diff --git "a/117552/metadata.json" "b/117552/metadata.json" new file mode 100644--- /dev/null +++ "b/117552/metadata.json" @@ -0,0 +1,46722 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "117552", + "quality_score": 0.845, + "per_segment_quality_scores": [ + { + "start": 41.04, + "end": 41.7, + "probability": 0.0342 + }, + { + "start": 41.7, + "end": 42.4, + "probability": 0.0278 + }, + { + "start": 42.4, + "end": 47.14, + "probability": 0.3879 + }, + { + "start": 47.14, + "end": 47.16, + "probability": 0.2567 + }, + { + "start": 47.22, + "end": 50.16, + "probability": 0.2102 + }, + { + "start": 50.72, + "end": 50.82, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 122.28, + "end": 124.9, + "probability": 0.2556 + }, + { + "start": 125.54, + "end": 126.3, + "probability": 0.8378 + }, + { + "start": 127.38, + "end": 130.92, + "probability": 0.9557 + }, + { + "start": 132.52, + "end": 135.2, + "probability": 0.6372 + }, + { + "start": 136.52, + "end": 144.5, + "probability": 0.665 + }, + { + "start": 145.62, + "end": 153.0, + "probability": 0.9639 + }, + { + "start": 153.52, + "end": 154.76, + "probability": 0.9909 + }, + { + "start": 156.04, + "end": 159.4, + "probability": 0.9688 + }, + { + "start": 160.08, + "end": 162.02, + "probability": 0.9647 + }, + { + "start": 162.46, + "end": 164.54, + "probability": 0.4476 + }, + { + "start": 164.82, + "end": 165.58, + "probability": 0.9239 + }, + { + "start": 166.92, + "end": 168.74, + "probability": 0.8465 + }, + { + "start": 169.88, + "end": 171.06, + "probability": 0.7048 + }, + { + "start": 172.2, + "end": 175.58, + "probability": 0.9973 + }, + { + "start": 176.22, + "end": 176.98, + "probability": 0.877 + }, + { + "start": 177.1, + "end": 177.88, + "probability": 0.9076 + }, + { + "start": 178.3, + "end": 180.48, + "probability": 0.887 + }, + { + "start": 181.42, + "end": 185.14, + "probability": 0.8188 + }, + { + "start": 186.08, + "end": 189.86, + "probability": 0.9709 + }, + { + "start": 190.34, + "end": 192.02, + "probability": 0.946 + }, + { + "start": 193.38, + "end": 196.13, + "probability": 0.7942 + }, + { + "start": 196.3, + "end": 197.46, + "probability": 0.9479 + }, + { + "start": 197.82, + "end": 200.5, + "probability": 0.7471 + }, + { + "start": 200.8, + "end": 203.88, + "probability": 0.7265 + }, + { + "start": 203.98, + "end": 205.94, + "probability": 0.9907 + }, + { + "start": 206.06, + "end": 206.5, + "probability": 0.5709 + }, + { + "start": 206.62, + "end": 208.18, + "probability": 0.9842 + }, + { + "start": 209.12, + "end": 210.02, + "probability": 0.6863 + }, + { + "start": 210.26, + "end": 212.66, + "probability": 0.8875 + }, + { + "start": 213.64, + "end": 214.84, + "probability": 0.9357 + }, + { + "start": 216.14, + "end": 219.9, + "probability": 0.873 + }, + { + "start": 220.9, + "end": 224.18, + "probability": 0.929 + }, + { + "start": 225.39, + "end": 226.68, + "probability": 0.9084 + }, + { + "start": 227.92, + "end": 229.77, + "probability": 0.9736 + }, + { + "start": 231.16, + "end": 233.51, + "probability": 0.8885 + }, + { + "start": 234.42, + "end": 235.96, + "probability": 0.9546 + }, + { + "start": 236.66, + "end": 238.18, + "probability": 0.9832 + }, + { + "start": 239.1, + "end": 242.44, + "probability": 0.9889 + }, + { + "start": 243.02, + "end": 244.12, + "probability": 0.9155 + }, + { + "start": 245.22, + "end": 246.9, + "probability": 0.9868 + }, + { + "start": 249.74, + "end": 250.56, + "probability": 0.9553 + }, + { + "start": 250.88, + "end": 256.38, + "probability": 0.9932 + }, + { + "start": 257.74, + "end": 258.56, + "probability": 0.6562 + }, + { + "start": 259.68, + "end": 263.14, + "probability": 0.9919 + }, + { + "start": 264.78, + "end": 266.0, + "probability": 0.9856 + }, + { + "start": 267.58, + "end": 269.52, + "probability": 0.5392 + }, + { + "start": 270.7, + "end": 275.92, + "probability": 0.7429 + }, + { + "start": 277.0, + "end": 278.86, + "probability": 0.9736 + }, + { + "start": 280.04, + "end": 281.16, + "probability": 0.7786 + }, + { + "start": 282.06, + "end": 284.7, + "probability": 0.9817 + }, + { + "start": 285.34, + "end": 286.02, + "probability": 0.5865 + }, + { + "start": 286.98, + "end": 289.92, + "probability": 0.492 + }, + { + "start": 290.46, + "end": 293.62, + "probability": 0.9274 + }, + { + "start": 295.22, + "end": 297.3, + "probability": 0.9624 + }, + { + "start": 300.14, + "end": 302.88, + "probability": 0.7983 + }, + { + "start": 303.04, + "end": 305.4, + "probability": 0.8584 + }, + { + "start": 306.62, + "end": 307.12, + "probability": 0.6884 + }, + { + "start": 307.66, + "end": 311.7, + "probability": 0.8957 + }, + { + "start": 312.8, + "end": 314.06, + "probability": 0.7847 + }, + { + "start": 314.22, + "end": 318.86, + "probability": 0.9458 + }, + { + "start": 318.86, + "end": 323.88, + "probability": 0.9912 + }, + { + "start": 324.7, + "end": 325.04, + "probability": 0.8205 + }, + { + "start": 325.36, + "end": 330.48, + "probability": 0.9955 + }, + { + "start": 330.62, + "end": 334.66, + "probability": 0.9961 + }, + { + "start": 335.66, + "end": 342.25, + "probability": 0.9571 + }, + { + "start": 343.16, + "end": 351.22, + "probability": 0.9953 + }, + { + "start": 352.36, + "end": 354.02, + "probability": 0.9164 + }, + { + "start": 354.62, + "end": 355.92, + "probability": 0.6077 + }, + { + "start": 357.04, + "end": 363.2, + "probability": 0.9961 + }, + { + "start": 364.22, + "end": 366.24, + "probability": 0.9946 + }, + { + "start": 366.48, + "end": 370.38, + "probability": 0.9626 + }, + { + "start": 370.82, + "end": 373.04, + "probability": 0.9845 + }, + { + "start": 374.1, + "end": 377.96, + "probability": 0.9708 + }, + { + "start": 378.48, + "end": 379.9, + "probability": 0.8752 + }, + { + "start": 380.66, + "end": 382.04, + "probability": 0.637 + }, + { + "start": 382.04, + "end": 382.64, + "probability": 0.7564 + }, + { + "start": 382.76, + "end": 385.12, + "probability": 0.9828 + }, + { + "start": 385.66, + "end": 388.18, + "probability": 0.9858 + }, + { + "start": 389.24, + "end": 390.08, + "probability": 0.9834 + }, + { + "start": 390.68, + "end": 393.76, + "probability": 0.9378 + }, + { + "start": 394.52, + "end": 397.66, + "probability": 0.917 + }, + { + "start": 398.36, + "end": 399.82, + "probability": 0.8319 + }, + { + "start": 400.66, + "end": 405.7, + "probability": 0.8546 + }, + { + "start": 406.84, + "end": 411.45, + "probability": 0.9956 + }, + { + "start": 411.92, + "end": 412.72, + "probability": 0.4736 + }, + { + "start": 412.82, + "end": 413.26, + "probability": 0.8077 + }, + { + "start": 413.34, + "end": 413.68, + "probability": 0.8645 + }, + { + "start": 413.84, + "end": 414.16, + "probability": 0.8106 + }, + { + "start": 414.28, + "end": 415.58, + "probability": 0.4001 + }, + { + "start": 415.8, + "end": 418.24, + "probability": 0.8451 + }, + { + "start": 418.38, + "end": 418.98, + "probability": 0.8056 + }, + { + "start": 419.96, + "end": 424.34, + "probability": 0.9581 + }, + { + "start": 424.42, + "end": 430.56, + "probability": 0.9833 + }, + { + "start": 431.0, + "end": 432.56, + "probability": 0.6671 + }, + { + "start": 433.1, + "end": 435.66, + "probability": 0.8268 + }, + { + "start": 436.24, + "end": 436.52, + "probability": 0.7957 + }, + { + "start": 437.82, + "end": 441.74, + "probability": 0.7946 + }, + { + "start": 441.82, + "end": 446.12, + "probability": 0.9572 + }, + { + "start": 446.24, + "end": 447.84, + "probability": 0.8912 + }, + { + "start": 448.22, + "end": 450.24, + "probability": 0.9669 + }, + { + "start": 451.46, + "end": 454.52, + "probability": 0.9392 + }, + { + "start": 455.16, + "end": 459.02, + "probability": 0.7389 + }, + { + "start": 459.14, + "end": 459.64, + "probability": 0.5233 + }, + { + "start": 459.76, + "end": 460.36, + "probability": 0.8274 + }, + { + "start": 460.48, + "end": 461.02, + "probability": 0.4001 + }, + { + "start": 461.92, + "end": 462.48, + "probability": 0.5308 + }, + { + "start": 463.26, + "end": 467.64, + "probability": 0.9858 + }, + { + "start": 467.64, + "end": 471.68, + "probability": 0.9596 + }, + { + "start": 471.82, + "end": 472.22, + "probability": 0.8242 + }, + { + "start": 472.42, + "end": 472.76, + "probability": 0.8687 + }, + { + "start": 472.82, + "end": 475.06, + "probability": 0.7827 + }, + { + "start": 475.44, + "end": 477.06, + "probability": 0.9791 + }, + { + "start": 477.78, + "end": 481.08, + "probability": 0.8737 + }, + { + "start": 481.6, + "end": 482.08, + "probability": 0.5023 + }, + { + "start": 483.12, + "end": 486.88, + "probability": 0.9165 + }, + { + "start": 486.98, + "end": 491.22, + "probability": 0.9512 + }, + { + "start": 491.82, + "end": 494.34, + "probability": 0.9575 + }, + { + "start": 495.12, + "end": 496.54, + "probability": 0.8434 + }, + { + "start": 496.72, + "end": 498.04, + "probability": 0.6677 + }, + { + "start": 498.24, + "end": 499.1, + "probability": 0.8295 + }, + { + "start": 499.2, + "end": 500.12, + "probability": 0.8378 + }, + { + "start": 502.46, + "end": 503.02, + "probability": 0.8054 + }, + { + "start": 503.24, + "end": 505.68, + "probability": 0.9343 + }, + { + "start": 505.86, + "end": 509.06, + "probability": 0.9761 + }, + { + "start": 509.64, + "end": 514.28, + "probability": 0.991 + }, + { + "start": 514.74, + "end": 519.68, + "probability": 0.8867 + }, + { + "start": 520.34, + "end": 521.1, + "probability": 0.8069 + }, + { + "start": 521.8, + "end": 529.52, + "probability": 0.7833 + }, + { + "start": 529.52, + "end": 537.6, + "probability": 0.9938 + }, + { + "start": 538.34, + "end": 543.72, + "probability": 0.9888 + }, + { + "start": 543.72, + "end": 549.48, + "probability": 0.9985 + }, + { + "start": 549.84, + "end": 553.44, + "probability": 0.9771 + }, + { + "start": 553.44, + "end": 557.76, + "probability": 0.9971 + }, + { + "start": 558.46, + "end": 563.82, + "probability": 0.9766 + }, + { + "start": 564.3, + "end": 565.9, + "probability": 0.8603 + }, + { + "start": 566.02, + "end": 568.66, + "probability": 0.849 + }, + { + "start": 570.0, + "end": 572.96, + "probability": 0.9683 + }, + { + "start": 574.16, + "end": 576.32, + "probability": 0.796 + }, + { + "start": 576.9, + "end": 579.48, + "probability": 0.9792 + }, + { + "start": 579.48, + "end": 582.14, + "probability": 0.9755 + }, + { + "start": 583.26, + "end": 584.78, + "probability": 0.9994 + }, + { + "start": 584.98, + "end": 588.72, + "probability": 0.8248 + }, + { + "start": 589.52, + "end": 590.94, + "probability": 0.9866 + }, + { + "start": 591.7, + "end": 593.6, + "probability": 0.9941 + }, + { + "start": 594.62, + "end": 598.3, + "probability": 0.6807 + }, + { + "start": 601.34, + "end": 601.34, + "probability": 0.9826 + }, + { + "start": 601.34, + "end": 601.34, + "probability": 0.2643 + }, + { + "start": 601.34, + "end": 604.7, + "probability": 0.8063 + }, + { + "start": 604.8, + "end": 606.58, + "probability": 0.5832 + }, + { + "start": 608.96, + "end": 611.5, + "probability": 0.6104 + }, + { + "start": 611.96, + "end": 614.59, + "probability": 0.8482 + }, + { + "start": 616.32, + "end": 617.1, + "probability": 0.8664 + }, + { + "start": 617.18, + "end": 618.1, + "probability": 0.923 + }, + { + "start": 618.4, + "end": 619.02, + "probability": 0.3471 + }, + { + "start": 619.64, + "end": 622.42, + "probability": 0.5058 + }, + { + "start": 622.52, + "end": 623.42, + "probability": 0.5868 + }, + { + "start": 623.46, + "end": 628.32, + "probability": 0.9335 + }, + { + "start": 628.88, + "end": 631.14, + "probability": 0.8737 + }, + { + "start": 631.8, + "end": 634.58, + "probability": 0.985 + }, + { + "start": 635.06, + "end": 637.56, + "probability": 0.9468 + }, + { + "start": 638.38, + "end": 641.12, + "probability": 0.9511 + }, + { + "start": 641.58, + "end": 649.82, + "probability": 0.9957 + }, + { + "start": 650.36, + "end": 650.84, + "probability": 0.8573 + }, + { + "start": 651.48, + "end": 656.0, + "probability": 0.9093 + }, + { + "start": 657.34, + "end": 659.32, + "probability": 0.7466 + }, + { + "start": 659.38, + "end": 659.46, + "probability": 0.2198 + }, + { + "start": 659.56, + "end": 661.62, + "probability": 0.9241 + }, + { + "start": 661.74, + "end": 663.08, + "probability": 0.642 + }, + { + "start": 664.6, + "end": 667.9, + "probability": 0.9868 + }, + { + "start": 668.5, + "end": 673.06, + "probability": 0.9555 + }, + { + "start": 673.78, + "end": 678.09, + "probability": 0.9863 + }, + { + "start": 679.38, + "end": 682.78, + "probability": 0.9412 + }, + { + "start": 694.74, + "end": 696.16, + "probability": 0.7473 + }, + { + "start": 697.08, + "end": 698.37, + "probability": 0.5777 + }, + { + "start": 699.44, + "end": 700.88, + "probability": 0.7941 + }, + { + "start": 702.14, + "end": 705.9, + "probability": 0.8885 + }, + { + "start": 706.76, + "end": 709.14, + "probability": 0.9899 + }, + { + "start": 709.66, + "end": 713.86, + "probability": 0.9906 + }, + { + "start": 714.78, + "end": 716.58, + "probability": 0.9888 + }, + { + "start": 717.2, + "end": 720.92, + "probability": 0.974 + }, + { + "start": 721.7, + "end": 722.52, + "probability": 0.7143 + }, + { + "start": 723.16, + "end": 731.28, + "probability": 0.9884 + }, + { + "start": 731.9, + "end": 733.14, + "probability": 0.7205 + }, + { + "start": 733.28, + "end": 734.12, + "probability": 0.7886 + }, + { + "start": 734.84, + "end": 735.48, + "probability": 0.6209 + }, + { + "start": 736.08, + "end": 737.14, + "probability": 0.8455 + }, + { + "start": 737.3, + "end": 738.02, + "probability": 0.9161 + }, + { + "start": 738.12, + "end": 740.08, + "probability": 0.9785 + }, + { + "start": 740.3, + "end": 742.04, + "probability": 0.9492 + }, + { + "start": 742.78, + "end": 743.56, + "probability": 0.8162 + }, + { + "start": 743.98, + "end": 750.24, + "probability": 0.9617 + }, + { + "start": 750.24, + "end": 755.5, + "probability": 0.9626 + }, + { + "start": 756.28, + "end": 761.36, + "probability": 0.9792 + }, + { + "start": 761.44, + "end": 762.16, + "probability": 0.947 + }, + { + "start": 762.24, + "end": 763.36, + "probability": 0.6431 + }, + { + "start": 764.24, + "end": 767.02, + "probability": 0.9842 + }, + { + "start": 767.66, + "end": 769.96, + "probability": 0.907 + }, + { + "start": 772.6, + "end": 773.68, + "probability": 0.8577 + }, + { + "start": 775.76, + "end": 776.83, + "probability": 0.501 + }, + { + "start": 778.38, + "end": 780.36, + "probability": 0.986 + }, + { + "start": 780.44, + "end": 788.02, + "probability": 0.9896 + }, + { + "start": 788.1, + "end": 789.06, + "probability": 0.9442 + }, + { + "start": 789.18, + "end": 792.12, + "probability": 0.9971 + }, + { + "start": 793.04, + "end": 802.84, + "probability": 0.9814 + }, + { + "start": 802.84, + "end": 806.72, + "probability": 0.9977 + }, + { + "start": 808.95, + "end": 811.78, + "probability": 0.9865 + }, + { + "start": 812.0, + "end": 819.54, + "probability": 0.978 + }, + { + "start": 819.64, + "end": 820.48, + "probability": 0.835 + }, + { + "start": 820.94, + "end": 824.32, + "probability": 0.9805 + }, + { + "start": 824.32, + "end": 826.78, + "probability": 0.9673 + }, + { + "start": 827.24, + "end": 830.98, + "probability": 0.9954 + }, + { + "start": 831.74, + "end": 834.38, + "probability": 0.987 + }, + { + "start": 834.58, + "end": 839.54, + "probability": 0.9716 + }, + { + "start": 839.86, + "end": 841.82, + "probability": 0.9226 + }, + { + "start": 842.0, + "end": 844.56, + "probability": 0.9878 + }, + { + "start": 844.66, + "end": 846.1, + "probability": 0.6241 + }, + { + "start": 846.44, + "end": 848.66, + "probability": 0.9968 + }, + { + "start": 849.32, + "end": 854.04, + "probability": 0.996 + }, + { + "start": 854.68, + "end": 858.9, + "probability": 0.9341 + }, + { + "start": 859.76, + "end": 859.96, + "probability": 0.2993 + }, + { + "start": 860.02, + "end": 861.0, + "probability": 0.6361 + }, + { + "start": 861.02, + "end": 862.36, + "probability": 0.9227 + }, + { + "start": 862.42, + "end": 863.52, + "probability": 0.7844 + }, + { + "start": 863.78, + "end": 869.32, + "probability": 0.9897 + }, + { + "start": 869.54, + "end": 871.4, + "probability": 0.9407 + }, + { + "start": 871.56, + "end": 872.16, + "probability": 0.7693 + }, + { + "start": 872.36, + "end": 874.16, + "probability": 0.9812 + }, + { + "start": 874.26, + "end": 877.0, + "probability": 0.902 + }, + { + "start": 878.08, + "end": 882.1, + "probability": 0.9834 + }, + { + "start": 883.0, + "end": 884.88, + "probability": 0.99 + }, + { + "start": 885.0, + "end": 885.28, + "probability": 0.9564 + }, + { + "start": 885.44, + "end": 886.04, + "probability": 0.3682 + }, + { + "start": 886.38, + "end": 887.88, + "probability": 0.7796 + }, + { + "start": 888.73, + "end": 890.84, + "probability": 0.9917 + }, + { + "start": 891.18, + "end": 898.18, + "probability": 0.9954 + }, + { + "start": 898.2, + "end": 904.54, + "probability": 0.9949 + }, + { + "start": 905.06, + "end": 907.76, + "probability": 0.8138 + }, + { + "start": 907.84, + "end": 911.76, + "probability": 0.9617 + }, + { + "start": 911.82, + "end": 913.01, + "probability": 0.9961 + }, + { + "start": 913.96, + "end": 919.44, + "probability": 0.9978 + }, + { + "start": 919.48, + "end": 920.68, + "probability": 0.4559 + }, + { + "start": 922.1, + "end": 924.48, + "probability": 0.9941 + }, + { + "start": 924.76, + "end": 928.26, + "probability": 0.9399 + }, + { + "start": 928.88, + "end": 935.74, + "probability": 0.9829 + }, + { + "start": 936.76, + "end": 945.1, + "probability": 0.9656 + }, + { + "start": 945.22, + "end": 945.42, + "probability": 0.7154 + }, + { + "start": 945.48, + "end": 948.12, + "probability": 0.9717 + }, + { + "start": 948.7, + "end": 949.5, + "probability": 0.799 + }, + { + "start": 949.56, + "end": 951.72, + "probability": 0.9146 + }, + { + "start": 952.68, + "end": 953.9, + "probability": 0.4785 + }, + { + "start": 954.78, + "end": 960.96, + "probability": 0.8232 + }, + { + "start": 961.12, + "end": 962.58, + "probability": 0.9977 + }, + { + "start": 962.92, + "end": 966.54, + "probability": 0.9517 + }, + { + "start": 968.44, + "end": 969.48, + "probability": 0.1276 + }, + { + "start": 969.76, + "end": 970.78, + "probability": 0.2673 + }, + { + "start": 971.88, + "end": 972.66, + "probability": 0.653 + }, + { + "start": 972.66, + "end": 976.92, + "probability": 0.968 + }, + { + "start": 977.86, + "end": 982.5, + "probability": 0.9834 + }, + { + "start": 983.02, + "end": 986.36, + "probability": 0.9434 + }, + { + "start": 986.42, + "end": 990.32, + "probability": 0.9705 + }, + { + "start": 991.14, + "end": 998.34, + "probability": 0.9937 + }, + { + "start": 998.5, + "end": 1000.14, + "probability": 0.9898 + }, + { + "start": 1000.28, + "end": 1001.36, + "probability": 0.7898 + }, + { + "start": 1001.98, + "end": 1006.82, + "probability": 0.9948 + }, + { + "start": 1006.84, + "end": 1011.36, + "probability": 0.9946 + }, + { + "start": 1011.36, + "end": 1016.46, + "probability": 0.9966 + }, + { + "start": 1017.08, + "end": 1017.6, + "probability": 0.6584 + }, + { + "start": 1017.74, + "end": 1018.9, + "probability": 0.4879 + }, + { + "start": 1018.92, + "end": 1021.28, + "probability": 0.9663 + }, + { + "start": 1022.28, + "end": 1026.76, + "probability": 0.9774 + }, + { + "start": 1027.26, + "end": 1031.14, + "probability": 0.7914 + }, + { + "start": 1031.68, + "end": 1035.36, + "probability": 0.9946 + }, + { + "start": 1035.6, + "end": 1038.68, + "probability": 0.9764 + }, + { + "start": 1038.82, + "end": 1042.24, + "probability": 0.9863 + }, + { + "start": 1043.72, + "end": 1044.98, + "probability": 0.9814 + }, + { + "start": 1045.88, + "end": 1050.8, + "probability": 0.9978 + }, + { + "start": 1051.5, + "end": 1055.74, + "probability": 0.9924 + }, + { + "start": 1056.46, + "end": 1059.3, + "probability": 0.9976 + }, + { + "start": 1059.52, + "end": 1061.84, + "probability": 0.9973 + }, + { + "start": 1062.72, + "end": 1066.72, + "probability": 0.9879 + }, + { + "start": 1066.72, + "end": 1070.0, + "probability": 0.9962 + }, + { + "start": 1071.1, + "end": 1073.24, + "probability": 0.9847 + }, + { + "start": 1074.46, + "end": 1076.4, + "probability": 0.7067 + }, + { + "start": 1076.5, + "end": 1080.58, + "probability": 0.9934 + }, + { + "start": 1080.58, + "end": 1084.62, + "probability": 0.995 + }, + { + "start": 1085.36, + "end": 1086.88, + "probability": 0.7927 + }, + { + "start": 1087.5, + "end": 1089.84, + "probability": 0.9079 + }, + { + "start": 1090.5, + "end": 1092.38, + "probability": 0.9556 + }, + { + "start": 1092.44, + "end": 1093.88, + "probability": 0.98 + }, + { + "start": 1094.06, + "end": 1094.9, + "probability": 0.9903 + }, + { + "start": 1095.46, + "end": 1096.36, + "probability": 0.9878 + }, + { + "start": 1096.9, + "end": 1100.86, + "probability": 0.9698 + }, + { + "start": 1103.33, + "end": 1103.74, + "probability": 0.118 + }, + { + "start": 1103.74, + "end": 1105.62, + "probability": 0.5818 + }, + { + "start": 1106.22, + "end": 1114.0, + "probability": 0.9911 + }, + { + "start": 1114.8, + "end": 1115.44, + "probability": 0.4489 + }, + { + "start": 1115.76, + "end": 1121.32, + "probability": 0.9961 + }, + { + "start": 1121.36, + "end": 1125.96, + "probability": 0.9998 + }, + { + "start": 1126.7, + "end": 1127.24, + "probability": 0.6461 + }, + { + "start": 1127.34, + "end": 1129.68, + "probability": 0.9758 + }, + { + "start": 1129.7, + "end": 1130.18, + "probability": 0.8689 + }, + { + "start": 1130.84, + "end": 1133.08, + "probability": 0.9585 + }, + { + "start": 1133.7, + "end": 1136.52, + "probability": 0.938 + }, + { + "start": 1137.36, + "end": 1138.58, + "probability": 0.6631 + }, + { + "start": 1139.0, + "end": 1139.36, + "probability": 0.883 + }, + { + "start": 1139.82, + "end": 1141.8, + "probability": 0.6282 + }, + { + "start": 1141.86, + "end": 1142.42, + "probability": 0.8359 + }, + { + "start": 1142.44, + "end": 1148.58, + "probability": 0.9351 + }, + { + "start": 1148.72, + "end": 1153.4, + "probability": 0.8948 + }, + { + "start": 1154.34, + "end": 1160.1, + "probability": 0.9947 + }, + { + "start": 1160.76, + "end": 1161.76, + "probability": 0.7161 + }, + { + "start": 1161.84, + "end": 1162.84, + "probability": 0.9122 + }, + { + "start": 1163.02, + "end": 1166.84, + "probability": 0.9495 + }, + { + "start": 1167.5, + "end": 1170.4, + "probability": 0.9077 + }, + { + "start": 1171.92, + "end": 1175.32, + "probability": 0.8711 + }, + { + "start": 1175.58, + "end": 1176.38, + "probability": 0.8081 + }, + { + "start": 1176.44, + "end": 1177.34, + "probability": 0.7092 + }, + { + "start": 1177.42, + "end": 1178.26, + "probability": 0.9699 + }, + { + "start": 1178.94, + "end": 1180.42, + "probability": 0.9702 + }, + { + "start": 1180.98, + "end": 1183.66, + "probability": 0.3904 + }, + { + "start": 1183.84, + "end": 1186.18, + "probability": 0.9625 + }, + { + "start": 1186.24, + "end": 1190.02, + "probability": 0.9915 + }, + { + "start": 1191.17, + "end": 1195.1, + "probability": 0.7657 + }, + { + "start": 1196.05, + "end": 1199.86, + "probability": 0.9521 + }, + { + "start": 1200.48, + "end": 1201.56, + "probability": 0.9877 + }, + { + "start": 1202.38, + "end": 1203.6, + "probability": 0.9747 + }, + { + "start": 1204.16, + "end": 1207.45, + "probability": 0.9868 + }, + { + "start": 1207.6, + "end": 1209.62, + "probability": 0.9858 + }, + { + "start": 1210.3, + "end": 1212.24, + "probability": 0.9722 + }, + { + "start": 1212.9, + "end": 1213.04, + "probability": 0.5328 + }, + { + "start": 1213.08, + "end": 1213.54, + "probability": 0.4987 + }, + { + "start": 1213.64, + "end": 1214.0, + "probability": 0.8339 + }, + { + "start": 1214.1, + "end": 1216.77, + "probability": 0.9949 + }, + { + "start": 1217.62, + "end": 1223.66, + "probability": 0.9855 + }, + { + "start": 1224.58, + "end": 1225.38, + "probability": 0.9795 + }, + { + "start": 1226.48, + "end": 1227.0, + "probability": 0.0352 + }, + { + "start": 1227.0, + "end": 1227.9, + "probability": 0.7534 + }, + { + "start": 1228.08, + "end": 1229.64, + "probability": 0.619 + }, + { + "start": 1230.62, + "end": 1231.08, + "probability": 0.9186 + }, + { + "start": 1231.76, + "end": 1236.56, + "probability": 0.9543 + }, + { + "start": 1236.78, + "end": 1238.88, + "probability": 0.4571 + }, + { + "start": 1238.88, + "end": 1239.91, + "probability": 0.9984 + }, + { + "start": 1240.52, + "end": 1241.77, + "probability": 0.514 + }, + { + "start": 1243.96, + "end": 1248.56, + "probability": 0.466 + }, + { + "start": 1249.16, + "end": 1252.54, + "probability": 0.6 + }, + { + "start": 1253.2, + "end": 1254.12, + "probability": 0.5891 + }, + { + "start": 1255.02, + "end": 1256.6, + "probability": 0.9766 + }, + { + "start": 1257.22, + "end": 1259.24, + "probability": 0.798 + }, + { + "start": 1259.84, + "end": 1259.96, + "probability": 0.2984 + }, + { + "start": 1259.96, + "end": 1260.82, + "probability": 0.8499 + }, + { + "start": 1262.65, + "end": 1265.88, + "probability": 0.9883 + }, + { + "start": 1266.84, + "end": 1267.4, + "probability": 0.8797 + }, + { + "start": 1268.06, + "end": 1270.32, + "probability": 0.9665 + }, + { + "start": 1270.84, + "end": 1275.04, + "probability": 0.9775 + }, + { + "start": 1275.7, + "end": 1280.16, + "probability": 0.99 + }, + { + "start": 1280.5, + "end": 1283.72, + "probability": 0.9982 + }, + { + "start": 1284.42, + "end": 1286.86, + "probability": 0.9912 + }, + { + "start": 1287.32, + "end": 1289.17, + "probability": 0.988 + }, + { + "start": 1289.46, + "end": 1290.3, + "probability": 0.3384 + }, + { + "start": 1291.1, + "end": 1292.48, + "probability": 0.8161 + }, + { + "start": 1292.92, + "end": 1297.94, + "probability": 0.9868 + }, + { + "start": 1297.94, + "end": 1302.82, + "probability": 0.6443 + }, + { + "start": 1303.08, + "end": 1307.0, + "probability": 0.9319 + }, + { + "start": 1307.36, + "end": 1308.52, + "probability": 0.9812 + }, + { + "start": 1308.86, + "end": 1310.64, + "probability": 0.9763 + }, + { + "start": 1310.66, + "end": 1313.22, + "probability": 0.9502 + }, + { + "start": 1313.96, + "end": 1314.52, + "probability": 0.8066 + }, + { + "start": 1315.06, + "end": 1316.06, + "probability": 0.9902 + }, + { + "start": 1316.72, + "end": 1318.52, + "probability": 0.8013 + }, + { + "start": 1319.02, + "end": 1320.8, + "probability": 0.9873 + }, + { + "start": 1321.5, + "end": 1323.72, + "probability": 0.9175 + }, + { + "start": 1324.16, + "end": 1326.2, + "probability": 0.9225 + }, + { + "start": 1326.62, + "end": 1330.4, + "probability": 0.9669 + }, + { + "start": 1330.82, + "end": 1334.88, + "probability": 0.9059 + }, + { + "start": 1334.88, + "end": 1338.48, + "probability": 0.9685 + }, + { + "start": 1338.92, + "end": 1340.66, + "probability": 0.9968 + }, + { + "start": 1341.06, + "end": 1342.6, + "probability": 0.9985 + }, + { + "start": 1342.9, + "end": 1346.7, + "probability": 0.876 + }, + { + "start": 1347.74, + "end": 1349.5, + "probability": 0.897 + }, + { + "start": 1350.52, + "end": 1351.48, + "probability": 0.8745 + }, + { + "start": 1352.8, + "end": 1355.46, + "probability": 0.9908 + }, + { + "start": 1356.38, + "end": 1361.18, + "probability": 0.932 + }, + { + "start": 1361.86, + "end": 1366.96, + "probability": 0.9982 + }, + { + "start": 1367.34, + "end": 1370.36, + "probability": 0.978 + }, + { + "start": 1370.74, + "end": 1371.84, + "probability": 0.9899 + }, + { + "start": 1372.24, + "end": 1373.95, + "probability": 0.895 + }, + { + "start": 1376.08, + "end": 1376.85, + "probability": 0.8067 + }, + { + "start": 1377.94, + "end": 1379.68, + "probability": 0.7209 + }, + { + "start": 1380.28, + "end": 1382.62, + "probability": 0.6959 + }, + { + "start": 1383.24, + "end": 1384.26, + "probability": 0.8604 + }, + { + "start": 1384.66, + "end": 1386.7, + "probability": 0.3018 + }, + { + "start": 1387.12, + "end": 1390.59, + "probability": 0.9876 + }, + { + "start": 1391.78, + "end": 1392.6, + "probability": 0.6979 + }, + { + "start": 1393.2, + "end": 1393.76, + "probability": 0.7524 + }, + { + "start": 1393.8, + "end": 1395.02, + "probability": 0.7756 + }, + { + "start": 1395.08, + "end": 1397.86, + "probability": 0.832 + }, + { + "start": 1398.68, + "end": 1399.18, + "probability": 0.9651 + }, + { + "start": 1401.34, + "end": 1401.7, + "probability": 0.7088 + }, + { + "start": 1401.7, + "end": 1402.32, + "probability": 0.6104 + }, + { + "start": 1402.44, + "end": 1403.06, + "probability": 0.8001 + }, + { + "start": 1403.28, + "end": 1403.56, + "probability": 0.6609 + }, + { + "start": 1403.6, + "end": 1404.76, + "probability": 0.7451 + }, + { + "start": 1404.78, + "end": 1405.98, + "probability": 0.782 + }, + { + "start": 1406.18, + "end": 1409.72, + "probability": 0.8317 + }, + { + "start": 1410.24, + "end": 1410.46, + "probability": 0.8855 + }, + { + "start": 1410.94, + "end": 1415.64, + "probability": 0.9567 + }, + { + "start": 1415.8, + "end": 1416.2, + "probability": 0.7965 + }, + { + "start": 1416.24, + "end": 1416.48, + "probability": 0.799 + }, + { + "start": 1416.5, + "end": 1421.62, + "probability": 0.9896 + }, + { + "start": 1422.54, + "end": 1424.54, + "probability": 0.8888 + }, + { + "start": 1425.56, + "end": 1429.72, + "probability": 0.957 + }, + { + "start": 1429.72, + "end": 1434.5, + "probability": 0.9833 + }, + { + "start": 1434.5, + "end": 1438.34, + "probability": 0.9948 + }, + { + "start": 1439.04, + "end": 1439.7, + "probability": 0.9323 + }, + { + "start": 1440.46, + "end": 1444.16, + "probability": 0.7952 + }, + { + "start": 1444.2, + "end": 1448.88, + "probability": 0.8789 + }, + { + "start": 1449.22, + "end": 1450.38, + "probability": 0.9785 + }, + { + "start": 1450.48, + "end": 1451.02, + "probability": 0.4157 + }, + { + "start": 1451.66, + "end": 1456.04, + "probability": 0.9837 + }, + { + "start": 1456.18, + "end": 1456.74, + "probability": 0.9276 + }, + { + "start": 1457.34, + "end": 1461.8, + "probability": 0.896 + }, + { + "start": 1462.38, + "end": 1463.88, + "probability": 0.4884 + }, + { + "start": 1464.4, + "end": 1468.18, + "probability": 0.9834 + }, + { + "start": 1468.32, + "end": 1469.68, + "probability": 0.976 + }, + { + "start": 1469.76, + "end": 1472.44, + "probability": 0.9844 + }, + { + "start": 1472.78, + "end": 1474.22, + "probability": 0.7252 + }, + { + "start": 1474.3, + "end": 1474.98, + "probability": 0.8063 + }, + { + "start": 1475.18, + "end": 1479.06, + "probability": 0.9424 + }, + { + "start": 1479.16, + "end": 1479.48, + "probability": 0.9321 + }, + { + "start": 1479.56, + "end": 1480.74, + "probability": 0.8196 + }, + { + "start": 1481.34, + "end": 1482.32, + "probability": 0.5648 + }, + { + "start": 1482.68, + "end": 1485.68, + "probability": 0.863 + }, + { + "start": 1486.08, + "end": 1490.22, + "probability": 0.999 + }, + { + "start": 1490.24, + "end": 1491.64, + "probability": 0.8421 + }, + { + "start": 1491.64, + "end": 1491.96, + "probability": 0.7964 + }, + { + "start": 1492.24, + "end": 1493.2, + "probability": 0.7536 + }, + { + "start": 1493.34, + "end": 1495.12, + "probability": 0.8413 + }, + { + "start": 1495.3, + "end": 1497.2, + "probability": 0.9541 + }, + { + "start": 1502.44, + "end": 1504.24, + "probability": 0.5085 + }, + { + "start": 1504.64, + "end": 1505.28, + "probability": 0.6377 + }, + { + "start": 1505.84, + "end": 1508.22, + "probability": 0.7434 + }, + { + "start": 1508.34, + "end": 1511.92, + "probability": 0.9477 + }, + { + "start": 1512.34, + "end": 1515.33, + "probability": 0.7673 + }, + { + "start": 1516.54, + "end": 1518.18, + "probability": 0.9403 + }, + { + "start": 1518.26, + "end": 1519.52, + "probability": 0.767 + }, + { + "start": 1519.64, + "end": 1521.5, + "probability": 0.9886 + }, + { + "start": 1521.76, + "end": 1524.42, + "probability": 0.6353 + }, + { + "start": 1524.48, + "end": 1531.12, + "probability": 0.9958 + }, + { + "start": 1531.6, + "end": 1532.63, + "probability": 0.917 + }, + { + "start": 1532.82, + "end": 1534.82, + "probability": 0.9821 + }, + { + "start": 1534.82, + "end": 1536.94, + "probability": 0.9932 + }, + { + "start": 1537.12, + "end": 1537.84, + "probability": 0.7948 + }, + { + "start": 1538.42, + "end": 1541.04, + "probability": 0.817 + }, + { + "start": 1541.72, + "end": 1542.1, + "probability": 0.9563 + }, + { + "start": 1542.58, + "end": 1544.02, + "probability": 0.9993 + }, + { + "start": 1544.02, + "end": 1547.72, + "probability": 0.9148 + }, + { + "start": 1547.92, + "end": 1549.18, + "probability": 0.9155 + }, + { + "start": 1551.19, + "end": 1553.02, + "probability": 0.9082 + }, + { + "start": 1553.58, + "end": 1555.06, + "probability": 0.9936 + }, + { + "start": 1555.2, + "end": 1555.46, + "probability": 0.9531 + }, + { + "start": 1555.5, + "end": 1556.28, + "probability": 0.5508 + }, + { + "start": 1557.04, + "end": 1558.5, + "probability": 0.7129 + }, + { + "start": 1558.58, + "end": 1561.44, + "probability": 0.7452 + }, + { + "start": 1563.54, + "end": 1566.48, + "probability": 0.6051 + }, + { + "start": 1567.24, + "end": 1569.8, + "probability": 0.6006 + }, + { + "start": 1570.08, + "end": 1572.18, + "probability": 0.8711 + }, + { + "start": 1572.52, + "end": 1576.04, + "probability": 0.9923 + }, + { + "start": 1576.62, + "end": 1577.42, + "probability": 0.9435 + }, + { + "start": 1577.72, + "end": 1578.5, + "probability": 0.9747 + }, + { + "start": 1578.96, + "end": 1580.94, + "probability": 0.9967 + }, + { + "start": 1581.58, + "end": 1587.72, + "probability": 0.9871 + }, + { + "start": 1588.28, + "end": 1590.06, + "probability": 0.4976 + }, + { + "start": 1590.72, + "end": 1593.52, + "probability": 0.3235 + }, + { + "start": 1593.88, + "end": 1599.76, + "probability": 0.981 + }, + { + "start": 1600.04, + "end": 1602.62, + "probability": 0.9865 + }, + { + "start": 1602.78, + "end": 1604.18, + "probability": 0.9893 + }, + { + "start": 1604.68, + "end": 1607.42, + "probability": 0.6009 + }, + { + "start": 1609.24, + "end": 1611.92, + "probability": 0.706 + }, + { + "start": 1613.1, + "end": 1614.88, + "probability": 0.8099 + }, + { + "start": 1615.54, + "end": 1616.0, + "probability": 0.9796 + }, + { + "start": 1618.7, + "end": 1627.3, + "probability": 0.7397 + }, + { + "start": 1628.42, + "end": 1630.42, + "probability": 0.3508 + }, + { + "start": 1632.6, + "end": 1636.72, + "probability": 0.6999 + }, + { + "start": 1637.08, + "end": 1638.76, + "probability": 0.4313 + }, + { + "start": 1638.8, + "end": 1639.34, + "probability": 0.5026 + }, + { + "start": 1639.4, + "end": 1640.91, + "probability": 0.9341 + }, + { + "start": 1641.66, + "end": 1642.46, + "probability": 0.0138 + }, + { + "start": 1644.06, + "end": 1648.08, + "probability": 0.8407 + }, + { + "start": 1648.16, + "end": 1650.97, + "probability": 0.8893 + }, + { + "start": 1651.34, + "end": 1656.92, + "probability": 0.8311 + }, + { + "start": 1657.2, + "end": 1659.32, + "probability": 0.4804 + }, + { + "start": 1659.32, + "end": 1659.9, + "probability": 0.0982 + }, + { + "start": 1660.46, + "end": 1663.04, + "probability": 0.6908 + }, + { + "start": 1663.2, + "end": 1663.52, + "probability": 0.0545 + }, + { + "start": 1663.52, + "end": 1663.76, + "probability": 0.2107 + }, + { + "start": 1665.12, + "end": 1670.22, + "probability": 0.9014 + }, + { + "start": 1670.96, + "end": 1674.72, + "probability": 0.9876 + }, + { + "start": 1675.1, + "end": 1676.87, + "probability": 0.9978 + }, + { + "start": 1677.1, + "end": 1679.54, + "probability": 0.9692 + }, + { + "start": 1680.02, + "end": 1680.84, + "probability": 0.7226 + }, + { + "start": 1680.88, + "end": 1681.62, + "probability": 0.8958 + }, + { + "start": 1681.92, + "end": 1682.72, + "probability": 0.9343 + }, + { + "start": 1683.24, + "end": 1686.14, + "probability": 0.0357 + }, + { + "start": 1686.14, + "end": 1687.56, + "probability": 0.8981 + }, + { + "start": 1687.92, + "end": 1691.35, + "probability": 0.9951 + }, + { + "start": 1691.6, + "end": 1695.6, + "probability": 0.9915 + }, + { + "start": 1695.92, + "end": 1698.22, + "probability": 0.9788 + }, + { + "start": 1698.34, + "end": 1698.56, + "probability": 0.8503 + }, + { + "start": 1699.02, + "end": 1699.18, + "probability": 0.5882 + }, + { + "start": 1699.26, + "end": 1700.18, + "probability": 0.9246 + }, + { + "start": 1700.86, + "end": 1701.18, + "probability": 0.0117 + }, + { + "start": 1703.11, + "end": 1703.46, + "probability": 0.03 + }, + { + "start": 1703.78, + "end": 1704.92, + "probability": 0.4477 + }, + { + "start": 1704.92, + "end": 1705.22, + "probability": 0.2423 + }, + { + "start": 1705.38, + "end": 1706.62, + "probability": 0.7053 + }, + { + "start": 1706.74, + "end": 1707.85, + "probability": 0.1518 + }, + { + "start": 1708.0, + "end": 1708.92, + "probability": 0.531 + }, + { + "start": 1710.69, + "end": 1713.16, + "probability": 0.3625 + }, + { + "start": 1713.86, + "end": 1714.28, + "probability": 0.0253 + }, + { + "start": 1714.34, + "end": 1717.55, + "probability": 0.0542 + }, + { + "start": 1718.64, + "end": 1720.76, + "probability": 0.0756 + }, + { + "start": 1722.32, + "end": 1723.64, + "probability": 0.0099 + }, + { + "start": 1724.5, + "end": 1725.46, + "probability": 0.0163 + }, + { + "start": 1725.46, + "end": 1726.0, + "probability": 0.0633 + }, + { + "start": 1726.02, + "end": 1728.1, + "probability": 0.2825 + }, + { + "start": 1728.3, + "end": 1729.64, + "probability": 0.0936 + }, + { + "start": 1729.64, + "end": 1732.48, + "probability": 0.0661 + }, + { + "start": 1732.62, + "end": 1733.42, + "probability": 0.0179 + }, + { + "start": 1735.14, + "end": 1738.04, + "probability": 0.1675 + }, + { + "start": 1742.26, + "end": 1744.36, + "probability": 0.1184 + }, + { + "start": 1744.74, + "end": 1746.2, + "probability": 0.3595 + }, + { + "start": 1748.01, + "end": 1751.72, + "probability": 0.0989 + }, + { + "start": 1751.72, + "end": 1752.46, + "probability": 0.2975 + }, + { + "start": 1753.24, + "end": 1754.24, + "probability": 0.1457 + }, + { + "start": 1754.5, + "end": 1755.92, + "probability": 0.892 + }, + { + "start": 1756.56, + "end": 1757.58, + "probability": 0.0275 + }, + { + "start": 1757.58, + "end": 1759.3, + "probability": 0.0659 + }, + { + "start": 1759.48, + "end": 1762.89, + "probability": 0.8212 + }, + { + "start": 1764.02, + "end": 1766.2, + "probability": 0.9551 + }, + { + "start": 1766.94, + "end": 1769.14, + "probability": 0.9961 + }, + { + "start": 1769.22, + "end": 1773.7, + "probability": 0.9967 + }, + { + "start": 1774.54, + "end": 1776.16, + "probability": 0.77 + }, + { + "start": 1776.26, + "end": 1777.42, + "probability": 0.7837 + }, + { + "start": 1777.52, + "end": 1778.36, + "probability": 0.6985 + }, + { + "start": 1778.38, + "end": 1781.8, + "probability": 0.939 + }, + { + "start": 1782.02, + "end": 1783.18, + "probability": 0.9907 + }, + { + "start": 1783.28, + "end": 1789.1, + "probability": 0.8212 + }, + { + "start": 1789.98, + "end": 1791.4, + "probability": 0.3424 + }, + { + "start": 1792.0, + "end": 1793.52, + "probability": 0.877 + }, + { + "start": 1793.88, + "end": 1795.36, + "probability": 0.9668 + }, + { + "start": 1795.56, + "end": 1798.22, + "probability": 0.9946 + }, + { + "start": 1798.3, + "end": 1801.66, + "probability": 0.9408 + }, + { + "start": 1801.76, + "end": 1803.72, + "probability": 0.9281 + }, + { + "start": 1803.96, + "end": 1806.0, + "probability": 0.7427 + }, + { + "start": 1806.92, + "end": 1809.17, + "probability": 0.9658 + }, + { + "start": 1810.82, + "end": 1811.69, + "probability": 0.8867 + }, + { + "start": 1812.2, + "end": 1813.76, + "probability": 0.7966 + }, + { + "start": 1814.56, + "end": 1815.24, + "probability": 0.6808 + }, + { + "start": 1817.88, + "end": 1820.52, + "probability": 0.829 + }, + { + "start": 1820.72, + "end": 1823.8, + "probability": 0.8906 + }, + { + "start": 1824.46, + "end": 1824.82, + "probability": 0.8571 + }, + { + "start": 1824.84, + "end": 1825.6, + "probability": 0.9895 + }, + { + "start": 1826.04, + "end": 1828.74, + "probability": 0.9359 + }, + { + "start": 1829.5, + "end": 1830.28, + "probability": 0.7628 + }, + { + "start": 1831.62, + "end": 1834.88, + "probability": 0.9609 + }, + { + "start": 1835.18, + "end": 1837.01, + "probability": 0.9851 + }, + { + "start": 1837.16, + "end": 1838.08, + "probability": 0.9384 + }, + { + "start": 1838.94, + "end": 1841.02, + "probability": 0.9971 + }, + { + "start": 1842.48, + "end": 1843.8, + "probability": 0.812 + }, + { + "start": 1843.88, + "end": 1845.4, + "probability": 0.9971 + }, + { + "start": 1846.34, + "end": 1849.34, + "probability": 0.9918 + }, + { + "start": 1851.31, + "end": 1856.66, + "probability": 0.9235 + }, + { + "start": 1857.26, + "end": 1859.44, + "probability": 0.7886 + }, + { + "start": 1860.02, + "end": 1861.8, + "probability": 0.9024 + }, + { + "start": 1862.6, + "end": 1867.08, + "probability": 0.9945 + }, + { + "start": 1868.0, + "end": 1872.74, + "probability": 0.9856 + }, + { + "start": 1872.84, + "end": 1877.9, + "probability": 0.9946 + }, + { + "start": 1877.96, + "end": 1878.96, + "probability": 0.5508 + }, + { + "start": 1879.92, + "end": 1882.66, + "probability": 0.9083 + }, + { + "start": 1883.68, + "end": 1884.18, + "probability": 0.7758 + }, + { + "start": 1884.42, + "end": 1886.09, + "probability": 0.7491 + }, + { + "start": 1886.88, + "end": 1890.42, + "probability": 0.9951 + }, + { + "start": 1890.56, + "end": 1891.56, + "probability": 0.8145 + }, + { + "start": 1891.62, + "end": 1892.66, + "probability": 0.6397 + }, + { + "start": 1895.96, + "end": 1898.72, + "probability": 0.7643 + }, + { + "start": 1898.8, + "end": 1901.4, + "probability": 0.9751 + }, + { + "start": 1901.46, + "end": 1903.33, + "probability": 0.9929 + }, + { + "start": 1903.92, + "end": 1905.32, + "probability": 0.7094 + }, + { + "start": 1905.46, + "end": 1907.06, + "probability": 0.6777 + }, + { + "start": 1907.12, + "end": 1908.78, + "probability": 0.9536 + }, + { + "start": 1909.02, + "end": 1910.54, + "probability": 0.8006 + }, + { + "start": 1910.68, + "end": 1911.7, + "probability": 0.5528 + }, + { + "start": 1911.94, + "end": 1912.38, + "probability": 0.9823 + }, + { + "start": 1912.48, + "end": 1916.8, + "probability": 0.9977 + }, + { + "start": 1917.8, + "end": 1918.52, + "probability": 0.9732 + }, + { + "start": 1919.26, + "end": 1921.76, + "probability": 0.9569 + }, + { + "start": 1922.3, + "end": 1924.2, + "probability": 0.9287 + }, + { + "start": 1925.56, + "end": 1926.78, + "probability": 0.9397 + }, + { + "start": 1927.86, + "end": 1930.38, + "probability": 0.9964 + }, + { + "start": 1930.54, + "end": 1934.21, + "probability": 0.7115 + }, + { + "start": 1935.52, + "end": 1938.44, + "probability": 0.8503 + }, + { + "start": 1938.5, + "end": 1939.78, + "probability": 0.9741 + }, + { + "start": 1939.86, + "end": 1941.12, + "probability": 0.8644 + }, + { + "start": 1941.22, + "end": 1944.06, + "probability": 0.9165 + }, + { + "start": 1944.14, + "end": 1945.09, + "probability": 0.9189 + }, + { + "start": 1945.44, + "end": 1948.74, + "probability": 0.9561 + }, + { + "start": 1949.24, + "end": 1952.24, + "probability": 0.3599 + }, + { + "start": 1952.44, + "end": 1954.68, + "probability": 0.9695 + }, + { + "start": 1955.46, + "end": 1958.78, + "probability": 0.4333 + }, + { + "start": 1958.78, + "end": 1958.78, + "probability": 0.303 + }, + { + "start": 1958.78, + "end": 1958.78, + "probability": 0.0085 + }, + { + "start": 1958.78, + "end": 1963.2, + "probability": 0.7332 + }, + { + "start": 1963.32, + "end": 1964.76, + "probability": 0.6553 + }, + { + "start": 1965.8, + "end": 1969.26, + "probability": 0.9385 + }, + { + "start": 1969.4, + "end": 1970.8, + "probability": 0.9942 + }, + { + "start": 1970.92, + "end": 1973.4, + "probability": 0.9763 + }, + { + "start": 1973.88, + "end": 1976.1, + "probability": 0.7356 + }, + { + "start": 1976.32, + "end": 1980.12, + "probability": 0.9893 + }, + { + "start": 1980.68, + "end": 1985.5, + "probability": 0.9756 + }, + { + "start": 1985.6, + "end": 1986.4, + "probability": 0.7898 + }, + { + "start": 1986.76, + "end": 1988.92, + "probability": 0.9917 + }, + { + "start": 1988.98, + "end": 1991.2, + "probability": 0.9373 + }, + { + "start": 1991.3, + "end": 1992.52, + "probability": 0.819 + }, + { + "start": 1992.62, + "end": 1993.6, + "probability": 0.9861 + }, + { + "start": 1994.44, + "end": 1998.6, + "probability": 0.9899 + }, + { + "start": 1999.02, + "end": 1999.52, + "probability": 0.2236 + }, + { + "start": 1999.6, + "end": 2001.64, + "probability": 0.6703 + }, + { + "start": 2002.08, + "end": 2004.02, + "probability": 0.4917 + }, + { + "start": 2004.24, + "end": 2006.38, + "probability": 0.7791 + }, + { + "start": 2007.38, + "end": 2014.26, + "probability": 0.9856 + }, + { + "start": 2014.26, + "end": 2021.06, + "probability": 0.9952 + }, + { + "start": 2021.1, + "end": 2021.46, + "probability": 0.3352 + }, + { + "start": 2021.48, + "end": 2022.12, + "probability": 0.8242 + }, + { + "start": 2022.6, + "end": 2029.24, + "probability": 0.9972 + }, + { + "start": 2029.42, + "end": 2031.58, + "probability": 0.9259 + }, + { + "start": 2031.63, + "end": 2035.12, + "probability": 0.9932 + }, + { + "start": 2035.72, + "end": 2038.54, + "probability": 0.9949 + }, + { + "start": 2038.62, + "end": 2040.9, + "probability": 0.7004 + }, + { + "start": 2041.54, + "end": 2044.58, + "probability": 0.9971 + }, + { + "start": 2044.6, + "end": 2046.04, + "probability": 0.973 + }, + { + "start": 2046.86, + "end": 2049.56, + "probability": 0.9828 + }, + { + "start": 2050.68, + "end": 2051.48, + "probability": 0.712 + }, + { + "start": 2051.7, + "end": 2052.44, + "probability": 0.7911 + }, + { + "start": 2052.6, + "end": 2053.6, + "probability": 0.9924 + }, + { + "start": 2053.72, + "end": 2056.04, + "probability": 0.979 + }, + { + "start": 2056.6, + "end": 2059.08, + "probability": 0.9482 + }, + { + "start": 2059.2, + "end": 2060.94, + "probability": 0.9702 + }, + { + "start": 2061.14, + "end": 2065.16, + "probability": 0.9779 + }, + { + "start": 2065.22, + "end": 2066.42, + "probability": 0.954 + }, + { + "start": 2067.18, + "end": 2069.16, + "probability": 0.9747 + }, + { + "start": 2069.6, + "end": 2072.02, + "probability": 0.9689 + }, + { + "start": 2072.14, + "end": 2074.87, + "probability": 0.994 + }, + { + "start": 2075.8, + "end": 2078.88, + "probability": 0.6557 + }, + { + "start": 2078.92, + "end": 2080.5, + "probability": 0.9932 + }, + { + "start": 2081.08, + "end": 2081.67, + "probability": 0.9424 + }, + { + "start": 2081.86, + "end": 2084.74, + "probability": 0.9671 + }, + { + "start": 2085.12, + "end": 2085.82, + "probability": 0.745 + }, + { + "start": 2086.0, + "end": 2086.66, + "probability": 0.9209 + }, + { + "start": 2086.76, + "end": 2088.46, + "probability": 0.9988 + }, + { + "start": 2088.62, + "end": 2092.56, + "probability": 0.991 + }, + { + "start": 2092.56, + "end": 2095.46, + "probability": 0.989 + }, + { + "start": 2095.54, + "end": 2096.72, + "probability": 0.9168 + }, + { + "start": 2097.54, + "end": 2099.56, + "probability": 0.9855 + }, + { + "start": 2100.16, + "end": 2102.96, + "probability": 0.9939 + }, + { + "start": 2103.04, + "end": 2105.3, + "probability": 0.9943 + }, + { + "start": 2106.44, + "end": 2109.47, + "probability": 0.1262 + }, + { + "start": 2110.16, + "end": 2112.24, + "probability": 0.4325 + }, + { + "start": 2112.24, + "end": 2112.76, + "probability": 0.2112 + }, + { + "start": 2112.76, + "end": 2112.76, + "probability": 0.0529 + }, + { + "start": 2112.76, + "end": 2112.94, + "probability": 0.2601 + }, + { + "start": 2112.94, + "end": 2113.57, + "probability": 0.5509 + }, + { + "start": 2115.3, + "end": 2118.16, + "probability": 0.7914 + }, + { + "start": 2118.3, + "end": 2119.28, + "probability": 0.9785 + }, + { + "start": 2119.28, + "end": 2121.02, + "probability": 0.4614 + }, + { + "start": 2121.08, + "end": 2123.1, + "probability": 0.1515 + }, + { + "start": 2123.38, + "end": 2123.38, + "probability": 0.516 + }, + { + "start": 2123.38, + "end": 2123.66, + "probability": 0.1783 + }, + { + "start": 2124.8, + "end": 2124.9, + "probability": 0.1733 + }, + { + "start": 2124.9, + "end": 2125.24, + "probability": 0.0281 + }, + { + "start": 2125.26, + "end": 2126.4, + "probability": 0.0548 + }, + { + "start": 2126.4, + "end": 2129.02, + "probability": 0.2257 + }, + { + "start": 2129.4, + "end": 2132.6, + "probability": 0.9697 + }, + { + "start": 2133.04, + "end": 2135.22, + "probability": 0.5075 + }, + { + "start": 2135.34, + "end": 2138.12, + "probability": 0.8931 + }, + { + "start": 2139.0, + "end": 2139.98, + "probability": 0.9536 + }, + { + "start": 2140.38, + "end": 2143.2, + "probability": 0.9847 + }, + { + "start": 2143.2, + "end": 2145.76, + "probability": 0.9976 + }, + { + "start": 2146.14, + "end": 2148.14, + "probability": 0.8472 + }, + { + "start": 2148.9, + "end": 2152.9, + "probability": 0.9885 + }, + { + "start": 2153.94, + "end": 2154.94, + "probability": 0.2754 + }, + { + "start": 2155.06, + "end": 2159.1, + "probability": 0.9913 + }, + { + "start": 2159.3, + "end": 2161.16, + "probability": 0.9915 + }, + { + "start": 2161.82, + "end": 2161.86, + "probability": 0.6095 + }, + { + "start": 2161.86, + "end": 2167.0, + "probability": 0.8936 + }, + { + "start": 2167.14, + "end": 2168.17, + "probability": 0.8892 + }, + { + "start": 2168.36, + "end": 2170.98, + "probability": 0.9851 + }, + { + "start": 2172.38, + "end": 2175.82, + "probability": 0.98 + }, + { + "start": 2175.82, + "end": 2178.3, + "probability": 0.9985 + }, + { + "start": 2179.08, + "end": 2181.78, + "probability": 0.9937 + }, + { + "start": 2181.94, + "end": 2182.74, + "probability": 0.0383 + }, + { + "start": 2183.06, + "end": 2185.42, + "probability": 0.831 + }, + { + "start": 2186.78, + "end": 2188.04, + "probability": 0.9185 + }, + { + "start": 2188.32, + "end": 2188.88, + "probability": 0.6672 + }, + { + "start": 2188.94, + "end": 2192.86, + "probability": 0.99 + }, + { + "start": 2192.94, + "end": 2193.58, + "probability": 0.9817 + }, + { + "start": 2193.64, + "end": 2197.2, + "probability": 0.9288 + }, + { + "start": 2197.6, + "end": 2201.16, + "probability": 0.9979 + }, + { + "start": 2201.56, + "end": 2203.02, + "probability": 0.9991 + }, + { + "start": 2204.06, + "end": 2205.72, + "probability": 0.9966 + }, + { + "start": 2206.48, + "end": 2208.44, + "probability": 0.5453 + }, + { + "start": 2208.52, + "end": 2209.08, + "probability": 0.7321 + }, + { + "start": 2209.32, + "end": 2210.09, + "probability": 0.2919 + }, + { + "start": 2211.28, + "end": 2214.82, + "probability": 0.9961 + }, + { + "start": 2216.22, + "end": 2217.2, + "probability": 0.8699 + }, + { + "start": 2217.38, + "end": 2218.38, + "probability": 0.9435 + }, + { + "start": 2218.38, + "end": 2226.16, + "probability": 0.9687 + }, + { + "start": 2226.6, + "end": 2226.76, + "probability": 0.0347 + }, + { + "start": 2228.04, + "end": 2229.28, + "probability": 0.4023 + }, + { + "start": 2230.88, + "end": 2231.86, + "probability": 0.9517 + }, + { + "start": 2232.3, + "end": 2233.7, + "probability": 0.5456 + }, + { + "start": 2233.8, + "end": 2234.89, + "probability": 0.9873 + }, + { + "start": 2235.36, + "end": 2240.06, + "probability": 0.9565 + }, + { + "start": 2240.06, + "end": 2244.12, + "probability": 0.9607 + }, + { + "start": 2244.78, + "end": 2248.62, + "probability": 0.9862 + }, + { + "start": 2249.0, + "end": 2252.1, + "probability": 0.8861 + }, + { + "start": 2252.46, + "end": 2256.16, + "probability": 0.9738 + }, + { + "start": 2256.32, + "end": 2258.1, + "probability": 0.9679 + }, + { + "start": 2258.68, + "end": 2259.82, + "probability": 0.9199 + }, + { + "start": 2259.96, + "end": 2261.66, + "probability": 0.9978 + }, + { + "start": 2262.5, + "end": 2262.78, + "probability": 0.1807 + }, + { + "start": 2262.78, + "end": 2264.5, + "probability": 0.6371 + }, + { + "start": 2264.68, + "end": 2265.04, + "probability": 0.8293 + }, + { + "start": 2265.6, + "end": 2267.24, + "probability": 0.2686 + }, + { + "start": 2267.24, + "end": 2268.64, + "probability": 0.9066 + }, + { + "start": 2269.24, + "end": 2270.42, + "probability": 0.568 + }, + { + "start": 2270.42, + "end": 2272.7, + "probability": 0.5017 + }, + { + "start": 2273.48, + "end": 2277.18, + "probability": 0.5627 + }, + { + "start": 2277.5, + "end": 2278.72, + "probability": 0.0226 + }, + { + "start": 2278.78, + "end": 2282.98, + "probability": 0.7048 + }, + { + "start": 2283.16, + "end": 2285.26, + "probability": 0.8594 + }, + { + "start": 2286.36, + "end": 2289.34, + "probability": 0.6358 + }, + { + "start": 2290.22, + "end": 2291.04, + "probability": 0.1315 + }, + { + "start": 2291.04, + "end": 2294.07, + "probability": 0.5187 + }, + { + "start": 2294.3, + "end": 2295.56, + "probability": 0.1033 + }, + { + "start": 2295.74, + "end": 2295.74, + "probability": 0.1603 + }, + { + "start": 2295.74, + "end": 2296.5, + "probability": 0.5407 + }, + { + "start": 2296.52, + "end": 2298.36, + "probability": 0.9134 + }, + { + "start": 2298.58, + "end": 2300.22, + "probability": 0.9255 + }, + { + "start": 2300.22, + "end": 2301.36, + "probability": 0.1445 + }, + { + "start": 2301.36, + "end": 2305.8, + "probability": 0.0046 + }, + { + "start": 2306.64, + "end": 2307.32, + "probability": 0.0251 + }, + { + "start": 2307.72, + "end": 2308.72, + "probability": 0.0425 + }, + { + "start": 2308.72, + "end": 2309.72, + "probability": 0.3173 + }, + { + "start": 2309.94, + "end": 2311.5, + "probability": 0.5621 + }, + { + "start": 2311.56, + "end": 2315.2, + "probability": 0.8144 + }, + { + "start": 2315.74, + "end": 2319.58, + "probability": 0.989 + }, + { + "start": 2319.58, + "end": 2323.9, + "probability": 0.866 + }, + { + "start": 2324.16, + "end": 2327.64, + "probability": 0.9958 + }, + { + "start": 2327.96, + "end": 2330.52, + "probability": 0.995 + }, + { + "start": 2330.98, + "end": 2334.46, + "probability": 0.9896 + }, + { + "start": 2334.46, + "end": 2339.04, + "probability": 0.994 + }, + { + "start": 2339.44, + "end": 2344.54, + "probability": 0.9938 + }, + { + "start": 2345.08, + "end": 2346.29, + "probability": 0.9761 + }, + { + "start": 2346.5, + "end": 2347.88, + "probability": 0.8511 + }, + { + "start": 2348.24, + "end": 2349.38, + "probability": 0.9681 + }, + { + "start": 2349.38, + "end": 2352.48, + "probability": 0.8448 + }, + { + "start": 2353.8, + "end": 2355.88, + "probability": 0.0453 + }, + { + "start": 2356.56, + "end": 2356.64, + "probability": 0.3203 + }, + { + "start": 2356.8, + "end": 2358.22, + "probability": 0.9491 + }, + { + "start": 2359.23, + "end": 2364.92, + "probability": 0.9336 + }, + { + "start": 2364.98, + "end": 2365.66, + "probability": 0.9946 + }, + { + "start": 2366.4, + "end": 2368.22, + "probability": 0.9965 + }, + { + "start": 2368.3, + "end": 2371.6, + "probability": 0.9954 + }, + { + "start": 2372.86, + "end": 2376.36, + "probability": 0.0975 + }, + { + "start": 2376.68, + "end": 2379.79, + "probability": 0.1899 + }, + { + "start": 2379.98, + "end": 2379.98, + "probability": 0.338 + }, + { + "start": 2379.98, + "end": 2380.82, + "probability": 0.0424 + }, + { + "start": 2380.82, + "end": 2380.82, + "probability": 0.2674 + }, + { + "start": 2380.82, + "end": 2381.44, + "probability": 0.3006 + }, + { + "start": 2381.44, + "end": 2382.38, + "probability": 0.7676 + }, + { + "start": 2382.75, + "end": 2385.0, + "probability": 0.8866 + }, + { + "start": 2385.08, + "end": 2385.44, + "probability": 0.6302 + }, + { + "start": 2385.86, + "end": 2386.34, + "probability": 0.3105 + }, + { + "start": 2386.44, + "end": 2389.2, + "probability": 0.7746 + }, + { + "start": 2389.52, + "end": 2390.86, + "probability": 0.2399 + }, + { + "start": 2390.94, + "end": 2392.86, + "probability": 0.7401 + }, + { + "start": 2392.86, + "end": 2393.36, + "probability": 0.1719 + }, + { + "start": 2393.58, + "end": 2394.28, + "probability": 0.4197 + }, + { + "start": 2394.78, + "end": 2398.18, + "probability": 0.7741 + }, + { + "start": 2399.4, + "end": 2401.66, + "probability": 0.9873 + }, + { + "start": 2402.46, + "end": 2405.96, + "probability": 0.9941 + }, + { + "start": 2405.96, + "end": 2410.28, + "probability": 0.998 + }, + { + "start": 2410.28, + "end": 2414.54, + "probability": 0.9862 + }, + { + "start": 2415.02, + "end": 2418.22, + "probability": 0.9983 + }, + { + "start": 2418.72, + "end": 2421.3, + "probability": 0.9976 + }, + { + "start": 2422.24, + "end": 2424.86, + "probability": 0.9762 + }, + { + "start": 2425.56, + "end": 2427.2, + "probability": 0.9887 + }, + { + "start": 2427.3, + "end": 2431.86, + "probability": 0.9984 + }, + { + "start": 2432.5, + "end": 2435.73, + "probability": 0.998 + }, + { + "start": 2436.3, + "end": 2442.52, + "probability": 0.9868 + }, + { + "start": 2442.96, + "end": 2445.28, + "probability": 0.9712 + }, + { + "start": 2445.96, + "end": 2448.98, + "probability": 0.9863 + }, + { + "start": 2449.02, + "end": 2452.2, + "probability": 0.9849 + }, + { + "start": 2452.62, + "end": 2455.8, + "probability": 0.941 + }, + { + "start": 2456.0, + "end": 2458.1, + "probability": 0.9338 + }, + { + "start": 2458.86, + "end": 2462.38, + "probability": 0.9979 + }, + { + "start": 2462.66, + "end": 2463.48, + "probability": 0.685 + }, + { + "start": 2463.54, + "end": 2463.94, + "probability": 0.8937 + }, + { + "start": 2464.02, + "end": 2469.74, + "probability": 0.9927 + }, + { + "start": 2469.76, + "end": 2473.04, + "probability": 0.9746 + }, + { + "start": 2473.68, + "end": 2475.08, + "probability": 0.9895 + }, + { + "start": 2475.12, + "end": 2476.84, + "probability": 0.996 + }, + { + "start": 2476.88, + "end": 2479.27, + "probability": 0.9971 + }, + { + "start": 2479.3, + "end": 2479.98, + "probability": 0.1985 + }, + { + "start": 2480.14, + "end": 2480.32, + "probability": 0.1769 + }, + { + "start": 2480.32, + "end": 2481.8, + "probability": 0.4596 + }, + { + "start": 2482.38, + "end": 2484.68, + "probability": 0.888 + }, + { + "start": 2484.74, + "end": 2485.62, + "probability": 0.8154 + }, + { + "start": 2486.8, + "end": 2488.1, + "probability": 0.9649 + }, + { + "start": 2488.72, + "end": 2491.48, + "probability": 0.953 + }, + { + "start": 2492.1, + "end": 2493.14, + "probability": 0.596 + }, + { + "start": 2493.14, + "end": 2494.91, + "probability": 0.8674 + }, + { + "start": 2495.52, + "end": 2499.86, + "probability": 0.3319 + }, + { + "start": 2502.08, + "end": 2504.28, + "probability": 0.9865 + }, + { + "start": 2536.64, + "end": 2538.62, + "probability": 0.8584 + }, + { + "start": 2538.78, + "end": 2540.2, + "probability": 0.7423 + }, + { + "start": 2540.38, + "end": 2541.34, + "probability": 0.8218 + }, + { + "start": 2541.42, + "end": 2546.02, + "probability": 0.98 + }, + { + "start": 2546.26, + "end": 2550.6, + "probability": 0.9062 + }, + { + "start": 2550.68, + "end": 2556.1, + "probability": 0.7549 + }, + { + "start": 2556.64, + "end": 2558.74, + "probability": 0.9586 + }, + { + "start": 2558.9, + "end": 2559.92, + "probability": 0.8429 + }, + { + "start": 2561.38, + "end": 2565.22, + "probability": 0.9816 + }, + { + "start": 2565.78, + "end": 2566.62, + "probability": 0.936 + }, + { + "start": 2566.72, + "end": 2567.57, + "probability": 0.9958 + }, + { + "start": 2567.66, + "end": 2568.6, + "probability": 0.9825 + }, + { + "start": 2568.7, + "end": 2569.33, + "probability": 0.9985 + }, + { + "start": 2571.23, + "end": 2575.15, + "probability": 0.6592 + }, + { + "start": 2577.42, + "end": 2579.66, + "probability": 0.9348 + }, + { + "start": 2579.66, + "end": 2581.62, + "probability": 0.978 + }, + { + "start": 2583.0, + "end": 2584.98, + "probability": 0.8891 + }, + { + "start": 2585.08, + "end": 2585.75, + "probability": 0.6293 + }, + { + "start": 2586.06, + "end": 2586.26, + "probability": 0.4094 + }, + { + "start": 2586.32, + "end": 2589.42, + "probability": 0.9563 + }, + { + "start": 2589.48, + "end": 2590.42, + "probability": 0.9616 + }, + { + "start": 2590.76, + "end": 2591.92, + "probability": 0.4787 + }, + { + "start": 2591.96, + "end": 2598.5, + "probability": 0.707 + }, + { + "start": 2598.54, + "end": 2600.04, + "probability": 0.9639 + }, + { + "start": 2600.2, + "end": 2602.4, + "probability": 0.7122 + }, + { + "start": 2602.74, + "end": 2608.44, + "probability": 0.9769 + }, + { + "start": 2608.5, + "end": 2609.9, + "probability": 0.9463 + }, + { + "start": 2610.6, + "end": 2611.74, + "probability": 0.9858 + }, + { + "start": 2611.88, + "end": 2613.56, + "probability": 0.9886 + }, + { + "start": 2613.72, + "end": 2616.7, + "probability": 0.9941 + }, + { + "start": 2617.0, + "end": 2619.28, + "probability": 0.9957 + }, + { + "start": 2619.54, + "end": 2620.52, + "probability": 0.981 + }, + { + "start": 2620.62, + "end": 2621.02, + "probability": 0.9206 + }, + { + "start": 2622.16, + "end": 2624.72, + "probability": 0.8735 + }, + { + "start": 2624.72, + "end": 2628.22, + "probability": 0.9453 + }, + { + "start": 2629.78, + "end": 2634.88, + "probability": 0.8561 + }, + { + "start": 2635.04, + "end": 2637.24, + "probability": 0.893 + }, + { + "start": 2637.24, + "end": 2639.98, + "probability": 0.5769 + }, + { + "start": 2640.1, + "end": 2645.02, + "probability": 0.8594 + }, + { + "start": 2646.34, + "end": 2648.62, + "probability": 0.9939 + }, + { + "start": 2648.74, + "end": 2651.48, + "probability": 0.9963 + }, + { + "start": 2651.6, + "end": 2655.14, + "probability": 0.9892 + }, + { + "start": 2655.34, + "end": 2657.28, + "probability": 0.8829 + }, + { + "start": 2657.38, + "end": 2657.68, + "probability": 0.6595 + }, + { + "start": 2657.74, + "end": 2662.68, + "probability": 0.9902 + }, + { + "start": 2663.18, + "end": 2666.16, + "probability": 0.9971 + }, + { + "start": 2667.64, + "end": 2670.88, + "probability": 0.9683 + }, + { + "start": 2671.02, + "end": 2675.98, + "probability": 0.9892 + }, + { + "start": 2676.5, + "end": 2676.96, + "probability": 0.3861 + }, + { + "start": 2677.18, + "end": 2677.62, + "probability": 0.8091 + }, + { + "start": 2677.72, + "end": 2680.08, + "probability": 0.9789 + }, + { + "start": 2680.8, + "end": 2685.42, + "probability": 0.9918 + }, + { + "start": 2685.48, + "end": 2687.18, + "probability": 0.6586 + }, + { + "start": 2687.32, + "end": 2688.78, + "probability": 0.9605 + }, + { + "start": 2688.92, + "end": 2689.9, + "probability": 0.9721 + }, + { + "start": 2690.08, + "end": 2693.72, + "probability": 0.873 + }, + { + "start": 2693.88, + "end": 2702.64, + "probability": 0.9964 + }, + { + "start": 2702.7, + "end": 2707.54, + "probability": 0.9987 + }, + { + "start": 2708.12, + "end": 2711.04, + "probability": 0.9963 + }, + { + "start": 2711.63, + "end": 2715.74, + "probability": 0.9936 + }, + { + "start": 2715.84, + "end": 2717.7, + "probability": 0.8667 + }, + { + "start": 2718.36, + "end": 2720.5, + "probability": 0.8981 + }, + { + "start": 2720.62, + "end": 2724.17, + "probability": 0.7795 + }, + { + "start": 2724.8, + "end": 2726.7, + "probability": 0.979 + }, + { + "start": 2727.48, + "end": 2730.18, + "probability": 0.9583 + }, + { + "start": 2731.71, + "end": 2736.78, + "probability": 0.995 + }, + { + "start": 2736.78, + "end": 2742.04, + "probability": 0.993 + }, + { + "start": 2742.74, + "end": 2747.38, + "probability": 0.9619 + }, + { + "start": 2747.56, + "end": 2750.4, + "probability": 0.9917 + }, + { + "start": 2751.14, + "end": 2751.96, + "probability": 0.8756 + }, + { + "start": 2752.2, + "end": 2752.74, + "probability": 0.8455 + }, + { + "start": 2752.92, + "end": 2757.06, + "probability": 0.9255 + }, + { + "start": 2757.14, + "end": 2759.36, + "probability": 0.9908 + }, + { + "start": 2760.2, + "end": 2768.46, + "probability": 0.9897 + }, + { + "start": 2769.46, + "end": 2771.34, + "probability": 0.9949 + }, + { + "start": 2771.44, + "end": 2772.76, + "probability": 0.8016 + }, + { + "start": 2772.96, + "end": 2779.6, + "probability": 0.9948 + }, + { + "start": 2780.28, + "end": 2784.06, + "probability": 0.829 + }, + { + "start": 2784.24, + "end": 2787.9, + "probability": 0.9313 + }, + { + "start": 2788.16, + "end": 2792.32, + "probability": 0.8934 + }, + { + "start": 2792.32, + "end": 2795.92, + "probability": 0.9837 + }, + { + "start": 2796.62, + "end": 2801.4, + "probability": 0.7427 + }, + { + "start": 2802.08, + "end": 2804.08, + "probability": 0.6678 + }, + { + "start": 2804.16, + "end": 2804.76, + "probability": 0.52 + }, + { + "start": 2804.88, + "end": 2806.16, + "probability": 0.9098 + }, + { + "start": 2806.26, + "end": 2808.86, + "probability": 0.9222 + }, + { + "start": 2808.94, + "end": 2814.98, + "probability": 0.9372 + }, + { + "start": 2815.72, + "end": 2818.24, + "probability": 0.5932 + }, + { + "start": 2819.36, + "end": 2825.98, + "probability": 0.9842 + }, + { + "start": 2826.98, + "end": 2828.41, + "probability": 0.8655 + }, + { + "start": 2830.24, + "end": 2835.54, + "probability": 0.2594 + }, + { + "start": 2835.66, + "end": 2835.98, + "probability": 0.2878 + }, + { + "start": 2836.06, + "end": 2836.36, + "probability": 0.9349 + }, + { + "start": 2836.52, + "end": 2841.32, + "probability": 0.8003 + }, + { + "start": 2842.5, + "end": 2844.74, + "probability": 0.9648 + }, + { + "start": 2845.2, + "end": 2847.12, + "probability": 0.9768 + }, + { + "start": 2847.26, + "end": 2848.8, + "probability": 0.9329 + }, + { + "start": 2849.3, + "end": 2855.19, + "probability": 0.9974 + }, + { + "start": 2858.38, + "end": 2864.54, + "probability": 0.9773 + }, + { + "start": 2864.96, + "end": 2867.35, + "probability": 0.9279 + }, + { + "start": 2867.92, + "end": 2871.42, + "probability": 0.9922 + }, + { + "start": 2871.72, + "end": 2872.12, + "probability": 0.5054 + }, + { + "start": 2872.18, + "end": 2874.16, + "probability": 0.7244 + }, + { + "start": 2874.24, + "end": 2878.52, + "probability": 0.9287 + }, + { + "start": 2878.52, + "end": 2883.08, + "probability": 0.9794 + }, + { + "start": 2883.8, + "end": 2887.92, + "probability": 0.9937 + }, + { + "start": 2888.5, + "end": 2892.7, + "probability": 0.9937 + }, + { + "start": 2892.76, + "end": 2895.88, + "probability": 0.9426 + }, + { + "start": 2896.13, + "end": 2901.02, + "probability": 0.9972 + }, + { + "start": 2901.6, + "end": 2904.58, + "probability": 0.574 + }, + { + "start": 2904.66, + "end": 2907.4, + "probability": 0.9923 + }, + { + "start": 2907.86, + "end": 2911.02, + "probability": 0.9976 + }, + { + "start": 2911.14, + "end": 2911.46, + "probability": 0.6367 + }, + { + "start": 2911.5, + "end": 2915.16, + "probability": 0.9922 + }, + { + "start": 2915.22, + "end": 2918.74, + "probability": 0.9982 + }, + { + "start": 2918.74, + "end": 2922.36, + "probability": 0.991 + }, + { + "start": 2923.92, + "end": 2925.64, + "probability": 0.7546 + }, + { + "start": 2925.74, + "end": 2925.88, + "probability": 0.2953 + }, + { + "start": 2926.0, + "end": 2927.8, + "probability": 0.9982 + }, + { + "start": 2927.8, + "end": 2930.12, + "probability": 0.998 + }, + { + "start": 2931.84, + "end": 2933.54, + "probability": 0.8145 + }, + { + "start": 2939.74, + "end": 2941.26, + "probability": 0.3566 + }, + { + "start": 2947.48, + "end": 2949.32, + "probability": 0.9452 + }, + { + "start": 2949.42, + "end": 2951.84, + "probability": 0.9818 + }, + { + "start": 2952.5, + "end": 2954.1, + "probability": 0.646 + }, + { + "start": 2954.18, + "end": 2954.52, + "probability": 0.8851 + }, + { + "start": 2954.68, + "end": 2958.08, + "probability": 0.9878 + }, + { + "start": 2958.92, + "end": 2960.1, + "probability": 0.3388 + }, + { + "start": 2961.83, + "end": 2965.44, + "probability": 0.9932 + }, + { + "start": 2965.52, + "end": 2968.24, + "probability": 0.9883 + }, + { + "start": 2972.9, + "end": 2975.46, + "probability": 0.7633 + }, + { + "start": 2975.46, + "end": 2976.66, + "probability": 0.5404 + }, + { + "start": 2977.0, + "end": 2979.52, + "probability": 0.8986 + }, + { + "start": 2979.54, + "end": 2982.74, + "probability": 0.8967 + }, + { + "start": 2982.8, + "end": 2985.36, + "probability": 0.9888 + }, + { + "start": 2985.42, + "end": 2988.46, + "probability": 0.9888 + }, + { + "start": 2988.46, + "end": 2991.78, + "probability": 0.9663 + }, + { + "start": 2991.9, + "end": 2993.16, + "probability": 0.9976 + }, + { + "start": 2994.74, + "end": 2997.8, + "probability": 0.85 + }, + { + "start": 2997.86, + "end": 2999.66, + "probability": 0.9932 + }, + { + "start": 2999.66, + "end": 3003.02, + "probability": 0.9933 + }, + { + "start": 3004.3, + "end": 3004.74, + "probability": 0.7723 + }, + { + "start": 3004.78, + "end": 3005.58, + "probability": 0.7991 + }, + { + "start": 3005.68, + "end": 3008.88, + "probability": 0.8564 + }, + { + "start": 3009.44, + "end": 3010.22, + "probability": 0.5365 + }, + { + "start": 3010.74, + "end": 3011.12, + "probability": 0.9282 + }, + { + "start": 3011.52, + "end": 3013.04, + "probability": 0.7627 + }, + { + "start": 3013.08, + "end": 3013.68, + "probability": 0.5527 + }, + { + "start": 3013.7, + "end": 3016.69, + "probability": 0.9609 + }, + { + "start": 3016.78, + "end": 3018.64, + "probability": 0.8875 + }, + { + "start": 3018.72, + "end": 3020.08, + "probability": 0.9912 + }, + { + "start": 3020.8, + "end": 3023.12, + "probability": 0.9926 + }, + { + "start": 3023.52, + "end": 3025.66, + "probability": 0.8977 + }, + { + "start": 3025.66, + "end": 3028.44, + "probability": 0.9967 + }, + { + "start": 3028.68, + "end": 3030.98, + "probability": 0.9604 + }, + { + "start": 3031.5, + "end": 3032.72, + "probability": 0.7379 + }, + { + "start": 3033.22, + "end": 3033.92, + "probability": 0.908 + }, + { + "start": 3033.94, + "end": 3037.02, + "probability": 0.8985 + }, + { + "start": 3037.1, + "end": 3038.62, + "probability": 0.9983 + }, + { + "start": 3039.26, + "end": 3043.34, + "probability": 0.9822 + }, + { + "start": 3043.56, + "end": 3046.26, + "probability": 0.8955 + }, + { + "start": 3046.78, + "end": 3047.9, + "probability": 0.4947 + }, + { + "start": 3048.24, + "end": 3048.56, + "probability": 0.7283 + }, + { + "start": 3048.96, + "end": 3050.74, + "probability": 0.9792 + }, + { + "start": 3050.78, + "end": 3051.12, + "probability": 0.5847 + }, + { + "start": 3051.54, + "end": 3052.26, + "probability": 0.6392 + }, + { + "start": 3052.46, + "end": 3052.8, + "probability": 0.7324 + }, + { + "start": 3052.82, + "end": 3053.72, + "probability": 0.7144 + }, + { + "start": 3053.9, + "end": 3054.55, + "probability": 0.895 + }, + { + "start": 3054.74, + "end": 3055.1, + "probability": 0.6826 + }, + { + "start": 3055.2, + "end": 3055.34, + "probability": 0.7235 + }, + { + "start": 3055.42, + "end": 3057.36, + "probability": 0.9951 + }, + { + "start": 3057.42, + "end": 3058.74, + "probability": 0.8237 + }, + { + "start": 3058.9, + "end": 3060.1, + "probability": 0.9277 + }, + { + "start": 3060.8, + "end": 3062.8, + "probability": 0.6622 + }, + { + "start": 3062.8, + "end": 3065.94, + "probability": 0.9082 + }, + { + "start": 3066.04, + "end": 3066.4, + "probability": 0.4679 + }, + { + "start": 3066.78, + "end": 3066.78, + "probability": 0.4461 + }, + { + "start": 3066.78, + "end": 3067.46, + "probability": 0.6793 + }, + { + "start": 3067.52, + "end": 3072.4, + "probability": 0.7371 + }, + { + "start": 3073.22, + "end": 3073.72, + "probability": 0.8476 + }, + { + "start": 3074.68, + "end": 3077.48, + "probability": 0.7481 + }, + { + "start": 3077.48, + "end": 3081.3, + "probability": 0.7286 + }, + { + "start": 3081.36, + "end": 3082.5, + "probability": 0.6543 + }, + { + "start": 3083.06, + "end": 3086.36, + "probability": 0.954 + }, + { + "start": 3086.96, + "end": 3087.36, + "probability": 0.8449 + }, + { + "start": 3088.96, + "end": 3091.66, + "probability": 0.5378 + }, + { + "start": 3091.92, + "end": 3094.68, + "probability": 0.8728 + }, + { + "start": 3094.76, + "end": 3095.46, + "probability": 0.2258 + }, + { + "start": 3095.46, + "end": 3100.22, + "probability": 0.6789 + }, + { + "start": 3100.36, + "end": 3101.34, + "probability": 0.6302 + }, + { + "start": 3102.02, + "end": 3103.78, + "probability": 0.8554 + }, + { + "start": 3104.42, + "end": 3105.6, + "probability": 0.8351 + }, + { + "start": 3107.92, + "end": 3109.94, + "probability": 0.5237 + }, + { + "start": 3110.7, + "end": 3113.7, + "probability": 0.6703 + }, + { + "start": 3115.72, + "end": 3116.26, + "probability": 0.9474 + }, + { + "start": 3118.72, + "end": 3121.08, + "probability": 0.665 + }, + { + "start": 3122.02, + "end": 3123.34, + "probability": 0.9089 + }, + { + "start": 3124.78, + "end": 3127.68, + "probability": 0.9775 + }, + { + "start": 3128.38, + "end": 3129.8, + "probability": 0.4481 + }, + { + "start": 3130.7, + "end": 3133.34, + "probability": 0.5876 + }, + { + "start": 3134.32, + "end": 3137.56, + "probability": 0.7871 + }, + { + "start": 3138.68, + "end": 3139.78, + "probability": 0.8506 + }, + { + "start": 3140.58, + "end": 3145.02, + "probability": 0.9282 + }, + { + "start": 3146.46, + "end": 3149.82, + "probability": 0.8649 + }, + { + "start": 3151.22, + "end": 3154.12, + "probability": 0.9119 + }, + { + "start": 3155.2, + "end": 3158.04, + "probability": 0.9752 + }, + { + "start": 3158.68, + "end": 3159.92, + "probability": 0.8309 + }, + { + "start": 3162.2, + "end": 3168.1, + "probability": 0.8262 + }, + { + "start": 3168.96, + "end": 3173.93, + "probability": 0.9781 + }, + { + "start": 3175.3, + "end": 3180.99, + "probability": 0.8755 + }, + { + "start": 3181.72, + "end": 3183.3, + "probability": 0.978 + }, + { + "start": 3185.16, + "end": 3188.64, + "probability": 0.9549 + }, + { + "start": 3189.38, + "end": 3190.32, + "probability": 0.7274 + }, + { + "start": 3191.36, + "end": 3192.26, + "probability": 0.8407 + }, + { + "start": 3194.42, + "end": 3199.7, + "probability": 0.9553 + }, + { + "start": 3200.46, + "end": 3206.22, + "probability": 0.9943 + }, + { + "start": 3206.84, + "end": 3207.78, + "probability": 0.9132 + }, + { + "start": 3208.66, + "end": 3210.9, + "probability": 0.9673 + }, + { + "start": 3212.18, + "end": 3213.52, + "probability": 0.9448 + }, + { + "start": 3214.82, + "end": 3220.94, + "probability": 0.8566 + }, + { + "start": 3222.22, + "end": 3223.34, + "probability": 0.9587 + }, + { + "start": 3225.28, + "end": 3229.06, + "probability": 0.8075 + }, + { + "start": 3231.62, + "end": 3233.24, + "probability": 0.8958 + }, + { + "start": 3234.32, + "end": 3238.32, + "probability": 0.9091 + }, + { + "start": 3240.1, + "end": 3245.4, + "probability": 0.908 + }, + { + "start": 3245.76, + "end": 3249.96, + "probability": 0.9624 + }, + { + "start": 3250.08, + "end": 3250.42, + "probability": 0.6313 + }, + { + "start": 3250.46, + "end": 3254.1, + "probability": 0.8376 + }, + { + "start": 3254.12, + "end": 3258.68, + "probability": 0.5896 + }, + { + "start": 3259.58, + "end": 3263.48, + "probability": 0.8768 + }, + { + "start": 3264.16, + "end": 3265.14, + "probability": 0.7782 + }, + { + "start": 3265.94, + "end": 3267.85, + "probability": 0.9897 + }, + { + "start": 3269.7, + "end": 3272.96, + "probability": 0.9084 + }, + { + "start": 3273.04, + "end": 3274.06, + "probability": 0.9937 + }, + { + "start": 3275.32, + "end": 3280.2, + "probability": 0.7191 + }, + { + "start": 3280.76, + "end": 3281.82, + "probability": 0.9679 + }, + { + "start": 3282.42, + "end": 3287.82, + "probability": 0.9766 + }, + { + "start": 3288.62, + "end": 3290.94, + "probability": 0.9937 + }, + { + "start": 3291.22, + "end": 3294.1, + "probability": 0.9153 + }, + { + "start": 3295.0, + "end": 3297.86, + "probability": 0.9932 + }, + { + "start": 3298.34, + "end": 3299.45, + "probability": 0.9703 + }, + { + "start": 3301.06, + "end": 3302.1, + "probability": 0.9978 + }, + { + "start": 3303.82, + "end": 3304.4, + "probability": 0.8007 + }, + { + "start": 3305.5, + "end": 3308.32, + "probability": 0.9206 + }, + { + "start": 3309.22, + "end": 3315.92, + "probability": 0.9878 + }, + { + "start": 3316.48, + "end": 3316.92, + "probability": 0.8409 + }, + { + "start": 3317.16, + "end": 3319.59, + "probability": 0.8639 + }, + { + "start": 3320.22, + "end": 3322.66, + "probability": 0.7028 + }, + { + "start": 3322.72, + "end": 3323.16, + "probability": 0.8931 + }, + { + "start": 3337.02, + "end": 3338.7, + "probability": 0.6422 + }, + { + "start": 3338.78, + "end": 3340.36, + "probability": 0.9861 + }, + { + "start": 3340.4, + "end": 3343.74, + "probability": 0.8662 + }, + { + "start": 3343.82, + "end": 3343.92, + "probability": 0.0443 + }, + { + "start": 3344.24, + "end": 3348.11, + "probability": 0.6672 + }, + { + "start": 3350.4, + "end": 3351.16, + "probability": 0.2572 + }, + { + "start": 3351.16, + "end": 3354.2, + "probability": 0.7365 + }, + { + "start": 3354.36, + "end": 3354.99, + "probability": 0.349 + }, + { + "start": 3355.14, + "end": 3355.9, + "probability": 0.4615 + }, + { + "start": 3356.04, + "end": 3356.58, + "probability": 0.688 + }, + { + "start": 3356.96, + "end": 3358.36, + "probability": 0.8255 + }, + { + "start": 3358.52, + "end": 3360.7, + "probability": 0.9104 + }, + { + "start": 3360.82, + "end": 3361.64, + "probability": 0.2267 + }, + { + "start": 3361.64, + "end": 3364.26, + "probability": 0.65 + }, + { + "start": 3364.3, + "end": 3366.06, + "probability": 0.9556 + }, + { + "start": 3366.66, + "end": 3368.8, + "probability": 0.9902 + }, + { + "start": 3368.88, + "end": 3369.72, + "probability": 0.7239 + }, + { + "start": 3371.3, + "end": 3376.6, + "probability": 0.9558 + }, + { + "start": 3376.84, + "end": 3381.78, + "probability": 0.998 + }, + { + "start": 3382.1, + "end": 3386.64, + "probability": 0.9854 + }, + { + "start": 3387.22, + "end": 3389.34, + "probability": 0.7762 + }, + { + "start": 3389.34, + "end": 3391.38, + "probability": 0.9288 + }, + { + "start": 3391.48, + "end": 3397.88, + "probability": 0.8493 + }, + { + "start": 3398.06, + "end": 3399.0, + "probability": 0.6013 + }, + { + "start": 3400.1, + "end": 3400.2, + "probability": 0.4314 + }, + { + "start": 3400.3, + "end": 3402.55, + "probability": 0.6131 + }, + { + "start": 3404.2, + "end": 3405.44, + "probability": 0.9574 + }, + { + "start": 3405.52, + "end": 3408.04, + "probability": 0.6285 + }, + { + "start": 3408.08, + "end": 3409.22, + "probability": 0.9655 + }, + { + "start": 3409.34, + "end": 3413.88, + "probability": 0.9941 + }, + { + "start": 3415.34, + "end": 3417.06, + "probability": 0.4369 + }, + { + "start": 3417.3, + "end": 3417.96, + "probability": 0.0588 + }, + { + "start": 3417.96, + "end": 3420.12, + "probability": 0.4976 + }, + { + "start": 3420.28, + "end": 3421.78, + "probability": 0.7159 + }, + { + "start": 3421.78, + "end": 3422.14, + "probability": 0.0455 + }, + { + "start": 3422.24, + "end": 3422.5, + "probability": 0.2321 + }, + { + "start": 3422.62, + "end": 3425.48, + "probability": 0.9717 + }, + { + "start": 3425.54, + "end": 3428.76, + "probability": 0.9913 + }, + { + "start": 3428.82, + "end": 3430.12, + "probability": 0.9983 + }, + { + "start": 3430.26, + "end": 3437.04, + "probability": 0.9583 + }, + { + "start": 3438.52, + "end": 3445.58, + "probability": 0.9909 + }, + { + "start": 3445.58, + "end": 3448.94, + "probability": 0.5262 + }, + { + "start": 3449.46, + "end": 3450.72, + "probability": 0.9912 + }, + { + "start": 3451.36, + "end": 3455.9, + "probability": 0.9603 + }, + { + "start": 3455.9, + "end": 3459.84, + "probability": 0.9917 + }, + { + "start": 3459.88, + "end": 3463.86, + "probability": 0.9827 + }, + { + "start": 3463.9, + "end": 3465.16, + "probability": 0.9848 + }, + { + "start": 3465.4, + "end": 3468.04, + "probability": 0.9595 + }, + { + "start": 3468.1, + "end": 3469.36, + "probability": 0.8629 + }, + { + "start": 3469.52, + "end": 3471.78, + "probability": 0.9939 + }, + { + "start": 3471.9, + "end": 3477.23, + "probability": 0.9569 + }, + { + "start": 3477.38, + "end": 3482.8, + "probability": 0.9951 + }, + { + "start": 3482.88, + "end": 3484.76, + "probability": 0.9879 + }, + { + "start": 3484.96, + "end": 3485.34, + "probability": 0.4214 + }, + { + "start": 3486.46, + "end": 3490.54, + "probability": 0.9871 + }, + { + "start": 3490.56, + "end": 3495.02, + "probability": 0.9825 + }, + { + "start": 3496.2, + "end": 3499.52, + "probability": 0.9816 + }, + { + "start": 3499.76, + "end": 3502.74, + "probability": 0.9723 + }, + { + "start": 3502.76, + "end": 3506.92, + "probability": 0.9985 + }, + { + "start": 3508.0, + "end": 3508.88, + "probability": 0.9374 + }, + { + "start": 3514.06, + "end": 3518.5, + "probability": 0.807 + }, + { + "start": 3518.84, + "end": 3522.74, + "probability": 0.998 + }, + { + "start": 3522.74, + "end": 3526.06, + "probability": 0.9995 + }, + { + "start": 3527.48, + "end": 3528.52, + "probability": 0.4688 + }, + { + "start": 3529.0, + "end": 3531.54, + "probability": 0.9987 + }, + { + "start": 3532.39, + "end": 3537.38, + "probability": 0.9878 + }, + { + "start": 3537.8, + "end": 3541.39, + "probability": 0.8569 + }, + { + "start": 3541.98, + "end": 3544.94, + "probability": 0.9819 + }, + { + "start": 3544.94, + "end": 3548.28, + "probability": 0.9657 + }, + { + "start": 3548.38, + "end": 3549.62, + "probability": 0.8933 + }, + { + "start": 3550.3, + "end": 3553.02, + "probability": 0.9704 + }, + { + "start": 3553.08, + "end": 3554.9, + "probability": 0.8648 + }, + { + "start": 3555.9, + "end": 3558.44, + "probability": 0.996 + }, + { + "start": 3558.52, + "end": 3558.92, + "probability": 0.4726 + }, + { + "start": 3558.95, + "end": 3563.62, + "probability": 0.7475 + }, + { + "start": 3563.62, + "end": 3568.36, + "probability": 0.9949 + }, + { + "start": 3568.36, + "end": 3573.76, + "probability": 0.9968 + }, + { + "start": 3573.92, + "end": 3574.28, + "probability": 0.5318 + }, + { + "start": 3574.34, + "end": 3576.1, + "probability": 0.9478 + }, + { + "start": 3576.6, + "end": 3578.46, + "probability": 0.7729 + }, + { + "start": 3579.02, + "end": 3584.42, + "probability": 0.9544 + }, + { + "start": 3584.54, + "end": 3587.54, + "probability": 0.9899 + }, + { + "start": 3587.96, + "end": 3588.4, + "probability": 0.4244 + }, + { + "start": 3588.5, + "end": 3593.7, + "probability": 0.9227 + }, + { + "start": 3593.84, + "end": 3595.7, + "probability": 0.8626 + }, + { + "start": 3596.16, + "end": 3600.06, + "probability": 0.9276 + }, + { + "start": 3600.14, + "end": 3600.36, + "probability": 0.6618 + }, + { + "start": 3601.08, + "end": 3601.26, + "probability": 0.5685 + }, + { + "start": 3601.3, + "end": 3606.08, + "probability": 0.8615 + }, + { + "start": 3606.26, + "end": 3607.42, + "probability": 0.804 + }, + { + "start": 3607.96, + "end": 3609.31, + "probability": 0.8314 + }, + { + "start": 3610.0, + "end": 3611.84, + "probability": 0.6122 + }, + { + "start": 3611.98, + "end": 3613.16, + "probability": 0.2016 + }, + { + "start": 3613.16, + "end": 3618.23, + "probability": 0.657 + }, + { + "start": 3619.44, + "end": 3620.74, + "probability": 0.9456 + }, + { + "start": 3620.98, + "end": 3622.72, + "probability": 0.5875 + }, + { + "start": 3622.82, + "end": 3624.26, + "probability": 0.8078 + }, + { + "start": 3624.9, + "end": 3625.26, + "probability": 0.4019 + }, + { + "start": 3639.38, + "end": 3640.6, + "probability": 0.136 + }, + { + "start": 3644.94, + "end": 3647.02, + "probability": 0.5374 + }, + { + "start": 3647.1, + "end": 3648.38, + "probability": 0.3073 + }, + { + "start": 3648.44, + "end": 3650.92, + "probability": 0.0625 + }, + { + "start": 3651.04, + "end": 3653.46, + "probability": 0.3692 + }, + { + "start": 3653.6, + "end": 3656.88, + "probability": 0.5349 + }, + { + "start": 3657.32, + "end": 3658.18, + "probability": 0.6552 + }, + { + "start": 3660.62, + "end": 3661.16, + "probability": 0.0466 + }, + { + "start": 3661.92, + "end": 3661.92, + "probability": 0.0384 + }, + { + "start": 3661.92, + "end": 3661.96, + "probability": 0.0725 + }, + { + "start": 3661.96, + "end": 3662.02, + "probability": 0.1007 + }, + { + "start": 3662.02, + "end": 3665.02, + "probability": 0.0566 + }, + { + "start": 3665.36, + "end": 3666.12, + "probability": 0.1068 + }, + { + "start": 3666.54, + "end": 3667.34, + "probability": 0.0701 + }, + { + "start": 3669.7, + "end": 3671.06, + "probability": 0.0275 + }, + { + "start": 3671.86, + "end": 3672.26, + "probability": 0.0349 + }, + { + "start": 3674.08, + "end": 3674.58, + "probability": 0.0261 + }, + { + "start": 3676.66, + "end": 3677.38, + "probability": 0.0642 + }, + { + "start": 3677.38, + "end": 3677.38, + "probability": 0.0777 + }, + { + "start": 3677.38, + "end": 3678.18, + "probability": 0.0322 + }, + { + "start": 3680.32, + "end": 3680.68, + "probability": 0.5752 + }, + { + "start": 3688.24, + "end": 3693.9, + "probability": 0.0921 + }, + { + "start": 3694.48, + "end": 3694.74, + "probability": 0.0592 + }, + { + "start": 3697.0, + "end": 3697.68, + "probability": 0.0608 + }, + { + "start": 3699.72, + "end": 3699.82, + "probability": 0.3264 + }, + { + "start": 3702.81, + "end": 3706.0, + "probability": 0.0758 + }, + { + "start": 3706.0, + "end": 3707.1, + "probability": 0.0295 + }, + { + "start": 3708.06, + "end": 3708.06, + "probability": 0.0444 + }, + { + "start": 3708.06, + "end": 3708.06, + "probability": 0.2269 + }, + { + "start": 3708.06, + "end": 3708.9, + "probability": 0.004 + }, + { + "start": 3710.0, + "end": 3710.0, + "probability": 0.0 + }, + { + "start": 3710.0, + "end": 3710.0, + "probability": 0.0 + }, + { + "start": 3710.0, + "end": 3710.0, + "probability": 0.0 + }, + { + "start": 3710.0, + "end": 3710.0, + "probability": 0.0 + }, + { + "start": 3710.0, + "end": 3710.0, + "probability": 0.0 + }, + { + "start": 3710.0, + "end": 3710.0, + "probability": 0.0 + }, + { + "start": 3710.0, + "end": 3710.0, + "probability": 0.0 + }, + { + "start": 3710.2, + "end": 3710.34, + "probability": 0.079 + }, + { + "start": 3710.34, + "end": 3710.76, + "probability": 0.0607 + }, + { + "start": 3711.8, + "end": 3715.24, + "probability": 0.8539 + }, + { + "start": 3716.48, + "end": 3720.66, + "probability": 0.903 + }, + { + "start": 3721.34, + "end": 3727.88, + "probability": 0.9914 + }, + { + "start": 3728.72, + "end": 3730.26, + "probability": 0.9844 + }, + { + "start": 3731.54, + "end": 3736.54, + "probability": 0.9726 + }, + { + "start": 3737.18, + "end": 3743.24, + "probability": 0.9732 + }, + { + "start": 3743.86, + "end": 3746.82, + "probability": 0.6889 + }, + { + "start": 3747.98, + "end": 3748.56, + "probability": 0.7144 + }, + { + "start": 3749.7, + "end": 3756.22, + "probability": 0.7208 + }, + { + "start": 3756.68, + "end": 3758.76, + "probability": 0.8947 + }, + { + "start": 3761.32, + "end": 3764.26, + "probability": 0.8747 + }, + { + "start": 3764.34, + "end": 3766.14, + "probability": 0.9389 + }, + { + "start": 3766.96, + "end": 3770.68, + "probability": 0.9795 + }, + { + "start": 3771.76, + "end": 3773.62, + "probability": 0.9946 + }, + { + "start": 3773.82, + "end": 3778.12, + "probability": 0.9985 + }, + { + "start": 3778.88, + "end": 3781.8, + "probability": 0.9819 + }, + { + "start": 3782.18, + "end": 3786.06, + "probability": 0.9631 + }, + { + "start": 3786.76, + "end": 3788.74, + "probability": 0.9158 + }, + { + "start": 3792.6, + "end": 3793.54, + "probability": 0.2293 + }, + { + "start": 3794.08, + "end": 3796.82, + "probability": 0.9569 + }, + { + "start": 3797.52, + "end": 3801.14, + "probability": 0.9895 + }, + { + "start": 3801.64, + "end": 3804.24, + "probability": 0.9926 + }, + { + "start": 3805.06, + "end": 3810.88, + "probability": 0.994 + }, + { + "start": 3811.52, + "end": 3813.32, + "probability": 0.9784 + }, + { + "start": 3814.6, + "end": 3814.76, + "probability": 0.5396 + }, + { + "start": 3814.82, + "end": 3815.66, + "probability": 0.9645 + }, + { + "start": 3815.82, + "end": 3819.68, + "probability": 0.9863 + }, + { + "start": 3820.26, + "end": 3822.16, + "probability": 0.9875 + }, + { + "start": 3822.68, + "end": 3826.08, + "probability": 0.915 + }, + { + "start": 3827.78, + "end": 3832.14, + "probability": 0.9623 + }, + { + "start": 3832.72, + "end": 3836.4, + "probability": 0.994 + }, + { + "start": 3837.5, + "end": 3842.36, + "probability": 0.9869 + }, + { + "start": 3843.22, + "end": 3843.86, + "probability": 0.9324 + }, + { + "start": 3844.32, + "end": 3844.92, + "probability": 0.7527 + }, + { + "start": 3845.24, + "end": 3848.82, + "probability": 0.8443 + }, + { + "start": 3848.84, + "end": 3852.38, + "probability": 0.9803 + }, + { + "start": 3852.96, + "end": 3856.84, + "probability": 0.9923 + }, + { + "start": 3857.52, + "end": 3857.98, + "probability": 0.5208 + }, + { + "start": 3862.22, + "end": 3866.38, + "probability": 0.9891 + }, + { + "start": 3867.28, + "end": 3871.78, + "probability": 0.9944 + }, + { + "start": 3871.78, + "end": 3876.7, + "probability": 0.9628 + }, + { + "start": 3877.36, + "end": 3878.92, + "probability": 0.9904 + }, + { + "start": 3879.7, + "end": 3880.32, + "probability": 0.9538 + }, + { + "start": 3881.36, + "end": 3881.82, + "probability": 0.9214 + }, + { + "start": 3882.64, + "end": 3886.4, + "probability": 0.881 + }, + { + "start": 3887.8, + "end": 3892.58, + "probability": 0.9907 + }, + { + "start": 3892.82, + "end": 3896.64, + "probability": 0.965 + }, + { + "start": 3896.9, + "end": 3899.66, + "probability": 0.0282 + }, + { + "start": 3899.88, + "end": 3901.26, + "probability": 0.6156 + }, + { + "start": 3901.34, + "end": 3902.04, + "probability": 0.7655 + }, + { + "start": 3902.34, + "end": 3903.5, + "probability": 0.9922 + }, + { + "start": 3904.53, + "end": 3906.74, + "probability": 0.9673 + }, + { + "start": 3906.94, + "end": 3907.88, + "probability": 0.7075 + }, + { + "start": 3909.22, + "end": 3909.22, + "probability": 0.1268 + }, + { + "start": 3909.22, + "end": 3911.5, + "probability": 0.7719 + }, + { + "start": 3911.66, + "end": 3912.4, + "probability": 0.9423 + }, + { + "start": 3912.56, + "end": 3913.12, + "probability": 0.5058 + }, + { + "start": 3913.24, + "end": 3913.64, + "probability": 0.6422 + }, + { + "start": 3914.22, + "end": 3914.48, + "probability": 0.3578 + }, + { + "start": 3915.06, + "end": 3919.52, + "probability": 0.9836 + }, + { + "start": 3920.26, + "end": 3923.16, + "probability": 0.9885 + }, + { + "start": 3924.12, + "end": 3928.38, + "probability": 0.9716 + }, + { + "start": 3929.18, + "end": 3932.68, + "probability": 0.9565 + }, + { + "start": 3933.3, + "end": 3937.64, + "probability": 0.8563 + }, + { + "start": 3938.48, + "end": 3942.64, + "probability": 0.9717 + }, + { + "start": 3943.08, + "end": 3945.98, + "probability": 0.8354 + }, + { + "start": 3946.38, + "end": 3947.43, + "probability": 0.9968 + }, + { + "start": 3947.86, + "end": 3948.86, + "probability": 0.4642 + }, + { + "start": 3949.1, + "end": 3951.16, + "probability": 0.5943 + }, + { + "start": 3951.22, + "end": 3952.54, + "probability": 0.5 + }, + { + "start": 3952.56, + "end": 3953.02, + "probability": 0.4577 + }, + { + "start": 3953.54, + "end": 3954.52, + "probability": 0.1342 + }, + { + "start": 3954.58, + "end": 3956.08, + "probability": 0.8368 + }, + { + "start": 3956.78, + "end": 3957.94, + "probability": 0.8416 + }, + { + "start": 3958.33, + "end": 3962.0, + "probability": 0.9702 + }, + { + "start": 3962.54, + "end": 3964.54, + "probability": 0.8921 + }, + { + "start": 3965.3, + "end": 3967.18, + "probability": 0.9984 + }, + { + "start": 3967.94, + "end": 3972.0, + "probability": 0.9961 + }, + { + "start": 3972.0, + "end": 3974.72, + "probability": 0.9993 + }, + { + "start": 3975.64, + "end": 3981.32, + "probability": 0.996 + }, + { + "start": 3981.8, + "end": 3985.4, + "probability": 0.9819 + }, + { + "start": 3986.18, + "end": 3987.1, + "probability": 0.8728 + }, + { + "start": 3987.7, + "end": 3991.36, + "probability": 0.9966 + }, + { + "start": 3992.32, + "end": 3997.18, + "probability": 0.9735 + }, + { + "start": 3997.88, + "end": 4001.58, + "probability": 0.9092 + }, + { + "start": 4002.22, + "end": 4004.1, + "probability": 0.8526 + }, + { + "start": 4004.48, + "end": 4004.8, + "probability": 0.5385 + }, + { + "start": 4004.9, + "end": 4008.56, + "probability": 0.9912 + }, + { + "start": 4009.42, + "end": 4013.7, + "probability": 0.9989 + }, + { + "start": 4014.6, + "end": 4015.66, + "probability": 0.8861 + }, + { + "start": 4017.57, + "end": 4023.42, + "probability": 0.9917 + }, + { + "start": 4024.08, + "end": 4027.22, + "probability": 0.9844 + }, + { + "start": 4027.94, + "end": 4033.96, + "probability": 0.9773 + }, + { + "start": 4034.54, + "end": 4036.54, + "probability": 0.9666 + }, + { + "start": 4037.22, + "end": 4037.46, + "probability": 0.2992 + }, + { + "start": 4037.52, + "end": 4044.22, + "probability": 0.9917 + }, + { + "start": 4044.58, + "end": 4050.62, + "probability": 0.9914 + }, + { + "start": 4051.54, + "end": 4054.34, + "probability": 0.9919 + }, + { + "start": 4055.22, + "end": 4058.06, + "probability": 0.9728 + }, + { + "start": 4058.6, + "end": 4062.44, + "probability": 0.998 + }, + { + "start": 4062.78, + "end": 4063.34, + "probability": 0.7676 + }, + { + "start": 4065.18, + "end": 4067.6, + "probability": 0.902 + }, + { + "start": 4068.94, + "end": 4069.16, + "probability": 0.8064 + }, + { + "start": 4070.4, + "end": 4072.7, + "probability": 0.7171 + }, + { + "start": 4072.7, + "end": 4073.1, + "probability": 0.4347 + }, + { + "start": 4084.74, + "end": 4086.84, + "probability": 0.7993 + }, + { + "start": 4087.64, + "end": 4087.74, + "probability": 0.418 + }, + { + "start": 4087.84, + "end": 4090.04, + "probability": 0.9795 + }, + { + "start": 4090.04, + "end": 4093.74, + "probability": 0.9867 + }, + { + "start": 4094.96, + "end": 4096.83, + "probability": 0.7396 + }, + { + "start": 4097.38, + "end": 4098.2, + "probability": 0.6966 + }, + { + "start": 4099.12, + "end": 4102.22, + "probability": 0.9983 + }, + { + "start": 4103.54, + "end": 4106.62, + "probability": 0.9709 + }, + { + "start": 4107.74, + "end": 4110.36, + "probability": 0.9698 + }, + { + "start": 4110.36, + "end": 4113.42, + "probability": 0.9925 + }, + { + "start": 4114.84, + "end": 4115.92, + "probability": 0.823 + }, + { + "start": 4116.12, + "end": 4119.38, + "probability": 0.9891 + }, + { + "start": 4120.42, + "end": 4125.06, + "probability": 0.9862 + }, + { + "start": 4125.34, + "end": 4128.42, + "probability": 0.9629 + }, + { + "start": 4128.42, + "end": 4131.64, + "probability": 0.9917 + }, + { + "start": 4132.24, + "end": 4133.18, + "probability": 0.7266 + }, + { + "start": 4134.0, + "end": 4135.44, + "probability": 0.9221 + }, + { + "start": 4137.08, + "end": 4138.14, + "probability": 0.9226 + }, + { + "start": 4139.44, + "end": 4139.98, + "probability": 0.3103 + }, + { + "start": 4140.12, + "end": 4144.54, + "probability": 0.998 + }, + { + "start": 4145.06, + "end": 4147.38, + "probability": 0.9747 + }, + { + "start": 4147.9, + "end": 4151.1, + "probability": 0.9774 + }, + { + "start": 4151.9, + "end": 4152.36, + "probability": 0.4465 + }, + { + "start": 4153.1, + "end": 4155.4, + "probability": 0.9333 + }, + { + "start": 4155.42, + "end": 4159.46, + "probability": 0.9734 + }, + { + "start": 4160.0, + "end": 4161.4, + "probability": 0.711 + }, + { + "start": 4162.24, + "end": 4162.26, + "probability": 0.8876 + }, + { + "start": 4162.26, + "end": 4164.84, + "probability": 0.5739 + }, + { + "start": 4165.76, + "end": 4168.36, + "probability": 0.9947 + }, + { + "start": 4168.52, + "end": 4169.66, + "probability": 0.0737 + }, + { + "start": 4170.78, + "end": 4172.46, + "probability": 0.6932 + }, + { + "start": 4172.52, + "end": 4173.78, + "probability": 0.9818 + }, + { + "start": 4174.08, + "end": 4177.04, + "probability": 0.9963 + }, + { + "start": 4177.56, + "end": 4178.66, + "probability": 0.9805 + }, + { + "start": 4184.2, + "end": 4189.9, + "probability": 0.9986 + }, + { + "start": 4189.98, + "end": 4192.04, + "probability": 0.9918 + }, + { + "start": 4193.28, + "end": 4195.35, + "probability": 0.9957 + }, + { + "start": 4197.0, + "end": 4201.78, + "probability": 0.9185 + }, + { + "start": 4203.3, + "end": 4209.0, + "probability": 0.9937 + }, + { + "start": 4209.66, + "end": 4213.72, + "probability": 0.5518 + }, + { + "start": 4216.12, + "end": 4217.12, + "probability": 0.7228 + }, + { + "start": 4217.88, + "end": 4223.76, + "probability": 0.8567 + }, + { + "start": 4224.46, + "end": 4227.74, + "probability": 0.9886 + }, + { + "start": 4229.24, + "end": 4232.18, + "probability": 0.8396 + }, + { + "start": 4232.92, + "end": 4233.66, + "probability": 0.1758 + }, + { + "start": 4233.78, + "end": 4234.58, + "probability": 0.8623 + }, + { + "start": 4235.6, + "end": 4238.7, + "probability": 0.745 + }, + { + "start": 4238.72, + "end": 4239.89, + "probability": 0.6792 + }, + { + "start": 4240.68, + "end": 4241.4, + "probability": 0.7073 + }, + { + "start": 4242.74, + "end": 4243.88, + "probability": 0.0032 + }, + { + "start": 4244.97, + "end": 4247.72, + "probability": 0.1327 + }, + { + "start": 4249.02, + "end": 4249.4, + "probability": 0.0139 + }, + { + "start": 4249.4, + "end": 4249.4, + "probability": 0.1621 + }, + { + "start": 4249.4, + "end": 4249.4, + "probability": 0.0035 + }, + { + "start": 4249.4, + "end": 4252.6, + "probability": 0.0851 + }, + { + "start": 4252.62, + "end": 4253.76, + "probability": 0.7973 + }, + { + "start": 4253.82, + "end": 4254.78, + "probability": 0.6866 + }, + { + "start": 4255.86, + "end": 4256.98, + "probability": 0.7021 + }, + { + "start": 4257.7, + "end": 4258.68, + "probability": 0.9934 + }, + { + "start": 4259.0, + "end": 4265.48, + "probability": 0.9794 + }, + { + "start": 4265.76, + "end": 4271.46, + "probability": 0.9954 + }, + { + "start": 4272.42, + "end": 4273.32, + "probability": 0.7674 + }, + { + "start": 4274.52, + "end": 4276.1, + "probability": 0.1201 + }, + { + "start": 4276.58, + "end": 4277.1, + "probability": 0.0743 + }, + { + "start": 4277.1, + "end": 4277.1, + "probability": 0.3544 + }, + { + "start": 4277.1, + "end": 4281.46, + "probability": 0.6846 + }, + { + "start": 4282.1, + "end": 4283.78, + "probability": 0.7393 + }, + { + "start": 4284.74, + "end": 4287.0, + "probability": 0.7624 + }, + { + "start": 4287.6, + "end": 4288.68, + "probability": 0.8605 + }, + { + "start": 4289.68, + "end": 4293.4, + "probability": 0.9812 + }, + { + "start": 4294.16, + "end": 4295.11, + "probability": 0.9654 + }, + { + "start": 4295.4, + "end": 4296.33, + "probability": 0.9902 + }, + { + "start": 4296.9, + "end": 4297.8, + "probability": 0.8373 + }, + { + "start": 4298.6, + "end": 4301.78, + "probability": 0.998 + }, + { + "start": 4302.16, + "end": 4304.28, + "probability": 0.999 + }, + { + "start": 4305.18, + "end": 4312.4, + "probability": 0.939 + }, + { + "start": 4312.7, + "end": 4314.62, + "probability": 0.9099 + }, + { + "start": 4317.28, + "end": 4317.96, + "probability": 0.7244 + }, + { + "start": 4325.02, + "end": 4327.24, + "probability": 0.8236 + }, + { + "start": 4328.44, + "end": 4331.58, + "probability": 0.5514 + }, + { + "start": 4332.14, + "end": 4332.56, + "probability": 0.6056 + }, + { + "start": 4335.4, + "end": 4338.81, + "probability": 0.388 + }, + { + "start": 4339.32, + "end": 4340.25, + "probability": 0.4734 + }, + { + "start": 4340.78, + "end": 4342.68, + "probability": 0.9465 + }, + { + "start": 4342.86, + "end": 4344.18, + "probability": 0.3977 + }, + { + "start": 4344.38, + "end": 4349.08, + "probability": 0.8317 + }, + { + "start": 4350.34, + "end": 4356.26, + "probability": 0.7419 + }, + { + "start": 4359.6, + "end": 4361.72, + "probability": 0.736 + }, + { + "start": 4363.8, + "end": 4363.9, + "probability": 0.0231 + }, + { + "start": 4363.98, + "end": 4368.84, + "probability": 0.7547 + }, + { + "start": 4370.34, + "end": 4371.5, + "probability": 0.7179 + }, + { + "start": 4372.68, + "end": 4374.72, + "probability": 0.8258 + }, + { + "start": 4375.2, + "end": 4376.76, + "probability": 0.7996 + }, + { + "start": 4378.54, + "end": 4379.1, + "probability": 0.5286 + }, + { + "start": 4380.5, + "end": 4382.5, + "probability": 0.8181 + }, + { + "start": 4383.22, + "end": 4384.14, + "probability": 0.7217 + }, + { + "start": 4385.3, + "end": 4389.04, + "probability": 0.8537 + }, + { + "start": 4391.14, + "end": 4392.56, + "probability": 0.9528 + }, + { + "start": 4395.18, + "end": 4399.0, + "probability": 0.9907 + }, + { + "start": 4400.08, + "end": 4400.48, + "probability": 0.8765 + }, + { + "start": 4401.34, + "end": 4404.8, + "probability": 0.6566 + }, + { + "start": 4405.6, + "end": 4406.36, + "probability": 0.0495 + }, + { + "start": 4407.32, + "end": 4407.48, + "probability": 0.0491 + }, + { + "start": 4407.48, + "end": 4407.48, + "probability": 0.2969 + }, + { + "start": 4407.48, + "end": 4407.48, + "probability": 0.0598 + }, + { + "start": 4407.48, + "end": 4411.17, + "probability": 0.9551 + }, + { + "start": 4411.98, + "end": 4413.36, + "probability": 0.2735 + }, + { + "start": 4413.36, + "end": 4416.7, + "probability": 0.5729 + }, + { + "start": 4416.7, + "end": 4419.12, + "probability": 0.5786 + }, + { + "start": 4419.26, + "end": 4419.54, + "probability": 0.4909 + }, + { + "start": 4419.8, + "end": 4423.26, + "probability": 0.9167 + }, + { + "start": 4423.64, + "end": 4426.68, + "probability": 0.0555 + }, + { + "start": 4426.7, + "end": 4427.26, + "probability": 0.0018 + }, + { + "start": 4428.26, + "end": 4432.32, + "probability": 0.5164 + }, + { + "start": 4432.5, + "end": 4432.5, + "probability": 0.0444 + }, + { + "start": 4432.5, + "end": 4433.74, + "probability": 0.9764 + }, + { + "start": 4434.38, + "end": 4436.96, + "probability": 0.996 + }, + { + "start": 4437.92, + "end": 4443.08, + "probability": 0.8579 + }, + { + "start": 4443.9, + "end": 4449.04, + "probability": 0.9873 + }, + { + "start": 4450.88, + "end": 4453.68, + "probability": 0.4084 + }, + { + "start": 4453.9, + "end": 4455.34, + "probability": 0.967 + }, + { + "start": 4455.94, + "end": 4458.06, + "probability": 0.907 + }, + { + "start": 4458.4, + "end": 4461.02, + "probability": 0.9631 + }, + { + "start": 4463.21, + "end": 4463.84, + "probability": 0.0483 + }, + { + "start": 4463.84, + "end": 4464.7, + "probability": 0.6868 + }, + { + "start": 4465.78, + "end": 4467.76, + "probability": 0.8388 + }, + { + "start": 4467.82, + "end": 4468.68, + "probability": 0.7182 + }, + { + "start": 4468.7, + "end": 4470.9, + "probability": 0.72 + }, + { + "start": 4471.4, + "end": 4475.64, + "probability": 0.9946 + }, + { + "start": 4476.3, + "end": 4476.93, + "probability": 0.9658 + }, + { + "start": 4478.42, + "end": 4479.76, + "probability": 0.7647 + }, + { + "start": 4480.06, + "end": 4483.96, + "probability": 0.9936 + }, + { + "start": 4484.54, + "end": 4485.0, + "probability": 0.2609 + }, + { + "start": 4486.32, + "end": 4486.96, + "probability": 0.1577 + }, + { + "start": 4487.26, + "end": 4490.04, + "probability": 0.9265 + }, + { + "start": 4491.16, + "end": 4497.18, + "probability": 0.9927 + }, + { + "start": 4498.6, + "end": 4500.48, + "probability": 0.9917 + }, + { + "start": 4501.2, + "end": 4503.26, + "probability": 0.9994 + }, + { + "start": 4503.98, + "end": 4504.86, + "probability": 0.0619 + }, + { + "start": 4506.32, + "end": 4506.7, + "probability": 0.0826 + }, + { + "start": 4508.58, + "end": 4508.96, + "probability": 0.0094 + }, + { + "start": 4508.96, + "end": 4512.48, + "probability": 0.6534 + }, + { + "start": 4512.6, + "end": 4513.6, + "probability": 0.8677 + }, + { + "start": 4513.94, + "end": 4518.54, + "probability": 0.869 + }, + { + "start": 4519.2, + "end": 4522.72, + "probability": 0.9967 + }, + { + "start": 4523.62, + "end": 4525.6, + "probability": 0.6862 + }, + { + "start": 4525.82, + "end": 4527.31, + "probability": 0.8936 + }, + { + "start": 4527.8, + "end": 4528.06, + "probability": 0.5194 + }, + { + "start": 4528.18, + "end": 4529.04, + "probability": 0.5267 + }, + { + "start": 4529.18, + "end": 4531.7, + "probability": 0.897 + }, + { + "start": 4532.44, + "end": 4534.8, + "probability": 0.9662 + }, + { + "start": 4534.86, + "end": 4536.2, + "probability": 0.9748 + }, + { + "start": 4536.42, + "end": 4537.54, + "probability": 0.9678 + }, + { + "start": 4537.82, + "end": 4540.52, + "probability": 0.7402 + }, + { + "start": 4540.76, + "end": 4542.06, + "probability": 0.9443 + }, + { + "start": 4542.36, + "end": 4543.76, + "probability": 0.9342 + }, + { + "start": 4544.16, + "end": 4545.34, + "probability": 0.7854 + }, + { + "start": 4545.56, + "end": 4547.52, + "probability": 0.8998 + }, + { + "start": 4547.82, + "end": 4553.78, + "probability": 0.96 + }, + { + "start": 4553.98, + "end": 4556.84, + "probability": 0.9858 + }, + { + "start": 4556.92, + "end": 4558.82, + "probability": 0.9459 + }, + { + "start": 4558.9, + "end": 4562.86, + "probability": 0.9944 + }, + { + "start": 4562.86, + "end": 4567.74, + "probability": 0.9936 + }, + { + "start": 4568.48, + "end": 4569.4, + "probability": 0.9731 + }, + { + "start": 4570.5, + "end": 4572.0, + "probability": 0.9569 + }, + { + "start": 4573.2, + "end": 4574.4, + "probability": 0.3622 + }, + { + "start": 4575.2, + "end": 4576.92, + "probability": 0.992 + }, + { + "start": 4577.72, + "end": 4578.46, + "probability": 0.3281 + }, + { + "start": 4579.5, + "end": 4583.44, + "probability": 0.9756 + }, + { + "start": 4583.82, + "end": 4586.34, + "probability": 0.9455 + }, + { + "start": 4587.66, + "end": 4588.76, + "probability": 0.6947 + }, + { + "start": 4590.06, + "end": 4595.8, + "probability": 0.8267 + }, + { + "start": 4596.42, + "end": 4597.36, + "probability": 0.9216 + }, + { + "start": 4597.68, + "end": 4599.18, + "probability": 0.6636 + }, + { + "start": 4600.12, + "end": 4604.36, + "probability": 0.7595 + }, + { + "start": 4605.08, + "end": 4607.82, + "probability": 0.9905 + }, + { + "start": 4609.08, + "end": 4610.06, + "probability": 0.7184 + }, + { + "start": 4610.84, + "end": 4615.25, + "probability": 0.9971 + }, + { + "start": 4616.25, + "end": 4616.35, + "probability": 0.3157 + }, + { + "start": 4616.35, + "end": 4620.05, + "probability": 0.9581 + }, + { + "start": 4620.33, + "end": 4620.81, + "probability": 0.0115 + }, + { + "start": 4621.65, + "end": 4621.83, + "probability": 0.1036 + }, + { + "start": 4622.07, + "end": 4626.31, + "probability": 0.9379 + }, + { + "start": 4627.05, + "end": 4627.69, + "probability": 0.586 + }, + { + "start": 4627.89, + "end": 4632.03, + "probability": 0.9597 + }, + { + "start": 4632.25, + "end": 4632.75, + "probability": 0.7101 + }, + { + "start": 4634.23, + "end": 4636.89, + "probability": 0.8049 + }, + { + "start": 4637.33, + "end": 4638.13, + "probability": 0.5299 + }, + { + "start": 4638.21, + "end": 4641.35, + "probability": 0.5878 + }, + { + "start": 4642.35, + "end": 4643.95, + "probability": 0.9873 + }, + { + "start": 4644.65, + "end": 4645.99, + "probability": 0.9718 + }, + { + "start": 4646.07, + "end": 4646.37, + "probability": 0.8321 + }, + { + "start": 4646.95, + "end": 4647.19, + "probability": 0.9427 + }, + { + "start": 4647.71, + "end": 4648.37, + "probability": 0.5098 + }, + { + "start": 4649.27, + "end": 4650.45, + "probability": 0.618 + }, + { + "start": 4650.57, + "end": 4652.43, + "probability": 0.6261 + }, + { + "start": 4652.43, + "end": 4655.43, + "probability": 0.7841 + }, + { + "start": 4655.51, + "end": 4656.51, + "probability": 0.4502 + }, + { + "start": 4656.61, + "end": 4657.81, + "probability": 0.7979 + }, + { + "start": 4658.33, + "end": 4661.87, + "probability": 0.4566 + }, + { + "start": 4662.67, + "end": 4663.73, + "probability": 0.1904 + }, + { + "start": 4675.99, + "end": 4677.35, + "probability": 0.1152 + }, + { + "start": 4687.73, + "end": 4690.23, + "probability": 0.7092 + }, + { + "start": 4690.23, + "end": 4692.16, + "probability": 0.567 + }, + { + "start": 4693.27, + "end": 4696.43, + "probability": 0.1047 + }, + { + "start": 4696.43, + "end": 4698.74, + "probability": 0.497 + }, + { + "start": 4699.05, + "end": 4700.19, + "probability": 0.0489 + }, + { + "start": 4700.47, + "end": 4704.89, + "probability": 0.0934 + }, + { + "start": 4704.91, + "end": 4707.97, + "probability": 0.0479 + }, + { + "start": 4708.37, + "end": 4708.51, + "probability": 0.1373 + }, + { + "start": 4708.51, + "end": 4710.67, + "probability": 0.0505 + }, + { + "start": 4712.67, + "end": 4715.01, + "probability": 0.1382 + }, + { + "start": 4727.49, + "end": 4728.89, + "probability": 0.0473 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.0, + "end": 4741.0, + "probability": 0.0 + }, + { + "start": 4741.53, + "end": 4744.42, + "probability": 0.4592 + }, + { + "start": 4744.92, + "end": 4750.18, + "probability": 0.9276 + }, + { + "start": 4750.2, + "end": 4750.92, + "probability": 0.6926 + }, + { + "start": 4751.2, + "end": 4754.32, + "probability": 0.9886 + }, + { + "start": 4755.08, + "end": 4760.68, + "probability": 0.9797 + }, + { + "start": 4761.9, + "end": 4764.16, + "probability": 0.9605 + }, + { + "start": 4765.58, + "end": 4767.7, + "probability": 0.8204 + }, + { + "start": 4768.56, + "end": 4771.88, + "probability": 0.9941 + }, + { + "start": 4772.26, + "end": 4773.48, + "probability": 0.9733 + }, + { + "start": 4774.36, + "end": 4777.17, + "probability": 0.9948 + }, + { + "start": 4780.2, + "end": 4782.56, + "probability": 0.9809 + }, + { + "start": 4783.26, + "end": 4785.68, + "probability": 0.9589 + }, + { + "start": 4786.44, + "end": 4786.98, + "probability": 0.7791 + }, + { + "start": 4788.68, + "end": 4789.54, + "probability": 0.8077 + }, + { + "start": 4790.44, + "end": 4791.4, + "probability": 0.7192 + }, + { + "start": 4792.24, + "end": 4793.18, + "probability": 0.6345 + }, + { + "start": 4793.62, + "end": 4794.28, + "probability": 0.8552 + }, + { + "start": 4795.38, + "end": 4799.2, + "probability": 0.7231 + }, + { + "start": 4799.98, + "end": 4801.0, + "probability": 0.6094 + }, + { + "start": 4801.22, + "end": 4805.18, + "probability": 0.8236 + }, + { + "start": 4805.78, + "end": 4807.12, + "probability": 0.7714 + }, + { + "start": 4807.3, + "end": 4810.7, + "probability": 0.9746 + }, + { + "start": 4812.22, + "end": 4815.0, + "probability": 0.894 + }, + { + "start": 4816.66, + "end": 4821.04, + "probability": 0.9365 + }, + { + "start": 4821.72, + "end": 4826.46, + "probability": 0.9928 + }, + { + "start": 4826.6, + "end": 4830.16, + "probability": 0.9912 + }, + { + "start": 4830.52, + "end": 4833.02, + "probability": 0.5764 + }, + { + "start": 4833.46, + "end": 4834.48, + "probability": 0.8935 + }, + { + "start": 4835.1, + "end": 4836.3, + "probability": 0.9067 + }, + { + "start": 4836.68, + "end": 4836.68, + "probability": 0.2102 + }, + { + "start": 4836.68, + "end": 4838.15, + "probability": 0.8385 + }, + { + "start": 4838.38, + "end": 4841.24, + "probability": 0.1566 + }, + { + "start": 4841.24, + "end": 4841.24, + "probability": 0.3684 + }, + { + "start": 4841.24, + "end": 4841.24, + "probability": 0.0427 + }, + { + "start": 4841.24, + "end": 4842.6, + "probability": 0.1106 + }, + { + "start": 4842.76, + "end": 4843.4, + "probability": 0.752 + }, + { + "start": 4843.6, + "end": 4844.6, + "probability": 0.737 + }, + { + "start": 4844.68, + "end": 4848.76, + "probability": 0.9268 + }, + { + "start": 4848.94, + "end": 4850.24, + "probability": 0.9753 + }, + { + "start": 4850.28, + "end": 4851.88, + "probability": 0.995 + }, + { + "start": 4853.55, + "end": 4855.5, + "probability": 0.3504 + }, + { + "start": 4855.7, + "end": 4855.98, + "probability": 0.1777 + }, + { + "start": 4855.98, + "end": 4856.93, + "probability": 0.5274 + }, + { + "start": 4857.14, + "end": 4857.48, + "probability": 0.3374 + }, + { + "start": 4857.58, + "end": 4859.1, + "probability": 0.5805 + }, + { + "start": 4859.2, + "end": 4859.98, + "probability": 0.9404 + }, + { + "start": 4860.16, + "end": 4864.14, + "probability": 0.9899 + }, + { + "start": 4864.5, + "end": 4866.08, + "probability": 0.9619 + }, + { + "start": 4866.98, + "end": 4868.1, + "probability": 0.9814 + }, + { + "start": 4868.2, + "end": 4870.72, + "probability": 0.9909 + }, + { + "start": 4871.46, + "end": 4871.46, + "probability": 0.1048 + }, + { + "start": 4871.46, + "end": 4872.16, + "probability": 0.9491 + }, + { + "start": 4872.54, + "end": 4874.28, + "probability": 0.9829 + }, + { + "start": 4874.44, + "end": 4875.1, + "probability": 0.7829 + }, + { + "start": 4875.38, + "end": 4877.06, + "probability": 0.9946 + }, + { + "start": 4877.46, + "end": 4878.12, + "probability": 0.6317 + }, + { + "start": 4878.24, + "end": 4880.98, + "probability": 0.7563 + }, + { + "start": 4881.12, + "end": 4883.58, + "probability": 0.8282 + }, + { + "start": 4884.08, + "end": 4885.34, + "probability": 0.9744 + }, + { + "start": 4885.54, + "end": 4887.08, + "probability": 0.9714 + }, + { + "start": 4887.44, + "end": 4888.7, + "probability": 0.9777 + }, + { + "start": 4888.78, + "end": 4889.88, + "probability": 0.9978 + }, + { + "start": 4890.34, + "end": 4892.72, + "probability": 0.817 + }, + { + "start": 4893.56, + "end": 4894.94, + "probability": 0.988 + }, + { + "start": 4894.96, + "end": 4895.94, + "probability": 0.7768 + }, + { + "start": 4896.16, + "end": 4898.92, + "probability": 0.9646 + }, + { + "start": 4899.58, + "end": 4901.87, + "probability": 0.9809 + }, + { + "start": 4901.88, + "end": 4903.1, + "probability": 0.8727 + }, + { + "start": 4903.24, + "end": 4903.72, + "probability": 0.8398 + }, + { + "start": 4904.5, + "end": 4905.66, + "probability": 0.9878 + }, + { + "start": 4906.12, + "end": 4907.14, + "probability": 0.9276 + }, + { + "start": 4907.2, + "end": 4910.08, + "probability": 0.9404 + }, + { + "start": 4910.3, + "end": 4912.78, + "probability": 0.994 + }, + { + "start": 4912.94, + "end": 4913.48, + "probability": 0.7272 + }, + { + "start": 4913.98, + "end": 4915.2, + "probability": 0.8504 + }, + { + "start": 4915.66, + "end": 4915.68, + "probability": 0.1727 + }, + { + "start": 4915.7, + "end": 4916.84, + "probability": 0.7389 + }, + { + "start": 4916.86, + "end": 4919.09, + "probability": 0.8104 + }, + { + "start": 4919.8, + "end": 4920.78, + "probability": 0.6214 + }, + { + "start": 4921.36, + "end": 4921.68, + "probability": 0.4277 + }, + { + "start": 4924.24, + "end": 4924.7, + "probability": 0.0144 + }, + { + "start": 4924.7, + "end": 4925.6, + "probability": 0.988 + }, + { + "start": 4925.76, + "end": 4927.02, + "probability": 0.9336 + }, + { + "start": 4927.1, + "end": 4928.46, + "probability": 0.9885 + }, + { + "start": 4929.56, + "end": 4931.4, + "probability": 0.9798 + }, + { + "start": 4932.28, + "end": 4934.42, + "probability": 0.9966 + }, + { + "start": 4935.0, + "end": 4939.54, + "probability": 0.9516 + }, + { + "start": 4940.02, + "end": 4940.64, + "probability": 0.9617 + }, + { + "start": 4940.72, + "end": 4941.7, + "probability": 0.7385 + }, + { + "start": 4942.58, + "end": 4945.86, + "probability": 0.8681 + }, + { + "start": 4946.3, + "end": 4947.71, + "probability": 0.8646 + }, + { + "start": 4948.44, + "end": 4949.18, + "probability": 0.0027 + }, + { + "start": 4951.38, + "end": 4951.8, + "probability": 0.0196 + }, + { + "start": 4951.8, + "end": 4952.0, + "probability": 0.0078 + }, + { + "start": 4952.0, + "end": 4952.0, + "probability": 0.0444 + }, + { + "start": 4952.0, + "end": 4952.0, + "probability": 0.1551 + }, + { + "start": 4952.0, + "end": 4952.0, + "probability": 0.0458 + }, + { + "start": 4952.0, + "end": 4952.83, + "probability": 0.7642 + }, + { + "start": 4953.14, + "end": 4954.28, + "probability": 0.419 + }, + { + "start": 4954.36, + "end": 4961.64, + "probability": 0.885 + }, + { + "start": 4962.04, + "end": 4964.04, + "probability": 0.9919 + }, + { + "start": 4964.3, + "end": 4965.64, + "probability": 0.979 + }, + { + "start": 4966.44, + "end": 4969.9, + "probability": 0.8782 + }, + { + "start": 4970.0, + "end": 4971.12, + "probability": 0.9498 + }, + { + "start": 4971.4, + "end": 4972.78, + "probability": 0.9257 + }, + { + "start": 4973.48, + "end": 4976.72, + "probability": 0.9925 + }, + { + "start": 4977.24, + "end": 4977.7, + "probability": 0.4568 + }, + { + "start": 4977.76, + "end": 4980.39, + "probability": 0.7979 + }, + { + "start": 4982.64, + "end": 4983.28, + "probability": 0.7556 + }, + { + "start": 4983.86, + "end": 4984.48, + "probability": 0.7831 + }, + { + "start": 4984.58, + "end": 4985.64, + "probability": 0.9655 + }, + { + "start": 4985.9, + "end": 4989.2, + "probability": 0.6465 + }, + { + "start": 4989.56, + "end": 4990.22, + "probability": 0.8218 + }, + { + "start": 4990.3, + "end": 4991.16, + "probability": 0.9336 + }, + { + "start": 4991.22, + "end": 4993.08, + "probability": 0.8742 + }, + { + "start": 4993.14, + "end": 4996.16, + "probability": 0.9858 + }, + { + "start": 4996.56, + "end": 4997.06, + "probability": 0.671 + }, + { + "start": 4997.68, + "end": 4999.52, + "probability": 0.9566 + }, + { + "start": 4999.72, + "end": 5000.08, + "probability": 0.5332 + }, + { + "start": 5000.14, + "end": 5000.36, + "probability": 0.7339 + }, + { + "start": 5000.76, + "end": 5001.82, + "probability": 0.6945 + }, + { + "start": 5001.82, + "end": 5003.26, + "probability": 0.4835 + }, + { + "start": 5003.26, + "end": 5006.0, + "probability": 0.5884 + }, + { + "start": 5006.34, + "end": 5006.34, + "probability": 0.1011 + }, + { + "start": 5006.34, + "end": 5007.04, + "probability": 0.9274 + }, + { + "start": 5007.24, + "end": 5010.26, + "probability": 0.8466 + }, + { + "start": 5011.9, + "end": 5019.98, + "probability": 0.9523 + }, + { + "start": 5020.48, + "end": 5021.42, + "probability": 0.3086 + }, + { + "start": 5021.48, + "end": 5028.7, + "probability": 0.0617 + }, + { + "start": 5028.86, + "end": 5029.02, + "probability": 0.1381 + }, + { + "start": 5029.02, + "end": 5030.4, + "probability": 0.0303 + }, + { + "start": 5030.4, + "end": 5030.4, + "probability": 0.0258 + }, + { + "start": 5030.4, + "end": 5030.4, + "probability": 0.2434 + }, + { + "start": 5030.4, + "end": 5030.4, + "probability": 0.4837 + }, + { + "start": 5030.4, + "end": 5032.05, + "probability": 0.9756 + }, + { + "start": 5032.5, + "end": 5032.68, + "probability": 0.0274 + }, + { + "start": 5032.68, + "end": 5033.66, + "probability": 0.3862 + }, + { + "start": 5033.8, + "end": 5034.66, + "probability": 0.5118 + }, + { + "start": 5035.7, + "end": 5036.48, + "probability": 0.1021 + }, + { + "start": 5036.62, + "end": 5037.96, + "probability": 0.2367 + }, + { + "start": 5038.1, + "end": 5042.1, + "probability": 0.1154 + }, + { + "start": 5043.26, + "end": 5044.16, + "probability": 0.3502 + }, + { + "start": 5044.94, + "end": 5047.4, + "probability": 0.527 + }, + { + "start": 5047.74, + "end": 5049.72, + "probability": 0.9731 + }, + { + "start": 5049.82, + "end": 5052.54, + "probability": 0.8738 + }, + { + "start": 5052.8, + "end": 5053.78, + "probability": 0.9954 + }, + { + "start": 5053.9, + "end": 5055.36, + "probability": 0.9868 + }, + { + "start": 5055.42, + "end": 5056.49, + "probability": 0.9988 + }, + { + "start": 5056.98, + "end": 5057.04, + "probability": 0.0923 + }, + { + "start": 5057.04, + "end": 5057.6, + "probability": 0.0367 + }, + { + "start": 5057.6, + "end": 5057.98, + "probability": 0.2853 + }, + { + "start": 5058.06, + "end": 5059.46, + "probability": 0.9114 + }, + { + "start": 5059.76, + "end": 5059.76, + "probability": 0.835 + }, + { + "start": 5061.02, + "end": 5063.82, + "probability": 0.9897 + }, + { + "start": 5064.22, + "end": 5066.92, + "probability": 0.9963 + }, + { + "start": 5067.54, + "end": 5068.86, + "probability": 0.9805 + }, + { + "start": 5068.94, + "end": 5070.04, + "probability": 0.9823 + }, + { + "start": 5070.18, + "end": 5071.26, + "probability": 0.9779 + }, + { + "start": 5071.32, + "end": 5071.98, + "probability": 0.7069 + }, + { + "start": 5072.1, + "end": 5072.34, + "probability": 0.5118 + }, + { + "start": 5072.82, + "end": 5074.32, + "probability": 0.7071 + }, + { + "start": 5074.76, + "end": 5076.14, + "probability": 0.5326 + }, + { + "start": 5076.9, + "end": 5077.7, + "probability": 0.8118 + }, + { + "start": 5078.16, + "end": 5078.16, + "probability": 0.0115 + }, + { + "start": 5078.16, + "end": 5078.42, + "probability": 0.677 + }, + { + "start": 5078.54, + "end": 5078.7, + "probability": 0.6995 + }, + { + "start": 5078.76, + "end": 5079.42, + "probability": 0.8789 + }, + { + "start": 5079.56, + "end": 5082.36, + "probability": 0.8297 + }, + { + "start": 5082.54, + "end": 5082.54, + "probability": 0.0604 + }, + { + "start": 5082.54, + "end": 5084.26, + "probability": 0.7595 + }, + { + "start": 5084.26, + "end": 5085.1, + "probability": 0.8717 + }, + { + "start": 5085.64, + "end": 5086.06, + "probability": 0.4407 + }, + { + "start": 5086.06, + "end": 5086.62, + "probability": 0.9196 + }, + { + "start": 5086.7, + "end": 5090.69, + "probability": 0.8901 + }, + { + "start": 5090.92, + "end": 5091.4, + "probability": 0.8473 + }, + { + "start": 5091.64, + "end": 5092.5, + "probability": 0.7815 + }, + { + "start": 5092.54, + "end": 5092.94, + "probability": 0.6063 + }, + { + "start": 5093.46, + "end": 5093.62, + "probability": 0.7659 + }, + { + "start": 5093.8, + "end": 5098.24, + "probability": 0.9923 + }, + { + "start": 5098.82, + "end": 5098.82, + "probability": 0.0279 + }, + { + "start": 5098.82, + "end": 5100.0, + "probability": 0.7815 + }, + { + "start": 5100.0, + "end": 5100.92, + "probability": 0.8688 + }, + { + "start": 5101.46, + "end": 5101.5, + "probability": 0.2836 + }, + { + "start": 5101.5, + "end": 5102.42, + "probability": 0.63 + }, + { + "start": 5102.56, + "end": 5104.6, + "probability": 0.9814 + }, + { + "start": 5104.8, + "end": 5105.1, + "probability": 0.8656 + }, + { + "start": 5105.72, + "end": 5107.6, + "probability": 0.8657 + }, + { + "start": 5109.5, + "end": 5111.44, + "probability": 0.8617 + }, + { + "start": 5112.18, + "end": 5113.88, + "probability": 0.8834 + }, + { + "start": 5115.22, + "end": 5117.54, + "probability": 0.8234 + }, + { + "start": 5118.08, + "end": 5118.08, + "probability": 0.039 + }, + { + "start": 5118.08, + "end": 5119.0, + "probability": 0.5875 + }, + { + "start": 5119.24, + "end": 5119.78, + "probability": 0.6571 + }, + { + "start": 5119.9, + "end": 5119.9, + "probability": 0.0092 + }, + { + "start": 5119.9, + "end": 5120.0, + "probability": 0.7652 + }, + { + "start": 5120.2, + "end": 5121.5, + "probability": 0.8682 + }, + { + "start": 5121.76, + "end": 5125.6, + "probability": 0.9532 + }, + { + "start": 5125.64, + "end": 5126.38, + "probability": 0.6465 + }, + { + "start": 5126.76, + "end": 5129.0, + "probability": 0.5903 + }, + { + "start": 5129.0, + "end": 5129.74, + "probability": 0.0799 + }, + { + "start": 5130.3, + "end": 5131.1, + "probability": 0.5311 + }, + { + "start": 5131.26, + "end": 5131.56, + "probability": 0.5138 + }, + { + "start": 5131.56, + "end": 5132.7, + "probability": 0.695 + }, + { + "start": 5132.74, + "end": 5134.66, + "probability": 0.7663 + }, + { + "start": 5134.74, + "end": 5134.76, + "probability": 0.2763 + }, + { + "start": 5135.44, + "end": 5135.58, + "probability": 0.2733 + }, + { + "start": 5135.58, + "end": 5135.76, + "probability": 0.0492 + }, + { + "start": 5135.76, + "end": 5135.76, + "probability": 0.1163 + }, + { + "start": 5135.76, + "end": 5135.76, + "probability": 0.1889 + }, + { + "start": 5135.76, + "end": 5137.08, + "probability": 0.2059 + }, + { + "start": 5137.54, + "end": 5138.2, + "probability": 0.8746 + }, + { + "start": 5139.24, + "end": 5141.26, + "probability": 0.6231 + }, + { + "start": 5141.72, + "end": 5143.84, + "probability": 0.8798 + }, + { + "start": 5143.84, + "end": 5146.38, + "probability": 0.9717 + }, + { + "start": 5146.84, + "end": 5147.92, + "probability": 0.861 + }, + { + "start": 5147.96, + "end": 5148.52, + "probability": 0.8883 + }, + { + "start": 5148.58, + "end": 5149.64, + "probability": 0.8406 + }, + { + "start": 5149.72, + "end": 5150.68, + "probability": 0.9842 + }, + { + "start": 5151.08, + "end": 5153.04, + "probability": 0.9337 + }, + { + "start": 5153.52, + "end": 5154.57, + "probability": 0.8822 + }, + { + "start": 5154.66, + "end": 5156.32, + "probability": 0.3394 + }, + { + "start": 5156.38, + "end": 5157.25, + "probability": 0.8627 + }, + { + "start": 5157.68, + "end": 5158.22, + "probability": 0.4926 + }, + { + "start": 5158.3, + "end": 5160.34, + "probability": 0.9637 + }, + { + "start": 5160.46, + "end": 5162.28, + "probability": 0.8444 + }, + { + "start": 5162.76, + "end": 5164.44, + "probability": 0.9805 + }, + { + "start": 5164.56, + "end": 5165.94, + "probability": 0.9967 + }, + { + "start": 5166.14, + "end": 5167.38, + "probability": 0.9416 + }, + { + "start": 5167.82, + "end": 5168.94, + "probability": 0.92 + }, + { + "start": 5169.18, + "end": 5169.38, + "probability": 0.3488 + }, + { + "start": 5169.44, + "end": 5170.06, + "probability": 0.7216 + }, + { + "start": 5170.12, + "end": 5170.64, + "probability": 0.6516 + }, + { + "start": 5170.64, + "end": 5171.2, + "probability": 0.9404 + }, + { + "start": 5171.22, + "end": 5173.34, + "probability": 0.938 + }, + { + "start": 5173.42, + "end": 5174.75, + "probability": 0.9927 + }, + { + "start": 5176.52, + "end": 5176.66, + "probability": 0.0119 + }, + { + "start": 5176.78, + "end": 5178.08, + "probability": 0.9062 + }, + { + "start": 5178.56, + "end": 5182.14, + "probability": 0.8842 + }, + { + "start": 5182.56, + "end": 5185.14, + "probability": 0.9832 + }, + { + "start": 5185.22, + "end": 5187.04, + "probability": 0.7752 + }, + { + "start": 5187.34, + "end": 5188.32, + "probability": 0.7642 + }, + { + "start": 5188.42, + "end": 5191.34, + "probability": 0.9235 + }, + { + "start": 5192.64, + "end": 5193.36, + "probability": 0.8669 + }, + { + "start": 5193.36, + "end": 5193.73, + "probability": 0.9259 + }, + { + "start": 5194.18, + "end": 5197.12, + "probability": 0.931 + }, + { + "start": 5198.08, + "end": 5200.28, + "probability": 0.8726 + }, + { + "start": 5200.36, + "end": 5200.82, + "probability": 0.6259 + }, + { + "start": 5200.86, + "end": 5201.64, + "probability": 0.9749 + }, + { + "start": 5201.74, + "end": 5203.24, + "probability": 0.7678 + }, + { + "start": 5203.66, + "end": 5204.68, + "probability": 0.9615 + }, + { + "start": 5204.82, + "end": 5205.53, + "probability": 0.6733 + }, + { + "start": 5206.32, + "end": 5208.72, + "probability": 0.9606 + }, + { + "start": 5209.48, + "end": 5209.82, + "probability": 0.7837 + }, + { + "start": 5210.5, + "end": 5214.06, + "probability": 0.9449 + }, + { + "start": 5215.0, + "end": 5217.72, + "probability": 0.9885 + }, + { + "start": 5218.48, + "end": 5218.48, + "probability": 0.2858 + }, + { + "start": 5218.48, + "end": 5220.1, + "probability": 0.9251 + }, + { + "start": 5220.2, + "end": 5221.46, + "probability": 0.9961 + }, + { + "start": 5221.76, + "end": 5222.28, + "probability": 0.7347 + }, + { + "start": 5222.74, + "end": 5223.6, + "probability": 0.9031 + }, + { + "start": 5223.62, + "end": 5224.3, + "probability": 0.762 + }, + { + "start": 5224.42, + "end": 5225.47, + "probability": 0.9905 + }, + { + "start": 5226.64, + "end": 5226.66, + "probability": 0.0572 + }, + { + "start": 5226.66, + "end": 5227.12, + "probability": 0.8865 + }, + { + "start": 5227.66, + "end": 5228.08, + "probability": 0.6379 + }, + { + "start": 5228.1, + "end": 5228.74, + "probability": 0.6964 + }, + { + "start": 5228.82, + "end": 5229.16, + "probability": 0.5641 + }, + { + "start": 5229.2, + "end": 5229.61, + "probability": 0.9478 + }, + { + "start": 5229.72, + "end": 5231.32, + "probability": 0.9612 + }, + { + "start": 5231.66, + "end": 5232.12, + "probability": 0.8993 + }, + { + "start": 5232.52, + "end": 5232.64, + "probability": 0.5778 + }, + { + "start": 5233.96, + "end": 5234.24, + "probability": 0.057 + }, + { + "start": 5234.24, + "end": 5237.98, + "probability": 0.9445 + }, + { + "start": 5238.64, + "end": 5240.36, + "probability": 0.9971 + }, + { + "start": 5240.78, + "end": 5241.74, + "probability": 0.9193 + }, + { + "start": 5241.78, + "end": 5242.34, + "probability": 0.688 + }, + { + "start": 5242.48, + "end": 5243.2, + "probability": 0.8655 + }, + { + "start": 5243.3, + "end": 5243.94, + "probability": 0.8756 + }, + { + "start": 5244.0, + "end": 5245.12, + "probability": 0.9873 + }, + { + "start": 5245.42, + "end": 5247.52, + "probability": 0.9684 + }, + { + "start": 5247.84, + "end": 5250.14, + "probability": 0.9982 + }, + { + "start": 5250.44, + "end": 5251.84, + "probability": 0.2881 + }, + { + "start": 5252.96, + "end": 5255.5, + "probability": 0.9641 + }, + { + "start": 5255.68, + "end": 5257.9, + "probability": 0.9703 + }, + { + "start": 5258.26, + "end": 5260.88, + "probability": 0.9907 + }, + { + "start": 5260.98, + "end": 5263.8, + "probability": 0.7814 + }, + { + "start": 5263.98, + "end": 5264.73, + "probability": 0.9675 + }, + { + "start": 5264.96, + "end": 5265.42, + "probability": 0.6681 + }, + { + "start": 5265.46, + "end": 5265.86, + "probability": 0.8124 + }, + { + "start": 5265.94, + "end": 5267.02, + "probability": 0.7344 + }, + { + "start": 5267.06, + "end": 5268.21, + "probability": 0.8916 + }, + { + "start": 5268.68, + "end": 5272.04, + "probability": 0.9629 + }, + { + "start": 5272.24, + "end": 5273.06, + "probability": 0.974 + }, + { + "start": 5273.46, + "end": 5274.12, + "probability": 0.5707 + }, + { + "start": 5274.24, + "end": 5274.74, + "probability": 0.9214 + }, + { + "start": 5274.8, + "end": 5275.63, + "probability": 0.7153 + }, + { + "start": 5275.8, + "end": 5278.88, + "probability": 0.9864 + }, + { + "start": 5278.98, + "end": 5279.33, + "probability": 0.2676 + }, + { + "start": 5279.86, + "end": 5280.46, + "probability": 0.5855 + }, + { + "start": 5280.62, + "end": 5281.06, + "probability": 0.665 + }, + { + "start": 5281.18, + "end": 5282.24, + "probability": 0.9521 + }, + { + "start": 5282.34, + "end": 5284.28, + "probability": 0.9373 + }, + { + "start": 5284.62, + "end": 5286.26, + "probability": 0.9939 + }, + { + "start": 5286.46, + "end": 5287.7, + "probability": 0.9919 + }, + { + "start": 5288.34, + "end": 5290.62, + "probability": 0.9155 + }, + { + "start": 5290.68, + "end": 5292.06, + "probability": 0.8494 + }, + { + "start": 5292.36, + "end": 5296.44, + "probability": 0.9084 + }, + { + "start": 5297.04, + "end": 5297.06, + "probability": 0.0146 + }, + { + "start": 5297.62, + "end": 5298.82, + "probability": 0.9787 + }, + { + "start": 5299.2, + "end": 5300.56, + "probability": 0.9749 + }, + { + "start": 5301.62, + "end": 5301.62, + "probability": 0.2122 + }, + { + "start": 5301.62, + "end": 5301.62, + "probability": 0.0989 + }, + { + "start": 5301.62, + "end": 5302.56, + "probability": 0.7421 + }, + { + "start": 5302.58, + "end": 5303.46, + "probability": 0.842 + }, + { + "start": 5303.5, + "end": 5304.0, + "probability": 0.6069 + }, + { + "start": 5304.08, + "end": 5307.46, + "probability": 0.8347 + }, + { + "start": 5307.8, + "end": 5309.38, + "probability": 0.9433 + }, + { + "start": 5310.17, + "end": 5312.18, + "probability": 0.8779 + }, + { + "start": 5312.26, + "end": 5313.64, + "probability": 0.937 + }, + { + "start": 5313.94, + "end": 5318.74, + "probability": 0.9583 + }, + { + "start": 5318.82, + "end": 5320.65, + "probability": 0.9211 + }, + { + "start": 5323.18, + "end": 5323.18, + "probability": 0.1006 + }, + { + "start": 5323.18, + "end": 5323.18, + "probability": 0.1011 + }, + { + "start": 5323.18, + "end": 5323.76, + "probability": 0.1185 + }, + { + "start": 5323.76, + "end": 5329.68, + "probability": 0.8413 + }, + { + "start": 5329.98, + "end": 5331.1, + "probability": 0.7704 + }, + { + "start": 5331.18, + "end": 5335.48, + "probability": 0.9881 + }, + { + "start": 5335.82, + "end": 5338.08, + "probability": 0.7698 + }, + { + "start": 5338.7, + "end": 5343.14, + "probability": 0.9961 + }, + { + "start": 5343.22, + "end": 5343.8, + "probability": 0.8728 + }, + { + "start": 5344.42, + "end": 5346.64, + "probability": 0.9981 + }, + { + "start": 5347.1, + "end": 5347.1, + "probability": 0.4194 + }, + { + "start": 5347.1, + "end": 5348.74, + "probability": 0.8247 + }, + { + "start": 5349.5, + "end": 5350.74, + "probability": 0.9504 + }, + { + "start": 5351.22, + "end": 5354.52, + "probability": 0.9381 + }, + { + "start": 5354.82, + "end": 5356.3, + "probability": 0.9912 + }, + { + "start": 5356.4, + "end": 5358.08, + "probability": 0.9871 + }, + { + "start": 5358.58, + "end": 5359.24, + "probability": 0.5908 + }, + { + "start": 5359.46, + "end": 5359.99, + "probability": 0.9835 + }, + { + "start": 5360.44, + "end": 5361.08, + "probability": 0.6815 + }, + { + "start": 5361.82, + "end": 5365.24, + "probability": 0.9852 + }, + { + "start": 5365.42, + "end": 5366.08, + "probability": 0.6456 + }, + { + "start": 5366.2, + "end": 5366.68, + "probability": 0.9934 + }, + { + "start": 5366.74, + "end": 5366.94, + "probability": 0.9329 + }, + { + "start": 5367.02, + "end": 5369.18, + "probability": 0.8606 + }, + { + "start": 5369.52, + "end": 5369.94, + "probability": 0.9429 + }, + { + "start": 5370.06, + "end": 5370.34, + "probability": 0.8605 + }, + { + "start": 5370.4, + "end": 5371.46, + "probability": 0.8996 + }, + { + "start": 5372.08, + "end": 5375.54, + "probability": 0.9891 + }, + { + "start": 5375.54, + "end": 5380.52, + "probability": 0.9962 + }, + { + "start": 5380.68, + "end": 5385.6, + "probability": 0.9922 + }, + { + "start": 5386.84, + "end": 5388.16, + "probability": 0.9926 + }, + { + "start": 5388.74, + "end": 5392.42, + "probability": 0.8997 + }, + { + "start": 5393.06, + "end": 5395.46, + "probability": 0.9881 + }, + { + "start": 5395.56, + "end": 5397.28, + "probability": 0.9367 + }, + { + "start": 5397.88, + "end": 5400.52, + "probability": 0.9819 + }, + { + "start": 5400.68, + "end": 5402.94, + "probability": 0.9751 + }, + { + "start": 5403.46, + "end": 5405.45, + "probability": 0.9909 + }, + { + "start": 5405.54, + "end": 5406.52, + "probability": 0.9514 + }, + { + "start": 5406.58, + "end": 5407.18, + "probability": 0.7527 + }, + { + "start": 5407.78, + "end": 5411.6, + "probability": 0.9985 + }, + { + "start": 5411.88, + "end": 5413.36, + "probability": 0.9966 + }, + { + "start": 5413.38, + "end": 5414.68, + "probability": 0.9958 + }, + { + "start": 5415.26, + "end": 5419.74, + "probability": 0.9952 + }, + { + "start": 5420.24, + "end": 5421.44, + "probability": 0.9546 + }, + { + "start": 5421.5, + "end": 5422.78, + "probability": 0.9955 + }, + { + "start": 5422.94, + "end": 5423.34, + "probability": 0.8238 + }, + { + "start": 5424.74, + "end": 5426.06, + "probability": 0.7162 + }, + { + "start": 5426.86, + "end": 5428.58, + "probability": 0.8204 + }, + { + "start": 5428.58, + "end": 5429.26, + "probability": 0.4941 + }, + { + "start": 5429.3, + "end": 5430.4, + "probability": 0.8958 + }, + { + "start": 5430.6, + "end": 5430.96, + "probability": 0.9297 + }, + { + "start": 5443.4, + "end": 5444.35, + "probability": 0.5857 + }, + { + "start": 5444.68, + "end": 5445.7, + "probability": 0.7124 + }, + { + "start": 5445.92, + "end": 5446.48, + "probability": 0.9605 + }, + { + "start": 5446.62, + "end": 5447.12, + "probability": 0.9185 + }, + { + "start": 5447.26, + "end": 5448.5, + "probability": 0.9768 + }, + { + "start": 5449.5, + "end": 5450.5, + "probability": 0.4841 + }, + { + "start": 5450.74, + "end": 5452.18, + "probability": 0.632 + }, + { + "start": 5452.54, + "end": 5453.52, + "probability": 0.842 + }, + { + "start": 5454.86, + "end": 5455.91, + "probability": 0.1228 + }, + { + "start": 5458.32, + "end": 5460.12, + "probability": 0.0324 + }, + { + "start": 5460.12, + "end": 5460.12, + "probability": 0.347 + }, + { + "start": 5460.12, + "end": 5462.56, + "probability": 0.9395 + }, + { + "start": 5463.0, + "end": 5463.54, + "probability": 0.5444 + }, + { + "start": 5463.68, + "end": 5468.86, + "probability": 0.9549 + }, + { + "start": 5468.86, + "end": 5473.2, + "probability": 0.9081 + }, + { + "start": 5474.16, + "end": 5477.26, + "probability": 0.878 + }, + { + "start": 5477.34, + "end": 5481.1, + "probability": 0.9541 + }, + { + "start": 5481.1, + "end": 5484.16, + "probability": 0.997 + }, + { + "start": 5484.36, + "end": 5484.78, + "probability": 0.0139 + }, + { + "start": 5485.74, + "end": 5488.3, + "probability": 0.8894 + }, + { + "start": 5489.02, + "end": 5492.42, + "probability": 0.9644 + }, + { + "start": 5492.68, + "end": 5496.16, + "probability": 0.9844 + }, + { + "start": 5497.08, + "end": 5500.7, + "probability": 0.9214 + }, + { + "start": 5501.18, + "end": 5504.92, + "probability": 0.9709 + }, + { + "start": 5505.58, + "end": 5506.98, + "probability": 0.917 + }, + { + "start": 5507.7, + "end": 5512.9, + "probability": 0.8912 + }, + { + "start": 5513.8, + "end": 5517.26, + "probability": 0.7381 + }, + { + "start": 5517.86, + "end": 5519.34, + "probability": 0.8599 + }, + { + "start": 5521.04, + "end": 5525.18, + "probability": 0.8968 + }, + { + "start": 5525.18, + "end": 5531.5, + "probability": 0.9633 + }, + { + "start": 5531.58, + "end": 5532.6, + "probability": 0.8012 + }, + { + "start": 5533.44, + "end": 5535.2, + "probability": 0.9734 + }, + { + "start": 5537.2, + "end": 5538.0, + "probability": 0.9676 + }, + { + "start": 5538.76, + "end": 5541.96, + "probability": 0.9938 + }, + { + "start": 5542.01, + "end": 5544.95, + "probability": 0.9001 + }, + { + "start": 5545.7, + "end": 5546.42, + "probability": 0.8382 + }, + { + "start": 5546.94, + "end": 5550.22, + "probability": 0.9548 + }, + { + "start": 5550.22, + "end": 5554.56, + "probability": 0.98 + }, + { + "start": 5556.28, + "end": 5557.48, + "probability": 0.66 + }, + { + "start": 5558.16, + "end": 5559.28, + "probability": 0.9568 + }, + { + "start": 5559.42, + "end": 5561.12, + "probability": 0.7364 + }, + { + "start": 5561.34, + "end": 5563.22, + "probability": 0.9941 + }, + { + "start": 5563.8, + "end": 5564.9, + "probability": 0.9594 + }, + { + "start": 5565.7, + "end": 5567.72, + "probability": 0.9785 + }, + { + "start": 5568.28, + "end": 5569.17, + "probability": 0.7463 + }, + { + "start": 5571.6, + "end": 5574.48, + "probability": 0.9902 + }, + { + "start": 5574.92, + "end": 5576.84, + "probability": 0.9119 + }, + { + "start": 5577.82, + "end": 5583.16, + "probability": 0.9932 + }, + { + "start": 5584.2, + "end": 5585.44, + "probability": 0.9916 + }, + { + "start": 5585.46, + "end": 5589.04, + "probability": 0.994 + }, + { + "start": 5589.78, + "end": 5595.16, + "probability": 0.9829 + }, + { + "start": 5595.16, + "end": 5600.2, + "probability": 0.996 + }, + { + "start": 5600.88, + "end": 5601.2, + "probability": 0.366 + }, + { + "start": 5601.26, + "end": 5602.42, + "probability": 0.577 + }, + { + "start": 5602.9, + "end": 5603.68, + "probability": 0.7861 + }, + { + "start": 5604.1, + "end": 5604.56, + "probability": 0.9726 + }, + { + "start": 5605.22, + "end": 5607.7, + "probability": 0.9307 + }, + { + "start": 5608.48, + "end": 5613.12, + "probability": 0.928 + }, + { + "start": 5613.84, + "end": 5615.52, + "probability": 0.9943 + }, + { + "start": 5616.22, + "end": 5619.4, + "probability": 0.9988 + }, + { + "start": 5620.1, + "end": 5622.88, + "probability": 0.8831 + }, + { + "start": 5623.92, + "end": 5624.82, + "probability": 0.8276 + }, + { + "start": 5625.62, + "end": 5627.9, + "probability": 0.9962 + }, + { + "start": 5636.12, + "end": 5638.1, + "probability": 0.3425 + }, + { + "start": 5638.12, + "end": 5638.74, + "probability": 0.7687 + }, + { + "start": 5639.18, + "end": 5642.7, + "probability": 0.7684 + }, + { + "start": 5642.82, + "end": 5646.1, + "probability": 0.9814 + }, + { + "start": 5646.1, + "end": 5649.12, + "probability": 0.9946 + }, + { + "start": 5650.2, + "end": 5650.82, + "probability": 0.7615 + }, + { + "start": 5651.74, + "end": 5655.96, + "probability": 0.9207 + }, + { + "start": 5656.76, + "end": 5658.6, + "probability": 0.9357 + }, + { + "start": 5659.48, + "end": 5661.6, + "probability": 0.956 + }, + { + "start": 5662.26, + "end": 5665.76, + "probability": 0.9992 + }, + { + "start": 5666.42, + "end": 5668.7, + "probability": 0.9464 + }, + { + "start": 5669.12, + "end": 5675.94, + "probability": 0.7815 + }, + { + "start": 5676.8, + "end": 5677.46, + "probability": 0.8943 + }, + { + "start": 5678.2, + "end": 5681.62, + "probability": 0.8825 + }, + { + "start": 5682.3, + "end": 5687.52, + "probability": 0.9562 + }, + { + "start": 5688.06, + "end": 5690.12, + "probability": 0.9373 + }, + { + "start": 5691.04, + "end": 5694.82, + "probability": 0.9888 + }, + { + "start": 5696.64, + "end": 5698.68, + "probability": 0.9563 + }, + { + "start": 5699.52, + "end": 5704.01, + "probability": 0.7476 + }, + { + "start": 5704.94, + "end": 5712.16, + "probability": 0.9491 + }, + { + "start": 5713.22, + "end": 5714.3, + "probability": 0.8254 + }, + { + "start": 5714.54, + "end": 5714.82, + "probability": 0.774 + }, + { + "start": 5714.86, + "end": 5715.06, + "probability": 0.9018 + }, + { + "start": 5715.46, + "end": 5716.78, + "probability": 0.8319 + }, + { + "start": 5717.9, + "end": 5719.7, + "probability": 0.0 + }, + { + "start": 5720.56, + "end": 5722.44, + "probability": 0.5308 + }, + { + "start": 5723.72, + "end": 5725.3, + "probability": 0.3564 + }, + { + "start": 5725.98, + "end": 5728.94, + "probability": 0.8889 + }, + { + "start": 5729.78, + "end": 5733.56, + "probability": 0.9793 + }, + { + "start": 5734.34, + "end": 5735.78, + "probability": 0.9426 + }, + { + "start": 5736.96, + "end": 5742.34, + "probability": 0.9701 + }, + { + "start": 5742.34, + "end": 5747.7, + "probability": 0.8613 + }, + { + "start": 5748.36, + "end": 5750.96, + "probability": 0.9718 + }, + { + "start": 5750.98, + "end": 5754.16, + "probability": 0.9849 + }, + { + "start": 5755.54, + "end": 5756.32, + "probability": 0.8955 + }, + { + "start": 5757.48, + "end": 5759.02, + "probability": 0.8907 + }, + { + "start": 5759.72, + "end": 5762.46, + "probability": 0.4396 + }, + { + "start": 5763.96, + "end": 5768.24, + "probability": 0.6352 + }, + { + "start": 5768.34, + "end": 5768.58, + "probability": 0.5645 + }, + { + "start": 5769.12, + "end": 5769.86, + "probability": 0.7197 + }, + { + "start": 5770.02, + "end": 5771.3, + "probability": 0.6107 + }, + { + "start": 5771.44, + "end": 5772.84, + "probability": 0.9922 + }, + { + "start": 5774.08, + "end": 5776.8, + "probability": 0.9766 + }, + { + "start": 5777.36, + "end": 5779.84, + "probability": 0.91 + }, + { + "start": 5780.5, + "end": 5786.76, + "probability": 0.9927 + }, + { + "start": 5788.14, + "end": 5789.96, + "probability": 0.867 + }, + { + "start": 5790.12, + "end": 5796.04, + "probability": 0.9628 + }, + { + "start": 5796.1, + "end": 5798.42, + "probability": 0.8137 + }, + { + "start": 5799.2, + "end": 5803.16, + "probability": 0.9962 + }, + { + "start": 5803.26, + "end": 5807.06, + "probability": 0.9836 + }, + { + "start": 5807.92, + "end": 5810.96, + "probability": 0.741 + }, + { + "start": 5811.38, + "end": 5812.58, + "probability": 0.8923 + }, + { + "start": 5813.16, + "end": 5815.32, + "probability": 0.9366 + }, + { + "start": 5815.98, + "end": 5816.32, + "probability": 0.1044 + }, + { + "start": 5816.86, + "end": 5820.84, + "probability": 0.512 + }, + { + "start": 5820.9, + "end": 5822.32, + "probability": 0.2884 + }, + { + "start": 5822.64, + "end": 5823.82, + "probability": 0.5535 + }, + { + "start": 5824.02, + "end": 5824.96, + "probability": 0.2536 + }, + { + "start": 5824.98, + "end": 5826.98, + "probability": 0.4521 + }, + { + "start": 5827.6, + "end": 5830.18, + "probability": 0.9797 + }, + { + "start": 5830.94, + "end": 5832.62, + "probability": 0.9465 + }, + { + "start": 5832.96, + "end": 5833.92, + "probability": 0.9093 + }, + { + "start": 5834.02, + "end": 5836.17, + "probability": 0.5426 + }, + { + "start": 5836.82, + "end": 5837.54, + "probability": 0.7165 + }, + { + "start": 5838.24, + "end": 5839.28, + "probability": 0.9972 + }, + { + "start": 5839.8, + "end": 5841.74, + "probability": 0.6043 + }, + { + "start": 5843.14, + "end": 5845.54, + "probability": 0.2574 + }, + { + "start": 5845.68, + "end": 5848.56, + "probability": 0.9662 + }, + { + "start": 5848.88, + "end": 5850.74, + "probability": 0.3602 + }, + { + "start": 5853.24, + "end": 5855.44, + "probability": 0.9738 + }, + { + "start": 5856.34, + "end": 5857.56, + "probability": 0.7533 + }, + { + "start": 5858.12, + "end": 5860.72, + "probability": 0.9879 + }, + { + "start": 5864.04, + "end": 5866.5, + "probability": 0.9904 + }, + { + "start": 5866.86, + "end": 5867.8, + "probability": 0.5065 + }, + { + "start": 5867.92, + "end": 5869.94, + "probability": 0.6909 + }, + { + "start": 5871.67, + "end": 5875.14, + "probability": 0.1404 + }, + { + "start": 5878.7, + "end": 5883.92, + "probability": 0.0535 + }, + { + "start": 5886.16, + "end": 5887.34, + "probability": 0.0701 + }, + { + "start": 5887.58, + "end": 5888.48, + "probability": 0.0812 + }, + { + "start": 5890.2, + "end": 5891.22, + "probability": 0.056 + }, + { + "start": 5892.84, + "end": 5896.16, + "probability": 0.6365 + }, + { + "start": 5897.2, + "end": 5898.92, + "probability": 0.6952 + }, + { + "start": 5899.44, + "end": 5900.36, + "probability": 0.5976 + }, + { + "start": 5900.38, + "end": 5900.9, + "probability": 0.91 + }, + { + "start": 5900.9, + "end": 5901.88, + "probability": 0.7917 + }, + { + "start": 5901.9, + "end": 5902.6, + "probability": 0.7568 + }, + { + "start": 5904.7, + "end": 5907.9, + "probability": 0.312 + }, + { + "start": 5908.78, + "end": 5909.54, + "probability": 0.1576 + }, + { + "start": 5915.21, + "end": 5920.52, + "probability": 0.3425 + }, + { + "start": 5920.52, + "end": 5920.82, + "probability": 0.1353 + }, + { + "start": 5922.16, + "end": 5922.44, + "probability": 0.346 + }, + { + "start": 5922.44, + "end": 5922.44, + "probability": 0.3561 + }, + { + "start": 5922.44, + "end": 5923.38, + "probability": 0.0785 + }, + { + "start": 5924.72, + "end": 5926.3, + "probability": 0.4364 + }, + { + "start": 5927.62, + "end": 5928.86, + "probability": 0.1206 + }, + { + "start": 5930.02, + "end": 5930.94, + "probability": 0.1986 + }, + { + "start": 5933.8, + "end": 5935.7, + "probability": 0.024 + }, + { + "start": 5936.0, + "end": 5936.0, + "probability": 0.0 + }, + { + "start": 5936.0, + "end": 5936.0, + "probability": 0.0 + }, + { + "start": 5936.0, + "end": 5936.0, + "probability": 0.0 + }, + { + "start": 5936.0, + "end": 5936.0, + "probability": 0.0 + }, + { + "start": 5936.0, + "end": 5936.0, + "probability": 0.0 + }, + { + "start": 5936.0, + "end": 5936.0, + "probability": 0.0 + }, + { + "start": 5936.0, + "end": 5936.39, + "probability": 0.0065 + }, + { + "start": 5936.48, + "end": 5939.0, + "probability": 0.107 + }, + { + "start": 5939.0, + "end": 5939.04, + "probability": 0.0414 + }, + { + "start": 5939.72, + "end": 5940.76, + "probability": 0.0462 + }, + { + "start": 5940.76, + "end": 5940.76, + "probability": 0.0988 + }, + { + "start": 5940.76, + "end": 5940.76, + "probability": 0.4237 + }, + { + "start": 5940.76, + "end": 5940.76, + "probability": 0.2196 + }, + { + "start": 5940.76, + "end": 5943.32, + "probability": 0.6886 + }, + { + "start": 5943.36, + "end": 5944.18, + "probability": 0.6606 + }, + { + "start": 5951.16, + "end": 5952.52, + "probability": 0.242 + }, + { + "start": 5952.94, + "end": 5953.06, + "probability": 0.5363 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.0, + "end": 6057.0, + "probability": 0.0 + }, + { + "start": 6057.86, + "end": 6058.38, + "probability": 0.4907 + }, + { + "start": 6058.58, + "end": 6058.86, + "probability": 0.3369 + }, + { + "start": 6059.26, + "end": 6061.22, + "probability": 0.924 + }, + { + "start": 6064.0, + "end": 6066.42, + "probability": 0.9615 + }, + { + "start": 6067.22, + "end": 6069.96, + "probability": 0.9918 + }, + { + "start": 6071.98, + "end": 6075.24, + "probability": 0.9939 + }, + { + "start": 6076.1, + "end": 6078.9, + "probability": 0.9173 + }, + { + "start": 6079.42, + "end": 6081.78, + "probability": 0.6124 + }, + { + "start": 6083.02, + "end": 6086.8, + "probability": 0.883 + }, + { + "start": 6088.2, + "end": 6095.62, + "probability": 0.9937 + }, + { + "start": 6095.78, + "end": 6097.48, + "probability": 0.976 + }, + { + "start": 6098.42, + "end": 6101.24, + "probability": 0.9989 + }, + { + "start": 6102.02, + "end": 6102.24, + "probability": 0.1987 + }, + { + "start": 6102.56, + "end": 6107.24, + "probability": 0.991 + }, + { + "start": 6107.98, + "end": 6109.26, + "probability": 0.7969 + }, + { + "start": 6110.65, + "end": 6112.72, + "probability": 0.9932 + }, + { + "start": 6113.1, + "end": 6118.2, + "probability": 0.8849 + }, + { + "start": 6118.8, + "end": 6119.5, + "probability": 0.774 + }, + { + "start": 6119.82, + "end": 6121.72, + "probability": 0.9893 + }, + { + "start": 6121.98, + "end": 6124.28, + "probability": 0.63 + }, + { + "start": 6125.04, + "end": 6125.36, + "probability": 0.5477 + }, + { + "start": 6126.6, + "end": 6128.46, + "probability": 0.9818 + }, + { + "start": 6129.58, + "end": 6130.06, + "probability": 0.8473 + }, + { + "start": 6130.82, + "end": 6133.6, + "probability": 0.943 + }, + { + "start": 6134.02, + "end": 6134.34, + "probability": 0.7428 + }, + { + "start": 6135.48, + "end": 6135.88, + "probability": 0.0265 + }, + { + "start": 6137.36, + "end": 6137.94, + "probability": 0.5504 + }, + { + "start": 6138.64, + "end": 6139.16, + "probability": 0.752 + }, + { + "start": 6141.12, + "end": 6141.86, + "probability": 0.8434 + }, + { + "start": 6142.56, + "end": 6143.94, + "probability": 0.9324 + }, + { + "start": 6145.3, + "end": 6148.26, + "probability": 0.9854 + }, + { + "start": 6149.42, + "end": 6151.86, + "probability": 0.9856 + }, + { + "start": 6152.84, + "end": 6155.16, + "probability": 0.9868 + }, + { + "start": 6155.48, + "end": 6157.58, + "probability": 0.915 + }, + { + "start": 6158.08, + "end": 6164.44, + "probability": 0.9949 + }, + { + "start": 6164.92, + "end": 6168.52, + "probability": 0.9805 + }, + { + "start": 6168.58, + "end": 6171.92, + "probability": 0.9972 + }, + { + "start": 6172.5, + "end": 6176.76, + "probability": 0.9814 + }, + { + "start": 6177.28, + "end": 6178.98, + "probability": 0.8147 + }, + { + "start": 6179.18, + "end": 6180.02, + "probability": 0.7969 + }, + { + "start": 6180.16, + "end": 6181.03, + "probability": 0.917 + }, + { + "start": 6181.78, + "end": 6182.56, + "probability": 0.2618 + }, + { + "start": 6182.64, + "end": 6183.38, + "probability": 0.6743 + }, + { + "start": 6183.78, + "end": 6185.8, + "probability": 0.1409 + }, + { + "start": 6186.37, + "end": 6187.86, + "probability": 0.0834 + }, + { + "start": 6187.86, + "end": 6188.94, + "probability": 0.1481 + }, + { + "start": 6188.94, + "end": 6188.94, + "probability": 0.0182 + }, + { + "start": 6188.94, + "end": 6189.12, + "probability": 0.3914 + }, + { + "start": 6189.12, + "end": 6189.7, + "probability": 0.3889 + }, + { + "start": 6190.04, + "end": 6190.34, + "probability": 0.1187 + }, + { + "start": 6190.42, + "end": 6190.62, + "probability": 0.0844 + }, + { + "start": 6190.62, + "end": 6192.02, + "probability": 0.2614 + }, + { + "start": 6193.84, + "end": 6195.48, + "probability": 0.0785 + }, + { + "start": 6208.5, + "end": 6208.84, + "probability": 0.8352 + }, + { + "start": 6209.0, + "end": 6209.14, + "probability": 0.05 + }, + { + "start": 6209.14, + "end": 6210.05, + "probability": 0.2365 + }, + { + "start": 6210.36, + "end": 6211.13, + "probability": 0.2866 + }, + { + "start": 6212.16, + "end": 6214.74, + "probability": 0.0712 + }, + { + "start": 6215.9, + "end": 6216.06, + "probability": 0.0205 + }, + { + "start": 6216.06, + "end": 6216.06, + "probability": 0.0187 + }, + { + "start": 6216.06, + "end": 6216.06, + "probability": 0.0225 + }, + { + "start": 6216.06, + "end": 6218.94, + "probability": 0.1236 + }, + { + "start": 6218.96, + "end": 6224.84, + "probability": 0.5245 + }, + { + "start": 6225.08, + "end": 6225.92, + "probability": 0.8502 + }, + { + "start": 6225.96, + "end": 6228.32, + "probability": 0.66 + }, + { + "start": 6228.82, + "end": 6230.4, + "probability": 0.6657 + }, + { + "start": 6230.7, + "end": 6234.12, + "probability": 0.8842 + }, + { + "start": 6236.32, + "end": 6241.16, + "probability": 0.7419 + }, + { + "start": 6241.86, + "end": 6243.3, + "probability": 0.9651 + }, + { + "start": 6243.84, + "end": 6245.9, + "probability": 0.7957 + }, + { + "start": 6246.6, + "end": 6248.18, + "probability": 0.1209 + }, + { + "start": 6250.8, + "end": 6254.82, + "probability": 0.5245 + }, + { + "start": 6256.36, + "end": 6256.36, + "probability": 0.0939 + }, + { + "start": 6256.36, + "end": 6256.36, + "probability": 0.0389 + }, + { + "start": 6256.36, + "end": 6261.32, + "probability": 0.7726 + }, + { + "start": 6261.42, + "end": 6263.66, + "probability": 0.9902 + }, + { + "start": 6264.16, + "end": 6267.68, + "probability": 0.9867 + }, + { + "start": 6268.48, + "end": 6270.62, + "probability": 0.9903 + }, + { + "start": 6271.3, + "end": 6273.18, + "probability": 0.5443 + }, + { + "start": 6273.5, + "end": 6275.92, + "probability": 0.0401 + }, + { + "start": 6277.18, + "end": 6278.86, + "probability": 0.1746 + }, + { + "start": 6278.94, + "end": 6278.94, + "probability": 0.1909 + }, + { + "start": 6278.98, + "end": 6282.64, + "probability": 0.5861 + }, + { + "start": 6282.82, + "end": 6284.14, + "probability": 0.7852 + }, + { + "start": 6284.46, + "end": 6285.1, + "probability": 0.9862 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6410.0, + "end": 6410.0, + "probability": 0.0 + }, + { + "start": 6417.6, + "end": 6419.56, + "probability": 0.0913 + }, + { + "start": 6421.46, + "end": 6421.86, + "probability": 0.2794 + }, + { + "start": 6424.82, + "end": 6427.14, + "probability": 0.0549 + }, + { + "start": 6427.9, + "end": 6428.2, + "probability": 0.0104 + }, + { + "start": 6428.2, + "end": 6429.31, + "probability": 0.1453 + }, + { + "start": 6433.87, + "end": 6433.99, + "probability": 0.0096 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.0, + "end": 6530.0, + "probability": 0.0 + }, + { + "start": 6530.5, + "end": 6530.54, + "probability": 0.0174 + }, + { + "start": 6530.54, + "end": 6534.2, + "probability": 0.9812 + }, + { + "start": 6535.86, + "end": 6542.94, + "probability": 0.9922 + }, + { + "start": 6543.78, + "end": 6552.56, + "probability": 0.9023 + }, + { + "start": 6553.26, + "end": 6554.98, + "probability": 0.9938 + }, + { + "start": 6555.7, + "end": 6560.3, + "probability": 0.9984 + }, + { + "start": 6561.0, + "end": 6562.9, + "probability": 0.9437 + }, + { + "start": 6563.66, + "end": 6565.28, + "probability": 0.9984 + }, + { + "start": 6565.92, + "end": 6570.88, + "probability": 0.983 + }, + { + "start": 6571.92, + "end": 6574.94, + "probability": 0.9934 + }, + { + "start": 6575.4, + "end": 6579.32, + "probability": 0.9657 + }, + { + "start": 6580.24, + "end": 6584.38, + "probability": 0.9986 + }, + { + "start": 6584.38, + "end": 6590.84, + "probability": 0.9961 + }, + { + "start": 6592.3, + "end": 6594.08, + "probability": 0.6424 + }, + { + "start": 6595.28, + "end": 6599.88, + "probability": 0.9764 + }, + { + "start": 6600.72, + "end": 6603.56, + "probability": 0.7109 + }, + { + "start": 6604.2, + "end": 6605.98, + "probability": 0.8868 + }, + { + "start": 6606.34, + "end": 6606.88, + "probability": 0.6116 + }, + { + "start": 6607.06, + "end": 6607.82, + "probability": 0.6381 + }, + { + "start": 6608.0, + "end": 6608.7, + "probability": 0.8799 + }, + { + "start": 6609.56, + "end": 6611.4, + "probability": 0.9789 + }, + { + "start": 6611.96, + "end": 6613.32, + "probability": 0.7684 + }, + { + "start": 6614.0, + "end": 6617.2, + "probability": 0.994 + }, + { + "start": 6617.2, + "end": 6620.14, + "probability": 0.9968 + }, + { + "start": 6621.1, + "end": 6626.5, + "probability": 0.9938 + }, + { + "start": 6627.86, + "end": 6628.66, + "probability": 0.9432 + }, + { + "start": 6629.54, + "end": 6632.5, + "probability": 0.9919 + }, + { + "start": 6632.66, + "end": 6634.16, + "probability": 0.9634 + }, + { + "start": 6634.76, + "end": 6637.2, + "probability": 0.9818 + }, + { + "start": 6637.92, + "end": 6643.72, + "probability": 0.9958 + }, + { + "start": 6643.72, + "end": 6648.1, + "probability": 0.9987 + }, + { + "start": 6649.4, + "end": 6651.19, + "probability": 0.8066 + }, + { + "start": 6651.86, + "end": 6655.2, + "probability": 0.9969 + }, + { + "start": 6656.08, + "end": 6659.22, + "probability": 0.9902 + }, + { + "start": 6659.98, + "end": 6661.1, + "probability": 0.9293 + }, + { + "start": 6661.72, + "end": 6666.0, + "probability": 0.9909 + }, + { + "start": 6667.04, + "end": 6667.46, + "probability": 0.8517 + }, + { + "start": 6668.34, + "end": 6672.14, + "probability": 0.999 + }, + { + "start": 6672.74, + "end": 6675.8, + "probability": 0.9571 + }, + { + "start": 6676.66, + "end": 6677.98, + "probability": 0.9526 + }, + { + "start": 6678.6, + "end": 6681.16, + "probability": 0.9907 + }, + { + "start": 6681.9, + "end": 6685.48, + "probability": 0.9953 + }, + { + "start": 6687.42, + "end": 6690.78, + "probability": 0.829 + }, + { + "start": 6691.56, + "end": 6694.32, + "probability": 0.9812 + }, + { + "start": 6694.46, + "end": 6694.94, + "probability": 0.6431 + }, + { + "start": 6695.72, + "end": 6698.2, + "probability": 0.9387 + }, + { + "start": 6698.86, + "end": 6701.84, + "probability": 0.9728 + }, + { + "start": 6702.58, + "end": 6707.88, + "probability": 0.9916 + }, + { + "start": 6708.4, + "end": 6715.24, + "probability": 0.9805 + }, + { + "start": 6716.08, + "end": 6718.7, + "probability": 0.9964 + }, + { + "start": 6719.22, + "end": 6722.22, + "probability": 0.9976 + }, + { + "start": 6722.94, + "end": 6726.14, + "probability": 0.9913 + }, + { + "start": 6726.42, + "end": 6729.1, + "probability": 0.8557 + }, + { + "start": 6730.22, + "end": 6733.26, + "probability": 0.8973 + }, + { + "start": 6733.86, + "end": 6739.92, + "probability": 0.9969 + }, + { + "start": 6740.42, + "end": 6743.08, + "probability": 0.9662 + }, + { + "start": 6744.24, + "end": 6744.52, + "probability": 0.7316 + }, + { + "start": 6744.6, + "end": 6745.44, + "probability": 0.8899 + }, + { + "start": 6745.58, + "end": 6746.62, + "probability": 0.7185 + }, + { + "start": 6746.72, + "end": 6749.6, + "probability": 0.9905 + }, + { + "start": 6749.6, + "end": 6751.0, + "probability": 0.8129 + }, + { + "start": 6751.68, + "end": 6752.38, + "probability": 0.5353 + }, + { + "start": 6753.72, + "end": 6756.04, + "probability": 0.8547 + }, + { + "start": 6756.62, + "end": 6761.86, + "probability": 0.9919 + }, + { + "start": 6761.86, + "end": 6767.14, + "probability": 0.9928 + }, + { + "start": 6767.86, + "end": 6768.88, + "probability": 0.719 + }, + { + "start": 6769.02, + "end": 6770.66, + "probability": 0.6232 + }, + { + "start": 6770.74, + "end": 6774.94, + "probability": 0.9946 + }, + { + "start": 6775.68, + "end": 6778.04, + "probability": 0.984 + }, + { + "start": 6778.16, + "end": 6780.12, + "probability": 0.9788 + }, + { + "start": 6780.18, + "end": 6783.74, + "probability": 0.9941 + }, + { + "start": 6783.96, + "end": 6785.06, + "probability": 0.9845 + }, + { + "start": 6785.5, + "end": 6786.54, + "probability": 0.964 + }, + { + "start": 6787.38, + "end": 6788.92, + "probability": 0.993 + }, + { + "start": 6789.66, + "end": 6795.01, + "probability": 0.9751 + }, + { + "start": 6795.3, + "end": 6796.16, + "probability": 0.7758 + }, + { + "start": 6796.58, + "end": 6797.4, + "probability": 0.7485 + }, + { + "start": 6798.12, + "end": 6799.5, + "probability": 0.905 + }, + { + "start": 6800.58, + "end": 6800.84, + "probability": 0.5096 + }, + { + "start": 6801.58, + "end": 6802.88, + "probability": 0.7662 + }, + { + "start": 6802.94, + "end": 6803.68, + "probability": 0.3542 + }, + { + "start": 6803.68, + "end": 6804.94, + "probability": 0.8611 + }, + { + "start": 6804.94, + "end": 6805.7, + "probability": 0.8727 + }, + { + "start": 6820.76, + "end": 6823.7, + "probability": 0.6352 + }, + { + "start": 6825.3, + "end": 6826.38, + "probability": 0.8077 + }, + { + "start": 6827.1, + "end": 6827.58, + "probability": 0.6095 + }, + { + "start": 6827.6, + "end": 6828.46, + "probability": 0.6688 + }, + { + "start": 6828.92, + "end": 6831.66, + "probability": 0.9629 + }, + { + "start": 6831.78, + "end": 6833.64, + "probability": 0.9897 + }, + { + "start": 6834.38, + "end": 6836.76, + "probability": 0.6929 + }, + { + "start": 6841.62, + "end": 6842.38, + "probability": 0.1889 + }, + { + "start": 6843.28, + "end": 6843.7, + "probability": 0.7543 + }, + { + "start": 6844.04, + "end": 6849.26, + "probability": 0.863 + }, + { + "start": 6849.54, + "end": 6854.34, + "probability": 0.9823 + }, + { + "start": 6855.48, + "end": 6859.4, + "probability": 0.9723 + }, + { + "start": 6859.56, + "end": 6864.5, + "probability": 0.8397 + }, + { + "start": 6865.46, + "end": 6865.9, + "probability": 0.391 + }, + { + "start": 6865.98, + "end": 6869.64, + "probability": 0.9878 + }, + { + "start": 6869.66, + "end": 6873.16, + "probability": 0.9329 + }, + { + "start": 6875.8, + "end": 6878.42, + "probability": 0.5518 + }, + { + "start": 6878.48, + "end": 6880.74, + "probability": 0.974 + }, + { + "start": 6881.38, + "end": 6884.54, + "probability": 0.9948 + }, + { + "start": 6886.06, + "end": 6886.84, + "probability": 0.6867 + }, + { + "start": 6886.92, + "end": 6887.46, + "probability": 0.7474 + }, + { + "start": 6888.08, + "end": 6892.72, + "probability": 0.6312 + }, + { + "start": 6893.0, + "end": 6896.62, + "probability": 0.8799 + }, + { + "start": 6896.84, + "end": 6900.18, + "probability": 0.7903 + }, + { + "start": 6900.24, + "end": 6905.44, + "probability": 0.7607 + }, + { + "start": 6906.06, + "end": 6910.72, + "probability": 0.8014 + }, + { + "start": 6910.8, + "end": 6911.76, + "probability": 0.5296 + }, + { + "start": 6911.86, + "end": 6911.96, + "probability": 0.899 + }, + { + "start": 6913.44, + "end": 6914.18, + "probability": 0.9785 + }, + { + "start": 6914.3, + "end": 6916.06, + "probability": 0.665 + }, + { + "start": 6916.84, + "end": 6918.56, + "probability": 0.375 + }, + { + "start": 6918.7, + "end": 6918.94, + "probability": 0.6263 + }, + { + "start": 6918.94, + "end": 6919.38, + "probability": 0.7053 + }, + { + "start": 6919.58, + "end": 6920.49, + "probability": 0.8932 + }, + { + "start": 6920.6, + "end": 6922.82, + "probability": 0.6588 + }, + { + "start": 6923.56, + "end": 6924.02, + "probability": 0.6962 + }, + { + "start": 6924.1, + "end": 6924.78, + "probability": 0.9506 + }, + { + "start": 6924.86, + "end": 6925.6, + "probability": 0.9658 + }, + { + "start": 6925.74, + "end": 6926.84, + "probability": 0.9891 + }, + { + "start": 6927.52, + "end": 6931.06, + "probability": 0.7967 + }, + { + "start": 6931.06, + "end": 6935.84, + "probability": 0.9932 + }, + { + "start": 6936.84, + "end": 6940.4, + "probability": 0.906 + }, + { + "start": 6940.4, + "end": 6942.5, + "probability": 0.5987 + }, + { + "start": 6943.54, + "end": 6945.22, + "probability": 0.3287 + }, + { + "start": 6946.0, + "end": 6946.48, + "probability": 0.5198 + }, + { + "start": 6947.54, + "end": 6948.12, + "probability": 0.4719 + }, + { + "start": 6948.28, + "end": 6948.38, + "probability": 0.2763 + }, + { + "start": 6948.38, + "end": 6948.9, + "probability": 0.0496 + }, + { + "start": 6950.2, + "end": 6950.72, + "probability": 0.1004 + }, + { + "start": 6951.18, + "end": 6952.6, + "probability": 0.2652 + }, + { + "start": 6952.84, + "end": 6954.8, + "probability": 0.3305 + }, + { + "start": 6954.92, + "end": 6956.6, + "probability": 0.6945 + }, + { + "start": 6956.9, + "end": 6957.32, + "probability": 0.2593 + }, + { + "start": 6957.36, + "end": 6959.84, + "probability": 0.2204 + }, + { + "start": 6959.84, + "end": 6962.44, + "probability": 0.8502 + }, + { + "start": 6962.56, + "end": 6964.3, + "probability": 0.959 + }, + { + "start": 6965.38, + "end": 6966.2, + "probability": 0.8901 + }, + { + "start": 6966.26, + "end": 6969.12, + "probability": 0.9761 + }, + { + "start": 6969.42, + "end": 6971.04, + "probability": 0.8142 + }, + { + "start": 6971.04, + "end": 6972.95, + "probability": 0.6286 + }, + { + "start": 6973.32, + "end": 6974.34, + "probability": 0.958 + }, + { + "start": 6974.5, + "end": 6974.96, + "probability": 0.3953 + }, + { + "start": 6975.2, + "end": 6977.02, + "probability": 0.9436 + }, + { + "start": 6977.52, + "end": 6977.84, + "probability": 0.2069 + }, + { + "start": 6977.9, + "end": 6982.42, + "probability": 0.9644 + }, + { + "start": 6983.04, + "end": 6985.38, + "probability": 0.9617 + }, + { + "start": 6988.01, + "end": 6995.28, + "probability": 0.8699 + }, + { + "start": 6997.64, + "end": 7000.68, + "probability": 0.782 + }, + { + "start": 7001.34, + "end": 7002.08, + "probability": 0.7404 + }, + { + "start": 7002.2, + "end": 7007.56, + "probability": 0.9927 + }, + { + "start": 7008.54, + "end": 7010.01, + "probability": 0.1381 + }, + { + "start": 7010.82, + "end": 7012.1, + "probability": 0.2812 + }, + { + "start": 7012.52, + "end": 7013.36, + "probability": 0.3946 + }, + { + "start": 7013.72, + "end": 7013.86, + "probability": 0.1257 + }, + { + "start": 7013.92, + "end": 7016.14, + "probability": 0.4641 + }, + { + "start": 7018.9, + "end": 7022.48, + "probability": 0.9679 + }, + { + "start": 7022.48, + "end": 7026.32, + "probability": 0.994 + }, + { + "start": 7026.46, + "end": 7026.86, + "probability": 0.3642 + }, + { + "start": 7027.48, + "end": 7028.14, + "probability": 0.3666 + }, + { + "start": 7028.4, + "end": 7032.98, + "probability": 0.8555 + }, + { + "start": 7033.04, + "end": 7034.43, + "probability": 0.3963 + }, + { + "start": 7035.02, + "end": 7036.55, + "probability": 0.7129 + }, + { + "start": 7037.9, + "end": 7043.02, + "probability": 0.9674 + }, + { + "start": 7043.62, + "end": 7044.58, + "probability": 0.924 + }, + { + "start": 7045.5, + "end": 7045.82, + "probability": 0.6119 + }, + { + "start": 7045.82, + "end": 7047.12, + "probability": 0.4897 + }, + { + "start": 7047.26, + "end": 7047.62, + "probability": 0.5805 + }, + { + "start": 7047.66, + "end": 7050.18, + "probability": 0.8742 + }, + { + "start": 7050.68, + "end": 7051.82, + "probability": 0.6516 + }, + { + "start": 7052.62, + "end": 7055.58, + "probability": 0.9928 + }, + { + "start": 7056.42, + "end": 7056.91, + "probability": 0.834 + }, + { + "start": 7056.98, + "end": 7059.06, + "probability": 0.9766 + }, + { + "start": 7059.1, + "end": 7059.74, + "probability": 0.7511 + }, + { + "start": 7059.82, + "end": 7060.44, + "probability": 0.9203 + }, + { + "start": 7060.58, + "end": 7061.48, + "probability": 0.8924 + }, + { + "start": 7062.46, + "end": 7063.74, + "probability": 0.5173 + }, + { + "start": 7064.04, + "end": 7064.28, + "probability": 0.6197 + }, + { + "start": 7064.58, + "end": 7066.18, + "probability": 0.7548 + }, + { + "start": 7066.8, + "end": 7068.98, + "probability": 0.9153 + }, + { + "start": 7069.64, + "end": 7070.2, + "probability": 0.2732 + }, + { + "start": 7070.42, + "end": 7072.22, + "probability": 0.9059 + }, + { + "start": 7072.86, + "end": 7073.72, + "probability": 0.8371 + }, + { + "start": 7074.72, + "end": 7077.48, + "probability": 0.9901 + }, + { + "start": 7078.02, + "end": 7079.66, + "probability": 0.9817 + }, + { + "start": 7080.08, + "end": 7081.82, + "probability": 0.8779 + }, + { + "start": 7082.16, + "end": 7082.72, + "probability": 0.8767 + }, + { + "start": 7082.86, + "end": 7083.44, + "probability": 0.7097 + }, + { + "start": 7083.84, + "end": 7085.97, + "probability": 0.9979 + }, + { + "start": 7086.52, + "end": 7088.06, + "probability": 0.744 + }, + { + "start": 7088.9, + "end": 7090.68, + "probability": 0.993 + }, + { + "start": 7091.48, + "end": 7094.38, + "probability": 0.9658 + }, + { + "start": 7095.24, + "end": 7097.4, + "probability": 0.9952 + }, + { + "start": 7098.3, + "end": 7099.32, + "probability": 0.8358 + }, + { + "start": 7099.92, + "end": 7103.04, + "probability": 0.9501 + }, + { + "start": 7103.24, + "end": 7107.56, + "probability": 0.9823 + }, + { + "start": 7107.8, + "end": 7110.9, + "probability": 0.9854 + }, + { + "start": 7111.48, + "end": 7112.94, + "probability": 0.9883 + }, + { + "start": 7113.76, + "end": 7116.18, + "probability": 0.9974 + }, + { + "start": 7117.02, + "end": 7118.72, + "probability": 0.7404 + }, + { + "start": 7118.92, + "end": 7119.5, + "probability": 0.5421 + }, + { + "start": 7119.62, + "end": 7122.46, + "probability": 0.6347 + }, + { + "start": 7123.48, + "end": 7124.02, + "probability": 0.6245 + }, + { + "start": 7124.56, + "end": 7125.56, + "probability": 0.7873 + }, + { + "start": 7127.02, + "end": 7130.62, + "probability": 0.8311 + }, + { + "start": 7132.68, + "end": 7135.84, + "probability": 0.8362 + }, + { + "start": 7136.5, + "end": 7138.12, + "probability": 0.783 + }, + { + "start": 7138.96, + "end": 7139.64, + "probability": 0.9445 + }, + { + "start": 7140.16, + "end": 7144.08, + "probability": 0.9253 + }, + { + "start": 7144.88, + "end": 7145.9, + "probability": 0.9824 + }, + { + "start": 7146.5, + "end": 7151.56, + "probability": 0.9634 + }, + { + "start": 7152.52, + "end": 7155.62, + "probability": 0.8608 + }, + { + "start": 7155.84, + "end": 7156.76, + "probability": 0.8095 + }, + { + "start": 7156.86, + "end": 7157.78, + "probability": 0.6349 + }, + { + "start": 7159.12, + "end": 7161.29, + "probability": 0.7491 + }, + { + "start": 7162.42, + "end": 7164.26, + "probability": 0.82 + }, + { + "start": 7164.96, + "end": 7165.64, + "probability": 0.6333 + }, + { + "start": 7166.1, + "end": 7167.22, + "probability": 0.9885 + }, + { + "start": 7167.58, + "end": 7167.84, + "probability": 0.5897 + }, + { + "start": 7168.8, + "end": 7170.14, + "probability": 0.5532 + }, + { + "start": 7170.82, + "end": 7172.64, + "probability": 0.9893 + }, + { + "start": 7173.0, + "end": 7174.46, + "probability": 0.4015 + }, + { + "start": 7175.56, + "end": 7182.32, + "probability": 0.8488 + }, + { + "start": 7183.02, + "end": 7183.72, + "probability": 0.4951 + }, + { + "start": 7183.86, + "end": 7186.56, + "probability": 0.974 + }, + { + "start": 7187.34, + "end": 7190.86, + "probability": 0.9985 + }, + { + "start": 7191.48, + "end": 7193.44, + "probability": 0.4715 + }, + { + "start": 7193.96, + "end": 7196.28, + "probability": 0.4793 + }, + { + "start": 7196.82, + "end": 7199.52, + "probability": 0.9858 + }, + { + "start": 7200.36, + "end": 7201.54, + "probability": 0.9858 + }, + { + "start": 7202.18, + "end": 7203.76, + "probability": 0.631 + }, + { + "start": 7204.66, + "end": 7206.88, + "probability": 0.8611 + }, + { + "start": 7207.54, + "end": 7209.1, + "probability": 0.9877 + }, + { + "start": 7209.88, + "end": 7212.12, + "probability": 0.9954 + }, + { + "start": 7213.6, + "end": 7216.36, + "probability": 0.6655 + }, + { + "start": 7216.9, + "end": 7218.03, + "probability": 0.7435 + }, + { + "start": 7219.08, + "end": 7220.68, + "probability": 0.9595 + }, + { + "start": 7220.82, + "end": 7221.32, + "probability": 0.5909 + }, + { + "start": 7221.82, + "end": 7222.88, + "probability": 0.4276 + }, + { + "start": 7224.12, + "end": 7226.36, + "probability": 0.9797 + }, + { + "start": 7227.26, + "end": 7229.2, + "probability": 0.6737 + }, + { + "start": 7230.28, + "end": 7232.15, + "probability": 0.834 + }, + { + "start": 7233.0, + "end": 7234.02, + "probability": 0.9896 + }, + { + "start": 7234.7, + "end": 7236.36, + "probability": 0.9878 + }, + { + "start": 7237.46, + "end": 7238.64, + "probability": 0.4945 + }, + { + "start": 7239.22, + "end": 7240.28, + "probability": 0.96 + }, + { + "start": 7241.0, + "end": 7242.26, + "probability": 0.9611 + }, + { + "start": 7242.66, + "end": 7243.82, + "probability": 0.9824 + }, + { + "start": 7244.22, + "end": 7245.6, + "probability": 0.9709 + }, + { + "start": 7246.12, + "end": 7249.8, + "probability": 0.9919 + }, + { + "start": 7250.4, + "end": 7252.2, + "probability": 0.5976 + }, + { + "start": 7252.2, + "end": 7254.6, + "probability": 0.9064 + }, + { + "start": 7254.62, + "end": 7255.06, + "probability": 0.7754 + }, + { + "start": 7262.54, + "end": 7264.28, + "probability": 0.7704 + }, + { + "start": 7266.84, + "end": 7268.03, + "probability": 0.9544 + }, + { + "start": 7269.84, + "end": 7270.76, + "probability": 0.8395 + }, + { + "start": 7271.84, + "end": 7273.52, + "probability": 0.9541 + }, + { + "start": 7274.74, + "end": 7276.34, + "probability": 0.98 + }, + { + "start": 7276.46, + "end": 7279.03, + "probability": 0.9976 + }, + { + "start": 7280.98, + "end": 7283.66, + "probability": 0.7623 + }, + { + "start": 7284.88, + "end": 7288.16, + "probability": 0.6709 + }, + { + "start": 7288.42, + "end": 7288.82, + "probability": 0.7065 + }, + { + "start": 7289.18, + "end": 7289.46, + "probability": 0.7014 + }, + { + "start": 7291.1, + "end": 7291.92, + "probability": 0.9551 + }, + { + "start": 7292.62, + "end": 7293.8, + "probability": 0.9165 + }, + { + "start": 7294.44, + "end": 7297.22, + "probability": 0.9961 + }, + { + "start": 7298.44, + "end": 7299.82, + "probability": 0.9963 + }, + { + "start": 7300.74, + "end": 7302.56, + "probability": 0.9273 + }, + { + "start": 7302.98, + "end": 7306.3, + "probability": 0.9995 + }, + { + "start": 7306.3, + "end": 7309.6, + "probability": 0.9971 + }, + { + "start": 7309.6, + "end": 7310.54, + "probability": 0.4823 + }, + { + "start": 7310.58, + "end": 7314.48, + "probability": 0.9966 + }, + { + "start": 7315.68, + "end": 7316.24, + "probability": 0.9674 + }, + { + "start": 7319.06, + "end": 7320.4, + "probability": 0.4185 + }, + { + "start": 7321.82, + "end": 7323.22, + "probability": 0.8469 + }, + { + "start": 7323.9, + "end": 7327.4, + "probability": 0.9778 + }, + { + "start": 7329.25, + "end": 7332.44, + "probability": 0.9966 + }, + { + "start": 7332.66, + "end": 7334.14, + "probability": 0.9951 + }, + { + "start": 7335.06, + "end": 7336.7, + "probability": 0.9832 + }, + { + "start": 7337.52, + "end": 7338.74, + "probability": 0.9851 + }, + { + "start": 7338.82, + "end": 7343.94, + "probability": 0.9183 + }, + { + "start": 7344.18, + "end": 7345.22, + "probability": 0.8427 + }, + { + "start": 7345.28, + "end": 7345.84, + "probability": 0.8644 + }, + { + "start": 7346.26, + "end": 7346.92, + "probability": 0.8391 + }, + { + "start": 7347.08, + "end": 7348.02, + "probability": 0.8482 + }, + { + "start": 7348.46, + "end": 7350.86, + "probability": 0.9615 + }, + { + "start": 7351.98, + "end": 7353.54, + "probability": 0.9978 + }, + { + "start": 7354.1, + "end": 7356.7, + "probability": 0.993 + }, + { + "start": 7356.92, + "end": 7358.06, + "probability": 0.6711 + }, + { + "start": 7358.86, + "end": 7360.18, + "probability": 0.8118 + }, + { + "start": 7360.9, + "end": 7361.66, + "probability": 0.7661 + }, + { + "start": 7362.38, + "end": 7366.56, + "probability": 0.9678 + }, + { + "start": 7367.18, + "end": 7369.1, + "probability": 0.9878 + }, + { + "start": 7369.68, + "end": 7371.18, + "probability": 0.945 + }, + { + "start": 7371.54, + "end": 7372.74, + "probability": 0.762 + }, + { + "start": 7373.14, + "end": 7374.8, + "probability": 0.9738 + }, + { + "start": 7375.62, + "end": 7378.74, + "probability": 0.9978 + }, + { + "start": 7379.64, + "end": 7382.5, + "probability": 0.8375 + }, + { + "start": 7383.04, + "end": 7385.18, + "probability": 0.9905 + }, + { + "start": 7385.74, + "end": 7389.16, + "probability": 0.9868 + }, + { + "start": 7389.82, + "end": 7391.1, + "probability": 0.9642 + }, + { + "start": 7391.26, + "end": 7395.68, + "probability": 0.9956 + }, + { + "start": 7396.48, + "end": 7399.31, + "probability": 0.9788 + }, + { + "start": 7400.06, + "end": 7400.54, + "probability": 0.1332 + }, + { + "start": 7400.56, + "end": 7402.1, + "probability": 0.3079 + }, + { + "start": 7402.82, + "end": 7404.34, + "probability": 0.6675 + }, + { + "start": 7404.46, + "end": 7405.52, + "probability": 0.9081 + }, + { + "start": 7405.72, + "end": 7406.58, + "probability": 0.8108 + }, + { + "start": 7407.54, + "end": 7409.14, + "probability": 0.9727 + }, + { + "start": 7409.62, + "end": 7411.32, + "probability": 0.9771 + }, + { + "start": 7411.38, + "end": 7414.44, + "probability": 0.9653 + }, + { + "start": 7415.18, + "end": 7418.18, + "probability": 0.9844 + }, + { + "start": 7418.42, + "end": 7418.64, + "probability": 0.0784 + }, + { + "start": 7418.94, + "end": 7421.6, + "probability": 0.9302 + }, + { + "start": 7422.04, + "end": 7423.12, + "probability": 0.8963 + }, + { + "start": 7423.52, + "end": 7425.0, + "probability": 0.7875 + }, + { + "start": 7425.0, + "end": 7426.52, + "probability": 0.8646 + }, + { + "start": 7427.14, + "end": 7428.65, + "probability": 0.8677 + }, + { + "start": 7429.2, + "end": 7432.44, + "probability": 0.8679 + }, + { + "start": 7432.82, + "end": 7434.3, + "probability": 0.9933 + }, + { + "start": 7434.88, + "end": 7436.12, + "probability": 0.9946 + }, + { + "start": 7437.26, + "end": 7440.12, + "probability": 0.9663 + }, + { + "start": 7440.52, + "end": 7442.64, + "probability": 0.9971 + }, + { + "start": 7443.08, + "end": 7444.08, + "probability": 0.9762 + }, + { + "start": 7444.94, + "end": 7447.92, + "probability": 0.9889 + }, + { + "start": 7448.88, + "end": 7450.5, + "probability": 0.9151 + }, + { + "start": 7450.58, + "end": 7455.16, + "probability": 0.9843 + }, + { + "start": 7455.71, + "end": 7459.35, + "probability": 0.9825 + }, + { + "start": 7460.1, + "end": 7461.82, + "probability": 0.9963 + }, + { + "start": 7462.56, + "end": 7464.1, + "probability": 0.6423 + }, + { + "start": 7465.38, + "end": 7467.22, + "probability": 0.9956 + }, + { + "start": 7467.86, + "end": 7473.7, + "probability": 0.9897 + }, + { + "start": 7473.78, + "end": 7475.2, + "probability": 0.9965 + }, + { + "start": 7475.94, + "end": 7478.02, + "probability": 0.9985 + }, + { + "start": 7478.72, + "end": 7481.6, + "probability": 0.9902 + }, + { + "start": 7481.9, + "end": 7481.9, + "probability": 0.0428 + }, + { + "start": 7481.9, + "end": 7481.9, + "probability": 0.1825 + }, + { + "start": 7481.9, + "end": 7481.9, + "probability": 0.1679 + }, + { + "start": 7481.9, + "end": 7484.86, + "probability": 0.9042 + }, + { + "start": 7485.76, + "end": 7489.45, + "probability": 0.4256 + }, + { + "start": 7490.78, + "end": 7490.78, + "probability": 0.41 + }, + { + "start": 7490.78, + "end": 7490.78, + "probability": 0.2388 + }, + { + "start": 7490.78, + "end": 7490.78, + "probability": 0.4452 + }, + { + "start": 7490.78, + "end": 7491.6, + "probability": 0.0575 + }, + { + "start": 7491.72, + "end": 7492.84, + "probability": 0.2126 + }, + { + "start": 7493.34, + "end": 7495.1, + "probability": 0.5103 + }, + { + "start": 7495.82, + "end": 7499.24, + "probability": 0.7243 + }, + { + "start": 7499.24, + "end": 7500.3, + "probability": 0.1133 + }, + { + "start": 7500.42, + "end": 7500.52, + "probability": 0.0862 + }, + { + "start": 7500.66, + "end": 7501.96, + "probability": 0.5077 + }, + { + "start": 7502.4, + "end": 7507.48, + "probability": 0.9844 + }, + { + "start": 7509.4, + "end": 7511.86, + "probability": 0.1971 + }, + { + "start": 7512.0, + "end": 7514.06, + "probability": 0.8333 + }, + { + "start": 7514.26, + "end": 7515.28, + "probability": 0.6292 + }, + { + "start": 7515.38, + "end": 7516.5, + "probability": 0.4811 + }, + { + "start": 7517.22, + "end": 7521.36, + "probability": 0.5359 + }, + { + "start": 7521.52, + "end": 7522.56, + "probability": 0.8463 + }, + { + "start": 7523.36, + "end": 7524.34, + "probability": 0.7868 + }, + { + "start": 7525.4, + "end": 7526.4, + "probability": 0.8954 + }, + { + "start": 7527.66, + "end": 7530.76, + "probability": 0.9036 + }, + { + "start": 7531.38, + "end": 7533.18, + "probability": 0.8775 + }, + { + "start": 7533.88, + "end": 7537.48, + "probability": 0.9778 + }, + { + "start": 7538.04, + "end": 7539.54, + "probability": 0.6664 + }, + { + "start": 7539.88, + "end": 7548.24, + "probability": 0.7994 + }, + { + "start": 7549.22, + "end": 7549.64, + "probability": 0.0919 + }, + { + "start": 7549.64, + "end": 7549.64, + "probability": 0.0423 + }, + { + "start": 7549.64, + "end": 7550.28, + "probability": 0.463 + }, + { + "start": 7550.54, + "end": 7554.48, + "probability": 0.3889 + }, + { + "start": 7555.12, + "end": 7559.78, + "probability": 0.1487 + }, + { + "start": 7560.9, + "end": 7562.24, + "probability": 0.0764 + }, + { + "start": 7562.24, + "end": 7562.26, + "probability": 0.1533 + }, + { + "start": 7562.26, + "end": 7562.9, + "probability": 0.2741 + }, + { + "start": 7563.46, + "end": 7565.62, + "probability": 0.6388 + }, + { + "start": 7566.26, + "end": 7567.08, + "probability": 0.4289 + }, + { + "start": 7567.08, + "end": 7570.27, + "probability": 0.7793 + }, + { + "start": 7570.56, + "end": 7571.3, + "probability": 0.0238 + }, + { + "start": 7571.3, + "end": 7571.6, + "probability": 0.3278 + }, + { + "start": 7572.18, + "end": 7575.02, + "probability": 0.7944 + }, + { + "start": 7576.36, + "end": 7578.02, + "probability": 0.7404 + }, + { + "start": 7587.11, + "end": 7587.73, + "probability": 0.1466 + }, + { + "start": 7588.61, + "end": 7590.11, + "probability": 0.1934 + }, + { + "start": 7590.59, + "end": 7596.03, + "probability": 0.7116 + }, + { + "start": 7596.49, + "end": 7599.63, + "probability": 0.6766 + }, + { + "start": 7599.65, + "end": 7600.38, + "probability": 0.9048 + }, + { + "start": 7601.33, + "end": 7609.97, + "probability": 0.1601 + }, + { + "start": 7610.05, + "end": 7610.81, + "probability": 0.6042 + }, + { + "start": 7610.83, + "end": 7613.39, + "probability": 0.067 + }, + { + "start": 7613.53, + "end": 7616.11, + "probability": 0.7083 + }, + { + "start": 7616.23, + "end": 7617.19, + "probability": 0.9064 + }, + { + "start": 7617.93, + "end": 7619.05, + "probability": 0.1028 + }, + { + "start": 7621.65, + "end": 7622.33, + "probability": 0.0179 + }, + { + "start": 7622.33, + "end": 7623.63, + "probability": 0.1735 + }, + { + "start": 7624.04, + "end": 7625.23, + "probability": 0.1481 + }, + { + "start": 7625.93, + "end": 7629.11, + "probability": 0.1022 + }, + { + "start": 7630.65, + "end": 7631.82, + "probability": 0.0863 + }, + { + "start": 7632.81, + "end": 7633.03, + "probability": 0.0415 + }, + { + "start": 7651.0, + "end": 7651.0, + "probability": 0.0 + }, + { + "start": 7651.0, + "end": 7651.0, + "probability": 0.0 + }, + { + "start": 7651.0, + "end": 7651.0, + "probability": 0.0 + }, + { + "start": 7651.0, + "end": 7651.0, + "probability": 0.0 + }, + { + "start": 7651.0, + "end": 7651.0, + "probability": 0.0 + }, + { + "start": 7651.0, + "end": 7651.0, + "probability": 0.0 + }, + { + "start": 7651.0, + "end": 7651.0, + "probability": 0.0 + }, + { + "start": 7651.0, + "end": 7651.0, + "probability": 0.0 + }, + { + "start": 7651.0, + "end": 7651.0, + "probability": 0.0 + }, + { + "start": 7651.0, + "end": 7651.0, + "probability": 0.0 + }, + { + "start": 7651.06, + "end": 7651.2, + "probability": 0.0649 + }, + { + "start": 7651.2, + "end": 7652.42, + "probability": 0.5933 + }, + { + "start": 7653.6, + "end": 7654.68, + "probability": 0.4919 + }, + { + "start": 7655.62, + "end": 7660.32, + "probability": 0.9961 + }, + { + "start": 7661.04, + "end": 7664.5, + "probability": 0.9956 + }, + { + "start": 7665.44, + "end": 7667.68, + "probability": 0.9976 + }, + { + "start": 7668.34, + "end": 7671.32, + "probability": 0.8805 + }, + { + "start": 7671.92, + "end": 7675.22, + "probability": 0.9622 + }, + { + "start": 7676.26, + "end": 7677.96, + "probability": 0.8821 + }, + { + "start": 7678.7, + "end": 7682.04, + "probability": 0.7589 + }, + { + "start": 7682.52, + "end": 7685.66, + "probability": 0.8333 + }, + { + "start": 7686.18, + "end": 7690.02, + "probability": 0.9163 + }, + { + "start": 7690.38, + "end": 7691.6, + "probability": 0.9803 + }, + { + "start": 7692.42, + "end": 7695.1, + "probability": 0.9812 + }, + { + "start": 7695.68, + "end": 7700.28, + "probability": 0.9141 + }, + { + "start": 7700.88, + "end": 7704.3, + "probability": 0.9835 + }, + { + "start": 7704.66, + "end": 7707.1, + "probability": 0.7489 + }, + { + "start": 7708.04, + "end": 7712.92, + "probability": 0.9927 + }, + { + "start": 7712.92, + "end": 7718.6, + "probability": 0.9904 + }, + { + "start": 7719.22, + "end": 7721.82, + "probability": 0.7934 + }, + { + "start": 7721.94, + "end": 7724.66, + "probability": 0.7783 + }, + { + "start": 7725.2, + "end": 7725.42, + "probability": 0.9736 + }, + { + "start": 7725.98, + "end": 7729.32, + "probability": 0.9907 + }, + { + "start": 7729.88, + "end": 7734.14, + "probability": 0.988 + }, + { + "start": 7734.14, + "end": 7738.32, + "probability": 0.9924 + }, + { + "start": 7739.26, + "end": 7742.68, + "probability": 0.832 + }, + { + "start": 7743.74, + "end": 7746.1, + "probability": 0.9951 + }, + { + "start": 7746.64, + "end": 7752.3, + "probability": 0.9847 + }, + { + "start": 7753.06, + "end": 7757.02, + "probability": 0.9738 + }, + { + "start": 7757.42, + "end": 7761.78, + "probability": 0.9879 + }, + { + "start": 7762.2, + "end": 7763.52, + "probability": 0.5927 + }, + { + "start": 7764.14, + "end": 7767.28, + "probability": 0.9943 + }, + { + "start": 7767.5, + "end": 7768.6, + "probability": 0.7422 + }, + { + "start": 7769.42, + "end": 7772.7, + "probability": 0.9928 + }, + { + "start": 7773.56, + "end": 7775.31, + "probability": 0.9524 + }, + { + "start": 7775.68, + "end": 7779.38, + "probability": 0.8619 + }, + { + "start": 7779.68, + "end": 7784.7, + "probability": 0.9932 + }, + { + "start": 7785.36, + "end": 7787.32, + "probability": 0.7811 + }, + { + "start": 7787.74, + "end": 7788.84, + "probability": 0.8281 + }, + { + "start": 7789.74, + "end": 7789.94, + "probability": 0.8503 + }, + { + "start": 7791.08, + "end": 7792.54, + "probability": 0.9932 + }, + { + "start": 7793.1, + "end": 7796.24, + "probability": 0.98 + }, + { + "start": 7797.12, + "end": 7798.57, + "probability": 0.8916 + }, + { + "start": 7799.02, + "end": 7801.26, + "probability": 0.9332 + }, + { + "start": 7801.92, + "end": 7806.24, + "probability": 0.978 + }, + { + "start": 7806.82, + "end": 7811.68, + "probability": 0.9912 + }, + { + "start": 7813.08, + "end": 7813.76, + "probability": 0.9247 + }, + { + "start": 7814.46, + "end": 7815.86, + "probability": 0.9989 + }, + { + "start": 7816.4, + "end": 7821.34, + "probability": 0.9959 + }, + { + "start": 7822.06, + "end": 7825.24, + "probability": 0.8984 + }, + { + "start": 7825.24, + "end": 7829.1, + "probability": 0.9888 + }, + { + "start": 7830.48, + "end": 7833.42, + "probability": 0.9951 + }, + { + "start": 7834.02, + "end": 7840.6, + "probability": 0.9726 + }, + { + "start": 7841.88, + "end": 7846.68, + "probability": 0.9955 + }, + { + "start": 7846.68, + "end": 7850.64, + "probability": 0.4739 + }, + { + "start": 7851.26, + "end": 7853.99, + "probability": 0.7758 + }, + { + "start": 7854.74, + "end": 7859.62, + "probability": 0.9901 + }, + { + "start": 7860.54, + "end": 7866.08, + "probability": 0.9866 + }, + { + "start": 7866.62, + "end": 7870.54, + "probability": 0.9963 + }, + { + "start": 7871.26, + "end": 7877.5, + "probability": 0.9938 + }, + { + "start": 7878.12, + "end": 7882.32, + "probability": 0.9968 + }, + { + "start": 7882.38, + "end": 7887.16, + "probability": 0.9959 + }, + { + "start": 7887.24, + "end": 7887.98, + "probability": 0.8344 + }, + { + "start": 7888.9, + "end": 7892.06, + "probability": 0.9844 + }, + { + "start": 7892.06, + "end": 7896.6, + "probability": 0.9992 + }, + { + "start": 7897.28, + "end": 7902.84, + "probability": 0.9793 + }, + { + "start": 7902.84, + "end": 7906.72, + "probability": 0.9985 + }, + { + "start": 7907.6, + "end": 7911.56, + "probability": 0.6931 + }, + { + "start": 7912.6, + "end": 7918.16, + "probability": 0.9938 + }, + { + "start": 7918.72, + "end": 7919.54, + "probability": 0.9309 + }, + { + "start": 7920.12, + "end": 7923.94, + "probability": 0.9495 + }, + { + "start": 7924.54, + "end": 7930.8, + "probability": 0.9831 + }, + { + "start": 7931.36, + "end": 7935.14, + "probability": 0.9897 + }, + { + "start": 7935.96, + "end": 7939.6, + "probability": 0.9727 + }, + { + "start": 7940.5, + "end": 7941.7, + "probability": 0.4135 + }, + { + "start": 7942.46, + "end": 7945.68, + "probability": 0.9963 + }, + { + "start": 7947.06, + "end": 7948.38, + "probability": 0.7986 + }, + { + "start": 7948.9, + "end": 7952.4, + "probability": 0.9954 + }, + { + "start": 7952.92, + "end": 7955.1, + "probability": 0.8585 + }, + { + "start": 7956.26, + "end": 7956.84, + "probability": 0.7927 + }, + { + "start": 7956.92, + "end": 7963.82, + "probability": 0.9965 + }, + { + "start": 7963.82, + "end": 7970.86, + "probability": 0.9993 + }, + { + "start": 7971.8, + "end": 7973.94, + "probability": 0.6743 + }, + { + "start": 7974.68, + "end": 7976.08, + "probability": 0.5295 + }, + { + "start": 7976.86, + "end": 7979.34, + "probability": 0.9578 + }, + { + "start": 7980.18, + "end": 7985.22, + "probability": 0.9796 + }, + { + "start": 7986.02, + "end": 7988.5, + "probability": 0.9979 + }, + { + "start": 7989.06, + "end": 7992.72, + "probability": 0.9874 + }, + { + "start": 7993.44, + "end": 7997.6, + "probability": 0.9882 + }, + { + "start": 7998.3, + "end": 8001.02, + "probability": 0.9507 + }, + { + "start": 8001.64, + "end": 8004.54, + "probability": 0.992 + }, + { + "start": 8004.54, + "end": 8008.04, + "probability": 0.8173 + }, + { + "start": 8009.04, + "end": 8014.46, + "probability": 0.9919 + }, + { + "start": 8015.04, + "end": 8017.54, + "probability": 0.9851 + }, + { + "start": 8018.46, + "end": 8020.92, + "probability": 0.9903 + }, + { + "start": 8021.48, + "end": 8024.66, + "probability": 0.9304 + }, + { + "start": 8025.38, + "end": 8028.04, + "probability": 0.9968 + }, + { + "start": 8028.54, + "end": 8030.0, + "probability": 0.9911 + }, + { + "start": 8030.16, + "end": 8031.9, + "probability": 0.9756 + }, + { + "start": 8032.82, + "end": 8035.8, + "probability": 0.9956 + }, + { + "start": 8035.8, + "end": 8039.48, + "probability": 0.9436 + }, + { + "start": 8040.34, + "end": 8043.4, + "probability": 0.9857 + }, + { + "start": 8044.26, + "end": 8045.26, + "probability": 0.921 + }, + { + "start": 8045.42, + "end": 8046.73, + "probability": 0.8813 + }, + { + "start": 8047.28, + "end": 8050.46, + "probability": 0.9875 + }, + { + "start": 8050.46, + "end": 8054.62, + "probability": 0.9995 + }, + { + "start": 8055.46, + "end": 8058.14, + "probability": 0.9973 + }, + { + "start": 8058.76, + "end": 8063.3, + "probability": 0.9981 + }, + { + "start": 8063.3, + "end": 8068.2, + "probability": 0.9976 + }, + { + "start": 8068.5, + "end": 8069.4, + "probability": 0.4299 + }, + { + "start": 8070.12, + "end": 8073.18, + "probability": 0.9935 + }, + { + "start": 8073.18, + "end": 8077.28, + "probability": 0.9963 + }, + { + "start": 8077.64, + "end": 8079.38, + "probability": 0.9812 + }, + { + "start": 8080.16, + "end": 8087.04, + "probability": 0.9751 + }, + { + "start": 8087.04, + "end": 8093.86, + "probability": 0.9978 + }, + { + "start": 8094.74, + "end": 8100.28, + "probability": 0.9974 + }, + { + "start": 8101.1, + "end": 8104.52, + "probability": 0.9989 + }, + { + "start": 8104.52, + "end": 8108.76, + "probability": 0.9608 + }, + { + "start": 8109.42, + "end": 8110.8, + "probability": 0.6851 + }, + { + "start": 8111.26, + "end": 8115.38, + "probability": 0.9727 + }, + { + "start": 8116.06, + "end": 8121.28, + "probability": 0.9932 + }, + { + "start": 8122.34, + "end": 8127.62, + "probability": 0.7949 + }, + { + "start": 8127.62, + "end": 8132.96, + "probability": 0.9972 + }, + { + "start": 8133.7, + "end": 8137.62, + "probability": 0.9793 + }, + { + "start": 8137.8, + "end": 8138.92, + "probability": 0.7452 + }, + { + "start": 8139.82, + "end": 8144.0, + "probability": 0.9883 + }, + { + "start": 8144.0, + "end": 8147.1, + "probability": 0.9903 + }, + { + "start": 8148.36, + "end": 8152.18, + "probability": 0.9238 + }, + { + "start": 8152.18, + "end": 8155.6, + "probability": 0.9719 + }, + { + "start": 8156.5, + "end": 8160.72, + "probability": 0.9978 + }, + { + "start": 8160.72, + "end": 8164.62, + "probability": 0.9994 + }, + { + "start": 8165.16, + "end": 8168.76, + "probability": 0.9842 + }, + { + "start": 8169.7, + "end": 8172.76, + "probability": 0.9136 + }, + { + "start": 8173.4, + "end": 8174.22, + "probability": 0.4697 + }, + { + "start": 8174.88, + "end": 8179.22, + "probability": 0.9825 + }, + { + "start": 8179.76, + "end": 8181.38, + "probability": 0.9563 + }, + { + "start": 8182.24, + "end": 8189.02, + "probability": 0.9782 + }, + { + "start": 8189.04, + "end": 8190.32, + "probability": 0.8267 + }, + { + "start": 8190.78, + "end": 8195.78, + "probability": 0.9958 + }, + { + "start": 8195.78, + "end": 8201.38, + "probability": 0.9678 + }, + { + "start": 8202.08, + "end": 8205.76, + "probability": 0.9968 + }, + { + "start": 8206.48, + "end": 8211.32, + "probability": 0.9919 + }, + { + "start": 8212.02, + "end": 8216.78, + "probability": 0.9891 + }, + { + "start": 8216.78, + "end": 8221.4, + "probability": 0.9979 + }, + { + "start": 8222.18, + "end": 8223.78, + "probability": 0.8712 + }, + { + "start": 8224.3, + "end": 8226.98, + "probability": 0.9884 + }, + { + "start": 8227.5, + "end": 8232.2, + "probability": 0.9948 + }, + { + "start": 8232.88, + "end": 8234.38, + "probability": 0.9786 + }, + { + "start": 8234.9, + "end": 8238.96, + "probability": 0.9376 + }, + { + "start": 8239.54, + "end": 8242.02, + "probability": 0.8672 + }, + { + "start": 8242.6, + "end": 8247.38, + "probability": 0.9764 + }, + { + "start": 8247.82, + "end": 8254.0, + "probability": 0.9535 + }, + { + "start": 8254.0, + "end": 8258.94, + "probability": 0.9984 + }, + { + "start": 8259.0, + "end": 8259.3, + "probability": 0.1407 + }, + { + "start": 8259.58, + "end": 8264.32, + "probability": 0.9988 + }, + { + "start": 8265.12, + "end": 8267.42, + "probability": 0.5867 + }, + { + "start": 8268.04, + "end": 8270.26, + "probability": 0.9205 + }, + { + "start": 8270.74, + "end": 8272.1, + "probability": 0.8234 + }, + { + "start": 8272.62, + "end": 8274.36, + "probability": 0.9666 + }, + { + "start": 8274.6, + "end": 8274.9, + "probability": 0.8521 + }, + { + "start": 8275.28, + "end": 8275.88, + "probability": 0.5494 + }, + { + "start": 8276.06, + "end": 8279.48, + "probability": 0.8459 + }, + { + "start": 8279.66, + "end": 8280.52, + "probability": 0.6182 + }, + { + "start": 8280.64, + "end": 8283.12, + "probability": 0.6588 + }, + { + "start": 8283.44, + "end": 8284.5, + "probability": 0.7328 + }, + { + "start": 8284.62, + "end": 8285.72, + "probability": 0.8618 + }, + { + "start": 8286.06, + "end": 8287.08, + "probability": 0.816 + }, + { + "start": 8288.5, + "end": 8289.66, + "probability": 0.9384 + }, + { + "start": 8290.54, + "end": 8292.28, + "probability": 0.9809 + }, + { + "start": 8292.44, + "end": 8293.88, + "probability": 0.8256 + }, + { + "start": 8294.06, + "end": 8294.4, + "probability": 0.8669 + }, + { + "start": 8294.8, + "end": 8297.36, + "probability": 0.9926 + }, + { + "start": 8298.02, + "end": 8299.4, + "probability": 0.8995 + }, + { + "start": 8300.08, + "end": 8303.94, + "probability": 0.9663 + }, + { + "start": 8304.06, + "end": 8306.4, + "probability": 0.9806 + }, + { + "start": 8307.56, + "end": 8309.0, + "probability": 0.6695 + }, + { + "start": 8309.24, + "end": 8309.68, + "probability": 0.8112 + }, + { + "start": 8309.8, + "end": 8313.24, + "probability": 0.9969 + }, + { + "start": 8313.96, + "end": 8319.36, + "probability": 0.9784 + }, + { + "start": 8320.4, + "end": 8322.62, + "probability": 0.9603 + }, + { + "start": 8322.86, + "end": 8323.52, + "probability": 0.9693 + }, + { + "start": 8324.52, + "end": 8329.1, + "probability": 0.993 + }, + { + "start": 8330.1, + "end": 8333.98, + "probability": 0.9905 + }, + { + "start": 8334.88, + "end": 8336.28, + "probability": 0.7682 + }, + { + "start": 8337.36, + "end": 8345.51, + "probability": 0.9902 + }, + { + "start": 8345.84, + "end": 8346.97, + "probability": 0.8602 + }, + { + "start": 8347.94, + "end": 8349.56, + "probability": 0.8316 + }, + { + "start": 8349.84, + "end": 8350.96, + "probability": 0.9814 + }, + { + "start": 8350.98, + "end": 8352.49, + "probability": 0.8089 + }, + { + "start": 8352.98, + "end": 8353.82, + "probability": 0.8875 + }, + { + "start": 8354.98, + "end": 8360.62, + "probability": 0.9806 + }, + { + "start": 8362.4, + "end": 8363.02, + "probability": 0.929 + }, + { + "start": 8363.98, + "end": 8365.92, + "probability": 0.6381 + }, + { + "start": 8366.58, + "end": 8367.86, + "probability": 0.9446 + }, + { + "start": 8368.2, + "end": 8371.3, + "probability": 0.9015 + }, + { + "start": 8372.14, + "end": 8373.36, + "probability": 0.7938 + }, + { + "start": 8374.14, + "end": 8376.02, + "probability": 0.7971 + }, + { + "start": 8376.54, + "end": 8377.68, + "probability": 0.7489 + }, + { + "start": 8378.98, + "end": 8380.56, + "probability": 0.9607 + }, + { + "start": 8382.46, + "end": 8386.78, + "probability": 0.9414 + }, + { + "start": 8387.44, + "end": 8388.6, + "probability": 0.9859 + }, + { + "start": 8389.74, + "end": 8392.72, + "probability": 0.9915 + }, + { + "start": 8393.58, + "end": 8396.26, + "probability": 0.9396 + }, + { + "start": 8396.6, + "end": 8397.4, + "probability": 0.896 + }, + { + "start": 8398.4, + "end": 8400.24, + "probability": 0.9443 + }, + { + "start": 8404.04, + "end": 8405.8, + "probability": 0.9949 + }, + { + "start": 8406.76, + "end": 8407.3, + "probability": 0.9867 + }, + { + "start": 8408.48, + "end": 8409.88, + "probability": 0.9601 + }, + { + "start": 8410.72, + "end": 8412.1, + "probability": 0.8702 + }, + { + "start": 8412.98, + "end": 8414.86, + "probability": 0.9917 + }, + { + "start": 8415.68, + "end": 8416.06, + "probability": 0.8765 + }, + { + "start": 8418.26, + "end": 8419.1, + "probability": 0.9506 + }, + { + "start": 8419.62, + "end": 8420.78, + "probability": 0.9862 + }, + { + "start": 8421.7, + "end": 8425.52, + "probability": 0.9821 + }, + { + "start": 8426.54, + "end": 8431.1, + "probability": 0.9573 + }, + { + "start": 8431.5, + "end": 8434.42, + "probability": 0.9966 + }, + { + "start": 8434.76, + "end": 8435.94, + "probability": 0.9016 + }, + { + "start": 8436.58, + "end": 8438.62, + "probability": 0.9927 + }, + { + "start": 8439.48, + "end": 8439.9, + "probability": 0.8085 + }, + { + "start": 8440.42, + "end": 8441.33, + "probability": 0.4996 + }, + { + "start": 8441.76, + "end": 8443.76, + "probability": 0.8923 + }, + { + "start": 8444.54, + "end": 8448.38, + "probability": 0.8545 + }, + { + "start": 8448.72, + "end": 8454.46, + "probability": 0.9961 + }, + { + "start": 8455.94, + "end": 8458.39, + "probability": 0.9326 + }, + { + "start": 8459.32, + "end": 8461.6, + "probability": 0.8232 + }, + { + "start": 8461.92, + "end": 8465.48, + "probability": 0.994 + }, + { + "start": 8466.08, + "end": 8467.76, + "probability": 0.9447 + }, + { + "start": 8467.88, + "end": 8468.58, + "probability": 0.831 + }, + { + "start": 8468.72, + "end": 8469.16, + "probability": 0.6322 + }, + { + "start": 8469.18, + "end": 8469.52, + "probability": 0.5223 + }, + { + "start": 8469.52, + "end": 8469.82, + "probability": 0.5163 + }, + { + "start": 8471.78, + "end": 8473.26, + "probability": 0.9965 + }, + { + "start": 8473.9, + "end": 8478.22, + "probability": 0.9758 + }, + { + "start": 8478.36, + "end": 8484.12, + "probability": 0.9964 + }, + { + "start": 8484.62, + "end": 8485.62, + "probability": 0.7558 + }, + { + "start": 8486.76, + "end": 8487.04, + "probability": 0.724 + }, + { + "start": 8487.18, + "end": 8489.28, + "probability": 0.9828 + }, + { + "start": 8489.48, + "end": 8489.82, + "probability": 0.7563 + }, + { + "start": 8490.04, + "end": 8490.32, + "probability": 0.4418 + }, + { + "start": 8490.52, + "end": 8492.46, + "probability": 0.7702 + }, + { + "start": 8492.56, + "end": 8493.54, + "probability": 0.7401 + }, + { + "start": 8508.8, + "end": 8511.88, + "probability": 0.8675 + }, + { + "start": 8513.18, + "end": 8515.48, + "probability": 0.9987 + }, + { + "start": 8516.38, + "end": 8519.84, + "probability": 0.976 + }, + { + "start": 8519.84, + "end": 8524.02, + "probability": 0.9883 + }, + { + "start": 8524.54, + "end": 8526.8, + "probability": 0.8716 + }, + { + "start": 8527.6, + "end": 8528.58, + "probability": 0.5001 + }, + { + "start": 8528.58, + "end": 8529.28, + "probability": 0.6591 + }, + { + "start": 8529.34, + "end": 8532.06, + "probability": 0.8509 + }, + { + "start": 8532.88, + "end": 8538.62, + "probability": 0.9799 + }, + { + "start": 8538.62, + "end": 8540.96, + "probability": 0.8013 + }, + { + "start": 8541.88, + "end": 8542.72, + "probability": 0.3304 + }, + { + "start": 8543.38, + "end": 8545.54, + "probability": 0.9968 + }, + { + "start": 8545.7, + "end": 8546.8, + "probability": 0.7175 + }, + { + "start": 8547.02, + "end": 8548.14, + "probability": 0.8447 + }, + { + "start": 8548.76, + "end": 8550.42, + "probability": 0.8762 + }, + { + "start": 8551.1, + "end": 8552.68, + "probability": 0.972 + }, + { + "start": 8553.1, + "end": 8556.74, + "probability": 0.995 + }, + { + "start": 8557.24, + "end": 8559.76, + "probability": 0.9937 + }, + { + "start": 8560.74, + "end": 8563.32, + "probability": 0.9242 + }, + { + "start": 8563.54, + "end": 8568.36, + "probability": 0.9937 + }, + { + "start": 8568.76, + "end": 8573.9, + "probability": 0.9923 + }, + { + "start": 8574.46, + "end": 8579.4, + "probability": 0.9932 + }, + { + "start": 8579.56, + "end": 8580.84, + "probability": 0.9927 + }, + { + "start": 8581.02, + "end": 8582.02, + "probability": 0.8373 + }, + { + "start": 8582.24, + "end": 8582.82, + "probability": 0.8099 + }, + { + "start": 8584.42, + "end": 8586.52, + "probability": 0.9827 + }, + { + "start": 8587.14, + "end": 8588.44, + "probability": 0.96 + }, + { + "start": 8588.6, + "end": 8589.2, + "probability": 0.5542 + }, + { + "start": 8589.64, + "end": 8593.86, + "probability": 0.9912 + }, + { + "start": 8594.78, + "end": 8597.28, + "probability": 0.983 + }, + { + "start": 8598.34, + "end": 8599.04, + "probability": 0.9661 + }, + { + "start": 8599.6, + "end": 8602.48, + "probability": 0.9418 + }, + { + "start": 8602.92, + "end": 8606.28, + "probability": 0.9766 + }, + { + "start": 8606.42, + "end": 8607.06, + "probability": 0.426 + }, + { + "start": 8607.48, + "end": 8608.6, + "probability": 0.9673 + }, + { + "start": 8608.96, + "end": 8612.38, + "probability": 0.9254 + }, + { + "start": 8612.84, + "end": 8615.48, + "probability": 0.957 + }, + { + "start": 8615.9, + "end": 8617.26, + "probability": 0.9206 + }, + { + "start": 8617.66, + "end": 8618.36, + "probability": 0.7928 + }, + { + "start": 8619.18, + "end": 8619.7, + "probability": 0.1175 + }, + { + "start": 8619.7, + "end": 8620.02, + "probability": 0.0772 + }, + { + "start": 8620.32, + "end": 8623.94, + "probability": 0.0167 + }, + { + "start": 8623.94, + "end": 8624.68, + "probability": 0.126 + }, + { + "start": 8624.68, + "end": 8624.78, + "probability": 0.024 + }, + { + "start": 8624.78, + "end": 8625.94, + "probability": 0.4868 + }, + { + "start": 8628.14, + "end": 8629.16, + "probability": 0.5564 + }, + { + "start": 8630.02, + "end": 8633.46, + "probability": 0.4957 + }, + { + "start": 8634.1, + "end": 8634.34, + "probability": 0.0254 + }, + { + "start": 8634.34, + "end": 8634.34, + "probability": 0.1326 + }, + { + "start": 8634.34, + "end": 8634.34, + "probability": 0.4025 + }, + { + "start": 8634.34, + "end": 8634.56, + "probability": 0.0805 + }, + { + "start": 8634.82, + "end": 8635.82, + "probability": 0.2804 + }, + { + "start": 8636.02, + "end": 8637.46, + "probability": 0.7406 + }, + { + "start": 8638.76, + "end": 8640.48, + "probability": 0.8207 + }, + { + "start": 8641.66, + "end": 8647.34, + "probability": 0.8613 + }, + { + "start": 8648.14, + "end": 8648.22, + "probability": 0.006 + }, + { + "start": 8648.22, + "end": 8650.4, + "probability": 0.8078 + }, + { + "start": 8650.72, + "end": 8652.82, + "probability": 0.6485 + }, + { + "start": 8652.9, + "end": 8653.6, + "probability": 0.0486 + }, + { + "start": 8653.6, + "end": 8657.7, + "probability": 0.5963 + }, + { + "start": 8658.74, + "end": 8660.0, + "probability": 0.3061 + }, + { + "start": 8660.64, + "end": 8661.92, + "probability": 0.7903 + }, + { + "start": 8662.16, + "end": 8664.56, + "probability": 0.8035 + }, + { + "start": 8665.16, + "end": 8667.02, + "probability": 0.9792 + }, + { + "start": 8667.72, + "end": 8675.48, + "probability": 0.988 + }, + { + "start": 8675.92, + "end": 8679.46, + "probability": 0.7474 + }, + { + "start": 8679.78, + "end": 8681.57, + "probability": 0.8618 + }, + { + "start": 8681.78, + "end": 8683.55, + "probability": 0.9863 + }, + { + "start": 8683.62, + "end": 8685.82, + "probability": 0.978 + }, + { + "start": 8686.26, + "end": 8689.02, + "probability": 0.974 + }, + { + "start": 8689.64, + "end": 8689.74, + "probability": 0.0146 + }, + { + "start": 8689.74, + "end": 8691.03, + "probability": 0.9701 + }, + { + "start": 8691.52, + "end": 8693.76, + "probability": 0.8207 + }, + { + "start": 8694.46, + "end": 8697.74, + "probability": 0.6488 + }, + { + "start": 8697.92, + "end": 8701.36, + "probability": 0.6893 + }, + { + "start": 8701.48, + "end": 8703.24, + "probability": 0.3172 + }, + { + "start": 8704.06, + "end": 8707.3, + "probability": 0.8115 + }, + { + "start": 8708.02, + "end": 8715.52, + "probability": 0.9945 + }, + { + "start": 8715.56, + "end": 8717.48, + "probability": 0.4042 + }, + { + "start": 8718.12, + "end": 8719.3, + "probability": 0.8276 + }, + { + "start": 8719.58, + "end": 8720.36, + "probability": 0.1336 + }, + { + "start": 8720.42, + "end": 8722.06, + "probability": 0.5434 + }, + { + "start": 8722.06, + "end": 8722.92, + "probability": 0.4252 + }, + { + "start": 8723.06, + "end": 8724.86, + "probability": 0.8747 + }, + { + "start": 8725.16, + "end": 8728.7, + "probability": 0.8693 + }, + { + "start": 8729.06, + "end": 8730.22, + "probability": 0.8164 + }, + { + "start": 8730.7, + "end": 8731.72, + "probability": 0.7133 + }, + { + "start": 8731.74, + "end": 8733.92, + "probability": 0.1702 + }, + { + "start": 8734.24, + "end": 8735.18, + "probability": 0.4314 + }, + { + "start": 8735.26, + "end": 8738.96, + "probability": 0.7651 + }, + { + "start": 8739.54, + "end": 8743.1, + "probability": 0.9411 + }, + { + "start": 8743.96, + "end": 8745.85, + "probability": 0.7309 + }, + { + "start": 8746.5, + "end": 8746.98, + "probability": 0.593 + }, + { + "start": 8747.08, + "end": 8748.94, + "probability": 0.8723 + }, + { + "start": 8749.32, + "end": 8749.86, + "probability": 0.0716 + }, + { + "start": 8749.98, + "end": 8750.0, + "probability": 0.1074 + }, + { + "start": 8750.12, + "end": 8754.58, + "probability": 0.7528 + }, + { + "start": 8755.44, + "end": 8756.82, + "probability": 0.8847 + }, + { + "start": 8757.68, + "end": 8760.28, + "probability": 0.8999 + }, + { + "start": 8760.34, + "end": 8762.66, + "probability": 0.9911 + }, + { + "start": 8762.78, + "end": 8762.86, + "probability": 0.7276 + }, + { + "start": 8762.86, + "end": 8762.86, + "probability": 0.6411 + }, + { + "start": 8762.86, + "end": 8766.9, + "probability": 0.9683 + }, + { + "start": 8767.7, + "end": 8769.2, + "probability": 0.931 + }, + { + "start": 8769.84, + "end": 8774.28, + "probability": 0.9822 + }, + { + "start": 8774.38, + "end": 8775.06, + "probability": 0.9801 + }, + { + "start": 8776.42, + "end": 8782.16, + "probability": 0.999 + }, + { + "start": 8783.4, + "end": 8788.52, + "probability": 0.9817 + }, + { + "start": 8789.16, + "end": 8791.38, + "probability": 0.9811 + }, + { + "start": 8792.26, + "end": 8795.32, + "probability": 0.9757 + }, + { + "start": 8795.98, + "end": 8801.0, + "probability": 0.9962 + }, + { + "start": 8801.6, + "end": 8804.22, + "probability": 0.9998 + }, + { + "start": 8805.08, + "end": 8806.9, + "probability": 0.9919 + }, + { + "start": 8807.42, + "end": 8810.64, + "probability": 0.9377 + }, + { + "start": 8810.88, + "end": 8813.02, + "probability": 0.9663 + }, + { + "start": 8813.92, + "end": 8815.82, + "probability": 0.9608 + }, + { + "start": 8816.48, + "end": 8821.62, + "probability": 0.9937 + }, + { + "start": 8822.54, + "end": 8825.2, + "probability": 0.9669 + }, + { + "start": 8825.68, + "end": 8826.92, + "probability": 0.5099 + }, + { + "start": 8827.4, + "end": 8829.64, + "probability": 0.9816 + }, + { + "start": 8829.76, + "end": 8830.78, + "probability": 0.9205 + }, + { + "start": 8831.4, + "end": 8835.86, + "probability": 0.9615 + }, + { + "start": 8837.06, + "end": 8842.44, + "probability": 0.9438 + }, + { + "start": 8843.74, + "end": 8847.14, + "probability": 0.9987 + }, + { + "start": 8847.7, + "end": 8853.6, + "probability": 0.9972 + }, + { + "start": 8854.7, + "end": 8857.38, + "probability": 0.9628 + }, + { + "start": 8857.98, + "end": 8860.06, + "probability": 0.9964 + }, + { + "start": 8861.02, + "end": 8863.26, + "probability": 0.9906 + }, + { + "start": 8864.14, + "end": 8864.64, + "probability": 0.7565 + }, + { + "start": 8865.6, + "end": 8867.76, + "probability": 0.9993 + }, + { + "start": 8868.86, + "end": 8871.9, + "probability": 0.998 + }, + { + "start": 8872.46, + "end": 8874.36, + "probability": 0.9994 + }, + { + "start": 8875.1, + "end": 8879.06, + "probability": 0.9984 + }, + { + "start": 8879.96, + "end": 8882.54, + "probability": 0.9227 + }, + { + "start": 8883.78, + "end": 8885.02, + "probability": 0.5882 + }, + { + "start": 8886.02, + "end": 8891.16, + "probability": 0.9901 + }, + { + "start": 8892.4, + "end": 8895.0, + "probability": 0.9355 + }, + { + "start": 8895.4, + "end": 8897.54, + "probability": 0.8948 + }, + { + "start": 8897.7, + "end": 8898.36, + "probability": 0.9382 + }, + { + "start": 8898.44, + "end": 8898.94, + "probability": 0.7487 + }, + { + "start": 8900.1, + "end": 8901.84, + "probability": 0.9729 + }, + { + "start": 8902.38, + "end": 8904.46, + "probability": 0.8862 + }, + { + "start": 8908.06, + "end": 8908.86, + "probability": 0.7903 + }, + { + "start": 8909.66, + "end": 8910.86, + "probability": 0.9989 + }, + { + "start": 8910.86, + "end": 8911.46, + "probability": 0.8189 + }, + { + "start": 8911.72, + "end": 8912.3, + "probability": 0.798 + }, + { + "start": 8912.4, + "end": 8913.86, + "probability": 0.867 + }, + { + "start": 8917.68, + "end": 8919.94, + "probability": 0.9445 + }, + { + "start": 8921.26, + "end": 8924.2, + "probability": 0.9967 + }, + { + "start": 8924.2, + "end": 8924.72, + "probability": 0.8926 + }, + { + "start": 8924.88, + "end": 8928.14, + "probability": 0.7829 + }, + { + "start": 8929.5, + "end": 8932.76, + "probability": 0.9954 + }, + { + "start": 8933.6, + "end": 8938.42, + "probability": 0.9968 + }, + { + "start": 8939.42, + "end": 8943.34, + "probability": 0.9985 + }, + { + "start": 8943.34, + "end": 8946.36, + "probability": 0.9966 + }, + { + "start": 8947.6, + "end": 8951.22, + "probability": 0.9932 + }, + { + "start": 8952.4, + "end": 8952.5, + "probability": 0.7213 + }, + { + "start": 8954.36, + "end": 8956.28, + "probability": 0.9976 + }, + { + "start": 8957.26, + "end": 8963.44, + "probability": 0.9941 + }, + { + "start": 8964.18, + "end": 8966.38, + "probability": 0.8571 + }, + { + "start": 8967.26, + "end": 8969.18, + "probability": 0.9551 + }, + { + "start": 8969.56, + "end": 8975.27, + "probability": 0.9986 + }, + { + "start": 8975.94, + "end": 8976.52, + "probability": 0.1656 + }, + { + "start": 8976.52, + "end": 8976.52, + "probability": 0.3538 + }, + { + "start": 8976.52, + "end": 8976.52, + "probability": 0.0585 + }, + { + "start": 8976.52, + "end": 8976.52, + "probability": 0.2638 + }, + { + "start": 8976.52, + "end": 8977.58, + "probability": 0.6042 + }, + { + "start": 8978.22, + "end": 8978.82, + "probability": 0.9658 + }, + { + "start": 8980.08, + "end": 8981.64, + "probability": 0.9333 + }, + { + "start": 8983.2, + "end": 8983.24, + "probability": 0.0875 + }, + { + "start": 8983.24, + "end": 8984.43, + "probability": 0.4192 + }, + { + "start": 8985.5, + "end": 8986.72, + "probability": 0.5605 + }, + { + "start": 8987.7, + "end": 8988.6, + "probability": 0.5782 + }, + { + "start": 8988.7, + "end": 8988.96, + "probability": 0.1589 + }, + { + "start": 8989.27, + "end": 8991.94, + "probability": 0.4326 + }, + { + "start": 8991.98, + "end": 8992.1, + "probability": 0.0015 + }, + { + "start": 8994.66, + "end": 8994.82, + "probability": 0.0266 + }, + { + "start": 8994.82, + "end": 8997.0, + "probability": 0.0199 + }, + { + "start": 8997.02, + "end": 8998.4, + "probability": 0.1723 + }, + { + "start": 8998.42, + "end": 8998.98, + "probability": 0.7635 + }, + { + "start": 8998.98, + "end": 8999.2, + "probability": 0.7841 + }, + { + "start": 8999.2, + "end": 9000.34, + "probability": 0.3616 + }, + { + "start": 9000.5, + "end": 9002.66, + "probability": 0.802 + }, + { + "start": 9002.74, + "end": 9004.94, + "probability": 0.9716 + }, + { + "start": 9005.48, + "end": 9008.0, + "probability": 0.9141 + }, + { + "start": 9008.8, + "end": 9009.6, + "probability": 0.4806 + }, + { + "start": 9009.6, + "end": 9010.16, + "probability": 0.5369 + }, + { + "start": 9010.16, + "end": 9013.34, + "probability": 0.3738 + }, + { + "start": 9013.34, + "end": 9013.34, + "probability": 0.2689 + }, + { + "start": 9013.34, + "end": 9020.9, + "probability": 0.9659 + }, + { + "start": 9021.42, + "end": 9025.28, + "probability": 0.9971 + }, + { + "start": 9025.28, + "end": 9029.06, + "probability": 0.9594 + }, + { + "start": 9030.68, + "end": 9031.39, + "probability": 0.8042 + }, + { + "start": 9031.63, + "end": 9033.83, + "probability": 0.9062 + }, + { + "start": 9034.53, + "end": 9039.63, + "probability": 0.9772 + }, + { + "start": 9039.63, + "end": 9046.56, + "probability": 0.9499 + }, + { + "start": 9046.73, + "end": 9046.81, + "probability": 0.1292 + }, + { + "start": 9046.83, + "end": 9047.97, + "probability": 0.2945 + }, + { + "start": 9047.97, + "end": 9048.53, + "probability": 0.8397 + }, + { + "start": 9048.97, + "end": 9049.17, + "probability": 0.5415 + }, + { + "start": 9049.17, + "end": 9049.63, + "probability": 0.8237 + }, + { + "start": 9050.83, + "end": 9051.75, + "probability": 0.661 + }, + { + "start": 9051.75, + "end": 9056.19, + "probability": 0.7263 + }, + { + "start": 9056.69, + "end": 9059.97, + "probability": 0.8243 + }, + { + "start": 9060.77, + "end": 9062.73, + "probability": 0.9937 + }, + { + "start": 9063.63, + "end": 9066.59, + "probability": 0.9298 + }, + { + "start": 9067.33, + "end": 9073.47, + "probability": 0.975 + }, + { + "start": 9074.17, + "end": 9074.87, + "probability": 0.1245 + }, + { + "start": 9074.87, + "end": 9074.87, + "probability": 0.0211 + }, + { + "start": 9074.87, + "end": 9074.87, + "probability": 0.1498 + }, + { + "start": 9074.87, + "end": 9075.61, + "probability": 0.4992 + }, + { + "start": 9076.09, + "end": 9077.45, + "probability": 0.7902 + }, + { + "start": 9077.81, + "end": 9079.27, + "probability": 0.8093 + }, + { + "start": 9079.77, + "end": 9084.25, + "probability": 0.9373 + }, + { + "start": 9084.37, + "end": 9084.79, + "probability": 0.0087 + }, + { + "start": 9085.27, + "end": 9085.27, + "probability": 0.4153 + }, + { + "start": 9085.27, + "end": 9092.83, + "probability": 0.9986 + }, + { + "start": 9093.65, + "end": 9095.29, + "probability": 0.6339 + }, + { + "start": 9095.73, + "end": 9096.43, + "probability": 0.912 + }, + { + "start": 9096.57, + "end": 9104.19, + "probability": 0.9951 + }, + { + "start": 9104.81, + "end": 9108.95, + "probability": 0.965 + }, + { + "start": 9109.55, + "end": 9111.05, + "probability": 0.954 + }, + { + "start": 9111.13, + "end": 9111.39, + "probability": 0.6768 + }, + { + "start": 9111.83, + "end": 9114.89, + "probability": 0.8328 + }, + { + "start": 9116.01, + "end": 9118.45, + "probability": 0.5836 + }, + { + "start": 9118.83, + "end": 9119.73, + "probability": 0.9909 + }, + { + "start": 9125.89, + "end": 9126.83, + "probability": 0.8498 + }, + { + "start": 9127.83, + "end": 9128.6, + "probability": 0.6865 + }, + { + "start": 9130.57, + "end": 9133.35, + "probability": 0.9729 + }, + { + "start": 9135.05, + "end": 9138.79, + "probability": 0.9955 + }, + { + "start": 9139.89, + "end": 9140.55, + "probability": 0.9417 + }, + { + "start": 9141.67, + "end": 9145.09, + "probability": 0.9922 + }, + { + "start": 9145.75, + "end": 9149.19, + "probability": 0.9902 + }, + { + "start": 9150.57, + "end": 9153.49, + "probability": 0.9893 + }, + { + "start": 9154.51, + "end": 9159.71, + "probability": 0.9431 + }, + { + "start": 9160.39, + "end": 9163.43, + "probability": 0.8931 + }, + { + "start": 9164.15, + "end": 9165.03, + "probability": 0.586 + }, + { + "start": 9165.67, + "end": 9167.11, + "probability": 0.9871 + }, + { + "start": 9167.43, + "end": 9170.91, + "probability": 0.9788 + }, + { + "start": 9170.91, + "end": 9175.27, + "probability": 0.9966 + }, + { + "start": 9175.83, + "end": 9176.65, + "probability": 0.6909 + }, + { + "start": 9178.23, + "end": 9179.69, + "probability": 0.9758 + }, + { + "start": 9180.31, + "end": 9182.59, + "probability": 0.9294 + }, + { + "start": 9183.11, + "end": 9184.67, + "probability": 0.9919 + }, + { + "start": 9185.17, + "end": 9188.59, + "probability": 0.9929 + }, + { + "start": 9189.17, + "end": 9191.45, + "probability": 0.9979 + }, + { + "start": 9191.91, + "end": 9195.99, + "probability": 0.9249 + }, + { + "start": 9196.33, + "end": 9197.05, + "probability": 0.8145 + }, + { + "start": 9197.61, + "end": 9201.47, + "probability": 0.9858 + }, + { + "start": 9202.11, + "end": 9202.43, + "probability": 0.6372 + }, + { + "start": 9202.51, + "end": 9203.09, + "probability": 0.6316 + }, + { + "start": 9203.43, + "end": 9204.67, + "probability": 0.9549 + }, + { + "start": 9205.01, + "end": 9211.21, + "probability": 0.9889 + }, + { + "start": 9211.97, + "end": 9213.55, + "probability": 0.9185 + }, + { + "start": 9214.01, + "end": 9215.49, + "probability": 0.9585 + }, + { + "start": 9215.99, + "end": 9223.61, + "probability": 0.9785 + }, + { + "start": 9223.61, + "end": 9228.83, + "probability": 0.9932 + }, + { + "start": 9229.91, + "end": 9232.97, + "probability": 0.9443 + }, + { + "start": 9233.61, + "end": 9237.95, + "probability": 0.9916 + }, + { + "start": 9238.45, + "end": 9239.35, + "probability": 0.0257 + }, + { + "start": 9239.35, + "end": 9239.37, + "probability": 0.4997 + }, + { + "start": 9239.37, + "end": 9242.35, + "probability": 0.5409 + }, + { + "start": 9242.47, + "end": 9247.15, + "probability": 0.9509 + }, + { + "start": 9247.69, + "end": 9248.65, + "probability": 0.6788 + }, + { + "start": 9249.17, + "end": 9252.37, + "probability": 0.9904 + }, + { + "start": 9252.37, + "end": 9256.71, + "probability": 0.9892 + }, + { + "start": 9257.09, + "end": 9260.31, + "probability": 0.9912 + }, + { + "start": 9261.35, + "end": 9261.57, + "probability": 0.38 + }, + { + "start": 9262.29, + "end": 9263.17, + "probability": 0.5588 + }, + { + "start": 9263.57, + "end": 9265.89, + "probability": 0.8444 + }, + { + "start": 9266.27, + "end": 9267.15, + "probability": 0.9297 + }, + { + "start": 9267.93, + "end": 9272.73, + "probability": 0.9675 + }, + { + "start": 9273.35, + "end": 9277.61, + "probability": 0.9692 + }, + { + "start": 9277.61, + "end": 9281.57, + "probability": 0.8611 + }, + { + "start": 9281.97, + "end": 9284.33, + "probability": 0.9972 + }, + { + "start": 9284.91, + "end": 9288.99, + "probability": 0.9951 + }, + { + "start": 9289.39, + "end": 9293.37, + "probability": 0.9841 + }, + { + "start": 9293.69, + "end": 9293.69, + "probability": 0.2152 + }, + { + "start": 9293.69, + "end": 9293.69, + "probability": 0.1983 + }, + { + "start": 9293.69, + "end": 9297.41, + "probability": 0.9075 + }, + { + "start": 9297.85, + "end": 9304.05, + "probability": 0.9626 + }, + { + "start": 9304.05, + "end": 9304.13, + "probability": 0.0968 + }, + { + "start": 9304.13, + "end": 9304.13, + "probability": 0.0442 + }, + { + "start": 9304.13, + "end": 9307.55, + "probability": 0.9617 + }, + { + "start": 9307.55, + "end": 9312.45, + "probability": 0.9321 + }, + { + "start": 9312.87, + "end": 9317.65, + "probability": 0.7768 + }, + { + "start": 9317.69, + "end": 9318.03, + "probability": 0.6162 + }, + { + "start": 9318.03, + "end": 9322.17, + "probability": 0.9305 + }, + { + "start": 9322.63, + "end": 9322.73, + "probability": 0.4637 + }, + { + "start": 9322.73, + "end": 9324.65, + "probability": 0.9184 + }, + { + "start": 9325.01, + "end": 9325.87, + "probability": 0.7454 + }, + { + "start": 9325.93, + "end": 9326.77, + "probability": 0.4277 + }, + { + "start": 9327.17, + "end": 9330.43, + "probability": 0.615 + }, + { + "start": 9330.73, + "end": 9331.49, + "probability": 0.6149 + }, + { + "start": 9331.51, + "end": 9334.69, + "probability": 0.5942 + }, + { + "start": 9335.03, + "end": 9335.83, + "probability": 0.8153 + }, + { + "start": 9335.91, + "end": 9338.37, + "probability": 0.6304 + }, + { + "start": 9338.77, + "end": 9341.91, + "probability": 0.7975 + }, + { + "start": 9343.35, + "end": 9344.15, + "probability": 0.3373 + }, + { + "start": 9344.23, + "end": 9345.33, + "probability": 0.8465 + }, + { + "start": 9346.29, + "end": 9347.55, + "probability": 0.7512 + }, + { + "start": 9347.59, + "end": 9349.09, + "probability": 0.9631 + }, + { + "start": 9349.17, + "end": 9350.09, + "probability": 0.8827 + }, + { + "start": 9350.49, + "end": 9352.83, + "probability": 0.9653 + }, + { + "start": 9352.83, + "end": 9356.63, + "probability": 0.996 + }, + { + "start": 9356.83, + "end": 9359.77, + "probability": 0.9937 + }, + { + "start": 9360.61, + "end": 9363.09, + "probability": 0.9601 + }, + { + "start": 9363.81, + "end": 9367.91, + "probability": 0.9176 + }, + { + "start": 9368.09, + "end": 9368.09, + "probability": 0.0062 + }, + { + "start": 9368.09, + "end": 9368.95, + "probability": 0.9623 + }, + { + "start": 9369.59, + "end": 9373.59, + "probability": 0.9511 + }, + { + "start": 9374.17, + "end": 9378.59, + "probability": 0.9976 + }, + { + "start": 9379.11, + "end": 9382.03, + "probability": 0.926 + }, + { + "start": 9382.55, + "end": 9387.69, + "probability": 0.9296 + }, + { + "start": 9388.63, + "end": 9392.21, + "probability": 0.9155 + }, + { + "start": 9392.73, + "end": 9395.45, + "probability": 0.9984 + }, + { + "start": 9395.75, + "end": 9396.74, + "probability": 0.9712 + }, + { + "start": 9397.97, + "end": 9398.49, + "probability": 0.6959 + }, + { + "start": 9398.85, + "end": 9399.87, + "probability": 0.9572 + }, + { + "start": 9400.03, + "end": 9403.79, + "probability": 0.9382 + }, + { + "start": 9406.25, + "end": 9406.55, + "probability": 0.4777 + }, + { + "start": 9406.77, + "end": 9408.25, + "probability": 0.5216 + }, + { + "start": 9408.35, + "end": 9408.89, + "probability": 0.7762 + }, + { + "start": 9408.95, + "end": 9409.85, + "probability": 0.6886 + }, + { + "start": 9412.06, + "end": 9415.55, + "probability": 0.9272 + }, + { + "start": 9415.59, + "end": 9417.21, + "probability": 0.8958 + }, + { + "start": 9417.91, + "end": 9419.29, + "probability": 0.5199 + }, + { + "start": 9420.47, + "end": 9423.37, + "probability": 0.5985 + }, + { + "start": 9423.45, + "end": 9424.79, + "probability": 0.3443 + }, + { + "start": 9424.89, + "end": 9425.99, + "probability": 0.3744 + }, + { + "start": 9426.55, + "end": 9427.25, + "probability": 0.4738 + }, + { + "start": 9427.99, + "end": 9429.45, + "probability": 0.4662 + }, + { + "start": 9434.23, + "end": 9437.83, + "probability": 0.1509 + }, + { + "start": 9438.39, + "end": 9439.93, + "probability": 0.305 + }, + { + "start": 9440.51, + "end": 9440.99, + "probability": 0.0347 + }, + { + "start": 9442.11, + "end": 9445.09, + "probability": 0.5157 + }, + { + "start": 9445.95, + "end": 9447.01, + "probability": 0.6992 + }, + { + "start": 9447.37, + "end": 9450.46, + "probability": 0.559 + }, + { + "start": 9450.81, + "end": 9451.77, + "probability": 0.7483 + }, + { + "start": 9452.19, + "end": 9454.93, + "probability": 0.9438 + }, + { + "start": 9455.31, + "end": 9456.11, + "probability": 0.5897 + }, + { + "start": 9456.85, + "end": 9458.23, + "probability": 0.293 + }, + { + "start": 9459.91, + "end": 9460.27, + "probability": 0.15 + }, + { + "start": 9462.47, + "end": 9469.03, + "probability": 0.0459 + }, + { + "start": 9470.15, + "end": 9470.39, + "probability": 0.2927 + }, + { + "start": 9471.11, + "end": 9471.63, + "probability": 0.0406 + }, + { + "start": 9471.63, + "end": 9474.09, + "probability": 0.7715 + }, + { + "start": 9474.23, + "end": 9477.13, + "probability": 0.7422 + }, + { + "start": 9477.83, + "end": 9480.21, + "probability": 0.8784 + }, + { + "start": 9480.63, + "end": 9481.45, + "probability": 0.4147 + }, + { + "start": 9481.55, + "end": 9483.97, + "probability": 0.71 + }, + { + "start": 9484.57, + "end": 9486.21, + "probability": 0.7169 + }, + { + "start": 9486.95, + "end": 9488.33, + "probability": 0.9626 + }, + { + "start": 9489.05, + "end": 9489.97, + "probability": 0.2989 + }, + { + "start": 9490.45, + "end": 9490.93, + "probability": 0.8583 + }, + { + "start": 9499.29, + "end": 9503.31, + "probability": 0.8568 + }, + { + "start": 9504.25, + "end": 9504.91, + "probability": 0.9471 + }, + { + "start": 9506.83, + "end": 9509.39, + "probability": 0.833 + }, + { + "start": 9510.05, + "end": 9511.27, + "probability": 0.9355 + }, + { + "start": 9512.87, + "end": 9514.17, + "probability": 0.7992 + }, + { + "start": 9515.07, + "end": 9517.05, + "probability": 0.7616 + }, + { + "start": 9517.15, + "end": 9520.37, + "probability": 0.3528 + }, + { + "start": 9521.57, + "end": 9523.63, + "probability": 0.6995 + }, + { + "start": 9523.95, + "end": 9526.23, + "probability": 0.763 + }, + { + "start": 9526.35, + "end": 9528.43, + "probability": 0.783 + }, + { + "start": 9531.77, + "end": 9532.15, + "probability": 0.6262 + }, + { + "start": 9532.75, + "end": 9533.97, + "probability": 0.8387 + }, + { + "start": 9536.01, + "end": 9536.01, + "probability": 0.4194 + }, + { + "start": 9536.01, + "end": 9538.37, + "probability": 0.7811 + }, + { + "start": 9539.53, + "end": 9541.41, + "probability": 0.8409 + }, + { + "start": 9542.43, + "end": 9543.07, + "probability": 0.0318 + }, + { + "start": 9543.07, + "end": 9543.13, + "probability": 0.3161 + }, + { + "start": 9543.39, + "end": 9545.81, + "probability": 0.3071 + }, + { + "start": 9546.93, + "end": 9548.59, + "probability": 0.2728 + }, + { + "start": 9548.59, + "end": 9548.59, + "probability": 0.0777 + }, + { + "start": 9549.21, + "end": 9550.65, + "probability": 0.0071 + }, + { + "start": 9550.65, + "end": 9552.11, + "probability": 0.1225 + }, + { + "start": 9554.63, + "end": 9557.11, + "probability": 0.1125 + }, + { + "start": 9557.55, + "end": 9558.23, + "probability": 0.0903 + }, + { + "start": 9558.31, + "end": 9559.46, + "probability": 0.9301 + }, + { + "start": 9559.65, + "end": 9560.37, + "probability": 0.3198 + }, + { + "start": 9560.73, + "end": 9561.77, + "probability": 0.1261 + }, + { + "start": 9561.95, + "end": 9562.31, + "probability": 0.5054 + }, + { + "start": 9562.31, + "end": 9564.21, + "probability": 0.737 + }, + { + "start": 9566.35, + "end": 9568.53, + "probability": 0.7986 + }, + { + "start": 9568.69, + "end": 9569.76, + "probability": 0.4895 + }, + { + "start": 9569.93, + "end": 9571.33, + "probability": 0.6924 + }, + { + "start": 9571.33, + "end": 9573.25, + "probability": 0.8105 + }, + { + "start": 9573.25, + "end": 9574.37, + "probability": 0.429 + }, + { + "start": 9574.43, + "end": 9575.05, + "probability": 0.8966 + }, + { + "start": 9577.8, + "end": 9584.25, + "probability": 0.8693 + }, + { + "start": 9585.05, + "end": 9586.69, + "probability": 0.5292 + }, + { + "start": 9587.13, + "end": 9587.95, + "probability": 0.841 + }, + { + "start": 9588.05, + "end": 9589.93, + "probability": 0.703 + }, + { + "start": 9590.63, + "end": 9595.37, + "probability": 0.9943 + }, + { + "start": 9595.51, + "end": 9596.51, + "probability": 0.752 + }, + { + "start": 9596.99, + "end": 9597.99, + "probability": 0.9329 + }, + { + "start": 9598.05, + "end": 9600.17, + "probability": 0.9001 + }, + { + "start": 9600.21, + "end": 9601.33, + "probability": 0.9918 + }, + { + "start": 9601.41, + "end": 9602.41, + "probability": 0.9809 + }, + { + "start": 9603.99, + "end": 9606.37, + "probability": 0.7268 + }, + { + "start": 9607.31, + "end": 9609.97, + "probability": 0.9263 + }, + { + "start": 9610.07, + "end": 9611.01, + "probability": 0.7359 + }, + { + "start": 9611.47, + "end": 9616.79, + "probability": 0.9897 + }, + { + "start": 9617.63, + "end": 9618.49, + "probability": 0.9905 + }, + { + "start": 9619.87, + "end": 9622.29, + "probability": 0.9285 + }, + { + "start": 9622.49, + "end": 9623.05, + "probability": 0.91 + }, + { + "start": 9623.85, + "end": 9626.71, + "probability": 0.967 + }, + { + "start": 9627.83, + "end": 9631.03, + "probability": 0.9929 + }, + { + "start": 9631.03, + "end": 9634.77, + "probability": 0.9978 + }, + { + "start": 9635.57, + "end": 9637.77, + "probability": 0.9791 + }, + { + "start": 9637.97, + "end": 9643.43, + "probability": 0.9858 + }, + { + "start": 9644.99, + "end": 9650.33, + "probability": 0.9983 + }, + { + "start": 9650.65, + "end": 9654.45, + "probability": 0.9987 + }, + { + "start": 9655.17, + "end": 9660.19, + "probability": 0.9941 + }, + { + "start": 9661.27, + "end": 9664.59, + "probability": 0.9991 + }, + { + "start": 9664.67, + "end": 9668.19, + "probability": 0.9281 + }, + { + "start": 9669.85, + "end": 9674.87, + "probability": 0.9919 + }, + { + "start": 9675.77, + "end": 9681.61, + "probability": 0.999 + }, + { + "start": 9682.59, + "end": 9685.37, + "probability": 0.997 + }, + { + "start": 9685.45, + "end": 9689.05, + "probability": 0.9993 + }, + { + "start": 9690.11, + "end": 9692.99, + "probability": 0.9928 + }, + { + "start": 9693.59, + "end": 9695.27, + "probability": 0.9787 + }, + { + "start": 9697.17, + "end": 9698.57, + "probability": 0.6839 + }, + { + "start": 9699.09, + "end": 9701.53, + "probability": 0.9858 + }, + { + "start": 9703.03, + "end": 9703.17, + "probability": 0.4725 + }, + { + "start": 9703.25, + "end": 9704.25, + "probability": 0.9003 + }, + { + "start": 9704.37, + "end": 9706.53, + "probability": 0.8828 + }, + { + "start": 9707.75, + "end": 9711.21, + "probability": 0.9461 + }, + { + "start": 9711.21, + "end": 9715.11, + "probability": 0.998 + }, + { + "start": 9715.87, + "end": 9718.61, + "probability": 0.9968 + }, + { + "start": 9718.61, + "end": 9723.01, + "probability": 0.9985 + }, + { + "start": 9723.95, + "end": 9725.39, + "probability": 0.9125 + }, + { + "start": 9726.75, + "end": 9728.33, + "probability": 0.9912 + }, + { + "start": 9731.07, + "end": 9732.29, + "probability": 0.1509 + }, + { + "start": 9732.87, + "end": 9737.65, + "probability": 0.9585 + }, + { + "start": 9738.81, + "end": 9743.89, + "probability": 0.9906 + }, + { + "start": 9744.41, + "end": 9748.43, + "probability": 0.998 + }, + { + "start": 9749.41, + "end": 9755.47, + "probability": 0.9737 + }, + { + "start": 9756.09, + "end": 9757.17, + "probability": 0.9757 + }, + { + "start": 9758.43, + "end": 9759.57, + "probability": 0.8607 + }, + { + "start": 9759.57, + "end": 9760.41, + "probability": 0.5968 + }, + { + "start": 9760.89, + "end": 9766.27, + "probability": 0.9878 + }, + { + "start": 9766.41, + "end": 9771.61, + "probability": 0.9989 + }, + { + "start": 9773.33, + "end": 9774.23, + "probability": 0.5274 + }, + { + "start": 9774.47, + "end": 9776.34, + "probability": 0.9833 + }, + { + "start": 9776.93, + "end": 9781.79, + "probability": 0.9943 + }, + { + "start": 9781.79, + "end": 9787.11, + "probability": 0.9997 + }, + { + "start": 9787.81, + "end": 9790.73, + "probability": 0.8933 + }, + { + "start": 9792.85, + "end": 9795.79, + "probability": 0.9297 + }, + { + "start": 9796.41, + "end": 9799.05, + "probability": 0.5627 + }, + { + "start": 9800.25, + "end": 9805.21, + "probability": 0.8447 + }, + { + "start": 9806.09, + "end": 9806.63, + "probability": 0.4981 + }, + { + "start": 9807.21, + "end": 9808.62, + "probability": 0.9105 + }, + { + "start": 9809.59, + "end": 9810.43, + "probability": 0.8551 + }, + { + "start": 9811.03, + "end": 9812.53, + "probability": 0.9875 + }, + { + "start": 9813.01, + "end": 9816.69, + "probability": 0.9969 + }, + { + "start": 9817.45, + "end": 9818.21, + "probability": 0.9327 + }, + { + "start": 9819.69, + "end": 9822.87, + "probability": 0.9919 + }, + { + "start": 9823.73, + "end": 9824.51, + "probability": 0.6655 + }, + { + "start": 9825.33, + "end": 9826.55, + "probability": 0.7215 + }, + { + "start": 9827.57, + "end": 9828.31, + "probability": 0.8117 + }, + { + "start": 9829.37, + "end": 9830.79, + "probability": 0.9731 + }, + { + "start": 9831.31, + "end": 9832.79, + "probability": 0.8617 + }, + { + "start": 9833.61, + "end": 9838.91, + "probability": 0.9974 + }, + { + "start": 9839.03, + "end": 9840.39, + "probability": 0.8224 + }, + { + "start": 9841.61, + "end": 9843.75, + "probability": 0.9569 + }, + { + "start": 9846.03, + "end": 9846.57, + "probability": 0.6926 + }, + { + "start": 9846.63, + "end": 9849.65, + "probability": 0.9806 + }, + { + "start": 9850.23, + "end": 9852.13, + "probability": 0.9338 + }, + { + "start": 9852.43, + "end": 9854.47, + "probability": 0.7168 + }, + { + "start": 9854.53, + "end": 9856.69, + "probability": 0.9781 + }, + { + "start": 9857.51, + "end": 9860.63, + "probability": 0.9907 + }, + { + "start": 9860.81, + "end": 9861.83, + "probability": 0.9561 + }, + { + "start": 9862.33, + "end": 9865.57, + "probability": 0.9268 + }, + { + "start": 9865.57, + "end": 9867.93, + "probability": 0.9866 + }, + { + "start": 9868.91, + "end": 9870.17, + "probability": 0.9649 + }, + { + "start": 9871.11, + "end": 9874.25, + "probability": 0.8992 + }, + { + "start": 9874.47, + "end": 9875.91, + "probability": 0.7772 + }, + { + "start": 9876.61, + "end": 9877.55, + "probability": 0.96 + }, + { + "start": 9878.89, + "end": 9884.15, + "probability": 0.9817 + }, + { + "start": 9884.99, + "end": 9889.21, + "probability": 0.9932 + }, + { + "start": 9889.21, + "end": 9893.15, + "probability": 0.9993 + }, + { + "start": 9894.29, + "end": 9896.09, + "probability": 0.948 + }, + { + "start": 9897.69, + "end": 9898.69, + "probability": 0.8512 + }, + { + "start": 9899.41, + "end": 9902.23, + "probability": 0.9986 + }, + { + "start": 9902.23, + "end": 9907.01, + "probability": 0.9512 + }, + { + "start": 9908.41, + "end": 9909.37, + "probability": 0.8332 + }, + { + "start": 9910.35, + "end": 9915.93, + "probability": 0.9989 + }, + { + "start": 9917.11, + "end": 9917.89, + "probability": 0.9332 + }, + { + "start": 9918.77, + "end": 9921.61, + "probability": 0.999 + }, + { + "start": 9921.61, + "end": 9926.55, + "probability": 0.999 + }, + { + "start": 9927.21, + "end": 9930.87, + "probability": 0.9663 + }, + { + "start": 9931.51, + "end": 9936.31, + "probability": 0.9994 + }, + { + "start": 9937.03, + "end": 9940.47, + "probability": 0.9842 + }, + { + "start": 9941.33, + "end": 9944.73, + "probability": 0.9973 + }, + { + "start": 9945.65, + "end": 9946.83, + "probability": 0.9753 + }, + { + "start": 9948.45, + "end": 9950.6, + "probability": 0.6138 + }, + { + "start": 9950.85, + "end": 9951.19, + "probability": 0.7931 + }, + { + "start": 9951.29, + "end": 9956.41, + "probability": 0.9921 + }, + { + "start": 9957.17, + "end": 9957.91, + "probability": 0.6582 + }, + { + "start": 9958.45, + "end": 9958.95, + "probability": 0.6388 + }, + { + "start": 9959.67, + "end": 9963.03, + "probability": 0.9974 + }, + { + "start": 9963.23, + "end": 9965.25, + "probability": 0.9658 + }, + { + "start": 9965.75, + "end": 9968.25, + "probability": 0.953 + }, + { + "start": 9969.35, + "end": 9971.89, + "probability": 0.8865 + }, + { + "start": 9972.67, + "end": 9974.59, + "probability": 0.8916 + }, + { + "start": 9975.37, + "end": 9977.18, + "probability": 0.9907 + }, + { + "start": 9977.63, + "end": 9980.51, + "probability": 0.9438 + }, + { + "start": 9981.13, + "end": 9983.91, + "probability": 0.9937 + }, + { + "start": 9984.63, + "end": 9987.81, + "probability": 0.9109 + }, + { + "start": 9988.87, + "end": 9991.63, + "probability": 0.9504 + }, + { + "start": 9992.25, + "end": 9992.91, + "probability": 0.9308 + }, + { + "start": 9993.01, + "end": 9997.75, + "probability": 0.9875 + }, + { + "start": 9998.33, + "end": 10000.96, + "probability": 0.9946 + }, + { + "start": 10001.99, + "end": 10004.27, + "probability": 0.6438 + }, + { + "start": 10004.73, + "end": 10006.38, + "probability": 0.999 + }, + { + "start": 10007.03, + "end": 10009.69, + "probability": 0.9993 + }, + { + "start": 10010.31, + "end": 10011.43, + "probability": 0.86 + }, + { + "start": 10012.83, + "end": 10017.75, + "probability": 0.6968 + }, + { + "start": 10017.87, + "end": 10018.17, + "probability": 0.9233 + }, + { + "start": 10018.27, + "end": 10019.95, + "probability": 0.9924 + }, + { + "start": 10020.69, + "end": 10024.21, + "probability": 0.9343 + }, + { + "start": 10024.73, + "end": 10027.11, + "probability": 0.9973 + }, + { + "start": 10028.05, + "end": 10028.85, + "probability": 0.9415 + }, + { + "start": 10028.97, + "end": 10030.15, + "probability": 0.6717 + }, + { + "start": 10030.27, + "end": 10032.29, + "probability": 0.9688 + }, + { + "start": 10032.85, + "end": 10035.55, + "probability": 0.9315 + }, + { + "start": 10036.45, + "end": 10040.77, + "probability": 0.9731 + }, + { + "start": 10040.77, + "end": 10045.15, + "probability": 0.9985 + }, + { + "start": 10045.27, + "end": 10046.07, + "probability": 0.5124 + }, + { + "start": 10046.61, + "end": 10047.07, + "probability": 0.4352 + }, + { + "start": 10047.61, + "end": 10048.81, + "probability": 0.6593 + }, + { + "start": 10049.29, + "end": 10052.87, + "probability": 0.9893 + }, + { + "start": 10053.45, + "end": 10057.65, + "probability": 0.997 + }, + { + "start": 10058.35, + "end": 10060.77, + "probability": 0.9961 + }, + { + "start": 10060.77, + "end": 10065.33, + "probability": 0.9992 + }, + { + "start": 10065.79, + "end": 10068.85, + "probability": 0.991 + }, + { + "start": 10068.85, + "end": 10072.89, + "probability": 0.9984 + }, + { + "start": 10073.01, + "end": 10073.71, + "probability": 0.648 + }, + { + "start": 10073.85, + "end": 10075.69, + "probability": 0.9557 + }, + { + "start": 10076.19, + "end": 10078.35, + "probability": 0.8884 + }, + { + "start": 10079.41, + "end": 10080.29, + "probability": 0.8188 + }, + { + "start": 10081.63, + "end": 10083.47, + "probability": 0.9989 + }, + { + "start": 10083.61, + "end": 10090.63, + "probability": 0.9843 + }, + { + "start": 10090.89, + "end": 10092.55, + "probability": 0.7958 + }, + { + "start": 10094.2, + "end": 10095.21, + "probability": 0.0134 + }, + { + "start": 10095.21, + "end": 10095.21, + "probability": 0.1554 + }, + { + "start": 10095.21, + "end": 10097.97, + "probability": 0.0788 + }, + { + "start": 10108.15, + "end": 10112.83, + "probability": 0.1909 + }, + { + "start": 10113.73, + "end": 10114.23, + "probability": 0.1139 + }, + { + "start": 10114.63, + "end": 10116.57, + "probability": 0.1819 + }, + { + "start": 10116.63, + "end": 10116.75, + "probability": 0.0503 + }, + { + "start": 10119.27, + "end": 10120.27, + "probability": 0.0205 + }, + { + "start": 10120.27, + "end": 10120.37, + "probability": 0.068 + }, + { + "start": 10120.37, + "end": 10122.81, + "probability": 0.2718 + }, + { + "start": 10125.73, + "end": 10127.68, + "probability": 0.062 + }, + { + "start": 10128.61, + "end": 10129.87, + "probability": 0.2754 + }, + { + "start": 10131.71, + "end": 10135.87, + "probability": 0.1867 + }, + { + "start": 10142.83, + "end": 10143.69, + "probability": 0.031 + }, + { + "start": 10147.15, + "end": 10149.13, + "probability": 0.003 + }, + { + "start": 10149.13, + "end": 10150.31, + "probability": 0.18 + }, + { + "start": 10150.35, + "end": 10153.59, + "probability": 0.4075 + }, + { + "start": 10153.59, + "end": 10155.03, + "probability": 0.0469 + }, + { + "start": 10155.43, + "end": 10155.59, + "probability": 0.0648 + }, + { + "start": 10155.59, + "end": 10155.59, + "probability": 0.0297 + }, + { + "start": 10155.59, + "end": 10157.97, + "probability": 0.0432 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.0, + "end": 10158.0, + "probability": 0.0 + }, + { + "start": 10158.28, + "end": 10158.86, + "probability": 0.018 + }, + { + "start": 10158.86, + "end": 10162.14, + "probability": 0.9894 + }, + { + "start": 10162.58, + "end": 10166.07, + "probability": 0.9956 + }, + { + "start": 10166.84, + "end": 10169.48, + "probability": 0.8538 + }, + { + "start": 10169.66, + "end": 10169.66, + "probability": 0.6957 + }, + { + "start": 10169.66, + "end": 10171.48, + "probability": 0.9655 + }, + { + "start": 10171.54, + "end": 10172.96, + "probability": 0.9507 + }, + { + "start": 10173.3, + "end": 10174.56, + "probability": 0.9793 + }, + { + "start": 10175.06, + "end": 10176.78, + "probability": 0.9056 + }, + { + "start": 10177.37, + "end": 10180.74, + "probability": 0.6697 + }, + { + "start": 10181.3, + "end": 10184.28, + "probability": 0.6987 + }, + { + "start": 10184.32, + "end": 10185.46, + "probability": 0.8616 + }, + { + "start": 10193.46, + "end": 10193.82, + "probability": 0.6061 + }, + { + "start": 10193.9, + "end": 10194.92, + "probability": 0.7542 + }, + { + "start": 10195.14, + "end": 10195.9, + "probability": 0.624 + }, + { + "start": 10196.14, + "end": 10196.32, + "probability": 0.4292 + }, + { + "start": 10196.4, + "end": 10197.2, + "probability": 0.6146 + }, + { + "start": 10197.54, + "end": 10203.08, + "probability": 0.8181 + }, + { + "start": 10204.02, + "end": 10204.48, + "probability": 0.0199 + }, + { + "start": 10205.44, + "end": 10206.26, + "probability": 0.9863 + }, + { + "start": 10206.88, + "end": 10208.94, + "probability": 0.9981 + }, + { + "start": 10209.52, + "end": 10212.6, + "probability": 0.9965 + }, + { + "start": 10213.2, + "end": 10214.25, + "probability": 0.9785 + }, + { + "start": 10215.14, + "end": 10217.75, + "probability": 0.9927 + }, + { + "start": 10217.9, + "end": 10218.54, + "probability": 0.4648 + }, + { + "start": 10219.6, + "end": 10220.96, + "probability": 0.552 + }, + { + "start": 10221.02, + "end": 10221.54, + "probability": 0.9985 + }, + { + "start": 10222.14, + "end": 10223.4, + "probability": 0.8655 + }, + { + "start": 10223.96, + "end": 10224.44, + "probability": 0.8965 + }, + { + "start": 10225.18, + "end": 10225.96, + "probability": 0.9527 + }, + { + "start": 10226.69, + "end": 10229.94, + "probability": 0.9861 + }, + { + "start": 10230.0, + "end": 10231.95, + "probability": 0.9852 + }, + { + "start": 10232.5, + "end": 10233.66, + "probability": 0.7598 + }, + { + "start": 10234.44, + "end": 10235.07, + "probability": 0.5009 + }, + { + "start": 10236.02, + "end": 10240.59, + "probability": 0.9841 + }, + { + "start": 10241.92, + "end": 10245.58, + "probability": 0.9351 + }, + { + "start": 10247.46, + "end": 10252.08, + "probability": 0.9359 + }, + { + "start": 10252.64, + "end": 10254.34, + "probability": 0.9671 + }, + { + "start": 10255.48, + "end": 10257.54, + "probability": 0.9701 + }, + { + "start": 10258.34, + "end": 10262.1, + "probability": 0.9746 + }, + { + "start": 10262.28, + "end": 10265.88, + "probability": 0.9324 + }, + { + "start": 10266.62, + "end": 10270.37, + "probability": 0.9958 + }, + { + "start": 10270.68, + "end": 10272.34, + "probability": 0.9836 + }, + { + "start": 10272.82, + "end": 10275.44, + "probability": 0.9979 + }, + { + "start": 10275.9, + "end": 10276.68, + "probability": 0.8943 + }, + { + "start": 10276.74, + "end": 10279.0, + "probability": 0.927 + }, + { + "start": 10279.94, + "end": 10281.8, + "probability": 0.9754 + }, + { + "start": 10282.32, + "end": 10283.8, + "probability": 0.9855 + }, + { + "start": 10283.86, + "end": 10288.04, + "probability": 0.9072 + }, + { + "start": 10289.18, + "end": 10293.04, + "probability": 0.9839 + }, + { + "start": 10293.04, + "end": 10297.26, + "probability": 0.9976 + }, + { + "start": 10297.76, + "end": 10299.06, + "probability": 0.9613 + }, + { + "start": 10299.74, + "end": 10304.0, + "probability": 0.9713 + }, + { + "start": 10304.7, + "end": 10305.9, + "probability": 0.9944 + }, + { + "start": 10306.02, + "end": 10306.48, + "probability": 0.6892 + }, + { + "start": 10306.92, + "end": 10307.92, + "probability": 0.8757 + }, + { + "start": 10308.22, + "end": 10308.94, + "probability": 0.965 + }, + { + "start": 10309.52, + "end": 10310.02, + "probability": 0.7327 + }, + { + "start": 10310.1, + "end": 10310.52, + "probability": 0.9507 + }, + { + "start": 10310.66, + "end": 10311.32, + "probability": 0.8441 + }, + { + "start": 10311.92, + "end": 10313.4, + "probability": 0.9632 + }, + { + "start": 10314.0, + "end": 10314.5, + "probability": 0.9713 + }, + { + "start": 10314.84, + "end": 10315.36, + "probability": 0.9496 + }, + { + "start": 10315.82, + "end": 10316.34, + "probability": 0.9716 + }, + { + "start": 10316.36, + "end": 10317.0, + "probability": 0.9529 + }, + { + "start": 10317.48, + "end": 10317.8, + "probability": 0.9861 + }, + { + "start": 10317.9, + "end": 10318.34, + "probability": 0.834 + }, + { + "start": 10318.42, + "end": 10319.32, + "probability": 0.989 + }, + { + "start": 10319.46, + "end": 10320.06, + "probability": 0.6056 + }, + { + "start": 10321.16, + "end": 10322.78, + "probability": 0.9934 + }, + { + "start": 10324.78, + "end": 10329.16, + "probability": 0.9984 + }, + { + "start": 10329.73, + "end": 10329.94, + "probability": 0.0096 + }, + { + "start": 10329.94, + "end": 10329.94, + "probability": 0.0928 + }, + { + "start": 10329.94, + "end": 10329.94, + "probability": 0.2542 + }, + { + "start": 10329.94, + "end": 10329.94, + "probability": 0.1072 + }, + { + "start": 10329.94, + "end": 10336.26, + "probability": 0.9092 + }, + { + "start": 10337.0, + "end": 10338.42, + "probability": 0.7576 + }, + { + "start": 10338.56, + "end": 10339.26, + "probability": 0.9976 + }, + { + "start": 10340.1, + "end": 10340.68, + "probability": 0.6449 + }, + { + "start": 10340.84, + "end": 10341.08, + "probability": 0.5399 + }, + { + "start": 10341.52, + "end": 10342.16, + "probability": 0.9976 + }, + { + "start": 10343.2, + "end": 10344.08, + "probability": 0.9914 + }, + { + "start": 10344.42, + "end": 10347.82, + "probability": 0.9537 + }, + { + "start": 10348.18, + "end": 10350.44, + "probability": 0.9894 + }, + { + "start": 10351.3, + "end": 10353.84, + "probability": 0.8948 + }, + { + "start": 10354.92, + "end": 10355.9, + "probability": 0.7679 + }, + { + "start": 10357.56, + "end": 10360.6, + "probability": 0.9896 + }, + { + "start": 10361.58, + "end": 10361.58, + "probability": 0.1421 + }, + { + "start": 10361.6, + "end": 10362.3, + "probability": 0.9028 + }, + { + "start": 10363.26, + "end": 10366.32, + "probability": 0.998 + }, + { + "start": 10367.2, + "end": 10369.8, + "probability": 0.8771 + }, + { + "start": 10370.36, + "end": 10373.8, + "probability": 0.7961 + }, + { + "start": 10373.8, + "end": 10377.76, + "probability": 0.9758 + }, + { + "start": 10378.1, + "end": 10379.38, + "probability": 0.7614 + }, + { + "start": 10379.98, + "end": 10382.84, + "probability": 0.937 + }, + { + "start": 10383.44, + "end": 10384.0, + "probability": 0.5169 + }, + { + "start": 10384.3, + "end": 10384.3, + "probability": 0.2022 + }, + { + "start": 10384.3, + "end": 10385.4, + "probability": 0.9184 + }, + { + "start": 10386.3, + "end": 10387.74, + "probability": 0.7646 + }, + { + "start": 10388.44, + "end": 10390.52, + "probability": 0.9889 + }, + { + "start": 10391.08, + "end": 10392.48, + "probability": 0.9679 + }, + { + "start": 10392.54, + "end": 10393.62, + "probability": 0.9135 + }, + { + "start": 10393.68, + "end": 10395.56, + "probability": 0.8271 + }, + { + "start": 10396.26, + "end": 10397.26, + "probability": 0.519 + }, + { + "start": 10397.9, + "end": 10398.34, + "probability": 0.9739 + }, + { + "start": 10398.58, + "end": 10399.19, + "probability": 0.8466 + }, + { + "start": 10400.52, + "end": 10402.34, + "probability": 0.9543 + }, + { + "start": 10402.44, + "end": 10406.36, + "probability": 0.8942 + }, + { + "start": 10406.5, + "end": 10406.52, + "probability": 0.6874 + }, + { + "start": 10406.84, + "end": 10408.62, + "probability": 0.9861 + }, + { + "start": 10408.62, + "end": 10411.62, + "probability": 0.9614 + }, + { + "start": 10412.0, + "end": 10414.14, + "probability": 0.9536 + }, + { + "start": 10415.02, + "end": 10416.84, + "probability": 0.789 + }, + { + "start": 10416.92, + "end": 10417.4, + "probability": 0.9452 + }, + { + "start": 10417.5, + "end": 10417.84, + "probability": 0.8798 + }, + { + "start": 10418.14, + "end": 10419.08, + "probability": 0.6489 + }, + { + "start": 10419.08, + "end": 10419.08, + "probability": 0.3607 + }, + { + "start": 10419.08, + "end": 10420.58, + "probability": 0.5642 + }, + { + "start": 10420.58, + "end": 10422.3, + "probability": 0.535 + }, + { + "start": 10422.68, + "end": 10424.0, + "probability": 0.8566 + }, + { + "start": 10424.48, + "end": 10426.1, + "probability": 0.4949 + }, + { + "start": 10426.3, + "end": 10426.68, + "probability": 0.7291 + }, + { + "start": 10426.86, + "end": 10429.4, + "probability": 0.802 + }, + { + "start": 10429.98, + "end": 10430.48, + "probability": 0.8299 + }, + { + "start": 10431.46, + "end": 10433.7, + "probability": 0.9796 + }, + { + "start": 10433.78, + "end": 10434.24, + "probability": 0.7914 + }, + { + "start": 10435.5, + "end": 10438.54, + "probability": 0.7962 + }, + { + "start": 10438.66, + "end": 10438.94, + "probability": 0.676 + }, + { + "start": 10439.8, + "end": 10443.46, + "probability": 0.6667 + }, + { + "start": 10453.44, + "end": 10453.44, + "probability": 0.1874 + }, + { + "start": 10453.44, + "end": 10453.44, + "probability": 0.1906 + }, + { + "start": 10453.44, + "end": 10453.44, + "probability": 0.0188 + }, + { + "start": 10453.44, + "end": 10453.44, + "probability": 0.0179 + }, + { + "start": 10453.44, + "end": 10453.44, + "probability": 0.0799 + }, + { + "start": 10453.44, + "end": 10453.44, + "probability": 0.0608 + }, + { + "start": 10469.64, + "end": 10470.34, + "probability": 0.3101 + }, + { + "start": 10470.44, + "end": 10471.46, + "probability": 0.4524 + }, + { + "start": 10471.48, + "end": 10474.12, + "probability": 0.8304 + }, + { + "start": 10474.72, + "end": 10476.38, + "probability": 0.9755 + }, + { + "start": 10476.52, + "end": 10482.56, + "probability": 0.9866 + }, + { + "start": 10484.42, + "end": 10485.68, + "probability": 0.9756 + }, + { + "start": 10485.7, + "end": 10488.54, + "probability": 0.892 + }, + { + "start": 10488.66, + "end": 10490.14, + "probability": 0.5231 + }, + { + "start": 10490.2, + "end": 10491.22, + "probability": 0.8344 + }, + { + "start": 10491.68, + "end": 10492.43, + "probability": 0.9935 + }, + { + "start": 10492.55, + "end": 10494.67, + "probability": 0.9966 + }, + { + "start": 10497.49, + "end": 10500.09, + "probability": 0.9858 + }, + { + "start": 10500.85, + "end": 10500.99, + "probability": 0.6666 + }, + { + "start": 10501.87, + "end": 10503.39, + "probability": 0.8298 + }, + { + "start": 10504.29, + "end": 10504.81, + "probability": 0.8916 + }, + { + "start": 10504.95, + "end": 10505.67, + "probability": 0.37 + }, + { + "start": 10506.91, + "end": 10508.14, + "probability": 0.9688 + }, + { + "start": 10508.39, + "end": 10510.81, + "probability": 0.9729 + }, + { + "start": 10511.63, + "end": 10512.85, + "probability": 0.9137 + }, + { + "start": 10513.77, + "end": 10513.83, + "probability": 0.0187 + }, + { + "start": 10513.83, + "end": 10518.89, + "probability": 0.9293 + }, + { + "start": 10519.15, + "end": 10522.93, + "probability": 0.9712 + }, + { + "start": 10523.35, + "end": 10527.21, + "probability": 0.7716 + }, + { + "start": 10527.77, + "end": 10530.15, + "probability": 0.9967 + }, + { + "start": 10530.15, + "end": 10534.29, + "probability": 0.9937 + }, + { + "start": 10534.93, + "end": 10537.85, + "probability": 0.8582 + }, + { + "start": 10538.45, + "end": 10543.09, + "probability": 0.909 + }, + { + "start": 10543.89, + "end": 10548.65, + "probability": 0.9959 + }, + { + "start": 10550.04, + "end": 10553.49, + "probability": 0.0359 + }, + { + "start": 10553.49, + "end": 10554.73, + "probability": 0.0771 + }, + { + "start": 10554.73, + "end": 10555.31, + "probability": 0.2904 + }, + { + "start": 10555.33, + "end": 10556.05, + "probability": 0.7135 + }, + { + "start": 10556.31, + "end": 10558.86, + "probability": 0.8433 + }, + { + "start": 10562.83, + "end": 10563.35, + "probability": 0.0863 + }, + { + "start": 10563.51, + "end": 10563.73, + "probability": 0.0831 + }, + { + "start": 10563.73, + "end": 10563.73, + "probability": 0.0337 + }, + { + "start": 10564.65, + "end": 10564.93, + "probability": 0.1391 + }, + { + "start": 10569.17, + "end": 10570.57, + "probability": 0.184 + }, + { + "start": 10570.57, + "end": 10570.85, + "probability": 0.0218 + }, + { + "start": 10572.09, + "end": 10573.48, + "probability": 0.0779 + }, + { + "start": 10578.73, + "end": 10581.61, + "probability": 0.6415 + }, + { + "start": 10582.06, + "end": 10586.27, + "probability": 0.057 + }, + { + "start": 10586.37, + "end": 10586.37, + "probability": 0.0929 + }, + { + "start": 10586.37, + "end": 10587.03, + "probability": 0.1559 + }, + { + "start": 10588.27, + "end": 10589.87, + "probability": 0.3051 + }, + { + "start": 10595.47, + "end": 10597.45, + "probability": 0.0328 + }, + { + "start": 10597.45, + "end": 10597.45, + "probability": 0.2311 + }, + { + "start": 10597.45, + "end": 10597.9, + "probability": 0.2892 + }, + { + "start": 10598.99, + "end": 10600.21, + "probability": 0.1566 + }, + { + "start": 10601.33, + "end": 10601.45, + "probability": 0.1579 + }, + { + "start": 10601.45, + "end": 10602.27, + "probability": 0.0093 + }, + { + "start": 10607.31, + "end": 10609.03, + "probability": 0.6849 + }, + { + "start": 10610.89, + "end": 10613.75, + "probability": 0.0358 + }, + { + "start": 10613.75, + "end": 10614.41, + "probability": 0.0891 + }, + { + "start": 10614.41, + "end": 10615.13, + "probability": 0.1488 + }, + { + "start": 10615.13, + "end": 10615.57, + "probability": 0.0286 + }, + { + "start": 10615.57, + "end": 10616.17, + "probability": 0.2998 + }, + { + "start": 10616.17, + "end": 10616.97, + "probability": 0.06 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.0, + "end": 10617.0, + "probability": 0.0 + }, + { + "start": 10617.22, + "end": 10617.22, + "probability": 0.0257 + }, + { + "start": 10617.22, + "end": 10618.28, + "probability": 0.385 + }, + { + "start": 10618.28, + "end": 10622.9, + "probability": 0.7899 + }, + { + "start": 10623.86, + "end": 10625.25, + "probability": 0.975 + }, + { + "start": 10626.48, + "end": 10627.88, + "probability": 0.9954 + }, + { + "start": 10629.54, + "end": 10635.7, + "probability": 0.8733 + }, + { + "start": 10636.34, + "end": 10642.04, + "probability": 0.7733 + }, + { + "start": 10642.5, + "end": 10643.98, + "probability": 0.7041 + }, + { + "start": 10644.62, + "end": 10645.88, + "probability": 0.9875 + }, + { + "start": 10646.0, + "end": 10647.2, + "probability": 0.8357 + }, + { + "start": 10647.44, + "end": 10647.76, + "probability": 0.3019 + }, + { + "start": 10647.76, + "end": 10650.08, + "probability": 0.7032 + }, + { + "start": 10650.36, + "end": 10653.78, + "probability": 0.8835 + }, + { + "start": 10654.2, + "end": 10654.22, + "probability": 0.0543 + }, + { + "start": 10654.76, + "end": 10655.08, + "probability": 0.126 + }, + { + "start": 10655.42, + "end": 10655.42, + "probability": 0.1518 + }, + { + "start": 10655.42, + "end": 10657.6, + "probability": 0.5637 + }, + { + "start": 10658.3, + "end": 10659.98, + "probability": 0.7284 + }, + { + "start": 10661.86, + "end": 10662.68, + "probability": 0.1565 + }, + { + "start": 10662.96, + "end": 10665.44, + "probability": 0.2405 + }, + { + "start": 10666.68, + "end": 10666.9, + "probability": 0.2708 + }, + { + "start": 10668.02, + "end": 10668.95, + "probability": 0.1479 + }, + { + "start": 10669.82, + "end": 10671.6, + "probability": 0.1961 + }, + { + "start": 10671.68, + "end": 10673.64, + "probability": 0.12 + }, + { + "start": 10673.64, + "end": 10673.96, + "probability": 0.2445 + }, + { + "start": 10674.48, + "end": 10678.76, + "probability": 0.3364 + }, + { + "start": 10679.44, + "end": 10683.64, + "probability": 0.5005 + }, + { + "start": 10687.82, + "end": 10690.0, + "probability": 0.0432 + }, + { + "start": 10690.0, + "end": 10691.14, + "probability": 0.2235 + }, + { + "start": 10691.14, + "end": 10692.02, + "probability": 0.0274 + }, + { + "start": 10693.96, + "end": 10695.9, + "probability": 0.0609 + }, + { + "start": 10700.02, + "end": 10700.32, + "probability": 0.0094 + }, + { + "start": 10700.36, + "end": 10704.5, + "probability": 0.1275 + }, + { + "start": 10705.65, + "end": 10706.14, + "probability": 0.1078 + }, + { + "start": 10706.16, + "end": 10707.14, + "probability": 0.0386 + }, + { + "start": 10707.34, + "end": 10708.6, + "probability": 0.0318 + }, + { + "start": 10714.12, + "end": 10714.38, + "probability": 0.2664 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.0, + "end": 10740.0, + "probability": 0.0 + }, + { + "start": 10740.8, + "end": 10741.17, + "probability": 0.164 + }, + { + "start": 10742.56, + "end": 10745.08, + "probability": 0.9261 + }, + { + "start": 10745.14, + "end": 10746.22, + "probability": 0.7663 + }, + { + "start": 10747.32, + "end": 10754.22, + "probability": 0.9478 + }, + { + "start": 10754.86, + "end": 10757.46, + "probability": 0.9435 + }, + { + "start": 10757.98, + "end": 10759.36, + "probability": 0.7677 + }, + { + "start": 10759.84, + "end": 10764.1, + "probability": 0.9971 + }, + { + "start": 10764.82, + "end": 10766.3, + "probability": 0.9102 + }, + { + "start": 10767.93, + "end": 10769.78, + "probability": 0.5131 + }, + { + "start": 10769.86, + "end": 10770.16, + "probability": 0.2862 + }, + { + "start": 10770.16, + "end": 10771.2, + "probability": 0.6158 + }, + { + "start": 10771.3, + "end": 10777.52, + "probability": 0.9783 + }, + { + "start": 10778.96, + "end": 10781.4, + "probability": 0.9719 + }, + { + "start": 10782.0, + "end": 10782.94, + "probability": 0.6833 + }, + { + "start": 10784.34, + "end": 10784.78, + "probability": 0.4822 + }, + { + "start": 10784.82, + "end": 10788.24, + "probability": 0.9672 + }, + { + "start": 10788.68, + "end": 10789.84, + "probability": 0.9663 + }, + { + "start": 10790.42, + "end": 10791.38, + "probability": 0.9111 + }, + { + "start": 10792.52, + "end": 10795.38, + "probability": 0.8734 + }, + { + "start": 10795.9, + "end": 10796.7, + "probability": 0.9452 + }, + { + "start": 10797.46, + "end": 10799.06, + "probability": 0.894 + }, + { + "start": 10799.66, + "end": 10804.53, + "probability": 0.9932 + }, + { + "start": 10805.86, + "end": 10806.48, + "probability": 0.7054 + }, + { + "start": 10807.46, + "end": 10812.1, + "probability": 0.9967 + }, + { + "start": 10812.1, + "end": 10820.3, + "probability": 0.9812 + }, + { + "start": 10821.44, + "end": 10823.92, + "probability": 0.7019 + }, + { + "start": 10824.78, + "end": 10824.98, + "probability": 0.598 + }, + { + "start": 10827.16, + "end": 10829.46, + "probability": 0.9977 + }, + { + "start": 10830.14, + "end": 10833.38, + "probability": 0.9724 + }, + { + "start": 10834.18, + "end": 10837.22, + "probability": 0.9889 + }, + { + "start": 10837.22, + "end": 10846.38, + "probability": 0.9071 + }, + { + "start": 10847.23, + "end": 10849.44, + "probability": 0.9937 + }, + { + "start": 10849.58, + "end": 10849.98, + "probability": 0.8625 + }, + { + "start": 10850.5, + "end": 10855.94, + "probability": 0.8198 + }, + { + "start": 10856.68, + "end": 10860.2, + "probability": 0.9816 + }, + { + "start": 10860.2, + "end": 10864.46, + "probability": 0.9988 + }, + { + "start": 10866.3, + "end": 10867.44, + "probability": 0.7524 + }, + { + "start": 10868.76, + "end": 10869.0, + "probability": 0.0002 + }, + { + "start": 10881.34, + "end": 10883.5, + "probability": 0.2897 + }, + { + "start": 10883.66, + "end": 10887.34, + "probability": 0.7957 + }, + { + "start": 10888.46, + "end": 10892.26, + "probability": 0.1327 + }, + { + "start": 10894.22, + "end": 10894.86, + "probability": 0.1071 + }, + { + "start": 10895.72, + "end": 10898.1, + "probability": 0.0529 + }, + { + "start": 10901.88, + "end": 10902.6, + "probability": 0.0101 + }, + { + "start": 10907.6, + "end": 10909.26, + "probability": 0.2763 + }, + { + "start": 10909.38, + "end": 10912.48, + "probability": 0.9983 + }, + { + "start": 10912.58, + "end": 10913.22, + "probability": 0.7577 + }, + { + "start": 10913.3, + "end": 10914.74, + "probability": 0.7457 + }, + { + "start": 10915.41, + "end": 10921.14, + "probability": 0.9982 + }, + { + "start": 10921.14, + "end": 10924.02, + "probability": 0.9995 + }, + { + "start": 10924.4, + "end": 10925.38, + "probability": 0.4908 + }, + { + "start": 10925.48, + "end": 10928.42, + "probability": 0.8603 + }, + { + "start": 10928.7, + "end": 10931.08, + "probability": 0.9922 + }, + { + "start": 10931.32, + "end": 10932.26, + "probability": 0.86 + }, + { + "start": 10932.58, + "end": 10936.68, + "probability": 0.9602 + }, + { + "start": 10936.72, + "end": 10940.03, + "probability": 0.8969 + }, + { + "start": 10940.1, + "end": 10942.08, + "probability": 0.8484 + }, + { + "start": 10942.48, + "end": 10944.02, + "probability": 0.9653 + }, + { + "start": 10944.56, + "end": 10948.02, + "probability": 0.9878 + }, + { + "start": 10948.5, + "end": 10950.66, + "probability": 0.9906 + }, + { + "start": 10951.88, + "end": 10955.6, + "probability": 0.999 + }, + { + "start": 10957.42, + "end": 10959.08, + "probability": 0.9976 + }, + { + "start": 10959.66, + "end": 10960.86, + "probability": 0.9147 + }, + { + "start": 10961.1, + "end": 10962.22, + "probability": 0.995 + }, + { + "start": 10963.28, + "end": 10966.36, + "probability": 0.9968 + }, + { + "start": 10967.68, + "end": 10974.26, + "probability": 0.9644 + }, + { + "start": 10975.72, + "end": 10980.34, + "probability": 0.6667 + }, + { + "start": 10981.02, + "end": 10982.06, + "probability": 0.68 + }, + { + "start": 10983.5, + "end": 10985.67, + "probability": 0.4731 + }, + { + "start": 10986.08, + "end": 10986.12, + "probability": 0.0067 + }, + { + "start": 10986.12, + "end": 10986.84, + "probability": 0.653 + }, + { + "start": 10986.84, + "end": 10988.88, + "probability": 0.9403 + }, + { + "start": 10988.98, + "end": 10990.76, + "probability": 0.9814 + }, + { + "start": 10991.26, + "end": 10991.83, + "probability": 0.1091 + }, + { + "start": 10994.18, + "end": 10997.12, + "probability": 0.6771 + }, + { + "start": 10999.28, + "end": 11000.52, + "probability": 0.5119 + }, + { + "start": 11001.28, + "end": 11003.9, + "probability": 0.5527 + }, + { + "start": 11004.4, + "end": 11007.1, + "probability": 0.9965 + }, + { + "start": 11007.8, + "end": 11009.22, + "probability": 0.9038 + }, + { + "start": 11009.64, + "end": 11013.04, + "probability": 0.9897 + }, + { + "start": 11013.52, + "end": 11017.82, + "probability": 0.9731 + }, + { + "start": 11018.72, + "end": 11020.52, + "probability": 0.9946 + }, + { + "start": 11022.54, + "end": 11025.7, + "probability": 0.7726 + }, + { + "start": 11028.2, + "end": 11028.68, + "probability": 0.3539 + }, + { + "start": 11033.72, + "end": 11034.5, + "probability": 0.2481 + }, + { + "start": 11036.28, + "end": 11040.02, + "probability": 0.1582 + }, + { + "start": 11040.07, + "end": 11043.07, + "probability": 0.1265 + }, + { + "start": 11045.47, + "end": 11052.12, + "probability": 0.9891 + }, + { + "start": 11052.82, + "end": 11054.18, + "probability": 0.9992 + }, + { + "start": 11055.44, + "end": 11056.94, + "probability": 0.9091 + }, + { + "start": 11057.46, + "end": 11059.98, + "probability": 0.9974 + }, + { + "start": 11061.52, + "end": 11064.38, + "probability": 0.9593 + }, + { + "start": 11064.74, + "end": 11067.94, + "probability": 0.6664 + }, + { + "start": 11068.64, + "end": 11072.28, + "probability": 0.7682 + }, + { + "start": 11072.4, + "end": 11072.4, + "probability": 0.16 + }, + { + "start": 11072.4, + "end": 11076.58, + "probability": 0.6693 + }, + { + "start": 11076.96, + "end": 11079.56, + "probability": 0.9359 + }, + { + "start": 11079.64, + "end": 11084.44, + "probability": 0.7299 + }, + { + "start": 11092.36, + "end": 11095.96, + "probability": 0.3723 + }, + { + "start": 11095.98, + "end": 11096.5, + "probability": 0.7209 + }, + { + "start": 11096.76, + "end": 11096.76, + "probability": 0.6784 + }, + { + "start": 11096.76, + "end": 11096.76, + "probability": 0.526 + }, + { + "start": 11096.76, + "end": 11099.34, + "probability": 0.797 + }, + { + "start": 11099.42, + "end": 11100.26, + "probability": 0.999 + }, + { + "start": 11100.46, + "end": 11100.72, + "probability": 0.4201 + }, + { + "start": 11100.86, + "end": 11103.14, + "probability": 0.443 + }, + { + "start": 11103.52, + "end": 11104.88, + "probability": 0.9433 + }, + { + "start": 11104.94, + "end": 11105.9, + "probability": 0.8383 + }, + { + "start": 11109.41, + "end": 11113.92, + "probability": 0.5813 + }, + { + "start": 11115.22, + "end": 11117.3, + "probability": 0.788 + }, + { + "start": 11117.92, + "end": 11118.48, + "probability": 0.6772 + }, + { + "start": 11119.74, + "end": 11121.7, + "probability": 0.8585 + }, + { + "start": 11121.76, + "end": 11123.26, + "probability": 0.2294 + }, + { + "start": 11123.36, + "end": 11128.06, + "probability": 0.9579 + }, + { + "start": 11128.38, + "end": 11132.24, + "probability": 0.9892 + }, + { + "start": 11132.36, + "end": 11133.5, + "probability": 0.8711 + }, + { + "start": 11134.38, + "end": 11137.3, + "probability": 0.9922 + }, + { + "start": 11137.42, + "end": 11139.72, + "probability": 0.9157 + }, + { + "start": 11140.24, + "end": 11143.12, + "probability": 0.9537 + }, + { + "start": 11143.18, + "end": 11144.76, + "probability": 0.9517 + }, + { + "start": 11145.3, + "end": 11145.66, + "probability": 0.6862 + }, + { + "start": 11146.1, + "end": 11147.0, + "probability": 0.9821 + }, + { + "start": 11147.46, + "end": 11149.46, + "probability": 0.9985 + }, + { + "start": 11149.48, + "end": 11153.86, + "probability": 0.918 + }, + { + "start": 11154.3, + "end": 11155.54, + "probability": 0.7551 + }, + { + "start": 11156.02, + "end": 11158.3, + "probability": 0.9922 + }, + { + "start": 11159.64, + "end": 11162.96, + "probability": 0.9989 + }, + { + "start": 11163.14, + "end": 11165.54, + "probability": 0.9434 + }, + { + "start": 11166.46, + "end": 11170.96, + "probability": 0.9802 + }, + { + "start": 11171.44, + "end": 11172.42, + "probability": 0.7625 + }, + { + "start": 11172.58, + "end": 11174.74, + "probability": 0.9686 + }, + { + "start": 11175.28, + "end": 11178.26, + "probability": 0.8852 + }, + { + "start": 11178.74, + "end": 11180.84, + "probability": 0.9381 + }, + { + "start": 11181.34, + "end": 11181.64, + "probability": 0.7544 + }, + { + "start": 11183.08, + "end": 11183.62, + "probability": 0.6088 + }, + { + "start": 11183.7, + "end": 11187.2, + "probability": 0.8749 + }, + { + "start": 11187.36, + "end": 11191.28, + "probability": 0.4603 + }, + { + "start": 11192.38, + "end": 11194.86, + "probability": 0.4512 + }, + { + "start": 11195.0, + "end": 11196.84, + "probability": 0.6303 + }, + { + "start": 11196.96, + "end": 11200.08, + "probability": 0.8481 + }, + { + "start": 11200.38, + "end": 11201.02, + "probability": 0.5892 + }, + { + "start": 11202.36, + "end": 11202.88, + "probability": 0.3641 + }, + { + "start": 11205.76, + "end": 11209.9, + "probability": 0.2103 + }, + { + "start": 11214.24, + "end": 11215.12, + "probability": 0.4391 + }, + { + "start": 11215.12, + "end": 11216.86, + "probability": 0.637 + }, + { + "start": 11216.96, + "end": 11218.24, + "probability": 0.8819 + }, + { + "start": 11218.76, + "end": 11221.12, + "probability": 0.7903 + }, + { + "start": 11221.26, + "end": 11223.46, + "probability": 0.7979 + }, + { + "start": 11223.58, + "end": 11225.6, + "probability": 0.945 + }, + { + "start": 11225.9, + "end": 11226.32, + "probability": 0.8153 + }, + { + "start": 11227.85, + "end": 11233.16, + "probability": 0.1645 + }, + { + "start": 11233.74, + "end": 11238.84, + "probability": 0.0292 + }, + { + "start": 11240.0, + "end": 11240.56, + "probability": 0.2055 + }, + { + "start": 11241.29, + "end": 11245.58, + "probability": 0.5218 + }, + { + "start": 11245.64, + "end": 11247.94, + "probability": 0.8991 + }, + { + "start": 11248.34, + "end": 11249.26, + "probability": 0.8366 + }, + { + "start": 11249.36, + "end": 11252.1, + "probability": 0.8953 + }, + { + "start": 11252.16, + "end": 11253.18, + "probability": 0.5695 + }, + { + "start": 11253.68, + "end": 11256.8, + "probability": 0.9378 + }, + { + "start": 11257.26, + "end": 11259.42, + "probability": 0.7515 + }, + { + "start": 11259.48, + "end": 11261.18, + "probability": 0.9015 + }, + { + "start": 11261.84, + "end": 11264.64, + "probability": 0.7019 + }, + { + "start": 11265.28, + "end": 11265.72, + "probability": 0.5184 + }, + { + "start": 11266.36, + "end": 11267.42, + "probability": 0.9253 + }, + { + "start": 11269.26, + "end": 11273.08, + "probability": 0.7668 + }, + { + "start": 11273.9, + "end": 11281.72, + "probability": 0.9948 + }, + { + "start": 11282.58, + "end": 11286.96, + "probability": 0.9751 + }, + { + "start": 11288.28, + "end": 11292.36, + "probability": 0.7632 + }, + { + "start": 11294.56, + "end": 11300.34, + "probability": 0.9946 + }, + { + "start": 11300.74, + "end": 11306.82, + "probability": 0.9905 + }, + { + "start": 11308.16, + "end": 11311.42, + "probability": 0.9897 + }, + { + "start": 11312.12, + "end": 11318.36, + "probability": 0.9882 + }, + { + "start": 11318.92, + "end": 11326.38, + "probability": 0.9954 + }, + { + "start": 11327.62, + "end": 11332.26, + "probability": 0.9927 + }, + { + "start": 11332.26, + "end": 11338.82, + "probability": 0.8868 + }, + { + "start": 11340.02, + "end": 11343.04, + "probability": 0.9713 + }, + { + "start": 11343.28, + "end": 11345.42, + "probability": 0.6292 + }, + { + "start": 11345.58, + "end": 11349.14, + "probability": 0.9089 + }, + { + "start": 11349.82, + "end": 11351.8, + "probability": 0.9165 + }, + { + "start": 11352.42, + "end": 11355.72, + "probability": 0.7692 + }, + { + "start": 11356.48, + "end": 11358.54, + "probability": 0.925 + }, + { + "start": 11360.06, + "end": 11362.98, + "probability": 0.9835 + }, + { + "start": 11363.58, + "end": 11364.9, + "probability": 0.7474 + }, + { + "start": 11366.12, + "end": 11366.62, + "probability": 0.9207 + }, + { + "start": 11367.44, + "end": 11371.72, + "probability": 0.9272 + }, + { + "start": 11372.84, + "end": 11378.04, + "probability": 0.9979 + }, + { + "start": 11378.04, + "end": 11382.86, + "probability": 0.9161 + }, + { + "start": 11384.88, + "end": 11388.44, + "probability": 0.9674 + }, + { + "start": 11389.44, + "end": 11389.96, + "probability": 0.7385 + }, + { + "start": 11390.0, + "end": 11391.02, + "probability": 0.8685 + }, + { + "start": 11391.16, + "end": 11393.46, + "probability": 0.906 + }, + { + "start": 11393.94, + "end": 11396.92, + "probability": 0.9348 + }, + { + "start": 11397.36, + "end": 11400.94, + "probability": 0.9898 + }, + { + "start": 11401.68, + "end": 11402.62, + "probability": 0.9902 + }, + { + "start": 11403.68, + "end": 11410.46, + "probability": 0.9952 + }, + { + "start": 11410.98, + "end": 11413.56, + "probability": 0.9621 + }, + { + "start": 11414.6, + "end": 11419.76, + "probability": 0.9928 + }, + { + "start": 11420.26, + "end": 11421.78, + "probability": 0.8866 + }, + { + "start": 11422.52, + "end": 11424.16, + "probability": 0.9709 + }, + { + "start": 11424.72, + "end": 11427.04, + "probability": 0.9551 + }, + { + "start": 11429.02, + "end": 11434.44, + "probability": 0.9565 + }, + { + "start": 11434.6, + "end": 11436.86, + "probability": 0.9397 + }, + { + "start": 11437.4, + "end": 11440.38, + "probability": 0.9954 + }, + { + "start": 11441.54, + "end": 11444.64, + "probability": 0.9307 + }, + { + "start": 11445.32, + "end": 11449.9, + "probability": 0.8341 + }, + { + "start": 11450.52, + "end": 11452.88, + "probability": 0.9706 + }, + { + "start": 11453.58, + "end": 11454.88, + "probability": 0.9806 + }, + { + "start": 11455.3, + "end": 11457.3, + "probability": 0.9943 + }, + { + "start": 11458.24, + "end": 11462.38, + "probability": 0.9557 + }, + { + "start": 11462.84, + "end": 11465.56, + "probability": 0.9805 + }, + { + "start": 11465.68, + "end": 11467.5, + "probability": 0.8558 + }, + { + "start": 11467.92, + "end": 11472.76, + "probability": 0.9919 + }, + { + "start": 11473.5, + "end": 11475.68, + "probability": 0.9964 + }, + { + "start": 11476.22, + "end": 11481.28, + "probability": 0.9842 + }, + { + "start": 11481.28, + "end": 11487.26, + "probability": 0.8785 + }, + { + "start": 11487.98, + "end": 11490.54, + "probability": 0.999 + }, + { + "start": 11491.4, + "end": 11495.68, + "probability": 0.805 + }, + { + "start": 11496.32, + "end": 11501.22, + "probability": 0.7656 + }, + { + "start": 11501.82, + "end": 11502.36, + "probability": 0.963 + }, + { + "start": 11502.58, + "end": 11505.94, + "probability": 0.9919 + }, + { + "start": 11505.94, + "end": 11509.6, + "probability": 0.939 + }, + { + "start": 11510.62, + "end": 11514.6, + "probability": 0.9846 + }, + { + "start": 11515.68, + "end": 11518.54, + "probability": 0.9959 + }, + { + "start": 11525.76, + "end": 11528.46, + "probability": 0.4445 + }, + { + "start": 11529.66, + "end": 11534.74, + "probability": 0.3346 + }, + { + "start": 11535.68, + "end": 11536.06, + "probability": 0.0737 + }, + { + "start": 11536.06, + "end": 11536.06, + "probability": 0.0493 + }, + { + "start": 11536.06, + "end": 11539.88, + "probability": 0.1391 + }, + { + "start": 11540.04, + "end": 11540.64, + "probability": 0.0409 + }, + { + "start": 11541.2, + "end": 11545.16, + "probability": 0.0537 + }, + { + "start": 11545.16, + "end": 11548.19, + "probability": 0.0338 + }, + { + "start": 11548.54, + "end": 11553.52, + "probability": 0.2351 + }, + { + "start": 11553.66, + "end": 11554.28, + "probability": 0.0106 + }, + { + "start": 11556.0, + "end": 11556.78, + "probability": 0.0611 + }, + { + "start": 11556.78, + "end": 11558.44, + "probability": 0.0293 + }, + { + "start": 11558.56, + "end": 11560.2, + "probability": 0.0455 + }, + { + "start": 11560.74, + "end": 11565.64, + "probability": 0.0929 + }, + { + "start": 11566.84, + "end": 11573.9, + "probability": 0.037 + }, + { + "start": 11573.9, + "end": 11577.98, + "probability": 0.0502 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11602.0, + "end": 11602.0, + "probability": 0.0 + }, + { + "start": 11603.04, + "end": 11603.52, + "probability": 0.1372 + }, + { + "start": 11603.52, + "end": 11603.52, + "probability": 0.0951 + }, + { + "start": 11603.52, + "end": 11603.52, + "probability": 0.0214 + }, + { + "start": 11603.52, + "end": 11605.82, + "probability": 0.7524 + }, + { + "start": 11605.82, + "end": 11608.98, + "probability": 0.7018 + }, + { + "start": 11610.04, + "end": 11613.3, + "probability": 0.9976 + }, + { + "start": 11613.86, + "end": 11614.94, + "probability": 0.2506 + }, + { + "start": 11615.76, + "end": 11617.22, + "probability": 0.8458 + }, + { + "start": 11617.74, + "end": 11619.76, + "probability": 0.874 + }, + { + "start": 11620.26, + "end": 11622.94, + "probability": 0.1554 + }, + { + "start": 11623.1, + "end": 11623.34, + "probability": 0.9644 + }, + { + "start": 11624.2, + "end": 11624.56, + "probability": 0.3561 + }, + { + "start": 11626.54, + "end": 11628.2, + "probability": 0.7933 + }, + { + "start": 11628.86, + "end": 11629.84, + "probability": 0.84 + }, + { + "start": 11630.24, + "end": 11632.52, + "probability": 0.8087 + }, + { + "start": 11632.64, + "end": 11635.4, + "probability": 0.9179 + }, + { + "start": 11636.26, + "end": 11637.8, + "probability": 0.929 + }, + { + "start": 11638.48, + "end": 11639.64, + "probability": 0.9614 + }, + { + "start": 11640.22, + "end": 11642.54, + "probability": 0.9658 + }, + { + "start": 11643.34, + "end": 11644.97, + "probability": 0.9644 + }, + { + "start": 11645.54, + "end": 11652.16, + "probability": 0.9894 + }, + { + "start": 11652.28, + "end": 11654.18, + "probability": 0.979 + }, + { + "start": 11654.76, + "end": 11657.44, + "probability": 0.9889 + }, + { + "start": 11658.02, + "end": 11660.08, + "probability": 0.9146 + }, + { + "start": 11660.62, + "end": 11664.66, + "probability": 0.9967 + }, + { + "start": 11664.66, + "end": 11668.62, + "probability": 0.9414 + }, + { + "start": 11669.68, + "end": 11670.98, + "probability": 0.9662 + }, + { + "start": 11671.66, + "end": 11676.36, + "probability": 0.9758 + }, + { + "start": 11677.42, + "end": 11681.18, + "probability": 0.9868 + }, + { + "start": 11681.76, + "end": 11685.12, + "probability": 0.9163 + }, + { + "start": 11685.96, + "end": 11688.12, + "probability": 0.8979 + }, + { + "start": 11688.44, + "end": 11691.0, + "probability": 0.9973 + }, + { + "start": 11691.52, + "end": 11692.92, + "probability": 0.764 + }, + { + "start": 11693.6, + "end": 11696.18, + "probability": 0.9974 + }, + { + "start": 11698.16, + "end": 11701.86, + "probability": 0.9385 + }, + { + "start": 11702.54, + "end": 11707.62, + "probability": 0.9842 + }, + { + "start": 11708.34, + "end": 11711.42, + "probability": 0.9835 + }, + { + "start": 11712.28, + "end": 11715.82, + "probability": 0.9728 + }, + { + "start": 11716.7, + "end": 11719.6, + "probability": 0.9902 + }, + { + "start": 11719.68, + "end": 11720.32, + "probability": 0.6509 + }, + { + "start": 11721.14, + "end": 11721.84, + "probability": 0.7849 + }, + { + "start": 11724.0, + "end": 11727.62, + "probability": 0.6514 + }, + { + "start": 11731.44, + "end": 11731.78, + "probability": 0.8696 + }, + { + "start": 11732.42, + "end": 11733.04, + "probability": 0.518 + }, + { + "start": 11733.2, + "end": 11733.92, + "probability": 0.7983 + }, + { + "start": 11734.0, + "end": 11736.72, + "probability": 0.9795 + }, + { + "start": 11738.22, + "end": 11739.08, + "probability": 0.7914 + }, + { + "start": 11739.18, + "end": 11743.02, + "probability": 0.9525 + }, + { + "start": 11743.42, + "end": 11744.16, + "probability": 0.9605 + }, + { + "start": 11745.7, + "end": 11748.9, + "probability": 0.9966 + }, + { + "start": 11750.94, + "end": 11754.74, + "probability": 0.9994 + }, + { + "start": 11754.78, + "end": 11757.48, + "probability": 0.9904 + }, + { + "start": 11758.28, + "end": 11759.54, + "probability": 0.959 + }, + { + "start": 11760.68, + "end": 11762.64, + "probability": 0.9902 + }, + { + "start": 11764.42, + "end": 11765.98, + "probability": 0.9521 + }, + { + "start": 11766.18, + "end": 11767.1, + "probability": 0.9751 + }, + { + "start": 11767.26, + "end": 11768.2, + "probability": 0.8967 + }, + { + "start": 11768.62, + "end": 11770.68, + "probability": 0.9084 + }, + { + "start": 11770.82, + "end": 11771.48, + "probability": 0.6064 + }, + { + "start": 11771.84, + "end": 11772.82, + "probability": 0.8799 + }, + { + "start": 11773.54, + "end": 11774.04, + "probability": 0.7338 + }, + { + "start": 11774.32, + "end": 11776.28, + "probability": 0.9246 + }, + { + "start": 11776.4, + "end": 11780.02, + "probability": 0.9185 + }, + { + "start": 11780.26, + "end": 11783.87, + "probability": 0.8071 + }, + { + "start": 11784.14, + "end": 11785.1, + "probability": 0.9419 + }, + { + "start": 11785.46, + "end": 11786.42, + "probability": 0.1047 + }, + { + "start": 11786.5, + "end": 11787.14, + "probability": 0.553 + }, + { + "start": 11787.14, + "end": 11787.14, + "probability": 0.3344 + }, + { + "start": 11787.14, + "end": 11787.14, + "probability": 0.4 + }, + { + "start": 11787.14, + "end": 11788.19, + "probability": 0.5942 + }, + { + "start": 11788.44, + "end": 11789.38, + "probability": 0.534 + }, + { + "start": 11789.66, + "end": 11790.6, + "probability": 0.5473 + }, + { + "start": 11790.88, + "end": 11792.0, + "probability": 0.4954 + }, + { + "start": 11792.34, + "end": 11793.34, + "probability": 0.8179 + }, + { + "start": 11793.34, + "end": 11795.83, + "probability": 0.9863 + }, + { + "start": 11796.04, + "end": 11797.96, + "probability": 0.6316 + }, + { + "start": 11798.08, + "end": 11800.56, + "probability": 0.7186 + }, + { + "start": 11801.4, + "end": 11802.17, + "probability": 0.4231 + }, + { + "start": 11803.82, + "end": 11804.94, + "probability": 0.2017 + }, + { + "start": 11804.94, + "end": 11804.94, + "probability": 0.2322 + }, + { + "start": 11804.94, + "end": 11804.94, + "probability": 0.4294 + }, + { + "start": 11804.94, + "end": 11804.94, + "probability": 0.0708 + }, + { + "start": 11804.94, + "end": 11806.2, + "probability": 0.6499 + }, + { + "start": 11806.64, + "end": 11807.28, + "probability": 0.2772 + }, + { + "start": 11807.58, + "end": 11812.78, + "probability": 0.5508 + }, + { + "start": 11813.18, + "end": 11816.62, + "probability": 0.5493 + }, + { + "start": 11817.0, + "end": 11818.5, + "probability": 0.7522 + }, + { + "start": 11818.62, + "end": 11819.53, + "probability": 0.1074 + }, + { + "start": 11820.2, + "end": 11821.76, + "probability": 0.7388 + }, + { + "start": 11822.16, + "end": 11823.88, + "probability": 0.9262 + }, + { + "start": 11824.54, + "end": 11825.2, + "probability": 0.6481 + }, + { + "start": 11825.46, + "end": 11825.94, + "probability": 0.4993 + }, + { + "start": 11826.22, + "end": 11830.86, + "probability": 0.5343 + }, + { + "start": 11830.94, + "end": 11833.7, + "probability": 0.3982 + }, + { + "start": 11835.48, + "end": 11839.62, + "probability": 0.8898 + }, + { + "start": 11839.74, + "end": 11839.74, + "probability": 0.0412 + }, + { + "start": 11846.86, + "end": 11847.46, + "probability": 0.0384 + }, + { + "start": 11848.24, + "end": 11851.56, + "probability": 0.6009 + }, + { + "start": 11853.0, + "end": 11856.96, + "probability": 0.1493 + }, + { + "start": 11859.92, + "end": 11861.5, + "probability": 0.9582 + }, + { + "start": 11861.84, + "end": 11863.38, + "probability": 0.8777 + }, + { + "start": 11865.0, + "end": 11865.78, + "probability": 0.6156 + }, + { + "start": 11866.64, + "end": 11869.6, + "probability": 0.7672 + }, + { + "start": 11870.38, + "end": 11872.16, + "probability": 0.7928 + }, + { + "start": 11873.6, + "end": 11874.32, + "probability": 0.7369 + }, + { + "start": 11874.32, + "end": 11875.4, + "probability": 0.9079 + }, + { + "start": 11875.62, + "end": 11876.98, + "probability": 0.4014 + }, + { + "start": 11877.22, + "end": 11879.4, + "probability": 0.5196 + }, + { + "start": 11880.1, + "end": 11885.94, + "probability": 0.8242 + }, + { + "start": 11886.34, + "end": 11886.94, + "probability": 0.5787 + }, + { + "start": 11887.54, + "end": 11889.58, + "probability": 0.733 + }, + { + "start": 11892.53, + "end": 11897.82, + "probability": 0.7284 + }, + { + "start": 11898.56, + "end": 11901.44, + "probability": 0.9901 + }, + { + "start": 11902.54, + "end": 11904.71, + "probability": 0.7588 + }, + { + "start": 11907.42, + "end": 11907.44, + "probability": 0.3049 + }, + { + "start": 11910.16, + "end": 11913.4, + "probability": 0.7004 + }, + { + "start": 11913.46, + "end": 11915.4, + "probability": 0.5534 + }, + { + "start": 11917.4, + "end": 11917.96, + "probability": 0.3177 + }, + { + "start": 11917.96, + "end": 11917.96, + "probability": 0.2509 + }, + { + "start": 11917.96, + "end": 11918.52, + "probability": 0.0655 + }, + { + "start": 11919.08, + "end": 11921.74, + "probability": 0.6865 + }, + { + "start": 11921.94, + "end": 11922.76, + "probability": 0.8052 + }, + { + "start": 11923.54, + "end": 11925.71, + "probability": 0.8228 + }, + { + "start": 11926.7, + "end": 11927.8, + "probability": 0.7347 + }, + { + "start": 11928.38, + "end": 11930.28, + "probability": 0.939 + }, + { + "start": 11930.5, + "end": 11933.16, + "probability": 0.8262 + }, + { + "start": 11933.24, + "end": 11933.76, + "probability": 0.5975 + }, + { + "start": 11934.06, + "end": 11934.86, + "probability": 0.0308 + }, + { + "start": 11934.92, + "end": 11935.88, + "probability": 0.2495 + }, + { + "start": 11937.06, + "end": 11938.16, + "probability": 0.0254 + }, + { + "start": 11938.16, + "end": 11939.42, + "probability": 0.6288 + }, + { + "start": 11940.04, + "end": 11941.76, + "probability": 0.8315 + }, + { + "start": 11943.06, + "end": 11944.46, + "probability": 0.4875 + }, + { + "start": 11944.64, + "end": 11945.38, + "probability": 0.5469 + }, + { + "start": 11945.58, + "end": 11947.48, + "probability": 0.0916 + }, + { + "start": 11948.48, + "end": 11949.26, + "probability": 0.5468 + }, + { + "start": 11949.96, + "end": 11950.72, + "probability": 0.4432 + }, + { + "start": 11950.84, + "end": 11951.54, + "probability": 0.7908 + }, + { + "start": 11951.64, + "end": 11954.8, + "probability": 0.9462 + }, + { + "start": 11954.86, + "end": 11955.29, + "probability": 0.8913 + }, + { + "start": 11956.31, + "end": 11958.68, + "probability": 0.8988 + }, + { + "start": 11960.83, + "end": 11963.78, + "probability": 0.8674 + }, + { + "start": 11964.36, + "end": 11973.12, + "probability": 0.9225 + }, + { + "start": 11973.66, + "end": 11974.7, + "probability": 0.983 + }, + { + "start": 11975.34, + "end": 11978.82, + "probability": 0.9926 + }, + { + "start": 11979.36, + "end": 11981.6, + "probability": 0.7825 + }, + { + "start": 11982.81, + "end": 11983.99, + "probability": 0.2562 + }, + { + "start": 11984.78, + "end": 11986.26, + "probability": 0.8381 + }, + { + "start": 11986.9, + "end": 11992.18, + "probability": 0.9858 + }, + { + "start": 11992.66, + "end": 11993.34, + "probability": 0.8124 + }, + { + "start": 11993.88, + "end": 11994.8, + "probability": 0.7289 + }, + { + "start": 11995.5, + "end": 11998.6, + "probability": 0.2392 + }, + { + "start": 11998.6, + "end": 11999.96, + "probability": 0.3729 + }, + { + "start": 12001.77, + "end": 12002.66, + "probability": 0.0786 + }, + { + "start": 12002.66, + "end": 12005.68, + "probability": 0.1966 + }, + { + "start": 12005.82, + "end": 12008.72, + "probability": 0.0656 + }, + { + "start": 12009.46, + "end": 12009.54, + "probability": 0.0695 + }, + { + "start": 12010.59, + "end": 12010.66, + "probability": 0.1761 + }, + { + "start": 12010.66, + "end": 12010.92, + "probability": 0.6968 + }, + { + "start": 12010.92, + "end": 12010.92, + "probability": 0.1389 + }, + { + "start": 12010.92, + "end": 12010.92, + "probability": 0.0549 + }, + { + "start": 12010.92, + "end": 12010.92, + "probability": 0.1161 + }, + { + "start": 12010.92, + "end": 12010.92, + "probability": 0.3069 + }, + { + "start": 12010.92, + "end": 12012.2, + "probability": 0.3574 + }, + { + "start": 12014.76, + "end": 12018.48, + "probability": 0.3976 + }, + { + "start": 12018.5, + "end": 12018.56, + "probability": 0.0026 + }, + { + "start": 12020.24, + "end": 12021.28, + "probability": 0.0757 + }, + { + "start": 12021.42, + "end": 12021.42, + "probability": 0.0308 + }, + { + "start": 12021.42, + "end": 12021.42, + "probability": 0.0534 + }, + { + "start": 12021.42, + "end": 12021.42, + "probability": 0.1868 + }, + { + "start": 12021.42, + "end": 12025.36, + "probability": 0.7521 + }, + { + "start": 12025.4, + "end": 12026.72, + "probability": 0.8209 + }, + { + "start": 12027.08, + "end": 12028.0, + "probability": 0.7231 + }, + { + "start": 12028.32, + "end": 12030.54, + "probability": 0.9723 + }, + { + "start": 12030.64, + "end": 12031.84, + "probability": 0.7856 + }, + { + "start": 12032.0, + "end": 12033.76, + "probability": 0.7184 + }, + { + "start": 12034.24, + "end": 12035.22, + "probability": 0.9323 + }, + { + "start": 12036.03, + "end": 12039.08, + "probability": 0.9222 + }, + { + "start": 12039.96, + "end": 12042.2, + "probability": 0.6964 + }, + { + "start": 12042.86, + "end": 12044.02, + "probability": 0.4897 + }, + { + "start": 12044.66, + "end": 12048.0, + "probability": 0.9849 + }, + { + "start": 12048.08, + "end": 12049.08, + "probability": 0.5559 + }, + { + "start": 12049.44, + "end": 12051.98, + "probability": 0.8091 + }, + { + "start": 12052.18, + "end": 12054.84, + "probability": 0.4675 + }, + { + "start": 12055.26, + "end": 12056.34, + "probability": 0.921 + }, + { + "start": 12056.92, + "end": 12060.25, + "probability": 0.9735 + }, + { + "start": 12060.68, + "end": 12061.8, + "probability": 0.6916 + }, + { + "start": 12062.02, + "end": 12062.6, + "probability": 0.2862 + }, + { + "start": 12066.16, + "end": 12067.34, + "probability": 0.7043 + }, + { + "start": 12068.12, + "end": 12070.1, + "probability": 0.6966 + }, + { + "start": 12070.28, + "end": 12072.04, + "probability": 0.0302 + }, + { + "start": 12072.54, + "end": 12075.02, + "probability": 0.6835 + }, + { + "start": 12075.08, + "end": 12078.3, + "probability": 0.7237 + }, + { + "start": 12078.5, + "end": 12081.66, + "probability": 0.774 + }, + { + "start": 12081.7, + "end": 12085.44, + "probability": 0.1134 + }, + { + "start": 12094.28, + "end": 12096.3, + "probability": 0.2837 + }, + { + "start": 12098.32, + "end": 12098.68, + "probability": 0.0263 + }, + { + "start": 12098.68, + "end": 12098.68, + "probability": 0.1207 + }, + { + "start": 12098.68, + "end": 12098.68, + "probability": 0.1242 + }, + { + "start": 12098.68, + "end": 12098.8, + "probability": 0.121 + }, + { + "start": 12098.8, + "end": 12098.8, + "probability": 0.2315 + }, + { + "start": 12098.8, + "end": 12098.8, + "probability": 0.0357 + }, + { + "start": 12098.8, + "end": 12098.8, + "probability": 0.186 + }, + { + "start": 12098.8, + "end": 12100.28, + "probability": 0.0696 + }, + { + "start": 12100.32, + "end": 12103.16, + "probability": 0.9873 + }, + { + "start": 12103.4, + "end": 12104.58, + "probability": 0.9358 + }, + { + "start": 12104.95, + "end": 12107.2, + "probability": 0.0371 + }, + { + "start": 12107.24, + "end": 12107.24, + "probability": 0.0366 + }, + { + "start": 12107.24, + "end": 12109.5, + "probability": 0.1568 + }, + { + "start": 12110.48, + "end": 12112.86, + "probability": 0.1224 + }, + { + "start": 12113.46, + "end": 12114.9, + "probability": 0.2621 + }, + { + "start": 12115.85, + "end": 12118.38, + "probability": 0.0801 + }, + { + "start": 12118.38, + "end": 12118.38, + "probability": 0.3036 + }, + { + "start": 12118.38, + "end": 12118.38, + "probability": 0.034 + }, + { + "start": 12118.38, + "end": 12118.38, + "probability": 0.0588 + }, + { + "start": 12118.38, + "end": 12118.38, + "probability": 0.0325 + }, + { + "start": 12118.38, + "end": 12118.38, + "probability": 0.2939 + }, + { + "start": 12118.38, + "end": 12118.94, + "probability": 0.5071 + }, + { + "start": 12119.68, + "end": 12123.18, + "probability": 0.7036 + }, + { + "start": 12123.94, + "end": 12126.16, + "probability": 0.0629 + }, + { + "start": 12126.16, + "end": 12126.16, + "probability": 0.2188 + }, + { + "start": 12126.16, + "end": 12129.78, + "probability": 0.6909 + }, + { + "start": 12130.88, + "end": 12131.3, + "probability": 0.2263 + }, + { + "start": 12131.44, + "end": 12131.58, + "probability": 0.359 + }, + { + "start": 12131.58, + "end": 12132.22, + "probability": 0.7722 + }, + { + "start": 12132.44, + "end": 12132.86, + "probability": 0.7412 + }, + { + "start": 12132.96, + "end": 12132.96, + "probability": 0.4393 + }, + { + "start": 12133.04, + "end": 12133.26, + "probability": 0.8149 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.0, + "end": 12159.0, + "probability": 0.0 + }, + { + "start": 12159.74, + "end": 12160.82, + "probability": 0.2786 + }, + { + "start": 12161.06, + "end": 12164.34, + "probability": 0.8073 + }, + { + "start": 12164.38, + "end": 12165.8, + "probability": 0.4826 + }, + { + "start": 12166.1, + "end": 12166.76, + "probability": 0.3066 + }, + { + "start": 12166.76, + "end": 12167.26, + "probability": 0.2421 + }, + { + "start": 12167.7, + "end": 12168.48, + "probability": 0.9676 + }, + { + "start": 12168.9, + "end": 12170.44, + "probability": 0.6813 + }, + { + "start": 12170.44, + "end": 12171.92, + "probability": 0.9456 + }, + { + "start": 12172.5, + "end": 12174.3, + "probability": 0.9663 + }, + { + "start": 12174.62, + "end": 12175.54, + "probability": 0.9673 + }, + { + "start": 12176.0, + "end": 12176.98, + "probability": 0.8579 + }, + { + "start": 12177.06, + "end": 12177.52, + "probability": 0.0536 + }, + { + "start": 12177.52, + "end": 12178.6, + "probability": 0.2021 + }, + { + "start": 12180.48, + "end": 12181.8, + "probability": 0.2674 + }, + { + "start": 12183.52, + "end": 12186.84, + "probability": 0.5959 + }, + { + "start": 12187.64, + "end": 12191.62, + "probability": 0.8204 + }, + { + "start": 12192.4, + "end": 12194.26, + "probability": 0.0769 + }, + { + "start": 12194.48, + "end": 12195.76, + "probability": 0.0729 + }, + { + "start": 12196.22, + "end": 12197.52, + "probability": 0.7731 + }, + { + "start": 12197.52, + "end": 12200.32, + "probability": 0.6603 + }, + { + "start": 12200.58, + "end": 12200.96, + "probability": 0.4291 + }, + { + "start": 12200.96, + "end": 12201.78, + "probability": 0.8187 + }, + { + "start": 12202.56, + "end": 12202.6, + "probability": 0.0132 + }, + { + "start": 12202.6, + "end": 12202.83, + "probability": 0.0704 + }, + { + "start": 12203.46, + "end": 12206.46, + "probability": 0.8379 + }, + { + "start": 12206.58, + "end": 12208.02, + "probability": 0.7974 + }, + { + "start": 12208.08, + "end": 12212.72, + "probability": 0.9542 + }, + { + "start": 12213.42, + "end": 12215.36, + "probability": 0.8558 + }, + { + "start": 12215.66, + "end": 12216.7, + "probability": 0.9703 + }, + { + "start": 12216.9, + "end": 12218.02, + "probability": 0.6495 + }, + { + "start": 12218.5, + "end": 12221.48, + "probability": 0.676 + }, + { + "start": 12221.66, + "end": 12224.74, + "probability": 0.4264 + }, + { + "start": 12225.36, + "end": 12229.25, + "probability": 0.9138 + }, + { + "start": 12229.68, + "end": 12231.26, + "probability": 0.6665 + }, + { + "start": 12231.66, + "end": 12233.32, + "probability": 0.709 + }, + { + "start": 12234.64, + "end": 12236.06, + "probability": 0.1086 + }, + { + "start": 12236.06, + "end": 12237.36, + "probability": 0.0539 + }, + { + "start": 12237.36, + "end": 12238.64, + "probability": 0.5753 + }, + { + "start": 12238.82, + "end": 12246.12, + "probability": 0.5054 + }, + { + "start": 12246.72, + "end": 12247.92, + "probability": 0.9212 + }, + { + "start": 12248.44, + "end": 12249.78, + "probability": 0.9954 + }, + { + "start": 12250.73, + "end": 12254.1, + "probability": 0.7838 + }, + { + "start": 12254.18, + "end": 12254.77, + "probability": 0.7963 + }, + { + "start": 12256.06, + "end": 12258.24, + "probability": 0.9333 + }, + { + "start": 12258.32, + "end": 12258.46, + "probability": 0.513 + }, + { + "start": 12259.26, + "end": 12261.12, + "probability": 0.9827 + }, + { + "start": 12261.14, + "end": 12262.24, + "probability": 0.7988 + }, + { + "start": 12262.28, + "end": 12262.8, + "probability": 0.0574 + }, + { + "start": 12264.48, + "end": 12268.06, + "probability": 0.0065 + }, + { + "start": 12268.76, + "end": 12268.76, + "probability": 0.0121 + }, + { + "start": 12268.76, + "end": 12268.76, + "probability": 0.0125 + }, + { + "start": 12268.76, + "end": 12271.87, + "probability": 0.8417 + }, + { + "start": 12272.36, + "end": 12273.08, + "probability": 0.6035 + }, + { + "start": 12276.01, + "end": 12277.15, + "probability": 0.2089 + }, + { + "start": 12279.08, + "end": 12279.88, + "probability": 0.4415 + }, + { + "start": 12280.98, + "end": 12282.08, + "probability": 0.0764 + }, + { + "start": 12282.26, + "end": 12282.28, + "probability": 0.0665 + }, + { + "start": 12282.28, + "end": 12282.28, + "probability": 0.0218 + }, + { + "start": 12282.28, + "end": 12282.8, + "probability": 0.3875 + }, + { + "start": 12282.8, + "end": 12284.96, + "probability": 0.6276 + }, + { + "start": 12285.2, + "end": 12285.62, + "probability": 0.1098 + }, + { + "start": 12285.72, + "end": 12287.08, + "probability": 0.2734 + }, + { + "start": 12287.5, + "end": 12288.46, + "probability": 0.0427 + }, + { + "start": 12292.38, + "end": 12292.8, + "probability": 0.0928 + }, + { + "start": 12292.8, + "end": 12293.1, + "probability": 0.0963 + }, + { + "start": 12293.1, + "end": 12293.1, + "probability": 0.0213 + }, + { + "start": 12293.1, + "end": 12293.5, + "probability": 0.2232 + }, + { + "start": 12293.56, + "end": 12294.4, + "probability": 0.6364 + }, + { + "start": 12294.86, + "end": 12297.56, + "probability": 0.976 + }, + { + "start": 12297.9, + "end": 12298.46, + "probability": 0.441 + }, + { + "start": 12299.16, + "end": 12299.64, + "probability": 0.7033 + }, + { + "start": 12300.08, + "end": 12300.66, + "probability": 0.782 + }, + { + "start": 12300.86, + "end": 12301.02, + "probability": 0.7501 + }, + { + "start": 12301.32, + "end": 12303.32, + "probability": 0.7804 + }, + { + "start": 12303.46, + "end": 12304.82, + "probability": 0.8038 + }, + { + "start": 12305.3, + "end": 12307.64, + "probability": 0.9311 + }, + { + "start": 12307.88, + "end": 12309.64, + "probability": 0.3201 + }, + { + "start": 12309.64, + "end": 12314.46, + "probability": 0.1875 + }, + { + "start": 12314.72, + "end": 12315.76, + "probability": 0.8036 + }, + { + "start": 12315.96, + "end": 12318.13, + "probability": 0.8243 + }, + { + "start": 12318.62, + "end": 12320.58, + "probability": 0.9097 + }, + { + "start": 12320.8, + "end": 12322.82, + "probability": 0.8951 + }, + { + "start": 12323.46, + "end": 12327.36, + "probability": 0.9709 + }, + { + "start": 12327.46, + "end": 12328.36, + "probability": 0.8425 + }, + { + "start": 12328.98, + "end": 12333.02, + "probability": 0.9949 + }, + { + "start": 12333.48, + "end": 12335.32, + "probability": 0.996 + }, + { + "start": 12336.2, + "end": 12340.9, + "probability": 0.1399 + }, + { + "start": 12341.16, + "end": 12342.36, + "probability": 0.6061 + }, + { + "start": 12343.54, + "end": 12343.94, + "probability": 0.1727 + }, + { + "start": 12343.94, + "end": 12345.84, + "probability": 0.755 + }, + { + "start": 12346.72, + "end": 12348.64, + "probability": 0.912 + }, + { + "start": 12348.76, + "end": 12350.9, + "probability": 0.9387 + }, + { + "start": 12350.96, + "end": 12352.92, + "probability": 0.9678 + }, + { + "start": 12353.24, + "end": 12355.2, + "probability": 0.8339 + }, + { + "start": 12355.72, + "end": 12356.8, + "probability": 0.5436 + }, + { + "start": 12356.8, + "end": 12357.34, + "probability": 0.0547 + }, + { + "start": 12357.5, + "end": 12357.78, + "probability": 0.013 + }, + { + "start": 12357.78, + "end": 12358.84, + "probability": 0.0586 + }, + { + "start": 12358.98, + "end": 12360.3, + "probability": 0.0601 + }, + { + "start": 12360.6, + "end": 12361.98, + "probability": 0.8358 + }, + { + "start": 12362.22, + "end": 12362.43, + "probability": 0.2194 + }, + { + "start": 12363.45, + "end": 12363.52, + "probability": 0.9213 + }, + { + "start": 12363.52, + "end": 12363.56, + "probability": 0.5294 + }, + { + "start": 12363.56, + "end": 12364.19, + "probability": 0.7224 + }, + { + "start": 12364.64, + "end": 12365.7, + "probability": 0.086 + }, + { + "start": 12368.5, + "end": 12370.52, + "probability": 0.008 + }, + { + "start": 12370.52, + "end": 12371.5, + "probability": 0.1094 + }, + { + "start": 12371.5, + "end": 12372.06, + "probability": 0.0637 + }, + { + "start": 12373.16, + "end": 12373.46, + "probability": 0.1291 + }, + { + "start": 12373.94, + "end": 12375.58, + "probability": 0.0393 + }, + { + "start": 12375.84, + "end": 12378.46, + "probability": 0.0306 + }, + { + "start": 12383.98, + "end": 12384.54, + "probability": 0.2104 + }, + { + "start": 12385.38, + "end": 12385.9, + "probability": 0.0138 + }, + { + "start": 12385.9, + "end": 12385.9, + "probability": 0.1181 + }, + { + "start": 12385.9, + "end": 12386.68, + "probability": 0.0894 + }, + { + "start": 12387.42, + "end": 12389.86, + "probability": 0.0574 + }, + { + "start": 12390.28, + "end": 12391.62, + "probability": 0.1064 + }, + { + "start": 12396.44, + "end": 12396.64, + "probability": 0.0714 + }, + { + "start": 12399.29, + "end": 12400.54, + "probability": 0.0468 + }, + { + "start": 12400.54, + "end": 12400.54, + "probability": 0.0444 + }, + { + "start": 12401.46, + "end": 12403.5, + "probability": 0.0697 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.0, + "end": 12421.0, + "probability": 0.0 + }, + { + "start": 12421.1, + "end": 12421.18, + "probability": 0.1942 + }, + { + "start": 12421.18, + "end": 12421.74, + "probability": 0.0661 + }, + { + "start": 12425.52, + "end": 12428.42, + "probability": 0.0908 + }, + { + "start": 12428.72, + "end": 12430.82, + "probability": 0.0676 + }, + { + "start": 12431.24, + "end": 12432.01, + "probability": 0.6924 + }, + { + "start": 12432.4, + "end": 12433.3, + "probability": 0.8189 + }, + { + "start": 12434.18, + "end": 12435.64, + "probability": 0.304 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12542.0, + "end": 12542.0, + "probability": 0.0 + }, + { + "start": 12543.02, + "end": 12543.16, + "probability": 0.0047 + }, + { + "start": 12543.16, + "end": 12543.28, + "probability": 0.2169 + }, + { + "start": 12543.28, + "end": 12548.22, + "probability": 0.9105 + }, + { + "start": 12548.76, + "end": 12550.88, + "probability": 0.8343 + }, + { + "start": 12551.66, + "end": 12556.14, + "probability": 0.9954 + }, + { + "start": 12556.62, + "end": 12557.9, + "probability": 0.9191 + }, + { + "start": 12558.06, + "end": 12562.62, + "probability": 0.9909 + }, + { + "start": 12563.18, + "end": 12566.78, + "probability": 0.9916 + }, + { + "start": 12567.7, + "end": 12569.72, + "probability": 0.109 + }, + { + "start": 12570.58, + "end": 12575.62, + "probability": 0.9915 + }, + { + "start": 12575.62, + "end": 12583.86, + "probability": 0.9974 + }, + { + "start": 12583.92, + "end": 12589.68, + "probability": 0.9146 + }, + { + "start": 12589.8, + "end": 12594.06, + "probability": 0.952 + }, + { + "start": 12594.14, + "end": 12594.74, + "probability": 0.7777 + }, + { + "start": 12595.26, + "end": 12596.04, + "probability": 0.6874 + }, + { + "start": 12597.56, + "end": 12597.88, + "probability": 0.0783 + }, + { + "start": 12598.4, + "end": 12598.7, + "probability": 0.0231 + }, + { + "start": 12598.7, + "end": 12602.12, + "probability": 0.4452 + }, + { + "start": 12602.2, + "end": 12604.04, + "probability": 0.6385 + }, + { + "start": 12605.14, + "end": 12606.66, + "probability": 0.7438 + }, + { + "start": 12607.1, + "end": 12608.16, + "probability": 0.6361 + }, + { + "start": 12608.3, + "end": 12609.58, + "probability": 0.4246 + }, + { + "start": 12611.37, + "end": 12615.14, + "probability": 0.7934 + }, + { + "start": 12615.32, + "end": 12617.14, + "probability": 0.3752 + }, + { + "start": 12617.94, + "end": 12622.98, + "probability": 0.1073 + }, + { + "start": 12625.74, + "end": 12626.71, + "probability": 0.269 + }, + { + "start": 12630.48, + "end": 12631.22, + "probability": 0.3398 + }, + { + "start": 12632.0, + "end": 12634.22, + "probability": 0.3862 + }, + { + "start": 12634.22, + "end": 12634.52, + "probability": 0.5381 + }, + { + "start": 12634.52, + "end": 12634.58, + "probability": 0.0921 + }, + { + "start": 12636.46, + "end": 12638.24, + "probability": 0.1697 + }, + { + "start": 12639.26, + "end": 12642.32, + "probability": 0.3363 + }, + { + "start": 12642.9, + "end": 12643.0, + "probability": 0.5482 + }, + { + "start": 12643.66, + "end": 12646.66, + "probability": 0.7851 + }, + { + "start": 12648.6, + "end": 12651.78, + "probability": 0.0232 + }, + { + "start": 12653.81, + "end": 12654.84, + "probability": 0.0587 + }, + { + "start": 12654.84, + "end": 12654.84, + "probability": 0.0535 + }, + { + "start": 12654.84, + "end": 12654.84, + "probability": 0.0878 + }, + { + "start": 12654.84, + "end": 12655.32, + "probability": 0.2507 + }, + { + "start": 12655.42, + "end": 12658.88, + "probability": 0.5753 + }, + { + "start": 12659.2, + "end": 12659.68, + "probability": 0.5196 + }, + { + "start": 12660.78, + "end": 12661.0, + "probability": 0.1559 + }, + { + "start": 12661.0, + "end": 12663.56, + "probability": 0.3431 + }, + { + "start": 12663.6, + "end": 12663.74, + "probability": 0.3766 + }, + { + "start": 12663.74, + "end": 12664.98, + "probability": 0.7453 + }, + { + "start": 12665.02, + "end": 12665.1, + "probability": 0.3768 + }, + { + "start": 12665.1, + "end": 12667.98, + "probability": 0.7419 + }, + { + "start": 12668.14, + "end": 12668.8, + "probability": 0.751 + }, + { + "start": 12669.7, + "end": 12672.53, + "probability": 0.7036 + }, + { + "start": 12673.22, + "end": 12674.42, + "probability": 0.471 + }, + { + "start": 12674.58, + "end": 12677.06, + "probability": 0.3382 + }, + { + "start": 12677.44, + "end": 12679.02, + "probability": 0.7215 + }, + { + "start": 12679.08, + "end": 12680.14, + "probability": 0.4894 + }, + { + "start": 12680.68, + "end": 12683.04, + "probability": 0.734 + }, + { + "start": 12683.52, + "end": 12684.42, + "probability": 0.5386 + }, + { + "start": 12684.86, + "end": 12686.84, + "probability": 0.5431 + }, + { + "start": 12687.26, + "end": 12688.7, + "probability": 0.654 + }, + { + "start": 12688.8, + "end": 12691.52, + "probability": 0.4749 + }, + { + "start": 12692.3, + "end": 12694.62, + "probability": 0.5167 + }, + { + "start": 12696.64, + "end": 12700.38, + "probability": 0.763 + }, + { + "start": 12701.06, + "end": 12702.28, + "probability": 0.9208 + }, + { + "start": 12703.36, + "end": 12706.78, + "probability": 0.6938 + }, + { + "start": 12708.08, + "end": 12709.92, + "probability": 0.8964 + }, + { + "start": 12713.96, + "end": 12713.96, + "probability": 0.0205 + }, + { + "start": 12713.96, + "end": 12716.96, + "probability": 0.4317 + }, + { + "start": 12717.16, + "end": 12719.68, + "probability": 0.6042 + }, + { + "start": 12719.68, + "end": 12720.34, + "probability": 0.4198 + }, + { + "start": 12720.99, + "end": 12725.12, + "probability": 0.6281 + }, + { + "start": 12725.74, + "end": 12727.32, + "probability": 0.863 + }, + { + "start": 12727.64, + "end": 12728.56, + "probability": 0.8508 + }, + { + "start": 12729.88, + "end": 12734.84, + "probability": 0.7176 + }, + { + "start": 12737.34, + "end": 12738.28, + "probability": 0.5733 + }, + { + "start": 12738.38, + "end": 12740.46, + "probability": 0.9625 + }, + { + "start": 12740.66, + "end": 12742.1, + "probability": 0.9029 + }, + { + "start": 12742.9, + "end": 12746.26, + "probability": 0.9934 + }, + { + "start": 12746.8, + "end": 12748.96, + "probability": 0.9994 + }, + { + "start": 12749.8, + "end": 12751.6, + "probability": 0.9152 + }, + { + "start": 12752.46, + "end": 12753.56, + "probability": 0.5368 + }, + { + "start": 12756.42, + "end": 12761.58, + "probability": 0.9834 + }, + { + "start": 12761.74, + "end": 12764.96, + "probability": 0.8965 + }, + { + "start": 12766.0, + "end": 12768.0, + "probability": 0.6323 + }, + { + "start": 12768.58, + "end": 12772.12, + "probability": 0.9551 + }, + { + "start": 12773.08, + "end": 12774.7, + "probability": 0.8348 + }, + { + "start": 12775.8, + "end": 12782.68, + "probability": 0.9711 + }, + { + "start": 12783.1, + "end": 12787.46, + "probability": 0.9767 + }, + { + "start": 12787.8, + "end": 12791.48, + "probability": 0.7938 + }, + { + "start": 12791.54, + "end": 12791.84, + "probability": 0.3165 + }, + { + "start": 12791.88, + "end": 12796.74, + "probability": 0.999 + }, + { + "start": 12797.26, + "end": 12798.56, + "probability": 0.9417 + }, + { + "start": 12798.56, + "end": 12799.6, + "probability": 0.7987 + }, + { + "start": 12800.04, + "end": 12803.16, + "probability": 0.9951 + }, + { + "start": 12803.64, + "end": 12804.7, + "probability": 0.9921 + }, + { + "start": 12804.78, + "end": 12805.54, + "probability": 0.6251 + }, + { + "start": 12805.9, + "end": 12813.86, + "probability": 0.9902 + }, + { + "start": 12814.6, + "end": 12817.1, + "probability": 0.8755 + }, + { + "start": 12817.96, + "end": 12820.9, + "probability": 0.9918 + }, + { + "start": 12821.2, + "end": 12821.7, + "probability": 0.8547 + }, + { + "start": 12822.12, + "end": 12822.74, + "probability": 0.657 + }, + { + "start": 12823.92, + "end": 12825.36, + "probability": 0.7513 + }, + { + "start": 12825.44, + "end": 12827.32, + "probability": 0.8463 + }, + { + "start": 12827.44, + "end": 12828.87, + "probability": 0.9445 + }, + { + "start": 12829.82, + "end": 12831.36, + "probability": 0.7844 + }, + { + "start": 12845.4, + "end": 12849.1, + "probability": 0.4914 + }, + { + "start": 12850.06, + "end": 12857.86, + "probability": 0.8581 + }, + { + "start": 12858.68, + "end": 12863.02, + "probability": 0.8395 + }, + { + "start": 12863.8, + "end": 12867.46, + "probability": 0.9646 + }, + { + "start": 12868.08, + "end": 12871.62, + "probability": 0.9856 + }, + { + "start": 12871.86, + "end": 12872.56, + "probability": 0.7607 + }, + { + "start": 12873.18, + "end": 12879.24, + "probability": 0.8613 + }, + { + "start": 12879.66, + "end": 12884.24, + "probability": 0.9807 + }, + { + "start": 12884.98, + "end": 12894.0, + "probability": 0.9692 + }, + { + "start": 12895.18, + "end": 12900.74, + "probability": 0.7896 + }, + { + "start": 12901.18, + "end": 12908.94, + "probability": 0.9976 + }, + { + "start": 12909.56, + "end": 12913.58, + "probability": 0.9792 + }, + { + "start": 12913.88, + "end": 12914.38, + "probability": 0.5816 + }, + { + "start": 12914.38, + "end": 12914.6, + "probability": 0.6222 + }, + { + "start": 12915.16, + "end": 12916.88, + "probability": 0.5255 + }, + { + "start": 12916.88, + "end": 12919.2, + "probability": 0.3887 + }, + { + "start": 12919.5, + "end": 12921.2, + "probability": 0.7668 + }, + { + "start": 12921.36, + "end": 12922.62, + "probability": 0.0419 + }, + { + "start": 12922.8, + "end": 12926.1, + "probability": 0.5507 + }, + { + "start": 12926.16, + "end": 12926.98, + "probability": 0.9202 + }, + { + "start": 12927.68, + "end": 12928.42, + "probability": 0.7274 + }, + { + "start": 12929.8, + "end": 12932.14, + "probability": 0.4383 + }, + { + "start": 12932.24, + "end": 12932.24, + "probability": 0.8275 + }, + { + "start": 12932.24, + "end": 12932.32, + "probability": 0.38 + }, + { + "start": 12932.42, + "end": 12934.46, + "probability": 0.768 + }, + { + "start": 12935.04, + "end": 12937.56, + "probability": 0.6841 + }, + { + "start": 12938.0, + "end": 12942.5, + "probability": 0.6903 + }, + { + "start": 12943.22, + "end": 12945.86, + "probability": 0.7964 + }, + { + "start": 12945.86, + "end": 12948.56, + "probability": 0.8158 + }, + { + "start": 12949.2, + "end": 12950.61, + "probability": 0.8862 + }, + { + "start": 12951.12, + "end": 12953.04, + "probability": 0.7128 + }, + { + "start": 12953.16, + "end": 12957.98, + "probability": 0.7759 + }, + { + "start": 12958.08, + "end": 12963.7, + "probability": 0.9536 + }, + { + "start": 12964.4, + "end": 12969.54, + "probability": 0.991 + }, + { + "start": 12970.25, + "end": 12976.34, + "probability": 0.7487 + }, + { + "start": 12976.94, + "end": 12980.56, + "probability": 0.7425 + }, + { + "start": 12982.24, + "end": 12985.0, + "probability": 0.6705 + }, + { + "start": 12985.92, + "end": 12987.62, + "probability": 0.4956 + }, + { + "start": 12988.42, + "end": 12989.04, + "probability": 0.6046 + }, + { + "start": 12989.12, + "end": 12990.84, + "probability": 0.5154 + }, + { + "start": 12990.92, + "end": 12991.78, + "probability": 0.8129 + }, + { + "start": 12991.78, + "end": 12991.98, + "probability": 0.3232 + }, + { + "start": 12992.04, + "end": 12993.62, + "probability": 0.3957 + }, + { + "start": 12993.62, + "end": 12993.69, + "probability": 0.4567 + }, + { + "start": 12994.84, + "end": 12994.9, + "probability": 0.5482 + }, + { + "start": 12994.9, + "end": 12995.16, + "probability": 0.4778 + }, + { + "start": 12995.64, + "end": 12996.1, + "probability": 0.5402 + }, + { + "start": 12996.76, + "end": 12999.72, + "probability": 0.9281 + }, + { + "start": 12999.86, + "end": 13002.06, + "probability": 0.8038 + }, + { + "start": 13002.12, + "end": 13005.94, + "probability": 0.6547 + }, + { + "start": 13006.5, + "end": 13007.2, + "probability": 0.7774 + }, + { + "start": 13007.78, + "end": 13008.24, + "probability": 0.563 + }, + { + "start": 13008.66, + "end": 13009.42, + "probability": 0.8414 + }, + { + "start": 13009.42, + "end": 13009.56, + "probability": 0.6349 + }, + { + "start": 13009.76, + "end": 13013.32, + "probability": 0.8386 + }, + { + "start": 13013.46, + "end": 13013.74, + "probability": 0.4598 + }, + { + "start": 13014.4, + "end": 13014.68, + "probability": 0.5937 + }, + { + "start": 13015.74, + "end": 13016.9, + "probability": 0.855 + }, + { + "start": 13018.56, + "end": 13021.38, + "probability": 0.6304 + }, + { + "start": 13021.42, + "end": 13021.98, + "probability": 0.8469 + }, + { + "start": 13022.1, + "end": 13022.5, + "probability": 0.8427 + }, + { + "start": 13033.52, + "end": 13035.64, + "probability": 0.646 + }, + { + "start": 13036.1, + "end": 13038.12, + "probability": 0.9295 + }, + { + "start": 13038.98, + "end": 13040.02, + "probability": 0.7345 + }, + { + "start": 13040.12, + "end": 13041.5, + "probability": 0.836 + }, + { + "start": 13041.58, + "end": 13043.58, + "probability": 0.972 + }, + { + "start": 13044.6, + "end": 13050.28, + "probability": 0.7741 + }, + { + "start": 13050.28, + "end": 13052.68, + "probability": 0.985 + }, + { + "start": 13053.36, + "end": 13055.1, + "probability": 0.9893 + }, + { + "start": 13055.82, + "end": 13059.9, + "probability": 0.9936 + }, + { + "start": 13059.9, + "end": 13063.22, + "probability": 0.975 + }, + { + "start": 13063.36, + "end": 13065.4, + "probability": 0.7718 + }, + { + "start": 13066.28, + "end": 13066.88, + "probability": 0.6131 + }, + { + "start": 13067.45, + "end": 13069.4, + "probability": 0.714 + }, + { + "start": 13069.72, + "end": 13071.7, + "probability": 0.5162 + }, + { + "start": 13071.92, + "end": 13074.34, + "probability": 0.6055 + }, + { + "start": 13075.0, + "end": 13077.5, + "probability": 0.7991 + }, + { + "start": 13077.6, + "end": 13080.02, + "probability": 0.9893 + }, + { + "start": 13081.34, + "end": 13084.06, + "probability": 0.8164 + }, + { + "start": 13084.8, + "end": 13088.34, + "probability": 0.9929 + }, + { + "start": 13088.44, + "end": 13089.0, + "probability": 0.7535 + }, + { + "start": 13089.04, + "end": 13091.02, + "probability": 0.9898 + }, + { + "start": 13091.44, + "end": 13093.72, + "probability": 0.7534 + }, + { + "start": 13093.94, + "end": 13098.26, + "probability": 0.9956 + }, + { + "start": 13098.26, + "end": 13102.18, + "probability": 0.9337 + }, + { + "start": 13102.28, + "end": 13103.82, + "probability": 0.4594 + }, + { + "start": 13103.9, + "end": 13107.9, + "probability": 0.9926 + }, + { + "start": 13108.44, + "end": 13112.28, + "probability": 0.9915 + }, + { + "start": 13112.28, + "end": 13115.94, + "probability": 0.9476 + }, + { + "start": 13116.54, + "end": 13118.12, + "probability": 0.7801 + }, + { + "start": 13118.18, + "end": 13118.6, + "probability": 0.3628 + }, + { + "start": 13118.64, + "end": 13121.5, + "probability": 0.8345 + }, + { + "start": 13121.56, + "end": 13122.8, + "probability": 0.8944 + }, + { + "start": 13122.82, + "end": 13124.04, + "probability": 0.9029 + }, + { + "start": 13124.4, + "end": 13126.68, + "probability": 0.7886 + }, + { + "start": 13126.82, + "end": 13128.78, + "probability": 0.6791 + }, + { + "start": 13128.78, + "end": 13131.36, + "probability": 0.9917 + }, + { + "start": 13131.9, + "end": 13132.52, + "probability": 0.563 + }, + { + "start": 13132.68, + "end": 13136.45, + "probability": 0.9531 + }, + { + "start": 13137.68, + "end": 13139.08, + "probability": 0.4579 + }, + { + "start": 13139.12, + "end": 13144.06, + "probability": 0.9468 + }, + { + "start": 13144.28, + "end": 13146.7, + "probability": 0.9508 + }, + { + "start": 13147.26, + "end": 13149.22, + "probability": 0.9045 + }, + { + "start": 13150.04, + "end": 13157.04, + "probability": 0.9867 + }, + { + "start": 13159.76, + "end": 13163.68, + "probability": 0.9142 + }, + { + "start": 13163.76, + "end": 13167.02, + "probability": 0.9907 + }, + { + "start": 13167.76, + "end": 13172.06, + "probability": 0.9964 + }, + { + "start": 13172.06, + "end": 13178.26, + "probability": 0.9993 + }, + { + "start": 13178.8, + "end": 13182.02, + "probability": 0.9356 + }, + { + "start": 13182.08, + "end": 13185.4, + "probability": 0.9955 + }, + { + "start": 13185.78, + "end": 13191.58, + "probability": 0.9931 + }, + { + "start": 13192.72, + "end": 13194.8, + "probability": 0.9927 + }, + { + "start": 13195.32, + "end": 13197.52, + "probability": 0.9894 + }, + { + "start": 13197.92, + "end": 13203.46, + "probability": 0.995 + }, + { + "start": 13203.68, + "end": 13205.4, + "probability": 0.9349 + }, + { + "start": 13205.46, + "end": 13206.06, + "probability": 0.522 + }, + { + "start": 13206.1, + "end": 13208.47, + "probability": 0.9843 + }, + { + "start": 13209.86, + "end": 13210.52, + "probability": 0.7269 + }, + { + "start": 13210.52, + "end": 13211.54, + "probability": 0.3934 + }, + { + "start": 13211.6, + "end": 13217.82, + "probability": 0.9844 + }, + { + "start": 13218.0, + "end": 13220.86, + "probability": 0.9839 + }, + { + "start": 13220.98, + "end": 13224.46, + "probability": 0.948 + }, + { + "start": 13224.58, + "end": 13228.82, + "probability": 0.998 + }, + { + "start": 13228.88, + "end": 13230.5, + "probability": 0.9132 + }, + { + "start": 13231.24, + "end": 13232.04, + "probability": 0.9755 + }, + { + "start": 13232.24, + "end": 13234.84, + "probability": 0.8891 + }, + { + "start": 13234.92, + "end": 13238.2, + "probability": 0.9938 + }, + { + "start": 13238.78, + "end": 13239.3, + "probability": 0.7788 + }, + { + "start": 13239.42, + "end": 13240.52, + "probability": 0.9712 + }, + { + "start": 13240.54, + "end": 13246.2, + "probability": 0.99 + }, + { + "start": 13246.54, + "end": 13246.92, + "probability": 0.7371 + }, + { + "start": 13247.46, + "end": 13248.08, + "probability": 0.7308 + }, + { + "start": 13248.76, + "end": 13249.14, + "probability": 0.795 + }, + { + "start": 13250.1, + "end": 13252.98, + "probability": 0.7878 + }, + { + "start": 13254.52, + "end": 13255.12, + "probability": 0.4512 + }, + { + "start": 13255.22, + "end": 13257.1, + "probability": 0.5355 + }, + { + "start": 13257.1, + "end": 13258.22, + "probability": 0.7981 + }, + { + "start": 13258.32, + "end": 13259.1, + "probability": 0.3782 + }, + { + "start": 13259.26, + "end": 13261.2, + "probability": 0.597 + }, + { + "start": 13261.26, + "end": 13264.24, + "probability": 0.5242 + }, + { + "start": 13264.96, + "end": 13266.46, + "probability": 0.2986 + }, + { + "start": 13267.2, + "end": 13272.54, + "probability": 0.0415 + }, + { + "start": 13276.74, + "end": 13278.2, + "probability": 0.0463 + }, + { + "start": 13278.95, + "end": 13279.04, + "probability": 0.0586 + }, + { + "start": 13279.16, + "end": 13282.18, + "probability": 0.5044 + }, + { + "start": 13282.32, + "end": 13282.64, + "probability": 0.6937 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13370.42, + "end": 13371.54, + "probability": 0.3925 + }, + { + "start": 13371.54, + "end": 13373.38, + "probability": 0.7474 + }, + { + "start": 13373.54, + "end": 13374.36, + "probability": 0.653 + }, + { + "start": 13374.42, + "end": 13375.0, + "probability": 0.3297 + }, + { + "start": 13375.14, + "end": 13376.17, + "probability": 0.8467 + }, + { + "start": 13376.32, + "end": 13377.7, + "probability": 0.6678 + }, + { + "start": 13377.7, + "end": 13380.34, + "probability": 0.9547 + }, + { + "start": 13380.34, + "end": 13380.68, + "probability": 0.4535 + }, + { + "start": 13380.82, + "end": 13382.0, + "probability": 0.5859 + }, + { + "start": 13382.12, + "end": 13386.34, + "probability": 0.6631 + }, + { + "start": 13387.36, + "end": 13388.36, + "probability": 0.7729 + }, + { + "start": 13388.36, + "end": 13391.08, + "probability": 0.8464 + }, + { + "start": 13391.72, + "end": 13393.7, + "probability": 0.8328 + }, + { + "start": 13394.34, + "end": 13395.22, + "probability": 0.2226 + }, + { + "start": 13395.84, + "end": 13399.54, + "probability": 0.055 + }, + { + "start": 13399.7, + "end": 13401.24, + "probability": 0.0838 + }, + { + "start": 13402.46, + "end": 13402.88, + "probability": 0.0552 + }, + { + "start": 13402.88, + "end": 13403.9, + "probability": 0.3148 + }, + { + "start": 13404.78, + "end": 13404.88, + "probability": 0.1713 + }, + { + "start": 13404.88, + "end": 13405.16, + "probability": 0.4752 + }, + { + "start": 13405.24, + "end": 13405.46, + "probability": 0.5157 + }, + { + "start": 13405.5, + "end": 13406.42, + "probability": 0.5347 + }, + { + "start": 13407.22, + "end": 13408.38, + "probability": 0.315 + }, + { + "start": 13408.38, + "end": 13408.54, + "probability": 0.3252 + }, + { + "start": 13408.54, + "end": 13408.58, + "probability": 0.3184 + }, + { + "start": 13409.62, + "end": 13412.42, + "probability": 0.2913 + }, + { + "start": 13414.56, + "end": 13415.18, + "probability": 0.2083 + }, + { + "start": 13415.46, + "end": 13416.76, + "probability": 0.1243 + }, + { + "start": 13416.96, + "end": 13416.96, + "probability": 0.0784 + }, + { + "start": 13416.96, + "end": 13418.25, + "probability": 0.2523 + }, + { + "start": 13420.6, + "end": 13422.44, + "probability": 0.5474 + }, + { + "start": 13423.32, + "end": 13429.4, + "probability": 0.6898 + }, + { + "start": 13430.32, + "end": 13431.42, + "probability": 0.5454 + }, + { + "start": 13431.88, + "end": 13432.63, + "probability": 0.3354 + }, + { + "start": 13434.6, + "end": 13435.92, + "probability": 0.1793 + }, + { + "start": 13436.46, + "end": 13436.98, + "probability": 0.184 + }, + { + "start": 13437.46, + "end": 13439.2, + "probability": 0.0782 + }, + { + "start": 13439.22, + "end": 13444.0, + "probability": 0.2013 + }, + { + "start": 13444.48, + "end": 13450.18, + "probability": 0.2464 + }, + { + "start": 13451.3, + "end": 13454.82, + "probability": 0.8704 + }, + { + "start": 13456.7, + "end": 13460.68, + "probability": 0.0414 + }, + { + "start": 13460.72, + "end": 13460.72, + "probability": 0.001 + }, + { + "start": 13468.61, + "end": 13470.21, + "probability": 0.3232 + }, + { + "start": 13473.43, + "end": 13477.83, + "probability": 0.7925 + }, + { + "start": 13479.05, + "end": 13480.87, + "probability": 0.9922 + }, + { + "start": 13480.91, + "end": 13481.53, + "probability": 0.6468 + }, + { + "start": 13481.63, + "end": 13482.65, + "probability": 0.9384 + }, + { + "start": 13483.15, + "end": 13485.03, + "probability": 0.7518 + }, + { + "start": 13485.51, + "end": 13486.13, + "probability": 0.0025 + }, + { + "start": 13494.46, + "end": 13495.34, + "probability": 0.1218 + }, + { + "start": 13495.56, + "end": 13495.94, + "probability": 0.1743 + }, + { + "start": 13495.94, + "end": 13497.82, + "probability": 0.0488 + }, + { + "start": 13498.82, + "end": 13502.24, + "probability": 0.0321 + }, + { + "start": 13502.24, + "end": 13503.86, + "probability": 0.0796 + }, + { + "start": 13504.28, + "end": 13505.38, + "probability": 0.066 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.0, + "end": 13614.0, + "probability": 0.0 + }, + { + "start": 13614.08, + "end": 13615.1, + "probability": 0.8123 + }, + { + "start": 13615.9, + "end": 13620.24, + "probability": 0.9961 + }, + { + "start": 13620.34, + "end": 13622.34, + "probability": 0.9893 + }, + { + "start": 13623.1, + "end": 13624.26, + "probability": 0.9902 + }, + { + "start": 13624.28, + "end": 13626.38, + "probability": 0.9849 + }, + { + "start": 13627.24, + "end": 13629.98, + "probability": 0.8055 + }, + { + "start": 13630.22, + "end": 13634.26, + "probability": 0.751 + }, + { + "start": 13634.36, + "end": 13635.1, + "probability": 0.0503 + }, + { + "start": 13635.56, + "end": 13635.56, + "probability": 0.0461 + }, + { + "start": 13635.76, + "end": 13637.14, + "probability": 0.5025 + }, + { + "start": 13637.18, + "end": 13638.39, + "probability": 0.7606 + }, + { + "start": 13638.8, + "end": 13640.44, + "probability": 0.9935 + }, + { + "start": 13641.1, + "end": 13641.54, + "probability": 0.0911 + }, + { + "start": 13641.62, + "end": 13643.62, + "probability": 0.628 + }, + { + "start": 13643.68, + "end": 13644.7, + "probability": 0.941 + }, + { + "start": 13644.98, + "end": 13645.94, + "probability": 0.2078 + }, + { + "start": 13646.58, + "end": 13647.92, + "probability": 0.2745 + }, + { + "start": 13648.0, + "end": 13650.4, + "probability": 0.0238 + }, + { + "start": 13652.64, + "end": 13655.16, + "probability": 0.0228 + }, + { + "start": 13655.16, + "end": 13655.6, + "probability": 0.0481 + }, + { + "start": 13657.28, + "end": 13663.16, + "probability": 0.254 + }, + { + "start": 13663.6, + "end": 13664.24, + "probability": 0.0581 + }, + { + "start": 13664.8, + "end": 13668.9, + "probability": 0.0851 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.0, + "end": 13743.0, + "probability": 0.0 + }, + { + "start": 13743.1, + "end": 13743.94, + "probability": 0.0044 + }, + { + "start": 13744.26, + "end": 13747.16, + "probability": 0.0649 + }, + { + "start": 13747.98, + "end": 13748.64, + "probability": 0.1034 + }, + { + "start": 13748.68, + "end": 13751.04, + "probability": 0.0818 + }, + { + "start": 13751.4, + "end": 13751.4, + "probability": 0.0367 + }, + { + "start": 13752.16, + "end": 13752.52, + "probability": 0.1112 + }, + { + "start": 13753.26, + "end": 13755.78, + "probability": 0.0295 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.0, + "end": 13863.0, + "probability": 0.0 + }, + { + "start": 13863.46, + "end": 13863.58, + "probability": 0.0751 + }, + { + "start": 13863.58, + "end": 13867.9, + "probability": 0.9025 + }, + { + "start": 13868.53, + "end": 13871.4, + "probability": 0.6845 + }, + { + "start": 13871.52, + "end": 13871.8, + "probability": 0.4929 + }, + { + "start": 13871.96, + "end": 13872.54, + "probability": 0.7031 + }, + { + "start": 13872.62, + "end": 13875.16, + "probability": 0.9779 + }, + { + "start": 13876.83, + "end": 13878.0, + "probability": 0.4626 + }, + { + "start": 13878.16, + "end": 13878.34, + "probability": 0.1565 + }, + { + "start": 13878.46, + "end": 13878.64, + "probability": 0.496 + }, + { + "start": 13878.7, + "end": 13878.7, + "probability": 0.4597 + }, + { + "start": 13878.8, + "end": 13879.18, + "probability": 0.8122 + }, + { + "start": 13879.22, + "end": 13879.98, + "probability": 0.7291 + }, + { + "start": 13880.04, + "end": 13880.34, + "probability": 0.7051 + }, + { + "start": 13880.62, + "end": 13881.44, + "probability": 0.9253 + }, + { + "start": 13881.56, + "end": 13882.97, + "probability": 0.8962 + }, + { + "start": 13883.16, + "end": 13884.17, + "probability": 0.9257 + }, + { + "start": 13884.86, + "end": 13887.38, + "probability": 0.7768 + }, + { + "start": 13887.56, + "end": 13889.68, + "probability": 0.9746 + }, + { + "start": 13889.82, + "end": 13891.08, + "probability": 0.9976 + }, + { + "start": 13891.8, + "end": 13892.52, + "probability": 0.8107 + }, + { + "start": 13892.74, + "end": 13893.22, + "probability": 0.6452 + }, + { + "start": 13899.64, + "end": 13901.34, + "probability": 0.5379 + }, + { + "start": 13901.98, + "end": 13903.4, + "probability": 0.9116 + }, + { + "start": 13904.32, + "end": 13910.12, + "probability": 0.9807 + }, + { + "start": 13910.7, + "end": 13914.16, + "probability": 0.9922 + }, + { + "start": 13914.62, + "end": 13915.58, + "probability": 0.4976 + }, + { + "start": 13915.66, + "end": 13920.2, + "probability": 0.9975 + }, + { + "start": 13920.94, + "end": 13924.42, + "probability": 0.9988 + }, + { + "start": 13925.2, + "end": 13926.98, + "probability": 0.998 + }, + { + "start": 13927.6, + "end": 13928.82, + "probability": 0.9279 + }, + { + "start": 13929.44, + "end": 13930.02, + "probability": 0.823 + }, + { + "start": 13930.58, + "end": 13933.46, + "probability": 0.9245 + }, + { + "start": 13934.36, + "end": 13939.02, + "probability": 0.9207 + }, + { + "start": 13939.9, + "end": 13947.33, + "probability": 0.9927 + }, + { + "start": 13947.84, + "end": 13953.78, + "probability": 0.9993 + }, + { + "start": 13954.7, + "end": 13957.74, + "probability": 0.9995 + }, + { + "start": 13957.74, + "end": 13961.74, + "probability": 0.998 + }, + { + "start": 13962.48, + "end": 13962.9, + "probability": 0.483 + }, + { + "start": 13963.46, + "end": 13964.36, + "probability": 0.9993 + }, + { + "start": 13965.32, + "end": 13966.6, + "probability": 0.9093 + }, + { + "start": 13966.92, + "end": 13968.48, + "probability": 0.3694 + }, + { + "start": 13969.9, + "end": 13974.12, + "probability": 0.9578 + }, + { + "start": 13975.08, + "end": 13979.78, + "probability": 0.9874 + }, + { + "start": 13980.99, + "end": 13984.48, + "probability": 0.9773 + }, + { + "start": 13984.66, + "end": 13985.5, + "probability": 0.3888 + }, + { + "start": 13985.56, + "end": 13988.0, + "probability": 0.9642 + }, + { + "start": 13989.58, + "end": 13993.88, + "probability": 0.9597 + }, + { + "start": 13995.52, + "end": 13997.24, + "probability": 0.9865 + }, + { + "start": 13997.7, + "end": 14002.0, + "probability": 0.9985 + }, + { + "start": 14002.56, + "end": 14003.94, + "probability": 0.9977 + }, + { + "start": 14005.22, + "end": 14010.32, + "probability": 0.9986 + }, + { + "start": 14011.34, + "end": 14011.8, + "probability": 0.859 + }, + { + "start": 14011.94, + "end": 14015.94, + "probability": 0.9895 + }, + { + "start": 14016.58, + "end": 14017.98, + "probability": 0.9281 + }, + { + "start": 14019.26, + "end": 14020.74, + "probability": 0.9524 + }, + { + "start": 14021.32, + "end": 14025.92, + "probability": 0.9829 + }, + { + "start": 14026.46, + "end": 14029.32, + "probability": 0.8846 + }, + { + "start": 14030.02, + "end": 14032.94, + "probability": 0.7649 + }, + { + "start": 14033.82, + "end": 14034.34, + "probability": 0.9764 + }, + { + "start": 14035.16, + "end": 14035.82, + "probability": 0.8447 + }, + { + "start": 14036.72, + "end": 14038.82, + "probability": 0.9946 + }, + { + "start": 14039.44, + "end": 14040.82, + "probability": 0.9809 + }, + { + "start": 14041.56, + "end": 14046.44, + "probability": 0.995 + }, + { + "start": 14046.9, + "end": 14050.84, + "probability": 0.9888 + }, + { + "start": 14051.66, + "end": 14051.86, + "probability": 0.4559 + }, + { + "start": 14052.64, + "end": 14053.72, + "probability": 0.7775 + }, + { + "start": 14053.86, + "end": 14054.14, + "probability": 0.8703 + }, + { + "start": 14054.26, + "end": 14056.04, + "probability": 0.9048 + }, + { + "start": 14056.96, + "end": 14059.68, + "probability": 0.9065 + }, + { + "start": 14060.4, + "end": 14061.1, + "probability": 0.8068 + }, + { + "start": 14063.3, + "end": 14066.66, + "probability": 0.899 + }, + { + "start": 14067.32, + "end": 14068.82, + "probability": 0.5123 + }, + { + "start": 14070.8, + "end": 14075.06, + "probability": 0.9655 + }, + { + "start": 14075.06, + "end": 14077.86, + "probability": 0.9966 + }, + { + "start": 14078.66, + "end": 14081.68, + "probability": 0.9446 + }, + { + "start": 14082.26, + "end": 14086.14, + "probability": 0.8868 + }, + { + "start": 14086.9, + "end": 14087.38, + "probability": 0.681 + }, + { + "start": 14088.78, + "end": 14091.88, + "probability": 0.9067 + }, + { + "start": 14094.28, + "end": 14096.08, + "probability": 0.9977 + }, + { + "start": 14096.16, + "end": 14097.02, + "probability": 0.8003 + }, + { + "start": 14097.5, + "end": 14099.5, + "probability": 0.996 + }, + { + "start": 14102.0, + "end": 14105.08, + "probability": 0.9902 + }, + { + "start": 14106.02, + "end": 14108.2, + "probability": 0.7579 + }, + { + "start": 14108.26, + "end": 14112.86, + "probability": 0.955 + }, + { + "start": 14113.04, + "end": 14114.32, + "probability": 0.9939 + }, + { + "start": 14115.26, + "end": 14117.24, + "probability": 0.9898 + }, + { + "start": 14118.48, + "end": 14120.0, + "probability": 0.9783 + }, + { + "start": 14122.5, + "end": 14124.12, + "probability": 0.9598 + }, + { + "start": 14125.04, + "end": 14126.66, + "probability": 0.9913 + }, + { + "start": 14127.62, + "end": 14129.28, + "probability": 0.9957 + }, + { + "start": 14129.9, + "end": 14130.96, + "probability": 0.9938 + }, + { + "start": 14131.08, + "end": 14133.9, + "probability": 0.9782 + }, + { + "start": 14133.9, + "end": 14136.32, + "probability": 0.9984 + }, + { + "start": 14137.56, + "end": 14139.74, + "probability": 0.9755 + }, + { + "start": 14143.74, + "end": 14146.2, + "probability": 0.8118 + }, + { + "start": 14147.38, + "end": 14147.54, + "probability": 0.76 + }, + { + "start": 14147.54, + "end": 14152.82, + "probability": 0.7378 + }, + { + "start": 14153.68, + "end": 14155.22, + "probability": 0.6639 + }, + { + "start": 14156.08, + "end": 14157.32, + "probability": 0.9953 + }, + { + "start": 14158.96, + "end": 14160.48, + "probability": 0.9873 + }, + { + "start": 14161.78, + "end": 14162.9, + "probability": 0.9924 + }, + { + "start": 14163.22, + "end": 14165.92, + "probability": 0.994 + }, + { + "start": 14167.28, + "end": 14171.72, + "probability": 0.8795 + }, + { + "start": 14172.48, + "end": 14173.72, + "probability": 0.9108 + }, + { + "start": 14174.82, + "end": 14179.18, + "probability": 0.9567 + }, + { + "start": 14179.74, + "end": 14182.08, + "probability": 0.9562 + }, + { + "start": 14182.66, + "end": 14184.1, + "probability": 0.8688 + }, + { + "start": 14185.24, + "end": 14185.86, + "probability": 0.8838 + }, + { + "start": 14186.6, + "end": 14187.5, + "probability": 0.9771 + }, + { + "start": 14189.16, + "end": 14190.34, + "probability": 0.9786 + }, + { + "start": 14190.88, + "end": 14193.54, + "probability": 0.99 + }, + { + "start": 14194.14, + "end": 14195.04, + "probability": 0.9379 + }, + { + "start": 14195.16, + "end": 14198.98, + "probability": 0.9971 + }, + { + "start": 14198.98, + "end": 14200.31, + "probability": 0.9709 + }, + { + "start": 14202.22, + "end": 14205.9, + "probability": 0.9754 + }, + { + "start": 14206.84, + "end": 14210.4, + "probability": 0.9979 + }, + { + "start": 14211.3, + "end": 14214.36, + "probability": 0.9927 + }, + { + "start": 14216.52, + "end": 14218.54, + "probability": 0.7299 + }, + { + "start": 14219.1, + "end": 14222.6, + "probability": 0.997 + }, + { + "start": 14223.62, + "end": 14224.78, + "probability": 0.9538 + }, + { + "start": 14225.44, + "end": 14226.52, + "probability": 0.8466 + }, + { + "start": 14227.42, + "end": 14228.02, + "probability": 0.9712 + }, + { + "start": 14229.46, + "end": 14230.24, + "probability": 0.4947 + }, + { + "start": 14231.44, + "end": 14233.1, + "probability": 0.9935 + }, + { + "start": 14234.36, + "end": 14235.16, + "probability": 0.7227 + }, + { + "start": 14235.9, + "end": 14236.82, + "probability": 0.991 + }, + { + "start": 14237.46, + "end": 14241.86, + "probability": 0.9953 + }, + { + "start": 14242.78, + "end": 14244.24, + "probability": 0.9507 + }, + { + "start": 14244.9, + "end": 14246.58, + "probability": 0.9987 + }, + { + "start": 14247.66, + "end": 14248.9, + "probability": 0.5491 + }, + { + "start": 14249.54, + "end": 14252.52, + "probability": 0.9917 + }, + { + "start": 14253.64, + "end": 14257.98, + "probability": 0.9937 + }, + { + "start": 14258.6, + "end": 14261.82, + "probability": 0.7512 + }, + { + "start": 14261.88, + "end": 14264.71, + "probability": 0.9907 + }, + { + "start": 14265.66, + "end": 14266.26, + "probability": 0.6642 + }, + { + "start": 14267.1, + "end": 14269.64, + "probability": 0.6059 + }, + { + "start": 14270.52, + "end": 14274.32, + "probability": 0.9856 + }, + { + "start": 14275.34, + "end": 14277.3, + "probability": 0.7178 + }, + { + "start": 14278.04, + "end": 14280.64, + "probability": 0.9913 + }, + { + "start": 14281.68, + "end": 14283.98, + "probability": 0.9742 + }, + { + "start": 14284.88, + "end": 14289.4, + "probability": 0.9933 + }, + { + "start": 14291.86, + "end": 14296.54, + "probability": 0.9645 + }, + { + "start": 14298.06, + "end": 14303.1, + "probability": 0.9878 + }, + { + "start": 14303.82, + "end": 14305.38, + "probability": 0.7371 + }, + { + "start": 14306.36, + "end": 14309.68, + "probability": 0.6862 + }, + { + "start": 14310.82, + "end": 14312.68, + "probability": 0.98 + }, + { + "start": 14314.0, + "end": 14315.72, + "probability": 0.6651 + }, + { + "start": 14316.44, + "end": 14317.1, + "probability": 0.8654 + }, + { + "start": 14317.8, + "end": 14320.3, + "probability": 0.9212 + }, + { + "start": 14321.24, + "end": 14322.7, + "probability": 0.9766 + }, + { + "start": 14323.98, + "end": 14324.9, + "probability": 0.9934 + }, + { + "start": 14325.5, + "end": 14326.3, + "probability": 0.9401 + }, + { + "start": 14329.04, + "end": 14329.62, + "probability": 0.6689 + }, + { + "start": 14331.16, + "end": 14332.26, + "probability": 0.9814 + }, + { + "start": 14333.86, + "end": 14334.56, + "probability": 0.3482 + }, + { + "start": 14335.48, + "end": 14336.22, + "probability": 0.7212 + }, + { + "start": 14336.98, + "end": 14337.56, + "probability": 0.5002 + }, + { + "start": 14338.54, + "end": 14340.36, + "probability": 0.5928 + }, + { + "start": 14340.36, + "end": 14340.78, + "probability": 0.6278 + }, + { + "start": 14342.02, + "end": 14343.84, + "probability": 0.9582 + }, + { + "start": 14347.8, + "end": 14355.76, + "probability": 0.9741 + }, + { + "start": 14356.0, + "end": 14357.96, + "probability": 0.8996 + }, + { + "start": 14358.84, + "end": 14359.46, + "probability": 0.9363 + }, + { + "start": 14360.08, + "end": 14360.58, + "probability": 0.5467 + }, + { + "start": 14361.32, + "end": 14361.86, + "probability": 0.967 + }, + { + "start": 14363.6, + "end": 14366.08, + "probability": 0.9016 + }, + { + "start": 14366.92, + "end": 14370.52, + "probability": 0.9854 + }, + { + "start": 14370.58, + "end": 14371.3, + "probability": 0.9863 + }, + { + "start": 14372.4, + "end": 14379.22, + "probability": 0.9945 + }, + { + "start": 14379.86, + "end": 14382.28, + "probability": 0.8373 + }, + { + "start": 14383.66, + "end": 14384.19, + "probability": 0.9783 + }, + { + "start": 14384.88, + "end": 14385.38, + "probability": 0.9336 + }, + { + "start": 14386.46, + "end": 14388.56, + "probability": 0.9325 + }, + { + "start": 14389.52, + "end": 14393.14, + "probability": 0.8399 + }, + { + "start": 14394.42, + "end": 14397.2, + "probability": 0.9814 + }, + { + "start": 14399.04, + "end": 14401.4, + "probability": 0.9917 + }, + { + "start": 14401.98, + "end": 14402.66, + "probability": 0.8891 + }, + { + "start": 14404.72, + "end": 14411.38, + "probability": 0.9974 + }, + { + "start": 14411.68, + "end": 14411.68, + "probability": 0.0617 + }, + { + "start": 14411.72, + "end": 14414.48, + "probability": 0.9802 + }, + { + "start": 14415.3, + "end": 14420.1, + "probability": 0.9994 + }, + { + "start": 14420.1, + "end": 14425.06, + "probability": 0.9754 + }, + { + "start": 14425.48, + "end": 14427.25, + "probability": 0.9608 + }, + { + "start": 14427.46, + "end": 14428.4, + "probability": 0.555 + }, + { + "start": 14429.4, + "end": 14434.94, + "probability": 0.9929 + }, + { + "start": 14435.4, + "end": 14440.84, + "probability": 0.2191 + }, + { + "start": 14440.98, + "end": 14441.24, + "probability": 0.014 + }, + { + "start": 14441.24, + "end": 14441.24, + "probability": 0.0695 + }, + { + "start": 14441.24, + "end": 14442.9, + "probability": 0.5258 + }, + { + "start": 14443.22, + "end": 14444.2, + "probability": 0.5215 + }, + { + "start": 14444.32, + "end": 14445.18, + "probability": 0.8579 + }, + { + "start": 14445.44, + "end": 14446.04, + "probability": 0.7059 + }, + { + "start": 14446.12, + "end": 14447.18, + "probability": 0.5997 + }, + { + "start": 14447.64, + "end": 14448.54, + "probability": 0.0473 + }, + { + "start": 14449.28, + "end": 14451.64, + "probability": 0.1121 + }, + { + "start": 14454.64, + "end": 14458.04, + "probability": 0.0368 + }, + { + "start": 14458.04, + "end": 14459.71, + "probability": 0.0425 + }, + { + "start": 14460.3, + "end": 14461.56, + "probability": 0.052 + }, + { + "start": 14462.64, + "end": 14463.62, + "probability": 0.1736 + }, + { + "start": 14463.62, + "end": 14464.26, + "probability": 0.3276 + }, + { + "start": 14464.26, + "end": 14466.06, + "probability": 0.0147 + }, + { + "start": 14466.62, + "end": 14466.62, + "probability": 0.0107 + }, + { + "start": 14466.62, + "end": 14468.72, + "probability": 0.0774 + }, + { + "start": 14470.41, + "end": 14474.74, + "probability": 0.0569 + }, + { + "start": 14474.74, + "end": 14477.24, + "probability": 0.1882 + }, + { + "start": 14477.24, + "end": 14477.24, + "probability": 0.1538 + }, + { + "start": 14477.24, + "end": 14478.08, + "probability": 0.5764 + }, + { + "start": 14478.16, + "end": 14478.94, + "probability": 0.5634 + }, + { + "start": 14479.06, + "end": 14482.78, + "probability": 0.9951 + }, + { + "start": 14483.74, + "end": 14484.88, + "probability": 0.9881 + }, + { + "start": 14485.74, + "end": 14487.94, + "probability": 0.7157 + }, + { + "start": 14488.06, + "end": 14491.22, + "probability": 0.6461 + }, + { + "start": 14491.4, + "end": 14493.14, + "probability": 0.8527 + }, + { + "start": 14493.2, + "end": 14494.64, + "probability": 0.8153 + }, + { + "start": 14494.72, + "end": 14495.48, + "probability": 0.8313 + }, + { + "start": 14495.54, + "end": 14496.02, + "probability": 0.4969 + }, + { + "start": 14496.08, + "end": 14496.38, + "probability": 0.7836 + }, + { + "start": 14496.48, + "end": 14498.98, + "probability": 0.8018 + }, + { + "start": 14499.58, + "end": 14502.48, + "probability": 0.9804 + }, + { + "start": 14502.64, + "end": 14503.06, + "probability": 0.454 + }, + { + "start": 14503.08, + "end": 14503.94, + "probability": 0.0257 + }, + { + "start": 14504.08, + "end": 14504.3, + "probability": 0.1949 + }, + { + "start": 14504.3, + "end": 14505.56, + "probability": 0.9494 + }, + { + "start": 14506.08, + "end": 14507.78, + "probability": 0.9906 + }, + { + "start": 14507.94, + "end": 14513.54, + "probability": 0.842 + }, + { + "start": 14513.62, + "end": 14515.38, + "probability": 0.9712 + }, + { + "start": 14515.66, + "end": 14517.58, + "probability": 0.352 + }, + { + "start": 14519.04, + "end": 14519.9, + "probability": 0.055 + }, + { + "start": 14519.9, + "end": 14520.24, + "probability": 0.2525 + }, + { + "start": 14520.98, + "end": 14520.98, + "probability": 0.0071 + }, + { + "start": 14520.98, + "end": 14520.98, + "probability": 0.0692 + }, + { + "start": 14520.98, + "end": 14522.34, + "probability": 0.9694 + }, + { + "start": 14524.9, + "end": 14526.48, + "probability": 0.9743 + }, + { + "start": 14530.56, + "end": 14535.24, + "probability": 0.1412 + }, + { + "start": 14535.26, + "end": 14538.18, + "probability": 0.501 + }, + { + "start": 14538.5, + "end": 14538.76, + "probability": 0.6143 + }, + { + "start": 14538.92, + "end": 14542.5, + "probability": 0.4498 + }, + { + "start": 14543.32, + "end": 14545.2, + "probability": 0.7272 + }, + { + "start": 14546.92, + "end": 14550.57, + "probability": 0.1512 + }, + { + "start": 14551.0, + "end": 14553.32, + "probability": 0.7404 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14672.0, + "end": 14672.0, + "probability": 0.0 + }, + { + "start": 14687.18, + "end": 14687.44, + "probability": 0.0772 + }, + { + "start": 14689.46, + "end": 14690.34, + "probability": 0.1706 + }, + { + "start": 14691.46, + "end": 14693.76, + "probability": 0.3774 + }, + { + "start": 14693.8, + "end": 14695.1, + "probability": 0.0603 + }, + { + "start": 14696.58, + "end": 14699.64, + "probability": 0.1211 + }, + { + "start": 14710.32, + "end": 14710.96, + "probability": 0.0561 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.0, + "end": 14792.0, + "probability": 0.0 + }, + { + "start": 14792.4, + "end": 14793.8, + "probability": 0.0506 + }, + { + "start": 14793.98, + "end": 14795.54, + "probability": 0.4395 + }, + { + "start": 14795.76, + "end": 14797.74, + "probability": 0.177 + }, + { + "start": 14797.74, + "end": 14798.42, + "probability": 0.0628 + }, + { + "start": 14801.0, + "end": 14805.6, + "probability": 0.9839 + }, + { + "start": 14805.76, + "end": 14807.84, + "probability": 0.9874 + }, + { + "start": 14808.5, + "end": 14808.6, + "probability": 0.4819 + }, + { + "start": 14808.6, + "end": 14810.82, + "probability": 0.8191 + }, + { + "start": 14812.0, + "end": 14815.8, + "probability": 0.9741 + }, + { + "start": 14815.8, + "end": 14815.86, + "probability": 0.3762 + }, + { + "start": 14815.86, + "end": 14816.18, + "probability": 0.4774 + }, + { + "start": 14816.22, + "end": 14821.16, + "probability": 0.6477 + }, + { + "start": 14821.32, + "end": 14821.46, + "probability": 0.0394 + }, + { + "start": 14821.46, + "end": 14821.46, + "probability": 0.1667 + }, + { + "start": 14821.46, + "end": 14822.08, + "probability": 0.3574 + }, + { + "start": 14822.34, + "end": 14823.42, + "probability": 0.8563 + }, + { + "start": 14823.64, + "end": 14825.04, + "probability": 0.8086 + }, + { + "start": 14825.04, + "end": 14825.18, + "probability": 0.0848 + }, + { + "start": 14825.62, + "end": 14826.12, + "probability": 0.0449 + }, + { + "start": 14826.24, + "end": 14826.64, + "probability": 0.4491 + }, + { + "start": 14826.64, + "end": 14827.16, + "probability": 0.4261 + }, + { + "start": 14828.2, + "end": 14830.84, + "probability": 0.853 + }, + { + "start": 14831.9, + "end": 14831.9, + "probability": 0.1587 + }, + { + "start": 14831.9, + "end": 14835.42, + "probability": 0.9946 + }, + { + "start": 14835.42, + "end": 14838.82, + "probability": 0.9963 + }, + { + "start": 14839.0, + "end": 14840.14, + "probability": 0.8185 + }, + { + "start": 14840.4, + "end": 14841.62, + "probability": 0.619 + }, + { + "start": 14841.72, + "end": 14847.36, + "probability": 0.9897 + }, + { + "start": 14848.65, + "end": 14850.58, + "probability": 0.4892 + }, + { + "start": 14850.7, + "end": 14852.33, + "probability": 0.9886 + }, + { + "start": 14853.02, + "end": 14854.48, + "probability": 0.6808 + }, + { + "start": 14854.48, + "end": 14855.18, + "probability": 0.0015 + }, + { + "start": 14855.46, + "end": 14857.16, + "probability": 0.5304 + }, + { + "start": 14857.32, + "end": 14860.46, + "probability": 0.5782 + }, + { + "start": 14861.88, + "end": 14863.26, + "probability": 0.0176 + }, + { + "start": 14863.5, + "end": 14865.54, + "probability": 0.0663 + }, + { + "start": 14865.68, + "end": 14866.32, + "probability": 0.668 + }, + { + "start": 14866.32, + "end": 14868.48, + "probability": 0.6507 + }, + { + "start": 14868.72, + "end": 14869.6, + "probability": 0.848 + }, + { + "start": 14869.94, + "end": 14874.8, + "probability": 0.9841 + }, + { + "start": 14875.48, + "end": 14877.92, + "probability": 0.9719 + }, + { + "start": 14878.7, + "end": 14880.48, + "probability": 0.9893 + }, + { + "start": 14881.44, + "end": 14881.64, + "probability": 0.5146 + }, + { + "start": 14881.68, + "end": 14882.52, + "probability": 0.9807 + }, + { + "start": 14882.62, + "end": 14886.19, + "probability": 0.9967 + }, + { + "start": 14886.96, + "end": 14887.32, + "probability": 0.8038 + }, + { + "start": 14887.88, + "end": 14890.0, + "probability": 0.9969 + }, + { + "start": 14890.22, + "end": 14892.8, + "probability": 0.9808 + }, + { + "start": 14892.8, + "end": 14895.9, + "probability": 0.9473 + }, + { + "start": 14896.46, + "end": 14897.26, + "probability": 0.7152 + }, + { + "start": 14897.76, + "end": 14900.9, + "probability": 0.9331 + }, + { + "start": 14900.96, + "end": 14902.2, + "probability": 0.8647 + }, + { + "start": 14902.26, + "end": 14903.44, + "probability": 0.9758 + }, + { + "start": 14903.86, + "end": 14906.5, + "probability": 0.9904 + }, + { + "start": 14908.78, + "end": 14910.36, + "probability": 0.1693 + }, + { + "start": 14910.98, + "end": 14911.14, + "probability": 0.2042 + }, + { + "start": 14911.14, + "end": 14911.14, + "probability": 0.3549 + }, + { + "start": 14911.14, + "end": 14911.14, + "probability": 0.0451 + }, + { + "start": 14911.14, + "end": 14911.72, + "probability": 0.5445 + }, + { + "start": 14912.32, + "end": 14915.88, + "probability": 0.901 + }, + { + "start": 14916.4, + "end": 14917.14, + "probability": 0.3656 + }, + { + "start": 14917.28, + "end": 14919.73, + "probability": 0.4943 + }, + { + "start": 14926.6, + "end": 14926.92, + "probability": 0.0276 + }, + { + "start": 14926.92, + "end": 14926.92, + "probability": 0.1407 + }, + { + "start": 14926.92, + "end": 14926.92, + "probability": 0.1074 + }, + { + "start": 14926.92, + "end": 14926.92, + "probability": 0.1833 + }, + { + "start": 14926.92, + "end": 14930.46, + "probability": 0.6581 + }, + { + "start": 14931.2, + "end": 14935.82, + "probability": 0.8169 + }, + { + "start": 14936.7, + "end": 14940.12, + "probability": 0.9881 + }, + { + "start": 14940.38, + "end": 14942.16, + "probability": 0.9618 + }, + { + "start": 14942.32, + "end": 14942.64, + "probability": 0.8997 + }, + { + "start": 14943.68, + "end": 14944.86, + "probability": 0.9653 + }, + { + "start": 14945.6, + "end": 14946.7, + "probability": 0.9222 + }, + { + "start": 14947.04, + "end": 14948.34, + "probability": 0.9397 + }, + { + "start": 14949.56, + "end": 14951.3, + "probability": 0.8291 + }, + { + "start": 14951.72, + "end": 14953.0, + "probability": 0.9907 + }, + { + "start": 14953.3, + "end": 14955.34, + "probability": 0.9324 + }, + { + "start": 14955.78, + "end": 14957.04, + "probability": 0.9974 + }, + { + "start": 14957.22, + "end": 14961.06, + "probability": 0.9674 + }, + { + "start": 14961.14, + "end": 14962.3, + "probability": 0.8548 + }, + { + "start": 14962.84, + "end": 14966.0, + "probability": 0.9958 + }, + { + "start": 14966.5, + "end": 14971.48, + "probability": 0.9931 + }, + { + "start": 14971.6, + "end": 14975.48, + "probability": 0.9952 + }, + { + "start": 14975.5, + "end": 14978.34, + "probability": 0.9265 + }, + { + "start": 14979.22, + "end": 14980.12, + "probability": 0.8398 + }, + { + "start": 14980.92, + "end": 14982.34, + "probability": 0.0389 + }, + { + "start": 14982.34, + "end": 14983.38, + "probability": 0.4599 + }, + { + "start": 14984.14, + "end": 14984.4, + "probability": 0.3276 + }, + { + "start": 14984.4, + "end": 14984.4, + "probability": 0.0703 + }, + { + "start": 14984.4, + "end": 14987.9, + "probability": 0.9199 + }, + { + "start": 14988.34, + "end": 14989.18, + "probability": 0.8357 + }, + { + "start": 14989.86, + "end": 14994.4, + "probability": 0.9954 + }, + { + "start": 14994.74, + "end": 14996.4, + "probability": 0.9653 + }, + { + "start": 14996.72, + "end": 14998.64, + "probability": 0.9932 + }, + { + "start": 14998.66, + "end": 14999.0, + "probability": 0.9183 + }, + { + "start": 14999.12, + "end": 15004.2, + "probability": 0.8569 + }, + { + "start": 15004.32, + "end": 15006.9, + "probability": 0.9911 + }, + { + "start": 15007.0, + "end": 15012.78, + "probability": 0.9758 + }, + { + "start": 15013.16, + "end": 15014.24, + "probability": 0.8733 + }, + { + "start": 15014.86, + "end": 15017.72, + "probability": 0.5501 + }, + { + "start": 15017.72, + "end": 15017.92, + "probability": 0.1347 + }, + { + "start": 15018.1, + "end": 15019.12, + "probability": 0.7321 + }, + { + "start": 15020.32, + "end": 15026.22, + "probability": 0.9906 + }, + { + "start": 15026.74, + "end": 15027.88, + "probability": 0.7454 + }, + { + "start": 15027.9, + "end": 15029.0, + "probability": 0.8298 + }, + { + "start": 15029.08, + "end": 15029.82, + "probability": 0.9172 + }, + { + "start": 15029.96, + "end": 15032.36, + "probability": 0.7537 + }, + { + "start": 15032.66, + "end": 15034.94, + "probability": 0.9609 + }, + { + "start": 15035.4, + "end": 15036.92, + "probability": 0.9509 + }, + { + "start": 15037.3, + "end": 15040.1, + "probability": 0.9799 + }, + { + "start": 15040.36, + "end": 15041.12, + "probability": 0.9983 + }, + { + "start": 15043.76, + "end": 15044.26, + "probability": 0.7675 + }, + { + "start": 15044.54, + "end": 15044.7, + "probability": 0.2543 + }, + { + "start": 15044.7, + "end": 15044.7, + "probability": 0.1481 + }, + { + "start": 15044.7, + "end": 15045.54, + "probability": 0.5332 + }, + { + "start": 15047.0, + "end": 15047.79, + "probability": 0.5425 + }, + { + "start": 15048.58, + "end": 15049.1, + "probability": 0.4619 + }, + { + "start": 15049.16, + "end": 15051.68, + "probability": 0.9958 + }, + { + "start": 15052.38, + "end": 15052.5, + "probability": 0.0919 + }, + { + "start": 15052.5, + "end": 15053.82, + "probability": 0.9653 + }, + { + "start": 15054.57, + "end": 15057.18, + "probability": 0.5003 + }, + { + "start": 15057.26, + "end": 15058.6, + "probability": 0.9036 + }, + { + "start": 15058.92, + "end": 15059.64, + "probability": 0.9835 + }, + { + "start": 15059.68, + "end": 15060.46, + "probability": 0.8076 + }, + { + "start": 15060.78, + "end": 15062.16, + "probability": 0.9938 + }, + { + "start": 15062.42, + "end": 15064.4, + "probability": 0.989 + }, + { + "start": 15064.42, + "end": 15066.98, + "probability": 0.9927 + }, + { + "start": 15067.38, + "end": 15068.92, + "probability": 0.9976 + }, + { + "start": 15069.38, + "end": 15073.2, + "probability": 0.9861 + }, + { + "start": 15073.62, + "end": 15074.7, + "probability": 0.7888 + }, + { + "start": 15075.22, + "end": 15076.64, + "probability": 0.9895 + }, + { + "start": 15079.96, + "end": 15085.12, + "probability": 0.6829 + }, + { + "start": 15086.86, + "end": 15089.26, + "probability": 0.8504 + }, + { + "start": 15090.06, + "end": 15095.08, + "probability": 0.6151 + }, + { + "start": 15095.78, + "end": 15099.28, + "probability": 0.8529 + }, + { + "start": 15099.72, + "end": 15105.34, + "probability": 0.9902 + }, + { + "start": 15105.34, + "end": 15108.36, + "probability": 0.9978 + }, + { + "start": 15108.44, + "end": 15108.54, + "probability": 0.5538 + }, + { + "start": 15109.66, + "end": 15112.68, + "probability": 0.8596 + }, + { + "start": 15113.24, + "end": 15115.06, + "probability": 0.9338 + }, + { + "start": 15115.82, + "end": 15116.74, + "probability": 0.8789 + }, + { + "start": 15122.22, + "end": 15124.46, + "probability": 0.9695 + }, + { + "start": 15131.4, + "end": 15133.66, + "probability": 0.6958 + }, + { + "start": 15134.9, + "end": 15137.18, + "probability": 0.9977 + }, + { + "start": 15137.96, + "end": 15141.9, + "probability": 0.999 + }, + { + "start": 15142.6, + "end": 15147.84, + "probability": 0.8017 + }, + { + "start": 15148.24, + "end": 15151.16, + "probability": 0.947 + }, + { + "start": 15151.62, + "end": 15154.82, + "probability": 0.9359 + }, + { + "start": 15155.7, + "end": 15161.82, + "probability": 0.7917 + }, + { + "start": 15162.34, + "end": 15164.24, + "probability": 0.9408 + }, + { + "start": 15164.82, + "end": 15165.3, + "probability": 0.9089 + }, + { + "start": 15165.54, + "end": 15166.32, + "probability": 0.6139 + }, + { + "start": 15166.46, + "end": 15169.02, + "probability": 0.9789 + }, + { + "start": 15169.6, + "end": 15169.6, + "probability": 0.0256 + }, + { + "start": 15169.6, + "end": 15169.6, + "probability": 0.0577 + }, + { + "start": 15169.6, + "end": 15170.52, + "probability": 0.0136 + }, + { + "start": 15170.52, + "end": 15175.34, + "probability": 0.452 + }, + { + "start": 15175.56, + "end": 15177.44, + "probability": 0.7173 + }, + { + "start": 15177.5, + "end": 15178.8, + "probability": 0.384 + }, + { + "start": 15178.8, + "end": 15182.24, + "probability": 0.7444 + }, + { + "start": 15183.02, + "end": 15184.04, + "probability": 0.9138 + }, + { + "start": 15187.28, + "end": 15189.14, + "probability": 0.7618 + }, + { + "start": 15189.3, + "end": 15193.52, + "probability": 0.6917 + }, + { + "start": 15193.92, + "end": 15196.38, + "probability": 0.9786 + }, + { + "start": 15196.82, + "end": 15197.61, + "probability": 0.9827 + }, + { + "start": 15197.98, + "end": 15200.15, + "probability": 0.9389 + }, + { + "start": 15200.66, + "end": 15206.18, + "probability": 0.9703 + }, + { + "start": 15206.66, + "end": 15211.72, + "probability": 0.9746 + }, + { + "start": 15212.36, + "end": 15213.28, + "probability": 0.6614 + }, + { + "start": 15213.82, + "end": 15219.22, + "probability": 0.9584 + }, + { + "start": 15220.0, + "end": 15222.42, + "probability": 0.8626 + }, + { + "start": 15223.04, + "end": 15227.52, + "probability": 0.6229 + }, + { + "start": 15228.26, + "end": 15228.52, + "probability": 0.4481 + }, + { + "start": 15229.46, + "end": 15233.02, + "probability": 0.7244 + }, + { + "start": 15233.84, + "end": 15236.32, + "probability": 0.9824 + }, + { + "start": 15236.96, + "end": 15240.42, + "probability": 0.9751 + }, + { + "start": 15240.96, + "end": 15245.24, + "probability": 0.835 + }, + { + "start": 15245.96, + "end": 15252.96, + "probability": 0.8974 + }, + { + "start": 15253.9, + "end": 15255.1, + "probability": 0.7386 + }, + { + "start": 15255.34, + "end": 15259.38, + "probability": 0.9927 + }, + { + "start": 15260.2, + "end": 15263.6, + "probability": 0.9766 + }, + { + "start": 15264.1, + "end": 15265.16, + "probability": 0.7491 + }, + { + "start": 15265.9, + "end": 15268.24, + "probability": 0.7922 + }, + { + "start": 15268.76, + "end": 15269.3, + "probability": 0.8596 + }, + { + "start": 15269.68, + "end": 15271.78, + "probability": 0.9019 + }, + { + "start": 15272.22, + "end": 15272.84, + "probability": 0.6052 + }, + { + "start": 15272.94, + "end": 15278.06, + "probability": 0.9154 + }, + { + "start": 15278.52, + "end": 15283.82, + "probability": 0.8657 + }, + { + "start": 15284.34, + "end": 15285.04, + "probability": 0.7864 + }, + { + "start": 15285.44, + "end": 15289.88, + "probability": 0.9034 + }, + { + "start": 15290.02, + "end": 15292.12, + "probability": 0.3756 + }, + { + "start": 15293.76, + "end": 15299.04, + "probability": 0.1014 + }, + { + "start": 15299.46, + "end": 15299.8, + "probability": 0.0644 + }, + { + "start": 15299.8, + "end": 15301.34, + "probability": 0.5402 + }, + { + "start": 15301.94, + "end": 15306.2, + "probability": 0.5539 + }, + { + "start": 15306.5, + "end": 15307.98, + "probability": 0.7121 + }, + { + "start": 15311.1, + "end": 15314.52, + "probability": 0.5178 + }, + { + "start": 15314.52, + "end": 15314.52, + "probability": 0.8337 + }, + { + "start": 15314.52, + "end": 15315.22, + "probability": 0.5513 + }, + { + "start": 15316.36, + "end": 15317.58, + "probability": 0.5061 + }, + { + "start": 15318.2, + "end": 15320.6, + "probability": 0.9336 + }, + { + "start": 15320.64, + "end": 15323.62, + "probability": 0.9526 + }, + { + "start": 15323.84, + "end": 15325.86, + "probability": 0.9306 + }, + { + "start": 15325.94, + "end": 15327.18, + "probability": 0.732 + }, + { + "start": 15327.48, + "end": 15330.26, + "probability": 0.7654 + }, + { + "start": 15330.74, + "end": 15334.16, + "probability": 0.7588 + }, + { + "start": 15334.64, + "end": 15336.22, + "probability": 0.9106 + }, + { + "start": 15336.68, + "end": 15337.84, + "probability": 0.8069 + }, + { + "start": 15338.26, + "end": 15340.18, + "probability": 0.8897 + }, + { + "start": 15340.48, + "end": 15343.8, + "probability": 0.9761 + }, + { + "start": 15344.4, + "end": 15344.4, + "probability": 0.2452 + }, + { + "start": 15344.42, + "end": 15344.42, + "probability": 0.7377 + }, + { + "start": 15344.42, + "end": 15344.42, + "probability": 0.4013 + }, + { + "start": 15344.42, + "end": 15346.34, + "probability": 0.6955 + }, + { + "start": 15346.98, + "end": 15348.58, + "probability": 0.4929 + }, + { + "start": 15349.13, + "end": 15351.84, + "probability": 0.7854 + }, + { + "start": 15352.61, + "end": 15353.06, + "probability": 0.4843 + }, + { + "start": 15353.06, + "end": 15353.62, + "probability": 0.6304 + }, + { + "start": 15354.2, + "end": 15356.34, + "probability": 0.4965 + }, + { + "start": 15357.06, + "end": 15359.83, + "probability": 0.7082 + }, + { + "start": 15361.46, + "end": 15363.22, + "probability": 0.9634 + }, + { + "start": 15364.58, + "end": 15369.44, + "probability": 0.9462 + }, + { + "start": 15369.76, + "end": 15371.08, + "probability": 0.9824 + }, + { + "start": 15371.22, + "end": 15372.86, + "probability": 0.8164 + }, + { + "start": 15373.02, + "end": 15373.76, + "probability": 0.8923 + }, + { + "start": 15373.78, + "end": 15376.68, + "probability": 0.9881 + }, + { + "start": 15376.7, + "end": 15380.3, + "probability": 0.9762 + }, + { + "start": 15380.3, + "end": 15384.36, + "probability": 0.9912 + }, + { + "start": 15384.74, + "end": 15386.82, + "probability": 0.9898 + }, + { + "start": 15387.24, + "end": 15390.04, + "probability": 0.8368 + }, + { + "start": 15390.96, + "end": 15394.04, + "probability": 0.6855 + }, + { + "start": 15394.08, + "end": 15395.4, + "probability": 0.4923 + }, + { + "start": 15395.9, + "end": 15398.28, + "probability": 0.8494 + }, + { + "start": 15405.96, + "end": 15406.26, + "probability": 0.1807 + }, + { + "start": 15406.26, + "end": 15410.3, + "probability": 0.1137 + }, + { + "start": 15410.3, + "end": 15411.9, + "probability": 0.0331 + }, + { + "start": 15411.9, + "end": 15412.0, + "probability": 0.0789 + }, + { + "start": 15412.2, + "end": 15412.86, + "probability": 0.0628 + }, + { + "start": 15413.78, + "end": 15415.62, + "probability": 0.4535 + }, + { + "start": 15416.5, + "end": 15417.88, + "probability": 0.5285 + }, + { + "start": 15418.74, + "end": 15419.84, + "probability": 0.9956 + }, + { + "start": 15423.66, + "end": 15424.66, + "probability": 0.0485 + }, + { + "start": 15424.78, + "end": 15428.58, + "probability": 0.9249 + }, + { + "start": 15428.86, + "end": 15430.66, + "probability": 0.8369 + }, + { + "start": 15431.48, + "end": 15433.5, + "probability": 0.9119 + }, + { + "start": 15442.42, + "end": 15443.38, + "probability": 0.7567 + }, + { + "start": 15443.46, + "end": 15444.84, + "probability": 0.759 + }, + { + "start": 15445.43, + "end": 15449.8, + "probability": 0.9729 + }, + { + "start": 15450.4, + "end": 15451.7, + "probability": 0.5849 + }, + { + "start": 15452.32, + "end": 15454.91, + "probability": 0.9727 + }, + { + "start": 15456.0, + "end": 15456.6, + "probability": 0.4593 + }, + { + "start": 15456.68, + "end": 15458.84, + "probability": 0.9108 + }, + { + "start": 15459.26, + "end": 15460.58, + "probability": 0.8947 + }, + { + "start": 15461.36, + "end": 15463.94, + "probability": 0.639 + }, + { + "start": 15464.12, + "end": 15464.4, + "probability": 0.0019 + }, + { + "start": 15465.22, + "end": 15465.68, + "probability": 0.0567 + }, + { + "start": 15465.68, + "end": 15467.09, + "probability": 0.3578 + }, + { + "start": 15467.66, + "end": 15468.68, + "probability": 0.5249 + }, + { + "start": 15469.1, + "end": 15469.32, + "probability": 0.1857 + }, + { + "start": 15469.32, + "end": 15469.81, + "probability": 0.6497 + }, + { + "start": 15470.7, + "end": 15473.02, + "probability": 0.8441 + }, + { + "start": 15473.34, + "end": 15473.66, + "probability": 0.0004 + }, + { + "start": 15475.64, + "end": 15476.32, + "probability": 0.0353 + }, + { + "start": 15476.32, + "end": 15476.36, + "probability": 0.0087 + }, + { + "start": 15476.36, + "end": 15477.6, + "probability": 0.4722 + }, + { + "start": 15477.68, + "end": 15478.85, + "probability": 0.6705 + }, + { + "start": 15479.18, + "end": 15480.42, + "probability": 0.3699 + }, + { + "start": 15480.9, + "end": 15482.46, + "probability": 0.3828 + }, + { + "start": 15485.26, + "end": 15486.12, + "probability": 0.5027 + }, + { + "start": 15488.74, + "end": 15489.91, + "probability": 0.1142 + }, + { + "start": 15490.52, + "end": 15492.6, + "probability": 0.1288 + }, + { + "start": 15492.6, + "end": 15494.1, + "probability": 0.4358 + }, + { + "start": 15494.7, + "end": 15495.58, + "probability": 0.4362 + }, + { + "start": 15496.38, + "end": 15498.04, + "probability": 0.2356 + }, + { + "start": 15498.32, + "end": 15499.34, + "probability": 0.4679 + }, + { + "start": 15499.52, + "end": 15502.14, + "probability": 0.0987 + }, + { + "start": 15502.32, + "end": 15503.1, + "probability": 0.1421 + }, + { + "start": 15504.28, + "end": 15504.98, + "probability": 0.0815 + }, + { + "start": 15505.04, + "end": 15506.12, + "probability": 0.092 + }, + { + "start": 15511.4, + "end": 15513.46, + "probability": 0.0701 + }, + { + "start": 15513.8, + "end": 15515.5, + "probability": 0.3482 + }, + { + "start": 15515.7, + "end": 15516.32, + "probability": 0.2749 + }, + { + "start": 15517.16, + "end": 15518.42, + "probability": 0.0146 + }, + { + "start": 15518.46, + "end": 15519.06, + "probability": 0.2674 + }, + { + "start": 15520.34, + "end": 15521.16, + "probability": 0.1313 + }, + { + "start": 15521.98, + "end": 15524.54, + "probability": 0.0452 + }, + { + "start": 15528.34, + "end": 15530.16, + "probability": 0.091 + }, + { + "start": 15534.62, + "end": 15538.14, + "probability": 0.1665 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.0, + "end": 15553.0, + "probability": 0.0 + }, + { + "start": 15553.14, + "end": 15553.64, + "probability": 0.2309 + }, + { + "start": 15554.02, + "end": 15554.94, + "probability": 0.3724 + }, + { + "start": 15555.54, + "end": 15555.54, + "probability": 0.0865 + }, + { + "start": 15555.54, + "end": 15556.92, + "probability": 0.0175 + }, + { + "start": 15556.92, + "end": 15558.7, + "probability": 0.1998 + }, + { + "start": 15561.14, + "end": 15561.24, + "probability": 0.3172 + }, + { + "start": 15561.24, + "end": 15562.24, + "probability": 0.1048 + }, + { + "start": 15564.98, + "end": 15568.56, + "probability": 0.3107 + }, + { + "start": 15568.62, + "end": 15568.75, + "probability": 0.0123 + }, + { + "start": 15573.54, + "end": 15575.52, + "probability": 0.0407 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.0, + "end": 15673.0, + "probability": 0.0 + }, + { + "start": 15673.5, + "end": 15673.5, + "probability": 0.0505 + }, + { + "start": 15673.82, + "end": 15676.64, + "probability": 0.112 + }, + { + "start": 15676.64, + "end": 15676.64, + "probability": 0.006 + }, + { + "start": 15678.0, + "end": 15679.5, + "probability": 0.0886 + }, + { + "start": 15683.14, + "end": 15684.2, + "probability": 0.1534 + }, + { + "start": 15684.38, + "end": 15685.92, + "probability": 0.8374 + }, + { + "start": 15685.92, + "end": 15687.54, + "probability": 0.2334 + }, + { + "start": 15689.14, + "end": 15690.5, + "probability": 0.4888 + }, + { + "start": 15692.7, + "end": 15693.52, + "probability": 0.0257 + }, + { + "start": 15696.3, + "end": 15699.2, + "probability": 0.1935 + }, + { + "start": 15699.96, + "end": 15701.74, + "probability": 0.1259 + }, + { + "start": 15702.88, + "end": 15708.9, + "probability": 0.0283 + }, + { + "start": 15709.38, + "end": 15714.88, + "probability": 0.4698 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.0, + "end": 15799.0, + "probability": 0.0 + }, + { + "start": 15799.02, + "end": 15801.3, + "probability": 0.0522 + }, + { + "start": 15801.84, + "end": 15804.98, + "probability": 0.034 + }, + { + "start": 15806.07, + "end": 15807.64, + "probability": 0.1185 + }, + { + "start": 15808.59, + "end": 15810.74, + "probability": 0.0198 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.0, + "end": 15928.0, + "probability": 0.0 + }, + { + "start": 15928.08, + "end": 15928.6, + "probability": 0.1228 + }, + { + "start": 15928.6, + "end": 15929.56, + "probability": 0.134 + }, + { + "start": 15929.6, + "end": 15930.7, + "probability": 0.167 + }, + { + "start": 15931.77, + "end": 15934.26, + "probability": 0.0273 + }, + { + "start": 15935.82, + "end": 15935.82, + "probability": 0.0449 + }, + { + "start": 15937.8, + "end": 15939.1, + "probability": 0.1092 + }, + { + "start": 15940.06, + "end": 15942.65, + "probability": 0.03 + }, + { + "start": 15943.04, + "end": 15943.22, + "probability": 0.1552 + }, + { + "start": 15943.22, + "end": 15943.29, + "probability": 0.0978 + }, + { + "start": 15943.62, + "end": 15945.72, + "probability": 0.0993 + }, + { + "start": 15945.72, + "end": 15946.88, + "probability": 0.1634 + }, + { + "start": 15947.5, + "end": 15949.28, + "probability": 0.1006 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.0, + "end": 16053.0, + "probability": 0.0 + }, + { + "start": 16053.63, + "end": 16054.44, + "probability": 0.0953 + }, + { + "start": 16054.44, + "end": 16054.44, + "probability": 0.024 + }, + { + "start": 16054.44, + "end": 16054.44, + "probability": 0.0552 + }, + { + "start": 16054.44, + "end": 16054.44, + "probability": 0.1678 + }, + { + "start": 16054.44, + "end": 16054.68, + "probability": 0.1218 + }, + { + "start": 16055.4, + "end": 16056.52, + "probability": 0.5103 + }, + { + "start": 16056.52, + "end": 16058.52, + "probability": 0.8388 + }, + { + "start": 16061.5, + "end": 16061.5, + "probability": 0.0609 + }, + { + "start": 16061.5, + "end": 16062.7, + "probability": 0.4719 + }, + { + "start": 16062.82, + "end": 16066.84, + "probability": 0.9749 + }, + { + "start": 16067.48, + "end": 16068.56, + "probability": 0.9223 + }, + { + "start": 16069.08, + "end": 16070.22, + "probability": 0.9699 + }, + { + "start": 16070.54, + "end": 16073.46, + "probability": 0.7481 + }, + { + "start": 16073.56, + "end": 16074.48, + "probability": 0.5057 + }, + { + "start": 16075.02, + "end": 16075.86, + "probability": 0.7781 + }, + { + "start": 16075.98, + "end": 16076.86, + "probability": 0.4546 + }, + { + "start": 16077.26, + "end": 16077.88, + "probability": 0.9558 + }, + { + "start": 16078.58, + "end": 16079.38, + "probability": 0.8072 + }, + { + "start": 16080.02, + "end": 16085.22, + "probability": 0.9707 + }, + { + "start": 16087.2, + "end": 16090.2, + "probability": 0.9913 + }, + { + "start": 16090.24, + "end": 16092.58, + "probability": 0.6142 + }, + { + "start": 16093.02, + "end": 16095.44, + "probability": 0.8005 + }, + { + "start": 16096.0, + "end": 16100.43, + "probability": 0.9966 + }, + { + "start": 16101.34, + "end": 16102.58, + "probability": 0.9624 + }, + { + "start": 16103.52, + "end": 16104.34, + "probability": 0.9212 + }, + { + "start": 16105.48, + "end": 16109.74, + "probability": 0.853 + }, + { + "start": 16121.46, + "end": 16122.38, + "probability": 0.7202 + }, + { + "start": 16124.02, + "end": 16124.84, + "probability": 0.7755 + }, + { + "start": 16127.1, + "end": 16128.28, + "probability": 0.8024 + }, + { + "start": 16130.06, + "end": 16132.24, + "probability": 0.6595 + }, + { + "start": 16133.22, + "end": 16134.47, + "probability": 0.7675 + }, + { + "start": 16135.5, + "end": 16139.64, + "probability": 0.9834 + }, + { + "start": 16140.98, + "end": 16143.5, + "probability": 0.8792 + }, + { + "start": 16144.54, + "end": 16148.94, + "probability": 0.9973 + }, + { + "start": 16149.82, + "end": 16150.24, + "probability": 0.9653 + }, + { + "start": 16150.42, + "end": 16151.04, + "probability": 0.9338 + }, + { + "start": 16151.22, + "end": 16153.96, + "probability": 0.9695 + }, + { + "start": 16154.94, + "end": 16156.46, + "probability": 0.8829 + }, + { + "start": 16157.96, + "end": 16159.5, + "probability": 0.7048 + }, + { + "start": 16159.82, + "end": 16160.18, + "probability": 0.3909 + }, + { + "start": 16160.22, + "end": 16164.96, + "probability": 0.9943 + }, + { + "start": 16165.78, + "end": 16169.34, + "probability": 0.9978 + }, + { + "start": 16170.92, + "end": 16172.86, + "probability": 0.7949 + }, + { + "start": 16173.4, + "end": 16174.38, + "probability": 0.6591 + }, + { + "start": 16175.16, + "end": 16177.26, + "probability": 0.983 + }, + { + "start": 16178.06, + "end": 16179.95, + "probability": 0.9946 + }, + { + "start": 16181.78, + "end": 16182.74, + "probability": 0.8114 + }, + { + "start": 16182.98, + "end": 16185.8, + "probability": 0.9944 + }, + { + "start": 16186.84, + "end": 16190.62, + "probability": 0.9975 + }, + { + "start": 16192.22, + "end": 16193.54, + "probability": 0.897 + }, + { + "start": 16194.28, + "end": 16196.24, + "probability": 0.8592 + }, + { + "start": 16197.18, + "end": 16201.94, + "probability": 0.9884 + }, + { + "start": 16202.06, + "end": 16203.32, + "probability": 0.7231 + }, + { + "start": 16204.24, + "end": 16206.24, + "probability": 0.9966 + }, + { + "start": 16206.3, + "end": 16210.94, + "probability": 0.9815 + }, + { + "start": 16211.94, + "end": 16212.24, + "probability": 0.5995 + }, + { + "start": 16212.28, + "end": 16213.02, + "probability": 0.7977 + }, + { + "start": 16213.12, + "end": 16215.12, + "probability": 0.9868 + }, + { + "start": 16216.62, + "end": 16218.14, + "probability": 0.7145 + }, + { + "start": 16218.28, + "end": 16221.46, + "probability": 0.7677 + }, + { + "start": 16221.46, + "end": 16224.64, + "probability": 0.9992 + }, + { + "start": 16226.45, + "end": 16228.34, + "probability": 0.7958 + }, + { + "start": 16228.88, + "end": 16231.06, + "probability": 0.9014 + }, + { + "start": 16231.42, + "end": 16234.3, + "probability": 0.9875 + }, + { + "start": 16234.3, + "end": 16237.1, + "probability": 0.9789 + }, + { + "start": 16237.24, + "end": 16242.31, + "probability": 0.992 + }, + { + "start": 16243.94, + "end": 16244.22, + "probability": 0.6085 + }, + { + "start": 16245.52, + "end": 16247.38, + "probability": 0.9467 + }, + { + "start": 16248.86, + "end": 16251.08, + "probability": 0.9895 + }, + { + "start": 16251.32, + "end": 16254.38, + "probability": 0.8826 + }, + { + "start": 16255.16, + "end": 16255.94, + "probability": 0.6454 + }, + { + "start": 16256.48, + "end": 16258.42, + "probability": 0.9888 + }, + { + "start": 16258.42, + "end": 16261.72, + "probability": 0.9959 + }, + { + "start": 16263.64, + "end": 16265.26, + "probability": 0.9884 + }, + { + "start": 16265.46, + "end": 16268.49, + "probability": 0.9869 + }, + { + "start": 16270.06, + "end": 16270.9, + "probability": 0.981 + }, + { + "start": 16273.0, + "end": 16276.4, + "probability": 0.9569 + }, + { + "start": 16276.96, + "end": 16277.68, + "probability": 0.8107 + }, + { + "start": 16278.32, + "end": 16279.92, + "probability": 0.8281 + }, + { + "start": 16279.96, + "end": 16282.94, + "probability": 0.9865 + }, + { + "start": 16284.72, + "end": 16285.54, + "probability": 0.9618 + }, + { + "start": 16285.66, + "end": 16286.22, + "probability": 0.963 + }, + { + "start": 16287.76, + "end": 16289.52, + "probability": 0.99 + }, + { + "start": 16290.52, + "end": 16291.32, + "probability": 0.8432 + }, + { + "start": 16293.2, + "end": 16302.9, + "probability": 0.9861 + }, + { + "start": 16303.36, + "end": 16305.32, + "probability": 0.9904 + }, + { + "start": 16306.16, + "end": 16307.14, + "probability": 0.6733 + }, + { + "start": 16307.3, + "end": 16308.12, + "probability": 0.7878 + }, + { + "start": 16308.3, + "end": 16309.16, + "probability": 0.9188 + }, + { + "start": 16309.3, + "end": 16313.48, + "probability": 0.9806 + }, + { + "start": 16313.48, + "end": 16316.14, + "probability": 0.9993 + }, + { + "start": 16317.46, + "end": 16321.32, + "probability": 0.9806 + }, + { + "start": 16321.78, + "end": 16324.16, + "probability": 0.917 + }, + { + "start": 16325.22, + "end": 16331.42, + "probability": 0.9629 + }, + { + "start": 16332.5, + "end": 16333.44, + "probability": 0.9927 + }, + { + "start": 16334.04, + "end": 16334.94, + "probability": 0.9394 + }, + { + "start": 16336.3, + "end": 16341.08, + "probability": 0.996 + }, + { + "start": 16341.18, + "end": 16342.6, + "probability": 0.9831 + }, + { + "start": 16342.86, + "end": 16343.52, + "probability": 0.9778 + }, + { + "start": 16345.7, + "end": 16346.62, + "probability": 0.9504 + }, + { + "start": 16347.56, + "end": 16348.26, + "probability": 0.8048 + }, + { + "start": 16348.36, + "end": 16350.55, + "probability": 0.9013 + }, + { + "start": 16350.72, + "end": 16352.6, + "probability": 0.9822 + }, + { + "start": 16353.04, + "end": 16354.7, + "probability": 0.9749 + }, + { + "start": 16355.24, + "end": 16357.28, + "probability": 0.9951 + }, + { + "start": 16357.38, + "end": 16359.27, + "probability": 0.967 + }, + { + "start": 16360.66, + "end": 16363.86, + "probability": 0.8212 + }, + { + "start": 16364.42, + "end": 16367.1, + "probability": 0.9073 + }, + { + "start": 16368.38, + "end": 16370.4, + "probability": 0.9891 + }, + { + "start": 16370.54, + "end": 16371.84, + "probability": 0.969 + }, + { + "start": 16371.94, + "end": 16375.62, + "probability": 0.995 + }, + { + "start": 16376.26, + "end": 16379.76, + "probability": 0.9268 + }, + { + "start": 16379.94, + "end": 16380.15, + "probability": 0.9302 + }, + { + "start": 16380.66, + "end": 16383.02, + "probability": 0.9893 + }, + { + "start": 16383.44, + "end": 16386.36, + "probability": 0.979 + }, + { + "start": 16387.54, + "end": 16389.6, + "probability": 0.9908 + }, + { + "start": 16389.68, + "end": 16390.9, + "probability": 0.9703 + }, + { + "start": 16391.22, + "end": 16391.56, + "probability": 0.8774 + }, + { + "start": 16392.5, + "end": 16395.1, + "probability": 0.9806 + }, + { + "start": 16395.64, + "end": 16396.12, + "probability": 0.8994 + }, + { + "start": 16396.56, + "end": 16399.74, + "probability": 0.9282 + }, + { + "start": 16400.5, + "end": 16401.4, + "probability": 0.962 + }, + { + "start": 16401.48, + "end": 16402.3, + "probability": 0.5918 + }, + { + "start": 16402.4, + "end": 16402.96, + "probability": 0.9896 + }, + { + "start": 16404.02, + "end": 16404.78, + "probability": 0.7582 + }, + { + "start": 16405.3, + "end": 16405.86, + "probability": 0.8106 + }, + { + "start": 16405.94, + "end": 16409.92, + "probability": 0.9863 + }, + { + "start": 16410.14, + "end": 16413.14, + "probability": 0.6083 + }, + { + "start": 16413.44, + "end": 16415.0, + "probability": 0.5668 + }, + { + "start": 16415.04, + "end": 16415.04, + "probability": 0.3218 + }, + { + "start": 16415.1, + "end": 16415.8, + "probability": 0.3767 + }, + { + "start": 16416.44, + "end": 16419.78, + "probability": 0.2359 + }, + { + "start": 16422.24, + "end": 16422.24, + "probability": 0.0354 + }, + { + "start": 16422.24, + "end": 16423.38, + "probability": 0.2392 + }, + { + "start": 16425.22, + "end": 16425.22, + "probability": 0.0952 + }, + { + "start": 16425.22, + "end": 16426.51, + "probability": 0.8001 + }, + { + "start": 16426.98, + "end": 16428.46, + "probability": 0.7341 + }, + { + "start": 16428.94, + "end": 16432.48, + "probability": 0.0943 + }, + { + "start": 16433.48, + "end": 16435.46, + "probability": 0.2141 + }, + { + "start": 16435.46, + "end": 16435.46, + "probability": 0.063 + }, + { + "start": 16435.46, + "end": 16435.46, + "probability": 0.0763 + }, + { + "start": 16435.46, + "end": 16436.2, + "probability": 0.5095 + }, + { + "start": 16436.96, + "end": 16439.14, + "probability": 0.6463 + }, + { + "start": 16439.5, + "end": 16441.14, + "probability": 0.8035 + }, + { + "start": 16441.82, + "end": 16445.88, + "probability": 0.8195 + }, + { + "start": 16446.0, + "end": 16448.3, + "probability": 0.9954 + }, + { + "start": 16448.38, + "end": 16451.98, + "probability": 0.9984 + }, + { + "start": 16452.36, + "end": 16452.78, + "probability": 0.9253 + }, + { + "start": 16453.02, + "end": 16454.16, + "probability": 0.9589 + }, + { + "start": 16454.26, + "end": 16455.9, + "probability": 0.9911 + }, + { + "start": 16456.14, + "end": 16458.38, + "probability": 0.9973 + }, + { + "start": 16458.66, + "end": 16462.45, + "probability": 0.9788 + }, + { + "start": 16463.04, + "end": 16465.88, + "probability": 0.8796 + }, + { + "start": 16466.46, + "end": 16467.38, + "probability": 0.8071 + }, + { + "start": 16467.8, + "end": 16471.06, + "probability": 0.9947 + }, + { + "start": 16471.06, + "end": 16475.02, + "probability": 0.9961 + }, + { + "start": 16475.34, + "end": 16476.58, + "probability": 0.8427 + }, + { + "start": 16476.64, + "end": 16478.0, + "probability": 0.9701 + }, + { + "start": 16478.06, + "end": 16481.74, + "probability": 0.9371 + }, + { + "start": 16482.12, + "end": 16482.82, + "probability": 0.9757 + }, + { + "start": 16482.92, + "end": 16486.17, + "probability": 0.9689 + }, + { + "start": 16486.68, + "end": 16491.42, + "probability": 0.9971 + }, + { + "start": 16491.84, + "end": 16495.02, + "probability": 0.9956 + }, + { + "start": 16495.18, + "end": 16496.18, + "probability": 0.935 + }, + { + "start": 16496.18, + "end": 16497.14, + "probability": 0.6729 + }, + { + "start": 16497.86, + "end": 16499.6, + "probability": 0.9215 + }, + { + "start": 16500.46, + "end": 16505.62, + "probability": 0.9932 + }, + { + "start": 16506.4, + "end": 16507.18, + "probability": 0.7593 + }, + { + "start": 16507.9, + "end": 16509.24, + "probability": 0.6918 + }, + { + "start": 16510.2, + "end": 16511.04, + "probability": 0.1438 + }, + { + "start": 16511.04, + "end": 16512.84, + "probability": 0.9744 + }, + { + "start": 16512.98, + "end": 16513.24, + "probability": 0.8428 + }, + { + "start": 16513.26, + "end": 16520.08, + "probability": 0.1594 + }, + { + "start": 16520.08, + "end": 16520.2, + "probability": 0.124 + }, + { + "start": 16520.2, + "end": 16520.2, + "probability": 0.0771 + }, + { + "start": 16520.2, + "end": 16522.68, + "probability": 0.8102 + }, + { + "start": 16525.7, + "end": 16528.06, + "probability": 0.095 + }, + { + "start": 16530.5, + "end": 16530.6, + "probability": 0.0135 + }, + { + "start": 16530.6, + "end": 16530.6, + "probability": 0.1073 + }, + { + "start": 16530.6, + "end": 16530.6, + "probability": 0.0342 + }, + { + "start": 16530.6, + "end": 16530.6, + "probability": 0.0569 + }, + { + "start": 16530.6, + "end": 16531.44, + "probability": 0.135 + }, + { + "start": 16532.48, + "end": 16534.18, + "probability": 0.5234 + }, + { + "start": 16534.38, + "end": 16536.48, + "probability": 0.3789 + }, + { + "start": 16536.48, + "end": 16537.38, + "probability": 0.3291 + }, + { + "start": 16537.38, + "end": 16537.9, + "probability": 0.2467 + }, + { + "start": 16538.08, + "end": 16539.78, + "probability": 0.7447 + }, + { + "start": 16539.78, + "end": 16539.98, + "probability": 0.3541 + }, + { + "start": 16540.14, + "end": 16541.1, + "probability": 0.2739 + }, + { + "start": 16541.44, + "end": 16541.52, + "probability": 0.2175 + }, + { + "start": 16542.6, + "end": 16543.2, + "probability": 0.4266 + }, + { + "start": 16543.28, + "end": 16545.34, + "probability": 0.356 + }, + { + "start": 16545.34, + "end": 16545.68, + "probability": 0.5135 + }, + { + "start": 16545.96, + "end": 16549.2, + "probability": 0.764 + }, + { + "start": 16549.62, + "end": 16550.02, + "probability": 0.5412 + }, + { + "start": 16550.5, + "end": 16553.42, + "probability": 0.9956 + }, + { + "start": 16553.82, + "end": 16557.34, + "probability": 0.9375 + }, + { + "start": 16557.48, + "end": 16560.72, + "probability": 0.9941 + }, + { + "start": 16560.8, + "end": 16562.92, + "probability": 0.9902 + }, + { + "start": 16562.92, + "end": 16565.84, + "probability": 0.9752 + }, + { + "start": 16565.88, + "end": 16566.96, + "probability": 0.8171 + }, + { + "start": 16567.72, + "end": 16571.94, + "probability": 0.9946 + }, + { + "start": 16572.06, + "end": 16573.66, + "probability": 0.9927 + }, + { + "start": 16574.06, + "end": 16576.02, + "probability": 0.9832 + }, + { + "start": 16576.72, + "end": 16578.3, + "probability": 0.1329 + }, + { + "start": 16579.87, + "end": 16581.14, + "probability": 0.155 + }, + { + "start": 16581.14, + "end": 16581.18, + "probability": 0.1291 + }, + { + "start": 16581.18, + "end": 16581.18, + "probability": 0.1111 + }, + { + "start": 16581.18, + "end": 16582.52, + "probability": 0.456 + }, + { + "start": 16583.06, + "end": 16585.22, + "probability": 0.9297 + }, + { + "start": 16585.46, + "end": 16589.58, + "probability": 0.9941 + }, + { + "start": 16589.68, + "end": 16592.04, + "probability": 0.9915 + }, + { + "start": 16592.32, + "end": 16595.46, + "probability": 0.9954 + }, + { + "start": 16595.46, + "end": 16598.4, + "probability": 0.9876 + }, + { + "start": 16598.88, + "end": 16602.26, + "probability": 0.0256 + }, + { + "start": 16603.72, + "end": 16604.16, + "probability": 0.1896 + }, + { + "start": 16604.16, + "end": 16604.16, + "probability": 0.0067 + }, + { + "start": 16604.16, + "end": 16604.16, + "probability": 0.1169 + }, + { + "start": 16604.16, + "end": 16604.16, + "probability": 0.0646 + }, + { + "start": 16604.16, + "end": 16605.83, + "probability": 0.9663 + }, + { + "start": 16606.1, + "end": 16607.28, + "probability": 0.8707 + }, + { + "start": 16607.38, + "end": 16608.2, + "probability": 0.795 + }, + { + "start": 16608.32, + "end": 16608.98, + "probability": 0.6425 + }, + { + "start": 16609.3, + "end": 16609.5, + "probability": 0.0008 + }, + { + "start": 16611.6, + "end": 16611.78, + "probability": 0.0203 + }, + { + "start": 16611.78, + "end": 16612.88, + "probability": 0.6395 + }, + { + "start": 16612.96, + "end": 16614.36, + "probability": 0.6758 + }, + { + "start": 16614.84, + "end": 16617.78, + "probability": 0.8405 + }, + { + "start": 16618.48, + "end": 16621.4, + "probability": 0.0484 + }, + { + "start": 16624.22, + "end": 16624.36, + "probability": 0.0465 + }, + { + "start": 16624.36, + "end": 16625.5, + "probability": 0.1825 + }, + { + "start": 16625.64, + "end": 16627.58, + "probability": 0.9009 + }, + { + "start": 16627.88, + "end": 16630.48, + "probability": 0.9973 + }, + { + "start": 16630.78, + "end": 16633.2, + "probability": 0.9108 + }, + { + "start": 16633.26, + "end": 16633.64, + "probability": 0.6526 + }, + { + "start": 16633.66, + "end": 16634.08, + "probability": 0.6424 + }, + { + "start": 16634.58, + "end": 16635.62, + "probability": 0.9294 + }, + { + "start": 16635.88, + "end": 16637.06, + "probability": 0.9282 + }, + { + "start": 16637.3, + "end": 16639.82, + "probability": 0.9934 + }, + { + "start": 16640.02, + "end": 16641.3, + "probability": 0.7832 + }, + { + "start": 16641.46, + "end": 16641.95, + "probability": 0.8452 + }, + { + "start": 16642.48, + "end": 16643.2, + "probability": 0.7987 + }, + { + "start": 16643.6, + "end": 16645.19, + "probability": 0.99 + }, + { + "start": 16645.34, + "end": 16646.32, + "probability": 0.8194 + }, + { + "start": 16646.42, + "end": 16647.56, + "probability": 0.8831 + }, + { + "start": 16647.64, + "end": 16648.58, + "probability": 0.8652 + }, + { + "start": 16649.04, + "end": 16654.38, + "probability": 0.9689 + }, + { + "start": 16654.42, + "end": 16655.18, + "probability": 0.9268 + }, + { + "start": 16655.54, + "end": 16657.98, + "probability": 0.9917 + }, + { + "start": 16658.51, + "end": 16661.96, + "probability": 0.8223 + }, + { + "start": 16662.42, + "end": 16662.48, + "probability": 0.0956 + }, + { + "start": 16662.52, + "end": 16663.18, + "probability": 0.364 + }, + { + "start": 16663.86, + "end": 16664.79, + "probability": 0.8354 + }, + { + "start": 16666.08, + "end": 16668.74, + "probability": 0.9365 + }, + { + "start": 16668.78, + "end": 16669.76, + "probability": 0.6388 + }, + { + "start": 16669.8, + "end": 16670.38, + "probability": 0.7412 + }, + { + "start": 16670.48, + "end": 16671.3, + "probability": 0.5652 + }, + { + "start": 16671.3, + "end": 16671.66, + "probability": 0.3583 + }, + { + "start": 16691.12, + "end": 16696.86, + "probability": 0.0175 + }, + { + "start": 16696.86, + "end": 16698.58, + "probability": 0.0432 + }, + { + "start": 16699.14, + "end": 16700.56, + "probability": 0.23 + }, + { + "start": 16702.14, + "end": 16704.04, + "probability": 0.868 + }, + { + "start": 16706.52, + "end": 16707.12, + "probability": 0.03 + }, + { + "start": 16708.64, + "end": 16714.76, + "probability": 0.1156 + }, + { + "start": 16715.88, + "end": 16716.34, + "probability": 0.0161 + }, + { + "start": 16716.34, + "end": 16717.52, + "probability": 0.1099 + }, + { + "start": 16717.52, + "end": 16721.0, + "probability": 0.0756 + }, + { + "start": 16723.65, + "end": 16723.72, + "probability": 0.1875 + }, + { + "start": 16723.72, + "end": 16724.04, + "probability": 0.1215 + }, + { + "start": 16724.06, + "end": 16725.64, + "probability": 0.1703 + }, + { + "start": 16727.16, + "end": 16731.7, + "probability": 0.1885 + }, + { + "start": 16733.74, + "end": 16735.26, + "probability": 0.1533 + }, + { + "start": 16739.25, + "end": 16743.04, + "probability": 0.0568 + }, + { + "start": 16743.04, + "end": 16745.16, + "probability": 0.1152 + }, + { + "start": 16745.16, + "end": 16747.2, + "probability": 0.0356 + }, + { + "start": 16774.0, + "end": 16774.0, + "probability": 0.0 + }, + { + "start": 16774.0, + "end": 16774.0, + "probability": 0.0 + }, + { + "start": 16774.0, + "end": 16774.0, + "probability": 0.0 + }, + { + "start": 16774.0, + "end": 16774.0, + "probability": 0.0 + }, + { + "start": 16774.0, + "end": 16774.0, + "probability": 0.0 + }, + { + "start": 16774.0, + "end": 16774.0, + "probability": 0.0 + }, + { + "start": 16774.0, + "end": 16774.0, + "probability": 0.0 + }, + { + "start": 16774.0, + "end": 16774.0, + "probability": 0.0 + }, + { + "start": 16774.0, + "end": 16774.0, + "probability": 0.0 + }, + { + "start": 16774.0, + "end": 16774.0, + "probability": 0.0 + }, + { + "start": 16774.44, + "end": 16774.6, + "probability": 0.0798 + }, + { + "start": 16774.6, + "end": 16779.6, + "probability": 0.9867 + }, + { + "start": 16781.34, + "end": 16785.7, + "probability": 0.9949 + }, + { + "start": 16786.38, + "end": 16790.04, + "probability": 0.9536 + }, + { + "start": 16790.58, + "end": 16793.28, + "probability": 0.7166 + }, + { + "start": 16793.82, + "end": 16795.74, + "probability": 0.9893 + }, + { + "start": 16796.98, + "end": 16800.36, + "probability": 0.9854 + }, + { + "start": 16800.96, + "end": 16803.64, + "probability": 0.9891 + }, + { + "start": 16804.16, + "end": 16805.88, + "probability": 0.8226 + }, + { + "start": 16806.48, + "end": 16807.98, + "probability": 0.9854 + }, + { + "start": 16808.38, + "end": 16809.04, + "probability": 0.4949 + }, + { + "start": 16809.1, + "end": 16811.28, + "probability": 0.9518 + }, + { + "start": 16812.38, + "end": 16815.56, + "probability": 0.9956 + }, + { + "start": 16816.22, + "end": 16819.32, + "probability": 0.9873 + }, + { + "start": 16820.08, + "end": 16823.4, + "probability": 0.6558 + }, + { + "start": 16824.1, + "end": 16827.04, + "probability": 0.9912 + }, + { + "start": 16827.92, + "end": 16828.44, + "probability": 0.8237 + }, + { + "start": 16829.26, + "end": 16831.9, + "probability": 0.9971 + }, + { + "start": 16832.54, + "end": 16837.04, + "probability": 0.9911 + }, + { + "start": 16837.04, + "end": 16843.74, + "probability": 0.9832 + }, + { + "start": 16846.6, + "end": 16851.58, + "probability": 0.7442 + }, + { + "start": 16852.64, + "end": 16854.22, + "probability": 0.8555 + }, + { + "start": 16854.82, + "end": 16856.72, + "probability": 0.9956 + }, + { + "start": 16857.32, + "end": 16861.98, + "probability": 0.9896 + }, + { + "start": 16862.88, + "end": 16866.16, + "probability": 0.958 + }, + { + "start": 16866.7, + "end": 16868.8, + "probability": 0.9954 + }, + { + "start": 16869.34, + "end": 16870.36, + "probability": 0.9222 + }, + { + "start": 16870.9, + "end": 16874.14, + "probability": 0.9941 + }, + { + "start": 16874.76, + "end": 16875.76, + "probability": 0.9968 + }, + { + "start": 16876.38, + "end": 16881.54, + "probability": 0.9768 + }, + { + "start": 16882.72, + "end": 16888.66, + "probability": 0.8487 + }, + { + "start": 16889.42, + "end": 16892.56, + "probability": 0.9346 + }, + { + "start": 16892.6, + "end": 16895.66, + "probability": 0.9855 + }, + { + "start": 16896.42, + "end": 16898.4, + "probability": 0.9512 + }, + { + "start": 16899.52, + "end": 16904.86, + "probability": 0.9916 + }, + { + "start": 16905.38, + "end": 16911.04, + "probability": 0.9842 + }, + { + "start": 16911.04, + "end": 16917.7, + "probability": 0.9932 + }, + { + "start": 16918.4, + "end": 16919.4, + "probability": 0.6666 + }, + { + "start": 16920.0, + "end": 16925.02, + "probability": 0.9702 + }, + { + "start": 16925.02, + "end": 16929.02, + "probability": 0.9973 + }, + { + "start": 16929.52, + "end": 16934.64, + "probability": 0.9058 + }, + { + "start": 16935.1, + "end": 16935.78, + "probability": 0.7478 + }, + { + "start": 16936.72, + "end": 16937.54, + "probability": 0.8366 + }, + { + "start": 16938.44, + "end": 16941.94, + "probability": 0.981 + }, + { + "start": 16942.74, + "end": 16944.04, + "probability": 0.7522 + }, + { + "start": 16945.72, + "end": 16947.76, + "probability": 0.0316 + }, + { + "start": 16954.38, + "end": 16957.8, + "probability": 0.6824 + }, + { + "start": 16958.66, + "end": 16960.66, + "probability": 0.9316 + }, + { + "start": 16961.78, + "end": 16964.82, + "probability": 0.8772 + }, + { + "start": 16965.44, + "end": 16967.84, + "probability": 0.7464 + }, + { + "start": 16967.94, + "end": 16970.18, + "probability": 0.9098 + }, + { + "start": 16970.56, + "end": 16971.48, + "probability": 0.7446 + }, + { + "start": 16972.3, + "end": 16972.68, + "probability": 0.8533 + }, + { + "start": 16972.74, + "end": 16972.96, + "probability": 0.7355 + }, + { + "start": 16973.02, + "end": 16974.48, + "probability": 0.9754 + }, + { + "start": 16974.56, + "end": 16976.68, + "probability": 0.9178 + }, + { + "start": 16979.22, + "end": 16984.4, + "probability": 0.955 + }, + { + "start": 16985.69, + "end": 16987.92, + "probability": 0.9941 + }, + { + "start": 16988.0, + "end": 16989.18, + "probability": 0.9142 + }, + { + "start": 16989.32, + "end": 16991.52, + "probability": 0.3295 + }, + { + "start": 16992.74, + "end": 16993.44, + "probability": 0.3967 + }, + { + "start": 16994.2, + "end": 16996.32, + "probability": 0.9939 + }, + { + "start": 16996.32, + "end": 16998.77, + "probability": 0.998 + }, + { + "start": 16999.78, + "end": 17001.36, + "probability": 0.8931 + }, + { + "start": 17001.46, + "end": 17006.08, + "probability": 0.9544 + }, + { + "start": 17006.96, + "end": 17009.36, + "probability": 0.8403 + }, + { + "start": 17010.02, + "end": 17013.62, + "probability": 0.984 + }, + { + "start": 17013.76, + "end": 17015.42, + "probability": 0.8724 + }, + { + "start": 17017.98, + "end": 17020.16, + "probability": 0.96 + }, + { + "start": 17020.5, + "end": 17024.36, + "probability": 0.9926 + }, + { + "start": 17027.26, + "end": 17029.26, + "probability": 0.9812 + }, + { + "start": 17030.34, + "end": 17034.09, + "probability": 0.7559 + }, + { + "start": 17036.04, + "end": 17038.74, + "probability": 0.6481 + }, + { + "start": 17039.88, + "end": 17044.52, + "probability": 0.9944 + }, + { + "start": 17046.26, + "end": 17049.6, + "probability": 0.8452 + }, + { + "start": 17051.08, + "end": 17051.88, + "probability": 0.8737 + }, + { + "start": 17051.98, + "end": 17056.7, + "probability": 0.8127 + }, + { + "start": 17057.26, + "end": 17057.26, + "probability": 0.0164 + }, + { + "start": 17060.12, + "end": 17063.72, + "probability": 0.6992 + }, + { + "start": 17064.82, + "end": 17066.1, + "probability": 0.4218 + }, + { + "start": 17069.87, + "end": 17071.92, + "probability": 0.6668 + }, + { + "start": 17072.62, + "end": 17076.38, + "probability": 0.9888 + }, + { + "start": 17078.28, + "end": 17083.24, + "probability": 0.7274 + }, + { + "start": 17084.98, + "end": 17086.6, + "probability": 0.3493 + }, + { + "start": 17086.6, + "end": 17087.81, + "probability": 0.8498 + }, + { + "start": 17088.68, + "end": 17090.88, + "probability": 0.5628 + }, + { + "start": 17090.98, + "end": 17092.12, + "probability": 0.8963 + }, + { + "start": 17092.34, + "end": 17093.28, + "probability": 0.6915 + }, + { + "start": 17093.42, + "end": 17094.32, + "probability": 0.7454 + }, + { + "start": 17094.36, + "end": 17095.22, + "probability": 0.8339 + }, + { + "start": 17096.06, + "end": 17098.45, + "probability": 0.9972 + }, + { + "start": 17100.48, + "end": 17102.1, + "probability": 0.8838 + }, + { + "start": 17102.9, + "end": 17104.12, + "probability": 0.9347 + }, + { + "start": 17104.24, + "end": 17104.66, + "probability": 0.8827 + }, + { + "start": 17105.16, + "end": 17106.52, + "probability": 0.9727 + }, + { + "start": 17106.58, + "end": 17108.34, + "probability": 0.811 + }, + { + "start": 17108.94, + "end": 17110.36, + "probability": 0.4171 + }, + { + "start": 17110.58, + "end": 17112.96, + "probability": 0.9918 + }, + { + "start": 17113.36, + "end": 17124.4, + "probability": 0.9627 + }, + { + "start": 17124.88, + "end": 17126.12, + "probability": 0.1804 + }, + { + "start": 17126.52, + "end": 17126.73, + "probability": 0.0611 + }, + { + "start": 17127.98, + "end": 17130.94, + "probability": 0.2055 + }, + { + "start": 17130.94, + "end": 17130.94, + "probability": 0.0439 + }, + { + "start": 17132.98, + "end": 17133.77, + "probability": 0.1068 + }, + { + "start": 17134.58, + "end": 17135.08, + "probability": 0.2791 + }, + { + "start": 17135.21, + "end": 17135.6, + "probability": 0.0333 + }, + { + "start": 17135.6, + "end": 17135.6, + "probability": 0.217 + }, + { + "start": 17135.6, + "end": 17135.6, + "probability": 0.1468 + }, + { + "start": 17135.6, + "end": 17139.02, + "probability": 0.1415 + }, + { + "start": 17139.02, + "end": 17139.54, + "probability": 0.1071 + }, + { + "start": 17139.54, + "end": 17139.54, + "probability": 0.0272 + }, + { + "start": 17139.54, + "end": 17140.84, + "probability": 0.2976 + }, + { + "start": 17140.86, + "end": 17141.74, + "probability": 0.7734 + }, + { + "start": 17142.26, + "end": 17142.88, + "probability": 0.4555 + }, + { + "start": 17143.98, + "end": 17143.98, + "probability": 0.1016 + }, + { + "start": 17143.98, + "end": 17143.98, + "probability": 0.2668 + }, + { + "start": 17143.98, + "end": 17146.0, + "probability": 0.9224 + }, + { + "start": 17146.1, + "end": 17146.74, + "probability": 0.3895 + }, + { + "start": 17146.78, + "end": 17148.4, + "probability": 0.3412 + }, + { + "start": 17148.52, + "end": 17150.74, + "probability": 0.6623 + }, + { + "start": 17150.8, + "end": 17153.18, + "probability": 0.5034 + }, + { + "start": 17153.32, + "end": 17154.48, + "probability": 0.3031 + }, + { + "start": 17154.86, + "end": 17155.86, + "probability": 0.848 + }, + { + "start": 17157.14, + "end": 17157.52, + "probability": 0.0073 + }, + { + "start": 17157.52, + "end": 17157.52, + "probability": 0.1595 + }, + { + "start": 17157.52, + "end": 17157.52, + "probability": 0.2717 + }, + { + "start": 17157.52, + "end": 17158.22, + "probability": 0.2895 + }, + { + "start": 17158.22, + "end": 17159.42, + "probability": 0.4546 + }, + { + "start": 17159.52, + "end": 17160.66, + "probability": 0.0041 + }, + { + "start": 17161.38, + "end": 17163.5, + "probability": 0.908 + }, + { + "start": 17164.32, + "end": 17166.1, + "probability": 0.2485 + }, + { + "start": 17167.1, + "end": 17170.72, + "probability": 0.5821 + }, + { + "start": 17170.86, + "end": 17173.1, + "probability": 0.6516 + }, + { + "start": 17173.2, + "end": 17176.68, + "probability": 0.8741 + }, + { + "start": 17176.68, + "end": 17178.18, + "probability": 0.5118 + }, + { + "start": 17178.24, + "end": 17180.38, + "probability": 0.931 + }, + { + "start": 17180.5, + "end": 17180.5, + "probability": 0.0406 + }, + { + "start": 17180.5, + "end": 17180.5, + "probability": 0.0268 + }, + { + "start": 17180.5, + "end": 17180.5, + "probability": 0.1653 + }, + { + "start": 17180.5, + "end": 17180.5, + "probability": 0.0325 + }, + { + "start": 17180.5, + "end": 17184.82, + "probability": 0.9588 + }, + { + "start": 17185.24, + "end": 17185.9, + "probability": 0.6749 + }, + { + "start": 17186.08, + "end": 17186.08, + "probability": 0.3183 + }, + { + "start": 17186.08, + "end": 17186.42, + "probability": 0.5504 + }, + { + "start": 17186.66, + "end": 17187.94, + "probability": 0.363 + }, + { + "start": 17187.94, + "end": 17189.82, + "probability": 0.734 + }, + { + "start": 17189.82, + "end": 17190.74, + "probability": 0.847 + }, + { + "start": 17190.82, + "end": 17191.48, + "probability": 0.7849 + }, + { + "start": 17191.52, + "end": 17196.05, + "probability": 0.9894 + }, + { + "start": 17197.42, + "end": 17199.12, + "probability": 0.9569 + }, + { + "start": 17199.78, + "end": 17203.62, + "probability": 0.9526 + }, + { + "start": 17204.22, + "end": 17207.16, + "probability": 0.9829 + }, + { + "start": 17207.28, + "end": 17208.18, + "probability": 0.9897 + }, + { + "start": 17208.36, + "end": 17209.22, + "probability": 0.8734 + }, + { + "start": 17209.32, + "end": 17211.12, + "probability": 0.976 + }, + { + "start": 17212.18, + "end": 17214.3, + "probability": 0.8472 + }, + { + "start": 17214.34, + "end": 17214.34, + "probability": 0.8296 + }, + { + "start": 17214.38, + "end": 17216.28, + "probability": 0.9958 + }, + { + "start": 17216.48, + "end": 17217.66, + "probability": 0.8643 + }, + { + "start": 17218.14, + "end": 17221.42, + "probability": 0.9977 + }, + { + "start": 17222.2, + "end": 17223.76, + "probability": 0.0534 + }, + { + "start": 17224.1, + "end": 17226.38, + "probability": 0.9078 + }, + { + "start": 17226.8, + "end": 17227.56, + "probability": 0.7258 + }, + { + "start": 17228.1, + "end": 17230.08, + "probability": 0.7349 + }, + { + "start": 17230.14, + "end": 17231.98, + "probability": 0.7953 + }, + { + "start": 17232.2, + "end": 17233.77, + "probability": 0.7129 + }, + { + "start": 17235.1, + "end": 17235.72, + "probability": 0.0568 + }, + { + "start": 17236.46, + "end": 17236.48, + "probability": 0.0366 + }, + { + "start": 17243.06, + "end": 17245.42, + "probability": 0.6627 + }, + { + "start": 17246.01, + "end": 17248.86, + "probability": 0.3647 + }, + { + "start": 17249.0, + "end": 17251.24, + "probability": 0.957 + }, + { + "start": 17252.08, + "end": 17254.06, + "probability": 0.8768 + }, + { + "start": 17254.86, + "end": 17256.52, + "probability": 0.5414 + }, + { + "start": 17257.44, + "end": 17260.18, + "probability": 0.4036 + }, + { + "start": 17261.26, + "end": 17261.26, + "probability": 0.1099 + }, + { + "start": 17261.26, + "end": 17261.26, + "probability": 0.0527 + }, + { + "start": 17261.26, + "end": 17264.66, + "probability": 0.1828 + }, + { + "start": 17264.82, + "end": 17265.86, + "probability": 0.6165 + }, + { + "start": 17266.06, + "end": 17266.68, + "probability": 0.4008 + }, + { + "start": 17268.28, + "end": 17273.48, + "probability": 0.45 + }, + { + "start": 17273.66, + "end": 17273.94, + "probability": 0.2671 + }, + { + "start": 17275.74, + "end": 17277.78, + "probability": 0.8708 + }, + { + "start": 17278.46, + "end": 17279.92, + "probability": 0.955 + }, + { + "start": 17280.08, + "end": 17283.84, + "probability": 0.9932 + }, + { + "start": 17283.96, + "end": 17284.52, + "probability": 0.355 + }, + { + "start": 17284.6, + "end": 17287.66, + "probability": 0.9453 + }, + { + "start": 17288.12, + "end": 17289.48, + "probability": 0.8566 + }, + { + "start": 17289.56, + "end": 17292.48, + "probability": 0.7789 + }, + { + "start": 17292.62, + "end": 17296.22, + "probability": 0.8951 + }, + { + "start": 17296.64, + "end": 17300.6, + "probability": 0.9935 + }, + { + "start": 17300.98, + "end": 17305.62, + "probability": 0.8823 + }, + { + "start": 17306.2, + "end": 17309.81, + "probability": 0.9893 + }, + { + "start": 17310.82, + "end": 17312.24, + "probability": 0.6743 + }, + { + "start": 17312.26, + "end": 17314.4, + "probability": 0.9684 + }, + { + "start": 17314.86, + "end": 17317.22, + "probability": 0.9751 + }, + { + "start": 17317.68, + "end": 17318.56, + "probability": 0.5164 + }, + { + "start": 17318.84, + "end": 17319.78, + "probability": 0.811 + }, + { + "start": 17320.0, + "end": 17320.56, + "probability": 0.9477 + }, + { + "start": 17321.76, + "end": 17322.62, + "probability": 0.8422 + }, + { + "start": 17323.28, + "end": 17325.74, + "probability": 0.8848 + }, + { + "start": 17325.78, + "end": 17327.68, + "probability": 0.5813 + }, + { + "start": 17327.68, + "end": 17328.3, + "probability": 0.5379 + }, + { + "start": 17328.32, + "end": 17328.92, + "probability": 0.5136 + }, + { + "start": 17330.22, + "end": 17334.0, + "probability": 0.8962 + }, + { + "start": 17345.74, + "end": 17347.23, + "probability": 0.3413 + }, + { + "start": 17347.86, + "end": 17348.04, + "probability": 0.0175 + }, + { + "start": 17349.76, + "end": 17350.72, + "probability": 0.0409 + }, + { + "start": 17351.88, + "end": 17352.18, + "probability": 0.1012 + }, + { + "start": 17355.08, + "end": 17355.62, + "probability": 0.6822 + }, + { + "start": 17355.62, + "end": 17357.64, + "probability": 0.235 + }, + { + "start": 17357.76, + "end": 17361.12, + "probability": 0.988 + }, + { + "start": 17361.58, + "end": 17365.48, + "probability": 0.9639 + }, + { + "start": 17366.12, + "end": 17366.86, + "probability": 0.8354 + }, + { + "start": 17367.02, + "end": 17368.72, + "probability": 0.2942 + }, + { + "start": 17377.2, + "end": 17378.98, + "probability": 0.9607 + }, + { + "start": 17379.06, + "end": 17380.24, + "probability": 0.9641 + }, + { + "start": 17380.64, + "end": 17381.16, + "probability": 0.4296 + }, + { + "start": 17381.28, + "end": 17382.38, + "probability": 0.9092 + }, + { + "start": 17382.68, + "end": 17382.88, + "probability": 0.9084 + }, + { + "start": 17386.25, + "end": 17386.88, + "probability": 0.2507 + }, + { + "start": 17387.52, + "end": 17391.12, + "probability": 0.031 + }, + { + "start": 17392.98, + "end": 17396.26, + "probability": 0.0643 + }, + { + "start": 17396.86, + "end": 17400.9, + "probability": 0.0519 + }, + { + "start": 17402.48, + "end": 17407.32, + "probability": 0.047 + }, + { + "start": 17446.0, + "end": 17446.0, + "probability": 0.0 + }, + { + "start": 17446.0, + "end": 17446.0, + "probability": 0.0 + }, + { + "start": 17446.0, + "end": 17446.0, + "probability": 0.0 + }, + { + "start": 17446.0, + "end": 17446.0, + "probability": 0.0 + }, + { + "start": 17446.0, + "end": 17446.0, + "probability": 0.0 + }, + { + "start": 17446.0, + "end": 17446.0, + "probability": 0.0 + }, + { + "start": 17446.0, + "end": 17446.0, + "probability": 0.0 + }, + { + "start": 17446.0, + "end": 17446.0, + "probability": 0.0 + }, + { + "start": 17446.0, + "end": 17446.0, + "probability": 0.0 + }, + { + "start": 17446.0, + "end": 17446.0, + "probability": 0.0 + }, + { + "start": 17446.0, + "end": 17446.0, + "probability": 0.0 + }, + { + "start": 17446.0, + "end": 17446.0, + "probability": 0.0 + }, + { + "start": 17446.04, + "end": 17448.36, + "probability": 0.615 + }, + { + "start": 17449.36, + "end": 17451.22, + "probability": 0.3765 + }, + { + "start": 17451.56, + "end": 17453.72, + "probability": 0.5966 + }, + { + "start": 17453.76, + "end": 17460.2, + "probability": 0.6147 + }, + { + "start": 17464.12, + "end": 17464.12, + "probability": 0.0434 + }, + { + "start": 17464.14, + "end": 17464.22, + "probability": 0.4175 + }, + { + "start": 17464.32, + "end": 17465.98, + "probability": 0.6629 + }, + { + "start": 17466.1, + "end": 17466.94, + "probability": 0.3261 + }, + { + "start": 17467.02, + "end": 17468.89, + "probability": 0.3403 + }, + { + "start": 17469.46, + "end": 17474.2, + "probability": 0.0658 + }, + { + "start": 17474.38, + "end": 17475.15, + "probability": 0.6063 + }, + { + "start": 17475.86, + "end": 17478.82, + "probability": 0.2497 + }, + { + "start": 17478.92, + "end": 17481.26, + "probability": 0.458 + }, + { + "start": 17481.32, + "end": 17482.16, + "probability": 0.538 + }, + { + "start": 17484.36, + "end": 17486.08, + "probability": 0.7744 + }, + { + "start": 17486.12, + "end": 17486.8, + "probability": 0.7899 + }, + { + "start": 17486.92, + "end": 17491.6, + "probability": 0.9832 + }, + { + "start": 17492.22, + "end": 17492.98, + "probability": 0.9985 + }, + { + "start": 17495.76, + "end": 17497.16, + "probability": 0.722 + }, + { + "start": 17497.9, + "end": 17503.56, + "probability": 0.9784 + }, + { + "start": 17506.32, + "end": 17508.96, + "probability": 0.5117 + }, + { + "start": 17511.0, + "end": 17514.8, + "probability": 0.9917 + }, + { + "start": 17515.18, + "end": 17517.18, + "probability": 0.9143 + }, + { + "start": 17517.34, + "end": 17518.14, + "probability": 0.9417 + }, + { + "start": 17518.18, + "end": 17520.4, + "probability": 0.9318 + }, + { + "start": 17521.57, + "end": 17525.9, + "probability": 0.9601 + }, + { + "start": 17526.02, + "end": 17526.74, + "probability": 0.8955 + }, + { + "start": 17526.9, + "end": 17527.38, + "probability": 0.6249 + }, + { + "start": 17528.64, + "end": 17529.9, + "probability": 0.8946 + }, + { + "start": 17530.08, + "end": 17530.48, + "probability": 0.8536 + }, + { + "start": 17530.56, + "end": 17532.76, + "probability": 0.9827 + }, + { + "start": 17533.68, + "end": 17534.92, + "probability": 0.6997 + }, + { + "start": 17535.58, + "end": 17536.1, + "probability": 0.739 + }, + { + "start": 17536.44, + "end": 17538.44, + "probability": 0.9937 + }, + { + "start": 17538.5, + "end": 17539.82, + "probability": 0.7553 + }, + { + "start": 17540.26, + "end": 17543.16, + "probability": 0.9949 + }, + { + "start": 17543.66, + "end": 17544.58, + "probability": 0.9915 + }, + { + "start": 17546.12, + "end": 17548.18, + "probability": 0.7223 + }, + { + "start": 17548.9, + "end": 17552.66, + "probability": 0.5674 + }, + { + "start": 17553.74, + "end": 17556.84, + "probability": 0.9875 + }, + { + "start": 17557.36, + "end": 17558.72, + "probability": 0.6832 + }, + { + "start": 17559.44, + "end": 17560.88, + "probability": 0.9983 + }, + { + "start": 17561.4, + "end": 17565.74, + "probability": 0.9648 + }, + { + "start": 17568.16, + "end": 17569.76, + "probability": 0.9474 + }, + { + "start": 17569.8, + "end": 17570.58, + "probability": 0.988 + }, + { + "start": 17571.04, + "end": 17571.4, + "probability": 0.6437 + }, + { + "start": 17571.6, + "end": 17572.19, + "probability": 0.9927 + }, + { + "start": 17572.56, + "end": 17573.0, + "probability": 0.8502 + }, + { + "start": 17573.9, + "end": 17578.12, + "probability": 0.989 + }, + { + "start": 17578.18, + "end": 17579.96, + "probability": 0.9949 + }, + { + "start": 17580.36, + "end": 17581.99, + "probability": 0.988 + }, + { + "start": 17583.44, + "end": 17588.9, + "probability": 0.9586 + }, + { + "start": 17589.08, + "end": 17590.78, + "probability": 0.8354 + }, + { + "start": 17591.22, + "end": 17593.92, + "probability": 0.99 + }, + { + "start": 17594.16, + "end": 17597.21, + "probability": 0.9275 + }, + { + "start": 17598.66, + "end": 17600.78, + "probability": 0.9951 + }, + { + "start": 17601.46, + "end": 17603.16, + "probability": 0.9946 + }, + { + "start": 17603.86, + "end": 17607.8, + "probability": 0.9922 + }, + { + "start": 17607.9, + "end": 17610.06, + "probability": 0.9634 + }, + { + "start": 17610.56, + "end": 17612.1, + "probability": 0.9639 + }, + { + "start": 17612.2, + "end": 17613.32, + "probability": 0.7074 + }, + { + "start": 17613.36, + "end": 17613.96, + "probability": 0.1049 + }, + { + "start": 17614.68, + "end": 17616.34, + "probability": 0.4686 + }, + { + "start": 17617.2, + "end": 17617.46, + "probability": 0.5576 + }, + { + "start": 17617.58, + "end": 17620.1, + "probability": 0.7988 + }, + { + "start": 17620.28, + "end": 17620.28, + "probability": 0.0682 + }, + { + "start": 17620.28, + "end": 17620.46, + "probability": 0.2589 + }, + { + "start": 17621.4, + "end": 17626.76, + "probability": 0.9732 + }, + { + "start": 17627.5, + "end": 17636.0, + "probability": 0.9558 + }, + { + "start": 17636.28, + "end": 17638.58, + "probability": 0.6115 + }, + { + "start": 17638.6, + "end": 17639.3, + "probability": 0.884 + }, + { + "start": 17639.46, + "end": 17640.32, + "probability": 0.7506 + }, + { + "start": 17640.74, + "end": 17642.06, + "probability": 0.9902 + }, + { + "start": 17642.48, + "end": 17642.82, + "probability": 0.9639 + }, + { + "start": 17644.48, + "end": 17647.34, + "probability": 0.8671 + }, + { + "start": 17647.78, + "end": 17650.18, + "probability": 0.9878 + }, + { + "start": 17650.58, + "end": 17653.62, + "probability": 0.9347 + }, + { + "start": 17653.72, + "end": 17657.44, + "probability": 0.7694 + }, + { + "start": 17658.82, + "end": 17659.82, + "probability": 0.5876 + }, + { + "start": 17659.98, + "end": 17663.06, + "probability": 0.9901 + }, + { + "start": 17664.44, + "end": 17666.6, + "probability": 0.9156 + }, + { + "start": 17667.74, + "end": 17668.62, + "probability": 0.7876 + }, + { + "start": 17669.44, + "end": 17671.2, + "probability": 0.8584 + }, + { + "start": 17671.84, + "end": 17677.34, + "probability": 0.7455 + }, + { + "start": 17677.98, + "end": 17679.58, + "probability": 0.6831 + }, + { + "start": 17680.08, + "end": 17686.3, + "probability": 0.9764 + }, + { + "start": 17686.62, + "end": 17690.6, + "probability": 0.9209 + }, + { + "start": 17691.24, + "end": 17692.92, + "probability": 0.9797 + }, + { + "start": 17693.72, + "end": 17695.1, + "probability": 0.86 + }, + { + "start": 17695.58, + "end": 17696.48, + "probability": 0.577 + }, + { + "start": 17696.66, + "end": 17698.3, + "probability": 0.9438 + }, + { + "start": 17698.88, + "end": 17700.02, + "probability": 0.861 + }, + { + "start": 17700.48, + "end": 17705.38, + "probability": 0.9302 + }, + { + "start": 17706.16, + "end": 17708.22, + "probability": 0.9732 + }, + { + "start": 17708.34, + "end": 17709.66, + "probability": 0.9031 + }, + { + "start": 17710.4, + "end": 17712.28, + "probability": 0.9912 + }, + { + "start": 17712.36, + "end": 17716.52, + "probability": 0.9912 + }, + { + "start": 17716.7, + "end": 17720.18, + "probability": 0.5771 + }, + { + "start": 17720.24, + "end": 17722.6, + "probability": 0.9819 + }, + { + "start": 17723.88, + "end": 17728.32, + "probability": 0.8063 + }, + { + "start": 17728.76, + "end": 17730.02, + "probability": 0.9951 + }, + { + "start": 17730.58, + "end": 17733.78, + "probability": 0.9979 + }, + { + "start": 17734.8, + "end": 17736.9, + "probability": 0.7798 + }, + { + "start": 17737.74, + "end": 17741.92, + "probability": 0.7041 + }, + { + "start": 17741.92, + "end": 17743.96, + "probability": 0.9918 + }, + { + "start": 17744.4, + "end": 17748.6, + "probability": 0.6132 + }, + { + "start": 17749.14, + "end": 17754.52, + "probability": 0.9663 + }, + { + "start": 17754.94, + "end": 17757.3, + "probability": 0.9463 + }, + { + "start": 17758.02, + "end": 17758.92, + "probability": 0.7798 + }, + { + "start": 17759.4, + "end": 17760.12, + "probability": 0.5551 + }, + { + "start": 17760.34, + "end": 17764.35, + "probability": 0.8138 + }, + { + "start": 17765.04, + "end": 17767.4, + "probability": 0.2953 + }, + { + "start": 17767.9, + "end": 17768.1, + "probability": 0.1209 + }, + { + "start": 17769.04, + "end": 17769.3, + "probability": 0.0663 + }, + { + "start": 17769.3, + "end": 17770.2, + "probability": 0.2056 + }, + { + "start": 17771.26, + "end": 17773.26, + "probability": 0.3515 + }, + { + "start": 17773.38, + "end": 17775.64, + "probability": 0.7485 + }, + { + "start": 17776.34, + "end": 17777.18, + "probability": 0.9058 + }, + { + "start": 17777.56, + "end": 17781.44, + "probability": 0.9285 + }, + { + "start": 17782.92, + "end": 17786.46, + "probability": 0.8806 + }, + { + "start": 17787.12, + "end": 17788.07, + "probability": 0.7914 + }, + { + "start": 17788.44, + "end": 17791.86, + "probability": 0.9952 + }, + { + "start": 17792.88, + "end": 17798.14, + "probability": 0.9916 + }, + { + "start": 17799.92, + "end": 17801.6, + "probability": 0.9982 + }, + { + "start": 17802.78, + "end": 17804.32, + "probability": 0.9199 + }, + { + "start": 17805.18, + "end": 17810.02, + "probability": 0.9956 + }, + { + "start": 17811.7, + "end": 17813.46, + "probability": 0.9811 + }, + { + "start": 17814.52, + "end": 17815.42, + "probability": 0.8116 + }, + { + "start": 17816.02, + "end": 17817.72, + "probability": 0.9513 + }, + { + "start": 17818.3, + "end": 17821.38, + "probability": 0.9294 + }, + { + "start": 17823.2, + "end": 17830.44, + "probability": 0.9802 + }, + { + "start": 17831.4, + "end": 17833.66, + "probability": 0.8555 + }, + { + "start": 17834.54, + "end": 17835.4, + "probability": 0.681 + }, + { + "start": 17836.54, + "end": 17838.12, + "probability": 0.9121 + }, + { + "start": 17838.24, + "end": 17840.2, + "probability": 0.8273 + }, + { + "start": 17840.74, + "end": 17841.6, + "probability": 0.9951 + }, + { + "start": 17843.36, + "end": 17844.92, + "probability": 0.9951 + }, + { + "start": 17846.32, + "end": 17851.82, + "probability": 0.9932 + }, + { + "start": 17853.12, + "end": 17856.9, + "probability": 0.9526 + }, + { + "start": 17858.46, + "end": 17859.98, + "probability": 0.757 + }, + { + "start": 17860.98, + "end": 17861.92, + "probability": 0.748 + }, + { + "start": 17862.48, + "end": 17863.42, + "probability": 0.9756 + }, + { + "start": 17864.82, + "end": 17865.44, + "probability": 0.8484 + }, + { + "start": 17866.24, + "end": 17869.74, + "probability": 0.9629 + }, + { + "start": 17870.36, + "end": 17872.58, + "probability": 0.9209 + }, + { + "start": 17873.46, + "end": 17875.38, + "probability": 0.8564 + }, + { + "start": 17875.74, + "end": 17876.9, + "probability": 0.7985 + }, + { + "start": 17877.4, + "end": 17880.06, + "probability": 0.9862 + }, + { + "start": 17882.44, + "end": 17886.7, + "probability": 0.9712 + }, + { + "start": 17888.24, + "end": 17889.96, + "probability": 0.9756 + }, + { + "start": 17890.5, + "end": 17891.54, + "probability": 0.9852 + }, + { + "start": 17893.86, + "end": 17896.18, + "probability": 0.9658 + }, + { + "start": 17897.94, + "end": 17902.38, + "probability": 0.9962 + }, + { + "start": 17902.74, + "end": 17904.86, + "probability": 0.4853 + }, + { + "start": 17906.6, + "end": 17907.82, + "probability": 0.9324 + }, + { + "start": 17909.52, + "end": 17913.18, + "probability": 0.8864 + }, + { + "start": 17913.9, + "end": 17918.98, + "probability": 0.9598 + }, + { + "start": 17920.7, + "end": 17924.92, + "probability": 0.9734 + }, + { + "start": 17925.86, + "end": 17928.86, + "probability": 0.9997 + }, + { + "start": 17929.7, + "end": 17932.12, + "probability": 0.6951 + }, + { + "start": 17933.04, + "end": 17934.12, + "probability": 0.9419 + }, + { + "start": 17935.0, + "end": 17936.08, + "probability": 0.983 + }, + { + "start": 17936.86, + "end": 17937.86, + "probability": 0.9624 + }, + { + "start": 17938.42, + "end": 17939.19, + "probability": 0.9707 + }, + { + "start": 17940.1, + "end": 17942.46, + "probability": 0.95 + }, + { + "start": 17943.9, + "end": 17945.34, + "probability": 0.8303 + }, + { + "start": 17947.92, + "end": 17951.0, + "probability": 0.9849 + }, + { + "start": 17951.96, + "end": 17952.4, + "probability": 0.8781 + }, + { + "start": 17952.48, + "end": 17954.38, + "probability": 0.9971 + }, + { + "start": 17956.64, + "end": 17957.66, + "probability": 0.9906 + }, + { + "start": 17958.74, + "end": 17960.6, + "probability": 0.947 + }, + { + "start": 17962.04, + "end": 17965.4, + "probability": 0.9107 + }, + { + "start": 17965.98, + "end": 17967.14, + "probability": 0.9987 + }, + { + "start": 17967.88, + "end": 17970.14, + "probability": 0.7778 + }, + { + "start": 17970.72, + "end": 17974.9, + "probability": 0.8342 + }, + { + "start": 17975.04, + "end": 17977.88, + "probability": 0.9678 + }, + { + "start": 17979.24, + "end": 17983.3, + "probability": 0.9976 + }, + { + "start": 17984.26, + "end": 17987.22, + "probability": 0.998 + }, + { + "start": 17988.54, + "end": 17991.64, + "probability": 0.9548 + }, + { + "start": 17991.94, + "end": 17993.4, + "probability": 0.9988 + }, + { + "start": 17994.58, + "end": 17996.22, + "probability": 0.9976 + }, + { + "start": 17996.78, + "end": 17997.6, + "probability": 0.9994 + }, + { + "start": 17998.32, + "end": 18003.22, + "probability": 0.9077 + }, + { + "start": 18003.34, + "end": 18007.84, + "probability": 0.962 + }, + { + "start": 18007.88, + "end": 18008.3, + "probability": 0.7066 + }, + { + "start": 18009.96, + "end": 18010.68, + "probability": 0.8365 + }, + { + "start": 18011.92, + "end": 18014.92, + "probability": 0.9715 + }, + { + "start": 18015.04, + "end": 18016.78, + "probability": 0.658 + }, + { + "start": 18017.44, + "end": 18021.4, + "probability": 0.9873 + }, + { + "start": 18021.4, + "end": 18024.4, + "probability": 0.9916 + }, + { + "start": 18025.26, + "end": 18026.98, + "probability": 0.9507 + }, + { + "start": 18028.86, + "end": 18034.48, + "probability": 0.9971 + }, + { + "start": 18035.18, + "end": 18036.7, + "probability": 0.6851 + }, + { + "start": 18037.36, + "end": 18038.52, + "probability": 0.9845 + }, + { + "start": 18038.98, + "end": 18039.78, + "probability": 0.9896 + }, + { + "start": 18040.44, + "end": 18041.12, + "probability": 0.991 + }, + { + "start": 18041.72, + "end": 18042.08, + "probability": 0.9951 + }, + { + "start": 18043.42, + "end": 18046.02, + "probability": 0.9829 + }, + { + "start": 18047.36, + "end": 18048.82, + "probability": 0.9919 + }, + { + "start": 18049.7, + "end": 18054.38, + "probability": 0.972 + }, + { + "start": 18055.26, + "end": 18056.9, + "probability": 0.8188 + }, + { + "start": 18058.3, + "end": 18061.6, + "probability": 0.991 + }, + { + "start": 18061.68, + "end": 18064.66, + "probability": 0.6865 + }, + { + "start": 18065.62, + "end": 18068.06, + "probability": 0.706 + }, + { + "start": 18068.44, + "end": 18070.32, + "probability": 0.9865 + }, + { + "start": 18071.41, + "end": 18074.02, + "probability": 0.9072 + }, + { + "start": 18074.54, + "end": 18075.12, + "probability": 0.896 + }, + { + "start": 18075.64, + "end": 18076.44, + "probability": 0.9928 + }, + { + "start": 18076.48, + "end": 18080.66, + "probability": 0.9933 + }, + { + "start": 18080.78, + "end": 18082.52, + "probability": 0.9789 + }, + { + "start": 18082.98, + "end": 18087.52, + "probability": 0.9958 + }, + { + "start": 18087.64, + "end": 18089.0, + "probability": 0.9956 + }, + { + "start": 18092.78, + "end": 18094.34, + "probability": 0.9763 + }, + { + "start": 18094.36, + "end": 18094.36, + "probability": 0.6956 + }, + { + "start": 18094.44, + "end": 18096.74, + "probability": 0.9168 + }, + { + "start": 18097.46, + "end": 18099.96, + "probability": 0.986 + }, + { + "start": 18100.56, + "end": 18104.0, + "probability": 0.9823 + }, + { + "start": 18104.78, + "end": 18106.22, + "probability": 0.9733 + }, + { + "start": 18106.3, + "end": 18107.6, + "probability": 0.9866 + }, + { + "start": 18107.66, + "end": 18108.04, + "probability": 0.7542 + }, + { + "start": 18108.18, + "end": 18108.92, + "probability": 0.764 + }, + { + "start": 18109.34, + "end": 18112.08, + "probability": 0.83 + }, + { + "start": 18112.7, + "end": 18114.3, + "probability": 0.6338 + }, + { + "start": 18116.24, + "end": 18116.7, + "probability": 0.3228 + }, + { + "start": 18117.24, + "end": 18118.34, + "probability": 0.7898 + }, + { + "start": 18119.22, + "end": 18120.18, + "probability": 0.5242 + }, + { + "start": 18122.38, + "end": 18124.0, + "probability": 0.0177 + }, + { + "start": 18124.48, + "end": 18125.25, + "probability": 0.2825 + }, + { + "start": 18125.48, + "end": 18125.78, + "probability": 0.2579 + }, + { + "start": 18125.9, + "end": 18125.9, + "probability": 0.1044 + }, + { + "start": 18125.9, + "end": 18128.58, + "probability": 0.2768 + }, + { + "start": 18129.9, + "end": 18130.6, + "probability": 0.4555 + }, + { + "start": 18131.04, + "end": 18131.9, + "probability": 0.3638 + }, + { + "start": 18131.94, + "end": 18132.36, + "probability": 0.8516 + }, + { + "start": 18132.46, + "end": 18133.38, + "probability": 0.6974 + }, + { + "start": 18133.42, + "end": 18133.94, + "probability": 0.7519 + }, + { + "start": 18134.78, + "end": 18135.88, + "probability": 0.9674 + }, + { + "start": 18136.94, + "end": 18138.84, + "probability": 0.6244 + }, + { + "start": 18139.92, + "end": 18141.98, + "probability": 0.9655 + }, + { + "start": 18142.88, + "end": 18144.0, + "probability": 0.805 + }, + { + "start": 18144.4, + "end": 18145.97, + "probability": 0.7407 + }, + { + "start": 18147.29, + "end": 18150.44, + "probability": 0.9629 + }, + { + "start": 18153.22, + "end": 18160.8, + "probability": 0.1496 + }, + { + "start": 18161.06, + "end": 18162.68, + "probability": 0.505 + }, + { + "start": 18165.05, + "end": 18167.58, + "probability": 0.3136 + }, + { + "start": 18168.33, + "end": 18174.59, + "probability": 0.3187 + }, + { + "start": 18176.06, + "end": 18176.86, + "probability": 0.1124 + }, + { + "start": 18176.86, + "end": 18176.86, + "probability": 0.5933 + }, + { + "start": 18176.86, + "end": 18176.86, + "probability": 0.0929 + }, + { + "start": 18176.86, + "end": 18179.22, + "probability": 0.7692 + }, + { + "start": 18179.72, + "end": 18181.96, + "probability": 0.9662 + }, + { + "start": 18183.0, + "end": 18187.66, + "probability": 0.5357 + }, + { + "start": 18189.16, + "end": 18191.08, + "probability": 0.6302 + }, + { + "start": 18191.96, + "end": 18193.78, + "probability": 0.672 + }, + { + "start": 18193.84, + "end": 18194.86, + "probability": 0.452 + }, + { + "start": 18194.94, + "end": 18197.56, + "probability": 0.9604 + }, + { + "start": 18197.8, + "end": 18199.94, + "probability": 0.9881 + }, + { + "start": 18199.94, + "end": 18201.98, + "probability": 0.9966 + }, + { + "start": 18202.66, + "end": 18202.9, + "probability": 0.2276 + }, + { + "start": 18203.08, + "end": 18203.76, + "probability": 0.7365 + }, + { + "start": 18203.92, + "end": 18205.14, + "probability": 0.667 + }, + { + "start": 18205.3, + "end": 18207.86, + "probability": 0.5788 + }, + { + "start": 18207.86, + "end": 18208.72, + "probability": 0.7592 + }, + { + "start": 18209.98, + "end": 18210.58, + "probability": 0.605 + }, + { + "start": 18210.68, + "end": 18213.8, + "probability": 0.8864 + }, + { + "start": 18214.3, + "end": 18216.54, + "probability": 0.855 + }, + { + "start": 18216.56, + "end": 18217.66, + "probability": 0.4806 + }, + { + "start": 18217.66, + "end": 18217.66, + "probability": 0.6405 + }, + { + "start": 18217.66, + "end": 18221.18, + "probability": 0.9519 + }, + { + "start": 18221.18, + "end": 18224.8, + "probability": 0.9829 + }, + { + "start": 18225.4, + "end": 18227.28, + "probability": 0.7816 + }, + { + "start": 18230.08, + "end": 18230.86, + "probability": 0.6031 + }, + { + "start": 18232.1, + "end": 18232.52, + "probability": 0.1559 + }, + { + "start": 18233.76, + "end": 18235.0, + "probability": 0.145 + }, + { + "start": 18238.14, + "end": 18240.2, + "probability": 0.2571 + }, + { + "start": 18266.34, + "end": 18266.74, + "probability": 0.5123 + }, + { + "start": 18266.9, + "end": 18272.16, + "probability": 0.962 + }, + { + "start": 18272.16, + "end": 18276.3, + "probability": 0.9958 + }, + { + "start": 18276.82, + "end": 18280.62, + "probability": 0.9301 + }, + { + "start": 18281.2, + "end": 18284.28, + "probability": 0.8614 + }, + { + "start": 18284.92, + "end": 18287.34, + "probability": 0.5811 + }, + { + "start": 18287.5, + "end": 18288.02, + "probability": 0.5715 + }, + { + "start": 18288.94, + "end": 18292.0, + "probability": 0.8084 + }, + { + "start": 18292.28, + "end": 18295.24, + "probability": 0.8801 + }, + { + "start": 18295.84, + "end": 18299.2, + "probability": 0.9943 + }, + { + "start": 18299.2, + "end": 18304.08, + "probability": 0.9917 + }, + { + "start": 18304.86, + "end": 18306.21, + "probability": 0.8317 + }, + { + "start": 18307.18, + "end": 18310.08, + "probability": 0.99 + }, + { + "start": 18311.0, + "end": 18314.54, + "probability": 0.9961 + }, + { + "start": 18315.1, + "end": 18319.52, + "probability": 0.9883 + }, + { + "start": 18320.18, + "end": 18324.7, + "probability": 0.9985 + }, + { + "start": 18325.42, + "end": 18329.78, + "probability": 0.9655 + }, + { + "start": 18330.6, + "end": 18332.94, + "probability": 0.9615 + }, + { + "start": 18332.94, + "end": 18335.6, + "probability": 0.9963 + }, + { + "start": 18336.24, + "end": 18340.22, + "probability": 0.9819 + }, + { + "start": 18340.96, + "end": 18342.72, + "probability": 0.8079 + }, + { + "start": 18343.34, + "end": 18347.32, + "probability": 0.7886 + }, + { + "start": 18348.14, + "end": 18351.2, + "probability": 0.96 + }, + { + "start": 18351.2, + "end": 18354.98, + "probability": 0.9509 + }, + { + "start": 18356.94, + "end": 18361.1, + "probability": 0.9432 + }, + { + "start": 18361.18, + "end": 18363.24, + "probability": 0.8858 + }, + { + "start": 18363.8, + "end": 18367.04, + "probability": 0.9776 + }, + { + "start": 18367.96, + "end": 18371.52, + "probability": 0.8883 + }, + { + "start": 18371.64, + "end": 18372.4, + "probability": 0.4593 + }, + { + "start": 18373.12, + "end": 18374.46, + "probability": 0.9045 + }, + { + "start": 18375.1, + "end": 18376.36, + "probability": 0.8 + }, + { + "start": 18376.76, + "end": 18377.08, + "probability": 0.8882 + }, + { + "start": 18377.14, + "end": 18380.78, + "probability": 0.9953 + }, + { + "start": 18381.28, + "end": 18385.52, + "probability": 0.9828 + }, + { + "start": 18385.92, + "end": 18386.46, + "probability": 0.8639 + }, + { + "start": 18387.32, + "end": 18389.16, + "probability": 0.9595 + }, + { + "start": 18389.4, + "end": 18391.3, + "probability": 0.9314 + }, + { + "start": 18391.8, + "end": 18393.08, + "probability": 0.9327 + }, + { + "start": 18393.94, + "end": 18397.38, + "probability": 0.9886 + }, + { + "start": 18397.88, + "end": 18399.1, + "probability": 0.8094 + }, + { + "start": 18399.72, + "end": 18401.82, + "probability": 0.9907 + }, + { + "start": 18402.5, + "end": 18406.26, + "probability": 0.9957 + }, + { + "start": 18406.44, + "end": 18408.72, + "probability": 0.9503 + }, + { + "start": 18409.3, + "end": 18413.88, + "probability": 0.9174 + }, + { + "start": 18414.0, + "end": 18416.84, + "probability": 0.9385 + }, + { + "start": 18417.36, + "end": 18421.24, + "probability": 0.99 + }, + { + "start": 18421.68, + "end": 18423.74, + "probability": 0.9834 + }, + { + "start": 18424.68, + "end": 18425.46, + "probability": 0.5527 + }, + { + "start": 18425.48, + "end": 18426.98, + "probability": 0.8992 + }, + { + "start": 18427.1, + "end": 18431.46, + "probability": 0.9875 + }, + { + "start": 18432.28, + "end": 18435.5, + "probability": 0.9941 + }, + { + "start": 18436.3, + "end": 18437.06, + "probability": 0.8008 + }, + { + "start": 18437.18, + "end": 18438.98, + "probability": 0.9962 + }, + { + "start": 18439.06, + "end": 18442.16, + "probability": 0.9927 + }, + { + "start": 18442.16, + "end": 18444.66, + "probability": 0.9984 + }, + { + "start": 18445.14, + "end": 18447.72, + "probability": 0.9989 + }, + { + "start": 18447.72, + "end": 18449.86, + "probability": 0.9859 + }, + { + "start": 18450.4, + "end": 18452.14, + "probability": 0.9951 + }, + { + "start": 18452.18, + "end": 18452.98, + "probability": 0.6807 + }, + { + "start": 18453.38, + "end": 18455.24, + "probability": 0.9839 + }, + { + "start": 18455.74, + "end": 18456.06, + "probability": 0.5272 + }, + { + "start": 18456.08, + "end": 18460.52, + "probability": 0.9974 + }, + { + "start": 18461.04, + "end": 18464.2, + "probability": 0.9965 + }, + { + "start": 18464.22, + "end": 18468.17, + "probability": 0.9875 + }, + { + "start": 18468.8, + "end": 18471.08, + "probability": 0.9853 + }, + { + "start": 18471.1, + "end": 18473.7, + "probability": 0.9975 + }, + { + "start": 18474.38, + "end": 18475.04, + "probability": 0.75 + }, + { + "start": 18475.1, + "end": 18476.58, + "probability": 0.9863 + }, + { + "start": 18476.66, + "end": 18480.16, + "probability": 0.9347 + }, + { + "start": 18480.38, + "end": 18484.02, + "probability": 0.9938 + }, + { + "start": 18484.02, + "end": 18487.58, + "probability": 0.9849 + }, + { + "start": 18488.34, + "end": 18490.18, + "probability": 0.5148 + }, + { + "start": 18490.64, + "end": 18493.48, + "probability": 0.7203 + }, + { + "start": 18494.04, + "end": 18497.7, + "probability": 0.9787 + }, + { + "start": 18498.24, + "end": 18499.04, + "probability": 0.7407 + }, + { + "start": 18499.12, + "end": 18500.52, + "probability": 0.8593 + }, + { + "start": 18500.58, + "end": 18503.08, + "probability": 0.8871 + }, + { + "start": 18503.58, + "end": 18505.6, + "probability": 0.9928 + }, + { + "start": 18506.12, + "end": 18509.2, + "probability": 0.8809 + }, + { + "start": 18509.76, + "end": 18510.41, + "probability": 0.8509 + }, + { + "start": 18510.68, + "end": 18515.04, + "probability": 0.9692 + }, + { + "start": 18515.82, + "end": 18519.96, + "probability": 0.9688 + }, + { + "start": 18520.42, + "end": 18521.86, + "probability": 0.9987 + }, + { + "start": 18522.66, + "end": 18525.76, + "probability": 0.9939 + }, + { + "start": 18526.14, + "end": 18529.4, + "probability": 0.9996 + }, + { + "start": 18529.6, + "end": 18530.06, + "probability": 0.76 + }, + { + "start": 18531.2, + "end": 18533.06, + "probability": 0.9526 + }, + { + "start": 18533.24, + "end": 18534.66, + "probability": 0.7963 + }, + { + "start": 18535.66, + "end": 18537.62, + "probability": 0.8372 + }, + { + "start": 18538.94, + "end": 18539.58, + "probability": 0.9572 + }, + { + "start": 18572.8, + "end": 18573.64, + "probability": 0.7096 + }, + { + "start": 18575.12, + "end": 18577.36, + "probability": 0.8221 + }, + { + "start": 18578.46, + "end": 18583.14, + "probability": 0.9929 + }, + { + "start": 18584.38, + "end": 18587.28, + "probability": 0.8357 + }, + { + "start": 18588.76, + "end": 18592.48, + "probability": 0.9883 + }, + { + "start": 18593.7, + "end": 18595.08, + "probability": 0.8012 + }, + { + "start": 18595.2, + "end": 18595.68, + "probability": 0.5521 + }, + { + "start": 18595.8, + "end": 18598.34, + "probability": 0.9945 + }, + { + "start": 18599.3, + "end": 18603.2, + "probability": 0.9567 + }, + { + "start": 18603.32, + "end": 18604.08, + "probability": 0.7833 + }, + { + "start": 18605.02, + "end": 18606.46, + "probability": 0.9976 + }, + { + "start": 18607.26, + "end": 18609.86, + "probability": 0.9576 + }, + { + "start": 18611.92, + "end": 18616.94, + "probability": 0.9976 + }, + { + "start": 18617.02, + "end": 18617.3, + "probability": 0.8212 + }, + { + "start": 18617.76, + "end": 18619.8, + "probability": 0.9849 + }, + { + "start": 18619.84, + "end": 18621.32, + "probability": 0.9722 + }, + { + "start": 18622.86, + "end": 18623.3, + "probability": 0.7818 + }, + { + "start": 18623.82, + "end": 18624.88, + "probability": 0.6445 + }, + { + "start": 18625.66, + "end": 18627.22, + "probability": 0.9228 + }, + { + "start": 18628.0, + "end": 18629.12, + "probability": 0.9549 + }, + { + "start": 18630.44, + "end": 18633.14, + "probability": 0.9618 + }, + { + "start": 18633.98, + "end": 18636.18, + "probability": 0.9614 + }, + { + "start": 18637.53, + "end": 18640.52, + "probability": 0.713 + }, + { + "start": 18641.92, + "end": 18645.38, + "probability": 0.9824 + }, + { + "start": 18646.44, + "end": 18649.86, + "probability": 0.9215 + }, + { + "start": 18650.82, + "end": 18652.28, + "probability": 0.9338 + }, + { + "start": 18653.06, + "end": 18656.32, + "probability": 0.9611 + }, + { + "start": 18657.48, + "end": 18660.06, + "probability": 0.9441 + }, + { + "start": 18660.92, + "end": 18663.98, + "probability": 0.9773 + }, + { + "start": 18665.24, + "end": 18667.68, + "probability": 0.9861 + }, + { + "start": 18668.82, + "end": 18670.44, + "probability": 0.9615 + }, + { + "start": 18671.86, + "end": 18672.96, + "probability": 0.9845 + }, + { + "start": 18673.98, + "end": 18674.63, + "probability": 0.9849 + }, + { + "start": 18675.12, + "end": 18676.34, + "probability": 0.9932 + }, + { + "start": 18677.26, + "end": 18679.18, + "probability": 0.8881 + }, + { + "start": 18680.72, + "end": 18684.72, + "probability": 0.9895 + }, + { + "start": 18686.0, + "end": 18688.74, + "probability": 0.9988 + }, + { + "start": 18689.38, + "end": 18693.38, + "probability": 0.8356 + }, + { + "start": 18693.44, + "end": 18696.82, + "probability": 0.9756 + }, + { + "start": 18698.12, + "end": 18699.64, + "probability": 0.9917 + }, + { + "start": 18700.6, + "end": 18704.02, + "probability": 0.9824 + }, + { + "start": 18705.37, + "end": 18712.48, + "probability": 0.9951 + }, + { + "start": 18713.04, + "end": 18713.6, + "probability": 0.8413 + }, + { + "start": 18714.84, + "end": 18715.82, + "probability": 0.7363 + }, + { + "start": 18715.9, + "end": 18719.08, + "probability": 0.7461 + }, + { + "start": 18739.18, + "end": 18740.2, + "probability": 0.4539 + }, + { + "start": 18740.34, + "end": 18747.7, + "probability": 0.8454 + }, + { + "start": 18750.16, + "end": 18752.96, + "probability": 0.8365 + }, + { + "start": 18754.58, + "end": 18757.06, + "probability": 0.8669 + }, + { + "start": 18758.4, + "end": 18760.02, + "probability": 0.8376 + }, + { + "start": 18762.68, + "end": 18765.84, + "probability": 0.9793 + }, + { + "start": 18766.14, + "end": 18767.78, + "probability": 0.5388 + }, + { + "start": 18767.94, + "end": 18770.1, + "probability": 0.4519 + }, + { + "start": 18771.26, + "end": 18772.54, + "probability": 0.9276 + }, + { + "start": 18774.76, + "end": 18777.48, + "probability": 0.99 + }, + { + "start": 18779.84, + "end": 18782.5, + "probability": 0.9917 + }, + { + "start": 18783.26, + "end": 18784.38, + "probability": 0.6361 + }, + { + "start": 18784.94, + "end": 18790.36, + "probability": 0.9895 + }, + { + "start": 18791.02, + "end": 18793.86, + "probability": 0.9966 + }, + { + "start": 18795.1, + "end": 18796.42, + "probability": 0.7624 + }, + { + "start": 18797.8, + "end": 18798.84, + "probability": 0.9807 + }, + { + "start": 18798.92, + "end": 18800.04, + "probability": 0.9748 + }, + { + "start": 18800.14, + "end": 18801.56, + "probability": 0.9966 + }, + { + "start": 18801.62, + "end": 18803.52, + "probability": 0.9878 + }, + { + "start": 18804.92, + "end": 18805.72, + "probability": 0.9863 + }, + { + "start": 18807.72, + "end": 18808.76, + "probability": 0.6934 + }, + { + "start": 18810.34, + "end": 18811.22, + "probability": 0.9176 + }, + { + "start": 18811.96, + "end": 18813.7, + "probability": 0.8564 + }, + { + "start": 18813.88, + "end": 18814.32, + "probability": 0.7709 + }, + { + "start": 18814.88, + "end": 18815.62, + "probability": 0.9591 + }, + { + "start": 18816.2, + "end": 18817.04, + "probability": 0.9254 + }, + { + "start": 18818.74, + "end": 18822.3, + "probability": 0.989 + }, + { + "start": 18824.5, + "end": 18826.57, + "probability": 0.9912 + }, + { + "start": 18826.84, + "end": 18829.14, + "probability": 0.9806 + }, + { + "start": 18829.26, + "end": 18830.12, + "probability": 0.871 + }, + { + "start": 18831.04, + "end": 18832.54, + "probability": 0.9776 + }, + { + "start": 18834.14, + "end": 18834.42, + "probability": 0.9438 + }, + { + "start": 18835.22, + "end": 18837.69, + "probability": 0.9676 + }, + { + "start": 18838.66, + "end": 18840.74, + "probability": 0.9688 + }, + { + "start": 18841.06, + "end": 18842.18, + "probability": 0.9644 + }, + { + "start": 18843.38, + "end": 18845.2, + "probability": 0.3233 + }, + { + "start": 18847.0, + "end": 18848.08, + "probability": 0.7906 + }, + { + "start": 18848.24, + "end": 18849.72, + "probability": 0.788 + }, + { + "start": 18849.84, + "end": 18850.76, + "probability": 0.8848 + }, + { + "start": 18850.92, + "end": 18851.52, + "probability": 0.9435 + }, + { + "start": 18853.16, + "end": 18855.64, + "probability": 0.9501 + }, + { + "start": 18856.92, + "end": 18857.28, + "probability": 0.5613 + }, + { + "start": 18857.48, + "end": 18862.76, + "probability": 0.8664 + }, + { + "start": 18862.76, + "end": 18866.02, + "probability": 0.9975 + }, + { + "start": 18867.36, + "end": 18868.64, + "probability": 0.7549 + }, + { + "start": 18869.0, + "end": 18870.82, + "probability": 0.9784 + }, + { + "start": 18870.86, + "end": 18872.3, + "probability": 0.4807 + }, + { + "start": 18872.84, + "end": 18874.08, + "probability": 0.5075 + }, + { + "start": 18874.1, + "end": 18877.14, + "probability": 0.8371 + }, + { + "start": 18878.5, + "end": 18881.82, + "probability": 0.9043 + }, + { + "start": 18883.58, + "end": 18886.28, + "probability": 0.7751 + }, + { + "start": 18886.28, + "end": 18889.86, + "probability": 0.5935 + }, + { + "start": 18891.68, + "end": 18893.0, + "probability": 0.8714 + }, + { + "start": 18893.12, + "end": 18893.64, + "probability": 0.9398 + }, + { + "start": 18893.78, + "end": 18894.68, + "probability": 0.8105 + }, + { + "start": 18894.76, + "end": 18895.44, + "probability": 0.594 + }, + { + "start": 18895.98, + "end": 18901.16, + "probability": 0.8683 + }, + { + "start": 18901.26, + "end": 18903.04, + "probability": 0.8051 + }, + { + "start": 18903.82, + "end": 18906.0, + "probability": 0.9971 + }, + { + "start": 18906.82, + "end": 18911.12, + "probability": 0.9906 + }, + { + "start": 18911.98, + "end": 18916.66, + "probability": 0.8906 + }, + { + "start": 18916.66, + "end": 18921.06, + "probability": 0.9937 + }, + { + "start": 18922.52, + "end": 18923.56, + "probability": 0.6692 + }, + { + "start": 18926.0, + "end": 18931.04, + "probability": 0.7583 + }, + { + "start": 18931.44, + "end": 18935.04, + "probability": 0.9923 + }, + { + "start": 18936.86, + "end": 18938.44, + "probability": 0.2142 + }, + { + "start": 18940.4, + "end": 18945.24, + "probability": 0.9624 + }, + { + "start": 18945.42, + "end": 18947.7, + "probability": 0.9937 + }, + { + "start": 18948.1, + "end": 18949.3, + "probability": 0.7119 + }, + { + "start": 18950.88, + "end": 18955.72, + "probability": 0.9084 + }, + { + "start": 18955.8, + "end": 18959.42, + "probability": 0.9943 + }, + { + "start": 18960.72, + "end": 18962.76, + "probability": 0.5272 + }, + { + "start": 18963.3, + "end": 18967.04, + "probability": 0.978 + }, + { + "start": 18967.04, + "end": 18970.86, + "probability": 0.9971 + }, + { + "start": 18971.82, + "end": 18972.97, + "probability": 0.9883 + }, + { + "start": 18973.74, + "end": 18975.86, + "probability": 0.9616 + }, + { + "start": 18976.66, + "end": 18977.62, + "probability": 0.8706 + }, + { + "start": 18978.16, + "end": 18980.76, + "probability": 0.8956 + }, + { + "start": 18982.26, + "end": 18983.57, + "probability": 0.9595 + }, + { + "start": 18984.92, + "end": 18988.78, + "probability": 0.9929 + }, + { + "start": 18990.1, + "end": 18993.02, + "probability": 0.6753 + }, + { + "start": 18993.68, + "end": 18996.84, + "probability": 0.4593 + }, + { + "start": 18998.0, + "end": 19000.46, + "probability": 0.7903 + }, + { + "start": 19001.04, + "end": 19002.88, + "probability": 0.916 + }, + { + "start": 19003.68, + "end": 19005.08, + "probability": 0.7925 + }, + { + "start": 19005.32, + "end": 19007.36, + "probability": 0.9834 + }, + { + "start": 19008.6, + "end": 19008.9, + "probability": 0.1854 + }, + { + "start": 19008.9, + "end": 19009.38, + "probability": 0.5384 + }, + { + "start": 19010.5, + "end": 19010.98, + "probability": 0.8146 + }, + { + "start": 19011.62, + "end": 19013.4, + "probability": 0.9843 + }, + { + "start": 19013.48, + "end": 19014.92, + "probability": 0.9341 + }, + { + "start": 19014.98, + "end": 19015.52, + "probability": 0.638 + }, + { + "start": 19016.32, + "end": 19017.64, + "probability": 0.9152 + }, + { + "start": 19017.84, + "end": 19018.31, + "probability": 0.877 + }, + { + "start": 19018.8, + "end": 19019.56, + "probability": 0.9455 + }, + { + "start": 19019.64, + "end": 19021.22, + "probability": 0.9626 + }, + { + "start": 19022.26, + "end": 19022.26, + "probability": 0.0597 + }, + { + "start": 19022.26, + "end": 19027.38, + "probability": 0.4065 + }, + { + "start": 19028.04, + "end": 19028.24, + "probability": 0.8714 + }, + { + "start": 19028.9, + "end": 19030.88, + "probability": 0.5914 + }, + { + "start": 19030.98, + "end": 19032.38, + "probability": 0.9489 + }, + { + "start": 19033.08, + "end": 19034.38, + "probability": 0.2109 + }, + { + "start": 19035.28, + "end": 19037.37, + "probability": 0.9871 + }, + { + "start": 19037.48, + "end": 19039.13, + "probability": 0.6746 + }, + { + "start": 19039.28, + "end": 19039.56, + "probability": 0.573 + }, + { + "start": 19039.58, + "end": 19042.34, + "probability": 0.9957 + }, + { + "start": 19042.7, + "end": 19044.2, + "probability": 0.6357 + }, + { + "start": 19044.22, + "end": 19045.36, + "probability": 0.862 + }, + { + "start": 19045.82, + "end": 19046.94, + "probability": 0.4834 + }, + { + "start": 19047.12, + "end": 19047.5, + "probability": 0.199 + }, + { + "start": 19047.5, + "end": 19052.4, + "probability": 0.9747 + }, + { + "start": 19052.68, + "end": 19053.2, + "probability": 0.1321 + }, + { + "start": 19053.2, + "end": 19054.7, + "probability": 0.8986 + }, + { + "start": 19055.16, + "end": 19058.56, + "probability": 0.9887 + }, + { + "start": 19059.04, + "end": 19063.9, + "probability": 0.9695 + }, + { + "start": 19064.52, + "end": 19069.2, + "probability": 0.9941 + }, + { + "start": 19069.28, + "end": 19069.88, + "probability": 0.7451 + }, + { + "start": 19076.42, + "end": 19079.94, + "probability": 0.9911 + }, + { + "start": 19079.94, + "end": 19080.42, + "probability": 0.5332 + }, + { + "start": 19081.08, + "end": 19081.72, + "probability": 0.7889 + }, + { + "start": 19082.0, + "end": 19083.07, + "probability": 0.044 + }, + { + "start": 19083.42, + "end": 19086.24, + "probability": 0.8162 + }, + { + "start": 19086.48, + "end": 19087.18, + "probability": 0.8347 + }, + { + "start": 19087.78, + "end": 19089.52, + "probability": 0.6961 + }, + { + "start": 19089.68, + "end": 19089.98, + "probability": 0.4148 + }, + { + "start": 19090.04, + "end": 19093.96, + "probability": 0.7029 + }, + { + "start": 19094.18, + "end": 19096.48, + "probability": 0.1406 + }, + { + "start": 19097.1, + "end": 19098.58, + "probability": 0.3424 + }, + { + "start": 19102.24, + "end": 19104.94, + "probability": 0.7494 + }, + { + "start": 19105.8, + "end": 19108.94, + "probability": 0.7456 + }, + { + "start": 19109.22, + "end": 19112.5, + "probability": 0.6842 + }, + { + "start": 19112.58, + "end": 19113.64, + "probability": 0.9731 + }, + { + "start": 19114.86, + "end": 19118.2, + "probability": 0.9951 + }, + { + "start": 19118.8, + "end": 19119.76, + "probability": 0.7852 + }, + { + "start": 19119.92, + "end": 19120.52, + "probability": 0.5966 + }, + { + "start": 19120.98, + "end": 19122.28, + "probability": 0.8189 + }, + { + "start": 19123.43, + "end": 19123.88, + "probability": 0.6321 + }, + { + "start": 19124.62, + "end": 19125.88, + "probability": 0.779 + }, + { + "start": 19126.48, + "end": 19127.68, + "probability": 0.9678 + }, + { + "start": 19128.34, + "end": 19129.88, + "probability": 0.9889 + }, + { + "start": 19131.0, + "end": 19133.04, + "probability": 0.891 + }, + { + "start": 19134.5, + "end": 19137.72, + "probability": 0.9922 + }, + { + "start": 19139.64, + "end": 19140.76, + "probability": 0.7101 + }, + { + "start": 19141.88, + "end": 19143.14, + "probability": 0.7934 + }, + { + "start": 19143.66, + "end": 19144.7, + "probability": 0.9331 + }, + { + "start": 19146.56, + "end": 19149.38, + "probability": 0.9849 + }, + { + "start": 19149.38, + "end": 19153.12, + "probability": 0.9973 + }, + { + "start": 19153.68, + "end": 19155.58, + "probability": 0.9867 + }, + { + "start": 19158.1, + "end": 19161.56, + "probability": 0.97 + }, + { + "start": 19162.46, + "end": 19168.06, + "probability": 0.9668 + }, + { + "start": 19169.14, + "end": 19169.66, + "probability": 0.7141 + }, + { + "start": 19169.84, + "end": 19170.02, + "probability": 0.6228 + }, + { + "start": 19170.1, + "end": 19175.78, + "probability": 0.9275 + }, + { + "start": 19176.02, + "end": 19177.26, + "probability": 0.9728 + }, + { + "start": 19177.3, + "end": 19178.32, + "probability": 0.8217 + }, + { + "start": 19178.98, + "end": 19181.14, + "probability": 0.8557 + }, + { + "start": 19181.26, + "end": 19181.84, + "probability": 0.6079 + }, + { + "start": 19182.3, + "end": 19185.3, + "probability": 0.9863 + }, + { + "start": 19185.42, + "end": 19186.1, + "probability": 0.5282 + }, + { + "start": 19186.12, + "end": 19186.84, + "probability": 0.237 + }, + { + "start": 19187.04, + "end": 19190.38, + "probability": 0.6438 + }, + { + "start": 19191.24, + "end": 19196.14, + "probability": 0.9528 + }, + { + "start": 19197.72, + "end": 19199.06, + "probability": 0.9917 + }, + { + "start": 19199.9, + "end": 19202.6, + "probability": 0.9854 + }, + { + "start": 19203.4, + "end": 19204.29, + "probability": 0.9004 + }, + { + "start": 19205.04, + "end": 19205.41, + "probability": 0.8262 + }, + { + "start": 19206.28, + "end": 19210.82, + "probability": 0.9682 + }, + { + "start": 19211.04, + "end": 19212.38, + "probability": 0.8812 + }, + { + "start": 19213.1, + "end": 19214.14, + "probability": 0.9848 + }, + { + "start": 19215.58, + "end": 19217.74, + "probability": 0.6711 + }, + { + "start": 19218.28, + "end": 19219.78, + "probability": 0.9635 + }, + { + "start": 19221.28, + "end": 19226.26, + "probability": 0.9862 + }, + { + "start": 19227.66, + "end": 19229.06, + "probability": 0.9141 + }, + { + "start": 19229.58, + "end": 19236.82, + "probability": 0.9429 + }, + { + "start": 19238.78, + "end": 19244.28, + "probability": 0.9944 + }, + { + "start": 19244.84, + "end": 19246.84, + "probability": 0.9866 + }, + { + "start": 19247.86, + "end": 19250.78, + "probability": 0.8774 + }, + { + "start": 19251.24, + "end": 19252.84, + "probability": 0.9984 + }, + { + "start": 19253.02, + "end": 19255.28, + "probability": 0.9995 + }, + { + "start": 19257.3, + "end": 19259.92, + "probability": 0.8199 + }, + { + "start": 19260.48, + "end": 19261.98, + "probability": 0.9929 + }, + { + "start": 19262.0, + "end": 19263.12, + "probability": 0.9813 + }, + { + "start": 19263.2, + "end": 19267.52, + "probability": 0.8729 + }, + { + "start": 19268.4, + "end": 19270.8, + "probability": 0.9967 + }, + { + "start": 19272.88, + "end": 19274.05, + "probability": 0.9629 + }, + { + "start": 19274.4, + "end": 19276.24, + "probability": 0.9612 + }, + { + "start": 19277.38, + "end": 19278.22, + "probability": 0.9604 + }, + { + "start": 19279.06, + "end": 19282.52, + "probability": 0.88 + }, + { + "start": 19283.24, + "end": 19288.72, + "probability": 0.915 + }, + { + "start": 19289.82, + "end": 19291.1, + "probability": 0.9754 + }, + { + "start": 19291.82, + "end": 19292.92, + "probability": 0.9564 + }, + { + "start": 19293.3, + "end": 19294.64, + "probability": 0.8943 + }, + { + "start": 19295.2, + "end": 19298.96, + "probability": 0.5323 + }, + { + "start": 19299.58, + "end": 19302.24, + "probability": 0.4357 + }, + { + "start": 19302.7, + "end": 19303.66, + "probability": 0.8563 + }, + { + "start": 19305.62, + "end": 19306.41, + "probability": 0.5288 + }, + { + "start": 19306.74, + "end": 19312.8, + "probability": 0.9184 + }, + { + "start": 19313.14, + "end": 19317.98, + "probability": 0.814 + }, + { + "start": 19318.08, + "end": 19319.58, + "probability": 0.969 + }, + { + "start": 19319.74, + "end": 19319.86, + "probability": 0.3182 + }, + { + "start": 19320.62, + "end": 19320.62, + "probability": 0.6029 + }, + { + "start": 19320.62, + "end": 19321.48, + "probability": 0.5021 + }, + { + "start": 19321.54, + "end": 19322.92, + "probability": 0.7727 + }, + { + "start": 19323.38, + "end": 19327.96, + "probability": 0.9877 + }, + { + "start": 19328.89, + "end": 19332.08, + "probability": 0.8446 + }, + { + "start": 19332.94, + "end": 19336.82, + "probability": 0.9583 + }, + { + "start": 19337.36, + "end": 19339.76, + "probability": 0.9236 + }, + { + "start": 19340.4, + "end": 19343.66, + "probability": 0.9698 + }, + { + "start": 19344.68, + "end": 19344.94, + "probability": 0.5853 + }, + { + "start": 19344.96, + "end": 19345.44, + "probability": 0.5728 + }, + { + "start": 19345.5, + "end": 19346.6, + "probability": 0.8242 + }, + { + "start": 19346.94, + "end": 19349.5, + "probability": 0.4493 + }, + { + "start": 19349.5, + "end": 19352.6, + "probability": 0.7484 + }, + { + "start": 19352.68, + "end": 19353.32, + "probability": 0.6704 + }, + { + "start": 19353.7, + "end": 19354.24, + "probability": 0.6252 + }, + { + "start": 19354.44, + "end": 19354.74, + "probability": 0.8438 + }, + { + "start": 19356.3, + "end": 19357.18, + "probability": 0.5983 + }, + { + "start": 19357.82, + "end": 19358.08, + "probability": 0.0133 + }, + { + "start": 19358.86, + "end": 19359.56, + "probability": 0.3641 + }, + { + "start": 19359.7, + "end": 19361.8, + "probability": 0.033 + }, + { + "start": 19362.08, + "end": 19362.52, + "probability": 0.1466 + }, + { + "start": 19362.62, + "end": 19364.54, + "probability": 0.647 + }, + { + "start": 19364.54, + "end": 19367.12, + "probability": 0.4834 + }, + { + "start": 19367.22, + "end": 19370.86, + "probability": 0.9304 + }, + { + "start": 19371.24, + "end": 19372.24, + "probability": 0.8657 + }, + { + "start": 19372.3, + "end": 19373.44, + "probability": 0.9149 + }, + { + "start": 19373.52, + "end": 19374.74, + "probability": 0.9893 + }, + { + "start": 19374.81, + "end": 19375.26, + "probability": 0.9524 + }, + { + "start": 19375.28, + "end": 19375.3, + "probability": 0.3126 + }, + { + "start": 19375.48, + "end": 19376.76, + "probability": 0.9531 + }, + { + "start": 19376.9, + "end": 19377.1, + "probability": 0.759 + }, + { + "start": 19377.14, + "end": 19377.67, + "probability": 0.9568 + }, + { + "start": 19377.92, + "end": 19378.59, + "probability": 0.0097 + }, + { + "start": 19379.94, + "end": 19380.14, + "probability": 0.5792 + }, + { + "start": 19380.28, + "end": 19383.24, + "probability": 0.9471 + }, + { + "start": 19383.24, + "end": 19386.18, + "probability": 0.7949 + }, + { + "start": 19386.2, + "end": 19387.86, + "probability": 0.8342 + }, + { + "start": 19388.18, + "end": 19391.3, + "probability": 0.3386 + }, + { + "start": 19391.95, + "end": 19394.86, + "probability": 0.6434 + }, + { + "start": 19395.86, + "end": 19396.38, + "probability": 0.0108 + }, + { + "start": 19396.38, + "end": 19396.38, + "probability": 0.0312 + }, + { + "start": 19396.38, + "end": 19396.38, + "probability": 0.2661 + }, + { + "start": 19396.38, + "end": 19396.38, + "probability": 0.3133 + }, + { + "start": 19396.38, + "end": 19396.38, + "probability": 0.0168 + }, + { + "start": 19396.38, + "end": 19396.38, + "probability": 0.0846 + }, + { + "start": 19396.38, + "end": 19396.38, + "probability": 0.0283 + }, + { + "start": 19396.38, + "end": 19396.38, + "probability": 0.0256 + }, + { + "start": 19396.38, + "end": 19396.38, + "probability": 0.2548 + }, + { + "start": 19396.38, + "end": 19398.42, + "probability": 0.1058 + }, + { + "start": 19400.92, + "end": 19403.14, + "probability": 0.7298 + }, + { + "start": 19403.7, + "end": 19405.6, + "probability": 0.9554 + }, + { + "start": 19406.42, + "end": 19408.1, + "probability": 0.9968 + }, + { + "start": 19408.24, + "end": 19409.36, + "probability": 0.7095 + }, + { + "start": 19409.6, + "end": 19410.27, + "probability": 0.8999 + }, + { + "start": 19410.86, + "end": 19412.54, + "probability": 0.8544 + }, + { + "start": 19413.62, + "end": 19414.76, + "probability": 0.5604 + }, + { + "start": 19415.36, + "end": 19418.46, + "probability": 0.9603 + }, + { + "start": 19419.38, + "end": 19421.96, + "probability": 0.8491 + }, + { + "start": 19422.1, + "end": 19425.06, + "probability": 0.9899 + }, + { + "start": 19425.66, + "end": 19428.7, + "probability": 0.9736 + }, + { + "start": 19429.54, + "end": 19435.68, + "probability": 0.9834 + }, + { + "start": 19436.38, + "end": 19437.68, + "probability": 0.4399 + }, + { + "start": 19437.76, + "end": 19438.15, + "probability": 0.0789 + }, + { + "start": 19438.54, + "end": 19440.36, + "probability": 0.3306 + }, + { + "start": 19440.5, + "end": 19443.62, + "probability": 0.0666 + }, + { + "start": 19443.62, + "end": 19447.8, + "probability": 0.3957 + }, + { + "start": 19447.92, + "end": 19447.98, + "probability": 0.4692 + }, + { + "start": 19448.0, + "end": 19448.0, + "probability": 0.0 + }, + { + "start": 19448.0, + "end": 19448.0, + "probability": 0.0 + }, + { + "start": 19448.14, + "end": 19448.32, + "probability": 0.1857 + }, + { + "start": 19448.32, + "end": 19448.32, + "probability": 0.0736 + }, + { + "start": 19448.32, + "end": 19449.42, + "probability": 0.9333 + }, + { + "start": 19449.94, + "end": 19450.22, + "probability": 0.5583 + }, + { + "start": 19450.68, + "end": 19451.58, + "probability": 0.9363 + }, + { + "start": 19453.14, + "end": 19453.74, + "probability": 0.5007 + }, + { + "start": 19454.26, + "end": 19457.28, + "probability": 0.7384 + }, + { + "start": 19458.62, + "end": 19458.62, + "probability": 0.1961 + }, + { + "start": 19458.62, + "end": 19458.62, + "probability": 0.1889 + }, + { + "start": 19458.62, + "end": 19458.94, + "probability": 0.6524 + }, + { + "start": 19459.2, + "end": 19461.82, + "probability": 0.5997 + }, + { + "start": 19461.82, + "end": 19465.48, + "probability": 0.9745 + }, + { + "start": 19465.92, + "end": 19467.92, + "probability": 0.8997 + }, + { + "start": 19468.82, + "end": 19473.3, + "probability": 0.9796 + }, + { + "start": 19473.34, + "end": 19476.08, + "probability": 0.4824 + }, + { + "start": 19476.98, + "end": 19479.21, + "probability": 0.9507 + }, + { + "start": 19480.36, + "end": 19483.64, + "probability": 0.9346 + }, + { + "start": 19484.81, + "end": 19486.84, + "probability": 0.9325 + }, + { + "start": 19488.26, + "end": 19488.88, + "probability": 0.7292 + }, + { + "start": 19489.86, + "end": 19490.0, + "probability": 0.8257 + }, + { + "start": 19490.74, + "end": 19492.32, + "probability": 0.8979 + }, + { + "start": 19492.86, + "end": 19496.92, + "probability": 0.9646 + }, + { + "start": 19498.84, + "end": 19500.86, + "probability": 0.9893 + }, + { + "start": 19502.28, + "end": 19503.64, + "probability": 0.9872 + }, + { + "start": 19503.8, + "end": 19506.58, + "probability": 0.9948 + }, + { + "start": 19507.28, + "end": 19507.78, + "probability": 0.8463 + }, + { + "start": 19507.94, + "end": 19509.6, + "probability": 0.9785 + }, + { + "start": 19509.76, + "end": 19510.4, + "probability": 0.8885 + }, + { + "start": 19510.46, + "end": 19513.68, + "probability": 0.9813 + }, + { + "start": 19514.34, + "end": 19516.22, + "probability": 0.9223 + }, + { + "start": 19516.7, + "end": 19519.6, + "probability": 0.9945 + }, + { + "start": 19520.12, + "end": 19521.74, + "probability": 0.8943 + }, + { + "start": 19522.34, + "end": 19523.16, + "probability": 0.7482 + }, + { + "start": 19523.18, + "end": 19526.24, + "probability": 0.9303 + }, + { + "start": 19526.28, + "end": 19527.62, + "probability": 0.9365 + }, + { + "start": 19527.98, + "end": 19529.32, + "probability": 0.9836 + }, + { + "start": 19529.94, + "end": 19531.68, + "probability": 0.9938 + }, + { + "start": 19531.74, + "end": 19535.0, + "probability": 0.997 + }, + { + "start": 19535.1, + "end": 19536.16, + "probability": 0.8162 + }, + { + "start": 19536.44, + "end": 19536.94, + "probability": 0.5217 + }, + { + "start": 19537.0, + "end": 19538.04, + "probability": 0.7024 + }, + { + "start": 19538.46, + "end": 19542.2, + "probability": 0.9843 + }, + { + "start": 19542.98, + "end": 19545.38, + "probability": 0.9578 + }, + { + "start": 19545.56, + "end": 19546.33, + "probability": 0.9764 + }, + { + "start": 19546.96, + "end": 19549.24, + "probability": 0.976 + }, + { + "start": 19550.28, + "end": 19552.2, + "probability": 0.9896 + }, + { + "start": 19552.28, + "end": 19553.0, + "probability": 0.6743 + }, + { + "start": 19553.74, + "end": 19556.26, + "probability": 0.9871 + }, + { + "start": 19556.28, + "end": 19557.54, + "probability": 0.4766 + }, + { + "start": 19557.54, + "end": 19561.36, + "probability": 0.9201 + }, + { + "start": 19561.98, + "end": 19567.1, + "probability": 0.984 + }, + { + "start": 19569.96, + "end": 19574.02, + "probability": 0.3389 + }, + { + "start": 19574.82, + "end": 19574.96, + "probability": 0.0214 + }, + { + "start": 19574.96, + "end": 19575.5, + "probability": 0.2367 + }, + { + "start": 19576.92, + "end": 19576.92, + "probability": 0.0579 + }, + { + "start": 19576.92, + "end": 19576.92, + "probability": 0.8615 + }, + { + "start": 19576.92, + "end": 19578.0, + "probability": 0.269 + }, + { + "start": 19578.2, + "end": 19581.34, + "probability": 0.617 + }, + { + "start": 19581.44, + "end": 19581.82, + "probability": 0.397 + }, + { + "start": 19581.82, + "end": 19582.79, + "probability": 0.9546 + }, + { + "start": 19583.28, + "end": 19584.78, + "probability": 0.2631 + }, + { + "start": 19585.56, + "end": 19586.04, + "probability": 0.9023 + }, + { + "start": 19586.38, + "end": 19589.5, + "probability": 0.8788 + }, + { + "start": 19590.28, + "end": 19591.82, + "probability": 0.9717 + }, + { + "start": 19594.2, + "end": 19594.2, + "probability": 0.3595 + }, + { + "start": 19594.2, + "end": 19595.9, + "probability": 0.9147 + }, + { + "start": 19596.7, + "end": 19596.96, + "probability": 0.4282 + }, + { + "start": 19597.02, + "end": 19598.1, + "probability": 0.8939 + }, + { + "start": 19598.34, + "end": 19599.9, + "probability": 0.6662 + }, + { + "start": 19600.38, + "end": 19601.7, + "probability": 0.8465 + }, + { + "start": 19602.14, + "end": 19603.02, + "probability": 0.1656 + }, + { + "start": 19603.04, + "end": 19606.16, + "probability": 0.8972 + }, + { + "start": 19606.18, + "end": 19606.76, + "probability": 0.9858 + }, + { + "start": 19606.82, + "end": 19607.1, + "probability": 0.7959 + }, + { + "start": 19607.92, + "end": 19611.84, + "probability": 0.9413 + }, + { + "start": 19612.02, + "end": 19613.2, + "probability": 0.9119 + }, + { + "start": 19613.58, + "end": 19616.68, + "probability": 0.9824 + }, + { + "start": 19616.68, + "end": 19620.8, + "probability": 0.9889 + }, + { + "start": 19621.32, + "end": 19621.9, + "probability": 0.4918 + }, + { + "start": 19622.28, + "end": 19622.62, + "probability": 0.7896 + }, + { + "start": 19623.14, + "end": 19623.78, + "probability": 0.6624 + }, + { + "start": 19623.86, + "end": 19626.44, + "probability": 0.9648 + }, + { + "start": 19626.88, + "end": 19627.92, + "probability": 0.6298 + }, + { + "start": 19628.6, + "end": 19631.14, + "probability": 0.8919 + }, + { + "start": 19631.14, + "end": 19631.14, + "probability": 0.7961 + }, + { + "start": 19631.56, + "end": 19634.68, + "probability": 0.9246 + }, + { + "start": 19635.74, + "end": 19639.36, + "probability": 0.7666 + }, + { + "start": 19639.36, + "end": 19643.98, + "probability": 0.942 + }, + { + "start": 19644.44, + "end": 19645.04, + "probability": 0.6874 + }, + { + "start": 19645.62, + "end": 19646.14, + "probability": 0.6768 + }, + { + "start": 19646.14, + "end": 19646.7, + "probability": 0.8349 + }, + { + "start": 19661.16, + "end": 19661.16, + "probability": 0.3743 + }, + { + "start": 19661.16, + "end": 19663.38, + "probability": 0.5989 + }, + { + "start": 19663.84, + "end": 19669.44, + "probability": 0.9668 + }, + { + "start": 19670.34, + "end": 19674.22, + "probability": 0.6571 + }, + { + "start": 19674.28, + "end": 19676.68, + "probability": 0.9423 + }, + { + "start": 19677.15, + "end": 19678.3, + "probability": 0.2022 + }, + { + "start": 19680.04, + "end": 19680.86, + "probability": 0.7513 + }, + { + "start": 19687.48, + "end": 19688.94, + "probability": 0.6446 + }, + { + "start": 19689.66, + "end": 19690.78, + "probability": 0.7214 + }, + { + "start": 19702.64, + "end": 19704.44, + "probability": 0.6626 + }, + { + "start": 19705.78, + "end": 19709.66, + "probability": 0.9858 + }, + { + "start": 19710.96, + "end": 19713.42, + "probability": 0.9717 + }, + { + "start": 19714.6, + "end": 19716.5, + "probability": 0.8994 + }, + { + "start": 19716.8, + "end": 19719.4, + "probability": 0.9975 + }, + { + "start": 19720.26, + "end": 19723.4, + "probability": 0.9976 + }, + { + "start": 19725.62, + "end": 19730.74, + "probability": 0.9944 + }, + { + "start": 19730.74, + "end": 19737.18, + "probability": 0.9796 + }, + { + "start": 19738.46, + "end": 19741.9, + "probability": 0.9967 + }, + { + "start": 19742.78, + "end": 19746.9, + "probability": 0.9956 + }, + { + "start": 19747.84, + "end": 19750.5, + "probability": 0.9917 + }, + { + "start": 19750.5, + "end": 19752.78, + "probability": 0.9961 + }, + { + "start": 19756.14, + "end": 19759.52, + "probability": 0.9763 + }, + { + "start": 19759.52, + "end": 19762.94, + "probability": 0.9835 + }, + { + "start": 19763.88, + "end": 19767.66, + "probability": 0.884 + }, + { + "start": 19768.54, + "end": 19771.92, + "probability": 0.9219 + }, + { + "start": 19772.04, + "end": 19772.62, + "probability": 0.7024 + }, + { + "start": 19773.56, + "end": 19774.74, + "probability": 0.9883 + }, + { + "start": 19776.92, + "end": 19781.74, + "probability": 0.9869 + }, + { + "start": 19782.5, + "end": 19784.22, + "probability": 0.9952 + }, + { + "start": 19784.38, + "end": 19785.18, + "probability": 0.7655 + }, + { + "start": 19786.22, + "end": 19786.9, + "probability": 0.7188 + }, + { + "start": 19787.06, + "end": 19790.66, + "probability": 0.6659 + }, + { + "start": 19792.04, + "end": 19794.58, + "probability": 0.7774 + }, + { + "start": 19794.58, + "end": 19797.56, + "probability": 0.9585 + }, + { + "start": 19798.68, + "end": 19801.9, + "probability": 0.9771 + }, + { + "start": 19801.9, + "end": 19804.46, + "probability": 0.9994 + }, + { + "start": 19805.3, + "end": 19806.74, + "probability": 0.7409 + }, + { + "start": 19808.58, + "end": 19810.9, + "probability": 0.9893 + }, + { + "start": 19812.2, + "end": 19814.9, + "probability": 0.9937 + }, + { + "start": 19815.0, + "end": 19818.1, + "probability": 0.984 + }, + { + "start": 19818.84, + "end": 19819.98, + "probability": 0.9142 + }, + { + "start": 19821.26, + "end": 19823.3, + "probability": 0.9743 + }, + { + "start": 19823.68, + "end": 19826.26, + "probability": 0.9859 + }, + { + "start": 19827.1, + "end": 19827.52, + "probability": 0.9556 + }, + { + "start": 19828.58, + "end": 19831.58, + "probability": 0.9959 + }, + { + "start": 19833.08, + "end": 19835.18, + "probability": 0.8424 + }, + { + "start": 19836.36, + "end": 19838.52, + "probability": 0.9553 + }, + { + "start": 19839.18, + "end": 19843.66, + "probability": 0.98 + }, + { + "start": 19844.32, + "end": 19846.0, + "probability": 0.6835 + }, + { + "start": 19846.92, + "end": 19848.0, + "probability": 0.7721 + }, + { + "start": 19848.7, + "end": 19851.8, + "probability": 0.9725 + }, + { + "start": 19852.7, + "end": 19859.18, + "probability": 0.9763 + }, + { + "start": 19860.04, + "end": 19863.34, + "probability": 0.9875 + }, + { + "start": 19865.29, + "end": 19868.18, + "probability": 0.8687 + }, + { + "start": 19869.58, + "end": 19871.22, + "probability": 0.7182 + }, + { + "start": 19871.24, + "end": 19872.94, + "probability": 0.9888 + }, + { + "start": 19873.54, + "end": 19875.34, + "probability": 0.9005 + }, + { + "start": 19877.0, + "end": 19879.66, + "probability": 0.9977 + }, + { + "start": 19879.66, + "end": 19883.78, + "probability": 0.946 + }, + { + "start": 19884.16, + "end": 19886.66, + "probability": 0.6747 + }, + { + "start": 19888.28, + "end": 19890.54, + "probability": 0.9758 + }, + { + "start": 19890.68, + "end": 19892.44, + "probability": 0.7865 + }, + { + "start": 19893.36, + "end": 19894.8, + "probability": 0.7539 + }, + { + "start": 19895.44, + "end": 19899.86, + "probability": 0.9709 + }, + { + "start": 19900.64, + "end": 19902.8, + "probability": 0.6555 + }, + { + "start": 19903.4, + "end": 19904.48, + "probability": 0.8211 + }, + { + "start": 19905.86, + "end": 19909.52, + "probability": 0.0219 + }, + { + "start": 19910.12, + "end": 19910.12, + "probability": 0.0223 + }, + { + "start": 19911.35, + "end": 19914.08, + "probability": 0.0652 + }, + { + "start": 19914.64, + "end": 19916.48, + "probability": 0.0659 + }, + { + "start": 19920.02, + "end": 19924.14, + "probability": 0.1698 + }, + { + "start": 19929.12, + "end": 19933.04, + "probability": 0.2201 + }, + { + "start": 19936.52, + "end": 19938.32, + "probability": 0.1396 + }, + { + "start": 19940.2, + "end": 19941.7, + "probability": 0.2297 + }, + { + "start": 19942.06, + "end": 19942.44, + "probability": 0.0331 + }, + { + "start": 19942.62, + "end": 19943.06, + "probability": 0.1261 + }, + { + "start": 19943.16, + "end": 19946.7, + "probability": 0.1838 + }, + { + "start": 19953.44, + "end": 19953.62, + "probability": 0.266 + }, + { + "start": 19954.36, + "end": 19954.46, + "probability": 0.023 + }, + { + "start": 19954.68, + "end": 19958.58, + "probability": 0.0526 + }, + { + "start": 19981.0, + "end": 19981.0, + "probability": 0.0848 + }, + { + "start": 19981.0, + "end": 19981.0, + "probability": 0.0 + }, + { + "start": 19981.0, + "end": 19981.0, + "probability": 0.0 + }, + { + "start": 19981.0, + "end": 19981.0, + "probability": 0.0 + }, + { + "start": 19981.0, + "end": 19981.0, + "probability": 0.0 + }, + { + "start": 19981.0, + "end": 19981.0, + "probability": 0.0 + }, + { + "start": 19981.0, + "end": 19981.0, + "probability": 0.0 + }, + { + "start": 19981.0, + "end": 19981.04, + "probability": 0.1863 + }, + { + "start": 19981.04, + "end": 19981.76, + "probability": 0.6231 + }, + { + "start": 19981.84, + "end": 19985.84, + "probability": 0.9661 + }, + { + "start": 19985.84, + "end": 19989.06, + "probability": 0.9941 + }, + { + "start": 19990.38, + "end": 19990.86, + "probability": 0.4733 + }, + { + "start": 19991.0, + "end": 19994.08, + "probability": 0.8867 + }, + { + "start": 19994.08, + "end": 19998.14, + "probability": 0.9683 + }, + { + "start": 19998.92, + "end": 20001.38, + "probability": 0.9783 + }, + { + "start": 20001.48, + "end": 20002.88, + "probability": 0.6868 + }, + { + "start": 20003.76, + "end": 20007.52, + "probability": 0.9453 + }, + { + "start": 20007.68, + "end": 20010.16, + "probability": 0.9579 + }, + { + "start": 20012.04, + "end": 20014.16, + "probability": 0.9985 + }, + { + "start": 20014.78, + "end": 20016.72, + "probability": 0.9845 + }, + { + "start": 20016.84, + "end": 20018.44, + "probability": 0.9285 + }, + { + "start": 20020.08, + "end": 20023.02, + "probability": 0.964 + }, + { + "start": 20023.02, + "end": 20025.48, + "probability": 0.985 + }, + { + "start": 20026.1, + "end": 20029.56, + "probability": 0.9906 + }, + { + "start": 20030.34, + "end": 20034.38, + "probability": 0.9984 + }, + { + "start": 20034.38, + "end": 20037.84, + "probability": 0.9734 + }, + { + "start": 20038.6, + "end": 20042.98, + "probability": 0.9909 + }, + { + "start": 20043.1, + "end": 20047.9, + "probability": 0.8845 + }, + { + "start": 20048.78, + "end": 20052.32, + "probability": 0.982 + }, + { + "start": 20057.68, + "end": 20062.08, + "probability": 0.9971 + }, + { + "start": 20062.4, + "end": 20065.08, + "probability": 0.8513 + }, + { + "start": 20065.28, + "end": 20067.76, + "probability": 0.9692 + }, + { + "start": 20068.56, + "end": 20071.74, + "probability": 0.9596 + }, + { + "start": 20071.8, + "end": 20073.84, + "probability": 0.9041 + }, + { + "start": 20074.94, + "end": 20077.72, + "probability": 0.9862 + }, + { + "start": 20078.8, + "end": 20079.22, + "probability": 0.5599 + }, + { + "start": 20079.26, + "end": 20079.94, + "probability": 0.9786 + }, + { + "start": 20080.04, + "end": 20084.31, + "probability": 0.9714 + }, + { + "start": 20085.06, + "end": 20092.88, + "probability": 0.9517 + }, + { + "start": 20093.46, + "end": 20096.48, + "probability": 0.9923 + }, + { + "start": 20096.72, + "end": 20097.48, + "probability": 0.9133 + }, + { + "start": 20097.7, + "end": 20099.12, + "probability": 0.4366 + }, + { + "start": 20099.6, + "end": 20101.64, + "probability": 0.9611 + }, + { + "start": 20101.7, + "end": 20104.36, + "probability": 0.7468 + }, + { + "start": 20106.38, + "end": 20108.72, + "probability": 0.928 + }, + { + "start": 20108.88, + "end": 20110.5, + "probability": 0.9547 + }, + { + "start": 20110.9, + "end": 20112.48, + "probability": 0.9703 + }, + { + "start": 20112.68, + "end": 20113.02, + "probability": 0.7643 + }, + { + "start": 20113.56, + "end": 20117.1, + "probability": 0.9859 + }, + { + "start": 20117.58, + "end": 20119.28, + "probability": 0.975 + }, + { + "start": 20119.4, + "end": 20125.08, + "probability": 0.9868 + }, + { + "start": 20125.08, + "end": 20128.56, + "probability": 0.9976 + }, + { + "start": 20129.12, + "end": 20131.96, + "probability": 0.8286 + }, + { + "start": 20132.54, + "end": 20134.94, + "probability": 0.9932 + }, + { + "start": 20135.68, + "end": 20137.68, + "probability": 0.9925 + }, + { + "start": 20138.04, + "end": 20138.56, + "probability": 0.7759 + }, + { + "start": 20140.28, + "end": 20143.0, + "probability": 0.9191 + }, + { + "start": 20144.44, + "end": 20147.08, + "probability": 0.7817 + }, + { + "start": 20148.04, + "end": 20151.42, + "probability": 0.9406 + }, + { + "start": 20153.0, + "end": 20157.18, + "probability": 0.517 + }, + { + "start": 20157.36, + "end": 20161.84, + "probability": 0.9239 + }, + { + "start": 20162.1, + "end": 20163.0, + "probability": 0.3455 + }, + { + "start": 20163.04, + "end": 20164.04, + "probability": 0.1387 + }, + { + "start": 20166.68, + "end": 20167.58, + "probability": 0.224 + }, + { + "start": 20178.04, + "end": 20178.04, + "probability": 0.3916 + }, + { + "start": 20178.04, + "end": 20178.04, + "probability": 0.0476 + }, + { + "start": 20178.04, + "end": 20180.3, + "probability": 0.6803 + }, + { + "start": 20180.46, + "end": 20183.84, + "probability": 0.7759 + }, + { + "start": 20185.0, + "end": 20187.86, + "probability": 0.7396 + }, + { + "start": 20187.98, + "end": 20193.73, + "probability": 0.8271 + }, + { + "start": 20194.72, + "end": 20198.42, + "probability": 0.885 + }, + { + "start": 20199.92, + "end": 20203.02, + "probability": 0.8336 + }, + { + "start": 20203.18, + "end": 20203.78, + "probability": 0.7548 + }, + { + "start": 20222.16, + "end": 20224.38, + "probability": 0.748 + }, + { + "start": 20225.7, + "end": 20226.64, + "probability": 0.5521 + }, + { + "start": 20227.42, + "end": 20228.72, + "probability": 0.9368 + }, + { + "start": 20229.54, + "end": 20232.08, + "probability": 0.9948 + }, + { + "start": 20233.28, + "end": 20237.98, + "probability": 0.7896 + }, + { + "start": 20237.98, + "end": 20242.42, + "probability": 0.9985 + }, + { + "start": 20244.06, + "end": 20248.25, + "probability": 0.9719 + }, + { + "start": 20248.28, + "end": 20251.92, + "probability": 0.9984 + }, + { + "start": 20253.1, + "end": 20256.4, + "probability": 0.9194 + }, + { + "start": 20257.22, + "end": 20260.68, + "probability": 0.9878 + }, + { + "start": 20261.68, + "end": 20266.9, + "probability": 0.9915 + }, + { + "start": 20267.5, + "end": 20268.74, + "probability": 0.8814 + }, + { + "start": 20269.08, + "end": 20271.18, + "probability": 0.7589 + }, + { + "start": 20272.16, + "end": 20273.56, + "probability": 0.9817 + }, + { + "start": 20274.14, + "end": 20276.8, + "probability": 0.9662 + }, + { + "start": 20276.82, + "end": 20279.36, + "probability": 0.7149 + }, + { + "start": 20280.3, + "end": 20283.3, + "probability": 0.8957 + }, + { + "start": 20284.54, + "end": 20287.54, + "probability": 0.9818 + }, + { + "start": 20288.3, + "end": 20288.98, + "probability": 0.7466 + }, + { + "start": 20290.4, + "end": 20290.82, + "probability": 0.9106 + }, + { + "start": 20291.58, + "end": 20295.76, + "probability": 0.9207 + }, + { + "start": 20296.52, + "end": 20298.94, + "probability": 0.9866 + }, + { + "start": 20300.46, + "end": 20301.14, + "probability": 0.7007 + }, + { + "start": 20301.24, + "end": 20301.9, + "probability": 0.9119 + }, + { + "start": 20302.0, + "end": 20306.36, + "probability": 0.9538 + }, + { + "start": 20306.76, + "end": 20307.62, + "probability": 0.9445 + }, + { + "start": 20308.82, + "end": 20311.78, + "probability": 0.9524 + }, + { + "start": 20311.88, + "end": 20312.36, + "probability": 0.9719 + }, + { + "start": 20314.4, + "end": 20315.56, + "probability": 0.9214 + }, + { + "start": 20316.14, + "end": 20319.84, + "probability": 0.9958 + }, + { + "start": 20320.38, + "end": 20322.34, + "probability": 0.9895 + }, + { + "start": 20323.24, + "end": 20325.1, + "probability": 0.8142 + }, + { + "start": 20326.42, + "end": 20327.74, + "probability": 0.9976 + }, + { + "start": 20329.24, + "end": 20330.92, + "probability": 0.7231 + }, + { + "start": 20331.48, + "end": 20333.04, + "probability": 0.9675 + }, + { + "start": 20334.06, + "end": 20336.02, + "probability": 0.9636 + }, + { + "start": 20337.02, + "end": 20339.46, + "probability": 0.9688 + }, + { + "start": 20341.54, + "end": 20343.04, + "probability": 0.9957 + }, + { + "start": 20344.64, + "end": 20347.04, + "probability": 0.8373 + }, + { + "start": 20348.74, + "end": 20351.78, + "probability": 0.976 + }, + { + "start": 20352.56, + "end": 20356.64, + "probability": 0.9009 + }, + { + "start": 20357.06, + "end": 20358.78, + "probability": 0.8809 + }, + { + "start": 20360.1, + "end": 20362.82, + "probability": 0.7138 + }, + { + "start": 20363.5, + "end": 20365.46, + "probability": 0.9632 + }, + { + "start": 20367.82, + "end": 20373.1, + "probability": 0.9863 + }, + { + "start": 20373.56, + "end": 20374.4, + "probability": 0.9112 + }, + { + "start": 20374.88, + "end": 20376.74, + "probability": 0.9571 + }, + { + "start": 20379.06, + "end": 20379.46, + "probability": 0.7535 + }, + { + "start": 20379.86, + "end": 20380.54, + "probability": 0.6646 + }, + { + "start": 20380.66, + "end": 20382.52, + "probability": 0.7988 + }, + { + "start": 20411.82, + "end": 20413.44, + "probability": 0.7134 + }, + { + "start": 20413.96, + "end": 20415.1, + "probability": 0.8499 + }, + { + "start": 20416.18, + "end": 20419.06, + "probability": 0.9346 + }, + { + "start": 20419.92, + "end": 20420.92, + "probability": 0.9142 + }, + { + "start": 20421.02, + "end": 20425.12, + "probability": 0.9822 + }, + { + "start": 20426.32, + "end": 20427.64, + "probability": 0.9478 + }, + { + "start": 20428.74, + "end": 20429.38, + "probability": 0.8668 + }, + { + "start": 20429.66, + "end": 20431.8, + "probability": 0.9819 + }, + { + "start": 20431.98, + "end": 20435.64, + "probability": 0.9296 + }, + { + "start": 20435.64, + "end": 20440.48, + "probability": 0.6937 + }, + { + "start": 20441.48, + "end": 20446.86, + "probability": 0.9759 + }, + { + "start": 20447.82, + "end": 20450.68, + "probability": 0.9978 + }, + { + "start": 20450.86, + "end": 20453.62, + "probability": 0.9329 + }, + { + "start": 20454.2, + "end": 20455.04, + "probability": 0.9946 + }, + { + "start": 20455.76, + "end": 20459.37, + "probability": 0.9942 + }, + { + "start": 20460.44, + "end": 20465.09, + "probability": 0.8839 + }, + { + "start": 20466.24, + "end": 20470.56, + "probability": 0.7129 + }, + { + "start": 20470.7, + "end": 20473.12, + "probability": 0.8951 + }, + { + "start": 20473.26, + "end": 20475.18, + "probability": 0.9757 + }, + { + "start": 20475.34, + "end": 20477.32, + "probability": 0.9873 + }, + { + "start": 20478.08, + "end": 20480.36, + "probability": 0.9789 + }, + { + "start": 20480.64, + "end": 20483.96, + "probability": 0.9934 + }, + { + "start": 20484.32, + "end": 20490.94, + "probability": 0.9941 + }, + { + "start": 20491.44, + "end": 20494.8, + "probability": 0.9028 + }, + { + "start": 20495.2, + "end": 20499.94, + "probability": 0.9885 + }, + { + "start": 20501.12, + "end": 20502.38, + "probability": 0.7029 + }, + { + "start": 20502.48, + "end": 20504.9, + "probability": 0.9954 + }, + { + "start": 20504.9, + "end": 20507.84, + "probability": 0.9832 + }, + { + "start": 20508.46, + "end": 20512.0, + "probability": 0.9656 + }, + { + "start": 20512.64, + "end": 20516.7, + "probability": 0.9644 + }, + { + "start": 20517.26, + "end": 20520.56, + "probability": 0.7674 + }, + { + "start": 20522.06, + "end": 20527.68, + "probability": 0.944 + }, + { + "start": 20528.62, + "end": 20531.42, + "probability": 0.94 + }, + { + "start": 20532.52, + "end": 20534.46, + "probability": 0.9347 + }, + { + "start": 20534.56, + "end": 20535.02, + "probability": 0.8543 + }, + { + "start": 20535.1, + "end": 20537.42, + "probability": 0.7869 + }, + { + "start": 20538.22, + "end": 20539.9, + "probability": 0.811 + }, + { + "start": 20540.44, + "end": 20545.36, + "probability": 0.988 + }, + { + "start": 20545.98, + "end": 20548.74, + "probability": 0.8726 + }, + { + "start": 20549.42, + "end": 20551.26, + "probability": 0.9685 + }, + { + "start": 20551.92, + "end": 20553.94, + "probability": 0.9725 + }, + { + "start": 20554.32, + "end": 20556.74, + "probability": 0.9453 + }, + { + "start": 20557.1, + "end": 20558.96, + "probability": 0.9954 + }, + { + "start": 20560.14, + "end": 20560.48, + "probability": 0.2565 + }, + { + "start": 20560.48, + "end": 20564.08, + "probability": 0.9958 + }, + { + "start": 20564.5, + "end": 20567.42, + "probability": 0.9746 + }, + { + "start": 20567.42, + "end": 20571.14, + "probability": 0.9368 + }, + { + "start": 20571.64, + "end": 20577.34, + "probability": 0.9938 + }, + { + "start": 20577.42, + "end": 20578.38, + "probability": 0.8326 + }, + { + "start": 20578.7, + "end": 20580.66, + "probability": 0.9626 + }, + { + "start": 20581.22, + "end": 20585.04, + "probability": 0.9967 + }, + { + "start": 20585.52, + "end": 20588.06, + "probability": 0.9969 + }, + { + "start": 20589.52, + "end": 20590.34, + "probability": 0.6016 + }, + { + "start": 20590.5, + "end": 20593.96, + "probability": 0.9873 + }, + { + "start": 20594.4, + "end": 20597.9, + "probability": 0.9962 + }, + { + "start": 20598.34, + "end": 20601.78, + "probability": 0.9955 + }, + { + "start": 20602.5, + "end": 20605.32, + "probability": 0.7515 + }, + { + "start": 20605.46, + "end": 20606.76, + "probability": 0.814 + }, + { + "start": 20606.94, + "end": 20608.22, + "probability": 0.9135 + }, + { + "start": 20608.8, + "end": 20612.22, + "probability": 0.9701 + }, + { + "start": 20612.58, + "end": 20618.0, + "probability": 0.9897 + }, + { + "start": 20618.3, + "end": 20621.12, + "probability": 0.9397 + }, + { + "start": 20622.14, + "end": 20626.04, + "probability": 0.988 + }, + { + "start": 20626.04, + "end": 20630.64, + "probability": 0.9955 + }, + { + "start": 20631.16, + "end": 20635.38, + "probability": 0.9834 + }, + { + "start": 20635.66, + "end": 20637.92, + "probability": 0.8054 + }, + { + "start": 20638.3, + "end": 20638.84, + "probability": 0.4847 + }, + { + "start": 20639.46, + "end": 20640.7, + "probability": 0.4517 + }, + { + "start": 20641.68, + "end": 20646.78, + "probability": 0.9669 + }, + { + "start": 20647.46, + "end": 20653.14, + "probability": 0.9609 + }, + { + "start": 20653.84, + "end": 20656.56, + "probability": 0.8479 + }, + { + "start": 20657.14, + "end": 20658.08, + "probability": 0.8821 + }, + { + "start": 20658.72, + "end": 20661.72, + "probability": 0.7855 + }, + { + "start": 20662.68, + "end": 20665.8, + "probability": 0.9849 + }, + { + "start": 20666.22, + "end": 20671.26, + "probability": 0.8993 + }, + { + "start": 20672.5, + "end": 20677.66, + "probability": 0.9917 + }, + { + "start": 20677.66, + "end": 20682.64, + "probability": 0.9757 + }, + { + "start": 20683.12, + "end": 20684.54, + "probability": 0.9891 + }, + { + "start": 20685.32, + "end": 20687.38, + "probability": 0.8202 + }, + { + "start": 20687.48, + "end": 20689.24, + "probability": 0.7793 + }, + { + "start": 20689.68, + "end": 20693.8, + "probability": 0.9922 + }, + { + "start": 20694.24, + "end": 20697.52, + "probability": 0.9153 + }, + { + "start": 20698.0, + "end": 20698.48, + "probability": 0.8214 + }, + { + "start": 20698.64, + "end": 20699.02, + "probability": 0.7746 + }, + { + "start": 20699.1, + "end": 20702.92, + "probability": 0.9757 + }, + { + "start": 20703.1, + "end": 20705.28, + "probability": 0.9397 + }, + { + "start": 20706.2, + "end": 20710.46, + "probability": 0.9854 + }, + { + "start": 20711.32, + "end": 20716.16, + "probability": 0.849 + }, + { + "start": 20716.3, + "end": 20716.86, + "probability": 0.7485 + }, + { + "start": 20717.54, + "end": 20717.78, + "probability": 0.5704 + }, + { + "start": 20717.84, + "end": 20722.58, + "probability": 0.9879 + }, + { + "start": 20723.06, + "end": 20724.16, + "probability": 0.4394 + }, + { + "start": 20724.2, + "end": 20724.58, + "probability": 0.6939 + }, + { + "start": 20724.68, + "end": 20725.32, + "probability": 0.8733 + }, + { + "start": 20725.96, + "end": 20728.69, + "probability": 0.0514 + }, + { + "start": 20729.68, + "end": 20731.42, + "probability": 0.2215 + }, + { + "start": 20731.66, + "end": 20732.28, + "probability": 0.0984 + }, + { + "start": 20732.56, + "end": 20735.48, + "probability": 0.0865 + }, + { + "start": 20735.7, + "end": 20736.12, + "probability": 0.0125 + }, + { + "start": 20736.8, + "end": 20738.06, + "probability": 0.2072 + }, + { + "start": 20738.22, + "end": 20744.62, + "probability": 0.9514 + }, + { + "start": 20753.3, + "end": 20754.02, + "probability": 0.5188 + }, + { + "start": 20754.14, + "end": 20754.94, + "probability": 0.7049 + }, + { + "start": 20756.28, + "end": 20757.6, + "probability": 0.6642 + }, + { + "start": 20757.66, + "end": 20758.2, + "probability": 0.7303 + }, + { + "start": 20758.38, + "end": 20761.74, + "probability": 0.1149 + }, + { + "start": 20762.36, + "end": 20767.36, + "probability": 0.5673 + }, + { + "start": 20767.9, + "end": 20769.84, + "probability": 0.7863 + }, + { + "start": 20771.02, + "end": 20772.52, + "probability": 0.7068 + }, + { + "start": 20772.66, + "end": 20780.46, + "probability": 0.8765 + }, + { + "start": 20780.6, + "end": 20780.86, + "probability": 0.7073 + }, + { + "start": 20780.86, + "end": 20783.82, + "probability": 0.9084 + }, + { + "start": 20784.64, + "end": 20785.48, + "probability": 0.4101 + }, + { + "start": 20785.72, + "end": 20789.96, + "probability": 0.7696 + }, + { + "start": 20790.18, + "end": 20798.82, + "probability": 0.972 + }, + { + "start": 20798.82, + "end": 20806.58, + "probability": 0.6899 + }, + { + "start": 20806.72, + "end": 20807.66, + "probability": 0.6609 + }, + { + "start": 20809.02, + "end": 20811.12, + "probability": 0.7034 + }, + { + "start": 20812.28, + "end": 20823.28, + "probability": 0.9932 + }, + { + "start": 20823.84, + "end": 20829.22, + "probability": 0.8761 + }, + { + "start": 20829.36, + "end": 20830.6, + "probability": 0.8065 + }, + { + "start": 20831.42, + "end": 20837.26, + "probability": 0.9961 + }, + { + "start": 20837.26, + "end": 20841.58, + "probability": 0.9976 + }, + { + "start": 20841.82, + "end": 20846.62, + "probability": 0.6823 + }, + { + "start": 20847.9, + "end": 20857.16, + "probability": 0.9875 + }, + { + "start": 20859.18, + "end": 20864.98, + "probability": 0.9972 + }, + { + "start": 20869.14, + "end": 20870.8, + "probability": 0.3714 + }, + { + "start": 20871.6, + "end": 20873.0, + "probability": 0.77 + }, + { + "start": 20873.04, + "end": 20876.2, + "probability": 0.934 + }, + { + "start": 20876.58, + "end": 20877.12, + "probability": 0.6287 + }, + { + "start": 20878.4, + "end": 20879.38, + "probability": 0.717 + }, + { + "start": 20879.62, + "end": 20879.94, + "probability": 0.7326 + }, + { + "start": 20880.0, + "end": 20880.88, + "probability": 0.9652 + }, + { + "start": 20880.88, + "end": 20883.04, + "probability": 0.9923 + }, + { + "start": 20883.16, + "end": 20886.92, + "probability": 0.9696 + }, + { + "start": 20887.6, + "end": 20890.56, + "probability": 0.9579 + }, + { + "start": 20890.66, + "end": 20893.0, + "probability": 0.9425 + }, + { + "start": 20893.06, + "end": 20893.4, + "probability": 0.8413 + }, + { + "start": 20895.68, + "end": 20898.48, + "probability": 0.652 + }, + { + "start": 20899.54, + "end": 20899.88, + "probability": 0.7075 + }, + { + "start": 20899.88, + "end": 20902.88, + "probability": 0.9478 + }, + { + "start": 20906.06, + "end": 20913.04, + "probability": 0.6886 + }, + { + "start": 20914.02, + "end": 20919.84, + "probability": 0.8965 + }, + { + "start": 20921.1, + "end": 20923.14, + "probability": 0.9458 + }, + { + "start": 20923.18, + "end": 20924.26, + "probability": 0.9312 + }, + { + "start": 20924.52, + "end": 20925.82, + "probability": 0.8043 + }, + { + "start": 20926.48, + "end": 20929.2, + "probability": 0.7892 + }, + { + "start": 20929.32, + "end": 20930.98, + "probability": 0.8238 + }, + { + "start": 20931.12, + "end": 20935.76, + "probability": 0.9709 + }, + { + "start": 20936.96, + "end": 20937.3, + "probability": 0.4807 + }, + { + "start": 20937.74, + "end": 20938.08, + "probability": 0.5688 + }, + { + "start": 20938.16, + "end": 20940.78, + "probability": 0.79 + }, + { + "start": 20941.06, + "end": 20942.02, + "probability": 0.2746 + }, + { + "start": 20942.08, + "end": 20942.82, + "probability": 0.7854 + }, + { + "start": 20943.02, + "end": 20944.6, + "probability": 0.8338 + }, + { + "start": 20944.68, + "end": 20945.46, + "probability": 0.7944 + }, + { + "start": 20946.36, + "end": 20949.24, + "probability": 0.866 + }, + { + "start": 20950.26, + "end": 20950.88, + "probability": 0.6404 + }, + { + "start": 20950.98, + "end": 20952.76, + "probability": 0.9888 + }, + { + "start": 20952.9, + "end": 20954.82, + "probability": 0.6983 + }, + { + "start": 20954.86, + "end": 20956.52, + "probability": 0.9531 + }, + { + "start": 20956.66, + "end": 20957.94, + "probability": 0.7206 + }, + { + "start": 20959.71, + "end": 20964.98, + "probability": 0.8805 + }, + { + "start": 20965.8, + "end": 20970.14, + "probability": 0.9912 + }, + { + "start": 20971.22, + "end": 20974.6, + "probability": 0.9814 + }, + { + "start": 20974.7, + "end": 20975.74, + "probability": 0.8768 + }, + { + "start": 20975.92, + "end": 20978.02, + "probability": 0.8914 + }, + { + "start": 20978.44, + "end": 20981.84, + "probability": 0.9003 + }, + { + "start": 20982.82, + "end": 20984.52, + "probability": 0.9795 + }, + { + "start": 20984.7, + "end": 20988.3, + "probability": 0.0285 + }, + { + "start": 20988.3, + "end": 20990.02, + "probability": 0.5743 + }, + { + "start": 20990.96, + "end": 20994.12, + "probability": 0.9461 + }, + { + "start": 20994.2, + "end": 20994.98, + "probability": 0.9771 + }, + { + "start": 20996.12, + "end": 21000.18, + "probability": 0.9969 + }, + { + "start": 21000.4, + "end": 21003.16, + "probability": 0.9974 + }, + { + "start": 21003.26, + "end": 21008.6, + "probability": 0.7282 + }, + { + "start": 21008.76, + "end": 21010.5, + "probability": 0.9954 + }, + { + "start": 21011.28, + "end": 21014.16, + "probability": 0.8766 + }, + { + "start": 21014.32, + "end": 21016.34, + "probability": 0.7727 + }, + { + "start": 21016.5, + "end": 21019.86, + "probability": 0.9475 + }, + { + "start": 21020.02, + "end": 21020.88, + "probability": 0.7196 + }, + { + "start": 21021.04, + "end": 21022.44, + "probability": 0.7377 + }, + { + "start": 21023.64, + "end": 21026.35, + "probability": 0.8548 + }, + { + "start": 21027.7, + "end": 21028.9, + "probability": 0.8358 + }, + { + "start": 21029.88, + "end": 21032.1, + "probability": 0.9931 + }, + { + "start": 21032.68, + "end": 21035.46, + "probability": 0.9917 + }, + { + "start": 21035.8, + "end": 21037.44, + "probability": 0.5248 + }, + { + "start": 21038.02, + "end": 21040.6, + "probability": 0.8104 + }, + { + "start": 21041.06, + "end": 21044.12, + "probability": 0.9238 + }, + { + "start": 21045.58, + "end": 21048.42, + "probability": 0.9485 + }, + { + "start": 21048.5, + "end": 21049.85, + "probability": 0.653 + }, + { + "start": 21050.06, + "end": 21052.74, + "probability": 0.968 + }, + { + "start": 21053.28, + "end": 21054.58, + "probability": 0.9738 + }, + { + "start": 21054.66, + "end": 21054.9, + "probability": 0.446 + }, + { + "start": 21054.9, + "end": 21057.13, + "probability": 0.9325 + }, + { + "start": 21057.24, + "end": 21059.58, + "probability": 0.5658 + }, + { + "start": 21060.48, + "end": 21062.3, + "probability": 0.7275 + }, + { + "start": 21063.44, + "end": 21067.3, + "probability": 0.9903 + }, + { + "start": 21067.32, + "end": 21067.68, + "probability": 0.6561 + }, + { + "start": 21067.72, + "end": 21068.26, + "probability": 0.9627 + }, + { + "start": 21068.32, + "end": 21071.08, + "probability": 0.9934 + }, + { + "start": 21071.16, + "end": 21072.82, + "probability": 0.9333 + }, + { + "start": 21072.88, + "end": 21074.5, + "probability": 0.8637 + }, + { + "start": 21074.6, + "end": 21078.16, + "probability": 0.8774 + }, + { + "start": 21080.38, + "end": 21083.48, + "probability": 0.9919 + }, + { + "start": 21083.54, + "end": 21084.92, + "probability": 0.9418 + }, + { + "start": 21084.98, + "end": 21090.56, + "probability": 0.9825 + }, + { + "start": 21091.1, + "end": 21093.9, + "probability": 0.9841 + }, + { + "start": 21094.16, + "end": 21095.66, + "probability": 0.8226 + }, + { + "start": 21097.3, + "end": 21099.34, + "probability": 0.8911 + }, + { + "start": 21099.94, + "end": 21101.9, + "probability": 0.9093 + }, + { + "start": 21102.36, + "end": 21106.16, + "probability": 0.9752 + }, + { + "start": 21107.7, + "end": 21110.64, + "probability": 0.9382 + }, + { + "start": 21110.74, + "end": 21113.74, + "probability": 0.9595 + }, + { + "start": 21114.42, + "end": 21117.36, + "probability": 0.9955 + }, + { + "start": 21117.36, + "end": 21120.96, + "probability": 0.95 + }, + { + "start": 21120.98, + "end": 21122.86, + "probability": 0.7603 + }, + { + "start": 21124.22, + "end": 21126.34, + "probability": 0.9829 + }, + { + "start": 21126.54, + "end": 21127.12, + "probability": 0.8192 + }, + { + "start": 21127.22, + "end": 21128.5, + "probability": 0.4382 + }, + { + "start": 21128.6, + "end": 21130.58, + "probability": 0.6417 + }, + { + "start": 21130.66, + "end": 21131.56, + "probability": 0.764 + }, + { + "start": 21131.7, + "end": 21133.94, + "probability": 0.9696 + }, + { + "start": 21133.94, + "end": 21137.54, + "probability": 0.9814 + }, + { + "start": 21138.02, + "end": 21140.14, + "probability": 0.9971 + }, + { + "start": 21140.3, + "end": 21143.56, + "probability": 0.9984 + }, + { + "start": 21143.56, + "end": 21146.8, + "probability": 0.9939 + }, + { + "start": 21147.56, + "end": 21148.76, + "probability": 0.9968 + }, + { + "start": 21149.13, + "end": 21155.12, + "probability": 0.8075 + }, + { + "start": 21155.48, + "end": 21156.98, + "probability": 0.9316 + }, + { + "start": 21157.54, + "end": 21158.8, + "probability": 0.9394 + }, + { + "start": 21159.88, + "end": 21161.04, + "probability": 0.9197 + }, + { + "start": 21161.8, + "end": 21163.98, + "probability": 0.9922 + }, + { + "start": 21164.28, + "end": 21167.47, + "probability": 0.9951 + }, + { + "start": 21168.62, + "end": 21173.2, + "probability": 0.9733 + }, + { + "start": 21174.76, + "end": 21176.82, + "probability": 0.9917 + }, + { + "start": 21177.12, + "end": 21180.4, + "probability": 0.9869 + }, + { + "start": 21182.24, + "end": 21184.42, + "probability": 0.9492 + }, + { + "start": 21185.18, + "end": 21189.74, + "probability": 0.9936 + }, + { + "start": 21189.74, + "end": 21194.8, + "probability": 0.9963 + }, + { + "start": 21194.94, + "end": 21199.44, + "probability": 0.9264 + }, + { + "start": 21199.52, + "end": 21201.76, + "probability": 0.9797 + }, + { + "start": 21201.76, + "end": 21204.28, + "probability": 0.9863 + }, + { + "start": 21204.56, + "end": 21206.34, + "probability": 0.7337 + }, + { + "start": 21206.56, + "end": 21209.84, + "probability": 0.905 + }, + { + "start": 21209.98, + "end": 21210.44, + "probability": 0.7923 + }, + { + "start": 21210.76, + "end": 21211.28, + "probability": 0.7056 + }, + { + "start": 21211.4, + "end": 21217.68, + "probability": 0.8877 + }, + { + "start": 21218.52, + "end": 21220.45, + "probability": 0.6641 + }, + { + "start": 21221.04, + "end": 21225.52, + "probability": 0.9867 + }, + { + "start": 21226.32, + "end": 21228.84, + "probability": 0.988 + }, + { + "start": 21229.08, + "end": 21230.02, + "probability": 0.9722 + }, + { + "start": 21230.18, + "end": 21231.94, + "probability": 0.9968 + }, + { + "start": 21232.08, + "end": 21236.1, + "probability": 0.9987 + }, + { + "start": 21236.62, + "end": 21238.9, + "probability": 0.978 + }, + { + "start": 21239.96, + "end": 21243.74, + "probability": 0.9756 + }, + { + "start": 21243.74, + "end": 21244.86, + "probability": 0.9963 + }, + { + "start": 21245.84, + "end": 21248.64, + "probability": 0.9751 + }, + { + "start": 21248.64, + "end": 21251.18, + "probability": 0.9299 + }, + { + "start": 21251.22, + "end": 21252.04, + "probability": 0.5732 + }, + { + "start": 21252.9, + "end": 21254.84, + "probability": 0.9944 + }, + { + "start": 21255.48, + "end": 21260.32, + "probability": 0.9531 + }, + { + "start": 21260.46, + "end": 21262.18, + "probability": 0.9646 + }, + { + "start": 21262.8, + "end": 21264.96, + "probability": 0.9977 + }, + { + "start": 21265.06, + "end": 21267.34, + "probability": 0.8645 + }, + { + "start": 21267.88, + "end": 21271.04, + "probability": 0.9616 + }, + { + "start": 21271.26, + "end": 21275.88, + "probability": 0.9575 + }, + { + "start": 21276.02, + "end": 21279.48, + "probability": 0.9373 + }, + { + "start": 21279.98, + "end": 21283.98, + "probability": 0.996 + }, + { + "start": 21284.9, + "end": 21292.04, + "probability": 0.9933 + }, + { + "start": 21292.24, + "end": 21292.9, + "probability": 0.5183 + }, + { + "start": 21293.06, + "end": 21294.38, + "probability": 0.9891 + }, + { + "start": 21294.48, + "end": 21294.96, + "probability": 0.4917 + }, + { + "start": 21296.58, + "end": 21297.78, + "probability": 0.6443 + }, + { + "start": 21297.94, + "end": 21300.92, + "probability": 0.9973 + }, + { + "start": 21300.92, + "end": 21304.54, + "probability": 0.9963 + }, + { + "start": 21305.08, + "end": 21308.12, + "probability": 0.9855 + }, + { + "start": 21309.14, + "end": 21310.92, + "probability": 0.9996 + }, + { + "start": 21311.02, + "end": 21311.36, + "probability": 0.9639 + }, + { + "start": 21311.44, + "end": 21312.04, + "probability": 0.8786 + }, + { + "start": 21312.24, + "end": 21312.68, + "probability": 0.4119 + }, + { + "start": 21312.74, + "end": 21313.34, + "probability": 0.8501 + }, + { + "start": 21313.38, + "end": 21316.04, + "probability": 0.8271 + }, + { + "start": 21316.98, + "end": 21324.0, + "probability": 0.9622 + }, + { + "start": 21324.76, + "end": 21325.9, + "probability": 0.8892 + }, + { + "start": 21327.26, + "end": 21328.48, + "probability": 0.8247 + }, + { + "start": 21329.2, + "end": 21329.82, + "probability": 0.7456 + }, + { + "start": 21329.88, + "end": 21331.48, + "probability": 0.8379 + }, + { + "start": 21331.54, + "end": 21335.7, + "probability": 0.9362 + }, + { + "start": 21335.7, + "end": 21339.86, + "probability": 0.9969 + }, + { + "start": 21339.86, + "end": 21344.28, + "probability": 0.9836 + }, + { + "start": 21344.92, + "end": 21350.62, + "probability": 0.9305 + }, + { + "start": 21350.72, + "end": 21351.02, + "probability": 0.814 + }, + { + "start": 21351.1, + "end": 21353.4, + "probability": 0.997 + }, + { + "start": 21353.4, + "end": 21356.3, + "probability": 0.9966 + }, + { + "start": 21357.76, + "end": 21362.18, + "probability": 0.995 + }, + { + "start": 21362.86, + "end": 21366.28, + "probability": 0.9014 + }, + { + "start": 21366.36, + "end": 21367.96, + "probability": 0.8152 + }, + { + "start": 21368.58, + "end": 21370.8, + "probability": 0.9653 + }, + { + "start": 21371.32, + "end": 21375.72, + "probability": 0.9867 + }, + { + "start": 21375.76, + "end": 21379.38, + "probability": 0.9823 + }, + { + "start": 21379.5, + "end": 21382.23, + "probability": 0.9473 + }, + { + "start": 21382.92, + "end": 21384.86, + "probability": 0.8662 + }, + { + "start": 21385.0, + "end": 21386.22, + "probability": 0.981 + }, + { + "start": 21386.36, + "end": 21390.96, + "probability": 0.9867 + }, + { + "start": 21391.02, + "end": 21393.36, + "probability": 0.972 + }, + { + "start": 21394.2, + "end": 21399.32, + "probability": 0.9956 + }, + { + "start": 21399.58, + "end": 21402.0, + "probability": 0.985 + }, + { + "start": 21403.06, + "end": 21405.8, + "probability": 0.8639 + }, + { + "start": 21406.38, + "end": 21408.88, + "probability": 0.9923 + }, + { + "start": 21410.68, + "end": 21414.86, + "probability": 0.9961 + }, + { + "start": 21414.86, + "end": 21420.46, + "probability": 0.9979 + }, + { + "start": 21420.66, + "end": 21423.28, + "probability": 0.9974 + }, + { + "start": 21423.82, + "end": 21427.28, + "probability": 0.9789 + }, + { + "start": 21427.28, + "end": 21433.14, + "probability": 0.9746 + }, + { + "start": 21433.24, + "end": 21439.52, + "probability": 0.9044 + }, + { + "start": 21439.7, + "end": 21442.56, + "probability": 0.6745 + }, + { + "start": 21443.34, + "end": 21445.44, + "probability": 0.9146 + }, + { + "start": 21445.66, + "end": 21445.88, + "probability": 0.6951 + }, + { + "start": 21446.4, + "end": 21448.28, + "probability": 0.881 + }, + { + "start": 21448.44, + "end": 21449.54, + "probability": 0.7073 + }, + { + "start": 21449.6, + "end": 21451.84, + "probability": 0.5762 + }, + { + "start": 21451.92, + "end": 21455.28, + "probability": 0.9951 + }, + { + "start": 21455.58, + "end": 21455.96, + "probability": 0.3423 + }, + { + "start": 21456.48, + "end": 21460.74, + "probability": 0.8695 + }, + { + "start": 21460.74, + "end": 21463.78, + "probability": 0.7751 + }, + { + "start": 21463.82, + "end": 21464.8, + "probability": 0.7747 + }, + { + "start": 21465.22, + "end": 21467.1, + "probability": 0.8076 + }, + { + "start": 21467.48, + "end": 21467.92, + "probability": 0.563 + }, + { + "start": 21467.98, + "end": 21468.46, + "probability": 0.6674 + }, + { + "start": 21469.14, + "end": 21469.58, + "probability": 0.9153 + }, + { + "start": 21481.48, + "end": 21481.48, + "probability": 0.4235 + }, + { + "start": 21481.48, + "end": 21483.92, + "probability": 0.5587 + }, + { + "start": 21484.46, + "end": 21489.44, + "probability": 0.6645 + }, + { + "start": 21489.44, + "end": 21495.34, + "probability": 0.6944 + }, + { + "start": 21496.51, + "end": 21499.1, + "probability": 0.7311 + }, + { + "start": 21500.04, + "end": 21505.84, + "probability": 0.7923 + }, + { + "start": 21505.92, + "end": 21507.14, + "probability": 0.7774 + }, + { + "start": 21507.68, + "end": 21509.77, + "probability": 0.7627 + }, + { + "start": 21526.2, + "end": 21527.44, + "probability": 0.4067 + }, + { + "start": 21528.44, + "end": 21530.4, + "probability": 0.8332 + }, + { + "start": 21531.0, + "end": 21531.54, + "probability": 0.9244 + }, + { + "start": 21532.16, + "end": 21533.22, + "probability": 0.8703 + }, + { + "start": 21534.3, + "end": 21535.44, + "probability": 0.8678 + }, + { + "start": 21536.12, + "end": 21538.92, + "probability": 0.9611 + }, + { + "start": 21539.56, + "end": 21540.64, + "probability": 0.9633 + }, + { + "start": 21541.26, + "end": 21542.06, + "probability": 0.7607 + }, + { + "start": 21542.86, + "end": 21544.8, + "probability": 0.9629 + }, + { + "start": 21545.54, + "end": 21547.58, + "probability": 0.9408 + }, + { + "start": 21548.52, + "end": 21549.08, + "probability": 0.5588 + }, + { + "start": 21550.54, + "end": 21551.86, + "probability": 0.9492 + }, + { + "start": 21553.1, + "end": 21555.8, + "probability": 0.9971 + }, + { + "start": 21555.84, + "end": 21559.38, + "probability": 0.9722 + }, + { + "start": 21559.96, + "end": 21561.26, + "probability": 0.8061 + }, + { + "start": 21562.16, + "end": 21564.1, + "probability": 0.8873 + }, + { + "start": 21565.54, + "end": 21565.54, + "probability": 0.0105 + }, + { + "start": 21565.54, + "end": 21565.54, + "probability": 0.026 + }, + { + "start": 21565.54, + "end": 21570.38, + "probability": 0.9533 + }, + { + "start": 21570.9, + "end": 21572.44, + "probability": 0.9958 + }, + { + "start": 21573.22, + "end": 21577.66, + "probability": 0.8835 + }, + { + "start": 21578.48, + "end": 21579.68, + "probability": 0.1379 + }, + { + "start": 21579.9, + "end": 21580.84, + "probability": 0.6835 + }, + { + "start": 21581.3, + "end": 21581.72, + "probability": 0.8977 + }, + { + "start": 21581.86, + "end": 21584.1, + "probability": 0.9194 + }, + { + "start": 21584.1, + "end": 21586.1, + "probability": 0.8538 + }, + { + "start": 21586.8, + "end": 21587.5, + "probability": 0.8647 + }, + { + "start": 21588.36, + "end": 21589.56, + "probability": 0.9642 + }, + { + "start": 21590.0, + "end": 21590.6, + "probability": 0.537 + }, + { + "start": 21591.06, + "end": 21592.88, + "probability": 0.9897 + }, + { + "start": 21593.26, + "end": 21594.1, + "probability": 0.9397 + }, + { + "start": 21594.98, + "end": 21595.77, + "probability": 0.8999 + }, + { + "start": 21596.86, + "end": 21598.3, + "probability": 0.9307 + }, + { + "start": 21598.78, + "end": 21600.36, + "probability": 0.9871 + }, + { + "start": 21601.4, + "end": 21604.8, + "probability": 0.981 + }, + { + "start": 21605.4, + "end": 21606.74, + "probability": 0.9434 + }, + { + "start": 21607.38, + "end": 21610.24, + "probability": 0.9932 + }, + { + "start": 21610.92, + "end": 21614.16, + "probability": 0.9115 + }, + { + "start": 21615.28, + "end": 21618.54, + "probability": 0.9856 + }, + { + "start": 21619.44, + "end": 21620.76, + "probability": 0.7088 + }, + { + "start": 21621.3, + "end": 21623.26, + "probability": 0.9756 + }, + { + "start": 21624.14, + "end": 21626.4, + "probability": 0.8293 + }, + { + "start": 21626.94, + "end": 21630.56, + "probability": 0.9871 + }, + { + "start": 21631.78, + "end": 21634.56, + "probability": 0.6237 + }, + { + "start": 21634.7, + "end": 21636.12, + "probability": 0.4666 + }, + { + "start": 21636.14, + "end": 21637.38, + "probability": 0.0669 + }, + { + "start": 21637.38, + "end": 21640.2, + "probability": 0.6855 + }, + { + "start": 21641.06, + "end": 21642.96, + "probability": 0.542 + }, + { + "start": 21643.6, + "end": 21644.96, + "probability": 0.879 + }, + { + "start": 21645.88, + "end": 21650.02, + "probability": 0.9901 + }, + { + "start": 21651.02, + "end": 21654.36, + "probability": 0.7626 + }, + { + "start": 21655.68, + "end": 21657.08, + "probability": 0.783 + }, + { + "start": 21657.22, + "end": 21657.84, + "probability": 0.8201 + }, + { + "start": 21657.92, + "end": 21661.32, + "probability": 0.8504 + }, + { + "start": 21661.96, + "end": 21665.38, + "probability": 0.9836 + }, + { + "start": 21666.1, + "end": 21666.7, + "probability": 0.5221 + }, + { + "start": 21666.76, + "end": 21667.81, + "probability": 0.9692 + }, + { + "start": 21668.32, + "end": 21672.1, + "probability": 0.9824 + }, + { + "start": 21673.18, + "end": 21675.96, + "probability": 0.9684 + }, + { + "start": 21676.72, + "end": 21679.06, + "probability": 0.9801 + }, + { + "start": 21679.86, + "end": 21681.12, + "probability": 0.8688 + }, + { + "start": 21681.58, + "end": 21684.18, + "probability": 0.9945 + }, + { + "start": 21685.68, + "end": 21689.0, + "probability": 0.9894 + }, + { + "start": 21690.14, + "end": 21691.42, + "probability": 0.9902 + }, + { + "start": 21692.36, + "end": 21693.61, + "probability": 0.6386 + }, + { + "start": 21694.68, + "end": 21695.6, + "probability": 0.9486 + }, + { + "start": 21696.18, + "end": 21699.14, + "probability": 0.8385 + }, + { + "start": 21699.84, + "end": 21700.54, + "probability": 0.5376 + }, + { + "start": 21701.46, + "end": 21702.02, + "probability": 0.4664 + }, + { + "start": 21703.98, + "end": 21705.32, + "probability": 0.9051 + }, + { + "start": 21705.54, + "end": 21708.68, + "probability": 0.9808 + }, + { + "start": 21709.42, + "end": 21710.38, + "probability": 0.8268 + }, + { + "start": 21711.06, + "end": 21713.14, + "probability": 0.9494 + }, + { + "start": 21713.88, + "end": 21714.85, + "probability": 0.7605 + }, + { + "start": 21715.08, + "end": 21716.0, + "probability": 0.9951 + }, + { + "start": 21716.88, + "end": 21720.49, + "probability": 0.9698 + }, + { + "start": 21721.14, + "end": 21722.84, + "probability": 0.8714 + }, + { + "start": 21723.9, + "end": 21726.04, + "probability": 0.98 + }, + { + "start": 21726.74, + "end": 21731.06, + "probability": 0.9656 + }, + { + "start": 21731.14, + "end": 21731.7, + "probability": 0.8954 + }, + { + "start": 21732.2, + "end": 21734.68, + "probability": 0.9795 + }, + { + "start": 21735.42, + "end": 21736.72, + "probability": 0.7592 + }, + { + "start": 21737.3, + "end": 21737.82, + "probability": 0.6557 + }, + { + "start": 21738.34, + "end": 21739.66, + "probability": 0.7338 + }, + { + "start": 21740.28, + "end": 21741.54, + "probability": 0.9548 + }, + { + "start": 21742.22, + "end": 21744.89, + "probability": 0.9869 + }, + { + "start": 21745.62, + "end": 21747.3, + "probability": 0.688 + }, + { + "start": 21747.9, + "end": 21749.58, + "probability": 0.9927 + }, + { + "start": 21750.18, + "end": 21751.14, + "probability": 0.8023 + }, + { + "start": 21751.7, + "end": 21755.3, + "probability": 0.9684 + }, + { + "start": 21755.82, + "end": 21757.48, + "probability": 0.9783 + }, + { + "start": 21758.26, + "end": 21759.4, + "probability": 0.9918 + }, + { + "start": 21759.82, + "end": 21760.91, + "probability": 0.9766 + }, + { + "start": 21761.76, + "end": 21762.46, + "probability": 0.7723 + }, + { + "start": 21763.1, + "end": 21765.24, + "probability": 0.9854 + }, + { + "start": 21765.7, + "end": 21766.99, + "probability": 0.7884 + }, + { + "start": 21767.74, + "end": 21768.66, + "probability": 0.8878 + }, + { + "start": 21769.04, + "end": 21769.8, + "probability": 0.9028 + }, + { + "start": 21770.26, + "end": 21771.5, + "probability": 0.8055 + }, + { + "start": 21772.42, + "end": 21776.48, + "probability": 0.9091 + }, + { + "start": 21777.46, + "end": 21779.58, + "probability": 0.9873 + }, + { + "start": 21780.24, + "end": 21781.24, + "probability": 0.922 + }, + { + "start": 21782.8, + "end": 21784.42, + "probability": 0.5611 + }, + { + "start": 21784.58, + "end": 21786.86, + "probability": 0.7811 + }, + { + "start": 21787.28, + "end": 21788.84, + "probability": 0.9637 + }, + { + "start": 21789.92, + "end": 21791.52, + "probability": 0.927 + }, + { + "start": 21792.88, + "end": 21795.3, + "probability": 0.9845 + }, + { + "start": 21796.28, + "end": 21799.3, + "probability": 0.9847 + }, + { + "start": 21800.42, + "end": 21801.66, + "probability": 0.5904 + }, + { + "start": 21802.36, + "end": 21805.46, + "probability": 0.9866 + }, + { + "start": 21806.74, + "end": 21811.54, + "probability": 0.988 + }, + { + "start": 21812.62, + "end": 21816.38, + "probability": 0.9943 + }, + { + "start": 21817.36, + "end": 21821.92, + "probability": 0.9538 + }, + { + "start": 21823.44, + "end": 21826.12, + "probability": 0.9939 + }, + { + "start": 21826.12, + "end": 21828.24, + "probability": 0.9933 + }, + { + "start": 21828.84, + "end": 21829.92, + "probability": 0.8088 + }, + { + "start": 21830.86, + "end": 21834.94, + "probability": 0.9009 + }, + { + "start": 21835.96, + "end": 21837.7, + "probability": 0.9639 + }, + { + "start": 21839.26, + "end": 21841.52, + "probability": 0.9073 + }, + { + "start": 21845.48, + "end": 21847.6, + "probability": 0.835 + }, + { + "start": 21849.69, + "end": 21852.3, + "probability": 0.85 + }, + { + "start": 21853.32, + "end": 21856.5, + "probability": 0.9076 + }, + { + "start": 21857.08, + "end": 21857.96, + "probability": 0.7432 + }, + { + "start": 21858.64, + "end": 21861.66, + "probability": 0.932 + }, + { + "start": 21862.06, + "end": 21863.06, + "probability": 0.8859 + }, + { + "start": 21864.22, + "end": 21865.38, + "probability": 0.9575 + }, + { + "start": 21865.94, + "end": 21866.6, + "probability": 0.9701 + }, + { + "start": 21867.3, + "end": 21869.74, + "probability": 0.9316 + }, + { + "start": 21870.26, + "end": 21873.28, + "probability": 0.8852 + }, + { + "start": 21873.92, + "end": 21875.2, + "probability": 0.6732 + }, + { + "start": 21875.8, + "end": 21880.66, + "probability": 0.9653 + }, + { + "start": 21881.3, + "end": 21885.46, + "probability": 0.9776 + }, + { + "start": 21886.02, + "end": 21888.08, + "probability": 0.8999 + }, + { + "start": 21888.92, + "end": 21891.92, + "probability": 0.9915 + }, + { + "start": 21892.66, + "end": 21895.54, + "probability": 0.9813 + }, + { + "start": 21896.46, + "end": 21899.42, + "probability": 0.7556 + }, + { + "start": 21900.64, + "end": 21902.8, + "probability": 0.9504 + }, + { + "start": 21903.6, + "end": 21905.64, + "probability": 0.9712 + }, + { + "start": 21906.76, + "end": 21907.12, + "probability": 0.0517 + }, + { + "start": 21907.12, + "end": 21909.16, + "probability": 0.652 + }, + { + "start": 21909.96, + "end": 21910.56, + "probability": 0.8015 + }, + { + "start": 21911.6, + "end": 21913.8, + "probability": 0.6427 + }, + { + "start": 21913.84, + "end": 21917.22, + "probability": 0.7363 + }, + { + "start": 21917.66, + "end": 21921.2, + "probability": 0.749 + }, + { + "start": 21921.8, + "end": 21926.88, + "probability": 0.9872 + }, + { + "start": 21927.48, + "end": 21929.72, + "probability": 0.9828 + }, + { + "start": 21929.72, + "end": 21932.36, + "probability": 0.9942 + }, + { + "start": 21932.96, + "end": 21937.18, + "probability": 0.9927 + }, + { + "start": 21937.18, + "end": 21941.4, + "probability": 0.9984 + }, + { + "start": 21941.58, + "end": 21942.0, + "probability": 0.7549 + }, + { + "start": 21943.18, + "end": 21943.94, + "probability": 0.7375 + }, + { + "start": 21944.34, + "end": 21947.86, + "probability": 0.69 + }, + { + "start": 21948.72, + "end": 21948.92, + "probability": 0.8037 + }, + { + "start": 21948.94, + "end": 21952.88, + "probability": 0.9852 + }, + { + "start": 21954.14, + "end": 21957.0, + "probability": 0.9934 + }, + { + "start": 21957.72, + "end": 21957.72, + "probability": 0.2657 + }, + { + "start": 21957.72, + "end": 21958.72, + "probability": 0.6001 + }, + { + "start": 21959.64, + "end": 21961.12, + "probability": 0.5774 + }, + { + "start": 21961.22, + "end": 21965.02, + "probability": 0.6034 + }, + { + "start": 21965.26, + "end": 21970.78, + "probability": 0.5357 + }, + { + "start": 21971.64, + "end": 21971.82, + "probability": 0.1816 + }, + { + "start": 21971.82, + "end": 21971.82, + "probability": 0.445 + }, + { + "start": 21971.82, + "end": 21972.28, + "probability": 0.7119 + }, + { + "start": 21972.36, + "end": 21973.46, + "probability": 0.8008 + }, + { + "start": 21973.68, + "end": 21974.8, + "probability": 0.9613 + }, + { + "start": 21974.86, + "end": 21976.32, + "probability": 0.9669 + }, + { + "start": 21976.7, + "end": 21978.2, + "probability": 0.9673 + }, + { + "start": 21978.3, + "end": 21979.85, + "probability": 0.8142 + }, + { + "start": 21982.1, + "end": 21982.87, + "probability": 0.2732 + }, + { + "start": 21982.96, + "end": 21988.26, + "probability": 0.7141 + }, + { + "start": 21988.42, + "end": 21991.02, + "probability": 0.0982 + }, + { + "start": 21991.3, + "end": 21992.14, + "probability": 0.0135 + }, + { + "start": 21992.4, + "end": 21994.8, + "probability": 0.0603 + }, + { + "start": 21995.14, + "end": 21995.52, + "probability": 0.2561 + }, + { + "start": 21995.52, + "end": 21996.36, + "probability": 0.2561 + }, + { + "start": 21996.4, + "end": 21997.0, + "probability": 0.8326 + }, + { + "start": 21997.16, + "end": 21997.58, + "probability": 0.4978 + }, + { + "start": 21997.62, + "end": 21998.24, + "probability": 0.4855 + }, + { + "start": 21998.32, + "end": 21999.62, + "probability": 0.0797 + }, + { + "start": 22000.62, + "end": 22000.66, + "probability": 0.1798 + }, + { + "start": 22000.66, + "end": 22000.66, + "probability": 0.0393 + }, + { + "start": 22000.66, + "end": 22001.87, + "probability": 0.3083 + }, + { + "start": 22005.7, + "end": 22007.02, + "probability": 0.1113 + }, + { + "start": 22007.32, + "end": 22007.46, + "probability": 0.0364 + }, + { + "start": 22007.46, + "end": 22007.46, + "probability": 0.0429 + }, + { + "start": 22007.46, + "end": 22009.1, + "probability": 0.0455 + }, + { + "start": 22010.22, + "end": 22010.86, + "probability": 0.4535 + }, + { + "start": 22011.06, + "end": 22013.96, + "probability": 0.1014 + }, + { + "start": 22013.96, + "end": 22014.04, + "probability": 0.0382 + }, + { + "start": 22015.0, + "end": 22015.02, + "probability": 0.15 + }, + { + "start": 22015.02, + "end": 22015.91, + "probability": 0.4804 + }, + { + "start": 22016.94, + "end": 22019.52, + "probability": 0.769 + }, + { + "start": 22019.62, + "end": 22021.36, + "probability": 0.976 + }, + { + "start": 22022.62, + "end": 22025.42, + "probability": 0.9506 + }, + { + "start": 22025.56, + "end": 22026.73, + "probability": 0.5895 + }, + { + "start": 22028.2, + "end": 22029.58, + "probability": 0.863 + }, + { + "start": 22029.58, + "end": 22030.92, + "probability": 0.9513 + }, + { + "start": 22031.0, + "end": 22031.8, + "probability": 0.998 + }, + { + "start": 22033.0, + "end": 22034.76, + "probability": 0.8695 + }, + { + "start": 22034.92, + "end": 22035.2, + "probability": 0.8444 + }, + { + "start": 22035.26, + "end": 22036.45, + "probability": 0.96 + }, + { + "start": 22036.7, + "end": 22037.56, + "probability": 0.9879 + }, + { + "start": 22037.76, + "end": 22038.28, + "probability": 0.651 + }, + { + "start": 22038.66, + "end": 22039.26, + "probability": 0.7722 + }, + { + "start": 22040.22, + "end": 22042.5, + "probability": 0.9654 + }, + { + "start": 22043.06, + "end": 22044.8, + "probability": 0.9911 + }, + { + "start": 22045.5, + "end": 22049.22, + "probability": 0.7985 + }, + { + "start": 22049.76, + "end": 22054.66, + "probability": 0.9943 + }, + { + "start": 22057.5, + "end": 22057.7, + "probability": 0.0017 + }, + { + "start": 22060.04, + "end": 22060.22, + "probability": 0.0918 + }, + { + "start": 22060.22, + "end": 22061.5, + "probability": 0.3067 + }, + { + "start": 22061.58, + "end": 22065.0, + "probability": 0.6707 + }, + { + "start": 22065.26, + "end": 22068.08, + "probability": 0.9893 + }, + { + "start": 22070.14, + "end": 22075.48, + "probability": 0.9492 + }, + { + "start": 22076.7, + "end": 22078.7, + "probability": 0.8427 + }, + { + "start": 22078.9, + "end": 22079.06, + "probability": 0.6583 + }, + { + "start": 22079.12, + "end": 22083.74, + "probability": 0.9823 + }, + { + "start": 22084.48, + "end": 22085.71, + "probability": 0.9678 + }, + { + "start": 22087.24, + "end": 22087.7, + "probability": 0.1018 + }, + { + "start": 22087.72, + "end": 22088.96, + "probability": 0.5228 + }, + { + "start": 22091.6, + "end": 22096.1, + "probability": 0.5742 + }, + { + "start": 22096.4, + "end": 22097.82, + "probability": 0.7974 + }, + { + "start": 22097.88, + "end": 22098.88, + "probability": 0.9622 + }, + { + "start": 22099.26, + "end": 22101.56, + "probability": 0.9611 + }, + { + "start": 22101.66, + "end": 22104.52, + "probability": 0.9811 + }, + { + "start": 22104.52, + "end": 22105.88, + "probability": 0.9098 + }, + { + "start": 22107.12, + "end": 22107.86, + "probability": 0.2629 + }, + { + "start": 22107.9, + "end": 22108.06, + "probability": 0.6642 + }, + { + "start": 22108.9, + "end": 22109.6, + "probability": 0.7766 + }, + { + "start": 22109.86, + "end": 22115.72, + "probability": 0.8869 + }, + { + "start": 22115.76, + "end": 22121.34, + "probability": 0.9569 + }, + { + "start": 22122.08, + "end": 22124.38, + "probability": 0.7976 + }, + { + "start": 22125.16, + "end": 22127.66, + "probability": 0.8956 + }, + { + "start": 22128.2, + "end": 22129.0, + "probability": 0.2707 + }, + { + "start": 22129.0, + "end": 22129.44, + "probability": 0.5859 + }, + { + "start": 22141.8, + "end": 22141.8, + "probability": 0.1044 + }, + { + "start": 22141.8, + "end": 22144.2, + "probability": 0.6748 + }, + { + "start": 22144.44, + "end": 22147.86, + "probability": 0.9374 + }, + { + "start": 22147.86, + "end": 22150.48, + "probability": 0.9432 + }, + { + "start": 22150.52, + "end": 22151.95, + "probability": 0.8407 + }, + { + "start": 22152.38, + "end": 22157.4, + "probability": 0.9743 + }, + { + "start": 22158.91, + "end": 22160.1, + "probability": 0.0133 + }, + { + "start": 22160.22, + "end": 22164.42, + "probability": 0.6336 + }, + { + "start": 22165.36, + "end": 22167.94, + "probability": 0.7858 + }, + { + "start": 22168.54, + "end": 22169.98, + "probability": 0.6201 + }, + { + "start": 22170.74, + "end": 22176.94, + "probability": 0.5953 + }, + { + "start": 22182.66, + "end": 22186.78, + "probability": 0.4996 + }, + { + "start": 22187.92, + "end": 22188.66, + "probability": 0.2962 + }, + { + "start": 22197.58, + "end": 22197.58, + "probability": 0.4164 + }, + { + "start": 22197.74, + "end": 22198.92, + "probability": 0.4771 + }, + { + "start": 22199.24, + "end": 22200.68, + "probability": 0.2166 + }, + { + "start": 22200.76, + "end": 22203.84, + "probability": 0.7724 + }, + { + "start": 22204.76, + "end": 22206.9, + "probability": 0.3776 + }, + { + "start": 22208.02, + "end": 22208.84, + "probability": 0.9408 + }, + { + "start": 22211.96, + "end": 22211.96, + "probability": 0.4632 + }, + { + "start": 22211.96, + "end": 22213.36, + "probability": 0.597 + }, + { + "start": 22214.66, + "end": 22218.04, + "probability": 0.9175 + }, + { + "start": 22218.2, + "end": 22223.12, + "probability": 0.9862 + }, + { + "start": 22223.24, + "end": 22223.6, + "probability": 0.583 + }, + { + "start": 22223.62, + "end": 22227.42, + "probability": 0.812 + }, + { + "start": 22228.48, + "end": 22231.16, + "probability": 0.8567 + }, + { + "start": 22231.98, + "end": 22233.74, + "probability": 0.5734 + }, + { + "start": 22234.36, + "end": 22236.87, + "probability": 0.4934 + }, + { + "start": 22237.26, + "end": 22237.48, + "probability": 0.7225 + }, + { + "start": 22239.81, + "end": 22243.39, + "probability": 0.5129 + }, + { + "start": 22244.22, + "end": 22246.72, + "probability": 0.9288 + }, + { + "start": 22246.8, + "end": 22247.54, + "probability": 0.906 + }, + { + "start": 22248.18, + "end": 22254.02, + "probability": 0.9894 + }, + { + "start": 22254.6, + "end": 22258.68, + "probability": 0.9747 + }, + { + "start": 22258.94, + "end": 22262.02, + "probability": 0.8719 + }, + { + "start": 22262.12, + "end": 22264.68, + "probability": 0.6199 + }, + { + "start": 22265.34, + "end": 22268.32, + "probability": 0.67 + }, + { + "start": 22269.42, + "end": 22272.26, + "probability": 0.9645 + }, + { + "start": 22272.54, + "end": 22275.54, + "probability": 0.9954 + }, + { + "start": 22275.54, + "end": 22279.0, + "probability": 0.9989 + }, + { + "start": 22279.46, + "end": 22286.0, + "probability": 0.9187 + }, + { + "start": 22286.0, + "end": 22291.78, + "probability": 0.9948 + }, + { + "start": 22292.5, + "end": 22295.4, + "probability": 0.9538 + }, + { + "start": 22295.9, + "end": 22297.46, + "probability": 0.7759 + }, + { + "start": 22297.7, + "end": 22299.84, + "probability": 0.9868 + }, + { + "start": 22300.4, + "end": 22305.44, + "probability": 0.9663 + }, + { + "start": 22305.88, + "end": 22306.98, + "probability": 0.5148 + }, + { + "start": 22307.54, + "end": 22309.04, + "probability": 0.7415 + }, + { + "start": 22309.16, + "end": 22309.9, + "probability": 0.9055 + }, + { + "start": 22310.2, + "end": 22313.24, + "probability": 0.9915 + }, + { + "start": 22313.24, + "end": 22316.4, + "probability": 0.9932 + }, + { + "start": 22317.28, + "end": 22319.2, + "probability": 0.7783 + }, + { + "start": 22319.8, + "end": 22322.44, + "probability": 0.9661 + }, + { + "start": 22322.96, + "end": 22324.12, + "probability": 0.9902 + }, + { + "start": 22324.3, + "end": 22325.64, + "probability": 0.9832 + }, + { + "start": 22325.8, + "end": 22329.92, + "probability": 0.954 + }, + { + "start": 22329.98, + "end": 22332.8, + "probability": 0.9644 + }, + { + "start": 22333.3, + "end": 22333.48, + "probability": 0.2788 + }, + { + "start": 22333.66, + "end": 22339.9, + "probability": 0.9905 + }, + { + "start": 22340.44, + "end": 22342.54, + "probability": 0.6882 + }, + { + "start": 22342.8, + "end": 22348.16, + "probability": 0.936 + }, + { + "start": 22348.74, + "end": 22351.74, + "probability": 0.98 + }, + { + "start": 22352.36, + "end": 22356.16, + "probability": 0.998 + }, + { + "start": 22356.74, + "end": 22356.9, + "probability": 0.6234 + }, + { + "start": 22356.9, + "end": 22360.52, + "probability": 0.7675 + }, + { + "start": 22360.64, + "end": 22363.02, + "probability": 0.9974 + }, + { + "start": 22363.6, + "end": 22365.96, + "probability": 0.9277 + }, + { + "start": 22370.0, + "end": 22373.74, + "probability": 0.8281 + }, + { + "start": 22373.8, + "end": 22376.06, + "probability": 0.7896 + }, + { + "start": 22376.1, + "end": 22377.07, + "probability": 0.8748 + }, + { + "start": 22377.22, + "end": 22378.56, + "probability": 0.7109 + }, + { + "start": 22378.66, + "end": 22379.84, + "probability": 0.6627 + }, + { + "start": 22380.28, + "end": 22384.06, + "probability": 0.9313 + }, + { + "start": 22384.6, + "end": 22388.42, + "probability": 0.9987 + }, + { + "start": 22388.56, + "end": 22389.54, + "probability": 0.6358 + }, + { + "start": 22389.66, + "end": 22389.92, + "probability": 0.8823 + }, + { + "start": 22390.06, + "end": 22393.0, + "probability": 0.9784 + }, + { + "start": 22393.34, + "end": 22395.3, + "probability": 0.9761 + }, + { + "start": 22395.52, + "end": 22398.32, + "probability": 0.9987 + }, + { + "start": 22398.84, + "end": 22402.42, + "probability": 0.9797 + }, + { + "start": 22402.68, + "end": 22403.22, + "probability": 0.9288 + }, + { + "start": 22403.64, + "end": 22404.3, + "probability": 0.8622 + }, + { + "start": 22404.38, + "end": 22405.16, + "probability": 0.9805 + }, + { + "start": 22405.22, + "end": 22406.64, + "probability": 0.6127 + }, + { + "start": 22406.92, + "end": 22407.32, + "probability": 0.8074 + }, + { + "start": 22407.46, + "end": 22410.54, + "probability": 0.9961 + }, + { + "start": 22410.82, + "end": 22413.1, + "probability": 0.907 + }, + { + "start": 22413.68, + "end": 22417.58, + "probability": 0.9722 + }, + { + "start": 22418.1, + "end": 22423.39, + "probability": 0.7207 + }, + { + "start": 22425.4, + "end": 22427.36, + "probability": 0.239 + }, + { + "start": 22427.64, + "end": 22429.96, + "probability": 0.884 + }, + { + "start": 22432.76, + "end": 22436.72, + "probability": 0.9604 + }, + { + "start": 22437.2, + "end": 22440.7, + "probability": 0.8182 + }, + { + "start": 22441.14, + "end": 22442.62, + "probability": 0.7969 + }, + { + "start": 22443.14, + "end": 22445.98, + "probability": 0.9974 + }, + { + "start": 22445.98, + "end": 22450.74, + "probability": 0.7484 + }, + { + "start": 22451.66, + "end": 22456.62, + "probability": 0.9982 + }, + { + "start": 22456.7, + "end": 22457.52, + "probability": 0.8499 + }, + { + "start": 22458.18, + "end": 22459.3, + "probability": 0.9824 + }, + { + "start": 22460.14, + "end": 22460.26, + "probability": 0.54 + }, + { + "start": 22460.38, + "end": 22461.14, + "probability": 0.8181 + }, + { + "start": 22461.68, + "end": 22463.02, + "probability": 0.9069 + }, + { + "start": 22463.18, + "end": 22464.74, + "probability": 0.9746 + }, + { + "start": 22465.5, + "end": 22467.62, + "probability": 0.932 + }, + { + "start": 22471.3, + "end": 22474.1, + "probability": 0.564 + }, + { + "start": 22474.54, + "end": 22474.94, + "probability": 0.3742 + }, + { + "start": 22476.11, + "end": 22479.72, + "probability": 0.9928 + }, + { + "start": 22480.42, + "end": 22484.16, + "probability": 0.9684 + }, + { + "start": 22486.38, + "end": 22493.4, + "probability": 0.6342 + }, + { + "start": 22493.54, + "end": 22495.6, + "probability": 0.7319 + }, + { + "start": 22496.44, + "end": 22500.19, + "probability": 0.9284 + }, + { + "start": 22500.2, + "end": 22503.48, + "probability": 0.9389 + }, + { + "start": 22504.24, + "end": 22507.94, + "probability": 0.7973 + }, + { + "start": 22508.88, + "end": 22509.32, + "probability": 0.8389 + }, + { + "start": 22509.32, + "end": 22513.84, + "probability": 0.927 + }, + { + "start": 22513.84, + "end": 22517.14, + "probability": 0.9933 + }, + { + "start": 22518.2, + "end": 22521.92, + "probability": 0.9294 + }, + { + "start": 22521.92, + "end": 22525.68, + "probability": 0.9576 + }, + { + "start": 22526.08, + "end": 22528.08, + "probability": 0.3251 + }, + { + "start": 22528.56, + "end": 22532.8, + "probability": 0.9217 + }, + { + "start": 22533.44, + "end": 22535.16, + "probability": 0.9761 + }, + { + "start": 22535.2, + "end": 22537.58, + "probability": 0.9963 + }, + { + "start": 22538.22, + "end": 22539.96, + "probability": 0.3767 + }, + { + "start": 22542.34, + "end": 22545.72, + "probability": 0.9753 + }, + { + "start": 22546.1, + "end": 22547.82, + "probability": 0.9985 + }, + { + "start": 22547.82, + "end": 22549.6, + "probability": 0.9926 + }, + { + "start": 22550.14, + "end": 22551.08, + "probability": 0.4759 + }, + { + "start": 22551.8, + "end": 22556.28, + "probability": 0.8423 + }, + { + "start": 22556.42, + "end": 22558.44, + "probability": 0.1585 + }, + { + "start": 22559.98, + "end": 22562.14, + "probability": 0.2327 + }, + { + "start": 22562.45, + "end": 22563.95, + "probability": 0.3108 + }, + { + "start": 22564.18, + "end": 22565.06, + "probability": 0.4954 + }, + { + "start": 22565.12, + "end": 22567.72, + "probability": 0.4823 + }, + { + "start": 22567.92, + "end": 22568.48, + "probability": 0.866 + }, + { + "start": 22568.84, + "end": 22572.0, + "probability": 0.7266 + }, + { + "start": 22572.0, + "end": 22572.1, + "probability": 0.9733 + }, + { + "start": 22573.98, + "end": 22574.38, + "probability": 0.8288 + }, + { + "start": 22574.42, + "end": 22576.5, + "probability": 0.7098 + }, + { + "start": 22576.84, + "end": 22577.4, + "probability": 0.6849 + }, + { + "start": 22577.48, + "end": 22580.18, + "probability": 0.629 + }, + { + "start": 22580.68, + "end": 22584.24, + "probability": 0.5323 + }, + { + "start": 22584.24, + "end": 22586.04, + "probability": 0.8984 + }, + { + "start": 22586.86, + "end": 22587.76, + "probability": 0.5609 + }, + { + "start": 22588.54, + "end": 22588.74, + "probability": 0.095 + }, + { + "start": 22588.74, + "end": 22588.74, + "probability": 0.3584 + }, + { + "start": 22588.74, + "end": 22591.18, + "probability": 0.9164 + }, + { + "start": 22593.09, + "end": 22596.45, + "probability": 0.3881 + }, + { + "start": 22597.22, + "end": 22597.82, + "probability": 0.9303 + }, + { + "start": 22598.78, + "end": 22600.38, + "probability": 0.0669 + }, + { + "start": 22601.34, + "end": 22601.94, + "probability": 0.0436 + }, + { + "start": 22602.02, + "end": 22602.28, + "probability": 0.6145 + }, + { + "start": 22602.8, + "end": 22603.58, + "probability": 0.6411 + }, + { + "start": 22603.7, + "end": 22607.86, + "probability": 0.8857 + }, + { + "start": 22608.34, + "end": 22610.06, + "probability": 0.9111 + }, + { + "start": 22610.76, + "end": 22612.14, + "probability": 0.9311 + }, + { + "start": 22612.34, + "end": 22612.82, + "probability": 0.8149 + }, + { + "start": 22612.84, + "end": 22613.36, + "probability": 0.9164 + }, + { + "start": 22613.42, + "end": 22613.7, + "probability": 0.6738 + }, + { + "start": 22613.72, + "end": 22618.28, + "probability": 0.9701 + }, + { + "start": 22618.66, + "end": 22618.8, + "probability": 0.6576 + }, + { + "start": 22618.92, + "end": 22622.44, + "probability": 0.5833 + }, + { + "start": 22623.24, + "end": 22627.88, + "probability": 0.9736 + }, + { + "start": 22628.46, + "end": 22629.24, + "probability": 0.7823 + }, + { + "start": 22629.26, + "end": 22634.23, + "probability": 0.8033 + }, + { + "start": 22635.58, + "end": 22637.28, + "probability": 0.702 + }, + { + "start": 22637.42, + "end": 22641.5, + "probability": 0.988 + }, + { + "start": 22642.1, + "end": 22645.16, + "probability": 0.8704 + }, + { + "start": 22645.6, + "end": 22647.06, + "probability": 0.471 + }, + { + "start": 22647.76, + "end": 22653.42, + "probability": 0.8369 + }, + { + "start": 22653.9, + "end": 22655.72, + "probability": 0.9654 + }, + { + "start": 22656.0, + "end": 22656.8, + "probability": 0.3732 + }, + { + "start": 22656.98, + "end": 22660.04, + "probability": 0.9471 + }, + { + "start": 22660.04, + "end": 22662.04, + "probability": 0.6472 + }, + { + "start": 22662.52, + "end": 22668.1, + "probability": 0.8654 + }, + { + "start": 22668.2, + "end": 22672.82, + "probability": 0.9943 + }, + { + "start": 22672.82, + "end": 22678.48, + "probability": 0.9965 + }, + { + "start": 22679.36, + "end": 22681.34, + "probability": 0.8192 + }, + { + "start": 22682.83, + "end": 22687.9, + "probability": 0.9461 + }, + { + "start": 22688.42, + "end": 22691.66, + "probability": 0.9935 + }, + { + "start": 22691.66, + "end": 22694.92, + "probability": 0.7309 + }, + { + "start": 22694.96, + "end": 22697.1, + "probability": 0.6479 + }, + { + "start": 22697.26, + "end": 22699.88, + "probability": 0.9972 + }, + { + "start": 22700.42, + "end": 22706.0, + "probability": 0.5182 + }, + { + "start": 22706.0, + "end": 22711.66, + "probability": 0.9645 + }, + { + "start": 22711.72, + "end": 22716.42, + "probability": 0.9808 + }, + { + "start": 22718.26, + "end": 22719.52, + "probability": 0.5031 + }, + { + "start": 22719.52, + "end": 22720.32, + "probability": 0.7958 + }, + { + "start": 22720.4, + "end": 22721.55, + "probability": 0.6731 + }, + { + "start": 22721.6, + "end": 22722.98, + "probability": 0.2768 + }, + { + "start": 22722.98, + "end": 22723.8, + "probability": 0.3862 + }, + { + "start": 22723.84, + "end": 22725.68, + "probability": 0.7419 + }, + { + "start": 22725.68, + "end": 22726.18, + "probability": 0.4845 + }, + { + "start": 22726.7, + "end": 22727.24, + "probability": 0.5355 + }, + { + "start": 22727.48, + "end": 22730.08, + "probability": 0.9298 + }, + { + "start": 22730.9, + "end": 22734.06, + "probability": 0.9868 + }, + { + "start": 22734.6, + "end": 22737.98, + "probability": 0.9969 + }, + { + "start": 22738.5, + "end": 22739.94, + "probability": 0.9808 + }, + { + "start": 22740.54, + "end": 22743.64, + "probability": 0.9531 + }, + { + "start": 22744.72, + "end": 22745.52, + "probability": 0.9991 + }, + { + "start": 22747.7, + "end": 22749.66, + "probability": 0.7166 + }, + { + "start": 22750.52, + "end": 22752.36, + "probability": 0.8503 + }, + { + "start": 22752.5, + "end": 22755.14, + "probability": 0.9971 + }, + { + "start": 22755.18, + "end": 22759.84, + "probability": 0.6845 + }, + { + "start": 22760.24, + "end": 22763.5, + "probability": 0.8957 + }, + { + "start": 22763.7, + "end": 22766.32, + "probability": 0.9688 + }, + { + "start": 22766.44, + "end": 22767.68, + "probability": 0.8831 + }, + { + "start": 22767.78, + "end": 22768.6, + "probability": 0.9106 + }, + { + "start": 22768.72, + "end": 22771.26, + "probability": 0.931 + }, + { + "start": 22771.26, + "end": 22771.89, + "probability": 0.9653 + }, + { + "start": 22772.32, + "end": 22777.3, + "probability": 0.9966 + }, + { + "start": 22778.0, + "end": 22778.88, + "probability": 0.9266 + }, + { + "start": 22779.62, + "end": 22781.04, + "probability": 0.9625 + }, + { + "start": 22781.1, + "end": 22782.54, + "probability": 0.9915 + }, + { + "start": 22783.06, + "end": 22785.34, + "probability": 0.8039 + }, + { + "start": 22785.34, + "end": 22786.48, + "probability": 0.83 + }, + { + "start": 22786.76, + "end": 22791.52, + "probability": 0.9894 + }, + { + "start": 22791.92, + "end": 22793.74, + "probability": 0.995 + }, + { + "start": 22794.32, + "end": 22796.86, + "probability": 0.5853 + }, + { + "start": 22797.34, + "end": 22800.18, + "probability": 0.8848 + }, + { + "start": 22800.58, + "end": 22802.64, + "probability": 0.9642 + }, + { + "start": 22803.4, + "end": 22805.11, + "probability": 0.8792 + }, + { + "start": 22806.18, + "end": 22809.66, + "probability": 0.7793 + }, + { + "start": 22809.72, + "end": 22810.86, + "probability": 0.7019 + }, + { + "start": 22810.94, + "end": 22813.2, + "probability": 0.9568 + }, + { + "start": 22813.26, + "end": 22814.8, + "probability": 0.8795 + }, + { + "start": 22815.02, + "end": 22816.74, + "probability": 0.9473 + }, + { + "start": 22817.18, + "end": 22818.26, + "probability": 0.9107 + }, + { + "start": 22818.32, + "end": 22821.06, + "probability": 0.9932 + }, + { + "start": 22821.38, + "end": 22824.3, + "probability": 0.9739 + }, + { + "start": 22824.42, + "end": 22825.42, + "probability": 0.4575 + }, + { + "start": 22825.5, + "end": 22827.26, + "probability": 0.4882 + }, + { + "start": 22827.62, + "end": 22830.56, + "probability": 0.8904 + }, + { + "start": 22831.0, + "end": 22832.2, + "probability": 0.8161 + }, + { + "start": 22832.28, + "end": 22833.48, + "probability": 0.7684 + }, + { + "start": 22833.68, + "end": 22838.52, + "probability": 0.7686 + }, + { + "start": 22839.1, + "end": 22839.18, + "probability": 0.3647 + }, + { + "start": 22839.18, + "end": 22841.86, + "probability": 0.9917 + }, + { + "start": 22842.46, + "end": 22846.34, + "probability": 0.8026 + }, + { + "start": 22846.96, + "end": 22851.42, + "probability": 0.9338 + }, + { + "start": 22851.64, + "end": 22856.18, + "probability": 0.9834 + }, + { + "start": 22856.72, + "end": 22859.26, + "probability": 0.5563 + }, + { + "start": 22859.36, + "end": 22859.52, + "probability": 0.2596 + }, + { + "start": 22860.02, + "end": 22863.52, + "probability": 0.7738 + }, + { + "start": 22863.52, + "end": 22867.38, + "probability": 0.9563 + }, + { + "start": 22867.85, + "end": 22873.07, + "probability": 0.9871 + }, + { + "start": 22873.2, + "end": 22876.16, + "probability": 0.6467 + }, + { + "start": 22876.48, + "end": 22880.28, + "probability": 0.4798 + }, + { + "start": 22880.5, + "end": 22884.18, + "probability": 0.9877 + }, + { + "start": 22884.82, + "end": 22888.82, + "probability": 0.9709 + }, + { + "start": 22889.48, + "end": 22890.02, + "probability": 0.7593 + }, + { + "start": 22890.08, + "end": 22894.42, + "probability": 0.9717 + }, + { + "start": 22894.42, + "end": 22898.96, + "probability": 0.9604 + }, + { + "start": 22899.5, + "end": 22913.72, + "probability": 0.9043 + }, + { + "start": 22913.72, + "end": 22913.72, + "probability": 0.0902 + }, + { + "start": 22913.72, + "end": 22913.72, + "probability": 0.1787 + }, + { + "start": 22913.72, + "end": 22913.72, + "probability": 0.0621 + }, + { + "start": 22913.72, + "end": 22913.72, + "probability": 0.0893 + }, + { + "start": 22913.72, + "end": 22915.32, + "probability": 0.6821 + }, + { + "start": 22916.04, + "end": 22918.78, + "probability": 0.9317 + }, + { + "start": 22919.88, + "end": 22921.4, + "probability": 0.7347 + }, + { + "start": 22921.5, + "end": 22922.13, + "probability": 0.9058 + }, + { + "start": 22922.86, + "end": 22927.22, + "probability": 0.9576 + }, + { + "start": 22927.22, + "end": 22932.86, + "probability": 0.9804 + }, + { + "start": 22933.38, + "end": 22938.6, + "probability": 0.7332 + }, + { + "start": 22939.18, + "end": 22942.06, + "probability": 0.7006 + }, + { + "start": 22942.06, + "end": 22943.12, + "probability": 0.9775 + }, + { + "start": 22944.26, + "end": 22948.16, + "probability": 0.9236 + }, + { + "start": 22948.68, + "end": 22953.3, + "probability": 0.8007 + }, + { + "start": 22953.3, + "end": 22957.04, + "probability": 0.9883 + }, + { + "start": 22957.04, + "end": 22963.08, + "probability": 0.4654 + }, + { + "start": 22963.64, + "end": 22966.4, + "probability": 0.9256 + }, + { + "start": 22966.4, + "end": 22969.14, + "probability": 0.9564 + }, + { + "start": 22970.12, + "end": 22973.62, + "probability": 0.9702 + }, + { + "start": 22974.34, + "end": 22975.72, + "probability": 0.7557 + }, + { + "start": 22976.78, + "end": 22977.12, + "probability": 0.3446 + }, + { + "start": 22977.12, + "end": 22978.26, + "probability": 0.7093 + }, + { + "start": 22978.26, + "end": 22982.14, + "probability": 0.9375 + }, + { + "start": 22982.14, + "end": 22985.18, + "probability": 0.9393 + }, + { + "start": 22985.66, + "end": 22987.93, + "probability": 0.9421 + }, + { + "start": 22988.52, + "end": 22990.1, + "probability": 0.4788 + }, + { + "start": 22990.1, + "end": 22990.92, + "probability": 0.3768 + }, + { + "start": 22990.92, + "end": 22992.08, + "probability": 0.8622 + }, + { + "start": 22993.04, + "end": 22995.8, + "probability": 0.914 + }, + { + "start": 22995.8, + "end": 22999.66, + "probability": 0.9559 + }, + { + "start": 23000.16, + "end": 23005.68, + "probability": 0.8278 + }, + { + "start": 23006.16, + "end": 23009.34, + "probability": 0.832 + }, + { + "start": 23009.52, + "end": 23010.6, + "probability": 0.8711 + }, + { + "start": 23011.42, + "end": 23015.34, + "probability": 0.7778 + }, + { + "start": 23015.34, + "end": 23020.38, + "probability": 0.9795 + }, + { + "start": 23020.38, + "end": 23028.6, + "probability": 0.6268 + }, + { + "start": 23028.76, + "end": 23031.02, + "probability": 0.9645 + }, + { + "start": 23031.72, + "end": 23032.14, + "probability": 0.5164 + }, + { + "start": 23032.14, + "end": 23036.08, + "probability": 0.9513 + }, + { + "start": 23036.6, + "end": 23038.54, + "probability": 0.9941 + }, + { + "start": 23038.94, + "end": 23042.44, + "probability": 0.9959 + }, + { + "start": 23042.44, + "end": 23045.26, + "probability": 0.9845 + }, + { + "start": 23045.46, + "end": 23049.66, + "probability": 0.9904 + }, + { + "start": 23050.38, + "end": 23054.48, + "probability": 0.9941 + }, + { + "start": 23055.44, + "end": 23058.6, + "probability": 0.8741 + }, + { + "start": 23059.0, + "end": 23060.42, + "probability": 0.6032 + }, + { + "start": 23060.52, + "end": 23061.62, + "probability": 0.8565 + }, + { + "start": 23061.74, + "end": 23066.3, + "probability": 0.9901 + }, + { + "start": 23066.78, + "end": 23067.75, + "probability": 0.978 + }, + { + "start": 23068.48, + "end": 23070.86, + "probability": 0.9627 + }, + { + "start": 23071.42, + "end": 23072.62, + "probability": 0.988 + }, + { + "start": 23072.78, + "end": 23075.83, + "probability": 0.9838 + }, + { + "start": 23077.16, + "end": 23078.14, + "probability": 0.9424 + }, + { + "start": 23078.16, + "end": 23078.5, + "probability": 0.8684 + }, + { + "start": 23078.58, + "end": 23081.4, + "probability": 0.843 + }, + { + "start": 23081.46, + "end": 23083.47, + "probability": 0.9878 + }, + { + "start": 23084.3, + "end": 23086.44, + "probability": 0.9946 + }, + { + "start": 23086.44, + "end": 23090.62, + "probability": 0.9633 + }, + { + "start": 23091.0, + "end": 23093.02, + "probability": 0.7942 + }, + { + "start": 23093.18, + "end": 23094.88, + "probability": 0.7082 + }, + { + "start": 23094.96, + "end": 23095.28, + "probability": 0.8095 + }, + { + "start": 23095.4, + "end": 23098.88, + "probability": 0.9329 + }, + { + "start": 23098.9, + "end": 23102.38, + "probability": 0.869 + }, + { + "start": 23103.26, + "end": 23108.3, + "probability": 0.986 + }, + { + "start": 23108.7, + "end": 23111.38, + "probability": 0.9492 + }, + { + "start": 23111.44, + "end": 23112.72, + "probability": 0.6851 + }, + { + "start": 23113.32, + "end": 23116.16, + "probability": 0.8037 + }, + { + "start": 23116.76, + "end": 23122.68, + "probability": 0.9756 + }, + { + "start": 23122.7, + "end": 23125.36, + "probability": 0.4776 + }, + { + "start": 23125.64, + "end": 23128.82, + "probability": 0.6535 + }, + { + "start": 23129.46, + "end": 23129.62, + "probability": 0.391 + }, + { + "start": 23129.62, + "end": 23132.42, + "probability": 0.9696 + }, + { + "start": 23132.44, + "end": 23132.52, + "probability": 0.3855 + }, + { + "start": 23133.58, + "end": 23135.24, + "probability": 0.6687 + }, + { + "start": 23135.28, + "end": 23135.46, + "probability": 0.2768 + }, + { + "start": 23135.54, + "end": 23137.3, + "probability": 0.8174 + }, + { + "start": 23137.32, + "end": 23140.82, + "probability": 0.9795 + }, + { + "start": 23141.28, + "end": 23143.8, + "probability": 0.5678 + }, + { + "start": 23143.98, + "end": 23147.96, + "probability": 0.9493 + }, + { + "start": 23148.24, + "end": 23153.08, + "probability": 0.9967 + }, + { + "start": 23153.44, + "end": 23155.2, + "probability": 0.6272 + }, + { + "start": 23155.2, + "end": 23156.3, + "probability": 0.3537 + }, + { + "start": 23156.4, + "end": 23157.16, + "probability": 0.9065 + }, + { + "start": 23157.22, + "end": 23158.26, + "probability": 0.9849 + }, + { + "start": 23158.62, + "end": 23161.24, + "probability": 0.9941 + }, + { + "start": 23161.78, + "end": 23165.02, + "probability": 0.9594 + }, + { + "start": 23165.56, + "end": 23165.94, + "probability": 0.6323 + }, + { + "start": 23166.06, + "end": 23167.62, + "probability": 0.917 + }, + { + "start": 23167.7, + "end": 23167.98, + "probability": 0.7065 + }, + { + "start": 23168.0, + "end": 23173.8, + "probability": 0.8662 + }, + { + "start": 23173.92, + "end": 23177.92, + "probability": 0.9877 + }, + { + "start": 23177.92, + "end": 23181.2, + "probability": 0.9562 + }, + { + "start": 23181.38, + "end": 23184.42, + "probability": 0.9541 + }, + { + "start": 23184.6, + "end": 23185.42, + "probability": 0.8961 + }, + { + "start": 23185.8, + "end": 23186.72, + "probability": 0.925 + }, + { + "start": 23186.82, + "end": 23186.94, + "probability": 0.7165 + }, + { + "start": 23187.02, + "end": 23187.38, + "probability": 0.5146 + }, + { + "start": 23187.78, + "end": 23188.0, + "probability": 0.8851 + }, + { + "start": 23188.18, + "end": 23189.32, + "probability": 0.7675 + }, + { + "start": 23189.8, + "end": 23191.28, + "probability": 0.4426 + }, + { + "start": 23191.28, + "end": 23191.5, + "probability": 0.6193 + }, + { + "start": 23191.5, + "end": 23193.63, + "probability": 0.5358 + }, + { + "start": 23193.72, + "end": 23195.14, + "probability": 0.5455 + }, + { + "start": 23195.66, + "end": 23195.82, + "probability": 0.6694 + }, + { + "start": 23195.9, + "end": 23198.88, + "probability": 0.9294 + }, + { + "start": 23199.32, + "end": 23202.54, + "probability": 0.7324 + }, + { + "start": 23203.48, + "end": 23203.96, + "probability": 0.7161 + }, + { + "start": 23204.04, + "end": 23205.5, + "probability": 0.6188 + }, + { + "start": 23205.6, + "end": 23208.42, + "probability": 0.8853 + }, + { + "start": 23208.52, + "end": 23211.22, + "probability": 0.6626 + }, + { + "start": 23211.62, + "end": 23212.72, + "probability": 0.7408 + }, + { + "start": 23212.8, + "end": 23215.5, + "probability": 0.796 + }, + { + "start": 23215.95, + "end": 23220.12, + "probability": 0.797 + }, + { + "start": 23220.12, + "end": 23222.14, + "probability": 0.5942 + }, + { + "start": 23222.16, + "end": 23226.6, + "probability": 0.9308 + }, + { + "start": 23226.76, + "end": 23227.7, + "probability": 0.4123 + }, + { + "start": 23227.7, + "end": 23227.7, + "probability": 0.3381 + }, + { + "start": 23227.7, + "end": 23232.08, + "probability": 0.3745 + }, + { + "start": 23232.1, + "end": 23232.12, + "probability": 0.1044 + }, + { + "start": 23232.24, + "end": 23234.4, + "probability": 0.9623 + }, + { + "start": 23234.4, + "end": 23235.72, + "probability": 0.5576 + }, + { + "start": 23236.32, + "end": 23239.4, + "probability": 0.8046 + }, + { + "start": 23239.8, + "end": 23240.16, + "probability": 0.4673 + }, + { + "start": 23240.28, + "end": 23242.71, + "probability": 0.9709 + }, + { + "start": 23244.3, + "end": 23248.5, + "probability": 0.7905 + }, + { + "start": 23248.5, + "end": 23253.26, + "probability": 0.9025 + }, + { + "start": 23253.78, + "end": 23257.78, + "probability": 0.9295 + }, + { + "start": 23258.8, + "end": 23261.6, + "probability": 0.9507 + }, + { + "start": 23262.02, + "end": 23277.58, + "probability": 0.9492 + }, + { + "start": 23291.04, + "end": 23293.72, + "probability": 0.0255 + }, + { + "start": 23300.86, + "end": 23301.52, + "probability": 0.0081 + }, + { + "start": 23301.84, + "end": 23307.8, + "probability": 0.0658 + }, + { + "start": 23319.01, + "end": 23320.24, + "probability": 0.0318 + }, + { + "start": 23320.58, + "end": 23321.74, + "probability": 0.0473 + }, + { + "start": 23321.74, + "end": 23323.91, + "probability": 0.0179 + }, + { + "start": 23325.18, + "end": 23326.06, + "probability": 0.0072 + }, + { + "start": 23326.6, + "end": 23330.02, + "probability": 0.0061 + }, + { + "start": 23331.16, + "end": 23332.8, + "probability": 0.1994 + }, + { + "start": 23332.9, + "end": 23335.2, + "probability": 0.0847 + }, + { + "start": 23335.2, + "end": 23336.98, + "probability": 0.0512 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.0, + "end": 23351.0, + "probability": 0.0 + }, + { + "start": 23351.24, + "end": 23351.24, + "probability": 0.0643 + }, + { + "start": 23351.24, + "end": 23351.24, + "probability": 0.0488 + }, + { + "start": 23351.24, + "end": 23351.24, + "probability": 0.0657 + }, + { + "start": 23351.24, + "end": 23353.21, + "probability": 0.4807 + }, + { + "start": 23353.86, + "end": 23354.39, + "probability": 0.4178 + }, + { + "start": 23354.88, + "end": 23355.36, + "probability": 0.9077 + }, + { + "start": 23355.54, + "end": 23357.72, + "probability": 0.9912 + }, + { + "start": 23357.78, + "end": 23359.64, + "probability": 0.5769 + }, + { + "start": 23360.1, + "end": 23362.6, + "probability": 0.9303 + }, + { + "start": 23363.0, + "end": 23365.68, + "probability": 0.8921 + }, + { + "start": 23366.0, + "end": 23366.84, + "probability": 0.701 + }, + { + "start": 23366.96, + "end": 23368.2, + "probability": 0.9642 + }, + { + "start": 23368.32, + "end": 23371.68, + "probability": 0.9481 + }, + { + "start": 23371.74, + "end": 23374.22, + "probability": 0.9955 + }, + { + "start": 23374.58, + "end": 23376.76, + "probability": 0.9951 + }, + { + "start": 23376.86, + "end": 23378.6, + "probability": 0.9971 + }, + { + "start": 23379.16, + "end": 23387.04, + "probability": 0.9635 + }, + { + "start": 23387.54, + "end": 23387.96, + "probability": 0.9716 + }, + { + "start": 23388.42, + "end": 23389.22, + "probability": 0.6769 + }, + { + "start": 23389.34, + "end": 23391.28, + "probability": 0.7729 + }, + { + "start": 23391.68, + "end": 23392.12, + "probability": 0.7435 + }, + { + "start": 23392.36, + "end": 23394.38, + "probability": 0.9832 + }, + { + "start": 23394.5, + "end": 23398.76, + "probability": 0.8011 + }, + { + "start": 23399.24, + "end": 23400.12, + "probability": 0.7582 + }, + { + "start": 23400.56, + "end": 23401.9, + "probability": 0.8027 + }, + { + "start": 23402.48, + "end": 23404.74, + "probability": 0.9844 + }, + { + "start": 23405.24, + "end": 23406.02, + "probability": 0.9641 + }, + { + "start": 23406.7, + "end": 23407.52, + "probability": 0.8188 + }, + { + "start": 23408.0, + "end": 23409.74, + "probability": 0.9888 + }, + { + "start": 23410.04, + "end": 23410.55, + "probability": 0.9243 + }, + { + "start": 23410.84, + "end": 23412.8, + "probability": 0.9634 + }, + { + "start": 23413.2, + "end": 23416.44, + "probability": 0.9995 + }, + { + "start": 23416.8, + "end": 23418.76, + "probability": 0.9978 + }, + { + "start": 23419.4, + "end": 23424.8, + "probability": 0.9965 + }, + { + "start": 23424.94, + "end": 23426.12, + "probability": 0.9862 + }, + { + "start": 23426.42, + "end": 23428.32, + "probability": 0.9883 + }, + { + "start": 23428.92, + "end": 23429.66, + "probability": 0.5917 + }, + { + "start": 23429.98, + "end": 23432.44, + "probability": 0.9961 + }, + { + "start": 23432.76, + "end": 23433.06, + "probability": 0.6922 + }, + { + "start": 23433.12, + "end": 23438.56, + "probability": 0.9739 + }, + { + "start": 23438.56, + "end": 23444.3, + "probability": 0.9833 + }, + { + "start": 23444.56, + "end": 23444.88, + "probability": 0.843 + }, + { + "start": 23444.96, + "end": 23446.06, + "probability": 0.7914 + }, + { + "start": 23446.22, + "end": 23446.9, + "probability": 0.9613 + }, + { + "start": 23447.36, + "end": 23448.83, + "probability": 0.9656 + }, + { + "start": 23449.16, + "end": 23450.0, + "probability": 0.7635 + }, + { + "start": 23450.06, + "end": 23451.04, + "probability": 0.7064 + }, + { + "start": 23452.36, + "end": 23453.26, + "probability": 0.9985 + }, + { + "start": 23453.32, + "end": 23454.22, + "probability": 0.6501 + }, + { + "start": 23454.66, + "end": 23457.98, + "probability": 0.7685 + }, + { + "start": 23458.56, + "end": 23459.19, + "probability": 0.9865 + }, + { + "start": 23459.72, + "end": 23463.89, + "probability": 0.9043 + }, + { + "start": 23464.74, + "end": 23465.42, + "probability": 0.9884 + }, + { + "start": 23465.64, + "end": 23466.96, + "probability": 0.9175 + }, + { + "start": 23467.52, + "end": 23468.12, + "probability": 0.9224 + }, + { + "start": 23468.28, + "end": 23469.37, + "probability": 0.9121 + }, + { + "start": 23469.82, + "end": 23471.98, + "probability": 0.7401 + }, + { + "start": 23472.68, + "end": 23474.24, + "probability": 0.8853 + }, + { + "start": 23474.36, + "end": 23475.06, + "probability": 0.7989 + }, + { + "start": 23475.4, + "end": 23476.38, + "probability": 0.7419 + }, + { + "start": 23476.44, + "end": 23477.84, + "probability": 0.9803 + }, + { + "start": 23478.32, + "end": 23481.32, + "probability": 0.9886 + }, + { + "start": 23481.58, + "end": 23483.7, + "probability": 0.9939 + }, + { + "start": 23484.18, + "end": 23484.6, + "probability": 0.6208 + }, + { + "start": 23484.92, + "end": 23485.58, + "probability": 0.9561 + }, + { + "start": 23485.8, + "end": 23488.48, + "probability": 0.9717 + }, + { + "start": 23488.8, + "end": 23494.14, + "probability": 0.9575 + }, + { + "start": 23494.42, + "end": 23495.42, + "probability": 0.9885 + }, + { + "start": 23495.56, + "end": 23496.14, + "probability": 0.6078 + }, + { + "start": 23496.7, + "end": 23498.0, + "probability": 0.8793 + }, + { + "start": 23498.7, + "end": 23500.34, + "probability": 0.7808 + }, + { + "start": 23500.66, + "end": 23501.18, + "probability": 0.8845 + }, + { + "start": 23501.54, + "end": 23504.24, + "probability": 0.9934 + }, + { + "start": 23504.8, + "end": 23505.66, + "probability": 0.6872 + }, + { + "start": 23506.42, + "end": 23508.08, + "probability": 0.7064 + }, + { + "start": 23508.36, + "end": 23508.64, + "probability": 0.6715 + }, + { + "start": 23508.64, + "end": 23509.5, + "probability": 0.5939 + }, + { + "start": 23509.56, + "end": 23509.98, + "probability": 0.3172 + }, + { + "start": 23510.1, + "end": 23511.24, + "probability": 0.5204 + }, + { + "start": 23511.46, + "end": 23512.6, + "probability": 0.6662 + }, + { + "start": 23513.84, + "end": 23516.02, + "probability": 0.5004 + }, + { + "start": 23517.02, + "end": 23518.54, + "probability": 0.7027 + }, + { + "start": 23519.08, + "end": 23519.08, + "probability": 0.1255 + }, + { + "start": 23519.08, + "end": 23519.78, + "probability": 0.9106 + }, + { + "start": 23520.56, + "end": 23521.08, + "probability": 0.5513 + }, + { + "start": 23521.28, + "end": 23522.78, + "probability": 0.6074 + }, + { + "start": 23522.84, + "end": 23524.28, + "probability": 0.6114 + }, + { + "start": 23524.36, + "end": 23524.54, + "probability": 0.3318 + }, + { + "start": 23524.66, + "end": 23526.32, + "probability": 0.8992 + }, + { + "start": 23526.58, + "end": 23530.82, + "probability": 0.9348 + }, + { + "start": 23531.14, + "end": 23531.8, + "probability": 0.712 + }, + { + "start": 23533.02, + "end": 23535.06, + "probability": 0.9226 + }, + { + "start": 23535.34, + "end": 23538.92, + "probability": 0.9961 + }, + { + "start": 23539.32, + "end": 23542.0, + "probability": 0.9952 + }, + { + "start": 23542.0, + "end": 23546.98, + "probability": 0.9574 + }, + { + "start": 23547.88, + "end": 23550.48, + "probability": 0.9657 + }, + { + "start": 23550.62, + "end": 23551.04, + "probability": 0.9145 + }, + { + "start": 23551.12, + "end": 23552.24, + "probability": 0.9168 + }, + { + "start": 23552.32, + "end": 23553.04, + "probability": 0.6147 + }, + { + "start": 23553.42, + "end": 23554.56, + "probability": 0.7537 + }, + { + "start": 23554.58, + "end": 23555.46, + "probability": 0.4859 + }, + { + "start": 23555.76, + "end": 23557.54, + "probability": 0.9875 + }, + { + "start": 23557.84, + "end": 23560.16, + "probability": 0.9119 + }, + { + "start": 23560.66, + "end": 23562.46, + "probability": 0.9267 + }, + { + "start": 23562.9, + "end": 23564.82, + "probability": 0.9971 + }, + { + "start": 23565.26, + "end": 23566.72, + "probability": 0.9967 + }, + { + "start": 23567.12, + "end": 23567.9, + "probability": 0.9072 + }, + { + "start": 23568.2, + "end": 23572.02, + "probability": 0.995 + }, + { + "start": 23572.2, + "end": 23573.18, + "probability": 0.9366 + }, + { + "start": 23573.66, + "end": 23574.8, + "probability": 0.9428 + }, + { + "start": 23575.46, + "end": 23578.92, + "probability": 0.9338 + }, + { + "start": 23579.42, + "end": 23582.38, + "probability": 0.9977 + }, + { + "start": 23582.64, + "end": 23584.74, + "probability": 0.791 + }, + { + "start": 23585.04, + "end": 23586.02, + "probability": 0.5312 + }, + { + "start": 23586.18, + "end": 23586.92, + "probability": 0.9292 + }, + { + "start": 23587.16, + "end": 23588.26, + "probability": 0.988 + }, + { + "start": 23588.38, + "end": 23588.9, + "probability": 0.7058 + }, + { + "start": 23588.96, + "end": 23590.32, + "probability": 0.6647 + }, + { + "start": 23590.52, + "end": 23592.5, + "probability": 0.8231 + }, + { + "start": 23592.62, + "end": 23593.64, + "probability": 0.5799 + }, + { + "start": 23594.0, + "end": 23594.48, + "probability": 0.8574 + }, + { + "start": 23594.8, + "end": 23596.07, + "probability": 0.9845 + }, + { + "start": 23596.44, + "end": 23600.88, + "probability": 0.9462 + }, + { + "start": 23601.58, + "end": 23604.12, + "probability": 0.777 + }, + { + "start": 23604.7, + "end": 23606.88, + "probability": 0.8906 + }, + { + "start": 23608.16, + "end": 23609.56, + "probability": 0.9706 + }, + { + "start": 23609.66, + "end": 23610.6, + "probability": 0.9463 + }, + { + "start": 23610.84, + "end": 23614.08, + "probability": 0.8669 + }, + { + "start": 23614.42, + "end": 23614.66, + "probability": 0.9952 + }, + { + "start": 23615.04, + "end": 23616.26, + "probability": 0.9868 + }, + { + "start": 23616.58, + "end": 23617.12, + "probability": 0.5119 + }, + { + "start": 23617.54, + "end": 23618.26, + "probability": 0.5177 + }, + { + "start": 23618.4, + "end": 23621.88, + "probability": 0.7331 + }, + { + "start": 23622.48, + "end": 23626.7, + "probability": 0.8752 + }, + { + "start": 23626.7, + "end": 23630.38, + "probability": 0.9941 + }, + { + "start": 23631.74, + "end": 23632.44, + "probability": 0.767 + }, + { + "start": 23632.88, + "end": 23633.5, + "probability": 0.7427 + }, + { + "start": 23633.62, + "end": 23635.8, + "probability": 0.8051 + }, + { + "start": 23636.26, + "end": 23637.6, + "probability": 0.9979 + }, + { + "start": 23637.62, + "end": 23638.92, + "probability": 0.9449 + }, + { + "start": 23639.4, + "end": 23643.4, + "probability": 0.969 + }, + { + "start": 23643.76, + "end": 23646.28, + "probability": 0.9822 + }, + { + "start": 23646.64, + "end": 23647.58, + "probability": 0.8963 + }, + { + "start": 23647.68, + "end": 23650.56, + "probability": 0.6465 + }, + { + "start": 23650.9, + "end": 23653.14, + "probability": 0.877 + }, + { + "start": 23653.3, + "end": 23655.14, + "probability": 0.9774 + }, + { + "start": 23655.76, + "end": 23658.4, + "probability": 0.7693 + }, + { + "start": 23659.44, + "end": 23663.02, + "probability": 0.9905 + }, + { + "start": 23663.6, + "end": 23666.18, + "probability": 0.9881 + }, + { + "start": 23667.5, + "end": 23669.38, + "probability": 0.9957 + }, + { + "start": 23669.82, + "end": 23671.76, + "probability": 0.9961 + }, + { + "start": 23671.96, + "end": 23672.76, + "probability": 0.7058 + }, + { + "start": 23673.16, + "end": 23675.76, + "probability": 0.9533 + }, + { + "start": 23676.34, + "end": 23678.04, + "probability": 0.9799 + }, + { + "start": 23678.56, + "end": 23682.0, + "probability": 0.9714 + }, + { + "start": 23682.46, + "end": 23683.5, + "probability": 0.9508 + }, + { + "start": 23683.84, + "end": 23685.38, + "probability": 0.9723 + }, + { + "start": 23685.56, + "end": 23688.9, + "probability": 0.9239 + }, + { + "start": 23689.5, + "end": 23692.02, + "probability": 0.9496 + }, + { + "start": 23692.6, + "end": 23694.32, + "probability": 0.9628 + }, + { + "start": 23694.64, + "end": 23696.4, + "probability": 0.9976 + }, + { + "start": 23696.4, + "end": 23698.0, + "probability": 0.9982 + }, + { + "start": 23698.8, + "end": 23701.16, + "probability": 0.9576 + }, + { + "start": 23701.48, + "end": 23703.06, + "probability": 0.9973 + }, + { + "start": 23703.22, + "end": 23705.36, + "probability": 0.9885 + }, + { + "start": 23705.66, + "end": 23706.1, + "probability": 0.8596 + }, + { + "start": 23706.16, + "end": 23707.98, + "probability": 0.9951 + }, + { + "start": 23708.42, + "end": 23713.28, + "probability": 0.9951 + }, + { + "start": 23713.5, + "end": 23713.8, + "probability": 0.7465 + }, + { + "start": 23714.14, + "end": 23714.24, + "probability": 0.4803 + }, + { + "start": 23714.4, + "end": 23715.7, + "probability": 0.752 + }, + { + "start": 23715.7, + "end": 23716.1, + "probability": 0.6195 + }, + { + "start": 23716.16, + "end": 23717.54, + "probability": 0.9871 + }, + { + "start": 23717.58, + "end": 23718.54, + "probability": 0.9519 + }, + { + "start": 23718.62, + "end": 23718.92, + "probability": 0.9765 + }, + { + "start": 23720.12, + "end": 23721.96, + "probability": 0.4578 + }, + { + "start": 23721.96, + "end": 23725.76, + "probability": 0.7777 + }, + { + "start": 23725.92, + "end": 23727.78, + "probability": 0.9688 + }, + { + "start": 23728.56, + "end": 23733.38, + "probability": 0.8826 + }, + { + "start": 23733.38, + "end": 23737.02, + "probability": 0.9753 + }, + { + "start": 23737.32, + "end": 23741.1, + "probability": 0.7812 + }, + { + "start": 23741.16, + "end": 23743.08, + "probability": 0.9832 + }, + { + "start": 23743.34, + "end": 23743.96, + "probability": 0.5076 + }, + { + "start": 23744.08, + "end": 23748.66, + "probability": 0.9854 + }, + { + "start": 23749.22, + "end": 23751.08, + "probability": 0.67 + }, + { + "start": 23751.16, + "end": 23751.4, + "probability": 0.9224 + }, + { + "start": 23751.5, + "end": 23752.1, + "probability": 0.9862 + }, + { + "start": 23752.14, + "end": 23753.24, + "probability": 0.9975 + }, + { + "start": 23754.56, + "end": 23758.54, + "probability": 0.7225 + }, + { + "start": 23759.25, + "end": 23761.38, + "probability": 0.3432 + }, + { + "start": 23761.38, + "end": 23765.24, + "probability": 0.9883 + }, + { + "start": 23765.9, + "end": 23766.76, + "probability": 0.9985 + }, + { + "start": 23767.3, + "end": 23769.96, + "probability": 0.971 + }, + { + "start": 23770.46, + "end": 23772.2, + "probability": 0.8041 + }, + { + "start": 23772.4, + "end": 23772.96, + "probability": 0.9508 + }, + { + "start": 23774.64, + "end": 23777.18, + "probability": 0.4969 + }, + { + "start": 23777.24, + "end": 23778.6, + "probability": 0.6971 + }, + { + "start": 23779.1, + "end": 23779.4, + "probability": 0.9405 + }, + { + "start": 23780.14, + "end": 23780.66, + "probability": 0.9573 + }, + { + "start": 23781.08, + "end": 23781.9, + "probability": 0.7931 + }, + { + "start": 23782.02, + "end": 23782.94, + "probability": 0.6416 + }, + { + "start": 23783.08, + "end": 23785.86, + "probability": 0.9615 + }, + { + "start": 23786.3, + "end": 23787.8, + "probability": 0.8892 + }, + { + "start": 23787.82, + "end": 23790.26, + "probability": 0.7513 + }, + { + "start": 23791.12, + "end": 23795.88, + "probability": 0.6527 + }, + { + "start": 23795.88, + "end": 23799.7, + "probability": 0.7421 + }, + { + "start": 23801.26, + "end": 23803.58, + "probability": 0.9978 + }, + { + "start": 23803.62, + "end": 23806.26, + "probability": 0.6787 + }, + { + "start": 23806.66, + "end": 23812.16, + "probability": 0.9571 + }, + { + "start": 23813.52, + "end": 23814.64, + "probability": 0.8444 + }, + { + "start": 23815.42, + "end": 23816.53, + "probability": 0.5027 + }, + { + "start": 23816.6, + "end": 23820.12, + "probability": 0.9389 + }, + { + "start": 23820.54, + "end": 23823.72, + "probability": 0.9977 + }, + { + "start": 23824.28, + "end": 23825.34, + "probability": 0.9571 + }, + { + "start": 23826.0, + "end": 23827.1, + "probability": 0.9941 + }, + { + "start": 23827.84, + "end": 23831.38, + "probability": 0.8796 + }, + { + "start": 23831.8, + "end": 23833.52, + "probability": 0.9126 + }, + { + "start": 23833.56, + "end": 23836.92, + "probability": 0.9945 + }, + { + "start": 23837.3, + "end": 23837.52, + "probability": 0.8743 + }, + { + "start": 23837.58, + "end": 23840.26, + "probability": 0.9781 + }, + { + "start": 23840.26, + "end": 23844.2, + "probability": 0.9987 + }, + { + "start": 23844.94, + "end": 23851.16, + "probability": 0.9698 + }, + { + "start": 23851.68, + "end": 23853.78, + "probability": 0.9979 + }, + { + "start": 23854.28, + "end": 23857.08, + "probability": 0.9791 + }, + { + "start": 23857.16, + "end": 23860.1, + "probability": 0.9777 + }, + { + "start": 23860.1, + "end": 23864.14, + "probability": 0.9736 + }, + { + "start": 23864.68, + "end": 23866.5, + "probability": 0.8102 + }, + { + "start": 23866.74, + "end": 23868.22, + "probability": 0.836 + }, + { + "start": 23868.3, + "end": 23869.04, + "probability": 0.8717 + }, + { + "start": 23869.1, + "end": 23869.64, + "probability": 0.7308 + }, + { + "start": 23870.04, + "end": 23876.96, + "probability": 0.9909 + }, + { + "start": 23877.22, + "end": 23880.3, + "probability": 0.9554 + }, + { + "start": 23880.62, + "end": 23883.26, + "probability": 0.9977 + }, + { + "start": 23883.82, + "end": 23887.02, + "probability": 0.9489 + }, + { + "start": 23887.46, + "end": 23888.52, + "probability": 0.7042 + }, + { + "start": 23891.36, + "end": 23893.18, + "probability": 0.5902 + }, + { + "start": 23893.2, + "end": 23895.68, + "probability": 0.8674 + }, + { + "start": 23896.06, + "end": 23897.26, + "probability": 0.9757 + }, + { + "start": 23898.46, + "end": 23900.9, + "probability": 0.6026 + }, + { + "start": 23901.1, + "end": 23902.2, + "probability": 0.6308 + }, + { + "start": 23902.62, + "end": 23906.18, + "probability": 0.8964 + }, + { + "start": 23907.38, + "end": 23909.52, + "probability": 0.9895 + }, + { + "start": 23909.52, + "end": 23913.28, + "probability": 0.9669 + }, + { + "start": 23913.84, + "end": 23916.98, + "probability": 0.9076 + }, + { + "start": 23916.98, + "end": 23921.08, + "probability": 0.9515 + }, + { + "start": 23921.44, + "end": 23923.68, + "probability": 0.9975 + }, + { + "start": 23923.72, + "end": 23926.46, + "probability": 0.8205 + }, + { + "start": 23926.46, + "end": 23928.74, + "probability": 0.9066 + }, + { + "start": 23929.52, + "end": 23934.4, + "probability": 0.9907 + }, + { + "start": 23934.76, + "end": 23939.6, + "probability": 0.9635 + }, + { + "start": 23940.12, + "end": 23940.64, + "probability": 0.429 + }, + { + "start": 23940.64, + "end": 23943.16, + "probability": 0.9023 + }, + { + "start": 23943.44, + "end": 23945.58, + "probability": 0.9269 + }, + { + "start": 23945.9, + "end": 23946.58, + "probability": 0.8652 + }, + { + "start": 23946.66, + "end": 23950.82, + "probability": 0.9601 + }, + { + "start": 23951.18, + "end": 23955.78, + "probability": 0.9881 + }, + { + "start": 23955.96, + "end": 23956.48, + "probability": 0.6005 + }, + { + "start": 23956.88, + "end": 23957.86, + "probability": 0.9537 + }, + { + "start": 23958.26, + "end": 23960.98, + "probability": 0.995 + }, + { + "start": 23961.04, + "end": 23963.7, + "probability": 0.8923 + }, + { + "start": 23964.12, + "end": 23965.58, + "probability": 0.9865 + }, + { + "start": 23965.64, + "end": 23966.61, + "probability": 0.9297 + }, + { + "start": 23967.18, + "end": 23971.74, + "probability": 0.9949 + }, + { + "start": 23972.08, + "end": 23974.24, + "probability": 0.8829 + }, + { + "start": 23974.56, + "end": 23976.9, + "probability": 0.9697 + }, + { + "start": 23977.04, + "end": 23982.2, + "probability": 0.9967 + }, + { + "start": 23983.51, + "end": 23987.6, + "probability": 0.946 + }, + { + "start": 23987.6, + "end": 23991.4, + "probability": 0.9695 + }, + { + "start": 23991.8, + "end": 23996.34, + "probability": 0.9779 + }, + { + "start": 23996.34, + "end": 24001.96, + "probability": 0.9809 + }, + { + "start": 24002.3, + "end": 24002.82, + "probability": 0.8285 + }, + { + "start": 24002.88, + "end": 24003.54, + "probability": 0.9256 + }, + { + "start": 24003.64, + "end": 24004.86, + "probability": 0.8225 + }, + { + "start": 24005.28, + "end": 24005.54, + "probability": 0.7756 + }, + { + "start": 24006.12, + "end": 24007.1, + "probability": 0.7873 + }, + { + "start": 24007.24, + "end": 24007.74, + "probability": 0.899 + }, + { + "start": 24008.66, + "end": 24010.68, + "probability": 0.8431 + }, + { + "start": 24010.78, + "end": 24011.42, + "probability": 0.8275 + }, + { + "start": 24011.56, + "end": 24015.28, + "probability": 0.9806 + }, + { + "start": 24015.36, + "end": 24020.14, + "probability": 0.9751 + }, + { + "start": 24020.48, + "end": 24021.76, + "probability": 0.8363 + }, + { + "start": 24022.28, + "end": 24026.86, + "probability": 0.9969 + }, + { + "start": 24026.9, + "end": 24029.34, + "probability": 0.982 + }, + { + "start": 24029.48, + "end": 24030.49, + "probability": 0.9722 + }, + { + "start": 24031.06, + "end": 24033.94, + "probability": 0.9272 + }, + { + "start": 24034.02, + "end": 24037.86, + "probability": 0.9551 + }, + { + "start": 24038.16, + "end": 24041.66, + "probability": 0.9919 + }, + { + "start": 24041.7, + "end": 24041.7, + "probability": 0.2091 + }, + { + "start": 24041.7, + "end": 24041.78, + "probability": 0.0327 + }, + { + "start": 24041.78, + "end": 24042.83, + "probability": 0.4966 + }, + { + "start": 24043.0, + "end": 24044.16, + "probability": 0.812 + }, + { + "start": 24044.86, + "end": 24049.36, + "probability": 0.9973 + }, + { + "start": 24049.64, + "end": 24050.1, + "probability": 0.8838 + }, + { + "start": 24050.38, + "end": 24051.16, + "probability": 0.9966 + }, + { + "start": 24051.54, + "end": 24054.22, + "probability": 0.9492 + }, + { + "start": 24054.3, + "end": 24057.32, + "probability": 0.8787 + }, + { + "start": 24057.46, + "end": 24058.16, + "probability": 0.7826 + }, + { + "start": 24058.82, + "end": 24062.8, + "probability": 0.9897 + }, + { + "start": 24062.8, + "end": 24066.32, + "probability": 0.9906 + }, + { + "start": 24066.94, + "end": 24068.16, + "probability": 0.7567 + }, + { + "start": 24068.86, + "end": 24074.76, + "probability": 0.9881 + }, + { + "start": 24074.76, + "end": 24079.04, + "probability": 0.9985 + }, + { + "start": 24079.66, + "end": 24081.5, + "probability": 0.7899 + }, + { + "start": 24081.72, + "end": 24084.08, + "probability": 0.8429 + }, + { + "start": 24084.7, + "end": 24087.16, + "probability": 0.9937 + }, + { + "start": 24087.66, + "end": 24089.8, + "probability": 0.9956 + }, + { + "start": 24089.8, + "end": 24093.2, + "probability": 0.8441 + }, + { + "start": 24093.76, + "end": 24097.69, + "probability": 0.994 + }, + { + "start": 24098.28, + "end": 24098.42, + "probability": 0.1724 + }, + { + "start": 24098.86, + "end": 24099.76, + "probability": 0.5997 + }, + { + "start": 24100.52, + "end": 24102.04, + "probability": 0.319 + }, + { + "start": 24102.44, + "end": 24103.48, + "probability": 0.989 + }, + { + "start": 24103.6, + "end": 24107.18, + "probability": 0.9956 + }, + { + "start": 24107.68, + "end": 24108.64, + "probability": 0.8835 + }, + { + "start": 24108.7, + "end": 24110.03, + "probability": 0.9814 + }, + { + "start": 24110.12, + "end": 24111.6, + "probability": 0.9792 + }, + { + "start": 24111.96, + "end": 24115.28, + "probability": 0.9963 + }, + { + "start": 24115.6, + "end": 24118.2, + "probability": 0.9951 + }, + { + "start": 24118.54, + "end": 24121.12, + "probability": 0.9971 + }, + { + "start": 24121.64, + "end": 24124.36, + "probability": 0.9338 + }, + { + "start": 24124.56, + "end": 24128.06, + "probability": 0.9922 + }, + { + "start": 24128.06, + "end": 24130.96, + "probability": 0.997 + }, + { + "start": 24131.34, + "end": 24133.44, + "probability": 0.9849 + }, + { + "start": 24133.82, + "end": 24135.64, + "probability": 0.9653 + }, + { + "start": 24135.8, + "end": 24136.88, + "probability": 0.9208 + }, + { + "start": 24137.32, + "end": 24137.88, + "probability": 0.4051 + }, + { + "start": 24138.42, + "end": 24140.54, + "probability": 0.9892 + }, + { + "start": 24141.04, + "end": 24143.62, + "probability": 0.6887 + }, + { + "start": 24144.06, + "end": 24144.7, + "probability": 0.7205 + }, + { + "start": 24144.72, + "end": 24146.1, + "probability": 0.9707 + }, + { + "start": 24146.42, + "end": 24150.32, + "probability": 0.9946 + }, + { + "start": 24150.64, + "end": 24151.04, + "probability": 0.7788 + }, + { + "start": 24151.06, + "end": 24153.6, + "probability": 0.9985 + }, + { + "start": 24154.06, + "end": 24157.46, + "probability": 0.9534 + }, + { + "start": 24157.54, + "end": 24158.86, + "probability": 0.9928 + }, + { + "start": 24159.32, + "end": 24163.56, + "probability": 0.9987 + }, + { + "start": 24164.0, + "end": 24166.18, + "probability": 0.9907 + }, + { + "start": 24166.76, + "end": 24167.5, + "probability": 0.9021 + }, + { + "start": 24167.64, + "end": 24168.84, + "probability": 0.9971 + }, + { + "start": 24168.86, + "end": 24172.6, + "probability": 0.9739 + }, + { + "start": 24172.68, + "end": 24175.26, + "probability": 0.8888 + }, + { + "start": 24175.26, + "end": 24178.72, + "probability": 0.8473 + }, + { + "start": 24178.88, + "end": 24180.84, + "probability": 0.9686 + }, + { + "start": 24181.12, + "end": 24183.6, + "probability": 0.9951 + }, + { + "start": 24183.6, + "end": 24186.48, + "probability": 0.9896 + }, + { + "start": 24186.62, + "end": 24188.92, + "probability": 0.8982 + }, + { + "start": 24189.26, + "end": 24191.0, + "probability": 0.9813 + }, + { + "start": 24191.22, + "end": 24193.38, + "probability": 0.9794 + }, + { + "start": 24193.98, + "end": 24194.28, + "probability": 0.3769 + }, + { + "start": 24194.44, + "end": 24197.68, + "probability": 0.7561 + }, + { + "start": 24197.8, + "end": 24197.94, + "probability": 0.3568 + }, + { + "start": 24198.06, + "end": 24198.24, + "probability": 0.5727 + }, + { + "start": 24198.6, + "end": 24200.56, + "probability": 0.966 + }, + { + "start": 24200.84, + "end": 24203.72, + "probability": 0.9642 + }, + { + "start": 24203.8, + "end": 24207.8, + "probability": 0.9779 + }, + { + "start": 24208.18, + "end": 24211.62, + "probability": 0.9143 + }, + { + "start": 24211.9, + "end": 24212.08, + "probability": 0.892 + }, + { + "start": 24212.18, + "end": 24215.46, + "probability": 0.9711 + }, + { + "start": 24216.44, + "end": 24218.18, + "probability": 0.8975 + }, + { + "start": 24218.76, + "end": 24219.24, + "probability": 0.9736 + }, + { + "start": 24219.76, + "end": 24221.82, + "probability": 0.896 + }, + { + "start": 24222.24, + "end": 24226.82, + "probability": 0.976 + }, + { + "start": 24226.9, + "end": 24227.66, + "probability": 0.8135 + }, + { + "start": 24227.74, + "end": 24230.46, + "probability": 0.9915 + }, + { + "start": 24230.82, + "end": 24233.2, + "probability": 0.9873 + }, + { + "start": 24233.84, + "end": 24234.42, + "probability": 0.8407 + }, + { + "start": 24234.8, + "end": 24235.8, + "probability": 0.9905 + }, + { + "start": 24236.1, + "end": 24238.96, + "probability": 0.9846 + }, + { + "start": 24239.36, + "end": 24241.62, + "probability": 0.844 + }, + { + "start": 24242.54, + "end": 24244.14, + "probability": 0.7687 + }, + { + "start": 24244.54, + "end": 24245.78, + "probability": 0.8263 + }, + { + "start": 24246.06, + "end": 24246.24, + "probability": 0.3453 + }, + { + "start": 24246.48, + "end": 24246.8, + "probability": 0.835 + }, + { + "start": 24247.18, + "end": 24248.6, + "probability": 0.9341 + }, + { + "start": 24248.64, + "end": 24249.9, + "probability": 0.8741 + }, + { + "start": 24250.0, + "end": 24250.62, + "probability": 0.9343 + }, + { + "start": 24251.0, + "end": 24251.96, + "probability": 0.9945 + }, + { + "start": 24252.54, + "end": 24253.7, + "probability": 0.9638 + }, + { + "start": 24254.08, + "end": 24258.5, + "probability": 0.9954 + }, + { + "start": 24258.62, + "end": 24260.1, + "probability": 0.9014 + }, + { + "start": 24260.8, + "end": 24264.3, + "probability": 0.9913 + }, + { + "start": 24264.86, + "end": 24265.2, + "probability": 0.9049 + }, + { + "start": 24265.54, + "end": 24266.8, + "probability": 0.9706 + }, + { + "start": 24266.88, + "end": 24267.7, + "probability": 0.794 + }, + { + "start": 24267.78, + "end": 24268.68, + "probability": 0.7375 + }, + { + "start": 24269.14, + "end": 24272.4, + "probability": 0.998 + }, + { + "start": 24272.88, + "end": 24273.08, + "probability": 0.8033 + }, + { + "start": 24273.18, + "end": 24275.16, + "probability": 0.9712 + }, + { + "start": 24275.3, + "end": 24276.24, + "probability": 0.8794 + }, + { + "start": 24276.82, + "end": 24277.92, + "probability": 0.9525 + }, + { + "start": 24277.98, + "end": 24283.34, + "probability": 0.9918 + }, + { + "start": 24283.46, + "end": 24286.16, + "probability": 0.9977 + }, + { + "start": 24286.16, + "end": 24289.62, + "probability": 0.9983 + }, + { + "start": 24289.8, + "end": 24291.14, + "probability": 0.998 + }, + { + "start": 24291.42, + "end": 24291.58, + "probability": 0.6426 + }, + { + "start": 24291.9, + "end": 24293.56, + "probability": 0.8713 + }, + { + "start": 24293.64, + "end": 24295.12, + "probability": 0.9974 + }, + { + "start": 24295.58, + "end": 24296.72, + "probability": 0.8067 + }, + { + "start": 24296.96, + "end": 24298.58, + "probability": 0.7753 + }, + { + "start": 24299.04, + "end": 24303.28, + "probability": 0.9323 + }, + { + "start": 24303.96, + "end": 24306.78, + "probability": 0.8555 + }, + { + "start": 24306.86, + "end": 24307.25, + "probability": 0.9658 + }, + { + "start": 24307.72, + "end": 24309.2, + "probability": 0.9932 + }, + { + "start": 24309.6, + "end": 24312.64, + "probability": 0.937 + }, + { + "start": 24312.8, + "end": 24313.7, + "probability": 0.9259 + }, + { + "start": 24314.32, + "end": 24316.76, + "probability": 0.9382 + }, + { + "start": 24317.12, + "end": 24319.84, + "probability": 0.9794 + }, + { + "start": 24320.42, + "end": 24323.78, + "probability": 0.9383 + }, + { + "start": 24324.16, + "end": 24325.58, + "probability": 0.9808 + }, + { + "start": 24326.04, + "end": 24329.99, + "probability": 0.9991 + }, + { + "start": 24330.6, + "end": 24332.86, + "probability": 0.9854 + }, + { + "start": 24333.44, + "end": 24335.42, + "probability": 0.9943 + }, + { + "start": 24335.76, + "end": 24340.48, + "probability": 0.9711 + }, + { + "start": 24340.94, + "end": 24341.32, + "probability": 0.8146 + }, + { + "start": 24341.68, + "end": 24343.38, + "probability": 0.8839 + }, + { + "start": 24343.44, + "end": 24348.4, + "probability": 0.9871 + }, + { + "start": 24348.7, + "end": 24349.63, + "probability": 0.5983 + }, + { + "start": 24350.22, + "end": 24350.54, + "probability": 0.9583 + }, + { + "start": 24350.96, + "end": 24352.08, + "probability": 0.9951 + }, + { + "start": 24352.24, + "end": 24353.88, + "probability": 0.9963 + }, + { + "start": 24354.26, + "end": 24355.72, + "probability": 0.7706 + }, + { + "start": 24355.72, + "end": 24358.22, + "probability": 0.7576 + }, + { + "start": 24358.72, + "end": 24358.88, + "probability": 0.5018 + }, + { + "start": 24359.14, + "end": 24363.62, + "probability": 0.9332 + }, + { + "start": 24364.24, + "end": 24368.5, + "probability": 0.9846 + }, + { + "start": 24368.58, + "end": 24369.93, + "probability": 0.9914 + }, + { + "start": 24370.3, + "end": 24371.3, + "probability": 0.8392 + }, + { + "start": 24371.42, + "end": 24371.5, + "probability": 0.2322 + }, + { + "start": 24371.5, + "end": 24372.43, + "probability": 0.252 + }, + { + "start": 24373.18, + "end": 24379.06, + "probability": 0.9829 + }, + { + "start": 24379.4, + "end": 24383.08, + "probability": 0.9885 + }, + { + "start": 24383.08, + "end": 24385.9, + "probability": 0.9863 + }, + { + "start": 24386.1, + "end": 24387.4, + "probability": 0.999 + }, + { + "start": 24388.12, + "end": 24390.12, + "probability": 0.7734 + }, + { + "start": 24390.22, + "end": 24391.76, + "probability": 0.7507 + }, + { + "start": 24391.76, + "end": 24394.14, + "probability": 0.7793 + }, + { + "start": 24395.52, + "end": 24396.56, + "probability": 0.1705 + }, + { + "start": 24396.88, + "end": 24396.88, + "probability": 0.0152 + }, + { + "start": 24396.88, + "end": 24396.88, + "probability": 0.0464 + }, + { + "start": 24396.88, + "end": 24397.1, + "probability": 0.0635 + }, + { + "start": 24397.46, + "end": 24399.52, + "probability": 0.6694 + }, + { + "start": 24399.54, + "end": 24401.02, + "probability": 0.2719 + }, + { + "start": 24401.14, + "end": 24401.58, + "probability": 0.345 + }, + { + "start": 24401.9, + "end": 24404.54, + "probability": 0.5176 + }, + { + "start": 24405.44, + "end": 24407.05, + "probability": 0.9836 + }, + { + "start": 24409.21, + "end": 24411.86, + "probability": 0.5726 + }, + { + "start": 24411.9, + "end": 24414.3, + "probability": 0.9836 + }, + { + "start": 24414.3, + "end": 24414.3, + "probability": 0.5925 + }, + { + "start": 24414.3, + "end": 24414.3, + "probability": 0.5127 + }, + { + "start": 24414.3, + "end": 24414.51, + "probability": 0.24 + }, + { + "start": 24415.0, + "end": 24415.38, + "probability": 0.6829 + }, + { + "start": 24416.04, + "end": 24417.84, + "probability": 0.9257 + }, + { + "start": 24418.46, + "end": 24418.54, + "probability": 0.6543 + }, + { + "start": 24418.54, + "end": 24419.1, + "probability": 0.5884 + }, + { + "start": 24419.26, + "end": 24422.96, + "probability": 0.9848 + }, + { + "start": 24423.46, + "end": 24426.7, + "probability": 0.9797 + }, + { + "start": 24426.96, + "end": 24429.57, + "probability": 0.9761 + }, + { + "start": 24430.06, + "end": 24430.96, + "probability": 0.703 + }, + { + "start": 24431.06, + "end": 24431.2, + "probability": 0.8221 + }, + { + "start": 24431.3, + "end": 24435.2, + "probability": 0.9978 + }, + { + "start": 24435.62, + "end": 24437.3, + "probability": 0.9546 + }, + { + "start": 24437.62, + "end": 24439.28, + "probability": 0.8417 + }, + { + "start": 24439.78, + "end": 24444.28, + "probability": 0.9987 + }, + { + "start": 24444.35, + "end": 24448.88, + "probability": 0.9985 + }, + { + "start": 24448.88, + "end": 24452.5, + "probability": 0.998 + }, + { + "start": 24452.84, + "end": 24454.18, + "probability": 0.2902 + }, + { + "start": 24454.18, + "end": 24455.02, + "probability": 0.4774 + }, + { + "start": 24455.06, + "end": 24458.88, + "probability": 0.9423 + }, + { + "start": 24460.11, + "end": 24464.26, + "probability": 0.8862 + }, + { + "start": 24464.56, + "end": 24465.78, + "probability": 0.7218 + }, + { + "start": 24466.06, + "end": 24466.82, + "probability": 0.823 + }, + { + "start": 24467.12, + "end": 24468.84, + "probability": 0.9495 + }, + { + "start": 24469.42, + "end": 24472.64, + "probability": 0.8724 + }, + { + "start": 24473.2, + "end": 24473.52, + "probability": 0.9374 + }, + { + "start": 24474.16, + "end": 24474.92, + "probability": 0.5353 + }, + { + "start": 24475.06, + "end": 24475.88, + "probability": 0.8241 + }, + { + "start": 24475.92, + "end": 24477.44, + "probability": 0.9527 + }, + { + "start": 24477.48, + "end": 24477.82, + "probability": 0.2192 + }, + { + "start": 24478.4, + "end": 24480.62, + "probability": 0.9966 + }, + { + "start": 24481.0, + "end": 24482.38, + "probability": 0.5952 + }, + { + "start": 24482.48, + "end": 24483.94, + "probability": 0.9968 + }, + { + "start": 24484.3, + "end": 24486.22, + "probability": 0.9619 + }, + { + "start": 24486.44, + "end": 24489.9, + "probability": 0.9779 + }, + { + "start": 24490.38, + "end": 24491.46, + "probability": 0.8705 + }, + { + "start": 24491.58, + "end": 24492.94, + "probability": 0.711 + }, + { + "start": 24493.28, + "end": 24494.82, + "probability": 0.8999 + }, + { + "start": 24495.3, + "end": 24496.02, + "probability": 0.7562 + }, + { + "start": 24496.44, + "end": 24497.6, + "probability": 0.9536 + }, + { + "start": 24498.68, + "end": 24498.98, + "probability": 0.6901 + }, + { + "start": 24499.1, + "end": 24499.52, + "probability": 0.291 + }, + { + "start": 24499.52, + "end": 24503.3, + "probability": 0.8359 + }, + { + "start": 24503.36, + "end": 24505.72, + "probability": 0.9919 + }, + { + "start": 24507.3, + "end": 24509.6, + "probability": 0.4578 + }, + { + "start": 24510.74, + "end": 24513.52, + "probability": 0.9866 + }, + { + "start": 24513.52, + "end": 24516.1, + "probability": 0.9097 + }, + { + "start": 24517.32, + "end": 24520.44, + "probability": 0.9941 + }, + { + "start": 24521.94, + "end": 24527.06, + "probability": 0.9842 + }, + { + "start": 24528.5, + "end": 24532.16, + "probability": 0.9046 + }, + { + "start": 24532.16, + "end": 24537.66, + "probability": 0.9731 + }, + { + "start": 24538.4, + "end": 24542.3, + "probability": 0.747 + }, + { + "start": 24542.4, + "end": 24543.24, + "probability": 0.9152 + }, + { + "start": 24544.4, + "end": 24546.1, + "probability": 0.8615 + }, + { + "start": 24547.08, + "end": 24547.4, + "probability": 0.9034 + }, + { + "start": 24547.48, + "end": 24553.2, + "probability": 0.9148 + }, + { + "start": 24553.96, + "end": 24558.1, + "probability": 0.9906 + }, + { + "start": 24559.34, + "end": 24562.7, + "probability": 0.5919 + }, + { + "start": 24562.82, + "end": 24563.56, + "probability": 0.7617 + }, + { + "start": 24563.92, + "end": 24564.36, + "probability": 0.457 + }, + { + "start": 24564.42, + "end": 24565.18, + "probability": 0.9436 + }, + { + "start": 24565.8, + "end": 24568.9, + "probability": 0.998 + }, + { + "start": 24569.76, + "end": 24571.48, + "probability": 0.6248 + }, + { + "start": 24571.86, + "end": 24574.58, + "probability": 0.8426 + }, + { + "start": 24574.58, + "end": 24576.74, + "probability": 0.9813 + }, + { + "start": 24577.52, + "end": 24580.64, + "probability": 0.7151 + }, + { + "start": 24580.7, + "end": 24584.02, + "probability": 0.2606 + }, + { + "start": 24584.02, + "end": 24586.58, + "probability": 0.6455 + }, + { + "start": 24586.94, + "end": 24589.2, + "probability": 0.9933 + }, + { + "start": 24589.2, + "end": 24591.84, + "probability": 0.9614 + }, + { + "start": 24592.5, + "end": 24595.4, + "probability": 0.9316 + }, + { + "start": 24595.52, + "end": 24597.6, + "probability": 0.98 + }, + { + "start": 24597.7, + "end": 24598.5, + "probability": 0.8249 + }, + { + "start": 24598.64, + "end": 24600.38, + "probability": 0.991 + }, + { + "start": 24600.82, + "end": 24602.78, + "probability": 0.7741 + }, + { + "start": 24602.98, + "end": 24603.64, + "probability": 0.8476 + }, + { + "start": 24603.98, + "end": 24605.04, + "probability": 0.616 + }, + { + "start": 24605.5, + "end": 24608.34, + "probability": 0.9463 + }, + { + "start": 24608.82, + "end": 24611.74, + "probability": 0.924 + }, + { + "start": 24612.18, + "end": 24615.56, + "probability": 0.9672 + }, + { + "start": 24616.0, + "end": 24616.96, + "probability": 0.2665 + }, + { + "start": 24617.24, + "end": 24620.92, + "probability": 0.9631 + }, + { + "start": 24621.04, + "end": 24621.42, + "probability": 0.0056 + }, + { + "start": 24621.42, + "end": 24621.46, + "probability": 0.0273 + }, + { + "start": 24621.54, + "end": 24622.24, + "probability": 0.387 + }, + { + "start": 24622.26, + "end": 24624.12, + "probability": 0.8808 + }, + { + "start": 24624.56, + "end": 24626.48, + "probability": 0.8304 + }, + { + "start": 24626.64, + "end": 24627.96, + "probability": 0.5806 + }, + { + "start": 24628.42, + "end": 24630.76, + "probability": 0.9653 + }, + { + "start": 24631.18, + "end": 24635.16, + "probability": 0.7559 + }, + { + "start": 24635.16, + "end": 24639.66, + "probability": 0.9888 + }, + { + "start": 24640.3, + "end": 24644.16, + "probability": 0.9969 + }, + { + "start": 24644.26, + "end": 24644.98, + "probability": 0.9208 + }, + { + "start": 24645.08, + "end": 24647.78, + "probability": 0.8843 + }, + { + "start": 24647.98, + "end": 24650.36, + "probability": 0.9411 + }, + { + "start": 24650.36, + "end": 24653.44, + "probability": 0.9375 + }, + { + "start": 24654.22, + "end": 24655.44, + "probability": 0.4365 + }, + { + "start": 24655.56, + "end": 24656.78, + "probability": 0.9629 + }, + { + "start": 24656.84, + "end": 24657.84, + "probability": 0.5732 + }, + { + "start": 24657.96, + "end": 24659.16, + "probability": 0.9518 + }, + { + "start": 24659.62, + "end": 24660.34, + "probability": 0.9624 + }, + { + "start": 24660.46, + "end": 24662.74, + "probability": 0.9738 + }, + { + "start": 24663.2, + "end": 24666.56, + "probability": 0.9834 + }, + { + "start": 24666.72, + "end": 24668.58, + "probability": 0.877 + }, + { + "start": 24669.22, + "end": 24670.58, + "probability": 0.7648 + }, + { + "start": 24671.04, + "end": 24674.6, + "probability": 0.9893 + }, + { + "start": 24675.14, + "end": 24675.66, + "probability": 0.7407 + }, + { + "start": 24675.92, + "end": 24679.6, + "probability": 0.7389 + }, + { + "start": 24679.6, + "end": 24683.24, + "probability": 0.9878 + }, + { + "start": 24683.88, + "end": 24687.54, + "probability": 0.9922 + }, + { + "start": 24687.7, + "end": 24689.04, + "probability": 0.8773 + }, + { + "start": 24689.6, + "end": 24692.92, + "probability": 0.9702 + }, + { + "start": 24693.04, + "end": 24695.04, + "probability": 0.9221 + }, + { + "start": 24695.04, + "end": 24697.12, + "probability": 0.9776 + }, + { + "start": 24697.8, + "end": 24697.8, + "probability": 0.6363 + }, + { + "start": 24697.8, + "end": 24700.94, + "probability": 0.9634 + }, + { + "start": 24700.94, + "end": 24703.72, + "probability": 0.9935 + }, + { + "start": 24704.24, + "end": 24704.52, + "probability": 0.9424 + }, + { + "start": 24704.8, + "end": 24706.0, + "probability": 0.987 + }, + { + "start": 24706.12, + "end": 24708.89, + "probability": 0.9245 + }, + { + "start": 24709.88, + "end": 24712.56, + "probability": 0.9924 + }, + { + "start": 24713.2, + "end": 24715.18, + "probability": 0.5996 + }, + { + "start": 24715.52, + "end": 24718.94, + "probability": 0.8918 + }, + { + "start": 24719.6, + "end": 24722.14, + "probability": 0.9937 + }, + { + "start": 24722.88, + "end": 24723.74, + "probability": 0.7133 + }, + { + "start": 24723.94, + "end": 24724.66, + "probability": 0.9692 + }, + { + "start": 24725.12, + "end": 24728.08, + "probability": 0.9448 + }, + { + "start": 24728.08, + "end": 24732.48, + "probability": 0.9907 + }, + { + "start": 24733.14, + "end": 24736.66, + "probability": 0.9915 + }, + { + "start": 24737.22, + "end": 24738.66, + "probability": 0.6283 + }, + { + "start": 24738.66, + "end": 24741.11, + "probability": 0.9315 + }, + { + "start": 24742.18, + "end": 24743.52, + "probability": 0.9544 + }, + { + "start": 24744.26, + "end": 24748.38, + "probability": 0.9588 + }, + { + "start": 24749.26, + "end": 24750.14, + "probability": 0.9922 + }, + { + "start": 24750.68, + "end": 24752.78, + "probability": 0.9601 + }, + { + "start": 24752.9, + "end": 24753.96, + "probability": 0.9435 + }, + { + "start": 24754.04, + "end": 24758.74, + "probability": 0.9762 + }, + { + "start": 24759.02, + "end": 24762.09, + "probability": 0.9325 + }, + { + "start": 24762.52, + "end": 24762.78, + "probability": 0.9388 + }, + { + "start": 24762.98, + "end": 24766.68, + "probability": 0.9971 + }, + { + "start": 24766.84, + "end": 24769.72, + "probability": 0.9869 + }, + { + "start": 24769.8, + "end": 24770.53, + "probability": 0.7454 + }, + { + "start": 24771.52, + "end": 24772.4, + "probability": 0.5936 + }, + { + "start": 24772.4, + "end": 24772.9, + "probability": 0.4621 + }, + { + "start": 24773.26, + "end": 24773.82, + "probability": 0.9453 + }, + { + "start": 24773.86, + "end": 24775.38, + "probability": 0.9734 + }, + { + "start": 24775.64, + "end": 24777.48, + "probability": 0.9917 + }, + { + "start": 24777.48, + "end": 24780.38, + "probability": 0.9926 + }, + { + "start": 24780.58, + "end": 24783.9, + "probability": 0.9302 + }, + { + "start": 24784.4, + "end": 24785.16, + "probability": 0.934 + }, + { + "start": 24785.32, + "end": 24785.84, + "probability": 0.9089 + }, + { + "start": 24786.0, + "end": 24788.84, + "probability": 0.9077 + }, + { + "start": 24788.9, + "end": 24791.36, + "probability": 0.8862 + }, + { + "start": 24791.38, + "end": 24791.38, + "probability": 0.5058 + }, + { + "start": 24791.48, + "end": 24793.01, + "probability": 0.212 + }, + { + "start": 24793.22, + "end": 24794.32, + "probability": 0.6426 + }, + { + "start": 24794.34, + "end": 24796.1, + "probability": 0.6692 + }, + { + "start": 24796.12, + "end": 24796.7, + "probability": 0.1824 + }, + { + "start": 24797.98, + "end": 24797.98, + "probability": 0.1529 + }, + { + "start": 24797.98, + "end": 24798.86, + "probability": 0.2179 + }, + { + "start": 24798.92, + "end": 24799.18, + "probability": 0.4321 + }, + { + "start": 24799.2, + "end": 24803.0, + "probability": 0.9951 + }, + { + "start": 24803.06, + "end": 24803.28, + "probability": 0.4544 + }, + { + "start": 24804.1, + "end": 24805.56, + "probability": 0.9211 + }, + { + "start": 24806.04, + "end": 24806.18, + "probability": 0.7539 + }, + { + "start": 24806.8, + "end": 24807.22, + "probability": 0.6971 + }, + { + "start": 24807.26, + "end": 24808.54, + "probability": 0.5265 + }, + { + "start": 24808.6, + "end": 24810.5, + "probability": 0.817 + }, + { + "start": 24811.38, + "end": 24812.06, + "probability": 0.7211 + }, + { + "start": 24812.54, + "end": 24815.58, + "probability": 0.9947 + }, + { + "start": 24816.06, + "end": 24817.18, + "probability": 0.4971 + }, + { + "start": 24817.18, + "end": 24817.4, + "probability": 0.8178 + }, + { + "start": 24817.42, + "end": 24818.0, + "probability": 0.6753 + }, + { + "start": 24818.56, + "end": 24819.38, + "probability": 0.6742 + }, + { + "start": 24819.48, + "end": 24821.12, + "probability": 0.9258 + }, + { + "start": 24821.8, + "end": 24823.86, + "probability": 0.7062 + }, + { + "start": 24824.0, + "end": 24825.36, + "probability": 0.9015 + }, + { + "start": 24826.58, + "end": 24830.16, + "probability": 0.354 + }, + { + "start": 24830.96, + "end": 24833.94, + "probability": 0.9803 + }, + { + "start": 24833.98, + "end": 24836.5, + "probability": 0.9502 + }, + { + "start": 24836.78, + "end": 24838.04, + "probability": 0.9967 + }, + { + "start": 24838.28, + "end": 24838.86, + "probability": 0.6933 + }, + { + "start": 24839.24, + "end": 24841.84, + "probability": 0.9846 + }, + { + "start": 24841.84, + "end": 24843.56, + "probability": 0.9392 + }, + { + "start": 24843.82, + "end": 24845.3, + "probability": 0.9955 + }, + { + "start": 24845.6, + "end": 24845.98, + "probability": 0.821 + }, + { + "start": 24846.48, + "end": 24849.66, + "probability": 0.6862 + }, + { + "start": 24849.68, + "end": 24850.1, + "probability": 0.4699 + }, + { + "start": 24850.56, + "end": 24851.86, + "probability": 0.928 + }, + { + "start": 24852.38, + "end": 24852.84, + "probability": 0.8864 + }, + { + "start": 24853.26, + "end": 24853.82, + "probability": 0.908 + }, + { + "start": 24854.24, + "end": 24856.44, + "probability": 0.9924 + }, + { + "start": 24856.5, + "end": 24858.78, + "probability": 0.9909 + }, + { + "start": 24859.2, + "end": 24861.02, + "probability": 0.9962 + }, + { + "start": 24861.2, + "end": 24862.0, + "probability": 0.96 + }, + { + "start": 24862.52, + "end": 24865.86, + "probability": 0.9258 + }, + { + "start": 24865.98, + "end": 24866.76, + "probability": 0.8026 + }, + { + "start": 24866.76, + "end": 24867.62, + "probability": 0.9073 + }, + { + "start": 24868.1, + "end": 24869.1, + "probability": 0.9277 + }, + { + "start": 24869.42, + "end": 24872.16, + "probability": 0.9764 + }, + { + "start": 24872.16, + "end": 24874.14, + "probability": 0.9622 + }, + { + "start": 24874.82, + "end": 24875.98, + "probability": 0.7453 + }, + { + "start": 24876.0, + "end": 24876.0, + "probability": 0.0 + }, + { + "start": 24877.7, + "end": 24879.82, + "probability": 0.9858 + }, + { + "start": 24880.56, + "end": 24883.26, + "probability": 0.992 + }, + { + "start": 24883.68, + "end": 24885.68, + "probability": 0.95 + }, + { + "start": 24886.0, + "end": 24887.66, + "probability": 0.9335 + }, + { + "start": 24887.98, + "end": 24889.88, + "probability": 0.8028 + }, + { + "start": 24890.4, + "end": 24893.7, + "probability": 0.9725 + }, + { + "start": 24894.06, + "end": 24895.5, + "probability": 0.99 + }, + { + "start": 24895.88, + "end": 24897.08, + "probability": 0.8508 + }, + { + "start": 24897.4, + "end": 24898.54, + "probability": 0.9215 + }, + { + "start": 24898.74, + "end": 24899.62, + "probability": 0.9475 + }, + { + "start": 24899.74, + "end": 24902.42, + "probability": 0.4518 + }, + { + "start": 24902.6, + "end": 24903.62, + "probability": 0.9099 + }, + { + "start": 24904.16, + "end": 24906.82, + "probability": 0.9808 + }, + { + "start": 24907.34, + "end": 24912.5, + "probability": 0.9764 + }, + { + "start": 24912.98, + "end": 24913.3, + "probability": 0.7492 + }, + { + "start": 24913.7, + "end": 24914.24, + "probability": 0.7635 + }, + { + "start": 24914.28, + "end": 24918.18, + "probability": 0.9927 + }, + { + "start": 24918.46, + "end": 24924.1, + "probability": 0.9678 + }, + { + "start": 24924.24, + "end": 24927.32, + "probability": 0.9523 + }, + { + "start": 24927.56, + "end": 24928.64, + "probability": 0.701 + }, + { + "start": 24928.84, + "end": 24930.59, + "probability": 0.9935 + }, + { + "start": 24931.38, + "end": 24935.54, + "probability": 0.9971 + }, + { + "start": 24936.22, + "end": 24942.46, + "probability": 0.9867 + }, + { + "start": 24942.56, + "end": 24943.34, + "probability": 0.339 + }, + { + "start": 24943.72, + "end": 24947.0, + "probability": 0.8926 + }, + { + "start": 24947.14, + "end": 24950.62, + "probability": 0.9934 + }, + { + "start": 24951.16, + "end": 24952.66, + "probability": 0.7025 + }, + { + "start": 24953.02, + "end": 24953.28, + "probability": 0.4765 + }, + { + "start": 24953.36, + "end": 24954.64, + "probability": 0.883 + }, + { + "start": 24954.7, + "end": 24957.64, + "probability": 0.9527 + }, + { + "start": 24957.64, + "end": 24959.14, + "probability": 0.9932 + }, + { + "start": 24959.28, + "end": 24961.18, + "probability": 0.5633 + }, + { + "start": 24961.18, + "end": 24962.88, + "probability": 0.7778 + }, + { + "start": 24963.82, + "end": 24965.44, + "probability": 0.9601 + }, + { + "start": 24965.66, + "end": 24966.28, + "probability": 0.6115 + }, + { + "start": 24966.58, + "end": 24967.52, + "probability": 0.1038 + }, + { + "start": 24967.66, + "end": 24968.42, + "probability": 0.4524 + }, + { + "start": 24968.48, + "end": 24968.48, + "probability": 0.2989 + }, + { + "start": 24968.54, + "end": 24971.09, + "probability": 0.9958 + }, + { + "start": 24971.22, + "end": 24973.6, + "probability": 0.8838 + }, + { + "start": 24974.02, + "end": 24977.14, + "probability": 0.9175 + }, + { + "start": 24977.22, + "end": 24978.2, + "probability": 0.6427 + }, + { + "start": 24978.88, + "end": 24979.32, + "probability": 0.7874 + }, + { + "start": 24979.38, + "end": 24981.3, + "probability": 0.9602 + }, + { + "start": 24981.38, + "end": 24983.12, + "probability": 0.957 + }, + { + "start": 24983.5, + "end": 24985.04, + "probability": 0.9883 + }, + { + "start": 24985.32, + "end": 24986.66, + "probability": 0.824 + }, + { + "start": 24987.26, + "end": 24989.12, + "probability": 0.959 + }, + { + "start": 24989.76, + "end": 24992.34, + "probability": 0.7544 + }, + { + "start": 24993.11, + "end": 24995.56, + "probability": 0.9591 + }, + { + "start": 24995.56, + "end": 24998.96, + "probability": 0.9534 + }, + { + "start": 24999.68, + "end": 24999.82, + "probability": 0.37 + }, + { + "start": 24999.9, + "end": 25001.92, + "probability": 0.9744 + }, + { + "start": 25002.72, + "end": 25003.44, + "probability": 0.7676 + }, + { + "start": 25003.52, + "end": 25006.54, + "probability": 0.9961 + }, + { + "start": 25006.82, + "end": 25007.04, + "probability": 0.4099 + }, + { + "start": 25007.04, + "end": 25007.76, + "probability": 0.7399 + }, + { + "start": 25008.42, + "end": 25009.44, + "probability": 0.5775 + }, + { + "start": 25009.58, + "end": 25013.12, + "probability": 0.9581 + }, + { + "start": 25013.64, + "end": 25015.71, + "probability": 0.8497 + }, + { + "start": 25016.62, + "end": 25019.16, + "probability": 0.7255 + }, + { + "start": 25019.7, + "end": 25020.5, + "probability": 0.2664 + } + ], + "segments_count": 9341, + "words_count": 47689, + "avg_words_per_segment": 5.1053, + "avg_segment_duration": 1.9035, + "avg_words_per_minute": 114.3441, + "plenum_id": "117552", + "duration": 25023.94, + "title": null, + "plenum_date": "2023-05-31" +} \ No newline at end of file