diff --git "a/12776/metadata.json" "b/12776/metadata.json" new file mode 100644--- /dev/null +++ "b/12776/metadata.json" @@ -0,0 +1,18687 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "12776", + "quality_score": 0.9084, + "per_segment_quality_scores": [ + { + "start": 81.18, + "end": 82.06, + "probability": 0.424 + }, + { + "start": 82.86, + "end": 86.32, + "probability": 0.6751 + }, + { + "start": 87.16, + "end": 90.0, + "probability": 0.9827 + }, + { + "start": 91.44, + "end": 95.04, + "probability": 0.8603 + }, + { + "start": 95.56, + "end": 95.9, + "probability": 0.3989 + }, + { + "start": 96.22, + "end": 98.52, + "probability": 0.7415 + }, + { + "start": 98.6, + "end": 99.64, + "probability": 0.5579 + }, + { + "start": 99.8, + "end": 101.28, + "probability": 0.9686 + }, + { + "start": 101.8, + "end": 106.48, + "probability": 0.9084 + }, + { + "start": 106.48, + "end": 112.74, + "probability": 0.9956 + }, + { + "start": 112.74, + "end": 116.74, + "probability": 0.9944 + }, + { + "start": 118.27, + "end": 119.42, + "probability": 0.7546 + }, + { + "start": 119.78, + "end": 121.98, + "probability": 0.2937 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 123.07, + "end": 123.52, + "probability": 0.0049 + }, + { + "start": 125.58, + "end": 128.74, + "probability": 0.5871 + }, + { + "start": 129.06, + "end": 129.16, + "probability": 0.3551 + }, + { + "start": 130.04, + "end": 130.46, + "probability": 0.5298 + }, + { + "start": 130.8, + "end": 133.48, + "probability": 0.9924 + }, + { + "start": 134.68, + "end": 136.54, + "probability": 0.5557 + }, + { + "start": 136.6, + "end": 137.54, + "probability": 0.9523 + }, + { + "start": 137.64, + "end": 139.08, + "probability": 0.8186 + }, + { + "start": 139.18, + "end": 142.0, + "probability": 0.8857 + }, + { + "start": 142.48, + "end": 143.64, + "probability": 0.9508 + }, + { + "start": 144.02, + "end": 146.28, + "probability": 0.6753 + }, + { + "start": 146.38, + "end": 148.96, + "probability": 0.9009 + }, + { + "start": 149.46, + "end": 150.92, + "probability": 0.7889 + }, + { + "start": 154.29, + "end": 156.32, + "probability": 0.5481 + }, + { + "start": 161.38, + "end": 162.9, + "probability": 0.8828 + }, + { + "start": 163.94, + "end": 165.74, + "probability": 0.7299 + }, + { + "start": 166.02, + "end": 166.48, + "probability": 0.5117 + }, + { + "start": 166.5, + "end": 169.06, + "probability": 0.8023 + }, + { + "start": 170.08, + "end": 171.02, + "probability": 0.7925 + }, + { + "start": 172.68, + "end": 174.4, + "probability": 0.9988 + }, + { + "start": 175.06, + "end": 175.76, + "probability": 0.8796 + }, + { + "start": 177.0, + "end": 183.0, + "probability": 0.9873 + }, + { + "start": 183.16, + "end": 185.48, + "probability": 0.6883 + }, + { + "start": 186.16, + "end": 189.74, + "probability": 0.8921 + }, + { + "start": 190.38, + "end": 192.26, + "probability": 0.9906 + }, + { + "start": 193.94, + "end": 195.54, + "probability": 0.9226 + }, + { + "start": 196.68, + "end": 198.24, + "probability": 0.3252 + }, + { + "start": 199.06, + "end": 203.0, + "probability": 0.9941 + }, + { + "start": 204.04, + "end": 206.46, + "probability": 0.9995 + }, + { + "start": 206.58, + "end": 207.64, + "probability": 0.7902 + }, + { + "start": 207.76, + "end": 209.06, + "probability": 0.9939 + }, + { + "start": 210.14, + "end": 215.14, + "probability": 0.9949 + }, + { + "start": 216.12, + "end": 217.24, + "probability": 0.7522 + }, + { + "start": 218.58, + "end": 221.14, + "probability": 0.9822 + }, + { + "start": 221.7, + "end": 223.72, + "probability": 0.6367 + }, + { + "start": 224.34, + "end": 230.3, + "probability": 0.9949 + }, + { + "start": 231.94, + "end": 234.34, + "probability": 0.6849 + }, + { + "start": 234.38, + "end": 237.32, + "probability": 0.9619 + }, + { + "start": 238.12, + "end": 240.08, + "probability": 0.9868 + }, + { + "start": 240.84, + "end": 242.9, + "probability": 0.937 + }, + { + "start": 243.16, + "end": 243.98, + "probability": 0.9946 + }, + { + "start": 244.5, + "end": 245.92, + "probability": 0.8976 + }, + { + "start": 246.54, + "end": 250.24, + "probability": 0.9968 + }, + { + "start": 250.24, + "end": 253.4, + "probability": 0.9846 + }, + { + "start": 253.46, + "end": 254.54, + "probability": 0.9861 + }, + { + "start": 255.0, + "end": 258.46, + "probability": 0.751 + }, + { + "start": 258.56, + "end": 259.48, + "probability": 0.6781 + }, + { + "start": 259.92, + "end": 264.26, + "probability": 0.9901 + }, + { + "start": 264.82, + "end": 267.2, + "probability": 0.9914 + }, + { + "start": 267.34, + "end": 269.72, + "probability": 0.9959 + }, + { + "start": 270.91, + "end": 277.24, + "probability": 0.978 + }, + { + "start": 277.92, + "end": 280.5, + "probability": 0.9351 + }, + { + "start": 281.12, + "end": 284.04, + "probability": 0.9857 + }, + { + "start": 284.26, + "end": 285.7, + "probability": 0.519 + }, + { + "start": 288.09, + "end": 290.92, + "probability": 0.895 + }, + { + "start": 291.24, + "end": 294.08, + "probability": 0.9785 + }, + { + "start": 294.12, + "end": 296.74, + "probability": 0.8533 + }, + { + "start": 298.56, + "end": 300.48, + "probability": 0.994 + }, + { + "start": 301.26, + "end": 303.16, + "probability": 0.9707 + }, + { + "start": 303.68, + "end": 304.22, + "probability": 0.7371 + }, + { + "start": 305.1, + "end": 306.98, + "probability": 0.8183 + }, + { + "start": 307.42, + "end": 311.44, + "probability": 0.9891 + }, + { + "start": 311.44, + "end": 312.96, + "probability": 0.712 + }, + { + "start": 313.02, + "end": 316.08, + "probability": 0.9939 + }, + { + "start": 316.2, + "end": 318.06, + "probability": 0.8611 + }, + { + "start": 318.44, + "end": 320.3, + "probability": 0.7066 + }, + { + "start": 320.4, + "end": 320.83, + "probability": 0.936 + }, + { + "start": 321.46, + "end": 322.18, + "probability": 0.9888 + }, + { + "start": 322.36, + "end": 325.42, + "probability": 0.9265 + }, + { + "start": 325.86, + "end": 326.54, + "probability": 0.6614 + }, + { + "start": 326.68, + "end": 329.21, + "probability": 0.9301 + }, + { + "start": 330.96, + "end": 334.82, + "probability": 0.9743 + }, + { + "start": 334.92, + "end": 335.98, + "probability": 0.9301 + }, + { + "start": 336.42, + "end": 338.06, + "probability": 0.9267 + }, + { + "start": 338.06, + "end": 339.9, + "probability": 0.6083 + }, + { + "start": 340.06, + "end": 342.7, + "probability": 0.9728 + }, + { + "start": 343.1, + "end": 345.5, + "probability": 0.933 + }, + { + "start": 346.34, + "end": 347.8, + "probability": 0.9771 + }, + { + "start": 348.32, + "end": 354.14, + "probability": 0.6798 + }, + { + "start": 354.38, + "end": 354.5, + "probability": 0.5325 + }, + { + "start": 354.52, + "end": 355.72, + "probability": 0.8798 + }, + { + "start": 356.16, + "end": 361.5, + "probability": 0.9987 + }, + { + "start": 362.08, + "end": 364.5, + "probability": 0.999 + }, + { + "start": 364.94, + "end": 365.98, + "probability": 0.6446 + }, + { + "start": 366.24, + "end": 369.74, + "probability": 0.988 + }, + { + "start": 370.16, + "end": 372.12, + "probability": 0.906 + }, + { + "start": 372.64, + "end": 375.74, + "probability": 0.578 + }, + { + "start": 375.74, + "end": 377.02, + "probability": 0.7873 + }, + { + "start": 377.38, + "end": 378.42, + "probability": 0.7585 + }, + { + "start": 378.88, + "end": 379.74, + "probability": 0.7742 + }, + { + "start": 379.88, + "end": 380.6, + "probability": 0.567 + }, + { + "start": 380.62, + "end": 381.72, + "probability": 0.7407 + }, + { + "start": 381.78, + "end": 384.6, + "probability": 0.9373 + }, + { + "start": 386.74, + "end": 387.3, + "probability": 0.9673 + }, + { + "start": 387.72, + "end": 388.06, + "probability": 0.1208 + }, + { + "start": 388.2, + "end": 388.98, + "probability": 0.9342 + }, + { + "start": 389.28, + "end": 391.0, + "probability": 0.938 + }, + { + "start": 391.68, + "end": 397.32, + "probability": 0.9841 + }, + { + "start": 397.54, + "end": 404.84, + "probability": 0.9662 + }, + { + "start": 405.54, + "end": 407.26, + "probability": 0.9755 + }, + { + "start": 408.66, + "end": 409.0, + "probability": 0.8685 + }, + { + "start": 409.1, + "end": 410.12, + "probability": 0.6079 + }, + { + "start": 410.62, + "end": 412.92, + "probability": 0.8239 + }, + { + "start": 413.02, + "end": 414.58, + "probability": 0.8775 + }, + { + "start": 415.1, + "end": 417.78, + "probability": 0.8311 + }, + { + "start": 419.22, + "end": 419.72, + "probability": 0.4915 + }, + { + "start": 422.14, + "end": 426.9, + "probability": 0.959 + }, + { + "start": 427.42, + "end": 429.96, + "probability": 0.9985 + }, + { + "start": 430.46, + "end": 431.8, + "probability": 0.9704 + }, + { + "start": 431.9, + "end": 433.32, + "probability": 0.9728 + }, + { + "start": 433.84, + "end": 434.62, + "probability": 0.7395 + }, + { + "start": 434.9, + "end": 437.94, + "probability": 0.8734 + }, + { + "start": 439.58, + "end": 446.52, + "probability": 0.5047 + }, + { + "start": 447.08, + "end": 451.94, + "probability": 0.9897 + }, + { + "start": 452.46, + "end": 453.46, + "probability": 0.7651 + }, + { + "start": 454.06, + "end": 455.3, + "probability": 0.9492 + }, + { + "start": 455.88, + "end": 456.26, + "probability": 0.8004 + }, + { + "start": 456.34, + "end": 457.42, + "probability": 0.8779 + }, + { + "start": 457.5, + "end": 457.88, + "probability": 0.5261 + }, + { + "start": 458.0, + "end": 460.42, + "probability": 0.842 + }, + { + "start": 460.46, + "end": 463.9, + "probability": 0.9956 + }, + { + "start": 464.44, + "end": 469.14, + "probability": 0.9928 + }, + { + "start": 469.2, + "end": 471.74, + "probability": 0.9932 + }, + { + "start": 472.5, + "end": 475.76, + "probability": 0.5762 + }, + { + "start": 476.86, + "end": 477.12, + "probability": 0.7971 + }, + { + "start": 477.72, + "end": 483.32, + "probability": 0.91 + }, + { + "start": 484.2, + "end": 486.44, + "probability": 0.7129 + }, + { + "start": 487.74, + "end": 489.02, + "probability": 0.8545 + }, + { + "start": 490.02, + "end": 495.98, + "probability": 0.9894 + }, + { + "start": 496.96, + "end": 499.06, + "probability": 0.7445 + }, + { + "start": 499.82, + "end": 503.68, + "probability": 0.6156 + }, + { + "start": 504.4, + "end": 507.58, + "probability": 0.9862 + }, + { + "start": 508.46, + "end": 511.26, + "probability": 0.6715 + }, + { + "start": 511.8, + "end": 512.86, + "probability": 0.7448 + }, + { + "start": 513.4, + "end": 517.6, + "probability": 0.8902 + }, + { + "start": 518.14, + "end": 519.82, + "probability": 0.9181 + }, + { + "start": 520.8, + "end": 522.38, + "probability": 0.8536 + }, + { + "start": 523.16, + "end": 529.26, + "probability": 0.9419 + }, + { + "start": 529.46, + "end": 534.56, + "probability": 0.8943 + }, + { + "start": 535.08, + "end": 538.92, + "probability": 0.9924 + }, + { + "start": 539.86, + "end": 542.1, + "probability": 0.992 + }, + { + "start": 542.12, + "end": 542.76, + "probability": 0.6033 + }, + { + "start": 542.96, + "end": 545.2, + "probability": 0.9507 + }, + { + "start": 545.88, + "end": 546.82, + "probability": 0.6068 + }, + { + "start": 547.44, + "end": 552.56, + "probability": 0.9614 + }, + { + "start": 553.2, + "end": 554.34, + "probability": 0.6234 + }, + { + "start": 554.38, + "end": 555.3, + "probability": 0.6956 + }, + { + "start": 555.76, + "end": 557.1, + "probability": 0.8848 + }, + { + "start": 557.68, + "end": 561.88, + "probability": 0.7971 + }, + { + "start": 562.02, + "end": 563.52, + "probability": 0.9883 + }, + { + "start": 564.2, + "end": 569.06, + "probability": 0.9448 + }, + { + "start": 569.6, + "end": 571.22, + "probability": 0.9891 + }, + { + "start": 571.7, + "end": 573.0, + "probability": 0.9331 + }, + { + "start": 573.3, + "end": 574.8, + "probability": 0.4372 + }, + { + "start": 575.04, + "end": 578.96, + "probability": 0.8226 + }, + { + "start": 579.4, + "end": 582.26, + "probability": 0.9714 + }, + { + "start": 583.04, + "end": 584.88, + "probability": 0.8713 + }, + { + "start": 584.88, + "end": 585.48, + "probability": 0.6061 + }, + { + "start": 585.64, + "end": 585.8, + "probability": 0.439 + }, + { + "start": 585.8, + "end": 586.68, + "probability": 0.5212 + }, + { + "start": 586.88, + "end": 591.74, + "probability": 0.9094 + }, + { + "start": 593.32, + "end": 595.86, + "probability": 0.555 + }, + { + "start": 597.32, + "end": 598.08, + "probability": 0.9862 + }, + { + "start": 603.04, + "end": 604.72, + "probability": 0.9972 + }, + { + "start": 605.4, + "end": 610.44, + "probability": 0.6597 + }, + { + "start": 611.52, + "end": 613.3, + "probability": 0.8171 + }, + { + "start": 614.02, + "end": 616.41, + "probability": 0.7787 + }, + { + "start": 617.66, + "end": 619.86, + "probability": 0.9912 + }, + { + "start": 621.38, + "end": 623.92, + "probability": 0.908 + }, + { + "start": 624.8, + "end": 628.82, + "probability": 0.8845 + }, + { + "start": 630.24, + "end": 633.3, + "probability": 0.9288 + }, + { + "start": 634.42, + "end": 634.96, + "probability": 0.1616 + }, + { + "start": 635.8, + "end": 636.82, + "probability": 0.9126 + }, + { + "start": 637.52, + "end": 639.36, + "probability": 0.779 + }, + { + "start": 640.12, + "end": 642.82, + "probability": 0.9319 + }, + { + "start": 644.22, + "end": 649.92, + "probability": 0.9847 + }, + { + "start": 651.38, + "end": 654.7, + "probability": 0.9675 + }, + { + "start": 655.64, + "end": 658.22, + "probability": 0.8359 + }, + { + "start": 659.72, + "end": 661.96, + "probability": 0.5201 + }, + { + "start": 662.96, + "end": 667.24, + "probability": 0.9863 + }, + { + "start": 668.72, + "end": 674.94, + "probability": 0.7719 + }, + { + "start": 676.18, + "end": 678.6, + "probability": 0.9561 + }, + { + "start": 680.04, + "end": 681.22, + "probability": 0.7548 + }, + { + "start": 682.56, + "end": 684.73, + "probability": 0.9106 + }, + { + "start": 685.8, + "end": 687.2, + "probability": 0.989 + }, + { + "start": 687.84, + "end": 689.88, + "probability": 0.9032 + }, + { + "start": 691.24, + "end": 692.52, + "probability": 0.7498 + }, + { + "start": 694.16, + "end": 696.36, + "probability": 0.8653 + }, + { + "start": 697.3, + "end": 700.7, + "probability": 0.9283 + }, + { + "start": 701.62, + "end": 704.72, + "probability": 0.9987 + }, + { + "start": 705.7, + "end": 707.54, + "probability": 0.9759 + }, + { + "start": 708.56, + "end": 710.58, + "probability": 0.7221 + }, + { + "start": 711.2, + "end": 713.42, + "probability": 0.98 + }, + { + "start": 714.34, + "end": 715.54, + "probability": 0.9263 + }, + { + "start": 716.62, + "end": 717.22, + "probability": 0.9185 + }, + { + "start": 718.08, + "end": 720.3, + "probability": 0.952 + }, + { + "start": 720.56, + "end": 720.7, + "probability": 0.6794 + }, + { + "start": 721.28, + "end": 723.12, + "probability": 0.4955 + }, + { + "start": 723.72, + "end": 725.4, + "probability": 0.6618 + }, + { + "start": 725.88, + "end": 727.1, + "probability": 0.6988 + }, + { + "start": 733.24, + "end": 738.18, + "probability": 0.9969 + }, + { + "start": 738.6, + "end": 739.3, + "probability": 0.8324 + }, + { + "start": 739.58, + "end": 740.3, + "probability": 0.6311 + }, + { + "start": 740.88, + "end": 743.36, + "probability": 0.9697 + }, + { + "start": 744.38, + "end": 745.44, + "probability": 0.9448 + }, + { + "start": 745.78, + "end": 748.58, + "probability": 0.979 + }, + { + "start": 749.5, + "end": 753.78, + "probability": 0.9982 + }, + { + "start": 754.32, + "end": 758.86, + "probability": 0.9765 + }, + { + "start": 759.74, + "end": 763.64, + "probability": 0.962 + }, + { + "start": 763.94, + "end": 765.16, + "probability": 0.7158 + }, + { + "start": 765.66, + "end": 767.68, + "probability": 0.959 + }, + { + "start": 768.0, + "end": 770.14, + "probability": 0.9587 + }, + { + "start": 770.68, + "end": 771.76, + "probability": 0.9457 + }, + { + "start": 772.04, + "end": 774.54, + "probability": 0.8533 + }, + { + "start": 774.92, + "end": 776.44, + "probability": 0.9758 + }, + { + "start": 777.08, + "end": 778.01, + "probability": 0.8482 + }, + { + "start": 778.42, + "end": 778.94, + "probability": 0.8129 + }, + { + "start": 779.04, + "end": 779.58, + "probability": 0.8487 + }, + { + "start": 779.74, + "end": 780.28, + "probability": 0.7127 + }, + { + "start": 780.36, + "end": 782.1, + "probability": 0.7863 + }, + { + "start": 782.6, + "end": 786.2, + "probability": 0.9635 + }, + { + "start": 786.44, + "end": 790.48, + "probability": 0.6647 + }, + { + "start": 791.18, + "end": 791.92, + "probability": 0.7619 + }, + { + "start": 792.0, + "end": 794.24, + "probability": 0.9487 + }, + { + "start": 794.74, + "end": 798.56, + "probability": 0.9683 + }, + { + "start": 798.98, + "end": 802.36, + "probability": 0.9301 + }, + { + "start": 802.69, + "end": 806.76, + "probability": 0.9899 + }, + { + "start": 807.44, + "end": 813.04, + "probability": 0.9874 + }, + { + "start": 813.68, + "end": 815.38, + "probability": 0.8026 + }, + { + "start": 816.52, + "end": 818.48, + "probability": 0.5931 + }, + { + "start": 818.92, + "end": 820.56, + "probability": 0.9583 + }, + { + "start": 824.34, + "end": 825.8, + "probability": 0.5387 + }, + { + "start": 825.9, + "end": 825.9, + "probability": 0.3516 + }, + { + "start": 825.9, + "end": 826.54, + "probability": 0.8125 + }, + { + "start": 826.74, + "end": 827.78, + "probability": 0.8883 + }, + { + "start": 828.0, + "end": 832.74, + "probability": 0.9899 + }, + { + "start": 832.9, + "end": 834.44, + "probability": 0.8931 + }, + { + "start": 835.56, + "end": 838.22, + "probability": 0.8161 + }, + { + "start": 838.44, + "end": 839.86, + "probability": 0.7869 + }, + { + "start": 840.78, + "end": 842.35, + "probability": 0.9634 + }, + { + "start": 843.48, + "end": 849.66, + "probability": 0.9965 + }, + { + "start": 849.66, + "end": 853.6, + "probability": 0.9944 + }, + { + "start": 853.6, + "end": 859.58, + "probability": 0.9631 + }, + { + "start": 860.22, + "end": 865.14, + "probability": 0.9963 + }, + { + "start": 865.76, + "end": 867.44, + "probability": 0.9963 + }, + { + "start": 868.2, + "end": 873.22, + "probability": 0.9837 + }, + { + "start": 873.7, + "end": 876.92, + "probability": 0.9985 + }, + { + "start": 877.14, + "end": 879.5, + "probability": 0.9928 + }, + { + "start": 880.3, + "end": 885.86, + "probability": 0.9882 + }, + { + "start": 885.92, + "end": 887.4, + "probability": 0.9797 + }, + { + "start": 887.74, + "end": 889.32, + "probability": 0.9528 + }, + { + "start": 889.5, + "end": 892.82, + "probability": 0.9757 + }, + { + "start": 892.96, + "end": 894.32, + "probability": 0.8218 + }, + { + "start": 894.48, + "end": 897.04, + "probability": 0.8715 + }, + { + "start": 897.64, + "end": 900.88, + "probability": 0.9878 + }, + { + "start": 901.1, + "end": 901.32, + "probability": 0.8242 + }, + { + "start": 902.0, + "end": 906.08, + "probability": 0.9814 + }, + { + "start": 907.26, + "end": 908.4, + "probability": 0.6589 + }, + { + "start": 909.1, + "end": 912.02, + "probability": 0.9827 + }, + { + "start": 912.02, + "end": 916.1, + "probability": 0.9797 + }, + { + "start": 916.42, + "end": 916.94, + "probability": 0.8093 + }, + { + "start": 917.06, + "end": 919.8, + "probability": 0.9869 + }, + { + "start": 920.22, + "end": 922.36, + "probability": 0.9973 + }, + { + "start": 922.46, + "end": 925.98, + "probability": 0.6279 + }, + { + "start": 926.04, + "end": 929.94, + "probability": 0.8043 + }, + { + "start": 930.38, + "end": 938.0, + "probability": 0.909 + }, + { + "start": 938.98, + "end": 939.76, + "probability": 0.6763 + }, + { + "start": 940.0, + "end": 946.5, + "probability": 0.775 + }, + { + "start": 946.86, + "end": 951.1, + "probability": 0.2496 + }, + { + "start": 951.22, + "end": 953.62, + "probability": 0.5504 + }, + { + "start": 953.62, + "end": 953.62, + "probability": 0.0198 + }, + { + "start": 954.56, + "end": 954.64, + "probability": 0.0788 + }, + { + "start": 954.64, + "end": 955.64, + "probability": 0.1492 + }, + { + "start": 956.07, + "end": 956.7, + "probability": 0.3235 + }, + { + "start": 956.74, + "end": 957.44, + "probability": 0.8252 + }, + { + "start": 958.0, + "end": 961.92, + "probability": 0.9357 + }, + { + "start": 962.74, + "end": 962.74, + "probability": 0.0245 + }, + { + "start": 963.12, + "end": 967.8, + "probability": 0.9969 + }, + { + "start": 967.8, + "end": 971.36, + "probability": 0.999 + }, + { + "start": 972.1, + "end": 972.48, + "probability": 0.8023 + }, + { + "start": 972.52, + "end": 973.68, + "probability": 0.8848 + }, + { + "start": 974.14, + "end": 975.02, + "probability": 0.6755 + }, + { + "start": 975.02, + "end": 977.94, + "probability": 0.5569 + }, + { + "start": 992.36, + "end": 996.46, + "probability": 0.8181 + }, + { + "start": 997.46, + "end": 998.88, + "probability": 0.8723 + }, + { + "start": 999.66, + "end": 1000.6, + "probability": 0.8745 + }, + { + "start": 1001.14, + "end": 1004.5, + "probability": 0.9792 + }, + { + "start": 1005.28, + "end": 1008.12, + "probability": 0.8306 + }, + { + "start": 1009.38, + "end": 1009.8, + "probability": 0.9089 + }, + { + "start": 1010.62, + "end": 1012.6, + "probability": 0.8471 + }, + { + "start": 1013.36, + "end": 1014.19, + "probability": 0.5797 + }, + { + "start": 1014.84, + "end": 1017.8, + "probability": 0.98 + }, + { + "start": 1018.52, + "end": 1019.16, + "probability": 0.9352 + }, + { + "start": 1019.7, + "end": 1021.3, + "probability": 0.9683 + }, + { + "start": 1022.02, + "end": 1022.8, + "probability": 0.8873 + }, + { + "start": 1023.34, + "end": 1026.88, + "probability": 0.9246 + }, + { + "start": 1026.88, + "end": 1029.68, + "probability": 0.982 + }, + { + "start": 1030.68, + "end": 1034.3, + "probability": 0.9341 + }, + { + "start": 1035.4, + "end": 1035.94, + "probability": 0.2576 + }, + { + "start": 1036.08, + "end": 1036.82, + "probability": 0.7751 + }, + { + "start": 1036.92, + "end": 1041.06, + "probability": 0.9873 + }, + { + "start": 1041.58, + "end": 1044.26, + "probability": 0.9114 + }, + { + "start": 1044.88, + "end": 1045.86, + "probability": 0.9696 + }, + { + "start": 1046.38, + "end": 1049.2, + "probability": 0.9757 + }, + { + "start": 1049.2, + "end": 1052.16, + "probability": 0.9436 + }, + { + "start": 1052.62, + "end": 1057.22, + "probability": 0.9788 + }, + { + "start": 1057.82, + "end": 1059.5, + "probability": 0.9954 + }, + { + "start": 1059.5, + "end": 1063.28, + "probability": 0.9788 + }, + { + "start": 1063.94, + "end": 1066.0, + "probability": 0.9565 + }, + { + "start": 1066.1, + "end": 1066.78, + "probability": 0.8072 + }, + { + "start": 1067.44, + "end": 1067.98, + "probability": 0.6938 + }, + { + "start": 1068.18, + "end": 1068.36, + "probability": 0.9282 + }, + { + "start": 1069.2, + "end": 1070.74, + "probability": 0.5099 + }, + { + "start": 1071.74, + "end": 1072.4, + "probability": 0.5561 + }, + { + "start": 1073.82, + "end": 1076.1, + "probability": 0.8 + }, + { + "start": 1076.42, + "end": 1077.33, + "probability": 0.3317 + }, + { + "start": 1078.36, + "end": 1079.48, + "probability": 0.4689 + }, + { + "start": 1079.64, + "end": 1082.3, + "probability": 0.9036 + }, + { + "start": 1082.82, + "end": 1088.58, + "probability": 0.5726 + }, + { + "start": 1092.36, + "end": 1093.58, + "probability": 0.1715 + }, + { + "start": 1095.62, + "end": 1098.6, + "probability": 0.663 + }, + { + "start": 1099.88, + "end": 1104.92, + "probability": 0.9059 + }, + { + "start": 1105.84, + "end": 1109.24, + "probability": 0.9542 + }, + { + "start": 1110.0, + "end": 1112.28, + "probability": 0.7778 + }, + { + "start": 1113.32, + "end": 1115.94, + "probability": 0.4961 + }, + { + "start": 1116.68, + "end": 1117.36, + "probability": 0.6549 + }, + { + "start": 1118.6, + "end": 1122.08, + "probability": 0.9783 + }, + { + "start": 1123.28, + "end": 1126.68, + "probability": 0.6556 + }, + { + "start": 1127.3, + "end": 1131.9, + "probability": 0.9123 + }, + { + "start": 1133.14, + "end": 1133.64, + "probability": 0.6678 + }, + { + "start": 1134.9, + "end": 1136.9, + "probability": 0.9764 + }, + { + "start": 1137.56, + "end": 1141.22, + "probability": 0.9755 + }, + { + "start": 1142.9, + "end": 1143.68, + "probability": 0.8823 + }, + { + "start": 1144.68, + "end": 1148.22, + "probability": 0.8235 + }, + { + "start": 1148.92, + "end": 1150.28, + "probability": 0.512 + }, + { + "start": 1150.8, + "end": 1155.58, + "probability": 0.9766 + }, + { + "start": 1156.6, + "end": 1161.36, + "probability": 0.9766 + }, + { + "start": 1162.34, + "end": 1163.4, + "probability": 0.9451 + }, + { + "start": 1164.52, + "end": 1168.2, + "probability": 0.9463 + }, + { + "start": 1168.9, + "end": 1172.24, + "probability": 0.9828 + }, + { + "start": 1172.78, + "end": 1174.94, + "probability": 0.9499 + }, + { + "start": 1175.48, + "end": 1180.38, + "probability": 0.9688 + }, + { + "start": 1181.16, + "end": 1185.74, + "probability": 0.7688 + }, + { + "start": 1186.4, + "end": 1187.58, + "probability": 0.9344 + }, + { + "start": 1187.92, + "end": 1188.94, + "probability": 0.7216 + }, + { + "start": 1189.36, + "end": 1190.03, + "probability": 0.8777 + }, + { + "start": 1191.55, + "end": 1193.78, + "probability": 0.7495 + }, + { + "start": 1203.18, + "end": 1205.38, + "probability": 0.545 + }, + { + "start": 1206.38, + "end": 1207.28, + "probability": 0.8336 + }, + { + "start": 1208.84, + "end": 1209.7, + "probability": 0.8417 + }, + { + "start": 1209.82, + "end": 1211.76, + "probability": 0.9346 + }, + { + "start": 1211.94, + "end": 1212.58, + "probability": 0.9676 + }, + { + "start": 1213.3, + "end": 1215.64, + "probability": 0.9421 + }, + { + "start": 1216.44, + "end": 1219.2, + "probability": 0.7866 + }, + { + "start": 1220.66, + "end": 1224.01, + "probability": 0.9983 + }, + { + "start": 1225.62, + "end": 1231.42, + "probability": 0.9072 + }, + { + "start": 1232.36, + "end": 1233.05, + "probability": 0.6636 + }, + { + "start": 1233.8, + "end": 1237.38, + "probability": 0.825 + }, + { + "start": 1238.12, + "end": 1238.54, + "probability": 0.9261 + }, + { + "start": 1239.14, + "end": 1239.24, + "probability": 0.9773 + }, + { + "start": 1239.82, + "end": 1240.76, + "probability": 0.935 + }, + { + "start": 1241.76, + "end": 1244.42, + "probability": 0.7386 + }, + { + "start": 1245.28, + "end": 1250.32, + "probability": 0.9031 + }, + { + "start": 1251.06, + "end": 1252.58, + "probability": 0.9665 + }, + { + "start": 1254.26, + "end": 1257.86, + "probability": 0.9878 + }, + { + "start": 1259.3, + "end": 1262.38, + "probability": 0.8428 + }, + { + "start": 1262.92, + "end": 1264.92, + "probability": 0.939 + }, + { + "start": 1265.86, + "end": 1267.62, + "probability": 0.792 + }, + { + "start": 1268.66, + "end": 1270.58, + "probability": 0.7702 + }, + { + "start": 1271.64, + "end": 1273.2, + "probability": 0.9855 + }, + { + "start": 1275.02, + "end": 1276.35, + "probability": 0.5833 + }, + { + "start": 1289.26, + "end": 1289.28, + "probability": 0.0183 + }, + { + "start": 1289.28, + "end": 1289.28, + "probability": 0.0447 + }, + { + "start": 1289.28, + "end": 1289.28, + "probability": 0.0376 + }, + { + "start": 1289.28, + "end": 1292.2, + "probability": 0.721 + }, + { + "start": 1292.74, + "end": 1294.03, + "probability": 0.8056 + }, + { + "start": 1295.08, + "end": 1297.06, + "probability": 0.8298 + }, + { + "start": 1297.8, + "end": 1298.32, + "probability": 0.6838 + }, + { + "start": 1298.36, + "end": 1299.96, + "probability": 0.8742 + }, + { + "start": 1300.3, + "end": 1301.94, + "probability": 0.9529 + }, + { + "start": 1302.16, + "end": 1302.84, + "probability": 0.8992 + }, + { + "start": 1302.9, + "end": 1303.3, + "probability": 0.8527 + }, + { + "start": 1303.82, + "end": 1309.4, + "probability": 0.6617 + }, + { + "start": 1311.14, + "end": 1312.5, + "probability": 0.6505 + }, + { + "start": 1313.1, + "end": 1314.28, + "probability": 0.9475 + }, + { + "start": 1314.9, + "end": 1316.06, + "probability": 0.3615 + }, + { + "start": 1317.38, + "end": 1319.84, + "probability": 0.7823 + }, + { + "start": 1320.44, + "end": 1327.14, + "probability": 0.7619 + }, + { + "start": 1327.9, + "end": 1329.62, + "probability": 0.8809 + }, + { + "start": 1330.06, + "end": 1333.22, + "probability": 0.7623 + }, + { + "start": 1335.22, + "end": 1338.92, + "probability": 0.9866 + }, + { + "start": 1339.04, + "end": 1344.46, + "probability": 0.983 + }, + { + "start": 1344.72, + "end": 1345.66, + "probability": 0.9092 + }, + { + "start": 1346.86, + "end": 1353.46, + "probability": 0.9106 + }, + { + "start": 1353.8, + "end": 1355.4, + "probability": 0.6314 + }, + { + "start": 1355.68, + "end": 1357.26, + "probability": 0.7323 + }, + { + "start": 1357.44, + "end": 1358.38, + "probability": 0.9131 + }, + { + "start": 1358.48, + "end": 1359.56, + "probability": 0.9932 + }, + { + "start": 1360.08, + "end": 1361.78, + "probability": 0.3102 + }, + { + "start": 1362.28, + "end": 1363.24, + "probability": 0.9609 + }, + { + "start": 1363.44, + "end": 1368.02, + "probability": 0.9951 + }, + { + "start": 1368.08, + "end": 1372.9, + "probability": 0.7033 + }, + { + "start": 1373.54, + "end": 1377.02, + "probability": 0.9136 + }, + { + "start": 1377.72, + "end": 1379.22, + "probability": 0.5236 + }, + { + "start": 1379.26, + "end": 1380.42, + "probability": 0.9763 + }, + { + "start": 1380.55, + "end": 1383.16, + "probability": 0.6738 + }, + { + "start": 1383.34, + "end": 1384.5, + "probability": 0.8266 + }, + { + "start": 1384.5, + "end": 1386.48, + "probability": 0.6904 + }, + { + "start": 1386.62, + "end": 1388.12, + "probability": 0.9937 + }, + { + "start": 1388.66, + "end": 1390.06, + "probability": 0.9385 + }, + { + "start": 1390.22, + "end": 1390.72, + "probability": 0.789 + }, + { + "start": 1391.26, + "end": 1391.78, + "probability": 0.6484 + }, + { + "start": 1392.02, + "end": 1395.68, + "probability": 0.8825 + }, + { + "start": 1396.5, + "end": 1397.74, + "probability": 0.923 + }, + { + "start": 1398.4, + "end": 1401.03, + "probability": 0.9404 + }, + { + "start": 1401.44, + "end": 1402.56, + "probability": 0.9868 + }, + { + "start": 1402.82, + "end": 1403.42, + "probability": 0.309 + }, + { + "start": 1405.05, + "end": 1407.3, + "probability": 0.8235 + }, + { + "start": 1407.9, + "end": 1408.68, + "probability": 0.6447 + }, + { + "start": 1408.8, + "end": 1409.06, + "probability": 0.9282 + }, + { + "start": 1410.96, + "end": 1411.2, + "probability": 0.0197 + }, + { + "start": 1412.92, + "end": 1413.5, + "probability": 0.0564 + }, + { + "start": 1413.5, + "end": 1413.5, + "probability": 0.173 + }, + { + "start": 1413.5, + "end": 1415.8, + "probability": 0.2906 + }, + { + "start": 1416.56, + "end": 1421.82, + "probability": 0.9742 + }, + { + "start": 1421.96, + "end": 1422.32, + "probability": 0.5597 + }, + { + "start": 1423.04, + "end": 1423.74, + "probability": 0.9255 + }, + { + "start": 1423.92, + "end": 1427.44, + "probability": 0.9935 + }, + { + "start": 1427.44, + "end": 1431.42, + "probability": 0.9891 + }, + { + "start": 1432.5, + "end": 1438.18, + "probability": 0.7178 + }, + { + "start": 1440.78, + "end": 1441.68, + "probability": 0.8035 + }, + { + "start": 1442.5, + "end": 1443.04, + "probability": 0.665 + }, + { + "start": 1444.14, + "end": 1446.48, + "probability": 0.839 + }, + { + "start": 1447.14, + "end": 1447.56, + "probability": 0.5355 + }, + { + "start": 1448.18, + "end": 1448.84, + "probability": 0.963 + }, + { + "start": 1449.36, + "end": 1451.96, + "probability": 0.9209 + }, + { + "start": 1452.88, + "end": 1453.42, + "probability": 0.8698 + }, + { + "start": 1453.86, + "end": 1460.94, + "probability": 0.9758 + }, + { + "start": 1461.3, + "end": 1461.88, + "probability": 0.9625 + }, + { + "start": 1462.54, + "end": 1465.94, + "probability": 0.6604 + }, + { + "start": 1466.84, + "end": 1470.02, + "probability": 0.7343 + }, + { + "start": 1471.46, + "end": 1474.8, + "probability": 0.9026 + }, + { + "start": 1475.56, + "end": 1481.08, + "probability": 0.8454 + }, + { + "start": 1481.36, + "end": 1481.56, + "probability": 0.822 + }, + { + "start": 1481.94, + "end": 1483.2, + "probability": 0.438 + }, + { + "start": 1483.56, + "end": 1484.78, + "probability": 0.6633 + }, + { + "start": 1485.36, + "end": 1485.98, + "probability": 0.397 + }, + { + "start": 1487.04, + "end": 1488.32, + "probability": 0.9526 + }, + { + "start": 1489.08, + "end": 1491.22, + "probability": 0.8888 + }, + { + "start": 1492.34, + "end": 1494.04, + "probability": 0.942 + }, + { + "start": 1494.9, + "end": 1499.82, + "probability": 0.9354 + }, + { + "start": 1500.2, + "end": 1501.74, + "probability": 0.5818 + }, + { + "start": 1502.84, + "end": 1505.2, + "probability": 0.9721 + }, + { + "start": 1508.46, + "end": 1509.06, + "probability": 0.5693 + }, + { + "start": 1510.04, + "end": 1513.5, + "probability": 0.8154 + }, + { + "start": 1514.3, + "end": 1517.68, + "probability": 0.9237 + }, + { + "start": 1518.81, + "end": 1524.7, + "probability": 0.9099 + }, + { + "start": 1525.2, + "end": 1525.68, + "probability": 0.9841 + }, + { + "start": 1526.48, + "end": 1527.2, + "probability": 0.8805 + }, + { + "start": 1528.16, + "end": 1531.8, + "probability": 0.9893 + }, + { + "start": 1532.32, + "end": 1535.56, + "probability": 0.4523 + }, + { + "start": 1535.9, + "end": 1538.06, + "probability": 0.7537 + }, + { + "start": 1538.46, + "end": 1539.48, + "probability": 0.8675 + }, + { + "start": 1539.56, + "end": 1541.88, + "probability": 0.9864 + }, + { + "start": 1543.46, + "end": 1548.96, + "probability": 0.9396 + }, + { + "start": 1549.6, + "end": 1552.58, + "probability": 0.9084 + }, + { + "start": 1553.34, + "end": 1553.86, + "probability": 0.6638 + }, + { + "start": 1554.0, + "end": 1556.48, + "probability": 0.9124 + }, + { + "start": 1557.14, + "end": 1558.24, + "probability": 0.8138 + }, + { + "start": 1558.84, + "end": 1561.06, + "probability": 0.9042 + }, + { + "start": 1561.14, + "end": 1562.98, + "probability": 0.9038 + }, + { + "start": 1563.04, + "end": 1563.76, + "probability": 0.8775 + }, + { + "start": 1564.24, + "end": 1566.52, + "probability": 0.9927 + }, + { + "start": 1567.04, + "end": 1569.82, + "probability": 0.8738 + }, + { + "start": 1571.16, + "end": 1574.98, + "probability": 0.548 + }, + { + "start": 1575.52, + "end": 1576.78, + "probability": 0.8514 + }, + { + "start": 1577.8, + "end": 1582.54, + "probability": 0.7735 + }, + { + "start": 1583.12, + "end": 1587.0, + "probability": 0.9993 + }, + { + "start": 1587.58, + "end": 1587.88, + "probability": 0.5183 + }, + { + "start": 1587.88, + "end": 1594.98, + "probability": 0.6291 + }, + { + "start": 1595.02, + "end": 1597.88, + "probability": 0.9302 + }, + { + "start": 1598.08, + "end": 1598.44, + "probability": 0.7598 + }, + { + "start": 1599.8, + "end": 1602.36, + "probability": 0.9826 + }, + { + "start": 1603.58, + "end": 1604.74, + "probability": 0.8373 + }, + { + "start": 1605.06, + "end": 1605.94, + "probability": 0.8218 + }, + { + "start": 1607.5, + "end": 1607.62, + "probability": 0.3502 + }, + { + "start": 1608.84, + "end": 1611.56, + "probability": 0.9234 + }, + { + "start": 1612.16, + "end": 1614.52, + "probability": 0.892 + }, + { + "start": 1614.6, + "end": 1615.5, + "probability": 0.7018 + }, + { + "start": 1615.58, + "end": 1619.9, + "probability": 0.8405 + }, + { + "start": 1620.04, + "end": 1620.84, + "probability": 0.7403 + }, + { + "start": 1622.1, + "end": 1623.34, + "probability": 0.8973 + }, + { + "start": 1623.4, + "end": 1626.32, + "probability": 0.9554 + }, + { + "start": 1626.6, + "end": 1631.82, + "probability": 0.7803 + }, + { + "start": 1632.44, + "end": 1632.66, + "probability": 0.2627 + }, + { + "start": 1632.66, + "end": 1635.16, + "probability": 0.8935 + }, + { + "start": 1635.76, + "end": 1637.56, + "probability": 0.6569 + }, + { + "start": 1638.12, + "end": 1640.6, + "probability": 0.5593 + }, + { + "start": 1641.22, + "end": 1642.34, + "probability": 0.7925 + }, + { + "start": 1642.92, + "end": 1643.74, + "probability": 0.9645 + }, + { + "start": 1643.82, + "end": 1644.4, + "probability": 0.8457 + }, + { + "start": 1644.68, + "end": 1645.84, + "probability": 0.6011 + }, + { + "start": 1646.94, + "end": 1649.48, + "probability": 0.8424 + }, + { + "start": 1651.08, + "end": 1653.88, + "probability": 0.9761 + }, + { + "start": 1655.4, + "end": 1657.02, + "probability": 0.8894 + }, + { + "start": 1657.68, + "end": 1664.75, + "probability": 0.6044 + }, + { + "start": 1666.98, + "end": 1670.1, + "probability": 0.9808 + }, + { + "start": 1671.66, + "end": 1676.52, + "probability": 0.9883 + }, + { + "start": 1678.14, + "end": 1678.66, + "probability": 0.818 + }, + { + "start": 1681.56, + "end": 1683.34, + "probability": 0.8447 + }, + { + "start": 1684.8, + "end": 1686.7, + "probability": 0.9283 + }, + { + "start": 1687.24, + "end": 1691.14, + "probability": 0.9634 + }, + { + "start": 1691.92, + "end": 1695.6, + "probability": 0.9877 + }, + { + "start": 1696.7, + "end": 1698.94, + "probability": 0.7716 + }, + { + "start": 1700.24, + "end": 1702.12, + "probability": 0.9272 + }, + { + "start": 1702.78, + "end": 1703.3, + "probability": 0.9508 + }, + { + "start": 1704.0, + "end": 1707.0, + "probability": 0.9816 + }, + { + "start": 1707.76, + "end": 1709.91, + "probability": 0.9491 + }, + { + "start": 1711.8, + "end": 1713.98, + "probability": 0.7968 + }, + { + "start": 1715.0, + "end": 1718.22, + "probability": 0.7457 + }, + { + "start": 1719.96, + "end": 1722.28, + "probability": 0.9575 + }, + { + "start": 1723.14, + "end": 1726.64, + "probability": 0.9329 + }, + { + "start": 1726.72, + "end": 1731.52, + "probability": 0.7563 + }, + { + "start": 1732.36, + "end": 1733.94, + "probability": 0.9349 + }, + { + "start": 1734.1, + "end": 1735.14, + "probability": 0.9006 + }, + { + "start": 1736.1, + "end": 1737.48, + "probability": 0.8774 + }, + { + "start": 1737.5, + "end": 1739.78, + "probability": 0.9242 + }, + { + "start": 1740.22, + "end": 1741.7, + "probability": 0.991 + }, + { + "start": 1741.86, + "end": 1742.58, + "probability": 0.9501 + }, + { + "start": 1743.46, + "end": 1745.67, + "probability": 0.4912 + }, + { + "start": 1746.78, + "end": 1747.04, + "probability": 0.6526 + }, + { + "start": 1747.36, + "end": 1748.8, + "probability": 0.6572 + }, + { + "start": 1749.48, + "end": 1754.4, + "probability": 0.7865 + }, + { + "start": 1755.0, + "end": 1758.54, + "probability": 0.924 + }, + { + "start": 1759.74, + "end": 1760.22, + "probability": 0.6205 + }, + { + "start": 1760.92, + "end": 1763.0, + "probability": 0.8635 + }, + { + "start": 1763.16, + "end": 1764.72, + "probability": 0.7907 + }, + { + "start": 1764.84, + "end": 1765.88, + "probability": 0.8891 + }, + { + "start": 1766.36, + "end": 1768.32, + "probability": 0.5632 + }, + { + "start": 1768.44, + "end": 1769.42, + "probability": 0.9424 + }, + { + "start": 1770.06, + "end": 1772.08, + "probability": 0.948 + }, + { + "start": 1772.86, + "end": 1774.54, + "probability": 0.8927 + }, + { + "start": 1775.18, + "end": 1776.42, + "probability": 0.7133 + }, + { + "start": 1777.26, + "end": 1778.88, + "probability": 0.7279 + }, + { + "start": 1779.9, + "end": 1782.84, + "probability": 0.9347 + }, + { + "start": 1783.38, + "end": 1784.2, + "probability": 0.2518 + }, + { + "start": 1784.2, + "end": 1784.2, + "probability": 0.5094 + }, + { + "start": 1784.32, + "end": 1784.6, + "probability": 0.7553 + }, + { + "start": 1785.32, + "end": 1787.18, + "probability": 0.9692 + }, + { + "start": 1787.6, + "end": 1788.2, + "probability": 0.29 + }, + { + "start": 1788.24, + "end": 1789.18, + "probability": 0.8726 + }, + { + "start": 1789.3, + "end": 1789.66, + "probability": 0.8488 + }, + { + "start": 1790.4, + "end": 1791.36, + "probability": 0.6341 + }, + { + "start": 1791.38, + "end": 1792.84, + "probability": 0.6926 + }, + { + "start": 1793.02, + "end": 1796.72, + "probability": 0.9062 + }, + { + "start": 1797.36, + "end": 1798.52, + "probability": 0.8987 + }, + { + "start": 1798.58, + "end": 1802.96, + "probability": 0.9829 + }, + { + "start": 1803.18, + "end": 1805.76, + "probability": 0.8226 + }, + { + "start": 1806.7, + "end": 1812.14, + "probability": 0.9386 + }, + { + "start": 1812.84, + "end": 1815.4, + "probability": 0.9956 + }, + { + "start": 1815.58, + "end": 1817.32, + "probability": 0.9383 + }, + { + "start": 1817.86, + "end": 1818.16, + "probability": 0.2946 + }, + { + "start": 1818.28, + "end": 1822.34, + "probability": 0.9731 + }, + { + "start": 1822.6, + "end": 1823.44, + "probability": 0.5871 + }, + { + "start": 1823.44, + "end": 1824.26, + "probability": 0.8866 + }, + { + "start": 1825.26, + "end": 1828.0, + "probability": 0.9941 + }, + { + "start": 1828.26, + "end": 1828.5, + "probability": 0.8437 + }, + { + "start": 1828.64, + "end": 1829.48, + "probability": 0.8714 + }, + { + "start": 1829.66, + "end": 1830.86, + "probability": 0.8167 + }, + { + "start": 1831.38, + "end": 1834.04, + "probability": 0.9009 + }, + { + "start": 1834.3, + "end": 1836.18, + "probability": 0.9459 + }, + { + "start": 1836.84, + "end": 1842.1, + "probability": 0.9853 + }, + { + "start": 1842.7, + "end": 1845.56, + "probability": 0.9986 + }, + { + "start": 1845.56, + "end": 1848.8, + "probability": 0.9919 + }, + { + "start": 1850.22, + "end": 1852.74, + "probability": 0.9476 + }, + { + "start": 1852.92, + "end": 1855.68, + "probability": 0.9927 + }, + { + "start": 1855.8, + "end": 1858.94, + "probability": 0.7975 + }, + { + "start": 1859.54, + "end": 1860.84, + "probability": 0.8605 + }, + { + "start": 1861.1, + "end": 1864.96, + "probability": 0.8779 + }, + { + "start": 1865.48, + "end": 1865.76, + "probability": 0.695 + }, + { + "start": 1865.86, + "end": 1866.82, + "probability": 0.8249 + }, + { + "start": 1867.2, + "end": 1868.4, + "probability": 0.9432 + }, + { + "start": 1868.58, + "end": 1871.36, + "probability": 0.9671 + }, + { + "start": 1871.54, + "end": 1871.8, + "probability": 0.7193 + }, + { + "start": 1872.08, + "end": 1872.46, + "probability": 0.4849 + }, + { + "start": 1872.5, + "end": 1873.5, + "probability": 0.7124 + }, + { + "start": 1873.94, + "end": 1876.1, + "probability": 0.9235 + }, + { + "start": 1876.42, + "end": 1876.86, + "probability": 0.835 + }, + { + "start": 1877.72, + "end": 1880.3, + "probability": 0.6067 + }, + { + "start": 1880.7, + "end": 1883.32, + "probability": 0.7385 + }, + { + "start": 1883.74, + "end": 1887.22, + "probability": 0.9919 + }, + { + "start": 1887.4, + "end": 1888.76, + "probability": 0.9956 + }, + { + "start": 1889.82, + "end": 1892.68, + "probability": 0.7134 + }, + { + "start": 1893.46, + "end": 1895.28, + "probability": 0.6719 + }, + { + "start": 1895.7, + "end": 1898.04, + "probability": 0.6496 + }, + { + "start": 1898.26, + "end": 1899.36, + "probability": 0.6358 + }, + { + "start": 1899.36, + "end": 1900.38, + "probability": 0.8458 + }, + { + "start": 1900.5, + "end": 1901.54, + "probability": 0.8384 + }, + { + "start": 1901.94, + "end": 1902.52, + "probability": 0.2821 + }, + { + "start": 1902.7, + "end": 1904.16, + "probability": 0.9105 + }, + { + "start": 1904.2, + "end": 1904.78, + "probability": 0.8241 + }, + { + "start": 1904.94, + "end": 1906.72, + "probability": 0.9085 + }, + { + "start": 1906.92, + "end": 1909.14, + "probability": 0.8378 + }, + { + "start": 1909.8, + "end": 1912.04, + "probability": 0.9691 + }, + { + "start": 1912.14, + "end": 1914.2, + "probability": 0.6772 + }, + { + "start": 1914.38, + "end": 1915.14, + "probability": 0.8496 + }, + { + "start": 1915.24, + "end": 1919.16, + "probability": 0.8356 + }, + { + "start": 1919.6, + "end": 1920.37, + "probability": 0.9111 + }, + { + "start": 1920.78, + "end": 1921.6, + "probability": 0.8568 + }, + { + "start": 1921.98, + "end": 1924.47, + "probability": 0.8687 + }, + { + "start": 1925.24, + "end": 1927.1, + "probability": 0.9639 + }, + { + "start": 1927.52, + "end": 1928.98, + "probability": 0.9823 + }, + { + "start": 1929.62, + "end": 1933.36, + "probability": 0.9746 + }, + { + "start": 1933.7, + "end": 1937.46, + "probability": 0.9596 + }, + { + "start": 1937.6, + "end": 1939.46, + "probability": 0.8976 + }, + { + "start": 1939.5, + "end": 1940.48, + "probability": 0.942 + }, + { + "start": 1940.96, + "end": 1945.0, + "probability": 0.995 + }, + { + "start": 1945.0, + "end": 1951.04, + "probability": 0.9667 + }, + { + "start": 1951.66, + "end": 1952.32, + "probability": 0.9048 + }, + { + "start": 1952.42, + "end": 1953.28, + "probability": 0.6306 + }, + { + "start": 1953.5, + "end": 1955.88, + "probability": 0.986 + }, + { + "start": 1956.44, + "end": 1957.48, + "probability": 0.9284 + }, + { + "start": 1957.6, + "end": 1958.1, + "probability": 0.972 + }, + { + "start": 1958.24, + "end": 1961.5, + "probability": 0.9856 + }, + { + "start": 1965.26, + "end": 1966.42, + "probability": 0.5979 + }, + { + "start": 1966.54, + "end": 1966.72, + "probability": 0.4351 + }, + { + "start": 1967.08, + "end": 1968.02, + "probability": 0.6848 + }, + { + "start": 1968.12, + "end": 1969.41, + "probability": 0.8363 + }, + { + "start": 1969.8, + "end": 1972.36, + "probability": 0.9934 + }, + { + "start": 1972.98, + "end": 1975.86, + "probability": 0.9492 + }, + { + "start": 1976.02, + "end": 1976.74, + "probability": 0.7839 + }, + { + "start": 1976.9, + "end": 1977.51, + "probability": 0.9319 + }, + { + "start": 1978.48, + "end": 1982.56, + "probability": 0.9501 + }, + { + "start": 1983.4, + "end": 1986.88, + "probability": 0.915 + }, + { + "start": 1987.32, + "end": 1992.78, + "probability": 0.9576 + }, + { + "start": 1992.78, + "end": 1996.85, + "probability": 0.9685 + }, + { + "start": 1997.48, + "end": 2000.66, + "probability": 0.9875 + }, + { + "start": 2001.18, + "end": 2004.38, + "probability": 0.9814 + }, + { + "start": 2004.68, + "end": 2005.16, + "probability": 0.7425 + }, + { + "start": 2005.68, + "end": 2007.1, + "probability": 0.7576 + }, + { + "start": 2007.22, + "end": 2008.92, + "probability": 0.9876 + }, + { + "start": 2012.78, + "end": 2018.44, + "probability": 0.8985 + }, + { + "start": 2018.92, + "end": 2020.06, + "probability": 0.8519 + }, + { + "start": 2021.1, + "end": 2022.34, + "probability": 0.6259 + }, + { + "start": 2022.42, + "end": 2023.46, + "probability": 0.7553 + }, + { + "start": 2023.92, + "end": 2025.84, + "probability": 0.9176 + }, + { + "start": 2029.62, + "end": 2030.14, + "probability": 0.6084 + }, + { + "start": 2030.24, + "end": 2030.94, + "probability": 0.6792 + }, + { + "start": 2031.02, + "end": 2031.2, + "probability": 0.5654 + }, + { + "start": 2031.28, + "end": 2035.66, + "probability": 0.8021 + }, + { + "start": 2035.8, + "end": 2036.6, + "probability": 0.9438 + }, + { + "start": 2036.78, + "end": 2038.68, + "probability": 0.9895 + }, + { + "start": 2039.36, + "end": 2041.12, + "probability": 0.9626 + }, + { + "start": 2041.2, + "end": 2042.82, + "probability": 0.9058 + }, + { + "start": 2043.64, + "end": 2044.44, + "probability": 0.9073 + }, + { + "start": 2044.96, + "end": 2047.26, + "probability": 0.9614 + }, + { + "start": 2047.32, + "end": 2047.98, + "probability": 0.5655 + }, + { + "start": 2048.74, + "end": 2051.54, + "probability": 0.9201 + }, + { + "start": 2052.02, + "end": 2053.62, + "probability": 0.9026 + }, + { + "start": 2054.66, + "end": 2058.38, + "probability": 0.8883 + }, + { + "start": 2058.66, + "end": 2059.3, + "probability": 0.8771 + }, + { + "start": 2060.5, + "end": 2062.88, + "probability": 0.6057 + }, + { + "start": 2063.76, + "end": 2064.96, + "probability": 0.9324 + }, + { + "start": 2065.16, + "end": 2067.92, + "probability": 0.978 + }, + { + "start": 2068.06, + "end": 2068.94, + "probability": 0.9185 + }, + { + "start": 2069.04, + "end": 2069.86, + "probability": 0.8101 + }, + { + "start": 2070.2, + "end": 2070.88, + "probability": 0.8536 + }, + { + "start": 2070.96, + "end": 2072.6, + "probability": 0.9918 + }, + { + "start": 2073.28, + "end": 2073.78, + "probability": 0.8243 + }, + { + "start": 2074.46, + "end": 2076.86, + "probability": 0.9607 + }, + { + "start": 2077.26, + "end": 2080.1, + "probability": 0.9305 + }, + { + "start": 2080.48, + "end": 2081.78, + "probability": 0.9661 + }, + { + "start": 2082.8, + "end": 2084.08, + "probability": 0.9748 + }, + { + "start": 2084.38, + "end": 2085.22, + "probability": 0.9513 + }, + { + "start": 2085.36, + "end": 2086.98, + "probability": 0.9807 + }, + { + "start": 2087.92, + "end": 2090.72, + "probability": 0.9626 + }, + { + "start": 2091.06, + "end": 2092.86, + "probability": 0.9179 + }, + { + "start": 2093.78, + "end": 2095.08, + "probability": 0.9197 + }, + { + "start": 2096.14, + "end": 2097.14, + "probability": 0.8412 + }, + { + "start": 2097.6, + "end": 2098.12, + "probability": 0.8625 + }, + { + "start": 2098.14, + "end": 2099.7, + "probability": 0.9385 + }, + { + "start": 2100.08, + "end": 2100.92, + "probability": 0.54 + }, + { + "start": 2101.7, + "end": 2102.26, + "probability": 0.9601 + }, + { + "start": 2102.98, + "end": 2103.77, + "probability": 0.9104 + }, + { + "start": 2104.66, + "end": 2106.32, + "probability": 0.8733 + }, + { + "start": 2106.74, + "end": 2107.47, + "probability": 0.9142 + }, + { + "start": 2107.6, + "end": 2110.32, + "probability": 0.8725 + }, + { + "start": 2110.42, + "end": 2111.3, + "probability": 0.6871 + }, + { + "start": 2111.38, + "end": 2113.0, + "probability": 0.4861 + }, + { + "start": 2113.02, + "end": 2113.48, + "probability": 0.6988 + }, + { + "start": 2113.84, + "end": 2115.3, + "probability": 0.8496 + }, + { + "start": 2115.86, + "end": 2117.6, + "probability": 0.9247 + }, + { + "start": 2118.17, + "end": 2119.92, + "probability": 0.7675 + }, + { + "start": 2120.04, + "end": 2120.52, + "probability": 0.7907 + }, + { + "start": 2120.58, + "end": 2120.95, + "probability": 0.7321 + }, + { + "start": 2121.1, + "end": 2123.48, + "probability": 0.9839 + }, + { + "start": 2123.72, + "end": 2124.5, + "probability": 0.8967 + }, + { + "start": 2125.1, + "end": 2126.22, + "probability": 0.8468 + }, + { + "start": 2126.48, + "end": 2128.0, + "probability": 0.9875 + }, + { + "start": 2128.74, + "end": 2129.46, + "probability": 0.3398 + }, + { + "start": 2129.56, + "end": 2130.66, + "probability": 0.5046 + }, + { + "start": 2130.72, + "end": 2133.14, + "probability": 0.8193 + }, + { + "start": 2133.22, + "end": 2133.93, + "probability": 0.6545 + }, + { + "start": 2134.06, + "end": 2134.68, + "probability": 0.7388 + }, + { + "start": 2134.74, + "end": 2135.39, + "probability": 0.3752 + }, + { + "start": 2136.28, + "end": 2137.12, + "probability": 0.5838 + }, + { + "start": 2137.2, + "end": 2139.16, + "probability": 0.9705 + }, + { + "start": 2139.18, + "end": 2139.9, + "probability": 0.4739 + }, + { + "start": 2140.16, + "end": 2142.02, + "probability": 0.9055 + }, + { + "start": 2142.36, + "end": 2144.02, + "probability": 0.8212 + }, + { + "start": 2144.54, + "end": 2144.74, + "probability": 0.5291 + }, + { + "start": 2144.88, + "end": 2145.02, + "probability": 0.3531 + }, + { + "start": 2145.06, + "end": 2145.94, + "probability": 0.7258 + }, + { + "start": 2146.64, + "end": 2147.18, + "probability": 0.8114 + }, + { + "start": 2147.7, + "end": 2147.96, + "probability": 0.6084 + }, + { + "start": 2148.04, + "end": 2149.74, + "probability": 0.7748 + }, + { + "start": 2154.02, + "end": 2154.7, + "probability": 0.597 + }, + { + "start": 2154.9, + "end": 2155.46, + "probability": 0.8465 + }, + { + "start": 2155.48, + "end": 2157.61, + "probability": 0.9742 + }, + { + "start": 2159.4, + "end": 2160.68, + "probability": 0.8896 + }, + { + "start": 2160.96, + "end": 2161.6, + "probability": 0.9353 + }, + { + "start": 2162.72, + "end": 2164.74, + "probability": 0.9473 + }, + { + "start": 2166.04, + "end": 2167.34, + "probability": 0.9872 + }, + { + "start": 2168.16, + "end": 2169.02, + "probability": 0.9916 + }, + { + "start": 2170.4, + "end": 2171.96, + "probability": 0.8719 + }, + { + "start": 2172.62, + "end": 2180.46, + "probability": 0.9765 + }, + { + "start": 2180.88, + "end": 2186.86, + "probability": 0.9211 + }, + { + "start": 2187.6, + "end": 2191.8, + "probability": 0.9916 + }, + { + "start": 2192.44, + "end": 2195.34, + "probability": 0.9992 + }, + { + "start": 2195.9, + "end": 2200.18, + "probability": 0.869 + }, + { + "start": 2200.76, + "end": 2201.84, + "probability": 0.8017 + }, + { + "start": 2202.68, + "end": 2203.56, + "probability": 0.9375 + }, + { + "start": 2203.82, + "end": 2204.52, + "probability": 0.7642 + }, + { + "start": 2204.64, + "end": 2210.16, + "probability": 0.995 + }, + { + "start": 2210.92, + "end": 2211.96, + "probability": 0.9079 + }, + { + "start": 2212.76, + "end": 2214.9, + "probability": 0.9376 + }, + { + "start": 2215.54, + "end": 2218.56, + "probability": 0.9805 + }, + { + "start": 2219.18, + "end": 2219.3, + "probability": 0.6913 + }, + { + "start": 2219.66, + "end": 2220.34, + "probability": 0.7065 + }, + { + "start": 2220.52, + "end": 2222.02, + "probability": 0.7725 + }, + { + "start": 2222.42, + "end": 2226.02, + "probability": 0.9962 + }, + { + "start": 2226.54, + "end": 2228.48, + "probability": 0.882 + }, + { + "start": 2229.22, + "end": 2231.16, + "probability": 0.9493 + }, + { + "start": 2231.16, + "end": 2231.4, + "probability": 0.8362 + }, + { + "start": 2232.66, + "end": 2233.3, + "probability": 0.8254 + }, + { + "start": 2234.96, + "end": 2239.72, + "probability": 0.8493 + }, + { + "start": 2240.3, + "end": 2242.98, + "probability": 0.8604 + }, + { + "start": 2243.58, + "end": 2246.1, + "probability": 0.8711 + }, + { + "start": 2246.72, + "end": 2249.18, + "probability": 0.9612 + }, + { + "start": 2251.26, + "end": 2251.76, + "probability": 0.5944 + }, + { + "start": 2252.06, + "end": 2253.3, + "probability": 0.561 + }, + { + "start": 2253.54, + "end": 2254.42, + "probability": 0.9854 + }, + { + "start": 2254.8, + "end": 2255.38, + "probability": 0.8576 + }, + { + "start": 2256.0, + "end": 2259.24, + "probability": 0.9701 + }, + { + "start": 2260.6, + "end": 2261.78, + "probability": 0.8286 + }, + { + "start": 2261.88, + "end": 2262.84, + "probability": 0.7767 + }, + { + "start": 2263.04, + "end": 2264.38, + "probability": 0.8231 + }, + { + "start": 2265.22, + "end": 2267.96, + "probability": 0.9972 + }, + { + "start": 2268.38, + "end": 2271.92, + "probability": 0.98 + }, + { + "start": 2272.36, + "end": 2276.74, + "probability": 0.8359 + }, + { + "start": 2278.56, + "end": 2278.98, + "probability": 0.6149 + }, + { + "start": 2279.04, + "end": 2280.14, + "probability": 0.9868 + }, + { + "start": 2280.38, + "end": 2282.82, + "probability": 0.9719 + }, + { + "start": 2283.76, + "end": 2284.18, + "probability": 0.7928 + }, + { + "start": 2284.92, + "end": 2287.44, + "probability": 0.9948 + }, + { + "start": 2287.44, + "end": 2292.22, + "probability": 0.9893 + }, + { + "start": 2292.86, + "end": 2296.08, + "probability": 0.9359 + }, + { + "start": 2296.8, + "end": 2298.22, + "probability": 0.8831 + }, + { + "start": 2299.42, + "end": 2301.46, + "probability": 0.9949 + }, + { + "start": 2302.86, + "end": 2307.22, + "probability": 0.9933 + }, + { + "start": 2307.96, + "end": 2310.0, + "probability": 0.9797 + }, + { + "start": 2310.96, + "end": 2311.36, + "probability": 0.9197 + }, + { + "start": 2312.0, + "end": 2312.72, + "probability": 0.9663 + }, + { + "start": 2313.62, + "end": 2317.7, + "probability": 0.9912 + }, + { + "start": 2318.42, + "end": 2322.54, + "probability": 0.9228 + }, + { + "start": 2324.92, + "end": 2325.68, + "probability": 0.7082 + }, + { + "start": 2325.72, + "end": 2328.84, + "probability": 0.9877 + }, + { + "start": 2329.36, + "end": 2334.2, + "probability": 0.9648 + }, + { + "start": 2335.28, + "end": 2338.78, + "probability": 0.9868 + }, + { + "start": 2339.58, + "end": 2341.14, + "probability": 0.9805 + }, + { + "start": 2342.32, + "end": 2342.8, + "probability": 0.9009 + }, + { + "start": 2343.38, + "end": 2346.46, + "probability": 0.6236 + }, + { + "start": 2347.02, + "end": 2348.08, + "probability": 0.9494 + }, + { + "start": 2348.86, + "end": 2349.96, + "probability": 0.6452 + }, + { + "start": 2350.66, + "end": 2353.8, + "probability": 0.9972 + }, + { + "start": 2354.34, + "end": 2358.34, + "probability": 0.9971 + }, + { + "start": 2358.56, + "end": 2359.62, + "probability": 0.9875 + }, + { + "start": 2360.56, + "end": 2361.24, + "probability": 0.6876 + }, + { + "start": 2361.28, + "end": 2361.7, + "probability": 0.7651 + }, + { + "start": 2361.78, + "end": 2364.2, + "probability": 0.9938 + }, + { + "start": 2364.7, + "end": 2365.16, + "probability": 0.9888 + }, + { + "start": 2365.68, + "end": 2370.5, + "probability": 0.9628 + }, + { + "start": 2371.58, + "end": 2374.94, + "probability": 0.9988 + }, + { + "start": 2375.68, + "end": 2379.0, + "probability": 0.9604 + }, + { + "start": 2379.64, + "end": 2382.64, + "probability": 0.9814 + }, + { + "start": 2382.64, + "end": 2386.9, + "probability": 0.9575 + }, + { + "start": 2387.46, + "end": 2389.58, + "probability": 0.9281 + }, + { + "start": 2390.04, + "end": 2393.24, + "probability": 0.8943 + }, + { + "start": 2393.7, + "end": 2399.34, + "probability": 0.9642 + }, + { + "start": 2399.42, + "end": 2400.26, + "probability": 0.6734 + }, + { + "start": 2401.04, + "end": 2402.8, + "probability": 0.866 + }, + { + "start": 2402.94, + "end": 2408.62, + "probability": 0.9625 + }, + { + "start": 2409.7, + "end": 2409.72, + "probability": 0.2163 + }, + { + "start": 2409.88, + "end": 2410.5, + "probability": 0.9121 + }, + { + "start": 2410.6, + "end": 2413.0, + "probability": 0.9946 + }, + { + "start": 2413.0, + "end": 2416.3, + "probability": 0.9924 + }, + { + "start": 2417.24, + "end": 2419.48, + "probability": 0.724 + }, + { + "start": 2420.28, + "end": 2421.98, + "probability": 0.9838 + }, + { + "start": 2422.66, + "end": 2427.1, + "probability": 0.9293 + }, + { + "start": 2428.06, + "end": 2429.48, + "probability": 0.9927 + }, + { + "start": 2429.58, + "end": 2434.16, + "probability": 0.9858 + }, + { + "start": 2434.76, + "end": 2438.62, + "probability": 0.9421 + }, + { + "start": 2439.12, + "end": 2443.14, + "probability": 0.9923 + }, + { + "start": 2443.76, + "end": 2446.18, + "probability": 0.9603 + }, + { + "start": 2447.34, + "end": 2447.7, + "probability": 0.6973 + }, + { + "start": 2447.78, + "end": 2453.42, + "probability": 0.9911 + }, + { + "start": 2454.44, + "end": 2457.32, + "probability": 0.9806 + }, + { + "start": 2457.34, + "end": 2461.94, + "probability": 0.9763 + }, + { + "start": 2463.14, + "end": 2464.58, + "probability": 0.9889 + }, + { + "start": 2465.28, + "end": 2469.5, + "probability": 0.8511 + }, + { + "start": 2470.08, + "end": 2472.06, + "probability": 0.8634 + }, + { + "start": 2472.62, + "end": 2472.62, + "probability": 0.0114 + }, + { + "start": 2472.62, + "end": 2472.62, + "probability": 0.2308 + }, + { + "start": 2472.62, + "end": 2472.62, + "probability": 0.0935 + }, + { + "start": 2472.62, + "end": 2474.24, + "probability": 0.691 + }, + { + "start": 2474.44, + "end": 2475.22, + "probability": 0.6223 + }, + { + "start": 2475.52, + "end": 2476.3, + "probability": 0.8579 + }, + { + "start": 2477.06, + "end": 2478.54, + "probability": 0.8472 + }, + { + "start": 2479.14, + "end": 2481.96, + "probability": 0.9155 + }, + { + "start": 2482.56, + "end": 2484.18, + "probability": 0.8916 + }, + { + "start": 2484.4, + "end": 2487.26, + "probability": 0.9579 + }, + { + "start": 2487.32, + "end": 2490.38, + "probability": 0.8834 + }, + { + "start": 2491.84, + "end": 2494.56, + "probability": 0.6094 + }, + { + "start": 2495.28, + "end": 2496.52, + "probability": 0.906 + }, + { + "start": 2497.54, + "end": 2497.86, + "probability": 0.5529 + }, + { + "start": 2497.94, + "end": 2498.54, + "probability": 0.6736 + }, + { + "start": 2498.58, + "end": 2499.93, + "probability": 0.7298 + }, + { + "start": 2501.04, + "end": 2503.02, + "probability": 0.988 + }, + { + "start": 2503.12, + "end": 2507.88, + "probability": 0.7739 + }, + { + "start": 2507.98, + "end": 2508.96, + "probability": 0.9211 + }, + { + "start": 2510.04, + "end": 2511.08, + "probability": 0.5444 + }, + { + "start": 2511.22, + "end": 2516.13, + "probability": 0.9795 + }, + { + "start": 2516.52, + "end": 2517.14, + "probability": 0.8246 + }, + { + "start": 2517.64, + "end": 2519.0, + "probability": 0.9595 + }, + { + "start": 2519.12, + "end": 2522.14, + "probability": 0.9871 + }, + { + "start": 2523.32, + "end": 2528.04, + "probability": 0.7718 + }, + { + "start": 2528.16, + "end": 2529.12, + "probability": 0.9522 + }, + { + "start": 2529.44, + "end": 2530.0, + "probability": 0.8909 + }, + { + "start": 2530.78, + "end": 2531.18, + "probability": 0.9903 + }, + { + "start": 2532.54, + "end": 2535.84, + "probability": 0.9315 + }, + { + "start": 2536.54, + "end": 2537.92, + "probability": 0.3591 + }, + { + "start": 2537.94, + "end": 2539.74, + "probability": 0.9426 + }, + { + "start": 2539.9, + "end": 2540.32, + "probability": 0.3015 + }, + { + "start": 2540.56, + "end": 2540.84, + "probability": 0.5884 + }, + { + "start": 2541.8, + "end": 2542.22, + "probability": 0.7848 + }, + { + "start": 2542.34, + "end": 2543.72, + "probability": 0.7702 + }, + { + "start": 2543.88, + "end": 2544.48, + "probability": 0.9084 + }, + { + "start": 2545.28, + "end": 2547.56, + "probability": 0.9736 + }, + { + "start": 2547.62, + "end": 2550.14, + "probability": 0.6255 + }, + { + "start": 2551.62, + "end": 2553.34, + "probability": 0.9282 + }, + { + "start": 2553.48, + "end": 2556.56, + "probability": 0.9916 + }, + { + "start": 2557.68, + "end": 2558.24, + "probability": 0.9534 + }, + { + "start": 2559.0, + "end": 2562.02, + "probability": 0.9922 + }, + { + "start": 2563.76, + "end": 2567.28, + "probability": 0.9912 + }, + { + "start": 2567.48, + "end": 2568.46, + "probability": 0.6599 + }, + { + "start": 2568.8, + "end": 2569.86, + "probability": 0.938 + }, + { + "start": 2571.02, + "end": 2571.8, + "probability": 0.4461 + }, + { + "start": 2572.42, + "end": 2576.16, + "probability": 0.9717 + }, + { + "start": 2577.58, + "end": 2582.4, + "probability": 0.9355 + }, + { + "start": 2582.56, + "end": 2583.04, + "probability": 0.2882 + }, + { + "start": 2583.08, + "end": 2583.94, + "probability": 0.5564 + }, + { + "start": 2584.42, + "end": 2585.82, + "probability": 0.9635 + }, + { + "start": 2587.3, + "end": 2589.5, + "probability": 0.9941 + }, + { + "start": 2590.48, + "end": 2591.96, + "probability": 0.9827 + }, + { + "start": 2592.72, + "end": 2594.38, + "probability": 0.9709 + }, + { + "start": 2594.92, + "end": 2597.54, + "probability": 0.9908 + }, + { + "start": 2598.24, + "end": 2599.98, + "probability": 0.9963 + }, + { + "start": 2600.7, + "end": 2601.38, + "probability": 0.8362 + }, + { + "start": 2602.32, + "end": 2602.9, + "probability": 0.9143 + }, + { + "start": 2603.36, + "end": 2603.98, + "probability": 0.7875 + }, + { + "start": 2604.02, + "end": 2605.72, + "probability": 0.9897 + }, + { + "start": 2606.28, + "end": 2609.12, + "probability": 0.8197 + }, + { + "start": 2610.32, + "end": 2612.52, + "probability": 0.9033 + }, + { + "start": 2612.68, + "end": 2615.9, + "probability": 0.9102 + }, + { + "start": 2617.1, + "end": 2618.1, + "probability": 0.9691 + }, + { + "start": 2618.8, + "end": 2620.42, + "probability": 0.922 + }, + { + "start": 2621.34, + "end": 2624.06, + "probability": 0.9475 + }, + { + "start": 2624.4, + "end": 2624.9, + "probability": 0.4143 + }, + { + "start": 2625.28, + "end": 2631.66, + "probability": 0.9566 + }, + { + "start": 2632.38, + "end": 2633.62, + "probability": 0.7438 + }, + { + "start": 2635.5, + "end": 2636.86, + "probability": 0.8041 + }, + { + "start": 2636.92, + "end": 2641.96, + "probability": 0.9961 + }, + { + "start": 2642.78, + "end": 2644.48, + "probability": 0.979 + }, + { + "start": 2644.66, + "end": 2647.46, + "probability": 0.9874 + }, + { + "start": 2647.84, + "end": 2649.34, + "probability": 0.9741 + }, + { + "start": 2649.38, + "end": 2652.82, + "probability": 0.9707 + }, + { + "start": 2652.96, + "end": 2655.68, + "probability": 0.1797 + }, + { + "start": 2655.74, + "end": 2656.02, + "probability": 0.402 + }, + { + "start": 2656.18, + "end": 2657.1, + "probability": 0.7686 + }, + { + "start": 2657.26, + "end": 2657.4, + "probability": 0.5315 + }, + { + "start": 2658.12, + "end": 2659.6, + "probability": 0.8782 + }, + { + "start": 2660.38, + "end": 2661.02, + "probability": 0.8608 + }, + { + "start": 2663.08, + "end": 2665.0, + "probability": 0.8353 + }, + { + "start": 2665.08, + "end": 2665.84, + "probability": 0.014 + }, + { + "start": 2666.98, + "end": 2671.4, + "probability": 0.998 + }, + { + "start": 2673.02, + "end": 2674.64, + "probability": 0.4625 + }, + { + "start": 2674.64, + "end": 2674.74, + "probability": 0.4281 + }, + { + "start": 2674.78, + "end": 2676.74, + "probability": 0.8488 + }, + { + "start": 2676.82, + "end": 2679.26, + "probability": 0.9618 + }, + { + "start": 2679.88, + "end": 2682.02, + "probability": 0.942 + }, + { + "start": 2683.04, + "end": 2684.14, + "probability": 0.5514 + }, + { + "start": 2684.32, + "end": 2685.74, + "probability": 0.8249 + }, + { + "start": 2685.82, + "end": 2685.9, + "probability": 0.0222 + }, + { + "start": 2686.02, + "end": 2688.96, + "probability": 0.8613 + }, + { + "start": 2689.6, + "end": 2690.04, + "probability": 0.5696 + }, + { + "start": 2690.76, + "end": 2691.04, + "probability": 0.6218 + }, + { + "start": 2691.12, + "end": 2691.56, + "probability": 0.6647 + }, + { + "start": 2691.66, + "end": 2693.26, + "probability": 0.9832 + }, + { + "start": 2694.28, + "end": 2696.68, + "probability": 0.8025 + }, + { + "start": 2696.9, + "end": 2697.26, + "probability": 0.6169 + }, + { + "start": 2697.66, + "end": 2698.54, + "probability": 0.7687 + }, + { + "start": 2699.02, + "end": 2705.48, + "probability": 0.9807 + }, + { + "start": 2707.18, + "end": 2712.2, + "probability": 0.9604 + }, + { + "start": 2712.72, + "end": 2714.28, + "probability": 0.8109 + }, + { + "start": 2715.06, + "end": 2716.68, + "probability": 0.8648 + }, + { + "start": 2716.87, + "end": 2718.74, + "probability": 0.6869 + }, + { + "start": 2719.24, + "end": 2721.18, + "probability": 0.7796 + }, + { + "start": 2721.34, + "end": 2721.62, + "probability": 0.3292 + }, + { + "start": 2722.14, + "end": 2722.91, + "probability": 0.2715 + }, + { + "start": 2724.48, + "end": 2725.46, + "probability": 0.9752 + }, + { + "start": 2725.56, + "end": 2727.04, + "probability": 0.9945 + }, + { + "start": 2727.1, + "end": 2729.71, + "probability": 0.803 + }, + { + "start": 2730.3, + "end": 2731.5, + "probability": 0.7439 + }, + { + "start": 2732.62, + "end": 2734.53, + "probability": 0.9756 + }, + { + "start": 2735.66, + "end": 2736.31, + "probability": 0.916 + }, + { + "start": 2736.82, + "end": 2739.08, + "probability": 0.9956 + }, + { + "start": 2739.54, + "end": 2740.14, + "probability": 0.9713 + }, + { + "start": 2740.22, + "end": 2742.8, + "probability": 0.9481 + }, + { + "start": 2743.98, + "end": 2745.39, + "probability": 0.821 + }, + { + "start": 2746.62, + "end": 2747.72, + "probability": 0.8732 + }, + { + "start": 2748.86, + "end": 2753.8, + "probability": 0.9531 + }, + { + "start": 2754.32, + "end": 2757.68, + "probability": 0.9429 + }, + { + "start": 2758.38, + "end": 2759.48, + "probability": 0.7279 + }, + { + "start": 2760.18, + "end": 2761.88, + "probability": 0.9164 + }, + { + "start": 2761.98, + "end": 2762.18, + "probability": 0.3888 + }, + { + "start": 2762.22, + "end": 2763.2, + "probability": 0.9053 + }, + { + "start": 2763.7, + "end": 2766.05, + "probability": 0.7288 + }, + { + "start": 2766.6, + "end": 2767.66, + "probability": 0.6851 + }, + { + "start": 2767.94, + "end": 2770.34, + "probability": 0.9849 + }, + { + "start": 2771.16, + "end": 2772.54, + "probability": 0.9158 + }, + { + "start": 2773.26, + "end": 2778.86, + "probability": 0.7499 + }, + { + "start": 2779.0, + "end": 2780.12, + "probability": 0.6903 + }, + { + "start": 2780.62, + "end": 2783.54, + "probability": 0.751 + }, + { + "start": 2784.7, + "end": 2785.2, + "probability": 0.6662 + }, + { + "start": 2786.14, + "end": 2786.5, + "probability": 0.6553 + }, + { + "start": 2787.8, + "end": 2788.48, + "probability": 0.3641 + }, + { + "start": 2789.76, + "end": 2790.68, + "probability": 0.8741 + }, + { + "start": 2791.36, + "end": 2792.12, + "probability": 0.7362 + }, + { + "start": 2793.06, + "end": 2793.92, + "probability": 0.422 + }, + { + "start": 2794.32, + "end": 2795.43, + "probability": 0.6376 + }, + { + "start": 2796.24, + "end": 2798.72, + "probability": 0.9189 + }, + { + "start": 2799.56, + "end": 2801.5, + "probability": 0.9531 + }, + { + "start": 2802.34, + "end": 2807.14, + "probability": 0.9862 + }, + { + "start": 2808.22, + "end": 2812.1, + "probability": 0.9111 + }, + { + "start": 2812.96, + "end": 2815.14, + "probability": 0.9984 + }, + { + "start": 2816.08, + "end": 2819.22, + "probability": 0.9461 + }, + { + "start": 2819.38, + "end": 2823.98, + "probability": 0.9634 + }, + { + "start": 2824.88, + "end": 2827.22, + "probability": 0.9133 + }, + { + "start": 2827.66, + "end": 2828.8, + "probability": 0.8333 + }, + { + "start": 2828.9, + "end": 2831.76, + "probability": 0.99 + }, + { + "start": 2832.52, + "end": 2835.16, + "probability": 0.9827 + }, + { + "start": 2835.16, + "end": 2839.7, + "probability": 0.4769 + }, + { + "start": 2840.48, + "end": 2841.84, + "probability": 0.9681 + }, + { + "start": 2842.14, + "end": 2844.12, + "probability": 0.9919 + }, + { + "start": 2844.7, + "end": 2846.68, + "probability": 0.9897 + }, + { + "start": 2847.24, + "end": 2847.82, + "probability": 0.4902 + }, + { + "start": 2848.16, + "end": 2850.2, + "probability": 0.827 + }, + { + "start": 2850.52, + "end": 2851.44, + "probability": 0.8142 + }, + { + "start": 2852.5, + "end": 2856.0, + "probability": 0.9946 + }, + { + "start": 2856.56, + "end": 2857.24, + "probability": 0.5313 + }, + { + "start": 2857.36, + "end": 2858.46, + "probability": 0.7381 + }, + { + "start": 2858.64, + "end": 2862.26, + "probability": 0.9238 + }, + { + "start": 2862.38, + "end": 2862.68, + "probability": 0.9233 + }, + { + "start": 2863.32, + "end": 2867.02, + "probability": 0.9584 + }, + { + "start": 2867.12, + "end": 2868.08, + "probability": 0.8026 + }, + { + "start": 2869.76, + "end": 2871.55, + "probability": 0.869 + }, + { + "start": 2872.52, + "end": 2873.0, + "probability": 0.6235 + }, + { + "start": 2873.24, + "end": 2876.0, + "probability": 0.9341 + }, + { + "start": 2876.76, + "end": 2878.0, + "probability": 0.8502 + }, + { + "start": 2878.58, + "end": 2878.94, + "probability": 0.9558 + }, + { + "start": 2879.9, + "end": 2882.0, + "probability": 0.9293 + }, + { + "start": 2882.74, + "end": 2883.28, + "probability": 0.9076 + }, + { + "start": 2883.8, + "end": 2884.28, + "probability": 0.7304 + }, + { + "start": 2884.84, + "end": 2885.42, + "probability": 0.9144 + }, + { + "start": 2885.52, + "end": 2886.98, + "probability": 0.7681 + }, + { + "start": 2887.1, + "end": 2888.24, + "probability": 0.8738 + }, + { + "start": 2889.02, + "end": 2892.58, + "probability": 0.9901 + }, + { + "start": 2893.36, + "end": 2893.66, + "probability": 0.9476 + }, + { + "start": 2894.14, + "end": 2894.64, + "probability": 0.7967 + }, + { + "start": 2894.8, + "end": 2896.94, + "probability": 0.9448 + }, + { + "start": 2897.08, + "end": 2897.58, + "probability": 0.3123 + }, + { + "start": 2897.7, + "end": 2898.24, + "probability": 0.6452 + }, + { + "start": 2898.42, + "end": 2898.87, + "probability": 0.749 + }, + { + "start": 2899.2, + "end": 2899.54, + "probability": 0.8903 + }, + { + "start": 2900.18, + "end": 2901.32, + "probability": 0.8215 + }, + { + "start": 2901.88, + "end": 2902.96, + "probability": 0.9259 + }, + { + "start": 2903.76, + "end": 2906.4, + "probability": 0.7988 + }, + { + "start": 2906.84, + "end": 2907.34, + "probability": 0.6639 + }, + { + "start": 2907.6, + "end": 2908.38, + "probability": 0.5295 + }, + { + "start": 2909.82, + "end": 2910.42, + "probability": 0.6782 + }, + { + "start": 2911.28, + "end": 2911.98, + "probability": 0.9845 + }, + { + "start": 2912.7, + "end": 2913.56, + "probability": 0.8723 + }, + { + "start": 2913.68, + "end": 2917.2, + "probability": 0.9631 + }, + { + "start": 2917.92, + "end": 2921.04, + "probability": 0.9042 + }, + { + "start": 2921.22, + "end": 2921.82, + "probability": 0.7055 + }, + { + "start": 2922.44, + "end": 2924.0, + "probability": 0.9152 + }, + { + "start": 2924.98, + "end": 2925.42, + "probability": 0.5043 + }, + { + "start": 2925.5, + "end": 2929.62, + "probability": 0.9722 + }, + { + "start": 2930.3, + "end": 2932.24, + "probability": 0.5208 + }, + { + "start": 2932.86, + "end": 2936.26, + "probability": 0.9954 + }, + { + "start": 2936.98, + "end": 2938.06, + "probability": 0.9805 + }, + { + "start": 2938.2, + "end": 2939.4, + "probability": 0.9318 + }, + { + "start": 2940.22, + "end": 2944.6, + "probability": 0.9377 + }, + { + "start": 2945.68, + "end": 2945.82, + "probability": 0.7536 + }, + { + "start": 2945.98, + "end": 2948.52, + "probability": 0.998 + }, + { + "start": 2948.88, + "end": 2951.36, + "probability": 0.9668 + }, + { + "start": 2951.96, + "end": 2952.58, + "probability": 0.7125 + }, + { + "start": 2953.38, + "end": 2954.78, + "probability": 0.9723 + }, + { + "start": 2954.9, + "end": 2956.12, + "probability": 0.7995 + }, + { + "start": 2956.26, + "end": 2956.76, + "probability": 0.8373 + }, + { + "start": 2957.0, + "end": 2957.52, + "probability": 0.9594 + }, + { + "start": 2957.64, + "end": 2958.06, + "probability": 0.534 + }, + { + "start": 2959.58, + "end": 2960.46, + "probability": 0.7661 + }, + { + "start": 2961.92, + "end": 2961.92, + "probability": 0.3761 + }, + { + "start": 2961.92, + "end": 2962.48, + "probability": 0.7482 + }, + { + "start": 2962.48, + "end": 2962.48, + "probability": 0.7223 + }, + { + "start": 2962.58, + "end": 2962.9, + "probability": 0.7903 + }, + { + "start": 2963.22, + "end": 2963.92, + "probability": 0.6652 + }, + { + "start": 2964.5, + "end": 2964.72, + "probability": 0.8319 + }, + { + "start": 2965.34, + "end": 2967.64, + "probability": 0.366 + }, + { + "start": 2967.76, + "end": 2970.58, + "probability": 0.9572 + }, + { + "start": 2970.78, + "end": 2971.45, + "probability": 0.9858 + }, + { + "start": 2971.84, + "end": 2974.98, + "probability": 0.9801 + }, + { + "start": 2975.88, + "end": 2977.9, + "probability": 0.9978 + }, + { + "start": 2978.12, + "end": 2979.28, + "probability": 0.5187 + }, + { + "start": 2980.42, + "end": 2982.08, + "probability": 0.8047 + }, + { + "start": 2982.16, + "end": 2983.32, + "probability": 0.8491 + }, + { + "start": 2983.36, + "end": 2984.14, + "probability": 0.8925 + }, + { + "start": 2984.64, + "end": 2985.08, + "probability": 0.9636 + }, + { + "start": 2986.02, + "end": 2987.14, + "probability": 0.9832 + }, + { + "start": 2987.84, + "end": 2990.94, + "probability": 0.072 + }, + { + "start": 2990.94, + "end": 2991.81, + "probability": 0.277 + }, + { + "start": 2992.88, + "end": 2996.4, + "probability": 0.9725 + }, + { + "start": 2997.3, + "end": 3000.2, + "probability": 0.7832 + }, + { + "start": 3000.5, + "end": 3002.46, + "probability": 0.9962 + }, + { + "start": 3003.32, + "end": 3004.8, + "probability": 0.7303 + }, + { + "start": 3005.44, + "end": 3008.54, + "probability": 0.9807 + }, + { + "start": 3009.3, + "end": 3013.82, + "probability": 0.9977 + }, + { + "start": 3014.74, + "end": 3017.2, + "probability": 0.9963 + }, + { + "start": 3019.86, + "end": 3020.42, + "probability": 0.8987 + }, + { + "start": 3021.36, + "end": 3021.82, + "probability": 0.4996 + }, + { + "start": 3021.86, + "end": 3024.6, + "probability": 0.8062 + }, + { + "start": 3025.36, + "end": 3026.92, + "probability": 0.9553 + }, + { + "start": 3027.64, + "end": 3029.6, + "probability": 0.9989 + }, + { + "start": 3030.62, + "end": 3030.66, + "probability": 0.7805 + }, + { + "start": 3030.74, + "end": 3033.12, + "probability": 0.9741 + }, + { + "start": 3033.82, + "end": 3034.66, + "probability": 0.9163 + }, + { + "start": 3034.82, + "end": 3039.16, + "probability": 0.9132 + }, + { + "start": 3039.98, + "end": 3041.8, + "probability": 0.9935 + }, + { + "start": 3042.58, + "end": 3045.78, + "probability": 0.8564 + }, + { + "start": 3046.36, + "end": 3048.9, + "probability": 0.8602 + }, + { + "start": 3049.42, + "end": 3050.36, + "probability": 0.9732 + }, + { + "start": 3051.6, + "end": 3053.86, + "probability": 0.8615 + }, + { + "start": 3054.4, + "end": 3055.17, + "probability": 0.5274 + }, + { + "start": 3056.54, + "end": 3057.12, + "probability": 0.8771 + }, + { + "start": 3057.32, + "end": 3057.78, + "probability": 0.737 + }, + { + "start": 3057.9, + "end": 3059.16, + "probability": 0.9551 + }, + { + "start": 3059.28, + "end": 3060.14, + "probability": 0.5845 + }, + { + "start": 3060.78, + "end": 3062.82, + "probability": 0.7285 + }, + { + "start": 3063.42, + "end": 3064.9, + "probability": 0.9023 + }, + { + "start": 3065.5, + "end": 3067.3, + "probability": 0.9961 + }, + { + "start": 3068.04, + "end": 3070.36, + "probability": 0.787 + }, + { + "start": 3071.06, + "end": 3073.64, + "probability": 0.7083 + }, + { + "start": 3074.28, + "end": 3076.48, + "probability": 0.9893 + }, + { + "start": 3077.18, + "end": 3079.7, + "probability": 0.8335 + }, + { + "start": 3080.66, + "end": 3081.52, + "probability": 0.6731 + }, + { + "start": 3082.12, + "end": 3083.32, + "probability": 0.9575 + }, + { + "start": 3083.42, + "end": 3084.06, + "probability": 0.6255 + }, + { + "start": 3084.64, + "end": 3085.46, + "probability": 0.7595 + }, + { + "start": 3085.54, + "end": 3086.91, + "probability": 0.9793 + }, + { + "start": 3088.12, + "end": 3089.54, + "probability": 0.8503 + }, + { + "start": 3090.0, + "end": 3091.28, + "probability": 0.9917 + }, + { + "start": 3091.6, + "end": 3092.44, + "probability": 0.9861 + }, + { + "start": 3092.96, + "end": 3094.04, + "probability": 0.874 + }, + { + "start": 3094.84, + "end": 3096.84, + "probability": 0.9394 + }, + { + "start": 3096.88, + "end": 3097.92, + "probability": 0.9109 + }, + { + "start": 3098.1, + "end": 3099.22, + "probability": 0.8135 + }, + { + "start": 3099.68, + "end": 3102.32, + "probability": 0.8477 + }, + { + "start": 3102.92, + "end": 3103.79, + "probability": 0.2325 + }, + { + "start": 3104.66, + "end": 3105.38, + "probability": 0.7184 + }, + { + "start": 3105.82, + "end": 3108.88, + "probability": 0.9661 + }, + { + "start": 3109.58, + "end": 3110.18, + "probability": 0.6478 + }, + { + "start": 3110.44, + "end": 3112.82, + "probability": 0.9876 + }, + { + "start": 3113.34, + "end": 3114.66, + "probability": 0.7016 + }, + { + "start": 3115.32, + "end": 3115.94, + "probability": 0.6324 + }, + { + "start": 3116.06, + "end": 3119.42, + "probability": 0.9771 + }, + { + "start": 3119.9, + "end": 3124.48, + "probability": 0.9685 + }, + { + "start": 3125.36, + "end": 3126.66, + "probability": 0.9714 + }, + { + "start": 3126.78, + "end": 3127.04, + "probability": 0.8313 + }, + { + "start": 3127.36, + "end": 3128.62, + "probability": 0.9506 + }, + { + "start": 3129.32, + "end": 3131.04, + "probability": 0.8856 + }, + { + "start": 3131.88, + "end": 3135.1, + "probability": 0.8394 + }, + { + "start": 3135.76, + "end": 3139.44, + "probability": 0.9745 + }, + { + "start": 3139.98, + "end": 3140.4, + "probability": 0.8896 + }, + { + "start": 3140.74, + "end": 3141.04, + "probability": 0.4341 + }, + { + "start": 3141.46, + "end": 3142.8, + "probability": 0.9873 + }, + { + "start": 3143.44, + "end": 3146.02, + "probability": 0.9832 + }, + { + "start": 3146.66, + "end": 3148.3, + "probability": 0.6262 + }, + { + "start": 3149.02, + "end": 3150.3, + "probability": 0.8921 + }, + { + "start": 3150.62, + "end": 3151.22, + "probability": 0.734 + }, + { + "start": 3151.56, + "end": 3152.4, + "probability": 0.9386 + }, + { + "start": 3152.52, + "end": 3153.22, + "probability": 0.5211 + }, + { + "start": 3153.46, + "end": 3155.68, + "probability": 0.8911 + }, + { + "start": 3156.32, + "end": 3158.84, + "probability": 0.844 + }, + { + "start": 3159.64, + "end": 3160.28, + "probability": 0.359 + }, + { + "start": 3160.52, + "end": 3161.64, + "probability": 0.9581 + }, + { + "start": 3162.4, + "end": 3162.88, + "probability": 0.6031 + }, + { + "start": 3163.06, + "end": 3163.66, + "probability": 0.7947 + }, + { + "start": 3164.18, + "end": 3165.16, + "probability": 0.9253 + }, + { + "start": 3165.38, + "end": 3165.96, + "probability": 0.7687 + }, + { + "start": 3166.48, + "end": 3167.18, + "probability": 0.6326 + }, + { + "start": 3167.96, + "end": 3171.5, + "probability": 0.9655 + }, + { + "start": 3171.74, + "end": 3172.1, + "probability": 0.8637 + }, + { + "start": 3172.46, + "end": 3175.12, + "probability": 0.9941 + }, + { + "start": 3175.12, + "end": 3177.84, + "probability": 0.9799 + }, + { + "start": 3178.6, + "end": 3179.5, + "probability": 0.7617 + }, + { + "start": 3179.62, + "end": 3179.98, + "probability": 0.6469 + }, + { + "start": 3180.08, + "end": 3181.12, + "probability": 0.7346 + }, + { + "start": 3181.62, + "end": 3182.4, + "probability": 0.9657 + }, + { + "start": 3182.52, + "end": 3182.99, + "probability": 0.5463 + }, + { + "start": 3183.16, + "end": 3183.9, + "probability": 0.8493 + }, + { + "start": 3183.96, + "end": 3184.7, + "probability": 0.8684 + }, + { + "start": 3184.74, + "end": 3185.44, + "probability": 0.8245 + }, + { + "start": 3185.72, + "end": 3186.38, + "probability": 0.9919 + }, + { + "start": 3186.46, + "end": 3187.08, + "probability": 0.8198 + }, + { + "start": 3187.78, + "end": 3189.93, + "probability": 0.849 + }, + { + "start": 3192.66, + "end": 3195.88, + "probability": 0.9327 + }, + { + "start": 3196.06, + "end": 3196.7, + "probability": 0.8599 + }, + { + "start": 3197.26, + "end": 3198.38, + "probability": 0.8008 + }, + { + "start": 3198.96, + "end": 3199.54, + "probability": 0.8267 + }, + { + "start": 3200.16, + "end": 3200.78, + "probability": 0.9062 + }, + { + "start": 3201.38, + "end": 3202.64, + "probability": 0.6768 + }, + { + "start": 3202.7, + "end": 3204.12, + "probability": 0.9368 + }, + { + "start": 3204.6, + "end": 3207.62, + "probability": 0.9102 + }, + { + "start": 3209.02, + "end": 3211.1, + "probability": 0.8954 + }, + { + "start": 3211.62, + "end": 3213.88, + "probability": 0.8337 + }, + { + "start": 3214.34, + "end": 3215.0, + "probability": 0.9327 + }, + { + "start": 3215.64, + "end": 3220.64, + "probability": 0.8075 + }, + { + "start": 3221.52, + "end": 3225.92, + "probability": 0.9538 + }, + { + "start": 3226.72, + "end": 3228.4, + "probability": 0.8918 + }, + { + "start": 3229.06, + "end": 3230.84, + "probability": 0.9818 + }, + { + "start": 3230.9, + "end": 3234.2, + "probability": 0.7939 + }, + { + "start": 3234.28, + "end": 3235.03, + "probability": 0.9751 + }, + { + "start": 3236.14, + "end": 3239.56, + "probability": 0.9812 + }, + { + "start": 3239.98, + "end": 3240.57, + "probability": 0.6832 + }, + { + "start": 3240.76, + "end": 3242.48, + "probability": 0.7665 + }, + { + "start": 3243.1, + "end": 3244.58, + "probability": 0.9641 + }, + { + "start": 3245.06, + "end": 3247.76, + "probability": 0.9784 + }, + { + "start": 3248.6, + "end": 3249.28, + "probability": 0.8554 + }, + { + "start": 3249.36, + "end": 3250.16, + "probability": 0.5088 + }, + { + "start": 3250.28, + "end": 3251.92, + "probability": 0.8967 + }, + { + "start": 3252.38, + "end": 3253.14, + "probability": 0.8375 + }, + { + "start": 3253.28, + "end": 3253.72, + "probability": 0.1568 + }, + { + "start": 3254.3, + "end": 3255.14, + "probability": 0.6684 + }, + { + "start": 3255.78, + "end": 3259.04, + "probability": 0.9946 + }, + { + "start": 3259.48, + "end": 3261.76, + "probability": 0.9924 + }, + { + "start": 3261.94, + "end": 3263.12, + "probability": 0.4202 + }, + { + "start": 3263.12, + "end": 3263.24, + "probability": 0.8095 + }, + { + "start": 3263.66, + "end": 3265.14, + "probability": 0.9704 + }, + { + "start": 3265.7, + "end": 3266.96, + "probability": 0.9258 + }, + { + "start": 3267.18, + "end": 3269.35, + "probability": 0.9971 + }, + { + "start": 3269.7, + "end": 3270.78, + "probability": 0.8301 + }, + { + "start": 3271.3, + "end": 3273.78, + "probability": 0.9398 + }, + { + "start": 3274.48, + "end": 3275.38, + "probability": 0.7574 + }, + { + "start": 3276.16, + "end": 3277.66, + "probability": 0.9934 + }, + { + "start": 3278.42, + "end": 3279.72, + "probability": 0.8478 + }, + { + "start": 3280.62, + "end": 3282.86, + "probability": 0.9905 + }, + { + "start": 3283.79, + "end": 3285.14, + "probability": 0.9836 + }, + { + "start": 3286.48, + "end": 3288.3, + "probability": 0.7321 + }, + { + "start": 3288.88, + "end": 3290.0, + "probability": 0.9802 + }, + { + "start": 3290.06, + "end": 3291.74, + "probability": 0.9467 + }, + { + "start": 3292.29, + "end": 3294.18, + "probability": 0.968 + }, + { + "start": 3294.9, + "end": 3297.3, + "probability": 0.8549 + }, + { + "start": 3297.66, + "end": 3297.96, + "probability": 0.8758 + }, + { + "start": 3298.56, + "end": 3300.12, + "probability": 0.9528 + }, + { + "start": 3301.08, + "end": 3302.98, + "probability": 0.9927 + }, + { + "start": 3303.04, + "end": 3304.34, + "probability": 0.9073 + }, + { + "start": 3304.4, + "end": 3306.54, + "probability": 0.9165 + }, + { + "start": 3307.38, + "end": 3307.92, + "probability": 0.3981 + }, + { + "start": 3307.96, + "end": 3308.22, + "probability": 0.6556 + }, + { + "start": 3308.3, + "end": 3310.68, + "probability": 0.9274 + }, + { + "start": 3311.5, + "end": 3312.56, + "probability": 0.8262 + }, + { + "start": 3313.06, + "end": 3318.42, + "probability": 0.6966 + }, + { + "start": 3318.64, + "end": 3318.76, + "probability": 0.7856 + }, + { + "start": 3319.02, + "end": 3321.52, + "probability": 0.9443 + }, + { + "start": 3321.82, + "end": 3322.34, + "probability": 0.478 + }, + { + "start": 3322.6, + "end": 3325.0, + "probability": 0.7521 + }, + { + "start": 3325.94, + "end": 3326.78, + "probability": 0.5016 + }, + { + "start": 3326.84, + "end": 3327.66, + "probability": 0.6704 + }, + { + "start": 3327.7, + "end": 3328.8, + "probability": 0.9664 + }, + { + "start": 3329.2, + "end": 3329.58, + "probability": 0.4648 + }, + { + "start": 3329.64, + "end": 3332.24, + "probability": 0.9902 + }, + { + "start": 3332.74, + "end": 3333.38, + "probability": 0.6928 + }, + { + "start": 3333.52, + "end": 3335.08, + "probability": 0.9055 + }, + { + "start": 3335.52, + "end": 3336.24, + "probability": 0.967 + }, + { + "start": 3336.26, + "end": 3336.92, + "probability": 0.8718 + }, + { + "start": 3337.0, + "end": 3338.96, + "probability": 0.9297 + }, + { + "start": 3339.36, + "end": 3341.59, + "probability": 0.6407 + }, + { + "start": 3342.5, + "end": 3347.82, + "probability": 0.987 + }, + { + "start": 3348.54, + "end": 3353.26, + "probability": 0.9641 + }, + { + "start": 3353.84, + "end": 3357.14, + "probability": 0.991 + }, + { + "start": 3357.44, + "end": 3359.78, + "probability": 0.847 + }, + { + "start": 3360.36, + "end": 3361.86, + "probability": 0.8632 + }, + { + "start": 3361.86, + "end": 3365.26, + "probability": 0.9336 + }, + { + "start": 3365.54, + "end": 3367.22, + "probability": 0.9189 + }, + { + "start": 3367.62, + "end": 3372.42, + "probability": 0.9578 + }, + { + "start": 3372.5, + "end": 3373.66, + "probability": 0.7585 + }, + { + "start": 3374.28, + "end": 3375.22, + "probability": 0.9578 + }, + { + "start": 3375.68, + "end": 3376.04, + "probability": 0.5204 + }, + { + "start": 3376.34, + "end": 3376.96, + "probability": 0.5108 + }, + { + "start": 3377.2, + "end": 3378.36, + "probability": 0.8759 + }, + { + "start": 3379.64, + "end": 3383.14, + "probability": 0.9616 + }, + { + "start": 3385.0, + "end": 3386.46, + "probability": 0.9486 + }, + { + "start": 3394.76, + "end": 3397.36, + "probability": 0.4785 + }, + { + "start": 3398.44, + "end": 3399.9, + "probability": 0.7311 + }, + { + "start": 3400.96, + "end": 3401.3, + "probability": 0.8702 + }, + { + "start": 3402.08, + "end": 3405.42, + "probability": 0.9645 + }, + { + "start": 3406.06, + "end": 3407.53, + "probability": 0.8345 + }, + { + "start": 3408.04, + "end": 3411.19, + "probability": 0.9165 + }, + { + "start": 3411.76, + "end": 3414.5, + "probability": 0.8087 + }, + { + "start": 3414.72, + "end": 3415.62, + "probability": 0.6915 + }, + { + "start": 3415.64, + "end": 3416.27, + "probability": 0.8979 + }, + { + "start": 3417.08, + "end": 3420.5, + "probability": 0.8014 + }, + { + "start": 3421.18, + "end": 3421.38, + "probability": 0.5328 + }, + { + "start": 3421.42, + "end": 3426.88, + "probability": 0.9712 + }, + { + "start": 3428.14, + "end": 3433.39, + "probability": 0.9259 + }, + { + "start": 3435.66, + "end": 3440.0, + "probability": 0.6197 + }, + { + "start": 3440.56, + "end": 3442.22, + "probability": 0.7989 + }, + { + "start": 3442.9, + "end": 3443.86, + "probability": 0.7919 + }, + { + "start": 3444.3, + "end": 3444.98, + "probability": 0.9195 + }, + { + "start": 3445.38, + "end": 3449.62, + "probability": 0.9964 + }, + { + "start": 3450.26, + "end": 3452.34, + "probability": 0.5422 + }, + { + "start": 3452.42, + "end": 3452.58, + "probability": 0.0725 + }, + { + "start": 3452.58, + "end": 3452.58, + "probability": 0.0887 + }, + { + "start": 3452.58, + "end": 3452.58, + "probability": 0.0101 + }, + { + "start": 3452.64, + "end": 3452.88, + "probability": 0.6265 + }, + { + "start": 3454.14, + "end": 3459.66, + "probability": 0.7032 + }, + { + "start": 3460.22, + "end": 3460.54, + "probability": 0.3177 + }, + { + "start": 3461.16, + "end": 3466.16, + "probability": 0.9702 + }, + { + "start": 3466.38, + "end": 3467.1, + "probability": 0.5522 + }, + { + "start": 3467.76, + "end": 3468.06, + "probability": 0.9648 + }, + { + "start": 3468.62, + "end": 3469.36, + "probability": 0.811 + }, + { + "start": 3470.1, + "end": 3473.12, + "probability": 0.682 + }, + { + "start": 3473.56, + "end": 3475.58, + "probability": 0.8594 + }, + { + "start": 3476.06, + "end": 3479.32, + "probability": 0.9597 + }, + { + "start": 3480.62, + "end": 3487.56, + "probability": 0.979 + }, + { + "start": 3488.1, + "end": 3489.06, + "probability": 0.7217 + }, + { + "start": 3489.32, + "end": 3493.72, + "probability": 0.738 + }, + { + "start": 3493.72, + "end": 3499.78, + "probability": 0.8721 + }, + { + "start": 3500.32, + "end": 3502.04, + "probability": 0.9668 + }, + { + "start": 3503.26, + "end": 3506.24, + "probability": 0.9902 + }, + { + "start": 3507.32, + "end": 3511.74, + "probability": 0.9045 + }, + { + "start": 3512.4, + "end": 3515.16, + "probability": 0.8463 + }, + { + "start": 3515.16, + "end": 3516.18, + "probability": 0.9241 + }, + { + "start": 3516.66, + "end": 3518.04, + "probability": 0.778 + }, + { + "start": 3518.86, + "end": 3523.98, + "probability": 0.6658 + }, + { + "start": 3525.14, + "end": 3531.5, + "probability": 0.7349 + }, + { + "start": 3531.62, + "end": 3532.68, + "probability": 0.8635 + }, + { + "start": 3533.48, + "end": 3537.12, + "probability": 0.9852 + }, + { + "start": 3537.82, + "end": 3541.24, + "probability": 0.9673 + }, + { + "start": 3541.74, + "end": 3544.76, + "probability": 0.8911 + }, + { + "start": 3544.9, + "end": 3547.34, + "probability": 0.7783 + }, + { + "start": 3548.68, + "end": 3550.05, + "probability": 0.9458 + }, + { + "start": 3551.16, + "end": 3552.86, + "probability": 0.7555 + }, + { + "start": 3552.92, + "end": 3556.04, + "probability": 0.8116 + }, + { + "start": 3556.32, + "end": 3560.46, + "probability": 0.7838 + }, + { + "start": 3560.7, + "end": 3563.24, + "probability": 0.9506 + }, + { + "start": 3564.56, + "end": 3567.12, + "probability": 0.9893 + }, + { + "start": 3567.58, + "end": 3570.74, + "probability": 0.9619 + }, + { + "start": 3571.72, + "end": 3574.74, + "probability": 0.8923 + }, + { + "start": 3575.24, + "end": 3579.76, + "probability": 0.9536 + }, + { + "start": 3579.76, + "end": 3585.68, + "probability": 0.9781 + }, + { + "start": 3586.84, + "end": 3589.13, + "probability": 0.7581 + }, + { + "start": 3589.94, + "end": 3592.96, + "probability": 0.9552 + }, + { + "start": 3593.16, + "end": 3595.32, + "probability": 0.973 + }, + { + "start": 3595.62, + "end": 3601.64, + "probability": 0.9881 + }, + { + "start": 3602.04, + "end": 3602.94, + "probability": 0.4998 + }, + { + "start": 3603.0, + "end": 3604.64, + "probability": 0.8259 + }, + { + "start": 3605.64, + "end": 3608.62, + "probability": 0.9189 + }, + { + "start": 3609.44, + "end": 3612.98, + "probability": 0.5603 + }, + { + "start": 3625.06, + "end": 3625.24, + "probability": 0.0013 + }, + { + "start": 3625.24, + "end": 3625.24, + "probability": 0.0713 + }, + { + "start": 3625.24, + "end": 3626.11, + "probability": 0.7401 + }, + { + "start": 3626.96, + "end": 3627.88, + "probability": 0.7664 + }, + { + "start": 3629.76, + "end": 3636.04, + "probability": 0.9859 + }, + { + "start": 3637.08, + "end": 3641.34, + "probability": 0.8517 + }, + { + "start": 3641.44, + "end": 3644.98, + "probability": 0.9967 + }, + { + "start": 3645.64, + "end": 3647.48, + "probability": 0.9249 + }, + { + "start": 3648.22, + "end": 3649.98, + "probability": 0.9551 + }, + { + "start": 3650.66, + "end": 3651.92, + "probability": 0.9586 + }, + { + "start": 3652.66, + "end": 3655.38, + "probability": 0.8126 + }, + { + "start": 3655.96, + "end": 3658.32, + "probability": 0.8783 + }, + { + "start": 3659.24, + "end": 3662.48, + "probability": 0.8259 + }, + { + "start": 3663.04, + "end": 3664.56, + "probability": 0.781 + }, + { + "start": 3665.4, + "end": 3666.34, + "probability": 0.5333 + }, + { + "start": 3666.38, + "end": 3667.08, + "probability": 0.9415 + }, + { + "start": 3667.12, + "end": 3668.7, + "probability": 0.9921 + }, + { + "start": 3669.6, + "end": 3670.26, + "probability": 0.958 + }, + { + "start": 3670.42, + "end": 3671.06, + "probability": 0.5023 + }, + { + "start": 3671.26, + "end": 3673.8, + "probability": 0.8104 + }, + { + "start": 3674.22, + "end": 3674.8, + "probability": 0.4722 + }, + { + "start": 3674.88, + "end": 3677.32, + "probability": 0.7353 + }, + { + "start": 3677.84, + "end": 3682.16, + "probability": 0.9676 + }, + { + "start": 3682.16, + "end": 3684.06, + "probability": 0.9976 + }, + { + "start": 3684.81, + "end": 3686.51, + "probability": 0.768 + }, + { + "start": 3687.02, + "end": 3689.16, + "probability": 0.7764 + }, + { + "start": 3689.8, + "end": 3690.46, + "probability": 0.9042 + }, + { + "start": 3690.7, + "end": 3690.94, + "probability": 0.9413 + }, + { + "start": 3691.06, + "end": 3691.36, + "probability": 0.7654 + }, + { + "start": 3691.42, + "end": 3693.64, + "probability": 0.9144 + }, + { + "start": 3693.7, + "end": 3694.92, + "probability": 0.93 + }, + { + "start": 3695.34, + "end": 3697.3, + "probability": 0.9785 + }, + { + "start": 3697.76, + "end": 3699.66, + "probability": 0.9912 + }, + { + "start": 3700.28, + "end": 3701.2, + "probability": 0.848 + }, + { + "start": 3701.74, + "end": 3704.84, + "probability": 0.913 + }, + { + "start": 3705.5, + "end": 3712.78, + "probability": 0.9009 + }, + { + "start": 3717.82, + "end": 3720.34, + "probability": 0.5836 + }, + { + "start": 3721.24, + "end": 3722.48, + "probability": 0.7266 + }, + { + "start": 3722.8, + "end": 3723.32, + "probability": 0.2304 + }, + { + "start": 3723.96, + "end": 3724.6, + "probability": 0.6882 + }, + { + "start": 3725.66, + "end": 3728.3, + "probability": 0.8408 + }, + { + "start": 3728.32, + "end": 3731.38, + "probability": 0.9736 + }, + { + "start": 3732.64, + "end": 3737.52, + "probability": 0.6701 + }, + { + "start": 3738.04, + "end": 3739.16, + "probability": 0.6625 + }, + { + "start": 3739.78, + "end": 3743.5, + "probability": 0.847 + }, + { + "start": 3743.72, + "end": 3747.1, + "probability": 0.9334 + }, + { + "start": 3747.9, + "end": 3748.84, + "probability": 0.9956 + }, + { + "start": 3752.42, + "end": 3754.44, + "probability": 0.859 + }, + { + "start": 3755.24, + "end": 3759.04, + "probability": 0.975 + }, + { + "start": 3759.4, + "end": 3760.76, + "probability": 0.9767 + }, + { + "start": 3761.06, + "end": 3764.28, + "probability": 0.9561 + }, + { + "start": 3764.96, + "end": 3765.16, + "probability": 0.9291 + }, + { + "start": 3765.24, + "end": 3765.72, + "probability": 0.903 + }, + { + "start": 3765.8, + "end": 3767.64, + "probability": 0.585 + }, + { + "start": 3768.38, + "end": 3769.36, + "probability": 0.9409 + }, + { + "start": 3769.98, + "end": 3771.48, + "probability": 0.9661 + }, + { + "start": 3772.38, + "end": 3776.01, + "probability": 0.9531 + }, + { + "start": 3776.8, + "end": 3781.04, + "probability": 0.9564 + }, + { + "start": 3782.76, + "end": 3784.96, + "probability": 0.8121 + }, + { + "start": 3785.9, + "end": 3787.48, + "probability": 0.8827 + }, + { + "start": 3787.52, + "end": 3790.88, + "probability": 0.9932 + }, + { + "start": 3791.36, + "end": 3791.94, + "probability": 0.8657 + }, + { + "start": 3792.02, + "end": 3792.26, + "probability": 0.8726 + }, + { + "start": 3792.34, + "end": 3793.8, + "probability": 0.9917 + }, + { + "start": 3794.38, + "end": 3799.1, + "probability": 0.8967 + }, + { + "start": 3799.98, + "end": 3800.4, + "probability": 0.7447 + }, + { + "start": 3801.42, + "end": 3805.5, + "probability": 0.9787 + }, + { + "start": 3806.42, + "end": 3807.32, + "probability": 0.9167 + }, + { + "start": 3808.22, + "end": 3814.78, + "probability": 0.9935 + }, + { + "start": 3815.1, + "end": 3815.78, + "probability": 0.6865 + }, + { + "start": 3816.18, + "end": 3817.5, + "probability": 0.9686 + }, + { + "start": 3818.4, + "end": 3819.32, + "probability": 0.7357 + }, + { + "start": 3819.38, + "end": 3820.98, + "probability": 0.8351 + }, + { + "start": 3821.14, + "end": 3821.78, + "probability": 0.6618 + }, + { + "start": 3822.16, + "end": 3824.96, + "probability": 0.9751 + }, + { + "start": 3826.33, + "end": 3827.99, + "probability": 0.8911 + }, + { + "start": 3828.2, + "end": 3828.74, + "probability": 0.9208 + }, + { + "start": 3828.74, + "end": 3829.18, + "probability": 0.9747 + }, + { + "start": 3829.18, + "end": 3829.8, + "probability": 0.7651 + }, + { + "start": 3830.58, + "end": 3832.98, + "probability": 0.5499 + }, + { + "start": 3833.8, + "end": 3834.12, + "probability": 0.9797 + }, + { + "start": 3835.04, + "end": 3835.52, + "probability": 0.3571 + }, + { + "start": 3835.62, + "end": 3836.64, + "probability": 0.977 + }, + { + "start": 3836.88, + "end": 3837.06, + "probability": 0.819 + }, + { + "start": 3837.16, + "end": 3839.08, + "probability": 0.7267 + }, + { + "start": 3839.9, + "end": 3840.74, + "probability": 0.8916 + }, + { + "start": 3840.94, + "end": 3841.9, + "probability": 0.9502 + }, + { + "start": 3842.14, + "end": 3843.66, + "probability": 0.7057 + }, + { + "start": 3844.12, + "end": 3845.04, + "probability": 0.9516 + }, + { + "start": 3845.4, + "end": 3847.54, + "probability": 0.9788 + }, + { + "start": 3847.74, + "end": 3849.7, + "probability": 0.7074 + }, + { + "start": 3850.04, + "end": 3852.58, + "probability": 0.9924 + }, + { + "start": 3854.68, + "end": 3856.38, + "probability": 0.7238 + }, + { + "start": 3857.18, + "end": 3858.44, + "probability": 0.7971 + }, + { + "start": 3859.24, + "end": 3862.4, + "probability": 0.9214 + }, + { + "start": 3862.84, + "end": 3863.57, + "probability": 0.9907 + }, + { + "start": 3863.92, + "end": 3865.14, + "probability": 0.7418 + }, + { + "start": 3865.92, + "end": 3866.74, + "probability": 0.9336 + }, + { + "start": 3866.88, + "end": 3868.4, + "probability": 0.9436 + }, + { + "start": 3869.02, + "end": 3870.24, + "probability": 0.8193 + }, + { + "start": 3871.16, + "end": 3872.68, + "probability": 0.9354 + }, + { + "start": 3874.24, + "end": 3874.94, + "probability": 0.5501 + }, + { + "start": 3875.52, + "end": 3883.16, + "probability": 0.968 + }, + { + "start": 3883.48, + "end": 3885.76, + "probability": 0.9452 + }, + { + "start": 3886.42, + "end": 3886.98, + "probability": 0.8464 + }, + { + "start": 3887.5, + "end": 3891.42, + "probability": 0.9982 + }, + { + "start": 3891.76, + "end": 3892.18, + "probability": 0.9482 + }, + { + "start": 3892.24, + "end": 3895.36, + "probability": 0.9923 + }, + { + "start": 3895.98, + "end": 3900.56, + "probability": 0.7814 + }, + { + "start": 3901.12, + "end": 3906.12, + "probability": 0.9883 + }, + { + "start": 3906.6, + "end": 3907.9, + "probability": 0.9783 + }, + { + "start": 3908.46, + "end": 3910.7, + "probability": 0.9933 + }, + { + "start": 3911.48, + "end": 3912.92, + "probability": 0.763 + }, + { + "start": 3914.18, + "end": 3916.38, + "probability": 0.772 + }, + { + "start": 3917.22, + "end": 3920.38, + "probability": 0.895 + }, + { + "start": 3921.46, + "end": 3926.64, + "probability": 0.9959 + }, + { + "start": 3926.64, + "end": 3930.6, + "probability": 0.9427 + }, + { + "start": 3930.66, + "end": 3932.3, + "probability": 0.9351 + }, + { + "start": 3933.06, + "end": 3933.68, + "probability": 0.6328 + }, + { + "start": 3934.52, + "end": 3938.4, + "probability": 0.8828 + }, + { + "start": 3938.78, + "end": 3941.02, + "probability": 0.9925 + }, + { + "start": 3941.4, + "end": 3944.46, + "probability": 0.9813 + }, + { + "start": 3945.04, + "end": 3946.68, + "probability": 0.8358 + }, + { + "start": 3947.4, + "end": 3950.56, + "probability": 0.9171 + }, + { + "start": 3951.28, + "end": 3952.58, + "probability": 0.9419 + }, + { + "start": 3952.78, + "end": 3954.36, + "probability": 0.5109 + }, + { + "start": 3954.46, + "end": 3958.12, + "probability": 0.6516 + }, + { + "start": 3958.32, + "end": 3960.9, + "probability": 0.8988 + }, + { + "start": 3961.06, + "end": 3963.18, + "probability": 0.7676 + }, + { + "start": 3964.16, + "end": 3967.28, + "probability": 0.7391 + }, + { + "start": 3967.3, + "end": 3968.46, + "probability": 0.7339 + }, + { + "start": 3968.52, + "end": 3968.84, + "probability": 0.65 + }, + { + "start": 3968.92, + "end": 3969.2, + "probability": 0.4896 + }, + { + "start": 3969.34, + "end": 3970.18, + "probability": 0.439 + }, + { + "start": 3971.0, + "end": 3972.58, + "probability": 0.9456 + }, + { + "start": 3972.6, + "end": 3975.56, + "probability": 0.9536 + }, + { + "start": 3976.84, + "end": 3978.36, + "probability": 0.9661 + }, + { + "start": 3979.44, + "end": 3980.7, + "probability": 0.9844 + }, + { + "start": 3981.3, + "end": 3985.96, + "probability": 0.7104 + }, + { + "start": 3987.0, + "end": 3989.94, + "probability": 0.9029 + }, + { + "start": 3990.94, + "end": 3993.08, + "probability": 0.9624 + }, + { + "start": 3993.78, + "end": 3995.42, + "probability": 0.8037 + }, + { + "start": 3996.0, + "end": 4000.54, + "probability": 0.9398 + }, + { + "start": 4000.76, + "end": 4001.42, + "probability": 0.294 + }, + { + "start": 4001.66, + "end": 4002.2, + "probability": 0.3227 + }, + { + "start": 4003.0, + "end": 4004.12, + "probability": 0.4959 + }, + { + "start": 4004.12, + "end": 4005.58, + "probability": 0.2776 + }, + { + "start": 4005.7, + "end": 4005.9, + "probability": 0.5942 + }, + { + "start": 4006.0, + "end": 4006.0, + "probability": 0.6391 + }, + { + "start": 4006.06, + "end": 4007.96, + "probability": 0.9463 + }, + { + "start": 4010.44, + "end": 4010.86, + "probability": 0.1325 + }, + { + "start": 4010.86, + "end": 4011.0, + "probability": 0.0292 + }, + { + "start": 4011.2, + "end": 4012.86, + "probability": 0.2053 + }, + { + "start": 4013.0, + "end": 4014.22, + "probability": 0.551 + }, + { + "start": 4014.25, + "end": 4016.66, + "probability": 0.7246 + }, + { + "start": 4016.82, + "end": 4019.36, + "probability": 0.7817 + }, + { + "start": 4019.56, + "end": 4020.88, + "probability": 0.5669 + }, + { + "start": 4021.18, + "end": 4022.52, + "probability": 0.6892 + }, + { + "start": 4023.34, + "end": 4023.92, + "probability": 0.8432 + }, + { + "start": 4024.14, + "end": 4026.88, + "probability": 0.9562 + }, + { + "start": 4027.02, + "end": 4028.74, + "probability": 0.7041 + }, + { + "start": 4028.92, + "end": 4031.38, + "probability": 0.9521 + }, + { + "start": 4031.42, + "end": 4032.26, + "probability": 0.7645 + }, + { + "start": 4032.56, + "end": 4034.0, + "probability": 0.9919 + }, + { + "start": 4034.66, + "end": 4035.04, + "probability": 0.9772 + }, + { + "start": 4036.02, + "end": 4036.68, + "probability": 0.5862 + }, + { + "start": 4038.04, + "end": 4038.86, + "probability": 0.8348 + }, + { + "start": 4039.12, + "end": 4040.1, + "probability": 0.8434 + }, + { + "start": 4040.42, + "end": 4042.18, + "probability": 0.8817 + }, + { + "start": 4042.56, + "end": 4043.84, + "probability": 0.999 + }, + { + "start": 4043.94, + "end": 4044.8, + "probability": 0.9864 + }, + { + "start": 4045.2, + "end": 4045.48, + "probability": 0.8579 + }, + { + "start": 4045.76, + "end": 4046.76, + "probability": 0.9731 + }, + { + "start": 4048.04, + "end": 4048.38, + "probability": 0.1275 + }, + { + "start": 4048.38, + "end": 4049.26, + "probability": 0.45 + }, + { + "start": 4049.54, + "end": 4050.3, + "probability": 0.6841 + }, + { + "start": 4050.6, + "end": 4051.5, + "probability": 0.804 + }, + { + "start": 4051.54, + "end": 4052.16, + "probability": 0.8252 + }, + { + "start": 4052.44, + "end": 4052.8, + "probability": 0.6457 + }, + { + "start": 4054.32, + "end": 4056.1, + "probability": 0.0431 + }, + { + "start": 4056.44, + "end": 4057.76, + "probability": 0.9871 + }, + { + "start": 4058.42, + "end": 4059.76, + "probability": 0.5828 + }, + { + "start": 4060.46, + "end": 4061.06, + "probability": 0.6127 + }, + { + "start": 4062.1, + "end": 4062.9, + "probability": 0.016 + }, + { + "start": 4062.9, + "end": 4063.54, + "probability": 0.4622 + }, + { + "start": 4063.7, + "end": 4065.18, + "probability": 0.9973 + }, + { + "start": 4066.08, + "end": 4066.2, + "probability": 0.0142 + }, + { + "start": 4066.2, + "end": 4066.68, + "probability": 0.7394 + }, + { + "start": 4067.2, + "end": 4067.63, + "probability": 0.906 + }, + { + "start": 4068.16, + "end": 4071.6, + "probability": 0.9124 + }, + { + "start": 4071.76, + "end": 4075.36, + "probability": 0.9624 + }, + { + "start": 4075.7, + "end": 4077.02, + "probability": 0.8233 + }, + { + "start": 4077.08, + "end": 4078.5, + "probability": 0.7861 + }, + { + "start": 4079.3, + "end": 4080.48, + "probability": 0.9523 + }, + { + "start": 4081.12, + "end": 4081.68, + "probability": 0.8678 + }, + { + "start": 4082.18, + "end": 4084.26, + "probability": 0.996 + }, + { + "start": 4084.3, + "end": 4084.82, + "probability": 0.9611 + }, + { + "start": 4084.84, + "end": 4085.18, + "probability": 0.7861 + }, + { + "start": 4085.6, + "end": 4086.06, + "probability": 0.9277 + }, + { + "start": 4086.1, + "end": 4087.16, + "probability": 0.8577 + }, + { + "start": 4088.5, + "end": 4090.34, + "probability": 0.9772 + }, + { + "start": 4090.42, + "end": 4091.16, + "probability": 0.7341 + }, + { + "start": 4092.04, + "end": 4094.18, + "probability": 0.9769 + }, + { + "start": 4095.32, + "end": 4098.25, + "probability": 0.7091 + }, + { + "start": 4100.78, + "end": 4102.08, + "probability": 0.8971 + }, + { + "start": 4102.84, + "end": 4105.66, + "probability": 0.9972 + }, + { + "start": 4106.78, + "end": 4109.28, + "probability": 0.8981 + }, + { + "start": 4109.86, + "end": 4112.8, + "probability": 0.9653 + }, + { + "start": 4113.32, + "end": 4114.34, + "probability": 0.981 + }, + { + "start": 4114.84, + "end": 4117.18, + "probability": 0.9793 + }, + { + "start": 4117.74, + "end": 4118.44, + "probability": 0.9829 + }, + { + "start": 4119.36, + "end": 4119.94, + "probability": 0.6971 + }, + { + "start": 4120.2, + "end": 4120.58, + "probability": 0.2552 + }, + { + "start": 4120.6, + "end": 4121.02, + "probability": 0.7014 + }, + { + "start": 4121.02, + "end": 4121.36, + "probability": 0.9732 + }, + { + "start": 4121.92, + "end": 4122.18, + "probability": 0.8114 + }, + { + "start": 4123.58, + "end": 4125.82, + "probability": 0.9753 + }, + { + "start": 4125.9, + "end": 4126.73, + "probability": 0.7008 + }, + { + "start": 4126.88, + "end": 4128.82, + "probability": 0.531 + }, + { + "start": 4129.16, + "end": 4131.86, + "probability": 0.6406 + }, + { + "start": 4132.42, + "end": 4133.5, + "probability": 0.5592 + }, + { + "start": 4133.66, + "end": 4133.68, + "probability": 0.3228 + }, + { + "start": 4133.68, + "end": 4133.68, + "probability": 0.0822 + }, + { + "start": 4133.84, + "end": 4134.1, + "probability": 0.4009 + }, + { + "start": 4134.12, + "end": 4136.68, + "probability": 0.632 + }, + { + "start": 4136.72, + "end": 4138.44, + "probability": 0.9491 + }, + { + "start": 4138.66, + "end": 4139.72, + "probability": 0.5617 + }, + { + "start": 4139.74, + "end": 4139.74, + "probability": 0.1633 + }, + { + "start": 4139.74, + "end": 4140.02, + "probability": 0.9499 + }, + { + "start": 4140.18, + "end": 4140.28, + "probability": 0.9256 + }, + { + "start": 4140.82, + "end": 4141.5, + "probability": 0.9692 + }, + { + "start": 4141.63, + "end": 4146.16, + "probability": 0.887 + }, + { + "start": 4146.28, + "end": 4152.26, + "probability": 0.9976 + }, + { + "start": 4152.9, + "end": 4153.98, + "probability": 0.995 + }, + { + "start": 4154.1, + "end": 4158.78, + "probability": 0.981 + }, + { + "start": 4159.04, + "end": 4160.14, + "probability": 0.9805 + }, + { + "start": 4160.2, + "end": 4160.96, + "probability": 0.7507 + }, + { + "start": 4161.52, + "end": 4162.45, + "probability": 0.9509 + }, + { + "start": 4162.66, + "end": 4165.28, + "probability": 0.9719 + }, + { + "start": 4165.4, + "end": 4165.82, + "probability": 0.7813 + }, + { + "start": 4166.32, + "end": 4166.62, + "probability": 0.7338 + }, + { + "start": 4167.28, + "end": 4168.38, + "probability": 0.9544 + }, + { + "start": 4168.46, + "end": 4170.7, + "probability": 0.9605 + }, + { + "start": 4170.76, + "end": 4172.17, + "probability": 0.9887 + }, + { + "start": 4173.12, + "end": 4173.64, + "probability": 0.761 + }, + { + "start": 4173.66, + "end": 4175.9, + "probability": 0.8837 + }, + { + "start": 4176.6, + "end": 4179.9, + "probability": 0.9481 + }, + { + "start": 4180.64, + "end": 4184.3, + "probability": 0.9883 + }, + { + "start": 4184.46, + "end": 4185.72, + "probability": 0.9966 + }, + { + "start": 4186.56, + "end": 4189.76, + "probability": 0.8356 + }, + { + "start": 4190.28, + "end": 4192.56, + "probability": 0.5214 + }, + { + "start": 4193.96, + "end": 4194.44, + "probability": 0.2288 + }, + { + "start": 4194.44, + "end": 4194.44, + "probability": 0.4443 + }, + { + "start": 4194.44, + "end": 4195.87, + "probability": 0.6138 + }, + { + "start": 4196.16, + "end": 4197.52, + "probability": 0.851 + }, + { + "start": 4197.62, + "end": 4197.98, + "probability": 0.7983 + }, + { + "start": 4198.04, + "end": 4203.82, + "probability": 0.9501 + }, + { + "start": 4204.1, + "end": 4205.46, + "probability": 0.6792 + }, + { + "start": 4206.02, + "end": 4207.68, + "probability": 0.4973 + }, + { + "start": 4207.82, + "end": 4208.0, + "probability": 0.0209 + }, + { + "start": 4208.0, + "end": 4208.0, + "probability": 0.3435 + }, + { + "start": 4208.0, + "end": 4208.42, + "probability": 0.5383 + }, + { + "start": 4208.84, + "end": 4209.46, + "probability": 0.2429 + }, + { + "start": 4209.6, + "end": 4210.8, + "probability": 0.6877 + }, + { + "start": 4211.32, + "end": 4216.4, + "probability": 0.9365 + }, + { + "start": 4217.0, + "end": 4218.2, + "probability": 0.9761 + }, + { + "start": 4219.18, + "end": 4221.76, + "probability": 0.6666 + }, + { + "start": 4222.6, + "end": 4223.08, + "probability": 0.8003 + }, + { + "start": 4224.12, + "end": 4225.56, + "probability": 0.8594 + }, + { + "start": 4227.02, + "end": 4228.14, + "probability": 0.9937 + }, + { + "start": 4228.46, + "end": 4229.78, + "probability": 0.9902 + }, + { + "start": 4230.18, + "end": 4231.42, + "probability": 0.582 + }, + { + "start": 4231.52, + "end": 4232.24, + "probability": 0.9453 + }, + { + "start": 4233.56, + "end": 4234.72, + "probability": 0.5613 + }, + { + "start": 4235.38, + "end": 4239.58, + "probability": 0.9585 + }, + { + "start": 4240.44, + "end": 4242.58, + "probability": 0.9787 + }, + { + "start": 4244.04, + "end": 4244.6, + "probability": 0.918 + }, + { + "start": 4245.5, + "end": 4251.62, + "probability": 0.9941 + }, + { + "start": 4253.5, + "end": 4253.62, + "probability": 0.5003 + }, + { + "start": 4254.46, + "end": 4257.0, + "probability": 0.7677 + }, + { + "start": 4257.82, + "end": 4261.66, + "probability": 0.9989 + }, + { + "start": 4262.2, + "end": 4266.54, + "probability": 0.9457 + }, + { + "start": 4267.0, + "end": 4267.52, + "probability": 0.6422 + }, + { + "start": 4268.26, + "end": 4270.66, + "probability": 0.6305 + }, + { + "start": 4271.12, + "end": 4275.1, + "probability": 0.9927 + }, + { + "start": 4275.96, + "end": 4280.04, + "probability": 0.9504 + }, + { + "start": 4280.56, + "end": 4284.66, + "probability": 0.7111 + }, + { + "start": 4285.08, + "end": 4286.74, + "probability": 0.9103 + }, + { + "start": 4287.33, + "end": 4289.26, + "probability": 0.892 + }, + { + "start": 4289.62, + "end": 4289.96, + "probability": 0.958 + }, + { + "start": 4290.72, + "end": 4293.06, + "probability": 0.9834 + }, + { + "start": 4293.6, + "end": 4296.3, + "probability": 0.9984 + }, + { + "start": 4297.66, + "end": 4301.36, + "probability": 0.9476 + }, + { + "start": 4302.64, + "end": 4304.46, + "probability": 0.8699 + }, + { + "start": 4305.94, + "end": 4309.66, + "probability": 0.8006 + }, + { + "start": 4311.24, + "end": 4315.02, + "probability": 0.9569 + }, + { + "start": 4316.56, + "end": 4319.14, + "probability": 0.9744 + }, + { + "start": 4319.14, + "end": 4322.74, + "probability": 0.9017 + }, + { + "start": 4322.82, + "end": 4323.8, + "probability": 0.6464 + }, + { + "start": 4324.36, + "end": 4329.12, + "probability": 0.6836 + }, + { + "start": 4330.52, + "end": 4332.86, + "probability": 0.7114 + }, + { + "start": 4333.6, + "end": 4336.5, + "probability": 0.8735 + }, + { + "start": 4337.68, + "end": 4341.34, + "probability": 0.6259 + }, + { + "start": 4342.66, + "end": 4343.92, + "probability": 0.5464 + }, + { + "start": 4344.72, + "end": 4345.8, + "probability": 0.9988 + }, + { + "start": 4346.82, + "end": 4347.44, + "probability": 0.9204 + }, + { + "start": 4348.44, + "end": 4350.1, + "probability": 0.9924 + }, + { + "start": 4350.8, + "end": 4352.96, + "probability": 0.6262 + }, + { + "start": 4354.06, + "end": 4355.44, + "probability": 0.534 + }, + { + "start": 4357.62, + "end": 4359.66, + "probability": 0.5736 + }, + { + "start": 4360.1, + "end": 4361.42, + "probability": 0.9912 + }, + { + "start": 4362.16, + "end": 4363.61, + "probability": 0.8815 + }, + { + "start": 4365.86, + "end": 4375.22, + "probability": 0.8997 + }, + { + "start": 4376.9, + "end": 4380.88, + "probability": 0.9919 + }, + { + "start": 4382.32, + "end": 4387.56, + "probability": 0.8037 + }, + { + "start": 4389.04, + "end": 4390.16, + "probability": 0.9409 + }, + { + "start": 4390.24, + "end": 4394.16, + "probability": 0.8589 + }, + { + "start": 4394.49, + "end": 4401.46, + "probability": 0.9495 + }, + { + "start": 4401.66, + "end": 4408.94, + "probability": 0.979 + }, + { + "start": 4409.36, + "end": 4410.06, + "probability": 0.8671 + }, + { + "start": 4410.8, + "end": 4418.32, + "probability": 0.998 + }, + { + "start": 4419.08, + "end": 4421.4, + "probability": 0.7277 + }, + { + "start": 4421.54, + "end": 4422.06, + "probability": 0.4878 + }, + { + "start": 4422.74, + "end": 4426.64, + "probability": 0.969 + }, + { + "start": 4427.24, + "end": 4428.56, + "probability": 0.5505 + }, + { + "start": 4429.54, + "end": 4430.86, + "probability": 0.215 + }, + { + "start": 4431.72, + "end": 4434.06, + "probability": 0.9881 + }, + { + "start": 4435.24, + "end": 4436.2, + "probability": 0.7708 + }, + { + "start": 4436.78, + "end": 4439.72, + "probability": 0.7737 + }, + { + "start": 4440.18, + "end": 4441.04, + "probability": 0.8175 + }, + { + "start": 4441.18, + "end": 4443.57, + "probability": 0.995 + }, + { + "start": 4444.12, + "end": 4446.38, + "probability": 0.9361 + }, + { + "start": 4447.48, + "end": 4451.04, + "probability": 0.9905 + }, + { + "start": 4454.68, + "end": 4457.08, + "probability": 0.4507 + }, + { + "start": 4458.1, + "end": 4463.32, + "probability": 0.9668 + }, + { + "start": 4464.42, + "end": 4465.64, + "probability": 0.3924 + }, + { + "start": 4465.78, + "end": 4469.61, + "probability": 0.9233 + }, + { + "start": 4470.78, + "end": 4473.46, + "probability": 0.8716 + }, + { + "start": 4473.86, + "end": 4475.5, + "probability": 0.7398 + }, + { + "start": 4476.3, + "end": 4477.38, + "probability": 0.019 + }, + { + "start": 4477.66, + "end": 4479.78, + "probability": 0.7443 + }, + { + "start": 4481.28, + "end": 4484.16, + "probability": 0.818 + }, + { + "start": 4485.4, + "end": 4487.68, + "probability": 0.7769 + }, + { + "start": 4487.74, + "end": 4491.96, + "probability": 0.7334 + }, + { + "start": 4493.42, + "end": 4495.26, + "probability": 0.8307 + }, + { + "start": 4495.72, + "end": 4499.62, + "probability": 0.9923 + }, + { + "start": 4500.5, + "end": 4502.26, + "probability": 0.9768 + }, + { + "start": 4504.06, + "end": 4506.26, + "probability": 0.9967 + }, + { + "start": 4507.58, + "end": 4510.92, + "probability": 0.9524 + }, + { + "start": 4511.76, + "end": 4516.06, + "probability": 0.7668 + }, + { + "start": 4516.72, + "end": 4517.54, + "probability": 0.5567 + }, + { + "start": 4517.68, + "end": 4519.04, + "probability": 0.6277 + }, + { + "start": 4519.34, + "end": 4522.58, + "probability": 0.8907 + }, + { + "start": 4522.58, + "end": 4526.26, + "probability": 0.9453 + }, + { + "start": 4526.9, + "end": 4528.72, + "probability": 0.9441 + }, + { + "start": 4529.32, + "end": 4533.0, + "probability": 0.9757 + }, + { + "start": 4533.0, + "end": 4538.44, + "probability": 0.911 + }, + { + "start": 4539.24, + "end": 4540.64, + "probability": 0.9854 + }, + { + "start": 4540.82, + "end": 4544.16, + "probability": 0.9746 + }, + { + "start": 4544.3, + "end": 4547.88, + "probability": 0.9383 + }, + { + "start": 4548.48, + "end": 4550.1, + "probability": 0.7509 + }, + { + "start": 4550.22, + "end": 4550.82, + "probability": 0.9912 + }, + { + "start": 4551.96, + "end": 4554.12, + "probability": 0.8684 + }, + { + "start": 4554.18, + "end": 4558.62, + "probability": 0.893 + }, + { + "start": 4559.74, + "end": 4562.5, + "probability": 0.9702 + }, + { + "start": 4562.82, + "end": 4566.62, + "probability": 0.6904 + }, + { + "start": 4567.16, + "end": 4569.74, + "probability": 0.6699 + }, + { + "start": 4569.82, + "end": 4573.74, + "probability": 0.9406 + }, + { + "start": 4573.74, + "end": 4580.0, + "probability": 0.9348 + }, + { + "start": 4581.8, + "end": 4581.9, + "probability": 0.7771 + }, + { + "start": 4582.0, + "end": 4582.36, + "probability": 0.864 + }, + { + "start": 4582.4, + "end": 4584.16, + "probability": 0.944 + }, + { + "start": 4584.38, + "end": 4586.24, + "probability": 0.5865 + }, + { + "start": 4586.24, + "end": 4590.94, + "probability": 0.815 + }, + { + "start": 4592.62, + "end": 4593.96, + "probability": 0.8933 + }, + { + "start": 4594.82, + "end": 4596.28, + "probability": 0.9032 + }, + { + "start": 4597.04, + "end": 4597.86, + "probability": 0.7902 + }, + { + "start": 4598.4, + "end": 4600.86, + "probability": 0.451 + }, + { + "start": 4601.68, + "end": 4603.74, + "probability": 0.976 + }, + { + "start": 4604.7, + "end": 4606.96, + "probability": 0.842 + }, + { + "start": 4607.1, + "end": 4609.5, + "probability": 0.9719 + }, + { + "start": 4609.78, + "end": 4611.54, + "probability": 0.9361 + }, + { + "start": 4611.88, + "end": 4613.42, + "probability": 0.7413 + }, + { + "start": 4614.18, + "end": 4616.34, + "probability": 0.9878 + }, + { + "start": 4617.54, + "end": 4619.38, + "probability": 0.7098 + }, + { + "start": 4619.68, + "end": 4623.88, + "probability": 0.9144 + }, + { + "start": 4624.76, + "end": 4627.54, + "probability": 0.9897 + }, + { + "start": 4629.74, + "end": 4634.1, + "probability": 0.6239 + }, + { + "start": 4634.1, + "end": 4637.64, + "probability": 0.5023 + }, + { + "start": 4638.78, + "end": 4641.9, + "probability": 0.9712 + }, + { + "start": 4643.0, + "end": 4643.1, + "probability": 0.5628 + }, + { + "start": 4643.56, + "end": 4647.16, + "probability": 0.969 + }, + { + "start": 4647.16, + "end": 4651.86, + "probability": 0.9336 + }, + { + "start": 4652.68, + "end": 4655.14, + "probability": 0.6307 + }, + { + "start": 4655.86, + "end": 4658.22, + "probability": 0.5746 + }, + { + "start": 4658.7, + "end": 4659.08, + "probability": 0.4426 + }, + { + "start": 4659.26, + "end": 4665.04, + "probability": 0.8975 + }, + { + "start": 4665.78, + "end": 4667.96, + "probability": 0.9898 + }, + { + "start": 4669.32, + "end": 4671.02, + "probability": 0.9317 + }, + { + "start": 4673.54, + "end": 4676.52, + "probability": 0.9412 + }, + { + "start": 4677.08, + "end": 4681.32, + "probability": 0.9789 + }, + { + "start": 4682.22, + "end": 4687.02, + "probability": 0.6918 + }, + { + "start": 4687.9, + "end": 4690.0, + "probability": 0.5095 + }, + { + "start": 4690.8, + "end": 4697.3, + "probability": 0.9728 + }, + { + "start": 4697.94, + "end": 4698.92, + "probability": 0.9889 + }, + { + "start": 4700.54, + "end": 4702.6, + "probability": 0.8172 + }, + { + "start": 4703.82, + "end": 4707.92, + "probability": 0.8969 + }, + { + "start": 4711.08, + "end": 4715.5, + "probability": 0.7001 + }, + { + "start": 4715.62, + "end": 4718.56, + "probability": 0.5254 + }, + { + "start": 4718.7, + "end": 4719.58, + "probability": 0.9873 + }, + { + "start": 4722.8, + "end": 4724.18, + "probability": 0.1521 + }, + { + "start": 4725.46, + "end": 4726.6, + "probability": 0.6974 + }, + { + "start": 4727.4, + "end": 4733.4, + "probability": 0.9615 + }, + { + "start": 4733.54, + "end": 4735.4, + "probability": 0.9989 + }, + { + "start": 4736.18, + "end": 4738.02, + "probability": 0.9514 + }, + { + "start": 4738.14, + "end": 4741.82, + "probability": 0.9102 + }, + { + "start": 4742.36, + "end": 4742.82, + "probability": 0.1465 + }, + { + "start": 4742.82, + "end": 4745.24, + "probability": 0.7131 + }, + { + "start": 4745.64, + "end": 4747.36, + "probability": 0.2513 + }, + { + "start": 4747.96, + "end": 4750.08, + "probability": 0.6617 + }, + { + "start": 4750.86, + "end": 4757.54, + "probability": 0.7291 + }, + { + "start": 4757.58, + "end": 4758.82, + "probability": 0.9398 + }, + { + "start": 4759.24, + "end": 4763.3, + "probability": 0.9814 + }, + { + "start": 4763.74, + "end": 4766.2, + "probability": 0.9972 + }, + { + "start": 4766.32, + "end": 4766.7, + "probability": 0.8229 + }, + { + "start": 4767.32, + "end": 4770.43, + "probability": 0.8128 + }, + { + "start": 4774.68, + "end": 4778.6, + "probability": 0.9947 + }, + { + "start": 4780.0, + "end": 4781.36, + "probability": 0.6736 + }, + { + "start": 4798.6, + "end": 4798.6, + "probability": 0.4937 + }, + { + "start": 4801.16, + "end": 4802.24, + "probability": 0.8453 + }, + { + "start": 4803.68, + "end": 4804.26, + "probability": 0.9614 + }, + { + "start": 4805.26, + "end": 4806.22, + "probability": 0.8258 + }, + { + "start": 4809.28, + "end": 4813.08, + "probability": 0.9653 + }, + { + "start": 4814.84, + "end": 4817.87, + "probability": 0.9797 + }, + { + "start": 4818.96, + "end": 4821.2, + "probability": 0.9982 + }, + { + "start": 4822.3, + "end": 4827.08, + "probability": 0.8378 + }, + { + "start": 4827.82, + "end": 4829.52, + "probability": 0.935 + }, + { + "start": 4831.5, + "end": 4833.81, + "probability": 0.975 + }, + { + "start": 4836.22, + "end": 4836.74, + "probability": 0.9678 + }, + { + "start": 4838.14, + "end": 4839.86, + "probability": 0.6504 + }, + { + "start": 4840.8, + "end": 4843.56, + "probability": 0.9905 + }, + { + "start": 4845.82, + "end": 4847.75, + "probability": 0.9777 + }, + { + "start": 4848.5, + "end": 4850.48, + "probability": 0.9762 + }, + { + "start": 4850.56, + "end": 4851.22, + "probability": 0.9025 + }, + { + "start": 4851.86, + "end": 4852.86, + "probability": 0.8567 + }, + { + "start": 4853.62, + "end": 4854.68, + "probability": 0.9211 + }, + { + "start": 4855.62, + "end": 4856.5, + "probability": 0.9932 + }, + { + "start": 4857.56, + "end": 4859.56, + "probability": 0.9918 + }, + { + "start": 4859.58, + "end": 4860.02, + "probability": 0.837 + }, + { + "start": 4860.2, + "end": 4861.02, + "probability": 0.9722 + }, + { + "start": 4861.12, + "end": 4862.04, + "probability": 0.9766 + }, + { + "start": 4863.46, + "end": 4864.26, + "probability": 0.9521 + }, + { + "start": 4865.64, + "end": 4867.2, + "probability": 0.9985 + }, + { + "start": 4867.98, + "end": 4870.38, + "probability": 0.9936 + }, + { + "start": 4871.98, + "end": 4872.96, + "probability": 0.6639 + }, + { + "start": 4873.84, + "end": 4876.2, + "probability": 0.9934 + }, + { + "start": 4877.46, + "end": 4878.58, + "probability": 0.9266 + }, + { + "start": 4879.98, + "end": 4880.64, + "probability": 0.4838 + }, + { + "start": 4883.2, + "end": 4884.2, + "probability": 0.7852 + }, + { + "start": 4885.0, + "end": 4887.9, + "probability": 0.7554 + }, + { + "start": 4888.44, + "end": 4891.88, + "probability": 0.9498 + }, + { + "start": 4892.76, + "end": 4893.36, + "probability": 0.9819 + }, + { + "start": 4895.06, + "end": 4895.52, + "probability": 0.4995 + }, + { + "start": 4896.08, + "end": 4897.46, + "probability": 0.945 + }, + { + "start": 4898.14, + "end": 4898.92, + "probability": 0.9958 + }, + { + "start": 4902.34, + "end": 4903.06, + "probability": 0.9838 + }, + { + "start": 4903.8, + "end": 4906.32, + "probability": 0.9989 + }, + { + "start": 4907.82, + "end": 4910.66, + "probability": 0.8001 + }, + { + "start": 4911.78, + "end": 4912.62, + "probability": 0.9844 + }, + { + "start": 4913.14, + "end": 4913.7, + "probability": 0.7412 + }, + { + "start": 4914.22, + "end": 4915.62, + "probability": 0.9478 + }, + { + "start": 4916.4, + "end": 4919.1, + "probability": 0.9926 + }, + { + "start": 4920.0, + "end": 4921.48, + "probability": 0.9451 + }, + { + "start": 4922.9, + "end": 4923.9, + "probability": 0.9409 + }, + { + "start": 4925.1, + "end": 4928.24, + "probability": 0.8137 + }, + { + "start": 4928.44, + "end": 4929.81, + "probability": 0.9932 + }, + { + "start": 4930.38, + "end": 4931.06, + "probability": 0.9265 + }, + { + "start": 4931.16, + "end": 4932.12, + "probability": 0.9932 + }, + { + "start": 4934.0, + "end": 4937.64, + "probability": 0.6328 + }, + { + "start": 4937.68, + "end": 4939.14, + "probability": 0.9307 + }, + { + "start": 4940.06, + "end": 4941.36, + "probability": 0.8773 + }, + { + "start": 4944.06, + "end": 4946.26, + "probability": 0.9518 + }, + { + "start": 4946.48, + "end": 4948.3, + "probability": 0.865 + }, + { + "start": 4948.42, + "end": 4949.64, + "probability": 0.9736 + }, + { + "start": 4949.72, + "end": 4951.06, + "probability": 0.884 + }, + { + "start": 4952.86, + "end": 4954.9, + "probability": 0.9585 + }, + { + "start": 4956.0, + "end": 4958.42, + "probability": 0.7827 + }, + { + "start": 4959.02, + "end": 4959.86, + "probability": 0.9939 + }, + { + "start": 4961.5, + "end": 4963.98, + "probability": 0.7509 + }, + { + "start": 4965.4, + "end": 4969.58, + "probability": 0.9678 + }, + { + "start": 4971.22, + "end": 4972.44, + "probability": 0.9865 + }, + { + "start": 4974.42, + "end": 4977.18, + "probability": 0.9983 + }, + { + "start": 4978.24, + "end": 4978.52, + "probability": 0.9175 + }, + { + "start": 4978.78, + "end": 4978.92, + "probability": 0.9004 + }, + { + "start": 4979.75, + "end": 4982.1, + "probability": 0.6637 + }, + { + "start": 4982.1, + "end": 4985.84, + "probability": 0.873 + }, + { + "start": 4986.66, + "end": 4987.14, + "probability": 0.8608 + }, + { + "start": 4987.94, + "end": 4988.92, + "probability": 0.5774 + }, + { + "start": 4989.62, + "end": 4994.38, + "probability": 0.9984 + }, + { + "start": 4995.22, + "end": 4996.2, + "probability": 0.9033 + }, + { + "start": 4997.64, + "end": 4998.86, + "probability": 0.9257 + }, + { + "start": 4999.78, + "end": 5001.36, + "probability": 0.9675 + }, + { + "start": 5001.8, + "end": 5002.88, + "probability": 0.8772 + }, + { + "start": 5004.3, + "end": 5006.14, + "probability": 0.992 + }, + { + "start": 5007.92, + "end": 5008.12, + "probability": 0.9791 + }, + { + "start": 5008.24, + "end": 5009.73, + "probability": 0.7999 + }, + { + "start": 5009.84, + "end": 5011.74, + "probability": 0.9741 + }, + { + "start": 5012.54, + "end": 5013.48, + "probability": 0.8072 + }, + { + "start": 5014.32, + "end": 5017.44, + "probability": 0.9946 + }, + { + "start": 5019.2, + "end": 5023.28, + "probability": 0.9884 + }, + { + "start": 5024.6, + "end": 5026.56, + "probability": 0.9168 + }, + { + "start": 5026.64, + "end": 5027.48, + "probability": 0.9952 + }, + { + "start": 5028.58, + "end": 5031.08, + "probability": 0.9958 + }, + { + "start": 5033.38, + "end": 5037.48, + "probability": 0.9951 + }, + { + "start": 5038.36, + "end": 5039.12, + "probability": 0.973 + }, + { + "start": 5040.12, + "end": 5045.12, + "probability": 0.9263 + }, + { + "start": 5045.72, + "end": 5047.54, + "probability": 0.7463 + }, + { + "start": 5048.78, + "end": 5050.68, + "probability": 0.9907 + }, + { + "start": 5051.14, + "end": 5052.4, + "probability": 0.8456 + }, + { + "start": 5052.9, + "end": 5054.32, + "probability": 0.896 + }, + { + "start": 5055.28, + "end": 5059.52, + "probability": 0.9854 + }, + { + "start": 5061.0, + "end": 5064.02, + "probability": 0.8937 + }, + { + "start": 5064.62, + "end": 5065.82, + "probability": 0.9495 + }, + { + "start": 5067.4, + "end": 5070.34, + "probability": 0.9893 + }, + { + "start": 5070.42, + "end": 5072.62, + "probability": 0.9585 + }, + { + "start": 5073.9, + "end": 5075.6, + "probability": 0.9465 + }, + { + "start": 5078.06, + "end": 5078.84, + "probability": 0.9927 + }, + { + "start": 5079.82, + "end": 5080.98, + "probability": 0.9963 + }, + { + "start": 5082.18, + "end": 5082.88, + "probability": 0.8043 + }, + { + "start": 5085.14, + "end": 5088.84, + "probability": 0.9673 + }, + { + "start": 5091.84, + "end": 5093.74, + "probability": 0.9077 + }, + { + "start": 5094.78, + "end": 5095.44, + "probability": 0.6968 + }, + { + "start": 5096.68, + "end": 5097.48, + "probability": 0.8196 + }, + { + "start": 5098.62, + "end": 5100.12, + "probability": 0.865 + }, + { + "start": 5100.38, + "end": 5102.56, + "probability": 0.968 + }, + { + "start": 5103.06, + "end": 5103.96, + "probability": 0.6226 + }, + { + "start": 5104.06, + "end": 5106.38, + "probability": 0.7225 + }, + { + "start": 5107.98, + "end": 5109.26, + "probability": 0.9963 + }, + { + "start": 5109.94, + "end": 5112.02, + "probability": 0.9919 + }, + { + "start": 5114.94, + "end": 5115.2, + "probability": 0.634 + }, + { + "start": 5115.3, + "end": 5120.04, + "probability": 0.972 + }, + { + "start": 5120.14, + "end": 5121.2, + "probability": 0.9755 + }, + { + "start": 5121.26, + "end": 5122.14, + "probability": 0.6851 + }, + { + "start": 5122.76, + "end": 5123.5, + "probability": 0.6023 + }, + { + "start": 5124.82, + "end": 5126.16, + "probability": 0.9875 + }, + { + "start": 5127.84, + "end": 5132.18, + "probability": 0.7939 + }, + { + "start": 5133.08, + "end": 5133.9, + "probability": 0.9863 + }, + { + "start": 5135.92, + "end": 5136.82, + "probability": 0.9316 + }, + { + "start": 5137.08, + "end": 5138.34, + "probability": 0.6784 + }, + { + "start": 5139.72, + "end": 5143.84, + "probability": 0.95 + }, + { + "start": 5144.82, + "end": 5149.12, + "probability": 0.9736 + }, + { + "start": 5149.2, + "end": 5149.98, + "probability": 0.9337 + }, + { + "start": 5150.08, + "end": 5150.92, + "probability": 0.9441 + }, + { + "start": 5151.48, + "end": 5159.18, + "probability": 0.9743 + }, + { + "start": 5160.16, + "end": 5161.0, + "probability": 0.6892 + }, + { + "start": 5164.34, + "end": 5165.38, + "probability": 0.523 + }, + { + "start": 5169.52, + "end": 5170.66, + "probability": 0.4206 + }, + { + "start": 5171.56, + "end": 5173.52, + "probability": 0.9905 + }, + { + "start": 5174.1, + "end": 5177.34, + "probability": 0.8276 + }, + { + "start": 5179.5, + "end": 5182.12, + "probability": 0.7991 + }, + { + "start": 5182.22, + "end": 5183.34, + "probability": 0.9626 + }, + { + "start": 5183.48, + "end": 5184.42, + "probability": 0.1108 + }, + { + "start": 5185.6, + "end": 5186.78, + "probability": 0.7942 + }, + { + "start": 5188.42, + "end": 5190.34, + "probability": 0.7896 + }, + { + "start": 5190.9, + "end": 5192.24, + "probability": 0.9773 + }, + { + "start": 5192.94, + "end": 5194.33, + "probability": 0.6517 + }, + { + "start": 5194.78, + "end": 5195.17, + "probability": 0.4587 + }, + { + "start": 5196.34, + "end": 5197.48, + "probability": 0.8027 + }, + { + "start": 5199.24, + "end": 5200.35, + "probability": 0.7251 + }, + { + "start": 5201.38, + "end": 5203.3, + "probability": 0.9272 + }, + { + "start": 5203.52, + "end": 5204.59, + "probability": 0.981 + }, + { + "start": 5205.26, + "end": 5207.62, + "probability": 0.9502 + }, + { + "start": 5209.08, + "end": 5209.34, + "probability": 0.9682 + }, + { + "start": 5209.98, + "end": 5211.84, + "probability": 0.8618 + }, + { + "start": 5212.02, + "end": 5213.24, + "probability": 0.9956 + }, + { + "start": 5214.8, + "end": 5216.1, + "probability": 0.8779 + }, + { + "start": 5216.52, + "end": 5218.98, + "probability": 0.9917 + }, + { + "start": 5219.98, + "end": 5221.59, + "probability": 0.9863 + }, + { + "start": 5223.64, + "end": 5225.16, + "probability": 0.9426 + }, + { + "start": 5226.9, + "end": 5227.56, + "probability": 0.9824 + }, + { + "start": 5228.18, + "end": 5230.18, + "probability": 0.9866 + }, + { + "start": 5230.44, + "end": 5231.22, + "probability": 0.5778 + }, + { + "start": 5232.22, + "end": 5234.08, + "probability": 0.4486 + }, + { + "start": 5235.86, + "end": 5237.0, + "probability": 0.9546 + }, + { + "start": 5237.94, + "end": 5238.69, + "probability": 0.8662 + }, + { + "start": 5240.3, + "end": 5241.06, + "probability": 0.7393 + }, + { + "start": 5242.46, + "end": 5243.16, + "probability": 0.7694 + }, + { + "start": 5244.9, + "end": 5245.34, + "probability": 0.6793 + }, + { + "start": 5246.1, + "end": 5246.62, + "probability": 0.8382 + }, + { + "start": 5247.84, + "end": 5249.46, + "probability": 0.9659 + }, + { + "start": 5250.38, + "end": 5255.04, + "probability": 0.9446 + }, + { + "start": 5256.54, + "end": 5257.84, + "probability": 0.9785 + }, + { + "start": 5258.32, + "end": 5259.86, + "probability": 0.696 + }, + { + "start": 5261.33, + "end": 5265.22, + "probability": 0.944 + }, + { + "start": 5266.58, + "end": 5267.8, + "probability": 0.91 + }, + { + "start": 5268.76, + "end": 5276.06, + "probability": 0.9176 + }, + { + "start": 5278.08, + "end": 5281.48, + "probability": 0.9965 + }, + { + "start": 5283.2, + "end": 5286.88, + "probability": 0.9939 + }, + { + "start": 5287.2, + "end": 5291.04, + "probability": 0.9856 + }, + { + "start": 5291.52, + "end": 5292.76, + "probability": 0.4433 + }, + { + "start": 5292.98, + "end": 5293.54, + "probability": 0.7808 + }, + { + "start": 5294.06, + "end": 5296.88, + "probability": 0.0352 + }, + { + "start": 5298.06, + "end": 5298.89, + "probability": 0.641 + }, + { + "start": 5299.06, + "end": 5299.42, + "probability": 0.7345 + }, + { + "start": 5300.0, + "end": 5307.62, + "probability": 0.9764 + }, + { + "start": 5307.88, + "end": 5312.6, + "probability": 0.9917 + }, + { + "start": 5312.68, + "end": 5313.32, + "probability": 0.6023 + }, + { + "start": 5313.88, + "end": 5314.14, + "probability": 0.9229 + }, + { + "start": 5314.38, + "end": 5315.0, + "probability": 0.9173 + }, + { + "start": 5315.48, + "end": 5316.22, + "probability": 0.4766 + }, + { + "start": 5316.38, + "end": 5318.96, + "probability": 0.9697 + }, + { + "start": 5319.02, + "end": 5320.48, + "probability": 0.9891 + }, + { + "start": 5320.62, + "end": 5320.92, + "probability": 0.3676 + }, + { + "start": 5321.94, + "end": 5323.6, + "probability": 0.8999 + }, + { + "start": 5325.16, + "end": 5328.16, + "probability": 0.7558 + }, + { + "start": 5328.8, + "end": 5335.6, + "probability": 0.9767 + }, + { + "start": 5336.84, + "end": 5337.3, + "probability": 0.8099 + }, + { + "start": 5337.82, + "end": 5338.98, + "probability": 0.7435 + }, + { + "start": 5339.46, + "end": 5341.34, + "probability": 0.8292 + }, + { + "start": 5342.72, + "end": 5345.98, + "probability": 0.9484 + }, + { + "start": 5347.16, + "end": 5349.64, + "probability": 0.9514 + }, + { + "start": 5350.78, + "end": 5352.1, + "probability": 0.8699 + }, + { + "start": 5352.3, + "end": 5353.41, + "probability": 0.7015 + }, + { + "start": 5353.58, + "end": 5355.06, + "probability": 0.9888 + }, + { + "start": 5355.92, + "end": 5357.76, + "probability": 0.9062 + }, + { + "start": 5358.38, + "end": 5360.12, + "probability": 0.9934 + }, + { + "start": 5364.44, + "end": 5367.28, + "probability": 0.804 + }, + { + "start": 5369.34, + "end": 5372.44, + "probability": 0.9979 + }, + { + "start": 5373.24, + "end": 5374.2, + "probability": 0.866 + }, + { + "start": 5375.26, + "end": 5377.46, + "probability": 0.9979 + }, + { + "start": 5377.84, + "end": 5380.26, + "probability": 0.8206 + }, + { + "start": 5380.68, + "end": 5381.86, + "probability": 0.8243 + }, + { + "start": 5381.96, + "end": 5382.36, + "probability": 0.885 + }, + { + "start": 5382.48, + "end": 5383.5, + "probability": 0.9244 + }, + { + "start": 5384.06, + "end": 5385.56, + "probability": 0.9767 + }, + { + "start": 5387.05, + "end": 5389.89, + "probability": 0.7173 + }, + { + "start": 5390.68, + "end": 5393.36, + "probability": 0.9665 + }, + { + "start": 5394.04, + "end": 5396.18, + "probability": 0.9748 + }, + { + "start": 5396.5, + "end": 5399.42, + "probability": 0.9338 + }, + { + "start": 5400.68, + "end": 5401.0, + "probability": 0.7095 + }, + { + "start": 5401.98, + "end": 5402.76, + "probability": 0.8096 + }, + { + "start": 5404.34, + "end": 5406.1, + "probability": 0.8258 + }, + { + "start": 5406.34, + "end": 5407.64, + "probability": 0.8124 + }, + { + "start": 5408.14, + "end": 5408.57, + "probability": 0.9441 + }, + { + "start": 5409.28, + "end": 5409.96, + "probability": 0.8063 + }, + { + "start": 5410.98, + "end": 5413.1, + "probability": 0.4236 + }, + { + "start": 5413.84, + "end": 5416.02, + "probability": 0.8276 + }, + { + "start": 5416.36, + "end": 5418.38, + "probability": 0.8912 + }, + { + "start": 5419.75, + "end": 5423.4, + "probability": 0.6686 + }, + { + "start": 5424.08, + "end": 5424.2, + "probability": 0.0008 + }, + { + "start": 5427.13, + "end": 5431.07, + "probability": 0.999 + }, + { + "start": 5432.24, + "end": 5432.62, + "probability": 0.4776 + }, + { + "start": 5432.7, + "end": 5437.16, + "probability": 0.9957 + }, + { + "start": 5438.38, + "end": 5440.46, + "probability": 0.9797 + }, + { + "start": 5442.94, + "end": 5444.48, + "probability": 0.7329 + }, + { + "start": 5445.86, + "end": 5447.28, + "probability": 0.4531 + }, + { + "start": 5447.28, + "end": 5447.28, + "probability": 0.1696 + }, + { + "start": 5448.55, + "end": 5450.46, + "probability": 0.9958 + }, + { + "start": 5451.56, + "end": 5453.0, + "probability": 0.8772 + }, + { + "start": 5454.48, + "end": 5457.74, + "probability": 0.9922 + }, + { + "start": 5458.94, + "end": 5459.84, + "probability": 0.8692 + }, + { + "start": 5460.78, + "end": 5463.48, + "probability": 0.9742 + }, + { + "start": 5464.56, + "end": 5465.58, + "probability": 0.9682 + }, + { + "start": 5465.72, + "end": 5466.34, + "probability": 0.866 + }, + { + "start": 5466.52, + "end": 5467.76, + "probability": 0.8531 + }, + { + "start": 5468.36, + "end": 5469.56, + "probability": 0.9908 + }, + { + "start": 5470.1, + "end": 5471.46, + "probability": 0.9392 + }, + { + "start": 5472.02, + "end": 5472.66, + "probability": 0.8624 + }, + { + "start": 5473.84, + "end": 5474.79, + "probability": 0.6913 + }, + { + "start": 5476.42, + "end": 5480.2, + "probability": 0.9371 + }, + { + "start": 5481.14, + "end": 5481.62, + "probability": 0.8217 + }, + { + "start": 5482.14, + "end": 5484.02, + "probability": 0.7563 + }, + { + "start": 5484.58, + "end": 5486.6, + "probability": 0.8711 + }, + { + "start": 5486.92, + "end": 5488.04, + "probability": 0.9402 + }, + { + "start": 5488.7, + "end": 5489.08, + "probability": 0.7564 + }, + { + "start": 5489.8, + "end": 5491.2, + "probability": 0.7654 + }, + { + "start": 5491.82, + "end": 5493.74, + "probability": 0.9414 + }, + { + "start": 5495.5, + "end": 5496.34, + "probability": 0.3395 + }, + { + "start": 5496.4, + "end": 5497.1, + "probability": 0.9001 + }, + { + "start": 5497.2, + "end": 5498.08, + "probability": 0.7012 + }, + { + "start": 5498.5, + "end": 5499.14, + "probability": 0.9722 + }, + { + "start": 5499.38, + "end": 5500.36, + "probability": 0.3672 + }, + { + "start": 5501.14, + "end": 5501.95, + "probability": 0.6599 + }, + { + "start": 5502.22, + "end": 5502.71, + "probability": 0.8028 + }, + { + "start": 5503.8, + "end": 5504.06, + "probability": 0.8208 + }, + { + "start": 5505.8, + "end": 5507.42, + "probability": 0.964 + }, + { + "start": 5507.7, + "end": 5509.0, + "probability": 0.5791 + }, + { + "start": 5509.08, + "end": 5509.36, + "probability": 0.4604 + }, + { + "start": 5509.44, + "end": 5511.08, + "probability": 0.6744 + }, + { + "start": 5512.92, + "end": 5515.1, + "probability": 0.9454 + }, + { + "start": 5515.7, + "end": 5518.72, + "probability": 0.6901 + }, + { + "start": 5518.8, + "end": 5518.96, + "probability": 0.8205 + }, + { + "start": 5519.04, + "end": 5519.94, + "probability": 0.6025 + }, + { + "start": 5521.48, + "end": 5521.94, + "probability": 0.987 + }, + { + "start": 5524.64, + "end": 5525.39, + "probability": 0.2897 + }, + { + "start": 5526.68, + "end": 5527.42, + "probability": 0.5072 + }, + { + "start": 5527.98, + "end": 5533.03, + "probability": 0.8472 + }, + { + "start": 5533.28, + "end": 5536.24, + "probability": 0.9883 + }, + { + "start": 5536.9, + "end": 5540.12, + "probability": 0.9906 + }, + { + "start": 5541.28, + "end": 5542.8, + "probability": 0.9459 + }, + { + "start": 5543.88, + "end": 5546.68, + "probability": 0.646 + }, + { + "start": 5547.58, + "end": 5549.6, + "probability": 0.9357 + }, + { + "start": 5550.08, + "end": 5551.56, + "probability": 0.9961 + }, + { + "start": 5552.11, + "end": 5553.84, + "probability": 0.9019 + }, + { + "start": 5555.06, + "end": 5556.22, + "probability": 0.7891 + }, + { + "start": 5556.22, + "end": 5560.32, + "probability": 0.9734 + }, + { + "start": 5561.42, + "end": 5564.88, + "probability": 0.92 + }, + { + "start": 5566.08, + "end": 5566.77, + "probability": 0.917 + }, + { + "start": 5568.1, + "end": 5575.1, + "probability": 0.986 + }, + { + "start": 5575.64, + "end": 5576.6, + "probability": 0.9985 + }, + { + "start": 5577.12, + "end": 5578.28, + "probability": 0.9255 + }, + { + "start": 5578.94, + "end": 5581.74, + "probability": 0.9724 + }, + { + "start": 5583.02, + "end": 5588.12, + "probability": 0.9762 + }, + { + "start": 5589.04, + "end": 5589.36, + "probability": 0.6243 + }, + { + "start": 5590.84, + "end": 5593.02, + "probability": 0.9875 + }, + { + "start": 5593.5, + "end": 5593.7, + "probability": 0.518 + }, + { + "start": 5593.74, + "end": 5595.2, + "probability": 0.8918 + }, + { + "start": 5596.04, + "end": 5599.3, + "probability": 0.9211 + }, + { + "start": 5600.04, + "end": 5601.82, + "probability": 0.632 + }, + { + "start": 5602.4, + "end": 5604.64, + "probability": 0.9792 + }, + { + "start": 5605.06, + "end": 5607.5, + "probability": 0.8076 + }, + { + "start": 5608.1, + "end": 5609.22, + "probability": 0.7468 + }, + { + "start": 5610.8, + "end": 5612.2, + "probability": 0.7521 + }, + { + "start": 5612.3, + "end": 5614.89, + "probability": 0.9771 + }, + { + "start": 5615.3, + "end": 5616.08, + "probability": 0.8997 + }, + { + "start": 5617.16, + "end": 5618.24, + "probability": 0.7788 + }, + { + "start": 5619.54, + "end": 5621.96, + "probability": 0.9697 + }, + { + "start": 5622.46, + "end": 5623.8, + "probability": 0.9005 + }, + { + "start": 5624.3, + "end": 5625.64, + "probability": 0.9459 + }, + { + "start": 5626.78, + "end": 5628.96, + "probability": 0.9831 + }, + { + "start": 5630.2, + "end": 5632.52, + "probability": 0.9021 + }, + { + "start": 5633.0, + "end": 5635.28, + "probability": 0.9829 + }, + { + "start": 5636.12, + "end": 5637.36, + "probability": 0.9925 + }, + { + "start": 5637.8, + "end": 5639.9, + "probability": 0.7888 + }, + { + "start": 5640.18, + "end": 5640.44, + "probability": 0.4683 + }, + { + "start": 5640.44, + "end": 5643.2, + "probability": 0.7691 + }, + { + "start": 5643.32, + "end": 5648.88, + "probability": 0.7358 + }, + { + "start": 5649.28, + "end": 5652.02, + "probability": 0.9754 + }, + { + "start": 5652.68, + "end": 5652.94, + "probability": 0.3695 + }, + { + "start": 5653.12, + "end": 5655.4, + "probability": 0.9233 + }, + { + "start": 5655.52, + "end": 5655.84, + "probability": 0.6882 + }, + { + "start": 5656.02, + "end": 5657.62, + "probability": 0.9665 + }, + { + "start": 5661.38, + "end": 5665.68, + "probability": 0.7979 + }, + { + "start": 5666.6, + "end": 5668.66, + "probability": 0.9814 + }, + { + "start": 5669.22, + "end": 5670.1, + "probability": 0.9693 + }, + { + "start": 5671.14, + "end": 5672.08, + "probability": 0.9407 + }, + { + "start": 5672.96, + "end": 5673.26, + "probability": 0.67 + }, + { + "start": 5674.7, + "end": 5676.23, + "probability": 0.9516 + }, + { + "start": 5678.82, + "end": 5680.64, + "probability": 0.9834 + }, + { + "start": 5682.24, + "end": 5683.78, + "probability": 0.5272 + }, + { + "start": 5684.68, + "end": 5687.78, + "probability": 0.9517 + }, + { + "start": 5688.86, + "end": 5691.14, + "probability": 0.9829 + }, + { + "start": 5693.4, + "end": 5693.66, + "probability": 0.8094 + }, + { + "start": 5693.82, + "end": 5701.28, + "probability": 0.988 + }, + { + "start": 5701.9, + "end": 5703.4, + "probability": 0.9991 + }, + { + "start": 5704.12, + "end": 5705.02, + "probability": 0.9821 + }, + { + "start": 5706.16, + "end": 5706.88, + "probability": 0.8457 + }, + { + "start": 5708.18, + "end": 5708.8, + "probability": 0.9929 + }, + { + "start": 5709.32, + "end": 5711.32, + "probability": 0.9995 + }, + { + "start": 5711.86, + "end": 5717.73, + "probability": 0.9449 + }, + { + "start": 5718.46, + "end": 5719.02, + "probability": 0.8637 + }, + { + "start": 5719.14, + "end": 5719.28, + "probability": 0.9653 + }, + { + "start": 5719.42, + "end": 5720.1, + "probability": 0.6659 + }, + { + "start": 5720.16, + "end": 5720.83, + "probability": 0.9671 + }, + { + "start": 5721.28, + "end": 5722.7, + "probability": 0.8669 + }, + { + "start": 5723.64, + "end": 5724.67, + "probability": 0.9212 + }, + { + "start": 5725.66, + "end": 5728.13, + "probability": 0.7554 + }, + { + "start": 5729.36, + "end": 5730.88, + "probability": 0.9507 + }, + { + "start": 5731.38, + "end": 5732.96, + "probability": 0.4789 + }, + { + "start": 5734.36, + "end": 5734.96, + "probability": 0.8159 + }, + { + "start": 5735.18, + "end": 5735.9, + "probability": 0.8512 + }, + { + "start": 5736.0, + "end": 5740.96, + "probability": 0.8503 + }, + { + "start": 5741.34, + "end": 5742.04, + "probability": 0.6194 + }, + { + "start": 5742.54, + "end": 5743.6, + "probability": 0.9725 + }, + { + "start": 5744.04, + "end": 5745.56, + "probability": 0.9595 + }, + { + "start": 5745.62, + "end": 5748.16, + "probability": 0.9816 + }, + { + "start": 5748.68, + "end": 5750.08, + "probability": 0.996 + }, + { + "start": 5750.78, + "end": 5751.76, + "probability": 0.9341 + }, + { + "start": 5752.58, + "end": 5756.7, + "probability": 0.924 + }, + { + "start": 5758.08, + "end": 5759.42, + "probability": 0.9637 + }, + { + "start": 5760.68, + "end": 5763.32, + "probability": 0.8206 + }, + { + "start": 5763.36, + "end": 5763.8, + "probability": 0.9098 + }, + { + "start": 5763.9, + "end": 5767.48, + "probability": 0.9641 + }, + { + "start": 5768.76, + "end": 5769.48, + "probability": 0.8511 + }, + { + "start": 5770.38, + "end": 5772.06, + "probability": 0.9805 + }, + { + "start": 5772.2, + "end": 5773.36, + "probability": 0.8359 + }, + { + "start": 5773.96, + "end": 5777.18, + "probability": 0.9626 + }, + { + "start": 5778.06, + "end": 5778.28, + "probability": 0.9919 + }, + { + "start": 5781.1, + "end": 5781.68, + "probability": 0.431 + }, + { + "start": 5782.6, + "end": 5783.88, + "probability": 0.7521 + }, + { + "start": 5784.3, + "end": 5785.08, + "probability": 0.5635 + }, + { + "start": 5786.18, + "end": 5787.5, + "probability": 0.57 + }, + { + "start": 5788.1, + "end": 5789.2, + "probability": 0.9747 + }, + { + "start": 5789.94, + "end": 5791.22, + "probability": 0.9366 + }, + { + "start": 5791.6, + "end": 5791.96, + "probability": 0.8189 + }, + { + "start": 5792.12, + "end": 5792.34, + "probability": 0.9764 + }, + { + "start": 5792.38, + "end": 5795.7, + "probability": 0.9624 + }, + { + "start": 5795.8, + "end": 5798.09, + "probability": 0.9847 + }, + { + "start": 5798.38, + "end": 5800.96, + "probability": 0.8813 + }, + { + "start": 5801.7, + "end": 5802.32, + "probability": 0.278 + }, + { + "start": 5802.36, + "end": 5802.66, + "probability": 0.9092 + }, + { + "start": 5802.7, + "end": 5802.98, + "probability": 0.452 + }, + { + "start": 5803.08, + "end": 5804.42, + "probability": 0.8569 + }, + { + "start": 5804.72, + "end": 5806.28, + "probability": 0.8178 + }, + { + "start": 5806.78, + "end": 5807.73, + "probability": 0.6726 + }, + { + "start": 5808.5, + "end": 5810.85, + "probability": 0.9165 + }, + { + "start": 5811.42, + "end": 5814.26, + "probability": 0.952 + }, + { + "start": 5814.9, + "end": 5816.78, + "probability": 0.949 + }, + { + "start": 5817.5, + "end": 5823.26, + "probability": 0.9825 + }, + { + "start": 5823.38, + "end": 5825.38, + "probability": 0.6665 + }, + { + "start": 5825.78, + "end": 5829.24, + "probability": 0.978 + }, + { + "start": 5830.34, + "end": 5831.9, + "probability": 0.9841 + }, + { + "start": 5833.1, + "end": 5834.28, + "probability": 0.9595 + }, + { + "start": 5835.12, + "end": 5835.96, + "probability": 0.4089 + }, + { + "start": 5836.04, + "end": 5837.74, + "probability": 0.8628 + }, + { + "start": 5838.64, + "end": 5841.9, + "probability": 0.9968 + }, + { + "start": 5842.12, + "end": 5843.58, + "probability": 0.9891 + }, + { + "start": 5844.3, + "end": 5846.66, + "probability": 0.9529 + }, + { + "start": 5847.94, + "end": 5848.7, + "probability": 0.9287 + }, + { + "start": 5849.26, + "end": 5851.12, + "probability": 0.9974 + }, + { + "start": 5851.86, + "end": 5853.1, + "probability": 0.9901 + }, + { + "start": 5853.7, + "end": 5854.26, + "probability": 0.9797 + }, + { + "start": 5854.66, + "end": 5854.88, + "probability": 0.4854 + }, + { + "start": 5854.92, + "end": 5855.6, + "probability": 0.6409 + }, + { + "start": 5856.58, + "end": 5858.54, + "probability": 0.9919 + }, + { + "start": 5859.4, + "end": 5860.62, + "probability": 0.7647 + }, + { + "start": 5863.93, + "end": 5868.4, + "probability": 0.9032 + }, + { + "start": 5868.84, + "end": 5871.0, + "probability": 0.7392 + }, + { + "start": 5871.78, + "end": 5873.0, + "probability": 0.829 + }, + { + "start": 5873.76, + "end": 5874.82, + "probability": 0.9631 + }, + { + "start": 5875.0, + "end": 5879.08, + "probability": 0.9854 + }, + { + "start": 5879.2, + "end": 5879.4, + "probability": 0.816 + }, + { + "start": 5879.72, + "end": 5883.24, + "probability": 0.8942 + }, + { + "start": 5884.24, + "end": 5884.76, + "probability": 0.9976 + }, + { + "start": 5885.98, + "end": 5887.44, + "probability": 0.8467 + }, + { + "start": 5890.02, + "end": 5893.92, + "probability": 0.9417 + }, + { + "start": 5894.12, + "end": 5894.72, + "probability": 0.4934 + }, + { + "start": 5895.68, + "end": 5896.44, + "probability": 0.9714 + }, + { + "start": 5897.62, + "end": 5898.84, + "probability": 0.8567 + }, + { + "start": 5899.94, + "end": 5902.96, + "probability": 0.7656 + }, + { + "start": 5904.02, + "end": 5905.22, + "probability": 0.6259 + }, + { + "start": 5905.42, + "end": 5908.52, + "probability": 0.8258 + }, + { + "start": 5909.28, + "end": 5911.62, + "probability": 0.9299 + }, + { + "start": 5911.8, + "end": 5912.3, + "probability": 0.4754 + }, + { + "start": 5912.82, + "end": 5913.78, + "probability": 0.9206 + }, + { + "start": 5915.02, + "end": 5918.32, + "probability": 0.9431 + }, + { + "start": 5918.32, + "end": 5923.92, + "probability": 0.9745 + }, + { + "start": 5925.66, + "end": 5930.42, + "probability": 0.9722 + }, + { + "start": 5931.62, + "end": 5932.7, + "probability": 0.9729 + }, + { + "start": 5932.9, + "end": 5933.42, + "probability": 0.9097 + }, + { + "start": 5933.82, + "end": 5934.96, + "probability": 0.9726 + }, + { + "start": 5935.26, + "end": 5936.06, + "probability": 0.8413 + }, + { + "start": 5936.76, + "end": 5937.4, + "probability": 0.9069 + }, + { + "start": 5938.14, + "end": 5941.7, + "probability": 0.9479 + }, + { + "start": 5942.32, + "end": 5943.04, + "probability": 0.9355 + }, + { + "start": 5943.88, + "end": 5945.24, + "probability": 0.9884 + }, + { + "start": 5945.34, + "end": 5946.38, + "probability": 0.8884 + }, + { + "start": 5946.46, + "end": 5947.44, + "probability": 0.906 + }, + { + "start": 5948.44, + "end": 5951.2, + "probability": 0.8958 + }, + { + "start": 5951.94, + "end": 5956.46, + "probability": 0.9346 + }, + { + "start": 5957.32, + "end": 5959.78, + "probability": 0.9917 + }, + { + "start": 5960.12, + "end": 5962.9, + "probability": 0.9082 + }, + { + "start": 5962.98, + "end": 5964.92, + "probability": 0.9918 + }, + { + "start": 5965.56, + "end": 5966.58, + "probability": 0.9052 + }, + { + "start": 5966.8, + "end": 5970.6, + "probability": 0.9924 + }, + { + "start": 5971.12, + "end": 5972.74, + "probability": 0.9559 + }, + { + "start": 5972.86, + "end": 5973.42, + "probability": 0.9807 + }, + { + "start": 5974.7, + "end": 5977.02, + "probability": 0.9505 + }, + { + "start": 5977.44, + "end": 5978.41, + "probability": 0.9935 + }, + { + "start": 5979.36, + "end": 5981.5, + "probability": 0.9904 + }, + { + "start": 5982.24, + "end": 5982.7, + "probability": 0.8291 + }, + { + "start": 5983.36, + "end": 5986.42, + "probability": 0.995 + }, + { + "start": 5987.02, + "end": 5989.02, + "probability": 0.9905 + }, + { + "start": 5990.06, + "end": 5991.06, + "probability": 0.8137 + }, + { + "start": 5992.28, + "end": 5995.22, + "probability": 0.8323 + }, + { + "start": 5995.3, + "end": 5995.62, + "probability": 0.9353 + }, + { + "start": 5995.68, + "end": 5996.94, + "probability": 0.8284 + }, + { + "start": 5997.08, + "end": 5998.68, + "probability": 0.9022 + }, + { + "start": 5999.66, + "end": 6001.38, + "probability": 0.5906 + }, + { + "start": 6001.68, + "end": 6002.92, + "probability": 0.9814 + }, + { + "start": 6003.64, + "end": 6003.94, + "probability": 0.886 + }, + { + "start": 6003.96, + "end": 6005.06, + "probability": 0.8522 + }, + { + "start": 6007.68, + "end": 6008.3, + "probability": 0.9688 + }, + { + "start": 6008.44, + "end": 6010.44, + "probability": 0.9795 + }, + { + "start": 6010.9, + "end": 6013.0, + "probability": 0.9985 + }, + { + "start": 6013.62, + "end": 6016.58, + "probability": 0.9817 + }, + { + "start": 6017.04, + "end": 6017.14, + "probability": 0.7521 + }, + { + "start": 6017.94, + "end": 6019.92, + "probability": 0.9112 + }, + { + "start": 6021.22, + "end": 6022.58, + "probability": 0.9629 + }, + { + "start": 6022.8, + "end": 6023.34, + "probability": 0.1925 + }, + { + "start": 6023.38, + "end": 6024.54, + "probability": 0.7333 + }, + { + "start": 6024.72, + "end": 6025.98, + "probability": 0.864 + }, + { + "start": 6027.3, + "end": 6029.78, + "probability": 0.7927 + }, + { + "start": 6030.3, + "end": 6031.16, + "probability": 0.834 + }, + { + "start": 6031.84, + "end": 6032.76, + "probability": 0.6574 + }, + { + "start": 6033.3, + "end": 6034.44, + "probability": 0.8408 + }, + { + "start": 6034.46, + "end": 6037.53, + "probability": 0.6021 + }, + { + "start": 6038.9, + "end": 6040.24, + "probability": 0.8736 + }, + { + "start": 6040.58, + "end": 6044.7, + "probability": 0.0155 + }, + { + "start": 6044.74, + "end": 6047.38, + "probability": 0.2677 + }, + { + "start": 6047.9, + "end": 6048.44, + "probability": 0.292 + }, + { + "start": 6048.98, + "end": 6050.7, + "probability": 0.5949 + }, + { + "start": 6051.78, + "end": 6052.5, + "probability": 0.4791 + }, + { + "start": 6053.14, + "end": 6053.8, + "probability": 0.9013 + }, + { + "start": 6054.6, + "end": 6055.08, + "probability": 0.4856 + }, + { + "start": 6055.96, + "end": 6057.74, + "probability": 0.7089 + }, + { + "start": 6059.06, + "end": 6061.0, + "probability": 0.9958 + }, + { + "start": 6063.78, + "end": 6065.54, + "probability": 0.7869 + }, + { + "start": 6066.42, + "end": 6069.74, + "probability": 0.9941 + }, + { + "start": 6072.93, + "end": 6081.04, + "probability": 0.9959 + }, + { + "start": 6081.86, + "end": 6082.56, + "probability": 0.8108 + }, + { + "start": 6083.04, + "end": 6083.58, + "probability": 0.5071 + }, + { + "start": 6084.42, + "end": 6087.26, + "probability": 0.5142 + }, + { + "start": 6087.72, + "end": 6090.08, + "probability": 0.5671 + }, + { + "start": 6091.04, + "end": 6096.22, + "probability": 0.9266 + }, + { + "start": 6097.42, + "end": 6098.86, + "probability": 0.9647 + }, + { + "start": 6099.88, + "end": 6101.48, + "probability": 0.9363 + }, + { + "start": 6103.98, + "end": 6105.94, + "probability": 0.7693 + }, + { + "start": 6106.14, + "end": 6110.42, + "probability": 0.9929 + }, + { + "start": 6111.04, + "end": 6112.22, + "probability": 0.7618 + }, + { + "start": 6112.6, + "end": 6115.06, + "probability": 0.6475 + }, + { + "start": 6115.44, + "end": 6116.18, + "probability": 0.9056 + }, + { + "start": 6116.26, + "end": 6117.32, + "probability": 0.8719 + }, + { + "start": 6118.92, + "end": 6121.98, + "probability": 0.936 + }, + { + "start": 6122.6, + "end": 6122.82, + "probability": 0.6205 + }, + { + "start": 6122.88, + "end": 6128.12, + "probability": 0.9581 + }, + { + "start": 6128.96, + "end": 6129.52, + "probability": 0.9734 + }, + { + "start": 6130.06, + "end": 6130.62, + "probability": 0.9087 + }, + { + "start": 6131.54, + "end": 6133.06, + "probability": 0.9853 + }, + { + "start": 6134.44, + "end": 6135.16, + "probability": 0.9421 + }, + { + "start": 6136.16, + "end": 6138.43, + "probability": 0.9963 + }, + { + "start": 6139.22, + "end": 6140.32, + "probability": 0.7075 + }, + { + "start": 6141.34, + "end": 6143.36, + "probability": 0.9836 + }, + { + "start": 6144.3, + "end": 6147.56, + "probability": 0.8469 + }, + { + "start": 6149.06, + "end": 6150.06, + "probability": 0.7495 + }, + { + "start": 6150.4, + "end": 6151.08, + "probability": 0.8613 + }, + { + "start": 6151.14, + "end": 6155.7, + "probability": 0.868 + }, + { + "start": 6156.68, + "end": 6159.88, + "probability": 0.9915 + }, + { + "start": 6161.74, + "end": 6165.3, + "probability": 0.9462 + }, + { + "start": 6166.1, + "end": 6166.6, + "probability": 0.8588 + }, + { + "start": 6169.5, + "end": 6171.42, + "probability": 0.9862 + }, + { + "start": 6172.08, + "end": 6173.72, + "probability": 0.6832 + }, + { + "start": 6174.66, + "end": 6175.56, + "probability": 0.9399 + }, + { + "start": 6176.62, + "end": 6180.68, + "probability": 0.939 + }, + { + "start": 6181.76, + "end": 6182.24, + "probability": 0.4909 + }, + { + "start": 6182.76, + "end": 6184.34, + "probability": 0.876 + }, + { + "start": 6184.36, + "end": 6185.7, + "probability": 0.5477 + }, + { + "start": 6185.88, + "end": 6187.5, + "probability": 0.9889 + }, + { + "start": 6187.5, + "end": 6190.1, + "probability": 0.9855 + }, + { + "start": 6190.88, + "end": 6192.02, + "probability": 0.8712 + }, + { + "start": 6192.98, + "end": 6193.74, + "probability": 0.75 + }, + { + "start": 6194.72, + "end": 6196.62, + "probability": 0.9385 + }, + { + "start": 6197.2, + "end": 6198.72, + "probability": 0.7139 + }, + { + "start": 6199.48, + "end": 6203.12, + "probability": 0.9027 + }, + { + "start": 6203.7, + "end": 6207.58, + "probability": 0.9868 + }, + { + "start": 6207.58, + "end": 6210.6, + "probability": 0.9629 + }, + { + "start": 6211.06, + "end": 6212.42, + "probability": 0.973 + }, + { + "start": 6212.72, + "end": 6215.68, + "probability": 0.9844 + }, + { + "start": 6217.73, + "end": 6220.76, + "probability": 0.7401 + }, + { + "start": 6222.24, + "end": 6222.7, + "probability": 0.7244 + }, + { + "start": 6224.04, + "end": 6224.14, + "probability": 0.2988 + }, + { + "start": 6225.44, + "end": 6229.04, + "probability": 0.9244 + }, + { + "start": 6230.1, + "end": 6233.16, + "probability": 0.9788 + }, + { + "start": 6233.68, + "end": 6234.42, + "probability": 0.6971 + }, + { + "start": 6235.26, + "end": 6242.22, + "probability": 0.896 + }, + { + "start": 6242.48, + "end": 6242.86, + "probability": 0.8069 + }, + { + "start": 6243.84, + "end": 6245.96, + "probability": 0.8795 + }, + { + "start": 6246.02, + "end": 6247.52, + "probability": 0.7397 + }, + { + "start": 6247.62, + "end": 6249.01, + "probability": 0.862 + }, + { + "start": 6249.86, + "end": 6252.4, + "probability": 0.9936 + }, + { + "start": 6252.4, + "end": 6254.38, + "probability": 0.9868 + }, + { + "start": 6255.26, + "end": 6259.22, + "probability": 0.7999 + }, + { + "start": 6260.26, + "end": 6260.84, + "probability": 0.7542 + }, + { + "start": 6261.8, + "end": 6263.02, + "probability": 0.8926 + }, + { + "start": 6264.76, + "end": 6265.58, + "probability": 0.9661 + }, + { + "start": 6267.4, + "end": 6268.54, + "probability": 0.5583 + }, + { + "start": 6269.14, + "end": 6271.22, + "probability": 0.9941 + }, + { + "start": 6272.94, + "end": 6274.5, + "probability": 0.6427 + }, + { + "start": 6275.2, + "end": 6278.1, + "probability": 0.9666 + }, + { + "start": 6278.16, + "end": 6280.54, + "probability": 0.9332 + }, + { + "start": 6280.9, + "end": 6282.16, + "probability": 0.5557 + }, + { + "start": 6282.16, + "end": 6282.64, + "probability": 0.9695 + }, + { + "start": 6283.14, + "end": 6284.5, + "probability": 0.9938 + }, + { + "start": 6284.56, + "end": 6286.28, + "probability": 0.9927 + }, + { + "start": 6287.46, + "end": 6290.9, + "probability": 0.8541 + }, + { + "start": 6292.08, + "end": 6294.46, + "probability": 0.9219 + }, + { + "start": 6295.96, + "end": 6298.96, + "probability": 0.9592 + }, + { + "start": 6299.94, + "end": 6302.0, + "probability": 0.9868 + }, + { + "start": 6303.22, + "end": 6306.54, + "probability": 0.9661 + }, + { + "start": 6306.74, + "end": 6309.54, + "probability": 0.8519 + }, + { + "start": 6310.16, + "end": 6310.2, + "probability": 0.3542 + }, + { + "start": 6310.2, + "end": 6311.02, + "probability": 0.9536 + }, + { + "start": 6312.62, + "end": 6315.02, + "probability": 0.7975 + }, + { + "start": 6315.78, + "end": 6317.96, + "probability": 0.8613 + }, + { + "start": 6318.62, + "end": 6321.74, + "probability": 0.9825 + }, + { + "start": 6322.46, + "end": 6324.34, + "probability": 0.7912 + }, + { + "start": 6325.3, + "end": 6326.03, + "probability": 0.8826 + }, + { + "start": 6326.28, + "end": 6326.72, + "probability": 0.9198 + }, + { + "start": 6327.1, + "end": 6329.46, + "probability": 0.8636 + }, + { + "start": 6329.66, + "end": 6331.73, + "probability": 0.9537 + }, + { + "start": 6333.48, + "end": 6333.88, + "probability": 0.0146 + }, + { + "start": 6334.38, + "end": 6335.6, + "probability": 0.932 + }, + { + "start": 6336.06, + "end": 6336.52, + "probability": 0.3461 + }, + { + "start": 6337.64, + "end": 6339.11, + "probability": 0.7853 + }, + { + "start": 6340.1, + "end": 6347.32, + "probability": 0.6116 + }, + { + "start": 6349.52, + "end": 6352.15, + "probability": 0.0611 + }, + { + "start": 6352.86, + "end": 6357.5, + "probability": 0.0475 + }, + { + "start": 6359.02, + "end": 6361.92, + "probability": 0.2346 + }, + { + "start": 6364.34, + "end": 6364.44, + "probability": 0.0263 + }, + { + "start": 6364.44, + "end": 6364.48, + "probability": 0.1493 + }, + { + "start": 6364.48, + "end": 6364.48, + "probability": 0.016 + }, + { + "start": 6364.48, + "end": 6369.56, + "probability": 0.4306 + }, + { + "start": 6370.06, + "end": 6370.74, + "probability": 0.2075 + }, + { + "start": 6371.48, + "end": 6373.1, + "probability": 0.4941 + }, + { + "start": 6373.98, + "end": 6375.76, + "probability": 0.6913 + }, + { + "start": 6377.1, + "end": 6378.22, + "probability": 0.7561 + }, + { + "start": 6378.86, + "end": 6380.1, + "probability": 0.9299 + }, + { + "start": 6382.0, + "end": 6382.88, + "probability": 0.991 + }, + { + "start": 6383.72, + "end": 6384.54, + "probability": 0.9424 + }, + { + "start": 6386.48, + "end": 6388.32, + "probability": 0.9523 + }, + { + "start": 6389.88, + "end": 6390.16, + "probability": 0.6694 + }, + { + "start": 6391.0, + "end": 6392.02, + "probability": 0.9302 + }, + { + "start": 6392.8, + "end": 6393.4, + "probability": 0.9883 + }, + { + "start": 6394.84, + "end": 6396.02, + "probability": 0.9801 + }, + { + "start": 6396.86, + "end": 6397.5, + "probability": 0.6749 + }, + { + "start": 6397.98, + "end": 6401.16, + "probability": 0.986 + }, + { + "start": 6401.44, + "end": 6402.26, + "probability": 0.9283 + }, + { + "start": 6403.14, + "end": 6406.26, + "probability": 0.599 + }, + { + "start": 6406.84, + "end": 6411.7, + "probability": 0.9645 + }, + { + "start": 6412.04, + "end": 6413.72, + "probability": 0.7804 + }, + { + "start": 6414.14, + "end": 6414.3, + "probability": 0.7151 + }, + { + "start": 6415.02, + "end": 6417.38, + "probability": 0.903 + }, + { + "start": 6418.08, + "end": 6424.2, + "probability": 0.923 + }, + { + "start": 6425.18, + "end": 6425.66, + "probability": 0.8917 + }, + { + "start": 6425.84, + "end": 6426.32, + "probability": 0.7821 + }, + { + "start": 6426.44, + "end": 6429.28, + "probability": 0.9402 + }, + { + "start": 6429.58, + "end": 6433.18, + "probability": 0.9874 + }, + { + "start": 6433.56, + "end": 6433.92, + "probability": 0.3889 + }, + { + "start": 6434.06, + "end": 6436.5, + "probability": 0.5047 + }, + { + "start": 6436.54, + "end": 6437.2, + "probability": 0.9711 + }, + { + "start": 6437.72, + "end": 6438.66, + "probability": 0.9359 + }, + { + "start": 6439.02, + "end": 6439.32, + "probability": 0.5889 + }, + { + "start": 6439.98, + "end": 6440.64, + "probability": 0.7516 + }, + { + "start": 6444.85, + "end": 6448.88, + "probability": 0.6708 + }, + { + "start": 6449.72, + "end": 6452.6, + "probability": 0.9714 + }, + { + "start": 6453.8, + "end": 6455.38, + "probability": 0.4475 + }, + { + "start": 6455.38, + "end": 6455.64, + "probability": 0.074 + }, + { + "start": 6456.72, + "end": 6458.42, + "probability": 0.6533 + }, + { + "start": 6458.58, + "end": 6460.66, + "probability": 0.9639 + }, + { + "start": 6460.96, + "end": 6462.42, + "probability": 0.9439 + }, + { + "start": 6462.64, + "end": 6465.92, + "probability": 0.6403 + }, + { + "start": 6466.46, + "end": 6469.0, + "probability": 0.8016 + }, + { + "start": 6470.57, + "end": 6470.92, + "probability": 0.0215 + }, + { + "start": 6470.92, + "end": 6471.3, + "probability": 0.2338 + }, + { + "start": 6471.36, + "end": 6472.5, + "probability": 0.6037 + }, + { + "start": 6472.64, + "end": 6474.28, + "probability": 0.8846 + }, + { + "start": 6474.48, + "end": 6476.04, + "probability": 0.2198 + }, + { + "start": 6476.32, + "end": 6477.12, + "probability": 0.2285 + }, + { + "start": 6477.4, + "end": 6478.06, + "probability": 0.4682 + }, + { + "start": 6479.58, + "end": 6481.68, + "probability": 0.9733 + }, + { + "start": 6482.36, + "end": 6487.58, + "probability": 0.9021 + }, + { + "start": 6487.86, + "end": 6488.8, + "probability": 0.2853 + }, + { + "start": 6489.74, + "end": 6489.94, + "probability": 0.2756 + }, + { + "start": 6490.2, + "end": 6490.66, + "probability": 0.8821 + }, + { + "start": 6490.78, + "end": 6494.02, + "probability": 0.9927 + }, + { + "start": 6494.3, + "end": 6497.76, + "probability": 0.964 + }, + { + "start": 6500.58, + "end": 6500.68, + "probability": 0.8511 + }, + { + "start": 6503.08, + "end": 6503.48, + "probability": 0.6065 + }, + { + "start": 6503.58, + "end": 6504.12, + "probability": 0.5586 + }, + { + "start": 6504.22, + "end": 6505.42, + "probability": 0.9947 + }, + { + "start": 6505.6, + "end": 6506.94, + "probability": 0.9541 + }, + { + "start": 6507.32, + "end": 6508.46, + "probability": 0.839 + }, + { + "start": 6508.88, + "end": 6511.04, + "probability": 0.9893 + }, + { + "start": 6511.58, + "end": 6513.66, + "probability": 0.9818 + }, + { + "start": 6514.1, + "end": 6517.0, + "probability": 0.9726 + }, + { + "start": 6517.38, + "end": 6518.95, + "probability": 0.9811 + }, + { + "start": 6519.72, + "end": 6520.12, + "probability": 0.817 + }, + { + "start": 6520.62, + "end": 6521.28, + "probability": 0.9232 + }, + { + "start": 6521.34, + "end": 6521.98, + "probability": 0.8057 + }, + { + "start": 6522.12, + "end": 6523.01, + "probability": 0.9907 + }, + { + "start": 6523.5, + "end": 6524.66, + "probability": 0.9836 + }, + { + "start": 6525.44, + "end": 6530.52, + "probability": 0.9931 + }, + { + "start": 6531.08, + "end": 6536.46, + "probability": 0.9932 + }, + { + "start": 6536.88, + "end": 6539.8, + "probability": 0.9929 + }, + { + "start": 6540.04, + "end": 6541.02, + "probability": 0.9074 + }, + { + "start": 6541.16, + "end": 6543.04, + "probability": 0.9531 + }, + { + "start": 6543.42, + "end": 6543.8, + "probability": 0.7403 + }, + { + "start": 6544.76, + "end": 6547.26, + "probability": 0.9092 + }, + { + "start": 6548.28, + "end": 6548.66, + "probability": 0.1934 + }, + { + "start": 6549.84, + "end": 6550.38, + "probability": 0.0036 + }, + { + "start": 6551.54, + "end": 6555.86, + "probability": 0.0258 + }, + { + "start": 6556.88, + "end": 6556.98, + "probability": 0.128 + }, + { + "start": 6557.4, + "end": 6558.04, + "probability": 0.0593 + }, + { + "start": 6558.04, + "end": 6559.52, + "probability": 0.8123 + }, + { + "start": 6560.02, + "end": 6561.62, + "probability": 0.6609 + }, + { + "start": 6562.16, + "end": 6563.26, + "probability": 0.9215 + }, + { + "start": 6564.16, + "end": 6567.28, + "probability": 0.9677 + }, + { + "start": 6568.64, + "end": 6569.48, + "probability": 0.9858 + }, + { + "start": 6572.86, + "end": 6575.22, + "probability": 0.7599 + }, + { + "start": 6575.92, + "end": 6577.38, + "probability": 0.7339 + }, + { + "start": 6577.9, + "end": 6582.12, + "probability": 0.8104 + }, + { + "start": 6582.7, + "end": 6587.7, + "probability": 0.8772 + }, + { + "start": 6590.28, + "end": 6591.9, + "probability": 0.6922 + }, + { + "start": 6592.58, + "end": 6594.14, + "probability": 0.9089 + }, + { + "start": 6594.92, + "end": 6596.32, + "probability": 0.9204 + }, + { + "start": 6597.32, + "end": 6600.52, + "probability": 0.9876 + }, + { + "start": 6601.48, + "end": 6604.14, + "probability": 0.9401 + }, + { + "start": 6605.38, + "end": 6608.82, + "probability": 0.9906 + }, + { + "start": 6608.98, + "end": 6610.3, + "probability": 0.9708 + }, + { + "start": 6611.64, + "end": 6611.64, + "probability": 0.0136 + }, + { + "start": 6611.64, + "end": 6613.62, + "probability": 0.7184 + }, + { + "start": 6614.96, + "end": 6615.82, + "probability": 0.9211 + }, + { + "start": 6615.94, + "end": 6616.42, + "probability": 0.9376 + }, + { + "start": 6616.54, + "end": 6618.58, + "probability": 0.9874 + }, + { + "start": 6618.58, + "end": 6621.54, + "probability": 0.5591 + }, + { + "start": 6621.64, + "end": 6624.86, + "probability": 0.6805 + }, + { + "start": 6625.02, + "end": 6626.52, + "probability": 0.9575 + }, + { + "start": 6626.64, + "end": 6629.14, + "probability": 0.6889 + }, + { + "start": 6629.78, + "end": 6631.88, + "probability": 0.9391 + }, + { + "start": 6631.94, + "end": 6634.0, + "probability": 0.8522 + }, + { + "start": 6634.68, + "end": 6637.08, + "probability": 0.9917 + }, + { + "start": 6637.08, + "end": 6639.14, + "probability": 0.9435 + }, + { + "start": 6640.1, + "end": 6643.54, + "probability": 0.9948 + }, + { + "start": 6643.96, + "end": 6647.44, + "probability": 0.8423 + }, + { + "start": 6649.34, + "end": 6649.54, + "probability": 0.371 + }, + { + "start": 6649.66, + "end": 6651.64, + "probability": 0.9991 + }, + { + "start": 6651.64, + "end": 6654.08, + "probability": 0.9663 + }, + { + "start": 6654.94, + "end": 6659.94, + "probability": 0.9944 + }, + { + "start": 6660.76, + "end": 6665.4, + "probability": 0.992 + }, + { + "start": 6666.56, + "end": 6667.52, + "probability": 0.8125 + }, + { + "start": 6667.82, + "end": 6672.47, + "probability": 0.9932 + }, + { + "start": 6673.08, + "end": 6674.54, + "probability": 0.8494 + }, + { + "start": 6675.64, + "end": 6675.84, + "probability": 0.2846 + }, + { + "start": 6675.86, + "end": 6679.42, + "probability": 0.8355 + }, + { + "start": 6679.42, + "end": 6684.16, + "probability": 0.9774 + }, + { + "start": 6685.0, + "end": 6685.5, + "probability": 0.4748 + }, + { + "start": 6685.5, + "end": 6688.54, + "probability": 0.8369 + }, + { + "start": 6688.54, + "end": 6691.06, + "probability": 0.9572 + }, + { + "start": 6692.42, + "end": 6693.94, + "probability": 0.8215 + }, + { + "start": 6694.1, + "end": 6697.2, + "probability": 0.9968 + }, + { + "start": 6697.8, + "end": 6699.74, + "probability": 0.9851 + }, + { + "start": 6701.0, + "end": 6705.4, + "probability": 0.9893 + }, + { + "start": 6706.2, + "end": 6713.92, + "probability": 0.9012 + }, + { + "start": 6715.04, + "end": 6717.68, + "probability": 0.9845 + }, + { + "start": 6717.72, + "end": 6718.56, + "probability": 0.9402 + }, + { + "start": 6719.72, + "end": 6723.08, + "probability": 0.9829 + }, + { + "start": 6723.54, + "end": 6726.94, + "probability": 0.9847 + }, + { + "start": 6727.08, + "end": 6728.52, + "probability": 0.7912 + }, + { + "start": 6729.38, + "end": 6733.94, + "probability": 0.9949 + }, + { + "start": 6734.64, + "end": 6735.18, + "probability": 0.7621 + }, + { + "start": 6735.28, + "end": 6736.46, + "probability": 0.5554 + }, + { + "start": 6736.68, + "end": 6740.9, + "probability": 0.9913 + }, + { + "start": 6741.54, + "end": 6744.76, + "probability": 0.6549 + }, + { + "start": 6745.58, + "end": 6749.54, + "probability": 0.9911 + }, + { + "start": 6749.68, + "end": 6752.0, + "probability": 0.994 + }, + { + "start": 6752.7, + "end": 6756.94, + "probability": 0.7911 + }, + { + "start": 6757.14, + "end": 6758.32, + "probability": 0.9417 + }, + { + "start": 6758.56, + "end": 6760.98, + "probability": 0.9922 + }, + { + "start": 6761.36, + "end": 6762.22, + "probability": 0.7714 + }, + { + "start": 6762.5, + "end": 6765.96, + "probability": 0.9924 + }, + { + "start": 6765.96, + "end": 6768.66, + "probability": 0.9946 + }, + { + "start": 6769.42, + "end": 6770.3, + "probability": 0.8354 + }, + { + "start": 6771.0, + "end": 6773.7, + "probability": 0.7195 + }, + { + "start": 6773.8, + "end": 6776.24, + "probability": 0.7964 + }, + { + "start": 6777.04, + "end": 6779.58, + "probability": 0.9014 + }, + { + "start": 6780.0, + "end": 6782.51, + "probability": 0.9381 + }, + { + "start": 6783.38, + "end": 6784.92, + "probability": 0.6917 + }, + { + "start": 6789.44, + "end": 6791.46, + "probability": 0.6727 + }, + { + "start": 6791.72, + "end": 6796.68, + "probability": 0.9283 + }, + { + "start": 6797.74, + "end": 6803.27, + "probability": 0.9823 + }, + { + "start": 6804.4, + "end": 6805.54, + "probability": 0.7554 + }, + { + "start": 6805.74, + "end": 6806.9, + "probability": 0.8871 + }, + { + "start": 6807.22, + "end": 6811.26, + "probability": 0.8558 + }, + { + "start": 6811.94, + "end": 6816.26, + "probability": 0.0457 + }, + { + "start": 6841.82, + "end": 6842.58, + "probability": 0.2726 + }, + { + "start": 6845.31, + "end": 6845.7, + "probability": 0.4213 + }, + { + "start": 6845.7, + "end": 6846.8, + "probability": 0.6708 + }, + { + "start": 6847.92, + "end": 6849.16, + "probability": 0.728 + }, + { + "start": 6850.9, + "end": 6857.68, + "probability": 0.0064 + }, + { + "start": 6870.08, + "end": 6870.9, + "probability": 0.0768 + }, + { + "start": 6870.9, + "end": 6872.74, + "probability": 0.5976 + }, + { + "start": 6873.2, + "end": 6877.5, + "probability": 0.7134 + }, + { + "start": 6877.72, + "end": 6880.42, + "probability": 0.3517 + }, + { + "start": 6880.84, + "end": 6882.18, + "probability": 0.812 + }, + { + "start": 6882.32, + "end": 6884.68, + "probability": 0.9509 + }, + { + "start": 6884.76, + "end": 6886.92, + "probability": 0.9912 + }, + { + "start": 6887.6, + "end": 6888.82, + "probability": 0.967 + }, + { + "start": 6889.48, + "end": 6890.44, + "probability": 0.8139 + }, + { + "start": 6890.94, + "end": 6892.2, + "probability": 0.7445 + }, + { + "start": 6892.26, + "end": 6893.06, + "probability": 0.6676 + }, + { + "start": 6893.24, + "end": 6894.46, + "probability": 0.7264 + }, + { + "start": 6895.34, + "end": 6897.74, + "probability": 0.9708 + }, + { + "start": 6898.34, + "end": 6900.26, + "probability": 0.9983 + }, + { + "start": 6900.64, + "end": 6904.74, + "probability": 0.7469 + }, + { + "start": 6904.92, + "end": 6907.04, + "probability": 0.9891 + }, + { + "start": 6907.08, + "end": 6909.17, + "probability": 0.9925 + }, + { + "start": 6910.14, + "end": 6911.04, + "probability": 0.7356 + }, + { + "start": 6914.06, + "end": 6917.3, + "probability": 0.9564 + }, + { + "start": 6918.46, + "end": 6922.58, + "probability": 0.9779 + }, + { + "start": 6923.46, + "end": 6926.58, + "probability": 0.9816 + }, + { + "start": 6928.34, + "end": 6929.56, + "probability": 0.6337 + }, + { + "start": 6930.12, + "end": 6931.68, + "probability": 0.9695 + }, + { + "start": 6933.32, + "end": 6935.74, + "probability": 0.5024 + }, + { + "start": 6935.74, + "end": 6935.74, + "probability": 0.4694 + }, + { + "start": 6935.74, + "end": 6935.88, + "probability": 0.5212 + }, + { + "start": 6936.3, + "end": 6941.3, + "probability": 0.9556 + }, + { + "start": 6942.2, + "end": 6948.26, + "probability": 0.9836 + }, + { + "start": 6948.54, + "end": 6951.02, + "probability": 0.8242 + }, + { + "start": 6951.78, + "end": 6954.08, + "probability": 0.8616 + }, + { + "start": 6955.02, + "end": 6955.96, + "probability": 0.8713 + }, + { + "start": 6957.46, + "end": 6967.14, + "probability": 0.9774 + }, + { + "start": 6967.94, + "end": 6969.06, + "probability": 0.8106 + }, + { + "start": 6970.48, + "end": 6973.18, + "probability": 0.9132 + }, + { + "start": 6974.08, + "end": 6976.46, + "probability": 0.9032 + }, + { + "start": 6977.9, + "end": 6981.8, + "probability": 0.9091 + }, + { + "start": 6982.44, + "end": 6985.72, + "probability": 0.8037 + }, + { + "start": 6986.22, + "end": 6989.8, + "probability": 0.8846 + }, + { + "start": 6989.88, + "end": 6991.74, + "probability": 0.9492 + }, + { + "start": 6992.62, + "end": 6997.76, + "probability": 0.9832 + }, + { + "start": 6997.92, + "end": 7002.74, + "probability": 0.9876 + }, + { + "start": 7002.86, + "end": 7004.09, + "probability": 0.6654 + }, + { + "start": 7004.68, + "end": 7006.28, + "probability": 0.792 + }, + { + "start": 7006.56, + "end": 7010.56, + "probability": 0.9756 + }, + { + "start": 7011.36, + "end": 7014.0, + "probability": 0.7415 + }, + { + "start": 7014.86, + "end": 7018.83, + "probability": 0.814 + }, + { + "start": 7019.54, + "end": 7023.38, + "probability": 0.8806 + }, + { + "start": 7023.9, + "end": 7024.98, + "probability": 0.8217 + }, + { + "start": 7025.04, + "end": 7025.78, + "probability": 0.2775 + }, + { + "start": 7025.84, + "end": 7026.56, + "probability": 0.7458 + }, + { + "start": 7027.06, + "end": 7028.28, + "probability": 0.8432 + }, + { + "start": 7029.9, + "end": 7031.42, + "probability": 0.7013 + }, + { + "start": 7031.94, + "end": 7033.76, + "probability": 0.9697 + }, + { + "start": 7034.46, + "end": 7037.94, + "probability": 0.8515 + }, + { + "start": 7038.72, + "end": 7041.74, + "probability": 0.9832 + }, + { + "start": 7041.86, + "end": 7043.76, + "probability": 0.9564 + }, + { + "start": 7043.86, + "end": 7044.28, + "probability": 0.8261 + }, + { + "start": 7045.22, + "end": 7047.2, + "probability": 0.8664 + }, + { + "start": 7047.26, + "end": 7050.4, + "probability": 0.9298 + }, + { + "start": 7053.16, + "end": 7054.48, + "probability": 0.9921 + }, + { + "start": 7054.88, + "end": 7057.12, + "probability": 0.9678 + }, + { + "start": 7057.12, + "end": 7058.38, + "probability": 0.8306 + }, + { + "start": 7065.6, + "end": 7066.4, + "probability": 0.5579 + }, + { + "start": 7066.64, + "end": 7067.6, + "probability": 0.8608 + }, + { + "start": 7070.14, + "end": 7072.54, + "probability": 0.7383 + }, + { + "start": 7072.54, + "end": 7073.04, + "probability": 0.4444 + }, + { + "start": 7073.08, + "end": 7074.84, + "probability": 0.7408 + }, + { + "start": 7074.98, + "end": 7076.66, + "probability": 0.7843 + }, + { + "start": 7077.04, + "end": 7078.66, + "probability": 0.8716 + }, + { + "start": 7078.8, + "end": 7082.78, + "probability": 0.9764 + }, + { + "start": 7082.84, + "end": 7088.04, + "probability": 0.8609 + }, + { + "start": 7088.54, + "end": 7092.3, + "probability": 0.9818 + }, + { + "start": 7092.72, + "end": 7093.1, + "probability": 0.812 + }, + { + "start": 7094.5, + "end": 7096.62, + "probability": 0.8776 + }, + { + "start": 7098.52, + "end": 7100.2, + "probability": 0.6377 + }, + { + "start": 7102.7, + "end": 7106.92, + "probability": 0.8335 + }, + { + "start": 7108.02, + "end": 7109.8, + "probability": 0.8174 + }, + { + "start": 7110.56, + "end": 7116.94, + "probability": 0.17 + }, + { + "start": 7117.62, + "end": 7119.2, + "probability": 0.8619 + }, + { + "start": 7120.16, + "end": 7120.34, + "probability": 0.0576 + }, + { + "start": 7120.34, + "end": 7125.36, + "probability": 0.8893 + }, + { + "start": 7125.4, + "end": 7126.54, + "probability": 0.8893 + }, + { + "start": 7132.34, + "end": 7133.24, + "probability": 0.5864 + }, + { + "start": 7133.58, + "end": 7135.17, + "probability": 0.689 + }, + { + "start": 7135.28, + "end": 7141.52, + "probability": 0.9724 + }, + { + "start": 7141.66, + "end": 7144.1, + "probability": 0.868 + }, + { + "start": 7144.6, + "end": 7150.1, + "probability": 0.8633 + }, + { + "start": 7150.66, + "end": 7158.78, + "probability": 0.989 + }, + { + "start": 7159.24, + "end": 7162.42, + "probability": 0.9651 + }, + { + "start": 7162.52, + "end": 7169.4, + "probability": 0.9949 + }, + { + "start": 7169.4, + "end": 7176.44, + "probability": 0.9926 + }, + { + "start": 7179.36, + "end": 7181.2, + "probability": 0.9943 + }, + { + "start": 7182.0, + "end": 7184.96, + "probability": 0.9814 + }, + { + "start": 7185.06, + "end": 7186.34, + "probability": 0.8936 + }, + { + "start": 7186.64, + "end": 7188.32, + "probability": 0.9811 + }, + { + "start": 7188.4, + "end": 7190.04, + "probability": 0.9886 + }, + { + "start": 7190.9, + "end": 7193.82, + "probability": 0.9882 + }, + { + "start": 7195.06, + "end": 7198.7, + "probability": 0.926 + }, + { + "start": 7199.16, + "end": 7206.98, + "probability": 0.9886 + }, + { + "start": 7207.4, + "end": 7208.44, + "probability": 0.7391 + }, + { + "start": 7209.02, + "end": 7213.12, + "probability": 0.9893 + }, + { + "start": 7213.38, + "end": 7215.7, + "probability": 0.5874 + }, + { + "start": 7216.06, + "end": 7221.0, + "probability": 0.9897 + }, + { + "start": 7221.72, + "end": 7230.32, + "probability": 0.9937 + }, + { + "start": 7230.79, + "end": 7238.72, + "probability": 0.9895 + }, + { + "start": 7239.2, + "end": 7245.24, + "probability": 0.9613 + }, + { + "start": 7245.24, + "end": 7251.86, + "probability": 0.9966 + }, + { + "start": 7252.18, + "end": 7255.66, + "probability": 0.9576 + }, + { + "start": 7255.98, + "end": 7256.84, + "probability": 0.5652 + }, + { + "start": 7257.02, + "end": 7261.04, + "probability": 0.9892 + }, + { + "start": 7261.44, + "end": 7268.0, + "probability": 0.8983 + }, + { + "start": 7268.44, + "end": 7271.98, + "probability": 0.8775 + }, + { + "start": 7272.06, + "end": 7276.52, + "probability": 0.9136 + }, + { + "start": 7276.72, + "end": 7279.2, + "probability": 0.9527 + }, + { + "start": 7279.4, + "end": 7281.16, + "probability": 0.8849 + }, + { + "start": 7281.34, + "end": 7284.54, + "probability": 0.7292 + }, + { + "start": 7284.68, + "end": 7285.0, + "probability": 0.3931 + }, + { + "start": 7286.12, + "end": 7288.16, + "probability": 0.7061 + }, + { + "start": 7289.08, + "end": 7294.14, + "probability": 0.9506 + }, + { + "start": 7294.3, + "end": 7297.39, + "probability": 0.8109 + }, + { + "start": 7299.0, + "end": 7299.64, + "probability": 0.6694 + }, + { + "start": 7299.7, + "end": 7301.16, + "probability": 0.9784 + }, + { + "start": 7301.3, + "end": 7302.04, + "probability": 0.9462 + }, + { + "start": 7302.36, + "end": 7304.0, + "probability": 0.6787 + }, + { + "start": 7304.02, + "end": 7304.76, + "probability": 0.7999 + }, + { + "start": 7305.74, + "end": 7308.48, + "probability": 0.9381 + }, + { + "start": 7313.58, + "end": 7327.2, + "probability": 0.7407 + }, + { + "start": 7328.78, + "end": 7329.5, + "probability": 0.7191 + }, + { + "start": 7329.66, + "end": 7331.78, + "probability": 0.8548 + }, + { + "start": 7333.14, + "end": 7337.54, + "probability": 0.9924 + }, + { + "start": 7337.62, + "end": 7338.12, + "probability": 0.9586 + }, + { + "start": 7338.38, + "end": 7339.36, + "probability": 0.9868 + }, + { + "start": 7340.3, + "end": 7348.08, + "probability": 0.9851 + }, + { + "start": 7348.2, + "end": 7349.38, + "probability": 0.9647 + }, + { + "start": 7350.06, + "end": 7351.2, + "probability": 0.7953 + }, + { + "start": 7353.06, + "end": 7356.64, + "probability": 0.7724 + }, + { + "start": 7357.44, + "end": 7360.42, + "probability": 0.939 + }, + { + "start": 7363.46, + "end": 7365.72, + "probability": 0.5996 + }, + { + "start": 7365.72, + "end": 7368.52, + "probability": 0.8828 + }, + { + "start": 7372.11, + "end": 7378.3, + "probability": 0.7487 + }, + { + "start": 7379.26, + "end": 7380.28, + "probability": 0.7458 + }, + { + "start": 7382.24, + "end": 7383.74, + "probability": 0.9508 + }, + { + "start": 7383.94, + "end": 7385.16, + "probability": 0.7544 + }, + { + "start": 7385.2, + "end": 7386.0, + "probability": 0.2358 + }, + { + "start": 7386.18, + "end": 7386.82, + "probability": 0.9495 + }, + { + "start": 7388.22, + "end": 7391.06, + "probability": 0.9285 + }, + { + "start": 7392.74, + "end": 7393.96, + "probability": 0.7498 + }, + { + "start": 7394.94, + "end": 7398.42, + "probability": 0.9655 + }, + { + "start": 7400.46, + "end": 7403.68, + "probability": 0.9508 + }, + { + "start": 7404.32, + "end": 7406.92, + "probability": 0.9172 + }, + { + "start": 7407.66, + "end": 7409.34, + "probability": 0.6814 + }, + { + "start": 7410.22, + "end": 7413.72, + "probability": 0.966 + }, + { + "start": 7414.62, + "end": 7415.04, + "probability": 0.7549 + }, + { + "start": 7416.6, + "end": 7420.28, + "probability": 0.8656 + }, + { + "start": 7421.34, + "end": 7423.52, + "probability": 0.9649 + }, + { + "start": 7424.06, + "end": 7425.82, + "probability": 0.9932 + }, + { + "start": 7426.46, + "end": 7427.78, + "probability": 0.8982 + }, + { + "start": 7428.68, + "end": 7431.22, + "probability": 0.9441 + }, + { + "start": 7432.34, + "end": 7433.12, + "probability": 0.8093 + }, + { + "start": 7433.7, + "end": 7435.38, + "probability": 0.9082 + }, + { + "start": 7436.82, + "end": 7439.62, + "probability": 0.9814 + }, + { + "start": 7440.36, + "end": 7444.38, + "probability": 0.9573 + }, + { + "start": 7445.04, + "end": 7446.32, + "probability": 0.8199 + }, + { + "start": 7446.96, + "end": 7448.28, + "probability": 0.9937 + }, + { + "start": 7448.96, + "end": 7452.46, + "probability": 0.8889 + }, + { + "start": 7453.46, + "end": 7456.84, + "probability": 0.685 + }, + { + "start": 7457.14, + "end": 7460.6, + "probability": 0.9674 + }, + { + "start": 7461.88, + "end": 7462.62, + "probability": 0.9259 + }, + { + "start": 7463.66, + "end": 7465.82, + "probability": 0.9387 + }, + { + "start": 7466.3, + "end": 7468.37, + "probability": 0.9955 + }, + { + "start": 7469.0, + "end": 7474.74, + "probability": 0.9911 + }, + { + "start": 7475.28, + "end": 7476.4, + "probability": 0.5132 + }, + { + "start": 7477.7, + "end": 7482.74, + "probability": 0.996 + }, + { + "start": 7483.34, + "end": 7484.74, + "probability": 0.9919 + }, + { + "start": 7485.88, + "end": 7487.3, + "probability": 0.9966 + }, + { + "start": 7488.14, + "end": 7491.92, + "probability": 0.9746 + }, + { + "start": 7492.6, + "end": 7497.2, + "probability": 0.8296 + }, + { + "start": 7498.1, + "end": 7499.28, + "probability": 0.9946 + }, + { + "start": 7500.78, + "end": 7501.74, + "probability": 0.7478 + }, + { + "start": 7504.28, + "end": 7505.1, + "probability": 0.9355 + }, + { + "start": 7505.98, + "end": 7508.16, + "probability": 0.9706 + }, + { + "start": 7509.98, + "end": 7512.5, + "probability": 0.9985 + }, + { + "start": 7514.0, + "end": 7515.68, + "probability": 0.9938 + }, + { + "start": 7516.06, + "end": 7516.86, + "probability": 0.8663 + }, + { + "start": 7517.36, + "end": 7520.52, + "probability": 0.9916 + }, + { + "start": 7521.18, + "end": 7523.38, + "probability": 0.9445 + }, + { + "start": 7524.94, + "end": 7525.66, + "probability": 0.7569 + }, + { + "start": 7525.74, + "end": 7526.76, + "probability": 0.8024 + }, + { + "start": 7529.47, + "end": 7531.44, + "probability": 0.2621 + }, + { + "start": 7532.56, + "end": 7533.78, + "probability": 0.5511 + }, + { + "start": 7533.84, + "end": 7535.42, + "probability": 0.9708 + }, + { + "start": 7536.62, + "end": 7539.78, + "probability": 0.9335 + }, + { + "start": 7540.88, + "end": 7541.65, + "probability": 0.8843 + }, + { + "start": 7543.18, + "end": 7545.92, + "probability": 0.9125 + }, + { + "start": 7546.6, + "end": 7547.9, + "probability": 0.9536 + }, + { + "start": 7548.0, + "end": 7549.42, + "probability": 0.7884 + }, + { + "start": 7549.6, + "end": 7550.84, + "probability": 0.8795 + }, + { + "start": 7551.74, + "end": 7553.76, + "probability": 0.9983 + }, + { + "start": 7554.9, + "end": 7559.04, + "probability": 0.5275 + }, + { + "start": 7560.08, + "end": 7560.9, + "probability": 0.7606 + }, + { + "start": 7561.8, + "end": 7563.56, + "probability": 0.7781 + }, + { + "start": 7563.76, + "end": 7564.56, + "probability": 0.938 + }, + { + "start": 7565.48, + "end": 7566.32, + "probability": 0.7725 + }, + { + "start": 7566.86, + "end": 7571.6, + "probability": 0.9419 + }, + { + "start": 7572.5, + "end": 7575.78, + "probability": 0.9648 + }, + { + "start": 7577.68, + "end": 7581.88, + "probability": 0.9951 + }, + { + "start": 7583.38, + "end": 7585.54, + "probability": 0.9799 + }, + { + "start": 7586.56, + "end": 7589.26, + "probability": 0.998 + }, + { + "start": 7589.36, + "end": 7590.22, + "probability": 0.6086 + }, + { + "start": 7591.0, + "end": 7592.08, + "probability": 0.669 + }, + { + "start": 7592.82, + "end": 7594.4, + "probability": 0.9614 + }, + { + "start": 7595.3, + "end": 7596.16, + "probability": 0.9711 + }, + { + "start": 7597.26, + "end": 7598.78, + "probability": 0.9873 + }, + { + "start": 7598.86, + "end": 7600.62, + "probability": 0.7142 + }, + { + "start": 7601.14, + "end": 7604.3, + "probability": 0.9657 + }, + { + "start": 7605.58, + "end": 7610.38, + "probability": 0.9935 + }, + { + "start": 7611.02, + "end": 7611.94, + "probability": 0.8721 + }, + { + "start": 7613.06, + "end": 7614.02, + "probability": 0.723 + }, + { + "start": 7614.18, + "end": 7616.54, + "probability": 0.9497 + }, + { + "start": 7616.6, + "end": 7617.58, + "probability": 0.941 + }, + { + "start": 7618.18, + "end": 7620.28, + "probability": 0.981 + }, + { + "start": 7620.94, + "end": 7625.3, + "probability": 0.9834 + }, + { + "start": 7625.4, + "end": 7625.74, + "probability": 0.9013 + }, + { + "start": 7626.32, + "end": 7628.64, + "probability": 0.6349 + }, + { + "start": 7629.86, + "end": 7633.82, + "probability": 0.8589 + }, + { + "start": 7633.92, + "end": 7635.5, + "probability": 0.4761 + }, + { + "start": 7635.64, + "end": 7638.24, + "probability": 0.8514 + }, + { + "start": 7639.02, + "end": 7642.7, + "probability": 0.8541 + }, + { + "start": 7643.22, + "end": 7643.56, + "probability": 0.6035 + }, + { + "start": 7643.72, + "end": 7645.0, + "probability": 0.6851 + }, + { + "start": 7645.4, + "end": 7647.96, + "probability": 0.9629 + }, + { + "start": 7658.22, + "end": 7662.26, + "probability": 0.795 + }, + { + "start": 7662.84, + "end": 7663.78, + "probability": 0.9665 + }, + { + "start": 7664.78, + "end": 7669.16, + "probability": 0.1839 + }, + { + "start": 7691.08, + "end": 7692.36, + "probability": 0.4692 + }, + { + "start": 7692.96, + "end": 7695.36, + "probability": 0.2667 + }, + { + "start": 7697.4, + "end": 7700.98, + "probability": 0.4236 + }, + { + "start": 7704.06, + "end": 7705.94, + "probability": 0.1169 + }, + { + "start": 7707.9, + "end": 7709.6, + "probability": 0.1649 + }, + { + "start": 7716.3, + "end": 7718.34, + "probability": 0.0434 + }, + { + "start": 7719.76, + "end": 7723.14, + "probability": 0.0127 + }, + { + "start": 7724.24, + "end": 7725.96, + "probability": 0.0481 + }, + { + "start": 7725.96, + "end": 7729.78, + "probability": 0.1419 + }, + { + "start": 7730.22, + "end": 7731.87, + "probability": 0.1991 + }, + { + "start": 7737.16, + "end": 7738.26, + "probability": 0.1538 + }, + { + "start": 7738.96, + "end": 7740.88, + "probability": 0.1077 + }, + { + "start": 7740.88, + "end": 7741.14, + "probability": 0.1405 + }, + { + "start": 7741.48, + "end": 7741.72, + "probability": 0.0763 + }, + { + "start": 7742.0, + "end": 7742.0, + "probability": 0.0 + }, + { + "start": 7742.0, + "end": 7742.0, + "probability": 0.0 + }, + { + "start": 7742.0, + "end": 7742.0, + "probability": 0.0 + }, + { + "start": 7742.0, + "end": 7742.0, + "probability": 0.0 + }, + { + "start": 7742.0, + "end": 7742.0, + "probability": 0.0 + }, + { + "start": 7742.94, + "end": 7743.96, + "probability": 0.0331 + }, + { + "start": 7744.58, + "end": 7747.82, + "probability": 0.1907 + }, + { + "start": 7754.6, + "end": 7755.32, + "probability": 0.1214 + }, + { + "start": 7759.54, + "end": 7762.38, + "probability": 0.071 + }, + { + "start": 7762.38, + "end": 7769.72, + "probability": 0.021 + }, + { + "start": 7770.48, + "end": 7771.66, + "probability": 0.0177 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.0, + "end": 7875.0, + "probability": 0.0 + }, + { + "start": 7875.94, + "end": 7878.38, + "probability": 0.0677 + }, + { + "start": 7878.98, + "end": 7879.58, + "probability": 0.0139 + }, + { + "start": 7879.78, + "end": 7882.93, + "probability": 0.0339 + }, + { + "start": 7915.0, + "end": 7919.98, + "probability": 0.0316 + }, + { + "start": 7919.98, + "end": 7921.18, + "probability": 0.0177 + }, + { + "start": 7921.7, + "end": 7923.06, + "probability": 0.0296 + }, + { + "start": 7923.06, + "end": 7924.56, + "probability": 0.3259 + }, + { + "start": 7926.45, + "end": 7928.86, + "probability": 0.109 + }, + { + "start": 7928.88, + "end": 7929.28, + "probability": 0.09 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.0, + "end": 7997.0, + "probability": 0.0 + }, + { + "start": 7997.86, + "end": 8000.76, + "probability": 0.0405 + }, + { + "start": 8002.12, + "end": 8007.0, + "probability": 0.0793 + }, + { + "start": 8007.24, + "end": 8009.9, + "probability": 0.2579 + }, + { + "start": 8012.56, + "end": 8014.86, + "probability": 0.0169 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8122.0, + "end": 8122.0, + "probability": 0.0 + }, + { + "start": 8124.48, + "end": 8128.0, + "probability": 0.1456 + }, + { + "start": 8129.86, + "end": 8131.32, + "probability": 0.0175 + }, + { + "start": 8131.32, + "end": 8134.44, + "probability": 0.1054 + }, + { + "start": 8139.88, + "end": 8140.9, + "probability": 0.0496 + }, + { + "start": 8140.94, + "end": 8142.62, + "probability": 0.071 + }, + { + "start": 8143.16, + "end": 8143.64, + "probability": 0.0646 + }, + { + "start": 8143.64, + "end": 8144.43, + "probability": 0.1679 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.0, + "end": 8246.0, + "probability": 0.0 + }, + { + "start": 8246.18, + "end": 8246.18, + "probability": 0.3851 + }, + { + "start": 8246.18, + "end": 8246.18, + "probability": 0.1079 + }, + { + "start": 8246.18, + "end": 8246.18, + "probability": 0.109 + }, + { + "start": 8246.18, + "end": 8246.96, + "probability": 0.3091 + }, + { + "start": 8247.2, + "end": 8252.54, + "probability": 0.3543 + }, + { + "start": 8252.54, + "end": 8258.08, + "probability": 0.6074 + }, + { + "start": 8259.48, + "end": 8261.4, + "probability": 0.4925 + }, + { + "start": 8262.58, + "end": 8263.04, + "probability": 0.7999 + }, + { + "start": 8263.26, + "end": 8263.72, + "probability": 0.9405 + }, + { + "start": 8263.84, + "end": 8265.58, + "probability": 0.867 + }, + { + "start": 8265.92, + "end": 8267.34, + "probability": 0.9605 + }, + { + "start": 8268.5, + "end": 8270.1, + "probability": 0.9296 + }, + { + "start": 8273.26, + "end": 8274.06, + "probability": 0.7422 + }, + { + "start": 8274.86, + "end": 8275.62, + "probability": 0.9036 + }, + { + "start": 8275.94, + "end": 8276.6, + "probability": 0.8983 + }, + { + "start": 8276.7, + "end": 8280.22, + "probability": 0.9087 + }, + { + "start": 8280.4, + "end": 8281.32, + "probability": 0.8618 + }, + { + "start": 8281.34, + "end": 8285.96, + "probability": 0.9922 + }, + { + "start": 8286.18, + "end": 8289.9, + "probability": 0.979 + }, + { + "start": 8290.74, + "end": 8293.94, + "probability": 0.9677 + }, + { + "start": 8294.76, + "end": 8296.06, + "probability": 0.9315 + }, + { + "start": 8296.9, + "end": 8302.36, + "probability": 0.9645 + }, + { + "start": 8303.32, + "end": 8305.94, + "probability": 0.7828 + }, + { + "start": 8306.02, + "end": 8307.22, + "probability": 0.9971 + }, + { + "start": 8307.34, + "end": 8309.16, + "probability": 0.9956 + }, + { + "start": 8310.0, + "end": 8313.94, + "probability": 0.8966 + }, + { + "start": 8314.96, + "end": 8317.62, + "probability": 0.9427 + }, + { + "start": 8318.16, + "end": 8319.82, + "probability": 0.9655 + }, + { + "start": 8319.86, + "end": 8321.94, + "probability": 0.9907 + }, + { + "start": 8323.66, + "end": 8324.31, + "probability": 0.7879 + }, + { + "start": 8325.2, + "end": 8329.56, + "probability": 0.8123 + }, + { + "start": 8331.0, + "end": 8334.46, + "probability": 0.9611 + }, + { + "start": 8334.98, + "end": 8337.76, + "probability": 0.9607 + }, + { + "start": 8338.16, + "end": 8339.96, + "probability": 0.985 + }, + { + "start": 8340.14, + "end": 8341.02, + "probability": 0.5526 + }, + { + "start": 8341.56, + "end": 8342.2, + "probability": 0.7365 + }, + { + "start": 8344.26, + "end": 8345.43, + "probability": 0.8841 + }, + { + "start": 8345.82, + "end": 8352.24, + "probability": 0.9455 + }, + { + "start": 8352.94, + "end": 8356.1, + "probability": 0.9475 + }, + { + "start": 8357.74, + "end": 8359.88, + "probability": 0.9645 + }, + { + "start": 8361.56, + "end": 8363.26, + "probability": 0.9751 + }, + { + "start": 8363.42, + "end": 8363.84, + "probability": 0.9156 + }, + { + "start": 8364.16, + "end": 8364.68, + "probability": 0.8712 + }, + { + "start": 8365.22, + "end": 8368.46, + "probability": 0.9367 + }, + { + "start": 8368.64, + "end": 8370.24, + "probability": 0.9595 + }, + { + "start": 8370.58, + "end": 8371.14, + "probability": 0.9833 + }, + { + "start": 8371.18, + "end": 8371.64, + "probability": 0.9862 + }, + { + "start": 8371.68, + "end": 8372.16, + "probability": 0.935 + }, + { + "start": 8372.36, + "end": 8372.88, + "probability": 0.7601 + }, + { + "start": 8372.94, + "end": 8373.24, + "probability": 0.8538 + }, + { + "start": 8374.44, + "end": 8376.56, + "probability": 0.9938 + }, + { + "start": 8378.12, + "end": 8379.96, + "probability": 0.8455 + }, + { + "start": 8380.7, + "end": 8382.36, + "probability": 0.9834 + }, + { + "start": 8383.02, + "end": 8384.54, + "probability": 0.9537 + }, + { + "start": 8384.58, + "end": 8389.12, + "probability": 0.977 + }, + { + "start": 8389.68, + "end": 8392.26, + "probability": 0.9856 + }, + { + "start": 8393.76, + "end": 8393.83, + "probability": 0.6062 + }, + { + "start": 8394.34, + "end": 8395.04, + "probability": 0.6528 + }, + { + "start": 8395.44, + "end": 8397.98, + "probability": 0.8645 + }, + { + "start": 8398.16, + "end": 8398.44, + "probability": 0.6943 + }, + { + "start": 8399.14, + "end": 8400.84, + "probability": 0.9614 + }, + { + "start": 8402.6, + "end": 8408.06, + "probability": 0.818 + }, + { + "start": 8408.14, + "end": 8411.24, + "probability": 0.9963 + }, + { + "start": 8411.4, + "end": 8412.24, + "probability": 0.9359 + }, + { + "start": 8412.88, + "end": 8413.86, + "probability": 0.9004 + }, + { + "start": 8414.5, + "end": 8419.54, + "probability": 0.87 + }, + { + "start": 8419.96, + "end": 8422.34, + "probability": 0.9857 + }, + { + "start": 8424.08, + "end": 8429.14, + "probability": 0.8518 + }, + { + "start": 8429.32, + "end": 8431.92, + "probability": 0.7198 + }, + { + "start": 8432.5, + "end": 8433.62, + "probability": 0.8893 + }, + { + "start": 8433.76, + "end": 8434.6, + "probability": 0.9856 + }, + { + "start": 8434.68, + "end": 8435.24, + "probability": 0.9261 + }, + { + "start": 8435.6, + "end": 8436.7, + "probability": 0.992 + }, + { + "start": 8437.88, + "end": 8438.7, + "probability": 0.968 + }, + { + "start": 8438.8, + "end": 8439.56, + "probability": 0.9145 + }, + { + "start": 8439.62, + "end": 8442.38, + "probability": 0.9524 + }, + { + "start": 8442.7, + "end": 8443.4, + "probability": 0.7405 + }, + { + "start": 8443.52, + "end": 8444.28, + "probability": 0.9869 + }, + { + "start": 8444.62, + "end": 8445.06, + "probability": 0.9677 + }, + { + "start": 8447.48, + "end": 8450.4, + "probability": 0.9441 + }, + { + "start": 8450.76, + "end": 8451.5, + "probability": 0.6921 + }, + { + "start": 8452.34, + "end": 8452.82, + "probability": 0.4546 + }, + { + "start": 8452.88, + "end": 8454.48, + "probability": 0.7498 + }, + { + "start": 8454.98, + "end": 8458.28, + "probability": 0.9424 + }, + { + "start": 8458.89, + "end": 8461.6, + "probability": 0.8531 + }, + { + "start": 8462.36, + "end": 8464.42, + "probability": 0.7476 + }, + { + "start": 8465.64, + "end": 8466.82, + "probability": 0.8141 + }, + { + "start": 8472.16, + "end": 8474.38, + "probability": 0.9851 + }, + { + "start": 8476.72, + "end": 8480.22, + "probability": 0.933 + }, + { + "start": 8481.24, + "end": 8484.46, + "probability": 0.9432 + }, + { + "start": 8486.56, + "end": 8486.9, + "probability": 0.6587 + }, + { + "start": 8487.88, + "end": 8491.42, + "probability": 0.9955 + }, + { + "start": 8492.42, + "end": 8494.47, + "probability": 0.8562 + }, + { + "start": 8495.08, + "end": 8498.56, + "probability": 0.9867 + }, + { + "start": 8499.32, + "end": 8503.7, + "probability": 0.8927 + }, + { + "start": 8503.88, + "end": 8504.82, + "probability": 0.8184 + }, + { + "start": 8506.44, + "end": 8507.94, + "probability": 0.9983 + }, + { + "start": 8508.34, + "end": 8508.54, + "probability": 0.0999 + }, + { + "start": 8508.54, + "end": 8508.9, + "probability": 0.3914 + }, + { + "start": 8509.48, + "end": 8509.8, + "probability": 0.6847 + }, + { + "start": 8511.32, + "end": 8512.38, + "probability": 0.7125 + }, + { + "start": 8514.47, + "end": 8515.78, + "probability": 0.6907 + }, + { + "start": 8516.0, + "end": 8516.46, + "probability": 0.6726 + }, + { + "start": 8516.68, + "end": 8517.6, + "probability": 0.9398 + }, + { + "start": 8517.74, + "end": 8518.56, + "probability": 0.856 + }, + { + "start": 8518.88, + "end": 8520.3, + "probability": 0.9499 + }, + { + "start": 8520.62, + "end": 8522.32, + "probability": 0.9008 + }, + { + "start": 8523.6, + "end": 8524.5, + "probability": 0.9425 + }, + { + "start": 8525.72, + "end": 8526.52, + "probability": 0.5617 + }, + { + "start": 8526.94, + "end": 8528.76, + "probability": 0.997 + }, + { + "start": 8528.94, + "end": 8530.0, + "probability": 0.8488 + }, + { + "start": 8530.72, + "end": 8533.12, + "probability": 0.9936 + }, + { + "start": 8534.64, + "end": 8536.82, + "probability": 0.9268 + }, + { + "start": 8536.84, + "end": 8540.56, + "probability": 0.9055 + }, + { + "start": 8541.0, + "end": 8541.42, + "probability": 0.5082 + }, + { + "start": 8541.54, + "end": 8541.9, + "probability": 0.9891 + }, + { + "start": 8543.52, + "end": 8544.52, + "probability": 0.97 + }, + { + "start": 8544.64, + "end": 8546.26, + "probability": 0.9958 + }, + { + "start": 8547.16, + "end": 8548.46, + "probability": 0.937 + }, + { + "start": 8549.12, + "end": 8551.22, + "probability": 0.9335 + }, + { + "start": 8551.86, + "end": 8554.78, + "probability": 0.9773 + }, + { + "start": 8555.38, + "end": 8556.28, + "probability": 0.6006 + }, + { + "start": 8556.4, + "end": 8557.06, + "probability": 0.9111 + }, + { + "start": 8557.1, + "end": 8559.4, + "probability": 0.9592 + }, + { + "start": 8560.12, + "end": 8561.1, + "probability": 0.9318 + }, + { + "start": 8561.5, + "end": 8563.0, + "probability": 0.9961 + }, + { + "start": 8563.74, + "end": 8566.46, + "probability": 0.8406 + }, + { + "start": 8566.7, + "end": 8567.36, + "probability": 0.8724 + }, + { + "start": 8568.24, + "end": 8572.8, + "probability": 0.9389 + }, + { + "start": 8573.94, + "end": 8577.58, + "probability": 0.9954 + }, + { + "start": 8577.92, + "end": 8579.1, + "probability": 0.9061 + }, + { + "start": 8579.16, + "end": 8579.34, + "probability": 0.7571 + }, + { + "start": 8579.44, + "end": 8579.64, + "probability": 0.8941 + }, + { + "start": 8580.04, + "end": 8580.59, + "probability": 0.4894 + }, + { + "start": 8580.98, + "end": 8582.36, + "probability": 0.9603 + }, + { + "start": 8583.68, + "end": 8584.47, + "probability": 0.9429 + }, + { + "start": 8584.74, + "end": 8587.19, + "probability": 0.9614 + }, + { + "start": 8589.36, + "end": 8590.18, + "probability": 0.9106 + }, + { + "start": 8590.68, + "end": 8592.38, + "probability": 0.9811 + }, + { + "start": 8592.5, + "end": 8593.78, + "probability": 0.9041 + }, + { + "start": 8594.78, + "end": 8596.18, + "probability": 0.5849 + }, + { + "start": 8597.47, + "end": 8598.89, + "probability": 0.9379 + }, + { + "start": 8599.78, + "end": 8601.46, + "probability": 0.9482 + }, + { + "start": 8601.84, + "end": 8603.72, + "probability": 0.9285 + }, + { + "start": 8603.78, + "end": 8604.54, + "probability": 0.9622 + }, + { + "start": 8605.38, + "end": 8608.12, + "probability": 0.9572 + }, + { + "start": 8608.22, + "end": 8609.1, + "probability": 0.6142 + }, + { + "start": 8609.64, + "end": 8611.12, + "probability": 0.9806 + }, + { + "start": 8611.96, + "end": 8615.9, + "probability": 0.948 + }, + { + "start": 8616.94, + "end": 8619.76, + "probability": 0.8646 + }, + { + "start": 8621.84, + "end": 8622.42, + "probability": 0.8211 + }, + { + "start": 8623.8, + "end": 8624.56, + "probability": 0.9837 + }, + { + "start": 8626.24, + "end": 8628.62, + "probability": 0.8438 + }, + { + "start": 8629.02, + "end": 8629.72, + "probability": 0.6117 + }, + { + "start": 8629.86, + "end": 8630.66, + "probability": 0.3858 + }, + { + "start": 8631.58, + "end": 8632.84, + "probability": 0.9927 + }, + { + "start": 8633.42, + "end": 8636.14, + "probability": 0.9417 + }, + { + "start": 8636.66, + "end": 8638.04, + "probability": 0.9893 + }, + { + "start": 8638.84, + "end": 8640.02, + "probability": 0.9377 + }, + { + "start": 8642.68, + "end": 8643.04, + "probability": 0.9107 + }, + { + "start": 8645.22, + "end": 8650.76, + "probability": 0.0715 + }, + { + "start": 8650.78, + "end": 8655.2, + "probability": 0.0642 + }, + { + "start": 8655.64, + "end": 8655.64, + "probability": 0.0213 + }, + { + "start": 8655.64, + "end": 8656.76, + "probability": 0.1902 + }, + { + "start": 8656.96, + "end": 8658.84, + "probability": 0.0301 + }, + { + "start": 8658.86, + "end": 8659.95, + "probability": 0.0997 + }, + { + "start": 8660.54, + "end": 8661.62, + "probability": 0.0657 + }, + { + "start": 8661.8, + "end": 8663.0, + "probability": 0.0455 + }, + { + "start": 8663.08, + "end": 8663.86, + "probability": 0.5547 + }, + { + "start": 8664.5, + "end": 8664.64, + "probability": 0.0016 + }, + { + "start": 8664.64, + "end": 8664.9, + "probability": 0.1399 + }, + { + "start": 8664.9, + "end": 8664.9, + "probability": 0.1056 + }, + { + "start": 8664.9, + "end": 8664.9, + "probability": 0.0151 + }, + { + "start": 8664.9, + "end": 8664.9, + "probability": 0.0218 + }, + { + "start": 8664.9, + "end": 8664.9, + "probability": 0.4519 + }, + { + "start": 8664.9, + "end": 8664.9, + "probability": 0.1852 + }, + { + "start": 8664.9, + "end": 8665.54, + "probability": 0.1656 + }, + { + "start": 8665.94, + "end": 8668.38, + "probability": 0.9401 + }, + { + "start": 8669.04, + "end": 8671.7, + "probability": 0.7878 + }, + { + "start": 8671.8, + "end": 8672.14, + "probability": 0.5395 + }, + { + "start": 8672.18, + "end": 8673.7, + "probability": 0.4349 + }, + { + "start": 8673.88, + "end": 8676.96, + "probability": 0.7377 + }, + { + "start": 8677.04, + "end": 8679.64, + "probability": 0.8347 + }, + { + "start": 8679.9, + "end": 8685.62, + "probability": 0.8032 + }, + { + "start": 8687.24, + "end": 8688.2, + "probability": 0.2755 + }, + { + "start": 8688.2, + "end": 8692.22, + "probability": 0.9666 + }, + { + "start": 8692.94, + "end": 8695.68, + "probability": 0.9889 + }, + { + "start": 8696.6, + "end": 8700.94, + "probability": 0.9913 + }, + { + "start": 8701.04, + "end": 8702.12, + "probability": 0.9017 + }, + { + "start": 8702.56, + "end": 8703.94, + "probability": 0.6036 + }, + { + "start": 8704.74, + "end": 8706.44, + "probability": 0.8012 + }, + { + "start": 8707.6, + "end": 8709.22, + "probability": 0.7297 + }, + { + "start": 8709.94, + "end": 8713.66, + "probability": 0.9796 + }, + { + "start": 8714.28, + "end": 8715.48, + "probability": 0.6595 + }, + { + "start": 8717.36, + "end": 8720.8, + "probability": 0.8423 + }, + { + "start": 8721.38, + "end": 8722.44, + "probability": 0.9971 + }, + { + "start": 8722.64, + "end": 8724.06, + "probability": 0.7618 + }, + { + "start": 8724.16, + "end": 8724.44, + "probability": 0.8591 + }, + { + "start": 8725.16, + "end": 8728.22, + "probability": 0.9177 + }, + { + "start": 8728.76, + "end": 8733.68, + "probability": 0.9947 + }, + { + "start": 8735.38, + "end": 8737.96, + "probability": 0.9912 + }, + { + "start": 8737.98, + "end": 8738.89, + "probability": 0.9912 + }, + { + "start": 8739.9, + "end": 8741.32, + "probability": 0.9426 + }, + { + "start": 8741.9, + "end": 8742.62, + "probability": 0.9488 + }, + { + "start": 8743.38, + "end": 8746.74, + "probability": 0.9624 + }, + { + "start": 8747.44, + "end": 8750.18, + "probability": 0.7742 + }, + { + "start": 8751.34, + "end": 8752.14, + "probability": 0.9029 + }, + { + "start": 8752.22, + "end": 8752.84, + "probability": 0.6809 + }, + { + "start": 8752.88, + "end": 8753.54, + "probability": 0.6641 + }, + { + "start": 8753.94, + "end": 8754.52, + "probability": 0.9862 + }, + { + "start": 8755.1, + "end": 8755.9, + "probability": 0.915 + }, + { + "start": 8756.86, + "end": 8757.76, + "probability": 0.8126 + }, + { + "start": 8758.58, + "end": 8759.66, + "probability": 0.9858 + }, + { + "start": 8760.34, + "end": 8763.78, + "probability": 0.9746 + }, + { + "start": 8764.26, + "end": 8766.74, + "probability": 0.8839 + }, + { + "start": 8767.44, + "end": 8771.26, + "probability": 0.9974 + }, + { + "start": 8772.14, + "end": 8774.38, + "probability": 0.995 + }, + { + "start": 8774.9, + "end": 8776.02, + "probability": 0.9961 + }, + { + "start": 8777.14, + "end": 8777.84, + "probability": 0.9033 + }, + { + "start": 8779.22, + "end": 8780.3, + "probability": 0.9163 + }, + { + "start": 8781.5, + "end": 8781.64, + "probability": 0.2676 + }, + { + "start": 8781.72, + "end": 8783.06, + "probability": 0.8833 + }, + { + "start": 8783.6, + "end": 8784.7, + "probability": 0.9818 + }, + { + "start": 8784.96, + "end": 8785.59, + "probability": 0.9692 + }, + { + "start": 8786.06, + "end": 8787.83, + "probability": 0.9888 + }, + { + "start": 8788.62, + "end": 8789.24, + "probability": 0.8159 + }, + { + "start": 8789.84, + "end": 8792.58, + "probability": 0.9912 + }, + { + "start": 8793.22, + "end": 8794.72, + "probability": 0.8449 + }, + { + "start": 8794.78, + "end": 8795.86, + "probability": 0.7476 + }, + { + "start": 8796.16, + "end": 8796.84, + "probability": 0.7025 + }, + { + "start": 8797.34, + "end": 8800.3, + "probability": 0.9739 + }, + { + "start": 8801.36, + "end": 8801.73, + "probability": 0.8794 + }, + { + "start": 8801.9, + "end": 8802.26, + "probability": 0.8029 + }, + { + "start": 8802.3, + "end": 8803.4, + "probability": 0.9287 + }, + { + "start": 8804.0, + "end": 8806.28, + "probability": 0.8627 + }, + { + "start": 8806.74, + "end": 8809.54, + "probability": 0.9873 + }, + { + "start": 8809.9, + "end": 8811.46, + "probability": 0.9941 + }, + { + "start": 8811.66, + "end": 8813.68, + "probability": 0.998 + }, + { + "start": 8814.32, + "end": 8816.36, + "probability": 0.896 + }, + { + "start": 8817.26, + "end": 8818.04, + "probability": 0.618 + }, + { + "start": 8818.62, + "end": 8819.46, + "probability": 0.6963 + }, + { + "start": 8819.88, + "end": 8820.32, + "probability": 0.9336 + }, + { + "start": 8821.38, + "end": 8823.3, + "probability": 0.879 + }, + { + "start": 8823.68, + "end": 8824.26, + "probability": 0.888 + }, + { + "start": 8824.32, + "end": 8826.64, + "probability": 0.9896 + }, + { + "start": 8828.2, + "end": 8828.72, + "probability": 0.9818 + }, + { + "start": 8829.66, + "end": 8832.7, + "probability": 0.9932 + }, + { + "start": 8832.78, + "end": 8833.4, + "probability": 0.6333 + }, + { + "start": 8833.54, + "end": 8835.3, + "probability": 0.5092 + }, + { + "start": 8835.64, + "end": 8836.34, + "probability": 0.8553 + }, + { + "start": 8836.4, + "end": 8837.94, + "probability": 0.8257 + }, + { + "start": 8839.2, + "end": 8839.62, + "probability": 0.2737 + }, + { + "start": 8840.64, + "end": 8844.1, + "probability": 0.915 + }, + { + "start": 8844.18, + "end": 8845.06, + "probability": 0.6214 + }, + { + "start": 8846.38, + "end": 8847.2, + "probability": 0.9086 + }, + { + "start": 8848.28, + "end": 8852.44, + "probability": 0.9936 + }, + { + "start": 8852.82, + "end": 8857.78, + "probability": 0.8867 + }, + { + "start": 8858.66, + "end": 8860.18, + "probability": 0.9976 + }, + { + "start": 8861.56, + "end": 8864.08, + "probability": 0.97 + }, + { + "start": 8864.16, + "end": 8865.6, + "probability": 0.9131 + }, + { + "start": 8865.9, + "end": 8868.1, + "probability": 0.9578 + }, + { + "start": 8868.46, + "end": 8869.66, + "probability": 0.7282 + }, + { + "start": 8870.62, + "end": 8873.56, + "probability": 0.9861 + }, + { + "start": 8874.6, + "end": 8874.96, + "probability": 0.9619 + }, + { + "start": 8875.74, + "end": 8877.66, + "probability": 0.7613 + }, + { + "start": 8877.74, + "end": 8877.98, + "probability": 0.1243 + }, + { + "start": 8877.98, + "end": 8878.08, + "probability": 0.8672 + }, + { + "start": 8879.16, + "end": 8879.84, + "probability": 0.8033 + }, + { + "start": 8881.14, + "end": 8881.88, + "probability": 0.6238 + }, + { + "start": 8882.46, + "end": 8884.44, + "probability": 0.9748 + }, + { + "start": 8884.94, + "end": 8887.4, + "probability": 0.9971 + }, + { + "start": 8887.96, + "end": 8890.8, + "probability": 0.9982 + }, + { + "start": 8891.5, + "end": 8893.68, + "probability": 0.9978 + }, + { + "start": 8893.8, + "end": 8895.97, + "probability": 0.8425 + }, + { + "start": 8896.82, + "end": 8898.27, + "probability": 0.9536 + }, + { + "start": 8898.94, + "end": 8899.58, + "probability": 0.9802 + }, + { + "start": 8900.14, + "end": 8902.24, + "probability": 0.9882 + }, + { + "start": 8904.73, + "end": 8905.68, + "probability": 0.1472 + }, + { + "start": 8905.68, + "end": 8906.37, + "probability": 0.6406 + }, + { + "start": 8907.02, + "end": 8909.96, + "probability": 0.749 + }, + { + "start": 8910.0, + "end": 8911.67, + "probability": 0.9775 + }, + { + "start": 8912.2, + "end": 8914.9, + "probability": 0.9287 + }, + { + "start": 8915.0, + "end": 8915.52, + "probability": 0.9022 + }, + { + "start": 8916.66, + "end": 8919.44, + "probability": 0.8755 + }, + { + "start": 8919.58, + "end": 8919.64, + "probability": 0.2328 + }, + { + "start": 8919.64, + "end": 8922.28, + "probability": 0.9823 + }, + { + "start": 8923.2, + "end": 8924.52, + "probability": 0.5386 + }, + { + "start": 8925.22, + "end": 8925.46, + "probability": 0.0465 + }, + { + "start": 8925.6, + "end": 8925.81, + "probability": 0.4727 + }, + { + "start": 8926.56, + "end": 8927.78, + "probability": 0.9771 + }, + { + "start": 8928.34, + "end": 8929.42, + "probability": 0.932 + }, + { + "start": 8929.88, + "end": 8930.22, + "probability": 0.383 + }, + { + "start": 8930.46, + "end": 8932.13, + "probability": 0.6523 + }, + { + "start": 8932.7, + "end": 8933.6, + "probability": 0.9573 + }, + { + "start": 8933.72, + "end": 8934.31, + "probability": 0.9504 + }, + { + "start": 8934.6, + "end": 8936.8, + "probability": 0.7388 + }, + { + "start": 8936.94, + "end": 8941.26, + "probability": 0.9503 + }, + { + "start": 8957.64, + "end": 8958.76, + "probability": 0.3066 + }, + { + "start": 8958.76, + "end": 8960.18, + "probability": 0.7873 + }, + { + "start": 8960.3, + "end": 8960.3, + "probability": 0.418 + }, + { + "start": 8960.3, + "end": 8961.46, + "probability": 0.7108 + }, + { + "start": 8961.56, + "end": 8962.64, + "probability": 0.7011 + }, + { + "start": 8962.72, + "end": 8963.24, + "probability": 0.7032 + }, + { + "start": 8963.36, + "end": 8965.16, + "probability": 0.9849 + }, + { + "start": 8965.94, + "end": 8970.02, + "probability": 0.9605 + }, + { + "start": 8971.33, + "end": 8975.14, + "probability": 0.7409 + }, + { + "start": 8975.34, + "end": 8977.65, + "probability": 0.9045 + }, + { + "start": 8977.8, + "end": 8978.78, + "probability": 0.841 + }, + { + "start": 8979.06, + "end": 8980.94, + "probability": 0.9045 + }, + { + "start": 8982.48, + "end": 8984.26, + "probability": 0.5445 + }, + { + "start": 8984.56, + "end": 8988.96, + "probability": 0.9953 + }, + { + "start": 8989.82, + "end": 8992.44, + "probability": 0.871 + }, + { + "start": 8993.46, + "end": 8995.58, + "probability": 0.869 + }, + { + "start": 8995.62, + "end": 8996.04, + "probability": 0.844 + }, + { + "start": 8996.14, + "end": 9000.64, + "probability": 0.8294 + }, + { + "start": 9000.84, + "end": 9002.28, + "probability": 0.8225 + }, + { + "start": 9002.42, + "end": 9004.06, + "probability": 0.9554 + }, + { + "start": 9005.04, + "end": 9008.18, + "probability": 0.9993 + }, + { + "start": 9008.2, + "end": 9009.24, + "probability": 0.8523 + }, + { + "start": 9009.44, + "end": 9010.22, + "probability": 0.9254 + }, + { + "start": 9010.34, + "end": 9010.77, + "probability": 0.7627 + }, + { + "start": 9010.92, + "end": 9011.3, + "probability": 0.5797 + }, + { + "start": 9011.4, + "end": 9014.82, + "probability": 0.6793 + }, + { + "start": 9014.98, + "end": 9016.0, + "probability": 0.8975 + }, + { + "start": 9016.06, + "end": 9016.72, + "probability": 0.8258 + }, + { + "start": 9016.84, + "end": 9017.42, + "probability": 0.9229 + }, + { + "start": 9018.5, + "end": 9022.2, + "probability": 0.9863 + }, + { + "start": 9022.26, + "end": 9023.74, + "probability": 0.8432 + }, + { + "start": 9024.1, + "end": 9028.14, + "probability": 0.9694 + }, + { + "start": 9029.7, + "end": 9033.16, + "probability": 0.7747 + }, + { + "start": 9033.32, + "end": 9034.08, + "probability": 0.9608 + }, + { + "start": 9035.68, + "end": 9037.32, + "probability": 0.6961 + }, + { + "start": 9038.3, + "end": 9039.8, + "probability": 0.9629 + }, + { + "start": 9041.14, + "end": 9043.42, + "probability": 0.9386 + }, + { + "start": 9043.7, + "end": 9044.94, + "probability": 0.9813 + }, + { + "start": 9046.44, + "end": 9047.94, + "probability": 0.9829 + }, + { + "start": 9048.08, + "end": 9050.24, + "probability": 0.9576 + }, + { + "start": 9050.36, + "end": 9051.14, + "probability": 0.953 + }, + { + "start": 9053.94, + "end": 9055.28, + "probability": 0.9452 + }, + { + "start": 9055.66, + "end": 9056.32, + "probability": 0.9574 + }, + { + "start": 9056.52, + "end": 9058.26, + "probability": 0.9591 + }, + { + "start": 9058.46, + "end": 9063.7, + "probability": 0.9414 + }, + { + "start": 9064.46, + "end": 9066.32, + "probability": 0.821 + }, + { + "start": 9068.28, + "end": 9071.3, + "probability": 0.6677 + }, + { + "start": 9072.22, + "end": 9076.12, + "probability": 0.9888 + }, + { + "start": 9076.24, + "end": 9077.46, + "probability": 0.8399 + }, + { + "start": 9079.5, + "end": 9080.06, + "probability": 0.9231 + }, + { + "start": 9081.1, + "end": 9082.48, + "probability": 0.9465 + }, + { + "start": 9082.86, + "end": 9084.22, + "probability": 0.9889 + }, + { + "start": 9084.52, + "end": 9085.86, + "probability": 0.9479 + }, + { + "start": 9086.28, + "end": 9087.66, + "probability": 0.4324 + }, + { + "start": 9087.86, + "end": 9088.16, + "probability": 0.6718 + }, + { + "start": 9088.48, + "end": 9092.94, + "probability": 0.6173 + }, + { + "start": 9093.0, + "end": 9093.84, + "probability": 0.7703 + }, + { + "start": 9094.06, + "end": 9095.08, + "probability": 0.8091 + }, + { + "start": 9095.14, + "end": 9099.14, + "probability": 0.9204 + }, + { + "start": 9099.54, + "end": 9103.58, + "probability": 0.9238 + }, + { + "start": 9103.74, + "end": 9104.8, + "probability": 0.9709 + }, + { + "start": 9105.42, + "end": 9106.72, + "probability": 0.473 + }, + { + "start": 9106.88, + "end": 9107.48, + "probability": 0.2415 + }, + { + "start": 9107.5, + "end": 9109.02, + "probability": 0.4508 + }, + { + "start": 9109.44, + "end": 9112.76, + "probability": 0.9409 + }, + { + "start": 9112.76, + "end": 9113.44, + "probability": 0.576 + }, + { + "start": 9114.22, + "end": 9115.92, + "probability": 0.3878 + }, + { + "start": 9116.18, + "end": 9117.8, + "probability": 0.8258 + }, + { + "start": 9117.84, + "end": 9119.36, + "probability": 0.6034 + }, + { + "start": 9119.42, + "end": 9120.18, + "probability": 0.6236 + }, + { + "start": 9120.54, + "end": 9123.32, + "probability": 0.9995 + }, + { + "start": 9124.02, + "end": 9126.66, + "probability": 0.9984 + }, + { + "start": 9127.5, + "end": 9128.48, + "probability": 0.0026 + }, + { + "start": 9128.48, + "end": 9129.44, + "probability": 0.5869 + }, + { + "start": 9129.62, + "end": 9130.68, + "probability": 0.8945 + }, + { + "start": 9130.78, + "end": 9130.96, + "probability": 0.4497 + }, + { + "start": 9130.96, + "end": 9133.08, + "probability": 0.974 + }, + { + "start": 9133.22, + "end": 9134.92, + "probability": 0.6622 + }, + { + "start": 9135.8, + "end": 9136.96, + "probability": 0.8591 + }, + { + "start": 9137.08, + "end": 9137.46, + "probability": 0.8557 + }, + { + "start": 9137.8, + "end": 9139.28, + "probability": 0.9601 + }, + { + "start": 9139.72, + "end": 9140.36, + "probability": 0.8679 + }, + { + "start": 9142.26, + "end": 9143.98, + "probability": 0.9482 + }, + { + "start": 9144.18, + "end": 9146.44, + "probability": 0.9832 + }, + { + "start": 9147.24, + "end": 9148.72, + "probability": 0.8735 + }, + { + "start": 9148.84, + "end": 9150.16, + "probability": 0.9293 + }, + { + "start": 9150.36, + "end": 9151.56, + "probability": 0.9772 + }, + { + "start": 9152.06, + "end": 9153.52, + "probability": 0.9884 + }, + { + "start": 9154.02, + "end": 9154.8, + "probability": 0.9318 + }, + { + "start": 9154.82, + "end": 9155.7, + "probability": 0.9139 + }, + { + "start": 9156.3, + "end": 9157.0, + "probability": 0.6848 + }, + { + "start": 9157.78, + "end": 9160.12, + "probability": 0.859 + }, + { + "start": 9160.92, + "end": 9163.58, + "probability": 0.991 + }, + { + "start": 9163.72, + "end": 9164.06, + "probability": 0.8969 + }, + { + "start": 9164.42, + "end": 9166.26, + "probability": 0.79 + }, + { + "start": 9166.86, + "end": 9169.26, + "probability": 0.9933 + }, + { + "start": 9170.32, + "end": 9171.58, + "probability": 0.9938 + }, + { + "start": 9171.64, + "end": 9173.88, + "probability": 0.9032 + }, + { + "start": 9174.42, + "end": 9175.14, + "probability": 0.8835 + }, + { + "start": 9176.2, + "end": 9177.28, + "probability": 0.6187 + }, + { + "start": 9177.36, + "end": 9177.86, + "probability": 0.7449 + }, + { + "start": 9177.98, + "end": 9181.0, + "probability": 0.9912 + }, + { + "start": 9181.52, + "end": 9182.86, + "probability": 0.9779 + }, + { + "start": 9183.2, + "end": 9184.12, + "probability": 0.9497 + }, + { + "start": 9185.04, + "end": 9188.36, + "probability": 0.9959 + }, + { + "start": 9189.04, + "end": 9190.5, + "probability": 0.9762 + }, + { + "start": 9191.84, + "end": 9192.36, + "probability": 0.581 + }, + { + "start": 9192.48, + "end": 9192.88, + "probability": 0.9232 + }, + { + "start": 9192.96, + "end": 9193.82, + "probability": 0.8792 + }, + { + "start": 9193.86, + "end": 9194.75, + "probability": 0.6727 + }, + { + "start": 9195.34, + "end": 9198.08, + "probability": 0.9024 + }, + { + "start": 9199.24, + "end": 9200.28, + "probability": 0.6955 + }, + { + "start": 9201.24, + "end": 9202.16, + "probability": 0.8732 + }, + { + "start": 9202.66, + "end": 9204.74, + "probability": 0.8981 + }, + { + "start": 9204.86, + "end": 9205.35, + "probability": 0.9143 + }, + { + "start": 9205.58, + "end": 9206.4, + "probability": 0.888 + }, + { + "start": 9207.06, + "end": 9208.24, + "probability": 0.7785 + }, + { + "start": 9208.44, + "end": 9209.7, + "probability": 0.9798 + }, + { + "start": 9209.76, + "end": 9213.4, + "probability": 0.9808 + }, + { + "start": 9214.02, + "end": 9215.86, + "probability": 0.9729 + }, + { + "start": 9216.46, + "end": 9218.22, + "probability": 0.937 + }, + { + "start": 9218.26, + "end": 9218.92, + "probability": 0.8294 + }, + { + "start": 9219.16, + "end": 9223.76, + "probability": 0.9968 + }, + { + "start": 9226.16, + "end": 9233.8, + "probability": 0.9614 + }, + { + "start": 9234.92, + "end": 9238.0, + "probability": 0.9897 + }, + { + "start": 9238.84, + "end": 9241.72, + "probability": 0.9508 + }, + { + "start": 9241.72, + "end": 9244.5, + "probability": 0.9989 + }, + { + "start": 9245.14, + "end": 9246.8, + "probability": 0.6473 + }, + { + "start": 9246.86, + "end": 9247.98, + "probability": 0.9551 + }, + { + "start": 9248.16, + "end": 9250.26, + "probability": 0.7691 + }, + { + "start": 9251.82, + "end": 9252.34, + "probability": 0.6523 + }, + { + "start": 9253.6, + "end": 9255.44, + "probability": 0.7645 + }, + { + "start": 9257.4, + "end": 9258.6, + "probability": 0.8264 + }, + { + "start": 9258.7, + "end": 9261.58, + "probability": 0.946 + }, + { + "start": 9262.08, + "end": 9263.62, + "probability": 0.9483 + }, + { + "start": 9264.08, + "end": 9264.52, + "probability": 0.619 + }, + { + "start": 9264.66, + "end": 9265.82, + "probability": 0.9373 + }, + { + "start": 9266.0, + "end": 9267.06, + "probability": 0.8723 + }, + { + "start": 9267.12, + "end": 9267.86, + "probability": 0.8247 + }, + { + "start": 9268.1, + "end": 9271.52, + "probability": 0.994 + }, + { + "start": 9272.2, + "end": 9272.74, + "probability": 0.3888 + }, + { + "start": 9273.16, + "end": 9275.72, + "probability": 0.9933 + }, + { + "start": 9276.08, + "end": 9278.98, + "probability": 0.9494 + }, + { + "start": 9279.0, + "end": 9281.44, + "probability": 0.9592 + }, + { + "start": 9281.5, + "end": 9282.08, + "probability": 0.9196 + }, + { + "start": 9282.48, + "end": 9284.56, + "probability": 0.9893 + }, + { + "start": 9285.4, + "end": 9286.14, + "probability": 0.9512 + }, + { + "start": 9286.86, + "end": 9288.42, + "probability": 0.7607 + }, + { + "start": 9289.0, + "end": 9290.92, + "probability": 0.9838 + }, + { + "start": 9291.1, + "end": 9291.94, + "probability": 0.9678 + }, + { + "start": 9294.32, + "end": 9295.02, + "probability": 0.7485 + }, + { + "start": 9295.58, + "end": 9300.45, + "probability": 0.9151 + }, + { + "start": 9301.22, + "end": 9304.1, + "probability": 0.9346 + }, + { + "start": 9307.42, + "end": 9308.74, + "probability": 0.7098 + }, + { + "start": 9309.94, + "end": 9310.3, + "probability": 0.6025 + }, + { + "start": 9310.36, + "end": 9312.82, + "probability": 0.9883 + }, + { + "start": 9312.96, + "end": 9314.24, + "probability": 0.7483 + }, + { + "start": 9314.54, + "end": 9318.32, + "probability": 0.9204 + }, + { + "start": 9319.66, + "end": 9320.61, + "probability": 0.9722 + }, + { + "start": 9321.48, + "end": 9322.18, + "probability": 0.5086 + }, + { + "start": 9322.78, + "end": 9326.1, + "probability": 0.9264 + }, + { + "start": 9327.78, + "end": 9331.84, + "probability": 0.9565 + }, + { + "start": 9332.68, + "end": 9334.06, + "probability": 0.936 + }, + { + "start": 9334.8, + "end": 9336.74, + "probability": 0.8691 + }, + { + "start": 9338.02, + "end": 9338.86, + "probability": 0.8374 + }, + { + "start": 9340.42, + "end": 9341.68, + "probability": 0.793 + }, + { + "start": 9342.82, + "end": 9344.32, + "probability": 0.7809 + }, + { + "start": 9345.44, + "end": 9348.52, + "probability": 0.9585 + }, + { + "start": 9348.8, + "end": 9350.22, + "probability": 0.1747 + }, + { + "start": 9350.34, + "end": 9351.86, + "probability": 0.847 + }, + { + "start": 9352.8, + "end": 9354.64, + "probability": 0.9784 + }, + { + "start": 9354.64, + "end": 9357.96, + "probability": 0.8726 + }, + { + "start": 9358.36, + "end": 9360.06, + "probability": 0.0793 + }, + { + "start": 9360.34, + "end": 9362.02, + "probability": 0.7527 + }, + { + "start": 9362.16, + "end": 9365.24, + "probability": 0.8662 + }, + { + "start": 9365.52, + "end": 9366.72, + "probability": 0.917 + }, + { + "start": 9366.8, + "end": 9367.02, + "probability": 0.9299 + }, + { + "start": 9367.12, + "end": 9367.8, + "probability": 0.9227 + }, + { + "start": 9369.56, + "end": 9372.32, + "probability": 0.9286 + }, + { + "start": 9372.94, + "end": 9374.74, + "probability": 0.8479 + }, + { + "start": 9375.52, + "end": 9376.52, + "probability": 0.8789 + }, + { + "start": 9377.56, + "end": 9380.06, + "probability": 0.8862 + }, + { + "start": 9380.22, + "end": 9381.46, + "probability": 0.9257 + }, + { + "start": 9382.16, + "end": 9384.0, + "probability": 0.9746 + }, + { + "start": 9384.2, + "end": 9389.94, + "probability": 0.9648 + }, + { + "start": 9390.52, + "end": 9391.38, + "probability": 0.5995 + }, + { + "start": 9394.06, + "end": 9396.01, + "probability": 0.9557 + }, + { + "start": 9396.66, + "end": 9396.88, + "probability": 0.7451 + }, + { + "start": 9397.1, + "end": 9399.74, + "probability": 0.9695 + }, + { + "start": 9399.96, + "end": 9401.64, + "probability": 0.937 + }, + { + "start": 9403.26, + "end": 9403.64, + "probability": 0.9954 + }, + { + "start": 9404.32, + "end": 9404.8, + "probability": 0.2589 + }, + { + "start": 9404.86, + "end": 9407.44, + "probability": 0.8578 + }, + { + "start": 9407.9, + "end": 9411.04, + "probability": 0.9949 + }, + { + "start": 9411.08, + "end": 9413.9, + "probability": 0.9753 + }, + { + "start": 9414.32, + "end": 9417.9, + "probability": 0.963 + }, + { + "start": 9417.98, + "end": 9418.84, + "probability": 0.9039 + }, + { + "start": 9419.7, + "end": 9420.84, + "probability": 0.8573 + }, + { + "start": 9421.48, + "end": 9425.86, + "probability": 0.9815 + }, + { + "start": 9426.64, + "end": 9428.04, + "probability": 0.939 + }, + { + "start": 9428.7, + "end": 9430.52, + "probability": 0.8031 + }, + { + "start": 9431.1, + "end": 9431.32, + "probability": 0.5016 + }, + { + "start": 9431.4, + "end": 9432.72, + "probability": 0.964 + }, + { + "start": 9432.8, + "end": 9434.56, + "probability": 0.952 + }, + { + "start": 9434.92, + "end": 9436.0, + "probability": 0.8979 + }, + { + "start": 9436.62, + "end": 9438.85, + "probability": 0.9897 + }, + { + "start": 9439.08, + "end": 9442.24, + "probability": 0.9787 + }, + { + "start": 9442.82, + "end": 9445.76, + "probability": 0.9846 + }, + { + "start": 9446.42, + "end": 9449.22, + "probability": 0.7867 + }, + { + "start": 9450.52, + "end": 9451.46, + "probability": 0.6119 + }, + { + "start": 9451.54, + "end": 9452.46, + "probability": 0.9746 + }, + { + "start": 9452.66, + "end": 9455.4, + "probability": 0.8848 + }, + { + "start": 9455.48, + "end": 9458.4, + "probability": 0.968 + }, + { + "start": 9458.5, + "end": 9460.62, + "probability": 0.9806 + }, + { + "start": 9461.34, + "end": 9462.04, + "probability": 0.9014 + }, + { + "start": 9463.26, + "end": 9466.38, + "probability": 0.992 + }, + { + "start": 9466.9, + "end": 9468.84, + "probability": 0.7013 + }, + { + "start": 9470.08, + "end": 9473.88, + "probability": 0.9883 + }, + { + "start": 9474.84, + "end": 9480.34, + "probability": 0.9897 + }, + { + "start": 9481.3, + "end": 9484.84, + "probability": 0.9454 + }, + { + "start": 9485.76, + "end": 9488.16, + "probability": 0.8673 + }, + { + "start": 9488.6, + "end": 9489.94, + "probability": 0.9648 + }, + { + "start": 9491.62, + "end": 9495.4, + "probability": 0.9839 + }, + { + "start": 9496.26, + "end": 9496.94, + "probability": 0.9905 + }, + { + "start": 9497.38, + "end": 9499.12, + "probability": 0.981 + }, + { + "start": 9500.04, + "end": 9502.42, + "probability": 0.9643 + }, + { + "start": 9503.04, + "end": 9503.72, + "probability": 0.5186 + }, + { + "start": 9503.82, + "end": 9505.52, + "probability": 0.6935 + }, + { + "start": 9505.68, + "end": 9506.7, + "probability": 0.7744 + }, + { + "start": 9506.92, + "end": 9507.84, + "probability": 0.6206 + }, + { + "start": 9508.54, + "end": 9510.54, + "probability": 0.9551 + }, + { + "start": 9510.66, + "end": 9512.31, + "probability": 0.9996 + }, + { + "start": 9512.82, + "end": 9514.16, + "probability": 0.9259 + }, + { + "start": 9514.88, + "end": 9517.66, + "probability": 0.9891 + }, + { + "start": 9519.96, + "end": 9520.72, + "probability": 0.9194 + }, + { + "start": 9521.22, + "end": 9525.12, + "probability": 0.8969 + }, + { + "start": 9525.2, + "end": 9526.56, + "probability": 0.9166 + }, + { + "start": 9526.7, + "end": 9527.42, + "probability": 0.8286 + }, + { + "start": 9527.52, + "end": 9527.94, + "probability": 0.964 + }, + { + "start": 9528.14, + "end": 9529.64, + "probability": 0.9533 + }, + { + "start": 9530.3, + "end": 9534.96, + "probability": 0.9848 + }, + { + "start": 9535.68, + "end": 9538.04, + "probability": 0.9912 + }, + { + "start": 9538.16, + "end": 9540.4, + "probability": 0.7411 + }, + { + "start": 9540.98, + "end": 9543.16, + "probability": 0.8231 + }, + { + "start": 9543.22, + "end": 9544.32, + "probability": 0.8499 + }, + { + "start": 9545.36, + "end": 9546.56, + "probability": 0.9907 + }, + { + "start": 9547.18, + "end": 9548.55, + "probability": 0.9876 + }, + { + "start": 9548.7, + "end": 9549.26, + "probability": 0.9109 + }, + { + "start": 9549.36, + "end": 9550.1, + "probability": 0.9841 + }, + { + "start": 9550.6, + "end": 9551.56, + "probability": 0.9129 + }, + { + "start": 9552.08, + "end": 9553.01, + "probability": 0.9374 + }, + { + "start": 9555.94, + "end": 9558.48, + "probability": 0.8601 + }, + { + "start": 9559.34, + "end": 9559.98, + "probability": 0.7205 + }, + { + "start": 9560.0, + "end": 9560.56, + "probability": 0.8373 + }, + { + "start": 9560.8, + "end": 9562.56, + "probability": 0.7565 + }, + { + "start": 9564.02, + "end": 9566.72, + "probability": 0.147 + }, + { + "start": 9566.76, + "end": 9567.94, + "probability": 0.7555 + }, + { + "start": 9568.82, + "end": 9569.4, + "probability": 0.8351 + }, + { + "start": 9569.48, + "end": 9570.4, + "probability": 0.7164 + }, + { + "start": 9571.9, + "end": 9573.48, + "probability": 0.7993 + }, + { + "start": 9573.6, + "end": 9574.72, + "probability": 0.8235 + }, + { + "start": 9574.8, + "end": 9577.09, + "probability": 0.9751 + }, + { + "start": 9578.32, + "end": 9579.86, + "probability": 0.7171 + }, + { + "start": 9580.38, + "end": 9581.52, + "probability": 0.7832 + }, + { + "start": 9582.12, + "end": 9584.2, + "probability": 0.9785 + }, + { + "start": 9584.44, + "end": 9587.28, + "probability": 0.9379 + }, + { + "start": 9588.1, + "end": 9589.5, + "probability": 0.9326 + }, + { + "start": 9590.8, + "end": 9591.52, + "probability": 0.8348 + }, + { + "start": 9591.76, + "end": 9593.82, + "probability": 0.9436 + }, + { + "start": 9594.02, + "end": 9595.52, + "probability": 0.8512 + }, + { + "start": 9595.62, + "end": 9597.68, + "probability": 0.9924 + }, + { + "start": 9598.06, + "end": 9599.92, + "probability": 0.972 + }, + { + "start": 9600.7, + "end": 9601.36, + "probability": 0.8853 + }, + { + "start": 9601.98, + "end": 9605.78, + "probability": 0.9272 + }, + { + "start": 9605.88, + "end": 9607.28, + "probability": 0.8667 + }, + { + "start": 9607.78, + "end": 9611.86, + "probability": 0.9127 + }, + { + "start": 9612.36, + "end": 9613.1, + "probability": 0.8281 + }, + { + "start": 9613.2, + "end": 9616.08, + "probability": 0.905 + }, + { + "start": 9616.86, + "end": 9619.46, + "probability": 0.9934 + }, + { + "start": 9619.76, + "end": 9620.52, + "probability": 0.5539 + }, + { + "start": 9620.64, + "end": 9621.56, + "probability": 0.9643 + }, + { + "start": 9622.0, + "end": 9623.92, + "probability": 0.9639 + }, + { + "start": 9624.0, + "end": 9625.5, + "probability": 0.8377 + }, + { + "start": 9625.74, + "end": 9627.19, + "probability": 0.4059 + }, + { + "start": 9627.8, + "end": 9631.1, + "probability": 0.907 + }, + { + "start": 9631.88, + "end": 9632.96, + "probability": 0.9492 + }, + { + "start": 9632.96, + "end": 9634.18, + "probability": 0.7946 + }, + { + "start": 9635.16, + "end": 9635.2, + "probability": 0.003 + }, + { + "start": 9635.84, + "end": 9636.82, + "probability": 0.2162 + }, + { + "start": 9637.54, + "end": 9638.06, + "probability": 0.5069 + }, + { + "start": 9639.02, + "end": 9642.9, + "probability": 0.9849 + }, + { + "start": 9643.66, + "end": 9647.94, + "probability": 0.886 + }, + { + "start": 9648.74, + "end": 9651.64, + "probability": 0.5256 + }, + { + "start": 9652.16, + "end": 9654.56, + "probability": 0.8403 + }, + { + "start": 9655.38, + "end": 9657.48, + "probability": 0.7776 + }, + { + "start": 9659.68, + "end": 9663.2, + "probability": 0.8217 + }, + { + "start": 9663.6, + "end": 9665.56, + "probability": 0.5419 + }, + { + "start": 9665.64, + "end": 9673.58, + "probability": 0.9629 + }, + { + "start": 9674.54, + "end": 9677.74, + "probability": 0.9611 + }, + { + "start": 9678.3, + "end": 9680.46, + "probability": 0.9856 + }, + { + "start": 9680.82, + "end": 9681.76, + "probability": 0.9985 + }, + { + "start": 9682.12, + "end": 9682.62, + "probability": 0.6795 + }, + { + "start": 9683.7, + "end": 9684.32, + "probability": 0.5198 + }, + { + "start": 9684.38, + "end": 9684.94, + "probability": 0.6126 + }, + { + "start": 9684.98, + "end": 9685.62, + "probability": 0.42 + }, + { + "start": 9685.66, + "end": 9687.84, + "probability": 0.6653 + }, + { + "start": 9687.84, + "end": 9688.58, + "probability": 0.7268 + }, + { + "start": 9688.82, + "end": 9689.72, + "probability": 0.6473 + }, + { + "start": 9689.84, + "end": 9690.36, + "probability": 0.9593 + }, + { + "start": 9690.68, + "end": 9691.14, + "probability": 0.9791 + }, + { + "start": 9691.22, + "end": 9691.68, + "probability": 0.6177 + }, + { + "start": 9692.02, + "end": 9692.58, + "probability": 0.7876 + }, + { + "start": 9692.92, + "end": 9694.6, + "probability": 0.8982 + }, + { + "start": 9694.94, + "end": 9697.18, + "probability": 0.7087 + }, + { + "start": 9697.28, + "end": 9698.54, + "probability": 0.988 + }, + { + "start": 9698.94, + "end": 9701.48, + "probability": 0.9936 + }, + { + "start": 9702.1, + "end": 9705.46, + "probability": 0.9911 + }, + { + "start": 9705.5, + "end": 9706.3, + "probability": 0.8756 + }, + { + "start": 9706.48, + "end": 9707.9, + "probability": 0.8734 + }, + { + "start": 9707.92, + "end": 9708.58, + "probability": 0.8893 + }, + { + "start": 9708.94, + "end": 9709.56, + "probability": 0.8517 + }, + { + "start": 9709.64, + "end": 9710.08, + "probability": 0.1168 + }, + { + "start": 9710.32, + "end": 9711.98, + "probability": 0.0753 + }, + { + "start": 9713.18, + "end": 9717.52, + "probability": 0.9841 + }, + { + "start": 9717.88, + "end": 9721.38, + "probability": 0.9979 + }, + { + "start": 9721.38, + "end": 9725.22, + "probability": 0.998 + }, + { + "start": 9725.6, + "end": 9726.78, + "probability": 0.9481 + }, + { + "start": 9726.84, + "end": 9730.24, + "probability": 0.998 + }, + { + "start": 9730.76, + "end": 9731.22, + "probability": 0.9044 + }, + { + "start": 9731.34, + "end": 9732.04, + "probability": 0.8815 + }, + { + "start": 9732.12, + "end": 9732.46, + "probability": 0.9235 + }, + { + "start": 9732.64, + "end": 9737.28, + "probability": 0.927 + }, + { + "start": 9737.64, + "end": 9740.42, + "probability": 0.9853 + }, + { + "start": 9741.12, + "end": 9742.48, + "probability": 0.9112 + }, + { + "start": 9742.62, + "end": 9743.06, + "probability": 0.5668 + }, + { + "start": 9743.38, + "end": 9744.68, + "probability": 0.9968 + }, + { + "start": 9745.08, + "end": 9746.98, + "probability": 0.9541 + }, + { + "start": 9747.1, + "end": 9750.0, + "probability": 0.9495 + }, + { + "start": 9750.48, + "end": 9752.26, + "probability": 0.7428 + }, + { + "start": 9752.66, + "end": 9754.0, + "probability": 0.9961 + }, + { + "start": 9754.28, + "end": 9757.38, + "probability": 0.9971 + }, + { + "start": 9757.58, + "end": 9757.98, + "probability": 0.5106 + }, + { + "start": 9758.38, + "end": 9759.34, + "probability": 0.9865 + }, + { + "start": 9759.7, + "end": 9762.3, + "probability": 0.9683 + }, + { + "start": 9763.32, + "end": 9766.5, + "probability": 0.9141 + }, + { + "start": 9766.66, + "end": 9766.92, + "probability": 0.0927 + }, + { + "start": 9767.46, + "end": 9769.22, + "probability": 0.741 + }, + { + "start": 9769.28, + "end": 9769.72, + "probability": 0.6884 + }, + { + "start": 9770.16, + "end": 9771.94, + "probability": 0.9751 + }, + { + "start": 9772.06, + "end": 9772.67, + "probability": 0.9668 + }, + { + "start": 9772.9, + "end": 9773.94, + "probability": 0.9512 + }, + { + "start": 9774.28, + "end": 9776.34, + "probability": 0.9928 + }, + { + "start": 9776.98, + "end": 9779.64, + "probability": 0.9462 + }, + { + "start": 9780.2, + "end": 9782.48, + "probability": 0.739 + }, + { + "start": 9782.48, + "end": 9784.2, + "probability": 0.8014 + }, + { + "start": 9784.74, + "end": 9787.27, + "probability": 0.9274 + }, + { + "start": 9787.56, + "end": 9788.56, + "probability": 0.0989 + }, + { + "start": 9789.12, + "end": 9790.4, + "probability": 0.8165 + }, + { + "start": 9790.62, + "end": 9790.74, + "probability": 0.4051 + }, + { + "start": 9790.8, + "end": 9791.24, + "probability": 0.7076 + }, + { + "start": 9791.4, + "end": 9792.88, + "probability": 0.7575 + }, + { + "start": 9793.02, + "end": 9794.22, + "probability": 0.8441 + }, + { + "start": 9794.6, + "end": 9799.92, + "probability": 0.9992 + }, + { + "start": 9800.3, + "end": 9803.0, + "probability": 0.9932 + }, + { + "start": 9803.0, + "end": 9806.08, + "probability": 0.998 + }, + { + "start": 9806.2, + "end": 9806.42, + "probability": 0.3946 + }, + { + "start": 9806.78, + "end": 9810.6, + "probability": 0.7746 + }, + { + "start": 9810.96, + "end": 9812.7, + "probability": 0.9459 + }, + { + "start": 9820.26, + "end": 9821.16, + "probability": 0.6668 + }, + { + "start": 9823.04, + "end": 9824.32, + "probability": 0.8208 + }, + { + "start": 9824.38, + "end": 9826.4, + "probability": 0.9968 + }, + { + "start": 9826.54, + "end": 9828.66, + "probability": 0.7955 + }, + { + "start": 9828.9, + "end": 9830.42, + "probability": 0.9972 + }, + { + "start": 9831.06, + "end": 9831.82, + "probability": 0.4195 + }, + { + "start": 9831.86, + "end": 9832.16, + "probability": 0.5779 + }, + { + "start": 9832.16, + "end": 9832.68, + "probability": 0.7912 + }, + { + "start": 9832.88, + "end": 9834.48, + "probability": 0.9916 + }, + { + "start": 9834.86, + "end": 9837.98, + "probability": 0.6843 + }, + { + "start": 9838.04, + "end": 9838.4, + "probability": 0.55 + }, + { + "start": 9838.72, + "end": 9838.72, + "probability": 0.6504 + }, + { + "start": 9839.75, + "end": 9840.49, + "probability": 0.1973 + }, + { + "start": 9841.24, + "end": 9842.76, + "probability": 0.7347 + }, + { + "start": 9842.88, + "end": 9843.06, + "probability": 0.5075 + }, + { + "start": 9843.14, + "end": 9844.58, + "probability": 0.9858 + }, + { + "start": 9844.62, + "end": 9845.18, + "probability": 0.5202 + }, + { + "start": 9845.22, + "end": 9846.28, + "probability": 0.7223 + }, + { + "start": 9846.84, + "end": 9849.08, + "probability": 0.9537 + }, + { + "start": 9849.56, + "end": 9851.74, + "probability": 0.9238 + }, + { + "start": 9851.74, + "end": 9851.88, + "probability": 0.6908 + }, + { + "start": 9851.88, + "end": 9857.8, + "probability": 0.7648 + }, + { + "start": 9857.8, + "end": 9864.6, + "probability": 0.9475 + }, + { + "start": 9864.64, + "end": 9864.92, + "probability": 0.5975 + }, + { + "start": 9865.99, + "end": 9867.14, + "probability": 0.2445 + }, + { + "start": 9867.16, + "end": 9867.16, + "probability": 0.0239 + }, + { + "start": 9867.16, + "end": 9868.76, + "probability": 0.9041 + }, + { + "start": 9869.14, + "end": 9871.04, + "probability": 0.7967 + }, + { + "start": 9871.14, + "end": 9872.08, + "probability": 0.857 + }, + { + "start": 9872.16, + "end": 9874.46, + "probability": 0.7207 + }, + { + "start": 9874.68, + "end": 9878.88, + "probability": 0.8689 + }, + { + "start": 9879.08, + "end": 9882.06, + "probability": 0.9907 + }, + { + "start": 9882.66, + "end": 9884.62, + "probability": 0.9958 + }, + { + "start": 9885.04, + "end": 9888.04, + "probability": 0.9958 + }, + { + "start": 9889.18, + "end": 9891.38, + "probability": 0.8133 + }, + { + "start": 9891.92, + "end": 9894.96, + "probability": 0.9955 + }, + { + "start": 9895.58, + "end": 9897.12, + "probability": 0.6018 + }, + { + "start": 9898.3, + "end": 9904.2, + "probability": 0.7432 + }, + { + "start": 9905.16, + "end": 9905.96, + "probability": 0.3866 + }, + { + "start": 9906.96, + "end": 9911.06, + "probability": 0.9922 + }, + { + "start": 9911.64, + "end": 9913.7, + "probability": 0.9917 + }, + { + "start": 9915.04, + "end": 9916.82, + "probability": 0.8694 + }, + { + "start": 9917.68, + "end": 9919.92, + "probability": 0.9753 + }, + { + "start": 9920.34, + "end": 9923.22, + "probability": 0.9283 + }, + { + "start": 9923.9, + "end": 9926.08, + "probability": 0.5725 + }, + { + "start": 9926.72, + "end": 9928.18, + "probability": 0.9131 + }, + { + "start": 9929.26, + "end": 9931.83, + "probability": 0.9159 + }, + { + "start": 9932.24, + "end": 9936.9, + "probability": 0.8976 + }, + { + "start": 9939.73, + "end": 9941.88, + "probability": 0.9824 + }, + { + "start": 9942.16, + "end": 9943.94, + "probability": 0.964 + }, + { + "start": 9944.5, + "end": 9944.52, + "probability": 0.9014 + }, + { + "start": 9947.94, + "end": 9948.6, + "probability": 0.7832 + }, + { + "start": 9949.16, + "end": 9951.04, + "probability": 0.9964 + }, + { + "start": 9951.64, + "end": 9954.38, + "probability": 0.9165 + }, + { + "start": 9954.44, + "end": 9957.24, + "probability": 0.7907 + }, + { + "start": 9958.2, + "end": 9962.44, + "probability": 0.9578 + }, + { + "start": 9963.12, + "end": 9967.44, + "probability": 0.9912 + }, + { + "start": 9968.08, + "end": 9975.12, + "probability": 0.9822 + }, + { + "start": 9976.86, + "end": 9978.06, + "probability": 0.7854 + }, + { + "start": 9978.14, + "end": 9980.32, + "probability": 0.9886 + }, + { + "start": 9981.26, + "end": 9982.82, + "probability": 0.6902 + }, + { + "start": 9983.46, + "end": 9987.2, + "probability": 0.9859 + }, + { + "start": 9988.76, + "end": 9993.08, + "probability": 0.5949 + }, + { + "start": 9994.26, + "end": 9996.62, + "probability": 0.9892 + }, + { + "start": 9996.68, + "end": 9998.4, + "probability": 0.5784 + }, + { + "start": 9999.0, + "end": 10002.42, + "probability": 0.948 + }, + { + "start": 10003.0, + "end": 10004.82, + "probability": 0.7486 + }, + { + "start": 10005.66, + "end": 10006.86, + "probability": 0.9813 + }, + { + "start": 10007.94, + "end": 10009.96, + "probability": 0.8917 + }, + { + "start": 10010.92, + "end": 10015.06, + "probability": 0.9409 + }, + { + "start": 10015.9, + "end": 10019.14, + "probability": 0.9572 + }, + { + "start": 10020.08, + "end": 10022.68, + "probability": 0.9724 + }, + { + "start": 10023.06, + "end": 10025.9, + "probability": 0.6788 + }, + { + "start": 10026.16, + "end": 10028.1, + "probability": 0.9932 + }, + { + "start": 10029.12, + "end": 10031.8, + "probability": 0.995 + }, + { + "start": 10032.32, + "end": 10036.1, + "probability": 0.9161 + }, + { + "start": 10036.56, + "end": 10037.28, + "probability": 0.7445 + }, + { + "start": 10037.46, + "end": 10042.7, + "probability": 0.9005 + }, + { + "start": 10043.38, + "end": 10045.76, + "probability": 0.9327 + }, + { + "start": 10046.42, + "end": 10047.7, + "probability": 0.718 + }, + { + "start": 10048.4, + "end": 10049.5, + "probability": 0.8761 + }, + { + "start": 10049.62, + "end": 10050.44, + "probability": 0.8155 + }, + { + "start": 10050.52, + "end": 10053.78, + "probability": 0.9758 + }, + { + "start": 10053.84, + "end": 10055.28, + "probability": 0.9606 + }, + { + "start": 10055.3, + "end": 10057.0, + "probability": 0.8452 + }, + { + "start": 10057.38, + "end": 10058.58, + "probability": 0.9872 + }, + { + "start": 10058.92, + "end": 10060.0, + "probability": 0.9663 + }, + { + "start": 10060.56, + "end": 10063.98, + "probability": 0.8939 + }, + { + "start": 10064.64, + "end": 10065.74, + "probability": 0.7856 + }, + { + "start": 10065.86, + "end": 10068.98, + "probability": 0.8409 + }, + { + "start": 10069.08, + "end": 10072.96, + "probability": 0.9272 + }, + { + "start": 10072.96, + "end": 10076.62, + "probability": 0.9468 + }, + { + "start": 10076.66, + "end": 10077.4, + "probability": 0.9618 + }, + { + "start": 10078.82, + "end": 10086.5, + "probability": 0.853 + }, + { + "start": 10087.37, + "end": 10090.35, + "probability": 0.9119 + }, + { + "start": 10090.9, + "end": 10091.62, + "probability": 0.7933 + }, + { + "start": 10093.36, + "end": 10094.88, + "probability": 0.7458 + }, + { + "start": 10095.28, + "end": 10096.14, + "probability": 0.9924 + }, + { + "start": 10096.2, + "end": 10096.92, + "probability": 0.8593 + }, + { + "start": 10096.96, + "end": 10098.96, + "probability": 0.9111 + }, + { + "start": 10099.06, + "end": 10100.64, + "probability": 0.8169 + }, + { + "start": 10100.94, + "end": 10103.0, + "probability": 0.9858 + }, + { + "start": 10103.0, + "end": 10104.98, + "probability": 0.9756 + }, + { + "start": 10105.48, + "end": 10108.54, + "probability": 0.978 + }, + { + "start": 10108.6, + "end": 10109.24, + "probability": 0.8051 + }, + { + "start": 10109.74, + "end": 10111.56, + "probability": 0.9958 + }, + { + "start": 10113.42, + "end": 10116.9, + "probability": 0.9826 + }, + { + "start": 10117.54, + "end": 10119.42, + "probability": 0.7277 + }, + { + "start": 10120.12, + "end": 10123.08, + "probability": 0.9591 + }, + { + "start": 10123.18, + "end": 10123.3, + "probability": 0.3049 + }, + { + "start": 10124.08, + "end": 10128.06, + "probability": 0.975 + }, + { + "start": 10128.06, + "end": 10131.6, + "probability": 0.806 + }, + { + "start": 10132.66, + "end": 10134.62, + "probability": 0.7948 + }, + { + "start": 10135.3, + "end": 10137.12, + "probability": 0.7317 + }, + { + "start": 10137.76, + "end": 10140.28, + "probability": 0.9878 + }, + { + "start": 10140.36, + "end": 10140.98, + "probability": 0.2942 + }, + { + "start": 10141.14, + "end": 10142.24, + "probability": 0.92 + }, + { + "start": 10142.86, + "end": 10147.72, + "probability": 0.9448 + }, + { + "start": 10147.92, + "end": 10148.56, + "probability": 0.9785 + }, + { + "start": 10149.08, + "end": 10151.38, + "probability": 0.9951 + }, + { + "start": 10151.42, + "end": 10153.68, + "probability": 0.8078 + }, + { + "start": 10153.74, + "end": 10155.94, + "probability": 0.7195 + }, + { + "start": 10155.96, + "end": 10159.58, + "probability": 0.9077 + }, + { + "start": 10159.64, + "end": 10159.86, + "probability": 0.5455 + }, + { + "start": 10160.24, + "end": 10163.16, + "probability": 0.9586 + }, + { + "start": 10163.8, + "end": 10164.96, + "probability": 0.8494 + }, + { + "start": 10165.82, + "end": 10168.22, + "probability": 0.8317 + }, + { + "start": 10169.18, + "end": 10170.28, + "probability": 0.6914 + }, + { + "start": 10171.02, + "end": 10174.82, + "probability": 0.9645 + }, + { + "start": 10175.76, + "end": 10181.4, + "probability": 0.8245 + }, + { + "start": 10181.4, + "end": 10186.16, + "probability": 0.9918 + }, + { + "start": 10186.92, + "end": 10187.02, + "probability": 0.0205 + }, + { + "start": 10187.62, + "end": 10190.18, + "probability": 0.2265 + }, + { + "start": 10191.16, + "end": 10192.92, + "probability": 0.5461 + }, + { + "start": 10193.38, + "end": 10196.94, + "probability": 0.8798 + }, + { + "start": 10197.04, + "end": 10197.82, + "probability": 0.9022 + }, + { + "start": 10198.04, + "end": 10199.3, + "probability": 0.7474 + }, + { + "start": 10199.36, + "end": 10200.34, + "probability": 0.5433 + }, + { + "start": 10200.44, + "end": 10202.48, + "probability": 0.8689 + }, + { + "start": 10202.62, + "end": 10204.23, + "probability": 0.8676 + }, + { + "start": 10204.44, + "end": 10208.24, + "probability": 0.5912 + }, + { + "start": 10208.7, + "end": 10210.36, + "probability": 0.3482 + }, + { + "start": 10210.46, + "end": 10212.14, + "probability": 0.9657 + }, + { + "start": 10212.14, + "end": 10212.76, + "probability": 0.7021 + }, + { + "start": 10214.06, + "end": 10215.22, + "probability": 0.8257 + }, + { + "start": 10215.76, + "end": 10218.77, + "probability": 0.7398 + }, + { + "start": 10219.36, + "end": 10221.2, + "probability": 0.9812 + } + ], + "segments_count": 3734, + "words_count": 17772, + "avg_words_per_segment": 4.7595, + "avg_segment_duration": 1.9227, + "avg_words_per_minute": 101.1657, + "plenum_id": "12776", + "duration": 10540.33, + "title": null, + "plenum_date": "2011-03-15" +} \ No newline at end of file