 37418.0, + "end": 37421.51, + "probability": 0.703 + }, + { + "start": 37422.64, + "end": 37424.72, + "probability": 0.9973 + }, + { + "start": 37426.4, + "end": 37428.04, + "probability": 0.9541 + }, + { + "start": 37428.6, + "end": 37431.19, + "probability": 0.9155 + }, + { + "start": 37432.55, + "end": 37436.34, + "probability": 0.992 + }, + { + "start": 37437.56, + "end": 37438.28, + "probability": 0.4777 + }, + { + "start": 37441.34, + "end": 37445.14, + "probability": 0.9992 + }, + { + "start": 37445.38, + "end": 37449.98, + "probability": 0.8452 + }, + { + "start": 37451.72, + "end": 37452.4, + "probability": 0.67 + }, + { + "start": 37453.12, + "end": 37458.7, + "probability": 0.9432 + }, + { + "start": 37458.84, + "end": 37459.6, + "probability": 0.9974 + }, + { + "start": 37460.22, + "end": 37462.0, + "probability": 0.9763 + }, + { + "start": 37463.52, + "end": 37465.58, + "probability": 0.9751 + }, + { + "start": 37466.28, + "end": 37468.2, + "probability": 0.9078 + }, + { + "start": 37470.18, + "end": 37472.12, + "probability": 0.9908 + }, + { + "start": 37474.18, + "end": 37477.98, + "probability": 0.9766 + }, + { + "start": 37478.86, + "end": 37481.51, + "probability": 0.5439 + }, + { + "start": 37484.62, + "end": 37485.92, + "probability": 0.9985 + }, + { + "start": 37488.76, + "end": 37489.26, + "probability": 0.7408 + }, + { + "start": 37491.06, + "end": 37495.16, + "probability": 0.8462 + }, + { + "start": 37496.7, + "end": 37498.79, + "probability": 0.9865 + }, + { + "start": 37500.64, + "end": 37504.4, + "probability": 0.9324 + }, + { + "start": 37504.78, + "end": 37505.14, + "probability": 0.3523 + }, + { + "start": 37505.34, + "end": 37505.56, + "probability": 0.5438 + }, + { + "start": 37505.72, + "end": 37506.18, + "probability": 0.5391 + }, + { + "start": 37507.94, + "end": 37510.76, + "probability": 0.9575 + }, + { + "start": 37511.72, + "end": 37512.82, + "probability": 0.6834 + }, + { + "start": 37512.9, + "end": 37519.47, + "probability": 0.9607 + }, + { + "start": 37520.62, + "end": 37521.26, + "probability": 0.7208 + }, + { + "start": 37523.0, + "end": 37524.48, + "probability": 0.977 + }, + { + "start": 37525.82, + "end": 37528.58, + "probability": 0.9014 + }, + { + "start": 37529.8, + "end": 37531.9, + "probability": 0.9806 + }, + { + "start": 37532.02, + "end": 37536.88, + "probability": 0.7775 + }, + { + "start": 37537.34, + "end": 37538.24, + "probability": 0.9472 + }, + { + "start": 37538.38, + "end": 37543.0, + "probability": 0.8289 + }, + { + "start": 37543.1, + "end": 37544.48, + "probability": 0.9947 + }, + { + "start": 37545.7, + "end": 37546.58, + "probability": 0.7539 + }, + { + "start": 37547.46, + "end": 37549.74, + "probability": 0.9922 + }, + { + "start": 37552.94, + "end": 37553.04, + "probability": 0.111 + }, + { + "start": 37553.14, + "end": 37554.96, + "probability": 0.9692 + }, + { + "start": 37555.16, + "end": 37559.36, + "probability": 0.8777 + }, + { + "start": 37563.42, + "end": 37568.96, + "probability": 0.9913 + }, + { + "start": 37569.8, + "end": 37570.98, + "probability": 0.9932 + }, + { + "start": 37571.18, + "end": 37573.28, + "probability": 0.9981 + }, + { + "start": 37575.12, + "end": 37575.9, + "probability": 0.6748 + }, + { + "start": 37575.98, + "end": 37576.26, + "probability": 0.7794 + }, + { + "start": 37577.38, + "end": 37580.18, + "probability": 0.9451 + }, + { + "start": 37583.56, + "end": 37584.1, + "probability": 0.6426 + }, + { + "start": 37585.08, + "end": 37586.5, + "probability": 0.7105 + }, + { + "start": 37589.24, + "end": 37590.98, + "probability": 0.9868 + }, + { + "start": 37593.12, + "end": 37595.02, + "probability": 0.9905 + }, + { + "start": 37595.24, + "end": 37595.54, + "probability": 0.6761 + }, + { + "start": 37596.7, + "end": 37598.0, + "probability": 0.9878 + }, + { + "start": 37598.62, + "end": 37601.56, + "probability": 0.9913 + }, + { + "start": 37602.14, + "end": 37602.54, + "probability": 0.9282 + }, + { + "start": 37603.34, + "end": 37607.32, + "probability": 0.8957 + }, + { + "start": 37607.88, + "end": 37608.58, + "probability": 0.9842 + }, + { + "start": 37609.72, + "end": 37611.04, + "probability": 0.9749 + }, + { + "start": 37611.68, + "end": 37612.76, + "probability": 0.5572 + }, + { + "start": 37613.89, + "end": 37619.04, + "probability": 0.8029 + }, + { + "start": 37620.32, + "end": 37620.66, + "probability": 0.8543 + }, + { + "start": 37624.7, + "end": 37629.52, + "probability": 0.9823 + }, + { + "start": 37630.44, + "end": 37631.5, + "probability": 0.964 + }, + { + "start": 37631.58, + "end": 37637.7, + "probability": 0.9926 + }, + { + "start": 37639.32, + "end": 37643.88, + "probability": 0.9902 + }, + { + "start": 37644.58, + "end": 37646.42, + "probability": 0.7252 + }, + { + "start": 37648.6, + "end": 37654.39, + "probability": 0.9688 + }, + { + "start": 37656.12, + "end": 37658.52, + "probability": 0.8792 + }, + { + "start": 37659.71, + "end": 37663.78, + "probability": 0.9818 + }, + { + "start": 37663.96, + "end": 37665.2, + "probability": 0.8556 + }, + { + "start": 37666.9, + "end": 37667.38, + "probability": 0.9858 + }, + { + "start": 37670.1, + "end": 37674.0, + "probability": 0.9299 + }, + { + "start": 37676.78, + "end": 37680.36, + "probability": 0.9506 + }, + { + "start": 37681.44, + "end": 37683.86, + "probability": 0.8639 + }, + { + "start": 37685.24, + "end": 37687.8, + "probability": 0.9844 + }, + { + "start": 37689.14, + "end": 37692.62, + "probability": 0.8032 + }, + { + "start": 37693.26, + "end": 37694.94, + "probability": 0.6254 + }, + { + "start": 37697.42, + "end": 37701.24, + "probability": 0.9802 + }, + { + "start": 37703.62, + "end": 37704.2, + "probability": 0.9857 + }, + { + "start": 37705.86, + "end": 37707.84, + "probability": 0.9927 + }, + { + "start": 37709.02, + "end": 37709.48, + "probability": 0.9946 + }, + { + "start": 37710.52, + "end": 37713.5, + "probability": 0.7683 + }, + { + "start": 37714.58, + "end": 37716.58, + "probability": 0.9692 + }, + { + "start": 37718.7, + "end": 37719.14, + "probability": 0.6846 + }, + { + "start": 37719.78, + "end": 37721.71, + "probability": 0.903 + }, + { + "start": 37722.86, + "end": 37725.18, + "probability": 0.4597 + }, + { + "start": 37725.26, + "end": 37725.74, + "probability": 0.4992 + }, + { + "start": 37725.86, + "end": 37728.14, + "probability": 0.918 + }, + { + "start": 37732.84, + "end": 37734.08, + "probability": 0.9967 + }, + { + "start": 37734.8, + "end": 37736.04, + "probability": 0.8901 + }, + { + "start": 37736.8, + "end": 37740.44, + "probability": 0.9231 + }, + { + "start": 37741.44, + "end": 37742.66, + "probability": 0.8768 + }, + { + "start": 37745.7, + "end": 37747.24, + "probability": 0.9921 + }, + { + "start": 37747.82, + "end": 37752.56, + "probability": 0.9893 + }, + { + "start": 37753.5, + "end": 37754.04, + "probability": 0.5008 + }, + { + "start": 37754.92, + "end": 37756.36, + "probability": 0.9908 + }, + { + "start": 37757.94, + "end": 37764.52, + "probability": 0.9971 + }, + { + "start": 37765.7, + "end": 37766.06, + "probability": 0.8685 + }, + { + "start": 37768.66, + "end": 37770.07, + "probability": 0.7499 + }, + { + "start": 37772.45, + "end": 37777.04, + "probability": 0.9849 + }, + { + "start": 37777.04, + "end": 37785.98, + "probability": 0.9608 + }, + { + "start": 37787.16, + "end": 37787.78, + "probability": 0.8936 + }, + { + "start": 37788.48, + "end": 37789.56, + "probability": 0.7189 + }, + { + "start": 37791.05, + "end": 37794.02, + "probability": 0.9106 + }, + { + "start": 37796.48, + "end": 37799.82, + "probability": 0.9492 + }, + { + "start": 37800.52, + "end": 37804.1, + "probability": 0.9856 + }, + { + "start": 37804.28, + "end": 37806.96, + "probability": 0.9092 + }, + { + "start": 37808.58, + "end": 37809.2, + "probability": 0.8854 + }, + { + "start": 37812.3, + "end": 37812.34, + "probability": 0.1599 + }, + { + "start": 37815.04, + "end": 37822.06, + "probability": 0.7622 + }, + { + "start": 37823.94, + "end": 37831.6, + "probability": 0.9944 + }, + { + "start": 37831.9, + "end": 37833.9, + "probability": 0.4095 + }, + { + "start": 37835.56, + "end": 37836.42, + "probability": 0.8215 + }, + { + "start": 37839.0, + "end": 37839.6, + "probability": 0.998 + }, + { + "start": 37841.98, + "end": 37844.3, + "probability": 0.9976 + }, + { + "start": 37844.3, + "end": 37849.7, + "probability": 0.9009 + }, + { + "start": 37851.3, + "end": 37851.72, + "probability": 0.3824 + }, + { + "start": 37853.06, + "end": 37854.34, + "probability": 0.9883 + }, + { + "start": 37854.88, + "end": 37858.76, + "probability": 0.766 + }, + { + "start": 37859.98, + "end": 37865.08, + "probability": 0.9827 + }, + { + "start": 37868.5, + "end": 37869.82, + "probability": 0.9221 + }, + { + "start": 37870.52, + "end": 37874.26, + "probability": 0.9302 + }, + { + "start": 37875.12, + "end": 37878.08, + "probability": 0.8977 + }, + { + "start": 37880.16, + "end": 37884.8, + "probability": 0.9705 + }, + { + "start": 37884.86, + "end": 37885.14, + "probability": 0.8587 + }, + { + "start": 37886.16, + "end": 37886.6, + "probability": 0.377 + }, + { + "start": 37887.52, + "end": 37888.82, + "probability": 0.3769 + }, + { + "start": 37916.6, + "end": 37916.62, + "probability": 0.0084 + }, + { + "start": 37916.62, + "end": 37917.58, + "probability": 0.1215 + }, + { + "start": 37920.26, + "end": 37923.02, + "probability": 0.6156 + }, + { + "start": 37926.2, + "end": 37928.76, + "probability": 0.952 + }, + { + "start": 37930.78, + "end": 37931.84, + "probability": 0.9506 + }, + { + "start": 37934.78, + "end": 37936.2, + "probability": 0.9816 + }, + { + "start": 37937.52, + "end": 37938.26, + "probability": 0.9738 + }, + { + "start": 37939.28, + "end": 37939.7, + "probability": 0.9029 + }, + { + "start": 37942.8, + "end": 37945.88, + "probability": 0.9746 + }, + { + "start": 37948.34, + "end": 37950.42, + "probability": 0.7957 + }, + { + "start": 37952.34, + "end": 37953.34, + "probability": 0.9875 + }, + { + "start": 37955.06, + "end": 37955.92, + "probability": 0.9858 + }, + { + "start": 37957.42, + "end": 37958.02, + "probability": 0.7744 + }, + { + "start": 37958.08, + "end": 37964.24, + "probability": 0.8459 + }, + { + "start": 37966.16, + "end": 37969.86, + "probability": 0.762 + }, + { + "start": 37971.34, + "end": 37972.74, + "probability": 0.8485 + }, + { + "start": 37974.46, + "end": 37977.74, + "probability": 0.9824 + }, + { + "start": 37979.92, + "end": 37980.34, + "probability": 0.7671 + }, + { + "start": 37982.48, + "end": 37983.58, + "probability": 0.909 + }, + { + "start": 37985.86, + "end": 37986.94, + "probability": 0.9613 + }, + { + "start": 37989.26, + "end": 37989.94, + "probability": 0.8062 + }, + { + "start": 37993.34, + "end": 37996.64, + "probability": 0.9579 + }, + { + "start": 37997.08, + "end": 37998.14, + "probability": 0.9299 + }, + { + "start": 37999.38, + "end": 38000.2, + "probability": 0.739 + }, + { + "start": 38001.38, + "end": 38004.18, + "probability": 0.7374 + }, + { + "start": 38004.22, + "end": 38005.68, + "probability": 0.9027 + }, + { + "start": 38006.44, + "end": 38007.66, + "probability": 0.9967 + }, + { + "start": 38008.28, + "end": 38009.43, + "probability": 0.6729 + }, + { + "start": 38010.62, + "end": 38011.19, + "probability": 0.8093 + }, + { + "start": 38011.72, + "end": 38014.1, + "probability": 0.9688 + }, + { + "start": 38015.4, + "end": 38016.24, + "probability": 0.8901 + }, + { + "start": 38016.42, + "end": 38017.96, + "probability": 0.9905 + }, + { + "start": 38018.66, + "end": 38020.08, + "probability": 0.9592 + }, + { + "start": 38020.58, + "end": 38021.98, + "probability": 0.9468 + }, + { + "start": 38023.52, + "end": 38024.34, + "probability": 0.865 + }, + { + "start": 38024.42, + "end": 38026.34, + "probability": 0.9756 + }, + { + "start": 38026.42, + "end": 38027.66, + "probability": 0.8799 + }, + { + "start": 38028.54, + "end": 38030.24, + "probability": 0.5452 + }, + { + "start": 38031.8, + "end": 38034.02, + "probability": 0.9594 + }, + { + "start": 38034.7, + "end": 38036.56, + "probability": 0.9508 + }, + { + "start": 38037.34, + "end": 38038.86, + "probability": 0.9727 + }, + { + "start": 38039.02, + "end": 38042.2, + "probability": 0.9176 + }, + { + "start": 38042.26, + "end": 38042.62, + "probability": 0.9336 + }, + { + "start": 38042.88, + "end": 38043.52, + "probability": 0.9438 + }, + { + "start": 38043.86, + "end": 38045.82, + "probability": 0.8037 + }, + { + "start": 38045.82, + "end": 38048.24, + "probability": 0.9399 + }, + { + "start": 38048.78, + "end": 38050.06, + "probability": 0.8118 + }, + { + "start": 38052.68, + "end": 38053.96, + "probability": 0.9685 + }, + { + "start": 38056.66, + "end": 38059.88, + "probability": 0.9844 + }, + { + "start": 38060.56, + "end": 38061.24, + "probability": 0.9912 + }, + { + "start": 38062.48, + "end": 38063.08, + "probability": 0.7357 + }, + { + "start": 38063.2, + "end": 38064.56, + "probability": 0.9502 + }, + { + "start": 38064.82, + "end": 38066.7, + "probability": 0.9867 + }, + { + "start": 38066.84, + "end": 38067.84, + "probability": 0.9498 + }, + { + "start": 38068.0, + "end": 38071.18, + "probability": 0.9976 + }, + { + "start": 38072.4, + "end": 38072.6, + "probability": 0.6766 + }, + { + "start": 38074.1, + "end": 38077.54, + "probability": 0.944 + }, + { + "start": 38078.52, + "end": 38080.18, + "probability": 0.9172 + }, + { + "start": 38082.06, + "end": 38084.3, + "probability": 0.9639 + }, + { + "start": 38085.24, + "end": 38087.56, + "probability": 0.9617 + }, + { + "start": 38088.84, + "end": 38090.34, + "probability": 0.9758 + }, + { + "start": 38091.16, + "end": 38092.16, + "probability": 0.5707 + }, + { + "start": 38092.94, + "end": 38093.2, + "probability": 0.4226 + }, + { + "start": 38094.32, + "end": 38096.1, + "probability": 0.9478 + }, + { + "start": 38096.16, + "end": 38098.18, + "probability": 0.6588 + }, + { + "start": 38098.4, + "end": 38102.0, + "probability": 0.9771 + }, + { + "start": 38102.18, + "end": 38103.32, + "probability": 0.9785 + }, + { + "start": 38103.44, + "end": 38104.28, + "probability": 0.445 + }, + { + "start": 38106.04, + "end": 38107.12, + "probability": 0.9518 + }, + { + "start": 38109.2, + "end": 38110.56, + "probability": 0.8899 + }, + { + "start": 38111.88, + "end": 38113.22, + "probability": 0.8083 + }, + { + "start": 38113.42, + "end": 38114.7, + "probability": 0.9451 + }, + { + "start": 38115.12, + "end": 38115.52, + "probability": 0.6053 + }, + { + "start": 38115.6, + "end": 38118.26, + "probability": 0.9631 + }, + { + "start": 38119.72, + "end": 38120.06, + "probability": 0.7203 + }, + { + "start": 38121.74, + "end": 38121.98, + "probability": 0.9697 + }, + { + "start": 38123.34, + "end": 38126.32, + "probability": 0.8654 + }, + { + "start": 38127.94, + "end": 38130.02, + "probability": 0.984 + }, + { + "start": 38131.3, + "end": 38131.72, + "probability": 0.625 + }, + { + "start": 38133.28, + "end": 38134.3, + "probability": 0.9649 + }, + { + "start": 38135.32, + "end": 38136.0, + "probability": 0.7607 + }, + { + "start": 38136.5, + "end": 38137.04, + "probability": 0.5542 + }, + { + "start": 38137.14, + "end": 38137.64, + "probability": 0.7543 + }, + { + "start": 38137.7, + "end": 38138.28, + "probability": 0.8725 + }, + { + "start": 38139.2, + "end": 38141.02, + "probability": 0.9711 + }, + { + "start": 38142.3, + "end": 38143.38, + "probability": 0.9712 + }, + { + "start": 38144.62, + "end": 38145.53, + "probability": 0.99 + }, + { + "start": 38146.9, + "end": 38148.4, + "probability": 0.9834 + }, + { + "start": 38149.18, + "end": 38150.26, + "probability": 0.7919 + }, + { + "start": 38151.76, + "end": 38153.3, + "probability": 0.9878 + }, + { + "start": 38153.64, + "end": 38154.54, + "probability": 0.9071 + }, + { + "start": 38154.6, + "end": 38155.04, + "probability": 0.9275 + }, + { + "start": 38155.2, + "end": 38157.22, + "probability": 0.9832 + }, + { + "start": 38157.52, + "end": 38158.14, + "probability": 0.9764 + }, + { + "start": 38158.6, + "end": 38160.74, + "probability": 0.9448 + }, + { + "start": 38162.4, + "end": 38162.68, + "probability": 0.6618 + }, + { + "start": 38162.68, + "end": 38165.82, + "probability": 0.8492 + }, + { + "start": 38165.94, + "end": 38167.54, + "probability": 0.6656 + }, + { + "start": 38167.78, + "end": 38167.94, + "probability": 0.0086 + }, + { + "start": 38170.2, + "end": 38173.76, + "probability": 0.9685 + }, + { + "start": 38175.56, + "end": 38176.34, + "probability": 0.9889 + }, + { + "start": 38180.5, + "end": 38182.92, + "probability": 0.9329 + }, + { + "start": 38184.72, + "end": 38187.0, + "probability": 0.9676 + }, + { + "start": 38188.94, + "end": 38189.76, + "probability": 0.9214 + }, + { + "start": 38189.82, + "end": 38191.4, + "probability": 0.895 + }, + { + "start": 38192.76, + "end": 38193.56, + "probability": 0.8809 + }, + { + "start": 38194.38, + "end": 38195.92, + "probability": 0.811 + }, + { + "start": 38196.6, + "end": 38197.42, + "probability": 0.9329 + }, + { + "start": 38199.26, + "end": 38200.12, + "probability": 0.8943 + }, + { + "start": 38200.36, + "end": 38202.82, + "probability": 0.9419 + }, + { + "start": 38203.34, + "end": 38205.9, + "probability": 0.5451 + }, + { + "start": 38206.44, + "end": 38207.08, + "probability": 0.9609 + }, + { + "start": 38208.26, + "end": 38209.12, + "probability": 0.6376 + }, + { + "start": 38210.48, + "end": 38212.54, + "probability": 0.8299 + }, + { + "start": 38213.58, + "end": 38214.11, + "probability": 0.9746 + }, + { + "start": 38215.3, + "end": 38216.18, + "probability": 0.9886 + }, + { + "start": 38219.44, + "end": 38223.3, + "probability": 0.9958 + }, + { + "start": 38224.82, + "end": 38226.46, + "probability": 0.9882 + }, + { + "start": 38227.86, + "end": 38228.62, + "probability": 0.9441 + }, + { + "start": 38230.98, + "end": 38231.7, + "probability": 0.9921 + }, + { + "start": 38234.26, + "end": 38235.66, + "probability": 0.8896 + }, + { + "start": 38237.3, + "end": 38238.36, + "probability": 0.9868 + }, + { + "start": 38241.38, + "end": 38242.55, + "probability": 0.9381 + }, + { + "start": 38243.02, + "end": 38244.94, + "probability": 0.7658 + }, + { + "start": 38244.94, + "end": 38248.02, + "probability": 0.954 + }, + { + "start": 38249.2, + "end": 38249.98, + "probability": 0.9637 + }, + { + "start": 38253.66, + "end": 38255.94, + "probability": 0.677 + }, + { + "start": 38257.32, + "end": 38258.68, + "probability": 0.9938 + }, + { + "start": 38260.7, + "end": 38261.84, + "probability": 0.6365 + }, + { + "start": 38263.56, + "end": 38264.42, + "probability": 0.487 + }, + { + "start": 38264.74, + "end": 38265.46, + "probability": 0.9504 + }, + { + "start": 38265.52, + "end": 38268.08, + "probability": 0.7966 + }, + { + "start": 38268.36, + "end": 38269.86, + "probability": 0.9882 + }, + { + "start": 38269.92, + "end": 38270.6, + "probability": 0.946 + }, + { + "start": 38272.46, + "end": 38273.16, + "probability": 0.7866 + }, + { + "start": 38275.68, + "end": 38276.6, + "probability": 0.9944 + }, + { + "start": 38279.28, + "end": 38280.87, + "probability": 0.9838 + }, + { + "start": 38281.68, + "end": 38284.34, + "probability": 0.9214 + }, + { + "start": 38286.66, + "end": 38287.04, + "probability": 0.903 + }, + { + "start": 38288.32, + "end": 38289.62, + "probability": 0.5204 + }, + { + "start": 38291.28, + "end": 38293.44, + "probability": 0.8655 + }, + { + "start": 38295.08, + "end": 38296.4, + "probability": 0.9681 + }, + { + "start": 38297.4, + "end": 38299.17, + "probability": 0.9293 + }, + { + "start": 38299.42, + "end": 38299.68, + "probability": 0.4819 + }, + { + "start": 38299.76, + "end": 38300.84, + "probability": 0.8571 + }, + { + "start": 38302.08, + "end": 38303.36, + "probability": 0.873 + }, + { + "start": 38304.04, + "end": 38305.32, + "probability": 0.985 + }, + { + "start": 38305.96, + "end": 38307.1, + "probability": 0.9025 + }, + { + "start": 38307.72, + "end": 38310.08, + "probability": 0.9971 + }, + { + "start": 38310.18, + "end": 38310.78, + "probability": 0.9897 + }, + { + "start": 38311.74, + "end": 38312.2, + "probability": 0.9827 + }, + { + "start": 38313.86, + "end": 38316.14, + "probability": 0.8247 + }, + { + "start": 38317.52, + "end": 38318.6, + "probability": 0.8248 + }, + { + "start": 38318.88, + "end": 38321.62, + "probability": 0.9694 + }, + { + "start": 38322.46, + "end": 38323.54, + "probability": 0.9515 + }, + { + "start": 38324.22, + "end": 38329.42, + "probability": 0.8155 + }, + { + "start": 38331.22, + "end": 38331.78, + "probability": 0.6225 + }, + { + "start": 38332.76, + "end": 38334.52, + "probability": 0.9601 + }, + { + "start": 38336.64, + "end": 38340.74, + "probability": 0.9749 + }, + { + "start": 38341.8, + "end": 38348.64, + "probability": 0.9984 + }, + { + "start": 38349.66, + "end": 38350.94, + "probability": 0.9854 + }, + { + "start": 38352.92, + "end": 38354.22, + "probability": 0.9984 + }, + { + "start": 38356.22, + "end": 38358.02, + "probability": 0.9827 + }, + { + "start": 38358.92, + "end": 38360.74, + "probability": 0.9094 + }, + { + "start": 38361.34, + "end": 38365.4, + "probability": 0.9973 + }, + { + "start": 38365.44, + "end": 38367.22, + "probability": 0.9822 + }, + { + "start": 38367.56, + "end": 38370.62, + "probability": 0.9142 + }, + { + "start": 38370.74, + "end": 38373.06, + "probability": 0.9453 + }, + { + "start": 38374.98, + "end": 38377.4, + "probability": 0.831 + }, + { + "start": 38379.2, + "end": 38382.14, + "probability": 0.9968 + }, + { + "start": 38383.78, + "end": 38386.56, + "probability": 0.9987 + }, + { + "start": 38388.24, + "end": 38389.28, + "probability": 0.9787 + }, + { + "start": 38391.26, + "end": 38392.56, + "probability": 0.8787 + }, + { + "start": 38394.5, + "end": 38396.18, + "probability": 0.9019 + }, + { + "start": 38397.07, + "end": 38398.88, + "probability": 0.9763 + }, + { + "start": 38401.4, + "end": 38403.48, + "probability": 0.9056 + }, + { + "start": 38404.44, + "end": 38406.26, + "probability": 0.9636 + }, + { + "start": 38407.06, + "end": 38408.94, + "probability": 0.9438 + }, + { + "start": 38408.96, + "end": 38409.68, + "probability": 0.9988 + }, + { + "start": 38410.52, + "end": 38414.74, + "probability": 0.1032 + }, + { + "start": 38415.78, + "end": 38418.51, + "probability": 0.9017 + }, + { + "start": 38420.42, + "end": 38422.93, + "probability": 0.9909 + }, + { + "start": 38424.86, + "end": 38429.58, + "probability": 0.844 + }, + { + "start": 38429.76, + "end": 38430.22, + "probability": 0.6409 + }, + { + "start": 38430.28, + "end": 38433.88, + "probability": 0.9695 + }, + { + "start": 38435.54, + "end": 38437.12, + "probability": 0.414 + }, + { + "start": 38438.56, + "end": 38441.52, + "probability": 0.739 + }, + { + "start": 38442.1, + "end": 38443.36, + "probability": 0.673 + }, + { + "start": 38444.8, + "end": 38448.96, + "probability": 0.9707 + }, + { + "start": 38449.8, + "end": 38454.02, + "probability": 0.78 + }, + { + "start": 38454.62, + "end": 38456.82, + "probability": 0.7797 + }, + { + "start": 38457.0, + "end": 38460.88, + "probability": 0.9357 + }, + { + "start": 38461.46, + "end": 38462.84, + "probability": 0.8413 + }, + { + "start": 38463.64, + "end": 38464.04, + "probability": 0.861 + }, + { + "start": 38465.1, + "end": 38468.37, + "probability": 0.8504 + }, + { + "start": 38468.46, + "end": 38470.36, + "probability": 0.9626 + }, + { + "start": 38471.18, + "end": 38473.6, + "probability": 0.9943 + }, + { + "start": 38474.26, + "end": 38476.64, + "probability": 0.5944 + }, + { + "start": 38476.72, + "end": 38477.62, + "probability": 0.5584 + }, + { + "start": 38478.06, + "end": 38478.58, + "probability": 0.791 + }, + { + "start": 38479.08, + "end": 38482.08, + "probability": 0.9429 + }, + { + "start": 38482.08, + "end": 38486.08, + "probability": 0.9326 + }, + { + "start": 38486.94, + "end": 38487.68, + "probability": 0.9223 + }, + { + "start": 38489.04, + "end": 38494.34, + "probability": 0.9907 + }, + { + "start": 38494.72, + "end": 38495.44, + "probability": 0.243 + }, + { + "start": 38496.7, + "end": 38497.14, + "probability": 0.6109 + }, + { + "start": 38497.58, + "end": 38498.2, + "probability": 0.3523 + }, + { + "start": 38499.18, + "end": 38503.56, + "probability": 0.999 + }, + { + "start": 38504.88, + "end": 38506.68, + "probability": 0.9859 + }, + { + "start": 38507.46, + "end": 38508.92, + "probability": 0.8185 + }, + { + "start": 38510.4, + "end": 38513.44, + "probability": 0.9956 + }, + { + "start": 38514.64, + "end": 38515.84, + "probability": 0.9137 + }, + { + "start": 38516.56, + "end": 38517.08, + "probability": 0.522 + }, + { + "start": 38517.34, + "end": 38518.44, + "probability": 0.9601 + }, + { + "start": 38520.44, + "end": 38521.12, + "probability": 0.9713 + }, + { + "start": 38525.4, + "end": 38527.68, + "probability": 0.8975 + }, + { + "start": 38527.82, + "end": 38529.88, + "probability": 0.9763 + }, + { + "start": 38530.02, + "end": 38531.76, + "probability": 0.7068 + }, + { + "start": 38532.1, + "end": 38533.62, + "probability": 0.969 + }, + { + "start": 38536.0, + "end": 38537.86, + "probability": 0.9544 + }, + { + "start": 38538.0, + "end": 38538.56, + "probability": 0.959 + }, + { + "start": 38539.18, + "end": 38539.52, + "probability": 0.582 + }, + { + "start": 38539.56, + "end": 38540.88, + "probability": 0.6626 + }, + { + "start": 38541.0, + "end": 38542.92, + "probability": 0.9287 + }, + { + "start": 38543.56, + "end": 38546.46, + "probability": 0.9205 + }, + { + "start": 38547.14, + "end": 38548.32, + "probability": 0.988 + }, + { + "start": 38550.4, + "end": 38554.32, + "probability": 0.9852 + }, + { + "start": 38555.9, + "end": 38557.7, + "probability": 0.8907 + }, + { + "start": 38559.14, + "end": 38562.55, + "probability": 0.6761 + }, + { + "start": 38563.48, + "end": 38565.32, + "probability": 0.9785 + }, + { + "start": 38567.3, + "end": 38569.7, + "probability": 0.9849 + }, + { + "start": 38569.88, + "end": 38570.78, + "probability": 0.8843 + }, + { + "start": 38570.92, + "end": 38571.76, + "probability": 0.9391 + }, + { + "start": 38573.44, + "end": 38574.3, + "probability": 0.5836 + }, + { + "start": 38576.1, + "end": 38580.68, + "probability": 0.9875 + }, + { + "start": 38586.74, + "end": 38587.44, + "probability": 0.7729 + }, + { + "start": 38588.68, + "end": 38589.88, + "probability": 0.9802 + }, + { + "start": 38590.08, + "end": 38592.78, + "probability": 0.9695 + }, + { + "start": 38594.34, + "end": 38596.44, + "probability": 0.8325 + }, + { + "start": 38598.46, + "end": 38600.98, + "probability": 0.9205 + }, + { + "start": 38601.6, + "end": 38604.4, + "probability": 0.9246 + }, + { + "start": 38605.68, + "end": 38606.51, + "probability": 0.9467 + }, + { + "start": 38607.8, + "end": 38612.92, + "probability": 0.9956 + }, + { + "start": 38612.92, + "end": 38615.68, + "probability": 0.9963 + }, + { + "start": 38617.8, + "end": 38618.12, + "probability": 0.987 + }, + { + "start": 38621.0, + "end": 38623.06, + "probability": 0.9948 + }, + { + "start": 38625.0, + "end": 38627.28, + "probability": 0.9824 + }, + { + "start": 38627.44, + "end": 38630.58, + "probability": 0.9746 + }, + { + "start": 38630.6, + "end": 38632.37, + "probability": 0.9119 + }, + { + "start": 38634.38, + "end": 38635.92, + "probability": 0.9878 + }, + { + "start": 38637.54, + "end": 38641.32, + "probability": 0.9404 + }, + { + "start": 38641.42, + "end": 38641.72, + "probability": 0.5761 + }, + { + "start": 38641.8, + "end": 38642.42, + "probability": 0.6007 + }, + { + "start": 38644.18, + "end": 38645.72, + "probability": 0.9923 + }, + { + "start": 38649.34, + "end": 38652.14, + "probability": 0.9396 + }, + { + "start": 38653.76, + "end": 38656.76, + "probability": 0.9917 + }, + { + "start": 38657.38, + "end": 38659.44, + "probability": 0.9926 + }, + { + "start": 38659.58, + "end": 38660.68, + "probability": 0.9976 + }, + { + "start": 38660.76, + "end": 38661.88, + "probability": 0.8775 + }, + { + "start": 38662.2, + "end": 38664.92, + "probability": 0.9952 + }, + { + "start": 38666.0, + "end": 38668.88, + "probability": 0.9438 + }, + { + "start": 38668.96, + "end": 38669.46, + "probability": 0.9441 + }, + { + "start": 38670.26, + "end": 38671.36, + "probability": 0.9798 + }, + { + "start": 38672.56, + "end": 38672.72, + "probability": 0.6562 + }, + { + "start": 38672.76, + "end": 38676.26, + "probability": 0.9946 + }, + { + "start": 38676.62, + "end": 38677.12, + "probability": 0.7189 + }, + { + "start": 38677.46, + "end": 38679.74, + "probability": 0.9126 + }, + { + "start": 38681.34, + "end": 38682.56, + "probability": 0.9973 + }, + { + "start": 38683.6, + "end": 38685.98, + "probability": 0.9154 + }, + { + "start": 38686.52, + "end": 38687.08, + "probability": 0.8473 + }, + { + "start": 38688.66, + "end": 38690.88, + "probability": 0.9713 + }, + { + "start": 38691.92, + "end": 38694.5, + "probability": 0.9338 + }, + { + "start": 38697.76, + "end": 38699.62, + "probability": 0.907 + }, + { + "start": 38700.3, + "end": 38701.24, + "probability": 0.9111 + }, + { + "start": 38703.34, + "end": 38706.02, + "probability": 0.9922 + }, + { + "start": 38706.34, + "end": 38708.84, + "probability": 0.4591 + }, + { + "start": 38708.96, + "end": 38710.14, + "probability": 0.7853 + }, + { + "start": 38710.62, + "end": 38710.84, + "probability": 0.7331 + }, + { + "start": 38710.98, + "end": 38711.94, + "probability": 0.9526 + }, + { + "start": 38712.84, + "end": 38715.6, + "probability": 0.8916 + }, + { + "start": 38719.08, + "end": 38719.84, + "probability": 0.8902 + }, + { + "start": 38720.94, + "end": 38722.61, + "probability": 0.7898 + }, + { + "start": 38724.76, + "end": 38726.36, + "probability": 0.6397 + }, + { + "start": 38726.48, + "end": 38728.12, + "probability": 0.7909 + }, + { + "start": 38728.2, + "end": 38729.54, + "probability": 0.8507 + }, + { + "start": 38730.58, + "end": 38734.58, + "probability": 0.9662 + }, + { + "start": 38735.34, + "end": 38736.26, + "probability": 0.9149 + }, + { + "start": 38738.08, + "end": 38738.78, + "probability": 0.5043 + }, + { + "start": 38739.94, + "end": 38745.9, + "probability": 0.63 + }, + { + "start": 38746.78, + "end": 38748.96, + "probability": 0.7187 + }, + { + "start": 38749.02, + "end": 38751.08, + "probability": 0.7016 + }, + { + "start": 38751.1, + "end": 38752.82, + "probability": 0.4243 + }, + { + "start": 38752.92, + "end": 38753.53, + "probability": 0.3712 + }, + { + "start": 38753.86, + "end": 38754.4, + "probability": 0.9051 + }, + { + "start": 38754.88, + "end": 38757.58, + "probability": 0.9807 + }, + { + "start": 38758.72, + "end": 38760.3, + "probability": 0.9062 + }, + { + "start": 38760.34, + "end": 38761.36, + "probability": 0.968 + }, + { + "start": 38761.74, + "end": 38762.1, + "probability": 0.7834 + }, + { + "start": 38762.22, + "end": 38765.66, + "probability": 0.896 + }, + { + "start": 38765.74, + "end": 38766.46, + "probability": 0.6032 + }, + { + "start": 38766.56, + "end": 38766.66, + "probability": 0.501 + }, + { + "start": 38767.94, + "end": 38768.84, + "probability": 0.9777 + }, + { + "start": 38769.78, + "end": 38770.16, + "probability": 0.9421 + }, + { + "start": 38772.16, + "end": 38775.32, + "probability": 0.996 + }, + { + "start": 38778.74, + "end": 38778.96, + "probability": 0.8302 + }, + { + "start": 38779.76, + "end": 38780.76, + "probability": 0.746 + }, + { + "start": 38781.7, + "end": 38783.84, + "probability": 0.95 + }, + { + "start": 38785.04, + "end": 38786.82, + "probability": 0.9963 + }, + { + "start": 38787.42, + "end": 38788.94, + "probability": 0.8793 + }, + { + "start": 38793.06, + "end": 38795.12, + "probability": 0.9961 + }, + { + "start": 38795.2, + "end": 38795.52, + "probability": 0.8837 + }, + { + "start": 38795.78, + "end": 38796.76, + "probability": 0.8903 + }, + { + "start": 38799.88, + "end": 38801.94, + "probability": 0.8413 + }, + { + "start": 38805.06, + "end": 38807.68, + "probability": 0.9944 + }, + { + "start": 38811.64, + "end": 38813.72, + "probability": 0.7414 + }, + { + "start": 38813.86, + "end": 38817.16, + "probability": 0.6491 + }, + { + "start": 38817.16, + "end": 38817.16, + "probability": 0.9031 + }, + { + "start": 38817.4, + "end": 38817.46, + "probability": 0.3885 + }, + { + "start": 38817.5, + "end": 38817.87, + "probability": 0.8423 + }, + { + "start": 38819.14, + "end": 38819.68, + "probability": 0.4472 + }, + { + "start": 38819.86, + "end": 38820.28, + "probability": 0.6173 + }, + { + "start": 38821.14, + "end": 38823.16, + "probability": 0.9476 + }, + { + "start": 38830.02, + "end": 38831.02, + "probability": 0.8889 + }, + { + "start": 38832.18, + "end": 38835.38, + "probability": 0.5645 + }, + { + "start": 38836.34, + "end": 38837.84, + "probability": 0.9 + }, + { + "start": 38838.7, + "end": 38839.12, + "probability": 0.8697 + }, + { + "start": 38842.54, + "end": 38844.66, + "probability": 0.939 + }, + { + "start": 38846.12, + "end": 38847.87, + "probability": 0.7834 + }, + { + "start": 38848.74, + "end": 38851.52, + "probability": 0.8023 + }, + { + "start": 38852.18, + "end": 38855.32, + "probability": 0.9956 + }, + { + "start": 38855.32, + "end": 38858.24, + "probability": 0.9896 + }, + { + "start": 38859.54, + "end": 38860.52, + "probability": 0.9276 + }, + { + "start": 38862.94, + "end": 38865.34, + "probability": 0.7646 + }, + { + "start": 38867.16, + "end": 38867.92, + "probability": 0.6826 + }, + { + "start": 38869.32, + "end": 38870.53, + "probability": 0.999 + }, + { + "start": 38871.38, + "end": 38873.8, + "probability": 0.7556 + }, + { + "start": 38874.08, + "end": 38874.9, + "probability": 0.5477 + }, + { + "start": 38875.14, + "end": 38875.94, + "probability": 0.9501 + }, + { + "start": 38877.18, + "end": 38877.4, + "probability": 0.4021 + }, + { + "start": 38877.82, + "end": 38878.78, + "probability": 0.8385 + }, + { + "start": 38879.42, + "end": 38880.0, + "probability": 0.9513 + }, + { + "start": 38883.24, + "end": 38886.68, + "probability": 0.7111 + }, + { + "start": 38887.28, + "end": 38889.5, + "probability": 0.8725 + }, + { + "start": 38890.74, + "end": 38891.92, + "probability": 0.8807 + }, + { + "start": 38892.86, + "end": 38893.46, + "probability": 0.1687 + }, + { + "start": 38893.82, + "end": 38894.64, + "probability": 0.7102 + }, + { + "start": 38895.78, + "end": 38896.88, + "probability": 0.9126 + }, + { + "start": 38896.94, + "end": 38897.67, + "probability": 0.8748 + }, + { + "start": 38897.96, + "end": 38899.29, + "probability": 0.8416 + }, + { + "start": 38899.52, + "end": 38899.75, + "probability": 0.5288 + }, + { + "start": 38900.0, + "end": 38901.03, + "probability": 0.6262 + }, + { + "start": 38902.18, + "end": 38904.02, + "probability": 0.9895 + }, + { + "start": 38906.46, + "end": 38909.8, + "probability": 0.8484 + }, + { + "start": 38911.04, + "end": 38912.8, + "probability": 0.7913 + }, + { + "start": 38912.96, + "end": 38913.9, + "probability": 0.8135 + }, + { + "start": 38914.62, + "end": 38915.62, + "probability": 0.9731 + }, + { + "start": 38917.8, + "end": 38918.48, + "probability": 0.7556 + }, + { + "start": 38920.1, + "end": 38922.56, + "probability": 0.5683 + }, + { + "start": 38924.52, + "end": 38925.54, + "probability": 0.5371 + }, + { + "start": 38927.06, + "end": 38928.03, + "probability": 0.7151 + }, + { + "start": 38929.82, + "end": 38930.94, + "probability": 0.9869 + }, + { + "start": 38931.36, + "end": 38932.02, + "probability": 0.875 + }, + { + "start": 38933.6, + "end": 38938.26, + "probability": 0.9822 + }, + { + "start": 38939.48, + "end": 38943.2, + "probability": 0.88 + }, + { + "start": 38944.42, + "end": 38946.88, + "probability": 0.9666 + }, + { + "start": 38948.54, + "end": 38951.42, + "probability": 0.8469 + }, + { + "start": 38951.46, + "end": 38952.16, + "probability": 0.9497 + }, + { + "start": 38956.06, + "end": 38958.26, + "probability": 0.993 + }, + { + "start": 38959.02, + "end": 38961.74, + "probability": 0.9993 + }, + { + "start": 38961.74, + "end": 38965.7, + "probability": 0.9893 + }, + { + "start": 38967.4, + "end": 38968.57, + "probability": 0.6049 + }, + { + "start": 38970.64, + "end": 38971.94, + "probability": 0.9583 + }, + { + "start": 38973.52, + "end": 38977.08, + "probability": 0.9963 + }, + { + "start": 38978.04, + "end": 38978.82, + "probability": 0.944 + }, + { + "start": 38981.48, + "end": 38983.6, + "probability": 0.9993 + }, + { + "start": 38983.82, + "end": 38988.94, + "probability": 0.997 + }, + { + "start": 38989.92, + "end": 38990.88, + "probability": 0.998 + }, + { + "start": 38992.3, + "end": 38993.34, + "probability": 0.9646 + }, + { + "start": 38995.1, + "end": 38995.52, + "probability": 0.8024 + }, + { + "start": 38996.98, + "end": 38999.64, + "probability": 0.9811 + }, + { + "start": 39000.62, + "end": 39001.0, + "probability": 0.406 + }, + { + "start": 39003.98, + "end": 39006.84, + "probability": 0.9953 + }, + { + "start": 39007.2, + "end": 39008.5, + "probability": 0.7936 + }, + { + "start": 39010.14, + "end": 39012.35, + "probability": 0.9916 + }, + { + "start": 39014.08, + "end": 39015.42, + "probability": 0.9521 + }, + { + "start": 39017.2, + "end": 39018.64, + "probability": 0.9968 + }, + { + "start": 39019.74, + "end": 39020.88, + "probability": 0.9229 + }, + { + "start": 39021.98, + "end": 39022.68, + "probability": 0.6567 + }, + { + "start": 39023.3, + "end": 39027.76, + "probability": 0.9963 + }, + { + "start": 39032.98, + "end": 39037.3, + "probability": 0.9171 + }, + { + "start": 39037.54, + "end": 39038.94, + "probability": 0.5705 + }, + { + "start": 39040.66, + "end": 39043.96, + "probability": 0.8719 + }, + { + "start": 39043.96, + "end": 39046.48, + "probability": 0.8794 + }, + { + "start": 39046.72, + "end": 39047.3, + "probability": 0.6742 + }, + { + "start": 39050.0, + "end": 39050.54, + "probability": 0.7487 + }, + { + "start": 39050.62, + "end": 39051.18, + "probability": 0.7909 + }, + { + "start": 39051.26, + "end": 39052.98, + "probability": 0.9921 + }, + { + "start": 39054.04, + "end": 39058.1, + "probability": 0.8724 + }, + { + "start": 39059.76, + "end": 39060.26, + "probability": 0.9733 + }, + { + "start": 39061.3, + "end": 39062.18, + "probability": 0.6101 + }, + { + "start": 39063.26, + "end": 39063.7, + "probability": 0.9694 + }, + { + "start": 39066.04, + "end": 39067.18, + "probability": 0.9858 + }, + { + "start": 39068.82, + "end": 39069.72, + "probability": 0.9241 + }, + { + "start": 39070.58, + "end": 39073.1, + "probability": 0.996 + }, + { + "start": 39073.78, + "end": 39075.1, + "probability": 0.9993 + }, + { + "start": 39075.7, + "end": 39077.7, + "probability": 0.9482 + }, + { + "start": 39079.88, + "end": 39080.96, + "probability": 0.8085 + }, + { + "start": 39083.36, + "end": 39085.08, + "probability": 0.9961 + }, + { + "start": 39085.68, + "end": 39087.08, + "probability": 0.7454 + }, + { + "start": 39088.76, + "end": 39090.3, + "probability": 0.6146 + }, + { + "start": 39092.3, + "end": 39094.48, + "probability": 0.9143 + }, + { + "start": 39096.32, + "end": 39099.6, + "probability": 0.9943 + }, + { + "start": 39100.54, + "end": 39105.16, + "probability": 0.9368 + }, + { + "start": 39109.32, + "end": 39112.52, + "probability": 0.9966 + }, + { + "start": 39112.9, + "end": 39113.96, + "probability": 0.7878 + }, + { + "start": 39114.1, + "end": 39114.5, + "probability": 0.8067 + }, + { + "start": 39116.04, + "end": 39118.14, + "probability": 0.9303 + }, + { + "start": 39120.02, + "end": 39122.26, + "probability": 0.9824 + }, + { + "start": 39123.34, + "end": 39123.92, + "probability": 0.9371 + }, + { + "start": 39127.36, + "end": 39128.6, + "probability": 0.7767 + }, + { + "start": 39132.62, + "end": 39133.72, + "probability": 0.8773 + }, + { + "start": 39136.32, + "end": 39138.0, + "probability": 0.9697 + }, + { + "start": 39140.68, + "end": 39142.26, + "probability": 0.9774 + }, + { + "start": 39144.68, + "end": 39146.06, + "probability": 0.9832 + }, + { + "start": 39146.16, + "end": 39147.06, + "probability": 0.9819 + }, + { + "start": 39147.16, + "end": 39148.12, + "probability": 0.7535 + }, + { + "start": 39150.36, + "end": 39153.14, + "probability": 0.9731 + }, + { + "start": 39154.18, + "end": 39156.42, + "probability": 0.9839 + }, + { + "start": 39156.48, + "end": 39157.92, + "probability": 0.9447 + }, + { + "start": 39160.28, + "end": 39161.42, + "probability": 0.9395 + }, + { + "start": 39162.42, + "end": 39163.56, + "probability": 0.9818 + }, + { + "start": 39166.0, + "end": 39166.9, + "probability": 0.9813 + }, + { + "start": 39167.0, + "end": 39168.64, + "probability": 0.7954 + }, + { + "start": 39168.76, + "end": 39169.48, + "probability": 0.897 + }, + { + "start": 39170.6, + "end": 39174.38, + "probability": 0.9855 + }, + { + "start": 39175.72, + "end": 39176.76, + "probability": 0.4506 + }, + { + "start": 39177.18, + "end": 39179.14, + "probability": 0.9918 + }, + { + "start": 39179.14, + "end": 39182.4, + "probability": 0.995 + }, + { + "start": 39182.58, + "end": 39182.82, + "probability": 0.402 + }, + { + "start": 39182.88, + "end": 39183.74, + "probability": 0.6191 + }, + { + "start": 39184.82, + "end": 39185.42, + "probability": 0.9205 + }, + { + "start": 39185.58, + "end": 39186.3, + "probability": 0.9759 + }, + { + "start": 39187.36, + "end": 39188.56, + "probability": 0.6912 + }, + { + "start": 39190.04, + "end": 39190.46, + "probability": 0.8083 + }, + { + "start": 39191.58, + "end": 39195.0, + "probability": 0.9396 + }, + { + "start": 39195.42, + "end": 39196.02, + "probability": 0.0031 + }, + { + "start": 39197.24, + "end": 39198.28, + "probability": 0.9697 + }, + { + "start": 39211.66, + "end": 39217.48, + "probability": 0.0279 + }, + { + "start": 39217.74, + "end": 39219.12, + "probability": 0.1039 + }, + { + "start": 39220.12, + "end": 39221.18, + "probability": 0.0713 + }, + { + "start": 39221.18, + "end": 39222.22, + "probability": 0.0745 + }, + { + "start": 39223.1, + "end": 39223.46, + "probability": 0.1262 + }, + { + "start": 39223.46, + "end": 39224.04, + "probability": 0.0044 + }, + { + "start": 39224.14, + "end": 39224.68, + "probability": 0.0346 + }, + { + "start": 39227.3, + "end": 39227.98, + "probability": 0.0676 + }, + { + "start": 39227.98, + "end": 39228.54, + "probability": 0.1255 + }, + { + "start": 39230.22, + "end": 39233.48, + "probability": 0.1306 + }, + { + "start": 39234.74, + "end": 39238.1, + "probability": 0.007 + }, + { + "start": 39238.1, + "end": 39238.72, + "probability": 0.0667 + }, + { + "start": 39239.48, + "end": 39239.9, + "probability": 0.0078 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.0, + "end": 39290.0, + "probability": 0.0 + }, + { + "start": 39290.4, + "end": 39292.3, + "probability": 0.0057 + }, + { + "start": 39298.6, + "end": 39301.08, + "probability": 0.0061 + }, + { + "start": 39301.76, + "end": 39306.16, + "probability": 0.0541 + }, + { + "start": 39306.16, + "end": 39307.28, + "probability": 0.0187 + }, + { + "start": 39307.32, + "end": 39309.66, + "probability": 0.0106 + }, + { + "start": 39317.26, + "end": 39318.86, + "probability": 0.194 + }, + { + "start": 39319.76, + "end": 39319.8, + "probability": 0.2594 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.0, + "end": 39411.0, + "probability": 0.0 + }, + { + "start": 39411.12, + "end": 39411.18, + "probability": 0.0497 + }, + { + "start": 39411.18, + "end": 39411.18, + "probability": 0.0861 + }, + { + "start": 39411.18, + "end": 39411.18, + "probability": 0.0661 + }, + { + "start": 39411.18, + "end": 39411.18, + "probability": 0.0553 + }, + { + "start": 39411.18, + "end": 39411.18, + "probability": 0.0926 + }, + { + "start": 39411.18, + "end": 39411.7, + "probability": 0.0958 + }, + { + "start": 39414.34, + "end": 39414.8, + "probability": 0.7399 + }, + { + "start": 39416.3, + "end": 39417.35, + "probability": 0.7858 + }, + { + "start": 39417.96, + "end": 39420.92, + "probability": 0.5709 + }, + { + "start": 39421.24, + "end": 39422.56, + "probability": 0.9297 + }, + { + "start": 39422.62, + "end": 39423.84, + "probability": 0.999 + }, + { + "start": 39424.72, + "end": 39428.1, + "probability": 0.6527 + }, + { + "start": 39429.62, + "end": 39430.8, + "probability": 0.7216 + }, + { + "start": 39430.88, + "end": 39432.5, + "probability": 0.7508 + }, + { + "start": 39432.6, + "end": 39433.28, + "probability": 0.8297 + }, + { + "start": 39433.94, + "end": 39435.38, + "probability": 0.8332 + }, + { + "start": 39435.46, + "end": 39438.1, + "probability": 0.7984 + }, + { + "start": 39438.52, + "end": 39439.74, + "probability": 0.9525 + }, + { + "start": 39440.48, + "end": 39446.58, + "probability": 0.9167 + }, + { + "start": 39447.28, + "end": 39447.72, + "probability": 0.082 + }, + { + "start": 39447.72, + "end": 39447.79, + "probability": 0.1736 + }, + { + "start": 39449.3, + "end": 39450.38, + "probability": 0.7952 + }, + { + "start": 39451.36, + "end": 39451.86, + "probability": 0.8657 + }, + { + "start": 39452.66, + "end": 39455.42, + "probability": 0.8183 + }, + { + "start": 39456.1, + "end": 39457.32, + "probability": 0.9618 + }, + { + "start": 39458.26, + "end": 39459.54, + "probability": 0.9601 + }, + { + "start": 39460.78, + "end": 39461.86, + "probability": 0.9814 + }, + { + "start": 39461.9, + "end": 39462.73, + "probability": 0.9878 + }, + { + "start": 39463.96, + "end": 39465.26, + "probability": 0.9954 + }, + { + "start": 39466.62, + "end": 39467.36, + "probability": 0.9446 + }, + { + "start": 39468.0, + "end": 39469.22, + "probability": 0.9674 + }, + { + "start": 39469.52, + "end": 39470.44, + "probability": 0.9672 + }, + { + "start": 39470.56, + "end": 39471.42, + "probability": 0.964 + }, + { + "start": 39472.48, + "end": 39474.98, + "probability": 0.8523 + }, + { + "start": 39475.52, + "end": 39477.15, + "probability": 0.7703 + }, + { + "start": 39477.36, + "end": 39478.1, + "probability": 0.8326 + }, + { + "start": 39478.8, + "end": 39479.52, + "probability": 0.7513 + }, + { + "start": 39481.22, + "end": 39481.92, + "probability": 0.8191 + }, + { + "start": 39482.5, + "end": 39483.02, + "probability": 0.9352 + }, + { + "start": 39484.82, + "end": 39486.62, + "probability": 0.8384 + }, + { + "start": 39487.98, + "end": 39488.34, + "probability": 0.7517 + }, + { + "start": 39489.5, + "end": 39490.88, + "probability": 0.9966 + }, + { + "start": 39492.52, + "end": 39495.3, + "probability": 0.981 + }, + { + "start": 39496.24, + "end": 39497.56, + "probability": 0.9692 + }, + { + "start": 39499.74, + "end": 39500.3, + "probability": 0.823 + }, + { + "start": 39503.5, + "end": 39506.22, + "probability": 0.8624 + }, + { + "start": 39507.56, + "end": 39510.52, + "probability": 0.8111 + }, + { + "start": 39510.66, + "end": 39511.62, + "probability": 0.8552 + }, + { + "start": 39511.94, + "end": 39514.86, + "probability": 0.7992 + }, + { + "start": 39516.64, + "end": 39518.58, + "probability": 0.9534 + }, + { + "start": 39519.42, + "end": 39520.44, + "probability": 0.9863 + }, + { + "start": 39521.24, + "end": 39522.38, + "probability": 0.9665 + }, + { + "start": 39522.52, + "end": 39525.46, + "probability": 0.9717 + }, + { + "start": 39525.66, + "end": 39529.7, + "probability": 0.9102 + }, + { + "start": 39529.8, + "end": 39530.88, + "probability": 0.9941 + }, + { + "start": 39531.7, + "end": 39533.35, + "probability": 0.9377 + }, + { + "start": 39533.66, + "end": 39536.22, + "probability": 0.9963 + }, + { + "start": 39537.1, + "end": 39539.26, + "probability": 0.9912 + }, + { + "start": 39540.24, + "end": 39540.76, + "probability": 0.9129 + }, + { + "start": 39541.34, + "end": 39542.32, + "probability": 0.5333 + }, + { + "start": 39542.38, + "end": 39543.1, + "probability": 0.8616 + }, + { + "start": 39543.96, + "end": 39544.63, + "probability": 0.9238 + }, + { + "start": 39545.12, + "end": 39546.86, + "probability": 0.9746 + }, + { + "start": 39547.44, + "end": 39549.34, + "probability": 0.9745 + }, + { + "start": 39550.2, + "end": 39551.16, + "probability": 0.9939 + }, + { + "start": 39552.48, + "end": 39553.22, + "probability": 0.9512 + }, + { + "start": 39554.56, + "end": 39557.2, + "probability": 0.8982 + }, + { + "start": 39557.36, + "end": 39559.0, + "probability": 0.7973 + }, + { + "start": 39560.24, + "end": 39561.2, + "probability": 0.6619 + }, + { + "start": 39562.58, + "end": 39563.76, + "probability": 0.6768 + }, + { + "start": 39564.3, + "end": 39565.2, + "probability": 0.9255 + }, + { + "start": 39565.92, + "end": 39569.26, + "probability": 0.9234 + }, + { + "start": 39569.3, + "end": 39569.64, + "probability": 0.7729 + }, + { + "start": 39569.74, + "end": 39571.86, + "probability": 0.9612 + }, + { + "start": 39573.48, + "end": 39575.78, + "probability": 0.855 + }, + { + "start": 39575.86, + "end": 39576.68, + "probability": 0.9913 + }, + { + "start": 39578.86, + "end": 39580.46, + "probability": 0.9317 + }, + { + "start": 39581.38, + "end": 39583.16, + "probability": 0.9857 + }, + { + "start": 39583.82, + "end": 39585.8, + "probability": 0.9172 + }, + { + "start": 39585.86, + "end": 39587.86, + "probability": 0.7069 + }, + { + "start": 39588.2, + "end": 39589.32, + "probability": 0.7578 + }, + { + "start": 39589.58, + "end": 39591.44, + "probability": 0.9679 + }, + { + "start": 39591.64, + "end": 39592.48, + "probability": 0.8037 + }, + { + "start": 39595.42, + "end": 39597.22, + "probability": 0.9983 + }, + { + "start": 39597.78, + "end": 39599.18, + "probability": 0.9897 + }, + { + "start": 39599.24, + "end": 39601.16, + "probability": 0.6422 + }, + { + "start": 39602.46, + "end": 39604.88, + "probability": 0.9178 + }, + { + "start": 39604.98, + "end": 39606.76, + "probability": 0.9308 + }, + { + "start": 39607.48, + "end": 39609.0, + "probability": 0.9316 + }, + { + "start": 39609.8, + "end": 39612.26, + "probability": 0.9316 + }, + { + "start": 39612.94, + "end": 39614.08, + "probability": 0.9813 + }, + { + "start": 39614.16, + "end": 39615.51, + "probability": 0.8037 + }, + { + "start": 39617.62, + "end": 39620.04, + "probability": 0.7338 + }, + { + "start": 39620.62, + "end": 39622.59, + "probability": 0.6661 + }, + { + "start": 39624.72, + "end": 39627.32, + "probability": 0.9504 + }, + { + "start": 39627.46, + "end": 39629.38, + "probability": 0.959 + }, + { + "start": 39630.16, + "end": 39631.3, + "probability": 0.6903 + }, + { + "start": 39632.16, + "end": 39634.98, + "probability": 0.9321 + }, + { + "start": 39635.78, + "end": 39636.4, + "probability": 0.721 + }, + { + "start": 39639.54, + "end": 39640.52, + "probability": 0.9958 + }, + { + "start": 39641.18, + "end": 39642.68, + "probability": 0.7668 + }, + { + "start": 39643.66, + "end": 39647.1, + "probability": 0.817 + }, + { + "start": 39647.6, + "end": 39649.82, + "probability": 0.7462 + }, + { + "start": 39649.92, + "end": 39653.14, + "probability": 0.8872 + }, + { + "start": 39653.92, + "end": 39654.88, + "probability": 0.8589 + }, + { + "start": 39655.9, + "end": 39656.76, + "probability": 0.5111 + }, + { + "start": 39657.44, + "end": 39658.6, + "probability": 0.8108 + }, + { + "start": 39659.74, + "end": 39662.54, + "probability": 0.9902 + }, + { + "start": 39662.54, + "end": 39666.76, + "probability": 0.9348 + }, + { + "start": 39667.34, + "end": 39671.16, + "probability": 0.7875 + }, + { + "start": 39671.84, + "end": 39672.44, + "probability": 0.9965 + }, + { + "start": 39673.2, + "end": 39673.82, + "probability": 0.8209 + }, + { + "start": 39674.62, + "end": 39674.98, + "probability": 0.5335 + }, + { + "start": 39677.92, + "end": 39681.1, + "probability": 0.5889 + }, + { + "start": 39681.18, + "end": 39681.62, + "probability": 0.4988 + }, + { + "start": 39684.64, + "end": 39686.5, + "probability": 0.9552 + }, + { + "start": 39686.6, + "end": 39688.0, + "probability": 0.8263 + }, + { + "start": 39690.16, + "end": 39691.3, + "probability": 0.7437 + }, + { + "start": 39693.44, + "end": 39693.92, + "probability": 0.894 + }, + { + "start": 39695.9, + "end": 39698.02, + "probability": 0.8364 + }, + { + "start": 39699.16, + "end": 39700.74, + "probability": 0.8745 + }, + { + "start": 39701.42, + "end": 39704.18, + "probability": 0.9836 + }, + { + "start": 39705.42, + "end": 39706.78, + "probability": 0.9421 + }, + { + "start": 39708.44, + "end": 39712.7, + "probability": 0.9855 + }, + { + "start": 39715.34, + "end": 39719.11, + "probability": 0.9968 + }, + { + "start": 39719.7, + "end": 39720.66, + "probability": 0.9437 + }, + { + "start": 39721.56, + "end": 39723.1, + "probability": 0.9919 + }, + { + "start": 39723.24, + "end": 39723.54, + "probability": 0.8058 + }, + { + "start": 39724.06, + "end": 39725.37, + "probability": 0.6155 + }, + { + "start": 39729.54, + "end": 39730.98, + "probability": 0.8658 + }, + { + "start": 39731.6, + "end": 39732.28, + "probability": 0.8556 + }, + { + "start": 39735.44, + "end": 39738.01, + "probability": 0.8311 + }, + { + "start": 39740.4, + "end": 39741.46, + "probability": 0.6826 + }, + { + "start": 39741.46, + "end": 39742.12, + "probability": 0.4039 + }, + { + "start": 39759.5, + "end": 39760.5, + "probability": 0.3057 + }, + { + "start": 39762.52, + "end": 39765.64, + "probability": 0.8052 + }, + { + "start": 39767.28, + "end": 39767.66, + "probability": 0.9447 + }, + { + "start": 39769.14, + "end": 39770.18, + "probability": 0.8299 + }, + { + "start": 39770.32, + "end": 39772.22, + "probability": 0.9967 + }, + { + "start": 39773.69, + "end": 39776.36, + "probability": 0.953 + }, + { + "start": 39777.02, + "end": 39777.54, + "probability": 0.762 + }, + { + "start": 39779.28, + "end": 39779.86, + "probability": 0.6794 + }, + { + "start": 39780.94, + "end": 39783.24, + "probability": 0.9827 + }, + { + "start": 39784.0, + "end": 39786.53, + "probability": 0.9905 + }, + { + "start": 39787.58, + "end": 39788.7, + "probability": 0.9648 + }, + { + "start": 39788.8, + "end": 39791.26, + "probability": 0.9824 + }, + { + "start": 39791.52, + "end": 39792.98, + "probability": 0.682 + }, + { + "start": 39793.02, + "end": 39793.46, + "probability": 0.739 + }, + { + "start": 39793.62, + "end": 39794.56, + "probability": 0.8179 + }, + { + "start": 39795.68, + "end": 39797.24, + "probability": 0.9907 + }, + { + "start": 39797.38, + "end": 39798.82, + "probability": 0.8464 + }, + { + "start": 39798.82, + "end": 39800.32, + "probability": 0.9272 + }, + { + "start": 39800.4, + "end": 39800.5, + "probability": 0.7898 + }, + { + "start": 39800.56, + "end": 39801.82, + "probability": 0.7113 + }, + { + "start": 39802.9, + "end": 39804.2, + "probability": 0.9834 + }, + { + "start": 39804.62, + "end": 39804.96, + "probability": 0.5022 + }, + { + "start": 39805.56, + "end": 39807.98, + "probability": 0.9478 + }, + { + "start": 39808.1, + "end": 39809.51, + "probability": 0.9697 + }, + { + "start": 39809.78, + "end": 39810.8, + "probability": 0.989 + }, + { + "start": 39812.42, + "end": 39813.36, + "probability": 0.7673 + }, + { + "start": 39814.26, + "end": 39815.96, + "probability": 0.7539 + }, + { + "start": 39817.18, + "end": 39821.04, + "probability": 0.9858 + }, + { + "start": 39821.2, + "end": 39821.62, + "probability": 0.9197 + }, + { + "start": 39821.88, + "end": 39822.34, + "probability": 0.7368 + }, + { + "start": 39823.52, + "end": 39824.18, + "probability": 0.9584 + }, + { + "start": 39825.04, + "end": 39826.34, + "probability": 0.9692 + }, + { + "start": 39827.2, + "end": 39827.85, + "probability": 0.6788 + }, + { + "start": 39828.88, + "end": 39829.42, + "probability": 0.7042 + }, + { + "start": 39829.44, + "end": 39831.86, + "probability": 0.9954 + }, + { + "start": 39832.38, + "end": 39833.42, + "probability": 0.9188 + }, + { + "start": 39833.94, + "end": 39835.94, + "probability": 0.9258 + }, + { + "start": 39837.14, + "end": 39840.12, + "probability": 0.9608 + }, + { + "start": 39840.82, + "end": 39845.54, + "probability": 0.9941 + }, + { + "start": 39846.24, + "end": 39849.5, + "probability": 0.9934 + }, + { + "start": 39850.56, + "end": 39851.72, + "probability": 0.7696 + }, + { + "start": 39851.82, + "end": 39854.4, + "probability": 0.9617 + }, + { + "start": 39855.28, + "end": 39858.02, + "probability": 0.9971 + }, + { + "start": 39858.24, + "end": 39861.36, + "probability": 0.9178 + }, + { + "start": 39862.36, + "end": 39863.0, + "probability": 0.9961 + }, + { + "start": 39863.6, + "end": 39865.25, + "probability": 0.9868 + }, + { + "start": 39866.32, + "end": 39869.52, + "probability": 0.4795 + }, + { + "start": 39871.38, + "end": 39873.78, + "probability": 0.9155 + }, + { + "start": 39874.84, + "end": 39876.02, + "probability": 0.9866 + }, + { + "start": 39876.72, + "end": 39877.36, + "probability": 0.8444 + }, + { + "start": 39878.28, + "end": 39882.26, + "probability": 0.9777 + }, + { + "start": 39883.06, + "end": 39885.46, + "probability": 0.972 + }, + { + "start": 39886.1, + "end": 39888.06, + "probability": 0.9994 + }, + { + "start": 39889.0, + "end": 39889.6, + "probability": 0.7491 + }, + { + "start": 39889.74, + "end": 39890.32, + "probability": 0.6957 + }, + { + "start": 39891.18, + "end": 39893.38, + "probability": 0.985 + }, + { + "start": 39894.52, + "end": 39898.6, + "probability": 0.96 + }, + { + "start": 39898.72, + "end": 39899.3, + "probability": 0.9924 + }, + { + "start": 39901.78, + "end": 39903.46, + "probability": 0.8191 + }, + { + "start": 39904.96, + "end": 39906.6, + "probability": 0.9731 + }, + { + "start": 39907.62, + "end": 39909.56, + "probability": 0.9916 + }, + { + "start": 39910.9, + "end": 39912.0, + "probability": 0.9722 + }, + { + "start": 39912.94, + "end": 39915.1, + "probability": 0.999 + }, + { + "start": 39916.26, + "end": 39916.9, + "probability": 0.9241 + }, + { + "start": 39920.16, + "end": 39921.2, + "probability": 0.863 + }, + { + "start": 39922.14, + "end": 39923.72, + "probability": 0.6244 + }, + { + "start": 39924.48, + "end": 39928.14, + "probability": 0.1782 + }, + { + "start": 39928.72, + "end": 39930.64, + "probability": 0.6513 + }, + { + "start": 39930.8, + "end": 39930.88, + "probability": 0.5724 + }, + { + "start": 39931.06, + "end": 39931.32, + "probability": 0.297 + }, + { + "start": 39931.34, + "end": 39933.68, + "probability": 0.9385 + }, + { + "start": 39933.96, + "end": 39934.83, + "probability": 0.5775 + }, + { + "start": 39936.63, + "end": 39942.7, + "probability": 0.9868 + }, + { + "start": 39943.78, + "end": 39945.24, + "probability": 0.6174 + }, + { + "start": 39946.48, + "end": 39948.34, + "probability": 0.9963 + }, + { + "start": 39949.02, + "end": 39949.8, + "probability": 0.7705 + }, + { + "start": 39949.88, + "end": 39953.84, + "probability": 0.9723 + }, + { + "start": 39955.12, + "end": 39956.72, + "probability": 0.8981 + }, + { + "start": 39956.88, + "end": 39959.34, + "probability": 0.8785 + }, + { + "start": 39960.3, + "end": 39961.74, + "probability": 0.9529 + }, + { + "start": 39962.66, + "end": 39964.04, + "probability": 0.9861 + }, + { + "start": 39964.68, + "end": 39965.56, + "probability": 0.9089 + }, + { + "start": 39966.06, + "end": 39972.58, + "probability": 0.8676 + }, + { + "start": 39973.84, + "end": 39975.66, + "probability": 0.5218 + }, + { + "start": 39975.84, + "end": 39976.16, + "probability": 0.8588 + }, + { + "start": 39976.3, + "end": 39976.92, + "probability": 0.4711 + }, + { + "start": 39977.06, + "end": 39978.58, + "probability": 0.9663 + }, + { + "start": 39978.72, + "end": 39979.3, + "probability": 0.6711 + }, + { + "start": 39979.8, + "end": 39980.66, + "probability": 0.7076 + }, + { + "start": 39981.3, + "end": 39984.32, + "probability": 0.9287 + }, + { + "start": 39985.42, + "end": 39985.72, + "probability": 0.8339 + }, + { + "start": 39986.22, + "end": 39988.0, + "probability": 0.3189 + }, + { + "start": 39988.56, + "end": 39989.86, + "probability": 0.9976 + }, + { + "start": 39989.98, + "end": 39992.46, + "probability": 0.9925 + }, + { + "start": 39992.56, + "end": 39993.96, + "probability": 0.4646 + }, + { + "start": 39994.58, + "end": 39995.92, + "probability": 0.9789 + }, + { + "start": 39996.66, + "end": 39999.1, + "probability": 0.8817 + }, + { + "start": 39999.68, + "end": 40002.08, + "probability": 0.8127 + }, + { + "start": 40002.86, + "end": 40003.96, + "probability": 0.9946 + }, + { + "start": 40004.36, + "end": 40005.19, + "probability": 0.9232 + }, + { + "start": 40005.56, + "end": 40006.26, + "probability": 0.9568 + }, + { + "start": 40006.46, + "end": 40008.76, + "probability": 0.0123 + }, + { + "start": 40009.5, + "end": 40010.29, + "probability": 0.6579 + }, + { + "start": 40011.44, + "end": 40015.0, + "probability": 0.9683 + }, + { + "start": 40016.14, + "end": 40016.42, + "probability": 0.0389 + }, + { + "start": 40016.42, + "end": 40017.04, + "probability": 0.6869 + }, + { + "start": 40017.18, + "end": 40017.62, + "probability": 0.8928 + }, + { + "start": 40017.7, + "end": 40018.64, + "probability": 0.8911 + }, + { + "start": 40018.68, + "end": 40019.36, + "probability": 0.8952 + }, + { + "start": 40019.72, + "end": 40020.88, + "probability": 0.9968 + }, + { + "start": 40021.52, + "end": 40021.91, + "probability": 0.9776 + }, + { + "start": 40023.26, + "end": 40024.26, + "probability": 0.8255 + }, + { + "start": 40024.36, + "end": 40024.94, + "probability": 0.5691 + }, + { + "start": 40025.14, + "end": 40026.08, + "probability": 0.9013 + }, + { + "start": 40026.3, + "end": 40027.17, + "probability": 0.9082 + }, + { + "start": 40027.26, + "end": 40027.68, + "probability": 0.1969 + }, + { + "start": 40028.66, + "end": 40030.02, + "probability": 0.8418 + }, + { + "start": 40030.12, + "end": 40031.44, + "probability": 0.6635 + }, + { + "start": 40032.36, + "end": 40032.78, + "probability": 0.7212 + }, + { + "start": 40033.32, + "end": 40033.32, + "probability": 0.6799 + }, + { + "start": 40033.46, + "end": 40035.96, + "probability": 0.62 + }, + { + "start": 40036.1, + "end": 40037.08, + "probability": 0.776 + }, + { + "start": 40038.02, + "end": 40039.52, + "probability": 0.9678 + }, + { + "start": 40040.12, + "end": 40041.54, + "probability": 0.5259 + }, + { + "start": 40042.24, + "end": 40045.46, + "probability": 0.992 + }, + { + "start": 40045.56, + "end": 40046.08, + "probability": 0.8604 + }, + { + "start": 40048.59, + "end": 40049.68, + "probability": 0.589 + }, + { + "start": 40049.8, + "end": 40050.64, + "probability": 0.9308 + }, + { + "start": 40050.88, + "end": 40051.57, + "probability": 0.9023 + }, + { + "start": 40051.74, + "end": 40052.48, + "probability": 0.9979 + }, + { + "start": 40053.16, + "end": 40054.85, + "probability": 0.9917 + }, + { + "start": 40055.72, + "end": 40058.78, + "probability": 0.9912 + }, + { + "start": 40060.36, + "end": 40060.58, + "probability": 0.9728 + }, + { + "start": 40061.46, + "end": 40063.34, + "probability": 0.8083 + }, + { + "start": 40064.54, + "end": 40065.26, + "probability": 0.7764 + }, + { + "start": 40066.58, + "end": 40068.0, + "probability": 0.9773 + }, + { + "start": 40068.12, + "end": 40068.76, + "probability": 0.9351 + }, + { + "start": 40068.84, + "end": 40070.62, + "probability": 0.9689 + }, + { + "start": 40070.68, + "end": 40073.42, + "probability": 0.999 + }, + { + "start": 40073.96, + "end": 40075.16, + "probability": 0.7544 + }, + { + "start": 40075.92, + "end": 40078.32, + "probability": 0.9979 + }, + { + "start": 40079.4, + "end": 40080.94, + "probability": 0.8112 + }, + { + "start": 40081.0, + "end": 40082.18, + "probability": 0.8434 + }, + { + "start": 40083.5, + "end": 40084.44, + "probability": 0.9828 + }, + { + "start": 40085.26, + "end": 40085.78, + "probability": 0.4964 + }, + { + "start": 40087.22, + "end": 40088.26, + "probability": 0.9162 + }, + { + "start": 40088.72, + "end": 40089.68, + "probability": 0.9603 + }, + { + "start": 40089.74, + "end": 40091.88, + "probability": 0.9501 + }, + { + "start": 40092.22, + "end": 40093.0, + "probability": 0.9774 + }, + { + "start": 40093.84, + "end": 40095.42, + "probability": 0.9951 + }, + { + "start": 40095.48, + "end": 40097.4, + "probability": 0.9888 + }, + { + "start": 40098.2, + "end": 40099.72, + "probability": 0.8625 + }, + { + "start": 40100.9, + "end": 40105.54, + "probability": 0.9207 + }, + { + "start": 40107.36, + "end": 40111.94, + "probability": 0.9162 + }, + { + "start": 40112.96, + "end": 40115.06, + "probability": 0.7269 + }, + { + "start": 40115.06, + "end": 40116.82, + "probability": 0.9077 + }, + { + "start": 40117.5, + "end": 40120.44, + "probability": 0.8114 + }, + { + "start": 40121.18, + "end": 40122.2, + "probability": 0.8252 + }, + { + "start": 40122.92, + "end": 40125.38, + "probability": 0.9541 + }, + { + "start": 40126.72, + "end": 40127.98, + "probability": 0.9971 + }, + { + "start": 40128.12, + "end": 40130.18, + "probability": 0.9898 + }, + { + "start": 40132.44, + "end": 40136.94, + "probability": 0.9873 + }, + { + "start": 40137.04, + "end": 40139.4, + "probability": 0.9884 + }, + { + "start": 40139.94, + "end": 40140.97, + "probability": 0.9995 + }, + { + "start": 40141.7, + "end": 40142.44, + "probability": 0.9732 + }, + { + "start": 40143.26, + "end": 40144.16, + "probability": 0.737 + }, + { + "start": 40144.72, + "end": 40147.92, + "probability": 0.9959 + }, + { + "start": 40148.96, + "end": 40149.92, + "probability": 0.6019 + }, + { + "start": 40153.29, + "end": 40155.66, + "probability": 0.9919 + }, + { + "start": 40155.66, + "end": 40158.24, + "probability": 0.9648 + }, + { + "start": 40159.34, + "end": 40160.38, + "probability": 0.7941 + }, + { + "start": 40160.84, + "end": 40161.26, + "probability": 0.9842 + }, + { + "start": 40162.0, + "end": 40162.35, + "probability": 0.979 + }, + { + "start": 40163.22, + "end": 40164.17, + "probability": 0.7315 + }, + { + "start": 40164.28, + "end": 40166.0, + "probability": 0.9452 + }, + { + "start": 40166.12, + "end": 40166.82, + "probability": 0.6288 + }, + { + "start": 40167.68, + "end": 40169.94, + "probability": 0.9929 + }, + { + "start": 40169.94, + "end": 40172.46, + "probability": 0.9766 + }, + { + "start": 40172.92, + "end": 40175.19, + "probability": 0.7726 + }, + { + "start": 40175.7, + "end": 40176.44, + "probability": 0.9674 + }, + { + "start": 40177.72, + "end": 40181.38, + "probability": 0.958 + }, + { + "start": 40181.5, + "end": 40181.96, + "probability": 0.6003 + }, + { + "start": 40182.0, + "end": 40182.48, + "probability": 0.7078 + }, + { + "start": 40182.72, + "end": 40187.54, + "probability": 0.8019 + }, + { + "start": 40187.64, + "end": 40189.28, + "probability": 0.9877 + }, + { + "start": 40189.9, + "end": 40192.29, + "probability": 0.9985 + }, + { + "start": 40192.5, + "end": 40193.24, + "probability": 0.9585 + }, + { + "start": 40194.18, + "end": 40196.92, + "probability": 0.9897 + }, + { + "start": 40197.72, + "end": 40198.68, + "probability": 0.9905 + }, + { + "start": 40199.26, + "end": 40200.26, + "probability": 0.9891 + }, + { + "start": 40200.42, + "end": 40202.52, + "probability": 0.9816 + }, + { + "start": 40203.08, + "end": 40203.82, + "probability": 0.4467 + }, + { + "start": 40204.38, + "end": 40205.73, + "probability": 0.904 + }, + { + "start": 40206.44, + "end": 40208.66, + "probability": 0.8496 + }, + { + "start": 40210.81, + "end": 40213.24, + "probability": 0.7318 + }, + { + "start": 40213.98, + "end": 40217.3, + "probability": 0.9836 + }, + { + "start": 40217.66, + "end": 40219.28, + "probability": 0.9756 + }, + { + "start": 40219.62, + "end": 40220.78, + "probability": 0.8125 + }, + { + "start": 40222.16, + "end": 40224.16, + "probability": 0.9826 + }, + { + "start": 40224.24, + "end": 40224.95, + "probability": 0.3947 + }, + { + "start": 40225.54, + "end": 40228.08, + "probability": 0.7639 + }, + { + "start": 40228.16, + "end": 40229.02, + "probability": 0.8161 + }, + { + "start": 40229.4, + "end": 40229.98, + "probability": 0.1978 + }, + { + "start": 40230.42, + "end": 40231.36, + "probability": 0.8677 + }, + { + "start": 40231.6, + "end": 40233.48, + "probability": 0.8323 + }, + { + "start": 40233.82, + "end": 40235.64, + "probability": 0.467 + }, + { + "start": 40235.74, + "end": 40236.38, + "probability": 0.218 + }, + { + "start": 40236.48, + "end": 40236.58, + "probability": 0.0509 + }, + { + "start": 40237.14, + "end": 40237.26, + "probability": 0.0783 + }, + { + "start": 40237.26, + "end": 40237.34, + "probability": 0.0144 + }, + { + "start": 40237.34, + "end": 40237.7, + "probability": 0.1359 + }, + { + "start": 40237.76, + "end": 40238.82, + "probability": 0.6818 + }, + { + "start": 40239.5, + "end": 40240.89, + "probability": 0.7254 + }, + { + "start": 40241.24, + "end": 40241.86, + "probability": 0.5084 + }, + { + "start": 40242.06, + "end": 40242.94, + "probability": 0.9116 + }, + { + "start": 40245.14, + "end": 40248.34, + "probability": 0.1572 + }, + { + "start": 40249.16, + "end": 40250.1, + "probability": 0.5041 + }, + { + "start": 40250.24, + "end": 40251.38, + "probability": 0.6282 + }, + { + "start": 40252.04, + "end": 40256.06, + "probability": 0.871 + }, + { + "start": 40257.7, + "end": 40260.68, + "probability": 0.978 + }, + { + "start": 40262.05, + "end": 40263.88, + "probability": 0.7414 + }, + { + "start": 40263.94, + "end": 40264.94, + "probability": 0.721 + }, + { + "start": 40266.02, + "end": 40268.06, + "probability": 0.9863 + }, + { + "start": 40268.42, + "end": 40269.22, + "probability": 0.6061 + }, + { + "start": 40270.82, + "end": 40273.84, + "probability": 0.9897 + }, + { + "start": 40275.12, + "end": 40280.02, + "probability": 0.9953 + }, + { + "start": 40280.02, + "end": 40284.8, + "probability": 0.9971 + }, + { + "start": 40284.84, + "end": 40285.24, + "probability": 0.5334 + }, + { + "start": 40285.32, + "end": 40285.72, + "probability": 0.9873 + }, + { + "start": 40286.3, + "end": 40288.9, + "probability": 0.9925 + }, + { + "start": 40289.0, + "end": 40290.5, + "probability": 0.8117 + }, + { + "start": 40291.32, + "end": 40292.24, + "probability": 0.7502 + }, + { + "start": 40292.94, + "end": 40294.02, + "probability": 0.6007 + }, + { + "start": 40294.56, + "end": 40296.98, + "probability": 0.7908 + }, + { + "start": 40298.42, + "end": 40301.42, + "probability": 0.7792 + }, + { + "start": 40301.48, + "end": 40303.18, + "probability": 0.973 + }, + { + "start": 40304.72, + "end": 40308.34, + "probability": 0.9644 + }, + { + "start": 40309.96, + "end": 40311.48, + "probability": 0.9827 + }, + { + "start": 40312.76, + "end": 40314.24, + "probability": 0.7786 + }, + { + "start": 40315.1, + "end": 40318.7, + "probability": 0.8145 + }, + { + "start": 40319.74, + "end": 40320.66, + "probability": 0.6982 + }, + { + "start": 40321.3, + "end": 40325.26, + "probability": 0.9899 + }, + { + "start": 40326.66, + "end": 40327.12, + "probability": 0.7863 + }, + { + "start": 40329.88, + "end": 40332.72, + "probability": 0.9824 + }, + { + "start": 40333.1, + "end": 40334.08, + "probability": 0.9862 + }, + { + "start": 40335.04, + "end": 40339.18, + "probability": 0.9792 + }, + { + "start": 40341.42, + "end": 40345.8, + "probability": 0.5147 + }, + { + "start": 40348.76, + "end": 40348.76, + "probability": 0.0789 + }, + { + "start": 40348.76, + "end": 40351.68, + "probability": 0.984 + }, + { + "start": 40352.48, + "end": 40354.94, + "probability": 0.9931 + }, + { + "start": 40355.5, + "end": 40358.52, + "probability": 0.9236 + }, + { + "start": 40360.0, + "end": 40365.04, + "probability": 0.9757 + }, + { + "start": 40366.08, + "end": 40367.46, + "probability": 0.9797 + }, + { + "start": 40368.1, + "end": 40369.08, + "probability": 0.9951 + }, + { + "start": 40369.14, + "end": 40370.02, + "probability": 0.8797 + }, + { + "start": 40370.16, + "end": 40370.82, + "probability": 0.9276 + }, + { + "start": 40371.6, + "end": 40371.98, + "probability": 0.9341 + }, + { + "start": 40373.14, + "end": 40374.86, + "probability": 0.9773 + }, + { + "start": 40375.7, + "end": 40377.1, + "probability": 0.9921 + }, + { + "start": 40377.68, + "end": 40378.44, + "probability": 0.6367 + }, + { + "start": 40378.5, + "end": 40379.64, + "probability": 0.925 + }, + { + "start": 40380.0, + "end": 40380.64, + "probability": 0.7249 + }, + { + "start": 40380.72, + "end": 40381.12, + "probability": 0.8289 + }, + { + "start": 40381.32, + "end": 40381.89, + "probability": 0.9654 + }, + { + "start": 40383.16, + "end": 40383.92, + "probability": 0.8789 + }, + { + "start": 40384.62, + "end": 40390.18, + "probability": 0.9605 + }, + { + "start": 40390.72, + "end": 40391.74, + "probability": 0.9411 + }, + { + "start": 40392.16, + "end": 40395.04, + "probability": 0.6862 + }, + { + "start": 40395.04, + "end": 40398.2, + "probability": 0.9538 + }, + { + "start": 40399.12, + "end": 40401.8, + "probability": 0.3996 + }, + { + "start": 40401.84, + "end": 40401.84, + "probability": 0.4232 + }, + { + "start": 40401.92, + "end": 40402.68, + "probability": 0.7795 + }, + { + "start": 40402.78, + "end": 40404.9, + "probability": 0.7974 + }, + { + "start": 40405.46, + "end": 40406.5, + "probability": 0.9241 + }, + { + "start": 40408.13, + "end": 40409.46, + "probability": 0.5256 + }, + { + "start": 40409.46, + "end": 40411.07, + "probability": 0.4917 + }, + { + "start": 40411.16, + "end": 40412.6, + "probability": 0.7283 + }, + { + "start": 40412.88, + "end": 40415.32, + "probability": 0.847 + }, + { + "start": 40415.5, + "end": 40416.06, + "probability": 0.8816 + }, + { + "start": 40416.1, + "end": 40416.6, + "probability": 0.6083 + }, + { + "start": 40417.28, + "end": 40420.34, + "probability": 0.9766 + }, + { + "start": 40420.42, + "end": 40425.74, + "probability": 0.9778 + }, + { + "start": 40426.94, + "end": 40429.66, + "probability": 0.9268 + }, + { + "start": 40429.98, + "end": 40430.62, + "probability": 0.8743 + }, + { + "start": 40430.68, + "end": 40432.15, + "probability": 0.7379 + }, + { + "start": 40432.9, + "end": 40433.42, + "probability": 0.7751 + }, + { + "start": 40434.34, + "end": 40435.16, + "probability": 0.5576 + }, + { + "start": 40435.2, + "end": 40435.91, + "probability": 0.8699 + }, + { + "start": 40436.02, + "end": 40436.54, + "probability": 0.3555 + }, + { + "start": 40436.58, + "end": 40437.1, + "probability": 0.9146 + }, + { + "start": 40437.72, + "end": 40439.63, + "probability": 0.9388 + }, + { + "start": 40440.26, + "end": 40440.84, + "probability": 0.759 + }, + { + "start": 40441.98, + "end": 40442.24, + "probability": 0.8335 + }, + { + "start": 40442.24, + "end": 40443.06, + "probability": 0.9316 + }, + { + "start": 40443.14, + "end": 40445.12, + "probability": 0.9987 + }, + { + "start": 40446.12, + "end": 40449.7, + "probability": 0.659 + }, + { + "start": 40449.88, + "end": 40451.86, + "probability": 0.9939 + }, + { + "start": 40452.22, + "end": 40452.98, + "probability": 0.7802 + }, + { + "start": 40453.9, + "end": 40456.91, + "probability": 0.988 + }, + { + "start": 40457.14, + "end": 40457.95, + "probability": 0.7959 + }, + { + "start": 40458.84, + "end": 40459.16, + "probability": 0.4226 + }, + { + "start": 40460.64, + "end": 40462.17, + "probability": 0.9326 + }, + { + "start": 40465.11, + "end": 40467.4, + "probability": 0.9919 + }, + { + "start": 40467.48, + "end": 40472.24, + "probability": 0.9844 + }, + { + "start": 40472.3, + "end": 40474.3, + "probability": 0.8053 + }, + { + "start": 40474.88, + "end": 40477.1, + "probability": 0.7768 + }, + { + "start": 40477.2, + "end": 40478.06, + "probability": 0.6319 + }, + { + "start": 40478.86, + "end": 40480.84, + "probability": 0.8571 + }, + { + "start": 40481.8, + "end": 40483.42, + "probability": 0.496 + }, + { + "start": 40483.52, + "end": 40485.3, + "probability": 0.9871 + }, + { + "start": 40485.5, + "end": 40486.78, + "probability": 0.5979 + }, + { + "start": 40487.18, + "end": 40487.96, + "probability": 0.7687 + }, + { + "start": 40488.76, + "end": 40490.18, + "probability": 0.9725 + }, + { + "start": 40490.28, + "end": 40491.74, + "probability": 0.8433 + }, + { + "start": 40491.84, + "end": 40492.75, + "probability": 0.9971 + }, + { + "start": 40493.64, + "end": 40496.1, + "probability": 0.9915 + }, + { + "start": 40496.82, + "end": 40498.94, + "probability": 0.985 + }, + { + "start": 40499.94, + "end": 40507.58, + "probability": 0.8158 + }, + { + "start": 40507.58, + "end": 40512.78, + "probability": 0.9995 + }, + { + "start": 40514.82, + "end": 40515.68, + "probability": 0.5561 + }, + { + "start": 40516.42, + "end": 40517.58, + "probability": 0.953 + }, + { + "start": 40518.02, + "end": 40519.14, + "probability": 0.8559 + }, + { + "start": 40519.28, + "end": 40519.8, + "probability": 0.746 + }, + { + "start": 40519.92, + "end": 40522.12, + "probability": 0.6384 + }, + { + "start": 40522.24, + "end": 40522.6, + "probability": 0.895 + }, + { + "start": 40522.84, + "end": 40525.04, + "probability": 0.8582 + }, + { + "start": 40525.84, + "end": 40529.3, + "probability": 0.9919 + }, + { + "start": 40530.04, + "end": 40531.88, + "probability": 0.9014 + }, + { + "start": 40532.8, + "end": 40533.22, + "probability": 0.8256 + }, + { + "start": 40534.02, + "end": 40536.94, + "probability": 0.9571 + }, + { + "start": 40537.18, + "end": 40538.0, + "probability": 0.8511 + }, + { + "start": 40538.56, + "end": 40541.08, + "probability": 0.9714 + }, + { + "start": 40541.7, + "end": 40543.62, + "probability": 0.9458 + }, + { + "start": 40544.14, + "end": 40545.16, + "probability": 0.629 + }, + { + "start": 40546.26, + "end": 40549.64, + "probability": 0.5424 + }, + { + "start": 40549.7, + "end": 40550.93, + "probability": 0.7158 + }, + { + "start": 40551.62, + "end": 40552.24, + "probability": 0.9663 + }, + { + "start": 40553.36, + "end": 40557.08, + "probability": 0.8197 + }, + { + "start": 40557.64, + "end": 40559.16, + "probability": 0.731 + }, + { + "start": 40559.44, + "end": 40561.32, + "probability": 0.7562 + }, + { + "start": 40563.06, + "end": 40563.64, + "probability": 0.6396 + }, + { + "start": 40565.0, + "end": 40569.4, + "probability": 0.7144 + }, + { + "start": 40569.96, + "end": 40571.56, + "probability": 0.9966 + }, + { + "start": 40571.98, + "end": 40574.1, + "probability": 0.875 + }, + { + "start": 40575.38, + "end": 40578.32, + "probability": 0.9611 + }, + { + "start": 40578.96, + "end": 40581.08, + "probability": 0.9144 + }, + { + "start": 40581.62, + "end": 40583.64, + "probability": 0.673 + }, + { + "start": 40584.92, + "end": 40590.28, + "probability": 0.9854 + }, + { + "start": 40590.96, + "end": 40592.54, + "probability": 0.9834 + }, + { + "start": 40592.88, + "end": 40593.91, + "probability": 0.8247 + }, + { + "start": 40594.5, + "end": 40595.62, + "probability": 0.6667 + }, + { + "start": 40597.37, + "end": 40598.82, + "probability": 0.6718 + }, + { + "start": 40600.0, + "end": 40602.08, + "probability": 0.985 + }, + { + "start": 40602.36, + "end": 40603.64, + "probability": 0.7797 + }, + { + "start": 40603.7, + "end": 40604.96, + "probability": 0.9453 + }, + { + "start": 40605.64, + "end": 40608.06, + "probability": 0.9792 + }, + { + "start": 40608.8, + "end": 40610.54, + "probability": 0.9771 + }, + { + "start": 40611.68, + "end": 40612.32, + "probability": 0.7495 + }, + { + "start": 40612.92, + "end": 40612.92, + "probability": 0.6749 + }, + { + "start": 40613.22, + "end": 40616.48, + "probability": 0.9891 + }, + { + "start": 40616.68, + "end": 40617.48, + "probability": 0.7373 + }, + { + "start": 40618.18, + "end": 40620.46, + "probability": 0.9709 + }, + { + "start": 40621.56, + "end": 40623.46, + "probability": 0.998 + }, + { + "start": 40624.42, + "end": 40625.92, + "probability": 0.8877 + }, + { + "start": 40626.58, + "end": 40627.88, + "probability": 0.9234 + }, + { + "start": 40628.52, + "end": 40631.38, + "probability": 0.8952 + }, + { + "start": 40632.18, + "end": 40637.08, + "probability": 0.9189 + }, + { + "start": 40637.98, + "end": 40640.62, + "probability": 0.9922 + }, + { + "start": 40640.96, + "end": 40642.48, + "probability": 0.7548 + }, + { + "start": 40643.28, + "end": 40644.38, + "probability": 0.9403 + }, + { + "start": 40644.64, + "end": 40645.32, + "probability": 0.9017 + }, + { + "start": 40645.42, + "end": 40645.72, + "probability": 0.3827 + }, + { + "start": 40646.36, + "end": 40649.16, + "probability": 0.8743 + }, + { + "start": 40649.26, + "end": 40650.42, + "probability": 0.93 + }, + { + "start": 40650.84, + "end": 40653.22, + "probability": 0.7946 + }, + { + "start": 40654.43, + "end": 40657.2, + "probability": 0.9407 + }, + { + "start": 40657.2, + "end": 40661.08, + "probability": 0.9938 + }, + { + "start": 40662.62, + "end": 40663.82, + "probability": 0.9259 + }, + { + "start": 40664.1, + "end": 40666.7, + "probability": 0.8357 + }, + { + "start": 40667.12, + "end": 40669.74, + "probability": 0.8999 + }, + { + "start": 40671.12, + "end": 40672.68, + "probability": 0.8603 + }, + { + "start": 40673.7, + "end": 40675.0, + "probability": 0.9329 + }, + { + "start": 40675.7, + "end": 40678.02, + "probability": 0.8887 + }, + { + "start": 40678.54, + "end": 40680.12, + "probability": 0.8857 + }, + { + "start": 40681.1, + "end": 40683.02, + "probability": 0.9144 + }, + { + "start": 40685.61, + "end": 40687.56, + "probability": 0.8671 + }, + { + "start": 40687.72, + "end": 40688.6, + "probability": 0.9967 + }, + { + "start": 40688.7, + "end": 40689.4, + "probability": 0.6161 + }, + { + "start": 40689.4, + "end": 40691.38, + "probability": 0.1933 + }, + { + "start": 40691.8, + "end": 40693.36, + "probability": 0.1459 + }, + { + "start": 40693.68, + "end": 40697.38, + "probability": 0.6578 + }, + { + "start": 40697.5, + "end": 40697.74, + "probability": 0.7688 + }, + { + "start": 40697.88, + "end": 40698.6, + "probability": 0.8734 + }, + { + "start": 40698.64, + "end": 40699.98, + "probability": 0.8687 + }, + { + "start": 40700.42, + "end": 40701.78, + "probability": 0.9784 + }, + { + "start": 40702.5, + "end": 40703.46, + "probability": 0.558 + }, + { + "start": 40704.5, + "end": 40706.9, + "probability": 0.9692 + }, + { + "start": 40710.05, + "end": 40712.06, + "probability": 0.9946 + }, + { + "start": 40712.28, + "end": 40713.92, + "probability": 0.8999 + }, + { + "start": 40714.52, + "end": 40716.3, + "probability": 0.9572 + }, + { + "start": 40717.24, + "end": 40717.63, + "probability": 0.684 + }, + { + "start": 40718.4, + "end": 40718.86, + "probability": 0.6766 + }, + { + "start": 40719.02, + "end": 40719.32, + "probability": 0.9672 + }, + { + "start": 40719.74, + "end": 40720.26, + "probability": 0.9643 + }, + { + "start": 40720.5, + "end": 40721.1, + "probability": 0.9326 + }, + { + "start": 40721.18, + "end": 40721.38, + "probability": 0.7317 + }, + { + "start": 40722.34, + "end": 40726.3, + "probability": 0.7849 + }, + { + "start": 40727.16, + "end": 40728.02, + "probability": 0.7711 + }, + { + "start": 40728.66, + "end": 40729.16, + "probability": 0.8432 + }, + { + "start": 40730.96, + "end": 40733.7, + "probability": 0.8645 + }, + { + "start": 40734.76, + "end": 40736.18, + "probability": 0.8095 + }, + { + "start": 40736.44, + "end": 40740.02, + "probability": 0.9558 + }, + { + "start": 40741.0, + "end": 40742.26, + "probability": 0.9682 + }, + { + "start": 40742.96, + "end": 40744.44, + "probability": 0.9946 + }, + { + "start": 40745.08, + "end": 40746.66, + "probability": 0.9722 + }, + { + "start": 40746.8, + "end": 40747.88, + "probability": 0.837 + }, + { + "start": 40748.08, + "end": 40749.02, + "probability": 0.9714 + }, + { + "start": 40749.2, + "end": 40750.16, + "probability": 0.9485 + }, + { + "start": 40750.54, + "end": 40751.54, + "probability": 0.9294 + }, + { + "start": 40751.94, + "end": 40753.8, + "probability": 0.9939 + }, + { + "start": 40757.26, + "end": 40757.26, + "probability": 0.8599 + }, + { + "start": 40758.06, + "end": 40761.02, + "probability": 0.9922 + }, + { + "start": 40761.18, + "end": 40763.06, + "probability": 0.9495 + }, + { + "start": 40764.16, + "end": 40767.74, + "probability": 0.9753 + }, + { + "start": 40767.88, + "end": 40768.74, + "probability": 0.8774 + }, + { + "start": 40769.52, + "end": 40771.2, + "probability": 0.5124 + }, + { + "start": 40772.2, + "end": 40773.38, + "probability": 0.9017 + }, + { + "start": 40774.68, + "end": 40776.7, + "probability": 0.877 + }, + { + "start": 40777.74, + "end": 40779.2, + "probability": 0.9917 + }, + { + "start": 40779.52, + "end": 40780.74, + "probability": 0.9144 + }, + { + "start": 40781.6, + "end": 40784.64, + "probability": 0.8645 + }, + { + "start": 40785.7, + "end": 40787.3, + "probability": 0.9302 + }, + { + "start": 40787.82, + "end": 40788.56, + "probability": 0.8455 + }, + { + "start": 40789.1, + "end": 40791.32, + "probability": 0.9934 + }, + { + "start": 40791.92, + "end": 40792.74, + "probability": 0.6603 + }, + { + "start": 40794.02, + "end": 40797.76, + "probability": 0.9836 + }, + { + "start": 40798.82, + "end": 40801.54, + "probability": 0.9828 + }, + { + "start": 40803.44, + "end": 40805.9, + "probability": 0.9707 + }, + { + "start": 40806.42, + "end": 40808.9, + "probability": 0.8768 + }, + { + "start": 40809.7, + "end": 40809.94, + "probability": 0.828 + }, + { + "start": 40810.4, + "end": 40812.78, + "probability": 0.976 + }, + { + "start": 40813.86, + "end": 40816.58, + "probability": 0.9955 + }, + { + "start": 40817.14, + "end": 40819.56, + "probability": 0.9837 + }, + { + "start": 40819.7, + "end": 40821.2, + "probability": 0.8533 + }, + { + "start": 40821.7, + "end": 40824.28, + "probability": 0.8673 + }, + { + "start": 40824.5, + "end": 40829.94, + "probability": 0.7316 + }, + { + "start": 40830.5, + "end": 40831.55, + "probability": 0.0537 + }, + { + "start": 40833.34, + "end": 40834.66, + "probability": 0.9956 + }, + { + "start": 40834.7, + "end": 40835.36, + "probability": 0.9509 + }, + { + "start": 40835.48, + "end": 40836.06, + "probability": 0.5418 + }, + { + "start": 40836.66, + "end": 40837.54, + "probability": 0.8921 + }, + { + "start": 40838.1, + "end": 40838.6, + "probability": 0.9579 + }, + { + "start": 40839.46, + "end": 40842.14, + "probability": 0.9919 + }, + { + "start": 40842.66, + "end": 40843.38, + "probability": 0.8565 + }, + { + "start": 40843.98, + "end": 40845.24, + "probability": 0.9945 + }, + { + "start": 40845.54, + "end": 40846.78, + "probability": 0.9756 + }, + { + "start": 40847.14, + "end": 40848.3, + "probability": 0.9637 + }, + { + "start": 40849.24, + "end": 40850.48, + "probability": 0.9386 + }, + { + "start": 40850.56, + "end": 40851.22, + "probability": 0.9223 + }, + { + "start": 40851.38, + "end": 40855.26, + "probability": 0.9543 + }, + { + "start": 40855.34, + "end": 40856.07, + "probability": 0.9365 + }, + { + "start": 40856.28, + "end": 40859.56, + "probability": 0.9773 + }, + { + "start": 40860.42, + "end": 40861.96, + "probability": 0.72 + }, + { + "start": 40862.18, + "end": 40864.78, + "probability": 0.9973 + }, + { + "start": 40866.16, + "end": 40868.66, + "probability": 0.9925 + }, + { + "start": 40870.02, + "end": 40871.55, + "probability": 0.9863 + }, + { + "start": 40872.82, + "end": 40873.6, + "probability": 0.9612 + }, + { + "start": 40874.4, + "end": 40875.54, + "probability": 0.9594 + }, + { + "start": 40876.4, + "end": 40879.0, + "probability": 0.9989 + }, + { + "start": 40879.0, + "end": 40882.3, + "probability": 0.9978 + }, + { + "start": 40883.98, + "end": 40884.94, + "probability": 0.9927 + }, + { + "start": 40885.04, + "end": 40886.0, + "probability": 0.9633 + }, + { + "start": 40886.12, + "end": 40888.96, + "probability": 0.9862 + }, + { + "start": 40889.26, + "end": 40892.26, + "probability": 0.9801 + }, + { + "start": 40892.98, + "end": 40895.88, + "probability": 0.9956 + }, + { + "start": 40898.12, + "end": 40901.4, + "probability": 0.7827 + }, + { + "start": 40901.6, + "end": 40903.36, + "probability": 0.948 + }, + { + "start": 40904.38, + "end": 40906.76, + "probability": 0.9779 + }, + { + "start": 40907.46, + "end": 40911.96, + "probability": 0.9845 + }, + { + "start": 40912.78, + "end": 40914.96, + "probability": 0.6104 + }, + { + "start": 40915.5, + "end": 40917.64, + "probability": 0.9958 + }, + { + "start": 40918.22, + "end": 40922.16, + "probability": 0.8548 + }, + { + "start": 40923.16, + "end": 40924.32, + "probability": 0.2334 + }, + { + "start": 40924.38, + "end": 40925.06, + "probability": 0.6144 + }, + { + "start": 40925.82, + "end": 40926.42, + "probability": 0.7627 + }, + { + "start": 40927.42, + "end": 40932.34, + "probability": 0.9253 + }, + { + "start": 40933.1, + "end": 40934.12, + "probability": 0.7947 + }, + { + "start": 40934.9, + "end": 40936.54, + "probability": 0.9418 + }, + { + "start": 40937.08, + "end": 40937.76, + "probability": 0.5574 + }, + { + "start": 40937.8, + "end": 40939.78, + "probability": 0.9647 + }, + { + "start": 40940.1, + "end": 40940.9, + "probability": 0.9694 + }, + { + "start": 40941.58, + "end": 40944.94, + "probability": 0.9932 + }, + { + "start": 40945.38, + "end": 40948.48, + "probability": 0.9751 + }, + { + "start": 40949.5, + "end": 40952.52, + "probability": 0.9873 + }, + { + "start": 40952.66, + "end": 40955.62, + "probability": 0.9983 + }, + { + "start": 40957.12, + "end": 40958.64, + "probability": 0.9913 + }, + { + "start": 40959.88, + "end": 40962.02, + "probability": 0.9995 + }, + { + "start": 40962.66, + "end": 40963.78, + "probability": 0.9816 + }, + { + "start": 40964.2, + "end": 40964.98, + "probability": 0.9247 + }, + { + "start": 40965.1, + "end": 40969.54, + "probability": 0.9899 + }, + { + "start": 40970.04, + "end": 40971.82, + "probability": 0.9942 + }, + { + "start": 40972.06, + "end": 40974.22, + "probability": 0.8126 + }, + { + "start": 40975.14, + "end": 40977.18, + "probability": 0.9829 + }, + { + "start": 40977.34, + "end": 40978.74, + "probability": 0.7362 + }, + { + "start": 40978.92, + "end": 40980.68, + "probability": 0.9259 + }, + { + "start": 40980.78, + "end": 40982.96, + "probability": 0.8388 + }, + { + "start": 40983.58, + "end": 40986.48, + "probability": 0.9868 + }, + { + "start": 40987.28, + "end": 40989.16, + "probability": 0.5338 + }, + { + "start": 40989.78, + "end": 40992.62, + "probability": 0.6545 + }, + { + "start": 40993.06, + "end": 40994.72, + "probability": 0.862 + }, + { + "start": 40995.3, + "end": 40998.0, + "probability": 0.984 + }, + { + "start": 40998.34, + "end": 41001.3, + "probability": 0.7205 + }, + { + "start": 41001.66, + "end": 41002.66, + "probability": 0.3425 + }, + { + "start": 41003.78, + "end": 41004.85, + "probability": 0.9824 + }, + { + "start": 41004.92, + "end": 41006.66, + "probability": 0.9785 + }, + { + "start": 41006.84, + "end": 41007.43, + "probability": 0.7749 + }, + { + "start": 41007.72, + "end": 41008.27, + "probability": 0.9637 + }, + { + "start": 41008.84, + "end": 41010.36, + "probability": 0.9695 + }, + { + "start": 41011.3, + "end": 41013.06, + "probability": 0.7266 + }, + { + "start": 41013.2, + "end": 41014.04, + "probability": 0.9185 + }, + { + "start": 41014.16, + "end": 41017.26, + "probability": 0.951 + }, + { + "start": 41017.34, + "end": 41018.14, + "probability": 0.9645 + }, + { + "start": 41018.54, + "end": 41019.97, + "probability": 0.7108 + }, + { + "start": 41021.12, + "end": 41022.98, + "probability": 0.83 + }, + { + "start": 41023.12, + "end": 41025.14, + "probability": 0.9709 + }, + { + "start": 41025.24, + "end": 41026.4, + "probability": 0.9111 + }, + { + "start": 41026.78, + "end": 41027.36, + "probability": 0.4948 + }, + { + "start": 41027.52, + "end": 41030.56, + "probability": 0.7783 + }, + { + "start": 41031.1, + "end": 41035.32, + "probability": 0.9215 + }, + { + "start": 41036.24, + "end": 41038.14, + "probability": 0.9884 + }, + { + "start": 41038.14, + "end": 41040.26, + "probability": 0.9256 + }, + { + "start": 41040.98, + "end": 41042.3, + "probability": 0.8857 + }, + { + "start": 41042.5, + "end": 41044.04, + "probability": 0.9665 + }, + { + "start": 41047.28, + "end": 41048.3, + "probability": 0.9286 + }, + { + "start": 41048.92, + "end": 41053.34, + "probability": 0.9436 + }, + { + "start": 41054.52, + "end": 41057.78, + "probability": 0.9402 + }, + { + "start": 41058.38, + "end": 41061.42, + "probability": 0.9736 + }, + { + "start": 41062.46, + "end": 41063.56, + "probability": 0.9829 + }, + { + "start": 41064.3, + "end": 41066.4, + "probability": 0.9591 + }, + { + "start": 41067.06, + "end": 41068.39, + "probability": 0.7706 + }, + { + "start": 41068.6, + "end": 41071.32, + "probability": 0.7033 + }, + { + "start": 41072.08, + "end": 41073.07, + "probability": 0.5726 + }, + { + "start": 41073.94, + "end": 41075.06, + "probability": 0.8094 + }, + { + "start": 41075.12, + "end": 41075.96, + "probability": 0.7856 + }, + { + "start": 41076.1, + "end": 41078.02, + "probability": 0.6746 + }, + { + "start": 41078.76, + "end": 41080.46, + "probability": 0.9955 + }, + { + "start": 41080.46, + "end": 41083.26, + "probability": 0.9959 + }, + { + "start": 41084.16, + "end": 41088.21, + "probability": 0.8051 + }, + { + "start": 41089.96, + "end": 41090.22, + "probability": 0.5207 + }, + { + "start": 41091.22, + "end": 41097.82, + "probability": 0.7458 + }, + { + "start": 41097.82, + "end": 41100.54, + "probability": 0.9963 + }, + { + "start": 41102.06, + "end": 41103.54, + "probability": 0.9811 + }, + { + "start": 41104.26, + "end": 41105.82, + "probability": 0.9973 + }, + { + "start": 41106.22, + "end": 41110.52, + "probability": 0.9861 + }, + { + "start": 41111.26, + "end": 41112.82, + "probability": 0.5614 + }, + { + "start": 41113.56, + "end": 41116.14, + "probability": 0.9969 + }, + { + "start": 41117.14, + "end": 41119.12, + "probability": 0.2875 + }, + { + "start": 41120.16, + "end": 41121.32, + "probability": 0.4574 + }, + { + "start": 41121.54, + "end": 41123.86, + "probability": 0.9605 + }, + { + "start": 41123.98, + "end": 41125.76, + "probability": 0.218 + }, + { + "start": 41126.56, + "end": 41127.54, + "probability": 0.7566 + }, + { + "start": 41129.56, + "end": 41131.42, + "probability": 0.9288 + }, + { + "start": 41131.42, + "end": 41134.26, + "probability": 0.9919 + }, + { + "start": 41134.64, + "end": 41136.52, + "probability": 0.9822 + }, + { + "start": 41136.8, + "end": 41138.78, + "probability": 0.7607 + }, + { + "start": 41138.86, + "end": 41139.84, + "probability": 0.7088 + }, + { + "start": 41140.28, + "end": 41141.3, + "probability": 0.7358 + }, + { + "start": 41141.62, + "end": 41143.06, + "probability": 0.8465 + }, + { + "start": 41143.14, + "end": 41144.18, + "probability": 0.7571 + }, + { + "start": 41144.32, + "end": 41146.76, + "probability": 0.7659 + }, + { + "start": 41148.07, + "end": 41149.62, + "probability": 0.9881 + }, + { + "start": 41150.82, + "end": 41154.42, + "probability": 0.946 + }, + { + "start": 41155.02, + "end": 41157.7, + "probability": 0.9395 + }, + { + "start": 41158.82, + "end": 41165.12, + "probability": 0.9979 + }, + { + "start": 41166.12, + "end": 41168.24, + "probability": 0.811 + }, + { + "start": 41169.24, + "end": 41172.94, + "probability": 0.8341 + }, + { + "start": 41173.04, + "end": 41177.68, + "probability": 0.9432 + }, + { + "start": 41177.84, + "end": 41179.32, + "probability": 0.8237 + }, + { + "start": 41179.86, + "end": 41181.42, + "probability": 0.8668 + }, + { + "start": 41182.48, + "end": 41188.12, + "probability": 0.9881 + }, + { + "start": 41188.7, + "end": 41189.54, + "probability": 0.8826 + }, + { + "start": 41191.5, + "end": 41194.74, + "probability": 0.995 + }, + { + "start": 41194.86, + "end": 41198.98, + "probability": 0.9958 + }, + { + "start": 41199.18, + "end": 41202.32, + "probability": 0.9686 + }, + { + "start": 41202.76, + "end": 41204.84, + "probability": 0.991 + }, + { + "start": 41205.98, + "end": 41211.64, + "probability": 0.9797 + }, + { + "start": 41211.82, + "end": 41212.18, + "probability": 0.9423 + }, + { + "start": 41213.14, + "end": 41216.8, + "probability": 0.6114 + }, + { + "start": 41217.66, + "end": 41220.38, + "probability": 0.9111 + }, + { + "start": 41220.96, + "end": 41223.52, + "probability": 0.6475 + }, + { + "start": 41223.92, + "end": 41225.32, + "probability": 0.6723 + }, + { + "start": 41226.28, + "end": 41227.22, + "probability": 0.915 + }, + { + "start": 41228.04, + "end": 41229.4, + "probability": 0.9368 + }, + { + "start": 41230.5, + "end": 41232.94, + "probability": 0.8485 + }, + { + "start": 41233.04, + "end": 41234.0, + "probability": 0.8134 + }, + { + "start": 41234.3, + "end": 41235.85, + "probability": 0.7655 + }, + { + "start": 41237.06, + "end": 41239.42, + "probability": 0.9539 + }, + { + "start": 41240.38, + "end": 41241.14, + "probability": 0.8111 + }, + { + "start": 41242.68, + "end": 41245.24, + "probability": 0.9798 + }, + { + "start": 41246.26, + "end": 41250.34, + "probability": 0.9989 + }, + { + "start": 41250.82, + "end": 41253.78, + "probability": 0.8394 + }, + { + "start": 41254.08, + "end": 41255.68, + "probability": 0.9864 + }, + { + "start": 41256.46, + "end": 41257.78, + "probability": 0.7624 + }, + { + "start": 41258.62, + "end": 41260.42, + "probability": 0.9338 + }, + { + "start": 41261.12, + "end": 41264.44, + "probability": 0.4665 + }, + { + "start": 41265.28, + "end": 41268.96, + "probability": 0.7919 + }, + { + "start": 41269.0, + "end": 41271.6, + "probability": 0.8515 + }, + { + "start": 41272.02, + "end": 41273.92, + "probability": 0.9974 + }, + { + "start": 41274.78, + "end": 41275.82, + "probability": 0.9989 + }, + { + "start": 41276.68, + "end": 41277.55, + "probability": 0.8293 + }, + { + "start": 41277.7, + "end": 41282.98, + "probability": 0.997 + }, + { + "start": 41283.1, + "end": 41285.4, + "probability": 0.9029 + }, + { + "start": 41287.16, + "end": 41291.14, + "probability": 0.9758 + }, + { + "start": 41291.52, + "end": 41293.08, + "probability": 0.781 + }, + { + "start": 41293.56, + "end": 41295.2, + "probability": 0.9941 + }, + { + "start": 41295.4, + "end": 41296.56, + "probability": 0.7473 + }, + { + "start": 41296.96, + "end": 41298.6, + "probability": 0.8255 + }, + { + "start": 41299.02, + "end": 41300.48, + "probability": 0.9619 + }, + { + "start": 41300.96, + "end": 41301.84, + "probability": 0.9941 + }, + { + "start": 41302.28, + "end": 41303.12, + "probability": 0.6654 + }, + { + "start": 41303.64, + "end": 41308.46, + "probability": 0.9776 + }, + { + "start": 41308.62, + "end": 41309.92, + "probability": 0.7957 + }, + { + "start": 41310.42, + "end": 41312.9, + "probability": 0.9424 + }, + { + "start": 41313.22, + "end": 41314.6, + "probability": 0.7492 + }, + { + "start": 41315.12, + "end": 41317.38, + "probability": 0.5714 + }, + { + "start": 41317.46, + "end": 41319.56, + "probability": 0.8248 + }, + { + "start": 41320.04, + "end": 41322.34, + "probability": 0.9196 + }, + { + "start": 41323.56, + "end": 41324.73, + "probability": 0.9966 + }, + { + "start": 41325.88, + "end": 41330.9, + "probability": 0.9916 + }, + { + "start": 41331.74, + "end": 41332.5, + "probability": 0.705 + }, + { + "start": 41332.72, + "end": 41335.7, + "probability": 0.6681 + }, + { + "start": 41337.36, + "end": 41338.36, + "probability": 0.697 + }, + { + "start": 41339.1, + "end": 41341.22, + "probability": 0.7897 + }, + { + "start": 41342.04, + "end": 41347.12, + "probability": 0.9857 + }, + { + "start": 41348.5, + "end": 41351.44, + "probability": 0.4843 + }, + { + "start": 41351.44, + "end": 41353.02, + "probability": 0.9797 + }, + { + "start": 41353.88, + "end": 41356.1, + "probability": 0.982 + }, + { + "start": 41357.46, + "end": 41360.6, + "probability": 0.9912 + }, + { + "start": 41360.6, + "end": 41363.42, + "probability": 0.9832 + }, + { + "start": 41364.0, + "end": 41365.72, + "probability": 0.998 + }, + { + "start": 41366.54, + "end": 41368.48, + "probability": 0.999 + }, + { + "start": 41369.28, + "end": 41370.44, + "probability": 0.6369 + }, + { + "start": 41370.56, + "end": 41373.4, + "probability": 0.9679 + }, + { + "start": 41374.08, + "end": 41376.44, + "probability": 0.9887 + }, + { + "start": 41376.88, + "end": 41378.42, + "probability": 0.9993 + }, + { + "start": 41379.28, + "end": 41383.4, + "probability": 0.9984 + }, + { + "start": 41384.0, + "end": 41385.9, + "probability": 0.883 + }, + { + "start": 41391.0, + "end": 41393.84, + "probability": 0.9506 + }, + { + "start": 41394.16, + "end": 41395.64, + "probability": 0.9033 + }, + { + "start": 41396.02, + "end": 41397.42, + "probability": 0.9968 + }, + { + "start": 41397.54, + "end": 41398.48, + "probability": 0.77 + }, + { + "start": 41399.28, + "end": 41401.18, + "probability": 0.9921 + }, + { + "start": 41402.18, + "end": 41405.82, + "probability": 0.9965 + }, + { + "start": 41406.54, + "end": 41408.64, + "probability": 0.8564 + }, + { + "start": 41409.78, + "end": 41411.6, + "probability": 0.9244 + }, + { + "start": 41412.48, + "end": 41412.88, + "probability": 0.5905 + }, + { + "start": 41414.34, + "end": 41416.48, + "probability": 0.9781 + }, + { + "start": 41417.84, + "end": 41419.06, + "probability": 0.7497 + }, + { + "start": 41419.76, + "end": 41420.8, + "probability": 0.9549 + }, + { + "start": 41422.04, + "end": 41423.84, + "probability": 0.9727 + }, + { + "start": 41424.98, + "end": 41426.72, + "probability": 0.7024 + }, + { + "start": 41427.88, + "end": 41430.3, + "probability": 0.951 + }, + { + "start": 41430.44, + "end": 41433.38, + "probability": 0.8685 + }, + { + "start": 41435.3, + "end": 41437.26, + "probability": 0.9932 + }, + { + "start": 41438.32, + "end": 41438.64, + "probability": 0.2387 + }, + { + "start": 41439.62, + "end": 41441.56, + "probability": 0.9596 + }, + { + "start": 41441.6, + "end": 41442.54, + "probability": 0.6856 + }, + { + "start": 41442.68, + "end": 41444.32, + "probability": 0.9017 + }, + { + "start": 41445.76, + "end": 41446.54, + "probability": 0.778 + }, + { + "start": 41446.62, + "end": 41447.9, + "probability": 0.9965 + }, + { + "start": 41448.6, + "end": 41449.34, + "probability": 0.2305 + }, + { + "start": 41449.9, + "end": 41450.16, + "probability": 0.8512 + }, + { + "start": 41450.66, + "end": 41452.02, + "probability": 0.8187 + }, + { + "start": 41452.9, + "end": 41454.28, + "probability": 0.8071 + }, + { + "start": 41455.56, + "end": 41461.5, + "probability": 0.9599 + }, + { + "start": 41462.08, + "end": 41463.56, + "probability": 0.8413 + }, + { + "start": 41464.12, + "end": 41470.22, + "probability": 0.952 + }, + { + "start": 41471.36, + "end": 41474.32, + "probability": 0.9952 + }, + { + "start": 41474.46, + "end": 41478.64, + "probability": 0.9902 + }, + { + "start": 41479.36, + "end": 41481.16, + "probability": 0.9963 + }, + { + "start": 41481.98, + "end": 41483.23, + "probability": 0.9995 + }, + { + "start": 41483.6, + "end": 41485.6, + "probability": 0.9504 + }, + { + "start": 41486.9, + "end": 41488.7, + "probability": 0.9937 + }, + { + "start": 41489.46, + "end": 41490.16, + "probability": 0.9193 + }, + { + "start": 41490.96, + "end": 41492.82, + "probability": 0.953 + }, + { + "start": 41493.52, + "end": 41495.68, + "probability": 0.9507 + }, + { + "start": 41495.76, + "end": 41496.72, + "probability": 0.9512 + }, + { + "start": 41499.46, + "end": 41504.94, + "probability": 0.9241 + }, + { + "start": 41505.7, + "end": 41506.56, + "probability": 0.9883 + }, + { + "start": 41507.26, + "end": 41508.6, + "probability": 0.9579 + }, + { + "start": 41509.06, + "end": 41509.61, + "probability": 0.8672 + }, + { + "start": 41510.88, + "end": 41511.92, + "probability": 0.8753 + }, + { + "start": 41512.98, + "end": 41515.98, + "probability": 0.9415 + }, + { + "start": 41516.48, + "end": 41517.68, + "probability": 0.9198 + }, + { + "start": 41518.58, + "end": 41520.5, + "probability": 0.9344 + }, + { + "start": 41522.0, + "end": 41522.96, + "probability": 0.6837 + }, + { + "start": 41523.1, + "end": 41525.38, + "probability": 0.833 + }, + { + "start": 41526.12, + "end": 41527.9, + "probability": 0.8973 + }, + { + "start": 41528.64, + "end": 41529.43, + "probability": 0.9642 + }, + { + "start": 41530.52, + "end": 41532.28, + "probability": 0.8614 + }, + { + "start": 41534.51, + "end": 41538.62, + "probability": 0.8574 + }, + { + "start": 41538.72, + "end": 41540.58, + "probability": 0.7328 + }, + { + "start": 41541.2, + "end": 41543.16, + "probability": 0.9883 + }, + { + "start": 41543.72, + "end": 41545.74, + "probability": 0.9373 + }, + { + "start": 41546.34, + "end": 41547.76, + "probability": 0.8423 + }, + { + "start": 41548.04, + "end": 41549.88, + "probability": 0.752 + }, + { + "start": 41550.68, + "end": 41553.08, + "probability": 0.9035 + }, + { + "start": 41553.16, + "end": 41553.96, + "probability": 0.9701 + }, + { + "start": 41554.14, + "end": 41557.96, + "probability": 0.9932 + }, + { + "start": 41558.68, + "end": 41559.32, + "probability": 0.7496 + }, + { + "start": 41559.96, + "end": 41562.5, + "probability": 0.6556 + }, + { + "start": 41563.16, + "end": 41563.54, + "probability": 0.7566 + }, + { + "start": 41563.68, + "end": 41564.82, + "probability": 0.9268 + }, + { + "start": 41564.88, + "end": 41565.16, + "probability": 0.8618 + }, + { + "start": 41565.26, + "end": 41565.72, + "probability": 0.8073 + }, + { + "start": 41566.48, + "end": 41567.96, + "probability": 0.9962 + }, + { + "start": 41569.28, + "end": 41570.7, + "probability": 0.9489 + }, + { + "start": 41576.56, + "end": 41578.94, + "probability": 0.8488 + }, + { + "start": 41579.68, + "end": 41580.84, + "probability": 0.8898 + }, + { + "start": 41581.78, + "end": 41582.24, + "probability": 0.6534 + }, + { + "start": 41582.84, + "end": 41586.26, + "probability": 0.9745 + }, + { + "start": 41586.38, + "end": 41588.94, + "probability": 0.9982 + }, + { + "start": 41590.74, + "end": 41592.74, + "probability": 0.9773 + }, + { + "start": 41593.7, + "end": 41595.1, + "probability": 0.9966 + }, + { + "start": 41595.72, + "end": 41597.08, + "probability": 0.9941 + }, + { + "start": 41597.98, + "end": 41598.66, + "probability": 0.9842 + }, + { + "start": 41599.56, + "end": 41600.6, + "probability": 0.9913 + }, + { + "start": 41601.42, + "end": 41602.22, + "probability": 0.8611 + }, + { + "start": 41603.3, + "end": 41605.14, + "probability": 0.5065 + }, + { + "start": 41606.68, + "end": 41607.38, + "probability": 0.5045 + }, + { + "start": 41607.96, + "end": 41610.42, + "probability": 0.9677 + }, + { + "start": 41610.48, + "end": 41613.07, + "probability": 0.9941 + }, + { + "start": 41614.72, + "end": 41615.88, + "probability": 0.9904 + }, + { + "start": 41616.6, + "end": 41618.96, + "probability": 0.9894 + }, + { + "start": 41619.64, + "end": 41620.8, + "probability": 0.9494 + }, + { + "start": 41621.88, + "end": 41624.93, + "probability": 0.9883 + }, + { + "start": 41626.26, + "end": 41628.74, + "probability": 0.9954 + }, + { + "start": 41628.86, + "end": 41629.58, + "probability": 0.9346 + }, + { + "start": 41630.2, + "end": 41631.0, + "probability": 0.6448 + }, + { + "start": 41635.28, + "end": 41637.03, + "probability": 0.854 + }, + { + "start": 41656.78, + "end": 41658.86, + "probability": 0.6832 + }, + { + "start": 41659.04, + "end": 41659.24, + "probability": 0.7322 + }, + { + "start": 41664.6, + "end": 41667.0, + "probability": 0.7844 + }, + { + "start": 41667.58, + "end": 41669.36, + "probability": 0.5623 + }, + { + "start": 41670.14, + "end": 41670.64, + "probability": 0.8449 + }, + { + "start": 41672.22, + "end": 41674.64, + "probability": 0.0762 + }, + { + "start": 41678.16, + "end": 41679.8, + "probability": 0.7583 + }, + { + "start": 41680.86, + "end": 41682.74, + "probability": 0.6328 + }, + { + "start": 41684.85, + "end": 41690.36, + "probability": 0.8543 + }, + { + "start": 41691.22, + "end": 41692.8, + "probability": 0.9983 + }, + { + "start": 41693.46, + "end": 41694.3, + "probability": 0.8975 + }, + { + "start": 41694.36, + "end": 41695.62, + "probability": 0.9115 + }, + { + "start": 41695.96, + "end": 41697.1, + "probability": 0.6078 + }, + { + "start": 41697.26, + "end": 41699.74, + "probability": 0.9958 + }, + { + "start": 41701.0, + "end": 41704.72, + "probability": 0.7051 + }, + { + "start": 41705.84, + "end": 41707.34, + "probability": 0.6813 + }, + { + "start": 41707.36, + "end": 41709.68, + "probability": 0.9937 + }, + { + "start": 41711.3, + "end": 41712.82, + "probability": 0.9886 + }, + { + "start": 41713.88, + "end": 41715.02, + "probability": 0.9845 + }, + { + "start": 41715.06, + "end": 41718.5, + "probability": 0.916 + }, + { + "start": 41718.5, + "end": 41722.1, + "probability": 0.9269 + }, + { + "start": 41724.28, + "end": 41725.92, + "probability": 0.155 + }, + { + "start": 41725.94, + "end": 41728.96, + "probability": 0.9409 + }, + { + "start": 41729.5, + "end": 41730.9, + "probability": 0.6285 + }, + { + "start": 41731.2, + "end": 41732.02, + "probability": 0.94 + }, + { + "start": 41732.64, + "end": 41733.5, + "probability": 0.6025 + }, + { + "start": 41734.06, + "end": 41736.9, + "probability": 0.8677 + }, + { + "start": 41737.12, + "end": 41738.86, + "probability": 0.0013 + }, + { + "start": 41739.46, + "end": 41742.88, + "probability": 0.9856 + }, + { + "start": 41744.18, + "end": 41748.98, + "probability": 0.7486 + }, + { + "start": 41749.04, + "end": 41754.32, + "probability": 0.732 + }, + { + "start": 41754.4, + "end": 41755.66, + "probability": 0.3796 + }, + { + "start": 41758.24, + "end": 41760.18, + "probability": 0.4163 + }, + { + "start": 41763.46, + "end": 41765.02, + "probability": 0.0986 + }, + { + "start": 41765.08, + "end": 41766.44, + "probability": 0.4587 + }, + { + "start": 41766.94, + "end": 41767.58, + "probability": 0.2629 + }, + { + "start": 41767.64, + "end": 41770.28, + "probability": 0.2469 + }, + { + "start": 41770.42, + "end": 41774.0, + "probability": 0.2761 + }, + { + "start": 41775.14, + "end": 41776.12, + "probability": 0.3111 + }, + { + "start": 41776.24, + "end": 41779.56, + "probability": 0.6821 + }, + { + "start": 41779.68, + "end": 41780.4, + "probability": 0.8213 + }, + { + "start": 41780.8, + "end": 41781.04, + "probability": 0.7632 + }, + { + "start": 41781.34, + "end": 41782.68, + "probability": 0.2725 + }, + { + "start": 41783.0, + "end": 41789.34, + "probability": 0.9787 + }, + { + "start": 41789.82, + "end": 41792.26, + "probability": 0.5998 + }, + { + "start": 41792.38, + "end": 41794.58, + "probability": 0.9935 + }, + { + "start": 41795.86, + "end": 41796.7, + "probability": 0.7127 + }, + { + "start": 41796.84, + "end": 41797.52, + "probability": 0.2394 + }, + { + "start": 41798.94, + "end": 41799.91, + "probability": 0.6236 + }, + { + "start": 41800.46, + "end": 41803.76, + "probability": 0.819 + }, + { + "start": 41803.86, + "end": 41804.54, + "probability": 0.6779 + }, + { + "start": 41805.0, + "end": 41811.24, + "probability": 0.5846 + }, + { + "start": 41811.42, + "end": 41815.6, + "probability": 0.5278 + }, + { + "start": 41815.6, + "end": 41818.86, + "probability": 0.9548 + }, + { + "start": 41818.96, + "end": 41819.38, + "probability": 0.3256 + }, + { + "start": 41819.66, + "end": 41822.04, + "probability": 0.7073 + }, + { + "start": 41823.2, + "end": 41826.28, + "probability": 0.6955 + }, + { + "start": 41827.3, + "end": 41836.72, + "probability": 0.7071 + }, + { + "start": 41837.48, + "end": 41837.96, + "probability": 0.3348 + }, + { + "start": 41839.82, + "end": 41842.06, + "probability": 0.8923 + }, + { + "start": 41842.14, + "end": 41845.76, + "probability": 0.9734 + }, + { + "start": 41845.88, + "end": 41847.9, + "probability": 0.9928 + }, + { + "start": 41847.94, + "end": 41849.44, + "probability": 0.9951 + }, + { + "start": 41849.62, + "end": 41852.56, + "probability": 0.3856 + }, + { + "start": 41852.6, + "end": 41853.44, + "probability": 0.0758 + }, + { + "start": 41853.44, + "end": 41854.3, + "probability": 0.9788 + }, + { + "start": 41856.76, + "end": 41860.86, + "probability": 0.7803 + }, + { + "start": 41862.84, + "end": 41864.8, + "probability": 0.2898 + }, + { + "start": 41865.36, + "end": 41870.44, + "probability": 0.8396 + }, + { + "start": 41870.7, + "end": 41872.7, + "probability": 0.8149 + }, + { + "start": 41873.1, + "end": 41874.46, + "probability": 0.9938 + }, + { + "start": 41874.54, + "end": 41878.6, + "probability": 0.8667 + }, + { + "start": 41880.18, + "end": 41883.26, + "probability": 0.9731 + }, + { + "start": 41883.44, + "end": 41884.88, + "probability": 0.7743 + }, + { + "start": 41886.42, + "end": 41890.18, + "probability": 0.9619 + }, + { + "start": 41891.52, + "end": 41895.02, + "probability": 0.8331 + }, + { + "start": 41895.78, + "end": 41900.46, + "probability": 0.9871 + }, + { + "start": 41901.26, + "end": 41903.32, + "probability": 0.478 + }, + { + "start": 41903.46, + "end": 41905.4, + "probability": 0.9884 + }, + { + "start": 41905.46, + "end": 41908.3, + "probability": 0.3681 + }, + { + "start": 41908.3, + "end": 41910.49, + "probability": 0.4976 + }, + { + "start": 41911.16, + "end": 41912.0, + "probability": 0.9641 + }, + { + "start": 41913.22, + "end": 41916.4, + "probability": 0.9098 + }, + { + "start": 41916.62, + "end": 41918.48, + "probability": 0.9831 + }, + { + "start": 41919.36, + "end": 41920.04, + "probability": 0.8539 + }, + { + "start": 41920.16, + "end": 41922.9, + "probability": 0.835 + }, + { + "start": 41922.96, + "end": 41924.28, + "probability": 0.7522 + }, + { + "start": 41924.38, + "end": 41925.92, + "probability": 0.6824 + }, + { + "start": 41926.04, + "end": 41926.14, + "probability": 0.501 + }, + { + "start": 41926.32, + "end": 41929.2, + "probability": 0.8625 + }, + { + "start": 41929.88, + "end": 41931.2, + "probability": 0.9033 + }, + { + "start": 41931.32, + "end": 41931.42, + "probability": 0.7368 + }, + { + "start": 41931.74, + "end": 41932.88, + "probability": 0.7774 + }, + { + "start": 41933.54, + "end": 41935.44, + "probability": 0.7814 + }, + { + "start": 41936.74, + "end": 41938.08, + "probability": 0.8266 + }, + { + "start": 41938.32, + "end": 41938.5, + "probability": 0.5058 + }, + { + "start": 41938.62, + "end": 41940.41, + "probability": 0.9114 + }, + { + "start": 41940.48, + "end": 41943.86, + "probability": 0.8229 + }, + { + "start": 41944.36, + "end": 41945.64, + "probability": 0.8517 + }, + { + "start": 41946.3, + "end": 41946.48, + "probability": 0.7292 + }, + { + "start": 41948.0, + "end": 41951.94, + "probability": 0.9551 + }, + { + "start": 41952.52, + "end": 41953.7, + "probability": 0.9474 + }, + { + "start": 41954.74, + "end": 41956.52, + "probability": 0.8918 + }, + { + "start": 41958.2, + "end": 41960.3, + "probability": 0.9824 + }, + { + "start": 41961.12, + "end": 41962.36, + "probability": 0.198 + }, + { + "start": 41962.44, + "end": 41965.68, + "probability": 0.5929 + }, + { + "start": 41966.06, + "end": 41967.24, + "probability": 0.4425 + }, + { + "start": 41967.34, + "end": 41969.92, + "probability": 0.3306 + }, + { + "start": 41970.2, + "end": 41970.86, + "probability": 0.1878 + }, + { + "start": 41971.16, + "end": 41972.42, + "probability": 0.877 + }, + { + "start": 41975.92, + "end": 41977.7, + "probability": 0.7603 + }, + { + "start": 41977.84, + "end": 41983.56, + "probability": 0.8853 + }, + { + "start": 41985.28, + "end": 41985.92, + "probability": 0.9154 + }, + { + "start": 41986.18, + "end": 41992.16, + "probability": 0.9825 + }, + { + "start": 41992.3, + "end": 41992.89, + "probability": 0.8812 + }, + { + "start": 41994.12, + "end": 41994.83, + "probability": 0.8203 + }, + { + "start": 41996.7, + "end": 41997.98, + "probability": 0.8202 + }, + { + "start": 41998.12, + "end": 41998.54, + "probability": 0.4464 + }, + { + "start": 41998.56, + "end": 42005.84, + "probability": 0.573 + }, + { + "start": 42007.88, + "end": 42010.94, + "probability": 0.886 + }, + { + "start": 42011.2, + "end": 42018.06, + "probability": 0.9868 + }, + { + "start": 42018.34, + "end": 42019.88, + "probability": 0.6941 + }, + { + "start": 42020.8, + "end": 42022.46, + "probability": 0.8499 + }, + { + "start": 42023.22, + "end": 42024.14, + "probability": 0.8319 + }, + { + "start": 42024.42, + "end": 42027.58, + "probability": 0.9932 + }, + { + "start": 42027.76, + "end": 42028.88, + "probability": 0.8608 + }, + { + "start": 42029.5, + "end": 42031.52, + "probability": 0.9758 + }, + { + "start": 42032.44, + "end": 42037.52, + "probability": 0.9263 + }, + { + "start": 42038.95, + "end": 42043.56, + "probability": 0.9993 + }, + { + "start": 42044.97, + "end": 42049.42, + "probability": 0.5751 + }, + { + "start": 42049.56, + "end": 42050.74, + "probability": 0.7522 + }, + { + "start": 42050.84, + "end": 42052.94, + "probability": 0.5245 + }, + { + "start": 42053.52, + "end": 42055.3, + "probability": 0.8282 + }, + { + "start": 42056.14, + "end": 42057.42, + "probability": 0.5597 + }, + { + "start": 42058.1, + "end": 42059.24, + "probability": 0.7406 + }, + { + "start": 42059.78, + "end": 42061.2, + "probability": 0.468 + }, + { + "start": 42061.9, + "end": 42065.03, + "probability": 0.9873 + }, + { + "start": 42065.72, + "end": 42070.34, + "probability": 0.9789 + }, + { + "start": 42070.84, + "end": 42070.88, + "probability": 0.8715 + }, + { + "start": 42071.0, + "end": 42071.26, + "probability": 0.6666 + }, + { + "start": 42071.4, + "end": 42071.72, + "probability": 0.7475 + }, + { + "start": 42071.74, + "end": 42072.62, + "probability": 0.9171 + }, + { + "start": 42072.72, + "end": 42073.24, + "probability": 0.712 + }, + { + "start": 42073.72, + "end": 42074.46, + "probability": 0.8906 + }, + { + "start": 42074.6, + "end": 42075.44, + "probability": 0.7265 + }, + { + "start": 42076.04, + "end": 42078.27, + "probability": 0.9598 + }, + { + "start": 42078.52, + "end": 42082.94, + "probability": 0.69 + }, + { + "start": 42084.05, + "end": 42085.36, + "probability": 0.4958 + }, + { + "start": 42086.9, + "end": 42089.14, + "probability": 0.6429 + }, + { + "start": 42090.12, + "end": 42090.28, + "probability": 0.3655 + }, + { + "start": 42090.66, + "end": 42093.6, + "probability": 0.8428 + }, + { + "start": 42094.34, + "end": 42096.58, + "probability": 0.2296 + }, + { + "start": 42097.1, + "end": 42098.18, + "probability": 0.9095 + }, + { + "start": 42098.84, + "end": 42100.44, + "probability": 0.9883 + }, + { + "start": 42101.04, + "end": 42103.86, + "probability": 0.4807 + }, + { + "start": 42103.98, + "end": 42104.32, + "probability": 0.0411 + }, + { + "start": 42104.32, + "end": 42104.32, + "probability": 0.0764 + }, + { + "start": 42104.32, + "end": 42105.88, + "probability": 0.4971 + }, + { + "start": 42106.49, + "end": 42110.64, + "probability": 0.847 + }, + { + "start": 42112.6, + "end": 42114.24, + "probability": 0.7998 + }, + { + "start": 42114.96, + "end": 42119.86, + "probability": 0.8701 + }, + { + "start": 42120.42, + "end": 42120.52, + "probability": 0.0009 + }, + { + "start": 42121.6, + "end": 42121.86, + "probability": 0.6922 + }, + { + "start": 42122.84, + "end": 42127.24, + "probability": 0.8835 + }, + { + "start": 42127.5, + "end": 42133.36, + "probability": 0.9241 + }, + { + "start": 42134.42, + "end": 42137.56, + "probability": 0.9803 + }, + { + "start": 42137.58, + "end": 42137.92, + "probability": 0.4711 + }, + { + "start": 42138.86, + "end": 42139.94, + "probability": 0.5945 + }, + { + "start": 42140.4, + "end": 42140.6, + "probability": 0.8784 + }, + { + "start": 42142.81, + "end": 42146.54, + "probability": 0.9939 + }, + { + "start": 42147.36, + "end": 42150.34, + "probability": 0.975 + }, + { + "start": 42150.6, + "end": 42152.78, + "probability": 0.7503 + }, + { + "start": 42152.86, + "end": 42153.2, + "probability": 0.3366 + }, + { + "start": 42153.7, + "end": 42158.18, + "probability": 0.7905 + }, + { + "start": 42158.34, + "end": 42160.42, + "probability": 0.8736 + }, + { + "start": 42160.58, + "end": 42161.88, + "probability": 0.9819 + }, + { + "start": 42162.56, + "end": 42164.94, + "probability": 0.9739 + }, + { + "start": 42164.94, + "end": 42167.22, + "probability": 0.9937 + }, + { + "start": 42169.93, + "end": 42172.48, + "probability": 0.9891 + }, + { + "start": 42175.78, + "end": 42180.14, + "probability": 0.9915 + }, + { + "start": 42180.14, + "end": 42184.0, + "probability": 0.9888 + }, + { + "start": 42184.0, + "end": 42188.26, + "probability": 0.9763 + }, + { + "start": 42188.94, + "end": 42193.44, + "probability": 0.9922 + }, + { + "start": 42193.44, + "end": 42197.66, + "probability": 0.9548 + }, + { + "start": 42198.76, + "end": 42201.52, + "probability": 0.9406 + }, + { + "start": 42201.64, + "end": 42201.98, + "probability": 0.5719 + }, + { + "start": 42203.04, + "end": 42203.54, + "probability": 0.0138 + }, + { + "start": 42204.21, + "end": 42208.02, + "probability": 0.9728 + }, + { + "start": 42213.6, + "end": 42215.08, + "probability": 0.9368 + }, + { + "start": 42215.32, + "end": 42216.14, + "probability": 0.2979 + }, + { + "start": 42216.44, + "end": 42217.08, + "probability": 0.3322 + }, + { + "start": 42218.62, + "end": 42222.04, + "probability": 0.1401 + }, + { + "start": 42224.1, + "end": 42227.16, + "probability": 0.5166 + }, + { + "start": 42227.36, + "end": 42228.9, + "probability": 0.4557 + }, + { + "start": 42229.54, + "end": 42231.56, + "probability": 0.8066 + }, + { + "start": 42232.68, + "end": 42235.74, + "probability": 0.8787 + }, + { + "start": 42237.32, + "end": 42239.12, + "probability": 0.1214 + }, + { + "start": 42239.34, + "end": 42239.98, + "probability": 0.7856 + }, + { + "start": 42240.06, + "end": 42241.08, + "probability": 0.7449 + }, + { + "start": 42242.28, + "end": 42243.92, + "probability": 0.0447 + }, + { + "start": 42245.4, + "end": 42245.62, + "probability": 0.4974 + }, + { + "start": 42245.88, + "end": 42246.32, + "probability": 0.9648 + }, + { + "start": 42246.47, + "end": 42250.3, + "probability": 0.9899 + }, + { + "start": 42250.74, + "end": 42252.0, + "probability": 0.7982 + }, + { + "start": 42252.78, + "end": 42256.24, + "probability": 0.808 + }, + { + "start": 42260.62, + "end": 42262.18, + "probability": 0.78 + }, + { + "start": 42262.62, + "end": 42267.46, + "probability": 0.8378 + }, + { + "start": 42267.56, + "end": 42267.74, + "probability": 0.5003 + }, + { + "start": 42268.46, + "end": 42269.7, + "probability": 0.9877 + }, + { + "start": 42270.2, + "end": 42271.28, + "probability": 0.3934 + }, + { + "start": 42271.54, + "end": 42272.44, + "probability": 0.8995 + }, + { + "start": 42274.1, + "end": 42275.32, + "probability": 0.6649 + }, + { + "start": 42275.34, + "end": 42276.0, + "probability": 0.7545 + }, + { + "start": 42276.54, + "end": 42278.84, + "probability": 0.8183 + }, + { + "start": 42281.18, + "end": 42283.64, + "probability": 0.7316 + }, + { + "start": 42284.24, + "end": 42287.76, + "probability": 0.8364 + }, + { + "start": 42288.5, + "end": 42290.28, + "probability": 0.8884 + }, + { + "start": 42290.36, + "end": 42290.46, + "probability": 0.7441 + }, + { + "start": 42290.64, + "end": 42291.12, + "probability": 0.1887 + }, + { + "start": 42291.2, + "end": 42291.3, + "probability": 0.389 + }, + { + "start": 42291.36, + "end": 42291.84, + "probability": 0.4437 + }, + { + "start": 42291.92, + "end": 42292.58, + "probability": 0.9897 + }, + { + "start": 42292.86, + "end": 42293.1, + "probability": 0.9193 + }, + { + "start": 42295.8, + "end": 42296.0, + "probability": 0.0988 + }, + { + "start": 42296.0, + "end": 42297.28, + "probability": 0.2717 + }, + { + "start": 42297.28, + "end": 42299.54, + "probability": 0.9928 + }, + { + "start": 42299.72, + "end": 42303.5, + "probability": 0.8539 + }, + { + "start": 42304.36, + "end": 42304.92, + "probability": 0.8466 + }, + { + "start": 42306.42, + "end": 42310.22, + "probability": 0.4556 + }, + { + "start": 42310.48, + "end": 42310.6, + "probability": 0.6692 + }, + { + "start": 42310.74, + "end": 42312.94, + "probability": 0.9547 + }, + { + "start": 42313.46, + "end": 42314.15, + "probability": 0.8792 + }, + { + "start": 42314.52, + "end": 42315.71, + "probability": 0.7963 + }, + { + "start": 42316.16, + "end": 42316.24, + "probability": 0.0895 + }, + { + "start": 42316.26, + "end": 42317.06, + "probability": 0.9751 + }, + { + "start": 42317.94, + "end": 42323.4, + "probability": 0.7664 + }, + { + "start": 42323.74, + "end": 42324.2, + "probability": 0.8469 + }, + { + "start": 42324.46, + "end": 42324.9, + "probability": 0.1802 + }, + { + "start": 42325.72, + "end": 42327.14, + "probability": 0.5082 + }, + { + "start": 42328.5, + "end": 42331.22, + "probability": 0.7947 + }, + { + "start": 42332.5, + "end": 42332.5, + "probability": 0.0255 + }, + { + "start": 42332.5, + "end": 42332.76, + "probability": 0.6441 + }, + { + "start": 42334.42, + "end": 42335.14, + "probability": 0.9712 + }, + { + "start": 42335.3, + "end": 42335.94, + "probability": 0.8102 + }, + { + "start": 42336.16, + "end": 42337.04, + "probability": 0.9643 + }, + { + "start": 42337.08, + "end": 42337.94, + "probability": 0.8184 + }, + { + "start": 42338.18, + "end": 42340.34, + "probability": 0.3442 + }, + { + "start": 42341.08, + "end": 42344.84, + "probability": 0.9635 + }, + { + "start": 42345.14, + "end": 42347.04, + "probability": 0.6759 + }, + { + "start": 42348.08, + "end": 42349.04, + "probability": 0.6185 + }, + { + "start": 42350.9, + "end": 42351.91, + "probability": 0.9067 + }, + { + "start": 42352.94, + "end": 42353.36, + "probability": 0.693 + }, + { + "start": 42353.9, + "end": 42357.12, + "probability": 0.7741 + }, + { + "start": 42357.62, + "end": 42360.96, + "probability": 0.9258 + }, + { + "start": 42362.02, + "end": 42365.84, + "probability": 0.9736 + }, + { + "start": 42366.68, + "end": 42368.36, + "probability": 0.9345 + }, + { + "start": 42368.5, + "end": 42368.94, + "probability": 0.8726 + }, + { + "start": 42373.9, + "end": 42377.14, + "probability": 0.6638 + }, + { + "start": 42378.04, + "end": 42379.1, + "probability": 0.623 + }, + { + "start": 42379.54, + "end": 42381.66, + "probability": 0.8871 + }, + { + "start": 42384.66, + "end": 42388.98, + "probability": 0.8579 + }, + { + "start": 42389.84, + "end": 42390.12, + "probability": 0.3425 + }, + { + "start": 42390.53, + "end": 42395.22, + "probability": 0.9892 + }, + { + "start": 42396.34, + "end": 42399.54, + "probability": 0.8036 + }, + { + "start": 42399.96, + "end": 42405.32, + "probability": 0.8102 + }, + { + "start": 42407.83, + "end": 42409.2, + "probability": 0.8222 + }, + { + "start": 42409.3, + "end": 42411.51, + "probability": 0.7438 + }, + { + "start": 42412.74, + "end": 42413.8, + "probability": 0.0179 + }, + { + "start": 42413.92, + "end": 42414.48, + "probability": 0.1203 + }, + { + "start": 42415.1, + "end": 42416.67, + "probability": 0.9125 + }, + { + "start": 42417.72, + "end": 42418.18, + "probability": 0.0753 + }, + { + "start": 42418.22, + "end": 42418.72, + "probability": 0.0104 + }, + { + "start": 42418.98, + "end": 42421.13, + "probability": 0.2383 + }, + { + "start": 42423.47, + "end": 42425.34, + "probability": 0.0398 + }, + { + "start": 42425.34, + "end": 42427.16, + "probability": 0.8625 + }, + { + "start": 42427.36, + "end": 42427.96, + "probability": 0.1795 + }, + { + "start": 42428.08, + "end": 42428.08, + "probability": 0.0002 + }, + { + "start": 42429.74, + "end": 42430.26, + "probability": 0.0902 + }, + { + "start": 42432.62, + "end": 42432.9, + "probability": 0.7644 + }, + { + "start": 42434.82, + "end": 42435.7, + "probability": 0.5509 + }, + { + "start": 42436.74, + "end": 42437.26, + "probability": 0.808 + }, + { + "start": 42439.0, + "end": 42440.68, + "probability": 0.5793 + }, + { + "start": 42441.34, + "end": 42442.24, + "probability": 0.5237 + }, + { + "start": 42442.32, + "end": 42442.56, + "probability": 0.7363 + }, + { + "start": 42442.7, + "end": 42444.04, + "probability": 0.9873 + }, + { + "start": 42444.04, + "end": 42444.56, + "probability": 0.2242 + }, + { + "start": 42446.54, + "end": 42452.94, + "probability": 0.8176 + }, + { + "start": 42453.0, + "end": 42453.96, + "probability": 0.7812 + }, + { + "start": 42454.22, + "end": 42455.84, + "probability": 0.9703 + }, + { + "start": 42457.3, + "end": 42457.66, + "probability": 0.368 + }, + { + "start": 42458.04, + "end": 42458.4, + "probability": 0.4346 + }, + { + "start": 42458.52, + "end": 42460.48, + "probability": 0.5928 + }, + { + "start": 42460.58, + "end": 42463.66, + "probability": 0.3209 + }, + { + "start": 42463.9, + "end": 42465.37, + "probability": 0.0887 + }, + { + "start": 42465.88, + "end": 42466.24, + "probability": 0.7289 + }, + { + "start": 42466.62, + "end": 42467.32, + "probability": 0.684 + }, + { + "start": 42469.08, + "end": 42471.42, + "probability": 0.9478 + }, + { + "start": 42472.94, + "end": 42474.2, + "probability": 0.1395 + }, + { + "start": 42475.94, + "end": 42476.08, + "probability": 0.2252 + }, + { + "start": 42476.24, + "end": 42477.44, + "probability": 0.7027 + }, + { + "start": 42477.52, + "end": 42478.64, + "probability": 0.723 + }, + { + "start": 42480.44, + "end": 42482.44, + "probability": 0.7479 + }, + { + "start": 42482.56, + "end": 42484.62, + "probability": 0.797 + }, + { + "start": 42485.23, + "end": 42486.96, + "probability": 0.9967 + }, + { + "start": 42487.5, + "end": 42488.76, + "probability": 0.9254 + }, + { + "start": 42490.16, + "end": 42490.36, + "probability": 0.8831 + }, + { + "start": 42491.08, + "end": 42491.98, + "probability": 0.746 + }, + { + "start": 42492.2, + "end": 42499.24, + "probability": 0.8364 + }, + { + "start": 42499.48, + "end": 42504.32, + "probability": 0.9721 + }, + { + "start": 42505.12, + "end": 42508.52, + "probability": 0.9952 + }, + { + "start": 42508.88, + "end": 42511.64, + "probability": 0.7812 + }, + { + "start": 42513.8, + "end": 42516.8, + "probability": 0.995 + }, + { + "start": 42517.6, + "end": 42520.06, + "probability": 0.9312 + }, + { + "start": 42520.52, + "end": 42521.82, + "probability": 0.975 + }, + { + "start": 42522.06, + "end": 42523.37, + "probability": 0.7646 + }, + { + "start": 42523.98, + "end": 42525.08, + "probability": 0.6909 + }, + { + "start": 42525.16, + "end": 42527.34, + "probability": 0.9706 + }, + { + "start": 42528.26, + "end": 42529.38, + "probability": 0.5003 + }, + { + "start": 42531.08, + "end": 42532.13, + "probability": 0.8604 + }, + { + "start": 42532.2, + "end": 42535.78, + "probability": 0.9961 + }, + { + "start": 42536.68, + "end": 42537.44, + "probability": 0.958 + }, + { + "start": 42537.58, + "end": 42540.9, + "probability": 0.7382 + }, + { + "start": 42541.16, + "end": 42541.72, + "probability": 0.9575 + }, + { + "start": 42542.64, + "end": 42543.02, + "probability": 0.4533 + }, + { + "start": 42544.06, + "end": 42546.99, + "probability": 0.1759 + }, + { + "start": 42547.58, + "end": 42548.78, + "probability": 0.6105 + }, + { + "start": 42548.9, + "end": 42550.8, + "probability": 0.9778 + }, + { + "start": 42551.34, + "end": 42556.9, + "probability": 0.6534 + }, + { + "start": 42557.39, + "end": 42559.6, + "probability": 0.9708 + }, + { + "start": 42559.76, + "end": 42560.72, + "probability": 0.9701 + }, + { + "start": 42561.42, + "end": 42564.34, + "probability": 0.9565 + }, + { + "start": 42566.52, + "end": 42566.9, + "probability": 0.546 + }, + { + "start": 42567.76, + "end": 42569.35, + "probability": 0.9922 + }, + { + "start": 42569.78, + "end": 42572.06, + "probability": 0.8804 + }, + { + "start": 42572.12, + "end": 42572.44, + "probability": 0.846 + }, + { + "start": 42573.48, + "end": 42577.08, + "probability": 0.7772 + }, + { + "start": 42577.32, + "end": 42579.3, + "probability": 0.6271 + }, + { + "start": 42579.58, + "end": 42580.45, + "probability": 0.8075 + }, + { + "start": 42580.86, + "end": 42583.48, + "probability": 0.9949 + }, + { + "start": 42584.02, + "end": 42585.04, + "probability": 0.9936 + }, + { + "start": 42585.08, + "end": 42585.52, + "probability": 0.9854 + }, + { + "start": 42585.76, + "end": 42587.3, + "probability": 0.9971 + }, + { + "start": 42587.42, + "end": 42589.26, + "probability": 0.9993 + }, + { + "start": 42590.6, + "end": 42592.06, + "probability": 0.9907 + }, + { + "start": 42593.6, + "end": 42595.28, + "probability": 0.9836 + }, + { + "start": 42595.7, + "end": 42597.04, + "probability": 0.8645 + }, + { + "start": 42597.82, + "end": 42599.98, + "probability": 0.9895 + }, + { + "start": 42601.84, + "end": 42605.71, + "probability": 0.9409 + }, + { + "start": 42606.28, + "end": 42608.72, + "probability": 0.847 + }, + { + "start": 42608.88, + "end": 42614.74, + "probability": 0.5463 + }, + { + "start": 42616.6, + "end": 42619.82, + "probability": 0.7255 + }, + { + "start": 42620.32, + "end": 42621.62, + "probability": 0.9757 + }, + { + "start": 42622.14, + "end": 42622.66, + "probability": 0.7662 + }, + { + "start": 42623.6, + "end": 42626.26, + "probability": 0.958 + }, + { + "start": 42627.48, + "end": 42628.22, + "probability": 0.2587 + }, + { + "start": 42629.24, + "end": 42630.5, + "probability": 0.4779 + }, + { + "start": 42634.85, + "end": 42636.26, + "probability": 0.5129 + }, + { + "start": 42636.62, + "end": 42637.54, + "probability": 0.069 + }, + { + "start": 42638.4, + "end": 42638.9, + "probability": 0.5354 + }, + { + "start": 42639.1, + "end": 42639.96, + "probability": 0.998 + }, + { + "start": 42640.06, + "end": 42641.66, + "probability": 0.6249 + }, + { + "start": 42642.56, + "end": 42642.56, + "probability": 0.4338 + }, + { + "start": 42642.56, + "end": 42644.24, + "probability": 0.85 + }, + { + "start": 42644.38, + "end": 42645.05, + "probability": 0.9438 + }, + { + "start": 42646.7, + "end": 42649.41, + "probability": 0.9879 + }, + { + "start": 42650.1, + "end": 42653.04, + "probability": 0.9872 + }, + { + "start": 42654.48, + "end": 42656.3, + "probability": 0.7467 + }, + { + "start": 42658.36, + "end": 42662.08, + "probability": 0.6668 + }, + { + "start": 42663.2, + "end": 42664.62, + "probability": 0.5801 + }, + { + "start": 42665.22, + "end": 42666.68, + "probability": 0.3552 + }, + { + "start": 42666.74, + "end": 42666.94, + "probability": 0.2395 + }, + { + "start": 42668.44, + "end": 42672.54, + "probability": 0.4712 + }, + { + "start": 42672.54, + "end": 42672.54, + "probability": 0.0564 + }, + { + "start": 42674.02, + "end": 42675.28, + "probability": 0.7657 + }, + { + "start": 42675.34, + "end": 42679.36, + "probability": 0.4423 + }, + { + "start": 42679.84, + "end": 42682.86, + "probability": 0.0097 + }, + { + "start": 42683.26, + "end": 42688.78, + "probability": 0.9828 + }, + { + "start": 42688.78, + "end": 42690.58, + "probability": 0.0382 + }, + { + "start": 42691.12, + "end": 42692.26, + "probability": 0.4016 + }, + { + "start": 42694.68, + "end": 42698.44, + "probability": 0.7363 + }, + { + "start": 42698.52, + "end": 42700.7, + "probability": 0.9668 + }, + { + "start": 42701.2, + "end": 42704.94, + "probability": 0.9149 + }, + { + "start": 42705.06, + "end": 42709.08, + "probability": 0.7153 + }, + { + "start": 42710.58, + "end": 42712.26, + "probability": 0.9702 + }, + { + "start": 42712.56, + "end": 42714.2, + "probability": 0.9466 + }, + { + "start": 42714.3, + "end": 42714.78, + "probability": 0.9854 + }, + { + "start": 42714.88, + "end": 42715.24, + "probability": 0.9846 + }, + { + "start": 42715.6, + "end": 42715.96, + "probability": 0.4604 + }, + { + "start": 42716.08, + "end": 42716.56, + "probability": 0.7631 + }, + { + "start": 42718.8, + "end": 42719.66, + "probability": 0.633 + }, + { + "start": 42720.3, + "end": 42722.44, + "probability": 0.8307 + }, + { + "start": 42722.52, + "end": 42727.72, + "probability": 0.8144 + }, + { + "start": 42727.78, + "end": 42728.2, + "probability": 0.9809 + }, + { + "start": 42728.34, + "end": 42728.76, + "probability": 0.6716 + }, + { + "start": 42728.88, + "end": 42733.94, + "probability": 0.8443 + }, + { + "start": 42734.48, + "end": 42735.27, + "probability": 0.7217 + }, + { + "start": 42736.42, + "end": 42737.36, + "probability": 0.978 + }, + { + "start": 42737.48, + "end": 42738.34, + "probability": 0.7521 + }, + { + "start": 42738.36, + "end": 42739.6, + "probability": 0.7455 + }, + { + "start": 42739.68, + "end": 42740.43, + "probability": 0.5004 + }, + { + "start": 42740.62, + "end": 42744.42, + "probability": 0.8665 + }, + { + "start": 42744.74, + "end": 42745.3, + "probability": 0.5826 + }, + { + "start": 42745.3, + "end": 42746.28, + "probability": 0.8174 + }, + { + "start": 42747.0, + "end": 42748.72, + "probability": 0.6699 + }, + { + "start": 42749.52, + "end": 42750.58, + "probability": 0.8438 + }, + { + "start": 42750.77, + "end": 42754.67, + "probability": 0.9239 + }, + { + "start": 42755.62, + "end": 42756.75, + "probability": 0.6705 + }, + { + "start": 42757.36, + "end": 42761.3, + "probability": 0.7703 + }, + { + "start": 42762.38, + "end": 42763.84, + "probability": 0.5702 + }, + { + "start": 42764.52, + "end": 42765.82, + "probability": 0.9406 + }, + { + "start": 42765.94, + "end": 42768.04, + "probability": 0.6849 + }, + { + "start": 42768.22, + "end": 42768.68, + "probability": 0.4928 + }, + { + "start": 42768.68, + "end": 42769.68, + "probability": 0.9065 + }, + { + "start": 42769.68, + "end": 42772.1, + "probability": 0.9902 + }, + { + "start": 42772.22, + "end": 42772.74, + "probability": 0.5788 + }, + { + "start": 42772.8, + "end": 42774.93, + "probability": 0.9542 + }, + { + "start": 42775.28, + "end": 42776.56, + "probability": 0.7972 + }, + { + "start": 42777.38, + "end": 42779.3, + "probability": 0.9297 + }, + { + "start": 42780.26, + "end": 42782.9, + "probability": 0.7447 + }, + { + "start": 42783.46, + "end": 42784.05, + "probability": 0.1608 + }, + { + "start": 42784.72, + "end": 42784.78, + "probability": 0.2815 + }, + { + "start": 42784.8, + "end": 42784.96, + "probability": 0.4886 + }, + { + "start": 42785.22, + "end": 42785.9, + "probability": 0.7994 + }, + { + "start": 42786.04, + "end": 42788.04, + "probability": 0.8098 + }, + { + "start": 42788.32, + "end": 42790.26, + "probability": 0.5767 + }, + { + "start": 42790.38, + "end": 42795.54, + "probability": 0.5425 + }, + { + "start": 42796.36, + "end": 42796.92, + "probability": 0.5577 + }, + { + "start": 42797.56, + "end": 42798.69, + "probability": 0.6329 + }, + { + "start": 42800.0, + "end": 42802.62, + "probability": 0.8945 + }, + { + "start": 42805.56, + "end": 42806.08, + "probability": 0.3137 + }, + { + "start": 42807.48, + "end": 42810.5, + "probability": 0.9961 + }, + { + "start": 42814.08, + "end": 42814.74, + "probability": 0.9331 + }, + { + "start": 42815.69, + "end": 42819.36, + "probability": 0.8468 + }, + { + "start": 42819.64, + "end": 42820.04, + "probability": 0.3296 + }, + { + "start": 42820.16, + "end": 42821.82, + "probability": 0.6519 + }, + { + "start": 42821.84, + "end": 42823.51, + "probability": 0.3246 + }, + { + "start": 42823.86, + "end": 42825.54, + "probability": 0.611 + }, + { + "start": 42825.68, + "end": 42827.3, + "probability": 0.9609 + }, + { + "start": 42829.64, + "end": 42830.62, + "probability": 0.9007 + }, + { + "start": 42830.78, + "end": 42831.26, + "probability": 0.5196 + }, + { + "start": 42831.4, + "end": 42835.14, + "probability": 0.7595 + }, + { + "start": 42835.14, + "end": 42837.06, + "probability": 0.9988 + }, + { + "start": 42838.23, + "end": 42840.76, + "probability": 0.8216 + }, + { + "start": 42840.86, + "end": 42843.92, + "probability": 0.7201 + }, + { + "start": 42843.96, + "end": 42847.08, + "probability": 0.9791 + }, + { + "start": 42849.74, + "end": 42850.34, + "probability": 0.8743 + }, + { + "start": 42851.0, + "end": 42853.06, + "probability": 0.9827 + }, + { + "start": 42853.32, + "end": 42855.28, + "probability": 0.9883 + }, + { + "start": 42855.44, + "end": 42856.86, + "probability": 0.6712 + }, + { + "start": 42857.38, + "end": 42860.52, + "probability": 0.9961 + }, + { + "start": 42860.64, + "end": 42861.78, + "probability": 0.8672 + }, + { + "start": 42861.96, + "end": 42862.86, + "probability": 0.9978 + }, + { + "start": 42863.82, + "end": 42869.68, + "probability": 0.9775 + }, + { + "start": 42870.72, + "end": 42872.84, + "probability": 0.6976 + }, + { + "start": 42873.44, + "end": 42875.4, + "probability": 0.9917 + }, + { + "start": 42876.34, + "end": 42877.88, + "probability": 0.6606 + }, + { + "start": 42878.2, + "end": 42881.8, + "probability": 0.9786 + }, + { + "start": 42883.08, + "end": 42884.0, + "probability": 0.7935 + }, + { + "start": 42884.26, + "end": 42884.76, + "probability": 0.6975 + }, + { + "start": 42884.86, + "end": 42889.24, + "probability": 0.9505 + }, + { + "start": 42889.42, + "end": 42890.44, + "probability": 0.7986 + }, + { + "start": 42891.34, + "end": 42895.34, + "probability": 0.9785 + }, + { + "start": 42895.72, + "end": 42895.98, + "probability": 0.3972 + }, + { + "start": 42896.5, + "end": 42899.24, + "probability": 0.9038 + }, + { + "start": 42901.16, + "end": 42903.09, + "probability": 0.5157 + }, + { + "start": 42904.68, + "end": 42907.17, + "probability": 0.9795 + }, + { + "start": 42907.42, + "end": 42907.72, + "probability": 0.8279 + }, + { + "start": 42907.78, + "end": 42908.38, + "probability": 0.8582 + }, + { + "start": 42909.48, + "end": 42913.2, + "probability": 0.9004 + }, + { + "start": 42914.96, + "end": 42921.32, + "probability": 0.987 + }, + { + "start": 42922.22, + "end": 42924.62, + "probability": 0.9032 + }, + { + "start": 42924.9, + "end": 42925.62, + "probability": 0.4584 + }, + { + "start": 42925.9, + "end": 42927.36, + "probability": 0.8159 + }, + { + "start": 42928.2, + "end": 42931.3, + "probability": 0.9973 + }, + { + "start": 42931.86, + "end": 42936.04, + "probability": 0.959 + }, + { + "start": 42936.18, + "end": 42938.6, + "probability": 0.9634 + }, + { + "start": 42939.82, + "end": 42947.88, + "probability": 0.9465 + }, + { + "start": 42949.04, + "end": 42950.22, + "probability": 0.8355 + }, + { + "start": 42950.82, + "end": 42953.74, + "probability": 0.9785 + }, + { + "start": 42954.66, + "end": 42955.24, + "probability": 0.9283 + }, + { + "start": 42955.46, + "end": 42957.09, + "probability": 0.9943 + }, + { + "start": 42957.46, + "end": 42959.7, + "probability": 0.7051 + }, + { + "start": 42960.6, + "end": 42964.02, + "probability": 0.9688 + }, + { + "start": 42964.02, + "end": 42971.38, + "probability": 0.9675 + }, + { + "start": 42971.82, + "end": 42975.76, + "probability": 0.8384 + }, + { + "start": 42975.76, + "end": 42980.38, + "probability": 0.8664 + }, + { + "start": 42981.02, + "end": 42982.8, + "probability": 0.9142 + }, + { + "start": 42984.32, + "end": 42985.56, + "probability": 0.9644 + }, + { + "start": 42985.7, + "end": 42989.02, + "probability": 0.9946 + }, + { + "start": 42990.0, + "end": 42993.84, + "probability": 0.9982 + }, + { + "start": 42994.96, + "end": 42997.36, + "probability": 0.8232 + }, + { + "start": 42998.36, + "end": 42999.32, + "probability": 0.9961 + }, + { + "start": 42999.52, + "end": 42999.6, + "probability": 0.2925 + }, + { + "start": 43003.42, + "end": 43006.6, + "probability": 0.4809 + }, + { + "start": 43007.7, + "end": 43009.3, + "probability": 0.8501 + }, + { + "start": 43009.4, + "end": 43012.78, + "probability": 0.8177 + }, + { + "start": 43015.22, + "end": 43017.42, + "probability": 0.4961 + }, + { + "start": 43018.0, + "end": 43019.86, + "probability": 0.8244 + }, + { + "start": 43020.08, + "end": 43021.88, + "probability": 0.9365 + }, + { + "start": 43022.6, + "end": 43023.06, + "probability": 0.6617 + }, + { + "start": 43023.18, + "end": 43024.66, + "probability": 0.9714 + }, + { + "start": 43025.34, + "end": 43027.42, + "probability": 0.9661 + }, + { + "start": 43029.36, + "end": 43030.58, + "probability": 0.9732 + }, + { + "start": 43031.2, + "end": 43034.02, + "probability": 0.9719 + }, + { + "start": 43034.26, + "end": 43035.2, + "probability": 0.788 + }, + { + "start": 43035.6, + "end": 43037.8, + "probability": 0.6258 + }, + { + "start": 43038.34, + "end": 43041.3, + "probability": 0.9792 + }, + { + "start": 43041.96, + "end": 43043.94, + "probability": 0.9889 + }, + { + "start": 43044.84, + "end": 43045.48, + "probability": 0.9267 + }, + { + "start": 43045.6, + "end": 43046.54, + "probability": 0.9537 + }, + { + "start": 43046.62, + "end": 43047.12, + "probability": 0.913 + }, + { + "start": 43047.18, + "end": 43047.62, + "probability": 0.927 + }, + { + "start": 43047.68, + "end": 43048.12, + "probability": 0.9114 + }, + { + "start": 43048.3, + "end": 43048.4, + "probability": 0.8585 + }, + { + "start": 43050.45, + "end": 43054.32, + "probability": 0.8706 + }, + { + "start": 43055.78, + "end": 43057.46, + "probability": 0.8269 + }, + { + "start": 43058.04, + "end": 43058.96, + "probability": 0.982 + }, + { + "start": 43059.5, + "end": 43060.44, + "probability": 0.9565 + }, + { + "start": 43060.7, + "end": 43061.6, + "probability": 0.8582 + }, + { + "start": 43061.72, + "end": 43062.68, + "probability": 0.9574 + }, + { + "start": 43063.2, + "end": 43065.24, + "probability": 0.5632 + }, + { + "start": 43065.34, + "end": 43069.28, + "probability": 0.1095 + }, + { + "start": 43069.28, + "end": 43071.08, + "probability": 0.7494 + }, + { + "start": 43071.48, + "end": 43072.4, + "probability": 0.7844 + }, + { + "start": 43072.8, + "end": 43073.34, + "probability": 0.8596 + }, + { + "start": 43073.5, + "end": 43073.64, + "probability": 0.2181 + }, + { + "start": 43073.64, + "end": 43073.96, + "probability": 0.5894 + }, + { + "start": 43074.14, + "end": 43076.1, + "probability": 0.7383 + }, + { + "start": 43076.38, + "end": 43077.1, + "probability": 0.7567 + }, + { + "start": 43078.02, + "end": 43079.86, + "probability": 0.5968 + }, + { + "start": 43080.92, + "end": 43081.11, + "probability": 0.5606 + }, + { + "start": 43082.12, + "end": 43082.54, + "probability": 0.3089 + }, + { + "start": 43084.18, + "end": 43086.92, + "probability": 0.903 + }, + { + "start": 43087.96, + "end": 43088.58, + "probability": 0.9017 + }, + { + "start": 43089.6, + "end": 43092.42, + "probability": 0.9819 + }, + { + "start": 43092.42, + "end": 43094.53, + "probability": 0.7895 + }, + { + "start": 43094.86, + "end": 43096.36, + "probability": 0.9778 + }, + { + "start": 43097.28, + "end": 43100.5, + "probability": 0.9448 + }, + { + "start": 43101.86, + "end": 43104.98, + "probability": 0.9943 + }, + { + "start": 43106.34, + "end": 43107.7, + "probability": 0.6075 + }, + { + "start": 43108.32, + "end": 43108.69, + "probability": 0.6035 + }, + { + "start": 43109.02, + "end": 43109.1, + "probability": 0.9132 + }, + { + "start": 43109.22, + "end": 43110.28, + "probability": 0.9224 + }, + { + "start": 43110.46, + "end": 43112.3, + "probability": 0.9912 + }, + { + "start": 43113.76, + "end": 43115.02, + "probability": 0.989 + }, + { + "start": 43115.84, + "end": 43117.66, + "probability": 0.5817 + }, + { + "start": 43118.58, + "end": 43121.46, + "probability": 0.6963 + }, + { + "start": 43121.6, + "end": 43123.14, + "probability": 0.6639 + }, + { + "start": 43123.58, + "end": 43124.5, + "probability": 0.6901 + }, + { + "start": 43126.12, + "end": 43127.42, + "probability": 0.994 + }, + { + "start": 43128.2, + "end": 43129.34, + "probability": 0.7917 + }, + { + "start": 43129.46, + "end": 43130.53, + "probability": 0.8647 + }, + { + "start": 43130.9, + "end": 43132.48, + "probability": 0.842 + }, + { + "start": 43132.62, + "end": 43133.56, + "probability": 0.8867 + }, + { + "start": 43134.26, + "end": 43134.94, + "probability": 0.9756 + }, + { + "start": 43135.54, + "end": 43136.51, + "probability": 0.7476 + }, + { + "start": 43136.84, + "end": 43138.6, + "probability": 0.6497 + }, + { + "start": 43138.94, + "end": 43142.6, + "probability": 0.8809 + }, + { + "start": 43144.82, + "end": 43146.1, + "probability": 0.7912 + }, + { + "start": 43147.44, + "end": 43147.64, + "probability": 0.0426 + }, + { + "start": 43152.36, + "end": 43152.76, + "probability": 0.1799 + }, + { + "start": 43153.34, + "end": 43154.18, + "probability": 0.9539 + }, + { + "start": 43154.46, + "end": 43155.5, + "probability": 0.965 + }, + { + "start": 43155.68, + "end": 43156.6, + "probability": 0.8488 + }, + { + "start": 43156.7, + "end": 43157.3, + "probability": 0.6011 + }, + { + "start": 43157.74, + "end": 43158.04, + "probability": 0.8507 + }, + { + "start": 43158.16, + "end": 43159.4, + "probability": 0.9492 + }, + { + "start": 43159.62, + "end": 43163.14, + "probability": 0.6523 + }, + { + "start": 43163.38, + "end": 43164.86, + "probability": 0.9571 + }, + { + "start": 43165.02, + "end": 43166.52, + "probability": 0.6861 + }, + { + "start": 43167.66, + "end": 43168.8, + "probability": 0.9909 + }, + { + "start": 43169.22, + "end": 43170.22, + "probability": 0.99 + }, + { + "start": 43170.4, + "end": 43171.04, + "probability": 0.814 + }, + { + "start": 43171.52, + "end": 43173.38, + "probability": 0.9927 + }, + { + "start": 43173.5, + "end": 43174.44, + "probability": 0.9641 + }, + { + "start": 43174.92, + "end": 43175.54, + "probability": 0.9932 + }, + { + "start": 43176.32, + "end": 43177.58, + "probability": 0.873 + }, + { + "start": 43177.94, + "end": 43182.32, + "probability": 0.9877 + }, + { + "start": 43182.58, + "end": 43184.2, + "probability": 0.9988 + }, + { + "start": 43184.7, + "end": 43186.3, + "probability": 0.9288 + }, + { + "start": 43187.08, + "end": 43188.46, + "probability": 0.842 + }, + { + "start": 43189.28, + "end": 43193.44, + "probability": 0.8942 + }, + { + "start": 43194.04, + "end": 43194.86, + "probability": 0.5954 + }, + { + "start": 43196.24, + "end": 43204.16, + "probability": 0.9937 + }, + { + "start": 43204.72, + "end": 43208.22, + "probability": 0.7569 + }, + { + "start": 43208.66, + "end": 43208.88, + "probability": 0.7664 + }, + { + "start": 43209.02, + "end": 43209.38, + "probability": 0.9119 + }, + { + "start": 43209.48, + "end": 43210.48, + "probability": 0.9568 + }, + { + "start": 43210.58, + "end": 43211.84, + "probability": 0.8577 + }, + { + "start": 43212.48, + "end": 43215.26, + "probability": 0.8515 + }, + { + "start": 43215.82, + "end": 43216.2, + "probability": 0.9727 + }, + { + "start": 43217.22, + "end": 43219.82, + "probability": 0.9989 + }, + { + "start": 43219.88, + "end": 43220.6, + "probability": 0.9138 + }, + { + "start": 43220.82, + "end": 43221.7, + "probability": 0.9346 + }, + { + "start": 43222.36, + "end": 43225.49, + "probability": 0.9545 + }, + { + "start": 43226.66, + "end": 43227.08, + "probability": 0.903 + }, + { + "start": 43227.42, + "end": 43230.3, + "probability": 0.8896 + }, + { + "start": 43230.74, + "end": 43232.16, + "probability": 0.8255 + }, + { + "start": 43232.4, + "end": 43236.08, + "probability": 0.9945 + }, + { + "start": 43236.86, + "end": 43240.14, + "probability": 0.9873 + }, + { + "start": 43241.38, + "end": 43245.96, + "probability": 0.9913 + }, + { + "start": 43246.88, + "end": 43248.26, + "probability": 0.551 + }, + { + "start": 43249.72, + "end": 43253.0, + "probability": 0.9971 + }, + { + "start": 43253.12, + "end": 43256.38, + "probability": 0.9961 + }, + { + "start": 43256.92, + "end": 43259.42, + "probability": 0.7087 + }, + { + "start": 43261.5, + "end": 43262.46, + "probability": 0.8572 + }, + { + "start": 43262.66, + "end": 43264.14, + "probability": 0.8044 + }, + { + "start": 43264.24, + "end": 43264.94, + "probability": 0.704 + }, + { + "start": 43265.54, + "end": 43267.22, + "probability": 0.9712 + }, + { + "start": 43268.14, + "end": 43269.44, + "probability": 0.9333 + }, + { + "start": 43270.56, + "end": 43271.72, + "probability": 0.8157 + }, + { + "start": 43273.52, + "end": 43276.36, + "probability": 0.9836 + }, + { + "start": 43277.04, + "end": 43278.54, + "probability": 0.9971 + }, + { + "start": 43279.46, + "end": 43287.08, + "probability": 0.9751 + }, + { + "start": 43287.78, + "end": 43289.18, + "probability": 0.6925 + }, + { + "start": 43289.32, + "end": 43290.04, + "probability": 0.8478 + }, + { + "start": 43290.2, + "end": 43291.28, + "probability": 0.9701 + }, + { + "start": 43291.82, + "end": 43298.74, + "probability": 0.9705 + }, + { + "start": 43299.74, + "end": 43301.16, + "probability": 0.8516 + }, + { + "start": 43301.26, + "end": 43303.44, + "probability": 0.9944 + }, + { + "start": 43304.1, + "end": 43305.8, + "probability": 0.8848 + }, + { + "start": 43306.24, + "end": 43307.38, + "probability": 0.9917 + }, + { + "start": 43307.8, + "end": 43309.8, + "probability": 0.9021 + }, + { + "start": 43309.94, + "end": 43313.22, + "probability": 0.9569 + }, + { + "start": 43313.68, + "end": 43315.64, + "probability": 0.869 + }, + { + "start": 43315.72, + "end": 43316.4, + "probability": 0.7819 + }, + { + "start": 43316.46, + "end": 43318.76, + "probability": 0.867 + }, + { + "start": 43319.16, + "end": 43320.38, + "probability": 0.4499 + }, + { + "start": 43321.82, + "end": 43324.84, + "probability": 0.9092 + }, + { + "start": 43325.62, + "end": 43327.8, + "probability": 0.5562 + }, + { + "start": 43328.66, + "end": 43329.62, + "probability": 0.942 + }, + { + "start": 43330.26, + "end": 43331.4, + "probability": 0.8708 + }, + { + "start": 43331.52, + "end": 43332.26, + "probability": 0.8799 + }, + { + "start": 43332.28, + "end": 43336.72, + "probability": 0.9846 + }, + { + "start": 43336.84, + "end": 43338.42, + "probability": 0.7217 + }, + { + "start": 43339.0, + "end": 43339.54, + "probability": 0.4375 + }, + { + "start": 43339.76, + "end": 43342.02, + "probability": 0.7543 + }, + { + "start": 43342.92, + "end": 43347.36, + "probability": 0.9358 + }, + { + "start": 43347.9, + "end": 43349.48, + "probability": 0.8509 + }, + { + "start": 43349.9, + "end": 43351.02, + "probability": 0.9503 + }, + { + "start": 43351.5, + "end": 43352.54, + "probability": 0.8713 + }, + { + "start": 43352.89, + "end": 43355.18, + "probability": 0.5512 + }, + { + "start": 43355.32, + "end": 43355.76, + "probability": 0.8719 + }, + { + "start": 43355.84, + "end": 43357.06, + "probability": 0.7982 + }, + { + "start": 43357.38, + "end": 43358.16, + "probability": 0.866 + }, + { + "start": 43359.92, + "end": 43364.94, + "probability": 0.9601 + }, + { + "start": 43365.66, + "end": 43366.38, + "probability": 0.7728 + }, + { + "start": 43366.84, + "end": 43368.62, + "probability": 0.7724 + }, + { + "start": 43368.7, + "end": 43373.58, + "probability": 0.9612 + }, + { + "start": 43373.92, + "end": 43375.04, + "probability": 0.821 + }, + { + "start": 43375.74, + "end": 43376.08, + "probability": 0.5866 + }, + { + "start": 43376.2, + "end": 43381.18, + "probability": 0.8229 + }, + { + "start": 43381.18, + "end": 43384.32, + "probability": 0.9885 + }, + { + "start": 43384.42, + "end": 43387.1, + "probability": 0.9216 + }, + { + "start": 43387.4, + "end": 43388.68, + "probability": 0.9411 + }, + { + "start": 43389.1, + "end": 43391.02, + "probability": 0.9927 + }, + { + "start": 43391.54, + "end": 43392.81, + "probability": 0.8008 + }, + { + "start": 43393.32, + "end": 43393.84, + "probability": 0.8318 + }, + { + "start": 43393.86, + "end": 43395.67, + "probability": 0.9769 + }, + { + "start": 43397.36, + "end": 43398.38, + "probability": 0.9887 + }, + { + "start": 43398.64, + "end": 43400.94, + "probability": 0.8142 + }, + { + "start": 43401.08, + "end": 43401.64, + "probability": 0.8915 + }, + { + "start": 43401.76, + "end": 43406.0, + "probability": 0.8373 + }, + { + "start": 43407.12, + "end": 43409.2, + "probability": 0.7648 + }, + { + "start": 43410.52, + "end": 43412.26, + "probability": 0.8884 + }, + { + "start": 43413.08, + "end": 43414.14, + "probability": 0.4537 + }, + { + "start": 43414.3, + "end": 43416.23, + "probability": 0.969 + }, + { + "start": 43417.3, + "end": 43419.74, + "probability": 0.9897 + }, + { + "start": 43420.12, + "end": 43421.46, + "probability": 0.9792 + }, + { + "start": 43421.5, + "end": 43424.28, + "probability": 0.9878 + }, + { + "start": 43424.42, + "end": 43425.92, + "probability": 0.6797 + }, + { + "start": 43428.68, + "end": 43432.64, + "probability": 0.996 + }, + { + "start": 43432.84, + "end": 43434.14, + "probability": 0.8304 + }, + { + "start": 43434.2, + "end": 43436.56, + "probability": 0.9816 + }, + { + "start": 43436.96, + "end": 43437.46, + "probability": 0.6798 + }, + { + "start": 43437.74, + "end": 43438.3, + "probability": 0.7421 + }, + { + "start": 43438.48, + "end": 43439.48, + "probability": 0.5417 + }, + { + "start": 43439.88, + "end": 43441.73, + "probability": 0.8333 + }, + { + "start": 43444.14, + "end": 43451.84, + "probability": 0.9563 + }, + { + "start": 43452.26, + "end": 43456.46, + "probability": 0.7688 + }, + { + "start": 43456.64, + "end": 43457.05, + "probability": 0.8807 + }, + { + "start": 43458.12, + "end": 43461.36, + "probability": 0.9646 + }, + { + "start": 43461.9, + "end": 43463.88, + "probability": 0.9452 + }, + { + "start": 43464.5, + "end": 43468.68, + "probability": 0.9146 + }, + { + "start": 43469.66, + "end": 43471.68, + "probability": 0.6615 + }, + { + "start": 43472.04, + "end": 43476.26, + "probability": 0.9232 + }, + { + "start": 43477.06, + "end": 43477.98, + "probability": 0.6834 + }, + { + "start": 43478.72, + "end": 43481.0, + "probability": 0.7602 + }, + { + "start": 43481.36, + "end": 43487.08, + "probability": 0.9922 + }, + { + "start": 43487.32, + "end": 43488.42, + "probability": 0.9694 + }, + { + "start": 43488.54, + "end": 43491.5, + "probability": 0.8148 + }, + { + "start": 43491.9, + "end": 43493.56, + "probability": 0.9627 + }, + { + "start": 43494.1, + "end": 43495.42, + "probability": 0.996 + }, + { + "start": 43496.98, + "end": 43497.2, + "probability": 0.8773 + }, + { + "start": 43497.26, + "end": 43499.38, + "probability": 0.843 + }, + { + "start": 43499.44, + "end": 43502.54, + "probability": 0.917 + }, + { + "start": 43502.54, + "end": 43505.18, + "probability": 0.98 + }, + { + "start": 43505.36, + "end": 43507.87, + "probability": 0.9854 + }, + { + "start": 43508.12, + "end": 43510.44, + "probability": 0.9976 + }, + { + "start": 43510.82, + "end": 43513.1, + "probability": 0.9979 + }, + { + "start": 43513.2, + "end": 43514.56, + "probability": 0.9971 + }, + { + "start": 43516.64, + "end": 43519.1, + "probability": 0.9807 + }, + { + "start": 43519.18, + "end": 43522.16, + "probability": 0.9749 + }, + { + "start": 43522.2, + "end": 43524.28, + "probability": 0.8051 + }, + { + "start": 43524.64, + "end": 43527.64, + "probability": 0.9958 + }, + { + "start": 43527.7, + "end": 43530.26, + "probability": 0.903 + }, + { + "start": 43530.88, + "end": 43534.2, + "probability": 0.8864 + }, + { + "start": 43534.92, + "end": 43536.15, + "probability": 0.8307 + }, + { + "start": 43537.99, + "end": 43542.3, + "probability": 0.7043 + }, + { + "start": 43542.66, + "end": 43543.06, + "probability": 0.6853 + }, + { + "start": 43544.1, + "end": 43545.3, + "probability": 0.9312 + }, + { + "start": 43545.84, + "end": 43547.72, + "probability": 0.8606 + }, + { + "start": 43548.94, + "end": 43552.64, + "probability": 0.9505 + }, + { + "start": 43552.78, + "end": 43555.04, + "probability": 0.9935 + }, + { + "start": 43555.6, + "end": 43557.22, + "probability": 0.9782 + }, + { + "start": 43559.02, + "end": 43560.76, + "probability": 0.9644 + }, + { + "start": 43561.06, + "end": 43561.52, + "probability": 0.6777 + }, + { + "start": 43562.32, + "end": 43563.77, + "probability": 0.8957 + }, + { + "start": 43564.32, + "end": 43564.72, + "probability": 0.5811 + }, + { + "start": 43565.2, + "end": 43565.32, + "probability": 0.5527 + }, + { + "start": 43565.42, + "end": 43566.54, + "probability": 0.8801 + }, + { + "start": 43567.04, + "end": 43568.26, + "probability": 0.8069 + }, + { + "start": 43568.34, + "end": 43568.7, + "probability": 0.9317 + }, + { + "start": 43568.76, + "end": 43569.14, + "probability": 0.9771 + }, + { + "start": 43569.14, + "end": 43569.24, + "probability": 0.9738 + }, + { + "start": 43569.64, + "end": 43569.94, + "probability": 0.8703 + }, + { + "start": 43570.12, + "end": 43570.56, + "probability": 0.9305 + }, + { + "start": 43571.14, + "end": 43571.92, + "probability": 0.9165 + }, + { + "start": 43572.76, + "end": 43576.68, + "probability": 0.9575 + }, + { + "start": 43577.22, + "end": 43581.52, + "probability": 0.9759 + }, + { + "start": 43582.8, + "end": 43583.48, + "probability": 0.9162 + }, + { + "start": 43583.88, + "end": 43584.3, + "probability": 0.668 + }, + { + "start": 43584.7, + "end": 43587.36, + "probability": 0.7364 + }, + { + "start": 43588.08, + "end": 43588.48, + "probability": 0.0834 + }, + { + "start": 43589.36, + "end": 43589.96, + "probability": 0.3124 + }, + { + "start": 43589.98, + "end": 43591.12, + "probability": 0.9968 + }, + { + "start": 43591.52, + "end": 43593.46, + "probability": 0.6567 + }, + { + "start": 43593.9, + "end": 43595.62, + "probability": 0.6549 + }, + { + "start": 43595.82, + "end": 43602.04, + "probability": 0.6026 + }, + { + "start": 43602.82, + "end": 43605.36, + "probability": 0.6377 + }, + { + "start": 43605.42, + "end": 43607.0, + "probability": 0.9825 + }, + { + "start": 43607.06, + "end": 43607.98, + "probability": 0.8725 + }, + { + "start": 43609.92, + "end": 43613.62, + "probability": 0.9486 + }, + { + "start": 43615.8, + "end": 43616.32, + "probability": 0.599 + }, + { + "start": 43616.46, + "end": 43617.38, + "probability": 0.7082 + }, + { + "start": 43621.94, + "end": 43623.36, + "probability": 0.2933 + }, + { + "start": 43644.82, + "end": 43646.5, + "probability": 0.6345 + }, + { + "start": 43647.96, + "end": 43649.6, + "probability": 0.7577 + }, + { + "start": 43652.3, + "end": 43654.48, + "probability": 0.9983 + }, + { + "start": 43655.66, + "end": 43656.54, + "probability": 0.7906 + }, + { + "start": 43657.34, + "end": 43660.86, + "probability": 0.9766 + }, + { + "start": 43662.9, + "end": 43665.4, + "probability": 0.9939 + }, + { + "start": 43665.94, + "end": 43668.34, + "probability": 0.9218 + }, + { + "start": 43669.66, + "end": 43678.8, + "probability": 0.9904 + }, + { + "start": 43681.48, + "end": 43684.39, + "probability": 0.9666 + }, + { + "start": 43686.9, + "end": 43688.6, + "probability": 0.7208 + }, + { + "start": 43688.7, + "end": 43690.0, + "probability": 0.7109 + }, + { + "start": 43690.34, + "end": 43693.74, + "probability": 0.9656 + }, + { + "start": 43694.28, + "end": 43696.9, + "probability": 0.739 + }, + { + "start": 43697.54, + "end": 43698.82, + "probability": 0.8634 + }, + { + "start": 43698.9, + "end": 43699.86, + "probability": 0.8986 + }, + { + "start": 43700.04, + "end": 43701.22, + "probability": 0.8796 + }, + { + "start": 43701.66, + "end": 43703.72, + "probability": 0.9431 + }, + { + "start": 43704.46, + "end": 43706.68, + "probability": 0.8878 + }, + { + "start": 43707.26, + "end": 43710.0, + "probability": 0.8047 + }, + { + "start": 43710.1, + "end": 43712.06, + "probability": 0.8452 + }, + { + "start": 43712.34, + "end": 43713.12, + "probability": 0.8708 + }, + { + "start": 43714.24, + "end": 43717.2, + "probability": 0.7876 + }, + { + "start": 43718.34, + "end": 43722.94, + "probability": 0.9585 + }, + { + "start": 43722.94, + "end": 43726.6, + "probability": 0.9962 + }, + { + "start": 43727.6, + "end": 43733.42, + "probability": 0.9849 + }, + { + "start": 43734.5, + "end": 43738.58, + "probability": 0.9643 + }, + { + "start": 43738.58, + "end": 43744.56, + "probability": 0.9904 + }, + { + "start": 43745.58, + "end": 43747.36, + "probability": 0.989 + }, + { + "start": 43747.88, + "end": 43752.18, + "probability": 0.9824 + }, + { + "start": 43752.46, + "end": 43753.16, + "probability": 0.7927 + }, + { + "start": 43753.22, + "end": 43754.86, + "probability": 0.9854 + }, + { + "start": 43756.5, + "end": 43760.54, + "probability": 0.8994 + }, + { + "start": 43761.32, + "end": 43767.94, + "probability": 0.981 + }, + { + "start": 43769.26, + "end": 43775.48, + "probability": 0.8971 + }, + { + "start": 43775.6, + "end": 43777.62, + "probability": 0.8754 + }, + { + "start": 43777.68, + "end": 43783.86, + "probability": 0.9852 + }, + { + "start": 43785.52, + "end": 43790.12, + "probability": 0.9979 + }, + { + "start": 43791.32, + "end": 43793.64, + "probability": 0.9877 + }, + { + "start": 43794.3, + "end": 43797.52, + "probability": 0.9976 + }, + { + "start": 43797.52, + "end": 43801.36, + "probability": 0.9993 + }, + { + "start": 43802.42, + "end": 43807.16, + "probability": 0.9764 + }, + { + "start": 43809.58, + "end": 43812.39, + "probability": 0.995 + }, + { + "start": 43813.1, + "end": 43814.32, + "probability": 0.7881 + }, + { + "start": 43814.9, + "end": 43819.22, + "probability": 0.9728 + }, + { + "start": 43819.91, + "end": 43823.1, + "probability": 0.8231 + }, + { + "start": 43824.86, + "end": 43827.26, + "probability": 0.9476 + }, + { + "start": 43827.74, + "end": 43831.22, + "probability": 0.9638 + }, + { + "start": 43832.84, + "end": 43833.88, + "probability": 0.9972 + }, + { + "start": 43834.4, + "end": 43835.12, + "probability": 0.8377 + }, + { + "start": 43836.18, + "end": 43840.1, + "probability": 0.7596 + }, + { + "start": 43841.18, + "end": 43843.1, + "probability": 0.6707 + }, + { + "start": 43843.32, + "end": 43844.32, + "probability": 0.9172 + }, + { + "start": 43844.44, + "end": 43846.12, + "probability": 0.9076 + }, + { + "start": 43846.8, + "end": 43851.32, + "probability": 0.9564 + }, + { + "start": 43851.5, + "end": 43852.4, + "probability": 0.9006 + }, + { + "start": 43852.94, + "end": 43853.44, + "probability": 0.6016 + }, + { + "start": 43854.34, + "end": 43857.08, + "probability": 0.9371 + }, + { + "start": 43857.2, + "end": 43858.12, + "probability": 0.9723 + }, + { + "start": 43858.7, + "end": 43860.36, + "probability": 0.8941 + }, + { + "start": 43861.66, + "end": 43866.26, + "probability": 0.9405 + }, + { + "start": 43866.42, + "end": 43871.08, + "probability": 0.9784 + }, + { + "start": 43871.72, + "end": 43873.58, + "probability": 0.9727 + }, + { + "start": 43874.34, + "end": 43877.66, + "probability": 0.9376 + }, + { + "start": 43877.76, + "end": 43879.62, + "probability": 0.8513 + }, + { + "start": 43880.18, + "end": 43883.16, + "probability": 0.9866 + }, + { + "start": 43884.78, + "end": 43888.96, + "probability": 0.9862 + }, + { + "start": 43889.92, + "end": 43892.1, + "probability": 0.9107 + }, + { + "start": 43893.06, + "end": 43897.5, + "probability": 0.7677 + }, + { + "start": 43898.22, + "end": 43898.68, + "probability": 0.3206 + }, + { + "start": 43899.78, + "end": 43904.78, + "probability": 0.9605 + }, + { + "start": 43906.0, + "end": 43906.64, + "probability": 0.7473 + }, + { + "start": 43906.82, + "end": 43908.26, + "probability": 0.7821 + }, + { + "start": 43908.46, + "end": 43914.82, + "probability": 0.925 + }, + { + "start": 43916.8, + "end": 43919.74, + "probability": 0.9041 + }, + { + "start": 43921.06, + "end": 43923.84, + "probability": 0.9945 + }, + { + "start": 43924.1, + "end": 43929.0, + "probability": 0.9883 + }, + { + "start": 43929.36, + "end": 43930.2, + "probability": 0.6181 + }, + { + "start": 43931.04, + "end": 43934.58, + "probability": 0.9795 + }, + { + "start": 43935.46, + "end": 43939.5, + "probability": 0.9962 + }, + { + "start": 43940.16, + "end": 43943.3, + "probability": 0.9861 + }, + { + "start": 43945.34, + "end": 43946.1, + "probability": 0.7027 + }, + { + "start": 43948.12, + "end": 43949.18, + "probability": 0.9917 + }, + { + "start": 43950.52, + "end": 43952.24, + "probability": 0.9314 + }, + { + "start": 43953.9, + "end": 43955.1, + "probability": 0.9035 + }, + { + "start": 43956.46, + "end": 43959.02, + "probability": 0.9927 + }, + { + "start": 43960.5, + "end": 43965.52, + "probability": 0.9626 + }, + { + "start": 43965.66, + "end": 43966.36, + "probability": 0.6768 + }, + { + "start": 43966.7, + "end": 43969.78, + "probability": 0.6125 + }, + { + "start": 43970.04, + "end": 43971.98, + "probability": 0.9243 + }, + { + "start": 43972.7, + "end": 43975.22, + "probability": 0.9893 + }, + { + "start": 43976.28, + "end": 43977.82, + "probability": 0.9117 + }, + { + "start": 43978.68, + "end": 43982.1, + "probability": 0.9271 + }, + { + "start": 43983.06, + "end": 43985.96, + "probability": 0.9919 + }, + { + "start": 43987.02, + "end": 43989.52, + "probability": 0.8459 + }, + { + "start": 43990.3, + "end": 43992.6, + "probability": 0.8868 + }, + { + "start": 43993.26, + "end": 43993.78, + "probability": 0.3788 + }, + { + "start": 43994.14, + "end": 43998.22, + "probability": 0.929 + }, + { + "start": 43998.68, + "end": 44002.56, + "probability": 0.9836 + }, + { + "start": 44002.72, + "end": 44004.64, + "probability": 0.9604 + }, + { + "start": 44005.4, + "end": 44007.42, + "probability": 0.9579 + }, + { + "start": 44007.62, + "end": 44010.2, + "probability": 0.9438 + }, + { + "start": 44010.4, + "end": 44011.02, + "probability": 0.8933 + }, + { + "start": 44011.1, + "end": 44011.88, + "probability": 0.9339 + }, + { + "start": 44012.0, + "end": 44012.58, + "probability": 0.9708 + }, + { + "start": 44012.88, + "end": 44016.2, + "probability": 0.8213 + }, + { + "start": 44017.4, + "end": 44022.8, + "probability": 0.9819 + }, + { + "start": 44023.52, + "end": 44025.42, + "probability": 0.9986 + }, + { + "start": 44027.06, + "end": 44029.58, + "probability": 0.8258 + }, + { + "start": 44029.96, + "end": 44032.3, + "probability": 0.9215 + }, + { + "start": 44033.52, + "end": 44036.9, + "probability": 0.8363 + }, + { + "start": 44037.82, + "end": 44041.93, + "probability": 0.9461 + }, + { + "start": 44042.8, + "end": 44047.2, + "probability": 0.9795 + }, + { + "start": 44047.82, + "end": 44050.4, + "probability": 0.9067 + }, + { + "start": 44051.0, + "end": 44053.94, + "probability": 0.9101 + }, + { + "start": 44055.76, + "end": 44057.6, + "probability": 0.9028 + }, + { + "start": 44058.08, + "end": 44063.58, + "probability": 0.854 + }, + { + "start": 44064.38, + "end": 44068.54, + "probability": 0.9582 + }, + { + "start": 44069.8, + "end": 44070.94, + "probability": 0.9976 + }, + { + "start": 44071.48, + "end": 44076.18, + "probability": 0.9993 + }, + { + "start": 44076.18, + "end": 44080.18, + "probability": 0.9766 + }, + { + "start": 44082.18, + "end": 44082.92, + "probability": 0.7171 + }, + { + "start": 44084.08, + "end": 44084.44, + "probability": 0.9706 + }, + { + "start": 44085.08, + "end": 44088.12, + "probability": 0.9963 + }, + { + "start": 44088.22, + "end": 44091.52, + "probability": 0.994 + }, + { + "start": 44093.52, + "end": 44093.96, + "probability": 0.435 + }, + { + "start": 44094.08, + "end": 44099.1, + "probability": 0.9408 + }, + { + "start": 44101.14, + "end": 44102.18, + "probability": 0.9961 + }, + { + "start": 44103.34, + "end": 44108.52, + "probability": 0.9758 + }, + { + "start": 44110.2, + "end": 44116.1, + "probability": 0.9932 + }, + { + "start": 44117.24, + "end": 44119.12, + "probability": 0.9958 + }, + { + "start": 44119.76, + "end": 44122.5, + "probability": 0.9818 + }, + { + "start": 44123.06, + "end": 44126.2, + "probability": 0.9624 + }, + { + "start": 44127.88, + "end": 44131.28, + "probability": 0.6631 + }, + { + "start": 44131.28, + "end": 44136.6, + "probability": 0.9663 + }, + { + "start": 44137.14, + "end": 44139.12, + "probability": 0.9119 + }, + { + "start": 44139.76, + "end": 44146.1, + "probability": 0.9604 + }, + { + "start": 44147.06, + "end": 44148.74, + "probability": 0.3923 + }, + { + "start": 44149.18, + "end": 44152.48, + "probability": 0.6063 + }, + { + "start": 44153.22, + "end": 44157.88, + "probability": 0.9064 + }, + { + "start": 44158.4, + "end": 44162.12, + "probability": 0.8225 + }, + { + "start": 44163.9, + "end": 44170.52, + "probability": 0.9739 + }, + { + "start": 44171.6, + "end": 44177.22, + "probability": 0.9611 + }, + { + "start": 44177.76, + "end": 44180.78, + "probability": 0.6619 + }, + { + "start": 44181.98, + "end": 44186.98, + "probability": 0.6388 + }, + { + "start": 44187.32, + "end": 44190.82, + "probability": 0.9857 + }, + { + "start": 44191.36, + "end": 44196.64, + "probability": 0.9718 + }, + { + "start": 44196.64, + "end": 44200.8, + "probability": 0.9744 + }, + { + "start": 44200.98, + "end": 44202.3, + "probability": 0.971 + }, + { + "start": 44204.58, + "end": 44205.66, + "probability": 0.912 + }, + { + "start": 44206.42, + "end": 44209.86, + "probability": 0.9961 + }, + { + "start": 44210.14, + "end": 44215.22, + "probability": 0.9406 + }, + { + "start": 44215.22, + "end": 44219.68, + "probability": 0.8427 + }, + { + "start": 44221.82, + "end": 44225.94, + "probability": 0.9936 + }, + { + "start": 44227.06, + "end": 44231.64, + "probability": 0.9593 + }, + { + "start": 44232.6, + "end": 44235.48, + "probability": 0.9747 + }, + { + "start": 44236.94, + "end": 44237.62, + "probability": 0.7618 + }, + { + "start": 44238.72, + "end": 44244.18, + "probability": 0.9517 + }, + { + "start": 44244.82, + "end": 44247.66, + "probability": 0.8966 + }, + { + "start": 44247.66, + "end": 44250.9, + "probability": 0.9849 + }, + { + "start": 44251.76, + "end": 44257.42, + "probability": 0.9887 + }, + { + "start": 44257.76, + "end": 44261.1, + "probability": 0.9392 + }, + { + "start": 44262.82, + "end": 44267.54, + "probability": 0.9931 + }, + { + "start": 44267.96, + "end": 44272.28, + "probability": 0.8268 + }, + { + "start": 44274.68, + "end": 44280.5, + "probability": 0.9776 + }, + { + "start": 44280.96, + "end": 44284.14, + "probability": 0.7845 + }, + { + "start": 44284.5, + "end": 44285.84, + "probability": 0.9335 + }, + { + "start": 44286.42, + "end": 44292.28, + "probability": 0.9965 + }, + { + "start": 44293.2, + "end": 44293.9, + "probability": 0.9829 + }, + { + "start": 44294.18, + "end": 44296.92, + "probability": 0.8586 + }, + { + "start": 44297.9, + "end": 44298.96, + "probability": 0.68 + }, + { + "start": 44299.54, + "end": 44304.28, + "probability": 0.7416 + }, + { + "start": 44305.0, + "end": 44306.48, + "probability": 0.8819 + }, + { + "start": 44307.0, + "end": 44309.08, + "probability": 0.9913 + }, + { + "start": 44309.82, + "end": 44313.28, + "probability": 0.9789 + }, + { + "start": 44313.28, + "end": 44317.26, + "probability": 0.9991 + }, + { + "start": 44317.72, + "end": 44319.02, + "probability": 0.5544 + }, + { + "start": 44320.38, + "end": 44321.96, + "probability": 0.9614 + }, + { + "start": 44322.88, + "end": 44328.96, + "probability": 0.7465 + }, + { + "start": 44328.96, + "end": 44331.84, + "probability": 0.9882 + }, + { + "start": 44332.38, + "end": 44338.52, + "probability": 0.8452 + }, + { + "start": 44338.72, + "end": 44340.42, + "probability": 0.7218 + }, + { + "start": 44343.18, + "end": 44343.48, + "probability": 0.451 + }, + { + "start": 44343.56, + "end": 44348.22, + "probability": 0.9788 + }, + { + "start": 44348.5, + "end": 44353.68, + "probability": 0.9888 + }, + { + "start": 44354.16, + "end": 44358.38, + "probability": 0.9907 + }, + { + "start": 44358.96, + "end": 44360.3, + "probability": 0.9934 + }, + { + "start": 44361.42, + "end": 44362.82, + "probability": 0.8261 + }, + { + "start": 44363.06, + "end": 44365.32, + "probability": 0.9739 + }, + { + "start": 44365.52, + "end": 44367.06, + "probability": 0.9064 + }, + { + "start": 44367.88, + "end": 44369.88, + "probability": 0.7116 + }, + { + "start": 44370.04, + "end": 44373.12, + "probability": 0.9567 + }, + { + "start": 44373.92, + "end": 44378.2, + "probability": 0.9755 + }, + { + "start": 44378.78, + "end": 44381.86, + "probability": 0.9536 + }, + { + "start": 44382.44, + "end": 44384.86, + "probability": 0.7222 + }, + { + "start": 44386.66, + "end": 44389.44, + "probability": 0.9637 + }, + { + "start": 44391.36, + "end": 44393.54, + "probability": 0.9432 + }, + { + "start": 44394.08, + "end": 44397.3, + "probability": 0.6516 + }, + { + "start": 44398.84, + "end": 44401.06, + "probability": 0.9978 + }, + { + "start": 44402.34, + "end": 44403.08, + "probability": 0.7849 + }, + { + "start": 44403.76, + "end": 44404.98, + "probability": 0.9688 + }, + { + "start": 44406.94, + "end": 44408.44, + "probability": 0.869 + }, + { + "start": 44409.4, + "end": 44415.8, + "probability": 0.9691 + }, + { + "start": 44416.88, + "end": 44420.66, + "probability": 0.7696 + }, + { + "start": 44423.6, + "end": 44424.14, + "probability": 0.6791 + }, + { + "start": 44424.72, + "end": 44425.32, + "probability": 0.9563 + }, + { + "start": 44427.36, + "end": 44431.06, + "probability": 0.9802 + }, + { + "start": 44431.88, + "end": 44433.3, + "probability": 0.7651 + }, + { + "start": 44433.5, + "end": 44439.46, + "probability": 0.9922 + }, + { + "start": 44439.62, + "end": 44442.5, + "probability": 0.9928 + }, + { + "start": 44443.6, + "end": 44444.74, + "probability": 0.9674 + }, + { + "start": 44445.56, + "end": 44449.42, + "probability": 0.889 + }, + { + "start": 44450.66, + "end": 44455.94, + "probability": 0.9188 + }, + { + "start": 44456.28, + "end": 44460.64, + "probability": 0.9931 + }, + { + "start": 44462.68, + "end": 44463.88, + "probability": 0.7227 + }, + { + "start": 44464.76, + "end": 44468.14, + "probability": 0.9159 + }, + { + "start": 44470.28, + "end": 44474.66, + "probability": 0.9695 + }, + { + "start": 44475.5, + "end": 44481.04, + "probability": 0.9819 + }, + { + "start": 44482.18, + "end": 44485.62, + "probability": 0.9966 + }, + { + "start": 44487.18, + "end": 44488.22, + "probability": 0.9539 + }, + { + "start": 44488.76, + "end": 44490.56, + "probability": 0.7278 + }, + { + "start": 44491.66, + "end": 44494.8, + "probability": 0.9084 + }, + { + "start": 44495.3, + "end": 44495.76, + "probability": 0.8632 + }, + { + "start": 44495.86, + "end": 44498.52, + "probability": 0.9792 + }, + { + "start": 44498.52, + "end": 44502.26, + "probability": 0.9884 + }, + { + "start": 44503.52, + "end": 44506.08, + "probability": 0.969 + }, + { + "start": 44507.0, + "end": 44508.36, + "probability": 0.7942 + }, + { + "start": 44508.88, + "end": 44511.68, + "probability": 0.9502 + }, + { + "start": 44512.74, + "end": 44514.17, + "probability": 0.9202 + }, + { + "start": 44515.24, + "end": 44515.56, + "probability": 0.7557 + }, + { + "start": 44517.56, + "end": 44522.46, + "probability": 0.9302 + }, + { + "start": 44523.46, + "end": 44525.78, + "probability": 0.9683 + }, + { + "start": 44525.78, + "end": 44529.34, + "probability": 0.9907 + }, + { + "start": 44529.98, + "end": 44535.92, + "probability": 0.9369 + }, + { + "start": 44536.56, + "end": 44537.14, + "probability": 0.6756 + }, + { + "start": 44537.74, + "end": 44539.42, + "probability": 0.7427 + }, + { + "start": 44540.28, + "end": 44542.76, + "probability": 0.8441 + }, + { + "start": 44543.38, + "end": 44545.62, + "probability": 0.7855 + }, + { + "start": 44547.52, + "end": 44548.74, + "probability": 0.7878 + }, + { + "start": 44548.86, + "end": 44553.06, + "probability": 0.9309 + }, + { + "start": 44553.18, + "end": 44554.84, + "probability": 0.8682 + }, + { + "start": 44555.78, + "end": 44561.56, + "probability": 0.9563 + }, + { + "start": 44562.2, + "end": 44564.58, + "probability": 0.6812 + }, + { + "start": 44565.3, + "end": 44566.36, + "probability": 0.6392 + }, + { + "start": 44567.0, + "end": 44568.68, + "probability": 0.983 + }, + { + "start": 44569.7, + "end": 44572.14, + "probability": 0.9695 + }, + { + "start": 44572.9, + "end": 44575.52, + "probability": 0.973 + }, + { + "start": 44576.78, + "end": 44580.08, + "probability": 0.9561 + }, + { + "start": 44580.38, + "end": 44584.5, + "probability": 0.8672 + }, + { + "start": 44585.82, + "end": 44590.84, + "probability": 0.9771 + }, + { + "start": 44591.86, + "end": 44595.7, + "probability": 0.8949 + }, + { + "start": 44596.28, + "end": 44598.28, + "probability": 0.7806 + }, + { + "start": 44598.86, + "end": 44600.08, + "probability": 0.9722 + }, + { + "start": 44601.42, + "end": 44605.36, + "probability": 0.8947 + }, + { + "start": 44607.96, + "end": 44610.02, + "probability": 0.9499 + }, + { + "start": 44611.56, + "end": 44615.92, + "probability": 0.9441 + }, + { + "start": 44615.92, + "end": 44620.34, + "probability": 0.993 + }, + { + "start": 44622.44, + "end": 44626.06, + "probability": 0.8728 + }, + { + "start": 44627.66, + "end": 44630.8, + "probability": 0.9888 + }, + { + "start": 44631.84, + "end": 44632.42, + "probability": 0.5168 + }, + { + "start": 44633.0, + "end": 44636.52, + "probability": 0.9539 + }, + { + "start": 44636.52, + "end": 44642.68, + "probability": 0.9491 + }, + { + "start": 44643.8, + "end": 44647.26, + "probability": 0.981 + }, + { + "start": 44647.26, + "end": 44652.08, + "probability": 0.9595 + }, + { + "start": 44654.38, + "end": 44655.48, + "probability": 0.9045 + }, + { + "start": 44656.24, + "end": 44657.36, + "probability": 0.9542 + }, + { + "start": 44658.08, + "end": 44660.7, + "probability": 0.9774 + }, + { + "start": 44662.04, + "end": 44663.34, + "probability": 0.8633 + }, + { + "start": 44664.0, + "end": 44669.22, + "probability": 0.9978 + }, + { + "start": 44670.44, + "end": 44673.72, + "probability": 0.7986 + }, + { + "start": 44674.6, + "end": 44680.0, + "probability": 0.9978 + }, + { + "start": 44680.44, + "end": 44684.52, + "probability": 0.996 + }, + { + "start": 44685.78, + "end": 44689.12, + "probability": 0.9973 + }, + { + "start": 44689.12, + "end": 44693.0, + "probability": 0.9967 + }, + { + "start": 44693.9, + "end": 44697.66, + "probability": 0.9338 + }, + { + "start": 44698.52, + "end": 44703.04, + "probability": 0.9398 + }, + { + "start": 44703.1, + "end": 44705.66, + "probability": 0.9706 + }, + { + "start": 44706.54, + "end": 44706.99, + "probability": 0.4509 + }, + { + "start": 44707.72, + "end": 44709.9, + "probability": 0.7498 + }, + { + "start": 44711.22, + "end": 44713.84, + "probability": 0.7218 + }, + { + "start": 44714.02, + "end": 44716.58, + "probability": 0.9504 + }, + { + "start": 44717.06, + "end": 44718.92, + "probability": 0.9943 + }, + { + "start": 44719.42, + "end": 44725.22, + "probability": 0.9829 + }, + { + "start": 44727.22, + "end": 44732.98, + "probability": 0.9644 + }, + { + "start": 44732.98, + "end": 44738.0, + "probability": 0.9914 + }, + { + "start": 44739.46, + "end": 44742.04, + "probability": 0.8605 + }, + { + "start": 44742.8, + "end": 44746.64, + "probability": 0.9293 + }, + { + "start": 44748.32, + "end": 44749.94, + "probability": 0.7923 + }, + { + "start": 44750.52, + "end": 44751.72, + "probability": 0.9762 + }, + { + "start": 44753.42, + "end": 44760.86, + "probability": 0.8979 + }, + { + "start": 44760.98, + "end": 44761.28, + "probability": 0.8355 + }, + { + "start": 44762.0, + "end": 44763.82, + "probability": 0.7524 + }, + { + "start": 44765.0, + "end": 44767.46, + "probability": 0.9152 + }, + { + "start": 44768.04, + "end": 44769.98, + "probability": 0.9233 + }, + { + "start": 44771.0, + "end": 44772.94, + "probability": 0.9543 + }, + { + "start": 44773.82, + "end": 44776.04, + "probability": 0.8975 + }, + { + "start": 44777.48, + "end": 44780.16, + "probability": 0.8947 + }, + { + "start": 44781.34, + "end": 44783.94, + "probability": 0.6143 + }, + { + "start": 44784.84, + "end": 44788.7, + "probability": 0.9856 + }, + { + "start": 44789.56, + "end": 44794.06, + "probability": 0.9612 + }, + { + "start": 44794.92, + "end": 44801.44, + "probability": 0.9958 + }, + { + "start": 44802.98, + "end": 44803.44, + "probability": 0.3745 + }, + { + "start": 44804.4, + "end": 44806.54, + "probability": 0.9541 + }, + { + "start": 44806.82, + "end": 44812.36, + "probability": 0.9954 + }, + { + "start": 44814.82, + "end": 44815.44, + "probability": 0.3639 + }, + { + "start": 44815.52, + "end": 44817.58, + "probability": 0.897 + }, + { + "start": 44818.02, + "end": 44819.68, + "probability": 0.9861 + }, + { + "start": 44820.42, + "end": 44823.8, + "probability": 0.9844 + }, + { + "start": 44825.0, + "end": 44828.86, + "probability": 0.9862 + }, + { + "start": 44829.56, + "end": 44830.16, + "probability": 0.6676 + }, + { + "start": 44831.02, + "end": 44832.64, + "probability": 0.9785 + }, + { + "start": 44835.25, + "end": 44837.4, + "probability": 0.926 + }, + { + "start": 44838.16, + "end": 44841.14, + "probability": 0.9697 + }, + { + "start": 44843.04, + "end": 44846.54, + "probability": 0.9062 + }, + { + "start": 44847.64, + "end": 44851.74, + "probability": 0.999 + }, + { + "start": 44857.84, + "end": 44860.12, + "probability": 0.9846 + }, + { + "start": 44860.86, + "end": 44862.9, + "probability": 0.8299 + }, + { + "start": 44863.9, + "end": 44866.98, + "probability": 0.9627 + }, + { + "start": 44867.1, + "end": 44869.0, + "probability": 0.9009 + }, + { + "start": 44870.52, + "end": 44872.56, + "probability": 0.9497 + }, + { + "start": 44875.12, + "end": 44881.22, + "probability": 0.9429 + }, + { + "start": 44882.14, + "end": 44882.6, + "probability": 0.9493 + }, + { + "start": 44884.42, + "end": 44887.86, + "probability": 0.9632 + }, + { + "start": 44889.86, + "end": 44897.47, + "probability": 0.9163 + }, + { + "start": 44898.48, + "end": 44900.72, + "probability": 0.9445 + }, + { + "start": 44901.44, + "end": 44905.4, + "probability": 0.9873 + }, + { + "start": 44906.08, + "end": 44907.84, + "probability": 0.9526 + }, + { + "start": 44909.06, + "end": 44911.94, + "probability": 0.9971 + }, + { + "start": 44912.84, + "end": 44915.96, + "probability": 0.994 + }, + { + "start": 44916.2, + "end": 44920.16, + "probability": 0.9805 + }, + { + "start": 44920.72, + "end": 44924.66, + "probability": 0.9453 + }, + { + "start": 44925.96, + "end": 44928.38, + "probability": 0.9943 + }, + { + "start": 44929.54, + "end": 44935.52, + "probability": 0.9894 + }, + { + "start": 44938.32, + "end": 44941.7, + "probability": 0.9484 + }, + { + "start": 44949.38, + "end": 44952.26, + "probability": 0.4012 + }, + { + "start": 44952.34, + "end": 44954.08, + "probability": 0.768 + }, + { + "start": 44955.32, + "end": 44956.92, + "probability": 0.9595 + }, + { + "start": 44959.32, + "end": 44960.78, + "probability": 0.8457 + }, + { + "start": 44961.3, + "end": 44966.42, + "probability": 0.9354 + }, + { + "start": 44967.46, + "end": 44970.42, + "probability": 0.7215 + }, + { + "start": 44971.0, + "end": 44974.7, + "probability": 0.9104 + }, + { + "start": 44976.04, + "end": 44980.92, + "probability": 0.7528 + }, + { + "start": 44980.92, + "end": 44984.4, + "probability": 0.9969 + }, + { + "start": 44985.22, + "end": 44989.78, + "probability": 0.999 + }, + { + "start": 44990.12, + "end": 44993.62, + "probability": 0.9554 + }, + { + "start": 44993.64, + "end": 44995.34, + "probability": 0.9657 + }, + { + "start": 44995.76, + "end": 44996.28, + "probability": 0.8966 + }, + { + "start": 44999.08, + "end": 44999.64, + "probability": 0.8536 + }, + { + "start": 45000.7, + "end": 45000.88, + "probability": 0.7246 + }, + { + "start": 45002.86, + "end": 45003.54, + "probability": 0.7991 + }, + { + "start": 45003.84, + "end": 45004.08, + "probability": 0.6724 + }, + { + "start": 45005.44, + "end": 45007.18, + "probability": 0.934 + }, + { + "start": 45007.86, + "end": 45008.38, + "probability": 0.9854 + }, + { + "start": 45010.1, + "end": 45011.96, + "probability": 0.8063 + }, + { + "start": 45012.76, + "end": 45013.86, + "probability": 0.6898 + }, + { + "start": 45028.08, + "end": 45028.76, + "probability": 0.785 + }, + { + "start": 45034.42, + "end": 45036.54, + "probability": 0.7627 + }, + { + "start": 45038.06, + "end": 45042.02, + "probability": 0.9933 + }, + { + "start": 45042.74, + "end": 45048.16, + "probability": 0.9316 + }, + { + "start": 45048.84, + "end": 45052.1, + "probability": 0.9465 + }, + { + "start": 45052.72, + "end": 45053.5, + "probability": 0.6448 + }, + { + "start": 45054.08, + "end": 45055.42, + "probability": 0.9939 + }, + { + "start": 45057.86, + "end": 45058.82, + "probability": 0.9 + }, + { + "start": 45059.78, + "end": 45064.28, + "probability": 0.974 + }, + { + "start": 45065.2, + "end": 45070.28, + "probability": 0.9886 + }, + { + "start": 45070.92, + "end": 45072.8, + "probability": 0.9945 + }, + { + "start": 45073.3, + "end": 45075.52, + "probability": 0.9356 + }, + { + "start": 45076.36, + "end": 45082.44, + "probability": 0.9869 + }, + { + "start": 45083.08, + "end": 45084.32, + "probability": 0.926 + }, + { + "start": 45084.42, + "end": 45087.44, + "probability": 0.987 + }, + { + "start": 45088.34, + "end": 45089.36, + "probability": 0.8578 + }, + { + "start": 45090.98, + "end": 45091.64, + "probability": 0.9313 + }, + { + "start": 45091.82, + "end": 45093.94, + "probability": 0.8926 + }, + { + "start": 45094.38, + "end": 45096.4, + "probability": 0.9891 + }, + { + "start": 45096.96, + "end": 45098.42, + "probability": 0.9658 + }, + { + "start": 45099.5, + "end": 45100.2, + "probability": 0.8705 + }, + { + "start": 45100.76, + "end": 45104.62, + "probability": 0.9454 + }, + { + "start": 45105.18, + "end": 45106.26, + "probability": 0.7274 + }, + { + "start": 45106.36, + "end": 45111.96, + "probability": 0.9945 + }, + { + "start": 45113.28, + "end": 45114.42, + "probability": 0.6321 + }, + { + "start": 45114.96, + "end": 45118.44, + "probability": 0.9627 + }, + { + "start": 45118.44, + "end": 45121.34, + "probability": 0.995 + }, + { + "start": 45121.86, + "end": 45124.52, + "probability": 0.9766 + }, + { + "start": 45126.46, + "end": 45130.8, + "probability": 0.9594 + }, + { + "start": 45131.32, + "end": 45134.2, + "probability": 0.7081 + }, + { + "start": 45134.8, + "end": 45136.2, + "probability": 0.7846 + }, + { + "start": 45137.18, + "end": 45141.38, + "probability": 0.7199 + }, + { + "start": 45141.76, + "end": 45144.84, + "probability": 0.9888 + }, + { + "start": 45144.84, + "end": 45147.66, + "probability": 0.7905 + }, + { + "start": 45148.18, + "end": 45149.26, + "probability": 0.9969 + }, + { + "start": 45149.44, + "end": 45153.28, + "probability": 0.9605 + }, + { + "start": 45153.28, + "end": 45156.42, + "probability": 0.9891 + }, + { + "start": 45158.84, + "end": 45161.26, + "probability": 0.9924 + }, + { + "start": 45162.9, + "end": 45165.49, + "probability": 0.9888 + }, + { + "start": 45166.18, + "end": 45170.11, + "probability": 0.9684 + }, + { + "start": 45170.58, + "end": 45172.24, + "probability": 0.5598 + }, + { + "start": 45172.34, + "end": 45179.4, + "probability": 0.9962 + }, + { + "start": 45180.06, + "end": 45181.98, + "probability": 0.9797 + }, + { + "start": 45186.36, + "end": 45188.6, + "probability": 0.6174 + }, + { + "start": 45189.94, + "end": 45191.36, + "probability": 0.8374 + }, + { + "start": 45191.48, + "end": 45192.18, + "probability": 0.9927 + }, + { + "start": 45192.94, + "end": 45194.32, + "probability": 0.91 + }, + { + "start": 45194.48, + "end": 45196.85, + "probability": 0.9645 + }, + { + "start": 45197.22, + "end": 45198.34, + "probability": 0.8923 + }, + { + "start": 45198.78, + "end": 45199.96, + "probability": 0.926 + }, + { + "start": 45200.34, + "end": 45201.26, + "probability": 0.9843 + }, + { + "start": 45201.82, + "end": 45203.54, + "probability": 0.7897 + }, + { + "start": 45203.78, + "end": 45205.04, + "probability": 0.8407 + }, + { + "start": 45205.16, + "end": 45205.54, + "probability": 0.8944 + }, + { + "start": 45205.74, + "end": 45206.24, + "probability": 0.4889 + }, + { + "start": 45206.68, + "end": 45207.6, + "probability": 0.8305 + }, + { + "start": 45209.12, + "end": 45213.88, + "probability": 0.9071 + }, + { + "start": 45214.42, + "end": 45217.8, + "probability": 0.9773 + }, + { + "start": 45218.58, + "end": 45223.01, + "probability": 0.9419 + }, + { + "start": 45223.92, + "end": 45229.1, + "probability": 0.9245 + }, + { + "start": 45229.1, + "end": 45233.04, + "probability": 0.9987 + }, + { + "start": 45234.24, + "end": 45237.49, + "probability": 0.9946 + }, + { + "start": 45238.1, + "end": 45243.98, + "probability": 0.9753 + }, + { + "start": 45244.66, + "end": 45248.27, + "probability": 0.9941 + }, + { + "start": 45249.0, + "end": 45250.7, + "probability": 0.9991 + }, + { + "start": 45251.8, + "end": 45253.02, + "probability": 0.9922 + }, + { + "start": 45254.31, + "end": 45255.04, + "probability": 0.1733 + }, + { + "start": 45255.04, + "end": 45257.5, + "probability": 0.9648 + }, + { + "start": 45257.92, + "end": 45260.46, + "probability": 0.9937 + }, + { + "start": 45261.18, + "end": 45262.8, + "probability": 0.9855 + }, + { + "start": 45263.72, + "end": 45265.96, + "probability": 0.9893 + }, + { + "start": 45267.14, + "end": 45269.68, + "probability": 0.8238 + }, + { + "start": 45270.32, + "end": 45272.24, + "probability": 0.9801 + }, + { + "start": 45273.12, + "end": 45275.34, + "probability": 0.8282 + }, + { + "start": 45275.68, + "end": 45277.8, + "probability": 0.8785 + }, + { + "start": 45278.36, + "end": 45282.52, + "probability": 0.9891 + }, + { + "start": 45284.5, + "end": 45287.6, + "probability": 0.9868 + }, + { + "start": 45287.6, + "end": 45290.6, + "probability": 0.9949 + }, + { + "start": 45291.46, + "end": 45295.48, + "probability": 0.9308 + }, + { + "start": 45296.02, + "end": 45298.66, + "probability": 0.749 + }, + { + "start": 45299.22, + "end": 45302.5, + "probability": 0.9661 + }, + { + "start": 45303.08, + "end": 45307.1, + "probability": 0.9682 + }, + { + "start": 45307.9, + "end": 45310.24, + "probability": 0.7571 + }, + { + "start": 45310.9, + "end": 45317.54, + "probability": 0.9802 + }, + { + "start": 45317.8, + "end": 45318.78, + "probability": 0.6587 + }, + { + "start": 45319.46, + "end": 45323.28, + "probability": 0.7063 + }, + { + "start": 45324.32, + "end": 45327.52, + "probability": 0.9932 + }, + { + "start": 45328.54, + "end": 45329.54, + "probability": 0.9629 + }, + { + "start": 45329.74, + "end": 45332.8, + "probability": 0.9874 + }, + { + "start": 45332.88, + "end": 45334.04, + "probability": 0.9612 + }, + { + "start": 45335.04, + "end": 45339.02, + "probability": 0.9835 + }, + { + "start": 45339.6, + "end": 45343.66, + "probability": 0.9885 + }, + { + "start": 45345.56, + "end": 45352.18, + "probability": 0.981 + }, + { + "start": 45352.38, + "end": 45353.26, + "probability": 0.9821 + }, + { + "start": 45353.92, + "end": 45357.04, + "probability": 0.7587 + }, + { + "start": 45357.74, + "end": 45361.6, + "probability": 0.8855 + }, + { + "start": 45362.24, + "end": 45365.18, + "probability": 0.9827 + }, + { + "start": 45373.37, + "end": 45375.8, + "probability": 0.6783 + }, + { + "start": 45376.32, + "end": 45381.0, + "probability": 0.9457 + }, + { + "start": 45381.82, + "end": 45383.45, + "probability": 0.9744 + }, + { + "start": 45384.48, + "end": 45389.6, + "probability": 0.9863 + }, + { + "start": 45390.24, + "end": 45392.0, + "probability": 0.9388 + }, + { + "start": 45392.68, + "end": 45395.88, + "probability": 0.9806 + }, + { + "start": 45401.04, + "end": 45405.04, + "probability": 0.8729 + }, + { + "start": 45408.21, + "end": 45413.02, + "probability": 0.9983 + }, + { + "start": 45413.44, + "end": 45418.5, + "probability": 0.991 + }, + { + "start": 45418.98, + "end": 45420.48, + "probability": 0.9888 + }, + { + "start": 45420.62, + "end": 45421.71, + "probability": 0.7688 + }, + { + "start": 45422.64, + "end": 45423.92, + "probability": 0.9899 + }, + { + "start": 45425.48, + "end": 45429.4, + "probability": 0.9897 + }, + { + "start": 45430.2, + "end": 45431.68, + "probability": 0.8337 + }, + { + "start": 45433.76, + "end": 45437.14, + "probability": 0.8906 + }, + { + "start": 45438.22, + "end": 45440.62, + "probability": 0.6895 + }, + { + "start": 45442.23, + "end": 45447.1, + "probability": 0.9539 + }, + { + "start": 45448.12, + "end": 45449.12, + "probability": 0.9871 + }, + { + "start": 45449.66, + "end": 45451.14, + "probability": 0.9224 + }, + { + "start": 45452.08, + "end": 45453.38, + "probability": 0.9694 + }, + { + "start": 45455.3, + "end": 45457.58, + "probability": 0.9565 + }, + { + "start": 45458.18, + "end": 45461.1, + "probability": 0.7667 + }, + { + "start": 45461.16, + "end": 45461.84, + "probability": 0.6619 + }, + { + "start": 45462.56, + "end": 45464.28, + "probability": 0.9301 + }, + { + "start": 45464.84, + "end": 45465.28, + "probability": 0.9804 + }, + { + "start": 45465.94, + "end": 45467.58, + "probability": 0.9875 + }, + { + "start": 45468.12, + "end": 45469.8, + "probability": 0.9792 + }, + { + "start": 45470.5, + "end": 45472.44, + "probability": 0.8181 + }, + { + "start": 45472.72, + "end": 45473.34, + "probability": 0.9209 + }, + { + "start": 45473.62, + "end": 45475.6, + "probability": 0.9762 + }, + { + "start": 45476.44, + "end": 45479.76, + "probability": 0.9341 + }, + { + "start": 45480.44, + "end": 45481.5, + "probability": 0.9863 + }, + { + "start": 45482.2, + "end": 45483.88, + "probability": 0.692 + }, + { + "start": 45484.28, + "end": 45484.98, + "probability": 0.4936 + }, + { + "start": 45486.0, + "end": 45490.82, + "probability": 0.7119 + }, + { + "start": 45490.94, + "end": 45491.56, + "probability": 0.6366 + }, + { + "start": 45491.58, + "end": 45492.28, + "probability": 0.5874 + }, + { + "start": 45492.66, + "end": 45493.62, + "probability": 0.748 + }, + { + "start": 45493.72, + "end": 45496.64, + "probability": 0.5822 + }, + { + "start": 45497.26, + "end": 45499.2, + "probability": 0.9051 + }, + { + "start": 45500.46, + "end": 45501.66, + "probability": 0.7264 + }, + { + "start": 45503.0, + "end": 45504.8, + "probability": 0.5193 + }, + { + "start": 45504.94, + "end": 45505.91, + "probability": 0.0296 + }, + { + "start": 45506.0, + "end": 45507.94, + "probability": 0.8746 + }, + { + "start": 45508.34, + "end": 45510.5, + "probability": 0.9606 + }, + { + "start": 45511.58, + "end": 45513.1, + "probability": 0.7411 + }, + { + "start": 45514.46, + "end": 45517.5, + "probability": 0.8038 + }, + { + "start": 45518.02, + "end": 45523.09, + "probability": 0.6682 + }, + { + "start": 45523.5, + "end": 45524.6, + "probability": 0.9925 + }, + { + "start": 45528.24, + "end": 45530.68, + "probability": 0.8802 + }, + { + "start": 45531.02, + "end": 45533.2, + "probability": 0.9459 + }, + { + "start": 45534.3, + "end": 45535.78, + "probability": 0.9225 + }, + { + "start": 45536.38, + "end": 45539.48, + "probability": 0.7555 + }, + { + "start": 45539.72, + "end": 45540.94, + "probability": 0.8608 + }, + { + "start": 45541.28, + "end": 45542.14, + "probability": 0.7783 + }, + { + "start": 45543.16, + "end": 45546.18, + "probability": 0.9062 + }, + { + "start": 45546.68, + "end": 45549.26, + "probability": 0.9287 + }, + { + "start": 45550.4, + "end": 45552.66, + "probability": 0.8789 + }, + { + "start": 45553.82, + "end": 45554.5, + "probability": 0.8248 + }, + { + "start": 45555.68, + "end": 45556.76, + "probability": 0.4872 + }, + { + "start": 45557.0, + "end": 45561.04, + "probability": 0.8843 + }, + { + "start": 45561.82, + "end": 45566.06, + "probability": 0.9425 + }, + { + "start": 45566.84, + "end": 45568.78, + "probability": 0.5972 + }, + { + "start": 45569.24, + "end": 45571.84, + "probability": 0.9919 + }, + { + "start": 45572.34, + "end": 45575.94, + "probability": 0.9624 + }, + { + "start": 45576.6, + "end": 45579.38, + "probability": 0.9928 + }, + { + "start": 45579.38, + "end": 45584.52, + "probability": 0.9727 + }, + { + "start": 45586.34, + "end": 45588.72, + "probability": 0.9317 + }, + { + "start": 45589.3, + "end": 45592.16, + "probability": 0.9946 + }, + { + "start": 45592.54, + "end": 45592.93, + "probability": 0.9736 + }, + { + "start": 45594.42, + "end": 45599.76, + "probability": 0.9775 + }, + { + "start": 45600.28, + "end": 45603.26, + "probability": 0.7535 + }, + { + "start": 45604.66, + "end": 45606.22, + "probability": 0.9478 + }, + { + "start": 45606.3, + "end": 45609.38, + "probability": 0.3032 + }, + { + "start": 45609.42, + "end": 45610.42, + "probability": 0.9705 + }, + { + "start": 45610.86, + "end": 45614.72, + "probability": 0.9065 + }, + { + "start": 45621.5, + "end": 45622.4, + "probability": 0.6938 + }, + { + "start": 45622.82, + "end": 45627.74, + "probability": 0.8516 + }, + { + "start": 45627.74, + "end": 45632.66, + "probability": 0.9302 + }, + { + "start": 45632.78, + "end": 45634.08, + "probability": 0.8828 + }, + { + "start": 45634.62, + "end": 45635.98, + "probability": 0.8542 + }, + { + "start": 45636.98, + "end": 45638.64, + "probability": 0.9932 + }, + { + "start": 45639.12, + "end": 45640.52, + "probability": 0.9939 + }, + { + "start": 45640.56, + "end": 45642.4, + "probability": 0.9796 + }, + { + "start": 45642.98, + "end": 45643.56, + "probability": 0.9784 + }, + { + "start": 45644.16, + "end": 45648.4, + "probability": 0.9949 + }, + { + "start": 45649.04, + "end": 45652.16, + "probability": 0.7384 + }, + { + "start": 45653.02, + "end": 45654.62, + "probability": 0.8845 + }, + { + "start": 45655.4, + "end": 45664.58, + "probability": 0.9739 + }, + { + "start": 45664.7, + "end": 45667.46, + "probability": 0.792 + }, + { + "start": 45667.78, + "end": 45668.7, + "probability": 0.9668 + }, + { + "start": 45668.74, + "end": 45669.72, + "probability": 0.8376 + }, + { + "start": 45670.22, + "end": 45674.32, + "probability": 0.9318 + }, + { + "start": 45674.94, + "end": 45675.58, + "probability": 0.7861 + }, + { + "start": 45675.86, + "end": 45679.86, + "probability": 0.9543 + }, + { + "start": 45680.3, + "end": 45684.24, + "probability": 0.902 + }, + { + "start": 45684.7, + "end": 45685.3, + "probability": 0.9763 + }, + { + "start": 45685.5, + "end": 45687.88, + "probability": 0.9858 + }, + { + "start": 45688.34, + "end": 45691.38, + "probability": 0.9942 + }, + { + "start": 45691.92, + "end": 45692.79, + "probability": 0.9717 + }, + { + "start": 45693.54, + "end": 45694.44, + "probability": 0.9393 + }, + { + "start": 45695.12, + "end": 45695.98, + "probability": 0.96 + }, + { + "start": 45696.66, + "end": 45697.9, + "probability": 0.9192 + }, + { + "start": 45699.12, + "end": 45700.88, + "probability": 0.6025 + }, + { + "start": 45701.52, + "end": 45707.52, + "probability": 0.9845 + }, + { + "start": 45707.66, + "end": 45708.4, + "probability": 0.9461 + }, + { + "start": 45708.76, + "end": 45709.34, + "probability": 0.7313 + }, + { + "start": 45709.8, + "end": 45712.76, + "probability": 0.8494 + }, + { + "start": 45713.06, + "end": 45717.7, + "probability": 0.978 + }, + { + "start": 45717.7, + "end": 45723.69, + "probability": 0.9997 + }, + { + "start": 45727.58, + "end": 45731.56, + "probability": 0.9756 + }, + { + "start": 45732.06, + "end": 45734.86, + "probability": 0.5236 + }, + { + "start": 45735.32, + "end": 45739.06, + "probability": 0.9976 + }, + { + "start": 45739.66, + "end": 45743.5, + "probability": 0.9963 + }, + { + "start": 45743.82, + "end": 45744.46, + "probability": 0.9474 + }, + { + "start": 45744.78, + "end": 45745.82, + "probability": 0.875 + }, + { + "start": 45746.62, + "end": 45752.62, + "probability": 0.8972 + }, + { + "start": 45753.22, + "end": 45755.84, + "probability": 0.9858 + }, + { + "start": 45756.56, + "end": 45758.38, + "probability": 0.8853 + }, + { + "start": 45758.42, + "end": 45761.44, + "probability": 0.986 + }, + { + "start": 45762.46, + "end": 45764.46, + "probability": 0.9751 + }, + { + "start": 45764.74, + "end": 45766.26, + "probability": 0.7454 + }, + { + "start": 45766.3, + "end": 45766.7, + "probability": 0.1859 + }, + { + "start": 45766.92, + "end": 45770.13, + "probability": 0.7094 + }, + { + "start": 45771.0, + "end": 45772.22, + "probability": 0.8213 + }, + { + "start": 45773.24, + "end": 45777.74, + "probability": 0.8486 + }, + { + "start": 45777.74, + "end": 45778.46, + "probability": 0.0727 + }, + { + "start": 45779.59, + "end": 45781.86, + "probability": 0.57 + }, + { + "start": 45782.7, + "end": 45786.19, + "probability": 0.8918 + }, + { + "start": 45787.0, + "end": 45789.16, + "probability": 0.853 + }, + { + "start": 45789.42, + "end": 45789.72, + "probability": 0.8111 + }, + { + "start": 45790.38, + "end": 45793.94, + "probability": 0.948 + }, + { + "start": 45794.6, + "end": 45795.97, + "probability": 0.8716 + }, + { + "start": 45796.94, + "end": 45797.04, + "probability": 0.0227 + }, + { + "start": 45797.04, + "end": 45800.76, + "probability": 0.893 + }, + { + "start": 45800.76, + "end": 45802.86, + "probability": 0.8918 + }, + { + "start": 45803.42, + "end": 45804.8, + "probability": 0.6718 + }, + { + "start": 45806.0, + "end": 45806.68, + "probability": 0.564 + }, + { + "start": 45808.68, + "end": 45809.32, + "probability": 0.0006 + }, + { + "start": 45809.32, + "end": 45810.47, + "probability": 0.3291 + }, + { + "start": 45811.62, + "end": 45814.58, + "probability": 0.64 + }, + { + "start": 45815.52, + "end": 45821.38, + "probability": 0.986 + }, + { + "start": 45821.7, + "end": 45824.48, + "probability": 0.9747 + }, + { + "start": 45825.11, + "end": 45826.98, + "probability": 0.6277 + }, + { + "start": 45828.06, + "end": 45830.2, + "probability": 0.9887 + }, + { + "start": 45830.94, + "end": 45837.52, + "probability": 0.8281 + }, + { + "start": 45837.8, + "end": 45842.04, + "probability": 0.7993 + }, + { + "start": 45842.24, + "end": 45844.96, + "probability": 0.9985 + }, + { + "start": 45844.96, + "end": 45848.74, + "probability": 0.9858 + }, + { + "start": 45849.04, + "end": 45851.46, + "probability": 0.9082 + }, + { + "start": 45851.46, + "end": 45853.8, + "probability": 0.9989 + }, + { + "start": 45855.22, + "end": 45857.62, + "probability": 0.9925 + }, + { + "start": 45858.3, + "end": 45861.98, + "probability": 0.9892 + }, + { + "start": 45862.68, + "end": 45864.3, + "probability": 0.676 + }, + { + "start": 45864.9, + "end": 45870.64, + "probability": 0.9748 + }, + { + "start": 45872.68, + "end": 45877.57, + "probability": 0.962 + }, + { + "start": 45878.08, + "end": 45879.28, + "probability": 0.0312 + }, + { + "start": 45881.12, + "end": 45881.2, + "probability": 0.0089 + }, + { + "start": 45881.2, + "end": 45881.98, + "probability": 0.2531 + }, + { + "start": 45881.98, + "end": 45883.4, + "probability": 0.4512 + }, + { + "start": 45883.9, + "end": 45884.64, + "probability": 0.8914 + }, + { + "start": 45884.94, + "end": 45886.84, + "probability": 0.9819 + }, + { + "start": 45887.38, + "end": 45889.8, + "probability": 0.9471 + }, + { + "start": 45890.1, + "end": 45890.93, + "probability": 0.9623 + }, + { + "start": 45891.2, + "end": 45892.3, + "probability": 0.9795 + }, + { + "start": 45892.62, + "end": 45893.38, + "probability": 0.6329 + }, + { + "start": 45893.96, + "end": 45898.26, + "probability": 0.8628 + }, + { + "start": 45898.56, + "end": 45899.36, + "probability": 0.7736 + }, + { + "start": 45899.84, + "end": 45904.66, + "probability": 0.8997 + }, + { + "start": 45904.66, + "end": 45907.6, + "probability": 0.9766 + }, + { + "start": 45908.26, + "end": 45912.56, + "probability": 0.7285 + }, + { + "start": 45913.53, + "end": 45915.18, + "probability": 0.9512 + }, + { + "start": 45915.7, + "end": 45916.28, + "probability": 0.5287 + }, + { + "start": 45916.82, + "end": 45920.1, + "probability": 0.5309 + }, + { + "start": 45920.5, + "end": 45921.41, + "probability": 0.8645 + }, + { + "start": 45921.76, + "end": 45925.87, + "probability": 0.961 + }, + { + "start": 45927.32, + "end": 45929.44, + "probability": 0.0034 + }, + { + "start": 45930.34, + "end": 45930.64, + "probability": 0.2968 + }, + { + "start": 45931.38, + "end": 45936.16, + "probability": 0.8916 + }, + { + "start": 45937.1, + "end": 45938.02, + "probability": 0.8234 + }, + { + "start": 45939.04, + "end": 45940.64, + "probability": 0.9559 + }, + { + "start": 45941.46, + "end": 45942.98, + "probability": 0.8098 + }, + { + "start": 45943.5, + "end": 45947.44, + "probability": 0.9849 + }, + { + "start": 45947.76, + "end": 45952.7, + "probability": 0.9984 + }, + { + "start": 45953.38, + "end": 45954.32, + "probability": 0.7926 + }, + { + "start": 45955.16, + "end": 45960.88, + "probability": 0.9941 + }, + { + "start": 45962.83, + "end": 45965.48, + "probability": 0.8762 + }, + { + "start": 45974.58, + "end": 45975.66, + "probability": 0.3274 + }, + { + "start": 45980.44, + "end": 45981.96, + "probability": 0.337 + }, + { + "start": 45982.28, + "end": 45982.94, + "probability": 0.6469 + }, + { + "start": 45983.02, + "end": 45984.92, + "probability": 0.9623 + }, + { + "start": 45985.42, + "end": 45987.04, + "probability": 0.9678 + }, + { + "start": 45987.7, + "end": 45990.94, + "probability": 0.9927 + }, + { + "start": 45991.52, + "end": 45993.96, + "probability": 0.9395 + }, + { + "start": 45994.78, + "end": 45995.52, + "probability": 0.995 + }, + { + "start": 45997.1, + "end": 45998.08, + "probability": 0.9992 + }, + { + "start": 45999.08, + "end": 46001.34, + "probability": 0.9632 + }, + { + "start": 46002.0, + "end": 46003.84, + "probability": 0.8247 + }, + { + "start": 46004.2, + "end": 46005.02, + "probability": 0.8624 + }, + { + "start": 46005.16, + "end": 46006.08, + "probability": 0.4243 + }, + { + "start": 46006.46, + "end": 46007.18, + "probability": 0.2569 + }, + { + "start": 46007.18, + "end": 46010.39, + "probability": 0.5035 + }, + { + "start": 46010.62, + "end": 46011.78, + "probability": 0.821 + }, + { + "start": 46012.2, + "end": 46013.38, + "probability": 0.2132 + }, + { + "start": 46013.48, + "end": 46014.7, + "probability": 0.6436 + }, + { + "start": 46015.24, + "end": 46015.66, + "probability": 0.4663 + }, + { + "start": 46016.28, + "end": 46018.86, + "probability": 0.4545 + }, + { + "start": 46019.3, + "end": 46020.14, + "probability": 0.7342 + }, + { + "start": 46020.14, + "end": 46023.86, + "probability": 0.2574 + }, + { + "start": 46026.46, + "end": 46028.4, + "probability": 0.6779 + }, + { + "start": 46028.66, + "end": 46029.7, + "probability": 0.6657 + }, + { + "start": 46031.78, + "end": 46033.55, + "probability": 0.9803 + }, + { + "start": 46034.76, + "end": 46035.28, + "probability": 0.8486 + }, + { + "start": 46035.52, + "end": 46039.12, + "probability": 0.9573 + }, + { + "start": 46040.64, + "end": 46043.6, + "probability": 0.0262 + }, + { + "start": 46045.32, + "end": 46045.72, + "probability": 0.2164 + }, + { + "start": 46046.52, + "end": 46046.62, + "probability": 0.0826 + }, + { + "start": 46046.62, + "end": 46050.34, + "probability": 0.8027 + }, + { + "start": 46050.34, + "end": 46053.94, + "probability": 0.9749 + }, + { + "start": 46054.06, + "end": 46055.3, + "probability": 0.9243 + }, + { + "start": 46055.84, + "end": 46058.76, + "probability": 0.954 + }, + { + "start": 46059.64, + "end": 46063.3, + "probability": 0.973 + }, + { + "start": 46064.27, + "end": 46067.72, + "probability": 0.7871 + }, + { + "start": 46067.78, + "end": 46071.3, + "probability": 0.9937 + }, + { + "start": 46072.72, + "end": 46073.8, + "probability": 0.9024 + }, + { + "start": 46074.26, + "end": 46075.92, + "probability": 0.9875 + }, + { + "start": 46076.64, + "end": 46077.98, + "probability": 0.8241 + }, + { + "start": 46078.72, + "end": 46080.4, + "probability": 0.7717 + }, + { + "start": 46080.88, + "end": 46084.36, + "probability": 0.9639 + }, + { + "start": 46085.36, + "end": 46087.4, + "probability": 0.876 + }, + { + "start": 46088.06, + "end": 46088.78, + "probability": 0.998 + }, + { + "start": 46088.94, + "end": 46090.78, + "probability": 0.9264 + }, + { + "start": 46092.96, + "end": 46094.32, + "probability": 0.9855 + }, + { + "start": 46094.4, + "end": 46095.52, + "probability": 0.9153 + }, + { + "start": 46096.1, + "end": 46096.32, + "probability": 0.5645 + }, + { + "start": 46096.54, + "end": 46097.06, + "probability": 0.9036 + }, + { + "start": 46097.48, + "end": 46101.62, + "probability": 0.9475 + }, + { + "start": 46102.2, + "end": 46103.1, + "probability": 0.8636 + }, + { + "start": 46103.1, + "end": 46104.12, + "probability": 0.678 + }, + { + "start": 46104.24, + "end": 46105.46, + "probability": 0.6841 + }, + { + "start": 46106.26, + "end": 46108.98, + "probability": 0.9843 + }, + { + "start": 46109.32, + "end": 46110.38, + "probability": 0.97 + }, + { + "start": 46111.16, + "end": 46115.5, + "probability": 0.8312 + }, + { + "start": 46115.6, + "end": 46116.38, + "probability": 0.8292 + }, + { + "start": 46116.9, + "end": 46118.98, + "probability": 0.9496 + }, + { + "start": 46119.32, + "end": 46120.82, + "probability": 0.7826 + }, + { + "start": 46121.32, + "end": 46123.66, + "probability": 0.9155 + }, + { + "start": 46125.92, + "end": 46126.98, + "probability": 0.9008 + }, + { + "start": 46127.08, + "end": 46130.78, + "probability": 0.9384 + }, + { + "start": 46131.18, + "end": 46132.16, + "probability": 0.7535 + }, + { + "start": 46132.46, + "end": 46133.6, + "probability": 0.2556 + }, + { + "start": 46134.2, + "end": 46135.52, + "probability": 0.6984 + }, + { + "start": 46136.12, + "end": 46137.08, + "probability": 0.1261 + }, + { + "start": 46137.08, + "end": 46137.4, + "probability": 0.7226 + }, + { + "start": 46137.82, + "end": 46140.84, + "probability": 0.9363 + }, + { + "start": 46142.1, + "end": 46144.28, + "probability": 0.7514 + }, + { + "start": 46144.84, + "end": 46145.64, + "probability": 0.3058 + }, + { + "start": 46146.78, + "end": 46148.43, + "probability": 0.3769 + }, + { + "start": 46148.64, + "end": 46149.93, + "probability": 0.5022 + }, + { + "start": 46150.16, + "end": 46151.48, + "probability": 0.46 + }, + { + "start": 46151.5, + "end": 46152.34, + "probability": 0.0265 + }, + { + "start": 46152.5, + "end": 46153.16, + "probability": 0.4036 + }, + { + "start": 46153.28, + "end": 46154.96, + "probability": 0.3577 + }, + { + "start": 46154.98, + "end": 46157.7, + "probability": 0.0705 + }, + { + "start": 46157.8, + "end": 46159.16, + "probability": 0.1313 + }, + { + "start": 46159.16, + "end": 46160.62, + "probability": 0.9609 + }, + { + "start": 46160.7, + "end": 46161.76, + "probability": 0.5131 + }, + { + "start": 46162.64, + "end": 46164.18, + "probability": 0.9736 + }, + { + "start": 46165.72, + "end": 46171.96, + "probability": 0.9707 + }, + { + "start": 46172.66, + "end": 46175.26, + "probability": 0.866 + }, + { + "start": 46175.94, + "end": 46177.45, + "probability": 0.9905 + }, + { + "start": 46178.44, + "end": 46179.44, + "probability": 0.9982 + }, + { + "start": 46179.88, + "end": 46187.9, + "probability": 0.9977 + }, + { + "start": 46188.74, + "end": 46190.2, + "probability": 0.9927 + }, + { + "start": 46190.96, + "end": 46193.7, + "probability": 0.96 + }, + { + "start": 46194.8, + "end": 46199.78, + "probability": 0.9961 + }, + { + "start": 46203.32, + "end": 46207.86, + "probability": 0.9997 + }, + { + "start": 46208.74, + "end": 46211.82, + "probability": 0.9044 + }, + { + "start": 46212.34, + "end": 46216.73, + "probability": 0.9688 + }, + { + "start": 46217.02, + "end": 46218.42, + "probability": 0.7316 + }, + { + "start": 46219.04, + "end": 46221.8, + "probability": 0.9707 + }, + { + "start": 46222.16, + "end": 46224.66, + "probability": 0.6646 + }, + { + "start": 46225.62, + "end": 46232.72, + "probability": 0.9892 + }, + { + "start": 46232.72, + "end": 46239.6, + "probability": 0.9945 + }, + { + "start": 46241.22, + "end": 46243.08, + "probability": 0.8743 + }, + { + "start": 46243.89, + "end": 46247.14, + "probability": 0.9993 + }, + { + "start": 46247.82, + "end": 46248.2, + "probability": 0.9153 + }, + { + "start": 46248.78, + "end": 46250.12, + "probability": 0.7499 + }, + { + "start": 46250.52, + "end": 46251.53, + "probability": 0.9684 + }, + { + "start": 46252.08, + "end": 46253.14, + "probability": 0.9894 + }, + { + "start": 46253.8, + "end": 46255.34, + "probability": 0.8752 + }, + { + "start": 46255.78, + "end": 46257.42, + "probability": 0.9907 + }, + { + "start": 46257.78, + "end": 46259.28, + "probability": 0.999 + }, + { + "start": 46259.82, + "end": 46261.78, + "probability": 0.998 + }, + { + "start": 46262.12, + "end": 46264.8, + "probability": 0.9945 + }, + { + "start": 46264.8, + "end": 46267.36, + "probability": 0.9796 + }, + { + "start": 46269.02, + "end": 46272.6, + "probability": 0.7759 + }, + { + "start": 46272.98, + "end": 46277.22, + "probability": 0.9854 + }, + { + "start": 46277.78, + "end": 46280.64, + "probability": 0.9866 + }, + { + "start": 46281.26, + "end": 46283.96, + "probability": 0.9175 + }, + { + "start": 46284.26, + "end": 46287.78, + "probability": 0.9762 + }, + { + "start": 46288.85, + "end": 46292.8, + "probability": 0.7563 + }, + { + "start": 46293.34, + "end": 46294.72, + "probability": 0.9639 + }, + { + "start": 46296.38, + "end": 46299.46, + "probability": 0.9789 + }, + { + "start": 46299.88, + "end": 46300.56, + "probability": 0.7236 + }, + { + "start": 46301.06, + "end": 46301.42, + "probability": 0.6835 + }, + { + "start": 46301.58, + "end": 46302.22, + "probability": 0.9846 + }, + { + "start": 46302.66, + "end": 46304.86, + "probability": 0.9483 + }, + { + "start": 46305.08, + "end": 46306.26, + "probability": 0.3134 + }, + { + "start": 46306.84, + "end": 46307.66, + "probability": 0.9281 + }, + { + "start": 46307.66, + "end": 46308.36, + "probability": 0.603 + }, + { + "start": 46311.74, + "end": 46315.82, + "probability": 0.9209 + }, + { + "start": 46316.5, + "end": 46318.34, + "probability": 0.0357 + }, + { + "start": 46318.84, + "end": 46319.25, + "probability": 0.1163 + }, + { + "start": 46320.12, + "end": 46324.71, + "probability": 0.533 + }, + { + "start": 46327.48, + "end": 46328.74, + "probability": 0.043 + }, + { + "start": 46328.74, + "end": 46328.74, + "probability": 0.1394 + }, + { + "start": 46328.74, + "end": 46328.74, + "probability": 0.007 + }, + { + "start": 46328.74, + "end": 46331.32, + "probability": 0.5518 + }, + { + "start": 46332.24, + "end": 46334.22, + "probability": 0.7434 + }, + { + "start": 46335.68, + "end": 46340.3, + "probability": 0.9819 + }, + { + "start": 46340.84, + "end": 46342.62, + "probability": 0.7716 + }, + { + "start": 46343.06, + "end": 46346.54, + "probability": 0.9315 + }, + { + "start": 46346.92, + "end": 46347.98, + "probability": 0.81 + }, + { + "start": 46348.1, + "end": 46349.35, + "probability": 0.5803 + }, + { + "start": 46350.32, + "end": 46352.68, + "probability": 0.9854 + }, + { + "start": 46354.08, + "end": 46355.8, + "probability": 0.4411 + }, + { + "start": 46359.5, + "end": 46361.38, + "probability": 0.5427 + }, + { + "start": 46361.54, + "end": 46363.24, + "probability": 0.5982 + }, + { + "start": 46363.24, + "end": 46365.94, + "probability": 0.8237 + }, + { + "start": 46366.2, + "end": 46367.3, + "probability": 0.7465 + }, + { + "start": 46368.26, + "end": 46368.78, + "probability": 0.6527 + }, + { + "start": 46369.94, + "end": 46371.56, + "probability": 0.0785 + }, + { + "start": 46373.6, + "end": 46373.6, + "probability": 0.1981 + }, + { + "start": 46373.6, + "end": 46377.02, + "probability": 0.7362 + }, + { + "start": 46377.34, + "end": 46379.94, + "probability": 0.8449 + }, + { + "start": 46380.78, + "end": 46382.06, + "probability": 0.9934 + }, + { + "start": 46384.6, + "end": 46388.5, + "probability": 0.9964 + }, + { + "start": 46388.98, + "end": 46390.24, + "probability": 0.9883 + }, + { + "start": 46390.94, + "end": 46392.02, + "probability": 0.9556 + }, + { + "start": 46392.4, + "end": 46393.4, + "probability": 0.8301 + }, + { + "start": 46393.6, + "end": 46394.3, + "probability": 0.7786 + }, + { + "start": 46394.46, + "end": 46395.26, + "probability": 0.9423 + }, + { + "start": 46395.34, + "end": 46396.9, + "probability": 0.9619 + }, + { + "start": 46397.0, + "end": 46399.52, + "probability": 0.9898 + }, + { + "start": 46400.12, + "end": 46406.86, + "probability": 0.9346 + }, + { + "start": 46407.04, + "end": 46411.74, + "probability": 0.8042 + }, + { + "start": 46412.54, + "end": 46417.42, + "probability": 0.9941 + }, + { + "start": 46418.18, + "end": 46420.88, + "probability": 0.6372 + }, + { + "start": 46421.28, + "end": 46426.94, + "probability": 0.9485 + }, + { + "start": 46427.56, + "end": 46428.18, + "probability": 0.4929 + }, + { + "start": 46429.22, + "end": 46430.33, + "probability": 0.9512 + }, + { + "start": 46430.78, + "end": 46431.84, + "probability": 0.9506 + }, + { + "start": 46431.9, + "end": 46432.92, + "probability": 0.9467 + }, + { + "start": 46433.16, + "end": 46435.66, + "probability": 0.996 + }, + { + "start": 46436.14, + "end": 46441.12, + "probability": 0.9796 + }, + { + "start": 46441.46, + "end": 46444.84, + "probability": 0.981 + }, + { + "start": 46445.66, + "end": 46449.3, + "probability": 0.9429 + }, + { + "start": 46449.66, + "end": 46450.39, + "probability": 0.75 + }, + { + "start": 46451.0, + "end": 46456.2, + "probability": 0.9774 + }, + { + "start": 46456.62, + "end": 46457.68, + "probability": 0.9993 + }, + { + "start": 46458.52, + "end": 46463.34, + "probability": 0.9727 + }, + { + "start": 46465.94, + "end": 46471.18, + "probability": 0.8987 + }, + { + "start": 46472.98, + "end": 46475.64, + "probability": 0.968 + }, + { + "start": 46476.94, + "end": 46478.56, + "probability": 0.6647 + }, + { + "start": 46479.06, + "end": 46482.54, + "probability": 0.9973 + }, + { + "start": 46482.54, + "end": 46485.16, + "probability": 0.7363 + }, + { + "start": 46485.48, + "end": 46489.54, + "probability": 0.9669 + }, + { + "start": 46490.9, + "end": 46496.02, + "probability": 0.8374 + }, + { + "start": 46496.02, + "end": 46498.54, + "probability": 0.6568 + }, + { + "start": 46498.92, + "end": 46502.06, + "probability": 0.974 + }, + { + "start": 46502.7, + "end": 46508.98, + "probability": 0.9648 + }, + { + "start": 46509.34, + "end": 46513.06, + "probability": 0.9952 + }, + { + "start": 46513.78, + "end": 46520.5, + "probability": 0.8021 + }, + { + "start": 46521.14, + "end": 46523.24, + "probability": 0.7764 + }, + { + "start": 46524.02, + "end": 46528.08, + "probability": 0.9912 + }, + { + "start": 46529.83, + "end": 46532.48, + "probability": 0.9241 + }, + { + "start": 46532.92, + "end": 46534.04, + "probability": 0.2752 + }, + { + "start": 46534.96, + "end": 46538.74, + "probability": 0.9797 + }, + { + "start": 46539.48, + "end": 46542.24, + "probability": 0.9088 + }, + { + "start": 46542.44, + "end": 46544.08, + "probability": 0.2224 + }, + { + "start": 46544.1, + "end": 46544.6, + "probability": 0.1422 + }, + { + "start": 46546.17, + "end": 46547.58, + "probability": 0.8059 + }, + { + "start": 46547.64, + "end": 46548.7, + "probability": 0.9297 + }, + { + "start": 46549.16, + "end": 46553.48, + "probability": 0.995 + }, + { + "start": 46553.68, + "end": 46557.12, + "probability": 0.9128 + }, + { + "start": 46557.64, + "end": 46558.24, + "probability": 0.7296 + }, + { + "start": 46558.56, + "end": 46561.14, + "probability": 0.8936 + }, + { + "start": 46562.54, + "end": 46563.6, + "probability": 0.7543 + }, + { + "start": 46563.92, + "end": 46566.08, + "probability": 0.9926 + }, + { + "start": 46566.64, + "end": 46567.1, + "probability": 0.5346 + }, + { + "start": 46567.64, + "end": 46568.5, + "probability": 0.3377 + }, + { + "start": 46573.44, + "end": 46575.8, + "probability": 0.7 + }, + { + "start": 46575.86, + "end": 46578.02, + "probability": 0.959 + }, + { + "start": 46579.2, + "end": 46581.38, + "probability": 0.8827 + }, + { + "start": 46581.92, + "end": 46584.0, + "probability": 0.9431 + }, + { + "start": 46584.84, + "end": 46588.29, + "probability": 0.8758 + }, + { + "start": 46589.1, + "end": 46592.18, + "probability": 0.941 + }, + { + "start": 46592.26, + "end": 46594.64, + "probability": 0.8338 + }, + { + "start": 46595.26, + "end": 46597.02, + "probability": 0.7172 + }, + { + "start": 46597.16, + "end": 46602.5, + "probability": 0.9675 + }, + { + "start": 46604.08, + "end": 46606.74, + "probability": 0.6294 + }, + { + "start": 46607.16, + "end": 46608.54, + "probability": 0.6642 + }, + { + "start": 46608.62, + "end": 46611.12, + "probability": 0.9871 + }, + { + "start": 46612.54, + "end": 46614.34, + "probability": 0.498 + }, + { + "start": 46614.7, + "end": 46617.4, + "probability": 0.7314 + }, + { + "start": 46617.74, + "end": 46618.94, + "probability": 0.9585 + }, + { + "start": 46619.2, + "end": 46621.88, + "probability": 0.9945 + }, + { + "start": 46623.42, + "end": 46626.94, + "probability": 0.6364 + }, + { + "start": 46627.16, + "end": 46629.9, + "probability": 0.9105 + }, + { + "start": 46630.54, + "end": 46633.44, + "probability": 0.8077 + }, + { + "start": 46635.97, + "end": 46639.98, + "probability": 0.9357 + }, + { + "start": 46640.24, + "end": 46641.44, + "probability": 0.9745 + }, + { + "start": 46641.78, + "end": 46645.06, + "probability": 0.9965 + }, + { + "start": 46645.06, + "end": 46649.24, + "probability": 0.9904 + }, + { + "start": 46649.48, + "end": 46650.46, + "probability": 0.8804 + }, + { + "start": 46650.92, + "end": 46651.86, + "probability": 0.8101 + }, + { + "start": 46652.58, + "end": 46654.78, + "probability": 0.9732 + }, + { + "start": 46655.16, + "end": 46656.04, + "probability": 0.8588 + }, + { + "start": 46656.2, + "end": 46658.86, + "probability": 0.5298 + }, + { + "start": 46659.58, + "end": 46662.06, + "probability": 0.8486 + }, + { + "start": 46662.42, + "end": 46665.12, + "probability": 0.8411 + }, + { + "start": 46665.52, + "end": 46666.72, + "probability": 0.7605 + }, + { + "start": 46668.66, + "end": 46671.9, + "probability": 0.757 + }, + { + "start": 46672.6, + "end": 46672.9, + "probability": 0.7235 + }, + { + "start": 46672.98, + "end": 46675.96, + "probability": 0.9907 + }, + { + "start": 46676.32, + "end": 46678.28, + "probability": 0.982 + }, + { + "start": 46678.54, + "end": 46680.1, + "probability": 0.9411 + }, + { + "start": 46680.7, + "end": 46682.8, + "probability": 0.9795 + }, + { + "start": 46683.62, + "end": 46686.34, + "probability": 0.9043 + }, + { + "start": 46686.8, + "end": 46689.8, + "probability": 0.7696 + }, + { + "start": 46690.14, + "end": 46690.42, + "probability": 0.7603 + }, + { + "start": 46690.66, + "end": 46691.25, + "probability": 0.8696 + }, + { + "start": 46692.38, + "end": 46693.6, + "probability": 0.9019 + }, + { + "start": 46693.84, + "end": 46694.7, + "probability": 0.9043 + }, + { + "start": 46695.1, + "end": 46697.33, + "probability": 0.9925 + }, + { + "start": 46697.34, + "end": 46700.18, + "probability": 0.9934 + }, + { + "start": 46701.8, + "end": 46702.76, + "probability": 0.7344 + }, + { + "start": 46703.06, + "end": 46703.82, + "probability": 0.8681 + }, + { + "start": 46704.36, + "end": 46705.88, + "probability": 0.8824 + }, + { + "start": 46706.7, + "end": 46710.08, + "probability": 0.9816 + }, + { + "start": 46710.08, + "end": 46713.2, + "probability": 0.9991 + }, + { + "start": 46713.76, + "end": 46715.26, + "probability": 0.7095 + }, + { + "start": 46715.44, + "end": 46715.58, + "probability": 0.2245 + }, + { + "start": 46716.38, + "end": 46717.76, + "probability": 0.9214 + }, + { + "start": 46717.9, + "end": 46720.34, + "probability": 0.9063 + }, + { + "start": 46720.44, + "end": 46723.17, + "probability": 0.9036 + }, + { + "start": 46724.12, + "end": 46725.42, + "probability": 0.2092 + }, + { + "start": 46725.75, + "end": 46728.16, + "probability": 0.3836 + }, + { + "start": 46728.22, + "end": 46729.04, + "probability": 0.7889 + }, + { + "start": 46729.1, + "end": 46729.92, + "probability": 0.7144 + }, + { + "start": 46729.98, + "end": 46731.75, + "probability": 0.881 + }, + { + "start": 46732.12, + "end": 46733.86, + "probability": 0.8825 + }, + { + "start": 46734.23, + "end": 46735.63, + "probability": 0.9235 + }, + { + "start": 46735.94, + "end": 46737.68, + "probability": 0.5295 + }, + { + "start": 46737.98, + "end": 46739.94, + "probability": 0.902 + }, + { + "start": 46740.28, + "end": 46741.94, + "probability": 0.7544 + }, + { + "start": 46742.92, + "end": 46743.66, + "probability": 0.3054 + }, + { + "start": 46743.88, + "end": 46747.72, + "probability": 0.9946 + }, + { + "start": 46748.06, + "end": 46749.8, + "probability": 0.9549 + }, + { + "start": 46750.32, + "end": 46751.04, + "probability": 0.7216 + }, + { + "start": 46751.58, + "end": 46755.06, + "probability": 0.9403 + }, + { + "start": 46755.64, + "end": 46756.88, + "probability": 0.8074 + }, + { + "start": 46757.04, + "end": 46758.82, + "probability": 0.9982 + }, + { + "start": 46758.82, + "end": 46761.7, + "probability": 0.9895 + }, + { + "start": 46762.02, + "end": 46765.28, + "probability": 0.9863 + }, + { + "start": 46765.98, + "end": 46767.38, + "probability": 0.9805 + }, + { + "start": 46771.6, + "end": 46772.94, + "probability": 0.9846 + }, + { + "start": 46773.38, + "end": 46775.92, + "probability": 0.9963 + }, + { + "start": 46776.36, + "end": 46778.44, + "probability": 0.7856 + }, + { + "start": 46779.56, + "end": 46781.74, + "probability": 0.0259 + }, + { + "start": 46781.74, + "end": 46783.23, + "probability": 0.411 + }, + { + "start": 46783.9, + "end": 46786.22, + "probability": 0.6684 + }, + { + "start": 46787.58, + "end": 46789.28, + "probability": 0.1173 + }, + { + "start": 46789.28, + "end": 46790.44, + "probability": 0.499 + }, + { + "start": 46790.6, + "end": 46790.88, + "probability": 0.3599 + }, + { + "start": 46790.98, + "end": 46793.2, + "probability": 0.7413 + }, + { + "start": 46793.2, + "end": 46796.34, + "probability": 0.8517 + }, + { + "start": 46797.02, + "end": 46799.36, + "probability": 0.7001 + }, + { + "start": 46799.4, + "end": 46801.5, + "probability": 0.959 + }, + { + "start": 46801.78, + "end": 46805.46, + "probability": 0.6659 + }, + { + "start": 46805.6, + "end": 46806.3, + "probability": 0.6701 + }, + { + "start": 46806.4, + "end": 46807.44, + "probability": 0.9727 + }, + { + "start": 46808.06, + "end": 46808.28, + "probability": 0.0178 + }, + { + "start": 46809.5, + "end": 46810.96, + "probability": 0.7126 + }, + { + "start": 46810.96, + "end": 46811.7, + "probability": 0.6706 + }, + { + "start": 46811.7, + "end": 46812.48, + "probability": 0.5919 + }, + { + "start": 46812.8, + "end": 46815.32, + "probability": 0.681 + }, + { + "start": 46816.08, + "end": 46816.9, + "probability": 0.5184 + }, + { + "start": 46818.52, + "end": 46823.0, + "probability": 0.4173 + }, + { + "start": 46825.92, + "end": 46828.06, + "probability": 0.987 + }, + { + "start": 46828.9, + "end": 46830.63, + "probability": 0.7007 + }, + { + "start": 46830.94, + "end": 46832.16, + "probability": 0.7662 + }, + { + "start": 46832.94, + "end": 46834.22, + "probability": 0.9351 + }, + { + "start": 46834.52, + "end": 46835.32, + "probability": 0.7625 + }, + { + "start": 46839.82, + "end": 46842.26, + "probability": 0.7783 + }, + { + "start": 46843.02, + "end": 46843.9, + "probability": 0.5785 + }, + { + "start": 46845.24, + "end": 46849.56, + "probability": 0.6714 + }, + { + "start": 46849.7, + "end": 46851.08, + "probability": 0.8887 + }, + { + "start": 46853.16, + "end": 46855.08, + "probability": 0.8889 + }, + { + "start": 46855.76, + "end": 46858.78, + "probability": 0.6942 + }, + { + "start": 46859.92, + "end": 46859.94, + "probability": 0.2124 + }, + { + "start": 46862.5, + "end": 46864.66, + "probability": 0.996 + }, + { + "start": 46865.06, + "end": 46865.84, + "probability": 0.7526 + }, + { + "start": 46865.94, + "end": 46866.24, + "probability": 0.8935 + }, + { + "start": 46867.38, + "end": 46868.28, + "probability": 0.709 + }, + { + "start": 46869.24, + "end": 46871.39, + "probability": 0.7032 + }, + { + "start": 46872.06, + "end": 46872.8, + "probability": 0.8974 + }, + { + "start": 46872.9, + "end": 46875.14, + "probability": 0.9922 + }, + { + "start": 46875.68, + "end": 46875.92, + "probability": 0.5172 + }, + { + "start": 46876.02, + "end": 46876.73, + "probability": 0.9534 + }, + { + "start": 46877.54, + "end": 46879.5, + "probability": 0.7271 + }, + { + "start": 46881.47, + "end": 46884.28, + "probability": 0.9119 + }, + { + "start": 46884.94, + "end": 46886.64, + "probability": 0.9888 + }, + { + "start": 46886.72, + "end": 46888.08, + "probability": 0.9701 + }, + { + "start": 46889.46, + "end": 46891.14, + "probability": 0.7817 + }, + { + "start": 46891.26, + "end": 46891.84, + "probability": 0.0334 + }, + { + "start": 46891.86, + "end": 46893.5, + "probability": 0.631 + }, + { + "start": 46894.12, + "end": 46895.08, + "probability": 0.5882 + }, + { + "start": 46895.2, + "end": 46895.64, + "probability": 0.9547 + }, + { + "start": 46895.94, + "end": 46897.94, + "probability": 0.9951 + }, + { + "start": 46898.06, + "end": 46899.78, + "probability": 0.916 + }, + { + "start": 46900.04, + "end": 46900.56, + "probability": 0.5655 + }, + { + "start": 46900.64, + "end": 46902.5, + "probability": 0.4553 + }, + { + "start": 46902.5, + "end": 46902.5, + "probability": 0.0018 + }, + { + "start": 46902.5, + "end": 46903.64, + "probability": 0.4574 + }, + { + "start": 46904.0, + "end": 46906.16, + "probability": 0.5022 + }, + { + "start": 46906.26, + "end": 46906.78, + "probability": 0.7138 + }, + { + "start": 46906.88, + "end": 46913.64, + "probability": 0.9892 + }, + { + "start": 46914.44, + "end": 46915.94, + "probability": 0.6361 + }, + { + "start": 46917.2, + "end": 46920.68, + "probability": 0.6665 + }, + { + "start": 46921.62, + "end": 46922.36, + "probability": 0.9775 + }, + { + "start": 46924.2, + "end": 46925.56, + "probability": 0.7131 + }, + { + "start": 46926.12, + "end": 46926.9, + "probability": 0.9734 + }, + { + "start": 46927.72, + "end": 46929.9, + "probability": 0.974 + }, + { + "start": 46930.9, + "end": 46933.16, + "probability": 0.996 + }, + { + "start": 46933.82, + "end": 46935.94, + "probability": 0.981 + }, + { + "start": 46936.14, + "end": 46938.54, + "probability": 0.5278 + }, + { + "start": 46939.3, + "end": 46942.18, + "probability": 0.8329 + }, + { + "start": 46943.18, + "end": 46944.42, + "probability": 0.8774 + }, + { + "start": 46945.02, + "end": 46947.46, + "probability": 0.9888 + }, + { + "start": 46948.12, + "end": 46951.38, + "probability": 0.9937 + }, + { + "start": 46951.9, + "end": 46953.3, + "probability": 0.8832 + }, + { + "start": 46954.38, + "end": 46956.12, + "probability": 0.8421 + }, + { + "start": 46956.28, + "end": 46956.66, + "probability": 0.5662 + }, + { + "start": 46956.68, + "end": 46957.52, + "probability": 0.8794 + }, + { + "start": 46957.66, + "end": 46959.78, + "probability": 0.9971 + }, + { + "start": 46961.14, + "end": 46964.36, + "probability": 0.5998 + }, + { + "start": 46964.96, + "end": 46968.14, + "probability": 0.8781 + }, + { + "start": 46969.04, + "end": 46970.04, + "probability": 0.9448 + }, + { + "start": 46971.26, + "end": 46973.62, + "probability": 0.9669 + }, + { + "start": 46975.08, + "end": 46978.46, + "probability": 0.9984 + }, + { + "start": 46979.76, + "end": 46981.66, + "probability": 0.9741 + }, + { + "start": 46982.24, + "end": 46984.3, + "probability": 0.9604 + }, + { + "start": 46985.08, + "end": 46987.74, + "probability": 0.6644 + }, + { + "start": 46988.5, + "end": 46990.35, + "probability": 0.9961 + }, + { + "start": 46991.04, + "end": 46994.82, + "probability": 0.9772 + }, + { + "start": 46995.38, + "end": 46996.74, + "probability": 0.7285 + }, + { + "start": 46997.7, + "end": 46999.6, + "probability": 0.6827 + }, + { + "start": 47000.12, + "end": 47000.64, + "probability": 0.7666 + }, + { + "start": 47001.2, + "end": 47001.64, + "probability": 0.4194 + }, + { + "start": 47001.74, + "end": 47002.76, + "probability": 0.9736 + }, + { + "start": 47003.76, + "end": 47005.08, + "probability": 0.7154 + }, + { + "start": 47005.72, + "end": 47006.3, + "probability": 0.731 + }, + { + "start": 47007.34, + "end": 47008.38, + "probability": 0.8241 + }, + { + "start": 47008.48, + "end": 47009.56, + "probability": 0.9176 + }, + { + "start": 47009.7, + "end": 47011.9, + "probability": 0.7905 + }, + { + "start": 47012.58, + "end": 47014.82, + "probability": 0.9891 + }, + { + "start": 47015.38, + "end": 47018.08, + "probability": 0.9925 + }, + { + "start": 47019.56, + "end": 47020.66, + "probability": 0.8086 + }, + { + "start": 47020.82, + "end": 47021.68, + "probability": 0.8547 + }, + { + "start": 47022.64, + "end": 47023.3, + "probability": 0.7572 + }, + { + "start": 47023.76, + "end": 47025.46, + "probability": 0.9484 + }, + { + "start": 47026.1, + "end": 47028.57, + "probability": 0.9802 + }, + { + "start": 47029.34, + "end": 47031.46, + "probability": 0.9395 + }, + { + "start": 47031.84, + "end": 47033.28, + "probability": 0.8806 + }, + { + "start": 47033.46, + "end": 47037.16, + "probability": 0.4733 + }, + { + "start": 47037.62, + "end": 47040.14, + "probability": 0.9961 + }, + { + "start": 47040.76, + "end": 47043.32, + "probability": 0.9954 + }, + { + "start": 47043.32, + "end": 47047.2, + "probability": 0.9009 + }, + { + "start": 47047.7, + "end": 47048.64, + "probability": 0.8573 + }, + { + "start": 47048.98, + "end": 47049.74, + "probability": 0.9061 + }, + { + "start": 47050.18, + "end": 47052.5, + "probability": 0.9578 + }, + { + "start": 47052.54, + "end": 47053.54, + "probability": 0.5304 + }, + { + "start": 47053.66, + "end": 47054.88, + "probability": 0.7722 + }, + { + "start": 47055.06, + "end": 47056.51, + "probability": 0.8752 + }, + { + "start": 47056.92, + "end": 47057.79, + "probability": 0.9494 + }, + { + "start": 47058.62, + "end": 47060.12, + "probability": 0.9727 + }, + { + "start": 47060.36, + "end": 47061.62, + "probability": 0.8198 + }, + { + "start": 47061.72, + "end": 47063.84, + "probability": 0.9924 + }, + { + "start": 47064.86, + "end": 47067.78, + "probability": 0.9428 + }, + { + "start": 47068.72, + "end": 47070.52, + "probability": 0.7139 + }, + { + "start": 47071.12, + "end": 47075.16, + "probability": 0.8223 + }, + { + "start": 47075.9, + "end": 47077.58, + "probability": 0.9963 + }, + { + "start": 47078.3, + "end": 47079.32, + "probability": 0.412 + }, + { + "start": 47080.6, + "end": 47080.62, + "probability": 0.0137 + }, + { + "start": 47081.36, + "end": 47083.38, + "probability": 0.8443 + }, + { + "start": 47083.58, + "end": 47083.58, + "probability": 0.1956 + }, + { + "start": 47083.6, + "end": 47087.54, + "probability": 0.9662 + }, + { + "start": 47087.74, + "end": 47091.8, + "probability": 0.9706 + }, + { + "start": 47093.0, + "end": 47094.62, + "probability": 0.9192 + }, + { + "start": 47095.06, + "end": 47095.56, + "probability": 0.7469 + }, + { + "start": 47095.6, + "end": 47099.44, + "probability": 0.9792 + }, + { + "start": 47100.2, + "end": 47101.22, + "probability": 0.9914 + }, + { + "start": 47102.06, + "end": 47105.42, + "probability": 0.9565 + }, + { + "start": 47106.52, + "end": 47108.3, + "probability": 0.8296 + }, + { + "start": 47108.36, + "end": 47110.72, + "probability": 0.8464 + }, + { + "start": 47110.72, + "end": 47111.46, + "probability": 0.2597 + }, + { + "start": 47111.66, + "end": 47112.71, + "probability": 0.9543 + }, + { + "start": 47113.0, + "end": 47115.16, + "probability": 0.5923 + }, + { + "start": 47115.24, + "end": 47120.22, + "probability": 0.4442 + }, + { + "start": 47120.22, + "end": 47120.38, + "probability": 0.0348 + }, + { + "start": 47120.38, + "end": 47121.54, + "probability": 0.5069 + }, + { + "start": 47121.72, + "end": 47122.22, + "probability": 0.2854 + }, + { + "start": 47122.5, + "end": 47123.06, + "probability": 0.6676 + }, + { + "start": 47123.2, + "end": 47123.52, + "probability": 0.6744 + }, + { + "start": 47123.86, + "end": 47124.96, + "probability": 0.9756 + }, + { + "start": 47125.7, + "end": 47128.1, + "probability": 0.5033 + }, + { + "start": 47129.02, + "end": 47129.73, + "probability": 0.201 + }, + { + "start": 47130.3, + "end": 47132.2, + "probability": 0.8822 + }, + { + "start": 47132.36, + "end": 47134.44, + "probability": 0.9401 + }, + { + "start": 47134.64, + "end": 47137.45, + "probability": 0.9744 + }, + { + "start": 47138.28, + "end": 47140.72, + "probability": 0.9306 + }, + { + "start": 47141.4, + "end": 47141.82, + "probability": 0.7993 + }, + { + "start": 47141.82, + "end": 47142.18, + "probability": 0.4877 + }, + { + "start": 47142.88, + "end": 47145.14, + "probability": 0.9919 + }, + { + "start": 47145.32, + "end": 47146.38, + "probability": 0.9581 + }, + { + "start": 47146.76, + "end": 47152.26, + "probability": 0.9589 + }, + { + "start": 47152.42, + "end": 47153.6, + "probability": 0.9993 + }, + { + "start": 47154.46, + "end": 47157.96, + "probability": 0.9761 + }, + { + "start": 47158.6, + "end": 47162.1, + "probability": 0.8506 + }, + { + "start": 47162.82, + "end": 47163.38, + "probability": 0.9539 + }, + { + "start": 47164.02, + "end": 47166.04, + "probability": 0.8703 + }, + { + "start": 47166.64, + "end": 47170.76, + "probability": 0.9529 + }, + { + "start": 47171.32, + "end": 47174.74, + "probability": 0.9898 + }, + { + "start": 47174.74, + "end": 47178.62, + "probability": 0.9813 + }, + { + "start": 47178.76, + "end": 47180.6, + "probability": 0.863 + }, + { + "start": 47181.78, + "end": 47182.1, + "probability": 0.7518 + }, + { + "start": 47182.62, + "end": 47184.64, + "probability": 0.897 + }, + { + "start": 47185.8, + "end": 47188.68, + "probability": 0.9233 + }, + { + "start": 47189.58, + "end": 47192.84, + "probability": 0.9573 + }, + { + "start": 47193.0, + "end": 47194.22, + "probability": 0.4902 + }, + { + "start": 47195.52, + "end": 47200.38, + "probability": 0.9347 + }, + { + "start": 47201.2, + "end": 47203.88, + "probability": 0.972 + }, + { + "start": 47204.58, + "end": 47208.12, + "probability": 0.9958 + }, + { + "start": 47208.48, + "end": 47210.02, + "probability": 0.9888 + }, + { + "start": 47211.16, + "end": 47214.45, + "probability": 0.9824 + }, + { + "start": 47215.0, + "end": 47216.64, + "probability": 0.9755 + }, + { + "start": 47216.78, + "end": 47218.16, + "probability": 0.9961 + }, + { + "start": 47218.78, + "end": 47219.86, + "probability": 0.7734 + }, + { + "start": 47221.04, + "end": 47222.44, + "probability": 0.5455 + }, + { + "start": 47222.6, + "end": 47225.82, + "probability": 0.9725 + }, + { + "start": 47225.82, + "end": 47229.72, + "probability": 0.987 + }, + { + "start": 47230.58, + "end": 47234.8, + "probability": 0.9962 + }, + { + "start": 47235.94, + "end": 47239.96, + "probability": 0.9854 + }, + { + "start": 47240.0, + "end": 47242.9, + "probability": 0.9907 + }, + { + "start": 47242.9, + "end": 47245.12, + "probability": 0.9973 + }, + { + "start": 47246.14, + "end": 47249.62, + "probability": 0.9785 + }, + { + "start": 47251.52, + "end": 47253.44, + "probability": 0.97 + }, + { + "start": 47253.76, + "end": 47254.04, + "probability": 0.5159 + }, + { + "start": 47254.62, + "end": 47257.16, + "probability": 0.9351 + }, + { + "start": 47257.44, + "end": 47261.74, + "probability": 0.99 + }, + { + "start": 47262.46, + "end": 47266.16, + "probability": 0.9943 + }, + { + "start": 47266.8, + "end": 47270.98, + "probability": 0.9816 + }, + { + "start": 47271.52, + "end": 47273.12, + "probability": 0.9904 + }, + { + "start": 47274.12, + "end": 47276.56, + "probability": 0.9989 + }, + { + "start": 47276.86, + "end": 47279.64, + "probability": 0.9958 + }, + { + "start": 47280.5, + "end": 47281.24, + "probability": 0.9812 + }, + { + "start": 47281.32, + "end": 47284.38, + "probability": 0.7946 + }, + { + "start": 47284.44, + "end": 47285.73, + "probability": 0.826 + }, + { + "start": 47285.94, + "end": 47286.8, + "probability": 0.8957 + }, + { + "start": 47287.52, + "end": 47288.6, + "probability": 0.98 + }, + { + "start": 47289.3, + "end": 47291.26, + "probability": 0.9964 + }, + { + "start": 47291.98, + "end": 47294.3, + "probability": 0.9805 + }, + { + "start": 47294.86, + "end": 47297.68, + "probability": 0.8897 + }, + { + "start": 47297.94, + "end": 47301.5, + "probability": 0.9912 + }, + { + "start": 47303.9, + "end": 47305.08, + "probability": 0.7389 + }, + { + "start": 47305.48, + "end": 47306.14, + "probability": 0.8579 + }, + { + "start": 47306.16, + "end": 47306.65, + "probability": 0.3492 + }, + { + "start": 47307.04, + "end": 47307.6, + "probability": 0.8158 + }, + { + "start": 47308.5, + "end": 47308.52, + "probability": 0.4853 + }, + { + "start": 47308.52, + "end": 47308.84, + "probability": 0.4599 + }, + { + "start": 47309.64, + "end": 47311.46, + "probability": 0.7787 + }, + { + "start": 47311.52, + "end": 47315.02, + "probability": 0.9556 + }, + { + "start": 47315.78, + "end": 47319.54, + "probability": 0.9959 + }, + { + "start": 47319.62, + "end": 47321.18, + "probability": 0.9235 + }, + { + "start": 47322.02, + "end": 47323.2, + "probability": 0.7672 + }, + { + "start": 47324.16, + "end": 47328.94, + "probability": 0.9537 + }, + { + "start": 47329.6, + "end": 47333.14, + "probability": 0.853 + }, + { + "start": 47333.48, + "end": 47336.84, + "probability": 0.9961 + }, + { + "start": 47337.28, + "end": 47342.04, + "probability": 0.9435 + }, + { + "start": 47342.78, + "end": 47344.34, + "probability": 0.9954 + }, + { + "start": 47344.9, + "end": 47346.66, + "probability": 0.991 + }, + { + "start": 47347.16, + "end": 47351.14, + "probability": 0.957 + }, + { + "start": 47351.78, + "end": 47353.44, + "probability": 0.9477 + }, + { + "start": 47354.0, + "end": 47357.44, + "probability": 0.9951 + }, + { + "start": 47358.54, + "end": 47361.56, + "probability": 0.9971 + }, + { + "start": 47361.56, + "end": 47364.78, + "probability": 0.9973 + }, + { + "start": 47365.98, + "end": 47367.84, + "probability": 0.9976 + }, + { + "start": 47368.0, + "end": 47373.64, + "probability": 0.9958 + }, + { + "start": 47373.88, + "end": 47374.2, + "probability": 0.3847 + }, + { + "start": 47374.72, + "end": 47375.46, + "probability": 0.5838 + }, + { + "start": 47376.18, + "end": 47378.32, + "probability": 0.9669 + }, + { + "start": 47378.84, + "end": 47382.32, + "probability": 0.9552 + }, + { + "start": 47383.38, + "end": 47385.06, + "probability": 0.9871 + }, + { + "start": 47386.18, + "end": 47389.56, + "probability": 0.5795 + }, + { + "start": 47390.22, + "end": 47395.7, + "probability": 0.9793 + }, + { + "start": 47396.04, + "end": 47397.36, + "probability": 0.9012 + }, + { + "start": 47397.72, + "end": 47399.9, + "probability": 0.8413 + }, + { + "start": 47400.46, + "end": 47403.44, + "probability": 0.8654 + }, + { + "start": 47403.54, + "end": 47408.04, + "probability": 0.9849 + }, + { + "start": 47408.34, + "end": 47409.98, + "probability": 0.9263 + }, + { + "start": 47411.18, + "end": 47413.12, + "probability": 0.8534 + }, + { + "start": 47414.9, + "end": 47416.84, + "probability": 0.3142 + }, + { + "start": 47416.84, + "end": 47417.52, + "probability": 0.3196 + }, + { + "start": 47418.08, + "end": 47419.44, + "probability": 0.9966 + }, + { + "start": 47420.3, + "end": 47422.9, + "probability": 0.9619 + }, + { + "start": 47423.44, + "end": 47424.82, + "probability": 0.984 + }, + { + "start": 47427.58, + "end": 47428.54, + "probability": 0.5089 + }, + { + "start": 47429.86, + "end": 47432.48, + "probability": 0.983 + }, + { + "start": 47434.3, + "end": 47435.62, + "probability": 0.9096 + }, + { + "start": 47436.4, + "end": 47436.96, + "probability": 0.2715 + }, + { + "start": 47437.06, + "end": 47443.06, + "probability": 0.8993 + }, + { + "start": 47444.24, + "end": 47444.86, + "probability": 0.7382 + }, + { + "start": 47445.4, + "end": 47449.68, + "probability": 0.9932 + }, + { + "start": 47450.44, + "end": 47452.2, + "probability": 0.9829 + }, + { + "start": 47453.08, + "end": 47455.54, + "probability": 0.8318 + }, + { + "start": 47456.14, + "end": 47457.34, + "probability": 0.9937 + }, + { + "start": 47458.72, + "end": 47461.4, + "probability": 0.98 + }, + { + "start": 47461.5, + "end": 47462.68, + "probability": 0.9388 + }, + { + "start": 47463.18, + "end": 47465.54, + "probability": 0.9952 + }, + { + "start": 47466.4, + "end": 47467.88, + "probability": 0.9512 + }, + { + "start": 47468.08, + "end": 47468.52, + "probability": 0.5685 + }, + { + "start": 47469.04, + "end": 47472.28, + "probability": 0.9368 + }, + { + "start": 47473.56, + "end": 47474.68, + "probability": 0.6625 + }, + { + "start": 47475.64, + "end": 47476.36, + "probability": 0.7878 + }, + { + "start": 47476.88, + "end": 47481.48, + "probability": 0.9741 + }, + { + "start": 47482.24, + "end": 47483.24, + "probability": 0.9844 + }, + { + "start": 47484.76, + "end": 47484.86, + "probability": 0.7432 + }, + { + "start": 47485.1, + "end": 47485.6, + "probability": 0.9335 + }, + { + "start": 47485.74, + "end": 47486.14, + "probability": 0.6916 + }, + { + "start": 47486.26, + "end": 47488.2, + "probability": 0.9967 + }, + { + "start": 47488.49, + "end": 47490.96, + "probability": 0.5115 + }, + { + "start": 47491.1, + "end": 47495.6, + "probability": 0.9732 + }, + { + "start": 47495.82, + "end": 47496.74, + "probability": 0.8731 + }, + { + "start": 47497.6, + "end": 47498.92, + "probability": 0.9922 + }, + { + "start": 47499.46, + "end": 47500.02, + "probability": 0.8953 + }, + { + "start": 47500.54, + "end": 47503.52, + "probability": 0.9777 + }, + { + "start": 47503.96, + "end": 47505.54, + "probability": 0.9413 + }, + { + "start": 47506.78, + "end": 47509.66, + "probability": 0.6807 + }, + { + "start": 47510.18, + "end": 47510.74, + "probability": 0.7836 + }, + { + "start": 47511.28, + "end": 47513.74, + "probability": 0.9955 + }, + { + "start": 47514.22, + "end": 47519.2, + "probability": 0.9736 + }, + { + "start": 47519.62, + "end": 47520.68, + "probability": 0.9905 + }, + { + "start": 47522.14, + "end": 47526.82, + "probability": 0.9392 + }, + { + "start": 47527.2, + "end": 47527.7, + "probability": 0.9258 + }, + { + "start": 47529.4, + "end": 47531.12, + "probability": 0.9641 + }, + { + "start": 47531.84, + "end": 47533.88, + "probability": 0.9553 + }, + { + "start": 47534.78, + "end": 47537.48, + "probability": 0.9932 + }, + { + "start": 47538.46, + "end": 47541.32, + "probability": 0.9984 + }, + { + "start": 47542.3, + "end": 47543.24, + "probability": 0.9704 + }, + { + "start": 47543.84, + "end": 47545.42, + "probability": 0.9971 + }, + { + "start": 47546.24, + "end": 47548.13, + "probability": 0.9805 + }, + { + "start": 47548.86, + "end": 47550.98, + "probability": 0.9956 + }, + { + "start": 47551.04, + "end": 47552.2, + "probability": 0.9236 + }, + { + "start": 47553.44, + "end": 47553.7, + "probability": 0.6489 + }, + { + "start": 47555.0, + "end": 47555.68, + "probability": 0.8398 + }, + { + "start": 47556.56, + "end": 47558.34, + "probability": 0.9955 + }, + { + "start": 47559.1, + "end": 47559.62, + "probability": 0.7289 + }, + { + "start": 47559.74, + "end": 47560.96, + "probability": 0.9904 + }, + { + "start": 47561.46, + "end": 47562.66, + "probability": 0.9267 + }, + { + "start": 47564.86, + "end": 47567.32, + "probability": 0.9815 + }, + { + "start": 47568.46, + "end": 47570.34, + "probability": 0.9956 + }, + { + "start": 47571.22, + "end": 47572.12, + "probability": 0.9313 + }, + { + "start": 47572.7, + "end": 47574.32, + "probability": 0.9967 + }, + { + "start": 47574.96, + "end": 47577.22, + "probability": 0.9395 + }, + { + "start": 47578.56, + "end": 47581.04, + "probability": 0.9978 + }, + { + "start": 47581.04, + "end": 47581.92, + "probability": 0.409 + }, + { + "start": 47582.28, + "end": 47584.18, + "probability": 0.6942 + }, + { + "start": 47585.4, + "end": 47585.9, + "probability": 0.704 + }, + { + "start": 47586.08, + "end": 47588.64, + "probability": 0.9884 + }, + { + "start": 47588.7, + "end": 47591.2, + "probability": 0.8558 + }, + { + "start": 47591.26, + "end": 47592.6, + "probability": 0.9932 + }, + { + "start": 47594.02, + "end": 47594.5, + "probability": 0.0342 + }, + { + "start": 47595.04, + "end": 47597.28, + "probability": 0.8169 + }, + { + "start": 47597.38, + "end": 47599.88, + "probability": 0.9871 + }, + { + "start": 47600.0, + "end": 47600.94, + "probability": 0.9786 + }, + { + "start": 47601.22, + "end": 47601.28, + "probability": 0.4607 + }, + { + "start": 47601.32, + "end": 47603.2, + "probability": 0.6228 + }, + { + "start": 47603.32, + "end": 47605.78, + "probability": 0.9958 + }, + { + "start": 47605.88, + "end": 47606.64, + "probability": 0.9943 + }, + { + "start": 47607.82, + "end": 47609.22, + "probability": 0.7576 + }, + { + "start": 47609.3, + "end": 47610.74, + "probability": 0.9644 + }, + { + "start": 47610.74, + "end": 47611.34, + "probability": 0.8549 + }, + { + "start": 47612.28, + "end": 47613.18, + "probability": 0.9413 + }, + { + "start": 47613.9, + "end": 47614.91, + "probability": 0.9852 + }, + { + "start": 47615.54, + "end": 47617.74, + "probability": 0.9482 + }, + { + "start": 47618.24, + "end": 47620.25, + "probability": 0.9464 + }, + { + "start": 47621.26, + "end": 47622.14, + "probability": 0.5756 + }, + { + "start": 47622.74, + "end": 47623.74, + "probability": 0.9275 + }, + { + "start": 47624.18, + "end": 47625.84, + "probability": 0.9295 + }, + { + "start": 47626.58, + "end": 47628.88, + "probability": 0.9749 + }, + { + "start": 47629.72, + "end": 47631.76, + "probability": 0.8377 + }, + { + "start": 47632.08, + "end": 47633.42, + "probability": 0.9937 + }, + { + "start": 47634.08, + "end": 47635.88, + "probability": 0.9947 + }, + { + "start": 47638.36, + "end": 47638.98, + "probability": 0.8355 + }, + { + "start": 47639.48, + "end": 47640.36, + "probability": 0.6045 + }, + { + "start": 47640.54, + "end": 47641.06, + "probability": 0.8339 + }, + { + "start": 47641.38, + "end": 47642.4, + "probability": 0.9915 + }, + { + "start": 47642.98, + "end": 47645.96, + "probability": 0.9601 + }, + { + "start": 47646.2, + "end": 47650.04, + "probability": 0.964 + }, + { + "start": 47650.1, + "end": 47651.0, + "probability": 0.6984 + }, + { + "start": 47651.64, + "end": 47657.46, + "probability": 0.9429 + }, + { + "start": 47658.06, + "end": 47659.62, + "probability": 0.993 + }, + { + "start": 47660.06, + "end": 47660.28, + "probability": 0.4483 + }, + { + "start": 47660.44, + "end": 47662.58, + "probability": 0.9819 + }, + { + "start": 47663.16, + "end": 47664.3, + "probability": 0.9969 + }, + { + "start": 47664.64, + "end": 47665.26, + "probability": 0.5295 + }, + { + "start": 47665.74, + "end": 47666.54, + "probability": 0.9895 + }, + { + "start": 47666.62, + "end": 47667.44, + "probability": 0.3454 + }, + { + "start": 47668.22, + "end": 47668.74, + "probability": 0.807 + }, + { + "start": 47670.62, + "end": 47673.06, + "probability": 0.8462 + }, + { + "start": 47673.26, + "end": 47673.58, + "probability": 0.6991 + }, + { + "start": 47673.6, + "end": 47675.92, + "probability": 0.991 + }, + { + "start": 47675.98, + "end": 47678.1, + "probability": 0.9268 + }, + { + "start": 47678.58, + "end": 47679.49, + "probability": 0.8286 + }, + { + "start": 47680.44, + "end": 47681.54, + "probability": 0.9888 + }, + { + "start": 47682.08, + "end": 47684.8, + "probability": 0.8461 + }, + { + "start": 47686.34, + "end": 47688.32, + "probability": 0.9969 + }, + { + "start": 47688.94, + "end": 47691.0, + "probability": 0.9973 + }, + { + "start": 47691.6, + "end": 47693.64, + "probability": 0.7422 + }, + { + "start": 47694.54, + "end": 47695.06, + "probability": 0.919 + }, + { + "start": 47696.16, + "end": 47697.5, + "probability": 0.8878 + }, + { + "start": 47697.72, + "end": 47700.04, + "probability": 0.9825 + }, + { + "start": 47700.58, + "end": 47701.3, + "probability": 0.9352 + }, + { + "start": 47702.06, + "end": 47702.5, + "probability": 0.3383 + }, + { + "start": 47702.92, + "end": 47703.8, + "probability": 0.9803 + }, + { + "start": 47704.66, + "end": 47706.26, + "probability": 0.9033 + }, + { + "start": 47706.4, + "end": 47706.82, + "probability": 0.8092 + }, + { + "start": 47707.36, + "end": 47707.84, + "probability": 0.7305 + }, + { + "start": 47708.34, + "end": 47710.92, + "probability": 0.9648 + }, + { + "start": 47711.54, + "end": 47712.62, + "probability": 0.9627 + }, + { + "start": 47713.26, + "end": 47715.94, + "probability": 0.9871 + }, + { + "start": 47716.84, + "end": 47717.98, + "probability": 0.9825 + }, + { + "start": 47718.94, + "end": 47720.36, + "probability": 0.9166 + }, + { + "start": 47720.44, + "end": 47721.6, + "probability": 0.9875 + }, + { + "start": 47722.46, + "end": 47724.16, + "probability": 0.9429 + }, + { + "start": 47724.36, + "end": 47726.54, + "probability": 0.9757 + }, + { + "start": 47727.22, + "end": 47728.92, + "probability": 0.9773 + }, + { + "start": 47729.64, + "end": 47731.18, + "probability": 0.9073 + }, + { + "start": 47732.74, + "end": 47736.22, + "probability": 0.5804 + }, + { + "start": 47737.16, + "end": 47737.68, + "probability": 0.5913 + }, + { + "start": 47738.52, + "end": 47742.48, + "probability": 0.8678 + }, + { + "start": 47743.12, + "end": 47744.2, + "probability": 0.8408 + }, + { + "start": 47744.8, + "end": 47747.32, + "probability": 0.9987 + }, + { + "start": 47747.96, + "end": 47750.82, + "probability": 0.9829 + }, + { + "start": 47751.72, + "end": 47753.5, + "probability": 0.9885 + }, + { + "start": 47753.52, + "end": 47753.78, + "probability": 0.7253 + }, + { + "start": 47753.9, + "end": 47755.84, + "probability": 0.9893 + }, + { + "start": 47755.92, + "end": 47757.01, + "probability": 0.9966 + }, + { + "start": 47757.88, + "end": 47759.56, + "probability": 0.9873 + }, + { + "start": 47760.22, + "end": 47760.3, + "probability": 0.5623 + }, + { + "start": 47760.4, + "end": 47763.46, + "probability": 0.9651 + }, + { + "start": 47763.86, + "end": 47764.94, + "probability": 0.8641 + }, + { + "start": 47765.38, + "end": 47768.18, + "probability": 0.9847 + }, + { + "start": 47768.78, + "end": 47770.08, + "probability": 0.9944 + }, + { + "start": 47770.14, + "end": 47772.22, + "probability": 0.9753 + }, + { + "start": 47774.12, + "end": 47774.74, + "probability": 0.6688 + }, + { + "start": 47774.84, + "end": 47775.58, + "probability": 0.9115 + }, + { + "start": 47776.3, + "end": 47776.66, + "probability": 0.0512 + }, + { + "start": 47776.9, + "end": 47778.66, + "probability": 0.4816 + }, + { + "start": 47778.9, + "end": 47781.18, + "probability": 0.5638 + }, + { + "start": 47782.75, + "end": 47784.74, + "probability": 0.9229 + }, + { + "start": 47785.42, + "end": 47785.7, + "probability": 0.2106 + }, + { + "start": 47786.24, + "end": 47787.16, + "probability": 0.103 + }, + { + "start": 47787.16, + "end": 47787.56, + "probability": 0.188 + }, + { + "start": 47787.56, + "end": 47788.93, + "probability": 0.306 + }, + { + "start": 47789.26, + "end": 47789.26, + "probability": 0.012 + }, + { + "start": 47789.78, + "end": 47790.38, + "probability": 0.1849 + }, + { + "start": 47790.8, + "end": 47791.58, + "probability": 0.0963 + }, + { + "start": 47792.34, + "end": 47792.7, + "probability": 0.1567 + }, + { + "start": 47792.76, + "end": 47793.94, + "probability": 0.4713 + }, + { + "start": 47793.98, + "end": 47795.44, + "probability": 0.2313 + }, + { + "start": 47798.73, + "end": 47799.68, + "probability": 0.0839 + }, + { + "start": 47799.88, + "end": 47800.7, + "probability": 0.4123 + }, + { + "start": 47800.8, + "end": 47803.02, + "probability": 0.7876 + }, + { + "start": 47803.56, + "end": 47805.22, + "probability": 0.0074 + }, + { + "start": 47805.78, + "end": 47805.78, + "probability": 0.0542 + }, + { + "start": 47805.96, + "end": 47809.6, + "probability": 0.8566 + }, + { + "start": 47810.2, + "end": 47810.32, + "probability": 0.5647 + }, + { + "start": 47811.18, + "end": 47811.8, + "probability": 0.6914 + }, + { + "start": 47812.38, + "end": 47813.83, + "probability": 0.7204 + }, + { + "start": 47813.9, + "end": 47816.22, + "probability": 0.9715 + }, + { + "start": 47816.64, + "end": 47817.78, + "probability": 0.4321 + }, + { + "start": 47818.48, + "end": 47819.58, + "probability": 0.28 + }, + { + "start": 47819.66, + "end": 47820.22, + "probability": 0.4941 + }, + { + "start": 47820.22, + "end": 47822.1, + "probability": 0.7739 + }, + { + "start": 47822.2, + "end": 47823.84, + "probability": 0.3097 + }, + { + "start": 47824.34, + "end": 47825.2, + "probability": 0.6841 + }, + { + "start": 47826.12, + "end": 47828.08, + "probability": 0.428 + }, + { + "start": 47828.1, + "end": 47830.46, + "probability": 0.9888 + }, + { + "start": 47831.98, + "end": 47834.44, + "probability": 0.9971 + }, + { + "start": 47834.46, + "end": 47838.76, + "probability": 0.9119 + }, + { + "start": 47839.76, + "end": 47841.1, + "probability": 0.9726 + }, + { + "start": 47842.14, + "end": 47846.96, + "probability": 0.9961 + }, + { + "start": 47847.5, + "end": 47848.52, + "probability": 0.9246 + }, + { + "start": 47849.48, + "end": 47852.0, + "probability": 0.9778 + }, + { + "start": 47852.94, + "end": 47855.34, + "probability": 0.9327 + }, + { + "start": 47856.6, + "end": 47857.22, + "probability": 0.3589 + }, + { + "start": 47857.82, + "end": 47859.32, + "probability": 0.8501 + }, + { + "start": 47860.28, + "end": 47862.12, + "probability": 0.8835 + }, + { + "start": 47862.24, + "end": 47864.28, + "probability": 0.992 + }, + { + "start": 47864.84, + "end": 47865.98, + "probability": 0.9322 + }, + { + "start": 47866.08, + "end": 47868.0, + "probability": 0.9961 + }, + { + "start": 47868.42, + "end": 47869.66, + "probability": 0.9827 + }, + { + "start": 47870.7, + "end": 47872.84, + "probability": 0.9901 + }, + { + "start": 47873.48, + "end": 47876.0, + "probability": 0.9829 + }, + { + "start": 47876.68, + "end": 47878.26, + "probability": 0.9136 + }, + { + "start": 47878.98, + "end": 47882.06, + "probability": 0.9827 + }, + { + "start": 47882.06, + "end": 47885.4, + "probability": 0.9995 + }, + { + "start": 47885.54, + "end": 47887.38, + "probability": 0.9935 + }, + { + "start": 47887.96, + "end": 47891.4, + "probability": 0.9756 + }, + { + "start": 47892.16, + "end": 47893.78, + "probability": 0.9912 + }, + { + "start": 47894.4, + "end": 47896.42, + "probability": 0.9929 + }, + { + "start": 47897.06, + "end": 47898.06, + "probability": 0.9506 + }, + { + "start": 47898.38, + "end": 47899.94, + "probability": 0.4694 + }, + { + "start": 47900.18, + "end": 47900.34, + "probability": 0.7122 + }, + { + "start": 47900.44, + "end": 47901.59, + "probability": 0.9771 + }, + { + "start": 47901.86, + "end": 47902.5, + "probability": 0.9948 + }, + { + "start": 47903.62, + "end": 47909.66, + "probability": 0.9504 + }, + { + "start": 47909.66, + "end": 47911.08, + "probability": 0.7996 + }, + { + "start": 47911.8, + "end": 47915.32, + "probability": 0.9974 + }, + { + "start": 47915.4, + "end": 47917.92, + "probability": 0.9852 + }, + { + "start": 47918.0, + "end": 47918.72, + "probability": 0.6697 + }, + { + "start": 47919.42, + "end": 47922.6, + "probability": 0.7678 + }, + { + "start": 47923.98, + "end": 47926.72, + "probability": 0.9919 + }, + { + "start": 47927.36, + "end": 47931.5, + "probability": 0.9884 + }, + { + "start": 47932.02, + "end": 47934.52, + "probability": 0.9666 + }, + { + "start": 47934.86, + "end": 47935.7, + "probability": 0.8514 + }, + { + "start": 47936.9, + "end": 47937.2, + "probability": 0.5244 + }, + { + "start": 47937.2, + "end": 47938.0, + "probability": 0.6956 + }, + { + "start": 47938.54, + "end": 47943.16, + "probability": 0.9736 + }, + { + "start": 47943.38, + "end": 47944.42, + "probability": 0.9729 + }, + { + "start": 47945.28, + "end": 47946.12, + "probability": 0.9821 + }, + { + "start": 47946.82, + "end": 47948.16, + "probability": 0.9854 + }, + { + "start": 47948.78, + "end": 47951.28, + "probability": 0.9968 + }, + { + "start": 47951.72, + "end": 47952.96, + "probability": 0.6798 + }, + { + "start": 47953.42, + "end": 47954.24, + "probability": 0.7503 + }, + { + "start": 47954.66, + "end": 47956.61, + "probability": 0.9932 + }, + { + "start": 47957.42, + "end": 47959.7, + "probability": 0.9788 + }, + { + "start": 47959.74, + "end": 47961.6, + "probability": 0.9473 + }, + { + "start": 47962.34, + "end": 47963.12, + "probability": 0.7003 + }, + { + "start": 47963.44, + "end": 47964.22, + "probability": 0.9562 + }, + { + "start": 47964.68, + "end": 47966.44, + "probability": 0.5746 + }, + { + "start": 47966.76, + "end": 47968.34, + "probability": 0.8826 + }, + { + "start": 47968.86, + "end": 47971.58, + "probability": 0.9828 + }, + { + "start": 47972.08, + "end": 47973.07, + "probability": 0.9264 + }, + { + "start": 47973.96, + "end": 47975.58, + "probability": 0.6783 + }, + { + "start": 47975.76, + "end": 47979.8, + "probability": 0.9897 + }, + { + "start": 47980.26, + "end": 47982.82, + "probability": 0.9889 + }, + { + "start": 47983.22, + "end": 47984.1, + "probability": 0.8162 + }, + { + "start": 47984.16, + "end": 47986.1, + "probability": 0.9732 + }, + { + "start": 47986.58, + "end": 47987.38, + "probability": 0.5287 + }, + { + "start": 47987.76, + "end": 47989.08, + "probability": 0.8994 + }, + { + "start": 47989.18, + "end": 47990.16, + "probability": 0.945 + }, + { + "start": 47991.0, + "end": 47994.54, + "probability": 0.9117 + }, + { + "start": 47994.86, + "end": 47996.12, + "probability": 0.7945 + }, + { + "start": 47996.82, + "end": 48000.38, + "probability": 0.8973 + }, + { + "start": 48000.74, + "end": 48005.04, + "probability": 0.9961 + }, + { + "start": 48005.04, + "end": 48009.28, + "probability": 0.9969 + }, + { + "start": 48009.9, + "end": 48011.16, + "probability": 0.676 + }, + { + "start": 48011.76, + "end": 48012.88, + "probability": 0.8929 + }, + { + "start": 48013.56, + "end": 48017.24, + "probability": 0.9774 + }, + { + "start": 48017.66, + "end": 48019.82, + "probability": 0.8995 + }, + { + "start": 48020.44, + "end": 48023.72, + "probability": 0.8587 + }, + { + "start": 48024.74, + "end": 48028.68, + "probability": 0.7125 + }, + { + "start": 48029.16, + "end": 48032.28, + "probability": 0.99 + }, + { + "start": 48033.44, + "end": 48034.84, + "probability": 0.4749 + }, + { + "start": 48036.08, + "end": 48036.74, + "probability": 0.9468 + }, + { + "start": 48037.02, + "end": 48037.88, + "probability": 0.9325 + }, + { + "start": 48038.22, + "end": 48038.66, + "probability": 0.4996 + }, + { + "start": 48038.88, + "end": 48039.98, + "probability": 0.7325 + }, + { + "start": 48040.1, + "end": 48041.1, + "probability": 0.9601 + }, + { + "start": 48041.4, + "end": 48042.22, + "probability": 0.7047 + }, + { + "start": 48042.62, + "end": 48044.46, + "probability": 0.8296 + }, + { + "start": 48044.82, + "end": 48048.04, + "probability": 0.9726 + }, + { + "start": 48049.26, + "end": 48050.14, + "probability": 0.9019 + }, + { + "start": 48050.28, + "end": 48050.96, + "probability": 0.6007 + }, + { + "start": 48051.08, + "end": 48051.95, + "probability": 0.6589 + }, + { + "start": 48052.24, + "end": 48052.82, + "probability": 0.6447 + }, + { + "start": 48053.36, + "end": 48053.8, + "probability": 0.8836 + }, + { + "start": 48054.7, + "end": 48057.56, + "probability": 0.9302 + }, + { + "start": 48058.52, + "end": 48061.02, + "probability": 0.973 + }, + { + "start": 48061.36, + "end": 48064.16, + "probability": 0.2574 + }, + { + "start": 48064.78, + "end": 48065.88, + "probability": 0.7297 + }, + { + "start": 48066.06, + "end": 48066.96, + "probability": 0.5692 + }, + { + "start": 48067.78, + "end": 48073.84, + "probability": 0.8654 + }, + { + "start": 48074.48, + "end": 48075.92, + "probability": 0.9961 + }, + { + "start": 48077.5, + "end": 48080.0, + "probability": 0.9853 + }, + { + "start": 48080.1, + "end": 48082.42, + "probability": 0.9785 + }, + { + "start": 48083.14, + "end": 48085.22, + "probability": 0.9874 + }, + { + "start": 48085.8, + "end": 48090.66, + "probability": 0.9731 + }, + { + "start": 48091.4, + "end": 48092.36, + "probability": 0.4973 + }, + { + "start": 48092.42, + "end": 48095.5, + "probability": 0.7987 + }, + { + "start": 48096.2, + "end": 48097.74, + "probability": 0.5591 + }, + { + "start": 48098.4, + "end": 48100.86, + "probability": 0.6901 + }, + { + "start": 48101.66, + "end": 48102.54, + "probability": 0.8537 + }, + { + "start": 48102.58, + "end": 48103.7, + "probability": 0.9752 + }, + { + "start": 48103.74, + "end": 48104.74, + "probability": 0.79 + }, + { + "start": 48105.46, + "end": 48106.02, + "probability": 0.9493 + }, + { + "start": 48106.18, + "end": 48108.16, + "probability": 0.9717 + }, + { + "start": 48108.3, + "end": 48108.8, + "probability": 0.694 + }, + { + "start": 48109.4, + "end": 48110.18, + "probability": 0.8704 + }, + { + "start": 48110.66, + "end": 48113.9, + "probability": 0.9766 + }, + { + "start": 48114.04, + "end": 48114.76, + "probability": 0.6842 + }, + { + "start": 48115.46, + "end": 48118.54, + "probability": 0.9722 + }, + { + "start": 48119.66, + "end": 48122.68, + "probability": 0.9503 + }, + { + "start": 48127.39, + "end": 48130.2, + "probability": 0.969 + }, + { + "start": 48130.2, + "end": 48134.68, + "probability": 0.9926 + }, + { + "start": 48134.86, + "end": 48138.54, + "probability": 0.8246 + }, + { + "start": 48138.76, + "end": 48141.46, + "probability": 0.9536 + }, + { + "start": 48142.0, + "end": 48143.38, + "probability": 0.9805 + }, + { + "start": 48143.76, + "end": 48146.18, + "probability": 0.9597 + }, + { + "start": 48146.28, + "end": 48148.27, + "probability": 0.6948 + }, + { + "start": 48149.65, + "end": 48152.58, + "probability": 0.9941 + }, + { + "start": 48152.7, + "end": 48153.04, + "probability": 0.4793 + }, + { + "start": 48153.14, + "end": 48156.7, + "probability": 0.9335 + }, + { + "start": 48156.82, + "end": 48158.04, + "probability": 0.9299 + }, + { + "start": 48159.2, + "end": 48160.07, + "probability": 0.9185 + }, + { + "start": 48161.72, + "end": 48165.78, + "probability": 0.9724 + }, + { + "start": 48165.88, + "end": 48169.3, + "probability": 0.9701 + }, + { + "start": 48169.66, + "end": 48171.44, + "probability": 0.9988 + }, + { + "start": 48171.58, + "end": 48173.58, + "probability": 0.9341 + }, + { + "start": 48174.34, + "end": 48177.04, + "probability": 0.7814 + }, + { + "start": 48177.64, + "end": 48181.02, + "probability": 0.8055 + }, + { + "start": 48181.24, + "end": 48183.58, + "probability": 0.9943 + }, + { + "start": 48183.58, + "end": 48187.54, + "probability": 0.92 + }, + { + "start": 48187.9, + "end": 48190.78, + "probability": 0.7673 + }, + { + "start": 48191.42, + "end": 48193.48, + "probability": 0.8824 + }, + { + "start": 48193.72, + "end": 48196.34, + "probability": 0.9783 + }, + { + "start": 48196.34, + "end": 48200.62, + "probability": 0.9394 + }, + { + "start": 48200.96, + "end": 48203.28, + "probability": 0.9562 + }, + { + "start": 48204.94, + "end": 48206.72, + "probability": 0.8471 + }, + { + "start": 48208.14, + "end": 48210.38, + "probability": 0.8757 + }, + { + "start": 48210.92, + "end": 48213.94, + "probability": 0.9673 + }, + { + "start": 48213.94, + "end": 48216.56, + "probability": 0.9958 + }, + { + "start": 48217.76, + "end": 48219.98, + "probability": 0.9214 + }, + { + "start": 48220.84, + "end": 48222.8, + "probability": 0.983 + }, + { + "start": 48222.9, + "end": 48223.16, + "probability": 0.7744 + }, + { + "start": 48223.42, + "end": 48226.72, + "probability": 0.9214 + }, + { + "start": 48227.58, + "end": 48229.54, + "probability": 0.9902 + }, + { + "start": 48230.44, + "end": 48233.04, + "probability": 0.9663 + }, + { + "start": 48233.04, + "end": 48236.44, + "probability": 0.9962 + }, + { + "start": 48238.0, + "end": 48239.98, + "probability": 0.9934 + }, + { + "start": 48240.52, + "end": 48244.56, + "probability": 0.9863 + }, + { + "start": 48245.44, + "end": 48248.82, + "probability": 0.9873 + }, + { + "start": 48249.2, + "end": 48249.5, + "probability": 0.0702 + }, + { + "start": 48251.08, + "end": 48253.18, + "probability": 0.9213 + }, + { + "start": 48253.18, + "end": 48255.34, + "probability": 0.9883 + }, + { + "start": 48256.98, + "end": 48260.1, + "probability": 0.9854 + }, + { + "start": 48260.62, + "end": 48261.52, + "probability": 0.9055 + }, + { + "start": 48262.26, + "end": 48262.72, + "probability": 0.8019 + }, + { + "start": 48263.56, + "end": 48264.3, + "probability": 0.7676 + }, + { + "start": 48264.94, + "end": 48266.68, + "probability": 0.9847 + }, + { + "start": 48267.32, + "end": 48270.52, + "probability": 0.9956 + }, + { + "start": 48271.14, + "end": 48272.74, + "probability": 0.9702 + }, + { + "start": 48274.54, + "end": 48275.82, + "probability": 0.9777 + }, + { + "start": 48276.56, + "end": 48279.4, + "probability": 0.9976 + }, + { + "start": 48280.02, + "end": 48283.02, + "probability": 0.9971 + }, + { + "start": 48283.44, + "end": 48285.08, + "probability": 0.891 + }, + { + "start": 48285.72, + "end": 48286.7, + "probability": 0.698 + }, + { + "start": 48287.26, + "end": 48287.54, + "probability": 0.7976 + }, + { + "start": 48287.6, + "end": 48289.88, + "probability": 0.9057 + }, + { + "start": 48289.96, + "end": 48291.74, + "probability": 0.833 + }, + { + "start": 48292.62, + "end": 48292.72, + "probability": 0.5498 + }, + { + "start": 48293.8, + "end": 48296.54, + "probability": 0.9082 + }, + { + "start": 48296.74, + "end": 48299.4, + "probability": 0.9945 + }, + { + "start": 48299.66, + "end": 48300.32, + "probability": 0.9017 + }, + { + "start": 48301.54, + "end": 48303.08, + "probability": 0.9405 + }, + { + "start": 48303.64, + "end": 48306.62, + "probability": 0.9876 + }, + { + "start": 48307.14, + "end": 48310.2, + "probability": 0.9945 + }, + { + "start": 48310.68, + "end": 48313.42, + "probability": 0.9945 + }, + { + "start": 48314.12, + "end": 48317.14, + "probability": 0.9989 + }, + { + "start": 48317.78, + "end": 48319.48, + "probability": 0.9982 + }, + { + "start": 48320.25, + "end": 48320.84, + "probability": 0.9659 + }, + { + "start": 48321.86, + "end": 48323.4, + "probability": 0.9727 + }, + { + "start": 48323.58, + "end": 48323.94, + "probability": 0.4534 + }, + { + "start": 48324.04, + "end": 48326.2, + "probability": 0.9854 + }, + { + "start": 48327.22, + "end": 48330.68, + "probability": 0.9878 + }, + { + "start": 48330.88, + "end": 48331.18, + "probability": 0.7532 + }, + { + "start": 48331.72, + "end": 48333.44, + "probability": 0.9915 + }, + { + "start": 48334.36, + "end": 48334.82, + "probability": 0.7235 + }, + { + "start": 48335.74, + "end": 48337.46, + "probability": 0.979 + }, + { + "start": 48337.6, + "end": 48338.74, + "probability": 0.9404 + }, + { + "start": 48338.88, + "end": 48341.18, + "probability": 0.8853 + }, + { + "start": 48341.7, + "end": 48342.24, + "probability": 0.9194 + }, + { + "start": 48342.36, + "end": 48342.68, + "probability": 0.6469 + }, + { + "start": 48342.82, + "end": 48345.9, + "probability": 0.9972 + }, + { + "start": 48346.44, + "end": 48347.5, + "probability": 0.9785 + }, + { + "start": 48348.94, + "end": 48350.74, + "probability": 0.8891 + }, + { + "start": 48351.4, + "end": 48352.5, + "probability": 0.9146 + }, + { + "start": 48353.58, + "end": 48354.5, + "probability": 0.8787 + }, + { + "start": 48355.98, + "end": 48358.1, + "probability": 0.9849 + }, + { + "start": 48358.76, + "end": 48362.54, + "probability": 0.9827 + }, + { + "start": 48363.68, + "end": 48366.16, + "probability": 0.7916 + }, + { + "start": 48366.78, + "end": 48369.92, + "probability": 0.8757 + }, + { + "start": 48369.92, + "end": 48374.76, + "probability": 0.6749 + }, + { + "start": 48376.74, + "end": 48377.78, + "probability": 0.9602 + }, + { + "start": 48378.32, + "end": 48382.06, + "probability": 0.9915 + }, + { + "start": 48382.98, + "end": 48385.4, + "probability": 0.8434 + }, + { + "start": 48386.36, + "end": 48388.75, + "probability": 0.9596 + }, + { + "start": 48389.02, + "end": 48390.66, + "probability": 0.6974 + }, + { + "start": 48391.16, + "end": 48392.76, + "probability": 0.9919 + }, + { + "start": 48393.14, + "end": 48393.6, + "probability": 0.4707 + }, + { + "start": 48393.74, + "end": 48397.2, + "probability": 0.9853 + }, + { + "start": 48397.9, + "end": 48399.68, + "probability": 0.9055 + }, + { + "start": 48400.16, + "end": 48400.6, + "probability": 0.9506 + }, + { + "start": 48400.96, + "end": 48402.78, + "probability": 0.9741 + }, + { + "start": 48403.16, + "end": 48406.26, + "probability": 0.996 + }, + { + "start": 48406.88, + "end": 48408.44, + "probability": 0.9919 + }, + { + "start": 48408.94, + "end": 48410.22, + "probability": 0.9717 + }, + { + "start": 48410.28, + "end": 48411.96, + "probability": 0.9648 + }, + { + "start": 48412.84, + "end": 48414.46, + "probability": 0.6324 + }, + { + "start": 48414.68, + "end": 48415.14, + "probability": 0.8367 + }, + { + "start": 48416.04, + "end": 48417.74, + "probability": 0.9631 + }, + { + "start": 48418.54, + "end": 48420.72, + "probability": 0.9956 + }, + { + "start": 48421.84, + "end": 48422.16, + "probability": 0.7084 + }, + { + "start": 48423.08, + "end": 48424.56, + "probability": 0.9416 + }, + { + "start": 48425.14, + "end": 48427.8, + "probability": 0.9819 + }, + { + "start": 48428.52, + "end": 48431.12, + "probability": 0.9934 + }, + { + "start": 48431.86, + "end": 48433.82, + "probability": 0.9398 + }, + { + "start": 48434.52, + "end": 48436.0, + "probability": 0.9995 + }, + { + "start": 48436.28, + "end": 48437.26, + "probability": 0.999 + }, + { + "start": 48437.86, + "end": 48438.66, + "probability": 0.8398 + }, + { + "start": 48438.82, + "end": 48440.12, + "probability": 0.991 + }, + { + "start": 48440.8, + "end": 48442.72, + "probability": 0.9958 + }, + { + "start": 48443.4, + "end": 48445.3, + "probability": 0.7075 + }, + { + "start": 48446.18, + "end": 48446.96, + "probability": 0.8498 + }, + { + "start": 48447.5, + "end": 48448.94, + "probability": 0.9165 + }, + { + "start": 48449.72, + "end": 48452.06, + "probability": 0.9789 + }, + { + "start": 48452.62, + "end": 48454.22, + "probability": 0.9933 + }, + { + "start": 48454.8, + "end": 48456.4, + "probability": 0.9694 + }, + { + "start": 48457.22, + "end": 48461.4, + "probability": 0.8098 + }, + { + "start": 48461.52, + "end": 48463.78, + "probability": 0.9764 + }, + { + "start": 48464.4, + "end": 48466.66, + "probability": 0.9777 + }, + { + "start": 48467.56, + "end": 48470.22, + "probability": 0.9937 + }, + { + "start": 48470.3, + "end": 48471.42, + "probability": 0.9104 + }, + { + "start": 48472.0, + "end": 48474.46, + "probability": 0.9867 + }, + { + "start": 48474.53, + "end": 48477.2, + "probability": 0.9886 + }, + { + "start": 48478.22, + "end": 48480.26, + "probability": 0.8625 + }, + { + "start": 48480.52, + "end": 48482.02, + "probability": 0.8754 + }, + { + "start": 48482.6, + "end": 48484.56, + "probability": 0.9856 + }, + { + "start": 48485.8, + "end": 48488.16, + "probability": 0.959 + }, + { + "start": 48490.0, + "end": 48492.22, + "probability": 0.7938 + }, + { + "start": 48493.04, + "end": 48495.44, + "probability": 0.9658 + }, + { + "start": 48495.44, + "end": 48497.92, + "probability": 0.9994 + }, + { + "start": 48498.56, + "end": 48501.08, + "probability": 0.9761 + }, + { + "start": 48502.36, + "end": 48505.88, + "probability": 0.9796 + }, + { + "start": 48506.66, + "end": 48508.34, + "probability": 0.9336 + }, + { + "start": 48509.22, + "end": 48513.28, + "probability": 0.8682 + }, + { + "start": 48513.72, + "end": 48516.94, + "probability": 0.9612 + }, + { + "start": 48517.6, + "end": 48522.26, + "probability": 0.9533 + }, + { + "start": 48522.48, + "end": 48524.36, + "probability": 0.51 + }, + { + "start": 48525.14, + "end": 48527.16, + "probability": 0.989 + }, + { + "start": 48527.62, + "end": 48530.93, + "probability": 0.883 + }, + { + "start": 48532.08, + "end": 48535.7, + "probability": 0.9751 + }, + { + "start": 48536.22, + "end": 48540.82, + "probability": 0.9985 + }, + { + "start": 48541.4, + "end": 48544.02, + "probability": 0.991 + }, + { + "start": 48544.2, + "end": 48544.52, + "probability": 0.4473 + }, + { + "start": 48544.96, + "end": 48546.88, + "probability": 0.9431 + }, + { + "start": 48547.26, + "end": 48547.84, + "probability": 0.9027 + }, + { + "start": 48547.96, + "end": 48548.44, + "probability": 0.5404 + }, + { + "start": 48548.6, + "end": 48549.44, + "probability": 0.9296 + }, + { + "start": 48549.86, + "end": 48551.32, + "probability": 0.9846 + }, + { + "start": 48551.88, + "end": 48552.38, + "probability": 0.4691 + }, + { + "start": 48552.46, + "end": 48554.1, + "probability": 0.991 + }, + { + "start": 48554.8, + "end": 48555.24, + "probability": 0.8597 + }, + { + "start": 48555.34, + "end": 48556.14, + "probability": 0.5881 + }, + { + "start": 48556.26, + "end": 48559.12, + "probability": 0.8296 + }, + { + "start": 48559.36, + "end": 48560.08, + "probability": 0.9388 + }, + { + "start": 48560.7, + "end": 48562.41, + "probability": 0.994 + }, + { + "start": 48563.28, + "end": 48563.62, + "probability": 0.7565 + }, + { + "start": 48563.82, + "end": 48564.78, + "probability": 0.9766 + }, + { + "start": 48565.18, + "end": 48565.76, + "probability": 0.5249 + }, + { + "start": 48566.44, + "end": 48567.06, + "probability": 0.7141 + }, + { + "start": 48567.2, + "end": 48569.04, + "probability": 0.9648 + }, + { + "start": 48569.5, + "end": 48571.62, + "probability": 0.9719 + }, + { + "start": 48572.14, + "end": 48573.91, + "probability": 0.978 + }, + { + "start": 48574.4, + "end": 48575.76, + "probability": 0.9839 + }, + { + "start": 48575.84, + "end": 48575.92, + "probability": 0.1008 + }, + { + "start": 48576.02, + "end": 48579.5, + "probability": 0.7709 + }, + { + "start": 48579.96, + "end": 48582.2, + "probability": 0.8374 + }, + { + "start": 48585.28, + "end": 48585.86, + "probability": 0.7673 + }, + { + "start": 48586.8, + "end": 48587.38, + "probability": 0.3871 + }, + { + "start": 48587.86, + "end": 48589.38, + "probability": 0.8445 + }, + { + "start": 48590.82, + "end": 48591.82, + "probability": 0.9517 + }, + { + "start": 48592.28, + "end": 48593.36, + "probability": 0.5522 + }, + { + "start": 48593.74, + "end": 48597.08, + "probability": 0.9889 + }, + { + "start": 48597.16, + "end": 48598.28, + "probability": 0.9775 + }, + { + "start": 48598.7, + "end": 48599.0, + "probability": 0.7309 + }, + { + "start": 48599.42, + "end": 48601.1, + "probability": 0.6411 + }, + { + "start": 48601.18, + "end": 48602.52, + "probability": 0.9771 + }, + { + "start": 48603.38, + "end": 48604.54, + "probability": 0.865 + }, + { + "start": 48604.7, + "end": 48605.38, + "probability": 0.4959 + }, + { + "start": 48605.44, + "end": 48608.44, + "probability": 0.9564 + }, + { + "start": 48609.0, + "end": 48610.32, + "probability": 0.7957 + }, + { + "start": 48611.02, + "end": 48613.4, + "probability": 0.8993 + }, + { + "start": 48614.38, + "end": 48615.3, + "probability": 0.9924 + }, + { + "start": 48615.98, + "end": 48618.0, + "probability": 0.9456 + }, + { + "start": 48618.86, + "end": 48621.0, + "probability": 0.9754 + }, + { + "start": 48621.16, + "end": 48621.82, + "probability": 0.8641 + }, + { + "start": 48622.36, + "end": 48625.57, + "probability": 0.9138 + }, + { + "start": 48627.0, + "end": 48629.74, + "probability": 0.9928 + }, + { + "start": 48630.6, + "end": 48631.22, + "probability": 0.7668 + }, + { + "start": 48631.88, + "end": 48633.08, + "probability": 0.0024 + }, + { + "start": 48633.08, + "end": 48633.78, + "probability": 0.5229 + }, + { + "start": 48634.72, + "end": 48636.72, + "probability": 0.9866 + }, + { + "start": 48638.42, + "end": 48639.74, + "probability": 0.2318 + }, + { + "start": 48641.18, + "end": 48642.32, + "probability": 0.1204 + }, + { + "start": 48642.32, + "end": 48642.32, + "probability": 0.032 + }, + { + "start": 48642.32, + "end": 48642.32, + "probability": 0.1248 + }, + { + "start": 48642.32, + "end": 48642.5, + "probability": 0.1004 + }, + { + "start": 48642.5, + "end": 48643.48, + "probability": 0.3526 + }, + { + "start": 48643.78, + "end": 48644.3, + "probability": 0.8109 + }, + { + "start": 48644.32, + "end": 48645.04, + "probability": 0.5567 + }, + { + "start": 48645.38, + "end": 48646.16, + "probability": 0.8247 + }, + { + "start": 48646.68, + "end": 48647.7, + "probability": 0.8995 + }, + { + "start": 48647.86, + "end": 48650.44, + "probability": 0.9804 + }, + { + "start": 48650.78, + "end": 48654.8, + "probability": 0.9976 + }, + { + "start": 48654.8, + "end": 48659.14, + "probability": 0.9906 + }, + { + "start": 48660.68, + "end": 48664.44, + "probability": 0.9943 + }, + { + "start": 48666.3, + "end": 48668.28, + "probability": 0.9727 + }, + { + "start": 48674.24, + "end": 48676.2, + "probability": 0.2275 + }, + { + "start": 48683.78, + "end": 48688.94, + "probability": 0.6991 + }, + { + "start": 48689.46, + "end": 48690.44, + "probability": 0.1111 + }, + { + "start": 48698.06, + "end": 48698.68, + "probability": 0.1033 + }, + { + "start": 48699.06, + "end": 48699.08, + "probability": 0.0094 + }, + { + "start": 48738.1, + "end": 48740.4, + "probability": 0.4068 + }, + { + "start": 48741.97, + "end": 48745.22, + "probability": 0.946 + }, + { + "start": 48746.94, + "end": 48749.36, + "probability": 0.8911 + }, + { + "start": 48750.0, + "end": 48754.28, + "probability": 0.6088 + }, + { + "start": 48755.68, + "end": 48756.96, + "probability": 0.7929 + }, + { + "start": 48757.24, + "end": 48757.56, + "probability": 0.9248 + }, + { + "start": 48765.56, + "end": 48766.22, + "probability": 0.1139 + }, + { + "start": 48767.8, + "end": 48769.36, + "probability": 0.9593 + }, + { + "start": 48770.34, + "end": 48771.42, + "probability": 0.4559 + }, + { + "start": 48771.68, + "end": 48776.8, + "probability": 0.9956 + }, + { + "start": 48776.88, + "end": 48777.14, + "probability": 0.8614 + }, + { + "start": 48777.8, + "end": 48779.0, + "probability": 0.7974 + }, + { + "start": 48779.3, + "end": 48781.98, + "probability": 0.9895 + }, + { + "start": 48782.54, + "end": 48783.2, + "probability": 0.8554 + }, + { + "start": 48783.3, + "end": 48785.2, + "probability": 0.9985 + }, + { + "start": 48785.38, + "end": 48786.86, + "probability": 0.9978 + }, + { + "start": 48787.78, + "end": 48790.8, + "probability": 0.9839 + }, + { + "start": 48792.74, + "end": 48797.46, + "probability": 0.977 + }, + { + "start": 48797.72, + "end": 48799.44, + "probability": 0.9596 + }, + { + "start": 48800.64, + "end": 48803.26, + "probability": 0.9987 + }, + { + "start": 48804.42, + "end": 48806.72, + "probability": 0.7339 + }, + { + "start": 48807.76, + "end": 48815.52, + "probability": 0.9957 + }, + { + "start": 48817.51, + "end": 48819.3, + "probability": 0.791 + }, + { + "start": 48820.2, + "end": 48822.6, + "probability": 0.9683 + }, + { + "start": 48823.5, + "end": 48825.12, + "probability": 0.9385 + }, + { + "start": 48826.1, + "end": 48826.32, + "probability": 0.2681 + }, + { + "start": 48826.8, + "end": 48827.02, + "probability": 0.5952 + }, + { + "start": 48827.56, + "end": 48830.6, + "probability": 0.9985 + }, + { + "start": 48830.68, + "end": 48833.48, + "probability": 0.9106 + }, + { + "start": 48834.06, + "end": 48838.34, + "probability": 0.9961 + }, + { + "start": 48838.74, + "end": 48840.86, + "probability": 0.9935 + }, + { + "start": 48841.72, + "end": 48844.64, + "probability": 0.7534 + }, + { + "start": 48845.42, + "end": 48849.16, + "probability": 0.9006 + }, + { + "start": 48849.42, + "end": 48851.96, + "probability": 0.9967 + }, + { + "start": 48852.26, + "end": 48853.08, + "probability": 0.9849 + }, + { + "start": 48853.56, + "end": 48854.32, + "probability": 0.9662 + }, + { + "start": 48854.82, + "end": 48855.74, + "probability": 0.9555 + }, + { + "start": 48856.3, + "end": 48856.4, + "probability": 0.1171 + }, + { + "start": 48856.82, + "end": 48858.86, + "probability": 0.9517 + }, + { + "start": 48859.54, + "end": 48860.92, + "probability": 0.7917 + }, + { + "start": 48861.06, + "end": 48864.22, + "probability": 0.9543 + }, + { + "start": 48864.88, + "end": 48868.95, + "probability": 0.7939 + }, + { + "start": 48869.7, + "end": 48875.34, + "probability": 0.9871 + }, + { + "start": 48875.86, + "end": 48877.14, + "probability": 0.6158 + }, + { + "start": 48878.06, + "end": 48879.6, + "probability": 0.9543 + }, + { + "start": 48880.06, + "end": 48882.23, + "probability": 0.9827 + }, + { + "start": 48883.18, + "end": 48883.74, + "probability": 0.6789 + }, + { + "start": 48883.74, + "end": 48889.3, + "probability": 0.9144 + }, + { + "start": 48889.8, + "end": 48892.36, + "probability": 0.9677 + }, + { + "start": 48893.12, + "end": 48894.2, + "probability": 0.9977 + }, + { + "start": 48894.3, + "end": 48895.28, + "probability": 0.9984 + }, + { + "start": 48895.4, + "end": 48897.0, + "probability": 0.9614 + }, + { + "start": 48898.6, + "end": 48902.26, + "probability": 0.767 + }, + { + "start": 48902.78, + "end": 48906.44, + "probability": 0.9143 + }, + { + "start": 48906.44, + "end": 48908.88, + "probability": 0.9803 + }, + { + "start": 48909.32, + "end": 48910.35, + "probability": 0.9973 + }, + { + "start": 48912.04, + "end": 48913.2, + "probability": 0.9974 + }, + { + "start": 48913.22, + "end": 48913.3, + "probability": 0.5758 + }, + { + "start": 48913.3, + "end": 48913.58, + "probability": 0.7859 + }, + { + "start": 48913.6, + "end": 48916.66, + "probability": 0.98 + }, + { + "start": 48917.94, + "end": 48918.82, + "probability": 0.9004 + }, + { + "start": 48919.42, + "end": 48922.31, + "probability": 0.9751 + }, + { + "start": 48922.86, + "end": 48925.54, + "probability": 0.9969 + }, + { + "start": 48926.6, + "end": 48926.84, + "probability": 0.7315 + }, + { + "start": 48927.34, + "end": 48928.19, + "probability": 0.6173 + }, + { + "start": 48928.78, + "end": 48938.08, + "probability": 0.8971 + }, + { + "start": 48938.86, + "end": 48939.14, + "probability": 0.822 + }, + { + "start": 48939.5, + "end": 48939.84, + "probability": 0.8833 + }, + { + "start": 48940.06, + "end": 48945.82, + "probability": 0.8423 + }, + { + "start": 48946.86, + "end": 48950.98, + "probability": 0.751 + }, + { + "start": 48950.98, + "end": 48956.88, + "probability": 0.6981 + }, + { + "start": 48957.46, + "end": 48958.2, + "probability": 0.7152 + }, + { + "start": 48959.78, + "end": 48962.54, + "probability": 0.9905 + }, + { + "start": 48964.92, + "end": 48971.28, + "probability": 0.9951 + }, + { + "start": 48971.9, + "end": 48972.62, + "probability": 0.3053 + }, + { + "start": 48973.08, + "end": 48973.5, + "probability": 0.3702 + }, + { + "start": 48973.5, + "end": 48974.2, + "probability": 0.708 + }, + { + "start": 48974.44, + "end": 48975.36, + "probability": 0.5046 + }, + { + "start": 48975.44, + "end": 48978.9, + "probability": 0.958 + }, + { + "start": 48979.4, + "end": 48980.28, + "probability": 0.8003 + }, + { + "start": 48980.78, + "end": 48982.22, + "probability": 0.9839 + }, + { + "start": 48983.44, + "end": 48984.96, + "probability": 0.7434 + }, + { + "start": 48986.08, + "end": 48986.76, + "probability": 0.17 + }, + { + "start": 48987.06, + "end": 48987.96, + "probability": 0.4185 + }, + { + "start": 48988.72, + "end": 48990.52, + "probability": 0.9538 + }, + { + "start": 48990.56, + "end": 48993.87, + "probability": 0.55 + }, + { + "start": 48994.6, + "end": 48996.26, + "probability": 0.8392 + }, + { + "start": 48996.36, + "end": 48998.78, + "probability": 0.9632 + }, + { + "start": 48999.46, + "end": 49003.62, + "probability": 0.9912 + }, + { + "start": 49003.62, + "end": 49007.08, + "probability": 0.9883 + }, + { + "start": 49007.78, + "end": 49010.62, + "probability": 0.8197 + }, + { + "start": 49011.2, + "end": 49011.81, + "probability": 0.9778 + }, + { + "start": 49012.34, + "end": 49014.8, + "probability": 0.9738 + }, + { + "start": 49015.22, + "end": 49016.32, + "probability": 0.9574 + }, + { + "start": 49016.42, + "end": 49018.24, + "probability": 0.9851 + }, + { + "start": 49018.8, + "end": 49021.6, + "probability": 0.9819 + }, + { + "start": 49022.24, + "end": 49024.16, + "probability": 0.7277 + }, + { + "start": 49024.52, + "end": 49025.9, + "probability": 0.8901 + }, + { + "start": 49026.74, + "end": 49027.92, + "probability": 0.431 + }, + { + "start": 49028.06, + "end": 49029.78, + "probability": 0.9049 + }, + { + "start": 49030.2, + "end": 49031.14, + "probability": 0.2655 + }, + { + "start": 49032.2, + "end": 49035.56, + "probability": 0.9236 + }, + { + "start": 49037.02, + "end": 49043.6, + "probability": 0.9483 + }, + { + "start": 49044.22, + "end": 49045.1, + "probability": 0.7464 + }, + { + "start": 49047.3, + "end": 49047.88, + "probability": 0.7198 + }, + { + "start": 49048.56, + "end": 49048.66, + "probability": 0.4545 + }, + { + "start": 49048.84, + "end": 49051.68, + "probability": 0.9914 + }, + { + "start": 49052.82, + "end": 49055.96, + "probability": 0.894 + }, + { + "start": 49056.5, + "end": 49059.44, + "probability": 0.9728 + }, + { + "start": 49059.66, + "end": 49061.02, + "probability": 0.7054 + }, + { + "start": 49061.16, + "end": 49061.8, + "probability": 0.7051 + }, + { + "start": 49062.86, + "end": 49064.52, + "probability": 0.9332 + }, + { + "start": 49064.78, + "end": 49068.7, + "probability": 0.981 + }, + { + "start": 49070.66, + "end": 49073.9, + "probability": 0.7913 + }, + { + "start": 49074.04, + "end": 49074.44, + "probability": 0.8792 + }, + { + "start": 49074.54, + "end": 49074.98, + "probability": 0.7689 + }, + { + "start": 49075.06, + "end": 49079.82, + "probability": 0.9578 + }, + { + "start": 49080.72, + "end": 49084.04, + "probability": 0.938 + }, + { + "start": 49084.7, + "end": 49087.59, + "probability": 0.8679 + }, + { + "start": 49088.12, + "end": 49090.24, + "probability": 0.8531 + }, + { + "start": 49090.7, + "end": 49094.68, + "probability": 0.9279 + }, + { + "start": 49095.22, + "end": 49099.24, + "probability": 0.7917 + }, + { + "start": 49099.78, + "end": 49102.12, + "probability": 0.938 + }, + { + "start": 49102.64, + "end": 49104.77, + "probability": 0.9811 + }, + { + "start": 49105.56, + "end": 49107.72, + "probability": 0.9222 + }, + { + "start": 49110.06, + "end": 49113.66, + "probability": 0.7806 + }, + { + "start": 49114.34, + "end": 49115.63, + "probability": 0.998 + }, + { + "start": 49116.18, + "end": 49118.88, + "probability": 0.9733 + }, + { + "start": 49119.6, + "end": 49124.2, + "probability": 0.9738 + }, + { + "start": 49124.8, + "end": 49127.34, + "probability": 0.9906 + }, + { + "start": 49127.38, + "end": 49127.56, + "probability": 0.6573 + }, + { + "start": 49127.64, + "end": 49129.0, + "probability": 0.9938 + }, + { + "start": 49131.24, + "end": 49134.08, + "probability": 0.9994 + }, + { + "start": 49134.42, + "end": 49137.5, + "probability": 0.8779 + }, + { + "start": 49138.46, + "end": 49139.8, + "probability": 0.625 + }, + { + "start": 49140.0, + "end": 49142.32, + "probability": 0.9606 + }, + { + "start": 49142.66, + "end": 49145.62, + "probability": 0.9933 + }, + { + "start": 49146.24, + "end": 49147.86, + "probability": 0.8342 + }, + { + "start": 49147.88, + "end": 49149.62, + "probability": 0.9706 + }, + { + "start": 49150.56, + "end": 49157.47, + "probability": 0.9941 + }, + { + "start": 49158.28, + "end": 49159.16, + "probability": 0.935 + }, + { + "start": 49159.7, + "end": 49161.44, + "probability": 0.9165 + }, + { + "start": 49162.08, + "end": 49163.88, + "probability": 0.4232 + }, + { + "start": 49164.0, + "end": 49164.1, + "probability": 0.2914 + }, + { + "start": 49165.24, + "end": 49166.04, + "probability": 0.9248 + }, + { + "start": 49166.7, + "end": 49168.26, + "probability": 0.7988 + }, + { + "start": 49169.6, + "end": 49174.06, + "probability": 0.6732 + }, + { + "start": 49174.16, + "end": 49178.1, + "probability": 0.9483 + }, + { + "start": 49178.4, + "end": 49179.72, + "probability": 0.7807 + }, + { + "start": 49180.6, + "end": 49183.38, + "probability": 0.6653 + }, + { + "start": 49184.1, + "end": 49185.5, + "probability": 0.9473 + }, + { + "start": 49186.14, + "end": 49189.3, + "probability": 0.9568 + }, + { + "start": 49189.3, + "end": 49193.48, + "probability": 0.9893 + }, + { + "start": 49194.96, + "end": 49202.72, + "probability": 0.9448 + }, + { + "start": 49204.14, + "end": 49206.22, + "probability": 0.5988 + }, + { + "start": 49210.08, + "end": 49212.64, + "probability": 0.8417 + }, + { + "start": 49212.94, + "end": 49213.82, + "probability": 0.6811 + }, + { + "start": 49214.28, + "end": 49219.22, + "probability": 0.7858 + }, + { + "start": 49219.68, + "end": 49224.7, + "probability": 0.9848 + }, + { + "start": 49225.7, + "end": 49227.7, + "probability": 0.6611 + }, + { + "start": 49233.36, + "end": 49234.64, + "probability": 0.6457 + }, + { + "start": 49234.76, + "end": 49236.04, + "probability": 0.9459 + }, + { + "start": 49236.36, + "end": 49237.8, + "probability": 0.8706 + }, + { + "start": 49238.3, + "end": 49241.04, + "probability": 0.8918 + }, + { + "start": 49241.98, + "end": 49244.58, + "probability": 0.9038 + }, + { + "start": 49244.78, + "end": 49247.82, + "probability": 0.8882 + }, + { + "start": 49247.98, + "end": 49252.32, + "probability": 0.9919 + }, + { + "start": 49253.5, + "end": 49255.2, + "probability": 0.9962 + }, + { + "start": 49255.42, + "end": 49257.59, + "probability": 0.9142 + }, + { + "start": 49257.86, + "end": 49260.22, + "probability": 0.9972 + }, + { + "start": 49260.78, + "end": 49261.42, + "probability": 0.9718 + }, + { + "start": 49262.6, + "end": 49268.62, + "probability": 0.9772 + }, + { + "start": 49268.7, + "end": 49270.86, + "probability": 0.8962 + }, + { + "start": 49272.6, + "end": 49274.58, + "probability": 0.7788 + }, + { + "start": 49275.88, + "end": 49276.7, + "probability": 0.2155 + }, + { + "start": 49279.4, + "end": 49280.92, + "probability": 0.7404 + }, + { + "start": 49281.86, + "end": 49282.48, + "probability": 0.8037 + }, + { + "start": 49283.24, + "end": 49284.22, + "probability": 0.8256 + }, + { + "start": 49284.76, + "end": 49289.44, + "probability": 0.9846 + }, + { + "start": 49290.24, + "end": 49293.1, + "probability": 0.8452 + }, + { + "start": 49293.2, + "end": 49294.88, + "probability": 0.8275 + }, + { + "start": 49295.3, + "end": 49296.26, + "probability": 0.7774 + }, + { + "start": 49296.56, + "end": 49298.32, + "probability": 0.7723 + }, + { + "start": 49298.9, + "end": 49301.54, + "probability": 0.9824 + }, + { + "start": 49302.26, + "end": 49303.72, + "probability": 0.8889 + }, + { + "start": 49307.1, + "end": 49315.42, + "probability": 0.9628 + }, + { + "start": 49316.14, + "end": 49319.68, + "probability": 0.8218 + }, + { + "start": 49321.72, + "end": 49325.38, + "probability": 0.2266 + }, + { + "start": 49326.28, + "end": 49330.2, + "probability": 0.8167 + }, + { + "start": 49330.84, + "end": 49335.82, + "probability": 0.919 + }, + { + "start": 49336.64, + "end": 49340.48, + "probability": 0.5052 + }, + { + "start": 49341.26, + "end": 49345.18, + "probability": 0.9953 + }, + { + "start": 49346.3, + "end": 49350.24, + "probability": 0.97 + }, + { + "start": 49350.66, + "end": 49352.98, + "probability": 0.9987 + }, + { + "start": 49354.04, + "end": 49357.86, + "probability": 0.8685 + }, + { + "start": 49358.4, + "end": 49362.76, + "probability": 0.9738 + }, + { + "start": 49365.87, + "end": 49370.68, + "probability": 0.8568 + }, + { + "start": 49371.04, + "end": 49372.57, + "probability": 0.9937 + }, + { + "start": 49372.76, + "end": 49376.18, + "probability": 0.9924 + }, + { + "start": 49376.52, + "end": 49377.82, + "probability": 0.706 + }, + { + "start": 49378.56, + "end": 49378.72, + "probability": 0.8726 + }, + { + "start": 49380.14, + "end": 49381.48, + "probability": 0.7125 + }, + { + "start": 49381.86, + "end": 49385.64, + "probability": 0.8613 + }, + { + "start": 49386.06, + "end": 49390.92, + "probability": 0.9255 + }, + { + "start": 49390.98, + "end": 49393.0, + "probability": 0.9973 + }, + { + "start": 49394.04, + "end": 49396.32, + "probability": 0.5516 + }, + { + "start": 49396.44, + "end": 49399.24, + "probability": 0.8015 + }, + { + "start": 49399.5, + "end": 49403.42, + "probability": 0.9417 + }, + { + "start": 49403.88, + "end": 49408.92, + "probability": 0.9193 + }, + { + "start": 49409.96, + "end": 49410.78, + "probability": 0.497 + }, + { + "start": 49411.6, + "end": 49414.26, + "probability": 0.9946 + }, + { + "start": 49415.58, + "end": 49417.54, + "probability": 0.7657 + }, + { + "start": 49418.49, + "end": 49420.18, + "probability": 0.8293 + }, + { + "start": 49420.18, + "end": 49422.24, + "probability": 0.99 + }, + { + "start": 49422.82, + "end": 49424.78, + "probability": 0.8633 + }, + { + "start": 49425.34, + "end": 49427.24, + "probability": 0.995 + }, + { + "start": 49427.76, + "end": 49430.68, + "probability": 0.988 + }, + { + "start": 49431.4, + "end": 49433.58, + "probability": 0.7636 + }, + { + "start": 49434.44, + "end": 49438.62, + "probability": 0.9245 + }, + { + "start": 49439.84, + "end": 49441.26, + "probability": 0.9849 + }, + { + "start": 49443.0, + "end": 49446.0, + "probability": 0.9622 + }, + { + "start": 49447.3, + "end": 49447.54, + "probability": 0.2719 + }, + { + "start": 49447.62, + "end": 49448.2, + "probability": 0.5432 + }, + { + "start": 49448.45, + "end": 49450.76, + "probability": 0.928 + }, + { + "start": 49451.02, + "end": 49452.88, + "probability": 0.8339 + }, + { + "start": 49455.09, + "end": 49457.36, + "probability": 0.0191 + }, + { + "start": 49457.36, + "end": 49460.7, + "probability": 0.0639 + }, + { + "start": 49461.34, + "end": 49462.39, + "probability": 0.646 + }, + { + "start": 49463.1, + "end": 49464.8, + "probability": 0.9609 + }, + { + "start": 49465.34, + "end": 49467.56, + "probability": 0.591 + }, + { + "start": 49468.04, + "end": 49469.98, + "probability": 0.321 + }, + { + "start": 49470.98, + "end": 49473.14, + "probability": 0.8321 + }, + { + "start": 49473.22, + "end": 49474.91, + "probability": 0.9954 + }, + { + "start": 49475.02, + "end": 49476.23, + "probability": 0.8581 + }, + { + "start": 49477.68, + "end": 49483.68, + "probability": 0.8984 + }, + { + "start": 49485.36, + "end": 49486.22, + "probability": 0.8978 + }, + { + "start": 49487.7, + "end": 49489.96, + "probability": 0.5108 + }, + { + "start": 49490.08, + "end": 49496.64, + "probability": 0.9807 + }, + { + "start": 49496.64, + "end": 49503.52, + "probability": 0.4801 + }, + { + "start": 49505.3, + "end": 49512.5, + "probability": 0.6639 + }, + { + "start": 49513.74, + "end": 49520.02, + "probability": 0.9594 + }, + { + "start": 49520.84, + "end": 49524.68, + "probability": 0.9933 + }, + { + "start": 49525.34, + "end": 49528.98, + "probability": 0.6312 + }, + { + "start": 49529.44, + "end": 49533.32, + "probability": 0.6543 + }, + { + "start": 49534.96, + "end": 49537.88, + "probability": 0.9323 + }, + { + "start": 49538.88, + "end": 49541.74, + "probability": 0.9534 + }, + { + "start": 49542.64, + "end": 49544.42, + "probability": 0.7487 + }, + { + "start": 49545.84, + "end": 49548.18, + "probability": 0.9834 + }, + { + "start": 49549.7, + "end": 49552.8, + "probability": 0.536 + }, + { + "start": 49554.12, + "end": 49554.8, + "probability": 0.8019 + }, + { + "start": 49557.64, + "end": 49558.02, + "probability": 0.6679 + }, + { + "start": 49559.54, + "end": 49561.44, + "probability": 0.7981 + }, + { + "start": 49561.7, + "end": 49563.22, + "probability": 0.7793 + }, + { + "start": 49563.92, + "end": 49565.62, + "probability": 0.9961 + }, + { + "start": 49566.36, + "end": 49566.92, + "probability": 0.7708 + }, + { + "start": 49567.54, + "end": 49568.48, + "probability": 0.5621 + }, + { + "start": 49568.54, + "end": 49570.03, + "probability": 0.5027 + }, + { + "start": 49571.52, + "end": 49576.06, + "probability": 0.7081 + }, + { + "start": 49576.08, + "end": 49577.74, + "probability": 0.1081 + }, + { + "start": 49578.36, + "end": 49581.14, + "probability": 0.452 + }, + { + "start": 49581.24, + "end": 49581.44, + "probability": 0.183 + }, + { + "start": 49581.58, + "end": 49584.78, + "probability": 0.2856 + }, + { + "start": 49584.94, + "end": 49586.78, + "probability": 0.9866 + }, + { + "start": 49586.86, + "end": 49587.75, + "probability": 0.9712 + }, + { + "start": 49588.42, + "end": 49592.7, + "probability": 0.8303 + }, + { + "start": 49593.2, + "end": 49596.72, + "probability": 0.9687 + }, + { + "start": 49598.16, + "end": 49602.3, + "probability": 0.6577 + }, + { + "start": 49602.52, + "end": 49604.36, + "probability": 0.7715 + }, + { + "start": 49604.98, + "end": 49609.12, + "probability": 0.9882 + }, + { + "start": 49609.96, + "end": 49611.42, + "probability": 0.6321 + }, + { + "start": 49611.6, + "end": 49614.2, + "probability": 0.9551 + }, + { + "start": 49614.48, + "end": 49616.12, + "probability": 0.5705 + }, + { + "start": 49616.14, + "end": 49626.42, + "probability": 0.8765 + }, + { + "start": 49626.56, + "end": 49631.08, + "probability": 0.9976 + }, + { + "start": 49631.92, + "end": 49636.34, + "probability": 0.9955 + }, + { + "start": 49636.8, + "end": 49637.76, + "probability": 0.8399 + }, + { + "start": 49637.96, + "end": 49642.96, + "probability": 0.4783 + }, + { + "start": 49643.54, + "end": 49647.24, + "probability": 0.4127 + }, + { + "start": 49649.38, + "end": 49651.98, + "probability": 0.6646 + }, + { + "start": 49652.2, + "end": 49656.3, + "probability": 0.9129 + }, + { + "start": 49656.94, + "end": 49658.88, + "probability": 0.9724 + }, + { + "start": 49659.64, + "end": 49662.36, + "probability": 0.9318 + }, + { + "start": 49663.0, + "end": 49665.58, + "probability": 0.8592 + }, + { + "start": 49665.58, + "end": 49668.68, + "probability": 0.6631 + }, + { + "start": 49669.32, + "end": 49670.34, + "probability": 0.8794 + }, + { + "start": 49670.46, + "end": 49671.08, + "probability": 0.7165 + }, + { + "start": 49671.16, + "end": 49676.54, + "probability": 0.8449 + }, + { + "start": 49677.06, + "end": 49678.2, + "probability": 0.8428 + }, + { + "start": 49678.84, + "end": 49684.16, + "probability": 0.9769 + }, + { + "start": 49684.76, + "end": 49687.92, + "probability": 0.9467 + }, + { + "start": 49688.5, + "end": 49691.02, + "probability": 0.9937 + }, + { + "start": 49691.02, + "end": 49694.12, + "probability": 0.9886 + }, + { + "start": 49694.96, + "end": 49697.48, + "probability": 0.9942 + }, + { + "start": 49697.48, + "end": 49700.52, + "probability": 0.948 + }, + { + "start": 49701.48, + "end": 49702.28, + "probability": 0.718 + }, + { + "start": 49702.32, + "end": 49702.84, + "probability": 0.7944 + }, + { + "start": 49702.96, + "end": 49706.1, + "probability": 0.8388 + }, + { + "start": 49706.2, + "end": 49708.46, + "probability": 0.9794 + }, + { + "start": 49708.84, + "end": 49711.74, + "probability": 0.9205 + }, + { + "start": 49711.74, + "end": 49714.42, + "probability": 0.979 + }, + { + "start": 49715.1, + "end": 49717.13, + "probability": 0.8777 + }, + { + "start": 49717.74, + "end": 49718.94, + "probability": 0.9438 + }, + { + "start": 49719.78, + "end": 49722.4, + "probability": 0.584 + }, + { + "start": 49723.12, + "end": 49726.3, + "probability": 0.8085 + }, + { + "start": 49727.46, + "end": 49729.78, + "probability": 0.881 + }, + { + "start": 49730.42, + "end": 49730.92, + "probability": 0.5921 + }, + { + "start": 49731.52, + "end": 49734.46, + "probability": 0.8701 + }, + { + "start": 49736.11, + "end": 49740.9, + "probability": 0.9308 + }, + { + "start": 49740.9, + "end": 49745.36, + "probability": 0.9932 + }, + { + "start": 49746.02, + "end": 49746.48, + "probability": 0.727 + }, + { + "start": 49747.74, + "end": 49747.84, + "probability": 0.3557 + }, + { + "start": 49749.42, + "end": 49750.2, + "probability": 0.9268 + }, + { + "start": 49750.4, + "end": 49752.36, + "probability": 0.9967 + }, + { + "start": 49753.08, + "end": 49755.68, + "probability": 0.9323 + }, + { + "start": 49756.82, + "end": 49757.92, + "probability": 0.9356 + }, + { + "start": 49757.96, + "end": 49763.38, + "probability": 0.965 + }, + { + "start": 49764.46, + "end": 49768.88, + "probability": 0.9987 + }, + { + "start": 49769.08, + "end": 49773.64, + "probability": 0.9865 + }, + { + "start": 49774.22, + "end": 49774.98, + "probability": 0.644 + }, + { + "start": 49775.5, + "end": 49776.56, + "probability": 0.7664 + }, + { + "start": 49776.68, + "end": 49780.38, + "probability": 0.9961 + }, + { + "start": 49780.76, + "end": 49785.54, + "probability": 0.9907 + }, + { + "start": 49786.26, + "end": 49788.88, + "probability": 0.8728 + }, + { + "start": 49791.24, + "end": 49792.04, + "probability": 0.7287 + }, + { + "start": 49794.1, + "end": 49797.2, + "probability": 0.7448 + }, + { + "start": 49797.32, + "end": 49797.76, + "probability": 0.6218 + }, + { + "start": 49797.94, + "end": 49799.98, + "probability": 0.832 + }, + { + "start": 49800.38, + "end": 49802.02, + "probability": 0.9238 + }, + { + "start": 49802.22, + "end": 49805.32, + "probability": 0.9945 + }, + { + "start": 49805.82, + "end": 49809.04, + "probability": 0.9946 + }, + { + "start": 49810.08, + "end": 49813.12, + "probability": 0.9982 + }, + { + "start": 49813.36, + "end": 49813.72, + "probability": 0.9058 + }, + { + "start": 49813.82, + "end": 49816.4, + "probability": 0.9695 + }, + { + "start": 49816.48, + "end": 49817.46, + "probability": 0.7911 + }, + { + "start": 49817.82, + "end": 49817.96, + "probability": 0.5868 + }, + { + "start": 49818.1, + "end": 49818.31, + "probability": 0.6816 + }, + { + "start": 49818.96, + "end": 49821.68, + "probability": 0.826 + }, + { + "start": 49821.72, + "end": 49823.1, + "probability": 0.9924 + }, + { + "start": 49823.56, + "end": 49823.68, + "probability": 0.442 + }, + { + "start": 49823.74, + "end": 49827.1, + "probability": 0.9836 + }, + { + "start": 49830.49, + "end": 49831.84, + "probability": 0.4644 + }, + { + "start": 49833.86, + "end": 49834.02, + "probability": 0.1515 + }, + { + "start": 49834.02, + "end": 49834.52, + "probability": 0.4992 + }, + { + "start": 49834.56, + "end": 49835.42, + "probability": 0.7233 + }, + { + "start": 49835.56, + "end": 49835.94, + "probability": 0.505 + }, + { + "start": 49836.76, + "end": 49836.88, + "probability": 0.7217 + }, + { + "start": 49837.56, + "end": 49837.92, + "probability": 0.8599 + }, + { + "start": 49839.2, + "end": 49840.08, + "probability": 0.1263 + }, + { + "start": 49842.0, + "end": 49844.0, + "probability": 0.9448 + }, + { + "start": 49844.02, + "end": 49845.56, + "probability": 0.5519 + }, + { + "start": 49845.68, + "end": 49845.74, + "probability": 0.8358 + }, + { + "start": 49846.02, + "end": 49848.21, + "probability": 0.9694 + }, + { + "start": 49848.84, + "end": 49849.3, + "probability": 0.5192 + }, + { + "start": 49849.78, + "end": 49852.06, + "probability": 0.81 + }, + { + "start": 49852.2, + "end": 49852.56, + "probability": 0.8598 + }, + { + "start": 49852.66, + "end": 49853.66, + "probability": 0.9695 + }, + { + "start": 49854.12, + "end": 49856.1, + "probability": 0.9146 + }, + { + "start": 49856.58, + "end": 49858.56, + "probability": 0.7855 + }, + { + "start": 49859.02, + "end": 49859.88, + "probability": 0.6964 + }, + { + "start": 49860.14, + "end": 49860.97, + "probability": 0.9565 + }, + { + "start": 49861.68, + "end": 49863.12, + "probability": 0.9714 + }, + { + "start": 49863.48, + "end": 49865.16, + "probability": 0.9668 + }, + { + "start": 49866.48, + "end": 49870.63, + "probability": 0.9367 + }, + { + "start": 49871.48, + "end": 49872.34, + "probability": 0.5647 + }, + { + "start": 49872.58, + "end": 49874.56, + "probability": 0.986 + }, + { + "start": 49875.4, + "end": 49877.06, + "probability": 0.9657 + }, + { + "start": 49877.4, + "end": 49877.84, + "probability": 0.6988 + }, + { + "start": 49878.02, + "end": 49878.3, + "probability": 0.7777 + }, + { + "start": 49878.52, + "end": 49879.32, + "probability": 0.5791 + }, + { + "start": 49880.16, + "end": 49882.62, + "probability": 0.5192 + }, + { + "start": 49882.68, + "end": 49882.68, + "probability": 0.0705 + }, + { + "start": 49882.68, + "end": 49884.22, + "probability": 0.9727 + }, + { + "start": 49884.22, + "end": 49887.5, + "probability": 0.9719 + }, + { + "start": 49888.84, + "end": 49890.58, + "probability": 0.9421 + }, + { + "start": 49891.04, + "end": 49893.2, + "probability": 0.9063 + }, + { + "start": 49893.88, + "end": 49895.6, + "probability": 0.7616 + }, + { + "start": 49896.48, + "end": 49896.86, + "probability": 0.7585 + }, + { + "start": 49899.26, + "end": 49900.46, + "probability": 0.8566 + }, + { + "start": 49900.56, + "end": 49904.1, + "probability": 0.9543 + }, + { + "start": 49904.72, + "end": 49906.14, + "probability": 0.8284 + }, + { + "start": 49906.72, + "end": 49908.51, + "probability": 0.9824 + }, + { + "start": 49909.38, + "end": 49911.48, + "probability": 0.8686 + }, + { + "start": 49912.12, + "end": 49914.3, + "probability": 0.9968 + }, + { + "start": 49914.84, + "end": 49916.62, + "probability": 0.999 + }, + { + "start": 49918.68, + "end": 49923.38, + "probability": 0.9717 + }, + { + "start": 49924.44, + "end": 49928.14, + "probability": 0.7227 + }, + { + "start": 49928.68, + "end": 49929.94, + "probability": 0.4963 + }, + { + "start": 49931.08, + "end": 49932.52, + "probability": 0.9681 + }, + { + "start": 49933.76, + "end": 49938.48, + "probability": 0.9244 + }, + { + "start": 49939.8, + "end": 49944.44, + "probability": 0.9602 + }, + { + "start": 49944.9, + "end": 49946.98, + "probability": 0.8781 + }, + { + "start": 49949.32, + "end": 49951.82, + "probability": 0.9585 + }, + { + "start": 49952.42, + "end": 49953.66, + "probability": 0.5949 + }, + { + "start": 49954.14, + "end": 49954.81, + "probability": 0.7342 + }, + { + "start": 49955.28, + "end": 49957.48, + "probability": 0.9985 + }, + { + "start": 49957.48, + "end": 49960.22, + "probability": 0.9438 + }, + { + "start": 49961.04, + "end": 49961.92, + "probability": 0.9972 + }, + { + "start": 49962.9, + "end": 49965.78, + "probability": 0.928 + }, + { + "start": 49966.54, + "end": 49970.48, + "probability": 0.7783 + }, + { + "start": 49970.98, + "end": 49973.38, + "probability": 0.8153 + }, + { + "start": 49974.2, + "end": 49980.8, + "probability": 0.9815 + }, + { + "start": 49983.8, + "end": 49983.9, + "probability": 0.1887 + }, + { + "start": 49986.08, + "end": 49988.36, + "probability": 0.7464 + }, + { + "start": 49989.2, + "end": 49991.76, + "probability": 0.8089 + }, + { + "start": 49992.02, + "end": 49992.24, + "probability": 0.4807 + }, + { + "start": 49993.24, + "end": 49993.4, + "probability": 0.3828 + }, + { + "start": 49993.52, + "end": 49996.51, + "probability": 0.9814 + }, + { + "start": 49997.58, + "end": 50005.46, + "probability": 0.962 + }, + { + "start": 50006.2, + "end": 50013.86, + "probability": 0.9846 + }, + { + "start": 50017.22, + "end": 50020.08, + "probability": 0.9662 + }, + { + "start": 50020.28, + "end": 50023.33, + "probability": 0.812 + }, + { + "start": 50024.36, + "end": 50026.1, + "probability": 0.888 + }, + { + "start": 50026.12, + "end": 50028.44, + "probability": 0.882 + }, + { + "start": 50029.1, + "end": 50030.7, + "probability": 0.7224 + }, + { + "start": 50031.26, + "end": 50037.64, + "probability": 0.8999 + }, + { + "start": 50038.42, + "end": 50038.8, + "probability": 0.6668 + }, + { + "start": 50039.02, + "end": 50039.58, + "probability": 0.9122 + }, + { + "start": 50041.62, + "end": 50045.56, + "probability": 0.9764 + }, + { + "start": 50045.88, + "end": 50048.22, + "probability": 0.9925 + }, + { + "start": 50049.36, + "end": 50052.54, + "probability": 0.9897 + }, + { + "start": 50052.58, + "end": 50053.46, + "probability": 0.9943 + }, + { + "start": 50054.06, + "end": 50054.94, + "probability": 0.2856 + }, + { + "start": 50055.18, + "end": 50056.84, + "probability": 0.9498 + }, + { + "start": 50056.92, + "end": 50058.04, + "probability": 0.7625 + }, + { + "start": 50058.72, + "end": 50060.3, + "probability": 0.9824 + }, + { + "start": 50061.22, + "end": 50065.58, + "probability": 0.9781 + }, + { + "start": 50066.76, + "end": 50067.86, + "probability": 0.9524 + }, + { + "start": 50069.04, + "end": 50070.74, + "probability": 0.7122 + }, + { + "start": 50071.14, + "end": 50072.74, + "probability": 0.9395 + }, + { + "start": 50073.08, + "end": 50074.7, + "probability": 0.7677 + }, + { + "start": 50075.18, + "end": 50076.82, + "probability": 0.9741 + }, + { + "start": 50078.04, + "end": 50080.98, + "probability": 0.9796 + }, + { + "start": 50082.28, + "end": 50084.3, + "probability": 0.9691 + }, + { + "start": 50085.2, + "end": 50088.24, + "probability": 0.6772 + }, + { + "start": 50088.24, + "end": 50089.92, + "probability": 0.298 + }, + { + "start": 50092.94, + "end": 50093.66, + "probability": 0.8477 + }, + { + "start": 50095.62, + "end": 50100.12, + "probability": 0.9933 + }, + { + "start": 50100.28, + "end": 50102.5, + "probability": 0.9858 + }, + { + "start": 50104.1, + "end": 50108.3, + "probability": 0.9772 + }, + { + "start": 50109.74, + "end": 50110.46, + "probability": 0.7181 + }, + { + "start": 50110.64, + "end": 50114.88, + "probability": 0.9844 + }, + { + "start": 50115.38, + "end": 50116.44, + "probability": 0.9993 + }, + { + "start": 50117.04, + "end": 50122.1, + "probability": 0.7797 + }, + { + "start": 50123.04, + "end": 50123.41, + "probability": 0.5411 + }, + { + "start": 50124.36, + "end": 50125.28, + "probability": 0.5974 + }, + { + "start": 50126.32, + "end": 50127.84, + "probability": 0.9608 + }, + { + "start": 50128.04, + "end": 50129.98, + "probability": 0.8077 + }, + { + "start": 50130.68, + "end": 50134.78, + "probability": 0.9918 + }, + { + "start": 50136.04, + "end": 50137.2, + "probability": 0.9924 + }, + { + "start": 50138.46, + "end": 50141.32, + "probability": 0.9944 + }, + { + "start": 50141.52, + "end": 50141.86, + "probability": 0.9654 + }, + { + "start": 50142.44, + "end": 50146.12, + "probability": 0.7629 + }, + { + "start": 50146.64, + "end": 50146.92, + "probability": 0.7658 + }, + { + "start": 50146.96, + "end": 50147.66, + "probability": 0.8602 + }, + { + "start": 50148.04, + "end": 50148.92, + "probability": 0.8544 + }, + { + "start": 50150.91, + "end": 50151.48, + "probability": 0.023 + }, + { + "start": 50152.34, + "end": 50153.72, + "probability": 0.9327 + }, + { + "start": 50155.0, + "end": 50155.42, + "probability": 0.9161 + }, + { + "start": 50156.1, + "end": 50159.4, + "probability": 0.7912 + }, + { + "start": 50159.76, + "end": 50161.2, + "probability": 0.9391 + }, + { + "start": 50162.76, + "end": 50163.46, + "probability": 0.9884 + }, + { + "start": 50165.0, + "end": 50168.66, + "probability": 0.8801 + }, + { + "start": 50169.14, + "end": 50173.78, + "probability": 0.9551 + }, + { + "start": 50173.82, + "end": 50176.04, + "probability": 0.9833 + }, + { + "start": 50176.42, + "end": 50176.8, + "probability": 0.7307 + }, + { + "start": 50176.8, + "end": 50179.66, + "probability": 0.9774 + }, + { + "start": 50179.76, + "end": 50180.0, + "probability": 0.5239 + }, + { + "start": 50181.02, + "end": 50187.64, + "probability": 0.9957 + }, + { + "start": 50189.2, + "end": 50191.66, + "probability": 0.9961 + }, + { + "start": 50191.98, + "end": 50192.3, + "probability": 0.3851 + }, + { + "start": 50193.3, + "end": 50196.92, + "probability": 0.9374 + }, + { + "start": 50197.4, + "end": 50200.68, + "probability": 0.9841 + }, + { + "start": 50201.14, + "end": 50204.12, + "probability": 0.9101 + }, + { + "start": 50205.28, + "end": 50205.98, + "probability": 0.7464 + }, + { + "start": 50206.42, + "end": 50206.91, + "probability": 0.9753 + }, + { + "start": 50209.25, + "end": 50212.9, + "probability": 0.9822 + }, + { + "start": 50216.04, + "end": 50216.7, + "probability": 0.4106 + }, + { + "start": 50216.74, + "end": 50219.68, + "probability": 0.7208 + }, + { + "start": 50219.68, + "end": 50222.26, + "probability": 0.0278 + }, + { + "start": 50222.26, + "end": 50222.26, + "probability": 0.2599 + }, + { + "start": 50222.26, + "end": 50222.96, + "probability": 0.7505 + }, + { + "start": 50223.62, + "end": 50225.62, + "probability": 0.6534 + }, + { + "start": 50225.72, + "end": 50226.88, + "probability": 0.9134 + }, + { + "start": 50227.1, + "end": 50227.98, + "probability": 0.9235 + }, + { + "start": 50228.16, + "end": 50230.22, + "probability": 0.6864 + }, + { + "start": 50230.62, + "end": 50231.02, + "probability": 0.0028 + }, + { + "start": 50231.02, + "end": 50231.85, + "probability": 0.6455 + }, + { + "start": 50232.66, + "end": 50232.8, + "probability": 0.7649 + }, + { + "start": 50233.36, + "end": 50235.52, + "probability": 0.8757 + }, + { + "start": 50236.64, + "end": 50238.58, + "probability": 0.9917 + }, + { + "start": 50238.86, + "end": 50241.08, + "probability": 0.98 + }, + { + "start": 50244.42, + "end": 50247.24, + "probability": 0.9901 + }, + { + "start": 50247.24, + "end": 50250.2, + "probability": 0.9161 + }, + { + "start": 50251.58, + "end": 50255.14, + "probability": 0.8697 + }, + { + "start": 50256.38, + "end": 50258.24, + "probability": 0.6664 + }, + { + "start": 50258.7, + "end": 50262.62, + "probability": 0.9774 + }, + { + "start": 50263.92, + "end": 50266.6, + "probability": 0.9365 + }, + { + "start": 50267.14, + "end": 50268.26, + "probability": 0.9697 + }, + { + "start": 50268.38, + "end": 50271.68, + "probability": 0.5722 + }, + { + "start": 50271.76, + "end": 50273.8, + "probability": 0.937 + }, + { + "start": 50273.88, + "end": 50275.3, + "probability": 0.2572 + }, + { + "start": 50275.58, + "end": 50278.02, + "probability": 0.9744 + }, + { + "start": 50278.64, + "end": 50280.72, + "probability": 0.9365 + }, + { + "start": 50281.54, + "end": 50282.84, + "probability": 0.9649 + }, + { + "start": 50282.9, + "end": 50286.88, + "probability": 0.9066 + }, + { + "start": 50287.4, + "end": 50292.54, + "probability": 0.9821 + }, + { + "start": 50292.58, + "end": 50299.18, + "probability": 0.975 + }, + { + "start": 50300.81, + "end": 50308.5, + "probability": 0.9893 + }, + { + "start": 50309.88, + "end": 50310.2, + "probability": 0.7552 + }, + { + "start": 50310.68, + "end": 50311.16, + "probability": 0.2394 + }, + { + "start": 50311.16, + "end": 50311.56, + "probability": 0.5529 + }, + { + "start": 50311.94, + "end": 50317.54, + "probability": 0.8535 + }, + { + "start": 50318.44, + "end": 50320.48, + "probability": 0.9677 + }, + { + "start": 50320.84, + "end": 50323.1, + "probability": 0.2353 + }, + { + "start": 50323.9, + "end": 50325.28, + "probability": 0.8884 + }, + { + "start": 50326.12, + "end": 50326.44, + "probability": 0.7372 + }, + { + "start": 50326.78, + "end": 50326.88, + "probability": 0.0687 + }, + { + "start": 50327.06, + "end": 50328.8, + "probability": 0.6883 + }, + { + "start": 50330.52, + "end": 50331.14, + "probability": 0.8885 + }, + { + "start": 50331.76, + "end": 50333.8, + "probability": 0.0959 + }, + { + "start": 50333.98, + "end": 50336.22, + "probability": 0.9338 + }, + { + "start": 50337.16, + "end": 50337.86, + "probability": 0.8757 + }, + { + "start": 50338.44, + "end": 50344.21, + "probability": 0.9912 + }, + { + "start": 50344.66, + "end": 50346.08, + "probability": 0.9227 + }, + { + "start": 50346.16, + "end": 50349.76, + "probability": 0.9711 + }, + { + "start": 50350.6, + "end": 50353.26, + "probability": 0.9608 + }, + { + "start": 50353.5, + "end": 50354.5, + "probability": 0.9871 + }, + { + "start": 50354.52, + "end": 50356.16, + "probability": 0.7484 + }, + { + "start": 50358.52, + "end": 50359.5, + "probability": 0.1916 + }, + { + "start": 50360.38, + "end": 50361.0, + "probability": 0.3591 + }, + { + "start": 50361.86, + "end": 50364.0, + "probability": 0.8763 + }, + { + "start": 50364.64, + "end": 50365.8, + "probability": 0.736 + }, + { + "start": 50365.84, + "end": 50368.16, + "probability": 0.9818 + }, + { + "start": 50368.46, + "end": 50368.78, + "probability": 0.871 + }, + { + "start": 50368.88, + "end": 50370.06, + "probability": 0.9678 + }, + { + "start": 50370.16, + "end": 50371.3, + "probability": 0.7256 + }, + { + "start": 50372.32, + "end": 50375.9, + "probability": 0.8994 + }, + { + "start": 50376.3, + "end": 50377.4, + "probability": 0.5988 + }, + { + "start": 50377.82, + "end": 50379.28, + "probability": 0.8696 + }, + { + "start": 50379.42, + "end": 50379.8, + "probability": 0.8658 + }, + { + "start": 50380.52, + "end": 50382.62, + "probability": 0.8882 + }, + { + "start": 50382.72, + "end": 50384.22, + "probability": 0.7688 + }, + { + "start": 50385.08, + "end": 50385.96, + "probability": 0.8347 + }, + { + "start": 50386.42, + "end": 50388.76, + "probability": 0.8472 + }, + { + "start": 50389.22, + "end": 50390.24, + "probability": 0.991 + }, + { + "start": 50391.06, + "end": 50393.74, + "probability": 0.9468 + }, + { + "start": 50397.32, + "end": 50397.74, + "probability": 0.5398 + }, + { + "start": 50397.9, + "end": 50398.44, + "probability": 0.7279 + }, + { + "start": 50398.5, + "end": 50404.52, + "probability": 0.9713 + }, + { + "start": 50405.4, + "end": 50408.68, + "probability": 0.9951 + }, + { + "start": 50408.88, + "end": 50409.32, + "probability": 0.4672 + }, + { + "start": 50411.03, + "end": 50416.52, + "probability": 0.9505 + }, + { + "start": 50416.7, + "end": 50421.44, + "probability": 0.9944 + }, + { + "start": 50422.08, + "end": 50424.26, + "probability": 0.9974 + }, + { + "start": 50425.28, + "end": 50427.45, + "probability": 0.9935 + }, + { + "start": 50428.2, + "end": 50428.66, + "probability": 0.9386 + }, + { + "start": 50428.82, + "end": 50429.12, + "probability": 0.8953 + }, + { + "start": 50429.96, + "end": 50433.26, + "probability": 0.9956 + }, + { + "start": 50434.44, + "end": 50434.74, + "probability": 0.6772 + }, + { + "start": 50435.22, + "end": 50437.04, + "probability": 0.7495 + }, + { + "start": 50437.78, + "end": 50440.54, + "probability": 0.8784 + }, + { + "start": 50442.48, + "end": 50445.34, + "probability": 0.9869 + }, + { + "start": 50445.44, + "end": 50445.54, + "probability": 0.9329 + }, + { + "start": 50447.0, + "end": 50448.82, + "probability": 0.9712 + }, + { + "start": 50449.24, + "end": 50451.32, + "probability": 0.8633 + }, + { + "start": 50452.54, + "end": 50452.78, + "probability": 0.7626 + }, + { + "start": 50453.36, + "end": 50455.0, + "probability": 0.8072 + }, + { + "start": 50455.2, + "end": 50457.1, + "probability": 0.9977 + }, + { + "start": 50458.72, + "end": 50459.68, + "probability": 0.7737 + }, + { + "start": 50459.8, + "end": 50464.3, + "probability": 0.9299 + }, + { + "start": 50467.6, + "end": 50470.18, + "probability": 0.8608 + }, + { + "start": 50470.54, + "end": 50470.98, + "probability": 0.7195 + }, + { + "start": 50471.0, + "end": 50476.88, + "probability": 0.8163 + }, + { + "start": 50477.04, + "end": 50479.14, + "probability": 0.8571 + }, + { + "start": 50480.1, + "end": 50481.86, + "probability": 0.9797 + }, + { + "start": 50482.08, + "end": 50483.24, + "probability": 0.6343 + }, + { + "start": 50485.57, + "end": 50489.26, + "probability": 0.9769 + }, + { + "start": 50489.32, + "end": 50490.14, + "probability": 0.988 + }, + { + "start": 50490.68, + "end": 50491.68, + "probability": 0.9961 + }, + { + "start": 50491.92, + "end": 50495.28, + "probability": 0.974 + }, + { + "start": 50497.06, + "end": 50500.5, + "probability": 0.8491 + }, + { + "start": 50501.28, + "end": 50504.08, + "probability": 0.9717 + }, + { + "start": 50504.08, + "end": 50508.06, + "probability": 0.9969 + }, + { + "start": 50509.06, + "end": 50511.32, + "probability": 0.8811 + }, + { + "start": 50512.1, + "end": 50512.5, + "probability": 0.863 + }, + { + "start": 50514.04, + "end": 50514.86, + "probability": 0.7536 + }, + { + "start": 50515.16, + "end": 50517.2, + "probability": 0.7913 + }, + { + "start": 50517.46, + "end": 50518.96, + "probability": 0.91 + }, + { + "start": 50519.32, + "end": 50519.98, + "probability": 0.2901 + }, + { + "start": 50520.06, + "end": 50522.32, + "probability": 0.9551 + }, + { + "start": 50522.36, + "end": 50522.91, + "probability": 0.6216 + }, + { + "start": 50523.58, + "end": 50525.78, + "probability": 0.9858 + }, + { + "start": 50526.42, + "end": 50528.18, + "probability": 0.9932 + }, + { + "start": 50528.54, + "end": 50534.98, + "probability": 0.9966 + }, + { + "start": 50535.46, + "end": 50536.5, + "probability": 0.6069 + }, + { + "start": 50536.6, + "end": 50536.7, + "probability": 0.8383 + }, + { + "start": 50537.18, + "end": 50537.62, + "probability": 0.8072 + }, + { + "start": 50537.76, + "end": 50538.62, + "probability": 0.9512 + }, + { + "start": 50539.34, + "end": 50540.2, + "probability": 0.8087 + }, + { + "start": 50540.38, + "end": 50547.56, + "probability": 0.9946 + }, + { + "start": 50548.04, + "end": 50548.68, + "probability": 0.5341 + }, + { + "start": 50548.94, + "end": 50549.72, + "probability": 0.6937 + }, + { + "start": 50549.96, + "end": 50552.5, + "probability": 0.7678 + }, + { + "start": 50553.2, + "end": 50554.42, + "probability": 0.9927 + }, + { + "start": 50554.88, + "end": 50557.42, + "probability": 0.9858 + }, + { + "start": 50558.54, + "end": 50558.78, + "probability": 0.2089 + }, + { + "start": 50558.78, + "end": 50560.56, + "probability": 0.7322 + }, + { + "start": 50561.54, + "end": 50562.46, + "probability": 0.709 + }, + { + "start": 50562.54, + "end": 50563.02, + "probability": 0.6349 + }, + { + "start": 50563.1, + "end": 50564.26, + "probability": 0.1169 + }, + { + "start": 50564.72, + "end": 50565.2, + "probability": 0.9219 + }, + { + "start": 50566.46, + "end": 50568.34, + "probability": 0.8237 + }, + { + "start": 50573.76, + "end": 50574.42, + "probability": 0.6818 + }, + { + "start": 50591.41, + "end": 50592.14, + "probability": 0.5886 + }, + { + "start": 50595.74, + "end": 50598.26, + "probability": 0.7295 + }, + { + "start": 50599.52, + "end": 50601.5, + "probability": 0.9819 + }, + { + "start": 50602.21, + "end": 50606.3, + "probability": 0.9554 + }, + { + "start": 50608.18, + "end": 50611.54, + "probability": 0.9988 + }, + { + "start": 50611.68, + "end": 50614.82, + "probability": 0.9935 + }, + { + "start": 50616.97, + "end": 50620.24, + "probability": 0.7197 + }, + { + "start": 50621.02, + "end": 50621.34, + "probability": 0.849 + }, + { + "start": 50621.94, + "end": 50624.9, + "probability": 0.8975 + }, + { + "start": 50627.56, + "end": 50630.34, + "probability": 0.9346 + }, + { + "start": 50631.54, + "end": 50633.37, + "probability": 0.9957 + }, + { + "start": 50635.08, + "end": 50640.46, + "probability": 0.9927 + }, + { + "start": 50641.61, + "end": 50645.06, + "probability": 0.9929 + }, + { + "start": 50645.76, + "end": 50649.22, + "probability": 0.998 + }, + { + "start": 50650.18, + "end": 50652.03, + "probability": 0.9271 + }, + { + "start": 50652.8, + "end": 50655.84, + "probability": 0.6 + }, + { + "start": 50656.32, + "end": 50656.46, + "probability": 0.3534 + }, + { + "start": 50656.66, + "end": 50656.72, + "probability": 0.6394 + }, + { + "start": 50656.82, + "end": 50657.36, + "probability": 0.9636 + }, + { + "start": 50657.46, + "end": 50658.42, + "probability": 0.1913 + }, + { + "start": 50658.52, + "end": 50661.26, + "probability": 0.9189 + }, + { + "start": 50662.74, + "end": 50663.28, + "probability": 0.5957 + }, + { + "start": 50663.5, + "end": 50665.78, + "probability": 0.9111 + }, + { + "start": 50667.0, + "end": 50669.64, + "probability": 0.98 + }, + { + "start": 50669.7, + "end": 50669.96, + "probability": 0.6452 + }, + { + "start": 50669.96, + "end": 50671.58, + "probability": 0.8684 + }, + { + "start": 50671.58, + "end": 50675.68, + "probability": 0.9884 + }, + { + "start": 50675.82, + "end": 50677.04, + "probability": 0.9963 + }, + { + "start": 50677.76, + "end": 50679.08, + "probability": 0.8947 + }, + { + "start": 50679.34, + "end": 50679.96, + "probability": 0.8984 + }, + { + "start": 50680.68, + "end": 50683.2, + "probability": 0.8691 + }, + { + "start": 50684.54, + "end": 50685.26, + "probability": 0.9045 + }, + { + "start": 50686.92, + "end": 50687.94, + "probability": 0.8024 + }, + { + "start": 50691.26, + "end": 50694.26, + "probability": 0.9946 + }, + { + "start": 50695.84, + "end": 50697.16, + "probability": 0.9761 + }, + { + "start": 50697.72, + "end": 50699.98, + "probability": 0.9934 + }, + { + "start": 50700.5, + "end": 50701.42, + "probability": 0.9672 + }, + { + "start": 50701.8, + "end": 50703.0, + "probability": 0.9978 + }, + { + "start": 50703.64, + "end": 50705.15, + "probability": 0.9985 + }, + { + "start": 50705.86, + "end": 50708.58, + "probability": 0.8623 + }, + { + "start": 50709.62, + "end": 50711.58, + "probability": 0.711 + }, + { + "start": 50712.62, + "end": 50714.3, + "probability": 0.9949 + }, + { + "start": 50715.3, + "end": 50718.32, + "probability": 0.9814 + }, + { + "start": 50718.98, + "end": 50721.0, + "probability": 0.9399 + }, + { + "start": 50722.36, + "end": 50726.54, + "probability": 0.9541 + }, + { + "start": 50726.64, + "end": 50728.0, + "probability": 0.794 + }, + { + "start": 50728.0, + "end": 50728.76, + "probability": 0.7588 + }, + { + "start": 50729.32, + "end": 50729.62, + "probability": 0.9126 + }, + { + "start": 50729.92, + "end": 50731.76, + "probability": 0.9989 + }, + { + "start": 50731.86, + "end": 50734.52, + "probability": 0.9541 + }, + { + "start": 50734.7, + "end": 50736.52, + "probability": 0.9863 + }, + { + "start": 50738.14, + "end": 50741.7, + "probability": 0.7999 + }, + { + "start": 50742.94, + "end": 50746.3, + "probability": 0.8899 + }, + { + "start": 50747.08, + "end": 50748.29, + "probability": 0.952 + }, + { + "start": 50749.92, + "end": 50750.8, + "probability": 0.5628 + }, + { + "start": 50750.94, + "end": 50752.18, + "probability": 0.97 + }, + { + "start": 50752.28, + "end": 50753.12, + "probability": 0.7846 + }, + { + "start": 50753.84, + "end": 50756.22, + "probability": 0.8481 + }, + { + "start": 50756.5, + "end": 50757.36, + "probability": 0.773 + }, + { + "start": 50758.46, + "end": 50760.26, + "probability": 0.9074 + }, + { + "start": 50760.74, + "end": 50761.74, + "probability": 0.7755 + }, + { + "start": 50761.82, + "end": 50763.15, + "probability": 0.9939 + }, + { + "start": 50763.6, + "end": 50765.1, + "probability": 0.962 + }, + { + "start": 50765.56, + "end": 50766.74, + "probability": 0.903 + }, + { + "start": 50766.92, + "end": 50768.78, + "probability": 0.9039 + }, + { + "start": 50769.94, + "end": 50771.72, + "probability": 0.9802 + }, + { + "start": 50772.74, + "end": 50774.93, + "probability": 0.9671 + }, + { + "start": 50775.26, + "end": 50776.06, + "probability": 0.6078 + }, + { + "start": 50776.68, + "end": 50778.32, + "probability": 0.681 + }, + { + "start": 50779.4, + "end": 50781.96, + "probability": 0.9041 + }, + { + "start": 50782.5, + "end": 50787.58, + "probability": 0.9906 + }, + { + "start": 50787.82, + "end": 50788.52, + "probability": 0.5422 + }, + { + "start": 50790.65, + "end": 50792.57, + "probability": 0.8794 + }, + { + "start": 50793.18, + "end": 50795.38, + "probability": 0.9509 + }, + { + "start": 50796.44, + "end": 50797.1, + "probability": 0.8225 + }, + { + "start": 50797.64, + "end": 50798.98, + "probability": 0.9315 + }, + { + "start": 50799.12, + "end": 50800.05, + "probability": 0.9122 + }, + { + "start": 50800.18, + "end": 50801.22, + "probability": 0.5075 + }, + { + "start": 50801.32, + "end": 50802.32, + "probability": 0.9978 + }, + { + "start": 50803.14, + "end": 50804.7, + "probability": 0.8606 + }, + { + "start": 50805.64, + "end": 50806.94, + "probability": 0.701 + }, + { + "start": 50807.0, + "end": 50808.02, + "probability": 0.5131 + }, + { + "start": 50808.08, + "end": 50809.56, + "probability": 0.6802 + }, + { + "start": 50809.76, + "end": 50810.4, + "probability": 0.7154 + }, + { + "start": 50811.06, + "end": 50812.16, + "probability": 0.7883 + }, + { + "start": 50812.84, + "end": 50813.4, + "probability": 0.6919 + }, + { + "start": 50813.42, + "end": 50815.22, + "probability": 0.8657 + }, + { + "start": 50815.34, + "end": 50816.94, + "probability": 0.7061 + }, + { + "start": 50817.3, + "end": 50819.6, + "probability": 0.7157 + }, + { + "start": 50819.68, + "end": 50822.46, + "probability": 0.6906 + }, + { + "start": 50822.8, + "end": 50823.78, + "probability": 0.2721 + }, + { + "start": 50824.4, + "end": 50825.62, + "probability": 0.2764 + }, + { + "start": 50825.96, + "end": 50825.98, + "probability": 0.1445 + }, + { + "start": 50825.98, + "end": 50827.31, + "probability": 0.9927 + }, + { + "start": 50840.84, + "end": 50841.26, + "probability": 0.8789 + }, + { + "start": 50841.26, + "end": 50841.34, + "probability": 0.0367 + }, + { + "start": 50841.34, + "end": 50841.54, + "probability": 0.1389 + }, + { + "start": 50841.68, + "end": 50843.85, + "probability": 0.6757 + }, + { + "start": 50844.38, + "end": 50844.82, + "probability": 0.3421 + }, + { + "start": 50844.82, + "end": 50847.42, + "probability": 0.4958 + }, + { + "start": 50847.68, + "end": 50852.38, + "probability": 0.7441 + }, + { + "start": 50852.58, + "end": 50853.22, + "probability": 0.5874 + }, + { + "start": 50853.4, + "end": 50855.32, + "probability": 0.9951 + }, + { + "start": 50856.14, + "end": 50857.36, + "probability": 0.6504 + }, + { + "start": 50857.46, + "end": 50858.26, + "probability": 0.851 + }, + { + "start": 50859.04, + "end": 50860.26, + "probability": 0.9811 + }, + { + "start": 50860.38, + "end": 50862.39, + "probability": 0.9665 + }, + { + "start": 50862.98, + "end": 50863.22, + "probability": 0.507 + }, + { + "start": 50863.92, + "end": 50865.98, + "probability": 0.3204 + }, + { + "start": 50866.04, + "end": 50869.64, + "probability": 0.9635 + }, + { + "start": 50870.28, + "end": 50871.66, + "probability": 0.9978 + }, + { + "start": 50872.86, + "end": 50874.4, + "probability": 0.9717 + }, + { + "start": 50875.0, + "end": 50875.66, + "probability": 0.879 + }, + { + "start": 50876.16, + "end": 50878.18, + "probability": 0.9907 + }, + { + "start": 50878.74, + "end": 50880.07, + "probability": 0.9868 + }, + { + "start": 50880.78, + "end": 50884.2, + "probability": 0.9336 + }, + { + "start": 50884.58, + "end": 50884.94, + "probability": 0.9343 + }, + { + "start": 50884.98, + "end": 50887.9, + "probability": 0.967 + }, + { + "start": 50888.28, + "end": 50889.9, + "probability": 0.535 + }, + { + "start": 50889.9, + "end": 50891.67, + "probability": 0.9954 + }, + { + "start": 50892.66, + "end": 50893.22, + "probability": 0.9715 + }, + { + "start": 50895.62, + "end": 50895.68, + "probability": 0.0445 + }, + { + "start": 50895.68, + "end": 50897.26, + "probability": 0.7817 + }, + { + "start": 50898.16, + "end": 50899.92, + "probability": 0.7152 + }, + { + "start": 50900.06, + "end": 50900.64, + "probability": 0.9585 + }, + { + "start": 50901.34, + "end": 50904.34, + "probability": 0.9676 + }, + { + "start": 50904.42, + "end": 50905.6, + "probability": 0.8237 + }, + { + "start": 50906.96, + "end": 50908.4, + "probability": 0.904 + }, + { + "start": 50908.75, + "end": 50910.24, + "probability": 0.7623 + }, + { + "start": 50910.38, + "end": 50911.66, + "probability": 0.9646 + }, + { + "start": 50911.76, + "end": 50912.32, + "probability": 0.5013 + }, + { + "start": 50913.3, + "end": 50916.68, + "probability": 0.9669 + }, + { + "start": 50917.44, + "end": 50919.94, + "probability": 0.8706 + }, + { + "start": 50920.68, + "end": 50921.48, + "probability": 0.376 + }, + { + "start": 50921.48, + "end": 50921.9, + "probability": 0.6225 + }, + { + "start": 50922.06, + "end": 50924.15, + "probability": 0.6535 + }, + { + "start": 50924.46, + "end": 50926.96, + "probability": 0.8627 + }, + { + "start": 50927.54, + "end": 50930.32, + "probability": 0.9914 + }, + { + "start": 50931.19, + "end": 50932.22, + "probability": 0.694 + }, + { + "start": 50932.48, + "end": 50933.22, + "probability": 0.7119 + }, + { + "start": 50933.98, + "end": 50935.84, + "probability": 0.5526 + }, + { + "start": 50938.44, + "end": 50940.42, + "probability": 0.8488 + }, + { + "start": 50941.24, + "end": 50941.94, + "probability": 0.231 + }, + { + "start": 50942.26, + "end": 50942.48, + "probability": 0.2665 + }, + { + "start": 50942.72, + "end": 50943.6, + "probability": 0.774 + }, + { + "start": 50943.68, + "end": 50947.56, + "probability": 0.8688 + }, + { + "start": 50947.56, + "end": 50949.55, + "probability": 0.9983 + }, + { + "start": 50950.5, + "end": 50954.5, + "probability": 0.7607 + }, + { + "start": 50954.7, + "end": 50955.72, + "probability": 0.7486 + }, + { + "start": 50956.67, + "end": 50958.76, + "probability": 0.9824 + }, + { + "start": 50960.26, + "end": 50963.5, + "probability": 0.8066 + }, + { + "start": 50963.8, + "end": 50966.1, + "probability": 0.4978 + }, + { + "start": 50971.44, + "end": 50972.96, + "probability": 0.9132 + }, + { + "start": 50973.2, + "end": 50973.83, + "probability": 0.7639 + }, + { + "start": 50975.62, + "end": 50983.6, + "probability": 0.991 + }, + { + "start": 50984.52, + "end": 50986.5, + "probability": 0.9963 + }, + { + "start": 50986.98, + "end": 50992.78, + "probability": 0.9924 + }, + { + "start": 50993.02, + "end": 50997.58, + "probability": 0.9828 + }, + { + "start": 50998.16, + "end": 51000.58, + "probability": 0.6667 + }, + { + "start": 51001.28, + "end": 51002.96, + "probability": 0.796 + }, + { + "start": 51003.38, + "end": 51004.04, + "probability": 0.8374 + }, + { + "start": 51004.52, + "end": 51005.62, + "probability": 0.9202 + }, + { + "start": 51005.84, + "end": 51005.98, + "probability": 0.3799 + }, + { + "start": 51006.36, + "end": 51007.68, + "probability": 0.8749 + }, + { + "start": 51007.72, + "end": 51009.28, + "probability": 0.8347 + }, + { + "start": 51010.3, + "end": 51011.66, + "probability": 0.7431 + }, + { + "start": 51012.34, + "end": 51013.27, + "probability": 0.9971 + }, + { + "start": 51013.42, + "end": 51015.68, + "probability": 0.9823 + }, + { + "start": 51016.58, + "end": 51020.83, + "probability": 0.7974 + }, + { + "start": 51022.2, + "end": 51026.04, + "probability": 0.6925 + }, + { + "start": 51026.12, + "end": 51029.52, + "probability": 0.9914 + }, + { + "start": 51029.72, + "end": 51031.92, + "probability": 0.8814 + }, + { + "start": 51032.68, + "end": 51034.99, + "probability": 0.9792 + }, + { + "start": 51035.12, + "end": 51039.7, + "probability": 0.9077 + }, + { + "start": 51039.7, + "end": 51042.62, + "probability": 0.9865 + }, + { + "start": 51042.62, + "end": 51043.0, + "probability": 0.7792 + }, + { + "start": 51043.62, + "end": 51048.12, + "probability": 0.885 + }, + { + "start": 51053.22, + "end": 51056.7, + "probability": 0.9971 + }, + { + "start": 51056.92, + "end": 51058.84, + "probability": 0.9937 + }, + { + "start": 51059.06, + "end": 51061.92, + "probability": 0.8096 + }, + { + "start": 51062.04, + "end": 51063.0, + "probability": 0.9709 + }, + { + "start": 51063.74, + "end": 51065.12, + "probability": 0.6123 + }, + { + "start": 51065.6, + "end": 51066.48, + "probability": 0.9613 + }, + { + "start": 51068.08, + "end": 51072.24, + "probability": 0.8748 + }, + { + "start": 51072.88, + "end": 51076.48, + "probability": 0.9951 + }, + { + "start": 51076.55, + "end": 51081.4, + "probability": 0.9835 + }, + { + "start": 51082.02, + "end": 51086.22, + "probability": 0.9316 + }, + { + "start": 51086.22, + "end": 51091.0, + "probability": 0.9958 + }, + { + "start": 51091.3, + "end": 51093.32, + "probability": 0.7151 + }, + { + "start": 51093.7, + "end": 51094.94, + "probability": 0.8511 + }, + { + "start": 51095.14, + "end": 51095.74, + "probability": 0.9468 + }, + { + "start": 51097.42, + "end": 51097.98, + "probability": 0.9226 + }, + { + "start": 51098.08, + "end": 51101.1, + "probability": 0.9932 + }, + { + "start": 51101.2, + "end": 51102.95, + "probability": 0.9419 + }, + { + "start": 51103.68, + "end": 51105.3, + "probability": 0.9964 + }, + { + "start": 51105.96, + "end": 51106.32, + "probability": 0.9277 + }, + { + "start": 51106.48, + "end": 51112.98, + "probability": 0.9282 + }, + { + "start": 51113.68, + "end": 51115.23, + "probability": 0.7397 + }, + { + "start": 51115.62, + "end": 51116.52, + "probability": 0.9277 + }, + { + "start": 51116.66, + "end": 51117.18, + "probability": 0.7304 + }, + { + "start": 51117.24, + "end": 51119.0, + "probability": 0.9685 + }, + { + "start": 51119.04, + "end": 51120.09, + "probability": 0.9771 + }, + { + "start": 51121.2, + "end": 51124.5, + "probability": 0.9941 + }, + { + "start": 51124.5, + "end": 51129.3, + "probability": 0.9906 + }, + { + "start": 51129.82, + "end": 51130.32, + "probability": 0.8088 + }, + { + "start": 51130.44, + "end": 51132.2, + "probability": 0.9717 + }, + { + "start": 51132.34, + "end": 51133.84, + "probability": 0.85 + }, + { + "start": 51133.9, + "end": 51134.24, + "probability": 0.6447 + }, + { + "start": 51137.12, + "end": 51138.46, + "probability": 0.8812 + }, + { + "start": 51139.16, + "end": 51140.6, + "probability": 0.9514 + }, + { + "start": 51140.72, + "end": 51141.9, + "probability": 0.6711 + }, + { + "start": 51142.4, + "end": 51144.16, + "probability": 0.9384 + }, + { + "start": 51144.28, + "end": 51148.45, + "probability": 0.9636 + }, + { + "start": 51150.05, + "end": 51151.68, + "probability": 0.5269 + }, + { + "start": 51152.2, + "end": 51152.36, + "probability": 0.4256 + }, + { + "start": 51152.44, + "end": 51159.36, + "probability": 0.9778 + }, + { + "start": 51160.08, + "end": 51162.94, + "probability": 0.9989 + }, + { + "start": 51163.86, + "end": 51168.62, + "probability": 0.9092 + }, + { + "start": 51169.3, + "end": 51176.54, + "probability": 0.9886 + }, + { + "start": 51177.1, + "end": 51181.02, + "probability": 0.9358 + }, + { + "start": 51181.76, + "end": 51184.16, + "probability": 0.8817 + }, + { + "start": 51184.82, + "end": 51188.0, + "probability": 0.9115 + }, + { + "start": 51188.78, + "end": 51189.36, + "probability": 0.855 + }, + { + "start": 51190.0, + "end": 51190.66, + "probability": 0.8695 + }, + { + "start": 51191.62, + "end": 51193.0, + "probability": 0.9823 + }, + { + "start": 51193.82, + "end": 51194.56, + "probability": 0.962 + }, + { + "start": 51195.26, + "end": 51196.62, + "probability": 0.8005 + }, + { + "start": 51197.44, + "end": 51200.38, + "probability": 0.9741 + }, + { + "start": 51200.56, + "end": 51201.72, + "probability": 0.9603 + }, + { + "start": 51202.76, + "end": 51204.54, + "probability": 0.9507 + }, + { + "start": 51205.3, + "end": 51206.24, + "probability": 0.7558 + }, + { + "start": 51207.96, + "end": 51209.28, + "probability": 0.8506 + }, + { + "start": 51209.6, + "end": 51209.92, + "probability": 0.7407 + }, + { + "start": 51210.64, + "end": 51212.7, + "probability": 0.842 + }, + { + "start": 51213.5, + "end": 51215.66, + "probability": 0.9276 + }, + { + "start": 51220.0, + "end": 51223.8, + "probability": 0.0159 + }, + { + "start": 51256.36, + "end": 51258.62, + "probability": 0.7537 + }, + { + "start": 51260.1, + "end": 51264.62, + "probability": 0.9982 + }, + { + "start": 51265.24, + "end": 51271.44, + "probability": 0.9957 + }, + { + "start": 51272.42, + "end": 51276.0, + "probability": 0.9319 + }, + { + "start": 51276.16, + "end": 51277.44, + "probability": 0.9976 + }, + { + "start": 51278.48, + "end": 51281.28, + "probability": 0.9645 + }, + { + "start": 51281.4, + "end": 51283.26, + "probability": 0.9802 + }, + { + "start": 51283.54, + "end": 51285.26, + "probability": 0.9985 + }, + { + "start": 51285.8, + "end": 51286.46, + "probability": 0.9912 + }, + { + "start": 51287.36, + "end": 51290.6, + "probability": 0.9868 + }, + { + "start": 51290.92, + "end": 51295.04, + "probability": 0.9982 + }, + { + "start": 51295.52, + "end": 51296.04, + "probability": 0.8413 + }, + { + "start": 51296.18, + "end": 51296.54, + "probability": 0.8785 + }, + { + "start": 51296.6, + "end": 51299.04, + "probability": 0.9978 + }, + { + "start": 51299.04, + "end": 51303.34, + "probability": 0.9909 + }, + { + "start": 51304.2, + "end": 51308.06, + "probability": 0.9957 + }, + { + "start": 51308.8, + "end": 51313.3, + "probability": 0.992 + }, + { + "start": 51313.3, + "end": 51318.78, + "probability": 0.9946 + }, + { + "start": 51319.7, + "end": 51321.76, + "probability": 0.9076 + }, + { + "start": 51323.34, + "end": 51324.34, + "probability": 0.9989 + }, + { + "start": 51324.86, + "end": 51326.08, + "probability": 0.9991 + }, + { + "start": 51326.26, + "end": 51331.94, + "probability": 0.9901 + }, + { + "start": 51332.42, + "end": 51337.14, + "probability": 0.998 + }, + { + "start": 51337.22, + "end": 51338.12, + "probability": 0.3106 + }, + { + "start": 51339.14, + "end": 51340.74, + "probability": 0.9296 + }, + { + "start": 51342.82, + "end": 51343.48, + "probability": 0.8047 + }, + { + "start": 51343.58, + "end": 51353.36, + "probability": 0.9959 + }, + { + "start": 51353.36, + "end": 51359.3, + "probability": 0.9987 + }, + { + "start": 51360.36, + "end": 51363.24, + "probability": 0.9956 + }, + { + "start": 51363.24, + "end": 51367.3, + "probability": 0.894 + }, + { + "start": 51369.68, + "end": 51370.3, + "probability": 0.7762 + }, + { + "start": 51370.44, + "end": 51371.42, + "probability": 0.9556 + }, + { + "start": 51371.58, + "end": 51372.02, + "probability": 0.8889 + }, + { + "start": 51372.1, + "end": 51374.06, + "probability": 0.8531 + }, + { + "start": 51374.68, + "end": 51375.72, + "probability": 0.6184 + }, + { + "start": 51377.02, + "end": 51378.38, + "probability": 0.9097 + }, + { + "start": 51378.74, + "end": 51382.94, + "probability": 0.7411 + }, + { + "start": 51383.02, + "end": 51384.96, + "probability": 0.8124 + }, + { + "start": 51385.14, + "end": 51385.96, + "probability": 0.4947 + }, + { + "start": 51386.68, + "end": 51391.56, + "probability": 0.9507 + }, + { + "start": 51391.56, + "end": 51396.88, + "probability": 0.9971 + }, + { + "start": 51397.94, + "end": 51400.68, + "probability": 0.9894 + }, + { + "start": 51401.2, + "end": 51403.47, + "probability": 0.9933 + }, + { + "start": 51404.29, + "end": 51407.26, + "probability": 0.9065 + }, + { + "start": 51407.44, + "end": 51414.38, + "probability": 0.9889 + }, + { + "start": 51421.84, + "end": 51424.66, + "probability": 0.9006 + }, + { + "start": 51424.72, + "end": 51426.31, + "probability": 0.8439 + }, + { + "start": 51427.47, + "end": 51430.2, + "probability": 0.832 + }, + { + "start": 51430.2, + "end": 51434.24, + "probability": 0.9891 + }, + { + "start": 51434.34, + "end": 51435.16, + "probability": 0.7985 + }, + { + "start": 51435.24, + "end": 51438.08, + "probability": 0.7581 + }, + { + "start": 51438.16, + "end": 51441.42, + "probability": 0.7321 + }, + { + "start": 51441.58, + "end": 51442.78, + "probability": 0.8801 + }, + { + "start": 51443.68, + "end": 51453.04, + "probability": 0.9854 + }, + { + "start": 51454.8, + "end": 51457.33, + "probability": 0.8305 + }, + { + "start": 51458.16, + "end": 51462.78, + "probability": 0.9907 + }, + { + "start": 51463.58, + "end": 51466.72, + "probability": 0.9482 + }, + { + "start": 51466.84, + "end": 51467.2, + "probability": 0.5615 + }, + { + "start": 51467.26, + "end": 51473.2, + "probability": 0.9932 + }, + { + "start": 51473.2, + "end": 51478.9, + "probability": 0.9682 + }, + { + "start": 51478.94, + "end": 51484.68, + "probability": 0.9922 + }, + { + "start": 51485.1, + "end": 51491.1, + "probability": 0.9795 + }, + { + "start": 51491.32, + "end": 51492.54, + "probability": 0.9573 + }, + { + "start": 51493.18, + "end": 51494.98, + "probability": 0.9604 + }, + { + "start": 51495.54, + "end": 51499.62, + "probability": 0.9601 + }, + { + "start": 51499.62, + "end": 51503.16, + "probability": 0.9532 + }, + { + "start": 51505.42, + "end": 51507.68, + "probability": 0.6519 + }, + { + "start": 51508.64, + "end": 51515.02, + "probability": 0.8875 + }, + { + "start": 51515.78, + "end": 51520.12, + "probability": 0.9845 + }, + { + "start": 51520.46, + "end": 51523.82, + "probability": 0.9905 + }, + { + "start": 51524.86, + "end": 51525.08, + "probability": 0.6406 + }, + { + "start": 51525.1, + "end": 51528.74, + "probability": 0.731 + }, + { + "start": 51529.18, + "end": 51534.72, + "probability": 0.9954 + }, + { + "start": 51535.46, + "end": 51540.84, + "probability": 0.7788 + }, + { + "start": 51541.36, + "end": 51542.66, + "probability": 0.9921 + }, + { + "start": 51543.28, + "end": 51545.64, + "probability": 0.9991 + }, + { + "start": 51546.98, + "end": 51549.86, + "probability": 0.7237 + }, + { + "start": 51549.94, + "end": 51550.98, + "probability": 0.9734 + }, + { + "start": 51551.24, + "end": 51557.24, + "probability": 0.9469 + }, + { + "start": 51558.14, + "end": 51560.48, + "probability": 0.9954 + }, + { + "start": 51560.96, + "end": 51562.42, + "probability": 0.7677 + }, + { + "start": 51562.92, + "end": 51565.22, + "probability": 0.9946 + }, + { + "start": 51566.16, + "end": 51570.52, + "probability": 0.7445 + }, + { + "start": 51571.28, + "end": 51572.48, + "probability": 0.9474 + }, + { + "start": 51573.08, + "end": 51574.62, + "probability": 0.9892 + }, + { + "start": 51575.52, + "end": 51579.46, + "probability": 0.9853 + }, + { + "start": 51580.04, + "end": 51583.58, + "probability": 0.9127 + }, + { + "start": 51584.5, + "end": 51587.44, + "probability": 0.7565 + }, + { + "start": 51587.52, + "end": 51590.86, + "probability": 0.9956 + }, + { + "start": 51591.76, + "end": 51596.56, + "probability": 0.9771 + }, + { + "start": 51597.42, + "end": 51600.77, + "probability": 0.9981 + }, + { + "start": 51601.62, + "end": 51602.64, + "probability": 0.9009 + }, + { + "start": 51603.4, + "end": 51604.14, + "probability": 0.9601 + }, + { + "start": 51606.26, + "end": 51610.46, + "probability": 0.9026 + }, + { + "start": 51610.46, + "end": 51615.22, + "probability": 0.9861 + }, + { + "start": 51615.86, + "end": 51620.24, + "probability": 0.8032 + }, + { + "start": 51621.0, + "end": 51622.5, + "probability": 0.9386 + }, + { + "start": 51624.32, + "end": 51625.5, + "probability": 0.8249 + }, + { + "start": 51625.86, + "end": 51630.04, + "probability": 0.9609 + }, + { + "start": 51630.56, + "end": 51632.86, + "probability": 0.9972 + }, + { + "start": 51633.42, + "end": 51634.62, + "probability": 0.9971 + }, + { + "start": 51637.08, + "end": 51638.28, + "probability": 0.9423 + }, + { + "start": 51639.02, + "end": 51639.34, + "probability": 0.882 + }, + { + "start": 51639.94, + "end": 51643.68, + "probability": 0.9598 + }, + { + "start": 51644.56, + "end": 51648.8, + "probability": 0.9979 + }, + { + "start": 51648.9, + "end": 51651.44, + "probability": 0.9943 + }, + { + "start": 51652.28, + "end": 51652.64, + "probability": 0.6607 + }, + { + "start": 51652.96, + "end": 51655.52, + "probability": 0.8765 + }, + { + "start": 51655.7, + "end": 51658.3, + "probability": 0.985 + }, + { + "start": 51659.4, + "end": 51662.64, + "probability": 0.9972 + }, + { + "start": 51662.64, + "end": 51667.52, + "probability": 0.9996 + }, + { + "start": 51668.48, + "end": 51669.88, + "probability": 0.5196 + }, + { + "start": 51670.1, + "end": 51674.74, + "probability": 0.9478 + }, + { + "start": 51674.84, + "end": 51679.92, + "probability": 0.9746 + }, + { + "start": 51679.92, + "end": 51686.18, + "probability": 0.9507 + }, + { + "start": 51686.92, + "end": 51689.66, + "probability": 0.9932 + }, + { + "start": 51690.8, + "end": 51693.58, + "probability": 0.9933 + }, + { + "start": 51694.12, + "end": 51694.98, + "probability": 0.9971 + }, + { + "start": 51695.14, + "end": 51696.1, + "probability": 0.9797 + }, + { + "start": 51696.24, + "end": 51697.7, + "probability": 0.984 + }, + { + "start": 51699.6, + "end": 51703.54, + "probability": 0.8599 + }, + { + "start": 51705.0, + "end": 51710.12, + "probability": 0.7828 + }, + { + "start": 51710.12, + "end": 51714.36, + "probability": 0.9611 + }, + { + "start": 51714.92, + "end": 51719.02, + "probability": 0.9941 + }, + { + "start": 51719.9, + "end": 51721.64, + "probability": 0.989 + }, + { + "start": 51722.36, + "end": 51725.82, + "probability": 0.9065 + }, + { + "start": 51726.5, + "end": 51729.0, + "probability": 0.8567 + }, + { + "start": 51729.9, + "end": 51731.14, + "probability": 0.9972 + }, + { + "start": 51731.66, + "end": 51733.02, + "probability": 0.9924 + }, + { + "start": 51733.44, + "end": 51737.42, + "probability": 0.9532 + }, + { + "start": 51738.66, + "end": 51739.44, + "probability": 0.583 + }, + { + "start": 51740.18, + "end": 51742.45, + "probability": 0.9463 + }, + { + "start": 51743.68, + "end": 51747.2, + "probability": 0.978 + }, + { + "start": 51748.54, + "end": 51751.06, + "probability": 0.7769 + }, + { + "start": 51751.96, + "end": 51754.24, + "probability": 0.9927 + }, + { + "start": 51755.28, + "end": 51757.88, + "probability": 0.9914 + }, + { + "start": 51758.66, + "end": 51759.56, + "probability": 0.5884 + }, + { + "start": 51760.32, + "end": 51764.54, + "probability": 0.9963 + }, + { + "start": 51764.54, + "end": 51767.02, + "probability": 0.9841 + }, + { + "start": 51768.04, + "end": 51770.64, + "probability": 0.9103 + }, + { + "start": 51771.34, + "end": 51773.7, + "probability": 0.9998 + }, + { + "start": 51776.18, + "end": 51778.44, + "probability": 0.9403 + }, + { + "start": 51778.9, + "end": 51780.18, + "probability": 0.9261 + }, + { + "start": 51780.42, + "end": 51782.26, + "probability": 0.5683 + }, + { + "start": 51782.86, + "end": 51785.2, + "probability": 0.8636 + }, + { + "start": 51785.34, + "end": 51785.8, + "probability": 0.9746 + }, + { + "start": 51786.44, + "end": 51787.82, + "probability": 0.7952 + }, + { + "start": 51788.3, + "end": 51789.28, + "probability": 0.9939 + }, + { + "start": 51789.42, + "end": 51790.4, + "probability": 0.5931 + }, + { + "start": 51791.2, + "end": 51793.28, + "probability": 0.9946 + }, + { + "start": 51793.28, + "end": 51797.42, + "probability": 0.9946 + }, + { + "start": 51799.02, + "end": 51805.06, + "probability": 0.9764 + }, + { + "start": 51805.6, + "end": 51809.76, + "probability": 0.9961 + }, + { + "start": 51809.78, + "end": 51814.82, + "probability": 0.9982 + }, + { + "start": 51815.88, + "end": 51817.54, + "probability": 0.9956 + }, + { + "start": 51818.32, + "end": 51820.98, + "probability": 0.8765 + }, + { + "start": 51821.74, + "end": 51825.51, + "probability": 0.9932 + }, + { + "start": 51826.28, + "end": 51830.78, + "probability": 0.9031 + }, + { + "start": 51831.56, + "end": 51835.14, + "probability": 0.9867 + }, + { + "start": 51835.94, + "end": 51837.5, + "probability": 0.9643 + }, + { + "start": 51837.72, + "end": 51839.82, + "probability": 0.9962 + }, + { + "start": 51839.82, + "end": 51843.5, + "probability": 0.9774 + }, + { + "start": 51843.58, + "end": 51844.46, + "probability": 0.9391 + }, + { + "start": 51844.66, + "end": 51845.22, + "probability": 0.7958 + }, + { + "start": 51845.62, + "end": 51847.1, + "probability": 0.892 + }, + { + "start": 51847.68, + "end": 51850.7, + "probability": 0.9946 + }, + { + "start": 51851.24, + "end": 51852.98, + "probability": 0.9675 + }, + { + "start": 51853.34, + "end": 51855.14, + "probability": 0.7274 + }, + { + "start": 51856.0, + "end": 51858.52, + "probability": 0.9878 + }, + { + "start": 51859.2, + "end": 51860.32, + "probability": 0.8858 + }, + { + "start": 51861.16, + "end": 51863.46, + "probability": 0.9854 + }, + { + "start": 51864.18, + "end": 51865.5, + "probability": 0.886 + }, + { + "start": 51865.64, + "end": 51867.5, + "probability": 0.9823 + }, + { + "start": 51867.78, + "end": 51868.04, + "probability": 0.8226 + }, + { + "start": 51868.08, + "end": 51870.74, + "probability": 0.9805 + }, + { + "start": 51870.88, + "end": 51874.2, + "probability": 0.9738 + }, + { + "start": 51874.78, + "end": 51875.58, + "probability": 0.9595 + }, + { + "start": 51875.64, + "end": 51876.94, + "probability": 0.9592 + }, + { + "start": 51877.2, + "end": 51879.88, + "probability": 0.9769 + }, + { + "start": 51880.4, + "end": 51882.18, + "probability": 0.8196 + }, + { + "start": 51883.12, + "end": 51886.86, + "probability": 0.9073 + }, + { + "start": 51887.5, + "end": 51888.64, + "probability": 0.9819 + }, + { + "start": 51890.28, + "end": 51891.84, + "probability": 0.9963 + }, + { + "start": 51892.02, + "end": 51894.34, + "probability": 0.9841 + }, + { + "start": 51895.1, + "end": 51898.94, + "probability": 0.9971 + }, + { + "start": 51898.94, + "end": 51902.96, + "probability": 0.996 + }, + { + "start": 51903.68, + "end": 51906.1, + "probability": 0.8864 + }, + { + "start": 51906.7, + "end": 51907.62, + "probability": 0.8458 + }, + { + "start": 51908.34, + "end": 51911.74, + "probability": 0.999 + }, + { + "start": 51911.74, + "end": 51916.5, + "probability": 0.998 + }, + { + "start": 51917.12, + "end": 51917.8, + "probability": 0.7492 + }, + { + "start": 51918.26, + "end": 51922.38, + "probability": 0.9905 + }, + { + "start": 51923.14, + "end": 51925.38, + "probability": 0.9584 + }, + { + "start": 51925.68, + "end": 51925.96, + "probability": 0.8259 + }, + { + "start": 51926.04, + "end": 51926.54, + "probability": 0.6109 + }, + { + "start": 51926.66, + "end": 51928.13, + "probability": 0.9094 + }, + { + "start": 51930.04, + "end": 51930.57, + "probability": 0.5228 + }, + { + "start": 51931.5, + "end": 51932.8, + "probability": 0.764 + }, + { + "start": 51933.68, + "end": 51934.36, + "probability": 0.9938 + }, + { + "start": 51935.04, + "end": 51936.88, + "probability": 0.9956 + }, + { + "start": 51937.32, + "end": 51939.3, + "probability": 0.8363 + }, + { + "start": 51940.36, + "end": 51943.76, + "probability": 0.9966 + }, + { + "start": 51944.66, + "end": 51947.18, + "probability": 0.9648 + }, + { + "start": 51947.94, + "end": 51948.66, + "probability": 0.6114 + }, + { + "start": 51949.14, + "end": 51950.0, + "probability": 0.8915 + }, + { + "start": 51950.12, + "end": 51951.2, + "probability": 0.9922 + }, + { + "start": 51951.58, + "end": 51954.76, + "probability": 0.996 + }, + { + "start": 51956.22, + "end": 51956.88, + "probability": 0.9606 + }, + { + "start": 51957.48, + "end": 51958.56, + "probability": 0.9809 + }, + { + "start": 51958.74, + "end": 51960.74, + "probability": 0.9812 + }, + { + "start": 51960.78, + "end": 51962.04, + "probability": 0.9985 + }, + { + "start": 51962.78, + "end": 51963.24, + "probability": 0.9977 + }, + { + "start": 51965.08, + "end": 51966.02, + "probability": 0.1949 + }, + { + "start": 51966.06, + "end": 51968.46, + "probability": 0.4399 + }, + { + "start": 51968.62, + "end": 51969.56, + "probability": 0.7656 + }, + { + "start": 51969.56, + "end": 51971.3, + "probability": 0.5726 + }, + { + "start": 51972.1, + "end": 51973.34, + "probability": 0.8934 + }, + { + "start": 51974.38, + "end": 51976.08, + "probability": 0.7825 + }, + { + "start": 51977.04, + "end": 51978.44, + "probability": 0.9984 + }, + { + "start": 51978.62, + "end": 51979.4, + "probability": 0.8574 + }, + { + "start": 51980.32, + "end": 51982.58, + "probability": 0.8662 + }, + { + "start": 51982.58, + "end": 51985.74, + "probability": 0.9897 + }, + { + "start": 51985.86, + "end": 51987.52, + "probability": 0.7238 + }, + { + "start": 51988.54, + "end": 51989.2, + "probability": 0.879 + }, + { + "start": 51989.3, + "end": 51994.28, + "probability": 0.9707 + }, + { + "start": 51994.74, + "end": 51998.84, + "probability": 0.9764 + }, + { + "start": 51999.93, + "end": 52000.59, + "probability": 0.5605 + }, + { + "start": 52001.66, + "end": 52004.02, + "probability": 0.6626 + }, + { + "start": 52004.74, + "end": 52005.2, + "probability": 0.9274 + }, + { + "start": 52005.34, + "end": 52006.3, + "probability": 0.967 + }, + { + "start": 52006.52, + "end": 52006.86, + "probability": 0.8751 + }, + { + "start": 52006.94, + "end": 52010.42, + "probability": 0.985 + }, + { + "start": 52010.52, + "end": 52012.76, + "probability": 0.9931 + }, + { + "start": 52012.76, + "end": 52016.58, + "probability": 0.9991 + }, + { + "start": 52017.92, + "end": 52019.62, + "probability": 0.6972 + }, + { + "start": 52020.6, + "end": 52025.4, + "probability": 0.9955 + }, + { + "start": 52026.1, + "end": 52028.96, + "probability": 0.9744 + }, + { + "start": 52030.06, + "end": 52033.22, + "probability": 0.9954 + }, + { + "start": 52033.38, + "end": 52036.44, + "probability": 0.999 + }, + { + "start": 52038.21, + "end": 52041.02, + "probability": 0.9988 + }, + { + "start": 52041.16, + "end": 52041.62, + "probability": 0.9097 + }, + { + "start": 52043.16, + "end": 52044.4, + "probability": 0.7288 + }, + { + "start": 52045.28, + "end": 52047.23, + "probability": 0.9889 + }, + { + "start": 52048.12, + "end": 52049.38, + "probability": 0.6599 + }, + { + "start": 52051.26, + "end": 52052.38, + "probability": 0.9937 + }, + { + "start": 52053.4, + "end": 52054.48, + "probability": 0.886 + }, + { + "start": 52054.88, + "end": 52059.38, + "probability": 0.9863 + }, + { + "start": 52060.06, + "end": 52062.62, + "probability": 0.9893 + }, + { + "start": 52063.24, + "end": 52065.98, + "probability": 0.9968 + }, + { + "start": 52066.46, + "end": 52067.44, + "probability": 0.6624 + }, + { + "start": 52069.54, + "end": 52072.18, + "probability": 0.9673 + }, + { + "start": 52072.7, + "end": 52075.72, + "probability": 0.7005 + }, + { + "start": 52076.34, + "end": 52081.68, + "probability": 0.9834 + }, + { + "start": 52081.82, + "end": 52085.46, + "probability": 0.976 + }, + { + "start": 52086.28, + "end": 52092.66, + "probability": 0.9873 + }, + { + "start": 52097.46, + "end": 52098.92, + "probability": 0.6493 + }, + { + "start": 52099.52, + "end": 52103.04, + "probability": 0.9976 + }, + { + "start": 52104.16, + "end": 52107.84, + "probability": 0.986 + }, + { + "start": 52109.28, + "end": 52111.04, + "probability": 0.9905 + }, + { + "start": 52111.26, + "end": 52112.6, + "probability": 0.7664 + }, + { + "start": 52112.76, + "end": 52116.98, + "probability": 0.7542 + }, + { + "start": 52117.54, + "end": 52122.14, + "probability": 0.993 + }, + { + "start": 52122.82, + "end": 52123.26, + "probability": 0.3055 + }, + { + "start": 52123.58, + "end": 52124.36, + "probability": 0.5369 + }, + { + "start": 52124.48, + "end": 52126.06, + "probability": 0.7823 + }, + { + "start": 52126.1, + "end": 52128.86, + "probability": 0.7689 + }, + { + "start": 52128.9, + "end": 52131.54, + "probability": 0.7493 + }, + { + "start": 52131.64, + "end": 52133.02, + "probability": 0.742 + }, + { + "start": 52133.26, + "end": 52134.24, + "probability": 0.6273 + }, + { + "start": 52135.18, + "end": 52136.06, + "probability": 0.6684 + }, + { + "start": 52136.62, + "end": 52137.9, + "probability": 0.7719 + }, + { + "start": 52138.64, + "end": 52140.8, + "probability": 0.5635 + }, + { + "start": 52141.52, + "end": 52145.58, + "probability": 0.9163 + }, + { + "start": 52146.18, + "end": 52148.78, + "probability": 0.9648 + }, + { + "start": 52149.58, + "end": 52151.48, + "probability": 0.284 + }, + { + "start": 52152.24, + "end": 52153.0, + "probability": 0.765 + }, + { + "start": 52153.68, + "end": 52156.36, + "probability": 0.7746 + }, + { + "start": 52157.18, + "end": 52157.84, + "probability": 0.8136 + }, + { + "start": 52158.56, + "end": 52159.7, + "probability": 0.7703 + }, + { + "start": 52161.02, + "end": 52162.96, + "probability": 0.5319 + }, + { + "start": 52164.0, + "end": 52164.78, + "probability": 0.5193 + }, + { + "start": 52165.38, + "end": 52166.62, + "probability": 0.536 + }, + { + "start": 52167.52, + "end": 52168.6, + "probability": 0.7214 + }, + { + "start": 52169.48, + "end": 52173.32, + "probability": 0.8668 + }, + { + "start": 52174.03, + "end": 52176.04, + "probability": 0.6846 + }, + { + "start": 52177.02, + "end": 52180.36, + "probability": 0.7047 + }, + { + "start": 52181.36, + "end": 52182.16, + "probability": 0.7599 + }, + { + "start": 52183.98, + "end": 52189.54, + "probability": 0.8506 + }, + { + "start": 52190.08, + "end": 52192.18, + "probability": 0.8993 + }, + { + "start": 52193.2, + "end": 52196.72, + "probability": 0.7564 + }, + { + "start": 52198.02, + "end": 52199.88, + "probability": 0.2819 + }, + { + "start": 52201.2, + "end": 52203.68, + "probability": 0.256 + }, + { + "start": 52204.18, + "end": 52208.44, + "probability": 0.8643 + }, + { + "start": 52208.74, + "end": 52210.76, + "probability": 0.9923 + }, + { + "start": 52211.0, + "end": 52211.66, + "probability": 0.9187 + }, + { + "start": 52212.44, + "end": 52215.54, + "probability": 0.7748 + }, + { + "start": 52215.78, + "end": 52216.34, + "probability": 0.3553 + }, + { + "start": 52216.78, + "end": 52217.14, + "probability": 0.5027 + }, + { + "start": 52217.32, + "end": 52217.76, + "probability": 0.2707 + }, + { + "start": 52217.88, + "end": 52219.78, + "probability": 0.9949 + }, + { + "start": 52219.78, + "end": 52223.24, + "probability": 0.994 + }, + { + "start": 52223.9, + "end": 52225.18, + "probability": 0.9434 + }, + { + "start": 52225.26, + "end": 52225.98, + "probability": 0.8017 + }, + { + "start": 52226.28, + "end": 52227.24, + "probability": 0.8976 + }, + { + "start": 52227.24, + "end": 52231.72, + "probability": 0.9779 + }, + { + "start": 52232.3, + "end": 52234.88, + "probability": 0.9976 + }, + { + "start": 52235.26, + "end": 52238.98, + "probability": 0.9891 + }, + { + "start": 52239.54, + "end": 52240.74, + "probability": 0.8732 + }, + { + "start": 52242.04, + "end": 52242.76, + "probability": 0.91 + }, + { + "start": 52243.26, + "end": 52244.82, + "probability": 0.9941 + }, + { + "start": 52244.86, + "end": 52247.96, + "probability": 0.924 + }, + { + "start": 52248.2, + "end": 52248.62, + "probability": 0.9736 + }, + { + "start": 52248.84, + "end": 52250.62, + "probability": 0.8519 + }, + { + "start": 52250.62, + "end": 52252.3, + "probability": 0.6704 + }, + { + "start": 52252.42, + "end": 52257.42, + "probability": 0.9792 + }, + { + "start": 52257.92, + "end": 52258.36, + "probability": 0.6332 + }, + { + "start": 52258.68, + "end": 52260.96, + "probability": 0.9821 + }, + { + "start": 52261.02, + "end": 52262.45, + "probability": 0.8957 + }, + { + "start": 52263.02, + "end": 52264.84, + "probability": 0.5736 + }, + { + "start": 52264.92, + "end": 52269.24, + "probability": 0.9998 + }, + { + "start": 52269.56, + "end": 52274.74, + "probability": 0.9914 + }, + { + "start": 52274.92, + "end": 52278.14, + "probability": 0.9845 + }, + { + "start": 52278.86, + "end": 52279.86, + "probability": 0.7358 + }, + { + "start": 52280.2, + "end": 52283.74, + "probability": 0.9863 + }, + { + "start": 52284.04, + "end": 52286.98, + "probability": 0.9976 + }, + { + "start": 52287.86, + "end": 52290.26, + "probability": 0.9221 + }, + { + "start": 52290.4, + "end": 52292.3, + "probability": 0.9169 + }, + { + "start": 52293.28, + "end": 52293.94, + "probability": 0.9559 + }, + { + "start": 52295.12, + "end": 52296.24, + "probability": 0.7558 + }, + { + "start": 52296.34, + "end": 52298.44, + "probability": 0.7114 + }, + { + "start": 52298.5, + "end": 52300.36, + "probability": 0.9072 + }, + { + "start": 52300.42, + "end": 52304.32, + "probability": 0.9641 + }, + { + "start": 52304.4, + "end": 52305.14, + "probability": 0.8686 + }, + { + "start": 52305.22, + "end": 52310.23, + "probability": 0.7317 + }, + { + "start": 52311.04, + "end": 52313.9, + "probability": 0.9906 + }, + { + "start": 52314.98, + "end": 52316.9, + "probability": 0.9245 + }, + { + "start": 52317.54, + "end": 52319.32, + "probability": 0.9657 + }, + { + "start": 52319.72, + "end": 52322.78, + "probability": 0.9851 + }, + { + "start": 52324.36, + "end": 52328.32, + "probability": 0.9985 + }, + { + "start": 52328.32, + "end": 52331.98, + "probability": 0.9945 + }, + { + "start": 52332.06, + "end": 52333.9, + "probability": 0.4967 + }, + { + "start": 52334.72, + "end": 52337.57, + "probability": 0.9863 + }, + { + "start": 52337.78, + "end": 52341.46, + "probability": 0.8997 + }, + { + "start": 52342.08, + "end": 52345.08, + "probability": 0.8918 + }, + { + "start": 52346.08, + "end": 52348.04, + "probability": 0.9812 + }, + { + "start": 52348.64, + "end": 52349.66, + "probability": 0.9963 + }, + { + "start": 52350.44, + "end": 52355.74, + "probability": 0.9745 + }, + { + "start": 52355.74, + "end": 52355.9, + "probability": 0.5061 + }, + { + "start": 52357.08, + "end": 52361.78, + "probability": 0.8969 + }, + { + "start": 52362.68, + "end": 52363.54, + "probability": 0.6334 + }, + { + "start": 52364.02, + "end": 52365.76, + "probability": 0.8248 + }, + { + "start": 52366.74, + "end": 52367.8, + "probability": 0.8217 + }, + { + "start": 52369.28, + "end": 52372.82, + "probability": 0.9224 + }, + { + "start": 52372.82, + "end": 52377.21, + "probability": 0.9777 + }, + { + "start": 52379.48, + "end": 52380.51, + "probability": 0.3161 + }, + { + "start": 52380.66, + "end": 52383.9, + "probability": 0.9921 + }, + { + "start": 52383.9, + "end": 52387.5, + "probability": 0.996 + }, + { + "start": 52388.02, + "end": 52389.42, + "probability": 0.9928 + }, + { + "start": 52389.48, + "end": 52389.66, + "probability": 0.7563 + }, + { + "start": 52389.84, + "end": 52393.56, + "probability": 0.9966 + }, + { + "start": 52394.1, + "end": 52394.8, + "probability": 0.9976 + }, + { + "start": 52394.86, + "end": 52395.94, + "probability": 0.7578 + }, + { + "start": 52396.24, + "end": 52397.82, + "probability": 0.9905 + }, + { + "start": 52398.2, + "end": 52400.22, + "probability": 0.9918 + }, + { + "start": 52400.26, + "end": 52403.54, + "probability": 0.8712 + }, + { + "start": 52404.36, + "end": 52404.6, + "probability": 0.3222 + }, + { + "start": 52404.64, + "end": 52408.82, + "probability": 0.9906 + }, + { + "start": 52409.7, + "end": 52410.32, + "probability": 0.8746 + }, + { + "start": 52410.42, + "end": 52411.34, + "probability": 0.9303 + }, + { + "start": 52411.46, + "end": 52413.08, + "probability": 0.8609 + }, + { + "start": 52413.22, + "end": 52414.48, + "probability": 0.9804 + }, + { + "start": 52414.82, + "end": 52421.34, + "probability": 0.9922 + }, + { + "start": 52422.28, + "end": 52422.87, + "probability": 0.513 + }, + { + "start": 52423.46, + "end": 52428.42, + "probability": 0.9443 + }, + { + "start": 52428.92, + "end": 52431.22, + "probability": 0.9756 + }, + { + "start": 52431.34, + "end": 52435.5, + "probability": 0.999 + }, + { + "start": 52435.6, + "end": 52436.48, + "probability": 0.9998 + }, + { + "start": 52437.18, + "end": 52437.98, + "probability": 0.9924 + }, + { + "start": 52439.15, + "end": 52444.2, + "probability": 0.9951 + }, + { + "start": 52445.06, + "end": 52447.3, + "probability": 0.9187 + }, + { + "start": 52448.78, + "end": 52455.33, + "probability": 0.9956 + }, + { + "start": 52456.14, + "end": 52458.12, + "probability": 0.9951 + }, + { + "start": 52458.16, + "end": 52458.68, + "probability": 0.8418 + }, + { + "start": 52459.46, + "end": 52462.24, + "probability": 0.9606 + }, + { + "start": 52463.14, + "end": 52466.62, + "probability": 0.9468 + }, + { + "start": 52466.72, + "end": 52467.8, + "probability": 0.9279 + }, + { + "start": 52467.94, + "end": 52469.74, + "probability": 0.5336 + }, + { + "start": 52470.38, + "end": 52472.5, + "probability": 0.9028 + }, + { + "start": 52473.2, + "end": 52474.94, + "probability": 0.9935 + }, + { + "start": 52476.58, + "end": 52479.38, + "probability": 0.8912 + }, + { + "start": 52479.5, + "end": 52480.5, + "probability": 0.9398 + }, + { + "start": 52480.82, + "end": 52484.28, + "probability": 0.9886 + }, + { + "start": 52485.24, + "end": 52488.38, + "probability": 0.9932 + }, + { + "start": 52489.28, + "end": 52491.35, + "probability": 0.9614 + }, + { + "start": 52492.18, + "end": 52493.14, + "probability": 0.9452 + }, + { + "start": 52493.82, + "end": 52496.72, + "probability": 0.5595 + }, + { + "start": 52499.28, + "end": 52499.64, + "probability": 0.7157 + }, + { + "start": 52500.74, + "end": 52500.74, + "probability": 0.0423 + }, + { + "start": 52500.74, + "end": 52500.74, + "probability": 0.0587 + }, + { + "start": 52500.74, + "end": 52504.14, + "probability": 0.8535 + }, + { + "start": 52505.78, + "end": 52507.9, + "probability": 0.9928 + }, + { + "start": 52508.72, + "end": 52509.82, + "probability": 0.8822 + }, + { + "start": 52510.18, + "end": 52514.76, + "probability": 0.8721 + }, + { + "start": 52514.8, + "end": 52517.36, + "probability": 0.9902 + }, + { + "start": 52517.6, + "end": 52517.88, + "probability": 0.4955 + }, + { + "start": 52517.96, + "end": 52520.25, + "probability": 0.8831 + }, + { + "start": 52520.54, + "end": 52521.15, + "probability": 0.4181 + }, + { + "start": 52521.26, + "end": 52521.4, + "probability": 0.9712 + }, + { + "start": 52521.86, + "end": 52524.6, + "probability": 0.9725 + }, + { + "start": 52524.7, + "end": 52528.01, + "probability": 0.9917 + }, + { + "start": 52528.42, + "end": 52530.04, + "probability": 0.9281 + }, + { + "start": 52530.4, + "end": 52531.3, + "probability": 0.2597 + }, + { + "start": 52532.58, + "end": 52533.12, + "probability": 0.8209 + }, + { + "start": 52536.26, + "end": 52540.52, + "probability": 0.9976 + }, + { + "start": 52541.24, + "end": 52542.64, + "probability": 0.983 + }, + { + "start": 52542.72, + "end": 52543.16, + "probability": 0.8104 + }, + { + "start": 52543.42, + "end": 52544.26, + "probability": 0.9174 + }, + { + "start": 52545.88, + "end": 52547.96, + "probability": 0.9509 + }, + { + "start": 52548.06, + "end": 52549.32, + "probability": 0.8867 + }, + { + "start": 52549.4, + "end": 52552.32, + "probability": 0.98 + }, + { + "start": 52552.46, + "end": 52553.08, + "probability": 0.5593 + }, + { + "start": 52554.06, + "end": 52554.68, + "probability": 0.6948 + }, + { + "start": 52555.22, + "end": 52558.42, + "probability": 0.9759 + }, + { + "start": 52559.08, + "end": 52560.16, + "probability": 0.9906 + }, + { + "start": 52560.84, + "end": 52564.58, + "probability": 0.9497 + }, + { + "start": 52564.84, + "end": 52568.6, + "probability": 0.9952 + }, + { + "start": 52568.6, + "end": 52570.62, + "probability": 0.9259 + }, + { + "start": 52570.68, + "end": 52571.96, + "probability": 0.8702 + }, + { + "start": 52573.06, + "end": 52574.54, + "probability": 0.6638 + }, + { + "start": 52575.34, + "end": 52580.78, + "probability": 0.9967 + }, + { + "start": 52581.18, + "end": 52582.86, + "probability": 0.9942 + }, + { + "start": 52583.3, + "end": 52584.2, + "probability": 0.9736 + }, + { + "start": 52584.88, + "end": 52587.27, + "probability": 0.9642 + }, + { + "start": 52587.82, + "end": 52590.28, + "probability": 0.913 + }, + { + "start": 52591.32, + "end": 52592.18, + "probability": 0.7044 + }, + { + "start": 52593.68, + "end": 52596.04, + "probability": 0.7674 + }, + { + "start": 52597.52, + "end": 52598.06, + "probability": 0.8617 + }, + { + "start": 52598.62, + "end": 52601.04, + "probability": 0.968 + }, + { + "start": 52603.84, + "end": 52605.82, + "probability": 0.7512 + }, + { + "start": 52608.62, + "end": 52612.42, + "probability": 0.9915 + }, + { + "start": 52613.12, + "end": 52614.84, + "probability": 0.6056 + }, + { + "start": 52614.96, + "end": 52615.62, + "probability": 0.7965 + }, + { + "start": 52615.68, + "end": 52617.1, + "probability": 0.8848 + }, + { + "start": 52617.52, + "end": 52618.86, + "probability": 0.9328 + }, + { + "start": 52619.12, + "end": 52620.36, + "probability": 0.7197 + }, + { + "start": 52621.42, + "end": 52628.12, + "probability": 0.9163 + }, + { + "start": 52628.79, + "end": 52634.28, + "probability": 0.9852 + }, + { + "start": 52634.96, + "end": 52636.72, + "probability": 0.9731 + }, + { + "start": 52636.76, + "end": 52637.66, + "probability": 0.7703 + }, + { + "start": 52638.02, + "end": 52638.98, + "probability": 0.8471 + }, + { + "start": 52639.2, + "end": 52640.0, + "probability": 0.9473 + }, + { + "start": 52640.0, + "end": 52640.68, + "probability": 0.8951 + }, + { + "start": 52640.76, + "end": 52641.66, + "probability": 0.92 + }, + { + "start": 52641.98, + "end": 52642.68, + "probability": 0.8149 + }, + { + "start": 52643.08, + "end": 52643.62, + "probability": 0.9578 + }, + { + "start": 52643.76, + "end": 52644.3, + "probability": 0.9433 + }, + { + "start": 52644.4, + "end": 52645.08, + "probability": 0.7837 + }, + { + "start": 52645.14, + "end": 52646.46, + "probability": 0.9792 + }, + { + "start": 52646.84, + "end": 52647.64, + "probability": 0.9539 + }, + { + "start": 52647.7, + "end": 52648.36, + "probability": 0.9916 + }, + { + "start": 52648.42, + "end": 52649.2, + "probability": 0.9952 + }, + { + "start": 52649.22, + "end": 52649.84, + "probability": 0.9864 + }, + { + "start": 52649.96, + "end": 52650.74, + "probability": 0.9736 + }, + { + "start": 52650.94, + "end": 52651.62, + "probability": 0.9886 + }, + { + "start": 52652.2, + "end": 52654.44, + "probability": 0.8981 + }, + { + "start": 52654.98, + "end": 52656.08, + "probability": 0.9683 + }, + { + "start": 52656.28, + "end": 52656.9, + "probability": 0.8692 + }, + { + "start": 52657.04, + "end": 52658.76, + "probability": 0.9886 + }, + { + "start": 52658.86, + "end": 52659.66, + "probability": 0.9301 + }, + { + "start": 52659.9, + "end": 52660.44, + "probability": 0.989 + }, + { + "start": 52660.48, + "end": 52661.08, + "probability": 0.8677 + }, + { + "start": 52661.12, + "end": 52662.06, + "probability": 0.9861 + }, + { + "start": 52662.26, + "end": 52663.94, + "probability": 0.8796 + }, + { + "start": 52664.7, + "end": 52667.1, + "probability": 0.983 + }, + { + "start": 52667.1, + "end": 52667.8, + "probability": 0.7885 + }, + { + "start": 52668.12, + "end": 52668.34, + "probability": 0.6929 + }, + { + "start": 52671.9, + "end": 52674.88, + "probability": 0.8638 + }, + { + "start": 52674.88, + "end": 52675.46, + "probability": 0.133 + }, + { + "start": 52675.72, + "end": 52676.87, + "probability": 0.822 + }, + { + "start": 52677.38, + "end": 52678.74, + "probability": 0.8184 + }, + { + "start": 52678.84, + "end": 52680.06, + "probability": 0.9091 + }, + { + "start": 52680.42, + "end": 52686.46, + "probability": 0.946 + }, + { + "start": 52687.26, + "end": 52688.26, + "probability": 0.9587 + }, + { + "start": 52689.0, + "end": 52689.42, + "probability": 0.9088 + }, + { + "start": 52689.62, + "end": 52692.66, + "probability": 0.7883 + }, + { + "start": 52693.1, + "end": 52694.16, + "probability": 0.7671 + }, + { + "start": 52694.5, + "end": 52695.29, + "probability": 0.71 + }, + { + "start": 52696.71, + "end": 52698.45, + "probability": 0.5799 + }, + { + "start": 52699.14, + "end": 52699.8, + "probability": 0.8147 + }, + { + "start": 52700.1, + "end": 52700.28, + "probability": 0.6536 + }, + { + "start": 52700.38, + "end": 52704.16, + "probability": 0.9448 + }, + { + "start": 52706.05, + "end": 52709.92, + "probability": 0.9589 + }, + { + "start": 52710.24, + "end": 52712.28, + "probability": 0.9971 + }, + { + "start": 52713.48, + "end": 52714.5, + "probability": 0.9839 + }, + { + "start": 52715.46, + "end": 52719.4, + "probability": 0.8107 + }, + { + "start": 52719.7, + "end": 52724.64, + "probability": 0.9188 + }, + { + "start": 52724.64, + "end": 52729.1, + "probability": 0.9951 + }, + { + "start": 52729.78, + "end": 52733.66, + "probability": 0.9609 + }, + { + "start": 52733.86, + "end": 52734.18, + "probability": 0.728 + }, + { + "start": 52734.54, + "end": 52736.02, + "probability": 0.9917 + }, + { + "start": 52736.62, + "end": 52739.22, + "probability": 0.9922 + }, + { + "start": 52739.9, + "end": 52743.02, + "probability": 0.9819 + }, + { + "start": 52743.3, + "end": 52743.4, + "probability": 0.722 + }, + { + "start": 52743.54, + "end": 52745.92, + "probability": 0.984 + }, + { + "start": 52746.46, + "end": 52747.54, + "probability": 0.9941 + }, + { + "start": 52747.88, + "end": 52748.48, + "probability": 0.6025 + }, + { + "start": 52748.72, + "end": 52752.1, + "probability": 0.8685 + }, + { + "start": 52752.56, + "end": 52755.84, + "probability": 0.8665 + }, + { + "start": 52755.88, + "end": 52756.48, + "probability": 0.9429 + }, + { + "start": 52756.58, + "end": 52757.12, + "probability": 0.4973 + }, + { + "start": 52757.94, + "end": 52759.6, + "probability": 0.9404 + }, + { + "start": 52759.68, + "end": 52759.68, + "probability": 0.4783 + }, + { + "start": 52759.82, + "end": 52761.8, + "probability": 0.8255 + }, + { + "start": 52761.86, + "end": 52769.04, + "probability": 0.9736 + }, + { + "start": 52769.6, + "end": 52772.23, + "probability": 0.9963 + }, + { + "start": 52773.06, + "end": 52774.24, + "probability": 0.8101 + }, + { + "start": 52774.46, + "end": 52774.92, + "probability": 0.7933 + }, + { + "start": 52775.46, + "end": 52776.14, + "probability": 0.8311 + }, + { + "start": 52776.42, + "end": 52780.52, + "probability": 0.9677 + }, + { + "start": 52780.66, + "end": 52781.66, + "probability": 0.8919 + }, + { + "start": 52782.3, + "end": 52784.2, + "probability": 0.9791 + }, + { + "start": 52785.02, + "end": 52785.68, + "probability": 0.6164 + }, + { + "start": 52786.58, + "end": 52787.0, + "probability": 0.7035 + }, + { + "start": 52787.12, + "end": 52791.24, + "probability": 0.989 + }, + { + "start": 52791.78, + "end": 52794.18, + "probability": 0.6666 + }, + { + "start": 52794.82, + "end": 52796.08, + "probability": 0.9832 + }, + { + "start": 52796.24, + "end": 52799.18, + "probability": 0.7169 + }, + { + "start": 52799.86, + "end": 52800.76, + "probability": 0.8408 + }, + { + "start": 52801.1, + "end": 52801.76, + "probability": 0.9471 + }, + { + "start": 52801.86, + "end": 52802.42, + "probability": 0.872 + }, + { + "start": 52802.54, + "end": 52802.94, + "probability": 0.9816 + }, + { + "start": 52803.02, + "end": 52803.74, + "probability": 0.9899 + }, + { + "start": 52803.76, + "end": 52804.34, + "probability": 0.9733 + }, + { + "start": 52804.42, + "end": 52804.94, + "probability": 0.7958 + }, + { + "start": 52804.96, + "end": 52805.76, + "probability": 0.9909 + }, + { + "start": 52805.78, + "end": 52806.66, + "probability": 0.9618 + }, + { + "start": 52806.9, + "end": 52807.76, + "probability": 0.9923 + }, + { + "start": 52807.92, + "end": 52808.78, + "probability": 0.8774 + }, + { + "start": 52809.8, + "end": 52810.62, + "probability": 0.9722 + }, + { + "start": 52811.48, + "end": 52812.1, + "probability": 0.9736 + }, + { + "start": 52812.26, + "end": 52812.88, + "probability": 0.9868 + }, + { + "start": 52813.04, + "end": 52813.58, + "probability": 0.9882 + }, + { + "start": 52813.66, + "end": 52814.52, + "probability": 0.9958 + }, + { + "start": 52814.58, + "end": 52815.44, + "probability": 0.8682 + }, + { + "start": 52815.52, + "end": 52816.3, + "probability": 0.9556 + }, + { + "start": 52816.52, + "end": 52817.1, + "probability": 0.8915 + }, + { + "start": 52817.62, + "end": 52818.24, + "probability": 0.9895 + }, + { + "start": 52818.62, + "end": 52819.54, + "probability": 0.9083 + }, + { + "start": 52819.78, + "end": 52820.84, + "probability": 0.9969 + }, + { + "start": 52820.84, + "end": 52821.28, + "probability": 0.9582 + }, + { + "start": 52821.36, + "end": 52824.22, + "probability": 0.9451 + }, + { + "start": 52824.46, + "end": 52824.46, + "probability": 0.0173 + }, + { + "start": 52824.46, + "end": 52824.46, + "probability": 0.0502 + }, + { + "start": 52824.46, + "end": 52825.51, + "probability": 0.9477 + }, + { + "start": 52826.24, + "end": 52827.1, + "probability": 0.9702 + }, + { + "start": 52827.76, + "end": 52829.04, + "probability": 0.9976 + }, + { + "start": 52830.38, + "end": 52831.78, + "probability": 0.9861 + }, + { + "start": 52832.34, + "end": 52835.64, + "probability": 0.8231 + }, + { + "start": 52835.8, + "end": 52838.3, + "probability": 0.9883 + }, + { + "start": 52840.32, + "end": 52844.24, + "probability": 0.9493 + }, + { + "start": 52845.24, + "end": 52845.88, + "probability": 0.7496 + }, + { + "start": 52846.86, + "end": 52848.5, + "probability": 0.9983 + }, + { + "start": 52849.44, + "end": 52850.54, + "probability": 0.9298 + }, + { + "start": 52850.92, + "end": 52852.68, + "probability": 0.8102 + }, + { + "start": 52854.72, + "end": 52855.68, + "probability": 0.9915 + }, + { + "start": 52858.04, + "end": 52863.54, + "probability": 0.9967 + }, + { + "start": 52863.62, + "end": 52866.36, + "probability": 0.9978 + }, + { + "start": 52866.36, + "end": 52871.52, + "probability": 0.994 + }, + { + "start": 52872.74, + "end": 52873.74, + "probability": 0.793 + }, + { + "start": 52873.86, + "end": 52874.1, + "probability": 0.8958 + }, + { + "start": 52874.68, + "end": 52875.64, + "probability": 0.83 + }, + { + "start": 52875.66, + "end": 52877.3, + "probability": 0.9796 + }, + { + "start": 52877.36, + "end": 52879.44, + "probability": 0.9404 + }, + { + "start": 52879.44, + "end": 52881.08, + "probability": 0.9119 + }, + { + "start": 52881.62, + "end": 52884.94, + "probability": 0.9681 + }, + { + "start": 52885.83, + "end": 52888.14, + "probability": 0.7813 + }, + { + "start": 52888.22, + "end": 52889.74, + "probability": 0.8169 + }, + { + "start": 52890.68, + "end": 52893.66, + "probability": 0.9967 + }, + { + "start": 52894.22, + "end": 52896.28, + "probability": 0.9891 + }, + { + "start": 52896.54, + "end": 52899.48, + "probability": 0.9794 + }, + { + "start": 52899.48, + "end": 52903.68, + "probability": 0.9808 + }, + { + "start": 52904.4, + "end": 52905.3, + "probability": 0.8726 + }, + { + "start": 52906.16, + "end": 52910.3, + "probability": 0.9626 + }, + { + "start": 52910.3, + "end": 52913.7, + "probability": 0.9979 + }, + { + "start": 52913.84, + "end": 52916.1, + "probability": 0.9882 + }, + { + "start": 52917.84, + "end": 52921.78, + "probability": 0.986 + }, + { + "start": 52925.06, + "end": 52930.58, + "probability": 0.9946 + }, + { + "start": 52930.64, + "end": 52931.64, + "probability": 0.8271 + }, + { + "start": 52932.2, + "end": 52934.9, + "probability": 0.9932 + }, + { + "start": 52935.14, + "end": 52939.86, + "probability": 0.999 + }, + { + "start": 52940.22, + "end": 52941.7, + "probability": 0.627 + }, + { + "start": 52943.0, + "end": 52945.48, + "probability": 0.7187 + }, + { + "start": 52946.16, + "end": 52947.28, + "probability": 0.9593 + }, + { + "start": 52947.74, + "end": 52948.9, + "probability": 0.833 + }, + { + "start": 52949.18, + "end": 52949.18, + "probability": 0.787 + }, + { + "start": 52949.26, + "end": 52949.9, + "probability": 0.7588 + }, + { + "start": 52949.96, + "end": 52952.04, + "probability": 0.7762 + }, + { + "start": 52952.4, + "end": 52956.32, + "probability": 0.9948 + }, + { + "start": 52956.36, + "end": 52957.56, + "probability": 0.9563 + }, + { + "start": 52957.58, + "end": 52959.1, + "probability": 0.9989 + }, + { + "start": 52959.22, + "end": 52965.06, + "probability": 0.9961 + }, + { + "start": 52965.26, + "end": 52967.98, + "probability": 0.9987 + }, + { + "start": 52968.16, + "end": 52969.95, + "probability": 0.9954 + }, + { + "start": 52970.76, + "end": 52975.86, + "probability": 0.8105 + }, + { + "start": 52976.46, + "end": 52979.79, + "probability": 0.7839 + }, + { + "start": 52979.96, + "end": 52980.88, + "probability": 0.4766 + }, + { + "start": 52980.88, + "end": 52981.22, + "probability": 0.0206 + }, + { + "start": 52981.76, + "end": 52983.1, + "probability": 0.6952 + }, + { + "start": 52983.14, + "end": 52985.4, + "probability": 0.8999 + }, + { + "start": 52985.44, + "end": 52989.7, + "probability": 0.9136 + }, + { + "start": 52992.63, + "end": 52994.54, + "probability": 0.7531 + }, + { + "start": 52994.82, + "end": 52996.1, + "probability": 0.8099 + }, + { + "start": 52996.16, + "end": 52996.94, + "probability": 0.7404 + }, + { + "start": 52997.79, + "end": 53003.58, + "probability": 0.5995 + }, + { + "start": 53003.7, + "end": 53004.18, + "probability": 0.7062 + }, + { + "start": 53004.84, + "end": 53008.64, + "probability": 0.9552 + }, + { + "start": 53009.44, + "end": 53009.93, + "probability": 0.9983 + }, + { + "start": 53012.52, + "end": 53012.72, + "probability": 0.5119 + }, + { + "start": 53013.42, + "end": 53015.4, + "probability": 0.7706 + }, + { + "start": 53016.04, + "end": 53017.5, + "probability": 0.9186 + }, + { + "start": 53017.58, + "end": 53018.18, + "probability": 0.7595 + }, + { + "start": 53018.26, + "end": 53019.06, + "probability": 0.6307 + }, + { + "start": 53019.32, + "end": 53022.46, + "probability": 0.9975 + }, + { + "start": 53022.5, + "end": 53022.78, + "probability": 0.9346 + }, + { + "start": 53023.44, + "end": 53025.06, + "probability": 0.9949 + }, + { + "start": 53025.14, + "end": 53026.36, + "probability": 0.9907 + }, + { + "start": 53026.46, + "end": 53027.68, + "probability": 0.5239 + }, + { + "start": 53028.22, + "end": 53030.24, + "probability": 0.9311 + }, + { + "start": 53030.94, + "end": 53032.92, + "probability": 0.7202 + }, + { + "start": 53033.4, + "end": 53034.3, + "probability": 0.9348 + }, + { + "start": 53034.36, + "end": 53035.26, + "probability": 0.9776 + }, + { + "start": 53035.34, + "end": 53036.34, + "probability": 0.8249 + }, + { + "start": 53037.38, + "end": 53041.68, + "probability": 0.9603 + }, + { + "start": 53041.78, + "end": 53042.52, + "probability": 0.978 + }, + { + "start": 53042.64, + "end": 53043.3, + "probability": 0.2647 + }, + { + "start": 53043.56, + "end": 53046.02, + "probability": 0.9927 + }, + { + "start": 53046.18, + "end": 53048.16, + "probability": 0.9917 + }, + { + "start": 53048.24, + "end": 53049.46, + "probability": 0.9952 + }, + { + "start": 53049.54, + "end": 53050.86, + "probability": 0.995 + }, + { + "start": 53050.88, + "end": 53054.98, + "probability": 0.6016 + }, + { + "start": 53055.38, + "end": 53056.06, + "probability": 0.7559 + }, + { + "start": 53056.58, + "end": 53057.36, + "probability": 0.7177 + }, + { + "start": 53057.7, + "end": 53062.8, + "probability": 0.9964 + }, + { + "start": 53063.2, + "end": 53064.9, + "probability": 0.9895 + }, + { + "start": 53065.72, + "end": 53066.74, + "probability": 0.879 + }, + { + "start": 53067.52, + "end": 53068.76, + "probability": 0.9838 + }, + { + "start": 53069.62, + "end": 53070.38, + "probability": 0.8491 + }, + { + "start": 53070.74, + "end": 53072.38, + "probability": 0.8186 + }, + { + "start": 53072.5, + "end": 53077.44, + "probability": 0.8198 + }, + { + "start": 53077.66, + "end": 53079.18, + "probability": 0.5564 + }, + { + "start": 53079.26, + "end": 53079.86, + "probability": 0.7087 + }, + { + "start": 53079.88, + "end": 53080.56, + "probability": 0.6867 + }, + { + "start": 53081.02, + "end": 53082.0, + "probability": 0.5319 + }, + { + "start": 53082.26, + "end": 53083.52, + "probability": 0.9954 + }, + { + "start": 53083.94, + "end": 53086.26, + "probability": 0.783 + }, + { + "start": 53086.84, + "end": 53089.7, + "probability": 0.9217 + }, + { + "start": 53094.34, + "end": 53094.58, + "probability": 0.5121 + }, + { + "start": 53110.46, + "end": 53111.3, + "probability": 0.5387 + }, + { + "start": 53111.94, + "end": 53112.78, + "probability": 0.7481 + }, + { + "start": 53113.54, + "end": 53115.62, + "probability": 0.801 + }, + { + "start": 53116.7, + "end": 53123.44, + "probability": 0.951 + }, + { + "start": 53124.02, + "end": 53126.18, + "probability": 0.9035 + }, + { + "start": 53126.32, + "end": 53126.5, + "probability": 0.7312 + }, + { + "start": 53126.52, + "end": 53131.06, + "probability": 0.7941 + }, + { + "start": 53131.64, + "end": 53137.82, + "probability": 0.9722 + }, + { + "start": 53138.32, + "end": 53144.56, + "probability": 0.9956 + }, + { + "start": 53145.02, + "end": 53146.92, + "probability": 0.9938 + }, + { + "start": 53149.08, + "end": 53151.72, + "probability": 0.4283 + }, + { + "start": 53152.36, + "end": 53152.86, + "probability": 0.8638 + }, + { + "start": 53152.92, + "end": 53157.24, + "probability": 0.9805 + }, + { + "start": 53157.3, + "end": 53160.58, + "probability": 0.8696 + }, + { + "start": 53160.62, + "end": 53166.73, + "probability": 0.9981 + }, + { + "start": 53166.84, + "end": 53167.92, + "probability": 0.596 + }, + { + "start": 53168.3, + "end": 53172.6, + "probability": 0.8711 + }, + { + "start": 53173.16, + "end": 53174.54, + "probability": 0.9977 + }, + { + "start": 53175.14, + "end": 53175.8, + "probability": 0.5629 + }, + { + "start": 53176.2, + "end": 53178.32, + "probability": 0.9131 + }, + { + "start": 53178.5, + "end": 53180.66, + "probability": 0.6223 + }, + { + "start": 53180.8, + "end": 53182.29, + "probability": 0.9951 + }, + { + "start": 53182.84, + "end": 53184.56, + "probability": 0.7226 + }, + { + "start": 53185.36, + "end": 53188.5, + "probability": 0.9937 + }, + { + "start": 53188.64, + "end": 53191.6, + "probability": 0.7986 + }, + { + "start": 53192.18, + "end": 53194.74, + "probability": 0.7924 + }, + { + "start": 53195.48, + "end": 53196.1, + "probability": 0.4646 + }, + { + "start": 53196.31, + "end": 53198.82, + "probability": 0.8842 + }, + { + "start": 53198.92, + "end": 53202.44, + "probability": 0.9883 + }, + { + "start": 53203.0, + "end": 53204.7, + "probability": 0.7227 + }, + { + "start": 53204.94, + "end": 53205.2, + "probability": 0.9367 + }, + { + "start": 53205.28, + "end": 53209.56, + "probability": 0.8772 + }, + { + "start": 53209.7, + "end": 53211.12, + "probability": 0.8033 + }, + { + "start": 53211.22, + "end": 53211.94, + "probability": 0.5433 + }, + { + "start": 53212.76, + "end": 53214.4, + "probability": 0.7309 + }, + { + "start": 53215.86, + "end": 53218.04, + "probability": 0.6923 + }, + { + "start": 53218.42, + "end": 53221.28, + "probability": 0.9724 + }, + { + "start": 53221.38, + "end": 53224.98, + "probability": 0.9785 + }, + { + "start": 53225.0, + "end": 53225.62, + "probability": 0.7428 + }, + { + "start": 53225.66, + "end": 53228.56, + "probability": 0.9784 + }, + { + "start": 53228.56, + "end": 53231.66, + "probability": 0.8402 + }, + { + "start": 53232.28, + "end": 53234.08, + "probability": 0.6873 + }, + { + "start": 53234.84, + "end": 53236.2, + "probability": 0.4659 + }, + { + "start": 53237.24, + "end": 53237.6, + "probability": 0.2183 + }, + { + "start": 53237.66, + "end": 53238.51, + "probability": 0.5115 + }, + { + "start": 53238.9, + "end": 53240.16, + "probability": 0.7003 + }, + { + "start": 53240.18, + "end": 53242.62, + "probability": 0.6385 + }, + { + "start": 53242.84, + "end": 53243.28, + "probability": 0.5196 + }, + { + "start": 53243.88, + "end": 53244.24, + "probability": 0.6355 + }, + { + "start": 53244.42, + "end": 53246.34, + "probability": 0.7441 + }, + { + "start": 53246.8, + "end": 53247.88, + "probability": 0.9785 + }, + { + "start": 53248.54, + "end": 53248.94, + "probability": 0.6376 + }, + { + "start": 53250.16, + "end": 53250.6, + "probability": 0.5735 + }, + { + "start": 53251.12, + "end": 53252.36, + "probability": 0.31 + }, + { + "start": 53252.36, + "end": 53257.02, + "probability": 0.8036 + }, + { + "start": 53257.42, + "end": 53260.0, + "probability": 0.728 + }, + { + "start": 53260.94, + "end": 53263.12, + "probability": 0.9502 + }, + { + "start": 53263.2, + "end": 53264.13, + "probability": 0.916 + }, + { + "start": 53264.72, + "end": 53267.18, + "probability": 0.6041 + }, + { + "start": 53267.28, + "end": 53268.94, + "probability": 0.8965 + }, + { + "start": 53269.16, + "end": 53269.16, + "probability": 0.2913 + }, + { + "start": 53269.74, + "end": 53272.3, + "probability": 0.9009 + }, + { + "start": 53272.6, + "end": 53274.54, + "probability": 0.7671 + }, + { + "start": 53274.74, + "end": 53275.78, + "probability": 0.9519 + }, + { + "start": 53275.98, + "end": 53277.92, + "probability": 0.6668 + }, + { + "start": 53278.42, + "end": 53279.04, + "probability": 0.5944 + }, + { + "start": 53279.52, + "end": 53282.58, + "probability": 0.7894 + }, + { + "start": 53282.72, + "end": 53284.26, + "probability": 0.8655 + }, + { + "start": 53284.36, + "end": 53285.98, + "probability": 0.8782 + }, + { + "start": 53286.04, + "end": 53289.2, + "probability": 0.9766 + }, + { + "start": 53289.56, + "end": 53290.72, + "probability": 0.8843 + }, + { + "start": 53291.18, + "end": 53293.06, + "probability": 0.9512 + }, + { + "start": 53293.1, + "end": 53294.44, + "probability": 0.9629 + }, + { + "start": 53295.9, + "end": 53300.1, + "probability": 0.6717 + }, + { + "start": 53300.66, + "end": 53301.94, + "probability": 0.648 + }, + { + "start": 53302.5, + "end": 53304.4, + "probability": 0.7174 + }, + { + "start": 53304.96, + "end": 53306.38, + "probability": 0.7796 + }, + { + "start": 53307.12, + "end": 53307.78, + "probability": 0.6222 + }, + { + "start": 53307.98, + "end": 53309.68, + "probability": 0.8618 + }, + { + "start": 53309.88, + "end": 53310.86, + "probability": 0.988 + }, + { + "start": 53310.96, + "end": 53311.45, + "probability": 0.8359 + }, + { + "start": 53312.22, + "end": 53312.54, + "probability": 0.7614 + }, + { + "start": 53312.62, + "end": 53312.78, + "probability": 0.9793 + }, + { + "start": 53312.84, + "end": 53314.82, + "probability": 0.7649 + }, + { + "start": 53315.34, + "end": 53318.42, + "probability": 0.8373 + }, + { + "start": 53319.16, + "end": 53320.24, + "probability": 0.9961 + }, + { + "start": 53320.42, + "end": 53322.14, + "probability": 0.7844 + }, + { + "start": 53322.72, + "end": 53323.54, + "probability": 0.7021 + }, + { + "start": 53323.62, + "end": 53324.52, + "probability": 0.5307 + }, + { + "start": 53324.98, + "end": 53328.7, + "probability": 0.9854 + }, + { + "start": 53328.82, + "end": 53332.94, + "probability": 0.8564 + }, + { + "start": 53332.96, + "end": 53334.1, + "probability": 0.8021 + }, + { + "start": 53334.28, + "end": 53334.94, + "probability": 0.8649 + }, + { + "start": 53335.48, + "end": 53336.34, + "probability": 0.6016 + }, + { + "start": 53336.52, + "end": 53339.82, + "probability": 0.9126 + }, + { + "start": 53340.06, + "end": 53342.3, + "probability": 0.9457 + }, + { + "start": 53342.46, + "end": 53344.72, + "probability": 0.9819 + }, + { + "start": 53345.4, + "end": 53347.5, + "probability": 0.9982 + }, + { + "start": 53347.5, + "end": 53351.46, + "probability": 0.9262 + }, + { + "start": 53351.6, + "end": 53352.58, + "probability": 0.8385 + }, + { + "start": 53352.64, + "end": 53355.34, + "probability": 0.7517 + }, + { + "start": 53355.46, + "end": 53357.68, + "probability": 0.9956 + }, + { + "start": 53358.7, + "end": 53359.44, + "probability": 0.3365 + }, + { + "start": 53359.54, + "end": 53360.98, + "probability": 0.8921 + }, + { + "start": 53361.6, + "end": 53363.07, + "probability": 0.9921 + }, + { + "start": 53363.2, + "end": 53363.79, + "probability": 0.9956 + }, + { + "start": 53364.12, + "end": 53364.8, + "probability": 0.9988 + }, + { + "start": 53367.17, + "end": 53371.16, + "probability": 0.7868 + }, + { + "start": 53371.34, + "end": 53374.04, + "probability": 0.9387 + }, + { + "start": 53375.32, + "end": 53376.7, + "probability": 0.5219 + }, + { + "start": 53377.34, + "end": 53380.18, + "probability": 0.7525 + }, + { + "start": 53380.76, + "end": 53382.53, + "probability": 0.4776 + }, + { + "start": 53382.8, + "end": 53386.58, + "probability": 0.98 + }, + { + "start": 53386.62, + "end": 53387.4, + "probability": 0.5461 + }, + { + "start": 53387.56, + "end": 53388.2, + "probability": 0.5192 + }, + { + "start": 53388.3, + "end": 53389.88, + "probability": 0.9822 + }, + { + "start": 53390.72, + "end": 53392.4, + "probability": 0.8034 + }, + { + "start": 53393.36, + "end": 53395.34, + "probability": 0.9967 + }, + { + "start": 53395.36, + "end": 53397.86, + "probability": 0.6829 + }, + { + "start": 53397.96, + "end": 53398.54, + "probability": 0.7351 + }, + { + "start": 53398.56, + "end": 53399.16, + "probability": 0.9198 + }, + { + "start": 53399.56, + "end": 53403.86, + "probability": 0.9534 + }, + { + "start": 53405.0, + "end": 53406.39, + "probability": 0.9852 + }, + { + "start": 53407.08, + "end": 53408.64, + "probability": 0.6768 + }, + { + "start": 53409.02, + "end": 53410.36, + "probability": 0.9006 + }, + { + "start": 53410.52, + "end": 53412.66, + "probability": 0.922 + }, + { + "start": 53412.9, + "end": 53414.32, + "probability": 0.9975 + }, + { + "start": 53415.16, + "end": 53415.86, + "probability": 0.9521 + }, + { + "start": 53416.87, + "end": 53418.61, + "probability": 0.8594 + }, + { + "start": 53419.8, + "end": 53420.14, + "probability": 0.511 + }, + { + "start": 53420.18, + "end": 53421.8, + "probability": 0.3818 + }, + { + "start": 53422.9, + "end": 53425.92, + "probability": 0.98 + }, + { + "start": 53427.14, + "end": 53429.78, + "probability": 0.7935 + }, + { + "start": 53431.48, + "end": 53436.9, + "probability": 0.9617 + }, + { + "start": 53436.98, + "end": 53437.32, + "probability": 0.932 + }, + { + "start": 53438.24, + "end": 53439.0, + "probability": 0.7267 + }, + { + "start": 53439.3, + "end": 53441.46, + "probability": 0.6201 + }, + { + "start": 53441.5, + "end": 53444.7, + "probability": 0.5564 + }, + { + "start": 53444.84, + "end": 53446.08, + "probability": 0.6723 + }, + { + "start": 53446.18, + "end": 53447.89, + "probability": 0.6301 + }, + { + "start": 53448.92, + "end": 53450.69, + "probability": 0.9067 + }, + { + "start": 53451.24, + "end": 53452.82, + "probability": 0.6169 + }, + { + "start": 53453.48, + "end": 53455.4, + "probability": 0.0288 + }, + { + "start": 53455.58, + "end": 53456.7, + "probability": 0.8444 + }, + { + "start": 53456.84, + "end": 53458.04, + "probability": 0.7395 + }, + { + "start": 53459.38, + "end": 53460.86, + "probability": 0.9972 + }, + { + "start": 53460.86, + "end": 53461.64, + "probability": 0.9528 + }, + { + "start": 53461.72, + "end": 53462.72, + "probability": 0.7642 + }, + { + "start": 53462.76, + "end": 53464.6, + "probability": 0.9724 + }, + { + "start": 53464.72, + "end": 53466.8, + "probability": 0.4761 + }, + { + "start": 53467.4, + "end": 53469.52, + "probability": 0.8907 + }, + { + "start": 53470.04, + "end": 53470.24, + "probability": 0.0347 + }, + { + "start": 53470.24, + "end": 53470.6, + "probability": 0.4758 + }, + { + "start": 53470.74, + "end": 53470.9, + "probability": 0.8125 + }, + { + "start": 53471.02, + "end": 53473.26, + "probability": 0.6247 + }, + { + "start": 53473.86, + "end": 53474.86, + "probability": 0.9254 + }, + { + "start": 53475.64, + "end": 53478.34, + "probability": 0.6711 + }, + { + "start": 53479.74, + "end": 53481.17, + "probability": 0.819 + }, + { + "start": 53482.48, + "end": 53483.76, + "probability": 0.9971 + }, + { + "start": 53484.58, + "end": 53484.9, + "probability": 0.3183 + }, + { + "start": 53485.42, + "end": 53485.7, + "probability": 0.0862 + }, + { + "start": 53485.96, + "end": 53488.76, + "probability": 0.9791 + }, + { + "start": 53489.28, + "end": 53493.04, + "probability": 0.6792 + }, + { + "start": 53493.22, + "end": 53496.66, + "probability": 0.6593 + }, + { + "start": 53496.66, + "end": 53497.0, + "probability": 0.2805 + }, + { + "start": 53497.54, + "end": 53498.4, + "probability": 0.9455 + }, + { + "start": 53499.34, + "end": 53500.6, + "probability": 0.9453 + }, + { + "start": 53501.16, + "end": 53502.06, + "probability": 0.9731 + }, + { + "start": 53503.64, + "end": 53507.6, + "probability": 0.8398 + }, + { + "start": 53507.7, + "end": 53509.06, + "probability": 0.9472 + }, + { + "start": 53509.54, + "end": 53511.18, + "probability": 0.6284 + }, + { + "start": 53511.18, + "end": 53511.71, + "probability": 0.3311 + }, + { + "start": 53512.52, + "end": 53512.96, + "probability": 0.6523 + }, + { + "start": 53513.88, + "end": 53517.2, + "probability": 0.8491 + }, + { + "start": 53517.24, + "end": 53518.22, + "probability": 0.6492 + }, + { + "start": 53520.04, + "end": 53521.36, + "probability": 0.4519 + }, + { + "start": 53521.62, + "end": 53521.62, + "probability": 0.0536 + }, + { + "start": 53521.62, + "end": 53522.5, + "probability": 0.4989 + }, + { + "start": 53523.32, + "end": 53528.66, + "probability": 0.8651 + }, + { + "start": 53529.76, + "end": 53530.49, + "probability": 0.7117 + }, + { + "start": 53531.26, + "end": 53533.9, + "probability": 0.5185 + }, + { + "start": 53535.18, + "end": 53535.78, + "probability": 0.832 + }, + { + "start": 53536.06, + "end": 53538.16, + "probability": 0.488 + }, + { + "start": 53538.8, + "end": 53541.7, + "probability": 0.9739 + }, + { + "start": 53543.42, + "end": 53547.62, + "probability": 0.9729 + }, + { + "start": 53547.62, + "end": 53550.36, + "probability": 0.8099 + }, + { + "start": 53550.44, + "end": 53551.22, + "probability": 0.6114 + }, + { + "start": 53553.2, + "end": 53554.72, + "probability": 0.3212 + }, + { + "start": 53554.86, + "end": 53555.78, + "probability": 0.437 + }, + { + "start": 53555.92, + "end": 53557.12, + "probability": 0.9283 + }, + { + "start": 53557.22, + "end": 53558.14, + "probability": 0.7705 + }, + { + "start": 53558.76, + "end": 53561.08, + "probability": 0.6946 + }, + { + "start": 53561.24, + "end": 53562.98, + "probability": 0.9387 + }, + { + "start": 53563.94, + "end": 53565.66, + "probability": 0.8477 + }, + { + "start": 53565.72, + "end": 53567.62, + "probability": 0.5448 + }, + { + "start": 53568.24, + "end": 53569.58, + "probability": 0.6751 + }, + { + "start": 53570.28, + "end": 53572.48, + "probability": 0.7512 + }, + { + "start": 53572.48, + "end": 53574.52, + "probability": 0.8081 + }, + { + "start": 53574.58, + "end": 53575.14, + "probability": 0.8583 + }, + { + "start": 53575.2, + "end": 53575.2, + "probability": 0.3089 + }, + { + "start": 53575.26, + "end": 53575.96, + "probability": 0.8933 + }, + { + "start": 53576.22, + "end": 53576.46, + "probability": 0.4972 + }, + { + "start": 53576.8, + "end": 53577.65, + "probability": 0.913 + }, + { + "start": 53577.82, + "end": 53580.18, + "probability": 0.9725 + }, + { + "start": 53580.98, + "end": 53585.48, + "probability": 0.9788 + }, + { + "start": 53586.22, + "end": 53588.62, + "probability": 0.8741 + }, + { + "start": 53589.58, + "end": 53594.12, + "probability": 0.976 + }, + { + "start": 53595.86, + "end": 53596.74, + "probability": 0.8186 + }, + { + "start": 53596.98, + "end": 53598.76, + "probability": 0.9072 + }, + { + "start": 53599.04, + "end": 53599.92, + "probability": 0.6453 + }, + { + "start": 53600.4, + "end": 53602.14, + "probability": 0.9097 + }, + { + "start": 53604.71, + "end": 53607.12, + "probability": 0.6667 + }, + { + "start": 53609.06, + "end": 53612.34, + "probability": 0.7244 + }, + { + "start": 53614.1, + "end": 53614.54, + "probability": 0.3458 + }, + { + "start": 53615.12, + "end": 53618.66, + "probability": 0.6362 + }, + { + "start": 53619.04, + "end": 53619.8, + "probability": 0.8331 + }, + { + "start": 53620.36, + "end": 53621.46, + "probability": 0.8165 + }, + { + "start": 53621.98, + "end": 53625.16, + "probability": 0.805 + }, + { + "start": 53625.3, + "end": 53626.56, + "probability": 0.6997 + }, + { + "start": 53626.56, + "end": 53630.18, + "probability": 0.9821 + }, + { + "start": 53631.58, + "end": 53633.7, + "probability": 0.9734 + }, + { + "start": 53634.16, + "end": 53635.96, + "probability": 0.7762 + }, + { + "start": 53636.9, + "end": 53637.66, + "probability": 0.5187 + }, + { + "start": 53637.9, + "end": 53639.28, + "probability": 0.8271 + }, + { + "start": 53640.4, + "end": 53642.1, + "probability": 0.8538 + }, + { + "start": 53642.32, + "end": 53643.26, + "probability": 0.9091 + }, + { + "start": 53643.26, + "end": 53643.6, + "probability": 0.5574 + }, + { + "start": 53643.82, + "end": 53647.12, + "probability": 0.7693 + }, + { + "start": 53647.24, + "end": 53648.44, + "probability": 0.6458 + }, + { + "start": 53648.96, + "end": 53649.24, + "probability": 0.7583 + }, + { + "start": 53649.54, + "end": 53649.96, + "probability": 0.9215 + }, + { + "start": 53650.66, + "end": 53652.24, + "probability": 0.9374 + }, + { + "start": 53652.26, + "end": 53653.3, + "probability": 0.9434 + }, + { + "start": 53653.76, + "end": 53654.88, + "probability": 0.9424 + }, + { + "start": 53656.6, + "end": 53659.16, + "probability": 0.9724 + }, + { + "start": 53659.82, + "end": 53663.0, + "probability": 0.8253 + }, + { + "start": 53664.48, + "end": 53664.93, + "probability": 0.481 + }, + { + "start": 53665.5, + "end": 53665.6, + "probability": 0.2704 + }, + { + "start": 53665.82, + "end": 53669.44, + "probability": 0.9583 + }, + { + "start": 53669.98, + "end": 53671.48, + "probability": 0.9342 + }, + { + "start": 53671.6, + "end": 53673.68, + "probability": 0.9518 + }, + { + "start": 53674.6, + "end": 53675.21, + "probability": 0.9556 + }, + { + "start": 53676.36, + "end": 53679.18, + "probability": 0.9656 + }, + { + "start": 53680.02, + "end": 53681.86, + "probability": 0.9847 + }, + { + "start": 53682.68, + "end": 53685.72, + "probability": 0.9313 + }, + { + "start": 53686.32, + "end": 53687.36, + "probability": 0.9814 + }, + { + "start": 53687.44, + "end": 53690.64, + "probability": 0.8304 + }, + { + "start": 53690.84, + "end": 53692.52, + "probability": 0.9442 + }, + { + "start": 53693.46, + "end": 53693.84, + "probability": 0.9193 + }, + { + "start": 53693.84, + "end": 53699.02, + "probability": 0.7838 + }, + { + "start": 53699.58, + "end": 53699.78, + "probability": 0.5415 + }, + { + "start": 53699.9, + "end": 53703.22, + "probability": 0.8184 + }, + { + "start": 53703.52, + "end": 53703.78, + "probability": 0.522 + }, + { + "start": 53706.64, + "end": 53708.99, + "probability": 0.8129 + }, + { + "start": 53709.94, + "end": 53714.29, + "probability": 0.99 + }, + { + "start": 53714.8, + "end": 53715.64, + "probability": 0.6539 + }, + { + "start": 53715.68, + "end": 53716.68, + "probability": 0.5417 + }, + { + "start": 53717.5, + "end": 53718.46, + "probability": 0.9851 + }, + { + "start": 53719.76, + "end": 53720.08, + "probability": 0.9674 + }, + { + "start": 53720.28, + "end": 53721.52, + "probability": 0.882 + }, + { + "start": 53721.64, + "end": 53724.32, + "probability": 0.7352 + }, + { + "start": 53724.42, + "end": 53725.66, + "probability": 0.805 + }, + { + "start": 53726.3, + "end": 53732.04, + "probability": 0.5222 + }, + { + "start": 53732.2, + "end": 53733.32, + "probability": 0.6125 + }, + { + "start": 53733.4, + "end": 53733.82, + "probability": 0.4107 + }, + { + "start": 53733.9, + "end": 53734.16, + "probability": 0.4133 + }, + { + "start": 53734.36, + "end": 53735.88, + "probability": 0.8307 + }, + { + "start": 53735.92, + "end": 53737.92, + "probability": 0.9888 + }, + { + "start": 53738.5, + "end": 53741.4, + "probability": 0.9681 + }, + { + "start": 53741.68, + "end": 53744.36, + "probability": 0.8391 + }, + { + "start": 53746.02, + "end": 53747.98, + "probability": 0.9792 + }, + { + "start": 53748.14, + "end": 53749.18, + "probability": 0.7583 + }, + { + "start": 53749.22, + "end": 53750.32, + "probability": 0.7313 + }, + { + "start": 53750.72, + "end": 53751.28, + "probability": 0.4407 + }, + { + "start": 53752.26, + "end": 53753.38, + "probability": 0.108 + }, + { + "start": 53753.38, + "end": 53753.84, + "probability": 0.3235 + }, + { + "start": 53754.18, + "end": 53754.22, + "probability": 0.302 + }, + { + "start": 53754.28, + "end": 53755.04, + "probability": 0.5602 + }, + { + "start": 53755.72, + "end": 53756.32, + "probability": 0.7089 + }, + { + "start": 53758.0, + "end": 53760.46, + "probability": 0.9891 + }, + { + "start": 53760.54, + "end": 53761.62, + "probability": 0.6663 + }, + { + "start": 53762.36, + "end": 53763.04, + "probability": 0.8683 + }, + { + "start": 53763.16, + "end": 53764.58, + "probability": 0.7251 + }, + { + "start": 53764.72, + "end": 53765.82, + "probability": 0.8705 + }, + { + "start": 53766.34, + "end": 53769.52, + "probability": 0.9841 + }, + { + "start": 53770.94, + "end": 53772.64, + "probability": 0.978 + }, + { + "start": 53773.32, + "end": 53775.12, + "probability": 0.9862 + }, + { + "start": 53776.7, + "end": 53779.76, + "probability": 0.9738 + }, + { + "start": 53780.36, + "end": 53781.06, + "probability": 0.9236 + }, + { + "start": 53781.9, + "end": 53782.39, + "probability": 0.9676 + }, + { + "start": 53783.18, + "end": 53784.4, + "probability": 0.983 + }, + { + "start": 53784.88, + "end": 53785.94, + "probability": 0.8905 + }, + { + "start": 53786.3, + "end": 53789.28, + "probability": 0.7122 + }, + { + "start": 53789.28, + "end": 53791.09, + "probability": 0.6296 + }, + { + "start": 53792.14, + "end": 53792.93, + "probability": 0.9653 + }, + { + "start": 53793.34, + "end": 53794.34, + "probability": 0.9667 + }, + { + "start": 53794.52, + "end": 53795.02, + "probability": 0.5443 + }, + { + "start": 53795.08, + "end": 53798.76, + "probability": 0.9603 + }, + { + "start": 53799.28, + "end": 53801.96, + "probability": 0.9778 + }, + { + "start": 53802.52, + "end": 53802.88, + "probability": 0.8933 + }, + { + "start": 53802.88, + "end": 53808.18, + "probability": 0.9959 + }, + { + "start": 53808.7, + "end": 53808.72, + "probability": 0.3301 + }, + { + "start": 53808.72, + "end": 53808.72, + "probability": 0.0286 + }, + { + "start": 53808.72, + "end": 53811.14, + "probability": 0.983 + }, + { + "start": 53811.54, + "end": 53812.16, + "probability": 0.6673 + }, + { + "start": 53812.18, + "end": 53814.82, + "probability": 0.9893 + }, + { + "start": 53815.5, + "end": 53818.8, + "probability": 0.9731 + }, + { + "start": 53818.8, + "end": 53822.96, + "probability": 0.9337 + }, + { + "start": 53824.44, + "end": 53825.85, + "probability": 0.0444 + }, + { + "start": 53826.44, + "end": 53827.64, + "probability": 0.1023 + }, + { + "start": 53827.72, + "end": 53827.8, + "probability": 0.4305 + }, + { + "start": 53827.8, + "end": 53830.14, + "probability": 0.9693 + }, + { + "start": 53830.83, + "end": 53832.8, + "probability": 0.8591 + }, + { + "start": 53832.86, + "end": 53834.16, + "probability": 0.6357 + }, + { + "start": 53835.0, + "end": 53836.86, + "probability": 0.9933 + }, + { + "start": 53836.86, + "end": 53840.57, + "probability": 0.9695 + }, + { + "start": 53840.74, + "end": 53842.22, + "probability": 0.9204 + }, + { + "start": 53842.32, + "end": 53842.93, + "probability": 0.8786 + }, + { + "start": 53843.52, + "end": 53844.88, + "probability": 0.5979 + }, + { + "start": 53845.94, + "end": 53846.2, + "probability": 0.8628 + }, + { + "start": 53846.26, + "end": 53847.58, + "probability": 0.9791 + }, + { + "start": 53848.02, + "end": 53852.52, + "probability": 0.949 + }, + { + "start": 53853.9, + "end": 53856.34, + "probability": 0.4105 + }, + { + "start": 53856.38, + "end": 53857.96, + "probability": 0.9568 + }, + { + "start": 53859.28, + "end": 53860.27, + "probability": 0.6668 + }, + { + "start": 53860.4, + "end": 53861.98, + "probability": 0.6772 + }, + { + "start": 53862.6, + "end": 53868.04, + "probability": 0.9673 + }, + { + "start": 53868.82, + "end": 53871.08, + "probability": 0.9118 + }, + { + "start": 53872.34, + "end": 53874.12, + "probability": 0.9297 + }, + { + "start": 53874.64, + "end": 53878.26, + "probability": 0.7965 + }, + { + "start": 53878.64, + "end": 53879.2, + "probability": 0.5135 + }, + { + "start": 53879.52, + "end": 53880.3, + "probability": 0.6149 + }, + { + "start": 53880.38, + "end": 53882.82, + "probability": 0.7535 + }, + { + "start": 53883.18, + "end": 53884.34, + "probability": 0.7717 + }, + { + "start": 53884.94, + "end": 53885.28, + "probability": 0.9151 + }, + { + "start": 53886.2, + "end": 53887.32, + "probability": 0.9646 + }, + { + "start": 53887.42, + "end": 53888.19, + "probability": 0.9951 + }, + { + "start": 53888.4, + "end": 53889.52, + "probability": 0.9881 + }, + { + "start": 53890.58, + "end": 53893.1, + "probability": 0.9981 + }, + { + "start": 53893.18, + "end": 53894.38, + "probability": 0.7756 + }, + { + "start": 53894.5, + "end": 53894.66, + "probability": 0.3097 + }, + { + "start": 53894.68, + "end": 53895.84, + "probability": 0.9764 + }, + { + "start": 53895.9, + "end": 53896.52, + "probability": 0.6108 + }, + { + "start": 53897.3, + "end": 53898.2, + "probability": 0.9301 + }, + { + "start": 53898.44, + "end": 53899.52, + "probability": 0.5943 + }, + { + "start": 53899.76, + "end": 53900.6, + "probability": 0.7949 + }, + { + "start": 53901.42, + "end": 53901.72, + "probability": 0.0032 + }, + { + "start": 53901.72, + "end": 53903.2, + "probability": 0.9685 + }, + { + "start": 53903.68, + "end": 53905.0, + "probability": 0.7719 + }, + { + "start": 53905.42, + "end": 53906.84, + "probability": 0.9631 + }, + { + "start": 53906.92, + "end": 53907.95, + "probability": 0.99 + }, + { + "start": 53908.22, + "end": 53909.69, + "probability": 0.7817 + }, + { + "start": 53910.36, + "end": 53913.4, + "probability": 0.9395 + }, + { + "start": 53913.4, + "end": 53916.4, + "probability": 0.979 + }, + { + "start": 53916.94, + "end": 53918.62, + "probability": 0.9785 + }, + { + "start": 53919.22, + "end": 53919.44, + "probability": 0.9878 + }, + { + "start": 53919.96, + "end": 53921.16, + "probability": 0.9988 + }, + { + "start": 53921.94, + "end": 53924.48, + "probability": 0.9564 + }, + { + "start": 53925.12, + "end": 53925.6, + "probability": 0.6797 + }, + { + "start": 53925.68, + "end": 53926.0, + "probability": 0.8146 + }, + { + "start": 53926.14, + "end": 53927.8, + "probability": 0.9596 + }, + { + "start": 53927.9, + "end": 53928.64, + "probability": 0.0227 + }, + { + "start": 53929.14, + "end": 53929.78, + "probability": 0.9788 + }, + { + "start": 53929.9, + "end": 53933.5, + "probability": 0.9665 + }, + { + "start": 53933.52, + "end": 53933.8, + "probability": 0.6483 + }, + { + "start": 53933.86, + "end": 53934.34, + "probability": 0.7977 + }, + { + "start": 53934.7, + "end": 53937.1, + "probability": 0.9686 + }, + { + "start": 53937.7, + "end": 53938.62, + "probability": 0.9907 + }, + { + "start": 53939.3, + "end": 53941.26, + "probability": 0.9878 + }, + { + "start": 53941.92, + "end": 53944.42, + "probability": 0.9435 + }, + { + "start": 53944.52, + "end": 53946.56, + "probability": 0.774 + }, + { + "start": 53947.0, + "end": 53947.94, + "probability": 0.8374 + }, + { + "start": 53948.02, + "end": 53948.98, + "probability": 0.9824 + }, + { + "start": 53949.32, + "end": 53951.44, + "probability": 0.9927 + }, + { + "start": 53952.92, + "end": 53953.46, + "probability": 0.948 + }, + { + "start": 53954.04, + "end": 53956.2, + "probability": 0.9429 + }, + { + "start": 53956.7, + "end": 53958.94, + "probability": 0.8047 + }, + { + "start": 53959.66, + "end": 53960.72, + "probability": 0.4511 + }, + { + "start": 53961.66, + "end": 53965.56, + "probability": 0.8878 + }, + { + "start": 53966.08, + "end": 53967.04, + "probability": 0.9108 + }, + { + "start": 53967.96, + "end": 53968.24, + "probability": 0.9092 + }, + { + "start": 53968.7, + "end": 53971.18, + "probability": 0.992 + }, + { + "start": 53971.5, + "end": 53972.12, + "probability": 0.7969 + }, + { + "start": 53972.82, + "end": 53977.16, + "probability": 0.992 + }, + { + "start": 53978.04, + "end": 53978.7, + "probability": 0.7896 + }, + { + "start": 53979.12, + "end": 53980.98, + "probability": 0.8632 + }, + { + "start": 53982.26, + "end": 53985.22, + "probability": 0.9704 + }, + { + "start": 53985.52, + "end": 53988.48, + "probability": 0.9603 + }, + { + "start": 53989.44, + "end": 53991.82, + "probability": 0.9082 + }, + { + "start": 53991.82, + "end": 53993.62, + "probability": 0.4769 + }, + { + "start": 53993.78, + "end": 53994.06, + "probability": 0.9567 + }, + { + "start": 53994.72, + "end": 53999.74, + "probability": 0.9795 + }, + { + "start": 54000.72, + "end": 54001.75, + "probability": 0.9756 + }, + { + "start": 54002.68, + "end": 54004.76, + "probability": 0.6736 + }, + { + "start": 54005.42, + "end": 54007.48, + "probability": 0.8334 + }, + { + "start": 54009.11, + "end": 54012.82, + "probability": 0.9832 + }, + { + "start": 54013.76, + "end": 54014.84, + "probability": 0.6809 + }, + { + "start": 54014.92, + "end": 54018.5, + "probability": 0.7389 + }, + { + "start": 54020.18, + "end": 54023.68, + "probability": 0.7277 + }, + { + "start": 54024.78, + "end": 54028.36, + "probability": 0.9905 + }, + { + "start": 54028.72, + "end": 54028.72, + "probability": 0.055 + }, + { + "start": 54028.72, + "end": 54028.98, + "probability": 0.2326 + }, + { + "start": 54029.14, + "end": 54029.66, + "probability": 0.5797 + }, + { + "start": 54029.82, + "end": 54030.78, + "probability": 0.7581 + }, + { + "start": 54031.66, + "end": 54034.48, + "probability": 0.9956 + }, + { + "start": 54035.28, + "end": 54037.04, + "probability": 0.9946 + }, + { + "start": 54037.1, + "end": 54038.64, + "probability": 0.947 + }, + { + "start": 54038.72, + "end": 54039.14, + "probability": 0.5654 + }, + { + "start": 54039.44, + "end": 54041.54, + "probability": 0.9934 + }, + { + "start": 54041.66, + "end": 54042.8, + "probability": 0.9702 + }, + { + "start": 54042.86, + "end": 54044.02, + "probability": 0.4864 + }, + { + "start": 54044.1, + "end": 54046.38, + "probability": 0.7745 + }, + { + "start": 54047.1, + "end": 54048.32, + "probability": 0.9081 + }, + { + "start": 54048.82, + "end": 54049.44, + "probability": 0.5648 + }, + { + "start": 54049.7, + "end": 54052.3, + "probability": 0.8282 + }, + { + "start": 54052.76, + "end": 54056.18, + "probability": 0.9661 + }, + { + "start": 54056.6, + "end": 54057.47, + "probability": 0.7713 + }, + { + "start": 54057.98, + "end": 54059.18, + "probability": 0.9879 + }, + { + "start": 54060.14, + "end": 54061.1, + "probability": 0.9746 + }, + { + "start": 54061.82, + "end": 54062.12, + "probability": 0.9475 + }, + { + "start": 54062.46, + "end": 54062.92, + "probability": 0.2436 + }, + { + "start": 54063.62, + "end": 54065.44, + "probability": 0.5735 + }, + { + "start": 54065.94, + "end": 54069.24, + "probability": 0.8591 + }, + { + "start": 54069.36, + "end": 54072.86, + "probability": 0.9886 + }, + { + "start": 54073.0, + "end": 54075.68, + "probability": 0.7295 + }, + { + "start": 54075.98, + "end": 54077.44, + "probability": 0.9776 + }, + { + "start": 54077.52, + "end": 54080.8, + "probability": 0.9644 + }, + { + "start": 54082.84, + "end": 54088.16, + "probability": 0.9536 + }, + { + "start": 54089.38, + "end": 54092.44, + "probability": 0.9874 + }, + { + "start": 54092.82, + "end": 54093.9, + "probability": 0.9961 + }, + { + "start": 54095.08, + "end": 54099.32, + "probability": 0.5779 + }, + { + "start": 54100.48, + "end": 54102.7, + "probability": 0.7849 + }, + { + "start": 54103.78, + "end": 54105.6, + "probability": 0.7717 + }, + { + "start": 54106.1, + "end": 54106.72, + "probability": 0.6652 + }, + { + "start": 54107.28, + "end": 54112.32, + "probability": 0.5832 + }, + { + "start": 54112.94, + "end": 54115.08, + "probability": 0.9094 + }, + { + "start": 54116.18, + "end": 54118.34, + "probability": 0.6647 + }, + { + "start": 54118.4, + "end": 54120.1, + "probability": 0.6983 + }, + { + "start": 54120.82, + "end": 54122.4, + "probability": 0.8488 + }, + { + "start": 54123.1, + "end": 54125.62, + "probability": 0.8939 + }, + { + "start": 54126.38, + "end": 54129.9, + "probability": 0.835 + }, + { + "start": 54130.56, + "end": 54132.7, + "probability": 0.9319 + }, + { + "start": 54133.68, + "end": 54137.44, + "probability": 0.9476 + }, + { + "start": 54138.32, + "end": 54140.0, + "probability": 0.8667 + }, + { + "start": 54140.82, + "end": 54142.2, + "probability": 0.9023 + }, + { + "start": 54142.28, + "end": 54142.62, + "probability": 0.3916 + }, + { + "start": 54142.66, + "end": 54145.41, + "probability": 0.98 + }, + { + "start": 54146.16, + "end": 54146.68, + "probability": 0.5503 + }, + { + "start": 54146.7, + "end": 54147.98, + "probability": 0.7449 + }, + { + "start": 54148.1, + "end": 54148.89, + "probability": 0.4412 + }, + { + "start": 54149.04, + "end": 54150.22, + "probability": 0.9863 + }, + { + "start": 54150.46, + "end": 54152.06, + "probability": 0.9693 + }, + { + "start": 54153.2, + "end": 54155.14, + "probability": 0.7195 + }, + { + "start": 54156.54, + "end": 54157.98, + "probability": 0.9928 + }, + { + "start": 54158.28, + "end": 54160.92, + "probability": 0.9759 + }, + { + "start": 54161.32, + "end": 54162.3, + "probability": 0.887 + }, + { + "start": 54162.74, + "end": 54163.14, + "probability": 0.3411 + }, + { + "start": 54163.28, + "end": 54166.0, + "probability": 0.9886 + }, + { + "start": 54166.94, + "end": 54170.0, + "probability": 0.9792 + }, + { + "start": 54171.3, + "end": 54175.78, + "probability": 0.9893 + }, + { + "start": 54175.9, + "end": 54176.98, + "probability": 0.6784 + }, + { + "start": 54177.12, + "end": 54177.5, + "probability": 0.5108 + }, + { + "start": 54178.62, + "end": 54181.64, + "probability": 0.964 + }, + { + "start": 54182.54, + "end": 54183.62, + "probability": 0.9921 + }, + { + "start": 54184.12, + "end": 54185.94, + "probability": 0.9915 + }, + { + "start": 54186.52, + "end": 54190.69, + "probability": 0.9985 + }, + { + "start": 54191.56, + "end": 54193.32, + "probability": 0.8068 + }, + { + "start": 54194.06, + "end": 54196.5, + "probability": 0.9359 + }, + { + "start": 54196.9, + "end": 54197.96, + "probability": 0.9604 + }, + { + "start": 54198.34, + "end": 54198.78, + "probability": 0.9976 + }, + { + "start": 54199.32, + "end": 54200.26, + "probability": 0.7944 + }, + { + "start": 54200.58, + "end": 54202.31, + "probability": 0.9911 + }, + { + "start": 54202.52, + "end": 54204.36, + "probability": 0.3152 + }, + { + "start": 54204.42, + "end": 54204.86, + "probability": 0.6262 + }, + { + "start": 54205.24, + "end": 54209.32, + "probability": 0.9933 + }, + { + "start": 54209.72, + "end": 54213.0, + "probability": 0.8397 + }, + { + "start": 54213.12, + "end": 54213.66, + "probability": 0.4926 + }, + { + "start": 54214.04, + "end": 54214.54, + "probability": 0.777 + }, + { + "start": 54214.68, + "end": 54214.72, + "probability": 0.0698 + }, + { + "start": 54214.72, + "end": 54215.77, + "probability": 0.9819 + }, + { + "start": 54216.22, + "end": 54218.08, + "probability": 0.7527 + }, + { + "start": 54218.62, + "end": 54221.24, + "probability": 0.8542 + }, + { + "start": 54221.3, + "end": 54222.28, + "probability": 0.734 + }, + { + "start": 54222.36, + "end": 54223.54, + "probability": 0.8159 + }, + { + "start": 54224.1, + "end": 54224.42, + "probability": 0.9078 + }, + { + "start": 54224.52, + "end": 54224.9, + "probability": 0.7579 + }, + { + "start": 54225.02, + "end": 54227.68, + "probability": 0.9609 + }, + { + "start": 54227.68, + "end": 54227.89, + "probability": 0.0844 + }, + { + "start": 54228.36, + "end": 54228.88, + "probability": 0.4056 + }, + { + "start": 54228.96, + "end": 54232.14, + "probability": 0.7821 + }, + { + "start": 54232.44, + "end": 54234.36, + "probability": 0.9653 + }, + { + "start": 54234.54, + "end": 54237.02, + "probability": 0.9224 + }, + { + "start": 54237.58, + "end": 54240.26, + "probability": 0.9458 + }, + { + "start": 54241.04, + "end": 54245.68, + "probability": 0.9477 + }, + { + "start": 54246.08, + "end": 54247.02, + "probability": 0.4984 + }, + { + "start": 54247.2, + "end": 54247.97, + "probability": 0.8392 + }, + { + "start": 54248.62, + "end": 54249.34, + "probability": 0.7454 + }, + { + "start": 54249.74, + "end": 54251.54, + "probability": 0.9893 + }, + { + "start": 54251.82, + "end": 54254.26, + "probability": 0.9854 + }, + { + "start": 54254.86, + "end": 54258.98, + "probability": 0.9928 + }, + { + "start": 54259.38, + "end": 54262.76, + "probability": 0.8337 + }, + { + "start": 54263.58, + "end": 54266.52, + "probability": 0.8797 + }, + { + "start": 54266.82, + "end": 54270.48, + "probability": 0.9783 + }, + { + "start": 54271.2, + "end": 54275.62, + "probability": 0.6683 + }, + { + "start": 54275.84, + "end": 54278.7, + "probability": 0.864 + }, + { + "start": 54279.24, + "end": 54279.94, + "probability": 0.6866 + }, + { + "start": 54280.16, + "end": 54281.62, + "probability": 0.8776 + }, + { + "start": 54282.78, + "end": 54284.0, + "probability": 0.9836 + }, + { + "start": 54284.86, + "end": 54287.73, + "probability": 0.756 + }, + { + "start": 54288.0, + "end": 54289.09, + "probability": 0.9855 + }, + { + "start": 54289.86, + "end": 54290.42, + "probability": 0.6706 + }, + { + "start": 54290.94, + "end": 54293.28, + "probability": 0.9119 + }, + { + "start": 54293.74, + "end": 54295.06, + "probability": 0.8718 + }, + { + "start": 54295.52, + "end": 54296.94, + "probability": 0.9858 + }, + { + "start": 54296.96, + "end": 54302.32, + "probability": 0.988 + }, + { + "start": 54302.7, + "end": 54304.02, + "probability": 0.8328 + }, + { + "start": 54304.62, + "end": 54306.56, + "probability": 0.9945 + }, + { + "start": 54307.08, + "end": 54310.32, + "probability": 0.9907 + }, + { + "start": 54310.7, + "end": 54311.64, + "probability": 0.9366 + }, + { + "start": 54312.18, + "end": 54314.94, + "probability": 0.9697 + }, + { + "start": 54315.72, + "end": 54317.94, + "probability": 0.9216 + }, + { + "start": 54318.5, + "end": 54319.9, + "probability": 0.8901 + }, + { + "start": 54320.0, + "end": 54322.63, + "probability": 0.9473 + }, + { + "start": 54323.22, + "end": 54323.92, + "probability": 0.5976 + }, + { + "start": 54323.98, + "end": 54326.04, + "probability": 0.9185 + }, + { + "start": 54326.42, + "end": 54326.78, + "probability": 0.9584 + }, + { + "start": 54327.32, + "end": 54328.78, + "probability": 0.8433 + }, + { + "start": 54328.84, + "end": 54330.86, + "probability": 0.9647 + }, + { + "start": 54351.6, + "end": 54353.21, + "probability": 0.7151 + }, + { + "start": 54354.18, + "end": 54355.02, + "probability": 0.7069 + }, + { + "start": 54355.36, + "end": 54355.46, + "probability": 0.5008 + }, + { + "start": 54355.46, + "end": 54355.74, + "probability": 0.38 + }, + { + "start": 54356.24, + "end": 54358.34, + "probability": 0.7891 + }, + { + "start": 54361.32, + "end": 54362.83, + "probability": 0.9917 + }, + { + "start": 54363.84, + "end": 54365.1, + "probability": 0.9635 + }, + { + "start": 54365.16, + "end": 54367.9, + "probability": 0.9868 + }, + { + "start": 54368.54, + "end": 54372.48, + "probability": 0.9751 + }, + { + "start": 54374.3, + "end": 54379.69, + "probability": 0.9087 + }, + { + "start": 54380.14, + "end": 54384.76, + "probability": 0.8416 + }, + { + "start": 54386.54, + "end": 54389.46, + "probability": 0.993 + }, + { + "start": 54389.62, + "end": 54389.96, + "probability": 0.28 + }, + { + "start": 54390.1, + "end": 54394.32, + "probability": 0.9893 + }, + { + "start": 54394.46, + "end": 54399.7, + "probability": 0.9855 + }, + { + "start": 54400.34, + "end": 54402.02, + "probability": 0.956 + }, + { + "start": 54402.22, + "end": 54402.92, + "probability": 0.7958 + }, + { + "start": 54403.94, + "end": 54406.2, + "probability": 0.99 + }, + { + "start": 54406.9, + "end": 54408.58, + "probability": 0.6768 + }, + { + "start": 54409.18, + "end": 54411.02, + "probability": 0.8995 + }, + { + "start": 54411.7, + "end": 54412.88, + "probability": 0.9624 + }, + { + "start": 54413.54, + "end": 54414.52, + "probability": 0.5524 + }, + { + "start": 54415.38, + "end": 54418.17, + "probability": 0.8442 + }, + { + "start": 54420.68, + "end": 54421.94, + "probability": 0.6927 + }, + { + "start": 54422.32, + "end": 54425.9, + "probability": 0.9908 + }, + { + "start": 54426.8, + "end": 54429.14, + "probability": 0.9987 + }, + { + "start": 54429.92, + "end": 54431.42, + "probability": 0.9974 + }, + { + "start": 54431.68, + "end": 54434.58, + "probability": 0.8681 + }, + { + "start": 54434.8, + "end": 54435.77, + "probability": 0.9375 + }, + { + "start": 54437.46, + "end": 54441.8, + "probability": 0.9971 + }, + { + "start": 54441.8, + "end": 54444.3, + "probability": 0.9998 + }, + { + "start": 54445.32, + "end": 54445.9, + "probability": 0.8172 + }, + { + "start": 54447.62, + "end": 54450.26, + "probability": 0.4439 + }, + { + "start": 54450.42, + "end": 54451.57, + "probability": 0.9496 + }, + { + "start": 54452.06, + "end": 54452.2, + "probability": 0.9072 + }, + { + "start": 54452.28, + "end": 54452.72, + "probability": 0.825 + }, + { + "start": 54453.16, + "end": 54454.96, + "probability": 0.6661 + }, + { + "start": 54455.74, + "end": 54456.18, + "probability": 0.6254 + }, + { + "start": 54456.26, + "end": 54457.5, + "probability": 0.8647 + }, + { + "start": 54457.62, + "end": 54458.24, + "probability": 0.6309 + }, + { + "start": 54458.52, + "end": 54459.8, + "probability": 0.9937 + }, + { + "start": 54460.06, + "end": 54463.12, + "probability": 0.8254 + }, + { + "start": 54464.13, + "end": 54466.92, + "probability": 0.8677 + }, + { + "start": 54467.48, + "end": 54468.66, + "probability": 0.8396 + }, + { + "start": 54468.95, + "end": 54472.15, + "probability": 0.9336 + }, + { + "start": 54472.78, + "end": 54474.24, + "probability": 0.9922 + }, + { + "start": 54474.32, + "end": 54475.5, + "probability": 0.8738 + }, + { + "start": 54475.58, + "end": 54476.1, + "probability": 0.9282 + }, + { + "start": 54476.96, + "end": 54480.8, + "probability": 0.995 + }, + { + "start": 54482.14, + "end": 54485.92, + "probability": 0.958 + }, + { + "start": 54487.34, + "end": 54488.61, + "probability": 0.8218 + }, + { + "start": 54489.32, + "end": 54495.46, + "probability": 0.7993 + }, + { + "start": 54495.46, + "end": 54496.12, + "probability": 0.5336 + }, + { + "start": 54497.18, + "end": 54498.3, + "probability": 0.8663 + }, + { + "start": 54498.94, + "end": 54502.82, + "probability": 0.9927 + }, + { + "start": 54503.06, + "end": 54504.18, + "probability": 0.9583 + }, + { + "start": 54505.0, + "end": 54506.4, + "probability": 0.9605 + }, + { + "start": 54507.28, + "end": 54512.24, + "probability": 0.9893 + }, + { + "start": 54512.74, + "end": 54514.5, + "probability": 0.9509 + }, + { + "start": 54514.72, + "end": 54517.96, + "probability": 0.981 + }, + { + "start": 54518.54, + "end": 54521.5, + "probability": 0.9976 + }, + { + "start": 54521.78, + "end": 54524.06, + "probability": 0.9861 + }, + { + "start": 54524.9, + "end": 54527.58, + "probability": 0.9896 + }, + { + "start": 54528.58, + "end": 54529.36, + "probability": 0.9822 + }, + { + "start": 54529.88, + "end": 54530.88, + "probability": 0.7849 + }, + { + "start": 54531.52, + "end": 54534.36, + "probability": 0.9847 + }, + { + "start": 54535.78, + "end": 54537.02, + "probability": 0.6466 + }, + { + "start": 54538.62, + "end": 54540.34, + "probability": 0.9902 + }, + { + "start": 54540.72, + "end": 54544.08, + "probability": 0.9976 + }, + { + "start": 54545.06, + "end": 54547.84, + "probability": 0.9991 + }, + { + "start": 54550.72, + "end": 54552.96, + "probability": 0.6534 + }, + { + "start": 54553.64, + "end": 54554.7, + "probability": 0.8317 + }, + { + "start": 54554.7, + "end": 54555.46, + "probability": 0.596 + }, + { + "start": 54556.01, + "end": 54559.34, + "probability": 0.8691 + }, + { + "start": 54560.04, + "end": 54563.02, + "probability": 0.9823 + }, + { + "start": 54564.78, + "end": 54567.92, + "probability": 0.9854 + }, + { + "start": 54568.64, + "end": 54570.78, + "probability": 0.9989 + }, + { + "start": 54571.04, + "end": 54572.28, + "probability": 0.794 + }, + { + "start": 54572.32, + "end": 54575.46, + "probability": 0.977 + }, + { + "start": 54575.56, + "end": 54576.2, + "probability": 0.7995 + }, + { + "start": 54576.3, + "end": 54577.46, + "probability": 0.9801 + }, + { + "start": 54578.5, + "end": 54582.34, + "probability": 0.9915 + }, + { + "start": 54582.54, + "end": 54583.88, + "probability": 0.7043 + }, + { + "start": 54585.12, + "end": 54586.08, + "probability": 0.9897 + }, + { + "start": 54586.28, + "end": 54589.02, + "probability": 0.9915 + }, + { + "start": 54589.76, + "end": 54590.62, + "probability": 0.9526 + }, + { + "start": 54592.82, + "end": 54595.02, + "probability": 0.9978 + }, + { + "start": 54595.58, + "end": 54596.56, + "probability": 0.9211 + }, + { + "start": 54597.14, + "end": 54598.22, + "probability": 0.9008 + }, + { + "start": 54598.42, + "end": 54599.52, + "probability": 0.9976 + }, + { + "start": 54600.36, + "end": 54601.62, + "probability": 0.9888 + }, + { + "start": 54602.66, + "end": 54606.28, + "probability": 0.9893 + }, + { + "start": 54606.64, + "end": 54608.22, + "probability": 0.9857 + }, + { + "start": 54609.02, + "end": 54611.92, + "probability": 0.9906 + }, + { + "start": 54612.94, + "end": 54613.3, + "probability": 0.2915 + }, + { + "start": 54613.8, + "end": 54614.6, + "probability": 0.7996 + }, + { + "start": 54614.68, + "end": 54619.22, + "probability": 0.9112 + }, + { + "start": 54619.26, + "end": 54619.64, + "probability": 0.8468 + }, + { + "start": 54619.66, + "end": 54623.48, + "probability": 0.6387 + }, + { + "start": 54624.2, + "end": 54626.16, + "probability": 0.8866 + }, + { + "start": 54627.32, + "end": 54629.78, + "probability": 0.9963 + }, + { + "start": 54630.58, + "end": 54632.66, + "probability": 0.9331 + }, + { + "start": 54633.54, + "end": 54634.66, + "probability": 0.8943 + }, + { + "start": 54636.96, + "end": 54637.12, + "probability": 0.0636 + }, + { + "start": 54637.12, + "end": 54638.84, + "probability": 0.8699 + }, + { + "start": 54639.44, + "end": 54642.52, + "probability": 0.9902 + }, + { + "start": 54643.58, + "end": 54646.46, + "probability": 0.9058 + }, + { + "start": 54647.02, + "end": 54648.72, + "probability": 0.9722 + }, + { + "start": 54649.18, + "end": 54649.72, + "probability": 0.8214 + }, + { + "start": 54649.98, + "end": 54650.34, + "probability": 0.9545 + }, + { + "start": 54650.46, + "end": 54650.92, + "probability": 0.7554 + }, + { + "start": 54651.8, + "end": 54652.88, + "probability": 0.9976 + }, + { + "start": 54653.68, + "end": 54655.0, + "probability": 0.9966 + }, + { + "start": 54656.14, + "end": 54659.02, + "probability": 0.9863 + }, + { + "start": 54659.68, + "end": 54660.98, + "probability": 0.9967 + }, + { + "start": 54662.72, + "end": 54663.5, + "probability": 0.7413 + }, + { + "start": 54663.5, + "end": 54664.18, + "probability": 0.9297 + }, + { + "start": 54664.46, + "end": 54667.18, + "probability": 0.9574 + }, + { + "start": 54667.96, + "end": 54671.58, + "probability": 0.9923 + }, + { + "start": 54673.26, + "end": 54675.39, + "probability": 0.9958 + }, + { + "start": 54676.22, + "end": 54677.74, + "probability": 0.6984 + }, + { + "start": 54678.26, + "end": 54679.36, + "probability": 0.9895 + }, + { + "start": 54680.72, + "end": 54683.72, + "probability": 0.9971 + }, + { + "start": 54684.3, + "end": 54684.62, + "probability": 0.759 + }, + { + "start": 54684.76, + "end": 54687.38, + "probability": 0.8939 + }, + { + "start": 54688.44, + "end": 54692.42, + "probability": 0.948 + }, + { + "start": 54693.42, + "end": 54694.18, + "probability": 0.7389 + }, + { + "start": 54694.82, + "end": 54699.44, + "probability": 0.9882 + }, + { + "start": 54699.58, + "end": 54700.88, + "probability": 0.8806 + }, + { + "start": 54701.84, + "end": 54704.78, + "probability": 0.9961 + }, + { + "start": 54705.28, + "end": 54708.56, + "probability": 0.9967 + }, + { + "start": 54709.1, + "end": 54710.28, + "probability": 0.9997 + }, + { + "start": 54711.24, + "end": 54714.74, + "probability": 0.9943 + }, + { + "start": 54715.32, + "end": 54716.76, + "probability": 0.8254 + }, + { + "start": 54716.84, + "end": 54719.56, + "probability": 0.9318 + }, + { + "start": 54720.52, + "end": 54722.58, + "probability": 0.998 + }, + { + "start": 54723.12, + "end": 54723.84, + "probability": 0.9648 + }, + { + "start": 54724.96, + "end": 54729.18, + "probability": 0.9842 + }, + { + "start": 54729.8, + "end": 54730.88, + "probability": 0.9502 + }, + { + "start": 54731.24, + "end": 54732.46, + "probability": 0.9645 + }, + { + "start": 54732.9, + "end": 54733.56, + "probability": 0.8516 + }, + { + "start": 54733.62, + "end": 54734.72, + "probability": 0.9859 + }, + { + "start": 54734.88, + "end": 54735.81, + "probability": 0.984 + }, + { + "start": 54736.58, + "end": 54738.4, + "probability": 0.9776 + }, + { + "start": 54739.3, + "end": 54741.42, + "probability": 0.9535 + }, + { + "start": 54741.62, + "end": 54743.08, + "probability": 0.999 + }, + { + "start": 54743.4, + "end": 54747.08, + "probability": 0.9861 + }, + { + "start": 54748.18, + "end": 54749.5, + "probability": 0.9971 + }, + { + "start": 54750.6, + "end": 54751.4, + "probability": 0.8734 + }, + { + "start": 54751.94, + "end": 54752.92, + "probability": 0.9849 + }, + { + "start": 54753.6, + "end": 54755.02, + "probability": 0.968 + }, + { + "start": 54755.94, + "end": 54759.3, + "probability": 0.9642 + }, + { + "start": 54759.3, + "end": 54763.5, + "probability": 0.8647 + }, + { + "start": 54763.5, + "end": 54766.92, + "probability": 0.9976 + }, + { + "start": 54767.38, + "end": 54768.86, + "probability": 0.8984 + }, + { + "start": 54770.78, + "end": 54772.5, + "probability": 0.9979 + }, + { + "start": 54772.82, + "end": 54774.8, + "probability": 0.9469 + }, + { + "start": 54775.22, + "end": 54776.98, + "probability": 0.999 + }, + { + "start": 54777.58, + "end": 54780.96, + "probability": 0.996 + }, + { + "start": 54781.48, + "end": 54782.88, + "probability": 0.9769 + }, + { + "start": 54783.68, + "end": 54784.64, + "probability": 0.9464 + }, + { + "start": 54785.28, + "end": 54785.6, + "probability": 0.9596 + }, + { + "start": 54786.48, + "end": 54787.08, + "probability": 0.9612 + }, + { + "start": 54788.28, + "end": 54791.96, + "probability": 0.9979 + }, + { + "start": 54793.02, + "end": 54796.3, + "probability": 0.9988 + }, + { + "start": 54796.46, + "end": 54797.48, + "probability": 0.6097 + }, + { + "start": 54797.98, + "end": 54800.72, + "probability": 0.9983 + }, + { + "start": 54801.38, + "end": 54805.77, + "probability": 0.8795 + }, + { + "start": 54806.34, + "end": 54807.36, + "probability": 0.906 + }, + { + "start": 54808.0, + "end": 54808.76, + "probability": 0.9928 + }, + { + "start": 54809.92, + "end": 54810.8, + "probability": 0.8872 + }, + { + "start": 54811.54, + "end": 54814.12, + "probability": 0.9568 + }, + { + "start": 54814.36, + "end": 54815.84, + "probability": 0.8692 + }, + { + "start": 54816.28, + "end": 54819.03, + "probability": 0.9543 + }, + { + "start": 54820.96, + "end": 54822.7, + "probability": 0.9029 + }, + { + "start": 54823.3, + "end": 54826.86, + "probability": 0.9977 + }, + { + "start": 54827.92, + "end": 54829.2, + "probability": 0.9681 + }, + { + "start": 54830.36, + "end": 54831.27, + "probability": 0.9878 + }, + { + "start": 54832.54, + "end": 54836.78, + "probability": 0.9984 + }, + { + "start": 54837.42, + "end": 54839.04, + "probability": 0.9465 + }, + { + "start": 54839.14, + "end": 54840.02, + "probability": 0.7583 + }, + { + "start": 54840.1, + "end": 54840.94, + "probability": 0.9914 + }, + { + "start": 54841.58, + "end": 54844.16, + "probability": 0.9973 + }, + { + "start": 54846.5, + "end": 54847.68, + "probability": 0.7466 + }, + { + "start": 54847.9, + "end": 54849.4, + "probability": 0.9962 + }, + { + "start": 54849.5, + "end": 54851.18, + "probability": 0.9858 + }, + { + "start": 54852.74, + "end": 54853.52, + "probability": 0.8772 + }, + { + "start": 54854.04, + "end": 54854.98, + "probability": 0.9885 + }, + { + "start": 54855.28, + "end": 54856.06, + "probability": 0.9883 + }, + { + "start": 54857.96, + "end": 54860.68, + "probability": 0.9981 + }, + { + "start": 54861.32, + "end": 54863.12, + "probability": 0.9604 + }, + { + "start": 54864.92, + "end": 54865.3, + "probability": 0.5638 + }, + { + "start": 54866.4, + "end": 54871.38, + "probability": 0.9908 + }, + { + "start": 54872.62, + "end": 54876.0, + "probability": 0.9949 + }, + { + "start": 54877.1, + "end": 54878.04, + "probability": 0.9766 + }, + { + "start": 54878.08, + "end": 54878.78, + "probability": 0.6575 + }, + { + "start": 54879.0, + "end": 54881.4, + "probability": 0.8716 + }, + { + "start": 54881.4, + "end": 54884.18, + "probability": 0.987 + }, + { + "start": 54885.14, + "end": 54886.74, + "probability": 0.9611 + }, + { + "start": 54887.52, + "end": 54888.62, + "probability": 0.998 + }, + { + "start": 54889.0, + "end": 54891.04, + "probability": 0.9954 + }, + { + "start": 54891.4, + "end": 54892.7, + "probability": 0.9149 + }, + { + "start": 54893.1, + "end": 54893.54, + "probability": 0.8159 + }, + { + "start": 54895.44, + "end": 54899.76, + "probability": 0.998 + }, + { + "start": 54901.98, + "end": 54905.54, + "probability": 0.9574 + }, + { + "start": 54907.14, + "end": 54910.28, + "probability": 0.9913 + }, + { + "start": 54911.48, + "end": 54912.2, + "probability": 0.9952 + }, + { + "start": 54913.26, + "end": 54913.92, + "probability": 0.7103 + }, + { + "start": 54915.02, + "end": 54915.86, + "probability": 0.88 + }, + { + "start": 54916.42, + "end": 54917.98, + "probability": 0.7642 + }, + { + "start": 54918.08, + "end": 54920.24, + "probability": 0.9966 + }, + { + "start": 54920.7, + "end": 54923.18, + "probability": 0.9834 + }, + { + "start": 54923.66, + "end": 54928.16, + "probability": 0.9948 + }, + { + "start": 54928.16, + "end": 54930.36, + "probability": 0.9976 + }, + { + "start": 54931.08, + "end": 54932.56, + "probability": 0.7043 + }, + { + "start": 54933.3, + "end": 54935.02, + "probability": 0.5517 + }, + { + "start": 54935.1, + "end": 54935.76, + "probability": 0.8796 + }, + { + "start": 54936.1, + "end": 54939.48, + "probability": 0.7981 + }, + { + "start": 54939.54, + "end": 54940.66, + "probability": 0.9497 + }, + { + "start": 54940.84, + "end": 54941.74, + "probability": 0.8274 + }, + { + "start": 54942.66, + "end": 54943.72, + "probability": 0.9893 + }, + { + "start": 54944.16, + "end": 54945.89, + "probability": 0.9951 + }, + { + "start": 54946.34, + "end": 54947.22, + "probability": 0.968 + }, + { + "start": 54948.14, + "end": 54950.36, + "probability": 0.9978 + }, + { + "start": 54951.1, + "end": 54952.9, + "probability": 0.8828 + }, + { + "start": 54954.14, + "end": 54955.62, + "probability": 0.8932 + }, + { + "start": 54956.24, + "end": 54957.7, + "probability": 0.9993 + }, + { + "start": 54958.2, + "end": 54958.68, + "probability": 0.8165 + }, + { + "start": 54959.24, + "end": 54960.06, + "probability": 0.8739 + }, + { + "start": 54960.66, + "end": 54961.9, + "probability": 0.986 + }, + { + "start": 54963.26, + "end": 54964.3, + "probability": 0.9837 + }, + { + "start": 54964.62, + "end": 54966.34, + "probability": 0.9932 + }, + { + "start": 54966.86, + "end": 54968.88, + "probability": 0.9956 + }, + { + "start": 54969.84, + "end": 54970.66, + "probability": 0.5227 + }, + { + "start": 54971.4, + "end": 54974.42, + "probability": 0.9882 + }, + { + "start": 54974.84, + "end": 54977.56, + "probability": 0.9966 + }, + { + "start": 54977.84, + "end": 54979.2, + "probability": 0.6833 + }, + { + "start": 54980.56, + "end": 54985.08, + "probability": 0.9695 + }, + { + "start": 54985.08, + "end": 54988.26, + "probability": 0.9746 + }, + { + "start": 54989.14, + "end": 54993.76, + "probability": 0.9867 + }, + { + "start": 54994.22, + "end": 54997.56, + "probability": 0.9966 + }, + { + "start": 54997.56, + "end": 54999.54, + "probability": 0.9939 + }, + { + "start": 55000.16, + "end": 55002.54, + "probability": 0.9961 + }, + { + "start": 55002.62, + "end": 55003.18, + "probability": 0.9373 + }, + { + "start": 55003.54, + "end": 55006.06, + "probability": 0.9782 + }, + { + "start": 55006.5, + "end": 55007.68, + "probability": 0.9891 + }, + { + "start": 55008.4, + "end": 55009.7, + "probability": 0.9965 + }, + { + "start": 55012.12, + "end": 55012.78, + "probability": 0.9747 + }, + { + "start": 55013.4, + "end": 55015.82, + "probability": 0.9027 + }, + { + "start": 55016.7, + "end": 55019.94, + "probability": 0.9127 + }, + { + "start": 55021.28, + "end": 55022.22, + "probability": 0.958 + }, + { + "start": 55022.7, + "end": 55024.56, + "probability": 0.9514 + }, + { + "start": 55025.28, + "end": 55027.58, + "probability": 0.9276 + }, + { + "start": 55028.22, + "end": 55029.4, + "probability": 0.9932 + }, + { + "start": 55030.54, + "end": 55031.46, + "probability": 0.9662 + }, + { + "start": 55032.06, + "end": 55036.78, + "probability": 0.9941 + }, + { + "start": 55037.36, + "end": 55039.48, + "probability": 0.9965 + }, + { + "start": 55040.18, + "end": 55042.27, + "probability": 0.8408 + }, + { + "start": 55043.62, + "end": 55043.96, + "probability": 0.9253 + }, + { + "start": 55045.12, + "end": 55046.2, + "probability": 0.9512 + }, + { + "start": 55047.5, + "end": 55051.08, + "probability": 0.9028 + }, + { + "start": 55051.76, + "end": 55054.02, + "probability": 0.9678 + }, + { + "start": 55054.86, + "end": 55059.0, + "probability": 0.8165 + }, + { + "start": 55059.14, + "end": 55060.8, + "probability": 0.9868 + }, + { + "start": 55060.96, + "end": 55062.62, + "probability": 0.9985 + }, + { + "start": 55063.62, + "end": 55065.38, + "probability": 0.9562 + }, + { + "start": 55065.92, + "end": 55067.52, + "probability": 0.8403 + }, + { + "start": 55068.12, + "end": 55071.02, + "probability": 0.8986 + }, + { + "start": 55071.74, + "end": 55072.38, + "probability": 0.8923 + }, + { + "start": 55072.98, + "end": 55074.12, + "probability": 0.2396 + }, + { + "start": 55074.82, + "end": 55078.46, + "probability": 0.9514 + }, + { + "start": 55079.18, + "end": 55081.82, + "probability": 0.9672 + }, + { + "start": 55082.8, + "end": 55083.7, + "probability": 0.9453 + }, + { + "start": 55085.24, + "end": 55086.12, + "probability": 0.6723 + }, + { + "start": 55087.06, + "end": 55089.18, + "probability": 0.9237 + }, + { + "start": 55089.64, + "end": 55090.7, + "probability": 0.8435 + }, + { + "start": 55091.32, + "end": 55092.92, + "probability": 0.991 + }, + { + "start": 55093.86, + "end": 55094.36, + "probability": 0.9301 + }, + { + "start": 55095.4, + "end": 55098.62, + "probability": 0.9752 + }, + { + "start": 55099.26, + "end": 55101.44, + "probability": 0.9985 + }, + { + "start": 55102.54, + "end": 55105.18, + "probability": 0.8125 + }, + { + "start": 55106.24, + "end": 55111.36, + "probability": 0.967 + }, + { + "start": 55111.56, + "end": 55113.98, + "probability": 0.9854 + }, + { + "start": 55114.32, + "end": 55121.66, + "probability": 0.9984 + }, + { + "start": 55122.36, + "end": 55127.58, + "probability": 0.8036 + }, + { + "start": 55127.58, + "end": 55129.78, + "probability": 0.9978 + }, + { + "start": 55130.58, + "end": 55131.46, + "probability": 0.5392 + }, + { + "start": 55132.24, + "end": 55133.1, + "probability": 0.9193 + }, + { + "start": 55134.66, + "end": 55136.94, + "probability": 0.8923 + }, + { + "start": 55137.06, + "end": 55139.07, + "probability": 0.9868 + }, + { + "start": 55139.42, + "end": 55140.24, + "probability": 0.8003 + }, + { + "start": 55140.56, + "end": 55141.84, + "probability": 0.9919 + }, + { + "start": 55142.6, + "end": 55144.66, + "probability": 0.9946 + }, + { + "start": 55145.12, + "end": 55146.26, + "probability": 0.9553 + }, + { + "start": 55146.7, + "end": 55150.38, + "probability": 0.9942 + }, + { + "start": 55150.76, + "end": 55151.34, + "probability": 0.8651 + }, + { + "start": 55151.74, + "end": 55154.28, + "probability": 0.9734 + }, + { + "start": 55155.16, + "end": 55156.96, + "probability": 0.9902 + }, + { + "start": 55158.16, + "end": 55159.24, + "probability": 0.9731 + }, + { + "start": 55159.36, + "end": 55160.98, + "probability": 0.9774 + }, + { + "start": 55161.02, + "end": 55162.96, + "probability": 0.9873 + }, + { + "start": 55163.52, + "end": 55167.18, + "probability": 0.9474 + }, + { + "start": 55167.86, + "end": 55169.6, + "probability": 0.7805 + }, + { + "start": 55171.32, + "end": 55172.46, + "probability": 0.867 + }, + { + "start": 55173.04, + "end": 55173.24, + "probability": 0.6025 + }, + { + "start": 55173.82, + "end": 55176.48, + "probability": 0.9917 + }, + { + "start": 55177.98, + "end": 55181.98, + "probability": 0.9926 + }, + { + "start": 55182.54, + "end": 55184.12, + "probability": 0.9847 + }, + { + "start": 55184.56, + "end": 55185.74, + "probability": 0.999 + }, + { + "start": 55186.6, + "end": 55187.92, + "probability": 0.9954 + }, + { + "start": 55189.26, + "end": 55189.46, + "probability": 0.6926 + }, + { + "start": 55189.54, + "end": 55190.38, + "probability": 0.9088 + }, + { + "start": 55190.82, + "end": 55194.72, + "probability": 0.9943 + }, + { + "start": 55196.24, + "end": 55197.26, + "probability": 0.2695 + }, + { + "start": 55198.86, + "end": 55203.24, + "probability": 0.9962 + }, + { + "start": 55203.92, + "end": 55206.2, + "probability": 0.9987 + }, + { + "start": 55207.04, + "end": 55209.84, + "probability": 0.9982 + }, + { + "start": 55210.36, + "end": 55212.94, + "probability": 0.956 + }, + { + "start": 55213.58, + "end": 55215.08, + "probability": 0.7876 + }, + { + "start": 55215.84, + "end": 55216.88, + "probability": 0.5825 + }, + { + "start": 55218.1, + "end": 55219.0, + "probability": 0.7417 + }, + { + "start": 55219.52, + "end": 55220.28, + "probability": 0.9563 + }, + { + "start": 55220.82, + "end": 55223.72, + "probability": 0.9929 + }, + { + "start": 55224.44, + "end": 55226.34, + "probability": 0.9203 + }, + { + "start": 55227.06, + "end": 55230.76, + "probability": 0.9923 + }, + { + "start": 55231.54, + "end": 55231.74, + "probability": 0.7955 + }, + { + "start": 55233.3, + "end": 55235.76, + "probability": 0.8687 + }, + { + "start": 55238.18, + "end": 55240.38, + "probability": 0.6882 + }, + { + "start": 55241.9, + "end": 55242.53, + "probability": 0.8338 + }, + { + "start": 55246.2, + "end": 55248.66, + "probability": 0.4898 + }, + { + "start": 55248.66, + "end": 55249.48, + "probability": 0.9862 + }, + { + "start": 55250.9, + "end": 55250.94, + "probability": 0.1704 + }, + { + "start": 55250.94, + "end": 55252.72, + "probability": 0.9944 + }, + { + "start": 55253.66, + "end": 55255.12, + "probability": 0.9717 + }, + { + "start": 55255.22, + "end": 55256.28, + "probability": 0.9642 + }, + { + "start": 55256.96, + "end": 55258.14, + "probability": 0.696 + }, + { + "start": 55259.66, + "end": 55259.84, + "probability": 0.1138 + }, + { + "start": 55260.56, + "end": 55261.0, + "probability": 0.0744 + }, + { + "start": 55261.66, + "end": 55262.7, + "probability": 0.1643 + }, + { + "start": 55262.7, + "end": 55263.34, + "probability": 0.6835 + }, + { + "start": 55263.84, + "end": 55264.86, + "probability": 0.7463 + }, + { + "start": 55264.92, + "end": 55266.6, + "probability": 0.8297 + }, + { + "start": 55267.38, + "end": 55268.64, + "probability": 0.8685 + }, + { + "start": 55269.0, + "end": 55269.1, + "probability": 0.832 + }, + { + "start": 55269.12, + "end": 55270.98, + "probability": 0.9767 + }, + { + "start": 55271.44, + "end": 55272.8, + "probability": 0.9952 + }, + { + "start": 55273.36, + "end": 55276.58, + "probability": 0.9695 + }, + { + "start": 55277.2, + "end": 55277.84, + "probability": 0.9943 + }, + { + "start": 55277.84, + "end": 55278.6, + "probability": 0.9356 + }, + { + "start": 55278.76, + "end": 55282.76, + "probability": 0.9487 + }, + { + "start": 55283.56, + "end": 55287.7, + "probability": 0.9922 + }, + { + "start": 55287.82, + "end": 55288.38, + "probability": 0.8531 + }, + { + "start": 55289.04, + "end": 55290.78, + "probability": 0.9863 + }, + { + "start": 55291.02, + "end": 55293.82, + "probability": 0.9435 + }, + { + "start": 55294.18, + "end": 55294.94, + "probability": 0.9805 + }, + { + "start": 55295.54, + "end": 55296.48, + "probability": 0.9612 + }, + { + "start": 55297.32, + "end": 55299.48, + "probability": 0.9873 + }, + { + "start": 55300.44, + "end": 55301.08, + "probability": 0.6662 + }, + { + "start": 55301.2, + "end": 55302.72, + "probability": 0.9783 + }, + { + "start": 55302.78, + "end": 55303.52, + "probability": 0.7616 + }, + { + "start": 55303.8, + "end": 55304.18, + "probability": 0.8425 + }, + { + "start": 55304.98, + "end": 55307.56, + "probability": 0.9434 + }, + { + "start": 55308.24, + "end": 55310.64, + "probability": 0.9396 + }, + { + "start": 55312.4, + "end": 55314.18, + "probability": 0.5659 + }, + { + "start": 55314.48, + "end": 55316.34, + "probability": 0.9902 + }, + { + "start": 55316.36, + "end": 55317.08, + "probability": 0.9508 + }, + { + "start": 55317.08, + "end": 55319.66, + "probability": 0.9879 + }, + { + "start": 55319.66, + "end": 55323.08, + "probability": 0.9089 + }, + { + "start": 55323.58, + "end": 55324.06, + "probability": 0.4852 + }, + { + "start": 55324.18, + "end": 55324.22, + "probability": 0.5518 + }, + { + "start": 55324.28, + "end": 55327.3, + "probability": 0.7156 + }, + { + "start": 55327.42, + "end": 55330.14, + "probability": 0.7203 + }, + { + "start": 55330.38, + "end": 55331.31, + "probability": 0.7705 + }, + { + "start": 55331.6, + "end": 55333.56, + "probability": 0.7342 + }, + { + "start": 55333.68, + "end": 55334.84, + "probability": 0.9537 + }, + { + "start": 55335.78, + "end": 55336.4, + "probability": 0.0024 + }, + { + "start": 55338.22, + "end": 55340.16, + "probability": 0.843 + }, + { + "start": 55343.86, + "end": 55344.96, + "probability": 0.5486 + }, + { + "start": 55357.26, + "end": 55358.37, + "probability": 0.3397 + }, + { + "start": 55361.2, + "end": 55362.06, + "probability": 0.7 + }, + { + "start": 55365.54, + "end": 55367.22, + "probability": 0.6888 + }, + { + "start": 55368.44, + "end": 55375.14, + "probability": 0.9417 + }, + { + "start": 55375.14, + "end": 55379.86, + "probability": 0.9448 + }, + { + "start": 55380.76, + "end": 55382.72, + "probability": 0.4635 + }, + { + "start": 55383.38, + "end": 55386.33, + "probability": 0.924 + }, + { + "start": 55390.4, + "end": 55391.48, + "probability": 0.7905 + }, + { + "start": 55393.82, + "end": 55394.24, + "probability": 0.7578 + }, + { + "start": 55396.22, + "end": 55396.86, + "probability": 0.7482 + }, + { + "start": 55397.52, + "end": 55401.62, + "probability": 0.9985 + }, + { + "start": 55402.26, + "end": 55406.22, + "probability": 0.9888 + }, + { + "start": 55407.98, + "end": 55412.5, + "probability": 0.9961 + }, + { + "start": 55412.5, + "end": 55417.5, + "probability": 0.9997 + }, + { + "start": 55418.52, + "end": 55425.22, + "probability": 0.9941 + }, + { + "start": 55426.38, + "end": 55431.7, + "probability": 0.9987 + }, + { + "start": 55432.68, + "end": 55436.62, + "probability": 0.9826 + }, + { + "start": 55437.28, + "end": 55438.33, + "probability": 0.9666 + }, + { + "start": 55439.32, + "end": 55441.42, + "probability": 0.8431 + }, + { + "start": 55442.46, + "end": 55445.74, + "probability": 0.9808 + }, + { + "start": 55446.76, + "end": 55448.74, + "probability": 0.9644 + }, + { + "start": 55450.24, + "end": 55456.62, + "probability": 0.9965 + }, + { + "start": 55456.8, + "end": 55458.3, + "probability": 0.8583 + }, + { + "start": 55460.06, + "end": 55460.7, + "probability": 0.9016 + }, + { + "start": 55461.56, + "end": 55462.9, + "probability": 0.9966 + }, + { + "start": 55463.56, + "end": 55465.7, + "probability": 0.9709 + }, + { + "start": 55466.6, + "end": 55468.08, + "probability": 0.9934 + }, + { + "start": 55468.62, + "end": 55471.26, + "probability": 0.9911 + }, + { + "start": 55472.28, + "end": 55473.66, + "probability": 0.9988 + }, + { + "start": 55474.52, + "end": 55476.04, + "probability": 0.9982 + }, + { + "start": 55477.54, + "end": 55483.08, + "probability": 0.9975 + }, + { + "start": 55483.84, + "end": 55486.58, + "probability": 0.9178 + }, + { + "start": 55487.68, + "end": 55492.92, + "probability": 0.9325 + }, + { + "start": 55495.62, + "end": 55499.8, + "probability": 0.8384 + }, + { + "start": 55500.92, + "end": 55501.4, + "probability": 0.8459 + }, + { + "start": 55503.0, + "end": 55504.16, + "probability": 0.9707 + }, + { + "start": 55505.36, + "end": 55506.14, + "probability": 0.7172 + }, + { + "start": 55507.2, + "end": 55508.8, + "probability": 0.9801 + }, + { + "start": 55510.2, + "end": 55510.82, + "probability": 0.8866 + }, + { + "start": 55513.56, + "end": 55516.82, + "probability": 0.9919 + }, + { + "start": 55517.94, + "end": 55518.76, + "probability": 0.9224 + }, + { + "start": 55521.26, + "end": 55526.84, + "probability": 0.9933 + }, + { + "start": 55527.7, + "end": 55529.78, + "probability": 0.8415 + }, + { + "start": 55530.78, + "end": 55533.34, + "probability": 0.8501 + }, + { + "start": 55534.0, + "end": 55534.64, + "probability": 0.9628 + }, + { + "start": 55536.42, + "end": 55538.72, + "probability": 0.981 + }, + { + "start": 55539.94, + "end": 55540.9, + "probability": 0.9895 + }, + { + "start": 55542.02, + "end": 55542.52, + "probability": 0.9906 + }, + { + "start": 55544.34, + "end": 55545.24, + "probability": 0.9895 + }, + { + "start": 55546.38, + "end": 55547.54, + "probability": 0.9875 + }, + { + "start": 55548.54, + "end": 55549.94, + "probability": 0.9651 + }, + { + "start": 55551.16, + "end": 55553.5, + "probability": 0.8656 + }, + { + "start": 55554.7, + "end": 55555.78, + "probability": 0.845 + }, + { + "start": 55558.8, + "end": 55559.62, + "probability": 0.944 + }, + { + "start": 55560.4, + "end": 55561.36, + "probability": 0.8527 + }, + { + "start": 55562.46, + "end": 55564.72, + "probability": 0.9974 + }, + { + "start": 55565.88, + "end": 55566.54, + "probability": 0.7811 + }, + { + "start": 55566.72, + "end": 55567.36, + "probability": 0.9282 + }, + { + "start": 55567.42, + "end": 55569.68, + "probability": 0.9894 + }, + { + "start": 55571.14, + "end": 55574.2, + "probability": 0.9897 + }, + { + "start": 55575.82, + "end": 55579.82, + "probability": 0.9968 + }, + { + "start": 55579.82, + "end": 55585.88, + "probability": 0.9934 + }, + { + "start": 55585.94, + "end": 55586.16, + "probability": 0.7985 + }, + { + "start": 55586.58, + "end": 55587.32, + "probability": 0.7895 + }, + { + "start": 55587.64, + "end": 55589.32, + "probability": 0.8787 + }, + { + "start": 55589.82, + "end": 55592.22, + "probability": 0.9971 + }, + { + "start": 55593.7, + "end": 55597.28, + "probability": 0.9968 + }, + { + "start": 55597.36, + "end": 55601.7, + "probability": 0.8574 + }, + { + "start": 55601.78, + "end": 55602.88, + "probability": 0.6904 + }, + { + "start": 55603.68, + "end": 55604.08, + "probability": 0.864 + }, + { + "start": 55604.98, + "end": 55609.44, + "probability": 0.9889 + }, + { + "start": 55609.6, + "end": 55610.28, + "probability": 0.7601 + }, + { + "start": 55610.34, + "end": 55611.86, + "probability": 0.9817 + }, + { + "start": 55612.16, + "end": 55613.44, + "probability": 0.97 + }, + { + "start": 55614.7, + "end": 55617.78, + "probability": 0.7354 + }, + { + "start": 55619.52, + "end": 55620.9, + "probability": 0.8298 + }, + { + "start": 55622.8, + "end": 55624.2, + "probability": 0.812 + }, + { + "start": 55625.38, + "end": 55626.68, + "probability": 0.9351 + }, + { + "start": 55627.8, + "end": 55630.54, + "probability": 0.9749 + }, + { + "start": 55631.54, + "end": 55633.28, + "probability": 0.9978 + }, + { + "start": 55634.22, + "end": 55635.28, + "probability": 0.999 + }, + { + "start": 55635.84, + "end": 55638.64, + "probability": 0.9822 + }, + { + "start": 55639.66, + "end": 55645.42, + "probability": 0.8429 + }, + { + "start": 55646.24, + "end": 55647.46, + "probability": 0.7685 + }, + { + "start": 55648.26, + "end": 55650.98, + "probability": 0.9832 + }, + { + "start": 55652.64, + "end": 55655.3, + "probability": 0.9971 + }, + { + "start": 55656.18, + "end": 55656.98, + "probability": 0.9595 + }, + { + "start": 55658.52, + "end": 55659.28, + "probability": 0.8846 + }, + { + "start": 55661.0, + "end": 55663.46, + "probability": 0.8263 + }, + { + "start": 55664.48, + "end": 55666.58, + "probability": 0.8877 + }, + { + "start": 55668.24, + "end": 55672.16, + "probability": 0.9785 + }, + { + "start": 55672.26, + "end": 55674.46, + "probability": 0.9883 + }, + { + "start": 55675.04, + "end": 55675.76, + "probability": 0.715 + }, + { + "start": 55676.0, + "end": 55676.61, + "probability": 0.9758 + }, + { + "start": 55677.48, + "end": 55680.5, + "probability": 0.9388 + }, + { + "start": 55681.22, + "end": 55682.88, + "probability": 0.6593 + }, + { + "start": 55683.92, + "end": 55685.56, + "probability": 0.9506 + }, + { + "start": 55686.9, + "end": 55688.58, + "probability": 0.9969 + }, + { + "start": 55690.32, + "end": 55693.96, + "probability": 0.9512 + }, + { + "start": 55694.1, + "end": 55694.26, + "probability": 0.9803 + }, + { + "start": 55694.38, + "end": 55695.92, + "probability": 0.9849 + }, + { + "start": 55698.24, + "end": 55700.64, + "probability": 0.9949 + }, + { + "start": 55702.13, + "end": 55705.58, + "probability": 0.9958 + }, + { + "start": 55706.1, + "end": 55707.68, + "probability": 0.9321 + }, + { + "start": 55707.68, + "end": 55708.36, + "probability": 0.8569 + }, + { + "start": 55708.5, + "end": 55713.06, + "probability": 0.9927 + }, + { + "start": 55715.22, + "end": 55716.32, + "probability": 0.9626 + }, + { + "start": 55717.84, + "end": 55718.12, + "probability": 0.9788 + }, + { + "start": 55718.68, + "end": 55720.84, + "probability": 0.9987 + }, + { + "start": 55722.32, + "end": 55726.02, + "probability": 0.9997 + }, + { + "start": 55726.24, + "end": 55729.2, + "probability": 0.9935 + }, + { + "start": 55730.0, + "end": 55730.98, + "probability": 0.7593 + }, + { + "start": 55731.82, + "end": 55733.0, + "probability": 0.9231 + }, + { + "start": 55733.98, + "end": 55737.02, + "probability": 0.9861 + }, + { + "start": 55738.22, + "end": 55739.78, + "probability": 0.9979 + }, + { + "start": 55740.54, + "end": 55741.98, + "probability": 0.9912 + }, + { + "start": 55742.88, + "end": 55748.34, + "probability": 0.9844 + }, + { + "start": 55750.8, + "end": 55750.8, + "probability": 0.6987 + }, + { + "start": 55750.8, + "end": 55753.62, + "probability": 0.9451 + }, + { + "start": 55753.7, + "end": 55755.94, + "probability": 0.9922 + }, + { + "start": 55757.6, + "end": 55760.42, + "probability": 0.9973 + }, + { + "start": 55761.38, + "end": 55762.44, + "probability": 0.7839 + }, + { + "start": 55764.04, + "end": 55766.82, + "probability": 0.9971 + }, + { + "start": 55767.64, + "end": 55768.58, + "probability": 0.7874 + }, + { + "start": 55769.88, + "end": 55772.06, + "probability": 0.995 + }, + { + "start": 55772.86, + "end": 55773.84, + "probability": 0.9875 + }, + { + "start": 55774.86, + "end": 55776.38, + "probability": 0.999 + }, + { + "start": 55779.86, + "end": 55782.32, + "probability": 0.9979 + }, + { + "start": 55784.3, + "end": 55786.52, + "probability": 0.9344 + }, + { + "start": 55787.98, + "end": 55788.46, + "probability": 0.9844 + }, + { + "start": 55789.38, + "end": 55789.9, + "probability": 0.9669 + }, + { + "start": 55790.96, + "end": 55791.58, + "probability": 0.9955 + }, + { + "start": 55792.26, + "end": 55794.46, + "probability": 0.9111 + }, + { + "start": 55795.72, + "end": 55797.18, + "probability": 0.9983 + }, + { + "start": 55798.0, + "end": 55798.72, + "probability": 0.9786 + }, + { + "start": 55803.72, + "end": 55804.2, + "probability": 0.0959 + }, + { + "start": 55806.22, + "end": 55806.36, + "probability": 0.5239 + }, + { + "start": 55806.44, + "end": 55809.74, + "probability": 0.9947 + }, + { + "start": 55810.98, + "end": 55811.66, + "probability": 0.9587 + }, + { + "start": 55813.22, + "end": 55815.28, + "probability": 0.9937 + }, + { + "start": 55816.48, + "end": 55822.06, + "probability": 0.9883 + }, + { + "start": 55823.74, + "end": 55825.74, + "probability": 0.988 + }, + { + "start": 55826.34, + "end": 55827.78, + "probability": 0.9369 + }, + { + "start": 55828.48, + "end": 55834.98, + "probability": 0.9697 + }, + { + "start": 55836.38, + "end": 55837.04, + "probability": 0.6707 + }, + { + "start": 55839.6, + "end": 55841.7, + "probability": 0.9386 + }, + { + "start": 55843.7, + "end": 55843.98, + "probability": 0.9193 + }, + { + "start": 55845.64, + "end": 55848.9, + "probability": 0.9344 + }, + { + "start": 55849.64, + "end": 55850.24, + "probability": 0.9895 + }, + { + "start": 55852.52, + "end": 55853.3, + "probability": 0.9855 + }, + { + "start": 55854.3, + "end": 55856.96, + "probability": 0.9963 + }, + { + "start": 55858.32, + "end": 55859.14, + "probability": 0.4153 + }, + { + "start": 55859.14, + "end": 55860.74, + "probability": 0.6998 + }, + { + "start": 55861.42, + "end": 55862.92, + "probability": 0.8989 + }, + { + "start": 55864.1, + "end": 55865.04, + "probability": 0.8402 + }, + { + "start": 55866.3, + "end": 55869.86, + "probability": 0.9969 + }, + { + "start": 55870.8, + "end": 55873.54, + "probability": 0.9951 + }, + { + "start": 55874.52, + "end": 55874.64, + "probability": 0.7827 + }, + { + "start": 55875.78, + "end": 55875.9, + "probability": 0.6656 + }, + { + "start": 55876.76, + "end": 55877.8, + "probability": 0.9687 + }, + { + "start": 55877.86, + "end": 55881.16, + "probability": 0.9956 + }, + { + "start": 55881.26, + "end": 55881.4, + "probability": 0.0774 + }, + { + "start": 55881.76, + "end": 55883.02, + "probability": 0.9628 + }, + { + "start": 55883.48, + "end": 55884.08, + "probability": 0.9312 + }, + { + "start": 55884.76, + "end": 55886.46, + "probability": 0.8537 + }, + { + "start": 55887.88, + "end": 55890.26, + "probability": 0.9917 + }, + { + "start": 55890.52, + "end": 55891.46, + "probability": 0.8408 + }, + { + "start": 55891.52, + "end": 55892.72, + "probability": 0.9498 + }, + { + "start": 55892.84, + "end": 55892.86, + "probability": 0.9556 + }, + { + "start": 55894.48, + "end": 55896.12, + "probability": 0.9121 + }, + { + "start": 55896.74, + "end": 55898.3, + "probability": 0.9966 + }, + { + "start": 55900.84, + "end": 55901.48, + "probability": 0.9615 + }, + { + "start": 55901.66, + "end": 55902.39, + "probability": 0.9686 + }, + { + "start": 55902.56, + "end": 55903.92, + "probability": 0.9995 + }, + { + "start": 55905.5, + "end": 55906.2, + "probability": 0.993 + }, + { + "start": 55906.26, + "end": 55907.71, + "probability": 0.9422 + }, + { + "start": 55908.44, + "end": 55910.02, + "probability": 0.9954 + }, + { + "start": 55910.34, + "end": 55911.24, + "probability": 0.9517 + }, + { + "start": 55913.86, + "end": 55917.14, + "probability": 0.9883 + }, + { + "start": 55918.2, + "end": 55919.22, + "probability": 0.9975 + }, + { + "start": 55920.52, + "end": 55922.64, + "probability": 0.9349 + }, + { + "start": 55924.92, + "end": 55927.92, + "probability": 0.9586 + }, + { + "start": 55928.4, + "end": 55930.51, + "probability": 0.9966 + }, + { + "start": 55930.86, + "end": 55931.58, + "probability": 0.8598 + }, + { + "start": 55932.26, + "end": 55938.2, + "probability": 0.9901 + }, + { + "start": 55938.88, + "end": 55942.43, + "probability": 0.9966 + }, + { + "start": 55943.54, + "end": 55944.2, + "probability": 0.884 + }, + { + "start": 55945.62, + "end": 55946.02, + "probability": 0.9779 + }, + { + "start": 55946.88, + "end": 55949.14, + "probability": 0.9552 + }, + { + "start": 55952.34, + "end": 55952.94, + "probability": 0.2812 + }, + { + "start": 55954.16, + "end": 55954.58, + "probability": 0.9131 + }, + { + "start": 55955.5, + "end": 55956.6, + "probability": 0.9459 + }, + { + "start": 55957.82, + "end": 55960.66, + "probability": 0.9442 + }, + { + "start": 55961.5, + "end": 55964.34, + "probability": 0.9764 + }, + { + "start": 55965.74, + "end": 55966.5, + "probability": 0.7102 + }, + { + "start": 55967.02, + "end": 55967.56, + "probability": 0.9575 + }, + { + "start": 55969.18, + "end": 55973.0, + "probability": 0.9772 + }, + { + "start": 55974.28, + "end": 55976.66, + "probability": 0.9148 + }, + { + "start": 55977.56, + "end": 55978.94, + "probability": 0.7736 + }, + { + "start": 55980.44, + "end": 55983.58, + "probability": 0.947 + }, + { + "start": 55984.72, + "end": 55987.44, + "probability": 0.8925 + }, + { + "start": 55987.9, + "end": 55988.34, + "probability": 0.6374 + }, + { + "start": 55989.14, + "end": 55990.92, + "probability": 0.9993 + }, + { + "start": 55991.78, + "end": 55993.78, + "probability": 0.5332 + }, + { + "start": 55994.88, + "end": 55998.38, + "probability": 0.9857 + }, + { + "start": 55999.68, + "end": 56000.86, + "probability": 0.9913 + }, + { + "start": 56001.8, + "end": 56003.14, + "probability": 0.9949 + }, + { + "start": 56004.64, + "end": 56004.78, + "probability": 0.8951 + }, + { + "start": 56006.16, + "end": 56006.78, + "probability": 0.9539 + }, + { + "start": 56007.38, + "end": 56010.24, + "probability": 0.9849 + }, + { + "start": 56011.76, + "end": 56017.3, + "probability": 0.9793 + }, + { + "start": 56018.5, + "end": 56020.22, + "probability": 0.6812 + }, + { + "start": 56021.08, + "end": 56028.3, + "probability": 0.972 + }, + { + "start": 56029.64, + "end": 56033.66, + "probability": 0.8984 + }, + { + "start": 56035.06, + "end": 56036.92, + "probability": 0.8645 + }, + { + "start": 56038.02, + "end": 56041.9, + "probability": 0.8745 + }, + { + "start": 56043.24, + "end": 56044.64, + "probability": 0.8735 + }, + { + "start": 56045.38, + "end": 56047.12, + "probability": 0.9758 + }, + { + "start": 56048.46, + "end": 56050.98, + "probability": 0.9971 + }, + { + "start": 56052.3, + "end": 56053.86, + "probability": 0.7642 + }, + { + "start": 56054.66, + "end": 56058.16, + "probability": 0.958 + }, + { + "start": 56058.96, + "end": 56060.98, + "probability": 0.954 + }, + { + "start": 56061.24, + "end": 56065.62, + "probability": 0.8983 + }, + { + "start": 56066.84, + "end": 56068.14, + "probability": 0.9884 + }, + { + "start": 56069.18, + "end": 56071.52, + "probability": 0.957 + }, + { + "start": 56072.08, + "end": 56076.68, + "probability": 0.9174 + }, + { + "start": 56078.28, + "end": 56082.48, + "probability": 0.9091 + }, + { + "start": 56083.72, + "end": 56085.9, + "probability": 0.8441 + }, + { + "start": 56087.56, + "end": 56090.78, + "probability": 0.9382 + }, + { + "start": 56091.74, + "end": 56092.02, + "probability": 0.5174 + }, + { + "start": 56093.04, + "end": 56094.24, + "probability": 0.9768 + }, + { + "start": 56094.88, + "end": 56096.7, + "probability": 0.9622 + }, + { + "start": 56098.66, + "end": 56098.78, + "probability": 0.9019 + }, + { + "start": 56099.36, + "end": 56099.6, + "probability": 0.9671 + }, + { + "start": 56100.42, + "end": 56105.26, + "probability": 0.9985 + }, + { + "start": 56106.38, + "end": 56106.68, + "probability": 0.7566 + }, + { + "start": 56107.3, + "end": 56108.42, + "probability": 0.9619 + }, + { + "start": 56109.12, + "end": 56111.02, + "probability": 0.8821 + }, + { + "start": 56111.66, + "end": 56115.42, + "probability": 0.9788 + }, + { + "start": 56116.6, + "end": 56119.56, + "probability": 0.9982 + }, + { + "start": 56120.7, + "end": 56123.58, + "probability": 0.9758 + }, + { + "start": 56124.86, + "end": 56125.96, + "probability": 0.9158 + }, + { + "start": 56127.5, + "end": 56130.76, + "probability": 0.9975 + }, + { + "start": 56131.9, + "end": 56135.64, + "probability": 0.906 + }, + { + "start": 56136.76, + "end": 56141.64, + "probability": 0.865 + }, + { + "start": 56142.12, + "end": 56144.22, + "probability": 0.8607 + }, + { + "start": 56145.36, + "end": 56149.3, + "probability": 0.9832 + }, + { + "start": 56150.2, + "end": 56156.1, + "probability": 0.9713 + }, + { + "start": 56157.42, + "end": 56159.5, + "probability": 0.928 + }, + { + "start": 56161.72, + "end": 56165.3, + "probability": 0.9261 + }, + { + "start": 56166.34, + "end": 56166.66, + "probability": 0.557 + }, + { + "start": 56167.28, + "end": 56168.6, + "probability": 0.8907 + }, + { + "start": 56169.3, + "end": 56173.62, + "probability": 0.9847 + }, + { + "start": 56174.18, + "end": 56176.14, + "probability": 0.9417 + }, + { + "start": 56176.82, + "end": 56177.26, + "probability": 0.7046 + }, + { + "start": 56177.94, + "end": 56178.86, + "probability": 0.7747 + }, + { + "start": 56179.54, + "end": 56182.2, + "probability": 0.9753 + }, + { + "start": 56183.68, + "end": 56184.5, + "probability": 0.7233 + }, + { + "start": 56185.34, + "end": 56189.2, + "probability": 0.9751 + }, + { + "start": 56190.02, + "end": 56190.64, + "probability": 0.8652 + }, + { + "start": 56191.46, + "end": 56193.92, + "probability": 0.9932 + }, + { + "start": 56194.48, + "end": 56196.16, + "probability": 0.9087 + }, + { + "start": 56198.02, + "end": 56198.24, + "probability": 0.8748 + }, + { + "start": 56199.48, + "end": 56201.4, + "probability": 0.9814 + }, + { + "start": 56203.1, + "end": 56204.24, + "probability": 0.978 + }, + { + "start": 56205.68, + "end": 56210.3, + "probability": 0.9953 + }, + { + "start": 56211.24, + "end": 56213.44, + "probability": 0.9822 + }, + { + "start": 56214.34, + "end": 56215.09, + "probability": 0.9599 + }, + { + "start": 56216.42, + "end": 56217.9, + "probability": 0.9722 + }, + { + "start": 56219.1, + "end": 56221.32, + "probability": 0.9873 + }, + { + "start": 56222.6, + "end": 56223.36, + "probability": 0.9565 + }, + { + "start": 56224.44, + "end": 56226.72, + "probability": 0.8325 + }, + { + "start": 56227.34, + "end": 56230.74, + "probability": 0.9866 + }, + { + "start": 56232.0, + "end": 56232.98, + "probability": 0.9985 + }, + { + "start": 56233.54, + "end": 56238.42, + "probability": 0.9964 + }, + { + "start": 56240.6, + "end": 56241.0, + "probability": 0.8733 + }, + { + "start": 56241.9, + "end": 56245.28, + "probability": 0.9943 + }, + { + "start": 56246.42, + "end": 56247.18, + "probability": 0.9351 + }, + { + "start": 56252.0, + "end": 56253.68, + "probability": 0.7023 + }, + { + "start": 56256.0, + "end": 56258.32, + "probability": 0.9847 + }, + { + "start": 56259.94, + "end": 56261.2, + "probability": 0.9079 + }, + { + "start": 56262.66, + "end": 56263.96, + "probability": 0.9295 + }, + { + "start": 56265.34, + "end": 56267.62, + "probability": 0.9023 + }, + { + "start": 56268.82, + "end": 56271.62, + "probability": 0.9346 + }, + { + "start": 56272.2, + "end": 56274.08, + "probability": 0.9534 + }, + { + "start": 56274.86, + "end": 56276.26, + "probability": 0.9131 + }, + { + "start": 56277.12, + "end": 56277.9, + "probability": 0.4918 + }, + { + "start": 56279.08, + "end": 56281.92, + "probability": 0.995 + }, + { + "start": 56282.82, + "end": 56285.74, + "probability": 0.9987 + }, + { + "start": 56286.26, + "end": 56286.72, + "probability": 0.8616 + }, + { + "start": 56287.38, + "end": 56288.26, + "probability": 0.8348 + }, + { + "start": 56288.84, + "end": 56290.38, + "probability": 0.9763 + }, + { + "start": 56290.92, + "end": 56292.94, + "probability": 0.9836 + }, + { + "start": 56293.5, + "end": 56294.82, + "probability": 0.9507 + }, + { + "start": 56295.7, + "end": 56299.32, + "probability": 0.996 + }, + { + "start": 56299.94, + "end": 56304.74, + "probability": 0.9963 + }, + { + "start": 56304.86, + "end": 56311.06, + "probability": 0.9971 + }, + { + "start": 56311.06, + "end": 56316.36, + "probability": 0.9977 + }, + { + "start": 56317.26, + "end": 56323.58, + "probability": 0.9898 + }, + { + "start": 56324.0, + "end": 56327.62, + "probability": 0.7507 + }, + { + "start": 56327.8, + "end": 56331.2, + "probability": 0.9019 + }, + { + "start": 56332.2, + "end": 56334.52, + "probability": 0.9551 + }, + { + "start": 56335.14, + "end": 56337.32, + "probability": 0.9889 + }, + { + "start": 56337.7, + "end": 56339.41, + "probability": 0.9907 + }, + { + "start": 56339.84, + "end": 56341.38, + "probability": 0.9041 + }, + { + "start": 56342.12, + "end": 56345.28, + "probability": 0.9885 + }, + { + "start": 56345.82, + "end": 56350.02, + "probability": 0.9802 + }, + { + "start": 56350.82, + "end": 56352.32, + "probability": 0.9783 + }, + { + "start": 56352.86, + "end": 56354.04, + "probability": 0.9966 + }, + { + "start": 56356.12, + "end": 56358.42, + "probability": 0.99 + }, + { + "start": 56359.12, + "end": 56360.16, + "probability": 0.5197 + }, + { + "start": 56360.58, + "end": 56362.34, + "probability": 0.9928 + }, + { + "start": 56362.38, + "end": 56363.78, + "probability": 0.9786 + }, + { + "start": 56364.76, + "end": 56365.6, + "probability": 0.9587 + }, + { + "start": 56366.38, + "end": 56367.96, + "probability": 0.9946 + }, + { + "start": 56368.48, + "end": 56369.5, + "probability": 0.9231 + }, + { + "start": 56370.08, + "end": 56372.4, + "probability": 0.9923 + }, + { + "start": 56372.92, + "end": 56373.92, + "probability": 0.7214 + }, + { + "start": 56375.04, + "end": 56377.32, + "probability": 0.9587 + }, + { + "start": 56377.4, + "end": 56378.32, + "probability": 0.7283 + }, + { + "start": 56379.08, + "end": 56380.18, + "probability": 0.8578 + }, + { + "start": 56380.26, + "end": 56381.68, + "probability": 0.9775 + }, + { + "start": 56382.02, + "end": 56385.54, + "probability": 0.9823 + }, + { + "start": 56386.4, + "end": 56387.28, + "probability": 0.8147 + }, + { + "start": 56388.78, + "end": 56389.62, + "probability": 0.5475 + }, + { + "start": 56390.78, + "end": 56392.14, + "probability": 0.8802 + }, + { + "start": 56392.26, + "end": 56393.04, + "probability": 0.9643 + }, + { + "start": 56393.52, + "end": 56394.12, + "probability": 0.8535 + }, + { + "start": 56394.24, + "end": 56395.24, + "probability": 0.9886 + }, + { + "start": 56396.82, + "end": 56400.32, + "probability": 0.9468 + }, + { + "start": 56401.04, + "end": 56403.92, + "probability": 0.7556 + }, + { + "start": 56404.42, + "end": 56406.86, + "probability": 0.756 + }, + { + "start": 56407.42, + "end": 56408.3, + "probability": 0.9005 + }, + { + "start": 56410.3, + "end": 56412.54, + "probability": 0.8381 + }, + { + "start": 56413.1, + "end": 56414.02, + "probability": 0.9383 + }, + { + "start": 56415.4, + "end": 56415.56, + "probability": 0.7983 + }, + { + "start": 56417.2, + "end": 56419.86, + "probability": 0.8691 + }, + { + "start": 56420.2, + "end": 56422.28, + "probability": 0.9564 + }, + { + "start": 56428.96, + "end": 56431.34, + "probability": 0.1492 + }, + { + "start": 56432.26, + "end": 56434.72, + "probability": 0.1892 + }, + { + "start": 56457.7, + "end": 56462.46, + "probability": 0.8219 + }, + { + "start": 56464.1, + "end": 56468.14, + "probability": 0.9655 + }, + { + "start": 56469.24, + "end": 56471.42, + "probability": 0.9427 + }, + { + "start": 56472.04, + "end": 56475.7, + "probability": 0.9059 + }, + { + "start": 56476.52, + "end": 56478.1, + "probability": 0.9856 + }, + { + "start": 56479.02, + "end": 56481.54, + "probability": 0.958 + }, + { + "start": 56483.22, + "end": 56486.16, + "probability": 0.9986 + }, + { + "start": 56486.82, + "end": 56491.38, + "probability": 0.8846 + }, + { + "start": 56492.54, + "end": 56492.9, + "probability": 0.769 + }, + { + "start": 56494.1, + "end": 56497.04, + "probability": 0.8915 + }, + { + "start": 56498.24, + "end": 56500.64, + "probability": 0.9546 + }, + { + "start": 56501.84, + "end": 56502.46, + "probability": 0.5927 + }, + { + "start": 56503.72, + "end": 56505.42, + "probability": 0.8132 + }, + { + "start": 56505.9, + "end": 56508.4, + "probability": 0.9896 + }, + { + "start": 56509.12, + "end": 56513.08, + "probability": 0.9106 + }, + { + "start": 56516.16, + "end": 56516.94, + "probability": 0.3931 + }, + { + "start": 56518.22, + "end": 56521.84, + "probability": 0.9973 + }, + { + "start": 56522.2, + "end": 56527.02, + "probability": 0.9704 + }, + { + "start": 56528.02, + "end": 56532.78, + "probability": 0.9988 + }, + { + "start": 56533.42, + "end": 56535.0, + "probability": 0.9975 + }, + { + "start": 56535.6, + "end": 56541.86, + "probability": 0.9924 + }, + { + "start": 56542.36, + "end": 56545.22, + "probability": 0.98 + }, + { + "start": 56545.74, + "end": 56547.66, + "probability": 0.974 + }, + { + "start": 56548.68, + "end": 56551.36, + "probability": 0.9713 + }, + { + "start": 56551.92, + "end": 56554.06, + "probability": 0.9997 + }, + { + "start": 56554.64, + "end": 56558.08, + "probability": 0.9282 + }, + { + "start": 56559.3, + "end": 56561.14, + "probability": 0.9941 + }, + { + "start": 56561.76, + "end": 56569.3, + "probability": 0.9922 + }, + { + "start": 56570.5, + "end": 56572.76, + "probability": 0.9768 + }, + { + "start": 56573.96, + "end": 56574.86, + "probability": 0.8208 + }, + { + "start": 56574.94, + "end": 56575.96, + "probability": 0.9728 + }, + { + "start": 56576.32, + "end": 56577.78, + "probability": 0.9086 + }, + { + "start": 56578.22, + "end": 56579.68, + "probability": 0.9899 + }, + { + "start": 56580.92, + "end": 56583.08, + "probability": 0.9798 + }, + { + "start": 56584.12, + "end": 56587.72, + "probability": 0.9636 + }, + { + "start": 56589.08, + "end": 56593.22, + "probability": 0.9296 + }, + { + "start": 56593.36, + "end": 56593.52, + "probability": 0.7228 + }, + { + "start": 56594.98, + "end": 56598.3, + "probability": 0.9881 + }, + { + "start": 56599.52, + "end": 56600.08, + "probability": 0.9147 + }, + { + "start": 56600.7, + "end": 56604.02, + "probability": 0.9834 + }, + { + "start": 56606.06, + "end": 56610.34, + "probability": 0.9862 + }, + { + "start": 56611.18, + "end": 56614.56, + "probability": 0.9038 + }, + { + "start": 56615.8, + "end": 56618.42, + "probability": 0.8691 + }, + { + "start": 56619.12, + "end": 56620.92, + "probability": 0.9741 + }, + { + "start": 56621.88, + "end": 56624.58, + "probability": 0.9097 + }, + { + "start": 56625.6, + "end": 56628.5, + "probability": 0.5805 + }, + { + "start": 56629.52, + "end": 56631.14, + "probability": 0.8951 + }, + { + "start": 56631.94, + "end": 56632.24, + "probability": 0.5625 + }, + { + "start": 56632.78, + "end": 56635.74, + "probability": 0.9392 + }, + { + "start": 56636.28, + "end": 56639.28, + "probability": 0.9885 + }, + { + "start": 56640.16, + "end": 56642.06, + "probability": 0.8062 + }, + { + "start": 56642.66, + "end": 56647.16, + "probability": 0.9574 + }, + { + "start": 56648.36, + "end": 56648.7, + "probability": 0.7354 + }, + { + "start": 56648.84, + "end": 56652.14, + "probability": 0.993 + }, + { + "start": 56653.14, + "end": 56655.86, + "probability": 0.9583 + }, + { + "start": 56656.5, + "end": 56658.12, + "probability": 0.8899 + }, + { + "start": 56658.58, + "end": 56660.42, + "probability": 0.8086 + }, + { + "start": 56660.86, + "end": 56662.46, + "probability": 0.9872 + }, + { + "start": 56664.18, + "end": 56665.9, + "probability": 0.9977 + }, + { + "start": 56666.74, + "end": 56667.63, + "probability": 0.965 + }, + { + "start": 56668.62, + "end": 56671.88, + "probability": 0.9762 + }, + { + "start": 56671.88, + "end": 56676.42, + "probability": 0.9862 + }, + { + "start": 56677.72, + "end": 56680.3, + "probability": 0.9963 + }, + { + "start": 56680.44, + "end": 56684.6, + "probability": 0.9917 + }, + { + "start": 56686.24, + "end": 56691.58, + "probability": 0.9036 + }, + { + "start": 56692.32, + "end": 56696.28, + "probability": 0.9962 + }, + { + "start": 56696.96, + "end": 56698.24, + "probability": 0.6898 + }, + { + "start": 56699.6, + "end": 56703.36, + "probability": 0.949 + }, + { + "start": 56704.92, + "end": 56706.72, + "probability": 0.8331 + }, + { + "start": 56707.46, + "end": 56709.8, + "probability": 0.9875 + }, + { + "start": 56710.56, + "end": 56714.98, + "probability": 0.9951 + }, + { + "start": 56716.5, + "end": 56717.68, + "probability": 0.9009 + }, + { + "start": 56718.88, + "end": 56720.18, + "probability": 0.9455 + }, + { + "start": 56721.04, + "end": 56722.36, + "probability": 0.8481 + }, + { + "start": 56724.18, + "end": 56729.7, + "probability": 0.9529 + }, + { + "start": 56730.34, + "end": 56733.52, + "probability": 0.9797 + }, + { + "start": 56734.32, + "end": 56738.0, + "probability": 0.9863 + }, + { + "start": 56739.34, + "end": 56742.68, + "probability": 0.9915 + }, + { + "start": 56743.88, + "end": 56745.02, + "probability": 0.9873 + }, + { + "start": 56745.58, + "end": 56747.14, + "probability": 0.9922 + }, + { + "start": 56747.9, + "end": 56751.38, + "probability": 0.9142 + }, + { + "start": 56751.38, + "end": 56754.82, + "probability": 0.9981 + }, + { + "start": 56755.8, + "end": 56762.06, + "probability": 0.8455 + }, + { + "start": 56762.22, + "end": 56763.5, + "probability": 0.5573 + }, + { + "start": 56764.16, + "end": 56769.88, + "probability": 0.985 + }, + { + "start": 56769.88, + "end": 56776.52, + "probability": 0.9988 + }, + { + "start": 56777.04, + "end": 56779.74, + "probability": 0.9997 + }, + { + "start": 56782.32, + "end": 56785.2, + "probability": 0.9991 + }, + { + "start": 56786.0, + "end": 56788.26, + "probability": 0.999 + }, + { + "start": 56788.82, + "end": 56790.9, + "probability": 0.9441 + }, + { + "start": 56791.52, + "end": 56793.76, + "probability": 0.9795 + }, + { + "start": 56794.84, + "end": 56798.7, + "probability": 0.9648 + }, + { + "start": 56798.7, + "end": 56804.3, + "probability": 0.998 + }, + { + "start": 56805.42, + "end": 56808.74, + "probability": 0.9933 + }, + { + "start": 56809.26, + "end": 56813.66, + "probability": 0.9941 + }, + { + "start": 56816.02, + "end": 56817.16, + "probability": 0.9985 + }, + { + "start": 56817.72, + "end": 56819.34, + "probability": 0.8838 + }, + { + "start": 56820.18, + "end": 56823.86, + "probability": 0.9902 + }, + { + "start": 56824.13, + "end": 56826.7, + "probability": 0.9951 + }, + { + "start": 56827.6, + "end": 56834.8, + "probability": 0.9731 + }, + { + "start": 56836.34, + "end": 56840.84, + "probability": 0.9391 + }, + { + "start": 56841.42, + "end": 56845.1, + "probability": 0.8957 + }, + { + "start": 56845.68, + "end": 56847.26, + "probability": 0.995 + }, + { + "start": 56848.42, + "end": 56849.63, + "probability": 0.9982 + }, + { + "start": 56850.56, + "end": 56852.12, + "probability": 0.7505 + }, + { + "start": 56853.0, + "end": 56855.16, + "probability": 0.953 + }, + { + "start": 56856.04, + "end": 56858.84, + "probability": 0.9028 + }, + { + "start": 56860.16, + "end": 56862.46, + "probability": 0.9077 + }, + { + "start": 56863.16, + "end": 56867.28, + "probability": 0.8276 + }, + { + "start": 56868.32, + "end": 56869.72, + "probability": 0.9946 + }, + { + "start": 56870.48, + "end": 56872.18, + "probability": 0.9495 + }, + { + "start": 56872.92, + "end": 56873.72, + "probability": 0.8041 + }, + { + "start": 56874.3, + "end": 56876.3, + "probability": 0.98 + }, + { + "start": 56877.76, + "end": 56881.48, + "probability": 0.9933 + }, + { + "start": 56882.8, + "end": 56885.28, + "probability": 0.9291 + }, + { + "start": 56885.96, + "end": 56887.7, + "probability": 0.9878 + }, + { + "start": 56888.96, + "end": 56890.36, + "probability": 0.9435 + }, + { + "start": 56891.3, + "end": 56895.06, + "probability": 0.9259 + }, + { + "start": 56895.38, + "end": 56896.2, + "probability": 0.5022 + }, + { + "start": 56897.58, + "end": 56901.76, + "probability": 0.9537 + }, + { + "start": 56901.76, + "end": 56905.78, + "probability": 0.997 + }, + { + "start": 56905.78, + "end": 56912.94, + "probability": 0.9916 + }, + { + "start": 56913.58, + "end": 56917.04, + "probability": 0.7508 + }, + { + "start": 56917.04, + "end": 56920.16, + "probability": 0.9876 + }, + { + "start": 56922.64, + "end": 56926.2, + "probability": 0.9725 + }, + { + "start": 56926.2, + "end": 56930.16, + "probability": 0.9993 + }, + { + "start": 56930.76, + "end": 56933.54, + "probability": 0.9928 + }, + { + "start": 56934.92, + "end": 56936.68, + "probability": 0.9985 + }, + { + "start": 56937.28, + "end": 56939.08, + "probability": 0.9481 + }, + { + "start": 56940.34, + "end": 56942.68, + "probability": 0.7506 + }, + { + "start": 56943.48, + "end": 56945.34, + "probability": 0.9883 + }, + { + "start": 56945.88, + "end": 56946.78, + "probability": 0.601 + }, + { + "start": 56947.56, + "end": 56951.76, + "probability": 0.9866 + }, + { + "start": 56953.44, + "end": 56956.02, + "probability": 0.8764 + }, + { + "start": 56956.64, + "end": 56961.4, + "probability": 0.9931 + }, + { + "start": 56962.8, + "end": 56963.78, + "probability": 0.9888 + }, + { + "start": 56964.62, + "end": 56966.5, + "probability": 0.9968 + }, + { + "start": 56967.14, + "end": 56970.54, + "probability": 0.9957 + }, + { + "start": 56971.82, + "end": 56974.82, + "probability": 0.9899 + }, + { + "start": 56976.48, + "end": 56978.5, + "probability": 0.9956 + }, + { + "start": 56979.7, + "end": 56982.14, + "probability": 0.9953 + }, + { + "start": 56983.0, + "end": 56988.4, + "probability": 0.9939 + }, + { + "start": 56989.7, + "end": 56990.78, + "probability": 0.873 + }, + { + "start": 56991.64, + "end": 56996.12, + "probability": 0.9537 + }, + { + "start": 56996.82, + "end": 57003.04, + "probability": 0.9964 + }, + { + "start": 57003.9, + "end": 57007.68, + "probability": 0.9949 + }, + { + "start": 57010.14, + "end": 57015.5, + "probability": 0.9922 + }, + { + "start": 57016.42, + "end": 57017.92, + "probability": 0.9873 + }, + { + "start": 57018.86, + "end": 57019.84, + "probability": 0.9875 + }, + { + "start": 57020.52, + "end": 57023.3, + "probability": 0.934 + }, + { + "start": 57024.18, + "end": 57025.0, + "probability": 0.9646 + }, + { + "start": 57027.26, + "end": 57028.02, + "probability": 0.6853 + }, + { + "start": 57028.54, + "end": 57028.98, + "probability": 0.9076 + }, + { + "start": 57030.08, + "end": 57031.68, + "probability": 0.9756 + }, + { + "start": 57032.54, + "end": 57036.66, + "probability": 0.9949 + }, + { + "start": 57036.66, + "end": 57040.1, + "probability": 0.9849 + }, + { + "start": 57041.32, + "end": 57043.92, + "probability": 0.9679 + }, + { + "start": 57045.24, + "end": 57045.84, + "probability": 0.7764 + }, + { + "start": 57046.78, + "end": 57047.76, + "probability": 0.8086 + }, + { + "start": 57048.5, + "end": 57050.08, + "probability": 0.9812 + }, + { + "start": 57050.9, + "end": 57052.16, + "probability": 0.947 + }, + { + "start": 57052.82, + "end": 57058.9, + "probability": 0.9801 + }, + { + "start": 57059.8, + "end": 57062.14, + "probability": 0.998 + }, + { + "start": 57063.0, + "end": 57064.15, + "probability": 0.7828 + }, + { + "start": 57064.92, + "end": 57066.22, + "probability": 0.7594 + }, + { + "start": 57067.44, + "end": 57070.46, + "probability": 0.9875 + }, + { + "start": 57071.26, + "end": 57071.83, + "probability": 0.9637 + }, + { + "start": 57072.86, + "end": 57074.2, + "probability": 0.9702 + }, + { + "start": 57075.64, + "end": 57077.28, + "probability": 0.9674 + }, + { + "start": 57078.76, + "end": 57081.72, + "probability": 0.8469 + }, + { + "start": 57082.8, + "end": 57086.04, + "probability": 0.9801 + }, + { + "start": 57086.68, + "end": 57087.08, + "probability": 0.98 + }, + { + "start": 57088.92, + "end": 57091.62, + "probability": 0.9457 + }, + { + "start": 57092.14, + "end": 57093.35, + "probability": 0.9926 + }, + { + "start": 57094.98, + "end": 57097.5, + "probability": 0.981 + }, + { + "start": 57098.08, + "end": 57099.3, + "probability": 0.8472 + }, + { + "start": 57099.88, + "end": 57100.5, + "probability": 0.9106 + }, + { + "start": 57101.04, + "end": 57102.2, + "probability": 0.8849 + }, + { + "start": 57103.18, + "end": 57106.92, + "probability": 0.9829 + }, + { + "start": 57106.92, + "end": 57111.54, + "probability": 0.9814 + }, + { + "start": 57112.12, + "end": 57113.24, + "probability": 0.9016 + }, + { + "start": 57113.9, + "end": 57116.15, + "probability": 0.9487 + }, + { + "start": 57117.18, + "end": 57119.98, + "probability": 0.9922 + }, + { + "start": 57120.96, + "end": 57121.98, + "probability": 0.9559 + }, + { + "start": 57122.5, + "end": 57127.28, + "probability": 0.9955 + }, + { + "start": 57128.04, + "end": 57130.06, + "probability": 0.9777 + }, + { + "start": 57131.14, + "end": 57132.26, + "probability": 0.6144 + }, + { + "start": 57133.14, + "end": 57134.8, + "probability": 0.9818 + }, + { + "start": 57135.36, + "end": 57136.62, + "probability": 0.9128 + }, + { + "start": 57137.56, + "end": 57141.86, + "probability": 0.9907 + }, + { + "start": 57141.86, + "end": 57147.38, + "probability": 0.9952 + }, + { + "start": 57148.2, + "end": 57148.62, + "probability": 0.9431 + }, + { + "start": 57150.02, + "end": 57154.74, + "probability": 0.9916 + }, + { + "start": 57155.72, + "end": 57161.88, + "probability": 0.9944 + }, + { + "start": 57162.4, + "end": 57164.2, + "probability": 0.995 + }, + { + "start": 57165.52, + "end": 57168.54, + "probability": 0.9928 + }, + { + "start": 57169.32, + "end": 57170.26, + "probability": 0.9586 + }, + { + "start": 57171.78, + "end": 57173.64, + "probability": 0.9981 + }, + { + "start": 57174.22, + "end": 57179.78, + "probability": 0.9883 + }, + { + "start": 57180.9, + "end": 57181.16, + "probability": 0.4767 + }, + { + "start": 57181.72, + "end": 57182.72, + "probability": 0.8635 + }, + { + "start": 57183.42, + "end": 57186.32, + "probability": 0.9631 + }, + { + "start": 57187.18, + "end": 57190.16, + "probability": 0.7164 + }, + { + "start": 57191.92, + "end": 57198.4, + "probability": 0.9153 + }, + { + "start": 57199.42, + "end": 57204.12, + "probability": 0.9993 + }, + { + "start": 57204.8, + "end": 57209.12, + "probability": 0.9995 + }, + { + "start": 57211.86, + "end": 57214.52, + "probability": 0.9965 + }, + { + "start": 57215.64, + "end": 57220.66, + "probability": 0.9218 + }, + { + "start": 57222.08, + "end": 57223.52, + "probability": 0.9441 + }, + { + "start": 57224.12, + "end": 57225.44, + "probability": 0.6254 + }, + { + "start": 57226.36, + "end": 57229.98, + "probability": 0.9745 + }, + { + "start": 57231.06, + "end": 57237.22, + "probability": 0.981 + }, + { + "start": 57237.9, + "end": 57242.34, + "probability": 0.975 + }, + { + "start": 57244.02, + "end": 57245.52, + "probability": 0.9984 + }, + { + "start": 57246.18, + "end": 57248.18, + "probability": 0.9963 + }, + { + "start": 57248.84, + "end": 57252.88, + "probability": 0.9876 + }, + { + "start": 57254.56, + "end": 57257.32, + "probability": 0.7847 + }, + { + "start": 57258.78, + "end": 57263.29, + "probability": 0.9888 + }, + { + "start": 57264.4, + "end": 57267.64, + "probability": 0.9476 + }, + { + "start": 57268.42, + "end": 57269.6, + "probability": 0.98 + }, + { + "start": 57270.34, + "end": 57274.8, + "probability": 0.998 + }, + { + "start": 57275.46, + "end": 57277.14, + "probability": 0.7771 + }, + { + "start": 57278.04, + "end": 57282.36, + "probability": 0.9772 + }, + { + "start": 57283.02, + "end": 57286.1, + "probability": 0.9929 + }, + { + "start": 57286.98, + "end": 57287.62, + "probability": 0.7093 + }, + { + "start": 57289.46, + "end": 57290.78, + "probability": 0.9944 + }, + { + "start": 57291.52, + "end": 57293.42, + "probability": 0.8776 + }, + { + "start": 57294.0, + "end": 57295.12, + "probability": 0.4416 + }, + { + "start": 57296.74, + "end": 57299.16, + "probability": 0.9862 + }, + { + "start": 57300.06, + "end": 57302.9, + "probability": 0.9836 + }, + { + "start": 57303.86, + "end": 57308.06, + "probability": 0.9953 + }, + { + "start": 57309.3, + "end": 57313.82, + "probability": 0.9963 + }, + { + "start": 57315.12, + "end": 57319.14, + "probability": 0.9971 + }, + { + "start": 57320.3, + "end": 57324.9, + "probability": 0.8231 + }, + { + "start": 57325.94, + "end": 57327.16, + "probability": 0.7755 + }, + { + "start": 57328.5, + "end": 57333.84, + "probability": 0.9955 + }, + { + "start": 57334.64, + "end": 57336.56, + "probability": 0.995 + }, + { + "start": 57337.86, + "end": 57342.22, + "probability": 0.9978 + }, + { + "start": 57342.9, + "end": 57344.24, + "probability": 0.895 + }, + { + "start": 57345.06, + "end": 57349.78, + "probability": 0.997 + }, + { + "start": 57350.88, + "end": 57351.64, + "probability": 0.976 + }, + { + "start": 57352.96, + "end": 57356.14, + "probability": 0.928 + }, + { + "start": 57357.34, + "end": 57358.62, + "probability": 0.9136 + }, + { + "start": 57359.84, + "end": 57362.36, + "probability": 0.98 + }, + { + "start": 57363.82, + "end": 57367.98, + "probability": 0.9971 + }, + { + "start": 57368.58, + "end": 57372.92, + "probability": 0.9972 + }, + { + "start": 57374.32, + "end": 57375.84, + "probability": 0.9613 + }, + { + "start": 57376.82, + "end": 57378.84, + "probability": 0.9992 + }, + { + "start": 57379.7, + "end": 57382.36, + "probability": 0.9814 + }, + { + "start": 57383.3, + "end": 57384.64, + "probability": 0.9838 + }, + { + "start": 57385.6, + "end": 57386.62, + "probability": 0.8949 + }, + { + "start": 57387.6, + "end": 57389.56, + "probability": 0.9851 + }, + { + "start": 57390.84, + "end": 57393.96, + "probability": 0.9857 + }, + { + "start": 57394.56, + "end": 57398.12, + "probability": 0.9907 + }, + { + "start": 57400.0, + "end": 57400.86, + "probability": 0.7781 + }, + { + "start": 57401.02, + "end": 57402.0, + "probability": 0.9789 + }, + { + "start": 57402.06, + "end": 57402.8, + "probability": 0.9828 + }, + { + "start": 57402.86, + "end": 57403.66, + "probability": 0.7933 + }, + { + "start": 57404.36, + "end": 57408.44, + "probability": 0.9414 + }, + { + "start": 57409.82, + "end": 57414.06, + "probability": 0.9617 + }, + { + "start": 57415.4, + "end": 57419.04, + "probability": 0.9935 + }, + { + "start": 57420.62, + "end": 57425.36, + "probability": 0.9874 + }, + { + "start": 57425.94, + "end": 57426.84, + "probability": 0.7502 + }, + { + "start": 57428.34, + "end": 57429.54, + "probability": 0.9146 + }, + { + "start": 57429.94, + "end": 57432.92, + "probability": 0.9963 + }, + { + "start": 57434.38, + "end": 57435.64, + "probability": 0.9255 + }, + { + "start": 57435.74, + "end": 57438.86, + "probability": 0.9976 + }, + { + "start": 57439.56, + "end": 57441.62, + "probability": 0.9951 + }, + { + "start": 57442.54, + "end": 57444.82, + "probability": 0.8321 + }, + { + "start": 57445.58, + "end": 57446.44, + "probability": 0.7711 + }, + { + "start": 57447.18, + "end": 57451.62, + "probability": 0.9851 + }, + { + "start": 57452.74, + "end": 57454.98, + "probability": 0.9919 + }, + { + "start": 57456.4, + "end": 57462.66, + "probability": 0.9978 + }, + { + "start": 57463.12, + "end": 57465.74, + "probability": 0.9822 + }, + { + "start": 57468.58, + "end": 57472.7, + "probability": 0.8447 + }, + { + "start": 57474.38, + "end": 57478.58, + "probability": 0.986 + }, + { + "start": 57478.58, + "end": 57483.04, + "probability": 0.9994 + }, + { + "start": 57484.02, + "end": 57485.62, + "probability": 0.9786 + }, + { + "start": 57486.2, + "end": 57486.84, + "probability": 0.9991 + }, + { + "start": 57487.4, + "end": 57489.82, + "probability": 0.9987 + }, + { + "start": 57490.44, + "end": 57492.08, + "probability": 0.867 + }, + { + "start": 57493.66, + "end": 57495.08, + "probability": 0.9634 + }, + { + "start": 57496.46, + "end": 57500.04, + "probability": 0.9978 + }, + { + "start": 57500.88, + "end": 57502.16, + "probability": 0.8725 + }, + { + "start": 57503.58, + "end": 57508.6, + "probability": 0.9842 + }, + { + "start": 57510.12, + "end": 57513.34, + "probability": 0.9983 + }, + { + "start": 57514.4, + "end": 57515.46, + "probability": 0.8183 + }, + { + "start": 57516.26, + "end": 57519.68, + "probability": 0.9779 + }, + { + "start": 57520.98, + "end": 57525.52, + "probability": 0.9838 + }, + { + "start": 57526.96, + "end": 57529.14, + "probability": 0.717 + }, + { + "start": 57529.2, + "end": 57531.82, + "probability": 0.8761 + }, + { + "start": 57532.66, + "end": 57533.5, + "probability": 0.9598 + }, + { + "start": 57534.42, + "end": 57539.66, + "probability": 0.9546 + }, + { + "start": 57539.66, + "end": 57542.74, + "probability": 0.9976 + }, + { + "start": 57544.08, + "end": 57546.9, + "probability": 0.9819 + }, + { + "start": 57548.16, + "end": 57552.46, + "probability": 0.893 + }, + { + "start": 57553.88, + "end": 57556.44, + "probability": 0.7087 + }, + { + "start": 57557.56, + "end": 57558.82, + "probability": 0.9945 + }, + { + "start": 57559.36, + "end": 57561.38, + "probability": 0.9302 + }, + { + "start": 57562.38, + "end": 57564.42, + "probability": 0.998 + }, + { + "start": 57565.56, + "end": 57569.58, + "probability": 0.9537 + }, + { + "start": 57570.56, + "end": 57573.38, + "probability": 0.9728 + }, + { + "start": 57574.08, + "end": 57574.5, + "probability": 0.7469 + }, + { + "start": 57577.2, + "end": 57578.98, + "probability": 0.9259 + }, + { + "start": 57580.38, + "end": 57583.8, + "probability": 0.9703 + }, + { + "start": 57584.68, + "end": 57591.24, + "probability": 0.1532 + }, + { + "start": 57595.56, + "end": 57597.66, + "probability": 0.1523 + }, + { + "start": 57608.3, + "end": 57613.83, + "probability": 0.0621 + }, + { + "start": 57615.31, + "end": 57616.12, + "probability": 0.0788 + }, + { + "start": 57616.12, + "end": 57616.56, + "probability": 0.0904 + }, + { + "start": 57660.54, + "end": 57663.46, + "probability": 0.9269 + }, + { + "start": 57664.44, + "end": 57666.68, + "probability": 0.6231 + }, + { + "start": 57667.84, + "end": 57668.14, + "probability": 0.7823 + }, + { + "start": 57669.14, + "end": 57670.34, + "probability": 0.7093 + }, + { + "start": 57671.16, + "end": 57671.6, + "probability": 0.9199 + }, + { + "start": 57672.84, + "end": 57674.38, + "probability": 0.6571 + }, + { + "start": 57675.36, + "end": 57675.66, + "probability": 0.9863 + }, + { + "start": 57676.28, + "end": 57678.42, + "probability": 0.9498 + }, + { + "start": 57679.22, + "end": 57681.34, + "probability": 0.9558 + }, + { + "start": 57681.92, + "end": 57682.58, + "probability": 0.5176 + }, + { + "start": 57683.7, + "end": 57686.68, + "probability": 0.9769 + }, + { + "start": 57687.94, + "end": 57689.18, + "probability": 0.9233 + }, + { + "start": 57690.6, + "end": 57690.98, + "probability": 0.742 + }, + { + "start": 57691.88, + "end": 57693.44, + "probability": 0.9134 + }, + { + "start": 57694.44, + "end": 57695.5, + "probability": 0.9868 + }, + { + "start": 57696.4, + "end": 57697.5, + "probability": 0.974 + }, + { + "start": 57698.5, + "end": 57700.68, + "probability": 0.9764 + }, + { + "start": 57701.5, + "end": 57703.4, + "probability": 0.9835 + }, + { + "start": 57704.22, + "end": 57711.16, + "probability": 0.9806 + }, + { + "start": 57711.92, + "end": 57715.1, + "probability": 0.9555 + }, + { + "start": 57715.72, + "end": 57716.28, + "probability": 0.7867 + }, + { + "start": 57716.98, + "end": 57720.52, + "probability": 0.8116 + }, + { + "start": 57721.46, + "end": 57722.86, + "probability": 0.6628 + }, + { + "start": 57723.64, + "end": 57725.34, + "probability": 0.9907 + }, + { + "start": 57726.14, + "end": 57727.92, + "probability": 0.9139 + }, + { + "start": 57728.52, + "end": 57729.8, + "probability": 0.9984 + }, + { + "start": 57730.76, + "end": 57732.86, + "probability": 0.8687 + }, + { + "start": 57733.7, + "end": 57734.62, + "probability": 0.9888 + }, + { + "start": 57736.0, + "end": 57739.42, + "probability": 0.9068 + }, + { + "start": 57740.12, + "end": 57740.64, + "probability": 0.9279 + }, + { + "start": 57741.72, + "end": 57743.28, + "probability": 0.9735 + }, + { + "start": 57743.58, + "end": 57746.56, + "probability": 0.981 + }, + { + "start": 57747.78, + "end": 57748.98, + "probability": 0.6278 + }, + { + "start": 57750.06, + "end": 57753.92, + "probability": 0.9766 + }, + { + "start": 57754.68, + "end": 57757.38, + "probability": 0.9417 + }, + { + "start": 57758.5, + "end": 57759.14, + "probability": 0.8275 + }, + { + "start": 57760.48, + "end": 57761.64, + "probability": 0.521 + }, + { + "start": 57762.48, + "end": 57763.8, + "probability": 0.9728 + }, + { + "start": 57764.56, + "end": 57765.64, + "probability": 0.9423 + }, + { + "start": 57766.58, + "end": 57768.56, + "probability": 0.9846 + }, + { + "start": 57770.54, + "end": 57775.12, + "probability": 0.9607 + }, + { + "start": 57776.22, + "end": 57776.98, + "probability": 0.7431 + }, + { + "start": 57778.14, + "end": 57779.74, + "probability": 0.991 + }, + { + "start": 57780.66, + "end": 57785.06, + "probability": 0.9946 + }, + { + "start": 57786.24, + "end": 57788.03, + "probability": 0.9989 + }, + { + "start": 57788.9, + "end": 57790.83, + "probability": 0.9937 + }, + { + "start": 57791.68, + "end": 57795.58, + "probability": 0.9936 + }, + { + "start": 57796.46, + "end": 57796.8, + "probability": 0.8334 + }, + { + "start": 57798.56, + "end": 57800.4, + "probability": 0.9872 + }, + { + "start": 57801.48, + "end": 57805.86, + "probability": 0.9223 + }, + { + "start": 57806.86, + "end": 57807.76, + "probability": 0.828 + }, + { + "start": 57809.08, + "end": 57809.94, + "probability": 0.9764 + }, + { + "start": 57812.34, + "end": 57814.36, + "probability": 0.9852 + }, + { + "start": 57815.38, + "end": 57819.62, + "probability": 0.9736 + }, + { + "start": 57819.9, + "end": 57820.6, + "probability": 0.9442 + }, + { + "start": 57821.44, + "end": 57823.86, + "probability": 0.9895 + }, + { + "start": 57824.56, + "end": 57825.04, + "probability": 0.9555 + }, + { + "start": 57825.62, + "end": 57825.84, + "probability": 0.9224 + }, + { + "start": 57826.56, + "end": 57826.9, + "probability": 0.9428 + }, + { + "start": 57827.88, + "end": 57828.46, + "probability": 0.9501 + }, + { + "start": 57829.38, + "end": 57832.02, + "probability": 0.9338 + }, + { + "start": 57832.6, + "end": 57834.52, + "probability": 0.6854 + }, + { + "start": 57835.48, + "end": 57837.8, + "probability": 0.9813 + }, + { + "start": 57838.66, + "end": 57840.16, + "probability": 0.9868 + }, + { + "start": 57841.32, + "end": 57843.82, + "probability": 0.8802 + }, + { + "start": 57844.8, + "end": 57846.5, + "probability": 0.9823 + }, + { + "start": 57847.72, + "end": 57848.52, + "probability": 0.984 + }, + { + "start": 57850.06, + "end": 57851.18, + "probability": 0.9878 + }, + { + "start": 57852.3, + "end": 57852.78, + "probability": 0.585 + }, + { + "start": 57853.46, + "end": 57853.98, + "probability": 0.5737 + }, + { + "start": 57854.56, + "end": 57856.94, + "probability": 0.9915 + }, + { + "start": 57857.78, + "end": 57858.0, + "probability": 0.7891 + }, + { + "start": 57859.48, + "end": 57860.52, + "probability": 0.9564 + }, + { + "start": 57861.22, + "end": 57862.72, + "probability": 0.9791 + }, + { + "start": 57864.32, + "end": 57865.06, + "probability": 0.9456 + }, + { + "start": 57865.88, + "end": 57867.2, + "probability": 0.9987 + }, + { + "start": 57868.54, + "end": 57871.18, + "probability": 0.8394 + }, + { + "start": 57871.82, + "end": 57872.88, + "probability": 0.9813 + }, + { + "start": 57874.64, + "end": 57876.38, + "probability": 0.9657 + }, + { + "start": 57877.96, + "end": 57881.0, + "probability": 0.9974 + }, + { + "start": 57881.86, + "end": 57884.0, + "probability": 0.9985 + }, + { + "start": 57884.7, + "end": 57886.8, + "probability": 0.8288 + }, + { + "start": 57887.62, + "end": 57889.66, + "probability": 0.9808 + }, + { + "start": 57890.64, + "end": 57892.62, + "probability": 0.8782 + }, + { + "start": 57893.58, + "end": 57894.26, + "probability": 0.9795 + }, + { + "start": 57894.78, + "end": 57898.1, + "probability": 0.9039 + }, + { + "start": 57899.46, + "end": 57901.1, + "probability": 0.9987 + }, + { + "start": 57901.92, + "end": 57903.24, + "probability": 0.797 + }, + { + "start": 57904.2, + "end": 57905.79, + "probability": 0.6284 + }, + { + "start": 57906.52, + "end": 57908.0, + "probability": 0.8318 + }, + { + "start": 57909.68, + "end": 57912.06, + "probability": 0.7368 + }, + { + "start": 57912.92, + "end": 57914.28, + "probability": 0.9705 + }, + { + "start": 57915.38, + "end": 57917.64, + "probability": 0.7867 + }, + { + "start": 57918.48, + "end": 57920.34, + "probability": 0.9959 + }, + { + "start": 57920.9, + "end": 57921.12, + "probability": 0.999 + }, + { + "start": 57921.96, + "end": 57922.72, + "probability": 0.8687 + }, + { + "start": 57923.86, + "end": 57924.38, + "probability": 0.53 + }, + { + "start": 57926.14, + "end": 57927.64, + "probability": 0.7985 + }, + { + "start": 57928.78, + "end": 57932.96, + "probability": 0.9933 + }, + { + "start": 57933.96, + "end": 57938.7, + "probability": 0.9956 + }, + { + "start": 57939.38, + "end": 57940.22, + "probability": 0.7158 + }, + { + "start": 57941.26, + "end": 57943.42, + "probability": 0.6211 + }, + { + "start": 57943.56, + "end": 57945.74, + "probability": 0.8911 + }, + { + "start": 57947.15, + "end": 57948.1, + "probability": 0.5842 + }, + { + "start": 57949.42, + "end": 57950.4, + "probability": 0.9145 + }, + { + "start": 57951.4, + "end": 57952.82, + "probability": 0.948 + }, + { + "start": 57954.06, + "end": 57954.7, + "probability": 0.8136 + }, + { + "start": 57955.98, + "end": 57958.21, + "probability": 0.9766 + }, + { + "start": 57959.88, + "end": 57961.4, + "probability": 0.9149 + }, + { + "start": 57963.4, + "end": 57965.5, + "probability": 0.9885 + }, + { + "start": 57966.68, + "end": 57967.08, + "probability": 0.8412 + }, + { + "start": 57969.28, + "end": 57971.88, + "probability": 0.9752 + }, + { + "start": 57972.62, + "end": 57975.54, + "probability": 0.9035 + }, + { + "start": 57976.38, + "end": 57978.1, + "probability": 0.7935 + }, + { + "start": 57978.98, + "end": 57980.06, + "probability": 0.7499 + }, + { + "start": 57980.96, + "end": 57981.68, + "probability": 0.4229 + }, + { + "start": 57981.68, + "end": 57982.28, + "probability": 0.6895 + }, + { + "start": 57982.36, + "end": 57983.12, + "probability": 0.6439 + }, + { + "start": 57983.5, + "end": 57987.82, + "probability": 0.725 + }, + { + "start": 57988.18, + "end": 57988.74, + "probability": 0.9464 + }, + { + "start": 57990.24, + "end": 57991.3, + "probability": 0.9503 + }, + { + "start": 57992.66, + "end": 57995.1, + "probability": 0.9897 + }, + { + "start": 57995.86, + "end": 57997.54, + "probability": 0.7494 + }, + { + "start": 57998.26, + "end": 57999.44, + "probability": 0.999 + }, + { + "start": 58000.78, + "end": 58003.9, + "probability": 0.9961 + }, + { + "start": 58004.74, + "end": 58005.66, + "probability": 0.968 + }, + { + "start": 58006.9, + "end": 58008.32, + "probability": 0.8531 + }, + { + "start": 58009.66, + "end": 58010.6, + "probability": 0.862 + }, + { + "start": 58011.54, + "end": 58012.12, + "probability": 0.8096 + }, + { + "start": 58012.18, + "end": 58013.48, + "probability": 0.8954 + }, + { + "start": 58013.92, + "end": 58016.84, + "probability": 0.3809 + }, + { + "start": 58017.38, + "end": 58017.48, + "probability": 0.3849 + }, + { + "start": 58017.7, + "end": 58017.7, + "probability": 0.7017 + }, + { + "start": 58017.7, + "end": 58018.7, + "probability": 0.7029 + }, + { + "start": 58019.74, + "end": 58022.88, + "probability": 0.9897 + }, + { + "start": 58023.92, + "end": 58025.62, + "probability": 0.9855 + }, + { + "start": 58026.12, + "end": 58029.46, + "probability": 0.9918 + }, + { + "start": 58030.32, + "end": 58031.7, + "probability": 0.8687 + }, + { + "start": 58032.42, + "end": 58034.6, + "probability": 0.8909 + }, + { + "start": 58035.34, + "end": 58036.0, + "probability": 0.7756 + }, + { + "start": 58036.58, + "end": 58038.78, + "probability": 0.9806 + }, + { + "start": 58039.81, + "end": 58042.44, + "probability": 0.9825 + }, + { + "start": 58043.88, + "end": 58045.94, + "probability": 0.9746 + }, + { + "start": 58047.5, + "end": 58051.38, + "probability": 0.9749 + }, + { + "start": 58052.36, + "end": 58053.68, + "probability": 0.9497 + }, + { + "start": 58054.52, + "end": 58056.36, + "probability": 0.9814 + }, + { + "start": 58057.28, + "end": 58059.54, + "probability": 0.8946 + }, + { + "start": 58060.14, + "end": 58062.13, + "probability": 0.6996 + }, + { + "start": 58062.36, + "end": 58063.38, + "probability": 0.6718 + }, + { + "start": 58063.4, + "end": 58063.82, + "probability": 0.9458 + }, + { + "start": 58065.7, + "end": 58069.38, + "probability": 0.9351 + }, + { + "start": 58070.3, + "end": 58071.5, + "probability": 0.9809 + }, + { + "start": 58072.28, + "end": 58072.88, + "probability": 0.9272 + }, + { + "start": 58074.12, + "end": 58077.14, + "probability": 0.9268 + }, + { + "start": 58078.64, + "end": 58079.6, + "probability": 0.9452 + }, + { + "start": 58080.42, + "end": 58081.63, + "probability": 0.9814 + }, + { + "start": 58082.94, + "end": 58084.36, + "probability": 0.8089 + }, + { + "start": 58086.14, + "end": 58087.38, + "probability": 0.513 + }, + { + "start": 58088.12, + "end": 58088.86, + "probability": 0.8794 + }, + { + "start": 58090.36, + "end": 58092.52, + "probability": 0.9969 + }, + { + "start": 58093.38, + "end": 58094.28, + "probability": 0.6855 + }, + { + "start": 58095.2, + "end": 58097.92, + "probability": 0.9512 + }, + { + "start": 58098.62, + "end": 58101.36, + "probability": 0.7409 + }, + { + "start": 58102.56, + "end": 58103.73, + "probability": 0.9585 + }, + { + "start": 58104.82, + "end": 58105.6, + "probability": 0.9946 + }, + { + "start": 58106.98, + "end": 58108.7, + "probability": 0.7012 + }, + { + "start": 58109.7, + "end": 58111.04, + "probability": 0.9993 + }, + { + "start": 58112.94, + "end": 58114.24, + "probability": 0.9758 + }, + { + "start": 58115.22, + "end": 58115.52, + "probability": 0.6201 + }, + { + "start": 58117.14, + "end": 58118.08, + "probability": 0.8252 + }, + { + "start": 58118.78, + "end": 58119.68, + "probability": 0.9718 + }, + { + "start": 58120.28, + "end": 58121.2, + "probability": 0.9807 + }, + { + "start": 58122.12, + "end": 58122.66, + "probability": 0.9618 + }, + { + "start": 58123.56, + "end": 58124.88, + "probability": 0.9601 + }, + { + "start": 58126.3, + "end": 58130.94, + "probability": 0.9814 + }, + { + "start": 58131.82, + "end": 58132.58, + "probability": 0.9083 + }, + { + "start": 58134.34, + "end": 58135.62, + "probability": 0.9832 + }, + { + "start": 58136.46, + "end": 58138.36, + "probability": 0.9973 + }, + { + "start": 58139.2, + "end": 58140.38, + "probability": 0.9988 + }, + { + "start": 58141.22, + "end": 58142.7, + "probability": 0.9922 + }, + { + "start": 58143.48, + "end": 58145.06, + "probability": 0.9912 + }, + { + "start": 58147.0, + "end": 58151.24, + "probability": 0.9878 + }, + { + "start": 58152.34, + "end": 58153.48, + "probability": 0.9196 + }, + { + "start": 58155.14, + "end": 58156.82, + "probability": 0.9674 + }, + { + "start": 58157.64, + "end": 58159.24, + "probability": 0.9983 + }, + { + "start": 58159.88, + "end": 58161.84, + "probability": 0.971 + }, + { + "start": 58162.54, + "end": 58164.71, + "probability": 0.9988 + }, + { + "start": 58165.62, + "end": 58168.08, + "probability": 0.8247 + }, + { + "start": 58169.42, + "end": 58169.72, + "probability": 0.975 + }, + { + "start": 58170.94, + "end": 58173.4, + "probability": 0.9465 + }, + { + "start": 58174.34, + "end": 58176.32, + "probability": 0.779 + }, + { + "start": 58177.84, + "end": 58178.84, + "probability": 0.9001 + }, + { + "start": 58180.04, + "end": 58182.38, + "probability": 0.939 + }, + { + "start": 58184.32, + "end": 58186.02, + "probability": 0.6001 + }, + { + "start": 58186.86, + "end": 58188.4, + "probability": 0.9865 + }, + { + "start": 58189.2, + "end": 58190.58, + "probability": 0.8345 + }, + { + "start": 58191.58, + "end": 58196.82, + "probability": 0.9902 + }, + { + "start": 58198.36, + "end": 58198.88, + "probability": 0.5487 + }, + { + "start": 58200.1, + "end": 58201.08, + "probability": 0.9575 + }, + { + "start": 58201.92, + "end": 58203.41, + "probability": 0.9502 + }, + { + "start": 58204.38, + "end": 58206.46, + "probability": 0.8779 + }, + { + "start": 58208.12, + "end": 58208.4, + "probability": 0.4451 + }, + { + "start": 58209.56, + "end": 58211.76, + "probability": 0.9978 + }, + { + "start": 58213.46, + "end": 58214.14, + "probability": 0.7347 + }, + { + "start": 58215.56, + "end": 58217.3, + "probability": 0.9946 + }, + { + "start": 58218.02, + "end": 58218.18, + "probability": 0.992 + }, + { + "start": 58219.2, + "end": 58219.52, + "probability": 0.8092 + }, + { + "start": 58222.0, + "end": 58225.98, + "probability": 0.9893 + }, + { + "start": 58227.26, + "end": 58231.48, + "probability": 0.8925 + }, + { + "start": 58232.92, + "end": 58237.9, + "probability": 0.9839 + }, + { + "start": 58240.22, + "end": 58240.42, + "probability": 0.7903 + }, + { + "start": 58241.92, + "end": 58242.94, + "probability": 0.8319 + }, + { + "start": 58244.32, + "end": 58246.5, + "probability": 0.9723 + }, + { + "start": 58247.54, + "end": 58248.18, + "probability": 0.8718 + }, + { + "start": 58249.84, + "end": 58250.56, + "probability": 0.8682 + }, + { + "start": 58252.14, + "end": 58254.94, + "probability": 0.9815 + }, + { + "start": 58255.04, + "end": 58255.92, + "probability": 0.6644 + }, + { + "start": 58256.78, + "end": 58257.66, + "probability": 0.7626 + }, + { + "start": 58259.06, + "end": 58259.76, + "probability": 0.6691 + }, + { + "start": 58261.38, + "end": 58263.04, + "probability": 0.989 + }, + { + "start": 58264.2, + "end": 58266.29, + "probability": 0.9954 + }, + { + "start": 58268.64, + "end": 58269.58, + "probability": 0.9993 + }, + { + "start": 58270.42, + "end": 58273.24, + "probability": 0.9028 + }, + { + "start": 58274.3, + "end": 58278.08, + "probability": 0.9889 + }, + { + "start": 58279.0, + "end": 58280.42, + "probability": 0.9503 + }, + { + "start": 58282.31, + "end": 58287.16, + "probability": 0.992 + }, + { + "start": 58288.47, + "end": 58290.06, + "probability": 0.5895 + }, + { + "start": 58291.38, + "end": 58292.6, + "probability": 0.712 + }, + { + "start": 58293.78, + "end": 58294.62, + "probability": 0.8481 + }, + { + "start": 58296.28, + "end": 58297.23, + "probability": 0.96 + }, + { + "start": 58298.82, + "end": 58300.0, + "probability": 0.9577 + }, + { + "start": 58301.24, + "end": 58303.16, + "probability": 0.7213 + }, + { + "start": 58304.82, + "end": 58306.04, + "probability": 0.9695 + }, + { + "start": 58306.94, + "end": 58308.02, + "probability": 0.9946 + }, + { + "start": 58308.98, + "end": 58310.16, + "probability": 0.9268 + }, + { + "start": 58311.12, + "end": 58312.3, + "probability": 0.856 + }, + { + "start": 58313.54, + "end": 58315.04, + "probability": 0.9721 + }, + { + "start": 58317.14, + "end": 58318.38, + "probability": 0.9003 + }, + { + "start": 58319.32, + "end": 58323.66, + "probability": 0.9749 + }, + { + "start": 58325.48, + "end": 58327.06, + "probability": 0.9229 + }, + { + "start": 58327.88, + "end": 58329.33, + "probability": 0.8381 + }, + { + "start": 58331.88, + "end": 58333.28, + "probability": 0.9786 + }, + { + "start": 58334.64, + "end": 58336.68, + "probability": 0.9977 + }, + { + "start": 58337.62, + "end": 58341.24, + "probability": 0.9447 + }, + { + "start": 58342.52, + "end": 58346.0, + "probability": 0.8887 + }, + { + "start": 58347.06, + "end": 58347.98, + "probability": 0.9937 + }, + { + "start": 58348.68, + "end": 58350.66, + "probability": 0.998 + }, + { + "start": 58351.64, + "end": 58354.04, + "probability": 0.9988 + }, + { + "start": 58354.9, + "end": 58356.8, + "probability": 0.9844 + }, + { + "start": 58358.5, + "end": 58360.38, + "probability": 0.9075 + }, + { + "start": 58361.54, + "end": 58363.34, + "probability": 0.9969 + }, + { + "start": 58364.5, + "end": 58366.85, + "probability": 0.998 + }, + { + "start": 58368.1, + "end": 58369.28, + "probability": 0.8261 + }, + { + "start": 58370.08, + "end": 58371.62, + "probability": 0.988 + }, + { + "start": 58373.32, + "end": 58374.32, + "probability": 0.9282 + }, + { + "start": 58375.6, + "end": 58376.68, + "probability": 0.6136 + }, + { + "start": 58377.74, + "end": 58378.36, + "probability": 0.4419 + }, + { + "start": 58380.32, + "end": 58381.02, + "probability": 0.6929 + }, + { + "start": 58383.5, + "end": 58388.74, + "probability": 0.9541 + }, + { + "start": 58390.1, + "end": 58390.9, + "probability": 0.8558 + }, + { + "start": 58391.98, + "end": 58393.16, + "probability": 0.9439 + }, + { + "start": 58394.5, + "end": 58395.62, + "probability": 0.9036 + }, + { + "start": 58396.4, + "end": 58396.76, + "probability": 0.9016 + }, + { + "start": 58398.02, + "end": 58398.28, + "probability": 0.9172 + }, + { + "start": 58399.18, + "end": 58402.14, + "probability": 0.9895 + }, + { + "start": 58402.8, + "end": 58405.16, + "probability": 0.9485 + }, + { + "start": 58431.34, + "end": 58431.34, + "probability": 0.145 + }, + { + "start": 58431.34, + "end": 58431.38, + "probability": 0.1041 + }, + { + "start": 58431.38, + "end": 58431.38, + "probability": 0.1237 + }, + { + "start": 58443.02, + "end": 58444.08, + "probability": 0.212 + }, + { + "start": 58445.66, + "end": 58447.3, + "probability": 0.4402 + }, + { + "start": 58448.94, + "end": 58450.48, + "probability": 0.4584 + }, + { + "start": 58452.3, + "end": 58455.86, + "probability": 0.89 + }, + { + "start": 58457.04, + "end": 58459.6, + "probability": 0.7563 + }, + { + "start": 58461.22, + "end": 58463.18, + "probability": 0.8756 + }, + { + "start": 58464.2, + "end": 58465.4, + "probability": 0.8919 + }, + { + "start": 58466.02, + "end": 58469.72, + "probability": 0.8802 + }, + { + "start": 58470.68, + "end": 58473.14, + "probability": 0.5242 + }, + { + "start": 58474.08, + "end": 58477.6, + "probability": 0.9312 + }, + { + "start": 58478.48, + "end": 58480.72, + "probability": 0.9968 + }, + { + "start": 58481.38, + "end": 58484.62, + "probability": 0.9396 + }, + { + "start": 58485.14, + "end": 58492.1, + "probability": 0.9331 + }, + { + "start": 58493.08, + "end": 58499.3, + "probability": 0.9906 + }, + { + "start": 58499.88, + "end": 58506.22, + "probability": 0.9471 + }, + { + "start": 58506.82, + "end": 58511.62, + "probability": 0.9688 + }, + { + "start": 58512.6, + "end": 58516.08, + "probability": 0.9723 + }, + { + "start": 58516.22, + "end": 58519.66, + "probability": 0.9858 + }, + { + "start": 58520.6, + "end": 58526.26, + "probability": 0.9904 + }, + { + "start": 58526.88, + "end": 58527.94, + "probability": 0.5283 + }, + { + "start": 58528.02, + "end": 58536.48, + "probability": 0.88 + }, + { + "start": 58537.68, + "end": 58540.46, + "probability": 0.951 + }, + { + "start": 58540.52, + "end": 58542.04, + "probability": 0.8715 + }, + { + "start": 58542.16, + "end": 58544.66, + "probability": 0.9695 + }, + { + "start": 58545.56, + "end": 58553.24, + "probability": 0.9938 + }, + { + "start": 58553.94, + "end": 58559.92, + "probability": 0.9946 + }, + { + "start": 58560.42, + "end": 58564.52, + "probability": 0.9966 + }, + { + "start": 58565.52, + "end": 58565.74, + "probability": 0.5909 + }, + { + "start": 58569.32, + "end": 58570.46, + "probability": 0.5702 + }, + { + "start": 58571.62, + "end": 58577.8, + "probability": 0.9948 + }, + { + "start": 58578.72, + "end": 58580.3, + "probability": 0.9868 + }, + { + "start": 58581.28, + "end": 58584.22, + "probability": 0.9902 + }, + { + "start": 58585.08, + "end": 58590.26, + "probability": 0.9816 + }, + { + "start": 58590.38, + "end": 58591.57, + "probability": 0.9966 + }, + { + "start": 58591.74, + "end": 58591.74, + "probability": 0.5259 + }, + { + "start": 58592.26, + "end": 58594.76, + "probability": 0.9388 + }, + { + "start": 58595.42, + "end": 58598.3, + "probability": 0.8545 + }, + { + "start": 58598.94, + "end": 58603.28, + "probability": 0.678 + }, + { + "start": 58603.94, + "end": 58608.98, + "probability": 0.986 + }, + { + "start": 58609.68, + "end": 58615.62, + "probability": 0.9882 + }, + { + "start": 58616.22, + "end": 58618.38, + "probability": 0.9072 + }, + { + "start": 58619.46, + "end": 58622.3, + "probability": 0.6331 + }, + { + "start": 58624.12, + "end": 58630.36, + "probability": 0.9905 + }, + { + "start": 58631.06, + "end": 58635.54, + "probability": 0.9849 + }, + { + "start": 58635.54, + "end": 58640.42, + "probability": 0.9876 + }, + { + "start": 58640.86, + "end": 58642.96, + "probability": 0.9669 + }, + { + "start": 58643.72, + "end": 58646.9, + "probability": 0.9708 + }, + { + "start": 58648.24, + "end": 58649.22, + "probability": 0.8795 + }, + { + "start": 58650.7, + "end": 58655.2, + "probability": 0.9716 + }, + { + "start": 58655.21, + "end": 58659.12, + "probability": 0.9864 + }, + { + "start": 58659.82, + "end": 58663.6, + "probability": 0.9797 + }, + { + "start": 58664.14, + "end": 58665.3, + "probability": 0.4461 + }, + { + "start": 58666.0, + "end": 58667.19, + "probability": 0.9619 + }, + { + "start": 58668.32, + "end": 58669.08, + "probability": 0.7439 + }, + { + "start": 58669.66, + "end": 58669.76, + "probability": 0.5901 + }, + { + "start": 58669.98, + "end": 58670.54, + "probability": 0.7208 + }, + { + "start": 58670.64, + "end": 58673.08, + "probability": 0.9688 + }, + { + "start": 58673.86, + "end": 58676.92, + "probability": 0.9766 + }, + { + "start": 58677.74, + "end": 58680.88, + "probability": 0.9515 + }, + { + "start": 58681.6, + "end": 58683.58, + "probability": 0.8589 + }, + { + "start": 58684.18, + "end": 58689.4, + "probability": 0.8867 + }, + { + "start": 58690.14, + "end": 58692.06, + "probability": 0.3596 + }, + { + "start": 58692.66, + "end": 58695.1, + "probability": 0.9434 + }, + { + "start": 58695.18, + "end": 58695.96, + "probability": 0.9305 + }, + { + "start": 58696.02, + "end": 58696.79, + "probability": 0.9734 + }, + { + "start": 58696.86, + "end": 58698.74, + "probability": 0.9596 + }, + { + "start": 58698.78, + "end": 58699.55, + "probability": 0.9695 + }, + { + "start": 58699.76, + "end": 58701.44, + "probability": 0.8496 + }, + { + "start": 58701.82, + "end": 58703.08, + "probability": 0.8854 + }, + { + "start": 58704.06, + "end": 58707.64, + "probability": 0.9846 + }, + { + "start": 58708.46, + "end": 58709.34, + "probability": 0.9287 + }, + { + "start": 58710.56, + "end": 58714.66, + "probability": 0.7694 + }, + { + "start": 58715.02, + "end": 58715.78, + "probability": 0.6289 + }, + { + "start": 58715.9, + "end": 58717.2, + "probability": 0.9497 + }, + { + "start": 58717.86, + "end": 58721.9, + "probability": 0.9646 + }, + { + "start": 58722.66, + "end": 58723.78, + "probability": 0.803 + }, + { + "start": 58724.68, + "end": 58726.88, + "probability": 0.9663 + }, + { + "start": 58727.22, + "end": 58732.16, + "probability": 0.9829 + }, + { + "start": 58732.8, + "end": 58736.56, + "probability": 0.7139 + }, + { + "start": 58737.22, + "end": 58740.6, + "probability": 0.766 + }, + { + "start": 58742.43, + "end": 58745.82, + "probability": 0.6671 + }, + { + "start": 58746.52, + "end": 58750.4, + "probability": 0.9424 + }, + { + "start": 58751.94, + "end": 58757.52, + "probability": 0.9772 + }, + { + "start": 58758.72, + "end": 58761.54, + "probability": 0.9817 + }, + { + "start": 58762.32, + "end": 58766.0, + "probability": 0.9312 + }, + { + "start": 58766.94, + "end": 58769.7, + "probability": 0.9999 + }, + { + "start": 58769.86, + "end": 58773.66, + "probability": 0.936 + }, + { + "start": 58774.12, + "end": 58778.74, + "probability": 0.9941 + }, + { + "start": 58781.4, + "end": 58782.28, + "probability": 0.9164 + }, + { + "start": 58782.34, + "end": 58783.96, + "probability": 0.9679 + }, + { + "start": 58784.06, + "end": 58784.6, + "probability": 0.4857 + }, + { + "start": 58784.68, + "end": 58788.4, + "probability": 0.9654 + }, + { + "start": 58789.08, + "end": 58790.42, + "probability": 0.9973 + }, + { + "start": 58791.1, + "end": 58794.98, + "probability": 0.9854 + }, + { + "start": 58796.02, + "end": 58797.38, + "probability": 0.9994 + }, + { + "start": 58798.22, + "end": 58799.5, + "probability": 0.9396 + }, + { + "start": 58800.4, + "end": 58801.26, + "probability": 0.4894 + }, + { + "start": 58802.14, + "end": 58805.14, + "probability": 0.978 + }, + { + "start": 58805.68, + "end": 58808.06, + "probability": 0.9951 + }, + { + "start": 58808.74, + "end": 58812.06, + "probability": 0.7358 + }, + { + "start": 58812.86, + "end": 58814.2, + "probability": 0.8099 + }, + { + "start": 58815.16, + "end": 58820.4, + "probability": 0.981 + }, + { + "start": 58821.82, + "end": 58824.4, + "probability": 0.9902 + }, + { + "start": 58825.3, + "end": 58827.08, + "probability": 0.9005 + }, + { + "start": 58828.26, + "end": 58835.6, + "probability": 0.6893 + }, + { + "start": 58836.46, + "end": 58841.38, + "probability": 0.9771 + }, + { + "start": 58842.1, + "end": 58847.38, + "probability": 0.9077 + }, + { + "start": 58847.46, + "end": 58852.12, + "probability": 0.8419 + }, + { + "start": 58852.62, + "end": 58857.46, + "probability": 0.9036 + }, + { + "start": 58857.46, + "end": 58861.54, + "probability": 0.8982 + }, + { + "start": 58862.76, + "end": 58864.2, + "probability": 0.9121 + }, + { + "start": 58865.62, + "end": 58869.12, + "probability": 0.8052 + }, + { + "start": 58870.32, + "end": 58877.0, + "probability": 0.9901 + }, + { + "start": 58877.62, + "end": 58879.88, + "probability": 0.9774 + }, + { + "start": 58880.56, + "end": 58885.62, + "probability": 0.9637 + }, + { + "start": 58887.94, + "end": 58893.18, + "probability": 0.9751 + }, + { + "start": 58893.18, + "end": 58899.14, + "probability": 0.9929 + }, + { + "start": 58900.26, + "end": 58901.1, + "probability": 0.9528 + }, + { + "start": 58901.78, + "end": 58908.68, + "probability": 0.988 + }, + { + "start": 58909.08, + "end": 58909.84, + "probability": 0.7362 + }, + { + "start": 58911.04, + "end": 58913.74, + "probability": 0.9758 + }, + { + "start": 58915.16, + "end": 58918.36, + "probability": 0.8579 + }, + { + "start": 58918.52, + "end": 58919.98, + "probability": 0.5413 + }, + { + "start": 58920.62, + "end": 58924.74, + "probability": 0.992 + }, + { + "start": 58925.26, + "end": 58925.74, + "probability": 0.7114 + }, + { + "start": 58926.3, + "end": 58928.18, + "probability": 0.9604 + }, + { + "start": 58928.66, + "end": 58931.18, + "probability": 0.9536 + }, + { + "start": 58932.62, + "end": 58934.78, + "probability": 0.9635 + }, + { + "start": 58935.84, + "end": 58939.54, + "probability": 0.7896 + }, + { + "start": 58940.68, + "end": 58945.52, + "probability": 0.9921 + }, + { + "start": 58947.88, + "end": 58952.3, + "probability": 0.9061 + }, + { + "start": 58953.12, + "end": 58954.76, + "probability": 0.979 + }, + { + "start": 58955.44, + "end": 58957.06, + "probability": 0.9815 + }, + { + "start": 58957.92, + "end": 58963.3, + "probability": 0.9938 + }, + { + "start": 58964.66, + "end": 58966.28, + "probability": 0.9509 + }, + { + "start": 58967.28, + "end": 58970.2, + "probability": 0.9973 + }, + { + "start": 58972.52, + "end": 58975.5, + "probability": 0.9611 + }, + { + "start": 58977.18, + "end": 58979.34, + "probability": 0.9779 + }, + { + "start": 58980.58, + "end": 58985.26, + "probability": 0.9966 + }, + { + "start": 58985.9, + "end": 58992.26, + "probability": 0.9302 + }, + { + "start": 58992.74, + "end": 58996.84, + "probability": 0.9946 + }, + { + "start": 58997.5, + "end": 58999.36, + "probability": 0.828 + }, + { + "start": 58999.58, + "end": 59003.54, + "probability": 0.9277 + }, + { + "start": 59003.68, + "end": 59007.26, + "probability": 0.9951 + }, + { + "start": 59007.82, + "end": 59010.2, + "probability": 0.9743 + }, + { + "start": 59011.44, + "end": 59016.4, + "probability": 0.9902 + }, + { + "start": 59017.46, + "end": 59019.38, + "probability": 0.9241 + }, + { + "start": 59019.62, + "end": 59025.56, + "probability": 0.9972 + }, + { + "start": 59026.4, + "end": 59028.12, + "probability": 0.9973 + }, + { + "start": 59028.74, + "end": 59030.08, + "probability": 0.9928 + }, + { + "start": 59032.7, + "end": 59037.22, + "probability": 0.9497 + }, + { + "start": 59038.46, + "end": 59039.46, + "probability": 0.9305 + }, + { + "start": 59040.54, + "end": 59042.86, + "probability": 0.8705 + }, + { + "start": 59043.62, + "end": 59048.23, + "probability": 0.9193 + }, + { + "start": 59049.22, + "end": 59052.04, + "probability": 0.934 + }, + { + "start": 59052.78, + "end": 59058.6, + "probability": 0.9706 + }, + { + "start": 59059.26, + "end": 59060.06, + "probability": 0.7455 + }, + { + "start": 59060.8, + "end": 59062.32, + "probability": 0.9871 + }, + { + "start": 59063.28, + "end": 59066.53, + "probability": 0.9984 + }, + { + "start": 59066.62, + "end": 59070.46, + "probability": 0.9969 + }, + { + "start": 59072.32, + "end": 59075.4, + "probability": 0.9333 + }, + { + "start": 59077.18, + "end": 59081.28, + "probability": 0.9729 + }, + { + "start": 59081.32, + "end": 59082.94, + "probability": 0.9951 + }, + { + "start": 59084.14, + "end": 59084.48, + "probability": 0.0898 + }, + { + "start": 59085.1, + "end": 59088.06, + "probability": 0.928 + }, + { + "start": 59089.18, + "end": 59092.22, + "probability": 0.9952 + }, + { + "start": 59095.24, + "end": 59097.84, + "probability": 0.9324 + }, + { + "start": 59098.6, + "end": 59104.06, + "probability": 0.9585 + }, + { + "start": 59104.06, + "end": 59107.92, + "probability": 0.997 + }, + { + "start": 59108.92, + "end": 59112.26, + "probability": 0.9889 + }, + { + "start": 59112.52, + "end": 59116.48, + "probability": 0.6901 + }, + { + "start": 59116.64, + "end": 59118.04, + "probability": 0.5914 + }, + { + "start": 59119.66, + "end": 59121.82, + "probability": 0.9248 + }, + { + "start": 59122.48, + "end": 59125.56, + "probability": 0.9244 + }, + { + "start": 59127.4, + "end": 59134.0, + "probability": 0.9755 + }, + { + "start": 59135.26, + "end": 59139.02, + "probability": 0.9949 + }, + { + "start": 59139.6, + "end": 59141.22, + "probability": 0.9978 + }, + { + "start": 59141.5, + "end": 59142.6, + "probability": 0.5034 + }, + { + "start": 59144.34, + "end": 59148.64, + "probability": 0.7113 + }, + { + "start": 59149.82, + "end": 59152.72, + "probability": 0.9624 + }, + { + "start": 59153.22, + "end": 59157.94, + "probability": 0.9967 + }, + { + "start": 59158.36, + "end": 59160.12, + "probability": 0.8661 + }, + { + "start": 59160.22, + "end": 59162.52, + "probability": 0.9866 + }, + { + "start": 59163.12, + "end": 59164.68, + "probability": 0.9993 + }, + { + "start": 59165.5, + "end": 59167.5, + "probability": 0.9963 + }, + { + "start": 59168.54, + "end": 59174.04, + "probability": 0.9987 + }, + { + "start": 59174.68, + "end": 59176.34, + "probability": 0.7822 + }, + { + "start": 59177.12, + "end": 59181.7, + "probability": 0.9781 + }, + { + "start": 59182.42, + "end": 59186.66, + "probability": 0.9846 + }, + { + "start": 59187.52, + "end": 59189.62, + "probability": 0.7164 + }, + { + "start": 59190.84, + "end": 59190.84, + "probability": 0.0211 + }, + { + "start": 59190.84, + "end": 59190.94, + "probability": 0.5753 + }, + { + "start": 59191.82, + "end": 59193.64, + "probability": 0.907 + }, + { + "start": 59194.22, + "end": 59194.24, + "probability": 0.7788 + }, + { + "start": 59197.48, + "end": 59199.82, + "probability": 0.6443 + }, + { + "start": 59200.68, + "end": 59200.68, + "probability": 0.1583 + }, + { + "start": 59200.68, + "end": 59201.64, + "probability": 0.6706 + }, + { + "start": 59202.72, + "end": 59206.38, + "probability": 0.9974 + }, + { + "start": 59207.12, + "end": 59213.2, + "probability": 0.9964 + }, + { + "start": 59214.18, + "end": 59214.94, + "probability": 0.6133 + }, + { + "start": 59215.68, + "end": 59217.68, + "probability": 0.8995 + }, + { + "start": 59218.3, + "end": 59223.76, + "probability": 0.9756 + }, + { + "start": 59224.02, + "end": 59229.38, + "probability": 0.9823 + }, + { + "start": 59229.66, + "end": 59236.88, + "probability": 0.9854 + }, + { + "start": 59237.54, + "end": 59240.26, + "probability": 0.9412 + }, + { + "start": 59241.02, + "end": 59246.4, + "probability": 0.9906 + }, + { + "start": 59246.4, + "end": 59251.72, + "probability": 0.9901 + }, + { + "start": 59252.54, + "end": 59256.42, + "probability": 0.7031 + }, + { + "start": 59257.06, + "end": 59259.64, + "probability": 0.9871 + }, + { + "start": 59260.52, + "end": 59262.64, + "probability": 0.9603 + }, + { + "start": 59263.18, + "end": 59267.14, + "probability": 0.9758 + }, + { + "start": 59267.98, + "end": 59272.5, + "probability": 0.9947 + }, + { + "start": 59273.2, + "end": 59275.1, + "probability": 0.9154 + }, + { + "start": 59275.78, + "end": 59276.86, + "probability": 0.8079 + }, + { + "start": 59277.1, + "end": 59281.12, + "probability": 0.9692 + }, + { + "start": 59281.28, + "end": 59283.44, + "probability": 0.9889 + }, + { + "start": 59284.56, + "end": 59284.56, + "probability": 0.8511 + }, + { + "start": 59285.54, + "end": 59286.74, + "probability": 0.9697 + }, + { + "start": 59289.66, + "end": 59294.54, + "probability": 0.989 + }, + { + "start": 59294.78, + "end": 59295.8, + "probability": 0.9776 + }, + { + "start": 59296.46, + "end": 59301.36, + "probability": 0.998 + }, + { + "start": 59302.68, + "end": 59305.76, + "probability": 0.9698 + }, + { + "start": 59306.94, + "end": 59309.62, + "probability": 0.0253 + }, + { + "start": 59311.9, + "end": 59312.52, + "probability": 0.089 + }, + { + "start": 59312.52, + "end": 59312.52, + "probability": 0.0085 + }, + { + "start": 59312.52, + "end": 59315.8, + "probability": 0.1057 + }, + { + "start": 59317.34, + "end": 59318.4, + "probability": 0.0315 + }, + { + "start": 59320.02, + "end": 59323.48, + "probability": 0.1105 + }, + { + "start": 59325.2, + "end": 59325.78, + "probability": 0.0887 + }, + { + "start": 59327.78, + "end": 59331.22, + "probability": 0.2187 + }, + { + "start": 59332.67, + "end": 59334.36, + "probability": 0.067 + }, + { + "start": 59334.48, + "end": 59335.6, + "probability": 0.0197 + }, + { + "start": 59336.16, + "end": 59336.6, + "probability": 0.1279 + }, + { + "start": 59337.44, + "end": 59338.42, + "probability": 0.2293 + }, + { + "start": 59338.52, + "end": 59342.52, + "probability": 0.1306 + }, + { + "start": 59342.52, + "end": 59343.9, + "probability": 0.0523 + }, + { + "start": 59344.76, + "end": 59348.14, + "probability": 0.2561 + }, + { + "start": 59348.32, + "end": 59349.1, + "probability": 0.0163 + }, + { + "start": 59350.18, + "end": 59351.28, + "probability": 0.8563 + }, + { + "start": 59352.43, + "end": 59354.24, + "probability": 0.6684 + }, + { + "start": 59354.32, + "end": 59355.22, + "probability": 0.7342 + }, + { + "start": 59380.92, + "end": 59381.98, + "probability": 0.8061 + }, + { + "start": 59383.34, + "end": 59384.1, + "probability": 0.6779 + }, + { + "start": 59385.1, + "end": 59387.98, + "probability": 0.6646 + }, + { + "start": 59388.78, + "end": 59389.6, + "probability": 0.0011 + }, + { + "start": 59393.26, + "end": 59393.38, + "probability": 0.008 + }, + { + "start": 59393.38, + "end": 59397.38, + "probability": 0.99 + }, + { + "start": 59401.18, + "end": 59401.7, + "probability": 0.2552 + }, + { + "start": 59401.74, + "end": 59402.14, + "probability": 0.8294 + }, + { + "start": 59402.96, + "end": 59406.04, + "probability": 0.7888 + }, + { + "start": 59406.88, + "end": 59410.55, + "probability": 0.9271 + }, + { + "start": 59414.26, + "end": 59421.78, + "probability": 0.6803 + }, + { + "start": 59423.46, + "end": 59429.3, + "probability": 0.9745 + }, + { + "start": 59429.48, + "end": 59430.96, + "probability": 0.9226 + }, + { + "start": 59432.32, + "end": 59433.02, + "probability": 0.6281 + }, + { + "start": 59435.74, + "end": 59437.36, + "probability": 0.931 + }, + { + "start": 59437.62, + "end": 59443.8, + "probability": 0.9857 + }, + { + "start": 59446.54, + "end": 59448.96, + "probability": 0.9202 + }, + { + "start": 59450.08, + "end": 59451.78, + "probability": 0.7023 + }, + { + "start": 59455.48, + "end": 59461.12, + "probability": 0.9989 + }, + { + "start": 59462.26, + "end": 59464.36, + "probability": 0.7321 + }, + { + "start": 59465.34, + "end": 59468.04, + "probability": 0.9319 + }, + { + "start": 59470.5, + "end": 59473.18, + "probability": 0.9764 + }, + { + "start": 59474.32, + "end": 59475.38, + "probability": 0.94 + }, + { + "start": 59477.02, + "end": 59481.06, + "probability": 0.8387 + }, + { + "start": 59481.68, + "end": 59482.42, + "probability": 0.8644 + }, + { + "start": 59483.0, + "end": 59485.78, + "probability": 0.99 + }, + { + "start": 59487.46, + "end": 59487.9, + "probability": 0.7624 + }, + { + "start": 59490.72, + "end": 59493.02, + "probability": 0.9794 + }, + { + "start": 59493.94, + "end": 59495.88, + "probability": 0.9485 + }, + { + "start": 59496.5, + "end": 59500.32, + "probability": 0.8106 + }, + { + "start": 59504.76, + "end": 59509.04, + "probability": 0.943 + }, + { + "start": 59509.44, + "end": 59510.84, + "probability": 0.7963 + }, + { + "start": 59511.12, + "end": 59512.4, + "probability": 0.9505 + }, + { + "start": 59513.06, + "end": 59514.88, + "probability": 0.9772 + }, + { + "start": 59515.44, + "end": 59519.62, + "probability": 0.9538 + }, + { + "start": 59520.24, + "end": 59521.46, + "probability": 0.8543 + }, + { + "start": 59521.76, + "end": 59522.08, + "probability": 0.1937 + }, + { + "start": 59522.14, + "end": 59522.4, + "probability": 0.9229 + }, + { + "start": 59522.5, + "end": 59527.94, + "probability": 0.9927 + }, + { + "start": 59528.66, + "end": 59531.18, + "probability": 0.9837 + }, + { + "start": 59532.44, + "end": 59532.92, + "probability": 0.7582 + }, + { + "start": 59533.54, + "end": 59535.4, + "probability": 0.9572 + }, + { + "start": 59535.98, + "end": 59538.74, + "probability": 0.9948 + }, + { + "start": 59539.42, + "end": 59544.22, + "probability": 0.8767 + }, + { + "start": 59546.08, + "end": 59552.58, + "probability": 0.9739 + }, + { + "start": 59553.66, + "end": 59554.22, + "probability": 0.8045 + }, + { + "start": 59555.1, + "end": 59556.7, + "probability": 0.9385 + }, + { + "start": 59558.48, + "end": 59559.86, + "probability": 0.6144 + }, + { + "start": 59562.31, + "end": 59566.08, + "probability": 0.8999 + }, + { + "start": 59568.16, + "end": 59575.36, + "probability": 0.9761 + }, + { + "start": 59576.46, + "end": 59576.94, + "probability": 0.964 + }, + { + "start": 59579.84, + "end": 59580.12, + "probability": 0.8251 + }, + { + "start": 59580.8, + "end": 59581.82, + "probability": 0.9205 + }, + { + "start": 59583.78, + "end": 59584.9, + "probability": 0.7196 + }, + { + "start": 59585.02, + "end": 59588.08, + "probability": 0.8403 + }, + { + "start": 59589.06, + "end": 59592.32, + "probability": 0.8899 + }, + { + "start": 59594.3, + "end": 59594.9, + "probability": 0.6617 + }, + { + "start": 59595.06, + "end": 59600.12, + "probability": 0.9862 + }, + { + "start": 59600.3, + "end": 59601.32, + "probability": 0.901 + }, + { + "start": 59601.44, + "end": 59602.0, + "probability": 0.7014 + }, + { + "start": 59603.34, + "end": 59607.6, + "probability": 0.9571 + }, + { + "start": 59610.54, + "end": 59616.32, + "probability": 0.7656 + }, + { + "start": 59617.44, + "end": 59617.92, + "probability": 0.8651 + }, + { + "start": 59619.72, + "end": 59622.24, + "probability": 0.9678 + }, + { + "start": 59626.72, + "end": 59630.88, + "probability": 0.9957 + }, + { + "start": 59631.72, + "end": 59633.32, + "probability": 0.8264 + }, + { + "start": 59634.12, + "end": 59638.62, + "probability": 0.8951 + }, + { + "start": 59638.84, + "end": 59641.62, + "probability": 0.9032 + }, + { + "start": 59642.32, + "end": 59647.0, + "probability": 0.9534 + }, + { + "start": 59647.1, + "end": 59650.02, + "probability": 0.4887 + }, + { + "start": 59650.02, + "end": 59650.62, + "probability": 0.4428 + }, + { + "start": 59650.76, + "end": 59651.4, + "probability": 0.9095 + }, + { + "start": 59651.56, + "end": 59652.14, + "probability": 0.8481 + }, + { + "start": 59652.4, + "end": 59653.58, + "probability": 0.902 + }, + { + "start": 59654.48, + "end": 59655.36, + "probability": 0.9395 + }, + { + "start": 59655.5, + "end": 59656.84, + "probability": 0.9956 + }, + { + "start": 59656.98, + "end": 59659.3, + "probability": 0.9824 + }, + { + "start": 59660.52, + "end": 59662.02, + "probability": 0.9393 + }, + { + "start": 59662.5, + "end": 59665.88, + "probability": 0.8828 + }, + { + "start": 59669.76, + "end": 59671.14, + "probability": 0.9414 + }, + { + "start": 59673.18, + "end": 59683.98, + "probability": 0.9748 + }, + { + "start": 59686.51, + "end": 59689.38, + "probability": 0.9312 + }, + { + "start": 59689.9, + "end": 59692.04, + "probability": 0.9815 + }, + { + "start": 59692.66, + "end": 59694.02, + "probability": 0.9182 + }, + { + "start": 59695.14, + "end": 59698.26, + "probability": 0.9832 + }, + { + "start": 59699.22, + "end": 59703.74, + "probability": 0.9912 + }, + { + "start": 59704.54, + "end": 59705.52, + "probability": 0.8496 + }, + { + "start": 59706.26, + "end": 59707.24, + "probability": 0.7995 + }, + { + "start": 59707.8, + "end": 59711.57, + "probability": 0.8811 + }, + { + "start": 59712.94, + "end": 59713.2, + "probability": 0.874 + }, + { + "start": 59714.62, + "end": 59715.22, + "probability": 0.7226 + }, + { + "start": 59717.04, + "end": 59717.62, + "probability": 0.6177 + }, + { + "start": 59719.9, + "end": 59722.9, + "probability": 0.5991 + }, + { + "start": 59725.46, + "end": 59732.16, + "probability": 0.9594 + }, + { + "start": 59732.72, + "end": 59735.22, + "probability": 0.9416 + }, + { + "start": 59738.16, + "end": 59739.46, + "probability": 0.8416 + }, + { + "start": 59740.38, + "end": 59743.62, + "probability": 0.9917 + }, + { + "start": 59744.2, + "end": 59745.92, + "probability": 0.9705 + }, + { + "start": 59748.06, + "end": 59749.58, + "probability": 0.5728 + }, + { + "start": 59751.12, + "end": 59754.46, + "probability": 0.9985 + }, + { + "start": 59755.48, + "end": 59758.97, + "probability": 0.8736 + }, + { + "start": 59760.14, + "end": 59761.78, + "probability": 0.4582 + }, + { + "start": 59764.76, + "end": 59767.6, + "probability": 0.6868 + }, + { + "start": 59768.62, + "end": 59769.34, + "probability": 0.6752 + }, + { + "start": 59771.1, + "end": 59771.52, + "probability": 0.6705 + }, + { + "start": 59771.72, + "end": 59775.62, + "probability": 0.9712 + }, + { + "start": 59777.87, + "end": 59785.24, + "probability": 0.9772 + }, + { + "start": 59786.06, + "end": 59786.46, + "probability": 0.343 + }, + { + "start": 59787.16, + "end": 59787.82, + "probability": 0.8369 + }, + { + "start": 59791.84, + "end": 59792.8, + "probability": 0.5936 + }, + { + "start": 59796.0, + "end": 59799.18, + "probability": 0.8741 + }, + { + "start": 59800.3, + "end": 59802.5, + "probability": 0.4518 + }, + { + "start": 59803.18, + "end": 59803.98, + "probability": 0.729 + }, + { + "start": 59805.7, + "end": 59806.52, + "probability": 0.9338 + }, + { + "start": 59806.72, + "end": 59809.56, + "probability": 0.8357 + }, + { + "start": 59809.82, + "end": 59811.34, + "probability": 0.6785 + }, + { + "start": 59812.24, + "end": 59814.62, + "probability": 0.3837 + }, + { + "start": 59815.76, + "end": 59822.5, + "probability": 0.9071 + }, + { + "start": 59824.06, + "end": 59826.12, + "probability": 0.7937 + }, + { + "start": 59826.62, + "end": 59829.16, + "probability": 0.871 + }, + { + "start": 59830.16, + "end": 59831.64, + "probability": 0.8181 + }, + { + "start": 59833.32, + "end": 59836.56, + "probability": 0.988 + }, + { + "start": 59836.64, + "end": 59839.06, + "probability": 0.9583 + }, + { + "start": 59839.18, + "end": 59840.88, + "probability": 0.9437 + }, + { + "start": 59841.56, + "end": 59847.26, + "probability": 0.9466 + }, + { + "start": 59848.44, + "end": 59851.32, + "probability": 0.9987 + }, + { + "start": 59851.94, + "end": 59853.65, + "probability": 0.7099 + }, + { + "start": 59855.46, + "end": 59857.2, + "probability": 0.9307 + }, + { + "start": 59857.24, + "end": 59860.06, + "probability": 0.6937 + }, + { + "start": 59867.65, + "end": 59870.06, + "probability": 0.6787 + }, + { + "start": 59870.48, + "end": 59872.82, + "probability": 0.7853 + }, + { + "start": 59873.46, + "end": 59876.24, + "probability": 0.7017 + }, + { + "start": 59879.46, + "end": 59880.36, + "probability": 0.8977 + }, + { + "start": 59880.52, + "end": 59882.74, + "probability": 0.7171 + }, + { + "start": 59883.68, + "end": 59885.61, + "probability": 0.9956 + }, + { + "start": 59886.8, + "end": 59887.26, + "probability": 0.9639 + }, + { + "start": 59888.18, + "end": 59891.3, + "probability": 0.9768 + }, + { + "start": 59892.9, + "end": 59898.38, + "probability": 0.967 + }, + { + "start": 59899.12, + "end": 59900.24, + "probability": 0.7021 + }, + { + "start": 59901.5, + "end": 59902.52, + "probability": 0.4534 + }, + { + "start": 59903.16, + "end": 59907.28, + "probability": 0.9168 + }, + { + "start": 59908.5, + "end": 59910.26, + "probability": 0.7632 + }, + { + "start": 59910.38, + "end": 59913.62, + "probability": 0.9852 + }, + { + "start": 59914.3, + "end": 59914.86, + "probability": 0.7905 + }, + { + "start": 59915.08, + "end": 59917.34, + "probability": 0.9725 + }, + { + "start": 59917.6, + "end": 59919.36, + "probability": 0.9964 + }, + { + "start": 59920.92, + "end": 59921.08, + "probability": 0.2756 + }, + { + "start": 59924.28, + "end": 59926.38, + "probability": 0.9728 + }, + { + "start": 59927.14, + "end": 59930.34, + "probability": 0.7804 + }, + { + "start": 59930.42, + "end": 59931.05, + "probability": 0.7988 + }, + { + "start": 59937.0, + "end": 59937.42, + "probability": 0.0576 + }, + { + "start": 59941.64, + "end": 59944.61, + "probability": 0.0441 + }, + { + "start": 59946.38, + "end": 59950.74, + "probability": 0.029 + }, + { + "start": 59951.58, + "end": 59954.24, + "probability": 0.0941 + }, + { + "start": 59957.9, + "end": 59962.02, + "probability": 0.0281 + }, + { + "start": 59962.02, + "end": 59967.88, + "probability": 0.2132 + }, + { + "start": 59968.98, + "end": 59971.48, + "probability": 0.1233 + }, + { + "start": 59975.01, + "end": 59978.06, + "probability": 0.1613 + }, + { + "start": 59983.22, + "end": 59984.1, + "probability": 0.1269 + }, + { + "start": 59987.3, + "end": 59987.4, + "probability": 0.0419 + }, + { + "start": 59987.4, + "end": 59987.4, + "probability": 0.0483 + }, + { + "start": 59987.4, + "end": 59987.4, + "probability": 0.0683 + }, + { + "start": 59987.4, + "end": 59987.4, + "probability": 0.0228 + }, + { + "start": 59987.4, + "end": 59989.34, + "probability": 0.0473 + }, + { + "start": 60007.0, + "end": 60007.0, + "probability": 0.0 + }, + { + "start": 60007.0, + "end": 60007.0, + "probability": 0.0 + }, + { + "start": 60007.0, + "end": 60007.0, + "probability": 0.0 + }, + { + "start": 60007.0, + "end": 60007.0, + "probability": 0.0 + }, + { + "start": 60007.0, + "end": 60007.0, + "probability": 0.0 + }, + { + "start": 60007.46, + "end": 60012.0, + "probability": 0.6496 + }, + { + "start": 60012.32, + "end": 60012.56, + "probability": 0.6668 + }, + { + "start": 60013.26, + "end": 60014.32, + "probability": 0.9924 + }, + { + "start": 60015.1, + "end": 60018.3, + "probability": 0.9952 + }, + { + "start": 60019.12, + "end": 60020.8, + "probability": 0.979 + }, + { + "start": 60026.26, + "end": 60027.68, + "probability": 0.9897 + }, + { + "start": 60032.34, + "end": 60032.44, + "probability": 0.1468 + }, + { + "start": 60033.92, + "end": 60035.46, + "probability": 0.8158 + }, + { + "start": 60036.42, + "end": 60037.06, + "probability": 0.8757 + }, + { + "start": 60038.72, + "end": 60041.26, + "probability": 0.8278 + }, + { + "start": 60041.8, + "end": 60044.04, + "probability": 0.9027 + }, + { + "start": 60047.72, + "end": 60049.44, + "probability": 0.9998 + }, + { + "start": 60050.16, + "end": 60052.16, + "probability": 0.9902 + }, + { + "start": 60052.3, + "end": 60053.4, + "probability": 0.991 + }, + { + "start": 60053.54, + "end": 60056.78, + "probability": 0.9557 + }, + { + "start": 60056.92, + "end": 60057.64, + "probability": 0.6911 + }, + { + "start": 60059.44, + "end": 60060.74, + "probability": 0.9951 + }, + { + "start": 60061.64, + "end": 60064.32, + "probability": 0.9887 + }, + { + "start": 60064.76, + "end": 60066.12, + "probability": 0.942 + }, + { + "start": 60066.68, + "end": 60073.2, + "probability": 0.9946 + }, + { + "start": 60073.8, + "end": 60076.72, + "probability": 0.9672 + }, + { + "start": 60078.18, + "end": 60083.88, + "probability": 0.9566 + }, + { + "start": 60084.84, + "end": 60085.48, + "probability": 0.6242 + }, + { + "start": 60086.48, + "end": 60089.26, + "probability": 0.9894 + }, + { + "start": 60091.68, + "end": 60093.32, + "probability": 0.8714 + }, + { + "start": 60094.82, + "end": 60097.06, + "probability": 0.9966 + }, + { + "start": 60097.84, + "end": 60098.86, + "probability": 0.9027 + }, + { + "start": 60100.0, + "end": 60110.84, + "probability": 0.957 + }, + { + "start": 60113.32, + "end": 60113.8, + "probability": 0.9794 + }, + { + "start": 60115.12, + "end": 60116.3, + "probability": 0.3616 + }, + { + "start": 60116.86, + "end": 60118.46, + "probability": 0.8362 + }, + { + "start": 60118.86, + "end": 60119.68, + "probability": 0.8889 + }, + { + "start": 60119.76, + "end": 60120.8, + "probability": 0.9466 + }, + { + "start": 60122.16, + "end": 60126.76, + "probability": 0.7978 + }, + { + "start": 60127.6, + "end": 60130.42, + "probability": 0.8492 + }, + { + "start": 60130.68, + "end": 60131.12, + "probability": 0.6265 + }, + { + "start": 60132.26, + "end": 60135.06, + "probability": 0.9813 + }, + { + "start": 60136.02, + "end": 60136.82, + "probability": 0.8228 + }, + { + "start": 60138.08, + "end": 60142.12, + "probability": 0.9751 + }, + { + "start": 60143.42, + "end": 60146.84, + "probability": 0.9911 + }, + { + "start": 60147.58, + "end": 60148.28, + "probability": 0.9634 + }, + { + "start": 60149.54, + "end": 60151.62, + "probability": 0.9824 + }, + { + "start": 60153.06, + "end": 60155.88, + "probability": 0.9735 + }, + { + "start": 60157.8, + "end": 60158.88, + "probability": 0.774 + }, + { + "start": 60159.7, + "end": 60164.76, + "probability": 0.9517 + }, + { + "start": 60165.14, + "end": 60165.4, + "probability": 0.9599 + }, + { + "start": 60166.26, + "end": 60169.56, + "probability": 0.9838 + }, + { + "start": 60169.84, + "end": 60170.78, + "probability": 0.8665 + }, + { + "start": 60171.84, + "end": 60173.04, + "probability": 0.8135 + }, + { + "start": 60174.2, + "end": 60175.62, + "probability": 0.9823 + }, + { + "start": 60179.54, + "end": 60183.18, + "probability": 0.9872 + }, + { + "start": 60184.2, + "end": 60185.32, + "probability": 0.4556 + }, + { + "start": 60185.42, + "end": 60185.68, + "probability": 0.5442 + }, + { + "start": 60186.12, + "end": 60187.68, + "probability": 0.6743 + }, + { + "start": 60187.7, + "end": 60188.84, + "probability": 0.6913 + }, + { + "start": 60188.92, + "end": 60193.32, + "probability": 0.8081 + }, + { + "start": 60193.7, + "end": 60195.68, + "probability": 0.9106 + }, + { + "start": 60196.36, + "end": 60197.84, + "probability": 0.4486 + }, + { + "start": 60199.16, + "end": 60202.62, + "probability": 0.7094 + }, + { + "start": 60203.3, + "end": 60206.68, + "probability": 0.9312 + }, + { + "start": 60208.04, + "end": 60210.86, + "probability": 0.9653 + }, + { + "start": 60211.14, + "end": 60212.18, + "probability": 0.8406 + }, + { + "start": 60214.22, + "end": 60215.2, + "probability": 0.9974 + }, + { + "start": 60216.42, + "end": 60217.48, + "probability": 0.9194 + }, + { + "start": 60222.89, + "end": 60227.62, + "probability": 0.6388 + }, + { + "start": 60227.74, + "end": 60228.52, + "probability": 0.4847 + }, + { + "start": 60228.84, + "end": 60232.1, + "probability": 0.4699 + }, + { + "start": 60234.98, + "end": 60238.7, + "probability": 0.9683 + }, + { + "start": 60239.64, + "end": 60240.6, + "probability": 0.5841 + }, + { + "start": 60241.9, + "end": 60244.64, + "probability": 0.9133 + }, + { + "start": 60245.56, + "end": 60246.88, + "probability": 0.9609 + }, + { + "start": 60247.54, + "end": 60248.58, + "probability": 0.607 + }, + { + "start": 60251.12, + "end": 60252.12, + "probability": 0.6155 + }, + { + "start": 60252.34, + "end": 60253.06, + "probability": 0.6897 + }, + { + "start": 60257.12, + "end": 60260.74, + "probability": 0.9164 + }, + { + "start": 60260.86, + "end": 60265.03, + "probability": 0.9378 + }, + { + "start": 60265.86, + "end": 60268.82, + "probability": 0.96 + }, + { + "start": 60268.92, + "end": 60269.6, + "probability": 0.8285 + }, + { + "start": 60269.74, + "end": 60270.54, + "probability": 0.9411 + }, + { + "start": 60270.64, + "end": 60271.32, + "probability": 0.9622 + }, + { + "start": 60271.42, + "end": 60272.22, + "probability": 0.96 + }, + { + "start": 60272.88, + "end": 60273.7, + "probability": 0.9058 + }, + { + "start": 60274.92, + "end": 60282.06, + "probability": 0.9042 + }, + { + "start": 60282.06, + "end": 60287.21, + "probability": 0.9873 + }, + { + "start": 60290.44, + "end": 60293.36, + "probability": 0.853 + }, + { + "start": 60295.3, + "end": 60296.88, + "probability": 0.8033 + }, + { + "start": 60297.12, + "end": 60302.2, + "probability": 0.9785 + }, + { + "start": 60302.56, + "end": 60304.58, + "probability": 0.9976 + }, + { + "start": 60305.28, + "end": 60308.06, + "probability": 0.9379 + }, + { + "start": 60311.82, + "end": 60312.56, + "probability": 0.6848 + }, + { + "start": 60313.78, + "end": 60316.72, + "probability": 0.7339 + }, + { + "start": 60317.96, + "end": 60318.68, + "probability": 0.8316 + }, + { + "start": 60319.76, + "end": 60323.36, + "probability": 0.8155 + }, + { + "start": 60324.86, + "end": 60326.35, + "probability": 0.9979 + }, + { + "start": 60327.48, + "end": 60330.28, + "probability": 0.8969 + }, + { + "start": 60330.9, + "end": 60332.82, + "probability": 0.7996 + }, + { + "start": 60334.32, + "end": 60337.44, + "probability": 0.7535 + }, + { + "start": 60338.0, + "end": 60338.92, + "probability": 0.7942 + }, + { + "start": 60340.36, + "end": 60342.5, + "probability": 0.7119 + }, + { + "start": 60343.6, + "end": 60345.88, + "probability": 0.9269 + }, + { + "start": 60346.66, + "end": 60348.18, + "probability": 0.7881 + }, + { + "start": 60349.46, + "end": 60350.98, + "probability": 0.839 + }, + { + "start": 60351.54, + "end": 60354.31, + "probability": 0.9933 + }, + { + "start": 60356.03, + "end": 60360.62, + "probability": 0.8584 + }, + { + "start": 60361.6, + "end": 60362.98, + "probability": 0.3602 + }, + { + "start": 60363.16, + "end": 60365.12, + "probability": 0.6744 + }, + { + "start": 60365.3, + "end": 60367.3, + "probability": 0.7376 + }, + { + "start": 60368.06, + "end": 60369.36, + "probability": 0.176 + }, + { + "start": 60369.54, + "end": 60373.26, + "probability": 0.7674 + }, + { + "start": 60373.86, + "end": 60376.74, + "probability": 0.9698 + }, + { + "start": 60377.64, + "end": 60379.44, + "probability": 0.9578 + }, + { + "start": 60380.0, + "end": 60382.98, + "probability": 0.8658 + }, + { + "start": 60384.1, + "end": 60388.22, + "probability": 0.9189 + }, + { + "start": 60388.82, + "end": 60393.66, + "probability": 0.499 + }, + { + "start": 60394.22, + "end": 60395.98, + "probability": 0.6237 + }, + { + "start": 60397.16, + "end": 60401.54, + "probability": 0.7847 + }, + { + "start": 60402.62, + "end": 60404.08, + "probability": 0.6086 + }, + { + "start": 60405.08, + "end": 60405.68, + "probability": 0.8712 + }, + { + "start": 60407.28, + "end": 60407.56, + "probability": 0.1355 + }, + { + "start": 60407.56, + "end": 60409.34, + "probability": 0.7612 + }, + { + "start": 60409.46, + "end": 60410.96, + "probability": 0.7711 + }, + { + "start": 60411.44, + "end": 60413.26, + "probability": 0.8677 + }, + { + "start": 60413.4, + "end": 60418.88, + "probability": 0.9592 + }, + { + "start": 60419.16, + "end": 60419.76, + "probability": 0.8433 + }, + { + "start": 60420.86, + "end": 60421.96, + "probability": 0.8813 + }, + { + "start": 60422.08, + "end": 60422.65, + "probability": 0.9331 + }, + { + "start": 60423.0, + "end": 60423.74, + "probability": 0.6704 + }, + { + "start": 60423.88, + "end": 60425.5, + "probability": 0.9346 + }, + { + "start": 60428.04, + "end": 60431.0, + "probability": 0.8846 + }, + { + "start": 60431.26, + "end": 60431.54, + "probability": 0.5928 + }, + { + "start": 60431.62, + "end": 60433.02, + "probability": 0.5409 + }, + { + "start": 60433.72, + "end": 60434.8, + "probability": 0.2088 + }, + { + "start": 60435.0, + "end": 60435.7, + "probability": 0.1736 + }, + { + "start": 60437.22, + "end": 60437.36, + "probability": 0.5106 + }, + { + "start": 60438.86, + "end": 60441.12, + "probability": 0.6519 + }, + { + "start": 60442.92, + "end": 60442.92, + "probability": 0.044 + }, + { + "start": 60443.0, + "end": 60446.96, + "probability": 0.9884 + }, + { + "start": 60447.44, + "end": 60448.38, + "probability": 0.367 + }, + { + "start": 60452.26, + "end": 60452.52, + "probability": 0.5181 + }, + { + "start": 60453.4, + "end": 60454.28, + "probability": 0.808 + }, + { + "start": 60456.06, + "end": 60456.32, + "probability": 0.9154 + }, + { + "start": 60458.2, + "end": 60458.66, + "probability": 0.9786 + }, + { + "start": 60461.98, + "end": 60464.46, + "probability": 0.6173 + }, + { + "start": 60464.8, + "end": 60465.76, + "probability": 0.6173 + }, + { + "start": 60471.62, + "end": 60472.5, + "probability": 0.9852 + }, + { + "start": 60476.3, + "end": 60477.08, + "probability": 0.4675 + }, + { + "start": 60480.26, + "end": 60480.74, + "probability": 0.7795 + }, + { + "start": 60482.14, + "end": 60482.24, + "probability": 0.8725 + }, + { + "start": 60484.8, + "end": 60486.48, + "probability": 0.9623 + }, + { + "start": 60489.6, + "end": 60493.14, + "probability": 0.9797 + }, + { + "start": 60495.28, + "end": 60496.14, + "probability": 0.6426 + }, + { + "start": 60496.72, + "end": 60497.48, + "probability": 0.999 + }, + { + "start": 60500.28, + "end": 60501.2, + "probability": 0.8374 + }, + { + "start": 60503.42, + "end": 60507.32, + "probability": 0.7679 + }, + { + "start": 60512.18, + "end": 60514.86, + "probability": 0.9655 + }, + { + "start": 60516.2, + "end": 60519.86, + "probability": 0.48 + }, + { + "start": 60520.14, + "end": 60521.64, + "probability": 0.8537 + }, + { + "start": 60522.02, + "end": 60524.01, + "probability": 0.8506 + }, + { + "start": 60526.24, + "end": 60526.72, + "probability": 0.778 + }, + { + "start": 60527.76, + "end": 60527.8, + "probability": 0.4316 + }, + { + "start": 60527.8, + "end": 60528.76, + "probability": 0.8801 + }, + { + "start": 60528.78, + "end": 60530.76, + "probability": 0.3713 + }, + { + "start": 60531.34, + "end": 60531.8, + "probability": 0.8061 + }, + { + "start": 60533.06, + "end": 60535.06, + "probability": 0.4542 + }, + { + "start": 60535.08, + "end": 60536.16, + "probability": 0.4095 + }, + { + "start": 60536.36, + "end": 60537.9, + "probability": 0.9377 + }, + { + "start": 60538.84, + "end": 60540.04, + "probability": 0.8403 + }, + { + "start": 60541.02, + "end": 60542.2, + "probability": 0.5756 + }, + { + "start": 60542.2, + "end": 60543.32, + "probability": 0.61 + }, + { + "start": 60544.02, + "end": 60544.42, + "probability": 0.3631 + }, + { + "start": 60544.55, + "end": 60546.46, + "probability": 0.8628 + }, + { + "start": 60546.56, + "end": 60546.8, + "probability": 0.8323 + }, + { + "start": 60548.74, + "end": 60550.02, + "probability": 0.5368 + }, + { + "start": 60553.32, + "end": 60555.01, + "probability": 0.9749 + }, + { + "start": 60555.34, + "end": 60555.82, + "probability": 0.4106 + }, + { + "start": 60556.0, + "end": 60556.62, + "probability": 0.5271 + }, + { + "start": 60556.62, + "end": 60560.16, + "probability": 0.3818 + }, + { + "start": 60565.32, + "end": 60568.4, + "probability": 0.7665 + }, + { + "start": 60569.48, + "end": 60570.42, + "probability": 0.8381 + }, + { + "start": 60572.12, + "end": 60572.8, + "probability": 0.7316 + }, + { + "start": 60573.42, + "end": 60575.78, + "probability": 0.9788 + }, + { + "start": 60576.0, + "end": 60577.04, + "probability": 0.9744 + }, + { + "start": 60578.18, + "end": 60579.36, + "probability": 0.8613 + }, + { + "start": 60580.72, + "end": 60584.34, + "probability": 0.952 + }, + { + "start": 60585.44, + "end": 60587.62, + "probability": 0.9995 + }, + { + "start": 60588.02, + "end": 60589.76, + "probability": 0.7011 + }, + { + "start": 60590.34, + "end": 60592.22, + "probability": 0.8633 + }, + { + "start": 60592.84, + "end": 60596.02, + "probability": 0.9762 + }, + { + "start": 60597.0, + "end": 60597.36, + "probability": 0.9702 + }, + { + "start": 60598.96, + "end": 60599.5, + "probability": 0.9663 + }, + { + "start": 60601.74, + "end": 60602.52, + "probability": 0.9852 + }, + { + "start": 60603.1, + "end": 60606.74, + "probability": 0.741 + }, + { + "start": 60606.74, + "end": 60609.28, + "probability": 0.5457 + }, + { + "start": 60610.22, + "end": 60610.64, + "probability": 0.9386 + }, + { + "start": 60611.18, + "end": 60613.3, + "probability": 0.9091 + }, + { + "start": 60614.4, + "end": 60616.14, + "probability": 0.9392 + }, + { + "start": 60617.18, + "end": 60622.48, + "probability": 0.9885 + }, + { + "start": 60622.84, + "end": 60623.22, + "probability": 0.3305 + }, + { + "start": 60623.8, + "end": 60624.54, + "probability": 0.6429 + }, + { + "start": 60625.14, + "end": 60625.62, + "probability": 0.7833 + }, + { + "start": 60626.52, + "end": 60629.62, + "probability": 0.9664 + }, + { + "start": 60631.24, + "end": 60633.32, + "probability": 0.7209 + }, + { + "start": 60634.48, + "end": 60636.84, + "probability": 0.9446 + }, + { + "start": 60638.58, + "end": 60641.32, + "probability": 0.9957 + }, + { + "start": 60642.64, + "end": 60644.64, + "probability": 0.9937 + }, + { + "start": 60644.76, + "end": 60647.18, + "probability": 0.9804 + }, + { + "start": 60647.96, + "end": 60651.22, + "probability": 0.8783 + }, + { + "start": 60652.1, + "end": 60656.69, + "probability": 0.6548 + }, + { + "start": 60657.46, + "end": 60663.44, + "probability": 0.9838 + }, + { + "start": 60663.56, + "end": 60664.5, + "probability": 0.9724 + }, + { + "start": 60665.16, + "end": 60666.06, + "probability": 0.7433 + }, + { + "start": 60667.04, + "end": 60669.86, + "probability": 0.9795 + }, + { + "start": 60670.46, + "end": 60673.08, + "probability": 0.9661 + }, + { + "start": 60673.22, + "end": 60675.64, + "probability": 0.9795 + }, + { + "start": 60675.82, + "end": 60679.2, + "probability": 0.9854 + }, + { + "start": 60679.76, + "end": 60682.6, + "probability": 0.9131 + }, + { + "start": 60683.14, + "end": 60684.9, + "probability": 0.9702 + }, + { + "start": 60685.0, + "end": 60686.58, + "probability": 0.9829 + }, + { + "start": 60686.98, + "end": 60691.51, + "probability": 0.7648 + }, + { + "start": 60693.08, + "end": 60694.38, + "probability": 0.9732 + }, + { + "start": 60695.68, + "end": 60699.22, + "probability": 0.8207 + }, + { + "start": 60700.08, + "end": 60701.34, + "probability": 0.9583 + }, + { + "start": 60702.92, + "end": 60704.4, + "probability": 0.9937 + }, + { + "start": 60704.5, + "end": 60707.74, + "probability": 0.9985 + }, + { + "start": 60707.94, + "end": 60709.44, + "probability": 0.9797 + }, + { + "start": 60710.04, + "end": 60711.52, + "probability": 0.9141 + }, + { + "start": 60712.5, + "end": 60714.38, + "probability": 0.9761 + }, + { + "start": 60716.3, + "end": 60719.91, + "probability": 0.9978 + }, + { + "start": 60721.14, + "end": 60722.62, + "probability": 0.9509 + }, + { + "start": 60722.76, + "end": 60724.54, + "probability": 0.843 + }, + { + "start": 60724.72, + "end": 60725.83, + "probability": 0.9973 + }, + { + "start": 60726.28, + "end": 60726.86, + "probability": 0.9568 + }, + { + "start": 60728.72, + "end": 60730.22, + "probability": 0.3588 + }, + { + "start": 60730.34, + "end": 60734.1, + "probability": 0.9805 + }, + { + "start": 60735.52, + "end": 60736.8, + "probability": 0.8745 + }, + { + "start": 60736.88, + "end": 60738.06, + "probability": 0.8962 + }, + { + "start": 60738.18, + "end": 60738.68, + "probability": 0.9734 + }, + { + "start": 60739.78, + "end": 60742.88, + "probability": 0.9692 + }, + { + "start": 60744.14, + "end": 60747.08, + "probability": 0.9736 + }, + { + "start": 60748.04, + "end": 60751.76, + "probability": 0.5976 + }, + { + "start": 60752.56, + "end": 60753.78, + "probability": 0.988 + }, + { + "start": 60754.62, + "end": 60756.06, + "probability": 0.9832 + }, + { + "start": 60758.0, + "end": 60761.04, + "probability": 0.9879 + }, + { + "start": 60761.1, + "end": 60763.22, + "probability": 0.9929 + }, + { + "start": 60766.02, + "end": 60766.82, + "probability": 0.873 + }, + { + "start": 60768.06, + "end": 60768.76, + "probability": 0.729 + }, + { + "start": 60768.94, + "end": 60769.32, + "probability": 0.8185 + }, + { + "start": 60769.8, + "end": 60770.64, + "probability": 0.9446 + }, + { + "start": 60770.7, + "end": 60771.54, + "probability": 0.8315 + }, + { + "start": 60771.78, + "end": 60772.5, + "probability": 0.903 + }, + { + "start": 60773.06, + "end": 60773.68, + "probability": 0.6388 + }, + { + "start": 60774.64, + "end": 60778.62, + "probability": 0.9495 + }, + { + "start": 60778.68, + "end": 60779.26, + "probability": 0.984 + }, + { + "start": 60780.54, + "end": 60781.52, + "probability": 0.7312 + }, + { + "start": 60782.8, + "end": 60785.74, + "probability": 0.9815 + }, + { + "start": 60786.98, + "end": 60788.08, + "probability": 0.631 + }, + { + "start": 60789.22, + "end": 60791.14, + "probability": 0.9329 + }, + { + "start": 60793.02, + "end": 60794.22, + "probability": 0.9932 + }, + { + "start": 60796.08, + "end": 60798.98, + "probability": 0.9797 + }, + { + "start": 60800.16, + "end": 60800.74, + "probability": 0.7874 + }, + { + "start": 60801.46, + "end": 60803.64, + "probability": 0.9696 + }, + { + "start": 60804.62, + "end": 60805.3, + "probability": 0.8853 + }, + { + "start": 60805.36, + "end": 60807.22, + "probability": 0.9946 + }, + { + "start": 60808.5, + "end": 60811.04, + "probability": 0.9814 + }, + { + "start": 60811.12, + "end": 60812.68, + "probability": 0.9705 + }, + { + "start": 60813.6, + "end": 60816.28, + "probability": 0.9945 + }, + { + "start": 60816.32, + "end": 60819.72, + "probability": 0.9995 + }, + { + "start": 60821.5, + "end": 60822.96, + "probability": 0.9983 + }, + { + "start": 60824.7, + "end": 60826.3, + "probability": 0.9996 + }, + { + "start": 60827.36, + "end": 60828.26, + "probability": 0.9943 + }, + { + "start": 60828.96, + "end": 60835.56, + "probability": 0.9945 + }, + { + "start": 60837.42, + "end": 60838.04, + "probability": 0.88 + }, + { + "start": 60838.7, + "end": 60839.94, + "probability": 0.9891 + }, + { + "start": 60840.84, + "end": 60841.92, + "probability": 0.9741 + }, + { + "start": 60842.7, + "end": 60844.7, + "probability": 0.9988 + }, + { + "start": 60845.92, + "end": 60847.72, + "probability": 0.9939 + }, + { + "start": 60849.02, + "end": 60852.14, + "probability": 0.819 + }, + { + "start": 60854.28, + "end": 60855.98, + "probability": 0.9658 + }, + { + "start": 60857.64, + "end": 60860.92, + "probability": 0.9922 + }, + { + "start": 60861.74, + "end": 60863.3, + "probability": 0.9937 + }, + { + "start": 60865.36, + "end": 60868.34, + "probability": 0.982 + }, + { + "start": 60868.4, + "end": 60869.6, + "probability": 0.9841 + }, + { + "start": 60869.72, + "end": 60873.16, + "probability": 0.9673 + }, + { + "start": 60874.5, + "end": 60877.94, + "probability": 0.9829 + }, + { + "start": 60878.04, + "end": 60879.22, + "probability": 0.8838 + }, + { + "start": 60880.2, + "end": 60881.77, + "probability": 0.8995 + }, + { + "start": 60882.66, + "end": 60884.26, + "probability": 0.8916 + }, + { + "start": 60884.26, + "end": 60884.86, + "probability": 0.751 + }, + { + "start": 60885.68, + "end": 60886.8, + "probability": 0.9839 + }, + { + "start": 60886.88, + "end": 60888.08, + "probability": 0.9922 + }, + { + "start": 60888.14, + "end": 60889.22, + "probability": 0.9906 + }, + { + "start": 60889.28, + "end": 60890.82, + "probability": 0.9863 + }, + { + "start": 60890.92, + "end": 60892.0, + "probability": 0.9858 + }, + { + "start": 60892.36, + "end": 60893.82, + "probability": 0.8752 + }, + { + "start": 60894.3, + "end": 60897.62, + "probability": 0.9712 + }, + { + "start": 60900.98, + "end": 60905.26, + "probability": 0.9601 + }, + { + "start": 60907.22, + "end": 60909.46, + "probability": 0.9506 + }, + { + "start": 60909.64, + "end": 60912.26, + "probability": 0.9955 + }, + { + "start": 60913.04, + "end": 60915.1, + "probability": 0.9836 + }, + { + "start": 60916.1, + "end": 60920.66, + "probability": 0.9098 + }, + { + "start": 60920.76, + "end": 60921.36, + "probability": 0.6472 + }, + { + "start": 60921.38, + "end": 60922.2, + "probability": 0.7358 + }, + { + "start": 60923.8, + "end": 60924.2, + "probability": 0.7632 + }, + { + "start": 60925.34, + "end": 60925.73, + "probability": 0.9712 + }, + { + "start": 60926.66, + "end": 60928.26, + "probability": 0.8179 + }, + { + "start": 60928.84, + "end": 60930.21, + "probability": 0.979 + }, + { + "start": 60931.46, + "end": 60933.8, + "probability": 0.9644 + }, + { + "start": 60934.74, + "end": 60938.02, + "probability": 0.9495 + }, + { + "start": 60938.02, + "end": 60938.58, + "probability": 0.9291 + }, + { + "start": 60938.7, + "end": 60940.64, + "probability": 0.9947 + }, + { + "start": 60942.14, + "end": 60943.32, + "probability": 0.9989 + }, + { + "start": 60944.16, + "end": 60945.54, + "probability": 0.9982 + }, + { + "start": 60946.8, + "end": 60949.96, + "probability": 0.8542 + }, + { + "start": 60951.0, + "end": 60951.7, + "probability": 0.9388 + }, + { + "start": 60951.86, + "end": 60952.38, + "probability": 0.8497 + }, + { + "start": 60952.76, + "end": 60953.38, + "probability": 0.9497 + }, + { + "start": 60953.46, + "end": 60955.94, + "probability": 0.9674 + }, + { + "start": 60956.46, + "end": 60958.3, + "probability": 0.642 + }, + { + "start": 60958.46, + "end": 60959.7, + "probability": 0.2088 + }, + { + "start": 60959.9, + "end": 60964.26, + "probability": 0.9524 + }, + { + "start": 60964.94, + "end": 60965.82, + "probability": 0.8589 + }, + { + "start": 60966.7, + "end": 60968.92, + "probability": 0.9873 + }, + { + "start": 60969.8, + "end": 60973.24, + "probability": 0.9683 + }, + { + "start": 60973.8, + "end": 60974.82, + "probability": 0.8966 + }, + { + "start": 60974.9, + "end": 60976.3, + "probability": 0.5343 + }, + { + "start": 60976.4, + "end": 60977.66, + "probability": 0.8455 + }, + { + "start": 60978.34, + "end": 60981.6, + "probability": 0.9292 + }, + { + "start": 60982.5, + "end": 60983.2, + "probability": 0.981 + }, + { + "start": 60983.72, + "end": 60987.12, + "probability": 0.9639 + }, + { + "start": 60987.78, + "end": 60988.34, + "probability": 0.5051 + }, + { + "start": 60989.06, + "end": 60989.72, + "probability": 0.3694 + }, + { + "start": 60991.72, + "end": 60992.86, + "probability": 0.9722 + }, + { + "start": 60993.6, + "end": 60995.06, + "probability": 0.9684 + }, + { + "start": 60996.26, + "end": 60999.3, + "probability": 0.7239 + }, + { + "start": 61000.38, + "end": 61001.04, + "probability": 0.9502 + }, + { + "start": 61001.8, + "end": 61002.88, + "probability": 0.9258 + }, + { + "start": 61005.2, + "end": 61008.06, + "probability": 0.9709 + }, + { + "start": 61009.2, + "end": 61009.84, + "probability": 0.9155 + }, + { + "start": 61010.3, + "end": 61010.72, + "probability": 0.8213 + }, + { + "start": 61012.5, + "end": 61014.2, + "probability": 0.964 + }, + { + "start": 61015.78, + "end": 61016.26, + "probability": 0.8609 + }, + { + "start": 61017.7, + "end": 61019.76, + "probability": 0.6691 + }, + { + "start": 61020.78, + "end": 61023.6, + "probability": 0.9873 + }, + { + "start": 61024.52, + "end": 61025.4, + "probability": 0.9476 + }, + { + "start": 61026.78, + "end": 61028.87, + "probability": 0.9775 + }, + { + "start": 61030.46, + "end": 61033.16, + "probability": 0.8523 + }, + { + "start": 61034.32, + "end": 61037.22, + "probability": 0.9912 + }, + { + "start": 61038.04, + "end": 61042.2, + "probability": 0.9888 + }, + { + "start": 61043.06, + "end": 61044.1, + "probability": 0.9992 + }, + { + "start": 61046.2, + "end": 61047.48, + "probability": 0.9415 + }, + { + "start": 61048.0, + "end": 61049.3, + "probability": 0.9654 + }, + { + "start": 61049.76, + "end": 61050.8, + "probability": 0.9966 + }, + { + "start": 61051.46, + "end": 61053.8, + "probability": 0.8171 + }, + { + "start": 61054.83, + "end": 61058.02, + "probability": 0.984 + }, + { + "start": 61058.68, + "end": 61059.7, + "probability": 0.8673 + }, + { + "start": 61059.78, + "end": 61060.56, + "probability": 0.8829 + }, + { + "start": 61060.68, + "end": 61061.86, + "probability": 0.9094 + }, + { + "start": 61062.04, + "end": 61063.74, + "probability": 0.5351 + }, + { + "start": 61063.88, + "end": 61064.7, + "probability": 0.9824 + }, + { + "start": 61066.12, + "end": 61067.46, + "probability": 0.6933 + }, + { + "start": 61068.88, + "end": 61072.36, + "probability": 0.6366 + }, + { + "start": 61072.6, + "end": 61074.22, + "probability": 0.9588 + }, + { + "start": 61074.44, + "end": 61076.46, + "probability": 0.9809 + }, + { + "start": 61079.06, + "end": 61079.52, + "probability": 0.9019 + }, + { + "start": 61081.22, + "end": 61081.78, + "probability": 0.9723 + }, + { + "start": 61082.38, + "end": 61085.4, + "probability": 0.9963 + }, + { + "start": 61086.76, + "end": 61088.82, + "probability": 0.7788 + }, + { + "start": 61089.54, + "end": 61091.86, + "probability": 0.7882 + }, + { + "start": 61092.54, + "end": 61092.94, + "probability": 0.4513 + }, + { + "start": 61094.78, + "end": 61095.38, + "probability": 0.77 + }, + { + "start": 61096.78, + "end": 61098.74, + "probability": 0.8791 + }, + { + "start": 61099.4, + "end": 61101.0, + "probability": 0.9661 + }, + { + "start": 61101.72, + "end": 61103.64, + "probability": 0.9832 + }, + { + "start": 61104.46, + "end": 61107.24, + "probability": 0.655 + }, + { + "start": 61108.64, + "end": 61109.24, + "probability": 0.62 + }, + { + "start": 61109.84, + "end": 61110.86, + "probability": 0.9387 + }, + { + "start": 61113.5, + "end": 61114.24, + "probability": 0.9655 + }, + { + "start": 61115.34, + "end": 61116.3, + "probability": 0.9911 + }, + { + "start": 61117.6, + "end": 61119.14, + "probability": 0.9716 + }, + { + "start": 61120.44, + "end": 61121.28, + "probability": 0.8303 + }, + { + "start": 61122.44, + "end": 61123.32, + "probability": 0.9226 + }, + { + "start": 61124.12, + "end": 61125.03, + "probability": 0.8843 + }, + { + "start": 61128.08, + "end": 61128.86, + "probability": 0.8433 + }, + { + "start": 61132.38, + "end": 61133.02, + "probability": 0.8491 + }, + { + "start": 61134.16, + "end": 61138.72, + "probability": 0.979 + }, + { + "start": 61139.88, + "end": 61140.84, + "probability": 0.7731 + }, + { + "start": 61141.04, + "end": 61141.6, + "probability": 0.5607 + }, + { + "start": 61141.9, + "end": 61142.94, + "probability": 0.7522 + }, + { + "start": 61144.46, + "end": 61149.42, + "probability": 0.8687 + }, + { + "start": 61150.3, + "end": 61151.56, + "probability": 0.8735 + }, + { + "start": 61152.56, + "end": 61154.96, + "probability": 0.7685 + }, + { + "start": 61155.36, + "end": 61157.42, + "probability": 0.8924 + }, + { + "start": 61159.68, + "end": 61161.14, + "probability": 0.7497 + }, + { + "start": 61161.88, + "end": 61162.84, + "probability": 0.7 + }, + { + "start": 61163.38, + "end": 61164.0, + "probability": 0.954 + }, + { + "start": 61164.64, + "end": 61165.24, + "probability": 0.5732 + }, + { + "start": 61166.76, + "end": 61167.58, + "probability": 0.9902 + }, + { + "start": 61168.32, + "end": 61168.94, + "probability": 0.9388 + }, + { + "start": 61170.12, + "end": 61171.9, + "probability": 0.9728 + }, + { + "start": 61174.58, + "end": 61176.56, + "probability": 0.9968 + }, + { + "start": 61177.18, + "end": 61177.8, + "probability": 0.773 + }, + { + "start": 61177.88, + "end": 61178.7, + "probability": 0.9609 + }, + { + "start": 61179.06, + "end": 61179.63, + "probability": 0.9541 + }, + { + "start": 61180.14, + "end": 61181.68, + "probability": 0.9646 + }, + { + "start": 61181.82, + "end": 61182.68, + "probability": 0.9902 + }, + { + "start": 61183.96, + "end": 61185.5, + "probability": 0.9861 + }, + { + "start": 61185.62, + "end": 61187.76, + "probability": 0.9844 + }, + { + "start": 61187.96, + "end": 61190.22, + "probability": 0.9728 + }, + { + "start": 61190.98, + "end": 61191.5, + "probability": 0.8125 + }, + { + "start": 61193.46, + "end": 61196.56, + "probability": 0.962 + }, + { + "start": 61197.9, + "end": 61199.7, + "probability": 0.9982 + }, + { + "start": 61201.18, + "end": 61205.18, + "probability": 0.9653 + }, + { + "start": 61206.56, + "end": 61209.4, + "probability": 0.9964 + }, + { + "start": 61210.46, + "end": 61212.52, + "probability": 0.7631 + }, + { + "start": 61213.66, + "end": 61215.86, + "probability": 0.861 + }, + { + "start": 61216.58, + "end": 61216.78, + "probability": 0.8526 + }, + { + "start": 61218.32, + "end": 61218.6, + "probability": 0.8732 + }, + { + "start": 61219.94, + "end": 61224.44, + "probability": 0.8495 + }, + { + "start": 61225.68, + "end": 61228.34, + "probability": 0.9757 + }, + { + "start": 61231.44, + "end": 61233.58, + "probability": 0.9897 + }, + { + "start": 61234.32, + "end": 61235.14, + "probability": 0.9024 + }, + { + "start": 61238.52, + "end": 61240.84, + "probability": 0.6622 + }, + { + "start": 61241.48, + "end": 61245.22, + "probability": 0.6115 + }, + { + "start": 61245.42, + "end": 61245.78, + "probability": 0.3781 + }, + { + "start": 61245.92, + "end": 61247.84, + "probability": 0.9813 + }, + { + "start": 61248.44, + "end": 61249.36, + "probability": 0.8952 + }, + { + "start": 61250.8, + "end": 61251.24, + "probability": 0.783 + }, + { + "start": 61252.66, + "end": 61253.26, + "probability": 0.9673 + }, + { + "start": 61254.34, + "end": 61258.4, + "probability": 0.9797 + }, + { + "start": 61259.88, + "end": 61261.54, + "probability": 0.9937 + }, + { + "start": 61262.42, + "end": 61263.72, + "probability": 0.9644 + }, + { + "start": 61265.82, + "end": 61268.08, + "probability": 0.9957 + }, + { + "start": 61268.14, + "end": 61269.2, + "probability": 0.8908 + }, + { + "start": 61269.9, + "end": 61270.64, + "probability": 0.9418 + }, + { + "start": 61270.72, + "end": 61271.12, + "probability": 0.7983 + }, + { + "start": 61271.16, + "end": 61272.51, + "probability": 0.9613 + }, + { + "start": 61274.76, + "end": 61276.1, + "probability": 0.9028 + }, + { + "start": 61276.24, + "end": 61278.6, + "probability": 0.9907 + }, + { + "start": 61278.6, + "end": 61282.7, + "probability": 0.9927 + }, + { + "start": 61282.94, + "end": 61287.32, + "probability": 0.9986 + }, + { + "start": 61287.6, + "end": 61288.6, + "probability": 0.721 + }, + { + "start": 61290.04, + "end": 61296.62, + "probability": 0.9982 + }, + { + "start": 61297.92, + "end": 61298.6, + "probability": 0.8371 + }, + { + "start": 61299.52, + "end": 61299.62, + "probability": 0.7034 + }, + { + "start": 61299.68, + "end": 61300.16, + "probability": 0.8031 + }, + { + "start": 61300.28, + "end": 61301.42, + "probability": 0.5874 + }, + { + "start": 61301.52, + "end": 61303.04, + "probability": 0.903 + }, + { + "start": 61303.84, + "end": 61306.46, + "probability": 0.9915 + }, + { + "start": 61307.56, + "end": 61311.68, + "probability": 0.9979 + }, + { + "start": 61312.32, + "end": 61314.82, + "probability": 0.9915 + }, + { + "start": 61315.44, + "end": 61316.58, + "probability": 0.7384 + }, + { + "start": 61317.98, + "end": 61319.3, + "probability": 0.737 + }, + { + "start": 61320.26, + "end": 61322.36, + "probability": 0.9019 + }, + { + "start": 61322.62, + "end": 61322.96, + "probability": 0.6382 + }, + { + "start": 61322.96, + "end": 61323.22, + "probability": 0.5539 + }, + { + "start": 61323.58, + "end": 61325.2, + "probability": 0.9753 + }, + { + "start": 61327.12, + "end": 61328.06, + "probability": 0.999 + }, + { + "start": 61329.42, + "end": 61330.56, + "probability": 0.8944 + }, + { + "start": 61330.78, + "end": 61333.18, + "probability": 0.9985 + }, + { + "start": 61333.96, + "end": 61335.54, + "probability": 0.998 + }, + { + "start": 61337.02, + "end": 61337.96, + "probability": 0.9675 + }, + { + "start": 61339.38, + "end": 61341.93, + "probability": 0.9976 + }, + { + "start": 61345.1, + "end": 61347.94, + "probability": 0.9121 + }, + { + "start": 61348.74, + "end": 61351.17, + "probability": 0.9723 + }, + { + "start": 61352.48, + "end": 61354.4, + "probability": 0.9834 + }, + { + "start": 61355.96, + "end": 61357.88, + "probability": 0.9819 + }, + { + "start": 61360.78, + "end": 61364.78, + "probability": 0.9847 + }, + { + "start": 61365.72, + "end": 61369.7, + "probability": 0.9458 + }, + { + "start": 61370.54, + "end": 61375.96, + "probability": 0.9932 + }, + { + "start": 61377.28, + "end": 61378.94, + "probability": 0.9941 + }, + { + "start": 61379.92, + "end": 61383.28, + "probability": 0.9585 + }, + { + "start": 61385.2, + "end": 61389.06, + "probability": 0.735 + }, + { + "start": 61389.64, + "end": 61392.52, + "probability": 0.9968 + }, + { + "start": 61393.16, + "end": 61397.3, + "probability": 0.993 + }, + { + "start": 61398.4, + "end": 61403.0, + "probability": 0.9323 + }, + { + "start": 61403.3, + "end": 61405.44, + "probability": 0.8178 + }, + { + "start": 61405.88, + "end": 61406.06, + "probability": 0.6821 + }, + { + "start": 61406.92, + "end": 61407.6, + "probability": 0.8015 + }, + { + "start": 61408.4, + "end": 61413.26, + "probability": 0.9494 + }, + { + "start": 61413.9, + "end": 61415.28, + "probability": 0.76 + }, + { + "start": 61418.08, + "end": 61419.96, + "probability": 0.9365 + }, + { + "start": 61435.54, + "end": 61437.78, + "probability": 0.0561 + }, + { + "start": 61439.92, + "end": 61440.86, + "probability": 0.7221 + }, + { + "start": 61443.22, + "end": 61444.2, + "probability": 0.8499 + }, + { + "start": 61446.64, + "end": 61447.94, + "probability": 0.998 + }, + { + "start": 61448.64, + "end": 61450.72, + "probability": 0.9977 + }, + { + "start": 61451.98, + "end": 61452.84, + "probability": 0.9534 + }, + { + "start": 61454.26, + "end": 61456.08, + "probability": 0.9694 + }, + { + "start": 61457.32, + "end": 61459.26, + "probability": 0.9961 + }, + { + "start": 61459.26, + "end": 61463.08, + "probability": 0.9827 + }, + { + "start": 61464.1, + "end": 61466.28, + "probability": 0.9872 + }, + { + "start": 61467.1, + "end": 61469.52, + "probability": 0.9983 + }, + { + "start": 61470.5, + "end": 61471.44, + "probability": 0.9858 + }, + { + "start": 61472.46, + "end": 61475.22, + "probability": 0.9314 + }, + { + "start": 61476.76, + "end": 61479.3, + "probability": 0.9872 + }, + { + "start": 61480.1, + "end": 61481.02, + "probability": 0.7649 + }, + { + "start": 61482.12, + "end": 61484.96, + "probability": 0.9979 + }, + { + "start": 61485.68, + "end": 61486.46, + "probability": 0.9851 + }, + { + "start": 61487.32, + "end": 61488.3, + "probability": 0.9799 + }, + { + "start": 61489.1, + "end": 61491.54, + "probability": 0.9994 + }, + { + "start": 61493.8, + "end": 61497.78, + "probability": 0.9878 + }, + { + "start": 61499.86, + "end": 61501.84, + "probability": 0.9736 + }, + { + "start": 61501.94, + "end": 61504.2, + "probability": 0.7636 + }, + { + "start": 61504.42, + "end": 61505.0, + "probability": 0.7541 + }, + { + "start": 61505.8, + "end": 61508.39, + "probability": 0.9967 + }, + { + "start": 61509.6, + "end": 61511.08, + "probability": 0.9906 + }, + { + "start": 61511.86, + "end": 61514.98, + "probability": 0.9976 + }, + { + "start": 61514.98, + "end": 61519.64, + "probability": 0.9995 + }, + { + "start": 61520.2, + "end": 61522.72, + "probability": 0.9868 + }, + { + "start": 61524.16, + "end": 61528.0, + "probability": 0.9878 + }, + { + "start": 61528.6, + "end": 61531.44, + "probability": 0.9924 + }, + { + "start": 61531.44, + "end": 61534.18, + "probability": 0.9973 + }, + { + "start": 61534.96, + "end": 61537.1, + "probability": 0.991 + }, + { + "start": 61537.1, + "end": 61539.6, + "probability": 0.9748 + }, + { + "start": 61540.02, + "end": 61542.08, + "probability": 0.9735 + }, + { + "start": 61544.32, + "end": 61545.12, + "probability": 0.9349 + }, + { + "start": 61545.7, + "end": 61548.42, + "probability": 0.9988 + }, + { + "start": 61548.42, + "end": 61551.86, + "probability": 0.9987 + }, + { + "start": 61552.56, + "end": 61554.74, + "probability": 0.9902 + }, + { + "start": 61557.38, + "end": 61561.46, + "probability": 0.9966 + }, + { + "start": 61561.46, + "end": 61565.94, + "probability": 0.9993 + }, + { + "start": 61565.94, + "end": 61571.66, + "probability": 0.9982 + }, + { + "start": 61572.96, + "end": 61575.02, + "probability": 0.9598 + }, + { + "start": 61575.08, + "end": 61575.36, + "probability": 0.8084 + }, + { + "start": 61575.78, + "end": 61579.93, + "probability": 0.9943 + }, + { + "start": 61581.16, + "end": 61584.82, + "probability": 0.9746 + }, + { + "start": 61585.34, + "end": 61589.04, + "probability": 0.9703 + }, + { + "start": 61590.1, + "end": 61590.6, + "probability": 0.3723 + }, + { + "start": 61590.84, + "end": 61593.84, + "probability": 0.4933 + }, + { + "start": 61593.96, + "end": 61594.16, + "probability": 0.7814 + }, + { + "start": 61594.5, + "end": 61596.56, + "probability": 0.7452 + }, + { + "start": 61597.02, + "end": 61599.32, + "probability": 0.9764 + }, + { + "start": 61600.38, + "end": 61604.1, + "probability": 0.9932 + }, + { + "start": 61604.42, + "end": 61608.0, + "probability": 0.9876 + }, + { + "start": 61608.52, + "end": 61610.48, + "probability": 0.9937 + }, + { + "start": 61615.38, + "end": 61617.98, + "probability": 0.9821 + }, + { + "start": 61618.64, + "end": 61622.82, + "probability": 0.8948 + }, + { + "start": 61623.92, + "end": 61625.58, + "probability": 0.9571 + }, + { + "start": 61625.8, + "end": 61626.68, + "probability": 0.9691 + }, + { + "start": 61627.06, + "end": 61629.16, + "probability": 0.9631 + }, + { + "start": 61629.6, + "end": 61632.42, + "probability": 0.8292 + }, + { + "start": 61632.86, + "end": 61634.16, + "probability": 0.9325 + }, + { + "start": 61635.44, + "end": 61638.22, + "probability": 0.995 + }, + { + "start": 61639.5, + "end": 61641.44, + "probability": 0.9669 + }, + { + "start": 61642.66, + "end": 61643.76, + "probability": 0.9987 + }, + { + "start": 61644.32, + "end": 61646.4, + "probability": 0.9922 + }, + { + "start": 61646.86, + "end": 61648.96, + "probability": 0.9956 + }, + { + "start": 61650.44, + "end": 61652.38, + "probability": 0.6516 + }, + { + "start": 61653.66, + "end": 61657.1, + "probability": 0.825 + }, + { + "start": 61658.58, + "end": 61659.06, + "probability": 0.7444 + }, + { + "start": 61659.4, + "end": 61660.98, + "probability": 0.9891 + }, + { + "start": 61661.36, + "end": 61662.76, + "probability": 0.9896 + }, + { + "start": 61664.02, + "end": 61666.26, + "probability": 0.8561 + }, + { + "start": 61666.26, + "end": 61669.78, + "probability": 0.9969 + }, + { + "start": 61672.58, + "end": 61673.18, + "probability": 0.8199 + }, + { + "start": 61674.0, + "end": 61677.26, + "probability": 0.9977 + }, + { + "start": 61677.26, + "end": 61680.5, + "probability": 0.9991 + }, + { + "start": 61681.84, + "end": 61683.96, + "probability": 0.8584 + }, + { + "start": 61684.82, + "end": 61689.93, + "probability": 0.995 + }, + { + "start": 61690.92, + "end": 61692.58, + "probability": 0.9972 + }, + { + "start": 61693.22, + "end": 61695.88, + "probability": 0.9603 + }, + { + "start": 61695.88, + "end": 61699.7, + "probability": 0.9941 + }, + { + "start": 61701.98, + "end": 61707.03, + "probability": 0.9941 + }, + { + "start": 61708.26, + "end": 61712.38, + "probability": 0.8633 + }, + { + "start": 61714.18, + "end": 61716.34, + "probability": 0.9958 + }, + { + "start": 61716.8, + "end": 61721.9, + "probability": 0.999 + }, + { + "start": 61723.18, + "end": 61724.86, + "probability": 0.9742 + }, + { + "start": 61725.38, + "end": 61727.07, + "probability": 0.8416 + }, + { + "start": 61727.5, + "end": 61731.44, + "probability": 0.9472 + }, + { + "start": 61732.24, + "end": 61735.72, + "probability": 0.8142 + }, + { + "start": 61749.08, + "end": 61749.92, + "probability": 0.5156 + }, + { + "start": 61751.1, + "end": 61752.83, + "probability": 0.4335 + }, + { + "start": 61755.73, + "end": 61757.16, + "probability": 0.0432 + }, + { + "start": 61757.16, + "end": 61757.62, + "probability": 0.7105 + }, + { + "start": 61763.72, + "end": 61763.98, + "probability": 0.6519 + }, + { + "start": 61764.48, + "end": 61765.26, + "probability": 0.6531 + }, + { + "start": 61765.32, + "end": 61766.02, + "probability": 0.9714 + }, + { + "start": 61766.92, + "end": 61770.66, + "probability": 0.1538 + }, + { + "start": 61771.46, + "end": 61771.58, + "probability": 0.1438 + }, + { + "start": 61771.58, + "end": 61773.5, + "probability": 0.2844 + }, + { + "start": 61774.28, + "end": 61775.08, + "probability": 0.6206 + }, + { + "start": 61775.64, + "end": 61777.76, + "probability": 0.5704 + }, + { + "start": 61779.54, + "end": 61782.1, + "probability": 0.9746 + }, + { + "start": 61782.22, + "end": 61782.88, + "probability": 0.6666 + }, + { + "start": 61783.04, + "end": 61783.08, + "probability": 0.1958 + }, + { + "start": 61797.2, + "end": 61799.66, + "probability": 0.3606 + }, + { + "start": 61800.9, + "end": 61801.74, + "probability": 0.4182 + }, + { + "start": 61802.67, + "end": 61805.08, + "probability": 0.6803 + }, + { + "start": 61805.16, + "end": 61805.68, + "probability": 0.7496 + }, + { + "start": 61805.84, + "end": 61806.54, + "probability": 0.6411 + }, + { + "start": 61806.68, + "end": 61807.4, + "probability": 0.5131 + }, + { + "start": 61807.5, + "end": 61808.48, + "probability": 0.8725 + }, + { + "start": 61808.78, + "end": 61810.54, + "probability": 0.2379 + }, + { + "start": 61810.6, + "end": 61811.64, + "probability": 0.5281 + }, + { + "start": 61811.88, + "end": 61820.27, + "probability": 0.6528 + }, + { + "start": 61821.48, + "end": 61822.92, + "probability": 0.6967 + }, + { + "start": 61823.98, + "end": 61824.54, + "probability": 0.6905 + }, + { + "start": 61824.78, + "end": 61826.18, + "probability": 0.6194 + }, + { + "start": 61827.02, + "end": 61827.12, + "probability": 0.0019 + }, + { + "start": 61829.98, + "end": 61833.46, + "probability": 0.9526 + }, + { + "start": 61834.18, + "end": 61836.58, + "probability": 0.5674 + }, + { + "start": 61836.58, + "end": 61837.52, + "probability": 0.1298 + }, + { + "start": 61837.87, + "end": 61840.74, + "probability": 0.9009 + }, + { + "start": 61840.82, + "end": 61845.56, + "probability": 0.5971 + }, + { + "start": 61846.46, + "end": 61847.02, + "probability": 0.243 + }, + { + "start": 61847.14, + "end": 61849.62, + "probability": 0.5266 + }, + { + "start": 61850.58, + "end": 61851.14, + "probability": 0.9732 + }, + { + "start": 61851.82, + "end": 61851.96, + "probability": 0.8384 + }, + { + "start": 61852.16, + "end": 61854.06, + "probability": 0.9965 + }, + { + "start": 61855.22, + "end": 61857.0, + "probability": 0.9714 + }, + { + "start": 61857.68, + "end": 61859.24, + "probability": 0.7432 + }, + { + "start": 61860.04, + "end": 61860.54, + "probability": 0.5895 + }, + { + "start": 61860.62, + "end": 61862.3, + "probability": 0.994 + }, + { + "start": 61862.54, + "end": 61865.78, + "probability": 0.9905 + }, + { + "start": 61867.28, + "end": 61867.76, + "probability": 0.8196 + }, + { + "start": 61868.7, + "end": 61871.45, + "probability": 0.8577 + }, + { + "start": 61873.02, + "end": 61876.96, + "probability": 0.7907 + }, + { + "start": 61877.56, + "end": 61880.82, + "probability": 0.9658 + }, + { + "start": 61881.6, + "end": 61885.3, + "probability": 0.5297 + }, + { + "start": 61885.48, + "end": 61893.86, + "probability": 0.9761 + }, + { + "start": 61894.2, + "end": 61896.96, + "probability": 0.8163 + }, + { + "start": 61897.76, + "end": 61903.6, + "probability": 0.9856 + }, + { + "start": 61905.68, + "end": 61907.28, + "probability": 0.5894 + }, + { + "start": 61907.98, + "end": 61910.48, + "probability": 0.7555 + }, + { + "start": 61910.96, + "end": 61912.2, + "probability": 0.6397 + }, + { + "start": 61912.78, + "end": 61914.67, + "probability": 0.847 + }, + { + "start": 61915.18, + "end": 61919.84, + "probability": 0.9839 + }, + { + "start": 61919.94, + "end": 61921.06, + "probability": 0.799 + }, + { + "start": 61921.2, + "end": 61922.52, + "probability": 0.8754 + }, + { + "start": 61923.12, + "end": 61924.04, + "probability": 0.4594 + }, + { + "start": 61924.04, + "end": 61928.74, + "probability": 0.9037 + }, + { + "start": 61928.84, + "end": 61930.36, + "probability": 0.8404 + }, + { + "start": 61930.4, + "end": 61931.81, + "probability": 0.9627 + }, + { + "start": 61932.4, + "end": 61933.4, + "probability": 0.2671 + }, + { + "start": 61934.18, + "end": 61939.42, + "probability": 0.9614 + }, + { + "start": 61939.42, + "end": 61941.26, + "probability": 0.9951 + }, + { + "start": 61941.36, + "end": 61942.06, + "probability": 0.9961 + }, + { + "start": 61942.34, + "end": 61945.62, + "probability": 0.4695 + }, + { + "start": 61946.58, + "end": 61947.82, + "probability": 0.2079 + }, + { + "start": 61948.28, + "end": 61952.22, + "probability": 0.0605 + }, + { + "start": 61952.56, + "end": 61953.58, + "probability": 0.8276 + }, + { + "start": 61956.22, + "end": 61956.3, + "probability": 0.3468 + }, + { + "start": 61965.95, + "end": 61967.05, + "probability": 0.9749 + }, + { + "start": 61967.05, + "end": 61967.33, + "probability": 0.4828 + }, + { + "start": 61967.45, + "end": 61972.17, + "probability": 0.72 + }, + { + "start": 61972.45, + "end": 61973.86, + "probability": 0.9409 + }, + { + "start": 61975.34, + "end": 61977.9, + "probability": 0.8583 + }, + { + "start": 61978.93, + "end": 61983.09, + "probability": 0.8911 + }, + { + "start": 61983.19, + "end": 61984.37, + "probability": 0.7766 + }, + { + "start": 61984.91, + "end": 61989.07, + "probability": 0.9215 + }, + { + "start": 61990.03, + "end": 61990.29, + "probability": 0.6806 + }, + { + "start": 61990.51, + "end": 61994.35, + "probability": 0.964 + }, + { + "start": 61994.59, + "end": 61999.33, + "probability": 0.8099 + }, + { + "start": 61999.99, + "end": 62001.73, + "probability": 0.7581 + }, + { + "start": 62003.79, + "end": 62004.85, + "probability": 0.8531 + }, + { + "start": 62005.71, + "end": 62006.69, + "probability": 0.0093 + }, + { + "start": 62006.69, + "end": 62008.09, + "probability": 0.0873 + }, + { + "start": 62008.59, + "end": 62010.79, + "probability": 0.2645 + }, + { + "start": 62010.81, + "end": 62015.37, + "probability": 0.9733 + }, + { + "start": 62017.45, + "end": 62019.49, + "probability": 0.9635 + }, + { + "start": 62019.73, + "end": 62022.05, + "probability": 0.7244 + }, + { + "start": 62022.49, + "end": 62023.15, + "probability": 0.487 + }, + { + "start": 62023.31, + "end": 62024.09, + "probability": 0.2446 + }, + { + "start": 62024.11, + "end": 62025.82, + "probability": 0.3675 + }, + { + "start": 62027.09, + "end": 62029.59, + "probability": 0.8267 + }, + { + "start": 62029.67, + "end": 62032.35, + "probability": 0.7918 + }, + { + "start": 62032.37, + "end": 62033.27, + "probability": 0.8449 + }, + { + "start": 62033.47, + "end": 62034.71, + "probability": 0.622 + }, + { + "start": 62036.34, + "end": 62038.49, + "probability": 0.9806 + }, + { + "start": 62040.15, + "end": 62041.17, + "probability": 0.9492 + }, + { + "start": 62041.73, + "end": 62044.31, + "probability": 0.9789 + }, + { + "start": 62045.19, + "end": 62046.07, + "probability": 0.9621 + }, + { + "start": 62046.91, + "end": 62049.41, + "probability": 0.9844 + }, + { + "start": 62050.57, + "end": 62051.57, + "probability": 0.9186 + }, + { + "start": 62053.41, + "end": 62055.71, + "probability": 0.8591 + }, + { + "start": 62056.21, + "end": 62058.69, + "probability": 0.9851 + }, + { + "start": 62059.57, + "end": 62061.81, + "probability": 0.7871 + }, + { + "start": 62063.61, + "end": 62066.72, + "probability": 0.5703 + }, + { + "start": 62066.81, + "end": 62068.13, + "probability": 0.9902 + }, + { + "start": 62068.17, + "end": 62068.81, + "probability": 0.9821 + }, + { + "start": 62068.87, + "end": 62069.61, + "probability": 0.9523 + }, + { + "start": 62071.27, + "end": 62073.4, + "probability": 0.98 + }, + { + "start": 62074.65, + "end": 62074.89, + "probability": 0.6075 + }, + { + "start": 62075.47, + "end": 62077.13, + "probability": 0.9308 + }, + { + "start": 62077.53, + "end": 62078.41, + "probability": 0.5453 + }, + { + "start": 62078.51, + "end": 62079.01, + "probability": 0.5144 + }, + { + "start": 62079.05, + "end": 62080.67, + "probability": 0.4949 + }, + { + "start": 62080.75, + "end": 62081.57, + "probability": 0.7604 + }, + { + "start": 62082.67, + "end": 62083.43, + "probability": 0.0636 + }, + { + "start": 62084.47, + "end": 62088.33, + "probability": 0.6784 + }, + { + "start": 62088.47, + "end": 62089.21, + "probability": 0.7139 + }, + { + "start": 62089.77, + "end": 62091.07, + "probability": 0.6092 + }, + { + "start": 62091.07, + "end": 62093.11, + "probability": 0.5251 + }, + { + "start": 62093.27, + "end": 62093.27, + "probability": 0.0135 + }, + { + "start": 62093.35, + "end": 62093.65, + "probability": 0.1216 + }, + { + "start": 62093.89, + "end": 62094.7, + "probability": 0.0464 + }, + { + "start": 62095.21, + "end": 62095.75, + "probability": 0.3968 + }, + { + "start": 62095.75, + "end": 62095.99, + "probability": 0.0805 + }, + { + "start": 62095.99, + "end": 62096.31, + "probability": 0.1482 + }, + { + "start": 62096.31, + "end": 62096.49, + "probability": 0.4423 + }, + { + "start": 62096.49, + "end": 62100.57, + "probability": 0.5063 + }, + { + "start": 62101.07, + "end": 62104.55, + "probability": 0.3002 + }, + { + "start": 62104.59, + "end": 62105.71, + "probability": 0.4897 + }, + { + "start": 62107.25, + "end": 62108.85, + "probability": 0.0709 + }, + { + "start": 62108.85, + "end": 62108.85, + "probability": 0.1661 + }, + { + "start": 62108.85, + "end": 62108.85, + "probability": 0.0683 + }, + { + "start": 62108.85, + "end": 62108.87, + "probability": 0.0269 + }, + { + "start": 62109.05, + "end": 62109.33, + "probability": 0.077 + }, + { + "start": 62109.33, + "end": 62112.09, + "probability": 0.3386 + }, + { + "start": 62112.23, + "end": 62113.69, + "probability": 0.1108 + }, + { + "start": 62113.93, + "end": 62114.33, + "probability": 0.0181 + }, + { + "start": 62117.41, + "end": 62118.83, + "probability": 0.1967 + }, + { + "start": 62119.05, + "end": 62120.79, + "probability": 0.2709 + }, + { + "start": 62121.55, + "end": 62122.25, + "probability": 0.5537 + }, + { + "start": 62122.83, + "end": 62124.03, + "probability": 0.0195 + }, + { + "start": 62124.03, + "end": 62126.05, + "probability": 0.4135 + }, + { + "start": 62126.19, + "end": 62126.99, + "probability": 0.6362 + }, + { + "start": 62127.13, + "end": 62129.21, + "probability": 0.2708 + }, + { + "start": 62129.27, + "end": 62130.39, + "probability": 0.3313 + }, + { + "start": 62130.49, + "end": 62130.49, + "probability": 0.1434 + }, + { + "start": 62130.49, + "end": 62135.48, + "probability": 0.6656 + }, + { + "start": 62135.69, + "end": 62136.15, + "probability": 0.4028 + }, + { + "start": 62136.39, + "end": 62136.77, + "probability": 0.4035 + }, + { + "start": 62136.89, + "end": 62138.66, + "probability": 0.9595 + }, + { + "start": 62138.69, + "end": 62139.45, + "probability": 0.3325 + }, + { + "start": 62139.77, + "end": 62142.07, + "probability": 0.6679 + }, + { + "start": 62142.25, + "end": 62143.79, + "probability": 0.0512 + }, + { + "start": 62143.83, + "end": 62146.37, + "probability": 0.7375 + }, + { + "start": 62146.77, + "end": 62149.21, + "probability": 0.3767 + }, + { + "start": 62152.17, + "end": 62154.61, + "probability": 0.7951 + }, + { + "start": 62154.67, + "end": 62155.15, + "probability": 0.6738 + }, + { + "start": 62155.47, + "end": 62158.9, + "probability": 0.9193 + }, + { + "start": 62159.67, + "end": 62161.11, + "probability": 0.6758 + }, + { + "start": 62162.43, + "end": 62165.45, + "probability": 0.132 + }, + { + "start": 62165.69, + "end": 62169.65, + "probability": 0.3327 + }, + { + "start": 62170.55, + "end": 62172.25, + "probability": 0.6632 + }, + { + "start": 62172.83, + "end": 62174.35, + "probability": 0.771 + }, + { + "start": 62174.75, + "end": 62174.95, + "probability": 0.5438 + }, + { + "start": 62174.99, + "end": 62176.25, + "probability": 0.5726 + }, + { + "start": 62176.39, + "end": 62179.59, + "probability": 0.9855 + }, + { + "start": 62179.59, + "end": 62182.15, + "probability": 0.8651 + }, + { + "start": 62182.41, + "end": 62183.67, + "probability": 0.7921 + }, + { + "start": 62183.73, + "end": 62184.08, + "probability": 0.6896 + }, + { + "start": 62184.43, + "end": 62185.67, + "probability": 0.5609 + }, + { + "start": 62186.25, + "end": 62186.81, + "probability": 0.7948 + }, + { + "start": 62187.37, + "end": 62188.47, + "probability": 0.4417 + }, + { + "start": 62188.47, + "end": 62189.03, + "probability": 0.2404 + }, + { + "start": 62189.11, + "end": 62191.65, + "probability": 0.1738 + }, + { + "start": 62191.85, + "end": 62192.73, + "probability": 0.71 + }, + { + "start": 62192.95, + "end": 62193.33, + "probability": 0.7489 + }, + { + "start": 62194.19, + "end": 62194.29, + "probability": 0.3823 + }, + { + "start": 62195.41, + "end": 62196.97, + "probability": 0.8494 + }, + { + "start": 62197.29, + "end": 62199.57, + "probability": 0.4903 + }, + { + "start": 62199.79, + "end": 62200.83, + "probability": 0.8486 + }, + { + "start": 62201.05, + "end": 62201.91, + "probability": 0.9025 + }, + { + "start": 62202.19, + "end": 62206.17, + "probability": 0.5123 + }, + { + "start": 62206.85, + "end": 62208.67, + "probability": 0.3644 + }, + { + "start": 62208.77, + "end": 62212.09, + "probability": 0.3293 + }, + { + "start": 62212.13, + "end": 62216.79, + "probability": 0.7651 + }, + { + "start": 62218.07, + "end": 62218.99, + "probability": 0.9906 + }, + { + "start": 62219.59, + "end": 62220.01, + "probability": 0.9933 + }, + { + "start": 62220.57, + "end": 62221.71, + "probability": 0.406 + }, + { + "start": 62222.43, + "end": 62222.43, + "probability": 0.1889 + }, + { + "start": 62222.43, + "end": 62225.65, + "probability": 0.5568 + }, + { + "start": 62225.77, + "end": 62227.95, + "probability": 0.0686 + }, + { + "start": 62228.67, + "end": 62228.79, + "probability": 0.0275 + }, + { + "start": 62228.91, + "end": 62232.25, + "probability": 0.5326 + }, + { + "start": 62232.35, + "end": 62234.35, + "probability": 0.2054 + }, + { + "start": 62234.86, + "end": 62237.51, + "probability": 0.4592 + }, + { + "start": 62237.61, + "end": 62238.85, + "probability": 0.6018 + }, + { + "start": 62238.97, + "end": 62241.54, + "probability": 0.4318 + }, + { + "start": 62242.71, + "end": 62243.63, + "probability": 0.7484 + }, + { + "start": 62244.35, + "end": 62246.73, + "probability": 0.8198 + }, + { + "start": 62246.87, + "end": 62247.27, + "probability": 0.8932 + }, + { + "start": 62247.47, + "end": 62248.41, + "probability": 0.9354 + }, + { + "start": 62249.33, + "end": 62250.25, + "probability": 0.9778 + }, + { + "start": 62250.81, + "end": 62252.33, + "probability": 0.6693 + }, + { + "start": 62252.91, + "end": 62255.91, + "probability": 0.5895 + }, + { + "start": 62256.09, + "end": 62257.33, + "probability": 0.0555 + }, + { + "start": 62257.33, + "end": 62258.21, + "probability": 0.2372 + }, + { + "start": 62258.41, + "end": 62258.43, + "probability": 0.4219 + }, + { + "start": 62258.63, + "end": 62259.23, + "probability": 0.7353 + }, + { + "start": 62259.23, + "end": 62260.47, + "probability": 0.7255 + }, + { + "start": 62260.59, + "end": 62262.68, + "probability": 0.4563 + }, + { + "start": 62263.67, + "end": 62265.31, + "probability": 0.8227 + }, + { + "start": 62265.43, + "end": 62266.39, + "probability": 0.9452 + }, + { + "start": 62266.89, + "end": 62268.43, + "probability": 0.6555 + }, + { + "start": 62269.52, + "end": 62270.65, + "probability": 0.6211 + }, + { + "start": 62271.07, + "end": 62271.63, + "probability": 0.0016 + }, + { + "start": 62272.19, + "end": 62273.09, + "probability": 0.1191 + }, + { + "start": 62273.53, + "end": 62275.45, + "probability": 0.7937 + }, + { + "start": 62275.51, + "end": 62277.99, + "probability": 0.9939 + }, + { + "start": 62278.55, + "end": 62282.41, + "probability": 0.9907 + }, + { + "start": 62282.53, + "end": 62286.63, + "probability": 0.8596 + }, + { + "start": 62287.19, + "end": 62287.19, + "probability": 0.7881 + }, + { + "start": 62287.73, + "end": 62290.83, + "probability": 0.9927 + }, + { + "start": 62291.35, + "end": 62294.47, + "probability": 0.837 + }, + { + "start": 62295.19, + "end": 62299.81, + "probability": 0.9971 + }, + { + "start": 62299.99, + "end": 62301.15, + "probability": 0.9509 + }, + { + "start": 62301.73, + "end": 62302.85, + "probability": 0.968 + }, + { + "start": 62303.49, + "end": 62307.09, + "probability": 0.7787 + }, + { + "start": 62309.89, + "end": 62310.43, + "probability": 0.2186 + }, + { + "start": 62311.37, + "end": 62315.07, + "probability": 0.7586 + }, + { + "start": 62316.17, + "end": 62319.13, + "probability": 0.2593 + }, + { + "start": 62319.37, + "end": 62323.73, + "probability": 0.3355 + }, + { + "start": 62324.61, + "end": 62325.57, + "probability": 0.1106 + }, + { + "start": 62325.65, + "end": 62326.33, + "probability": 0.0539 + }, + { + "start": 62326.33, + "end": 62326.33, + "probability": 0.772 + }, + { + "start": 62326.33, + "end": 62326.33, + "probability": 0.691 + }, + { + "start": 62326.33, + "end": 62327.06, + "probability": 0.3668 + }, + { + "start": 62327.37, + "end": 62328.99, + "probability": 0.7145 + }, + { + "start": 62329.21, + "end": 62333.27, + "probability": 0.7731 + }, + { + "start": 62333.41, + "end": 62339.49, + "probability": 0.9453 + }, + { + "start": 62339.49, + "end": 62344.17, + "probability": 0.9624 + }, + { + "start": 62344.19, + "end": 62344.33, + "probability": 0.3652 + }, + { + "start": 62344.63, + "end": 62344.63, + "probability": 0.09 + }, + { + "start": 62344.63, + "end": 62345.93, + "probability": 0.8711 + }, + { + "start": 62346.03, + "end": 62347.75, + "probability": 0.9072 + }, + { + "start": 62347.81, + "end": 62348.95, + "probability": 0.7903 + }, + { + "start": 62349.51, + "end": 62352.47, + "probability": 0.9895 + }, + { + "start": 62352.47, + "end": 62352.89, + "probability": 0.2151 + }, + { + "start": 62352.99, + "end": 62355.07, + "probability": 0.7883 + }, + { + "start": 62355.29, + "end": 62357.71, + "probability": 0.9574 + }, + { + "start": 62357.71, + "end": 62359.83, + "probability": 0.7298 + }, + { + "start": 62360.75, + "end": 62361.64, + "probability": 0.5068 + }, + { + "start": 62362.13, + "end": 62362.41, + "probability": 0.7172 + }, + { + "start": 62363.15, + "end": 62363.33, + "probability": 0.3999 + }, + { + "start": 62363.59, + "end": 62366.15, + "probability": 0.3419 + }, + { + "start": 62366.21, + "end": 62368.97, + "probability": 0.6383 + }, + { + "start": 62369.01, + "end": 62372.15, + "probability": 0.7507 + }, + { + "start": 62375.07, + "end": 62379.87, + "probability": 0.7413 + }, + { + "start": 62380.73, + "end": 62382.09, + "probability": 0.9926 + }, + { + "start": 62382.17, + "end": 62382.75, + "probability": 0.7749 + }, + { + "start": 62383.05, + "end": 62384.89, + "probability": 0.9971 + }, + { + "start": 62385.03, + "end": 62386.52, + "probability": 0.998 + }, + { + "start": 62387.61, + "end": 62389.75, + "probability": 0.743 + }, + { + "start": 62389.89, + "end": 62392.25, + "probability": 0.9944 + }, + { + "start": 62392.35, + "end": 62393.05, + "probability": 0.8597 + }, + { + "start": 62393.37, + "end": 62395.59, + "probability": 0.4278 + }, + { + "start": 62395.81, + "end": 62396.49, + "probability": 0.5551 + }, + { + "start": 62397.01, + "end": 62399.71, + "probability": 0.3367 + }, + { + "start": 62399.79, + "end": 62400.83, + "probability": 0.7651 + }, + { + "start": 62400.99, + "end": 62401.77, + "probability": 0.6613 + }, + { + "start": 62401.79, + "end": 62404.55, + "probability": 0.6696 + }, + { + "start": 62404.73, + "end": 62405.53, + "probability": 0.4024 + }, + { + "start": 62405.99, + "end": 62407.47, + "probability": 0.1353 + }, + { + "start": 62407.55, + "end": 62407.69, + "probability": 0.1793 + }, + { + "start": 62407.69, + "end": 62409.49, + "probability": 0.249 + }, + { + "start": 62409.57, + "end": 62410.89, + "probability": 0.9675 + }, + { + "start": 62411.05, + "end": 62411.86, + "probability": 0.9169 + }, + { + "start": 62412.31, + "end": 62415.93, + "probability": 0.7531 + }, + { + "start": 62416.07, + "end": 62417.23, + "probability": 0.8566 + }, + { + "start": 62417.43, + "end": 62418.53, + "probability": 0.6516 + }, + { + "start": 62418.71, + "end": 62418.85, + "probability": 0.7018 + }, + { + "start": 62418.91, + "end": 62419.23, + "probability": 0.6902 + }, + { + "start": 62419.49, + "end": 62420.99, + "probability": 0.4988 + }, + { + "start": 62421.43, + "end": 62423.17, + "probability": 0.8292 + }, + { + "start": 62423.39, + "end": 62425.67, + "probability": 0.8046 + }, + { + "start": 62425.88, + "end": 62429.11, + "probability": 0.5442 + }, + { + "start": 62432.05, + "end": 62433.29, + "probability": 0.1008 + }, + { + "start": 62435.91, + "end": 62437.03, + "probability": 0.7699 + }, + { + "start": 62437.83, + "end": 62438.97, + "probability": 0.6595 + }, + { + "start": 62439.05, + "end": 62439.61, + "probability": 0.3644 + }, + { + "start": 62440.23, + "end": 62442.1, + "probability": 0.629 + }, + { + "start": 62442.65, + "end": 62443.91, + "probability": 0.8249 + }, + { + "start": 62443.97, + "end": 62444.01, + "probability": 0.1287 + }, + { + "start": 62444.01, + "end": 62446.41, + "probability": 0.6334 + }, + { + "start": 62447.23, + "end": 62449.55, + "probability": 0.3952 + }, + { + "start": 62450.31, + "end": 62452.49, + "probability": 0.9917 + }, + { + "start": 62452.53, + "end": 62456.05, + "probability": 0.9649 + }, + { + "start": 62456.31, + "end": 62457.51, + "probability": 0.7772 + }, + { + "start": 62457.65, + "end": 62460.39, + "probability": 0.2915 + }, + { + "start": 62460.39, + "end": 62460.99, + "probability": 0.0958 + }, + { + "start": 62460.99, + "end": 62461.41, + "probability": 0.2047 + }, + { + "start": 62461.41, + "end": 62464.15, + "probability": 0.8894 + }, + { + "start": 62464.41, + "end": 62466.61, + "probability": 0.5242 + }, + { + "start": 62468.05, + "end": 62470.27, + "probability": 0.8271 + }, + { + "start": 62470.53, + "end": 62472.21, + "probability": 0.851 + }, + { + "start": 62472.29, + "end": 62474.12, + "probability": 0.9977 + }, + { + "start": 62474.45, + "end": 62475.71, + "probability": 0.7832 + }, + { + "start": 62475.75, + "end": 62477.51, + "probability": 0.8686 + }, + { + "start": 62477.69, + "end": 62478.57, + "probability": 0.9239 + }, + { + "start": 62478.69, + "end": 62480.97, + "probability": 0.6579 + }, + { + "start": 62481.35, + "end": 62484.37, + "probability": 0.9634 + }, + { + "start": 62484.69, + "end": 62488.87, + "probability": 0.9648 + }, + { + "start": 62489.03, + "end": 62492.07, + "probability": 0.5494 + }, + { + "start": 62492.15, + "end": 62492.55, + "probability": 0.2296 + }, + { + "start": 62494.23, + "end": 62496.09, + "probability": 0.006 + }, + { + "start": 62497.03, + "end": 62498.37, + "probability": 0.0008 + }, + { + "start": 62499.51, + "end": 62500.15, + "probability": 0.3933 + }, + { + "start": 62500.67, + "end": 62501.29, + "probability": 0.4543 + }, + { + "start": 62501.29, + "end": 62501.29, + "probability": 0.5459 + }, + { + "start": 62501.31, + "end": 62501.59, + "probability": 0.5322 + }, + { + "start": 62501.59, + "end": 62502.49, + "probability": 0.7674 + }, + { + "start": 62502.57, + "end": 62504.63, + "probability": 0.8901 + }, + { + "start": 62504.81, + "end": 62509.57, + "probability": 0.8737 + }, + { + "start": 62510.03, + "end": 62514.01, + "probability": 0.9421 + }, + { + "start": 62514.21, + "end": 62514.81, + "probability": 0.6425 + }, + { + "start": 62514.95, + "end": 62517.73, + "probability": 0.8586 + }, + { + "start": 62518.11, + "end": 62520.39, + "probability": 0.7242 + }, + { + "start": 62520.39, + "end": 62523.17, + "probability": 0.9019 + }, + { + "start": 62523.45, + "end": 62525.23, + "probability": 0.7249 + }, + { + "start": 62525.55, + "end": 62527.41, + "probability": 0.4363 + }, + { + "start": 62527.49, + "end": 62529.81, + "probability": 0.9953 + }, + { + "start": 62530.31, + "end": 62531.51, + "probability": 0.9568 + }, + { + "start": 62531.75, + "end": 62533.03, + "probability": 0.0693 + }, + { + "start": 62533.37, + "end": 62533.71, + "probability": 0.3422 + }, + { + "start": 62533.71, + "end": 62533.71, + "probability": 0.146 + }, + { + "start": 62533.83, + "end": 62534.15, + "probability": 0.6108 + }, + { + "start": 62534.31, + "end": 62540.11, + "probability": 0.7454 + }, + { + "start": 62540.25, + "end": 62541.43, + "probability": 0.572 + }, + { + "start": 62541.43, + "end": 62542.65, + "probability": 0.8275 + }, + { + "start": 62542.71, + "end": 62544.13, + "probability": 0.8907 + }, + { + "start": 62544.69, + "end": 62548.27, + "probability": 0.9697 + }, + { + "start": 62548.37, + "end": 62550.32, + "probability": 0.6953 + }, + { + "start": 62551.95, + "end": 62552.41, + "probability": 0.5345 + }, + { + "start": 62552.43, + "end": 62553.15, + "probability": 0.8305 + }, + { + "start": 62553.19, + "end": 62553.89, + "probability": 0.5174 + }, + { + "start": 62553.95, + "end": 62556.65, + "probability": 0.9446 + }, + { + "start": 62556.85, + "end": 62559.67, + "probability": 0.9976 + }, + { + "start": 62560.31, + "end": 62562.03, + "probability": 0.6404 + }, + { + "start": 62562.41, + "end": 62564.11, + "probability": 0.2337 + }, + { + "start": 62564.11, + "end": 62564.73, + "probability": 0.9514 + }, + { + "start": 62565.15, + "end": 62565.83, + "probability": 0.6574 + }, + { + "start": 62566.41, + "end": 62567.53, + "probability": 0.7709 + }, + { + "start": 62567.63, + "end": 62569.89, + "probability": 0.4935 + }, + { + "start": 62570.39, + "end": 62571.25, + "probability": 0.6974 + }, + { + "start": 62572.27, + "end": 62573.25, + "probability": 0.9445 + }, + { + "start": 62573.59, + "end": 62575.49, + "probability": 0.5498 + }, + { + "start": 62575.51, + "end": 62575.79, + "probability": 0.6905 + }, + { + "start": 62575.89, + "end": 62576.63, + "probability": 0.466 + }, + { + "start": 62576.89, + "end": 62578.11, + "probability": 0.9976 + }, + { + "start": 62578.23, + "end": 62580.55, + "probability": 0.9148 + }, + { + "start": 62580.65, + "end": 62584.69, + "probability": 0.9238 + }, + { + "start": 62584.77, + "end": 62585.54, + "probability": 0.9546 + }, + { + "start": 62585.61, + "end": 62586.61, + "probability": 0.765 + }, + { + "start": 62586.73, + "end": 62587.63, + "probability": 0.9082 + }, + { + "start": 62588.29, + "end": 62592.17, + "probability": 0.4685 + }, + { + "start": 62592.77, + "end": 62596.25, + "probability": 0.8064 + }, + { + "start": 62597.21, + "end": 62598.42, + "probability": 0.0346 + }, + { + "start": 62599.71, + "end": 62600.2, + "probability": 0.765 + }, + { + "start": 62600.43, + "end": 62603.65, + "probability": 0.3284 + }, + { + "start": 62603.69, + "end": 62604.15, + "probability": 0.1809 + }, + { + "start": 62604.45, + "end": 62605.51, + "probability": 0.4066 + }, + { + "start": 62605.55, + "end": 62605.79, + "probability": 0.4909 + }, + { + "start": 62605.83, + "end": 62606.09, + "probability": 0.3978 + }, + { + "start": 62606.25, + "end": 62606.95, + "probability": 0.7839 + }, + { + "start": 62607.07, + "end": 62610.29, + "probability": 0.6084 + }, + { + "start": 62610.37, + "end": 62611.49, + "probability": 0.1641 + }, + { + "start": 62612.73, + "end": 62616.61, + "probability": 0.9407 + }, + { + "start": 62616.79, + "end": 62618.61, + "probability": 0.9847 + }, + { + "start": 62618.61, + "end": 62622.43, + "probability": 0.9276 + }, + { + "start": 62622.53, + "end": 62622.67, + "probability": 0.4606 + }, + { + "start": 62622.77, + "end": 62624.31, + "probability": 0.8987 + }, + { + "start": 62624.79, + "end": 62627.36, + "probability": 0.9479 + }, + { + "start": 62628.71, + "end": 62629.27, + "probability": 0.8697 + }, + { + "start": 62629.37, + "end": 62631.67, + "probability": 0.2426 + }, + { + "start": 62631.89, + "end": 62634.03, + "probability": 0.9339 + }, + { + "start": 62634.09, + "end": 62635.33, + "probability": 0.477 + }, + { + "start": 62635.59, + "end": 62636.93, + "probability": 0.4984 + }, + { + "start": 62637.45, + "end": 62638.29, + "probability": 0.7955 + }, + { + "start": 62638.43, + "end": 62639.39, + "probability": 0.6911 + }, + { + "start": 62639.81, + "end": 62640.99, + "probability": 0.9327 + }, + { + "start": 62641.19, + "end": 62642.27, + "probability": 0.7061 + }, + { + "start": 62642.39, + "end": 62644.75, + "probability": 0.8271 + }, + { + "start": 62645.19, + "end": 62646.15, + "probability": 0.9576 + }, + { + "start": 62646.27, + "end": 62648.21, + "probability": 0.9575 + }, + { + "start": 62648.31, + "end": 62648.57, + "probability": 0.1123 + }, + { + "start": 62648.57, + "end": 62649.69, + "probability": 0.6375 + }, + { + "start": 62649.75, + "end": 62651.2, + "probability": 0.9379 + }, + { + "start": 62651.55, + "end": 62652.49, + "probability": 0.9656 + }, + { + "start": 62652.85, + "end": 62655.75, + "probability": 0.9779 + }, + { + "start": 62655.79, + "end": 62659.19, + "probability": 0.9988 + }, + { + "start": 62659.25, + "end": 62661.69, + "probability": 0.8794 + }, + { + "start": 62661.75, + "end": 62662.57, + "probability": 0.0679 + }, + { + "start": 62662.81, + "end": 62664.41, + "probability": 0.9543 + }, + { + "start": 62664.85, + "end": 62665.45, + "probability": 0.48 + }, + { + "start": 62665.97, + "end": 62666.11, + "probability": 0.0591 + }, + { + "start": 62666.11, + "end": 62667.53, + "probability": 0.73 + }, + { + "start": 62669.43, + "end": 62670.31, + "probability": 0.5767 + }, + { + "start": 62670.31, + "end": 62674.03, + "probability": 0.7002 + }, + { + "start": 62674.31, + "end": 62675.45, + "probability": 0.988 + }, + { + "start": 62675.57, + "end": 62677.15, + "probability": 0.9339 + }, + { + "start": 62677.19, + "end": 62678.01, + "probability": 0.642 + }, + { + "start": 62678.09, + "end": 62680.69, + "probability": 0.9457 + }, + { + "start": 62680.75, + "end": 62682.53, + "probability": 0.2717 + }, + { + "start": 62682.53, + "end": 62683.37, + "probability": 0.5101 + }, + { + "start": 62683.45, + "end": 62686.55, + "probability": 0.9888 + }, + { + "start": 62686.73, + "end": 62689.59, + "probability": 0.9229 + }, + { + "start": 62689.99, + "end": 62691.27, + "probability": 0.9302 + }, + { + "start": 62691.43, + "end": 62693.03, + "probability": 0.6124 + }, + { + "start": 62693.17, + "end": 62697.81, + "probability": 0.8112 + }, + { + "start": 62697.99, + "end": 62699.42, + "probability": 0.9412 + }, + { + "start": 62700.07, + "end": 62700.95, + "probability": 0.4582 + }, + { + "start": 62702.25, + "end": 62702.89, + "probability": 0.4714 + }, + { + "start": 62703.03, + "end": 62703.82, + "probability": 0.8667 + }, + { + "start": 62704.19, + "end": 62704.65, + "probability": 0.0354 + }, + { + "start": 62704.65, + "end": 62705.51, + "probability": 0.9065 + }, + { + "start": 62705.61, + "end": 62705.97, + "probability": 0.6851 + }, + { + "start": 62705.99, + "end": 62707.05, + "probability": 0.8875 + }, + { + "start": 62707.13, + "end": 62708.81, + "probability": 0.7405 + }, + { + "start": 62708.81, + "end": 62711.33, + "probability": 0.8653 + }, + { + "start": 62711.37, + "end": 62714.09, + "probability": 0.5675 + }, + { + "start": 62714.35, + "end": 62715.19, + "probability": 0.2408 + }, + { + "start": 62715.61, + "end": 62718.29, + "probability": 0.907 + }, + { + "start": 62719.01, + "end": 62719.55, + "probability": 0.1076 + }, + { + "start": 62719.55, + "end": 62720.65, + "probability": 0.3456 + }, + { + "start": 62720.91, + "end": 62721.33, + "probability": 0.4124 + }, + { + "start": 62722.95, + "end": 62724.56, + "probability": 0.3003 + }, + { + "start": 62724.83, + "end": 62725.43, + "probability": 0.0703 + }, + { + "start": 62727.05, + "end": 62728.51, + "probability": 0.9897 + }, + { + "start": 62729.07, + "end": 62731.75, + "probability": 0.3758 + }, + { + "start": 62734.55, + "end": 62743.63, + "probability": 0.0426 + }, + { + "start": 62743.63, + "end": 62748.93, + "probability": 0.2689 + }, + { + "start": 62748.99, + "end": 62749.87, + "probability": 0.2771 + }, + { + "start": 62751.97, + "end": 62752.93, + "probability": 0.4908 + }, + { + "start": 62752.99, + "end": 62753.77, + "probability": 0.1063 + }, + { + "start": 62753.85, + "end": 62754.27, + "probability": 0.348 + }, + { + "start": 62754.27, + "end": 62756.49, + "probability": 0.5075 + }, + { + "start": 62756.69, + "end": 62759.53, + "probability": 0.8704 + }, + { + "start": 62759.67, + "end": 62760.73, + "probability": 0.6509 + }, + { + "start": 62760.97, + "end": 62762.05, + "probability": 0.6213 + }, + { + "start": 62762.13, + "end": 62763.21, + "probability": 0.1109 + }, + { + "start": 62763.95, + "end": 62765.61, + "probability": 0.2489 + }, + { + "start": 62767.03, + "end": 62767.35, + "probability": 0.2375 + }, + { + "start": 62768.37, + "end": 62769.61, + "probability": 0.3182 + }, + { + "start": 62771.57, + "end": 62771.57, + "probability": 0.0353 + }, + { + "start": 62775.47, + "end": 62779.23, + "probability": 0.1312 + }, + { + "start": 62781.33, + "end": 62783.83, + "probability": 0.5416 + }, + { + "start": 62784.25, + "end": 62786.85, + "probability": 0.6711 + }, + { + "start": 62786.97, + "end": 62788.13, + "probability": 0.6651 + }, + { + "start": 62790.21, + "end": 62791.65, + "probability": 0.9251 + }, + { + "start": 62792.13, + "end": 62793.63, + "probability": 0.6053 + }, + { + "start": 62793.67, + "end": 62796.43, + "probability": 0.547 + }, + { + "start": 62796.73, + "end": 62799.15, + "probability": 0.7059 + }, + { + "start": 62799.15, + "end": 62800.91, + "probability": 0.4465 + }, + { + "start": 62801.21, + "end": 62802.77, + "probability": 0.7262 + }, + { + "start": 62802.95, + "end": 62803.74, + "probability": 0.8934 + }, + { + "start": 62804.05, + "end": 62804.82, + "probability": 0.7894 + }, + { + "start": 62805.52, + "end": 62806.96, + "probability": 0.9041 + }, + { + "start": 62807.54, + "end": 62808.84, + "probability": 0.5019 + }, + { + "start": 62808.88, + "end": 62810.96, + "probability": 0.5708 + }, + { + "start": 62812.14, + "end": 62813.38, + "probability": 0.8984 + }, + { + "start": 62813.86, + "end": 62816.52, + "probability": 0.7214 + }, + { + "start": 62816.68, + "end": 62817.44, + "probability": 0.4769 + }, + { + "start": 62818.5, + "end": 62819.96, + "probability": 0.8117 + }, + { + "start": 62821.1, + "end": 62822.84, + "probability": 0.9916 + }, + { + "start": 62823.16, + "end": 62824.06, + "probability": 0.6917 + }, + { + "start": 62824.06, + "end": 62826.24, + "probability": 0.5023 + }, + { + "start": 62826.52, + "end": 62829.82, + "probability": 0.1411 + }, + { + "start": 62829.88, + "end": 62832.18, + "probability": 0.4385 + }, + { + "start": 62833.76, + "end": 62834.18, + "probability": 0.0284 + }, + { + "start": 62834.18, + "end": 62834.18, + "probability": 0.1602 + }, + { + "start": 62834.18, + "end": 62834.18, + "probability": 0.129 + }, + { + "start": 62834.18, + "end": 62834.18, + "probability": 0.0511 + }, + { + "start": 62834.18, + "end": 62837.25, + "probability": 0.2384 + }, + { + "start": 62837.66, + "end": 62839.98, + "probability": 0.1941 + }, + { + "start": 62840.2, + "end": 62841.48, + "probability": 0.2978 + }, + { + "start": 62841.6, + "end": 62841.68, + "probability": 0.1102 + }, + { + "start": 62841.68, + "end": 62842.54, + "probability": 0.3139 + }, + { + "start": 62843.06, + "end": 62844.04, + "probability": 0.201 + }, + { + "start": 62844.18, + "end": 62845.1, + "probability": 0.8987 + }, + { + "start": 62845.48, + "end": 62846.18, + "probability": 0.4887 + }, + { + "start": 62846.3, + "end": 62847.3, + "probability": 0.823 + }, + { + "start": 62847.54, + "end": 62848.62, + "probability": 0.8945 + }, + { + "start": 62848.78, + "end": 62850.1, + "probability": 0.6543 + }, + { + "start": 62850.2, + "end": 62850.94, + "probability": 0.4216 + }, + { + "start": 62851.0, + "end": 62851.54, + "probability": 0.8654 + }, + { + "start": 62851.62, + "end": 62852.84, + "probability": 0.5997 + }, + { + "start": 62852.86, + "end": 62853.28, + "probability": 0.8348 + }, + { + "start": 62853.36, + "end": 62856.07, + "probability": 0.5245 + }, + { + "start": 62856.22, + "end": 62857.82, + "probability": 0.9915 + }, + { + "start": 62859.1, + "end": 62862.76, + "probability": 0.2872 + }, + { + "start": 62862.96, + "end": 62867.6, + "probability": 0.684 + }, + { + "start": 62867.72, + "end": 62868.24, + "probability": 0.809 + }, + { + "start": 62868.36, + "end": 62869.2, + "probability": 0.732 + }, + { + "start": 62869.62, + "end": 62871.04, + "probability": 0.9497 + }, + { + "start": 62871.08, + "end": 62874.62, + "probability": 0.8603 + }, + { + "start": 62874.86, + "end": 62875.56, + "probability": 0.8968 + }, + { + "start": 62875.78, + "end": 62877.46, + "probability": 0.999 + }, + { + "start": 62877.62, + "end": 62879.64, + "probability": 0.9987 + }, + { + "start": 62879.74, + "end": 62881.4, + "probability": 0.516 + }, + { + "start": 62881.7, + "end": 62884.46, + "probability": 0.9245 + }, + { + "start": 62884.86, + "end": 62885.66, + "probability": 0.8912 + }, + { + "start": 62885.76, + "end": 62888.08, + "probability": 0.7025 + }, + { + "start": 62888.24, + "end": 62891.56, + "probability": 0.6851 + }, + { + "start": 62891.56, + "end": 62892.32, + "probability": 0.6693 + }, + { + "start": 62892.82, + "end": 62894.02, + "probability": 0.5702 + }, + { + "start": 62894.12, + "end": 62896.2, + "probability": 0.6547 + }, + { + "start": 62896.52, + "end": 62898.23, + "probability": 0.9349 + }, + { + "start": 62898.66, + "end": 62902.44, + "probability": 0.6351 + }, + { + "start": 62902.72, + "end": 62904.0, + "probability": 0.2401 + }, + { + "start": 62904.12, + "end": 62904.9, + "probability": 0.5873 + }, + { + "start": 62905.0, + "end": 62906.43, + "probability": 0.937 + }, + { + "start": 62906.86, + "end": 62907.54, + "probability": 0.9178 + }, + { + "start": 62907.62, + "end": 62909.33, + "probability": 0.7204 + }, + { + "start": 62909.66, + "end": 62910.87, + "probability": 0.9866 + }, + { + "start": 62911.12, + "end": 62911.8, + "probability": 0.7872 + }, + { + "start": 62912.76, + "end": 62915.66, + "probability": 0.6058 + }, + { + "start": 62915.86, + "end": 62917.5, + "probability": 0.6281 + }, + { + "start": 62918.04, + "end": 62918.82, + "probability": 0.6343 + }, + { + "start": 62918.84, + "end": 62919.04, + "probability": 0.6408 + }, + { + "start": 62919.1, + "end": 62922.32, + "probability": 0.8735 + }, + { + "start": 62922.48, + "end": 62924.64, + "probability": 0.9946 + }, + { + "start": 62925.5, + "end": 62927.6, + "probability": 0.1235 + }, + { + "start": 62928.02, + "end": 62929.31, + "probability": 0.644 + }, + { + "start": 62929.78, + "end": 62932.04, + "probability": 0.9834 + }, + { + "start": 62933.03, + "end": 62936.27, + "probability": 0.979 + }, + { + "start": 62938.56, + "end": 62939.1, + "probability": 0.8413 + }, + { + "start": 62939.22, + "end": 62943.98, + "probability": 0.9744 + }, + { + "start": 62944.62, + "end": 62948.22, + "probability": 0.978 + }, + { + "start": 62949.32, + "end": 62953.52, + "probability": 0.7344 + }, + { + "start": 62954.44, + "end": 62955.18, + "probability": 0.8331 + }, + { + "start": 62955.3, + "end": 62955.82, + "probability": 0.9393 + }, + { + "start": 62956.14, + "end": 62963.2, + "probability": 0.9706 + }, + { + "start": 62964.18, + "end": 62966.84, + "probability": 0.8229 + }, + { + "start": 62967.16, + "end": 62968.02, + "probability": 0.7752 + }, + { + "start": 62968.16, + "end": 62970.41, + "probability": 0.8962 + }, + { + "start": 62972.48, + "end": 62974.44, + "probability": 0.9428 + }, + { + "start": 62974.6, + "end": 62975.58, + "probability": 0.7285 + }, + { + "start": 62975.64, + "end": 62977.3, + "probability": 0.875 + }, + { + "start": 62977.74, + "end": 62978.64, + "probability": 0.9635 + }, + { + "start": 62979.68, + "end": 62980.36, + "probability": 0.8096 + }, + { + "start": 62981.32, + "end": 62983.48, + "probability": 0.991 + }, + { + "start": 62984.2, + "end": 62987.22, + "probability": 0.6438 + }, + { + "start": 62987.9, + "end": 62989.36, + "probability": 0.9209 + }, + { + "start": 62990.34, + "end": 62991.16, + "probability": 0.526 + }, + { + "start": 62992.5, + "end": 62995.68, + "probability": 0.9963 + }, + { + "start": 62996.12, + "end": 62997.9, + "probability": 0.963 + }, + { + "start": 62997.98, + "end": 62998.62, + "probability": 0.5513 + }, + { + "start": 62999.0, + "end": 63001.42, + "probability": 0.9834 + }, + { + "start": 63001.62, + "end": 63002.16, + "probability": 0.4972 + }, + { + "start": 63002.84, + "end": 63006.98, + "probability": 0.923 + }, + { + "start": 63007.36, + "end": 63011.64, + "probability": 0.9922 + }, + { + "start": 63012.24, + "end": 63015.86, + "probability": 0.9802 + }, + { + "start": 63016.46, + "end": 63017.38, + "probability": 0.7835 + }, + { + "start": 63018.43, + "end": 63020.78, + "probability": 0.9946 + }, + { + "start": 63021.18, + "end": 63021.72, + "probability": 0.7616 + }, + { + "start": 63021.82, + "end": 63025.66, + "probability": 0.8198 + }, + { + "start": 63028.22, + "end": 63028.34, + "probability": 0.0145 + }, + { + "start": 63028.36, + "end": 63028.9, + "probability": 0.9153 + }, + { + "start": 63028.94, + "end": 63029.8, + "probability": 0.9537 + }, + { + "start": 63029.84, + "end": 63032.58, + "probability": 0.9855 + }, + { + "start": 63032.82, + "end": 63035.14, + "probability": 0.8134 + }, + { + "start": 63035.3, + "end": 63036.47, + "probability": 0.9168 + }, + { + "start": 63039.22, + "end": 63040.86, + "probability": 0.9289 + }, + { + "start": 63041.44, + "end": 63043.02, + "probability": 0.8865 + }, + { + "start": 63043.66, + "end": 63047.22, + "probability": 0.9829 + }, + { + "start": 63047.5, + "end": 63049.76, + "probability": 0.9988 + }, + { + "start": 63050.78, + "end": 63054.66, + "probability": 0.8273 + }, + { + "start": 63054.82, + "end": 63059.76, + "probability": 0.9927 + }, + { + "start": 63060.5, + "end": 63063.8, + "probability": 0.8889 + }, + { + "start": 63064.5, + "end": 63066.42, + "probability": 0.8778 + }, + { + "start": 63067.46, + "end": 63067.46, + "probability": 0.0341 + }, + { + "start": 63067.46, + "end": 63069.66, + "probability": 0.86 + }, + { + "start": 63070.62, + "end": 63073.36, + "probability": 0.9238 + }, + { + "start": 63074.12, + "end": 63076.1, + "probability": 0.9207 + }, + { + "start": 63076.62, + "end": 63077.36, + "probability": 0.9351 + }, + { + "start": 63077.46, + "end": 63078.18, + "probability": 0.8898 + }, + { + "start": 63078.44, + "end": 63079.08, + "probability": 0.9817 + }, + { + "start": 63079.18, + "end": 63080.12, + "probability": 0.6586 + }, + { + "start": 63080.66, + "end": 63082.9, + "probability": 0.6436 + }, + { + "start": 63083.66, + "end": 63087.06, + "probability": 0.9934 + }, + { + "start": 63088.0, + "end": 63092.42, + "probability": 0.9675 + }, + { + "start": 63093.2, + "end": 63095.88, + "probability": 0.9855 + }, + { + "start": 63096.34, + "end": 63100.44, + "probability": 0.9922 + }, + { + "start": 63101.26, + "end": 63103.34, + "probability": 0.9703 + }, + { + "start": 63103.42, + "end": 63104.34, + "probability": 0.9594 + }, + { + "start": 63104.52, + "end": 63109.0, + "probability": 0.9961 + }, + { + "start": 63109.04, + "end": 63110.38, + "probability": 0.8391 + }, + { + "start": 63110.86, + "end": 63111.56, + "probability": 0.6013 + }, + { + "start": 63111.94, + "end": 63114.24, + "probability": 0.9956 + }, + { + "start": 63115.12, + "end": 63117.98, + "probability": 0.9923 + }, + { + "start": 63118.08, + "end": 63120.98, + "probability": 0.9713 + }, + { + "start": 63121.92, + "end": 63124.29, + "probability": 0.9972 + }, + { + "start": 63126.12, + "end": 63131.4, + "probability": 0.8337 + }, + { + "start": 63131.52, + "end": 63132.74, + "probability": 0.8481 + }, + { + "start": 63133.8, + "end": 63136.38, + "probability": 0.9985 + }, + { + "start": 63137.28, + "end": 63141.34, + "probability": 0.9783 + }, + { + "start": 63141.92, + "end": 63143.4, + "probability": 0.9369 + }, + { + "start": 63145.16, + "end": 63146.42, + "probability": 0.9854 + }, + { + "start": 63147.12, + "end": 63149.94, + "probability": 0.9677 + }, + { + "start": 63150.02, + "end": 63153.04, + "probability": 0.9995 + }, + { + "start": 63154.02, + "end": 63154.9, + "probability": 0.9836 + }, + { + "start": 63157.44, + "end": 63161.16, + "probability": 0.9972 + }, + { + "start": 63161.8, + "end": 63162.48, + "probability": 0.7467 + }, + { + "start": 63163.02, + "end": 63165.52, + "probability": 0.9681 + }, + { + "start": 63166.94, + "end": 63167.92, + "probability": 0.8754 + }, + { + "start": 63168.24, + "end": 63171.4, + "probability": 0.8317 + }, + { + "start": 63171.52, + "end": 63172.41, + "probability": 0.743 + }, + { + "start": 63173.28, + "end": 63174.49, + "probability": 0.9099 + }, + { + "start": 63177.38, + "end": 63180.8, + "probability": 0.9956 + }, + { + "start": 63180.8, + "end": 63183.52, + "probability": 0.993 + }, + { + "start": 63184.0, + "end": 63187.68, + "probability": 0.9642 + }, + { + "start": 63187.74, + "end": 63189.35, + "probability": 0.9973 + }, + { + "start": 63190.48, + "end": 63193.64, + "probability": 0.7285 + }, + { + "start": 63195.06, + "end": 63197.92, + "probability": 0.7157 + }, + { + "start": 63200.92, + "end": 63203.62, + "probability": 0.9689 + }, + { + "start": 63205.88, + "end": 63208.34, + "probability": 0.9299 + }, + { + "start": 63209.5, + "end": 63212.56, + "probability": 0.9966 + }, + { + "start": 63213.82, + "end": 63217.68, + "probability": 0.907 + }, + { + "start": 63218.5, + "end": 63222.64, + "probability": 0.9951 + }, + { + "start": 63223.92, + "end": 63228.2, + "probability": 0.8866 + }, + { + "start": 63228.36, + "end": 63233.04, + "probability": 0.9653 + }, + { + "start": 63234.1, + "end": 63237.92, + "probability": 0.7789 + }, + { + "start": 63238.66, + "end": 63241.18, + "probability": 0.9826 + }, + { + "start": 63241.18, + "end": 63244.68, + "probability": 0.865 + }, + { + "start": 63245.1, + "end": 63247.32, + "probability": 0.9983 + }, + { + "start": 63247.78, + "end": 63248.26, + "probability": 0.8707 + }, + { + "start": 63249.04, + "end": 63252.22, + "probability": 0.0332 + }, + { + "start": 63252.42, + "end": 63252.62, + "probability": 0.2259 + }, + { + "start": 63253.48, + "end": 63256.0, + "probability": 0.9634 + }, + { + "start": 63258.08, + "end": 63259.64, + "probability": 0.832 + }, + { + "start": 63274.72, + "end": 63274.9, + "probability": 0.1118 + }, + { + "start": 63274.9, + "end": 63275.82, + "probability": 0.4403 + }, + { + "start": 63276.2, + "end": 63277.57, + "probability": 0.8608 + }, + { + "start": 63282.55, + "end": 63286.47, + "probability": 0.7197 + }, + { + "start": 63287.69, + "end": 63289.64, + "probability": 0.8818 + }, + { + "start": 63291.28, + "end": 63293.26, + "probability": 0.9623 + }, + { + "start": 63295.14, + "end": 63297.14, + "probability": 0.8868 + }, + { + "start": 63297.22, + "end": 63298.94, + "probability": 0.9236 + }, + { + "start": 63299.08, + "end": 63300.88, + "probability": 0.9895 + }, + { + "start": 63301.82, + "end": 63308.63, + "probability": 0.9924 + }, + { + "start": 63309.32, + "end": 63313.86, + "probability": 0.9585 + }, + { + "start": 63314.06, + "end": 63315.16, + "probability": 0.798 + }, + { + "start": 63316.04, + "end": 63319.9, + "probability": 0.9713 + }, + { + "start": 63320.84, + "end": 63321.46, + "probability": 0.9421 + }, + { + "start": 63321.54, + "end": 63322.24, + "probability": 0.674 + }, + { + "start": 63322.4, + "end": 63324.26, + "probability": 0.9875 + }, + { + "start": 63324.96, + "end": 63328.64, + "probability": 0.963 + }, + { + "start": 63329.7, + "end": 63332.3, + "probability": 0.8756 + }, + { + "start": 63333.04, + "end": 63338.2, + "probability": 0.8987 + }, + { + "start": 63340.04, + "end": 63340.38, + "probability": 0.4091 + }, + { + "start": 63341.2, + "end": 63343.32, + "probability": 0.9412 + }, + { + "start": 63344.1, + "end": 63346.92, + "probability": 0.9889 + }, + { + "start": 63348.5, + "end": 63348.6, + "probability": 0.1055 + }, + { + "start": 63348.6, + "end": 63349.64, + "probability": 0.9315 + }, + { + "start": 63350.46, + "end": 63352.8, + "probability": 0.9191 + }, + { + "start": 63353.08, + "end": 63353.92, + "probability": 0.4143 + }, + { + "start": 63354.68, + "end": 63355.62, + "probability": 0.1401 + }, + { + "start": 63356.14, + "end": 63356.24, + "probability": 0.0313 + }, + { + "start": 63356.24, + "end": 63358.5, + "probability": 0.8283 + }, + { + "start": 63358.56, + "end": 63360.2, + "probability": 0.2311 + }, + { + "start": 63360.2, + "end": 63360.4, + "probability": 0.0854 + }, + { + "start": 63361.28, + "end": 63367.3, + "probability": 0.7011 + }, + { + "start": 63367.9, + "end": 63373.74, + "probability": 0.9979 + }, + { + "start": 63374.26, + "end": 63374.78, + "probability": 0.8404 + }, + { + "start": 63375.38, + "end": 63376.26, + "probability": 0.6071 + }, + { + "start": 63376.82, + "end": 63378.86, + "probability": 0.8975 + }, + { + "start": 63379.68, + "end": 63380.64, + "probability": 0.9127 + }, + { + "start": 63381.58, + "end": 63385.34, + "probability": 0.96 + }, + { + "start": 63385.4, + "end": 63386.22, + "probability": 0.8087 + }, + { + "start": 63387.04, + "end": 63391.96, + "probability": 0.9898 + }, + { + "start": 63393.6, + "end": 63396.74, + "probability": 0.971 + }, + { + "start": 63398.08, + "end": 63401.8, + "probability": 0.9966 + }, + { + "start": 63402.02, + "end": 63403.58, + "probability": 0.9269 + }, + { + "start": 63404.24, + "end": 63406.66, + "probability": 0.9893 + }, + { + "start": 63406.74, + "end": 63410.73, + "probability": 0.8071 + }, + { + "start": 63411.04, + "end": 63415.52, + "probability": 0.7996 + }, + { + "start": 63415.68, + "end": 63416.38, + "probability": 0.8947 + }, + { + "start": 63417.7, + "end": 63418.64, + "probability": 0.7495 + }, + { + "start": 63419.28, + "end": 63422.34, + "probability": 0.9595 + }, + { + "start": 63422.86, + "end": 63426.48, + "probability": 0.7683 + }, + { + "start": 63427.28, + "end": 63429.18, + "probability": 0.9252 + }, + { + "start": 63429.24, + "end": 63430.02, + "probability": 0.7581 + }, + { + "start": 63431.22, + "end": 63433.86, + "probability": 0.8974 + }, + { + "start": 63434.2, + "end": 63435.3, + "probability": 0.9305 + }, + { + "start": 63435.48, + "end": 63439.06, + "probability": 0.9425 + }, + { + "start": 63439.74, + "end": 63441.12, + "probability": 0.7943 + }, + { + "start": 63441.82, + "end": 63446.72, + "probability": 0.9945 + }, + { + "start": 63447.44, + "end": 63453.24, + "probability": 0.9872 + }, + { + "start": 63453.72, + "end": 63454.56, + "probability": 0.7479 + }, + { + "start": 63455.44, + "end": 63457.64, + "probability": 0.9779 + }, + { + "start": 63458.66, + "end": 63462.08, + "probability": 0.9956 + }, + { + "start": 63462.08, + "end": 63465.65, + "probability": 0.9964 + }, + { + "start": 63466.44, + "end": 63467.48, + "probability": 0.7484 + }, + { + "start": 63467.8, + "end": 63470.4, + "probability": 0.7829 + }, + { + "start": 63470.94, + "end": 63474.98, + "probability": 0.9375 + }, + { + "start": 63475.56, + "end": 63477.38, + "probability": 0.8728 + }, + { + "start": 63478.14, + "end": 63481.68, + "probability": 0.9824 + }, + { + "start": 63482.1, + "end": 63483.04, + "probability": 0.5355 + }, + { + "start": 63483.46, + "end": 63484.58, + "probability": 0.7827 + }, + { + "start": 63485.0, + "end": 63488.72, + "probability": 0.9815 + }, + { + "start": 63489.48, + "end": 63493.92, + "probability": 0.9885 + }, + { + "start": 63495.1, + "end": 63496.12, + "probability": 0.1865 + }, + { + "start": 63496.54, + "end": 63497.24, + "probability": 0.8462 + }, + { + "start": 63497.76, + "end": 63501.08, + "probability": 0.988 + }, + { + "start": 63501.08, + "end": 63505.2, + "probability": 0.9937 + }, + { + "start": 63506.74, + "end": 63511.06, + "probability": 0.9989 + }, + { + "start": 63511.62, + "end": 63514.66, + "probability": 0.9984 + }, + { + "start": 63515.52, + "end": 63516.4, + "probability": 0.8541 + }, + { + "start": 63517.02, + "end": 63522.4, + "probability": 0.9969 + }, + { + "start": 63525.34, + "end": 63528.68, + "probability": 0.9407 + }, + { + "start": 63529.22, + "end": 63534.7, + "probability": 0.9924 + }, + { + "start": 63535.1, + "end": 63536.21, + "probability": 0.8988 + }, + { + "start": 63536.98, + "end": 63538.14, + "probability": 0.9066 + }, + { + "start": 63542.26, + "end": 63543.4, + "probability": 0.9054 + }, + { + "start": 63543.44, + "end": 63546.68, + "probability": 0.9765 + }, + { + "start": 63546.72, + "end": 63548.04, + "probability": 0.9565 + }, + { + "start": 63548.56, + "end": 63551.95, + "probability": 0.9726 + }, + { + "start": 63553.28, + "end": 63554.44, + "probability": 0.9414 + }, + { + "start": 63555.06, + "end": 63558.02, + "probability": 0.9757 + }, + { + "start": 63558.16, + "end": 63559.96, + "probability": 0.9492 + }, + { + "start": 63562.28, + "end": 63563.33, + "probability": 0.9248 + }, + { + "start": 63564.96, + "end": 63566.2, + "probability": 0.952 + }, + { + "start": 63567.08, + "end": 63568.86, + "probability": 0.939 + }, + { + "start": 63569.84, + "end": 63573.56, + "probability": 0.9689 + }, + { + "start": 63573.56, + "end": 63578.5, + "probability": 0.8794 + }, + { + "start": 63579.3, + "end": 63581.02, + "probability": 0.7349 + }, + { + "start": 63581.68, + "end": 63583.14, + "probability": 0.8691 + }, + { + "start": 63583.28, + "end": 63583.58, + "probability": 0.9274 + }, + { + "start": 63583.58, + "end": 63584.18, + "probability": 0.7161 + }, + { + "start": 63584.52, + "end": 63585.26, + "probability": 0.9663 + }, + { + "start": 63585.42, + "end": 63588.88, + "probability": 0.9621 + }, + { + "start": 63589.56, + "end": 63593.78, + "probability": 0.9809 + }, + { + "start": 63594.28, + "end": 63594.68, + "probability": 0.6863 + }, + { + "start": 63595.44, + "end": 63600.32, + "probability": 0.9919 + }, + { + "start": 63602.52, + "end": 63603.18, + "probability": 0.8339 + }, + { + "start": 63603.76, + "end": 63609.36, + "probability": 0.9485 + }, + { + "start": 63611.22, + "end": 63613.64, + "probability": 0.9968 + }, + { + "start": 63613.74, + "end": 63615.38, + "probability": 0.6863 + }, + { + "start": 63615.82, + "end": 63617.74, + "probability": 0.9594 + }, + { + "start": 63618.36, + "end": 63622.3, + "probability": 0.993 + }, + { + "start": 63624.32, + "end": 63626.02, + "probability": 0.8049 + }, + { + "start": 63629.52, + "end": 63632.02, + "probability": 0.5822 + }, + { + "start": 63633.16, + "end": 63634.4, + "probability": 0.8324 + }, + { + "start": 63635.28, + "end": 63640.74, + "probability": 0.9927 + }, + { + "start": 63641.3, + "end": 63644.86, + "probability": 0.9971 + }, + { + "start": 63648.56, + "end": 63654.88, + "probability": 0.9077 + }, + { + "start": 63655.02, + "end": 63658.2, + "probability": 0.9587 + }, + { + "start": 63658.68, + "end": 63663.7, + "probability": 0.8445 + }, + { + "start": 63663.88, + "end": 63664.48, + "probability": 0.7393 + }, + { + "start": 63665.26, + "end": 63666.66, + "probability": 0.8973 + }, + { + "start": 63667.48, + "end": 63667.92, + "probability": 0.9626 + }, + { + "start": 63668.68, + "end": 63671.6, + "probability": 0.9761 + }, + { + "start": 63672.4, + "end": 63675.0, + "probability": 0.9112 + }, + { + "start": 63677.8, + "end": 63680.3, + "probability": 0.508 + }, + { + "start": 63680.48, + "end": 63686.3, + "probability": 0.9904 + }, + { + "start": 63687.06, + "end": 63693.18, + "probability": 0.7844 + }, + { + "start": 63693.36, + "end": 63696.64, + "probability": 0.9255 + }, + { + "start": 63696.66, + "end": 63698.2, + "probability": 0.6001 + }, + { + "start": 63698.74, + "end": 63701.82, + "probability": 0.9775 + }, + { + "start": 63702.28, + "end": 63704.98, + "probability": 0.9727 + }, + { + "start": 63705.6, + "end": 63706.34, + "probability": 0.7044 + }, + { + "start": 63706.6, + "end": 63709.74, + "probability": 0.9729 + }, + { + "start": 63709.74, + "end": 63714.9, + "probability": 0.9933 + }, + { + "start": 63717.22, + "end": 63721.36, + "probability": 0.9753 + }, + { + "start": 63722.04, + "end": 63725.2, + "probability": 0.8206 + }, + { + "start": 63726.84, + "end": 63727.96, + "probability": 0.9971 + }, + { + "start": 63728.7, + "end": 63734.22, + "probability": 0.9977 + }, + { + "start": 63735.2, + "end": 63736.32, + "probability": 0.9427 + }, + { + "start": 63736.94, + "end": 63740.78, + "probability": 0.9968 + }, + { + "start": 63742.0, + "end": 63748.36, + "probability": 0.9943 + }, + { + "start": 63749.14, + "end": 63751.56, + "probability": 0.9427 + }, + { + "start": 63752.9, + "end": 63755.78, + "probability": 0.9172 + }, + { + "start": 63755.88, + "end": 63757.92, + "probability": 0.9796 + }, + { + "start": 63758.74, + "end": 63765.34, + "probability": 0.8376 + }, + { + "start": 63765.34, + "end": 63768.9, + "probability": 0.9963 + }, + { + "start": 63771.08, + "end": 63774.7, + "probability": 0.9941 + }, + { + "start": 63775.3, + "end": 63776.42, + "probability": 0.9282 + }, + { + "start": 63778.2, + "end": 63779.1, + "probability": 0.9106 + }, + { + "start": 63780.74, + "end": 63780.94, + "probability": 0.6359 + }, + { + "start": 63782.2, + "end": 63783.42, + "probability": 0.9225 + }, + { + "start": 63784.16, + "end": 63788.12, + "probability": 0.8704 + }, + { + "start": 63788.94, + "end": 63790.46, + "probability": 0.6772 + }, + { + "start": 63791.04, + "end": 63793.78, + "probability": 0.9048 + }, + { + "start": 63794.36, + "end": 63798.14, + "probability": 0.9812 + }, + { + "start": 63798.84, + "end": 63803.34, + "probability": 0.94 + }, + { + "start": 63804.28, + "end": 63804.78, + "probability": 0.5655 + }, + { + "start": 63805.66, + "end": 63807.2, + "probability": 0.8228 + }, + { + "start": 63807.42, + "end": 63809.02, + "probability": 0.9868 + }, + { + "start": 63811.56, + "end": 63812.46, + "probability": 0.766 + }, + { + "start": 63814.48, + "end": 63817.98, + "probability": 0.9973 + }, + { + "start": 63819.56, + "end": 63823.48, + "probability": 0.993 + }, + { + "start": 63823.7, + "end": 63826.9, + "probability": 0.8383 + }, + { + "start": 63827.04, + "end": 63827.32, + "probability": 0.823 + }, + { + "start": 63828.42, + "end": 63831.94, + "probability": 0.9559 + }, + { + "start": 63832.94, + "end": 63834.11, + "probability": 0.998 + }, + { + "start": 63835.2, + "end": 63838.3, + "probability": 0.9935 + }, + { + "start": 63838.9, + "end": 63843.32, + "probability": 0.9963 + }, + { + "start": 63845.04, + "end": 63845.26, + "probability": 0.3275 + }, + { + "start": 63845.34, + "end": 63846.06, + "probability": 0.9373 + }, + { + "start": 63846.52, + "end": 63850.56, + "probability": 0.9931 + }, + { + "start": 63851.46, + "end": 63854.36, + "probability": 0.9683 + }, + { + "start": 63854.96, + "end": 63859.24, + "probability": 0.9872 + }, + { + "start": 63859.94, + "end": 63861.74, + "probability": 0.9086 + }, + { + "start": 63862.4, + "end": 63864.02, + "probability": 0.9643 + }, + { + "start": 63866.16, + "end": 63868.46, + "probability": 0.8827 + }, + { + "start": 63869.18, + "end": 63874.24, + "probability": 0.9861 + }, + { + "start": 63874.24, + "end": 63879.32, + "probability": 0.9399 + }, + { + "start": 63881.34, + "end": 63881.9, + "probability": 0.1034 + }, + { + "start": 63881.9, + "end": 63883.94, + "probability": 0.8861 + }, + { + "start": 63884.14, + "end": 63885.54, + "probability": 0.7797 + }, + { + "start": 63886.5, + "end": 63889.66, + "probability": 0.9603 + }, + { + "start": 63890.3, + "end": 63892.62, + "probability": 0.9767 + }, + { + "start": 63893.86, + "end": 63897.58, + "probability": 0.9932 + }, + { + "start": 63898.56, + "end": 63899.08, + "probability": 0.6854 + }, + { + "start": 63900.42, + "end": 63904.02, + "probability": 0.8676 + }, + { + "start": 63905.56, + "end": 63908.38, + "probability": 0.9649 + }, + { + "start": 63910.68, + "end": 63916.36, + "probability": 0.9625 + }, + { + "start": 63916.92, + "end": 63917.8, + "probability": 0.5557 + }, + { + "start": 63918.6, + "end": 63925.3, + "probability": 0.9954 + }, + { + "start": 63926.2, + "end": 63930.54, + "probability": 0.9973 + }, + { + "start": 63931.56, + "end": 63935.28, + "probability": 0.985 + }, + { + "start": 63935.8, + "end": 63939.0, + "probability": 0.9512 + }, + { + "start": 63939.46, + "end": 63940.9, + "probability": 0.8329 + }, + { + "start": 63941.68, + "end": 63943.52, + "probability": 0.7588 + }, + { + "start": 63944.36, + "end": 63947.48, + "probability": 0.9901 + }, + { + "start": 63950.22, + "end": 63956.24, + "probability": 0.9336 + }, + { + "start": 63958.92, + "end": 63965.1, + "probability": 0.7455 + }, + { + "start": 63965.8, + "end": 63968.46, + "probability": 0.9182 + }, + { + "start": 63969.2, + "end": 63970.3, + "probability": 0.3833 + }, + { + "start": 63970.36, + "end": 63971.48, + "probability": 0.8835 + }, + { + "start": 63971.96, + "end": 63973.18, + "probability": 0.8982 + }, + { + "start": 63973.34, + "end": 63975.22, + "probability": 0.964 + }, + { + "start": 63975.38, + "end": 63976.42, + "probability": 0.7344 + }, + { + "start": 63976.84, + "end": 63978.26, + "probability": 0.8286 + }, + { + "start": 63978.78, + "end": 63980.84, + "probability": 0.734 + }, + { + "start": 63981.5, + "end": 63984.12, + "probability": 0.8859 + }, + { + "start": 63984.98, + "end": 63986.26, + "probability": 0.9064 + }, + { + "start": 63986.78, + "end": 63990.11, + "probability": 0.9592 + }, + { + "start": 63991.08, + "end": 63992.14, + "probability": 0.9062 + }, + { + "start": 63992.7, + "end": 63994.44, + "probability": 0.9403 + }, + { + "start": 63994.98, + "end": 64000.1, + "probability": 0.995 + }, + { + "start": 64000.22, + "end": 64002.1, + "probability": 0.9581 + }, + { + "start": 64003.26, + "end": 64007.5, + "probability": 0.574 + }, + { + "start": 64007.98, + "end": 64012.14, + "probability": 0.9845 + }, + { + "start": 64012.14, + "end": 64015.9, + "probability": 0.9909 + }, + { + "start": 64016.4, + "end": 64017.02, + "probability": 0.7535 + }, + { + "start": 64018.56, + "end": 64023.04, + "probability": 0.9982 + }, + { + "start": 64023.6, + "end": 64028.34, + "probability": 0.9951 + }, + { + "start": 64028.9, + "end": 64030.34, + "probability": 0.9346 + }, + { + "start": 64032.28, + "end": 64032.58, + "probability": 0.9223 + }, + { + "start": 64032.72, + "end": 64037.34, + "probability": 0.9879 + }, + { + "start": 64043.04, + "end": 64044.18, + "probability": 0.9875 + }, + { + "start": 64045.48, + "end": 64047.58, + "probability": 0.9583 + }, + { + "start": 64048.38, + "end": 64048.94, + "probability": 0.7933 + }, + { + "start": 64049.98, + "end": 64050.56, + "probability": 0.5031 + }, + { + "start": 64052.04, + "end": 64055.86, + "probability": 0.9839 + }, + { + "start": 64056.38, + "end": 64058.64, + "probability": 0.9966 + }, + { + "start": 64059.2, + "end": 64060.72, + "probability": 0.9454 + }, + { + "start": 64061.22, + "end": 64063.44, + "probability": 0.9762 + }, + { + "start": 64065.22, + "end": 64068.08, + "probability": 0.9873 + }, + { + "start": 64068.7, + "end": 64069.62, + "probability": 0.9429 + }, + { + "start": 64070.08, + "end": 64070.58, + "probability": 0.6473 + }, + { + "start": 64071.7, + "end": 64074.58, + "probability": 0.9447 + }, + { + "start": 64075.3, + "end": 64080.08, + "probability": 0.9253 + }, + { + "start": 64080.5, + "end": 64081.27, + "probability": 0.7354 + }, + { + "start": 64081.82, + "end": 64084.64, + "probability": 0.9958 + }, + { + "start": 64085.24, + "end": 64087.22, + "probability": 0.9912 + }, + { + "start": 64088.44, + "end": 64092.46, + "probability": 0.9762 + }, + { + "start": 64093.22, + "end": 64094.68, + "probability": 0.9062 + }, + { + "start": 64096.56, + "end": 64099.72, + "probability": 0.8269 + }, + { + "start": 64101.4, + "end": 64102.68, + "probability": 0.9459 + }, + { + "start": 64106.1, + "end": 64110.98, + "probability": 0.8823 + }, + { + "start": 64111.8, + "end": 64115.52, + "probability": 0.9851 + }, + { + "start": 64115.62, + "end": 64120.06, + "probability": 0.9724 + }, + { + "start": 64120.58, + "end": 64121.1, + "probability": 0.761 + }, + { + "start": 64124.04, + "end": 64124.78, + "probability": 0.6289 + }, + { + "start": 64126.1, + "end": 64127.76, + "probability": 0.7221 + }, + { + "start": 64128.4, + "end": 64131.82, + "probability": 0.9722 + }, + { + "start": 64138.32, + "end": 64140.84, + "probability": 0.8738 + }, + { + "start": 64142.86, + "end": 64146.32, + "probability": 0.9743 + }, + { + "start": 64147.16, + "end": 64150.3, + "probability": 0.9309 + }, + { + "start": 64150.3, + "end": 64154.58, + "probability": 0.9982 + }, + { + "start": 64155.26, + "end": 64156.18, + "probability": 0.9993 + }, + { + "start": 64156.76, + "end": 64159.06, + "probability": 0.9988 + }, + { + "start": 64159.94, + "end": 64163.1, + "probability": 0.9906 + }, + { + "start": 64163.66, + "end": 64164.64, + "probability": 0.9945 + }, + { + "start": 64165.22, + "end": 64171.25, + "probability": 0.9907 + }, + { + "start": 64172.56, + "end": 64175.0, + "probability": 0.9929 + }, + { + "start": 64175.56, + "end": 64178.32, + "probability": 0.2185 + }, + { + "start": 64178.32, + "end": 64184.82, + "probability": 0.904 + }, + { + "start": 64184.94, + "end": 64185.92, + "probability": 0.7611 + }, + { + "start": 64186.7, + "end": 64188.52, + "probability": 0.9292 + }, + { + "start": 64189.18, + "end": 64190.94, + "probability": 0.8216 + }, + { + "start": 64193.36, + "end": 64194.08, + "probability": 0.6877 + }, + { + "start": 64195.64, + "end": 64198.54, + "probability": 0.9841 + }, + { + "start": 64199.46, + "end": 64200.66, + "probability": 0.8767 + }, + { + "start": 64201.64, + "end": 64203.56, + "probability": 0.8836 + }, + { + "start": 64203.62, + "end": 64204.42, + "probability": 0.741 + }, + { + "start": 64205.48, + "end": 64209.5, + "probability": 0.9486 + }, + { + "start": 64209.5, + "end": 64214.42, + "probability": 0.931 + }, + { + "start": 64215.54, + "end": 64216.76, + "probability": 0.6373 + }, + { + "start": 64217.36, + "end": 64217.8, + "probability": 0.6692 + }, + { + "start": 64218.12, + "end": 64218.44, + "probability": 0.9443 + }, + { + "start": 64218.56, + "end": 64219.14, + "probability": 0.9409 + }, + { + "start": 64219.84, + "end": 64221.16, + "probability": 0.9919 + }, + { + "start": 64221.72, + "end": 64222.96, + "probability": 0.5339 + }, + { + "start": 64223.16, + "end": 64224.16, + "probability": 0.9299 + }, + { + "start": 64224.2, + "end": 64229.8, + "probability": 0.9742 + }, + { + "start": 64230.4, + "end": 64232.98, + "probability": 0.9984 + }, + { + "start": 64233.58, + "end": 64234.86, + "probability": 0.8633 + }, + { + "start": 64235.9, + "end": 64238.38, + "probability": 0.9817 + }, + { + "start": 64238.9, + "end": 64240.96, + "probability": 0.9048 + }, + { + "start": 64241.24, + "end": 64243.3, + "probability": 0.9157 + }, + { + "start": 64243.8, + "end": 64244.5, + "probability": 0.7893 + }, + { + "start": 64244.92, + "end": 64245.38, + "probability": 0.7001 + }, + { + "start": 64245.5, + "end": 64245.8, + "probability": 0.7025 + }, + { + "start": 64246.47, + "end": 64248.52, + "probability": 0.8273 + }, + { + "start": 64248.78, + "end": 64250.24, + "probability": 0.8859 + }, + { + "start": 64250.74, + "end": 64254.84, + "probability": 0.9888 + }, + { + "start": 64255.48, + "end": 64256.44, + "probability": 0.9646 + }, + { + "start": 64256.54, + "end": 64256.68, + "probability": 0.2881 + }, + { + "start": 64256.76, + "end": 64258.38, + "probability": 0.8556 + }, + { + "start": 64258.52, + "end": 64259.72, + "probability": 0.9575 + }, + { + "start": 64261.66, + "end": 64265.4, + "probability": 0.9995 + }, + { + "start": 64267.62, + "end": 64267.94, + "probability": 0.9405 + }, + { + "start": 64268.0, + "end": 64274.14, + "probability": 0.9974 + }, + { + "start": 64274.36, + "end": 64276.42, + "probability": 0.9441 + }, + { + "start": 64277.28, + "end": 64279.24, + "probability": 0.9985 + }, + { + "start": 64280.14, + "end": 64281.24, + "probability": 0.9959 + }, + { + "start": 64281.78, + "end": 64283.94, + "probability": 0.9995 + }, + { + "start": 64284.62, + "end": 64285.24, + "probability": 0.773 + }, + { + "start": 64285.76, + "end": 64288.72, + "probability": 0.9614 + }, + { + "start": 64289.18, + "end": 64289.94, + "probability": 0.7443 + }, + { + "start": 64290.1, + "end": 64291.76, + "probability": 0.9646 + }, + { + "start": 64291.98, + "end": 64292.18, + "probability": 0.0966 + }, + { + "start": 64294.14, + "end": 64298.56, + "probability": 0.9454 + }, + { + "start": 64299.14, + "end": 64300.46, + "probability": 0.746 + }, + { + "start": 64300.84, + "end": 64302.72, + "probability": 0.9738 + }, + { + "start": 64303.02, + "end": 64305.78, + "probability": 0.9773 + }, + { + "start": 64308.94, + "end": 64313.08, + "probability": 0.748 + }, + { + "start": 64313.14, + "end": 64316.8, + "probability": 0.8742 + }, + { + "start": 64317.66, + "end": 64321.36, + "probability": 0.9801 + }, + { + "start": 64321.8, + "end": 64323.36, + "probability": 0.9836 + }, + { + "start": 64323.94, + "end": 64326.52, + "probability": 0.7952 + }, + { + "start": 64326.62, + "end": 64333.16, + "probability": 0.9681 + }, + { + "start": 64333.26, + "end": 64335.34, + "probability": 0.9315 + }, + { + "start": 64335.42, + "end": 64338.5, + "probability": 0.9137 + }, + { + "start": 64339.2, + "end": 64341.82, + "probability": 0.9855 + }, + { + "start": 64341.82, + "end": 64346.22, + "probability": 0.9976 + }, + { + "start": 64348.06, + "end": 64350.64, + "probability": 0.8511 + }, + { + "start": 64353.16, + "end": 64355.34, + "probability": 0.9951 + }, + { + "start": 64355.92, + "end": 64356.94, + "probability": 0.9971 + }, + { + "start": 64357.9, + "end": 64362.42, + "probability": 0.9885 + }, + { + "start": 64362.5, + "end": 64366.32, + "probability": 0.9976 + }, + { + "start": 64367.88, + "end": 64369.44, + "probability": 0.9687 + }, + { + "start": 64369.52, + "end": 64372.88, + "probability": 0.9833 + }, + { + "start": 64373.66, + "end": 64374.8, + "probability": 0.8757 + }, + { + "start": 64375.14, + "end": 64375.76, + "probability": 0.9715 + }, + { + "start": 64376.24, + "end": 64378.04, + "probability": 0.63 + }, + { + "start": 64379.22, + "end": 64380.0, + "probability": 0.2717 + }, + { + "start": 64381.92, + "end": 64384.96, + "probability": 0.6342 + }, + { + "start": 64385.52, + "end": 64386.51, + "probability": 0.9255 + }, + { + "start": 64387.56, + "end": 64389.66, + "probability": 0.7903 + }, + { + "start": 64390.04, + "end": 64392.8, + "probability": 0.8599 + }, + { + "start": 64392.98, + "end": 64394.36, + "probability": 0.9911 + }, + { + "start": 64394.94, + "end": 64396.52, + "probability": 0.6913 + }, + { + "start": 64398.12, + "end": 64400.76, + "probability": 0.8997 + }, + { + "start": 64401.06, + "end": 64402.56, + "probability": 0.9966 + }, + { + "start": 64402.58, + "end": 64403.8, + "probability": 0.5799 + }, + { + "start": 64407.0, + "end": 64411.18, + "probability": 0.9258 + }, + { + "start": 64411.34, + "end": 64414.08, + "probability": 0.8406 + }, + { + "start": 64414.12, + "end": 64414.84, + "probability": 0.7006 + }, + { + "start": 64415.85, + "end": 64418.08, + "probability": 0.6871 + }, + { + "start": 64420.2, + "end": 64422.58, + "probability": 0.8831 + }, + { + "start": 64423.68, + "end": 64424.3, + "probability": 0.8569 + }, + { + "start": 64425.18, + "end": 64426.16, + "probability": 0.9762 + }, + { + "start": 64426.52, + "end": 64428.14, + "probability": 0.9365 + }, + { + "start": 64428.3, + "end": 64428.84, + "probability": 0.797 + }, + { + "start": 64429.08, + "end": 64433.6, + "probability": 0.9416 + }, + { + "start": 64433.76, + "end": 64433.76, + "probability": 0.2461 + }, + { + "start": 64434.14, + "end": 64435.47, + "probability": 0.9657 + }, + { + "start": 64436.64, + "end": 64438.06, + "probability": 0.3523 + }, + { + "start": 64438.14, + "end": 64439.16, + "probability": 0.7741 + }, + { + "start": 64439.2, + "end": 64439.6, + "probability": 0.7593 + }, + { + "start": 64440.6, + "end": 64441.38, + "probability": 0.671 + }, + { + "start": 64441.66, + "end": 64442.98, + "probability": 0.8032 + }, + { + "start": 64443.12, + "end": 64446.46, + "probability": 0.9866 + }, + { + "start": 64447.3, + "end": 64449.16, + "probability": 0.959 + }, + { + "start": 64449.84, + "end": 64451.36, + "probability": 0.9442 + }, + { + "start": 64451.46, + "end": 64453.18, + "probability": 0.9662 + }, + { + "start": 64453.28, + "end": 64455.96, + "probability": 0.9808 + }, + { + "start": 64456.14, + "end": 64460.1, + "probability": 0.9698 + }, + { + "start": 64461.32, + "end": 64462.14, + "probability": 0.7532 + }, + { + "start": 64462.45, + "end": 64466.02, + "probability": 0.9457 + }, + { + "start": 64466.02, + "end": 64470.34, + "probability": 0.984 + }, + { + "start": 64471.44, + "end": 64474.22, + "probability": 0.9941 + }, + { + "start": 64474.22, + "end": 64477.84, + "probability": 0.9273 + }, + { + "start": 64478.14, + "end": 64479.78, + "probability": 0.8349 + }, + { + "start": 64480.6, + "end": 64481.32, + "probability": 0.9963 + }, + { + "start": 64482.44, + "end": 64485.12, + "probability": 0.8196 + }, + { + "start": 64485.68, + "end": 64488.9, + "probability": 0.9192 + }, + { + "start": 64489.0, + "end": 64491.76, + "probability": 0.9973 + }, + { + "start": 64492.66, + "end": 64496.92, + "probability": 0.8815 + }, + { + "start": 64498.04, + "end": 64502.18, + "probability": 0.9309 + }, + { + "start": 64502.18, + "end": 64503.56, + "probability": 0.9325 + }, + { + "start": 64504.62, + "end": 64505.46, + "probability": 0.9619 + }, + { + "start": 64506.48, + "end": 64508.68, + "probability": 0.6066 + }, + { + "start": 64510.02, + "end": 64510.9, + "probability": 0.8757 + }, + { + "start": 64510.98, + "end": 64514.96, + "probability": 0.9308 + }, + { + "start": 64515.18, + "end": 64517.42, + "probability": 0.8448 + }, + { + "start": 64517.92, + "end": 64521.32, + "probability": 0.9836 + }, + { + "start": 64521.88, + "end": 64522.4, + "probability": 0.7634 + }, + { + "start": 64523.42, + "end": 64524.34, + "probability": 0.9204 + }, + { + "start": 64524.44, + "end": 64527.12, + "probability": 0.8784 + }, + { + "start": 64527.3, + "end": 64530.62, + "probability": 0.9913 + }, + { + "start": 64531.1, + "end": 64536.46, + "probability": 0.9985 + }, + { + "start": 64536.7, + "end": 64538.82, + "probability": 0.9541 + }, + { + "start": 64539.42, + "end": 64541.08, + "probability": 0.9696 + }, + { + "start": 64542.02, + "end": 64548.78, + "probability": 0.9896 + }, + { + "start": 64549.22, + "end": 64552.2, + "probability": 0.9976 + }, + { + "start": 64552.36, + "end": 64553.12, + "probability": 0.708 + }, + { + "start": 64554.26, + "end": 64559.5, + "probability": 0.9849 + }, + { + "start": 64559.56, + "end": 64560.86, + "probability": 0.5347 + }, + { + "start": 64561.4, + "end": 64564.0, + "probability": 0.8607 + }, + { + "start": 64564.6, + "end": 64567.44, + "probability": 0.9012 + }, + { + "start": 64567.52, + "end": 64572.08, + "probability": 0.6631 + }, + { + "start": 64572.52, + "end": 64573.84, + "probability": 0.9824 + }, + { + "start": 64574.42, + "end": 64576.98, + "probability": 0.705 + }, + { + "start": 64577.52, + "end": 64580.16, + "probability": 0.5129 + }, + { + "start": 64580.6, + "end": 64581.54, + "probability": 0.9764 + }, + { + "start": 64582.04, + "end": 64585.44, + "probability": 0.9987 + }, + { + "start": 64585.66, + "end": 64586.84, + "probability": 0.9083 + }, + { + "start": 64587.24, + "end": 64588.7, + "probability": 0.9966 + }, + { + "start": 64589.68, + "end": 64590.42, + "probability": 0.8503 + }, + { + "start": 64590.94, + "end": 64600.28, + "probability": 0.8892 + }, + { + "start": 64600.84, + "end": 64601.44, + "probability": 0.9733 + }, + { + "start": 64602.64, + "end": 64603.84, + "probability": 0.7519 + }, + { + "start": 64604.78, + "end": 64607.38, + "probability": 0.9779 + }, + { + "start": 64607.52, + "end": 64610.98, + "probability": 0.9888 + }, + { + "start": 64611.94, + "end": 64612.36, + "probability": 0.5547 + }, + { + "start": 64613.18, + "end": 64615.56, + "probability": 0.9834 + }, + { + "start": 64616.0, + "end": 64617.38, + "probability": 0.9966 + }, + { + "start": 64617.94, + "end": 64618.76, + "probability": 0.8273 + }, + { + "start": 64619.2, + "end": 64622.24, + "probability": 0.9017 + }, + { + "start": 64622.42, + "end": 64624.56, + "probability": 0.6753 + }, + { + "start": 64625.32, + "end": 64632.48, + "probability": 0.8861 + }, + { + "start": 64632.52, + "end": 64632.64, + "probability": 0.5465 + }, + { + "start": 64632.68, + "end": 64633.12, + "probability": 0.8781 + }, + { + "start": 64633.18, + "end": 64635.27, + "probability": 0.9163 + }, + { + "start": 64635.78, + "end": 64637.12, + "probability": 0.998 + }, + { + "start": 64637.62, + "end": 64640.82, + "probability": 0.8057 + }, + { + "start": 64642.26, + "end": 64644.56, + "probability": 0.9891 + }, + { + "start": 64644.56, + "end": 64648.7, + "probability": 0.9854 + }, + { + "start": 64649.3, + "end": 64653.76, + "probability": 0.978 + }, + { + "start": 64654.8, + "end": 64656.26, + "probability": 0.9452 + }, + { + "start": 64656.48, + "end": 64658.4, + "probability": 0.9874 + }, + { + "start": 64659.0, + "end": 64663.3, + "probability": 0.9006 + }, + { + "start": 64664.34, + "end": 64665.52, + "probability": 0.9469 + }, + { + "start": 64667.1, + "end": 64671.34, + "probability": 0.9953 + }, + { + "start": 64672.34, + "end": 64673.42, + "probability": 0.9872 + }, + { + "start": 64674.06, + "end": 64676.6, + "probability": 0.8673 + }, + { + "start": 64677.26, + "end": 64681.92, + "probability": 0.8999 + }, + { + "start": 64683.12, + "end": 64685.36, + "probability": 0.5942 + }, + { + "start": 64685.96, + "end": 64689.93, + "probability": 0.9877 + }, + { + "start": 64690.78, + "end": 64691.72, + "probability": 0.8675 + }, + { + "start": 64692.38, + "end": 64695.16, + "probability": 0.9436 + }, + { + "start": 64695.24, + "end": 64698.88, + "probability": 0.9991 + }, + { + "start": 64699.08, + "end": 64702.4, + "probability": 0.9992 + }, + { + "start": 64702.9, + "end": 64703.7, + "probability": 0.3828 + }, + { + "start": 64704.18, + "end": 64705.12, + "probability": 0.7978 + }, + { + "start": 64705.68, + "end": 64706.2, + "probability": 0.8861 + }, + { + "start": 64706.22, + "end": 64710.68, + "probability": 0.9633 + }, + { + "start": 64711.16, + "end": 64713.1, + "probability": 0.8732 + }, + { + "start": 64713.5, + "end": 64716.06, + "probability": 0.9897 + }, + { + "start": 64716.8, + "end": 64717.58, + "probability": 0.7273 + }, + { + "start": 64717.78, + "end": 64726.5, + "probability": 0.9219 + }, + { + "start": 64726.86, + "end": 64728.34, + "probability": 0.9735 + }, + { + "start": 64728.84, + "end": 64729.1, + "probability": 0.5238 + }, + { + "start": 64729.16, + "end": 64733.12, + "probability": 0.9973 + }, + { + "start": 64734.66, + "end": 64735.52, + "probability": 0.9634 + }, + { + "start": 64736.9, + "end": 64738.42, + "probability": 0.9605 + }, + { + "start": 64738.86, + "end": 64740.96, + "probability": 0.9703 + }, + { + "start": 64741.04, + "end": 64742.38, + "probability": 0.8452 + }, + { + "start": 64743.18, + "end": 64744.02, + "probability": 0.4951 + }, + { + "start": 64745.32, + "end": 64747.46, + "probability": 0.9937 + }, + { + "start": 64748.22, + "end": 64748.82, + "probability": 0.7769 + }, + { + "start": 64750.26, + "end": 64752.72, + "probability": 0.9938 + }, + { + "start": 64754.54, + "end": 64757.7, + "probability": 0.857 + }, + { + "start": 64758.66, + "end": 64761.06, + "probability": 0.825 + }, + { + "start": 64761.28, + "end": 64762.76, + "probability": 0.9438 + }, + { + "start": 64763.6, + "end": 64767.04, + "probability": 0.9407 + }, + { + "start": 64767.9, + "end": 64771.24, + "probability": 0.9719 + }, + { + "start": 64771.38, + "end": 64773.7, + "probability": 0.9595 + }, + { + "start": 64774.52, + "end": 64776.48, + "probability": 0.1491 + }, + { + "start": 64777.1, + "end": 64778.26, + "probability": 0.3958 + }, + { + "start": 64779.54, + "end": 64781.54, + "probability": 0.5434 + }, + { + "start": 64784.36, + "end": 64785.78, + "probability": 0.9379 + }, + { + "start": 64785.96, + "end": 64791.76, + "probability": 0.9919 + }, + { + "start": 64792.16, + "end": 64794.74, + "probability": 0.9986 + }, + { + "start": 64795.18, + "end": 64795.96, + "probability": 0.7343 + }, + { + "start": 64796.02, + "end": 64796.92, + "probability": 0.9275 + }, + { + "start": 64796.94, + "end": 64800.52, + "probability": 0.9093 + }, + { + "start": 64801.26, + "end": 64808.42, + "probability": 0.9067 + }, + { + "start": 64808.76, + "end": 64811.58, + "probability": 0.9917 + }, + { + "start": 64811.68, + "end": 64813.42, + "probability": 0.4646 + }, + { + "start": 64813.74, + "end": 64815.44, + "probability": 0.9549 + }, + { + "start": 64815.5, + "end": 64817.93, + "probability": 0.8365 + }, + { + "start": 64819.12, + "end": 64820.12, + "probability": 0.7515 + }, + { + "start": 64820.7, + "end": 64822.16, + "probability": 0.9064 + }, + { + "start": 64823.9, + "end": 64824.64, + "probability": 0.9233 + }, + { + "start": 64825.54, + "end": 64829.68, + "probability": 0.976 + }, + { + "start": 64831.92, + "end": 64836.8, + "probability": 0.9924 + }, + { + "start": 64839.56, + "end": 64841.16, + "probability": 0.9924 + }, + { + "start": 64842.68, + "end": 64845.58, + "probability": 0.9566 + }, + { + "start": 64846.28, + "end": 64848.68, + "probability": 0.9073 + }, + { + "start": 64850.0, + "end": 64852.56, + "probability": 0.9143 + }, + { + "start": 64853.26, + "end": 64854.36, + "probability": 0.9587 + }, + { + "start": 64855.94, + "end": 64858.22, + "probability": 0.8645 + }, + { + "start": 64858.28, + "end": 64859.92, + "probability": 0.9692 + }, + { + "start": 64860.28, + "end": 64863.2, + "probability": 0.9925 + }, + { + "start": 64864.74, + "end": 64868.38, + "probability": 0.9763 + }, + { + "start": 64868.38, + "end": 64875.3, + "probability": 0.9982 + }, + { + "start": 64876.94, + "end": 64879.5, + "probability": 0.9805 + }, + { + "start": 64880.7, + "end": 64884.6, + "probability": 0.998 + }, + { + "start": 64885.26, + "end": 64888.16, + "probability": 0.9714 + }, + { + "start": 64889.04, + "end": 64890.94, + "probability": 0.8444 + }, + { + "start": 64891.98, + "end": 64895.5, + "probability": 0.7776 + }, + { + "start": 64896.02, + "end": 64899.96, + "probability": 0.9775 + }, + { + "start": 64900.72, + "end": 64903.5, + "probability": 0.9863 + }, + { + "start": 64905.46, + "end": 64909.18, + "probability": 0.8058 + }, + { + "start": 64909.36, + "end": 64910.96, + "probability": 0.9413 + }, + { + "start": 64911.5, + "end": 64912.66, + "probability": 0.8379 + }, + { + "start": 64913.3, + "end": 64914.18, + "probability": 0.8772 + }, + { + "start": 64914.42, + "end": 64919.92, + "probability": 0.8459 + }, + { + "start": 64921.18, + "end": 64922.84, + "probability": 0.8645 + }, + { + "start": 64924.0, + "end": 64926.06, + "probability": 0.9154 + }, + { + "start": 64926.52, + "end": 64929.7, + "probability": 0.9567 + }, + { + "start": 64930.8, + "end": 64931.34, + "probability": 0.8836 + }, + { + "start": 64932.26, + "end": 64935.86, + "probability": 0.9699 + }, + { + "start": 64937.48, + "end": 64942.78, + "probability": 0.8368 + }, + { + "start": 64944.5, + "end": 64946.5, + "probability": 0.8416 + }, + { + "start": 64947.2, + "end": 64952.98, + "probability": 0.981 + }, + { + "start": 64953.72, + "end": 64957.56, + "probability": 0.9731 + }, + { + "start": 64958.72, + "end": 64959.74, + "probability": 0.8832 + }, + { + "start": 64961.38, + "end": 64964.28, + "probability": 0.9971 + }, + { + "start": 64965.02, + "end": 64967.36, + "probability": 0.9824 + }, + { + "start": 64968.28, + "end": 64970.26, + "probability": 0.9509 + }, + { + "start": 64971.42, + "end": 64972.28, + "probability": 0.6742 + }, + { + "start": 64973.1, + "end": 64977.5, + "probability": 0.8734 + }, + { + "start": 64977.92, + "end": 64979.46, + "probability": 0.8522 + }, + { + "start": 64979.5, + "end": 64980.74, + "probability": 0.7995 + }, + { + "start": 64981.26, + "end": 64981.9, + "probability": 0.9431 + }, + { + "start": 64983.08, + "end": 64983.94, + "probability": 0.9285 + }, + { + "start": 64984.66, + "end": 64988.12, + "probability": 0.7406 + }, + { + "start": 64988.74, + "end": 64991.88, + "probability": 0.9684 + }, + { + "start": 64992.82, + "end": 64994.1, + "probability": 0.9375 + }, + { + "start": 64997.0, + "end": 65001.14, + "probability": 0.9504 + }, + { + "start": 65001.7, + "end": 65002.16, + "probability": 0.9956 + }, + { + "start": 65003.04, + "end": 65005.96, + "probability": 0.902 + }, + { + "start": 65006.92, + "end": 65008.08, + "probability": 0.6887 + }, + { + "start": 65008.41, + "end": 65010.92, + "probability": 0.7257 + }, + { + "start": 65011.66, + "end": 65014.84, + "probability": 0.9867 + }, + { + "start": 65014.86, + "end": 65019.58, + "probability": 0.9955 + }, + { + "start": 65020.4, + "end": 65023.34, + "probability": 0.7781 + }, + { + "start": 65023.94, + "end": 65028.28, + "probability": 0.8953 + }, + { + "start": 65028.78, + "end": 65029.58, + "probability": 0.9451 + }, + { + "start": 65030.36, + "end": 65032.76, + "probability": 0.9881 + }, + { + "start": 65034.64, + "end": 65036.16, + "probability": 0.9427 + }, + { + "start": 65036.32, + "end": 65039.96, + "probability": 0.8308 + }, + { + "start": 65040.72, + "end": 65042.58, + "probability": 0.8815 + }, + { + "start": 65044.5, + "end": 65046.0, + "probability": 0.9837 + }, + { + "start": 65046.28, + "end": 65047.84, + "probability": 0.9817 + }, + { + "start": 65048.24, + "end": 65051.24, + "probability": 0.9416 + }, + { + "start": 65053.52, + "end": 65060.56, + "probability": 0.9949 + }, + { + "start": 65061.62, + "end": 65065.7, + "probability": 0.9976 + }, + { + "start": 65065.78, + "end": 65069.78, + "probability": 0.9937 + }, + { + "start": 65070.72, + "end": 65077.48, + "probability": 0.9976 + }, + { + "start": 65078.32, + "end": 65081.96, + "probability": 0.9975 + }, + { + "start": 65082.48, + "end": 65084.14, + "probability": 0.99 + }, + { + "start": 65084.72, + "end": 65088.14, + "probability": 0.998 + }, + { + "start": 65090.3, + "end": 65093.46, + "probability": 0.9202 + }, + { + "start": 65094.26, + "end": 65096.36, + "probability": 0.9788 + }, + { + "start": 65097.24, + "end": 65098.72, + "probability": 0.9419 + }, + { + "start": 65099.34, + "end": 65101.34, + "probability": 0.9613 + }, + { + "start": 65102.04, + "end": 65106.64, + "probability": 0.9945 + }, + { + "start": 65107.54, + "end": 65113.76, + "probability": 0.9618 + }, + { + "start": 65114.34, + "end": 65118.22, + "probability": 0.8847 + }, + { + "start": 65119.22, + "end": 65120.62, + "probability": 0.9944 + }, + { + "start": 65121.98, + "end": 65123.14, + "probability": 0.8214 + }, + { + "start": 65124.46, + "end": 65128.58, + "probability": 0.9882 + }, + { + "start": 65129.02, + "end": 65133.64, + "probability": 0.9838 + }, + { + "start": 65133.74, + "end": 65135.24, + "probability": 0.7548 + }, + { + "start": 65135.24, + "end": 65136.2, + "probability": 0.6764 + }, + { + "start": 65136.66, + "end": 65141.2, + "probability": 0.8931 + }, + { + "start": 65141.82, + "end": 65142.62, + "probability": 0.5382 + }, + { + "start": 65143.04, + "end": 65145.01, + "probability": 0.7255 + }, + { + "start": 65147.04, + "end": 65149.06, + "probability": 0.7288 + }, + { + "start": 65149.58, + "end": 65152.74, + "probability": 0.9851 + }, + { + "start": 65153.7, + "end": 65156.62, + "probability": 0.8219 + }, + { + "start": 65156.78, + "end": 65157.92, + "probability": 0.5637 + }, + { + "start": 65158.02, + "end": 65159.58, + "probability": 0.9659 + }, + { + "start": 65160.1, + "end": 65160.76, + "probability": 0.8321 + }, + { + "start": 65160.76, + "end": 65161.02, + "probability": 0.7263 + }, + { + "start": 65161.38, + "end": 65165.82, + "probability": 0.9967 + }, + { + "start": 65165.88, + "end": 65167.5, + "probability": 0.7403 + }, + { + "start": 65168.1, + "end": 65169.78, + "probability": 0.9301 + }, + { + "start": 65170.22, + "end": 65171.78, + "probability": 0.7796 + }, + { + "start": 65171.88, + "end": 65173.36, + "probability": 0.9711 + }, + { + "start": 65173.46, + "end": 65175.8, + "probability": 0.7475 + }, + { + "start": 65175.82, + "end": 65175.88, + "probability": 0.4421 + }, + { + "start": 65175.88, + "end": 65177.26, + "probability": 0.7405 + }, + { + "start": 65177.84, + "end": 65181.4, + "probability": 0.9817 + }, + { + "start": 65181.44, + "end": 65182.5, + "probability": 0.8917 + }, + { + "start": 65186.2, + "end": 65189.08, + "probability": 0.828 + }, + { + "start": 65194.5, + "end": 65198.64, + "probability": 0.7789 + }, + { + "start": 65203.76, + "end": 65208.06, + "probability": 0.9904 + }, + { + "start": 65210.34, + "end": 65211.3, + "probability": 0.5565 + }, + { + "start": 65214.24, + "end": 65215.1, + "probability": 0.4837 + }, + { + "start": 65217.22, + "end": 65217.68, + "probability": 0.7145 + }, + { + "start": 65217.68, + "end": 65218.56, + "probability": 0.0205 + }, + { + "start": 65219.16, + "end": 65220.16, + "probability": 0.3243 + }, + { + "start": 65221.66, + "end": 65222.84, + "probability": 0.0933 + }, + { + "start": 65237.48, + "end": 65237.72, + "probability": 0.6324 + }, + { + "start": 65259.96, + "end": 65261.52, + "probability": 0.5864 + }, + { + "start": 65262.46, + "end": 65267.38, + "probability": 0.9936 + }, + { + "start": 65268.06, + "end": 65272.18, + "probability": 0.9984 + }, + { + "start": 65272.82, + "end": 65279.44, + "probability": 0.7672 + }, + { + "start": 65279.88, + "end": 65284.02, + "probability": 0.9984 + }, + { + "start": 65284.82, + "end": 65290.06, + "probability": 0.9928 + }, + { + "start": 65290.18, + "end": 65292.8, + "probability": 0.9987 + }, + { + "start": 65293.54, + "end": 65294.7, + "probability": 0.3959 + }, + { + "start": 65294.84, + "end": 65296.66, + "probability": 0.9683 + }, + { + "start": 65296.72, + "end": 65297.46, + "probability": 0.9687 + }, + { + "start": 65297.58, + "end": 65298.18, + "probability": 0.9834 + }, + { + "start": 65298.32, + "end": 65299.24, + "probability": 0.9184 + }, + { + "start": 65299.86, + "end": 65300.86, + "probability": 0.7888 + }, + { + "start": 65300.96, + "end": 65301.92, + "probability": 0.8812 + }, + { + "start": 65302.02, + "end": 65303.18, + "probability": 0.6079 + }, + { + "start": 65303.26, + "end": 65304.3, + "probability": 0.6682 + }, + { + "start": 65304.38, + "end": 65304.8, + "probability": 0.8266 + }, + { + "start": 65305.08, + "end": 65306.58, + "probability": 0.8755 + }, + { + "start": 65307.16, + "end": 65310.28, + "probability": 0.9755 + }, + { + "start": 65311.12, + "end": 65312.26, + "probability": 0.7231 + }, + { + "start": 65313.02, + "end": 65315.36, + "probability": 0.9463 + }, + { + "start": 65315.88, + "end": 65317.62, + "probability": 0.8126 + }, + { + "start": 65317.88, + "end": 65320.0, + "probability": 0.8582 + }, + { + "start": 65320.12, + "end": 65320.86, + "probability": 0.9529 + }, + { + "start": 65321.06, + "end": 65322.62, + "probability": 0.7581 + }, + { + "start": 65323.28, + "end": 65324.72, + "probability": 0.3105 + }, + { + "start": 65324.8, + "end": 65326.36, + "probability": 0.847 + }, + { + "start": 65326.48, + "end": 65328.5, + "probability": 0.9371 + }, + { + "start": 65328.94, + "end": 65330.36, + "probability": 0.5612 + }, + { + "start": 65330.9, + "end": 65332.34, + "probability": 0.9503 + }, + { + "start": 65332.66, + "end": 65333.14, + "probability": 0.9302 + }, + { + "start": 65333.2, + "end": 65334.26, + "probability": 0.7274 + }, + { + "start": 65334.38, + "end": 65335.1, + "probability": 0.7438 + }, + { + "start": 65335.7, + "end": 65336.5, + "probability": 0.8118 + }, + { + "start": 65337.1, + "end": 65338.34, + "probability": 0.5278 + }, + { + "start": 65338.58, + "end": 65340.56, + "probability": 0.962 + }, + { + "start": 65340.98, + "end": 65343.88, + "probability": 0.9626 + }, + { + "start": 65344.8, + "end": 65345.3, + "probability": 0.8722 + }, + { + "start": 65345.4, + "end": 65348.34, + "probability": 0.4816 + }, + { + "start": 65348.34, + "end": 65349.16, + "probability": 0.8252 + }, + { + "start": 65349.24, + "end": 65350.76, + "probability": 0.8019 + }, + { + "start": 65351.72, + "end": 65357.06, + "probability": 0.9933 + }, + { + "start": 65357.88, + "end": 65361.3, + "probability": 0.9277 + }, + { + "start": 65361.9, + "end": 65364.4, + "probability": 0.722 + }, + { + "start": 65365.16, + "end": 65370.86, + "probability": 0.0283 + }, + { + "start": 65377.46, + "end": 65379.86, + "probability": 0.8401 + }, + { + "start": 65380.54, + "end": 65382.94, + "probability": 0.9226 + }, + { + "start": 65383.72, + "end": 65403.38, + "probability": 0.6993 + }, + { + "start": 65405.54, + "end": 65405.64, + "probability": 0.3978 + }, + { + "start": 65405.64, + "end": 65407.26, + "probability": 0.3021 + }, + { + "start": 65407.42, + "end": 65408.8, + "probability": 0.9314 + }, + { + "start": 65409.76, + "end": 65412.58, + "probability": 0.9617 + }, + { + "start": 65413.12, + "end": 65414.38, + "probability": 0.599 + }, + { + "start": 65427.8, + "end": 65428.18, + "probability": 0.3852 + }, + { + "start": 65428.18, + "end": 65430.72, + "probability": 0.527 + }, + { + "start": 65431.2, + "end": 65432.78, + "probability": 0.9335 + }, + { + "start": 65433.62, + "end": 65435.9, + "probability": 0.0946 + }, + { + "start": 65436.04, + "end": 65436.26, + "probability": 0.0006 + }, + { + "start": 65448.96, + "end": 65454.72, + "probability": 0.2925 + }, + { + "start": 65455.84, + "end": 65456.12, + "probability": 0.9819 + }, + { + "start": 65456.48, + "end": 65457.2, + "probability": 0.4834 + }, + { + "start": 65457.5, + "end": 65458.34, + "probability": 0.4011 + }, + { + "start": 65458.34, + "end": 65461.9, + "probability": 0.1106 + }, + { + "start": 65462.83, + "end": 65462.9, + "probability": 0.3154 + }, + { + "start": 65462.9, + "end": 65467.04, + "probability": 0.7549 + }, + { + "start": 65467.22, + "end": 65469.06, + "probability": 0.8259 + }, + { + "start": 65484.86, + "end": 65485.54, + "probability": 0.488 + }, + { + "start": 65486.36, + "end": 65488.76, + "probability": 0.3635 + }, + { + "start": 65506.22, + "end": 65508.32, + "probability": 0.6744 + }, + { + "start": 65508.92, + "end": 65510.4, + "probability": 0.9771 + }, + { + "start": 65511.18, + "end": 65511.7, + "probability": 0.578 + }, + { + "start": 65511.82, + "end": 65515.18, + "probability": 0.9733 + }, + { + "start": 65515.18, + "end": 65518.96, + "probability": 0.9964 + }, + { + "start": 65519.1, + "end": 65521.14, + "probability": 0.9755 + }, + { + "start": 65522.24, + "end": 65526.06, + "probability": 0.9837 + }, + { + "start": 65526.6, + "end": 65527.94, + "probability": 0.9697 + }, + { + "start": 65528.12, + "end": 65531.12, + "probability": 0.4296 + }, + { + "start": 65531.34, + "end": 65532.12, + "probability": 0.9003 + }, + { + "start": 65532.46, + "end": 65535.82, + "probability": 0.8542 + }, + { + "start": 65536.12, + "end": 65537.62, + "probability": 0.8641 + }, + { + "start": 65539.06, + "end": 65539.2, + "probability": 0.0103 + }, + { + "start": 65540.32, + "end": 65542.66, + "probability": 0.5488 + }, + { + "start": 65543.28, + "end": 65543.52, + "probability": 0.9718 + }, + { + "start": 65544.6, + "end": 65545.3, + "probability": 0.769 + }, + { + "start": 65547.28, + "end": 65547.62, + "probability": 0.9884 + }, + { + "start": 65549.08, + "end": 65549.8, + "probability": 0.6059 + }, + { + "start": 65550.62, + "end": 65550.86, + "probability": 0.971 + }, + { + "start": 65551.86, + "end": 65552.56, + "probability": 0.6075 + }, + { + "start": 65553.12, + "end": 65553.36, + "probability": 0.8491 + }, + { + "start": 65554.28, + "end": 65555.06, + "probability": 0.8872 + }, + { + "start": 65555.96, + "end": 65556.22, + "probability": 0.9588 + }, + { + "start": 65557.92, + "end": 65558.86, + "probability": 0.5319 + }, + { + "start": 65560.2, + "end": 65561.88, + "probability": 0.8491 + }, + { + "start": 65562.7, + "end": 65563.44, + "probability": 0.6148 + }, + { + "start": 65564.66, + "end": 65565.02, + "probability": 0.8809 + }, + { + "start": 65566.18, + "end": 65567.04, + "probability": 0.7109 + }, + { + "start": 65567.96, + "end": 65568.3, + "probability": 0.9504 + }, + { + "start": 65569.9, + "end": 65570.6, + "probability": 0.7495 + }, + { + "start": 65571.64, + "end": 65572.02, + "probability": 0.9602 + }, + { + "start": 65573.06, + "end": 65573.9, + "probability": 0.9745 + }, + { + "start": 65577.42, + "end": 65577.8, + "probability": 0.86 + }, + { + "start": 65579.18, + "end": 65580.12, + "probability": 0.9572 + }, + { + "start": 65583.48, + "end": 65583.86, + "probability": 0.9751 + }, + { + "start": 65585.34, + "end": 65586.08, + "probability": 0.946 + }, + { + "start": 65586.84, + "end": 65587.1, + "probability": 0.9945 + }, + { + "start": 65588.18, + "end": 65588.88, + "probability": 0.7369 + }, + { + "start": 65589.58, + "end": 65589.92, + "probability": 0.9619 + }, + { + "start": 65590.94, + "end": 65591.68, + "probability": 0.9483 + }, + { + "start": 65593.16, + "end": 65595.08, + "probability": 0.9867 + }, + { + "start": 65596.26, + "end": 65596.7, + "probability": 0.824 + }, + { + "start": 65598.16, + "end": 65600.49, + "probability": 0.9868 + }, + { + "start": 65601.88, + "end": 65602.56, + "probability": 0.9081 + }, + { + "start": 65603.36, + "end": 65603.82, + "probability": 0.9236 + }, + { + "start": 65605.08, + "end": 65605.74, + "probability": 0.9744 + }, + { + "start": 65606.86, + "end": 65607.26, + "probability": 0.9836 + }, + { + "start": 65608.62, + "end": 65609.26, + "probability": 0.9159 + }, + { + "start": 65610.0, + "end": 65610.44, + "probability": 0.9914 + }, + { + "start": 65611.62, + "end": 65612.64, + "probability": 0.9495 + }, + { + "start": 65613.24, + "end": 65613.64, + "probability": 0.9578 + }, + { + "start": 65614.64, + "end": 65615.14, + "probability": 0.9562 + }, + { + "start": 65615.86, + "end": 65616.22, + "probability": 0.5984 + }, + { + "start": 65617.42, + "end": 65618.04, + "probability": 0.9855 + }, + { + "start": 65619.03, + "end": 65620.98, + "probability": 0.979 + }, + { + "start": 65621.66, + "end": 65622.04, + "probability": 0.9417 + }, + { + "start": 65622.96, + "end": 65623.74, + "probability": 0.9602 + }, + { + "start": 65625.02, + "end": 65627.18, + "probability": 0.9694 + }, + { + "start": 65628.12, + "end": 65629.08, + "probability": 0.9821 + }, + { + "start": 65630.06, + "end": 65631.02, + "probability": 0.8187 + }, + { + "start": 65631.86, + "end": 65632.3, + "probability": 0.9893 + }, + { + "start": 65633.42, + "end": 65634.06, + "probability": 0.9736 + }, + { + "start": 65634.76, + "end": 65635.2, + "probability": 0.9924 + }, + { + "start": 65636.06, + "end": 65636.72, + "probability": 0.6508 + }, + { + "start": 65637.36, + "end": 65637.8, + "probability": 0.9884 + }, + { + "start": 65638.78, + "end": 65639.48, + "probability": 0.7262 + }, + { + "start": 65640.42, + "end": 65640.68, + "probability": 0.717 + }, + { + "start": 65641.8, + "end": 65642.38, + "probability": 0.704 + }, + { + "start": 65646.66, + "end": 65647.08, + "probability": 0.9497 + }, + { + "start": 65648.22, + "end": 65649.0, + "probability": 0.8367 + }, + { + "start": 65650.78, + "end": 65651.1, + "probability": 0.9466 + }, + { + "start": 65652.22, + "end": 65652.96, + "probability": 0.8901 + }, + { + "start": 65654.06, + "end": 65654.36, + "probability": 0.9364 + }, + { + "start": 65655.54, + "end": 65657.02, + "probability": 0.9187 + }, + { + "start": 65658.14, + "end": 65658.82, + "probability": 0.8055 + }, + { + "start": 65659.88, + "end": 65660.26, + "probability": 0.9884 + }, + { + "start": 65661.54, + "end": 65662.4, + "probability": 0.9247 + }, + { + "start": 65662.98, + "end": 65663.36, + "probability": 0.9741 + }, + { + "start": 65664.44, + "end": 65665.22, + "probability": 0.9859 + }, + { + "start": 65666.14, + "end": 65666.52, + "probability": 0.9922 + }, + { + "start": 65668.38, + "end": 65669.48, + "probability": 0.4518 + }, + { + "start": 65670.52, + "end": 65670.74, + "probability": 0.7734 + }, + { + "start": 65672.0, + "end": 65672.66, + "probability": 0.3741 + }, + { + "start": 65673.92, + "end": 65675.9, + "probability": 0.9784 + }, + { + "start": 65676.94, + "end": 65679.02, + "probability": 0.9837 + }, + { + "start": 65680.1, + "end": 65680.58, + "probability": 0.9914 + }, + { + "start": 65682.22, + "end": 65683.14, + "probability": 0.874 + }, + { + "start": 65684.5, + "end": 65687.22, + "probability": 0.9635 + }, + { + "start": 65687.92, + "end": 65688.32, + "probability": 0.9292 + }, + { + "start": 65689.74, + "end": 65690.52, + "probability": 0.8263 + }, + { + "start": 65693.62, + "end": 65694.24, + "probability": 0.9584 + }, + { + "start": 65695.92, + "end": 65697.03, + "probability": 0.9838 + }, + { + "start": 65698.22, + "end": 65698.6, + "probability": 0.9946 + }, + { + "start": 65700.32, + "end": 65701.36, + "probability": 0.6498 + }, + { + "start": 65702.2, + "end": 65702.52, + "probability": 0.9827 + }, + { + "start": 65703.9, + "end": 65704.94, + "probability": 0.9419 + }, + { + "start": 65706.2, + "end": 65708.26, + "probability": 0.6376 + }, + { + "start": 65711.84, + "end": 65714.52, + "probability": 0.7432 + }, + { + "start": 65716.04, + "end": 65718.2, + "probability": 0.9821 + }, + { + "start": 65718.78, + "end": 65719.4, + "probability": 0.3063 + }, + { + "start": 65720.18, + "end": 65720.88, + "probability": 0.9194 + }, + { + "start": 65721.68, + "end": 65722.72, + "probability": 0.9325 + }, + { + "start": 65723.4, + "end": 65723.76, + "probability": 0.8171 + }, + { + "start": 65725.56, + "end": 65726.24, + "probability": 0.6661 + }, + { + "start": 65727.22, + "end": 65728.46, + "probability": 0.5966 + }, + { + "start": 65729.36, + "end": 65730.0, + "probability": 0.8228 + }, + { + "start": 65731.2, + "end": 65732.74, + "probability": 0.9609 + }, + { + "start": 65733.64, + "end": 65733.98, + "probability": 0.9422 + }, + { + "start": 65735.04, + "end": 65735.62, + "probability": 0.7508 + }, + { + "start": 65736.66, + "end": 65736.98, + "probability": 0.9603 + }, + { + "start": 65737.8, + "end": 65738.68, + "probability": 0.9798 + }, + { + "start": 65740.0, + "end": 65740.66, + "probability": 0.9422 + }, + { + "start": 65741.54, + "end": 65742.18, + "probability": 0.9015 + }, + { + "start": 65742.88, + "end": 65743.32, + "probability": 0.9902 + }, + { + "start": 65744.32, + "end": 65744.8, + "probability": 0.9882 + }, + { + "start": 65746.06, + "end": 65746.5, + "probability": 0.9886 + }, + { + "start": 65747.24, + "end": 65747.88, + "probability": 0.9628 + }, + { + "start": 65749.82, + "end": 65750.18, + "probability": 0.9897 + }, + { + "start": 65751.32, + "end": 65751.66, + "probability": 0.9559 + }, + { + "start": 65753.6, + "end": 65753.72, + "probability": 0.9897 + }, + { + "start": 65755.4, + "end": 65755.84, + "probability": 0.6532 + }, + { + "start": 65756.83, + "end": 65758.8, + "probability": 0.9336 + }, + { + "start": 65759.52, + "end": 65761.56, + "probability": 0.978 + }, + { + "start": 65763.53, + "end": 65764.92, + "probability": 0.9653 + }, + { + "start": 65766.24, + "end": 65766.54, + "probability": 0.973 + }, + { + "start": 65767.4, + "end": 65768.06, + "probability": 0.9844 + }, + { + "start": 65769.0, + "end": 65769.28, + "probability": 0.9938 + }, + { + "start": 65770.16, + "end": 65770.78, + "probability": 0.9897 + }, + { + "start": 65772.96, + "end": 65773.36, + "probability": 0.9912 + }, + { + "start": 65774.38, + "end": 65774.96, + "probability": 0.9912 + }, + { + "start": 65775.68, + "end": 65776.58, + "probability": 0.9966 + }, + { + "start": 65777.28, + "end": 65778.28, + "probability": 0.8173 + }, + { + "start": 65779.08, + "end": 65779.42, + "probability": 0.9929 + }, + { + "start": 65780.74, + "end": 65781.34, + "probability": 0.9764 + }, + { + "start": 65782.06, + "end": 65782.26, + "probability": 0.9832 + }, + { + "start": 65783.32, + "end": 65787.18, + "probability": 0.7028 + }, + { + "start": 65787.98, + "end": 65788.22, + "probability": 0.6836 + }, + { + "start": 65789.42, + "end": 65790.32, + "probability": 0.9457 + }, + { + "start": 65793.98, + "end": 65794.3, + "probability": 0.6146 + }, + { + "start": 65795.8, + "end": 65796.38, + "probability": 0.7072 + }, + { + "start": 65801.41, + "end": 65802.86, + "probability": 0.9167 + }, + { + "start": 65804.02, + "end": 65806.3, + "probability": 0.9802 + }, + { + "start": 65807.76, + "end": 65810.32, + "probability": 0.9365 + }, + { + "start": 65811.1, + "end": 65811.5, + "probability": 0.9772 + }, + { + "start": 65813.3, + "end": 65814.18, + "probability": 0.7979 + }, + { + "start": 65815.34, + "end": 65815.52, + "probability": 0.9849 + }, + { + "start": 65817.1, + "end": 65817.9, + "probability": 0.974 + }, + { + "start": 65818.54, + "end": 65818.8, + "probability": 0.9876 + }, + { + "start": 65820.48, + "end": 65821.02, + "probability": 0.6507 + }, + { + "start": 65821.7, + "end": 65822.02, + "probability": 0.981 + }, + { + "start": 65823.12, + "end": 65823.66, + "probability": 0.8879 + }, + { + "start": 65824.58, + "end": 65825.58, + "probability": 0.9938 + }, + { + "start": 65826.46, + "end": 65827.08, + "probability": 0.9828 + }, + { + "start": 65828.18, + "end": 65829.34, + "probability": 0.9917 + }, + { + "start": 65829.96, + "end": 65830.54, + "probability": 0.9083 + }, + { + "start": 65831.64, + "end": 65832.1, + "probability": 0.7844 + }, + { + "start": 65833.3, + "end": 65834.14, + "probability": 0.9903 + }, + { + "start": 65835.5, + "end": 65835.92, + "probability": 0.9953 + }, + { + "start": 65837.68, + "end": 65838.62, + "probability": 0.8135 + }, + { + "start": 65839.34, + "end": 65839.74, + "probability": 0.8823 + }, + { + "start": 65841.38, + "end": 65842.84, + "probability": 0.9386 + }, + { + "start": 65843.88, + "end": 65844.66, + "probability": 0.869 + }, + { + "start": 65845.78, + "end": 65846.16, + "probability": 0.9985 + }, + { + "start": 65847.74, + "end": 65848.64, + "probability": 0.5758 + }, + { + "start": 65849.72, + "end": 65849.96, + "probability": 0.7407 + }, + { + "start": 65851.48, + "end": 65852.22, + "probability": 0.7746 + }, + { + "start": 65853.12, + "end": 65854.1, + "probability": 0.9622 + }, + { + "start": 65854.78, + "end": 65855.66, + "probability": 0.976 + }, + { + "start": 65856.92, + "end": 65857.9, + "probability": 0.9937 + }, + { + "start": 65858.54, + "end": 65859.24, + "probability": 0.8428 + }, + { + "start": 65860.5, + "end": 65861.36, + "probability": 0.931 + }, + { + "start": 65862.3, + "end": 65863.32, + "probability": 0.7879 + }, + { + "start": 65864.18, + "end": 65864.6, + "probability": 0.9917 + }, + { + "start": 65865.92, + "end": 65866.6, + "probability": 0.9164 + }, + { + "start": 65868.12, + "end": 65868.44, + "probability": 0.9897 + }, + { + "start": 65869.78, + "end": 65870.42, + "probability": 0.9692 + }, + { + "start": 65871.88, + "end": 65872.26, + "probability": 0.9546 + }, + { + "start": 65874.08, + "end": 65874.84, + "probability": 0.9794 + }, + { + "start": 65876.48, + "end": 65876.84, + "probability": 0.99 + }, + { + "start": 65878.34, + "end": 65878.98, + "probability": 0.8303 + }, + { + "start": 65879.78, + "end": 65880.16, + "probability": 0.6338 + }, + { + "start": 65882.1, + "end": 65882.9, + "probability": 0.7241 + }, + { + "start": 65884.56, + "end": 65889.0, + "probability": 0.7475 + }, + { + "start": 65890.52, + "end": 65891.84, + "probability": 0.9797 + }, + { + "start": 65892.96, + "end": 65893.74, + "probability": 0.9652 + }, + { + "start": 65894.56, + "end": 65894.9, + "probability": 0.9844 + }, + { + "start": 65896.3, + "end": 65896.96, + "probability": 0.9187 + }, + { + "start": 65898.98, + "end": 65901.76, + "probability": 0.8399 + }, + { + "start": 65902.32, + "end": 65903.0, + "probability": 0.7397 + }, + { + "start": 65904.32, + "end": 65904.72, + "probability": 0.9774 + }, + { + "start": 65905.82, + "end": 65906.24, + "probability": 0.9113 + }, + { + "start": 65907.48, + "end": 65907.88, + "probability": 0.5414 + }, + { + "start": 65908.92, + "end": 65909.94, + "probability": 0.822 + }, + { + "start": 65910.76, + "end": 65911.72, + "probability": 0.9539 + }, + { + "start": 65912.44, + "end": 65913.66, + "probability": 0.8754 + }, + { + "start": 65914.99, + "end": 65916.8, + "probability": 0.9683 + }, + { + "start": 65918.28, + "end": 65918.64, + "probability": 0.9701 + }, + { + "start": 65919.72, + "end": 65920.44, + "probability": 0.985 + }, + { + "start": 65921.28, + "end": 65921.52, + "probability": 0.9629 + }, + { + "start": 65922.24, + "end": 65922.86, + "probability": 0.9134 + }, + { + "start": 65924.46, + "end": 65924.86, + "probability": 0.9873 + }, + { + "start": 65926.14, + "end": 65926.86, + "probability": 0.9689 + }, + { + "start": 65927.8, + "end": 65928.18, + "probability": 0.9857 + }, + { + "start": 65929.36, + "end": 65930.38, + "probability": 0.9582 + }, + { + "start": 65931.72, + "end": 65934.18, + "probability": 0.9653 + }, + { + "start": 65936.74, + "end": 65937.5, + "probability": 0.6671 + }, + { + "start": 65938.6, + "end": 65938.96, + "probability": 0.917 + }, + { + "start": 65940.12, + "end": 65940.64, + "probability": 0.9306 + }, + { + "start": 65941.88, + "end": 65944.08, + "probability": 0.8342 + }, + { + "start": 65944.72, + "end": 65945.66, + "probability": 0.9888 + }, + { + "start": 65946.22, + "end": 65947.26, + "probability": 0.9424 + }, + { + "start": 65948.42, + "end": 65949.12, + "probability": 0.9927 + }, + { + "start": 65950.18, + "end": 65951.2, + "probability": 0.5463 + }, + { + "start": 65951.72, + "end": 65953.84, + "probability": 0.9871 + }, + { + "start": 65955.16, + "end": 65957.06, + "probability": 0.991 + }, + { + "start": 65958.08, + "end": 65959.02, + "probability": 0.9927 + }, + { + "start": 65959.74, + "end": 65961.32, + "probability": 0.9889 + }, + { + "start": 65962.66, + "end": 65963.6, + "probability": 0.6628 + }, + { + "start": 65965.26, + "end": 65965.62, + "probability": 0.5667 + }, + { + "start": 65966.74, + "end": 65967.34, + "probability": 0.8139 + }, + { + "start": 65968.34, + "end": 65969.5, + "probability": 0.97 + }, + { + "start": 65970.3, + "end": 65971.36, + "probability": 0.93 + }, + { + "start": 65972.1, + "end": 65972.5, + "probability": 0.9736 + }, + { + "start": 65973.7, + "end": 65974.46, + "probability": 0.8303 + }, + { + "start": 65975.44, + "end": 65977.46, + "probability": 0.7381 + }, + { + "start": 65977.6, + "end": 65981.12, + "probability": 0.8768 + }, + { + "start": 65982.54, + "end": 65983.08, + "probability": 0.0166 + }, + { + "start": 65984.24, + "end": 65984.64, + "probability": 0.8748 + }, + { + "start": 65986.86, + "end": 65987.7, + "probability": 0.4521 + }, + { + "start": 65988.5, + "end": 65988.84, + "probability": 0.8394 + }, + { + "start": 65992.1, + "end": 65992.86, + "probability": 0.6591 + }, + { + "start": 65994.78, + "end": 65995.5, + "probability": 0.9307 + }, + { + "start": 65997.04, + "end": 65997.82, + "probability": 0.6122 + }, + { + "start": 65999.7, + "end": 66000.44, + "probability": 0.9904 + }, + { + "start": 66002.06, + "end": 66003.2, + "probability": 0.713 + }, + { + "start": 66004.44, + "end": 66005.22, + "probability": 0.9904 + }, + { + "start": 66005.8, + "end": 66006.1, + "probability": 0.2985 + }, + { + "start": 66006.92, + "end": 66009.78, + "probability": 0.9591 + }, + { + "start": 66010.74, + "end": 66011.46, + "probability": 0.9874 + }, + { + "start": 66014.54, + "end": 66015.3, + "probability": 0.5273 + }, + { + "start": 66017.24, + "end": 66017.94, + "probability": 0.8614 + }, + { + "start": 66018.56, + "end": 66019.16, + "probability": 0.6647 + }, + { + "start": 66027.12, + "end": 66031.78, + "probability": 0.7121 + }, + { + "start": 66031.78, + "end": 66034.8, + "probability": 0.9723 + }, + { + "start": 66036.76, + "end": 66038.38, + "probability": 0.9646 + }, + { + "start": 66038.46, + "end": 66038.6, + "probability": 0.3441 + }, + { + "start": 66039.52, + "end": 66045.28, + "probability": 0.6697 + }, + { + "start": 66045.54, + "end": 66046.06, + "probability": 0.2759 + }, + { + "start": 66047.12, + "end": 66049.92, + "probability": 0.729 + }, + { + "start": 66050.04, + "end": 66051.08, + "probability": 0.8008 + }, + { + "start": 66051.86, + "end": 66055.78, + "probability": 0.9568 + }, + { + "start": 66055.88, + "end": 66057.78, + "probability": 0.8033 + }, + { + "start": 66062.7, + "end": 66064.16, + "probability": 0.8223 + }, + { + "start": 66064.36, + "end": 66068.2, + "probability": 0.9939 + }, + { + "start": 66068.94, + "end": 66072.86, + "probability": 0.9824 + }, + { + "start": 66074.46, + "end": 66075.9, + "probability": 0.4992 + }, + { + "start": 66076.48, + "end": 66076.54, + "probability": 0.2043 + }, + { + "start": 66089.8, + "end": 66093.56, + "probability": 0.0396 + }, + { + "start": 66094.78, + "end": 66094.78, + "probability": 0.097 + }, + { + "start": 66095.64, + "end": 66104.4, + "probability": 0.0233 + }, + { + "start": 66104.4, + "end": 66106.04, + "probability": 0.0697 + }, + { + "start": 66106.72, + "end": 66113.86, + "probability": 0.1376 + }, + { + "start": 66118.82, + "end": 66123.02, + "probability": 0.0854 + }, + { + "start": 66124.0, + "end": 66127.76, + "probability": 0.0678 + }, + { + "start": 66141.7, + "end": 66143.12, + "probability": 0.0451 + }, + { + "start": 66143.42, + "end": 66148.44, + "probability": 0.0011 + }, + { + "start": 66250.0, + "end": 66250.0, + "probability": 0.0 + }, + { + "start": 66250.0, + "end": 66250.0, + "probability": 0.0 + }, + { + "start": 66253.22, + "end": 66255.8, + "probability": 0.5946 + }, + { + "start": 66255.92, + "end": 66257.46, + "probability": 0.9622 + }, + { + "start": 66258.08, + "end": 66260.36, + "probability": 0.9718 + }, + { + "start": 66260.88, + "end": 66263.76, + "probability": 0.8048 + }, + { + "start": 66276.84, + "end": 66276.84, + "probability": 0.2859 + }, + { + "start": 66276.84, + "end": 66278.56, + "probability": 0.3077 + }, + { + "start": 66278.64, + "end": 66279.92, + "probability": 0.8807 + }, + { + "start": 66280.14, + "end": 66281.84, + "probability": 0.7283 + }, + { + "start": 66285.9, + "end": 66289.92, + "probability": 0.2873 + }, + { + "start": 66290.66, + "end": 66292.64, + "probability": 0.0701 + }, + { + "start": 66292.64, + "end": 66294.24, + "probability": 0.2349 + }, + { + "start": 66295.32, + "end": 66296.44, + "probability": 0.4818 + }, + { + "start": 66297.02, + "end": 66298.26, + "probability": 0.1088 + }, + { + "start": 66300.04, + "end": 66302.8, + "probability": 0.6995 + }, + { + "start": 66303.44, + "end": 66305.48, + "probability": 0.9613 + }, + { + "start": 66306.02, + "end": 66307.66, + "probability": 0.388 + }, + { + "start": 66309.3, + "end": 66310.86, + "probability": 0.6063 + }, + { + "start": 66313.38, + "end": 66319.34, + "probability": 0.0007 + }, + { + "start": 66319.34, + "end": 66321.48, + "probability": 0.5462 + }, + { + "start": 66321.56, + "end": 66322.8, + "probability": 0.9709 + }, + { + "start": 66323.48, + "end": 66327.22, + "probability": 0.735 + }, + { + "start": 66327.22, + "end": 66330.2, + "probability": 0.9977 + }, + { + "start": 66330.34, + "end": 66331.66, + "probability": 0.7667 + }, + { + "start": 66333.06, + "end": 66336.26, + "probability": 0.1862 + }, + { + "start": 66343.62, + "end": 66345.76, + "probability": 0.545 + }, + { + "start": 66345.78, + "end": 66347.2, + "probability": 0.926 + }, + { + "start": 66347.24, + "end": 66349.1, + "probability": 0.7073 + }, + { + "start": 66354.8, + "end": 66358.18, + "probability": 0.8036 + }, + { + "start": 66358.72, + "end": 66361.22, + "probability": 0.8502 + }, + { + "start": 66362.22, + "end": 66363.58, + "probability": 0.8071 + }, + { + "start": 66363.68, + "end": 66364.38, + "probability": 0.774 + }, + { + "start": 66365.38, + "end": 66365.56, + "probability": 0.2546 + }, + { + "start": 66365.56, + "end": 66365.56, + "probability": 0.0223 + }, + { + "start": 66377.52, + "end": 66378.86, + "probability": 0.2495 + }, + { + "start": 66379.0, + "end": 66380.2, + "probability": 0.8958 + }, + { + "start": 66384.9, + "end": 66387.76, + "probability": 0.6975 + }, + { + "start": 66388.36, + "end": 66392.06, + "probability": 0.9707 + }, + { + "start": 66407.22, + "end": 66407.6, + "probability": 0.428 + }, + { + "start": 66407.6, + "end": 66407.72, + "probability": 0.3211 + }, + { + "start": 66407.72, + "end": 66409.3, + "probability": 0.2682 + }, + { + "start": 66409.44, + "end": 66410.98, + "probability": 0.972 + }, + { + "start": 66412.98, + "end": 66414.9, + "probability": 0.8778 + }, + { + "start": 66414.92, + "end": 66418.9, + "probability": 0.73 + }, + { + "start": 66420.24, + "end": 66423.22, + "probability": 0.6354 + }, + { + "start": 66432.32, + "end": 66434.04, + "probability": 0.545 + }, + { + "start": 66434.18, + "end": 66435.5, + "probability": 0.9111 + }, + { + "start": 66437.1, + "end": 66438.94, + "probability": 0.0376 + }, + { + "start": 66450.88, + "end": 66451.72, + "probability": 0.3415 + }, + { + "start": 66453.02, + "end": 66453.82, + "probability": 0.5172 + }, + { + "start": 66454.5, + "end": 66456.38, + "probability": 0.665 + }, + { + "start": 66457.28, + "end": 66460.18, + "probability": 0.7439 + }, + { + "start": 66460.52, + "end": 66465.42, + "probability": 0.8997 + }, + { + "start": 66469.48, + "end": 66470.0, + "probability": 0.7453 + }, + { + "start": 66471.0, + "end": 66472.8, + "probability": 0.683 + }, + { + "start": 66473.41, + "end": 66475.52, + "probability": 0.7846 + }, + { + "start": 66476.2, + "end": 66476.52, + "probability": 0.0137 + }, + { + "start": 66477.38, + "end": 66480.14, + "probability": 0.2115 + }, + { + "start": 66480.38, + "end": 66480.79, + "probability": 0.8796 + }, + { + "start": 66481.06, + "end": 66483.86, + "probability": 0.8184 + }, + { + "start": 66483.92, + "end": 66485.06, + "probability": 0.7385 + }, + { + "start": 66485.14, + "end": 66486.34, + "probability": 0.968 + }, + { + "start": 66491.81, + "end": 66495.22, + "probability": 0.7564 + }, + { + "start": 66495.32, + "end": 66497.46, + "probability": 0.5504 + }, + { + "start": 66498.08, + "end": 66501.3, + "probability": 0.9579 + }, + { + "start": 66502.12, + "end": 66505.76, + "probability": 0.902 + }, + { + "start": 66505.78, + "end": 66506.78, + "probability": 0.6695 + }, + { + "start": 66518.94, + "end": 66519.72, + "probability": 0.208 + }, + { + "start": 66519.72, + "end": 66520.74, + "probability": 0.4923 + }, + { + "start": 66520.82, + "end": 66522.08, + "probability": 0.9656 + }, + { + "start": 66522.48, + "end": 66526.34, + "probability": 0.9919 + }, + { + "start": 66526.56, + "end": 66528.26, + "probability": 0.741 + }, + { + "start": 66528.84, + "end": 66530.3, + "probability": 0.7594 + }, + { + "start": 66531.24, + "end": 66532.18, + "probability": 0.2865 + }, + { + "start": 66543.78, + "end": 66545.8, + "probability": 0.3355 + }, + { + "start": 66545.8, + "end": 66547.1, + "probability": 0.9734 + }, + { + "start": 66547.7, + "end": 66549.84, + "probability": 0.6388 + }, + { + "start": 66550.56, + "end": 66551.82, + "probability": 0.7502 + }, + { + "start": 66556.1, + "end": 66556.1, + "probability": 0.3767 + }, + { + "start": 66564.58, + "end": 66565.14, + "probability": 0.0613 + }, + { + "start": 66565.14, + "end": 66566.18, + "probability": 0.2246 + }, + { + "start": 66566.18, + "end": 66567.24, + "probability": 0.947 + }, + { + "start": 66571.52, + "end": 66574.76, + "probability": 0.5872 + }, + { + "start": 66575.36, + "end": 66580.8, + "probability": 0.9788 + }, + { + "start": 66593.86, + "end": 66593.86, + "probability": 0.2024 + }, + { + "start": 66593.86, + "end": 66595.0, + "probability": 0.2244 + }, + { + "start": 66595.0, + "end": 66596.4, + "probability": 0.9258 + }, + { + "start": 66600.76, + "end": 66603.04, + "probability": 0.6248 + }, + { + "start": 66603.3, + "end": 66608.94, + "probability": 0.7781 + }, + { + "start": 66621.2, + "end": 66621.56, + "probability": 0.4367 + }, + { + "start": 66621.56, + "end": 66623.18, + "probability": 0.6386 + }, + { + "start": 66623.2, + "end": 66624.4, + "probability": 0.9626 + }, + { + "start": 66625.02, + "end": 66628.42, + "probability": 0.86 + }, + { + "start": 66628.6, + "end": 66633.1, + "probability": 0.9483 + }, + { + "start": 66633.64, + "end": 66636.3, + "probability": 0.4176 + }, + { + "start": 66638.68, + "end": 66638.94, + "probability": 0.3259 + }, + { + "start": 66647.0, + "end": 66647.8, + "probability": 0.25 + }, + { + "start": 66647.92, + "end": 66649.52, + "probability": 0.897 + }, + { + "start": 66653.72, + "end": 66656.64, + "probability": 0.7573 + }, + { + "start": 66657.32, + "end": 66660.82, + "probability": 0.9028 + }, + { + "start": 66661.08, + "end": 66662.19, + "probability": 0.585 + }, + { + "start": 66663.14, + "end": 66664.54, + "probability": 0.668 + }, + { + "start": 66665.22, + "end": 66668.52, + "probability": 0.2645 + }, + { + "start": 66677.26, + "end": 66679.26, + "probability": 0.6402 + }, + { + "start": 66680.38, + "end": 66682.08, + "probability": 0.971 + }, + { + "start": 66685.84, + "end": 66692.02, + "probability": 0.8008 + }, + { + "start": 66692.56, + "end": 66695.84, + "probability": 0.9325 + }, + { + "start": 66695.84, + "end": 66700.46, + "probability": 0.983 + }, + { + "start": 66700.64, + "end": 66701.1, + "probability": 0.8531 + }, + { + "start": 66701.62, + "end": 66704.9, + "probability": 0.096 + }, + { + "start": 66705.0, + "end": 66705.44, + "probability": 0.0 + }, + { + "start": 66716.12, + "end": 66716.22, + "probability": 0.3249 + }, + { + "start": 66717.56, + "end": 66719.14, + "probability": 0.2438 + }, + { + "start": 66719.16, + "end": 66721.14, + "probability": 0.9458 + }, + { + "start": 66724.88, + "end": 66727.96, + "probability": 0.8387 + }, + { + "start": 66728.46, + "end": 66746.1, + "probability": 0.8289 + }, + { + "start": 66746.1, + "end": 66746.26, + "probability": 0.3548 + }, + { + "start": 66746.26, + "end": 66747.82, + "probability": 0.5749 + }, + { + "start": 66748.32, + "end": 66750.88, + "probability": 0.9474 + }, + { + "start": 66751.28, + "end": 66756.6, + "probability": 0.7456 + }, + { + "start": 66761.3, + "end": 66762.06, + "probability": 0.4629 + }, + { + "start": 66766.06, + "end": 66767.08, + "probability": 0.3879 + }, + { + "start": 66770.9, + "end": 66771.44, + "probability": 0.1311 + }, + { + "start": 66771.44, + "end": 66773.18, + "probability": 0.2774 + }, + { + "start": 66773.28, + "end": 66774.32, + "probability": 0.9521 + }, + { + "start": 66778.86, + "end": 66783.1, + "probability": 0.6936 + }, + { + "start": 66783.32, + "end": 66787.66, + "probability": 0.7341 + }, + { + "start": 66801.34, + "end": 66801.42, + "probability": 0.2945 + }, + { + "start": 66801.42, + "end": 66803.6, + "probability": 0.3349 + }, + { + "start": 66803.66, + "end": 66806.24, + "probability": 0.8772 + }, + { + "start": 66810.04, + "end": 66813.38, + "probability": 0.6272 + }, + { + "start": 66813.96, + "end": 66819.0, + "probability": 0.9224 + }, + { + "start": 66832.68, + "end": 66833.02, + "probability": 0.3872 + }, + { + "start": 66833.02, + "end": 66833.26, + "probability": 0.3685 + }, + { + "start": 66833.26, + "end": 66835.04, + "probability": 0.6094 + }, + { + "start": 66835.8, + "end": 66837.66, + "probability": 0.9844 + }, + { + "start": 66837.96, + "end": 66843.56, + "probability": 0.9634 + }, + { + "start": 66856.8, + "end": 66857.22, + "probability": 0.213 + }, + { + "start": 66857.22, + "end": 66858.62, + "probability": 0.2619 + }, + { + "start": 66858.66, + "end": 66859.82, + "probability": 0.9753 + }, + { + "start": 66862.96, + "end": 66866.12, + "probability": 0.4851 + }, + { + "start": 66866.54, + "end": 66884.52, + "probability": 0.8682 + }, + { + "start": 66884.52, + "end": 66884.54, + "probability": 0.3091 + }, + { + "start": 66884.54, + "end": 66886.76, + "probability": 0.3815 + }, + { + "start": 66887.22, + "end": 66889.24, + "probability": 0.9661 + }, + { + "start": 66889.8, + "end": 66890.22, + "probability": 0.9147 + }, + { + "start": 66890.42, + "end": 66893.04, + "probability": 0.9321 + }, + { + "start": 66893.16, + "end": 66901.0, + "probability": 0.7231 + }, + { + "start": 66915.12, + "end": 66915.74, + "probability": 0.3657 + }, + { + "start": 66915.74, + "end": 66917.52, + "probability": 0.3569 + }, + { + "start": 66917.66, + "end": 66920.24, + "probability": 0.9263 + }, + { + "start": 66924.98, + "end": 66929.3, + "probability": 0.5908 + }, + { + "start": 66929.98, + "end": 66936.38, + "probability": 0.9231 + }, + { + "start": 66937.06, + "end": 66940.24, + "probability": 0.3176 + }, + { + "start": 66949.24, + "end": 66951.44, + "probability": 0.7504 + }, + { + "start": 66951.88, + "end": 66953.32, + "probability": 0.937 + }, + { + "start": 66964.22, + "end": 66971.4, + "probability": 0.7973 + }, + { + "start": 66972.3, + "end": 66976.04, + "probability": 0.9238 + }, + { + "start": 66976.66, + "end": 66981.2, + "probability": 0.7726 + }, + { + "start": 66981.62, + "end": 66983.2, + "probability": 0.1718 + }, + { + "start": 66983.8, + "end": 66987.56, + "probability": 0.001 + }, + { + "start": 66994.04, + "end": 66994.98, + "probability": 0.3199 + }, + { + "start": 66995.1, + "end": 66996.5, + "probability": 0.9379 + }, + { + "start": 67000.04, + "end": 67003.12, + "probability": 0.7793 + }, + { + "start": 67003.7, + "end": 67009.86, + "probability": 0.7107 + }, + { + "start": 67011.56, + "end": 67012.74, + "probability": 0.3004 + }, + { + "start": 67022.48, + "end": 67024.12, + "probability": 0.4496 + }, + { + "start": 67024.18, + "end": 67025.22, + "probability": 0.9678 + }, + { + "start": 67031.04, + "end": 67034.32, + "probability": 0.7495 + }, + { + "start": 67035.08, + "end": 67040.28, + "probability": 0.7583 + }, + { + "start": 67043.24, + "end": 67046.14, + "probability": 0.7934 + }, + { + "start": 67053.84, + "end": 67054.4, + "probability": 0.002 + }, + { + "start": 67054.4, + "end": 67057.4, + "probability": 0.6803 + }, + { + "start": 67057.5, + "end": 67058.96, + "probability": 0.8936 + }, + { + "start": 67059.9, + "end": 67067.52, + "probability": 0.8809 + }, + { + "start": 67082.06, + "end": 67082.62, + "probability": 0.3884 + }, + { + "start": 67082.62, + "end": 67082.74, + "probability": 0.3519 + }, + { + "start": 67082.74, + "end": 67083.82, + "probability": 0.1404 + }, + { + "start": 67083.82, + "end": 67085.12, + "probability": 0.8181 + }, + { + "start": 67089.24, + "end": 67092.78, + "probability": 0.5588 + }, + { + "start": 67093.4, + "end": 67110.68, + "probability": 0.835 + }, + { + "start": 67110.68, + "end": 67110.68, + "probability": 0.3103 + }, + { + "start": 67110.68, + "end": 67111.78, + "probability": 0.214 + }, + { + "start": 67111.94, + "end": 67113.14, + "probability": 0.9807 + }, + { + "start": 67113.4, + "end": 67118.22, + "probability": 0.7222 + }, + { + "start": 67130.7, + "end": 67131.82, + "probability": 0.2742 + }, + { + "start": 67133.57, + "end": 67137.44, + "probability": 0.7205 + }, + { + "start": 67142.29, + "end": 67148.28, + "probability": 0.6216 + }, + { + "start": 67148.82, + "end": 67153.74, + "probability": 0.8315 + }, + { + "start": 67165.82, + "end": 67166.66, + "probability": 0.3957 + }, + { + "start": 67166.66, + "end": 67166.74, + "probability": 0.2209 + }, + { + "start": 67166.74, + "end": 67168.1, + "probability": 0.5421 + }, + { + "start": 67168.1, + "end": 67169.2, + "probability": 0.9649 + }, + { + "start": 67172.54, + "end": 67175.9, + "probability": 0.5894 + }, + { + "start": 67176.08, + "end": 67183.19, + "probability": 0.8794 + }, + { + "start": 67195.06, + "end": 67195.54, + "probability": 0.3661 + }, + { + "start": 67195.54, + "end": 67196.9, + "probability": 0.2886 + }, + { + "start": 67197.08, + "end": 67198.44, + "probability": 0.9483 + }, + { + "start": 67199.8, + "end": 67202.36, + "probability": 0.5202 + }, + { + "start": 67202.8, + "end": 67208.93, + "probability": 0.8772 + }, + { + "start": 67210.22, + "end": 67212.38, + "probability": 0.5639 + }, + { + "start": 67222.3, + "end": 67222.96, + "probability": 0.0571 + }, + { + "start": 67222.96, + "end": 67224.1, + "probability": 0.2439 + }, + { + "start": 67224.1, + "end": 67225.97, + "probability": 0.9097 + }, + { + "start": 67227.26, + "end": 67230.46, + "probability": 0.7989 + }, + { + "start": 67230.84, + "end": 67233.88, + "probability": 0.9678 + }, + { + "start": 67234.68, + "end": 67237.02, + "probability": 0.9125 + }, + { + "start": 67237.78, + "end": 67239.02, + "probability": 0.8551 + }, + { + "start": 67253.84, + "end": 67254.2, + "probability": 0.2676 + }, + { + "start": 67254.2, + "end": 67255.1, + "probability": 0.1179 + }, + { + "start": 67255.22, + "end": 67256.58, + "probability": 0.9703 + }, + { + "start": 67257.3, + "end": 67260.8, + "probability": 0.995 + }, + { + "start": 67261.2, + "end": 67263.29, + "probability": 0.6608 + }, + { + "start": 67264.4, + "end": 67265.82, + "probability": 0.4098 + }, + { + "start": 67277.24, + "end": 67277.58, + "probability": 0.1858 + }, + { + "start": 67277.58, + "end": 67278.64, + "probability": 0.1427 + }, + { + "start": 67278.64, + "end": 67280.6, + "probability": 0.9084 + }, + { + "start": 67280.84, + "end": 67285.39, + "probability": 0.8994 + }, + { + "start": 67285.86, + "end": 67287.34, + "probability": 0.3065 + }, + { + "start": 67287.34, + "end": 67288.38, + "probability": 0.3175 + }, + { + "start": 67300.0, + "end": 67303.14, + "probability": 0.9222 + }, + { + "start": 67303.46, + "end": 67308.46, + "probability": 0.6172 + }, + { + "start": 67308.82, + "end": 67311.1, + "probability": 0.4332 + }, + { + "start": 67322.62, + "end": 67322.62, + "probability": 0.1977 + }, + { + "start": 67322.62, + "end": 67323.82, + "probability": 0.2515 + }, + { + "start": 67323.92, + "end": 67325.38, + "probability": 0.9418 + }, + { + "start": 67325.94, + "end": 67344.8, + "probability": 0.9159 + }, + { + "start": 67344.8, + "end": 67344.94, + "probability": 0.3539 + }, + { + "start": 67344.94, + "end": 67346.08, + "probability": 0.2977 + }, + { + "start": 67346.12, + "end": 67347.68, + "probability": 0.9507 + }, + { + "start": 67348.55, + "end": 67354.0, + "probability": 0.6564 + }, + { + "start": 67354.7, + "end": 67361.88, + "probability": 0.9221 + }, + { + "start": 67362.14, + "end": 67369.0, + "probability": 0.6359 + }, + { + "start": 67377.42, + "end": 67379.9, + "probability": 0.8603 + }, + { + "start": 67381.74, + "end": 67382.82, + "probability": 0.5477 + }, + { + "start": 67383.96, + "end": 67386.78, + "probability": 0.7855 + }, + { + "start": 67387.0, + "end": 67387.6, + "probability": 0.7557 + }, + { + "start": 67387.68, + "end": 67388.98, + "probability": 0.973 + }, + { + "start": 67389.44, + "end": 67390.1, + "probability": 0.8827 + }, + { + "start": 67390.16, + "end": 67391.12, + "probability": 0.7525 + }, + { + "start": 67391.2, + "end": 67392.46, + "probability": 0.729 + }, + { + "start": 67393.04, + "end": 67394.36, + "probability": 0.975 + }, + { + "start": 67395.88, + "end": 67399.8, + "probability": 0.3817 + }, + { + "start": 67399.9, + "end": 67402.97, + "probability": 0.7274 + }, + { + "start": 67404.66, + "end": 67406.84, + "probability": 0.7897 + }, + { + "start": 67413.95, + "end": 67418.38, + "probability": 0.1507 + }, + { + "start": 67418.64, + "end": 67422.14, + "probability": 0.2643 + }, + { + "start": 67422.14, + "end": 67423.38, + "probability": 0.9692 + }, + { + "start": 67423.42, + "end": 67424.94, + "probability": 0.5141 + }, + { + "start": 67431.08, + "end": 67431.56, + "probability": 0.0503 + }, + { + "start": 67432.02, + "end": 67436.06, + "probability": 0.9971 + }, + { + "start": 67436.16, + "end": 67438.58, + "probability": 0.8934 + }, + { + "start": 67438.8, + "end": 67438.92, + "probability": 0.4373 + }, + { + "start": 67439.0, + "end": 67439.1, + "probability": 0.364 + }, + { + "start": 67440.56, + "end": 67441.08, + "probability": 0.1431 + }, + { + "start": 67441.44, + "end": 67443.66, + "probability": 0.7972 + }, + { + "start": 67444.58, + "end": 67448.08, + "probability": 0.9983 + }, + { + "start": 67448.9, + "end": 67450.18, + "probability": 0.7246 + }, + { + "start": 67450.72, + "end": 67453.58, + "probability": 0.4934 + }, + { + "start": 67454.6, + "end": 67458.16, + "probability": 0.3811 + }, + { + "start": 67468.04, + "end": 67469.5, + "probability": 0.5707 + }, + { + "start": 67469.54, + "end": 67470.82, + "probability": 0.9448 + }, + { + "start": 67471.34, + "end": 67476.82, + "probability": 0.9399 + }, + { + "start": 67477.72, + "end": 67479.16, + "probability": 0.2077 + }, + { + "start": 67480.04, + "end": 67480.6, + "probability": 0.0 + }, + { + "start": 67490.44, + "end": 67491.08, + "probability": 0.3606 + }, + { + "start": 67491.18, + "end": 67492.08, + "probability": 0.9604 + }, + { + "start": 67492.8, + "end": 67498.12, + "probability": 0.4789 + }, + { + "start": 67512.56, + "end": 67512.92, + "probability": 0.241 + }, + { + "start": 67512.92, + "end": 67513.96, + "probability": 0.1774 + }, + { + "start": 67514.3, + "end": 67515.46, + "probability": 0.9387 + }, + { + "start": 67516.12, + "end": 67535.56, + "probability": 0.6636 + }, + { + "start": 67535.56, + "end": 67536.76, + "probability": 0.3488 + }, + { + "start": 67553.96, + "end": 67555.76, + "probability": 0.424 + }, + { + "start": 67555.82, + "end": 67556.94, + "probability": 0.9776 + }, + { + "start": 67557.58, + "end": 67559.6, + "probability": 0.6941 + }, + { + "start": 67560.28, + "end": 67564.14, + "probability": 0.3692 + }, + { + "start": 67564.16, + "end": 67565.98, + "probability": 0.27 + }, + { + "start": 67566.06, + "end": 67567.02, + "probability": 0.3026 + }, + { + "start": 67569.2, + "end": 67569.72, + "probability": 0.2911 + }, + { + "start": 67569.96, + "end": 67573.58, + "probability": 0.7581 + }, + { + "start": 67573.92, + "end": 67576.5, + "probability": 0.355 + }, + { + "start": 67578.9, + "end": 67579.48, + "probability": 0.671 + }, + { + "start": 67579.48, + "end": 67579.48, + "probability": 0.2909 + }, + { + "start": 67579.48, + "end": 67580.64, + "probability": 0.133 + }, + { + "start": 67581.04, + "end": 67582.6, + "probability": 0.8132 + }, + { + "start": 67583.62, + "end": 67591.6, + "probability": 0.8278 + }, + { + "start": 67604.44, + "end": 67604.8, + "probability": 0.2451 + }, + { + "start": 67604.8, + "end": 67605.88, + "probability": 0.1913 + }, + { + "start": 67605.94, + "end": 67607.14, + "probability": 0.9545 + }, + { + "start": 67607.88, + "end": 67610.18, + "probability": 0.8506 + }, + { + "start": 67610.76, + "end": 67613.14, + "probability": 0.4032 + }, + { + "start": 67623.84, + "end": 67625.22, + "probability": 0.2305 + }, + { + "start": 67625.5, + "end": 67627.6, + "probability": 0.5364 + }, + { + "start": 67627.78, + "end": 67628.94, + "probability": 0.9778 + }, + { + "start": 67629.7, + "end": 67633.58, + "probability": 0.9948 + }, + { + "start": 67634.1, + "end": 67636.62, + "probability": 0.8028 + }, + { + "start": 67637.3, + "end": 67638.76, + "probability": 0.9227 + }, + { + "start": 67646.7, + "end": 67650.1, + "probability": 0.2169 + }, + { + "start": 67650.82, + "end": 67652.7, + "probability": 0.5202 + }, + { + "start": 67652.76, + "end": 67653.74, + "probability": 0.9648 + }, + { + "start": 67654.44, + "end": 67661.94, + "probability": 0.785 + }, + { + "start": 67675.5, + "end": 67676.0, + "probability": 0.2678 + }, + { + "start": 67676.0, + "end": 67676.94, + "probability": 0.3009 + }, + { + "start": 67677.04, + "end": 67678.18, + "probability": 0.947 + }, + { + "start": 67678.4, + "end": 67685.5, + "probability": 0.8553 + }, + { + "start": 67698.28, + "end": 67698.3, + "probability": 0.2873 + }, + { + "start": 67698.3, + "end": 67700.9, + "probability": 0.344 + }, + { + "start": 67700.9, + "end": 67702.12, + "probability": 0.9431 + }, + { + "start": 67702.86, + "end": 67709.04, + "probability": 0.7457 + }, + { + "start": 67709.7, + "end": 67713.72, + "probability": 0.1933 + }, + { + "start": 67720.98, + "end": 67723.0, + "probability": 0.9605 + }, + { + "start": 67723.46, + "end": 67727.1, + "probability": 0.8522 + }, + { + "start": 67727.68, + "end": 67728.72, + "probability": 0.8236 + }, + { + "start": 67729.74, + "end": 67731.48, + "probability": 0.982 + }, + { + "start": 67731.66, + "end": 67737.86, + "probability": 0.9358 + }, + { + "start": 67738.38, + "end": 67740.34, + "probability": 0.6086 + }, + { + "start": 67741.96, + "end": 67743.44, + "probability": 0.0005 + }, + { + "start": 67747.44, + "end": 67747.64, + "probability": 0.4672 + }, + { + "start": 67750.88, + "end": 67753.2, + "probability": 0.5482 + }, + { + "start": 67753.32, + "end": 67754.06, + "probability": 0.1143 + }, + { + "start": 67754.52, + "end": 67755.94, + "probability": 0.5463 + }, + { + "start": 67756.6, + "end": 67759.5, + "probability": 0.9531 + }, + { + "start": 67759.64, + "end": 67764.98, + "probability": 0.9696 + }, + { + "start": 67765.88, + "end": 67770.44, + "probability": 0.9514 + }, + { + "start": 67771.58, + "end": 67776.68, + "probability": 0.7419 + }, + { + "start": 67776.74, + "end": 67777.18, + "probability": 0.8736 + }, + { + "start": 67782.58, + "end": 67783.18, + "probability": 0.2175 + }, + { + "start": 67784.14, + "end": 67784.36, + "probability": 0.9528 + }, + { + "start": 67785.56, + "end": 67786.78, + "probability": 0.5456 + }, + { + "start": 67787.32, + "end": 67787.58, + "probability": 0.9751 + }, + { + "start": 67788.56, + "end": 67789.3, + "probability": 0.8224 + }, + { + "start": 67790.46, + "end": 67790.7, + "probability": 0.9889 + }, + { + "start": 67791.82, + "end": 67793.46, + "probability": 0.5266 + }, + { + "start": 67794.38, + "end": 67795.36, + "probability": 0.972 + }, + { + "start": 67796.52, + "end": 67796.7, + "probability": 0.696 + }, + { + "start": 67798.86, + "end": 67799.88, + "probability": 0.5069 + }, + { + "start": 67800.48, + "end": 67802.46, + "probability": 0.6462 + }, + { + "start": 67803.44, + "end": 67804.26, + "probability": 0.6974 + }, + { + "start": 67805.66, + "end": 67805.96, + "probability": 0.9129 + }, + { + "start": 67807.4, + "end": 67808.38, + "probability": 0.6517 + }, + { + "start": 67809.36, + "end": 67811.7, + "probability": 0.7346 + }, + { + "start": 67812.83, + "end": 67815.04, + "probability": 0.9786 + }, + { + "start": 67815.62, + "end": 67816.52, + "probability": 0.9644 + }, + { + "start": 67817.14, + "end": 67819.88, + "probability": 0.9706 + }, + { + "start": 67821.16, + "end": 67822.0, + "probability": 0.9626 + }, + { + "start": 67822.68, + "end": 67823.0, + "probability": 0.9827 + }, + { + "start": 67823.68, + "end": 67825.18, + "probability": 0.8573 + }, + { + "start": 67832.58, + "end": 67835.94, + "probability": 0.5991 + }, + { + "start": 67837.46, + "end": 67839.4, + "probability": 0.9495 + }, + { + "start": 67843.16, + "end": 67844.38, + "probability": 0.881 + }, + { + "start": 67845.06, + "end": 67845.74, + "probability": 0.9568 + }, + { + "start": 67847.11, + "end": 67849.3, + "probability": 0.9922 + }, + { + "start": 67850.36, + "end": 67850.66, + "probability": 0.824 + }, + { + "start": 67851.76, + "end": 67852.44, + "probability": 0.9613 + }, + { + "start": 67853.84, + "end": 67854.58, + "probability": 0.9972 + }, + { + "start": 67856.18, + "end": 67856.98, + "probability": 0.9616 + }, + { + "start": 67858.66, + "end": 67859.9, + "probability": 0.9512 + }, + { + "start": 67865.3, + "end": 67869.96, + "probability": 0.8241 + }, + { + "start": 67871.25, + "end": 67873.24, + "probability": 0.8852 + }, + { + "start": 67874.02, + "end": 67874.36, + "probability": 0.5278 + }, + { + "start": 67875.66, + "end": 67876.4, + "probability": 0.9491 + }, + { + "start": 67877.59, + "end": 67879.94, + "probability": 0.9512 + }, + { + "start": 67882.03, + "end": 67884.12, + "probability": 0.9271 + }, + { + "start": 67884.78, + "end": 67885.18, + "probability": 0.9359 + }, + { + "start": 67886.1, + "end": 67886.88, + "probability": 0.9499 + }, + { + "start": 67887.58, + "end": 67894.58, + "probability": 0.7227 + }, + { + "start": 67895.14, + "end": 67895.76, + "probability": 0.7404 + }, + { + "start": 67896.86, + "end": 67897.68, + "probability": 0.887 + }, + { + "start": 67898.53, + "end": 67900.46, + "probability": 0.97 + }, + { + "start": 67901.34, + "end": 67903.94, + "probability": 0.9087 + }, + { + "start": 67906.8, + "end": 67908.54, + "probability": 0.9969 + }, + { + "start": 67910.14, + "end": 67910.78, + "probability": 0.8314 + }, + { + "start": 67912.68, + "end": 67914.94, + "probability": 0.9832 + }, + { + "start": 67916.8, + "end": 67917.76, + "probability": 0.902 + }, + { + "start": 67918.52, + "end": 67918.84, + "probability": 0.993 + }, + { + "start": 67920.0, + "end": 67920.82, + "probability": 0.677 + }, + { + "start": 67922.76, + "end": 67925.46, + "probability": 0.826 + }, + { + "start": 67926.62, + "end": 67927.22, + "probability": 0.6981 + }, + { + "start": 67929.68, + "end": 67930.16, + "probability": 0.9945 + }, + { + "start": 67931.3, + "end": 67933.02, + "probability": 0.8442 + }, + { + "start": 67934.46, + "end": 67935.2, + "probability": 0.9427 + }, + { + "start": 67936.04, + "end": 67937.38, + "probability": 0.981 + }, + { + "start": 67938.04, + "end": 67939.12, + "probability": 0.612 + }, + { + "start": 67940.34, + "end": 67941.9, + "probability": 0.8183 + }, + { + "start": 67943.05, + "end": 67945.0, + "probability": 0.9596 + }, + { + "start": 67945.78, + "end": 67946.06, + "probability": 0.9956 + }, + { + "start": 67947.54, + "end": 67948.24, + "probability": 0.9422 + }, + { + "start": 67951.92, + "end": 67954.5, + "probability": 0.6027 + }, + { + "start": 67958.06, + "end": 67962.6, + "probability": 0.6755 + }, + { + "start": 67963.47, + "end": 67965.02, + "probability": 0.8341 + }, + { + "start": 67965.82, + "end": 67968.84, + "probability": 0.9471 + }, + { + "start": 67969.46, + "end": 67969.88, + "probability": 0.9792 + }, + { + "start": 67970.86, + "end": 67972.9, + "probability": 0.9428 + }, + { + "start": 67973.52, + "end": 67973.9, + "probability": 0.9797 + }, + { + "start": 67975.22, + "end": 67976.2, + "probability": 0.866 + }, + { + "start": 67977.1, + "end": 67977.36, + "probability": 0.9951 + }, + { + "start": 67978.62, + "end": 67979.54, + "probability": 0.7023 + }, + { + "start": 67980.06, + "end": 67980.76, + "probability": 0.5637 + }, + { + "start": 67982.08, + "end": 67984.88, + "probability": 0.7653 + }, + { + "start": 67985.56, + "end": 67988.56, + "probability": 0.7177 + }, + { + "start": 67992.56, + "end": 67994.34, + "probability": 0.7389 + }, + { + "start": 67997.44, + "end": 67999.12, + "probability": 0.9832 + }, + { + "start": 67999.78, + "end": 68000.2, + "probability": 0.947 + }, + { + "start": 68001.44, + "end": 68002.12, + "probability": 0.7772 + }, + { + "start": 68003.54, + "end": 68003.9, + "probability": 0.9863 + }, + { + "start": 68004.86, + "end": 68005.46, + "probability": 0.874 + }, + { + "start": 68006.78, + "end": 68007.0, + "probability": 0.7171 + }, + { + "start": 68007.92, + "end": 68008.64, + "probability": 0.7182 + }, + { + "start": 68009.2, + "end": 68009.82, + "probability": 0.817 + }, + { + "start": 68010.36, + "end": 68010.92, + "probability": 0.8291 + }, + { + "start": 68011.58, + "end": 68011.98, + "probability": 0.8779 + }, + { + "start": 68013.14, + "end": 68013.76, + "probability": 0.8529 + }, + { + "start": 68014.9, + "end": 68015.34, + "probability": 0.9583 + }, + { + "start": 68017.02, + "end": 68017.68, + "probability": 0.9261 + }, + { + "start": 68018.44, + "end": 68018.88, + "probability": 0.9839 + }, + { + "start": 68019.86, + "end": 68020.52, + "probability": 0.981 + }, + { + "start": 68022.12, + "end": 68022.5, + "probability": 0.9841 + }, + { + "start": 68023.58, + "end": 68024.2, + "probability": 0.8518 + }, + { + "start": 68025.84, + "end": 68027.86, + "probability": 0.542 + }, + { + "start": 68028.98, + "end": 68030.4, + "probability": 0.9806 + }, + { + "start": 68031.38, + "end": 68032.06, + "probability": 0.976 + }, + { + "start": 68033.62, + "end": 68033.98, + "probability": 0.9961 + }, + { + "start": 68035.16, + "end": 68035.72, + "probability": 0.7538 + }, + { + "start": 68036.36, + "end": 68036.62, + "probability": 0.7818 + }, + { + "start": 68037.32, + "end": 68037.98, + "probability": 0.7303 + }, + { + "start": 68039.0, + "end": 68039.48, + "probability": 0.9697 + }, + { + "start": 68040.26, + "end": 68041.02, + "probability": 0.9299 + }, + { + "start": 68041.9, + "end": 68043.72, + "probability": 0.9715 + }, + { + "start": 68045.26, + "end": 68045.66, + "probability": 0.8486 + }, + { + "start": 68046.98, + "end": 68050.24, + "probability": 0.8504 + }, + { + "start": 68052.14, + "end": 68052.54, + "probability": 0.9758 + }, + { + "start": 68053.52, + "end": 68056.64, + "probability": 0.9446 + }, + { + "start": 68061.22, + "end": 68062.06, + "probability": 0.8431 + }, + { + "start": 68062.9, + "end": 68063.86, + "probability": 0.7014 + }, + { + "start": 68071.38, + "end": 68071.76, + "probability": 0.5975 + }, + { + "start": 68074.16, + "end": 68074.72, + "probability": 0.826 + }, + { + "start": 68078.04, + "end": 68079.9, + "probability": 0.9604 + }, + { + "start": 68080.6, + "end": 68083.02, + "probability": 0.5955 + }, + { + "start": 68085.0, + "end": 68087.16, + "probability": 0.9011 + }, + { + "start": 68089.02, + "end": 68090.32, + "probability": 0.9019 + }, + { + "start": 68091.76, + "end": 68092.32, + "probability": 0.9897 + }, + { + "start": 68093.88, + "end": 68094.14, + "probability": 0.8739 + }, + { + "start": 68097.16, + "end": 68098.14, + "probability": 0.6189 + }, + { + "start": 68098.76, + "end": 68099.5, + "probability": 0.7637 + }, + { + "start": 68100.68, + "end": 68101.64, + "probability": 0.7871 + }, + { + "start": 68102.9, + "end": 68103.28, + "probability": 0.9751 + }, + { + "start": 68104.9, + "end": 68105.36, + "probability": 0.9099 + }, + { + "start": 68107.02, + "end": 68108.56, + "probability": 0.9767 + }, + { + "start": 68109.86, + "end": 68110.62, + "probability": 0.943 + }, + { + "start": 68111.66, + "end": 68112.24, + "probability": 0.9923 + }, + { + "start": 68113.38, + "end": 68113.8, + "probability": 0.9772 + }, + { + "start": 68114.66, + "end": 68115.22, + "probability": 0.9788 + }, + { + "start": 68116.52, + "end": 68117.0, + "probability": 0.9753 + }, + { + "start": 68117.82, + "end": 68118.86, + "probability": 0.8328 + }, + { + "start": 68121.3, + "end": 68124.68, + "probability": 0.7693 + }, + { + "start": 68125.4, + "end": 68126.44, + "probability": 0.7797 + }, + { + "start": 68128.78, + "end": 68129.22, + "probability": 0.7712 + }, + { + "start": 68130.28, + "end": 68131.02, + "probability": 0.6075 + }, + { + "start": 68131.56, + "end": 68131.84, + "probability": 0.9702 + }, + { + "start": 68132.58, + "end": 68133.4, + "probability": 0.7578 + }, + { + "start": 68134.7, + "end": 68135.12, + "probability": 0.9839 + }, + { + "start": 68136.3, + "end": 68137.38, + "probability": 0.7741 + }, + { + "start": 68138.46, + "end": 68138.76, + "probability": 0.9901 + }, + { + "start": 68139.74, + "end": 68140.64, + "probability": 0.9563 + }, + { + "start": 68141.82, + "end": 68142.22, + "probability": 0.9919 + }, + { + "start": 68143.56, + "end": 68144.46, + "probability": 0.9873 + }, + { + "start": 68145.56, + "end": 68145.98, + "probability": 0.9974 + }, + { + "start": 68147.12, + "end": 68147.86, + "probability": 0.8387 + }, + { + "start": 68150.8, + "end": 68151.14, + "probability": 0.9914 + }, + { + "start": 68152.58, + "end": 68153.82, + "probability": 0.7239 + }, + { + "start": 68154.76, + "end": 68155.16, + "probability": 0.8358 + }, + { + "start": 68156.44, + "end": 68157.18, + "probability": 0.5083 + }, + { + "start": 68157.94, + "end": 68158.24, + "probability": 0.9709 + }, + { + "start": 68159.32, + "end": 68160.06, + "probability": 0.8645 + }, + { + "start": 68161.26, + "end": 68161.66, + "probability": 0.9453 + }, + { + "start": 68162.6, + "end": 68163.48, + "probability": 0.8988 + }, + { + "start": 68165.29, + "end": 68166.76, + "probability": 0.9148 + }, + { + "start": 68167.85, + "end": 68170.2, + "probability": 0.8433 + }, + { + "start": 68172.16, + "end": 68175.2, + "probability": 0.8252 + }, + { + "start": 68175.8, + "end": 68176.44, + "probability": 0.7512 + }, + { + "start": 68177.2, + "end": 68177.48, + "probability": 0.9758 + }, + { + "start": 68178.3, + "end": 68179.06, + "probability": 0.9504 + }, + { + "start": 68179.84, + "end": 68180.32, + "probability": 0.9982 + }, + { + "start": 68181.1, + "end": 68181.8, + "probability": 0.8266 + }, + { + "start": 68182.86, + "end": 68183.28, + "probability": 0.543 + }, + { + "start": 68184.02, + "end": 68184.7, + "probability": 0.6243 + }, + { + "start": 68189.32, + "end": 68190.14, + "probability": 0.8609 + }, + { + "start": 68190.94, + "end": 68191.88, + "probability": 0.869 + }, + { + "start": 68192.96, + "end": 68193.24, + "probability": 0.7898 + }, + { + "start": 68194.16, + "end": 68195.24, + "probability": 0.7753 + }, + { + "start": 68199.78, + "end": 68200.44, + "probability": 0.9651 + }, + { + "start": 68201.98, + "end": 68205.54, + "probability": 0.9211 + }, + { + "start": 68206.92, + "end": 68207.28, + "probability": 0.964 + }, + { + "start": 68208.38, + "end": 68209.0, + "probability": 0.9516 + }, + { + "start": 68210.42, + "end": 68210.62, + "probability": 0.9919 + }, + { + "start": 68211.54, + "end": 68212.06, + "probability": 0.4203 + }, + { + "start": 68213.28, + "end": 68213.56, + "probability": 0.8717 + }, + { + "start": 68214.54, + "end": 68215.34, + "probability": 0.7782 + }, + { + "start": 68216.42, + "end": 68216.84, + "probability": 0.985 + }, + { + "start": 68218.14, + "end": 68218.88, + "probability": 0.9051 + }, + { + "start": 68220.2, + "end": 68221.66, + "probability": 0.9891 + }, + { + "start": 68223.54, + "end": 68224.36, + "probability": 0.9658 + }, + { + "start": 68225.72, + "end": 68226.12, + "probability": 0.987 + }, + { + "start": 68227.04, + "end": 68227.68, + "probability": 0.963 + }, + { + "start": 68232.02, + "end": 68232.52, + "probability": 0.6047 + }, + { + "start": 68233.44, + "end": 68234.32, + "probability": 0.8235 + }, + { + "start": 68234.98, + "end": 68236.98, + "probability": 0.8977 + }, + { + "start": 68242.26, + "end": 68243.72, + "probability": 0.9797 + }, + { + "start": 68244.7, + "end": 68248.18, + "probability": 0.9147 + }, + { + "start": 68249.3, + "end": 68251.3, + "probability": 0.9888 + }, + { + "start": 68252.64, + "end": 68254.52, + "probability": 0.9641 + }, + { + "start": 68256.86, + "end": 68257.26, + "probability": 0.9938 + }, + { + "start": 68258.68, + "end": 68259.72, + "probability": 0.9492 + }, + { + "start": 68260.7, + "end": 68261.16, + "probability": 0.5822 + }, + { + "start": 68262.04, + "end": 68262.72, + "probability": 0.8255 + }, + { + "start": 68263.7, + "end": 68264.24, + "probability": 0.9478 + }, + { + "start": 68265.4, + "end": 68266.54, + "probability": 0.6279 + }, + { + "start": 68271.4, + "end": 68272.28, + "probability": 0.8477 + }, + { + "start": 68272.82, + "end": 68273.64, + "probability": 0.6549 + }, + { + "start": 68275.32, + "end": 68275.78, + "probability": 0.7537 + }, + { + "start": 68280.24, + "end": 68281.5, + "probability": 0.6419 + }, + { + "start": 68282.04, + "end": 68284.8, + "probability": 0.8747 + }, + { + "start": 68286.0, + "end": 68287.2, + "probability": 0.31 + }, + { + "start": 68292.72, + "end": 68293.3, + "probability": 0.526 + }, + { + "start": 68299.18, + "end": 68299.82, + "probability": 0.7684 + }, + { + "start": 68300.52, + "end": 68301.3, + "probability": 0.7594 + }, + { + "start": 68301.88, + "end": 68303.58, + "probability": 0.6614 + }, + { + "start": 68304.14, + "end": 68306.1, + "probability": 0.9184 + }, + { + "start": 68307.02, + "end": 68309.54, + "probability": 0.9641 + }, + { + "start": 68310.72, + "end": 68311.46, + "probability": 0.9555 + }, + { + "start": 68312.06, + "end": 68313.94, + "probability": 0.9655 + }, + { + "start": 68315.42, + "end": 68319.48, + "probability": 0.9665 + }, + { + "start": 68320.58, + "end": 68321.62, + "probability": 0.763 + }, + { + "start": 68322.14, + "end": 68322.4, + "probability": 0.5615 + }, + { + "start": 68325.6, + "end": 68326.48, + "probability": 0.63 + }, + { + "start": 68331.24, + "end": 68333.58, + "probability": 0.7326 + }, + { + "start": 68337.32, + "end": 68338.08, + "probability": 0.9504 + }, + { + "start": 68338.76, + "end": 68339.7, + "probability": 0.7165 + }, + { + "start": 68342.32, + "end": 68343.46, + "probability": 0.6685 + }, + { + "start": 68345.48, + "end": 68348.58, + "probability": 0.1173 + }, + { + "start": 68351.08, + "end": 68351.38, + "probability": 0.3333 + }, + { + "start": 68368.96, + "end": 68371.82, + "probability": 0.6165 + }, + { + "start": 68372.76, + "end": 68373.09, + "probability": 0.2652 + }, + { + "start": 68373.98, + "end": 68376.82, + "probability": 0.6949 + }, + { + "start": 68378.22, + "end": 68378.36, + "probability": 0.4445 + }, + { + "start": 68378.52, + "end": 68380.0, + "probability": 0.3447 + }, + { + "start": 68380.08, + "end": 68382.2, + "probability": 0.8039 + }, + { + "start": 68385.28, + "end": 68386.62, + "probability": 0.8451 + }, + { + "start": 68387.84, + "end": 68391.98, + "probability": 0.7529 + }, + { + "start": 68393.36, + "end": 68398.36, + "probability": 0.8225 + }, + { + "start": 68416.8, + "end": 68419.1, + "probability": 0.1132 + }, + { + "start": 68439.63, + "end": 68442.2, + "probability": 0.0208 + }, + { + "start": 68444.35, + "end": 68445.8, + "probability": 0.0317 + }, + { + "start": 68682.0, + "end": 68682.0, + "probability": 0.0 + }, + { + "start": 68682.0, + "end": 68682.0, + "probability": 0.0 + }, + { + "start": 68682.0, + "end": 68682.0, + "probability": 0.0 + }, + { + "start": 68682.0, + "end": 68682.0, + "probability": 0.0 + }, + { + "start": 68682.0, + "end": 68682.0, + "probability": 0.0 + }, + { + "start": 68682.0, + "end": 68682.0, + "probability": 0.0 + }, + { + "start": 68682.0, + "end": 68682.0, + "probability": 0.0 + }, + { + "start": 68682.0, + "end": 68682.0, + "probability": 0.0 + }, + { + "start": 68682.0, + "end": 68682.0, + "probability": 0.0 + }, + { + "start": 68683.38, + "end": 68685.39, + "probability": 0.105 + }, + { + "start": 68688.12, + "end": 68694.08, + "probability": 0.0972 + }, + { + "start": 68695.54, + "end": 68695.84, + "probability": 0.3125 + }, + { + "start": 68695.84, + "end": 68697.28, + "probability": 0.4983 + }, + { + "start": 68697.28, + "end": 68698.04, + "probability": 0.8574 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68805.0, + "end": 68805.0, + "probability": 0.0 + }, + { + "start": 68809.08, + "end": 68811.8, + "probability": 0.8936 + }, + { + "start": 68811.94, + "end": 68829.54, + "probability": 0.95 + }, + { + "start": 68829.54, + "end": 68829.7, + "probability": 0.3434 + }, + { + "start": 68829.7, + "end": 68831.0, + "probability": 0.3168 + }, + { + "start": 68831.14, + "end": 68832.34, + "probability": 0.9029 + }, + { + "start": 68835.46, + "end": 68837.5, + "probability": 0.8811 + }, + { + "start": 68838.14, + "end": 68842.84, + "probability": 0.2646 + }, + { + "start": 68842.9, + "end": 68849.16, + "probability": 0.928 + }, + { + "start": 68861.5, + "end": 68861.9, + "probability": 0.344 + }, + { + "start": 68861.9, + "end": 68863.2, + "probability": 0.1356 + }, + { + "start": 68863.32, + "end": 68864.6, + "probability": 0.8713 + }, + { + "start": 68874.24, + "end": 68876.84, + "probability": 0.5663 + }, + { + "start": 68876.94, + "end": 68878.67, + "probability": 0.6849 + }, + { + "start": 68879.8, + "end": 68880.42, + "probability": 0.6836 + }, + { + "start": 68881.88, + "end": 68886.1, + "probability": 0.3621 + }, + { + "start": 68893.56, + "end": 68894.98, + "probability": 0.3887 + }, + { + "start": 68894.98, + "end": 68896.64, + "probability": 0.9717 + }, + { + "start": 68898.28, + "end": 68902.66, + "probability": 0.2801 + }, + { + "start": 68906.68, + "end": 68907.38, + "probability": 0.4246 + }, + { + "start": 68908.12, + "end": 68908.84, + "probability": 0.5369 + }, + { + "start": 68909.48, + "end": 68917.58, + "probability": 0.6841 + }, + { + "start": 68930.32, + "end": 68930.32, + "probability": 0.3511 + }, + { + "start": 68930.32, + "end": 68931.44, + "probability": 0.1278 + }, + { + "start": 68931.44, + "end": 68932.66, + "probability": 0.8748 + }, + { + "start": 68939.78, + "end": 68942.98, + "probability": 0.8301 + }, + { + "start": 68943.62, + "end": 68948.68, + "probability": 0.602 + }, + { + "start": 68961.9, + "end": 68962.08, + "probability": 0.4435 + }, + { + "start": 68962.08, + "end": 68963.36, + "probability": 0.4489 + }, + { + "start": 68963.38, + "end": 68964.6, + "probability": 0.9688 + }, + { + "start": 68970.04, + "end": 68973.32, + "probability": 0.6651 + }, + { + "start": 68973.6, + "end": 68992.14, + "probability": 0.904 + }, + { + "start": 68992.14, + "end": 68992.14, + "probability": 0.242 + }, + { + "start": 68992.14, + "end": 68993.3, + "probability": 0.164 + }, + { + "start": 68993.3, + "end": 68994.46, + "probability": 0.8857 + }, + { + "start": 68999.76, + "end": 69004.78, + "probability": 0.823 + }, + { + "start": 69004.78, + "end": 69010.42, + "probability": 0.9146 + }, + { + "start": 69011.88, + "end": 69011.95, + "probability": 0.2151 + }, + { + "start": 69015.0, + "end": 69016.2, + "probability": 0.0476 + }, + { + "start": 69018.48, + "end": 69018.84, + "probability": 0.1946 + }, + { + "start": 69019.36, + "end": 69023.76, + "probability": 0.4191 + }, + { + "start": 69035.42, + "end": 69038.68, + "probability": 0.4561 + }, + { + "start": 69039.2, + "end": 69045.46, + "probability": 0.7773 + }, + { + "start": 69058.12, + "end": 69058.62, + "probability": 0.3908 + }, + { + "start": 69058.62, + "end": 69058.76, + "probability": 0.3623 + }, + { + "start": 69058.76, + "end": 69060.84, + "probability": 0.661 + }, + { + "start": 69061.12, + "end": 69062.14, + "probability": 0.9766 + }, + { + "start": 69067.24, + "end": 69072.24, + "probability": 0.6775 + }, + { + "start": 69073.46, + "end": 69076.02, + "probability": 0.5155 + }, + { + "start": 69076.56, + "end": 69077.8, + "probability": 0.625 + }, + { + "start": 69078.5, + "end": 69081.9, + "probability": 0.7828 + }, + { + "start": 69083.0, + "end": 69086.1, + "probability": 0.1558 + }, + { + "start": 69089.2, + "end": 69091.44, + "probability": 0.0176 + }, + { + "start": 69097.22, + "end": 69098.8, + "probability": 0.89 + }, + { + "start": 69104.34, + "end": 69107.52, + "probability": 0.6825 + }, + { + "start": 69108.06, + "end": 69108.46, + "probability": 0.5039 + }, + { + "start": 69109.06, + "end": 69109.62, + "probability": 0.5205 + }, + { + "start": 69109.78, + "end": 69115.98, + "probability": 0.7938 + }, + { + "start": 69120.0, + "end": 69122.86, + "probability": 0.4797 + }, + { + "start": 69125.68, + "end": 69127.36, + "probability": 0.1499 + }, + { + "start": 69127.92, + "end": 69129.44, + "probability": 0.3485 + }, + { + "start": 69129.46, + "end": 69130.5, + "probability": 0.9736 + }, + { + "start": 69134.76, + "end": 69138.25, + "probability": 0.8199 + }, + { + "start": 69139.64, + "end": 69140.3, + "probability": 0.6091 + }, + { + "start": 69141.28, + "end": 69146.21, + "probability": 0.6638 + }, + { + "start": 69146.4, + "end": 69148.24, + "probability": 0.9683 + }, + { + "start": 69162.26, + "end": 69163.16, + "probability": 0.133 + }, + { + "start": 69163.16, + "end": 69163.16, + "probability": 0.3739 + }, + { + "start": 69163.16, + "end": 69164.44, + "probability": 0.5151 + }, + { + "start": 69164.44, + "end": 69166.2, + "probability": 0.8607 + }, + { + "start": 69169.06, + "end": 69169.64, + "probability": 0.0417 + }, + { + "start": 69172.54, + "end": 69174.8, + "probability": 0.0755 + }, + { + "start": 69174.92, + "end": 69176.94, + "probability": 0.0556 + }, + { + "start": 69176.94, + "end": 69176.94, + "probability": 0.0067 + }, + { + "start": 69177.3, + "end": 69178.6, + "probability": 0.002 + }, + { + "start": 69179.86, + "end": 69180.23, + "probability": 0.1852 + }, + { + "start": 69183.06, + "end": 69185.18, + "probability": 0.3568 + }, + { + "start": 69186.98, + "end": 69187.69, + "probability": 0.544 + }, + { + "start": 69188.38, + "end": 69189.36, + "probability": 0.4566 + }, + { + "start": 69190.7, + "end": 69193.1, + "probability": 0.8168 + }, + { + "start": 69193.78, + "end": 69199.59, + "probability": 0.6574 + }, + { + "start": 69210.46, + "end": 69212.82, + "probability": 0.1334 + }, + { + "start": 69213.02, + "end": 69215.12, + "probability": 0.524 + }, + { + "start": 69215.78, + "end": 69217.52, + "probability": 0.9536 + }, + { + "start": 69222.62, + "end": 69224.54, + "probability": 0.838 + }, + { + "start": 69230.52, + "end": 69233.6, + "probability": 0.4353 + }, + { + "start": 69236.58, + "end": 69238.22, + "probability": 0.6394 + }, + { + "start": 69241.06, + "end": 69246.14, + "probability": 0.5299 + }, + { + "start": 69246.92, + "end": 69250.8, + "probability": 0.8404 + }, + { + "start": 69251.6, + "end": 69254.5, + "probability": 0.9234 + }, + { + "start": 69255.6, + "end": 69256.92, + "probability": 0.9023 + }, + { + "start": 69257.34, + "end": 69258.66, + "probability": 0.6579 + }, + { + "start": 69259.22, + "end": 69261.44, + "probability": 0.6453 + }, + { + "start": 69271.28, + "end": 69271.44, + "probability": 0.3544 + }, + { + "start": 69271.44, + "end": 69272.36, + "probability": 0.3809 + }, + { + "start": 69272.5, + "end": 69274.1, + "probability": 0.9629 + }, + { + "start": 69281.4, + "end": 69283.08, + "probability": 0.1552 + }, + { + "start": 69283.92, + "end": 69286.52, + "probability": 0.3373 + }, + { + "start": 69287.12, + "end": 69287.76, + "probability": 0.6908 + }, + { + "start": 69288.8, + "end": 69294.76, + "probability": 0.9652 + }, + { + "start": 69295.78, + "end": 69299.32, + "probability": 0.8274 + }, + { + "start": 69299.8, + "end": 69302.94, + "probability": 0.0375 + }, + { + "start": 69303.62, + "end": 69303.92, + "probability": 0.0119 + }, + { + "start": 69303.92, + "end": 69304.88, + "probability": 0.6494 + }, + { + "start": 69312.48, + "end": 69314.58, + "probability": 0.3778 + }, + { + "start": 69319.84, + "end": 69324.16, + "probability": 0.8323 + }, + { + "start": 69324.74, + "end": 69325.48, + "probability": 0.4013 + }, + { + "start": 69326.06, + "end": 69327.02, + "probability": 0.4312 + }, + { + "start": 69327.22, + "end": 69338.04, + "probability": 0.9281 + }, + { + "start": 69338.68, + "end": 69341.06, + "probability": 0.1382 + }, + { + "start": 69342.22, + "end": 69344.32, + "probability": 0.0195 + }, + { + "start": 69351.9, + "end": 69353.32, + "probability": 0.8359 + }, + { + "start": 69361.54, + "end": 69364.06, + "probability": 0.7897 + }, + { + "start": 69365.1, + "end": 69368.48, + "probability": 0.9951 + }, + { + "start": 69368.7, + "end": 69370.82, + "probability": 0.4672 + }, + { + "start": 69371.6, + "end": 69373.24, + "probability": 0.9624 + }, + { + "start": 69373.66, + "end": 69374.18, + "probability": 0.7741 + }, + { + "start": 69374.74, + "end": 69376.84, + "probability": 0.1051 + }, + { + "start": 69385.16, + "end": 69386.84, + "probability": 0.422 + }, + { + "start": 69386.88, + "end": 69388.04, + "probability": 0.8822 + }, + { + "start": 69392.7, + "end": 69396.78, + "probability": 0.5848 + }, + { + "start": 69397.98, + "end": 69399.48, + "probability": 0.6905 + }, + { + "start": 69400.02, + "end": 69403.63, + "probability": 0.7662 + }, + { + "start": 69404.76, + "end": 69406.48, + "probability": 0.9189 + }, + { + "start": 69406.66, + "end": 69407.24, + "probability": 0.6865 + }, + { + "start": 69407.82, + "end": 69408.68, + "probability": 0.8999 + }, + { + "start": 69409.22, + "end": 69413.72, + "probability": 0.0584 + }, + { + "start": 69414.8, + "end": 69417.06, + "probability": 0.1115 + }, + { + "start": 69419.48, + "end": 69420.62, + "probability": 0.2632 + }, + { + "start": 69421.58, + "end": 69422.24, + "probability": 0.8715 + }, + { + "start": 69422.84, + "end": 69424.14, + "probability": 0.8565 + }, + { + "start": 69432.46, + "end": 69435.38, + "probability": 0.7156 + }, + { + "start": 69436.24, + "end": 69438.32, + "probability": 0.9054 + }, + { + "start": 69439.16, + "end": 69445.88, + "probability": 0.759 + }, + { + "start": 69446.08, + "end": 69449.55, + "probability": 0.7516 + }, + { + "start": 69450.74, + "end": 69453.26, + "probability": 0.9084 + }, + { + "start": 69453.78, + "end": 69457.34, + "probability": 0.8977 + }, + { + "start": 69458.22, + "end": 69462.54, + "probability": 0.9935 + }, + { + "start": 69463.26, + "end": 69468.5, + "probability": 0.9876 + }, + { + "start": 69469.24, + "end": 69471.1, + "probability": 0.2774 + }, + { + "start": 69471.72, + "end": 69478.14, + "probability": 0.1784 + }, + { + "start": 69479.0, + "end": 69481.16, + "probability": 0.74 + }, + { + "start": 69481.4, + "end": 69485.1, + "probability": 0.9618 + }, + { + "start": 69485.78, + "end": 69486.54, + "probability": 0.0142 + }, + { + "start": 69486.76, + "end": 69486.76, + "probability": 0.0021 + }, + { + "start": 69500.48, + "end": 69505.12, + "probability": 0.905 + }, + { + "start": 69506.36, + "end": 69508.34, + "probability": 0.9458 + }, + { + "start": 69508.62, + "end": 69514.04, + "probability": 0.7251 + }, + { + "start": 69518.62, + "end": 69519.26, + "probability": 0.4284 + }, + { + "start": 69523.12, + "end": 69525.6, + "probability": 0.8258 + }, + { + "start": 69525.78, + "end": 69528.98, + "probability": 0.7621 + }, + { + "start": 69533.52, + "end": 69537.12, + "probability": 0.6149 + }, + { + "start": 69537.7, + "end": 69538.24, + "probability": 0.4905 + }, + { + "start": 69538.52, + "end": 69544.54, + "probability": 0.7614 + }, + { + "start": 69545.88, + "end": 69547.98, + "probability": 0.0474 + }, + { + "start": 69556.7, + "end": 69557.3, + "probability": 0.1026 + }, + { + "start": 69557.3, + "end": 69558.64, + "probability": 0.4103 + }, + { + "start": 69558.72, + "end": 69559.8, + "probability": 0.9427 + }, + { + "start": 69564.14, + "end": 69566.66, + "probability": 0.8365 + }, + { + "start": 69567.62, + "end": 69568.62, + "probability": 0.7808 + }, + { + "start": 69568.82, + "end": 69569.2, + "probability": 0.741 + }, + { + "start": 69569.38, + "end": 69570.8, + "probability": 0.8548 + }, + { + "start": 69570.8, + "end": 69574.38, + "probability": 0.9781 + }, + { + "start": 69575.1, + "end": 69578.32, + "probability": 0.9849 + }, + { + "start": 69578.42, + "end": 69580.6, + "probability": 0.9637 + }, + { + "start": 69581.52, + "end": 69582.46, + "probability": 0.448 + }, + { + "start": 69583.38, + "end": 69585.38, + "probability": 0.4896 + }, + { + "start": 69586.02, + "end": 69588.1, + "probability": 0.1439 + }, + { + "start": 69591.74, + "end": 69593.18, + "probability": 0.1452 + }, + { + "start": 69594.54, + "end": 69597.76, + "probability": 0.8596 + }, + { + "start": 69598.44, + "end": 69602.18, + "probability": 0.7449 + }, + { + "start": 69602.18, + "end": 69605.2, + "probability": 0.9387 + }, + { + "start": 69610.64, + "end": 69615.6, + "probability": 0.5314 + }, + { + "start": 69616.38, + "end": 69621.6, + "probability": 0.8048 + }, + { + "start": 69622.34, + "end": 69625.54, + "probability": 0.7992 + }, + { + "start": 69629.3, + "end": 69631.26, + "probability": 0.4139 + }, + { + "start": 69639.93, + "end": 69640.02, + "probability": 0.3558 + }, + { + "start": 69640.02, + "end": 69641.18, + "probability": 0.588 + }, + { + "start": 69641.34, + "end": 69642.64, + "probability": 0.9724 + }, + { + "start": 69654.76, + "end": 69656.54, + "probability": 0.0535 + }, + { + "start": 69656.64, + "end": 69658.88, + "probability": 0.0195 + }, + { + "start": 69658.98, + "end": 69658.98, + "probability": 0.1051 + }, + { + "start": 69661.96, + "end": 69662.58, + "probability": 0.1966 + }, + { + "start": 69662.58, + "end": 69666.94, + "probability": 0.0545 + }, + { + "start": 69667.58, + "end": 69669.2, + "probability": 0.0893 + }, + { + "start": 69669.76, + "end": 69669.76, + "probability": 0.051 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69776.0, + "end": 69776.0, + "probability": 0.0 + }, + { + "start": 69783.08, + "end": 69783.94, + "probability": 0.4154 + }, + { + "start": 69784.18, + "end": 69789.06, + "probability": 0.5752 + }, + { + "start": 69789.06, + "end": 69793.9, + "probability": 0.9901 + }, + { + "start": 69793.94, + "end": 69796.54, + "probability": 0.95 + }, + { + "start": 69797.44, + "end": 69802.84, + "probability": 0.4843 + }, + { + "start": 69803.68, + "end": 69807.0, + "probability": 0.9972 + }, + { + "start": 69807.38, + "end": 69810.16, + "probability": 0.7418 + }, + { + "start": 69811.1, + "end": 69811.82, + "probability": 0.2765 + }, + { + "start": 69812.48, + "end": 69813.22, + "probability": 0.8133 + }, + { + "start": 69814.38, + "end": 69815.58, + "probability": 0.7248 + }, + { + "start": 69816.22, + "end": 69818.22, + "probability": 0.9893 + }, + { + "start": 69818.92, + "end": 69819.32, + "probability": 0.994 + }, + { + "start": 69820.62, + "end": 69821.48, + "probability": 0.5786 + }, + { + "start": 69822.84, + "end": 69824.76, + "probability": 0.9038 + }, + { + "start": 69825.96, + "end": 69826.66, + "probability": 0.5602 + }, + { + "start": 69830.48, + "end": 69830.92, + "probability": 0.8525 + }, + { + "start": 69832.16, + "end": 69833.1, + "probability": 0.9258 + }, + { + "start": 69834.9, + "end": 69836.12, + "probability": 0.988 + }, + { + "start": 69836.64, + "end": 69837.66, + "probability": 0.6779 + }, + { + "start": 69839.12, + "end": 69841.44, + "probability": 0.8518 + }, + { + "start": 69842.8, + "end": 69843.5, + "probability": 0.6699 + }, + { + "start": 69844.46, + "end": 69845.6, + "probability": 0.8997 + }, + { + "start": 69846.52, + "end": 69847.3, + "probability": 0.7363 + }, + { + "start": 69849.32, + "end": 69849.54, + "probability": 0.7049 + }, + { + "start": 69850.96, + "end": 69851.7, + "probability": 0.6388 + }, + { + "start": 69852.66, + "end": 69852.96, + "probability": 0.8979 + }, + { + "start": 69853.88, + "end": 69854.66, + "probability": 0.7694 + }, + { + "start": 69856.9, + "end": 69858.38, + "probability": 0.1597 + }, + { + "start": 69858.96, + "end": 69859.68, + "probability": 0.2195 + }, + { + "start": 69861.66, + "end": 69862.04, + "probability": 0.2208 + }, + { + "start": 69865.6, + "end": 69866.42, + "probability": 0.0216 + }, + { + "start": 69867.04, + "end": 69869.78, + "probability": 0.1528 + }, + { + "start": 69871.24, + "end": 69871.24, + "probability": 0.4311 + }, + { + "start": 69871.66, + "end": 69872.21, + "probability": 0.3912 + }, + { + "start": 69872.7, + "end": 69872.98, + "probability": 0.8748 + }, + { + "start": 69873.6, + "end": 69874.62, + "probability": 0.4233 + }, + { + "start": 69876.26, + "end": 69879.22, + "probability": 0.9919 + }, + { + "start": 69879.57, + "end": 69879.92, + "probability": 0.0437 + }, + { + "start": 69881.2, + "end": 69882.2, + "probability": 0.6657 + }, + { + "start": 69883.92, + "end": 69887.02, + "probability": 0.4043 + }, + { + "start": 69887.98, + "end": 69888.9, + "probability": 0.1985 + }, + { + "start": 69889.94, + "end": 69892.6, + "probability": 0.8249 + }, + { + "start": 69894.02, + "end": 69894.84, + "probability": 0.6766 + }, + { + "start": 69896.52, + "end": 69898.22, + "probability": 0.9676 + }, + { + "start": 69899.85, + "end": 69901.4, + "probability": 0.9715 + }, + { + "start": 69902.42, + "end": 69902.84, + "probability": 0.7231 + }, + { + "start": 69903.44, + "end": 69903.98, + "probability": 0.982 + }, + { + "start": 69905.02, + "end": 69906.4, + "probability": 0.9951 + }, + { + "start": 69907.32, + "end": 69908.08, + "probability": 0.9539 + }, + { + "start": 69911.14, + "end": 69912.56, + "probability": 0.9885 + }, + { + "start": 69913.3, + "end": 69914.0, + "probability": 0.9775 + }, + { + "start": 69915.12, + "end": 69915.58, + "probability": 0.9678 + }, + { + "start": 69916.34, + "end": 69917.04, + "probability": 0.9253 + }, + { + "start": 69917.8, + "end": 69918.18, + "probability": 0.9959 + }, + { + "start": 69919.4, + "end": 69920.2, + "probability": 0.6545 + }, + { + "start": 69921.44, + "end": 69921.92, + "probability": 0.6037 + }, + { + "start": 69923.52, + "end": 69924.36, + "probability": 0.9685 + }, + { + "start": 69925.34, + "end": 69925.8, + "probability": 0.979 + }, + { + "start": 69926.94, + "end": 69927.7, + "probability": 0.9893 + }, + { + "start": 69929.5, + "end": 69931.52, + "probability": 0.9904 + }, + { + "start": 69935.2, + "end": 69935.78, + "probability": 0.9902 + }, + { + "start": 69937.1, + "end": 69937.88, + "probability": 0.9085 + }, + { + "start": 69938.84, + "end": 69939.3, + "probability": 0.9896 + }, + { + "start": 69940.36, + "end": 69942.48, + "probability": 0.9756 + }, + { + "start": 69943.34, + "end": 69943.84, + "probability": 0.9943 + }, + { + "start": 69945.7, + "end": 69946.6, + "probability": 0.9548 + }, + { + "start": 69947.4, + "end": 69947.9, + "probability": 0.9922 + }, + { + "start": 69949.18, + "end": 69949.7, + "probability": 0.5369 + }, + { + "start": 69950.6, + "end": 69950.94, + "probability": 0.8826 + }, + { + "start": 69951.9, + "end": 69952.72, + "probability": 0.7256 + }, + { + "start": 69955.28, + "end": 69956.06, + "probability": 0.9873 + }, + { + "start": 69956.94, + "end": 69957.88, + "probability": 0.9423 + }, + { + "start": 69959.98, + "end": 69960.48, + "probability": 0.9963 + }, + { + "start": 69961.54, + "end": 69962.26, + "probability": 0.814 + }, + { + "start": 69965.02, + "end": 69965.48, + "probability": 0.972 + }, + { + "start": 69966.32, + "end": 69967.0, + "probability": 0.9239 + }, + { + "start": 69967.84, + "end": 69969.86, + "probability": 0.9103 + }, + { + "start": 69971.06, + "end": 69971.46, + "probability": 0.9536 + }, + { + "start": 69973.1, + "end": 69974.04, + "probability": 0.9907 + }, + { + "start": 69975.36, + "end": 69975.68, + "probability": 0.762 + }, + { + "start": 69976.5, + "end": 69977.24, + "probability": 0.8777 + }, + { + "start": 69982.74, + "end": 69983.0, + "probability": 0.7074 + }, + { + "start": 69984.66, + "end": 69985.6, + "probability": 0.569 + }, + { + "start": 69988.82, + "end": 69991.78, + "probability": 0.8503 + }, + { + "start": 69993.0, + "end": 69993.74, + "probability": 0.8449 + }, + { + "start": 69994.34, + "end": 69996.52, + "probability": 0.7023 + }, + { + "start": 69998.26, + "end": 69999.1, + "probability": 0.9788 + }, + { + "start": 69999.92, + "end": 70000.58, + "probability": 0.7905 + }, + { + "start": 70001.66, + "end": 70002.24, + "probability": 0.981 + }, + { + "start": 70002.86, + "end": 70003.6, + "probability": 0.9444 + }, + { + "start": 70004.82, + "end": 70005.24, + "probability": 0.9938 + }, + { + "start": 70007.46, + "end": 70008.3, + "probability": 0.988 + }, + { + "start": 70009.24, + "end": 70009.6, + "probability": 0.9985 + }, + { + "start": 70011.4, + "end": 70012.1, + "probability": 0.6706 + }, + { + "start": 70013.86, + "end": 70016.38, + "probability": 0.7254 + }, + { + "start": 70017.2, + "end": 70018.36, + "probability": 0.6646 + }, + { + "start": 70025.2, + "end": 70025.7, + "probability": 0.9114 + }, + { + "start": 70027.48, + "end": 70029.48, + "probability": 0.7702 + }, + { + "start": 70030.56, + "end": 70032.01, + "probability": 0.9665 + }, + { + "start": 70032.94, + "end": 70033.4, + "probability": 0.9826 + }, + { + "start": 70034.98, + "end": 70036.32, + "probability": 0.9276 + }, + { + "start": 70039.24, + "end": 70040.52, + "probability": 0.4076 + }, + { + "start": 70041.24, + "end": 70042.5, + "probability": 0.2379 + }, + { + "start": 70043.24, + "end": 70044.16, + "probability": 0.7686 + }, + { + "start": 70044.98, + "end": 70045.92, + "probability": 0.7053 + }, + { + "start": 70051.38, + "end": 70052.18, + "probability": 0.7856 + }, + { + "start": 70053.9, + "end": 70055.16, + "probability": 0.7218 + }, + { + "start": 70058.28, + "end": 70060.64, + "probability": 0.7774 + }, + { + "start": 70060.64, + "end": 70062.68, + "probability": 0.9211 + }, + { + "start": 70066.48, + "end": 70067.34, + "probability": 0.9634 + }, + { + "start": 70067.86, + "end": 70068.8, + "probability": 0.8276 + }, + { + "start": 70069.82, + "end": 70070.16, + "probability": 0.9092 + }, + { + "start": 70073.16, + "end": 70073.64, + "probability": 0.894 + }, + { + "start": 70074.46, + "end": 70074.9, + "probability": 0.5854 + }, + { + "start": 70075.62, + "end": 70076.3, + "probability": 0.7198 + }, + { + "start": 70078.02, + "end": 70079.78, + "probability": 0.8337 + }, + { + "start": 70080.44, + "end": 70081.02, + "probability": 0.8231 + }, + { + "start": 70081.9, + "end": 70083.22, + "probability": 0.9388 + }, + { + "start": 70083.94, + "end": 70085.1, + "probability": 0.8853 + }, + { + "start": 70086.02, + "end": 70086.48, + "probability": 0.9883 + }, + { + "start": 70087.12, + "end": 70087.62, + "probability": 0.9789 + }, + { + "start": 70089.14, + "end": 70089.54, + "probability": 0.9738 + }, + { + "start": 70090.28, + "end": 70091.02, + "probability": 0.9353 + }, + { + "start": 70091.74, + "end": 70092.2, + "probability": 0.984 + }, + { + "start": 70092.96, + "end": 70093.62, + "probability": 0.9951 + }, + { + "start": 70095.16, + "end": 70095.62, + "probability": 0.9868 + }, + { + "start": 70096.74, + "end": 70097.42, + "probability": 0.9396 + }, + { + "start": 70098.28, + "end": 70100.14, + "probability": 0.9167 + }, + { + "start": 70100.94, + "end": 70101.2, + "probability": 0.5775 + }, + { + "start": 70101.72, + "end": 70102.4, + "probability": 0.7598 + }, + { + "start": 70103.9, + "end": 70106.3, + "probability": 0.8073 + }, + { + "start": 70107.62, + "end": 70107.9, + "probability": 0.9619 + }, + { + "start": 70110.78, + "end": 70111.18, + "probability": 0.5568 + }, + { + "start": 70112.02, + "end": 70113.4, + "probability": 0.9593 + }, + { + "start": 70114.18, + "end": 70114.6, + "probability": 0.9842 + }, + { + "start": 70115.22, + "end": 70115.66, + "probability": 0.9369 + }, + { + "start": 70116.92, + "end": 70117.38, + "probability": 0.8066 + }, + { + "start": 70118.3, + "end": 70119.18, + "probability": 0.7661 + }, + { + "start": 70120.1, + "end": 70120.52, + "probability": 0.97 + }, + { + "start": 70121.04, + "end": 70121.62, + "probability": 0.9028 + }, + { + "start": 70124.98, + "end": 70125.42, + "probability": 0.8313 + }, + { + "start": 70126.32, + "end": 70129.32, + "probability": 0.9497 + }, + { + "start": 70130.42, + "end": 70133.92, + "probability": 0.9147 + }, + { + "start": 70134.54, + "end": 70135.56, + "probability": 0.9483 + }, + { + "start": 70137.62, + "end": 70137.84, + "probability": 0.9902 + }, + { + "start": 70139.78, + "end": 70140.3, + "probability": 0.6698 + }, + { + "start": 70142.78, + "end": 70143.16, + "probability": 0.9788 + }, + { + "start": 70144.14, + "end": 70144.74, + "probability": 0.8776 + }, + { + "start": 70145.72, + "end": 70146.92, + "probability": 0.9783 + }, + { + "start": 70147.96, + "end": 70148.8, + "probability": 0.7026 + }, + { + "start": 70154.16, + "end": 70155.02, + "probability": 0.7498 + }, + { + "start": 70155.92, + "end": 70157.12, + "probability": 0.7942 + }, + { + "start": 70159.4, + "end": 70159.76, + "probability": 0.9816 + }, + { + "start": 70162.04, + "end": 70163.02, + "probability": 0.7788 + }, + { + "start": 70165.26, + "end": 70165.5, + "probability": 0.9968 + }, + { + "start": 70167.74, + "end": 70167.98, + "probability": 0.6581 + }, + { + "start": 70170.24, + "end": 70171.32, + "probability": 0.6804 + }, + { + "start": 70173.68, + "end": 70175.42, + "probability": 0.8989 + }, + { + "start": 70177.2, + "end": 70177.62, + "probability": 0.9455 + }, + { + "start": 70179.14, + "end": 70179.78, + "probability": 0.9166 + }, + { + "start": 70181.08, + "end": 70182.54, + "probability": 0.9548 + }, + { + "start": 70183.82, + "end": 70184.48, + "probability": 0.9869 + }, + { + "start": 70186.08, + "end": 70187.02, + "probability": 0.9087 + }, + { + "start": 70187.86, + "end": 70188.44, + "probability": 0.9824 + }, + { + "start": 70189.94, + "end": 70190.38, + "probability": 0.8906 + }, + { + "start": 70191.2, + "end": 70192.02, + "probability": 0.9883 + }, + { + "start": 70192.86, + "end": 70193.26, + "probability": 0.9412 + }, + { + "start": 70194.08, + "end": 70195.04, + "probability": 0.8075 + }, + { + "start": 70196.12, + "end": 70196.54, + "probability": 0.9617 + }, + { + "start": 70197.52, + "end": 70198.86, + "probability": 0.9522 + }, + { + "start": 70199.58, + "end": 70200.38, + "probability": 0.5787 + }, + { + "start": 70202.1, + "end": 70202.58, + "probability": 0.9717 + }, + { + "start": 70203.52, + "end": 70205.06, + "probability": 0.6594 + }, + { + "start": 70206.76, + "end": 70209.84, + "probability": 0.9919 + }, + { + "start": 70210.7, + "end": 70211.48, + "probability": 0.9115 + }, + { + "start": 70212.2, + "end": 70213.12, + "probability": 0.972 + }, + { + "start": 70218.92, + "end": 70219.34, + "probability": 0.8444 + }, + { + "start": 70220.78, + "end": 70221.48, + "probability": 0.8261 + }, + { + "start": 70223.12, + "end": 70224.02, + "probability": 0.9577 + }, + { + "start": 70224.84, + "end": 70225.88, + "probability": 0.8068 + }, + { + "start": 70228.12, + "end": 70229.22, + "probability": 0.9933 + }, + { + "start": 70230.7, + "end": 70231.32, + "probability": 0.8862 + }, + { + "start": 70232.28, + "end": 70232.78, + "probability": 0.9546 + }, + { + "start": 70234.06, + "end": 70234.96, + "probability": 0.9577 + }, + { + "start": 70237.36, + "end": 70237.82, + "probability": 0.9751 + }, + { + "start": 70239.28, + "end": 70240.2, + "probability": 0.8048 + }, + { + "start": 70243.01, + "end": 70243.22, + "probability": 0.1524 + }, + { + "start": 70246.24, + "end": 70248.16, + "probability": 0.5122 + }, + { + "start": 70249.56, + "end": 70250.46, + "probability": 0.6528 + }, + { + "start": 70251.86, + "end": 70254.68, + "probability": 0.7638 + }, + { + "start": 70255.32, + "end": 70255.98, + "probability": 0.6827 + }, + { + "start": 70258.87, + "end": 70260.96, + "probability": 0.9562 + }, + { + "start": 70262.48, + "end": 70262.78, + "probability": 0.9354 + }, + { + "start": 70263.78, + "end": 70264.5, + "probability": 0.9439 + }, + { + "start": 70265.47, + "end": 70267.42, + "probability": 0.9812 + }, + { + "start": 70269.32, + "end": 70269.82, + "probability": 0.9862 + }, + { + "start": 70270.68, + "end": 70271.58, + "probability": 0.9616 + }, + { + "start": 70272.7, + "end": 70274.82, + "probability": 0.5153 + }, + { + "start": 70275.94, + "end": 70277.06, + "probability": 0.3828 + }, + { + "start": 70279.16, + "end": 70279.62, + "probability": 0.6746 + }, + { + "start": 70281.24, + "end": 70282.56, + "probability": 0.8791 + }, + { + "start": 70283.52, + "end": 70284.6, + "probability": 0.9203 + }, + { + "start": 70287.4, + "end": 70287.78, + "probability": 0.9855 + }, + { + "start": 70290.54, + "end": 70290.9, + "probability": 0.6853 + }, + { + "start": 70292.92, + "end": 70293.3, + "probability": 0.8311 + }, + { + "start": 70294.28, + "end": 70294.98, + "probability": 0.6093 + }, + { + "start": 70301.02, + "end": 70301.54, + "probability": 0.8906 + }, + { + "start": 70303.06, + "end": 70303.92, + "probability": 0.8557 + }, + { + "start": 70305.1, + "end": 70305.6, + "probability": 0.9897 + }, + { + "start": 70306.78, + "end": 70307.86, + "probability": 0.9409 + }, + { + "start": 70309.08, + "end": 70309.64, + "probability": 0.9922 + }, + { + "start": 70312.1, + "end": 70313.02, + "probability": 0.8367 + }, + { + "start": 70315.04, + "end": 70317.16, + "probability": 0.1017 + }, + { + "start": 70322.46, + "end": 70323.86, + "probability": 0.0225 + }, + { + "start": 70324.78, + "end": 70325.2, + "probability": 0.5333 + }, + { + "start": 70326.66, + "end": 70327.64, + "probability": 0.8186 + }, + { + "start": 70330.0, + "end": 70332.2, + "probability": 0.8793 + }, + { + "start": 70338.82, + "end": 70341.36, + "probability": 0.9057 + }, + { + "start": 70342.12, + "end": 70342.4, + "probability": 0.6674 + }, + { + "start": 70343.42, + "end": 70344.26, + "probability": 0.7705 + }, + { + "start": 70346.82, + "end": 70349.04, + "probability": 0.9308 + }, + { + "start": 70355.58, + "end": 70355.84, + "probability": 0.5724 + }, + { + "start": 70357.52, + "end": 70359.08, + "probability": 0.807 + }, + { + "start": 70360.64, + "end": 70361.78, + "probability": 0.9053 + }, + { + "start": 70362.62, + "end": 70364.5, + "probability": 0.9556 + }, + { + "start": 70365.38, + "end": 70367.84, + "probability": 0.8086 + }, + { + "start": 70369.39, + "end": 70372.94, + "probability": 0.8527 + }, + { + "start": 70374.52, + "end": 70378.46, + "probability": 0.6982 + }, + { + "start": 70378.62, + "end": 70382.1, + "probability": 0.8737 + }, + { + "start": 70384.18, + "end": 70384.18, + "probability": 0.0216 + }, + { + "start": 70386.76, + "end": 70387.64, + "probability": 0.5059 + }, + { + "start": 70388.46, + "end": 70389.18, + "probability": 0.9004 + }, + { + "start": 70391.8, + "end": 70392.74, + "probability": 0.7915 + }, + { + "start": 70393.3, + "end": 70393.78, + "probability": 0.7656 + }, + { + "start": 70395.82, + "end": 70397.1, + "probability": 0.816 + }, + { + "start": 70400.2, + "end": 70401.16, + "probability": 0.9897 + }, + { + "start": 70401.94, + "end": 70402.96, + "probability": 0.904 + }, + { + "start": 70404.26, + "end": 70404.78, + "probability": 0.9945 + }, + { + "start": 70407.58, + "end": 70408.52, + "probability": 0.8027 + }, + { + "start": 70409.1, + "end": 70411.24, + "probability": 0.8117 + }, + { + "start": 70414.74, + "end": 70415.64, + "probability": 0.9488 + }, + { + "start": 70416.38, + "end": 70417.64, + "probability": 0.7305 + }, + { + "start": 70420.16, + "end": 70422.54, + "probability": 0.7805 + }, + { + "start": 70422.54, + "end": 70423.82, + "probability": 0.9176 + }, + { + "start": 70428.92, + "end": 70429.76, + "probability": 0.9552 + }, + { + "start": 70430.56, + "end": 70433.4, + "probability": 0.9758 + }, + { + "start": 70433.96, + "end": 70434.74, + "probability": 0.8672 + }, + { + "start": 70436.16, + "end": 70438.54, + "probability": 0.8995 + }, + { + "start": 70440.84, + "end": 70441.84, + "probability": 0.7017 + }, + { + "start": 70445.94, + "end": 70449.16, + "probability": 0.9631 + }, + { + "start": 70450.74, + "end": 70451.22, + "probability": 0.5586 + }, + { + "start": 70455.08, + "end": 70455.98, + "probability": 0.6241 + }, + { + "start": 70456.86, + "end": 70457.16, + "probability": 0.9082 + }, + { + "start": 70460.64, + "end": 70461.56, + "probability": 0.6794 + }, + { + "start": 70463.06, + "end": 70466.18, + "probability": 0.9291 + }, + { + "start": 70469.14, + "end": 70469.84, + "probability": 0.7496 + }, + { + "start": 70470.68, + "end": 70471.38, + "probability": 0.9038 + }, + { + "start": 70475.02, + "end": 70475.92, + "probability": 0.7944 + }, + { + "start": 70476.46, + "end": 70476.72, + "probability": 0.58 + }, + { + "start": 70479.18, + "end": 70480.48, + "probability": 0.908 + }, + { + "start": 70481.7, + "end": 70482.82, + "probability": 0.9292 + }, + { + "start": 70483.38, + "end": 70489.04, + "probability": 0.9639 + }, + { + "start": 70490.08, + "end": 70490.8, + "probability": 0.0624 + }, + { + "start": 70491.98, + "end": 70492.62, + "probability": 0.8525 + }, + { + "start": 70493.26, + "end": 70493.72, + "probability": 0.9836 + }, + { + "start": 70494.56, + "end": 70497.14, + "probability": 0.4843 + }, + { + "start": 70498.32, + "end": 70498.72, + "probability": 0.9626 + }, + { + "start": 70500.04, + "end": 70502.12, + "probability": 0.9741 + }, + { + "start": 70503.24, + "end": 70506.32, + "probability": 0.4276 + }, + { + "start": 70506.5, + "end": 70509.14, + "probability": 0.8336 + }, + { + "start": 70515.06, + "end": 70516.34, + "probability": 0.9546 + }, + { + "start": 70516.54, + "end": 70517.7, + "probability": 0.705 + }, + { + "start": 70517.94, + "end": 70519.18, + "probability": 0.7172 + }, + { + "start": 70519.36, + "end": 70521.32, + "probability": 0.7451 + }, + { + "start": 70522.14, + "end": 70524.18, + "probability": 0.8418 + }, + { + "start": 70535.36, + "end": 70536.14, + "probability": 0.027 + }, + { + "start": 70536.14, + "end": 70538.46, + "probability": 0.1372 + }, + { + "start": 70538.46, + "end": 70544.88, + "probability": 0.1796 + }, + { + "start": 70552.02, + "end": 70552.1, + "probability": 0.0024 + }, + { + "start": 70553.08, + "end": 70555.02, + "probability": 0.0391 + }, + { + "start": 70656.1, + "end": 70660.68, + "probability": 0.811 + }, + { + "start": 70661.2, + "end": 70664.92, + "probability": 0.7904 + }, + { + "start": 70667.74, + "end": 70672.42, + "probability": 0.5812 + }, + { + "start": 70675.7, + "end": 70680.1, + "probability": 0.6889 + }, + { + "start": 70681.92, + "end": 70686.56, + "probability": 0.7706 + }, + { + "start": 70686.56, + "end": 70687.26, + "probability": 0.6991 + }, + { + "start": 70690.92, + "end": 70691.88, + "probability": 0.1351 + }, + { + "start": 70699.54, + "end": 70701.5, + "probability": 0.5571 + }, + { + "start": 70702.52, + "end": 70702.78, + "probability": 0.787 + }, + { + "start": 70713.06, + "end": 70715.0, + "probability": 0.7354 + }, + { + "start": 70715.1, + "end": 70718.74, + "probability": 0.6836 + }, + { + "start": 70718.9, + "end": 70719.44, + "probability": 0.825 + }, + { + "start": 70719.58, + "end": 70720.26, + "probability": 0.6141 + }, + { + "start": 70721.14, + "end": 70726.82, + "probability": 0.8989 + }, + { + "start": 70728.12, + "end": 70729.84, + "probability": 0.9795 + }, + { + "start": 70730.6, + "end": 70732.86, + "probability": 0.935 + }, + { + "start": 70746.32, + "end": 70746.72, + "probability": 0.1779 + }, + { + "start": 70746.72, + "end": 70748.36, + "probability": 0.6142 + }, + { + "start": 70748.86, + "end": 70750.72, + "probability": 0.9565 + }, + { + "start": 70762.58, + "end": 70765.13, + "probability": 0.5059 + }, + { + "start": 70766.16, + "end": 70768.25, + "probability": 0.7616 + }, + { + "start": 70769.1, + "end": 70777.34, + "probability": 0.7443 + }, + { + "start": 70778.24, + "end": 70781.62, + "probability": 0.7062 + }, + { + "start": 70782.46, + "end": 70783.12, + "probability": 0.489 + }, + { + "start": 70783.76, + "end": 70785.94, + "probability": 0.989 + }, + { + "start": 70786.86, + "end": 70791.96, + "probability": 0.9964 + }, + { + "start": 70792.68, + "end": 70793.36, + "probability": 0.8858 + }, + { + "start": 70794.1, + "end": 70794.56, + "probability": 0.4677 + }, + { + "start": 70794.84, + "end": 70797.96, + "probability": 0.8313 + }, + { + "start": 70798.36, + "end": 70799.58, + "probability": 0.8555 + }, + { + "start": 70800.3, + "end": 70801.72, + "probability": 0.7866 + }, + { + "start": 70803.87, + "end": 70804.36, + "probability": 0.4535 + }, + { + "start": 70812.74, + "end": 70813.54, + "probability": 0.0355 + }, + { + "start": 70821.06, + "end": 70823.26, + "probability": 0.215 + }, + { + "start": 70823.88, + "end": 70824.54, + "probability": 0.8061 + }, + { + "start": 70824.54, + "end": 70825.3, + "probability": 0.8181 + }, + { + "start": 70825.78, + "end": 70830.24, + "probability": 0.9635 + }, + { + "start": 70830.74, + "end": 70833.02, + "probability": 0.9128 + }, + { + "start": 70836.22, + "end": 70838.54, + "probability": 0.7954 + }, + { + "start": 70839.72, + "end": 70843.08, + "probability": 0.7879 + }, + { + "start": 70846.02, + "end": 70846.72, + "probability": 0.6271 + }, + { + "start": 70847.0, + "end": 70847.64, + "probability": 0.4701 + }, + { + "start": 70848.86, + "end": 70849.86, + "probability": 0.7939 + }, + { + "start": 70861.28, + "end": 70862.58, + "probability": 0.0002 + }, + { + "start": 70862.58, + "end": 70863.26, + "probability": 0.4768 + }, + { + "start": 70864.72, + "end": 70866.24, + "probability": 0.7883 + }, + { + "start": 70867.28, + "end": 70869.08, + "probability": 0.9702 + }, + { + "start": 70874.94, + "end": 70880.08, + "probability": 0.5469 + }, + { + "start": 70880.94, + "end": 70883.54, + "probability": 0.8848 + }, + { + "start": 70886.38, + "end": 70887.68, + "probability": 0.7043 + }, + { + "start": 70888.42, + "end": 70891.12, + "probability": 0.8218 + }, + { + "start": 70892.4, + "end": 70893.58, + "probability": 0.9338 + }, + { + "start": 70908.52, + "end": 70909.26, + "probability": 0.3036 + }, + { + "start": 70909.26, + "end": 70909.82, + "probability": 0.4264 + }, + { + "start": 70911.12, + "end": 70912.46, + "probability": 0.7199 + }, + { + "start": 70913.78, + "end": 70917.08, + "probability": 0.9736 + }, + { + "start": 70917.48, + "end": 70921.56, + "probability": 0.8462 + }, + { + "start": 70922.76, + "end": 70924.08, + "probability": 0.9955 + }, + { + "start": 70924.64, + "end": 70928.68, + "probability": 0.8418 + }, + { + "start": 70929.28, + "end": 70934.08, + "probability": 0.9668 + }, + { + "start": 70935.26, + "end": 70937.94, + "probability": 0.7409 + }, + { + "start": 70938.8, + "end": 70941.86, + "probability": 0.9346 + }, + { + "start": 70942.32, + "end": 70946.42, + "probability": 0.8638 + }, + { + "start": 70947.12, + "end": 70949.3, + "probability": 0.7288 + }, + { + "start": 70949.82, + "end": 70951.34, + "probability": 0.7886 + }, + { + "start": 70951.68, + "end": 70952.52, + "probability": 0.3962 + }, + { + "start": 70957.54, + "end": 70960.11, + "probability": 0.2201 + }, + { + "start": 70962.66, + "end": 70965.32, + "probability": 0.2358 + }, + { + "start": 70966.42, + "end": 70970.82, + "probability": 0.759 + }, + { + "start": 70971.06, + "end": 70975.1, + "probability": 0.9946 + }, + { + "start": 70975.32, + "end": 70976.72, + "probability": 0.7259 + }, + { + "start": 70977.76, + "end": 70981.76, + "probability": 0.9896 + }, + { + "start": 70982.36, + "end": 70984.14, + "probability": 0.8694 + }, + { + "start": 70984.3, + "end": 70986.02, + "probability": 0.9972 + }, + { + "start": 70986.34, + "end": 70987.44, + "probability": 0.7594 + }, + { + "start": 70987.52, + "end": 70988.46, + "probability": 0.8682 + }, + { + "start": 70988.8, + "end": 70989.22, + "probability": 0.3767 + }, + { + "start": 70989.32, + "end": 70990.4, + "probability": 0.7171 + }, + { + "start": 70990.94, + "end": 70991.72, + "probability": 0.9425 + }, + { + "start": 70991.82, + "end": 70992.7, + "probability": 0.6906 + }, + { + "start": 70992.96, + "end": 70996.44, + "probability": 0.9793 + }, + { + "start": 70997.1, + "end": 70998.84, + "probability": 0.9897 + }, + { + "start": 70999.76, + "end": 71001.02, + "probability": 0.9878 + }, + { + "start": 71002.7, + "end": 71003.82, + "probability": 0.5587 + }, + { + "start": 71004.16, + "end": 71007.54, + "probability": 0.4572 + }, + { + "start": 71007.72, + "end": 71009.78, + "probability": 0.8639 + }, + { + "start": 71009.84, + "end": 71011.8, + "probability": 0.9441 + }, + { + "start": 71011.82, + "end": 71013.28, + "probability": 0.7045 + }, + { + "start": 71013.8, + "end": 71015.86, + "probability": 0.7633 + }, + { + "start": 71016.76, + "end": 71019.34, + "probability": 0.9191 + }, + { + "start": 71020.28, + "end": 71021.68, + "probability": 0.7495 + }, + { + "start": 71022.28, + "end": 71023.48, + "probability": 0.6271 + }, + { + "start": 71023.48, + "end": 71025.8, + "probability": 0.9854 + }, + { + "start": 71025.88, + "end": 71031.16, + "probability": 0.984 + }, + { + "start": 71031.36, + "end": 71032.8, + "probability": 0.61 + }, + { + "start": 71032.82, + "end": 71034.12, + "probability": 0.6149 + }, + { + "start": 71034.24, + "end": 71034.8, + "probability": 0.9551 + }, + { + "start": 71035.28, + "end": 71038.26, + "probability": 0.9875 + }, + { + "start": 71039.34, + "end": 71042.12, + "probability": 0.7052 + }, + { + "start": 71042.54, + "end": 71044.54, + "probability": 0.4349 + }, + { + "start": 71044.66, + "end": 71046.28, + "probability": 0.981 + }, + { + "start": 71046.72, + "end": 71049.4, + "probability": 0.9042 + }, + { + "start": 71050.04, + "end": 71052.94, + "probability": 0.9396 + }, + { + "start": 71053.86, + "end": 71062.7, + "probability": 0.9932 + }, + { + "start": 71094.32, + "end": 71094.66, + "probability": 0.3068 + }, + { + "start": 71095.84, + "end": 71095.86, + "probability": 0.1966 + }, + { + "start": 71095.86, + "end": 71095.92, + "probability": 0.1694 + }, + { + "start": 75677.0, + "end": 75677.0, + "probability": 0.0 + }, + { + "start": 75677.0, + "end": 75677.0, + "probability": 0.0 + }, + { + "start": 75677.0, + "end": 75677.0, + "probability": 0.0 + }, + { + "start": 75677.0, + "end": 75677.0, + "probability": 0.0 + }, + { + "start": 75677.0, + "end": 75677.0, + "probability": 0.0 + }, + { + "start": 75677.0, + "end": 75677.0, + "probability": 0.0 + }, + { + "start": 75680.24, + "end": 75684.98, + "probability": 0.8145 + }, + { + "start": 75684.98, + "end": 75689.38, + "probability": 0.7647 + }, + { + "start": 75689.38, + "end": 75693.58, + "probability": 0.5113 + }, + { + "start": 75694.16, + "end": 75696.82, + "probability": 0.664 + }, + { + "start": 75696.82, + "end": 75703.69, + "probability": 0.5666 + }, + { + "start": 75704.94, + "end": 75707.88, + "probability": 0.7516 + }, + { + "start": 75707.88, + "end": 75714.68, + "probability": 0.0328 + }, + { + "start": 75722.72, + "end": 75726.74, + "probability": 0.0556 + }, + { + "start": 75728.64, + "end": 75731.42, + "probability": 0.1294 + }, + { + "start": 75731.64, + "end": 75734.2, + "probability": 0.0289 + }, + { + "start": 75734.26, + "end": 75735.72, + "probability": 0.0589 + }, + { + "start": 75735.72, + "end": 75739.66, + "probability": 0.0658 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + }, + { + "start": 75831.65, + "end": 75831.65, + "probability": 0.0 + } + ], + "segments_count": 20772, + "words_count": 102100, + "avg_words_per_segment": 4.9153, + "avg_segment_duration": 2.0441, + "avg_words_per_minute": 80.7842, + "plenum_id": "111849", + "duration": 75831.65, + "title": null, + "plenum_date": "2022-12-27" +} \ No newline at end of file