diff --git "a/19334/metadata.json" "b/19334/metadata.json" new file mode 100644--- /dev/null +++ "b/19334/metadata.json" @@ -0,0 +1,43167 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "19334", + "quality_score": 0.917, + "per_segment_quality_scores": [ + { + "start": 22.32, + "end": 26.28, + "probability": 0.5865 + }, + { + "start": 27.08, + "end": 29.86, + "probability": 0.9479 + }, + { + "start": 31.26, + "end": 36.9, + "probability": 0.9297 + }, + { + "start": 37.46, + "end": 38.38, + "probability": 0.8594 + }, + { + "start": 38.44, + "end": 42.5, + "probability": 0.9813 + }, + { + "start": 43.16, + "end": 45.83, + "probability": 0.9882 + }, + { + "start": 46.44, + "end": 48.88, + "probability": 0.9624 + }, + { + "start": 49.44, + "end": 51.06, + "probability": 0.9888 + }, + { + "start": 51.22, + "end": 52.83, + "probability": 0.8463 + }, + { + "start": 54.28, + "end": 56.62, + "probability": 0.9655 + }, + { + "start": 58.16, + "end": 60.62, + "probability": 0.8431 + }, + { + "start": 61.42, + "end": 63.66, + "probability": 0.868 + }, + { + "start": 63.74, + "end": 65.34, + "probability": 0.667 + }, + { + "start": 66.12, + "end": 68.62, + "probability": 0.9241 + }, + { + "start": 68.73, + "end": 73.12, + "probability": 0.9351 + }, + { + "start": 73.24, + "end": 74.84, + "probability": 0.9041 + }, + { + "start": 76.96, + "end": 79.04, + "probability": 0.8066 + }, + { + "start": 79.74, + "end": 80.88, + "probability": 0.7322 + }, + { + "start": 81.72, + "end": 84.2, + "probability": 0.9238 + }, + { + "start": 84.84, + "end": 87.88, + "probability": 0.9876 + }, + { + "start": 88.9, + "end": 90.34, + "probability": 0.7562 + }, + { + "start": 91.88, + "end": 94.28, + "probability": 0.7277 + }, + { + "start": 96.38, + "end": 99.06, + "probability": 0.8975 + }, + { + "start": 99.58, + "end": 99.78, + "probability": 0.6697 + }, + { + "start": 103.02, + "end": 106.88, + "probability": 0.992 + }, + { + "start": 108.44, + "end": 110.5, + "probability": 0.9303 + }, + { + "start": 111.14, + "end": 112.12, + "probability": 0.9224 + }, + { + "start": 113.9, + "end": 114.7, + "probability": 0.6707 + }, + { + "start": 116.04, + "end": 118.34, + "probability": 0.9143 + }, + { + "start": 119.3, + "end": 121.66, + "probability": 0.9604 + }, + { + "start": 124.62, + "end": 125.84, + "probability": 0.8271 + }, + { + "start": 127.2, + "end": 129.46, + "probability": 0.9858 + }, + { + "start": 129.54, + "end": 129.56, + "probability": 0.2948 + }, + { + "start": 129.62, + "end": 131.46, + "probability": 0.5116 + }, + { + "start": 131.6, + "end": 131.72, + "probability": 0.4699 + }, + { + "start": 132.58, + "end": 139.1, + "probability": 0.9614 + }, + { + "start": 139.81, + "end": 141.24, + "probability": 0.951 + }, + { + "start": 143.26, + "end": 146.88, + "probability": 0.962 + }, + { + "start": 146.98, + "end": 147.36, + "probability": 0.5516 + }, + { + "start": 147.5, + "end": 148.14, + "probability": 0.664 + }, + { + "start": 148.3, + "end": 149.74, + "probability": 0.5425 + }, + { + "start": 150.48, + "end": 151.76, + "probability": 0.8106 + }, + { + "start": 151.9, + "end": 153.68, + "probability": 0.9744 + }, + { + "start": 154.02, + "end": 154.58, + "probability": 0.5361 + }, + { + "start": 155.16, + "end": 155.16, + "probability": 0.8502 + }, + { + "start": 155.52, + "end": 156.74, + "probability": 0.3808 + }, + { + "start": 156.84, + "end": 158.08, + "probability": 0.5896 + }, + { + "start": 158.4, + "end": 159.26, + "probability": 0.7795 + }, + { + "start": 159.5, + "end": 160.2, + "probability": 0.9559 + }, + { + "start": 160.96, + "end": 165.52, + "probability": 0.9551 + }, + { + "start": 165.68, + "end": 169.8, + "probability": 0.9914 + }, + { + "start": 170.52, + "end": 172.36, + "probability": 0.9451 + }, + { + "start": 173.74, + "end": 176.52, + "probability": 0.7679 + }, + { + "start": 177.8, + "end": 180.7, + "probability": 0.6991 + }, + { + "start": 180.84, + "end": 182.28, + "probability": 0.8298 + }, + { + "start": 183.0, + "end": 186.22, + "probability": 0.9735 + }, + { + "start": 186.22, + "end": 190.26, + "probability": 0.9897 + }, + { + "start": 191.18, + "end": 196.62, + "probability": 0.9868 + }, + { + "start": 197.14, + "end": 199.0, + "probability": 0.8696 + }, + { + "start": 200.26, + "end": 201.1, + "probability": 0.9209 + }, + { + "start": 202.18, + "end": 202.78, + "probability": 0.9337 + }, + { + "start": 203.48, + "end": 207.76, + "probability": 0.9921 + }, + { + "start": 208.44, + "end": 210.3, + "probability": 0.999 + }, + { + "start": 210.44, + "end": 213.28, + "probability": 0.9952 + }, + { + "start": 213.8, + "end": 219.34, + "probability": 0.9562 + }, + { + "start": 220.58, + "end": 222.04, + "probability": 0.991 + }, + { + "start": 222.8, + "end": 226.26, + "probability": 0.9785 + }, + { + "start": 226.4, + "end": 226.92, + "probability": 0.8968 + }, + { + "start": 227.1, + "end": 227.96, + "probability": 0.8152 + }, + { + "start": 228.14, + "end": 230.66, + "probability": 0.9927 + }, + { + "start": 231.22, + "end": 234.28, + "probability": 0.8721 + }, + { + "start": 234.94, + "end": 236.2, + "probability": 0.8577 + }, + { + "start": 236.76, + "end": 238.32, + "probability": 0.8747 + }, + { + "start": 238.44, + "end": 241.92, + "probability": 0.7783 + }, + { + "start": 242.74, + "end": 245.32, + "probability": 0.9922 + }, + { + "start": 245.44, + "end": 246.86, + "probability": 0.9898 + }, + { + "start": 247.3, + "end": 247.78, + "probability": 0.9705 + }, + { + "start": 248.3, + "end": 250.68, + "probability": 0.9153 + }, + { + "start": 250.82, + "end": 251.36, + "probability": 0.7088 + }, + { + "start": 251.5, + "end": 252.91, + "probability": 0.9711 + }, + { + "start": 253.34, + "end": 256.36, + "probability": 0.7806 + }, + { + "start": 257.42, + "end": 261.42, + "probability": 0.9775 + }, + { + "start": 261.96, + "end": 263.58, + "probability": 0.9955 + }, + { + "start": 263.62, + "end": 264.96, + "probability": 0.9448 + }, + { + "start": 265.3, + "end": 265.74, + "probability": 0.7921 + }, + { + "start": 266.08, + "end": 266.74, + "probability": 0.881 + }, + { + "start": 267.42, + "end": 270.34, + "probability": 0.1367 + }, + { + "start": 271.0, + "end": 272.28, + "probability": 0.9888 + }, + { + "start": 272.94, + "end": 274.6, + "probability": 0.9883 + }, + { + "start": 276.18, + "end": 278.0, + "probability": 0.6122 + }, + { + "start": 278.2, + "end": 278.62, + "probability": 0.5287 + }, + { + "start": 279.28, + "end": 281.3, + "probability": 0.8772 + }, + { + "start": 282.16, + "end": 284.39, + "probability": 0.8443 + }, + { + "start": 285.2, + "end": 285.98, + "probability": 0.9207 + }, + { + "start": 287.04, + "end": 287.36, + "probability": 0.7421 + }, + { + "start": 287.9, + "end": 290.56, + "probability": 0.849 + }, + { + "start": 290.72, + "end": 291.78, + "probability": 0.4964 + }, + { + "start": 292.04, + "end": 292.46, + "probability": 0.6655 + }, + { + "start": 293.1, + "end": 293.38, + "probability": 0.0285 + }, + { + "start": 293.38, + "end": 296.38, + "probability": 0.7406 + }, + { + "start": 297.22, + "end": 297.54, + "probability": 0.0012 + }, + { + "start": 297.54, + "end": 297.54, + "probability": 0.2114 + }, + { + "start": 297.54, + "end": 300.0, + "probability": 0.3283 + }, + { + "start": 300.0, + "end": 301.48, + "probability": 0.6967 + }, + { + "start": 301.58, + "end": 302.81, + "probability": 0.9189 + }, + { + "start": 303.26, + "end": 303.92, + "probability": 0.9087 + }, + { + "start": 304.64, + "end": 305.32, + "probability": 0.8475 + }, + { + "start": 306.1, + "end": 307.54, + "probability": 0.6535 + }, + { + "start": 308.74, + "end": 311.48, + "probability": 0.8043 + }, + { + "start": 311.78, + "end": 316.28, + "probability": 0.9856 + }, + { + "start": 316.95, + "end": 319.02, + "probability": 0.9788 + }, + { + "start": 319.22, + "end": 322.36, + "probability": 0.9155 + }, + { + "start": 322.46, + "end": 322.86, + "probability": 0.5126 + }, + { + "start": 323.46, + "end": 325.68, + "probability": 0.9983 + }, + { + "start": 325.86, + "end": 328.9, + "probability": 0.8352 + }, + { + "start": 329.58, + "end": 332.18, + "probability": 0.9963 + }, + { + "start": 333.5, + "end": 338.4, + "probability": 0.9132 + }, + { + "start": 339.46, + "end": 342.3, + "probability": 0.9978 + }, + { + "start": 343.26, + "end": 348.2, + "probability": 0.8252 + }, + { + "start": 348.82, + "end": 349.74, + "probability": 0.8157 + }, + { + "start": 350.26, + "end": 352.84, + "probability": 0.8689 + }, + { + "start": 353.34, + "end": 355.9, + "probability": 0.9308 + }, + { + "start": 356.42, + "end": 360.12, + "probability": 0.8446 + }, + { + "start": 360.86, + "end": 363.84, + "probability": 0.9887 + }, + { + "start": 364.62, + "end": 366.24, + "probability": 0.9652 + }, + { + "start": 366.34, + "end": 367.42, + "probability": 0.9609 + }, + { + "start": 367.88, + "end": 368.9, + "probability": 0.738 + }, + { + "start": 369.8, + "end": 372.56, + "probability": 0.9478 + }, + { + "start": 373.2, + "end": 375.42, + "probability": 0.9159 + }, + { + "start": 376.26, + "end": 377.14, + "probability": 0.6339 + }, + { + "start": 377.72, + "end": 380.28, + "probability": 0.7659 + }, + { + "start": 380.82, + "end": 385.72, + "probability": 0.9661 + }, + { + "start": 386.24, + "end": 387.98, + "probability": 0.876 + }, + { + "start": 388.44, + "end": 389.42, + "probability": 0.7367 + }, + { + "start": 389.9, + "end": 389.98, + "probability": 0.5002 + }, + { + "start": 390.1, + "end": 390.52, + "probability": 0.7244 + }, + { + "start": 390.62, + "end": 391.52, + "probability": 0.947 + }, + { + "start": 391.96, + "end": 395.84, + "probability": 0.9683 + }, + { + "start": 395.84, + "end": 396.58, + "probability": 0.8025 + }, + { + "start": 396.7, + "end": 396.74, + "probability": 0.5334 + }, + { + "start": 396.88, + "end": 397.76, + "probability": 0.9203 + }, + { + "start": 397.84, + "end": 398.14, + "probability": 0.6973 + }, + { + "start": 398.5, + "end": 399.9, + "probability": 0.4662 + }, + { + "start": 399.94, + "end": 400.94, + "probability": 0.4203 + }, + { + "start": 402.12, + "end": 403.44, + "probability": 0.9412 + }, + { + "start": 405.58, + "end": 406.2, + "probability": 0.5983 + }, + { + "start": 406.32, + "end": 406.64, + "probability": 0.3679 + }, + { + "start": 406.74, + "end": 409.94, + "probability": 0.7505 + }, + { + "start": 410.82, + "end": 413.65, + "probability": 0.947 + }, + { + "start": 414.12, + "end": 415.36, + "probability": 0.8503 + }, + { + "start": 415.66, + "end": 420.36, + "probability": 0.8394 + }, + { + "start": 420.46, + "end": 421.27, + "probability": 0.5789 + }, + { + "start": 422.0, + "end": 423.08, + "probability": 0.5857 + }, + { + "start": 423.12, + "end": 423.42, + "probability": 0.4517 + }, + { + "start": 424.28, + "end": 426.4, + "probability": 0.8726 + }, + { + "start": 426.8, + "end": 429.4, + "probability": 0.9402 + }, + { + "start": 430.5, + "end": 431.3, + "probability": 0.9308 + }, + { + "start": 432.48, + "end": 433.74, + "probability": 0.3458 + }, + { + "start": 434.5, + "end": 437.32, + "probability": 0.9138 + }, + { + "start": 438.1, + "end": 439.58, + "probability": 0.9501 + }, + { + "start": 439.68, + "end": 440.96, + "probability": 0.5662 + }, + { + "start": 441.42, + "end": 442.14, + "probability": 0.8364 + }, + { + "start": 442.76, + "end": 442.98, + "probability": 0.0375 + }, + { + "start": 442.98, + "end": 445.4, + "probability": 0.9944 + }, + { + "start": 445.98, + "end": 446.56, + "probability": 0.4983 + }, + { + "start": 447.08, + "end": 448.16, + "probability": 0.9434 + }, + { + "start": 448.28, + "end": 449.74, + "probability": 0.8676 + }, + { + "start": 449.84, + "end": 452.82, + "probability": 0.6086 + }, + { + "start": 453.32, + "end": 455.5, + "probability": 0.9331 + }, + { + "start": 455.88, + "end": 456.42, + "probability": 0.8624 + }, + { + "start": 457.69, + "end": 461.88, + "probability": 0.9912 + }, + { + "start": 461.88, + "end": 463.98, + "probability": 0.9898 + }, + { + "start": 465.42, + "end": 467.44, + "probability": 0.7086 + }, + { + "start": 467.82, + "end": 470.8, + "probability": 0.9909 + }, + { + "start": 470.86, + "end": 476.5, + "probability": 0.9393 + }, + { + "start": 476.76, + "end": 477.42, + "probability": 0.5705 + }, + { + "start": 477.56, + "end": 478.06, + "probability": 0.5738 + }, + { + "start": 478.08, + "end": 479.62, + "probability": 0.8377 + }, + { + "start": 480.3, + "end": 482.2, + "probability": 0.676 + }, + { + "start": 483.14, + "end": 484.0, + "probability": 0.7392 + }, + { + "start": 484.26, + "end": 484.4, + "probability": 0.4934 + }, + { + "start": 484.46, + "end": 489.22, + "probability": 0.9896 + }, + { + "start": 489.36, + "end": 492.74, + "probability": 0.9015 + }, + { + "start": 493.1, + "end": 493.72, + "probability": 0.9019 + }, + { + "start": 493.72, + "end": 496.88, + "probability": 0.9924 + }, + { + "start": 497.02, + "end": 497.14, + "probability": 0.6622 + }, + { + "start": 497.38, + "end": 497.74, + "probability": 0.7516 + }, + { + "start": 497.8, + "end": 499.16, + "probability": 0.8914 + }, + { + "start": 502.68, + "end": 503.96, + "probability": 0.6804 + }, + { + "start": 504.16, + "end": 504.72, + "probability": 0.9171 + }, + { + "start": 504.84, + "end": 509.98, + "probability": 0.9967 + }, + { + "start": 510.04, + "end": 513.5, + "probability": 0.9977 + }, + { + "start": 514.2, + "end": 515.0, + "probability": 0.4634 + }, + { + "start": 515.1, + "end": 517.48, + "probability": 0.9731 + }, + { + "start": 517.48, + "end": 521.2, + "probability": 0.9559 + }, + { + "start": 522.28, + "end": 522.68, + "probability": 0.37 + }, + { + "start": 522.8, + "end": 523.26, + "probability": 0.7914 + }, + { + "start": 523.34, + "end": 523.9, + "probability": 0.5067 + }, + { + "start": 524.26, + "end": 525.14, + "probability": 0.9379 + }, + { + "start": 525.3, + "end": 526.09, + "probability": 0.9849 + }, + { + "start": 526.38, + "end": 529.66, + "probability": 0.9869 + }, + { + "start": 530.26, + "end": 533.06, + "probability": 0.8643 + }, + { + "start": 533.6, + "end": 537.9, + "probability": 0.9619 + }, + { + "start": 537.98, + "end": 538.82, + "probability": 0.6624 + }, + { + "start": 539.38, + "end": 543.52, + "probability": 0.9227 + }, + { + "start": 544.42, + "end": 547.2, + "probability": 0.9688 + }, + { + "start": 551.64, + "end": 554.4, + "probability": 0.9946 + }, + { + "start": 555.1, + "end": 555.9, + "probability": 0.4644 + }, + { + "start": 555.98, + "end": 556.8, + "probability": 0.7834 + }, + { + "start": 556.92, + "end": 560.06, + "probability": 0.9854 + }, + { + "start": 561.48, + "end": 563.98, + "probability": 0.9356 + }, + { + "start": 564.64, + "end": 567.58, + "probability": 0.9805 + }, + { + "start": 568.54, + "end": 571.3, + "probability": 0.8917 + }, + { + "start": 571.46, + "end": 575.16, + "probability": 0.9868 + }, + { + "start": 575.16, + "end": 579.88, + "probability": 0.9958 + }, + { + "start": 580.92, + "end": 585.46, + "probability": 0.9053 + }, + { + "start": 585.66, + "end": 588.62, + "probability": 0.9878 + }, + { + "start": 588.62, + "end": 592.16, + "probability": 0.9956 + }, + { + "start": 592.3, + "end": 594.76, + "probability": 0.9821 + }, + { + "start": 595.96, + "end": 599.22, + "probability": 0.7479 + }, + { + "start": 599.98, + "end": 600.18, + "probability": 0.4115 + }, + { + "start": 600.34, + "end": 601.31, + "probability": 0.6693 + }, + { + "start": 602.3, + "end": 603.56, + "probability": 0.8903 + }, + { + "start": 604.38, + "end": 605.92, + "probability": 0.7819 + }, + { + "start": 608.03, + "end": 611.0, + "probability": 0.9033 + }, + { + "start": 611.0, + "end": 612.68, + "probability": 0.8943 + }, + { + "start": 612.84, + "end": 613.74, + "probability": 0.7307 + }, + { + "start": 614.06, + "end": 614.82, + "probability": 0.5373 + }, + { + "start": 614.92, + "end": 615.58, + "probability": 0.851 + }, + { + "start": 616.18, + "end": 619.6, + "probability": 0.9974 + }, + { + "start": 620.2, + "end": 621.6, + "probability": 0.9955 + }, + { + "start": 622.24, + "end": 624.36, + "probability": 0.8101 + }, + { + "start": 624.46, + "end": 626.22, + "probability": 0.9982 + }, + { + "start": 627.28, + "end": 629.76, + "probability": 0.9788 + }, + { + "start": 629.92, + "end": 631.4, + "probability": 0.8965 + }, + { + "start": 631.88, + "end": 632.92, + "probability": 0.8876 + }, + { + "start": 633.02, + "end": 635.34, + "probability": 0.6742 + }, + { + "start": 635.44, + "end": 635.68, + "probability": 0.9065 + }, + { + "start": 636.16, + "end": 638.1, + "probability": 0.9482 + }, + { + "start": 638.12, + "end": 639.22, + "probability": 0.9743 + }, + { + "start": 639.36, + "end": 639.92, + "probability": 0.6129 + }, + { + "start": 640.56, + "end": 641.46, + "probability": 0.6688 + }, + { + "start": 642.14, + "end": 646.52, + "probability": 0.9479 + }, + { + "start": 647.59, + "end": 651.34, + "probability": 0.9941 + }, + { + "start": 652.12, + "end": 656.72, + "probability": 0.9874 + }, + { + "start": 656.86, + "end": 658.06, + "probability": 0.9059 + }, + { + "start": 658.06, + "end": 658.82, + "probability": 0.5147 + }, + { + "start": 659.34, + "end": 659.98, + "probability": 0.8398 + }, + { + "start": 660.54, + "end": 662.88, + "probability": 0.8224 + }, + { + "start": 662.96, + "end": 664.08, + "probability": 0.8483 + }, + { + "start": 664.16, + "end": 664.26, + "probability": 0.6877 + }, + { + "start": 664.34, + "end": 664.44, + "probability": 0.825 + }, + { + "start": 664.56, + "end": 665.5, + "probability": 0.8804 + }, + { + "start": 665.86, + "end": 666.84, + "probability": 0.9429 + }, + { + "start": 666.88, + "end": 667.9, + "probability": 0.9286 + }, + { + "start": 667.92, + "end": 669.32, + "probability": 0.9929 + }, + { + "start": 669.44, + "end": 671.84, + "probability": 0.8917 + }, + { + "start": 672.24, + "end": 673.97, + "probability": 0.9858 + }, + { + "start": 674.72, + "end": 676.26, + "probability": 0.9831 + }, + { + "start": 677.56, + "end": 680.1, + "probability": 0.9761 + }, + { + "start": 680.96, + "end": 686.0, + "probability": 0.979 + }, + { + "start": 686.72, + "end": 688.9, + "probability": 0.7737 + }, + { + "start": 689.68, + "end": 692.32, + "probability": 0.7382 + }, + { + "start": 692.56, + "end": 697.64, + "probability": 0.9278 + }, + { + "start": 697.72, + "end": 699.38, + "probability": 0.9493 + }, + { + "start": 700.02, + "end": 700.86, + "probability": 0.9751 + }, + { + "start": 701.74, + "end": 703.48, + "probability": 0.9873 + }, + { + "start": 704.62, + "end": 706.34, + "probability": 0.9897 + }, + { + "start": 707.12, + "end": 709.29, + "probability": 0.9762 + }, + { + "start": 709.98, + "end": 714.7, + "probability": 0.9277 + }, + { + "start": 716.26, + "end": 717.62, + "probability": 0.9937 + }, + { + "start": 717.82, + "end": 718.72, + "probability": 0.7698 + }, + { + "start": 718.8, + "end": 719.38, + "probability": 0.8132 + }, + { + "start": 719.54, + "end": 720.96, + "probability": 0.9758 + }, + { + "start": 721.56, + "end": 723.14, + "probability": 0.9645 + }, + { + "start": 723.6, + "end": 724.28, + "probability": 0.7817 + }, + { + "start": 724.78, + "end": 725.22, + "probability": 0.8555 + }, + { + "start": 725.44, + "end": 725.58, + "probability": 0.9376 + }, + { + "start": 726.0, + "end": 727.22, + "probability": 0.8585 + }, + { + "start": 727.68, + "end": 728.92, + "probability": 0.9477 + }, + { + "start": 729.12, + "end": 730.08, + "probability": 0.8529 + }, + { + "start": 730.48, + "end": 731.0, + "probability": 0.918 + }, + { + "start": 731.54, + "end": 732.68, + "probability": 0.9893 + }, + { + "start": 734.02, + "end": 735.56, + "probability": 0.9935 + }, + { + "start": 736.22, + "end": 738.84, + "probability": 0.6356 + }, + { + "start": 739.44, + "end": 742.66, + "probability": 0.9902 + }, + { + "start": 743.3, + "end": 746.39, + "probability": 0.9272 + }, + { + "start": 746.56, + "end": 752.18, + "probability": 0.9888 + }, + { + "start": 752.72, + "end": 753.66, + "probability": 0.9638 + }, + { + "start": 753.82, + "end": 758.68, + "probability": 0.9927 + }, + { + "start": 758.68, + "end": 761.96, + "probability": 0.9922 + }, + { + "start": 762.14, + "end": 763.94, + "probability": 0.8908 + }, + { + "start": 763.98, + "end": 764.14, + "probability": 0.5924 + }, + { + "start": 764.36, + "end": 764.62, + "probability": 0.7455 + }, + { + "start": 764.64, + "end": 766.58, + "probability": 0.851 + }, + { + "start": 766.76, + "end": 771.58, + "probability": 0.9966 + }, + { + "start": 772.32, + "end": 774.62, + "probability": 0.8064 + }, + { + "start": 774.74, + "end": 779.08, + "probability": 0.9626 + }, + { + "start": 779.12, + "end": 780.92, + "probability": 0.9688 + }, + { + "start": 782.36, + "end": 783.57, + "probability": 0.9771 + }, + { + "start": 785.06, + "end": 787.72, + "probability": 0.9946 + }, + { + "start": 788.66, + "end": 791.72, + "probability": 0.8864 + }, + { + "start": 794.64, + "end": 798.5, + "probability": 0.8912 + }, + { + "start": 799.52, + "end": 801.8, + "probability": 0.9986 + }, + { + "start": 802.32, + "end": 807.88, + "probability": 0.9975 + }, + { + "start": 807.94, + "end": 808.78, + "probability": 0.9667 + }, + { + "start": 809.3, + "end": 811.48, + "probability": 0.8475 + }, + { + "start": 812.54, + "end": 813.06, + "probability": 0.4285 + }, + { + "start": 813.52, + "end": 816.52, + "probability": 0.9875 + }, + { + "start": 817.58, + "end": 818.56, + "probability": 0.7226 + }, + { + "start": 818.98, + "end": 822.0, + "probability": 0.9935 + }, + { + "start": 822.08, + "end": 823.98, + "probability": 0.9985 + }, + { + "start": 824.5, + "end": 825.34, + "probability": 0.9412 + }, + { + "start": 825.78, + "end": 827.78, + "probability": 0.9979 + }, + { + "start": 828.44, + "end": 834.08, + "probability": 0.9976 + }, + { + "start": 834.54, + "end": 835.56, + "probability": 0.7527 + }, + { + "start": 835.76, + "end": 837.85, + "probability": 0.9937 + }, + { + "start": 838.56, + "end": 839.76, + "probability": 0.9573 + }, + { + "start": 840.52, + "end": 842.24, + "probability": 0.7443 + }, + { + "start": 842.54, + "end": 843.82, + "probability": 0.6798 + }, + { + "start": 844.48, + "end": 845.0, + "probability": 0.9172 + }, + { + "start": 845.84, + "end": 848.72, + "probability": 0.9823 + }, + { + "start": 848.9, + "end": 854.08, + "probability": 0.8657 + }, + { + "start": 854.78, + "end": 856.78, + "probability": 0.9626 + }, + { + "start": 857.08, + "end": 858.04, + "probability": 0.8367 + }, + { + "start": 858.7, + "end": 860.72, + "probability": 0.9609 + }, + { + "start": 862.32, + "end": 865.34, + "probability": 0.9287 + }, + { + "start": 866.7, + "end": 868.4, + "probability": 0.9294 + }, + { + "start": 868.62, + "end": 870.9, + "probability": 0.978 + }, + { + "start": 871.06, + "end": 872.31, + "probability": 0.8909 + }, + { + "start": 872.86, + "end": 875.37, + "probability": 0.994 + }, + { + "start": 875.84, + "end": 877.54, + "probability": 0.9428 + }, + { + "start": 877.7, + "end": 878.88, + "probability": 0.9711 + }, + { + "start": 879.38, + "end": 880.29, + "probability": 0.9926 + }, + { + "start": 880.54, + "end": 881.92, + "probability": 0.9831 + }, + { + "start": 882.4, + "end": 883.7, + "probability": 0.9921 + }, + { + "start": 884.88, + "end": 886.18, + "probability": 0.9504 + }, + { + "start": 886.42, + "end": 888.14, + "probability": 0.9973 + }, + { + "start": 888.4, + "end": 889.38, + "probability": 0.9475 + }, + { + "start": 890.06, + "end": 891.0, + "probability": 0.7017 + }, + { + "start": 891.18, + "end": 894.26, + "probability": 0.9653 + }, + { + "start": 894.94, + "end": 898.44, + "probability": 0.9545 + }, + { + "start": 898.5, + "end": 899.14, + "probability": 0.9847 + }, + { + "start": 900.34, + "end": 901.76, + "probability": 0.947 + }, + { + "start": 902.44, + "end": 903.76, + "probability": 0.9263 + }, + { + "start": 903.84, + "end": 904.28, + "probability": 0.6641 + }, + { + "start": 904.32, + "end": 905.36, + "probability": 0.774 + }, + { + "start": 905.52, + "end": 909.36, + "probability": 0.9428 + }, + { + "start": 909.62, + "end": 910.42, + "probability": 0.937 + }, + { + "start": 910.58, + "end": 914.12, + "probability": 0.9839 + }, + { + "start": 914.72, + "end": 916.74, + "probability": 0.8076 + }, + { + "start": 917.62, + "end": 918.94, + "probability": 0.8533 + }, + { + "start": 919.84, + "end": 921.74, + "probability": 0.9725 + }, + { + "start": 921.84, + "end": 923.74, + "probability": 0.9751 + }, + { + "start": 923.84, + "end": 924.96, + "probability": 0.8107 + }, + { + "start": 925.46, + "end": 927.52, + "probability": 0.9751 + }, + { + "start": 927.92, + "end": 928.02, + "probability": 0.5232 + }, + { + "start": 929.42, + "end": 930.44, + "probability": 0.0888 + }, + { + "start": 930.62, + "end": 931.3, + "probability": 0.8527 + }, + { + "start": 931.38, + "end": 932.04, + "probability": 0.8981 + }, + { + "start": 932.06, + "end": 932.9, + "probability": 0.8622 + }, + { + "start": 933.42, + "end": 934.46, + "probability": 0.9113 + }, + { + "start": 935.22, + "end": 938.84, + "probability": 0.9717 + }, + { + "start": 938.94, + "end": 939.36, + "probability": 0.8016 + }, + { + "start": 939.76, + "end": 943.26, + "probability": 0.9871 + }, + { + "start": 943.26, + "end": 946.58, + "probability": 0.986 + }, + { + "start": 946.74, + "end": 948.54, + "probability": 0.9963 + }, + { + "start": 948.62, + "end": 951.22, + "probability": 0.9847 + }, + { + "start": 951.34, + "end": 953.37, + "probability": 0.9785 + }, + { + "start": 954.14, + "end": 958.6, + "probability": 0.9956 + }, + { + "start": 958.7, + "end": 960.76, + "probability": 0.9353 + }, + { + "start": 961.66, + "end": 962.96, + "probability": 0.9555 + }, + { + "start": 963.64, + "end": 965.36, + "probability": 0.9978 + }, + { + "start": 966.26, + "end": 967.32, + "probability": 0.9792 + }, + { + "start": 967.36, + "end": 969.36, + "probability": 0.9863 + }, + { + "start": 970.16, + "end": 972.66, + "probability": 0.9892 + }, + { + "start": 973.8, + "end": 977.32, + "probability": 0.7469 + }, + { + "start": 978.34, + "end": 980.4, + "probability": 0.8903 + }, + { + "start": 980.58, + "end": 982.7, + "probability": 0.991 + }, + { + "start": 983.2, + "end": 984.7, + "probability": 0.9819 + }, + { + "start": 984.98, + "end": 986.56, + "probability": 0.9957 + }, + { + "start": 987.74, + "end": 989.04, + "probability": 0.5063 + }, + { + "start": 989.26, + "end": 989.66, + "probability": 0.6504 + }, + { + "start": 989.84, + "end": 993.22, + "probability": 0.9864 + }, + { + "start": 993.52, + "end": 997.4, + "probability": 0.9973 + }, + { + "start": 997.57, + "end": 1001.42, + "probability": 0.9951 + }, + { + "start": 1002.1, + "end": 1003.64, + "probability": 0.9827 + }, + { + "start": 1004.48, + "end": 1007.12, + "probability": 0.6758 + }, + { + "start": 1007.24, + "end": 1012.12, + "probability": 0.6912 + }, + { + "start": 1012.76, + "end": 1014.24, + "probability": 0.9849 + }, + { + "start": 1014.96, + "end": 1016.84, + "probability": 0.7869 + }, + { + "start": 1017.52, + "end": 1018.3, + "probability": 0.4419 + }, + { + "start": 1018.5, + "end": 1020.28, + "probability": 0.569 + }, + { + "start": 1021.04, + "end": 1023.22, + "probability": 0.7878 + }, + { + "start": 1038.68, + "end": 1040.14, + "probability": 0.6134 + }, + { + "start": 1041.4, + "end": 1044.6, + "probability": 0.9743 + }, + { + "start": 1045.24, + "end": 1047.26, + "probability": 0.812 + }, + { + "start": 1047.7, + "end": 1048.64, + "probability": 0.953 + }, + { + "start": 1048.8, + "end": 1049.6, + "probability": 0.936 + }, + { + "start": 1049.68, + "end": 1052.62, + "probability": 0.7728 + }, + { + "start": 1053.32, + "end": 1059.32, + "probability": 0.8113 + }, + { + "start": 1059.62, + "end": 1061.14, + "probability": 0.6528 + }, + { + "start": 1061.36, + "end": 1061.36, + "probability": 0.3718 + }, + { + "start": 1061.54, + "end": 1062.42, + "probability": 0.9873 + }, + { + "start": 1063.24, + "end": 1066.64, + "probability": 0.9592 + }, + { + "start": 1067.46, + "end": 1068.98, + "probability": 0.7559 + }, + { + "start": 1070.44, + "end": 1076.18, + "probability": 0.9496 + }, + { + "start": 1078.56, + "end": 1079.28, + "probability": 0.7197 + }, + { + "start": 1080.08, + "end": 1085.14, + "probability": 0.9262 + }, + { + "start": 1086.12, + "end": 1092.26, + "probability": 0.4156 + }, + { + "start": 1093.98, + "end": 1096.1, + "probability": 0.9023 + }, + { + "start": 1096.44, + "end": 1096.56, + "probability": 0.3651 + }, + { + "start": 1096.56, + "end": 1100.78, + "probability": 0.9257 + }, + { + "start": 1101.96, + "end": 1102.22, + "probability": 0.7794 + }, + { + "start": 1105.2, + "end": 1106.26, + "probability": 0.8148 + }, + { + "start": 1106.8, + "end": 1107.68, + "probability": 0.8138 + }, + { + "start": 1109.02, + "end": 1112.56, + "probability": 0.7784 + }, + { + "start": 1113.38, + "end": 1115.86, + "probability": 0.9949 + }, + { + "start": 1116.02, + "end": 1116.72, + "probability": 0.3085 + }, + { + "start": 1116.8, + "end": 1118.53, + "probability": 0.4978 + }, + { + "start": 1119.74, + "end": 1123.18, + "probability": 0.2585 + }, + { + "start": 1126.34, + "end": 1130.82, + "probability": 0.9222 + }, + { + "start": 1131.78, + "end": 1137.38, + "probability": 0.9921 + }, + { + "start": 1138.78, + "end": 1140.28, + "probability": 0.946 + }, + { + "start": 1140.84, + "end": 1143.74, + "probability": 0.9254 + }, + { + "start": 1144.4, + "end": 1146.8, + "probability": 0.9556 + }, + { + "start": 1148.4, + "end": 1152.52, + "probability": 0.9056 + }, + { + "start": 1154.12, + "end": 1157.6, + "probability": 0.9668 + }, + { + "start": 1159.2, + "end": 1161.14, + "probability": 0.9067 + }, + { + "start": 1165.26, + "end": 1168.36, + "probability": 0.7932 + }, + { + "start": 1169.12, + "end": 1172.1, + "probability": 0.9814 + }, + { + "start": 1172.76, + "end": 1174.93, + "probability": 0.8872 + }, + { + "start": 1175.5, + "end": 1176.82, + "probability": 0.9802 + }, + { + "start": 1177.56, + "end": 1179.54, + "probability": 0.9473 + }, + { + "start": 1180.2, + "end": 1181.8, + "probability": 0.693 + }, + { + "start": 1182.48, + "end": 1187.04, + "probability": 0.8288 + }, + { + "start": 1187.24, + "end": 1188.68, + "probability": 0.8872 + }, + { + "start": 1189.06, + "end": 1190.84, + "probability": 0.9932 + }, + { + "start": 1191.32, + "end": 1195.58, + "probability": 0.838 + }, + { + "start": 1196.38, + "end": 1197.38, + "probability": 0.5145 + }, + { + "start": 1198.02, + "end": 1199.44, + "probability": 0.6937 + }, + { + "start": 1199.98, + "end": 1204.56, + "probability": 0.6649 + }, + { + "start": 1205.04, + "end": 1205.32, + "probability": 0.3315 + }, + { + "start": 1205.5, + "end": 1206.66, + "probability": 0.8308 + }, + { + "start": 1206.98, + "end": 1209.08, + "probability": 0.9287 + }, + { + "start": 1209.96, + "end": 1216.06, + "probability": 0.9712 + }, + { + "start": 1217.04, + "end": 1218.18, + "probability": 0.674 + }, + { + "start": 1218.56, + "end": 1223.78, + "probability": 0.9906 + }, + { + "start": 1224.28, + "end": 1226.96, + "probability": 0.8778 + }, + { + "start": 1227.64, + "end": 1233.32, + "probability": 0.9695 + }, + { + "start": 1233.48, + "end": 1234.67, + "probability": 0.995 + }, + { + "start": 1235.18, + "end": 1237.29, + "probability": 0.9927 + }, + { + "start": 1237.9, + "end": 1241.46, + "probability": 0.8411 + }, + { + "start": 1241.92, + "end": 1242.58, + "probability": 0.7476 + }, + { + "start": 1243.16, + "end": 1244.94, + "probability": 0.632 + }, + { + "start": 1245.1, + "end": 1247.24, + "probability": 0.9338 + }, + { + "start": 1247.72, + "end": 1248.12, + "probability": 0.8853 + }, + { + "start": 1248.38, + "end": 1249.96, + "probability": 0.9009 + }, + { + "start": 1250.02, + "end": 1252.78, + "probability": 0.9894 + }, + { + "start": 1253.48, + "end": 1253.82, + "probability": 0.5013 + }, + { + "start": 1254.02, + "end": 1255.74, + "probability": 0.7035 + }, + { + "start": 1257.32, + "end": 1259.14, + "probability": 0.6769 + }, + { + "start": 1259.82, + "end": 1261.16, + "probability": 0.7119 + }, + { + "start": 1261.16, + "end": 1265.3, + "probability": 0.9476 + }, + { + "start": 1265.38, + "end": 1267.3, + "probability": 0.9047 + }, + { + "start": 1267.42, + "end": 1268.84, + "probability": 0.7995 + }, + { + "start": 1268.98, + "end": 1276.94, + "probability": 0.9885 + }, + { + "start": 1278.08, + "end": 1280.44, + "probability": 0.8975 + }, + { + "start": 1280.62, + "end": 1283.62, + "probability": 0.5119 + }, + { + "start": 1283.94, + "end": 1287.26, + "probability": 0.8965 + }, + { + "start": 1287.4, + "end": 1288.12, + "probability": 0.7864 + }, + { + "start": 1288.32, + "end": 1289.18, + "probability": 0.874 + }, + { + "start": 1289.54, + "end": 1293.6, + "probability": 0.9666 + }, + { + "start": 1293.72, + "end": 1298.92, + "probability": 0.8594 + }, + { + "start": 1299.1, + "end": 1300.26, + "probability": 0.894 + }, + { + "start": 1300.38, + "end": 1302.0, + "probability": 0.9966 + }, + { + "start": 1303.18, + "end": 1304.72, + "probability": 0.9421 + }, + { + "start": 1304.86, + "end": 1305.1, + "probability": 0.8802 + }, + { + "start": 1305.32, + "end": 1306.84, + "probability": 0.9638 + }, + { + "start": 1307.28, + "end": 1312.18, + "probability": 0.9607 + }, + { + "start": 1312.18, + "end": 1316.28, + "probability": 0.9801 + }, + { + "start": 1316.46, + "end": 1316.88, + "probability": 0.9897 + }, + { + "start": 1317.56, + "end": 1324.84, + "probability": 0.9967 + }, + { + "start": 1325.62, + "end": 1329.22, + "probability": 0.9748 + }, + { + "start": 1329.22, + "end": 1333.14, + "probability": 0.6797 + }, + { + "start": 1334.1, + "end": 1337.48, + "probability": 0.9648 + }, + { + "start": 1337.68, + "end": 1338.18, + "probability": 0.5387 + }, + { + "start": 1338.66, + "end": 1338.88, + "probability": 0.9012 + }, + { + "start": 1339.42, + "end": 1340.22, + "probability": 0.9892 + }, + { + "start": 1341.26, + "end": 1343.88, + "probability": 0.8229 + }, + { + "start": 1343.94, + "end": 1347.66, + "probability": 0.9707 + }, + { + "start": 1348.5, + "end": 1352.02, + "probability": 0.8474 + }, + { + "start": 1352.48, + "end": 1359.22, + "probability": 0.9671 + }, + { + "start": 1359.6, + "end": 1359.88, + "probability": 0.4089 + }, + { + "start": 1359.9, + "end": 1361.24, + "probability": 0.4907 + }, + { + "start": 1361.28, + "end": 1361.9, + "probability": 0.5941 + }, + { + "start": 1363.22, + "end": 1366.34, + "probability": 0.9987 + }, + { + "start": 1367.72, + "end": 1370.44, + "probability": 0.8369 + }, + { + "start": 1371.3, + "end": 1372.8, + "probability": 0.8242 + }, + { + "start": 1373.48, + "end": 1381.72, + "probability": 0.9945 + }, + { + "start": 1382.6, + "end": 1385.04, + "probability": 0.91 + }, + { + "start": 1385.96, + "end": 1390.42, + "probability": 0.9367 + }, + { + "start": 1391.3, + "end": 1391.92, + "probability": 0.7694 + }, + { + "start": 1392.58, + "end": 1393.7, + "probability": 0.7162 + }, + { + "start": 1394.46, + "end": 1396.12, + "probability": 0.971 + }, + { + "start": 1396.84, + "end": 1400.84, + "probability": 0.9946 + }, + { + "start": 1401.78, + "end": 1405.18, + "probability": 0.9175 + }, + { + "start": 1405.78, + "end": 1411.24, + "probability": 0.9953 + }, + { + "start": 1411.66, + "end": 1413.72, + "probability": 0.8473 + }, + { + "start": 1413.74, + "end": 1413.74, + "probability": 0.6578 + }, + { + "start": 1414.1, + "end": 1415.62, + "probability": 0.734 + }, + { + "start": 1416.28, + "end": 1418.5, + "probability": 0.8475 + }, + { + "start": 1418.58, + "end": 1419.9, + "probability": 0.9684 + }, + { + "start": 1420.44, + "end": 1421.42, + "probability": 0.9393 + }, + { + "start": 1422.12, + "end": 1424.48, + "probability": 0.6249 + }, + { + "start": 1425.3, + "end": 1432.0, + "probability": 0.9583 + }, + { + "start": 1432.6, + "end": 1435.4, + "probability": 0.8129 + }, + { + "start": 1435.88, + "end": 1438.24, + "probability": 0.797 + }, + { + "start": 1438.36, + "end": 1439.56, + "probability": 0.867 + }, + { + "start": 1440.46, + "end": 1441.4, + "probability": 0.8732 + }, + { + "start": 1441.5, + "end": 1443.34, + "probability": 0.9795 + }, + { + "start": 1443.62, + "end": 1446.2, + "probability": 0.9468 + }, + { + "start": 1447.16, + "end": 1448.02, + "probability": 0.7896 + }, + { + "start": 1449.26, + "end": 1451.76, + "probability": 0.8745 + }, + { + "start": 1451.88, + "end": 1453.3, + "probability": 0.2852 + }, + { + "start": 1453.7, + "end": 1457.34, + "probability": 0.9569 + }, + { + "start": 1457.9, + "end": 1460.46, + "probability": 0.978 + }, + { + "start": 1460.56, + "end": 1463.5, + "probability": 0.9543 + }, + { + "start": 1463.86, + "end": 1465.28, + "probability": 0.8426 + }, + { + "start": 1465.64, + "end": 1466.48, + "probability": 0.9395 + }, + { + "start": 1467.24, + "end": 1467.72, + "probability": 0.5935 + }, + { + "start": 1469.26, + "end": 1471.1, + "probability": 0.7152 + }, + { + "start": 1472.14, + "end": 1480.12, + "probability": 0.9419 + }, + { + "start": 1481.12, + "end": 1484.56, + "probability": 0.9414 + }, + { + "start": 1485.52, + "end": 1491.5, + "probability": 0.9365 + }, + { + "start": 1492.16, + "end": 1493.98, + "probability": 0.9893 + }, + { + "start": 1494.48, + "end": 1495.25, + "probability": 0.9019 + }, + { + "start": 1495.88, + "end": 1498.62, + "probability": 0.9738 + }, + { + "start": 1499.3, + "end": 1500.7, + "probability": 0.6834 + }, + { + "start": 1501.76, + "end": 1503.26, + "probability": 0.9389 + }, + { + "start": 1504.3, + "end": 1504.96, + "probability": 0.7883 + }, + { + "start": 1505.94, + "end": 1509.52, + "probability": 0.7481 + }, + { + "start": 1510.26, + "end": 1510.62, + "probability": 0.5355 + }, + { + "start": 1510.68, + "end": 1514.63, + "probability": 0.9384 + }, + { + "start": 1515.6, + "end": 1518.5, + "probability": 0.9932 + }, + { + "start": 1518.66, + "end": 1519.24, + "probability": 0.7152 + }, + { + "start": 1521.56, + "end": 1523.08, + "probability": 0.6078 + }, + { + "start": 1524.36, + "end": 1526.94, + "probability": 0.8625 + }, + { + "start": 1527.92, + "end": 1529.42, + "probability": 0.9098 + }, + { + "start": 1530.02, + "end": 1532.24, + "probability": 0.9304 + }, + { + "start": 1533.48, + "end": 1536.56, + "probability": 0.9828 + }, + { + "start": 1537.16, + "end": 1538.52, + "probability": 0.7271 + }, + { + "start": 1539.18, + "end": 1540.9, + "probability": 0.9969 + }, + { + "start": 1541.02, + "end": 1542.64, + "probability": 0.9051 + }, + { + "start": 1543.1, + "end": 1544.8, + "probability": 0.9849 + }, + { + "start": 1545.18, + "end": 1549.36, + "probability": 0.9893 + }, + { + "start": 1549.64, + "end": 1552.24, + "probability": 0.9952 + }, + { + "start": 1552.76, + "end": 1553.54, + "probability": 0.9753 + }, + { + "start": 1554.72, + "end": 1556.22, + "probability": 0.8677 + }, + { + "start": 1556.4, + "end": 1558.04, + "probability": 0.6456 + }, + { + "start": 1558.22, + "end": 1562.52, + "probability": 0.3125 + }, + { + "start": 1562.52, + "end": 1562.52, + "probability": 0.089 + }, + { + "start": 1562.52, + "end": 1562.86, + "probability": 0.272 + }, + { + "start": 1563.0, + "end": 1564.34, + "probability": 0.7622 + }, + { + "start": 1564.64, + "end": 1567.42, + "probability": 0.9607 + }, + { + "start": 1568.12, + "end": 1570.96, + "probability": 0.9704 + }, + { + "start": 1571.52, + "end": 1573.86, + "probability": 0.9976 + }, + { + "start": 1574.68, + "end": 1577.25, + "probability": 0.9947 + }, + { + "start": 1577.8, + "end": 1580.72, + "probability": 0.9941 + }, + { + "start": 1580.86, + "end": 1581.6, + "probability": 0.7154 + }, + { + "start": 1581.74, + "end": 1584.44, + "probability": 0.9023 + }, + { + "start": 1584.96, + "end": 1585.78, + "probability": 0.9849 + }, + { + "start": 1585.88, + "end": 1587.06, + "probability": 0.96 + }, + { + "start": 1587.16, + "end": 1587.58, + "probability": 0.8063 + }, + { + "start": 1588.08, + "end": 1588.3, + "probability": 0.679 + }, + { + "start": 1588.58, + "end": 1589.12, + "probability": 0.829 + }, + { + "start": 1589.6, + "end": 1592.12, + "probability": 0.8829 + }, + { + "start": 1593.18, + "end": 1595.76, + "probability": 0.9817 + }, + { + "start": 1596.42, + "end": 1599.74, + "probability": 0.9697 + }, + { + "start": 1600.6, + "end": 1602.82, + "probability": 0.9976 + }, + { + "start": 1603.44, + "end": 1606.86, + "probability": 0.9958 + }, + { + "start": 1607.54, + "end": 1611.26, + "probability": 0.9576 + }, + { + "start": 1611.98, + "end": 1613.7, + "probability": 0.8746 + }, + { + "start": 1614.58, + "end": 1618.1, + "probability": 0.9907 + }, + { + "start": 1618.8, + "end": 1621.94, + "probability": 0.9871 + }, + { + "start": 1622.72, + "end": 1626.32, + "probability": 0.9985 + }, + { + "start": 1627.66, + "end": 1630.28, + "probability": 0.8883 + }, + { + "start": 1631.02, + "end": 1635.06, + "probability": 0.8831 + }, + { + "start": 1635.54, + "end": 1636.74, + "probability": 0.9963 + }, + { + "start": 1636.74, + "end": 1637.22, + "probability": 0.3432 + }, + { + "start": 1637.28, + "end": 1638.18, + "probability": 0.8473 + }, + { + "start": 1638.44, + "end": 1641.82, + "probability": 0.9042 + }, + { + "start": 1642.78, + "end": 1643.52, + "probability": 0.2007 + }, + { + "start": 1644.28, + "end": 1646.72, + "probability": 0.967 + }, + { + "start": 1647.48, + "end": 1649.68, + "probability": 0.9404 + }, + { + "start": 1649.8, + "end": 1650.68, + "probability": 0.9265 + }, + { + "start": 1651.88, + "end": 1653.06, + "probability": 0.6111 + }, + { + "start": 1653.64, + "end": 1658.32, + "probability": 0.9727 + }, + { + "start": 1658.76, + "end": 1660.87, + "probability": 0.9482 + }, + { + "start": 1661.62, + "end": 1664.56, + "probability": 0.9678 + }, + { + "start": 1664.72, + "end": 1666.3, + "probability": 0.8246 + }, + { + "start": 1666.7, + "end": 1667.4, + "probability": 0.928 + }, + { + "start": 1667.8, + "end": 1670.46, + "probability": 0.9626 + }, + { + "start": 1671.26, + "end": 1673.0, + "probability": 0.7949 + }, + { + "start": 1673.88, + "end": 1676.44, + "probability": 0.9278 + }, + { + "start": 1676.54, + "end": 1679.18, + "probability": 0.9539 + }, + { + "start": 1679.64, + "end": 1682.68, + "probability": 0.9973 + }, + { + "start": 1683.22, + "end": 1684.22, + "probability": 0.9077 + }, + { + "start": 1684.56, + "end": 1686.08, + "probability": 0.9591 + }, + { + "start": 1686.78, + "end": 1690.08, + "probability": 0.998 + }, + { + "start": 1690.14, + "end": 1691.82, + "probability": 0.992 + }, + { + "start": 1692.94, + "end": 1694.34, + "probability": 0.8582 + }, + { + "start": 1695.24, + "end": 1697.78, + "probability": 0.8016 + }, + { + "start": 1700.6, + "end": 1701.78, + "probability": 0.813 + }, + { + "start": 1702.34, + "end": 1704.24, + "probability": 0.7345 + }, + { + "start": 1704.24, + "end": 1706.36, + "probability": 0.7576 + }, + { + "start": 1707.24, + "end": 1708.54, + "probability": 0.7928 + }, + { + "start": 1709.38, + "end": 1711.02, + "probability": 0.9027 + }, + { + "start": 1712.16, + "end": 1713.84, + "probability": 0.9198 + }, + { + "start": 1715.1, + "end": 1716.7, + "probability": 0.9937 + }, + { + "start": 1716.86, + "end": 1720.48, + "probability": 0.9449 + }, + { + "start": 1737.54, + "end": 1737.8, + "probability": 0.0388 + }, + { + "start": 1747.38, + "end": 1749.48, + "probability": 0.3745 + }, + { + "start": 1749.98, + "end": 1751.66, + "probability": 0.9747 + }, + { + "start": 1752.66, + "end": 1753.68, + "probability": 0.9712 + }, + { + "start": 1755.37, + "end": 1760.14, + "probability": 0.3777 + }, + { + "start": 1762.04, + "end": 1763.36, + "probability": 0.9951 + }, + { + "start": 1763.48, + "end": 1766.0, + "probability": 0.9878 + }, + { + "start": 1767.46, + "end": 1769.16, + "probability": 0.9812 + }, + { + "start": 1769.92, + "end": 1772.88, + "probability": 0.9648 + }, + { + "start": 1774.38, + "end": 1774.52, + "probability": 0.6702 + }, + { + "start": 1774.58, + "end": 1777.48, + "probability": 0.8056 + }, + { + "start": 1779.16, + "end": 1780.64, + "probability": 0.7122 + }, + { + "start": 1785.54, + "end": 1786.04, + "probability": 0.1394 + }, + { + "start": 1793.1, + "end": 1794.36, + "probability": 0.0567 + }, + { + "start": 1794.66, + "end": 1795.74, + "probability": 0.2071 + }, + { + "start": 1797.8, + "end": 1798.42, + "probability": 0.0358 + }, + { + "start": 1897.22, + "end": 1898.56, + "probability": 0.0093 + }, + { + "start": 1916.06, + "end": 1920.82, + "probability": 0.2186 + }, + { + "start": 1923.15, + "end": 1925.4, + "probability": 0.1122 + }, + { + "start": 1925.4, + "end": 1927.42, + "probability": 0.1809 + }, + { + "start": 1927.42, + "end": 1927.42, + "probability": 0.1251 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.0, + "end": 2006.0, + "probability": 0.0 + }, + { + "start": 2006.18, + "end": 2006.7, + "probability": 0.0927 + }, + { + "start": 2007.2, + "end": 2007.6, + "probability": 0.2092 + }, + { + "start": 2008.94, + "end": 2011.66, + "probability": 0.8636 + }, + { + "start": 2012.7, + "end": 2013.18, + "probability": 0.9644 + }, + { + "start": 2014.04, + "end": 2015.48, + "probability": 0.9728 + }, + { + "start": 2015.56, + "end": 2018.82, + "probability": 0.9949 + }, + { + "start": 2020.66, + "end": 2021.1, + "probability": 0.7975 + }, + { + "start": 2021.66, + "end": 2023.66, + "probability": 0.9425 + }, + { + "start": 2025.44, + "end": 2029.06, + "probability": 0.63 + }, + { + "start": 2030.4, + "end": 2034.92, + "probability": 0.9959 + }, + { + "start": 2035.52, + "end": 2037.16, + "probability": 0.5063 + }, + { + "start": 2037.96, + "end": 2039.34, + "probability": 0.9912 + }, + { + "start": 2041.66, + "end": 2042.28, + "probability": 0.787 + }, + { + "start": 2043.14, + "end": 2045.32, + "probability": 0.7038 + }, + { + "start": 2045.88, + "end": 2046.66, + "probability": 0.5509 + }, + { + "start": 2047.32, + "end": 2048.28, + "probability": 0.9772 + }, + { + "start": 2049.7, + "end": 2050.3, + "probability": 0.8495 + }, + { + "start": 2051.12, + "end": 2055.36, + "probability": 0.9838 + }, + { + "start": 2056.92, + "end": 2058.68, + "probability": 0.988 + }, + { + "start": 2060.12, + "end": 2060.64, + "probability": 0.4916 + }, + { + "start": 2061.88, + "end": 2066.44, + "probability": 0.8557 + }, + { + "start": 2067.04, + "end": 2068.56, + "probability": 0.953 + }, + { + "start": 2069.12, + "end": 2070.3, + "probability": 0.9905 + }, + { + "start": 2071.4, + "end": 2073.42, + "probability": 0.9741 + }, + { + "start": 2074.08, + "end": 2078.28, + "probability": 0.9867 + }, + { + "start": 2079.72, + "end": 2081.52, + "probability": 0.9854 + }, + { + "start": 2082.14, + "end": 2084.62, + "probability": 0.9963 + }, + { + "start": 2084.62, + "end": 2088.22, + "probability": 0.8016 + }, + { + "start": 2088.82, + "end": 2090.82, + "probability": 0.8627 + }, + { + "start": 2091.32, + "end": 2094.16, + "probability": 0.9904 + }, + { + "start": 2095.3, + "end": 2098.0, + "probability": 0.8391 + }, + { + "start": 2098.6, + "end": 2101.46, + "probability": 0.9954 + }, + { + "start": 2102.92, + "end": 2103.72, + "probability": 0.818 + }, + { + "start": 2104.72, + "end": 2108.88, + "probability": 0.998 + }, + { + "start": 2109.42, + "end": 2110.14, + "probability": 0.999 + }, + { + "start": 2112.08, + "end": 2113.7, + "probability": 0.8556 + }, + { + "start": 2114.96, + "end": 2118.16, + "probability": 0.9932 + }, + { + "start": 2118.3, + "end": 2118.64, + "probability": 0.814 + }, + { + "start": 2119.1, + "end": 2119.7, + "probability": 0.6352 + }, + { + "start": 2120.1, + "end": 2121.08, + "probability": 0.9457 + }, + { + "start": 2121.96, + "end": 2124.56, + "probability": 0.9788 + }, + { + "start": 2126.66, + "end": 2128.3, + "probability": 0.8099 + }, + { + "start": 2129.8, + "end": 2134.14, + "probability": 0.9903 + }, + { + "start": 2135.66, + "end": 2138.26, + "probability": 0.999 + }, + { + "start": 2138.28, + "end": 2142.6, + "probability": 0.9941 + }, + { + "start": 2143.9, + "end": 2150.5, + "probability": 0.9703 + }, + { + "start": 2152.34, + "end": 2156.62, + "probability": 0.9211 + }, + { + "start": 2157.24, + "end": 2159.66, + "probability": 0.926 + }, + { + "start": 2161.04, + "end": 2161.44, + "probability": 0.6089 + }, + { + "start": 2162.22, + "end": 2163.8, + "probability": 0.9824 + }, + { + "start": 2164.9, + "end": 2168.3, + "probability": 0.9657 + }, + { + "start": 2169.7, + "end": 2172.04, + "probability": 0.9436 + }, + { + "start": 2173.44, + "end": 2178.48, + "probability": 0.991 + }, + { + "start": 2180.2, + "end": 2180.44, + "probability": 0.7699 + }, + { + "start": 2181.64, + "end": 2183.34, + "probability": 0.9481 + }, + { + "start": 2183.48, + "end": 2184.24, + "probability": 0.8624 + }, + { + "start": 2184.7, + "end": 2187.02, + "probability": 0.9878 + }, + { + "start": 2188.06, + "end": 2191.02, + "probability": 0.9859 + }, + { + "start": 2191.68, + "end": 2196.54, + "probability": 0.8083 + }, + { + "start": 2197.66, + "end": 2199.56, + "probability": 0.8025 + }, + { + "start": 2200.78, + "end": 2203.5, + "probability": 0.9712 + }, + { + "start": 2204.18, + "end": 2209.04, + "probability": 0.9851 + }, + { + "start": 2210.08, + "end": 2210.5, + "probability": 0.2648 + }, + { + "start": 2212.12, + "end": 2216.58, + "probability": 0.9785 + }, + { + "start": 2216.76, + "end": 2217.78, + "probability": 0.7895 + }, + { + "start": 2219.32, + "end": 2220.42, + "probability": 0.9684 + }, + { + "start": 2221.14, + "end": 2224.24, + "probability": 0.9806 + }, + { + "start": 2225.72, + "end": 2227.14, + "probability": 0.9896 + }, + { + "start": 2227.32, + "end": 2229.66, + "probability": 0.988 + }, + { + "start": 2230.34, + "end": 2232.66, + "probability": 0.8894 + }, + { + "start": 2233.28, + "end": 2237.2, + "probability": 0.9857 + }, + { + "start": 2237.86, + "end": 2239.94, + "probability": 0.9858 + }, + { + "start": 2240.48, + "end": 2242.08, + "probability": 0.9591 + }, + { + "start": 2243.64, + "end": 2246.62, + "probability": 0.9956 + }, + { + "start": 2247.36, + "end": 2249.48, + "probability": 0.949 + }, + { + "start": 2250.26, + "end": 2251.08, + "probability": 0.9792 + }, + { + "start": 2251.72, + "end": 2253.28, + "probability": 0.7672 + }, + { + "start": 2254.3, + "end": 2259.52, + "probability": 0.9963 + }, + { + "start": 2259.88, + "end": 2262.8, + "probability": 0.995 + }, + { + "start": 2263.18, + "end": 2265.16, + "probability": 0.8716 + }, + { + "start": 2265.54, + "end": 2270.14, + "probability": 0.9873 + }, + { + "start": 2271.26, + "end": 2271.88, + "probability": 0.4098 + }, + { + "start": 2272.72, + "end": 2273.56, + "probability": 0.9861 + }, + { + "start": 2274.94, + "end": 2276.28, + "probability": 0.946 + }, + { + "start": 2277.0, + "end": 2279.3, + "probability": 0.843 + }, + { + "start": 2279.84, + "end": 2282.58, + "probability": 0.9146 + }, + { + "start": 2283.1, + "end": 2286.06, + "probability": 0.958 + }, + { + "start": 2286.64, + "end": 2287.12, + "probability": 0.5582 + }, + { + "start": 2288.36, + "end": 2292.92, + "probability": 0.9563 + }, + { + "start": 2293.4, + "end": 2294.2, + "probability": 0.9877 + }, + { + "start": 2295.48, + "end": 2299.36, + "probability": 0.7418 + }, + { + "start": 2299.88, + "end": 2300.72, + "probability": 0.9494 + }, + { + "start": 2301.38, + "end": 2303.78, + "probability": 0.9666 + }, + { + "start": 2304.42, + "end": 2305.8, + "probability": 0.9946 + }, + { + "start": 2306.34, + "end": 2309.64, + "probability": 0.9972 + }, + { + "start": 2310.96, + "end": 2312.74, + "probability": 0.901 + }, + { + "start": 2313.62, + "end": 2314.63, + "probability": 0.8535 + }, + { + "start": 2315.46, + "end": 2317.1, + "probability": 0.9126 + }, + { + "start": 2317.98, + "end": 2321.48, + "probability": 0.9876 + }, + { + "start": 2321.78, + "end": 2322.82, + "probability": 0.931 + }, + { + "start": 2323.54, + "end": 2325.54, + "probability": 0.994 + }, + { + "start": 2326.54, + "end": 2330.5, + "probability": 0.998 + }, + { + "start": 2331.2, + "end": 2331.92, + "probability": 0.8681 + }, + { + "start": 2332.54, + "end": 2334.62, + "probability": 0.9546 + }, + { + "start": 2335.14, + "end": 2340.7, + "probability": 0.8979 + }, + { + "start": 2340.7, + "end": 2345.08, + "probability": 0.9829 + }, + { + "start": 2345.88, + "end": 2346.94, + "probability": 0.7252 + }, + { + "start": 2347.58, + "end": 2350.18, + "probability": 0.8831 + }, + { + "start": 2350.78, + "end": 2355.0, + "probability": 0.969 + }, + { + "start": 2357.48, + "end": 2360.56, + "probability": 0.9543 + }, + { + "start": 2361.14, + "end": 2363.9, + "probability": 0.9931 + }, + { + "start": 2364.32, + "end": 2367.74, + "probability": 0.9989 + }, + { + "start": 2369.04, + "end": 2370.04, + "probability": 0.6097 + }, + { + "start": 2370.88, + "end": 2372.38, + "probability": 0.9803 + }, + { + "start": 2373.46, + "end": 2379.5, + "probability": 0.9915 + }, + { + "start": 2380.34, + "end": 2380.62, + "probability": 0.2722 + }, + { + "start": 2381.52, + "end": 2383.84, + "probability": 0.9645 + }, + { + "start": 2384.7, + "end": 2386.66, + "probability": 0.9371 + }, + { + "start": 2387.6, + "end": 2389.54, + "probability": 0.9831 + }, + { + "start": 2390.02, + "end": 2393.84, + "probability": 0.9867 + }, + { + "start": 2394.96, + "end": 2398.26, + "probability": 0.9024 + }, + { + "start": 2398.64, + "end": 2400.34, + "probability": 0.853 + }, + { + "start": 2400.76, + "end": 2404.74, + "probability": 0.9797 + }, + { + "start": 2405.08, + "end": 2409.1, + "probability": 0.9823 + }, + { + "start": 2409.64, + "end": 2411.3, + "probability": 0.9725 + }, + { + "start": 2412.32, + "end": 2418.48, + "probability": 0.9893 + }, + { + "start": 2419.7, + "end": 2425.26, + "probability": 0.9913 + }, + { + "start": 2426.14, + "end": 2429.46, + "probability": 0.9971 + }, + { + "start": 2429.82, + "end": 2434.46, + "probability": 0.9811 + }, + { + "start": 2436.24, + "end": 2437.74, + "probability": 0.9761 + }, + { + "start": 2438.5, + "end": 2440.04, + "probability": 0.9951 + }, + { + "start": 2440.72, + "end": 2443.06, + "probability": 0.9748 + }, + { + "start": 2443.72, + "end": 2444.26, + "probability": 0.9148 + }, + { + "start": 2445.14, + "end": 2450.15, + "probability": 0.9954 + }, + { + "start": 2450.3, + "end": 2451.98, + "probability": 0.967 + }, + { + "start": 2452.74, + "end": 2456.56, + "probability": 0.9398 + }, + { + "start": 2456.66, + "end": 2459.08, + "probability": 0.9763 + }, + { + "start": 2460.08, + "end": 2461.84, + "probability": 0.9754 + }, + { + "start": 2462.4, + "end": 2464.16, + "probability": 0.8729 + }, + { + "start": 2465.22, + "end": 2465.96, + "probability": 0.9891 + }, + { + "start": 2466.74, + "end": 2469.76, + "probability": 0.9987 + }, + { + "start": 2471.02, + "end": 2472.74, + "probability": 0.7617 + }, + { + "start": 2473.22, + "end": 2475.14, + "probability": 0.9792 + }, + { + "start": 2476.04, + "end": 2483.12, + "probability": 0.9865 + }, + { + "start": 2484.14, + "end": 2488.52, + "probability": 0.9084 + }, + { + "start": 2489.26, + "end": 2491.73, + "probability": 0.8825 + }, + { + "start": 2492.42, + "end": 2494.8, + "probability": 0.6673 + }, + { + "start": 2494.94, + "end": 2496.24, + "probability": 0.9638 + }, + { + "start": 2496.7, + "end": 2501.56, + "probability": 0.9913 + }, + { + "start": 2503.04, + "end": 2505.04, + "probability": 0.8251 + }, + { + "start": 2505.72, + "end": 2513.7, + "probability": 0.7768 + }, + { + "start": 2514.64, + "end": 2514.84, + "probability": 0.9441 + }, + { + "start": 2514.84, + "end": 2516.34, + "probability": 0.7973 + }, + { + "start": 2516.82, + "end": 2518.14, + "probability": 0.9139 + }, + { + "start": 2518.52, + "end": 2522.04, + "probability": 0.969 + }, + { + "start": 2523.18, + "end": 2524.5, + "probability": 0.8305 + }, + { + "start": 2525.16, + "end": 2525.9, + "probability": 0.9839 + }, + { + "start": 2527.0, + "end": 2529.46, + "probability": 0.9736 + }, + { + "start": 2530.4, + "end": 2532.74, + "probability": 0.9854 + }, + { + "start": 2533.7, + "end": 2534.0, + "probability": 0.7827 + }, + { + "start": 2534.66, + "end": 2538.5, + "probability": 0.991 + }, + { + "start": 2538.6, + "end": 2540.76, + "probability": 0.7177 + }, + { + "start": 2541.18, + "end": 2542.72, + "probability": 0.5639 + }, + { + "start": 2543.26, + "end": 2545.46, + "probability": 0.9971 + }, + { + "start": 2546.16, + "end": 2550.86, + "probability": 0.8618 + }, + { + "start": 2551.56, + "end": 2559.9, + "probability": 0.9774 + }, + { + "start": 2561.92, + "end": 2563.07, + "probability": 0.9302 + }, + { + "start": 2564.2, + "end": 2565.31, + "probability": 0.8326 + }, + { + "start": 2566.68, + "end": 2567.36, + "probability": 0.7556 + }, + { + "start": 2567.9, + "end": 2568.36, + "probability": 0.9983 + }, + { + "start": 2570.06, + "end": 2572.62, + "probability": 0.9733 + }, + { + "start": 2573.1, + "end": 2575.74, + "probability": 0.9976 + }, + { + "start": 2576.26, + "end": 2576.72, + "probability": 0.7202 + }, + { + "start": 2577.74, + "end": 2578.48, + "probability": 0.6078 + }, + { + "start": 2579.06, + "end": 2580.88, + "probability": 0.9848 + }, + { + "start": 2604.18, + "end": 2605.54, + "probability": 0.7332 + }, + { + "start": 2606.82, + "end": 2607.42, + "probability": 0.8225 + }, + { + "start": 2607.96, + "end": 2609.64, + "probability": 0.953 + }, + { + "start": 2611.48, + "end": 2612.98, + "probability": 0.7042 + }, + { + "start": 2614.88, + "end": 2615.52, + "probability": 0.7163 + }, + { + "start": 2615.68, + "end": 2617.1, + "probability": 0.9417 + }, + { + "start": 2617.16, + "end": 2619.84, + "probability": 0.7172 + }, + { + "start": 2620.28, + "end": 2620.96, + "probability": 0.7472 + }, + { + "start": 2622.1, + "end": 2624.02, + "probability": 0.9526 + }, + { + "start": 2626.76, + "end": 2627.9, + "probability": 0.9619 + }, + { + "start": 2629.14, + "end": 2632.84, + "probability": 0.8645 + }, + { + "start": 2633.68, + "end": 2635.96, + "probability": 0.868 + }, + { + "start": 2636.64, + "end": 2638.9, + "probability": 0.9651 + }, + { + "start": 2640.02, + "end": 2641.94, + "probability": 0.8965 + }, + { + "start": 2643.04, + "end": 2644.88, + "probability": 0.9424 + }, + { + "start": 2646.1, + "end": 2647.68, + "probability": 0.6765 + }, + { + "start": 2648.76, + "end": 2651.93, + "probability": 0.987 + }, + { + "start": 2653.72, + "end": 2656.2, + "probability": 0.9899 + }, + { + "start": 2657.38, + "end": 2659.2, + "probability": 0.9704 + }, + { + "start": 2660.52, + "end": 2661.64, + "probability": 0.7238 + }, + { + "start": 2661.76, + "end": 2664.06, + "probability": 0.9949 + }, + { + "start": 2665.08, + "end": 2666.06, + "probability": 0.791 + }, + { + "start": 2666.86, + "end": 2667.9, + "probability": 0.8212 + }, + { + "start": 2669.3, + "end": 2672.56, + "probability": 0.9932 + }, + { + "start": 2673.64, + "end": 2675.1, + "probability": 0.9246 + }, + { + "start": 2675.28, + "end": 2677.22, + "probability": 0.9836 + }, + { + "start": 2678.12, + "end": 2678.48, + "probability": 0.7744 + }, + { + "start": 2679.06, + "end": 2679.62, + "probability": 0.7506 + }, + { + "start": 2680.34, + "end": 2683.78, + "probability": 0.9884 + }, + { + "start": 2684.68, + "end": 2687.28, + "probability": 0.7534 + }, + { + "start": 2688.4, + "end": 2693.2, + "probability": 0.9856 + }, + { + "start": 2694.46, + "end": 2695.1, + "probability": 0.6903 + }, + { + "start": 2695.28, + "end": 2700.3, + "probability": 0.9904 + }, + { + "start": 2700.42, + "end": 2702.28, + "probability": 0.9985 + }, + { + "start": 2705.14, + "end": 2707.64, + "probability": 0.9974 + }, + { + "start": 2708.5, + "end": 2713.98, + "probability": 0.9915 + }, + { + "start": 2714.04, + "end": 2714.68, + "probability": 0.9514 + }, + { + "start": 2716.06, + "end": 2716.92, + "probability": 0.982 + }, + { + "start": 2717.86, + "end": 2718.42, + "probability": 0.9347 + }, + { + "start": 2720.04, + "end": 2721.26, + "probability": 0.6639 + }, + { + "start": 2723.4, + "end": 2725.02, + "probability": 0.9067 + }, + { + "start": 2725.24, + "end": 2728.24, + "probability": 0.9899 + }, + { + "start": 2728.92, + "end": 2729.48, + "probability": 0.5295 + }, + { + "start": 2730.14, + "end": 2731.84, + "probability": 0.886 + }, + { + "start": 2735.24, + "end": 2740.06, + "probability": 0.8026 + }, + { + "start": 2740.34, + "end": 2741.5, + "probability": 0.9339 + }, + { + "start": 2742.44, + "end": 2744.68, + "probability": 0.9915 + }, + { + "start": 2745.42, + "end": 2748.37, + "probability": 0.8716 + }, + { + "start": 2749.5, + "end": 2750.64, + "probability": 0.826 + }, + { + "start": 2751.9, + "end": 2753.46, + "probability": 0.9767 + }, + { + "start": 2754.68, + "end": 2755.67, + "probability": 0.9997 + }, + { + "start": 2756.94, + "end": 2760.38, + "probability": 0.9751 + }, + { + "start": 2761.26, + "end": 2764.2, + "probability": 0.9821 + }, + { + "start": 2765.54, + "end": 2766.96, + "probability": 0.9972 + }, + { + "start": 2769.28, + "end": 2770.16, + "probability": 0.9446 + }, + { + "start": 2771.98, + "end": 2775.04, + "probability": 0.8831 + }, + { + "start": 2775.76, + "end": 2775.76, + "probability": 0.1158 + }, + { + "start": 2777.22, + "end": 2781.52, + "probability": 0.9348 + }, + { + "start": 2782.38, + "end": 2784.7, + "probability": 0.9933 + }, + { + "start": 2785.78, + "end": 2786.56, + "probability": 0.8135 + }, + { + "start": 2787.64, + "end": 2790.02, + "probability": 0.9907 + }, + { + "start": 2790.32, + "end": 2791.68, + "probability": 0.5589 + }, + { + "start": 2792.82, + "end": 2793.54, + "probability": 0.7791 + }, + { + "start": 2794.72, + "end": 2796.44, + "probability": 0.5319 + }, + { + "start": 2797.52, + "end": 2802.5, + "probability": 0.9973 + }, + { + "start": 2802.6, + "end": 2803.7, + "probability": 0.8923 + }, + { + "start": 2805.3, + "end": 2806.1, + "probability": 0.7424 + }, + { + "start": 2807.56, + "end": 2808.66, + "probability": 0.9538 + }, + { + "start": 2808.76, + "end": 2814.6, + "probability": 0.993 + }, + { + "start": 2815.44, + "end": 2818.1, + "probability": 0.9863 + }, + { + "start": 2819.64, + "end": 2820.12, + "probability": 0.974 + }, + { + "start": 2821.42, + "end": 2822.24, + "probability": 0.6904 + }, + { + "start": 2823.32, + "end": 2826.04, + "probability": 0.9828 + }, + { + "start": 2827.76, + "end": 2832.0, + "probability": 0.8947 + }, + { + "start": 2832.0, + "end": 2835.58, + "probability": 0.9935 + }, + { + "start": 2835.7, + "end": 2838.04, + "probability": 0.7849 + }, + { + "start": 2839.18, + "end": 2839.82, + "probability": 0.8899 + }, + { + "start": 2841.96, + "end": 2843.92, + "probability": 0.9033 + }, + { + "start": 2847.0, + "end": 2847.62, + "probability": 0.7223 + }, + { + "start": 2848.68, + "end": 2852.22, + "probability": 0.991 + }, + { + "start": 2854.0, + "end": 2856.72, + "probability": 0.9805 + }, + { + "start": 2859.08, + "end": 2862.64, + "probability": 0.8431 + }, + { + "start": 2863.64, + "end": 2864.5, + "probability": 0.9114 + }, + { + "start": 2864.92, + "end": 2867.98, + "probability": 0.9977 + }, + { + "start": 2869.02, + "end": 2869.74, + "probability": 0.9915 + }, + { + "start": 2869.88, + "end": 2874.74, + "probability": 0.9837 + }, + { + "start": 2876.36, + "end": 2878.94, + "probability": 0.9956 + }, + { + "start": 2880.06, + "end": 2880.62, + "probability": 0.993 + }, + { + "start": 2881.78, + "end": 2886.09, + "probability": 0.9957 + }, + { + "start": 2888.46, + "end": 2890.12, + "probability": 0.892 + }, + { + "start": 2890.86, + "end": 2892.68, + "probability": 0.9771 + }, + { + "start": 2893.86, + "end": 2896.6, + "probability": 0.9932 + }, + { + "start": 2896.78, + "end": 2898.22, + "probability": 0.9335 + }, + { + "start": 2898.94, + "end": 2899.76, + "probability": 0.9919 + }, + { + "start": 2900.96, + "end": 2901.8, + "probability": 0.9861 + }, + { + "start": 2902.86, + "end": 2903.42, + "probability": 0.9674 + }, + { + "start": 2904.98, + "end": 2907.6, + "probability": 0.999 + }, + { + "start": 2908.78, + "end": 2909.22, + "probability": 0.9751 + }, + { + "start": 2910.06, + "end": 2912.94, + "probability": 0.9706 + }, + { + "start": 2913.74, + "end": 2915.8, + "probability": 0.9795 + }, + { + "start": 2917.82, + "end": 2922.15, + "probability": 0.9825 + }, + { + "start": 2923.26, + "end": 2925.96, + "probability": 0.9906 + }, + { + "start": 2926.88, + "end": 2927.6, + "probability": 0.7537 + }, + { + "start": 2929.16, + "end": 2932.64, + "probability": 0.9054 + }, + { + "start": 2934.18, + "end": 2934.46, + "probability": 0.572 + }, + { + "start": 2935.4, + "end": 2936.0, + "probability": 0.6156 + }, + { + "start": 2937.5, + "end": 2938.08, + "probability": 0.8758 + }, + { + "start": 2939.46, + "end": 2943.3, + "probability": 0.9985 + }, + { + "start": 2943.86, + "end": 2944.6, + "probability": 0.8531 + }, + { + "start": 2946.02, + "end": 2946.7, + "probability": 0.8556 + }, + { + "start": 2947.36, + "end": 2951.0, + "probability": 0.998 + }, + { + "start": 2953.96, + "end": 2956.38, + "probability": 0.9741 + }, + { + "start": 2957.38, + "end": 2958.28, + "probability": 0.9987 + }, + { + "start": 2959.56, + "end": 2959.9, + "probability": 0.6276 + }, + { + "start": 2961.02, + "end": 2963.06, + "probability": 0.9936 + }, + { + "start": 2964.12, + "end": 2967.4, + "probability": 0.9953 + }, + { + "start": 2969.94, + "end": 2973.76, + "probability": 0.9971 + }, + { + "start": 2974.8, + "end": 2977.72, + "probability": 0.9781 + }, + { + "start": 2980.1, + "end": 2981.64, + "probability": 0.8708 + }, + { + "start": 2983.16, + "end": 2984.2, + "probability": 0.8001 + }, + { + "start": 2985.42, + "end": 2986.68, + "probability": 0.9913 + }, + { + "start": 2988.16, + "end": 2990.76, + "probability": 0.9868 + }, + { + "start": 2991.82, + "end": 2998.58, + "probability": 0.9902 + }, + { + "start": 2999.42, + "end": 3002.28, + "probability": 0.9998 + }, + { + "start": 3003.36, + "end": 3005.5, + "probability": 0.9993 + }, + { + "start": 3006.32, + "end": 3007.26, + "probability": 0.9995 + }, + { + "start": 3008.18, + "end": 3008.72, + "probability": 0.8953 + }, + { + "start": 3009.98, + "end": 3012.54, + "probability": 0.9988 + }, + { + "start": 3013.32, + "end": 3014.9, + "probability": 0.9917 + }, + { + "start": 3015.76, + "end": 3017.02, + "probability": 0.8496 + }, + { + "start": 3017.9, + "end": 3020.72, + "probability": 0.2467 + }, + { + "start": 3027.52, + "end": 3029.86, + "probability": 0.9979 + }, + { + "start": 3030.1, + "end": 3031.58, + "probability": 0.7676 + }, + { + "start": 3031.62, + "end": 3032.36, + "probability": 0.9673 + }, + { + "start": 3042.52, + "end": 3042.62, + "probability": 0.7024 + }, + { + "start": 3043.54, + "end": 3046.26, + "probability": 0.9878 + }, + { + "start": 3046.72, + "end": 3047.96, + "probability": 0.862 + }, + { + "start": 3048.4, + "end": 3050.46, + "probability": 0.9924 + }, + { + "start": 3051.38, + "end": 3053.2, + "probability": 0.9916 + }, + { + "start": 3054.72, + "end": 3054.82, + "probability": 0.9473 + }, + { + "start": 3055.34, + "end": 3056.76, + "probability": 0.9746 + }, + { + "start": 3058.12, + "end": 3059.94, + "probability": 0.9274 + }, + { + "start": 3062.92, + "end": 3063.3, + "probability": 0.0255 + }, + { + "start": 3064.36, + "end": 3065.34, + "probability": 0.3972 + }, + { + "start": 3065.54, + "end": 3068.6, + "probability": 0.9796 + }, + { + "start": 3070.82, + "end": 3071.62, + "probability": 0.847 + }, + { + "start": 3072.62, + "end": 3078.8, + "probability": 0.9937 + }, + { + "start": 3079.32, + "end": 3079.76, + "probability": 0.9245 + }, + { + "start": 3081.04, + "end": 3082.98, + "probability": 0.5059 + }, + { + "start": 3084.48, + "end": 3087.24, + "probability": 0.9219 + }, + { + "start": 3088.94, + "end": 3092.52, + "probability": 0.9902 + }, + { + "start": 3093.46, + "end": 3095.9, + "probability": 0.8967 + }, + { + "start": 3096.84, + "end": 3102.24, + "probability": 0.9941 + }, + { + "start": 3103.56, + "end": 3106.36, + "probability": 0.7649 + }, + { + "start": 3107.6, + "end": 3111.52, + "probability": 0.9421 + }, + { + "start": 3112.26, + "end": 3113.5, + "probability": 0.7485 + }, + { + "start": 3113.6, + "end": 3114.78, + "probability": 0.9453 + }, + { + "start": 3114.82, + "end": 3118.7, + "probability": 0.9587 + }, + { + "start": 3120.44, + "end": 3122.7, + "probability": 0.9811 + }, + { + "start": 3123.64, + "end": 3124.72, + "probability": 0.6326 + }, + { + "start": 3125.58, + "end": 3128.42, + "probability": 0.9937 + }, + { + "start": 3129.78, + "end": 3134.74, + "probability": 0.9727 + }, + { + "start": 3136.92, + "end": 3138.96, + "probability": 0.9609 + }, + { + "start": 3139.2, + "end": 3140.3, + "probability": 0.9266 + }, + { + "start": 3140.5, + "end": 3150.2, + "probability": 0.9739 + }, + { + "start": 3150.78, + "end": 3154.38, + "probability": 0.9897 + }, + { + "start": 3154.38, + "end": 3159.0, + "probability": 0.9858 + }, + { + "start": 3159.9, + "end": 3161.34, + "probability": 0.798 + }, + { + "start": 3162.3, + "end": 3164.02, + "probability": 0.84 + }, + { + "start": 3164.78, + "end": 3170.56, + "probability": 0.9978 + }, + { + "start": 3171.84, + "end": 3173.84, + "probability": 0.9966 + }, + { + "start": 3174.84, + "end": 3179.32, + "probability": 0.9384 + }, + { + "start": 3180.16, + "end": 3181.9, + "probability": 0.8966 + }, + { + "start": 3183.02, + "end": 3186.68, + "probability": 0.9654 + }, + { + "start": 3187.56, + "end": 3189.8, + "probability": 0.9991 + }, + { + "start": 3190.36, + "end": 3192.1, + "probability": 0.8235 + }, + { + "start": 3193.38, + "end": 3200.82, + "probability": 0.9966 + }, + { + "start": 3200.94, + "end": 3202.14, + "probability": 0.8774 + }, + { + "start": 3202.9, + "end": 3207.36, + "probability": 0.9969 + }, + { + "start": 3209.4, + "end": 3211.84, + "probability": 0.6868 + }, + { + "start": 3212.2, + "end": 3216.84, + "probability": 0.9824 + }, + { + "start": 3217.74, + "end": 3220.76, + "probability": 0.9226 + }, + { + "start": 3222.42, + "end": 3223.74, + "probability": 0.8531 + }, + { + "start": 3224.6, + "end": 3231.42, + "probability": 0.9918 + }, + { + "start": 3233.04, + "end": 3237.0, + "probability": 0.9957 + }, + { + "start": 3237.48, + "end": 3238.5, + "probability": 0.8043 + }, + { + "start": 3239.08, + "end": 3240.84, + "probability": 0.9955 + }, + { + "start": 3241.54, + "end": 3242.86, + "probability": 0.8318 + }, + { + "start": 3243.08, + "end": 3244.66, + "probability": 0.9816 + }, + { + "start": 3244.74, + "end": 3246.98, + "probability": 0.993 + }, + { + "start": 3248.08, + "end": 3252.32, + "probability": 0.9985 + }, + { + "start": 3252.36, + "end": 3253.98, + "probability": 0.9369 + }, + { + "start": 3254.84, + "end": 3261.84, + "probability": 0.9915 + }, + { + "start": 3263.22, + "end": 3267.12, + "probability": 0.9976 + }, + { + "start": 3268.9, + "end": 3273.24, + "probability": 0.996 + }, + { + "start": 3273.24, + "end": 3277.24, + "probability": 0.9996 + }, + { + "start": 3278.04, + "end": 3280.36, + "probability": 0.9854 + }, + { + "start": 3282.64, + "end": 3283.02, + "probability": 0.5306 + }, + { + "start": 3283.12, + "end": 3290.34, + "probability": 0.9937 + }, + { + "start": 3290.8, + "end": 3292.96, + "probability": 0.9985 + }, + { + "start": 3293.78, + "end": 3295.46, + "probability": 0.762 + }, + { + "start": 3296.06, + "end": 3296.8, + "probability": 0.9119 + }, + { + "start": 3297.44, + "end": 3299.16, + "probability": 0.5357 + }, + { + "start": 3299.84, + "end": 3301.6, + "probability": 0.9737 + }, + { + "start": 3302.36, + "end": 3307.08, + "probability": 0.9764 + }, + { + "start": 3308.04, + "end": 3312.28, + "probability": 0.9859 + }, + { + "start": 3312.9, + "end": 3318.62, + "probability": 0.9989 + }, + { + "start": 3319.26, + "end": 3320.96, + "probability": 0.7482 + }, + { + "start": 3322.52, + "end": 3324.46, + "probability": 0.7667 + }, + { + "start": 3324.56, + "end": 3325.28, + "probability": 0.9783 + }, + { + "start": 3325.68, + "end": 3327.4, + "probability": 0.9894 + }, + { + "start": 3328.0, + "end": 3331.78, + "probability": 0.9969 + }, + { + "start": 3332.98, + "end": 3335.2, + "probability": 0.9618 + }, + { + "start": 3335.76, + "end": 3338.52, + "probability": 0.9167 + }, + { + "start": 3339.02, + "end": 3339.96, + "probability": 0.8252 + }, + { + "start": 3340.18, + "end": 3341.74, + "probability": 0.9969 + }, + { + "start": 3342.68, + "end": 3343.5, + "probability": 0.8375 + }, + { + "start": 3346.2, + "end": 3346.98, + "probability": 0.9071 + }, + { + "start": 3348.22, + "end": 3351.92, + "probability": 0.999 + }, + { + "start": 3353.12, + "end": 3355.64, + "probability": 0.9912 + }, + { + "start": 3355.88, + "end": 3358.6, + "probability": 0.9076 + }, + { + "start": 3359.44, + "end": 3361.86, + "probability": 0.9697 + }, + { + "start": 3362.46, + "end": 3365.78, + "probability": 0.8461 + }, + { + "start": 3367.36, + "end": 3368.38, + "probability": 0.9155 + }, + { + "start": 3368.6, + "end": 3369.45, + "probability": 0.8665 + }, + { + "start": 3369.72, + "end": 3370.42, + "probability": 0.8325 + }, + { + "start": 3370.9, + "end": 3372.9, + "probability": 0.9964 + }, + { + "start": 3373.52, + "end": 3374.54, + "probability": 0.9889 + }, + { + "start": 3375.96, + "end": 3380.92, + "probability": 0.9885 + }, + { + "start": 3381.32, + "end": 3384.96, + "probability": 0.9988 + }, + { + "start": 3385.56, + "end": 3387.54, + "probability": 0.8637 + }, + { + "start": 3389.94, + "end": 3396.16, + "probability": 0.9969 + }, + { + "start": 3396.16, + "end": 3402.02, + "probability": 0.9601 + }, + { + "start": 3403.6, + "end": 3407.98, + "probability": 0.9897 + }, + { + "start": 3409.04, + "end": 3411.66, + "probability": 0.9734 + }, + { + "start": 3412.32, + "end": 3413.04, + "probability": 0.8169 + }, + { + "start": 3413.78, + "end": 3415.78, + "probability": 0.9884 + }, + { + "start": 3416.34, + "end": 3421.24, + "probability": 0.9724 + }, + { + "start": 3421.86, + "end": 3424.24, + "probability": 0.9939 + }, + { + "start": 3424.82, + "end": 3428.5, + "probability": 0.8712 + }, + { + "start": 3430.02, + "end": 3432.88, + "probability": 0.9983 + }, + { + "start": 3432.88, + "end": 3435.84, + "probability": 0.9993 + }, + { + "start": 3435.98, + "end": 3438.44, + "probability": 0.9971 + }, + { + "start": 3439.02, + "end": 3440.82, + "probability": 0.9863 + }, + { + "start": 3441.66, + "end": 3445.12, + "probability": 0.9922 + }, + { + "start": 3445.26, + "end": 3448.04, + "probability": 0.9977 + }, + { + "start": 3449.18, + "end": 3449.62, + "probability": 0.6517 + }, + { + "start": 3450.82, + "end": 3455.22, + "probability": 0.9906 + }, + { + "start": 3458.02, + "end": 3461.34, + "probability": 0.953 + }, + { + "start": 3462.38, + "end": 3468.1, + "probability": 0.9845 + }, + { + "start": 3468.78, + "end": 3470.38, + "probability": 0.9891 + }, + { + "start": 3470.78, + "end": 3474.62, + "probability": 0.9341 + }, + { + "start": 3475.54, + "end": 3478.7, + "probability": 0.9971 + }, + { + "start": 3479.44, + "end": 3481.12, + "probability": 0.9749 + }, + { + "start": 3482.2, + "end": 3487.46, + "probability": 0.9956 + }, + { + "start": 3487.74, + "end": 3489.28, + "probability": 0.8008 + }, + { + "start": 3490.66, + "end": 3495.56, + "probability": 0.9977 + }, + { + "start": 3496.34, + "end": 3497.5, + "probability": 0.9159 + }, + { + "start": 3498.14, + "end": 3500.64, + "probability": 0.9965 + }, + { + "start": 3501.24, + "end": 3504.28, + "probability": 0.8369 + }, + { + "start": 3504.84, + "end": 3506.46, + "probability": 0.8987 + }, + { + "start": 3507.14, + "end": 3508.46, + "probability": 0.9327 + }, + { + "start": 3508.98, + "end": 3510.02, + "probability": 0.9822 + }, + { + "start": 3511.08, + "end": 3512.9, + "probability": 0.921 + }, + { + "start": 3514.82, + "end": 3515.68, + "probability": 0.8947 + }, + { + "start": 3516.66, + "end": 3523.72, + "probability": 0.9827 + }, + { + "start": 3524.36, + "end": 3528.12, + "probability": 0.9995 + }, + { + "start": 3529.74, + "end": 3532.34, + "probability": 0.9976 + }, + { + "start": 3532.34, + "end": 3536.28, + "probability": 0.9988 + }, + { + "start": 3537.56, + "end": 3542.52, + "probability": 0.9989 + }, + { + "start": 3542.78, + "end": 3545.66, + "probability": 0.9966 + }, + { + "start": 3547.04, + "end": 3548.7, + "probability": 0.988 + }, + { + "start": 3549.48, + "end": 3551.72, + "probability": 0.9968 + }, + { + "start": 3552.34, + "end": 3557.74, + "probability": 0.9971 + }, + { + "start": 3558.32, + "end": 3562.52, + "probability": 0.9902 + }, + { + "start": 3563.4, + "end": 3564.78, + "probability": 0.9193 + }, + { + "start": 3565.98, + "end": 3567.3, + "probability": 0.9962 + }, + { + "start": 3568.02, + "end": 3570.94, + "probability": 0.9837 + }, + { + "start": 3571.44, + "end": 3574.4, + "probability": 0.9964 + }, + { + "start": 3575.24, + "end": 3580.32, + "probability": 0.9931 + }, + { + "start": 3581.32, + "end": 3581.78, + "probability": 0.8617 + }, + { + "start": 3582.4, + "end": 3583.69, + "probability": 0.7229 + }, + { + "start": 3584.9, + "end": 3586.06, + "probability": 0.8437 + }, + { + "start": 3587.46, + "end": 3591.5, + "probability": 0.4801 + }, + { + "start": 3592.96, + "end": 3593.34, + "probability": 0.6462 + }, + { + "start": 3594.04, + "end": 3598.78, + "probability": 0.6753 + }, + { + "start": 3598.78, + "end": 3603.66, + "probability": 0.9465 + }, + { + "start": 3604.3, + "end": 3604.94, + "probability": 0.255 + }, + { + "start": 3605.58, + "end": 3605.88, + "probability": 0.4257 + }, + { + "start": 3606.84, + "end": 3607.6, + "probability": 0.8374 + }, + { + "start": 3616.76, + "end": 3617.2, + "probability": 0.0663 + }, + { + "start": 3617.2, + "end": 3617.2, + "probability": 0.0492 + }, + { + "start": 3617.2, + "end": 3617.42, + "probability": 0.4846 + }, + { + "start": 3619.72, + "end": 3620.62, + "probability": 0.6879 + }, + { + "start": 3621.14, + "end": 3622.55, + "probability": 0.9652 + }, + { + "start": 3623.8, + "end": 3625.6, + "probability": 0.9333 + }, + { + "start": 3626.5, + "end": 3628.5, + "probability": 0.6904 + }, + { + "start": 3629.6, + "end": 3630.8, + "probability": 0.0215 + }, + { + "start": 3631.74, + "end": 3634.1, + "probability": 0.9584 + }, + { + "start": 3635.02, + "end": 3638.68, + "probability": 0.6511 + }, + { + "start": 3640.62, + "end": 3643.46, + "probability": 0.9919 + }, + { + "start": 3643.84, + "end": 3644.04, + "probability": 0.0005 + }, + { + "start": 3645.34, + "end": 3647.38, + "probability": 0.9897 + }, + { + "start": 3648.22, + "end": 3649.1, + "probability": 0.8197 + }, + { + "start": 3651.98, + "end": 3656.8, + "probability": 0.9818 + }, + { + "start": 3657.2, + "end": 3661.86, + "probability": 0.9753 + }, + { + "start": 3663.34, + "end": 3664.74, + "probability": 0.5772 + }, + { + "start": 3664.98, + "end": 3672.18, + "probability": 0.5414 + }, + { + "start": 3672.26, + "end": 3673.62, + "probability": 0.8254 + }, + { + "start": 3673.92, + "end": 3674.32, + "probability": 0.8722 + }, + { + "start": 3675.6, + "end": 3677.52, + "probability": 0.8838 + }, + { + "start": 3679.38, + "end": 3680.6, + "probability": 0.9541 + }, + { + "start": 3682.46, + "end": 3686.82, + "probability": 0.7554 + }, + { + "start": 3687.44, + "end": 3690.56, + "probability": 0.7841 + }, + { + "start": 3691.52, + "end": 3692.9, + "probability": 0.917 + }, + { + "start": 3693.42, + "end": 3694.52, + "probability": 0.695 + }, + { + "start": 3696.1, + "end": 3701.82, + "probability": 0.9878 + }, + { + "start": 3701.92, + "end": 3708.22, + "probability": 0.9911 + }, + { + "start": 3708.72, + "end": 3713.8, + "probability": 0.9997 + }, + { + "start": 3714.22, + "end": 3715.74, + "probability": 0.8512 + }, + { + "start": 3716.12, + "end": 3716.82, + "probability": 0.6998 + }, + { + "start": 3717.18, + "end": 3717.72, + "probability": 0.7893 + }, + { + "start": 3718.1, + "end": 3720.58, + "probability": 0.8823 + }, + { + "start": 3721.26, + "end": 3722.09, + "probability": 0.8823 + }, + { + "start": 3722.9, + "end": 3723.84, + "probability": 0.9941 + }, + { + "start": 3724.42, + "end": 3724.66, + "probability": 0.2233 + }, + { + "start": 3725.78, + "end": 3727.18, + "probability": 0.8602 + }, + { + "start": 3728.52, + "end": 3733.5, + "probability": 0.9984 + }, + { + "start": 3733.5, + "end": 3738.44, + "probability": 0.8724 + }, + { + "start": 3738.44, + "end": 3741.1, + "probability": 0.4068 + }, + { + "start": 3741.66, + "end": 3744.86, + "probability": 0.9955 + }, + { + "start": 3745.54, + "end": 3749.9, + "probability": 0.8014 + }, + { + "start": 3750.54, + "end": 3753.7, + "probability": 0.986 + }, + { + "start": 3754.68, + "end": 3759.72, + "probability": 0.9867 + }, + { + "start": 3760.36, + "end": 3765.44, + "probability": 0.9148 + }, + { + "start": 3765.82, + "end": 3771.66, + "probability": 0.9747 + }, + { + "start": 3772.14, + "end": 3776.16, + "probability": 0.9854 + }, + { + "start": 3778.44, + "end": 3781.96, + "probability": 0.2003 + }, + { + "start": 3782.52, + "end": 3787.46, + "probability": 0.9825 + }, + { + "start": 3787.58, + "end": 3794.24, + "probability": 0.985 + }, + { + "start": 3795.22, + "end": 3797.72, + "probability": 0.6071 + }, + { + "start": 3798.28, + "end": 3798.64, + "probability": 0.4559 + }, + { + "start": 3799.12, + "end": 3799.52, + "probability": 0.9329 + }, + { + "start": 3799.66, + "end": 3800.26, + "probability": 0.8844 + }, + { + "start": 3800.62, + "end": 3805.3, + "probability": 0.781 + }, + { + "start": 3805.42, + "end": 3808.02, + "probability": 0.8805 + }, + { + "start": 3808.3, + "end": 3812.38, + "probability": 0.7713 + }, + { + "start": 3813.42, + "end": 3814.0, + "probability": 0.6499 + }, + { + "start": 3814.64, + "end": 3815.82, + "probability": 0.7468 + }, + { + "start": 3818.22, + "end": 3821.9, + "probability": 0.9937 + }, + { + "start": 3822.7, + "end": 3825.7, + "probability": 0.8007 + }, + { + "start": 3826.46, + "end": 3830.68, + "probability": 0.9886 + }, + { + "start": 3830.68, + "end": 3834.8, + "probability": 0.8332 + }, + { + "start": 3835.86, + "end": 3842.56, + "probability": 0.9941 + }, + { + "start": 3842.72, + "end": 3843.86, + "probability": 0.6508 + }, + { + "start": 3844.46, + "end": 3846.74, + "probability": 0.9709 + }, + { + "start": 3847.4, + "end": 3850.22, + "probability": 0.9014 + }, + { + "start": 3850.22, + "end": 3853.22, + "probability": 0.9961 + }, + { + "start": 3853.86, + "end": 3856.64, + "probability": 0.9943 + }, + { + "start": 3857.38, + "end": 3858.26, + "probability": 0.9151 + }, + { + "start": 3859.12, + "end": 3859.66, + "probability": 0.6982 + }, + { + "start": 3859.92, + "end": 3861.36, + "probability": 0.8832 + }, + { + "start": 3861.76, + "end": 3863.86, + "probability": 0.9602 + }, + { + "start": 3864.62, + "end": 3869.62, + "probability": 0.9915 + }, + { + "start": 3870.6, + "end": 3872.1, + "probability": 0.6975 + }, + { + "start": 3872.5, + "end": 3875.58, + "probability": 0.9971 + }, + { + "start": 3876.78, + "end": 3878.58, + "probability": 0.9832 + }, + { + "start": 3879.96, + "end": 3880.77, + "probability": 0.9395 + }, + { + "start": 3882.8, + "end": 3887.72, + "probability": 0.9599 + }, + { + "start": 3890.54, + "end": 3893.22, + "probability": 0.9401 + }, + { + "start": 3894.06, + "end": 3896.24, + "probability": 0.8014 + }, + { + "start": 3897.46, + "end": 3901.14, + "probability": 0.8069 + }, + { + "start": 3901.64, + "end": 3902.98, + "probability": 0.5484 + }, + { + "start": 3905.2, + "end": 3908.44, + "probability": 0.9557 + }, + { + "start": 3908.9, + "end": 3910.26, + "probability": 0.7306 + }, + { + "start": 3910.64, + "end": 3918.32, + "probability": 0.8563 + }, + { + "start": 3919.08, + "end": 3921.62, + "probability": 0.9751 + }, + { + "start": 3922.44, + "end": 3925.06, + "probability": 0.9228 + }, + { + "start": 3926.2, + "end": 3927.72, + "probability": 0.6852 + }, + { + "start": 3928.1, + "end": 3932.66, + "probability": 0.8854 + }, + { + "start": 3933.14, + "end": 3939.74, + "probability": 0.7308 + }, + { + "start": 3940.86, + "end": 3947.54, + "probability": 0.8748 + }, + { + "start": 3948.22, + "end": 3950.24, + "probability": 0.5587 + }, + { + "start": 3950.4, + "end": 3952.3, + "probability": 0.9746 + }, + { + "start": 3952.88, + "end": 3956.36, + "probability": 0.9055 + }, + { + "start": 3956.36, + "end": 3960.64, + "probability": 0.9057 + }, + { + "start": 3961.12, + "end": 3964.24, + "probability": 0.8134 + }, + { + "start": 3964.78, + "end": 3968.6, + "probability": 0.998 + }, + { + "start": 3970.12, + "end": 3973.78, + "probability": 0.8965 + }, + { + "start": 3974.08, + "end": 3976.18, + "probability": 0.7017 + }, + { + "start": 3977.0, + "end": 3979.0, + "probability": 0.9779 + }, + { + "start": 3981.52, + "end": 3982.82, + "probability": 0.5796 + }, + { + "start": 3983.82, + "end": 3985.04, + "probability": 0.8076 + }, + { + "start": 3985.82, + "end": 3988.82, + "probability": 0.9734 + }, + { + "start": 3989.06, + "end": 3992.78, + "probability": 0.898 + }, + { + "start": 3992.8, + "end": 3993.34, + "probability": 0.7175 + }, + { + "start": 3993.44, + "end": 3995.42, + "probability": 0.7013 + }, + { + "start": 3996.02, + "end": 3998.18, + "probability": 0.9336 + }, + { + "start": 3998.58, + "end": 4000.72, + "probability": 0.9818 + }, + { + "start": 4001.2, + "end": 4003.8, + "probability": 0.9934 + }, + { + "start": 4003.8, + "end": 4005.94, + "probability": 0.6155 + }, + { + "start": 4007.72, + "end": 4010.8, + "probability": 0.9746 + }, + { + "start": 4011.94, + "end": 4013.76, + "probability": 0.9044 + }, + { + "start": 4014.24, + "end": 4016.16, + "probability": 0.8751 + }, + { + "start": 4016.62, + "end": 4020.82, + "probability": 0.9276 + }, + { + "start": 4021.36, + "end": 4023.58, + "probability": 0.989 + }, + { + "start": 4024.1, + "end": 4027.44, + "probability": 0.9661 + }, + { + "start": 4028.38, + "end": 4032.44, + "probability": 0.9463 + }, + { + "start": 4032.44, + "end": 4036.98, + "probability": 0.6596 + }, + { + "start": 4037.2, + "end": 4038.12, + "probability": 0.2953 + }, + { + "start": 4038.64, + "end": 4041.78, + "probability": 0.7908 + }, + { + "start": 4042.76, + "end": 4046.0, + "probability": 0.8914 + }, + { + "start": 4046.66, + "end": 4051.4, + "probability": 0.9696 + }, + { + "start": 4052.54, + "end": 4055.56, + "probability": 0.9404 + }, + { + "start": 4055.66, + "end": 4057.32, + "probability": 0.9108 + }, + { + "start": 4057.9, + "end": 4062.04, + "probability": 0.9926 + }, + { + "start": 4063.26, + "end": 4065.12, + "probability": 0.8062 + }, + { + "start": 4065.24, + "end": 4066.52, + "probability": 0.3675 + }, + { + "start": 4066.66, + "end": 4068.64, + "probability": 0.979 + }, + { + "start": 4069.72, + "end": 4073.04, + "probability": 0.8575 + }, + { + "start": 4073.62, + "end": 4074.4, + "probability": 0.7369 + }, + { + "start": 4074.5, + "end": 4077.08, + "probability": 0.7891 + }, + { + "start": 4077.64, + "end": 4082.98, + "probability": 0.9705 + }, + { + "start": 4083.18, + "end": 4084.48, + "probability": 0.916 + }, + { + "start": 4084.66, + "end": 4088.48, + "probability": 0.9854 + }, + { + "start": 4089.0, + "end": 4089.3, + "probability": 0.2705 + }, + { + "start": 4089.46, + "end": 4090.62, + "probability": 0.8485 + }, + { + "start": 4090.78, + "end": 4094.46, + "probability": 0.9933 + }, + { + "start": 4095.04, + "end": 4097.82, + "probability": 0.6584 + }, + { + "start": 4098.38, + "end": 4100.34, + "probability": 0.8995 + }, + { + "start": 4104.32, + "end": 4108.8, + "probability": 0.9376 + }, + { + "start": 4108.92, + "end": 4111.42, + "probability": 0.9692 + }, + { + "start": 4112.32, + "end": 4115.28, + "probability": 0.9904 + }, + { + "start": 4115.36, + "end": 4118.58, + "probability": 0.9351 + }, + { + "start": 4118.58, + "end": 4122.96, + "probability": 0.9897 + }, + { + "start": 4123.18, + "end": 4126.16, + "probability": 0.8264 + }, + { + "start": 4126.68, + "end": 4130.6, + "probability": 0.9934 + }, + { + "start": 4130.6, + "end": 4134.7, + "probability": 0.8147 + }, + { + "start": 4134.86, + "end": 4138.08, + "probability": 0.7911 + }, + { + "start": 4139.0, + "end": 4143.3, + "probability": 0.7984 + }, + { + "start": 4143.3, + "end": 4146.64, + "probability": 0.9746 + }, + { + "start": 4146.68, + "end": 4152.22, + "probability": 0.9504 + }, + { + "start": 4152.78, + "end": 4153.34, + "probability": 0.8296 + }, + { + "start": 4162.88, + "end": 4164.54, + "probability": 0.2451 + }, + { + "start": 4165.56, + "end": 4166.56, + "probability": 0.7468 + }, + { + "start": 4166.84, + "end": 4169.24, + "probability": 0.9457 + }, + { + "start": 4169.6, + "end": 4170.88, + "probability": 0.5853 + }, + { + "start": 4173.12, + "end": 4177.24, + "probability": 0.6664 + }, + { + "start": 4204.14, + "end": 4205.92, + "probability": 0.0215 + }, + { + "start": 4217.87, + "end": 4221.8, + "probability": 0.1317 + }, + { + "start": 4226.74, + "end": 4229.22, + "probability": 0.7428 + }, + { + "start": 4231.28, + "end": 4234.3, + "probability": 0.9958 + }, + { + "start": 4235.38, + "end": 4236.7, + "probability": 0.4434 + }, + { + "start": 4239.6, + "end": 4240.84, + "probability": 0.5576 + }, + { + "start": 4241.52, + "end": 4242.9, + "probability": 0.6239 + }, + { + "start": 4243.68, + "end": 4246.0, + "probability": 0.8526 + }, + { + "start": 4246.82, + "end": 4247.86, + "probability": 0.7838 + }, + { + "start": 4248.42, + "end": 4255.12, + "probability": 0.8169 + }, + { + "start": 4255.22, + "end": 4261.0, + "probability": 0.9745 + }, + { + "start": 4261.42, + "end": 4264.04, + "probability": 0.9972 + }, + { + "start": 4265.12, + "end": 4268.42, + "probability": 0.8559 + }, + { + "start": 4269.94, + "end": 4270.92, + "probability": 0.1471 + }, + { + "start": 4272.54, + "end": 4274.88, + "probability": 0.8709 + }, + { + "start": 4274.88, + "end": 4275.86, + "probability": 0.4496 + }, + { + "start": 4276.0, + "end": 4276.78, + "probability": 0.8983 + }, + { + "start": 4277.02, + "end": 4278.86, + "probability": 0.9954 + }, + { + "start": 4279.22, + "end": 4281.3, + "probability": 0.9873 + }, + { + "start": 4281.74, + "end": 4284.32, + "probability": 0.962 + }, + { + "start": 4286.26, + "end": 4287.94, + "probability": 0.734 + }, + { + "start": 4288.32, + "end": 4289.56, + "probability": 0.8288 + }, + { + "start": 4290.39, + "end": 4291.92, + "probability": 0.9475 + }, + { + "start": 4293.68, + "end": 4295.32, + "probability": 0.9693 + }, + { + "start": 4295.94, + "end": 4297.75, + "probability": 0.4752 + }, + { + "start": 4299.24, + "end": 4300.36, + "probability": 0.6566 + }, + { + "start": 4301.0, + "end": 4303.88, + "probability": 0.9678 + }, + { + "start": 4304.3, + "end": 4306.02, + "probability": 0.8984 + }, + { + "start": 4306.14, + "end": 4306.74, + "probability": 0.5814 + }, + { + "start": 4307.3, + "end": 4309.3, + "probability": 0.3785 + }, + { + "start": 4309.98, + "end": 4310.3, + "probability": 0.5479 + }, + { + "start": 4311.22, + "end": 4315.18, + "probability": 0.895 + }, + { + "start": 4316.74, + "end": 4320.04, + "probability": 0.7308 + }, + { + "start": 4321.34, + "end": 4323.31, + "probability": 0.9237 + }, + { + "start": 4324.52, + "end": 4325.72, + "probability": 0.6642 + }, + { + "start": 4326.3, + "end": 4330.66, + "probability": 0.9163 + }, + { + "start": 4332.66, + "end": 4336.92, + "probability": 0.9348 + }, + { + "start": 4339.28, + "end": 4340.4, + "probability": 0.9614 + }, + { + "start": 4341.68, + "end": 4346.24, + "probability": 0.9946 + }, + { + "start": 4346.8, + "end": 4350.62, + "probability": 0.9844 + }, + { + "start": 4351.98, + "end": 4352.62, + "probability": 0.8103 + }, + { + "start": 4353.24, + "end": 4354.46, + "probability": 0.6014 + }, + { + "start": 4357.82, + "end": 4360.72, + "probability": 0.9944 + }, + { + "start": 4360.72, + "end": 4364.76, + "probability": 0.8885 + }, + { + "start": 4365.7, + "end": 4367.64, + "probability": 0.9747 + }, + { + "start": 4369.41, + "end": 4372.2, + "probability": 0.9441 + }, + { + "start": 4373.04, + "end": 4373.86, + "probability": 0.4282 + }, + { + "start": 4376.92, + "end": 4378.46, + "probability": 0.4816 + }, + { + "start": 4379.22, + "end": 4380.3, + "probability": 0.8399 + }, + { + "start": 4380.9, + "end": 4383.31, + "probability": 0.9908 + }, + { + "start": 4384.3, + "end": 4386.82, + "probability": 0.9898 + }, + { + "start": 4387.58, + "end": 4388.36, + "probability": 0.4964 + }, + { + "start": 4388.64, + "end": 4393.24, + "probability": 0.9465 + }, + { + "start": 4393.92, + "end": 4396.06, + "probability": 0.9567 + }, + { + "start": 4396.62, + "end": 4401.38, + "probability": 0.9762 + }, + { + "start": 4401.62, + "end": 4406.28, + "probability": 0.916 + }, + { + "start": 4406.62, + "end": 4409.28, + "probability": 0.991 + }, + { + "start": 4409.84, + "end": 4415.8, + "probability": 0.9954 + }, + { + "start": 4416.72, + "end": 4418.06, + "probability": 0.8945 + }, + { + "start": 4419.28, + "end": 4422.14, + "probability": 0.9914 + }, + { + "start": 4423.04, + "end": 4423.6, + "probability": 0.8898 + }, + { + "start": 4424.62, + "end": 4425.86, + "probability": 0.7987 + }, + { + "start": 4426.26, + "end": 4426.98, + "probability": 0.6237 + }, + { + "start": 4427.08, + "end": 4430.54, + "probability": 0.7809 + }, + { + "start": 4430.94, + "end": 4434.82, + "probability": 0.936 + }, + { + "start": 4435.58, + "end": 4436.32, + "probability": 0.8557 + }, + { + "start": 4437.02, + "end": 4438.28, + "probability": 0.7543 + }, + { + "start": 4438.8, + "end": 4443.02, + "probability": 0.9902 + }, + { + "start": 4443.72, + "end": 4448.76, + "probability": 0.9782 + }, + { + "start": 4449.58, + "end": 4454.56, + "probability": 0.9962 + }, + { + "start": 4455.26, + "end": 4457.04, + "probability": 0.8375 + }, + { + "start": 4457.58, + "end": 4460.9, + "probability": 0.8876 + }, + { + "start": 4461.72, + "end": 4464.96, + "probability": 0.9993 + }, + { + "start": 4464.96, + "end": 4468.32, + "probability": 0.9959 + }, + { + "start": 4468.8, + "end": 4469.56, + "probability": 0.9695 + }, + { + "start": 4470.66, + "end": 4472.14, + "probability": 0.9572 + }, + { + "start": 4473.12, + "end": 4474.82, + "probability": 0.8539 + }, + { + "start": 4474.94, + "end": 4475.76, + "probability": 0.7992 + }, + { + "start": 4476.4, + "end": 4476.9, + "probability": 0.729 + }, + { + "start": 4477.06, + "end": 4478.46, + "probability": 0.7516 + }, + { + "start": 4478.58, + "end": 4479.78, + "probability": 0.7784 + }, + { + "start": 4480.36, + "end": 4486.64, + "probability": 0.9287 + }, + { + "start": 4486.82, + "end": 4487.6, + "probability": 0.7405 + }, + { + "start": 4488.88, + "end": 4491.6, + "probability": 0.9329 + }, + { + "start": 4493.82, + "end": 4494.18, + "probability": 0.7883 + }, + { + "start": 4506.52, + "end": 4510.72, + "probability": 0.5886 + }, + { + "start": 4511.28, + "end": 4513.42, + "probability": 0.5906 + }, + { + "start": 4513.42, + "end": 4516.78, + "probability": 0.9831 + }, + { + "start": 4517.14, + "end": 4519.8, + "probability": 0.9707 + }, + { + "start": 4520.86, + "end": 4522.98, + "probability": 0.363 + }, + { + "start": 4531.12, + "end": 4531.16, + "probability": 0.0877 + }, + { + "start": 4531.9, + "end": 4534.56, + "probability": 0.0698 + }, + { + "start": 4536.3, + "end": 4537.38, + "probability": 0.2997 + }, + { + "start": 4537.56, + "end": 4538.66, + "probability": 0.0896 + }, + { + "start": 4539.12, + "end": 4540.3, + "probability": 0.0484 + }, + { + "start": 4541.64, + "end": 4544.1, + "probability": 0.1853 + }, + { + "start": 4546.78, + "end": 4547.32, + "probability": 0.1229 + }, + { + "start": 4592.44, + "end": 4593.16, + "probability": 0.1227 + }, + { + "start": 4595.06, + "end": 4599.99, + "probability": 0.7429 + }, + { + "start": 4600.36, + "end": 4605.64, + "probability": 0.9141 + }, + { + "start": 4606.58, + "end": 4608.75, + "probability": 0.6914 + }, + { + "start": 4609.92, + "end": 4611.52, + "probability": 0.9191 + }, + { + "start": 4613.36, + "end": 4613.7, + "probability": 0.8422 + }, + { + "start": 4614.8, + "end": 4618.18, + "probability": 0.7519 + }, + { + "start": 4618.24, + "end": 4618.62, + "probability": 0.6793 + }, + { + "start": 4618.76, + "end": 4620.1, + "probability": 0.9845 + }, + { + "start": 4620.96, + "end": 4625.38, + "probability": 0.9358 + }, + { + "start": 4625.84, + "end": 4627.74, + "probability": 0.9843 + }, + { + "start": 4627.76, + "end": 4628.5, + "probability": 0.511 + }, + { + "start": 4629.56, + "end": 4630.86, + "probability": 0.9797 + }, + { + "start": 4631.52, + "end": 4632.08, + "probability": 0.9639 + }, + { + "start": 4633.6, + "end": 4636.35, + "probability": 0.9659 + }, + { + "start": 4638.3, + "end": 4641.7, + "probability": 0.636 + }, + { + "start": 4642.02, + "end": 4648.48, + "probability": 0.6975 + }, + { + "start": 4648.76, + "end": 4649.16, + "probability": 0.5436 + }, + { + "start": 4649.26, + "end": 4649.86, + "probability": 0.3727 + }, + { + "start": 4650.94, + "end": 4651.78, + "probability": 0.3762 + }, + { + "start": 4652.14, + "end": 4654.34, + "probability": 0.7165 + }, + { + "start": 4655.34, + "end": 4657.8, + "probability": 0.985 + }, + { + "start": 4658.86, + "end": 4661.16, + "probability": 0.7703 + }, + { + "start": 4662.62, + "end": 4665.28, + "probability": 0.9412 + }, + { + "start": 4665.28, + "end": 4670.36, + "probability": 0.8838 + }, + { + "start": 4671.28, + "end": 4675.32, + "probability": 0.9048 + }, + { + "start": 4675.32, + "end": 4680.98, + "probability": 0.8822 + }, + { + "start": 4681.78, + "end": 4684.54, + "probability": 0.7544 + }, + { + "start": 4684.58, + "end": 4689.08, + "probability": 0.9968 + }, + { + "start": 4689.74, + "end": 4695.5, + "probability": 0.9985 + }, + { + "start": 4695.58, + "end": 4697.66, + "probability": 0.9675 + }, + { + "start": 4698.36, + "end": 4700.9, + "probability": 0.7592 + }, + { + "start": 4701.54, + "end": 4708.02, + "probability": 0.9965 + }, + { + "start": 4708.88, + "end": 4711.88, + "probability": 0.9435 + }, + { + "start": 4712.46, + "end": 4713.36, + "probability": 0.624 + }, + { + "start": 4714.48, + "end": 4716.36, + "probability": 0.9957 + }, + { + "start": 4716.36, + "end": 4718.5, + "probability": 0.9957 + }, + { + "start": 4719.86, + "end": 4722.18, + "probability": 0.9329 + }, + { + "start": 4722.98, + "end": 4725.3, + "probability": 0.9574 + }, + { + "start": 4727.62, + "end": 4729.9, + "probability": 0.8674 + }, + { + "start": 4731.38, + "end": 4733.4, + "probability": 0.5246 + }, + { + "start": 4734.52, + "end": 4736.38, + "probability": 0.8795 + }, + { + "start": 4738.0, + "end": 4739.92, + "probability": 0.6529 + }, + { + "start": 4740.6, + "end": 4744.8, + "probability": 0.9692 + }, + { + "start": 4746.02, + "end": 4746.54, + "probability": 0.7343 + }, + { + "start": 4748.22, + "end": 4749.64, + "probability": 0.2842 + }, + { + "start": 4750.34, + "end": 4750.44, + "probability": 0.3426 + }, + { + "start": 4751.6, + "end": 4755.0, + "probability": 0.4854 + }, + { + "start": 4755.85, + "end": 4759.2, + "probability": 0.9556 + }, + { + "start": 4759.94, + "end": 4763.72, + "probability": 0.9967 + }, + { + "start": 4764.94, + "end": 4766.94, + "probability": 0.862 + }, + { + "start": 4768.24, + "end": 4769.06, + "probability": 0.7877 + }, + { + "start": 4769.5, + "end": 4771.22, + "probability": 0.5733 + }, + { + "start": 4771.44, + "end": 4772.15, + "probability": 0.8293 + }, + { + "start": 4774.62, + "end": 4777.11, + "probability": 0.9094 + }, + { + "start": 4778.64, + "end": 4778.92, + "probability": 0.6959 + }, + { + "start": 4780.22, + "end": 4782.14, + "probability": 0.7483 + }, + { + "start": 4782.88, + "end": 4784.56, + "probability": 0.6598 + }, + { + "start": 4784.68, + "end": 4785.72, + "probability": 0.8792 + }, + { + "start": 4785.8, + "end": 4788.64, + "probability": 0.9479 + }, + { + "start": 4789.58, + "end": 4791.68, + "probability": 0.6901 + }, + { + "start": 4792.4, + "end": 4795.68, + "probability": 0.9978 + }, + { + "start": 4796.78, + "end": 4800.28, + "probability": 0.9456 + }, + { + "start": 4800.64, + "end": 4801.7, + "probability": 0.4068 + }, + { + "start": 4801.7, + "end": 4802.86, + "probability": 0.7424 + }, + { + "start": 4803.26, + "end": 4805.34, + "probability": 0.5063 + }, + { + "start": 4805.42, + "end": 4806.74, + "probability": 0.569 + }, + { + "start": 4809.19, + "end": 4811.32, + "probability": 0.5102 + }, + { + "start": 4811.8, + "end": 4813.52, + "probability": 0.7574 + }, + { + "start": 4814.08, + "end": 4818.18, + "probability": 0.9614 + }, + { + "start": 4818.98, + "end": 4819.88, + "probability": 0.8115 + }, + { + "start": 4820.5, + "end": 4823.12, + "probability": 0.9521 + }, + { + "start": 4825.02, + "end": 4829.44, + "probability": 0.6804 + }, + { + "start": 4829.86, + "end": 4831.78, + "probability": 0.902 + }, + { + "start": 4832.34, + "end": 4833.48, + "probability": 0.3619 + }, + { + "start": 4833.62, + "end": 4835.3, + "probability": 0.0622 + }, + { + "start": 4835.6, + "end": 4840.02, + "probability": 0.9438 + }, + { + "start": 4840.26, + "end": 4843.82, + "probability": 0.9859 + }, + { + "start": 4844.46, + "end": 4845.5, + "probability": 0.9917 + }, + { + "start": 4846.62, + "end": 4848.96, + "probability": 0.9349 + }, + { + "start": 4849.4, + "end": 4851.12, + "probability": 0.6185 + }, + { + "start": 4851.44, + "end": 4852.9, + "probability": 0.7626 + }, + { + "start": 4852.98, + "end": 4853.72, + "probability": 0.6266 + }, + { + "start": 4853.84, + "end": 4857.16, + "probability": 0.9834 + }, + { + "start": 4857.42, + "end": 4858.46, + "probability": 0.7566 + }, + { + "start": 4859.02, + "end": 4861.5, + "probability": 0.7967 + }, + { + "start": 4862.02, + "end": 4863.54, + "probability": 0.9819 + }, + { + "start": 4864.42, + "end": 4866.94, + "probability": 0.8604 + }, + { + "start": 4867.04, + "end": 4868.22, + "probability": 0.9857 + }, + { + "start": 4868.76, + "end": 4873.26, + "probability": 0.7185 + }, + { + "start": 4873.46, + "end": 4874.54, + "probability": 0.8544 + }, + { + "start": 4875.06, + "end": 4875.96, + "probability": 0.6194 + }, + { + "start": 4876.14, + "end": 4876.74, + "probability": 0.7841 + }, + { + "start": 4876.94, + "end": 4880.96, + "probability": 0.791 + }, + { + "start": 4881.86, + "end": 4882.78, + "probability": 0.7718 + }, + { + "start": 4889.22, + "end": 4889.96, + "probability": 0.4925 + }, + { + "start": 4890.1, + "end": 4891.0, + "probability": 0.7748 + }, + { + "start": 4891.08, + "end": 4892.68, + "probability": 0.9313 + }, + { + "start": 4894.0, + "end": 4896.02, + "probability": 0.5946 + }, + { + "start": 4898.44, + "end": 4899.0, + "probability": 0.9921 + }, + { + "start": 4899.72, + "end": 4901.3, + "probability": 0.9866 + }, + { + "start": 4902.58, + "end": 4905.66, + "probability": 0.8676 + }, + { + "start": 4906.6, + "end": 4908.9, + "probability": 0.8911 + }, + { + "start": 4909.98, + "end": 4913.68, + "probability": 0.991 + }, + { + "start": 4915.66, + "end": 4918.5, + "probability": 0.9321 + }, + { + "start": 4919.48, + "end": 4922.56, + "probability": 0.7372 + }, + { + "start": 4923.46, + "end": 4926.02, + "probability": 0.977 + }, + { + "start": 4926.62, + "end": 4928.38, + "probability": 0.9157 + }, + { + "start": 4929.1, + "end": 4929.44, + "probability": 0.8107 + }, + { + "start": 4930.24, + "end": 4932.44, + "probability": 0.7062 + }, + { + "start": 4933.14, + "end": 4936.66, + "probability": 0.9901 + }, + { + "start": 4936.88, + "end": 4937.57, + "probability": 0.8849 + }, + { + "start": 4938.48, + "end": 4941.27, + "probability": 0.7953 + }, + { + "start": 4941.9, + "end": 4942.84, + "probability": 0.3801 + }, + { + "start": 4943.04, + "end": 4946.4, + "probability": 0.9742 + }, + { + "start": 4947.48, + "end": 4949.96, + "probability": 0.8142 + }, + { + "start": 4950.16, + "end": 4952.18, + "probability": 0.4165 + }, + { + "start": 4952.34, + "end": 4953.7, + "probability": 0.9868 + }, + { + "start": 4954.34, + "end": 4957.46, + "probability": 0.8938 + }, + { + "start": 4958.38, + "end": 4959.96, + "probability": 0.6031 + }, + { + "start": 4960.08, + "end": 4963.06, + "probability": 0.7869 + }, + { + "start": 4964.0, + "end": 4967.0, + "probability": 0.8662 + }, + { + "start": 4967.76, + "end": 4969.38, + "probability": 0.9344 + }, + { + "start": 4970.02, + "end": 4971.14, + "probability": 0.9119 + }, + { + "start": 4971.34, + "end": 4974.9, + "probability": 0.9557 + }, + { + "start": 4975.42, + "end": 4976.14, + "probability": 0.7151 + }, + { + "start": 4976.32, + "end": 4977.92, + "probability": 0.8835 + }, + { + "start": 4978.28, + "end": 4978.76, + "probability": 0.8472 + }, + { + "start": 4978.78, + "end": 4978.88, + "probability": 0.8884 + }, + { + "start": 4979.42, + "end": 4980.62, + "probability": 0.8675 + }, + { + "start": 4982.0, + "end": 4983.92, + "probability": 0.9454 + }, + { + "start": 4984.02, + "end": 4986.1, + "probability": 0.9431 + }, + { + "start": 4986.14, + "end": 4986.51, + "probability": 0.9503 + }, + { + "start": 4986.62, + "end": 4987.44, + "probability": 0.6938 + }, + { + "start": 4987.88, + "end": 4988.52, + "probability": 0.6126 + }, + { + "start": 4989.32, + "end": 4990.82, + "probability": 0.581 + }, + { + "start": 4991.18, + "end": 4993.46, + "probability": 0.6729 + }, + { + "start": 4994.73, + "end": 4998.04, + "probability": 0.8914 + }, + { + "start": 4998.04, + "end": 5003.78, + "probability": 0.975 + }, + { + "start": 5004.4, + "end": 5004.76, + "probability": 0.5257 + }, + { + "start": 5004.86, + "end": 5005.56, + "probability": 0.845 + }, + { + "start": 5006.02, + "end": 5006.86, + "probability": 0.6308 + }, + { + "start": 5008.39, + "end": 5011.28, + "probability": 0.9307 + }, + { + "start": 5012.2, + "end": 5015.44, + "probability": 0.9424 + }, + { + "start": 5015.92, + "end": 5019.24, + "probability": 0.9847 + }, + { + "start": 5019.36, + "end": 5021.0, + "probability": 0.799 + }, + { + "start": 5021.7, + "end": 5024.38, + "probability": 0.5923 + }, + { + "start": 5024.44, + "end": 5025.06, + "probability": 0.7091 + }, + { + "start": 5026.17, + "end": 5030.98, + "probability": 0.9727 + }, + { + "start": 5031.62, + "end": 5033.07, + "probability": 0.6038 + }, + { + "start": 5033.28, + "end": 5034.9, + "probability": 0.2776 + }, + { + "start": 5035.14, + "end": 5039.96, + "probability": 0.9736 + }, + { + "start": 5040.32, + "end": 5042.32, + "probability": 0.8288 + }, + { + "start": 5043.28, + "end": 5045.76, + "probability": 0.6451 + }, + { + "start": 5045.84, + "end": 5047.66, + "probability": 0.6648 + }, + { + "start": 5048.04, + "end": 5048.74, + "probability": 0.8337 + }, + { + "start": 5049.22, + "end": 5050.14, + "probability": 0.8741 + }, + { + "start": 5050.28, + "end": 5052.3, + "probability": 0.9516 + }, + { + "start": 5052.88, + "end": 5053.5, + "probability": 0.4416 + }, + { + "start": 5053.5, + "end": 5054.07, + "probability": 0.6873 + }, + { + "start": 5054.42, + "end": 5055.84, + "probability": 0.9181 + }, + { + "start": 5055.98, + "end": 5058.16, + "probability": 0.8216 + }, + { + "start": 5058.18, + "end": 5058.82, + "probability": 0.9075 + }, + { + "start": 5059.26, + "end": 5060.3, + "probability": 0.6196 + }, + { + "start": 5060.32, + "end": 5062.14, + "probability": 0.6694 + }, + { + "start": 5062.46, + "end": 5063.62, + "probability": 0.9114 + }, + { + "start": 5064.08, + "end": 5067.84, + "probability": 0.8647 + }, + { + "start": 5068.22, + "end": 5070.74, + "probability": 0.96 + }, + { + "start": 5071.54, + "end": 5074.22, + "probability": 0.7126 + }, + { + "start": 5075.48, + "end": 5077.46, + "probability": 0.7384 + }, + { + "start": 5077.5, + "end": 5079.12, + "probability": 0.7153 + }, + { + "start": 5079.86, + "end": 5082.48, + "probability": 0.6977 + }, + { + "start": 5083.72, + "end": 5085.66, + "probability": 0.9288 + }, + { + "start": 5086.18, + "end": 5086.78, + "probability": 0.3586 + }, + { + "start": 5087.36, + "end": 5089.07, + "probability": 0.5548 + }, + { + "start": 5089.76, + "end": 5093.56, + "probability": 0.7692 + }, + { + "start": 5094.14, + "end": 5097.74, + "probability": 0.9791 + }, + { + "start": 5097.9, + "end": 5100.2, + "probability": 0.4933 + }, + { + "start": 5100.32, + "end": 5101.34, + "probability": 0.4698 + }, + { + "start": 5101.34, + "end": 5101.96, + "probability": 0.7365 + }, + { + "start": 5102.16, + "end": 5105.5, + "probability": 0.832 + }, + { + "start": 5105.88, + "end": 5107.16, + "probability": 0.9484 + }, + { + "start": 5107.76, + "end": 5108.92, + "probability": 0.7487 + }, + { + "start": 5109.68, + "end": 5110.12, + "probability": 0.6377 + }, + { + "start": 5110.26, + "end": 5112.46, + "probability": 0.9932 + }, + { + "start": 5112.6, + "end": 5113.04, + "probability": 0.6451 + }, + { + "start": 5113.54, + "end": 5114.96, + "probability": 0.9572 + }, + { + "start": 5115.56, + "end": 5116.52, + "probability": 0.8005 + }, + { + "start": 5116.98, + "end": 5117.62, + "probability": 0.8047 + }, + { + "start": 5117.68, + "end": 5118.06, + "probability": 0.9337 + }, + { + "start": 5118.28, + "end": 5120.2, + "probability": 0.9628 + }, + { + "start": 5120.72, + "end": 5121.84, + "probability": 0.7983 + }, + { + "start": 5123.0, + "end": 5126.34, + "probability": 0.9728 + }, + { + "start": 5127.44, + "end": 5127.72, + "probability": 0.8245 + }, + { + "start": 5127.86, + "end": 5130.18, + "probability": 0.9074 + }, + { + "start": 5130.44, + "end": 5133.54, + "probability": 0.941 + }, + { + "start": 5135.36, + "end": 5137.86, + "probability": 0.9962 + }, + { + "start": 5139.36, + "end": 5142.92, + "probability": 0.9673 + }, + { + "start": 5144.24, + "end": 5148.04, + "probability": 0.9967 + }, + { + "start": 5149.04, + "end": 5150.86, + "probability": 0.9941 + }, + { + "start": 5152.56, + "end": 5154.42, + "probability": 0.9677 + }, + { + "start": 5155.16, + "end": 5158.22, + "probability": 0.9519 + }, + { + "start": 5159.22, + "end": 5161.14, + "probability": 0.9502 + }, + { + "start": 5162.1, + "end": 5163.26, + "probability": 0.791 + }, + { + "start": 5164.42, + "end": 5165.66, + "probability": 0.9978 + }, + { + "start": 5166.22, + "end": 5168.62, + "probability": 0.8138 + }, + { + "start": 5169.78, + "end": 5171.94, + "probability": 0.338 + }, + { + "start": 5172.75, + "end": 5176.18, + "probability": 0.9943 + }, + { + "start": 5176.72, + "end": 5177.4, + "probability": 0.8755 + }, + { + "start": 5178.2, + "end": 5179.34, + "probability": 0.868 + }, + { + "start": 5180.06, + "end": 5181.18, + "probability": 0.7569 + }, + { + "start": 5181.88, + "end": 5185.34, + "probability": 0.672 + }, + { + "start": 5186.18, + "end": 5188.28, + "probability": 0.7643 + }, + { + "start": 5188.98, + "end": 5189.08, + "probability": 0.6189 + }, + { + "start": 5189.66, + "end": 5195.18, + "probability": 0.9714 + }, + { + "start": 5195.18, + "end": 5200.9, + "probability": 0.9777 + }, + { + "start": 5201.82, + "end": 5203.84, + "probability": 0.9802 + }, + { + "start": 5204.76, + "end": 5208.6, + "probability": 0.9688 + }, + { + "start": 5209.22, + "end": 5211.04, + "probability": 0.9618 + }, + { + "start": 5211.78, + "end": 5215.76, + "probability": 0.9439 + }, + { + "start": 5216.42, + "end": 5217.84, + "probability": 0.9553 + }, + { + "start": 5218.94, + "end": 5220.32, + "probability": 0.7992 + }, + { + "start": 5221.18, + "end": 5223.54, + "probability": 0.9975 + }, + { + "start": 5223.66, + "end": 5224.44, + "probability": 0.8923 + }, + { + "start": 5224.98, + "end": 5226.0, + "probability": 0.9797 + }, + { + "start": 5226.76, + "end": 5227.6, + "probability": 0.9797 + }, + { + "start": 5228.42, + "end": 5231.46, + "probability": 0.9949 + }, + { + "start": 5233.0, + "end": 5235.29, + "probability": 0.7455 + }, + { + "start": 5236.92, + "end": 5240.32, + "probability": 0.9306 + }, + { + "start": 5241.1, + "end": 5242.34, + "probability": 0.8811 + }, + { + "start": 5243.02, + "end": 5248.04, + "probability": 0.9856 + }, + { + "start": 5248.72, + "end": 5252.66, + "probability": 0.9609 + }, + { + "start": 5253.18, + "end": 5254.03, + "probability": 0.5051 + }, + { + "start": 5254.82, + "end": 5258.38, + "probability": 0.9017 + }, + { + "start": 5259.62, + "end": 5262.58, + "probability": 0.9168 + }, + { + "start": 5263.16, + "end": 5265.4, + "probability": 0.9843 + }, + { + "start": 5266.04, + "end": 5267.66, + "probability": 0.9506 + }, + { + "start": 5268.48, + "end": 5269.26, + "probability": 0.9551 + }, + { + "start": 5269.66, + "end": 5271.42, + "probability": 0.9718 + }, + { + "start": 5272.28, + "end": 5275.32, + "probability": 0.7714 + }, + { + "start": 5276.4, + "end": 5279.08, + "probability": 0.8722 + }, + { + "start": 5280.14, + "end": 5281.1, + "probability": 0.9103 + }, + { + "start": 5281.64, + "end": 5283.53, + "probability": 0.9658 + }, + { + "start": 5284.04, + "end": 5285.74, + "probability": 0.9572 + }, + { + "start": 5286.58, + "end": 5288.0, + "probability": 0.9807 + }, + { + "start": 5288.7, + "end": 5289.52, + "probability": 0.8719 + }, + { + "start": 5290.3, + "end": 5293.5, + "probability": 0.9944 + }, + { + "start": 5294.18, + "end": 5295.6, + "probability": 0.9982 + }, + { + "start": 5296.26, + "end": 5299.76, + "probability": 0.9878 + }, + { + "start": 5300.0, + "end": 5301.06, + "probability": 0.8991 + }, + { + "start": 5301.7, + "end": 5303.24, + "probability": 0.9522 + }, + { + "start": 5303.94, + "end": 5307.64, + "probability": 0.9927 + }, + { + "start": 5308.18, + "end": 5309.3, + "probability": 0.7521 + }, + { + "start": 5309.46, + "end": 5312.04, + "probability": 0.9654 + }, + { + "start": 5312.64, + "end": 5314.1, + "probability": 0.8154 + }, + { + "start": 5314.86, + "end": 5317.62, + "probability": 0.9695 + }, + { + "start": 5317.92, + "end": 5318.88, + "probability": 0.9043 + }, + { + "start": 5321.22, + "end": 5323.44, + "probability": 0.5933 + }, + { + "start": 5323.96, + "end": 5326.23, + "probability": 0.9922 + }, + { + "start": 5326.64, + "end": 5327.48, + "probability": 0.351 + }, + { + "start": 5327.48, + "end": 5327.58, + "probability": 0.1257 + }, + { + "start": 5327.6, + "end": 5329.6, + "probability": 0.9202 + }, + { + "start": 5331.56, + "end": 5334.36, + "probability": 0.9867 + }, + { + "start": 5335.42, + "end": 5337.2, + "probability": 0.9043 + }, + { + "start": 5337.32, + "end": 5340.48, + "probability": 0.9806 + }, + { + "start": 5341.4, + "end": 5344.14, + "probability": 0.9817 + }, + { + "start": 5344.94, + "end": 5347.8, + "probability": 0.8146 + }, + { + "start": 5348.5, + "end": 5349.42, + "probability": 0.6321 + }, + { + "start": 5350.12, + "end": 5351.14, + "probability": 0.8402 + }, + { + "start": 5351.26, + "end": 5355.0, + "probability": 0.7618 + }, + { + "start": 5355.2, + "end": 5356.54, + "probability": 0.9472 + }, + { + "start": 5357.16, + "end": 5358.24, + "probability": 0.6527 + }, + { + "start": 5358.8, + "end": 5361.24, + "probability": 0.9756 + }, + { + "start": 5362.08, + "end": 5363.12, + "probability": 0.9648 + }, + { + "start": 5363.74, + "end": 5367.0, + "probability": 0.9758 + }, + { + "start": 5367.0, + "end": 5370.64, + "probability": 0.9987 + }, + { + "start": 5371.6, + "end": 5373.34, + "probability": 0.9624 + }, + { + "start": 5373.9, + "end": 5376.14, + "probability": 0.9673 + }, + { + "start": 5376.86, + "end": 5378.53, + "probability": 0.9985 + }, + { + "start": 5379.48, + "end": 5381.58, + "probability": 0.9828 + }, + { + "start": 5382.36, + "end": 5382.9, + "probability": 0.8358 + }, + { + "start": 5383.6, + "end": 5384.94, + "probability": 0.7735 + }, + { + "start": 5385.7, + "end": 5386.46, + "probability": 0.9648 + }, + { + "start": 5387.14, + "end": 5388.26, + "probability": 0.8926 + }, + { + "start": 5389.02, + "end": 5392.18, + "probability": 0.9854 + }, + { + "start": 5393.08, + "end": 5394.04, + "probability": 0.9377 + }, + { + "start": 5394.72, + "end": 5395.88, + "probability": 0.9919 + }, + { + "start": 5396.48, + "end": 5396.84, + "probability": 0.6546 + }, + { + "start": 5398.32, + "end": 5400.8, + "probability": 0.724 + }, + { + "start": 5401.4, + "end": 5401.84, + "probability": 0.6421 + }, + { + "start": 5403.22, + "end": 5405.1, + "probability": 0.9442 + }, + { + "start": 5405.74, + "end": 5407.66, + "probability": 0.9739 + }, + { + "start": 5408.18, + "end": 5409.08, + "probability": 0.9265 + }, + { + "start": 5409.66, + "end": 5412.06, + "probability": 0.9604 + }, + { + "start": 5413.08, + "end": 5415.64, + "probability": 0.9803 + }, + { + "start": 5416.44, + "end": 5417.68, + "probability": 0.9481 + }, + { + "start": 5417.8, + "end": 5418.78, + "probability": 0.9643 + }, + { + "start": 5419.22, + "end": 5422.46, + "probability": 0.9163 + }, + { + "start": 5423.6, + "end": 5425.66, + "probability": 0.7848 + }, + { + "start": 5426.36, + "end": 5426.9, + "probability": 0.6943 + }, + { + "start": 5427.52, + "end": 5430.86, + "probability": 0.8691 + }, + { + "start": 5431.5, + "end": 5434.22, + "probability": 0.8947 + }, + { + "start": 5435.02, + "end": 5436.88, + "probability": 0.9919 + }, + { + "start": 5437.72, + "end": 5439.26, + "probability": 0.8123 + }, + { + "start": 5439.96, + "end": 5440.78, + "probability": 0.7036 + }, + { + "start": 5441.3, + "end": 5446.2, + "probability": 0.8371 + }, + { + "start": 5446.3, + "end": 5447.98, + "probability": 0.9499 + }, + { + "start": 5448.58, + "end": 5449.56, + "probability": 0.577 + }, + { + "start": 5450.74, + "end": 5452.08, + "probability": 0.9531 + }, + { + "start": 5452.98, + "end": 5454.02, + "probability": 0.9419 + }, + { + "start": 5454.88, + "end": 5458.88, + "probability": 0.9775 + }, + { + "start": 5459.52, + "end": 5461.16, + "probability": 0.8804 + }, + { + "start": 5461.74, + "end": 5462.7, + "probability": 0.9641 + }, + { + "start": 5463.46, + "end": 5464.82, + "probability": 0.9029 + }, + { + "start": 5465.66, + "end": 5466.56, + "probability": 0.845 + }, + { + "start": 5466.72, + "end": 5468.82, + "probability": 0.7257 + }, + { + "start": 5470.1, + "end": 5474.52, + "probability": 0.8178 + }, + { + "start": 5475.52, + "end": 5481.02, + "probability": 0.992 + }, + { + "start": 5482.34, + "end": 5485.6, + "probability": 0.9871 + }, + { + "start": 5486.46, + "end": 5489.62, + "probability": 0.9971 + }, + { + "start": 5489.62, + "end": 5492.6, + "probability": 0.9827 + }, + { + "start": 5493.24, + "end": 5496.76, + "probability": 0.9974 + }, + { + "start": 5497.4, + "end": 5499.06, + "probability": 0.8316 + }, + { + "start": 5500.14, + "end": 5502.9, + "probability": 0.9722 + }, + { + "start": 5504.12, + "end": 5505.02, + "probability": 0.9507 + }, + { + "start": 5505.62, + "end": 5506.48, + "probability": 0.9734 + }, + { + "start": 5507.42, + "end": 5509.06, + "probability": 0.9055 + }, + { + "start": 5509.96, + "end": 5511.26, + "probability": 0.898 + }, + { + "start": 5512.52, + "end": 5513.68, + "probability": 0.9101 + }, + { + "start": 5513.96, + "end": 5514.94, + "probability": 0.9142 + }, + { + "start": 5515.44, + "end": 5515.86, + "probability": 0.6437 + }, + { + "start": 5516.12, + "end": 5516.78, + "probability": 0.8349 + }, + { + "start": 5516.92, + "end": 5517.47, + "probability": 0.9597 + }, + { + "start": 5518.28, + "end": 5520.26, + "probability": 0.7972 + }, + { + "start": 5521.2, + "end": 5523.34, + "probability": 0.8427 + }, + { + "start": 5525.06, + "end": 5526.08, + "probability": 0.715 + }, + { + "start": 5526.68, + "end": 5528.38, + "probability": 0.7629 + }, + { + "start": 5529.38, + "end": 5530.12, + "probability": 0.9614 + }, + { + "start": 5531.06, + "end": 5533.96, + "probability": 0.981 + }, + { + "start": 5535.0, + "end": 5537.24, + "probability": 0.9516 + }, + { + "start": 5537.98, + "end": 5539.84, + "probability": 0.8157 + }, + { + "start": 5540.68, + "end": 5542.42, + "probability": 0.9631 + }, + { + "start": 5543.7, + "end": 5545.44, + "probability": 0.8586 + }, + { + "start": 5546.34, + "end": 5549.82, + "probability": 0.9576 + }, + { + "start": 5550.12, + "end": 5551.48, + "probability": 0.9718 + }, + { + "start": 5552.36, + "end": 5555.62, + "probability": 0.9945 + }, + { + "start": 5556.22, + "end": 5557.37, + "probability": 0.7467 + }, + { + "start": 5557.98, + "end": 5559.38, + "probability": 0.9943 + }, + { + "start": 5560.32, + "end": 5561.7, + "probability": 0.9503 + }, + { + "start": 5562.48, + "end": 5563.86, + "probability": 0.984 + }, + { + "start": 5564.38, + "end": 5566.04, + "probability": 0.9894 + }, + { + "start": 5567.2, + "end": 5569.08, + "probability": 0.9614 + }, + { + "start": 5570.54, + "end": 5573.22, + "probability": 0.993 + }, + { + "start": 5573.22, + "end": 5577.88, + "probability": 0.9995 + }, + { + "start": 5578.48, + "end": 5580.76, + "probability": 0.748 + }, + { + "start": 5581.62, + "end": 5583.74, + "probability": 0.853 + }, + { + "start": 5584.38, + "end": 5586.7, + "probability": 0.9771 + }, + { + "start": 5587.62, + "end": 5588.74, + "probability": 0.7118 + }, + { + "start": 5589.7, + "end": 5591.4, + "probability": 0.851 + }, + { + "start": 5592.16, + "end": 5595.62, + "probability": 0.9747 + }, + { + "start": 5596.86, + "end": 5597.62, + "probability": 0.9617 + }, + { + "start": 5598.14, + "end": 5602.38, + "probability": 0.9478 + }, + { + "start": 5603.24, + "end": 5605.54, + "probability": 0.7968 + }, + { + "start": 5606.26, + "end": 5608.68, + "probability": 0.9932 + }, + { + "start": 5609.14, + "end": 5610.08, + "probability": 0.9554 + }, + { + "start": 5611.28, + "end": 5612.4, + "probability": 0.8138 + }, + { + "start": 5613.14, + "end": 5616.16, + "probability": 0.9935 + }, + { + "start": 5617.34, + "end": 5620.06, + "probability": 0.9724 + }, + { + "start": 5620.74, + "end": 5621.82, + "probability": 0.993 + }, + { + "start": 5622.58, + "end": 5624.84, + "probability": 0.7367 + }, + { + "start": 5625.68, + "end": 5627.74, + "probability": 0.992 + }, + { + "start": 5628.34, + "end": 5631.36, + "probability": 0.875 + }, + { + "start": 5632.34, + "end": 5633.68, + "probability": 0.998 + }, + { + "start": 5634.32, + "end": 5635.94, + "probability": 0.9975 + }, + { + "start": 5637.12, + "end": 5637.74, + "probability": 0.7339 + }, + { + "start": 5638.44, + "end": 5640.04, + "probability": 0.8921 + }, + { + "start": 5641.52, + "end": 5643.98, + "probability": 0.9156 + }, + { + "start": 5644.62, + "end": 5645.2, + "probability": 0.7259 + }, + { + "start": 5645.92, + "end": 5647.9, + "probability": 0.7203 + }, + { + "start": 5648.5, + "end": 5652.9, + "probability": 0.8658 + }, + { + "start": 5653.66, + "end": 5657.18, + "probability": 0.981 + }, + { + "start": 5657.68, + "end": 5658.7, + "probability": 0.8004 + }, + { + "start": 5659.28, + "end": 5661.68, + "probability": 0.9818 + }, + { + "start": 5662.66, + "end": 5663.94, + "probability": 0.7776 + }, + { + "start": 5664.5, + "end": 5665.62, + "probability": 0.9755 + }, + { + "start": 5666.44, + "end": 5668.24, + "probability": 0.8735 + }, + { + "start": 5668.82, + "end": 5669.72, + "probability": 0.9019 + }, + { + "start": 5670.76, + "end": 5671.88, + "probability": 0.7555 + }, + { + "start": 5672.6, + "end": 5674.2, + "probability": 0.8815 + }, + { + "start": 5675.28, + "end": 5678.12, + "probability": 0.9202 + }, + { + "start": 5678.22, + "end": 5678.86, + "probability": 0.9426 + }, + { + "start": 5679.36, + "end": 5685.28, + "probability": 0.9199 + }, + { + "start": 5685.98, + "end": 5687.46, + "probability": 0.7054 + }, + { + "start": 5687.62, + "end": 5691.92, + "probability": 0.938 + }, + { + "start": 5692.02, + "end": 5695.18, + "probability": 0.9854 + }, + { + "start": 5695.26, + "end": 5700.1, + "probability": 0.9696 + }, + { + "start": 5700.82, + "end": 5702.02, + "probability": 0.9987 + }, + { + "start": 5702.7, + "end": 5703.2, + "probability": 0.9284 + }, + { + "start": 5703.64, + "end": 5704.08, + "probability": 0.5299 + }, + { + "start": 5704.68, + "end": 5705.56, + "probability": 0.7611 + }, + { + "start": 5705.8, + "end": 5710.52, + "probability": 0.8317 + }, + { + "start": 5710.6, + "end": 5711.62, + "probability": 0.9186 + }, + { + "start": 5712.14, + "end": 5713.48, + "probability": 0.701 + }, + { + "start": 5713.98, + "end": 5717.32, + "probability": 0.9678 + }, + { + "start": 5717.96, + "end": 5720.8, + "probability": 0.8878 + }, + { + "start": 5721.66, + "end": 5725.92, + "probability": 0.9961 + }, + { + "start": 5726.46, + "end": 5727.74, + "probability": 0.9956 + }, + { + "start": 5728.44, + "end": 5729.74, + "probability": 0.9972 + }, + { + "start": 5730.32, + "end": 5732.84, + "probability": 0.908 + }, + { + "start": 5733.46, + "end": 5735.0, + "probability": 0.9819 + }, + { + "start": 5736.2, + "end": 5736.92, + "probability": 0.6364 + }, + { + "start": 5737.4, + "end": 5739.06, + "probability": 0.8315 + }, + { + "start": 5740.28, + "end": 5740.66, + "probability": 0.4869 + }, + { + "start": 5741.97, + "end": 5743.42, + "probability": 0.7988 + }, + { + "start": 5744.42, + "end": 5745.44, + "probability": 0.9389 + }, + { + "start": 5746.38, + "end": 5748.08, + "probability": 0.998 + }, + { + "start": 5748.78, + "end": 5750.24, + "probability": 0.9923 + }, + { + "start": 5750.98, + "end": 5753.4, + "probability": 0.961 + }, + { + "start": 5753.94, + "end": 5755.26, + "probability": 0.9762 + }, + { + "start": 5755.84, + "end": 5761.14, + "probability": 0.995 + }, + { + "start": 5761.72, + "end": 5764.08, + "probability": 0.9891 + }, + { + "start": 5765.4, + "end": 5767.16, + "probability": 0.8243 + }, + { + "start": 5768.16, + "end": 5770.76, + "probability": 0.9867 + }, + { + "start": 5771.48, + "end": 5773.96, + "probability": 0.8392 + }, + { + "start": 5774.64, + "end": 5776.2, + "probability": 0.7557 + }, + { + "start": 5776.92, + "end": 5777.68, + "probability": 0.8722 + }, + { + "start": 5777.74, + "end": 5780.7, + "probability": 0.8116 + }, + { + "start": 5780.94, + "end": 5781.95, + "probability": 0.9604 + }, + { + "start": 5782.56, + "end": 5784.18, + "probability": 0.9521 + }, + { + "start": 5785.14, + "end": 5786.56, + "probability": 0.998 + }, + { + "start": 5787.44, + "end": 5789.2, + "probability": 0.8646 + }, + { + "start": 5789.8, + "end": 5793.62, + "probability": 0.6403 + }, + { + "start": 5794.34, + "end": 5797.0, + "probability": 0.9633 + }, + { + "start": 5798.18, + "end": 5799.54, + "probability": 0.9554 + }, + { + "start": 5800.34, + "end": 5803.24, + "probability": 0.8524 + }, + { + "start": 5804.26, + "end": 5806.0, + "probability": 0.9484 + }, + { + "start": 5806.68, + "end": 5808.98, + "probability": 0.9904 + }, + { + "start": 5810.02, + "end": 5814.72, + "probability": 0.7705 + }, + { + "start": 5815.46, + "end": 5818.34, + "probability": 0.9786 + }, + { + "start": 5818.88, + "end": 5822.04, + "probability": 0.9644 + }, + { + "start": 5822.6, + "end": 5825.98, + "probability": 0.9106 + }, + { + "start": 5826.54, + "end": 5828.14, + "probability": 0.8979 + }, + { + "start": 5828.64, + "end": 5830.16, + "probability": 0.9922 + }, + { + "start": 5830.3, + "end": 5830.7, + "probability": 0.901 + }, + { + "start": 5831.42, + "end": 5832.44, + "probability": 0.9763 + }, + { + "start": 5833.22, + "end": 5834.83, + "probability": 0.9127 + }, + { + "start": 5835.76, + "end": 5837.56, + "probability": 0.7217 + }, + { + "start": 5838.44, + "end": 5839.72, + "probability": 0.8052 + }, + { + "start": 5840.86, + "end": 5844.12, + "probability": 0.9345 + }, + { + "start": 5844.5, + "end": 5844.68, + "probability": 0.4734 + }, + { + "start": 5844.7, + "end": 5845.46, + "probability": 0.738 + }, + { + "start": 5845.8, + "end": 5846.08, + "probability": 0.3712 + }, + { + "start": 5846.1, + "end": 5847.32, + "probability": 0.6586 + }, + { + "start": 5847.96, + "end": 5850.2, + "probability": 0.8664 + }, + { + "start": 5851.54, + "end": 5852.28, + "probability": 0.89 + }, + { + "start": 5853.1, + "end": 5854.62, + "probability": 0.8532 + }, + { + "start": 5855.3, + "end": 5860.28, + "probability": 0.9658 + }, + { + "start": 5860.98, + "end": 5861.54, + "probability": 0.7111 + }, + { + "start": 5861.86, + "end": 5864.7, + "probability": 0.8946 + }, + { + "start": 5865.8, + "end": 5869.22, + "probability": 0.9771 + }, + { + "start": 5869.92, + "end": 5871.86, + "probability": 0.9219 + }, + { + "start": 5872.62, + "end": 5873.42, + "probability": 0.5842 + }, + { + "start": 5874.4, + "end": 5880.9, + "probability": 0.9369 + }, + { + "start": 5881.32, + "end": 5882.06, + "probability": 0.7275 + }, + { + "start": 5882.76, + "end": 5885.0, + "probability": 0.814 + }, + { + "start": 5885.66, + "end": 5886.72, + "probability": 0.787 + }, + { + "start": 5886.9, + "end": 5887.72, + "probability": 0.6817 + }, + { + "start": 5887.94, + "end": 5892.3, + "probability": 0.9784 + }, + { + "start": 5893.58, + "end": 5897.52, + "probability": 0.9536 + }, + { + "start": 5897.86, + "end": 5901.16, + "probability": 0.7468 + }, + { + "start": 5901.64, + "end": 5902.74, + "probability": 0.8694 + }, + { + "start": 5903.12, + "end": 5907.2, + "probability": 0.9921 + }, + { + "start": 5907.88, + "end": 5910.12, + "probability": 0.924 + }, + { + "start": 5910.26, + "end": 5911.36, + "probability": 0.8594 + }, + { + "start": 5912.34, + "end": 5914.07, + "probability": 0.8264 + }, + { + "start": 5915.0, + "end": 5916.06, + "probability": 0.9632 + }, + { + "start": 5916.6, + "end": 5917.84, + "probability": 0.7294 + }, + { + "start": 5918.42, + "end": 5919.42, + "probability": 0.9917 + }, + { + "start": 5920.32, + "end": 5920.9, + "probability": 0.8324 + }, + { + "start": 5921.04, + "end": 5923.22, + "probability": 0.9491 + }, + { + "start": 5923.84, + "end": 5924.3, + "probability": 0.8976 + }, + { + "start": 5925.4, + "end": 5926.52, + "probability": 0.2149 + }, + { + "start": 5927.42, + "end": 5928.58, + "probability": 0.9111 + }, + { + "start": 5928.68, + "end": 5930.82, + "probability": 0.9974 + }, + { + "start": 5931.34, + "end": 5932.45, + "probability": 0.9942 + }, + { + "start": 5933.04, + "end": 5933.34, + "probability": 0.7225 + }, + { + "start": 5933.42, + "end": 5933.88, + "probability": 0.5715 + }, + { + "start": 5933.98, + "end": 5936.45, + "probability": 0.7738 + }, + { + "start": 5937.2, + "end": 5938.08, + "probability": 0.9163 + }, + { + "start": 5938.22, + "end": 5941.12, + "probability": 0.9639 + }, + { + "start": 5941.16, + "end": 5942.7, + "probability": 0.9794 + }, + { + "start": 5944.04, + "end": 5949.0, + "probability": 0.7159 + }, + { + "start": 5949.68, + "end": 5950.08, + "probability": 0.6262 + }, + { + "start": 5950.22, + "end": 5952.3, + "probability": 0.9351 + }, + { + "start": 5952.4, + "end": 5952.64, + "probability": 0.7816 + }, + { + "start": 5952.96, + "end": 5953.48, + "probability": 0.7725 + }, + { + "start": 5953.96, + "end": 5956.04, + "probability": 0.9914 + }, + { + "start": 5956.64, + "end": 5960.08, + "probability": 0.9672 + }, + { + "start": 5960.7, + "end": 5963.45, + "probability": 0.9878 + }, + { + "start": 5964.44, + "end": 5968.8, + "probability": 0.9957 + }, + { + "start": 5969.52, + "end": 5972.54, + "probability": 0.9874 + }, + { + "start": 5973.34, + "end": 5975.56, + "probability": 0.9838 + }, + { + "start": 5976.44, + "end": 5978.5, + "probability": 0.9819 + }, + { + "start": 5978.6, + "end": 5982.64, + "probability": 0.6901 + }, + { + "start": 5983.64, + "end": 5987.1, + "probability": 0.9349 + }, + { + "start": 5994.96, + "end": 5997.78, + "probability": 0.7389 + }, + { + "start": 5998.34, + "end": 6001.18, + "probability": 0.9852 + }, + { + "start": 6002.0, + "end": 6003.66, + "probability": 0.8903 + }, + { + "start": 6004.4, + "end": 6006.52, + "probability": 0.3095 + }, + { + "start": 6007.06, + "end": 6008.66, + "probability": 0.9064 + }, + { + "start": 6011.2, + "end": 6011.7, + "probability": 0.4429 + }, + { + "start": 6013.02, + "end": 6015.52, + "probability": 0.8204 + }, + { + "start": 6017.74, + "end": 6018.7, + "probability": 0.6928 + }, + { + "start": 6019.54, + "end": 6023.54, + "probability": 0.6671 + }, + { + "start": 6025.1, + "end": 6026.2, + "probability": 0.4091 + }, + { + "start": 6026.32, + "end": 6027.84, + "probability": 0.782 + }, + { + "start": 6028.2, + "end": 6028.67, + "probability": 0.95 + }, + { + "start": 6029.36, + "end": 6030.66, + "probability": 0.8312 + }, + { + "start": 6030.94, + "end": 6031.08, + "probability": 0.5815 + }, + { + "start": 6031.6, + "end": 6032.12, + "probability": 0.6262 + }, + { + "start": 6032.28, + "end": 6032.8, + "probability": 0.4259 + }, + { + "start": 6032.8, + "end": 6033.14, + "probability": 0.749 + }, + { + "start": 6034.3, + "end": 6035.12, + "probability": 0.6641 + }, + { + "start": 6035.3, + "end": 6037.72, + "probability": 0.9902 + }, + { + "start": 6037.98, + "end": 6039.24, + "probability": 0.4062 + }, + { + "start": 6039.26, + "end": 6040.34, + "probability": 0.5495 + }, + { + "start": 6040.36, + "end": 6040.64, + "probability": 0.0781 + }, + { + "start": 6040.64, + "end": 6043.36, + "probability": 0.8126 + }, + { + "start": 6043.7, + "end": 6045.94, + "probability": 0.9318 + }, + { + "start": 6046.52, + "end": 6050.6, + "probability": 0.9502 + }, + { + "start": 6050.8, + "end": 6053.14, + "probability": 0.9902 + }, + { + "start": 6053.54, + "end": 6054.3, + "probability": 0.75 + }, + { + "start": 6054.34, + "end": 6058.34, + "probability": 0.9806 + }, + { + "start": 6058.64, + "end": 6058.94, + "probability": 0.7896 + }, + { + "start": 6059.06, + "end": 6059.88, + "probability": 0.6816 + }, + { + "start": 6060.08, + "end": 6062.82, + "probability": 0.9563 + }, + { + "start": 6063.04, + "end": 6066.56, + "probability": 0.9961 + }, + { + "start": 6066.98, + "end": 6068.89, + "probability": 0.9762 + }, + { + "start": 6069.84, + "end": 6072.14, + "probability": 0.6759 + }, + { + "start": 6072.88, + "end": 6074.06, + "probability": 0.9516 + }, + { + "start": 6074.7, + "end": 6076.24, + "probability": 0.5084 + }, + { + "start": 6076.24, + "end": 6078.34, + "probability": 0.4035 + }, + { + "start": 6078.4, + "end": 6079.16, + "probability": 0.7499 + }, + { + "start": 6079.28, + "end": 6080.2, + "probability": 0.6658 + }, + { + "start": 6080.44, + "end": 6087.32, + "probability": 0.9941 + }, + { + "start": 6087.78, + "end": 6093.2, + "probability": 0.9954 + }, + { + "start": 6094.12, + "end": 6095.4, + "probability": 0.8083 + }, + { + "start": 6096.68, + "end": 6098.96, + "probability": 0.9425 + }, + { + "start": 6099.06, + "end": 6100.16, + "probability": 0.8051 + }, + { + "start": 6100.24, + "end": 6102.0, + "probability": 0.8694 + }, + { + "start": 6102.46, + "end": 6108.02, + "probability": 0.9424 + }, + { + "start": 6108.72, + "end": 6111.02, + "probability": 0.9642 + }, + { + "start": 6111.94, + "end": 6116.32, + "probability": 0.9805 + }, + { + "start": 6116.4, + "end": 6117.25, + "probability": 0.7389 + }, + { + "start": 6118.1, + "end": 6118.76, + "probability": 0.8142 + }, + { + "start": 6118.86, + "end": 6119.84, + "probability": 0.7957 + }, + { + "start": 6120.66, + "end": 6126.82, + "probability": 0.9393 + }, + { + "start": 6126.96, + "end": 6129.7, + "probability": 0.9802 + }, + { + "start": 6130.28, + "end": 6131.8, + "probability": 0.9979 + }, + { + "start": 6132.56, + "end": 6138.14, + "probability": 0.9931 + }, + { + "start": 6138.96, + "end": 6139.06, + "probability": 0.7937 + }, + { + "start": 6139.68, + "end": 6141.9, + "probability": 0.9049 + }, + { + "start": 6142.68, + "end": 6144.84, + "probability": 0.9908 + }, + { + "start": 6145.12, + "end": 6147.28, + "probability": 0.9134 + }, + { + "start": 6147.82, + "end": 6148.76, + "probability": 0.8231 + }, + { + "start": 6149.52, + "end": 6154.16, + "probability": 0.988 + }, + { + "start": 6154.2, + "end": 6159.64, + "probability": 0.9581 + }, + { + "start": 6160.22, + "end": 6164.08, + "probability": 0.877 + }, + { + "start": 6164.08, + "end": 6167.28, + "probability": 0.9757 + }, + { + "start": 6168.3, + "end": 6171.7, + "probability": 0.9888 + }, + { + "start": 6171.82, + "end": 6173.3, + "probability": 0.9237 + }, + { + "start": 6173.68, + "end": 6174.6, + "probability": 0.8349 + }, + { + "start": 6174.66, + "end": 6176.24, + "probability": 0.8775 + }, + { + "start": 6176.68, + "end": 6177.98, + "probability": 0.7529 + }, + { + "start": 6178.42, + "end": 6185.02, + "probability": 0.9817 + }, + { + "start": 6185.02, + "end": 6192.58, + "probability": 0.9923 + }, + { + "start": 6193.18, + "end": 6197.48, + "probability": 0.9966 + }, + { + "start": 6197.9, + "end": 6202.98, + "probability": 0.9878 + }, + { + "start": 6203.12, + "end": 6206.16, + "probability": 0.782 + }, + { + "start": 6206.24, + "end": 6206.82, + "probability": 0.3537 + }, + { + "start": 6207.34, + "end": 6210.66, + "probability": 0.5199 + }, + { + "start": 6211.72, + "end": 6213.3, + "probability": 0.4176 + }, + { + "start": 6213.3, + "end": 6214.98, + "probability": 0.0651 + }, + { + "start": 6215.54, + "end": 6219.1, + "probability": 0.9771 + }, + { + "start": 6220.38, + "end": 6221.84, + "probability": 0.6061 + }, + { + "start": 6222.16, + "end": 6225.04, + "probability": 0.9953 + }, + { + "start": 6225.64, + "end": 6225.9, + "probability": 0.7432 + }, + { + "start": 6225.9, + "end": 6231.06, + "probability": 0.9883 + }, + { + "start": 6231.06, + "end": 6236.14, + "probability": 0.9863 + }, + { + "start": 6236.84, + "end": 6240.7, + "probability": 0.9993 + }, + { + "start": 6241.46, + "end": 6246.44, + "probability": 0.8715 + }, + { + "start": 6246.7, + "end": 6248.56, + "probability": 0.9808 + }, + { + "start": 6249.16, + "end": 6250.68, + "probability": 0.6882 + }, + { + "start": 6250.86, + "end": 6254.38, + "probability": 0.8398 + }, + { + "start": 6254.92, + "end": 6255.26, + "probability": 0.8652 + }, + { + "start": 6255.38, + "end": 6257.62, + "probability": 0.8229 + }, + { + "start": 6257.8, + "end": 6261.78, + "probability": 0.8412 + }, + { + "start": 6262.28, + "end": 6263.48, + "probability": 0.8845 + }, + { + "start": 6264.12, + "end": 6265.31, + "probability": 0.8572 + }, + { + "start": 6265.88, + "end": 6268.54, + "probability": 0.6777 + }, + { + "start": 6268.94, + "end": 6270.82, + "probability": 0.9765 + }, + { + "start": 6271.58, + "end": 6273.46, + "probability": 0.9783 + }, + { + "start": 6273.98, + "end": 6275.32, + "probability": 0.9724 + }, + { + "start": 6276.16, + "end": 6277.46, + "probability": 0.7155 + }, + { + "start": 6277.72, + "end": 6278.88, + "probability": 0.9078 + }, + { + "start": 6279.04, + "end": 6281.18, + "probability": 0.9985 + }, + { + "start": 6281.18, + "end": 6284.9, + "probability": 0.9093 + }, + { + "start": 6285.84, + "end": 6290.58, + "probability": 0.9225 + }, + { + "start": 6291.32, + "end": 6293.34, + "probability": 0.6228 + }, + { + "start": 6293.86, + "end": 6298.28, + "probability": 0.9717 + }, + { + "start": 6298.28, + "end": 6303.0, + "probability": 0.9727 + }, + { + "start": 6303.58, + "end": 6307.62, + "probability": 0.9277 + }, + { + "start": 6307.72, + "end": 6308.59, + "probability": 0.8448 + }, + { + "start": 6310.62, + "end": 6313.86, + "probability": 0.5 + }, + { + "start": 6314.82, + "end": 6318.26, + "probability": 0.9687 + }, + { + "start": 6319.0, + "end": 6324.06, + "probability": 0.9106 + }, + { + "start": 6324.42, + "end": 6325.62, + "probability": 0.6631 + }, + { + "start": 6326.18, + "end": 6329.66, + "probability": 0.8807 + }, + { + "start": 6329.88, + "end": 6330.42, + "probability": 0.8765 + }, + { + "start": 6330.84, + "end": 6336.46, + "probability": 0.923 + }, + { + "start": 6336.98, + "end": 6340.44, + "probability": 0.9672 + }, + { + "start": 6340.44, + "end": 6344.48, + "probability": 0.9888 + }, + { + "start": 6345.02, + "end": 6346.83, + "probability": 0.5792 + }, + { + "start": 6347.64, + "end": 6353.7, + "probability": 0.9457 + }, + { + "start": 6354.28, + "end": 6360.62, + "probability": 0.9938 + }, + { + "start": 6361.24, + "end": 6366.64, + "probability": 0.9534 + }, + { + "start": 6367.02, + "end": 6370.6, + "probability": 0.9805 + }, + { + "start": 6371.34, + "end": 6374.14, + "probability": 0.7394 + }, + { + "start": 6374.54, + "end": 6378.1, + "probability": 0.7319 + }, + { + "start": 6378.56, + "end": 6380.12, + "probability": 0.5156 + }, + { + "start": 6380.68, + "end": 6381.0, + "probability": 0.6018 + }, + { + "start": 6381.14, + "end": 6382.04, + "probability": 0.5834 + }, + { + "start": 6382.08, + "end": 6384.68, + "probability": 0.7319 + }, + { + "start": 6385.02, + "end": 6385.6, + "probability": 0.8185 + }, + { + "start": 6386.36, + "end": 6389.32, + "probability": 0.9778 + }, + { + "start": 6389.8, + "end": 6391.26, + "probability": 0.5419 + }, + { + "start": 6391.8, + "end": 6394.38, + "probability": 0.9791 + }, + { + "start": 6395.18, + "end": 6395.4, + "probability": 0.2594 + }, + { + "start": 6395.4, + "end": 6397.39, + "probability": 0.8926 + }, + { + "start": 6397.76, + "end": 6398.8, + "probability": 0.9379 + }, + { + "start": 6399.4, + "end": 6404.36, + "probability": 0.9824 + }, + { + "start": 6404.72, + "end": 6409.08, + "probability": 0.8364 + }, + { + "start": 6409.6, + "end": 6411.89, + "probability": 0.8849 + }, + { + "start": 6412.52, + "end": 6415.92, + "probability": 0.9871 + }, + { + "start": 6416.34, + "end": 6420.84, + "probability": 0.9971 + }, + { + "start": 6421.0, + "end": 6421.4, + "probability": 0.7375 + }, + { + "start": 6421.74, + "end": 6423.06, + "probability": 0.8917 + }, + { + "start": 6423.5, + "end": 6427.92, + "probability": 0.9616 + }, + { + "start": 6428.5, + "end": 6433.62, + "probability": 0.9932 + }, + { + "start": 6433.8, + "end": 6434.92, + "probability": 0.9584 + }, + { + "start": 6435.74, + "end": 6440.0, + "probability": 0.9972 + }, + { + "start": 6441.04, + "end": 6442.5, + "probability": 0.9985 + }, + { + "start": 6442.98, + "end": 6445.08, + "probability": 0.9818 + }, + { + "start": 6445.52, + "end": 6446.36, + "probability": 0.7134 + }, + { + "start": 6447.04, + "end": 6450.72, + "probability": 0.8287 + }, + { + "start": 6451.4, + "end": 6453.2, + "probability": 0.9616 + }, + { + "start": 6453.74, + "end": 6455.66, + "probability": 0.8874 + }, + { + "start": 6456.14, + "end": 6459.36, + "probability": 0.9876 + }, + { + "start": 6460.0, + "end": 6461.76, + "probability": 0.973 + }, + { + "start": 6462.9, + "end": 6467.8, + "probability": 0.4386 + }, + { + "start": 6468.16, + "end": 6468.72, + "probability": 0.7672 + }, + { + "start": 6469.22, + "end": 6471.62, + "probability": 0.7606 + }, + { + "start": 6472.22, + "end": 6474.62, + "probability": 0.9708 + }, + { + "start": 6475.04, + "end": 6477.02, + "probability": 0.9517 + }, + { + "start": 6477.34, + "end": 6480.38, + "probability": 0.9413 + }, + { + "start": 6480.58, + "end": 6481.08, + "probability": 0.6987 + }, + { + "start": 6481.24, + "end": 6482.08, + "probability": 0.8687 + }, + { + "start": 6482.98, + "end": 6484.98, + "probability": 0.6719 + }, + { + "start": 6485.92, + "end": 6488.5, + "probability": 0.8585 + }, + { + "start": 6488.94, + "end": 6491.72, + "probability": 0.95 + }, + { + "start": 6492.22, + "end": 6492.76, + "probability": 0.9515 + }, + { + "start": 6492.96, + "end": 6493.78, + "probability": 0.4232 + }, + { + "start": 6494.22, + "end": 6500.46, + "probability": 0.9944 + }, + { + "start": 6500.94, + "end": 6503.48, + "probability": 0.9569 + }, + { + "start": 6503.9, + "end": 6504.64, + "probability": 0.6249 + }, + { + "start": 6505.02, + "end": 6505.74, + "probability": 0.983 + }, + { + "start": 6505.86, + "end": 6506.84, + "probability": 0.9883 + }, + { + "start": 6507.0, + "end": 6507.32, + "probability": 0.9352 + }, + { + "start": 6507.54, + "end": 6508.14, + "probability": 0.9375 + }, + { + "start": 6508.74, + "end": 6513.38, + "probability": 0.9941 + }, + { + "start": 6513.48, + "end": 6514.92, + "probability": 0.7548 + }, + { + "start": 6515.6, + "end": 6516.72, + "probability": 0.7949 + }, + { + "start": 6517.02, + "end": 6523.26, + "probability": 0.9723 + }, + { + "start": 6523.8, + "end": 6524.7, + "probability": 0.5071 + }, + { + "start": 6524.9, + "end": 6525.46, + "probability": 0.9463 + }, + { + "start": 6525.58, + "end": 6527.6, + "probability": 0.9801 + }, + { + "start": 6528.04, + "end": 6529.68, + "probability": 0.9681 + }, + { + "start": 6530.16, + "end": 6532.66, + "probability": 0.9504 + }, + { + "start": 6533.48, + "end": 6538.2, + "probability": 0.8469 + }, + { + "start": 6539.26, + "end": 6540.36, + "probability": 0.9424 + }, + { + "start": 6540.5, + "end": 6541.28, + "probability": 0.7306 + }, + { + "start": 6541.68, + "end": 6543.72, + "probability": 0.991 + }, + { + "start": 6544.46, + "end": 6546.24, + "probability": 0.7973 + }, + { + "start": 6546.74, + "end": 6549.68, + "probability": 0.9973 + }, + { + "start": 6550.06, + "end": 6552.66, + "probability": 0.9851 + }, + { + "start": 6553.36, + "end": 6554.3, + "probability": 0.9195 + }, + { + "start": 6554.74, + "end": 6556.18, + "probability": 0.9739 + }, + { + "start": 6556.48, + "end": 6559.48, + "probability": 0.9976 + }, + { + "start": 6560.24, + "end": 6565.7, + "probability": 0.89 + }, + { + "start": 6566.74, + "end": 6568.78, + "probability": 0.9944 + }, + { + "start": 6569.14, + "end": 6570.12, + "probability": 0.6196 + }, + { + "start": 6570.64, + "end": 6573.2, + "probability": 0.9968 + }, + { + "start": 6573.2, + "end": 6576.18, + "probability": 0.996 + }, + { + "start": 6576.74, + "end": 6578.06, + "probability": 0.9772 + }, + { + "start": 6578.44, + "end": 6581.12, + "probability": 0.8085 + }, + { + "start": 6581.52, + "end": 6586.04, + "probability": 0.9811 + }, + { + "start": 6586.76, + "end": 6590.64, + "probability": 0.9 + }, + { + "start": 6590.64, + "end": 6593.96, + "probability": 0.9912 + }, + { + "start": 6594.36, + "end": 6599.4, + "probability": 0.9839 + }, + { + "start": 6599.6, + "end": 6600.86, + "probability": 0.7053 + }, + { + "start": 6601.46, + "end": 6605.38, + "probability": 0.9968 + }, + { + "start": 6605.38, + "end": 6609.94, + "probability": 0.9956 + }, + { + "start": 6610.4, + "end": 6613.72, + "probability": 0.9804 + }, + { + "start": 6613.72, + "end": 6616.96, + "probability": 0.9941 + }, + { + "start": 6617.42, + "end": 6619.2, + "probability": 0.8539 + }, + { + "start": 6619.66, + "end": 6620.32, + "probability": 0.9583 + }, + { + "start": 6620.66, + "end": 6621.12, + "probability": 0.6761 + }, + { + "start": 6621.5, + "end": 6623.52, + "probability": 0.9812 + }, + { + "start": 6623.94, + "end": 6629.52, + "probability": 0.9527 + }, + { + "start": 6630.1, + "end": 6634.66, + "probability": 0.9966 + }, + { + "start": 6635.08, + "end": 6636.72, + "probability": 0.9697 + }, + { + "start": 6637.52, + "end": 6639.18, + "probability": 0.984 + }, + { + "start": 6639.78, + "end": 6643.78, + "probability": 0.992 + }, + { + "start": 6643.94, + "end": 6645.26, + "probability": 0.9814 + }, + { + "start": 6645.64, + "end": 6646.54, + "probability": 0.9664 + }, + { + "start": 6646.78, + "end": 6647.36, + "probability": 0.4445 + }, + { + "start": 6647.48, + "end": 6650.26, + "probability": 0.8933 + }, + { + "start": 6650.84, + "end": 6656.06, + "probability": 0.9888 + }, + { + "start": 6656.54, + "end": 6662.1, + "probability": 0.9873 + }, + { + "start": 6662.86, + "end": 6664.32, + "probability": 0.7598 + }, + { + "start": 6664.92, + "end": 6666.26, + "probability": 0.9003 + }, + { + "start": 6667.04, + "end": 6669.12, + "probability": 0.9896 + }, + { + "start": 6669.78, + "end": 6673.28, + "probability": 0.9956 + }, + { + "start": 6673.42, + "end": 6674.86, + "probability": 0.9688 + }, + { + "start": 6675.3, + "end": 6676.5, + "probability": 0.9502 + }, + { + "start": 6676.94, + "end": 6679.74, + "probability": 0.9713 + }, + { + "start": 6680.26, + "end": 6683.68, + "probability": 0.6702 + }, + { + "start": 6684.8, + "end": 6685.58, + "probability": 0.4263 + }, + { + "start": 6685.7, + "end": 6686.34, + "probability": 0.7497 + }, + { + "start": 6686.66, + "end": 6691.38, + "probability": 0.9932 + }, + { + "start": 6691.96, + "end": 6693.72, + "probability": 0.9408 + }, + { + "start": 6693.9, + "end": 6696.18, + "probability": 0.8442 + }, + { + "start": 6696.38, + "end": 6697.64, + "probability": 0.8274 + }, + { + "start": 6697.96, + "end": 6698.74, + "probability": 0.5414 + }, + { + "start": 6699.56, + "end": 6700.52, + "probability": 0.845 + }, + { + "start": 6700.66, + "end": 6704.16, + "probability": 0.9957 + }, + { + "start": 6704.58, + "end": 6706.82, + "probability": 0.9564 + }, + { + "start": 6707.14, + "end": 6709.76, + "probability": 0.9841 + }, + { + "start": 6710.16, + "end": 6712.02, + "probability": 0.5558 + }, + { + "start": 6712.26, + "end": 6714.68, + "probability": 0.8848 + }, + { + "start": 6714.72, + "end": 6716.54, + "probability": 0.9915 + }, + { + "start": 6717.16, + "end": 6717.74, + "probability": 0.713 + }, + { + "start": 6717.78, + "end": 6719.5, + "probability": 0.9907 + }, + { + "start": 6719.9, + "end": 6722.74, + "probability": 0.9919 + }, + { + "start": 6723.24, + "end": 6724.22, + "probability": 0.8084 + }, + { + "start": 6725.04, + "end": 6727.26, + "probability": 0.9692 + }, + { + "start": 6727.3, + "end": 6727.92, + "probability": 0.9864 + }, + { + "start": 6727.98, + "end": 6728.46, + "probability": 0.9671 + }, + { + "start": 6728.72, + "end": 6729.46, + "probability": 0.9829 + }, + { + "start": 6729.5, + "end": 6730.06, + "probability": 0.9129 + }, + { + "start": 6730.6, + "end": 6732.96, + "probability": 0.8671 + }, + { + "start": 6733.06, + "end": 6734.1, + "probability": 0.8402 + }, + { + "start": 6734.46, + "end": 6739.94, + "probability": 0.9045 + }, + { + "start": 6739.94, + "end": 6744.06, + "probability": 0.9988 + }, + { + "start": 6744.54, + "end": 6745.94, + "probability": 0.8171 + }, + { + "start": 6746.22, + "end": 6748.88, + "probability": 0.9217 + }, + { + "start": 6749.04, + "end": 6750.08, + "probability": 0.9062 + }, + { + "start": 6750.86, + "end": 6752.42, + "probability": 0.8581 + }, + { + "start": 6752.5, + "end": 6753.42, + "probability": 0.9429 + }, + { + "start": 6753.46, + "end": 6754.34, + "probability": 0.6306 + }, + { + "start": 6754.52, + "end": 6755.06, + "probability": 0.8484 + }, + { + "start": 6755.26, + "end": 6755.7, + "probability": 0.6969 + }, + { + "start": 6756.12, + "end": 6759.48, + "probability": 0.7924 + }, + { + "start": 6759.82, + "end": 6761.01, + "probability": 0.9971 + }, + { + "start": 6761.52, + "end": 6764.2, + "probability": 0.9498 + }, + { + "start": 6764.7, + "end": 6765.96, + "probability": 0.925 + }, + { + "start": 6766.16, + "end": 6766.86, + "probability": 0.82 + }, + { + "start": 6766.98, + "end": 6767.78, + "probability": 0.915 + }, + { + "start": 6768.32, + "end": 6769.84, + "probability": 0.6506 + }, + { + "start": 6770.16, + "end": 6771.54, + "probability": 0.9866 + }, + { + "start": 6771.92, + "end": 6773.32, + "probability": 0.8088 + }, + { + "start": 6773.9, + "end": 6777.18, + "probability": 0.9868 + }, + { + "start": 6777.74, + "end": 6783.04, + "probability": 0.9911 + }, + { + "start": 6783.18, + "end": 6784.08, + "probability": 0.595 + }, + { + "start": 6784.52, + "end": 6785.26, + "probability": 0.5262 + }, + { + "start": 6785.42, + "end": 6786.78, + "probability": 0.644 + }, + { + "start": 6787.26, + "end": 6788.42, + "probability": 0.9835 + }, + { + "start": 6788.98, + "end": 6789.32, + "probability": 0.8125 + }, + { + "start": 6789.8, + "end": 6790.84, + "probability": 0.9421 + }, + { + "start": 6791.42, + "end": 6793.22, + "probability": 0.7052 + }, + { + "start": 6794.5, + "end": 6795.43, + "probability": 0.8657 + }, + { + "start": 6796.77, + "end": 6798.28, + "probability": 0.1933 + }, + { + "start": 6798.94, + "end": 6801.3, + "probability": 0.863 + }, + { + "start": 6801.3, + "end": 6802.32, + "probability": 0.6348 + }, + { + "start": 6802.32, + "end": 6802.7, + "probability": 0.6287 + }, + { + "start": 6803.12, + "end": 6807.28, + "probability": 0.947 + }, + { + "start": 6808.52, + "end": 6809.86, + "probability": 0.9714 + }, + { + "start": 6810.68, + "end": 6815.36, + "probability": 0.9651 + }, + { + "start": 6815.92, + "end": 6817.18, + "probability": 0.9484 + }, + { + "start": 6817.8, + "end": 6818.64, + "probability": 0.8433 + }, + { + "start": 6819.1, + "end": 6821.0, + "probability": 0.9274 + }, + { + "start": 6821.52, + "end": 6825.04, + "probability": 0.9141 + }, + { + "start": 6825.26, + "end": 6826.34, + "probability": 0.9675 + }, + { + "start": 6826.9, + "end": 6828.84, + "probability": 0.9091 + }, + { + "start": 6828.94, + "end": 6829.98, + "probability": 0.0039 + }, + { + "start": 6830.5, + "end": 6835.22, + "probability": 0.9951 + }, + { + "start": 6835.28, + "end": 6836.24, + "probability": 0.9744 + }, + { + "start": 6837.84, + "end": 6838.98, + "probability": 0.7767 + }, + { + "start": 6839.94, + "end": 6840.78, + "probability": 0.5073 + }, + { + "start": 6841.98, + "end": 6842.68, + "probability": 0.843 + }, + { + "start": 6844.82, + "end": 6845.8, + "probability": 0.3267 + }, + { + "start": 6846.5, + "end": 6849.02, + "probability": 0.8904 + }, + { + "start": 6850.08, + "end": 6852.3, + "probability": 0.9677 + }, + { + "start": 6852.9, + "end": 6855.38, + "probability": 0.3036 + }, + { + "start": 6856.06, + "end": 6859.14, + "probability": 0.9958 + }, + { + "start": 6859.3, + "end": 6861.98, + "probability": 0.995 + }, + { + "start": 6862.78, + "end": 6865.92, + "probability": 0.9657 + }, + { + "start": 6866.64, + "end": 6869.6, + "probability": 0.9454 + }, + { + "start": 6870.1, + "end": 6874.86, + "probability": 0.9952 + }, + { + "start": 6875.94, + "end": 6880.38, + "probability": 0.9964 + }, + { + "start": 6880.88, + "end": 6885.12, + "probability": 0.9833 + }, + { + "start": 6886.22, + "end": 6889.4, + "probability": 0.9893 + }, + { + "start": 6889.4, + "end": 6891.88, + "probability": 0.9945 + }, + { + "start": 6892.5, + "end": 6893.02, + "probability": 0.9284 + }, + { + "start": 6894.38, + "end": 6898.5, + "probability": 0.9748 + }, + { + "start": 6898.5, + "end": 6903.16, + "probability": 0.9596 + }, + { + "start": 6903.62, + "end": 6904.32, + "probability": 0.9625 + }, + { + "start": 6904.64, + "end": 6905.28, + "probability": 0.5028 + }, + { + "start": 6905.72, + "end": 6906.12, + "probability": 0.9137 + }, + { + "start": 6906.8, + "end": 6908.76, + "probability": 0.9963 + }, + { + "start": 6909.78, + "end": 6910.44, + "probability": 0.8936 + }, + { + "start": 6910.6, + "end": 6913.7, + "probability": 0.7722 + }, + { + "start": 6913.92, + "end": 6918.72, + "probability": 0.932 + }, + { + "start": 6918.72, + "end": 6927.5, + "probability": 0.9854 + }, + { + "start": 6928.24, + "end": 6933.34, + "probability": 0.8336 + }, + { + "start": 6933.78, + "end": 6937.78, + "probability": 0.9902 + }, + { + "start": 6938.54, + "end": 6942.08, + "probability": 0.9817 + }, + { + "start": 6942.08, + "end": 6946.44, + "probability": 0.9806 + }, + { + "start": 6946.98, + "end": 6947.6, + "probability": 0.8131 + }, + { + "start": 6948.16, + "end": 6949.38, + "probability": 0.8676 + }, + { + "start": 6950.42, + "end": 6952.38, + "probability": 0.702 + }, + { + "start": 6953.66, + "end": 6957.8, + "probability": 0.7928 + }, + { + "start": 6958.38, + "end": 6962.89, + "probability": 0.9631 + }, + { + "start": 6963.06, + "end": 6967.34, + "probability": 0.9893 + }, + { + "start": 6968.94, + "end": 6972.78, + "probability": 0.9795 + }, + { + "start": 6973.78, + "end": 6976.9, + "probability": 0.9342 + }, + { + "start": 6977.0, + "end": 6977.1, + "probability": 0.4169 + }, + { + "start": 6977.46, + "end": 6978.72, + "probability": 0.9961 + }, + { + "start": 6979.74, + "end": 6984.16, + "probability": 0.9768 + }, + { + "start": 6985.18, + "end": 6986.16, + "probability": 0.8477 + }, + { + "start": 6986.8, + "end": 6990.34, + "probability": 0.6214 + }, + { + "start": 6990.78, + "end": 6992.22, + "probability": 0.7938 + }, + { + "start": 6992.4, + "end": 6993.53, + "probability": 0.9226 + }, + { + "start": 6994.78, + "end": 7000.24, + "probability": 0.9972 + }, + { + "start": 7000.96, + "end": 7004.08, + "probability": 0.5428 + }, + { + "start": 7004.28, + "end": 7006.92, + "probability": 0.7139 + }, + { + "start": 7006.96, + "end": 7009.9, + "probability": 0.6757 + }, + { + "start": 7011.46, + "end": 7014.22, + "probability": 0.524 + }, + { + "start": 7014.6, + "end": 7016.0, + "probability": 0.8276 + }, + { + "start": 7016.54, + "end": 7019.16, + "probability": 0.9163 + }, + { + "start": 7020.76, + "end": 7022.86, + "probability": 0.6681 + }, + { + "start": 7022.88, + "end": 7023.76, + "probability": 0.7496 + }, + { + "start": 7023.88, + "end": 7025.82, + "probability": 0.8366 + }, + { + "start": 7028.6, + "end": 7031.78, + "probability": 0.1982 + }, + { + "start": 7032.38, + "end": 7033.82, + "probability": 0.5204 + }, + { + "start": 7034.3, + "end": 7038.14, + "probability": 0.1963 + }, + { + "start": 7038.18, + "end": 7039.16, + "probability": 0.432 + }, + { + "start": 7039.36, + "end": 7041.16, + "probability": 0.577 + }, + { + "start": 7041.62, + "end": 7042.62, + "probability": 0.8064 + }, + { + "start": 7042.68, + "end": 7043.24, + "probability": 0.621 + }, + { + "start": 7043.76, + "end": 7045.38, + "probability": 0.9951 + }, + { + "start": 7045.72, + "end": 7048.9, + "probability": 0.5231 + }, + { + "start": 7049.16, + "end": 7050.92, + "probability": 0.5429 + }, + { + "start": 7051.56, + "end": 7052.58, + "probability": 0.0198 + }, + { + "start": 7054.22, + "end": 7056.92, + "probability": 0.9181 + }, + { + "start": 7057.5, + "end": 7059.08, + "probability": 0.9732 + }, + { + "start": 7060.44, + "end": 7061.46, + "probability": 0.6021 + }, + { + "start": 7062.32, + "end": 7064.38, + "probability": 0.9673 + }, + { + "start": 7064.84, + "end": 7066.03, + "probability": 0.9316 + }, + { + "start": 7066.62, + "end": 7068.08, + "probability": 0.9487 + }, + { + "start": 7068.34, + "end": 7072.01, + "probability": 0.9316 + }, + { + "start": 7072.48, + "end": 7074.1, + "probability": 0.8431 + }, + { + "start": 7074.16, + "end": 7075.78, + "probability": 0.9399 + }, + { + "start": 7079.44, + "end": 7084.38, + "probability": 0.6666 + }, + { + "start": 7084.44, + "end": 7085.16, + "probability": 0.6917 + }, + { + "start": 7085.38, + "end": 7087.18, + "probability": 0.7417 + }, + { + "start": 7087.75, + "end": 7092.02, + "probability": 0.9789 + }, + { + "start": 7092.2, + "end": 7094.28, + "probability": 0.9751 + }, + { + "start": 7094.92, + "end": 7094.92, + "probability": 0.0002 + }, + { + "start": 7096.26, + "end": 7098.12, + "probability": 0.7487 + }, + { + "start": 7098.74, + "end": 7102.78, + "probability": 0.9964 + }, + { + "start": 7102.9, + "end": 7104.94, + "probability": 0.9307 + }, + { + "start": 7104.96, + "end": 7105.34, + "probability": 0.5085 + }, + { + "start": 7105.46, + "end": 7106.42, + "probability": 0.5768 + }, + { + "start": 7106.64, + "end": 7110.62, + "probability": 0.9903 + }, + { + "start": 7110.74, + "end": 7112.34, + "probability": 0.7778 + }, + { + "start": 7112.4, + "end": 7115.44, + "probability": 0.8926 + }, + { + "start": 7116.04, + "end": 7116.98, + "probability": 0.7003 + }, + { + "start": 7117.06, + "end": 7118.78, + "probability": 0.5811 + }, + { + "start": 7118.86, + "end": 7121.04, + "probability": 0.896 + }, + { + "start": 7121.82, + "end": 7122.62, + "probability": 0.638 + }, + { + "start": 7122.84, + "end": 7124.16, + "probability": 0.6733 + }, + { + "start": 7124.42, + "end": 7125.26, + "probability": 0.9374 + }, + { + "start": 7125.52, + "end": 7126.2, + "probability": 0.9924 + }, + { + "start": 7126.46, + "end": 7130.2, + "probability": 0.8568 + }, + { + "start": 7131.18, + "end": 7135.1, + "probability": 0.9498 + }, + { + "start": 7135.1, + "end": 7138.34, + "probability": 0.9819 + }, + { + "start": 7138.96, + "end": 7139.5, + "probability": 0.6635 + }, + { + "start": 7139.6, + "end": 7143.0, + "probability": 0.9858 + }, + { + "start": 7143.72, + "end": 7147.56, + "probability": 0.9904 + }, + { + "start": 7148.02, + "end": 7150.78, + "probability": 0.9954 + }, + { + "start": 7151.32, + "end": 7152.74, + "probability": 0.9041 + }, + { + "start": 7153.42, + "end": 7154.52, + "probability": 0.9659 + }, + { + "start": 7155.28, + "end": 7158.68, + "probability": 0.9675 + }, + { + "start": 7159.2, + "end": 7159.68, + "probability": 0.7852 + }, + { + "start": 7160.44, + "end": 7162.26, + "probability": 0.9878 + }, + { + "start": 7162.86, + "end": 7164.04, + "probability": 0.5399 + }, + { + "start": 7166.06, + "end": 7167.18, + "probability": 0.4135 + }, + { + "start": 7167.54, + "end": 7170.34, + "probability": 0.9463 + }, + { + "start": 7170.7, + "end": 7170.98, + "probability": 0.8636 + }, + { + "start": 7171.98, + "end": 7172.24, + "probability": 0.5158 + }, + { + "start": 7172.42, + "end": 7173.16, + "probability": 0.6687 + }, + { + "start": 7174.1, + "end": 7177.16, + "probability": 0.9941 + }, + { + "start": 7177.86, + "end": 7178.06, + "probability": 0.3756 + }, + { + "start": 7178.12, + "end": 7179.3, + "probability": 0.5447 + }, + { + "start": 7179.7, + "end": 7181.8, + "probability": 0.7832 + }, + { + "start": 7182.2, + "end": 7182.58, + "probability": 0.6328 + }, + { + "start": 7182.62, + "end": 7183.57, + "probability": 0.7081 + }, + { + "start": 7183.84, + "end": 7187.0, + "probability": 0.9567 + }, + { + "start": 7187.68, + "end": 7188.44, + "probability": 0.6645 + }, + { + "start": 7188.56, + "end": 7190.16, + "probability": 0.7774 + }, + { + "start": 7190.36, + "end": 7190.88, + "probability": 0.7196 + }, + { + "start": 7191.24, + "end": 7194.02, + "probability": 0.9904 + }, + { + "start": 7194.14, + "end": 7195.64, + "probability": 0.568 + }, + { + "start": 7195.98, + "end": 7197.44, + "probability": 0.9425 + }, + { + "start": 7197.86, + "end": 7200.82, + "probability": 0.9259 + }, + { + "start": 7201.3, + "end": 7204.6, + "probability": 0.8064 + }, + { + "start": 7206.18, + "end": 7209.32, + "probability": 0.6597 + }, + { + "start": 7209.88, + "end": 7212.02, + "probability": 0.9833 + }, + { + "start": 7212.68, + "end": 7214.24, + "probability": 0.8218 + }, + { + "start": 7214.44, + "end": 7218.82, + "probability": 0.9071 + }, + { + "start": 7219.48, + "end": 7224.04, + "probability": 0.9476 + }, + { + "start": 7225.32, + "end": 7227.92, + "probability": 0.4967 + }, + { + "start": 7227.94, + "end": 7228.16, + "probability": 0.3798 + }, + { + "start": 7228.16, + "end": 7228.68, + "probability": 0.6049 + }, + { + "start": 7229.28, + "end": 7230.18, + "probability": 0.5535 + }, + { + "start": 7230.72, + "end": 7232.94, + "probability": 0.9692 + }, + { + "start": 7232.96, + "end": 7233.7, + "probability": 0.9286 + }, + { + "start": 7233.84, + "end": 7235.39, + "probability": 0.9927 + }, + { + "start": 7236.52, + "end": 7238.54, + "probability": 0.9966 + }, + { + "start": 7239.48, + "end": 7240.24, + "probability": 0.7357 + }, + { + "start": 7241.04, + "end": 7243.68, + "probability": 0.5439 + }, + { + "start": 7244.34, + "end": 7249.22, + "probability": 0.8425 + }, + { + "start": 7249.78, + "end": 7250.12, + "probability": 0.5325 + }, + { + "start": 7250.16, + "end": 7250.98, + "probability": 0.736 + }, + { + "start": 7251.14, + "end": 7253.72, + "probability": 0.9885 + }, + { + "start": 7254.14, + "end": 7255.84, + "probability": 0.9804 + }, + { + "start": 7256.36, + "end": 7258.0, + "probability": 0.9101 + }, + { + "start": 7258.5, + "end": 7261.06, + "probability": 0.9645 + }, + { + "start": 7261.08, + "end": 7262.47, + "probability": 0.9968 + }, + { + "start": 7263.57, + "end": 7265.02, + "probability": 0.9805 + }, + { + "start": 7265.87, + "end": 7266.11, + "probability": 0.1606 + }, + { + "start": 7266.31, + "end": 7266.41, + "probability": 0.5478 + }, + { + "start": 7266.53, + "end": 7269.41, + "probability": 0.9517 + }, + { + "start": 7270.01, + "end": 7270.53, + "probability": 0.5126 + }, + { + "start": 7270.57, + "end": 7271.69, + "probability": 0.937 + }, + { + "start": 7271.73, + "end": 7272.45, + "probability": 0.9103 + }, + { + "start": 7272.59, + "end": 7273.27, + "probability": 0.4604 + }, + { + "start": 7274.27, + "end": 7277.09, + "probability": 0.9804 + }, + { + "start": 7277.21, + "end": 7278.17, + "probability": 0.5909 + }, + { + "start": 7279.19, + "end": 7282.09, + "probability": 0.9148 + }, + { + "start": 7282.47, + "end": 7282.53, + "probability": 0.429 + }, + { + "start": 7282.63, + "end": 7283.03, + "probability": 0.4259 + }, + { + "start": 7283.49, + "end": 7284.91, + "probability": 0.9756 + }, + { + "start": 7285.99, + "end": 7286.93, + "probability": 0.6961 + }, + { + "start": 7287.75, + "end": 7288.39, + "probability": 0.0178 + }, + { + "start": 7288.81, + "end": 7289.19, + "probability": 0.2676 + }, + { + "start": 7289.53, + "end": 7291.07, + "probability": 0.7854 + }, + { + "start": 7291.09, + "end": 7292.11, + "probability": 0.757 + }, + { + "start": 7292.17, + "end": 7292.85, + "probability": 0.9074 + }, + { + "start": 7293.67, + "end": 7295.13, + "probability": 0.754 + }, + { + "start": 7296.55, + "end": 7300.85, + "probability": 0.9945 + }, + { + "start": 7301.31, + "end": 7302.75, + "probability": 0.3638 + }, + { + "start": 7303.19, + "end": 7306.35, + "probability": 0.7439 + }, + { + "start": 7306.35, + "end": 7307.27, + "probability": 0.7313 + }, + { + "start": 7308.29, + "end": 7308.85, + "probability": 0.5953 + }, + { + "start": 7308.89, + "end": 7309.37, + "probability": 0.7024 + }, + { + "start": 7309.39, + "end": 7309.97, + "probability": 0.7651 + }, + { + "start": 7311.51, + "end": 7313.39, + "probability": 0.8956 + }, + { + "start": 7317.81, + "end": 7318.55, + "probability": 0.2879 + }, + { + "start": 7319.21, + "end": 7322.15, + "probability": 0.0979 + }, + { + "start": 7331.49, + "end": 7331.89, + "probability": 0.4312 + }, + { + "start": 7331.89, + "end": 7331.89, + "probability": 0.1748 + }, + { + "start": 7331.89, + "end": 7334.37, + "probability": 0.9429 + }, + { + "start": 7335.29, + "end": 7339.09, + "probability": 0.6641 + }, + { + "start": 7339.97, + "end": 7342.59, + "probability": 0.7919 + }, + { + "start": 7343.07, + "end": 7346.09, + "probability": 0.3594 + }, + { + "start": 7346.47, + "end": 7346.67, + "probability": 0.0819 + }, + { + "start": 7346.67, + "end": 7350.59, + "probability": 0.1307 + }, + { + "start": 7351.43, + "end": 7352.73, + "probability": 0.0436 + }, + { + "start": 7353.59, + "end": 7353.59, + "probability": 0.1244 + }, + { + "start": 7353.59, + "end": 7353.59, + "probability": 0.2984 + }, + { + "start": 7353.59, + "end": 7353.59, + "probability": 0.1106 + }, + { + "start": 7353.59, + "end": 7353.59, + "probability": 0.0657 + }, + { + "start": 7353.59, + "end": 7356.36, + "probability": 0.6553 + }, + { + "start": 7357.13, + "end": 7359.93, + "probability": 0.1308 + }, + { + "start": 7360.45, + "end": 7365.51, + "probability": 0.9756 + }, + { + "start": 7366.45, + "end": 7368.81, + "probability": 0.6734 + }, + { + "start": 7369.65, + "end": 7372.09, + "probability": 0.9491 + }, + { + "start": 7372.69, + "end": 7375.61, + "probability": 0.7769 + }, + { + "start": 7376.46, + "end": 7379.29, + "probability": 0.8869 + }, + { + "start": 7379.75, + "end": 7381.91, + "probability": 0.6229 + }, + { + "start": 7386.12, + "end": 7386.98, + "probability": 0.5036 + }, + { + "start": 7389.8, + "end": 7391.94, + "probability": 0.7905 + }, + { + "start": 7391.98, + "end": 7392.04, + "probability": 0.7411 + }, + { + "start": 7392.04, + "end": 7393.5, + "probability": 0.8903 + }, + { + "start": 7393.9, + "end": 7394.46, + "probability": 0.4177 + }, + { + "start": 7394.88, + "end": 7396.9, + "probability": 0.5986 + }, + { + "start": 7400.08, + "end": 7402.74, + "probability": 0.6904 + }, + { + "start": 7403.04, + "end": 7403.04, + "probability": 0.3355 + }, + { + "start": 7403.04, + "end": 7403.04, + "probability": 0.0219 + }, + { + "start": 7403.04, + "end": 7403.04, + "probability": 0.5431 + }, + { + "start": 7403.04, + "end": 7403.78, + "probability": 0.8472 + }, + { + "start": 7404.28, + "end": 7405.36, + "probability": 0.5344 + }, + { + "start": 7405.52, + "end": 7411.32, + "probability": 0.9854 + }, + { + "start": 7411.84, + "end": 7412.22, + "probability": 0.7586 + }, + { + "start": 7412.56, + "end": 7413.66, + "probability": 0.591 + }, + { + "start": 7413.72, + "end": 7414.08, + "probability": 0.7795 + }, + { + "start": 7414.14, + "end": 7417.64, + "probability": 0.8288 + }, + { + "start": 7417.76, + "end": 7420.7, + "probability": 0.9897 + }, + { + "start": 7423.62, + "end": 7424.8, + "probability": 0.8164 + }, + { + "start": 7425.36, + "end": 7428.08, + "probability": 0.9388 + }, + { + "start": 7429.06, + "end": 7429.42, + "probability": 0.1761 + }, + { + "start": 7429.94, + "end": 7430.56, + "probability": 0.7961 + }, + { + "start": 7431.08, + "end": 7431.68, + "probability": 0.753 + }, + { + "start": 7431.86, + "end": 7436.32, + "probability": 0.9771 + }, + { + "start": 7436.32, + "end": 7440.8, + "probability": 0.8756 + }, + { + "start": 7441.24, + "end": 7442.8, + "probability": 0.9907 + }, + { + "start": 7443.56, + "end": 7445.04, + "probability": 0.9783 + }, + { + "start": 7447.68, + "end": 7452.66, + "probability": 0.7497 + }, + { + "start": 7453.24, + "end": 7454.28, + "probability": 0.8866 + }, + { + "start": 7456.08, + "end": 7456.58, + "probability": 0.4872 + }, + { + "start": 7456.98, + "end": 7457.4, + "probability": 0.5709 + }, + { + "start": 7458.46, + "end": 7460.79, + "probability": 0.8631 + }, + { + "start": 7461.2, + "end": 7461.58, + "probability": 0.8846 + }, + { + "start": 7462.58, + "end": 7464.54, + "probability": 0.7171 + }, + { + "start": 7465.3, + "end": 7468.5, + "probability": 0.9806 + }, + { + "start": 7469.82, + "end": 7474.32, + "probability": 0.8758 + }, + { + "start": 7475.16, + "end": 7476.84, + "probability": 0.7581 + }, + { + "start": 7477.56, + "end": 7481.41, + "probability": 0.9976 + }, + { + "start": 7484.24, + "end": 7486.36, + "probability": 0.8407 + }, + { + "start": 7486.44, + "end": 7487.2, + "probability": 0.8789 + }, + { + "start": 7487.3, + "end": 7488.44, + "probability": 0.8934 + }, + { + "start": 7488.82, + "end": 7490.86, + "probability": 0.9557 + }, + { + "start": 7492.12, + "end": 7493.62, + "probability": 0.7554 + }, + { + "start": 7494.86, + "end": 7497.58, + "probability": 0.7001 + }, + { + "start": 7498.16, + "end": 7502.6, + "probability": 0.7507 + }, + { + "start": 7503.46, + "end": 7504.22, + "probability": 0.9108 + }, + { + "start": 7505.73, + "end": 7508.38, + "probability": 0.994 + }, + { + "start": 7508.76, + "end": 7511.36, + "probability": 0.994 + }, + { + "start": 7512.2, + "end": 7513.12, + "probability": 0.5719 + }, + { + "start": 7513.88, + "end": 7515.42, + "probability": 0.8733 + }, + { + "start": 7515.6, + "end": 7517.42, + "probability": 0.9382 + }, + { + "start": 7517.58, + "end": 7521.72, + "probability": 0.9456 + }, + { + "start": 7522.16, + "end": 7525.56, + "probability": 0.8715 + }, + { + "start": 7525.82, + "end": 7526.78, + "probability": 0.7014 + }, + { + "start": 7527.56, + "end": 7528.42, + "probability": 0.9246 + }, + { + "start": 7529.28, + "end": 7529.66, + "probability": 0.927 + }, + { + "start": 7530.5, + "end": 7531.06, + "probability": 0.3065 + }, + { + "start": 7531.1, + "end": 7531.4, + "probability": 0.5878 + }, + { + "start": 7531.48, + "end": 7532.02, + "probability": 0.905 + }, + { + "start": 7532.08, + "end": 7533.48, + "probability": 0.9252 + }, + { + "start": 7533.86, + "end": 7538.32, + "probability": 0.9779 + }, + { + "start": 7538.66, + "end": 7540.62, + "probability": 0.8457 + }, + { + "start": 7541.86, + "end": 7549.16, + "probability": 0.6773 + }, + { + "start": 7550.42, + "end": 7550.66, + "probability": 0.497 + }, + { + "start": 7552.88, + "end": 7554.9, + "probability": 0.972 + }, + { + "start": 7555.94, + "end": 7556.68, + "probability": 0.9682 + }, + { + "start": 7557.36, + "end": 7560.48, + "probability": 0.9924 + }, + { + "start": 7561.36, + "end": 7563.46, + "probability": 0.9971 + }, + { + "start": 7563.96, + "end": 7564.64, + "probability": 0.9955 + }, + { + "start": 7565.24, + "end": 7565.64, + "probability": 0.9692 + }, + { + "start": 7566.68, + "end": 7567.72, + "probability": 0.9102 + }, + { + "start": 7568.5, + "end": 7569.18, + "probability": 0.2821 + }, + { + "start": 7569.32, + "end": 7569.92, + "probability": 0.4997 + }, + { + "start": 7569.98, + "end": 7571.51, + "probability": 0.7006 + }, + { + "start": 7571.68, + "end": 7574.82, + "probability": 0.5845 + }, + { + "start": 7575.14, + "end": 7576.05, + "probability": 0.8677 + }, + { + "start": 7576.3, + "end": 7576.54, + "probability": 0.5458 + }, + { + "start": 7577.27, + "end": 7579.2, + "probability": 0.0563 + }, + { + "start": 7579.26, + "end": 7580.58, + "probability": 0.3262 + }, + { + "start": 7581.14, + "end": 7585.24, + "probability": 0.731 + }, + { + "start": 7585.68, + "end": 7586.26, + "probability": 0.3941 + }, + { + "start": 7586.26, + "end": 7587.56, + "probability": 0.8267 + }, + { + "start": 7587.62, + "end": 7588.24, + "probability": 0.8887 + }, + { + "start": 7588.28, + "end": 7588.74, + "probability": 0.772 + }, + { + "start": 7589.12, + "end": 7590.48, + "probability": 0.8193 + }, + { + "start": 7590.76, + "end": 7592.34, + "probability": 0.9699 + }, + { + "start": 7593.06, + "end": 7594.56, + "probability": 0.9907 + }, + { + "start": 7594.82, + "end": 7595.34, + "probability": 0.4236 + }, + { + "start": 7595.4, + "end": 7597.3, + "probability": 0.8012 + }, + { + "start": 7597.46, + "end": 7597.78, + "probability": 0.0153 + }, + { + "start": 7597.8, + "end": 7598.64, + "probability": 0.5959 + }, + { + "start": 7599.3, + "end": 7600.36, + "probability": 0.9587 + }, + { + "start": 7600.46, + "end": 7601.72, + "probability": 0.967 + }, + { + "start": 7602.12, + "end": 7603.08, + "probability": 0.8966 + }, + { + "start": 7603.5, + "end": 7603.76, + "probability": 0.7445 + }, + { + "start": 7603.88, + "end": 7604.78, + "probability": 0.9128 + }, + { + "start": 7604.84, + "end": 7605.5, + "probability": 0.853 + }, + { + "start": 7605.54, + "end": 7606.96, + "probability": 0.9407 + }, + { + "start": 7607.16, + "end": 7607.98, + "probability": 0.7229 + }, + { + "start": 7608.92, + "end": 7610.57, + "probability": 0.9756 + }, + { + "start": 7610.74, + "end": 7611.28, + "probability": 0.5164 + }, + { + "start": 7611.9, + "end": 7613.82, + "probability": 0.0545 + }, + { + "start": 7613.98, + "end": 7614.53, + "probability": 0.1049 + }, + { + "start": 7615.7, + "end": 7616.7, + "probability": 0.3492 + }, + { + "start": 7617.38, + "end": 7619.4, + "probability": 0.2014 + }, + { + "start": 7619.54, + "end": 7621.2, + "probability": 0.6972 + }, + { + "start": 7622.43, + "end": 7624.88, + "probability": 0.6781 + }, + { + "start": 7625.46, + "end": 7628.32, + "probability": 0.9128 + }, + { + "start": 7628.42, + "end": 7629.98, + "probability": 0.9946 + }, + { + "start": 7630.38, + "end": 7632.1, + "probability": 0.9751 + }, + { + "start": 7632.38, + "end": 7636.22, + "probability": 0.9977 + }, + { + "start": 7636.6, + "end": 7638.14, + "probability": 0.6603 + }, + { + "start": 7638.24, + "end": 7639.38, + "probability": 0.9069 + }, + { + "start": 7639.46, + "end": 7642.44, + "probability": 0.9955 + }, + { + "start": 7642.84, + "end": 7645.33, + "probability": 0.9185 + }, + { + "start": 7646.42, + "end": 7650.1, + "probability": 0.9709 + }, + { + "start": 7650.72, + "end": 7653.88, + "probability": 0.5772 + }, + { + "start": 7655.44, + "end": 7657.2, + "probability": 0.3946 + }, + { + "start": 7657.2, + "end": 7659.52, + "probability": 0.932 + }, + { + "start": 7660.32, + "end": 7660.78, + "probability": 0.7307 + }, + { + "start": 7661.06, + "end": 7661.7, + "probability": 0.8908 + }, + { + "start": 7662.8, + "end": 7663.32, + "probability": 0.2039 + }, + { + "start": 7663.32, + "end": 7667.96, + "probability": 0.9891 + }, + { + "start": 7668.56, + "end": 7672.67, + "probability": 0.9225 + }, + { + "start": 7680.22, + "end": 7682.7, + "probability": 0.8408 + }, + { + "start": 7687.02, + "end": 7689.8, + "probability": 0.9741 + }, + { + "start": 7691.78, + "end": 7694.72, + "probability": 0.7521 + }, + { + "start": 7696.98, + "end": 7701.32, + "probability": 0.9172 + }, + { + "start": 7701.38, + "end": 7702.1, + "probability": 0.728 + }, + { + "start": 7704.15, + "end": 7705.38, + "probability": 0.574 + }, + { + "start": 7705.44, + "end": 7705.8, + "probability": 0.8331 + }, + { + "start": 7706.02, + "end": 7709.04, + "probability": 0.9593 + }, + { + "start": 7709.66, + "end": 7711.54, + "probability": 0.9875 + }, + { + "start": 7712.26, + "end": 7714.74, + "probability": 0.6114 + }, + { + "start": 7715.4, + "end": 7715.8, + "probability": 0.3197 + }, + { + "start": 7715.94, + "end": 7717.82, + "probability": 0.2189 + }, + { + "start": 7718.12, + "end": 7719.34, + "probability": 0.7214 + }, + { + "start": 7719.36, + "end": 7721.58, + "probability": 0.6406 + }, + { + "start": 7721.58, + "end": 7725.56, + "probability": 0.7738 + }, + { + "start": 7727.47, + "end": 7729.78, + "probability": 0.8527 + }, + { + "start": 7730.78, + "end": 7730.78, + "probability": 0.0143 + }, + { + "start": 7730.78, + "end": 7735.08, + "probability": 0.6531 + }, + { + "start": 7736.1, + "end": 7738.4, + "probability": 0.5753 + }, + { + "start": 7739.18, + "end": 7739.5, + "probability": 0.0097 + }, + { + "start": 7739.64, + "end": 7740.92, + "probability": 0.2075 + }, + { + "start": 7740.94, + "end": 7742.61, + "probability": 0.6356 + }, + { + "start": 7742.98, + "end": 7743.3, + "probability": 0.0482 + }, + { + "start": 7743.36, + "end": 7743.62, + "probability": 0.1411 + }, + { + "start": 7744.18, + "end": 7746.34, + "probability": 0.0291 + }, + { + "start": 7747.74, + "end": 7747.94, + "probability": 0.0812 + }, + { + "start": 7747.94, + "end": 7748.62, + "probability": 0.5634 + }, + { + "start": 7749.34, + "end": 7753.0, + "probability": 0.9029 + }, + { + "start": 7753.92, + "end": 7754.6, + "probability": 0.6818 + }, + { + "start": 7754.76, + "end": 7758.44, + "probability": 0.8738 + }, + { + "start": 7759.06, + "end": 7759.18, + "probability": 0.4947 + }, + { + "start": 7759.44, + "end": 7760.28, + "probability": 0.7052 + }, + { + "start": 7760.66, + "end": 7761.78, + "probability": 0.6361 + }, + { + "start": 7764.06, + "end": 7764.86, + "probability": 0.9663 + }, + { + "start": 7765.92, + "end": 7767.36, + "probability": 0.8018 + }, + { + "start": 7767.36, + "end": 7768.3, + "probability": 0.1981 + }, + { + "start": 7768.92, + "end": 7770.0, + "probability": 0.6327 + }, + { + "start": 7770.76, + "end": 7773.14, + "probability": 0.787 + }, + { + "start": 7773.79, + "end": 7775.66, + "probability": 0.9267 + }, + { + "start": 7776.66, + "end": 7777.1, + "probability": 0.0607 + }, + { + "start": 7778.26, + "end": 7778.36, + "probability": 0.2497 + }, + { + "start": 7778.36, + "end": 7779.54, + "probability": 0.9844 + }, + { + "start": 7779.74, + "end": 7780.58, + "probability": 0.7197 + }, + { + "start": 7780.86, + "end": 7781.92, + "probability": 0.5402 + }, + { + "start": 7781.92, + "end": 7782.02, + "probability": 0.3702 + }, + { + "start": 7782.84, + "end": 7784.2, + "probability": 0.7671 + }, + { + "start": 7785.22, + "end": 7788.82, + "probability": 0.6982 + }, + { + "start": 7789.32, + "end": 7790.46, + "probability": 0.2784 + }, + { + "start": 7790.46, + "end": 7790.58, + "probability": 0.5195 + }, + { + "start": 7790.82, + "end": 7794.32, + "probability": 0.95 + }, + { + "start": 7794.98, + "end": 7794.98, + "probability": 0.3482 + }, + { + "start": 7794.98, + "end": 7795.26, + "probability": 0.7809 + }, + { + "start": 7796.06, + "end": 7801.1, + "probability": 0.9943 + }, + { + "start": 7801.46, + "end": 7802.14, + "probability": 0.8067 + }, + { + "start": 7802.82, + "end": 7806.36, + "probability": 0.9754 + }, + { + "start": 7806.36, + "end": 7810.68, + "probability": 0.9757 + }, + { + "start": 7811.16, + "end": 7813.68, + "probability": 0.8203 + }, + { + "start": 7813.86, + "end": 7816.2, + "probability": 0.5746 + }, + { + "start": 7817.18, + "end": 7818.56, + "probability": 0.922 + }, + { + "start": 7818.68, + "end": 7821.58, + "probability": 0.9888 + }, + { + "start": 7821.86, + "end": 7822.29, + "probability": 0.9151 + }, + { + "start": 7823.1, + "end": 7823.53, + "probability": 0.7603 + }, + { + "start": 7823.92, + "end": 7825.57, + "probability": 0.5381 + }, + { + "start": 7826.04, + "end": 7826.93, + "probability": 0.843 + }, + { + "start": 7827.58, + "end": 7827.66, + "probability": 0.1852 + }, + { + "start": 7827.66, + "end": 7827.92, + "probability": 0.0233 + }, + { + "start": 7827.92, + "end": 7830.4, + "probability": 0.6519 + }, + { + "start": 7830.76, + "end": 7832.02, + "probability": 0.8808 + }, + { + "start": 7832.16, + "end": 7832.6, + "probability": 0.7703 + }, + { + "start": 7833.22, + "end": 7834.56, + "probability": 0.549 + }, + { + "start": 7834.78, + "end": 7835.77, + "probability": 0.9648 + }, + { + "start": 7835.98, + "end": 7837.12, + "probability": 0.4811 + }, + { + "start": 7837.3, + "end": 7837.96, + "probability": 0.9218 + }, + { + "start": 7838.08, + "end": 7839.32, + "probability": 0.9246 + }, + { + "start": 7839.56, + "end": 7839.98, + "probability": 0.3566 + }, + { + "start": 7840.66, + "end": 7845.42, + "probability": 0.9867 + }, + { + "start": 7845.76, + "end": 7846.38, + "probability": 0.1207 + }, + { + "start": 7846.38, + "end": 7847.56, + "probability": 0.4873 + }, + { + "start": 7848.42, + "end": 7848.64, + "probability": 0.0068 + }, + { + "start": 7849.06, + "end": 7851.92, + "probability": 0.9941 + }, + { + "start": 7852.76, + "end": 7853.86, + "probability": 0.895 + }, + { + "start": 7854.06, + "end": 7855.2, + "probability": 0.9718 + }, + { + "start": 7855.8, + "end": 7856.64, + "probability": 0.9006 + }, + { + "start": 7856.96, + "end": 7859.48, + "probability": 0.805 + }, + { + "start": 7859.78, + "end": 7861.5, + "probability": 0.3339 + }, + { + "start": 7861.52, + "end": 7863.08, + "probability": 0.6324 + }, + { + "start": 7863.08, + "end": 7864.22, + "probability": 0.7224 + }, + { + "start": 7864.42, + "end": 7865.76, + "probability": 0.5311 + }, + { + "start": 7865.92, + "end": 7866.56, + "probability": 0.603 + }, + { + "start": 7866.64, + "end": 7867.88, + "probability": 0.8701 + }, + { + "start": 7868.08, + "end": 7868.42, + "probability": 0.1616 + }, + { + "start": 7868.52, + "end": 7869.21, + "probability": 0.7529 + }, + { + "start": 7869.76, + "end": 7870.79, + "probability": 0.0498 + }, + { + "start": 7871.2, + "end": 7875.42, + "probability": 0.98 + }, + { + "start": 7875.56, + "end": 7877.94, + "probability": 0.9845 + }, + { + "start": 7878.04, + "end": 7878.58, + "probability": 0.6466 + }, + { + "start": 7879.32, + "end": 7882.38, + "probability": 0.9705 + }, + { + "start": 7882.54, + "end": 7882.94, + "probability": 0.9475 + }, + { + "start": 7883.4, + "end": 7885.7, + "probability": 0.9141 + }, + { + "start": 7886.34, + "end": 7887.16, + "probability": 0.7949 + }, + { + "start": 7887.26, + "end": 7889.68, + "probability": 0.9567 + }, + { + "start": 7889.9, + "end": 7890.18, + "probability": 0.7732 + }, + { + "start": 7891.04, + "end": 7891.75, + "probability": 0.49 + }, + { + "start": 7892.7, + "end": 7894.16, + "probability": 0.6959 + }, + { + "start": 7894.26, + "end": 7894.89, + "probability": 0.954 + }, + { + "start": 7895.1, + "end": 7895.28, + "probability": 0.8068 + }, + { + "start": 7895.32, + "end": 7895.48, + "probability": 0.646 + }, + { + "start": 7895.54, + "end": 7895.72, + "probability": 0.6987 + }, + { + "start": 7896.74, + "end": 7899.26, + "probability": 0.9805 + }, + { + "start": 7899.64, + "end": 7902.24, + "probability": 0.8369 + }, + { + "start": 7902.96, + "end": 7904.29, + "probability": 0.6896 + }, + { + "start": 7905.16, + "end": 7906.54, + "probability": 0.8015 + }, + { + "start": 7906.66, + "end": 7909.61, + "probability": 0.7255 + }, + { + "start": 7909.8, + "end": 7910.38, + "probability": 0.6574 + }, + { + "start": 7911.78, + "end": 7914.54, + "probability": 0.9956 + }, + { + "start": 7916.06, + "end": 7916.86, + "probability": 0.5264 + }, + { + "start": 7916.94, + "end": 7918.74, + "probability": 0.7552 + }, + { + "start": 7918.92, + "end": 7919.3, + "probability": 0.0426 + }, + { + "start": 7919.48, + "end": 7922.16, + "probability": 0.5984 + }, + { + "start": 7922.26, + "end": 7925.34, + "probability": 0.4905 + }, + { + "start": 7925.34, + "end": 7925.7, + "probability": 0.8617 + }, + { + "start": 7925.72, + "end": 7927.88, + "probability": 0.6176 + }, + { + "start": 7928.26, + "end": 7930.8, + "probability": 0.9441 + }, + { + "start": 7931.16, + "end": 7932.07, + "probability": 0.8836 + }, + { + "start": 7932.46, + "end": 7933.4, + "probability": 0.9761 + }, + { + "start": 7934.04, + "end": 7934.88, + "probability": 0.7227 + }, + { + "start": 7936.04, + "end": 7936.83, + "probability": 0.9399 + }, + { + "start": 7937.84, + "end": 7939.58, + "probability": 0.5248 + }, + { + "start": 7939.62, + "end": 7942.8, + "probability": 0.7487 + }, + { + "start": 7943.44, + "end": 7945.88, + "probability": 0.9462 + }, + { + "start": 7946.44, + "end": 7948.86, + "probability": 0.8121 + }, + { + "start": 7949.82, + "end": 7951.48, + "probability": 0.5333 + }, + { + "start": 7952.04, + "end": 7953.05, + "probability": 0.9481 + }, + { + "start": 7953.46, + "end": 7956.1, + "probability": 0.9241 + }, + { + "start": 7956.66, + "end": 7958.12, + "probability": 0.668 + }, + { + "start": 7958.28, + "end": 7959.66, + "probability": 0.9531 + }, + { + "start": 7960.2, + "end": 7961.68, + "probability": 0.8295 + }, + { + "start": 7961.7, + "end": 7962.96, + "probability": 0.7086 + }, + { + "start": 7963.8, + "end": 7965.72, + "probability": 0.8922 + }, + { + "start": 7966.56, + "end": 7969.84, + "probability": 0.9952 + }, + { + "start": 7970.78, + "end": 7972.74, + "probability": 0.8266 + }, + { + "start": 7973.1, + "end": 7974.45, + "probability": 0.5452 + }, + { + "start": 7975.34, + "end": 7977.28, + "probability": 0.0949 + }, + { + "start": 7977.62, + "end": 7977.9, + "probability": 0.4706 + }, + { + "start": 7977.9, + "end": 7981.0, + "probability": 0.9844 + }, + { + "start": 7981.1, + "end": 7981.95, + "probability": 0.8209 + }, + { + "start": 7982.46, + "end": 7983.98, + "probability": 0.5877 + }, + { + "start": 7984.4, + "end": 7985.74, + "probability": 0.9871 + }, + { + "start": 7985.78, + "end": 7987.24, + "probability": 0.9766 + }, + { + "start": 7987.88, + "end": 7990.02, + "probability": 0.8913 + }, + { + "start": 7990.3, + "end": 7991.74, + "probability": 0.9924 + }, + { + "start": 7992.1, + "end": 7992.94, + "probability": 0.8785 + }, + { + "start": 7993.26, + "end": 7993.46, + "probability": 0.6142 + }, + { + "start": 7993.5, + "end": 7994.68, + "probability": 0.5719 + }, + { + "start": 7995.3, + "end": 7997.54, + "probability": 0.9658 + }, + { + "start": 7998.06, + "end": 7999.32, + "probability": 0.9904 + }, + { + "start": 7999.87, + "end": 8000.12, + "probability": 0.3156 + }, + { + "start": 8000.2, + "end": 8000.95, + "probability": 0.9858 + }, + { + "start": 8001.64, + "end": 8002.58, + "probability": 0.9438 + }, + { + "start": 8002.74, + "end": 8002.98, + "probability": 0.3647 + }, + { + "start": 8003.02, + "end": 8003.52, + "probability": 0.4334 + }, + { + "start": 8003.74, + "end": 8004.42, + "probability": 0.8264 + }, + { + "start": 8004.82, + "end": 8005.21, + "probability": 0.7832 + }, + { + "start": 8005.32, + "end": 8005.56, + "probability": 0.741 + }, + { + "start": 8005.6, + "end": 8008.56, + "probability": 0.9276 + }, + { + "start": 8008.96, + "end": 8009.32, + "probability": 0.6357 + }, + { + "start": 8009.44, + "end": 8011.46, + "probability": 0.9474 + }, + { + "start": 8011.6, + "end": 8011.86, + "probability": 0.4224 + }, + { + "start": 8011.92, + "end": 8012.36, + "probability": 0.4857 + }, + { + "start": 8012.5, + "end": 8013.06, + "probability": 0.8267 + }, + { + "start": 8013.22, + "end": 8013.56, + "probability": 0.8294 + }, + { + "start": 8013.96, + "end": 8014.24, + "probability": 0.5555 + }, + { + "start": 8014.34, + "end": 8015.04, + "probability": 0.9873 + }, + { + "start": 8015.1, + "end": 8017.1, + "probability": 0.8159 + }, + { + "start": 8017.68, + "end": 8020.34, + "probability": 0.9672 + }, + { + "start": 8020.92, + "end": 8022.36, + "probability": 0.8424 + }, + { + "start": 8023.4, + "end": 8025.56, + "probability": 0.9316 + }, + { + "start": 8026.12, + "end": 8027.64, + "probability": 0.9937 + }, + { + "start": 8028.08, + "end": 8030.3, + "probability": 0.9935 + }, + { + "start": 8030.9, + "end": 8035.44, + "probability": 0.9434 + }, + { + "start": 8036.0, + "end": 8036.4, + "probability": 0.3762 + }, + { + "start": 8036.54, + "end": 8037.04, + "probability": 0.5746 + }, + { + "start": 8037.1, + "end": 8037.68, + "probability": 0.5368 + }, + { + "start": 8037.68, + "end": 8038.62, + "probability": 0.667 + }, + { + "start": 8039.16, + "end": 8039.96, + "probability": 0.6836 + }, + { + "start": 8060.92, + "end": 8064.14, + "probability": 0.632 + }, + { + "start": 8064.92, + "end": 8066.63, + "probability": 0.6403 + }, + { + "start": 8067.91, + "end": 8070.08, + "probability": 0.0756 + }, + { + "start": 8072.32, + "end": 8076.02, + "probability": 0.1376 + }, + { + "start": 8076.92, + "end": 8076.92, + "probability": 0.0 + }, + { + "start": 8084.06, + "end": 8087.26, + "probability": 0.0283 + }, + { + "start": 8087.96, + "end": 8091.16, + "probability": 0.0264 + }, + { + "start": 8092.54, + "end": 8093.18, + "probability": 0.0296 + }, + { + "start": 8093.18, + "end": 8095.38, + "probability": 0.0701 + }, + { + "start": 8095.38, + "end": 8095.46, + "probability": 0.0376 + }, + { + "start": 8095.46, + "end": 8095.46, + "probability": 0.0372 + }, + { + "start": 8095.46, + "end": 8101.04, + "probability": 0.1261 + }, + { + "start": 8103.1, + "end": 8105.22, + "probability": 0.0788 + }, + { + "start": 8105.6, + "end": 8105.84, + "probability": 0.2952 + }, + { + "start": 8106.56, + "end": 8109.4, + "probability": 0.096 + }, + { + "start": 8111.1, + "end": 8112.18, + "probability": 0.1112 + }, + { + "start": 8115.95, + "end": 8116.72, + "probability": 0.1548 + }, + { + "start": 8117.48, + "end": 8118.38, + "probability": 0.042 + }, + { + "start": 8120.04, + "end": 8121.22, + "probability": 0.2562 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8137.0, + "end": 8137.0, + "probability": 0.0 + }, + { + "start": 8139.76, + "end": 8140.7, + "probability": 0.6215 + }, + { + "start": 8141.3, + "end": 8142.16, + "probability": 0.7582 + }, + { + "start": 8143.1, + "end": 8147.04, + "probability": 0.9714 + }, + { + "start": 8147.78, + "end": 8149.56, + "probability": 0.909 + }, + { + "start": 8150.88, + "end": 8156.16, + "probability": 0.9758 + }, + { + "start": 8156.72, + "end": 8159.98, + "probability": 0.9741 + }, + { + "start": 8161.52, + "end": 8162.98, + "probability": 0.7562 + }, + { + "start": 8163.08, + "end": 8164.84, + "probability": 0.9893 + }, + { + "start": 8166.18, + "end": 8168.86, + "probability": 0.8483 + }, + { + "start": 8169.46, + "end": 8172.06, + "probability": 0.8435 + }, + { + "start": 8173.44, + "end": 8174.98, + "probability": 0.9619 + }, + { + "start": 8175.76, + "end": 8176.16, + "probability": 0.8892 + }, + { + "start": 8176.68, + "end": 8177.52, + "probability": 0.9708 + }, + { + "start": 8178.24, + "end": 8180.36, + "probability": 0.7701 + }, + { + "start": 8181.0, + "end": 8183.1, + "probability": 0.8206 + }, + { + "start": 8184.68, + "end": 8186.14, + "probability": 0.1276 + }, + { + "start": 8187.98, + "end": 8189.54, + "probability": 0.8915 + }, + { + "start": 8190.42, + "end": 8192.5, + "probability": 0.7643 + }, + { + "start": 8194.68, + "end": 8196.0, + "probability": 0.8686 + }, + { + "start": 8196.86, + "end": 8198.46, + "probability": 0.9602 + }, + { + "start": 8200.04, + "end": 8202.5, + "probability": 0.8754 + }, + { + "start": 8203.8, + "end": 8204.86, + "probability": 0.991 + }, + { + "start": 8205.5, + "end": 8206.22, + "probability": 0.9031 + }, + { + "start": 8207.19, + "end": 8209.64, + "probability": 0.998 + }, + { + "start": 8210.8, + "end": 8212.1, + "probability": 0.9401 + }, + { + "start": 8215.64, + "end": 8221.82, + "probability": 0.9106 + }, + { + "start": 8223.3, + "end": 8225.7, + "probability": 0.9399 + }, + { + "start": 8226.22, + "end": 8227.92, + "probability": 0.7847 + }, + { + "start": 8229.12, + "end": 8230.7, + "probability": 0.9863 + }, + { + "start": 8231.48, + "end": 8235.42, + "probability": 0.9711 + }, + { + "start": 8236.44, + "end": 8238.24, + "probability": 0.9497 + }, + { + "start": 8240.02, + "end": 8240.42, + "probability": 0.9843 + }, + { + "start": 8242.32, + "end": 8243.36, + "probability": 0.8891 + }, + { + "start": 8245.18, + "end": 8250.8, + "probability": 0.987 + }, + { + "start": 8251.78, + "end": 8253.6, + "probability": 0.9116 + }, + { + "start": 8253.8, + "end": 8255.74, + "probability": 0.828 + }, + { + "start": 8256.36, + "end": 8260.14, + "probability": 0.9884 + }, + { + "start": 8260.38, + "end": 8261.08, + "probability": 0.8623 + }, + { + "start": 8262.48, + "end": 8265.14, + "probability": 0.9865 + }, + { + "start": 8266.08, + "end": 8267.94, + "probability": 0.7067 + }, + { + "start": 8269.24, + "end": 8269.86, + "probability": 0.9377 + }, + { + "start": 8270.44, + "end": 8273.98, + "probability": 0.9652 + }, + { + "start": 8274.76, + "end": 8279.96, + "probability": 0.9365 + }, + { + "start": 8282.66, + "end": 8284.3, + "probability": 0.9971 + }, + { + "start": 8286.36, + "end": 8287.28, + "probability": 0.9836 + }, + { + "start": 8288.24, + "end": 8289.46, + "probability": 0.9199 + }, + { + "start": 8290.02, + "end": 8290.96, + "probability": 0.5066 + }, + { + "start": 8291.68, + "end": 8292.54, + "probability": 0.5229 + }, + { + "start": 8292.6, + "end": 8293.04, + "probability": 0.927 + }, + { + "start": 8293.16, + "end": 8295.24, + "probability": 0.9651 + }, + { + "start": 8297.92, + "end": 8298.52, + "probability": 0.9724 + }, + { + "start": 8299.86, + "end": 8302.4, + "probability": 0.9865 + }, + { + "start": 8304.0, + "end": 8304.62, + "probability": 0.562 + }, + { + "start": 8305.62, + "end": 8307.6, + "probability": 0.9893 + }, + { + "start": 8309.56, + "end": 8310.36, + "probability": 0.9973 + }, + { + "start": 8312.94, + "end": 8315.38, + "probability": 0.9802 + }, + { + "start": 8316.28, + "end": 8317.64, + "probability": 0.9341 + }, + { + "start": 8317.74, + "end": 8318.36, + "probability": 0.9473 + }, + { + "start": 8318.5, + "end": 8319.86, + "probability": 0.9565 + }, + { + "start": 8320.46, + "end": 8321.86, + "probability": 0.9393 + }, + { + "start": 8323.16, + "end": 8327.0, + "probability": 0.6917 + }, + { + "start": 8327.68, + "end": 8328.5, + "probability": 0.9738 + }, + { + "start": 8330.9, + "end": 8335.08, + "probability": 0.9126 + }, + { + "start": 8335.82, + "end": 8336.92, + "probability": 0.8369 + }, + { + "start": 8338.0, + "end": 8338.28, + "probability": 0.7006 + }, + { + "start": 8340.1, + "end": 8341.18, + "probability": 0.8802 + }, + { + "start": 8342.68, + "end": 8343.96, + "probability": 0.989 + }, + { + "start": 8344.86, + "end": 8345.6, + "probability": 0.6889 + }, + { + "start": 8347.04, + "end": 8348.62, + "probability": 0.9287 + }, + { + "start": 8349.5, + "end": 8351.46, + "probability": 0.7708 + }, + { + "start": 8352.02, + "end": 8353.18, + "probability": 0.9531 + }, + { + "start": 8353.96, + "end": 8354.78, + "probability": 0.899 + }, + { + "start": 8354.82, + "end": 8355.28, + "probability": 0.986 + }, + { + "start": 8355.42, + "end": 8358.82, + "probability": 0.9499 + }, + { + "start": 8358.82, + "end": 8362.0, + "probability": 0.9961 + }, + { + "start": 8362.78, + "end": 8365.6, + "probability": 0.9839 + }, + { + "start": 8367.48, + "end": 8368.28, + "probability": 0.0207 + }, + { + "start": 8372.08, + "end": 8372.18, + "probability": 0.1457 + }, + { + "start": 8372.2, + "end": 8372.22, + "probability": 0.0153 + }, + { + "start": 8442.02, + "end": 8442.42, + "probability": 0.1977 + }, + { + "start": 8442.5, + "end": 8443.46, + "probability": 0.5644 + }, + { + "start": 8443.54, + "end": 8446.14, + "probability": 0.7651 + }, + { + "start": 8446.94, + "end": 8448.02, + "probability": 0.9516 + }, + { + "start": 8448.68, + "end": 8449.34, + "probability": 0.5406 + }, + { + "start": 8450.38, + "end": 8451.6, + "probability": 0.9855 + }, + { + "start": 8451.7, + "end": 8454.62, + "probability": 0.9349 + }, + { + "start": 8456.1, + "end": 8458.3, + "probability": 0.9658 + }, + { + "start": 8459.02, + "end": 8462.22, + "probability": 0.2724 + }, + { + "start": 8462.68, + "end": 8463.26, + "probability": 0.7761 + }, + { + "start": 8463.72, + "end": 8465.74, + "probability": 0.7473 + }, + { + "start": 8466.2, + "end": 8466.36, + "probability": 0.3573 + }, + { + "start": 8466.74, + "end": 8467.56, + "probability": 0.965 + }, + { + "start": 8467.68, + "end": 8468.18, + "probability": 0.5609 + }, + { + "start": 8468.46, + "end": 8469.82, + "probability": 0.8979 + }, + { + "start": 8470.46, + "end": 8475.88, + "probability": 0.9492 + }, + { + "start": 8476.06, + "end": 8476.96, + "probability": 0.9552 + }, + { + "start": 8477.4, + "end": 8482.21, + "probability": 0.9937 + }, + { + "start": 8482.54, + "end": 8483.28, + "probability": 0.8512 + }, + { + "start": 8483.44, + "end": 8484.76, + "probability": 0.9851 + }, + { + "start": 8485.48, + "end": 8489.14, + "probability": 0.7908 + }, + { + "start": 8489.5, + "end": 8490.28, + "probability": 0.8662 + }, + { + "start": 8491.62, + "end": 8493.82, + "probability": 0.974 + }, + { + "start": 8494.12, + "end": 8495.0, + "probability": 0.1295 + }, + { + "start": 8495.38, + "end": 8496.4, + "probability": 0.3729 + }, + { + "start": 8496.66, + "end": 8496.76, + "probability": 0.4354 + }, + { + "start": 8496.96, + "end": 8497.84, + "probability": 0.6812 + }, + { + "start": 8499.52, + "end": 8500.58, + "probability": 0.0555 + }, + { + "start": 8501.44, + "end": 8504.68, + "probability": 0.6656 + }, + { + "start": 8504.84, + "end": 8511.1, + "probability": 0.9927 + }, + { + "start": 8511.18, + "end": 8511.84, + "probability": 0.7773 + }, + { + "start": 8512.75, + "end": 8514.88, + "probability": 0.9136 + }, + { + "start": 8515.44, + "end": 8516.78, + "probability": 0.9515 + }, + { + "start": 8517.56, + "end": 8519.7, + "probability": 0.9216 + }, + { + "start": 8520.66, + "end": 8523.0, + "probability": 0.6684 + }, + { + "start": 8523.6, + "end": 8524.92, + "probability": 0.7034 + }, + { + "start": 8525.9, + "end": 8526.72, + "probability": 0.894 + }, + { + "start": 8527.6, + "end": 8530.04, + "probability": 0.883 + }, + { + "start": 8530.18, + "end": 8532.0, + "probability": 0.7775 + }, + { + "start": 8532.5, + "end": 8534.14, + "probability": 0.997 + }, + { + "start": 8535.24, + "end": 8535.94, + "probability": 0.5742 + }, + { + "start": 8539.52, + "end": 8541.32, + "probability": 0.7501 + }, + { + "start": 8541.86, + "end": 8542.9, + "probability": 0.1165 + }, + { + "start": 8542.92, + "end": 8543.6, + "probability": 0.6735 + }, + { + "start": 8543.92, + "end": 8544.34, + "probability": 0.7829 + }, + { + "start": 8544.46, + "end": 8545.06, + "probability": 0.8981 + }, + { + "start": 8547.67, + "end": 8547.95, + "probability": 0.4631 + }, + { + "start": 8550.44, + "end": 8554.18, + "probability": 0.7126 + }, + { + "start": 8555.32, + "end": 8556.0, + "probability": 0.877 + }, + { + "start": 8559.54, + "end": 8561.41, + "probability": 0.0686 + }, + { + "start": 8562.13, + "end": 8562.48, + "probability": 0.2241 + }, + { + "start": 8562.54, + "end": 8563.08, + "probability": 0.7609 + }, + { + "start": 8563.44, + "end": 8564.58, + "probability": 0.8563 + }, + { + "start": 8564.84, + "end": 8566.06, + "probability": 0.7685 + }, + { + "start": 8566.36, + "end": 8569.86, + "probability": 0.9941 + }, + { + "start": 8570.28, + "end": 8571.64, + "probability": 0.6418 + }, + { + "start": 8571.8, + "end": 8572.74, + "probability": 0.7464 + }, + { + "start": 8572.9, + "end": 8574.16, + "probability": 0.4039 + }, + { + "start": 8574.64, + "end": 8577.56, + "probability": 0.6663 + }, + { + "start": 8577.96, + "end": 8578.84, + "probability": 0.6254 + }, + { + "start": 8579.46, + "end": 8580.68, + "probability": 0.9254 + }, + { + "start": 8580.94, + "end": 8581.34, + "probability": 0.7342 + }, + { + "start": 8581.44, + "end": 8583.06, + "probability": 0.9442 + }, + { + "start": 8583.36, + "end": 8583.92, + "probability": 0.9616 + }, + { + "start": 8584.88, + "end": 8586.98, + "probability": 0.954 + }, + { + "start": 8587.44, + "end": 8589.54, + "probability": 0.7799 + }, + { + "start": 8590.2, + "end": 8590.94, + "probability": 0.8387 + }, + { + "start": 8591.2, + "end": 8591.62, + "probability": 0.8692 + }, + { + "start": 8592.6, + "end": 8593.42, + "probability": 0.7156 + }, + { + "start": 8594.82, + "end": 8596.72, + "probability": 0.7603 + }, + { + "start": 8596.84, + "end": 8598.22, + "probability": 0.9423 + }, + { + "start": 8598.6, + "end": 8599.7, + "probability": 0.6642 + }, + { + "start": 8601.08, + "end": 8603.68, + "probability": 0.7132 + }, + { + "start": 8604.28, + "end": 8607.06, + "probability": 0.7095 + }, + { + "start": 8607.74, + "end": 8608.48, + "probability": 0.9662 + }, + { + "start": 8608.98, + "end": 8612.94, + "probability": 0.9273 + }, + { + "start": 8613.56, + "end": 8617.76, + "probability": 0.8681 + }, + { + "start": 8618.52, + "end": 8619.72, + "probability": 0.4409 + }, + { + "start": 8621.08, + "end": 8625.26, + "probability": 0.9937 + }, + { + "start": 8625.38, + "end": 8625.74, + "probability": 0.606 + }, + { + "start": 8626.38, + "end": 8628.62, + "probability": 0.9929 + }, + { + "start": 8628.94, + "end": 8630.72, + "probability": 0.9763 + }, + { + "start": 8631.68, + "end": 8632.48, + "probability": 0.6226 + }, + { + "start": 8632.54, + "end": 8633.3, + "probability": 0.9502 + }, + { + "start": 8633.4, + "end": 8634.78, + "probability": 0.9938 + }, + { + "start": 8635.56, + "end": 8640.44, + "probability": 0.9335 + }, + { + "start": 8641.38, + "end": 8642.0, + "probability": 0.5482 + }, + { + "start": 8643.0, + "end": 8648.38, + "probability": 0.9934 + }, + { + "start": 8648.54, + "end": 8652.3, + "probability": 0.9145 + }, + { + "start": 8653.08, + "end": 8653.4, + "probability": 0.7338 + }, + { + "start": 8653.48, + "end": 8656.52, + "probability": 0.9626 + }, + { + "start": 8656.52, + "end": 8659.46, + "probability": 0.9298 + }, + { + "start": 8660.3, + "end": 8661.34, + "probability": 0.8333 + }, + { + "start": 8661.44, + "end": 8665.04, + "probability": 0.9573 + }, + { + "start": 8665.86, + "end": 8666.5, + "probability": 0.9199 + }, + { + "start": 8666.56, + "end": 8666.96, + "probability": 0.7213 + }, + { + "start": 8667.52, + "end": 8668.1, + "probability": 0.4982 + }, + { + "start": 8668.36, + "end": 8669.14, + "probability": 0.9356 + }, + { + "start": 8669.18, + "end": 8669.6, + "probability": 0.948 + }, + { + "start": 8670.1, + "end": 8671.26, + "probability": 0.9768 + }, + { + "start": 8671.78, + "end": 8674.78, + "probability": 0.7479 + }, + { + "start": 8675.3, + "end": 8675.88, + "probability": 0.5402 + }, + { + "start": 8675.98, + "end": 8678.16, + "probability": 0.9834 + }, + { + "start": 8678.72, + "end": 8680.08, + "probability": 0.9524 + }, + { + "start": 8680.68, + "end": 8684.58, + "probability": 0.9663 + }, + { + "start": 8684.66, + "end": 8685.3, + "probability": 0.551 + }, + { + "start": 8685.34, + "end": 8688.04, + "probability": 0.9424 + }, + { + "start": 8688.42, + "end": 8689.98, + "probability": 0.9773 + }, + { + "start": 8690.4, + "end": 8692.5, + "probability": 0.9794 + }, + { + "start": 8692.84, + "end": 8694.16, + "probability": 0.9818 + }, + { + "start": 8694.82, + "end": 8695.64, + "probability": 0.5201 + }, + { + "start": 8696.22, + "end": 8697.74, + "probability": 0.7597 + }, + { + "start": 8698.34, + "end": 8699.48, + "probability": 0.8658 + }, + { + "start": 8699.82, + "end": 8699.94, + "probability": 0.802 + }, + { + "start": 8700.0, + "end": 8703.76, + "probability": 0.9429 + }, + { + "start": 8704.16, + "end": 8706.74, + "probability": 0.9569 + }, + { + "start": 8706.98, + "end": 8708.5, + "probability": 0.8491 + }, + { + "start": 8708.88, + "end": 8710.88, + "probability": 0.786 + }, + { + "start": 8710.96, + "end": 8712.38, + "probability": 0.8232 + }, + { + "start": 8712.42, + "end": 8713.78, + "probability": 0.985 + }, + { + "start": 8714.52, + "end": 8715.3, + "probability": 0.9497 + }, + { + "start": 8715.94, + "end": 8716.82, + "probability": 0.8933 + }, + { + "start": 8717.18, + "end": 8718.14, + "probability": 0.9874 + }, + { + "start": 8719.08, + "end": 8720.35, + "probability": 0.5676 + }, + { + "start": 8720.74, + "end": 8721.86, + "probability": 0.6299 + }, + { + "start": 8721.9, + "end": 8722.86, + "probability": 0.6532 + }, + { + "start": 8723.04, + "end": 8725.06, + "probability": 0.9903 + }, + { + "start": 8725.66, + "end": 8727.1, + "probability": 0.9581 + }, + { + "start": 8728.24, + "end": 8731.0, + "probability": 0.755 + }, + { + "start": 8731.58, + "end": 8732.74, + "probability": 0.5272 + }, + { + "start": 8732.74, + "end": 8733.72, + "probability": 0.4775 + }, + { + "start": 8734.16, + "end": 8738.34, + "probability": 0.9884 + }, + { + "start": 8738.72, + "end": 8742.98, + "probability": 0.9829 + }, + { + "start": 8743.28, + "end": 8743.91, + "probability": 0.9229 + }, + { + "start": 8744.54, + "end": 8745.04, + "probability": 0.897 + }, + { + "start": 8745.16, + "end": 8750.02, + "probability": 0.983 + }, + { + "start": 8750.62, + "end": 8752.82, + "probability": 0.9888 + }, + { + "start": 8753.08, + "end": 8754.02, + "probability": 0.9263 + }, + { + "start": 8759.0, + "end": 8760.37, + "probability": 0.0417 + }, + { + "start": 8761.5, + "end": 8763.62, + "probability": 0.3279 + }, + { + "start": 8764.42, + "end": 8765.76, + "probability": 0.275 + }, + { + "start": 8766.04, + "end": 8767.78, + "probability": 0.6398 + }, + { + "start": 8767.86, + "end": 8769.02, + "probability": 0.7364 + }, + { + "start": 8769.04, + "end": 8770.52, + "probability": 0.7159 + }, + { + "start": 8770.52, + "end": 8770.98, + "probability": 0.3475 + }, + { + "start": 8771.42, + "end": 8771.89, + "probability": 0.5771 + }, + { + "start": 8773.1, + "end": 8775.72, + "probability": 0.8824 + }, + { + "start": 8776.68, + "end": 8776.7, + "probability": 0.1229 + }, + { + "start": 8778.76, + "end": 8781.12, + "probability": 0.5674 + }, + { + "start": 8781.26, + "end": 8781.84, + "probability": 0.842 + }, + { + "start": 8782.46, + "end": 8783.16, + "probability": 0.8909 + }, + { + "start": 8784.76, + "end": 8786.84, + "probability": 0.6815 + }, + { + "start": 8787.5, + "end": 8790.44, + "probability": 0.6666 + }, + { + "start": 8790.9, + "end": 8791.84, + "probability": 0.6648 + }, + { + "start": 8792.0, + "end": 8794.18, + "probability": 0.447 + }, + { + "start": 8798.96, + "end": 8799.74, + "probability": 0.7947 + }, + { + "start": 8800.86, + "end": 8802.1, + "probability": 0.6163 + }, + { + "start": 8802.42, + "end": 8802.42, + "probability": 0.3085 + }, + { + "start": 8802.56, + "end": 8803.08, + "probability": 0.8385 + }, + { + "start": 8803.2, + "end": 8804.5, + "probability": 0.7508 + }, + { + "start": 8805.6, + "end": 8809.9, + "probability": 0.9604 + }, + { + "start": 8809.9, + "end": 8813.42, + "probability": 0.7314 + }, + { + "start": 8814.62, + "end": 8817.16, + "probability": 0.9805 + }, + { + "start": 8817.9, + "end": 8820.66, + "probability": 0.9878 + }, + { + "start": 8820.72, + "end": 8823.0, + "probability": 0.9964 + }, + { + "start": 8823.48, + "end": 8826.34, + "probability": 0.8205 + }, + { + "start": 8827.1, + "end": 8831.59, + "probability": 0.8958 + }, + { + "start": 8832.76, + "end": 8836.38, + "probability": 0.9691 + }, + { + "start": 8836.38, + "end": 8840.62, + "probability": 0.9911 + }, + { + "start": 8841.62, + "end": 8845.54, + "probability": 0.7927 + }, + { + "start": 8846.16, + "end": 8849.08, + "probability": 0.9976 + }, + { + "start": 8850.02, + "end": 8854.98, + "probability": 0.9023 + }, + { + "start": 8855.56, + "end": 8857.02, + "probability": 0.7966 + }, + { + "start": 8857.6, + "end": 8861.62, + "probability": 0.9913 + }, + { + "start": 8861.78, + "end": 8862.74, + "probability": 0.8149 + }, + { + "start": 8862.92, + "end": 8867.26, + "probability": 0.9831 + }, + { + "start": 8867.26, + "end": 8872.18, + "probability": 0.9878 + }, + { + "start": 8872.66, + "end": 8875.8, + "probability": 0.9655 + }, + { + "start": 8875.9, + "end": 8880.96, + "probability": 0.8371 + }, + { + "start": 8881.62, + "end": 8885.7, + "probability": 0.9941 + }, + { + "start": 8885.7, + "end": 8889.78, + "probability": 0.9983 + }, + { + "start": 8890.56, + "end": 8893.98, + "probability": 0.9761 + }, + { + "start": 8893.98, + "end": 8899.62, + "probability": 0.9639 + }, + { + "start": 8900.24, + "end": 8900.24, + "probability": 0.2625 + }, + { + "start": 8901.64, + "end": 8906.32, + "probability": 0.9694 + }, + { + "start": 8906.32, + "end": 8910.68, + "probability": 0.981 + }, + { + "start": 8911.02, + "end": 8914.0, + "probability": 0.7471 + }, + { + "start": 8914.14, + "end": 8915.32, + "probability": 0.9479 + }, + { + "start": 8915.78, + "end": 8916.22, + "probability": 0.7572 + }, + { + "start": 8917.04, + "end": 8920.95, + "probability": 0.9033 + }, + { + "start": 8921.7, + "end": 8925.6, + "probability": 0.9668 + }, + { + "start": 8925.6, + "end": 8928.16, + "probability": 0.9967 + }, + { + "start": 8928.66, + "end": 8930.64, + "probability": 0.6442 + }, + { + "start": 8931.52, + "end": 8934.38, + "probability": 0.9919 + }, + { + "start": 8935.45, + "end": 8942.48, + "probability": 0.9697 + }, + { + "start": 8942.94, + "end": 8944.86, + "probability": 0.9719 + }, + { + "start": 8945.4, + "end": 8946.3, + "probability": 0.7472 + }, + { + "start": 8946.74, + "end": 8951.26, + "probability": 0.9717 + }, + { + "start": 8951.26, + "end": 8953.98, + "probability": 0.9968 + }, + { + "start": 8954.5, + "end": 8958.62, + "probability": 0.9202 + }, + { + "start": 8958.74, + "end": 8959.06, + "probability": 0.7902 + }, + { + "start": 8959.5, + "end": 8961.9, + "probability": 0.969 + }, + { + "start": 8963.04, + "end": 8963.32, + "probability": 0.9241 + }, + { + "start": 8964.06, + "end": 8965.06, + "probability": 0.9745 + }, + { + "start": 8966.16, + "end": 8967.8, + "probability": 0.8384 + }, + { + "start": 8968.6, + "end": 8970.08, + "probability": 0.8815 + }, + { + "start": 8977.34, + "end": 8978.14, + "probability": 0.6987 + }, + { + "start": 8978.34, + "end": 8979.3, + "probability": 0.6408 + }, + { + "start": 8979.64, + "end": 8980.32, + "probability": 0.8253 + }, + { + "start": 8980.44, + "end": 8984.36, + "probability": 0.7717 + }, + { + "start": 8986.08, + "end": 8987.9, + "probability": 0.8523 + }, + { + "start": 8988.28, + "end": 8988.84, + "probability": 0.5533 + }, + { + "start": 8988.92, + "end": 8989.44, + "probability": 0.8241 + }, + { + "start": 8991.64, + "end": 8997.26, + "probability": 0.9984 + }, + { + "start": 8998.8, + "end": 8999.38, + "probability": 0.7201 + }, + { + "start": 8999.88, + "end": 9002.26, + "probability": 0.9334 + }, + { + "start": 9002.26, + "end": 9004.64, + "probability": 0.9752 + }, + { + "start": 9005.66, + "end": 9007.14, + "probability": 0.8381 + }, + { + "start": 9007.98, + "end": 9010.26, + "probability": 0.7376 + }, + { + "start": 9010.9, + "end": 9014.06, + "probability": 0.974 + }, + { + "start": 9016.1, + "end": 9018.28, + "probability": 0.171 + }, + { + "start": 9018.66, + "end": 9019.28, + "probability": 0.6195 + }, + { + "start": 9020.02, + "end": 9020.68, + "probability": 0.7054 + }, + { + "start": 9020.74, + "end": 9022.02, + "probability": 0.4194 + }, + { + "start": 9023.58, + "end": 9024.36, + "probability": 0.0026 + }, + { + "start": 9024.36, + "end": 9024.94, + "probability": 0.404 + }, + { + "start": 9025.78, + "end": 9026.54, + "probability": 0.4004 + }, + { + "start": 9030.38, + "end": 9031.0, + "probability": 0.6226 + }, + { + "start": 9031.1, + "end": 9033.24, + "probability": 0.9192 + }, + { + "start": 9033.4, + "end": 9035.32, + "probability": 0.7708 + }, + { + "start": 9047.8, + "end": 9048.96, + "probability": 0.5035 + }, + { + "start": 9049.1, + "end": 9049.32, + "probability": 0.3784 + }, + { + "start": 9049.38, + "end": 9050.08, + "probability": 0.8185 + }, + { + "start": 9050.18, + "end": 9050.86, + "probability": 0.3503 + }, + { + "start": 9051.0, + "end": 9051.82, + "probability": 0.461 + }, + { + "start": 9052.16, + "end": 9053.38, + "probability": 0.857 + }, + { + "start": 9053.48, + "end": 9053.98, + "probability": 0.3094 + }, + { + "start": 9054.24, + "end": 9054.5, + "probability": 0.866 + }, + { + "start": 9054.84, + "end": 9055.38, + "probability": 0.6725 + }, + { + "start": 9056.9, + "end": 9058.9, + "probability": 0.8239 + }, + { + "start": 9059.18, + "end": 9059.6, + "probability": 0.8755 + }, + { + "start": 9060.02, + "end": 9060.78, + "probability": 0.7452 + }, + { + "start": 9062.08, + "end": 9063.1, + "probability": 0.5953 + }, + { + "start": 9063.16, + "end": 9065.28, + "probability": 0.9409 + }, + { + "start": 9065.28, + "end": 9068.38, + "probability": 0.9736 + }, + { + "start": 9069.6, + "end": 9070.02, + "probability": 0.3807 + }, + { + "start": 9070.56, + "end": 9071.9, + "probability": 0.8665 + }, + { + "start": 9072.0, + "end": 9075.14, + "probability": 0.9849 + }, + { + "start": 9075.18, + "end": 9078.5, + "probability": 0.9079 + }, + { + "start": 9079.48, + "end": 9080.38, + "probability": 0.6252 + }, + { + "start": 9080.44, + "end": 9082.1, + "probability": 0.7508 + }, + { + "start": 9082.62, + "end": 9084.28, + "probability": 0.9697 + }, + { + "start": 9085.02, + "end": 9087.78, + "probability": 0.564 + }, + { + "start": 9090.42, + "end": 9093.44, + "probability": 0.7231 + }, + { + "start": 9094.76, + "end": 9098.42, + "probability": 0.9344 + }, + { + "start": 9098.42, + "end": 9102.38, + "probability": 0.9397 + }, + { + "start": 9102.62, + "end": 9102.96, + "probability": 0.7926 + }, + { + "start": 9103.62, + "end": 9106.08, + "probability": 0.9437 + }, + { + "start": 9106.08, + "end": 9109.4, + "probability": 0.9956 + }, + { + "start": 9110.9, + "end": 9113.56, + "probability": 0.6931 + }, + { + "start": 9114.22, + "end": 9116.2, + "probability": 0.9583 + }, + { + "start": 9116.2, + "end": 9118.7, + "probability": 0.737 + }, + { + "start": 9118.84, + "end": 9119.36, + "probability": 0.482 + }, + { + "start": 9120.3, + "end": 9122.76, + "probability": 0.7622 + }, + { + "start": 9122.76, + "end": 9125.84, + "probability": 0.9908 + }, + { + "start": 9127.34, + "end": 9129.02, + "probability": 0.6815 + }, + { + "start": 9130.04, + "end": 9132.26, + "probability": 0.767 + }, + { + "start": 9132.42, + "end": 9134.2, + "probability": 0.8306 + }, + { + "start": 9134.94, + "end": 9137.58, + "probability": 0.8781 + }, + { + "start": 9138.1, + "end": 9140.3, + "probability": 0.9247 + }, + { + "start": 9142.12, + "end": 9144.6, + "probability": 0.7815 + }, + { + "start": 9144.72, + "end": 9145.22, + "probability": 0.508 + }, + { + "start": 9145.9, + "end": 9146.66, + "probability": 0.6629 + }, + { + "start": 9146.9, + "end": 9147.36, + "probability": 0.2515 + }, + { + "start": 9147.36, + "end": 9149.64, + "probability": 0.938 + }, + { + "start": 9149.64, + "end": 9152.98, + "probability": 0.9611 + }, + { + "start": 9155.46, + "end": 9156.02, + "probability": 0.552 + }, + { + "start": 9156.06, + "end": 9159.35, + "probability": 0.7921 + }, + { + "start": 9159.92, + "end": 9161.26, + "probability": 0.8784 + }, + { + "start": 9161.9, + "end": 9162.38, + "probability": 0.6624 + }, + { + "start": 9162.38, + "end": 9162.74, + "probability": 0.8125 + }, + { + "start": 9162.8, + "end": 9166.34, + "probability": 0.946 + }, + { + "start": 9167.24, + "end": 9170.5, + "probability": 0.91 + }, + { + "start": 9170.66, + "end": 9172.27, + "probability": 0.6984 + }, + { + "start": 9173.06, + "end": 9173.65, + "probability": 0.2583 + }, + { + "start": 9175.52, + "end": 9177.68, + "probability": 0.8516 + }, + { + "start": 9177.96, + "end": 9179.14, + "probability": 0.9485 + }, + { + "start": 9179.64, + "end": 9181.8, + "probability": 0.9676 + }, + { + "start": 9183.9, + "end": 9184.24, + "probability": 0.7939 + }, + { + "start": 9184.44, + "end": 9186.14, + "probability": 0.9504 + }, + { + "start": 9186.34, + "end": 9186.86, + "probability": 0.3793 + }, + { + "start": 9187.24, + "end": 9188.3, + "probability": 0.7888 + }, + { + "start": 9188.74, + "end": 9192.4, + "probability": 0.7507 + }, + { + "start": 9193.68, + "end": 9196.14, + "probability": 0.8315 + }, + { + "start": 9196.18, + "end": 9197.02, + "probability": 0.7832 + }, + { + "start": 9197.2, + "end": 9199.48, + "probability": 0.8568 + }, + { + "start": 9199.78, + "end": 9201.46, + "probability": 0.6444 + }, + { + "start": 9202.72, + "end": 9206.14, + "probability": 0.9738 + }, + { + "start": 9206.4, + "end": 9206.84, + "probability": 0.5642 + }, + { + "start": 9207.34, + "end": 9207.76, + "probability": 0.9491 + }, + { + "start": 9208.06, + "end": 9209.02, + "probability": 0.5467 + }, + { + "start": 9209.32, + "end": 9210.36, + "probability": 0.8524 + }, + { + "start": 9211.46, + "end": 9213.08, + "probability": 0.8835 + }, + { + "start": 9213.7, + "end": 9214.18, + "probability": 0.8445 + }, + { + "start": 9214.56, + "end": 9217.42, + "probability": 0.9366 + }, + { + "start": 9217.68, + "end": 9220.56, + "probability": 0.9463 + }, + { + "start": 9221.66, + "end": 9224.1, + "probability": 0.8957 + }, + { + "start": 9228.58, + "end": 9229.22, + "probability": 0.4688 + }, + { + "start": 9230.72, + "end": 9232.94, + "probability": 0.9875 + }, + { + "start": 9233.32, + "end": 9234.2, + "probability": 0.8416 + }, + { + "start": 9236.02, + "end": 9238.16, + "probability": 0.9967 + }, + { + "start": 9240.12, + "end": 9243.64, + "probability": 0.994 + }, + { + "start": 9243.88, + "end": 9245.68, + "probability": 0.7094 + }, + { + "start": 9246.58, + "end": 9250.28, + "probability": 0.994 + }, + { + "start": 9251.22, + "end": 9253.56, + "probability": 0.7554 + }, + { + "start": 9253.86, + "end": 9255.3, + "probability": 0.9989 + }, + { + "start": 9255.64, + "end": 9257.08, + "probability": 0.9966 + }, + { + "start": 9257.18, + "end": 9257.64, + "probability": 0.7576 + }, + { + "start": 9258.16, + "end": 9259.28, + "probability": 0.9912 + }, + { + "start": 9259.9, + "end": 9260.94, + "probability": 0.9869 + }, + { + "start": 9261.08, + "end": 9261.8, + "probability": 0.7435 + }, + { + "start": 9261.82, + "end": 9263.46, + "probability": 0.9888 + }, + { + "start": 9263.62, + "end": 9264.18, + "probability": 0.6378 + }, + { + "start": 9264.28, + "end": 9264.66, + "probability": 0.8757 + }, + { + "start": 9264.88, + "end": 9265.84, + "probability": 0.8127 + }, + { + "start": 9266.22, + "end": 9267.9, + "probability": 0.9311 + }, + { + "start": 9268.68, + "end": 9270.48, + "probability": 0.9603 + }, + { + "start": 9270.62, + "end": 9273.58, + "probability": 0.9814 + }, + { + "start": 9274.68, + "end": 9276.04, + "probability": 0.9824 + }, + { + "start": 9276.48, + "end": 9277.46, + "probability": 0.9893 + }, + { + "start": 9277.78, + "end": 9279.06, + "probability": 0.8653 + }, + { + "start": 9279.08, + "end": 9279.94, + "probability": 0.6909 + }, + { + "start": 9280.28, + "end": 9280.76, + "probability": 0.7733 + }, + { + "start": 9281.14, + "end": 9285.48, + "probability": 0.9934 + }, + { + "start": 9285.78, + "end": 9286.27, + "probability": 0.8213 + }, + { + "start": 9286.72, + "end": 9287.11, + "probability": 0.9302 + }, + { + "start": 9287.72, + "end": 9288.64, + "probability": 0.9699 + }, + { + "start": 9289.04, + "end": 9290.26, + "probability": 0.8312 + }, + { + "start": 9291.04, + "end": 9295.14, + "probability": 0.9698 + }, + { + "start": 9295.72, + "end": 9297.3, + "probability": 0.9637 + }, + { + "start": 9297.94, + "end": 9302.96, + "probability": 0.8817 + }, + { + "start": 9303.7, + "end": 9304.52, + "probability": 0.9594 + }, + { + "start": 9305.56, + "end": 9306.1, + "probability": 0.827 + }, + { + "start": 9306.16, + "end": 9307.22, + "probability": 0.979 + }, + { + "start": 9307.28, + "end": 9310.2, + "probability": 0.936 + }, + { + "start": 9311.26, + "end": 9312.06, + "probability": 0.933 + }, + { + "start": 9312.6, + "end": 9314.54, + "probability": 0.7744 + }, + { + "start": 9315.04, + "end": 9316.42, + "probability": 0.8939 + }, + { + "start": 9317.04, + "end": 9320.58, + "probability": 0.9665 + }, + { + "start": 9321.18, + "end": 9323.24, + "probability": 0.9932 + }, + { + "start": 9325.18, + "end": 9326.5, + "probability": 0.5954 + }, + { + "start": 9326.68, + "end": 9330.06, + "probability": 0.9891 + }, + { + "start": 9330.6, + "end": 9332.38, + "probability": 0.9886 + }, + { + "start": 9332.82, + "end": 9333.54, + "probability": 0.9224 + }, + { + "start": 9333.9, + "end": 9334.84, + "probability": 0.7273 + }, + { + "start": 9335.1, + "end": 9338.56, + "probability": 0.968 + }, + { + "start": 9338.68, + "end": 9340.28, + "probability": 0.9782 + }, + { + "start": 9340.94, + "end": 9342.7, + "probability": 0.942 + }, + { + "start": 9343.24, + "end": 9343.88, + "probability": 0.5555 + }, + { + "start": 9344.2, + "end": 9345.78, + "probability": 0.9246 + }, + { + "start": 9346.3, + "end": 9347.76, + "probability": 0.8469 + }, + { + "start": 9348.3, + "end": 9348.62, + "probability": 0.9619 + }, + { + "start": 9349.16, + "end": 9349.8, + "probability": 0.981 + }, + { + "start": 9349.88, + "end": 9350.68, + "probability": 0.9803 + }, + { + "start": 9350.84, + "end": 9352.02, + "probability": 0.9598 + }, + { + "start": 9352.32, + "end": 9353.18, + "probability": 0.8177 + }, + { + "start": 9353.74, + "end": 9355.06, + "probability": 0.9534 + }, + { + "start": 9356.08, + "end": 9358.7, + "probability": 0.9172 + }, + { + "start": 9360.08, + "end": 9362.3, + "probability": 0.9684 + }, + { + "start": 9362.86, + "end": 9365.52, + "probability": 0.9633 + }, + { + "start": 9366.1, + "end": 9367.9, + "probability": 0.9825 + }, + { + "start": 9368.42, + "end": 9370.98, + "probability": 0.988 + }, + { + "start": 9371.9, + "end": 9372.64, + "probability": 0.7383 + }, + { + "start": 9373.1, + "end": 9376.68, + "probability": 0.9966 + }, + { + "start": 9377.1, + "end": 9378.48, + "probability": 0.9363 + }, + { + "start": 9378.68, + "end": 9379.2, + "probability": 0.8561 + }, + { + "start": 9379.66, + "end": 9381.56, + "probability": 0.9158 + }, + { + "start": 9381.96, + "end": 9382.6, + "probability": 0.9673 + }, + { + "start": 9382.66, + "end": 9386.22, + "probability": 0.9574 + }, + { + "start": 9386.34, + "end": 9388.84, + "probability": 0.7746 + }, + { + "start": 9389.38, + "end": 9390.04, + "probability": 0.8408 + }, + { + "start": 9390.08, + "end": 9390.5, + "probability": 0.9758 + }, + { + "start": 9390.6, + "end": 9392.98, + "probability": 0.988 + }, + { + "start": 9393.64, + "end": 9394.26, + "probability": 0.9287 + }, + { + "start": 9394.78, + "end": 9396.34, + "probability": 0.9905 + }, + { + "start": 9396.86, + "end": 9397.54, + "probability": 0.9549 + }, + { + "start": 9398.06, + "end": 9401.24, + "probability": 0.9878 + }, + { + "start": 9402.64, + "end": 9403.38, + "probability": 0.787 + }, + { + "start": 9403.44, + "end": 9403.92, + "probability": 0.9418 + }, + { + "start": 9404.2, + "end": 9406.82, + "probability": 0.9388 + }, + { + "start": 9407.04, + "end": 9407.68, + "probability": 0.9814 + }, + { + "start": 9409.04, + "end": 9411.16, + "probability": 0.9412 + }, + { + "start": 9412.32, + "end": 9415.88, + "probability": 0.9722 + }, + { + "start": 9416.52, + "end": 9418.26, + "probability": 0.9655 + }, + { + "start": 9418.62, + "end": 9422.38, + "probability": 0.9631 + }, + { + "start": 9422.68, + "end": 9427.78, + "probability": 0.9899 + }, + { + "start": 9428.32, + "end": 9430.68, + "probability": 0.9829 + }, + { + "start": 9431.18, + "end": 9434.3, + "probability": 0.9889 + }, + { + "start": 9434.38, + "end": 9435.94, + "probability": 0.8574 + }, + { + "start": 9436.32, + "end": 9437.7, + "probability": 0.9157 + }, + { + "start": 9439.14, + "end": 9442.58, + "probability": 0.9312 + }, + { + "start": 9443.0, + "end": 9444.46, + "probability": 0.9872 + }, + { + "start": 9444.56, + "end": 9445.08, + "probability": 0.7643 + }, + { + "start": 9445.36, + "end": 9447.8, + "probability": 0.7502 + }, + { + "start": 9448.92, + "end": 9450.3, + "probability": 0.742 + }, + { + "start": 9450.84, + "end": 9453.72, + "probability": 0.7534 + }, + { + "start": 9454.46, + "end": 9456.64, + "probability": 0.8571 + }, + { + "start": 9456.66, + "end": 9457.28, + "probability": 0.2847 + }, + { + "start": 9457.36, + "end": 9458.72, + "probability": 0.4518 + }, + { + "start": 9458.78, + "end": 9459.36, + "probability": 0.7348 + }, + { + "start": 9460.04, + "end": 9461.52, + "probability": 0.8094 + }, + { + "start": 9461.74, + "end": 9462.3, + "probability": 0.8621 + }, + { + "start": 9462.9, + "end": 9463.48, + "probability": 0.6926 + }, + { + "start": 9464.94, + "end": 9467.36, + "probability": 0.2785 + }, + { + "start": 9467.36, + "end": 9467.9, + "probability": 0.0249 + }, + { + "start": 9468.02, + "end": 9469.56, + "probability": 0.0899 + }, + { + "start": 9479.62, + "end": 9480.32, + "probability": 0.3904 + }, + { + "start": 9480.32, + "end": 9481.38, + "probability": 0.2699 + }, + { + "start": 9481.92, + "end": 9483.62, + "probability": 0.3716 + }, + { + "start": 9483.8, + "end": 9485.35, + "probability": 0.8196 + }, + { + "start": 9485.92, + "end": 9487.54, + "probability": 0.7148 + }, + { + "start": 9487.64, + "end": 9489.66, + "probability": 0.9764 + }, + { + "start": 9490.78, + "end": 9493.38, + "probability": 0.7456 + }, + { + "start": 9494.62, + "end": 9495.98, + "probability": 0.2028 + }, + { + "start": 9497.8, + "end": 9498.34, + "probability": 0.827 + }, + { + "start": 9498.98, + "end": 9499.78, + "probability": 0.8629 + }, + { + "start": 9500.1, + "end": 9501.58, + "probability": 0.7595 + }, + { + "start": 9507.02, + "end": 9513.98, + "probability": 0.8338 + }, + { + "start": 9514.52, + "end": 9516.28, + "probability": 0.4691 + }, + { + "start": 9516.34, + "end": 9517.0, + "probability": 0.8364 + }, + { + "start": 9520.07, + "end": 9523.25, + "probability": 0.0253 + }, + { + "start": 9523.34, + "end": 9523.44, + "probability": 0.0219 + }, + { + "start": 9523.44, + "end": 9523.92, + "probability": 0.0945 + }, + { + "start": 9524.72, + "end": 9524.72, + "probability": 0.0966 + }, + { + "start": 9524.72, + "end": 9524.72, + "probability": 0.3706 + }, + { + "start": 9524.72, + "end": 9524.72, + "probability": 0.2844 + }, + { + "start": 9524.72, + "end": 9524.72, + "probability": 0.0175 + }, + { + "start": 9524.72, + "end": 9526.12, + "probability": 0.8213 + }, + { + "start": 9526.2, + "end": 9527.71, + "probability": 0.9603 + }, + { + "start": 9528.56, + "end": 9530.48, + "probability": 0.399 + }, + { + "start": 9531.24, + "end": 9533.42, + "probability": 0.6778 + }, + { + "start": 9534.16, + "end": 9538.18, + "probability": 0.593 + }, + { + "start": 9538.7, + "end": 9539.3, + "probability": 0.4903 + }, + { + "start": 9540.5, + "end": 9541.6, + "probability": 0.805 + }, + { + "start": 9541.76, + "end": 9542.9, + "probability": 0.6816 + }, + { + "start": 9543.38, + "end": 9545.08, + "probability": 0.7578 + }, + { + "start": 9545.46, + "end": 9546.84, + "probability": 0.9509 + }, + { + "start": 9547.46, + "end": 9550.5, + "probability": 0.6836 + }, + { + "start": 9551.46, + "end": 9553.74, + "probability": 0.7917 + }, + { + "start": 9554.36, + "end": 9558.3, + "probability": 0.9233 + }, + { + "start": 9558.56, + "end": 9560.7, + "probability": 0.5717 + }, + { + "start": 9561.02, + "end": 9562.08, + "probability": 0.9967 + }, + { + "start": 9562.16, + "end": 9562.92, + "probability": 0.8159 + }, + { + "start": 9566.9, + "end": 9567.54, + "probability": 0.719 + }, + { + "start": 9567.9, + "end": 9572.08, + "probability": 0.5618 + }, + { + "start": 9572.08, + "end": 9576.2, + "probability": 0.9359 + }, + { + "start": 9576.66, + "end": 9581.52, + "probability": 0.82 + }, + { + "start": 9581.84, + "end": 9587.31, + "probability": 0.5549 + }, + { + "start": 9588.0, + "end": 9589.42, + "probability": 0.2175 + }, + { + "start": 9589.46, + "end": 9592.22, + "probability": 0.9878 + }, + { + "start": 9592.22, + "end": 9597.2, + "probability": 0.7765 + }, + { + "start": 9598.11, + "end": 9601.96, + "probability": 0.9923 + }, + { + "start": 9602.5, + "end": 9603.8, + "probability": 0.65 + }, + { + "start": 9604.46, + "end": 9606.24, + "probability": 0.9935 + }, + { + "start": 9606.64, + "end": 9606.78, + "probability": 0.6829 + }, + { + "start": 9607.76, + "end": 9610.12, + "probability": 0.8424 + }, + { + "start": 9610.3, + "end": 9610.5, + "probability": 0.227 + }, + { + "start": 9610.56, + "end": 9611.14, + "probability": 0.7334 + }, + { + "start": 9611.46, + "end": 9615.88, + "probability": 0.7281 + }, + { + "start": 9615.88, + "end": 9617.52, + "probability": 0.8616 + }, + { + "start": 9619.22, + "end": 9623.3, + "probability": 0.6386 + }, + { + "start": 9624.7, + "end": 9625.32, + "probability": 0.9424 + }, + { + "start": 9626.46, + "end": 9629.02, + "probability": 0.7906 + }, + { + "start": 9634.3, + "end": 9635.18, + "probability": 0.6817 + }, + { + "start": 9637.22, + "end": 9638.88, + "probability": 0.8381 + }, + { + "start": 9642.66, + "end": 9643.38, + "probability": 0.5765 + }, + { + "start": 9643.7, + "end": 9645.58, + "probability": 0.7154 + }, + { + "start": 9645.58, + "end": 9645.65, + "probability": 0.3543 + }, + { + "start": 9648.0, + "end": 9650.66, + "probability": 0.9985 + }, + { + "start": 9652.74, + "end": 9656.0, + "probability": 0.9973 + }, + { + "start": 9658.14, + "end": 9659.98, + "probability": 0.9955 + }, + { + "start": 9660.78, + "end": 9664.18, + "probability": 0.9906 + }, + { + "start": 9665.26, + "end": 9667.22, + "probability": 0.6545 + }, + { + "start": 9668.14, + "end": 9669.5, + "probability": 0.8614 + }, + { + "start": 9670.1, + "end": 9675.0, + "probability": 0.9868 + }, + { + "start": 9675.9, + "end": 9676.6, + "probability": 0.7946 + }, + { + "start": 9676.76, + "end": 9678.58, + "probability": 0.8155 + }, + { + "start": 9678.68, + "end": 9682.06, + "probability": 0.9108 + }, + { + "start": 9683.24, + "end": 9685.4, + "probability": 0.8044 + }, + { + "start": 9686.26, + "end": 9686.76, + "probability": 0.9359 + }, + { + "start": 9686.86, + "end": 9688.17, + "probability": 0.9865 + }, + { + "start": 9689.44, + "end": 9689.82, + "probability": 0.9305 + }, + { + "start": 9690.26, + "end": 9693.02, + "probability": 0.9561 + }, + { + "start": 9694.62, + "end": 9697.12, + "probability": 0.7591 + }, + { + "start": 9697.16, + "end": 9697.34, + "probability": 0.6428 + }, + { + "start": 9697.38, + "end": 9699.24, + "probability": 0.9925 + }, + { + "start": 9700.12, + "end": 9702.8, + "probability": 0.9427 + }, + { + "start": 9703.78, + "end": 9706.36, + "probability": 0.9662 + }, + { + "start": 9709.88, + "end": 9711.14, + "probability": 0.2217 + }, + { + "start": 9712.06, + "end": 9713.16, + "probability": 0.0913 + }, + { + "start": 9713.4, + "end": 9716.38, + "probability": 0.805 + }, + { + "start": 9716.72, + "end": 9720.32, + "probability": 0.6583 + }, + { + "start": 9720.42, + "end": 9722.64, + "probability": 0.9951 + }, + { + "start": 9722.82, + "end": 9723.16, + "probability": 0.3731 + }, + { + "start": 9723.84, + "end": 9724.08, + "probability": 0.193 + }, + { + "start": 9724.16, + "end": 9727.86, + "probability": 0.9884 + }, + { + "start": 9729.06, + "end": 9729.88, + "probability": 0.6609 + }, + { + "start": 9729.98, + "end": 9730.96, + "probability": 0.2744 + }, + { + "start": 9731.08, + "end": 9731.64, + "probability": 0.8313 + }, + { + "start": 9733.84, + "end": 9735.38, + "probability": 0.06 + }, + { + "start": 9735.38, + "end": 9735.8, + "probability": 0.1744 + }, + { + "start": 9736.0, + "end": 9737.2, + "probability": 0.7376 + }, + { + "start": 9737.48, + "end": 9738.56, + "probability": 0.5411 + }, + { + "start": 9738.66, + "end": 9739.5, + "probability": 0.6421 + }, + { + "start": 9739.68, + "end": 9741.04, + "probability": 0.7631 + }, + { + "start": 9741.14, + "end": 9746.24, + "probability": 0.9408 + }, + { + "start": 9747.14, + "end": 9749.78, + "probability": 0.6084 + }, + { + "start": 9749.84, + "end": 9752.82, + "probability": 0.212 + }, + { + "start": 9752.88, + "end": 9752.92, + "probability": 0.882 + }, + { + "start": 9752.92, + "end": 9754.12, + "probability": 0.9045 + }, + { + "start": 9754.26, + "end": 9754.52, + "probability": 0.9517 + }, + { + "start": 9755.18, + "end": 9756.26, + "probability": 0.761 + }, + { + "start": 9757.82, + "end": 9761.26, + "probability": 0.8461 + }, + { + "start": 9761.94, + "end": 9765.88, + "probability": 0.905 + }, + { + "start": 9766.26, + "end": 9768.76, + "probability": 0.9128 + }, + { + "start": 9770.48, + "end": 9770.82, + "probability": 0.5224 + }, + { + "start": 9771.18, + "end": 9773.0, + "probability": 0.9668 + }, + { + "start": 9773.28, + "end": 9775.38, + "probability": 0.864 + }, + { + "start": 9776.16, + "end": 9778.14, + "probability": 0.7293 + }, + { + "start": 9779.02, + "end": 9779.64, + "probability": 0.7855 + }, + { + "start": 9779.76, + "end": 9785.44, + "probability": 0.9837 + }, + { + "start": 9786.36, + "end": 9787.3, + "probability": 0.7927 + }, + { + "start": 9787.42, + "end": 9791.52, + "probability": 0.9959 + }, + { + "start": 9793.02, + "end": 9796.42, + "probability": 0.976 + }, + { + "start": 9797.72, + "end": 9803.54, + "probability": 0.9975 + }, + { + "start": 9804.12, + "end": 9805.76, + "probability": 0.986 + }, + { + "start": 9806.32, + "end": 9809.9, + "probability": 0.9856 + }, + { + "start": 9811.26, + "end": 9813.46, + "probability": 0.9951 + }, + { + "start": 9813.88, + "end": 9816.74, + "probability": 0.9585 + }, + { + "start": 9817.76, + "end": 9820.36, + "probability": 0.4886 + }, + { + "start": 9822.36, + "end": 9823.22, + "probability": 0.7249 + }, + { + "start": 9823.76, + "end": 9824.08, + "probability": 0.4234 + }, + { + "start": 9824.49, + "end": 9826.02, + "probability": 0.7067 + }, + { + "start": 9827.66, + "end": 9828.68, + "probability": 0.6553 + }, + { + "start": 9829.48, + "end": 9833.06, + "probability": 0.9508 + }, + { + "start": 9833.82, + "end": 9834.84, + "probability": 0.3095 + }, + { + "start": 9835.84, + "end": 9837.12, + "probability": 0.6765 + }, + { + "start": 9837.12, + "end": 9840.12, + "probability": 0.7273 + }, + { + "start": 9840.6, + "end": 9841.93, + "probability": 0.9844 + }, + { + "start": 9842.34, + "end": 9843.7, + "probability": 0.9646 + }, + { + "start": 9843.74, + "end": 9844.16, + "probability": 0.9484 + }, + { + "start": 9844.64, + "end": 9848.06, + "probability": 0.9951 + }, + { + "start": 9848.06, + "end": 9851.34, + "probability": 0.9595 + }, + { + "start": 9851.68, + "end": 9852.5, + "probability": 0.7539 + }, + { + "start": 9853.76, + "end": 9857.1, + "probability": 0.9616 + }, + { + "start": 9857.68, + "end": 9862.0, + "probability": 0.6648 + }, + { + "start": 9862.78, + "end": 9865.26, + "probability": 0.916 + }, + { + "start": 9866.44, + "end": 9867.6, + "probability": 0.9174 + }, + { + "start": 9868.18, + "end": 9872.54, + "probability": 0.9862 + }, + { + "start": 9872.62, + "end": 9876.0, + "probability": 0.9588 + }, + { + "start": 9876.24, + "end": 9876.78, + "probability": 0.7377 + }, + { + "start": 9877.28, + "end": 9882.46, + "probability": 0.9884 + }, + { + "start": 9883.22, + "end": 9886.1, + "probability": 0.9843 + }, + { + "start": 9886.4, + "end": 9888.0, + "probability": 0.8835 + }, + { + "start": 9888.76, + "end": 9889.46, + "probability": 0.4242 + }, + { + "start": 9889.46, + "end": 9889.86, + "probability": 0.7796 + }, + { + "start": 9889.98, + "end": 9892.04, + "probability": 0.9843 + }, + { + "start": 9892.12, + "end": 9892.7, + "probability": 0.5886 + }, + { + "start": 9893.08, + "end": 9897.44, + "probability": 0.9966 + }, + { + "start": 9897.96, + "end": 9900.04, + "probability": 0.9705 + }, + { + "start": 9901.0, + "end": 9904.7, + "probability": 0.9968 + }, + { + "start": 9906.16, + "end": 9908.4, + "probability": 0.929 + }, + { + "start": 9908.4, + "end": 9910.36, + "probability": 0.9961 + }, + { + "start": 9910.86, + "end": 9913.32, + "probability": 0.8146 + }, + { + "start": 9914.1, + "end": 9915.44, + "probability": 0.9041 + }, + { + "start": 9915.96, + "end": 9918.28, + "probability": 0.967 + }, + { + "start": 9918.4, + "end": 9919.74, + "probability": 0.9054 + }, + { + "start": 9919.86, + "end": 9920.24, + "probability": 0.2947 + }, + { + "start": 9921.04, + "end": 9923.32, + "probability": 0.9902 + }, + { + "start": 9923.32, + "end": 9926.28, + "probability": 0.9937 + }, + { + "start": 9927.18, + "end": 9927.44, + "probability": 0.3548 + }, + { + "start": 9928.2, + "end": 9929.98, + "probability": 0.0765 + }, + { + "start": 9929.98, + "end": 9930.72, + "probability": 0.215 + }, + { + "start": 9931.06, + "end": 9931.72, + "probability": 0.6234 + }, + { + "start": 9931.84, + "end": 9932.7, + "probability": 0.7528 + }, + { + "start": 9933.14, + "end": 9934.36, + "probability": 0.1858 + }, + { + "start": 9934.66, + "end": 9936.16, + "probability": 0.1619 + }, + { + "start": 9936.68, + "end": 9940.12, + "probability": 0.9092 + }, + { + "start": 9940.28, + "end": 9941.36, + "probability": 0.9443 + }, + { + "start": 9941.46, + "end": 9941.86, + "probability": 0.984 + }, + { + "start": 9941.92, + "end": 9943.04, + "probability": 0.9878 + }, + { + "start": 9943.46, + "end": 9948.0, + "probability": 0.9281 + }, + { + "start": 9948.42, + "end": 9949.68, + "probability": 0.9336 + }, + { + "start": 9950.42, + "end": 9952.35, + "probability": 0.7919 + }, + { + "start": 9953.06, + "end": 9954.54, + "probability": 0.9738 + }, + { + "start": 9955.2, + "end": 9962.4, + "probability": 0.9902 + }, + { + "start": 9962.8, + "end": 9963.78, + "probability": 0.7296 + }, + { + "start": 9964.44, + "end": 9968.96, + "probability": 0.8665 + }, + { + "start": 9970.54, + "end": 9973.68, + "probability": 0.9964 + }, + { + "start": 9973.9, + "end": 9975.14, + "probability": 0.9677 + }, + { + "start": 9975.74, + "end": 9976.22, + "probability": 0.9368 + }, + { + "start": 9976.44, + "end": 9979.3, + "probability": 0.9649 + }, + { + "start": 9979.5, + "end": 9980.58, + "probability": 0.8799 + }, + { + "start": 9981.32, + "end": 9982.54, + "probability": 0.9873 + }, + { + "start": 9983.12, + "end": 9986.2, + "probability": 0.7301 + }, + { + "start": 9987.2, + "end": 9990.44, + "probability": 0.9572 + }, + { + "start": 9991.34, + "end": 9994.2, + "probability": 0.9512 + }, + { + "start": 9994.76, + "end": 9997.34, + "probability": 0.9551 + }, + { + "start": 9998.06, + "end": 9999.34, + "probability": 0.9382 + }, + { + "start": 9999.88, + "end": 10001.42, + "probability": 0.7946 + }, + { + "start": 10001.92, + "end": 10002.36, + "probability": 0.5892 + }, + { + "start": 10002.66, + "end": 10005.14, + "probability": 0.8135 + }, + { + "start": 10005.34, + "end": 10005.96, + "probability": 0.7005 + }, + { + "start": 10006.68, + "end": 10007.96, + "probability": 0.7501 + }, + { + "start": 10008.0, + "end": 10011.02, + "probability": 0.9839 + }, + { + "start": 10012.88, + "end": 10016.04, + "probability": 0.9475 + }, + { + "start": 10016.46, + "end": 10017.58, + "probability": 0.9949 + }, + { + "start": 10018.1, + "end": 10019.38, + "probability": 0.9346 + }, + { + "start": 10020.84, + "end": 10023.98, + "probability": 0.9169 + }, + { + "start": 10024.06, + "end": 10024.78, + "probability": 0.7617 + }, + { + "start": 10025.36, + "end": 10027.32, + "probability": 0.7733 + }, + { + "start": 10028.1, + "end": 10031.58, + "probability": 0.8552 + }, + { + "start": 10031.8, + "end": 10032.8, + "probability": 0.7712 + }, + { + "start": 10032.96, + "end": 10033.5, + "probability": 0.8748 + }, + { + "start": 10034.2, + "end": 10037.16, + "probability": 0.8642 + }, + { + "start": 10037.5, + "end": 10041.48, + "probability": 0.9858 + }, + { + "start": 10042.16, + "end": 10045.2, + "probability": 0.992 + }, + { + "start": 10045.8, + "end": 10048.68, + "probability": 0.8983 + }, + { + "start": 10048.88, + "end": 10053.58, + "probability": 0.9975 + }, + { + "start": 10053.58, + "end": 10058.04, + "probability": 0.9961 + }, + { + "start": 10058.98, + "end": 10059.52, + "probability": 0.2597 + }, + { + "start": 10060.1, + "end": 10060.38, + "probability": 0.6608 + }, + { + "start": 10060.84, + "end": 10061.04, + "probability": 0.7685 + }, + { + "start": 10061.4, + "end": 10062.16, + "probability": 0.8326 + }, + { + "start": 10062.28, + "end": 10063.79, + "probability": 0.9128 + }, + { + "start": 10064.46, + "end": 10066.54, + "probability": 0.6932 + }, + { + "start": 10067.44, + "end": 10070.02, + "probability": 0.8707 + }, + { + "start": 10070.68, + "end": 10072.38, + "probability": 0.9937 + }, + { + "start": 10072.96, + "end": 10073.68, + "probability": 0.9409 + }, + { + "start": 10074.68, + "end": 10074.68, + "probability": 0.0264 + }, + { + "start": 10074.74, + "end": 10076.0, + "probability": 0.8486 + }, + { + "start": 10076.08, + "end": 10076.32, + "probability": 0.7549 + }, + { + "start": 10076.38, + "end": 10078.74, + "probability": 0.9498 + }, + { + "start": 10079.06, + "end": 10082.52, + "probability": 0.8194 + }, + { + "start": 10082.54, + "end": 10085.36, + "probability": 0.9106 + }, + { + "start": 10086.52, + "end": 10088.36, + "probability": 0.99 + }, + { + "start": 10089.04, + "end": 10093.68, + "probability": 0.834 + }, + { + "start": 10094.36, + "end": 10095.81, + "probability": 0.8622 + }, + { + "start": 10096.1, + "end": 10097.5, + "probability": 0.8282 + }, + { + "start": 10097.66, + "end": 10098.44, + "probability": 0.7996 + }, + { + "start": 10098.56, + "end": 10101.46, + "probability": 0.7372 + }, + { + "start": 10101.64, + "end": 10102.84, + "probability": 0.9229 + }, + { + "start": 10103.34, + "end": 10104.68, + "probability": 0.8671 + }, + { + "start": 10105.7, + "end": 10106.74, + "probability": 0.7583 + }, + { + "start": 10107.26, + "end": 10110.28, + "probability": 0.9501 + }, + { + "start": 10110.74, + "end": 10113.72, + "probability": 0.9714 + }, + { + "start": 10114.56, + "end": 10116.58, + "probability": 0.844 + }, + { + "start": 10117.3, + "end": 10118.86, + "probability": 0.969 + }, + { + "start": 10120.36, + "end": 10122.76, + "probability": 0.9848 + }, + { + "start": 10122.76, + "end": 10127.28, + "probability": 0.8355 + }, + { + "start": 10128.12, + "end": 10131.63, + "probability": 0.9976 + }, + { + "start": 10132.16, + "end": 10137.02, + "probability": 0.9924 + }, + { + "start": 10137.1, + "end": 10137.92, + "probability": 0.8609 + }, + { + "start": 10138.88, + "end": 10143.5, + "probability": 0.9733 + }, + { + "start": 10143.5, + "end": 10144.42, + "probability": 0.6748 + }, + { + "start": 10144.98, + "end": 10146.84, + "probability": 0.9752 + }, + { + "start": 10147.0, + "end": 10148.82, + "probability": 0.881 + }, + { + "start": 10149.5, + "end": 10150.84, + "probability": 0.9101 + }, + { + "start": 10151.22, + "end": 10153.4, + "probability": 0.9933 + }, + { + "start": 10154.68, + "end": 10154.92, + "probability": 0.9332 + }, + { + "start": 10155.48, + "end": 10159.74, + "probability": 0.9844 + }, + { + "start": 10160.0, + "end": 10162.24, + "probability": 0.9748 + }, + { + "start": 10164.02, + "end": 10168.7, + "probability": 0.9875 + }, + { + "start": 10169.54, + "end": 10170.12, + "probability": 0.9611 + }, + { + "start": 10170.6, + "end": 10172.52, + "probability": 0.6844 + }, + { + "start": 10172.76, + "end": 10173.04, + "probability": 0.6025 + }, + { + "start": 10174.08, + "end": 10175.82, + "probability": 0.9044 + }, + { + "start": 10192.26, + "end": 10192.98, + "probability": 0.5609 + }, + { + "start": 10193.02, + "end": 10193.64, + "probability": 0.7622 + }, + { + "start": 10193.86, + "end": 10195.66, + "probability": 0.7128 + }, + { + "start": 10196.0, + "end": 10197.42, + "probability": 0.9725 + }, + { + "start": 10198.96, + "end": 10201.76, + "probability": 0.9865 + }, + { + "start": 10203.54, + "end": 10206.2, + "probability": 0.945 + }, + { + "start": 10208.22, + "end": 10212.06, + "probability": 0.98 + }, + { + "start": 10213.5, + "end": 10218.36, + "probability": 0.9504 + }, + { + "start": 10219.44, + "end": 10221.89, + "probability": 0.9475 + }, + { + "start": 10222.14, + "end": 10223.8, + "probability": 0.9734 + }, + { + "start": 10224.94, + "end": 10227.26, + "probability": 0.9639 + }, + { + "start": 10227.26, + "end": 10230.18, + "probability": 0.9951 + }, + { + "start": 10231.12, + "end": 10232.5, + "probability": 0.9736 + }, + { + "start": 10232.96, + "end": 10235.04, + "probability": 0.742 + }, + { + "start": 10236.34, + "end": 10236.74, + "probability": 0.7666 + }, + { + "start": 10237.3, + "end": 10240.18, + "probability": 0.9327 + }, + { + "start": 10241.68, + "end": 10242.48, + "probability": 0.487 + }, + { + "start": 10243.38, + "end": 10246.66, + "probability": 0.9742 + }, + { + "start": 10246.66, + "end": 10249.08, + "probability": 0.932 + }, + { + "start": 10250.18, + "end": 10254.0, + "probability": 0.9908 + }, + { + "start": 10255.22, + "end": 10255.5, + "probability": 0.7336 + }, + { + "start": 10255.82, + "end": 10259.2, + "probability": 0.8979 + }, + { + "start": 10259.58, + "end": 10260.52, + "probability": 0.2947 + }, + { + "start": 10260.62, + "end": 10261.0, + "probability": 0.8919 + }, + { + "start": 10261.02, + "end": 10263.34, + "probability": 0.9937 + }, + { + "start": 10263.34, + "end": 10266.76, + "probability": 0.9383 + }, + { + "start": 10268.4, + "end": 10268.98, + "probability": 0.9529 + }, + { + "start": 10269.56, + "end": 10272.54, + "probability": 0.9886 + }, + { + "start": 10272.84, + "end": 10275.14, + "probability": 0.9992 + }, + { + "start": 10275.84, + "end": 10278.76, + "probability": 0.8478 + }, + { + "start": 10280.16, + "end": 10280.36, + "probability": 0.5283 + }, + { + "start": 10280.44, + "end": 10282.02, + "probability": 0.7882 + }, + { + "start": 10282.38, + "end": 10286.4, + "probability": 0.9702 + }, + { + "start": 10287.32, + "end": 10289.74, + "probability": 0.8018 + }, + { + "start": 10290.02, + "end": 10293.0, + "probability": 0.8652 + }, + { + "start": 10293.8, + "end": 10294.18, + "probability": 0.7811 + }, + { + "start": 10294.8, + "end": 10295.12, + "probability": 0.7035 + }, + { + "start": 10295.98, + "end": 10299.21, + "probability": 0.6226 + }, + { + "start": 10299.88, + "end": 10301.94, + "probability": 0.5769 + }, + { + "start": 10303.18, + "end": 10307.9, + "probability": 0.911 + }, + { + "start": 10310.22, + "end": 10311.1, + "probability": 0.8328 + }, + { + "start": 10312.02, + "end": 10313.88, + "probability": 0.5661 + }, + { + "start": 10314.0, + "end": 10317.22, + "probability": 0.9663 + }, + { + "start": 10317.96, + "end": 10319.96, + "probability": 0.9602 + }, + { + "start": 10321.3, + "end": 10323.82, + "probability": 0.9422 + }, + { + "start": 10324.3, + "end": 10324.76, + "probability": 0.7582 + }, + { + "start": 10324.96, + "end": 10326.32, + "probability": 0.8585 + }, + { + "start": 10326.98, + "end": 10332.08, + "probability": 0.9948 + }, + { + "start": 10332.58, + "end": 10337.62, + "probability": 0.9807 + }, + { + "start": 10337.9, + "end": 10339.01, + "probability": 0.9971 + }, + { + "start": 10339.64, + "end": 10341.26, + "probability": 0.6248 + }, + { + "start": 10341.82, + "end": 10343.78, + "probability": 0.9138 + }, + { + "start": 10345.14, + "end": 10345.88, + "probability": 0.7908 + }, + { + "start": 10345.92, + "end": 10347.24, + "probability": 0.8577 + }, + { + "start": 10347.32, + "end": 10349.08, + "probability": 0.9253 + }, + { + "start": 10349.44, + "end": 10349.76, + "probability": 0.4911 + }, + { + "start": 10349.94, + "end": 10351.46, + "probability": 0.9804 + }, + { + "start": 10351.54, + "end": 10352.53, + "probability": 0.5894 + }, + { + "start": 10353.08, + "end": 10353.66, + "probability": 0.7928 + }, + { + "start": 10353.74, + "end": 10355.74, + "probability": 0.9593 + }, + { + "start": 10356.62, + "end": 10358.76, + "probability": 0.698 + }, + { + "start": 10359.24, + "end": 10360.86, + "probability": 0.9849 + }, + { + "start": 10361.48, + "end": 10364.7, + "probability": 0.8453 + }, + { + "start": 10364.84, + "end": 10369.46, + "probability": 0.9181 + }, + { + "start": 10369.92, + "end": 10371.94, + "probability": 0.9578 + }, + { + "start": 10372.46, + "end": 10374.92, + "probability": 0.9868 + }, + { + "start": 10375.74, + "end": 10378.86, + "probability": 0.7218 + }, + { + "start": 10379.74, + "end": 10384.0, + "probability": 0.9526 + }, + { + "start": 10384.14, + "end": 10385.62, + "probability": 0.8145 + }, + { + "start": 10385.94, + "end": 10389.04, + "probability": 0.8854 + }, + { + "start": 10389.38, + "end": 10390.1, + "probability": 0.8669 + }, + { + "start": 10391.26, + "end": 10396.48, + "probability": 0.9446 + }, + { + "start": 10396.94, + "end": 10399.36, + "probability": 0.9868 + }, + { + "start": 10399.46, + "end": 10399.74, + "probability": 0.7127 + }, + { + "start": 10400.18, + "end": 10403.64, + "probability": 0.9973 + }, + { + "start": 10404.22, + "end": 10405.84, + "probability": 0.8062 + }, + { + "start": 10406.0, + "end": 10406.6, + "probability": 0.4396 + }, + { + "start": 10407.02, + "end": 10408.61, + "probability": 0.7544 + }, + { + "start": 10408.98, + "end": 10410.24, + "probability": 0.9806 + }, + { + "start": 10410.54, + "end": 10412.92, + "probability": 0.8574 + }, + { + "start": 10413.44, + "end": 10416.64, + "probability": 0.9937 + }, + { + "start": 10417.06, + "end": 10420.3, + "probability": 0.9738 + }, + { + "start": 10420.74, + "end": 10421.28, + "probability": 0.9681 + }, + { + "start": 10421.58, + "end": 10423.66, + "probability": 0.8799 + }, + { + "start": 10424.14, + "end": 10425.58, + "probability": 0.8245 + }, + { + "start": 10426.18, + "end": 10427.28, + "probability": 0.8525 + }, + { + "start": 10427.48, + "end": 10431.86, + "probability": 0.8887 + }, + { + "start": 10432.04, + "end": 10432.6, + "probability": 0.8328 + }, + { + "start": 10432.96, + "end": 10435.52, + "probability": 0.9556 + }, + { + "start": 10435.6, + "end": 10436.24, + "probability": 0.79 + }, + { + "start": 10436.32, + "end": 10437.48, + "probability": 0.7675 + }, + { + "start": 10438.02, + "end": 10438.92, + "probability": 0.3773 + }, + { + "start": 10439.14, + "end": 10439.32, + "probability": 0.884 + }, + { + "start": 10439.68, + "end": 10440.72, + "probability": 0.6393 + }, + { + "start": 10441.22, + "end": 10442.48, + "probability": 0.902 + }, + { + "start": 10442.54, + "end": 10444.7, + "probability": 0.9623 + }, + { + "start": 10445.16, + "end": 10445.76, + "probability": 0.9076 + }, + { + "start": 10446.28, + "end": 10449.1, + "probability": 0.9344 + }, + { + "start": 10450.02, + "end": 10453.96, + "probability": 0.9943 + }, + { + "start": 10454.74, + "end": 10455.08, + "probability": 0.8896 + }, + { + "start": 10455.56, + "end": 10456.02, + "probability": 0.917 + }, + { + "start": 10456.1, + "end": 10456.6, + "probability": 0.8884 + }, + { + "start": 10457.04, + "end": 10458.08, + "probability": 0.9206 + }, + { + "start": 10458.28, + "end": 10461.16, + "probability": 0.9476 + }, + { + "start": 10461.78, + "end": 10466.72, + "probability": 0.9829 + }, + { + "start": 10466.82, + "end": 10469.28, + "probability": 0.9778 + }, + { + "start": 10469.74, + "end": 10471.69, + "probability": 0.9307 + }, + { + "start": 10472.82, + "end": 10475.06, + "probability": 0.9612 + }, + { + "start": 10475.7, + "end": 10477.42, + "probability": 0.7725 + }, + { + "start": 10477.78, + "end": 10480.02, + "probability": 0.8901 + }, + { + "start": 10480.56, + "end": 10481.84, + "probability": 0.9805 + }, + { + "start": 10482.56, + "end": 10483.7, + "probability": 0.983 + }, + { + "start": 10484.38, + "end": 10487.3, + "probability": 0.9604 + }, + { + "start": 10487.7, + "end": 10488.14, + "probability": 0.5456 + }, + { + "start": 10488.22, + "end": 10490.58, + "probability": 0.6512 + }, + { + "start": 10490.7, + "end": 10491.16, + "probability": 0.8302 + }, + { + "start": 10491.32, + "end": 10492.5, + "probability": 0.8931 + }, + { + "start": 10492.9, + "end": 10494.96, + "probability": 0.8129 + }, + { + "start": 10496.04, + "end": 10498.3, + "probability": 0.8471 + }, + { + "start": 10498.44, + "end": 10499.96, + "probability": 0.541 + }, + { + "start": 10500.46, + "end": 10500.84, + "probability": 0.5764 + }, + { + "start": 10501.26, + "end": 10502.98, + "probability": 0.6694 + }, + { + "start": 10503.04, + "end": 10504.12, + "probability": 0.7554 + }, + { + "start": 10504.82, + "end": 10505.46, + "probability": 0.7029 + }, + { + "start": 10506.56, + "end": 10511.0, + "probability": 0.0227 + }, + { + "start": 10518.1, + "end": 10521.62, + "probability": 0.0221 + }, + { + "start": 10522.82, + "end": 10522.82, + "probability": 0.0353 + }, + { + "start": 10523.16, + "end": 10524.58, + "probability": 0.0716 + }, + { + "start": 10524.58, + "end": 10524.58, + "probability": 0.4031 + }, + { + "start": 10524.58, + "end": 10528.96, + "probability": 0.4053 + }, + { + "start": 10529.14, + "end": 10530.18, + "probability": 0.8492 + }, + { + "start": 10530.78, + "end": 10535.84, + "probability": 0.5618 + }, + { + "start": 10537.2, + "end": 10538.0, + "probability": 0.608 + }, + { + "start": 10538.1, + "end": 10540.02, + "probability": 0.884 + }, + { + "start": 10540.26, + "end": 10540.7, + "probability": 0.5899 + }, + { + "start": 10541.98, + "end": 10543.89, + "probability": 0.9126 + }, + { + "start": 10544.0, + "end": 10545.8, + "probability": 0.5912 + }, + { + "start": 10547.1, + "end": 10548.52, + "probability": 0.4985 + }, + { + "start": 10549.3, + "end": 10549.4, + "probability": 0.7012 + }, + { + "start": 10550.18, + "end": 10551.64, + "probability": 0.0049 + }, + { + "start": 10551.66, + "end": 10553.84, + "probability": 0.6376 + }, + { + "start": 10555.34, + "end": 10556.52, + "probability": 0.7805 + }, + { + "start": 10556.62, + "end": 10558.1, + "probability": 0.9394 + }, + { + "start": 10558.84, + "end": 10560.84, + "probability": 0.9234 + }, + { + "start": 10566.94, + "end": 10569.64, + "probability": 0.7476 + }, + { + "start": 10570.02, + "end": 10571.5, + "probability": 0.854 + }, + { + "start": 10571.56, + "end": 10575.79, + "probability": 0.9885 + }, + { + "start": 10578.64, + "end": 10580.7, + "probability": 0.8708 + }, + { + "start": 10582.18, + "end": 10584.08, + "probability": 0.9738 + }, + { + "start": 10585.04, + "end": 10590.36, + "probability": 0.7681 + }, + { + "start": 10590.64, + "end": 10591.62, + "probability": 0.562 + }, + { + "start": 10592.56, + "end": 10595.54, + "probability": 0.9658 + }, + { + "start": 10596.38, + "end": 10600.86, + "probability": 0.8183 + }, + { + "start": 10601.3, + "end": 10606.3, + "probability": 0.8984 + }, + { + "start": 10618.38, + "end": 10621.0, + "probability": 0.7191 + }, + { + "start": 10621.86, + "end": 10624.66, + "probability": 0.9556 + }, + { + "start": 10625.6, + "end": 10627.84, + "probability": 0.9602 + }, + { + "start": 10628.8, + "end": 10629.74, + "probability": 0.9744 + }, + { + "start": 10630.52, + "end": 10631.9, + "probability": 0.8736 + }, + { + "start": 10632.86, + "end": 10638.0, + "probability": 0.9024 + }, + { + "start": 10638.12, + "end": 10642.9, + "probability": 0.6919 + }, + { + "start": 10643.42, + "end": 10644.5, + "probability": 0.9458 + }, + { + "start": 10644.9, + "end": 10645.76, + "probability": 0.8743 + }, + { + "start": 10645.9, + "end": 10646.6, + "probability": 0.6825 + }, + { + "start": 10647.02, + "end": 10648.26, + "probability": 0.9883 + }, + { + "start": 10648.32, + "end": 10650.31, + "probability": 0.556 + }, + { + "start": 10650.44, + "end": 10650.44, + "probability": 0.4911 + }, + { + "start": 10650.44, + "end": 10651.0, + "probability": 0.3841 + }, + { + "start": 10651.0, + "end": 10653.38, + "probability": 0.8775 + }, + { + "start": 10653.44, + "end": 10654.34, + "probability": 0.9087 + }, + { + "start": 10655.88, + "end": 10656.48, + "probability": 0.3006 + }, + { + "start": 10656.48, + "end": 10657.08, + "probability": 0.4715 + }, + { + "start": 10657.52, + "end": 10658.88, + "probability": 0.4857 + }, + { + "start": 10659.94, + "end": 10660.68, + "probability": 0.3254 + }, + { + "start": 10660.68, + "end": 10661.48, + "probability": 0.2353 + }, + { + "start": 10661.48, + "end": 10662.68, + "probability": 0.9197 + }, + { + "start": 10664.04, + "end": 10666.58, + "probability": 0.5796 + }, + { + "start": 10667.38, + "end": 10669.58, + "probability": 0.9143 + }, + { + "start": 10671.4, + "end": 10672.02, + "probability": 0.8222 + }, + { + "start": 10673.86, + "end": 10677.22, + "probability": 0.9668 + }, + { + "start": 10677.76, + "end": 10681.34, + "probability": 0.7799 + }, + { + "start": 10682.2, + "end": 10682.9, + "probability": 0.9833 + }, + { + "start": 10684.2, + "end": 10686.68, + "probability": 0.664 + }, + { + "start": 10687.32, + "end": 10689.18, + "probability": 0.9702 + }, + { + "start": 10689.32, + "end": 10690.46, + "probability": 0.7809 + }, + { + "start": 10690.56, + "end": 10691.92, + "probability": 0.9932 + }, + { + "start": 10692.1, + "end": 10695.22, + "probability": 0.9938 + }, + { + "start": 10695.92, + "end": 10697.62, + "probability": 0.9153 + }, + { + "start": 10698.2, + "end": 10701.04, + "probability": 0.9686 + }, + { + "start": 10701.56, + "end": 10706.16, + "probability": 0.8796 + }, + { + "start": 10706.64, + "end": 10707.38, + "probability": 0.7973 + }, + { + "start": 10707.42, + "end": 10709.42, + "probability": 0.9961 + }, + { + "start": 10710.32, + "end": 10712.84, + "probability": 0.9886 + }, + { + "start": 10713.86, + "end": 10716.22, + "probability": 0.8644 + }, + { + "start": 10716.66, + "end": 10718.06, + "probability": 0.644 + }, + { + "start": 10718.74, + "end": 10720.74, + "probability": 0.8657 + }, + { + "start": 10720.84, + "end": 10724.8, + "probability": 0.8954 + }, + { + "start": 10725.14, + "end": 10725.9, + "probability": 0.864 + }, + { + "start": 10725.98, + "end": 10727.52, + "probability": 0.9316 + }, + { + "start": 10727.56, + "end": 10728.32, + "probability": 0.9915 + }, + { + "start": 10728.46, + "end": 10728.98, + "probability": 0.9807 + }, + { + "start": 10729.22, + "end": 10730.06, + "probability": 0.9181 + }, + { + "start": 10730.64, + "end": 10731.7, + "probability": 0.6555 + }, + { + "start": 10731.8, + "end": 10735.38, + "probability": 0.9452 + }, + { + "start": 10735.62, + "end": 10737.02, + "probability": 0.9802 + }, + { + "start": 10737.76, + "end": 10739.9, + "probability": 0.8411 + }, + { + "start": 10740.46, + "end": 10740.94, + "probability": 0.9459 + }, + { + "start": 10741.06, + "end": 10741.72, + "probability": 0.952 + }, + { + "start": 10741.94, + "end": 10742.62, + "probability": 0.6929 + }, + { + "start": 10742.64, + "end": 10743.58, + "probability": 0.9413 + }, + { + "start": 10744.0, + "end": 10745.16, + "probability": 0.5253 + }, + { + "start": 10745.56, + "end": 10747.7, + "probability": 0.7979 + }, + { + "start": 10749.24, + "end": 10750.22, + "probability": 0.5617 + }, + { + "start": 10750.78, + "end": 10751.57, + "probability": 0.4981 + }, + { + "start": 10751.68, + "end": 10752.0, + "probability": 0.0091 + }, + { + "start": 10753.08, + "end": 10753.6, + "probability": 0.2296 + }, + { + "start": 10753.6, + "end": 10753.6, + "probability": 0.3295 + }, + { + "start": 10753.6, + "end": 10754.12, + "probability": 0.2094 + }, + { + "start": 10754.2, + "end": 10754.84, + "probability": 0.1685 + }, + { + "start": 10754.96, + "end": 10755.52, + "probability": 0.5468 + }, + { + "start": 10755.9, + "end": 10757.28, + "probability": 0.4914 + }, + { + "start": 10757.46, + "end": 10758.6, + "probability": 0.3796 + }, + { + "start": 10759.0, + "end": 10762.16, + "probability": 0.9961 + }, + { + "start": 10763.02, + "end": 10763.58, + "probability": 0.975 + }, + { + "start": 10764.68, + "end": 10766.32, + "probability": 0.6331 + }, + { + "start": 10767.34, + "end": 10768.78, + "probability": 0.632 + }, + { + "start": 10769.44, + "end": 10769.96, + "probability": 0.9062 + }, + { + "start": 10771.48, + "end": 10772.44, + "probability": 0.0903 + }, + { + "start": 10772.44, + "end": 10773.12, + "probability": 0.8848 + }, + { + "start": 10774.5, + "end": 10776.06, + "probability": 0.2969 + }, + { + "start": 10779.46, + "end": 10779.78, + "probability": 0.0242 + }, + { + "start": 10779.78, + "end": 10780.02, + "probability": 0.0946 + }, + { + "start": 10780.02, + "end": 10780.62, + "probability": 0.099 + }, + { + "start": 10780.62, + "end": 10781.32, + "probability": 0.138 + }, + { + "start": 10781.44, + "end": 10784.26, + "probability": 0.2423 + }, + { + "start": 10784.34, + "end": 10785.9, + "probability": 0.6542 + }, + { + "start": 10786.64, + "end": 10787.76, + "probability": 0.8774 + }, + { + "start": 10787.96, + "end": 10788.81, + "probability": 0.973 + }, + { + "start": 10789.14, + "end": 10791.76, + "probability": 0.9561 + }, + { + "start": 10792.5, + "end": 10793.2, + "probability": 0.0035 + }, + { + "start": 10793.2, + "end": 10795.14, + "probability": 0.8624 + }, + { + "start": 10796.86, + "end": 10798.94, + "probability": 0.7889 + }, + { + "start": 10799.12, + "end": 10799.75, + "probability": 0.7333 + }, + { + "start": 10800.5, + "end": 10803.78, + "probability": 0.9425 + }, + { + "start": 10803.88, + "end": 10805.74, + "probability": 0.9455 + }, + { + "start": 10806.78, + "end": 10807.16, + "probability": 0.4211 + }, + { + "start": 10807.36, + "end": 10808.36, + "probability": 0.9832 + }, + { + "start": 10809.18, + "end": 10810.45, + "probability": 0.9907 + }, + { + "start": 10811.2, + "end": 10816.5, + "probability": 0.9805 + }, + { + "start": 10816.96, + "end": 10817.64, + "probability": 0.9875 + }, + { + "start": 10818.48, + "end": 10821.52, + "probability": 0.9912 + }, + { + "start": 10822.06, + "end": 10824.04, + "probability": 0.9536 + }, + { + "start": 10824.46, + "end": 10825.52, + "probability": 0.8418 + }, + { + "start": 10825.92, + "end": 10826.74, + "probability": 0.7561 + }, + { + "start": 10827.14, + "end": 10828.28, + "probability": 0.7603 + }, + { + "start": 10828.72, + "end": 10829.56, + "probability": 0.9052 + }, + { + "start": 10829.56, + "end": 10829.96, + "probability": 0.8076 + }, + { + "start": 10830.6, + "end": 10833.36, + "probability": 0.9216 + }, + { + "start": 10833.94, + "end": 10837.28, + "probability": 0.9837 + }, + { + "start": 10837.82, + "end": 10839.3, + "probability": 0.9766 + }, + { + "start": 10840.49, + "end": 10844.74, + "probability": 0.9632 + }, + { + "start": 10844.8, + "end": 10849.76, + "probability": 0.9458 + }, + { + "start": 10850.34, + "end": 10852.7, + "probability": 0.8889 + }, + { + "start": 10853.16, + "end": 10855.24, + "probability": 0.8255 + }, + { + "start": 10855.78, + "end": 10856.88, + "probability": 0.8339 + }, + { + "start": 10857.42, + "end": 10861.26, + "probability": 0.9904 + }, + { + "start": 10862.56, + "end": 10863.58, + "probability": 0.8704 + }, + { + "start": 10863.96, + "end": 10864.87, + "probability": 0.8262 + }, + { + "start": 10865.34, + "end": 10865.34, + "probability": 0.6294 + }, + { + "start": 10865.34, + "end": 10866.06, + "probability": 0.9291 + }, + { + "start": 10866.8, + "end": 10867.64, + "probability": 0.73 + }, + { + "start": 10867.84, + "end": 10868.68, + "probability": 0.8399 + }, + { + "start": 10868.88, + "end": 10869.64, + "probability": 0.8081 + }, + { + "start": 10870.12, + "end": 10872.86, + "probability": 0.9941 + }, + { + "start": 10872.86, + "end": 10876.64, + "probability": 0.9771 + }, + { + "start": 10877.4, + "end": 10877.7, + "probability": 0.9067 + }, + { + "start": 10877.82, + "end": 10881.16, + "probability": 0.8335 + }, + { + "start": 10881.26, + "end": 10885.46, + "probability": 0.7534 + }, + { + "start": 10885.92, + "end": 10889.8, + "probability": 0.8027 + }, + { + "start": 10890.7, + "end": 10893.0, + "probability": 0.65 + }, + { + "start": 10894.3, + "end": 10895.36, + "probability": 0.7505 + }, + { + "start": 10895.92, + "end": 10897.06, + "probability": 0.7669 + }, + { + "start": 10897.32, + "end": 10900.06, + "probability": 0.9534 + }, + { + "start": 10900.9, + "end": 10902.84, + "probability": 0.9909 + }, + { + "start": 10903.32, + "end": 10903.98, + "probability": 0.5866 + }, + { + "start": 10904.22, + "end": 10905.72, + "probability": 0.8917 + }, + { + "start": 10905.78, + "end": 10911.14, + "probability": 0.9794 + }, + { + "start": 10911.8, + "end": 10912.76, + "probability": 0.9729 + }, + { + "start": 10913.4, + "end": 10917.6, + "probability": 0.8574 + }, + { + "start": 10917.82, + "end": 10919.84, + "probability": 0.6686 + }, + { + "start": 10920.38, + "end": 10921.54, + "probability": 0.8322 + }, + { + "start": 10921.98, + "end": 10924.84, + "probability": 0.8404 + }, + { + "start": 10925.82, + "end": 10929.5, + "probability": 0.5057 + }, + { + "start": 10929.62, + "end": 10930.08, + "probability": 0.8223 + }, + { + "start": 10930.7, + "end": 10931.38, + "probability": 0.9349 + }, + { + "start": 10931.95, + "end": 10933.31, + "probability": 0.7134 + }, + { + "start": 10933.96, + "end": 10934.4, + "probability": 0.9424 + }, + { + "start": 10935.36, + "end": 10935.8, + "probability": 0.6613 + }, + { + "start": 10936.38, + "end": 10939.86, + "probability": 0.9803 + }, + { + "start": 10939.86, + "end": 10942.88, + "probability": 0.9973 + }, + { + "start": 10943.64, + "end": 10945.14, + "probability": 0.9519 + }, + { + "start": 10945.14, + "end": 10948.9, + "probability": 0.9663 + }, + { + "start": 10949.08, + "end": 10950.58, + "probability": 0.8937 + }, + { + "start": 10950.68, + "end": 10952.82, + "probability": 0.9429 + }, + { + "start": 10953.42, + "end": 10954.16, + "probability": 0.724 + }, + { + "start": 10954.46, + "end": 10955.46, + "probability": 0.9792 + }, + { + "start": 10955.64, + "end": 10958.14, + "probability": 0.8879 + }, + { + "start": 10958.16, + "end": 10959.32, + "probability": 0.9797 + }, + { + "start": 10960.1, + "end": 10962.72, + "probability": 0.9139 + }, + { + "start": 10962.82, + "end": 10963.08, + "probability": 0.7196 + }, + { + "start": 10963.16, + "end": 10963.51, + "probability": 0.9823 + }, + { + "start": 10964.34, + "end": 10965.12, + "probability": 0.9717 + }, + { + "start": 10965.68, + "end": 10967.34, + "probability": 0.868 + }, + { + "start": 10967.92, + "end": 10968.74, + "probability": 0.9195 + }, + { + "start": 10969.16, + "end": 10973.48, + "probability": 0.991 + }, + { + "start": 10973.86, + "end": 10974.96, + "probability": 0.7777 + }, + { + "start": 10975.56, + "end": 10978.08, + "probability": 0.9962 + }, + { + "start": 10978.72, + "end": 10981.16, + "probability": 0.806 + }, + { + "start": 10982.08, + "end": 10984.02, + "probability": 0.6645 + }, + { + "start": 10984.72, + "end": 10985.86, + "probability": 0.9914 + }, + { + "start": 10986.48, + "end": 10990.58, + "probability": 0.963 + }, + { + "start": 10990.89, + "end": 10994.88, + "probability": 0.9376 + }, + { + "start": 10995.54, + "end": 10997.08, + "probability": 0.9678 + }, + { + "start": 10997.18, + "end": 10998.92, + "probability": 0.9561 + }, + { + "start": 10999.36, + "end": 10999.78, + "probability": 0.74 + }, + { + "start": 11000.34, + "end": 11002.72, + "probability": 0.815 + }, + { + "start": 11002.98, + "end": 11005.31, + "probability": 0.6544 + }, + { + "start": 11006.3, + "end": 11007.78, + "probability": 0.9192 + }, + { + "start": 11017.02, + "end": 11017.66, + "probability": 0.4266 + }, + { + "start": 11018.04, + "end": 11019.22, + "probability": 0.7662 + }, + { + "start": 11019.52, + "end": 11021.12, + "probability": 0.7767 + }, + { + "start": 11022.6, + "end": 11026.74, + "probability": 0.9484 + }, + { + "start": 11027.92, + "end": 11028.96, + "probability": 0.9737 + }, + { + "start": 11029.9, + "end": 11031.72, + "probability": 0.8916 + }, + { + "start": 11032.86, + "end": 11034.66, + "probability": 0.984 + }, + { + "start": 11035.74, + "end": 11038.9, + "probability": 0.9977 + }, + { + "start": 11040.38, + "end": 11044.7, + "probability": 0.9946 + }, + { + "start": 11045.64, + "end": 11047.26, + "probability": 0.9987 + }, + { + "start": 11048.08, + "end": 11050.72, + "probability": 0.9292 + }, + { + "start": 11050.72, + "end": 11054.66, + "probability": 0.8395 + }, + { + "start": 11054.88, + "end": 11058.08, + "probability": 0.9644 + }, + { + "start": 11058.96, + "end": 11060.78, + "probability": 0.8146 + }, + { + "start": 11061.72, + "end": 11064.08, + "probability": 0.9883 + }, + { + "start": 11064.14, + "end": 11067.3, + "probability": 0.9967 + }, + { + "start": 11068.1, + "end": 11069.22, + "probability": 0.9956 + }, + { + "start": 11070.4, + "end": 11072.18, + "probability": 0.9466 + }, + { + "start": 11072.96, + "end": 11075.04, + "probability": 0.931 + }, + { + "start": 11076.3, + "end": 11077.26, + "probability": 0.7246 + }, + { + "start": 11077.46, + "end": 11082.54, + "probability": 0.993 + }, + { + "start": 11083.68, + "end": 11084.5, + "probability": 0.7931 + }, + { + "start": 11085.22, + "end": 11088.24, + "probability": 0.995 + }, + { + "start": 11089.24, + "end": 11095.6, + "probability": 0.9064 + }, + { + "start": 11096.84, + "end": 11098.6, + "probability": 0.9961 + }, + { + "start": 11099.6, + "end": 11103.56, + "probability": 0.9327 + }, + { + "start": 11104.54, + "end": 11107.42, + "probability": 0.9491 + }, + { + "start": 11108.0, + "end": 11110.18, + "probability": 0.9209 + }, + { + "start": 11110.9, + "end": 11113.58, + "probability": 0.9829 + }, + { + "start": 11113.58, + "end": 11117.26, + "probability": 0.9791 + }, + { + "start": 11118.6, + "end": 11119.74, + "probability": 0.9132 + }, + { + "start": 11120.66, + "end": 11123.56, + "probability": 0.9985 + }, + { + "start": 11123.56, + "end": 11127.54, + "probability": 0.9922 + }, + { + "start": 11128.6, + "end": 11130.98, + "probability": 0.9685 + }, + { + "start": 11131.72, + "end": 11134.84, + "probability": 0.9949 + }, + { + "start": 11136.18, + "end": 11137.88, + "probability": 0.9907 + }, + { + "start": 11138.52, + "end": 11141.48, + "probability": 0.9993 + }, + { + "start": 11142.62, + "end": 11148.24, + "probability": 0.8587 + }, + { + "start": 11150.6, + "end": 11152.68, + "probability": 0.9544 + }, + { + "start": 11153.3, + "end": 11155.54, + "probability": 0.9979 + }, + { + "start": 11156.26, + "end": 11157.38, + "probability": 0.8615 + }, + { + "start": 11158.32, + "end": 11161.06, + "probability": 0.975 + }, + { + "start": 11162.54, + "end": 11165.18, + "probability": 0.9935 + }, + { + "start": 11165.9, + "end": 11168.32, + "probability": 0.9904 + }, + { + "start": 11169.76, + "end": 11172.62, + "probability": 0.9914 + }, + { + "start": 11173.52, + "end": 11175.82, + "probability": 0.999 + }, + { + "start": 11177.3, + "end": 11178.96, + "probability": 0.0464 + }, + { + "start": 11178.96, + "end": 11180.62, + "probability": 0.6827 + }, + { + "start": 11182.1, + "end": 11182.22, + "probability": 0.0514 + }, + { + "start": 11183.9, + "end": 11185.66, + "probability": 0.003 + }, + { + "start": 11188.36, + "end": 11188.38, + "probability": 0.1188 + }, + { + "start": 11188.38, + "end": 11190.94, + "probability": 0.8245 + }, + { + "start": 11191.38, + "end": 11192.64, + "probability": 0.9865 + }, + { + "start": 11198.5, + "end": 11201.22, + "probability": 0.658 + }, + { + "start": 11203.5, + "end": 11205.68, + "probability": 0.8399 + }, + { + "start": 11206.2, + "end": 11209.36, + "probability": 0.9783 + }, + { + "start": 11210.48, + "end": 11213.76, + "probability": 0.9767 + }, + { + "start": 11214.44, + "end": 11217.02, + "probability": 0.9972 + }, + { + "start": 11217.68, + "end": 11219.26, + "probability": 0.9883 + }, + { + "start": 11220.16, + "end": 11222.36, + "probability": 0.7538 + }, + { + "start": 11223.14, + "end": 11224.34, + "probability": 0.9756 + }, + { + "start": 11228.78, + "end": 11233.72, + "probability": 0.9944 + }, + { + "start": 11233.92, + "end": 11238.42, + "probability": 0.9949 + }, + { + "start": 11239.9, + "end": 11240.88, + "probability": 0.5746 + }, + { + "start": 11240.96, + "end": 11241.88, + "probability": 0.9847 + }, + { + "start": 11241.96, + "end": 11242.78, + "probability": 0.548 + }, + { + "start": 11243.84, + "end": 11245.54, + "probability": 0.6089 + }, + { + "start": 11246.38, + "end": 11248.98, + "probability": 0.7471 + }, + { + "start": 11250.78, + "end": 11253.96, + "probability": 0.7261 + }, + { + "start": 11255.0, + "end": 11256.15, + "probability": 0.506 + }, + { + "start": 11256.6, + "end": 11258.92, + "probability": 0.8241 + }, + { + "start": 11259.2, + "end": 11260.06, + "probability": 0.9963 + }, + { + "start": 11260.94, + "end": 11262.38, + "probability": 0.9604 + }, + { + "start": 11262.92, + "end": 11263.6, + "probability": 0.4054 + }, + { + "start": 11263.6, + "end": 11264.44, + "probability": 0.8629 + }, + { + "start": 11265.14, + "end": 11267.84, + "probability": 0.9595 + }, + { + "start": 11268.56, + "end": 11270.32, + "probability": 0.8722 + }, + { + "start": 11270.44, + "end": 11272.74, + "probability": 0.7281 + }, + { + "start": 11272.84, + "end": 11274.44, + "probability": 0.9285 + }, + { + "start": 11275.18, + "end": 11275.44, + "probability": 0.7366 + }, + { + "start": 11275.94, + "end": 11276.95, + "probability": 0.9844 + }, + { + "start": 11277.06, + "end": 11280.88, + "probability": 0.8756 + }, + { + "start": 11281.48, + "end": 11283.62, + "probability": 0.9849 + }, + { + "start": 11283.74, + "end": 11285.38, + "probability": 0.8899 + }, + { + "start": 11285.92, + "end": 11286.58, + "probability": 0.9182 + }, + { + "start": 11286.92, + "end": 11288.52, + "probability": 0.9935 + }, + { + "start": 11289.38, + "end": 11295.38, + "probability": 0.9908 + }, + { + "start": 11296.08, + "end": 11299.32, + "probability": 0.915 + }, + { + "start": 11299.38, + "end": 11302.42, + "probability": 0.9932 + }, + { + "start": 11302.56, + "end": 11304.06, + "probability": 0.9767 + }, + { + "start": 11304.1, + "end": 11304.8, + "probability": 0.8418 + }, + { + "start": 11306.28, + "end": 11309.4, + "probability": 0.9771 + }, + { + "start": 11309.58, + "end": 11310.86, + "probability": 0.6207 + }, + { + "start": 11311.52, + "end": 11318.02, + "probability": 0.8871 + }, + { + "start": 11318.54, + "end": 11320.77, + "probability": 0.8914 + }, + { + "start": 11321.28, + "end": 11322.82, + "probability": 0.981 + }, + { + "start": 11323.62, + "end": 11324.56, + "probability": 0.9176 + }, + { + "start": 11325.54, + "end": 11329.94, + "probability": 0.4559 + }, + { + "start": 11330.5, + "end": 11332.78, + "probability": 0.9745 + }, + { + "start": 11337.82, + "end": 11338.68, + "probability": 0.1638 + }, + { + "start": 11338.84, + "end": 11340.34, + "probability": 0.6416 + }, + { + "start": 11340.68, + "end": 11344.94, + "probability": 0.9256 + }, + { + "start": 11364.42, + "end": 11366.86, + "probability": 0.045 + }, + { + "start": 11367.52, + "end": 11367.58, + "probability": 0.2156 + }, + { + "start": 11367.58, + "end": 11369.36, + "probability": 0.573 + }, + { + "start": 11370.5, + "end": 11370.56, + "probability": 0.8506 + }, + { + "start": 11370.8, + "end": 11371.48, + "probability": 0.6742 + }, + { + "start": 11371.54, + "end": 11373.52, + "probability": 0.9835 + }, + { + "start": 11373.58, + "end": 11375.22, + "probability": 0.7195 + }, + { + "start": 11375.8, + "end": 11378.43, + "probability": 0.8413 + }, + { + "start": 11378.48, + "end": 11378.74, + "probability": 0.1758 + }, + { + "start": 11379.02, + "end": 11380.8, + "probability": 0.0706 + }, + { + "start": 11380.8, + "end": 11381.34, + "probability": 0.0804 + }, + { + "start": 11382.02, + "end": 11385.4, + "probability": 0.4628 + }, + { + "start": 11386.3, + "end": 11390.1, + "probability": 0.9583 + }, + { + "start": 11390.18, + "end": 11394.78, + "probability": 0.9962 + }, + { + "start": 11394.92, + "end": 11396.2, + "probability": 0.8278 + }, + { + "start": 11396.86, + "end": 11398.58, + "probability": 0.9477 + }, + { + "start": 11398.7, + "end": 11400.05, + "probability": 0.8281 + }, + { + "start": 11400.98, + "end": 11403.06, + "probability": 0.9954 + }, + { + "start": 11403.54, + "end": 11406.2, + "probability": 0.9971 + }, + { + "start": 11406.2, + "end": 11408.94, + "probability": 0.9868 + }, + { + "start": 11409.56, + "end": 11412.72, + "probability": 0.9279 + }, + { + "start": 11413.76, + "end": 11414.22, + "probability": 0.7515 + }, + { + "start": 11414.26, + "end": 11415.84, + "probability": 0.984 + }, + { + "start": 11416.12, + "end": 11417.51, + "probability": 0.979 + }, + { + "start": 11418.06, + "end": 11421.44, + "probability": 0.9624 + }, + { + "start": 11421.46, + "end": 11422.04, + "probability": 0.9806 + }, + { + "start": 11422.68, + "end": 11423.24, + "probability": 0.9667 + }, + { + "start": 11423.28, + "end": 11423.86, + "probability": 0.7024 + }, + { + "start": 11424.32, + "end": 11426.79, + "probability": 0.9912 + }, + { + "start": 11426.9, + "end": 11427.66, + "probability": 0.73 + }, + { + "start": 11427.72, + "end": 11428.02, + "probability": 0.8672 + }, + { + "start": 11428.24, + "end": 11430.56, + "probability": 0.8113 + }, + { + "start": 11430.66, + "end": 11433.33, + "probability": 0.8105 + }, + { + "start": 11434.14, + "end": 11434.74, + "probability": 0.8627 + }, + { + "start": 11435.48, + "end": 11438.4, + "probability": 0.9207 + }, + { + "start": 11438.82, + "end": 11439.4, + "probability": 0.8858 + }, + { + "start": 11440.76, + "end": 11442.84, + "probability": 0.9003 + }, + { + "start": 11450.98, + "end": 11450.98, + "probability": 0.0096 + }, + { + "start": 11450.98, + "end": 11450.98, + "probability": 0.0884 + }, + { + "start": 11450.98, + "end": 11450.98, + "probability": 0.0529 + }, + { + "start": 11458.54, + "end": 11458.94, + "probability": 0.2218 + }, + { + "start": 11458.94, + "end": 11460.38, + "probability": 0.2808 + }, + { + "start": 11460.6, + "end": 11463.64, + "probability": 0.9188 + }, + { + "start": 11465.8, + "end": 11467.4, + "probability": 0.9688 + }, + { + "start": 11468.08, + "end": 11468.68, + "probability": 0.808 + }, + { + "start": 11469.36, + "end": 11469.72, + "probability": 0.2531 + }, + { + "start": 11469.82, + "end": 11472.36, + "probability": 0.9043 + }, + { + "start": 11473.26, + "end": 11475.68, + "probability": 0.4997 + }, + { + "start": 11476.86, + "end": 11480.36, + "probability": 0.98 + }, + { + "start": 11480.56, + "end": 11481.6, + "probability": 0.9965 + }, + { + "start": 11482.64, + "end": 11485.98, + "probability": 0.7446 + }, + { + "start": 11486.92, + "end": 11486.92, + "probability": 0.2535 + }, + { + "start": 11486.92, + "end": 11487.78, + "probability": 0.3867 + }, + { + "start": 11495.48, + "end": 11497.68, + "probability": 0.8893 + }, + { + "start": 11500.34, + "end": 11502.32, + "probability": 0.6587 + }, + { + "start": 11503.66, + "end": 11507.9, + "probability": 0.8231 + }, + { + "start": 11508.64, + "end": 11511.3, + "probability": 0.1649 + }, + { + "start": 11511.9, + "end": 11513.74, + "probability": 0.9963 + }, + { + "start": 11514.5, + "end": 11518.1, + "probability": 0.9764 + }, + { + "start": 11518.92, + "end": 11524.04, + "probability": 0.98 + }, + { + "start": 11524.62, + "end": 11529.7, + "probability": 0.9364 + }, + { + "start": 11530.14, + "end": 11532.2, + "probability": 0.9769 + }, + { + "start": 11533.34, + "end": 11539.1, + "probability": 0.9607 + }, + { + "start": 11539.1, + "end": 11545.3, + "probability": 0.947 + }, + { + "start": 11545.9, + "end": 11548.0, + "probability": 0.9639 + }, + { + "start": 11548.68, + "end": 11549.74, + "probability": 0.9859 + }, + { + "start": 11551.52, + "end": 11553.02, + "probability": 0.8569 + }, + { + "start": 11553.92, + "end": 11558.2, + "probability": 0.9935 + }, + { + "start": 11558.2, + "end": 11563.24, + "probability": 0.9974 + }, + { + "start": 11563.84, + "end": 11565.06, + "probability": 1.0 + }, + { + "start": 11565.76, + "end": 11569.52, + "probability": 0.9879 + }, + { + "start": 11570.72, + "end": 11575.98, + "probability": 0.9257 + }, + { + "start": 11576.54, + "end": 11577.72, + "probability": 0.892 + }, + { + "start": 11579.32, + "end": 11580.46, + "probability": 0.6967 + }, + { + "start": 11580.74, + "end": 11584.88, + "probability": 0.7256 + }, + { + "start": 11585.46, + "end": 11588.46, + "probability": 0.9769 + }, + { + "start": 11589.22, + "end": 11591.62, + "probability": 0.9612 + }, + { + "start": 11592.0, + "end": 11592.24, + "probability": 0.5873 + }, + { + "start": 11592.94, + "end": 11594.8, + "probability": 0.8309 + }, + { + "start": 11595.42, + "end": 11597.62, + "probability": 0.9771 + }, + { + "start": 11597.98, + "end": 11605.32, + "probability": 0.8885 + }, + { + "start": 11605.88, + "end": 11611.88, + "probability": 0.9826 + }, + { + "start": 11612.62, + "end": 11613.4, + "probability": 0.5773 + }, + { + "start": 11613.94, + "end": 11614.96, + "probability": 0.3511 + }, + { + "start": 11615.6, + "end": 11618.47, + "probability": 0.9722 + }, + { + "start": 11619.22, + "end": 11620.38, + "probability": 0.7914 + }, + { + "start": 11620.96, + "end": 11621.64, + "probability": 0.8112 + }, + { + "start": 11622.2, + "end": 11627.28, + "probability": 0.8306 + }, + { + "start": 11627.7, + "end": 11630.4, + "probability": 0.9531 + }, + { + "start": 11631.52, + "end": 11636.76, + "probability": 0.96 + }, + { + "start": 11637.32, + "end": 11641.12, + "probability": 0.9898 + }, + { + "start": 11641.64, + "end": 11646.8, + "probability": 0.9904 + }, + { + "start": 11647.26, + "end": 11649.54, + "probability": 0.9921 + }, + { + "start": 11649.68, + "end": 11652.86, + "probability": 0.9824 + }, + { + "start": 11653.5, + "end": 11655.98, + "probability": 0.9802 + }, + { + "start": 11656.57, + "end": 11657.44, + "probability": 0.0801 + }, + { + "start": 11657.96, + "end": 11659.7, + "probability": 0.303 + }, + { + "start": 11660.72, + "end": 11660.72, + "probability": 0.1511 + }, + { + "start": 11660.72, + "end": 11661.58, + "probability": 0.0861 + }, + { + "start": 11661.7, + "end": 11662.64, + "probability": 0.8217 + }, + { + "start": 11663.62, + "end": 11667.44, + "probability": 0.9558 + }, + { + "start": 11667.98, + "end": 11669.04, + "probability": 0.9348 + }, + { + "start": 11669.22, + "end": 11670.5, + "probability": 0.9795 + }, + { + "start": 11672.2, + "end": 11676.58, + "probability": 0.6426 + }, + { + "start": 11677.16, + "end": 11677.8, + "probability": 0.9206 + }, + { + "start": 11678.88, + "end": 11683.12, + "probability": 0.8517 + }, + { + "start": 11685.08, + "end": 11688.54, + "probability": 0.8881 + }, + { + "start": 11689.08, + "end": 11691.38, + "probability": 0.9931 + }, + { + "start": 11691.92, + "end": 11693.7, + "probability": 0.9803 + }, + { + "start": 11694.56, + "end": 11696.8, + "probability": 0.7222 + }, + { + "start": 11696.94, + "end": 11699.94, + "probability": 0.9172 + }, + { + "start": 11700.5, + "end": 11702.04, + "probability": 0.998 + }, + { + "start": 11702.94, + "end": 11703.76, + "probability": 0.957 + }, + { + "start": 11712.84, + "end": 11715.1, + "probability": 0.5729 + }, + { + "start": 11716.96, + "end": 11718.16, + "probability": 0.8477 + }, + { + "start": 11718.34, + "end": 11720.29, + "probability": 0.9819 + }, + { + "start": 11721.0, + "end": 11722.82, + "probability": 0.8832 + }, + { + "start": 11723.5, + "end": 11726.1, + "probability": 0.6478 + }, + { + "start": 11727.1, + "end": 11728.36, + "probability": 0.9976 + }, + { + "start": 11728.64, + "end": 11732.36, + "probability": 0.9377 + }, + { + "start": 11732.58, + "end": 11733.76, + "probability": 0.9133 + }, + { + "start": 11733.88, + "end": 11737.66, + "probability": 0.9436 + }, + { + "start": 11738.54, + "end": 11739.38, + "probability": 0.3855 + }, + { + "start": 11739.56, + "end": 11742.86, + "probability": 0.9896 + }, + { + "start": 11743.8, + "end": 11745.22, + "probability": 0.7715 + }, + { + "start": 11745.3, + "end": 11746.34, + "probability": 0.5989 + }, + { + "start": 11746.38, + "end": 11748.02, + "probability": 0.6576 + }, + { + "start": 11749.14, + "end": 11750.46, + "probability": 0.9902 + }, + { + "start": 11750.6, + "end": 11751.64, + "probability": 0.9108 + }, + { + "start": 11752.08, + "end": 11754.75, + "probability": 0.9775 + }, + { + "start": 11756.02, + "end": 11756.58, + "probability": 0.1951 + }, + { + "start": 11757.52, + "end": 11759.34, + "probability": 0.5449 + }, + { + "start": 11760.22, + "end": 11762.88, + "probability": 0.8504 + }, + { + "start": 11764.04, + "end": 11764.54, + "probability": 0.9657 + }, + { + "start": 11764.62, + "end": 11765.3, + "probability": 0.7734 + }, + { + "start": 11765.42, + "end": 11766.72, + "probability": 0.9824 + }, + { + "start": 11766.88, + "end": 11768.54, + "probability": 0.5337 + }, + { + "start": 11769.36, + "end": 11771.0, + "probability": 0.7797 + }, + { + "start": 11771.08, + "end": 11772.16, + "probability": 0.8394 + }, + { + "start": 11772.44, + "end": 11773.62, + "probability": 0.8509 + }, + { + "start": 11775.06, + "end": 11777.16, + "probability": 0.9598 + }, + { + "start": 11777.5, + "end": 11777.8, + "probability": 0.5147 + }, + { + "start": 11777.82, + "end": 11778.0, + "probability": 0.3065 + }, + { + "start": 11778.0, + "end": 11780.02, + "probability": 0.7625 + }, + { + "start": 11780.38, + "end": 11782.32, + "probability": 0.9905 + }, + { + "start": 11782.76, + "end": 11784.29, + "probability": 0.8507 + }, + { + "start": 11784.94, + "end": 11786.59, + "probability": 0.9907 + }, + { + "start": 11787.34, + "end": 11788.02, + "probability": 0.9455 + }, + { + "start": 11788.1, + "end": 11788.36, + "probability": 0.5056 + }, + { + "start": 11788.42, + "end": 11790.16, + "probability": 0.9763 + }, + { + "start": 11790.26, + "end": 11790.96, + "probability": 0.8041 + }, + { + "start": 11791.82, + "end": 11792.24, + "probability": 0.8696 + }, + { + "start": 11792.3, + "end": 11792.86, + "probability": 0.815 + }, + { + "start": 11792.9, + "end": 11797.24, + "probability": 0.9587 + }, + { + "start": 11797.6, + "end": 11798.72, + "probability": 0.8667 + }, + { + "start": 11799.42, + "end": 11803.0, + "probability": 0.8257 + }, + { + "start": 11803.26, + "end": 11803.52, + "probability": 0.4124 + }, + { + "start": 11803.54, + "end": 11804.84, + "probability": 0.758 + }, + { + "start": 11805.22, + "end": 11805.34, + "probability": 0.0842 + }, + { + "start": 11805.94, + "end": 11806.22, + "probability": 0.0798 + }, + { + "start": 11806.3, + "end": 11806.6, + "probability": 0.4929 + }, + { + "start": 11806.74, + "end": 11808.7, + "probability": 0.9674 + }, + { + "start": 11808.82, + "end": 11810.16, + "probability": 0.7382 + }, + { + "start": 11810.94, + "end": 11814.42, + "probability": 0.9834 + }, + { + "start": 11814.52, + "end": 11815.42, + "probability": 0.9202 + }, + { + "start": 11816.36, + "end": 11818.26, + "probability": 0.9927 + }, + { + "start": 11819.02, + "end": 11821.96, + "probability": 0.8769 + }, + { + "start": 11822.7, + "end": 11824.34, + "probability": 0.8148 + }, + { + "start": 11824.4, + "end": 11825.04, + "probability": 0.8105 + }, + { + "start": 11825.62, + "end": 11827.2, + "probability": 0.988 + }, + { + "start": 11828.52, + "end": 11829.92, + "probability": 0.8516 + }, + { + "start": 11830.14, + "end": 11831.48, + "probability": 0.5326 + }, + { + "start": 11831.8, + "end": 11832.8, + "probability": 0.9406 + }, + { + "start": 11832.88, + "end": 11833.28, + "probability": 0.8104 + }, + { + "start": 11833.7, + "end": 11835.92, + "probability": 0.9517 + }, + { + "start": 11836.2, + "end": 11836.5, + "probability": 0.5612 + }, + { + "start": 11836.52, + "end": 11836.88, + "probability": 0.3332 + }, + { + "start": 11837.1, + "end": 11841.26, + "probability": 0.8926 + }, + { + "start": 11842.5, + "end": 11843.26, + "probability": 0.8899 + }, + { + "start": 11843.52, + "end": 11846.08, + "probability": 0.9694 + }, + { + "start": 11846.34, + "end": 11846.7, + "probability": 0.6363 + }, + { + "start": 11847.4, + "end": 11850.08, + "probability": 0.9703 + }, + { + "start": 11850.3, + "end": 11852.3, + "probability": 0.9548 + }, + { + "start": 11852.84, + "end": 11854.09, + "probability": 0.9238 + }, + { + "start": 11854.18, + "end": 11856.22, + "probability": 0.8987 + }, + { + "start": 11856.28, + "end": 11856.72, + "probability": 0.8588 + }, + { + "start": 11857.96, + "end": 11858.66, + "probability": 0.8938 + }, + { + "start": 11858.96, + "end": 11861.18, + "probability": 0.9845 + }, + { + "start": 11861.66, + "end": 11863.12, + "probability": 0.9557 + }, + { + "start": 11868.0, + "end": 11868.8, + "probability": 0.0534 + }, + { + "start": 11868.8, + "end": 11871.52, + "probability": 0.6339 + }, + { + "start": 11872.34, + "end": 11874.1, + "probability": 0.8756 + }, + { + "start": 11876.64, + "end": 11877.68, + "probability": 0.9377 + }, + { + "start": 11884.08, + "end": 11885.3, + "probability": 0.0972 + }, + { + "start": 11885.42, + "end": 11887.24, + "probability": 0.6374 + }, + { + "start": 11887.32, + "end": 11887.7, + "probability": 0.0393 + }, + { + "start": 11887.7, + "end": 11888.22, + "probability": 0.6053 + }, + { + "start": 11888.92, + "end": 11890.24, + "probability": 0.4516 + }, + { + "start": 11893.78, + "end": 11896.14, + "probability": 0.0333 + }, + { + "start": 11902.89, + "end": 11903.38, + "probability": 0.6325 + }, + { + "start": 11904.04, + "end": 11907.76, + "probability": 0.2498 + }, + { + "start": 11908.14, + "end": 11908.88, + "probability": 0.0432 + }, + { + "start": 11909.28, + "end": 11909.28, + "probability": 0.0941 + }, + { + "start": 11909.28, + "end": 11909.28, + "probability": 0.3322 + }, + { + "start": 11909.28, + "end": 11912.82, + "probability": 0.4449 + }, + { + "start": 11913.46, + "end": 11914.5, + "probability": 0.5101 + }, + { + "start": 11915.22, + "end": 11918.84, + "probability": 0.8842 + }, + { + "start": 11919.38, + "end": 11919.5, + "probability": 0.3606 + }, + { + "start": 11919.5, + "end": 11921.18, + "probability": 0.9891 + }, + { + "start": 11921.28, + "end": 11923.88, + "probability": 0.7499 + }, + { + "start": 11924.04, + "end": 11925.64, + "probability": 0.4895 + }, + { + "start": 11928.12, + "end": 11930.52, + "probability": 0.8005 + }, + { + "start": 11932.38, + "end": 11933.8, + "probability": 0.9975 + }, + { + "start": 11934.9, + "end": 11936.86, + "probability": 0.9951 + }, + { + "start": 11938.3, + "end": 11938.94, + "probability": 0.9096 + }, + { + "start": 11940.58, + "end": 11941.92, + "probability": 0.824 + }, + { + "start": 11953.32, + "end": 11955.7, + "probability": 0.7872 + }, + { + "start": 11957.2, + "end": 11958.98, + "probability": 0.9898 + }, + { + "start": 11959.58, + "end": 11961.44, + "probability": 0.9147 + }, + { + "start": 11962.22, + "end": 11963.64, + "probability": 0.4963 + }, + { + "start": 11965.52, + "end": 11967.48, + "probability": 0.7456 + }, + { + "start": 11968.96, + "end": 11971.02, + "probability": 0.9957 + }, + { + "start": 11972.68, + "end": 11973.48, + "probability": 0.9064 + }, + { + "start": 11975.64, + "end": 11976.6, + "probability": 0.9841 + }, + { + "start": 11977.9, + "end": 11978.86, + "probability": 0.7321 + }, + { + "start": 11979.5, + "end": 11980.18, + "probability": 0.8907 + }, + { + "start": 11981.1, + "end": 11983.4, + "probability": 0.9933 + }, + { + "start": 11984.38, + "end": 11989.72, + "probability": 0.9729 + }, + { + "start": 11991.8, + "end": 11994.48, + "probability": 0.987 + }, + { + "start": 11996.36, + "end": 11997.12, + "probability": 0.8739 + }, + { + "start": 11997.82, + "end": 12000.96, + "probability": 0.9962 + }, + { + "start": 12001.72, + "end": 12002.42, + "probability": 0.9177 + }, + { + "start": 12003.14, + "end": 12004.0, + "probability": 0.9722 + }, + { + "start": 12004.78, + "end": 12007.96, + "probability": 0.8877 + }, + { + "start": 12008.8, + "end": 12010.79, + "probability": 0.7576 + }, + { + "start": 12011.34, + "end": 12014.68, + "probability": 0.9836 + }, + { + "start": 12016.46, + "end": 12018.0, + "probability": 0.851 + }, + { + "start": 12018.84, + "end": 12022.68, + "probability": 0.926 + }, + { + "start": 12023.86, + "end": 12026.84, + "probability": 0.998 + }, + { + "start": 12026.84, + "end": 12031.96, + "probability": 0.9144 + }, + { + "start": 12032.94, + "end": 12034.2, + "probability": 0.9924 + }, + { + "start": 12034.9, + "end": 12037.26, + "probability": 0.9896 + }, + { + "start": 12037.92, + "end": 12039.36, + "probability": 0.9964 + }, + { + "start": 12039.54, + "end": 12042.42, + "probability": 0.9851 + }, + { + "start": 12043.72, + "end": 12046.24, + "probability": 0.9993 + }, + { + "start": 12047.18, + "end": 12052.96, + "probability": 0.998 + }, + { + "start": 12054.28, + "end": 12057.46, + "probability": 0.9535 + }, + { + "start": 12058.12, + "end": 12060.98, + "probability": 0.9897 + }, + { + "start": 12063.24, + "end": 12065.52, + "probability": 0.9833 + }, + { + "start": 12067.44, + "end": 12069.46, + "probability": 0.9933 + }, + { + "start": 12070.4, + "end": 12071.08, + "probability": 0.98 + }, + { + "start": 12072.34, + "end": 12074.6, + "probability": 0.8375 + }, + { + "start": 12075.2, + "end": 12078.28, + "probability": 0.9675 + }, + { + "start": 12078.94, + "end": 12081.36, + "probability": 0.9912 + }, + { + "start": 12087.58, + "end": 12087.88, + "probability": 0.5473 + }, + { + "start": 12089.42, + "end": 12090.8, + "probability": 0.8724 + }, + { + "start": 12095.46, + "end": 12097.0, + "probability": 0.9971 + }, + { + "start": 12098.4, + "end": 12100.14, + "probability": 0.9102 + }, + { + "start": 12101.52, + "end": 12105.66, + "probability": 0.9941 + }, + { + "start": 12107.22, + "end": 12108.48, + "probability": 0.9753 + }, + { + "start": 12109.86, + "end": 12113.8, + "probability": 0.9912 + }, + { + "start": 12115.32, + "end": 12115.92, + "probability": 0.8537 + }, + { + "start": 12116.76, + "end": 12120.5, + "probability": 0.9604 + }, + { + "start": 12121.52, + "end": 12124.34, + "probability": 0.9427 + }, + { + "start": 12127.08, + "end": 12129.6, + "probability": 0.917 + }, + { + "start": 12130.48, + "end": 12132.46, + "probability": 0.8557 + }, + { + "start": 12133.48, + "end": 12135.38, + "probability": 0.9941 + }, + { + "start": 12136.24, + "end": 12138.02, + "probability": 0.7375 + }, + { + "start": 12140.4, + "end": 12142.14, + "probability": 0.7015 + }, + { + "start": 12143.0, + "end": 12143.58, + "probability": 0.0165 + }, + { + "start": 12143.58, + "end": 12143.88, + "probability": 0.7491 + }, + { + "start": 12143.94, + "end": 12144.22, + "probability": 0.686 + }, + { + "start": 12144.24, + "end": 12145.43, + "probability": 0.5075 + }, + { + "start": 12145.72, + "end": 12146.26, + "probability": 0.3054 + }, + { + "start": 12146.4, + "end": 12146.82, + "probability": 0.5278 + }, + { + "start": 12147.0, + "end": 12147.12, + "probability": 0.5026 + }, + { + "start": 12147.14, + "end": 12148.94, + "probability": 0.1153 + }, + { + "start": 12149.46, + "end": 12149.8, + "probability": 0.2423 + }, + { + "start": 12150.2, + "end": 12150.86, + "probability": 0.4861 + }, + { + "start": 12150.92, + "end": 12156.64, + "probability": 0.988 + }, + { + "start": 12156.96, + "end": 12159.56, + "probability": 0.8733 + }, + { + "start": 12159.9, + "end": 12160.68, + "probability": 0.6227 + }, + { + "start": 12161.36, + "end": 12162.7, + "probability": 0.9977 + }, + { + "start": 12163.36, + "end": 12167.46, + "probability": 0.993 + }, + { + "start": 12168.54, + "end": 12171.46, + "probability": 0.9956 + }, + { + "start": 12172.1, + "end": 12173.56, + "probability": 0.9977 + }, + { + "start": 12175.02, + "end": 12176.2, + "probability": 0.9604 + }, + { + "start": 12176.84, + "end": 12177.86, + "probability": 0.9927 + }, + { + "start": 12178.22, + "end": 12179.85, + "probability": 0.9948 + }, + { + "start": 12180.6, + "end": 12182.9, + "probability": 0.9736 + }, + { + "start": 12183.86, + "end": 12184.98, + "probability": 0.7526 + }, + { + "start": 12186.02, + "end": 12187.46, + "probability": 0.989 + }, + { + "start": 12187.72, + "end": 12188.98, + "probability": 0.9939 + }, + { + "start": 12189.12, + "end": 12189.8, + "probability": 0.8147 + }, + { + "start": 12190.78, + "end": 12196.28, + "probability": 0.998 + }, + { + "start": 12197.38, + "end": 12202.16, + "probability": 0.8816 + }, + { + "start": 12204.04, + "end": 12205.32, + "probability": 0.884 + }, + { + "start": 12206.2, + "end": 12211.62, + "probability": 0.9897 + }, + { + "start": 12211.98, + "end": 12212.46, + "probability": 0.8247 + }, + { + "start": 12212.52, + "end": 12213.6, + "probability": 0.7413 + }, + { + "start": 12214.26, + "end": 12214.66, + "probability": 0.0112 + }, + { + "start": 12214.66, + "end": 12217.11, + "probability": 0.8655 + }, + { + "start": 12217.48, + "end": 12219.78, + "probability": 0.9891 + }, + { + "start": 12220.24, + "end": 12222.84, + "probability": 0.9736 + }, + { + "start": 12223.48, + "end": 12224.08, + "probability": 0.9703 + }, + { + "start": 12224.88, + "end": 12226.04, + "probability": 0.9383 + }, + { + "start": 12226.82, + "end": 12228.94, + "probability": 0.9614 + }, + { + "start": 12229.74, + "end": 12230.74, + "probability": 0.7096 + }, + { + "start": 12231.86, + "end": 12234.68, + "probability": 0.8936 + }, + { + "start": 12235.38, + "end": 12236.6, + "probability": 0.9611 + }, + { + "start": 12237.74, + "end": 12240.67, + "probability": 0.9609 + }, + { + "start": 12242.16, + "end": 12247.02, + "probability": 0.9806 + }, + { + "start": 12247.72, + "end": 12249.4, + "probability": 0.9766 + }, + { + "start": 12250.78, + "end": 12255.24, + "probability": 0.9936 + }, + { + "start": 12256.1, + "end": 12257.24, + "probability": 0.9674 + }, + { + "start": 12257.88, + "end": 12259.92, + "probability": 0.923 + }, + { + "start": 12260.52, + "end": 12261.72, + "probability": 0.8982 + }, + { + "start": 12262.4, + "end": 12264.9, + "probability": 0.9962 + }, + { + "start": 12265.86, + "end": 12268.9, + "probability": 0.9435 + }, + { + "start": 12269.7, + "end": 12270.82, + "probability": 0.8049 + }, + { + "start": 12270.88, + "end": 12273.94, + "probability": 0.9873 + }, + { + "start": 12274.7, + "end": 12275.98, + "probability": 0.9023 + }, + { + "start": 12276.68, + "end": 12277.84, + "probability": 0.9559 + }, + { + "start": 12277.96, + "end": 12278.76, + "probability": 0.9473 + }, + { + "start": 12278.86, + "end": 12281.82, + "probability": 0.9732 + }, + { + "start": 12282.0, + "end": 12282.62, + "probability": 0.9306 + }, + { + "start": 12283.66, + "end": 12284.96, + "probability": 0.8345 + }, + { + "start": 12285.94, + "end": 12290.92, + "probability": 0.9871 + }, + { + "start": 12291.52, + "end": 12294.5, + "probability": 0.9764 + }, + { + "start": 12295.24, + "end": 12296.32, + "probability": 0.7277 + }, + { + "start": 12297.42, + "end": 12299.76, + "probability": 0.9719 + }, + { + "start": 12300.52, + "end": 12304.64, + "probability": 0.9823 + }, + { + "start": 12305.24, + "end": 12308.08, + "probability": 0.9671 + }, + { + "start": 12309.14, + "end": 12310.28, + "probability": 0.9708 + }, + { + "start": 12311.38, + "end": 12314.0, + "probability": 0.9743 + }, + { + "start": 12315.24, + "end": 12317.58, + "probability": 0.9824 + }, + { + "start": 12318.14, + "end": 12319.78, + "probability": 0.9878 + }, + { + "start": 12320.26, + "end": 12321.94, + "probability": 0.9609 + }, + { + "start": 12323.3, + "end": 12325.26, + "probability": 0.9681 + }, + { + "start": 12325.82, + "end": 12327.52, + "probability": 0.9985 + }, + { + "start": 12328.14, + "end": 12329.78, + "probability": 0.9462 + }, + { + "start": 12330.78, + "end": 12332.02, + "probability": 0.99 + }, + { + "start": 12333.32, + "end": 12335.36, + "probability": 0.9978 + }, + { + "start": 12335.84, + "end": 12336.84, + "probability": 0.5315 + }, + { + "start": 12337.02, + "end": 12337.02, + "probability": 0.1653 + }, + { + "start": 12337.02, + "end": 12337.78, + "probability": 0.6111 + }, + { + "start": 12338.26, + "end": 12342.12, + "probability": 0.9507 + }, + { + "start": 12342.48, + "end": 12342.8, + "probability": 0.6819 + }, + { + "start": 12342.92, + "end": 12343.96, + "probability": 0.6625 + }, + { + "start": 12344.48, + "end": 12345.56, + "probability": 0.718 + }, + { + "start": 12346.14, + "end": 12347.88, + "probability": 0.3516 + }, + { + "start": 12347.88, + "end": 12347.88, + "probability": 0.4781 + }, + { + "start": 12347.88, + "end": 12354.39, + "probability": 0.7355 + }, + { + "start": 12355.12, + "end": 12360.8, + "probability": 0.9976 + }, + { + "start": 12361.2, + "end": 12361.54, + "probability": 0.7369 + }, + { + "start": 12361.9, + "end": 12363.86, + "probability": 0.935 + }, + { + "start": 12364.56, + "end": 12365.78, + "probability": 0.5679 + }, + { + "start": 12365.92, + "end": 12367.07, + "probability": 0.404 + }, + { + "start": 12367.7, + "end": 12369.2, + "probability": 0.8086 + }, + { + "start": 12372.12, + "end": 12372.3, + "probability": 0.3591 + }, + { + "start": 12373.2, + "end": 12374.04, + "probability": 0.4568 + }, + { + "start": 12374.1, + "end": 12374.36, + "probability": 0.708 + }, + { + "start": 12374.8, + "end": 12374.98, + "probability": 0.5202 + }, + { + "start": 12375.2, + "end": 12375.4, + "probability": 0.5742 + }, + { + "start": 12375.5, + "end": 12375.66, + "probability": 0.8739 + }, + { + "start": 12375.76, + "end": 12377.46, + "probability": 0.9727 + }, + { + "start": 12377.62, + "end": 12378.26, + "probability": 0.9704 + }, + { + "start": 12379.12, + "end": 12380.32, + "probability": 0.6238 + }, + { + "start": 12380.94, + "end": 12381.34, + "probability": 0.5965 + }, + { + "start": 12381.88, + "end": 12382.24, + "probability": 0.7278 + }, + { + "start": 12383.86, + "end": 12384.34, + "probability": 0.665 + }, + { + "start": 12384.58, + "end": 12385.79, + "probability": 0.8257 + }, + { + "start": 12386.86, + "end": 12387.66, + "probability": 0.7336 + }, + { + "start": 12388.54, + "end": 12389.02, + "probability": 0.7681 + }, + { + "start": 12390.26, + "end": 12390.5, + "probability": 0.8501 + }, + { + "start": 12390.58, + "end": 12392.66, + "probability": 0.9821 + }, + { + "start": 12392.66, + "end": 12394.96, + "probability": 0.995 + }, + { + "start": 12396.32, + "end": 12398.7, + "probability": 0.742 + }, + { + "start": 12398.72, + "end": 12399.25, + "probability": 0.9667 + }, + { + "start": 12399.36, + "end": 12401.26, + "probability": 0.9372 + }, + { + "start": 12401.98, + "end": 12405.26, + "probability": 0.9917 + }, + { + "start": 12405.94, + "end": 12406.98, + "probability": 0.6833 + }, + { + "start": 12407.44, + "end": 12409.44, + "probability": 0.9869 + }, + { + "start": 12410.66, + "end": 12411.5, + "probability": 0.8405 + }, + { + "start": 12412.24, + "end": 12413.66, + "probability": 0.9894 + }, + { + "start": 12414.56, + "end": 12414.98, + "probability": 0.8903 + }, + { + "start": 12416.9, + "end": 12419.12, + "probability": 0.958 + }, + { + "start": 12419.2, + "end": 12420.6, + "probability": 0.9167 + }, + { + "start": 12421.4, + "end": 12422.04, + "probability": 0.6201 + }, + { + "start": 12422.22, + "end": 12423.27, + "probability": 0.565 + }, + { + "start": 12424.26, + "end": 12427.96, + "probability": 0.9351 + }, + { + "start": 12428.54, + "end": 12428.92, + "probability": 0.8916 + }, + { + "start": 12429.06, + "end": 12429.8, + "probability": 0.9722 + }, + { + "start": 12430.28, + "end": 12431.68, + "probability": 0.5933 + }, + { + "start": 12432.48, + "end": 12433.36, + "probability": 0.6215 + }, + { + "start": 12433.52, + "end": 12434.5, + "probability": 0.8115 + }, + { + "start": 12435.78, + "end": 12436.81, + "probability": 0.9318 + }, + { + "start": 12437.12, + "end": 12438.72, + "probability": 0.6724 + }, + { + "start": 12439.24, + "end": 12442.1, + "probability": 0.9812 + }, + { + "start": 12443.04, + "end": 12444.28, + "probability": 0.7583 + }, + { + "start": 12445.76, + "end": 12447.46, + "probability": 0.8142 + }, + { + "start": 12447.72, + "end": 12448.94, + "probability": 0.7643 + }, + { + "start": 12449.12, + "end": 12449.64, + "probability": 0.9674 + }, + { + "start": 12449.74, + "end": 12451.83, + "probability": 0.7883 + }, + { + "start": 12452.98, + "end": 12456.24, + "probability": 0.9874 + }, + { + "start": 12457.04, + "end": 12459.22, + "probability": 0.9572 + }, + { + "start": 12460.0, + "end": 12463.64, + "probability": 0.9932 + }, + { + "start": 12464.72, + "end": 12466.5, + "probability": 0.9934 + }, + { + "start": 12467.06, + "end": 12467.26, + "probability": 0.8922 + }, + { + "start": 12469.26, + "end": 12471.8, + "probability": 0.9269 + }, + { + "start": 12472.42, + "end": 12473.36, + "probability": 0.8547 + }, + { + "start": 12474.62, + "end": 12475.32, + "probability": 0.7656 + }, + { + "start": 12475.48, + "end": 12475.72, + "probability": 0.8875 + }, + { + "start": 12475.82, + "end": 12477.22, + "probability": 0.9835 + }, + { + "start": 12477.34, + "end": 12480.64, + "probability": 0.9794 + }, + { + "start": 12480.96, + "end": 12481.96, + "probability": 0.8051 + }, + { + "start": 12482.78, + "end": 12482.88, + "probability": 0.0152 + }, + { + "start": 12482.88, + "end": 12483.38, + "probability": 0.9622 + }, + { + "start": 12484.04, + "end": 12484.56, + "probability": 0.7551 + }, + { + "start": 12485.22, + "end": 12488.28, + "probability": 0.7452 + }, + { + "start": 12489.1, + "end": 12489.94, + "probability": 0.3697 + }, + { + "start": 12490.1, + "end": 12490.6, + "probability": 0.0174 + }, + { + "start": 12490.78, + "end": 12490.8, + "probability": 0.3021 + }, + { + "start": 12490.86, + "end": 12492.12, + "probability": 0.2389 + }, + { + "start": 12492.6, + "end": 12492.96, + "probability": 0.4326 + }, + { + "start": 12493.28, + "end": 12494.06, + "probability": 0.7155 + }, + { + "start": 12494.14, + "end": 12494.8, + "probability": 0.4904 + }, + { + "start": 12494.8, + "end": 12496.68, + "probability": 0.8778 + }, + { + "start": 12496.86, + "end": 12497.14, + "probability": 0.4961 + }, + { + "start": 12497.44, + "end": 12498.74, + "probability": 0.829 + }, + { + "start": 12498.86, + "end": 12500.04, + "probability": 0.6814 + }, + { + "start": 12500.7, + "end": 12503.42, + "probability": 0.6042 + }, + { + "start": 12503.88, + "end": 12504.42, + "probability": 0.5301 + }, + { + "start": 12504.52, + "end": 12507.26, + "probability": 0.8225 + }, + { + "start": 12507.34, + "end": 12508.9, + "probability": 0.9676 + }, + { + "start": 12509.3, + "end": 12512.32, + "probability": 0.9617 + }, + { + "start": 12513.14, + "end": 12516.6, + "probability": 0.8065 + }, + { + "start": 12516.78, + "end": 12517.58, + "probability": 0.6987 + }, + { + "start": 12517.74, + "end": 12518.12, + "probability": 0.9484 + }, + { + "start": 12519.16, + "end": 12520.62, + "probability": 0.9836 + }, + { + "start": 12522.86, + "end": 12523.9, + "probability": 0.9473 + }, + { + "start": 12524.48, + "end": 12526.68, + "probability": 0.9247 + }, + { + "start": 12527.34, + "end": 12529.46, + "probability": 0.9839 + }, + { + "start": 12530.08, + "end": 12531.52, + "probability": 0.9167 + }, + { + "start": 12532.36, + "end": 12534.34, + "probability": 0.9583 + }, + { + "start": 12534.92, + "end": 12536.54, + "probability": 0.928 + }, + { + "start": 12536.7, + "end": 12538.48, + "probability": 0.8367 + }, + { + "start": 12539.06, + "end": 12540.05, + "probability": 0.9351 + }, + { + "start": 12540.2, + "end": 12540.38, + "probability": 0.501 + }, + { + "start": 12540.56, + "end": 12541.29, + "probability": 0.8052 + }, + { + "start": 12541.84, + "end": 12542.84, + "probability": 0.7579 + }, + { + "start": 12543.56, + "end": 12544.72, + "probability": 0.937 + }, + { + "start": 12544.8, + "end": 12545.78, + "probability": 0.59 + }, + { + "start": 12546.02, + "end": 12546.78, + "probability": 0.8104 + }, + { + "start": 12547.7, + "end": 12550.09, + "probability": 0.8095 + }, + { + "start": 12550.9, + "end": 12550.9, + "probability": 0.046 + }, + { + "start": 12550.9, + "end": 12552.72, + "probability": 0.9819 + }, + { + "start": 12552.72, + "end": 12554.54, + "probability": 0.9385 + }, + { + "start": 12555.52, + "end": 12557.2, + "probability": 0.995 + }, + { + "start": 12557.78, + "end": 12558.74, + "probability": 0.9779 + }, + { + "start": 12559.42, + "end": 12561.23, + "probability": 0.9508 + }, + { + "start": 12561.94, + "end": 12565.24, + "probability": 0.9048 + }, + { + "start": 12565.82, + "end": 12567.98, + "probability": 0.1606 + }, + { + "start": 12568.36, + "end": 12569.16, + "probability": 0.1247 + }, + { + "start": 12569.48, + "end": 12569.5, + "probability": 0.0061 + }, + { + "start": 12571.46, + "end": 12571.72, + "probability": 0.0802 + }, + { + "start": 12571.72, + "end": 12571.72, + "probability": 0.2789 + }, + { + "start": 12571.72, + "end": 12572.02, + "probability": 0.639 + }, + { + "start": 12572.12, + "end": 12573.13, + "probability": 0.8623 + }, + { + "start": 12573.6, + "end": 12576.38, + "probability": 0.9199 + }, + { + "start": 12576.68, + "end": 12577.14, + "probability": 0.4807 + }, + { + "start": 12577.26, + "end": 12578.86, + "probability": 0.9248 + }, + { + "start": 12579.36, + "end": 12579.8, + "probability": 0.2792 + }, + { + "start": 12579.8, + "end": 12582.26, + "probability": 0.3948 + }, + { + "start": 12582.26, + "end": 12582.88, + "probability": 0.5134 + }, + { + "start": 12582.96, + "end": 12583.92, + "probability": 0.9277 + }, + { + "start": 12583.94, + "end": 12586.96, + "probability": 0.8579 + }, + { + "start": 12587.4, + "end": 12588.82, + "probability": 0.9902 + }, + { + "start": 12589.72, + "end": 12593.77, + "probability": 0.976 + }, + { + "start": 12593.9, + "end": 12599.86, + "probability": 0.993 + }, + { + "start": 12601.22, + "end": 12606.7, + "probability": 0.807 + }, + { + "start": 12608.48, + "end": 12611.9, + "probability": 0.9676 + }, + { + "start": 12611.9, + "end": 12616.02, + "probability": 0.9972 + }, + { + "start": 12616.52, + "end": 12617.86, + "probability": 0.6217 + }, + { + "start": 12618.48, + "end": 12619.16, + "probability": 0.6178 + }, + { + "start": 12619.42, + "end": 12620.66, + "probability": 0.9326 + }, + { + "start": 12621.52, + "end": 12623.04, + "probability": 0.9548 + }, + { + "start": 12624.22, + "end": 12626.76, + "probability": 0.7194 + }, + { + "start": 12627.26, + "end": 12628.88, + "probability": 0.7838 + }, + { + "start": 12629.66, + "end": 12630.96, + "probability": 0.5182 + }, + { + "start": 12631.84, + "end": 12635.12, + "probability": 0.6172 + }, + { + "start": 12636.22, + "end": 12639.06, + "probability": 0.7869 + }, + { + "start": 12639.22, + "end": 12639.72, + "probability": 0.4884 + }, + { + "start": 12639.76, + "end": 12640.28, + "probability": 0.6711 + }, + { + "start": 12642.74, + "end": 12643.14, + "probability": 0.2088 + }, + { + "start": 12656.58, + "end": 12656.88, + "probability": 0.0171 + }, + { + "start": 12656.88, + "end": 12656.88, + "probability": 0.0148 + }, + { + "start": 12656.88, + "end": 12657.2, + "probability": 0.114 + }, + { + "start": 12657.2, + "end": 12657.2, + "probability": 0.3579 + }, + { + "start": 12657.2, + "end": 12659.04, + "probability": 0.7167 + }, + { + "start": 12659.82, + "end": 12661.61, + "probability": 0.5779 + }, + { + "start": 12662.3, + "end": 12665.98, + "probability": 0.6673 + }, + { + "start": 12667.28, + "end": 12670.22, + "probability": 0.8754 + }, + { + "start": 12670.46, + "end": 12673.42, + "probability": 0.8875 + }, + { + "start": 12673.58, + "end": 12674.76, + "probability": 0.9299 + }, + { + "start": 12676.12, + "end": 12677.22, + "probability": 0.603 + }, + { + "start": 12679.48, + "end": 12681.84, + "probability": 0.8223 + }, + { + "start": 12687.8, + "end": 12690.06, + "probability": 0.7528 + }, + { + "start": 12691.06, + "end": 12692.03, + "probability": 0.449 + }, + { + "start": 12693.52, + "end": 12694.6, + "probability": 0.8201 + }, + { + "start": 12695.72, + "end": 12697.38, + "probability": 0.9406 + }, + { + "start": 12699.1, + "end": 12701.7, + "probability": 0.7396 + }, + { + "start": 12702.7, + "end": 12707.1, + "probability": 0.9061 + }, + { + "start": 12708.02, + "end": 12710.16, + "probability": 0.8961 + }, + { + "start": 12711.34, + "end": 12714.24, + "probability": 0.9946 + }, + { + "start": 12715.78, + "end": 12717.76, + "probability": 0.9903 + }, + { + "start": 12719.04, + "end": 12724.24, + "probability": 0.991 + }, + { + "start": 12724.92, + "end": 12725.82, + "probability": 0.9975 + }, + { + "start": 12726.7, + "end": 12732.22, + "probability": 0.9963 + }, + { + "start": 12733.76, + "end": 12736.97, + "probability": 0.9197 + }, + { + "start": 12738.94, + "end": 12740.22, + "probability": 0.9908 + }, + { + "start": 12740.88, + "end": 12745.3, + "probability": 0.9845 + }, + { + "start": 12746.12, + "end": 12747.1, + "probability": 0.8782 + }, + { + "start": 12748.48, + "end": 12753.34, + "probability": 0.8625 + }, + { + "start": 12754.16, + "end": 12755.92, + "probability": 0.9694 + }, + { + "start": 12756.66, + "end": 12759.56, + "probability": 0.9685 + }, + { + "start": 12760.44, + "end": 12762.68, + "probability": 0.9539 + }, + { + "start": 12762.8, + "end": 12763.18, + "probability": 0.9738 + }, + { + "start": 12764.62, + "end": 12767.0, + "probability": 0.99 + }, + { + "start": 12767.96, + "end": 12771.04, + "probability": 0.7502 + }, + { + "start": 12771.94, + "end": 12774.28, + "probability": 0.9968 + }, + { + "start": 12774.74, + "end": 12782.3, + "probability": 0.9336 + }, + { + "start": 12782.84, + "end": 12787.96, + "probability": 0.993 + }, + { + "start": 12787.96, + "end": 12794.88, + "probability": 0.9758 + }, + { + "start": 12795.38, + "end": 12797.82, + "probability": 0.9798 + }, + { + "start": 12798.28, + "end": 12798.72, + "probability": 0.6139 + }, + { + "start": 12798.88, + "end": 12803.24, + "probability": 0.9819 + }, + { + "start": 12803.6, + "end": 12804.24, + "probability": 0.5572 + }, + { + "start": 12804.4, + "end": 12804.98, + "probability": 0.6444 + }, + { + "start": 12806.32, + "end": 12807.5, + "probability": 0.9729 + }, + { + "start": 12809.0, + "end": 12810.8, + "probability": 0.8835 + }, + { + "start": 12811.44, + "end": 12814.76, + "probability": 0.9946 + }, + { + "start": 12815.44, + "end": 12817.62, + "probability": 0.6839 + }, + { + "start": 12819.54, + "end": 12821.82, + "probability": 0.8064 + }, + { + "start": 12822.52, + "end": 12823.24, + "probability": 0.8294 + }, + { + "start": 12825.38, + "end": 12826.64, + "probability": 0.753 + }, + { + "start": 12827.44, + "end": 12829.12, + "probability": 0.577 + }, + { + "start": 12829.86, + "end": 12832.3, + "probability": 0.9777 + }, + { + "start": 12833.04, + "end": 12837.02, + "probability": 0.9861 + }, + { + "start": 12837.68, + "end": 12838.82, + "probability": 0.8929 + }, + { + "start": 12838.9, + "end": 12841.6, + "probability": 0.7435 + }, + { + "start": 12841.8, + "end": 12842.66, + "probability": 0.9049 + }, + { + "start": 12843.22, + "end": 12844.54, + "probability": 0.9634 + }, + { + "start": 12845.04, + "end": 12846.1, + "probability": 0.9362 + }, + { + "start": 12846.24, + "end": 12846.59, + "probability": 0.4116 + }, + { + "start": 12848.16, + "end": 12850.98, + "probability": 0.9824 + }, + { + "start": 12851.52, + "end": 12852.38, + "probability": 0.9107 + }, + { + "start": 12852.92, + "end": 12854.78, + "probability": 0.8156 + }, + { + "start": 12855.4, + "end": 12856.9, + "probability": 0.9123 + }, + { + "start": 12857.08, + "end": 12857.7, + "probability": 0.6042 + }, + { + "start": 12858.32, + "end": 12859.22, + "probability": 0.6508 + }, + { + "start": 12860.3, + "end": 12861.04, + "probability": 0.9789 + }, + { + "start": 12861.56, + "end": 12865.28, + "probability": 0.9814 + }, + { + "start": 12866.08, + "end": 12867.5, + "probability": 0.9677 + }, + { + "start": 12868.56, + "end": 12873.3, + "probability": 0.854 + }, + { + "start": 12874.2, + "end": 12876.54, + "probability": 0.8828 + }, + { + "start": 12877.6, + "end": 12878.4, + "probability": 0.5349 + }, + { + "start": 12878.56, + "end": 12880.48, + "probability": 0.9529 + }, + { + "start": 12880.88, + "end": 12881.92, + "probability": 0.9343 + }, + { + "start": 12882.38, + "end": 12884.8, + "probability": 0.9946 + }, + { + "start": 12885.08, + "end": 12885.68, + "probability": 0.7393 + }, + { + "start": 12886.36, + "end": 12887.46, + "probability": 0.8175 + }, + { + "start": 12887.64, + "end": 12888.7, + "probability": 0.8891 + }, + { + "start": 12888.9, + "end": 12889.32, + "probability": 0.206 + }, + { + "start": 12890.74, + "end": 12892.52, + "probability": 0.8524 + }, + { + "start": 12893.82, + "end": 12895.26, + "probability": 0.6896 + }, + { + "start": 12896.1, + "end": 12897.82, + "probability": 0.7844 + }, + { + "start": 12898.46, + "end": 12900.56, + "probability": 0.9917 + }, + { + "start": 12902.12, + "end": 12907.0, + "probability": 0.9768 + }, + { + "start": 12908.0, + "end": 12909.49, + "probability": 0.9814 + }, + { + "start": 12909.82, + "end": 12910.06, + "probability": 0.3412 + }, + { + "start": 12910.82, + "end": 12916.86, + "probability": 0.9807 + }, + { + "start": 12917.54, + "end": 12921.72, + "probability": 0.9565 + }, + { + "start": 12922.8, + "end": 12924.04, + "probability": 0.9897 + }, + { + "start": 12924.34, + "end": 12925.3, + "probability": 0.9912 + }, + { + "start": 12925.9, + "end": 12926.73, + "probability": 0.9932 + }, + { + "start": 12929.24, + "end": 12930.68, + "probability": 0.1202 + }, + { + "start": 12930.68, + "end": 12931.72, + "probability": 0.7551 + }, + { + "start": 12932.1, + "end": 12935.4, + "probability": 0.8888 + }, + { + "start": 12935.92, + "end": 12938.68, + "probability": 0.9549 + }, + { + "start": 12939.74, + "end": 12945.32, + "probability": 0.8521 + }, + { + "start": 12945.6, + "end": 12946.22, + "probability": 0.5513 + }, + { + "start": 12946.86, + "end": 12949.0, + "probability": 0.8228 + }, + { + "start": 12949.74, + "end": 12950.9, + "probability": 0.988 + }, + { + "start": 12951.02, + "end": 12955.24, + "probability": 0.8966 + }, + { + "start": 12955.9, + "end": 12956.22, + "probability": 0.5412 + }, + { + "start": 12956.34, + "end": 12957.54, + "probability": 0.5973 + }, + { + "start": 12957.66, + "end": 12958.36, + "probability": 0.7096 + }, + { + "start": 12958.7, + "end": 12961.02, + "probability": 0.8822 + }, + { + "start": 12961.7, + "end": 12963.19, + "probability": 0.5092 + }, + { + "start": 12963.9, + "end": 12965.38, + "probability": 0.7843 + }, + { + "start": 12965.4, + "end": 12965.86, + "probability": 0.8847 + }, + { + "start": 12965.98, + "end": 12966.32, + "probability": 0.9418 + }, + { + "start": 12966.4, + "end": 12966.64, + "probability": 0.7576 + }, + { + "start": 12966.92, + "end": 12969.38, + "probability": 0.979 + }, + { + "start": 12970.4, + "end": 12970.96, + "probability": 0.7486 + }, + { + "start": 12971.62, + "end": 12973.12, + "probability": 0.7932 + }, + { + "start": 12973.76, + "end": 12975.34, + "probability": 0.9854 + }, + { + "start": 12976.18, + "end": 12977.48, + "probability": 0.8523 + }, + { + "start": 12977.84, + "end": 12981.18, + "probability": 0.9888 + }, + { + "start": 12981.58, + "end": 12982.2, + "probability": 0.9321 + }, + { + "start": 12983.72, + "end": 12985.74, + "probability": 0.9799 + }, + { + "start": 12986.92, + "end": 12989.4, + "probability": 0.998 + }, + { + "start": 12990.18, + "end": 12991.16, + "probability": 0.882 + }, + { + "start": 12991.28, + "end": 12995.0, + "probability": 0.9789 + }, + { + "start": 12995.62, + "end": 12996.68, + "probability": 0.99 + }, + { + "start": 12997.44, + "end": 12998.56, + "probability": 0.8797 + }, + { + "start": 12998.96, + "end": 13000.32, + "probability": 0.9365 + }, + { + "start": 13000.38, + "end": 13001.22, + "probability": 0.8822 + }, + { + "start": 13001.8, + "end": 13005.36, + "probability": 0.9328 + }, + { + "start": 13006.26, + "end": 13007.56, + "probability": 0.9476 + }, + { + "start": 13008.4, + "end": 13009.22, + "probability": 0.6194 + }, + { + "start": 13010.16, + "end": 13012.56, + "probability": 0.9936 + }, + { + "start": 13013.02, + "end": 13014.66, + "probability": 0.9545 + }, + { + "start": 13015.2, + "end": 13016.3, + "probability": 0.6823 + }, + { + "start": 13016.34, + "end": 13018.02, + "probability": 0.8248 + }, + { + "start": 13018.16, + "end": 13018.46, + "probability": 0.8923 + }, + { + "start": 13018.54, + "end": 13018.86, + "probability": 0.8401 + }, + { + "start": 13019.08, + "end": 13019.36, + "probability": 0.9585 + }, + { + "start": 13019.4, + "end": 13019.62, + "probability": 0.6975 + }, + { + "start": 13020.32, + "end": 13021.1, + "probability": 0.9123 + }, + { + "start": 13022.54, + "end": 13026.26, + "probability": 0.9275 + }, + { + "start": 13026.82, + "end": 13030.0, + "probability": 0.9822 + }, + { + "start": 13030.42, + "end": 13031.94, + "probability": 0.9672 + }, + { + "start": 13032.0, + "end": 13034.58, + "probability": 0.7391 + }, + { + "start": 13034.68, + "end": 13035.42, + "probability": 0.8239 + }, + { + "start": 13036.24, + "end": 13041.38, + "probability": 0.9914 + }, + { + "start": 13041.5, + "end": 13041.86, + "probability": 0.6691 + }, + { + "start": 13042.46, + "end": 13042.46, + "probability": 0.4157 + }, + { + "start": 13042.46, + "end": 13044.56, + "probability": 0.72 + }, + { + "start": 13044.56, + "end": 13046.64, + "probability": 0.5225 + }, + { + "start": 13047.08, + "end": 13050.42, + "probability": 0.9775 + }, + { + "start": 13059.44, + "end": 13062.34, + "probability": 0.5489 + }, + { + "start": 13063.7, + "end": 13067.44, + "probability": 0.9171 + }, + { + "start": 13068.56, + "end": 13072.24, + "probability": 0.9576 + }, + { + "start": 13073.28, + "end": 13073.84, + "probability": 0.6039 + }, + { + "start": 13073.94, + "end": 13076.82, + "probability": 0.9182 + }, + { + "start": 13076.9, + "end": 13078.03, + "probability": 0.7011 + }, + { + "start": 13079.34, + "end": 13083.54, + "probability": 0.9714 + }, + { + "start": 13084.92, + "end": 13086.56, + "probability": 0.9069 + }, + { + "start": 13089.16, + "end": 13090.88, + "probability": 0.8793 + }, + { + "start": 13092.3, + "end": 13096.52, + "probability": 0.9612 + }, + { + "start": 13098.64, + "end": 13100.18, + "probability": 0.8568 + }, + { + "start": 13101.64, + "end": 13104.16, + "probability": 0.9681 + }, + { + "start": 13104.32, + "end": 13106.2, + "probability": 0.9453 + }, + { + "start": 13107.28, + "end": 13110.2, + "probability": 0.945 + }, + { + "start": 13110.2, + "end": 13113.38, + "probability": 0.9164 + }, + { + "start": 13114.4, + "end": 13117.9, + "probability": 0.9609 + }, + { + "start": 13119.24, + "end": 13122.72, + "probability": 0.9633 + }, + { + "start": 13122.86, + "end": 13125.76, + "probability": 0.9384 + }, + { + "start": 13126.4, + "end": 13131.12, + "probability": 0.9104 + }, + { + "start": 13131.4, + "end": 13131.6, + "probability": 0.7626 + }, + { + "start": 13132.36, + "end": 13133.98, + "probability": 0.5687 + }, + { + "start": 13134.1, + "end": 13136.48, + "probability": 0.9196 + }, + { + "start": 13136.66, + "end": 13137.88, + "probability": 0.843 + }, + { + "start": 13138.58, + "end": 13139.08, + "probability": 0.689 + }, + { + "start": 13139.68, + "end": 13142.32, + "probability": 0.9855 + }, + { + "start": 13143.74, + "end": 13147.16, + "probability": 0.9609 + }, + { + "start": 13147.6, + "end": 13149.37, + "probability": 0.646 + }, + { + "start": 13150.78, + "end": 13152.74, + "probability": 0.5839 + }, + { + "start": 13152.76, + "end": 13153.46, + "probability": 0.4482 + }, + { + "start": 13159.96, + "end": 13159.96, + "probability": 0.0636 + }, + { + "start": 13159.96, + "end": 13159.96, + "probability": 0.1088 + }, + { + "start": 13159.96, + "end": 13159.96, + "probability": 0.1257 + }, + { + "start": 13170.2, + "end": 13170.54, + "probability": 0.4968 + }, + { + "start": 13170.54, + "end": 13171.86, + "probability": 0.669 + }, + { + "start": 13172.6, + "end": 13173.86, + "probability": 0.8094 + }, + { + "start": 13174.02, + "end": 13174.42, + "probability": 0.5671 + }, + { + "start": 13174.42, + "end": 13179.88, + "probability": 0.6161 + }, + { + "start": 13179.98, + "end": 13182.84, + "probability": 0.8827 + }, + { + "start": 13183.75, + "end": 13188.9, + "probability": 0.8777 + }, + { + "start": 13189.52, + "end": 13190.68, + "probability": 0.525 + }, + { + "start": 13190.74, + "end": 13191.72, + "probability": 0.5307 + }, + { + "start": 13191.82, + "end": 13193.4, + "probability": 0.9143 + }, + { + "start": 13193.78, + "end": 13195.22, + "probability": 0.9611 + }, + { + "start": 13195.76, + "end": 13199.48, + "probability": 0.9163 + }, + { + "start": 13200.68, + "end": 13202.1, + "probability": 0.035 + }, + { + "start": 13202.68, + "end": 13204.4, + "probability": 0.2261 + }, + { + "start": 13204.54, + "end": 13205.64, + "probability": 0.9449 + }, + { + "start": 13205.7, + "end": 13206.46, + "probability": 0.7075 + }, + { + "start": 13206.56, + "end": 13207.02, + "probability": 0.8085 + }, + { + "start": 13207.64, + "end": 13209.62, + "probability": 0.9263 + }, + { + "start": 13210.44, + "end": 13212.4, + "probability": 0.9698 + }, + { + "start": 13212.4, + "end": 13213.96, + "probability": 0.8664 + }, + { + "start": 13214.1, + "end": 13214.96, + "probability": 0.5162 + }, + { + "start": 13217.02, + "end": 13219.48, + "probability": 0.9858 + }, + { + "start": 13220.78, + "end": 13222.74, + "probability": 0.4846 + }, + { + "start": 13225.5, + "end": 13227.72, + "probability": 0.7879 + }, + { + "start": 13229.36, + "end": 13231.64, + "probability": 0.8073 + }, + { + "start": 13232.9, + "end": 13233.72, + "probability": 0.6785 + }, + { + "start": 13237.76, + "end": 13239.98, + "probability": 0.5745 + }, + { + "start": 13240.6, + "end": 13243.42, + "probability": 0.7973 + }, + { + "start": 13244.46, + "end": 13245.38, + "probability": 0.1329 + }, + { + "start": 13246.2, + "end": 13251.16, + "probability": 0.1601 + }, + { + "start": 13256.74, + "end": 13258.1, + "probability": 0.6666 + }, + { + "start": 13261.15, + "end": 13264.72, + "probability": 0.9731 + }, + { + "start": 13266.06, + "end": 13267.98, + "probability": 0.9995 + }, + { + "start": 13271.68, + "end": 13272.94, + "probability": 0.889 + }, + { + "start": 13274.54, + "end": 13277.34, + "probability": 0.9751 + }, + { + "start": 13278.58, + "end": 13280.86, + "probability": 0.9793 + }, + { + "start": 13281.48, + "end": 13284.21, + "probability": 0.9976 + }, + { + "start": 13285.28, + "end": 13288.24, + "probability": 0.7914 + }, + { + "start": 13289.34, + "end": 13298.16, + "probability": 0.9362 + }, + { + "start": 13302.25, + "end": 13303.48, + "probability": 0.4561 + }, + { + "start": 13305.0, + "end": 13306.3, + "probability": 0.8794 + }, + { + "start": 13306.36, + "end": 13308.42, + "probability": 0.8372 + }, + { + "start": 13311.22, + "end": 13315.46, + "probability": 0.8381 + }, + { + "start": 13316.02, + "end": 13319.54, + "probability": 0.7979 + }, + { + "start": 13319.7, + "end": 13320.96, + "probability": 0.8584 + }, + { + "start": 13322.28, + "end": 13325.66, + "probability": 0.6041 + }, + { + "start": 13327.22, + "end": 13329.38, + "probability": 0.9614 + }, + { + "start": 13329.58, + "end": 13333.38, + "probability": 0.5027 + }, + { + "start": 13333.48, + "end": 13337.76, + "probability": 0.811 + }, + { + "start": 13338.5, + "end": 13340.26, + "probability": 0.8843 + }, + { + "start": 13340.82, + "end": 13345.62, + "probability": 0.9314 + }, + { + "start": 13346.42, + "end": 13347.36, + "probability": 0.9637 + }, + { + "start": 13348.64, + "end": 13352.28, + "probability": 0.9546 + }, + { + "start": 13352.78, + "end": 13353.46, + "probability": 0.938 + }, + { + "start": 13354.18, + "end": 13355.98, + "probability": 0.9487 + }, + { + "start": 13357.12, + "end": 13363.46, + "probability": 0.7943 + }, + { + "start": 13364.88, + "end": 13368.78, + "probability": 0.6069 + }, + { + "start": 13369.82, + "end": 13370.28, + "probability": 0.9576 + }, + { + "start": 13370.38, + "end": 13374.1, + "probability": 0.9811 + }, + { + "start": 13374.6, + "end": 13379.42, + "probability": 0.9969 + }, + { + "start": 13379.92, + "end": 13381.62, + "probability": 0.9977 + }, + { + "start": 13384.5, + "end": 13385.96, + "probability": 0.999 + }, + { + "start": 13387.44, + "end": 13388.32, + "probability": 0.6314 + }, + { + "start": 13389.66, + "end": 13391.1, + "probability": 0.7254 + }, + { + "start": 13392.3, + "end": 13397.94, + "probability": 0.9355 + }, + { + "start": 13398.54, + "end": 13398.74, + "probability": 0.8968 + }, + { + "start": 13400.62, + "end": 13405.4, + "probability": 0.9664 + }, + { + "start": 13405.52, + "end": 13407.08, + "probability": 0.9902 + }, + { + "start": 13407.22, + "end": 13408.96, + "probability": 0.7948 + }, + { + "start": 13409.26, + "end": 13410.1, + "probability": 0.8823 + }, + { + "start": 13411.0, + "end": 13411.84, + "probability": 0.766 + }, + { + "start": 13412.54, + "end": 13414.14, + "probability": 0.979 + }, + { + "start": 13414.64, + "end": 13416.94, + "probability": 0.9817 + }, + { + "start": 13418.04, + "end": 13421.92, + "probability": 0.8529 + }, + { + "start": 13422.44, + "end": 13423.42, + "probability": 0.672 + }, + { + "start": 13423.8, + "end": 13425.5, + "probability": 0.9008 + }, + { + "start": 13425.58, + "end": 13427.12, + "probability": 0.9833 + }, + { + "start": 13427.86, + "end": 13431.42, + "probability": 0.9867 + }, + { + "start": 13431.68, + "end": 13435.11, + "probability": 0.9392 + }, + { + "start": 13435.98, + "end": 13440.62, + "probability": 0.7166 + }, + { + "start": 13441.16, + "end": 13443.16, + "probability": 0.8691 + }, + { + "start": 13443.6, + "end": 13446.66, + "probability": 0.957 + }, + { + "start": 13447.38, + "end": 13449.11, + "probability": 0.9739 + }, + { + "start": 13449.5, + "end": 13450.62, + "probability": 0.7017 + }, + { + "start": 13450.72, + "end": 13451.9, + "probability": 0.8877 + }, + { + "start": 13452.26, + "end": 13454.3, + "probability": 0.9884 + }, + { + "start": 13454.6, + "end": 13455.28, + "probability": 0.7132 + }, + { + "start": 13455.52, + "end": 13457.28, + "probability": 0.7118 + }, + { + "start": 13457.34, + "end": 13459.02, + "probability": 0.9219 + }, + { + "start": 13459.5, + "end": 13460.91, + "probability": 0.9956 + }, + { + "start": 13461.02, + "end": 13461.85, + "probability": 0.9609 + }, + { + "start": 13462.22, + "end": 13464.08, + "probability": 0.3564 + }, + { + "start": 13465.74, + "end": 13467.38, + "probability": 0.8632 + }, + { + "start": 13468.08, + "end": 13473.72, + "probability": 0.8688 + }, + { + "start": 13474.72, + "end": 13475.24, + "probability": 0.6981 + }, + { + "start": 13475.32, + "end": 13476.14, + "probability": 0.8894 + }, + { + "start": 13476.32, + "end": 13480.14, + "probability": 0.9984 + }, + { + "start": 13480.14, + "end": 13483.58, + "probability": 0.9412 + }, + { + "start": 13483.85, + "end": 13487.26, + "probability": 0.9515 + }, + { + "start": 13487.56, + "end": 13488.46, + "probability": 0.6022 + }, + { + "start": 13488.86, + "end": 13490.56, + "probability": 0.9857 + }, + { + "start": 13490.94, + "end": 13491.86, + "probability": 0.7368 + }, + { + "start": 13491.94, + "end": 13492.98, + "probability": 0.7349 + }, + { + "start": 13494.4, + "end": 13497.46, + "probability": 0.8589 + }, + { + "start": 13497.92, + "end": 13498.88, + "probability": 0.8008 + }, + { + "start": 13499.28, + "end": 13501.36, + "probability": 0.9594 + }, + { + "start": 13501.44, + "end": 13503.36, + "probability": 0.5719 + }, + { + "start": 13503.36, + "end": 13504.72, + "probability": 0.9236 + }, + { + "start": 13505.5, + "end": 13508.18, + "probability": 0.7227 + }, + { + "start": 13509.44, + "end": 13510.8, + "probability": 0.8671 + }, + { + "start": 13511.12, + "end": 13511.8, + "probability": 0.658 + }, + { + "start": 13511.98, + "end": 13512.46, + "probability": 0.7328 + }, + { + "start": 13512.56, + "end": 13516.46, + "probability": 0.8087 + }, + { + "start": 13517.12, + "end": 13522.5, + "probability": 0.8822 + }, + { + "start": 13522.82, + "end": 13524.8, + "probability": 0.9823 + }, + { + "start": 13525.12, + "end": 13526.34, + "probability": 0.6946 + }, + { + "start": 13526.9, + "end": 13528.56, + "probability": 0.9785 + }, + { + "start": 13529.32, + "end": 13532.58, + "probability": 0.9902 + }, + { + "start": 13533.06, + "end": 13536.36, + "probability": 0.9922 + }, + { + "start": 13537.61, + "end": 13540.64, + "probability": 0.7629 + }, + { + "start": 13541.5, + "end": 13543.46, + "probability": 0.7073 + }, + { + "start": 13544.06, + "end": 13545.5, + "probability": 0.8145 + }, + { + "start": 13546.04, + "end": 13548.22, + "probability": 0.7896 + }, + { + "start": 13549.18, + "end": 13555.76, + "probability": 0.9732 + }, + { + "start": 13556.16, + "end": 13558.92, + "probability": 0.9803 + }, + { + "start": 13560.1, + "end": 13561.31, + "probability": 0.9784 + }, + { + "start": 13562.12, + "end": 13565.0, + "probability": 0.7712 + }, + { + "start": 13565.9, + "end": 13567.84, + "probability": 0.6951 + }, + { + "start": 13568.54, + "end": 13571.1, + "probability": 0.8706 + }, + { + "start": 13571.66, + "end": 13573.1, + "probability": 0.8037 + }, + { + "start": 13573.44, + "end": 13575.55, + "probability": 0.9902 + }, + { + "start": 13576.48, + "end": 13577.52, + "probability": 0.9839 + }, + { + "start": 13578.38, + "end": 13578.86, + "probability": 0.9771 + }, + { + "start": 13582.78, + "end": 13583.98, + "probability": 0.2971 + }, + { + "start": 13584.78, + "end": 13586.9, + "probability": 0.8174 + }, + { + "start": 13587.18, + "end": 13588.9, + "probability": 0.8278 + }, + { + "start": 13589.68, + "end": 13592.52, + "probability": 0.737 + }, + { + "start": 13592.56, + "end": 13594.58, + "probability": 0.6362 + }, + { + "start": 13594.86, + "end": 13596.62, + "probability": 0.5928 + }, + { + "start": 13596.8, + "end": 13596.8, + "probability": 0.2054 + }, + { + "start": 13596.8, + "end": 13596.8, + "probability": 0.1661 + }, + { + "start": 13596.8, + "end": 13601.32, + "probability": 0.6515 + }, + { + "start": 13601.44, + "end": 13602.38, + "probability": 0.8374 + }, + { + "start": 13603.3, + "end": 13604.36, + "probability": 0.8896 + }, + { + "start": 13607.34, + "end": 13609.18, + "probability": 0.2021 + }, + { + "start": 13610.18, + "end": 13610.42, + "probability": 0.2434 + }, + { + "start": 13610.42, + "end": 13611.58, + "probability": 0.34 + }, + { + "start": 13611.9, + "end": 13612.74, + "probability": 0.934 + }, + { + "start": 13612.94, + "end": 13613.78, + "probability": 0.9846 + }, + { + "start": 13613.98, + "end": 13620.08, + "probability": 0.8954 + }, + { + "start": 13620.6, + "end": 13622.94, + "probability": 0.8476 + }, + { + "start": 13624.42, + "end": 13625.04, + "probability": 0.0053 + }, + { + "start": 13625.04, + "end": 13629.18, + "probability": 0.8884 + }, + { + "start": 13630.88, + "end": 13631.38, + "probability": 0.1024 + }, + { + "start": 13631.38, + "end": 13632.26, + "probability": 0.5186 + }, + { + "start": 13633.06, + "end": 13635.24, + "probability": 0.9665 + }, + { + "start": 13635.76, + "end": 13639.12, + "probability": 0.9798 + }, + { + "start": 13640.04, + "end": 13643.56, + "probability": 0.7088 + }, + { + "start": 13644.03, + "end": 13645.2, + "probability": 0.4881 + }, + { + "start": 13645.64, + "end": 13646.94, + "probability": 0.8261 + }, + { + "start": 13647.0, + "end": 13650.0, + "probability": 0.99 + }, + { + "start": 13650.12, + "end": 13651.36, + "probability": 0.9958 + }, + { + "start": 13652.2, + "end": 13655.06, + "probability": 0.9668 + }, + { + "start": 13655.36, + "end": 13658.06, + "probability": 0.9434 + }, + { + "start": 13658.52, + "end": 13660.14, + "probability": 0.9736 + }, + { + "start": 13660.22, + "end": 13661.14, + "probability": 0.9467 + }, + { + "start": 13661.56, + "end": 13663.08, + "probability": 0.9766 + }, + { + "start": 13663.68, + "end": 13664.62, + "probability": 0.7657 + }, + { + "start": 13664.66, + "end": 13667.3, + "probability": 0.9478 + }, + { + "start": 13667.34, + "end": 13670.34, + "probability": 0.6405 + }, + { + "start": 13670.88, + "end": 13671.76, + "probability": 0.9659 + }, + { + "start": 13671.88, + "end": 13674.3, + "probability": 0.9917 + }, + { + "start": 13674.66, + "end": 13675.62, + "probability": 0.7828 + }, + { + "start": 13676.47, + "end": 13678.33, + "probability": 0.9497 + }, + { + "start": 13678.48, + "end": 13680.18, + "probability": 0.8903 + }, + { + "start": 13680.46, + "end": 13681.32, + "probability": 0.509 + }, + { + "start": 13681.74, + "end": 13683.08, + "probability": 0.793 + }, + { + "start": 13683.62, + "end": 13684.5, + "probability": 0.5489 + }, + { + "start": 13685.06, + "end": 13686.02, + "probability": 0.5673 + }, + { + "start": 13686.56, + "end": 13690.4, + "probability": 0.298 + }, + { + "start": 13691.0, + "end": 13692.64, + "probability": 0.9807 + }, + { + "start": 13693.42, + "end": 13694.96, + "probability": 0.989 + }, + { + "start": 13695.4, + "end": 13696.34, + "probability": 0.8267 + }, + { + "start": 13696.76, + "end": 13698.38, + "probability": 0.8932 + }, + { + "start": 13698.7, + "end": 13701.04, + "probability": 0.9889 + }, + { + "start": 13701.46, + "end": 13703.62, + "probability": 0.9844 + }, + { + "start": 13704.1, + "end": 13709.48, + "probability": 0.9546 + }, + { + "start": 13709.5, + "end": 13712.96, + "probability": 0.9854 + }, + { + "start": 13713.12, + "end": 13718.03, + "probability": 0.9924 + }, + { + "start": 13718.8, + "end": 13721.46, + "probability": 0.9165 + }, + { + "start": 13721.94, + "end": 13722.9, + "probability": 0.5472 + }, + { + "start": 13723.82, + "end": 13725.64, + "probability": 0.4843 + }, + { + "start": 13726.5, + "end": 13727.72, + "probability": 0.9958 + }, + { + "start": 13728.18, + "end": 13729.26, + "probability": 0.6799 + }, + { + "start": 13729.92, + "end": 13731.24, + "probability": 0.5154 + }, + { + "start": 13731.76, + "end": 13733.22, + "probability": 0.8655 + }, + { + "start": 13734.7, + "end": 13735.3, + "probability": 0.7757 + }, + { + "start": 13735.38, + "end": 13736.62, + "probability": 0.9112 + }, + { + "start": 13736.88, + "end": 13737.58, + "probability": 0.7084 + }, + { + "start": 13737.7, + "end": 13738.62, + "probability": 0.8939 + }, + { + "start": 13739.3, + "end": 13741.12, + "probability": 0.9844 + }, + { + "start": 13741.7, + "end": 13743.01, + "probability": 0.9263 + }, + { + "start": 13743.46, + "end": 13745.38, + "probability": 0.9976 + }, + { + "start": 13747.6, + "end": 13749.04, + "probability": 0.2994 + }, + { + "start": 13749.16, + "end": 13754.66, + "probability": 0.9893 + }, + { + "start": 13754.74, + "end": 13759.68, + "probability": 0.9485 + }, + { + "start": 13760.8, + "end": 13763.74, + "probability": 0.8909 + }, + { + "start": 13764.48, + "end": 13766.88, + "probability": 0.8003 + }, + { + "start": 13768.68, + "end": 13770.04, + "probability": 0.2412 + }, + { + "start": 13770.36, + "end": 13772.98, + "probability": 0.8097 + }, + { + "start": 13774.62, + "end": 13774.96, + "probability": 0.3032 + }, + { + "start": 13775.1, + "end": 13779.42, + "probability": 0.6323 + }, + { + "start": 13779.94, + "end": 13780.98, + "probability": 0.4695 + }, + { + "start": 13781.02, + "end": 13781.34, + "probability": 0.3689 + }, + { + "start": 13781.52, + "end": 13783.62, + "probability": 0.9556 + }, + { + "start": 13783.98, + "end": 13786.72, + "probability": 0.9664 + }, + { + "start": 13787.04, + "end": 13787.24, + "probability": 0.6638 + }, + { + "start": 13788.38, + "end": 13788.48, + "probability": 0.3856 + }, + { + "start": 13788.66, + "end": 13791.0, + "probability": 0.9183 + }, + { + "start": 13791.64, + "end": 13792.32, + "probability": 0.9629 + }, + { + "start": 13793.22, + "end": 13794.48, + "probability": 0.9157 + }, + { + "start": 13794.96, + "end": 13797.54, + "probability": 0.7697 + }, + { + "start": 13797.8, + "end": 13798.74, + "probability": 0.7052 + }, + { + "start": 13799.06, + "end": 13799.26, + "probability": 0.5455 + }, + { + "start": 13799.82, + "end": 13803.26, + "probability": 0.542 + }, + { + "start": 13803.58, + "end": 13804.38, + "probability": 0.6417 + }, + { + "start": 13804.68, + "end": 13805.74, + "probability": 0.9886 + }, + { + "start": 13805.84, + "end": 13806.6, + "probability": 0.939 + }, + { + "start": 13806.86, + "end": 13808.72, + "probability": 0.83 + }, + { + "start": 13809.02, + "end": 13809.94, + "probability": 0.7121 + }, + { + "start": 13809.96, + "end": 13810.58, + "probability": 0.8189 + }, + { + "start": 13810.68, + "end": 13811.84, + "probability": 0.7916 + }, + { + "start": 13812.52, + "end": 13814.7, + "probability": 0.9822 + }, + { + "start": 13816.6, + "end": 13816.96, + "probability": 0.5322 + }, + { + "start": 13818.12, + "end": 13819.18, + "probability": 0.7146 + }, + { + "start": 13819.8, + "end": 13820.3, + "probability": 0.7066 + }, + { + "start": 13833.56, + "end": 13835.24, + "probability": 0.6199 + }, + { + "start": 13836.6, + "end": 13837.92, + "probability": 0.8253 + }, + { + "start": 13839.18, + "end": 13839.82, + "probability": 0.7166 + }, + { + "start": 13843.56, + "end": 13846.16, + "probability": 0.5234 + }, + { + "start": 13847.54, + "end": 13850.78, + "probability": 0.8772 + }, + { + "start": 13851.7, + "end": 13853.5, + "probability": 0.7322 + }, + { + "start": 13854.42, + "end": 13855.94, + "probability": 0.9531 + }, + { + "start": 13855.98, + "end": 13857.36, + "probability": 0.8106 + }, + { + "start": 13861.12, + "end": 13861.7, + "probability": 0.6191 + }, + { + "start": 13862.16, + "end": 13864.72, + "probability": 0.8998 + }, + { + "start": 13864.88, + "end": 13868.26, + "probability": 0.8401 + }, + { + "start": 13869.56, + "end": 13872.14, + "probability": 0.9252 + }, + { + "start": 13873.5, + "end": 13878.44, + "probability": 0.9587 + }, + { + "start": 13880.2, + "end": 13880.86, + "probability": 0.8546 + }, + { + "start": 13882.46, + "end": 13883.28, + "probability": 0.9658 + }, + { + "start": 13883.74, + "end": 13885.58, + "probability": 0.8661 + }, + { + "start": 13885.72, + "end": 13886.6, + "probability": 0.8809 + }, + { + "start": 13886.72, + "end": 13888.02, + "probability": 0.7252 + }, + { + "start": 13888.9, + "end": 13889.42, + "probability": 0.9419 + }, + { + "start": 13890.74, + "end": 13895.18, + "probability": 0.9468 + }, + { + "start": 13896.44, + "end": 13899.12, + "probability": 0.9945 + }, + { + "start": 13899.5, + "end": 13900.27, + "probability": 0.9487 + }, + { + "start": 13900.46, + "end": 13902.18, + "probability": 0.5399 + }, + { + "start": 13903.32, + "end": 13903.44, + "probability": 0.1284 + }, + { + "start": 13903.44, + "end": 13907.24, + "probability": 0.8282 + }, + { + "start": 13908.08, + "end": 13913.08, + "probability": 0.9844 + }, + { + "start": 13914.38, + "end": 13918.26, + "probability": 0.9785 + }, + { + "start": 13918.84, + "end": 13919.44, + "probability": 0.1944 + }, + { + "start": 13920.22, + "end": 13922.1, + "probability": 0.9196 + }, + { + "start": 13923.02, + "end": 13927.06, + "probability": 0.9176 + }, + { + "start": 13928.14, + "end": 13931.46, + "probability": 0.8273 + }, + { + "start": 13931.8, + "end": 13932.96, + "probability": 0.9819 + }, + { + "start": 13933.7, + "end": 13935.06, + "probability": 0.9888 + }, + { + "start": 13935.74, + "end": 13939.86, + "probability": 0.9946 + }, + { + "start": 13940.64, + "end": 13942.84, + "probability": 0.8773 + }, + { + "start": 13945.82, + "end": 13950.24, + "probability": 0.9471 + }, + { + "start": 13952.88, + "end": 13955.58, + "probability": 0.8882 + }, + { + "start": 13956.7, + "end": 13960.16, + "probability": 0.99 + }, + { + "start": 13962.42, + "end": 13965.2, + "probability": 0.9941 + }, + { + "start": 13965.38, + "end": 13966.82, + "probability": 0.9365 + }, + { + "start": 13967.7, + "end": 13970.26, + "probability": 0.9553 + }, + { + "start": 13972.06, + "end": 13977.02, + "probability": 0.994 + }, + { + "start": 13977.48, + "end": 13977.72, + "probability": 0.668 + }, + { + "start": 13978.54, + "end": 13980.94, + "probability": 0.5343 + }, + { + "start": 13981.16, + "end": 13982.9, + "probability": 0.8597 + }, + { + "start": 13983.88, + "end": 13986.6, + "probability": 0.8271 + }, + { + "start": 13991.06, + "end": 13992.3, + "probability": 0.9412 + }, + { + "start": 13998.72, + "end": 14000.02, + "probability": 0.7251 + }, + { + "start": 14000.16, + "end": 14000.16, + "probability": 0.5171 + }, + { + "start": 14000.16, + "end": 14000.86, + "probability": 0.7438 + }, + { + "start": 14001.02, + "end": 14004.02, + "probability": 0.9823 + }, + { + "start": 14004.66, + "end": 14007.12, + "probability": 0.9953 + }, + { + "start": 14007.8, + "end": 14011.66, + "probability": 0.978 + }, + { + "start": 14012.38, + "end": 14013.16, + "probability": 0.9149 + }, + { + "start": 14013.42, + "end": 14014.08, + "probability": 0.9058 + }, + { + "start": 14014.24, + "end": 14014.92, + "probability": 0.4431 + }, + { + "start": 14014.96, + "end": 14015.7, + "probability": 0.7505 + }, + { + "start": 14016.36, + "end": 14018.06, + "probability": 0.8903 + }, + { + "start": 14018.62, + "end": 14021.8, + "probability": 0.9971 + }, + { + "start": 14022.48, + "end": 14027.2, + "probability": 0.9873 + }, + { + "start": 14027.86, + "end": 14029.6, + "probability": 0.8549 + }, + { + "start": 14030.16, + "end": 14032.24, + "probability": 0.777 + }, + { + "start": 14032.94, + "end": 14035.2, + "probability": 0.703 + }, + { + "start": 14036.12, + "end": 14040.16, + "probability": 0.9849 + }, + { + "start": 14040.38, + "end": 14041.14, + "probability": 0.5088 + }, + { + "start": 14041.66, + "end": 14043.04, + "probability": 0.8321 + }, + { + "start": 14043.8, + "end": 14045.32, + "probability": 0.9592 + }, + { + "start": 14045.88, + "end": 14048.7, + "probability": 0.9831 + }, + { + "start": 14049.26, + "end": 14052.18, + "probability": 0.9234 + }, + { + "start": 14053.06, + "end": 14055.18, + "probability": 0.8401 + }, + { + "start": 14056.02, + "end": 14058.0, + "probability": 0.943 + }, + { + "start": 14059.14, + "end": 14062.1, + "probability": 0.7946 + }, + { + "start": 14062.7, + "end": 14066.64, + "probability": 0.9308 + }, + { + "start": 14066.74, + "end": 14070.74, + "probability": 0.819 + }, + { + "start": 14071.78, + "end": 14072.9, + "probability": 0.8362 + }, + { + "start": 14073.22, + "end": 14075.24, + "probability": 0.9854 + }, + { + "start": 14075.9, + "end": 14079.02, + "probability": 0.9858 + }, + { + "start": 14079.68, + "end": 14082.02, + "probability": 0.9684 + }, + { + "start": 14082.38, + "end": 14085.8, + "probability": 0.9967 + }, + { + "start": 14086.82, + "end": 14088.94, + "probability": 0.7831 + }, + { + "start": 14090.36, + "end": 14092.68, + "probability": 0.9415 + }, + { + "start": 14093.2, + "end": 14094.72, + "probability": 0.8792 + }, + { + "start": 14095.08, + "end": 14096.74, + "probability": 0.787 + }, + { + "start": 14097.14, + "end": 14097.74, + "probability": 0.5289 + }, + { + "start": 14098.08, + "end": 14098.58, + "probability": 0.8927 + }, + { + "start": 14099.02, + "end": 14099.86, + "probability": 0.3758 + }, + { + "start": 14100.0, + "end": 14100.89, + "probability": 0.9686 + }, + { + "start": 14101.72, + "end": 14103.7, + "probability": 0.9008 + }, + { + "start": 14103.96, + "end": 14105.69, + "probability": 0.9893 + }, + { + "start": 14107.0, + "end": 14108.56, + "probability": 0.9868 + }, + { + "start": 14108.88, + "end": 14109.82, + "probability": 0.9567 + }, + { + "start": 14110.72, + "end": 14111.88, + "probability": 0.6668 + }, + { + "start": 14112.06, + "end": 14113.38, + "probability": 0.9175 + }, + { + "start": 14113.84, + "end": 14115.06, + "probability": 0.5189 + }, + { + "start": 14115.18, + "end": 14118.08, + "probability": 0.8702 + }, + { + "start": 14118.42, + "end": 14118.56, + "probability": 0.62 + }, + { + "start": 14118.62, + "end": 14118.88, + "probability": 0.7229 + }, + { + "start": 14118.94, + "end": 14120.52, + "probability": 0.9563 + }, + { + "start": 14120.98, + "end": 14122.62, + "probability": 0.9944 + }, + { + "start": 14122.62, + "end": 14123.48, + "probability": 0.8394 + }, + { + "start": 14124.0, + "end": 14125.71, + "probability": 0.9744 + }, + { + "start": 14126.42, + "end": 14127.94, + "probability": 0.7323 + }, + { + "start": 14128.3, + "end": 14131.72, + "probability": 0.9328 + }, + { + "start": 14131.86, + "end": 14132.8, + "probability": 0.7848 + }, + { + "start": 14133.16, + "end": 14134.14, + "probability": 0.8961 + }, + { + "start": 14134.46, + "end": 14135.65, + "probability": 0.9807 + }, + { + "start": 14136.62, + "end": 14139.92, + "probability": 0.9864 + }, + { + "start": 14141.16, + "end": 14144.12, + "probability": 0.9584 + }, + { + "start": 14144.74, + "end": 14146.5, + "probability": 0.9427 + }, + { + "start": 14147.18, + "end": 14148.3, + "probability": 0.781 + }, + { + "start": 14148.66, + "end": 14152.94, + "probability": 0.9697 + }, + { + "start": 14153.34, + "end": 14154.48, + "probability": 0.9915 + }, + { + "start": 14154.56, + "end": 14157.12, + "probability": 0.9591 + }, + { + "start": 14157.28, + "end": 14160.42, + "probability": 0.8667 + }, + { + "start": 14160.5, + "end": 14162.08, + "probability": 0.9078 + }, + { + "start": 14163.32, + "end": 14167.46, + "probability": 0.9456 + }, + { + "start": 14168.06, + "end": 14169.84, + "probability": 0.8099 + }, + { + "start": 14169.92, + "end": 14171.42, + "probability": 0.8206 + }, + { + "start": 14172.28, + "end": 14173.88, + "probability": 0.5323 + }, + { + "start": 14174.44, + "end": 14176.46, + "probability": 0.9642 + }, + { + "start": 14177.28, + "end": 14179.6, + "probability": 0.8237 + }, + { + "start": 14179.8, + "end": 14180.88, + "probability": 0.5511 + }, + { + "start": 14180.96, + "end": 14181.48, + "probability": 0.5565 + }, + { + "start": 14198.77, + "end": 14205.8, + "probability": 0.2123 + }, + { + "start": 14205.96, + "end": 14207.6, + "probability": 0.0225 + }, + { + "start": 14207.76, + "end": 14209.42, + "probability": 0.4315 + }, + { + "start": 14209.94, + "end": 14210.46, + "probability": 0.2521 + }, + { + "start": 14210.46, + "end": 14211.44, + "probability": 0.3558 + }, + { + "start": 14211.98, + "end": 14213.78, + "probability": 0.7397 + }, + { + "start": 14215.2, + "end": 14215.84, + "probability": 0.5901 + }, + { + "start": 14215.84, + "end": 14217.26, + "probability": 0.1972 + }, + { + "start": 14218.46, + "end": 14220.24, + "probability": 0.3724 + }, + { + "start": 14220.4, + "end": 14224.36, + "probability": 0.0292 + }, + { + "start": 14224.57, + "end": 14225.66, + "probability": 0.0734 + }, + { + "start": 14225.66, + "end": 14228.25, + "probability": 0.1984 + }, + { + "start": 14245.2, + "end": 14246.89, + "probability": 0.0958 + }, + { + "start": 14249.0, + "end": 14250.14, + "probability": 0.0315 + }, + { + "start": 14250.14, + "end": 14252.82, + "probability": 0.051 + }, + { + "start": 14252.82, + "end": 14252.82, + "probability": 0.0516 + }, + { + "start": 14252.82, + "end": 14252.82, + "probability": 0.3459 + }, + { + "start": 14252.82, + "end": 14252.82, + "probability": 0.2597 + }, + { + "start": 14252.82, + "end": 14252.82, + "probability": 0.0683 + }, + { + "start": 14252.82, + "end": 14252.82, + "probability": 0.1075 + }, + { + "start": 14252.82, + "end": 14255.52, + "probability": 0.5527 + }, + { + "start": 14256.56, + "end": 14258.57, + "probability": 0.674 + }, + { + "start": 14259.48, + "end": 14262.58, + "probability": 0.8644 + }, + { + "start": 14264.66, + "end": 14267.42, + "probability": 0.9447 + }, + { + "start": 14267.86, + "end": 14273.56, + "probability": 0.8853 + }, + { + "start": 14274.84, + "end": 14275.58, + "probability": 0.8644 + }, + { + "start": 14276.6, + "end": 14280.18, + "probability": 0.8202 + }, + { + "start": 14280.76, + "end": 14282.9, + "probability": 0.8934 + }, + { + "start": 14284.2, + "end": 14285.48, + "probability": 0.8071 + }, + { + "start": 14285.8, + "end": 14287.2, + "probability": 0.9689 + }, + { + "start": 14288.02, + "end": 14290.88, + "probability": 0.9893 + }, + { + "start": 14292.86, + "end": 14294.1, + "probability": 0.8696 + }, + { + "start": 14298.9, + "end": 14299.98, + "probability": 0.827 + }, + { + "start": 14300.12, + "end": 14300.94, + "probability": 0.6276 + }, + { + "start": 14300.98, + "end": 14303.68, + "probability": 0.9924 + }, + { + "start": 14304.26, + "end": 14304.82, + "probability": 0.9185 + }, + { + "start": 14306.6, + "end": 14308.7, + "probability": 0.8966 + }, + { + "start": 14309.72, + "end": 14312.48, + "probability": 0.9871 + }, + { + "start": 14313.5, + "end": 14318.08, + "probability": 0.9933 + }, + { + "start": 14319.02, + "end": 14321.38, + "probability": 0.9441 + }, + { + "start": 14322.94, + "end": 14327.98, + "probability": 0.9768 + }, + { + "start": 14328.86, + "end": 14330.72, + "probability": 0.9896 + }, + { + "start": 14332.32, + "end": 14334.58, + "probability": 0.9676 + }, + { + "start": 14336.68, + "end": 14339.56, + "probability": 0.8758 + }, + { + "start": 14340.76, + "end": 14343.98, + "probability": 0.9839 + }, + { + "start": 14345.74, + "end": 14347.58, + "probability": 0.9942 + }, + { + "start": 14348.1, + "end": 14350.46, + "probability": 0.9968 + }, + { + "start": 14351.02, + "end": 14352.26, + "probability": 0.768 + }, + { + "start": 14353.22, + "end": 14356.24, + "probability": 0.998 + }, + { + "start": 14356.98, + "end": 14358.24, + "probability": 0.9315 + }, + { + "start": 14358.86, + "end": 14360.34, + "probability": 0.6281 + }, + { + "start": 14361.42, + "end": 14363.7, + "probability": 0.9866 + }, + { + "start": 14364.6, + "end": 14365.7, + "probability": 0.6467 + }, + { + "start": 14366.72, + "end": 14367.46, + "probability": 0.896 + }, + { + "start": 14368.2, + "end": 14370.88, + "probability": 0.9746 + }, + { + "start": 14371.72, + "end": 14372.52, + "probability": 0.9362 + }, + { + "start": 14373.2, + "end": 14373.36, + "probability": 0.6706 + }, + { + "start": 14374.26, + "end": 14378.6, + "probability": 0.9377 + }, + { + "start": 14379.14, + "end": 14380.96, + "probability": 0.9678 + }, + { + "start": 14382.74, + "end": 14384.72, + "probability": 0.4965 + }, + { + "start": 14385.92, + "end": 14387.62, + "probability": 0.8664 + }, + { + "start": 14388.32, + "end": 14390.28, + "probability": 0.77 + }, + { + "start": 14392.26, + "end": 14394.72, + "probability": 0.8467 + }, + { + "start": 14395.5, + "end": 14400.2, + "probability": 0.9932 + }, + { + "start": 14401.62, + "end": 14403.84, + "probability": 0.992 + }, + { + "start": 14404.66, + "end": 14408.34, + "probability": 0.7785 + }, + { + "start": 14409.0, + "end": 14412.4, + "probability": 0.6924 + }, + { + "start": 14414.2, + "end": 14416.3, + "probability": 0.9717 + }, + { + "start": 14417.14, + "end": 14419.16, + "probability": 0.9978 + }, + { + "start": 14419.78, + "end": 14422.68, + "probability": 0.9609 + }, + { + "start": 14424.2, + "end": 14426.32, + "probability": 0.9868 + }, + { + "start": 14427.1, + "end": 14430.92, + "probability": 0.9636 + }, + { + "start": 14431.96, + "end": 14436.04, + "probability": 0.9797 + }, + { + "start": 14436.98, + "end": 14441.58, + "probability": 0.9885 + }, + { + "start": 14442.42, + "end": 14445.7, + "probability": 0.999 + }, + { + "start": 14447.54, + "end": 14449.44, + "probability": 0.6654 + }, + { + "start": 14449.98, + "end": 14452.56, + "probability": 0.9895 + }, + { + "start": 14453.64, + "end": 14457.2, + "probability": 0.9806 + }, + { + "start": 14457.74, + "end": 14460.48, + "probability": 0.7525 + }, + { + "start": 14461.82, + "end": 14466.08, + "probability": 0.5728 + }, + { + "start": 14467.9, + "end": 14471.44, + "probability": 0.9601 + }, + { + "start": 14472.42, + "end": 14474.96, + "probability": 0.8654 + }, + { + "start": 14475.48, + "end": 14478.4, + "probability": 0.5874 + }, + { + "start": 14478.9, + "end": 14481.98, + "probability": 0.9948 + }, + { + "start": 14483.1, + "end": 14486.78, + "probability": 0.9761 + }, + { + "start": 14488.82, + "end": 14491.3, + "probability": 0.9971 + }, + { + "start": 14492.14, + "end": 14493.7, + "probability": 0.851 + }, + { + "start": 14495.6, + "end": 14496.58, + "probability": 0.686 + }, + { + "start": 14497.68, + "end": 14499.2, + "probability": 0.964 + }, + { + "start": 14500.34, + "end": 14504.44, + "probability": 0.9559 + }, + { + "start": 14504.58, + "end": 14506.54, + "probability": 0.9832 + }, + { + "start": 14507.88, + "end": 14512.92, + "probability": 0.9297 + }, + { + "start": 14513.8, + "end": 14514.54, + "probability": 0.7725 + }, + { + "start": 14514.64, + "end": 14515.9, + "probability": 0.9398 + }, + { + "start": 14516.02, + "end": 14517.48, + "probability": 0.9162 + }, + { + "start": 14517.62, + "end": 14518.8, + "probability": 0.7993 + }, + { + "start": 14521.59, + "end": 14524.84, + "probability": 0.9883 + }, + { + "start": 14524.84, + "end": 14528.86, + "probability": 0.9415 + }, + { + "start": 14529.9, + "end": 14532.92, + "probability": 0.8945 + }, + { + "start": 14534.86, + "end": 14537.1, + "probability": 0.937 + }, + { + "start": 14537.94, + "end": 14544.32, + "probability": 0.9856 + }, + { + "start": 14545.0, + "end": 14551.46, + "probability": 0.9885 + }, + { + "start": 14554.56, + "end": 14555.58, + "probability": 0.8819 + }, + { + "start": 14555.9, + "end": 14556.82, + "probability": 0.7269 + }, + { + "start": 14557.06, + "end": 14563.52, + "probability": 0.988 + }, + { + "start": 14565.4, + "end": 14567.42, + "probability": 0.9904 + }, + { + "start": 14568.26, + "end": 14570.06, + "probability": 0.5454 + }, + { + "start": 14571.32, + "end": 14573.62, + "probability": 0.9616 + }, + { + "start": 14574.64, + "end": 14577.12, + "probability": 0.6962 + }, + { + "start": 14578.02, + "end": 14579.36, + "probability": 0.9139 + }, + { + "start": 14579.88, + "end": 14582.68, + "probability": 0.9825 + }, + { + "start": 14583.26, + "end": 14586.95, + "probability": 0.8141 + }, + { + "start": 14588.24, + "end": 14589.64, + "probability": 0.9043 + }, + { + "start": 14589.74, + "end": 14594.06, + "probability": 0.9857 + }, + { + "start": 14596.2, + "end": 14598.04, + "probability": 0.5128 + }, + { + "start": 14598.08, + "end": 14600.88, + "probability": 0.6902 + }, + { + "start": 14601.8, + "end": 14605.22, + "probability": 0.8649 + }, + { + "start": 14605.88, + "end": 14608.38, + "probability": 0.9861 + }, + { + "start": 14610.64, + "end": 14612.54, + "probability": 0.9857 + }, + { + "start": 14613.3, + "end": 14618.52, + "probability": 0.9824 + }, + { + "start": 14620.24, + "end": 14625.34, + "probability": 0.9938 + }, + { + "start": 14626.2, + "end": 14626.62, + "probability": 0.7467 + }, + { + "start": 14628.3, + "end": 14631.26, + "probability": 0.9757 + }, + { + "start": 14632.08, + "end": 14634.92, + "probability": 0.4776 + }, + { + "start": 14637.16, + "end": 14639.38, + "probability": 0.5095 + }, + { + "start": 14639.76, + "end": 14641.12, + "probability": 0.7979 + }, + { + "start": 14641.28, + "end": 14642.29, + "probability": 0.9807 + }, + { + "start": 14643.18, + "end": 14644.38, + "probability": 0.7882 + }, + { + "start": 14647.6, + "end": 14648.84, + "probability": 0.7145 + }, + { + "start": 14649.1, + "end": 14651.59, + "probability": 0.9661 + }, + { + "start": 14652.22, + "end": 14653.02, + "probability": 0.7567 + }, + { + "start": 14653.24, + "end": 14654.24, + "probability": 0.8503 + }, + { + "start": 14655.88, + "end": 14658.36, + "probability": 0.902 + }, + { + "start": 14659.44, + "end": 14662.11, + "probability": 0.9556 + }, + { + "start": 14663.34, + "end": 14665.46, + "probability": 0.958 + }, + { + "start": 14665.88, + "end": 14666.66, + "probability": 0.8347 + }, + { + "start": 14667.14, + "end": 14668.46, + "probability": 0.9117 + }, + { + "start": 14669.16, + "end": 14673.72, + "probability": 0.9278 + }, + { + "start": 14674.34, + "end": 14677.28, + "probability": 0.956 + }, + { + "start": 14677.92, + "end": 14679.36, + "probability": 0.7751 + }, + { + "start": 14679.9, + "end": 14680.8, + "probability": 0.3667 + }, + { + "start": 14681.62, + "end": 14682.22, + "probability": 0.7026 + }, + { + "start": 14682.48, + "end": 14684.56, + "probability": 0.9019 + }, + { + "start": 14686.06, + "end": 14687.71, + "probability": 0.8711 + }, + { + "start": 14688.48, + "end": 14689.14, + "probability": 0.4313 + }, + { + "start": 14689.68, + "end": 14692.63, + "probability": 0.8575 + }, + { + "start": 14695.38, + "end": 14699.16, + "probability": 0.9784 + }, + { + "start": 14699.94, + "end": 14703.54, + "probability": 0.7271 + }, + { + "start": 14704.46, + "end": 14707.38, + "probability": 0.9956 + }, + { + "start": 14709.16, + "end": 14709.72, + "probability": 0.8906 + }, + { + "start": 14709.86, + "end": 14710.78, + "probability": 0.68 + }, + { + "start": 14710.96, + "end": 14714.02, + "probability": 0.988 + }, + { + "start": 14716.26, + "end": 14720.26, + "probability": 0.9875 + }, + { + "start": 14722.36, + "end": 14725.13, + "probability": 0.9966 + }, + { + "start": 14725.86, + "end": 14725.86, + "probability": 0.2382 + }, + { + "start": 14727.14, + "end": 14728.9, + "probability": 0.9852 + }, + { + "start": 14731.28, + "end": 14734.21, + "probability": 0.9901 + }, + { + "start": 14734.64, + "end": 14738.04, + "probability": 0.9919 + }, + { + "start": 14739.62, + "end": 14745.68, + "probability": 0.988 + }, + { + "start": 14745.68, + "end": 14751.26, + "probability": 0.9982 + }, + { + "start": 14753.6, + "end": 14757.8, + "probability": 0.7653 + }, + { + "start": 14758.3, + "end": 14760.06, + "probability": 0.9932 + }, + { + "start": 14760.72, + "end": 14763.06, + "probability": 0.9779 + }, + { + "start": 14763.56, + "end": 14765.12, + "probability": 0.9772 + }, + { + "start": 14765.68, + "end": 14771.0, + "probability": 0.9957 + }, + { + "start": 14771.0, + "end": 14776.56, + "probability": 0.999 + }, + { + "start": 14777.4, + "end": 14779.42, + "probability": 0.8222 + }, + { + "start": 14780.16, + "end": 14784.4, + "probability": 0.6728 + }, + { + "start": 14784.56, + "end": 14787.74, + "probability": 0.9906 + }, + { + "start": 14788.28, + "end": 14789.7, + "probability": 0.9724 + }, + { + "start": 14790.32, + "end": 14793.04, + "probability": 0.9259 + }, + { + "start": 14794.18, + "end": 14794.18, + "probability": 0.541 + }, + { + "start": 14794.18, + "end": 14799.14, + "probability": 0.8802 + }, + { + "start": 14799.26, + "end": 14800.68, + "probability": 0.8555 + }, + { + "start": 14801.12, + "end": 14803.28, + "probability": 0.9497 + }, + { + "start": 14803.76, + "end": 14809.55, + "probability": 0.9897 + }, + { + "start": 14809.82, + "end": 14811.58, + "probability": 0.9652 + }, + { + "start": 14812.59, + "end": 14815.46, + "probability": 0.9716 + }, + { + "start": 14815.92, + "end": 14816.92, + "probability": 0.9133 + }, + { + "start": 14817.06, + "end": 14817.84, + "probability": 0.6823 + }, + { + "start": 14818.0, + "end": 14822.04, + "probability": 0.9287 + }, + { + "start": 14822.32, + "end": 14826.64, + "probability": 0.9837 + }, + { + "start": 14826.72, + "end": 14827.56, + "probability": 0.8129 + }, + { + "start": 14827.82, + "end": 14828.68, + "probability": 0.9083 + }, + { + "start": 14828.92, + "end": 14833.52, + "probability": 0.9842 + }, + { + "start": 14833.7, + "end": 14836.38, + "probability": 0.9908 + }, + { + "start": 14837.18, + "end": 14840.24, + "probability": 0.8282 + }, + { + "start": 14840.44, + "end": 14841.04, + "probability": 0.8357 + }, + { + "start": 14841.56, + "end": 14846.38, + "probability": 0.9675 + }, + { + "start": 14847.34, + "end": 14848.48, + "probability": 0.9824 + }, + { + "start": 14849.06, + "end": 14850.7, + "probability": 0.5008 + }, + { + "start": 14851.28, + "end": 14853.14, + "probability": 0.9225 + }, + { + "start": 14853.86, + "end": 14856.66, + "probability": 0.9912 + }, + { + "start": 14857.22, + "end": 14861.4, + "probability": 0.7249 + }, + { + "start": 14863.72, + "end": 14863.72, + "probability": 0.0956 + }, + { + "start": 14863.72, + "end": 14863.72, + "probability": 0.1606 + }, + { + "start": 14863.72, + "end": 14868.06, + "probability": 0.9626 + }, + { + "start": 14868.1, + "end": 14872.62, + "probability": 0.9889 + }, + { + "start": 14873.0, + "end": 14879.36, + "probability": 0.9954 + }, + { + "start": 14879.72, + "end": 14880.06, + "probability": 0.6491 + }, + { + "start": 14880.4, + "end": 14882.74, + "probability": 0.9525 + }, + { + "start": 14883.62, + "end": 14886.5, + "probability": 0.6297 + }, + { + "start": 14889.92, + "end": 14892.84, + "probability": 0.1292 + }, + { + "start": 14895.3, + "end": 14896.12, + "probability": 0.8284 + }, + { + "start": 14898.12, + "end": 14898.64, + "probability": 0.633 + }, + { + "start": 14900.0, + "end": 14901.4, + "probability": 0.7961 + }, + { + "start": 14904.4, + "end": 14905.26, + "probability": 0.0158 + }, + { + "start": 14905.36, + "end": 14905.36, + "probability": 0.4769 + }, + { + "start": 14905.36, + "end": 14906.04, + "probability": 0.3544 + }, + { + "start": 14908.06, + "end": 14910.02, + "probability": 0.6613 + }, + { + "start": 14911.56, + "end": 14915.88, + "probability": 0.9941 + }, + { + "start": 14915.88, + "end": 14923.44, + "probability": 0.9878 + }, + { + "start": 14924.24, + "end": 14929.04, + "probability": 0.8857 + }, + { + "start": 14931.26, + "end": 14931.68, + "probability": 0.6502 + }, + { + "start": 14931.82, + "end": 14934.22, + "probability": 0.9488 + }, + { + "start": 14934.34, + "end": 14936.52, + "probability": 0.9192 + }, + { + "start": 14936.62, + "end": 14938.7, + "probability": 0.8393 + }, + { + "start": 14940.52, + "end": 14941.5, + "probability": 0.4693 + }, + { + "start": 14942.32, + "end": 14948.5, + "probability": 0.8615 + }, + { + "start": 14949.84, + "end": 14954.44, + "probability": 0.9332 + }, + { + "start": 14954.68, + "end": 14956.18, + "probability": 0.8155 + }, + { + "start": 14958.25, + "end": 14960.6, + "probability": 0.8782 + }, + { + "start": 14962.22, + "end": 14964.92, + "probability": 0.6981 + }, + { + "start": 14965.58, + "end": 14967.16, + "probability": 0.9851 + }, + { + "start": 14968.16, + "end": 14972.58, + "probability": 0.9961 + }, + { + "start": 14975.38, + "end": 14975.94, + "probability": 0.8864 + }, + { + "start": 14976.6, + "end": 14979.42, + "probability": 0.9822 + }, + { + "start": 14979.66, + "end": 14983.6, + "probability": 0.9799 + }, + { + "start": 14984.12, + "end": 14985.56, + "probability": 0.9935 + }, + { + "start": 14986.38, + "end": 14989.1, + "probability": 0.9767 + }, + { + "start": 14989.86, + "end": 14992.9, + "probability": 0.9977 + }, + { + "start": 14993.0, + "end": 14996.98, + "probability": 0.9928 + }, + { + "start": 14998.02, + "end": 14998.74, + "probability": 0.5366 + }, + { + "start": 14999.52, + "end": 15001.08, + "probability": 0.9314 + }, + { + "start": 15001.08, + "end": 15003.4, + "probability": 0.9655 + }, + { + "start": 15004.04, + "end": 15007.26, + "probability": 0.9858 + }, + { + "start": 15007.26, + "end": 15011.34, + "probability": 0.9896 + }, + { + "start": 15012.18, + "end": 15014.74, + "probability": 0.9976 + }, + { + "start": 15015.26, + "end": 15019.66, + "probability": 0.9944 + }, + { + "start": 15020.18, + "end": 15023.44, + "probability": 0.9664 + }, + { + "start": 15024.14, + "end": 15024.5, + "probability": 0.56 + }, + { + "start": 15024.64, + "end": 15029.55, + "probability": 0.9946 + }, + { + "start": 15030.16, + "end": 15031.5, + "probability": 0.7423 + }, + { + "start": 15032.18, + "end": 15033.62, + "probability": 0.9427 + }, + { + "start": 15034.42, + "end": 15036.18, + "probability": 0.9319 + }, + { + "start": 15037.38, + "end": 15039.68, + "probability": 0.8964 + }, + { + "start": 15039.86, + "end": 15040.84, + "probability": 0.7242 + }, + { + "start": 15041.72, + "end": 15047.64, + "probability": 0.9057 + }, + { + "start": 15048.7, + "end": 15052.0, + "probability": 0.9332 + }, + { + "start": 15052.48, + "end": 15052.68, + "probability": 0.7673 + }, + { + "start": 15053.5, + "end": 15054.88, + "probability": 0.5232 + }, + { + "start": 15054.88, + "end": 15057.06, + "probability": 0.9001 + }, + { + "start": 15057.68, + "end": 15058.28, + "probability": 0.7291 + }, + { + "start": 15058.84, + "end": 15060.58, + "probability": 0.9561 + }, + { + "start": 15062.76, + "end": 15065.18, + "probability": 0.9854 + }, + { + "start": 15065.34, + "end": 15067.66, + "probability": 0.7036 + }, + { + "start": 15067.86, + "end": 15070.32, + "probability": 0.519 + }, + { + "start": 15070.44, + "end": 15070.96, + "probability": 0.7054 + }, + { + "start": 15071.04, + "end": 15071.62, + "probability": 0.7773 + }, + { + "start": 15071.74, + "end": 15072.48, + "probability": 0.7004 + }, + { + "start": 15082.48, + "end": 15084.76, + "probability": 0.0496 + }, + { + "start": 15084.84, + "end": 15086.4, + "probability": 0.2659 + }, + { + "start": 15087.28, + "end": 15092.9, + "probability": 0.125 + }, + { + "start": 15093.42, + "end": 15096.5, + "probability": 0.6888 + }, + { + "start": 15096.62, + "end": 15098.27, + "probability": 0.5583 + }, + { + "start": 15099.24, + "end": 15102.16, + "probability": 0.8014 + }, + { + "start": 15105.1, + "end": 15106.24, + "probability": 0.8 + }, + { + "start": 15106.32, + "end": 15106.86, + "probability": 0.5485 + }, + { + "start": 15107.22, + "end": 15109.02, + "probability": 0.912 + }, + { + "start": 15109.24, + "end": 15110.88, + "probability": 0.8997 + }, + { + "start": 15111.06, + "end": 15113.16, + "probability": 0.7691 + }, + { + "start": 15114.48, + "end": 15117.62, + "probability": 0.9446 + }, + { + "start": 15118.2, + "end": 15118.98, + "probability": 0.7888 + }, + { + "start": 15119.08, + "end": 15119.52, + "probability": 0.9463 + }, + { + "start": 15119.98, + "end": 15122.14, + "probability": 0.8935 + }, + { + "start": 15122.72, + "end": 15124.64, + "probability": 0.5932 + }, + { + "start": 15125.76, + "end": 15127.08, + "probability": 0.9121 + }, + { + "start": 15127.3, + "end": 15128.64, + "probability": 0.9834 + }, + { + "start": 15130.18, + "end": 15130.82, + "probability": 0.503 + }, + { + "start": 15131.28, + "end": 15133.76, + "probability": 0.97 + }, + { + "start": 15133.76, + "end": 15136.26, + "probability": 0.8929 + }, + { + "start": 15136.32, + "end": 15138.26, + "probability": 0.4387 + }, + { + "start": 15138.58, + "end": 15139.5, + "probability": 0.9858 + }, + { + "start": 15140.16, + "end": 15140.92, + "probability": 0.6897 + }, + { + "start": 15144.47, + "end": 15146.88, + "probability": 0.8374 + }, + { + "start": 15150.58, + "end": 15151.78, + "probability": 0.9853 + }, + { + "start": 15152.48, + "end": 15154.1, + "probability": 0.9865 + }, + { + "start": 15157.4, + "end": 15157.94, + "probability": 0.3799 + }, + { + "start": 15158.38, + "end": 15159.33, + "probability": 0.5263 + }, + { + "start": 15160.53, + "end": 15162.06, + "probability": 0.3981 + }, + { + "start": 15162.06, + "end": 15163.59, + "probability": 0.9378 + }, + { + "start": 15166.6, + "end": 15166.92, + "probability": 0.7366 + }, + { + "start": 15166.96, + "end": 15169.78, + "probability": 0.6128 + }, + { + "start": 15170.26, + "end": 15172.78, + "probability": 0.4486 + }, + { + "start": 15173.9, + "end": 15174.86, + "probability": 0.7731 + }, + { + "start": 15176.38, + "end": 15178.62, + "probability": 0.9755 + }, + { + "start": 15179.96, + "end": 15182.38, + "probability": 0.9345 + }, + { + "start": 15183.4, + "end": 15185.92, + "probability": 0.9988 + }, + { + "start": 15187.06, + "end": 15188.78, + "probability": 0.9739 + }, + { + "start": 15190.48, + "end": 15191.96, + "probability": 0.3942 + }, + { + "start": 15193.48, + "end": 15195.82, + "probability": 0.9358 + }, + { + "start": 15196.46, + "end": 15200.91, + "probability": 0.7143 + }, + { + "start": 15201.98, + "end": 15202.8, + "probability": 0.9747 + }, + { + "start": 15202.88, + "end": 15208.42, + "probability": 0.9756 + }, + { + "start": 15208.52, + "end": 15209.28, + "probability": 0.7243 + }, + { + "start": 15209.42, + "end": 15211.4, + "probability": 0.9194 + }, + { + "start": 15215.66, + "end": 15218.62, + "probability": 0.9172 + }, + { + "start": 15218.7, + "end": 15220.34, + "probability": 0.929 + }, + { + "start": 15220.8, + "end": 15221.5, + "probability": 0.8507 + }, + { + "start": 15221.56, + "end": 15222.66, + "probability": 0.8992 + }, + { + "start": 15222.7, + "end": 15225.22, + "probability": 0.8663 + }, + { + "start": 15226.42, + "end": 15229.88, + "probability": 0.9731 + }, + { + "start": 15229.88, + "end": 15235.11, + "probability": 0.9883 + }, + { + "start": 15235.94, + "end": 15239.72, + "probability": 0.9969 + }, + { + "start": 15240.88, + "end": 15242.98, + "probability": 0.9941 + }, + { + "start": 15244.86, + "end": 15245.3, + "probability": 0.98 + }, + { + "start": 15249.2, + "end": 15249.8, + "probability": 0.7286 + }, + { + "start": 15250.47, + "end": 15257.02, + "probability": 0.533 + }, + { + "start": 15258.84, + "end": 15259.38, + "probability": 0.575 + }, + { + "start": 15259.46, + "end": 15263.28, + "probability": 0.9651 + }, + { + "start": 15264.3, + "end": 15267.4, + "probability": 0.8678 + }, + { + "start": 15268.62, + "end": 15272.8, + "probability": 0.9925 + }, + { + "start": 15273.72, + "end": 15274.18, + "probability": 0.3814 + }, + { + "start": 15274.38, + "end": 15277.8, + "probability": 0.9537 + }, + { + "start": 15277.86, + "end": 15280.9, + "probability": 0.9873 + }, + { + "start": 15283.08, + "end": 15287.52, + "probability": 0.9976 + }, + { + "start": 15288.66, + "end": 15292.96, + "probability": 0.9971 + }, + { + "start": 15293.88, + "end": 15300.14, + "probability": 0.9924 + }, + { + "start": 15300.4, + "end": 15304.54, + "probability": 0.9942 + }, + { + "start": 15304.54, + "end": 15308.06, + "probability": 0.9912 + }, + { + "start": 15308.98, + "end": 15310.1, + "probability": 0.8704 + }, + { + "start": 15310.82, + "end": 15311.78, + "probability": 0.7042 + }, + { + "start": 15311.92, + "end": 15315.74, + "probability": 0.9854 + }, + { + "start": 15317.24, + "end": 15320.48, + "probability": 0.9897 + }, + { + "start": 15321.34, + "end": 15324.32, + "probability": 0.9923 + }, + { + "start": 15325.98, + "end": 15327.96, + "probability": 0.4766 + }, + { + "start": 15329.78, + "end": 15335.04, + "probability": 0.9948 + }, + { + "start": 15335.78, + "end": 15340.4, + "probability": 0.9864 + }, + { + "start": 15340.94, + "end": 15342.58, + "probability": 0.9883 + }, + { + "start": 15342.98, + "end": 15343.7, + "probability": 0.3688 + }, + { + "start": 15343.84, + "end": 15344.26, + "probability": 0.5166 + }, + { + "start": 15344.26, + "end": 15346.42, + "probability": 0.9868 + }, + { + "start": 15346.52, + "end": 15348.35, + "probability": 0.1946 + }, + { + "start": 15350.52, + "end": 15350.8, + "probability": 0.4399 + }, + { + "start": 15353.46, + "end": 15355.76, + "probability": 0.3494 + }, + { + "start": 15355.86, + "end": 15357.92, + "probability": 0.6038 + }, + { + "start": 15358.06, + "end": 15363.02, + "probability": 0.9897 + }, + { + "start": 15363.66, + "end": 15368.84, + "probability": 0.8531 + }, + { + "start": 15369.2, + "end": 15370.01, + "probability": 0.685 + }, + { + "start": 15370.38, + "end": 15375.92, + "probability": 0.9139 + }, + { + "start": 15377.46, + "end": 15378.24, + "probability": 0.7478 + }, + { + "start": 15379.36, + "end": 15382.36, + "probability": 0.9971 + }, + { + "start": 15383.26, + "end": 15385.6, + "probability": 0.763 + }, + { + "start": 15386.52, + "end": 15388.24, + "probability": 0.9473 + }, + { + "start": 15390.0, + "end": 15391.94, + "probability": 0.9792 + }, + { + "start": 15392.6, + "end": 15394.54, + "probability": 0.9012 + }, + { + "start": 15395.14, + "end": 15398.58, + "probability": 0.9368 + }, + { + "start": 15398.88, + "end": 15401.51, + "probability": 0.4762 + }, + { + "start": 15402.64, + "end": 15404.94, + "probability": 0.9891 + }, + { + "start": 15405.14, + "end": 15407.2, + "probability": 0.2338 + }, + { + "start": 15410.1, + "end": 15411.02, + "probability": 0.3739 + }, + { + "start": 15411.1, + "end": 15412.5, + "probability": 0.7584 + }, + { + "start": 15412.74, + "end": 15414.76, + "probability": 0.0393 + }, + { + "start": 15415.22, + "end": 15417.74, + "probability": 0.9762 + }, + { + "start": 15417.74, + "end": 15420.68, + "probability": 0.8196 + }, + { + "start": 15420.82, + "end": 15422.38, + "probability": 0.5444 + }, + { + "start": 15422.42, + "end": 15423.0, + "probability": 0.9417 + }, + { + "start": 15423.18, + "end": 15425.22, + "probability": 0.8278 + }, + { + "start": 15427.06, + "end": 15430.42, + "probability": 0.9622 + }, + { + "start": 15431.08, + "end": 15431.56, + "probability": 0.8921 + }, + { + "start": 15432.1, + "end": 15433.32, + "probability": 0.9677 + }, + { + "start": 15433.42, + "end": 15433.66, + "probability": 0.8033 + }, + { + "start": 15433.82, + "end": 15434.3, + "probability": 0.7656 + }, + { + "start": 15434.38, + "end": 15434.64, + "probability": 0.2952 + }, + { + "start": 15434.78, + "end": 15436.64, + "probability": 0.7675 + }, + { + "start": 15436.78, + "end": 15437.8, + "probability": 0.898 + }, + { + "start": 15437.94, + "end": 15440.46, + "probability": 0.9641 + }, + { + "start": 15442.04, + "end": 15445.68, + "probability": 0.9917 + }, + { + "start": 15445.88, + "end": 15449.16, + "probability": 0.9328 + }, + { + "start": 15449.54, + "end": 15450.82, + "probability": 0.8288 + }, + { + "start": 15451.08, + "end": 15458.48, + "probability": 0.7381 + }, + { + "start": 15459.54, + "end": 15461.6, + "probability": 0.7276 + }, + { + "start": 15462.3, + "end": 15463.74, + "probability": 0.0606 + }, + { + "start": 15463.76, + "end": 15464.2, + "probability": 0.7206 + }, + { + "start": 15464.26, + "end": 15465.8, + "probability": 0.8325 + }, + { + "start": 15466.62, + "end": 15470.58, + "probability": 0.9895 + }, + { + "start": 15471.53, + "end": 15476.52, + "probability": 0.9506 + }, + { + "start": 15476.58, + "end": 15476.76, + "probability": 0.4842 + }, + { + "start": 15477.52, + "end": 15478.26, + "probability": 0.7633 + }, + { + "start": 15478.3, + "end": 15481.3, + "probability": 0.9014 + }, + { + "start": 15481.7, + "end": 15486.3, + "probability": 0.7206 + }, + { + "start": 15486.3, + "end": 15489.25, + "probability": 0.9116 + }, + { + "start": 15489.62, + "end": 15495.82, + "probability": 0.9459 + }, + { + "start": 15496.02, + "end": 15500.12, + "probability": 0.8753 + }, + { + "start": 15501.73, + "end": 15504.64, + "probability": 0.7115 + }, + { + "start": 15504.74, + "end": 15507.76, + "probability": 0.7793 + }, + { + "start": 15508.68, + "end": 15511.22, + "probability": 0.9422 + }, + { + "start": 15511.7, + "end": 15513.68, + "probability": 0.9517 + }, + { + "start": 15514.36, + "end": 15517.48, + "probability": 0.8512 + }, + { + "start": 15518.04, + "end": 15518.34, + "probability": 0.4443 + }, + { + "start": 15519.06, + "end": 15523.18, + "probability": 0.9704 + }, + { + "start": 15523.74, + "end": 15527.56, + "probability": 0.9557 + }, + { + "start": 15527.7, + "end": 15531.62, + "probability": 0.9629 + }, + { + "start": 15532.66, + "end": 15534.7, + "probability": 0.9521 + }, + { + "start": 15535.46, + "end": 15536.6, + "probability": 0.9992 + }, + { + "start": 15538.28, + "end": 15541.38, + "probability": 0.9937 + }, + { + "start": 15542.14, + "end": 15543.82, + "probability": 0.9381 + }, + { + "start": 15544.96, + "end": 15547.68, + "probability": 0.976 + }, + { + "start": 15548.29, + "end": 15550.54, + "probability": 0.7198 + }, + { + "start": 15551.22, + "end": 15553.24, + "probability": 0.8566 + }, + { + "start": 15554.02, + "end": 15555.8, + "probability": 0.9933 + }, + { + "start": 15555.88, + "end": 15558.02, + "probability": 0.9049 + }, + { + "start": 15558.52, + "end": 15564.06, + "probability": 0.9853 + }, + { + "start": 15564.88, + "end": 15565.18, + "probability": 0.865 + }, + { + "start": 15565.6, + "end": 15567.8, + "probability": 0.756 + }, + { + "start": 15568.0, + "end": 15570.82, + "probability": 0.7385 + }, + { + "start": 15591.54, + "end": 15593.0, + "probability": 0.7267 + }, + { + "start": 15593.91, + "end": 15597.42, + "probability": 0.946 + }, + { + "start": 15598.52, + "end": 15599.68, + "probability": 0.99 + }, + { + "start": 15600.96, + "end": 15606.14, + "probability": 0.9366 + }, + { + "start": 15606.84, + "end": 15609.06, + "probability": 0.9475 + }, + { + "start": 15610.48, + "end": 15612.22, + "probability": 0.9135 + }, + { + "start": 15612.68, + "end": 15616.3, + "probability": 0.9814 + }, + { + "start": 15616.4, + "end": 15617.96, + "probability": 0.9114 + }, + { + "start": 15619.46, + "end": 15622.14, + "probability": 0.7979 + }, + { + "start": 15622.14, + "end": 15627.1, + "probability": 0.9658 + }, + { + "start": 15627.2, + "end": 15631.12, + "probability": 0.9917 + }, + { + "start": 15631.22, + "end": 15633.06, + "probability": 0.9961 + }, + { + "start": 15633.34, + "end": 15635.56, + "probability": 0.9008 + }, + { + "start": 15636.3, + "end": 15637.76, + "probability": 0.9934 + }, + { + "start": 15638.02, + "end": 15641.36, + "probability": 0.7786 + }, + { + "start": 15641.46, + "end": 15642.16, + "probability": 0.8123 + }, + { + "start": 15642.3, + "end": 15648.86, + "probability": 0.9921 + }, + { + "start": 15649.02, + "end": 15654.96, + "probability": 0.9977 + }, + { + "start": 15655.82, + "end": 15655.98, + "probability": 0.3864 + }, + { + "start": 15656.06, + "end": 15657.4, + "probability": 0.8959 + }, + { + "start": 15657.86, + "end": 15659.52, + "probability": 0.908 + }, + { + "start": 15659.6, + "end": 15660.44, + "probability": 0.8788 + }, + { + "start": 15661.96, + "end": 15665.76, + "probability": 0.9956 + }, + { + "start": 15665.76, + "end": 15668.62, + "probability": 0.9986 + }, + { + "start": 15669.46, + "end": 15673.08, + "probability": 0.7463 + }, + { + "start": 15673.58, + "end": 15676.44, + "probability": 0.7354 + }, + { + "start": 15677.1, + "end": 15678.54, + "probability": 0.7507 + }, + { + "start": 15679.52, + "end": 15682.26, + "probability": 0.9944 + }, + { + "start": 15682.98, + "end": 15684.04, + "probability": 0.7421 + }, + { + "start": 15684.94, + "end": 15685.44, + "probability": 0.9255 + }, + { + "start": 15686.08, + "end": 15689.86, + "probability": 0.9834 + }, + { + "start": 15690.52, + "end": 15692.64, + "probability": 0.9979 + }, + { + "start": 15693.32, + "end": 15697.9, + "probability": 0.9841 + }, + { + "start": 15698.16, + "end": 15702.32, + "probability": 0.9934 + }, + { + "start": 15703.32, + "end": 15707.26, + "probability": 0.9901 + }, + { + "start": 15708.24, + "end": 15709.56, + "probability": 0.9023 + }, + { + "start": 15709.68, + "end": 15712.18, + "probability": 0.9165 + }, + { + "start": 15712.28, + "end": 15712.9, + "probability": 0.8453 + }, + { + "start": 15713.46, + "end": 15715.16, + "probability": 0.9909 + }, + { + "start": 15715.3, + "end": 15717.0, + "probability": 0.9673 + }, + { + "start": 15717.64, + "end": 15719.18, + "probability": 0.9962 + }, + { + "start": 15719.28, + "end": 15720.58, + "probability": 0.9971 + }, + { + "start": 15721.72, + "end": 15722.24, + "probability": 0.8108 + }, + { + "start": 15723.32, + "end": 15726.5, + "probability": 0.9897 + }, + { + "start": 15727.14, + "end": 15728.6, + "probability": 0.8453 + }, + { + "start": 15729.14, + "end": 15730.24, + "probability": 0.7203 + }, + { + "start": 15731.3, + "end": 15733.14, + "probability": 0.9734 + }, + { + "start": 15734.02, + "end": 15738.62, + "probability": 0.9894 + }, + { + "start": 15738.7, + "end": 15741.6, + "probability": 0.8167 + }, + { + "start": 15742.82, + "end": 15745.98, + "probability": 0.7484 + }, + { + "start": 15746.1, + "end": 15748.72, + "probability": 0.263 + }, + { + "start": 15748.76, + "end": 15751.44, + "probability": 0.9458 + }, + { + "start": 15752.12, + "end": 15752.94, + "probability": 0.9258 + }, + { + "start": 15754.06, + "end": 15758.46, + "probability": 0.8035 + }, + { + "start": 15759.46, + "end": 15761.88, + "probability": 0.9893 + }, + { + "start": 15762.8, + "end": 15763.94, + "probability": 0.9338 + }, + { + "start": 15764.46, + "end": 15767.38, + "probability": 0.9985 + }, + { + "start": 15768.24, + "end": 15769.44, + "probability": 0.8 + }, + { + "start": 15770.18, + "end": 15772.5, + "probability": 0.9907 + }, + { + "start": 15773.44, + "end": 15775.92, + "probability": 0.9927 + }, + { + "start": 15775.92, + "end": 15778.04, + "probability": 0.9347 + }, + { + "start": 15778.72, + "end": 15782.24, + "probability": 0.9207 + }, + { + "start": 15782.34, + "end": 15783.13, + "probability": 0.9561 + }, + { + "start": 15784.28, + "end": 15784.7, + "probability": 0.8953 + }, + { + "start": 15786.16, + "end": 15786.66, + "probability": 0.921 + }, + { + "start": 15787.32, + "end": 15788.2, + "probability": 0.8354 + }, + { + "start": 15788.7, + "end": 15791.2, + "probability": 0.8328 + }, + { + "start": 15791.2, + "end": 15795.26, + "probability": 0.9837 + }, + { + "start": 15795.38, + "end": 15796.52, + "probability": 0.9031 + }, + { + "start": 15797.54, + "end": 15798.34, + "probability": 0.9834 + }, + { + "start": 15799.38, + "end": 15800.72, + "probability": 0.9784 + }, + { + "start": 15800.8, + "end": 15803.54, + "probability": 0.9824 + }, + { + "start": 15804.24, + "end": 15806.52, + "probability": 0.9604 + }, + { + "start": 15807.1, + "end": 15808.5, + "probability": 0.9434 + }, + { + "start": 15808.76, + "end": 15809.42, + "probability": 0.616 + }, + { + "start": 15809.94, + "end": 15811.0, + "probability": 0.9438 + }, + { + "start": 15811.64, + "end": 15814.62, + "probability": 0.9553 + }, + { + "start": 15815.2, + "end": 15819.06, + "probability": 0.9928 + }, + { + "start": 15819.6, + "end": 15821.62, + "probability": 0.8307 + }, + { + "start": 15822.5, + "end": 15825.08, + "probability": 0.9814 + }, + { + "start": 15825.62, + "end": 15828.82, + "probability": 0.9642 + }, + { + "start": 15828.94, + "end": 15829.2, + "probability": 0.7265 + }, + { + "start": 15830.4, + "end": 15832.46, + "probability": 0.9957 + }, + { + "start": 15833.2, + "end": 15835.38, + "probability": 0.9972 + }, + { + "start": 15836.16, + "end": 15837.74, + "probability": 0.9819 + }, + { + "start": 15837.88, + "end": 15838.98, + "probability": 0.8931 + }, + { + "start": 15839.76, + "end": 15841.62, + "probability": 0.9896 + }, + { + "start": 15842.16, + "end": 15843.3, + "probability": 0.9238 + }, + { + "start": 15843.64, + "end": 15845.38, + "probability": 0.9396 + }, + { + "start": 15847.3, + "end": 15847.6, + "probability": 0.0391 + }, + { + "start": 15848.22, + "end": 15848.22, + "probability": 0.0916 + }, + { + "start": 15848.3, + "end": 15850.58, + "probability": 0.8447 + }, + { + "start": 15851.44, + "end": 15853.4, + "probability": 0.8007 + }, + { + "start": 15854.0, + "end": 15856.76, + "probability": 0.8842 + }, + { + "start": 15856.92, + "end": 15859.18, + "probability": 0.9313 + }, + { + "start": 15859.64, + "end": 15860.22, + "probability": 0.6433 + }, + { + "start": 15860.76, + "end": 15862.12, + "probability": 0.5317 + }, + { + "start": 15867.51, + "end": 15869.04, + "probability": 0.0689 + }, + { + "start": 15869.04, + "end": 15873.66, + "probability": 0.1471 + }, + { + "start": 15874.68, + "end": 15876.12, + "probability": 0.0865 + }, + { + "start": 15878.14, + "end": 15878.56, + "probability": 0.1957 + }, + { + "start": 15878.56, + "end": 15879.22, + "probability": 0.3547 + }, + { + "start": 15879.74, + "end": 15880.56, + "probability": 0.6537 + }, + { + "start": 15881.08, + "end": 15885.66, + "probability": 0.733 + }, + { + "start": 15886.22, + "end": 15886.62, + "probability": 0.5372 + }, + { + "start": 15891.02, + "end": 15895.64, + "probability": 0.7863 + }, + { + "start": 15895.68, + "end": 15897.54, + "probability": 0.1568 + }, + { + "start": 15897.88, + "end": 15898.74, + "probability": 0.9932 + }, + { + "start": 15899.58, + "end": 15900.38, + "probability": 0.7818 + }, + { + "start": 15901.58, + "end": 15903.22, + "probability": 0.8892 + }, + { + "start": 15904.16, + "end": 15906.98, + "probability": 0.9121 + }, + { + "start": 15909.88, + "end": 15912.34, + "probability": 0.7019 + }, + { + "start": 15913.12, + "end": 15917.48, + "probability": 0.854 + }, + { + "start": 15918.66, + "end": 15921.36, + "probability": 0.9732 + }, + { + "start": 15922.6, + "end": 15927.34, + "probability": 0.9825 + }, + { + "start": 15928.22, + "end": 15929.16, + "probability": 0.8716 + }, + { + "start": 15929.68, + "end": 15932.28, + "probability": 0.878 + }, + { + "start": 15932.28, + "end": 15935.66, + "probability": 0.9968 + }, + { + "start": 15936.28, + "end": 15938.38, + "probability": 0.9708 + }, + { + "start": 15941.2, + "end": 15942.67, + "probability": 0.1569 + }, + { + "start": 15943.48, + "end": 15945.86, + "probability": 0.8691 + }, + { + "start": 15946.38, + "end": 15947.54, + "probability": 0.8321 + }, + { + "start": 15948.44, + "end": 15949.54, + "probability": 0.7151 + }, + { + "start": 15949.62, + "end": 15950.42, + "probability": 0.5996 + }, + { + "start": 15950.48, + "end": 15953.84, + "probability": 0.8321 + }, + { + "start": 15954.48, + "end": 15957.66, + "probability": 0.9878 + }, + { + "start": 15958.14, + "end": 15962.14, + "probability": 0.9699 + }, + { + "start": 15962.36, + "end": 15962.88, + "probability": 0.8752 + }, + { + "start": 15963.48, + "end": 15964.98, + "probability": 0.9083 + }, + { + "start": 15965.94, + "end": 15967.8, + "probability": 0.8746 + }, + { + "start": 15968.36, + "end": 15970.36, + "probability": 0.7591 + }, + { + "start": 15971.0, + "end": 15976.46, + "probability": 0.9877 + }, + { + "start": 15980.48, + "end": 15983.44, + "probability": 0.8546 + }, + { + "start": 15983.98, + "end": 15984.9, + "probability": 0.7015 + }, + { + "start": 15984.94, + "end": 15987.82, + "probability": 0.6689 + }, + { + "start": 15987.82, + "end": 15989.6, + "probability": 0.9572 + }, + { + "start": 15990.68, + "end": 15991.02, + "probability": 0.8353 + }, + { + "start": 15991.62, + "end": 15995.24, + "probability": 0.9925 + }, + { + "start": 15995.68, + "end": 15998.32, + "probability": 0.979 + }, + { + "start": 15998.8, + "end": 16001.86, + "probability": 0.9556 + }, + { + "start": 16002.82, + "end": 16003.52, + "probability": 0.9119 + }, + { + "start": 16004.1, + "end": 16005.78, + "probability": 0.9273 + }, + { + "start": 16006.26, + "end": 16010.12, + "probability": 0.9697 + }, + { + "start": 16011.06, + "end": 16014.0, + "probability": 0.9689 + }, + { + "start": 16014.74, + "end": 16015.46, + "probability": 0.4787 + }, + { + "start": 16015.6, + "end": 16017.36, + "probability": 0.8396 + }, + { + "start": 16017.8, + "end": 16021.56, + "probability": 0.96 + }, + { + "start": 16021.86, + "end": 16022.9, + "probability": 0.9577 + }, + { + "start": 16023.66, + "end": 16027.02, + "probability": 0.9954 + }, + { + "start": 16028.38, + "end": 16031.94, + "probability": 0.9028 + }, + { + "start": 16032.5, + "end": 16037.06, + "probability": 0.9857 + }, + { + "start": 16037.84, + "end": 16038.66, + "probability": 0.463 + }, + { + "start": 16039.18, + "end": 16039.5, + "probability": 0.6946 + }, + { + "start": 16040.42, + "end": 16044.38, + "probability": 0.9117 + }, + { + "start": 16045.18, + "end": 16047.62, + "probability": 0.8123 + }, + { + "start": 16048.18, + "end": 16050.5, + "probability": 0.9456 + }, + { + "start": 16050.5, + "end": 16053.32, + "probability": 0.9853 + }, + { + "start": 16054.26, + "end": 16057.16, + "probability": 0.9893 + }, + { + "start": 16057.16, + "end": 16061.36, + "probability": 0.9931 + }, + { + "start": 16062.44, + "end": 16066.54, + "probability": 0.9826 + }, + { + "start": 16067.12, + "end": 16070.68, + "probability": 0.8371 + }, + { + "start": 16071.36, + "end": 16075.76, + "probability": 0.9513 + }, + { + "start": 16076.32, + "end": 16080.1, + "probability": 0.9864 + }, + { + "start": 16080.12, + "end": 16082.2, + "probability": 0.9673 + }, + { + "start": 16083.32, + "end": 16086.98, + "probability": 0.9956 + }, + { + "start": 16087.42, + "end": 16088.08, + "probability": 0.5978 + }, + { + "start": 16088.68, + "end": 16092.56, + "probability": 0.9829 + }, + { + "start": 16093.3, + "end": 16094.6, + "probability": 0.6478 + }, + { + "start": 16095.38, + "end": 16099.24, + "probability": 0.7354 + }, + { + "start": 16099.88, + "end": 16100.64, + "probability": 0.5985 + }, + { + "start": 16100.64, + "end": 16102.06, + "probability": 0.7379 + }, + { + "start": 16102.48, + "end": 16103.44, + "probability": 0.969 + }, + { + "start": 16104.8, + "end": 16107.16, + "probability": 0.9023 + }, + { + "start": 16107.24, + "end": 16108.0, + "probability": 0.9429 + }, + { + "start": 16108.94, + "end": 16110.68, + "probability": 0.8744 + }, + { + "start": 16111.32, + "end": 16116.93, + "probability": 0.9613 + }, + { + "start": 16118.9, + "end": 16122.84, + "probability": 0.8901 + }, + { + "start": 16124.08, + "end": 16125.32, + "probability": 0.3933 + }, + { + "start": 16125.86, + "end": 16127.7, + "probability": 0.8407 + }, + { + "start": 16127.84, + "end": 16128.63, + "probability": 0.5676 + }, + { + "start": 16129.9, + "end": 16130.74, + "probability": 0.4772 + }, + { + "start": 16132.08, + "end": 16133.72, + "probability": 0.8967 + }, + { + "start": 16134.38, + "end": 16136.72, + "probability": 0.969 + }, + { + "start": 16136.78, + "end": 16137.82, + "probability": 0.7752 + }, + { + "start": 16138.66, + "end": 16139.36, + "probability": 0.8907 + }, + { + "start": 16139.88, + "end": 16141.12, + "probability": 0.9492 + }, + { + "start": 16141.74, + "end": 16142.2, + "probability": 0.4893 + }, + { + "start": 16142.72, + "end": 16143.64, + "probability": 0.9718 + }, + { + "start": 16144.28, + "end": 16145.59, + "probability": 0.8988 + }, + { + "start": 16145.64, + "end": 16146.96, + "probability": 0.8955 + }, + { + "start": 16147.82, + "end": 16148.2, + "probability": 0.968 + }, + { + "start": 16148.2, + "end": 16149.2, + "probability": 0.9417 + }, + { + "start": 16149.62, + "end": 16150.38, + "probability": 0.9456 + }, + { + "start": 16150.5, + "end": 16151.6, + "probability": 0.8161 + }, + { + "start": 16151.64, + "end": 16151.84, + "probability": 0.4099 + }, + { + "start": 16152.64, + "end": 16155.9, + "probability": 0.8926 + }, + { + "start": 16155.9, + "end": 16159.12, + "probability": 0.9026 + }, + { + "start": 16159.94, + "end": 16161.7, + "probability": 0.9609 + }, + { + "start": 16161.9, + "end": 16166.74, + "probability": 0.9845 + }, + { + "start": 16167.54, + "end": 16168.96, + "probability": 0.5839 + }, + { + "start": 16169.52, + "end": 16170.64, + "probability": 0.8022 + }, + { + "start": 16171.24, + "end": 16173.58, + "probability": 0.9259 + }, + { + "start": 16174.04, + "end": 16178.44, + "probability": 0.867 + }, + { + "start": 16178.88, + "end": 16179.48, + "probability": 0.7125 + }, + { + "start": 16180.12, + "end": 16181.56, + "probability": 0.8043 + }, + { + "start": 16182.18, + "end": 16183.5, + "probability": 0.5578 + }, + { + "start": 16184.0, + "end": 16185.62, + "probability": 0.7876 + }, + { + "start": 16185.74, + "end": 16187.22, + "probability": 0.6339 + }, + { + "start": 16187.72, + "end": 16188.62, + "probability": 0.917 + }, + { + "start": 16189.0, + "end": 16189.48, + "probability": 0.9457 + }, + { + "start": 16190.3, + "end": 16193.68, + "probability": 0.891 + }, + { + "start": 16194.24, + "end": 16195.94, + "probability": 0.9017 + }, + { + "start": 16196.58, + "end": 16197.38, + "probability": 0.6422 + }, + { + "start": 16197.92, + "end": 16199.44, + "probability": 0.6156 + }, + { + "start": 16200.28, + "end": 16201.14, + "probability": 0.8005 + }, + { + "start": 16201.38, + "end": 16201.68, + "probability": 0.9182 + }, + { + "start": 16201.74, + "end": 16203.7, + "probability": 0.899 + }, + { + "start": 16203.7, + "end": 16204.1, + "probability": 0.9103 + }, + { + "start": 16204.78, + "end": 16209.6, + "probability": 0.8407 + }, + { + "start": 16210.1, + "end": 16212.72, + "probability": 0.8899 + }, + { + "start": 16213.26, + "end": 16214.86, + "probability": 0.9026 + }, + { + "start": 16214.92, + "end": 16215.46, + "probability": 0.7739 + }, + { + "start": 16215.54, + "end": 16217.64, + "probability": 0.8534 + }, + { + "start": 16217.68, + "end": 16218.68, + "probability": 0.7422 + }, + { + "start": 16219.3, + "end": 16220.12, + "probability": 0.9887 + }, + { + "start": 16221.12, + "end": 16225.56, + "probability": 0.9827 + }, + { + "start": 16226.22, + "end": 16228.76, + "probability": 0.9546 + }, + { + "start": 16229.18, + "end": 16234.58, + "probability": 0.9888 + }, + { + "start": 16235.2, + "end": 16237.07, + "probability": 0.8749 + }, + { + "start": 16237.44, + "end": 16239.92, + "probability": 0.6304 + }, + { + "start": 16240.18, + "end": 16240.76, + "probability": 0.5555 + }, + { + "start": 16241.1, + "end": 16244.61, + "probability": 0.7425 + }, + { + "start": 16245.06, + "end": 16246.02, + "probability": 0.9669 + }, + { + "start": 16246.44, + "end": 16247.04, + "probability": 0.8081 + }, + { + "start": 16247.4, + "end": 16247.92, + "probability": 0.8064 + }, + { + "start": 16248.26, + "end": 16250.02, + "probability": 0.0825 + }, + { + "start": 16250.5, + "end": 16251.26, + "probability": 0.6196 + }, + { + "start": 16251.92, + "end": 16253.78, + "probability": 0.2822 + }, + { + "start": 16254.44, + "end": 16254.8, + "probability": 0.2549 + }, + { + "start": 16254.94, + "end": 16257.82, + "probability": 0.869 + }, + { + "start": 16258.38, + "end": 16259.01, + "probability": 0.5061 + }, + { + "start": 16259.12, + "end": 16259.54, + "probability": 0.8602 + }, + { + "start": 16260.18, + "end": 16262.7, + "probability": 0.7072 + }, + { + "start": 16263.5, + "end": 16263.88, + "probability": 0.7402 + }, + { + "start": 16263.92, + "end": 16264.24, + "probability": 0.8325 + }, + { + "start": 16264.32, + "end": 16265.22, + "probability": 0.7211 + }, + { + "start": 16265.54, + "end": 16266.52, + "probability": 0.9106 + }, + { + "start": 16266.76, + "end": 16267.71, + "probability": 0.826 + }, + { + "start": 16268.24, + "end": 16269.12, + "probability": 0.6354 + }, + { + "start": 16270.88, + "end": 16277.04, + "probability": 0.968 + }, + { + "start": 16277.66, + "end": 16278.6, + "probability": 0.7317 + }, + { + "start": 16279.42, + "end": 16282.1, + "probability": 0.9296 + }, + { + "start": 16282.68, + "end": 16285.08, + "probability": 0.987 + }, + { + "start": 16285.36, + "end": 16286.58, + "probability": 0.9748 + }, + { + "start": 16287.48, + "end": 16288.66, + "probability": 0.8911 + }, + { + "start": 16289.04, + "end": 16290.1, + "probability": 0.865 + }, + { + "start": 16290.9, + "end": 16294.12, + "probability": 0.9741 + }, + { + "start": 16294.64, + "end": 16297.54, + "probability": 0.9824 + }, + { + "start": 16298.3, + "end": 16300.46, + "probability": 0.7134 + }, + { + "start": 16300.98, + "end": 16304.6, + "probability": 0.9932 + }, + { + "start": 16305.2, + "end": 16310.24, + "probability": 0.9792 + }, + { + "start": 16310.24, + "end": 16315.78, + "probability": 0.936 + }, + { + "start": 16316.22, + "end": 16317.06, + "probability": 0.7923 + }, + { + "start": 16317.56, + "end": 16319.76, + "probability": 0.8461 + }, + { + "start": 16320.2, + "end": 16321.88, + "probability": 0.5133 + }, + { + "start": 16322.34, + "end": 16323.42, + "probability": 0.9472 + }, + { + "start": 16324.04, + "end": 16327.22, + "probability": 0.8955 + }, + { + "start": 16327.74, + "end": 16328.46, + "probability": 0.5674 + }, + { + "start": 16329.08, + "end": 16333.4, + "probability": 0.925 + }, + { + "start": 16333.82, + "end": 16336.19, + "probability": 0.9367 + }, + { + "start": 16336.9, + "end": 16338.64, + "probability": 0.939 + }, + { + "start": 16338.68, + "end": 16339.1, + "probability": 0.5938 + }, + { + "start": 16339.14, + "end": 16339.86, + "probability": 0.8792 + }, + { + "start": 16340.5, + "end": 16342.3, + "probability": 0.8726 + }, + { + "start": 16343.37, + "end": 16346.96, + "probability": 0.9223 + }, + { + "start": 16347.48, + "end": 16350.64, + "probability": 0.8438 + }, + { + "start": 16350.82, + "end": 16352.42, + "probability": 0.828 + }, + { + "start": 16352.98, + "end": 16354.34, + "probability": 0.8415 + }, + { + "start": 16354.9, + "end": 16356.32, + "probability": 0.9371 + }, + { + "start": 16356.82, + "end": 16358.94, + "probability": 0.9351 + }, + { + "start": 16359.5, + "end": 16362.62, + "probability": 0.6886 + }, + { + "start": 16363.3, + "end": 16364.98, + "probability": 0.6289 + }, + { + "start": 16365.68, + "end": 16366.78, + "probability": 0.9296 + }, + { + "start": 16367.54, + "end": 16368.48, + "probability": 0.7719 + }, + { + "start": 16368.6, + "end": 16369.1, + "probability": 0.9365 + }, + { + "start": 16369.64, + "end": 16372.68, + "probability": 0.8696 + }, + { + "start": 16373.8, + "end": 16374.48, + "probability": 0.9055 + }, + { + "start": 16375.12, + "end": 16375.68, + "probability": 0.973 + }, + { + "start": 16376.8, + "end": 16377.32, + "probability": 0.9688 + }, + { + "start": 16377.6, + "end": 16377.82, + "probability": 0.2129 + }, + { + "start": 16378.52, + "end": 16379.68, + "probability": 0.3288 + }, + { + "start": 16379.86, + "end": 16380.8, + "probability": 0.5538 + }, + { + "start": 16381.38, + "end": 16381.4, + "probability": 0.7031 + }, + { + "start": 16381.4, + "end": 16382.48, + "probability": 0.3317 + }, + { + "start": 16382.76, + "end": 16384.18, + "probability": 0.4231 + }, + { + "start": 16384.98, + "end": 16385.94, + "probability": 0.0046 + }, + { + "start": 16386.4, + "end": 16387.95, + "probability": 0.8504 + }, + { + "start": 16388.5, + "end": 16389.6, + "probability": 0.5356 + }, + { + "start": 16390.34, + "end": 16391.4, + "probability": 0.0146 + }, + { + "start": 16393.72, + "end": 16393.82, + "probability": 0.081 + }, + { + "start": 16393.82, + "end": 16394.68, + "probability": 0.5207 + }, + { + "start": 16396.94, + "end": 16398.68, + "probability": 0.7715 + }, + { + "start": 16398.8, + "end": 16402.92, + "probability": 0.6929 + }, + { + "start": 16402.92, + "end": 16403.84, + "probability": 0.5409 + }, + { + "start": 16404.08, + "end": 16404.68, + "probability": 0.3385 + }, + { + "start": 16404.78, + "end": 16406.3, + "probability": 0.8075 + }, + { + "start": 16407.16, + "end": 16409.7, + "probability": 0.8079 + }, + { + "start": 16409.86, + "end": 16412.86, + "probability": 0.9889 + }, + { + "start": 16412.86, + "end": 16416.44, + "probability": 0.9941 + }, + { + "start": 16417.56, + "end": 16418.7, + "probability": 0.9819 + }, + { + "start": 16419.22, + "end": 16422.82, + "probability": 0.9828 + }, + { + "start": 16423.36, + "end": 16424.2, + "probability": 0.828 + }, + { + "start": 16425.02, + "end": 16427.74, + "probability": 0.9254 + }, + { + "start": 16428.24, + "end": 16429.38, + "probability": 0.7693 + }, + { + "start": 16429.84, + "end": 16431.16, + "probability": 0.9739 + }, + { + "start": 16431.74, + "end": 16433.1, + "probability": 0.8622 + }, + { + "start": 16433.66, + "end": 16437.0, + "probability": 0.9934 + }, + { + "start": 16437.72, + "end": 16438.48, + "probability": 0.8975 + }, + { + "start": 16439.06, + "end": 16440.55, + "probability": 0.9534 + }, + { + "start": 16441.42, + "end": 16443.26, + "probability": 0.9893 + }, + { + "start": 16444.28, + "end": 16444.66, + "probability": 0.8795 + }, + { + "start": 16445.1, + "end": 16448.02, + "probability": 0.9886 + }, + { + "start": 16448.6, + "end": 16452.92, + "probability": 0.9873 + }, + { + "start": 16453.6, + "end": 16454.5, + "probability": 0.8049 + }, + { + "start": 16454.54, + "end": 16456.38, + "probability": 0.9734 + }, + { + "start": 16457.98, + "end": 16459.02, + "probability": 0.8314 + }, + { + "start": 16459.62, + "end": 16460.1, + "probability": 0.4089 + }, + { + "start": 16460.58, + "end": 16464.34, + "probability": 0.8712 + }, + { + "start": 16464.78, + "end": 16467.12, + "probability": 0.9968 + }, + { + "start": 16467.56, + "end": 16469.82, + "probability": 0.7964 + }, + { + "start": 16470.24, + "end": 16470.98, + "probability": 0.8862 + }, + { + "start": 16471.42, + "end": 16472.48, + "probability": 0.9138 + }, + { + "start": 16472.9, + "end": 16474.62, + "probability": 0.6023 + }, + { + "start": 16474.9, + "end": 16475.12, + "probability": 0.6097 + }, + { + "start": 16475.26, + "end": 16475.56, + "probability": 0.9384 + }, + { + "start": 16476.58, + "end": 16479.11, + "probability": 0.8945 + }, + { + "start": 16479.66, + "end": 16484.7, + "probability": 0.9452 + }, + { + "start": 16484.7, + "end": 16490.06, + "probability": 0.9873 + }, + { + "start": 16490.6, + "end": 16491.9, + "probability": 0.8074 + }, + { + "start": 16492.48, + "end": 16495.9, + "probability": 0.9235 + }, + { + "start": 16496.38, + "end": 16497.68, + "probability": 0.7449 + }, + { + "start": 16498.26, + "end": 16498.28, + "probability": 0.3141 + }, + { + "start": 16498.42, + "end": 16498.76, + "probability": 0.8401 + }, + { + "start": 16498.86, + "end": 16502.74, + "probability": 0.9891 + }, + { + "start": 16503.34, + "end": 16507.42, + "probability": 0.8739 + }, + { + "start": 16507.52, + "end": 16507.88, + "probability": 0.9845 + }, + { + "start": 16509.0, + "end": 16510.46, + "probability": 0.7738 + }, + { + "start": 16510.94, + "end": 16516.08, + "probability": 0.8575 + }, + { + "start": 16516.08, + "end": 16521.2, + "probability": 0.9031 + }, + { + "start": 16521.78, + "end": 16523.58, + "probability": 0.8547 + }, + { + "start": 16523.7, + "end": 16527.08, + "probability": 0.7622 + }, + { + "start": 16527.58, + "end": 16531.94, + "probability": 0.8286 + }, + { + "start": 16532.42, + "end": 16534.58, + "probability": 0.9584 + }, + { + "start": 16534.72, + "end": 16535.54, + "probability": 0.5268 + }, + { + "start": 16535.64, + "end": 16537.28, + "probability": 0.7613 + }, + { + "start": 16537.38, + "end": 16541.32, + "probability": 0.9628 + }, + { + "start": 16548.68, + "end": 16548.84, + "probability": 0.3642 + }, + { + "start": 16549.44, + "end": 16550.18, + "probability": 0.3476 + }, + { + "start": 16556.9, + "end": 16558.14, + "probability": 0.0654 + }, + { + "start": 16559.02, + "end": 16559.84, + "probability": 0.1423 + }, + { + "start": 16560.9, + "end": 16561.54, + "probability": 0.6036 + }, + { + "start": 16561.76, + "end": 16562.28, + "probability": 0.1464 + }, + { + "start": 16562.94, + "end": 16563.88, + "probability": 0.7105 + }, + { + "start": 16564.34, + "end": 16564.62, + "probability": 0.1542 + }, + { + "start": 16565.52, + "end": 16566.34, + "probability": 0.806 + }, + { + "start": 16567.04, + "end": 16568.42, + "probability": 0.4835 + }, + { + "start": 16569.36, + "end": 16571.26, + "probability": 0.0935 + }, + { + "start": 16571.26, + "end": 16572.7, + "probability": 0.0196 + }, + { + "start": 16574.1, + "end": 16579.61, + "probability": 0.0651 + }, + { + "start": 16583.16, + "end": 16583.28, + "probability": 0.0142 + }, + { + "start": 16583.28, + "end": 16583.82, + "probability": 0.0564 + }, + { + "start": 16583.82, + "end": 16584.24, + "probability": 0.2071 + }, + { + "start": 16584.62, + "end": 16584.72, + "probability": 0.4052 + }, + { + "start": 16585.04, + "end": 16585.28, + "probability": 0.0099 + }, + { + "start": 16585.78, + "end": 16587.18, + "probability": 0.1751 + }, + { + "start": 16587.18, + "end": 16587.62, + "probability": 0.0497 + }, + { + "start": 16588.16, + "end": 16588.94, + "probability": 0.0107 + }, + { + "start": 16593.18, + "end": 16593.42, + "probability": 0.0069 + }, + { + "start": 16596.15, + "end": 16596.86, + "probability": 0.0471 + }, + { + "start": 16596.86, + "end": 16597.12, + "probability": 0.0403 + }, + { + "start": 16598.74, + "end": 16600.38, + "probability": 0.0533 + }, + { + "start": 16600.38, + "end": 16600.64, + "probability": 0.301 + }, + { + "start": 16619.68, + "end": 16619.78, + "probability": 0.0726 + }, + { + "start": 16622.7, + "end": 16625.04, + "probability": 0.1449 + }, + { + "start": 16626.54, + "end": 16630.08, + "probability": 0.0681 + }, + { + "start": 16630.08, + "end": 16630.08, + "probability": 0.253 + }, + { + "start": 16630.08, + "end": 16631.56, + "probability": 0.1165 + }, + { + "start": 16632.06, + "end": 16632.92, + "probability": 0.0557 + }, + { + "start": 16633.0, + "end": 16633.0, + "probability": 0.0 + }, + { + "start": 16633.0, + "end": 16633.0, + "probability": 0.0 + }, + { + "start": 16633.0, + "end": 16633.0, + "probability": 0.0 + }, + { + "start": 16633.0, + "end": 16633.0, + "probability": 0.0 + }, + { + "start": 16633.18, + "end": 16633.5, + "probability": 0.0403 + }, + { + "start": 16633.5, + "end": 16633.5, + "probability": 0.1389 + }, + { + "start": 16633.5, + "end": 16635.38, + "probability": 0.1244 + }, + { + "start": 16635.8, + "end": 16636.62, + "probability": 0.8811 + }, + { + "start": 16637.62, + "end": 16638.94, + "probability": 0.9734 + }, + { + "start": 16639.02, + "end": 16641.82, + "probability": 0.964 + }, + { + "start": 16641.94, + "end": 16642.78, + "probability": 0.7321 + }, + { + "start": 16643.34, + "end": 16648.24, + "probability": 0.9055 + }, + { + "start": 16648.88, + "end": 16651.52, + "probability": 0.974 + }, + { + "start": 16651.86, + "end": 16652.62, + "probability": 0.9256 + }, + { + "start": 16652.72, + "end": 16654.14, + "probability": 0.9951 + }, + { + "start": 16654.7, + "end": 16655.86, + "probability": 0.8683 + }, + { + "start": 16656.0, + "end": 16657.54, + "probability": 0.9111 + }, + { + "start": 16657.64, + "end": 16659.85, + "probability": 0.7351 + }, + { + "start": 16660.72, + "end": 16666.44, + "probability": 0.9823 + }, + { + "start": 16666.52, + "end": 16669.72, + "probability": 0.9786 + }, + { + "start": 16670.56, + "end": 16671.24, + "probability": 0.8921 + }, + { + "start": 16671.98, + "end": 16675.02, + "probability": 0.7046 + }, + { + "start": 16675.08, + "end": 16676.32, + "probability": 0.9575 + }, + { + "start": 16676.78, + "end": 16678.34, + "probability": 0.6352 + }, + { + "start": 16678.42, + "end": 16679.24, + "probability": 0.8964 + }, + { + "start": 16679.38, + "end": 16685.1, + "probability": 0.9768 + }, + { + "start": 16685.76, + "end": 16686.44, + "probability": 0.8907 + }, + { + "start": 16686.56, + "end": 16687.26, + "probability": 0.5767 + }, + { + "start": 16687.38, + "end": 16693.42, + "probability": 0.9747 + }, + { + "start": 16693.42, + "end": 16696.82, + "probability": 0.9215 + }, + { + "start": 16697.06, + "end": 16698.5, + "probability": 0.748 + }, + { + "start": 16699.14, + "end": 16704.6, + "probability": 0.9979 + }, + { + "start": 16705.62, + "end": 16705.86, + "probability": 0.4836 + }, + { + "start": 16706.0, + "end": 16707.98, + "probability": 0.9115 + }, + { + "start": 16708.08, + "end": 16710.14, + "probability": 0.9703 + }, + { + "start": 16710.38, + "end": 16710.88, + "probability": 0.9631 + }, + { + "start": 16711.4, + "end": 16711.9, + "probability": 0.9656 + }, + { + "start": 16712.26, + "end": 16715.02, + "probability": 0.9686 + }, + { + "start": 16715.06, + "end": 16717.74, + "probability": 0.9927 + }, + { + "start": 16717.76, + "end": 16719.18, + "probability": 0.9499 + }, + { + "start": 16719.96, + "end": 16723.54, + "probability": 0.9971 + }, + { + "start": 16723.72, + "end": 16727.8, + "probability": 0.9528 + }, + { + "start": 16728.84, + "end": 16734.14, + "probability": 0.988 + }, + { + "start": 16734.78, + "end": 16738.48, + "probability": 0.8935 + }, + { + "start": 16739.14, + "end": 16741.16, + "probability": 0.9929 + }, + { + "start": 16741.5, + "end": 16744.3, + "probability": 0.955 + }, + { + "start": 16744.52, + "end": 16745.5, + "probability": 0.853 + }, + { + "start": 16746.7, + "end": 16750.98, + "probability": 0.9487 + }, + { + "start": 16751.68, + "end": 16752.84, + "probability": 0.8588 + }, + { + "start": 16753.54, + "end": 16759.68, + "probability": 0.976 + }, + { + "start": 16759.72, + "end": 16762.18, + "probability": 0.924 + }, + { + "start": 16762.82, + "end": 16764.76, + "probability": 0.9852 + }, + { + "start": 16765.04, + "end": 16767.82, + "probability": 0.8323 + }, + { + "start": 16768.28, + "end": 16768.48, + "probability": 0.4809 + }, + { + "start": 16768.5, + "end": 16769.4, + "probability": 0.662 + }, + { + "start": 16769.44, + "end": 16771.1, + "probability": 0.4933 + }, + { + "start": 16772.46, + "end": 16774.54, + "probability": 0.6585 + }, + { + "start": 16774.84, + "end": 16775.19, + "probability": 0.7012 + }, + { + "start": 16775.5, + "end": 16776.01, + "probability": 0.8003 + }, + { + "start": 16776.22, + "end": 16776.46, + "probability": 0.4984 + }, + { + "start": 16776.8, + "end": 16777.24, + "probability": 0.7363 + }, + { + "start": 16777.92, + "end": 16779.48, + "probability": 0.9636 + }, + { + "start": 16779.56, + "end": 16780.08, + "probability": 0.652 + }, + { + "start": 16780.62, + "end": 16785.48, + "probability": 0.9805 + }, + { + "start": 16786.18, + "end": 16786.18, + "probability": 0.0597 + }, + { + "start": 16786.46, + "end": 16786.9, + "probability": 0.9229 + }, + { + "start": 16786.98, + "end": 16792.28, + "probability": 0.9756 + }, + { + "start": 16792.82, + "end": 16795.18, + "probability": 0.8512 + }, + { + "start": 16795.66, + "end": 16796.62, + "probability": 0.8866 + }, + { + "start": 16796.7, + "end": 16797.0, + "probability": 0.5755 + }, + { + "start": 16797.38, + "end": 16797.58, + "probability": 0.402 + }, + { + "start": 16797.58, + "end": 16797.6, + "probability": 0.2624 + }, + { + "start": 16797.62, + "end": 16798.88, + "probability": 0.2835 + }, + { + "start": 16798.94, + "end": 16800.2, + "probability": 0.7528 + }, + { + "start": 16800.58, + "end": 16803.54, + "probability": 0.6572 + }, + { + "start": 16803.98, + "end": 16804.56, + "probability": 0.7302 + }, + { + "start": 16804.58, + "end": 16810.52, + "probability": 0.8777 + }, + { + "start": 16810.52, + "end": 16814.52, + "probability": 0.9735 + }, + { + "start": 16814.66, + "end": 16818.94, + "probability": 0.9775 + }, + { + "start": 16819.1, + "end": 16821.63, + "probability": 0.4485 + }, + { + "start": 16823.53, + "end": 16828.45, + "probability": 0.7466 + }, + { + "start": 16829.26, + "end": 16831.34, + "probability": 0.9951 + }, + { + "start": 16831.44, + "end": 16833.32, + "probability": 0.8877 + }, + { + "start": 16833.82, + "end": 16835.31, + "probability": 0.9813 + }, + { + "start": 16835.88, + "end": 16839.7, + "probability": 0.9067 + }, + { + "start": 16840.7, + "end": 16846.16, + "probability": 0.6018 + }, + { + "start": 16846.8, + "end": 16848.52, + "probability": 0.9265 + }, + { + "start": 16849.58, + "end": 16851.18, + "probability": 0.6952 + }, + { + "start": 16852.02, + "end": 16853.86, + "probability": 0.707 + }, + { + "start": 16853.96, + "end": 16860.32, + "probability": 0.967 + }, + { + "start": 16860.82, + "end": 16862.5, + "probability": 0.9543 + }, + { + "start": 16863.42, + "end": 16865.76, + "probability": 0.9086 + }, + { + "start": 16866.4, + "end": 16871.96, + "probability": 0.9321 + }, + { + "start": 16872.32, + "end": 16875.32, + "probability": 0.9969 + }, + { + "start": 16875.54, + "end": 16876.82, + "probability": 0.8801 + }, + { + "start": 16877.38, + "end": 16880.46, + "probability": 0.9688 + }, + { + "start": 16880.9, + "end": 16884.32, + "probability": 0.9019 + }, + { + "start": 16884.5, + "end": 16886.64, + "probability": 0.9978 + }, + { + "start": 16887.32, + "end": 16889.16, + "probability": 0.6461 + }, + { + "start": 16889.3, + "end": 16891.74, + "probability": 0.9738 + }, + { + "start": 16891.9, + "end": 16893.36, + "probability": 0.9797 + }, + { + "start": 16893.82, + "end": 16894.68, + "probability": 0.8554 + }, + { + "start": 16895.04, + "end": 16895.2, + "probability": 0.5504 + }, + { + "start": 16895.56, + "end": 16898.33, + "probability": 0.6403 + }, + { + "start": 16900.14, + "end": 16904.72, + "probability": 0.7588 + }, + { + "start": 16906.28, + "end": 16906.88, + "probability": 0.418 + }, + { + "start": 16906.92, + "end": 16907.44, + "probability": 0.4093 + }, + { + "start": 16907.69, + "end": 16908.64, + "probability": 0.6461 + }, + { + "start": 16909.78, + "end": 16910.68, + "probability": 0.9391 + }, + { + "start": 16911.8, + "end": 16912.44, + "probability": 0.6314 + }, + { + "start": 16918.2, + "end": 16918.64, + "probability": 0.3403 + }, + { + "start": 16918.66, + "end": 16919.44, + "probability": 0.6857 + }, + { + "start": 16919.72, + "end": 16924.72, + "probability": 0.9879 + }, + { + "start": 16924.72, + "end": 16930.22, + "probability": 0.9597 + }, + { + "start": 16931.54, + "end": 16932.2, + "probability": 0.8489 + }, + { + "start": 16932.54, + "end": 16933.28, + "probability": 0.6638 + }, + { + "start": 16933.42, + "end": 16939.68, + "probability": 0.9948 + }, + { + "start": 16940.72, + "end": 16942.62, + "probability": 0.8184 + }, + { + "start": 16943.92, + "end": 16949.52, + "probability": 0.8586 + }, + { + "start": 16950.76, + "end": 16954.8, + "probability": 0.9875 + }, + { + "start": 16955.22, + "end": 16956.08, + "probability": 0.5501 + }, + { + "start": 16956.1, + "end": 16956.88, + "probability": 0.7849 + }, + { + "start": 16957.02, + "end": 16965.02, + "probability": 0.9699 + }, + { + "start": 16965.8, + "end": 16972.56, + "probability": 0.9674 + }, + { + "start": 16972.72, + "end": 16973.82, + "probability": 0.969 + }, + { + "start": 16974.74, + "end": 16977.68, + "probability": 0.9817 + }, + { + "start": 16977.68, + "end": 16983.2, + "probability": 0.9969 + }, + { + "start": 16983.38, + "end": 16986.8, + "probability": 0.9886 + }, + { + "start": 16986.8, + "end": 16988.5, + "probability": 0.7766 + }, + { + "start": 16989.14, + "end": 16991.08, + "probability": 0.0336 + }, + { + "start": 16991.08, + "end": 16991.92, + "probability": 0.4982 + }, + { + "start": 16991.92, + "end": 16991.92, + "probability": 0.0385 + }, + { + "start": 16991.92, + "end": 16993.71, + "probability": 0.9437 + }, + { + "start": 16994.06, + "end": 16998.18, + "probability": 0.95 + }, + { + "start": 16999.04, + "end": 17000.72, + "probability": 0.8262 + }, + { + "start": 17001.06, + "end": 17003.84, + "probability": 0.8813 + }, + { + "start": 17003.88, + "end": 17006.02, + "probability": 0.9943 + }, + { + "start": 17006.98, + "end": 17009.04, + "probability": 0.931 + }, + { + "start": 17009.68, + "end": 17012.86, + "probability": 0.9946 + }, + { + "start": 17014.06, + "end": 17015.82, + "probability": 0.9578 + }, + { + "start": 17016.62, + "end": 17020.84, + "probability": 0.9929 + }, + { + "start": 17021.36, + "end": 17022.86, + "probability": 0.9512 + }, + { + "start": 17023.04, + "end": 17026.34, + "probability": 0.9359 + }, + { + "start": 17027.54, + "end": 17032.0, + "probability": 0.9963 + }, + { + "start": 17032.2, + "end": 17033.68, + "probability": 0.9118 + }, + { + "start": 17034.18, + "end": 17038.38, + "probability": 0.9962 + }, + { + "start": 17038.38, + "end": 17044.0, + "probability": 0.9855 + }, + { + "start": 17044.64, + "end": 17051.06, + "probability": 0.9945 + }, + { + "start": 17051.7, + "end": 17057.92, + "probability": 0.9989 + }, + { + "start": 17058.62, + "end": 17059.12, + "probability": 0.8715 + }, + { + "start": 17059.8, + "end": 17062.5, + "probability": 0.999 + }, + { + "start": 17062.66, + "end": 17067.02, + "probability": 0.9897 + }, + { + "start": 17067.18, + "end": 17068.66, + "probability": 0.7642 + }, + { + "start": 17068.68, + "end": 17071.06, + "probability": 0.9878 + }, + { + "start": 17071.44, + "end": 17071.8, + "probability": 0.777 + }, + { + "start": 17071.98, + "end": 17073.5, + "probability": 0.7096 + }, + { + "start": 17073.94, + "end": 17075.18, + "probability": 0.6047 + }, + { + "start": 17075.94, + "end": 17077.1, + "probability": 0.5654 + }, + { + "start": 17077.12, + "end": 17077.9, + "probability": 0.8578 + }, + { + "start": 17091.54, + "end": 17092.36, + "probability": 0.6029 + }, + { + "start": 17093.54, + "end": 17096.02, + "probability": 0.8123 + }, + { + "start": 17097.54, + "end": 17103.36, + "probability": 0.8794 + }, + { + "start": 17105.58, + "end": 17107.7, + "probability": 0.9688 + }, + { + "start": 17107.78, + "end": 17111.26, + "probability": 0.8627 + }, + { + "start": 17111.4, + "end": 17112.46, + "probability": 0.9492 + }, + { + "start": 17113.0, + "end": 17114.04, + "probability": 0.6062 + }, + { + "start": 17114.42, + "end": 17117.5, + "probability": 0.7153 + }, + { + "start": 17118.62, + "end": 17120.54, + "probability": 0.9021 + }, + { + "start": 17121.26, + "end": 17129.14, + "probability": 0.9398 + }, + { + "start": 17130.42, + "end": 17131.14, + "probability": 0.6586 + }, + { + "start": 17131.6, + "end": 17132.38, + "probability": 0.5894 + }, + { + "start": 17133.36, + "end": 17136.68, + "probability": 0.8516 + }, + { + "start": 17136.94, + "end": 17142.98, + "probability": 0.9303 + }, + { + "start": 17143.9, + "end": 17147.68, + "probability": 0.9454 + }, + { + "start": 17147.68, + "end": 17150.04, + "probability": 0.9921 + }, + { + "start": 17151.26, + "end": 17156.4, + "probability": 0.503 + }, + { + "start": 17156.5, + "end": 17157.24, + "probability": 0.8644 + }, + { + "start": 17158.66, + "end": 17159.82, + "probability": 0.9277 + }, + { + "start": 17161.28, + "end": 17167.08, + "probability": 0.9911 + }, + { + "start": 17167.74, + "end": 17171.04, + "probability": 0.7947 + }, + { + "start": 17172.42, + "end": 17173.76, + "probability": 0.8647 + }, + { + "start": 17174.18, + "end": 17175.92, + "probability": 0.8605 + }, + { + "start": 17176.78, + "end": 17181.7, + "probability": 0.9421 + }, + { + "start": 17182.78, + "end": 17184.62, + "probability": 0.9534 + }, + { + "start": 17185.54, + "end": 17187.46, + "probability": 0.8597 + }, + { + "start": 17187.46, + "end": 17192.28, + "probability": 0.9924 + }, + { + "start": 17192.5, + "end": 17195.12, + "probability": 0.8541 + }, + { + "start": 17195.2, + "end": 17196.96, + "probability": 0.8632 + }, + { + "start": 17197.06, + "end": 17197.62, + "probability": 0.8221 + }, + { + "start": 17198.66, + "end": 17199.62, + "probability": 0.5423 + }, + { + "start": 17200.34, + "end": 17201.92, + "probability": 0.6543 + }, + { + "start": 17202.02, + "end": 17202.9, + "probability": 0.8391 + }, + { + "start": 17203.72, + "end": 17206.64, + "probability": 0.9344 + }, + { + "start": 17206.86, + "end": 17207.56, + "probability": 0.7428 + }, + { + "start": 17208.22, + "end": 17209.04, + "probability": 0.5898 + }, + { + "start": 17209.18, + "end": 17209.74, + "probability": 0.8608 + }, + { + "start": 17212.98, + "end": 17217.92, + "probability": 0.8275 + }, + { + "start": 17218.16, + "end": 17221.16, + "probability": 0.1938 + }, + { + "start": 17221.84, + "end": 17223.12, + "probability": 0.8027 + }, + { + "start": 17223.22, + "end": 17224.08, + "probability": 0.5028 + }, + { + "start": 17224.74, + "end": 17226.62, + "probability": 0.7709 + }, + { + "start": 17228.02, + "end": 17229.02, + "probability": 0.1837 + }, + { + "start": 17229.86, + "end": 17230.38, + "probability": 0.6535 + }, + { + "start": 17252.86, + "end": 17253.33, + "probability": 0.2269 + }, + { + "start": 17255.0, + "end": 17256.92, + "probability": 0.0263 + }, + { + "start": 17257.48, + "end": 17258.04, + "probability": 0.0895 + }, + { + "start": 17258.04, + "end": 17258.46, + "probability": 0.0096 + }, + { + "start": 17258.46, + "end": 17260.64, + "probability": 0.224 + }, + { + "start": 17261.32, + "end": 17261.8, + "probability": 0.0531 + }, + { + "start": 17261.8, + "end": 17262.14, + "probability": 0.0125 + }, + { + "start": 17262.14, + "end": 17262.34, + "probability": 0.0232 + }, + { + "start": 17262.56, + "end": 17262.8, + "probability": 0.2151 + }, + { + "start": 17262.8, + "end": 17262.8, + "probability": 0.1104 + }, + { + "start": 17263.08, + "end": 17263.26, + "probability": 0.3117 + }, + { + "start": 17264.16, + "end": 17266.06, + "probability": 0.0154 + }, + { + "start": 17270.02, + "end": 17271.66, + "probability": 0.3786 + }, + { + "start": 17283.58, + "end": 17286.54, + "probability": 0.4125 + }, + { + "start": 17290.04, + "end": 17290.82, + "probability": 0.0425 + }, + { + "start": 17290.82, + "end": 17290.86, + "probability": 0.074 + }, + { + "start": 17290.86, + "end": 17293.2, + "probability": 0.0254 + }, + { + "start": 17293.98, + "end": 17296.24, + "probability": 0.1607 + }, + { + "start": 17296.46, + "end": 17301.16, + "probability": 0.0931 + }, + { + "start": 17301.72, + "end": 17301.9, + "probability": 0.1973 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.0, + "end": 17336.0, + "probability": 0.0 + }, + { + "start": 17336.12, + "end": 17336.24, + "probability": 0.0453 + }, + { + "start": 17336.86, + "end": 17336.94, + "probability": 0.0133 + }, + { + "start": 17336.94, + "end": 17336.94, + "probability": 0.0538 + }, + { + "start": 17336.94, + "end": 17336.94, + "probability": 0.0163 + }, + { + "start": 17336.94, + "end": 17336.94, + "probability": 0.3405 + }, + { + "start": 17336.94, + "end": 17338.9, + "probability": 0.5749 + }, + { + "start": 17339.48, + "end": 17339.74, + "probability": 0.2253 + }, + { + "start": 17339.76, + "end": 17340.14, + "probability": 0.9467 + }, + { + "start": 17340.26, + "end": 17341.1, + "probability": 0.8857 + }, + { + "start": 17341.48, + "end": 17343.87, + "probability": 0.9137 + }, + { + "start": 17355.78, + "end": 17357.63, + "probability": 0.9449 + }, + { + "start": 17359.32, + "end": 17359.32, + "probability": 0.0248 + }, + { + "start": 17359.42, + "end": 17359.84, + "probability": 0.0576 + }, + { + "start": 17359.84, + "end": 17359.84, + "probability": 0.1148 + }, + { + "start": 17359.84, + "end": 17359.84, + "probability": 0.0787 + }, + { + "start": 17359.84, + "end": 17360.94, + "probability": 0.4351 + }, + { + "start": 17362.08, + "end": 17365.44, + "probability": 0.8487 + }, + { + "start": 17366.2, + "end": 17366.96, + "probability": 0.7385 + }, + { + "start": 17367.8, + "end": 17367.94, + "probability": 0.0966 + }, + { + "start": 17367.94, + "end": 17370.06, + "probability": 0.5154 + }, + { + "start": 17370.62, + "end": 17371.38, + "probability": 0.5548 + }, + { + "start": 17377.22, + "end": 17378.56, + "probability": 0.8296 + }, + { + "start": 17388.06, + "end": 17388.14, + "probability": 0.3048 + }, + { + "start": 17388.14, + "end": 17388.24, + "probability": 0.5028 + }, + { + "start": 17388.48, + "end": 17388.94, + "probability": 0.2779 + }, + { + "start": 17388.98, + "end": 17388.98, + "probability": 0.3909 + }, + { + "start": 17388.98, + "end": 17389.68, + "probability": 0.6416 + }, + { + "start": 17390.92, + "end": 17392.68, + "probability": 0.2724 + }, + { + "start": 17392.92, + "end": 17396.78, + "probability": 0.7204 + }, + { + "start": 17397.96, + "end": 17399.68, + "probability": 0.709 + }, + { + "start": 17399.92, + "end": 17405.46, + "probability": 0.9504 + }, + { + "start": 17406.28, + "end": 17409.0, + "probability": 0.9429 + }, + { + "start": 17410.34, + "end": 17412.24, + "probability": 0.6276 + }, + { + "start": 17413.46, + "end": 17419.04, + "probability": 0.9512 + }, + { + "start": 17419.18, + "end": 17420.68, + "probability": 0.6774 + }, + { + "start": 17420.82, + "end": 17421.42, + "probability": 0.7436 + }, + { + "start": 17421.98, + "end": 17425.14, + "probability": 0.9317 + }, + { + "start": 17425.78, + "end": 17426.62, + "probability": 0.9439 + }, + { + "start": 17428.04, + "end": 17429.52, + "probability": 0.9074 + }, + { + "start": 17429.78, + "end": 17430.59, + "probability": 0.8434 + }, + { + "start": 17431.2, + "end": 17433.58, + "probability": 0.9609 + }, + { + "start": 17435.12, + "end": 17442.8, + "probability": 0.9811 + }, + { + "start": 17443.52, + "end": 17444.2, + "probability": 0.9717 + }, + { + "start": 17445.86, + "end": 17447.18, + "probability": 0.6478 + }, + { + "start": 17447.46, + "end": 17448.18, + "probability": 0.5694 + }, + { + "start": 17448.32, + "end": 17453.64, + "probability": 0.9504 + }, + { + "start": 17454.24, + "end": 17459.34, + "probability": 0.9945 + }, + { + "start": 17460.74, + "end": 17462.68, + "probability": 0.996 + }, + { + "start": 17465.16, + "end": 17466.68, + "probability": 0.9255 + }, + { + "start": 17466.68, + "end": 17467.56, + "probability": 0.271 + }, + { + "start": 17467.78, + "end": 17468.18, + "probability": 0.5997 + }, + { + "start": 17468.32, + "end": 17468.9, + "probability": 0.8157 + }, + { + "start": 17469.6, + "end": 17472.91, + "probability": 0.9923 + }, + { + "start": 17473.92, + "end": 17478.8, + "probability": 0.9938 + }, + { + "start": 17479.0, + "end": 17480.04, + "probability": 0.6142 + }, + { + "start": 17480.18, + "end": 17481.5, + "probability": 0.8126 + }, + { + "start": 17482.58, + "end": 17488.22, + "probability": 0.9759 + }, + { + "start": 17490.54, + "end": 17490.78, + "probability": 0.2991 + }, + { + "start": 17490.9, + "end": 17491.3, + "probability": 0.9293 + }, + { + "start": 17491.4, + "end": 17492.2, + "probability": 0.9069 + }, + { + "start": 17492.3, + "end": 17496.12, + "probability": 0.9175 + }, + { + "start": 17497.56, + "end": 17502.18, + "probability": 0.9901 + }, + { + "start": 17502.19, + "end": 17505.9, + "probability": 0.9889 + }, + { + "start": 17506.7, + "end": 17512.3, + "probability": 0.989 + }, + { + "start": 17513.12, + "end": 17516.2, + "probability": 0.9799 + }, + { + "start": 17517.06, + "end": 17519.99, + "probability": 0.9934 + }, + { + "start": 17520.68, + "end": 17522.02, + "probability": 0.817 + }, + { + "start": 17522.14, + "end": 17522.9, + "probability": 0.9202 + }, + { + "start": 17523.06, + "end": 17525.96, + "probability": 0.9863 + }, + { + "start": 17526.36, + "end": 17527.08, + "probability": 0.9299 + }, + { + "start": 17527.4, + "end": 17528.54, + "probability": 0.5204 + }, + { + "start": 17529.1, + "end": 17530.18, + "probability": 0.696 + }, + { + "start": 17530.32, + "end": 17530.98, + "probability": 0.837 + }, + { + "start": 17531.68, + "end": 17532.32, + "probability": 0.9382 + }, + { + "start": 17532.42, + "end": 17533.8, + "probability": 0.9949 + }, + { + "start": 17533.86, + "end": 17535.08, + "probability": 0.9769 + }, + { + "start": 17536.14, + "end": 17537.78, + "probability": 0.9486 + }, + { + "start": 17538.38, + "end": 17544.52, + "probability": 0.9707 + }, + { + "start": 17544.62, + "end": 17545.19, + "probability": 0.8433 + }, + { + "start": 17546.22, + "end": 17549.03, + "probability": 0.956 + }, + { + "start": 17549.88, + "end": 17551.0, + "probability": 0.9652 + }, + { + "start": 17551.56, + "end": 17553.34, + "probability": 0.9866 + }, + { + "start": 17554.1, + "end": 17556.8, + "probability": 0.9972 + }, + { + "start": 17556.92, + "end": 17557.7, + "probability": 0.9733 + }, + { + "start": 17557.9, + "end": 17560.48, + "probability": 0.9792 + }, + { + "start": 17560.86, + "end": 17564.35, + "probability": 0.991 + }, + { + "start": 17564.38, + "end": 17567.66, + "probability": 0.9973 + }, + { + "start": 17568.56, + "end": 17569.14, + "probability": 0.8833 + }, + { + "start": 17570.52, + "end": 17572.38, + "probability": 0.8282 + }, + { + "start": 17574.0, + "end": 17574.74, + "probability": 0.7283 + }, + { + "start": 17574.96, + "end": 17578.7, + "probability": 0.9973 + }, + { + "start": 17579.32, + "end": 17580.72, + "probability": 0.9467 + }, + { + "start": 17581.34, + "end": 17584.56, + "probability": 0.9961 + }, + { + "start": 17584.68, + "end": 17585.54, + "probability": 0.6982 + }, + { + "start": 17586.18, + "end": 17587.94, + "probability": 0.9491 + }, + { + "start": 17589.42, + "end": 17595.4, + "probability": 0.9971 + }, + { + "start": 17596.0, + "end": 17598.46, + "probability": 0.9974 + }, + { + "start": 17598.94, + "end": 17600.98, + "probability": 0.9907 + }, + { + "start": 17601.8, + "end": 17604.18, + "probability": 0.688 + }, + { + "start": 17604.74, + "end": 17610.08, + "probability": 0.981 + }, + { + "start": 17610.18, + "end": 17613.62, + "probability": 0.9296 + }, + { + "start": 17614.04, + "end": 17616.42, + "probability": 0.9935 + }, + { + "start": 17616.62, + "end": 17617.51, + "probability": 0.5555 + }, + { + "start": 17618.0, + "end": 17622.88, + "probability": 0.9517 + }, + { + "start": 17623.34, + "end": 17627.78, + "probability": 0.9964 + }, + { + "start": 17628.26, + "end": 17632.44, + "probability": 0.9874 + }, + { + "start": 17632.44, + "end": 17639.7, + "probability": 0.9994 + }, + { + "start": 17640.28, + "end": 17640.56, + "probability": 0.3329 + }, + { + "start": 17640.82, + "end": 17641.84, + "probability": 0.8323 + }, + { + "start": 17642.34, + "end": 17643.16, + "probability": 0.769 + }, + { + "start": 17643.64, + "end": 17648.16, + "probability": 0.9986 + }, + { + "start": 17649.3, + "end": 17649.78, + "probability": 0.8879 + }, + { + "start": 17651.1, + "end": 17655.36, + "probability": 0.9916 + }, + { + "start": 17655.78, + "end": 17656.6, + "probability": 0.7802 + }, + { + "start": 17657.08, + "end": 17657.92, + "probability": 0.8637 + }, + { + "start": 17658.48, + "end": 17662.04, + "probability": 0.9928 + }, + { + "start": 17662.04, + "end": 17664.34, + "probability": 0.9976 + }, + { + "start": 17664.66, + "end": 17665.08, + "probability": 0.866 + }, + { + "start": 17665.98, + "end": 17667.86, + "probability": 0.7661 + }, + { + "start": 17669.08, + "end": 17671.94, + "probability": 0.4888 + }, + { + "start": 17673.22, + "end": 17676.2, + "probability": 0.7644 + }, + { + "start": 17676.48, + "end": 17677.04, + "probability": 0.8125 + }, + { + "start": 17677.9, + "end": 17679.44, + "probability": 0.7535 + }, + { + "start": 17680.02, + "end": 17681.0, + "probability": 0.7635 + }, + { + "start": 17699.0, + "end": 17700.42, + "probability": 0.6427 + }, + { + "start": 17701.76, + "end": 17704.75, + "probability": 0.9689 + }, + { + "start": 17706.2, + "end": 17708.44, + "probability": 0.9514 + }, + { + "start": 17709.6, + "end": 17711.06, + "probability": 0.8005 + }, + { + "start": 17713.12, + "end": 17722.1, + "probability": 0.8738 + }, + { + "start": 17722.76, + "end": 17723.66, + "probability": 0.8312 + }, + { + "start": 17724.94, + "end": 17728.24, + "probability": 0.9468 + }, + { + "start": 17730.72, + "end": 17733.12, + "probability": 0.9966 + }, + { + "start": 17733.2, + "end": 17733.76, + "probability": 0.4505 + }, + { + "start": 17734.16, + "end": 17735.9, + "probability": 0.9972 + }, + { + "start": 17737.28, + "end": 17740.6, + "probability": 0.9329 + }, + { + "start": 17743.86, + "end": 17747.88, + "probability": 0.8359 + }, + { + "start": 17749.22, + "end": 17754.2, + "probability": 0.9865 + }, + { + "start": 17754.62, + "end": 17758.26, + "probability": 0.9866 + }, + { + "start": 17759.08, + "end": 17761.92, + "probability": 0.9355 + }, + { + "start": 17763.02, + "end": 17765.86, + "probability": 0.9922 + }, + { + "start": 17766.52, + "end": 17770.28, + "probability": 0.9736 + }, + { + "start": 17771.3, + "end": 17775.42, + "probability": 0.9921 + }, + { + "start": 17775.64, + "end": 17776.82, + "probability": 0.7566 + }, + { + "start": 17777.1, + "end": 17777.88, + "probability": 0.9141 + }, + { + "start": 17778.56, + "end": 17780.96, + "probability": 0.9338 + }, + { + "start": 17782.22, + "end": 17782.92, + "probability": 0.6892 + }, + { + "start": 17783.56, + "end": 17784.12, + "probability": 0.965 + }, + { + "start": 17784.86, + "end": 17787.08, + "probability": 0.9943 + }, + { + "start": 17787.08, + "end": 17791.62, + "probability": 0.9647 + }, + { + "start": 17792.52, + "end": 17795.4, + "probability": 0.9974 + }, + { + "start": 17795.4, + "end": 17798.9, + "probability": 0.8515 + }, + { + "start": 17799.38, + "end": 17800.58, + "probability": 0.8507 + }, + { + "start": 17801.56, + "end": 17802.1, + "probability": 0.8235 + }, + { + "start": 17802.4, + "end": 17806.32, + "probability": 0.9772 + }, + { + "start": 17806.32, + "end": 17810.48, + "probability": 0.9665 + }, + { + "start": 17811.46, + "end": 17812.4, + "probability": 0.8518 + }, + { + "start": 17813.14, + "end": 17814.82, + "probability": 0.9966 + }, + { + "start": 17816.06, + "end": 17821.44, + "probability": 0.9498 + }, + { + "start": 17822.36, + "end": 17824.52, + "probability": 0.9254 + }, + { + "start": 17824.52, + "end": 17827.8, + "probability": 0.9787 + }, + { + "start": 17828.8, + "end": 17832.56, + "probability": 0.7749 + }, + { + "start": 17832.56, + "end": 17835.84, + "probability": 0.8038 + }, + { + "start": 17836.32, + "end": 17837.74, + "probability": 0.9313 + }, + { + "start": 17837.86, + "end": 17839.94, + "probability": 0.8432 + }, + { + "start": 17840.34, + "end": 17840.78, + "probability": 0.5954 + }, + { + "start": 17842.62, + "end": 17843.54, + "probability": 0.8728 + }, + { + "start": 17845.36, + "end": 17849.88, + "probability": 0.9954 + }, + { + "start": 17850.7, + "end": 17852.14, + "probability": 0.9137 + }, + { + "start": 17852.72, + "end": 17855.9, + "probability": 0.9347 + }, + { + "start": 17856.78, + "end": 17860.14, + "probability": 0.8807 + }, + { + "start": 17861.0, + "end": 17863.62, + "probability": 0.9735 + }, + { + "start": 17863.62, + "end": 17866.72, + "probability": 0.9605 + }, + { + "start": 17867.7, + "end": 17874.92, + "probability": 0.79 + }, + { + "start": 17875.48, + "end": 17876.78, + "probability": 0.8268 + }, + { + "start": 17877.16, + "end": 17880.42, + "probability": 0.7089 + }, + { + "start": 17880.5, + "end": 17882.1, + "probability": 0.814 + }, + { + "start": 17882.7, + "end": 17884.38, + "probability": 0.87 + }, + { + "start": 17885.34, + "end": 17886.48, + "probability": 0.8608 + }, + { + "start": 17886.5, + "end": 17889.98, + "probability": 0.9848 + }, + { + "start": 17890.8, + "end": 17892.94, + "probability": 0.8999 + }, + { + "start": 17893.72, + "end": 17895.88, + "probability": 0.9921 + }, + { + "start": 17895.88, + "end": 17900.12, + "probability": 0.9926 + }, + { + "start": 17901.08, + "end": 17904.48, + "probability": 0.9502 + }, + { + "start": 17905.24, + "end": 17908.78, + "probability": 0.958 + }, + { + "start": 17909.76, + "end": 17910.56, + "probability": 0.8639 + }, + { + "start": 17910.94, + "end": 17911.8, + "probability": 0.971 + }, + { + "start": 17912.02, + "end": 17915.75, + "probability": 0.6398 + }, + { + "start": 17916.26, + "end": 17919.76, + "probability": 0.9402 + }, + { + "start": 17920.82, + "end": 17925.26, + "probability": 0.9953 + }, + { + "start": 17925.26, + "end": 17929.52, + "probability": 0.9963 + }, + { + "start": 17929.52, + "end": 17933.7, + "probability": 0.994 + }, + { + "start": 17934.66, + "end": 17938.86, + "probability": 0.9623 + }, + { + "start": 17939.52, + "end": 17944.76, + "probability": 0.98 + }, + { + "start": 17946.06, + "end": 17947.66, + "probability": 0.5436 + }, + { + "start": 17948.84, + "end": 17951.04, + "probability": 0.8974 + }, + { + "start": 17951.16, + "end": 17953.54, + "probability": 0.9105 + }, + { + "start": 17954.48, + "end": 17955.05, + "probability": 0.2922 + }, + { + "start": 17955.52, + "end": 17956.08, + "probability": 0.3039 + }, + { + "start": 17956.16, + "end": 17956.38, + "probability": 0.6355 + }, + { + "start": 17956.46, + "end": 17958.0, + "probability": 0.9865 + }, + { + "start": 17959.54, + "end": 17960.28, + "probability": 0.6881 + }, + { + "start": 17960.5, + "end": 17961.66, + "probability": 0.3776 + }, + { + "start": 17962.08, + "end": 17963.26, + "probability": 0.5701 + }, + { + "start": 17963.34, + "end": 17968.36, + "probability": 0.8801 + }, + { + "start": 17969.06, + "end": 17969.26, + "probability": 0.6938 + }, + { + "start": 17969.66, + "end": 17970.18, + "probability": 0.8188 + }, + { + "start": 17970.22, + "end": 17970.9, + "probability": 0.8148 + }, + { + "start": 17971.12, + "end": 17971.12, + "probability": 0.0007 + }, + { + "start": 17973.38, + "end": 17974.2, + "probability": 0.8948 + }, + { + "start": 17974.58, + "end": 17975.06, + "probability": 0.5928 + }, + { + "start": 17975.8, + "end": 17976.24, + "probability": 0.2826 + }, + { + "start": 17977.18, + "end": 17978.08, + "probability": 0.8901 + }, + { + "start": 17978.56, + "end": 17979.52, + "probability": 0.8029 + }, + { + "start": 17980.24, + "end": 17981.64, + "probability": 0.9253 + }, + { + "start": 17982.44, + "end": 17982.82, + "probability": 0.6724 + }, + { + "start": 17984.3, + "end": 17986.52, + "probability": 0.9005 + }, + { + "start": 17989.72, + "end": 17992.14, + "probability": 0.4505 + }, + { + "start": 17993.23, + "end": 17995.96, + "probability": 0.9905 + }, + { + "start": 17997.3, + "end": 18005.24, + "probability": 0.9681 + }, + { + "start": 18005.24, + "end": 18007.54, + "probability": 0.9048 + }, + { + "start": 18008.63, + "end": 18011.1, + "probability": 0.7668 + }, + { + "start": 18012.06, + "end": 18012.66, + "probability": 0.7418 + }, + { + "start": 18012.88, + "end": 18013.46, + "probability": 0.8224 + }, + { + "start": 18013.62, + "end": 18016.96, + "probability": 0.9435 + }, + { + "start": 18017.02, + "end": 18018.64, + "probability": 0.9797 + }, + { + "start": 18018.8, + "end": 18022.0, + "probability": 0.9766 + }, + { + "start": 18022.72, + "end": 18031.14, + "probability": 0.9899 + }, + { + "start": 18032.06, + "end": 18033.9, + "probability": 0.9852 + }, + { + "start": 18033.9, + "end": 18034.46, + "probability": 0.8795 + }, + { + "start": 18034.48, + "end": 18035.0, + "probability": 0.6463 + }, + { + "start": 18035.08, + "end": 18036.62, + "probability": 0.9915 + }, + { + "start": 18036.76, + "end": 18037.56, + "probability": 0.9883 + }, + { + "start": 18038.16, + "end": 18040.9, + "probability": 0.959 + }, + { + "start": 18040.98, + "end": 18044.16, + "probability": 0.9059 + }, + { + "start": 18045.82, + "end": 18052.82, + "probability": 0.9947 + }, + { + "start": 18053.5, + "end": 18056.68, + "probability": 0.9843 + }, + { + "start": 18057.34, + "end": 18057.62, + "probability": 0.461 + }, + { + "start": 18058.18, + "end": 18058.62, + "probability": 0.906 + }, + { + "start": 18058.68, + "end": 18061.54, + "probability": 0.9551 + }, + { + "start": 18061.54, + "end": 18065.12, + "probability": 0.9308 + }, + { + "start": 18065.62, + "end": 18067.58, + "probability": 0.8777 + }, + { + "start": 18067.88, + "end": 18069.56, + "probability": 0.9187 + }, + { + "start": 18069.68, + "end": 18070.34, + "probability": 0.7782 + }, + { + "start": 18070.58, + "end": 18071.8, + "probability": 0.5263 + }, + { + "start": 18071.96, + "end": 18073.06, + "probability": 0.848 + }, + { + "start": 18074.0, + "end": 18076.1, + "probability": 0.9771 + }, + { + "start": 18077.38, + "end": 18078.2, + "probability": 0.8392 + }, + { + "start": 18078.42, + "end": 18079.03, + "probability": 0.6872 + }, + { + "start": 18079.46, + "end": 18080.0, + "probability": 0.5346 + }, + { + "start": 18080.08, + "end": 18080.18, + "probability": 0.9764 + }, + { + "start": 18082.06, + "end": 18083.04, + "probability": 0.9627 + }, + { + "start": 18099.68, + "end": 18099.68, + "probability": 0.3078 + }, + { + "start": 18099.68, + "end": 18100.5, + "probability": 0.2337 + }, + { + "start": 18101.44, + "end": 18103.48, + "probability": 0.6972 + }, + { + "start": 18103.48, + "end": 18104.26, + "probability": 0.2903 + }, + { + "start": 18107.1, + "end": 18108.12, + "probability": 0.8815 + }, + { + "start": 18110.66, + "end": 18111.64, + "probability": 0.5753 + }, + { + "start": 18111.74, + "end": 18112.24, + "probability": 0.3816 + }, + { + "start": 18112.42, + "end": 18114.1, + "probability": 0.9375 + }, + { + "start": 18115.32, + "end": 18118.26, + "probability": 0.4027 + }, + { + "start": 18118.26, + "end": 18118.94, + "probability": 0.5892 + }, + { + "start": 18119.06, + "end": 18119.82, + "probability": 0.9884 + }, + { + "start": 18120.24, + "end": 18120.64, + "probability": 0.5244 + }, + { + "start": 18120.8, + "end": 18121.54, + "probability": 0.9848 + }, + { + "start": 18121.86, + "end": 18122.2, + "probability": 0.4576 + }, + { + "start": 18122.48, + "end": 18122.74, + "probability": 0.8442 + }, + { + "start": 18122.86, + "end": 18123.66, + "probability": 0.8521 + }, + { + "start": 18123.96, + "end": 18124.14, + "probability": 0.2745 + }, + { + "start": 18124.24, + "end": 18124.75, + "probability": 0.9915 + }, + { + "start": 18125.94, + "end": 18127.74, + "probability": 0.9053 + }, + { + "start": 18129.02, + "end": 18129.76, + "probability": 0.6424 + }, + { + "start": 18130.34, + "end": 18133.52, + "probability": 0.3948 + }, + { + "start": 18133.98, + "end": 18138.16, + "probability": 0.7381 + }, + { + "start": 18138.7, + "end": 18140.68, + "probability": 0.03 + }, + { + "start": 18143.46, + "end": 18145.16, + "probability": 0.0184 + }, + { + "start": 18150.02, + "end": 18150.06, + "probability": 0.2124 + }, + { + "start": 18150.06, + "end": 18150.44, + "probability": 0.3808 + }, + { + "start": 18151.58, + "end": 18153.56, + "probability": 0.2833 + }, + { + "start": 18154.1, + "end": 18154.86, + "probability": 0.2754 + }, + { + "start": 18155.7, + "end": 18156.54, + "probability": 0.5955 + }, + { + "start": 18169.94, + "end": 18169.94, + "probability": 0.0952 + }, + { + "start": 18169.94, + "end": 18170.78, + "probability": 0.6545 + }, + { + "start": 18171.78, + "end": 18173.96, + "probability": 0.7555 + }, + { + "start": 18174.86, + "end": 18177.84, + "probability": 0.998 + }, + { + "start": 18179.1, + "end": 18180.12, + "probability": 0.7568 + }, + { + "start": 18180.54, + "end": 18182.32, + "probability": 0.5371 + }, + { + "start": 18185.7, + "end": 18189.72, + "probability": 0.9202 + }, + { + "start": 18190.46, + "end": 18191.08, + "probability": 0.9927 + }, + { + "start": 18191.74, + "end": 18193.1, + "probability": 0.9979 + }, + { + "start": 18196.18, + "end": 18199.48, + "probability": 0.9836 + }, + { + "start": 18201.82, + "end": 18204.46, + "probability": 0.9713 + }, + { + "start": 18206.16, + "end": 18206.8, + "probability": 0.4268 + }, + { + "start": 18207.94, + "end": 18208.36, + "probability": 0.4734 + }, + { + "start": 18208.4, + "end": 18211.18, + "probability": 0.9941 + }, + { + "start": 18212.22, + "end": 18213.22, + "probability": 0.8174 + }, + { + "start": 18215.5, + "end": 18217.3, + "probability": 0.4874 + }, + { + "start": 18217.78, + "end": 18218.96, + "probability": 0.9549 + }, + { + "start": 18219.12, + "end": 18220.64, + "probability": 0.9531 + }, + { + "start": 18221.16, + "end": 18222.42, + "probability": 0.7271 + }, + { + "start": 18222.6, + "end": 18223.98, + "probability": 0.9307 + }, + { + "start": 18224.02, + "end": 18225.18, + "probability": 0.7769 + }, + { + "start": 18225.24, + "end": 18225.88, + "probability": 0.8896 + }, + { + "start": 18225.94, + "end": 18229.74, + "probability": 0.9913 + }, + { + "start": 18230.36, + "end": 18233.16, + "probability": 0.6837 + }, + { + "start": 18234.3, + "end": 18236.52, + "probability": 0.96 + }, + { + "start": 18237.38, + "end": 18238.3, + "probability": 0.8903 + }, + { + "start": 18238.36, + "end": 18240.72, + "probability": 0.9976 + }, + { + "start": 18241.54, + "end": 18241.96, + "probability": 0.6933 + }, + { + "start": 18243.18, + "end": 18249.72, + "probability": 0.9951 + }, + { + "start": 18250.76, + "end": 18254.42, + "probability": 0.9817 + }, + { + "start": 18255.64, + "end": 18256.8, + "probability": 0.7748 + }, + { + "start": 18258.38, + "end": 18259.74, + "probability": 0.8709 + }, + { + "start": 18259.92, + "end": 18261.09, + "probability": 0.8955 + }, + { + "start": 18262.1, + "end": 18265.0, + "probability": 0.732 + }, + { + "start": 18265.14, + "end": 18265.46, + "probability": 0.4995 + }, + { + "start": 18265.5, + "end": 18266.46, + "probability": 0.2882 + }, + { + "start": 18267.74, + "end": 18267.84, + "probability": 0.9177 + }, + { + "start": 18268.86, + "end": 18269.8, + "probability": 0.7148 + }, + { + "start": 18270.1, + "end": 18270.36, + "probability": 0.7095 + }, + { + "start": 18271.1, + "end": 18272.24, + "probability": 0.9717 + }, + { + "start": 18273.26, + "end": 18275.1, + "probability": 0.9941 + }, + { + "start": 18275.16, + "end": 18276.79, + "probability": 0.8737 + }, + { + "start": 18277.52, + "end": 18285.56, + "probability": 0.9634 + }, + { + "start": 18285.92, + "end": 18286.34, + "probability": 0.9733 + }, + { + "start": 18287.42, + "end": 18288.6, + "probability": 0.8394 + }, + { + "start": 18289.74, + "end": 18293.32, + "probability": 0.981 + }, + { + "start": 18293.88, + "end": 18297.78, + "probability": 0.9832 + }, + { + "start": 18298.46, + "end": 18301.88, + "probability": 0.9961 + }, + { + "start": 18302.84, + "end": 18307.5, + "probability": 0.9966 + }, + { + "start": 18307.7, + "end": 18309.28, + "probability": 0.9917 + }, + { + "start": 18310.38, + "end": 18311.42, + "probability": 0.9428 + }, + { + "start": 18312.14, + "end": 18316.86, + "probability": 0.9824 + }, + { + "start": 18317.14, + "end": 18319.86, + "probability": 0.9852 + }, + { + "start": 18320.54, + "end": 18322.62, + "probability": 0.7604 + }, + { + "start": 18322.98, + "end": 18325.48, + "probability": 0.994 + }, + { + "start": 18326.5, + "end": 18328.92, + "probability": 0.7897 + }, + { + "start": 18329.14, + "end": 18330.42, + "probability": 0.7761 + }, + { + "start": 18331.58, + "end": 18337.08, + "probability": 0.9921 + }, + { + "start": 18337.22, + "end": 18338.1, + "probability": 0.7053 + }, + { + "start": 18338.16, + "end": 18339.78, + "probability": 0.9642 + }, + { + "start": 18340.28, + "end": 18342.18, + "probability": 0.9949 + }, + { + "start": 18343.28, + "end": 18348.54, + "probability": 0.9919 + }, + { + "start": 18350.16, + "end": 18352.16, + "probability": 0.9167 + }, + { + "start": 18353.1, + "end": 18353.62, + "probability": 0.7692 + }, + { + "start": 18354.9, + "end": 18356.84, + "probability": 0.8691 + }, + { + "start": 18358.7, + "end": 18359.42, + "probability": 0.7527 + }, + { + "start": 18359.62, + "end": 18362.34, + "probability": 0.9956 + }, + { + "start": 18363.68, + "end": 18364.52, + "probability": 0.8527 + }, + { + "start": 18364.62, + "end": 18366.04, + "probability": 0.783 + }, + { + "start": 18366.12, + "end": 18366.96, + "probability": 0.6196 + }, + { + "start": 18368.7, + "end": 18369.96, + "probability": 0.7861 + }, + { + "start": 18370.96, + "end": 18372.8, + "probability": 0.9832 + }, + { + "start": 18372.94, + "end": 18374.16, + "probability": 0.891 + }, + { + "start": 18374.94, + "end": 18376.4, + "probability": 0.9917 + }, + { + "start": 18376.8, + "end": 18379.12, + "probability": 0.8922 + }, + { + "start": 18380.2, + "end": 18384.34, + "probability": 0.739 + }, + { + "start": 18385.1, + "end": 18385.6, + "probability": 0.2703 + }, + { + "start": 18385.6, + "end": 18385.6, + "probability": 0.0733 + }, + { + "start": 18385.6, + "end": 18386.28, + "probability": 0.5918 + }, + { + "start": 18387.28, + "end": 18387.94, + "probability": 0.5041 + }, + { + "start": 18388.48, + "end": 18391.34, + "probability": 0.9827 + }, + { + "start": 18391.36, + "end": 18394.7, + "probability": 0.8047 + }, + { + "start": 18394.76, + "end": 18395.62, + "probability": 0.9386 + }, + { + "start": 18396.28, + "end": 18401.0, + "probability": 0.9952 + }, + { + "start": 18401.06, + "end": 18403.52, + "probability": 0.7137 + }, + { + "start": 18404.9, + "end": 18407.27, + "probability": 0.8002 + }, + { + "start": 18408.2, + "end": 18408.96, + "probability": 0.5054 + }, + { + "start": 18409.58, + "end": 18412.64, + "probability": 0.9696 + }, + { + "start": 18412.66, + "end": 18414.12, + "probability": 0.8936 + }, + { + "start": 18414.2, + "end": 18414.62, + "probability": 0.7197 + }, + { + "start": 18416.68, + "end": 18417.62, + "probability": 0.5303 + }, + { + "start": 18419.3, + "end": 18421.34, + "probability": 0.9012 + }, + { + "start": 18435.38, + "end": 18435.92, + "probability": 0.498 + }, + { + "start": 18435.94, + "end": 18439.16, + "probability": 0.7191 + }, + { + "start": 18441.0, + "end": 18442.84, + "probability": 0.8732 + }, + { + "start": 18443.78, + "end": 18447.46, + "probability": 0.9152 + }, + { + "start": 18447.46, + "end": 18452.02, + "probability": 0.7876 + }, + { + "start": 18453.18, + "end": 18454.58, + "probability": 0.978 + }, + { + "start": 18454.78, + "end": 18457.72, + "probability": 0.6834 + }, + { + "start": 18458.28, + "end": 18460.62, + "probability": 0.9445 + }, + { + "start": 18460.76, + "end": 18461.7, + "probability": 0.8854 + }, + { + "start": 18462.6, + "end": 18466.33, + "probability": 0.7661 + }, + { + "start": 18467.2, + "end": 18469.06, + "probability": 0.8814 + }, + { + "start": 18469.26, + "end": 18471.48, + "probability": 0.9843 + }, + { + "start": 18472.1, + "end": 18473.03, + "probability": 0.9624 + }, + { + "start": 18473.34, + "end": 18476.14, + "probability": 0.8999 + }, + { + "start": 18476.34, + "end": 18479.22, + "probability": 0.9874 + }, + { + "start": 18479.98, + "end": 18483.64, + "probability": 0.918 + }, + { + "start": 18484.22, + "end": 18490.53, + "probability": 0.9303 + }, + { + "start": 18491.18, + "end": 18492.08, + "probability": 0.5864 + }, + { + "start": 18492.14, + "end": 18493.32, + "probability": 0.8538 + }, + { + "start": 18494.36, + "end": 18498.9, + "probability": 0.526 + }, + { + "start": 18499.92, + "end": 18502.22, + "probability": 0.8281 + }, + { + "start": 18503.86, + "end": 18506.68, + "probability": 0.975 + }, + { + "start": 18507.4, + "end": 18509.6, + "probability": 0.9612 + }, + { + "start": 18511.02, + "end": 18512.46, + "probability": 0.9985 + }, + { + "start": 18513.6, + "end": 18516.66, + "probability": 0.9928 + }, + { + "start": 18516.8, + "end": 18519.82, + "probability": 0.9798 + }, + { + "start": 18520.68, + "end": 18523.76, + "probability": 0.9763 + }, + { + "start": 18524.6, + "end": 18525.6, + "probability": 0.7988 + }, + { + "start": 18526.18, + "end": 18528.52, + "probability": 0.9611 + }, + { + "start": 18529.04, + "end": 18532.34, + "probability": 0.6635 + }, + { + "start": 18533.62, + "end": 18537.14, + "probability": 0.9839 + }, + { + "start": 18537.88, + "end": 18542.78, + "probability": 0.8719 + }, + { + "start": 18543.84, + "end": 18546.68, + "probability": 0.9734 + }, + { + "start": 18548.26, + "end": 18553.04, + "probability": 0.9508 + }, + { + "start": 18553.1, + "end": 18553.52, + "probability": 0.8811 + }, + { + "start": 18553.72, + "end": 18554.04, + "probability": 0.4605 + }, + { + "start": 18554.72, + "end": 18560.44, + "probability": 0.8979 + }, + { + "start": 18560.5, + "end": 18562.22, + "probability": 0.6503 + }, + { + "start": 18563.46, + "end": 18566.62, + "probability": 0.6191 + }, + { + "start": 18567.1, + "end": 18569.11, + "probability": 0.9375 + }, + { + "start": 18569.82, + "end": 18572.84, + "probability": 0.9489 + }, + { + "start": 18573.38, + "end": 18574.66, + "probability": 0.8249 + }, + { + "start": 18576.28, + "end": 18577.12, + "probability": 0.9214 + }, + { + "start": 18577.2, + "end": 18579.28, + "probability": 0.9891 + }, + { + "start": 18579.3, + "end": 18580.58, + "probability": 0.9895 + }, + { + "start": 18581.54, + "end": 18582.32, + "probability": 0.6423 + }, + { + "start": 18583.3, + "end": 18586.54, + "probability": 0.9993 + }, + { + "start": 18587.44, + "end": 18588.52, + "probability": 0.9389 + }, + { + "start": 18590.02, + "end": 18591.38, + "probability": 0.6769 + }, + { + "start": 18591.96, + "end": 18594.26, + "probability": 0.9719 + }, + { + "start": 18594.9, + "end": 18597.38, + "probability": 0.8977 + }, + { + "start": 18597.7, + "end": 18598.74, + "probability": 0.8584 + }, + { + "start": 18599.28, + "end": 18599.49, + "probability": 0.9298 + }, + { + "start": 18600.32, + "end": 18601.48, + "probability": 0.7375 + }, + { + "start": 18605.02, + "end": 18606.28, + "probability": 0.9211 + }, + { + "start": 18606.52, + "end": 18608.62, + "probability": 0.7729 + }, + { + "start": 18608.88, + "end": 18611.08, + "probability": 0.5865 + }, + { + "start": 18611.14, + "end": 18613.26, + "probability": 0.9426 + }, + { + "start": 18613.52, + "end": 18619.34, + "probability": 0.9904 + }, + { + "start": 18619.48, + "end": 18620.48, + "probability": 0.9914 + }, + { + "start": 18621.42, + "end": 18622.56, + "probability": 0.7304 + }, + { + "start": 18623.82, + "end": 18627.68, + "probability": 0.9712 + }, + { + "start": 18628.06, + "end": 18633.38, + "probability": 0.8894 + }, + { + "start": 18634.86, + "end": 18637.18, + "probability": 0.889 + }, + { + "start": 18637.28, + "end": 18638.96, + "probability": 0.6777 + }, + { + "start": 18639.06, + "end": 18640.44, + "probability": 0.9917 + }, + { + "start": 18640.44, + "end": 18641.62, + "probability": 0.9808 + }, + { + "start": 18642.74, + "end": 18643.92, + "probability": 0.8174 + }, + { + "start": 18644.38, + "end": 18645.76, + "probability": 0.7238 + }, + { + "start": 18645.92, + "end": 18647.6, + "probability": 0.8213 + }, + { + "start": 18648.12, + "end": 18648.92, + "probability": 0.8424 + }, + { + "start": 18649.02, + "end": 18649.34, + "probability": 0.8118 + }, + { + "start": 18650.26, + "end": 18652.2, + "probability": 0.7568 + }, + { + "start": 18653.06, + "end": 18655.64, + "probability": 0.7849 + }, + { + "start": 18687.34, + "end": 18689.04, + "probability": 0.7458 + }, + { + "start": 18690.94, + "end": 18692.74, + "probability": 0.8874 + }, + { + "start": 18693.38, + "end": 18694.7, + "probability": 0.9211 + }, + { + "start": 18695.28, + "end": 18696.36, + "probability": 0.9043 + }, + { + "start": 18697.02, + "end": 18699.02, + "probability": 0.7688 + }, + { + "start": 18700.42, + "end": 18701.76, + "probability": 0.4954 + }, + { + "start": 18702.02, + "end": 18708.02, + "probability": 0.9902 + }, + { + "start": 18709.08, + "end": 18711.62, + "probability": 0.5304 + }, + { + "start": 18712.16, + "end": 18716.08, + "probability": 0.9766 + }, + { + "start": 18716.12, + "end": 18718.94, + "probability": 0.9564 + }, + { + "start": 18720.2, + "end": 18720.64, + "probability": 0.4753 + }, + { + "start": 18720.68, + "end": 18721.5, + "probability": 0.6315 + }, + { + "start": 18721.58, + "end": 18725.64, + "probability": 0.9246 + }, + { + "start": 18726.72, + "end": 18729.78, + "probability": 0.9924 + }, + { + "start": 18729.78, + "end": 18733.8, + "probability": 0.9226 + }, + { + "start": 18734.52, + "end": 18738.18, + "probability": 0.9845 + }, + { + "start": 18738.37, + "end": 18742.08, + "probability": 0.9596 + }, + { + "start": 18743.82, + "end": 18745.48, + "probability": 0.5048 + }, + { + "start": 18745.76, + "end": 18746.42, + "probability": 0.6996 + }, + { + "start": 18746.48, + "end": 18748.9, + "probability": 0.913 + }, + { + "start": 18749.84, + "end": 18752.0, + "probability": 0.9664 + }, + { + "start": 18752.12, + "end": 18752.4, + "probability": 0.5885 + }, + { + "start": 18752.6, + "end": 18754.84, + "probability": 0.9237 + }, + { + "start": 18755.02, + "end": 18755.99, + "probability": 0.9487 + }, + { + "start": 18757.56, + "end": 18758.42, + "probability": 0.5534 + }, + { + "start": 18758.96, + "end": 18760.24, + "probability": 0.972 + }, + { + "start": 18760.28, + "end": 18761.96, + "probability": 0.9462 + }, + { + "start": 18763.04, + "end": 18767.44, + "probability": 0.9537 + }, + { + "start": 18768.18, + "end": 18769.72, + "probability": 0.9841 + }, + { + "start": 18770.86, + "end": 18772.56, + "probability": 0.5438 + }, + { + "start": 18773.56, + "end": 18775.7, + "probability": 0.835 + }, + { + "start": 18776.1, + "end": 18776.66, + "probability": 0.8342 + }, + { + "start": 18776.82, + "end": 18778.18, + "probability": 0.6732 + }, + { + "start": 18778.68, + "end": 18781.66, + "probability": 0.7518 + }, + { + "start": 18781.8, + "end": 18782.41, + "probability": 0.8428 + }, + { + "start": 18782.86, + "end": 18786.42, + "probability": 0.9132 + }, + { + "start": 18786.78, + "end": 18787.64, + "probability": 0.715 + }, + { + "start": 18787.68, + "end": 18788.66, + "probability": 0.7546 + }, + { + "start": 18788.98, + "end": 18789.72, + "probability": 0.8574 + }, + { + "start": 18790.28, + "end": 18791.04, + "probability": 0.5568 + }, + { + "start": 18791.9, + "end": 18794.32, + "probability": 0.8678 + }, + { + "start": 18794.34, + "end": 18795.04, + "probability": 0.462 + }, + { + "start": 18795.76, + "end": 18797.34, + "probability": 0.7872 + }, + { + "start": 18797.38, + "end": 18797.94, + "probability": 0.7087 + }, + { + "start": 18799.12, + "end": 18800.03, + "probability": 0.9199 + }, + { + "start": 18800.3, + "end": 18800.96, + "probability": 0.7331 + }, + { + "start": 18802.6, + "end": 18803.2, + "probability": 0.8539 + }, + { + "start": 18803.4, + "end": 18804.02, + "probability": 0.8685 + }, + { + "start": 18804.46, + "end": 18806.61, + "probability": 0.9917 + }, + { + "start": 18807.92, + "end": 18810.98, + "probability": 0.6693 + }, + { + "start": 18812.24, + "end": 18812.26, + "probability": 0.0011 + }, + { + "start": 18813.02, + "end": 18816.04, + "probability": 0.9828 + }, + { + "start": 18817.0, + "end": 18820.5, + "probability": 0.8286 + }, + { + "start": 18820.98, + "end": 18821.64, + "probability": 0.9027 + }, + { + "start": 18822.32, + "end": 18824.44, + "probability": 0.9526 + }, + { + "start": 18824.46, + "end": 18825.36, + "probability": 0.9988 + }, + { + "start": 18826.44, + "end": 18828.98, + "probability": 0.9769 + }, + { + "start": 18829.34, + "end": 18831.88, + "probability": 0.9343 + }, + { + "start": 18832.48, + "end": 18833.34, + "probability": 0.9548 + }, + { + "start": 18834.3, + "end": 18838.48, + "probability": 0.7616 + }, + { + "start": 18839.56, + "end": 18841.18, + "probability": 0.988 + }, + { + "start": 18841.7, + "end": 18842.94, + "probability": 0.6918 + }, + { + "start": 18842.94, + "end": 18843.56, + "probability": 0.7613 + }, + { + "start": 18843.72, + "end": 18845.27, + "probability": 0.7059 + }, + { + "start": 18845.92, + "end": 18847.56, + "probability": 0.7836 + }, + { + "start": 18848.52, + "end": 18850.12, + "probability": 0.8377 + }, + { + "start": 18850.86, + "end": 18853.12, + "probability": 0.9586 + }, + { + "start": 18854.08, + "end": 18856.1, + "probability": 0.8169 + }, + { + "start": 18856.64, + "end": 18857.22, + "probability": 0.6952 + }, + { + "start": 18857.64, + "end": 18860.42, + "probability": 0.7396 + }, + { + "start": 18860.88, + "end": 18864.66, + "probability": 0.9954 + }, + { + "start": 18864.74, + "end": 18865.26, + "probability": 0.7326 + }, + { + "start": 18865.34, + "end": 18865.92, + "probability": 0.6994 + }, + { + "start": 18866.34, + "end": 18868.2, + "probability": 0.915 + }, + { + "start": 18869.2, + "end": 18869.86, + "probability": 0.7423 + }, + { + "start": 18870.72, + "end": 18873.16, + "probability": 0.9395 + }, + { + "start": 18873.78, + "end": 18876.7, + "probability": 0.9017 + }, + { + "start": 18876.82, + "end": 18877.36, + "probability": 0.7373 + }, + { + "start": 18877.4, + "end": 18881.32, + "probability": 0.9799 + }, + { + "start": 18881.42, + "end": 18881.98, + "probability": 0.7665 + }, + { + "start": 18882.36, + "end": 18886.16, + "probability": 0.994 + }, + { + "start": 18886.6, + "end": 18889.04, + "probability": 0.7912 + }, + { + "start": 18889.64, + "end": 18892.74, + "probability": 0.9947 + }, + { + "start": 18892.74, + "end": 18896.78, + "probability": 0.9971 + }, + { + "start": 18896.98, + "end": 18899.28, + "probability": 0.9897 + }, + { + "start": 18899.28, + "end": 18903.46, + "probability": 0.9761 + }, + { + "start": 18903.84, + "end": 18904.54, + "probability": 0.7427 + }, + { + "start": 18904.6, + "end": 18905.12, + "probability": 0.5421 + }, + { + "start": 18905.26, + "end": 18906.02, + "probability": 0.9873 + }, + { + "start": 18906.58, + "end": 18906.84, + "probability": 0.7765 + }, + { + "start": 18907.16, + "end": 18908.63, + "probability": 0.9869 + }, + { + "start": 18909.0, + "end": 18910.58, + "probability": 0.7896 + }, + { + "start": 18911.24, + "end": 18913.34, + "probability": 0.7269 + }, + { + "start": 18913.82, + "end": 18918.54, + "probability": 0.9909 + }, + { + "start": 18918.64, + "end": 18921.3, + "probability": 0.9951 + }, + { + "start": 18921.58, + "end": 18923.54, + "probability": 0.5435 + }, + { + "start": 18923.78, + "end": 18924.04, + "probability": 0.5142 + }, + { + "start": 18924.72, + "end": 18926.5, + "probability": 0.6236 + }, + { + "start": 18944.48, + "end": 18945.94, + "probability": 0.7163 + }, + { + "start": 18950.84, + "end": 18955.04, + "probability": 0.7678 + }, + { + "start": 18956.18, + "end": 18959.76, + "probability": 0.9583 + }, + { + "start": 18961.36, + "end": 18965.16, + "probability": 0.9028 + }, + { + "start": 18965.36, + "end": 18968.34, + "probability": 0.9698 + }, + { + "start": 18969.46, + "end": 18971.78, + "probability": 0.7894 + }, + { + "start": 18971.78, + "end": 18974.98, + "probability": 0.8732 + }, + { + "start": 18975.8, + "end": 18977.88, + "probability": 0.9962 + }, + { + "start": 18979.64, + "end": 18984.1, + "probability": 0.934 + }, + { + "start": 18985.46, + "end": 18990.68, + "probability": 0.7407 + }, + { + "start": 18991.68, + "end": 18994.58, + "probability": 0.9919 + }, + { + "start": 18995.6, + "end": 18999.36, + "probability": 0.9688 + }, + { + "start": 19000.36, + "end": 19002.84, + "probability": 0.9689 + }, + { + "start": 19002.84, + "end": 19006.04, + "probability": 0.9976 + }, + { + "start": 19007.12, + "end": 19008.52, + "probability": 0.9024 + }, + { + "start": 19009.58, + "end": 19012.38, + "probability": 0.8212 + }, + { + "start": 19012.5, + "end": 19014.48, + "probability": 0.991 + }, + { + "start": 19014.48, + "end": 19017.06, + "probability": 0.9678 + }, + { + "start": 19018.14, + "end": 19018.88, + "probability": 0.8541 + }, + { + "start": 19020.18, + "end": 19020.28, + "probability": 0.2768 + }, + { + "start": 19020.28, + "end": 19021.78, + "probability": 0.6923 + }, + { + "start": 19022.02, + "end": 19023.66, + "probability": 0.8743 + }, + { + "start": 19023.7, + "end": 19025.4, + "probability": 0.9211 + }, + { + "start": 19026.2, + "end": 19028.52, + "probability": 0.9739 + }, + { + "start": 19029.53, + "end": 19033.32, + "probability": 0.9922 + }, + { + "start": 19034.34, + "end": 19041.1, + "probability": 0.9639 + }, + { + "start": 19042.68, + "end": 19046.8, + "probability": 0.9967 + }, + { + "start": 19046.86, + "end": 19051.5, + "probability": 0.9825 + }, + { + "start": 19052.6, + "end": 19054.92, + "probability": 0.801 + }, + { + "start": 19055.3, + "end": 19058.52, + "probability": 0.7756 + }, + { + "start": 19058.52, + "end": 19061.5, + "probability": 0.9901 + }, + { + "start": 19063.42, + "end": 19064.34, + "probability": 0.9955 + }, + { + "start": 19065.02, + "end": 19068.88, + "probability": 0.948 + }, + { + "start": 19069.02, + "end": 19071.78, + "probability": 0.962 + }, + { + "start": 19072.12, + "end": 19072.88, + "probability": 0.7473 + }, + { + "start": 19073.88, + "end": 19077.48, + "probability": 0.9806 + }, + { + "start": 19077.7, + "end": 19078.47, + "probability": 0.8072 + }, + { + "start": 19078.66, + "end": 19080.06, + "probability": 0.9668 + }, + { + "start": 19081.64, + "end": 19082.68, + "probability": 0.7734 + }, + { + "start": 19083.4, + "end": 19085.14, + "probability": 0.9593 + }, + { + "start": 19085.3, + "end": 19087.42, + "probability": 0.9406 + }, + { + "start": 19088.12, + "end": 19093.62, + "probability": 0.987 + }, + { + "start": 19095.0, + "end": 19097.02, + "probability": 0.7697 + }, + { + "start": 19097.02, + "end": 19101.16, + "probability": 0.8218 + }, + { + "start": 19101.88, + "end": 19104.4, + "probability": 0.9862 + }, + { + "start": 19104.86, + "end": 19105.88, + "probability": 0.9825 + }, + { + "start": 19106.62, + "end": 19109.66, + "probability": 0.9843 + }, + { + "start": 19111.46, + "end": 19116.16, + "probability": 0.9838 + }, + { + "start": 19116.48, + "end": 19119.16, + "probability": 0.9315 + }, + { + "start": 19119.16, + "end": 19121.62, + "probability": 0.9794 + }, + { + "start": 19122.84, + "end": 19124.22, + "probability": 0.9096 + }, + { + "start": 19124.4, + "end": 19126.32, + "probability": 0.9713 + }, + { + "start": 19126.52, + "end": 19129.14, + "probability": 0.9915 + }, + { + "start": 19130.42, + "end": 19132.76, + "probability": 0.9591 + }, + { + "start": 19132.9, + "end": 19133.4, + "probability": 0.4587 + }, + { + "start": 19133.72, + "end": 19134.84, + "probability": 0.9789 + }, + { + "start": 19135.78, + "end": 19136.64, + "probability": 0.9254 + }, + { + "start": 19137.14, + "end": 19139.42, + "probability": 0.8229 + }, + { + "start": 19139.7, + "end": 19142.78, + "probability": 0.8246 + }, + { + "start": 19143.78, + "end": 19147.96, + "probability": 0.9946 + }, + { + "start": 19147.96, + "end": 19152.96, + "probability": 0.9827 + }, + { + "start": 19153.22, + "end": 19155.24, + "probability": 0.9681 + }, + { + "start": 19156.34, + "end": 19160.33, + "probability": 0.957 + }, + { + "start": 19160.6, + "end": 19162.14, + "probability": 0.7083 + }, + { + "start": 19162.24, + "end": 19163.1, + "probability": 0.7852 + }, + { + "start": 19163.7, + "end": 19166.9, + "probability": 0.9809 + }, + { + "start": 19168.14, + "end": 19169.48, + "probability": 0.7688 + }, + { + "start": 19170.36, + "end": 19175.3, + "probability": 0.7672 + }, + { + "start": 19182.42, + "end": 19183.66, + "probability": 0.6859 + }, + { + "start": 19184.0, + "end": 19185.33, + "probability": 0.6888 + }, + { + "start": 19185.46, + "end": 19190.86, + "probability": 0.9932 + }, + { + "start": 19190.86, + "end": 19197.0, + "probability": 0.9886 + }, + { + "start": 19198.18, + "end": 19202.18, + "probability": 0.9943 + }, + { + "start": 19202.44, + "end": 19204.92, + "probability": 0.6605 + }, + { + "start": 19205.04, + "end": 19205.8, + "probability": 0.7935 + }, + { + "start": 19207.02, + "end": 19208.95, + "probability": 0.9186 + }, + { + "start": 19209.34, + "end": 19212.44, + "probability": 0.8697 + }, + { + "start": 19212.6, + "end": 19214.22, + "probability": 0.873 + }, + { + "start": 19215.12, + "end": 19215.56, + "probability": 0.6949 + }, + { + "start": 19215.66, + "end": 19216.28, + "probability": 0.7015 + }, + { + "start": 19216.34, + "end": 19219.16, + "probability": 0.9583 + }, + { + "start": 19219.32, + "end": 19227.12, + "probability": 0.8179 + }, + { + "start": 19227.52, + "end": 19229.26, + "probability": 0.9973 + }, + { + "start": 19229.34, + "end": 19231.28, + "probability": 0.9414 + }, + { + "start": 19231.58, + "end": 19233.05, + "probability": 0.6792 + }, + { + "start": 19233.32, + "end": 19237.06, + "probability": 0.9907 + }, + { + "start": 19237.14, + "end": 19237.9, + "probability": 0.6173 + }, + { + "start": 19238.36, + "end": 19239.8, + "probability": 0.9194 + }, + { + "start": 19240.1, + "end": 19241.4, + "probability": 0.7441 + }, + { + "start": 19241.48, + "end": 19241.86, + "probability": 0.8944 + }, + { + "start": 19242.6, + "end": 19244.28, + "probability": 0.6163 + }, + { + "start": 19244.43, + "end": 19246.1, + "probability": 0.8755 + }, + { + "start": 19246.52, + "end": 19249.02, + "probability": 0.594 + }, + { + "start": 19249.4, + "end": 19251.44, + "probability": 0.8278 + }, + { + "start": 19252.96, + "end": 19253.54, + "probability": 0.2889 + }, + { + "start": 19254.62, + "end": 19258.96, + "probability": 0.4841 + }, + { + "start": 19271.96, + "end": 19272.44, + "probability": 0.0386 + }, + { + "start": 19272.44, + "end": 19273.02, + "probability": 0.2848 + }, + { + "start": 19273.94, + "end": 19275.94, + "probability": 0.935 + }, + { + "start": 19276.7, + "end": 19277.18, + "probability": 0.7168 + }, + { + "start": 19277.38, + "end": 19278.96, + "probability": 0.1653 + }, + { + "start": 19279.92, + "end": 19283.95, + "probability": 0.6811 + }, + { + "start": 19295.94, + "end": 19296.3, + "probability": 0.0417 + }, + { + "start": 19296.3, + "end": 19297.46, + "probability": 0.061 + }, + { + "start": 19297.46, + "end": 19297.46, + "probability": 0.3678 + }, + { + "start": 19297.46, + "end": 19298.18, + "probability": 0.3801 + }, + { + "start": 19298.48, + "end": 19299.78, + "probability": 0.2035 + }, + { + "start": 19312.84, + "end": 19319.48, + "probability": 0.7986 + }, + { + "start": 19320.54, + "end": 19322.84, + "probability": 0.8539 + }, + { + "start": 19324.1, + "end": 19331.01, + "probability": 0.991 + }, + { + "start": 19331.96, + "end": 19332.52, + "probability": 0.5508 + }, + { + "start": 19333.68, + "end": 19338.28, + "probability": 0.9312 + }, + { + "start": 19342.18, + "end": 19348.26, + "probability": 0.875 + }, + { + "start": 19349.22, + "end": 19352.56, + "probability": 0.6613 + }, + { + "start": 19353.12, + "end": 19353.82, + "probability": 0.9966 + }, + { + "start": 19354.84, + "end": 19357.46, + "probability": 0.908 + }, + { + "start": 19359.19, + "end": 19362.74, + "probability": 0.9665 + }, + { + "start": 19362.86, + "end": 19364.78, + "probability": 0.9333 + }, + { + "start": 19366.64, + "end": 19368.62, + "probability": 0.9379 + }, + { + "start": 19369.02, + "end": 19375.18, + "probability": 0.9526 + }, + { + "start": 19376.88, + "end": 19379.2, + "probability": 0.9987 + }, + { + "start": 19380.86, + "end": 19384.54, + "probability": 0.9736 + }, + { + "start": 19385.22, + "end": 19388.36, + "probability": 0.955 + }, + { + "start": 19389.64, + "end": 19391.22, + "probability": 0.8735 + }, + { + "start": 19391.96, + "end": 19393.9, + "probability": 0.9907 + }, + { + "start": 19395.3, + "end": 19395.52, + "probability": 0.395 + }, + { + "start": 19395.56, + "end": 19397.42, + "probability": 0.978 + }, + { + "start": 19397.42, + "end": 19401.9, + "probability": 0.9559 + }, + { + "start": 19402.96, + "end": 19405.38, + "probability": 0.9946 + }, + { + "start": 19406.72, + "end": 19407.48, + "probability": 0.5909 + }, + { + "start": 19409.02, + "end": 19410.38, + "probability": 0.8182 + }, + { + "start": 19411.1, + "end": 19411.58, + "probability": 0.845 + }, + { + "start": 19412.26, + "end": 19415.22, + "probability": 0.929 + }, + { + "start": 19415.52, + "end": 19416.56, + "probability": 0.6942 + }, + { + "start": 19416.66, + "end": 19418.43, + "probability": 0.9858 + }, + { + "start": 19419.36, + "end": 19422.04, + "probability": 0.9806 + }, + { + "start": 19424.02, + "end": 19428.44, + "probability": 0.8687 + }, + { + "start": 19430.94, + "end": 19434.7, + "probability": 0.9868 + }, + { + "start": 19435.82, + "end": 19437.4, + "probability": 0.9657 + }, + { + "start": 19438.6, + "end": 19440.06, + "probability": 0.8421 + }, + { + "start": 19440.68, + "end": 19444.66, + "probability": 0.9587 + }, + { + "start": 19449.68, + "end": 19450.54, + "probability": 0.6869 + }, + { + "start": 19451.68, + "end": 19454.96, + "probability": 0.9955 + }, + { + "start": 19455.54, + "end": 19456.72, + "probability": 0.9757 + }, + { + "start": 19457.02, + "end": 19457.78, + "probability": 0.6693 + }, + { + "start": 19459.14, + "end": 19465.12, + "probability": 0.7913 + }, + { + "start": 19466.18, + "end": 19467.26, + "probability": 0.5377 + }, + { + "start": 19467.38, + "end": 19468.62, + "probability": 0.9888 + }, + { + "start": 19469.48, + "end": 19471.46, + "probability": 0.9476 + }, + { + "start": 19471.9, + "end": 19473.81, + "probability": 0.9677 + }, + { + "start": 19474.54, + "end": 19475.74, + "probability": 0.8076 + }, + { + "start": 19477.18, + "end": 19479.28, + "probability": 0.7433 + }, + { + "start": 19479.34, + "end": 19488.08, + "probability": 0.9754 + }, + { + "start": 19489.84, + "end": 19493.5, + "probability": 0.9894 + }, + { + "start": 19493.78, + "end": 19497.22, + "probability": 0.989 + }, + { + "start": 19498.26, + "end": 19499.46, + "probability": 0.5028 + }, + { + "start": 19499.5, + "end": 19503.66, + "probability": 0.9951 + }, + { + "start": 19503.68, + "end": 19507.44, + "probability": 0.9922 + }, + { + "start": 19508.76, + "end": 19513.72, + "probability": 0.6721 + }, + { + "start": 19515.82, + "end": 19516.64, + "probability": 0.6995 + }, + { + "start": 19518.02, + "end": 19521.78, + "probability": 0.9904 + }, + { + "start": 19523.24, + "end": 19524.62, + "probability": 0.7362 + }, + { + "start": 19524.88, + "end": 19526.12, + "probability": 0.9075 + }, + { + "start": 19526.12, + "end": 19528.4, + "probability": 0.7977 + }, + { + "start": 19529.84, + "end": 19530.54, + "probability": 0.4203 + }, + { + "start": 19531.04, + "end": 19533.96, + "probability": 0.951 + }, + { + "start": 19534.02, + "end": 19538.42, + "probability": 0.973 + }, + { + "start": 19539.56, + "end": 19541.66, + "probability": 0.7765 + }, + { + "start": 19542.03, + "end": 19545.02, + "probability": 0.8221 + }, + { + "start": 19545.7, + "end": 19556.66, + "probability": 0.9626 + }, + { + "start": 19557.38, + "end": 19557.94, + "probability": 0.7722 + }, + { + "start": 19558.48, + "end": 19561.38, + "probability": 0.7617 + }, + { + "start": 19562.48, + "end": 19565.84, + "probability": 0.9945 + }, + { + "start": 19567.42, + "end": 19572.1, + "probability": 0.9192 + }, + { + "start": 19572.9, + "end": 19575.96, + "probability": 0.9993 + }, + { + "start": 19577.82, + "end": 19578.56, + "probability": 0.9832 + }, + { + "start": 19579.28, + "end": 19579.84, + "probability": 0.7957 + }, + { + "start": 19580.6, + "end": 19584.42, + "probability": 0.9972 + }, + { + "start": 19584.42, + "end": 19588.1, + "probability": 0.9982 + }, + { + "start": 19589.24, + "end": 19589.24, + "probability": 0.4177 + }, + { + "start": 19589.24, + "end": 19590.67, + "probability": 0.539 + }, + { + "start": 19591.44, + "end": 19593.62, + "probability": 0.8008 + }, + { + "start": 19593.8, + "end": 19595.6, + "probability": 0.9155 + }, + { + "start": 19615.06, + "end": 19615.2, + "probability": 0.1911 + }, + { + "start": 19615.26, + "end": 19618.58, + "probability": 0.7406 + }, + { + "start": 19619.3, + "end": 19622.78, + "probability": 0.9426 + }, + { + "start": 19623.36, + "end": 19627.66, + "probability": 0.9004 + }, + { + "start": 19628.7, + "end": 19631.66, + "probability": 0.9888 + }, + { + "start": 19631.66, + "end": 19636.6, + "probability": 0.9781 + }, + { + "start": 19637.06, + "end": 19638.42, + "probability": 0.6998 + }, + { + "start": 19638.86, + "end": 19641.28, + "probability": 0.9972 + }, + { + "start": 19641.96, + "end": 19647.68, + "probability": 0.9889 + }, + { + "start": 19648.4, + "end": 19650.48, + "probability": 0.8367 + }, + { + "start": 19651.87, + "end": 19653.38, + "probability": 0.1029 + }, + { + "start": 19653.62, + "end": 19654.12, + "probability": 0.7191 + }, + { + "start": 19655.14, + "end": 19656.98, + "probability": 0.572 + }, + { + "start": 19657.02, + "end": 19657.02, + "probability": 0.2627 + }, + { + "start": 19657.02, + "end": 19657.42, + "probability": 0.5228 + }, + { + "start": 19657.42, + "end": 19658.82, + "probability": 0.9045 + }, + { + "start": 19658.86, + "end": 19659.68, + "probability": 0.8531 + }, + { + "start": 19660.24, + "end": 19661.52, + "probability": 0.9604 + }, + { + "start": 19661.88, + "end": 19663.42, + "probability": 0.8765 + }, + { + "start": 19663.42, + "end": 19664.2, + "probability": 0.9319 + }, + { + "start": 19665.68, + "end": 19669.68, + "probability": 0.9621 + }, + { + "start": 19669.72, + "end": 19672.04, + "probability": 0.996 + }, + { + "start": 19672.12, + "end": 19672.22, + "probability": 0.3891 + }, + { + "start": 19672.58, + "end": 19673.06, + "probability": 0.8583 + }, + { + "start": 19675.94, + "end": 19676.7, + "probability": 0.1688 + }, + { + "start": 19677.2, + "end": 19678.98, + "probability": 0.9403 + }, + { + "start": 19680.04, + "end": 19682.86, + "probability": 0.9495 + }, + { + "start": 19683.14, + "end": 19685.18, + "probability": 0.7978 + }, + { + "start": 19685.48, + "end": 19686.02, + "probability": 0.4578 + }, + { + "start": 19686.82, + "end": 19687.96, + "probability": 0.9435 + }, + { + "start": 19688.02, + "end": 19690.66, + "probability": 0.9541 + }, + { + "start": 19691.2, + "end": 19693.22, + "probability": 0.798 + }, + { + "start": 19693.3, + "end": 19694.41, + "probability": 0.9937 + }, + { + "start": 19695.99, + "end": 19699.18, + "probability": 0.8448 + }, + { + "start": 19700.62, + "end": 19705.96, + "probability": 0.9704 + }, + { + "start": 19705.96, + "end": 19710.66, + "probability": 0.9939 + }, + { + "start": 19711.8, + "end": 19713.32, + "probability": 0.6584 + }, + { + "start": 19713.84, + "end": 19717.94, + "probability": 0.9841 + }, + { + "start": 19717.94, + "end": 19722.66, + "probability": 0.9941 + }, + { + "start": 19722.78, + "end": 19724.24, + "probability": 0.9499 + }, + { + "start": 19724.72, + "end": 19725.36, + "probability": 0.6691 + }, + { + "start": 19726.3, + "end": 19733.18, + "probability": 0.985 + }, + { + "start": 19733.64, + "end": 19737.64, + "probability": 0.9892 + }, + { + "start": 19737.84, + "end": 19739.04, + "probability": 0.7732 + }, + { + "start": 19739.58, + "end": 19740.56, + "probability": 0.398 + }, + { + "start": 19740.72, + "end": 19741.36, + "probability": 0.8248 + }, + { + "start": 19741.76, + "end": 19742.18, + "probability": 0.681 + }, + { + "start": 19742.58, + "end": 19747.32, + "probability": 0.9753 + }, + { + "start": 19747.8, + "end": 19750.98, + "probability": 0.9089 + }, + { + "start": 19751.6, + "end": 19751.6, + "probability": 0.2215 + }, + { + "start": 19751.6, + "end": 19756.54, + "probability": 0.9491 + }, + { + "start": 19756.98, + "end": 19758.84, + "probability": 0.7535 + }, + { + "start": 19759.02, + "end": 19763.62, + "probability": 0.99 + }, + { + "start": 19764.04, + "end": 19766.74, + "probability": 0.9448 + }, + { + "start": 19766.74, + "end": 19772.12, + "probability": 0.991 + }, + { + "start": 19772.66, + "end": 19778.16, + "probability": 0.9408 + }, + { + "start": 19778.46, + "end": 19782.3, + "probability": 0.9729 + }, + { + "start": 19782.76, + "end": 19786.66, + "probability": 0.9699 + }, + { + "start": 19786.82, + "end": 19789.18, + "probability": 0.9785 + }, + { + "start": 19789.78, + "end": 19791.04, + "probability": 0.9863 + }, + { + "start": 19791.54, + "end": 19795.54, + "probability": 0.9959 + }, + { + "start": 19795.82, + "end": 19800.28, + "probability": 0.9883 + }, + { + "start": 19800.58, + "end": 19804.26, + "probability": 0.9736 + }, + { + "start": 19804.32, + "end": 19808.92, + "probability": 0.9873 + }, + { + "start": 19809.36, + "end": 19813.66, + "probability": 0.8621 + }, + { + "start": 19813.9, + "end": 19818.34, + "probability": 0.9562 + }, + { + "start": 19818.58, + "end": 19818.92, + "probability": 0.7378 + }, + { + "start": 19819.36, + "end": 19820.76, + "probability": 0.5481 + }, + { + "start": 19822.36, + "end": 19822.9, + "probability": 0.8088 + }, + { + "start": 19823.88, + "end": 19825.06, + "probability": 0.7781 + }, + { + "start": 19827.14, + "end": 19829.74, + "probability": 0.9445 + }, + { + "start": 19829.74, + "end": 19832.32, + "probability": 0.8112 + }, + { + "start": 19836.06, + "end": 19837.28, + "probability": 0.5038 + }, + { + "start": 19837.54, + "end": 19837.9, + "probability": 0.5997 + }, + { + "start": 19837.96, + "end": 19838.5, + "probability": 0.7655 + }, + { + "start": 19838.72, + "end": 19839.34, + "probability": 0.7067 + }, + { + "start": 19839.5, + "end": 19840.52, + "probability": 0.6956 + }, + { + "start": 19841.18, + "end": 19841.82, + "probability": 0.7833 + }, + { + "start": 19843.1, + "end": 19844.04, + "probability": 0.8243 + }, + { + "start": 19845.68, + "end": 19847.86, + "probability": 0.9064 + }, + { + "start": 19849.5, + "end": 19854.46, + "probability": 0.9121 + }, + { + "start": 19854.66, + "end": 19857.94, + "probability": 0.8768 + }, + { + "start": 19858.46, + "end": 19859.26, + "probability": 0.4763 + }, + { + "start": 19860.58, + "end": 19861.0, + "probability": 0.6796 + }, + { + "start": 19861.58, + "end": 19862.52, + "probability": 0.8109 + }, + { + "start": 19863.78, + "end": 19866.92, + "probability": 0.967 + }, + { + "start": 19867.96, + "end": 19871.24, + "probability": 0.9637 + }, + { + "start": 19873.8, + "end": 19873.8, + "probability": 0.0864 + }, + { + "start": 19873.8, + "end": 19875.0, + "probability": 0.98 + }, + { + "start": 19876.42, + "end": 19878.38, + "probability": 0.934 + }, + { + "start": 19881.18, + "end": 19884.88, + "probability": 0.9757 + }, + { + "start": 19885.0, + "end": 19886.12, + "probability": 0.4844 + }, + { + "start": 19886.12, + "end": 19886.12, + "probability": 0.0816 + }, + { + "start": 19886.12, + "end": 19889.72, + "probability": 0.7175 + }, + { + "start": 19889.84, + "end": 19890.48, + "probability": 0.8887 + }, + { + "start": 19891.76, + "end": 19893.96, + "probability": 0.9305 + }, + { + "start": 19894.0, + "end": 19895.36, + "probability": 0.9961 + }, + { + "start": 19895.72, + "end": 19897.74, + "probability": 0.9854 + }, + { + "start": 19897.82, + "end": 19898.8, + "probability": 0.8315 + }, + { + "start": 19899.06, + "end": 19900.54, + "probability": 0.949 + }, + { + "start": 19901.9, + "end": 19904.62, + "probability": 0.9653 + }, + { + "start": 19906.44, + "end": 19906.72, + "probability": 0.2244 + }, + { + "start": 19906.86, + "end": 19908.9, + "probability": 0.5141 + }, + { + "start": 19908.96, + "end": 19909.68, + "probability": 0.7337 + }, + { + "start": 19909.82, + "end": 19914.5, + "probability": 0.8682 + }, + { + "start": 19914.6, + "end": 19919.2, + "probability": 0.9634 + }, + { + "start": 19919.94, + "end": 19920.46, + "probability": 0.9437 + }, + { + "start": 19920.68, + "end": 19921.26, + "probability": 0.7008 + }, + { + "start": 19922.04, + "end": 19925.6, + "probability": 0.9939 + }, + { + "start": 19926.74, + "end": 19930.54, + "probability": 0.9771 + }, + { + "start": 19930.82, + "end": 19931.28, + "probability": 0.7922 + }, + { + "start": 19931.36, + "end": 19931.88, + "probability": 0.8071 + }, + { + "start": 19932.0, + "end": 19932.4, + "probability": 0.9217 + }, + { + "start": 19934.1, + "end": 19938.44, + "probability": 0.8823 + }, + { + "start": 19938.52, + "end": 19940.16, + "probability": 0.6731 + }, + { + "start": 19941.6, + "end": 19942.32, + "probability": 0.715 + }, + { + "start": 19943.32, + "end": 19944.42, + "probability": 0.7852 + }, + { + "start": 19945.76, + "end": 19946.21, + "probability": 0.7708 + }, + { + "start": 19947.48, + "end": 19952.2, + "probability": 0.8074 + }, + { + "start": 19953.66, + "end": 19954.82, + "probability": 0.6435 + }, + { + "start": 19954.9, + "end": 19958.44, + "probability": 0.9756 + }, + { + "start": 19959.3, + "end": 19960.98, + "probability": 0.8807 + }, + { + "start": 19962.26, + "end": 19962.96, + "probability": 0.7958 + }, + { + "start": 19964.38, + "end": 19965.94, + "probability": 0.6677 + }, + { + "start": 19967.46, + "end": 19971.94, + "probability": 0.9983 + }, + { + "start": 19972.06, + "end": 19972.34, + "probability": 0.7506 + }, + { + "start": 19972.82, + "end": 19973.1, + "probability": 0.8975 + }, + { + "start": 19975.56, + "end": 19977.28, + "probability": 0.922 + }, + { + "start": 19978.1, + "end": 19979.66, + "probability": 0.9144 + }, + { + "start": 19981.06, + "end": 19984.68, + "probability": 0.9347 + }, + { + "start": 19984.96, + "end": 19986.78, + "probability": 0.6914 + }, + { + "start": 19987.76, + "end": 19988.38, + "probability": 0.8494 + }, + { + "start": 19990.38, + "end": 19992.6, + "probability": 0.9922 + }, + { + "start": 19994.04, + "end": 19999.44, + "probability": 0.9237 + }, + { + "start": 20000.24, + "end": 20002.7, + "probability": 0.9203 + }, + { + "start": 20005.18, + "end": 20006.46, + "probability": 0.9426 + }, + { + "start": 20006.72, + "end": 20011.36, + "probability": 0.9954 + }, + { + "start": 20011.36, + "end": 20015.08, + "probability": 0.9928 + }, + { + "start": 20016.46, + "end": 20020.02, + "probability": 0.9985 + }, + { + "start": 20020.02, + "end": 20022.8, + "probability": 0.969 + }, + { + "start": 20024.36, + "end": 20028.14, + "probability": 0.943 + }, + { + "start": 20028.24, + "end": 20030.01, + "probability": 0.9932 + }, + { + "start": 20032.04, + "end": 20033.26, + "probability": 0.7079 + }, + { + "start": 20034.3, + "end": 20034.96, + "probability": 0.9406 + }, + { + "start": 20038.76, + "end": 20045.76, + "probability": 0.9517 + }, + { + "start": 20045.8, + "end": 20047.84, + "probability": 0.5458 + }, + { + "start": 20049.48, + "end": 20051.64, + "probability": 0.7025 + }, + { + "start": 20052.16, + "end": 20054.54, + "probability": 0.9014 + }, + { + "start": 20056.08, + "end": 20057.6, + "probability": 0.6868 + }, + { + "start": 20059.02, + "end": 20059.68, + "probability": 0.7371 + }, + { + "start": 20060.38, + "end": 20060.64, + "probability": 0.2193 + }, + { + "start": 20060.92, + "end": 20064.26, + "probability": 0.9535 + }, + { + "start": 20064.26, + "end": 20066.32, + "probability": 0.5164 + }, + { + "start": 20066.44, + "end": 20067.96, + "probability": 0.2606 + }, + { + "start": 20068.72, + "end": 20070.7, + "probability": 0.9253 + }, + { + "start": 20072.12, + "end": 20075.1, + "probability": 0.5385 + }, + { + "start": 20075.16, + "end": 20075.48, + "probability": 0.0718 + }, + { + "start": 20075.48, + "end": 20075.48, + "probability": 0.2292 + }, + { + "start": 20075.6, + "end": 20076.44, + "probability": 0.3949 + }, + { + "start": 20076.56, + "end": 20077.7, + "probability": 0.5188 + }, + { + "start": 20078.04, + "end": 20079.12, + "probability": 0.5258 + }, + { + "start": 20079.36, + "end": 20079.84, + "probability": 0.1017 + }, + { + "start": 20079.84, + "end": 20082.58, + "probability": 0.9633 + }, + { + "start": 20082.76, + "end": 20083.94, + "probability": 0.5678 + }, + { + "start": 20085.34, + "end": 20087.6, + "probability": 0.8968 + }, + { + "start": 20088.56, + "end": 20089.9, + "probability": 0.6475 + }, + { + "start": 20090.1, + "end": 20090.88, + "probability": 0.7466 + }, + { + "start": 20090.92, + "end": 20092.0, + "probability": 0.854 + }, + { + "start": 20092.06, + "end": 20093.42, + "probability": 0.8275 + }, + { + "start": 20093.62, + "end": 20094.52, + "probability": 0.7674 + }, + { + "start": 20094.6, + "end": 20095.46, + "probability": 0.8315 + }, + { + "start": 20095.58, + "end": 20097.36, + "probability": 0.8599 + }, + { + "start": 20098.56, + "end": 20102.16, + "probability": 0.8599 + }, + { + "start": 20103.32, + "end": 20107.08, + "probability": 0.8232 + }, + { + "start": 20108.46, + "end": 20112.04, + "probability": 0.9084 + }, + { + "start": 20112.24, + "end": 20115.72, + "probability": 0.8771 + }, + { + "start": 20116.3, + "end": 20119.62, + "probability": 0.8398 + }, + { + "start": 20120.62, + "end": 20124.4, + "probability": 0.3621 + }, + { + "start": 20126.01, + "end": 20128.46, + "probability": 0.0834 + }, + { + "start": 20128.82, + "end": 20129.52, + "probability": 0.9783 + }, + { + "start": 20129.58, + "end": 20132.32, + "probability": 0.7896 + }, + { + "start": 20132.34, + "end": 20132.46, + "probability": 0.0628 + }, + { + "start": 20132.46, + "end": 20132.46, + "probability": 0.2084 + }, + { + "start": 20132.62, + "end": 20137.38, + "probability": 0.9692 + }, + { + "start": 20137.38, + "end": 20141.72, + "probability": 0.9971 + }, + { + "start": 20142.42, + "end": 20143.22, + "probability": 0.5299 + }, + { + "start": 20143.38, + "end": 20145.42, + "probability": 0.9951 + }, + { + "start": 20145.98, + "end": 20148.68, + "probability": 0.9841 + }, + { + "start": 20149.32, + "end": 20149.74, + "probability": 0.8862 + }, + { + "start": 20150.52, + "end": 20151.1, + "probability": 0.9377 + }, + { + "start": 20152.4, + "end": 20154.88, + "probability": 0.9728 + }, + { + "start": 20154.88, + "end": 20157.14, + "probability": 0.8812 + }, + { + "start": 20158.18, + "end": 20160.32, + "probability": 0.9819 + }, + { + "start": 20160.52, + "end": 20160.88, + "probability": 0.4072 + }, + { + "start": 20160.96, + "end": 20163.52, + "probability": 0.8889 + }, + { + "start": 20163.78, + "end": 20166.0, + "probability": 0.5354 + }, + { + "start": 20166.18, + "end": 20168.24, + "probability": 0.4492 + }, + { + "start": 20169.02, + "end": 20170.92, + "probability": 0.0156 + }, + { + "start": 20170.92, + "end": 20170.92, + "probability": 0.02 + }, + { + "start": 20170.92, + "end": 20172.08, + "probability": 0.039 + }, + { + "start": 20172.98, + "end": 20177.32, + "probability": 0.547 + }, + { + "start": 20177.64, + "end": 20178.22, + "probability": 0.6104 + }, + { + "start": 20178.9, + "end": 20181.24, + "probability": 0.8584 + }, + { + "start": 20181.94, + "end": 20187.22, + "probability": 0.9958 + }, + { + "start": 20188.8, + "end": 20188.8, + "probability": 0.4406 + }, + { + "start": 20189.28, + "end": 20191.74, + "probability": 0.9448 + }, + { + "start": 20191.88, + "end": 20195.98, + "probability": 0.8833 + }, + { + "start": 20196.74, + "end": 20198.48, + "probability": 0.9972 + }, + { + "start": 20199.38, + "end": 20200.92, + "probability": 0.9578 + }, + { + "start": 20202.34, + "end": 20202.88, + "probability": 0.9303 + }, + { + "start": 20202.94, + "end": 20204.8, + "probability": 0.7714 + }, + { + "start": 20204.88, + "end": 20205.66, + "probability": 0.8173 + }, + { + "start": 20205.72, + "end": 20206.47, + "probability": 0.9299 + }, + { + "start": 20207.36, + "end": 20209.1, + "probability": 0.929 + }, + { + "start": 20210.34, + "end": 20211.0, + "probability": 0.4404 + }, + { + "start": 20211.6, + "end": 20213.8, + "probability": 0.6078 + }, + { + "start": 20214.58, + "end": 20215.54, + "probability": 0.9657 + }, + { + "start": 20216.34, + "end": 20219.04, + "probability": 0.974 + }, + { + "start": 20220.14, + "end": 20222.76, + "probability": 0.9589 + }, + { + "start": 20223.1, + "end": 20223.7, + "probability": 0.7173 + }, + { + "start": 20224.42, + "end": 20229.48, + "probability": 0.9414 + }, + { + "start": 20230.38, + "end": 20231.34, + "probability": 0.829 + }, + { + "start": 20231.48, + "end": 20231.98, + "probability": 0.8597 + }, + { + "start": 20232.04, + "end": 20233.34, + "probability": 0.9882 + }, + { + "start": 20234.34, + "end": 20237.08, + "probability": 0.8881 + }, + { + "start": 20237.3, + "end": 20237.78, + "probability": 0.7483 + }, + { + "start": 20237.9, + "end": 20238.6, + "probability": 0.4039 + }, + { + "start": 20238.64, + "end": 20239.98, + "probability": 0.7715 + }, + { + "start": 20251.3, + "end": 20254.58, + "probability": 0.4995 + }, + { + "start": 20255.34, + "end": 20255.94, + "probability": 0.4784 + }, + { + "start": 20256.98, + "end": 20258.54, + "probability": 0.2122 + }, + { + "start": 20266.96, + "end": 20268.54, + "probability": 0.5308 + }, + { + "start": 20269.1, + "end": 20274.24, + "probability": 0.9664 + }, + { + "start": 20274.6, + "end": 20275.79, + "probability": 0.9796 + }, + { + "start": 20276.08, + "end": 20276.52, + "probability": 0.8424 + }, + { + "start": 20276.74, + "end": 20279.18, + "probability": 0.6853 + }, + { + "start": 20279.74, + "end": 20281.18, + "probability": 0.5884 + }, + { + "start": 20281.22, + "end": 20282.8, + "probability": 0.6868 + }, + { + "start": 20283.26, + "end": 20286.68, + "probability": 0.8669 + }, + { + "start": 20286.96, + "end": 20289.38, + "probability": 0.8965 + }, + { + "start": 20289.54, + "end": 20290.2, + "probability": 0.8546 + }, + { + "start": 20290.56, + "end": 20291.1, + "probability": 0.6667 + }, + { + "start": 20291.44, + "end": 20293.92, + "probability": 0.9883 + }, + { + "start": 20294.44, + "end": 20294.86, + "probability": 0.4955 + }, + { + "start": 20295.28, + "end": 20295.86, + "probability": 0.7631 + }, + { + "start": 20296.28, + "end": 20298.26, + "probability": 0.8773 + }, + { + "start": 20298.48, + "end": 20299.64, + "probability": 0.9204 + }, + { + "start": 20299.78, + "end": 20304.68, + "probability": 0.8965 + }, + { + "start": 20304.68, + "end": 20308.92, + "probability": 0.8593 + }, + { + "start": 20309.46, + "end": 20313.98, + "probability": 0.927 + }, + { + "start": 20314.44, + "end": 20315.52, + "probability": 0.9053 + }, + { + "start": 20315.86, + "end": 20318.42, + "probability": 0.845 + }, + { + "start": 20318.78, + "end": 20319.64, + "probability": 0.7352 + }, + { + "start": 20319.72, + "end": 20320.14, + "probability": 0.6923 + }, + { + "start": 20321.2, + "end": 20322.99, + "probability": 0.6435 + }, + { + "start": 20328.18, + "end": 20328.88, + "probability": 0.8187 + }, + { + "start": 20329.84, + "end": 20334.88, + "probability": 0.9409 + }, + { + "start": 20336.4, + "end": 20338.2, + "probability": 0.8532 + }, + { + "start": 20339.06, + "end": 20340.76, + "probability": 0.9818 + }, + { + "start": 20341.34, + "end": 20344.48, + "probability": 0.9634 + }, + { + "start": 20345.52, + "end": 20346.32, + "probability": 0.8013 + }, + { + "start": 20347.02, + "end": 20348.9, + "probability": 0.7746 + }, + { + "start": 20350.38, + "end": 20353.06, + "probability": 0.9508 + }, + { + "start": 20353.16, + "end": 20353.92, + "probability": 0.6431 + }, + { + "start": 20354.64, + "end": 20355.28, + "probability": 0.8527 + }, + { + "start": 20356.8, + "end": 20358.46, + "probability": 0.8874 + }, + { + "start": 20359.78, + "end": 20361.02, + "probability": 0.9742 + }, + { + "start": 20362.18, + "end": 20365.88, + "probability": 0.9339 + }, + { + "start": 20366.58, + "end": 20369.5, + "probability": 0.8839 + }, + { + "start": 20370.72, + "end": 20373.24, + "probability": 0.8592 + }, + { + "start": 20375.72, + "end": 20376.54, + "probability": 0.9258 + }, + { + "start": 20377.75, + "end": 20380.36, + "probability": 0.3399 + }, + { + "start": 20381.98, + "end": 20384.7, + "probability": 0.9924 + }, + { + "start": 20384.76, + "end": 20388.0, + "probability": 0.9776 + }, + { + "start": 20388.94, + "end": 20391.94, + "probability": 0.8797 + }, + { + "start": 20393.02, + "end": 20393.84, + "probability": 0.7826 + }, + { + "start": 20394.44, + "end": 20396.14, + "probability": 0.8023 + }, + { + "start": 20396.9, + "end": 20397.66, + "probability": 0.8439 + }, + { + "start": 20398.68, + "end": 20399.04, + "probability": 0.7016 + }, + { + "start": 20400.08, + "end": 20401.08, + "probability": 0.8877 + }, + { + "start": 20402.66, + "end": 20402.68, + "probability": 0.1408 + }, + { + "start": 20402.68, + "end": 20406.3, + "probability": 0.6719 + }, + { + "start": 20406.48, + "end": 20407.04, + "probability": 0.8393 + }, + { + "start": 20413.04, + "end": 20414.86, + "probability": 0.3536 + }, + { + "start": 20415.34, + "end": 20415.82, + "probability": 0.1065 + }, + { + "start": 20415.92, + "end": 20415.92, + "probability": 0.0627 + }, + { + "start": 20415.92, + "end": 20415.92, + "probability": 0.0157 + }, + { + "start": 20415.92, + "end": 20415.92, + "probability": 0.029 + }, + { + "start": 20415.92, + "end": 20416.52, + "probability": 0.1888 + }, + { + "start": 20416.86, + "end": 20417.32, + "probability": 0.444 + }, + { + "start": 20417.94, + "end": 20419.46, + "probability": 0.4112 + }, + { + "start": 20422.24, + "end": 20422.72, + "probability": 0.2324 + }, + { + "start": 20422.72, + "end": 20423.76, + "probability": 0.7417 + }, + { + "start": 20424.32, + "end": 20424.7, + "probability": 0.4626 + }, + { + "start": 20424.8, + "end": 20426.16, + "probability": 0.4863 + }, + { + "start": 20426.4, + "end": 20426.56, + "probability": 0.0432 + }, + { + "start": 20426.72, + "end": 20428.3, + "probability": 0.3293 + }, + { + "start": 20428.66, + "end": 20431.42, + "probability": 0.2621 + }, + { + "start": 20431.46, + "end": 20433.14, + "probability": 0.8652 + }, + { + "start": 20433.82, + "end": 20434.68, + "probability": 0.9692 + }, + { + "start": 20435.0, + "end": 20435.14, + "probability": 0.8699 + }, + { + "start": 20436.0, + "end": 20436.92, + "probability": 0.3097 + }, + { + "start": 20437.28, + "end": 20438.44, + "probability": 0.2595 + }, + { + "start": 20439.78, + "end": 20440.8, + "probability": 0.5239 + }, + { + "start": 20443.66, + "end": 20444.88, + "probability": 0.3836 + }, + { + "start": 20448.08, + "end": 20448.82, + "probability": 0.4559 + }, + { + "start": 20449.16, + "end": 20450.86, + "probability": 0.4655 + }, + { + "start": 20450.94, + "end": 20451.66, + "probability": 0.3516 + }, + { + "start": 20451.66, + "end": 20452.66, + "probability": 0.4374 + }, + { + "start": 20452.66, + "end": 20452.84, + "probability": 0.4669 + }, + { + "start": 20452.92, + "end": 20455.94, + "probability": 0.9395 + }, + { + "start": 20456.68, + "end": 20458.32, + "probability": 0.643 + }, + { + "start": 20461.64, + "end": 20462.16, + "probability": 0.2972 + }, + { + "start": 20463.22, + "end": 20464.38, + "probability": 0.0469 + }, + { + "start": 20467.58, + "end": 20468.0, + "probability": 0.1952 + }, + { + "start": 20468.12, + "end": 20468.12, + "probability": 0.2098 + }, + { + "start": 20468.12, + "end": 20468.56, + "probability": 0.6753 + }, + { + "start": 20486.38, + "end": 20486.48, + "probability": 0.5659 + }, + { + "start": 20486.62, + "end": 20487.03, + "probability": 0.6855 + }, + { + "start": 20488.74, + "end": 20490.58, + "probability": 0.6495 + }, + { + "start": 20492.46, + "end": 20495.0, + "probability": 0.8897 + }, + { + "start": 20496.28, + "end": 20497.36, + "probability": 0.8501 + }, + { + "start": 20497.6, + "end": 20497.6, + "probability": 0.4594 + }, + { + "start": 20497.6, + "end": 20498.18, + "probability": 0.0186 + }, + { + "start": 20499.04, + "end": 20500.06, + "probability": 0.0314 + }, + { + "start": 20500.52, + "end": 20501.18, + "probability": 0.044 + }, + { + "start": 20501.2, + "end": 20501.66, + "probability": 0.3286 + }, + { + "start": 20503.9, + "end": 20504.72, + "probability": 0.0549 + }, + { + "start": 20504.72, + "end": 20507.88, + "probability": 0.9078 + }, + { + "start": 20508.42, + "end": 20510.76, + "probability": 0.9521 + }, + { + "start": 20512.0, + "end": 20512.0, + "probability": 0.0002 + }, + { + "start": 20513.58, + "end": 20513.58, + "probability": 0.0908 + }, + { + "start": 20526.16, + "end": 20526.32, + "probability": 0.0428 + }, + { + "start": 20527.78, + "end": 20527.78, + "probability": 0.1408 + }, + { + "start": 20527.78, + "end": 20527.78, + "probability": 0.0415 + }, + { + "start": 20527.78, + "end": 20528.82, + "probability": 0.425 + }, + { + "start": 20528.92, + "end": 20529.88, + "probability": 0.7892 + }, + { + "start": 20530.02, + "end": 20532.82, + "probability": 0.8833 + }, + { + "start": 20533.0, + "end": 20533.7, + "probability": 0.8866 + }, + { + "start": 20534.86, + "end": 20537.72, + "probability": 0.9985 + }, + { + "start": 20537.72, + "end": 20540.92, + "probability": 0.9941 + }, + { + "start": 20541.04, + "end": 20541.98, + "probability": 0.9177 + }, + { + "start": 20543.04, + "end": 20546.3, + "probability": 0.9984 + }, + { + "start": 20546.62, + "end": 20547.16, + "probability": 0.8783 + }, + { + "start": 20547.22, + "end": 20547.9, + "probability": 0.8892 + }, + { + "start": 20548.52, + "end": 20549.1, + "probability": 0.6465 + }, + { + "start": 20549.18, + "end": 20554.16, + "probability": 0.9883 + }, + { + "start": 20555.32, + "end": 20558.64, + "probability": 0.992 + }, + { + "start": 20559.98, + "end": 20563.04, + "probability": 0.9869 + }, + { + "start": 20563.22, + "end": 20565.47, + "probability": 0.9572 + }, + { + "start": 20566.48, + "end": 20567.08, + "probability": 0.9162 + }, + { + "start": 20567.34, + "end": 20567.68, + "probability": 0.6209 + }, + { + "start": 20567.78, + "end": 20568.16, + "probability": 0.6086 + }, + { + "start": 20568.24, + "end": 20570.34, + "probability": 0.9639 + }, + { + "start": 20570.9, + "end": 20573.12, + "probability": 0.8128 + }, + { + "start": 20573.68, + "end": 20575.38, + "probability": 0.9806 + }, + { + "start": 20576.06, + "end": 20579.56, + "probability": 0.6997 + }, + { + "start": 20580.52, + "end": 20580.62, + "probability": 0.4641 + }, + { + "start": 20581.0, + "end": 20582.72, + "probability": 0.6688 + }, + { + "start": 20583.22, + "end": 20584.24, + "probability": 0.9433 + }, + { + "start": 20584.3, + "end": 20588.0, + "probability": 0.9173 + }, + { + "start": 20588.42, + "end": 20589.54, + "probability": 0.8944 + }, + { + "start": 20590.74, + "end": 20591.7, + "probability": 0.8623 + }, + { + "start": 20592.6, + "end": 20594.08, + "probability": 0.6914 + }, + { + "start": 20594.72, + "end": 20597.22, + "probability": 0.9789 + }, + { + "start": 20597.7, + "end": 20601.24, + "probability": 0.9639 + }, + { + "start": 20601.88, + "end": 20607.16, + "probability": 0.9891 + }, + { + "start": 20607.74, + "end": 20611.44, + "probability": 0.998 + }, + { + "start": 20611.84, + "end": 20613.92, + "probability": 0.9648 + }, + { + "start": 20614.52, + "end": 20615.84, + "probability": 0.9902 + }, + { + "start": 20616.32, + "end": 20618.38, + "probability": 0.9956 + }, + { + "start": 20618.98, + "end": 20619.66, + "probability": 0.9379 + }, + { + "start": 20620.62, + "end": 20621.98, + "probability": 0.7037 + }, + { + "start": 20622.56, + "end": 20622.86, + "probability": 0.806 + }, + { + "start": 20623.34, + "end": 20625.73, + "probability": 0.9973 + }, + { + "start": 20626.7, + "end": 20630.8, + "probability": 0.9883 + }, + { + "start": 20631.62, + "end": 20633.1, + "probability": 0.9865 + }, + { + "start": 20633.78, + "end": 20638.08, + "probability": 0.9826 + }, + { + "start": 20638.7, + "end": 20641.96, + "probability": 0.9853 + }, + { + "start": 20642.06, + "end": 20643.84, + "probability": 0.999 + }, + { + "start": 20644.6, + "end": 20646.56, + "probability": 0.9985 + }, + { + "start": 20646.96, + "end": 20650.38, + "probability": 0.9692 + }, + { + "start": 20650.94, + "end": 20651.08, + "probability": 0.4604 + }, + { + "start": 20651.12, + "end": 20651.5, + "probability": 0.6115 + }, + { + "start": 20652.0, + "end": 20655.06, + "probability": 0.9997 + }, + { + "start": 20655.52, + "end": 20659.57, + "probability": 0.9431 + }, + { + "start": 20660.72, + "end": 20661.1, + "probability": 0.4515 + }, + { + "start": 20661.26, + "end": 20662.36, + "probability": 0.9606 + }, + { + "start": 20662.4, + "end": 20668.34, + "probability": 0.9747 + }, + { + "start": 20668.34, + "end": 20674.39, + "probability": 0.9888 + }, + { + "start": 20674.84, + "end": 20675.54, + "probability": 0.4577 + }, + { + "start": 20675.78, + "end": 20676.9, + "probability": 0.9614 + }, + { + "start": 20677.34, + "end": 20678.26, + "probability": 0.7019 + }, + { + "start": 20678.82, + "end": 20682.0, + "probability": 0.9593 + }, + { + "start": 20682.6, + "end": 20687.32, + "probability": 0.9946 + }, + { + "start": 20687.78, + "end": 20689.86, + "probability": 0.9751 + }, + { + "start": 20690.6, + "end": 20695.02, + "probability": 0.9937 + }, + { + "start": 20695.12, + "end": 20699.12, + "probability": 0.9966 + }, + { + "start": 20699.66, + "end": 20701.78, + "probability": 0.9688 + }, + { + "start": 20702.36, + "end": 20703.58, + "probability": 0.9935 + }, + { + "start": 20703.78, + "end": 20704.4, + "probability": 0.8347 + }, + { + "start": 20704.6, + "end": 20705.1, + "probability": 0.9666 + }, + { + "start": 20705.52, + "end": 20710.74, + "probability": 0.9973 + }, + { + "start": 20711.06, + "end": 20711.6, + "probability": 0.7563 + }, + { + "start": 20712.42, + "end": 20714.94, + "probability": 0.9956 + }, + { + "start": 20715.36, + "end": 20716.92, + "probability": 0.9634 + }, + { + "start": 20717.3, + "end": 20717.5, + "probability": 0.7949 + }, + { + "start": 20718.26, + "end": 20720.0, + "probability": 0.5583 + }, + { + "start": 20721.98, + "end": 20724.9, + "probability": 0.864 + }, + { + "start": 20739.32, + "end": 20740.0, + "probability": 0.5351 + }, + { + "start": 20740.4, + "end": 20742.48, + "probability": 0.7036 + }, + { + "start": 20744.22, + "end": 20745.22, + "probability": 0.8798 + }, + { + "start": 20745.78, + "end": 20747.02, + "probability": 0.8292 + }, + { + "start": 20749.46, + "end": 20755.38, + "probability": 0.9347 + }, + { + "start": 20756.04, + "end": 20756.98, + "probability": 0.9645 + }, + { + "start": 20757.52, + "end": 20758.1, + "probability": 0.4847 + }, + { + "start": 20758.38, + "end": 20762.16, + "probability": 0.7842 + }, + { + "start": 20763.24, + "end": 20766.06, + "probability": 0.9243 + }, + { + "start": 20767.18, + "end": 20768.14, + "probability": 0.9851 + }, + { + "start": 20769.08, + "end": 20770.1, + "probability": 0.9631 + }, + { + "start": 20771.42, + "end": 20773.94, + "probability": 0.9558 + }, + { + "start": 20775.02, + "end": 20776.4, + "probability": 0.9543 + }, + { + "start": 20777.6, + "end": 20778.76, + "probability": 0.9062 + }, + { + "start": 20780.24, + "end": 20781.92, + "probability": 0.9757 + }, + { + "start": 20782.44, + "end": 20783.06, + "probability": 0.9701 + }, + { + "start": 20784.1, + "end": 20786.01, + "probability": 0.9823 + }, + { + "start": 20787.04, + "end": 20791.58, + "probability": 0.9875 + }, + { + "start": 20792.9, + "end": 20796.08, + "probability": 0.9918 + }, + { + "start": 20796.08, + "end": 20799.28, + "probability": 0.9971 + }, + { + "start": 20801.56, + "end": 20802.97, + "probability": 0.9993 + }, + { + "start": 20804.42, + "end": 20805.36, + "probability": 0.9122 + }, + { + "start": 20806.32, + "end": 20809.58, + "probability": 0.9901 + }, + { + "start": 20810.76, + "end": 20812.72, + "probability": 0.9477 + }, + { + "start": 20813.96, + "end": 20815.1, + "probability": 0.9573 + }, + { + "start": 20817.18, + "end": 20818.1, + "probability": 0.7357 + }, + { + "start": 20819.06, + "end": 20821.1, + "probability": 0.7928 + }, + { + "start": 20821.82, + "end": 20825.54, + "probability": 0.937 + }, + { + "start": 20826.96, + "end": 20832.4, + "probability": 0.9481 + }, + { + "start": 20832.4, + "end": 20837.14, + "probability": 0.9729 + }, + { + "start": 20837.86, + "end": 20840.96, + "probability": 0.9865 + }, + { + "start": 20842.24, + "end": 20847.02, + "probability": 0.9688 + }, + { + "start": 20848.48, + "end": 20850.1, + "probability": 0.967 + }, + { + "start": 20852.3, + "end": 20854.04, + "probability": 0.9513 + }, + { + "start": 20854.2, + "end": 20856.62, + "probability": 0.9899 + }, + { + "start": 20857.66, + "end": 20858.58, + "probability": 0.8345 + }, + { + "start": 20859.8, + "end": 20861.1, + "probability": 0.9976 + }, + { + "start": 20862.02, + "end": 20864.38, + "probability": 0.9613 + }, + { + "start": 20865.48, + "end": 20866.14, + "probability": 0.6233 + }, + { + "start": 20867.02, + "end": 20868.46, + "probability": 0.9794 + }, + { + "start": 20869.08, + "end": 20870.74, + "probability": 0.9929 + }, + { + "start": 20871.98, + "end": 20874.66, + "probability": 0.9968 + }, + { + "start": 20875.18, + "end": 20876.04, + "probability": 0.7024 + }, + { + "start": 20878.32, + "end": 20879.06, + "probability": 0.4751 + }, + { + "start": 20880.06, + "end": 20883.26, + "probability": 0.9842 + }, + { + "start": 20883.26, + "end": 20887.18, + "probability": 0.9968 + }, + { + "start": 20888.02, + "end": 20890.38, + "probability": 0.8563 + }, + { + "start": 20890.54, + "end": 20892.8, + "probability": 0.9839 + }, + { + "start": 20893.96, + "end": 20896.98, + "probability": 0.9388 + }, + { + "start": 20897.14, + "end": 20898.16, + "probability": 0.8098 + }, + { + "start": 20898.36, + "end": 20900.18, + "probability": 0.9401 + }, + { + "start": 20901.44, + "end": 20901.46, + "probability": 0.0211 + }, + { + "start": 20901.46, + "end": 20904.64, + "probability": 0.8188 + }, + { + "start": 20905.86, + "end": 20906.9, + "probability": 0.0565 + }, + { + "start": 20906.9, + "end": 20907.7, + "probability": 0.1892 + }, + { + "start": 20907.76, + "end": 20908.62, + "probability": 0.7448 + }, + { + "start": 20908.68, + "end": 20909.7, + "probability": 0.96 + }, + { + "start": 20909.8, + "end": 20910.34, + "probability": 0.8746 + }, + { + "start": 20910.86, + "end": 20911.66, + "probability": 0.4716 + }, + { + "start": 20911.84, + "end": 20912.22, + "probability": 0.7656 + }, + { + "start": 20912.28, + "end": 20913.85, + "probability": 0.3858 + }, + { + "start": 20915.3, + "end": 20919.44, + "probability": 0.9963 + }, + { + "start": 20919.96, + "end": 20921.06, + "probability": 0.946 + }, + { + "start": 20921.92, + "end": 20923.92, + "probability": 0.9871 + }, + { + "start": 20924.66, + "end": 20930.42, + "probability": 0.9332 + }, + { + "start": 20930.66, + "end": 20931.45, + "probability": 0.9082 + }, + { + "start": 20931.72, + "end": 20933.5, + "probability": 0.9271 + }, + { + "start": 20934.52, + "end": 20937.12, + "probability": 0.8842 + }, + { + "start": 20937.24, + "end": 20937.9, + "probability": 0.9717 + }, + { + "start": 20939.36, + "end": 20944.48, + "probability": 0.9829 + }, + { + "start": 20944.58, + "end": 20945.26, + "probability": 0.912 + }, + { + "start": 20945.34, + "end": 20945.9, + "probability": 0.9849 + }, + { + "start": 20947.34, + "end": 20949.84, + "probability": 0.9866 + }, + { + "start": 20951.0, + "end": 20954.66, + "probability": 0.9956 + }, + { + "start": 20954.66, + "end": 20957.78, + "probability": 0.9949 + }, + { + "start": 20958.78, + "end": 20960.38, + "probability": 0.6507 + }, + { + "start": 20961.98, + "end": 20967.56, + "probability": 0.9853 + }, + { + "start": 20968.4, + "end": 20970.22, + "probability": 0.5681 + }, + { + "start": 20970.92, + "end": 20974.2, + "probability": 0.8016 + }, + { + "start": 20985.9, + "end": 20986.74, + "probability": 0.6974 + }, + { + "start": 20987.68, + "end": 20988.66, + "probability": 0.867 + }, + { + "start": 20988.72, + "end": 20989.22, + "probability": 0.9081 + }, + { + "start": 20989.52, + "end": 20991.02, + "probability": 0.9668 + }, + { + "start": 20991.14, + "end": 20993.96, + "probability": 0.9585 + }, + { + "start": 20994.94, + "end": 20996.64, + "probability": 0.9526 + }, + { + "start": 20997.18, + "end": 21000.6, + "probability": 0.9252 + }, + { + "start": 21001.64, + "end": 21006.04, + "probability": 0.7993 + }, + { + "start": 21006.7, + "end": 21007.12, + "probability": 0.8209 + }, + { + "start": 21008.04, + "end": 21009.42, + "probability": 0.6882 + }, + { + "start": 21009.76, + "end": 21012.48, + "probability": 0.9839 + }, + { + "start": 21013.18, + "end": 21013.99, + "probability": 0.9875 + }, + { + "start": 21014.94, + "end": 21017.44, + "probability": 0.985 + }, + { + "start": 21019.84, + "end": 21020.46, + "probability": 0.4844 + }, + { + "start": 21022.32, + "end": 21024.54, + "probability": 0.9906 + }, + { + "start": 21024.66, + "end": 21025.92, + "probability": 0.9091 + }, + { + "start": 21026.8, + "end": 21027.56, + "probability": 0.3644 + }, + { + "start": 21028.22, + "end": 21028.38, + "probability": 0.6992 + }, + { + "start": 21029.56, + "end": 21032.46, + "probability": 0.9976 + }, + { + "start": 21033.82, + "end": 21034.74, + "probability": 0.787 + }, + { + "start": 21034.84, + "end": 21035.42, + "probability": 0.979 + }, + { + "start": 21035.5, + "end": 21037.0, + "probability": 0.8989 + }, + { + "start": 21037.06, + "end": 21041.66, + "probability": 0.4986 + }, + { + "start": 21041.66, + "end": 21044.34, + "probability": 0.493 + }, + { + "start": 21045.42, + "end": 21046.96, + "probability": 0.9989 + }, + { + "start": 21047.48, + "end": 21050.62, + "probability": 0.9594 + }, + { + "start": 21051.4, + "end": 21053.04, + "probability": 0.9034 + }, + { + "start": 21054.22, + "end": 21056.46, + "probability": 0.9675 + }, + { + "start": 21057.18, + "end": 21058.74, + "probability": 0.9972 + }, + { + "start": 21059.48, + "end": 21060.32, + "probability": 0.9886 + }, + { + "start": 21060.7, + "end": 21063.48, + "probability": 0.9805 + }, + { + "start": 21064.56, + "end": 21070.94, + "probability": 0.9976 + }, + { + "start": 21071.38, + "end": 21072.72, + "probability": 0.9688 + }, + { + "start": 21073.1, + "end": 21073.72, + "probability": 0.9674 + }, + { + "start": 21074.84, + "end": 21078.5, + "probability": 0.9512 + }, + { + "start": 21079.34, + "end": 21084.54, + "probability": 0.9681 + }, + { + "start": 21085.04, + "end": 21086.28, + "probability": 0.8776 + }, + { + "start": 21088.44, + "end": 21088.48, + "probability": 0.2673 + }, + { + "start": 21088.48, + "end": 21091.08, + "probability": 0.9364 + }, + { + "start": 21091.24, + "end": 21093.54, + "probability": 0.888 + }, + { + "start": 21094.88, + "end": 21096.12, + "probability": 0.7735 + }, + { + "start": 21096.62, + "end": 21097.94, + "probability": 0.8711 + }, + { + "start": 21098.56, + "end": 21099.64, + "probability": 0.9166 + }, + { + "start": 21099.76, + "end": 21100.88, + "probability": 0.8597 + }, + { + "start": 21101.44, + "end": 21102.2, + "probability": 0.9836 + }, + { + "start": 21102.76, + "end": 21103.46, + "probability": 0.9937 + }, + { + "start": 21103.96, + "end": 21105.42, + "probability": 0.9132 + }, + { + "start": 21106.34, + "end": 21106.98, + "probability": 0.9829 + }, + { + "start": 21107.22, + "end": 21108.46, + "probability": 0.8312 + }, + { + "start": 21108.82, + "end": 21109.6, + "probability": 0.7721 + }, + { + "start": 21110.6, + "end": 21112.3, + "probability": 0.9597 + }, + { + "start": 21112.3, + "end": 21113.5, + "probability": 0.9302 + }, + { + "start": 21114.34, + "end": 21114.9, + "probability": 0.3405 + }, + { + "start": 21115.04, + "end": 21118.46, + "probability": 0.8606 + }, + { + "start": 21118.8, + "end": 21120.38, + "probability": 0.9385 + }, + { + "start": 21120.6, + "end": 21121.18, + "probability": 0.8573 + }, + { + "start": 21121.3, + "end": 21128.4, + "probability": 0.8968 + }, + { + "start": 21128.4, + "end": 21133.64, + "probability": 0.9922 + }, + { + "start": 21134.18, + "end": 21135.6, + "probability": 0.9959 + }, + { + "start": 21136.32, + "end": 21137.18, + "probability": 0.98 + }, + { + "start": 21137.42, + "end": 21139.02, + "probability": 0.7361 + }, + { + "start": 21139.18, + "end": 21139.64, + "probability": 0.2071 + }, + { + "start": 21139.78, + "end": 21140.18, + "probability": 0.3374 + }, + { + "start": 21140.28, + "end": 21141.98, + "probability": 0.9829 + }, + { + "start": 21144.56, + "end": 21145.88, + "probability": 0.3125 + }, + { + "start": 21147.68, + "end": 21147.96, + "probability": 0.0759 + }, + { + "start": 21147.96, + "end": 21147.96, + "probability": 0.0778 + }, + { + "start": 21147.96, + "end": 21148.96, + "probability": 0.3261 + }, + { + "start": 21149.68, + "end": 21151.04, + "probability": 0.0926 + }, + { + "start": 21151.98, + "end": 21156.83, + "probability": 0.904 + }, + { + "start": 21157.94, + "end": 21160.14, + "probability": 0.874 + }, + { + "start": 21161.12, + "end": 21164.42, + "probability": 0.8211 + }, + { + "start": 21165.38, + "end": 21167.4, + "probability": 0.9965 + }, + { + "start": 21167.48, + "end": 21167.9, + "probability": 0.9167 + }, + { + "start": 21168.12, + "end": 21171.16, + "probability": 0.842 + }, + { + "start": 21171.92, + "end": 21173.18, + "probability": 0.5546 + }, + { + "start": 21173.42, + "end": 21174.52, + "probability": 0.6078 + }, + { + "start": 21175.06, + "end": 21176.64, + "probability": 0.7548 + }, + { + "start": 21176.72, + "end": 21180.88, + "probability": 0.9817 + }, + { + "start": 21181.44, + "end": 21183.8, + "probability": 0.5464 + }, + { + "start": 21184.38, + "end": 21184.92, + "probability": 0.6019 + }, + { + "start": 21185.22, + "end": 21186.74, + "probability": 0.9346 + }, + { + "start": 21187.36, + "end": 21188.68, + "probability": 0.9307 + }, + { + "start": 21188.82, + "end": 21191.02, + "probability": 0.717 + }, + { + "start": 21192.46, + "end": 21195.34, + "probability": 0.9697 + }, + { + "start": 21196.14, + "end": 21200.03, + "probability": 0.976 + }, + { + "start": 21200.38, + "end": 21201.28, + "probability": 0.7464 + }, + { + "start": 21201.38, + "end": 21201.94, + "probability": 0.2685 + }, + { + "start": 21202.04, + "end": 21202.36, + "probability": 0.6896 + }, + { + "start": 21202.4, + "end": 21203.46, + "probability": 0.7306 + }, + { + "start": 21204.0, + "end": 21206.92, + "probability": 0.9916 + }, + { + "start": 21206.92, + "end": 21211.0, + "probability": 0.9939 + }, + { + "start": 21211.78, + "end": 21213.16, + "probability": 0.9741 + }, + { + "start": 21213.7, + "end": 21214.3, + "probability": 0.7788 + }, + { + "start": 21215.16, + "end": 21215.4, + "probability": 0.7237 + }, + { + "start": 21216.02, + "end": 21217.56, + "probability": 0.9445 + }, + { + "start": 21217.9, + "end": 21219.82, + "probability": 0.9972 + }, + { + "start": 21220.34, + "end": 21222.9, + "probability": 0.9744 + }, + { + "start": 21222.96, + "end": 21223.28, + "probability": 0.6124 + }, + { + "start": 21223.42, + "end": 21225.02, + "probability": 0.646 + }, + { + "start": 21226.12, + "end": 21227.24, + "probability": 0.7811 + }, + { + "start": 21245.56, + "end": 21247.12, + "probability": 0.685 + }, + { + "start": 21248.68, + "end": 21253.02, + "probability": 0.9821 + }, + { + "start": 21253.64, + "end": 21256.48, + "probability": 0.8026 + }, + { + "start": 21257.16, + "end": 21259.84, + "probability": 0.9978 + }, + { + "start": 21260.3, + "end": 21263.14, + "probability": 0.977 + }, + { + "start": 21264.28, + "end": 21264.6, + "probability": 0.4631 + }, + { + "start": 21264.62, + "end": 21266.26, + "probability": 0.9719 + }, + { + "start": 21266.42, + "end": 21268.52, + "probability": 0.9929 + }, + { + "start": 21269.16, + "end": 21270.8, + "probability": 0.8681 + }, + { + "start": 21271.06, + "end": 21273.0, + "probability": 0.9941 + }, + { + "start": 21273.08, + "end": 21274.98, + "probability": 0.9663 + }, + { + "start": 21275.74, + "end": 21277.7, + "probability": 0.9867 + }, + { + "start": 21278.38, + "end": 21283.04, + "probability": 0.9926 + }, + { + "start": 21283.4, + "end": 21287.98, + "probability": 0.9692 + }, + { + "start": 21288.32, + "end": 21291.36, + "probability": 0.9624 + }, + { + "start": 21292.7, + "end": 21296.82, + "probability": 0.9752 + }, + { + "start": 21297.44, + "end": 21298.18, + "probability": 0.7307 + }, + { + "start": 21299.18, + "end": 21303.3, + "probability": 0.9825 + }, + { + "start": 21303.48, + "end": 21305.1, + "probability": 0.9943 + }, + { + "start": 21305.62, + "end": 21307.48, + "probability": 0.9306 + }, + { + "start": 21307.94, + "end": 21309.43, + "probability": 0.9965 + }, + { + "start": 21310.58, + "end": 21311.64, + "probability": 0.8961 + }, + { + "start": 21311.8, + "end": 21312.7, + "probability": 0.9974 + }, + { + "start": 21314.56, + "end": 21317.1, + "probability": 0.8067 + }, + { + "start": 21318.4, + "end": 21319.68, + "probability": 0.9707 + }, + { + "start": 21319.9, + "end": 21322.56, + "probability": 0.9893 + }, + { + "start": 21323.54, + "end": 21326.52, + "probability": 0.9908 + }, + { + "start": 21326.72, + "end": 21328.06, + "probability": 0.9966 + }, + { + "start": 21329.4, + "end": 21332.0, + "probability": 0.9778 + }, + { + "start": 21332.5, + "end": 21337.84, + "probability": 0.9991 + }, + { + "start": 21339.58, + "end": 21341.2, + "probability": 0.801 + }, + { + "start": 21342.04, + "end": 21344.08, + "probability": 0.7772 + }, + { + "start": 21344.12, + "end": 21346.16, + "probability": 0.7583 + }, + { + "start": 21346.22, + "end": 21346.92, + "probability": 0.8925 + }, + { + "start": 21346.94, + "end": 21347.46, + "probability": 0.7519 + }, + { + "start": 21347.48, + "end": 21350.14, + "probability": 0.9827 + }, + { + "start": 21350.66, + "end": 21351.92, + "probability": 0.8773 + }, + { + "start": 21351.96, + "end": 21352.82, + "probability": 0.8507 + }, + { + "start": 21352.82, + "end": 21353.84, + "probability": 0.9413 + }, + { + "start": 21354.86, + "end": 21355.89, + "probability": 0.9956 + }, + { + "start": 21356.98, + "end": 21363.22, + "probability": 0.9746 + }, + { + "start": 21364.02, + "end": 21366.64, + "probability": 0.9941 + }, + { + "start": 21367.36, + "end": 21367.92, + "probability": 0.881 + }, + { + "start": 21368.54, + "end": 21369.3, + "probability": 0.8323 + }, + { + "start": 21370.42, + "end": 21375.56, + "probability": 0.9052 + }, + { + "start": 21376.22, + "end": 21377.76, + "probability": 0.6421 + }, + { + "start": 21378.72, + "end": 21381.88, + "probability": 0.9856 + }, + { + "start": 21382.46, + "end": 21385.72, + "probability": 0.9438 + }, + { + "start": 21387.06, + "end": 21389.6, + "probability": 0.6641 + }, + { + "start": 21390.04, + "end": 21391.12, + "probability": 0.9504 + }, + { + "start": 21391.98, + "end": 21392.98, + "probability": 0.814 + }, + { + "start": 21394.04, + "end": 21396.22, + "probability": 0.9966 + }, + { + "start": 21396.86, + "end": 21400.28, + "probability": 0.9957 + }, + { + "start": 21400.8, + "end": 21402.72, + "probability": 0.9878 + }, + { + "start": 21403.54, + "end": 21405.96, + "probability": 0.9792 + }, + { + "start": 21406.12, + "end": 21407.34, + "probability": 0.9924 + }, + { + "start": 21407.86, + "end": 21411.08, + "probability": 0.9953 + }, + { + "start": 21411.36, + "end": 21414.24, + "probability": 0.9709 + }, + { + "start": 21414.8, + "end": 21420.64, + "probability": 0.9928 + }, + { + "start": 21420.64, + "end": 21424.6, + "probability": 0.9986 + }, + { + "start": 21425.28, + "end": 21426.46, + "probability": 0.9771 + }, + { + "start": 21426.98, + "end": 21431.32, + "probability": 0.9814 + }, + { + "start": 21431.98, + "end": 21432.9, + "probability": 0.9884 + }, + { + "start": 21433.52, + "end": 21436.42, + "probability": 0.9321 + }, + { + "start": 21436.52, + "end": 21437.23, + "probability": 0.8141 + }, + { + "start": 21438.66, + "end": 21440.07, + "probability": 0.7324 + }, + { + "start": 21440.66, + "end": 21443.14, + "probability": 0.993 + }, + { + "start": 21443.52, + "end": 21444.32, + "probability": 0.8024 + }, + { + "start": 21444.4, + "end": 21445.61, + "probability": 0.8683 + }, + { + "start": 21445.88, + "end": 21447.07, + "probability": 0.9797 + }, + { + "start": 21447.54, + "end": 21450.34, + "probability": 0.8159 + }, + { + "start": 21450.96, + "end": 21455.36, + "probability": 0.9971 + }, + { + "start": 21455.9, + "end": 21458.68, + "probability": 0.9909 + }, + { + "start": 21458.73, + "end": 21461.53, + "probability": 0.9934 + }, + { + "start": 21462.16, + "end": 21465.06, + "probability": 0.9335 + }, + { + "start": 21465.24, + "end": 21465.74, + "probability": 0.7385 + }, + { + "start": 21466.38, + "end": 21472.06, + "probability": 0.9705 + }, + { + "start": 21472.2, + "end": 21476.68, + "probability": 0.9945 + }, + { + "start": 21476.98, + "end": 21478.52, + "probability": 0.6777 + }, + { + "start": 21479.14, + "end": 21481.0, + "probability": 0.9158 + }, + { + "start": 21481.92, + "end": 21482.48, + "probability": 0.8023 + }, + { + "start": 21505.06, + "end": 21507.52, + "probability": 0.7108 + }, + { + "start": 21509.46, + "end": 21510.94, + "probability": 0.7367 + }, + { + "start": 21512.34, + "end": 21513.28, + "probability": 0.9979 + }, + { + "start": 21514.54, + "end": 21516.48, + "probability": 0.8715 + }, + { + "start": 21518.3, + "end": 21518.7, + "probability": 0.6253 + }, + { + "start": 21519.96, + "end": 21520.4, + "probability": 0.9782 + }, + { + "start": 21522.02, + "end": 21523.82, + "probability": 0.9774 + }, + { + "start": 21524.52, + "end": 21525.44, + "probability": 0.9666 + }, + { + "start": 21526.68, + "end": 21528.08, + "probability": 0.9634 + }, + { + "start": 21530.04, + "end": 21533.24, + "probability": 0.7686 + }, + { + "start": 21534.08, + "end": 21534.7, + "probability": 0.9762 + }, + { + "start": 21536.46, + "end": 21537.92, + "probability": 0.8584 + }, + { + "start": 21540.16, + "end": 21541.82, + "probability": 0.9842 + }, + { + "start": 21542.86, + "end": 21543.72, + "probability": 0.8789 + }, + { + "start": 21545.38, + "end": 21548.1, + "probability": 0.9761 + }, + { + "start": 21549.12, + "end": 21549.9, + "probability": 0.4243 + }, + { + "start": 21553.24, + "end": 21556.54, + "probability": 0.9889 + }, + { + "start": 21557.58, + "end": 21558.28, + "probability": 0.95 + }, + { + "start": 21558.94, + "end": 21560.02, + "probability": 0.9624 + }, + { + "start": 21561.04, + "end": 21561.82, + "probability": 0.9638 + }, + { + "start": 21562.12, + "end": 21562.56, + "probability": 0.2707 + }, + { + "start": 21563.31, + "end": 21566.5, + "probability": 0.9431 + }, + { + "start": 21569.62, + "end": 21570.92, + "probability": 0.632 + }, + { + "start": 21573.8, + "end": 21574.52, + "probability": 0.8927 + }, + { + "start": 21575.78, + "end": 21577.44, + "probability": 0.9657 + }, + { + "start": 21578.7, + "end": 21580.0, + "probability": 0.9757 + }, + { + "start": 21582.08, + "end": 21583.3, + "probability": 0.8863 + }, + { + "start": 21584.08, + "end": 21585.32, + "probability": 0.9958 + }, + { + "start": 21586.92, + "end": 21588.1, + "probability": 0.8524 + }, + { + "start": 21590.3, + "end": 21591.44, + "probability": 0.9852 + }, + { + "start": 21592.84, + "end": 21596.88, + "probability": 0.9172 + }, + { + "start": 21597.92, + "end": 21600.46, + "probability": 0.8768 + }, + { + "start": 21601.92, + "end": 21603.9, + "probability": 0.6346 + }, + { + "start": 21605.86, + "end": 21609.42, + "probability": 0.9832 + }, + { + "start": 21610.68, + "end": 21612.3, + "probability": 0.9401 + }, + { + "start": 21616.1, + "end": 21616.64, + "probability": 0.6241 + }, + { + "start": 21618.4, + "end": 21620.12, + "probability": 0.9149 + }, + { + "start": 21621.14, + "end": 21622.14, + "probability": 0.5798 + }, + { + "start": 21623.9, + "end": 21624.92, + "probability": 0.9647 + }, + { + "start": 21625.7, + "end": 21627.56, + "probability": 0.8627 + }, + { + "start": 21628.34, + "end": 21629.36, + "probability": 0.9067 + }, + { + "start": 21630.36, + "end": 21631.58, + "probability": 0.6979 + }, + { + "start": 21631.92, + "end": 21633.82, + "probability": 0.9766 + }, + { + "start": 21634.54, + "end": 21635.68, + "probability": 0.9101 + }, + { + "start": 21636.72, + "end": 21637.94, + "probability": 0.999 + }, + { + "start": 21640.48, + "end": 21640.93, + "probability": 0.9941 + }, + { + "start": 21642.56, + "end": 21643.01, + "probability": 0.9971 + }, + { + "start": 21644.12, + "end": 21645.26, + "probability": 0.9591 + }, + { + "start": 21647.2, + "end": 21648.8, + "probability": 0.9656 + }, + { + "start": 21649.8, + "end": 21651.38, + "probability": 0.7747 + }, + { + "start": 21653.64, + "end": 21655.34, + "probability": 0.9478 + }, + { + "start": 21656.0, + "end": 21658.08, + "probability": 0.8675 + }, + { + "start": 21660.46, + "end": 21661.5, + "probability": 0.8494 + }, + { + "start": 21662.48, + "end": 21665.62, + "probability": 0.5968 + }, + { + "start": 21667.88, + "end": 21668.65, + "probability": 0.5343 + }, + { + "start": 21671.34, + "end": 21672.29, + "probability": 0.8497 + }, + { + "start": 21673.38, + "end": 21674.44, + "probability": 0.8763 + }, + { + "start": 21675.44, + "end": 21676.1, + "probability": 0.6503 + }, + { + "start": 21678.66, + "end": 21680.1, + "probability": 0.9718 + }, + { + "start": 21681.08, + "end": 21681.62, + "probability": 0.9699 + }, + { + "start": 21682.5, + "end": 21683.82, + "probability": 0.9871 + }, + { + "start": 21684.74, + "end": 21685.42, + "probability": 0.5643 + }, + { + "start": 21687.98, + "end": 21689.23, + "probability": 0.713 + }, + { + "start": 21689.96, + "end": 21690.74, + "probability": 0.9741 + }, + { + "start": 21691.0, + "end": 21693.25, + "probability": 0.9761 + }, + { + "start": 21693.98, + "end": 21695.9, + "probability": 0.9623 + }, + { + "start": 21697.2, + "end": 21698.36, + "probability": 0.9237 + }, + { + "start": 21700.44, + "end": 21704.58, + "probability": 0.9289 + }, + { + "start": 21706.92, + "end": 21707.62, + "probability": 0.7992 + }, + { + "start": 21708.82, + "end": 21709.41, + "probability": 0.8526 + }, + { + "start": 21710.92, + "end": 21712.0, + "probability": 0.95 + }, + { + "start": 21714.85, + "end": 21715.94, + "probability": 0.9731 + }, + { + "start": 21715.94, + "end": 21716.66, + "probability": 0.1884 + }, + { + "start": 21717.08, + "end": 21717.88, + "probability": 0.8936 + }, + { + "start": 21720.38, + "end": 21722.67, + "probability": 0.8516 + }, + { + "start": 21723.86, + "end": 21726.54, + "probability": 0.5755 + }, + { + "start": 21727.06, + "end": 21727.98, + "probability": 0.6217 + }, + { + "start": 21728.42, + "end": 21730.5, + "probability": 0.8372 + }, + { + "start": 21730.88, + "end": 21733.02, + "probability": 0.9856 + }, + { + "start": 21733.98, + "end": 21736.38, + "probability": 0.9551 + }, + { + "start": 21737.18, + "end": 21740.22, + "probability": 0.8415 + }, + { + "start": 21741.0, + "end": 21742.98, + "probability": 0.8662 + }, + { + "start": 21743.4, + "end": 21744.9, + "probability": 0.7095 + }, + { + "start": 21745.3, + "end": 21746.18, + "probability": 0.7351 + }, + { + "start": 21746.46, + "end": 21747.98, + "probability": 0.5481 + }, + { + "start": 21748.2, + "end": 21750.44, + "probability": 0.6128 + }, + { + "start": 21764.0, + "end": 21766.46, + "probability": 0.684 + }, + { + "start": 21767.74, + "end": 21769.12, + "probability": 0.9677 + }, + { + "start": 21770.56, + "end": 21774.16, + "probability": 0.9949 + }, + { + "start": 21774.42, + "end": 21778.62, + "probability": 0.9884 + }, + { + "start": 21779.56, + "end": 21782.92, + "probability": 0.9926 + }, + { + "start": 21783.08, + "end": 21786.52, + "probability": 0.8767 + }, + { + "start": 21787.4, + "end": 21787.64, + "probability": 0.7929 + }, + { + "start": 21788.3, + "end": 21789.7, + "probability": 0.5641 + }, + { + "start": 21789.84, + "end": 21791.0, + "probability": 0.8706 + }, + { + "start": 21794.81, + "end": 21796.04, + "probability": 0.1108 + }, + { + "start": 21796.18, + "end": 21799.7, + "probability": 0.0545 + }, + { + "start": 21800.26, + "end": 21801.08, + "probability": 0.4952 + }, + { + "start": 21805.46, + "end": 21808.16, + "probability": 0.6222 + }, + { + "start": 21811.18, + "end": 21812.44, + "probability": 0.2715 + }, + { + "start": 21816.43, + "end": 21818.24, + "probability": 0.8305 + }, + { + "start": 21821.48, + "end": 21823.52, + "probability": 0.102 + }, + { + "start": 21823.96, + "end": 21825.84, + "probability": 0.4579 + }, + { + "start": 21825.86, + "end": 21829.28, + "probability": 0.6052 + }, + { + "start": 21829.54, + "end": 21830.6, + "probability": 0.5815 + }, + { + "start": 21831.34, + "end": 21831.99, + "probability": 0.5257 + }, + { + "start": 21833.52, + "end": 21839.76, + "probability": 0.3282 + }, + { + "start": 21846.18, + "end": 21848.44, + "probability": 0.6999 + }, + { + "start": 21848.98, + "end": 21849.4, + "probability": 0.7001 + }, + { + "start": 21849.8, + "end": 21850.96, + "probability": 0.7326 + }, + { + "start": 21853.06, + "end": 21854.02, + "probability": 0.0279 + }, + { + "start": 21854.02, + "end": 21856.84, + "probability": 0.981 + }, + { + "start": 21857.64, + "end": 21859.86, + "probability": 0.8706 + }, + { + "start": 21859.92, + "end": 21860.66, + "probability": 0.591 + }, + { + "start": 21862.26, + "end": 21863.42, + "probability": 0.869 + }, + { + "start": 21884.2, + "end": 21886.58, + "probability": 0.7424 + }, + { + "start": 21887.68, + "end": 21890.63, + "probability": 0.9974 + }, + { + "start": 21890.82, + "end": 21891.2, + "probability": 0.9518 + }, + { + "start": 21891.32, + "end": 21892.18, + "probability": 0.9552 + }, + { + "start": 21892.18, + "end": 21892.86, + "probability": 0.9683 + }, + { + "start": 21892.98, + "end": 21893.66, + "probability": 0.9109 + }, + { + "start": 21893.78, + "end": 21894.3, + "probability": 0.8884 + }, + { + "start": 21894.9, + "end": 21896.34, + "probability": 0.9543 + }, + { + "start": 21897.64, + "end": 21897.94, + "probability": 0.9023 + }, + { + "start": 21904.06, + "end": 21908.34, + "probability": 0.9985 + }, + { + "start": 21909.0, + "end": 21911.52, + "probability": 0.9937 + }, + { + "start": 21911.8, + "end": 21914.52, + "probability": 0.9937 + }, + { + "start": 21916.6, + "end": 21919.44, + "probability": 0.9866 + }, + { + "start": 21919.96, + "end": 21928.44, + "probability": 0.9818 + }, + { + "start": 21929.44, + "end": 21933.2, + "probability": 0.9873 + }, + { + "start": 21934.48, + "end": 21937.22, + "probability": 0.9229 + }, + { + "start": 21937.78, + "end": 21942.46, + "probability": 0.9895 + }, + { + "start": 21943.16, + "end": 21946.02, + "probability": 0.9912 + }, + { + "start": 21947.06, + "end": 21947.66, + "probability": 0.3239 + }, + { + "start": 21948.96, + "end": 21953.28, + "probability": 0.6696 + }, + { + "start": 21955.58, + "end": 21956.84, + "probability": 0.7988 + }, + { + "start": 21957.56, + "end": 21959.3, + "probability": 0.9438 + }, + { + "start": 21960.54, + "end": 21964.34, + "probability": 0.9913 + }, + { + "start": 21964.34, + "end": 21968.96, + "probability": 0.9941 + }, + { + "start": 21970.06, + "end": 21971.16, + "probability": 0.6722 + }, + { + "start": 21971.26, + "end": 21975.36, + "probability": 0.9809 + }, + { + "start": 21976.66, + "end": 21981.94, + "probability": 0.8308 + }, + { + "start": 21982.82, + "end": 21985.42, + "probability": 0.9911 + }, + { + "start": 21986.16, + "end": 21986.52, + "probability": 0.8134 + }, + { + "start": 21987.36, + "end": 21989.16, + "probability": 0.991 + }, + { + "start": 21989.3, + "end": 21991.6, + "probability": 0.9839 + }, + { + "start": 21992.22, + "end": 21993.12, + "probability": 0.447 + }, + { + "start": 21993.34, + "end": 21998.38, + "probability": 0.9811 + }, + { + "start": 21998.82, + "end": 21999.03, + "probability": 0.5177 + }, + { + "start": 21999.38, + "end": 22002.02, + "probability": 0.9828 + }, + { + "start": 22003.68, + "end": 22009.64, + "probability": 0.9888 + }, + { + "start": 22010.66, + "end": 22013.46, + "probability": 0.993 + }, + { + "start": 22014.08, + "end": 22015.2, + "probability": 0.8022 + }, + { + "start": 22016.28, + "end": 22018.16, + "probability": 0.8147 + }, + { + "start": 22019.66, + "end": 22023.7, + "probability": 0.9919 + }, + { + "start": 22023.7, + "end": 22027.46, + "probability": 0.9731 + }, + { + "start": 22028.26, + "end": 22030.0, + "probability": 0.9912 + }, + { + "start": 22030.58, + "end": 22031.76, + "probability": 0.9995 + }, + { + "start": 22032.38, + "end": 22034.58, + "probability": 0.8618 + }, + { + "start": 22035.56, + "end": 22037.06, + "probability": 0.9204 + }, + { + "start": 22037.78, + "end": 22040.66, + "probability": 0.8026 + }, + { + "start": 22041.9, + "end": 22043.22, + "probability": 0.8844 + }, + { + "start": 22043.3, + "end": 22044.06, + "probability": 0.7958 + }, + { + "start": 22044.22, + "end": 22047.52, + "probability": 0.9493 + }, + { + "start": 22048.06, + "end": 22049.54, + "probability": 0.8826 + }, + { + "start": 22050.52, + "end": 22052.74, + "probability": 0.9048 + }, + { + "start": 22052.8, + "end": 22053.48, + "probability": 0.7856 + }, + { + "start": 22053.56, + "end": 22055.0, + "probability": 0.9772 + }, + { + "start": 22055.6, + "end": 22057.34, + "probability": 0.9399 + }, + { + "start": 22058.18, + "end": 22059.04, + "probability": 0.869 + }, + { + "start": 22060.14, + "end": 22062.9, + "probability": 0.8357 + }, + { + "start": 22063.7, + "end": 22066.82, + "probability": 0.9977 + }, + { + "start": 22067.2, + "end": 22069.0, + "probability": 0.8847 + }, + { + "start": 22069.1, + "end": 22070.28, + "probability": 0.936 + }, + { + "start": 22070.76, + "end": 22073.56, + "probability": 0.9391 + }, + { + "start": 22074.28, + "end": 22076.96, + "probability": 0.8838 + }, + { + "start": 22079.39, + "end": 22083.26, + "probability": 0.6612 + }, + { + "start": 22083.26, + "end": 22085.94, + "probability": 0.9566 + }, + { + "start": 22086.84, + "end": 22090.37, + "probability": 0.9912 + }, + { + "start": 22090.92, + "end": 22092.16, + "probability": 0.767 + }, + { + "start": 22092.46, + "end": 22094.62, + "probability": 0.9971 + }, + { + "start": 22094.8, + "end": 22095.82, + "probability": 0.6753 + }, + { + "start": 22096.32, + "end": 22098.14, + "probability": 0.9985 + }, + { + "start": 22098.78, + "end": 22103.1, + "probability": 0.9976 + }, + { + "start": 22103.1, + "end": 22105.86, + "probability": 0.8501 + }, + { + "start": 22106.38, + "end": 22107.32, + "probability": 0.923 + }, + { + "start": 22108.1, + "end": 22109.2, + "probability": 0.9126 + }, + { + "start": 22110.2, + "end": 22111.66, + "probability": 0.8788 + }, + { + "start": 22111.84, + "end": 22113.36, + "probability": 0.9692 + }, + { + "start": 22113.86, + "end": 22115.8, + "probability": 0.9047 + }, + { + "start": 22115.86, + "end": 22120.94, + "probability": 0.9803 + }, + { + "start": 22122.56, + "end": 22123.9, + "probability": 0.842 + }, + { + "start": 22123.96, + "end": 22129.64, + "probability": 0.9775 + }, + { + "start": 22130.28, + "end": 22133.88, + "probability": 0.4768 + }, + { + "start": 22134.32, + "end": 22136.96, + "probability": 0.9194 + }, + { + "start": 22138.08, + "end": 22139.76, + "probability": 0.5977 + }, + { + "start": 22140.3, + "end": 22140.88, + "probability": 0.8157 + }, + { + "start": 22141.34, + "end": 22143.3, + "probability": 0.989 + }, + { + "start": 22143.38, + "end": 22144.96, + "probability": 0.8731 + }, + { + "start": 22145.52, + "end": 22146.66, + "probability": 0.9753 + }, + { + "start": 22147.32, + "end": 22148.4, + "probability": 0.9595 + }, + { + "start": 22149.1, + "end": 22152.3, + "probability": 0.9277 + }, + { + "start": 22152.36, + "end": 22154.0, + "probability": 0.8653 + }, + { + "start": 22154.74, + "end": 22155.56, + "probability": 0.9788 + }, + { + "start": 22155.7, + "end": 22157.28, + "probability": 0.9832 + }, + { + "start": 22158.36, + "end": 22162.94, + "probability": 0.9048 + }, + { + "start": 22163.52, + "end": 22166.08, + "probability": 0.9966 + }, + { + "start": 22166.08, + "end": 22169.98, + "probability": 0.9109 + }, + { + "start": 22170.18, + "end": 22170.96, + "probability": 0.6159 + }, + { + "start": 22171.14, + "end": 22171.76, + "probability": 0.7686 + }, + { + "start": 22171.88, + "end": 22173.14, + "probability": 0.6166 + }, + { + "start": 22173.48, + "end": 22174.7, + "probability": 0.9226 + }, + { + "start": 22175.0, + "end": 22175.6, + "probability": 0.6769 + }, + { + "start": 22176.0, + "end": 22177.58, + "probability": 0.9927 + }, + { + "start": 22178.28, + "end": 22179.04, + "probability": 0.7614 + }, + { + "start": 22179.16, + "end": 22180.06, + "probability": 0.73 + }, + { + "start": 22180.54, + "end": 22183.04, + "probability": 0.7959 + }, + { + "start": 22183.12, + "end": 22188.78, + "probability": 0.5 + }, + { + "start": 22188.88, + "end": 22189.6, + "probability": 0.9004 + }, + { + "start": 22190.88, + "end": 22193.7, + "probability": 0.7181 + }, + { + "start": 22193.7, + "end": 22196.94, + "probability": 0.8711 + }, + { + "start": 22197.46, + "end": 22199.28, + "probability": 0.5393 + }, + { + "start": 22200.56, + "end": 22205.82, + "probability": 0.9697 + }, + { + "start": 22207.04, + "end": 22208.24, + "probability": 0.3009 + }, + { + "start": 22209.08, + "end": 22216.46, + "probability": 0.9731 + }, + { + "start": 22216.8, + "end": 22221.44, + "probability": 0.8172 + }, + { + "start": 22221.48, + "end": 22224.96, + "probability": 0.9867 + }, + { + "start": 22225.6, + "end": 22226.17, + "probability": 0.5426 + }, + { + "start": 22227.14, + "end": 22231.5, + "probability": 0.8535 + }, + { + "start": 22231.64, + "end": 22233.27, + "probability": 0.7072 + }, + { + "start": 22234.08, + "end": 22235.34, + "probability": 0.7033 + }, + { + "start": 22235.96, + "end": 22236.86, + "probability": 0.642 + }, + { + "start": 22237.06, + "end": 22238.68, + "probability": 0.9834 + }, + { + "start": 22239.04, + "end": 22240.76, + "probability": 0.8841 + }, + { + "start": 22240.84, + "end": 22241.82, + "probability": 0.8162 + }, + { + "start": 22242.74, + "end": 22245.3, + "probability": 0.5014 + }, + { + "start": 22245.66, + "end": 22248.98, + "probability": 0.9084 + }, + { + "start": 22249.38, + "end": 22250.04, + "probability": 0.717 + }, + { + "start": 22250.08, + "end": 22251.98, + "probability": 0.6562 + }, + { + "start": 22252.06, + "end": 22254.3, + "probability": 0.8921 + }, + { + "start": 22255.32, + "end": 22255.94, + "probability": 0.6101 + }, + { + "start": 22256.02, + "end": 22257.07, + "probability": 0.5629 + }, + { + "start": 22257.98, + "end": 22259.06, + "probability": 0.9471 + }, + { + "start": 22259.1, + "end": 22259.92, + "probability": 0.8103 + }, + { + "start": 22260.02, + "end": 22260.98, + "probability": 0.685 + }, + { + "start": 22261.02, + "end": 22263.56, + "probability": 0.9086 + }, + { + "start": 22264.64, + "end": 22265.38, + "probability": 0.8098 + }, + { + "start": 22266.2, + "end": 22269.44, + "probability": 0.968 + }, + { + "start": 22270.04, + "end": 22271.66, + "probability": 0.8204 + }, + { + "start": 22272.28, + "end": 22274.24, + "probability": 0.9587 + }, + { + "start": 22275.12, + "end": 22277.16, + "probability": 0.7292 + }, + { + "start": 22278.02, + "end": 22282.86, + "probability": 0.9507 + }, + { + "start": 22283.54, + "end": 22284.12, + "probability": 0.6346 + }, + { + "start": 22284.2, + "end": 22286.02, + "probability": 0.6175 + }, + { + "start": 22286.36, + "end": 22288.32, + "probability": 0.9272 + }, + { + "start": 22289.34, + "end": 22290.62, + "probability": 0.958 + }, + { + "start": 22291.46, + "end": 22293.55, + "probability": 0.8823 + }, + { + "start": 22293.98, + "end": 22294.37, + "probability": 0.9337 + }, + { + "start": 22294.76, + "end": 22296.14, + "probability": 0.8588 + }, + { + "start": 22296.44, + "end": 22297.78, + "probability": 0.9592 + }, + { + "start": 22298.56, + "end": 22301.93, + "probability": 0.7841 + }, + { + "start": 22303.36, + "end": 22305.1, + "probability": 0.7971 + }, + { + "start": 22305.2, + "end": 22305.72, + "probability": 0.8768 + }, + { + "start": 22306.22, + "end": 22308.06, + "probability": 0.9891 + }, + { + "start": 22308.34, + "end": 22313.28, + "probability": 0.9764 + }, + { + "start": 22313.36, + "end": 22314.38, + "probability": 0.4007 + }, + { + "start": 22314.94, + "end": 22318.12, + "probability": 0.7362 + }, + { + "start": 22318.94, + "end": 22322.38, + "probability": 0.9822 + }, + { + "start": 22322.38, + "end": 22325.14, + "probability": 0.9931 + }, + { + "start": 22326.18, + "end": 22330.96, + "probability": 0.9587 + }, + { + "start": 22331.06, + "end": 22332.68, + "probability": 0.9905 + }, + { + "start": 22333.04, + "end": 22335.82, + "probability": 0.9469 + }, + { + "start": 22336.62, + "end": 22339.06, + "probability": 0.91 + }, + { + "start": 22339.88, + "end": 22340.16, + "probability": 0.91 + }, + { + "start": 22340.32, + "end": 22341.8, + "probability": 0.8782 + }, + { + "start": 22341.82, + "end": 22343.58, + "probability": 0.9973 + }, + { + "start": 22343.58, + "end": 22346.48, + "probability": 0.9038 + }, + { + "start": 22347.0, + "end": 22349.64, + "probability": 0.9071 + }, + { + "start": 22350.2, + "end": 22351.16, + "probability": 0.9521 + }, + { + "start": 22351.58, + "end": 22353.78, + "probability": 0.959 + }, + { + "start": 22354.58, + "end": 22358.62, + "probability": 0.7473 + }, + { + "start": 22359.14, + "end": 22363.62, + "probability": 0.6357 + }, + { + "start": 22364.48, + "end": 22367.89, + "probability": 0.732 + }, + { + "start": 22368.6, + "end": 22370.8, + "probability": 0.811 + }, + { + "start": 22371.8, + "end": 22374.8, + "probability": 0.7642 + }, + { + "start": 22375.02, + "end": 22377.16, + "probability": 0.7276 + }, + { + "start": 22377.54, + "end": 22378.94, + "probability": 0.9618 + }, + { + "start": 22378.94, + "end": 22380.48, + "probability": 0.7004 + }, + { + "start": 22381.62, + "end": 22383.44, + "probability": 0.8124 + }, + { + "start": 22384.16, + "end": 22389.18, + "probability": 0.9793 + }, + { + "start": 22389.52, + "end": 22390.42, + "probability": 0.6348 + }, + { + "start": 22390.56, + "end": 22391.52, + "probability": 0.8288 + }, + { + "start": 22392.2, + "end": 22393.5, + "probability": 0.9576 + }, + { + "start": 22393.58, + "end": 22394.24, + "probability": 0.7917 + }, + { + "start": 22394.66, + "end": 22395.94, + "probability": 0.9653 + }, + { + "start": 22396.04, + "end": 22397.06, + "probability": 0.9983 + }, + { + "start": 22397.66, + "end": 22398.3, + "probability": 0.9603 + }, + { + "start": 22398.44, + "end": 22399.2, + "probability": 0.9681 + }, + { + "start": 22399.46, + "end": 22400.22, + "probability": 0.5959 + }, + { + "start": 22400.28, + "end": 22400.48, + "probability": 0.9463 + }, + { + "start": 22400.88, + "end": 22401.06, + "probability": 0.9736 + }, + { + "start": 22401.6, + "end": 22401.9, + "probability": 0.8266 + }, + { + "start": 22402.02, + "end": 22402.87, + "probability": 0.5025 + }, + { + "start": 22403.16, + "end": 22404.5, + "probability": 0.9346 + }, + { + "start": 22405.04, + "end": 22408.56, + "probability": 0.9526 + }, + { + "start": 22408.68, + "end": 22409.53, + "probability": 0.8838 + }, + { + "start": 22410.68, + "end": 22411.08, + "probability": 0.7587 + }, + { + "start": 22411.44, + "end": 22411.84, + "probability": 0.5167 + }, + { + "start": 22412.0, + "end": 22412.52, + "probability": 0.8925 + }, + { + "start": 22412.78, + "end": 22413.16, + "probability": 0.7728 + }, + { + "start": 22413.96, + "end": 22415.76, + "probability": 0.9432 + }, + { + "start": 22416.2, + "end": 22416.66, + "probability": 0.9215 + }, + { + "start": 22418.56, + "end": 22418.96, + "probability": 0.3208 + }, + { + "start": 22419.04, + "end": 22422.94, + "probability": 0.186 + }, + { + "start": 22422.94, + "end": 22426.17, + "probability": 0.7852 + }, + { + "start": 22427.26, + "end": 22427.6, + "probability": 0.0292 + }, + { + "start": 22427.6, + "end": 22429.58, + "probability": 0.4213 + }, + { + "start": 22431.28, + "end": 22431.5, + "probability": 0.8187 + }, + { + "start": 22431.5, + "end": 22432.24, + "probability": 0.3366 + }, + { + "start": 22432.96, + "end": 22433.52, + "probability": 0.9103 + }, + { + "start": 22435.52, + "end": 22437.8, + "probability": 0.1568 + }, + { + "start": 22438.79, + "end": 22439.32, + "probability": 0.1093 + }, + { + "start": 22467.38, + "end": 22469.02, + "probability": 0.7579 + }, + { + "start": 22469.2, + "end": 22470.84, + "probability": 0.932 + }, + { + "start": 22470.94, + "end": 22472.22, + "probability": 0.9964 + }, + { + "start": 22473.02, + "end": 22475.46, + "probability": 0.9093 + }, + { + "start": 22476.18, + "end": 22483.42, + "probability": 0.9951 + }, + { + "start": 22485.11, + "end": 22489.0, + "probability": 0.9984 + }, + { + "start": 22489.68, + "end": 22497.08, + "probability": 0.9149 + }, + { + "start": 22497.44, + "end": 22505.78, + "probability": 0.6669 + }, + { + "start": 22507.56, + "end": 22510.86, + "probability": 0.9831 + }, + { + "start": 22510.98, + "end": 22511.62, + "probability": 0.7937 + }, + { + "start": 22511.78, + "end": 22518.58, + "probability": 0.9886 + }, + { + "start": 22521.56, + "end": 22526.52, + "probability": 0.707 + }, + { + "start": 22527.1, + "end": 22530.22, + "probability": 0.8211 + }, + { + "start": 22531.14, + "end": 22536.82, + "probability": 0.984 + }, + { + "start": 22539.5, + "end": 22541.12, + "probability": 0.9819 + }, + { + "start": 22541.64, + "end": 22545.58, + "probability": 0.9964 + }, + { + "start": 22545.9, + "end": 22547.22, + "probability": 0.8762 + }, + { + "start": 22548.14, + "end": 22554.94, + "probability": 0.9714 + }, + { + "start": 22555.14, + "end": 22558.14, + "probability": 0.9932 + }, + { + "start": 22558.24, + "end": 22559.84, + "probability": 0.9844 + }, + { + "start": 22560.06, + "end": 22561.76, + "probability": 0.6641 + }, + { + "start": 22561.86, + "end": 22566.1, + "probability": 0.9906 + }, + { + "start": 22566.52, + "end": 22568.26, + "probability": 0.8614 + }, + { + "start": 22570.84, + "end": 22572.68, + "probability": 0.6668 + }, + { + "start": 22572.8, + "end": 22576.6, + "probability": 0.9165 + }, + { + "start": 22576.7, + "end": 22577.1, + "probability": 0.5719 + }, + { + "start": 22577.18, + "end": 22577.94, + "probability": 0.6777 + }, + { + "start": 22578.68, + "end": 22583.28, + "probability": 0.9817 + }, + { + "start": 22584.12, + "end": 22587.48, + "probability": 0.9779 + }, + { + "start": 22588.74, + "end": 22590.86, + "probability": 0.3715 + }, + { + "start": 22592.36, + "end": 22598.2, + "probability": 0.7778 + }, + { + "start": 22599.1, + "end": 22603.32, + "probability": 0.838 + }, + { + "start": 22603.84, + "end": 22605.54, + "probability": 0.7023 + }, + { + "start": 22606.84, + "end": 22609.26, + "probability": 0.9341 + }, + { + "start": 22609.32, + "end": 22613.38, + "probability": 0.8373 + }, + { + "start": 22613.56, + "end": 22616.76, + "probability": 0.7697 + }, + { + "start": 22617.34, + "end": 22620.2, + "probability": 0.9919 + }, + { + "start": 22620.74, + "end": 22625.66, + "probability": 0.998 + }, + { + "start": 22625.66, + "end": 22632.9, + "probability": 0.9966 + }, + { + "start": 22633.66, + "end": 22636.76, + "probability": 0.97 + }, + { + "start": 22636.84, + "end": 22638.31, + "probability": 0.7313 + }, + { + "start": 22638.56, + "end": 22643.7, + "probability": 0.9951 + }, + { + "start": 22643.7, + "end": 22652.42, + "probability": 0.9627 + }, + { + "start": 22653.02, + "end": 22655.74, + "probability": 0.7767 + }, + { + "start": 22657.34, + "end": 22661.3, + "probability": 0.743 + }, + { + "start": 22661.76, + "end": 22665.02, + "probability": 0.8812 + }, + { + "start": 22665.44, + "end": 22668.06, + "probability": 0.8404 + }, + { + "start": 22668.76, + "end": 22672.84, + "probability": 0.9976 + }, + { + "start": 22676.7, + "end": 22682.7, + "probability": 0.9985 + }, + { + "start": 22683.28, + "end": 22690.08, + "probability": 0.8407 + }, + { + "start": 22690.56, + "end": 22691.28, + "probability": 0.8208 + }, + { + "start": 22691.82, + "end": 22697.02, + "probability": 0.842 + }, + { + "start": 22697.5, + "end": 22703.44, + "probability": 0.7553 + }, + { + "start": 22703.86, + "end": 22708.33, + "probability": 0.9983 + }, + { + "start": 22709.02, + "end": 22712.78, + "probability": 0.8131 + }, + { + "start": 22713.56, + "end": 22716.32, + "probability": 0.9419 + }, + { + "start": 22717.54, + "end": 22721.77, + "probability": 0.9756 + }, + { + "start": 22727.02, + "end": 22733.3, + "probability": 0.9982 + }, + { + "start": 22734.44, + "end": 22739.54, + "probability": 0.8497 + }, + { + "start": 22740.32, + "end": 22744.94, + "probability": 0.6735 + }, + { + "start": 22745.18, + "end": 22747.42, + "probability": 0.9917 + }, + { + "start": 22750.24, + "end": 22755.9, + "probability": 0.9675 + }, + { + "start": 22756.42, + "end": 22761.38, + "probability": 0.9955 + }, + { + "start": 22762.26, + "end": 22763.68, + "probability": 0.3786 + }, + { + "start": 22764.2, + "end": 22766.54, + "probability": 0.9795 + }, + { + "start": 22766.58, + "end": 22767.52, + "probability": 0.7539 + }, + { + "start": 22767.66, + "end": 22769.5, + "probability": 0.886 + }, + { + "start": 22769.72, + "end": 22772.16, + "probability": 0.5081 + }, + { + "start": 22772.5, + "end": 22774.2, + "probability": 0.6548 + }, + { + "start": 22774.64, + "end": 22778.26, + "probability": 0.8818 + }, + { + "start": 22778.42, + "end": 22780.74, + "probability": 0.9351 + }, + { + "start": 22782.56, + "end": 22783.08, + "probability": 0.9253 + }, + { + "start": 22783.64, + "end": 22784.1, + "probability": 0.426 + }, + { + "start": 22784.2, + "end": 22784.96, + "probability": 0.9023 + }, + { + "start": 22785.18, + "end": 22786.68, + "probability": 0.8173 + }, + { + "start": 22786.68, + "end": 22788.0, + "probability": 0.7543 + }, + { + "start": 22788.58, + "end": 22790.06, + "probability": 0.9767 + }, + { + "start": 22790.64, + "end": 22791.98, + "probability": 0.9535 + }, + { + "start": 22792.16, + "end": 22794.18, + "probability": 0.2301 + }, + { + "start": 22796.24, + "end": 22798.38, + "probability": 0.9053 + }, + { + "start": 22798.76, + "end": 22799.92, + "probability": 0.8068 + }, + { + "start": 22813.16, + "end": 22815.7, + "probability": 0.758 + }, + { + "start": 22816.4, + "end": 22821.0, + "probability": 0.936 + }, + { + "start": 22821.26, + "end": 22823.32, + "probability": 0.972 + }, + { + "start": 22824.48, + "end": 22828.04, + "probability": 0.9751 + }, + { + "start": 22828.92, + "end": 22833.0, + "probability": 0.9467 + }, + { + "start": 22834.0, + "end": 22837.66, + "probability": 0.9886 + }, + { + "start": 22837.7, + "end": 22838.34, + "probability": 0.7095 + }, + { + "start": 22839.18, + "end": 22842.02, + "probability": 0.9778 + }, + { + "start": 22842.94, + "end": 22845.86, + "probability": 0.9912 + }, + { + "start": 22845.92, + "end": 22849.18, + "probability": 0.6376 + }, + { + "start": 22849.86, + "end": 22853.04, + "probability": 0.9851 + }, + { + "start": 22853.72, + "end": 22859.06, + "probability": 0.6635 + }, + { + "start": 22859.58, + "end": 22860.68, + "probability": 0.9388 + }, + { + "start": 22861.0, + "end": 22863.36, + "probability": 0.8937 + }, + { + "start": 22863.62, + "end": 22866.06, + "probability": 0.741 + }, + { + "start": 22866.44, + "end": 22867.74, + "probability": 0.6183 + }, + { + "start": 22867.92, + "end": 22868.98, + "probability": 0.5972 + }, + { + "start": 22869.4, + "end": 22871.6, + "probability": 0.8124 + }, + { + "start": 22872.62, + "end": 22872.62, + "probability": 0.0471 + }, + { + "start": 22872.62, + "end": 22873.2, + "probability": 0.1261 + }, + { + "start": 22878.04, + "end": 22880.78, + "probability": 0.8988 + }, + { + "start": 22880.78, + "end": 22883.79, + "probability": 0.9844 + }, + { + "start": 22884.9, + "end": 22885.91, + "probability": 0.8296 + }, + { + "start": 22886.8, + "end": 22886.9, + "probability": 0.4311 + }, + { + "start": 22887.02, + "end": 22893.5, + "probability": 0.9915 + }, + { + "start": 22893.82, + "end": 22894.56, + "probability": 0.918 + }, + { + "start": 22895.5, + "end": 22900.45, + "probability": 0.9829 + }, + { + "start": 22901.12, + "end": 22904.9, + "probability": 0.9924 + }, + { + "start": 22906.18, + "end": 22911.26, + "probability": 0.9059 + }, + { + "start": 22912.48, + "end": 22914.42, + "probability": 0.5982 + }, + { + "start": 22915.68, + "end": 22921.98, + "probability": 0.9823 + }, + { + "start": 22922.96, + "end": 22925.14, + "probability": 0.6175 + }, + { + "start": 22925.8, + "end": 22927.72, + "probability": 0.8871 + }, + { + "start": 22928.64, + "end": 22935.5, + "probability": 0.87 + }, + { + "start": 22935.9, + "end": 22937.22, + "probability": 0.7998 + }, + { + "start": 22937.8, + "end": 22946.82, + "probability": 0.9841 + }, + { + "start": 22947.94, + "end": 22950.96, + "probability": 0.6629 + }, + { + "start": 22951.82, + "end": 22954.3, + "probability": 0.7862 + }, + { + "start": 22955.08, + "end": 22960.96, + "probability": 0.9233 + }, + { + "start": 22961.64, + "end": 22961.7, + "probability": 0.168 + }, + { + "start": 22962.02, + "end": 22966.48, + "probability": 0.8718 + }, + { + "start": 22966.66, + "end": 22966.94, + "probability": 0.7857 + }, + { + "start": 22967.22, + "end": 22967.8, + "probability": 0.6556 + }, + { + "start": 22968.14, + "end": 22972.46, + "probability": 0.8763 + }, + { + "start": 22972.64, + "end": 22974.06, + "probability": 0.9142 + }, + { + "start": 22974.26, + "end": 22975.9, + "probability": 0.8128 + }, + { + "start": 22976.28, + "end": 22978.72, + "probability": 0.9935 + }, + { + "start": 22979.0, + "end": 22979.46, + "probability": 0.5663 + }, + { + "start": 22979.46, + "end": 22979.66, + "probability": 0.2701 + }, + { + "start": 22979.66, + "end": 22980.2, + "probability": 0.724 + }, + { + "start": 22980.38, + "end": 22986.0, + "probability": 0.9271 + }, + { + "start": 22986.5, + "end": 22986.94, + "probability": 0.8351 + }, + { + "start": 23001.84, + "end": 23002.68, + "probability": 0.8169 + }, + { + "start": 23002.76, + "end": 23003.36, + "probability": 0.8007 + }, + { + "start": 23003.82, + "end": 23006.34, + "probability": 0.9673 + }, + { + "start": 23006.42, + "end": 23007.58, + "probability": 0.5993 + }, + { + "start": 23008.76, + "end": 23010.18, + "probability": 0.8232 + }, + { + "start": 23011.3, + "end": 23015.28, + "probability": 0.9689 + }, + { + "start": 23015.28, + "end": 23019.39, + "probability": 0.8853 + }, + { + "start": 23020.58, + "end": 23023.08, + "probability": 0.993 + }, + { + "start": 23023.08, + "end": 23025.76, + "probability": 0.9834 + }, + { + "start": 23026.7, + "end": 23029.2, + "probability": 0.99 + }, + { + "start": 23030.7, + "end": 23033.5, + "probability": 0.9384 + }, + { + "start": 23033.7, + "end": 23036.66, + "probability": 0.907 + }, + { + "start": 23036.66, + "end": 23039.04, + "probability": 0.811 + }, + { + "start": 23040.5, + "end": 23043.84, + "probability": 0.9846 + }, + { + "start": 23044.22, + "end": 23045.92, + "probability": 0.998 + }, + { + "start": 23046.8, + "end": 23049.07, + "probability": 0.9921 + }, + { + "start": 23050.2, + "end": 23050.72, + "probability": 0.4422 + }, + { + "start": 23050.88, + "end": 23053.5, + "probability": 0.9943 + }, + { + "start": 23053.5, + "end": 23056.08, + "probability": 0.9505 + }, + { + "start": 23057.14, + "end": 23061.46, + "probability": 0.9653 + }, + { + "start": 23061.54, + "end": 23065.0, + "probability": 0.9637 + }, + { + "start": 23065.06, + "end": 23068.86, + "probability": 0.9875 + }, + { + "start": 23069.22, + "end": 23069.58, + "probability": 0.7572 + }, + { + "start": 23071.0, + "end": 23071.58, + "probability": 0.9744 + }, + { + "start": 23074.52, + "end": 23077.24, + "probability": 0.3108 + }, + { + "start": 23077.56, + "end": 23078.7, + "probability": 0.6934 + }, + { + "start": 23079.48, + "end": 23082.78, + "probability": 0.4544 + }, + { + "start": 23082.94, + "end": 23084.48, + "probability": 0.8978 + }, + { + "start": 23085.44, + "end": 23085.44, + "probability": 0.3864 + }, + { + "start": 23085.44, + "end": 23085.84, + "probability": 0.889 + }, + { + "start": 23087.95, + "end": 23088.84, + "probability": 0.6449 + }, + { + "start": 23090.66, + "end": 23090.96, + "probability": 0.4196 + }, + { + "start": 23090.96, + "end": 23094.0, + "probability": 0.6651 + }, + { + "start": 23094.0, + "end": 23097.28, + "probability": 0.7727 + }, + { + "start": 23097.8, + "end": 23098.58, + "probability": 0.6859 + }, + { + "start": 23098.62, + "end": 23098.98, + "probability": 0.6534 + }, + { + "start": 23099.04, + "end": 23099.28, + "probability": 0.8623 + }, + { + "start": 23102.02, + "end": 23102.86, + "probability": 0.3152 + }, + { + "start": 23112.42, + "end": 23113.04, + "probability": 0.4008 + }, + { + "start": 23113.04, + "end": 23115.26, + "probability": 0.4528 + }, + { + "start": 23115.34, + "end": 23120.06, + "probability": 0.9941 + }, + { + "start": 23120.22, + "end": 23124.1, + "probability": 0.9954 + }, + { + "start": 23124.74, + "end": 23126.5, + "probability": 0.9978 + }, + { + "start": 23126.58, + "end": 23127.56, + "probability": 0.6718 + }, + { + "start": 23127.64, + "end": 23128.24, + "probability": 0.5338 + }, + { + "start": 23128.82, + "end": 23130.78, + "probability": 0.9063 + }, + { + "start": 23131.62, + "end": 23132.2, + "probability": 0.8772 + }, + { + "start": 23133.44, + "end": 23134.59, + "probability": 0.9185 + }, + { + "start": 23135.04, + "end": 23135.16, + "probability": 0.4053 + }, + { + "start": 23138.36, + "end": 23140.07, + "probability": 0.8007 + }, + { + "start": 23140.48, + "end": 23140.82, + "probability": 0.2031 + }, + { + "start": 23141.46, + "end": 23143.32, + "probability": 0.7444 + }, + { + "start": 23143.32, + "end": 23144.46, + "probability": 0.7553 + }, + { + "start": 23144.72, + "end": 23145.6, + "probability": 0.5209 + }, + { + "start": 23145.6, + "end": 23146.6, + "probability": 0.3783 + }, + { + "start": 23146.92, + "end": 23148.9, + "probability": 0.6892 + }, + { + "start": 23149.28, + "end": 23150.58, + "probability": 0.1177 + }, + { + "start": 23150.58, + "end": 23151.46, + "probability": 0.0712 + }, + { + "start": 23151.7, + "end": 23152.12, + "probability": 0.3834 + }, + { + "start": 23152.12, + "end": 23152.8, + "probability": 0.093 + }, + { + "start": 23152.98, + "end": 23154.94, + "probability": 0.752 + }, + { + "start": 23155.2, + "end": 23156.94, + "probability": 0.9748 + }, + { + "start": 23157.72, + "end": 23159.46, + "probability": 0.5947 + }, + { + "start": 23159.8, + "end": 23161.94, + "probability": 0.7716 + }, + { + "start": 23163.02, + "end": 23163.26, + "probability": 0.1132 + }, + { + "start": 23163.89, + "end": 23165.94, + "probability": 0.8988 + }, + { + "start": 23166.02, + "end": 23167.36, + "probability": 0.9954 + }, + { + "start": 23168.18, + "end": 23169.52, + "probability": 0.9399 + }, + { + "start": 23169.52, + "end": 23170.46, + "probability": 0.1074 + }, + { + "start": 23170.46, + "end": 23170.74, + "probability": 0.2982 + }, + { + "start": 23170.96, + "end": 23172.64, + "probability": 0.9818 + }, + { + "start": 23173.28, + "end": 23175.38, + "probability": 0.9136 + }, + { + "start": 23175.84, + "end": 23180.04, + "probability": 0.9696 + }, + { + "start": 23180.16, + "end": 23181.6, + "probability": 0.704 + }, + { + "start": 23181.96, + "end": 23183.8, + "probability": 0.6037 + }, + { + "start": 23184.24, + "end": 23185.0, + "probability": 0.4551 + }, + { + "start": 23185.06, + "end": 23185.54, + "probability": 0.7147 + }, + { + "start": 23185.64, + "end": 23186.62, + "probability": 0.9263 + }, + { + "start": 23188.12, + "end": 23188.32, + "probability": 0.7297 + }, + { + "start": 23188.44, + "end": 23191.14, + "probability": 0.4642 + }, + { + "start": 23191.46, + "end": 23192.6, + "probability": 0.8093 + }, + { + "start": 23192.76, + "end": 23194.58, + "probability": 0.9063 + }, + { + "start": 23194.58, + "end": 23195.52, + "probability": 0.8984 + }, + { + "start": 23195.94, + "end": 23197.02, + "probability": 0.7223 + }, + { + "start": 23197.28, + "end": 23198.74, + "probability": 0.9495 + }, + { + "start": 23199.14, + "end": 23202.58, + "probability": 0.9382 + }, + { + "start": 23203.14, + "end": 23204.52, + "probability": 0.7378 + }, + { + "start": 23205.3, + "end": 23206.62, + "probability": 0.9358 + }, + { + "start": 23206.7, + "end": 23208.78, + "probability": 0.4304 + }, + { + "start": 23209.66, + "end": 23210.76, + "probability": 0.8052 + }, + { + "start": 23213.52, + "end": 23215.08, + "probability": 0.5724 + }, + { + "start": 23216.1, + "end": 23219.06, + "probability": 0.8485 + }, + { + "start": 23219.58, + "end": 23220.42, + "probability": 0.7838 + }, + { + "start": 23220.48, + "end": 23220.98, + "probability": 0.6104 + }, + { + "start": 23221.3, + "end": 23223.26, + "probability": 0.8006 + }, + { + "start": 23223.26, + "end": 23223.64, + "probability": 0.655 + }, + { + "start": 23224.54, + "end": 23226.56, + "probability": 0.796 + }, + { + "start": 23227.1, + "end": 23229.54, + "probability": 0.9718 + }, + { + "start": 23230.12, + "end": 23231.98, + "probability": 0.856 + }, + { + "start": 23232.74, + "end": 23234.76, + "probability": 0.8939 + }, + { + "start": 23234.84, + "end": 23235.54, + "probability": 0.9229 + }, + { + "start": 23236.48, + "end": 23238.92, + "probability": 0.9554 + }, + { + "start": 23239.44, + "end": 23240.2, + "probability": 0.6179 + }, + { + "start": 23243.7, + "end": 23245.8, + "probability": 0.5591 + }, + { + "start": 23247.72, + "end": 23251.38, + "probability": 0.5955 + }, + { + "start": 23259.06, + "end": 23259.76, + "probability": 0.8164 + }, + { + "start": 23260.82, + "end": 23266.1, + "probability": 0.8796 + }, + { + "start": 23266.8, + "end": 23267.9, + "probability": 0.955 + }, + { + "start": 23268.84, + "end": 23270.54, + "probability": 0.7853 + }, + { + "start": 23271.38, + "end": 23272.16, + "probability": 0.9801 + }, + { + "start": 23273.8, + "end": 23275.92, + "probability": 0.4581 + }, + { + "start": 23275.92, + "end": 23279.22, + "probability": 0.8422 + }, + { + "start": 23279.22, + "end": 23282.96, + "probability": 0.9576 + }, + { + "start": 23284.78, + "end": 23288.52, + "probability": 0.8652 + }, + { + "start": 23288.52, + "end": 23290.76, + "probability": 0.6341 + }, + { + "start": 23292.6, + "end": 23296.3, + "probability": 0.5457 + }, + { + "start": 23296.32, + "end": 23298.32, + "probability": 0.9801 + }, + { + "start": 23299.66, + "end": 23301.86, + "probability": 0.989 + }, + { + "start": 23301.92, + "end": 23306.84, + "probability": 0.8397 + }, + { + "start": 23307.92, + "end": 23311.12, + "probability": 0.9211 + }, + { + "start": 23311.3, + "end": 23314.08, + "probability": 0.9139 + }, + { + "start": 23315.08, + "end": 23315.88, + "probability": 0.7406 + }, + { + "start": 23316.86, + "end": 23319.7, + "probability": 0.6981 + }, + { + "start": 23319.76, + "end": 23320.2, + "probability": 0.3795 + }, + { + "start": 23320.38, + "end": 23321.0, + "probability": 0.9398 + }, + { + "start": 23321.98, + "end": 23323.72, + "probability": 0.902 + }, + { + "start": 23323.96, + "end": 23325.23, + "probability": 0.2519 + }, + { + "start": 23325.68, + "end": 23325.96, + "probability": 0.1013 + }, + { + "start": 23326.42, + "end": 23329.2, + "probability": 0.5021 + }, + { + "start": 23329.8, + "end": 23330.36, + "probability": 0.7512 + }, + { + "start": 23331.64, + "end": 23334.58, + "probability": 0.9597 + }, + { + "start": 23335.62, + "end": 23336.34, + "probability": 0.4048 + }, + { + "start": 23337.0, + "end": 23338.0, + "probability": 0.7127 + }, + { + "start": 23338.78, + "end": 23341.14, + "probability": 0.986 + }, + { + "start": 23341.26, + "end": 23344.18, + "probability": 0.9771 + }, + { + "start": 23344.84, + "end": 23350.22, + "probability": 0.4464 + }, + { + "start": 23350.38, + "end": 23350.6, + "probability": 0.2007 + }, + { + "start": 23350.6, + "end": 23350.6, + "probability": 0.023 + }, + { + "start": 23350.6, + "end": 23350.6, + "probability": 0.1713 + }, + { + "start": 23350.6, + "end": 23350.84, + "probability": 0.4048 + }, + { + "start": 23351.98, + "end": 23354.18, + "probability": 0.6829 + }, + { + "start": 23355.26, + "end": 23355.88, + "probability": 0.9101 + }, + { + "start": 23362.54, + "end": 23364.86, + "probability": 0.8931 + }, + { + "start": 23364.96, + "end": 23364.96, + "probability": 0.001 + }, + { + "start": 23364.96, + "end": 23365.42, + "probability": 0.7341 + }, + { + "start": 23365.98, + "end": 23366.3, + "probability": 0.4931 + }, + { + "start": 23366.34, + "end": 23367.1, + "probability": 0.8909 + }, + { + "start": 23367.44, + "end": 23368.3, + "probability": 0.9567 + }, + { + "start": 23369.92, + "end": 23370.22, + "probability": 0.5975 + }, + { + "start": 23372.18, + "end": 23374.78, + "probability": 0.8545 + }, + { + "start": 23375.34, + "end": 23376.5, + "probability": 0.9886 + }, + { + "start": 23378.96, + "end": 23383.24, + "probability": 0.8885 + }, + { + "start": 23385.3, + "end": 23391.12, + "probability": 0.8972 + }, + { + "start": 23392.7, + "end": 23394.74, + "probability": 0.9603 + }, + { + "start": 23399.42, + "end": 23401.26, + "probability": 0.731 + }, + { + "start": 23401.9, + "end": 23402.66, + "probability": 0.3522 + }, + { + "start": 23403.96, + "end": 23409.38, + "probability": 0.9772 + }, + { + "start": 23409.66, + "end": 23411.04, + "probability": 0.9958 + }, + { + "start": 23412.36, + "end": 23413.46, + "probability": 0.9927 + }, + { + "start": 23414.04, + "end": 23418.64, + "probability": 0.9993 + }, + { + "start": 23421.04, + "end": 23423.06, + "probability": 0.9962 + }, + { + "start": 23426.38, + "end": 23427.48, + "probability": 0.8335 + }, + { + "start": 23429.1, + "end": 23432.84, + "probability": 0.2157 + }, + { + "start": 23435.02, + "end": 23437.14, + "probability": 0.2938 + }, + { + "start": 23437.48, + "end": 23439.32, + "probability": 0.0238 + }, + { + "start": 23439.36, + "end": 23439.82, + "probability": 0.1861 + }, + { + "start": 23442.4, + "end": 23443.96, + "probability": 0.7827 + }, + { + "start": 23445.06, + "end": 23445.66, + "probability": 0.0079 + }, + { + "start": 23448.22, + "end": 23448.4, + "probability": 0.7649 + }, + { + "start": 23449.92, + "end": 23451.78, + "probability": 0.1023 + }, + { + "start": 23456.1, + "end": 23458.26, + "probability": 0.6495 + }, + { + "start": 23460.68, + "end": 23465.18, + "probability": 0.9874 + }, + { + "start": 23466.64, + "end": 23470.0, + "probability": 0.7902 + }, + { + "start": 23471.32, + "end": 23472.28, + "probability": 0.9533 + }, + { + "start": 23473.16, + "end": 23474.88, + "probability": 0.9397 + }, + { + "start": 23476.58, + "end": 23478.9, + "probability": 0.955 + }, + { + "start": 23480.7, + "end": 23481.69, + "probability": 0.8289 + }, + { + "start": 23483.58, + "end": 23484.5, + "probability": 0.9319 + }, + { + "start": 23484.74, + "end": 23485.44, + "probability": 0.7257 + }, + { + "start": 23485.76, + "end": 23495.54, + "probability": 0.9966 + }, + { + "start": 23497.02, + "end": 23499.7, + "probability": 0.928 + }, + { + "start": 23501.46, + "end": 23504.36, + "probability": 0.925 + }, + { + "start": 23505.48, + "end": 23506.62, + "probability": 0.9331 + }, + { + "start": 23506.74, + "end": 23507.3, + "probability": 0.7361 + }, + { + "start": 23507.36, + "end": 23508.74, + "probability": 0.9558 + }, + { + "start": 23510.42, + "end": 23512.96, + "probability": 0.8821 + }, + { + "start": 23513.06, + "end": 23513.41, + "probability": 0.9463 + }, + { + "start": 23514.24, + "end": 23515.55, + "probability": 0.9944 + }, + { + "start": 23516.46, + "end": 23517.12, + "probability": 0.7893 + }, + { + "start": 23517.38, + "end": 23522.64, + "probability": 0.947 + }, + { + "start": 23524.22, + "end": 23525.4, + "probability": 0.978 + }, + { + "start": 23527.14, + "end": 23531.76, + "probability": 0.9954 + }, + { + "start": 23534.32, + "end": 23538.18, + "probability": 0.9954 + }, + { + "start": 23539.7, + "end": 23548.36, + "probability": 0.9467 + }, + { + "start": 23549.96, + "end": 23551.42, + "probability": 0.9533 + }, + { + "start": 23552.32, + "end": 23554.17, + "probability": 0.5048 + }, + { + "start": 23555.52, + "end": 23559.02, + "probability": 0.927 + }, + { + "start": 23561.92, + "end": 23563.36, + "probability": 0.9977 + }, + { + "start": 23565.02, + "end": 23567.82, + "probability": 0.9839 + }, + { + "start": 23569.88, + "end": 23573.45, + "probability": 0.8946 + }, + { + "start": 23574.72, + "end": 23576.47, + "probability": 0.7747 + }, + { + "start": 23577.98, + "end": 23578.7, + "probability": 0.3714 + }, + { + "start": 23580.44, + "end": 23582.22, + "probability": 0.979 + }, + { + "start": 23583.46, + "end": 23585.6, + "probability": 0.9617 + }, + { + "start": 23586.38, + "end": 23588.56, + "probability": 0.9972 + }, + { + "start": 23589.64, + "end": 23590.14, + "probability": 0.5754 + }, + { + "start": 23590.86, + "end": 23595.24, + "probability": 0.6877 + }, + { + "start": 23598.02, + "end": 23599.1, + "probability": 0.9673 + }, + { + "start": 23600.58, + "end": 23601.42, + "probability": 0.2515 + }, + { + "start": 23602.68, + "end": 23603.42, + "probability": 0.6733 + }, + { + "start": 23604.76, + "end": 23606.28, + "probability": 0.9888 + }, + { + "start": 23607.54, + "end": 23610.46, + "probability": 0.9805 + }, + { + "start": 23611.52, + "end": 23614.4, + "probability": 0.8644 + }, + { + "start": 23615.98, + "end": 23618.64, + "probability": 0.89 + }, + { + "start": 23620.22, + "end": 23621.12, + "probability": 0.2302 + }, + { + "start": 23623.0, + "end": 23625.02, + "probability": 0.991 + }, + { + "start": 23625.74, + "end": 23629.68, + "probability": 0.7192 + }, + { + "start": 23630.5, + "end": 23635.18, + "probability": 0.9849 + }, + { + "start": 23635.7, + "end": 23637.12, + "probability": 0.9849 + }, + { + "start": 23637.82, + "end": 23639.78, + "probability": 0.8538 + }, + { + "start": 23640.48, + "end": 23641.9, + "probability": 0.77 + }, + { + "start": 23642.67, + "end": 23645.38, + "probability": 0.9888 + }, + { + "start": 23646.0, + "end": 23646.5, + "probability": 0.5508 + }, + { + "start": 23647.1, + "end": 23647.78, + "probability": 0.8291 + }, + { + "start": 23648.28, + "end": 23648.88, + "probability": 0.6309 + }, + { + "start": 23649.82, + "end": 23651.32, + "probability": 0.8432 + }, + { + "start": 23651.86, + "end": 23655.18, + "probability": 0.751 + }, + { + "start": 23656.2, + "end": 23657.8, + "probability": 0.7496 + }, + { + "start": 23659.42, + "end": 23660.76, + "probability": 0.911 + }, + { + "start": 23661.74, + "end": 23663.1, + "probability": 0.9528 + }, + { + "start": 23664.12, + "end": 23665.6, + "probability": 0.9844 + }, + { + "start": 23666.18, + "end": 23667.8, + "probability": 0.7886 + }, + { + "start": 23669.04, + "end": 23669.95, + "probability": 0.7499 + }, + { + "start": 23671.16, + "end": 23672.5, + "probability": 0.9856 + }, + { + "start": 23673.28, + "end": 23675.0, + "probability": 0.9873 + }, + { + "start": 23676.24, + "end": 23679.1, + "probability": 0.9956 + }, + { + "start": 23680.0, + "end": 23685.68, + "probability": 0.9635 + }, + { + "start": 23687.98, + "end": 23688.72, + "probability": 0.7545 + }, + { + "start": 23690.46, + "end": 23691.84, + "probability": 0.9692 + }, + { + "start": 23691.96, + "end": 23695.2, + "probability": 0.9964 + }, + { + "start": 23695.92, + "end": 23696.84, + "probability": 0.701 + }, + { + "start": 23697.72, + "end": 23698.94, + "probability": 0.7344 + }, + { + "start": 23700.04, + "end": 23701.36, + "probability": 0.9884 + }, + { + "start": 23702.17, + "end": 23705.16, + "probability": 0.8628 + }, + { + "start": 23705.58, + "end": 23706.22, + "probability": 0.9721 + }, + { + "start": 23707.2, + "end": 23712.1, + "probability": 0.9953 + }, + { + "start": 23712.78, + "end": 23714.28, + "probability": 0.8008 + }, + { + "start": 23715.02, + "end": 23716.14, + "probability": 0.9708 + }, + { + "start": 23716.68, + "end": 23717.8, + "probability": 0.9937 + }, + { + "start": 23718.6, + "end": 23721.2, + "probability": 0.946 + }, + { + "start": 23722.12, + "end": 23725.72, + "probability": 0.958 + }, + { + "start": 23726.54, + "end": 23728.96, + "probability": 0.863 + }, + { + "start": 23729.58, + "end": 23732.73, + "probability": 0.6755 + }, + { + "start": 23734.24, + "end": 23736.7, + "probability": 0.97 + }, + { + "start": 23737.38, + "end": 23745.3, + "probability": 0.9941 + }, + { + "start": 23745.34, + "end": 23745.68, + "probability": 0.8126 + }, + { + "start": 23745.8, + "end": 23746.44, + "probability": 0.9812 + }, + { + "start": 23746.9, + "end": 23747.14, + "probability": 0.8375 + }, + { + "start": 23747.22, + "end": 23752.21, + "probability": 0.9789 + }, + { + "start": 23756.6, + "end": 23759.14, + "probability": 0.7547 + }, + { + "start": 23767.24, + "end": 23767.88, + "probability": 0.5563 + }, + { + "start": 23770.36, + "end": 23772.94, + "probability": 0.7217 + }, + { + "start": 23773.14, + "end": 23773.94, + "probability": 0.546 + }, + { + "start": 23775.36, + "end": 23777.05, + "probability": 0.7915 + }, + { + "start": 23777.94, + "end": 23780.22, + "probability": 0.854 + }, + { + "start": 23781.94, + "end": 23783.24, + "probability": 0.1562 + }, + { + "start": 23784.56, + "end": 23789.48, + "probability": 0.7735 + }, + { + "start": 23790.0, + "end": 23792.58, + "probability": 0.8341 + }, + { + "start": 23792.64, + "end": 23793.32, + "probability": 0.3877 + }, + { + "start": 23794.1, + "end": 23800.32, + "probability": 0.5991 + }, + { + "start": 23800.32, + "end": 23804.78, + "probability": 0.8627 + }, + { + "start": 23805.24, + "end": 23809.38, + "probability": 0.938 + }, + { + "start": 23810.98, + "end": 23815.16, + "probability": 0.8835 + }, + { + "start": 23816.12, + "end": 23816.68, + "probability": 0.3702 + }, + { + "start": 23816.84, + "end": 23821.06, + "probability": 0.876 + }, + { + "start": 23821.68, + "end": 23822.9, + "probability": 0.9481 + }, + { + "start": 23823.12, + "end": 23828.84, + "probability": 0.9214 + }, + { + "start": 23828.84, + "end": 23834.24, + "probability": 0.939 + }, + { + "start": 23835.18, + "end": 23838.46, + "probability": 0.8569 + }, + { + "start": 23840.6, + "end": 23843.62, + "probability": 0.6709 + }, + { + "start": 23844.34, + "end": 23848.68, + "probability": 0.2676 + }, + { + "start": 23849.34, + "end": 23851.98, + "probability": 0.8899 + }, + { + "start": 23851.98, + "end": 23854.64, + "probability": 0.9829 + }, + { + "start": 23854.94, + "end": 23856.82, + "probability": 0.8824 + }, + { + "start": 23857.38, + "end": 23861.68, + "probability": 0.9761 + }, + { + "start": 23862.2, + "end": 23865.04, + "probability": 0.9814 + }, + { + "start": 23865.64, + "end": 23866.02, + "probability": 0.5716 + }, + { + "start": 23866.4, + "end": 23866.9, + "probability": 0.649 + }, + { + "start": 23867.04, + "end": 23867.9, + "probability": 0.6286 + }, + { + "start": 23868.32, + "end": 23870.14, + "probability": 0.9031 + }, + { + "start": 23870.38, + "end": 23876.98, + "probability": 0.9574 + }, + { + "start": 23877.2, + "end": 23879.32, + "probability": 0.7762 + }, + { + "start": 23879.84, + "end": 23883.9, + "probability": 0.749 + }, + { + "start": 23884.52, + "end": 23887.36, + "probability": 0.8802 + }, + { + "start": 23887.82, + "end": 23894.06, + "probability": 0.7795 + }, + { + "start": 23894.06, + "end": 23899.0, + "probability": 0.7039 + }, + { + "start": 23900.24, + "end": 23900.5, + "probability": 0.5466 + }, + { + "start": 23900.84, + "end": 23901.52, + "probability": 0.991 + }, + { + "start": 23902.42, + "end": 23904.18, + "probability": 0.5494 + }, + { + "start": 23905.64, + "end": 23907.3, + "probability": 0.5259 + }, + { + "start": 23908.1, + "end": 23909.48, + "probability": 0.6624 + }, + { + "start": 23910.36, + "end": 23912.2, + "probability": 0.9071 + }, + { + "start": 23912.54, + "end": 23913.58, + "probability": 0.4233 + }, + { + "start": 23913.62, + "end": 23914.9, + "probability": 0.9412 + }, + { + "start": 23915.19, + "end": 23916.96, + "probability": 0.67 + }, + { + "start": 23917.12, + "end": 23918.02, + "probability": 0.6971 + }, + { + "start": 23918.14, + "end": 23918.92, + "probability": 0.7674 + }, + { + "start": 23919.26, + "end": 23919.72, + "probability": 0.5608 + }, + { + "start": 23919.78, + "end": 23923.62, + "probability": 0.5791 + }, + { + "start": 23924.14, + "end": 23924.5, + "probability": 0.826 + }, + { + "start": 23925.52, + "end": 23926.3, + "probability": 0.1859 + }, + { + "start": 23926.82, + "end": 23928.16, + "probability": 0.2358 + }, + { + "start": 23929.74, + "end": 23930.26, + "probability": 0.3332 + }, + { + "start": 23935.32, + "end": 23939.26, + "probability": 0.717 + }, + { + "start": 23940.97, + "end": 23942.76, + "probability": 0.1479 + }, + { + "start": 23942.82, + "end": 23944.9, + "probability": 0.6545 + }, + { + "start": 23944.92, + "end": 23948.24, + "probability": 0.9907 + }, + { + "start": 23948.88, + "end": 23950.94, + "probability": 0.6796 + }, + { + "start": 23951.0, + "end": 23953.18, + "probability": 0.9453 + }, + { + "start": 23953.58, + "end": 23955.52, + "probability": 0.9908 + }, + { + "start": 23955.98, + "end": 23957.0, + "probability": 0.9939 + }, + { + "start": 23958.1, + "end": 23958.7, + "probability": 0.8029 + }, + { + "start": 23958.92, + "end": 23964.4, + "probability": 0.9941 + }, + { + "start": 23964.74, + "end": 23966.7, + "probability": 0.8061 + }, + { + "start": 23967.3, + "end": 23968.38, + "probability": 0.9758 + }, + { + "start": 23968.62, + "end": 23969.74, + "probability": 0.9486 + }, + { + "start": 23970.54, + "end": 23972.16, + "probability": 0.6292 + }, + { + "start": 23975.42, + "end": 23975.92, + "probability": 0.8188 + }, + { + "start": 23975.96, + "end": 23976.96, + "probability": 0.9507 + }, + { + "start": 23977.74, + "end": 23979.47, + "probability": 0.8691 + }, + { + "start": 23980.02, + "end": 23984.14, + "probability": 0.5345 + }, + { + "start": 23985.16, + "end": 23985.7, + "probability": 0.3178 + }, + { + "start": 23985.7, + "end": 23986.28, + "probability": 0.2715 + }, + { + "start": 23988.58, + "end": 23991.42, + "probability": 0.7507 + }, + { + "start": 23993.1, + "end": 23997.26, + "probability": 0.8945 + }, + { + "start": 23998.74, + "end": 24002.4, + "probability": 0.9756 + }, + { + "start": 24003.04, + "end": 24005.44, + "probability": 0.9006 + }, + { + "start": 24005.98, + "end": 24006.48, + "probability": 0.7852 + }, + { + "start": 24007.44, + "end": 24012.64, + "probability": 0.9912 + }, + { + "start": 24013.82, + "end": 24016.86, + "probability": 0.8456 + }, + { + "start": 24017.64, + "end": 24019.62, + "probability": 0.7391 + }, + { + "start": 24020.16, + "end": 24021.74, + "probability": 0.9108 + }, + { + "start": 24023.0, + "end": 24025.1, + "probability": 0.7243 + }, + { + "start": 24025.9, + "end": 24026.92, + "probability": 0.6015 + }, + { + "start": 24027.22, + "end": 24029.14, + "probability": 0.5919 + }, + { + "start": 24030.08, + "end": 24033.04, + "probability": 0.8158 + }, + { + "start": 24033.04, + "end": 24036.54, + "probability": 0.8549 + }, + { + "start": 24037.2, + "end": 24039.42, + "probability": 0.8826 + }, + { + "start": 24039.64, + "end": 24043.58, + "probability": 0.876 + }, + { + "start": 24044.24, + "end": 24044.52, + "probability": 0.7007 + }, + { + "start": 24044.56, + "end": 24047.27, + "probability": 0.8421 + }, + { + "start": 24047.52, + "end": 24049.1, + "probability": 0.3158 + }, + { + "start": 24050.32, + "end": 24054.82, + "probability": 0.6621 + }, + { + "start": 24054.82, + "end": 24057.92, + "probability": 0.7003 + }, + { + "start": 24058.92, + "end": 24059.48, + "probability": 0.5445 + }, + { + "start": 24059.74, + "end": 24063.38, + "probability": 0.854 + }, + { + "start": 24063.64, + "end": 24064.56, + "probability": 0.7619 + }, + { + "start": 24064.58, + "end": 24065.04, + "probability": 0.533 + }, + { + "start": 24065.1, + "end": 24069.24, + "probability": 0.9711 + }, + { + "start": 24069.9, + "end": 24072.92, + "probability": 0.9696 + }, + { + "start": 24073.64, + "end": 24077.92, + "probability": 0.7085 + }, + { + "start": 24078.18, + "end": 24081.76, + "probability": 0.9919 + }, + { + "start": 24082.3, + "end": 24085.02, + "probability": 0.979 + }, + { + "start": 24085.02, + "end": 24088.4, + "probability": 0.9395 + }, + { + "start": 24089.02, + "end": 24089.44, + "probability": 0.657 + }, + { + "start": 24089.64, + "end": 24095.44, + "probability": 0.8351 + }, + { + "start": 24095.66, + "end": 24099.44, + "probability": 0.7356 + }, + { + "start": 24099.9, + "end": 24102.16, + "probability": 0.7313 + }, + { + "start": 24102.16, + "end": 24104.3, + "probability": 0.7237 + }, + { + "start": 24104.86, + "end": 24105.66, + "probability": 0.0596 + }, + { + "start": 24105.74, + "end": 24106.4, + "probability": 0.6629 + }, + { + "start": 24106.88, + "end": 24107.76, + "probability": 0.4971 + }, + { + "start": 24109.04, + "end": 24109.04, + "probability": 0.0454 + }, + { + "start": 24109.04, + "end": 24111.72, + "probability": 0.5276 + }, + { + "start": 24112.68, + "end": 24115.22, + "probability": 0.7366 + }, + { + "start": 24115.3, + "end": 24116.86, + "probability": 0.3437 + }, + { + "start": 24117.28, + "end": 24119.78, + "probability": 0.4297 + }, + { + "start": 24119.84, + "end": 24120.48, + "probability": 0.631 + }, + { + "start": 24120.56, + "end": 24128.0, + "probability": 0.8095 + }, + { + "start": 24128.0, + "end": 24131.78, + "probability": 0.9536 + }, + { + "start": 24132.94, + "end": 24136.8, + "probability": 0.8183 + }, + { + "start": 24140.63, + "end": 24140.7, + "probability": 0.177 + }, + { + "start": 24140.7, + "end": 24140.7, + "probability": 0.3469 + }, + { + "start": 24140.7, + "end": 24140.9, + "probability": 0.4623 + }, + { + "start": 24141.18, + "end": 24142.72, + "probability": 0.4134 + }, + { + "start": 24142.98, + "end": 24147.04, + "probability": 0.9478 + }, + { + "start": 24147.68, + "end": 24150.14, + "probability": 0.367 + }, + { + "start": 24151.1, + "end": 24152.2, + "probability": 0.8423 + }, + { + "start": 24152.4, + "end": 24153.78, + "probability": 0.918 + }, + { + "start": 24153.9, + "end": 24157.16, + "probability": 0.988 + }, + { + "start": 24158.14, + "end": 24159.98, + "probability": 0.9396 + }, + { + "start": 24160.12, + "end": 24160.72, + "probability": 0.5598 + }, + { + "start": 24160.86, + "end": 24161.8, + "probability": 0.9836 + }, + { + "start": 24162.24, + "end": 24163.72, + "probability": 0.8444 + }, + { + "start": 24163.84, + "end": 24164.48, + "probability": 0.3914 + }, + { + "start": 24164.64, + "end": 24166.24, + "probability": 0.9824 + }, + { + "start": 24167.02, + "end": 24169.5, + "probability": 0.9897 + }, + { + "start": 24169.58, + "end": 24171.38, + "probability": 0.9971 + }, + { + "start": 24172.02, + "end": 24174.72, + "probability": 0.7579 + }, + { + "start": 24175.28, + "end": 24177.4, + "probability": 0.6172 + }, + { + "start": 24177.44, + "end": 24178.76, + "probability": 0.9305 + }, + { + "start": 24178.94, + "end": 24183.04, + "probability": 0.9677 + }, + { + "start": 24183.2, + "end": 24186.26, + "probability": 0.9568 + }, + { + "start": 24186.36, + "end": 24189.4, + "probability": 0.7866 + }, + { + "start": 24190.96, + "end": 24195.6, + "probability": 0.8203 + }, + { + "start": 24196.0, + "end": 24196.8, + "probability": 0.5453 + }, + { + "start": 24198.02, + "end": 24200.56, + "probability": 0.9819 + }, + { + "start": 24200.68, + "end": 24202.52, + "probability": 0.6106 + }, + { + "start": 24203.08, + "end": 24204.12, + "probability": 0.9951 + }, + { + "start": 24204.96, + "end": 24206.2, + "probability": 0.9689 + }, + { + "start": 24207.26, + "end": 24208.71, + "probability": 0.9759 + }, + { + "start": 24209.08, + "end": 24210.34, + "probability": 0.6125 + }, + { + "start": 24211.4, + "end": 24212.8, + "probability": 0.9512 + }, + { + "start": 24213.32, + "end": 24214.0, + "probability": 0.9525 + }, + { + "start": 24214.02, + "end": 24216.32, + "probability": 0.8735 + }, + { + "start": 24216.56, + "end": 24218.12, + "probability": 0.0296 + }, + { + "start": 24218.26, + "end": 24218.26, + "probability": 0.0372 + }, + { + "start": 24218.92, + "end": 24221.1, + "probability": 0.9487 + }, + { + "start": 24221.32, + "end": 24223.74, + "probability": 0.6879 + }, + { + "start": 24228.32, + "end": 24228.74, + "probability": 0.5234 + }, + { + "start": 24228.8, + "end": 24230.0, + "probability": 0.603 + }, + { + "start": 24230.32, + "end": 24231.08, + "probability": 0.7559 + }, + { + "start": 24231.78, + "end": 24232.2, + "probability": 0.7214 + }, + { + "start": 24232.24, + "end": 24232.74, + "probability": 0.9747 + }, + { + "start": 24232.84, + "end": 24234.36, + "probability": 0.9884 + }, + { + "start": 24234.42, + "end": 24235.88, + "probability": 0.9853 + }, + { + "start": 24236.3, + "end": 24236.68, + "probability": 0.8142 + }, + { + "start": 24236.82, + "end": 24237.0, + "probability": 0.7177 + }, + { + "start": 24237.12, + "end": 24239.02, + "probability": 0.4291 + }, + { + "start": 24239.02, + "end": 24240.6, + "probability": 0.5555 + }, + { + "start": 24240.6, + "end": 24241.44, + "probability": 0.5477 + }, + { + "start": 24241.46, + "end": 24241.6, + "probability": 0.3674 + }, + { + "start": 24241.6, + "end": 24242.68, + "probability": 0.4134 + }, + { + "start": 24242.74, + "end": 24242.88, + "probability": 0.6987 + }, + { + "start": 24242.9, + "end": 24243.76, + "probability": 0.2511 + }, + { + "start": 24243.88, + "end": 24243.88, + "probability": 0.5275 + }, + { + "start": 24244.1, + "end": 24248.9, + "probability": 0.6095 + }, + { + "start": 24248.96, + "end": 24252.92, + "probability": 0.9575 + }, + { + "start": 24253.04, + "end": 24253.88, + "probability": 0.6878 + }, + { + "start": 24258.18, + "end": 24260.96, + "probability": 0.9736 + }, + { + "start": 24261.62, + "end": 24263.34, + "probability": 0.8516 + }, + { + "start": 24263.42, + "end": 24264.7, + "probability": 0.5508 + }, + { + "start": 24264.8, + "end": 24264.84, + "probability": 0.541 + }, + { + "start": 24264.84, + "end": 24265.44, + "probability": 0.7496 + }, + { + "start": 24267.7, + "end": 24270.54, + "probability": 0.6412 + }, + { + "start": 24270.54, + "end": 24271.72, + "probability": 0.4082 + }, + { + "start": 24271.72, + "end": 24273.06, + "probability": 0.3573 + }, + { + "start": 24273.32, + "end": 24273.44, + "probability": 0.3637 + }, + { + "start": 24273.94, + "end": 24274.46, + "probability": 0.5584 + }, + { + "start": 24274.98, + "end": 24275.5, + "probability": 0.1358 + }, + { + "start": 24275.76, + "end": 24276.54, + "probability": 0.6372 + }, + { + "start": 24277.1, + "end": 24277.34, + "probability": 0.4036 + }, + { + "start": 24277.62, + "end": 24279.24, + "probability": 0.6587 + }, + { + "start": 24279.92, + "end": 24280.99, + "probability": 0.8979 + }, + { + "start": 24281.3, + "end": 24281.74, + "probability": 0.658 + }, + { + "start": 24281.86, + "end": 24283.18, + "probability": 0.963 + }, + { + "start": 24283.62, + "end": 24284.22, + "probability": 0.4476 + }, + { + "start": 24284.3, + "end": 24285.48, + "probability": 0.9954 + }, + { + "start": 24285.58, + "end": 24285.86, + "probability": 0.7283 + }, + { + "start": 24285.9, + "end": 24289.34, + "probability": 0.9957 + }, + { + "start": 24290.04, + "end": 24290.32, + "probability": 0.514 + }, + { + "start": 24290.38, + "end": 24291.6, + "probability": 0.6147 + }, + { + "start": 24291.72, + "end": 24292.72, + "probability": 0.9745 + }, + { + "start": 24294.42, + "end": 24294.7, + "probability": 0.9559 + }, + { + "start": 24295.62, + "end": 24297.02, + "probability": 0.6969 + }, + { + "start": 24297.54, + "end": 24301.7, + "probability": 0.9646 + }, + { + "start": 24303.48, + "end": 24307.92, + "probability": 0.9894 + }, + { + "start": 24308.84, + "end": 24310.2, + "probability": 0.9878 + }, + { + "start": 24311.76, + "end": 24313.46, + "probability": 0.7394 + }, + { + "start": 24314.12, + "end": 24316.0, + "probability": 0.96 + }, + { + "start": 24317.32, + "end": 24318.38, + "probability": 0.9203 + }, + { + "start": 24319.1, + "end": 24320.22, + "probability": 0.9136 + }, + { + "start": 24321.28, + "end": 24321.68, + "probability": 0.9127 + }, + { + "start": 24322.22, + "end": 24323.44, + "probability": 0.6935 + }, + { + "start": 24324.8, + "end": 24326.0, + "probability": 0.9318 + }, + { + "start": 24326.9, + "end": 24328.54, + "probability": 0.817 + }, + { + "start": 24328.54, + "end": 24333.1, + "probability": 0.573 + }, + { + "start": 24333.68, + "end": 24336.44, + "probability": 0.9257 + }, + { + "start": 24337.26, + "end": 24339.7, + "probability": 0.7173 + }, + { + "start": 24340.64, + "end": 24343.72, + "probability": 0.8713 + }, + { + "start": 24343.72, + "end": 24347.87, + "probability": 0.9202 + }, + { + "start": 24349.06, + "end": 24349.58, + "probability": 0.5968 + }, + { + "start": 24350.02, + "end": 24355.66, + "probability": 0.9221 + }, + { + "start": 24356.3, + "end": 24357.36, + "probability": 0.726 + }, + { + "start": 24358.58, + "end": 24361.08, + "probability": 0.6642 + }, + { + "start": 24362.08, + "end": 24363.08, + "probability": 0.1018 + }, + { + "start": 24364.12, + "end": 24367.84, + "probability": 0.9185 + }, + { + "start": 24367.94, + "end": 24368.26, + "probability": 0.8985 + }, + { + "start": 24369.84, + "end": 24371.18, + "probability": 0.7078 + }, + { + "start": 24371.24, + "end": 24373.2, + "probability": 0.6852 + }, + { + "start": 24373.22, + "end": 24376.92, + "probability": 0.7931 + }, + { + "start": 24376.92, + "end": 24382.52, + "probability": 0.695 + }, + { + "start": 24384.16, + "end": 24385.34, + "probability": 0.9011 + }, + { + "start": 24388.46, + "end": 24389.02, + "probability": 0.2881 + }, + { + "start": 24390.12, + "end": 24391.3, + "probability": 0.9068 + }, + { + "start": 24391.5, + "end": 24396.38, + "probability": 0.8412 + }, + { + "start": 24396.38, + "end": 24400.06, + "probability": 0.9595 + }, + { + "start": 24400.82, + "end": 24403.4, + "probability": 0.6473 + }, + { + "start": 24404.0, + "end": 24406.82, + "probability": 0.7403 + }, + { + "start": 24407.32, + "end": 24410.78, + "probability": 0.6843 + }, + { + "start": 24411.7, + "end": 24415.48, + "probability": 0.7963 + }, + { + "start": 24415.58, + "end": 24416.4, + "probability": 0.7034 + }, + { + "start": 24416.5, + "end": 24418.2, + "probability": 0.9834 + }, + { + "start": 24418.8, + "end": 24419.94, + "probability": 0.6983 + }, + { + "start": 24420.4, + "end": 24421.88, + "probability": 0.8237 + }, + { + "start": 24422.96, + "end": 24425.84, + "probability": 0.4631 + }, + { + "start": 24426.22, + "end": 24427.22, + "probability": 0.9696 + }, + { + "start": 24427.44, + "end": 24429.16, + "probability": 0.7969 + }, + { + "start": 24429.96, + "end": 24433.34, + "probability": 0.8548 + }, + { + "start": 24433.34, + "end": 24438.88, + "probability": 0.9658 + }, + { + "start": 24439.02, + "end": 24439.92, + "probability": 0.5097 + }, + { + "start": 24440.04, + "end": 24440.4, + "probability": 0.7127 + }, + { + "start": 24440.62, + "end": 24441.12, + "probability": 0.8359 + }, + { + "start": 24441.88, + "end": 24446.06, + "probability": 0.6602 + }, + { + "start": 24446.1, + "end": 24448.84, + "probability": 0.9946 + }, + { + "start": 24449.5, + "end": 24449.86, + "probability": 0.569 + }, + { + "start": 24450.44, + "end": 24450.84, + "probability": 0.7397 + }, + { + "start": 24450.96, + "end": 24452.16, + "probability": 0.0913 + }, + { + "start": 24453.84, + "end": 24458.06, + "probability": 0.4702 + }, + { + "start": 24460.86, + "end": 24465.76, + "probability": 0.8899 + }, + { + "start": 24465.92, + "end": 24466.88, + "probability": 0.6577 + }, + { + "start": 24466.96, + "end": 24467.3, + "probability": 0.8646 + }, + { + "start": 24467.76, + "end": 24470.96, + "probability": 0.8519 + }, + { + "start": 24470.96, + "end": 24473.74, + "probability": 0.9888 + }, + { + "start": 24474.64, + "end": 24478.2, + "probability": 0.8983 + }, + { + "start": 24478.44, + "end": 24481.7, + "probability": 0.8062 + }, + { + "start": 24481.86, + "end": 24484.46, + "probability": 0.904 + }, + { + "start": 24485.36, + "end": 24485.8, + "probability": 0.7045 + }, + { + "start": 24486.24, + "end": 24487.8, + "probability": 0.7154 + }, + { + "start": 24488.08, + "end": 24490.32, + "probability": 0.7766 + }, + { + "start": 24490.38, + "end": 24493.65, + "probability": 0.8659 + }, + { + "start": 24494.18, + "end": 24496.9, + "probability": 0.9819 + }, + { + "start": 24497.06, + "end": 24499.74, + "probability": 0.8948 + }, + { + "start": 24500.12, + "end": 24502.02, + "probability": 0.9746 + }, + { + "start": 24502.04, + "end": 24505.38, + "probability": 0.955 + }, + { + "start": 24506.22, + "end": 24507.88, + "probability": 0.6691 + }, + { + "start": 24508.04, + "end": 24511.56, + "probability": 0.7676 + }, + { + "start": 24511.56, + "end": 24514.2, + "probability": 0.6266 + }, + { + "start": 24514.72, + "end": 24516.28, + "probability": 0.8767 + }, + { + "start": 24516.76, + "end": 24520.02, + "probability": 0.9691 + }, + { + "start": 24521.02, + "end": 24522.9, + "probability": 0.8667 + }, + { + "start": 24523.02, + "end": 24526.14, + "probability": 0.9611 + }, + { + "start": 24526.78, + "end": 24529.6, + "probability": 0.8622 + }, + { + "start": 24529.6, + "end": 24532.24, + "probability": 0.9959 + }, + { + "start": 24532.8, + "end": 24533.56, + "probability": 0.8875 + }, + { + "start": 24533.68, + "end": 24537.24, + "probability": 0.7563 + }, + { + "start": 24537.74, + "end": 24542.78, + "probability": 0.8703 + }, + { + "start": 24543.3, + "end": 24543.64, + "probability": 0.7271 + }, + { + "start": 24545.2, + "end": 24549.54, + "probability": 0.9083 + }, + { + "start": 24550.02, + "end": 24554.66, + "probability": 0.7698 + }, + { + "start": 24555.12, + "end": 24557.12, + "probability": 0.9861 + }, + { + "start": 24557.24, + "end": 24561.56, + "probability": 0.915 + }, + { + "start": 24562.2, + "end": 24564.04, + "probability": 0.9177 + }, + { + "start": 24564.04, + "end": 24566.54, + "probability": 0.6645 + }, + { + "start": 24566.7, + "end": 24568.58, + "probability": 0.9189 + }, + { + "start": 24569.06, + "end": 24571.38, + "probability": 0.999 + }, + { + "start": 24571.88, + "end": 24575.32, + "probability": 0.9731 + }, + { + "start": 24575.32, + "end": 24579.24, + "probability": 0.6692 + }, + { + "start": 24579.78, + "end": 24580.92, + "probability": 0.7652 + }, + { + "start": 24581.52, + "end": 24582.18, + "probability": 0.6323 + }, + { + "start": 24582.74, + "end": 24586.04, + "probability": 0.9463 + }, + { + "start": 24586.28, + "end": 24587.56, + "probability": 0.8095 + }, + { + "start": 24588.58, + "end": 24592.5, + "probability": 0.9002 + }, + { + "start": 24593.04, + "end": 24596.22, + "probability": 0.987 + }, + { + "start": 24596.78, + "end": 24600.04, + "probability": 0.9053 + }, + { + "start": 24600.32, + "end": 24603.66, + "probability": 0.7812 + }, + { + "start": 24604.94, + "end": 24607.92, + "probability": 0.75 + }, + { + "start": 24608.08, + "end": 24608.5, + "probability": 0.6663 + }, + { + "start": 24609.06, + "end": 24611.24, + "probability": 0.6764 + }, + { + "start": 24611.54, + "end": 24614.7, + "probability": 0.9051 + }, + { + "start": 24615.28, + "end": 24619.18, + "probability": 0.8084 + }, + { + "start": 24619.18, + "end": 24623.68, + "probability": 0.8601 + }, + { + "start": 24624.28, + "end": 24627.66, + "probability": 0.8091 + }, + { + "start": 24628.26, + "end": 24629.6, + "probability": 0.9272 + }, + { + "start": 24629.7, + "end": 24632.6, + "probability": 0.9309 + }, + { + "start": 24632.6, + "end": 24635.1, + "probability": 0.9104 + }, + { + "start": 24635.62, + "end": 24637.34, + "probability": 0.8638 + }, + { + "start": 24637.74, + "end": 24638.58, + "probability": 0.3754 + }, + { + "start": 24638.62, + "end": 24641.44, + "probability": 0.7912 + }, + { + "start": 24641.44, + "end": 24645.8, + "probability": 0.7355 + }, + { + "start": 24645.8, + "end": 24648.48, + "probability": 0.8689 + }, + { + "start": 24650.52, + "end": 24650.78, + "probability": 0.2787 + }, + { + "start": 24650.8, + "end": 24651.54, + "probability": 0.7714 + }, + { + "start": 24653.82, + "end": 24655.6, + "probability": 0.9308 + }, + { + "start": 24658.84, + "end": 24658.94, + "probability": 0.0584 + }, + { + "start": 24661.16, + "end": 24661.36, + "probability": 0.9385 + }, + { + "start": 24661.48, + "end": 24662.04, + "probability": 0.5784 + }, + { + "start": 24662.1, + "end": 24664.2, + "probability": 0.8913 + }, + { + "start": 24664.28, + "end": 24664.7, + "probability": 0.7502 + }, + { + "start": 24664.72, + "end": 24665.68, + "probability": 0.9284 + }, + { + "start": 24666.1, + "end": 24667.92, + "probability": 0.9468 + }, + { + "start": 24667.98, + "end": 24668.16, + "probability": 0.9094 + }, + { + "start": 24668.76, + "end": 24668.76, + "probability": 0.103 + }, + { + "start": 24668.76, + "end": 24670.84, + "probability": 0.4972 + }, + { + "start": 24670.94, + "end": 24671.42, + "probability": 0.083 + }, + { + "start": 24671.42, + "end": 24671.72, + "probability": 0.6499 + }, + { + "start": 24672.38, + "end": 24672.38, + "probability": 0.2804 + }, + { + "start": 24672.48, + "end": 24672.7, + "probability": 0.1636 + }, + { + "start": 24672.9, + "end": 24676.16, + "probability": 0.8698 + }, + { + "start": 24676.9, + "end": 24679.08, + "probability": 0.8048 + }, + { + "start": 24679.18, + "end": 24679.3, + "probability": 0.5544 + }, + { + "start": 24679.46, + "end": 24679.98, + "probability": 0.973 + }, + { + "start": 24680.1, + "end": 24682.22, + "probability": 0.6718 + }, + { + "start": 24682.88, + "end": 24684.5, + "probability": 0.9958 + }, + { + "start": 24685.18, + "end": 24688.1, + "probability": 0.9941 + }, + { + "start": 24688.82, + "end": 24693.43, + "probability": 0.6952 + }, + { + "start": 24695.58, + "end": 24697.9, + "probability": 0.1347 + }, + { + "start": 24698.5, + "end": 24702.88, + "probability": 0.6211 + }, + { + "start": 24704.94, + "end": 24705.32, + "probability": 0.3237 + }, + { + "start": 24705.44, + "end": 24706.06, + "probability": 0.8714 + }, + { + "start": 24706.24, + "end": 24707.58, + "probability": 0.8378 + }, + { + "start": 24707.64, + "end": 24711.2, + "probability": 0.825 + }, + { + "start": 24711.28, + "end": 24712.72, + "probability": 0.6806 + }, + { + "start": 24713.26, + "end": 24713.76, + "probability": 0.8409 + }, + { + "start": 24715.32, + "end": 24716.19, + "probability": 0.9283 + }, + { + "start": 24717.56, + "end": 24722.44, + "probability": 0.8724 + }, + { + "start": 24722.8, + "end": 24724.34, + "probability": 0.971 + }, + { + "start": 24724.38, + "end": 24725.6, + "probability": 0.8709 + }, + { + "start": 24725.7, + "end": 24726.26, + "probability": 0.7078 + }, + { + "start": 24726.8, + "end": 24729.48, + "probability": 0.9924 + }, + { + "start": 24729.48, + "end": 24732.46, + "probability": 0.9934 + }, + { + "start": 24733.26, + "end": 24735.54, + "probability": 0.8021 + }, + { + "start": 24735.96, + "end": 24737.24, + "probability": 0.9319 + }, + { + "start": 24738.0, + "end": 24738.62, + "probability": 0.7726 + }, + { + "start": 24739.7, + "end": 24741.3, + "probability": 0.2312 + }, + { + "start": 24742.0, + "end": 24742.36, + "probability": 0.6151 + }, + { + "start": 24742.68, + "end": 24743.24, + "probability": 0.8703 + }, + { + "start": 24743.3, + "end": 24747.08, + "probability": 0.9749 + }, + { + "start": 24747.52, + "end": 24751.66, + "probability": 0.958 + }, + { + "start": 24751.8, + "end": 24753.05, + "probability": 0.9761 + }, + { + "start": 24753.4, + "end": 24754.9, + "probability": 0.9868 + }, + { + "start": 24755.4, + "end": 24756.18, + "probability": 0.7707 + }, + { + "start": 24756.58, + "end": 24758.18, + "probability": 0.9827 + }, + { + "start": 24758.42, + "end": 24760.2, + "probability": 0.7045 + }, + { + "start": 24760.46, + "end": 24762.68, + "probability": 0.9762 + }, + { + "start": 24763.12, + "end": 24765.46, + "probability": 0.9883 + }, + { + "start": 24765.46, + "end": 24767.22, + "probability": 0.9814 + }, + { + "start": 24767.98, + "end": 24768.26, + "probability": 0.3926 + }, + { + "start": 24768.6, + "end": 24770.6, + "probability": 0.4419 + }, + { + "start": 24770.64, + "end": 24774.06, + "probability": 0.945 + }, + { + "start": 24774.66, + "end": 24778.82, + "probability": 0.894 + }, + { + "start": 24778.96, + "end": 24779.84, + "probability": 0.9 + }, + { + "start": 24780.3, + "end": 24780.98, + "probability": 0.4504 + }, + { + "start": 24781.14, + "end": 24781.5, + "probability": 0.5844 + }, + { + "start": 24782.36, + "end": 24783.88, + "probability": 0.8256 + }, + { + "start": 24785.36, + "end": 24786.58, + "probability": 0.7528 + }, + { + "start": 24788.22, + "end": 24790.76, + "probability": 0.9764 + }, + { + "start": 24791.1, + "end": 24793.36, + "probability": 0.8781 + }, + { + "start": 24793.88, + "end": 24795.32, + "probability": 0.7559 + }, + { + "start": 24795.42, + "end": 24797.92, + "probability": 0.8504 + }, + { + "start": 24799.02, + "end": 24799.39, + "probability": 0.9719 + }, + { + "start": 24800.08, + "end": 24802.92, + "probability": 0.9543 + }, + { + "start": 24803.24, + "end": 24806.17, + "probability": 0.994 + }, + { + "start": 24808.62, + "end": 24810.48, + "probability": 0.0745 + }, + { + "start": 24814.52, + "end": 24815.3, + "probability": 0.0004 + }, + { + "start": 24820.48, + "end": 24822.18, + "probability": 0.3801 + }, + { + "start": 24822.2, + "end": 24823.58, + "probability": 0.0739 + }, + { + "start": 24823.58, + "end": 24823.58, + "probability": 0.1966 + }, + { + "start": 24823.58, + "end": 24823.58, + "probability": 0.0228 + }, + { + "start": 24823.58, + "end": 24823.58, + "probability": 0.0893 + }, + { + "start": 24823.58, + "end": 24825.64, + "probability": 0.5029 + }, + { + "start": 24826.62, + "end": 24828.28, + "probability": 0.9469 + }, + { + "start": 24829.02, + "end": 24830.7, + "probability": 0.8984 + }, + { + "start": 24831.18, + "end": 24831.68, + "probability": 0.2447 + }, + { + "start": 24831.86, + "end": 24832.14, + "probability": 0.3776 + }, + { + "start": 24832.36, + "end": 24834.7, + "probability": 0.8647 + }, + { + "start": 24836.02, + "end": 24836.74, + "probability": 0.21 + }, + { + "start": 24837.0, + "end": 24837.22, + "probability": 0.2139 + }, + { + "start": 24837.42, + "end": 24837.78, + "probability": 0.8242 + }, + { + "start": 24838.28, + "end": 24838.9, + "probability": 0.7611 + }, + { + "start": 24839.0, + "end": 24840.04, + "probability": 0.6243 + }, + { + "start": 24840.18, + "end": 24840.44, + "probability": 0.7808 + }, + { + "start": 24840.46, + "end": 24840.78, + "probability": 0.8477 + }, + { + "start": 24841.32, + "end": 24842.42, + "probability": 0.984 + }, + { + "start": 24843.12, + "end": 24845.22, + "probability": 0.8105 + }, + { + "start": 24845.94, + "end": 24848.8, + "probability": 0.7731 + }, + { + "start": 24849.32, + "end": 24850.0, + "probability": 0.9532 + }, + { + "start": 24850.3, + "end": 24851.78, + "probability": 0.9715 + }, + { + "start": 24851.9, + "end": 24853.24, + "probability": 0.9098 + }, + { + "start": 24853.72, + "end": 24854.34, + "probability": 0.7421 + }, + { + "start": 24855.04, + "end": 24855.72, + "probability": 0.9131 + }, + { + "start": 24857.02, + "end": 24858.02, + "probability": 0.2828 + }, + { + "start": 24858.14, + "end": 24858.52, + "probability": 0.8367 + }, + { + "start": 24858.8, + "end": 24860.06, + "probability": 0.3243 + }, + { + "start": 24860.22, + "end": 24863.76, + "probability": 0.8003 + }, + { + "start": 24864.66, + "end": 24867.84, + "probability": 0.943 + }, + { + "start": 24867.84, + "end": 24871.92, + "probability": 0.9752 + }, + { + "start": 24872.0, + "end": 24874.72, + "probability": 0.713 + }, + { + "start": 24875.2, + "end": 24877.62, + "probability": 0.9567 + }, + { + "start": 24878.14, + "end": 24882.3, + "probability": 0.9471 + }, + { + "start": 24883.2, + "end": 24886.2, + "probability": 0.6061 + }, + { + "start": 24886.82, + "end": 24889.04, + "probability": 0.7459 + }, + { + "start": 24889.46, + "end": 24892.26, + "probability": 0.7826 + }, + { + "start": 24893.08, + "end": 24893.32, + "probability": 0.7908 + }, + { + "start": 24894.81, + "end": 24898.34, + "probability": 0.5689 + }, + { + "start": 24899.36, + "end": 24903.14, + "probability": 0.9132 + }, + { + "start": 24903.14, + "end": 24905.76, + "probability": 0.9404 + }, + { + "start": 24907.04, + "end": 24910.5, + "probability": 0.7979 + }, + { + "start": 24910.5, + "end": 24911.06, + "probability": 0.4258 + }, + { + "start": 24911.4, + "end": 24913.52, + "probability": 0.6385 + }, + { + "start": 24914.08, + "end": 24916.9, + "probability": 0.9411 + }, + { + "start": 24916.9, + "end": 24918.92, + "probability": 0.8183 + }, + { + "start": 24919.48, + "end": 24921.9, + "probability": 0.8751 + }, + { + "start": 24921.9, + "end": 24925.78, + "probability": 0.7824 + }, + { + "start": 24925.86, + "end": 24929.7, + "probability": 0.9194 + }, + { + "start": 24931.01, + "end": 24934.39, + "probability": 0.7584 + }, + { + "start": 24936.0, + "end": 24940.14, + "probability": 0.9768 + }, + { + "start": 24940.68, + "end": 24941.54, + "probability": 0.7307 + }, + { + "start": 24942.78, + "end": 24944.64, + "probability": 0.7548 + }, + { + "start": 24945.68, + "end": 24948.74, + "probability": 0.7571 + }, + { + "start": 24949.26, + "end": 24950.78, + "probability": 0.8039 + }, + { + "start": 24952.16, + "end": 24952.94, + "probability": 0.692 + }, + { + "start": 24954.12, + "end": 24955.06, + "probability": 0.4283 + }, + { + "start": 24955.06, + "end": 24955.7, + "probability": 0.6429 + }, + { + "start": 24956.78, + "end": 24958.2, + "probability": 0.6909 + }, + { + "start": 24958.78, + "end": 24960.43, + "probability": 0.6656 + }, + { + "start": 24961.38, + "end": 24961.8, + "probability": 0.294 + }, + { + "start": 24962.0, + "end": 24963.8, + "probability": 0.4628 + }, + { + "start": 24964.0, + "end": 24964.82, + "probability": 0.6067 + }, + { + "start": 24965.04, + "end": 24966.22, + "probability": 0.9048 + }, + { + "start": 24966.64, + "end": 24967.42, + "probability": 0.7882 + }, + { + "start": 24967.84, + "end": 24968.76, + "probability": 0.9956 + }, + { + "start": 24972.34, + "end": 24973.46, + "probability": 0.6449 + }, + { + "start": 24974.32, + "end": 24975.08, + "probability": 0.8419 + }, + { + "start": 24977.46, + "end": 24981.06, + "probability": 0.5082 + }, + { + "start": 24982.36, + "end": 24984.24, + "probability": 0.745 + }, + { + "start": 24985.4, + "end": 24987.68, + "probability": 0.6536 + }, + { + "start": 24989.02, + "end": 24990.14, + "probability": 0.9292 + }, + { + "start": 24990.44, + "end": 24993.9, + "probability": 0.9069 + }, + { + "start": 24994.14, + "end": 24994.42, + "probability": 0.8298 + }, + { + "start": 24995.72, + "end": 24998.38, + "probability": 0.991 + }, + { + "start": 25000.12, + "end": 25000.6, + "probability": 0.7798 + }, + { + "start": 25000.7, + "end": 25004.17, + "probability": 0.955 + }, + { + "start": 25004.68, + "end": 25006.52, + "probability": 0.9486 + }, + { + "start": 25006.56, + "end": 25008.72, + "probability": 0.7027 + }, + { + "start": 25009.02, + "end": 25011.2, + "probability": 0.5052 + }, + { + "start": 25011.2, + "end": 25013.08, + "probability": 0.8254 + }, + { + "start": 25013.08, + "end": 25013.87, + "probability": 0.8322 + }, + { + "start": 25014.52, + "end": 25016.56, + "probability": 0.8433 + }, + { + "start": 25016.68, + "end": 25020.88, + "probability": 0.9088 + }, + { + "start": 25021.44, + "end": 25024.48, + "probability": 0.6102 + }, + { + "start": 25024.78, + "end": 25025.94, + "probability": 0.6043 + }, + { + "start": 25026.42, + "end": 25029.5, + "probability": 0.7012 + }, + { + "start": 25029.9, + "end": 25034.08, + "probability": 0.7699 + }, + { + "start": 25034.08, + "end": 25037.74, + "probability": 0.884 + }, + { + "start": 25037.9, + "end": 25041.12, + "probability": 0.7433 + }, + { + "start": 25041.16, + "end": 25043.58, + "probability": 0.9109 + }, + { + "start": 25045.16, + "end": 25046.14, + "probability": 0.8704 + }, + { + "start": 25046.18, + "end": 25048.16, + "probability": 0.6429 + }, + { + "start": 25048.54, + "end": 25049.62, + "probability": 0.5013 + }, + { + "start": 25049.72, + "end": 25050.16, + "probability": 0.8449 + }, + { + "start": 25050.3, + "end": 25050.76, + "probability": 0.3524 + }, + { + "start": 25050.92, + "end": 25051.64, + "probability": 0.5724 + }, + { + "start": 25051.8, + "end": 25052.24, + "probability": 0.5286 + }, + { + "start": 25052.44, + "end": 25053.94, + "probability": 0.6617 + }, + { + "start": 25054.64, + "end": 25058.16, + "probability": 0.791 + }, + { + "start": 25058.56, + "end": 25059.46, + "probability": 0.7971 + }, + { + "start": 25060.08, + "end": 25060.4, + "probability": 0.5795 + }, + { + "start": 25060.4, + "end": 25060.64, + "probability": 0.3416 + }, + { + "start": 25060.72, + "end": 25062.12, + "probability": 0.4961 + }, + { + "start": 25062.46, + "end": 25063.44, + "probability": 0.9873 + }, + { + "start": 25063.84, + "end": 25064.76, + "probability": 0.4831 + }, + { + "start": 25065.42, + "end": 25068.6, + "probability": 0.6923 + }, + { + "start": 25069.14, + "end": 25069.64, + "probability": 0.2374 + }, + { + "start": 25069.64, + "end": 25072.9, + "probability": 0.9692 + }, + { + "start": 25073.12, + "end": 25073.4, + "probability": 0.5217 + }, + { + "start": 25074.5, + "end": 25075.38, + "probability": 0.3038 + }, + { + "start": 25075.46, + "end": 25075.66, + "probability": 0.0854 + }, + { + "start": 25075.66, + "end": 25075.66, + "probability": 0.0775 + }, + { + "start": 25075.66, + "end": 25078.64, + "probability": 0.2676 + }, + { + "start": 25078.68, + "end": 25079.0, + "probability": 0.657 + }, + { + "start": 25079.56, + "end": 25081.68, + "probability": 0.6909 + }, + { + "start": 25082.16, + "end": 25082.83, + "probability": 0.8353 + }, + { + "start": 25083.24, + "end": 25084.82, + "probability": 0.5952 + }, + { + "start": 25084.96, + "end": 25086.74, + "probability": 0.8208 + }, + { + "start": 25086.94, + "end": 25087.42, + "probability": 0.8124 + }, + { + "start": 25087.68, + "end": 25087.74, + "probability": 0.0003 + } + ], + "segments_count": 8630, + "words_count": 42306, + "avg_words_per_segment": 4.9022, + "avg_segment_duration": 2.0651, + "avg_words_per_minute": 100.9678, + "plenum_id": "19334", + "duration": 25140.29, + "title": null, + "plenum_date": "2012-02-15" +} \ No newline at end of file