diff --git "a/14393/metadata.json" "b/14393/metadata.json" new file mode 100644--- /dev/null +++ "b/14393/metadata.json" @@ -0,0 +1,29292 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "14393", + "quality_score": 0.9314, + "per_segment_quality_scores": [ + { + "start": 62.44, + "end": 65.22, + "probability": 0.0366 + }, + { + "start": 65.92, + "end": 66.58, + "probability": 0.0044 + }, + { + "start": 100.36, + "end": 102.98, + "probability": 0.6121 + }, + { + "start": 103.66, + "end": 105.22, + "probability": 0.8123 + }, + { + "start": 106.16, + "end": 108.54, + "probability": 0.5243 + }, + { + "start": 109.4, + "end": 113.58, + "probability": 0.6779 + }, + { + "start": 114.32, + "end": 116.82, + "probability": 0.9915 + }, + { + "start": 117.32, + "end": 119.44, + "probability": 0.7578 + }, + { + "start": 120.54, + "end": 121.8, + "probability": 0.7525 + }, + { + "start": 121.96, + "end": 123.32, + "probability": 0.8973 + }, + { + "start": 123.48, + "end": 124.78, + "probability": 0.832 + }, + { + "start": 125.64, + "end": 127.06, + "probability": 0.6714 + }, + { + "start": 127.98, + "end": 129.98, + "probability": 0.9973 + }, + { + "start": 130.6, + "end": 131.66, + "probability": 0.0697 + }, + { + "start": 132.18, + "end": 134.24, + "probability": 0.8784 + }, + { + "start": 134.76, + "end": 136.74, + "probability": 0.2609 + }, + { + "start": 137.18, + "end": 139.1, + "probability": 0.928 + }, + { + "start": 139.64, + "end": 141.14, + "probability": 0.8465 + }, + { + "start": 141.92, + "end": 143.68, + "probability": 0.9562 + }, + { + "start": 143.72, + "end": 146.78, + "probability": 0.8669 + }, + { + "start": 147.48, + "end": 149.74, + "probability": 0.9088 + }, + { + "start": 150.3, + "end": 152.76, + "probability": 0.9595 + }, + { + "start": 153.46, + "end": 159.87, + "probability": 0.8185 + }, + { + "start": 160.36, + "end": 161.8, + "probability": 0.7764 + }, + { + "start": 162.2, + "end": 164.66, + "probability": 0.8259 + }, + { + "start": 165.12, + "end": 167.38, + "probability": 0.6033 + }, + { + "start": 167.4, + "end": 168.52, + "probability": 0.8162 + }, + { + "start": 169.04, + "end": 171.3, + "probability": 0.7325 + }, + { + "start": 171.88, + "end": 173.56, + "probability": 0.967 + }, + { + "start": 174.1, + "end": 177.04, + "probability": 0.9926 + }, + { + "start": 177.42, + "end": 179.96, + "probability": 0.9699 + }, + { + "start": 180.62, + "end": 180.94, + "probability": 0.7504 + }, + { + "start": 181.14, + "end": 181.92, + "probability": 0.4869 + }, + { + "start": 182.24, + "end": 187.16, + "probability": 0.8442 + }, + { + "start": 187.78, + "end": 190.34, + "probability": 0.9975 + }, + { + "start": 191.4, + "end": 193.33, + "probability": 0.5581 + }, + { + "start": 194.08, + "end": 195.0, + "probability": 0.4229 + }, + { + "start": 195.64, + "end": 199.28, + "probability": 0.8488 + }, + { + "start": 205.94, + "end": 209.64, + "probability": 0.531 + }, + { + "start": 210.12, + "end": 212.24, + "probability": 0.6126 + }, + { + "start": 214.16, + "end": 216.26, + "probability": 0.8857 + }, + { + "start": 217.18, + "end": 217.84, + "probability": 0.8248 + }, + { + "start": 219.0, + "end": 221.46, + "probability": 0.9653 + }, + { + "start": 222.7, + "end": 227.3, + "probability": 0.856 + }, + { + "start": 228.08, + "end": 230.4, + "probability": 0.8121 + }, + { + "start": 231.72, + "end": 235.68, + "probability": 0.9875 + }, + { + "start": 236.52, + "end": 239.76, + "probability": 0.9074 + }, + { + "start": 240.58, + "end": 243.52, + "probability": 0.9473 + }, + { + "start": 244.98, + "end": 249.22, + "probability": 0.9963 + }, + { + "start": 249.94, + "end": 252.52, + "probability": 0.988 + }, + { + "start": 253.78, + "end": 256.32, + "probability": 0.9892 + }, + { + "start": 257.12, + "end": 261.86, + "probability": 0.9026 + }, + { + "start": 263.12, + "end": 263.76, + "probability": 0.8387 + }, + { + "start": 263.86, + "end": 264.44, + "probability": 0.5914 + }, + { + "start": 264.5, + "end": 265.38, + "probability": 0.4111 + }, + { + "start": 265.78, + "end": 272.66, + "probability": 0.9786 + }, + { + "start": 273.52, + "end": 276.54, + "probability": 0.9868 + }, + { + "start": 277.26, + "end": 278.78, + "probability": 0.9453 + }, + { + "start": 279.08, + "end": 283.84, + "probability": 0.9497 + }, + { + "start": 284.4, + "end": 285.76, + "probability": 0.9613 + }, + { + "start": 285.86, + "end": 286.08, + "probability": 0.7345 + }, + { + "start": 286.7, + "end": 288.18, + "probability": 0.9445 + }, + { + "start": 288.84, + "end": 289.38, + "probability": 0.6257 + }, + { + "start": 290.36, + "end": 292.0, + "probability": 0.9648 + }, + { + "start": 296.98, + "end": 297.56, + "probability": 0.6074 + }, + { + "start": 297.94, + "end": 298.82, + "probability": 0.8485 + }, + { + "start": 299.04, + "end": 300.44, + "probability": 0.9724 + }, + { + "start": 300.86, + "end": 303.06, + "probability": 0.7115 + }, + { + "start": 303.94, + "end": 308.68, + "probability": 0.9214 + }, + { + "start": 309.62, + "end": 310.76, + "probability": 0.8216 + }, + { + "start": 312.3, + "end": 315.74, + "probability": 0.9671 + }, + { + "start": 316.31, + "end": 318.42, + "probability": 0.4685 + }, + { + "start": 319.38, + "end": 324.94, + "probability": 0.8032 + }, + { + "start": 325.8, + "end": 330.16, + "probability": 0.9736 + }, + { + "start": 330.3, + "end": 332.02, + "probability": 0.9789 + }, + { + "start": 332.48, + "end": 334.12, + "probability": 0.9833 + }, + { + "start": 334.5, + "end": 336.22, + "probability": 0.9621 + }, + { + "start": 336.32, + "end": 340.16, + "probability": 0.9819 + }, + { + "start": 340.58, + "end": 345.9, + "probability": 0.9929 + }, + { + "start": 346.58, + "end": 351.0, + "probability": 0.9945 + }, + { + "start": 351.46, + "end": 352.32, + "probability": 0.7367 + }, + { + "start": 352.36, + "end": 352.9, + "probability": 0.915 + }, + { + "start": 353.38, + "end": 354.3, + "probability": 0.5294 + }, + { + "start": 354.42, + "end": 359.06, + "probability": 0.9822 + }, + { + "start": 359.46, + "end": 360.62, + "probability": 0.5877 + }, + { + "start": 361.68, + "end": 364.64, + "probability": 0.7909 + }, + { + "start": 365.04, + "end": 367.58, + "probability": 0.7955 + }, + { + "start": 367.88, + "end": 368.82, + "probability": 0.6591 + }, + { + "start": 368.96, + "end": 369.46, + "probability": 0.5808 + }, + { + "start": 369.58, + "end": 370.32, + "probability": 0.9895 + }, + { + "start": 371.94, + "end": 373.36, + "probability": 0.3483 + }, + { + "start": 373.36, + "end": 377.22, + "probability": 0.9741 + }, + { + "start": 377.32, + "end": 379.4, + "probability": 0.9515 + }, + { + "start": 379.88, + "end": 383.78, + "probability": 0.9946 + }, + { + "start": 384.92, + "end": 386.26, + "probability": 0.9634 + }, + { + "start": 387.86, + "end": 391.78, + "probability": 0.9324 + }, + { + "start": 392.12, + "end": 393.3, + "probability": 0.8625 + }, + { + "start": 393.44, + "end": 394.1, + "probability": 0.7546 + }, + { + "start": 394.74, + "end": 396.32, + "probability": 0.7701 + }, + { + "start": 396.8, + "end": 397.58, + "probability": 0.7321 + }, + { + "start": 397.8, + "end": 399.14, + "probability": 0.9682 + }, + { + "start": 399.54, + "end": 403.82, + "probability": 0.9929 + }, + { + "start": 403.92, + "end": 404.34, + "probability": 0.7541 + }, + { + "start": 405.16, + "end": 405.8, + "probability": 0.7364 + }, + { + "start": 406.91, + "end": 411.52, + "probability": 0.94 + }, + { + "start": 412.2, + "end": 417.46, + "probability": 0.9751 + }, + { + "start": 418.16, + "end": 419.94, + "probability": 0.8462 + }, + { + "start": 420.24, + "end": 421.28, + "probability": 0.833 + }, + { + "start": 422.09, + "end": 424.76, + "probability": 0.994 + }, + { + "start": 425.28, + "end": 425.48, + "probability": 0.9988 + }, + { + "start": 426.0, + "end": 427.42, + "probability": 0.6459 + }, + { + "start": 428.24, + "end": 430.08, + "probability": 0.9116 + }, + { + "start": 431.02, + "end": 436.6, + "probability": 0.7495 + }, + { + "start": 437.32, + "end": 441.08, + "probability": 0.6829 + }, + { + "start": 442.32, + "end": 442.94, + "probability": 0.6714 + }, + { + "start": 443.94, + "end": 445.06, + "probability": 0.8818 + }, + { + "start": 445.06, + "end": 446.66, + "probability": 0.9757 + }, + { + "start": 446.72, + "end": 448.82, + "probability": 0.4277 + }, + { + "start": 449.02, + "end": 450.18, + "probability": 0.9897 + }, + { + "start": 451.36, + "end": 453.8, + "probability": 0.7286 + }, + { + "start": 454.96, + "end": 456.44, + "probability": 0.622 + }, + { + "start": 456.58, + "end": 459.24, + "probability": 0.6636 + }, + { + "start": 459.32, + "end": 459.84, + "probability": 0.6874 + }, + { + "start": 461.0, + "end": 464.24, + "probability": 0.6693 + }, + { + "start": 465.14, + "end": 466.0, + "probability": 0.389 + }, + { + "start": 469.36, + "end": 472.8, + "probability": 0.6148 + }, + { + "start": 473.14, + "end": 474.44, + "probability": 0.5631 + }, + { + "start": 474.52, + "end": 475.5, + "probability": 0.7113 + }, + { + "start": 475.76, + "end": 479.18, + "probability": 0.8488 + }, + { + "start": 479.28, + "end": 481.78, + "probability": 0.9927 + }, + { + "start": 481.88, + "end": 482.42, + "probability": 0.9344 + }, + { + "start": 483.08, + "end": 487.54, + "probability": 0.9812 + }, + { + "start": 488.1, + "end": 490.9, + "probability": 0.964 + }, + { + "start": 491.48, + "end": 493.36, + "probability": 0.4998 + }, + { + "start": 493.48, + "end": 495.2, + "probability": 0.9561 + }, + { + "start": 495.58, + "end": 496.4, + "probability": 0.7616 + }, + { + "start": 496.86, + "end": 497.58, + "probability": 0.6494 + }, + { + "start": 497.96, + "end": 499.06, + "probability": 0.9676 + }, + { + "start": 500.2, + "end": 504.04, + "probability": 0.9707 + }, + { + "start": 504.9, + "end": 507.4, + "probability": 0.9868 + }, + { + "start": 508.54, + "end": 511.52, + "probability": 0.9628 + }, + { + "start": 511.96, + "end": 513.72, + "probability": 0.9757 + }, + { + "start": 514.3, + "end": 517.46, + "probability": 0.965 + }, + { + "start": 517.94, + "end": 518.46, + "probability": 0.6982 + }, + { + "start": 518.62, + "end": 519.88, + "probability": 0.8285 + }, + { + "start": 520.02, + "end": 520.98, + "probability": 0.9854 + }, + { + "start": 521.4, + "end": 526.48, + "probability": 0.9901 + }, + { + "start": 527.2, + "end": 531.85, + "probability": 0.9698 + }, + { + "start": 532.48, + "end": 533.02, + "probability": 0.5676 + }, + { + "start": 533.48, + "end": 538.12, + "probability": 0.943 + }, + { + "start": 539.3, + "end": 541.4, + "probability": 0.808 + }, + { + "start": 541.56, + "end": 542.25, + "probability": 0.8481 + }, + { + "start": 542.46, + "end": 544.76, + "probability": 0.9951 + }, + { + "start": 544.88, + "end": 548.5, + "probability": 0.9918 + }, + { + "start": 548.6, + "end": 549.88, + "probability": 0.9648 + }, + { + "start": 549.88, + "end": 552.44, + "probability": 0.9984 + }, + { + "start": 552.44, + "end": 554.32, + "probability": 0.9517 + }, + { + "start": 554.9, + "end": 556.7, + "probability": 0.9954 + }, + { + "start": 557.26, + "end": 558.8, + "probability": 0.9841 + }, + { + "start": 558.88, + "end": 559.38, + "probability": 0.5562 + }, + { + "start": 559.48, + "end": 561.66, + "probability": 0.9854 + }, + { + "start": 562.06, + "end": 566.66, + "probability": 0.9905 + }, + { + "start": 566.66, + "end": 570.6, + "probability": 0.9992 + }, + { + "start": 570.66, + "end": 572.44, + "probability": 0.641 + }, + { + "start": 573.1, + "end": 577.5, + "probability": 0.8888 + }, + { + "start": 580.72, + "end": 581.56, + "probability": 0.6085 + }, + { + "start": 583.46, + "end": 585.38, + "probability": 0.9123 + }, + { + "start": 586.68, + "end": 588.82, + "probability": 0.9602 + }, + { + "start": 590.44, + "end": 593.36, + "probability": 0.8567 + }, + { + "start": 595.9, + "end": 597.32, + "probability": 0.718 + }, + { + "start": 598.48, + "end": 599.08, + "probability": 0.7407 + }, + { + "start": 599.42, + "end": 600.28, + "probability": 0.998 + }, + { + "start": 601.88, + "end": 602.82, + "probability": 0.5895 + }, + { + "start": 603.48, + "end": 607.92, + "probability": 0.9062 + }, + { + "start": 608.0, + "end": 608.46, + "probability": 0.6396 + }, + { + "start": 608.6, + "end": 616.74, + "probability": 0.9146 + }, + { + "start": 616.74, + "end": 621.88, + "probability": 0.9805 + }, + { + "start": 623.14, + "end": 625.52, + "probability": 0.6403 + }, + { + "start": 626.54, + "end": 629.7, + "probability": 0.9728 + }, + { + "start": 630.44, + "end": 634.02, + "probability": 0.968 + }, + { + "start": 635.18, + "end": 637.58, + "probability": 0.929 + }, + { + "start": 638.42, + "end": 640.18, + "probability": 0.6085 + }, + { + "start": 641.08, + "end": 646.04, + "probability": 0.9952 + }, + { + "start": 647.02, + "end": 648.7, + "probability": 0.8324 + }, + { + "start": 649.24, + "end": 654.56, + "probability": 0.9899 + }, + { + "start": 654.8, + "end": 654.98, + "probability": 0.7099 + }, + { + "start": 655.22, + "end": 656.71, + "probability": 0.948 + }, + { + "start": 657.26, + "end": 659.84, + "probability": 0.8066 + }, + { + "start": 660.84, + "end": 662.18, + "probability": 0.6768 + }, + { + "start": 663.14, + "end": 663.68, + "probability": 0.7271 + }, + { + "start": 664.8, + "end": 666.94, + "probability": 0.9505 + }, + { + "start": 672.52, + "end": 674.56, + "probability": 0.9956 + }, + { + "start": 675.18, + "end": 677.54, + "probability": 0.9963 + }, + { + "start": 678.22, + "end": 679.82, + "probability": 0.8877 + }, + { + "start": 680.18, + "end": 683.5, + "probability": 0.9204 + }, + { + "start": 684.48, + "end": 684.94, + "probability": 0.7648 + }, + { + "start": 685.1, + "end": 687.34, + "probability": 0.6491 + }, + { + "start": 687.74, + "end": 689.62, + "probability": 0.9559 + }, + { + "start": 689.8, + "end": 690.24, + "probability": 0.7664 + }, + { + "start": 690.42, + "end": 690.94, + "probability": 0.7265 + }, + { + "start": 691.28, + "end": 691.86, + "probability": 0.9203 + }, + { + "start": 692.46, + "end": 693.34, + "probability": 0.684 + }, + { + "start": 693.46, + "end": 694.3, + "probability": 0.8482 + }, + { + "start": 694.56, + "end": 697.64, + "probability": 0.99 + }, + { + "start": 698.4, + "end": 701.1, + "probability": 0.7546 + }, + { + "start": 703.14, + "end": 706.26, + "probability": 0.1356 + }, + { + "start": 708.36, + "end": 708.36, + "probability": 0.292 + }, + { + "start": 708.36, + "end": 709.16, + "probability": 0.0428 + }, + { + "start": 709.7, + "end": 709.96, + "probability": 0.1406 + }, + { + "start": 710.16, + "end": 714.56, + "probability": 0.8124 + }, + { + "start": 715.02, + "end": 716.78, + "probability": 0.0618 + }, + { + "start": 717.9, + "end": 719.41, + "probability": 0.5083 + }, + { + "start": 719.66, + "end": 720.88, + "probability": 0.8159 + }, + { + "start": 721.1, + "end": 726.42, + "probability": 0.8548 + }, + { + "start": 727.02, + "end": 727.9, + "probability": 0.851 + }, + { + "start": 728.06, + "end": 728.88, + "probability": 0.6802 + }, + { + "start": 729.14, + "end": 732.06, + "probability": 0.9934 + }, + { + "start": 732.52, + "end": 734.82, + "probability": 0.9717 + }, + { + "start": 734.82, + "end": 737.32, + "probability": 0.6591 + }, + { + "start": 737.76, + "end": 737.86, + "probability": 0.6685 + }, + { + "start": 737.86, + "end": 739.8, + "probability": 0.972 + }, + { + "start": 740.58, + "end": 741.56, + "probability": 0.8876 + }, + { + "start": 742.62, + "end": 744.68, + "probability": 0.7966 + }, + { + "start": 745.04, + "end": 746.5, + "probability": 0.702 + }, + { + "start": 746.58, + "end": 748.64, + "probability": 0.928 + }, + { + "start": 749.38, + "end": 751.22, + "probability": 0.604 + }, + { + "start": 751.32, + "end": 753.8, + "probability": 0.7449 + }, + { + "start": 754.1, + "end": 756.86, + "probability": 0.9889 + }, + { + "start": 756.86, + "end": 760.04, + "probability": 0.9987 + }, + { + "start": 760.04, + "end": 760.56, + "probability": 0.7001 + }, + { + "start": 761.34, + "end": 762.0, + "probability": 0.8219 + }, + { + "start": 762.32, + "end": 764.4, + "probability": 0.9714 + }, + { + "start": 764.99, + "end": 769.22, + "probability": 0.9941 + }, + { + "start": 769.9, + "end": 774.18, + "probability": 0.909 + }, + { + "start": 774.66, + "end": 776.52, + "probability": 0.8945 + }, + { + "start": 776.6, + "end": 777.82, + "probability": 0.9892 + }, + { + "start": 778.86, + "end": 779.99, + "probability": 0.8696 + }, + { + "start": 780.62, + "end": 781.38, + "probability": 0.7263 + }, + { + "start": 782.8, + "end": 786.48, + "probability": 0.505 + }, + { + "start": 786.56, + "end": 787.92, + "probability": 0.0087 + }, + { + "start": 788.0, + "end": 791.42, + "probability": 0.7396 + }, + { + "start": 791.44, + "end": 792.62, + "probability": 0.8186 + }, + { + "start": 792.68, + "end": 793.7, + "probability": 0.834 + }, + { + "start": 793.76, + "end": 795.2, + "probability": 0.8801 + }, + { + "start": 795.2, + "end": 795.8, + "probability": 0.4762 + }, + { + "start": 795.94, + "end": 796.86, + "probability": 0.7343 + }, + { + "start": 796.9, + "end": 798.68, + "probability": 0.4334 + }, + { + "start": 798.76, + "end": 801.06, + "probability": 0.3384 + }, + { + "start": 801.1, + "end": 803.52, + "probability": 0.9265 + }, + { + "start": 803.58, + "end": 804.77, + "probability": 0.9949 + }, + { + "start": 805.04, + "end": 806.09, + "probability": 0.9937 + }, + { + "start": 806.96, + "end": 810.62, + "probability": 0.7975 + }, + { + "start": 811.36, + "end": 812.22, + "probability": 0.9259 + }, + { + "start": 813.04, + "end": 814.16, + "probability": 0.9709 + }, + { + "start": 814.34, + "end": 816.11, + "probability": 0.7197 + }, + { + "start": 816.26, + "end": 818.6, + "probability": 0.6282 + }, + { + "start": 818.82, + "end": 820.0, + "probability": 0.9486 + }, + { + "start": 820.02, + "end": 821.14, + "probability": 0.9693 + }, + { + "start": 821.8, + "end": 823.36, + "probability": 0.8596 + }, + { + "start": 823.54, + "end": 829.08, + "probability": 0.9905 + }, + { + "start": 829.22, + "end": 830.02, + "probability": 0.5961 + }, + { + "start": 830.42, + "end": 834.74, + "probability": 0.9337 + }, + { + "start": 834.74, + "end": 839.94, + "probability": 0.9414 + }, + { + "start": 840.02, + "end": 840.64, + "probability": 0.7933 + }, + { + "start": 840.88, + "end": 841.8, + "probability": 0.8926 + }, + { + "start": 842.36, + "end": 844.5, + "probability": 0.9659 + }, + { + "start": 844.58, + "end": 845.86, + "probability": 0.4893 + }, + { + "start": 846.16, + "end": 849.92, + "probability": 0.9026 + }, + { + "start": 849.92, + "end": 852.32, + "probability": 0.9916 + }, + { + "start": 853.56, + "end": 854.74, + "probability": 0.6778 + }, + { + "start": 855.74, + "end": 856.86, + "probability": 0.8306 + }, + { + "start": 857.16, + "end": 858.2, + "probability": 0.7582 + }, + { + "start": 858.42, + "end": 861.13, + "probability": 0.9468 + }, + { + "start": 861.56, + "end": 862.3, + "probability": 0.5299 + }, + { + "start": 862.56, + "end": 862.98, + "probability": 0.7028 + }, + { + "start": 863.3, + "end": 864.5, + "probability": 0.5051 + }, + { + "start": 865.02, + "end": 866.62, + "probability": 0.8426 + }, + { + "start": 866.68, + "end": 866.98, + "probability": 0.4166 + }, + { + "start": 866.98, + "end": 867.88, + "probability": 0.7014 + }, + { + "start": 867.94, + "end": 870.66, + "probability": 0.9537 + }, + { + "start": 871.68, + "end": 872.8, + "probability": 0.6387 + }, + { + "start": 875.04, + "end": 876.92, + "probability": 0.4938 + }, + { + "start": 877.86, + "end": 881.86, + "probability": 0.7131 + }, + { + "start": 888.16, + "end": 891.48, + "probability": 0.796 + }, + { + "start": 892.28, + "end": 892.9, + "probability": 0.2065 + }, + { + "start": 893.12, + "end": 893.64, + "probability": 0.609 + }, + { + "start": 894.42, + "end": 896.72, + "probability": 0.9815 + }, + { + "start": 896.72, + "end": 899.58, + "probability": 0.9912 + }, + { + "start": 899.94, + "end": 900.7, + "probability": 0.4537 + }, + { + "start": 901.1, + "end": 903.04, + "probability": 0.6534 + }, + { + "start": 903.58, + "end": 904.88, + "probability": 0.6599 + }, + { + "start": 904.96, + "end": 905.72, + "probability": 0.818 + }, + { + "start": 906.12, + "end": 909.74, + "probability": 0.9461 + }, + { + "start": 910.58, + "end": 911.82, + "probability": 0.9742 + }, + { + "start": 912.7, + "end": 915.0, + "probability": 0.7221 + }, + { + "start": 915.12, + "end": 918.02, + "probability": 0.9845 + }, + { + "start": 919.7, + "end": 921.34, + "probability": 0.9616 + }, + { + "start": 921.96, + "end": 924.38, + "probability": 0.8956 + }, + { + "start": 924.5, + "end": 925.78, + "probability": 0.9441 + }, + { + "start": 926.62, + "end": 928.62, + "probability": 0.9911 + }, + { + "start": 929.22, + "end": 932.8, + "probability": 0.956 + }, + { + "start": 933.4, + "end": 933.78, + "probability": 0.4874 + }, + { + "start": 933.9, + "end": 935.06, + "probability": 0.9741 + }, + { + "start": 935.6, + "end": 936.8, + "probability": 0.9785 + }, + { + "start": 936.88, + "end": 937.42, + "probability": 0.8521 + }, + { + "start": 937.46, + "end": 938.74, + "probability": 0.94 + }, + { + "start": 939.64, + "end": 942.24, + "probability": 0.9764 + }, + { + "start": 942.36, + "end": 945.05, + "probability": 0.9829 + }, + { + "start": 945.96, + "end": 948.14, + "probability": 0.6886 + }, + { + "start": 948.44, + "end": 948.66, + "probability": 0.4733 + }, + { + "start": 948.8, + "end": 949.24, + "probability": 0.5889 + }, + { + "start": 949.6, + "end": 950.68, + "probability": 0.7384 + }, + { + "start": 951.26, + "end": 952.8, + "probability": 0.742 + }, + { + "start": 955.21, + "end": 958.58, + "probability": 0.9902 + }, + { + "start": 959.18, + "end": 962.2, + "probability": 0.9811 + }, + { + "start": 962.98, + "end": 965.48, + "probability": 0.9513 + }, + { + "start": 966.32, + "end": 966.52, + "probability": 0.8593 + }, + { + "start": 967.64, + "end": 969.4, + "probability": 0.7336 + }, + { + "start": 969.5, + "end": 970.32, + "probability": 0.8694 + }, + { + "start": 970.76, + "end": 972.22, + "probability": 0.8661 + }, + { + "start": 973.02, + "end": 975.48, + "probability": 0.7221 + }, + { + "start": 976.34, + "end": 978.28, + "probability": 0.8729 + }, + { + "start": 980.68, + "end": 982.14, + "probability": 0.9614 + }, + { + "start": 982.3, + "end": 984.7, + "probability": 0.9869 + }, + { + "start": 984.78, + "end": 985.82, + "probability": 0.8054 + }, + { + "start": 985.88, + "end": 987.72, + "probability": 0.8912 + }, + { + "start": 987.78, + "end": 989.04, + "probability": 0.9681 + }, + { + "start": 990.0, + "end": 990.5, + "probability": 0.6307 + }, + { + "start": 990.56, + "end": 995.74, + "probability": 0.8516 + }, + { + "start": 996.24, + "end": 997.78, + "probability": 0.5692 + }, + { + "start": 997.82, + "end": 1002.46, + "probability": 0.8353 + }, + { + "start": 1003.42, + "end": 1004.74, + "probability": 0.6448 + }, + { + "start": 1004.92, + "end": 1006.24, + "probability": 0.6167 + }, + { + "start": 1006.62, + "end": 1012.04, + "probability": 0.8064 + }, + { + "start": 1012.4, + "end": 1016.48, + "probability": 0.9173 + }, + { + "start": 1016.58, + "end": 1019.02, + "probability": 0.7377 + }, + { + "start": 1020.0, + "end": 1021.9, + "probability": 0.917 + }, + { + "start": 1022.64, + "end": 1025.28, + "probability": 0.8899 + }, + { + "start": 1025.96, + "end": 1027.72, + "probability": 0.9638 + }, + { + "start": 1028.5, + "end": 1032.92, + "probability": 0.895 + }, + { + "start": 1045.12, + "end": 1046.72, + "probability": 0.1543 + }, + { + "start": 1046.72, + "end": 1046.72, + "probability": 0.1556 + }, + { + "start": 1046.72, + "end": 1046.72, + "probability": 0.079 + }, + { + "start": 1046.72, + "end": 1049.38, + "probability": 0.5964 + }, + { + "start": 1049.96, + "end": 1053.16, + "probability": 0.8297 + }, + { + "start": 1053.7, + "end": 1055.44, + "probability": 0.9339 + }, + { + "start": 1055.84, + "end": 1057.6, + "probability": 0.8145 + }, + { + "start": 1057.9, + "end": 1059.9, + "probability": 0.8589 + }, + { + "start": 1060.28, + "end": 1061.38, + "probability": 0.886 + }, + { + "start": 1061.76, + "end": 1066.08, + "probability": 0.8742 + }, + { + "start": 1066.52, + "end": 1068.46, + "probability": 0.9984 + }, + { + "start": 1068.46, + "end": 1070.74, + "probability": 0.8939 + }, + { + "start": 1071.02, + "end": 1071.42, + "probability": 0.7484 + }, + { + "start": 1071.82, + "end": 1074.46, + "probability": 0.9945 + }, + { + "start": 1074.56, + "end": 1075.26, + "probability": 0.1466 + }, + { + "start": 1075.4, + "end": 1076.52, + "probability": 0.472 + }, + { + "start": 1077.98, + "end": 1078.54, + "probability": 0.7096 + }, + { + "start": 1079.64, + "end": 1079.64, + "probability": 0.279 + }, + { + "start": 1079.64, + "end": 1081.24, + "probability": 0.4591 + }, + { + "start": 1081.42, + "end": 1082.22, + "probability": 0.9007 + }, + { + "start": 1083.04, + "end": 1084.94, + "probability": 0.7587 + }, + { + "start": 1085.54, + "end": 1089.18, + "probability": 0.9235 + }, + { + "start": 1089.2, + "end": 1092.2, + "probability": 0.8695 + }, + { + "start": 1092.26, + "end": 1092.98, + "probability": 0.6226 + }, + { + "start": 1093.0, + "end": 1093.4, + "probability": 0.729 + }, + { + "start": 1093.98, + "end": 1095.08, + "probability": 0.982 + }, + { + "start": 1095.18, + "end": 1096.58, + "probability": 0.9235 + }, + { + "start": 1096.68, + "end": 1100.28, + "probability": 0.9865 + }, + { + "start": 1100.28, + "end": 1103.32, + "probability": 0.9871 + }, + { + "start": 1104.16, + "end": 1105.62, + "probability": 0.801 + }, + { + "start": 1106.2, + "end": 1107.0, + "probability": 0.8451 + }, + { + "start": 1107.1, + "end": 1107.86, + "probability": 0.8544 + }, + { + "start": 1108.0, + "end": 1108.38, + "probability": 0.7747 + }, + { + "start": 1108.9, + "end": 1109.78, + "probability": 0.8436 + }, + { + "start": 1110.18, + "end": 1110.56, + "probability": 0.9576 + }, + { + "start": 1110.98, + "end": 1114.48, + "probability": 0.988 + }, + { + "start": 1115.18, + "end": 1116.9, + "probability": 0.9976 + }, + { + "start": 1116.98, + "end": 1118.24, + "probability": 0.9463 + }, + { + "start": 1118.46, + "end": 1119.64, + "probability": 0.7808 + }, + { + "start": 1120.2, + "end": 1124.6, + "probability": 0.957 + }, + { + "start": 1124.66, + "end": 1126.94, + "probability": 0.9938 + }, + { + "start": 1127.04, + "end": 1128.02, + "probability": 0.7024 + }, + { + "start": 1128.5, + "end": 1129.3, + "probability": 0.8393 + }, + { + "start": 1129.4, + "end": 1129.84, + "probability": 0.5451 + }, + { + "start": 1129.96, + "end": 1132.08, + "probability": 0.5707 + }, + { + "start": 1132.43, + "end": 1135.9, + "probability": 0.6923 + }, + { + "start": 1136.52, + "end": 1137.44, + "probability": 0.7513 + }, + { + "start": 1137.88, + "end": 1138.3, + "probability": 0.9533 + }, + { + "start": 1138.36, + "end": 1139.84, + "probability": 0.9568 + }, + { + "start": 1140.08, + "end": 1142.9, + "probability": 0.8857 + }, + { + "start": 1143.02, + "end": 1144.29, + "probability": 0.8845 + }, + { + "start": 1145.06, + "end": 1145.98, + "probability": 0.7928 + }, + { + "start": 1146.72, + "end": 1150.22, + "probability": 0.9764 + }, + { + "start": 1150.6, + "end": 1151.22, + "probability": 0.9062 + }, + { + "start": 1151.66, + "end": 1154.7, + "probability": 0.9968 + }, + { + "start": 1154.7, + "end": 1157.12, + "probability": 0.9656 + }, + { + "start": 1157.2, + "end": 1159.18, + "probability": 0.9591 + }, + { + "start": 1159.72, + "end": 1161.04, + "probability": 0.9439 + }, + { + "start": 1161.34, + "end": 1162.04, + "probability": 0.9104 + }, + { + "start": 1162.06, + "end": 1165.74, + "probability": 0.988 + }, + { + "start": 1166.18, + "end": 1167.8, + "probability": 0.811 + }, + { + "start": 1167.9, + "end": 1169.52, + "probability": 0.9178 + }, + { + "start": 1170.2, + "end": 1174.3, + "probability": 0.978 + }, + { + "start": 1174.94, + "end": 1177.97, + "probability": 0.7404 + }, + { + "start": 1179.1, + "end": 1182.02, + "probability": 0.8617 + }, + { + "start": 1182.36, + "end": 1183.9, + "probability": 0.8366 + }, + { + "start": 1184.1, + "end": 1185.9, + "probability": 0.8305 + }, + { + "start": 1186.5, + "end": 1189.84, + "probability": 0.9369 + }, + { + "start": 1190.46, + "end": 1192.08, + "probability": 0.6293 + }, + { + "start": 1192.16, + "end": 1193.2, + "probability": 0.8784 + }, + { + "start": 1193.28, + "end": 1193.38, + "probability": 0.3797 + }, + { + "start": 1194.1, + "end": 1195.84, + "probability": 0.3581 + }, + { + "start": 1196.28, + "end": 1197.18, + "probability": 0.7058 + }, + { + "start": 1197.68, + "end": 1199.88, + "probability": 0.8521 + }, + { + "start": 1200.6, + "end": 1201.48, + "probability": 0.7925 + }, + { + "start": 1202.68, + "end": 1204.26, + "probability": 0.9233 + }, + { + "start": 1204.66, + "end": 1207.03, + "probability": 0.5638 + }, + { + "start": 1208.14, + "end": 1210.4, + "probability": 0.8782 + }, + { + "start": 1210.4, + "end": 1212.58, + "probability": 0.9118 + }, + { + "start": 1212.58, + "end": 1213.44, + "probability": 0.8331 + }, + { + "start": 1213.88, + "end": 1216.22, + "probability": 0.9561 + }, + { + "start": 1216.76, + "end": 1216.86, + "probability": 0.2495 + }, + { + "start": 1216.96, + "end": 1219.56, + "probability": 0.9644 + }, + { + "start": 1220.7, + "end": 1223.7, + "probability": 0.9745 + }, + { + "start": 1223.94, + "end": 1224.46, + "probability": 0.5523 + }, + { + "start": 1224.52, + "end": 1225.74, + "probability": 0.9753 + }, + { + "start": 1226.7, + "end": 1231.5, + "probability": 0.9893 + }, + { + "start": 1233.8, + "end": 1235.1, + "probability": 0.3907 + }, + { + "start": 1236.48, + "end": 1237.6, + "probability": 0.5551 + }, + { + "start": 1238.68, + "end": 1240.44, + "probability": 0.5337 + }, + { + "start": 1244.88, + "end": 1247.66, + "probability": 0.7608 + }, + { + "start": 1249.1, + "end": 1253.62, + "probability": 0.9565 + }, + { + "start": 1253.64, + "end": 1260.7, + "probability": 0.978 + }, + { + "start": 1261.62, + "end": 1266.18, + "probability": 0.9927 + }, + { + "start": 1267.24, + "end": 1267.94, + "probability": 0.8623 + }, + { + "start": 1268.58, + "end": 1270.62, + "probability": 0.9233 + }, + { + "start": 1271.36, + "end": 1273.46, + "probability": 0.9558 + }, + { + "start": 1273.98, + "end": 1276.32, + "probability": 0.9644 + }, + { + "start": 1276.94, + "end": 1283.14, + "probability": 0.9883 + }, + { + "start": 1283.34, + "end": 1286.22, + "probability": 0.9976 + }, + { + "start": 1287.0, + "end": 1287.98, + "probability": 0.964 + }, + { + "start": 1288.74, + "end": 1289.74, + "probability": 0.9094 + }, + { + "start": 1290.32, + "end": 1291.14, + "probability": 0.6457 + }, + { + "start": 1291.84, + "end": 1295.02, + "probability": 0.9812 + }, + { + "start": 1295.44, + "end": 1302.68, + "probability": 0.9903 + }, + { + "start": 1303.28, + "end": 1304.36, + "probability": 0.4266 + }, + { + "start": 1304.66, + "end": 1309.3, + "probability": 0.9646 + }, + { + "start": 1310.08, + "end": 1310.62, + "probability": 0.7961 + }, + { + "start": 1311.16, + "end": 1312.48, + "probability": 0.9395 + }, + { + "start": 1313.32, + "end": 1315.62, + "probability": 0.7296 + }, + { + "start": 1316.16, + "end": 1318.96, + "probability": 0.7097 + }, + { + "start": 1320.7, + "end": 1322.48, + "probability": 0.6605 + }, + { + "start": 1322.82, + "end": 1322.9, + "probability": 0.6183 + }, + { + "start": 1322.9, + "end": 1326.74, + "probability": 0.9517 + }, + { + "start": 1327.76, + "end": 1329.3, + "probability": 0.7579 + }, + { + "start": 1329.46, + "end": 1330.44, + "probability": 0.9296 + }, + { + "start": 1330.56, + "end": 1334.96, + "probability": 0.9629 + }, + { + "start": 1335.16, + "end": 1337.0, + "probability": 0.7252 + }, + { + "start": 1338.38, + "end": 1343.84, + "probability": 0.9654 + }, + { + "start": 1345.28, + "end": 1348.12, + "probability": 0.9144 + }, + { + "start": 1348.68, + "end": 1353.16, + "probability": 0.8816 + }, + { + "start": 1353.94, + "end": 1356.12, + "probability": 0.9713 + }, + { + "start": 1356.86, + "end": 1364.26, + "probability": 0.9634 + }, + { + "start": 1365.18, + "end": 1368.88, + "probability": 0.9412 + }, + { + "start": 1370.14, + "end": 1373.68, + "probability": 0.8371 + }, + { + "start": 1374.56, + "end": 1380.22, + "probability": 0.8832 + }, + { + "start": 1380.53, + "end": 1384.8, + "probability": 0.9965 + }, + { + "start": 1385.5, + "end": 1389.06, + "probability": 0.9976 + }, + { + "start": 1389.06, + "end": 1392.56, + "probability": 0.9415 + }, + { + "start": 1393.14, + "end": 1399.96, + "probability": 0.9696 + }, + { + "start": 1400.68, + "end": 1405.52, + "probability": 0.9977 + }, + { + "start": 1406.2, + "end": 1408.6, + "probability": 0.9484 + }, + { + "start": 1408.68, + "end": 1408.92, + "probability": 0.7239 + }, + { + "start": 1409.52, + "end": 1410.06, + "probability": 0.7214 + }, + { + "start": 1411.04, + "end": 1412.9, + "probability": 0.6827 + }, + { + "start": 1413.46, + "end": 1416.14, + "probability": 0.9687 + }, + { + "start": 1417.48, + "end": 1418.94, + "probability": 0.6841 + }, + { + "start": 1419.54, + "end": 1420.22, + "probability": 0.5815 + }, + { + "start": 1421.24, + "end": 1422.62, + "probability": 0.8899 + }, + { + "start": 1424.02, + "end": 1425.48, + "probability": 0.4917 + }, + { + "start": 1425.6, + "end": 1425.6, + "probability": 0.5702 + }, + { + "start": 1425.6, + "end": 1431.12, + "probability": 0.6309 + }, + { + "start": 1431.88, + "end": 1434.02, + "probability": 0.8201 + }, + { + "start": 1435.14, + "end": 1435.66, + "probability": 0.4493 + }, + { + "start": 1436.28, + "end": 1437.66, + "probability": 0.6344 + }, + { + "start": 1438.74, + "end": 1439.32, + "probability": 0.9323 + }, + { + "start": 1440.06, + "end": 1442.34, + "probability": 0.9587 + }, + { + "start": 1443.14, + "end": 1445.08, + "probability": 0.9404 + }, + { + "start": 1445.98, + "end": 1448.35, + "probability": 0.9902 + }, + { + "start": 1449.36, + "end": 1449.68, + "probability": 0.9859 + }, + { + "start": 1450.76, + "end": 1453.64, + "probability": 0.9821 + }, + { + "start": 1455.0, + "end": 1456.62, + "probability": 0.8032 + }, + { + "start": 1458.06, + "end": 1458.74, + "probability": 0.8614 + }, + { + "start": 1459.4, + "end": 1462.66, + "probability": 0.8045 + }, + { + "start": 1463.44, + "end": 1464.0, + "probability": 0.9792 + }, + { + "start": 1464.66, + "end": 1465.86, + "probability": 0.9806 + }, + { + "start": 1467.46, + "end": 1469.86, + "probability": 0.9805 + }, + { + "start": 1470.56, + "end": 1472.38, + "probability": 0.9671 + }, + { + "start": 1473.26, + "end": 1474.16, + "probability": 0.9946 + }, + { + "start": 1474.9, + "end": 1475.86, + "probability": 0.9847 + }, + { + "start": 1476.72, + "end": 1477.34, + "probability": 0.7872 + }, + { + "start": 1477.98, + "end": 1480.49, + "probability": 0.8343 + }, + { + "start": 1482.82, + "end": 1486.36, + "probability": 0.8687 + }, + { + "start": 1488.02, + "end": 1490.24, + "probability": 0.933 + }, + { + "start": 1491.14, + "end": 1493.76, + "probability": 0.7765 + }, + { + "start": 1494.58, + "end": 1495.84, + "probability": 0.6228 + }, + { + "start": 1496.38, + "end": 1497.96, + "probability": 0.7616 + }, + { + "start": 1499.48, + "end": 1505.14, + "probability": 0.9827 + }, + { + "start": 1505.76, + "end": 1507.14, + "probability": 0.7775 + }, + { + "start": 1508.24, + "end": 1511.56, + "probability": 0.99 + }, + { + "start": 1512.7, + "end": 1515.0, + "probability": 0.8455 + }, + { + "start": 1517.56, + "end": 1517.56, + "probability": 0.4073 + }, + { + "start": 1517.56, + "end": 1518.8, + "probability": 0.6413 + }, + { + "start": 1519.74, + "end": 1520.78, + "probability": 0.8317 + }, + { + "start": 1521.8, + "end": 1527.82, + "probability": 0.7416 + }, + { + "start": 1529.58, + "end": 1531.04, + "probability": 0.7566 + }, + { + "start": 1531.12, + "end": 1532.54, + "probability": 0.8372 + }, + { + "start": 1533.56, + "end": 1536.56, + "probability": 0.6738 + }, + { + "start": 1536.7, + "end": 1540.24, + "probability": 0.8924 + }, + { + "start": 1541.28, + "end": 1542.8, + "probability": 0.9346 + }, + { + "start": 1543.44, + "end": 1545.3, + "probability": 0.7015 + }, + { + "start": 1545.78, + "end": 1549.72, + "probability": 0.8704 + }, + { + "start": 1550.46, + "end": 1552.54, + "probability": 0.6926 + }, + { + "start": 1553.18, + "end": 1558.12, + "probability": 0.9418 + }, + { + "start": 1558.58, + "end": 1563.49, + "probability": 0.9058 + }, + { + "start": 1563.88, + "end": 1566.14, + "probability": 0.8661 + }, + { + "start": 1566.18, + "end": 1567.74, + "probability": 0.9831 + }, + { + "start": 1570.38, + "end": 1570.96, + "probability": 0.5768 + }, + { + "start": 1571.12, + "end": 1574.26, + "probability": 0.9939 + }, + { + "start": 1574.84, + "end": 1576.58, + "probability": 0.7049 + }, + { + "start": 1577.14, + "end": 1578.66, + "probability": 0.6441 + }, + { + "start": 1580.08, + "end": 1581.26, + "probability": 0.7453 + }, + { + "start": 1581.26, + "end": 1582.0, + "probability": 0.7473 + }, + { + "start": 1582.56, + "end": 1583.46, + "probability": 0.7871 + }, + { + "start": 1584.42, + "end": 1585.86, + "probability": 0.3752 + }, + { + "start": 1586.36, + "end": 1589.82, + "probability": 0.982 + }, + { + "start": 1590.32, + "end": 1594.62, + "probability": 0.7065 + }, + { + "start": 1595.46, + "end": 1595.46, + "probability": 0.0722 + }, + { + "start": 1595.46, + "end": 1596.9, + "probability": 0.7326 + }, + { + "start": 1597.2, + "end": 1597.78, + "probability": 0.6239 + }, + { + "start": 1598.12, + "end": 1599.8, + "probability": 0.822 + }, + { + "start": 1600.0, + "end": 1602.02, + "probability": 0.5886 + }, + { + "start": 1602.14, + "end": 1604.6, + "probability": 0.7412 + }, + { + "start": 1604.68, + "end": 1606.28, + "probability": 0.7423 + }, + { + "start": 1606.76, + "end": 1608.06, + "probability": 0.789 + }, + { + "start": 1608.18, + "end": 1608.66, + "probability": 0.8129 + }, + { + "start": 1608.8, + "end": 1611.88, + "probability": 0.9201 + }, + { + "start": 1612.0, + "end": 1613.5, + "probability": 0.962 + }, + { + "start": 1614.26, + "end": 1614.68, + "probability": 0.9297 + }, + { + "start": 1615.66, + "end": 1618.84, + "probability": 0.9824 + }, + { + "start": 1619.46, + "end": 1621.12, + "probability": 0.1902 + }, + { + "start": 1622.22, + "end": 1624.82, + "probability": 0.6523 + }, + { + "start": 1626.52, + "end": 1632.66, + "probability": 0.8252 + }, + { + "start": 1632.78, + "end": 1633.57, + "probability": 0.4453 + }, + { + "start": 1633.78, + "end": 1636.34, + "probability": 0.8045 + }, + { + "start": 1637.62, + "end": 1638.86, + "probability": 0.7284 + }, + { + "start": 1639.6, + "end": 1641.46, + "probability": 0.343 + }, + { + "start": 1641.68, + "end": 1642.38, + "probability": 0.7239 + }, + { + "start": 1642.54, + "end": 1643.8, + "probability": 0.5242 + }, + { + "start": 1643.94, + "end": 1644.16, + "probability": 0.2832 + }, + { + "start": 1644.16, + "end": 1645.3, + "probability": 0.6038 + }, + { + "start": 1646.3, + "end": 1649.48, + "probability": 0.9294 + }, + { + "start": 1649.58, + "end": 1650.94, + "probability": 0.7974 + }, + { + "start": 1650.94, + "end": 1651.72, + "probability": 0.1895 + }, + { + "start": 1652.2, + "end": 1652.86, + "probability": 0.589 + }, + { + "start": 1653.04, + "end": 1655.57, + "probability": 0.8569 + }, + { + "start": 1656.74, + "end": 1657.1, + "probability": 0.0085 + }, + { + "start": 1657.66, + "end": 1658.44, + "probability": 0.1658 + }, + { + "start": 1658.72, + "end": 1659.7, + "probability": 0.6899 + }, + { + "start": 1659.7, + "end": 1661.24, + "probability": 0.345 + }, + { + "start": 1661.24, + "end": 1662.48, + "probability": 0.729 + }, + { + "start": 1663.32, + "end": 1663.89, + "probability": 0.339 + }, + { + "start": 1664.4, + "end": 1665.02, + "probability": 0.0551 + }, + { + "start": 1665.78, + "end": 1668.26, + "probability": 0.8406 + }, + { + "start": 1668.86, + "end": 1671.24, + "probability": 0.8847 + }, + { + "start": 1671.98, + "end": 1673.8, + "probability": 0.9589 + }, + { + "start": 1674.66, + "end": 1676.06, + "probability": 0.9781 + }, + { + "start": 1676.54, + "end": 1678.0, + "probability": 0.8795 + }, + { + "start": 1678.08, + "end": 1678.2, + "probability": 0.0007 + }, + { + "start": 1678.56, + "end": 1680.02, + "probability": 0.6958 + }, + { + "start": 1681.66, + "end": 1683.19, + "probability": 0.9941 + }, + { + "start": 1683.34, + "end": 1685.18, + "probability": 0.6466 + }, + { + "start": 1685.18, + "end": 1686.48, + "probability": 0.8962 + }, + { + "start": 1687.08, + "end": 1688.56, + "probability": 0.9497 + }, + { + "start": 1689.84, + "end": 1689.84, + "probability": 0.5157 + }, + { + "start": 1689.9, + "end": 1691.2, + "probability": 0.4896 + }, + { + "start": 1691.74, + "end": 1692.58, + "probability": 0.7171 + }, + { + "start": 1693.3, + "end": 1695.6, + "probability": 0.9339 + }, + { + "start": 1695.8, + "end": 1696.44, + "probability": 0.7983 + }, + { + "start": 1696.58, + "end": 1700.68, + "probability": 0.9893 + }, + { + "start": 1701.32, + "end": 1703.54, + "probability": 0.9916 + }, + { + "start": 1704.18, + "end": 1708.22, + "probability": 0.7699 + }, + { + "start": 1708.92, + "end": 1711.76, + "probability": 0.964 + }, + { + "start": 1712.52, + "end": 1713.54, + "probability": 0.9922 + }, + { + "start": 1714.08, + "end": 1717.9, + "probability": 0.8718 + }, + { + "start": 1718.28, + "end": 1721.26, + "probability": 0.777 + }, + { + "start": 1721.8, + "end": 1722.12, + "probability": 0.8231 + }, + { + "start": 1722.74, + "end": 1724.32, + "probability": 0.9429 + }, + { + "start": 1725.28, + "end": 1727.4, + "probability": 0.7095 + }, + { + "start": 1728.48, + "end": 1729.44, + "probability": 0.8125 + }, + { + "start": 1730.02, + "end": 1734.42, + "probability": 0.6596 + }, + { + "start": 1734.96, + "end": 1738.26, + "probability": 0.683 + }, + { + "start": 1738.76, + "end": 1739.74, + "probability": 0.7572 + }, + { + "start": 1739.82, + "end": 1741.22, + "probability": 0.9452 + }, + { + "start": 1741.72, + "end": 1744.2, + "probability": 0.9252 + }, + { + "start": 1745.12, + "end": 1745.9, + "probability": 0.9642 + }, + { + "start": 1746.76, + "end": 1749.5, + "probability": 0.9033 + }, + { + "start": 1750.04, + "end": 1752.66, + "probability": 0.599 + }, + { + "start": 1753.9, + "end": 1757.2, + "probability": 0.7472 + }, + { + "start": 1758.44, + "end": 1759.02, + "probability": 0.4096 + }, + { + "start": 1759.34, + "end": 1764.2, + "probability": 0.9708 + }, + { + "start": 1764.24, + "end": 1764.52, + "probability": 0.2103 + }, + { + "start": 1764.56, + "end": 1767.42, + "probability": 0.658 + }, + { + "start": 1767.96, + "end": 1772.42, + "probability": 0.9697 + }, + { + "start": 1772.64, + "end": 1775.72, + "probability": 0.9644 + }, + { + "start": 1776.78, + "end": 1778.52, + "probability": 0.8507 + }, + { + "start": 1779.2, + "end": 1779.62, + "probability": 0.6149 + }, + { + "start": 1780.54, + "end": 1784.36, + "probability": 0.559 + }, + { + "start": 1784.48, + "end": 1789.92, + "probability": 0.6424 + }, + { + "start": 1790.46, + "end": 1791.4, + "probability": 0.9731 + }, + { + "start": 1791.84, + "end": 1796.96, + "probability": 0.9038 + }, + { + "start": 1797.42, + "end": 1801.98, + "probability": 0.9849 + }, + { + "start": 1802.78, + "end": 1805.98, + "probability": 0.957 + }, + { + "start": 1806.7, + "end": 1809.78, + "probability": 0.7529 + }, + { + "start": 1810.18, + "end": 1813.54, + "probability": 0.9834 + }, + { + "start": 1813.96, + "end": 1814.52, + "probability": 0.8816 + }, + { + "start": 1814.72, + "end": 1820.9, + "probability": 0.6616 + }, + { + "start": 1821.4, + "end": 1823.52, + "probability": 0.985 + }, + { + "start": 1824.06, + "end": 1826.38, + "probability": 0.8612 + }, + { + "start": 1826.92, + "end": 1830.76, + "probability": 0.8765 + }, + { + "start": 1831.32, + "end": 1834.62, + "probability": 0.8436 + }, + { + "start": 1835.18, + "end": 1835.8, + "probability": 0.3632 + }, + { + "start": 1835.92, + "end": 1837.08, + "probability": 0.8223 + }, + { + "start": 1837.42, + "end": 1841.82, + "probability": 0.8219 + }, + { + "start": 1842.3, + "end": 1843.82, + "probability": 0.8286 + }, + { + "start": 1844.2, + "end": 1850.92, + "probability": 0.8494 + }, + { + "start": 1850.98, + "end": 1851.2, + "probability": 0.8206 + }, + { + "start": 1853.05, + "end": 1854.9, + "probability": 0.6403 + }, + { + "start": 1855.2, + "end": 1856.44, + "probability": 0.5658 + }, + { + "start": 1857.68, + "end": 1858.6, + "probability": 0.9606 + }, + { + "start": 1859.22, + "end": 1861.8, + "probability": 0.9895 + }, + { + "start": 1862.34, + "end": 1863.24, + "probability": 0.9535 + }, + { + "start": 1863.5, + "end": 1865.5, + "probability": 0.9403 + }, + { + "start": 1865.88, + "end": 1866.84, + "probability": 0.7767 + }, + { + "start": 1866.96, + "end": 1867.68, + "probability": 0.4817 + }, + { + "start": 1868.84, + "end": 1871.72, + "probability": 0.9873 + }, + { + "start": 1873.1, + "end": 1873.68, + "probability": 0.6069 + }, + { + "start": 1873.78, + "end": 1874.44, + "probability": 0.3823 + }, + { + "start": 1874.66, + "end": 1877.76, + "probability": 0.9879 + }, + { + "start": 1877.76, + "end": 1881.6, + "probability": 0.9635 + }, + { + "start": 1881.6, + "end": 1884.12, + "probability": 0.9156 + }, + { + "start": 1884.78, + "end": 1884.88, + "probability": 0.0908 + }, + { + "start": 1885.58, + "end": 1889.52, + "probability": 0.8916 + }, + { + "start": 1890.06, + "end": 1892.42, + "probability": 0.9043 + }, + { + "start": 1892.68, + "end": 1894.92, + "probability": 0.5472 + }, + { + "start": 1895.52, + "end": 1901.14, + "probability": 0.8361 + }, + { + "start": 1901.14, + "end": 1903.62, + "probability": 0.8427 + }, + { + "start": 1905.47, + "end": 1907.4, + "probability": 0.6818 + }, + { + "start": 1907.7, + "end": 1909.8, + "probability": 0.999 + }, + { + "start": 1910.14, + "end": 1912.26, + "probability": 0.8346 + }, + { + "start": 1912.4, + "end": 1914.84, + "probability": 0.7225 + }, + { + "start": 1914.96, + "end": 1915.44, + "probability": 0.0922 + }, + { + "start": 1915.52, + "end": 1917.66, + "probability": 0.6212 + }, + { + "start": 1917.92, + "end": 1919.34, + "probability": 0.3627 + }, + { + "start": 1919.38, + "end": 1921.82, + "probability": 0.8958 + }, + { + "start": 1922.08, + "end": 1925.18, + "probability": 0.8838 + }, + { + "start": 1925.34, + "end": 1926.18, + "probability": 0.9183 + }, + { + "start": 1928.45, + "end": 1931.52, + "probability": 0.5438 + }, + { + "start": 1931.84, + "end": 1932.78, + "probability": 0.6671 + }, + { + "start": 1933.12, + "end": 1934.32, + "probability": 0.5577 + }, + { + "start": 1936.6, + "end": 1937.58, + "probability": 0.4144 + }, + { + "start": 1939.52, + "end": 1940.28, + "probability": 0.856 + }, + { + "start": 1941.42, + "end": 1943.12, + "probability": 0.7672 + }, + { + "start": 1944.04, + "end": 1947.72, + "probability": 0.7347 + }, + { + "start": 1948.22, + "end": 1948.5, + "probability": 0.3318 + }, + { + "start": 1948.5, + "end": 1949.04, + "probability": 0.5188 + }, + { + "start": 1949.46, + "end": 1950.9, + "probability": 0.9227 + }, + { + "start": 1951.74, + "end": 1952.24, + "probability": 0.3359 + }, + { + "start": 1952.62, + "end": 1952.96, + "probability": 0.6284 + }, + { + "start": 1953.56, + "end": 1954.3, + "probability": 0.826 + }, + { + "start": 1954.38, + "end": 1958.04, + "probability": 0.9883 + }, + { + "start": 1958.33, + "end": 1962.22, + "probability": 0.9885 + }, + { + "start": 1962.24, + "end": 1963.54, + "probability": 0.8363 + }, + { + "start": 1964.2, + "end": 1967.76, + "probability": 0.996 + }, + { + "start": 1968.08, + "end": 1970.06, + "probability": 0.9909 + }, + { + "start": 1970.18, + "end": 1975.2, + "probability": 0.9918 + }, + { + "start": 1976.14, + "end": 1978.86, + "probability": 0.8589 + }, + { + "start": 1978.92, + "end": 1979.58, + "probability": 0.434 + }, + { + "start": 1979.64, + "end": 1982.44, + "probability": 0.83 + }, + { + "start": 1982.64, + "end": 1987.1, + "probability": 0.9932 + }, + { + "start": 1987.34, + "end": 1991.2, + "probability": 0.9854 + }, + { + "start": 1991.2, + "end": 1994.42, + "probability": 0.9987 + }, + { + "start": 1995.02, + "end": 1997.7, + "probability": 0.9984 + }, + { + "start": 1998.64, + "end": 2002.48, + "probability": 0.9735 + }, + { + "start": 2002.86, + "end": 2005.34, + "probability": 0.8055 + }, + { + "start": 2005.62, + "end": 2005.96, + "probability": 0.7106 + }, + { + "start": 2006.34, + "end": 2007.72, + "probability": 0.9519 + }, + { + "start": 2008.22, + "end": 2014.36, + "probability": 0.9627 + }, + { + "start": 2014.88, + "end": 2015.78, + "probability": 0.8546 + }, + { + "start": 2015.9, + "end": 2019.42, + "probability": 0.9875 + }, + { + "start": 2019.9, + "end": 2020.8, + "probability": 0.7092 + }, + { + "start": 2020.98, + "end": 2023.14, + "probability": 0.9163 + }, + { + "start": 2023.36, + "end": 2025.84, + "probability": 0.9341 + }, + { + "start": 2026.44, + "end": 2029.16, + "probability": 0.9612 + }, + { + "start": 2029.32, + "end": 2031.3, + "probability": 0.9478 + }, + { + "start": 2031.76, + "end": 2035.88, + "probability": 0.993 + }, + { + "start": 2036.3, + "end": 2039.28, + "probability": 0.8997 + }, + { + "start": 2039.88, + "end": 2043.7, + "probability": 0.9506 + }, + { + "start": 2043.82, + "end": 2044.34, + "probability": 0.7852 + }, + { + "start": 2044.78, + "end": 2050.84, + "probability": 0.9677 + }, + { + "start": 2051.46, + "end": 2053.58, + "probability": 0.5247 + }, + { + "start": 2054.26, + "end": 2056.06, + "probability": 0.5932 + }, + { + "start": 2057.18, + "end": 2060.62, + "probability": 0.9857 + }, + { + "start": 2062.06, + "end": 2064.3, + "probability": 0.0883 + }, + { + "start": 2064.3, + "end": 2067.24, + "probability": 0.7235 + }, + { + "start": 2068.0, + "end": 2070.24, + "probability": 0.748 + }, + { + "start": 2070.92, + "end": 2072.02, + "probability": 0.8499 + }, + { + "start": 2072.74, + "end": 2075.72, + "probability": 0.7958 + }, + { + "start": 2077.48, + "end": 2083.78, + "probability": 0.7529 + }, + { + "start": 2084.0, + "end": 2084.8, + "probability": 0.7255 + }, + { + "start": 2086.3, + "end": 2087.9, + "probability": 0.6264 + }, + { + "start": 2089.24, + "end": 2092.34, + "probability": 0.8264 + }, + { + "start": 2094.02, + "end": 2096.53, + "probability": 0.9198 + }, + { + "start": 2097.88, + "end": 2098.84, + "probability": 0.9197 + }, + { + "start": 2099.52, + "end": 2105.08, + "probability": 0.9687 + }, + { + "start": 2105.6, + "end": 2109.4, + "probability": 0.9706 + }, + { + "start": 2110.14, + "end": 2111.44, + "probability": 0.9794 + }, + { + "start": 2112.68, + "end": 2120.32, + "probability": 0.9575 + }, + { + "start": 2120.42, + "end": 2120.86, + "probability": 0.6559 + }, + { + "start": 2121.42, + "end": 2122.56, + "probability": 0.8701 + }, + { + "start": 2123.82, + "end": 2124.78, + "probability": 0.9439 + }, + { + "start": 2126.1, + "end": 2129.96, + "probability": 0.9645 + }, + { + "start": 2131.18, + "end": 2135.76, + "probability": 0.9257 + }, + { + "start": 2136.98, + "end": 2140.1, + "probability": 0.9937 + }, + { + "start": 2140.88, + "end": 2142.98, + "probability": 0.7969 + }, + { + "start": 2143.66, + "end": 2144.62, + "probability": 0.5397 + }, + { + "start": 2145.02, + "end": 2147.2, + "probability": 0.894 + }, + { + "start": 2147.62, + "end": 2148.62, + "probability": 0.9299 + }, + { + "start": 2148.96, + "end": 2150.28, + "probability": 0.7939 + }, + { + "start": 2150.6, + "end": 2152.4, + "probability": 0.9706 + }, + { + "start": 2152.84, + "end": 2153.76, + "probability": 0.8898 + }, + { + "start": 2154.36, + "end": 2157.0, + "probability": 0.9184 + }, + { + "start": 2157.5, + "end": 2158.82, + "probability": 0.9578 + }, + { + "start": 2159.28, + "end": 2161.66, + "probability": 0.8608 + }, + { + "start": 2162.24, + "end": 2164.04, + "probability": 0.8373 + }, + { + "start": 2164.46, + "end": 2166.2, + "probability": 0.8208 + }, + { + "start": 2166.4, + "end": 2168.66, + "probability": 0.9879 + }, + { + "start": 2169.44, + "end": 2171.96, + "probability": 0.7631 + }, + { + "start": 2172.22, + "end": 2175.66, + "probability": 0.9966 + }, + { + "start": 2176.42, + "end": 2179.46, + "probability": 0.9907 + }, + { + "start": 2179.5, + "end": 2182.82, + "probability": 0.8213 + }, + { + "start": 2183.68, + "end": 2188.78, + "probability": 0.9768 + }, + { + "start": 2188.82, + "end": 2193.42, + "probability": 0.9982 + }, + { + "start": 2194.4, + "end": 2195.52, + "probability": 0.8618 + }, + { + "start": 2195.84, + "end": 2198.58, + "probability": 0.6775 + }, + { + "start": 2199.38, + "end": 2202.68, + "probability": 0.9811 + }, + { + "start": 2203.14, + "end": 2205.57, + "probability": 0.7841 + }, + { + "start": 2206.26, + "end": 2209.44, + "probability": 0.9814 + }, + { + "start": 2209.6, + "end": 2211.74, + "probability": 0.989 + }, + { + "start": 2212.3, + "end": 2215.14, + "probability": 0.997 + }, + { + "start": 2215.14, + "end": 2219.18, + "probability": 0.9894 + }, + { + "start": 2219.78, + "end": 2222.12, + "probability": 0.9891 + }, + { + "start": 2222.78, + "end": 2225.06, + "probability": 0.7925 + }, + { + "start": 2225.18, + "end": 2225.62, + "probability": 0.8313 + }, + { + "start": 2225.78, + "end": 2227.68, + "probability": 0.9496 + }, + { + "start": 2227.9, + "end": 2229.5, + "probability": 0.8994 + }, + { + "start": 2229.62, + "end": 2230.78, + "probability": 0.9724 + }, + { + "start": 2231.4, + "end": 2233.24, + "probability": 0.7289 + }, + { + "start": 2240.52, + "end": 2241.56, + "probability": 0.7365 + }, + { + "start": 2242.74, + "end": 2246.56, + "probability": 0.7713 + }, + { + "start": 2247.12, + "end": 2249.2, + "probability": 0.9708 + }, + { + "start": 2249.92, + "end": 2251.66, + "probability": 0.9935 + }, + { + "start": 2252.72, + "end": 2256.84, + "probability": 0.9789 + }, + { + "start": 2258.94, + "end": 2262.32, + "probability": 0.942 + }, + { + "start": 2263.26, + "end": 2264.92, + "probability": 0.9548 + }, + { + "start": 2266.12, + "end": 2267.24, + "probability": 0.8198 + }, + { + "start": 2268.66, + "end": 2272.44, + "probability": 0.9818 + }, + { + "start": 2273.52, + "end": 2276.54, + "probability": 0.9152 + }, + { + "start": 2278.12, + "end": 2278.82, + "probability": 0.7271 + }, + { + "start": 2279.8, + "end": 2284.84, + "probability": 0.987 + }, + { + "start": 2285.6, + "end": 2286.2, + "probability": 0.8555 + }, + { + "start": 2287.42, + "end": 2290.84, + "probability": 0.8211 + }, + { + "start": 2292.54, + "end": 2296.0, + "probability": 0.9856 + }, + { + "start": 2297.14, + "end": 2300.04, + "probability": 0.9904 + }, + { + "start": 2300.22, + "end": 2300.72, + "probability": 0.9825 + }, + { + "start": 2302.18, + "end": 2304.02, + "probability": 0.9287 + }, + { + "start": 2304.72, + "end": 2307.24, + "probability": 0.9899 + }, + { + "start": 2307.72, + "end": 2309.4, + "probability": 0.9871 + }, + { + "start": 2309.44, + "end": 2309.76, + "probability": 0.6506 + }, + { + "start": 2309.84, + "end": 2310.6, + "probability": 0.7482 + }, + { + "start": 2311.34, + "end": 2317.18, + "probability": 0.9675 + }, + { + "start": 2317.18, + "end": 2321.18, + "probability": 0.9902 + }, + { + "start": 2321.72, + "end": 2325.46, + "probability": 0.9893 + }, + { + "start": 2325.8, + "end": 2327.7, + "probability": 0.687 + }, + { + "start": 2328.96, + "end": 2330.44, + "probability": 0.9414 + }, + { + "start": 2330.58, + "end": 2332.68, + "probability": 0.8735 + }, + { + "start": 2333.82, + "end": 2334.34, + "probability": 0.911 + }, + { + "start": 2335.3, + "end": 2337.48, + "probability": 0.9482 + }, + { + "start": 2338.83, + "end": 2342.08, + "probability": 0.9917 + }, + { + "start": 2342.8, + "end": 2344.0, + "probability": 0.0057 + }, + { + "start": 2344.54, + "end": 2346.22, + "probability": 0.812 + }, + { + "start": 2347.34, + "end": 2351.0, + "probability": 0.8675 + }, + { + "start": 2351.54, + "end": 2352.56, + "probability": 0.6309 + }, + { + "start": 2353.96, + "end": 2354.66, + "probability": 0.4088 + }, + { + "start": 2354.66, + "end": 2355.06, + "probability": 0.7186 + }, + { + "start": 2355.24, + "end": 2356.68, + "probability": 0.9076 + }, + { + "start": 2358.18, + "end": 2358.78, + "probability": 0.1219 + }, + { + "start": 2359.1, + "end": 2362.6, + "probability": 0.5714 + }, + { + "start": 2362.86, + "end": 2363.34, + "probability": 0.8103 + }, + { + "start": 2363.62, + "end": 2369.72, + "probability": 0.9106 + }, + { + "start": 2369.82, + "end": 2370.26, + "probability": 0.8003 + }, + { + "start": 2370.64, + "end": 2372.02, + "probability": 0.9583 + }, + { + "start": 2372.12, + "end": 2374.36, + "probability": 0.7618 + }, + { + "start": 2374.9, + "end": 2375.68, + "probability": 0.5722 + }, + { + "start": 2375.84, + "end": 2378.76, + "probability": 0.9185 + }, + { + "start": 2382.54, + "end": 2385.02, + "probability": 0.9763 + }, + { + "start": 2385.88, + "end": 2387.54, + "probability": 0.979 + }, + { + "start": 2388.56, + "end": 2389.86, + "probability": 0.939 + }, + { + "start": 2390.2, + "end": 2393.74, + "probability": 0.984 + }, + { + "start": 2395.04, + "end": 2397.78, + "probability": 0.946 + }, + { + "start": 2397.86, + "end": 2398.66, + "probability": 0.6704 + }, + { + "start": 2399.38, + "end": 2401.62, + "probability": 0.8532 + }, + { + "start": 2402.2, + "end": 2403.66, + "probability": 0.9542 + }, + { + "start": 2404.44, + "end": 2404.66, + "probability": 0.6514 + }, + { + "start": 2404.72, + "end": 2410.72, + "probability": 0.9584 + }, + { + "start": 2411.34, + "end": 2414.51, + "probability": 0.9699 + }, + { + "start": 2415.02, + "end": 2418.2, + "probability": 0.999 + }, + { + "start": 2418.9, + "end": 2421.02, + "probability": 0.9985 + }, + { + "start": 2421.74, + "end": 2425.38, + "probability": 0.9614 + }, + { + "start": 2426.0, + "end": 2429.38, + "probability": 0.9617 + }, + { + "start": 2429.54, + "end": 2430.94, + "probability": 0.8989 + }, + { + "start": 2431.02, + "end": 2432.06, + "probability": 0.8017 + }, + { + "start": 2432.52, + "end": 2435.24, + "probability": 0.6946 + }, + { + "start": 2436.04, + "end": 2436.6, + "probability": 0.6009 + }, + { + "start": 2436.68, + "end": 2438.16, + "probability": 0.9836 + }, + { + "start": 2438.26, + "end": 2440.82, + "probability": 0.9897 + }, + { + "start": 2441.32, + "end": 2441.96, + "probability": 0.9827 + }, + { + "start": 2442.5, + "end": 2442.86, + "probability": 0.6581 + }, + { + "start": 2443.22, + "end": 2445.74, + "probability": 0.861 + }, + { + "start": 2446.04, + "end": 2446.72, + "probability": 0.9213 + }, + { + "start": 2447.04, + "end": 2449.22, + "probability": 0.8678 + }, + { + "start": 2449.86, + "end": 2451.06, + "probability": 0.9371 + }, + { + "start": 2451.56, + "end": 2452.48, + "probability": 0.649 + }, + { + "start": 2452.82, + "end": 2454.76, + "probability": 0.9937 + }, + { + "start": 2456.08, + "end": 2458.52, + "probability": 0.5811 + }, + { + "start": 2458.74, + "end": 2459.12, + "probability": 0.674 + }, + { + "start": 2459.98, + "end": 2462.52, + "probability": 0.8087 + }, + { + "start": 2465.42, + "end": 2466.46, + "probability": 0.9678 + }, + { + "start": 2468.67, + "end": 2469.98, + "probability": 0.9661 + }, + { + "start": 2470.78, + "end": 2472.36, + "probability": 0.8831 + }, + { + "start": 2472.46, + "end": 2473.18, + "probability": 0.4636 + }, + { + "start": 2473.66, + "end": 2473.96, + "probability": 0.7196 + }, + { + "start": 2474.48, + "end": 2475.54, + "probability": 0.8577 + }, + { + "start": 2476.6, + "end": 2481.66, + "probability": 0.8612 + }, + { + "start": 2482.02, + "end": 2487.1, + "probability": 0.9701 + }, + { + "start": 2487.7, + "end": 2488.27, + "probability": 0.9791 + }, + { + "start": 2489.66, + "end": 2492.0, + "probability": 0.9981 + }, + { + "start": 2492.36, + "end": 2493.26, + "probability": 0.5444 + }, + { + "start": 2493.92, + "end": 2496.66, + "probability": 0.9823 + }, + { + "start": 2496.96, + "end": 2497.0, + "probability": 0.0395 + }, + { + "start": 2497.0, + "end": 2497.0, + "probability": 0.2975 + }, + { + "start": 2497.0, + "end": 2498.82, + "probability": 0.9041 + }, + { + "start": 2499.62, + "end": 2502.28, + "probability": 0.998 + }, + { + "start": 2502.5, + "end": 2505.48, + "probability": 0.999 + }, + { + "start": 2505.78, + "end": 2508.24, + "probability": 0.9979 + }, + { + "start": 2508.62, + "end": 2513.2, + "probability": 0.9958 + }, + { + "start": 2513.98, + "end": 2519.16, + "probability": 0.9922 + }, + { + "start": 2519.62, + "end": 2520.2, + "probability": 0.8237 + }, + { + "start": 2520.94, + "end": 2523.29, + "probability": 0.9868 + }, + { + "start": 2523.66, + "end": 2528.68, + "probability": 0.9718 + }, + { + "start": 2529.48, + "end": 2531.8, + "probability": 0.9897 + }, + { + "start": 2531.98, + "end": 2533.52, + "probability": 0.0491 + }, + { + "start": 2534.86, + "end": 2535.68, + "probability": 0.0397 + }, + { + "start": 2535.68, + "end": 2535.68, + "probability": 0.246 + }, + { + "start": 2535.68, + "end": 2539.6, + "probability": 0.7766 + }, + { + "start": 2539.74, + "end": 2540.08, + "probability": 0.7 + }, + { + "start": 2540.48, + "end": 2541.04, + "probability": 0.4268 + }, + { + "start": 2541.58, + "end": 2542.82, + "probability": 0.4253 + }, + { + "start": 2542.82, + "end": 2545.42, + "probability": 0.4092 + }, + { + "start": 2545.42, + "end": 2547.14, + "probability": 0.7118 + }, + { + "start": 2547.32, + "end": 2548.2, + "probability": 0.478 + }, + { + "start": 2548.26, + "end": 2548.96, + "probability": 0.3973 + }, + { + "start": 2549.2, + "end": 2550.22, + "probability": 0.8248 + }, + { + "start": 2550.42, + "end": 2551.06, + "probability": 0.948 + }, + { + "start": 2551.16, + "end": 2552.36, + "probability": 0.3931 + }, + { + "start": 2552.46, + "end": 2554.94, + "probability": 0.7914 + }, + { + "start": 2555.14, + "end": 2556.26, + "probability": 0.9062 + }, + { + "start": 2556.84, + "end": 2557.72, + "probability": 0.507 + }, + { + "start": 2557.9, + "end": 2560.5, + "probability": 0.8584 + }, + { + "start": 2560.5, + "end": 2563.34, + "probability": 0.9684 + }, + { + "start": 2563.54, + "end": 2564.4, + "probability": 0.7506 + }, + { + "start": 2564.92, + "end": 2565.78, + "probability": 0.8896 + }, + { + "start": 2566.6, + "end": 2568.22, + "probability": 0.997 + }, + { + "start": 2568.3, + "end": 2569.28, + "probability": 0.7903 + }, + { + "start": 2569.84, + "end": 2572.54, + "probability": 0.9976 + }, + { + "start": 2572.54, + "end": 2574.74, + "probability": 0.9949 + }, + { + "start": 2575.0, + "end": 2575.0, + "probability": 0.5133 + }, + { + "start": 2575.1, + "end": 2576.84, + "probability": 0.7397 + }, + { + "start": 2577.28, + "end": 2584.42, + "probability": 0.9788 + }, + { + "start": 2584.56, + "end": 2585.42, + "probability": 0.9976 + }, + { + "start": 2585.56, + "end": 2587.08, + "probability": 0.7497 + }, + { + "start": 2587.56, + "end": 2590.96, + "probability": 0.9501 + }, + { + "start": 2591.48, + "end": 2591.7, + "probability": 0.2974 + }, + { + "start": 2591.82, + "end": 2595.4, + "probability": 0.9102 + }, + { + "start": 2595.42, + "end": 2599.14, + "probability": 0.9641 + }, + { + "start": 2599.4, + "end": 2603.74, + "probability": 0.9966 + }, + { + "start": 2603.74, + "end": 2606.06, + "probability": 0.6661 + }, + { + "start": 2606.12, + "end": 2608.0, + "probability": 0.9933 + }, + { + "start": 2608.46, + "end": 2613.54, + "probability": 0.8825 + }, + { + "start": 2614.54, + "end": 2616.44, + "probability": 0.7623 + }, + { + "start": 2616.8, + "end": 2618.24, + "probability": 0.0189 + }, + { + "start": 2618.24, + "end": 2623.88, + "probability": 0.9854 + }, + { + "start": 2624.58, + "end": 2626.12, + "probability": 0.7568 + }, + { + "start": 2627.44, + "end": 2627.46, + "probability": 0.0447 + }, + { + "start": 2627.46, + "end": 2629.94, + "probability": 0.7967 + }, + { + "start": 2630.86, + "end": 2636.12, + "probability": 0.7654 + }, + { + "start": 2636.56, + "end": 2637.2, + "probability": 0.9463 + }, + { + "start": 2637.5, + "end": 2637.98, + "probability": 0.3977 + }, + { + "start": 2638.24, + "end": 2638.8, + "probability": 0.8291 + }, + { + "start": 2639.32, + "end": 2640.58, + "probability": 0.5652 + }, + { + "start": 2640.7, + "end": 2642.36, + "probability": 0.9155 + }, + { + "start": 2642.36, + "end": 2643.68, + "probability": 0.7361 + }, + { + "start": 2644.93, + "end": 2648.0, + "probability": 0.8429 + }, + { + "start": 2648.06, + "end": 2649.4, + "probability": 0.1375 + }, + { + "start": 2649.74, + "end": 2651.16, + "probability": 0.8314 + }, + { + "start": 2651.84, + "end": 2652.62, + "probability": 0.9441 + }, + { + "start": 2653.14, + "end": 2657.12, + "probability": 0.8612 + }, + { + "start": 2657.72, + "end": 2658.36, + "probability": 0.5951 + }, + { + "start": 2658.5, + "end": 2660.56, + "probability": 0.7056 + }, + { + "start": 2661.7, + "end": 2663.16, + "probability": 0.727 + }, + { + "start": 2663.94, + "end": 2666.36, + "probability": 0.9978 + }, + { + "start": 2667.48, + "end": 2669.7, + "probability": 0.9451 + }, + { + "start": 2670.2, + "end": 2673.14, + "probability": 0.9422 + }, + { + "start": 2673.96, + "end": 2675.64, + "probability": 0.6197 + }, + { + "start": 2676.42, + "end": 2677.7, + "probability": 0.4311 + }, + { + "start": 2678.38, + "end": 2680.04, + "probability": 0.6455 + }, + { + "start": 2682.41, + "end": 2684.92, + "probability": 0.7792 + }, + { + "start": 2685.92, + "end": 2689.24, + "probability": 0.9863 + }, + { + "start": 2689.32, + "end": 2690.48, + "probability": 0.7309 + }, + { + "start": 2692.08, + "end": 2693.22, + "probability": 0.9604 + }, + { + "start": 2693.34, + "end": 2693.88, + "probability": 0.4258 + }, + { + "start": 2694.7, + "end": 2694.82, + "probability": 0.2017 + }, + { + "start": 2694.82, + "end": 2697.96, + "probability": 0.9761 + }, + { + "start": 2698.78, + "end": 2699.7, + "probability": 0.8232 + }, + { + "start": 2700.28, + "end": 2702.6, + "probability": 0.869 + }, + { + "start": 2703.44, + "end": 2703.56, + "probability": 0.2028 + }, + { + "start": 2703.56, + "end": 2704.08, + "probability": 0.5419 + }, + { + "start": 2704.08, + "end": 2704.54, + "probability": 0.8463 + }, + { + "start": 2704.54, + "end": 2705.68, + "probability": 0.5138 + }, + { + "start": 2706.66, + "end": 2707.52, + "probability": 0.2407 + }, + { + "start": 2708.14, + "end": 2708.38, + "probability": 0.5556 + }, + { + "start": 2708.52, + "end": 2709.2, + "probability": 0.51 + }, + { + "start": 2709.28, + "end": 2709.64, + "probability": 0.8411 + }, + { + "start": 2709.76, + "end": 2713.96, + "probability": 0.667 + }, + { + "start": 2714.92, + "end": 2715.16, + "probability": 0.1162 + }, + { + "start": 2718.32, + "end": 2719.55, + "probability": 0.0306 + }, + { + "start": 2720.74, + "end": 2720.74, + "probability": 0.3266 + }, + { + "start": 2720.74, + "end": 2720.74, + "probability": 0.3118 + }, + { + "start": 2720.74, + "end": 2720.74, + "probability": 0.1686 + }, + { + "start": 2720.74, + "end": 2720.78, + "probability": 0.1041 + }, + { + "start": 2720.78, + "end": 2722.18, + "probability": 0.5382 + }, + { + "start": 2722.86, + "end": 2727.62, + "probability": 0.8748 + }, + { + "start": 2728.46, + "end": 2733.14, + "probability": 0.7884 + }, + { + "start": 2733.96, + "end": 2734.54, + "probability": 0.8263 + }, + { + "start": 2735.28, + "end": 2736.58, + "probability": 0.8344 + }, + { + "start": 2737.16, + "end": 2738.06, + "probability": 0.8667 + }, + { + "start": 2738.58, + "end": 2740.18, + "probability": 0.8281 + }, + { + "start": 2741.36, + "end": 2743.98, + "probability": 0.9815 + }, + { + "start": 2744.64, + "end": 2745.24, + "probability": 0.9351 + }, + { + "start": 2745.96, + "end": 2747.16, + "probability": 0.7659 + }, + { + "start": 2747.76, + "end": 2755.7, + "probability": 0.9952 + }, + { + "start": 2757.16, + "end": 2758.12, + "probability": 0.6969 + }, + { + "start": 2758.9, + "end": 2764.22, + "probability": 0.988 + }, + { + "start": 2765.52, + "end": 2767.74, + "probability": 0.9702 + }, + { + "start": 2768.36, + "end": 2769.36, + "probability": 0.9344 + }, + { + "start": 2770.74, + "end": 2773.48, + "probability": 0.9232 + }, + { + "start": 2774.12, + "end": 2776.24, + "probability": 0.9264 + }, + { + "start": 2777.7, + "end": 2781.28, + "probability": 0.9717 + }, + { + "start": 2782.06, + "end": 2784.48, + "probability": 0.9083 + }, + { + "start": 2785.2, + "end": 2789.47, + "probability": 0.8567 + }, + { + "start": 2790.04, + "end": 2792.2, + "probability": 0.8484 + }, + { + "start": 2793.34, + "end": 2796.88, + "probability": 0.9915 + }, + { + "start": 2797.58, + "end": 2798.2, + "probability": 0.8906 + }, + { + "start": 2798.92, + "end": 2802.54, + "probability": 0.991 + }, + { + "start": 2803.8, + "end": 2804.94, + "probability": 0.975 + }, + { + "start": 2805.66, + "end": 2813.58, + "probability": 0.9448 + }, + { + "start": 2814.46, + "end": 2819.6, + "probability": 0.9887 + }, + { + "start": 2820.66, + "end": 2824.16, + "probability": 0.9761 + }, + { + "start": 2825.04, + "end": 2826.36, + "probability": 0.9731 + }, + { + "start": 2827.2, + "end": 2828.94, + "probability": 0.9897 + }, + { + "start": 2829.8, + "end": 2833.84, + "probability": 0.998 + }, + { + "start": 2835.0, + "end": 2841.42, + "probability": 0.992 + }, + { + "start": 2841.5, + "end": 2842.1, + "probability": 0.8973 + }, + { + "start": 2842.72, + "end": 2844.78, + "probability": 0.9861 + }, + { + "start": 2845.76, + "end": 2846.08, + "probability": 0.7081 + }, + { + "start": 2846.82, + "end": 2852.14, + "probability": 0.9644 + }, + { + "start": 2852.88, + "end": 2856.31, + "probability": 0.9902 + }, + { + "start": 2856.76, + "end": 2857.78, + "probability": 0.7164 + }, + { + "start": 2858.68, + "end": 2859.28, + "probability": 0.8848 + }, + { + "start": 2859.92, + "end": 2861.16, + "probability": 0.9884 + }, + { + "start": 2862.22, + "end": 2868.82, + "probability": 0.9226 + }, + { + "start": 2869.2, + "end": 2873.18, + "probability": 0.9415 + }, + { + "start": 2874.24, + "end": 2877.74, + "probability": 0.8717 + }, + { + "start": 2878.32, + "end": 2882.32, + "probability": 0.9965 + }, + { + "start": 2882.38, + "end": 2885.76, + "probability": 0.9166 + }, + { + "start": 2886.88, + "end": 2890.18, + "probability": 0.9915 + }, + { + "start": 2890.96, + "end": 2891.56, + "probability": 0.9494 + }, + { + "start": 2892.16, + "end": 2893.22, + "probability": 0.7859 + }, + { + "start": 2893.74, + "end": 2897.22, + "probability": 0.999 + }, + { + "start": 2898.28, + "end": 2902.4, + "probability": 0.9906 + }, + { + "start": 2902.76, + "end": 2904.62, + "probability": 0.6899 + }, + { + "start": 2905.14, + "end": 2906.18, + "probability": 0.6747 + }, + { + "start": 2906.68, + "end": 2907.52, + "probability": 0.8462 + }, + { + "start": 2907.62, + "end": 2909.42, + "probability": 0.9613 + }, + { + "start": 2909.82, + "end": 2910.28, + "probability": 0.3747 + }, + { + "start": 2910.28, + "end": 2911.42, + "probability": 0.5942 + }, + { + "start": 2912.74, + "end": 2913.5, + "probability": 0.5065 + }, + { + "start": 2914.73, + "end": 2918.45, + "probability": 0.9429 + }, + { + "start": 2919.4, + "end": 2920.08, + "probability": 0.8464 + }, + { + "start": 2920.68, + "end": 2922.46, + "probability": 0.8979 + }, + { + "start": 2922.48, + "end": 2922.9, + "probability": 0.9763 + }, + { + "start": 2924.08, + "end": 2926.42, + "probability": 0.8664 + }, + { + "start": 2927.04, + "end": 2929.52, + "probability": 0.4687 + }, + { + "start": 2929.64, + "end": 2932.6, + "probability": 0.514 + }, + { + "start": 2932.88, + "end": 2935.08, + "probability": 0.7583 + }, + { + "start": 2935.72, + "end": 2937.26, + "probability": 0.7889 + }, + { + "start": 2937.84, + "end": 2938.66, + "probability": 0.9739 + }, + { + "start": 2939.26, + "end": 2942.98, + "probability": 0.9855 + }, + { + "start": 2943.02, + "end": 2945.52, + "probability": 0.7947 + }, + { + "start": 2945.86, + "end": 2948.58, + "probability": 0.6657 + }, + { + "start": 2948.94, + "end": 2953.58, + "probability": 0.9927 + }, + { + "start": 2953.58, + "end": 2958.68, + "probability": 0.9924 + }, + { + "start": 2959.34, + "end": 2961.62, + "probability": 0.8714 + }, + { + "start": 2961.72, + "end": 2966.84, + "probability": 0.9743 + }, + { + "start": 2968.16, + "end": 2972.72, + "probability": 0.9717 + }, + { + "start": 2972.8, + "end": 2974.2, + "probability": 0.8143 + }, + { + "start": 2974.72, + "end": 2975.56, + "probability": 0.6484 + }, + { + "start": 2975.64, + "end": 2977.6, + "probability": 0.9547 + }, + { + "start": 2977.92, + "end": 2981.96, + "probability": 0.8303 + }, + { + "start": 2983.34, + "end": 2985.6, + "probability": 0.8422 + }, + { + "start": 2985.8, + "end": 2991.06, + "probability": 0.9668 + }, + { + "start": 2992.64, + "end": 2993.64, + "probability": 0.5042 + }, + { + "start": 2993.68, + "end": 2994.94, + "probability": 0.9691 + }, + { + "start": 2994.94, + "end": 2995.74, + "probability": 0.9312 + }, + { + "start": 2995.94, + "end": 2997.08, + "probability": 0.4993 + }, + { + "start": 2997.8, + "end": 2999.32, + "probability": 0.6534 + }, + { + "start": 3000.0, + "end": 3000.66, + "probability": 0.923 + }, + { + "start": 3002.18, + "end": 3006.64, + "probability": 0.8062 + }, + { + "start": 3006.78, + "end": 3012.4, + "probability": 0.9385 + }, + { + "start": 3012.58, + "end": 3014.35, + "probability": 0.9907 + }, + { + "start": 3014.56, + "end": 3018.06, + "probability": 0.9736 + }, + { + "start": 3018.2, + "end": 3022.8, + "probability": 0.9326 + }, + { + "start": 3022.9, + "end": 3023.42, + "probability": 0.6664 + }, + { + "start": 3023.66, + "end": 3024.44, + "probability": 0.8982 + }, + { + "start": 3024.5, + "end": 3031.22, + "probability": 0.9266 + }, + { + "start": 3031.36, + "end": 3033.04, + "probability": 0.9879 + }, + { + "start": 3033.12, + "end": 3033.26, + "probability": 0.8158 + }, + { + "start": 3034.1, + "end": 3036.0, + "probability": 0.5348 + }, + { + "start": 3036.38, + "end": 3040.46, + "probability": 0.9551 + }, + { + "start": 3040.46, + "end": 3043.88, + "probability": 0.9976 + }, + { + "start": 3044.16, + "end": 3046.4, + "probability": 0.9945 + }, + { + "start": 3046.4, + "end": 3049.7, + "probability": 0.8729 + }, + { + "start": 3050.18, + "end": 3050.76, + "probability": 0.7089 + }, + { + "start": 3050.88, + "end": 3051.22, + "probability": 0.9204 + }, + { + "start": 3051.28, + "end": 3053.42, + "probability": 0.7449 + }, + { + "start": 3054.06, + "end": 3057.4, + "probability": 0.9429 + }, + { + "start": 3058.52, + "end": 3061.86, + "probability": 0.9904 + }, + { + "start": 3062.38, + "end": 3063.72, + "probability": 0.917 + }, + { + "start": 3064.2, + "end": 3065.2, + "probability": 0.6413 + }, + { + "start": 3065.28, + "end": 3069.76, + "probability": 0.9505 + }, + { + "start": 3069.92, + "end": 3070.54, + "probability": 0.7866 + }, + { + "start": 3070.7, + "end": 3072.06, + "probability": 0.9856 + }, + { + "start": 3072.26, + "end": 3074.18, + "probability": 0.7639 + }, + { + "start": 3074.4, + "end": 3075.16, + "probability": 0.4192 + }, + { + "start": 3075.28, + "end": 3076.82, + "probability": 0.9734 + }, + { + "start": 3077.16, + "end": 3080.68, + "probability": 0.9924 + }, + { + "start": 3080.76, + "end": 3084.28, + "probability": 0.9866 + }, + { + "start": 3085.04, + "end": 3088.36, + "probability": 0.9775 + }, + { + "start": 3089.14, + "end": 3091.84, + "probability": 0.9115 + }, + { + "start": 3092.26, + "end": 3094.38, + "probability": 0.8432 + }, + { + "start": 3094.86, + "end": 3099.48, + "probability": 0.9976 + }, + { + "start": 3099.62, + "end": 3102.42, + "probability": 0.9242 + }, + { + "start": 3102.98, + "end": 3104.4, + "probability": 0.988 + }, + { + "start": 3105.14, + "end": 3107.36, + "probability": 0.6626 + }, + { + "start": 3108.04, + "end": 3111.48, + "probability": 0.7304 + }, + { + "start": 3111.54, + "end": 3115.5, + "probability": 0.957 + }, + { + "start": 3115.8, + "end": 3119.05, + "probability": 0.952 + }, + { + "start": 3120.08, + "end": 3120.52, + "probability": 0.9034 + }, + { + "start": 3120.68, + "end": 3124.3, + "probability": 0.9072 + }, + { + "start": 3124.64, + "end": 3125.58, + "probability": 0.3888 + }, + { + "start": 3125.8, + "end": 3126.28, + "probability": 0.8901 + }, + { + "start": 3126.62, + "end": 3130.74, + "probability": 0.9868 + }, + { + "start": 3131.38, + "end": 3131.72, + "probability": 0.5552 + }, + { + "start": 3133.22, + "end": 3136.7, + "probability": 0.6537 + }, + { + "start": 3137.18, + "end": 3138.34, + "probability": 0.8333 + }, + { + "start": 3138.48, + "end": 3139.4, + "probability": 0.8425 + }, + { + "start": 3139.82, + "end": 3142.8, + "probability": 0.949 + }, + { + "start": 3142.9, + "end": 3146.94, + "probability": 0.9897 + }, + { + "start": 3147.76, + "end": 3151.9, + "probability": 0.6778 + }, + { + "start": 3152.6, + "end": 3154.14, + "probability": 0.9784 + }, + { + "start": 3154.74, + "end": 3157.98, + "probability": 0.9866 + }, + { + "start": 3157.98, + "end": 3160.6, + "probability": 0.9961 + }, + { + "start": 3161.08, + "end": 3163.7, + "probability": 0.9937 + }, + { + "start": 3163.88, + "end": 3164.7, + "probability": 0.9339 + }, + { + "start": 3164.82, + "end": 3165.62, + "probability": 0.8049 + }, + { + "start": 3166.04, + "end": 3167.12, + "probability": 0.9519 + }, + { + "start": 3167.56, + "end": 3168.06, + "probability": 0.5492 + }, + { + "start": 3168.42, + "end": 3170.87, + "probability": 0.9953 + }, + { + "start": 3171.42, + "end": 3175.02, + "probability": 0.7676 + }, + { + "start": 3175.08, + "end": 3179.8, + "probability": 0.9611 + }, + { + "start": 3180.12, + "end": 3181.46, + "probability": 0.7842 + }, + { + "start": 3182.0, + "end": 3184.48, + "probability": 0.9813 + }, + { + "start": 3184.58, + "end": 3187.28, + "probability": 0.9763 + }, + { + "start": 3188.0, + "end": 3191.4, + "probability": 0.7982 + }, + { + "start": 3191.64, + "end": 3192.5, + "probability": 0.7247 + }, + { + "start": 3192.96, + "end": 3195.76, + "probability": 0.7932 + }, + { + "start": 3195.76, + "end": 3198.72, + "probability": 0.927 + }, + { + "start": 3199.24, + "end": 3202.42, + "probability": 0.9593 + }, + { + "start": 3202.86, + "end": 3207.96, + "probability": 0.9634 + }, + { + "start": 3207.98, + "end": 3208.32, + "probability": 0.7601 + }, + { + "start": 3208.48, + "end": 3212.56, + "probability": 0.9528 + }, + { + "start": 3212.56, + "end": 3215.82, + "probability": 0.9775 + }, + { + "start": 3217.04, + "end": 3220.54, + "probability": 0.9919 + }, + { + "start": 3220.54, + "end": 3223.22, + "probability": 0.9103 + }, + { + "start": 3223.56, + "end": 3225.32, + "probability": 0.9533 + }, + { + "start": 3225.7, + "end": 3228.52, + "probability": 0.9774 + }, + { + "start": 3228.62, + "end": 3231.92, + "probability": 0.9886 + }, + { + "start": 3232.16, + "end": 3235.56, + "probability": 0.9998 + }, + { + "start": 3235.84, + "end": 3238.44, + "probability": 0.9941 + }, + { + "start": 3239.48, + "end": 3240.04, + "probability": 0.8037 + }, + { + "start": 3240.06, + "end": 3241.42, + "probability": 0.799 + }, + { + "start": 3241.48, + "end": 3242.76, + "probability": 0.8505 + }, + { + "start": 3243.02, + "end": 3245.0, + "probability": 0.9985 + }, + { + "start": 3245.34, + "end": 3247.72, + "probability": 0.9828 + }, + { + "start": 3248.04, + "end": 3249.52, + "probability": 0.998 + }, + { + "start": 3249.9, + "end": 3254.64, + "probability": 0.98 + }, + { + "start": 3254.74, + "end": 3258.46, + "probability": 0.9893 + }, + { + "start": 3258.64, + "end": 3261.88, + "probability": 0.9355 + }, + { + "start": 3262.02, + "end": 3263.6, + "probability": 0.9944 + }, + { + "start": 3263.78, + "end": 3265.32, + "probability": 0.7993 + }, + { + "start": 3265.94, + "end": 3267.58, + "probability": 0.9927 + }, + { + "start": 3268.02, + "end": 3271.12, + "probability": 0.9781 + }, + { + "start": 3271.12, + "end": 3273.94, + "probability": 0.9856 + }, + { + "start": 3274.14, + "end": 3277.18, + "probability": 0.999 + }, + { + "start": 3277.26, + "end": 3278.26, + "probability": 0.6662 + }, + { + "start": 3278.64, + "end": 3282.54, + "probability": 0.9696 + }, + { + "start": 3282.66, + "end": 3287.72, + "probability": 0.9927 + }, + { + "start": 3288.4, + "end": 3293.5, + "probability": 0.9829 + }, + { + "start": 3293.76, + "end": 3296.5, + "probability": 0.9922 + }, + { + "start": 3296.88, + "end": 3299.6, + "probability": 0.8594 + }, + { + "start": 3300.1, + "end": 3300.92, + "probability": 0.8512 + }, + { + "start": 3301.26, + "end": 3302.22, + "probability": 0.9667 + }, + { + "start": 3302.4, + "end": 3305.8, + "probability": 0.9824 + }, + { + "start": 3305.8, + "end": 3310.96, + "probability": 0.982 + }, + { + "start": 3311.44, + "end": 3314.38, + "probability": 0.9989 + }, + { + "start": 3314.76, + "end": 3315.2, + "probability": 0.5034 + }, + { + "start": 3315.3, + "end": 3315.74, + "probability": 0.6433 + }, + { + "start": 3316.14, + "end": 3316.42, + "probability": 0.8739 + }, + { + "start": 3316.78, + "end": 3317.0, + "probability": 0.7108 + }, + { + "start": 3317.06, + "end": 3317.46, + "probability": 0.4652 + }, + { + "start": 3317.52, + "end": 3318.26, + "probability": 0.685 + }, + { + "start": 3318.32, + "end": 3321.88, + "probability": 0.991 + }, + { + "start": 3323.14, + "end": 3327.02, + "probability": 0.5561 + }, + { + "start": 3328.16, + "end": 3330.88, + "probability": 0.4119 + }, + { + "start": 3332.04, + "end": 3336.48, + "probability": 0.8728 + }, + { + "start": 3336.9, + "end": 3337.6, + "probability": 0.314 + }, + { + "start": 3337.62, + "end": 3338.48, + "probability": 0.6943 + }, + { + "start": 3338.68, + "end": 3340.94, + "probability": 0.6324 + }, + { + "start": 3340.94, + "end": 3341.26, + "probability": 0.8413 + }, + { + "start": 3341.96, + "end": 3342.72, + "probability": 0.7971 + }, + { + "start": 3342.86, + "end": 3344.47, + "probability": 0.9622 + }, + { + "start": 3344.78, + "end": 3346.72, + "probability": 0.916 + }, + { + "start": 3347.54, + "end": 3353.98, + "probability": 0.9441 + }, + { + "start": 3354.72, + "end": 3356.63, + "probability": 0.936 + }, + { + "start": 3357.68, + "end": 3360.84, + "probability": 0.6764 + }, + { + "start": 3361.56, + "end": 3365.12, + "probability": 0.982 + }, + { + "start": 3365.92, + "end": 3371.32, + "probability": 0.9234 + }, + { + "start": 3372.36, + "end": 3372.58, + "probability": 0.8345 + }, + { + "start": 3373.8, + "end": 3375.76, + "probability": 0.7542 + }, + { + "start": 3376.72, + "end": 3380.38, + "probability": 0.9343 + }, + { + "start": 3380.94, + "end": 3384.98, + "probability": 0.9867 + }, + { + "start": 3385.7, + "end": 3389.48, + "probability": 0.8833 + }, + { + "start": 3389.66, + "end": 3392.2, + "probability": 0.9721 + }, + { + "start": 3392.76, + "end": 3395.46, + "probability": 0.9785 + }, + { + "start": 3395.56, + "end": 3398.0, + "probability": 0.9961 + }, + { + "start": 3398.5, + "end": 3401.4, + "probability": 0.9925 + }, + { + "start": 3401.6, + "end": 3403.18, + "probability": 0.9557 + }, + { + "start": 3403.76, + "end": 3408.86, + "probability": 0.9033 + }, + { + "start": 3409.1, + "end": 3409.96, + "probability": 0.9048 + }, + { + "start": 3410.52, + "end": 3415.1, + "probability": 0.98 + }, + { + "start": 3415.78, + "end": 3420.5, + "probability": 0.9946 + }, + { + "start": 3420.68, + "end": 3421.4, + "probability": 0.8179 + }, + { + "start": 3421.9, + "end": 3422.66, + "probability": 0.8647 + }, + { + "start": 3422.92, + "end": 3428.22, + "probability": 0.9846 + }, + { + "start": 3428.54, + "end": 3430.06, + "probability": 0.9555 + }, + { + "start": 3430.46, + "end": 3433.16, + "probability": 0.9854 + }, + { + "start": 3434.1, + "end": 3434.68, + "probability": 0.8992 + }, + { + "start": 3435.44, + "end": 3437.74, + "probability": 0.9712 + }, + { + "start": 3438.0, + "end": 3439.02, + "probability": 0.6588 + }, + { + "start": 3439.52, + "end": 3441.24, + "probability": 0.9539 + }, + { + "start": 3441.38, + "end": 3442.96, + "probability": 0.8874 + }, + { + "start": 3443.6, + "end": 3447.52, + "probability": 0.9867 + }, + { + "start": 3447.62, + "end": 3451.56, + "probability": 0.7313 + }, + { + "start": 3452.3, + "end": 3455.7, + "probability": 0.9622 + }, + { + "start": 3455.96, + "end": 3460.3, + "probability": 0.9935 + }, + { + "start": 3460.4, + "end": 3463.7, + "probability": 0.9032 + }, + { + "start": 3464.5, + "end": 3466.66, + "probability": 0.9531 + }, + { + "start": 3468.19, + "end": 3470.48, + "probability": 0.6909 + }, + { + "start": 3470.94, + "end": 3474.36, + "probability": 0.9154 + }, + { + "start": 3475.34, + "end": 3476.72, + "probability": 0.9423 + }, + { + "start": 3476.76, + "end": 3477.4, + "probability": 0.7393 + }, + { + "start": 3477.84, + "end": 3485.5, + "probability": 0.9598 + }, + { + "start": 3485.5, + "end": 3490.64, + "probability": 0.9986 + }, + { + "start": 3490.7, + "end": 3491.82, + "probability": 0.8566 + }, + { + "start": 3491.92, + "end": 3492.66, + "probability": 0.4907 + }, + { + "start": 3493.42, + "end": 3495.16, + "probability": 0.7867 + }, + { + "start": 3495.76, + "end": 3499.36, + "probability": 0.9738 + }, + { + "start": 3499.82, + "end": 3500.98, + "probability": 0.9417 + }, + { + "start": 3501.62, + "end": 3502.42, + "probability": 0.9104 + }, + { + "start": 3503.0, + "end": 3506.0, + "probability": 0.9115 + }, + { + "start": 3506.56, + "end": 3511.14, + "probability": 0.9976 + }, + { + "start": 3511.64, + "end": 3512.18, + "probability": 0.9678 + }, + { + "start": 3513.16, + "end": 3515.56, + "probability": 0.8786 + }, + { + "start": 3515.94, + "end": 3519.0, + "probability": 0.6653 + }, + { + "start": 3519.06, + "end": 3520.74, + "probability": 0.9347 + }, + { + "start": 3521.12, + "end": 3522.96, + "probability": 0.8366 + }, + { + "start": 3523.36, + "end": 3526.88, + "probability": 0.9469 + }, + { + "start": 3527.22, + "end": 3529.02, + "probability": 0.9326 + }, + { + "start": 3529.06, + "end": 3533.94, + "probability": 0.8839 + }, + { + "start": 3534.82, + "end": 3537.68, + "probability": 0.9875 + }, + { + "start": 3538.04, + "end": 3538.52, + "probability": 0.7755 + }, + { + "start": 3538.68, + "end": 3541.81, + "probability": 0.968 + }, + { + "start": 3542.34, + "end": 3543.44, + "probability": 0.5176 + }, + { + "start": 3543.58, + "end": 3545.98, + "probability": 0.6973 + }, + { + "start": 3546.54, + "end": 3549.24, + "probability": 0.9811 + }, + { + "start": 3549.3, + "end": 3550.8, + "probability": 0.9889 + }, + { + "start": 3551.2, + "end": 3552.38, + "probability": 0.9445 + }, + { + "start": 3552.7, + "end": 3555.58, + "probability": 0.952 + }, + { + "start": 3555.92, + "end": 3557.72, + "probability": 0.951 + }, + { + "start": 3558.3, + "end": 3559.68, + "probability": 0.9927 + }, + { + "start": 3560.64, + "end": 3561.02, + "probability": 0.8441 + }, + { + "start": 3561.96, + "end": 3564.28, + "probability": 0.9819 + }, + { + "start": 3564.74, + "end": 3566.4, + "probability": 0.9976 + }, + { + "start": 3567.36, + "end": 3568.45, + "probability": 0.9639 + }, + { + "start": 3569.22, + "end": 3570.86, + "probability": 0.9208 + }, + { + "start": 3571.06, + "end": 3572.18, + "probability": 0.9629 + }, + { + "start": 3572.4, + "end": 3573.28, + "probability": 0.8198 + }, + { + "start": 3573.6, + "end": 3579.64, + "probability": 0.9606 + }, + { + "start": 3579.64, + "end": 3584.32, + "probability": 0.9996 + }, + { + "start": 3585.1, + "end": 3586.36, + "probability": 0.8099 + }, + { + "start": 3587.26, + "end": 3589.04, + "probability": 0.6638 + }, + { + "start": 3590.0, + "end": 3591.22, + "probability": 0.8745 + }, + { + "start": 3591.84, + "end": 3593.98, + "probability": 0.909 + }, + { + "start": 3594.06, + "end": 3595.58, + "probability": 0.9367 + }, + { + "start": 3596.0, + "end": 3598.5, + "probability": 0.9932 + }, + { + "start": 3598.9, + "end": 3600.86, + "probability": 0.9736 + }, + { + "start": 3601.2, + "end": 3603.34, + "probability": 0.9625 + }, + { + "start": 3603.42, + "end": 3604.61, + "probability": 0.9917 + }, + { + "start": 3605.56, + "end": 3607.44, + "probability": 0.9648 + }, + { + "start": 3607.94, + "end": 3613.38, + "probability": 0.9978 + }, + { + "start": 3614.14, + "end": 3617.34, + "probability": 0.9954 + }, + { + "start": 3617.6, + "end": 3621.06, + "probability": 0.9985 + }, + { + "start": 3621.7, + "end": 3623.76, + "probability": 0.9984 + }, + { + "start": 3623.76, + "end": 3626.98, + "probability": 0.995 + }, + { + "start": 3627.8, + "end": 3630.4, + "probability": 0.9471 + }, + { + "start": 3630.66, + "end": 3632.66, + "probability": 0.7567 + }, + { + "start": 3633.02, + "end": 3636.62, + "probability": 0.8124 + }, + { + "start": 3637.9, + "end": 3638.22, + "probability": 0.7213 + }, + { + "start": 3638.54, + "end": 3638.54, + "probability": 0.0623 + }, + { + "start": 3638.54, + "end": 3638.54, + "probability": 0.0308 + }, + { + "start": 3638.54, + "end": 3638.86, + "probability": 0.0108 + }, + { + "start": 3639.04, + "end": 3645.04, + "probability": 0.9221 + }, + { + "start": 3645.2, + "end": 3646.8, + "probability": 0.9633 + }, + { + "start": 3646.86, + "end": 3647.0, + "probability": 0.1815 + }, + { + "start": 3647.02, + "end": 3647.7, + "probability": 0.6797 + }, + { + "start": 3647.84, + "end": 3649.56, + "probability": 0.9775 + }, + { + "start": 3650.14, + "end": 3651.04, + "probability": 0.8726 + }, + { + "start": 3651.2, + "end": 3653.04, + "probability": 0.9956 + }, + { + "start": 3653.3, + "end": 3653.3, + "probability": 0.5742 + }, + { + "start": 3654.24, + "end": 3655.98, + "probability": 0.6426 + }, + { + "start": 3657.92, + "end": 3660.3, + "probability": 0.5314 + }, + { + "start": 3660.48, + "end": 3665.68, + "probability": 0.9954 + }, + { + "start": 3665.84, + "end": 3667.66, + "probability": 0.9811 + }, + { + "start": 3668.2, + "end": 3670.32, + "probability": 0.9981 + }, + { + "start": 3671.18, + "end": 3674.16, + "probability": 0.9505 + }, + { + "start": 3674.92, + "end": 3681.22, + "probability": 0.9893 + }, + { + "start": 3681.38, + "end": 3683.64, + "probability": 0.9968 + }, + { + "start": 3684.02, + "end": 3687.54, + "probability": 0.9269 + }, + { + "start": 3687.6, + "end": 3691.46, + "probability": 0.9469 + }, + { + "start": 3692.36, + "end": 3695.0, + "probability": 0.9945 + }, + { + "start": 3695.38, + "end": 3697.78, + "probability": 0.9939 + }, + { + "start": 3698.02, + "end": 3698.78, + "probability": 0.5653 + }, + { + "start": 3699.12, + "end": 3703.2, + "probability": 0.9824 + }, + { + "start": 3703.56, + "end": 3704.66, + "probability": 0.9609 + }, + { + "start": 3704.74, + "end": 3706.58, + "probability": 0.8572 + }, + { + "start": 3706.96, + "end": 3709.66, + "probability": 0.9668 + }, + { + "start": 3710.1, + "end": 3711.56, + "probability": 0.9307 + }, + { + "start": 3711.66, + "end": 3712.3, + "probability": 0.9487 + }, + { + "start": 3712.36, + "end": 3716.68, + "probability": 0.9825 + }, + { + "start": 3717.16, + "end": 3720.64, + "probability": 0.9082 + }, + { + "start": 3720.78, + "end": 3723.22, + "probability": 0.9779 + }, + { + "start": 3724.26, + "end": 3729.76, + "probability": 0.9936 + }, + { + "start": 3729.76, + "end": 3733.1, + "probability": 0.9831 + }, + { + "start": 3733.2, + "end": 3733.3, + "probability": 0.8809 + }, + { + "start": 3733.72, + "end": 3734.78, + "probability": 0.7464 + }, + { + "start": 3735.14, + "end": 3738.66, + "probability": 0.9696 + }, + { + "start": 3738.86, + "end": 3742.06, + "probability": 0.9482 + }, + { + "start": 3742.86, + "end": 3745.44, + "probability": 0.7384 + }, + { + "start": 3747.38, + "end": 3747.58, + "probability": 0.1106 + }, + { + "start": 3748.12, + "end": 3751.86, + "probability": 0.592 + }, + { + "start": 3751.92, + "end": 3752.58, + "probability": 0.7092 + }, + { + "start": 3752.8, + "end": 3753.4, + "probability": 0.5734 + }, + { + "start": 3753.4, + "end": 3755.28, + "probability": 0.8528 + }, + { + "start": 3755.28, + "end": 3758.06, + "probability": 0.933 + }, + { + "start": 3758.16, + "end": 3764.46, + "probability": 0.9761 + }, + { + "start": 3764.54, + "end": 3766.8, + "probability": 0.8994 + }, + { + "start": 3767.36, + "end": 3769.1, + "probability": 0.6562 + }, + { + "start": 3769.24, + "end": 3770.6, + "probability": 0.8462 + }, + { + "start": 3771.5, + "end": 3774.8, + "probability": 0.9401 + }, + { + "start": 3774.8, + "end": 3780.82, + "probability": 0.9902 + }, + { + "start": 3781.28, + "end": 3784.2, + "probability": 0.9836 + }, + { + "start": 3784.84, + "end": 3787.38, + "probability": 0.8003 + }, + { + "start": 3788.24, + "end": 3791.82, + "probability": 0.9526 + }, + { + "start": 3791.84, + "end": 3792.32, + "probability": 0.9304 + }, + { + "start": 3792.38, + "end": 3793.01, + "probability": 0.9396 + }, + { + "start": 3793.78, + "end": 3795.62, + "probability": 0.9975 + }, + { + "start": 3795.66, + "end": 3798.08, + "probability": 0.8508 + }, + { + "start": 3798.6, + "end": 3800.16, + "probability": 0.9449 + }, + { + "start": 3800.58, + "end": 3801.34, + "probability": 0.7605 + }, + { + "start": 3801.72, + "end": 3803.76, + "probability": 0.9883 + }, + { + "start": 3805.23, + "end": 3808.68, + "probability": 0.9299 + }, + { + "start": 3808.74, + "end": 3809.98, + "probability": 0.988 + }, + { + "start": 3810.5, + "end": 3811.16, + "probability": 0.3982 + }, + { + "start": 3811.26, + "end": 3811.72, + "probability": 0.0931 + }, + { + "start": 3811.72, + "end": 3817.26, + "probability": 0.9892 + }, + { + "start": 3817.86, + "end": 3819.54, + "probability": 0.993 + }, + { + "start": 3819.56, + "end": 3821.49, + "probability": 0.9656 + }, + { + "start": 3822.54, + "end": 3824.98, + "probability": 0.9649 + }, + { + "start": 3825.4, + "end": 3826.28, + "probability": 0.6631 + }, + { + "start": 3826.82, + "end": 3827.44, + "probability": 0.9453 + }, + { + "start": 3827.6, + "end": 3827.94, + "probability": 0.9795 + }, + { + "start": 3828.28, + "end": 3831.48, + "probability": 0.9815 + }, + { + "start": 3831.48, + "end": 3834.94, + "probability": 0.995 + }, + { + "start": 3834.98, + "end": 3837.0, + "probability": 0.9954 + }, + { + "start": 3837.16, + "end": 3840.76, + "probability": 0.7112 + }, + { + "start": 3841.06, + "end": 3842.72, + "probability": 0.9868 + }, + { + "start": 3843.46, + "end": 3846.2, + "probability": 0.9271 + }, + { + "start": 3846.62, + "end": 3852.0, + "probability": 0.9714 + }, + { + "start": 3852.6, + "end": 3857.18, + "probability": 0.9241 + }, + { + "start": 3857.56, + "end": 3858.06, + "probability": 0.8221 + }, + { + "start": 3858.36, + "end": 3860.34, + "probability": 0.9219 + }, + { + "start": 3860.92, + "end": 3862.66, + "probability": 0.8584 + }, + { + "start": 3864.78, + "end": 3867.82, + "probability": 0.7627 + }, + { + "start": 3868.64, + "end": 3869.38, + "probability": 0.3109 + }, + { + "start": 3871.28, + "end": 3875.92, + "probability": 0.9232 + }, + { + "start": 3895.96, + "end": 3896.6, + "probability": 0.7872 + }, + { + "start": 3897.58, + "end": 3902.28, + "probability": 0.5875 + }, + { + "start": 3903.04, + "end": 3905.7, + "probability": 0.9331 + }, + { + "start": 3906.92, + "end": 3910.82, + "probability": 0.6452 + }, + { + "start": 3911.42, + "end": 3914.06, + "probability": 0.9552 + }, + { + "start": 3915.3, + "end": 3916.62, + "probability": 0.9305 + }, + { + "start": 3916.76, + "end": 3917.3, + "probability": 0.4895 + }, + { + "start": 3918.34, + "end": 3923.9, + "probability": 0.9316 + }, + { + "start": 3924.98, + "end": 3926.28, + "probability": 0.9901 + }, + { + "start": 3927.8, + "end": 3928.52, + "probability": 0.0031 + }, + { + "start": 3929.58, + "end": 3929.66, + "probability": 0.2858 + }, + { + "start": 3929.66, + "end": 3929.66, + "probability": 0.0202 + }, + { + "start": 3929.66, + "end": 3931.18, + "probability": 0.8478 + }, + { + "start": 3932.38, + "end": 3935.14, + "probability": 0.8562 + }, + { + "start": 3935.22, + "end": 3938.84, + "probability": 0.9366 + }, + { + "start": 3940.28, + "end": 3942.56, + "probability": 0.9204 + }, + { + "start": 3943.3, + "end": 3944.4, + "probability": 0.8737 + }, + { + "start": 3945.66, + "end": 3947.36, + "probability": 0.9802 + }, + { + "start": 3947.8, + "end": 3948.79, + "probability": 0.9292 + }, + { + "start": 3949.36, + "end": 3950.9, + "probability": 0.8697 + }, + { + "start": 3951.5, + "end": 3952.54, + "probability": 0.8403 + }, + { + "start": 3952.68, + "end": 3953.66, + "probability": 0.8242 + }, + { + "start": 3954.08, + "end": 3954.46, + "probability": 0.6219 + }, + { + "start": 3954.56, + "end": 3955.22, + "probability": 0.5205 + }, + { + "start": 3955.98, + "end": 3957.38, + "probability": 0.4773 + }, + { + "start": 3957.88, + "end": 3958.22, + "probability": 0.3488 + }, + { + "start": 3958.24, + "end": 3958.24, + "probability": 0.1389 + }, + { + "start": 3958.28, + "end": 3959.13, + "probability": 0.8704 + }, + { + "start": 3959.28, + "end": 3962.06, + "probability": 0.8887 + }, + { + "start": 3962.56, + "end": 3963.26, + "probability": 0.9845 + }, + { + "start": 3963.44, + "end": 3965.4, + "probability": 0.961 + }, + { + "start": 3965.84, + "end": 3967.08, + "probability": 0.9622 + }, + { + "start": 3967.42, + "end": 3970.54, + "probability": 0.9348 + }, + { + "start": 3971.32, + "end": 3972.68, + "probability": 0.6486 + }, + { + "start": 3973.76, + "end": 3976.32, + "probability": 0.8756 + }, + { + "start": 3977.14, + "end": 3979.74, + "probability": 0.9296 + }, + { + "start": 3980.4, + "end": 3983.94, + "probability": 0.9807 + }, + { + "start": 3984.5, + "end": 3987.16, + "probability": 0.8557 + }, + { + "start": 3987.32, + "end": 3989.04, + "probability": 0.8502 + }, + { + "start": 3989.3, + "end": 3993.44, + "probability": 0.9533 + }, + { + "start": 3993.54, + "end": 3995.94, + "probability": 0.9067 + }, + { + "start": 3996.08, + "end": 4001.76, + "probability": 0.9264 + }, + { + "start": 4002.14, + "end": 4006.03, + "probability": 0.928 + }, + { + "start": 4006.32, + "end": 4010.54, + "probability": 0.8962 + }, + { + "start": 4011.02, + "end": 4011.62, + "probability": 0.8441 + }, + { + "start": 4012.34, + "end": 4016.5, + "probability": 0.952 + }, + { + "start": 4016.6, + "end": 4017.34, + "probability": 0.8098 + }, + { + "start": 4018.08, + "end": 4019.12, + "probability": 0.5149 + }, + { + "start": 4019.82, + "end": 4020.76, + "probability": 0.9795 + }, + { + "start": 4021.06, + "end": 4025.02, + "probability": 0.976 + }, + { + "start": 4025.62, + "end": 4027.38, + "probability": 0.976 + }, + { + "start": 4028.22, + "end": 4029.26, + "probability": 0.6432 + }, + { + "start": 4029.92, + "end": 4031.9, + "probability": 0.9606 + }, + { + "start": 4033.16, + "end": 4034.63, + "probability": 0.9044 + }, + { + "start": 4035.22, + "end": 4037.3, + "probability": 0.9514 + }, + { + "start": 4039.14, + "end": 4041.52, + "probability": 0.9409 + }, + { + "start": 4042.06, + "end": 4047.36, + "probability": 0.8877 + }, + { + "start": 4047.78, + "end": 4049.42, + "probability": 0.8326 + }, + { + "start": 4050.64, + "end": 4053.54, + "probability": 0.6667 + }, + { + "start": 4054.12, + "end": 4055.46, + "probability": 0.6855 + }, + { + "start": 4056.1, + "end": 4059.16, + "probability": 0.9572 + }, + { + "start": 4059.7, + "end": 4061.52, + "probability": 0.9406 + }, + { + "start": 4061.62, + "end": 4063.66, + "probability": 0.8238 + }, + { + "start": 4064.44, + "end": 4065.38, + "probability": 0.9585 + }, + { + "start": 4065.58, + "end": 4067.16, + "probability": 0.7816 + }, + { + "start": 4067.2, + "end": 4068.16, + "probability": 0.9378 + }, + { + "start": 4068.44, + "end": 4070.0, + "probability": 0.9805 + }, + { + "start": 4070.28, + "end": 4071.18, + "probability": 0.9772 + }, + { + "start": 4071.26, + "end": 4074.7, + "probability": 0.8657 + }, + { + "start": 4075.44, + "end": 4076.5, + "probability": 0.5988 + }, + { + "start": 4076.88, + "end": 4079.1, + "probability": 0.9676 + }, + { + "start": 4079.62, + "end": 4080.72, + "probability": 0.8887 + }, + { + "start": 4081.38, + "end": 4082.44, + "probability": 0.9264 + }, + { + "start": 4083.16, + "end": 4084.98, + "probability": 0.9722 + }, + { + "start": 4085.34, + "end": 4087.83, + "probability": 0.9536 + }, + { + "start": 4088.36, + "end": 4090.2, + "probability": 0.9783 + }, + { + "start": 4090.5, + "end": 4093.02, + "probability": 0.9072 + }, + { + "start": 4093.84, + "end": 4094.84, + "probability": 0.7051 + }, + { + "start": 4094.88, + "end": 4096.76, + "probability": 0.988 + }, + { + "start": 4096.88, + "end": 4097.3, + "probability": 0.7207 + }, + { + "start": 4097.9, + "end": 4101.48, + "probability": 0.9631 + }, + { + "start": 4101.52, + "end": 4103.14, + "probability": 0.9754 + }, + { + "start": 4103.84, + "end": 4104.84, + "probability": 0.9136 + }, + { + "start": 4105.44, + "end": 4108.08, + "probability": 0.5224 + }, + { + "start": 4108.58, + "end": 4109.5, + "probability": 0.9336 + }, + { + "start": 4109.84, + "end": 4110.23, + "probability": 0.9331 + }, + { + "start": 4110.74, + "end": 4111.86, + "probability": 0.9922 + }, + { + "start": 4112.28, + "end": 4113.72, + "probability": 0.9599 + }, + { + "start": 4113.78, + "end": 4114.2, + "probability": 0.9832 + }, + { + "start": 4114.26, + "end": 4114.92, + "probability": 0.8976 + }, + { + "start": 4114.96, + "end": 4115.6, + "probability": 0.7812 + }, + { + "start": 4116.02, + "end": 4116.56, + "probability": 0.7369 + }, + { + "start": 4117.18, + "end": 4119.68, + "probability": 0.9824 + }, + { + "start": 4119.76, + "end": 4121.96, + "probability": 0.9878 + }, + { + "start": 4122.32, + "end": 4123.94, + "probability": 0.9762 + }, + { + "start": 4124.4, + "end": 4125.78, + "probability": 0.9321 + }, + { + "start": 4126.06, + "end": 4127.62, + "probability": 0.6067 + }, + { + "start": 4127.92, + "end": 4128.14, + "probability": 0.7343 + }, + { + "start": 4128.96, + "end": 4130.8, + "probability": 0.9806 + }, + { + "start": 4130.98, + "end": 4132.74, + "probability": 0.9468 + }, + { + "start": 4133.56, + "end": 4134.38, + "probability": 0.8468 + }, + { + "start": 4135.0, + "end": 4135.86, + "probability": 0.9349 + }, + { + "start": 4137.2, + "end": 4139.86, + "probability": 0.9243 + }, + { + "start": 4142.02, + "end": 4144.76, + "probability": 0.9392 + }, + { + "start": 4145.4, + "end": 4149.87, + "probability": 0.925 + }, + { + "start": 4149.98, + "end": 4153.8, + "probability": 0.6649 + }, + { + "start": 4163.4, + "end": 4163.76, + "probability": 0.7453 + }, + { + "start": 4168.32, + "end": 4169.14, + "probability": 0.6306 + }, + { + "start": 4169.44, + "end": 4170.58, + "probability": 0.7421 + }, + { + "start": 4170.86, + "end": 4171.94, + "probability": 0.6312 + }, + { + "start": 4173.22, + "end": 4175.52, + "probability": 0.6031 + }, + { + "start": 4177.26, + "end": 4178.0, + "probability": 0.6467 + }, + { + "start": 4178.14, + "end": 4183.28, + "probability": 0.971 + }, + { + "start": 4185.28, + "end": 4187.82, + "probability": 0.988 + }, + { + "start": 4188.34, + "end": 4190.76, + "probability": 0.929 + }, + { + "start": 4192.12, + "end": 4195.42, + "probability": 0.994 + }, + { + "start": 4198.14, + "end": 4200.36, + "probability": 0.8092 + }, + { + "start": 4200.9, + "end": 4202.7, + "probability": 0.8517 + }, + { + "start": 4204.18, + "end": 4206.54, + "probability": 0.914 + }, + { + "start": 4207.44, + "end": 4212.1, + "probability": 0.9826 + }, + { + "start": 4212.1, + "end": 4215.54, + "probability": 0.9917 + }, + { + "start": 4216.7, + "end": 4223.38, + "probability": 0.9912 + }, + { + "start": 4224.7, + "end": 4227.58, + "probability": 0.9128 + }, + { + "start": 4228.22, + "end": 4228.88, + "probability": 0.9137 + }, + { + "start": 4229.42, + "end": 4231.56, + "probability": 0.9941 + }, + { + "start": 4232.84, + "end": 4237.72, + "probability": 0.9932 + }, + { + "start": 4238.56, + "end": 4240.86, + "probability": 0.9982 + }, + { + "start": 4241.96, + "end": 4243.42, + "probability": 0.9934 + }, + { + "start": 4244.04, + "end": 4247.7, + "probability": 0.9657 + }, + { + "start": 4248.26, + "end": 4249.74, + "probability": 0.9577 + }, + { + "start": 4250.38, + "end": 4251.3, + "probability": 0.9183 + }, + { + "start": 4252.06, + "end": 4258.56, + "probability": 0.8662 + }, + { + "start": 4259.5, + "end": 4262.66, + "probability": 0.9985 + }, + { + "start": 4263.14, + "end": 4267.26, + "probability": 0.9718 + }, + { + "start": 4267.78, + "end": 4269.38, + "probability": 0.9971 + }, + { + "start": 4270.14, + "end": 4272.6, + "probability": 0.9888 + }, + { + "start": 4273.64, + "end": 4275.98, + "probability": 0.9276 + }, + { + "start": 4277.0, + "end": 4278.48, + "probability": 0.9944 + }, + { + "start": 4279.1, + "end": 4279.96, + "probability": 0.9651 + }, + { + "start": 4280.38, + "end": 4281.9, + "probability": 0.6089 + }, + { + "start": 4282.8, + "end": 4283.48, + "probability": 0.7299 + }, + { + "start": 4284.08, + "end": 4285.49, + "probability": 0.8994 + }, + { + "start": 4286.34, + "end": 4287.32, + "probability": 0.9663 + }, + { + "start": 4288.34, + "end": 4289.22, + "probability": 0.9395 + }, + { + "start": 4290.19, + "end": 4290.92, + "probability": 0.9528 + }, + { + "start": 4292.58, + "end": 4292.96, + "probability": 0.2956 + }, + { + "start": 4292.96, + "end": 4293.3, + "probability": 0.6254 + }, + { + "start": 4293.5, + "end": 4293.58, + "probability": 0.5207 + }, + { + "start": 4293.58, + "end": 4295.72, + "probability": 0.6752 + }, + { + "start": 4296.04, + "end": 4296.14, + "probability": 0.6814 + }, + { + "start": 4296.62, + "end": 4297.08, + "probability": 0.7257 + }, + { + "start": 4297.38, + "end": 4299.88, + "probability": 0.421 + }, + { + "start": 4300.78, + "end": 4302.9, + "probability": 0.6242 + }, + { + "start": 4304.08, + "end": 4304.94, + "probability": 0.9134 + }, + { + "start": 4306.32, + "end": 4307.76, + "probability": 0.9874 + }, + { + "start": 4309.16, + "end": 4311.26, + "probability": 0.7445 + }, + { + "start": 4314.26, + "end": 4314.9, + "probability": 0.8914 + }, + { + "start": 4315.76, + "end": 4317.74, + "probability": 0.8155 + }, + { + "start": 4317.9, + "end": 4319.92, + "probability": 0.9901 + }, + { + "start": 4320.38, + "end": 4321.4, + "probability": 0.9297 + }, + { + "start": 4322.74, + "end": 4324.84, + "probability": 0.9935 + }, + { + "start": 4325.9, + "end": 4326.18, + "probability": 0.9944 + }, + { + "start": 4326.96, + "end": 4328.14, + "probability": 0.9893 + }, + { + "start": 4329.1, + "end": 4335.0, + "probability": 0.999 + }, + { + "start": 4335.08, + "end": 4335.78, + "probability": 0.7417 + }, + { + "start": 4336.5, + "end": 4337.64, + "probability": 0.998 + }, + { + "start": 4338.74, + "end": 4339.52, + "probability": 0.9097 + }, + { + "start": 4340.6, + "end": 4341.28, + "probability": 0.8431 + }, + { + "start": 4342.14, + "end": 4343.12, + "probability": 0.9908 + }, + { + "start": 4343.76, + "end": 4344.16, + "probability": 0.9539 + }, + { + "start": 4344.78, + "end": 4345.68, + "probability": 0.9802 + }, + { + "start": 4347.12, + "end": 4351.6, + "probability": 0.9985 + }, + { + "start": 4352.2, + "end": 4352.96, + "probability": 0.9198 + }, + { + "start": 4353.82, + "end": 4356.32, + "probability": 0.9641 + }, + { + "start": 4357.06, + "end": 4359.84, + "probability": 0.9849 + }, + { + "start": 4361.22, + "end": 4361.79, + "probability": 0.9885 + }, + { + "start": 4362.68, + "end": 4369.04, + "probability": 0.7585 + }, + { + "start": 4369.76, + "end": 4372.14, + "probability": 0.9767 + }, + { + "start": 4373.32, + "end": 4373.86, + "probability": 0.9698 + }, + { + "start": 4373.96, + "end": 4378.48, + "probability": 0.9934 + }, + { + "start": 4378.48, + "end": 4382.32, + "probability": 0.9935 + }, + { + "start": 4383.28, + "end": 4387.76, + "probability": 0.9483 + }, + { + "start": 4388.34, + "end": 4389.76, + "probability": 0.9207 + }, + { + "start": 4390.0, + "end": 4391.0, + "probability": 0.9478 + }, + { + "start": 4392.5, + "end": 4393.66, + "probability": 0.9867 + }, + { + "start": 4394.34, + "end": 4397.84, + "probability": 0.8788 + }, + { + "start": 4398.94, + "end": 4404.28, + "probability": 0.9643 + }, + { + "start": 4404.28, + "end": 4407.28, + "probability": 0.9972 + }, + { + "start": 4407.44, + "end": 4408.8, + "probability": 0.9922 + }, + { + "start": 4410.48, + "end": 4412.98, + "probability": 0.9701 + }, + { + "start": 4414.16, + "end": 4417.76, + "probability": 0.9939 + }, + { + "start": 4418.82, + "end": 4421.9, + "probability": 0.9971 + }, + { + "start": 4422.26, + "end": 4426.34, + "probability": 0.9989 + }, + { + "start": 4427.02, + "end": 4427.64, + "probability": 0.8715 + }, + { + "start": 4428.64, + "end": 4432.08, + "probability": 0.6919 + }, + { + "start": 4432.5, + "end": 4435.8, + "probability": 0.7766 + }, + { + "start": 4436.04, + "end": 4437.32, + "probability": 0.895 + }, + { + "start": 4438.12, + "end": 4442.16, + "probability": 0.9746 + }, + { + "start": 4443.18, + "end": 4445.3, + "probability": 0.8381 + }, + { + "start": 4445.88, + "end": 4448.6, + "probability": 0.9976 + }, + { + "start": 4449.22, + "end": 4451.42, + "probability": 0.9605 + }, + { + "start": 4452.06, + "end": 4453.98, + "probability": 0.9657 + }, + { + "start": 4454.18, + "end": 4454.5, + "probability": 0.7884 + }, + { + "start": 4455.46, + "end": 4459.24, + "probability": 0.7413 + }, + { + "start": 4460.58, + "end": 4464.4, + "probability": 0.8657 + }, + { + "start": 4466.18, + "end": 4467.38, + "probability": 0.6461 + }, + { + "start": 4482.18, + "end": 4488.06, + "probability": 0.8008 + }, + { + "start": 4489.04, + "end": 4492.38, + "probability": 0.9455 + }, + { + "start": 4493.52, + "end": 4497.78, + "probability": 0.9749 + }, + { + "start": 4497.78, + "end": 4502.38, + "probability": 0.9907 + }, + { + "start": 4502.54, + "end": 4504.26, + "probability": 0.9955 + }, + { + "start": 4505.7, + "end": 4509.54, + "probability": 0.9896 + }, + { + "start": 4509.8, + "end": 4514.16, + "probability": 0.9816 + }, + { + "start": 4514.96, + "end": 4518.58, + "probability": 0.9885 + }, + { + "start": 4519.42, + "end": 4523.06, + "probability": 0.9119 + }, + { + "start": 4523.68, + "end": 4525.06, + "probability": 0.8893 + }, + { + "start": 4525.14, + "end": 4526.84, + "probability": 0.6669 + }, + { + "start": 4527.02, + "end": 4530.98, + "probability": 0.9797 + }, + { + "start": 4532.4, + "end": 4536.6, + "probability": 0.9895 + }, + { + "start": 4536.76, + "end": 4538.5, + "probability": 0.9592 + }, + { + "start": 4538.7, + "end": 4540.14, + "probability": 0.9836 + }, + { + "start": 4541.12, + "end": 4545.54, + "probability": 0.9709 + }, + { + "start": 4546.14, + "end": 4547.46, + "probability": 0.8958 + }, + { + "start": 4548.38, + "end": 4553.56, + "probability": 0.9552 + }, + { + "start": 4553.62, + "end": 4556.56, + "probability": 0.9966 + }, + { + "start": 4557.32, + "end": 4559.9, + "probability": 0.9828 + }, + { + "start": 4560.12, + "end": 4562.06, + "probability": 0.9917 + }, + { + "start": 4562.52, + "end": 4565.62, + "probability": 0.9941 + }, + { + "start": 4565.62, + "end": 4569.58, + "probability": 0.9781 + }, + { + "start": 4569.66, + "end": 4572.64, + "probability": 0.8131 + }, + { + "start": 4573.34, + "end": 4574.92, + "probability": 0.998 + }, + { + "start": 4575.76, + "end": 4579.28, + "probability": 0.9885 + }, + { + "start": 4579.28, + "end": 4583.94, + "probability": 0.994 + }, + { + "start": 4584.16, + "end": 4590.46, + "probability": 0.9925 + }, + { + "start": 4590.94, + "end": 4594.84, + "probability": 0.9966 + }, + { + "start": 4595.3, + "end": 4596.34, + "probability": 0.7467 + }, + { + "start": 4597.08, + "end": 4601.7, + "probability": 0.8857 + }, + { + "start": 4602.04, + "end": 4606.6, + "probability": 0.9619 + }, + { + "start": 4607.32, + "end": 4608.22, + "probability": 0.9745 + }, + { + "start": 4608.4, + "end": 4610.9, + "probability": 0.9497 + }, + { + "start": 4611.94, + "end": 4615.52, + "probability": 0.9329 + }, + { + "start": 4616.0, + "end": 4622.36, + "probability": 0.987 + }, + { + "start": 4623.22, + "end": 4625.46, + "probability": 0.9675 + }, + { + "start": 4626.94, + "end": 4629.22, + "probability": 0.9879 + }, + { + "start": 4629.46, + "end": 4630.4, + "probability": 0.7265 + }, + { + "start": 4630.88, + "end": 4632.2, + "probability": 0.7019 + }, + { + "start": 4632.98, + "end": 4634.18, + "probability": 0.8862 + }, + { + "start": 4635.1, + "end": 4639.14, + "probability": 0.9863 + }, + { + "start": 4639.7, + "end": 4645.12, + "probability": 0.999 + }, + { + "start": 4645.66, + "end": 4649.54, + "probability": 0.9935 + }, + { + "start": 4650.14, + "end": 4652.68, + "probability": 0.9932 + }, + { + "start": 4653.7, + "end": 4653.98, + "probability": 0.0759 + }, + { + "start": 4653.98, + "end": 4653.98, + "probability": 0.4749 + }, + { + "start": 4653.98, + "end": 4653.98, + "probability": 0.6941 + }, + { + "start": 4653.98, + "end": 4653.98, + "probability": 0.7939 + }, + { + "start": 4653.98, + "end": 4656.14, + "probability": 0.5132 + }, + { + "start": 4657.78, + "end": 4659.86, + "probability": 0.7418 + }, + { + "start": 4661.0, + "end": 4661.46, + "probability": 0.6359 + }, + { + "start": 4661.46, + "end": 4662.86, + "probability": 0.7216 + }, + { + "start": 4662.92, + "end": 4667.74, + "probability": 0.8086 + }, + { + "start": 4668.28, + "end": 4668.74, + "probability": 0.1889 + }, + { + "start": 4668.74, + "end": 4668.74, + "probability": 0.4949 + }, + { + "start": 4668.74, + "end": 4671.24, + "probability": 0.5519 + }, + { + "start": 4671.76, + "end": 4673.36, + "probability": 0.4089 + }, + { + "start": 4673.36, + "end": 4673.72, + "probability": 0.5765 + }, + { + "start": 4674.38, + "end": 4674.66, + "probability": 0.1759 + }, + { + "start": 4675.8, + "end": 4676.06, + "probability": 0.0991 + }, + { + "start": 4676.06, + "end": 4676.06, + "probability": 0.0943 + }, + { + "start": 4676.06, + "end": 4676.06, + "probability": 0.2311 + }, + { + "start": 4676.06, + "end": 4676.72, + "probability": 0.0273 + }, + { + "start": 4677.6, + "end": 4678.32, + "probability": 0.4629 + }, + { + "start": 4678.34, + "end": 4678.7, + "probability": 0.6075 + }, + { + "start": 4679.58, + "end": 4680.62, + "probability": 0.0667 + }, + { + "start": 4680.62, + "end": 4680.84, + "probability": 0.1293 + }, + { + "start": 4681.0, + "end": 4683.14, + "probability": 0.7799 + }, + { + "start": 4683.82, + "end": 4685.4, + "probability": 0.5269 + }, + { + "start": 4686.24, + "end": 4686.24, + "probability": 0.1448 + }, + { + "start": 4686.24, + "end": 4687.64, + "probability": 0.1257 + }, + { + "start": 4688.18, + "end": 4688.64, + "probability": 0.2172 + }, + { + "start": 4688.92, + "end": 4689.2, + "probability": 0.4286 + }, + { + "start": 4689.32, + "end": 4692.96, + "probability": 0.9031 + }, + { + "start": 4693.16, + "end": 4693.62, + "probability": 0.8864 + }, + { + "start": 4693.68, + "end": 4694.42, + "probability": 0.0195 + }, + { + "start": 4694.68, + "end": 4694.76, + "probability": 0.0418 + }, + { + "start": 4695.3, + "end": 4695.32, + "probability": 0.1541 + }, + { + "start": 4695.32, + "end": 4696.66, + "probability": 0.6461 + }, + { + "start": 4698.82, + "end": 4702.64, + "probability": 0.9704 + }, + { + "start": 4702.94, + "end": 4705.78, + "probability": 0.7779 + }, + { + "start": 4706.26, + "end": 4710.62, + "probability": 0.9974 + }, + { + "start": 4710.62, + "end": 4714.6, + "probability": 0.9979 + }, + { + "start": 4715.98, + "end": 4721.4, + "probability": 0.9548 + }, + { + "start": 4721.4, + "end": 4725.9, + "probability": 0.9847 + }, + { + "start": 4726.78, + "end": 4728.44, + "probability": 0.8989 + }, + { + "start": 4729.12, + "end": 4729.76, + "probability": 0.6999 + }, + { + "start": 4729.82, + "end": 4731.32, + "probability": 0.8418 + }, + { + "start": 4731.82, + "end": 4735.74, + "probability": 0.9309 + }, + { + "start": 4735.74, + "end": 4740.26, + "probability": 0.9961 + }, + { + "start": 4740.98, + "end": 4745.14, + "probability": 0.5944 + }, + { + "start": 4746.0, + "end": 4751.66, + "probability": 0.9929 + }, + { + "start": 4752.44, + "end": 4753.42, + "probability": 0.6408 + }, + { + "start": 4753.92, + "end": 4758.46, + "probability": 0.9897 + }, + { + "start": 4759.02, + "end": 4764.58, + "probability": 0.9968 + }, + { + "start": 4765.22, + "end": 4767.58, + "probability": 0.9627 + }, + { + "start": 4768.06, + "end": 4770.06, + "probability": 0.9416 + }, + { + "start": 4770.28, + "end": 4774.38, + "probability": 0.9961 + }, + { + "start": 4774.38, + "end": 4776.92, + "probability": 0.998 + }, + { + "start": 4777.46, + "end": 4778.4, + "probability": 0.9102 + }, + { + "start": 4778.94, + "end": 4782.64, + "probability": 0.9934 + }, + { + "start": 4783.08, + "end": 4784.14, + "probability": 0.793 + }, + { + "start": 4784.94, + "end": 4786.54, + "probability": 0.445 + }, + { + "start": 4786.54, + "end": 4787.46, + "probability": 0.3261 + }, + { + "start": 4787.6, + "end": 4788.64, + "probability": 0.792 + }, + { + "start": 4789.22, + "end": 4796.0, + "probability": 0.9927 + }, + { + "start": 4796.5, + "end": 4798.18, + "probability": 0.7537 + }, + { + "start": 4798.86, + "end": 4800.26, + "probability": 0.8016 + }, + { + "start": 4800.32, + "end": 4800.76, + "probability": 0.2134 + }, + { + "start": 4800.76, + "end": 4801.12, + "probability": 0.352 + }, + { + "start": 4801.18, + "end": 4801.62, + "probability": 0.2476 + }, + { + "start": 4801.62, + "end": 4802.16, + "probability": 0.3401 + }, + { + "start": 4802.24, + "end": 4804.4, + "probability": 0.8382 + }, + { + "start": 4804.46, + "end": 4805.94, + "probability": 0.9817 + }, + { + "start": 4806.34, + "end": 4809.24, + "probability": 0.9897 + }, + { + "start": 4809.58, + "end": 4813.92, + "probability": 0.9938 + }, + { + "start": 4813.92, + "end": 4816.06, + "probability": 0.4966 + }, + { + "start": 4816.18, + "end": 4819.5, + "probability": 0.9848 + }, + { + "start": 4819.5, + "end": 4821.28, + "probability": 0.346 + }, + { + "start": 4821.28, + "end": 4821.76, + "probability": 0.5449 + }, + { + "start": 4821.76, + "end": 4826.54, + "probability": 0.9883 + }, + { + "start": 4826.54, + "end": 4829.5, + "probability": 0.9976 + }, + { + "start": 4829.88, + "end": 4833.54, + "probability": 0.9958 + }, + { + "start": 4834.0, + "end": 4835.42, + "probability": 0.7088 + }, + { + "start": 4835.88, + "end": 4837.34, + "probability": 0.7936 + }, + { + "start": 4837.44, + "end": 4839.44, + "probability": 0.8048 + }, + { + "start": 4839.88, + "end": 4839.88, + "probability": 0.377 + }, + { + "start": 4840.56, + "end": 4843.48, + "probability": 0.7297 + }, + { + "start": 4844.48, + "end": 4846.96, + "probability": 0.9797 + }, + { + "start": 4847.5, + "end": 4851.1, + "probability": 0.9284 + }, + { + "start": 4851.78, + "end": 4858.52, + "probability": 0.958 + }, + { + "start": 4859.12, + "end": 4860.68, + "probability": 0.9064 + }, + { + "start": 4861.54, + "end": 4862.78, + "probability": 0.8633 + }, + { + "start": 4862.86, + "end": 4864.26, + "probability": 0.6937 + }, + { + "start": 4864.74, + "end": 4867.36, + "probability": 0.9465 + }, + { + "start": 4867.48, + "end": 4867.72, + "probability": 0.0612 + }, + { + "start": 4868.0, + "end": 4872.46, + "probability": 0.8958 + }, + { + "start": 4873.0, + "end": 4875.26, + "probability": 0.7465 + }, + { + "start": 4875.9, + "end": 4875.9, + "probability": 0.0042 + }, + { + "start": 4875.9, + "end": 4879.3, + "probability": 0.7469 + }, + { + "start": 4880.42, + "end": 4880.78, + "probability": 0.1073 + }, + { + "start": 4880.78, + "end": 4880.78, + "probability": 0.0144 + }, + { + "start": 4880.78, + "end": 4882.54, + "probability": 0.4057 + }, + { + "start": 4883.02, + "end": 4883.48, + "probability": 0.6344 + }, + { + "start": 4883.52, + "end": 4884.1, + "probability": 0.7706 + }, + { + "start": 4884.44, + "end": 4885.32, + "probability": 0.9266 + }, + { + "start": 4885.44, + "end": 4887.0, + "probability": 0.9736 + }, + { + "start": 4888.32, + "end": 4888.94, + "probability": 0.83 + }, + { + "start": 4889.06, + "end": 4889.7, + "probability": 0.2474 + }, + { + "start": 4889.74, + "end": 4890.14, + "probability": 0.1077 + }, + { + "start": 4890.46, + "end": 4890.86, + "probability": 0.1736 + }, + { + "start": 4891.0, + "end": 4891.7, + "probability": 0.4926 + }, + { + "start": 4891.84, + "end": 4891.86, + "probability": 0.2265 + }, + { + "start": 4892.02, + "end": 4894.3, + "probability": 0.674 + }, + { + "start": 4894.4, + "end": 4895.04, + "probability": 0.82 + }, + { + "start": 4895.38, + "end": 4897.4, + "probability": 0.8115 + }, + { + "start": 4897.98, + "end": 4900.26, + "probability": 0.6428 + }, + { + "start": 4901.06, + "end": 4903.16, + "probability": 0.8281 + }, + { + "start": 4903.84, + "end": 4905.04, + "probability": 0.3751 + }, + { + "start": 4905.34, + "end": 4906.44, + "probability": 0.6943 + }, + { + "start": 4906.44, + "end": 4906.46, + "probability": 0.0829 + }, + { + "start": 4906.46, + "end": 4907.08, + "probability": 0.6888 + }, + { + "start": 4908.16, + "end": 4909.38, + "probability": 0.9581 + }, + { + "start": 4909.52, + "end": 4913.22, + "probability": 0.9929 + }, + { + "start": 4913.74, + "end": 4917.78, + "probability": 0.9974 + }, + { + "start": 4918.54, + "end": 4919.7, + "probability": 0.9458 + }, + { + "start": 4919.76, + "end": 4921.2, + "probability": 0.9367 + }, + { + "start": 4921.26, + "end": 4922.78, + "probability": 0.9913 + }, + { + "start": 4923.22, + "end": 4924.8, + "probability": 0.7594 + }, + { + "start": 4925.1, + "end": 4927.44, + "probability": 0.7945 + }, + { + "start": 4927.74, + "end": 4929.48, + "probability": 0.9848 + }, + { + "start": 4929.48, + "end": 4931.12, + "probability": 0.9654 + }, + { + "start": 4931.46, + "end": 4932.28, + "probability": 0.8288 + }, + { + "start": 4932.68, + "end": 4934.74, + "probability": 0.9625 + }, + { + "start": 4935.1, + "end": 4937.88, + "probability": 0.9164 + }, + { + "start": 4938.4, + "end": 4942.72, + "probability": 0.9819 + }, + { + "start": 4943.9, + "end": 4946.44, + "probability": 0.8624 + }, + { + "start": 4949.28, + "end": 4949.84, + "probability": 0.0465 + }, + { + "start": 4950.4, + "end": 4950.44, + "probability": 0.1283 + }, + { + "start": 4950.44, + "end": 4951.16, + "probability": 0.1696 + }, + { + "start": 4951.2, + "end": 4951.2, + "probability": 0.1878 + }, + { + "start": 4951.48, + "end": 4951.48, + "probability": 0.412 + }, + { + "start": 4951.48, + "end": 4952.62, + "probability": 0.5401 + }, + { + "start": 4953.44, + "end": 4953.44, + "probability": 0.1248 + }, + { + "start": 4953.96, + "end": 4958.46, + "probability": 0.3837 + }, + { + "start": 4959.0, + "end": 4965.28, + "probability": 0.8842 + }, + { + "start": 4965.46, + "end": 4966.85, + "probability": 0.3135 + }, + { + "start": 4967.58, + "end": 4968.28, + "probability": 0.1063 + }, + { + "start": 4969.36, + "end": 4971.32, + "probability": 0.3487 + }, + { + "start": 4971.32, + "end": 4973.84, + "probability": 0.2689 + }, + { + "start": 4974.02, + "end": 4975.52, + "probability": 0.3729 + }, + { + "start": 4975.96, + "end": 4977.64, + "probability": 0.6496 + }, + { + "start": 4977.72, + "end": 4979.78, + "probability": 0.9561 + }, + { + "start": 4980.8, + "end": 4982.16, + "probability": 0.8333 + }, + { + "start": 4982.36, + "end": 4983.74, + "probability": 0.9746 + }, + { + "start": 4983.84, + "end": 4985.08, + "probability": 0.8697 + }, + { + "start": 4985.76, + "end": 4987.96, + "probability": 0.9419 + }, + { + "start": 4988.3, + "end": 4990.31, + "probability": 0.9905 + }, + { + "start": 4991.08, + "end": 4991.08, + "probability": 0.0107 + }, + { + "start": 4991.08, + "end": 4994.5, + "probability": 0.9481 + }, + { + "start": 4994.7, + "end": 4995.52, + "probability": 0.8613 + }, + { + "start": 4995.62, + "end": 4997.44, + "probability": 0.7242 + }, + { + "start": 4997.98, + "end": 4998.76, + "probability": 0.5782 + }, + { + "start": 4998.98, + "end": 5001.54, + "probability": 0.8967 + }, + { + "start": 5002.1, + "end": 5008.02, + "probability": 0.9941 + }, + { + "start": 5008.44, + "end": 5011.24, + "probability": 0.9912 + }, + { + "start": 5011.82, + "end": 5014.0, + "probability": 0.8796 + }, + { + "start": 5014.08, + "end": 5014.64, + "probability": 0.7614 + }, + { + "start": 5015.46, + "end": 5017.78, + "probability": 0.7295 + }, + { + "start": 5017.9, + "end": 5021.0, + "probability": 0.8904 + }, + { + "start": 5022.6, + "end": 5025.44, + "probability": 0.8781 + }, + { + "start": 5028.86, + "end": 5030.94, + "probability": 0.8005 + }, + { + "start": 5031.52, + "end": 5034.64, + "probability": 0.9886 + }, + { + "start": 5034.94, + "end": 5038.16, + "probability": 0.9763 + }, + { + "start": 5039.0, + "end": 5041.54, + "probability": 0.9885 + }, + { + "start": 5041.82, + "end": 5042.82, + "probability": 0.8943 + }, + { + "start": 5043.68, + "end": 5046.18, + "probability": 0.924 + }, + { + "start": 5046.22, + "end": 5047.96, + "probability": 0.8619 + }, + { + "start": 5048.78, + "end": 5051.92, + "probability": 0.8598 + }, + { + "start": 5051.98, + "end": 5052.38, + "probability": 0.4235 + }, + { + "start": 5052.66, + "end": 5055.84, + "probability": 0.6474 + }, + { + "start": 5056.18, + "end": 5058.22, + "probability": 0.291 + }, + { + "start": 5058.62, + "end": 5058.62, + "probability": 0.0001 + }, + { + "start": 5058.62, + "end": 5061.44, + "probability": 0.8876 + }, + { + "start": 5062.06, + "end": 5063.5, + "probability": 0.4947 + }, + { + "start": 5063.5, + "end": 5064.94, + "probability": 0.0606 + }, + { + "start": 5065.32, + "end": 5066.9, + "probability": 0.7585 + }, + { + "start": 5066.96, + "end": 5068.16, + "probability": 0.784 + }, + { + "start": 5069.08, + "end": 5070.22, + "probability": 0.2078 + }, + { + "start": 5070.34, + "end": 5071.94, + "probability": 0.9005 + }, + { + "start": 5073.58, + "end": 5074.98, + "probability": 0.4339 + }, + { + "start": 5075.9, + "end": 5079.44, + "probability": 0.3023 + }, + { + "start": 5080.26, + "end": 5083.38, + "probability": 0.9955 + }, + { + "start": 5084.08, + "end": 5087.22, + "probability": 0.9951 + }, + { + "start": 5088.12, + "end": 5091.25, + "probability": 0.9981 + }, + { + "start": 5091.68, + "end": 5094.8, + "probability": 0.9961 + }, + { + "start": 5095.44, + "end": 5099.06, + "probability": 0.9538 + }, + { + "start": 5100.84, + "end": 5107.38, + "probability": 0.9941 + }, + { + "start": 5107.38, + "end": 5108.28, + "probability": 0.7508 + }, + { + "start": 5108.54, + "end": 5110.31, + "probability": 0.9968 + }, + { + "start": 5112.24, + "end": 5114.32, + "probability": 0.8894 + }, + { + "start": 5115.78, + "end": 5122.6, + "probability": 0.9495 + }, + { + "start": 5125.42, + "end": 5129.16, + "probability": 0.9944 + }, + { + "start": 5129.32, + "end": 5130.6, + "probability": 0.8871 + }, + { + "start": 5131.62, + "end": 5133.9, + "probability": 0.9989 + }, + { + "start": 5134.8, + "end": 5138.12, + "probability": 0.9921 + }, + { + "start": 5139.34, + "end": 5140.68, + "probability": 0.8058 + }, + { + "start": 5140.78, + "end": 5143.82, + "probability": 0.8624 + }, + { + "start": 5143.84, + "end": 5145.32, + "probability": 0.8705 + }, + { + "start": 5147.42, + "end": 5151.24, + "probability": 0.9094 + }, + { + "start": 5152.44, + "end": 5157.08, + "probability": 0.8047 + }, + { + "start": 5158.04, + "end": 5160.1, + "probability": 0.8781 + }, + { + "start": 5161.14, + "end": 5162.96, + "probability": 0.9963 + }, + { + "start": 5163.78, + "end": 5165.28, + "probability": 0.9659 + }, + { + "start": 5165.96, + "end": 5168.96, + "probability": 0.9982 + }, + { + "start": 5171.48, + "end": 5175.34, + "probability": 0.9893 + }, + { + "start": 5176.4, + "end": 5178.0, + "probability": 0.9947 + }, + { + "start": 5179.0, + "end": 5182.92, + "probability": 0.9939 + }, + { + "start": 5182.96, + "end": 5184.4, + "probability": 0.9956 + }, + { + "start": 5184.96, + "end": 5185.86, + "probability": 0.7738 + }, + { + "start": 5185.9, + "end": 5189.84, + "probability": 0.99 + }, + { + "start": 5189.84, + "end": 5195.8, + "probability": 0.9982 + }, + { + "start": 5195.94, + "end": 5200.98, + "probability": 0.9871 + }, + { + "start": 5202.2, + "end": 5205.12, + "probability": 0.9584 + }, + { + "start": 5205.12, + "end": 5209.18, + "probability": 0.9239 + }, + { + "start": 5210.1, + "end": 5214.7, + "probability": 0.9738 + }, + { + "start": 5214.82, + "end": 5215.62, + "probability": 0.7511 + }, + { + "start": 5216.96, + "end": 5219.58, + "probability": 0.9473 + }, + { + "start": 5220.72, + "end": 5223.96, + "probability": 0.9934 + }, + { + "start": 5224.82, + "end": 5226.88, + "probability": 0.7408 + }, + { + "start": 5227.62, + "end": 5228.46, + "probability": 0.1202 + }, + { + "start": 5229.58, + "end": 5231.43, + "probability": 0.9722 + }, + { + "start": 5232.38, + "end": 5233.84, + "probability": 0.8984 + }, + { + "start": 5234.86, + "end": 5236.06, + "probability": 0.9279 + }, + { + "start": 5237.08, + "end": 5245.76, + "probability": 0.8949 + }, + { + "start": 5246.62, + "end": 5249.32, + "probability": 0.8593 + }, + { + "start": 5251.3, + "end": 5253.95, + "probability": 0.9976 + }, + { + "start": 5255.04, + "end": 5256.04, + "probability": 0.9403 + }, + { + "start": 5257.34, + "end": 5258.02, + "probability": 0.9895 + }, + { + "start": 5259.3, + "end": 5263.6, + "probability": 0.995 + }, + { + "start": 5265.32, + "end": 5266.72, + "probability": 0.9815 + }, + { + "start": 5268.1, + "end": 5269.4, + "probability": 0.9551 + }, + { + "start": 5270.18, + "end": 5273.36, + "probability": 0.996 + }, + { + "start": 5274.36, + "end": 5276.8, + "probability": 0.8754 + }, + { + "start": 5277.64, + "end": 5280.46, + "probability": 0.782 + }, + { + "start": 5281.4, + "end": 5283.64, + "probability": 0.9819 + }, + { + "start": 5284.06, + "end": 5285.24, + "probability": 0.896 + }, + { + "start": 5286.08, + "end": 5288.68, + "probability": 0.5003 + }, + { + "start": 5288.82, + "end": 5291.42, + "probability": 0.9976 + }, + { + "start": 5291.54, + "end": 5293.38, + "probability": 0.9987 + }, + { + "start": 5295.08, + "end": 5300.96, + "probability": 0.9683 + }, + { + "start": 5301.12, + "end": 5302.12, + "probability": 0.9556 + }, + { + "start": 5303.0, + "end": 5304.52, + "probability": 0.9982 + }, + { + "start": 5305.26, + "end": 5309.6, + "probability": 0.9911 + }, + { + "start": 5310.36, + "end": 5313.46, + "probability": 0.9646 + }, + { + "start": 5315.31, + "end": 5319.96, + "probability": 0.6892 + }, + { + "start": 5320.72, + "end": 5323.98, + "probability": 0.9723 + }, + { + "start": 5325.52, + "end": 5326.74, + "probability": 0.6123 + }, + { + "start": 5326.82, + "end": 5327.52, + "probability": 0.1836 + }, + { + "start": 5328.04, + "end": 5329.1, + "probability": 0.6513 + }, + { + "start": 5329.82, + "end": 5331.98, + "probability": 0.8462 + }, + { + "start": 5336.81, + "end": 5338.4, + "probability": 0.9547 + }, + { + "start": 5339.9, + "end": 5341.2, + "probability": 0.9961 + }, + { + "start": 5341.3, + "end": 5345.16, + "probability": 0.9871 + }, + { + "start": 5345.9, + "end": 5347.12, + "probability": 0.9557 + }, + { + "start": 5347.4, + "end": 5348.78, + "probability": 0.9682 + }, + { + "start": 5349.78, + "end": 5352.18, + "probability": 0.9916 + }, + { + "start": 5353.34, + "end": 5355.95, + "probability": 0.9848 + }, + { + "start": 5356.74, + "end": 5360.42, + "probability": 0.9971 + }, + { + "start": 5360.6, + "end": 5362.72, + "probability": 0.9971 + }, + { + "start": 5363.6, + "end": 5365.5, + "probability": 0.8012 + }, + { + "start": 5366.34, + "end": 5368.14, + "probability": 0.9982 + }, + { + "start": 5369.86, + "end": 5373.92, + "probability": 0.9451 + }, + { + "start": 5374.38, + "end": 5375.36, + "probability": 0.9255 + }, + { + "start": 5376.36, + "end": 5378.81, + "probability": 0.965 + }, + { + "start": 5379.28, + "end": 5382.12, + "probability": 0.9884 + }, + { + "start": 5382.72, + "end": 5386.44, + "probability": 0.9873 + }, + { + "start": 5391.2, + "end": 5393.16, + "probability": 0.5602 + }, + { + "start": 5394.04, + "end": 5395.66, + "probability": 0.9956 + }, + { + "start": 5396.48, + "end": 5402.28, + "probability": 0.9398 + }, + { + "start": 5402.9, + "end": 5407.52, + "probability": 0.9964 + }, + { + "start": 5408.14, + "end": 5413.06, + "probability": 0.9978 + }, + { + "start": 5413.82, + "end": 5424.08, + "probability": 0.9933 + }, + { + "start": 5424.08, + "end": 5428.06, + "probability": 0.9272 + }, + { + "start": 5428.28, + "end": 5428.92, + "probability": 0.7015 + }, + { + "start": 5429.58, + "end": 5435.96, + "probability": 0.9944 + }, + { + "start": 5436.52, + "end": 5439.78, + "probability": 0.9946 + }, + { + "start": 5439.78, + "end": 5442.66, + "probability": 0.9827 + }, + { + "start": 5442.8, + "end": 5443.66, + "probability": 0.8863 + }, + { + "start": 5444.2, + "end": 5447.64, + "probability": 0.9862 + }, + { + "start": 5448.12, + "end": 5450.7, + "probability": 0.5922 + }, + { + "start": 5451.34, + "end": 5452.32, + "probability": 0.8416 + }, + { + "start": 5453.24, + "end": 5456.96, + "probability": 0.9967 + }, + { + "start": 5457.0, + "end": 5459.64, + "probability": 0.9348 + }, + { + "start": 5459.86, + "end": 5463.68, + "probability": 0.991 + }, + { + "start": 5464.18, + "end": 5471.16, + "probability": 0.9668 + }, + { + "start": 5471.24, + "end": 5472.55, + "probability": 0.9883 + }, + { + "start": 5473.26, + "end": 5474.72, + "probability": 0.9507 + }, + { + "start": 5475.22, + "end": 5476.64, + "probability": 0.9714 + }, + { + "start": 5477.28, + "end": 5482.48, + "probability": 0.9897 + }, + { + "start": 5482.98, + "end": 5484.08, + "probability": 0.7927 + }, + { + "start": 5484.64, + "end": 5486.04, + "probability": 0.9971 + }, + { + "start": 5486.1, + "end": 5488.98, + "probability": 0.8625 + }, + { + "start": 5489.48, + "end": 5490.3, + "probability": 0.8745 + }, + { + "start": 5490.54, + "end": 5495.2, + "probability": 0.9371 + }, + { + "start": 5495.32, + "end": 5495.7, + "probability": 0.95 + }, + { + "start": 5496.4, + "end": 5499.12, + "probability": 0.9761 + }, + { + "start": 5499.12, + "end": 5502.7, + "probability": 0.9979 + }, + { + "start": 5503.34, + "end": 5504.64, + "probability": 0.7891 + }, + { + "start": 5505.14, + "end": 5511.54, + "probability": 0.9771 + }, + { + "start": 5512.34, + "end": 5513.84, + "probability": 0.9589 + }, + { + "start": 5514.48, + "end": 5518.76, + "probability": 0.9972 + }, + { + "start": 5519.42, + "end": 5524.94, + "probability": 0.7932 + }, + { + "start": 5525.5, + "end": 5528.8, + "probability": 0.9717 + }, + { + "start": 5529.42, + "end": 5534.28, + "probability": 0.9907 + }, + { + "start": 5534.84, + "end": 5543.12, + "probability": 0.8603 + }, + { + "start": 5544.88, + "end": 5550.68, + "probability": 0.9979 + }, + { + "start": 5550.74, + "end": 5554.18, + "probability": 0.9455 + }, + { + "start": 5554.64, + "end": 5557.12, + "probability": 0.9965 + }, + { + "start": 5557.86, + "end": 5562.88, + "probability": 0.9924 + }, + { + "start": 5563.38, + "end": 5566.08, + "probability": 0.8826 + }, + { + "start": 5566.26, + "end": 5567.78, + "probability": 0.9726 + }, + { + "start": 5568.58, + "end": 5572.52, + "probability": 0.9985 + }, + { + "start": 5572.94, + "end": 5574.06, + "probability": 0.9883 + }, + { + "start": 5574.16, + "end": 5579.64, + "probability": 0.8854 + }, + { + "start": 5580.34, + "end": 5582.38, + "probability": 0.9727 + }, + { + "start": 5582.84, + "end": 5585.16, + "probability": 0.8297 + }, + { + "start": 5586.14, + "end": 5590.08, + "probability": 0.9359 + }, + { + "start": 5590.8, + "end": 5594.4, + "probability": 0.8321 + }, + { + "start": 5594.4, + "end": 5597.7, + "probability": 0.9871 + }, + { + "start": 5597.9, + "end": 5598.92, + "probability": 0.8591 + }, + { + "start": 5599.5, + "end": 5600.46, + "probability": 0.978 + }, + { + "start": 5601.0, + "end": 5604.48, + "probability": 0.9955 + }, + { + "start": 5604.5, + "end": 5609.78, + "probability": 0.9673 + }, + { + "start": 5610.28, + "end": 5610.96, + "probability": 0.4971 + }, + { + "start": 5611.08, + "end": 5614.6, + "probability": 0.9333 + }, + { + "start": 5615.14, + "end": 5619.78, + "probability": 0.9633 + }, + { + "start": 5620.14, + "end": 5620.2, + "probability": 0.0236 + }, + { + "start": 5620.2, + "end": 5621.54, + "probability": 0.8428 + }, + { + "start": 5622.57, + "end": 5628.28, + "probability": 0.986 + }, + { + "start": 5629.0, + "end": 5631.9, + "probability": 0.9535 + }, + { + "start": 5632.48, + "end": 5638.36, + "probability": 0.9824 + }, + { + "start": 5638.9, + "end": 5640.02, + "probability": 0.9935 + }, + { + "start": 5641.38, + "end": 5645.9, + "probability": 0.8438 + }, + { + "start": 5648.28, + "end": 5650.52, + "probability": 0.9967 + }, + { + "start": 5651.06, + "end": 5652.66, + "probability": 0.9933 + }, + { + "start": 5653.4, + "end": 5656.5, + "probability": 0.9981 + }, + { + "start": 5657.1, + "end": 5658.52, + "probability": 0.794 + }, + { + "start": 5659.26, + "end": 5660.16, + "probability": 0.8944 + }, + { + "start": 5660.28, + "end": 5663.22, + "probability": 0.9277 + }, + { + "start": 5663.62, + "end": 5664.84, + "probability": 0.9335 + }, + { + "start": 5665.48, + "end": 5665.84, + "probability": 0.6987 + }, + { + "start": 5665.92, + "end": 5668.74, + "probability": 0.9946 + }, + { + "start": 5670.02, + "end": 5673.48, + "probability": 0.9163 + }, + { + "start": 5674.1, + "end": 5674.78, + "probability": 0.941 + }, + { + "start": 5675.32, + "end": 5676.66, + "probability": 0.829 + }, + { + "start": 5677.34, + "end": 5683.06, + "probability": 0.9789 + }, + { + "start": 5684.68, + "end": 5689.66, + "probability": 0.9772 + }, + { + "start": 5690.26, + "end": 5693.3, + "probability": 0.9842 + }, + { + "start": 5694.16, + "end": 5698.14, + "probability": 0.9863 + }, + { + "start": 5698.62, + "end": 5701.39, + "probability": 0.9697 + }, + { + "start": 5702.1, + "end": 5703.4, + "probability": 0.9871 + }, + { + "start": 5703.92, + "end": 5705.32, + "probability": 0.7003 + }, + { + "start": 5706.64, + "end": 5711.74, + "probability": 0.9924 + }, + { + "start": 5712.58, + "end": 5717.24, + "probability": 0.9265 + }, + { + "start": 5717.82, + "end": 5721.26, + "probability": 0.9471 + }, + { + "start": 5721.84, + "end": 5722.06, + "probability": 0.4822 + }, + { + "start": 5722.16, + "end": 5722.44, + "probability": 0.5799 + }, + { + "start": 5722.5, + "end": 5723.02, + "probability": 0.9004 + }, + { + "start": 5723.44, + "end": 5726.1, + "probability": 0.9259 + }, + { + "start": 5727.36, + "end": 5730.2, + "probability": 0.7675 + }, + { + "start": 5730.76, + "end": 5733.04, + "probability": 0.9196 + }, + { + "start": 5733.64, + "end": 5735.72, + "probability": 0.84 + }, + { + "start": 5736.42, + "end": 5740.6, + "probability": 0.9261 + }, + { + "start": 5741.44, + "end": 5743.08, + "probability": 0.7554 + }, + { + "start": 5743.96, + "end": 5745.18, + "probability": 0.8212 + }, + { + "start": 5745.94, + "end": 5746.5, + "probability": 0.9077 + }, + { + "start": 5746.52, + "end": 5751.22, + "probability": 0.9591 + }, + { + "start": 5751.3, + "end": 5754.68, + "probability": 0.9023 + }, + { + "start": 5755.7, + "end": 5756.96, + "probability": 0.7497 + }, + { + "start": 5757.26, + "end": 5759.9, + "probability": 0.7644 + }, + { + "start": 5760.78, + "end": 5766.36, + "probability": 0.9518 + }, + { + "start": 5766.72, + "end": 5769.84, + "probability": 0.9797 + }, + { + "start": 5770.58, + "end": 5775.84, + "probability": 0.9927 + }, + { + "start": 5776.38, + "end": 5777.78, + "probability": 0.9369 + }, + { + "start": 5778.48, + "end": 5782.6, + "probability": 0.9786 + }, + { + "start": 5782.6, + "end": 5786.74, + "probability": 0.9141 + }, + { + "start": 5787.4, + "end": 5789.1, + "probability": 0.7417 + }, + { + "start": 5789.88, + "end": 5794.62, + "probability": 0.951 + }, + { + "start": 5795.1, + "end": 5796.84, + "probability": 0.9458 + }, + { + "start": 5797.44, + "end": 5802.3, + "probability": 0.9373 + }, + { + "start": 5803.06, + "end": 5805.52, + "probability": 0.9568 + }, + { + "start": 5805.52, + "end": 5808.34, + "probability": 0.9981 + }, + { + "start": 5809.02, + "end": 5811.5, + "probability": 0.9964 + }, + { + "start": 5812.06, + "end": 5814.54, + "probability": 0.9648 + }, + { + "start": 5815.14, + "end": 5818.58, + "probability": 0.9976 + }, + { + "start": 5819.48, + "end": 5822.48, + "probability": 0.9923 + }, + { + "start": 5823.02, + "end": 5824.64, + "probability": 0.957 + }, + { + "start": 5825.16, + "end": 5826.38, + "probability": 0.9612 + }, + { + "start": 5827.56, + "end": 5828.92, + "probability": 0.9958 + }, + { + "start": 5829.8, + "end": 5831.3, + "probability": 0.9937 + }, + { + "start": 5832.04, + "end": 5832.84, + "probability": 0.5657 + }, + { + "start": 5833.32, + "end": 5837.88, + "probability": 0.9906 + }, + { + "start": 5838.68, + "end": 5840.02, + "probability": 0.8255 + }, + { + "start": 5840.46, + "end": 5843.72, + "probability": 0.9946 + }, + { + "start": 5843.72, + "end": 5847.24, + "probability": 0.9778 + }, + { + "start": 5847.38, + "end": 5849.16, + "probability": 0.7196 + }, + { + "start": 5849.9, + "end": 5853.84, + "probability": 0.8786 + }, + { + "start": 5854.44, + "end": 5856.96, + "probability": 0.9307 + }, + { + "start": 5857.5, + "end": 5858.68, + "probability": 0.8843 + }, + { + "start": 5859.2, + "end": 5860.78, + "probability": 0.9534 + }, + { + "start": 5861.32, + "end": 5862.44, + "probability": 0.8619 + }, + { + "start": 5862.9, + "end": 5863.18, + "probability": 0.7975 + }, + { + "start": 5863.44, + "end": 5866.16, + "probability": 0.8896 + }, + { + "start": 5868.93, + "end": 5870.24, + "probability": 0.554 + }, + { + "start": 5870.38, + "end": 5870.58, + "probability": 0.0733 + }, + { + "start": 5870.58, + "end": 5872.45, + "probability": 0.3852 + }, + { + "start": 5874.44, + "end": 5882.2, + "probability": 0.9838 + }, + { + "start": 5883.2, + "end": 5884.48, + "probability": 0.8042 + }, + { + "start": 5884.64, + "end": 5887.62, + "probability": 0.8649 + }, + { + "start": 5888.64, + "end": 5891.86, + "probability": 0.8674 + }, + { + "start": 5892.6, + "end": 5898.96, + "probability": 0.9951 + }, + { + "start": 5899.38, + "end": 5899.52, + "probability": 0.771 + }, + { + "start": 5903.76, + "end": 5904.86, + "probability": 0.6091 + }, + { + "start": 5906.74, + "end": 5911.3, + "probability": 0.6815 + }, + { + "start": 5913.58, + "end": 5917.62, + "probability": 0.7525 + }, + { + "start": 5918.86, + "end": 5921.68, + "probability": 0.6549 + }, + { + "start": 5922.82, + "end": 5925.86, + "probability": 0.8236 + }, + { + "start": 5927.0, + "end": 5928.88, + "probability": 0.4968 + }, + { + "start": 5930.26, + "end": 5936.96, + "probability": 0.9741 + }, + { + "start": 5937.76, + "end": 5946.4, + "probability": 0.923 + }, + { + "start": 5946.4, + "end": 5953.16, + "probability": 0.9956 + }, + { + "start": 5955.68, + "end": 5956.56, + "probability": 0.736 + }, + { + "start": 5956.96, + "end": 5962.9, + "probability": 0.9604 + }, + { + "start": 5962.9, + "end": 5971.86, + "probability": 0.9074 + }, + { + "start": 5972.02, + "end": 5973.16, + "probability": 0.5177 + }, + { + "start": 5974.4, + "end": 5976.1, + "probability": 0.827 + }, + { + "start": 5977.42, + "end": 5983.16, + "probability": 0.7308 + }, + { + "start": 5983.74, + "end": 5987.64, + "probability": 0.6561 + }, + { + "start": 5987.64, + "end": 5988.8, + "probability": 0.7877 + }, + { + "start": 5989.08, + "end": 5993.14, + "probability": 0.9385 + }, + { + "start": 5994.36, + "end": 5998.72, + "probability": 0.9232 + }, + { + "start": 5999.5, + "end": 6004.68, + "probability": 0.7347 + }, + { + "start": 6005.68, + "end": 6009.82, + "probability": 0.7533 + }, + { + "start": 6011.4, + "end": 6015.04, + "probability": 0.8755 + }, + { + "start": 6016.46, + "end": 6021.36, + "probability": 0.9724 + }, + { + "start": 6022.26, + "end": 6025.46, + "probability": 0.98 + }, + { + "start": 6026.66, + "end": 6030.7, + "probability": 0.9311 + }, + { + "start": 6030.9, + "end": 6039.24, + "probability": 0.9902 + }, + { + "start": 6039.52, + "end": 6040.02, + "probability": 0.7395 + }, + { + "start": 6040.58, + "end": 6043.58, + "probability": 0.9805 + }, + { + "start": 6044.1, + "end": 6046.66, + "probability": 0.9844 + }, + { + "start": 6047.1, + "end": 6050.4, + "probability": 0.9932 + }, + { + "start": 6051.02, + "end": 6055.16, + "probability": 0.8176 + }, + { + "start": 6055.92, + "end": 6058.78, + "probability": 0.9959 + }, + { + "start": 6059.4, + "end": 6062.06, + "probability": 0.9235 + }, + { + "start": 6062.96, + "end": 6066.42, + "probability": 0.7029 + }, + { + "start": 6066.62, + "end": 6069.0, + "probability": 0.9873 + }, + { + "start": 6069.6, + "end": 6074.56, + "probability": 0.9655 + }, + { + "start": 6075.6, + "end": 6080.04, + "probability": 0.8348 + }, + { + "start": 6080.28, + "end": 6082.44, + "probability": 0.998 + }, + { + "start": 6083.22, + "end": 6085.84, + "probability": 0.5882 + }, + { + "start": 6085.94, + "end": 6089.7, + "probability": 0.9604 + }, + { + "start": 6090.26, + "end": 6090.84, + "probability": 0.9425 + }, + { + "start": 6091.52, + "end": 6093.48, + "probability": 0.8622 + }, + { + "start": 6093.54, + "end": 6096.27, + "probability": 0.859 + }, + { + "start": 6097.3, + "end": 6101.12, + "probability": 0.9969 + }, + { + "start": 6101.74, + "end": 6107.54, + "probability": 0.9253 + }, + { + "start": 6108.2, + "end": 6108.78, + "probability": 0.8113 + }, + { + "start": 6109.16, + "end": 6116.54, + "probability": 0.9853 + }, + { + "start": 6117.18, + "end": 6118.54, + "probability": 0.926 + }, + { + "start": 6119.32, + "end": 6121.22, + "probability": 0.8026 + }, + { + "start": 6122.04, + "end": 6130.3, + "probability": 0.8922 + }, + { + "start": 6130.48, + "end": 6138.12, + "probability": 0.9806 + }, + { + "start": 6139.08, + "end": 6139.82, + "probability": 0.5791 + }, + { + "start": 6139.94, + "end": 6140.96, + "probability": 0.9266 + }, + { + "start": 6141.06, + "end": 6142.98, + "probability": 0.5528 + }, + { + "start": 6143.92, + "end": 6148.64, + "probability": 0.4462 + }, + { + "start": 6150.58, + "end": 6152.92, + "probability": 0.9813 + }, + { + "start": 6153.44, + "end": 6154.2, + "probability": 0.63 + }, + { + "start": 6154.42, + "end": 6157.66, + "probability": 0.9131 + }, + { + "start": 6157.94, + "end": 6159.02, + "probability": 0.5449 + }, + { + "start": 6159.64, + "end": 6161.64, + "probability": 0.4865 + }, + { + "start": 6161.78, + "end": 6163.82, + "probability": 0.8636 + }, + { + "start": 6163.88, + "end": 6167.92, + "probability": 0.9824 + }, + { + "start": 6168.32, + "end": 6169.28, + "probability": 0.7771 + }, + { + "start": 6169.82, + "end": 6170.38, + "probability": 0.7803 + }, + { + "start": 6171.0, + "end": 6178.2, + "probability": 0.7431 + }, + { + "start": 6178.38, + "end": 6181.66, + "probability": 0.7583 + }, + { + "start": 6181.84, + "end": 6182.88, + "probability": 0.5487 + }, + { + "start": 6183.02, + "end": 6183.68, + "probability": 0.5686 + }, + { + "start": 6184.34, + "end": 6189.41, + "probability": 0.9329 + }, + { + "start": 6190.42, + "end": 6195.86, + "probability": 0.9338 + }, + { + "start": 6199.14, + "end": 6199.82, + "probability": 0.7779 + }, + { + "start": 6200.7, + "end": 6203.66, + "probability": 0.998 + }, + { + "start": 6204.14, + "end": 6205.38, + "probability": 0.9758 + }, + { + "start": 6205.52, + "end": 6209.34, + "probability": 0.9821 + }, + { + "start": 6210.18, + "end": 6215.06, + "probability": 0.9663 + }, + { + "start": 6215.94, + "end": 6217.58, + "probability": 0.8024 + }, + { + "start": 6218.32, + "end": 6220.98, + "probability": 0.6743 + }, + { + "start": 6221.02, + "end": 6222.22, + "probability": 0.9491 + }, + { + "start": 6222.24, + "end": 6222.72, + "probability": 0.8229 + }, + { + "start": 6222.88, + "end": 6224.96, + "probability": 0.8318 + }, + { + "start": 6225.76, + "end": 6226.16, + "probability": 0.5079 + }, + { + "start": 6226.18, + "end": 6231.84, + "probability": 0.9424 + }, + { + "start": 6232.9, + "end": 6239.22, + "probability": 0.9687 + }, + { + "start": 6240.26, + "end": 6243.0, + "probability": 0.8857 + }, + { + "start": 6243.52, + "end": 6248.68, + "probability": 0.9886 + }, + { + "start": 6248.68, + "end": 6253.28, + "probability": 0.9276 + }, + { + "start": 6254.0, + "end": 6254.54, + "probability": 0.8864 + }, + { + "start": 6255.34, + "end": 6262.26, + "probability": 0.9785 + }, + { + "start": 6262.8, + "end": 6264.38, + "probability": 0.8247 + }, + { + "start": 6264.94, + "end": 6267.84, + "probability": 0.9934 + }, + { + "start": 6268.08, + "end": 6268.7, + "probability": 0.8506 + }, + { + "start": 6269.46, + "end": 6270.92, + "probability": 0.8838 + }, + { + "start": 6271.76, + "end": 6272.34, + "probability": 0.9322 + }, + { + "start": 6273.08, + "end": 6275.76, + "probability": 0.9984 + }, + { + "start": 6277.18, + "end": 6279.74, + "probability": 0.8266 + }, + { + "start": 6280.4, + "end": 6282.24, + "probability": 0.9532 + }, + { + "start": 6282.82, + "end": 6285.42, + "probability": 0.9915 + }, + { + "start": 6286.58, + "end": 6290.18, + "probability": 0.7778 + }, + { + "start": 6290.5, + "end": 6297.54, + "probability": 0.9895 + }, + { + "start": 6298.06, + "end": 6298.6, + "probability": 0.5616 + }, + { + "start": 6299.3, + "end": 6302.3, + "probability": 0.9934 + }, + { + "start": 6303.3, + "end": 6304.92, + "probability": 0.9548 + }, + { + "start": 6305.2, + "end": 6306.08, + "probability": 0.2276 + }, + { + "start": 6306.46, + "end": 6312.96, + "probability": 0.9598 + }, + { + "start": 6313.7, + "end": 6318.9, + "probability": 0.9102 + }, + { + "start": 6319.48, + "end": 6322.32, + "probability": 0.5887 + }, + { + "start": 6322.48, + "end": 6323.02, + "probability": 0.9425 + }, + { + "start": 6323.08, + "end": 6325.4, + "probability": 0.9956 + }, + { + "start": 6326.06, + "end": 6329.34, + "probability": 0.9475 + }, + { + "start": 6330.02, + "end": 6331.06, + "probability": 0.9937 + }, + { + "start": 6333.76, + "end": 6338.22, + "probability": 0.9874 + }, + { + "start": 6339.2, + "end": 6340.18, + "probability": 0.9971 + }, + { + "start": 6340.9, + "end": 6345.22, + "probability": 0.9902 + }, + { + "start": 6345.4, + "end": 6346.9, + "probability": 0.7338 + }, + { + "start": 6347.56, + "end": 6351.22, + "probability": 0.6986 + }, + { + "start": 6351.84, + "end": 6355.14, + "probability": 0.8897 + }, + { + "start": 6355.26, + "end": 6357.14, + "probability": 0.7744 + }, + { + "start": 6357.48, + "end": 6358.32, + "probability": 0.8676 + }, + { + "start": 6358.96, + "end": 6361.74, + "probability": 0.689 + }, + { + "start": 6362.84, + "end": 6364.96, + "probability": 0.6326 + }, + { + "start": 6366.0, + "end": 6372.22, + "probability": 0.9897 + }, + { + "start": 6372.4, + "end": 6373.54, + "probability": 0.8552 + }, + { + "start": 6374.82, + "end": 6378.14, + "probability": 0.5865 + }, + { + "start": 6378.8, + "end": 6383.57, + "probability": 0.8572 + }, + { + "start": 6384.64, + "end": 6387.56, + "probability": 0.95 + }, + { + "start": 6388.36, + "end": 6390.69, + "probability": 0.9727 + }, + { + "start": 6391.24, + "end": 6392.78, + "probability": 0.8607 + }, + { + "start": 6393.08, + "end": 6394.14, + "probability": 0.74 + }, + { + "start": 6394.22, + "end": 6396.0, + "probability": 0.8262 + }, + { + "start": 6396.18, + "end": 6396.8, + "probability": 0.7905 + }, + { + "start": 6397.46, + "end": 6401.14, + "probability": 0.8459 + }, + { + "start": 6401.68, + "end": 6407.08, + "probability": 0.9214 + }, + { + "start": 6407.52, + "end": 6411.18, + "probability": 0.7504 + }, + { + "start": 6411.88, + "end": 6414.76, + "probability": 0.9438 + }, + { + "start": 6417.9, + "end": 6418.84, + "probability": 0.5892 + }, + { + "start": 6418.96, + "end": 6422.42, + "probability": 0.8946 + }, + { + "start": 6423.06, + "end": 6424.9, + "probability": 0.9958 + }, + { + "start": 6425.0, + "end": 6426.2, + "probability": 0.9924 + }, + { + "start": 6426.34, + "end": 6426.72, + "probability": 0.9666 + }, + { + "start": 6426.76, + "end": 6427.56, + "probability": 0.9785 + }, + { + "start": 6427.94, + "end": 6429.16, + "probability": 0.8234 + }, + { + "start": 6430.06, + "end": 6433.58, + "probability": 0.9957 + }, + { + "start": 6434.02, + "end": 6437.36, + "probability": 0.941 + }, + { + "start": 6437.96, + "end": 6441.28, + "probability": 0.9741 + }, + { + "start": 6441.66, + "end": 6446.44, + "probability": 0.9958 + }, + { + "start": 6446.9, + "end": 6448.48, + "probability": 0.5235 + }, + { + "start": 6449.0, + "end": 6449.62, + "probability": 0.848 + }, + { + "start": 6449.9, + "end": 6450.46, + "probability": 0.9572 + }, + { + "start": 6450.8, + "end": 6452.7, + "probability": 0.9958 + }, + { + "start": 6453.04, + "end": 6453.72, + "probability": 0.7109 + }, + { + "start": 6453.8, + "end": 6454.46, + "probability": 0.5296 + }, + { + "start": 6454.58, + "end": 6455.4, + "probability": 0.6555 + }, + { + "start": 6456.14, + "end": 6456.74, + "probability": 0.2504 + }, + { + "start": 6456.86, + "end": 6457.08, + "probability": 0.3643 + }, + { + "start": 6457.18, + "end": 6457.88, + "probability": 0.9016 + }, + { + "start": 6457.92, + "end": 6459.38, + "probability": 0.7993 + }, + { + "start": 6459.82, + "end": 6461.44, + "probability": 0.9517 + }, + { + "start": 6462.14, + "end": 6465.68, + "probability": 0.9979 + }, + { + "start": 6465.68, + "end": 6469.26, + "probability": 0.9971 + }, + { + "start": 6469.8, + "end": 6472.74, + "probability": 0.6679 + }, + { + "start": 6473.72, + "end": 6477.7, + "probability": 0.9565 + }, + { + "start": 6477.98, + "end": 6478.22, + "probability": 0.5286 + }, + { + "start": 6478.82, + "end": 6480.6, + "probability": 0.8218 + }, + { + "start": 6481.32, + "end": 6485.24, + "probability": 0.7189 + }, + { + "start": 6485.84, + "end": 6486.26, + "probability": 0.6296 + }, + { + "start": 6486.68, + "end": 6487.16, + "probability": 0.5115 + }, + { + "start": 6487.56, + "end": 6489.06, + "probability": 0.8243 + }, + { + "start": 6489.06, + "end": 6490.56, + "probability": 0.7922 + }, + { + "start": 6491.0, + "end": 6492.2, + "probability": 0.9163 + }, + { + "start": 6492.64, + "end": 6494.54, + "probability": 0.9287 + }, + { + "start": 6494.86, + "end": 6496.08, + "probability": 0.7984 + }, + { + "start": 6496.36, + "end": 6496.88, + "probability": 0.8514 + }, + { + "start": 6497.08, + "end": 6498.26, + "probability": 0.7912 + }, + { + "start": 6498.36, + "end": 6499.34, + "probability": 0.6538 + }, + { + "start": 6499.38, + "end": 6501.24, + "probability": 0.7379 + }, + { + "start": 6501.52, + "end": 6502.68, + "probability": 0.9621 + }, + { + "start": 6503.24, + "end": 6507.74, + "probability": 0.8487 + }, + { + "start": 6508.2, + "end": 6509.72, + "probability": 0.1531 + }, + { + "start": 6509.84, + "end": 6510.9, + "probability": 0.5488 + }, + { + "start": 6510.96, + "end": 6511.7, + "probability": 0.7309 + }, + { + "start": 6512.26, + "end": 6517.08, + "probability": 0.9666 + }, + { + "start": 6517.08, + "end": 6520.7, + "probability": 0.7055 + }, + { + "start": 6521.1, + "end": 6521.3, + "probability": 0.7411 + }, + { + "start": 6522.48, + "end": 6524.46, + "probability": 0.7257 + }, + { + "start": 6524.88, + "end": 6528.46, + "probability": 0.8117 + }, + { + "start": 6529.0, + "end": 6529.86, + "probability": 0.8258 + }, + { + "start": 6530.1, + "end": 6531.86, + "probability": 0.9575 + }, + { + "start": 6532.04, + "end": 6535.66, + "probability": 0.9868 + }, + { + "start": 6536.2, + "end": 6537.1, + "probability": 0.8546 + }, + { + "start": 6537.18, + "end": 6538.42, + "probability": 0.9146 + }, + { + "start": 6538.54, + "end": 6539.12, + "probability": 0.6151 + }, + { + "start": 6539.66, + "end": 6540.72, + "probability": 0.9294 + }, + { + "start": 6541.48, + "end": 6543.86, + "probability": 0.8687 + }, + { + "start": 6544.5, + "end": 6544.86, + "probability": 0.7146 + }, + { + "start": 6544.88, + "end": 6546.78, + "probability": 0.8726 + }, + { + "start": 6547.18, + "end": 6548.54, + "probability": 0.9925 + }, + { + "start": 6548.72, + "end": 6549.04, + "probability": 0.9021 + }, + { + "start": 6549.44, + "end": 6550.76, + "probability": 0.7628 + }, + { + "start": 6551.38, + "end": 6554.96, + "probability": 0.9915 + }, + { + "start": 6555.68, + "end": 6557.1, + "probability": 0.7879 + }, + { + "start": 6557.56, + "end": 6559.14, + "probability": 0.8453 + }, + { + "start": 6559.52, + "end": 6560.5, + "probability": 0.8808 + }, + { + "start": 6561.48, + "end": 6562.92, + "probability": 0.906 + }, + { + "start": 6563.46, + "end": 6565.22, + "probability": 0.9755 + }, + { + "start": 6565.94, + "end": 6568.98, + "probability": 0.938 + }, + { + "start": 6569.64, + "end": 6571.62, + "probability": 0.7774 + }, + { + "start": 6572.52, + "end": 6573.26, + "probability": 0.6194 + }, + { + "start": 6573.5, + "end": 6574.08, + "probability": 0.5311 + }, + { + "start": 6574.3, + "end": 6577.68, + "probability": 0.9904 + }, + { + "start": 6578.66, + "end": 6579.88, + "probability": 0.7817 + }, + { + "start": 6580.48, + "end": 6581.04, + "probability": 0.4603 + }, + { + "start": 6581.08, + "end": 6584.06, + "probability": 0.928 + }, + { + "start": 6585.14, + "end": 6588.74, + "probability": 0.7475 + }, + { + "start": 6589.14, + "end": 6594.77, + "probability": 0.9868 + }, + { + "start": 6595.8, + "end": 6600.24, + "probability": 0.9731 + }, + { + "start": 6600.26, + "end": 6605.06, + "probability": 0.9841 + }, + { + "start": 6606.02, + "end": 6608.24, + "probability": 0.8623 + }, + { + "start": 6609.02, + "end": 6611.4, + "probability": 0.9862 + }, + { + "start": 6612.02, + "end": 6614.42, + "probability": 0.9727 + }, + { + "start": 6615.1, + "end": 6618.7, + "probability": 0.9961 + }, + { + "start": 6619.22, + "end": 6621.22, + "probability": 0.7694 + }, + { + "start": 6621.32, + "end": 6621.56, + "probability": 0.664 + }, + { + "start": 6621.98, + "end": 6623.02, + "probability": 0.8165 + }, + { + "start": 6623.48, + "end": 6626.06, + "probability": 0.8369 + }, + { + "start": 6626.96, + "end": 6627.72, + "probability": 0.7572 + }, + { + "start": 6628.98, + "end": 6633.42, + "probability": 0.9948 + }, + { + "start": 6634.42, + "end": 6636.76, + "probability": 0.9837 + }, + { + "start": 6638.2, + "end": 6640.14, + "probability": 0.9769 + }, + { + "start": 6640.26, + "end": 6641.9, + "probability": 0.9819 + }, + { + "start": 6642.54, + "end": 6647.52, + "probability": 0.9788 + }, + { + "start": 6648.68, + "end": 6652.74, + "probability": 0.9452 + }, + { + "start": 6653.5, + "end": 6657.16, + "probability": 0.9872 + }, + { + "start": 6658.04, + "end": 6658.72, + "probability": 0.5483 + }, + { + "start": 6658.8, + "end": 6663.42, + "probability": 0.9686 + }, + { + "start": 6663.42, + "end": 6667.18, + "probability": 0.7467 + }, + { + "start": 6668.22, + "end": 6670.5, + "probability": 0.9979 + }, + { + "start": 6670.5, + "end": 6675.1, + "probability": 0.9946 + }, + { + "start": 6675.84, + "end": 6680.08, + "probability": 0.9974 + }, + { + "start": 6680.74, + "end": 6681.1, + "probability": 0.6754 + }, + { + "start": 6681.22, + "end": 6684.2, + "probability": 0.9916 + }, + { + "start": 6684.9, + "end": 6689.24, + "probability": 0.9863 + }, + { + "start": 6690.38, + "end": 6693.46, + "probability": 0.965 + }, + { + "start": 6694.08, + "end": 6697.98, + "probability": 0.9926 + }, + { + "start": 6697.98, + "end": 6701.58, + "probability": 0.9955 + }, + { + "start": 6702.2, + "end": 6707.7, + "probability": 0.9826 + }, + { + "start": 6708.34, + "end": 6710.66, + "probability": 0.6679 + }, + { + "start": 6711.32, + "end": 6715.44, + "probability": 0.9698 + }, + { + "start": 6715.44, + "end": 6720.1, + "probability": 0.9839 + }, + { + "start": 6720.86, + "end": 6724.16, + "probability": 0.9802 + }, + { + "start": 6725.04, + "end": 6729.88, + "probability": 0.9946 + }, + { + "start": 6732.92, + "end": 6735.58, + "probability": 0.9912 + }, + { + "start": 6735.66, + "end": 6737.33, + "probability": 0.9951 + }, + { + "start": 6739.22, + "end": 6744.46, + "probability": 0.9968 + }, + { + "start": 6745.2, + "end": 6747.16, + "probability": 0.9463 + }, + { + "start": 6748.0, + "end": 6751.16, + "probability": 0.97 + }, + { + "start": 6751.74, + "end": 6755.56, + "probability": 0.8264 + }, + { + "start": 6756.34, + "end": 6761.15, + "probability": 0.9878 + }, + { + "start": 6762.36, + "end": 6763.28, + "probability": 0.9792 + }, + { + "start": 6763.44, + "end": 6766.14, + "probability": 0.928 + }, + { + "start": 6766.22, + "end": 6769.0, + "probability": 0.9892 + }, + { + "start": 6769.5, + "end": 6770.9, + "probability": 0.419 + }, + { + "start": 6772.61, + "end": 6774.64, + "probability": 0.6312 + }, + { + "start": 6774.76, + "end": 6778.58, + "probability": 0.996 + }, + { + "start": 6779.4, + "end": 6779.94, + "probability": 0.6569 + }, + { + "start": 6780.08, + "end": 6783.06, + "probability": 0.9954 + }, + { + "start": 6783.06, + "end": 6785.96, + "probability": 0.8032 + }, + { + "start": 6786.54, + "end": 6787.16, + "probability": 0.5883 + }, + { + "start": 6787.32, + "end": 6789.76, + "probability": 0.9438 + }, + { + "start": 6789.76, + "end": 6792.88, + "probability": 0.9595 + }, + { + "start": 6793.8, + "end": 6795.84, + "probability": 0.9663 + }, + { + "start": 6796.4, + "end": 6799.13, + "probability": 0.915 + }, + { + "start": 6800.48, + "end": 6802.52, + "probability": 0.8783 + }, + { + "start": 6802.6, + "end": 6804.08, + "probability": 0.7249 + }, + { + "start": 6804.22, + "end": 6805.2, + "probability": 0.8119 + }, + { + "start": 6806.18, + "end": 6808.98, + "probability": 0.991 + }, + { + "start": 6809.7, + "end": 6812.22, + "probability": 0.9059 + }, + { + "start": 6812.86, + "end": 6819.46, + "probability": 0.9506 + }, + { + "start": 6819.78, + "end": 6823.12, + "probability": 0.951 + }, + { + "start": 6824.64, + "end": 6825.76, + "probability": 0.4783 + }, + { + "start": 6826.02, + "end": 6828.28, + "probability": 0.9674 + }, + { + "start": 6828.38, + "end": 6831.58, + "probability": 0.9425 + }, + { + "start": 6832.16, + "end": 6834.68, + "probability": 0.853 + }, + { + "start": 6835.2, + "end": 6837.1, + "probability": 0.8141 + }, + { + "start": 6837.62, + "end": 6840.6, + "probability": 0.9472 + }, + { + "start": 6840.7, + "end": 6843.52, + "probability": 0.7329 + }, + { + "start": 6844.1, + "end": 6846.78, + "probability": 0.9667 + }, + { + "start": 6847.76, + "end": 6851.84, + "probability": 0.7568 + }, + { + "start": 6852.4, + "end": 6855.66, + "probability": 0.8885 + }, + { + "start": 6856.54, + "end": 6860.7, + "probability": 0.8803 + }, + { + "start": 6860.72, + "end": 6865.74, + "probability": 0.9311 + }, + { + "start": 6865.8, + "end": 6866.68, + "probability": 0.9275 + }, + { + "start": 6867.16, + "end": 6868.76, + "probability": 0.9191 + }, + { + "start": 6868.82, + "end": 6871.72, + "probability": 0.9717 + }, + { + "start": 6871.84, + "end": 6874.34, + "probability": 0.959 + }, + { + "start": 6874.52, + "end": 6877.34, + "probability": 0.9872 + }, + { + "start": 6878.06, + "end": 6880.82, + "probability": 0.9945 + }, + { + "start": 6881.32, + "end": 6882.74, + "probability": 0.8516 + }, + { + "start": 6882.9, + "end": 6883.38, + "probability": 0.7034 + }, + { + "start": 6883.5, + "end": 6887.94, + "probability": 0.9528 + }, + { + "start": 6889.36, + "end": 6891.74, + "probability": 0.9886 + }, + { + "start": 6892.26, + "end": 6895.64, + "probability": 0.9807 + }, + { + "start": 6896.54, + "end": 6898.82, + "probability": 0.9565 + }, + { + "start": 6899.48, + "end": 6901.66, + "probability": 0.9963 + }, + { + "start": 6902.38, + "end": 6907.28, + "probability": 0.9912 + }, + { + "start": 6907.64, + "end": 6913.74, + "probability": 0.9918 + }, + { + "start": 6914.58, + "end": 6918.64, + "probability": 0.9982 + }, + { + "start": 6919.72, + "end": 6921.64, + "probability": 0.9995 + }, + { + "start": 6922.1, + "end": 6923.56, + "probability": 0.7744 + }, + { + "start": 6923.66, + "end": 6927.8, + "probability": 0.9663 + }, + { + "start": 6927.8, + "end": 6931.96, + "probability": 0.9908 + }, + { + "start": 6932.1, + "end": 6934.12, + "probability": 0.9453 + }, + { + "start": 6934.62, + "end": 6938.58, + "probability": 0.9172 + }, + { + "start": 6939.26, + "end": 6942.0, + "probability": 0.9348 + }, + { + "start": 6942.82, + "end": 6947.32, + "probability": 0.9627 + }, + { + "start": 6948.76, + "end": 6949.8, + "probability": 0.841 + }, + { + "start": 6950.04, + "end": 6950.6, + "probability": 0.834 + }, + { + "start": 6950.68, + "end": 6952.6, + "probability": 0.8924 + }, + { + "start": 6953.42, + "end": 6956.36, + "probability": 0.9763 + }, + { + "start": 6956.58, + "end": 6957.4, + "probability": 0.8901 + }, + { + "start": 6957.94, + "end": 6961.06, + "probability": 0.9945 + }, + { + "start": 6961.58, + "end": 6965.58, + "probability": 0.9364 + }, + { + "start": 6965.96, + "end": 6969.18, + "probability": 0.9544 + }, + { + "start": 6969.18, + "end": 6974.54, + "probability": 0.9976 + }, + { + "start": 6975.02, + "end": 6975.8, + "probability": 0.8698 + }, + { + "start": 6976.78, + "end": 6980.02, + "probability": 0.9805 + }, + { + "start": 6980.02, + "end": 6984.08, + "probability": 0.999 + }, + { + "start": 6984.66, + "end": 6987.72, + "probability": 0.894 + }, + { + "start": 6988.42, + "end": 6990.96, + "probability": 0.84 + }, + { + "start": 6991.52, + "end": 6992.64, + "probability": 0.8296 + }, + { + "start": 6993.2, + "end": 6997.5, + "probability": 0.9831 + }, + { + "start": 6999.0, + "end": 7000.2, + "probability": 0.8904 + }, + { + "start": 7000.76, + "end": 7004.52, + "probability": 0.8017 + }, + { + "start": 7005.06, + "end": 7007.38, + "probability": 0.7465 + }, + { + "start": 7007.92, + "end": 7009.9, + "probability": 0.8575 + }, + { + "start": 7009.98, + "end": 7010.88, + "probability": 0.8063 + }, + { + "start": 7011.34, + "end": 7012.0, + "probability": 0.8543 + }, + { + "start": 7012.3, + "end": 7013.14, + "probability": 0.7884 + }, + { + "start": 7014.08, + "end": 7015.72, + "probability": 0.8933 + }, + { + "start": 7016.7, + "end": 7020.84, + "probability": 0.9648 + }, + { + "start": 7021.48, + "end": 7023.32, + "probability": 0.5889 + }, + { + "start": 7023.98, + "end": 7025.22, + "probability": 0.8074 + }, + { + "start": 7026.8, + "end": 7029.08, + "probability": 0.6077 + }, + { + "start": 7030.54, + "end": 7033.92, + "probability": 0.7894 + }, + { + "start": 7034.7, + "end": 7036.52, + "probability": 0.9119 + }, + { + "start": 7039.38, + "end": 7041.54, + "probability": 0.995 + }, + { + "start": 7042.04, + "end": 7047.44, + "probability": 0.9886 + }, + { + "start": 7048.6, + "end": 7049.96, + "probability": 0.7052 + }, + { + "start": 7050.68, + "end": 7051.86, + "probability": 0.9562 + }, + { + "start": 7052.38, + "end": 7053.3, + "probability": 0.2426 + }, + { + "start": 7053.88, + "end": 7058.2, + "probability": 0.9565 + }, + { + "start": 7059.12, + "end": 7063.34, + "probability": 0.7315 + }, + { + "start": 7063.86, + "end": 7069.02, + "probability": 0.8297 + }, + { + "start": 7069.72, + "end": 7070.68, + "probability": 0.96 + }, + { + "start": 7072.28, + "end": 7075.09, + "probability": 0.9843 + }, + { + "start": 7075.52, + "end": 7079.36, + "probability": 0.9751 + }, + { + "start": 7080.76, + "end": 7083.94, + "probability": 0.9737 + }, + { + "start": 7086.48, + "end": 7089.18, + "probability": 0.9756 + }, + { + "start": 7089.18, + "end": 7092.92, + "probability": 0.9966 + }, + { + "start": 7093.44, + "end": 7097.2, + "probability": 0.8849 + }, + { + "start": 7097.74, + "end": 7101.12, + "probability": 0.9836 + }, + { + "start": 7101.76, + "end": 7102.0, + "probability": 0.5379 + }, + { + "start": 7102.08, + "end": 7107.14, + "probability": 0.9943 + }, + { + "start": 7107.52, + "end": 7110.92, + "probability": 0.5996 + }, + { + "start": 7111.5, + "end": 7114.58, + "probability": 0.9334 + }, + { + "start": 7114.58, + "end": 7118.04, + "probability": 0.985 + }, + { + "start": 7118.54, + "end": 7119.9, + "probability": 0.9438 + }, + { + "start": 7120.04, + "end": 7120.88, + "probability": 0.8191 + }, + { + "start": 7121.42, + "end": 7123.52, + "probability": 0.8732 + }, + { + "start": 7124.88, + "end": 7127.8, + "probability": 0.9293 + }, + { + "start": 7127.9, + "end": 7131.78, + "probability": 0.8099 + }, + { + "start": 7132.62, + "end": 7137.56, + "probability": 0.9636 + }, + { + "start": 7138.3, + "end": 7143.96, + "probability": 0.957 + }, + { + "start": 7144.82, + "end": 7148.74, + "probability": 0.8529 + }, + { + "start": 7149.4, + "end": 7152.2, + "probability": 0.5115 + }, + { + "start": 7152.82, + "end": 7160.1, + "probability": 0.8181 + }, + { + "start": 7162.28, + "end": 7168.6, + "probability": 0.9072 + }, + { + "start": 7169.16, + "end": 7171.22, + "probability": 0.9572 + }, + { + "start": 7171.82, + "end": 7173.6, + "probability": 0.9502 + }, + { + "start": 7174.16, + "end": 7178.74, + "probability": 0.5168 + }, + { + "start": 7179.72, + "end": 7184.48, + "probability": 0.9351 + }, + { + "start": 7185.84, + "end": 7191.28, + "probability": 0.9466 + }, + { + "start": 7191.8, + "end": 7192.42, + "probability": 0.4411 + }, + { + "start": 7192.54, + "end": 7196.88, + "probability": 0.9771 + }, + { + "start": 7197.12, + "end": 7202.28, + "probability": 0.9681 + }, + { + "start": 7202.86, + "end": 7208.12, + "probability": 0.9548 + }, + { + "start": 7208.12, + "end": 7211.82, + "probability": 0.9792 + }, + { + "start": 7212.38, + "end": 7213.52, + "probability": 0.7512 + }, + { + "start": 7214.52, + "end": 7220.72, + "probability": 0.9984 + }, + { + "start": 7220.72, + "end": 7228.62, + "probability": 0.9894 + }, + { + "start": 7229.22, + "end": 7233.66, + "probability": 0.9568 + }, + { + "start": 7235.8, + "end": 7236.44, + "probability": 0.9622 + }, + { + "start": 7241.08, + "end": 7244.64, + "probability": 0.9958 + }, + { + "start": 7244.64, + "end": 7247.9, + "probability": 0.992 + }, + { + "start": 7248.66, + "end": 7250.3, + "probability": 0.8224 + }, + { + "start": 7250.98, + "end": 7256.16, + "probability": 0.9717 + }, + { + "start": 7256.82, + "end": 7258.64, + "probability": 0.8291 + }, + { + "start": 7259.36, + "end": 7263.16, + "probability": 0.9876 + }, + { + "start": 7263.74, + "end": 7264.4, + "probability": 0.6983 + }, + { + "start": 7264.56, + "end": 7268.58, + "probability": 0.9729 + }, + { + "start": 7269.62, + "end": 7271.84, + "probability": 0.9824 + }, + { + "start": 7272.42, + "end": 7273.0, + "probability": 0.9847 + }, + { + "start": 7274.16, + "end": 7277.06, + "probability": 0.9813 + }, + { + "start": 7277.68, + "end": 7278.58, + "probability": 0.6047 + }, + { + "start": 7279.08, + "end": 7281.28, + "probability": 0.9943 + }, + { + "start": 7281.74, + "end": 7283.4, + "probability": 0.9795 + }, + { + "start": 7284.08, + "end": 7286.46, + "probability": 0.9915 + }, + { + "start": 7287.9, + "end": 7290.26, + "probability": 0.7875 + }, + { + "start": 7290.34, + "end": 7292.1, + "probability": 0.4592 + }, + { + "start": 7292.18, + "end": 7292.3, + "probability": 0.0935 + }, + { + "start": 7292.3, + "end": 7294.94, + "probability": 0.7754 + }, + { + "start": 7295.86, + "end": 7296.94, + "probability": 0.8002 + }, + { + "start": 7298.14, + "end": 7301.56, + "probability": 0.8819 + }, + { + "start": 7302.56, + "end": 7304.48, + "probability": 0.1738 + }, + { + "start": 7305.78, + "end": 7306.2, + "probability": 0.7617 + }, + { + "start": 7307.04, + "end": 7309.6, + "probability": 0.8449 + }, + { + "start": 7311.8, + "end": 7312.88, + "probability": 0.9507 + }, + { + "start": 7316.78, + "end": 7317.56, + "probability": 0.6759 + }, + { + "start": 7318.64, + "end": 7322.52, + "probability": 0.9302 + }, + { + "start": 7323.08, + "end": 7327.82, + "probability": 0.9096 + }, + { + "start": 7329.58, + "end": 7332.5, + "probability": 0.9913 + }, + { + "start": 7333.68, + "end": 7335.86, + "probability": 0.9476 + }, + { + "start": 7336.04, + "end": 7342.3, + "probability": 0.8605 + }, + { + "start": 7345.84, + "end": 7349.38, + "probability": 0.9525 + }, + { + "start": 7349.98, + "end": 7351.82, + "probability": 0.8898 + }, + { + "start": 7352.34, + "end": 7353.42, + "probability": 0.6759 + }, + { + "start": 7354.5, + "end": 7358.92, + "probability": 0.7366 + }, + { + "start": 7360.62, + "end": 7368.92, + "probability": 0.7031 + }, + { + "start": 7369.82, + "end": 7372.92, + "probability": 0.8503 + }, + { + "start": 7373.18, + "end": 7375.46, + "probability": 0.7139 + }, + { + "start": 7377.54, + "end": 7379.3, + "probability": 0.7737 + }, + { + "start": 7380.1, + "end": 7381.38, + "probability": 0.6367 + }, + { + "start": 7382.38, + "end": 7384.12, + "probability": 0.7285 + }, + { + "start": 7387.52, + "end": 7392.62, + "probability": 0.4903 + }, + { + "start": 7393.88, + "end": 7395.32, + "probability": 0.9921 + }, + { + "start": 7395.88, + "end": 7397.28, + "probability": 0.8147 + }, + { + "start": 7398.18, + "end": 7402.36, + "probability": 0.5191 + }, + { + "start": 7402.46, + "end": 7402.5, + "probability": 0.6304 + }, + { + "start": 7403.44, + "end": 7404.3, + "probability": 0.988 + }, + { + "start": 7407.5, + "end": 7409.88, + "probability": 0.9956 + }, + { + "start": 7411.84, + "end": 7413.88, + "probability": 0.6324 + }, + { + "start": 7414.62, + "end": 7417.1, + "probability": 0.4473 + }, + { + "start": 7417.12, + "end": 7418.36, + "probability": 0.8118 + }, + { + "start": 7418.42, + "end": 7420.1, + "probability": 0.8418 + }, + { + "start": 7420.38, + "end": 7420.8, + "probability": 0.7186 + }, + { + "start": 7420.8, + "end": 7421.48, + "probability": 0.8528 + }, + { + "start": 7421.6, + "end": 7425.08, + "probability": 0.9155 + }, + { + "start": 7425.12, + "end": 7427.86, + "probability": 0.8543 + }, + { + "start": 7427.92, + "end": 7427.92, + "probability": 0.7118 + }, + { + "start": 7427.92, + "end": 7428.9, + "probability": 0.5454 + }, + { + "start": 7429.2, + "end": 7431.08, + "probability": 0.8247 + }, + { + "start": 7431.36, + "end": 7432.92, + "probability": 0.4507 + }, + { + "start": 7433.24, + "end": 7434.42, + "probability": 0.6328 + }, + { + "start": 7434.54, + "end": 7436.08, + "probability": 0.6413 + }, + { + "start": 7436.58, + "end": 7437.2, + "probability": 0.8498 + }, + { + "start": 7438.76, + "end": 7441.78, + "probability": 0.9669 + }, + { + "start": 7442.66, + "end": 7445.3, + "probability": 0.996 + }, + { + "start": 7445.98, + "end": 7448.68, + "probability": 0.9633 + }, + { + "start": 7449.82, + "end": 7455.5, + "probability": 0.9414 + }, + { + "start": 7456.06, + "end": 7458.56, + "probability": 0.9383 + }, + { + "start": 7459.38, + "end": 7460.78, + "probability": 0.6976 + }, + { + "start": 7461.32, + "end": 7463.1, + "probability": 0.8354 + }, + { + "start": 7463.86, + "end": 7465.9, + "probability": 0.9722 + }, + { + "start": 7467.04, + "end": 7468.16, + "probability": 0.9324 + }, + { + "start": 7469.1, + "end": 7470.24, + "probability": 0.9181 + }, + { + "start": 7474.66, + "end": 7477.28, + "probability": 0.5468 + }, + { + "start": 7478.5, + "end": 7479.48, + "probability": 0.5436 + }, + { + "start": 7479.54, + "end": 7482.52, + "probability": 0.872 + }, + { + "start": 7482.58, + "end": 7484.36, + "probability": 0.9507 + }, + { + "start": 7485.04, + "end": 7486.54, + "probability": 0.9816 + }, + { + "start": 7487.34, + "end": 7491.96, + "probability": 0.9153 + }, + { + "start": 7492.16, + "end": 7498.42, + "probability": 0.9908 + }, + { + "start": 7498.42, + "end": 7501.78, + "probability": 0.9946 + }, + { + "start": 7501.92, + "end": 7503.1, + "probability": 0.7789 + }, + { + "start": 7503.2, + "end": 7503.68, + "probability": 0.7752 + }, + { + "start": 7504.16, + "end": 7504.68, + "probability": 0.952 + }, + { + "start": 7504.74, + "end": 7507.76, + "probability": 0.9718 + }, + { + "start": 7508.56, + "end": 7509.72, + "probability": 0.8073 + }, + { + "start": 7510.58, + "end": 7512.0, + "probability": 0.8822 + }, + { + "start": 7512.76, + "end": 7516.0, + "probability": 0.9399 + }, + { + "start": 7516.74, + "end": 7521.54, + "probability": 0.9602 + }, + { + "start": 7521.54, + "end": 7526.68, + "probability": 0.8261 + }, + { + "start": 7527.34, + "end": 7530.38, + "probability": 0.9938 + }, + { + "start": 7531.04, + "end": 7534.78, + "probability": 0.9743 + }, + { + "start": 7535.9, + "end": 7538.38, + "probability": 0.9898 + }, + { + "start": 7538.38, + "end": 7541.76, + "probability": 0.9659 + }, + { + "start": 7542.02, + "end": 7543.18, + "probability": 0.7586 + }, + { + "start": 7543.8, + "end": 7545.96, + "probability": 0.8745 + }, + { + "start": 7546.7, + "end": 7549.38, + "probability": 0.9567 + }, + { + "start": 7549.94, + "end": 7553.88, + "probability": 0.8987 + }, + { + "start": 7554.48, + "end": 7558.34, + "probability": 0.9099 + }, + { + "start": 7559.06, + "end": 7562.44, + "probability": 0.8503 + }, + { + "start": 7562.58, + "end": 7566.38, + "probability": 0.8655 + }, + { + "start": 7566.4, + "end": 7570.0, + "probability": 0.9618 + }, + { + "start": 7570.88, + "end": 7574.18, + "probability": 0.9 + }, + { + "start": 7574.78, + "end": 7575.82, + "probability": 0.9876 + }, + { + "start": 7576.42, + "end": 7578.1, + "probability": 0.9558 + }, + { + "start": 7578.78, + "end": 7582.06, + "probability": 0.9882 + }, + { + "start": 7582.24, + "end": 7585.26, + "probability": 0.8017 + }, + { + "start": 7585.28, + "end": 7588.78, + "probability": 0.96 + }, + { + "start": 7588.92, + "end": 7593.4, + "probability": 0.9832 + }, + { + "start": 7595.68, + "end": 7596.52, + "probability": 0.617 + }, + { + "start": 7597.2, + "end": 7598.64, + "probability": 0.8715 + }, + { + "start": 7599.14, + "end": 7604.54, + "probability": 0.9369 + }, + { + "start": 7604.54, + "end": 7607.28, + "probability": 0.988 + }, + { + "start": 7607.84, + "end": 7614.02, + "probability": 0.9642 + }, + { + "start": 7614.54, + "end": 7615.54, + "probability": 0.9337 + }, + { + "start": 7616.32, + "end": 7620.22, + "probability": 0.9988 + }, + { + "start": 7621.1, + "end": 7622.04, + "probability": 0.7201 + }, + { + "start": 7622.68, + "end": 7624.22, + "probability": 0.8682 + }, + { + "start": 7624.44, + "end": 7625.08, + "probability": 0.6403 + }, + { + "start": 7625.12, + "end": 7626.14, + "probability": 0.979 + }, + { + "start": 7626.68, + "end": 7627.88, + "probability": 0.7565 + }, + { + "start": 7628.5, + "end": 7631.9, + "probability": 0.9926 + }, + { + "start": 7631.9, + "end": 7636.39, + "probability": 0.993 + }, + { + "start": 7637.74, + "end": 7640.76, + "probability": 0.9543 + }, + { + "start": 7640.76, + "end": 7644.28, + "probability": 0.9746 + }, + { + "start": 7644.9, + "end": 7649.02, + "probability": 0.9652 + }, + { + "start": 7649.8, + "end": 7653.1, + "probability": 0.8119 + }, + { + "start": 7653.74, + "end": 7656.5, + "probability": 0.983 + }, + { + "start": 7657.2, + "end": 7657.94, + "probability": 0.8875 + }, + { + "start": 7658.16, + "end": 7662.3, + "probability": 0.9972 + }, + { + "start": 7662.98, + "end": 7664.36, + "probability": 0.803 + }, + { + "start": 7664.46, + "end": 7667.34, + "probability": 0.9801 + }, + { + "start": 7667.4, + "end": 7671.28, + "probability": 0.941 + }, + { + "start": 7671.72, + "end": 7675.42, + "probability": 0.8629 + }, + { + "start": 7676.16, + "end": 7678.2, + "probability": 0.9749 + }, + { + "start": 7682.56, + "end": 7684.32, + "probability": 0.8098 + }, + { + "start": 7685.5, + "end": 7686.72, + "probability": 0.9298 + }, + { + "start": 7687.5, + "end": 7693.1, + "probability": 0.8979 + }, + { + "start": 7693.4, + "end": 7698.86, + "probability": 0.9543 + }, + { + "start": 7699.38, + "end": 7700.78, + "probability": 0.7139 + }, + { + "start": 7701.96, + "end": 7707.1, + "probability": 0.8169 + }, + { + "start": 7707.9, + "end": 7713.29, + "probability": 0.9705 + }, + { + "start": 7714.66, + "end": 7715.73, + "probability": 0.906 + }, + { + "start": 7716.44, + "end": 7717.72, + "probability": 0.7327 + }, + { + "start": 7718.06, + "end": 7718.9, + "probability": 0.5299 + }, + { + "start": 7719.12, + "end": 7720.06, + "probability": 0.9695 + }, + { + "start": 7720.24, + "end": 7724.76, + "probability": 0.9281 + }, + { + "start": 7724.86, + "end": 7727.93, + "probability": 0.6813 + }, + { + "start": 7731.02, + "end": 7734.02, + "probability": 0.7826 + }, + { + "start": 7734.24, + "end": 7739.74, + "probability": 0.9941 + }, + { + "start": 7739.74, + "end": 7743.48, + "probability": 0.9927 + }, + { + "start": 7743.5, + "end": 7747.18, + "probability": 0.9895 + }, + { + "start": 7747.28, + "end": 7751.98, + "probability": 0.9935 + }, + { + "start": 7751.98, + "end": 7757.16, + "probability": 0.9958 + }, + { + "start": 7757.82, + "end": 7758.44, + "probability": 0.6428 + }, + { + "start": 7758.84, + "end": 7760.16, + "probability": 0.7128 + }, + { + "start": 7760.9, + "end": 7762.76, + "probability": 0.7197 + }, + { + "start": 7763.36, + "end": 7764.38, + "probability": 0.4914 + }, + { + "start": 7765.2, + "end": 7765.54, + "probability": 0.3754 + }, + { + "start": 7765.6, + "end": 7766.38, + "probability": 0.5679 + }, + { + "start": 7766.42, + "end": 7766.92, + "probability": 0.6929 + }, + { + "start": 7766.96, + "end": 7768.14, + "probability": 0.9612 + }, + { + "start": 7768.26, + "end": 7769.28, + "probability": 0.808 + }, + { + "start": 7769.32, + "end": 7770.04, + "probability": 0.6761 + }, + { + "start": 7770.24, + "end": 7771.63, + "probability": 0.7714 + }, + { + "start": 7772.0, + "end": 7773.2, + "probability": 0.745 + }, + { + "start": 7774.44, + "end": 7774.5, + "probability": 0.155 + }, + { + "start": 7774.72, + "end": 7777.42, + "probability": 0.6899 + }, + { + "start": 7777.9, + "end": 7780.2, + "probability": 0.7141 + }, + { + "start": 7780.7, + "end": 7780.84, + "probability": 0.6953 + }, + { + "start": 7780.94, + "end": 7781.7, + "probability": 0.9265 + }, + { + "start": 7781.8, + "end": 7782.26, + "probability": 0.9365 + }, + { + "start": 7782.74, + "end": 7784.9, + "probability": 0.6324 + }, + { + "start": 7785.12, + "end": 7785.24, + "probability": 0.0099 + }, + { + "start": 7785.36, + "end": 7786.64, + "probability": 0.2396 + }, + { + "start": 7786.82, + "end": 7787.38, + "probability": 0.7316 + }, + { + "start": 7787.48, + "end": 7792.54, + "probability": 0.4928 + }, + { + "start": 7792.9, + "end": 7793.56, + "probability": 0.2684 + }, + { + "start": 7793.7, + "end": 7797.04, + "probability": 0.7456 + }, + { + "start": 7797.54, + "end": 7800.06, + "probability": 0.9818 + }, + { + "start": 7800.64, + "end": 7800.88, + "probability": 0.7039 + }, + { + "start": 7800.96, + "end": 7803.88, + "probability": 0.719 + }, + { + "start": 7805.16, + "end": 7806.92, + "probability": 0.5081 + }, + { + "start": 7807.12, + "end": 7809.18, + "probability": 0.7483 + }, + { + "start": 7809.18, + "end": 7812.48, + "probability": 0.7303 + }, + { + "start": 7812.58, + "end": 7816.56, + "probability": 0.8259 + }, + { + "start": 7816.56, + "end": 7820.46, + "probability": 0.821 + }, + { + "start": 7820.86, + "end": 7822.18, + "probability": 0.8704 + }, + { + "start": 7823.16, + "end": 7828.14, + "probability": 0.926 + }, + { + "start": 7829.42, + "end": 7831.96, + "probability": 0.9588 + }, + { + "start": 7832.8, + "end": 7834.26, + "probability": 0.3798 + }, + { + "start": 7834.32, + "end": 7836.02, + "probability": 0.6901 + }, + { + "start": 7836.18, + "end": 7838.44, + "probability": 0.9971 + }, + { + "start": 7838.86, + "end": 7842.34, + "probability": 0.8132 + }, + { + "start": 7842.34, + "end": 7844.78, + "probability": 0.5289 + }, + { + "start": 7845.84, + "end": 7847.18, + "probability": 0.7295 + }, + { + "start": 7847.26, + "end": 7847.99, + "probability": 0.8716 + }, + { + "start": 7849.16, + "end": 7851.5, + "probability": 0.9113 + }, + { + "start": 7853.38, + "end": 7856.04, + "probability": 0.8697 + }, + { + "start": 7856.32, + "end": 7860.22, + "probability": 0.7533 + }, + { + "start": 7860.8, + "end": 7862.96, + "probability": 0.8267 + }, + { + "start": 7863.58, + "end": 7866.76, + "probability": 0.9231 + }, + { + "start": 7867.6, + "end": 7869.9, + "probability": 0.9214 + }, + { + "start": 7870.24, + "end": 7875.24, + "probability": 0.6284 + }, + { + "start": 7875.32, + "end": 7876.38, + "probability": 0.5003 + }, + { + "start": 7876.62, + "end": 7881.82, + "probability": 0.8104 + }, + { + "start": 7882.6, + "end": 7886.66, + "probability": 0.7537 + }, + { + "start": 7887.14, + "end": 7890.84, + "probability": 0.9414 + }, + { + "start": 7891.08, + "end": 7891.34, + "probability": 0.7354 + }, + { + "start": 7891.94, + "end": 7893.84, + "probability": 0.8483 + }, + { + "start": 7895.2, + "end": 7901.68, + "probability": 0.7001 + }, + { + "start": 7901.8, + "end": 7903.1, + "probability": 0.9619 + }, + { + "start": 7903.7, + "end": 7908.32, + "probability": 0.8835 + }, + { + "start": 7908.48, + "end": 7911.06, + "probability": 0.7818 + }, + { + "start": 7912.34, + "end": 7916.62, + "probability": 0.8372 + }, + { + "start": 7917.44, + "end": 7921.16, + "probability": 0.9663 + }, + { + "start": 7921.66, + "end": 7924.54, + "probability": 0.9957 + }, + { + "start": 7925.54, + "end": 7930.62, + "probability": 0.9714 + }, + { + "start": 7931.4, + "end": 7939.56, + "probability": 0.9819 + }, + { + "start": 7940.22, + "end": 7941.8, + "probability": 0.999 + }, + { + "start": 7942.54, + "end": 7943.64, + "probability": 0.9801 + }, + { + "start": 7943.98, + "end": 7950.64, + "probability": 0.9955 + }, + { + "start": 7950.8, + "end": 7953.78, + "probability": 0.6886 + }, + { + "start": 7954.32, + "end": 7955.4, + "probability": 0.9707 + }, + { + "start": 7955.48, + "end": 7957.69, + "probability": 0.9929 + }, + { + "start": 7959.34, + "end": 7964.26, + "probability": 0.9775 + }, + { + "start": 7964.8, + "end": 7967.8, + "probability": 0.7656 + }, + { + "start": 7967.86, + "end": 7968.12, + "probability": 0.5275 + }, + { + "start": 7968.88, + "end": 7973.2, + "probability": 0.6883 + }, + { + "start": 7974.06, + "end": 7977.76, + "probability": 0.9315 + }, + { + "start": 7978.34, + "end": 7980.06, + "probability": 0.9926 + }, + { + "start": 7980.86, + "end": 7982.6, + "probability": 0.9497 + }, + { + "start": 7982.78, + "end": 7982.78, + "probability": 0.5127 + }, + { + "start": 7983.38, + "end": 7984.02, + "probability": 0.6549 + }, + { + "start": 7984.52, + "end": 7984.52, + "probability": 0.4643 + }, + { + "start": 7984.52, + "end": 7985.77, + "probability": 0.8401 + }, + { + "start": 7986.28, + "end": 7989.28, + "probability": 0.5352 + }, + { + "start": 7989.54, + "end": 7991.78, + "probability": 0.9811 + }, + { + "start": 7992.88, + "end": 7999.08, + "probability": 0.9077 + }, + { + "start": 8000.76, + "end": 8005.26, + "probability": 0.8856 + }, + { + "start": 8005.9, + "end": 8007.56, + "probability": 0.9965 + }, + { + "start": 8008.12, + "end": 8011.92, + "probability": 0.9783 + }, + { + "start": 8011.92, + "end": 8015.56, + "probability": 0.9955 + }, + { + "start": 8016.28, + "end": 8016.68, + "probability": 0.459 + }, + { + "start": 8017.36, + "end": 8017.82, + "probability": 0.7229 + }, + { + "start": 8017.94, + "end": 8020.94, + "probability": 0.8955 + }, + { + "start": 8021.7, + "end": 8023.66, + "probability": 0.9757 + }, + { + "start": 8024.34, + "end": 8030.2, + "probability": 0.9889 + }, + { + "start": 8030.9, + "end": 8033.1, + "probability": 0.9487 + }, + { + "start": 8033.7, + "end": 8037.04, + "probability": 0.9616 + }, + { + "start": 8037.58, + "end": 8038.62, + "probability": 0.748 + }, + { + "start": 8039.4, + "end": 8040.4, + "probability": 0.9041 + }, + { + "start": 8041.84, + "end": 8043.7, + "probability": 0.9795 + }, + { + "start": 8044.26, + "end": 8047.9, + "probability": 0.987 + }, + { + "start": 8048.58, + "end": 8049.66, + "probability": 0.9324 + }, + { + "start": 8050.5, + "end": 8052.44, + "probability": 0.7301 + }, + { + "start": 8053.42, + "end": 8055.16, + "probability": 0.9885 + }, + { + "start": 8055.76, + "end": 8058.84, + "probability": 0.9072 + }, + { + "start": 8059.68, + "end": 8062.71, + "probability": 0.9022 + }, + { + "start": 8062.92, + "end": 8065.84, + "probability": 0.6532 + }, + { + "start": 8066.52, + "end": 8070.1, + "probability": 0.9343 + }, + { + "start": 8070.1, + "end": 8078.84, + "probability": 0.958 + }, + { + "start": 8078.88, + "end": 8080.12, + "probability": 0.8436 + }, + { + "start": 8083.11, + "end": 8085.59, + "probability": 0.7429 + }, + { + "start": 8087.04, + "end": 8087.8, + "probability": 0.7747 + }, + { + "start": 8088.28, + "end": 8090.96, + "probability": 0.7217 + }, + { + "start": 8091.44, + "end": 8092.84, + "probability": 0.6489 + }, + { + "start": 8093.56, + "end": 8097.56, + "probability": 0.738 + }, + { + "start": 8097.58, + "end": 8098.7, + "probability": 0.2114 + }, + { + "start": 8099.75, + "end": 8102.46, + "probability": 0.6053 + }, + { + "start": 8104.9, + "end": 8109.38, + "probability": 0.7877 + }, + { + "start": 8109.62, + "end": 8111.98, + "probability": 0.7804 + }, + { + "start": 8112.08, + "end": 8118.36, + "probability": 0.9847 + }, + { + "start": 8122.58, + "end": 8128.83, + "probability": 0.7846 + }, + { + "start": 8128.94, + "end": 8132.34, + "probability": 0.9878 + }, + { + "start": 8132.94, + "end": 8134.76, + "probability": 0.9058 + }, + { + "start": 8135.58, + "end": 8141.74, + "probability": 0.895 + }, + { + "start": 8142.66, + "end": 8148.04, + "probability": 0.9989 + }, + { + "start": 8148.72, + "end": 8150.6, + "probability": 0.996 + }, + { + "start": 8151.54, + "end": 8156.78, + "probability": 0.9906 + }, + { + "start": 8156.78, + "end": 8160.74, + "probability": 0.9618 + }, + { + "start": 8160.86, + "end": 8165.2, + "probability": 0.8787 + }, + { + "start": 8165.82, + "end": 8169.48, + "probability": 0.9956 + }, + { + "start": 8169.48, + "end": 8173.68, + "probability": 0.978 + }, + { + "start": 8174.34, + "end": 8176.58, + "probability": 0.9945 + }, + { + "start": 8177.46, + "end": 8180.86, + "probability": 0.8805 + }, + { + "start": 8181.56, + "end": 8184.24, + "probability": 0.9879 + }, + { + "start": 8184.92, + "end": 8189.0, + "probability": 0.9229 + }, + { + "start": 8189.62, + "end": 8193.28, + "probability": 0.9863 + }, + { + "start": 8194.18, + "end": 8198.12, + "probability": 0.8766 + }, + { + "start": 8198.82, + "end": 8199.64, + "probability": 0.8239 + }, + { + "start": 8200.48, + "end": 8202.98, + "probability": 0.9746 + }, + { + "start": 8203.7, + "end": 8207.5, + "probability": 0.996 + }, + { + "start": 8207.98, + "end": 8211.96, + "probability": 0.9731 + }, + { + "start": 8213.8, + "end": 8218.46, + "probability": 0.9805 + }, + { + "start": 8218.46, + "end": 8225.06, + "probability": 0.9921 + }, + { + "start": 8225.92, + "end": 8227.18, + "probability": 0.7143 + }, + { + "start": 8227.98, + "end": 8231.94, + "probability": 0.9948 + }, + { + "start": 8232.76, + "end": 8237.54, + "probability": 0.9691 + }, + { + "start": 8238.44, + "end": 8240.98, + "probability": 0.9874 + }, + { + "start": 8241.56, + "end": 8245.36, + "probability": 0.9987 + }, + { + "start": 8245.58, + "end": 8250.4, + "probability": 0.9027 + }, + { + "start": 8251.36, + "end": 8255.44, + "probability": 0.9886 + }, + { + "start": 8256.0, + "end": 8259.84, + "probability": 0.9836 + }, + { + "start": 8260.38, + "end": 8262.4, + "probability": 0.9647 + }, + { + "start": 8263.4, + "end": 8266.34, + "probability": 0.9891 + }, + { + "start": 8267.18, + "end": 8272.96, + "probability": 0.9698 + }, + { + "start": 8272.96, + "end": 8277.9, + "probability": 0.9615 + }, + { + "start": 8279.2, + "end": 8283.56, + "probability": 0.9956 + }, + { + "start": 8283.56, + "end": 8290.54, + "probability": 0.993 + }, + { + "start": 8291.1, + "end": 8292.92, + "probability": 0.8416 + }, + { + "start": 8294.42, + "end": 8295.42, + "probability": 0.8309 + }, + { + "start": 8296.44, + "end": 8296.9, + "probability": 0.7465 + }, + { + "start": 8297.28, + "end": 8299.0, + "probability": 0.9064 + }, + { + "start": 8299.7, + "end": 8302.6, + "probability": 0.6945 + }, + { + "start": 8303.54, + "end": 8308.28, + "probability": 0.9188 + }, + { + "start": 8309.34, + "end": 8310.08, + "probability": 0.9016 + }, + { + "start": 8310.4, + "end": 8311.62, + "probability": 0.9023 + }, + { + "start": 8311.98, + "end": 8319.16, + "probability": 0.8623 + }, + { + "start": 8320.46, + "end": 8321.66, + "probability": 0.6851 + }, + { + "start": 8322.48, + "end": 8328.88, + "probability": 0.9785 + }, + { + "start": 8329.5, + "end": 8331.58, + "probability": 0.9558 + }, + { + "start": 8331.92, + "end": 8334.46, + "probability": 0.908 + }, + { + "start": 8334.88, + "end": 8335.82, + "probability": 0.8302 + }, + { + "start": 8335.88, + "end": 8337.14, + "probability": 0.8591 + }, + { + "start": 8337.22, + "end": 8343.98, + "probability": 0.9404 + }, + { + "start": 8344.52, + "end": 8345.58, + "probability": 0.9847 + }, + { + "start": 8345.94, + "end": 8348.44, + "probability": 0.6494 + }, + { + "start": 8348.52, + "end": 8353.48, + "probability": 0.9814 + }, + { + "start": 8354.08, + "end": 8354.44, + "probability": 0.9474 + }, + { + "start": 8354.96, + "end": 8358.24, + "probability": 0.9968 + }, + { + "start": 8359.2, + "end": 8361.9, + "probability": 0.7829 + }, + { + "start": 8362.13, + "end": 8365.6, + "probability": 0.9464 + }, + { + "start": 8365.68, + "end": 8366.44, + "probability": 0.7922 + }, + { + "start": 8366.96, + "end": 8367.74, + "probability": 0.8825 + }, + { + "start": 8368.32, + "end": 8369.36, + "probability": 0.8846 + }, + { + "start": 8370.1, + "end": 8371.98, + "probability": 0.9839 + }, + { + "start": 8372.58, + "end": 8377.58, + "probability": 0.9917 + }, + { + "start": 8378.16, + "end": 8380.38, + "probability": 0.9862 + }, + { + "start": 8380.38, + "end": 8383.04, + "probability": 0.9331 + }, + { + "start": 8383.2, + "end": 8384.99, + "probability": 0.5726 + }, + { + "start": 8385.72, + "end": 8387.44, + "probability": 0.9748 + }, + { + "start": 8388.06, + "end": 8390.56, + "probability": 0.7853 + }, + { + "start": 8392.9, + "end": 8394.73, + "probability": 0.98 + }, + { + "start": 8395.32, + "end": 8395.8, + "probability": 0.5295 + }, + { + "start": 8395.86, + "end": 8396.66, + "probability": 0.5203 + }, + { + "start": 8396.68, + "end": 8397.2, + "probability": 0.7524 + }, + { + "start": 8397.24, + "end": 8397.52, + "probability": 0.7197 + }, + { + "start": 8397.56, + "end": 8398.18, + "probability": 0.583 + }, + { + "start": 8398.46, + "end": 8400.98, + "probability": 0.6808 + }, + { + "start": 8402.35, + "end": 8403.94, + "probability": 0.9329 + }, + { + "start": 8404.08, + "end": 8405.38, + "probability": 0.9884 + }, + { + "start": 8405.98, + "end": 8407.06, + "probability": 0.9107 + }, + { + "start": 8407.58, + "end": 8408.82, + "probability": 0.837 + }, + { + "start": 8409.5, + "end": 8411.14, + "probability": 0.7402 + }, + { + "start": 8411.9, + "end": 8413.42, + "probability": 0.972 + }, + { + "start": 8414.72, + "end": 8416.29, + "probability": 0.848 + }, + { + "start": 8423.94, + "end": 8425.6, + "probability": 0.6924 + }, + { + "start": 8427.24, + "end": 8430.06, + "probability": 0.028 + }, + { + "start": 8430.3, + "end": 8431.42, + "probability": 0.6334 + }, + { + "start": 8431.52, + "end": 8433.16, + "probability": 0.6313 + }, + { + "start": 8435.08, + "end": 8438.42, + "probability": 0.9896 + }, + { + "start": 8439.38, + "end": 8444.24, + "probability": 0.9539 + }, + { + "start": 8444.9, + "end": 8448.06, + "probability": 0.7781 + }, + { + "start": 8448.6, + "end": 8451.64, + "probability": 0.9961 + }, + { + "start": 8451.64, + "end": 8454.86, + "probability": 0.9955 + }, + { + "start": 8455.68, + "end": 8455.75, + "probability": 0.1533 + }, + { + "start": 8456.24, + "end": 8459.5, + "probability": 0.9489 + }, + { + "start": 8459.5, + "end": 8462.4, + "probability": 0.9905 + }, + { + "start": 8462.94, + "end": 8464.84, + "probability": 0.9968 + }, + { + "start": 8465.22, + "end": 8467.5, + "probability": 0.986 + }, + { + "start": 8468.84, + "end": 8472.82, + "probability": 0.9104 + }, + { + "start": 8472.82, + "end": 8476.14, + "probability": 0.9964 + }, + { + "start": 8476.64, + "end": 8481.54, + "probability": 0.9915 + }, + { + "start": 8481.54, + "end": 8486.42, + "probability": 0.9836 + }, + { + "start": 8486.94, + "end": 8491.76, + "probability": 0.6546 + }, + { + "start": 8492.34, + "end": 8492.34, + "probability": 0.1586 + }, + { + "start": 8492.96, + "end": 8494.74, + "probability": 0.8635 + }, + { + "start": 8495.3, + "end": 8500.16, + "probability": 0.4522 + }, + { + "start": 8500.16, + "end": 8502.76, + "probability": 0.9668 + }, + { + "start": 8503.34, + "end": 8505.56, + "probability": 0.9957 + }, + { + "start": 8505.74, + "end": 8507.94, + "probability": 0.8083 + }, + { + "start": 8507.98, + "end": 8509.32, + "probability": 0.9794 + }, + { + "start": 8509.76, + "end": 8510.04, + "probability": 0.5097 + }, + { + "start": 8510.52, + "end": 8511.94, + "probability": 0.5583 + }, + { + "start": 8512.38, + "end": 8515.84, + "probability": 0.8193 + }, + { + "start": 8515.94, + "end": 8519.56, + "probability": 0.9883 + }, + { + "start": 8520.44, + "end": 8526.42, + "probability": 0.918 + }, + { + "start": 8527.12, + "end": 8531.12, + "probability": 0.9897 + }, + { + "start": 8531.74, + "end": 8532.66, + "probability": 0.8037 + }, + { + "start": 8533.66, + "end": 8534.38, + "probability": 0.9132 + }, + { + "start": 8535.34, + "end": 8537.44, + "probability": 0.9564 + }, + { + "start": 8537.98, + "end": 8541.52, + "probability": 0.9863 + }, + { + "start": 8542.46, + "end": 8545.74, + "probability": 0.9807 + }, + { + "start": 8546.6, + "end": 8546.8, + "probability": 0.4302 + }, + { + "start": 8546.86, + "end": 8551.52, + "probability": 0.9884 + }, + { + "start": 8552.18, + "end": 8553.36, + "probability": 0.9665 + }, + { + "start": 8554.28, + "end": 8558.36, + "probability": 0.4282 + }, + { + "start": 8558.36, + "end": 8562.16, + "probability": 0.9962 + }, + { + "start": 8562.8, + "end": 8565.4, + "probability": 0.9926 + }, + { + "start": 8567.68, + "end": 8568.23, + "probability": 0.2768 + }, + { + "start": 8569.1, + "end": 8575.94, + "probability": 0.9411 + }, + { + "start": 8576.96, + "end": 8580.94, + "probability": 0.9343 + }, + { + "start": 8581.52, + "end": 8584.56, + "probability": 0.9823 + }, + { + "start": 8585.14, + "end": 8586.84, + "probability": 0.9237 + }, + { + "start": 8587.82, + "end": 8592.38, + "probability": 0.6565 + }, + { + "start": 8592.38, + "end": 8595.28, + "probability": 0.9789 + }, + { + "start": 8595.96, + "end": 8597.82, + "probability": 0.9954 + }, + { + "start": 8598.68, + "end": 8603.84, + "probability": 0.9857 + }, + { + "start": 8604.44, + "end": 8605.96, + "probability": 0.9852 + }, + { + "start": 8606.86, + "end": 8610.08, + "probability": 0.9367 + }, + { + "start": 8610.76, + "end": 8612.42, + "probability": 0.7878 + }, + { + "start": 8612.98, + "end": 8618.64, + "probability": 0.9278 + }, + { + "start": 8619.54, + "end": 8620.58, + "probability": 0.8488 + }, + { + "start": 8621.14, + "end": 8624.4, + "probability": 0.9957 + }, + { + "start": 8625.02, + "end": 8627.28, + "probability": 0.9995 + }, + { + "start": 8627.9, + "end": 8630.04, + "probability": 0.9836 + }, + { + "start": 8631.54, + "end": 8634.9, + "probability": 0.9915 + }, + { + "start": 8634.9, + "end": 8638.36, + "probability": 0.9217 + }, + { + "start": 8639.46, + "end": 8641.92, + "probability": 0.5438 + }, + { + "start": 8642.98, + "end": 8646.3, + "probability": 0.9623 + }, + { + "start": 8646.3, + "end": 8650.1, + "probability": 0.9663 + }, + { + "start": 8651.06, + "end": 8655.3, + "probability": 0.9871 + }, + { + "start": 8656.04, + "end": 8658.08, + "probability": 0.8726 + }, + { + "start": 8658.8, + "end": 8661.8, + "probability": 0.8099 + }, + { + "start": 8662.52, + "end": 8663.86, + "probability": 0.9265 + }, + { + "start": 8664.3, + "end": 8666.66, + "probability": 0.9802 + }, + { + "start": 8667.56, + "end": 8671.64, + "probability": 0.7086 + }, + { + "start": 8672.3, + "end": 8673.82, + "probability": 0.9717 + }, + { + "start": 8674.6, + "end": 8679.2, + "probability": 0.9833 + }, + { + "start": 8679.84, + "end": 8683.96, + "probability": 0.9507 + }, + { + "start": 8684.56, + "end": 8685.62, + "probability": 0.8838 + }, + { + "start": 8687.6, + "end": 8689.6, + "probability": 0.9913 + }, + { + "start": 8690.56, + "end": 8692.96, + "probability": 0.1627 + }, + { + "start": 8693.72, + "end": 8700.34, + "probability": 0.8265 + }, + { + "start": 8701.42, + "end": 8702.68, + "probability": 0.992 + }, + { + "start": 8703.22, + "end": 8707.92, + "probability": 0.9359 + }, + { + "start": 8708.64, + "end": 8711.16, + "probability": 0.8625 + }, + { + "start": 8712.06, + "end": 8716.8, + "probability": 0.9432 + }, + { + "start": 8717.52, + "end": 8721.0, + "probability": 0.9929 + }, + { + "start": 8722.0, + "end": 8722.6, + "probability": 0.8173 + }, + { + "start": 8722.72, + "end": 8725.14, + "probability": 0.9963 + }, + { + "start": 8726.0, + "end": 8728.88, + "probability": 0.9927 + }, + { + "start": 8728.88, + "end": 8733.5, + "probability": 0.9984 + }, + { + "start": 8734.14, + "end": 8735.78, + "probability": 0.5728 + }, + { + "start": 8735.84, + "end": 8736.97, + "probability": 0.9963 + }, + { + "start": 8737.66, + "end": 8738.44, + "probability": 0.9766 + }, + { + "start": 8739.14, + "end": 8741.3, + "probability": 0.9204 + }, + { + "start": 8742.06, + "end": 8743.08, + "probability": 0.81 + }, + { + "start": 8743.66, + "end": 8745.16, + "probability": 0.945 + }, + { + "start": 8745.74, + "end": 8747.84, + "probability": 0.9329 + }, + { + "start": 8748.5, + "end": 8751.38, + "probability": 0.9459 + }, + { + "start": 8751.52, + "end": 8752.44, + "probability": 0.9951 + }, + { + "start": 8752.96, + "end": 8753.64, + "probability": 0.9643 + }, + { + "start": 8754.1, + "end": 8755.3, + "probability": 0.5419 + }, + { + "start": 8755.38, + "end": 8756.94, + "probability": 0.5806 + }, + { + "start": 8757.46, + "end": 8758.98, + "probability": 0.8698 + }, + { + "start": 8759.82, + "end": 8761.52, + "probability": 0.5343 + }, + { + "start": 8761.64, + "end": 8765.58, + "probability": 0.7544 + }, + { + "start": 8765.66, + "end": 8767.36, + "probability": 0.9718 + }, + { + "start": 8767.94, + "end": 8773.18, + "probability": 0.9956 + }, + { + "start": 8774.06, + "end": 8774.98, + "probability": 0.9814 + }, + { + "start": 8775.54, + "end": 8776.78, + "probability": 0.8182 + }, + { + "start": 8777.3, + "end": 8779.78, + "probability": 0.8933 + }, + { + "start": 8779.88, + "end": 8780.1, + "probability": 0.9459 + }, + { + "start": 8780.16, + "end": 8784.14, + "probability": 0.9523 + }, + { + "start": 8784.36, + "end": 8789.8, + "probability": 0.9402 + }, + { + "start": 8790.3, + "end": 8792.84, + "probability": 0.9093 + }, + { + "start": 8793.38, + "end": 8794.72, + "probability": 0.4052 + }, + { + "start": 8795.54, + "end": 8796.74, + "probability": 0.3389 + }, + { + "start": 8797.2, + "end": 8800.64, + "probability": 0.6654 + }, + { + "start": 8800.68, + "end": 8802.76, + "probability": 0.8855 + }, + { + "start": 8803.08, + "end": 8808.26, + "probability": 0.9485 + }, + { + "start": 8808.72, + "end": 8809.54, + "probability": 0.4521 + }, + { + "start": 8809.68, + "end": 8811.48, + "probability": 0.936 + }, + { + "start": 8811.48, + "end": 8815.3, + "probability": 0.9906 + }, + { + "start": 8815.76, + "end": 8817.34, + "probability": 0.7458 + }, + { + "start": 8817.86, + "end": 8818.88, + "probability": 0.9951 + }, + { + "start": 8819.1, + "end": 8823.58, + "probability": 0.9788 + }, + { + "start": 8824.02, + "end": 8826.28, + "probability": 0.9421 + }, + { + "start": 8827.2, + "end": 8831.25, + "probability": 0.9772 + }, + { + "start": 8831.72, + "end": 8837.04, + "probability": 0.9848 + }, + { + "start": 8838.34, + "end": 8839.16, + "probability": 0.1908 + }, + { + "start": 8840.72, + "end": 8842.88, + "probability": 0.7459 + }, + { + "start": 8843.12, + "end": 8844.24, + "probability": 0.9893 + }, + { + "start": 8845.14, + "end": 8848.14, + "probability": 0.81 + }, + { + "start": 8848.42, + "end": 8851.38, + "probability": 0.9722 + }, + { + "start": 8852.8, + "end": 8855.38, + "probability": 0.994 + }, + { + "start": 8856.08, + "end": 8860.04, + "probability": 0.8525 + }, + { + "start": 8860.82, + "end": 8865.68, + "probability": 0.996 + }, + { + "start": 8866.26, + "end": 8870.42, + "probability": 0.9963 + }, + { + "start": 8870.42, + "end": 8874.04, + "probability": 0.9995 + }, + { + "start": 8874.2, + "end": 8875.16, + "probability": 0.9398 + }, + { + "start": 8875.76, + "end": 8880.6, + "probability": 0.9837 + }, + { + "start": 8880.78, + "end": 8882.24, + "probability": 0.9386 + }, + { + "start": 8882.84, + "end": 8884.66, + "probability": 0.9896 + }, + { + "start": 8886.16, + "end": 8886.42, + "probability": 0.8313 + }, + { + "start": 8886.64, + "end": 8889.78, + "probability": 0.9854 + }, + { + "start": 8890.48, + "end": 8891.8, + "probability": 0.9742 + }, + { + "start": 8893.5, + "end": 8893.84, + "probability": 0.1856 + }, + { + "start": 8893.84, + "end": 8894.73, + "probability": 0.4971 + }, + { + "start": 8895.18, + "end": 8897.2, + "probability": 0.7964 + }, + { + "start": 8912.2, + "end": 8913.68, + "probability": 0.8337 + }, + { + "start": 8914.82, + "end": 8915.38, + "probability": 0.5393 + }, + { + "start": 8915.84, + "end": 8917.16, + "probability": 0.9964 + }, + { + "start": 8934.42, + "end": 8934.62, + "probability": 0.4426 + }, + { + "start": 8935.5, + "end": 8937.26, + "probability": 0.9877 + }, + { + "start": 8937.44, + "end": 8938.82, + "probability": 0.3445 + }, + { + "start": 8942.78, + "end": 8943.66, + "probability": 0.7846 + }, + { + "start": 8944.56, + "end": 8945.34, + "probability": 0.8833 + }, + { + "start": 8945.9, + "end": 8948.28, + "probability": 0.8709 + }, + { + "start": 8949.14, + "end": 8951.56, + "probability": 0.8802 + }, + { + "start": 8952.12, + "end": 8959.12, + "probability": 0.9784 + }, + { + "start": 8959.96, + "end": 8964.46, + "probability": 0.9966 + }, + { + "start": 8964.84, + "end": 8966.36, + "probability": 0.8887 + }, + { + "start": 8967.02, + "end": 8968.14, + "probability": 0.9497 + }, + { + "start": 8969.02, + "end": 8972.38, + "probability": 0.9949 + }, + { + "start": 8974.94, + "end": 8976.32, + "probability": 0.867 + }, + { + "start": 8976.48, + "end": 8977.7, + "probability": 0.9373 + }, + { + "start": 8978.52, + "end": 8979.5, + "probability": 0.9324 + }, + { + "start": 8980.44, + "end": 8980.86, + "probability": 0.6503 + }, + { + "start": 8980.94, + "end": 8981.76, + "probability": 0.6746 + }, + { + "start": 8982.86, + "end": 8987.04, + "probability": 0.9917 + }, + { + "start": 8988.46, + "end": 8992.6, + "probability": 0.9406 + }, + { + "start": 8993.22, + "end": 8995.18, + "probability": 0.9937 + }, + { + "start": 8996.08, + "end": 9000.92, + "probability": 0.9779 + }, + { + "start": 9000.92, + "end": 9004.9, + "probability": 0.988 + }, + { + "start": 9005.48, + "end": 9008.2, + "probability": 0.9955 + }, + { + "start": 9008.2, + "end": 9010.8, + "probability": 0.7985 + }, + { + "start": 9011.24, + "end": 9014.26, + "probability": 0.7223 + }, + { + "start": 9015.14, + "end": 9017.78, + "probability": 0.9936 + }, + { + "start": 9018.4, + "end": 9020.08, + "probability": 0.6905 + }, + { + "start": 9020.32, + "end": 9022.68, + "probability": 0.8918 + }, + { + "start": 9023.56, + "end": 9026.04, + "probability": 0.9921 + }, + { + "start": 9026.04, + "end": 9029.92, + "probability": 0.978 + }, + { + "start": 9030.78, + "end": 9031.92, + "probability": 0.73 + }, + { + "start": 9032.58, + "end": 9036.68, + "probability": 0.9234 + }, + { + "start": 9037.5, + "end": 9039.5, + "probability": 0.9707 + }, + { + "start": 9039.64, + "end": 9041.38, + "probability": 0.9486 + }, + { + "start": 9041.66, + "end": 9042.94, + "probability": 0.961 + }, + { + "start": 9043.52, + "end": 9048.32, + "probability": 0.9961 + }, + { + "start": 9049.58, + "end": 9053.02, + "probability": 0.8707 + }, + { + "start": 9053.54, + "end": 9057.32, + "probability": 0.9186 + }, + { + "start": 9057.9, + "end": 9058.92, + "probability": 0.8518 + }, + { + "start": 9059.1, + "end": 9059.52, + "probability": 0.7697 + }, + { + "start": 9060.6, + "end": 9060.76, + "probability": 0.3044 + }, + { + "start": 9061.92, + "end": 9064.68, + "probability": 0.7373 + }, + { + "start": 9067.63, + "end": 9070.76, + "probability": 0.6006 + }, + { + "start": 9071.86, + "end": 9075.5, + "probability": 0.9837 + }, + { + "start": 9076.7, + "end": 9078.74, + "probability": 0.3509 + }, + { + "start": 9078.86, + "end": 9082.32, + "probability": 0.7946 + }, + { + "start": 9082.66, + "end": 9084.84, + "probability": 0.9946 + }, + { + "start": 9086.12, + "end": 9088.84, + "probability": 0.9847 + }, + { + "start": 9088.84, + "end": 9092.84, + "probability": 0.9985 + }, + { + "start": 9093.42, + "end": 9097.82, + "probability": 0.9868 + }, + { + "start": 9098.32, + "end": 9099.88, + "probability": 0.9645 + }, + { + "start": 9100.02, + "end": 9103.68, + "probability": 0.8786 + }, + { + "start": 9104.34, + "end": 9108.0, + "probability": 0.6459 + }, + { + "start": 9108.08, + "end": 9113.14, + "probability": 0.9097 + }, + { + "start": 9113.22, + "end": 9119.56, + "probability": 0.755 + }, + { + "start": 9120.52, + "end": 9120.7, + "probability": 0.3385 + }, + { + "start": 9120.76, + "end": 9125.84, + "probability": 0.9946 + }, + { + "start": 9126.44, + "end": 9127.58, + "probability": 0.9938 + }, + { + "start": 9128.18, + "end": 9129.78, + "probability": 0.995 + }, + { + "start": 9130.62, + "end": 9132.48, + "probability": 0.9456 + }, + { + "start": 9133.1, + "end": 9138.82, + "probability": 0.9955 + }, + { + "start": 9138.82, + "end": 9144.7, + "probability": 0.9976 + }, + { + "start": 9145.46, + "end": 9148.5, + "probability": 0.9821 + }, + { + "start": 9148.5, + "end": 9155.02, + "probability": 0.9175 + }, + { + "start": 9155.88, + "end": 9161.7, + "probability": 0.9881 + }, + { + "start": 9163.26, + "end": 9168.68, + "probability": 0.9897 + }, + { + "start": 9169.12, + "end": 9170.36, + "probability": 0.971 + }, + { + "start": 9170.7, + "end": 9174.18, + "probability": 0.7716 + }, + { + "start": 9174.36, + "end": 9176.4, + "probability": 0.8211 + }, + { + "start": 9177.36, + "end": 9180.64, + "probability": 0.9961 + }, + { + "start": 9180.64, + "end": 9185.76, + "probability": 0.9963 + }, + { + "start": 9186.88, + "end": 9189.98, + "probability": 0.8323 + }, + { + "start": 9190.1, + "end": 9194.2, + "probability": 0.9593 + }, + { + "start": 9194.92, + "end": 9195.48, + "probability": 0.8436 + }, + { + "start": 9195.58, + "end": 9200.52, + "probability": 0.9889 + }, + { + "start": 9201.52, + "end": 9202.76, + "probability": 0.8394 + }, + { + "start": 9203.46, + "end": 9207.34, + "probability": 0.9831 + }, + { + "start": 9208.14, + "end": 9210.56, + "probability": 0.9961 + }, + { + "start": 9211.12, + "end": 9218.6, + "probability": 0.9914 + }, + { + "start": 9218.72, + "end": 9222.56, + "probability": 0.9946 + }, + { + "start": 9222.56, + "end": 9225.84, + "probability": 0.5767 + }, + { + "start": 9225.9, + "end": 9229.43, + "probability": 0.616 + }, + { + "start": 9229.6, + "end": 9230.82, + "probability": 0.8273 + }, + { + "start": 9232.04, + "end": 9235.7, + "probability": 0.9605 + }, + { + "start": 9235.92, + "end": 9241.18, + "probability": 0.9279 + }, + { + "start": 9242.04, + "end": 9244.3, + "probability": 0.4257 + }, + { + "start": 9244.9, + "end": 9247.38, + "probability": 0.83 + }, + { + "start": 9248.04, + "end": 9249.14, + "probability": 0.9137 + }, + { + "start": 9249.26, + "end": 9250.68, + "probability": 0.925 + }, + { + "start": 9251.14, + "end": 9256.3, + "probability": 0.9961 + }, + { + "start": 9257.24, + "end": 9257.76, + "probability": 0.5976 + }, + { + "start": 9258.48, + "end": 9260.92, + "probability": 0.9875 + }, + { + "start": 9261.64, + "end": 9263.62, + "probability": 0.9849 + }, + { + "start": 9264.14, + "end": 9265.36, + "probability": 0.9514 + }, + { + "start": 9266.3, + "end": 9267.0, + "probability": 0.6201 + }, + { + "start": 9267.14, + "end": 9267.84, + "probability": 0.9781 + }, + { + "start": 9268.32, + "end": 9273.6, + "probability": 0.9893 + }, + { + "start": 9273.6, + "end": 9278.32, + "probability": 0.9842 + }, + { + "start": 9279.24, + "end": 9279.74, + "probability": 0.5775 + }, + { + "start": 9280.2, + "end": 9284.74, + "probability": 0.9799 + }, + { + "start": 9284.74, + "end": 9289.48, + "probability": 0.9981 + }, + { + "start": 9290.16, + "end": 9293.78, + "probability": 0.9857 + }, + { + "start": 9294.6, + "end": 9300.38, + "probability": 0.981 + }, + { + "start": 9300.86, + "end": 9304.04, + "probability": 0.9859 + }, + { + "start": 9304.04, + "end": 9307.64, + "probability": 0.9965 + }, + { + "start": 9308.38, + "end": 9308.92, + "probability": 0.7756 + }, + { + "start": 9309.56, + "end": 9315.66, + "probability": 0.9741 + }, + { + "start": 9316.3, + "end": 9318.98, + "probability": 0.9836 + }, + { + "start": 9321.18, + "end": 9324.66, + "probability": 0.8603 + }, + { + "start": 9325.24, + "end": 9328.58, + "probability": 0.8408 + }, + { + "start": 9328.58, + "end": 9331.9, + "probability": 0.959 + }, + { + "start": 9331.98, + "end": 9338.2, + "probability": 0.7769 + }, + { + "start": 9338.76, + "end": 9341.46, + "probability": 0.9517 + }, + { + "start": 9342.22, + "end": 9345.46, + "probability": 0.9957 + }, + { + "start": 9345.46, + "end": 9348.94, + "probability": 0.9408 + }, + { + "start": 9349.18, + "end": 9349.38, + "probability": 0.5898 + }, + { + "start": 9349.46, + "end": 9349.96, + "probability": 0.1598 + }, + { + "start": 9350.0, + "end": 9351.88, + "probability": 0.9733 + }, + { + "start": 9352.06, + "end": 9353.52, + "probability": 0.999 + }, + { + "start": 9354.1, + "end": 9356.6, + "probability": 0.9921 + }, + { + "start": 9357.38, + "end": 9360.0, + "probability": 0.947 + }, + { + "start": 9360.6, + "end": 9361.24, + "probability": 0.8448 + }, + { + "start": 9361.3, + "end": 9364.5, + "probability": 0.4321 + }, + { + "start": 9364.52, + "end": 9371.54, + "probability": 0.9887 + }, + { + "start": 9372.16, + "end": 9372.58, + "probability": 0.9283 + }, + { + "start": 9372.72, + "end": 9377.16, + "probability": 0.9958 + }, + { + "start": 9378.36, + "end": 9383.42, + "probability": 0.6997 + }, + { + "start": 9384.08, + "end": 9387.92, + "probability": 0.9001 + }, + { + "start": 9390.08, + "end": 9394.38, + "probability": 0.9437 + }, + { + "start": 9395.54, + "end": 9400.97, + "probability": 0.9978 + }, + { + "start": 9401.4, + "end": 9401.84, + "probability": 0.6705 + }, + { + "start": 9402.32, + "end": 9406.92, + "probability": 0.9961 + }, + { + "start": 9407.54, + "end": 9409.38, + "probability": 0.7431 + }, + { + "start": 9410.38, + "end": 9414.82, + "probability": 0.9737 + }, + { + "start": 9415.56, + "end": 9421.04, + "probability": 0.9968 + }, + { + "start": 9422.0, + "end": 9424.47, + "probability": 0.9086 + }, + { + "start": 9425.1, + "end": 9427.4, + "probability": 0.9797 + }, + { + "start": 9428.06, + "end": 9430.5, + "probability": 0.9788 + }, + { + "start": 9431.08, + "end": 9432.9, + "probability": 0.834 + }, + { + "start": 9433.44, + "end": 9435.28, + "probability": 0.825 + }, + { + "start": 9435.28, + "end": 9439.04, + "probability": 0.8389 + }, + { + "start": 9439.2, + "end": 9442.58, + "probability": 0.85 + }, + { + "start": 9443.2, + "end": 9445.36, + "probability": 0.6753 + }, + { + "start": 9445.92, + "end": 9450.9, + "probability": 0.9217 + }, + { + "start": 9457.28, + "end": 9457.88, + "probability": 0.038 + }, + { + "start": 9458.4, + "end": 9458.4, + "probability": 0.0947 + }, + { + "start": 9458.52, + "end": 9459.86, + "probability": 0.4356 + }, + { + "start": 9460.0, + "end": 9462.36, + "probability": 0.4056 + }, + { + "start": 9462.38, + "end": 9464.9, + "probability": 0.8961 + }, + { + "start": 9465.56, + "end": 9466.18, + "probability": 0.4358 + }, + { + "start": 9466.64, + "end": 9470.9, + "probability": 0.9682 + }, + { + "start": 9471.52, + "end": 9476.18, + "probability": 0.9889 + }, + { + "start": 9476.18, + "end": 9478.78, + "probability": 0.9515 + }, + { + "start": 9479.8, + "end": 9481.48, + "probability": 0.8586 + }, + { + "start": 9482.3, + "end": 9487.94, + "probability": 0.888 + }, + { + "start": 9488.9, + "end": 9489.86, + "probability": 0.8842 + }, + { + "start": 9490.5, + "end": 9491.52, + "probability": 0.8619 + }, + { + "start": 9492.1, + "end": 9497.96, + "probability": 0.9863 + }, + { + "start": 9499.04, + "end": 9504.04, + "probability": 0.9157 + }, + { + "start": 9505.32, + "end": 9508.42, + "probability": 0.9579 + }, + { + "start": 9508.94, + "end": 9509.94, + "probability": 0.8515 + }, + { + "start": 9510.52, + "end": 9513.22, + "probability": 0.9398 + }, + { + "start": 9514.04, + "end": 9517.02, + "probability": 0.9736 + }, + { + "start": 9517.02, + "end": 9520.84, + "probability": 0.9668 + }, + { + "start": 9521.68, + "end": 9523.02, + "probability": 0.8633 + }, + { + "start": 9523.64, + "end": 9524.26, + "probability": 0.9554 + }, + { + "start": 9525.52, + "end": 9527.48, + "probability": 0.9547 + }, + { + "start": 9528.18, + "end": 9530.36, + "probability": 0.9839 + }, + { + "start": 9530.88, + "end": 9532.7, + "probability": 0.8779 + }, + { + "start": 9533.28, + "end": 9538.14, + "probability": 0.6752 + }, + { + "start": 9538.94, + "end": 9539.28, + "probability": 0.6791 + }, + { + "start": 9540.02, + "end": 9544.75, + "probability": 0.9669 + }, + { + "start": 9545.1, + "end": 9549.5, + "probability": 0.9966 + }, + { + "start": 9549.5, + "end": 9556.08, + "probability": 0.9408 + }, + { + "start": 9556.76, + "end": 9561.82, + "probability": 0.973 + }, + { + "start": 9562.82, + "end": 9564.8, + "probability": 0.9603 + }, + { + "start": 9565.34, + "end": 9568.78, + "probability": 0.9679 + }, + { + "start": 9569.48, + "end": 9574.22, + "probability": 0.9866 + }, + { + "start": 9575.16, + "end": 9583.16, + "probability": 0.9765 + }, + { + "start": 9583.16, + "end": 9589.26, + "probability": 0.9912 + }, + { + "start": 9590.46, + "end": 9595.76, + "probability": 0.9604 + }, + { + "start": 9595.76, + "end": 9599.5, + "probability": 0.9941 + }, + { + "start": 9600.38, + "end": 9603.18, + "probability": 0.9067 + }, + { + "start": 9603.82, + "end": 9606.4, + "probability": 0.9061 + }, + { + "start": 9606.92, + "end": 9609.12, + "probability": 0.9938 + }, + { + "start": 9609.64, + "end": 9611.66, + "probability": 0.9913 + }, + { + "start": 9612.2, + "end": 9613.66, + "probability": 0.9825 + }, + { + "start": 9614.58, + "end": 9616.46, + "probability": 0.682 + }, + { + "start": 9617.04, + "end": 9618.56, + "probability": 0.7833 + }, + { + "start": 9619.1, + "end": 9623.04, + "probability": 0.7987 + }, + { + "start": 9623.7, + "end": 9626.62, + "probability": 0.9967 + }, + { + "start": 9627.26, + "end": 9629.36, + "probability": 0.9949 + }, + { + "start": 9630.06, + "end": 9635.38, + "probability": 0.9265 + }, + { + "start": 9636.12, + "end": 9638.56, + "probability": 0.9993 + }, + { + "start": 9639.22, + "end": 9641.14, + "probability": 0.8822 + }, + { + "start": 9641.64, + "end": 9643.3, + "probability": 0.9256 + }, + { + "start": 9644.88, + "end": 9645.62, + "probability": 0.8217 + }, + { + "start": 9646.82, + "end": 9647.42, + "probability": 0.9196 + }, + { + "start": 9647.62, + "end": 9651.21, + "probability": 0.9922 + }, + { + "start": 9652.18, + "end": 9652.63, + "probability": 0.6577 + }, + { + "start": 9653.87, + "end": 9656.68, + "probability": 0.7454 + }, + { + "start": 9657.92, + "end": 9660.0, + "probability": 0.7946 + }, + { + "start": 9660.28, + "end": 9662.16, + "probability": 0.9498 + }, + { + "start": 9662.28, + "end": 9667.38, + "probability": 0.9253 + }, + { + "start": 9667.74, + "end": 9668.34, + "probability": 0.5399 + }, + { + "start": 9668.82, + "end": 9670.92, + "probability": 0.7428 + }, + { + "start": 9670.92, + "end": 9673.36, + "probability": 0.7091 + }, + { + "start": 9673.42, + "end": 9676.02, + "probability": 0.971 + }, + { + "start": 9676.94, + "end": 9679.64, + "probability": 0.8155 + }, + { + "start": 9679.78, + "end": 9684.82, + "probability": 0.9126 + }, + { + "start": 9685.04, + "end": 9685.64, + "probability": 0.378 + }, + { + "start": 9685.78, + "end": 9687.56, + "probability": 0.9833 + }, + { + "start": 9687.66, + "end": 9689.32, + "probability": 0.8313 + }, + { + "start": 9689.64, + "end": 9690.02, + "probability": 0.1918 + }, + { + "start": 9690.1, + "end": 9690.24, + "probability": 0.0959 + }, + { + "start": 9690.26, + "end": 9691.32, + "probability": 0.817 + }, + { + "start": 9692.66, + "end": 9696.8, + "probability": 0.5525 + }, + { + "start": 9696.92, + "end": 9697.42, + "probability": 0.7081 + }, + { + "start": 9697.5, + "end": 9700.04, + "probability": 0.8848 + }, + { + "start": 9700.16, + "end": 9701.44, + "probability": 0.6811 + }, + { + "start": 9701.56, + "end": 9701.96, + "probability": 0.3446 + }, + { + "start": 9701.98, + "end": 9702.06, + "probability": 0.2554 + }, + { + "start": 9702.79, + "end": 9703.28, + "probability": 0.2002 + }, + { + "start": 9703.34, + "end": 9706.32, + "probability": 0.9947 + }, + { + "start": 9706.7, + "end": 9708.5, + "probability": 0.6805 + }, + { + "start": 9708.78, + "end": 9710.57, + "probability": 0.9937 + }, + { + "start": 9711.1, + "end": 9713.3, + "probability": 0.843 + }, + { + "start": 9714.32, + "end": 9716.82, + "probability": 0.9251 + }, + { + "start": 9717.64, + "end": 9721.62, + "probability": 0.9669 + }, + { + "start": 9722.26, + "end": 9725.18, + "probability": 0.9985 + }, + { + "start": 9725.18, + "end": 9728.3, + "probability": 0.6424 + }, + { + "start": 9728.4, + "end": 9731.32, + "probability": 0.9279 + }, + { + "start": 9732.84, + "end": 9733.98, + "probability": 0.5853 + }, + { + "start": 9734.0, + "end": 9734.74, + "probability": 0.4851 + }, + { + "start": 9734.74, + "end": 9736.42, + "probability": 0.6464 + }, + { + "start": 9736.42, + "end": 9737.66, + "probability": 0.5718 + }, + { + "start": 9738.06, + "end": 9738.68, + "probability": 0.8231 + }, + { + "start": 9739.02, + "end": 9740.76, + "probability": 0.5893 + }, + { + "start": 9741.12, + "end": 9744.08, + "probability": 0.9766 + }, + { + "start": 9744.16, + "end": 9745.9, + "probability": 0.9973 + }, + { + "start": 9746.32, + "end": 9746.72, + "probability": 0.4152 + }, + { + "start": 9746.8, + "end": 9748.1, + "probability": 0.9308 + }, + { + "start": 9748.32, + "end": 9749.84, + "probability": 0.7365 + }, + { + "start": 9749.92, + "end": 9753.78, + "probability": 0.9238 + }, + { + "start": 9754.34, + "end": 9755.9, + "probability": 0.7381 + }, + { + "start": 9756.86, + "end": 9760.92, + "probability": 0.9697 + }, + { + "start": 9761.08, + "end": 9763.0, + "probability": 0.8854 + }, + { + "start": 9763.4, + "end": 9764.92, + "probability": 0.8595 + }, + { + "start": 9765.4, + "end": 9766.66, + "probability": 0.918 + }, + { + "start": 9767.06, + "end": 9769.42, + "probability": 0.9283 + }, + { + "start": 9769.96, + "end": 9772.02, + "probability": 0.9122 + }, + { + "start": 9772.56, + "end": 9774.78, + "probability": 0.773 + }, + { + "start": 9774.86, + "end": 9777.8, + "probability": 0.9946 + }, + { + "start": 9778.7, + "end": 9784.96, + "probability": 0.9722 + }, + { + "start": 9785.66, + "end": 9787.36, + "probability": 0.7172 + }, + { + "start": 9787.7, + "end": 9791.14, + "probability": 0.7182 + }, + { + "start": 9791.98, + "end": 9793.94, + "probability": 0.9956 + }, + { + "start": 9794.12, + "end": 9797.66, + "probability": 0.982 + }, + { + "start": 9797.96, + "end": 9802.02, + "probability": 0.8894 + }, + { + "start": 9802.06, + "end": 9802.8, + "probability": 0.5948 + }, + { + "start": 9803.32, + "end": 9807.22, + "probability": 0.9941 + }, + { + "start": 9807.22, + "end": 9810.28, + "probability": 0.983 + }, + { + "start": 9810.78, + "end": 9814.12, + "probability": 0.957 + }, + { + "start": 9814.58, + "end": 9818.5, + "probability": 0.5768 + }, + { + "start": 9818.66, + "end": 9819.38, + "probability": 0.1201 + }, + { + "start": 9819.92, + "end": 9820.92, + "probability": 0.4238 + }, + { + "start": 9821.2, + "end": 9826.56, + "probability": 0.8433 + }, + { + "start": 9827.26, + "end": 9830.44, + "probability": 0.9677 + }, + { + "start": 9830.5, + "end": 9832.62, + "probability": 0.9822 + }, + { + "start": 9832.92, + "end": 9838.9, + "probability": 0.75 + }, + { + "start": 9839.2, + "end": 9841.1, + "probability": 0.9008 + }, + { + "start": 9841.56, + "end": 9846.24, + "probability": 0.9882 + }, + { + "start": 9846.36, + "end": 9847.6, + "probability": 0.9475 + }, + { + "start": 9848.45, + "end": 9851.76, + "probability": 0.6496 + }, + { + "start": 9851.76, + "end": 9854.38, + "probability": 0.6456 + }, + { + "start": 9855.08, + "end": 9856.44, + "probability": 0.9306 + }, + { + "start": 9856.9, + "end": 9860.52, + "probability": 0.9981 + }, + { + "start": 9860.58, + "end": 9865.18, + "probability": 0.9608 + }, + { + "start": 9865.82, + "end": 9868.44, + "probability": 0.9822 + }, + { + "start": 9869.32, + "end": 9874.18, + "probability": 0.9872 + }, + { + "start": 9875.6, + "end": 9879.82, + "probability": 0.9087 + }, + { + "start": 9880.82, + "end": 9883.96, + "probability": 0.8419 + }, + { + "start": 9885.0, + "end": 9885.77, + "probability": 0.9927 + }, + { + "start": 9886.38, + "end": 9888.44, + "probability": 0.977 + }, + { + "start": 9889.3, + "end": 9893.2, + "probability": 0.9964 + }, + { + "start": 9893.34, + "end": 9897.09, + "probability": 0.7954 + }, + { + "start": 9897.72, + "end": 9899.64, + "probability": 0.636 + }, + { + "start": 9900.22, + "end": 9904.68, + "probability": 0.8084 + }, + { + "start": 9905.28, + "end": 9905.8, + "probability": 0.4388 + }, + { + "start": 9905.9, + "end": 9907.46, + "probability": 0.9481 + }, + { + "start": 9907.68, + "end": 9909.86, + "probability": 0.8596 + }, + { + "start": 9910.64, + "end": 9911.26, + "probability": 0.8876 + }, + { + "start": 9912.72, + "end": 9915.14, + "probability": 0.9873 + }, + { + "start": 9915.32, + "end": 9918.2, + "probability": 0.9814 + }, + { + "start": 9918.86, + "end": 9920.08, + "probability": 0.9928 + }, + { + "start": 9921.14, + "end": 9921.66, + "probability": 0.7328 + }, + { + "start": 9921.94, + "end": 9924.72, + "probability": 0.9336 + }, + { + "start": 9926.9, + "end": 9927.34, + "probability": 0.4194 + }, + { + "start": 9927.36, + "end": 9927.36, + "probability": 0.4404 + }, + { + "start": 9927.42, + "end": 9928.0, + "probability": 0.7679 + }, + { + "start": 9930.88, + "end": 9931.38, + "probability": 0.6167 + }, + { + "start": 9931.48, + "end": 9933.38, + "probability": 0.5412 + }, + { + "start": 9934.24, + "end": 9935.84, + "probability": 0.4752 + }, + { + "start": 9939.6, + "end": 9940.92, + "probability": 0.7777 + }, + { + "start": 9940.94, + "end": 9941.24, + "probability": 0.88 + }, + { + "start": 9941.5, + "end": 9942.38, + "probability": 0.7658 + }, + { + "start": 9942.54, + "end": 9946.1, + "probability": 0.9182 + }, + { + "start": 9946.32, + "end": 9947.3, + "probability": 0.7301 + }, + { + "start": 9947.6, + "end": 9948.1, + "probability": 0.7827 + }, + { + "start": 9948.2, + "end": 9950.76, + "probability": 0.9741 + }, + { + "start": 9951.74, + "end": 9952.78, + "probability": 0.5438 + }, + { + "start": 9953.02, + "end": 9953.93, + "probability": 0.4433 + }, + { + "start": 9954.22, + "end": 9955.46, + "probability": 0.8527 + }, + { + "start": 9955.58, + "end": 9955.88, + "probability": 0.8521 + }, + { + "start": 9956.34, + "end": 9960.4, + "probability": 0.9839 + }, + { + "start": 9961.48, + "end": 9961.82, + "probability": 0.8126 + }, + { + "start": 9961.94, + "end": 9964.8, + "probability": 0.9964 + }, + { + "start": 9965.1, + "end": 9967.18, + "probability": 0.6951 + }, + { + "start": 9967.4, + "end": 9969.64, + "probability": 0.9685 + }, + { + "start": 9970.07, + "end": 9976.28, + "probability": 0.941 + }, + { + "start": 9976.46, + "end": 9978.76, + "probability": 0.9269 + }, + { + "start": 9979.02, + "end": 9979.68, + "probability": 0.4475 + }, + { + "start": 9980.62, + "end": 9982.58, + "probability": 0.7007 + }, + { + "start": 9983.12, + "end": 9985.86, + "probability": 0.9899 + }, + { + "start": 9986.4, + "end": 9990.58, + "probability": 0.9094 + }, + { + "start": 9991.24, + "end": 9993.64, + "probability": 0.9953 + }, + { + "start": 9994.08, + "end": 9999.8, + "probability": 0.993 + }, + { + "start": 10000.2, + "end": 10004.08, + "probability": 0.9833 + }, + { + "start": 10004.16, + "end": 10008.86, + "probability": 0.9915 + }, + { + "start": 10008.98, + "end": 10012.9, + "probability": 0.9923 + }, + { + "start": 10012.9, + "end": 10017.12, + "probability": 0.9955 + }, + { + "start": 10017.36, + "end": 10017.66, + "probability": 0.6424 + }, + { + "start": 10018.26, + "end": 10020.44, + "probability": 0.7301 + }, + { + "start": 10022.63, + "end": 10023.34, + "probability": 0.1098 + }, + { + "start": 10023.34, + "end": 10023.34, + "probability": 0.0749 + }, + { + "start": 10023.34, + "end": 10023.34, + "probability": 0.2767 + }, + { + "start": 10023.34, + "end": 10024.12, + "probability": 0.7495 + }, + { + "start": 10024.12, + "end": 10024.6, + "probability": 0.7719 + }, + { + "start": 10025.36, + "end": 10027.78, + "probability": 0.8412 + }, + { + "start": 10028.22, + "end": 10028.52, + "probability": 0.4072 + }, + { + "start": 10028.6, + "end": 10029.28, + "probability": 0.708 + }, + { + "start": 10029.48, + "end": 10030.44, + "probability": 0.8089 + }, + { + "start": 10030.64, + "end": 10032.36, + "probability": 0.6784 + }, + { + "start": 10032.42, + "end": 10033.98, + "probability": 0.4763 + }, + { + "start": 10034.8, + "end": 10035.1, + "probability": 0.057 + }, + { + "start": 10035.1, + "end": 10036.02, + "probability": 0.9526 + }, + { + "start": 10038.44, + "end": 10041.86, + "probability": 0.8427 + }, + { + "start": 10042.0, + "end": 10045.4, + "probability": 0.636 + }, + { + "start": 10045.74, + "end": 10047.04, + "probability": 0.927 + }, + { + "start": 10047.98, + "end": 10048.2, + "probability": 0.5838 + }, + { + "start": 10049.58, + "end": 10050.54, + "probability": 0.5954 + }, + { + "start": 10050.54, + "end": 10053.96, + "probability": 0.649 + }, + { + "start": 10054.66, + "end": 10056.32, + "probability": 0.9456 + }, + { + "start": 10058.36, + "end": 10062.22, + "probability": 0.9906 + }, + { + "start": 10062.22, + "end": 10067.54, + "probability": 0.9958 + }, + { + "start": 10068.06, + "end": 10069.0, + "probability": 0.9424 + }, + { + "start": 10069.58, + "end": 10072.54, + "probability": 0.8057 + }, + { + "start": 10073.2, + "end": 10074.78, + "probability": 0.9964 + }, + { + "start": 10077.04, + "end": 10077.38, + "probability": 0.1817 + }, + { + "start": 10077.38, + "end": 10077.42, + "probability": 0.1108 + }, + { + "start": 10077.5, + "end": 10078.6, + "probability": 0.7884 + }, + { + "start": 10078.7, + "end": 10079.12, + "probability": 0.9619 + }, + { + "start": 10079.92, + "end": 10080.31, + "probability": 0.5159 + }, + { + "start": 10080.44, + "end": 10084.74, + "probability": 0.9407 + }, + { + "start": 10085.16, + "end": 10086.59, + "probability": 0.9454 + }, + { + "start": 10087.1, + "end": 10088.72, + "probability": 0.9658 + }, + { + "start": 10089.32, + "end": 10089.48, + "probability": 0.3819 + }, + { + "start": 10089.52, + "end": 10090.72, + "probability": 0.646 + }, + { + "start": 10090.88, + "end": 10095.32, + "probability": 0.9856 + }, + { + "start": 10095.32, + "end": 10098.78, + "probability": 0.9918 + }, + { + "start": 10098.92, + "end": 10099.63, + "probability": 0.9922 + }, + { + "start": 10100.3, + "end": 10101.28, + "probability": 0.8209 + }, + { + "start": 10101.44, + "end": 10102.62, + "probability": 0.8191 + }, + { + "start": 10103.16, + "end": 10104.9, + "probability": 0.9928 + }, + { + "start": 10105.36, + "end": 10107.02, + "probability": 0.8314 + }, + { + "start": 10107.14, + "end": 10110.1, + "probability": 0.8184 + }, + { + "start": 10110.14, + "end": 10113.12, + "probability": 0.9653 + }, + { + "start": 10113.68, + "end": 10115.3, + "probability": 0.998 + }, + { + "start": 10116.08, + "end": 10118.34, + "probability": 0.894 + }, + { + "start": 10118.88, + "end": 10120.15, + "probability": 0.672 + }, + { + "start": 10120.82, + "end": 10121.97, + "probability": 0.6321 + }, + { + "start": 10123.04, + "end": 10124.96, + "probability": 0.6636 + }, + { + "start": 10125.64, + "end": 10126.66, + "probability": 0.9712 + }, + { + "start": 10126.7, + "end": 10127.18, + "probability": 0.949 + }, + { + "start": 10128.48, + "end": 10129.92, + "probability": 0.972 + }, + { + "start": 10130.02, + "end": 10133.23, + "probability": 0.9889 + }, + { + "start": 10134.2, + "end": 10136.64, + "probability": 0.9187 + }, + { + "start": 10137.2, + "end": 10139.35, + "probability": 0.99 + }, + { + "start": 10140.6, + "end": 10141.8, + "probability": 0.9093 + }, + { + "start": 10141.86, + "end": 10144.62, + "probability": 0.8951 + }, + { + "start": 10145.26, + "end": 10146.18, + "probability": 0.8306 + }, + { + "start": 10147.44, + "end": 10148.92, + "probability": 0.8757 + }, + { + "start": 10149.16, + "end": 10150.34, + "probability": 0.6114 + }, + { + "start": 10151.64, + "end": 10152.34, + "probability": 0.813 + }, + { + "start": 10152.4, + "end": 10152.72, + "probability": 0.7974 + }, + { + "start": 10153.24, + "end": 10154.5, + "probability": 0.9938 + }, + { + "start": 10155.12, + "end": 10157.6, + "probability": 0.9314 + }, + { + "start": 10158.5, + "end": 10160.26, + "probability": 0.9939 + }, + { + "start": 10160.26, + "end": 10162.96, + "probability": 0.9994 + }, + { + "start": 10163.8, + "end": 10165.96, + "probability": 0.9979 + }, + { + "start": 10166.48, + "end": 10172.58, + "probability": 0.9668 + }, + { + "start": 10172.8, + "end": 10174.54, + "probability": 0.95 + }, + { + "start": 10175.39, + "end": 10178.72, + "probability": 0.998 + }, + { + "start": 10179.38, + "end": 10183.34, + "probability": 0.9041 + }, + { + "start": 10183.92, + "end": 10186.56, + "probability": 0.9988 + }, + { + "start": 10186.56, + "end": 10190.36, + "probability": 0.9597 + }, + { + "start": 10191.38, + "end": 10192.98, + "probability": 0.8824 + }, + { + "start": 10193.02, + "end": 10194.35, + "probability": 0.8928 + }, + { + "start": 10195.28, + "end": 10198.72, + "probability": 0.9434 + }, + { + "start": 10199.6, + "end": 10203.76, + "probability": 0.9977 + }, + { + "start": 10204.92, + "end": 10207.3, + "probability": 0.9119 + }, + { + "start": 10207.88, + "end": 10209.32, + "probability": 0.9968 + }, + { + "start": 10209.42, + "end": 10209.74, + "probability": 0.5401 + }, + { + "start": 10211.48, + "end": 10215.62, + "probability": 0.5583 + }, + { + "start": 10215.74, + "end": 10219.8, + "probability": 0.9623 + }, + { + "start": 10219.8, + "end": 10226.26, + "probability": 0.9377 + }, + { + "start": 10227.12, + "end": 10230.64, + "probability": 0.9113 + }, + { + "start": 10231.85, + "end": 10233.74, + "probability": 0.9933 + }, + { + "start": 10234.04, + "end": 10238.12, + "probability": 0.9574 + }, + { + "start": 10238.66, + "end": 10243.84, + "probability": 0.9818 + }, + { + "start": 10243.92, + "end": 10246.74, + "probability": 0.9888 + }, + { + "start": 10246.88, + "end": 10247.45, + "probability": 0.9854 + }, + { + "start": 10248.2, + "end": 10250.38, + "probability": 0.6817 + }, + { + "start": 10251.16, + "end": 10256.18, + "probability": 0.9878 + }, + { + "start": 10256.18, + "end": 10260.64, + "probability": 0.991 + }, + { + "start": 10261.58, + "end": 10263.28, + "probability": 0.9979 + }, + { + "start": 10263.82, + "end": 10266.74, + "probability": 0.9826 + }, + { + "start": 10267.22, + "end": 10271.12, + "probability": 0.9963 + }, + { + "start": 10271.44, + "end": 10272.16, + "probability": 0.0651 + }, + { + "start": 10272.54, + "end": 10273.46, + "probability": 0.7921 + }, + { + "start": 10273.5, + "end": 10274.62, + "probability": 0.8385 + }, + { + "start": 10275.04, + "end": 10277.84, + "probability": 0.6512 + }, + { + "start": 10278.42, + "end": 10280.44, + "probability": 0.9079 + }, + { + "start": 10280.48, + "end": 10281.25, + "probability": 0.9817 + }, + { + "start": 10281.94, + "end": 10283.46, + "probability": 0.8777 + }, + { + "start": 10284.0, + "end": 10288.36, + "probability": 0.9506 + }, + { + "start": 10288.9, + "end": 10290.06, + "probability": 0.8669 + }, + { + "start": 10290.18, + "end": 10291.16, + "probability": 0.8358 + }, + { + "start": 10292.88, + "end": 10294.65, + "probability": 0.3326 + }, + { + "start": 10296.78, + "end": 10296.86, + "probability": 0.0896 + }, + { + "start": 10296.86, + "end": 10300.76, + "probability": 0.8922 + }, + { + "start": 10300.76, + "end": 10304.28, + "probability": 0.9869 + }, + { + "start": 10304.82, + "end": 10308.2, + "probability": 0.9878 + }, + { + "start": 10308.74, + "end": 10309.44, + "probability": 0.7983 + }, + { + "start": 10309.48, + "end": 10310.34, + "probability": 0.9275 + }, + { + "start": 10311.14, + "end": 10315.68, + "probability": 0.9735 + }, + { + "start": 10315.82, + "end": 10318.48, + "probability": 0.9835 + }, + { + "start": 10318.64, + "end": 10319.52, + "probability": 0.8872 + }, + { + "start": 10320.18, + "end": 10322.06, + "probability": 0.9951 + }, + { + "start": 10322.82, + "end": 10325.64, + "probability": 0.991 + }, + { + "start": 10325.64, + "end": 10330.2, + "probability": 0.9967 + }, + { + "start": 10330.5, + "end": 10333.12, + "probability": 0.2888 + }, + { + "start": 10333.24, + "end": 10335.94, + "probability": 0.8392 + }, + { + "start": 10336.72, + "end": 10341.26, + "probability": 0.957 + }, + { + "start": 10341.82, + "end": 10343.86, + "probability": 0.946 + }, + { + "start": 10344.04, + "end": 10344.34, + "probability": 0.7277 + }, + { + "start": 10344.42, + "end": 10347.22, + "probability": 0.9961 + }, + { + "start": 10347.92, + "end": 10349.52, + "probability": 0.9746 + }, + { + "start": 10350.22, + "end": 10351.86, + "probability": 0.9976 + }, + { + "start": 10352.42, + "end": 10358.04, + "probability": 0.9995 + }, + { + "start": 10358.64, + "end": 10360.72, + "probability": 0.9882 + }, + { + "start": 10361.38, + "end": 10365.64, + "probability": 0.998 + }, + { + "start": 10365.78, + "end": 10367.9, + "probability": 0.9056 + }, + { + "start": 10367.94, + "end": 10368.74, + "probability": 0.6897 + }, + { + "start": 10369.22, + "end": 10370.52, + "probability": 0.879 + }, + { + "start": 10370.64, + "end": 10371.22, + "probability": 0.8756 + }, + { + "start": 10371.78, + "end": 10373.0, + "probability": 0.8687 + }, + { + "start": 10373.12, + "end": 10375.84, + "probability": 0.973 + }, + { + "start": 10376.22, + "end": 10380.34, + "probability": 0.851 + }, + { + "start": 10381.14, + "end": 10383.4, + "probability": 0.8374 + }, + { + "start": 10384.08, + "end": 10385.4, + "probability": 0.7947 + }, + { + "start": 10385.48, + "end": 10388.84, + "probability": 0.9893 + }, + { + "start": 10389.52, + "end": 10394.1, + "probability": 0.9487 + }, + { + "start": 10394.96, + "end": 10395.64, + "probability": 0.9553 + }, + { + "start": 10398.64, + "end": 10400.42, + "probability": 0.9507 + }, + { + "start": 10401.0, + "end": 10401.0, + "probability": 0.3762 + }, + { + "start": 10401.0, + "end": 10404.34, + "probability": 0.8387 + }, + { + "start": 10404.98, + "end": 10406.94, + "probability": 0.9573 + }, + { + "start": 10407.66, + "end": 10411.58, + "probability": 0.9951 + }, + { + "start": 10412.14, + "end": 10414.66, + "probability": 0.989 + }, + { + "start": 10415.22, + "end": 10417.46, + "probability": 0.9271 + }, + { + "start": 10418.37, + "end": 10420.64, + "probability": 0.6569 + }, + { + "start": 10420.72, + "end": 10421.66, + "probability": 0.8591 + }, + { + "start": 10422.28, + "end": 10422.84, + "probability": 0.6923 + }, + { + "start": 10422.88, + "end": 10423.48, + "probability": 0.8638 + }, + { + "start": 10423.64, + "end": 10425.21, + "probability": 0.8928 + }, + { + "start": 10425.94, + "end": 10427.26, + "probability": 0.9625 + }, + { + "start": 10427.36, + "end": 10428.74, + "probability": 0.8733 + }, + { + "start": 10429.28, + "end": 10430.9, + "probability": 0.9258 + }, + { + "start": 10431.42, + "end": 10432.75, + "probability": 0.9368 + }, + { + "start": 10432.96, + "end": 10436.17, + "probability": 0.9062 + }, + { + "start": 10436.58, + "end": 10438.92, + "probability": 0.7486 + }, + { + "start": 10439.6, + "end": 10444.44, + "probability": 0.7887 + }, + { + "start": 10444.56, + "end": 10445.87, + "probability": 0.8947 + }, + { + "start": 10446.38, + "end": 10447.54, + "probability": 0.8779 + }, + { + "start": 10448.18, + "end": 10451.46, + "probability": 0.981 + }, + { + "start": 10452.12, + "end": 10453.24, + "probability": 0.9814 + }, + { + "start": 10453.46, + "end": 10454.22, + "probability": 0.837 + }, + { + "start": 10454.86, + "end": 10457.06, + "probability": 0.9553 + }, + { + "start": 10458.94, + "end": 10459.84, + "probability": 0.2198 + }, + { + "start": 10459.98, + "end": 10460.52, + "probability": 0.4467 + }, + { + "start": 10460.54, + "end": 10460.88, + "probability": 0.7823 + }, + { + "start": 10461.74, + "end": 10464.62, + "probability": 0.9688 + }, + { + "start": 10465.16, + "end": 10465.65, + "probability": 0.8843 + }, + { + "start": 10468.06, + "end": 10471.12, + "probability": 0.8193 + }, + { + "start": 10471.4, + "end": 10472.34, + "probability": 0.5845 + }, + { + "start": 10473.06, + "end": 10475.77, + "probability": 0.0747 + }, + { + "start": 10476.04, + "end": 10476.92, + "probability": 0.5026 + }, + { + "start": 10477.14, + "end": 10480.62, + "probability": 0.0724 + }, + { + "start": 10480.62, + "end": 10483.96, + "probability": 0.4186 + }, + { + "start": 10484.92, + "end": 10489.32, + "probability": 0.9969 + }, + { + "start": 10490.3, + "end": 10492.01, + "probability": 0.6871 + }, + { + "start": 10492.94, + "end": 10495.42, + "probability": 0.9759 + }, + { + "start": 10495.98, + "end": 10498.56, + "probability": 0.9518 + }, + { + "start": 10499.26, + "end": 10500.78, + "probability": 0.9275 + }, + { + "start": 10500.9, + "end": 10501.78, + "probability": 0.9837 + }, + { + "start": 10503.24, + "end": 10504.28, + "probability": 0.4726 + }, + { + "start": 10504.44, + "end": 10505.96, + "probability": 0.6306 + }, + { + "start": 10506.4, + "end": 10509.68, + "probability": 0.9734 + }, + { + "start": 10510.46, + "end": 10512.84, + "probability": 0.7748 + }, + { + "start": 10513.62, + "end": 10514.96, + "probability": 0.9367 + }, + { + "start": 10515.06, + "end": 10518.94, + "probability": 0.9211 + }, + { + "start": 10518.94, + "end": 10521.74, + "probability": 0.9833 + }, + { + "start": 10522.94, + "end": 10527.2, + "probability": 0.9236 + }, + { + "start": 10527.4, + "end": 10528.4, + "probability": 0.5831 + }, + { + "start": 10528.66, + "end": 10530.5, + "probability": 0.7935 + }, + { + "start": 10532.1, + "end": 10533.6, + "probability": 0.9607 + }, + { + "start": 10533.7, + "end": 10536.52, + "probability": 0.996 + }, + { + "start": 10537.32, + "end": 10538.22, + "probability": 0.4198 + }, + { + "start": 10538.3, + "end": 10542.52, + "probability": 0.9554 + }, + { + "start": 10543.04, + "end": 10546.2, + "probability": 0.9863 + }, + { + "start": 10546.2, + "end": 10549.88, + "probability": 0.9949 + }, + { + "start": 10550.84, + "end": 10555.92, + "probability": 0.9912 + }, + { + "start": 10556.62, + "end": 10558.9, + "probability": 0.9443 + }, + { + "start": 10559.96, + "end": 10562.1, + "probability": 0.8295 + }, + { + "start": 10563.22, + "end": 10566.52, + "probability": 0.9878 + }, + { + "start": 10566.52, + "end": 10570.08, + "probability": 0.8905 + }, + { + "start": 10570.94, + "end": 10573.42, + "probability": 0.9188 + }, + { + "start": 10573.6, + "end": 10576.22, + "probability": 0.9382 + }, + { + "start": 10576.7, + "end": 10580.12, + "probability": 0.9952 + }, + { + "start": 10581.42, + "end": 10585.1, + "probability": 0.9932 + }, + { + "start": 10585.26, + "end": 10586.5, + "probability": 0.7847 + }, + { + "start": 10587.68, + "end": 10592.1, + "probability": 0.9558 + }, + { + "start": 10592.8, + "end": 10597.56, + "probability": 0.9946 + }, + { + "start": 10598.68, + "end": 10602.3, + "probability": 0.8631 + }, + { + "start": 10603.28, + "end": 10604.9, + "probability": 0.8053 + }, + { + "start": 10605.74, + "end": 10611.28, + "probability": 0.9243 + }, + { + "start": 10611.7, + "end": 10613.29, + "probability": 0.98 + }, + { + "start": 10614.24, + "end": 10617.52, + "probability": 0.9741 + }, + { + "start": 10618.12, + "end": 10621.02, + "probability": 0.8564 + }, + { + "start": 10621.12, + "end": 10621.98, + "probability": 0.8917 + }, + { + "start": 10622.1, + "end": 10622.28, + "probability": 0.8707 + }, + { + "start": 10622.36, + "end": 10624.81, + "probability": 0.9894 + }, + { + "start": 10625.6, + "end": 10626.66, + "probability": 0.9939 + }, + { + "start": 10627.24, + "end": 10631.6, + "probability": 0.9924 + }, + { + "start": 10632.06, + "end": 10633.38, + "probability": 0.7891 + }, + { + "start": 10633.58, + "end": 10636.88, + "probability": 0.9689 + }, + { + "start": 10637.16, + "end": 10641.54, + "probability": 0.7711 + }, + { + "start": 10641.56, + "end": 10643.74, + "probability": 0.7492 + }, + { + "start": 10644.08, + "end": 10644.68, + "probability": 0.5371 + }, + { + "start": 10644.94, + "end": 10645.22, + "probability": 0.6443 + }, + { + "start": 10645.9, + "end": 10646.1, + "probability": 0.7755 + }, + { + "start": 10646.6, + "end": 10648.2, + "probability": 0.7398 + }, + { + "start": 10648.24, + "end": 10650.0, + "probability": 0.7294 + }, + { + "start": 10650.2, + "end": 10651.92, + "probability": 0.924 + }, + { + "start": 10652.64, + "end": 10655.72, + "probability": 0.8608 + }, + { + "start": 10656.3, + "end": 10659.04, + "probability": 0.9587 + }, + { + "start": 10659.82, + "end": 10662.54, + "probability": 0.9577 + }, + { + "start": 10663.16, + "end": 10664.46, + "probability": 0.965 + }, + { + "start": 10665.6, + "end": 10671.76, + "probability": 0.9475 + }, + { + "start": 10671.82, + "end": 10672.7, + "probability": 0.567 + }, + { + "start": 10673.5, + "end": 10677.24, + "probability": 0.6666 + }, + { + "start": 10677.82, + "end": 10678.72, + "probability": 0.7073 + }, + { + "start": 10678.76, + "end": 10682.4, + "probability": 0.9938 + }, + { + "start": 10685.06, + "end": 10688.46, + "probability": 0.8829 + }, + { + "start": 10688.46, + "end": 10693.28, + "probability": 0.9746 + }, + { + "start": 10694.76, + "end": 10696.28, + "probability": 0.7136 + }, + { + "start": 10697.08, + "end": 10701.68, + "probability": 0.9857 + }, + { + "start": 10702.32, + "end": 10703.52, + "probability": 0.9604 + }, + { + "start": 10704.44, + "end": 10706.58, + "probability": 0.9275 + }, + { + "start": 10708.64, + "end": 10710.08, + "probability": 0.9081 + }, + { + "start": 10710.72, + "end": 10712.2, + "probability": 0.9843 + }, + { + "start": 10712.9, + "end": 10714.36, + "probability": 0.8408 + }, + { + "start": 10715.3, + "end": 10717.16, + "probability": 0.7755 + }, + { + "start": 10718.08, + "end": 10719.16, + "probability": 0.7038 + }, + { + "start": 10720.66, + "end": 10725.46, + "probability": 0.972 + }, + { + "start": 10726.32, + "end": 10730.98, + "probability": 0.9686 + }, + { + "start": 10732.22, + "end": 10733.68, + "probability": 0.8725 + }, + { + "start": 10734.62, + "end": 10736.54, + "probability": 0.9946 + }, + { + "start": 10738.14, + "end": 10739.22, + "probability": 0.8127 + }, + { + "start": 10741.12, + "end": 10745.62, + "probability": 0.7075 + }, + { + "start": 10746.38, + "end": 10749.7, + "probability": 0.9841 + }, + { + "start": 10750.28, + "end": 10756.2, + "probability": 0.9871 + }, + { + "start": 10756.92, + "end": 10760.8, + "probability": 0.8494 + }, + { + "start": 10761.48, + "end": 10763.72, + "probability": 0.9698 + }, + { + "start": 10764.34, + "end": 10769.0, + "probability": 0.9834 + }, + { + "start": 10769.86, + "end": 10774.68, + "probability": 0.9879 + }, + { + "start": 10774.68, + "end": 10778.32, + "probability": 0.9562 + }, + { + "start": 10779.38, + "end": 10781.56, + "probability": 0.9972 + }, + { + "start": 10782.14, + "end": 10784.54, + "probability": 0.9868 + }, + { + "start": 10785.28, + "end": 10787.56, + "probability": 0.9533 + }, + { + "start": 10788.48, + "end": 10789.34, + "probability": 0.9288 + }, + { + "start": 10790.08, + "end": 10790.22, + "probability": 0.3178 + }, + { + "start": 10790.22, + "end": 10794.02, + "probability": 0.9458 + }, + { + "start": 10794.02, + "end": 10798.98, + "probability": 0.9884 + }, + { + "start": 10799.9, + "end": 10803.42, + "probability": 0.8877 + }, + { + "start": 10803.96, + "end": 10806.02, + "probability": 0.9617 + }, + { + "start": 10807.08, + "end": 10808.64, + "probability": 0.6906 + }, + { + "start": 10809.14, + "end": 10813.72, + "probability": 0.905 + }, + { + "start": 10813.86, + "end": 10818.35, + "probability": 0.9487 + }, + { + "start": 10819.58, + "end": 10821.47, + "probability": 0.3377 + }, + { + "start": 10823.59, + "end": 10830.52, + "probability": 0.9224 + }, + { + "start": 10830.52, + "end": 10836.32, + "probability": 0.9339 + }, + { + "start": 10837.24, + "end": 10838.56, + "probability": 0.9885 + }, + { + "start": 10839.1, + "end": 10840.92, + "probability": 0.643 + }, + { + "start": 10841.4, + "end": 10843.9, + "probability": 0.9937 + }, + { + "start": 10844.58, + "end": 10845.82, + "probability": 0.9965 + }, + { + "start": 10846.54, + "end": 10847.53, + "probability": 0.9284 + }, + { + "start": 10848.3, + "end": 10850.74, + "probability": 0.9833 + }, + { + "start": 10851.4, + "end": 10854.52, + "probability": 0.9878 + }, + { + "start": 10855.14, + "end": 10858.84, + "probability": 0.99 + }, + { + "start": 10858.84, + "end": 10861.94, + "probability": 0.9892 + }, + { + "start": 10862.12, + "end": 10864.2, + "probability": 0.6416 + }, + { + "start": 10864.78, + "end": 10870.12, + "probability": 0.9842 + }, + { + "start": 10870.96, + "end": 10872.64, + "probability": 0.8064 + }, + { + "start": 10873.4, + "end": 10874.46, + "probability": 0.6228 + }, + { + "start": 10875.3, + "end": 10879.66, + "probability": 0.8906 + }, + { + "start": 10879.82, + "end": 10880.56, + "probability": 0.7422 + }, + { + "start": 10881.22, + "end": 10883.12, + "probability": 0.9359 + }, + { + "start": 10883.86, + "end": 10886.48, + "probability": 0.9071 + }, + { + "start": 10887.0, + "end": 10891.42, + "probability": 0.9815 + }, + { + "start": 10892.18, + "end": 10895.8, + "probability": 0.9749 + }, + { + "start": 10896.44, + "end": 10897.96, + "probability": 0.8175 + }, + { + "start": 10899.76, + "end": 10902.22, + "probability": 0.8452 + }, + { + "start": 10902.74, + "end": 10907.44, + "probability": 0.9922 + }, + { + "start": 10907.44, + "end": 10911.88, + "probability": 0.9703 + }, + { + "start": 10912.7, + "end": 10913.18, + "probability": 0.6078 + }, + { + "start": 10913.36, + "end": 10917.54, + "probability": 0.9879 + }, + { + "start": 10918.14, + "end": 10919.48, + "probability": 0.9829 + }, + { + "start": 10920.26, + "end": 10921.12, + "probability": 0.6219 + }, + { + "start": 10921.78, + "end": 10927.38, + "probability": 0.9766 + }, + { + "start": 10928.04, + "end": 10929.52, + "probability": 0.9457 + }, + { + "start": 10930.34, + "end": 10932.4, + "probability": 0.8175 + }, + { + "start": 10932.96, + "end": 10938.34, + "probability": 0.992 + }, + { + "start": 10939.0, + "end": 10941.94, + "probability": 0.998 + }, + { + "start": 10942.5, + "end": 10944.26, + "probability": 0.8929 + }, + { + "start": 10944.84, + "end": 10947.44, + "probability": 0.8166 + }, + { + "start": 10948.46, + "end": 10950.58, + "probability": 0.6125 + }, + { + "start": 10950.64, + "end": 10955.14, + "probability": 0.8363 + }, + { + "start": 10956.18, + "end": 10960.3, + "probability": 0.9644 + }, + { + "start": 10960.36, + "end": 10963.48, + "probability": 0.9905 + }, + { + "start": 10964.04, + "end": 10968.14, + "probability": 0.9906 + }, + { + "start": 10968.14, + "end": 10972.1, + "probability": 0.9979 + }, + { + "start": 10972.86, + "end": 10974.06, + "probability": 0.7177 + }, + { + "start": 10974.94, + "end": 10975.46, + "probability": 0.6051 + }, + { + "start": 10976.38, + "end": 10980.0, + "probability": 0.7463 + }, + { + "start": 10980.66, + "end": 10984.86, + "probability": 0.9531 + }, + { + "start": 10985.44, + "end": 10987.92, + "probability": 0.9641 + }, + { + "start": 10988.84, + "end": 10991.82, + "probability": 0.9716 + }, + { + "start": 10992.34, + "end": 10995.34, + "probability": 0.9924 + }, + { + "start": 10996.22, + "end": 10999.6, + "probability": 0.9014 + }, + { + "start": 11001.62, + "end": 11002.58, + "probability": 0.7812 + }, + { + "start": 11004.58, + "end": 11008.88, + "probability": 0.9854 + }, + { + "start": 11009.56, + "end": 11013.22, + "probability": 0.9533 + }, + { + "start": 11014.06, + "end": 11018.94, + "probability": 0.819 + }, + { + "start": 11019.72, + "end": 11023.0, + "probability": 0.8123 + }, + { + "start": 11023.66, + "end": 11025.6, + "probability": 0.8922 + }, + { + "start": 11027.78, + "end": 11031.18, + "probability": 0.6513 + }, + { + "start": 11031.78, + "end": 11034.02, + "probability": 0.8429 + }, + { + "start": 11034.96, + "end": 11037.76, + "probability": 0.9382 + }, + { + "start": 11040.04, + "end": 11041.98, + "probability": 0.7329 + }, + { + "start": 11046.0, + "end": 11048.86, + "probability": 0.688 + }, + { + "start": 11048.86, + "end": 11051.74, + "probability": 0.9636 + }, + { + "start": 11052.74, + "end": 11057.2, + "probability": 0.8794 + }, + { + "start": 11057.2, + "end": 11061.1, + "probability": 0.9959 + }, + { + "start": 11062.02, + "end": 11062.82, + "probability": 0.4172 + }, + { + "start": 11063.5, + "end": 11066.12, + "probability": 0.9091 + }, + { + "start": 11068.0, + "end": 11068.82, + "probability": 0.7944 + }, + { + "start": 11068.96, + "end": 11071.36, + "probability": 0.9983 + }, + { + "start": 11072.0, + "end": 11075.92, + "probability": 0.9969 + }, + { + "start": 11075.92, + "end": 11079.88, + "probability": 0.9969 + }, + { + "start": 11081.26, + "end": 11085.14, + "probability": 0.9883 + }, + { + "start": 11086.34, + "end": 11091.72, + "probability": 0.9655 + }, + { + "start": 11091.88, + "end": 11094.72, + "probability": 0.8817 + }, + { + "start": 11095.46, + "end": 11101.06, + "probability": 0.9574 + }, + { + "start": 11101.58, + "end": 11104.24, + "probability": 0.9883 + }, + { + "start": 11104.76, + "end": 11107.42, + "probability": 0.991 + }, + { + "start": 11108.32, + "end": 11109.98, + "probability": 0.8848 + }, + { + "start": 11110.86, + "end": 11113.12, + "probability": 0.9956 + }, + { + "start": 11113.34, + "end": 11114.56, + "probability": 0.7535 + }, + { + "start": 11115.2, + "end": 11116.66, + "probability": 0.9549 + }, + { + "start": 11117.84, + "end": 11118.22, + "probability": 0.0449 + }, + { + "start": 11118.22, + "end": 11120.24, + "probability": 0.5509 + }, + { + "start": 11120.4, + "end": 11121.32, + "probability": 0.9925 + }, + { + "start": 11121.36, + "end": 11121.46, + "probability": 0.1937 + }, + { + "start": 11121.46, + "end": 11122.44, + "probability": 0.8919 + }, + { + "start": 11122.48, + "end": 11124.26, + "probability": 0.9229 + }, + { + "start": 11125.9, + "end": 11125.9, + "probability": 0.0437 + }, + { + "start": 11125.9, + "end": 11131.26, + "probability": 0.7493 + }, + { + "start": 11131.42, + "end": 11135.24, + "probability": 0.9811 + }, + { + "start": 11135.84, + "end": 11137.4, + "probability": 0.9369 + }, + { + "start": 11138.4, + "end": 11143.8, + "probability": 0.9957 + }, + { + "start": 11144.16, + "end": 11146.34, + "probability": 0.9634 + }, + { + "start": 11147.42, + "end": 11151.26, + "probability": 0.9951 + }, + { + "start": 11153.21, + "end": 11158.44, + "probability": 0.8878 + }, + { + "start": 11160.38, + "end": 11161.1, + "probability": 0.6619 + }, + { + "start": 11161.24, + "end": 11164.12, + "probability": 0.8182 + }, + { + "start": 11164.24, + "end": 11171.44, + "probability": 0.9598 + }, + { + "start": 11171.54, + "end": 11173.34, + "probability": 0.9789 + }, + { + "start": 11175.46, + "end": 11176.56, + "probability": 0.6384 + }, + { + "start": 11176.68, + "end": 11179.26, + "probability": 0.9896 + }, + { + "start": 11180.3, + "end": 11182.12, + "probability": 0.5472 + }, + { + "start": 11182.94, + "end": 11188.2, + "probability": 0.9753 + }, + { + "start": 11189.24, + "end": 11191.9, + "probability": 0.813 + }, + { + "start": 11192.46, + "end": 11194.58, + "probability": 0.7304 + }, + { + "start": 11195.18, + "end": 11200.02, + "probability": 0.9277 + }, + { + "start": 11200.56, + "end": 11201.94, + "probability": 0.8892 + }, + { + "start": 11202.18, + "end": 11207.94, + "probability": 0.9661 + }, + { + "start": 11208.78, + "end": 11210.48, + "probability": 0.7783 + }, + { + "start": 11211.38, + "end": 11212.2, + "probability": 0.9665 + }, + { + "start": 11212.7, + "end": 11217.12, + "probability": 0.9644 + }, + { + "start": 11217.58, + "end": 11218.6, + "probability": 0.7046 + }, + { + "start": 11220.04, + "end": 11222.32, + "probability": 0.9523 + }, + { + "start": 11223.26, + "end": 11227.04, + "probability": 0.8696 + }, + { + "start": 11228.56, + "end": 11230.7, + "probability": 0.0214 + }, + { + "start": 11232.58, + "end": 11232.58, + "probability": 0.0427 + }, + { + "start": 11232.58, + "end": 11233.22, + "probability": 0.2724 + }, + { + "start": 11234.68, + "end": 11235.0, + "probability": 0.4415 + }, + { + "start": 11235.0, + "end": 11236.9, + "probability": 0.6247 + }, + { + "start": 11237.12, + "end": 11237.56, + "probability": 0.3366 + }, + { + "start": 11237.62, + "end": 11238.38, + "probability": 0.7112 + }, + { + "start": 11238.98, + "end": 11241.7, + "probability": 0.9182 + }, + { + "start": 11241.76, + "end": 11243.34, + "probability": 0.8147 + }, + { + "start": 11249.08, + "end": 11250.64, + "probability": 0.0136 + }, + { + "start": 11252.32, + "end": 11252.46, + "probability": 0.0259 + }, + { + "start": 11252.46, + "end": 11252.46, + "probability": 0.0517 + }, + { + "start": 11252.46, + "end": 11253.08, + "probability": 0.4727 + }, + { + "start": 11254.14, + "end": 11255.36, + "probability": 0.5082 + }, + { + "start": 11255.88, + "end": 11258.38, + "probability": 0.9338 + }, + { + "start": 11259.48, + "end": 11264.82, + "probability": 0.7762 + }, + { + "start": 11265.78, + "end": 11267.98, + "probability": 0.8224 + }, + { + "start": 11267.98, + "end": 11268.18, + "probability": 0.6519 + }, + { + "start": 11268.26, + "end": 11268.8, + "probability": 0.6997 + }, + { + "start": 11268.9, + "end": 11272.52, + "probability": 0.9255 + }, + { + "start": 11272.98, + "end": 11273.96, + "probability": 0.9221 + }, + { + "start": 11274.86, + "end": 11275.3, + "probability": 0.681 + }, + { + "start": 11276.26, + "end": 11282.03, + "probability": 0.833 + }, + { + "start": 11283.08, + "end": 11285.12, + "probability": 0.9943 + }, + { + "start": 11285.86, + "end": 11286.82, + "probability": 0.4539 + }, + { + "start": 11287.04, + "end": 11291.24, + "probability": 0.9461 + }, + { + "start": 11292.14, + "end": 11295.3, + "probability": 0.9644 + }, + { + "start": 11296.38, + "end": 11302.16, + "probability": 0.986 + }, + { + "start": 11303.28, + "end": 11306.78, + "probability": 0.873 + }, + { + "start": 11307.1, + "end": 11309.6, + "probability": 0.9171 + }, + { + "start": 11310.16, + "end": 11310.72, + "probability": 0.2753 + }, + { + "start": 11310.98, + "end": 11310.98, + "probability": 0.1813 + }, + { + "start": 11311.12, + "end": 11311.44, + "probability": 0.7172 + }, + { + "start": 11311.48, + "end": 11316.3, + "probability": 0.777 + }, + { + "start": 11316.65, + "end": 11321.34, + "probability": 0.9563 + }, + { + "start": 11322.36, + "end": 11324.92, + "probability": 0.9963 + }, + { + "start": 11325.52, + "end": 11327.02, + "probability": 0.9921 + }, + { + "start": 11327.74, + "end": 11331.64, + "probability": 0.9584 + }, + { + "start": 11332.36, + "end": 11333.52, + "probability": 0.9546 + }, + { + "start": 11333.8, + "end": 11334.78, + "probability": 0.7914 + }, + { + "start": 11334.9, + "end": 11336.85, + "probability": 0.941 + }, + { + "start": 11338.86, + "end": 11346.34, + "probability": 0.9859 + }, + { + "start": 11346.98, + "end": 11350.28, + "probability": 0.6944 + }, + { + "start": 11350.88, + "end": 11353.14, + "probability": 0.6734 + }, + { + "start": 11353.88, + "end": 11355.9, + "probability": 0.727 + }, + { + "start": 11356.58, + "end": 11357.32, + "probability": 0.7712 + }, + { + "start": 11357.46, + "end": 11358.26, + "probability": 0.9775 + }, + { + "start": 11358.3, + "end": 11359.22, + "probability": 0.8824 + }, + { + "start": 11359.66, + "end": 11360.64, + "probability": 0.9262 + }, + { + "start": 11360.78, + "end": 11361.34, + "probability": 0.8044 + }, + { + "start": 11361.44, + "end": 11362.3, + "probability": 0.8735 + }, + { + "start": 11362.9, + "end": 11370.02, + "probability": 0.7804 + }, + { + "start": 11370.58, + "end": 11373.72, + "probability": 0.8125 + }, + { + "start": 11374.84, + "end": 11379.86, + "probability": 0.9981 + }, + { + "start": 11380.74, + "end": 11382.24, + "probability": 0.938 + }, + { + "start": 11382.82, + "end": 11385.04, + "probability": 0.5851 + }, + { + "start": 11385.82, + "end": 11387.6, + "probability": 0.5215 + }, + { + "start": 11388.22, + "end": 11388.88, + "probability": 0.7657 + }, + { + "start": 11389.64, + "end": 11395.7, + "probability": 0.7731 + }, + { + "start": 11396.22, + "end": 11400.08, + "probability": 0.9406 + }, + { + "start": 11401.34, + "end": 11402.98, + "probability": 0.9594 + }, + { + "start": 11405.66, + "end": 11408.98, + "probability": 0.6613 + }, + { + "start": 11410.32, + "end": 11416.78, + "probability": 0.9519 + }, + { + "start": 11417.3, + "end": 11418.5, + "probability": 0.981 + }, + { + "start": 11418.98, + "end": 11425.54, + "probability": 0.8672 + }, + { + "start": 11426.42, + "end": 11432.64, + "probability": 0.9779 + }, + { + "start": 11433.2, + "end": 11435.0, + "probability": 0.7692 + }, + { + "start": 11435.08, + "end": 11443.18, + "probability": 0.9409 + }, + { + "start": 11443.18, + "end": 11447.48, + "probability": 0.9739 + }, + { + "start": 11448.12, + "end": 11449.72, + "probability": 0.7518 + }, + { + "start": 11450.26, + "end": 11452.42, + "probability": 0.9554 + }, + { + "start": 11452.92, + "end": 11455.92, + "probability": 0.9966 + }, + { + "start": 11456.7, + "end": 11460.98, + "probability": 0.7768 + }, + { + "start": 11462.34, + "end": 11469.26, + "probability": 0.6466 + }, + { + "start": 11469.86, + "end": 11470.26, + "probability": 0.6856 + }, + { + "start": 11472.34, + "end": 11474.08, + "probability": 0.588 + }, + { + "start": 11474.4, + "end": 11476.18, + "probability": 0.8954 + }, + { + "start": 11476.82, + "end": 11478.56, + "probability": 0.9153 + }, + { + "start": 11479.3, + "end": 11485.86, + "probability": 0.8497 + }, + { + "start": 11486.14, + "end": 11488.51, + "probability": 0.6531 + }, + { + "start": 11491.22, + "end": 11492.14, + "probability": 0.7382 + }, + { + "start": 11493.1, + "end": 11497.5, + "probability": 0.9867 + }, + { + "start": 11498.0, + "end": 11501.4, + "probability": 0.9883 + }, + { + "start": 11504.2, + "end": 11505.32, + "probability": 0.7629 + }, + { + "start": 11505.98, + "end": 11508.44, + "probability": 0.9699 + }, + { + "start": 11508.98, + "end": 11510.79, + "probability": 0.8453 + }, + { + "start": 11511.34, + "end": 11515.04, + "probability": 0.9967 + }, + { + "start": 11516.8, + "end": 11522.26, + "probability": 0.7401 + }, + { + "start": 11522.68, + "end": 11524.93, + "probability": 0.7619 + }, + { + "start": 11525.64, + "end": 11527.88, + "probability": 0.7992 + }, + { + "start": 11528.02, + "end": 11529.02, + "probability": 0.3682 + }, + { + "start": 11529.6, + "end": 11533.48, + "probability": 0.7305 + }, + { + "start": 11534.54, + "end": 11537.14, + "probability": 0.8164 + }, + { + "start": 11539.65, + "end": 11541.71, + "probability": 0.8599 + }, + { + "start": 11542.68, + "end": 11546.64, + "probability": 0.9441 + }, + { + "start": 11546.74, + "end": 11549.4, + "probability": 0.784 + }, + { + "start": 11550.24, + "end": 11551.0, + "probability": 0.7897 + }, + { + "start": 11551.68, + "end": 11556.98, + "probability": 0.9899 + }, + { + "start": 11557.38, + "end": 11561.74, + "probability": 0.9271 + }, + { + "start": 11561.8, + "end": 11563.7, + "probability": 0.9912 + }, + { + "start": 11564.46, + "end": 11564.8, + "probability": 0.8283 + }, + { + "start": 11565.28, + "end": 11567.1, + "probability": 0.9729 + }, + { + "start": 11568.06, + "end": 11571.4, + "probability": 0.5789 + }, + { + "start": 11571.44, + "end": 11572.48, + "probability": 0.0285 + }, + { + "start": 11572.74, + "end": 11573.04, + "probability": 0.6591 + }, + { + "start": 11573.34, + "end": 11574.66, + "probability": 0.7499 + }, + { + "start": 11575.98, + "end": 11578.56, + "probability": 0.3036 + }, + { + "start": 11580.64, + "end": 11583.9, + "probability": 0.5445 + }, + { + "start": 11590.0, + "end": 11591.34, + "probability": 0.5465 + }, + { + "start": 11593.24, + "end": 11594.02, + "probability": 0.6636 + }, + { + "start": 11596.34, + "end": 11600.12, + "probability": 0.9777 + }, + { + "start": 11600.14, + "end": 11603.9, + "probability": 0.8993 + }, + { + "start": 11604.66, + "end": 11607.58, + "probability": 0.6971 + }, + { + "start": 11608.48, + "end": 11610.8, + "probability": 0.9924 + }, + { + "start": 11610.8, + "end": 11615.32, + "probability": 0.9346 + }, + { + "start": 11616.69, + "end": 11621.94, + "probability": 0.9862 + }, + { + "start": 11622.74, + "end": 11623.61, + "probability": 0.9816 + }, + { + "start": 11624.08, + "end": 11628.22, + "probability": 0.9912 + }, + { + "start": 11628.96, + "end": 11629.44, + "probability": 0.4918 + }, + { + "start": 11629.98, + "end": 11632.08, + "probability": 0.9681 + }, + { + "start": 11633.0, + "end": 11633.42, + "probability": 0.693 + }, + { + "start": 11633.48, + "end": 11634.02, + "probability": 0.8565 + }, + { + "start": 11634.12, + "end": 11637.69, + "probability": 0.9749 + }, + { + "start": 11637.72, + "end": 11640.42, + "probability": 0.9761 + }, + { + "start": 11640.96, + "end": 11641.9, + "probability": 0.519 + }, + { + "start": 11644.02, + "end": 11644.58, + "probability": 0.728 + }, + { + "start": 11649.72, + "end": 11654.28, + "probability": 0.9971 + }, + { + "start": 11654.28, + "end": 11658.2, + "probability": 0.9979 + }, + { + "start": 11658.98, + "end": 11660.52, + "probability": 0.9983 + }, + { + "start": 11661.12, + "end": 11662.92, + "probability": 0.9219 + }, + { + "start": 11663.9, + "end": 11665.24, + "probability": 0.9993 + }, + { + "start": 11665.8, + "end": 11672.58, + "probability": 0.9834 + }, + { + "start": 11673.32, + "end": 11676.38, + "probability": 0.9969 + }, + { + "start": 11677.68, + "end": 11681.64, + "probability": 0.9913 + }, + { + "start": 11682.3, + "end": 11683.64, + "probability": 0.4449 + }, + { + "start": 11685.14, + "end": 11687.6, + "probability": 0.9089 + }, + { + "start": 11687.6, + "end": 11691.52, + "probability": 0.9687 + }, + { + "start": 11692.52, + "end": 11697.36, + "probability": 0.9674 + }, + { + "start": 11697.66, + "end": 11699.82, + "probability": 0.9828 + }, + { + "start": 11700.16, + "end": 11701.28, + "probability": 0.9022 + }, + { + "start": 11702.6, + "end": 11704.02, + "probability": 0.785 + }, + { + "start": 11704.56, + "end": 11705.88, + "probability": 0.9963 + }, + { + "start": 11706.44, + "end": 11708.32, + "probability": 0.7113 + }, + { + "start": 11708.88, + "end": 11713.86, + "probability": 0.8102 + }, + { + "start": 11714.98, + "end": 11715.52, + "probability": 0.9374 + }, + { + "start": 11716.34, + "end": 11718.32, + "probability": 0.9747 + }, + { + "start": 11718.96, + "end": 11723.1, + "probability": 0.786 + }, + { + "start": 11723.82, + "end": 11725.18, + "probability": 0.9964 + }, + { + "start": 11725.76, + "end": 11728.48, + "probability": 0.9523 + }, + { + "start": 11729.18, + "end": 11733.44, + "probability": 0.8765 + }, + { + "start": 11733.44, + "end": 11737.78, + "probability": 0.9867 + }, + { + "start": 11738.24, + "end": 11740.94, + "probability": 0.7969 + }, + { + "start": 11742.92, + "end": 11743.72, + "probability": 0.8748 + }, + { + "start": 11744.4, + "end": 11746.52, + "probability": 0.999 + }, + { + "start": 11747.22, + "end": 11749.72, + "probability": 0.8757 + }, + { + "start": 11750.48, + "end": 11752.8, + "probability": 0.9873 + }, + { + "start": 11754.02, + "end": 11759.22, + "probability": 0.9751 + }, + { + "start": 11759.94, + "end": 11764.12, + "probability": 0.9878 + }, + { + "start": 11765.48, + "end": 11767.06, + "probability": 0.8745 + }, + { + "start": 11768.32, + "end": 11772.34, + "probability": 0.996 + }, + { + "start": 11773.26, + "end": 11775.1, + "probability": 0.8665 + }, + { + "start": 11775.72, + "end": 11777.34, + "probability": 0.9355 + }, + { + "start": 11777.84, + "end": 11780.72, + "probability": 0.8735 + }, + { + "start": 11781.26, + "end": 11785.12, + "probability": 0.9827 + }, + { + "start": 11785.74, + "end": 11787.07, + "probability": 0.9882 + }, + { + "start": 11788.86, + "end": 11792.79, + "probability": 0.7535 + }, + { + "start": 11794.32, + "end": 11796.1, + "probability": 0.977 + }, + { + "start": 11796.76, + "end": 11797.5, + "probability": 0.9166 + }, + { + "start": 11798.14, + "end": 11801.22, + "probability": 0.9736 + }, + { + "start": 11801.96, + "end": 11805.2, + "probability": 0.9432 + }, + { + "start": 11805.82, + "end": 11808.8, + "probability": 0.8453 + }, + { + "start": 11808.8, + "end": 11811.2, + "probability": 0.9983 + }, + { + "start": 11812.0, + "end": 11816.96, + "probability": 0.9691 + }, + { + "start": 11817.52, + "end": 11819.24, + "probability": 0.9251 + }, + { + "start": 11819.88, + "end": 11823.04, + "probability": 0.7494 + }, + { + "start": 11823.62, + "end": 11826.26, + "probability": 0.8651 + }, + { + "start": 11827.18, + "end": 11829.26, + "probability": 0.9545 + }, + { + "start": 11829.86, + "end": 11832.34, + "probability": 0.9252 + }, + { + "start": 11833.18, + "end": 11833.8, + "probability": 0.9195 + }, + { + "start": 11834.06, + "end": 11840.26, + "probability": 0.9641 + }, + { + "start": 11841.38, + "end": 11844.84, + "probability": 0.8444 + }, + { + "start": 11845.36, + "end": 11847.52, + "probability": 0.9579 + }, + { + "start": 11851.28, + "end": 11853.54, + "probability": 0.4756 + }, + { + "start": 11854.28, + "end": 11856.3, + "probability": 0.7649 + }, + { + "start": 11856.66, + "end": 11863.22, + "probability": 0.4771 + }, + { + "start": 11866.23, + "end": 11868.98, + "probability": 0.6576 + }, + { + "start": 11870.0, + "end": 11875.04, + "probability": 0.9432 + }, + { + "start": 11875.58, + "end": 11879.04, + "probability": 0.9945 + }, + { + "start": 11879.92, + "end": 11883.44, + "probability": 0.9743 + }, + { + "start": 11884.12, + "end": 11886.04, + "probability": 0.9845 + }, + { + "start": 11886.72, + "end": 11890.92, + "probability": 0.9976 + }, + { + "start": 11890.92, + "end": 11896.48, + "probability": 0.9627 + }, + { + "start": 11897.1, + "end": 11902.72, + "probability": 0.994 + }, + { + "start": 11902.72, + "end": 11908.2, + "probability": 0.9854 + }, + { + "start": 11908.34, + "end": 11908.86, + "probability": 0.7474 + }, + { + "start": 11909.66, + "end": 11913.46, + "probability": 0.9695 + }, + { + "start": 11914.14, + "end": 11916.22, + "probability": 0.9392 + }, + { + "start": 11917.28, + "end": 11919.92, + "probability": 0.9724 + }, + { + "start": 11921.02, + "end": 11926.24, + "probability": 0.9766 + }, + { + "start": 11926.98, + "end": 11931.34, + "probability": 0.9161 + }, + { + "start": 11932.02, + "end": 11934.8, + "probability": 0.4857 + }, + { + "start": 11935.74, + "end": 11940.32, + "probability": 0.9441 + }, + { + "start": 11940.98, + "end": 11944.18, + "probability": 0.7437 + }, + { + "start": 11944.72, + "end": 11946.6, + "probability": 0.9869 + }, + { + "start": 11947.7, + "end": 11950.76, + "probability": 0.7829 + }, + { + "start": 11950.88, + "end": 11952.76, + "probability": 0.353 + }, + { + "start": 11953.86, + "end": 11956.98, + "probability": 0.9694 + }, + { + "start": 11957.54, + "end": 11959.62, + "probability": 0.8684 + }, + { + "start": 11959.66, + "end": 11962.3, + "probability": 0.9728 + }, + { + "start": 11963.0, + "end": 11964.28, + "probability": 0.8582 + }, + { + "start": 11964.4, + "end": 11968.08, + "probability": 0.9834 + }, + { + "start": 11968.08, + "end": 11971.64, + "probability": 0.9177 + }, + { + "start": 11972.72, + "end": 11973.62, + "probability": 0.8105 + }, + { + "start": 11973.82, + "end": 11976.62, + "probability": 0.8683 + }, + { + "start": 11977.6, + "end": 11980.5, + "probability": 0.8848 + }, + { + "start": 11981.06, + "end": 11982.92, + "probability": 0.8792 + }, + { + "start": 11983.86, + "end": 11987.34, + "probability": 0.9329 + }, + { + "start": 11988.0, + "end": 11991.58, + "probability": 0.9697 + }, + { + "start": 11992.14, + "end": 11994.6, + "probability": 0.9906 + }, + { + "start": 11995.52, + "end": 11997.28, + "probability": 0.8041 + }, + { + "start": 11997.88, + "end": 12001.2, + "probability": 0.9985 + }, + { + "start": 12001.34, + "end": 12002.4, + "probability": 0.7155 + }, + { + "start": 12002.88, + "end": 12007.66, + "probability": 0.9952 + }, + { + "start": 12007.66, + "end": 12012.3, + "probability": 0.9814 + }, + { + "start": 12013.08, + "end": 12019.88, + "probability": 0.9615 + }, + { + "start": 12020.28, + "end": 12026.3, + "probability": 0.9941 + }, + { + "start": 12026.36, + "end": 12027.52, + "probability": 0.958 + }, + { + "start": 12027.72, + "end": 12030.36, + "probability": 0.7916 + }, + { + "start": 12031.22, + "end": 12033.86, + "probability": 0.9582 + }, + { + "start": 12034.44, + "end": 12037.54, + "probability": 0.9233 + }, + { + "start": 12037.96, + "end": 12039.16, + "probability": 0.8256 + }, + { + "start": 12039.28, + "end": 12042.42, + "probability": 0.9468 + }, + { + "start": 12042.92, + "end": 12044.24, + "probability": 0.8133 + }, + { + "start": 12044.84, + "end": 12046.42, + "probability": 0.8903 + }, + { + "start": 12046.48, + "end": 12052.04, + "probability": 0.9653 + }, + { + "start": 12052.4, + "end": 12052.64, + "probability": 0.7272 + }, + { + "start": 12052.7, + "end": 12054.48, + "probability": 0.6911 + }, + { + "start": 12058.22, + "end": 12063.76, + "probability": 0.9973 + }, + { + "start": 12064.42, + "end": 12066.7, + "probability": 0.998 + }, + { + "start": 12067.76, + "end": 12069.78, + "probability": 0.9084 + }, + { + "start": 12070.36, + "end": 12072.86, + "probability": 0.7819 + }, + { + "start": 12074.02, + "end": 12076.32, + "probability": 0.9922 + }, + { + "start": 12076.94, + "end": 12079.68, + "probability": 0.9938 + }, + { + "start": 12080.3, + "end": 12083.76, + "probability": 0.9982 + }, + { + "start": 12085.3, + "end": 12087.56, + "probability": 0.9985 + }, + { + "start": 12088.56, + "end": 12089.52, + "probability": 0.9239 + }, + { + "start": 12089.68, + "end": 12091.84, + "probability": 0.9484 + }, + { + "start": 12093.9, + "end": 12095.3, + "probability": 0.9875 + }, + { + "start": 12096.0, + "end": 12099.6, + "probability": 0.9929 + }, + { + "start": 12102.76, + "end": 12104.06, + "probability": 0.9189 + }, + { + "start": 12105.54, + "end": 12108.22, + "probability": 0.9619 + }, + { + "start": 12108.76, + "end": 12114.42, + "probability": 0.981 + }, + { + "start": 12115.12, + "end": 12117.96, + "probability": 0.9969 + }, + { + "start": 12118.94, + "end": 12120.9, + "probability": 0.9556 + }, + { + "start": 12121.78, + "end": 12124.52, + "probability": 0.8279 + }, + { + "start": 12125.22, + "end": 12126.06, + "probability": 0.8388 + }, + { + "start": 12127.12, + "end": 12130.02, + "probability": 0.842 + }, + { + "start": 12130.7, + "end": 12134.8, + "probability": 0.9473 + }, + { + "start": 12135.6, + "end": 12137.76, + "probability": 0.9868 + }, + { + "start": 12138.52, + "end": 12140.78, + "probability": 0.917 + }, + { + "start": 12141.7, + "end": 12144.8, + "probability": 0.9978 + }, + { + "start": 12145.42, + "end": 12147.82, + "probability": 0.8901 + }, + { + "start": 12148.42, + "end": 12150.4, + "probability": 0.9779 + }, + { + "start": 12150.92, + "end": 12153.94, + "probability": 0.9961 + }, + { + "start": 12155.0, + "end": 12159.38, + "probability": 0.9633 + }, + { + "start": 12159.56, + "end": 12162.62, + "probability": 0.9946 + }, + { + "start": 12164.42, + "end": 12165.72, + "probability": 0.8998 + }, + { + "start": 12168.32, + "end": 12170.42, + "probability": 0.8564 + }, + { + "start": 12170.56, + "end": 12170.92, + "probability": 0.3585 + }, + { + "start": 12170.96, + "end": 12173.28, + "probability": 0.4902 + }, + { + "start": 12173.54, + "end": 12174.7, + "probability": 0.755 + }, + { + "start": 12178.46, + "end": 12179.3, + "probability": 0.7142 + }, + { + "start": 12179.42, + "end": 12180.26, + "probability": 0.9209 + }, + { + "start": 12180.48, + "end": 12183.21, + "probability": 0.9917 + }, + { + "start": 12183.5, + "end": 12185.3, + "probability": 0.6824 + }, + { + "start": 12185.38, + "end": 12186.08, + "probability": 0.76 + }, + { + "start": 12186.54, + "end": 12188.06, + "probability": 0.835 + }, + { + "start": 12188.6, + "end": 12192.04, + "probability": 0.752 + }, + { + "start": 12193.02, + "end": 12197.56, + "probability": 0.995 + }, + { + "start": 12197.56, + "end": 12198.3, + "probability": 0.5422 + }, + { + "start": 12198.3, + "end": 12200.04, + "probability": 0.8218 + }, + { + "start": 12200.12, + "end": 12201.47, + "probability": 0.9342 + }, + { + "start": 12202.18, + "end": 12203.26, + "probability": 0.7878 + }, + { + "start": 12203.48, + "end": 12204.9, + "probability": 0.9775 + }, + { + "start": 12205.46, + "end": 12206.95, + "probability": 0.9426 + }, + { + "start": 12207.3, + "end": 12211.52, + "probability": 0.9944 + }, + { + "start": 12212.29, + "end": 12215.12, + "probability": 0.979 + }, + { + "start": 12215.18, + "end": 12215.74, + "probability": 0.8191 + }, + { + "start": 12215.94, + "end": 12217.1, + "probability": 0.965 + }, + { + "start": 12217.54, + "end": 12223.36, + "probability": 0.9748 + }, + { + "start": 12223.98, + "end": 12226.1, + "probability": 0.9809 + }, + { + "start": 12226.52, + "end": 12228.3, + "probability": 0.9376 + }, + { + "start": 12228.78, + "end": 12228.98, + "probability": 0.0538 + }, + { + "start": 12229.04, + "end": 12229.82, + "probability": 0.1735 + }, + { + "start": 12229.96, + "end": 12232.1, + "probability": 0.3018 + }, + { + "start": 12233.38, + "end": 12234.54, + "probability": 0.3729 + }, + { + "start": 12234.93, + "end": 12239.0, + "probability": 0.6957 + }, + { + "start": 12239.26, + "end": 12239.66, + "probability": 0.4964 + }, + { + "start": 12239.74, + "end": 12242.62, + "probability": 0.9613 + }, + { + "start": 12243.08, + "end": 12244.8, + "probability": 0.4969 + }, + { + "start": 12245.94, + "end": 12250.04, + "probability": 0.7812 + }, + { + "start": 12250.6, + "end": 12256.43, + "probability": 0.9775 + }, + { + "start": 12257.04, + "end": 12258.46, + "probability": 0.9923 + }, + { + "start": 12259.24, + "end": 12259.32, + "probability": 0.0007 + }, + { + "start": 12261.02, + "end": 12263.26, + "probability": 0.5151 + }, + { + "start": 12263.6, + "end": 12264.9, + "probability": 0.9287 + }, + { + "start": 12265.14, + "end": 12270.76, + "probability": 0.9048 + }, + { + "start": 12272.04, + "end": 12273.8, + "probability": 0.9575 + }, + { + "start": 12273.98, + "end": 12277.04, + "probability": 0.9808 + }, + { + "start": 12278.14, + "end": 12280.37, + "probability": 0.992 + }, + { + "start": 12281.64, + "end": 12284.68, + "probability": 0.9968 + }, + { + "start": 12285.88, + "end": 12288.88, + "probability": 0.9772 + }, + { + "start": 12289.52, + "end": 12294.32, + "probability": 0.9973 + }, + { + "start": 12294.44, + "end": 12297.0, + "probability": 0.9663 + }, + { + "start": 12297.12, + "end": 12299.52, + "probability": 0.9756 + }, + { + "start": 12300.6, + "end": 12302.72, + "probability": 0.5866 + }, + { + "start": 12305.8, + "end": 12306.02, + "probability": 0.6528 + }, + { + "start": 12306.14, + "end": 12311.26, + "probability": 0.9049 + }, + { + "start": 12312.06, + "end": 12314.4, + "probability": 0.9982 + }, + { + "start": 12314.4, + "end": 12317.5, + "probability": 0.9937 + }, + { + "start": 12318.14, + "end": 12319.86, + "probability": 0.7805 + }, + { + "start": 12320.46, + "end": 12325.62, + "probability": 0.998 + }, + { + "start": 12326.34, + "end": 12331.88, + "probability": 0.9973 + }, + { + "start": 12332.8, + "end": 12339.74, + "probability": 0.9492 + }, + { + "start": 12340.02, + "end": 12340.66, + "probability": 0.5685 + }, + { + "start": 12341.26, + "end": 12341.86, + "probability": 0.4384 + }, + { + "start": 12341.9, + "end": 12343.82, + "probability": 0.885 + }, + { + "start": 12344.32, + "end": 12345.34, + "probability": 0.8824 + }, + { + "start": 12345.84, + "end": 12347.34, + "probability": 0.8965 + }, + { + "start": 12348.52, + "end": 12349.02, + "probability": 0.8344 + }, + { + "start": 12349.56, + "end": 12352.28, + "probability": 0.8488 + }, + { + "start": 12354.31, + "end": 12356.24, + "probability": 0.7242 + }, + { + "start": 12357.36, + "end": 12361.54, + "probability": 0.7648 + }, + { + "start": 12361.96, + "end": 12362.31, + "probability": 0.4121 + }, + { + "start": 12363.36, + "end": 12365.48, + "probability": 0.7489 + }, + { + "start": 12365.92, + "end": 12367.0, + "probability": 0.664 + }, + { + "start": 12367.42, + "end": 12368.5, + "probability": 0.9176 + }, + { + "start": 12369.42, + "end": 12371.5, + "probability": 0.9272 + }, + { + "start": 12371.66, + "end": 12373.74, + "probability": 0.655 + }, + { + "start": 12374.5, + "end": 12375.4, + "probability": 0.938 + }, + { + "start": 12375.98, + "end": 12378.48, + "probability": 0.9227 + }, + { + "start": 12379.56, + "end": 12382.84, + "probability": 0.7489 + }, + { + "start": 12383.58, + "end": 12387.09, + "probability": 0.837 + }, + { + "start": 12387.9, + "end": 12389.7, + "probability": 0.9146 + }, + { + "start": 12389.78, + "end": 12395.48, + "probability": 0.9832 + }, + { + "start": 12396.22, + "end": 12396.85, + "probability": 0.9951 + }, + { + "start": 12397.7, + "end": 12399.5, + "probability": 0.9976 + }, + { + "start": 12399.98, + "end": 12402.4, + "probability": 0.9815 + }, + { + "start": 12403.02, + "end": 12404.1, + "probability": 0.8728 + }, + { + "start": 12404.62, + "end": 12407.52, + "probability": 0.7071 + }, + { + "start": 12407.78, + "end": 12408.36, + "probability": 0.7971 + }, + { + "start": 12408.82, + "end": 12411.68, + "probability": 0.9634 + }, + { + "start": 12412.52, + "end": 12416.48, + "probability": 0.3978 + }, + { + "start": 12416.62, + "end": 12417.58, + "probability": 0.6442 + }, + { + "start": 12417.92, + "end": 12418.74, + "probability": 0.9005 + }, + { + "start": 12419.6, + "end": 12420.4, + "probability": 0.5765 + }, + { + "start": 12420.4, + "end": 12421.92, + "probability": 0.692 + }, + { + "start": 12422.3, + "end": 12423.02, + "probability": 0.7584 + }, + { + "start": 12423.16, + "end": 12424.92, + "probability": 0.836 + }, + { + "start": 12425.39, + "end": 12428.74, + "probability": 0.7505 + }, + { + "start": 12428.86, + "end": 12430.02, + "probability": 0.7983 + }, + { + "start": 12430.68, + "end": 12434.52, + "probability": 0.792 + }, + { + "start": 12435.06, + "end": 12436.94, + "probability": 0.9915 + }, + { + "start": 12437.64, + "end": 12442.22, + "probability": 0.9276 + }, + { + "start": 12442.78, + "end": 12445.76, + "probability": 0.5905 + }, + { + "start": 12446.3, + "end": 12446.96, + "probability": 0.9775 + }, + { + "start": 12447.38, + "end": 12450.38, + "probability": 0.9736 + }, + { + "start": 12450.92, + "end": 12451.46, + "probability": 0.7466 + }, + { + "start": 12452.06, + "end": 12454.28, + "probability": 0.996 + }, + { + "start": 12454.76, + "end": 12455.9, + "probability": 0.6463 + }, + { + "start": 12456.48, + "end": 12460.14, + "probability": 0.9568 + }, + { + "start": 12460.58, + "end": 12463.58, + "probability": 0.9893 + }, + { + "start": 12463.84, + "end": 12464.42, + "probability": 0.8591 + }, + { + "start": 12465.34, + "end": 12467.54, + "probability": 0.7358 + }, + { + "start": 12467.66, + "end": 12469.18, + "probability": 0.9907 + }, + { + "start": 12469.3, + "end": 12473.02, + "probability": 0.9906 + }, + { + "start": 12473.02, + "end": 12478.18, + "probability": 0.8296 + }, + { + "start": 12478.38, + "end": 12480.38, + "probability": 0.987 + }, + { + "start": 12480.5, + "end": 12481.43, + "probability": 0.9008 + }, + { + "start": 12482.48, + "end": 12484.2, + "probability": 0.9841 + }, + { + "start": 12484.92, + "end": 12486.18, + "probability": 0.9998 + }, + { + "start": 12486.82, + "end": 12492.98, + "probability": 0.8607 + }, + { + "start": 12492.98, + "end": 12497.12, + "probability": 0.9937 + }, + { + "start": 12497.16, + "end": 12498.0, + "probability": 0.722 + }, + { + "start": 12498.06, + "end": 12498.46, + "probability": 0.8375 + }, + { + "start": 12498.56, + "end": 12499.92, + "probability": 0.8525 + }, + { + "start": 12500.0, + "end": 12502.94, + "probability": 0.946 + }, + { + "start": 12503.92, + "end": 12504.5, + "probability": 0.4877 + }, + { + "start": 12504.7, + "end": 12505.82, + "probability": 0.6533 + }, + { + "start": 12505.9, + "end": 12510.88, + "probability": 0.9974 + }, + { + "start": 12510.88, + "end": 12515.34, + "probability": 0.999 + }, + { + "start": 12516.14, + "end": 12519.47, + "probability": 0.7169 + }, + { + "start": 12528.68, + "end": 12529.32, + "probability": 0.4838 + }, + { + "start": 12530.38, + "end": 12531.22, + "probability": 0.926 + }, + { + "start": 12531.68, + "end": 12533.52, + "probability": 0.9875 + }, + { + "start": 12534.14, + "end": 12536.08, + "probability": 0.9609 + }, + { + "start": 12536.24, + "end": 12540.82, + "probability": 0.9959 + }, + { + "start": 12541.18, + "end": 12542.56, + "probability": 0.9995 + }, + { + "start": 12543.24, + "end": 12548.22, + "probability": 0.732 + }, + { + "start": 12548.22, + "end": 12550.84, + "probability": 0.7494 + }, + { + "start": 12551.2, + "end": 12552.22, + "probability": 0.5207 + }, + { + "start": 12552.82, + "end": 12553.36, + "probability": 0.7568 + }, + { + "start": 12553.46, + "end": 12554.14, + "probability": 0.7112 + }, + { + "start": 12554.26, + "end": 12558.18, + "probability": 0.9605 + }, + { + "start": 12558.18, + "end": 12561.56, + "probability": 0.8208 + }, + { + "start": 12561.68, + "end": 12563.14, + "probability": 0.8571 + }, + { + "start": 12563.92, + "end": 12567.64, + "probability": 0.8473 + }, + { + "start": 12568.16, + "end": 12570.12, + "probability": 0.8624 + }, + { + "start": 12570.22, + "end": 12570.92, + "probability": 0.8141 + }, + { + "start": 12570.98, + "end": 12571.74, + "probability": 0.9365 + }, + { + "start": 12572.58, + "end": 12573.3, + "probability": 0.8372 + }, + { + "start": 12574.04, + "end": 12576.5, + "probability": 0.9398 + }, + { + "start": 12576.56, + "end": 12577.02, + "probability": 0.5428 + }, + { + "start": 12577.7, + "end": 12583.14, + "probability": 0.9985 + }, + { + "start": 12583.78, + "end": 12591.28, + "probability": 0.9787 + }, + { + "start": 12592.76, + "end": 12596.0, + "probability": 0.2636 + }, + { + "start": 12598.17, + "end": 12600.76, + "probability": 0.8009 + }, + { + "start": 12600.94, + "end": 12601.36, + "probability": 0.5657 + }, + { + "start": 12601.96, + "end": 12603.8, + "probability": 0.9761 + }, + { + "start": 12604.08, + "end": 12604.64, + "probability": 0.5709 + }, + { + "start": 12605.22, + "end": 12605.76, + "probability": 0.9294 + }, + { + "start": 12605.86, + "end": 12608.86, + "probability": 0.9783 + }, + { + "start": 12608.86, + "end": 12611.74, + "probability": 0.6688 + }, + { + "start": 12612.3, + "end": 12613.56, + "probability": 0.9917 + }, + { + "start": 12613.68, + "end": 12614.9, + "probability": 0.7758 + }, + { + "start": 12615.44, + "end": 12616.7, + "probability": 0.9876 + }, + { + "start": 12616.82, + "end": 12617.08, + "probability": 0.3182 + }, + { + "start": 12617.1, + "end": 12619.96, + "probability": 0.5723 + }, + { + "start": 12620.36, + "end": 12622.28, + "probability": 0.9087 + }, + { + "start": 12623.16, + "end": 12624.46, + "probability": 0.9504 + }, + { + "start": 12624.88, + "end": 12625.2, + "probability": 0.6176 + }, + { + "start": 12625.46, + "end": 12626.2, + "probability": 0.4824 + }, + { + "start": 12626.36, + "end": 12627.56, + "probability": 0.6783 + }, + { + "start": 12628.12, + "end": 12629.56, + "probability": 0.916 + }, + { + "start": 12630.7, + "end": 12634.78, + "probability": 0.8367 + }, + { + "start": 12634.8, + "end": 12637.0, + "probability": 0.719 + }, + { + "start": 12637.56, + "end": 12639.44, + "probability": 0.9804 + }, + { + "start": 12639.96, + "end": 12640.64, + "probability": 0.3386 + }, + { + "start": 12640.94, + "end": 12642.38, + "probability": 0.9868 + }, + { + "start": 12643.66, + "end": 12644.42, + "probability": 0.6934 + }, + { + "start": 12645.42, + "end": 12647.2, + "probability": 0.8478 + }, + { + "start": 12650.92, + "end": 12651.02, + "probability": 0.0232 + }, + { + "start": 12651.14, + "end": 12652.52, + "probability": 0.5403 + }, + { + "start": 12653.2, + "end": 12654.92, + "probability": 0.9111 + }, + { + "start": 12655.32, + "end": 12656.94, + "probability": 0.9915 + }, + { + "start": 12657.46, + "end": 12657.98, + "probability": 0.5053 + }, + { + "start": 12659.02, + "end": 12663.42, + "probability": 0.8666 + }, + { + "start": 12664.1, + "end": 12666.3, + "probability": 0.9355 + }, + { + "start": 12667.52, + "end": 12669.26, + "probability": 0.8971 + }, + { + "start": 12669.6, + "end": 12675.46, + "probability": 0.9692 + }, + { + "start": 12675.5, + "end": 12680.98, + "probability": 0.9026 + }, + { + "start": 12682.6, + "end": 12687.18, + "probability": 0.8661 + }, + { + "start": 12687.38, + "end": 12689.78, + "probability": 0.5363 + }, + { + "start": 12690.8, + "end": 12695.04, + "probability": 0.9862 + }, + { + "start": 12696.1, + "end": 12699.68, + "probability": 0.9385 + }, + { + "start": 12700.62, + "end": 12704.7, + "probability": 0.2095 + }, + { + "start": 12705.5, + "end": 12707.18, + "probability": 0.931 + }, + { + "start": 12707.64, + "end": 12708.54, + "probability": 0.6892 + }, + { + "start": 12708.9, + "end": 12714.44, + "probability": 0.6538 + }, + { + "start": 12715.36, + "end": 12719.98, + "probability": 0.9561 + }, + { + "start": 12721.44, + "end": 12724.32, + "probability": 0.9761 + }, + { + "start": 12724.5, + "end": 12725.58, + "probability": 0.6618 + }, + { + "start": 12726.32, + "end": 12729.44, + "probability": 0.98 + }, + { + "start": 12732.14, + "end": 12733.16, + "probability": 0.4878 + }, + { + "start": 12733.82, + "end": 12734.31, + "probability": 0.4182 + }, + { + "start": 12735.2, + "end": 12736.72, + "probability": 0.827 + }, + { + "start": 12737.14, + "end": 12738.12, + "probability": 0.536 + }, + { + "start": 12738.16, + "end": 12738.98, + "probability": 0.8788 + }, + { + "start": 12739.72, + "end": 12743.1, + "probability": 0.9208 + }, + { + "start": 12743.32, + "end": 12744.48, + "probability": 0.8079 + }, + { + "start": 12745.14, + "end": 12747.2, + "probability": 0.8434 + }, + { + "start": 12747.64, + "end": 12747.94, + "probability": 0.6585 + }, + { + "start": 12748.2, + "end": 12753.36, + "probability": 0.5985 + }, + { + "start": 12754.76, + "end": 12758.04, + "probability": 0.9968 + }, + { + "start": 12758.04, + "end": 12761.1, + "probability": 0.9977 + }, + { + "start": 12761.92, + "end": 12764.66, + "probability": 0.7426 + }, + { + "start": 12765.34, + "end": 12767.5, + "probability": 0.9808 + }, + { + "start": 12768.58, + "end": 12769.02, + "probability": 0.7625 + }, + { + "start": 12771.48, + "end": 12772.06, + "probability": 0.4847 + }, + { + "start": 12772.3, + "end": 12776.24, + "probability": 0.8385 + }, + { + "start": 12776.76, + "end": 12778.5, + "probability": 0.9816 + }, + { + "start": 12779.5, + "end": 12780.26, + "probability": 0.8301 + }, + { + "start": 12780.82, + "end": 12783.1, + "probability": 0.9026 + }, + { + "start": 12783.64, + "end": 12785.64, + "probability": 0.9351 + }, + { + "start": 12787.12, + "end": 12791.12, + "probability": 0.7124 + }, + { + "start": 12791.8, + "end": 12793.74, + "probability": 0.6226 + }, + { + "start": 12794.38, + "end": 12797.56, + "probability": 0.971 + }, + { + "start": 12798.26, + "end": 12801.34, + "probability": 0.9087 + }, + { + "start": 12801.34, + "end": 12804.84, + "probability": 0.8854 + }, + { + "start": 12806.1, + "end": 12807.08, + "probability": 0.5024 + }, + { + "start": 12807.78, + "end": 12810.44, + "probability": 0.8468 + }, + { + "start": 12811.48, + "end": 12816.78, + "probability": 0.8536 + }, + { + "start": 12817.42, + "end": 12819.16, + "probability": 0.9216 + }, + { + "start": 12819.64, + "end": 12820.46, + "probability": 0.6434 + }, + { + "start": 12820.5, + "end": 12821.82, + "probability": 0.034 + }, + { + "start": 12835.8, + "end": 12836.64, + "probability": 0.283 + }, + { + "start": 12837.22, + "end": 12840.72, + "probability": 0.8781 + }, + { + "start": 12841.3, + "end": 12844.66, + "probability": 0.8854 + }, + { + "start": 12845.22, + "end": 12846.72, + "probability": 0.8279 + }, + { + "start": 12847.24, + "end": 12850.26, + "probability": 0.9167 + }, + { + "start": 12852.12, + "end": 12853.34, + "probability": 0.7997 + }, + { + "start": 12854.02, + "end": 12857.98, + "probability": 0.93 + }, + { + "start": 12858.8, + "end": 12862.36, + "probability": 0.9935 + }, + { + "start": 12863.36, + "end": 12864.96, + "probability": 0.944 + }, + { + "start": 12865.56, + "end": 12869.02, + "probability": 0.7538 + }, + { + "start": 12869.64, + "end": 12871.8, + "probability": 0.9741 + }, + { + "start": 12872.22, + "end": 12876.22, + "probability": 0.9439 + }, + { + "start": 12877.04, + "end": 12882.64, + "probability": 0.9781 + }, + { + "start": 12885.89, + "end": 12887.19, + "probability": 0.585 + }, + { + "start": 12888.42, + "end": 12889.68, + "probability": 0.7935 + }, + { + "start": 12890.46, + "end": 12893.54, + "probability": 0.9842 + }, + { + "start": 12893.94, + "end": 12895.55, + "probability": 0.9117 + }, + { + "start": 12896.08, + "end": 12897.4, + "probability": 0.933 + }, + { + "start": 12897.84, + "end": 12899.22, + "probability": 0.9543 + }, + { + "start": 12899.3, + "end": 12902.16, + "probability": 0.8771 + }, + { + "start": 12903.02, + "end": 12904.04, + "probability": 0.7582 + }, + { + "start": 12904.62, + "end": 12906.84, + "probability": 0.8089 + }, + { + "start": 12907.52, + "end": 12908.38, + "probability": 0.7652 + }, + { + "start": 12908.44, + "end": 12912.28, + "probability": 0.9907 + }, + { + "start": 12912.94, + "end": 12914.92, + "probability": 0.9825 + }, + { + "start": 12915.68, + "end": 12917.9, + "probability": 0.9806 + }, + { + "start": 12918.74, + "end": 12921.48, + "probability": 0.9921 + }, + { + "start": 12922.16, + "end": 12925.28, + "probability": 0.8807 + }, + { + "start": 12925.98, + "end": 12930.66, + "probability": 0.9515 + }, + { + "start": 12931.52, + "end": 12936.64, + "probability": 0.9732 + }, + { + "start": 12937.5, + "end": 12938.42, + "probability": 0.7156 + }, + { + "start": 12939.14, + "end": 12942.12, + "probability": 0.867 + }, + { + "start": 12942.16, + "end": 12944.02, + "probability": 0.9288 + }, + { + "start": 12944.92, + "end": 12947.3, + "probability": 0.9595 + }, + { + "start": 12948.02, + "end": 12950.88, + "probability": 0.9917 + }, + { + "start": 12951.38, + "end": 12954.9, + "probability": 0.9454 + }, + { + "start": 12955.88, + "end": 12958.12, + "probability": 0.9969 + }, + { + "start": 12958.74, + "end": 12962.08, + "probability": 0.9965 + }, + { + "start": 12962.08, + "end": 12967.02, + "probability": 0.9565 + }, + { + "start": 12967.62, + "end": 12968.26, + "probability": 0.6233 + }, + { + "start": 12968.38, + "end": 12975.28, + "probability": 0.9867 + }, + { + "start": 12975.76, + "end": 12976.48, + "probability": 0.9408 + }, + { + "start": 12976.82, + "end": 12979.16, + "probability": 0.8553 + }, + { + "start": 12979.34, + "end": 12983.7, + "probability": 0.9804 + }, + { + "start": 12984.42, + "end": 12990.08, + "probability": 0.9938 + }, + { + "start": 12990.84, + "end": 12992.2, + "probability": 0.9868 + }, + { + "start": 12992.8, + "end": 12995.82, + "probability": 0.9988 + }, + { + "start": 12997.1, + "end": 12999.4, + "probability": 0.8398 + }, + { + "start": 12999.98, + "end": 13003.96, + "probability": 0.9986 + }, + { + "start": 13005.02, + "end": 13008.72, + "probability": 0.6773 + }, + { + "start": 13009.76, + "end": 13010.56, + "probability": 0.6697 + }, + { + "start": 13010.84, + "end": 13015.98, + "probability": 0.8471 + }, + { + "start": 13015.98, + "end": 13019.18, + "probability": 0.9929 + }, + { + "start": 13019.64, + "end": 13022.84, + "probability": 0.9658 + }, + { + "start": 13024.08, + "end": 13026.38, + "probability": 0.9976 + }, + { + "start": 13027.08, + "end": 13027.42, + "probability": 0.6542 + }, + { + "start": 13028.48, + "end": 13029.88, + "probability": 0.9593 + }, + { + "start": 13031.52, + "end": 13036.58, + "probability": 0.9692 + }, + { + "start": 13037.2, + "end": 13039.74, + "probability": 0.982 + }, + { + "start": 13040.38, + "end": 13045.08, + "probability": 0.9748 + }, + { + "start": 13045.92, + "end": 13048.46, + "probability": 0.8145 + }, + { + "start": 13049.1, + "end": 13051.78, + "probability": 0.9417 + }, + { + "start": 13052.44, + "end": 13055.22, + "probability": 0.9965 + }, + { + "start": 13055.86, + "end": 13058.78, + "probability": 0.8023 + }, + { + "start": 13059.3, + "end": 13063.4, + "probability": 0.9923 + }, + { + "start": 13064.6, + "end": 13065.72, + "probability": 0.7339 + }, + { + "start": 13066.7, + "end": 13068.44, + "probability": 0.8183 + }, + { + "start": 13069.2, + "end": 13070.44, + "probability": 0.9575 + }, + { + "start": 13071.02, + "end": 13072.1, + "probability": 0.7628 + }, + { + "start": 13072.46, + "end": 13073.84, + "probability": 0.8413 + }, + { + "start": 13075.02, + "end": 13078.76, + "probability": 0.9987 + }, + { + "start": 13078.76, + "end": 13082.68, + "probability": 0.9974 + }, + { + "start": 13083.4, + "end": 13090.18, + "probability": 0.9884 + }, + { + "start": 13090.86, + "end": 13093.38, + "probability": 0.991 + }, + { + "start": 13094.5, + "end": 13101.14, + "probability": 0.9772 + }, + { + "start": 13101.74, + "end": 13103.5, + "probability": 0.6009 + }, + { + "start": 13108.4, + "end": 13109.4, + "probability": 0.9623 + }, + { + "start": 13110.0, + "end": 13113.76, + "probability": 0.8724 + }, + { + "start": 13115.6, + "end": 13117.6, + "probability": 0.9861 + }, + { + "start": 13117.6, + "end": 13121.38, + "probability": 0.9853 + }, + { + "start": 13121.4, + "end": 13121.98, + "probability": 0.556 + }, + { + "start": 13122.9, + "end": 13128.0, + "probability": 0.7066 + }, + { + "start": 13129.56, + "end": 13132.4, + "probability": 0.8474 + }, + { + "start": 13132.92, + "end": 13134.02, + "probability": 0.8838 + }, + { + "start": 13135.3, + "end": 13135.56, + "probability": 0.3772 + }, + { + "start": 13136.04, + "end": 13136.5, + "probability": 0.3076 + }, + { + "start": 13136.5, + "end": 13140.58, + "probability": 0.264 + }, + { + "start": 13143.54, + "end": 13144.86, + "probability": 0.1603 + }, + { + "start": 13145.26, + "end": 13145.58, + "probability": 0.7212 + }, + { + "start": 13145.78, + "end": 13151.62, + "probability": 0.9901 + }, + { + "start": 13151.76, + "end": 13152.88, + "probability": 0.9958 + }, + { + "start": 13154.75, + "end": 13157.68, + "probability": 0.999 + }, + { + "start": 13158.54, + "end": 13160.12, + "probability": 0.981 + }, + { + "start": 13160.24, + "end": 13161.48, + "probability": 0.9712 + }, + { + "start": 13162.58, + "end": 13166.24, + "probability": 0.9177 + }, + { + "start": 13167.08, + "end": 13168.46, + "probability": 0.9735 + }, + { + "start": 13168.82, + "end": 13172.66, + "probability": 0.9976 + }, + { + "start": 13173.48, + "end": 13176.02, + "probability": 0.9916 + }, + { + "start": 13176.84, + "end": 13177.6, + "probability": 0.8021 + }, + { + "start": 13178.4, + "end": 13183.24, + "probability": 0.93 + }, + { + "start": 13183.3, + "end": 13184.0, + "probability": 0.8862 + }, + { + "start": 13184.62, + "end": 13189.38, + "probability": 0.9788 + }, + { + "start": 13190.16, + "end": 13193.64, + "probability": 0.7305 + }, + { + "start": 13194.14, + "end": 13195.4, + "probability": 0.8581 + }, + { + "start": 13196.02, + "end": 13197.86, + "probability": 0.6459 + }, + { + "start": 13198.02, + "end": 13198.08, + "probability": 0.6928 + }, + { + "start": 13198.08, + "end": 13199.08, + "probability": 0.2799 + }, + { + "start": 13199.44, + "end": 13203.22, + "probability": 0.9454 + }, + { + "start": 13203.66, + "end": 13206.08, + "probability": 0.9685 + }, + { + "start": 13206.32, + "end": 13207.38, + "probability": 0.9273 + }, + { + "start": 13208.48, + "end": 13213.14, + "probability": 0.7808 + }, + { + "start": 13214.0, + "end": 13218.54, + "probability": 0.9391 + }, + { + "start": 13219.36, + "end": 13220.88, + "probability": 0.7324 + }, + { + "start": 13221.6, + "end": 13223.0, + "probability": 0.9771 + }, + { + "start": 13223.8, + "end": 13225.12, + "probability": 0.8711 + }, + { + "start": 13225.76, + "end": 13226.92, + "probability": 0.9163 + }, + { + "start": 13228.0, + "end": 13229.44, + "probability": 0.9767 + }, + { + "start": 13230.18, + "end": 13231.36, + "probability": 0.8293 + }, + { + "start": 13232.18, + "end": 13234.76, + "probability": 0.3425 + }, + { + "start": 13235.04, + "end": 13241.2, + "probability": 0.9021 + }, + { + "start": 13242.16, + "end": 13246.6, + "probability": 0.9927 + }, + { + "start": 13247.14, + "end": 13250.52, + "probability": 0.9922 + }, + { + "start": 13251.02, + "end": 13253.3, + "probability": 0.9989 + }, + { + "start": 13254.26, + "end": 13255.28, + "probability": 0.8905 + }, + { + "start": 13256.06, + "end": 13261.78, + "probability": 0.5566 + }, + { + "start": 13262.34, + "end": 13264.28, + "probability": 0.4098 + }, + { + "start": 13264.36, + "end": 13265.13, + "probability": 0.4163 + }, + { + "start": 13267.4, + "end": 13268.16, + "probability": 0.7205 + }, + { + "start": 13269.06, + "end": 13269.4, + "probability": 0.0983 + }, + { + "start": 13270.7, + "end": 13271.0, + "probability": 0.1316 + }, + { + "start": 13271.0, + "end": 13271.0, + "probability": 0.2131 + }, + { + "start": 13271.0, + "end": 13271.52, + "probability": 0.491 + }, + { + "start": 13272.32, + "end": 13274.44, + "probability": 0.3678 + }, + { + "start": 13274.48, + "end": 13275.82, + "probability": 0.2695 + }, + { + "start": 13276.3, + "end": 13280.64, + "probability": 0.978 + }, + { + "start": 13281.18, + "end": 13282.32, + "probability": 0.713 + }, + { + "start": 13282.86, + "end": 13284.42, + "probability": 0.5571 + }, + { + "start": 13285.02, + "end": 13286.6, + "probability": 0.5686 + }, + { + "start": 13287.46, + "end": 13289.64, + "probability": 0.0563 + }, + { + "start": 13289.88, + "end": 13291.12, + "probability": 0.7437 + }, + { + "start": 13292.04, + "end": 13297.64, + "probability": 0.9766 + }, + { + "start": 13298.36, + "end": 13305.36, + "probability": 0.9599 + }, + { + "start": 13306.22, + "end": 13309.12, + "probability": 0.9647 + }, + { + "start": 13309.64, + "end": 13310.96, + "probability": 0.9644 + }, + { + "start": 13311.74, + "end": 13313.92, + "probability": 0.9011 + }, + { + "start": 13316.84, + "end": 13318.58, + "probability": 0.9957 + }, + { + "start": 13319.42, + "end": 13321.32, + "probability": 0.9691 + }, + { + "start": 13321.82, + "end": 13325.74, + "probability": 0.9409 + }, + { + "start": 13326.08, + "end": 13330.6, + "probability": 0.9633 + }, + { + "start": 13330.74, + "end": 13331.58, + "probability": 0.811 + }, + { + "start": 13332.28, + "end": 13335.06, + "probability": 0.8774 + }, + { + "start": 13335.72, + "end": 13341.18, + "probability": 0.9574 + }, + { + "start": 13341.7, + "end": 13345.25, + "probability": 0.8452 + }, + { + "start": 13347.14, + "end": 13348.9, + "probability": 0.9583 + }, + { + "start": 13349.5, + "end": 13351.72, + "probability": 0.9409 + }, + { + "start": 13352.32, + "end": 13355.66, + "probability": 0.998 + }, + { + "start": 13356.89, + "end": 13364.98, + "probability": 0.9966 + }, + { + "start": 13365.54, + "end": 13368.22, + "probability": 0.9973 + }, + { + "start": 13368.76, + "end": 13372.14, + "probability": 0.9413 + }, + { + "start": 13372.68, + "end": 13374.14, + "probability": 0.9266 + }, + { + "start": 13374.84, + "end": 13377.4, + "probability": 0.9951 + }, + { + "start": 13378.04, + "end": 13385.06, + "probability": 0.9626 + }, + { + "start": 13385.48, + "end": 13389.98, + "probability": 0.9982 + }, + { + "start": 13391.61, + "end": 13398.82, + "probability": 0.976 + }, + { + "start": 13399.4, + "end": 13403.4, + "probability": 0.9935 + }, + { + "start": 13404.4, + "end": 13406.58, + "probability": 0.9497 + }, + { + "start": 13407.5, + "end": 13408.9, + "probability": 0.4174 + }, + { + "start": 13409.34, + "end": 13410.2, + "probability": 0.0025 + }, + { + "start": 13426.0, + "end": 13426.7, + "probability": 0.022 + }, + { + "start": 13427.02, + "end": 13427.74, + "probability": 0.0867 + }, + { + "start": 13428.98, + "end": 13429.16, + "probability": 0.0753 + }, + { + "start": 13429.16, + "end": 13429.16, + "probability": 0.074 + }, + { + "start": 13429.16, + "end": 13430.06, + "probability": 0.4951 + }, + { + "start": 13430.14, + "end": 13431.66, + "probability": 0.9469 + }, + { + "start": 13432.5, + "end": 13435.6, + "probability": 0.4898 + }, + { + "start": 13437.54, + "end": 13441.14, + "probability": 0.9028 + }, + { + "start": 13441.8, + "end": 13447.52, + "probability": 0.9852 + }, + { + "start": 13448.1, + "end": 13450.26, + "probability": 0.8561 + }, + { + "start": 13451.14, + "end": 13453.04, + "probability": 0.8904 + }, + { + "start": 13453.76, + "end": 13461.26, + "probability": 0.9756 + }, + { + "start": 13461.94, + "end": 13462.72, + "probability": 0.6804 + }, + { + "start": 13462.78, + "end": 13463.4, + "probability": 0.8808 + }, + { + "start": 13463.46, + "end": 13466.44, + "probability": 0.9683 + }, + { + "start": 13466.98, + "end": 13472.88, + "probability": 0.9978 + }, + { + "start": 13473.36, + "end": 13475.22, + "probability": 0.7879 + }, + { + "start": 13475.74, + "end": 13480.78, + "probability": 0.9846 + }, + { + "start": 13481.3, + "end": 13482.94, + "probability": 0.7129 + }, + { + "start": 13483.56, + "end": 13488.46, + "probability": 0.9215 + }, + { + "start": 13490.12, + "end": 13494.52, + "probability": 0.9249 + }, + { + "start": 13494.84, + "end": 13495.14, + "probability": 0.5874 + }, + { + "start": 13495.5, + "end": 13500.62, + "probability": 0.8687 + }, + { + "start": 13502.18, + "end": 13502.82, + "probability": 0.1343 + }, + { + "start": 13502.82, + "end": 13502.84, + "probability": 0.2092 + }, + { + "start": 13502.84, + "end": 13505.46, + "probability": 0.8803 + }, + { + "start": 13505.78, + "end": 13506.94, + "probability": 0.8252 + }, + { + "start": 13507.36, + "end": 13508.57, + "probability": 0.9888 + }, + { + "start": 13508.68, + "end": 13509.58, + "probability": 0.4478 + }, + { + "start": 13509.66, + "end": 13513.08, + "probability": 0.9473 + }, + { + "start": 13513.36, + "end": 13514.7, + "probability": 0.5133 + }, + { + "start": 13514.78, + "end": 13520.52, + "probability": 0.9762 + }, + { + "start": 13520.64, + "end": 13521.24, + "probability": 0.9668 + }, + { + "start": 13521.84, + "end": 13524.56, + "probability": 0.8628 + }, + { + "start": 13525.32, + "end": 13525.89, + "probability": 0.9315 + }, + { + "start": 13527.06, + "end": 13529.26, + "probability": 0.735 + }, + { + "start": 13529.7, + "end": 13532.24, + "probability": 0.8243 + }, + { + "start": 13532.66, + "end": 13535.62, + "probability": 0.9734 + }, + { + "start": 13536.2, + "end": 13540.58, + "probability": 0.7726 + }, + { + "start": 13540.58, + "end": 13545.74, + "probability": 0.7262 + }, + { + "start": 13546.14, + "end": 13548.12, + "probability": 0.2535 + }, + { + "start": 13548.32, + "end": 13553.12, + "probability": 0.9636 + }, + { + "start": 13553.66, + "end": 13553.76, + "probability": 0.3691 + }, + { + "start": 13553.76, + "end": 13556.22, + "probability": 0.9869 + }, + { + "start": 13556.76, + "end": 13558.06, + "probability": 0.7168 + }, + { + "start": 13563.3, + "end": 13564.54, + "probability": 0.5771 + }, + { + "start": 13564.72, + "end": 13564.8, + "probability": 0.603 + }, + { + "start": 13564.8, + "end": 13567.44, + "probability": 0.693 + }, + { + "start": 13567.94, + "end": 13568.56, + "probability": 0.909 + }, + { + "start": 13568.64, + "end": 13570.5, + "probability": 0.73 + }, + { + "start": 13571.12, + "end": 13573.64, + "probability": 0.9347 + }, + { + "start": 13574.02, + "end": 13577.12, + "probability": 0.7563 + }, + { + "start": 13578.0, + "end": 13583.2, + "probability": 0.9916 + }, + { + "start": 13583.2, + "end": 13587.62, + "probability": 0.9934 + }, + { + "start": 13588.08, + "end": 13591.76, + "probability": 0.6163 + }, + { + "start": 13592.4, + "end": 13593.04, + "probability": 0.2718 + }, + { + "start": 13593.86, + "end": 13597.44, + "probability": 0.9467 + }, + { + "start": 13597.44, + "end": 13599.76, + "probability": 0.9868 + }, + { + "start": 13600.24, + "end": 13601.28, + "probability": 0.7502 + }, + { + "start": 13601.48, + "end": 13605.84, + "probability": 0.9954 + }, + { + "start": 13605.98, + "end": 13606.88, + "probability": 0.9568 + }, + { + "start": 13607.16, + "end": 13608.32, + "probability": 0.6098 + }, + { + "start": 13608.38, + "end": 13608.81, + "probability": 0.8784 + }, + { + "start": 13609.68, + "end": 13614.2, + "probability": 0.9637 + }, + { + "start": 13614.22, + "end": 13617.38, + "probability": 0.4291 + }, + { + "start": 13617.4, + "end": 13617.88, + "probability": 0.549 + }, + { + "start": 13618.4, + "end": 13619.58, + "probability": 0.8802 + }, + { + "start": 13620.04, + "end": 13622.46, + "probability": 0.6372 + }, + { + "start": 13622.7, + "end": 13624.66, + "probability": 0.891 + }, + { + "start": 13624.78, + "end": 13626.3, + "probability": 0.9888 + }, + { + "start": 13626.8, + "end": 13627.82, + "probability": 0.6757 + }, + { + "start": 13627.82, + "end": 13628.69, + "probability": 0.4072 + }, + { + "start": 13628.76, + "end": 13631.96, + "probability": 0.6671 + }, + { + "start": 13632.1, + "end": 13632.54, + "probability": 0.5984 + }, + { + "start": 13632.78, + "end": 13634.58, + "probability": 0.7991 + }, + { + "start": 13635.08, + "end": 13637.72, + "probability": 0.7967 + }, + { + "start": 13637.84, + "end": 13638.64, + "probability": 0.9004 + }, + { + "start": 13638.76, + "end": 13639.46, + "probability": 0.8244 + }, + { + "start": 13639.5, + "end": 13643.04, + "probability": 0.9036 + }, + { + "start": 13643.68, + "end": 13646.12, + "probability": 0.9673 + }, + { + "start": 13646.8, + "end": 13647.5, + "probability": 0.7382 + }, + { + "start": 13648.06, + "end": 13650.1, + "probability": 0.9499 + }, + { + "start": 13650.28, + "end": 13652.18, + "probability": 0.9181 + }, + { + "start": 13652.26, + "end": 13653.54, + "probability": 0.9607 + }, + { + "start": 13653.94, + "end": 13656.38, + "probability": 0.996 + }, + { + "start": 13656.46, + "end": 13658.5, + "probability": 0.9806 + }, + { + "start": 13659.73, + "end": 13662.58, + "probability": 0.915 + }, + { + "start": 13662.82, + "end": 13664.3, + "probability": 0.5881 + }, + { + "start": 13664.4, + "end": 13665.42, + "probability": 0.1941 + }, + { + "start": 13665.52, + "end": 13668.46, + "probability": 0.6882 + }, + { + "start": 13668.52, + "end": 13669.72, + "probability": 0.8356 + }, + { + "start": 13669.76, + "end": 13672.56, + "probability": 0.9817 + }, + { + "start": 13672.56, + "end": 13675.06, + "probability": 0.7499 + }, + { + "start": 13675.68, + "end": 13679.48, + "probability": 0.7471 + }, + { + "start": 13679.56, + "end": 13679.9, + "probability": 0.4889 + }, + { + "start": 13679.9, + "end": 13683.44, + "probability": 0.9794 + }, + { + "start": 13683.72, + "end": 13688.66, + "probability": 0.9043 + }, + { + "start": 13688.7, + "end": 13691.86, + "probability": 0.7769 + }, + { + "start": 13692.36, + "end": 13698.4, + "probability": 0.9948 + }, + { + "start": 13698.74, + "end": 13700.14, + "probability": 0.997 + }, + { + "start": 13700.66, + "end": 13702.16, + "probability": 0.9736 + }, + { + "start": 13702.48, + "end": 13704.14, + "probability": 0.7388 + }, + { + "start": 13704.8, + "end": 13706.14, + "probability": 0.5743 + }, + { + "start": 13706.44, + "end": 13709.14, + "probability": 0.7522 + }, + { + "start": 13709.24, + "end": 13709.6, + "probability": 0.671 + }, + { + "start": 13709.92, + "end": 13711.56, + "probability": 0.7605 + }, + { + "start": 13712.06, + "end": 13715.52, + "probability": 0.8441 + }, + { + "start": 13716.22, + "end": 13717.64, + "probability": 0.89 + }, + { + "start": 13718.14, + "end": 13720.48, + "probability": 0.5249 + }, + { + "start": 13721.12, + "end": 13722.86, + "probability": 0.8595 + }, + { + "start": 13722.92, + "end": 13724.74, + "probability": 0.8458 + }, + { + "start": 13724.84, + "end": 13725.58, + "probability": 0.7537 + }, + { + "start": 13726.26, + "end": 13727.0, + "probability": 0.5871 + }, + { + "start": 13727.7, + "end": 13730.84, + "probability": 0.5734 + }, + { + "start": 13730.84, + "end": 13733.73, + "probability": 0.837 + }, + { + "start": 13734.88, + "end": 13737.2, + "probability": 0.1 + }, + { + "start": 13737.94, + "end": 13739.02, + "probability": 0.832 + }, + { + "start": 13758.08, + "end": 13759.84, + "probability": 0.0747 + }, + { + "start": 13762.34, + "end": 13762.34, + "probability": 0.0096 + }, + { + "start": 13762.9, + "end": 13766.06, + "probability": 0.0332 + }, + { + "start": 13767.48, + "end": 13771.04, + "probability": 0.1799 + }, + { + "start": 13771.78, + "end": 13772.1, + "probability": 0.3649 + }, + { + "start": 13773.37, + "end": 13773.48, + "probability": 0.0895 + }, + { + "start": 13773.48, + "end": 13773.76, + "probability": 0.0778 + }, + { + "start": 13773.78, + "end": 13774.78, + "probability": 0.0095 + }, + { + "start": 13776.72, + "end": 13776.82, + "probability": 0.1073 + }, + { + "start": 13777.78, + "end": 13777.78, + "probability": 0.1653 + }, + { + "start": 13777.78, + "end": 13778.12, + "probability": 0.1245 + }, + { + "start": 13778.12, + "end": 13780.79, + "probability": 0.4559 + }, + { + "start": 13781.82, + "end": 13783.72, + "probability": 0.8659 + }, + { + "start": 13784.16, + "end": 13786.4, + "probability": 0.6176 + }, + { + "start": 13787.42, + "end": 13788.08, + "probability": 0.0163 + }, + { + "start": 13789.02, + "end": 13790.9, + "probability": 0.6953 + }, + { + "start": 13791.88, + "end": 13794.4, + "probability": 0.8591 + }, + { + "start": 13795.08, + "end": 13800.66, + "probability": 0.7961 + }, + { + "start": 13800.88, + "end": 13803.0, + "probability": 0.0968 + }, + { + "start": 13803.1, + "end": 13803.66, + "probability": 0.5869 + }, + { + "start": 13803.72, + "end": 13804.18, + "probability": 0.9461 + }, + { + "start": 13810.74, + "end": 13813.9, + "probability": 0.7248 + }, + { + "start": 13814.76, + "end": 13815.78, + "probability": 0.6509 + }, + { + "start": 13815.88, + "end": 13819.86, + "probability": 0.9194 + }, + { + "start": 13819.86, + "end": 13823.28, + "probability": 0.9464 + }, + { + "start": 13823.5, + "end": 13825.46, + "probability": 0.8374 + }, + { + "start": 13826.32, + "end": 13827.36, + "probability": 0.6262 + }, + { + "start": 13827.66, + "end": 13830.34, + "probability": 0.9958 + }, + { + "start": 13831.28, + "end": 13838.56, + "probability": 0.9868 + }, + { + "start": 13838.68, + "end": 13839.54, + "probability": 0.5856 + }, + { + "start": 13839.66, + "end": 13842.34, + "probability": 0.8832 + }, + { + "start": 13843.62, + "end": 13844.22, + "probability": 0.44 + }, + { + "start": 13845.08, + "end": 13845.84, + "probability": 0.9498 + }, + { + "start": 13847.92, + "end": 13848.66, + "probability": 0.9722 + }, + { + "start": 13849.78, + "end": 13851.62, + "probability": 0.9238 + }, + { + "start": 13851.94, + "end": 13853.06, + "probability": 0.7576 + }, + { + "start": 13853.14, + "end": 13854.44, + "probability": 0.9399 + }, + { + "start": 13854.52, + "end": 13858.12, + "probability": 0.947 + }, + { + "start": 13859.32, + "end": 13861.08, + "probability": 0.5438 + }, + { + "start": 13861.28, + "end": 13861.76, + "probability": 0.8798 + }, + { + "start": 13861.9, + "end": 13863.32, + "probability": 0.9372 + }, + { + "start": 13863.4, + "end": 13866.36, + "probability": 0.9943 + }, + { + "start": 13867.32, + "end": 13872.04, + "probability": 0.7293 + }, + { + "start": 13872.72, + "end": 13875.98, + "probability": 0.9512 + }, + { + "start": 13877.04, + "end": 13881.02, + "probability": 0.8325 + }, + { + "start": 13881.1, + "end": 13881.8, + "probability": 0.5308 + }, + { + "start": 13882.54, + "end": 13886.28, + "probability": 0.9973 + }, + { + "start": 13887.24, + "end": 13887.94, + "probability": 0.5059 + }, + { + "start": 13889.16, + "end": 13891.5, + "probability": 0.6357 + }, + { + "start": 13891.74, + "end": 13894.0, + "probability": 0.8443 + }, + { + "start": 13894.42, + "end": 13897.1, + "probability": 0.7853 + }, + { + "start": 13897.1, + "end": 13899.98, + "probability": 0.9453 + }, + { + "start": 13900.84, + "end": 13902.58, + "probability": 0.9912 + }, + { + "start": 13904.98, + "end": 13909.84, + "probability": 0.822 + }, + { + "start": 13910.8, + "end": 13913.88, + "probability": 0.998 + }, + { + "start": 13914.0, + "end": 13917.12, + "probability": 0.9854 + }, + { + "start": 13917.18, + "end": 13919.8, + "probability": 0.9932 + }, + { + "start": 13920.8, + "end": 13924.76, + "probability": 0.7005 + }, + { + "start": 13925.42, + "end": 13926.7, + "probability": 0.8821 + }, + { + "start": 13926.76, + "end": 13930.46, + "probability": 0.9642 + }, + { + "start": 13931.54, + "end": 13934.46, + "probability": 0.9959 + }, + { + "start": 13935.54, + "end": 13937.6, + "probability": 0.7464 + }, + { + "start": 13941.96, + "end": 13944.74, + "probability": 0.6022 + }, + { + "start": 13945.02, + "end": 13947.38, + "probability": 0.3259 + }, + { + "start": 13947.92, + "end": 13948.64, + "probability": 0.1733 + }, + { + "start": 13949.56, + "end": 13950.64, + "probability": 0.9714 + }, + { + "start": 13951.16, + "end": 13952.68, + "probability": 0.9349 + }, + { + "start": 13952.76, + "end": 13953.7, + "probability": 0.5807 + }, + { + "start": 13954.14, + "end": 13956.42, + "probability": 0.4596 + }, + { + "start": 13956.6, + "end": 13958.86, + "probability": 0.7855 + }, + { + "start": 13959.2, + "end": 13959.74, + "probability": 0.8701 + }, + { + "start": 13960.12, + "end": 13961.58, + "probability": 0.3254 + }, + { + "start": 13962.08, + "end": 13964.34, + "probability": 0.557 + }, + { + "start": 13965.12, + "end": 13969.46, + "probability": 0.8896 + }, + { + "start": 13969.62, + "end": 13972.52, + "probability": 0.9564 + }, + { + "start": 13972.78, + "end": 13975.35, + "probability": 0.937 + }, + { + "start": 13976.0, + "end": 13980.04, + "probability": 0.9862 + }, + { + "start": 13980.04, + "end": 13983.44, + "probability": 0.9639 + }, + { + "start": 13983.48, + "end": 13985.5, + "probability": 0.8052 + }, + { + "start": 13986.22, + "end": 13989.06, + "probability": 0.832 + }, + { + "start": 13989.06, + "end": 13989.8, + "probability": 0.8647 + }, + { + "start": 13991.06, + "end": 13993.24, + "probability": 0.8728 + }, + { + "start": 13993.32, + "end": 13995.7, + "probability": 0.8927 + }, + { + "start": 13995.7, + "end": 13999.72, + "probability": 0.9746 + }, + { + "start": 14000.42, + "end": 14003.72, + "probability": 0.3229 + }, + { + "start": 14004.21, + "end": 14006.62, + "probability": 0.9862 + }, + { + "start": 14006.88, + "end": 14008.42, + "probability": 0.8975 + }, + { + "start": 14009.1, + "end": 14013.46, + "probability": 0.9949 + }, + { + "start": 14013.92, + "end": 14015.08, + "probability": 0.9908 + }, + { + "start": 14015.84, + "end": 14023.8, + "probability": 0.9799 + }, + { + "start": 14025.24, + "end": 14028.46, + "probability": 0.993 + }, + { + "start": 14028.86, + "end": 14030.63, + "probability": 0.915 + }, + { + "start": 14031.36, + "end": 14031.86, + "probability": 0.565 + }, + { + "start": 14032.2, + "end": 14034.94, + "probability": 0.9961 + }, + { + "start": 14035.26, + "end": 14035.82, + "probability": 0.5004 + }, + { + "start": 14035.86, + "end": 14041.42, + "probability": 0.9543 + }, + { + "start": 14043.08, + "end": 14046.34, + "probability": 0.9423 + }, + { + "start": 14046.98, + "end": 14049.98, + "probability": 0.9561 + }, + { + "start": 14050.8, + "end": 14059.74, + "probability": 0.9858 + }, + { + "start": 14060.44, + "end": 14062.14, + "probability": 0.8378 + }, + { + "start": 14063.3, + "end": 14065.52, + "probability": 0.8718 + }, + { + "start": 14066.62, + "end": 14069.06, + "probability": 0.989 + }, + { + "start": 14070.02, + "end": 14074.58, + "probability": 0.9873 + }, + { + "start": 14075.02, + "end": 14076.16, + "probability": 0.8184 + }, + { + "start": 14077.12, + "end": 14081.04, + "probability": 0.99 + }, + { + "start": 14081.16, + "end": 14082.24, + "probability": 0.9541 + }, + { + "start": 14083.04, + "end": 14085.96, + "probability": 0.9282 + }, + { + "start": 14087.8, + "end": 14090.14, + "probability": 0.9946 + }, + { + "start": 14091.12, + "end": 14092.94, + "probability": 0.9917 + }, + { + "start": 14093.84, + "end": 14099.02, + "probability": 0.9832 + }, + { + "start": 14100.42, + "end": 14101.76, + "probability": 0.7211 + }, + { + "start": 14102.62, + "end": 14103.94, + "probability": 0.845 + }, + { + "start": 14105.58, + "end": 14108.76, + "probability": 0.9868 + }, + { + "start": 14110.44, + "end": 14112.9, + "probability": 0.9827 + }, + { + "start": 14113.1, + "end": 14117.46, + "probability": 0.9883 + }, + { + "start": 14118.48, + "end": 14119.32, + "probability": 0.9871 + }, + { + "start": 14119.86, + "end": 14123.02, + "probability": 0.9225 + }, + { + "start": 14123.24, + "end": 14123.74, + "probability": 0.6584 + }, + { + "start": 14124.32, + "end": 14125.25, + "probability": 0.6876 + }, + { + "start": 14126.12, + "end": 14128.82, + "probability": 0.9272 + }, + { + "start": 14129.84, + "end": 14132.94, + "probability": 0.9724 + }, + { + "start": 14133.1, + "end": 14134.36, + "probability": 0.9264 + }, + { + "start": 14134.46, + "end": 14134.94, + "probability": 0.7725 + }, + { + "start": 14136.24, + "end": 14138.32, + "probability": 0.418 + }, + { + "start": 14138.7, + "end": 14141.1, + "probability": 0.9591 + }, + { + "start": 14141.2, + "end": 14142.66, + "probability": 0.9885 + }, + { + "start": 14143.3, + "end": 14143.86, + "probability": 0.924 + }, + { + "start": 14147.19, + "end": 14148.56, + "probability": 0.8961 + }, + { + "start": 14148.92, + "end": 14152.32, + "probability": 0.9753 + }, + { + "start": 14152.62, + "end": 14153.94, + "probability": 0.875 + }, + { + "start": 14154.76, + "end": 14156.92, + "probability": 0.9924 + }, + { + "start": 14157.96, + "end": 14163.86, + "probability": 0.9607 + }, + { + "start": 14164.8, + "end": 14170.64, + "probability": 0.9946 + }, + { + "start": 14170.72, + "end": 14172.18, + "probability": 0.9961 + }, + { + "start": 14173.1, + "end": 14176.86, + "probability": 0.9946 + }, + { + "start": 14177.64, + "end": 14180.4, + "probability": 0.9382 + }, + { + "start": 14180.46, + "end": 14183.84, + "probability": 0.9868 + }, + { + "start": 14185.0, + "end": 14187.06, + "probability": 0.827 + }, + { + "start": 14188.26, + "end": 14191.02, + "probability": 0.9849 + }, + { + "start": 14191.02, + "end": 14193.8, + "probability": 0.999 + }, + { + "start": 14194.04, + "end": 14194.95, + "probability": 0.7415 + }, + { + "start": 14195.64, + "end": 14196.0, + "probability": 0.7666 + }, + { + "start": 14196.54, + "end": 14199.34, + "probability": 0.9117 + }, + { + "start": 14199.9, + "end": 14201.74, + "probability": 0.8844 + }, + { + "start": 14202.82, + "end": 14209.58, + "probability": 0.9974 + }, + { + "start": 14209.68, + "end": 14213.12, + "probability": 0.9935 + }, + { + "start": 14213.3, + "end": 14213.52, + "probability": 0.7151 + }, + { + "start": 14214.3, + "end": 14216.38, + "probability": 0.9513 + }, + { + "start": 14216.42, + "end": 14218.46, + "probability": 0.9951 + }, + { + "start": 14219.22, + "end": 14221.52, + "probability": 0.757 + }, + { + "start": 14221.84, + "end": 14222.76, + "probability": 0.9478 + }, + { + "start": 14223.0, + "end": 14223.7, + "probability": 0.7375 + }, + { + "start": 14223.8, + "end": 14224.48, + "probability": 0.674 + }, + { + "start": 14224.8, + "end": 14226.6, + "probability": 0.8881 + }, + { + "start": 14249.38, + "end": 14250.2, + "probability": 0.5682 + }, + { + "start": 14250.28, + "end": 14251.12, + "probability": 0.7325 + }, + { + "start": 14251.32, + "end": 14252.72, + "probability": 0.8537 + }, + { + "start": 14253.72, + "end": 14254.56, + "probability": 0.5355 + }, + { + "start": 14254.8, + "end": 14257.94, + "probability": 0.851 + }, + { + "start": 14258.28, + "end": 14261.14, + "probability": 0.978 + }, + { + "start": 14261.86, + "end": 14263.3, + "probability": 0.7839 + }, + { + "start": 14263.98, + "end": 14264.82, + "probability": 0.2269 + }, + { + "start": 14264.94, + "end": 14267.23, + "probability": 0.9595 + }, + { + "start": 14267.72, + "end": 14272.92, + "probability": 0.9837 + }, + { + "start": 14273.06, + "end": 14278.24, + "probability": 0.479 + }, + { + "start": 14279.28, + "end": 14280.76, + "probability": 0.6519 + }, + { + "start": 14281.66, + "end": 14288.25, + "probability": 0.9868 + }, + { + "start": 14288.5, + "end": 14291.2, + "probability": 0.9076 + }, + { + "start": 14291.84, + "end": 14294.25, + "probability": 0.9631 + }, + { + "start": 14298.64, + "end": 14301.72, + "probability": 0.5875 + }, + { + "start": 14301.98, + "end": 14301.98, + "probability": 0.6852 + }, + { + "start": 14301.98, + "end": 14304.4, + "probability": 0.6966 + }, + { + "start": 14304.5, + "end": 14305.7, + "probability": 0.3973 + }, + { + "start": 14305.7, + "end": 14306.72, + "probability": 0.5649 + }, + { + "start": 14306.98, + "end": 14312.94, + "probability": 0.7039 + }, + { + "start": 14313.08, + "end": 14316.36, + "probability": 0.7396 + }, + { + "start": 14316.42, + "end": 14316.46, + "probability": 0.3791 + }, + { + "start": 14316.46, + "end": 14316.72, + "probability": 0.3159 + }, + { + "start": 14316.86, + "end": 14318.7, + "probability": 0.8134 + }, + { + "start": 14318.84, + "end": 14319.64, + "probability": 0.8178 + }, + { + "start": 14319.74, + "end": 14323.46, + "probability": 0.8734 + }, + { + "start": 14323.9, + "end": 14325.56, + "probability": 0.6145 + }, + { + "start": 14327.45, + "end": 14330.22, + "probability": 0.6821 + }, + { + "start": 14330.62, + "end": 14333.22, + "probability": 0.9792 + }, + { + "start": 14333.56, + "end": 14334.16, + "probability": 0.9525 + }, + { + "start": 14334.26, + "end": 14334.7, + "probability": 0.6433 + }, + { + "start": 14334.8, + "end": 14336.1, + "probability": 0.3021 + }, + { + "start": 14336.1, + "end": 14336.2, + "probability": 0.1895 + }, + { + "start": 14336.84, + "end": 14337.68, + "probability": 0.72 + }, + { + "start": 14337.74, + "end": 14341.44, + "probability": 0.5083 + }, + { + "start": 14343.14, + "end": 14344.32, + "probability": 0.6479 + }, + { + "start": 14344.4, + "end": 14345.04, + "probability": 0.7578 + }, + { + "start": 14345.2, + "end": 14350.98, + "probability": 0.8023 + }, + { + "start": 14351.5, + "end": 14353.12, + "probability": 0.8392 + }, + { + "start": 14354.38, + "end": 14358.56, + "probability": 0.964 + }, + { + "start": 14359.24, + "end": 14361.78, + "probability": 0.6181 + }, + { + "start": 14362.12, + "end": 14363.7, + "probability": 0.7309 + }, + { + "start": 14364.56, + "end": 14367.14, + "probability": 0.7831 + }, + { + "start": 14368.12, + "end": 14373.16, + "probability": 0.8662 + }, + { + "start": 14373.88, + "end": 14379.46, + "probability": 0.9668 + }, + { + "start": 14379.82, + "end": 14381.98, + "probability": 0.9239 + }, + { + "start": 14382.38, + "end": 14383.92, + "probability": 0.4863 + }, + { + "start": 14384.14, + "end": 14385.9, + "probability": 0.916 + }, + { + "start": 14386.06, + "end": 14388.06, + "probability": 0.3213 + }, + { + "start": 14388.78, + "end": 14391.26, + "probability": 0.5173 + }, + { + "start": 14391.46, + "end": 14394.02, + "probability": 0.6806 + }, + { + "start": 14394.82, + "end": 14395.18, + "probability": 0.4517 + }, + { + "start": 14395.36, + "end": 14396.76, + "probability": 0.9246 + }, + { + "start": 14396.82, + "end": 14398.82, + "probability": 0.8001 + }, + { + "start": 14398.98, + "end": 14399.96, + "probability": 0.8888 + }, + { + "start": 14400.18, + "end": 14401.22, + "probability": 0.7423 + }, + { + "start": 14401.3, + "end": 14402.1, + "probability": 0.959 + }, + { + "start": 14402.38, + "end": 14403.06, + "probability": 0.8455 + }, + { + "start": 14403.12, + "end": 14403.7, + "probability": 0.9264 + }, + { + "start": 14403.8, + "end": 14406.56, + "probability": 0.9502 + }, + { + "start": 14406.86, + "end": 14409.54, + "probability": 0.9634 + }, + { + "start": 14409.62, + "end": 14410.08, + "probability": 0.6183 + }, + { + "start": 14410.16, + "end": 14414.1, + "probability": 0.7904 + }, + { + "start": 14414.28, + "end": 14415.64, + "probability": 0.9373 + }, + { + "start": 14416.78, + "end": 14418.08, + "probability": 0.8036 + }, + { + "start": 14418.22, + "end": 14421.73, + "probability": 0.8151 + }, + { + "start": 14422.56, + "end": 14423.64, + "probability": 0.9725 + }, + { + "start": 14424.3, + "end": 14428.96, + "probability": 0.9661 + }, + { + "start": 14429.12, + "end": 14431.14, + "probability": 0.6605 + }, + { + "start": 14432.32, + "end": 14434.24, + "probability": 0.7611 + }, + { + "start": 14434.68, + "end": 14438.8, + "probability": 0.702 + }, + { + "start": 14438.86, + "end": 14439.57, + "probability": 0.9937 + }, + { + "start": 14440.12, + "end": 14441.37, + "probability": 0.9927 + }, + { + "start": 14441.54, + "end": 14442.76, + "probability": 0.8209 + }, + { + "start": 14443.22, + "end": 14444.46, + "probability": 0.8604 + }, + { + "start": 14444.64, + "end": 14445.36, + "probability": 0.8276 + }, + { + "start": 14445.4, + "end": 14447.76, + "probability": 0.9295 + }, + { + "start": 14448.22, + "end": 14452.6, + "probability": 0.9026 + }, + { + "start": 14452.86, + "end": 14453.48, + "probability": 0.8887 + }, + { + "start": 14453.64, + "end": 14455.64, + "probability": 0.7305 + }, + { + "start": 14456.1, + "end": 14457.4, + "probability": 0.981 + }, + { + "start": 14457.66, + "end": 14459.18, + "probability": 0.8481 + }, + { + "start": 14459.94, + "end": 14460.5, + "probability": 0.5832 + }, + { + "start": 14460.54, + "end": 14461.1, + "probability": 0.8551 + }, + { + "start": 14461.56, + "end": 14465.38, + "probability": 0.8495 + }, + { + "start": 14465.7, + "end": 14469.0, + "probability": 0.8743 + }, + { + "start": 14469.32, + "end": 14470.94, + "probability": 0.967 + }, + { + "start": 14471.12, + "end": 14472.57, + "probability": 0.9238 + }, + { + "start": 14472.92, + "end": 14474.35, + "probability": 0.9363 + }, + { + "start": 14474.62, + "end": 14476.16, + "probability": 0.8002 + }, + { + "start": 14476.26, + "end": 14477.72, + "probability": 0.7727 + }, + { + "start": 14478.22, + "end": 14479.04, + "probability": 0.8345 + }, + { + "start": 14479.1, + "end": 14483.04, + "probability": 0.9769 + }, + { + "start": 14483.36, + "end": 14484.03, + "probability": 0.9813 + }, + { + "start": 14484.3, + "end": 14485.3, + "probability": 0.9554 + }, + { + "start": 14485.74, + "end": 14486.72, + "probability": 0.9467 + }, + { + "start": 14487.3, + "end": 14489.6, + "probability": 0.8801 + }, + { + "start": 14490.02, + "end": 14492.6, + "probability": 0.9476 + }, + { + "start": 14493.26, + "end": 14496.12, + "probability": 0.8567 + }, + { + "start": 14496.62, + "end": 14500.58, + "probability": 0.9461 + }, + { + "start": 14500.58, + "end": 14504.94, + "probability": 0.8656 + }, + { + "start": 14505.4, + "end": 14508.12, + "probability": 0.7779 + }, + { + "start": 14508.24, + "end": 14508.34, + "probability": 0.0111 + }, + { + "start": 14508.34, + "end": 14509.86, + "probability": 0.7218 + }, + { + "start": 14510.1, + "end": 14510.7, + "probability": 0.4434 + }, + { + "start": 14510.78, + "end": 14511.93, + "probability": 0.9312 + }, + { + "start": 14512.76, + "end": 14514.96, + "probability": 0.9556 + }, + { + "start": 14515.32, + "end": 14517.32, + "probability": 0.6935 + }, + { + "start": 14517.86, + "end": 14520.94, + "probability": 0.9326 + }, + { + "start": 14521.92, + "end": 14523.78, + "probability": 0.672 + }, + { + "start": 14524.1, + "end": 14525.77, + "probability": 0.6431 + }, + { + "start": 14526.22, + "end": 14526.76, + "probability": 0.3269 + }, + { + "start": 14526.76, + "end": 14528.28, + "probability": 0.607 + }, + { + "start": 14528.62, + "end": 14530.46, + "probability": 0.6447 + }, + { + "start": 14530.54, + "end": 14533.42, + "probability": 0.9255 + }, + { + "start": 14533.68, + "end": 14536.16, + "probability": 0.7406 + }, + { + "start": 14536.18, + "end": 14537.78, + "probability": 0.9692 + }, + { + "start": 14537.94, + "end": 14538.46, + "probability": 0.6597 + }, + { + "start": 14538.58, + "end": 14540.16, + "probability": 0.6367 + }, + { + "start": 14540.2, + "end": 14541.78, + "probability": 0.8455 + }, + { + "start": 14546.04, + "end": 14547.82, + "probability": 0.5777 + }, + { + "start": 14548.28, + "end": 14549.92, + "probability": 0.3341 + }, + { + "start": 14551.4, + "end": 14553.68, + "probability": 0.3759 + }, + { + "start": 14553.74, + "end": 14557.36, + "probability": 0.8285 + }, + { + "start": 14558.44, + "end": 14559.18, + "probability": 0.0593 + }, + { + "start": 14559.24, + "end": 14559.64, + "probability": 0.6559 + }, + { + "start": 14559.82, + "end": 14560.63, + "probability": 0.6871 + }, + { + "start": 14560.82, + "end": 14563.16, + "probability": 0.7018 + }, + { + "start": 14563.28, + "end": 14564.66, + "probability": 0.9385 + }, + { + "start": 14564.86, + "end": 14564.86, + "probability": 0.0479 + }, + { + "start": 14565.7, + "end": 14567.82, + "probability": 0.0856 + }, + { + "start": 14569.64, + "end": 14570.64, + "probability": 0.1322 + }, + { + "start": 14570.64, + "end": 14570.64, + "probability": 0.2649 + }, + { + "start": 14570.64, + "end": 14570.64, + "probability": 0.1945 + }, + { + "start": 14570.64, + "end": 14570.64, + "probability": 0.2146 + }, + { + "start": 14570.64, + "end": 14571.08, + "probability": 0.5443 + }, + { + "start": 14571.24, + "end": 14572.4, + "probability": 0.7103 + }, + { + "start": 14573.2, + "end": 14576.12, + "probability": 0.9611 + }, + { + "start": 14576.94, + "end": 14579.12, + "probability": 0.9819 + }, + { + "start": 14579.24, + "end": 14579.86, + "probability": 0.6475 + }, + { + "start": 14580.66, + "end": 14581.38, + "probability": 0.7167 + }, + { + "start": 14581.44, + "end": 14582.02, + "probability": 0.7861 + }, + { + "start": 14582.12, + "end": 14583.26, + "probability": 0.8466 + }, + { + "start": 14583.58, + "end": 14584.5, + "probability": 0.9493 + }, + { + "start": 14584.98, + "end": 14586.07, + "probability": 0.9639 + }, + { + "start": 14586.8, + "end": 14587.49, + "probability": 0.9595 + }, + { + "start": 14587.98, + "end": 14589.26, + "probability": 0.6195 + }, + { + "start": 14589.78, + "end": 14591.36, + "probability": 0.9382 + }, + { + "start": 14591.72, + "end": 14594.02, + "probability": 0.9968 + }, + { + "start": 14594.16, + "end": 14595.4, + "probability": 0.9943 + }, + { + "start": 14596.34, + "end": 14599.34, + "probability": 0.9399 + }, + { + "start": 14599.92, + "end": 14604.1, + "probability": 0.9649 + }, + { + "start": 14605.58, + "end": 14609.62, + "probability": 0.9941 + }, + { + "start": 14609.66, + "end": 14614.12, + "probability": 0.9847 + }, + { + "start": 14614.56, + "end": 14616.86, + "probability": 0.9958 + }, + { + "start": 14617.78, + "end": 14617.78, + "probability": 0.426 + }, + { + "start": 14617.96, + "end": 14618.88, + "probability": 0.6003 + }, + { + "start": 14618.98, + "end": 14622.6, + "probability": 0.8604 + }, + { + "start": 14623.12, + "end": 14626.0, + "probability": 0.8574 + }, + { + "start": 14626.14, + "end": 14627.12, + "probability": 0.9502 + }, + { + "start": 14627.62, + "end": 14630.36, + "probability": 0.9863 + }, + { + "start": 14630.9, + "end": 14632.96, + "probability": 0.9361 + }, + { + "start": 14634.06, + "end": 14641.4, + "probability": 0.9244 + }, + { + "start": 14642.36, + "end": 14643.68, + "probability": 0.865 + }, + { + "start": 14644.5, + "end": 14650.88, + "probability": 0.8744 + }, + { + "start": 14651.62, + "end": 14653.95, + "probability": 0.7649 + }, + { + "start": 14654.52, + "end": 14656.12, + "probability": 0.9186 + }, + { + "start": 14656.5, + "end": 14659.74, + "probability": 0.992 + }, + { + "start": 14659.8, + "end": 14660.98, + "probability": 0.8151 + }, + { + "start": 14661.54, + "end": 14663.36, + "probability": 0.9734 + }, + { + "start": 14664.22, + "end": 14666.26, + "probability": 0.9739 + }, + { + "start": 14666.82, + "end": 14668.22, + "probability": 0.9845 + }, + { + "start": 14670.02, + "end": 14670.72, + "probability": 0.0953 + }, + { + "start": 14670.72, + "end": 14670.74, + "probability": 0.3208 + }, + { + "start": 14670.84, + "end": 14673.7, + "probability": 0.8206 + }, + { + "start": 14673.7, + "end": 14673.86, + "probability": 0.0398 + }, + { + "start": 14674.14, + "end": 14674.96, + "probability": 0.9131 + }, + { + "start": 14675.59, + "end": 14677.67, + "probability": 0.8867 + }, + { + "start": 14677.76, + "end": 14681.18, + "probability": 0.646 + }, + { + "start": 14681.72, + "end": 14685.8, + "probability": 0.936 + }, + { + "start": 14686.94, + "end": 14689.9, + "probability": 0.9948 + }, + { + "start": 14690.82, + "end": 14691.32, + "probability": 0.7599 + }, + { + "start": 14691.82, + "end": 14692.72, + "probability": 0.7172 + }, + { + "start": 14692.88, + "end": 14697.5, + "probability": 0.9388 + }, + { + "start": 14697.82, + "end": 14699.22, + "probability": 0.9941 + }, + { + "start": 14699.74, + "end": 14700.78, + "probability": 0.9973 + }, + { + "start": 14701.02, + "end": 14704.34, + "probability": 0.9772 + }, + { + "start": 14705.08, + "end": 14707.52, + "probability": 0.9987 + }, + { + "start": 14708.52, + "end": 14709.94, + "probability": 0.9839 + }, + { + "start": 14710.66, + "end": 14711.12, + "probability": 0.6124 + }, + { + "start": 14711.84, + "end": 14715.42, + "probability": 0.9382 + }, + { + "start": 14715.94, + "end": 14718.88, + "probability": 0.954 + }, + { + "start": 14719.56, + "end": 14722.48, + "probability": 0.9985 + }, + { + "start": 14723.12, + "end": 14725.04, + "probability": 0.6016 + }, + { + "start": 14726.46, + "end": 14733.56, + "probability": 0.9648 + }, + { + "start": 14734.1, + "end": 14736.54, + "probability": 0.818 + }, + { + "start": 14737.32, + "end": 14740.96, + "probability": 0.9957 + }, + { + "start": 14740.96, + "end": 14745.16, + "probability": 0.9995 + }, + { + "start": 14745.74, + "end": 14748.88, + "probability": 0.9648 + }, + { + "start": 14749.24, + "end": 14752.07, + "probability": 0.9937 + }, + { + "start": 14752.5, + "end": 14754.96, + "probability": 0.9983 + }, + { + "start": 14754.96, + "end": 14757.56, + "probability": 0.8704 + }, + { + "start": 14758.24, + "end": 14760.72, + "probability": 0.9888 + }, + { + "start": 14761.32, + "end": 14763.6, + "probability": 0.9974 + }, + { + "start": 14764.1, + "end": 14765.66, + "probability": 0.9935 + }, + { + "start": 14766.12, + "end": 14766.78, + "probability": 0.7604 + }, + { + "start": 14767.16, + "end": 14775.68, + "probability": 0.9916 + }, + { + "start": 14776.2, + "end": 14783.84, + "probability": 0.9979 + }, + { + "start": 14784.46, + "end": 14787.54, + "probability": 0.9822 + }, + { + "start": 14787.94, + "end": 14788.38, + "probability": 0.8348 + }, + { + "start": 14788.98, + "end": 14790.46, + "probability": 0.6878 + }, + { + "start": 14790.62, + "end": 14792.12, + "probability": 0.9022 + }, + { + "start": 14792.42, + "end": 14792.9, + "probability": 0.5317 + }, + { + "start": 14793.04, + "end": 14793.82, + "probability": 0.6339 + }, + { + "start": 14795.18, + "end": 14795.84, + "probability": 0.6995 + }, + { + "start": 14796.92, + "end": 14797.74, + "probability": 0.3774 + }, + { + "start": 14804.24, + "end": 14804.99, + "probability": 0.0691 + }, + { + "start": 14805.92, + "end": 14808.44, + "probability": 0.0182 + }, + { + "start": 14810.58, + "end": 14813.6, + "probability": 0.9577 + }, + { + "start": 14813.78, + "end": 14814.34, + "probability": 0.6686 + }, + { + "start": 14814.62, + "end": 14814.8, + "probability": 0.5322 + }, + { + "start": 14815.72, + "end": 14816.52, + "probability": 0.5419 + }, + { + "start": 14817.8, + "end": 14819.48, + "probability": 0.7772 + }, + { + "start": 14820.72, + "end": 14821.84, + "probability": 0.7746 + }, + { + "start": 14822.36, + "end": 14824.2, + "probability": 0.921 + }, + { + "start": 14825.0, + "end": 14827.1, + "probability": 0.8845 + }, + { + "start": 14828.14, + "end": 14831.1, + "probability": 0.7866 + }, + { + "start": 14832.22, + "end": 14833.82, + "probability": 0.8301 + }, + { + "start": 14835.54, + "end": 14837.26, + "probability": 0.8399 + }, + { + "start": 14837.52, + "end": 14837.94, + "probability": 0.8658 + }, + { + "start": 14839.3, + "end": 14842.28, + "probability": 0.8533 + }, + { + "start": 14843.0, + "end": 14848.36, + "probability": 0.8206 + }, + { + "start": 14848.46, + "end": 14851.28, + "probability": 0.6591 + }, + { + "start": 14851.9, + "end": 14853.44, + "probability": 0.8879 + }, + { + "start": 14854.64, + "end": 14857.74, + "probability": 0.989 + }, + { + "start": 14858.38, + "end": 14859.2, + "probability": 0.7221 + }, + { + "start": 14859.96, + "end": 14861.54, + "probability": 0.9539 + }, + { + "start": 14861.64, + "end": 14863.44, + "probability": 0.9673 + }, + { + "start": 14863.56, + "end": 14865.86, + "probability": 0.87 + }, + { + "start": 14865.98, + "end": 14868.34, + "probability": 0.9744 + }, + { + "start": 14869.22, + "end": 14873.76, + "probability": 0.8604 + }, + { + "start": 14874.4, + "end": 14875.34, + "probability": 0.9013 + }, + { + "start": 14875.46, + "end": 14877.92, + "probability": 0.9727 + }, + { + "start": 14877.98, + "end": 14878.96, + "probability": 0.8441 + }, + { + "start": 14880.18, + "end": 14882.7, + "probability": 0.9724 + }, + { + "start": 14882.74, + "end": 14883.68, + "probability": 0.9834 + }, + { + "start": 14885.44, + "end": 14885.84, + "probability": 0.2516 + }, + { + "start": 14885.84, + "end": 14886.02, + "probability": 0.7232 + }, + { + "start": 14886.1, + "end": 14887.03, + "probability": 0.9209 + }, + { + "start": 14887.34, + "end": 14887.56, + "probability": 0.0513 + }, + { + "start": 14887.88, + "end": 14888.92, + "probability": 0.8858 + }, + { + "start": 14889.1, + "end": 14889.48, + "probability": 0.0496 + }, + { + "start": 14890.22, + "end": 14893.98, + "probability": 0.9733 + }, + { + "start": 14896.32, + "end": 14896.54, + "probability": 0.0865 + }, + { + "start": 14896.54, + "end": 14897.56, + "probability": 0.6342 + }, + { + "start": 14898.3, + "end": 14902.96, + "probability": 0.9354 + }, + { + "start": 14903.1, + "end": 14906.46, + "probability": 0.8556 + }, + { + "start": 14906.88, + "end": 14911.06, + "probability": 0.967 + }, + { + "start": 14911.16, + "end": 14912.02, + "probability": 0.8712 + }, + { + "start": 14913.14, + "end": 14915.04, + "probability": 0.7981 + }, + { + "start": 14915.2, + "end": 14916.48, + "probability": 0.7466 + }, + { + "start": 14916.56, + "end": 14920.96, + "probability": 0.9049 + }, + { + "start": 14921.04, + "end": 14922.76, + "probability": 0.9512 + }, + { + "start": 14923.2, + "end": 14926.3, + "probability": 0.9575 + }, + { + "start": 14926.36, + "end": 14927.41, + "probability": 0.8398 + }, + { + "start": 14927.98, + "end": 14929.64, + "probability": 0.9431 + }, + { + "start": 14930.3, + "end": 14932.88, + "probability": 0.9888 + }, + { + "start": 14933.28, + "end": 14936.38, + "probability": 0.9345 + }, + { + "start": 14936.66, + "end": 14939.12, + "probability": 0.7329 + }, + { + "start": 14939.72, + "end": 14940.95, + "probability": 0.0778 + }, + { + "start": 14942.28, + "end": 14942.8, + "probability": 0.7476 + }, + { + "start": 14942.98, + "end": 14944.51, + "probability": 0.2747 + }, + { + "start": 14944.8, + "end": 14947.14, + "probability": 0.8966 + }, + { + "start": 14947.56, + "end": 14950.92, + "probability": 0.8438 + }, + { + "start": 14951.64, + "end": 14953.12, + "probability": 0.9988 + }, + { + "start": 14953.66, + "end": 14954.54, + "probability": 0.6936 + }, + { + "start": 14955.34, + "end": 14956.34, + "probability": 0.5089 + }, + { + "start": 14956.48, + "end": 14957.44, + "probability": 0.6248 + }, + { + "start": 14957.74, + "end": 14959.08, + "probability": 0.8831 + }, + { + "start": 14959.14, + "end": 14959.9, + "probability": 0.6137 + }, + { + "start": 14960.24, + "end": 14961.1, + "probability": 0.9907 + }, + { + "start": 14961.58, + "end": 14965.42, + "probability": 0.9976 + }, + { + "start": 14966.02, + "end": 14974.54, + "probability": 0.8383 + }, + { + "start": 14975.14, + "end": 14977.74, + "probability": 0.9673 + }, + { + "start": 14978.24, + "end": 14980.04, + "probability": 0.8014 + }, + { + "start": 14980.14, + "end": 14980.76, + "probability": 0.3461 + }, + { + "start": 14981.18, + "end": 14986.26, + "probability": 0.9813 + }, + { + "start": 14986.56, + "end": 14988.88, + "probability": 0.9258 + }, + { + "start": 14989.02, + "end": 14991.26, + "probability": 0.8451 + }, + { + "start": 14991.5, + "end": 14995.73, + "probability": 0.9949 + }, + { + "start": 14996.44, + "end": 14997.89, + "probability": 0.8414 + }, + { + "start": 14998.92, + "end": 15003.12, + "probability": 0.9743 + }, + { + "start": 15003.7, + "end": 15007.0, + "probability": 0.9189 + }, + { + "start": 15007.36, + "end": 15010.38, + "probability": 0.8809 + }, + { + "start": 15010.5, + "end": 15010.9, + "probability": 0.7097 + }, + { + "start": 15011.32, + "end": 15011.58, + "probability": 0.6794 + }, + { + "start": 15011.66, + "end": 15013.6, + "probability": 0.846 + }, + { + "start": 15013.6, + "end": 15017.5, + "probability": 0.9127 + }, + { + "start": 15018.02, + "end": 15019.72, + "probability": 0.9502 + }, + { + "start": 15020.32, + "end": 15021.52, + "probability": 0.8923 + }, + { + "start": 15021.98, + "end": 15023.68, + "probability": 0.9197 + }, + { + "start": 15023.78, + "end": 15024.66, + "probability": 0.8693 + }, + { + "start": 15024.66, + "end": 15026.34, + "probability": 0.8623 + }, + { + "start": 15026.42, + "end": 15027.42, + "probability": 0.5059 + }, + { + "start": 15027.78, + "end": 15031.38, + "probability": 0.9878 + }, + { + "start": 15031.6, + "end": 15033.3, + "probability": 0.9916 + }, + { + "start": 15033.96, + "end": 15037.18, + "probability": 0.9896 + }, + { + "start": 15037.74, + "end": 15039.88, + "probability": 0.978 + }, + { + "start": 15040.58, + "end": 15040.6, + "probability": 0.8711 + }, + { + "start": 15042.02, + "end": 15043.26, + "probability": 0.9353 + }, + { + "start": 15043.38, + "end": 15044.14, + "probability": 0.9745 + }, + { + "start": 15044.5, + "end": 15045.54, + "probability": 0.9406 + }, + { + "start": 15046.14, + "end": 15046.52, + "probability": 0.9319 + }, + { + "start": 15046.9, + "end": 15049.74, + "probability": 0.9663 + }, + { + "start": 15050.12, + "end": 15057.28, + "probability": 0.9755 + }, + { + "start": 15057.72, + "end": 15060.84, + "probability": 0.9978 + }, + { + "start": 15061.36, + "end": 15061.96, + "probability": 0.5099 + }, + { + "start": 15062.02, + "end": 15063.96, + "probability": 0.9706 + }, + { + "start": 15064.28, + "end": 15065.98, + "probability": 0.9868 + }, + { + "start": 15066.3, + "end": 15069.98, + "probability": 0.9163 + }, + { + "start": 15070.48, + "end": 15072.86, + "probability": 0.978 + }, + { + "start": 15073.38, + "end": 15074.64, + "probability": 0.9961 + }, + { + "start": 15075.5, + "end": 15078.82, + "probability": 0.9917 + }, + { + "start": 15078.82, + "end": 15082.0, + "probability": 0.9956 + }, + { + "start": 15082.3, + "end": 15086.68, + "probability": 0.8942 + }, + { + "start": 15087.04, + "end": 15088.92, + "probability": 0.9258 + }, + { + "start": 15089.3, + "end": 15089.68, + "probability": 0.4413 + }, + { + "start": 15089.8, + "end": 15090.38, + "probability": 0.7123 + }, + { + "start": 15090.5, + "end": 15092.94, + "probability": 0.9573 + }, + { + "start": 15092.94, + "end": 15094.98, + "probability": 0.6286 + }, + { + "start": 15095.3, + "end": 15096.51, + "probability": 0.9872 + }, + { + "start": 15097.22, + "end": 15099.56, + "probability": 0.8734 + }, + { + "start": 15100.24, + "end": 15103.16, + "probability": 0.9493 + }, + { + "start": 15103.82, + "end": 15107.06, + "probability": 0.8895 + }, + { + "start": 15108.18, + "end": 15111.12, + "probability": 0.7139 + }, + { + "start": 15111.16, + "end": 15112.8, + "probability": 0.9986 + }, + { + "start": 15113.48, + "end": 15115.41, + "probability": 0.8789 + }, + { + "start": 15116.34, + "end": 15118.46, + "probability": 0.9849 + }, + { + "start": 15118.92, + "end": 15120.48, + "probability": 0.7546 + }, + { + "start": 15121.31, + "end": 15124.16, + "probability": 0.6701 + }, + { + "start": 15124.68, + "end": 15125.74, + "probability": 0.8905 + }, + { + "start": 15126.14, + "end": 15127.32, + "probability": 0.4368 + }, + { + "start": 15127.74, + "end": 15132.9, + "probability": 0.7943 + }, + { + "start": 15133.12, + "end": 15135.7, + "probability": 0.8763 + }, + { + "start": 15136.08, + "end": 15137.66, + "probability": 0.7467 + }, + { + "start": 15137.78, + "end": 15140.76, + "probability": 0.8523 + }, + { + "start": 15141.45, + "end": 15141.66, + "probability": 0.0872 + }, + { + "start": 15142.26, + "end": 15145.14, + "probability": 0.8238 + }, + { + "start": 15145.28, + "end": 15145.82, + "probability": 0.7594 + }, + { + "start": 15145.88, + "end": 15146.52, + "probability": 0.6131 + }, + { + "start": 15146.52, + "end": 15147.8, + "probability": 0.5413 + }, + { + "start": 15151.2, + "end": 15151.62, + "probability": 0.1588 + }, + { + "start": 15152.22, + "end": 15153.67, + "probability": 0.0974 + }, + { + "start": 15174.66, + "end": 15175.8, + "probability": 0.2076 + }, + { + "start": 15176.88, + "end": 15181.38, + "probability": 0.7937 + }, + { + "start": 15181.38, + "end": 15187.34, + "probability": 0.7086 + }, + { + "start": 15188.28, + "end": 15191.02, + "probability": 0.8086 + }, + { + "start": 15192.6, + "end": 15194.06, + "probability": 0.9976 + }, + { + "start": 15195.54, + "end": 15197.97, + "probability": 0.9967 + }, + { + "start": 15198.88, + "end": 15200.6, + "probability": 0.9932 + }, + { + "start": 15201.88, + "end": 15203.95, + "probability": 0.7314 + }, + { + "start": 15205.26, + "end": 15207.38, + "probability": 0.8919 + }, + { + "start": 15208.22, + "end": 15210.44, + "probability": 0.9286 + }, + { + "start": 15211.42, + "end": 15212.48, + "probability": 0.4916 + }, + { + "start": 15212.56, + "end": 15214.4, + "probability": 0.9798 + }, + { + "start": 15215.38, + "end": 15218.0, + "probability": 0.9489 + }, + { + "start": 15218.38, + "end": 15218.42, + "probability": 0.1413 + }, + { + "start": 15218.56, + "end": 15219.34, + "probability": 0.2461 + }, + { + "start": 15220.14, + "end": 15220.74, + "probability": 0.7869 + }, + { + "start": 15221.84, + "end": 15224.74, + "probability": 0.8808 + }, + { + "start": 15225.38, + "end": 15227.44, + "probability": 0.9946 + }, + { + "start": 15227.6, + "end": 15230.98, + "probability": 0.6898 + }, + { + "start": 15238.78, + "end": 15239.52, + "probability": 0.3336 + }, + { + "start": 15240.44, + "end": 15241.8, + "probability": 0.4476 + }, + { + "start": 15243.22, + "end": 15244.78, + "probability": 0.597 + }, + { + "start": 15245.06, + "end": 15245.88, + "probability": 0.595 + }, + { + "start": 15245.96, + "end": 15246.82, + "probability": 0.9287 + }, + { + "start": 15248.74, + "end": 15254.34, + "probability": 0.9987 + }, + { + "start": 15257.48, + "end": 15259.68, + "probability": 0.9064 + }, + { + "start": 15260.52, + "end": 15261.76, + "probability": 0.9568 + }, + { + "start": 15263.14, + "end": 15265.06, + "probability": 0.8542 + }, + { + "start": 15266.7, + "end": 15270.62, + "probability": 0.9663 + }, + { + "start": 15271.38, + "end": 15273.24, + "probability": 0.9306 + }, + { + "start": 15274.24, + "end": 15275.8, + "probability": 0.9983 + }, + { + "start": 15278.88, + "end": 15279.51, + "probability": 0.9683 + }, + { + "start": 15280.16, + "end": 15281.56, + "probability": 0.9468 + }, + { + "start": 15283.56, + "end": 15287.96, + "probability": 0.8423 + }, + { + "start": 15288.14, + "end": 15290.86, + "probability": 0.5466 + }, + { + "start": 15292.02, + "end": 15294.24, + "probability": 0.8116 + }, + { + "start": 15296.2, + "end": 15297.3, + "probability": 0.9058 + }, + { + "start": 15298.82, + "end": 15302.86, + "probability": 0.933 + }, + { + "start": 15303.76, + "end": 15306.46, + "probability": 0.8917 + }, + { + "start": 15306.56, + "end": 15307.53, + "probability": 0.7144 + }, + { + "start": 15309.72, + "end": 15309.78, + "probability": 0.1968 + }, + { + "start": 15309.78, + "end": 15310.81, + "probability": 0.9165 + }, + { + "start": 15313.24, + "end": 15314.44, + "probability": 0.9788 + }, + { + "start": 15316.3, + "end": 15320.24, + "probability": 0.9907 + }, + { + "start": 15321.18, + "end": 15323.82, + "probability": 0.6195 + }, + { + "start": 15324.68, + "end": 15327.24, + "probability": 0.9893 + }, + { + "start": 15328.02, + "end": 15329.48, + "probability": 0.8864 + }, + { + "start": 15330.1, + "end": 15335.82, + "probability": 0.9936 + }, + { + "start": 15337.02, + "end": 15343.52, + "probability": 0.9473 + }, + { + "start": 15344.42, + "end": 15345.53, + "probability": 0.5075 + }, + { + "start": 15347.3, + "end": 15348.16, + "probability": 0.9358 + }, + { + "start": 15348.98, + "end": 15350.6, + "probability": 0.9965 + }, + { + "start": 15351.2, + "end": 15352.98, + "probability": 0.938 + }, + { + "start": 15354.5, + "end": 15356.52, + "probability": 0.2288 + }, + { + "start": 15356.52, + "end": 15360.56, + "probability": 0.8161 + }, + { + "start": 15362.82, + "end": 15364.05, + "probability": 0.6714 + }, + { + "start": 15366.12, + "end": 15373.98, + "probability": 0.9465 + }, + { + "start": 15374.12, + "end": 15375.46, + "probability": 0.9938 + }, + { + "start": 15376.28, + "end": 15378.42, + "probability": 0.9657 + }, + { + "start": 15379.18, + "end": 15382.8, + "probability": 0.9433 + }, + { + "start": 15383.46, + "end": 15384.36, + "probability": 0.9256 + }, + { + "start": 15385.28, + "end": 15388.37, + "probability": 0.7253 + }, + { + "start": 15389.52, + "end": 15390.76, + "probability": 0.959 + }, + { + "start": 15390.96, + "end": 15396.42, + "probability": 0.9978 + }, + { + "start": 15396.96, + "end": 15399.14, + "probability": 0.6333 + }, + { + "start": 15399.66, + "end": 15401.1, + "probability": 0.6386 + }, + { + "start": 15401.74, + "end": 15402.46, + "probability": 0.6854 + }, + { + "start": 15402.72, + "end": 15403.88, + "probability": 0.8325 + }, + { + "start": 15407.4, + "end": 15408.28, + "probability": 0.4898 + }, + { + "start": 15408.94, + "end": 15409.5, + "probability": 0.5419 + }, + { + "start": 15410.14, + "end": 15413.1, + "probability": 0.9979 + }, + { + "start": 15426.76, + "end": 15429.2, + "probability": 0.7227 + }, + { + "start": 15430.74, + "end": 15433.78, + "probability": 0.657 + }, + { + "start": 15435.1, + "end": 15439.17, + "probability": 0.9553 + }, + { + "start": 15439.76, + "end": 15444.22, + "probability": 0.9337 + }, + { + "start": 15444.94, + "end": 15447.44, + "probability": 0.9879 + }, + { + "start": 15448.76, + "end": 15452.68, + "probability": 0.9846 + }, + { + "start": 15452.8, + "end": 15454.68, + "probability": 0.7754 + }, + { + "start": 15455.76, + "end": 15457.06, + "probability": 0.8529 + }, + { + "start": 15458.04, + "end": 15461.82, + "probability": 0.9172 + }, + { + "start": 15461.96, + "end": 15463.26, + "probability": 0.8763 + }, + { + "start": 15463.96, + "end": 15465.4, + "probability": 0.9812 + }, + { + "start": 15465.56, + "end": 15466.36, + "probability": 0.988 + }, + { + "start": 15466.94, + "end": 15468.98, + "probability": 0.7576 + }, + { + "start": 15469.52, + "end": 15471.16, + "probability": 0.7652 + }, + { + "start": 15471.72, + "end": 15474.25, + "probability": 0.9951 + }, + { + "start": 15475.56, + "end": 15476.68, + "probability": 0.855 + }, + { + "start": 15478.08, + "end": 15482.26, + "probability": 0.9683 + }, + { + "start": 15482.76, + "end": 15483.68, + "probability": 0.8833 + }, + { + "start": 15484.06, + "end": 15485.26, + "probability": 0.7792 + }, + { + "start": 15485.56, + "end": 15486.02, + "probability": 0.4632 + }, + { + "start": 15486.62, + "end": 15487.72, + "probability": 0.791 + }, + { + "start": 15488.38, + "end": 15490.76, + "probability": 0.3713 + }, + { + "start": 15490.89, + "end": 15493.7, + "probability": 0.9813 + }, + { + "start": 15495.4, + "end": 15498.46, + "probability": 0.9578 + }, + { + "start": 15499.66, + "end": 15502.16, + "probability": 0.9487 + }, + { + "start": 15502.68, + "end": 15503.8, + "probability": 0.721 + }, + { + "start": 15504.86, + "end": 15507.26, + "probability": 0.0301 + }, + { + "start": 15507.94, + "end": 15510.64, + "probability": 0.8531 + }, + { + "start": 15511.16, + "end": 15512.62, + "probability": 0.9665 + }, + { + "start": 15513.34, + "end": 15516.3, + "probability": 0.9985 + }, + { + "start": 15516.9, + "end": 15518.5, + "probability": 0.9909 + }, + { + "start": 15519.16, + "end": 15520.18, + "probability": 0.9972 + }, + { + "start": 15520.9, + "end": 15523.7, + "probability": 0.9972 + }, + { + "start": 15524.44, + "end": 15529.98, + "probability": 0.9946 + }, + { + "start": 15530.7, + "end": 15535.72, + "probability": 0.8811 + }, + { + "start": 15535.82, + "end": 15541.86, + "probability": 0.9668 + }, + { + "start": 15542.38, + "end": 15546.86, + "probability": 0.983 + }, + { + "start": 15546.86, + "end": 15551.53, + "probability": 0.9204 + }, + { + "start": 15552.66, + "end": 15553.28, + "probability": 0.8013 + }, + { + "start": 15553.34, + "end": 15554.24, + "probability": 0.8825 + }, + { + "start": 15554.28, + "end": 15558.48, + "probability": 0.9836 + }, + { + "start": 15559.1, + "end": 15562.5, + "probability": 0.9009 + }, + { + "start": 15563.02, + "end": 15565.26, + "probability": 0.995 + }, + { + "start": 15566.64, + "end": 15567.2, + "probability": 0.7587 + }, + { + "start": 15567.92, + "end": 15570.31, + "probability": 0.9696 + }, + { + "start": 15571.3, + "end": 15571.58, + "probability": 0.8171 + }, + { + "start": 15572.5, + "end": 15580.44, + "probability": 0.8674 + }, + { + "start": 15580.74, + "end": 15582.94, + "probability": 0.9854 + }, + { + "start": 15583.3, + "end": 15584.78, + "probability": 0.8342 + }, + { + "start": 15585.0, + "end": 15587.62, + "probability": 0.5776 + }, + { + "start": 15587.7, + "end": 15590.3, + "probability": 0.9381 + }, + { + "start": 15591.78, + "end": 15592.56, + "probability": 0.4141 + }, + { + "start": 15592.66, + "end": 15597.86, + "probability": 0.6919 + }, + { + "start": 15598.32, + "end": 15599.18, + "probability": 0.9218 + }, + { + "start": 15599.34, + "end": 15601.4, + "probability": 0.97 + }, + { + "start": 15601.72, + "end": 15602.5, + "probability": 0.5013 + }, + { + "start": 15602.58, + "end": 15603.06, + "probability": 0.7042 + }, + { + "start": 15603.32, + "end": 15603.92, + "probability": 0.5533 + }, + { + "start": 15603.94, + "end": 15604.57, + "probability": 0.8701 + }, + { + "start": 15605.32, + "end": 15605.66, + "probability": 0.097 + }, + { + "start": 15605.68, + "end": 15607.56, + "probability": 0.4194 + }, + { + "start": 15607.7, + "end": 15608.16, + "probability": 0.6447 + }, + { + "start": 15608.16, + "end": 15610.22, + "probability": 0.9078 + }, + { + "start": 15610.74, + "end": 15616.86, + "probability": 0.9141 + }, + { + "start": 15617.06, + "end": 15617.72, + "probability": 0.9089 + }, + { + "start": 15617.78, + "end": 15618.18, + "probability": 0.8207 + }, + { + "start": 15618.24, + "end": 15618.82, + "probability": 0.9456 + }, + { + "start": 15618.94, + "end": 15620.05, + "probability": 0.9487 + }, + { + "start": 15620.44, + "end": 15621.94, + "probability": 0.9922 + }, + { + "start": 15622.6, + "end": 15625.1, + "probability": 0.9229 + }, + { + "start": 15625.52, + "end": 15628.23, + "probability": 0.9442 + }, + { + "start": 15628.82, + "end": 15632.04, + "probability": 0.994 + }, + { + "start": 15632.12, + "end": 15632.58, + "probability": 0.0214 + }, + { + "start": 15632.7, + "end": 15635.54, + "probability": 0.9485 + }, + { + "start": 15635.54, + "end": 15637.92, + "probability": 0.9976 + }, + { + "start": 15637.92, + "end": 15639.68, + "probability": 0.9626 + }, + { + "start": 15640.16, + "end": 15640.79, + "probability": 0.9038 + }, + { + "start": 15642.12, + "end": 15645.72, + "probability": 0.9922 + }, + { + "start": 15647.76, + "end": 15650.5, + "probability": 0.8639 + }, + { + "start": 15651.32, + "end": 15653.52, + "probability": 0.9977 + }, + { + "start": 15654.8, + "end": 15659.22, + "probability": 0.3388 + }, + { + "start": 15660.0, + "end": 15660.6, + "probability": 0.0936 + }, + { + "start": 15660.72, + "end": 15665.98, + "probability": 0.6764 + }, + { + "start": 15666.3, + "end": 15667.96, + "probability": 0.9932 + }, + { + "start": 15668.1, + "end": 15669.56, + "probability": 0.8877 + }, + { + "start": 15670.72, + "end": 15673.72, + "probability": 0.9364 + }, + { + "start": 15673.9, + "end": 15674.8, + "probability": 0.9982 + }, + { + "start": 15677.56, + "end": 15677.96, + "probability": 0.1994 + }, + { + "start": 15679.1, + "end": 15683.4, + "probability": 0.9918 + }, + { + "start": 15683.98, + "end": 15685.24, + "probability": 0.9915 + }, + { + "start": 15685.52, + "end": 15686.72, + "probability": 0.9766 + }, + { + "start": 15687.04, + "end": 15693.18, + "probability": 0.9233 + }, + { + "start": 15694.41, + "end": 15696.6, + "probability": 0.7734 + }, + { + "start": 15697.02, + "end": 15699.5, + "probability": 0.8831 + }, + { + "start": 15700.1, + "end": 15700.94, + "probability": 0.7866 + }, + { + "start": 15701.3, + "end": 15704.78, + "probability": 0.9027 + }, + { + "start": 15705.1, + "end": 15706.5, + "probability": 0.9749 + }, + { + "start": 15706.9, + "end": 15711.38, + "probability": 0.9841 + }, + { + "start": 15712.1, + "end": 15714.52, + "probability": 0.8146 + }, + { + "start": 15715.46, + "end": 15716.56, + "probability": 0.3897 + }, + { + "start": 15716.58, + "end": 15716.92, + "probability": 0.0516 + }, + { + "start": 15716.92, + "end": 15717.24, + "probability": 0.333 + }, + { + "start": 15717.36, + "end": 15717.58, + "probability": 0.5537 + }, + { + "start": 15717.74, + "end": 15718.8, + "probability": 0.9983 + }, + { + "start": 15722.12, + "end": 15724.1, + "probability": 0.9912 + }, + { + "start": 15724.98, + "end": 15729.58, + "probability": 0.9975 + }, + { + "start": 15731.54, + "end": 15737.76, + "probability": 0.9977 + }, + { + "start": 15738.3, + "end": 15739.78, + "probability": 0.9984 + }, + { + "start": 15740.42, + "end": 15740.94, + "probability": 0.95 + }, + { + "start": 15741.62, + "end": 15746.14, + "probability": 0.9589 + }, + { + "start": 15746.56, + "end": 15750.84, + "probability": 0.9932 + }, + { + "start": 15751.54, + "end": 15752.98, + "probability": 0.9194 + }, + { + "start": 15753.26, + "end": 15757.54, + "probability": 0.9882 + }, + { + "start": 15757.54, + "end": 15761.78, + "probability": 0.9766 + }, + { + "start": 15762.8, + "end": 15768.74, + "probability": 0.9789 + }, + { + "start": 15769.78, + "end": 15771.16, + "probability": 0.7922 + }, + { + "start": 15772.72, + "end": 15775.1, + "probability": 0.9322 + }, + { + "start": 15776.8, + "end": 15782.48, + "probability": 0.9919 + }, + { + "start": 15783.64, + "end": 15786.54, + "probability": 0.981 + }, + { + "start": 15786.8, + "end": 15788.18, + "probability": 0.6601 + }, + { + "start": 15789.0, + "end": 15790.16, + "probability": 0.9507 + }, + { + "start": 15791.96, + "end": 15792.38, + "probability": 0.873 + }, + { + "start": 15793.64, + "end": 15797.12, + "probability": 0.9718 + }, + { + "start": 15797.7, + "end": 15799.4, + "probability": 0.8821 + }, + { + "start": 15800.02, + "end": 15802.66, + "probability": 0.8262 + }, + { + "start": 15802.76, + "end": 15803.76, + "probability": 0.4237 + }, + { + "start": 15804.08, + "end": 15804.75, + "probability": 0.7787 + }, + { + "start": 15807.06, + "end": 15809.0, + "probability": 0.9673 + }, + { + "start": 15809.06, + "end": 15811.1, + "probability": 0.8196 + }, + { + "start": 15812.86, + "end": 15815.86, + "probability": 0.9832 + }, + { + "start": 15816.68, + "end": 15819.36, + "probability": 0.522 + }, + { + "start": 15821.38, + "end": 15824.78, + "probability": 0.5737 + }, + { + "start": 15824.88, + "end": 15825.45, + "probability": 0.9036 + }, + { + "start": 15825.94, + "end": 15828.06, + "probability": 0.8642 + }, + { + "start": 15829.12, + "end": 15830.27, + "probability": 0.8679 + }, + { + "start": 15831.0, + "end": 15833.9, + "probability": 0.981 + }, + { + "start": 15834.04, + "end": 15835.32, + "probability": 0.9815 + }, + { + "start": 15835.96, + "end": 15838.76, + "probability": 0.9912 + }, + { + "start": 15838.76, + "end": 15842.36, + "probability": 0.9861 + }, + { + "start": 15843.44, + "end": 15846.76, + "probability": 0.9937 + }, + { + "start": 15848.12, + "end": 15852.18, + "probability": 0.9739 + }, + { + "start": 15852.34, + "end": 15852.8, + "probability": 0.371 + }, + { + "start": 15852.86, + "end": 15853.32, + "probability": 0.5588 + }, + { + "start": 15854.36, + "end": 15857.5, + "probability": 0.9697 + }, + { + "start": 15858.54, + "end": 15860.48, + "probability": 0.6467 + }, + { + "start": 15861.3, + "end": 15865.42, + "probability": 0.8022 + }, + { + "start": 15866.36, + "end": 15869.42, + "probability": 0.7235 + }, + { + "start": 15870.12, + "end": 15870.6, + "probability": 0.5591 + }, + { + "start": 15871.42, + "end": 15874.04, + "probability": 0.9458 + }, + { + "start": 15874.54, + "end": 15876.32, + "probability": 0.9588 + }, + { + "start": 15877.14, + "end": 15880.4, + "probability": 0.8273 + }, + { + "start": 15880.98, + "end": 15884.73, + "probability": 0.9963 + }, + { + "start": 15885.22, + "end": 15887.26, + "probability": 0.9939 + }, + { + "start": 15887.26, + "end": 15891.8, + "probability": 0.9879 + }, + { + "start": 15892.42, + "end": 15898.84, + "probability": 0.9871 + }, + { + "start": 15898.94, + "end": 15901.08, + "probability": 0.8017 + }, + { + "start": 15901.92, + "end": 15902.52, + "probability": 0.8459 + }, + { + "start": 15902.76, + "end": 15903.38, + "probability": 0.5356 + }, + { + "start": 15903.56, + "end": 15906.86, + "probability": 0.9887 + }, + { + "start": 15907.04, + "end": 15909.74, + "probability": 0.9508 + }, + { + "start": 15909.74, + "end": 15911.6, + "probability": 0.9985 + }, + { + "start": 15912.04, + "end": 15912.66, + "probability": 0.5003 + }, + { + "start": 15912.8, + "end": 15915.08, + "probability": 0.7347 + }, + { + "start": 15915.62, + "end": 15919.24, + "probability": 0.9262 + }, + { + "start": 15920.06, + "end": 15923.82, + "probability": 0.952 + }, + { + "start": 15924.58, + "end": 15924.64, + "probability": 0.3289 + }, + { + "start": 15924.64, + "end": 15925.92, + "probability": 0.5448 + }, + { + "start": 15926.24, + "end": 15928.48, + "probability": 0.8697 + }, + { + "start": 15929.48, + "end": 15930.78, + "probability": 0.8237 + }, + { + "start": 15931.58, + "end": 15936.4, + "probability": 0.9648 + }, + { + "start": 15937.0, + "end": 15939.6, + "probability": 0.9473 + }, + { + "start": 15939.7, + "end": 15940.7, + "probability": 0.9771 + }, + { + "start": 15941.36, + "end": 15942.02, + "probability": 0.7754 + }, + { + "start": 15942.06, + "end": 15943.32, + "probability": 0.9827 + }, + { + "start": 15943.4, + "end": 15944.32, + "probability": 0.9398 + }, + { + "start": 15944.4, + "end": 15945.7, + "probability": 0.9775 + }, + { + "start": 15945.76, + "end": 15946.98, + "probability": 0.8807 + }, + { + "start": 15947.02, + "end": 15948.81, + "probability": 0.9805 + }, + { + "start": 15949.53, + "end": 15952.3, + "probability": 0.9343 + }, + { + "start": 15952.72, + "end": 15953.74, + "probability": 0.5186 + }, + { + "start": 15954.42, + "end": 15957.28, + "probability": 0.7804 + }, + { + "start": 15957.84, + "end": 15958.86, + "probability": 0.6712 + }, + { + "start": 15965.27, + "end": 15968.22, + "probability": 0.5376 + }, + { + "start": 15968.22, + "end": 15974.96, + "probability": 0.9769 + }, + { + "start": 15975.04, + "end": 15977.78, + "probability": 0.876 + }, + { + "start": 15978.2, + "end": 15978.95, + "probability": 0.9483 + }, + { + "start": 15979.72, + "end": 15983.48, + "probability": 0.9919 + }, + { + "start": 15984.38, + "end": 15985.78, + "probability": 0.7533 + }, + { + "start": 15985.88, + "end": 15985.98, + "probability": 0.3581 + }, + { + "start": 15986.3, + "end": 15990.52, + "probability": 0.9917 + }, + { + "start": 15990.56, + "end": 15995.14, + "probability": 0.6384 + }, + { + "start": 15995.24, + "end": 15997.2, + "probability": 0.0431 + }, + { + "start": 15998.02, + "end": 15998.9, + "probability": 0.732 + }, + { + "start": 15999.54, + "end": 16000.76, + "probability": 0.5996 + }, + { + "start": 16002.24, + "end": 16002.7, + "probability": 0.4207 + }, + { + "start": 16002.8, + "end": 16003.36, + "probability": 0.7298 + }, + { + "start": 16004.22, + "end": 16004.66, + "probability": 0.7633 + }, + { + "start": 16021.1, + "end": 16022.72, + "probability": 0.0769 + }, + { + "start": 16025.82, + "end": 16025.9, + "probability": 0.0157 + }, + { + "start": 16027.32, + "end": 16029.98, + "probability": 0.6436 + }, + { + "start": 16041.36, + "end": 16042.34, + "probability": 0.1283 + }, + { + "start": 16043.42, + "end": 16043.68, + "probability": 0.094 + }, + { + "start": 16060.72, + "end": 16060.74, + "probability": 0.0567 + }, + { + "start": 16064.44, + "end": 16065.8, + "probability": 0.0157 + }, + { + "start": 16065.8, + "end": 16067.22, + "probability": 0.0216 + }, + { + "start": 16068.9, + "end": 16073.68, + "probability": 0.0297 + }, + { + "start": 16073.86, + "end": 16074.88, + "probability": 0.1648 + }, + { + "start": 16089.98, + "end": 16093.8, + "probability": 0.2404 + }, + { + "start": 16093.88, + "end": 16095.18, + "probability": 0.0343 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.0, + "end": 16113.0, + "probability": 0.0 + }, + { + "start": 16113.18, + "end": 16113.36, + "probability": 0.4926 + }, + { + "start": 16113.36, + "end": 16113.36, + "probability": 0.0437 + }, + { + "start": 16113.36, + "end": 16115.26, + "probability": 0.2831 + }, + { + "start": 16116.06, + "end": 16118.96, + "probability": 0.7036 + }, + { + "start": 16119.12, + "end": 16122.7, + "probability": 0.839 + }, + { + "start": 16126.18, + "end": 16126.42, + "probability": 0.1293 + }, + { + "start": 16126.42, + "end": 16126.42, + "probability": 0.03 + }, + { + "start": 16126.42, + "end": 16127.9, + "probability": 0.825 + }, + { + "start": 16129.16, + "end": 16132.94, + "probability": 0.9548 + }, + { + "start": 16134.0, + "end": 16135.8, + "probability": 0.7824 + }, + { + "start": 16137.72, + "end": 16139.42, + "probability": 0.9464 + }, + { + "start": 16140.18, + "end": 16148.02, + "probability": 0.7054 + }, + { + "start": 16148.68, + "end": 16153.08, + "probability": 0.9971 + }, + { + "start": 16153.66, + "end": 16154.9, + "probability": 0.7688 + }, + { + "start": 16156.66, + "end": 16159.44, + "probability": 0.9314 + }, + { + "start": 16160.54, + "end": 16163.5, + "probability": 0.9544 + }, + { + "start": 16163.84, + "end": 16169.46, + "probability": 0.9945 + }, + { + "start": 16170.04, + "end": 16175.78, + "probability": 0.981 + }, + { + "start": 16177.34, + "end": 16182.48, + "probability": 0.9275 + }, + { + "start": 16184.68, + "end": 16187.1, + "probability": 0.9889 + }, + { + "start": 16187.7, + "end": 16188.9, + "probability": 0.9868 + }, + { + "start": 16190.7, + "end": 16192.37, + "probability": 0.9701 + }, + { + "start": 16193.72, + "end": 16195.9, + "probability": 0.9498 + }, + { + "start": 16198.18, + "end": 16201.9, + "probability": 0.8411 + }, + { + "start": 16202.9, + "end": 16203.92, + "probability": 0.9199 + }, + { + "start": 16206.46, + "end": 16207.12, + "probability": 0.8497 + }, + { + "start": 16208.32, + "end": 16210.94, + "probability": 0.9938 + }, + { + "start": 16211.02, + "end": 16212.26, + "probability": 0.9736 + }, + { + "start": 16213.12, + "end": 16214.24, + "probability": 0.9554 + }, + { + "start": 16215.2, + "end": 16216.15, + "probability": 0.9849 + }, + { + "start": 16217.12, + "end": 16220.94, + "probability": 0.3256 + }, + { + "start": 16222.5, + "end": 16224.48, + "probability": 0.8115 + }, + { + "start": 16225.3, + "end": 16226.4, + "probability": 0.6368 + }, + { + "start": 16227.28, + "end": 16228.15, + "probability": 0.9226 + }, + { + "start": 16228.26, + "end": 16228.88, + "probability": 0.1849 + }, + { + "start": 16230.18, + "end": 16231.32, + "probability": 0.8791 + }, + { + "start": 16232.28, + "end": 16236.54, + "probability": 0.915 + }, + { + "start": 16237.08, + "end": 16238.42, + "probability": 0.9924 + }, + { + "start": 16239.18, + "end": 16241.02, + "probability": 0.9102 + }, + { + "start": 16241.48, + "end": 16243.92, + "probability": 0.8332 + }, + { + "start": 16245.04, + "end": 16248.02, + "probability": 0.942 + }, + { + "start": 16248.4, + "end": 16249.44, + "probability": 0.9639 + }, + { + "start": 16250.0, + "end": 16251.72, + "probability": 0.8108 + }, + { + "start": 16252.44, + "end": 16253.26, + "probability": 0.9448 + }, + { + "start": 16255.88, + "end": 16257.72, + "probability": 0.9216 + }, + { + "start": 16258.56, + "end": 16261.46, + "probability": 0.9939 + }, + { + "start": 16261.96, + "end": 16263.09, + "probability": 0.9946 + }, + { + "start": 16264.62, + "end": 16265.5, + "probability": 0.9783 + }, + { + "start": 16266.12, + "end": 16266.6, + "probability": 0.9395 + }, + { + "start": 16266.68, + "end": 16268.44, + "probability": 0.9728 + }, + { + "start": 16268.62, + "end": 16270.24, + "probability": 0.4115 + }, + { + "start": 16271.0, + "end": 16271.74, + "probability": 0.0916 + }, + { + "start": 16272.28, + "end": 16273.18, + "probability": 0.8057 + }, + { + "start": 16273.72, + "end": 16274.7, + "probability": 0.9775 + }, + { + "start": 16275.02, + "end": 16277.12, + "probability": 0.8861 + }, + { + "start": 16277.66, + "end": 16280.74, + "probability": 0.8646 + }, + { + "start": 16281.04, + "end": 16281.32, + "probability": 0.7354 + }, + { + "start": 16281.6, + "end": 16283.48, + "probability": 0.736 + }, + { + "start": 16285.1, + "end": 16285.58, + "probability": 0.8776 + }, + { + "start": 16286.2, + "end": 16287.44, + "probability": 0.7158 + }, + { + "start": 16288.4, + "end": 16291.8, + "probability": 0.9837 + }, + { + "start": 16292.82, + "end": 16294.52, + "probability": 0.6215 + }, + { + "start": 16294.56, + "end": 16294.66, + "probability": 0.4913 + }, + { + "start": 16294.66, + "end": 16295.54, + "probability": 0.3602 + }, + { + "start": 16295.62, + "end": 16296.7, + "probability": 0.6049 + }, + { + "start": 16296.74, + "end": 16297.92, + "probability": 0.8135 + }, + { + "start": 16299.06, + "end": 16304.7, + "probability": 0.9219 + }, + { + "start": 16305.16, + "end": 16305.26, + "probability": 0.9848 + }, + { + "start": 16305.26, + "end": 16306.98, + "probability": 0.7445 + }, + { + "start": 16307.44, + "end": 16309.28, + "probability": 0.3952 + }, + { + "start": 16309.28, + "end": 16312.02, + "probability": 0.9713 + }, + { + "start": 16312.86, + "end": 16314.86, + "probability": 0.8205 + }, + { + "start": 16315.72, + "end": 16318.38, + "probability": 0.9946 + }, + { + "start": 16318.64, + "end": 16318.98, + "probability": 0.717 + }, + { + "start": 16319.38, + "end": 16322.45, + "probability": 0.7736 + }, + { + "start": 16323.52, + "end": 16326.7, + "probability": 0.8248 + }, + { + "start": 16327.18, + "end": 16329.2, + "probability": 0.998 + }, + { + "start": 16329.76, + "end": 16332.8, + "probability": 0.9688 + }, + { + "start": 16333.62, + "end": 16338.08, + "probability": 0.7194 + }, + { + "start": 16338.34, + "end": 16339.82, + "probability": 0.9768 + }, + { + "start": 16340.22, + "end": 16342.64, + "probability": 0.7811 + }, + { + "start": 16343.32, + "end": 16346.12, + "probability": 0.8858 + }, + { + "start": 16346.98, + "end": 16348.98, + "probability": 0.7225 + }, + { + "start": 16349.52, + "end": 16353.92, + "probability": 0.5966 + }, + { + "start": 16354.04, + "end": 16357.84, + "probability": 0.9466 + }, + { + "start": 16358.42, + "end": 16361.78, + "probability": 0.7866 + }, + { + "start": 16362.42, + "end": 16362.86, + "probability": 0.5856 + }, + { + "start": 16363.0, + "end": 16364.7, + "probability": 0.8829 + }, + { + "start": 16364.74, + "end": 16365.6, + "probability": 0.5333 + }, + { + "start": 16365.76, + "end": 16367.1, + "probability": 0.7052 + }, + { + "start": 16388.2, + "end": 16389.92, + "probability": 0.7774 + }, + { + "start": 16390.82, + "end": 16395.02, + "probability": 0.7615 + }, + { + "start": 16395.58, + "end": 16401.16, + "probability": 0.9581 + }, + { + "start": 16401.36, + "end": 16402.92, + "probability": 0.9342 + }, + { + "start": 16403.36, + "end": 16404.46, + "probability": 0.9192 + }, + { + "start": 16405.02, + "end": 16408.8, + "probability": 0.8728 + }, + { + "start": 16409.16, + "end": 16412.64, + "probability": 0.8117 + }, + { + "start": 16413.48, + "end": 16418.18, + "probability": 0.9659 + }, + { + "start": 16418.54, + "end": 16423.4, + "probability": 0.977 + }, + { + "start": 16424.6, + "end": 16427.98, + "probability": 0.5323 + }, + { + "start": 16428.22, + "end": 16430.84, + "probability": 0.9536 + }, + { + "start": 16431.88, + "end": 16433.96, + "probability": 0.9488 + }, + { + "start": 16433.96, + "end": 16435.64, + "probability": 0.9465 + }, + { + "start": 16436.82, + "end": 16439.06, + "probability": 0.9227 + }, + { + "start": 16441.2, + "end": 16447.08, + "probability": 0.8333 + }, + { + "start": 16447.38, + "end": 16449.3, + "probability": 0.7276 + }, + { + "start": 16450.12, + "end": 16451.12, + "probability": 0.1506 + }, + { + "start": 16454.28, + "end": 16456.4, + "probability": 0.8176 + }, + { + "start": 16457.44, + "end": 16463.08, + "probability": 0.8143 + }, + { + "start": 16463.42, + "end": 16468.0, + "probability": 0.9625 + }, + { + "start": 16468.04, + "end": 16470.88, + "probability": 0.8992 + }, + { + "start": 16472.6, + "end": 16475.46, + "probability": 0.7837 + }, + { + "start": 16475.98, + "end": 16477.98, + "probability": 0.9393 + }, + { + "start": 16478.06, + "end": 16481.04, + "probability": 0.9355 + }, + { + "start": 16481.54, + "end": 16485.76, + "probability": 0.9707 + }, + { + "start": 16486.68, + "end": 16486.96, + "probability": 0.6992 + }, + { + "start": 16487.22, + "end": 16487.28, + "probability": 0.4139 + }, + { + "start": 16487.32, + "end": 16491.5, + "probability": 0.9878 + }, + { + "start": 16492.38, + "end": 16495.06, + "probability": 0.918 + }, + { + "start": 16495.42, + "end": 16495.8, + "probability": 0.8913 + }, + { + "start": 16496.6, + "end": 16499.24, + "probability": 0.9769 + }, + { + "start": 16499.84, + "end": 16503.52, + "probability": 0.9706 + }, + { + "start": 16504.66, + "end": 16509.56, + "probability": 0.824 + }, + { + "start": 16510.58, + "end": 16516.16, + "probability": 0.9535 + }, + { + "start": 16516.26, + "end": 16517.36, + "probability": 0.8778 + }, + { + "start": 16518.02, + "end": 16519.8, + "probability": 0.8658 + }, + { + "start": 16520.62, + "end": 16523.66, + "probability": 0.9769 + }, + { + "start": 16524.0, + "end": 16525.58, + "probability": 0.9702 + }, + { + "start": 16527.36, + "end": 16529.6, + "probability": 0.9503 + }, + { + "start": 16531.84, + "end": 16534.54, + "probability": 0.8854 + }, + { + "start": 16535.08, + "end": 16536.44, + "probability": 0.9556 + }, + { + "start": 16537.06, + "end": 16538.58, + "probability": 0.9785 + }, + { + "start": 16539.12, + "end": 16542.06, + "probability": 0.9831 + }, + { + "start": 16542.5, + "end": 16545.42, + "probability": 0.9741 + }, + { + "start": 16546.26, + "end": 16548.04, + "probability": 0.9543 + }, + { + "start": 16548.08, + "end": 16548.58, + "probability": 0.4712 + }, + { + "start": 16549.98, + "end": 16551.32, + "probability": 0.8964 + }, + { + "start": 16552.54, + "end": 16557.98, + "probability": 0.967 + }, + { + "start": 16560.04, + "end": 16562.34, + "probability": 0.9928 + }, + { + "start": 16562.96, + "end": 16566.82, + "probability": 0.9707 + }, + { + "start": 16568.12, + "end": 16569.16, + "probability": 0.8878 + }, + { + "start": 16571.12, + "end": 16575.06, + "probability": 0.9983 + }, + { + "start": 16575.14, + "end": 16579.46, + "probability": 0.7714 + }, + { + "start": 16580.12, + "end": 16581.98, + "probability": 0.6815 + }, + { + "start": 16582.06, + "end": 16585.42, + "probability": 0.9948 + }, + { + "start": 16586.08, + "end": 16589.34, + "probability": 0.9888 + }, + { + "start": 16589.42, + "end": 16591.96, + "probability": 0.937 + }, + { + "start": 16592.72, + "end": 16599.78, + "probability": 0.9604 + }, + { + "start": 16599.78, + "end": 16603.94, + "probability": 0.981 + }, + { + "start": 16604.12, + "end": 16605.22, + "probability": 0.7546 + }, + { + "start": 16605.28, + "end": 16605.72, + "probability": 0.3909 + }, + { + "start": 16605.92, + "end": 16606.92, + "probability": 0.8058 + }, + { + "start": 16607.76, + "end": 16611.12, + "probability": 0.9645 + }, + { + "start": 16612.12, + "end": 16613.64, + "probability": 0.7838 + }, + { + "start": 16614.66, + "end": 16619.06, + "probability": 0.9895 + }, + { + "start": 16619.2, + "end": 16620.96, + "probability": 0.9312 + }, + { + "start": 16621.4, + "end": 16625.1, + "probability": 0.9504 + }, + { + "start": 16625.64, + "end": 16628.38, + "probability": 0.9844 + }, + { + "start": 16628.88, + "end": 16632.22, + "probability": 0.9976 + }, + { + "start": 16632.36, + "end": 16633.18, + "probability": 0.927 + }, + { + "start": 16634.28, + "end": 16636.32, + "probability": 0.9223 + }, + { + "start": 16637.08, + "end": 16639.3, + "probability": 0.9972 + }, + { + "start": 16639.38, + "end": 16640.28, + "probability": 0.9009 + }, + { + "start": 16641.28, + "end": 16643.44, + "probability": 0.6702 + }, + { + "start": 16643.88, + "end": 16647.04, + "probability": 0.9672 + }, + { + "start": 16647.26, + "end": 16650.34, + "probability": 0.9598 + }, + { + "start": 16652.12, + "end": 16654.32, + "probability": 0.8736 + }, + { + "start": 16655.08, + "end": 16655.92, + "probability": 0.8526 + }, + { + "start": 16661.42, + "end": 16662.04, + "probability": 0.8464 + }, + { + "start": 16662.3, + "end": 16663.34, + "probability": 0.9224 + }, + { + "start": 16663.4, + "end": 16666.01, + "probability": 0.8027 + }, + { + "start": 16666.32, + "end": 16669.28, + "probability": 0.7757 + }, + { + "start": 16669.42, + "end": 16671.34, + "probability": 0.7359 + }, + { + "start": 16671.34, + "end": 16675.3, + "probability": 0.6092 + }, + { + "start": 16675.94, + "end": 16677.66, + "probability": 0.9725 + }, + { + "start": 16677.84, + "end": 16677.84, + "probability": 0.8447 + }, + { + "start": 16677.88, + "end": 16679.78, + "probability": 0.7786 + }, + { + "start": 16680.94, + "end": 16682.22, + "probability": 0.9542 + }, + { + "start": 16682.82, + "end": 16684.48, + "probability": 0.6347 + }, + { + "start": 16686.38, + "end": 16687.42, + "probability": 0.8063 + }, + { + "start": 16687.98, + "end": 16689.06, + "probability": 0.5639 + }, + { + "start": 16690.8, + "end": 16696.98, + "probability": 0.9766 + }, + { + "start": 16698.08, + "end": 16699.46, + "probability": 0.9648 + }, + { + "start": 16700.06, + "end": 16702.4, + "probability": 0.9795 + }, + { + "start": 16703.52, + "end": 16705.58, + "probability": 0.9546 + }, + { + "start": 16707.1, + "end": 16711.2, + "probability": 0.9143 + }, + { + "start": 16711.26, + "end": 16712.36, + "probability": 0.9781 + }, + { + "start": 16713.76, + "end": 16718.22, + "probability": 0.9796 + }, + { + "start": 16720.2, + "end": 16724.08, + "probability": 0.9731 + }, + { + "start": 16724.08, + "end": 16728.2, + "probability": 0.978 + }, + { + "start": 16729.2, + "end": 16732.06, + "probability": 0.5806 + }, + { + "start": 16732.18, + "end": 16732.56, + "probability": 0.7195 + }, + { + "start": 16733.76, + "end": 16736.02, + "probability": 0.9571 + }, + { + "start": 16736.14, + "end": 16740.8, + "probability": 0.8722 + }, + { + "start": 16741.38, + "end": 16744.46, + "probability": 0.9044 + }, + { + "start": 16744.52, + "end": 16747.28, + "probability": 0.6837 + }, + { + "start": 16748.3, + "end": 16751.3, + "probability": 0.886 + }, + { + "start": 16751.82, + "end": 16756.74, + "probability": 0.9761 + }, + { + "start": 16757.16, + "end": 16758.32, + "probability": 0.9749 + }, + { + "start": 16759.38, + "end": 16763.64, + "probability": 0.8618 + }, + { + "start": 16764.52, + "end": 16766.42, + "probability": 0.7813 + }, + { + "start": 16767.2, + "end": 16768.76, + "probability": 0.9845 + }, + { + "start": 16768.88, + "end": 16770.06, + "probability": 0.9956 + }, + { + "start": 16771.24, + "end": 16772.58, + "probability": 0.9932 + }, + { + "start": 16773.42, + "end": 16779.42, + "probability": 0.9914 + }, + { + "start": 16780.04, + "end": 16785.88, + "probability": 0.9761 + }, + { + "start": 16787.74, + "end": 16790.64, + "probability": 0.8667 + }, + { + "start": 16791.36, + "end": 16791.94, + "probability": 0.9659 + }, + { + "start": 16793.14, + "end": 16794.9, + "probability": 0.9815 + }, + { + "start": 16795.06, + "end": 16796.56, + "probability": 0.9889 + }, + { + "start": 16797.02, + "end": 16798.18, + "probability": 0.9048 + }, + { + "start": 16798.74, + "end": 16802.56, + "probability": 0.9492 + }, + { + "start": 16802.74, + "end": 16803.8, + "probability": 0.3284 + }, + { + "start": 16803.86, + "end": 16808.0, + "probability": 0.9727 + }, + { + "start": 16808.64, + "end": 16812.9, + "probability": 0.9814 + }, + { + "start": 16813.14, + "end": 16815.28, + "probability": 0.9408 + }, + { + "start": 16815.72, + "end": 16816.5, + "probability": 0.7491 + }, + { + "start": 16817.14, + "end": 16819.5, + "probability": 0.4537 + }, + { + "start": 16819.58, + "end": 16820.97, + "probability": 0.3934 + }, + { + "start": 16821.48, + "end": 16821.68, + "probability": 0.887 + }, + { + "start": 16821.74, + "end": 16822.44, + "probability": 0.8817 + }, + { + "start": 16822.8, + "end": 16823.8, + "probability": 0.932 + }, + { + "start": 16823.88, + "end": 16826.22, + "probability": 0.5062 + }, + { + "start": 16826.24, + "end": 16826.73, + "probability": 0.168 + }, + { + "start": 16827.24, + "end": 16829.86, + "probability": 0.1756 + }, + { + "start": 16830.66, + "end": 16830.66, + "probability": 0.1724 + }, + { + "start": 16830.66, + "end": 16830.66, + "probability": 0.0961 + }, + { + "start": 16830.66, + "end": 16830.66, + "probability": 0.1797 + }, + { + "start": 16830.66, + "end": 16833.0, + "probability": 0.7881 + }, + { + "start": 16833.24, + "end": 16834.56, + "probability": 0.9066 + }, + { + "start": 16835.0, + "end": 16837.86, + "probability": 0.9624 + }, + { + "start": 16838.4, + "end": 16842.18, + "probability": 0.9235 + }, + { + "start": 16843.56, + "end": 16846.84, + "probability": 0.9904 + }, + { + "start": 16847.3, + "end": 16851.84, + "probability": 0.9783 + }, + { + "start": 16852.1, + "end": 16852.94, + "probability": 0.8017 + }, + { + "start": 16853.22, + "end": 16856.34, + "probability": 0.7334 + }, + { + "start": 16857.2, + "end": 16857.56, + "probability": 0.6364 + }, + { + "start": 16858.38, + "end": 16859.94, + "probability": 0.9127 + }, + { + "start": 16860.02, + "end": 16861.78, + "probability": 0.9895 + }, + { + "start": 16862.04, + "end": 16866.66, + "probability": 0.9902 + }, + { + "start": 16867.2, + "end": 16870.84, + "probability": 0.944 + }, + { + "start": 16870.88, + "end": 16872.64, + "probability": 0.9162 + }, + { + "start": 16873.04, + "end": 16877.82, + "probability": 0.9877 + }, + { + "start": 16877.98, + "end": 16878.24, + "probability": 0.7383 + }, + { + "start": 16878.4, + "end": 16879.16, + "probability": 0.9116 + }, + { + "start": 16879.8, + "end": 16884.4, + "probability": 0.6915 + }, + { + "start": 16884.54, + "end": 16885.76, + "probability": 0.7537 + }, + { + "start": 16885.84, + "end": 16889.36, + "probability": 0.9775 + }, + { + "start": 16889.48, + "end": 16890.86, + "probability": 0.8839 + }, + { + "start": 16891.48, + "end": 16894.24, + "probability": 0.9813 + }, + { + "start": 16894.54, + "end": 16896.54, + "probability": 0.8098 + }, + { + "start": 16897.04, + "end": 16898.46, + "probability": 0.9804 + }, + { + "start": 16899.14, + "end": 16900.88, + "probability": 0.7836 + }, + { + "start": 16901.46, + "end": 16902.44, + "probability": 0.5555 + }, + { + "start": 16903.0, + "end": 16906.98, + "probability": 0.7403 + }, + { + "start": 16907.4, + "end": 16910.2, + "probability": 0.9918 + }, + { + "start": 16910.92, + "end": 16916.74, + "probability": 0.9872 + }, + { + "start": 16917.64, + "end": 16921.22, + "probability": 0.9864 + }, + { + "start": 16921.22, + "end": 16925.12, + "probability": 0.9939 + }, + { + "start": 16925.62, + "end": 16925.86, + "probability": 0.4165 + }, + { + "start": 16925.86, + "end": 16927.59, + "probability": 0.6883 + }, + { + "start": 16928.24, + "end": 16929.54, + "probability": 0.9834 + }, + { + "start": 16934.1, + "end": 16935.78, + "probability": 0.6119 + }, + { + "start": 16950.14, + "end": 16950.83, + "probability": 0.4761 + }, + { + "start": 16951.32, + "end": 16953.26, + "probability": 0.6749 + }, + { + "start": 16954.02, + "end": 16958.58, + "probability": 0.9338 + }, + { + "start": 16958.58, + "end": 16962.86, + "probability": 0.9862 + }, + { + "start": 16963.32, + "end": 16968.28, + "probability": 0.9751 + }, + { + "start": 16969.22, + "end": 16970.16, + "probability": 0.9709 + }, + { + "start": 16972.22, + "end": 16978.12, + "probability": 0.9684 + }, + { + "start": 16979.6, + "end": 16983.66, + "probability": 0.9325 + }, + { + "start": 16984.32, + "end": 16990.64, + "probability": 0.9117 + }, + { + "start": 16990.8, + "end": 16992.58, + "probability": 0.7384 + }, + { + "start": 16993.14, + "end": 16993.92, + "probability": 0.4154 + }, + { + "start": 16994.58, + "end": 16996.6, + "probability": 0.9854 + }, + { + "start": 16997.48, + "end": 16999.6, + "probability": 0.913 + }, + { + "start": 17000.04, + "end": 17000.82, + "probability": 0.9648 + }, + { + "start": 17001.1, + "end": 17001.72, + "probability": 0.5229 + }, + { + "start": 17002.02, + "end": 17002.7, + "probability": 0.7407 + }, + { + "start": 17003.74, + "end": 17006.24, + "probability": 0.9732 + }, + { + "start": 17008.12, + "end": 17013.24, + "probability": 0.873 + }, + { + "start": 17015.06, + "end": 17018.41, + "probability": 0.9966 + }, + { + "start": 17019.44, + "end": 17022.26, + "probability": 0.974 + }, + { + "start": 17023.6, + "end": 17027.2, + "probability": 0.9814 + }, + { + "start": 17027.86, + "end": 17031.68, + "probability": 0.96 + }, + { + "start": 17032.34, + "end": 17037.18, + "probability": 0.9243 + }, + { + "start": 17039.28, + "end": 17043.5, + "probability": 0.8877 + }, + { + "start": 17044.28, + "end": 17051.4, + "probability": 0.8408 + }, + { + "start": 17054.26, + "end": 17057.9, + "probability": 0.9284 + }, + { + "start": 17057.94, + "end": 17063.86, + "probability": 0.9875 + }, + { + "start": 17063.92, + "end": 17064.98, + "probability": 0.5665 + }, + { + "start": 17065.04, + "end": 17067.08, + "probability": 0.8119 + }, + { + "start": 17067.42, + "end": 17070.42, + "probability": 0.9152 + }, + { + "start": 17072.62, + "end": 17075.22, + "probability": 0.9777 + }, + { + "start": 17075.22, + "end": 17078.32, + "probability": 0.9933 + }, + { + "start": 17078.58, + "end": 17080.54, + "probability": 0.9102 + }, + { + "start": 17082.98, + "end": 17084.47, + "probability": 0.6377 + }, + { + "start": 17086.22, + "end": 17089.02, + "probability": 0.6222 + }, + { + "start": 17089.36, + "end": 17093.66, + "probability": 0.9705 + }, + { + "start": 17094.02, + "end": 17095.62, + "probability": 0.9474 + }, + { + "start": 17096.14, + "end": 17096.68, + "probability": 0.9434 + }, + { + "start": 17097.98, + "end": 17103.12, + "probability": 0.979 + }, + { + "start": 17103.12, + "end": 17107.72, + "probability": 0.997 + }, + { + "start": 17108.12, + "end": 17111.41, + "probability": 0.9877 + }, + { + "start": 17113.32, + "end": 17114.48, + "probability": 0.7855 + }, + { + "start": 17114.7, + "end": 17118.6, + "probability": 0.9929 + }, + { + "start": 17119.12, + "end": 17123.78, + "probability": 0.9794 + }, + { + "start": 17124.1, + "end": 17125.9, + "probability": 0.9172 + }, + { + "start": 17126.0, + "end": 17129.24, + "probability": 0.9991 + }, + { + "start": 17129.38, + "end": 17131.04, + "probability": 0.9152 + }, + { + "start": 17131.96, + "end": 17136.68, + "probability": 0.9389 + }, + { + "start": 17137.0, + "end": 17137.8, + "probability": 0.8893 + }, + { + "start": 17139.02, + "end": 17140.62, + "probability": 0.8956 + }, + { + "start": 17140.66, + "end": 17142.08, + "probability": 0.7411 + }, + { + "start": 17142.12, + "end": 17143.84, + "probability": 0.7943 + }, + { + "start": 17143.94, + "end": 17144.52, + "probability": 0.6737 + }, + { + "start": 17144.96, + "end": 17149.88, + "probability": 0.9817 + }, + { + "start": 17151.02, + "end": 17152.18, + "probability": 0.96 + }, + { + "start": 17153.72, + "end": 17156.5, + "probability": 0.994 + }, + { + "start": 17156.96, + "end": 17160.32, + "probability": 0.9907 + }, + { + "start": 17160.72, + "end": 17162.16, + "probability": 0.7452 + }, + { + "start": 17163.49, + "end": 17166.26, + "probability": 0.9686 + }, + { + "start": 17167.46, + "end": 17173.86, + "probability": 0.9864 + }, + { + "start": 17174.2, + "end": 17178.62, + "probability": 0.999 + }, + { + "start": 17180.1, + "end": 17183.96, + "probability": 0.9902 + }, + { + "start": 17184.54, + "end": 17185.94, + "probability": 0.8977 + }, + { + "start": 17186.74, + "end": 17192.14, + "probability": 0.9687 + }, + { + "start": 17192.72, + "end": 17194.48, + "probability": 0.9971 + }, + { + "start": 17195.5, + "end": 17195.82, + "probability": 0.7123 + }, + { + "start": 17197.8, + "end": 17199.46, + "probability": 0.8323 + }, + { + "start": 17200.48, + "end": 17202.84, + "probability": 0.9416 + }, + { + "start": 17203.8, + "end": 17206.19, + "probability": 0.7988 + }, + { + "start": 17207.2, + "end": 17210.74, + "probability": 0.9824 + }, + { + "start": 17210.74, + "end": 17214.98, + "probability": 0.9647 + }, + { + "start": 17215.16, + "end": 17216.48, + "probability": 0.9619 + }, + { + "start": 17217.2, + "end": 17221.02, + "probability": 0.9851 + }, + { + "start": 17221.82, + "end": 17224.84, + "probability": 0.9841 + }, + { + "start": 17225.18, + "end": 17225.62, + "probability": 0.6585 + }, + { + "start": 17226.28, + "end": 17228.06, + "probability": 0.9795 + }, + { + "start": 17228.66, + "end": 17230.38, + "probability": 0.8306 + }, + { + "start": 17232.58, + "end": 17234.26, + "probability": 0.8898 + }, + { + "start": 17240.4, + "end": 17241.04, + "probability": 0.7729 + }, + { + "start": 17244.2, + "end": 17246.14, + "probability": 0.6175 + }, + { + "start": 17246.94, + "end": 17248.5, + "probability": 0.9007 + }, + { + "start": 17248.72, + "end": 17253.56, + "probability": 0.929 + }, + { + "start": 17253.62, + "end": 17257.76, + "probability": 0.9639 + }, + { + "start": 17259.32, + "end": 17265.1, + "probability": 0.9619 + }, + { + "start": 17266.32, + "end": 17269.24, + "probability": 0.9336 + }, + { + "start": 17270.18, + "end": 17271.78, + "probability": 0.9395 + }, + { + "start": 17272.14, + "end": 17272.54, + "probability": 0.8372 + }, + { + "start": 17273.16, + "end": 17274.58, + "probability": 0.9126 + }, + { + "start": 17276.12, + "end": 17279.36, + "probability": 0.9783 + }, + { + "start": 17280.56, + "end": 17284.28, + "probability": 0.9766 + }, + { + "start": 17284.28, + "end": 17286.66, + "probability": 0.8403 + }, + { + "start": 17287.32, + "end": 17289.28, + "probability": 0.9946 + }, + { + "start": 17290.18, + "end": 17292.26, + "probability": 0.8107 + }, + { + "start": 17293.86, + "end": 17295.78, + "probability": 0.9792 + }, + { + "start": 17295.94, + "end": 17297.24, + "probability": 0.9055 + }, + { + "start": 17299.3, + "end": 17302.02, + "probability": 0.9652 + }, + { + "start": 17303.03, + "end": 17305.24, + "probability": 0.8127 + }, + { + "start": 17306.38, + "end": 17309.1, + "probability": 0.999 + }, + { + "start": 17310.48, + "end": 17313.5, + "probability": 0.9897 + }, + { + "start": 17314.24, + "end": 17320.88, + "probability": 0.9603 + }, + { + "start": 17322.82, + "end": 17327.3, + "probability": 0.9956 + }, + { + "start": 17328.2, + "end": 17332.24, + "probability": 0.8621 + }, + { + "start": 17333.52, + "end": 17340.48, + "probability": 0.7933 + }, + { + "start": 17340.54, + "end": 17342.08, + "probability": 0.5596 + }, + { + "start": 17342.88, + "end": 17343.86, + "probability": 0.9106 + }, + { + "start": 17345.76, + "end": 17350.08, + "probability": 0.9475 + }, + { + "start": 17350.4, + "end": 17353.34, + "probability": 0.9498 + }, + { + "start": 17355.68, + "end": 17355.96, + "probability": 0.006 + }, + { + "start": 17355.96, + "end": 17356.84, + "probability": 0.7772 + }, + { + "start": 17357.74, + "end": 17360.66, + "probability": 0.1889 + }, + { + "start": 17360.66, + "end": 17362.12, + "probability": 0.6553 + }, + { + "start": 17362.98, + "end": 17364.46, + "probability": 0.8165 + }, + { + "start": 17367.12, + "end": 17369.02, + "probability": 0.7486 + }, + { + "start": 17370.0, + "end": 17374.18, + "probability": 0.9667 + }, + { + "start": 17375.44, + "end": 17375.44, + "probability": 0.1044 + }, + { + "start": 17375.44, + "end": 17376.2, + "probability": 0.7449 + }, + { + "start": 17376.4, + "end": 17378.6, + "probability": 0.9192 + }, + { + "start": 17379.08, + "end": 17379.4, + "probability": 0.7231 + }, + { + "start": 17379.46, + "end": 17379.92, + "probability": 0.887 + }, + { + "start": 17379.96, + "end": 17383.06, + "probability": 0.5777 + }, + { + "start": 17383.16, + "end": 17385.96, + "probability": 0.8942 + }, + { + "start": 17386.18, + "end": 17386.6, + "probability": 0.8232 + }, + { + "start": 17386.88, + "end": 17391.54, + "probability": 0.9952 + }, + { + "start": 17392.1, + "end": 17394.9, + "probability": 0.8185 + }, + { + "start": 17395.24, + "end": 17395.84, + "probability": 0.9108 + }, + { + "start": 17396.08, + "end": 17398.32, + "probability": 0.8595 + }, + { + "start": 17398.44, + "end": 17398.92, + "probability": 0.8125 + }, + { + "start": 17399.22, + "end": 17401.62, + "probability": 0.9336 + }, + { + "start": 17401.82, + "end": 17402.16, + "probability": 0.9297 + }, + { + "start": 17402.8, + "end": 17407.46, + "probability": 0.8884 + }, + { + "start": 17408.2, + "end": 17410.7, + "probability": 0.9675 + }, + { + "start": 17411.24, + "end": 17416.18, + "probability": 0.6921 + }, + { + "start": 17417.22, + "end": 17420.92, + "probability": 0.8682 + }, + { + "start": 17422.48, + "end": 17425.88, + "probability": 0.7414 + }, + { + "start": 17427.02, + "end": 17430.34, + "probability": 0.9664 + }, + { + "start": 17430.96, + "end": 17432.38, + "probability": 0.8864 + }, + { + "start": 17432.5, + "end": 17438.84, + "probability": 0.9528 + }, + { + "start": 17439.28, + "end": 17439.76, + "probability": 0.5009 + }, + { + "start": 17440.58, + "end": 17443.12, + "probability": 0.8608 + }, + { + "start": 17444.32, + "end": 17445.66, + "probability": 0.9098 + }, + { + "start": 17446.48, + "end": 17447.5, + "probability": 0.7817 + }, + { + "start": 17447.86, + "end": 17450.16, + "probability": 0.8995 + }, + { + "start": 17450.36, + "end": 17452.54, + "probability": 0.9166 + }, + { + "start": 17453.1, + "end": 17453.98, + "probability": 0.9621 + }, + { + "start": 17454.78, + "end": 17455.86, + "probability": 0.925 + }, + { + "start": 17456.36, + "end": 17458.3, + "probability": 0.9391 + }, + { + "start": 17458.4, + "end": 17460.06, + "probability": 0.7686 + }, + { + "start": 17460.86, + "end": 17467.02, + "probability": 0.8085 + }, + { + "start": 17467.58, + "end": 17468.28, + "probability": 0.761 + }, + { + "start": 17468.96, + "end": 17472.86, + "probability": 0.9535 + }, + { + "start": 17473.08, + "end": 17474.06, + "probability": 0.8679 + }, + { + "start": 17474.94, + "end": 17476.2, + "probability": 0.7294 + }, + { + "start": 17476.84, + "end": 17479.56, + "probability": 0.8732 + }, + { + "start": 17480.68, + "end": 17483.03, + "probability": 0.9028 + }, + { + "start": 17484.72, + "end": 17485.56, + "probability": 0.9515 + }, + { + "start": 17486.24, + "end": 17489.14, + "probability": 0.8181 + }, + { + "start": 17489.58, + "end": 17490.42, + "probability": 0.8634 + }, + { + "start": 17490.8, + "end": 17495.28, + "probability": 0.9092 + }, + { + "start": 17497.12, + "end": 17497.8, + "probability": 0.5102 + }, + { + "start": 17498.6, + "end": 17500.24, + "probability": 0.9075 + }, + { + "start": 17501.2, + "end": 17502.2, + "probability": 0.9789 + }, + { + "start": 17503.9, + "end": 17506.2, + "probability": 0.9631 + }, + { + "start": 17506.98, + "end": 17507.82, + "probability": 0.6966 + }, + { + "start": 17508.84, + "end": 17512.96, + "probability": 0.8088 + }, + { + "start": 17512.96, + "end": 17513.42, + "probability": 0.2182 + }, + { + "start": 17514.26, + "end": 17515.54, + "probability": 0.1063 + }, + { + "start": 17517.08, + "end": 17519.36, + "probability": 0.8035 + }, + { + "start": 17519.9, + "end": 17523.32, + "probability": 0.6587 + }, + { + "start": 17523.96, + "end": 17527.04, + "probability": 0.988 + }, + { + "start": 17527.36, + "end": 17533.26, + "probability": 0.9536 + }, + { + "start": 17533.96, + "end": 17536.12, + "probability": 0.9604 + }, + { + "start": 17536.78, + "end": 17539.02, + "probability": 0.934 + }, + { + "start": 17539.66, + "end": 17541.0, + "probability": 0.8662 + }, + { + "start": 17541.04, + "end": 17541.94, + "probability": 0.3042 + }, + { + "start": 17542.74, + "end": 17544.6, + "probability": 0.9614 + }, + { + "start": 17544.64, + "end": 17546.54, + "probability": 0.8756 + }, + { + "start": 17547.08, + "end": 17547.9, + "probability": 0.8242 + }, + { + "start": 17548.08, + "end": 17548.86, + "probability": 0.9241 + }, + { + "start": 17549.36, + "end": 17550.74, + "probability": 0.7741 + }, + { + "start": 17551.3, + "end": 17552.56, + "probability": 0.9961 + }, + { + "start": 17553.12, + "end": 17553.94, + "probability": 0.7325 + }, + { + "start": 17554.12, + "end": 17555.12, + "probability": 0.8975 + }, + { + "start": 17555.4, + "end": 17556.52, + "probability": 0.9381 + }, + { + "start": 17556.6, + "end": 17557.38, + "probability": 0.8376 + }, + { + "start": 17557.66, + "end": 17560.24, + "probability": 0.9224 + }, + { + "start": 17561.52, + "end": 17563.44, + "probability": 0.5718 + }, + { + "start": 17563.58, + "end": 17566.06, + "probability": 0.9502 + }, + { + "start": 17567.3, + "end": 17567.74, + "probability": 0.6939 + }, + { + "start": 17568.64, + "end": 17571.38, + "probability": 0.9896 + }, + { + "start": 17571.44, + "end": 17573.61, + "probability": 0.6836 + }, + { + "start": 17574.28, + "end": 17576.92, + "probability": 0.8341 + }, + { + "start": 17577.4, + "end": 17581.06, + "probability": 0.8896 + }, + { + "start": 17581.52, + "end": 17581.86, + "probability": 0.5753 + }, + { + "start": 17581.98, + "end": 17582.48, + "probability": 0.6289 + }, + { + "start": 17584.17, + "end": 17591.26, + "probability": 0.9905 + }, + { + "start": 17591.48, + "end": 17597.56, + "probability": 0.7839 + }, + { + "start": 17597.68, + "end": 17599.34, + "probability": 0.7335 + }, + { + "start": 17599.38, + "end": 17599.6, + "probability": 0.657 + }, + { + "start": 17600.22, + "end": 17600.94, + "probability": 0.563 + }, + { + "start": 17601.36, + "end": 17604.46, + "probability": 0.6796 + }, + { + "start": 17617.76, + "end": 17619.96, + "probability": 0.6707 + }, + { + "start": 17622.22, + "end": 17626.08, + "probability": 0.8462 + }, + { + "start": 17627.94, + "end": 17628.88, + "probability": 0.9867 + }, + { + "start": 17630.94, + "end": 17633.22, + "probability": 0.9161 + }, + { + "start": 17634.86, + "end": 17635.6, + "probability": 0.9872 + }, + { + "start": 17637.28, + "end": 17639.72, + "probability": 0.8534 + }, + { + "start": 17641.6, + "end": 17642.9, + "probability": 0.8089 + }, + { + "start": 17643.46, + "end": 17646.96, + "probability": 0.9998 + }, + { + "start": 17647.74, + "end": 17649.34, + "probability": 0.8132 + }, + { + "start": 17650.02, + "end": 17652.36, + "probability": 0.996 + }, + { + "start": 17653.36, + "end": 17654.44, + "probability": 0.9501 + }, + { + "start": 17655.8, + "end": 17657.44, + "probability": 0.9983 + }, + { + "start": 17658.52, + "end": 17665.76, + "probability": 0.955 + }, + { + "start": 17668.12, + "end": 17668.96, + "probability": 0.998 + }, + { + "start": 17669.52, + "end": 17672.64, + "probability": 0.979 + }, + { + "start": 17672.78, + "end": 17674.62, + "probability": 0.9974 + }, + { + "start": 17675.38, + "end": 17677.22, + "probability": 0.9973 + }, + { + "start": 17677.96, + "end": 17678.52, + "probability": 0.6493 + }, + { + "start": 17679.28, + "end": 17683.34, + "probability": 0.9472 + }, + { + "start": 17684.18, + "end": 17686.04, + "probability": 0.9794 + }, + { + "start": 17686.68, + "end": 17688.58, + "probability": 0.8401 + }, + { + "start": 17689.3, + "end": 17691.74, + "probability": 0.975 + }, + { + "start": 17692.52, + "end": 17696.64, + "probability": 0.9709 + }, + { + "start": 17697.64, + "end": 17700.76, + "probability": 0.7882 + }, + { + "start": 17701.86, + "end": 17702.7, + "probability": 0.8991 + }, + { + "start": 17703.64, + "end": 17709.0, + "probability": 0.965 + }, + { + "start": 17709.82, + "end": 17710.58, + "probability": 0.5228 + }, + { + "start": 17710.58, + "end": 17711.32, + "probability": 0.7456 + }, + { + "start": 17712.62, + "end": 17713.18, + "probability": 0.978 + }, + { + "start": 17714.32, + "end": 17715.91, + "probability": 0.9178 + }, + { + "start": 17716.7, + "end": 17717.32, + "probability": 0.4655 + }, + { + "start": 17719.28, + "end": 17719.94, + "probability": 0.6732 + }, + { + "start": 17720.64, + "end": 17721.9, + "probability": 0.9764 + }, + { + "start": 17722.44, + "end": 17723.3, + "probability": 0.1345 + }, + { + "start": 17723.88, + "end": 17724.42, + "probability": 0.0653 + }, + { + "start": 17724.84, + "end": 17726.72, + "probability": 0.6826 + }, + { + "start": 17726.82, + "end": 17728.28, + "probability": 0.9653 + }, + { + "start": 17728.64, + "end": 17731.22, + "probability": 0.6835 + }, + { + "start": 17731.72, + "end": 17733.48, + "probability": 0.9438 + }, + { + "start": 17735.08, + "end": 17736.74, + "probability": 0.9171 + }, + { + "start": 17737.54, + "end": 17739.36, + "probability": 0.9722 + }, + { + "start": 17739.96, + "end": 17742.2, + "probability": 0.9302 + }, + { + "start": 17743.36, + "end": 17748.04, + "probability": 0.932 + }, + { + "start": 17749.8, + "end": 17752.08, + "probability": 0.5193 + }, + { + "start": 17753.16, + "end": 17756.66, + "probability": 0.9133 + }, + { + "start": 17757.68, + "end": 17759.84, + "probability": 0.99 + }, + { + "start": 17760.0, + "end": 17761.28, + "probability": 0.9614 + }, + { + "start": 17762.2, + "end": 17762.92, + "probability": 0.7925 + }, + { + "start": 17763.9, + "end": 17767.64, + "probability": 0.9978 + }, + { + "start": 17768.14, + "end": 17769.0, + "probability": 0.9541 + }, + { + "start": 17770.54, + "end": 17771.76, + "probability": 0.9854 + }, + { + "start": 17773.2, + "end": 17775.0, + "probability": 0.606 + }, + { + "start": 17776.48, + "end": 17777.2, + "probability": 0.5772 + }, + { + "start": 17777.44, + "end": 17778.54, + "probability": 0.9548 + }, + { + "start": 17778.92, + "end": 17783.86, + "probability": 0.9689 + }, + { + "start": 17784.9, + "end": 17788.8, + "probability": 0.9695 + }, + { + "start": 17788.8, + "end": 17793.4, + "probability": 0.9893 + }, + { + "start": 17794.04, + "end": 17795.24, + "probability": 0.6086 + }, + { + "start": 17796.46, + "end": 17798.44, + "probability": 0.9939 + }, + { + "start": 17798.58, + "end": 17803.6, + "probability": 0.9915 + }, + { + "start": 17804.62, + "end": 17808.26, + "probability": 0.9936 + }, + { + "start": 17808.84, + "end": 17811.12, + "probability": 0.9941 + }, + { + "start": 17811.3, + "end": 17817.71, + "probability": 0.8996 + }, + { + "start": 17821.58, + "end": 17822.98, + "probability": 0.3056 + }, + { + "start": 17823.2, + "end": 17824.22, + "probability": 0.5265 + }, + { + "start": 17824.28, + "end": 17824.94, + "probability": 0.537 + }, + { + "start": 17825.58, + "end": 17826.2, + "probability": 0.8547 + }, + { + "start": 17827.26, + "end": 17829.4, + "probability": 0.4828 + }, + { + "start": 17830.22, + "end": 17833.22, + "probability": 0.6636 + }, + { + "start": 17834.22, + "end": 17834.94, + "probability": 0.6781 + }, + { + "start": 17835.1, + "end": 17839.6, + "probability": 0.98 + }, + { + "start": 17839.96, + "end": 17840.57, + "probability": 0.9714 + }, + { + "start": 17840.82, + "end": 17841.36, + "probability": 0.9126 + }, + { + "start": 17841.5, + "end": 17842.96, + "probability": 0.677 + }, + { + "start": 17845.58, + "end": 17847.72, + "probability": 0.8757 + }, + { + "start": 17849.62, + "end": 17850.86, + "probability": 0.7683 + }, + { + "start": 17853.68, + "end": 17859.06, + "probability": 0.9015 + }, + { + "start": 17860.06, + "end": 17861.08, + "probability": 0.9774 + }, + { + "start": 17862.7, + "end": 17865.3, + "probability": 0.7849 + }, + { + "start": 17865.3, + "end": 17866.1, + "probability": 0.0647 + }, + { + "start": 17866.62, + "end": 17867.5, + "probability": 0.8554 + }, + { + "start": 17868.06, + "end": 17871.1, + "probability": 0.9868 + }, + { + "start": 17871.68, + "end": 17873.45, + "probability": 0.9955 + }, + { + "start": 17874.16, + "end": 17876.2, + "probability": 0.9897 + }, + { + "start": 17877.6, + "end": 17880.58, + "probability": 0.75 + }, + { + "start": 17881.34, + "end": 17883.08, + "probability": 0.99 + }, + { + "start": 17883.64, + "end": 17884.72, + "probability": 0.9771 + }, + { + "start": 17885.88, + "end": 17889.21, + "probability": 0.9966 + }, + { + "start": 17891.62, + "end": 17894.56, + "probability": 0.9373 + }, + { + "start": 17895.32, + "end": 17896.09, + "probability": 0.0129 + }, + { + "start": 17896.74, + "end": 17898.84, + "probability": 0.6577 + }, + { + "start": 17899.02, + "end": 17900.18, + "probability": 0.784 + }, + { + "start": 17900.18, + "end": 17900.96, + "probability": 0.7991 + }, + { + "start": 17901.2, + "end": 17905.22, + "probability": 0.8579 + }, + { + "start": 17905.86, + "end": 17910.4, + "probability": 0.6164 + }, + { + "start": 17912.78, + "end": 17916.3, + "probability": 0.9427 + }, + { + "start": 17916.66, + "end": 17917.76, + "probability": 0.9863 + }, + { + "start": 17918.5, + "end": 17919.84, + "probability": 0.0254 + }, + { + "start": 17920.34, + "end": 17924.04, + "probability": 0.9202 + }, + { + "start": 17925.38, + "end": 17928.06, + "probability": 0.9524 + }, + { + "start": 17930.62, + "end": 17934.18, + "probability": 0.9979 + }, + { + "start": 17937.9, + "end": 17939.5, + "probability": 0.9218 + }, + { + "start": 17941.06, + "end": 17944.4, + "probability": 0.8798 + }, + { + "start": 17945.79, + "end": 17948.72, + "probability": 0.8468 + }, + { + "start": 17950.14, + "end": 17953.34, + "probability": 0.9979 + }, + { + "start": 17954.26, + "end": 17960.42, + "probability": 0.996 + }, + { + "start": 17961.42, + "end": 17961.96, + "probability": 0.9955 + }, + { + "start": 17963.64, + "end": 17964.58, + "probability": 0.754 + }, + { + "start": 17965.84, + "end": 17967.18, + "probability": 0.6672 + }, + { + "start": 17968.17, + "end": 17971.28, + "probability": 0.5644 + }, + { + "start": 17971.36, + "end": 17973.82, + "probability": 0.8111 + }, + { + "start": 17973.82, + "end": 17975.04, + "probability": 0.9741 + }, + { + "start": 17976.82, + "end": 17981.28, + "probability": 0.9951 + }, + { + "start": 17983.28, + "end": 17984.02, + "probability": 0.9779 + }, + { + "start": 17984.42, + "end": 17985.62, + "probability": 0.9844 + }, + { + "start": 17986.88, + "end": 17988.08, + "probability": 0.9799 + }, + { + "start": 17989.26, + "end": 17994.58, + "probability": 0.9883 + }, + { + "start": 17995.54, + "end": 17996.4, + "probability": 0.9055 + }, + { + "start": 17998.72, + "end": 18001.64, + "probability": 0.9242 + }, + { + "start": 18002.56, + "end": 18003.6, + "probability": 0.8722 + }, + { + "start": 18004.18, + "end": 18007.8, + "probability": 0.9816 + }, + { + "start": 18008.76, + "end": 18013.52, + "probability": 0.918 + }, + { + "start": 18014.22, + "end": 18019.16, + "probability": 0.9419 + }, + { + "start": 18020.36, + "end": 18022.8, + "probability": 0.994 + }, + { + "start": 18022.8, + "end": 18026.02, + "probability": 0.9968 + }, + { + "start": 18026.54, + "end": 18030.46, + "probability": 0.9202 + }, + { + "start": 18030.46, + "end": 18034.28, + "probability": 0.963 + }, + { + "start": 18037.25, + "end": 18040.24, + "probability": 0.2524 + }, + { + "start": 18040.98, + "end": 18041.98, + "probability": 0.7748 + }, + { + "start": 18042.78, + "end": 18046.54, + "probability": 0.9111 + }, + { + "start": 18047.58, + "end": 18048.72, + "probability": 0.9608 + }, + { + "start": 18049.74, + "end": 18052.06, + "probability": 0.9697 + }, + { + "start": 18054.04, + "end": 18055.68, + "probability": 0.9979 + }, + { + "start": 18058.32, + "end": 18059.72, + "probability": 0.9302 + }, + { + "start": 18061.28, + "end": 18064.28, + "probability": 0.9744 + }, + { + "start": 18065.06, + "end": 18066.32, + "probability": 0.9678 + }, + { + "start": 18067.2, + "end": 18067.74, + "probability": 0.9901 + }, + { + "start": 18068.72, + "end": 18070.56, + "probability": 0.9982 + }, + { + "start": 18071.32, + "end": 18073.16, + "probability": 0.8871 + }, + { + "start": 18074.04, + "end": 18078.4, + "probability": 0.9963 + }, + { + "start": 18081.1, + "end": 18083.12, + "probability": 0.6718 + }, + { + "start": 18083.98, + "end": 18086.16, + "probability": 0.9868 + }, + { + "start": 18088.28, + "end": 18092.3, + "probability": 0.3043 + }, + { + "start": 18102.06, + "end": 18106.9, + "probability": 0.9837 + }, + { + "start": 18107.42, + "end": 18110.8, + "probability": 0.9983 + }, + { + "start": 18110.8, + "end": 18114.56, + "probability": 0.9092 + }, + { + "start": 18115.2, + "end": 18117.89, + "probability": 0.9883 + }, + { + "start": 18118.9, + "end": 18121.04, + "probability": 0.484 + }, + { + "start": 18121.96, + "end": 18122.98, + "probability": 0.0282 + }, + { + "start": 18122.98, + "end": 18127.22, + "probability": 0.6013 + }, + { + "start": 18127.6, + "end": 18129.02, + "probability": 0.5962 + }, + { + "start": 18129.24, + "end": 18129.62, + "probability": 0.6003 + }, + { + "start": 18130.12, + "end": 18133.16, + "probability": 0.4101 + }, + { + "start": 18133.46, + "end": 18134.32, + "probability": 0.8282 + }, + { + "start": 18134.62, + "end": 18135.42, + "probability": 0.2998 + }, + { + "start": 18135.46, + "end": 18137.14, + "probability": 0.7144 + }, + { + "start": 18137.44, + "end": 18138.06, + "probability": 0.3663 + }, + { + "start": 18138.24, + "end": 18139.72, + "probability": 0.4067 + }, + { + "start": 18140.36, + "end": 18145.76, + "probability": 0.7739 + }, + { + "start": 18146.88, + "end": 18147.93, + "probability": 0.1921 + } + ], + "segments_count": 5855, + "words_count": 30389, + "avg_words_per_segment": 5.1903, + "avg_segment_duration": 2.386, + "avg_words_per_minute": 100.3458, + "plenum_id": "14393", + "duration": 18170.56, + "title": null, + "plenum_date": "2011-06-28" +} \ No newline at end of file