diff --git "a/117428/metadata.json" "b/117428/metadata.json" new file mode 100644--- /dev/null +++ "b/117428/metadata.json" @@ -0,0 +1,9432 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "117428", + "quality_score": 0.908, + "per_segment_quality_scores": [ + { + "start": 50.12, + "end": 56.44, + "probability": 0.0076 + }, + { + "start": 57.68, + "end": 58.26, + "probability": 0.7523 + }, + { + "start": 67.78, + "end": 70.14, + "probability": 0.5131 + }, + { + "start": 71.46, + "end": 75.92, + "probability": 0.1871 + }, + { + "start": 77.64, + "end": 80.32, + "probability": 0.1111 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.0, + "end": 154.0, + "probability": 0.0 + }, + { + "start": 154.26, + "end": 162.6, + "probability": 0.9836 + }, + { + "start": 163.24, + "end": 167.22, + "probability": 0.6369 + }, + { + "start": 168.06, + "end": 173.64, + "probability": 0.9727 + }, + { + "start": 173.64, + "end": 179.06, + "probability": 0.9747 + }, + { + "start": 179.62, + "end": 182.76, + "probability": 0.8691 + }, + { + "start": 183.6, + "end": 188.06, + "probability": 0.9357 + }, + { + "start": 188.44, + "end": 192.2, + "probability": 0.9917 + }, + { + "start": 192.66, + "end": 197.32, + "probability": 0.9424 + }, + { + "start": 197.66, + "end": 204.08, + "probability": 0.8726 + }, + { + "start": 204.7, + "end": 210.16, + "probability": 0.9965 + }, + { + "start": 210.36, + "end": 210.78, + "probability": 0.7172 + }, + { + "start": 210.88, + "end": 212.28, + "probability": 0.72 + }, + { + "start": 212.82, + "end": 215.56, + "probability": 0.988 + }, + { + "start": 215.68, + "end": 216.34, + "probability": 0.5784 + }, + { + "start": 216.6, + "end": 218.06, + "probability": 0.9102 + }, + { + "start": 223.68, + "end": 224.72, + "probability": 0.7042 + }, + { + "start": 224.76, + "end": 225.58, + "probability": 0.7706 + }, + { + "start": 225.72, + "end": 230.2, + "probability": 0.9811 + }, + { + "start": 230.84, + "end": 236.15, + "probability": 0.9937 + }, + { + "start": 237.6, + "end": 237.6, + "probability": 0.0514 + }, + { + "start": 237.6, + "end": 240.5, + "probability": 0.9178 + }, + { + "start": 240.52, + "end": 241.02, + "probability": 0.7182 + }, + { + "start": 241.12, + "end": 242.16, + "probability": 0.8966 + }, + { + "start": 242.72, + "end": 245.1, + "probability": 0.9816 + }, + { + "start": 245.16, + "end": 246.44, + "probability": 0.9704 + }, + { + "start": 247.14, + "end": 250.1, + "probability": 0.9155 + }, + { + "start": 250.22, + "end": 251.18, + "probability": 0.9746 + }, + { + "start": 251.7, + "end": 252.52, + "probability": 0.7745 + }, + { + "start": 252.88, + "end": 254.9, + "probability": 0.9829 + }, + { + "start": 255.24, + "end": 257.02, + "probability": 0.9957 + }, + { + "start": 257.56, + "end": 261.08, + "probability": 0.9318 + }, + { + "start": 261.08, + "end": 264.64, + "probability": 0.9978 + }, + { + "start": 265.04, + "end": 268.4, + "probability": 0.9846 + }, + { + "start": 268.96, + "end": 270.7, + "probability": 0.8827 + }, + { + "start": 271.68, + "end": 274.32, + "probability": 0.9718 + }, + { + "start": 274.44, + "end": 276.68, + "probability": 0.9529 + }, + { + "start": 277.46, + "end": 281.04, + "probability": 0.7375 + }, + { + "start": 281.72, + "end": 284.04, + "probability": 0.9329 + }, + { + "start": 284.18, + "end": 289.18, + "probability": 0.9809 + }, + { + "start": 289.28, + "end": 291.78, + "probability": 0.9821 + }, + { + "start": 292.26, + "end": 295.2, + "probability": 0.9497 + }, + { + "start": 295.2, + "end": 298.42, + "probability": 0.9906 + }, + { + "start": 298.94, + "end": 300.12, + "probability": 0.991 + }, + { + "start": 300.68, + "end": 302.96, + "probability": 0.9328 + }, + { + "start": 303.36, + "end": 305.1, + "probability": 0.8858 + }, + { + "start": 305.26, + "end": 306.48, + "probability": 0.9686 + }, + { + "start": 307.02, + "end": 309.94, + "probability": 0.9818 + }, + { + "start": 310.0, + "end": 313.1, + "probability": 0.9805 + }, + { + "start": 313.74, + "end": 315.34, + "probability": 0.5112 + }, + { + "start": 315.76, + "end": 317.84, + "probability": 0.9963 + }, + { + "start": 317.84, + "end": 320.9, + "probability": 0.9819 + }, + { + "start": 321.4, + "end": 326.14, + "probability": 0.9932 + }, + { + "start": 326.54, + "end": 329.54, + "probability": 0.994 + }, + { + "start": 329.72, + "end": 329.86, + "probability": 0.5273 + }, + { + "start": 330.38, + "end": 332.9, + "probability": 0.9878 + }, + { + "start": 333.42, + "end": 337.84, + "probability": 0.9521 + }, + { + "start": 338.2, + "end": 340.02, + "probability": 0.9511 + }, + { + "start": 340.66, + "end": 343.7, + "probability": 0.8658 + }, + { + "start": 344.08, + "end": 346.1, + "probability": 0.9986 + }, + { + "start": 346.48, + "end": 348.72, + "probability": 0.9817 + }, + { + "start": 348.82, + "end": 349.34, + "probability": 0.8369 + }, + { + "start": 349.52, + "end": 351.0, + "probability": 0.9259 + }, + { + "start": 351.42, + "end": 353.32, + "probability": 0.9391 + }, + { + "start": 353.34, + "end": 353.92, + "probability": 0.5207 + }, + { + "start": 354.02, + "end": 355.94, + "probability": 0.7352 + }, + { + "start": 361.32, + "end": 366.8, + "probability": 0.9929 + }, + { + "start": 367.54, + "end": 368.96, + "probability": 0.9193 + }, + { + "start": 370.0, + "end": 372.98, + "probability": 0.9838 + }, + { + "start": 373.84, + "end": 376.7, + "probability": 0.9896 + }, + { + "start": 377.18, + "end": 379.06, + "probability": 0.9958 + }, + { + "start": 379.12, + "end": 379.52, + "probability": 0.513 + }, + { + "start": 380.68, + "end": 384.94, + "probability": 0.995 + }, + { + "start": 386.0, + "end": 389.06, + "probability": 0.9487 + }, + { + "start": 389.82, + "end": 394.52, + "probability": 0.9219 + }, + { + "start": 394.52, + "end": 398.54, + "probability": 0.9945 + }, + { + "start": 399.2, + "end": 399.2, + "probability": 0.7095 + }, + { + "start": 399.78, + "end": 401.19, + "probability": 0.7293 + }, + { + "start": 401.82, + "end": 403.52, + "probability": 0.9978 + }, + { + "start": 403.6, + "end": 404.8, + "probability": 0.9773 + }, + { + "start": 404.96, + "end": 406.07, + "probability": 0.9231 + }, + { + "start": 406.96, + "end": 410.72, + "probability": 0.9919 + }, + { + "start": 410.72, + "end": 415.06, + "probability": 0.8342 + }, + { + "start": 416.32, + "end": 421.76, + "probability": 0.8716 + }, + { + "start": 422.6, + "end": 425.86, + "probability": 0.9938 + }, + { + "start": 425.98, + "end": 426.77, + "probability": 0.9327 + }, + { + "start": 427.02, + "end": 430.18, + "probability": 0.9927 + }, + { + "start": 430.2, + "end": 434.74, + "probability": 0.965 + }, + { + "start": 435.46, + "end": 436.3, + "probability": 0.7369 + }, + { + "start": 437.34, + "end": 442.62, + "probability": 0.9745 + }, + { + "start": 443.2, + "end": 448.02, + "probability": 0.9777 + }, + { + "start": 448.02, + "end": 451.24, + "probability": 0.9797 + }, + { + "start": 451.54, + "end": 452.74, + "probability": 0.6217 + }, + { + "start": 452.74, + "end": 455.86, + "probability": 0.7958 + }, + { + "start": 456.48, + "end": 457.86, + "probability": 0.932 + }, + { + "start": 457.96, + "end": 460.08, + "probability": 0.9689 + }, + { + "start": 461.44, + "end": 461.9, + "probability": 0.9017 + }, + { + "start": 465.18, + "end": 466.26, + "probability": 0.8218 + }, + { + "start": 466.36, + "end": 467.42, + "probability": 0.9171 + }, + { + "start": 467.78, + "end": 468.18, + "probability": 0.5745 + }, + { + "start": 468.32, + "end": 473.12, + "probability": 0.9431 + }, + { + "start": 473.18, + "end": 474.46, + "probability": 0.7708 + }, + { + "start": 474.98, + "end": 478.56, + "probability": 0.8232 + }, + { + "start": 478.94, + "end": 480.22, + "probability": 0.9766 + }, + { + "start": 481.74, + "end": 482.24, + "probability": 0.4875 + }, + { + "start": 482.34, + "end": 485.72, + "probability": 0.977 + }, + { + "start": 485.72, + "end": 491.7, + "probability": 0.9671 + }, + { + "start": 492.06, + "end": 493.24, + "probability": 0.6057 + }, + { + "start": 494.04, + "end": 497.48, + "probability": 0.9972 + }, + { + "start": 497.48, + "end": 502.1, + "probability": 0.9984 + }, + { + "start": 502.86, + "end": 505.14, + "probability": 0.8268 + }, + { + "start": 506.28, + "end": 508.14, + "probability": 0.9619 + }, + { + "start": 508.62, + "end": 513.76, + "probability": 0.9971 + }, + { + "start": 514.38, + "end": 514.48, + "probability": 0.6598 + }, + { + "start": 515.32, + "end": 516.9, + "probability": 0.9049 + }, + { + "start": 517.12, + "end": 520.24, + "probability": 0.9966 + }, + { + "start": 520.9, + "end": 522.74, + "probability": 0.9302 + }, + { + "start": 523.34, + "end": 526.1, + "probability": 0.9941 + }, + { + "start": 526.54, + "end": 527.92, + "probability": 0.8909 + }, + { + "start": 528.56, + "end": 533.66, + "probability": 0.9918 + }, + { + "start": 534.4, + "end": 538.7, + "probability": 0.9977 + }, + { + "start": 539.38, + "end": 542.18, + "probability": 0.8811 + }, + { + "start": 542.98, + "end": 543.34, + "probability": 0.8055 + }, + { + "start": 543.4, + "end": 547.14, + "probability": 0.9976 + }, + { + "start": 547.58, + "end": 548.9, + "probability": 0.988 + }, + { + "start": 548.96, + "end": 552.68, + "probability": 0.884 + }, + { + "start": 552.68, + "end": 557.76, + "probability": 0.8734 + }, + { + "start": 558.44, + "end": 561.2, + "probability": 0.869 + }, + { + "start": 561.26, + "end": 563.86, + "probability": 0.98 + }, + { + "start": 563.86, + "end": 567.44, + "probability": 0.9896 + }, + { + "start": 568.04, + "end": 569.4, + "probability": 0.7679 + }, + { + "start": 569.58, + "end": 570.62, + "probability": 0.8057 + }, + { + "start": 570.68, + "end": 575.12, + "probability": 0.8344 + }, + { + "start": 575.12, + "end": 578.86, + "probability": 0.9973 + }, + { + "start": 579.3, + "end": 581.32, + "probability": 0.999 + }, + { + "start": 581.9, + "end": 582.52, + "probability": 0.9624 + }, + { + "start": 582.74, + "end": 586.28, + "probability": 0.8623 + }, + { + "start": 586.98, + "end": 590.38, + "probability": 0.9897 + }, + { + "start": 590.96, + "end": 591.5, + "probability": 0.8378 + }, + { + "start": 591.66, + "end": 592.96, + "probability": 0.9645 + }, + { + "start": 593.1, + "end": 593.82, + "probability": 0.6693 + }, + { + "start": 593.92, + "end": 595.98, + "probability": 0.8025 + }, + { + "start": 596.42, + "end": 598.0, + "probability": 0.4498 + }, + { + "start": 598.12, + "end": 602.36, + "probability": 0.9836 + }, + { + "start": 603.02, + "end": 603.3, + "probability": 0.5951 + }, + { + "start": 603.38, + "end": 603.7, + "probability": 0.96 + }, + { + "start": 603.78, + "end": 607.0, + "probability": 0.9475 + }, + { + "start": 607.62, + "end": 611.16, + "probability": 0.9686 + }, + { + "start": 611.96, + "end": 616.92, + "probability": 0.9927 + }, + { + "start": 616.96, + "end": 617.56, + "probability": 0.7451 + }, + { + "start": 617.86, + "end": 620.74, + "probability": 0.7056 + }, + { + "start": 620.88, + "end": 622.26, + "probability": 0.875 + }, + { + "start": 622.4, + "end": 624.48, + "probability": 0.9592 + }, + { + "start": 624.6, + "end": 625.02, + "probability": 0.9422 + }, + { + "start": 627.7, + "end": 629.96, + "probability": 0.998 + }, + { + "start": 630.34, + "end": 631.88, + "probability": 0.9385 + }, + { + "start": 632.98, + "end": 634.56, + "probability": 0.8948 + }, + { + "start": 634.64, + "end": 635.56, + "probability": 0.7455 + }, + { + "start": 635.98, + "end": 637.08, + "probability": 0.8959 + }, + { + "start": 637.16, + "end": 639.08, + "probability": 0.7973 + }, + { + "start": 639.92, + "end": 644.02, + "probability": 0.9551 + }, + { + "start": 644.06, + "end": 644.78, + "probability": 0.9105 + }, + { + "start": 644.94, + "end": 645.68, + "probability": 0.9312 + }, + { + "start": 646.26, + "end": 647.1, + "probability": 0.7027 + }, + { + "start": 647.18, + "end": 650.38, + "probability": 0.9439 + }, + { + "start": 651.0, + "end": 652.95, + "probability": 0.9307 + }, + { + "start": 655.12, + "end": 658.96, + "probability": 0.9907 + }, + { + "start": 659.76, + "end": 662.24, + "probability": 0.9844 + }, + { + "start": 662.7, + "end": 665.42, + "probability": 0.988 + }, + { + "start": 665.62, + "end": 667.3, + "probability": 0.7426 + }, + { + "start": 667.62, + "end": 668.54, + "probability": 0.9713 + }, + { + "start": 668.9, + "end": 672.36, + "probability": 0.9629 + }, + { + "start": 672.68, + "end": 673.54, + "probability": 0.9521 + }, + { + "start": 674.06, + "end": 674.38, + "probability": 0.5397 + }, + { + "start": 674.76, + "end": 675.46, + "probability": 0.8023 + }, + { + "start": 675.58, + "end": 676.58, + "probability": 0.9384 + }, + { + "start": 677.08, + "end": 678.6, + "probability": 0.9565 + }, + { + "start": 679.62, + "end": 680.06, + "probability": 0.8126 + }, + { + "start": 681.24, + "end": 683.44, + "probability": 0.7987 + }, + { + "start": 683.86, + "end": 686.42, + "probability": 0.8554 + }, + { + "start": 687.18, + "end": 692.4, + "probability": 0.9624 + }, + { + "start": 692.46, + "end": 694.86, + "probability": 0.8814 + }, + { + "start": 695.44, + "end": 698.3, + "probability": 0.9746 + }, + { + "start": 699.1, + "end": 704.06, + "probability": 0.8787 + }, + { + "start": 705.14, + "end": 707.26, + "probability": 0.7556 + }, + { + "start": 708.24, + "end": 710.78, + "probability": 0.964 + }, + { + "start": 710.82, + "end": 712.74, + "probability": 0.97 + }, + { + "start": 713.72, + "end": 716.58, + "probability": 0.9379 + }, + { + "start": 717.32, + "end": 718.56, + "probability": 0.9053 + }, + { + "start": 718.94, + "end": 723.56, + "probability": 0.9891 + }, + { + "start": 723.8, + "end": 725.94, + "probability": 0.9299 + }, + { + "start": 726.8, + "end": 728.3, + "probability": 0.8638 + }, + { + "start": 728.76, + "end": 730.7, + "probability": 0.8887 + }, + { + "start": 730.76, + "end": 733.36, + "probability": 0.9612 + }, + { + "start": 734.38, + "end": 734.8, + "probability": 0.9858 + }, + { + "start": 735.74, + "end": 737.48, + "probability": 0.7528 + }, + { + "start": 738.5, + "end": 739.34, + "probability": 0.9384 + }, + { + "start": 739.96, + "end": 740.9, + "probability": 0.7331 + }, + { + "start": 740.98, + "end": 742.1, + "probability": 0.7474 + }, + { + "start": 742.92, + "end": 746.74, + "probability": 0.9842 + }, + { + "start": 747.58, + "end": 750.48, + "probability": 0.9858 + }, + { + "start": 751.12, + "end": 752.76, + "probability": 0.9736 + }, + { + "start": 753.38, + "end": 755.94, + "probability": 0.8351 + }, + { + "start": 756.56, + "end": 759.76, + "probability": 0.9399 + }, + { + "start": 760.3, + "end": 761.06, + "probability": 0.9786 + }, + { + "start": 761.84, + "end": 765.28, + "probability": 0.9873 + }, + { + "start": 765.74, + "end": 766.82, + "probability": 0.8822 + }, + { + "start": 766.94, + "end": 767.18, + "probability": 0.8161 + }, + { + "start": 768.28, + "end": 768.72, + "probability": 0.8659 + }, + { + "start": 770.94, + "end": 773.58, + "probability": 0.844 + }, + { + "start": 774.94, + "end": 778.0, + "probability": 0.8065 + }, + { + "start": 778.46, + "end": 780.1, + "probability": 0.955 + }, + { + "start": 781.1, + "end": 781.96, + "probability": 0.8363 + }, + { + "start": 782.22, + "end": 785.32, + "probability": 0.9985 + }, + { + "start": 785.5, + "end": 786.06, + "probability": 0.5068 + }, + { + "start": 786.62, + "end": 790.52, + "probability": 0.998 + }, + { + "start": 791.04, + "end": 794.68, + "probability": 0.9551 + }, + { + "start": 795.48, + "end": 797.6, + "probability": 0.9902 + }, + { + "start": 797.6, + "end": 803.76, + "probability": 0.9919 + }, + { + "start": 804.46, + "end": 806.7, + "probability": 0.99 + }, + { + "start": 806.98, + "end": 812.26, + "probability": 0.9884 + }, + { + "start": 812.34, + "end": 813.1, + "probability": 0.8553 + }, + { + "start": 813.22, + "end": 816.16, + "probability": 0.9556 + }, + { + "start": 818.32, + "end": 821.1, + "probability": 0.8128 + }, + { + "start": 821.72, + "end": 823.64, + "probability": 0.9214 + }, + { + "start": 824.34, + "end": 827.46, + "probability": 0.9683 + }, + { + "start": 828.1, + "end": 828.74, + "probability": 0.9885 + }, + { + "start": 829.26, + "end": 830.06, + "probability": 0.9884 + }, + { + "start": 830.92, + "end": 831.72, + "probability": 0.894 + }, + { + "start": 833.38, + "end": 833.74, + "probability": 0.8003 + }, + { + "start": 833.88, + "end": 834.2, + "probability": 0.8721 + }, + { + "start": 834.28, + "end": 838.5, + "probability": 0.5278 + }, + { + "start": 838.66, + "end": 838.84, + "probability": 0.444 + }, + { + "start": 838.92, + "end": 840.58, + "probability": 0.9697 + }, + { + "start": 841.08, + "end": 842.02, + "probability": 0.8893 + }, + { + "start": 842.38, + "end": 842.6, + "probability": 0.7306 + }, + { + "start": 843.34, + "end": 847.52, + "probability": 0.997 + }, + { + "start": 851.26, + "end": 852.26, + "probability": 0.5329 + }, + { + "start": 852.58, + "end": 855.3, + "probability": 0.922 + }, + { + "start": 856.04, + "end": 857.14, + "probability": 0.98 + }, + { + "start": 857.98, + "end": 862.14, + "probability": 0.9909 + }, + { + "start": 862.34, + "end": 863.2, + "probability": 0.9626 + }, + { + "start": 863.74, + "end": 866.76, + "probability": 0.9885 + }, + { + "start": 870.0, + "end": 876.12, + "probability": 0.9178 + }, + { + "start": 877.72, + "end": 880.02, + "probability": 0.9945 + }, + { + "start": 880.5, + "end": 882.42, + "probability": 0.9819 + }, + { + "start": 883.48, + "end": 884.74, + "probability": 0.6036 + }, + { + "start": 885.02, + "end": 886.26, + "probability": 0.8656 + }, + { + "start": 886.58, + "end": 891.3, + "probability": 0.971 + }, + { + "start": 893.7, + "end": 896.48, + "probability": 0.9817 + }, + { + "start": 897.04, + "end": 900.82, + "probability": 0.9803 + }, + { + "start": 902.44, + "end": 905.0, + "probability": 0.6712 + }, + { + "start": 906.32, + "end": 910.18, + "probability": 0.978 + }, + { + "start": 911.34, + "end": 914.5, + "probability": 0.9901 + }, + { + "start": 914.5, + "end": 919.42, + "probability": 0.9923 + }, + { + "start": 920.42, + "end": 923.98, + "probability": 0.9698 + }, + { + "start": 924.5, + "end": 929.36, + "probability": 0.9183 + }, + { + "start": 930.36, + "end": 934.56, + "probability": 0.9938 + }, + { + "start": 934.56, + "end": 939.26, + "probability": 0.9723 + }, + { + "start": 940.92, + "end": 943.74, + "probability": 0.861 + }, + { + "start": 944.46, + "end": 948.82, + "probability": 0.9908 + }, + { + "start": 949.5, + "end": 953.16, + "probability": 0.993 + }, + { + "start": 953.9, + "end": 955.51, + "probability": 0.7378 + }, + { + "start": 956.42, + "end": 957.6, + "probability": 0.8327 + }, + { + "start": 960.1, + "end": 961.92, + "probability": 0.9948 + }, + { + "start": 962.2, + "end": 964.28, + "probability": 0.9652 + }, + { + "start": 964.74, + "end": 969.8, + "probability": 0.986 + }, + { + "start": 972.14, + "end": 973.73, + "probability": 0.9397 + }, + { + "start": 974.64, + "end": 976.58, + "probability": 0.9384 + }, + { + "start": 977.78, + "end": 979.9, + "probability": 0.9603 + }, + { + "start": 980.54, + "end": 982.76, + "probability": 0.795 + }, + { + "start": 983.66, + "end": 984.58, + "probability": 0.744 + }, + { + "start": 984.72, + "end": 988.06, + "probability": 0.9946 + }, + { + "start": 988.4, + "end": 991.88, + "probability": 0.9454 + }, + { + "start": 992.72, + "end": 993.32, + "probability": 0.8977 + }, + { + "start": 993.78, + "end": 997.12, + "probability": 0.7925 + }, + { + "start": 999.24, + "end": 1001.58, + "probability": 0.964 + }, + { + "start": 1002.56, + "end": 1003.46, + "probability": 0.7875 + }, + { + "start": 1004.2, + "end": 1005.24, + "probability": 0.9519 + }, + { + "start": 1005.86, + "end": 1010.32, + "probability": 0.9813 + }, + { + "start": 1012.16, + "end": 1014.56, + "probability": 0.9502 + }, + { + "start": 1015.76, + "end": 1021.52, + "probability": 0.9911 + }, + { + "start": 1022.84, + "end": 1025.9, + "probability": 0.9269 + }, + { + "start": 1028.2, + "end": 1030.3, + "probability": 0.9896 + }, + { + "start": 1031.3, + "end": 1035.78, + "probability": 0.9958 + }, + { + "start": 1037.56, + "end": 1038.7, + "probability": 0.9534 + }, + { + "start": 1039.96, + "end": 1041.02, + "probability": 0.9785 + }, + { + "start": 1041.78, + "end": 1044.02, + "probability": 0.9825 + }, + { + "start": 1045.1, + "end": 1046.88, + "probability": 0.9863 + }, + { + "start": 1047.62, + "end": 1049.12, + "probability": 0.9502 + }, + { + "start": 1051.86, + "end": 1056.06, + "probability": 0.9683 + }, + { + "start": 1057.88, + "end": 1060.36, + "probability": 0.9742 + }, + { + "start": 1061.02, + "end": 1062.48, + "probability": 0.9278 + }, + { + "start": 1063.18, + "end": 1065.66, + "probability": 0.9972 + }, + { + "start": 1067.66, + "end": 1070.2, + "probability": 0.9877 + }, + { + "start": 1070.62, + "end": 1071.8, + "probability": 0.9381 + }, + { + "start": 1072.48, + "end": 1073.02, + "probability": 0.4977 + }, + { + "start": 1073.56, + "end": 1075.74, + "probability": 0.9024 + }, + { + "start": 1076.72, + "end": 1079.9, + "probability": 0.9572 + }, + { + "start": 1082.52, + "end": 1083.82, + "probability": 0.9569 + }, + { + "start": 1084.64, + "end": 1086.58, + "probability": 0.9446 + }, + { + "start": 1087.52, + "end": 1091.48, + "probability": 0.9881 + }, + { + "start": 1091.48, + "end": 1091.98, + "probability": 0.1681 + }, + { + "start": 1093.56, + "end": 1094.5, + "probability": 0.9099 + }, + { + "start": 1095.24, + "end": 1099.16, + "probability": 0.985 + }, + { + "start": 1099.6, + "end": 1102.04, + "probability": 0.9604 + }, + { + "start": 1102.66, + "end": 1103.9, + "probability": 0.9216 + }, + { + "start": 1106.46, + "end": 1111.26, + "probability": 0.9933 + }, + { + "start": 1112.18, + "end": 1112.6, + "probability": 0.6945 + }, + { + "start": 1113.12, + "end": 1116.74, + "probability": 0.9617 + }, + { + "start": 1118.02, + "end": 1118.4, + "probability": 0.6656 + }, + { + "start": 1119.04, + "end": 1123.78, + "probability": 0.9924 + }, + { + "start": 1126.3, + "end": 1128.34, + "probability": 0.9683 + }, + { + "start": 1128.78, + "end": 1132.16, + "probability": 0.9886 + }, + { + "start": 1132.16, + "end": 1135.94, + "probability": 0.9833 + }, + { + "start": 1137.38, + "end": 1138.2, + "probability": 0.7516 + }, + { + "start": 1138.82, + "end": 1141.86, + "probability": 0.9968 + }, + { + "start": 1142.42, + "end": 1147.16, + "probability": 0.9912 + }, + { + "start": 1149.26, + "end": 1150.9, + "probability": 0.9983 + }, + { + "start": 1152.14, + "end": 1154.48, + "probability": 0.9968 + }, + { + "start": 1154.92, + "end": 1157.98, + "probability": 0.8922 + }, + { + "start": 1158.66, + "end": 1161.68, + "probability": 0.9994 + }, + { + "start": 1162.28, + "end": 1164.82, + "probability": 0.9985 + }, + { + "start": 1165.82, + "end": 1168.98, + "probability": 0.8033 + }, + { + "start": 1169.38, + "end": 1172.04, + "probability": 0.9981 + }, + { + "start": 1172.1, + "end": 1172.96, + "probability": 0.8092 + }, + { + "start": 1173.34, + "end": 1174.2, + "probability": 0.6396 + }, + { + "start": 1174.28, + "end": 1176.22, + "probability": 0.9864 + }, + { + "start": 1178.04, + "end": 1179.7, + "probability": 0.9093 + }, + { + "start": 1181.5, + "end": 1183.34, + "probability": 0.8595 + }, + { + "start": 1183.82, + "end": 1188.02, + "probability": 0.991 + }, + { + "start": 1188.32, + "end": 1189.84, + "probability": 0.9895 + }, + { + "start": 1190.34, + "end": 1191.7, + "probability": 0.979 + }, + { + "start": 1193.1, + "end": 1196.5, + "probability": 0.9653 + }, + { + "start": 1196.94, + "end": 1197.24, + "probability": 0.6035 + }, + { + "start": 1197.32, + "end": 1198.28, + "probability": 0.6888 + }, + { + "start": 1198.42, + "end": 1199.56, + "probability": 0.8969 + }, + { + "start": 1199.66, + "end": 1201.44, + "probability": 0.9739 + }, + { + "start": 1202.08, + "end": 1204.72, + "probability": 0.916 + }, + { + "start": 1204.84, + "end": 1208.6, + "probability": 0.998 + }, + { + "start": 1210.06, + "end": 1211.68, + "probability": 0.83 + }, + { + "start": 1212.08, + "end": 1213.1, + "probability": 0.7884 + }, + { + "start": 1213.74, + "end": 1218.34, + "probability": 0.8389 + }, + { + "start": 1219.14, + "end": 1219.94, + "probability": 0.946 + }, + { + "start": 1220.5, + "end": 1223.22, + "probability": 0.9951 + }, + { + "start": 1223.3, + "end": 1225.28, + "probability": 0.8176 + }, + { + "start": 1225.72, + "end": 1226.44, + "probability": 0.46 + }, + { + "start": 1226.58, + "end": 1227.26, + "probability": 0.7978 + }, + { + "start": 1228.26, + "end": 1228.4, + "probability": 0.8481 + }, + { + "start": 1229.38, + "end": 1230.38, + "probability": 0.9595 + }, + { + "start": 1230.64, + "end": 1231.66, + "probability": 0.9868 + }, + { + "start": 1232.08, + "end": 1233.48, + "probability": 0.2881 + }, + { + "start": 1234.1, + "end": 1237.64, + "probability": 0.5458 + }, + { + "start": 1237.92, + "end": 1238.36, + "probability": 0.1814 + }, + { + "start": 1238.46, + "end": 1238.96, + "probability": 0.6417 + }, + { + "start": 1239.04, + "end": 1241.72, + "probability": 0.4427 + }, + { + "start": 1242.44, + "end": 1243.26, + "probability": 0.0743 + }, + { + "start": 1243.26, + "end": 1244.68, + "probability": 0.5846 + }, + { + "start": 1244.84, + "end": 1245.26, + "probability": 0.2773 + }, + { + "start": 1247.0, + "end": 1247.82, + "probability": 0.6594 + }, + { + "start": 1247.82, + "end": 1248.03, + "probability": 0.302 + }, + { + "start": 1248.54, + "end": 1249.36, + "probability": 0.6781 + }, + { + "start": 1249.84, + "end": 1253.34, + "probability": 0.7703 + }, + { + "start": 1253.98, + "end": 1256.02, + "probability": 0.9457 + }, + { + "start": 1256.18, + "end": 1257.56, + "probability": 0.9431 + }, + { + "start": 1257.7, + "end": 1260.04, + "probability": 0.5147 + }, + { + "start": 1260.22, + "end": 1261.3, + "probability": 0.5608 + }, + { + "start": 1261.62, + "end": 1262.38, + "probability": 0.6974 + }, + { + "start": 1263.2, + "end": 1265.16, + "probability": 0.9766 + }, + { + "start": 1265.22, + "end": 1267.9, + "probability": 0.9844 + }, + { + "start": 1268.08, + "end": 1268.5, + "probability": 0.5677 + }, + { + "start": 1268.54, + "end": 1268.78, + "probability": 0.376 + }, + { + "start": 1269.26, + "end": 1269.62, + "probability": 0.5848 + }, + { + "start": 1270.32, + "end": 1271.28, + "probability": 0.9904 + }, + { + "start": 1271.82, + "end": 1273.22, + "probability": 0.5299 + }, + { + "start": 1274.2, + "end": 1279.9, + "probability": 0.5933 + }, + { + "start": 1280.38, + "end": 1281.56, + "probability": 0.6772 + }, + { + "start": 1282.3, + "end": 1286.62, + "probability": 0.6411 + }, + { + "start": 1287.94, + "end": 1288.46, + "probability": 0.5051 + }, + { + "start": 1289.33, + "end": 1291.28, + "probability": 0.6022 + }, + { + "start": 1291.88, + "end": 1292.34, + "probability": 0.6201 + }, + { + "start": 1294.06, + "end": 1297.78, + "probability": 0.9886 + }, + { + "start": 1302.22, + "end": 1303.08, + "probability": 0.6923 + }, + { + "start": 1319.4, + "end": 1320.98, + "probability": 0.7164 + }, + { + "start": 1321.18, + "end": 1322.06, + "probability": 0.9849 + }, + { + "start": 1322.72, + "end": 1324.2, + "probability": 0.7183 + }, + { + "start": 1325.44, + "end": 1328.56, + "probability": 0.9756 + }, + { + "start": 1330.92, + "end": 1332.78, + "probability": 0.5737 + }, + { + "start": 1332.8, + "end": 1333.9, + "probability": 0.8729 + }, + { + "start": 1334.26, + "end": 1338.75, + "probability": 0.9434 + }, + { + "start": 1339.5, + "end": 1342.2, + "probability": 0.9998 + }, + { + "start": 1343.74, + "end": 1347.04, + "probability": 0.991 + }, + { + "start": 1347.04, + "end": 1350.48, + "probability": 0.9966 + }, + { + "start": 1351.06, + "end": 1355.04, + "probability": 0.9862 + }, + { + "start": 1355.76, + "end": 1357.48, + "probability": 0.9366 + }, + { + "start": 1357.84, + "end": 1359.56, + "probability": 0.9412 + }, + { + "start": 1360.64, + "end": 1363.2, + "probability": 0.7261 + }, + { + "start": 1363.4, + "end": 1364.16, + "probability": 0.4617 + }, + { + "start": 1364.74, + "end": 1366.96, + "probability": 0.9203 + }, + { + "start": 1367.52, + "end": 1371.02, + "probability": 0.8361 + }, + { + "start": 1371.54, + "end": 1376.59, + "probability": 0.9905 + }, + { + "start": 1376.92, + "end": 1381.38, + "probability": 0.9364 + }, + { + "start": 1382.16, + "end": 1382.48, + "probability": 0.3842 + }, + { + "start": 1382.62, + "end": 1383.3, + "probability": 0.6258 + }, + { + "start": 1383.4, + "end": 1383.94, + "probability": 0.4055 + }, + { + "start": 1384.1, + "end": 1385.3, + "probability": 0.9361 + }, + { + "start": 1385.4, + "end": 1387.26, + "probability": 0.8306 + }, + { + "start": 1387.82, + "end": 1390.92, + "probability": 0.9694 + }, + { + "start": 1391.0, + "end": 1393.46, + "probability": 0.9907 + }, + { + "start": 1393.46, + "end": 1397.96, + "probability": 0.9855 + }, + { + "start": 1398.1, + "end": 1400.7, + "probability": 0.754 + }, + { + "start": 1401.42, + "end": 1403.24, + "probability": 0.8712 + }, + { + "start": 1404.68, + "end": 1407.4, + "probability": 0.9854 + }, + { + "start": 1407.52, + "end": 1409.34, + "probability": 0.7923 + }, + { + "start": 1409.58, + "end": 1412.2, + "probability": 0.9264 + }, + { + "start": 1412.7, + "end": 1416.56, + "probability": 0.9922 + }, + { + "start": 1416.56, + "end": 1421.94, + "probability": 0.9924 + }, + { + "start": 1422.58, + "end": 1427.6, + "probability": 0.9915 + }, + { + "start": 1428.02, + "end": 1429.7, + "probability": 0.8255 + }, + { + "start": 1430.28, + "end": 1431.0, + "probability": 0.7383 + }, + { + "start": 1431.56, + "end": 1434.16, + "probability": 0.9817 + }, + { + "start": 1434.52, + "end": 1436.8, + "probability": 0.9896 + }, + { + "start": 1437.2, + "end": 1440.58, + "probability": 0.9857 + }, + { + "start": 1440.58, + "end": 1445.44, + "probability": 0.9911 + }, + { + "start": 1446.2, + "end": 1446.36, + "probability": 0.0178 + }, + { + "start": 1446.94, + "end": 1448.46, + "probability": 0.9965 + }, + { + "start": 1448.98, + "end": 1450.62, + "probability": 0.9978 + }, + { + "start": 1450.72, + "end": 1451.34, + "probability": 0.6763 + }, + { + "start": 1451.38, + "end": 1452.36, + "probability": 0.8423 + }, + { + "start": 1452.96, + "end": 1458.62, + "probability": 0.9926 + }, + { + "start": 1459.1, + "end": 1461.86, + "probability": 0.8595 + }, + { + "start": 1462.7, + "end": 1463.24, + "probability": 0.803 + }, + { + "start": 1463.74, + "end": 1465.38, + "probability": 0.9346 + }, + { + "start": 1465.6, + "end": 1468.6, + "probability": 0.9731 + }, + { + "start": 1468.6, + "end": 1471.38, + "probability": 0.9972 + }, + { + "start": 1472.72, + "end": 1475.52, + "probability": 0.9839 + }, + { + "start": 1475.64, + "end": 1478.2, + "probability": 0.915 + }, + { + "start": 1478.34, + "end": 1478.6, + "probability": 0.5292 + }, + { + "start": 1478.62, + "end": 1479.42, + "probability": 0.9718 + }, + { + "start": 1479.74, + "end": 1480.9, + "probability": 0.978 + }, + { + "start": 1481.78, + "end": 1482.08, + "probability": 0.8254 + }, + { + "start": 1482.24, + "end": 1483.54, + "probability": 0.953 + }, + { + "start": 1483.58, + "end": 1485.08, + "probability": 0.9241 + }, + { + "start": 1485.14, + "end": 1488.28, + "probability": 0.9862 + }, + { + "start": 1489.06, + "end": 1492.08, + "probability": 0.9956 + }, + { + "start": 1492.14, + "end": 1495.28, + "probability": 0.9838 + }, + { + "start": 1496.02, + "end": 1497.86, + "probability": 0.958 + }, + { + "start": 1498.06, + "end": 1499.98, + "probability": 0.9827 + }, + { + "start": 1500.62, + "end": 1506.2, + "probability": 0.9982 + }, + { + "start": 1506.88, + "end": 1511.3, + "probability": 0.9336 + }, + { + "start": 1512.82, + "end": 1513.46, + "probability": 0.7511 + }, + { + "start": 1514.04, + "end": 1517.38, + "probability": 0.9681 + }, + { + "start": 1517.46, + "end": 1520.62, + "probability": 0.9945 + }, + { + "start": 1521.04, + "end": 1524.14, + "probability": 0.8794 + }, + { + "start": 1524.86, + "end": 1526.4, + "probability": 0.8923 + }, + { + "start": 1526.72, + "end": 1529.66, + "probability": 0.9863 + }, + { + "start": 1530.48, + "end": 1535.06, + "probability": 0.9902 + }, + { + "start": 1535.06, + "end": 1538.34, + "probability": 0.9995 + }, + { + "start": 1538.56, + "end": 1539.9, + "probability": 0.7826 + }, + { + "start": 1540.62, + "end": 1542.82, + "probability": 0.9439 + }, + { + "start": 1542.92, + "end": 1545.6, + "probability": 0.9925 + }, + { + "start": 1546.14, + "end": 1550.42, + "probability": 0.9967 + }, + { + "start": 1551.76, + "end": 1553.84, + "probability": 0.9625 + }, + { + "start": 1554.48, + "end": 1557.48, + "probability": 0.7559 + }, + { + "start": 1559.2, + "end": 1563.06, + "probability": 0.9884 + }, + { + "start": 1563.54, + "end": 1566.78, + "probability": 0.9827 + }, + { + "start": 1566.86, + "end": 1567.82, + "probability": 0.6509 + }, + { + "start": 1568.16, + "end": 1571.64, + "probability": 0.9581 + }, + { + "start": 1572.64, + "end": 1576.1, + "probability": 0.8486 + }, + { + "start": 1577.76, + "end": 1578.78, + "probability": 0.6766 + }, + { + "start": 1579.34, + "end": 1582.0, + "probability": 0.9315 + }, + { + "start": 1582.5, + "end": 1585.38, + "probability": 0.9897 + }, + { + "start": 1585.44, + "end": 1586.54, + "probability": 0.7291 + }, + { + "start": 1586.72, + "end": 1590.04, + "probability": 0.8963 + }, + { + "start": 1590.62, + "end": 1593.0, + "probability": 0.9947 + }, + { + "start": 1593.14, + "end": 1596.32, + "probability": 0.9982 + }, + { + "start": 1596.8, + "end": 1600.76, + "probability": 0.9669 + }, + { + "start": 1601.98, + "end": 1606.26, + "probability": 0.9979 + }, + { + "start": 1607.5, + "end": 1611.52, + "probability": 0.9229 + }, + { + "start": 1613.22, + "end": 1614.36, + "probability": 0.7584 + }, + { + "start": 1617.28, + "end": 1620.97, + "probability": 0.9951 + }, + { + "start": 1621.52, + "end": 1623.28, + "probability": 0.9113 + }, + { + "start": 1624.7, + "end": 1626.92, + "probability": 0.9941 + }, + { + "start": 1627.02, + "end": 1629.6, + "probability": 0.8636 + }, + { + "start": 1629.6, + "end": 1632.44, + "probability": 0.9222 + }, + { + "start": 1632.6, + "end": 1635.06, + "probability": 0.9981 + }, + { + "start": 1635.06, + "end": 1638.48, + "probability": 0.9067 + }, + { + "start": 1638.98, + "end": 1641.24, + "probability": 0.9918 + }, + { + "start": 1641.5, + "end": 1645.68, + "probability": 0.9606 + }, + { + "start": 1645.74, + "end": 1647.86, + "probability": 0.9976 + }, + { + "start": 1648.46, + "end": 1652.0, + "probability": 0.9557 + }, + { + "start": 1652.22, + "end": 1655.52, + "probability": 0.9852 + }, + { + "start": 1656.1, + "end": 1659.4, + "probability": 0.9645 + }, + { + "start": 1660.12, + "end": 1662.52, + "probability": 0.9506 + }, + { + "start": 1662.88, + "end": 1666.76, + "probability": 0.9853 + }, + { + "start": 1667.94, + "end": 1672.22, + "probability": 0.97 + }, + { + "start": 1672.84, + "end": 1674.08, + "probability": 0.976 + }, + { + "start": 1674.62, + "end": 1676.94, + "probability": 0.997 + }, + { + "start": 1676.94, + "end": 1679.5, + "probability": 0.9993 + }, + { + "start": 1680.1, + "end": 1681.1, + "probability": 0.7685 + }, + { + "start": 1681.76, + "end": 1682.8, + "probability": 0.9694 + }, + { + "start": 1682.88, + "end": 1684.56, + "probability": 0.8796 + }, + { + "start": 1684.64, + "end": 1687.44, + "probability": 0.7157 + }, + { + "start": 1687.92, + "end": 1689.56, + "probability": 0.9639 + }, + { + "start": 1690.4, + "end": 1692.76, + "probability": 0.988 + }, + { + "start": 1695.28, + "end": 1695.28, + "probability": 0.0836 + }, + { + "start": 1695.28, + "end": 1696.12, + "probability": 0.3168 + }, + { + "start": 1697.34, + "end": 1700.1, + "probability": 0.9854 + }, + { + "start": 1700.28, + "end": 1706.16, + "probability": 0.9904 + }, + { + "start": 1706.5, + "end": 1709.68, + "probability": 0.9866 + }, + { + "start": 1709.8, + "end": 1713.14, + "probability": 0.9825 + }, + { + "start": 1713.88, + "end": 1718.72, + "probability": 0.7896 + }, + { + "start": 1719.6, + "end": 1720.56, + "probability": 0.5336 + }, + { + "start": 1721.36, + "end": 1722.5, + "probability": 0.8731 + }, + { + "start": 1723.18, + "end": 1726.36, + "probability": 0.9882 + }, + { + "start": 1728.1, + "end": 1734.52, + "probability": 0.9978 + }, + { + "start": 1734.52, + "end": 1739.58, + "probability": 0.9964 + }, + { + "start": 1740.06, + "end": 1741.68, + "probability": 0.8621 + }, + { + "start": 1742.04, + "end": 1744.24, + "probability": 0.8359 + }, + { + "start": 1744.32, + "end": 1744.88, + "probability": 0.8157 + }, + { + "start": 1745.66, + "end": 1747.52, + "probability": 0.5244 + }, + { + "start": 1747.62, + "end": 1749.06, + "probability": 0.9979 + }, + { + "start": 1749.72, + "end": 1754.54, + "probability": 0.8026 + }, + { + "start": 1755.18, + "end": 1758.92, + "probability": 0.8338 + }, + { + "start": 1758.92, + "end": 1760.68, + "probability": 0.6387 + }, + { + "start": 1761.2, + "end": 1762.02, + "probability": 0.833 + }, + { + "start": 1762.2, + "end": 1763.14, + "probability": 0.4545 + }, + { + "start": 1763.22, + "end": 1764.68, + "probability": 0.7942 + }, + { + "start": 1764.76, + "end": 1765.62, + "probability": 0.855 + }, + { + "start": 1766.34, + "end": 1767.34, + "probability": 0.7934 + }, + { + "start": 1767.88, + "end": 1769.28, + "probability": 0.8894 + }, + { + "start": 1769.62, + "end": 1770.26, + "probability": 0.9003 + }, + { + "start": 1770.62, + "end": 1775.54, + "probability": 0.9788 + }, + { + "start": 1775.72, + "end": 1776.22, + "probability": 0.869 + }, + { + "start": 1800.34, + "end": 1802.96, + "probability": 0.7249 + }, + { + "start": 1804.5, + "end": 1806.76, + "probability": 0.9388 + }, + { + "start": 1808.38, + "end": 1813.03, + "probability": 0.7425 + }, + { + "start": 1817.42, + "end": 1818.8, + "probability": 0.9986 + }, + { + "start": 1819.48, + "end": 1820.5, + "probability": 0.9951 + }, + { + "start": 1822.24, + "end": 1822.65, + "probability": 0.958 + }, + { + "start": 1823.36, + "end": 1826.31, + "probability": 0.9935 + }, + { + "start": 1827.32, + "end": 1831.06, + "probability": 0.9261 + }, + { + "start": 1832.98, + "end": 1834.18, + "probability": 0.8466 + }, + { + "start": 1835.56, + "end": 1838.12, + "probability": 0.9766 + }, + { + "start": 1838.86, + "end": 1839.68, + "probability": 0.9882 + }, + { + "start": 1840.38, + "end": 1840.98, + "probability": 0.6524 + }, + { + "start": 1841.82, + "end": 1842.4, + "probability": 0.7731 + }, + { + "start": 1843.78, + "end": 1844.16, + "probability": 0.5834 + }, + { + "start": 1845.36, + "end": 1848.84, + "probability": 0.9914 + }, + { + "start": 1850.74, + "end": 1852.36, + "probability": 0.8936 + }, + { + "start": 1854.06, + "end": 1855.38, + "probability": 0.5778 + }, + { + "start": 1857.08, + "end": 1858.42, + "probability": 0.4662 + }, + { + "start": 1860.92, + "end": 1863.7, + "probability": 0.8332 + }, + { + "start": 1863.76, + "end": 1864.28, + "probability": 0.7822 + }, + { + "start": 1865.42, + "end": 1868.32, + "probability": 0.7547 + }, + { + "start": 1868.32, + "end": 1873.98, + "probability": 0.9853 + }, + { + "start": 1875.02, + "end": 1879.77, + "probability": 0.4997 + }, + { + "start": 1879.94, + "end": 1881.48, + "probability": 0.4007 + }, + { + "start": 1882.7, + "end": 1884.82, + "probability": 0.8768 + }, + { + "start": 1884.86, + "end": 1887.92, + "probability": 0.9492 + }, + { + "start": 1890.04, + "end": 1890.34, + "probability": 0.641 + }, + { + "start": 1892.88, + "end": 1895.44, + "probability": 0.9312 + }, + { + "start": 1898.7, + "end": 1903.44, + "probability": 0.9826 + }, + { + "start": 1904.8, + "end": 1908.08, + "probability": 0.9454 + }, + { + "start": 1909.52, + "end": 1912.66, + "probability": 0.9997 + }, + { + "start": 1913.28, + "end": 1914.04, + "probability": 0.7906 + }, + { + "start": 1915.3, + "end": 1917.9, + "probability": 0.9827 + }, + { + "start": 1922.38, + "end": 1924.12, + "probability": 0.9963 + }, + { + "start": 1925.7, + "end": 1928.1, + "probability": 0.9996 + }, + { + "start": 1929.06, + "end": 1930.5, + "probability": 0.8506 + }, + { + "start": 1931.54, + "end": 1935.68, + "probability": 0.9976 + }, + { + "start": 1936.76, + "end": 1939.12, + "probability": 0.9966 + }, + { + "start": 1941.78, + "end": 1945.26, + "probability": 0.7241 + }, + { + "start": 1947.16, + "end": 1949.48, + "probability": 0.9641 + }, + { + "start": 1953.14, + "end": 1955.56, + "probability": 0.6958 + }, + { + "start": 1957.48, + "end": 1959.54, + "probability": 0.8214 + }, + { + "start": 1960.42, + "end": 1961.42, + "probability": 0.8525 + }, + { + "start": 1962.0, + "end": 1962.68, + "probability": 0.7917 + }, + { + "start": 1964.56, + "end": 1967.42, + "probability": 0.8758 + }, + { + "start": 1971.08, + "end": 1973.32, + "probability": 0.7962 + }, + { + "start": 1974.4, + "end": 1978.94, + "probability": 0.7533 + }, + { + "start": 1979.5, + "end": 1981.9, + "probability": 0.9807 + }, + { + "start": 1982.96, + "end": 1986.12, + "probability": 0.8924 + }, + { + "start": 1986.28, + "end": 1990.42, + "probability": 0.7977 + }, + { + "start": 1991.7, + "end": 1995.64, + "probability": 0.9912 + }, + { + "start": 1995.86, + "end": 1998.88, + "probability": 0.996 + }, + { + "start": 2002.28, + "end": 2005.06, + "probability": 0.9142 + }, + { + "start": 2005.34, + "end": 2005.8, + "probability": 0.7528 + }, + { + "start": 2006.64, + "end": 2007.84, + "probability": 0.7098 + }, + { + "start": 2008.04, + "end": 2014.76, + "probability": 0.9905 + }, + { + "start": 2014.9, + "end": 2015.98, + "probability": 0.4902 + }, + { + "start": 2018.28, + "end": 2019.82, + "probability": 0.988 + }, + { + "start": 2019.88, + "end": 2021.44, + "probability": 0.894 + }, + { + "start": 2021.56, + "end": 2022.74, + "probability": 0.4994 + }, + { + "start": 2023.24, + "end": 2024.3, + "probability": 0.7974 + }, + { + "start": 2024.5, + "end": 2025.02, + "probability": 0.7836 + }, + { + "start": 2044.03, + "end": 2046.98, + "probability": 0.3177 + }, + { + "start": 2047.12, + "end": 2047.74, + "probability": 0.5124 + }, + { + "start": 2051.56, + "end": 2053.84, + "probability": 0.6192 + }, + { + "start": 2054.48, + "end": 2056.24, + "probability": 0.5819 + }, + { + "start": 2060.54, + "end": 2060.9, + "probability": 0.0602 + }, + { + "start": 2061.03, + "end": 2061.21, + "probability": 0.0168 + }, + { + "start": 2068.58, + "end": 2070.08, + "probability": 0.0291 + }, + { + "start": 2070.08, + "end": 2070.56, + "probability": 0.1022 + }, + { + "start": 2070.64, + "end": 2072.94, + "probability": 0.1004 + }, + { + "start": 2073.9, + "end": 2078.42, + "probability": 0.0575 + }, + { + "start": 2078.42, + "end": 2080.86, + "probability": 0.0731 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.0, + "end": 2121.0, + "probability": 0.0 + }, + { + "start": 2121.56, + "end": 2123.68, + "probability": 0.0359 + }, + { + "start": 2123.68, + "end": 2123.68, + "probability": 0.0904 + }, + { + "start": 2123.68, + "end": 2125.68, + "probability": 0.0373 + }, + { + "start": 2128.26, + "end": 2132.36, + "probability": 0.9782 + }, + { + "start": 2132.76, + "end": 2135.52, + "probability": 0.5602 + }, + { + "start": 2137.6, + "end": 2137.88, + "probability": 0.0614 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.0, + "end": 2246.0, + "probability": 0.0 + }, + { + "start": 2246.84, + "end": 2248.46, + "probability": 0.8241 + }, + { + "start": 2249.58, + "end": 2254.02, + "probability": 0.9823 + }, + { + "start": 2255.06, + "end": 2258.88, + "probability": 0.5918 + }, + { + "start": 2259.56, + "end": 2264.72, + "probability": 0.9956 + }, + { + "start": 2264.82, + "end": 2268.08, + "probability": 0.8958 + }, + { + "start": 2270.8, + "end": 2273.06, + "probability": 0.9564 + }, + { + "start": 2273.12, + "end": 2275.78, + "probability": 0.5669 + }, + { + "start": 2275.92, + "end": 2276.56, + "probability": 0.875 + }, + { + "start": 2277.42, + "end": 2282.04, + "probability": 0.9766 + }, + { + "start": 2282.72, + "end": 2286.26, + "probability": 0.9956 + }, + { + "start": 2286.26, + "end": 2290.3, + "probability": 0.999 + }, + { + "start": 2290.72, + "end": 2293.76, + "probability": 0.9951 + }, + { + "start": 2294.46, + "end": 2297.36, + "probability": 0.9932 + }, + { + "start": 2297.48, + "end": 2300.12, + "probability": 0.9862 + }, + { + "start": 2301.06, + "end": 2303.84, + "probability": 0.9755 + }, + { + "start": 2304.3, + "end": 2305.8, + "probability": 0.8866 + }, + { + "start": 2305.88, + "end": 2307.92, + "probability": 0.8864 + }, + { + "start": 2308.04, + "end": 2308.52, + "probability": 0.9525 + }, + { + "start": 2308.58, + "end": 2309.28, + "probability": 0.7568 + }, + { + "start": 2310.1, + "end": 2312.02, + "probability": 0.9926 + }, + { + "start": 2312.76, + "end": 2316.78, + "probability": 0.978 + }, + { + "start": 2319.32, + "end": 2321.1, + "probability": 0.991 + }, + { + "start": 2322.0, + "end": 2324.44, + "probability": 0.9872 + }, + { + "start": 2325.36, + "end": 2329.02, + "probability": 0.9663 + }, + { + "start": 2330.58, + "end": 2332.76, + "probability": 0.9907 + }, + { + "start": 2334.0, + "end": 2334.84, + "probability": 0.9274 + }, + { + "start": 2335.04, + "end": 2340.92, + "probability": 0.9949 + }, + { + "start": 2342.6, + "end": 2347.86, + "probability": 0.9902 + }, + { + "start": 2349.02, + "end": 2352.5, + "probability": 0.7497 + }, + { + "start": 2353.26, + "end": 2353.8, + "probability": 0.903 + }, + { + "start": 2354.56, + "end": 2359.28, + "probability": 0.9385 + }, + { + "start": 2360.22, + "end": 2361.3, + "probability": 0.9853 + }, + { + "start": 2361.44, + "end": 2362.48, + "probability": 0.9742 + }, + { + "start": 2362.58, + "end": 2366.5, + "probability": 0.9035 + }, + { + "start": 2366.88, + "end": 2367.52, + "probability": 0.7541 + }, + { + "start": 2369.48, + "end": 2371.46, + "probability": 0.9869 + }, + { + "start": 2371.46, + "end": 2374.9, + "probability": 0.9946 + }, + { + "start": 2376.06, + "end": 2378.34, + "probability": 0.9983 + }, + { + "start": 2378.76, + "end": 2379.26, + "probability": 0.7758 + }, + { + "start": 2379.58, + "end": 2383.78, + "probability": 0.7545 + }, + { + "start": 2386.84, + "end": 2391.92, + "probability": 0.8347 + }, + { + "start": 2392.74, + "end": 2393.4, + "probability": 0.973 + }, + { + "start": 2393.46, + "end": 2396.66, + "probability": 0.9961 + }, + { + "start": 2396.78, + "end": 2399.82, + "probability": 0.9912 + }, + { + "start": 2400.86, + "end": 2404.62, + "probability": 0.7868 + }, + { + "start": 2405.14, + "end": 2408.8, + "probability": 0.9017 + }, + { + "start": 2410.34, + "end": 2411.18, + "probability": 0.7536 + }, + { + "start": 2411.6, + "end": 2414.84, + "probability": 0.9575 + }, + { + "start": 2416.55, + "end": 2419.7, + "probability": 0.8668 + }, + { + "start": 2420.3, + "end": 2424.88, + "probability": 0.9896 + }, + { + "start": 2425.94, + "end": 2429.6, + "probability": 0.9889 + }, + { + "start": 2430.02, + "end": 2431.02, + "probability": 0.8887 + }, + { + "start": 2431.42, + "end": 2433.78, + "probability": 0.9751 + }, + { + "start": 2434.62, + "end": 2435.28, + "probability": 0.4348 + }, + { + "start": 2436.02, + "end": 2437.58, + "probability": 0.7277 + }, + { + "start": 2439.18, + "end": 2439.62, + "probability": 0.7798 + }, + { + "start": 2440.26, + "end": 2441.8, + "probability": 0.9869 + }, + { + "start": 2441.88, + "end": 2443.38, + "probability": 0.9003 + }, + { + "start": 2443.52, + "end": 2445.04, + "probability": 0.4962 + }, + { + "start": 2445.84, + "end": 2448.08, + "probability": 0.7115 + }, + { + "start": 2449.6, + "end": 2451.54, + "probability": 0.7109 + }, + { + "start": 2452.5, + "end": 2455.24, + "probability": 0.8904 + }, + { + "start": 2455.24, + "end": 2460.12, + "probability": 0.9496 + }, + { + "start": 2460.28, + "end": 2462.68, + "probability": 0.8708 + }, + { + "start": 2463.24, + "end": 2465.16, + "probability": 0.9984 + }, + { + "start": 2465.62, + "end": 2466.92, + "probability": 0.8647 + }, + { + "start": 2467.0, + "end": 2469.92, + "probability": 0.9814 + }, + { + "start": 2470.98, + "end": 2476.14, + "probability": 0.9746 + }, + { + "start": 2476.14, + "end": 2480.34, + "probability": 0.9944 + }, + { + "start": 2480.34, + "end": 2484.56, + "probability": 0.9888 + }, + { + "start": 2485.34, + "end": 2487.34, + "probability": 0.9927 + }, + { + "start": 2487.46, + "end": 2493.5, + "probability": 0.8333 + }, + { + "start": 2494.24, + "end": 2497.3, + "probability": 0.9891 + }, + { + "start": 2497.3, + "end": 2500.4, + "probability": 0.9758 + }, + { + "start": 2501.58, + "end": 2502.9, + "probability": 0.5605 + }, + { + "start": 2503.62, + "end": 2506.62, + "probability": 0.9671 + }, + { + "start": 2507.26, + "end": 2510.16, + "probability": 0.9955 + }, + { + "start": 2510.7, + "end": 2513.56, + "probability": 0.9928 + }, + { + "start": 2514.04, + "end": 2515.78, + "probability": 0.9913 + }, + { + "start": 2516.28, + "end": 2518.68, + "probability": 0.8007 + }, + { + "start": 2518.7, + "end": 2520.62, + "probability": 0.4997 + }, + { + "start": 2520.9, + "end": 2523.84, + "probability": 0.9968 + }, + { + "start": 2523.92, + "end": 2526.56, + "probability": 0.9961 + }, + { + "start": 2527.16, + "end": 2528.4, + "probability": 0.9995 + }, + { + "start": 2529.34, + "end": 2533.02, + "probability": 0.9324 + }, + { + "start": 2533.54, + "end": 2535.98, + "probability": 0.9081 + }, + { + "start": 2536.38, + "end": 2540.78, + "probability": 0.9971 + }, + { + "start": 2541.42, + "end": 2542.84, + "probability": 0.9904 + }, + { + "start": 2543.16, + "end": 2543.16, + "probability": 0.5724 + }, + { + "start": 2543.36, + "end": 2545.06, + "probability": 0.9647 + }, + { + "start": 2545.18, + "end": 2548.48, + "probability": 0.7788 + }, + { + "start": 2548.5, + "end": 2549.22, + "probability": 0.9974 + }, + { + "start": 2549.9, + "end": 2552.83, + "probability": 0.9044 + }, + { + "start": 2553.28, + "end": 2556.14, + "probability": 0.7227 + }, + { + "start": 2559.36, + "end": 2563.0, + "probability": 0.8405 + }, + { + "start": 2563.58, + "end": 2565.44, + "probability": 0.6821 + }, + { + "start": 2565.54, + "end": 2567.78, + "probability": 0.6637 + }, + { + "start": 2568.34, + "end": 2569.66, + "probability": 0.9282 + }, + { + "start": 2570.76, + "end": 2573.32, + "probability": 0.979 + }, + { + "start": 2574.62, + "end": 2577.14, + "probability": 0.8465 + }, + { + "start": 2577.88, + "end": 2580.12, + "probability": 0.9339 + }, + { + "start": 2581.16, + "end": 2586.04, + "probability": 0.7896 + }, + { + "start": 2586.58, + "end": 2589.9, + "probability": 0.9969 + }, + { + "start": 2591.1, + "end": 2594.28, + "probability": 0.9868 + }, + { + "start": 2595.5, + "end": 2598.34, + "probability": 0.6465 + }, + { + "start": 2599.16, + "end": 2600.57, + "probability": 0.7996 + }, + { + "start": 2601.26, + "end": 2603.3, + "probability": 0.9181 + }, + { + "start": 2604.66, + "end": 2606.62, + "probability": 0.9627 + }, + { + "start": 2607.16, + "end": 2611.48, + "probability": 0.9561 + }, + { + "start": 2612.5, + "end": 2615.9, + "probability": 0.6558 + }, + { + "start": 2615.96, + "end": 2617.0, + "probability": 0.6929 + }, + { + "start": 2618.52, + "end": 2624.34, + "probability": 0.9214 + }, + { + "start": 2625.1, + "end": 2631.46, + "probability": 0.8815 + }, + { + "start": 2633.1, + "end": 2635.28, + "probability": 0.6013 + }, + { + "start": 2635.64, + "end": 2640.5, + "probability": 0.8842 + }, + { + "start": 2641.06, + "end": 2644.68, + "probability": 0.9572 + }, + { + "start": 2646.82, + "end": 2648.56, + "probability": 0.9738 + }, + { + "start": 2648.96, + "end": 2652.58, + "probability": 0.9818 + }, + { + "start": 2653.58, + "end": 2657.66, + "probability": 0.9974 + }, + { + "start": 2658.3, + "end": 2662.3, + "probability": 0.9902 + }, + { + "start": 2663.98, + "end": 2670.02, + "probability": 0.9119 + }, + { + "start": 2670.1, + "end": 2672.72, + "probability": 0.9435 + }, + { + "start": 2673.84, + "end": 2677.1, + "probability": 0.8117 + }, + { + "start": 2678.16, + "end": 2684.62, + "probability": 0.9415 + }, + { + "start": 2684.68, + "end": 2690.26, + "probability": 0.9927 + }, + { + "start": 2691.36, + "end": 2695.22, + "probability": 0.974 + }, + { + "start": 2695.66, + "end": 2700.96, + "probability": 0.9536 + }, + { + "start": 2702.02, + "end": 2708.36, + "probability": 0.9714 + }, + { + "start": 2709.64, + "end": 2713.98, + "probability": 0.9355 + }, + { + "start": 2715.16, + "end": 2717.6, + "probability": 0.9951 + }, + { + "start": 2718.16, + "end": 2719.38, + "probability": 0.9842 + }, + { + "start": 2720.54, + "end": 2725.06, + "probability": 0.8345 + }, + { + "start": 2726.9, + "end": 2729.26, + "probability": 0.9361 + }, + { + "start": 2730.18, + "end": 2735.36, + "probability": 0.8827 + }, + { + "start": 2735.58, + "end": 2736.54, + "probability": 0.8869 + }, + { + "start": 2737.42, + "end": 2738.02, + "probability": 0.951 + }, + { + "start": 2739.68, + "end": 2741.6, + "probability": 0.995 + }, + { + "start": 2742.84, + "end": 2746.66, + "probability": 0.9014 + }, + { + "start": 2747.34, + "end": 2749.02, + "probability": 0.8363 + }, + { + "start": 2749.04, + "end": 2750.03, + "probability": 0.9412 + }, + { + "start": 2750.48, + "end": 2754.16, + "probability": 0.9912 + }, + { + "start": 2755.22, + "end": 2757.72, + "probability": 0.9015 + }, + { + "start": 2757.76, + "end": 2759.72, + "probability": 0.901 + }, + { + "start": 2760.68, + "end": 2761.68, + "probability": 0.4965 + }, + { + "start": 2763.08, + "end": 2766.76, + "probability": 0.7769 + }, + { + "start": 2767.7, + "end": 2771.96, + "probability": 0.989 + }, + { + "start": 2773.4, + "end": 2776.74, + "probability": 0.9908 + }, + { + "start": 2777.12, + "end": 2777.68, + "probability": 0.8985 + }, + { + "start": 2778.46, + "end": 2779.18, + "probability": 0.976 + }, + { + "start": 2779.9, + "end": 2780.52, + "probability": 0.9932 + }, + { + "start": 2782.67, + "end": 2786.04, + "probability": 0.9892 + }, + { + "start": 2786.04, + "end": 2789.06, + "probability": 0.8485 + }, + { + "start": 2789.08, + "end": 2792.2, + "probability": 0.9429 + }, + { + "start": 2794.4, + "end": 2794.76, + "probability": 0.4699 + }, + { + "start": 2794.86, + "end": 2798.64, + "probability": 0.9873 + }, + { + "start": 2799.24, + "end": 2800.98, + "probability": 0.912 + }, + { + "start": 2802.6, + "end": 2807.06, + "probability": 0.9736 + }, + { + "start": 2808.3, + "end": 2813.18, + "probability": 0.8474 + }, + { + "start": 2814.28, + "end": 2818.98, + "probability": 0.9954 + }, + { + "start": 2819.5, + "end": 2823.92, + "probability": 0.9871 + }, + { + "start": 2825.34, + "end": 2827.51, + "probability": 0.9863 + }, + { + "start": 2828.18, + "end": 2832.22, + "probability": 0.9422 + }, + { + "start": 2833.64, + "end": 2835.18, + "probability": 0.9556 + }, + { + "start": 2836.08, + "end": 2836.78, + "probability": 0.8746 + }, + { + "start": 2837.76, + "end": 2840.98, + "probability": 0.9862 + }, + { + "start": 2841.02, + "end": 2845.7, + "probability": 0.8822 + }, + { + "start": 2846.58, + "end": 2850.5, + "probability": 0.9941 + }, + { + "start": 2851.8, + "end": 2852.22, + "probability": 0.9163 + }, + { + "start": 2853.08, + "end": 2854.94, + "probability": 0.9592 + }, + { + "start": 2855.84, + "end": 2858.68, + "probability": 0.9912 + }, + { + "start": 2859.48, + "end": 2860.46, + "probability": 0.7503 + }, + { + "start": 2861.02, + "end": 2863.88, + "probability": 0.9956 + }, + { + "start": 2864.44, + "end": 2864.98, + "probability": 0.6077 + }, + { + "start": 2865.7, + "end": 2866.4, + "probability": 0.8149 + }, + { + "start": 2867.14, + "end": 2868.2, + "probability": 0.938 + }, + { + "start": 2868.26, + "end": 2868.54, + "probability": 0.7698 + }, + { + "start": 2870.32, + "end": 2872.96, + "probability": 0.9766 + }, + { + "start": 2873.06, + "end": 2875.16, + "probability": 0.9969 + }, + { + "start": 2876.64, + "end": 2877.26, + "probability": 0.8344 + }, + { + "start": 2893.76, + "end": 2894.84, + "probability": 0.6951 + }, + { + "start": 2895.32, + "end": 2896.76, + "probability": 0.8399 + }, + { + "start": 2898.48, + "end": 2900.88, + "probability": 0.6962 + }, + { + "start": 2900.94, + "end": 2902.39, + "probability": 0.9891 + }, + { + "start": 2907.36, + "end": 2908.34, + "probability": 0.5283 + }, + { + "start": 2908.88, + "end": 2910.37, + "probability": 0.744 + }, + { + "start": 2911.1, + "end": 2913.26, + "probability": 0.8617 + }, + { + "start": 2914.82, + "end": 2917.42, + "probability": 0.8765 + }, + { + "start": 2918.6, + "end": 2923.9, + "probability": 0.7924 + }, + { + "start": 2925.2, + "end": 2927.64, + "probability": 0.9753 + }, + { + "start": 2930.1, + "end": 2930.58, + "probability": 0.2314 + }, + { + "start": 2932.48, + "end": 2935.34, + "probability": 0.4998 + }, + { + "start": 2937.76, + "end": 2939.14, + "probability": 0.4812 + }, + { + "start": 2940.26, + "end": 2941.14, + "probability": 0.9614 + }, + { + "start": 2944.18, + "end": 2945.3, + "probability": 0.7295 + }, + { + "start": 2945.34, + "end": 2948.28, + "probability": 0.9397 + }, + { + "start": 2948.28, + "end": 2948.92, + "probability": 0.2054 + }, + { + "start": 2957.23, + "end": 2961.72, + "probability": 0.9336 + }, + { + "start": 2963.04, + "end": 2968.68, + "probability": 0.956 + }, + { + "start": 2970.42, + "end": 2971.56, + "probability": 0.9915 + }, + { + "start": 2972.86, + "end": 2974.04, + "probability": 0.9604 + }, + { + "start": 2975.52, + "end": 2978.3, + "probability": 0.9854 + }, + { + "start": 2979.92, + "end": 2981.64, + "probability": 0.9739 + }, + { + "start": 2981.76, + "end": 2982.44, + "probability": 0.927 + }, + { + "start": 2982.54, + "end": 2987.68, + "probability": 0.9382 + }, + { + "start": 2987.94, + "end": 2990.64, + "probability": 0.9855 + }, + { + "start": 2990.94, + "end": 2992.06, + "probability": 0.691 + }, + { + "start": 2993.22, + "end": 2994.54, + "probability": 0.7393 + }, + { + "start": 2996.88, + "end": 2998.64, + "probability": 0.8804 + }, + { + "start": 2998.76, + "end": 3000.28, + "probability": 0.9106 + }, + { + "start": 3000.4, + "end": 3001.28, + "probability": 0.8604 + }, + { + "start": 3003.26, + "end": 3004.44, + "probability": 0.0123 + }, + { + "start": 3005.66, + "end": 3007.42, + "probability": 0.7878 + }, + { + "start": 3007.86, + "end": 3011.2, + "probability": 0.4712 + }, + { + "start": 3011.2, + "end": 3012.32, + "probability": 0.9798 + }, + { + "start": 3013.32, + "end": 3014.98, + "probability": 0.833 + }, + { + "start": 3015.56, + "end": 3017.02, + "probability": 0.183 + }, + { + "start": 3019.96, + "end": 3022.61, + "probability": 0.9973 + }, + { + "start": 3023.26, + "end": 3025.0, + "probability": 0.9294 + }, + { + "start": 3026.68, + "end": 3027.57, + "probability": 0.9716 + }, + { + "start": 3028.52, + "end": 3030.9, + "probability": 0.9961 + }, + { + "start": 3032.1, + "end": 3033.66, + "probability": 0.9935 + }, + { + "start": 3034.82, + "end": 3037.62, + "probability": 0.7491 + }, + { + "start": 3039.1, + "end": 3040.06, + "probability": 0.7228 + }, + { + "start": 3041.02, + "end": 3042.08, + "probability": 0.9805 + }, + { + "start": 3042.6, + "end": 3043.34, + "probability": 0.9462 + }, + { + "start": 3044.64, + "end": 3045.5, + "probability": 0.9238 + }, + { + "start": 3046.08, + "end": 3047.12, + "probability": 0.9651 + }, + { + "start": 3047.96, + "end": 3051.16, + "probability": 0.998 + }, + { + "start": 3052.76, + "end": 3054.04, + "probability": 0.8973 + }, + { + "start": 3054.7, + "end": 3055.28, + "probability": 0.8115 + }, + { + "start": 3055.82, + "end": 3059.56, + "probability": 0.9456 + }, + { + "start": 3061.84, + "end": 3063.84, + "probability": 0.9061 + }, + { + "start": 3065.44, + "end": 3066.12, + "probability": 0.9145 + }, + { + "start": 3067.02, + "end": 3069.56, + "probability": 0.9865 + }, + { + "start": 3070.58, + "end": 3071.72, + "probability": 0.9795 + }, + { + "start": 3072.4, + "end": 3076.6, + "probability": 0.9863 + }, + { + "start": 3077.06, + "end": 3083.8, + "probability": 0.9961 + }, + { + "start": 3088.08, + "end": 3090.94, + "probability": 0.991 + }, + { + "start": 3091.22, + "end": 3096.86, + "probability": 0.9917 + }, + { + "start": 3099.14, + "end": 3099.84, + "probability": 0.7912 + }, + { + "start": 3100.38, + "end": 3101.54, + "probability": 0.8294 + }, + { + "start": 3102.66, + "end": 3103.4, + "probability": 0.8229 + }, + { + "start": 3104.12, + "end": 3107.18, + "probability": 0.6719 + }, + { + "start": 3107.24, + "end": 3109.14, + "probability": 0.8975 + }, + { + "start": 3109.24, + "end": 3110.48, + "probability": 0.9925 + }, + { + "start": 3112.96, + "end": 3115.04, + "probability": 0.9336 + }, + { + "start": 3116.24, + "end": 3119.14, + "probability": 0.9759 + }, + { + "start": 3120.58, + "end": 3122.76, + "probability": 0.9773 + }, + { + "start": 3123.52, + "end": 3125.32, + "probability": 0.9409 + }, + { + "start": 3125.58, + "end": 3127.76, + "probability": 0.6085 + }, + { + "start": 3128.08, + "end": 3130.48, + "probability": 0.6192 + }, + { + "start": 3130.7, + "end": 3132.02, + "probability": 0.9897 + }, + { + "start": 3133.0, + "end": 3134.38, + "probability": 0.8668 + }, + { + "start": 3134.92, + "end": 3136.9, + "probability": 0.8332 + }, + { + "start": 3137.52, + "end": 3139.08, + "probability": 0.863 + }, + { + "start": 3140.54, + "end": 3141.15, + "probability": 0.9246 + }, + { + "start": 3142.58, + "end": 3144.2, + "probability": 0.9953 + }, + { + "start": 3144.88, + "end": 3145.46, + "probability": 0.9534 + }, + { + "start": 3146.36, + "end": 3150.21, + "probability": 0.9961 + }, + { + "start": 3152.56, + "end": 3154.94, + "probability": 0.9961 + }, + { + "start": 3156.62, + "end": 3158.92, + "probability": 0.9551 + }, + { + "start": 3160.42, + "end": 3162.88, + "probability": 0.9608 + }, + { + "start": 3164.44, + "end": 3166.58, + "probability": 0.553 + }, + { + "start": 3167.58, + "end": 3168.7, + "probability": 0.8326 + }, + { + "start": 3169.94, + "end": 3173.74, + "probability": 0.9876 + }, + { + "start": 3174.9, + "end": 3176.9, + "probability": 0.9902 + }, + { + "start": 3179.05, + "end": 3180.85, + "probability": 0.9966 + }, + { + "start": 3182.08, + "end": 3183.64, + "probability": 0.9893 + }, + { + "start": 3188.9, + "end": 3190.9, + "probability": 0.9644 + }, + { + "start": 3191.56, + "end": 3197.75, + "probability": 0.9849 + }, + { + "start": 3198.72, + "end": 3200.42, + "probability": 0.9801 + }, + { + "start": 3201.98, + "end": 3205.92, + "probability": 0.9033 + }, + { + "start": 3206.54, + "end": 3207.6, + "probability": 0.7524 + }, + { + "start": 3209.1, + "end": 3211.02, + "probability": 0.9856 + }, + { + "start": 3212.32, + "end": 3214.7, + "probability": 0.9709 + }, + { + "start": 3214.84, + "end": 3215.6, + "probability": 0.9744 + }, + { + "start": 3215.7, + "end": 3218.04, + "probability": 0.7072 + }, + { + "start": 3222.28, + "end": 3222.46, + "probability": 0.8339 + }, + { + "start": 3224.16, + "end": 3226.04, + "probability": 0.9896 + }, + { + "start": 3227.3, + "end": 3231.96, + "probability": 0.9642 + }, + { + "start": 3233.18, + "end": 3233.84, + "probability": 0.8779 + }, + { + "start": 3235.3, + "end": 3236.4, + "probability": 0.8603 + }, + { + "start": 3238.06, + "end": 3238.82, + "probability": 0.8438 + }, + { + "start": 3241.94, + "end": 3244.38, + "probability": 0.9903 + }, + { + "start": 3244.76, + "end": 3246.18, + "probability": 0.998 + }, + { + "start": 3249.0, + "end": 3251.62, + "probability": 0.9808 + }, + { + "start": 3252.38, + "end": 3254.74, + "probability": 0.855 + }, + { + "start": 3256.86, + "end": 3262.06, + "probability": 0.895 + }, + { + "start": 3263.62, + "end": 3266.86, + "probability": 0.9977 + }, + { + "start": 3267.98, + "end": 3269.4, + "probability": 0.9972 + }, + { + "start": 3270.34, + "end": 3274.32, + "probability": 0.9955 + }, + { + "start": 3274.96, + "end": 3281.0, + "probability": 0.9795 + }, + { + "start": 3281.88, + "end": 3283.22, + "probability": 0.9987 + }, + { + "start": 3284.84, + "end": 3287.84, + "probability": 0.8818 + }, + { + "start": 3288.88, + "end": 3292.38, + "probability": 0.9879 + }, + { + "start": 3294.16, + "end": 3298.08, + "probability": 0.9992 + }, + { + "start": 3298.76, + "end": 3299.58, + "probability": 0.9938 + }, + { + "start": 3300.84, + "end": 3304.2, + "probability": 0.7536 + }, + { + "start": 3305.12, + "end": 3306.0, + "probability": 0.5959 + }, + { + "start": 3308.28, + "end": 3309.28, + "probability": 0.9874 + }, + { + "start": 3309.62, + "end": 3315.48, + "probability": 0.9603 + }, + { + "start": 3315.54, + "end": 3316.04, + "probability": 0.7899 + }, + { + "start": 3316.66, + "end": 3317.62, + "probability": 0.9608 + }, + { + "start": 3319.2, + "end": 3321.06, + "probability": 0.938 + }, + { + "start": 3322.76, + "end": 3325.52, + "probability": 0.9393 + }, + { + "start": 3326.3, + "end": 3327.8, + "probability": 0.9863 + }, + { + "start": 3328.64, + "end": 3333.34, + "probability": 0.9882 + }, + { + "start": 3335.18, + "end": 3335.66, + "probability": 0.8091 + }, + { + "start": 3336.2, + "end": 3336.68, + "probability": 0.8956 + }, + { + "start": 3337.82, + "end": 3340.2, + "probability": 0.9163 + }, + { + "start": 3341.48, + "end": 3345.66, + "probability": 0.7024 + }, + { + "start": 3346.66, + "end": 3347.57, + "probability": 0.7543 + }, + { + "start": 3348.86, + "end": 3349.02, + "probability": 0.4165 + }, + { + "start": 3349.64, + "end": 3350.08, + "probability": 0.4847 + }, + { + "start": 3350.08, + "end": 3350.46, + "probability": 0.6915 + }, + { + "start": 3351.76, + "end": 3354.52, + "probability": 0.6704 + }, + { + "start": 3356.22, + "end": 3357.73, + "probability": 0.5009 + }, + { + "start": 3359.72, + "end": 3362.76, + "probability": 0.9875 + }, + { + "start": 3364.02, + "end": 3367.06, + "probability": 0.7147 + }, + { + "start": 3369.3, + "end": 3372.34, + "probability": 0.7128 + }, + { + "start": 3378.28, + "end": 3380.3, + "probability": 0.8816 + }, + { + "start": 3381.88, + "end": 3383.08, + "probability": 0.6311 + }, + { + "start": 3387.04, + "end": 3389.06, + "probability": 0.9653 + }, + { + "start": 3390.82, + "end": 3395.1, + "probability": 0.9011 + }, + { + "start": 3396.1, + "end": 3398.18, + "probability": 0.9496 + }, + { + "start": 3401.26, + "end": 3403.84, + "probability": 0.9927 + }, + { + "start": 3403.96, + "end": 3405.26, + "probability": 0.9971 + }, + { + "start": 3406.94, + "end": 3408.68, + "probability": 0.9778 + }, + { + "start": 3410.16, + "end": 3410.82, + "probability": 0.9404 + }, + { + "start": 3412.18, + "end": 3414.74, + "probability": 0.9917 + }, + { + "start": 3416.76, + "end": 3418.08, + "probability": 0.9574 + }, + { + "start": 3419.92, + "end": 3421.7, + "probability": 0.9963 + }, + { + "start": 3422.98, + "end": 3425.28, + "probability": 0.9858 + }, + { + "start": 3425.3, + "end": 3426.74, + "probability": 0.9329 + }, + { + "start": 3428.16, + "end": 3429.4, + "probability": 0.8949 + }, + { + "start": 3431.2, + "end": 3437.72, + "probability": 0.9977 + }, + { + "start": 3438.32, + "end": 3442.38, + "probability": 0.9993 + }, + { + "start": 3443.22, + "end": 3445.3, + "probability": 0.8441 + }, + { + "start": 3446.42, + "end": 3446.84, + "probability": 0.6225 + }, + { + "start": 3448.16, + "end": 3450.48, + "probability": 0.9573 + }, + { + "start": 3451.46, + "end": 3453.18, + "probability": 0.7094 + }, + { + "start": 3453.3, + "end": 3456.76, + "probability": 0.8418 + }, + { + "start": 3457.2, + "end": 3459.04, + "probability": 0.6742 + }, + { + "start": 3460.34, + "end": 3462.82, + "probability": 0.9854 + }, + { + "start": 3463.48, + "end": 3465.38, + "probability": 0.9961 + }, + { + "start": 3466.3, + "end": 3467.08, + "probability": 0.6713 + }, + { + "start": 3467.12, + "end": 3470.64, + "probability": 0.9861 + }, + { + "start": 3471.28, + "end": 3472.02, + "probability": 0.618 + }, + { + "start": 3472.14, + "end": 3473.0, + "probability": 0.8149 + }, + { + "start": 3473.34, + "end": 3474.28, + "probability": 0.9725 + }, + { + "start": 3474.52, + "end": 3475.44, + "probability": 0.8486 + }, + { + "start": 3476.42, + "end": 3479.26, + "probability": 0.8561 + }, + { + "start": 3479.36, + "end": 3479.64, + "probability": 0.9753 + }, + { + "start": 3480.86, + "end": 3484.2, + "probability": 0.6506 + }, + { + "start": 3484.52, + "end": 3490.0, + "probability": 0.9241 + }, + { + "start": 3491.46, + "end": 3492.22, + "probability": 0.897 + }, + { + "start": 3492.36, + "end": 3495.54, + "probability": 0.9954 + }, + { + "start": 3495.54, + "end": 3499.32, + "probability": 0.983 + }, + { + "start": 3500.16, + "end": 3500.16, + "probability": 0.1241 + }, + { + "start": 3500.16, + "end": 3504.24, + "probability": 0.9727 + }, + { + "start": 3504.8, + "end": 3506.14, + "probability": 0.9263 + }, + { + "start": 3506.82, + "end": 3509.46, + "probability": 0.8 + }, + { + "start": 3509.74, + "end": 3515.92, + "probability": 0.9927 + }, + { + "start": 3515.92, + "end": 3520.06, + "probability": 0.9985 + }, + { + "start": 3520.68, + "end": 3523.94, + "probability": 0.9912 + }, + { + "start": 3525.48, + "end": 3528.1, + "probability": 0.9831 + }, + { + "start": 3528.18, + "end": 3532.04, + "probability": 0.907 + }, + { + "start": 3532.54, + "end": 3535.04, + "probability": 0.9916 + }, + { + "start": 3536.02, + "end": 3539.62, + "probability": 0.9941 + }, + { + "start": 3541.02, + "end": 3543.06, + "probability": 0.9326 + }, + { + "start": 3543.42, + "end": 3548.68, + "probability": 0.9926 + }, + { + "start": 3550.12, + "end": 3552.72, + "probability": 0.9651 + }, + { + "start": 3552.72, + "end": 3555.32, + "probability": 0.9912 + }, + { + "start": 3555.94, + "end": 3557.14, + "probability": 0.9886 + }, + { + "start": 3557.8, + "end": 3561.1, + "probability": 0.9951 + }, + { + "start": 3561.1, + "end": 3564.98, + "probability": 0.9977 + }, + { + "start": 3567.38, + "end": 3572.84, + "probability": 0.9701 + }, + { + "start": 3573.56, + "end": 3576.14, + "probability": 0.935 + }, + { + "start": 3576.3, + "end": 3579.0, + "probability": 0.9646 + }, + { + "start": 3579.34, + "end": 3581.68, + "probability": 0.992 + }, + { + "start": 3582.76, + "end": 3585.56, + "probability": 0.9886 + }, + { + "start": 3585.56, + "end": 3589.0, + "probability": 0.987 + }, + { + "start": 3589.8, + "end": 3591.68, + "probability": 0.7464 + }, + { + "start": 3592.2, + "end": 3593.96, + "probability": 0.7395 + }, + { + "start": 3594.68, + "end": 3597.98, + "probability": 0.9517 + }, + { + "start": 3598.6, + "end": 3600.3, + "probability": 0.9706 + }, + { + "start": 3601.26, + "end": 3606.22, + "probability": 0.9886 + }, + { + "start": 3606.38, + "end": 3610.78, + "probability": 0.9276 + }, + { + "start": 3611.18, + "end": 3612.96, + "probability": 0.717 + }, + { + "start": 3613.02, + "end": 3617.1, + "probability": 0.9814 + }, + { + "start": 3617.23, + "end": 3620.42, + "probability": 0.9643 + }, + { + "start": 3620.56, + "end": 3624.2, + "probability": 0.8628 + }, + { + "start": 3624.54, + "end": 3627.2, + "probability": 0.9619 + }, + { + "start": 3628.86, + "end": 3633.98, + "probability": 0.9878 + }, + { + "start": 3634.04, + "end": 3634.66, + "probability": 0.887 + }, + { + "start": 3634.82, + "end": 3635.34, + "probability": 0.9762 + }, + { + "start": 3635.56, + "end": 3639.34, + "probability": 0.9129 + }, + { + "start": 3641.04, + "end": 3644.1, + "probability": 0.983 + }, + { + "start": 3644.86, + "end": 3647.98, + "probability": 0.8041 + }, + { + "start": 3648.5, + "end": 3649.58, + "probability": 0.9129 + }, + { + "start": 3650.88, + "end": 3654.08, + "probability": 0.9897 + }, + { + "start": 3655.28, + "end": 3657.64, + "probability": 0.9224 + }, + { + "start": 3657.8, + "end": 3658.56, + "probability": 0.7195 + }, + { + "start": 3659.0, + "end": 3662.16, + "probability": 0.9245 + }, + { + "start": 3662.86, + "end": 3664.14, + "probability": 0.9794 + }, + { + "start": 3665.82, + "end": 3668.68, + "probability": 0.7902 + }, + { + "start": 3668.96, + "end": 3671.42, + "probability": 0.9846 + }, + { + "start": 3672.62, + "end": 3677.58, + "probability": 0.9863 + }, + { + "start": 3678.98, + "end": 3684.76, + "probability": 0.9933 + }, + { + "start": 3685.4, + "end": 3686.52, + "probability": 0.8113 + }, + { + "start": 3687.44, + "end": 3689.4, + "probability": 0.999 + }, + { + "start": 3689.4, + "end": 3692.62, + "probability": 0.995 + }, + { + "start": 3692.68, + "end": 3694.78, + "probability": 0.9098 + }, + { + "start": 3694.78, + "end": 3695.78, + "probability": 0.8061 + }, + { + "start": 3696.3, + "end": 3697.6, + "probability": 0.9015 + }, + { + "start": 3699.66, + "end": 3703.22, + "probability": 0.9733 + }, + { + "start": 3703.28, + "end": 3704.22, + "probability": 0.9702 + }, + { + "start": 3704.32, + "end": 3706.36, + "probability": 0.9703 + }, + { + "start": 3706.84, + "end": 3708.49, + "probability": 0.4548 + }, + { + "start": 3709.02, + "end": 3710.0, + "probability": 0.8873 + }, + { + "start": 3710.08, + "end": 3710.66, + "probability": 0.8728 + }, + { + "start": 3710.92, + "end": 3711.02, + "probability": 0.3166 + }, + { + "start": 3711.16, + "end": 3714.5, + "probability": 0.9772 + }, + { + "start": 3715.72, + "end": 3717.54, + "probability": 0.9987 + }, + { + "start": 3717.94, + "end": 3719.14, + "probability": 0.9679 + }, + { + "start": 3719.26, + "end": 3722.32, + "probability": 0.9987 + }, + { + "start": 3722.44, + "end": 3723.32, + "probability": 0.9874 + }, + { + "start": 3724.1, + "end": 3724.68, + "probability": 0.6712 + }, + { + "start": 3724.76, + "end": 3726.18, + "probability": 0.5951 + }, + { + "start": 3726.26, + "end": 3726.54, + "probability": 0.4581 + }, + { + "start": 3726.64, + "end": 3729.08, + "probability": 0.9733 + }, + { + "start": 3729.34, + "end": 3731.5, + "probability": 0.8988 + }, + { + "start": 3732.06, + "end": 3734.5, + "probability": 0.947 + }, + { + "start": 3735.14, + "end": 3737.9, + "probability": 0.9722 + }, + { + "start": 3738.34, + "end": 3741.8, + "probability": 0.7284 + }, + { + "start": 3742.58, + "end": 3745.28, + "probability": 0.8929 + }, + { + "start": 3746.14, + "end": 3751.26, + "probability": 0.9903 + }, + { + "start": 3752.02, + "end": 3752.86, + "probability": 0.9713 + }, + { + "start": 3753.42, + "end": 3753.56, + "probability": 0.3431 + }, + { + "start": 3753.68, + "end": 3755.1, + "probability": 0.9235 + }, + { + "start": 3755.5, + "end": 3759.2, + "probability": 0.8442 + }, + { + "start": 3760.04, + "end": 3762.42, + "probability": 0.9832 + }, + { + "start": 3762.48, + "end": 3765.86, + "probability": 0.983 + }, + { + "start": 3765.86, + "end": 3771.26, + "probability": 0.9701 + }, + { + "start": 3783.48, + "end": 3787.26, + "probability": 0.861 + }, + { + "start": 3787.74, + "end": 3789.41, + "probability": 0.88 + }, + { + "start": 3790.42, + "end": 3791.44, + "probability": 0.6956 + }, + { + "start": 3793.67, + "end": 3796.6, + "probability": 0.9944 + }, + { + "start": 3796.9, + "end": 3797.5, + "probability": 0.7631 + }, + { + "start": 3798.02, + "end": 3798.46, + "probability": 0.8813 + }, + { + "start": 3799.94, + "end": 3801.2, + "probability": 0.9878 + }, + { + "start": 3801.78, + "end": 3802.68, + "probability": 0.9039 + }, + { + "start": 3802.96, + "end": 3803.48, + "probability": 0.9737 + }, + { + "start": 3803.6, + "end": 3803.98, + "probability": 0.8949 + }, + { + "start": 3804.06, + "end": 3807.48, + "probability": 0.8689 + }, + { + "start": 3807.98, + "end": 3809.04, + "probability": 0.8809 + }, + { + "start": 3809.84, + "end": 3814.74, + "probability": 0.8732 + }, + { + "start": 3815.72, + "end": 3819.32, + "probability": 0.7395 + }, + { + "start": 3820.76, + "end": 3823.08, + "probability": 0.9653 + }, + { + "start": 3823.18, + "end": 3824.8, + "probability": 0.5383 + }, + { + "start": 3825.58, + "end": 3827.74, + "probability": 0.9902 + }, + { + "start": 3829.32, + "end": 3830.04, + "probability": 0.8 + }, + { + "start": 3831.4, + "end": 3835.5, + "probability": 0.8119 + }, + { + "start": 3836.52, + "end": 3839.3, + "probability": 0.9922 + }, + { + "start": 3839.94, + "end": 3841.86, + "probability": 0.9962 + }, + { + "start": 3842.92, + "end": 3844.06, + "probability": 0.8113 + }, + { + "start": 3845.36, + "end": 3846.54, + "probability": 0.4512 + }, + { + "start": 3846.7, + "end": 3848.8, + "probability": 0.9067 + }, + { + "start": 3849.78, + "end": 3853.76, + "probability": 0.7673 + }, + { + "start": 3854.38, + "end": 3856.91, + "probability": 0.9827 + }, + { + "start": 3857.56, + "end": 3863.0, + "probability": 0.9302 + }, + { + "start": 3863.56, + "end": 3870.56, + "probability": 0.9993 + }, + { + "start": 3870.56, + "end": 3876.28, + "probability": 0.9993 + }, + { + "start": 3876.84, + "end": 3879.68, + "probability": 0.9958 + }, + { + "start": 3882.24, + "end": 3885.28, + "probability": 0.939 + }, + { + "start": 3885.82, + "end": 3890.16, + "probability": 0.9914 + }, + { + "start": 3891.18, + "end": 3893.54, + "probability": 0.8232 + }, + { + "start": 3894.1, + "end": 3896.88, + "probability": 0.9961 + }, + { + "start": 3896.88, + "end": 3899.92, + "probability": 0.9976 + }, + { + "start": 3901.28, + "end": 3902.4, + "probability": 0.9595 + }, + { + "start": 3903.08, + "end": 3904.98, + "probability": 0.9771 + }, + { + "start": 3906.34, + "end": 3907.58, + "probability": 0.9614 + }, + { + "start": 3908.2, + "end": 3912.16, + "probability": 0.9785 + }, + { + "start": 3912.78, + "end": 3915.8, + "probability": 0.9942 + }, + { + "start": 3915.8, + "end": 3919.2, + "probability": 0.9953 + }, + { + "start": 3922.56, + "end": 3923.8, + "probability": 0.7907 + }, + { + "start": 3923.92, + "end": 3926.38, + "probability": 0.8508 + }, + { + "start": 3927.2, + "end": 3930.48, + "probability": 0.9578 + }, + { + "start": 3930.68, + "end": 3931.86, + "probability": 0.7847 + }, + { + "start": 3931.96, + "end": 3934.02, + "probability": 0.9934 + }, + { + "start": 3934.42, + "end": 3938.42, + "probability": 0.7989 + }, + { + "start": 3943.64, + "end": 3948.6, + "probability": 0.9962 + }, + { + "start": 3949.12, + "end": 3950.56, + "probability": 0.9628 + }, + { + "start": 3951.1, + "end": 3953.0, + "probability": 0.9976 + }, + { + "start": 3953.64, + "end": 3956.5, + "probability": 0.9795 + }, + { + "start": 3956.62, + "end": 3958.46, + "probability": 0.8628 + }, + { + "start": 3959.7, + "end": 3961.84, + "probability": 0.9952 + }, + { + "start": 3961.88, + "end": 3963.0, + "probability": 0.9604 + }, + { + "start": 3963.1, + "end": 3963.5, + "probability": 0.8188 + }, + { + "start": 3964.2, + "end": 3966.48, + "probability": 0.9822 + }, + { + "start": 3966.54, + "end": 3967.38, + "probability": 0.8338 + }, + { + "start": 3967.88, + "end": 3968.48, + "probability": 0.7296 + }, + { + "start": 3968.98, + "end": 3972.42, + "probability": 0.9354 + }, + { + "start": 3973.0, + "end": 3973.54, + "probability": 0.7723 + }, + { + "start": 3974.78, + "end": 3976.84, + "probability": 0.8067 + }, + { + "start": 3977.94, + "end": 3982.0, + "probability": 0.9807 + }, + { + "start": 3982.86, + "end": 3983.66, + "probability": 0.6008 + }, + { + "start": 3985.16, + "end": 3988.94, + "probability": 0.7161 + }, + { + "start": 3989.12, + "end": 3989.19, + "probability": 0.9394 + }, + { + "start": 3989.42, + "end": 3989.56, + "probability": 0.5897 + }, + { + "start": 3989.56, + "end": 3989.66, + "probability": 0.4306 + }, + { + "start": 3989.66, + "end": 3989.88, + "probability": 0.5653 + }, + { + "start": 3990.3, + "end": 3991.14, + "probability": 0.7516 + }, + { + "start": 3991.5, + "end": 3992.56, + "probability": 0.4926 + }, + { + "start": 3993.46, + "end": 3993.74, + "probability": 0.0179 + }, + { + "start": 3993.76, + "end": 3994.98, + "probability": 0.3255 + }, + { + "start": 3997.74, + "end": 3997.92, + "probability": 0.0931 + }, + { + "start": 3997.92, + "end": 3998.08, + "probability": 0.0132 + }, + { + "start": 3998.08, + "end": 3998.08, + "probability": 0.0463 + }, + { + "start": 3998.32, + "end": 4001.06, + "probability": 0.5978 + }, + { + "start": 4001.28, + "end": 4001.72, + "probability": 0.3927 + }, + { + "start": 4001.84, + "end": 4002.06, + "probability": 0.0545 + }, + { + "start": 4002.18, + "end": 4005.18, + "probability": 0.601 + }, + { + "start": 4005.32, + "end": 4006.9, + "probability": 0.2684 + }, + { + "start": 4006.98, + "end": 4007.71, + "probability": 0.938 + }, + { + "start": 4008.06, + "end": 4009.16, + "probability": 0.7173 + }, + { + "start": 4009.38, + "end": 4009.38, + "probability": 0.076 + }, + { + "start": 4009.38, + "end": 4012.32, + "probability": 0.8967 + }, + { + "start": 4012.42, + "end": 4012.7, + "probability": 0.1457 + }, + { + "start": 4012.7, + "end": 4015.97, + "probability": 0.5736 + }, + { + "start": 4017.62, + "end": 4018.66, + "probability": 0.0925 + }, + { + "start": 4018.66, + "end": 4019.04, + "probability": 0.0722 + }, + { + "start": 4019.04, + "end": 4019.32, + "probability": 0.0995 + }, + { + "start": 4019.44, + "end": 4020.4, + "probability": 0.4449 + }, + { + "start": 4021.46, + "end": 4026.74, + "probability": 0.6935 + }, + { + "start": 4027.1, + "end": 4027.96, + "probability": 0.094 + }, + { + "start": 4027.96, + "end": 4028.52, + "probability": 0.412 + }, + { + "start": 4029.32, + "end": 4029.76, + "probability": 0.4583 + }, + { + "start": 4030.15, + "end": 4031.92, + "probability": 0.8743 + }, + { + "start": 4032.1, + "end": 4032.42, + "probability": 0.8561 + }, + { + "start": 4032.5, + "end": 4034.88, + "probability": 0.7787 + }, + { + "start": 4034.88, + "end": 4035.22, + "probability": 0.8175 + }, + { + "start": 4035.74, + "end": 4037.88, + "probability": 0.9516 + }, + { + "start": 4037.92, + "end": 4038.06, + "probability": 0.3254 + }, + { + "start": 4038.28, + "end": 4038.38, + "probability": 0.109 + }, + { + "start": 4038.38, + "end": 4038.74, + "probability": 0.9628 + }, + { + "start": 4038.84, + "end": 4039.7, + "probability": 0.7269 + }, + { + "start": 4039.82, + "end": 4040.82, + "probability": 0.762 + }, + { + "start": 4041.2, + "end": 4046.22, + "probability": 0.9738 + }, + { + "start": 4046.3, + "end": 4046.94, + "probability": 0.9797 + }, + { + "start": 4048.02, + "end": 4050.26, + "probability": 0.8838 + }, + { + "start": 4051.08, + "end": 4053.2, + "probability": 0.9941 + }, + { + "start": 4053.28, + "end": 4054.3, + "probability": 0.7351 + }, + { + "start": 4054.88, + "end": 4057.48, + "probability": 0.815 + }, + { + "start": 4057.8, + "end": 4057.96, + "probability": 0.004 + }, + { + "start": 4057.96, + "end": 4059.6, + "probability": 0.5236 + }, + { + "start": 4060.12, + "end": 4062.4, + "probability": 0.9939 + }, + { + "start": 4063.16, + "end": 4064.18, + "probability": 0.0607 + }, + { + "start": 4065.46, + "end": 4068.04, + "probability": 0.0437 + }, + { + "start": 4071.16, + "end": 4071.16, + "probability": 0.1304 + }, + { + "start": 4072.56, + "end": 4072.56, + "probability": 0.0259 + }, + { + "start": 4073.34, + "end": 4073.82, + "probability": 0.0639 + }, + { + "start": 4075.58, + "end": 4078.48, + "probability": 0.1047 + }, + { + "start": 4078.98, + "end": 4079.27, + "probability": 0.0613 + }, + { + "start": 4082.54, + "end": 4083.7, + "probability": 0.2932 + }, + { + "start": 4084.92, + "end": 4090.82, + "probability": 0.1908 + }, + { + "start": 4091.88, + "end": 4091.88, + "probability": 0.0473 + }, + { + "start": 4091.88, + "end": 4091.88, + "probability": 0.0544 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.0, + "end": 4154.0, + "probability": 0.0 + }, + { + "start": 4154.38, + "end": 4156.36, + "probability": 0.3496 + }, + { + "start": 4156.52, + "end": 4156.78, + "probability": 0.3328 + }, + { + "start": 4156.78, + "end": 4156.94, + "probability": 0.4205 + }, + { + "start": 4157.06, + "end": 4157.06, + "probability": 0.4121 + }, + { + "start": 4157.06, + "end": 4158.08, + "probability": 0.5196 + }, + { + "start": 4158.14, + "end": 4160.96, + "probability": 0.2553 + }, + { + "start": 4161.08, + "end": 4161.6, + "probability": 0.2251 + }, + { + "start": 4161.6, + "end": 4164.32, + "probability": 0.1249 + }, + { + "start": 4164.94, + "end": 4165.04, + "probability": 0.0126 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4287.0, + "end": 4287.0, + "probability": 0.0 + }, + { + "start": 4288.16, + "end": 4290.54, + "probability": 0.2469 + }, + { + "start": 4290.54, + "end": 4292.98, + "probability": 0.0338 + }, + { + "start": 4293.28, + "end": 4299.33, + "probability": 0.0174 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.0, + "end": 4407.0, + "probability": 0.0 + }, + { + "start": 4407.08, + "end": 4407.12, + "probability": 0.0263 + }, + { + "start": 4407.12, + "end": 4407.84, + "probability": 0.0547 + }, + { + "start": 4407.84, + "end": 4409.28, + "probability": 0.8468 + }, + { + "start": 4410.96, + "end": 4412.94, + "probability": 0.6722 + }, + { + "start": 4413.68, + "end": 4414.62, + "probability": 0.6604 + }, + { + "start": 4414.74, + "end": 4416.82, + "probability": 0.9941 + }, + { + "start": 4417.38, + "end": 4419.48, + "probability": 0.9003 + }, + { + "start": 4420.18, + "end": 4423.34, + "probability": 0.9983 + }, + { + "start": 4424.12, + "end": 4425.66, + "probability": 0.8599 + }, + { + "start": 4426.06, + "end": 4427.1, + "probability": 0.9937 + }, + { + "start": 4427.24, + "end": 4430.42, + "probability": 0.9195 + }, + { + "start": 4431.4, + "end": 4433.94, + "probability": 0.9575 + }, + { + "start": 4434.58, + "end": 4437.48, + "probability": 0.9766 + }, + { + "start": 4437.64, + "end": 4439.06, + "probability": 0.7711 + }, + { + "start": 4439.2, + "end": 4439.9, + "probability": 0.8328 + }, + { + "start": 4440.36, + "end": 4441.92, + "probability": 0.9298 + }, + { + "start": 4442.48, + "end": 4444.4, + "probability": 0.9724 + }, + { + "start": 4445.28, + "end": 4447.8, + "probability": 0.9747 + }, + { + "start": 4448.46, + "end": 4450.98, + "probability": 0.9206 + }, + { + "start": 4451.84, + "end": 4455.54, + "probability": 0.9911 + }, + { + "start": 4455.8, + "end": 4456.6, + "probability": 0.9877 + }, + { + "start": 4457.2, + "end": 4458.84, + "probability": 0.9783 + }, + { + "start": 4459.02, + "end": 4460.0, + "probability": 0.9916 + }, + { + "start": 4460.06, + "end": 4461.0, + "probability": 0.8752 + }, + { + "start": 4461.36, + "end": 4461.86, + "probability": 0.8011 + }, + { + "start": 4462.42, + "end": 4464.12, + "probability": 0.9845 + }, + { + "start": 4464.36, + "end": 4467.16, + "probability": 0.9592 + }, + { + "start": 4467.96, + "end": 4469.08, + "probability": 0.7852 + }, + { + "start": 4469.72, + "end": 4471.42, + "probability": 0.6528 + }, + { + "start": 4471.94, + "end": 4472.48, + "probability": 0.4088 + }, + { + "start": 4474.38, + "end": 4475.08, + "probability": 0.2222 + }, + { + "start": 4475.38, + "end": 4476.02, + "probability": 0.564 + }, + { + "start": 4476.48, + "end": 4477.4, + "probability": 0.8824 + }, + { + "start": 4477.62, + "end": 4480.18, + "probability": 0.9465 + }, + { + "start": 4480.18, + "end": 4480.28, + "probability": 0.1358 + }, + { + "start": 4480.9, + "end": 4482.68, + "probability": 0.9192 + }, + { + "start": 4482.9, + "end": 4484.14, + "probability": 0.9729 + }, + { + "start": 4484.26, + "end": 4486.22, + "probability": 0.9155 + }, + { + "start": 4486.58, + "end": 4489.02, + "probability": 0.9307 + }, + { + "start": 4489.48, + "end": 4491.98, + "probability": 0.9272 + }, + { + "start": 4492.96, + "end": 4494.28, + "probability": 0.8199 + }, + { + "start": 4494.88, + "end": 4497.68, + "probability": 0.9697 + }, + { + "start": 4497.98, + "end": 4499.4, + "probability": 0.9421 + }, + { + "start": 4500.06, + "end": 4501.04, + "probability": 0.9756 + }, + { + "start": 4501.22, + "end": 4502.68, + "probability": 0.9868 + }, + { + "start": 4503.12, + "end": 4504.44, + "probability": 0.9829 + }, + { + "start": 4505.12, + "end": 4507.54, + "probability": 0.9935 + }, + { + "start": 4507.68, + "end": 4508.14, + "probability": 0.8726 + }, + { + "start": 4508.7, + "end": 4510.74, + "probability": 0.979 + }, + { + "start": 4511.38, + "end": 4513.96, + "probability": 0.9832 + }, + { + "start": 4514.74, + "end": 4519.12, + "probability": 0.9966 + }, + { + "start": 4519.48, + "end": 4520.72, + "probability": 0.9157 + }, + { + "start": 4521.04, + "end": 4522.66, + "probability": 0.9902 + }, + { + "start": 4522.82, + "end": 4524.26, + "probability": 0.9714 + }, + { + "start": 4524.56, + "end": 4525.7, + "probability": 0.9214 + }, + { + "start": 4526.22, + "end": 4530.6, + "probability": 0.995 + }, + { + "start": 4531.12, + "end": 4534.76, + "probability": 0.9841 + }, + { + "start": 4535.32, + "end": 4536.58, + "probability": 0.8972 + }, + { + "start": 4536.68, + "end": 4539.5, + "probability": 0.9847 + }, + { + "start": 4540.12, + "end": 4544.14, + "probability": 0.9946 + }, + { + "start": 4544.48, + "end": 4547.96, + "probability": 0.9946 + }, + { + "start": 4549.02, + "end": 4549.66, + "probability": 0.698 + }, + { + "start": 4550.26, + "end": 4552.1, + "probability": 0.9949 + }, + { + "start": 4552.62, + "end": 4554.66, + "probability": 0.9669 + }, + { + "start": 4555.14, + "end": 4558.52, + "probability": 0.9956 + }, + { + "start": 4559.1, + "end": 4560.48, + "probability": 0.9846 + }, + { + "start": 4560.74, + "end": 4561.52, + "probability": 0.9963 + }, + { + "start": 4561.6, + "end": 4562.72, + "probability": 0.8579 + }, + { + "start": 4562.98, + "end": 4564.5, + "probability": 0.9786 + }, + { + "start": 4565.26, + "end": 4566.78, + "probability": 0.9678 + }, + { + "start": 4567.28, + "end": 4568.18, + "probability": 0.9919 + }, + { + "start": 4568.76, + "end": 4571.52, + "probability": 0.9868 + }, + { + "start": 4571.62, + "end": 4574.12, + "probability": 0.9966 + }, + { + "start": 4574.86, + "end": 4576.07, + "probability": 0.8894 + }, + { + "start": 4576.4, + "end": 4580.18, + "probability": 0.9968 + }, + { + "start": 4580.52, + "end": 4581.66, + "probability": 0.5342 + }, + { + "start": 4581.74, + "end": 4581.96, + "probability": 0.7939 + }, + { + "start": 4582.48, + "end": 4582.98, + "probability": 0.6861 + }, + { + "start": 4583.52, + "end": 4585.52, + "probability": 0.7978 + }, + { + "start": 4585.62, + "end": 4586.66, + "probability": 0.9941 + }, + { + "start": 4587.02, + "end": 4589.98, + "probability": 0.8312 + }, + { + "start": 4590.5, + "end": 4594.68, + "probability": 0.9713 + }, + { + "start": 4595.08, + "end": 4598.48, + "probability": 0.9921 + }, + { + "start": 4598.68, + "end": 4600.58, + "probability": 0.991 + }, + { + "start": 4601.1, + "end": 4601.81, + "probability": 0.9298 + }, + { + "start": 4602.68, + "end": 4603.88, + "probability": 0.9163 + }, + { + "start": 4604.42, + "end": 4606.18, + "probability": 0.9461 + }, + { + "start": 4606.24, + "end": 4607.4, + "probability": 0.9492 + }, + { + "start": 4607.44, + "end": 4607.96, + "probability": 0.5619 + }, + { + "start": 4607.98, + "end": 4608.48, + "probability": 0.9236 + }, + { + "start": 4608.56, + "end": 4609.08, + "probability": 0.8969 + }, + { + "start": 4609.56, + "end": 4612.46, + "probability": 0.9907 + }, + { + "start": 4612.84, + "end": 4613.44, + "probability": 0.5411 + }, + { + "start": 4613.82, + "end": 4615.8, + "probability": 0.9963 + }, + { + "start": 4616.08, + "end": 4616.48, + "probability": 0.5985 + }, + { + "start": 4616.7, + "end": 4617.12, + "probability": 0.9364 + }, + { + "start": 4617.5, + "end": 4618.46, + "probability": 0.9753 + }, + { + "start": 4618.98, + "end": 4622.9, + "probability": 0.9951 + }, + { + "start": 4623.44, + "end": 4625.74, + "probability": 0.9328 + }, + { + "start": 4626.12, + "end": 4628.68, + "probability": 0.973 + }, + { + "start": 4629.5, + "end": 4635.18, + "probability": 0.7463 + }, + { + "start": 4635.46, + "end": 4636.6, + "probability": 0.7821 + }, + { + "start": 4636.76, + "end": 4639.84, + "probability": 0.636 + }, + { + "start": 4640.42, + "end": 4643.58, + "probability": 0.321 + }, + { + "start": 4643.64, + "end": 4645.12, + "probability": 0.4522 + }, + { + "start": 4645.52, + "end": 4646.2, + "probability": 0.7158 + }, + { + "start": 4646.28, + "end": 4648.44, + "probability": 0.9746 + }, + { + "start": 4648.52, + "end": 4648.87, + "probability": 0.0812 + }, + { + "start": 4649.74, + "end": 4654.58, + "probability": 0.791 + }, + { + "start": 4655.12, + "end": 4658.06, + "probability": 0.8513 + }, + { + "start": 4658.76, + "end": 4659.84, + "probability": 0.7584 + }, + { + "start": 4659.94, + "end": 4661.26, + "probability": 0.6994 + }, + { + "start": 4661.26, + "end": 4662.94, + "probability": 0.9457 + }, + { + "start": 4663.04, + "end": 4664.26, + "probability": 0.6888 + }, + { + "start": 4667.22, + "end": 4669.9, + "probability": 0.5548 + }, + { + "start": 4670.54, + "end": 4673.24, + "probability": 0.9877 + }, + { + "start": 4673.32, + "end": 4675.32, + "probability": 0.8274 + }, + { + "start": 4675.76, + "end": 4677.28, + "probability": 0.6955 + }, + { + "start": 4677.36, + "end": 4678.14, + "probability": 0.5459 + }, + { + "start": 4678.36, + "end": 4680.7, + "probability": 0.6971 + }, + { + "start": 4681.4, + "end": 4681.96, + "probability": 0.7467 + }, + { + "start": 4682.9, + "end": 4682.9, + "probability": 0.201 + }, + { + "start": 4682.9, + "end": 4683.36, + "probability": 0.5642 + }, + { + "start": 4683.5, + "end": 4686.22, + "probability": 0.9865 + }, + { + "start": 4686.28, + "end": 4686.78, + "probability": 0.6638 + }, + { + "start": 4687.32, + "end": 4689.72, + "probability": 0.7835 + }, + { + "start": 4690.24, + "end": 4691.48, + "probability": 0.8714 + }, + { + "start": 4692.28, + "end": 4694.14, + "probability": 0.9896 + }, + { + "start": 4694.8, + "end": 4698.28, + "probability": 0.9989 + }, + { + "start": 4698.28, + "end": 4702.6, + "probability": 0.9992 + }, + { + "start": 4703.1, + "end": 4703.9, + "probability": 0.6304 + }, + { + "start": 4704.46, + "end": 4705.98, + "probability": 0.9614 + }, + { + "start": 4706.68, + "end": 4708.36, + "probability": 0.985 + }, + { + "start": 4709.1, + "end": 4713.1, + "probability": 0.8844 + }, + { + "start": 4714.52, + "end": 4717.5, + "probability": 0.9958 + }, + { + "start": 4717.92, + "end": 4718.84, + "probability": 0.655 + }, + { + "start": 4718.9, + "end": 4719.4, + "probability": 0.9747 + }, + { + "start": 4719.5, + "end": 4720.6, + "probability": 0.9697 + }, + { + "start": 4721.16, + "end": 4722.0, + "probability": 0.4827 + }, + { + "start": 4722.64, + "end": 4723.28, + "probability": 0.5952 + }, + { + "start": 4723.38, + "end": 4728.08, + "probability": 0.9891 + }, + { + "start": 4728.08, + "end": 4731.82, + "probability": 0.9655 + }, + { + "start": 4732.6, + "end": 4735.7, + "probability": 0.9795 + }, + { + "start": 4735.7, + "end": 4740.0, + "probability": 0.9971 + }, + { + "start": 4740.82, + "end": 4743.22, + "probability": 0.9478 + }, + { + "start": 4743.56, + "end": 4748.36, + "probability": 0.9758 + }, + { + "start": 4749.16, + "end": 4753.46, + "probability": 0.9783 + }, + { + "start": 4753.82, + "end": 4757.94, + "probability": 0.974 + }, + { + "start": 4758.82, + "end": 4758.82, + "probability": 0.305 + }, + { + "start": 4758.82, + "end": 4760.42, + "probability": 0.8503 + }, + { + "start": 4761.02, + "end": 4765.08, + "probability": 0.9807 + }, + { + "start": 4765.08, + "end": 4768.52, + "probability": 0.8114 + }, + { + "start": 4769.28, + "end": 4770.82, + "probability": 0.8967 + }, + { + "start": 4772.52, + "end": 4774.12, + "probability": 0.6428 + }, + { + "start": 4774.12, + "end": 4774.5, + "probability": 0.6958 + }, + { + "start": 4775.08, + "end": 4778.98, + "probability": 0.9902 + }, + { + "start": 4778.98, + "end": 4784.02, + "probability": 0.9158 + }, + { + "start": 4785.0, + "end": 4788.58, + "probability": 0.9897 + }, + { + "start": 4788.7, + "end": 4792.24, + "probability": 0.9074 + }, + { + "start": 4792.32, + "end": 4792.9, + "probability": 0.9875 + }, + { + "start": 4793.84, + "end": 4796.04, + "probability": 0.9843 + }, + { + "start": 4796.68, + "end": 4798.28, + "probability": 0.7042 + }, + { + "start": 4798.4, + "end": 4802.36, + "probability": 0.9595 + }, + { + "start": 4802.98, + "end": 4803.42, + "probability": 0.8534 + }, + { + "start": 4803.5, + "end": 4808.52, + "probability": 0.9854 + }, + { + "start": 4808.84, + "end": 4809.86, + "probability": 0.9381 + }, + { + "start": 4810.46, + "end": 4816.48, + "probability": 0.9922 + }, + { + "start": 4816.48, + "end": 4822.36, + "probability": 0.9982 + }, + { + "start": 4822.5, + "end": 4823.42, + "probability": 0.7866 + }, + { + "start": 4824.8, + "end": 4827.6, + "probability": 0.9966 + }, + { + "start": 4828.14, + "end": 4830.68, + "probability": 0.729 + }, + { + "start": 4831.02, + "end": 4833.88, + "probability": 0.957 + }, + { + "start": 4834.02, + "end": 4834.36, + "probability": 0.8235 + }, + { + "start": 4834.46, + "end": 4835.78, + "probability": 0.8981 + }, + { + "start": 4836.38, + "end": 4840.26, + "probability": 0.9963 + }, + { + "start": 4840.88, + "end": 4843.08, + "probability": 0.9915 + }, + { + "start": 4843.56, + "end": 4844.55, + "probability": 0.9937 + }, + { + "start": 4845.14, + "end": 4848.62, + "probability": 0.9979 + }, + { + "start": 4848.62, + "end": 4850.64, + "probability": 0.9995 + }, + { + "start": 4851.36, + "end": 4856.66, + "probability": 0.9975 + }, + { + "start": 4857.36, + "end": 4858.64, + "probability": 0.8069 + }, + { + "start": 4858.76, + "end": 4859.5, + "probability": 0.8785 + }, + { + "start": 4859.64, + "end": 4864.7, + "probability": 0.9916 + }, + { + "start": 4864.7, + "end": 4868.82, + "probability": 0.9868 + }, + { + "start": 4868.82, + "end": 4873.64, + "probability": 0.9924 + }, + { + "start": 4874.24, + "end": 4876.58, + "probability": 0.6827 + }, + { + "start": 4876.84, + "end": 4879.42, + "probability": 0.9919 + }, + { + "start": 4879.42, + "end": 4881.62, + "probability": 0.9845 + }, + { + "start": 4882.16, + "end": 4886.9, + "probability": 0.9292 + }, + { + "start": 4887.24, + "end": 4890.02, + "probability": 0.9894 + }, + { + "start": 4890.86, + "end": 4891.6, + "probability": 0.7815 + }, + { + "start": 4891.7, + "end": 4892.08, + "probability": 0.8731 + }, + { + "start": 4892.4, + "end": 4896.68, + "probability": 0.9875 + }, + { + "start": 4896.68, + "end": 4901.16, + "probability": 0.9973 + }, + { + "start": 4901.68, + "end": 4905.52, + "probability": 0.9808 + }, + { + "start": 4905.52, + "end": 4910.28, + "probability": 0.9992 + }, + { + "start": 4911.44, + "end": 4912.2, + "probability": 0.842 + }, + { + "start": 4912.3, + "end": 4912.68, + "probability": 0.8671 + }, + { + "start": 4912.82, + "end": 4915.76, + "probability": 0.9407 + }, + { + "start": 4915.92, + "end": 4919.46, + "probability": 0.9785 + }, + { + "start": 4920.04, + "end": 4921.2, + "probability": 0.6926 + }, + { + "start": 4921.32, + "end": 4924.4, + "probability": 0.9946 + }, + { + "start": 4924.8, + "end": 4928.76, + "probability": 0.9776 + }, + { + "start": 4929.18, + "end": 4930.58, + "probability": 0.9824 + }, + { + "start": 4931.3, + "end": 4931.58, + "probability": 0.0186 + }, + { + "start": 4932.56, + "end": 4933.98, + "probability": 0.8828 + }, + { + "start": 4934.34, + "end": 4935.16, + "probability": 0.9369 + }, + { + "start": 4935.42, + "end": 4935.95, + "probability": 0.8413 + }, + { + "start": 4937.26, + "end": 4938.89, + "probability": 0.9657 + }, + { + "start": 4939.24, + "end": 4941.48, + "probability": 0.9986 + }, + { + "start": 4941.9, + "end": 4944.46, + "probability": 0.999 + }, + { + "start": 4944.46, + "end": 4948.5, + "probability": 0.998 + }, + { + "start": 4949.72, + "end": 4951.5, + "probability": 0.9901 + }, + { + "start": 4951.5, + "end": 4953.74, + "probability": 0.9391 + }, + { + "start": 4954.64, + "end": 4956.42, + "probability": 0.896 + }, + { + "start": 4957.38, + "end": 4958.56, + "probability": 0.9143 + }, + { + "start": 4959.32, + "end": 4959.84, + "probability": 0.8874 + }, + { + "start": 4972.8, + "end": 4974.94, + "probability": 0.4814 + }, + { + "start": 4977.76, + "end": 4978.8, + "probability": 0.2562 + }, + { + "start": 4979.38, + "end": 4988.52, + "probability": 0.8388 + }, + { + "start": 4988.74, + "end": 4989.74, + "probability": 0.867 + }, + { + "start": 4990.78, + "end": 4993.22, + "probability": 0.9842 + }, + { + "start": 4993.9, + "end": 4996.54, + "probability": 0.9712 + }, + { + "start": 4997.08, + "end": 4998.14, + "probability": 0.7492 + }, + { + "start": 4998.34, + "end": 5001.32, + "probability": 0.9932 + }, + { + "start": 5001.32, + "end": 5005.48, + "probability": 0.985 + }, + { + "start": 5006.04, + "end": 5011.02, + "probability": 0.9978 + }, + { + "start": 5012.08, + "end": 5012.9, + "probability": 0.9998 + }, + { + "start": 5013.52, + "end": 5017.0, + "probability": 0.8645 + }, + { + "start": 5017.56, + "end": 5017.98, + "probability": 0.7906 + }, + { + "start": 5018.06, + "end": 5018.8, + "probability": 0.9218 + }, + { + "start": 5019.08, + "end": 5021.34, + "probability": 0.8668 + }, + { + "start": 5021.38, + "end": 5022.44, + "probability": 0.7904 + }, + { + "start": 5023.42, + "end": 5023.94, + "probability": 0.4356 + }, + { + "start": 5024.28, + "end": 5029.45, + "probability": 0.8864 + }, + { + "start": 5029.88, + "end": 5030.96, + "probability": 0.9102 + }, + { + "start": 5032.1, + "end": 5036.08, + "probability": 0.873 + }, + { + "start": 5036.08, + "end": 5041.26, + "probability": 0.9941 + }, + { + "start": 5042.28, + "end": 5046.34, + "probability": 0.9907 + }, + { + "start": 5046.46, + "end": 5048.02, + "probability": 0.5457 + }, + { + "start": 5048.44, + "end": 5052.26, + "probability": 0.9764 + }, + { + "start": 5053.18, + "end": 5054.3, + "probability": 0.7422 + }, + { + "start": 5054.8, + "end": 5056.24, + "probability": 0.9616 + }, + { + "start": 5056.56, + "end": 5058.0, + "probability": 0.8789 + }, + { + "start": 5058.08, + "end": 5064.06, + "probability": 0.9706 + }, + { + "start": 5064.46, + "end": 5065.56, + "probability": 0.7646 + }, + { + "start": 5066.18, + "end": 5070.1, + "probability": 0.9963 + }, + { + "start": 5070.18, + "end": 5072.88, + "probability": 0.797 + }, + { + "start": 5073.44, + "end": 5075.86, + "probability": 0.8102 + }, + { + "start": 5075.92, + "end": 5078.9, + "probability": 0.9188 + }, + { + "start": 5079.4, + "end": 5080.35, + "probability": 0.5437 + }, + { + "start": 5081.12, + "end": 5084.44, + "probability": 0.9578 + }, + { + "start": 5084.6, + "end": 5085.08, + "probability": 0.8933 + }, + { + "start": 5085.18, + "end": 5086.8, + "probability": 0.9095 + }, + { + "start": 5087.38, + "end": 5091.7, + "probability": 0.9727 + }, + { + "start": 5091.7, + "end": 5096.26, + "probability": 0.9917 + }, + { + "start": 5096.74, + "end": 5101.2, + "probability": 0.9527 + }, + { + "start": 5101.22, + "end": 5104.32, + "probability": 0.9976 + }, + { + "start": 5105.68, + "end": 5107.42, + "probability": 0.9529 + }, + { + "start": 5107.56, + "end": 5110.26, + "probability": 0.9657 + }, + { + "start": 5110.84, + "end": 5114.44, + "probability": 0.9919 + }, + { + "start": 5114.88, + "end": 5117.64, + "probability": 0.9323 + }, + { + "start": 5117.86, + "end": 5121.36, + "probability": 0.9985 + }, + { + "start": 5121.84, + "end": 5123.7, + "probability": 0.9851 + }, + { + "start": 5124.38, + "end": 5125.0, + "probability": 0.7638 + }, + { + "start": 5125.16, + "end": 5127.22, + "probability": 0.9062 + }, + { + "start": 5127.36, + "end": 5129.14, + "probability": 0.7415 + }, + { + "start": 5129.26, + "end": 5132.02, + "probability": 0.9849 + }, + { + "start": 5132.68, + "end": 5133.92, + "probability": 0.7483 + }, + { + "start": 5134.0, + "end": 5135.88, + "probability": 0.9916 + }, + { + "start": 5136.4, + "end": 5137.88, + "probability": 0.9814 + }, + { + "start": 5138.5, + "end": 5142.6, + "probability": 0.9698 + }, + { + "start": 5143.42, + "end": 5146.26, + "probability": 0.9707 + }, + { + "start": 5146.82, + "end": 5153.82, + "probability": 0.8332 + }, + { + "start": 5154.14, + "end": 5156.64, + "probability": 0.9205 + }, + { + "start": 5156.68, + "end": 5157.12, + "probability": 0.9224 + }, + { + "start": 5158.38, + "end": 5161.02, + "probability": 0.6972 + }, + { + "start": 5161.1, + "end": 5161.8, + "probability": 0.7776 + }, + { + "start": 5161.9, + "end": 5162.62, + "probability": 0.7592 + }, + { + "start": 5162.74, + "end": 5164.68, + "probability": 0.9337 + }, + { + "start": 5164.68, + "end": 5167.28, + "probability": 0.9977 + }, + { + "start": 5167.96, + "end": 5169.94, + "probability": 0.542 + }, + { + "start": 5169.98, + "end": 5171.38, + "probability": 0.6344 + }, + { + "start": 5171.5, + "end": 5175.26, + "probability": 0.8436 + }, + { + "start": 5175.26, + "end": 5176.28, + "probability": 0.6422 + }, + { + "start": 5176.38, + "end": 5178.42, + "probability": 0.3709 + }, + { + "start": 5179.4, + "end": 5183.1, + "probability": 0.9854 + }, + { + "start": 5186.68, + "end": 5187.7, + "probability": 0.7511 + }, + { + "start": 5187.84, + "end": 5189.47, + "probability": 0.8169 + }, + { + "start": 5190.58, + "end": 5193.88, + "probability": 0.9396 + }, + { + "start": 5194.08, + "end": 5194.85, + "probability": 0.5558 + }, + { + "start": 5195.44, + "end": 5197.3, + "probability": 0.9977 + }, + { + "start": 5198.78, + "end": 5200.08, + "probability": 0.7265 + }, + { + "start": 5200.12, + "end": 5202.0, + "probability": 0.8732 + }, + { + "start": 5202.1, + "end": 5203.32, + "probability": 0.6 + }, + { + "start": 5203.38, + "end": 5204.76, + "probability": 0.288 + }, + { + "start": 5204.92, + "end": 5206.0, + "probability": 0.9704 + }, + { + "start": 5206.44, + "end": 5208.08, + "probability": 0.8662 + }, + { + "start": 5208.08, + "end": 5210.48, + "probability": 0.9946 + }, + { + "start": 5210.96, + "end": 5212.3, + "probability": 0.654 + }, + { + "start": 5212.44, + "end": 5213.98, + "probability": 0.4434 + }, + { + "start": 5214.14, + "end": 5215.26, + "probability": 0.9793 + }, + { + "start": 5215.6, + "end": 5217.26, + "probability": 0.9847 + }, + { + "start": 5217.26, + "end": 5219.54, + "probability": 0.8711 + }, + { + "start": 5220.02, + "end": 5221.26, + "probability": 0.6171 + }, + { + "start": 5221.42, + "end": 5222.96, + "probability": 0.2006 + }, + { + "start": 5222.98, + "end": 5225.54, + "probability": 0.9395 + }, + { + "start": 5225.94, + "end": 5227.86, + "probability": 0.9487 + }, + { + "start": 5228.04, + "end": 5229.12, + "probability": 0.7117 + }, + { + "start": 5229.22, + "end": 5230.3, + "probability": 0.9371 + }, + { + "start": 5230.68, + "end": 5233.64, + "probability": 0.1757 + }, + { + "start": 5233.78, + "end": 5234.78, + "probability": 0.9757 + }, + { + "start": 5235.3, + "end": 5237.06, + "probability": 0.8376 + }, + { + "start": 5237.08, + "end": 5238.82, + "probability": 0.853 + }, + { + "start": 5238.9, + "end": 5240.02, + "probability": 0.7441 + }, + { + "start": 5240.44, + "end": 5242.04, + "probability": 0.7629 + }, + { + "start": 5242.18, + "end": 5244.36, + "probability": 0.9823 + }, + { + "start": 5245.2, + "end": 5247.24, + "probability": 0.9981 + }, + { + "start": 5247.24, + "end": 5249.2, + "probability": 0.9872 + }, + { + "start": 5249.26, + "end": 5249.82, + "probability": 0.7089 + }, + { + "start": 5250.24, + "end": 5252.86, + "probability": 0.9083 + }, + { + "start": 5255.44, + "end": 5258.16, + "probability": 0.9131 + }, + { + "start": 5258.6, + "end": 5259.94, + "probability": 0.6028 + }, + { + "start": 5260.1, + "end": 5262.8, + "probability": 0.9986 + }, + { + "start": 5263.38, + "end": 5265.0, + "probability": 0.8809 + }, + { + "start": 5265.14, + "end": 5266.3, + "probability": 0.666 + }, + { + "start": 5266.4, + "end": 5267.86, + "probability": 0.2439 + }, + { + "start": 5268.64, + "end": 5270.28, + "probability": 0.8887 + }, + { + "start": 5270.38, + "end": 5271.98, + "probability": 0.9316 + }, + { + "start": 5272.24, + "end": 5273.02, + "probability": 0.9298 + }, + { + "start": 5273.92, + "end": 5275.6, + "probability": 0.7642 + }, + { + "start": 5275.66, + "end": 5276.88, + "probability": 0.9443 + }, + { + "start": 5277.02, + "end": 5279.12, + "probability": 0.9815 + }, + { + "start": 5279.2, + "end": 5280.16, + "probability": 0.5998 + }, + { + "start": 5280.48, + "end": 5282.54, + "probability": 0.2896 + }, + { + "start": 5282.6, + "end": 5284.54, + "probability": 0.8042 + }, + { + "start": 5285.16, + "end": 5287.74, + "probability": 0.9933 + }, + { + "start": 5287.76, + "end": 5291.82, + "probability": 0.9243 + }, + { + "start": 5294.34, + "end": 5296.76, + "probability": 0.8606 + }, + { + "start": 5296.98, + "end": 5298.24, + "probability": 0.6167 + }, + { + "start": 5298.36, + "end": 5300.94, + "probability": 0.9874 + }, + { + "start": 5300.94, + "end": 5303.6, + "probability": 0.9507 + }, + { + "start": 5304.08, + "end": 5305.24, + "probability": 0.7907 + }, + { + "start": 5305.3, + "end": 5306.68, + "probability": 0.4664 + }, + { + "start": 5306.72, + "end": 5309.62, + "probability": 0.8978 + }, + { + "start": 5309.72, + "end": 5311.08, + "probability": 0.9324 + }, + { + "start": 5311.66, + "end": 5314.4, + "probability": 0.9902 + }, + { + "start": 5314.4, + "end": 5318.54, + "probability": 0.9971 + }, + { + "start": 5318.54, + "end": 5322.02, + "probability": 0.9948 + }, + { + "start": 5322.62, + "end": 5323.88, + "probability": 0.9515 + }, + { + "start": 5324.04, + "end": 5325.26, + "probability": 0.9617 + }, + { + "start": 5325.44, + "end": 5325.98, + "probability": 0.5056 + }, + { + "start": 5326.6, + "end": 5328.12, + "probability": 0.9379 + }, + { + "start": 5328.32, + "end": 5329.94, + "probability": 0.8589 + }, + { + "start": 5330.12, + "end": 5330.55, + "probability": 0.8202 + }, + { + "start": 5331.5, + "end": 5332.46, + "probability": 0.792 + }, + { + "start": 5332.58, + "end": 5333.28, + "probability": 0.7481 + }, + { + "start": 5333.38, + "end": 5334.66, + "probability": 0.7241 + }, + { + "start": 5335.26, + "end": 5337.64, + "probability": 0.9786 + }, + { + "start": 5337.74, + "end": 5339.1, + "probability": 0.6593 + }, + { + "start": 5339.5, + "end": 5340.1, + "probability": 0.6365 + }, + { + "start": 5340.14, + "end": 5340.66, + "probability": 0.6829 + }, + { + "start": 5340.72, + "end": 5342.3, + "probability": 0.8125 + }, + { + "start": 5342.96, + "end": 5346.88, + "probability": 0.9619 + }, + { + "start": 5347.02, + "end": 5349.02, + "probability": 0.8434 + }, + { + "start": 5349.38, + "end": 5350.56, + "probability": 0.7433 + }, + { + "start": 5350.6, + "end": 5352.16, + "probability": 0.357 + }, + { + "start": 5352.58, + "end": 5354.98, + "probability": 0.8332 + }, + { + "start": 5355.36, + "end": 5356.74, + "probability": 0.6436 + }, + { + "start": 5357.04, + "end": 5359.48, + "probability": 0.9799 + }, + { + "start": 5359.88, + "end": 5362.56, + "probability": 0.9238 + }, + { + "start": 5362.92, + "end": 5367.18, + "probability": 0.9649 + }, + { + "start": 5368.28, + "end": 5371.64, + "probability": 0.9836 + }, + { + "start": 5372.46, + "end": 5377.18, + "probability": 0.9114 + }, + { + "start": 5378.14, + "end": 5379.2, + "probability": 0.9756 + }, + { + "start": 5379.56, + "end": 5380.68, + "probability": 0.4639 + }, + { + "start": 5380.9, + "end": 5381.2, + "probability": 0.8679 + }, + { + "start": 5394.18, + "end": 5398.68, + "probability": 0.0778 + }, + { + "start": 5398.72, + "end": 5399.68, + "probability": 0.0321 + }, + { + "start": 5400.16, + "end": 5400.52, + "probability": 0.0279 + }, + { + "start": 5403.2, + "end": 5403.3, + "probability": 0.0712 + }, + { + "start": 5404.36, + "end": 5407.76, + "probability": 0.0049 + }, + { + "start": 5418.02, + "end": 5420.52, + "probability": 0.0634 + }, + { + "start": 5420.6, + "end": 5421.62, + "probability": 0.0395 + }, + { + "start": 5421.84, + "end": 5423.18, + "probability": 0.0145 + }, + { + "start": 5423.18, + "end": 5424.4, + "probability": 0.3288 + }, + { + "start": 5425.48, + "end": 5425.48, + "probability": 0.522 + }, + { + "start": 5441.34, + "end": 5442.4, + "probability": 0.3826 + }, + { + "start": 5443.09, + "end": 5444.2, + "probability": 0.023 + }, + { + "start": 5444.2, + "end": 5444.28, + "probability": 0.1521 + }, + { + "start": 5444.28, + "end": 5445.54, + "probability": 0.4788 + }, + { + "start": 5445.54, + "end": 5446.28, + "probability": 0.1755 + }, + { + "start": 5447.16, + "end": 5448.62, + "probability": 0.0367 + }, + { + "start": 5451.56, + "end": 5454.08, + "probability": 0.5202 + }, + { + "start": 5456.06, + "end": 5456.34, + "probability": 0.1279 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + }, + { + "start": 5843.12, + "end": 5843.12, + "probability": 0.0 + } + ], + "segments_count": 1883, + "words_count": 9792, + "avg_words_per_segment": 5.2002, + "avg_segment_duration": 1.9238, + "avg_words_per_minute": 100.549, + "plenum_id": "117428", + "duration": 5843.12, + "title": null, + "plenum_date": "2023-05-30" +} \ No newline at end of file