diff --git "a/10472/metadata.json" "b/10472/metadata.json" new file mode 100644--- /dev/null +++ "b/10472/metadata.json" @@ -0,0 +1,28682 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "10472", + "quality_score": 0.8208, + "per_segment_quality_scores": [ + { + "start": 81.36, + "end": 84.12, + "probability": 0.1171 + }, + { + "start": 85.92, + "end": 88.56, + "probability": 0.5997 + }, + { + "start": 89.93, + "end": 90.53, + "probability": 0.0818 + }, + { + "start": 97.02, + "end": 99.1, + "probability": 0.0434 + }, + { + "start": 100.12, + "end": 108.63, + "probability": 0.0618 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 128.38, + "end": 128.9, + "probability": 0.656 + }, + { + "start": 130.26, + "end": 133.44, + "probability": 0.9717 + }, + { + "start": 133.58, + "end": 134.46, + "probability": 0.5022 + }, + { + "start": 134.52, + "end": 136.72, + "probability": 0.8298 + }, + { + "start": 136.76, + "end": 136.84, + "probability": 0.4549 + }, + { + "start": 136.84, + "end": 139.5, + "probability": 0.6048 + }, + { + "start": 139.94, + "end": 144.28, + "probability": 0.7904 + }, + { + "start": 145.48, + "end": 147.9, + "probability": 0.9749 + }, + { + "start": 148.1, + "end": 153.24, + "probability": 0.9668 + }, + { + "start": 153.9, + "end": 157.44, + "probability": 0.9739 + }, + { + "start": 157.5, + "end": 160.98, + "probability": 0.9976 + }, + { + "start": 162.06, + "end": 165.24, + "probability": 0.842 + }, + { + "start": 166.44, + "end": 168.94, + "probability": 0.9772 + }, + { + "start": 170.82, + "end": 172.77, + "probability": 0.7544 + }, + { + "start": 173.66, + "end": 174.92, + "probability": 0.8154 + }, + { + "start": 179.96, + "end": 180.96, + "probability": 0.7936 + }, + { + "start": 182.04, + "end": 185.24, + "probability": 0.9835 + }, + { + "start": 186.64, + "end": 189.44, + "probability": 0.9779 + }, + { + "start": 189.44, + "end": 194.58, + "probability": 0.9896 + }, + { + "start": 195.52, + "end": 200.9, + "probability": 0.983 + }, + { + "start": 202.14, + "end": 203.52, + "probability": 0.9945 + }, + { + "start": 204.42, + "end": 210.46, + "probability": 0.8119 + }, + { + "start": 210.78, + "end": 213.74, + "probability": 0.9957 + }, + { + "start": 214.86, + "end": 215.9, + "probability": 0.8068 + }, + { + "start": 216.88, + "end": 219.3, + "probability": 0.9927 + }, + { + "start": 219.38, + "end": 220.5, + "probability": 0.9968 + }, + { + "start": 221.06, + "end": 225.1, + "probability": 0.9698 + }, + { + "start": 226.12, + "end": 228.06, + "probability": 0.9741 + }, + { + "start": 228.16, + "end": 232.76, + "probability": 0.8987 + }, + { + "start": 233.22, + "end": 235.7, + "probability": 0.765 + }, + { + "start": 236.52, + "end": 239.38, + "probability": 0.7829 + }, + { + "start": 240.12, + "end": 241.94, + "probability": 0.9893 + }, + { + "start": 242.14, + "end": 243.5, + "probability": 0.8594 + }, + { + "start": 244.16, + "end": 245.18, + "probability": 0.9648 + }, + { + "start": 245.78, + "end": 247.08, + "probability": 0.6169 + }, + { + "start": 247.72, + "end": 249.0, + "probability": 0.8745 + }, + { + "start": 250.38, + "end": 250.8, + "probability": 0.5084 + }, + { + "start": 251.22, + "end": 252.28, + "probability": 0.9951 + }, + { + "start": 252.4, + "end": 256.72, + "probability": 0.9081 + }, + { + "start": 258.36, + "end": 260.88, + "probability": 0.9662 + }, + { + "start": 261.18, + "end": 267.52, + "probability": 0.9822 + }, + { + "start": 268.28, + "end": 269.14, + "probability": 0.6805 + }, + { + "start": 270.18, + "end": 274.48, + "probability": 0.9879 + }, + { + "start": 275.1, + "end": 276.32, + "probability": 0.8631 + }, + { + "start": 276.98, + "end": 280.18, + "probability": 0.9934 + }, + { + "start": 280.6, + "end": 285.12, + "probability": 0.8418 + }, + { + "start": 285.22, + "end": 289.2, + "probability": 0.7911 + }, + { + "start": 290.06, + "end": 294.0, + "probability": 0.9639 + }, + { + "start": 294.66, + "end": 294.96, + "probability": 0.5033 + }, + { + "start": 295.08, + "end": 297.6, + "probability": 0.9418 + }, + { + "start": 297.8, + "end": 301.1, + "probability": 0.5316 + }, + { + "start": 302.02, + "end": 304.2, + "probability": 0.6018 + }, + { + "start": 304.4, + "end": 304.78, + "probability": 0.5828 + }, + { + "start": 304.98, + "end": 306.08, + "probability": 0.8856 + }, + { + "start": 306.34, + "end": 309.9, + "probability": 0.9767 + }, + { + "start": 310.06, + "end": 310.26, + "probability": 0.6174 + }, + { + "start": 310.26, + "end": 311.34, + "probability": 0.7716 + }, + { + "start": 312.26, + "end": 314.14, + "probability": 0.896 + }, + { + "start": 314.68, + "end": 316.0, + "probability": 0.9297 + }, + { + "start": 316.18, + "end": 316.94, + "probability": 0.7896 + }, + { + "start": 317.3, + "end": 319.96, + "probability": 0.7119 + }, + { + "start": 320.12, + "end": 321.68, + "probability": 0.8146 + }, + { + "start": 322.42, + "end": 323.32, + "probability": 0.8584 + }, + { + "start": 323.56, + "end": 325.5, + "probability": 0.8823 + }, + { + "start": 326.28, + "end": 327.06, + "probability": 0.8229 + }, + { + "start": 327.58, + "end": 329.86, + "probability": 0.9189 + }, + { + "start": 329.94, + "end": 330.24, + "probability": 0.6973 + }, + { + "start": 330.32, + "end": 330.67, + "probability": 0.2578 + }, + { + "start": 330.92, + "end": 331.36, + "probability": 0.4863 + }, + { + "start": 331.46, + "end": 333.36, + "probability": 0.8414 + }, + { + "start": 333.38, + "end": 335.84, + "probability": 0.9937 + }, + { + "start": 336.46, + "end": 339.76, + "probability": 0.8494 + }, + { + "start": 340.08, + "end": 342.3, + "probability": 0.9883 + }, + { + "start": 343.16, + "end": 344.36, + "probability": 0.747 + }, + { + "start": 344.88, + "end": 347.78, + "probability": 0.8381 + }, + { + "start": 347.86, + "end": 348.36, + "probability": 0.6453 + }, + { + "start": 348.66, + "end": 349.22, + "probability": 0.5834 + }, + { + "start": 349.3, + "end": 351.8, + "probability": 0.7889 + }, + { + "start": 352.26, + "end": 352.72, + "probability": 0.8634 + }, + { + "start": 353.46, + "end": 355.48, + "probability": 0.9146 + }, + { + "start": 356.02, + "end": 356.72, + "probability": 0.6349 + }, + { + "start": 357.82, + "end": 359.72, + "probability": 0.553 + }, + { + "start": 360.86, + "end": 362.33, + "probability": 0.6779 + }, + { + "start": 364.42, + "end": 367.02, + "probability": 0.5902 + }, + { + "start": 367.6, + "end": 371.96, + "probability": 0.9775 + }, + { + "start": 371.96, + "end": 381.88, + "probability": 0.7429 + }, + { + "start": 383.32, + "end": 387.4, + "probability": 0.635 + }, + { + "start": 388.7, + "end": 388.84, + "probability": 0.1623 + }, + { + "start": 390.96, + "end": 392.54, + "probability": 0.8809 + }, + { + "start": 392.74, + "end": 399.54, + "probability": 0.9575 + }, + { + "start": 400.52, + "end": 403.28, + "probability": 0.8853 + }, + { + "start": 406.12, + "end": 407.52, + "probability": 0.0973 + }, + { + "start": 407.52, + "end": 407.52, + "probability": 0.2122 + }, + { + "start": 407.52, + "end": 409.74, + "probability": 0.9331 + }, + { + "start": 410.38, + "end": 414.46, + "probability": 0.8136 + }, + { + "start": 415.22, + "end": 417.5, + "probability": 0.6853 + }, + { + "start": 417.72, + "end": 417.94, + "probability": 0.2612 + }, + { + "start": 418.34, + "end": 419.36, + "probability": 0.8169 + }, + { + "start": 419.64, + "end": 420.36, + "probability": 0.8115 + }, + { + "start": 420.58, + "end": 422.74, + "probability": 0.9698 + }, + { + "start": 422.96, + "end": 423.26, + "probability": 0.5989 + }, + { + "start": 423.3, + "end": 424.02, + "probability": 0.4737 + }, + { + "start": 424.06, + "end": 424.36, + "probability": 0.5328 + }, + { + "start": 424.5, + "end": 424.78, + "probability": 0.4951 + }, + { + "start": 425.35, + "end": 427.06, + "probability": 0.9128 + }, + { + "start": 427.54, + "end": 427.94, + "probability": 0.822 + }, + { + "start": 428.3, + "end": 428.86, + "probability": 0.6538 + }, + { + "start": 429.46, + "end": 432.18, + "probability": 0.9448 + }, + { + "start": 432.64, + "end": 437.74, + "probability": 0.9975 + }, + { + "start": 438.44, + "end": 441.67, + "probability": 0.9514 + }, + { + "start": 442.68, + "end": 443.44, + "probability": 0.4991 + }, + { + "start": 443.76, + "end": 447.5, + "probability": 0.9902 + }, + { + "start": 447.92, + "end": 448.64, + "probability": 0.4638 + }, + { + "start": 448.88, + "end": 450.72, + "probability": 0.9759 + }, + { + "start": 452.32, + "end": 453.64, + "probability": 0.979 + }, + { + "start": 454.04, + "end": 455.48, + "probability": 0.9832 + }, + { + "start": 458.54, + "end": 462.52, + "probability": 0.7788 + }, + { + "start": 462.66, + "end": 464.3, + "probability": 0.7659 + }, + { + "start": 464.96, + "end": 467.96, + "probability": 0.8477 + }, + { + "start": 468.78, + "end": 473.12, + "probability": 0.9771 + }, + { + "start": 473.64, + "end": 476.18, + "probability": 0.7015 + }, + { + "start": 478.9, + "end": 479.0, + "probability": 0.6792 + }, + { + "start": 480.08, + "end": 481.08, + "probability": 0.7132 + }, + { + "start": 481.2, + "end": 482.07, + "probability": 0.3339 + }, + { + "start": 482.48, + "end": 483.46, + "probability": 0.5775 + }, + { + "start": 483.68, + "end": 485.76, + "probability": 0.7384 + }, + { + "start": 486.18, + "end": 491.06, + "probability": 0.9158 + }, + { + "start": 491.9, + "end": 496.78, + "probability": 0.9907 + }, + { + "start": 497.18, + "end": 497.76, + "probability": 0.6618 + }, + { + "start": 498.62, + "end": 500.54, + "probability": 0.7383 + }, + { + "start": 500.98, + "end": 501.4, + "probability": 0.1422 + }, + { + "start": 501.96, + "end": 506.06, + "probability": 0.9306 + }, + { + "start": 506.54, + "end": 510.4, + "probability": 0.9426 + }, + { + "start": 514.4, + "end": 516.6, + "probability": 0.7753 + }, + { + "start": 516.98, + "end": 520.16, + "probability": 0.8399 + }, + { + "start": 520.94, + "end": 522.5, + "probability": 0.4199 + }, + { + "start": 522.5, + "end": 523.72, + "probability": 0.1596 + }, + { + "start": 523.72, + "end": 523.84, + "probability": 0.0481 + }, + { + "start": 523.84, + "end": 524.3, + "probability": 0.2971 + }, + { + "start": 524.96, + "end": 526.76, + "probability": 0.6414 + }, + { + "start": 527.34, + "end": 528.3, + "probability": 0.8293 + }, + { + "start": 530.2, + "end": 531.36, + "probability": 0.4465 + }, + { + "start": 531.82, + "end": 536.04, + "probability": 0.8702 + }, + { + "start": 536.22, + "end": 537.28, + "probability": 0.4254 + }, + { + "start": 539.66, + "end": 543.62, + "probability": 0.9638 + }, + { + "start": 545.1, + "end": 547.4, + "probability": 0.9171 + }, + { + "start": 548.3, + "end": 550.44, + "probability": 0.9521 + }, + { + "start": 551.74, + "end": 554.64, + "probability": 0.9968 + }, + { + "start": 556.12, + "end": 558.12, + "probability": 0.845 + }, + { + "start": 558.98, + "end": 562.12, + "probability": 0.9713 + }, + { + "start": 563.36, + "end": 566.68, + "probability": 0.9349 + }, + { + "start": 567.74, + "end": 571.22, + "probability": 0.9773 + }, + { + "start": 571.88, + "end": 573.26, + "probability": 0.6742 + }, + { + "start": 574.38, + "end": 576.2, + "probability": 0.9789 + }, + { + "start": 576.44, + "end": 578.98, + "probability": 0.9888 + }, + { + "start": 580.34, + "end": 582.12, + "probability": 0.9771 + }, + { + "start": 582.84, + "end": 584.92, + "probability": 0.8826 + }, + { + "start": 586.12, + "end": 588.96, + "probability": 0.9205 + }, + { + "start": 590.38, + "end": 593.66, + "probability": 0.7722 + }, + { + "start": 594.7, + "end": 601.44, + "probability": 0.9462 + }, + { + "start": 602.16, + "end": 605.36, + "probability": 0.9854 + }, + { + "start": 606.54, + "end": 608.68, + "probability": 0.998 + }, + { + "start": 608.78, + "end": 611.86, + "probability": 0.973 + }, + { + "start": 613.32, + "end": 616.02, + "probability": 0.9897 + }, + { + "start": 616.12, + "end": 617.04, + "probability": 0.8378 + }, + { + "start": 617.5, + "end": 618.12, + "probability": 0.7099 + }, + { + "start": 618.94, + "end": 621.0, + "probability": 0.7531 + }, + { + "start": 623.9, + "end": 624.0, + "probability": 0.0862 + }, + { + "start": 624.0, + "end": 624.0, + "probability": 0.1247 + }, + { + "start": 624.0, + "end": 624.56, + "probability": 0.4589 + }, + { + "start": 624.88, + "end": 626.14, + "probability": 0.6787 + }, + { + "start": 626.64, + "end": 630.8, + "probability": 0.9878 + }, + { + "start": 631.04, + "end": 631.44, + "probability": 0.8674 + }, + { + "start": 632.46, + "end": 634.74, + "probability": 0.0953 + }, + { + "start": 635.26, + "end": 636.88, + "probability": 0.8384 + }, + { + "start": 637.14, + "end": 638.06, + "probability": 0.549 + }, + { + "start": 638.12, + "end": 638.6, + "probability": 0.7264 + }, + { + "start": 638.76, + "end": 639.3, + "probability": 0.4061 + }, + { + "start": 639.48, + "end": 641.7, + "probability": 0.8359 + }, + { + "start": 641.98, + "end": 643.56, + "probability": 0.7684 + }, + { + "start": 643.62, + "end": 644.92, + "probability": 0.3316 + }, + { + "start": 645.48, + "end": 646.6, + "probability": 0.8868 + }, + { + "start": 647.28, + "end": 648.1, + "probability": 0.6489 + }, + { + "start": 648.22, + "end": 648.9, + "probability": 0.818 + }, + { + "start": 648.98, + "end": 652.66, + "probability": 0.7669 + }, + { + "start": 652.9, + "end": 655.96, + "probability": 0.7411 + }, + { + "start": 656.62, + "end": 661.4, + "probability": 0.9791 + }, + { + "start": 662.04, + "end": 664.04, + "probability": 0.9708 + }, + { + "start": 664.24, + "end": 667.46, + "probability": 0.7584 + }, + { + "start": 667.8, + "end": 671.0, + "probability": 0.9294 + }, + { + "start": 671.16, + "end": 675.22, + "probability": 0.9832 + }, + { + "start": 676.08, + "end": 678.42, + "probability": 0.7205 + }, + { + "start": 679.08, + "end": 681.36, + "probability": 0.7594 + }, + { + "start": 681.64, + "end": 685.42, + "probability": 0.9544 + }, + { + "start": 685.6, + "end": 686.04, + "probability": 0.4873 + }, + { + "start": 686.42, + "end": 687.88, + "probability": 0.9502 + }, + { + "start": 687.96, + "end": 688.3, + "probability": 0.7211 + }, + { + "start": 688.58, + "end": 692.02, + "probability": 0.7077 + }, + { + "start": 693.22, + "end": 695.28, + "probability": 0.8091 + }, + { + "start": 695.9, + "end": 696.46, + "probability": 0.8494 + }, + { + "start": 697.38, + "end": 701.38, + "probability": 0.69 + }, + { + "start": 701.66, + "end": 705.66, + "probability": 0.9685 + }, + { + "start": 706.44, + "end": 708.42, + "probability": 0.7543 + }, + { + "start": 709.06, + "end": 713.36, + "probability": 0.9541 + }, + { + "start": 713.52, + "end": 714.63, + "probability": 0.8226 + }, + { + "start": 714.9, + "end": 718.82, + "probability": 0.7534 + }, + { + "start": 719.02, + "end": 720.58, + "probability": 0.7182 + }, + { + "start": 720.72, + "end": 723.44, + "probability": 0.5804 + }, + { + "start": 724.04, + "end": 724.94, + "probability": 0.6513 + }, + { + "start": 725.44, + "end": 729.66, + "probability": 0.7732 + }, + { + "start": 730.3, + "end": 730.66, + "probability": 0.3139 + }, + { + "start": 731.96, + "end": 732.72, + "probability": 0.7654 + }, + { + "start": 733.0, + "end": 735.14, + "probability": 0.9751 + }, + { + "start": 735.68, + "end": 737.76, + "probability": 0.9694 + }, + { + "start": 738.54, + "end": 740.4, + "probability": 0.9637 + }, + { + "start": 740.52, + "end": 740.78, + "probability": 0.4845 + }, + { + "start": 741.36, + "end": 742.52, + "probability": 0.5796 + }, + { + "start": 743.4, + "end": 747.16, + "probability": 0.9615 + }, + { + "start": 748.18, + "end": 749.84, + "probability": 0.9652 + }, + { + "start": 752.31, + "end": 754.12, + "probability": 0.5375 + }, + { + "start": 755.13, + "end": 756.56, + "probability": 0.9539 + }, + { + "start": 757.28, + "end": 760.54, + "probability": 0.6889 + }, + { + "start": 761.0, + "end": 762.98, + "probability": 0.7095 + }, + { + "start": 762.98, + "end": 763.88, + "probability": 0.9888 + }, + { + "start": 764.02, + "end": 764.72, + "probability": 0.9678 + }, + { + "start": 765.5, + "end": 768.1, + "probability": 0.9274 + }, + { + "start": 768.3, + "end": 771.92, + "probability": 0.9033 + }, + { + "start": 772.66, + "end": 773.62, + "probability": 0.9211 + }, + { + "start": 776.19, + "end": 779.68, + "probability": 0.7043 + }, + { + "start": 780.02, + "end": 780.86, + "probability": 0.935 + }, + { + "start": 781.3, + "end": 781.5, + "probability": 0.7258 + }, + { + "start": 782.38, + "end": 785.42, + "probability": 0.8494 + }, + { + "start": 785.96, + "end": 786.84, + "probability": 0.8572 + }, + { + "start": 787.34, + "end": 788.87, + "probability": 0.855 + }, + { + "start": 789.46, + "end": 790.44, + "probability": 0.7583 + }, + { + "start": 790.64, + "end": 793.22, + "probability": 0.6203 + }, + { + "start": 793.78, + "end": 801.16, + "probability": 0.737 + }, + { + "start": 801.36, + "end": 803.04, + "probability": 0.0154 + }, + { + "start": 803.52, + "end": 803.7, + "probability": 0.3053 + }, + { + "start": 804.0, + "end": 804.94, + "probability": 0.79 + }, + { + "start": 805.32, + "end": 809.16, + "probability": 0.8312 + }, + { + "start": 809.62, + "end": 810.62, + "probability": 0.5851 + }, + { + "start": 810.84, + "end": 813.26, + "probability": 0.8199 + }, + { + "start": 814.1, + "end": 817.34, + "probability": 0.9896 + }, + { + "start": 817.68, + "end": 818.58, + "probability": 0.5249 + }, + { + "start": 819.56, + "end": 820.04, + "probability": 0.9602 + }, + { + "start": 820.44, + "end": 821.24, + "probability": 0.5368 + }, + { + "start": 821.8, + "end": 826.1, + "probability": 0.7392 + }, + { + "start": 827.12, + "end": 830.04, + "probability": 0.4687 + }, + { + "start": 830.22, + "end": 830.22, + "probability": 0.0427 + }, + { + "start": 830.22, + "end": 830.68, + "probability": 0.5859 + }, + { + "start": 830.76, + "end": 831.98, + "probability": 0.8631 + }, + { + "start": 832.56, + "end": 834.62, + "probability": 0.6701 + }, + { + "start": 834.64, + "end": 835.42, + "probability": 0.9146 + }, + { + "start": 837.08, + "end": 841.42, + "probability": 0.9032 + }, + { + "start": 841.42, + "end": 846.62, + "probability": 0.7195 + }, + { + "start": 847.36, + "end": 849.18, + "probability": 0.8618 + }, + { + "start": 849.56, + "end": 850.64, + "probability": 0.9245 + }, + { + "start": 850.78, + "end": 851.62, + "probability": 0.5765 + }, + { + "start": 851.68, + "end": 852.3, + "probability": 0.6984 + }, + { + "start": 852.52, + "end": 853.42, + "probability": 0.9673 + }, + { + "start": 853.6, + "end": 856.15, + "probability": 0.8731 + }, + { + "start": 857.08, + "end": 859.68, + "probability": 0.5155 + }, + { + "start": 860.18, + "end": 861.8, + "probability": 0.6811 + }, + { + "start": 861.92, + "end": 862.66, + "probability": 0.7817 + }, + { + "start": 862.98, + "end": 864.04, + "probability": 0.9451 + }, + { + "start": 864.3, + "end": 866.02, + "probability": 0.9141 + }, + { + "start": 867.14, + "end": 871.72, + "probability": 0.9372 + }, + { + "start": 872.08, + "end": 873.46, + "probability": 0.1047 + }, + { + "start": 873.68, + "end": 875.02, + "probability": 0.5322 + }, + { + "start": 875.52, + "end": 878.2, + "probability": 0.9957 + }, + { + "start": 878.64, + "end": 880.1, + "probability": 0.868 + }, + { + "start": 880.6, + "end": 882.04, + "probability": 0.9705 + }, + { + "start": 882.2, + "end": 883.0, + "probability": 0.9485 + }, + { + "start": 883.22, + "end": 885.18, + "probability": 0.6071 + }, + { + "start": 885.68, + "end": 887.02, + "probability": 0.9329 + }, + { + "start": 887.12, + "end": 887.7, + "probability": 0.9454 + }, + { + "start": 887.8, + "end": 888.48, + "probability": 0.859 + }, + { + "start": 888.78, + "end": 890.72, + "probability": 0.7632 + }, + { + "start": 891.18, + "end": 891.92, + "probability": 0.8363 + }, + { + "start": 892.08, + "end": 892.86, + "probability": 0.7968 + }, + { + "start": 893.02, + "end": 894.22, + "probability": 0.7522 + }, + { + "start": 894.38, + "end": 895.08, + "probability": 0.5438 + }, + { + "start": 895.52, + "end": 895.86, + "probability": 0.7628 + }, + { + "start": 896.2, + "end": 897.64, + "probability": 0.9587 + }, + { + "start": 898.22, + "end": 900.18, + "probability": 0.9723 + }, + { + "start": 902.3, + "end": 908.2, + "probability": 0.8459 + }, + { + "start": 908.56, + "end": 909.74, + "probability": 0.1762 + }, + { + "start": 909.98, + "end": 911.68, + "probability": 0.432 + }, + { + "start": 912.52, + "end": 916.86, + "probability": 0.9265 + }, + { + "start": 917.06, + "end": 918.43, + "probability": 0.8662 + }, + { + "start": 918.78, + "end": 919.88, + "probability": 0.8486 + }, + { + "start": 919.96, + "end": 920.68, + "probability": 0.3968 + }, + { + "start": 921.28, + "end": 922.6, + "probability": 0.8503 + }, + { + "start": 922.94, + "end": 924.42, + "probability": 0.9389 + }, + { + "start": 924.52, + "end": 925.44, + "probability": 0.9441 + }, + { + "start": 925.8, + "end": 927.4, + "probability": 0.7473 + }, + { + "start": 927.92, + "end": 929.28, + "probability": 0.84 + }, + { + "start": 929.54, + "end": 930.72, + "probability": 0.9184 + }, + { + "start": 930.84, + "end": 931.5, + "probability": 0.9062 + }, + { + "start": 931.9, + "end": 933.58, + "probability": 0.746 + }, + { + "start": 934.04, + "end": 936.7, + "probability": 0.9269 + }, + { + "start": 936.98, + "end": 937.2, + "probability": 0.8392 + }, + { + "start": 937.64, + "end": 938.22, + "probability": 0.8143 + }, + { + "start": 939.04, + "end": 941.94, + "probability": 0.8745 + }, + { + "start": 942.9, + "end": 944.12, + "probability": 0.8722 + }, + { + "start": 944.4, + "end": 946.16, + "probability": 0.8048 + }, + { + "start": 946.68, + "end": 951.68, + "probability": 0.9653 + }, + { + "start": 955.18, + "end": 959.68, + "probability": 0.8816 + }, + { + "start": 959.78, + "end": 963.62, + "probability": 0.8338 + }, + { + "start": 964.34, + "end": 966.58, + "probability": 0.5699 + }, + { + "start": 966.76, + "end": 967.5, + "probability": 0.0951 + }, + { + "start": 967.92, + "end": 969.98, + "probability": 0.2443 + }, + { + "start": 970.61, + "end": 972.28, + "probability": 0.6595 + }, + { + "start": 972.42, + "end": 974.86, + "probability": 0.9607 + }, + { + "start": 974.86, + "end": 978.02, + "probability": 0.9482 + }, + { + "start": 978.16, + "end": 980.52, + "probability": 0.6927 + }, + { + "start": 980.52, + "end": 982.78, + "probability": 0.8595 + }, + { + "start": 985.08, + "end": 985.57, + "probability": 0.8152 + }, + { + "start": 986.34, + "end": 988.38, + "probability": 0.8947 + }, + { + "start": 989.96, + "end": 992.4, + "probability": 0.9863 + }, + { + "start": 993.26, + "end": 996.0, + "probability": 0.9252 + }, + { + "start": 996.72, + "end": 1000.08, + "probability": 0.9925 + }, + { + "start": 1000.24, + "end": 1003.56, + "probability": 0.9959 + }, + { + "start": 1004.6, + "end": 1007.18, + "probability": 0.9029 + }, + { + "start": 1008.32, + "end": 1009.7, + "probability": 0.0645 + }, + { + "start": 1010.4, + "end": 1011.86, + "probability": 0.3214 + }, + { + "start": 1013.24, + "end": 1020.22, + "probability": 0.9178 + }, + { + "start": 1020.54, + "end": 1023.76, + "probability": 0.9964 + }, + { + "start": 1024.86, + "end": 1028.8, + "probability": 0.9916 + }, + { + "start": 1028.8, + "end": 1032.2, + "probability": 0.9954 + }, + { + "start": 1032.4, + "end": 1032.84, + "probability": 0.8716 + }, + { + "start": 1033.76, + "end": 1038.18, + "probability": 0.9971 + }, + { + "start": 1039.18, + "end": 1040.32, + "probability": 0.9918 + }, + { + "start": 1040.42, + "end": 1042.62, + "probability": 0.9899 + }, + { + "start": 1043.96, + "end": 1047.44, + "probability": 0.9973 + }, + { + "start": 1049.28, + "end": 1054.92, + "probability": 0.9747 + }, + { + "start": 1055.68, + "end": 1059.14, + "probability": 0.9801 + }, + { + "start": 1060.04, + "end": 1060.32, + "probability": 0.4257 + }, + { + "start": 1060.66, + "end": 1062.12, + "probability": 0.8962 + }, + { + "start": 1062.26, + "end": 1063.76, + "probability": 0.9531 + }, + { + "start": 1063.92, + "end": 1066.64, + "probability": 0.9585 + }, + { + "start": 1067.52, + "end": 1070.94, + "probability": 0.9875 + }, + { + "start": 1072.42, + "end": 1074.02, + "probability": 0.9971 + }, + { + "start": 1077.02, + "end": 1077.78, + "probability": 0.8478 + }, + { + "start": 1079.54, + "end": 1081.3, + "probability": 0.9363 + }, + { + "start": 1081.68, + "end": 1082.1, + "probability": 0.3233 + }, + { + "start": 1082.26, + "end": 1083.72, + "probability": 0.8275 + }, + { + "start": 1084.32, + "end": 1085.96, + "probability": 0.9411 + }, + { + "start": 1086.28, + "end": 1088.89, + "probability": 0.6832 + }, + { + "start": 1089.46, + "end": 1091.28, + "probability": 0.9741 + }, + { + "start": 1091.48, + "end": 1092.16, + "probability": 0.6551 + }, + { + "start": 1092.72, + "end": 1095.08, + "probability": 0.9934 + }, + { + "start": 1095.74, + "end": 1096.28, + "probability": 0.7742 + }, + { + "start": 1096.98, + "end": 1097.44, + "probability": 0.9414 + }, + { + "start": 1098.7, + "end": 1101.38, + "probability": 0.9644 + }, + { + "start": 1101.9, + "end": 1107.66, + "probability": 0.8198 + }, + { + "start": 1108.42, + "end": 1114.32, + "probability": 0.9502 + }, + { + "start": 1114.86, + "end": 1116.24, + "probability": 0.8034 + }, + { + "start": 1117.0, + "end": 1120.2, + "probability": 0.8406 + }, + { + "start": 1120.76, + "end": 1121.48, + "probability": 0.2514 + }, + { + "start": 1121.48, + "end": 1123.36, + "probability": 0.7801 + }, + { + "start": 1124.94, + "end": 1128.52, + "probability": 0.9626 + }, + { + "start": 1128.7, + "end": 1130.02, + "probability": 0.9867 + }, + { + "start": 1130.84, + "end": 1131.54, + "probability": 0.9961 + }, + { + "start": 1132.2, + "end": 1133.34, + "probability": 0.8138 + }, + { + "start": 1134.08, + "end": 1139.2, + "probability": 0.9729 + }, + { + "start": 1139.42, + "end": 1139.88, + "probability": 0.8802 + }, + { + "start": 1140.02, + "end": 1146.88, + "probability": 0.9955 + }, + { + "start": 1147.86, + "end": 1149.02, + "probability": 0.7775 + }, + { + "start": 1150.46, + "end": 1152.64, + "probability": 0.7722 + }, + { + "start": 1152.92, + "end": 1156.84, + "probability": 0.9814 + }, + { + "start": 1157.38, + "end": 1158.08, + "probability": 0.961 + }, + { + "start": 1159.02, + "end": 1160.58, + "probability": 0.916 + }, + { + "start": 1160.64, + "end": 1162.5, + "probability": 0.7474 + }, + { + "start": 1162.78, + "end": 1165.8, + "probability": 0.8447 + }, + { + "start": 1165.88, + "end": 1167.22, + "probability": 0.8236 + }, + { + "start": 1167.28, + "end": 1168.1, + "probability": 0.8665 + }, + { + "start": 1168.68, + "end": 1169.96, + "probability": 0.9301 + }, + { + "start": 1170.06, + "end": 1171.92, + "probability": 0.7658 + }, + { + "start": 1172.36, + "end": 1175.32, + "probability": 0.9543 + }, + { + "start": 1175.38, + "end": 1178.7, + "probability": 0.9536 + }, + { + "start": 1179.1, + "end": 1182.5, + "probability": 0.9893 + }, + { + "start": 1182.5, + "end": 1185.98, + "probability": 0.9496 + }, + { + "start": 1186.42, + "end": 1188.74, + "probability": 0.6979 + }, + { + "start": 1189.02, + "end": 1191.8, + "probability": 0.9734 + }, + { + "start": 1191.88, + "end": 1195.74, + "probability": 0.9813 + }, + { + "start": 1196.06, + "end": 1198.26, + "probability": 0.8146 + }, + { + "start": 1198.78, + "end": 1201.04, + "probability": 0.5678 + }, + { + "start": 1201.54, + "end": 1203.56, + "probability": 0.9959 + }, + { + "start": 1203.77, + "end": 1207.58, + "probability": 0.8672 + }, + { + "start": 1208.04, + "end": 1209.28, + "probability": 0.9795 + }, + { + "start": 1209.66, + "end": 1212.1, + "probability": 0.8691 + }, + { + "start": 1212.36, + "end": 1214.52, + "probability": 0.975 + }, + { + "start": 1214.86, + "end": 1219.62, + "probability": 0.4854 + }, + { + "start": 1219.98, + "end": 1222.22, + "probability": 0.7444 + }, + { + "start": 1222.46, + "end": 1223.96, + "probability": 0.9738 + }, + { + "start": 1224.82, + "end": 1229.56, + "probability": 0.9951 + }, + { + "start": 1229.84, + "end": 1231.42, + "probability": 0.6905 + }, + { + "start": 1232.22, + "end": 1233.5, + "probability": 0.8956 + }, + { + "start": 1233.86, + "end": 1237.04, + "probability": 0.9909 + }, + { + "start": 1237.06, + "end": 1239.68, + "probability": 0.9958 + }, + { + "start": 1240.6, + "end": 1241.26, + "probability": 0.8044 + }, + { + "start": 1242.46, + "end": 1245.32, + "probability": 0.8391 + }, + { + "start": 1245.96, + "end": 1249.36, + "probability": 0.9922 + }, + { + "start": 1250.0, + "end": 1252.58, + "probability": 0.9674 + }, + { + "start": 1253.06, + "end": 1254.96, + "probability": 0.6335 + }, + { + "start": 1255.66, + "end": 1257.3, + "probability": 0.9571 + }, + { + "start": 1257.82, + "end": 1258.7, + "probability": 0.9064 + }, + { + "start": 1258.76, + "end": 1259.56, + "probability": 0.8737 + }, + { + "start": 1259.9, + "end": 1261.88, + "probability": 0.9932 + }, + { + "start": 1263.18, + "end": 1265.24, + "probability": 0.9982 + }, + { + "start": 1265.86, + "end": 1266.92, + "probability": 0.9176 + }, + { + "start": 1267.48, + "end": 1268.22, + "probability": 0.9807 + }, + { + "start": 1268.86, + "end": 1270.16, + "probability": 0.9002 + }, + { + "start": 1270.42, + "end": 1273.01, + "probability": 0.9945 + }, + { + "start": 1275.33, + "end": 1278.82, + "probability": 0.9504 + }, + { + "start": 1278.94, + "end": 1279.46, + "probability": 0.8977 + }, + { + "start": 1280.72, + "end": 1284.44, + "probability": 0.9039 + }, + { + "start": 1284.44, + "end": 1287.2, + "probability": 0.9949 + }, + { + "start": 1288.32, + "end": 1291.16, + "probability": 0.9912 + }, + { + "start": 1291.78, + "end": 1295.18, + "probability": 0.9562 + }, + { + "start": 1295.92, + "end": 1297.54, + "probability": 0.9092 + }, + { + "start": 1299.14, + "end": 1299.38, + "probability": 0.6136 + }, + { + "start": 1299.94, + "end": 1301.0, + "probability": 0.9824 + }, + { + "start": 1301.06, + "end": 1301.59, + "probability": 0.6118 + }, + { + "start": 1301.68, + "end": 1302.64, + "probability": 0.9102 + }, + { + "start": 1303.76, + "end": 1305.54, + "probability": 0.7389 + }, + { + "start": 1305.54, + "end": 1305.7, + "probability": 0.6777 + }, + { + "start": 1305.9, + "end": 1306.3, + "probability": 0.6757 + }, + { + "start": 1306.38, + "end": 1307.04, + "probability": 0.1379 + }, + { + "start": 1307.04, + "end": 1309.6, + "probability": 0.6537 + }, + { + "start": 1309.82, + "end": 1310.42, + "probability": 0.0674 + }, + { + "start": 1310.42, + "end": 1313.75, + "probability": 0.9467 + }, + { + "start": 1313.92, + "end": 1317.64, + "probability": 0.8236 + }, + { + "start": 1317.68, + "end": 1319.26, + "probability": 0.5909 + }, + { + "start": 1321.75, + "end": 1322.68, + "probability": 0.0518 + }, + { + "start": 1322.74, + "end": 1323.44, + "probability": 0.8684 + }, + { + "start": 1323.88, + "end": 1326.78, + "probability": 0.9808 + }, + { + "start": 1327.12, + "end": 1327.22, + "probability": 0.3332 + }, + { + "start": 1327.46, + "end": 1328.96, + "probability": 0.7806 + }, + { + "start": 1329.7, + "end": 1332.24, + "probability": 0.645 + }, + { + "start": 1332.42, + "end": 1332.82, + "probability": 0.485 + }, + { + "start": 1332.94, + "end": 1335.68, + "probability": 0.8727 + }, + { + "start": 1335.96, + "end": 1337.69, + "probability": 0.7887 + }, + { + "start": 1338.24, + "end": 1341.18, + "probability": 0.9687 + }, + { + "start": 1342.04, + "end": 1342.9, + "probability": 0.9095 + }, + { + "start": 1343.12, + "end": 1344.1, + "probability": 0.9944 + }, + { + "start": 1344.38, + "end": 1348.22, + "probability": 0.9194 + }, + { + "start": 1348.68, + "end": 1350.34, + "probability": 0.4226 + }, + { + "start": 1351.76, + "end": 1353.24, + "probability": 0.9237 + }, + { + "start": 1353.3, + "end": 1353.72, + "probability": 0.855 + }, + { + "start": 1353.88, + "end": 1355.33, + "probability": 0.8366 + }, + { + "start": 1355.74, + "end": 1358.18, + "probability": 0.9148 + }, + { + "start": 1359.22, + "end": 1361.18, + "probability": 0.9856 + }, + { + "start": 1362.16, + "end": 1364.04, + "probability": 0.884 + }, + { + "start": 1364.14, + "end": 1364.32, + "probability": 0.56 + }, + { + "start": 1364.4, + "end": 1365.03, + "probability": 0.881 + }, + { + "start": 1365.22, + "end": 1365.46, + "probability": 0.6356 + }, + { + "start": 1366.1, + "end": 1367.32, + "probability": 0.8993 + }, + { + "start": 1368.08, + "end": 1369.92, + "probability": 0.8771 + }, + { + "start": 1370.46, + "end": 1371.76, + "probability": 0.9225 + }, + { + "start": 1372.52, + "end": 1374.42, + "probability": 0.9963 + }, + { + "start": 1376.16, + "end": 1377.36, + "probability": 0.9009 + }, + { + "start": 1377.48, + "end": 1380.78, + "probability": 0.7095 + }, + { + "start": 1381.4, + "end": 1383.62, + "probability": 0.9264 + }, + { + "start": 1384.96, + "end": 1388.0, + "probability": 0.9506 + }, + { + "start": 1388.1, + "end": 1388.2, + "probability": 0.4098 + }, + { + "start": 1389.66, + "end": 1393.5, + "probability": 0.9307 + }, + { + "start": 1393.74, + "end": 1395.48, + "probability": 0.7768 + }, + { + "start": 1396.12, + "end": 1396.38, + "probability": 0.5259 + }, + { + "start": 1396.5, + "end": 1397.62, + "probability": 0.9883 + }, + { + "start": 1397.74, + "end": 1398.47, + "probability": 0.9854 + }, + { + "start": 1398.72, + "end": 1399.53, + "probability": 0.964 + }, + { + "start": 1400.2, + "end": 1402.82, + "probability": 0.9629 + }, + { + "start": 1403.58, + "end": 1405.78, + "probability": 0.9558 + }, + { + "start": 1406.38, + "end": 1410.68, + "probability": 0.9117 + }, + { + "start": 1411.78, + "end": 1415.7, + "probability": 0.993 + }, + { + "start": 1415.92, + "end": 1416.32, + "probability": 0.6268 + }, + { + "start": 1416.96, + "end": 1417.94, + "probability": 0.7734 + }, + { + "start": 1418.0, + "end": 1418.26, + "probability": 0.309 + }, + { + "start": 1418.26, + "end": 1421.04, + "probability": 0.9507 + }, + { + "start": 1421.08, + "end": 1423.9, + "probability": 0.7899 + }, + { + "start": 1424.24, + "end": 1425.46, + "probability": 0.7219 + }, + { + "start": 1425.86, + "end": 1430.02, + "probability": 0.9902 + }, + { + "start": 1430.48, + "end": 1434.52, + "probability": 0.9866 + }, + { + "start": 1435.04, + "end": 1435.6, + "probability": 0.4046 + }, + { + "start": 1436.24, + "end": 1438.44, + "probability": 0.6987 + }, + { + "start": 1438.7, + "end": 1441.76, + "probability": 0.6824 + }, + { + "start": 1442.0, + "end": 1443.94, + "probability": 0.938 + }, + { + "start": 1443.98, + "end": 1446.14, + "probability": 0.4968 + }, + { + "start": 1446.18, + "end": 1447.46, + "probability": 0.271 + }, + { + "start": 1448.22, + "end": 1453.94, + "probability": 0.9309 + }, + { + "start": 1454.54, + "end": 1458.62, + "probability": 0.7041 + }, + { + "start": 1458.9, + "end": 1459.44, + "probability": 0.774 + }, + { + "start": 1459.68, + "end": 1460.14, + "probability": 0.7479 + }, + { + "start": 1460.96, + "end": 1463.4, + "probability": 0.9413 + }, + { + "start": 1463.44, + "end": 1464.66, + "probability": 0.9013 + }, + { + "start": 1465.14, + "end": 1467.04, + "probability": 0.9476 + }, + { + "start": 1467.12, + "end": 1467.42, + "probability": 0.9272 + }, + { + "start": 1468.72, + "end": 1472.28, + "probability": 0.9959 + }, + { + "start": 1472.28, + "end": 1474.58, + "probability": 0.996 + }, + { + "start": 1475.42, + "end": 1479.24, + "probability": 0.7835 + }, + { + "start": 1479.9, + "end": 1482.5, + "probability": 0.6894 + }, + { + "start": 1482.66, + "end": 1487.82, + "probability": 0.9173 + }, + { + "start": 1488.68, + "end": 1493.1, + "probability": 0.8869 + }, + { + "start": 1518.88, + "end": 1519.18, + "probability": 0.5252 + }, + { + "start": 1520.0, + "end": 1520.62, + "probability": 0.0923 + }, + { + "start": 1523.08, + "end": 1523.78, + "probability": 0.5529 + }, + { + "start": 1524.62, + "end": 1527.2, + "probability": 0.9129 + }, + { + "start": 1527.65, + "end": 1529.07, + "probability": 0.9929 + }, + { + "start": 1529.96, + "end": 1532.66, + "probability": 0.8582 + }, + { + "start": 1533.56, + "end": 1534.26, + "probability": 0.5089 + }, + { + "start": 1534.34, + "end": 1535.18, + "probability": 0.8592 + }, + { + "start": 1535.18, + "end": 1537.58, + "probability": 0.991 + }, + { + "start": 1537.74, + "end": 1538.2, + "probability": 0.703 + }, + { + "start": 1539.04, + "end": 1539.14, + "probability": 0.1947 + }, + { + "start": 1539.14, + "end": 1539.14, + "probability": 0.0513 + }, + { + "start": 1539.14, + "end": 1539.7, + "probability": 0.5279 + }, + { + "start": 1539.94, + "end": 1541.68, + "probability": 0.9886 + }, + { + "start": 1542.4, + "end": 1543.24, + "probability": 0.3441 + }, + { + "start": 1543.38, + "end": 1546.69, + "probability": 0.7384 + }, + { + "start": 1548.4, + "end": 1548.9, + "probability": 0.5161 + }, + { + "start": 1549.34, + "end": 1553.34, + "probability": 0.1736 + }, + { + "start": 1559.16, + "end": 1560.06, + "probability": 0.0613 + }, + { + "start": 1577.62, + "end": 1577.74, + "probability": 0.2374 + }, + { + "start": 1577.74, + "end": 1578.96, + "probability": 0.6714 + }, + { + "start": 1579.84, + "end": 1580.79, + "probability": 0.924 + }, + { + "start": 1582.64, + "end": 1583.74, + "probability": 0.8273 + }, + { + "start": 1586.1, + "end": 1587.8, + "probability": 0.6664 + }, + { + "start": 1588.6, + "end": 1589.02, + "probability": 0.5928 + }, + { + "start": 1589.14, + "end": 1590.2, + "probability": 0.6847 + }, + { + "start": 1590.2, + "end": 1590.56, + "probability": 0.7901 + }, + { + "start": 1590.7, + "end": 1592.18, + "probability": 0.89 + }, + { + "start": 1592.6, + "end": 1596.28, + "probability": 0.0261 + }, + { + "start": 1596.28, + "end": 1596.36, + "probability": 0.0041 + }, + { + "start": 1597.6, + "end": 1599.46, + "probability": 0.4085 + }, + { + "start": 1600.0, + "end": 1601.02, + "probability": 0.4834 + }, + { + "start": 1601.52, + "end": 1603.92, + "probability": 0.0072 + }, + { + "start": 1604.16, + "end": 1606.84, + "probability": 0.541 + }, + { + "start": 1612.46, + "end": 1613.32, + "probability": 0.2124 + }, + { + "start": 1614.5, + "end": 1615.98, + "probability": 0.0292 + }, + { + "start": 1622.16, + "end": 1622.34, + "probability": 0.1904 + }, + { + "start": 1622.34, + "end": 1622.34, + "probability": 0.0602 + }, + { + "start": 1622.34, + "end": 1622.34, + "probability": 0.0944 + }, + { + "start": 1622.34, + "end": 1622.86, + "probability": 0.1023 + }, + { + "start": 1625.54, + "end": 1628.04, + "probability": 0.7215 + }, + { + "start": 1629.14, + "end": 1631.2, + "probability": 0.9572 + }, + { + "start": 1632.74, + "end": 1637.4, + "probability": 0.6941 + }, + { + "start": 1638.36, + "end": 1640.22, + "probability": 0.9902 + }, + { + "start": 1640.76, + "end": 1641.02, + "probability": 0.9241 + }, + { + "start": 1642.56, + "end": 1644.2, + "probability": 0.7779 + }, + { + "start": 1645.32, + "end": 1646.64, + "probability": 0.7109 + }, + { + "start": 1647.66, + "end": 1650.62, + "probability": 0.8887 + }, + { + "start": 1651.02, + "end": 1651.98, + "probability": 0.8245 + }, + { + "start": 1653.64, + "end": 1654.22, + "probability": 0.766 + }, + { + "start": 1654.44, + "end": 1657.16, + "probability": 0.675 + }, + { + "start": 1657.66, + "end": 1660.66, + "probability": 0.978 + }, + { + "start": 1662.7, + "end": 1663.5, + "probability": 0.9723 + }, + { + "start": 1663.64, + "end": 1665.89, + "probability": 0.9946 + }, + { + "start": 1667.02, + "end": 1667.86, + "probability": 0.8595 + }, + { + "start": 1668.54, + "end": 1669.12, + "probability": 0.911 + }, + { + "start": 1670.38, + "end": 1674.68, + "probability": 0.9651 + }, + { + "start": 1675.2, + "end": 1675.68, + "probability": 0.8557 + }, + { + "start": 1677.02, + "end": 1681.0, + "probability": 0.9824 + }, + { + "start": 1681.74, + "end": 1683.02, + "probability": 0.9727 + }, + { + "start": 1684.7, + "end": 1686.46, + "probability": 0.9834 + }, + { + "start": 1687.22, + "end": 1689.78, + "probability": 0.8115 + }, + { + "start": 1690.86, + "end": 1691.98, + "probability": 0.7039 + }, + { + "start": 1693.52, + "end": 1696.42, + "probability": 0.7775 + }, + { + "start": 1697.88, + "end": 1702.3, + "probability": 0.8071 + }, + { + "start": 1703.1, + "end": 1706.88, + "probability": 0.9865 + }, + { + "start": 1707.62, + "end": 1709.54, + "probability": 0.952 + }, + { + "start": 1710.04, + "end": 1710.74, + "probability": 0.8455 + }, + { + "start": 1711.46, + "end": 1713.38, + "probability": 0.2643 + }, + { + "start": 1714.04, + "end": 1716.6, + "probability": 0.8756 + }, + { + "start": 1717.46, + "end": 1718.54, + "probability": 0.9492 + }, + { + "start": 1719.08, + "end": 1721.82, + "probability": 0.8262 + }, + { + "start": 1722.48, + "end": 1723.84, + "probability": 0.9858 + }, + { + "start": 1724.04, + "end": 1727.37, + "probability": 0.9902 + }, + { + "start": 1728.22, + "end": 1729.84, + "probability": 0.9941 + }, + { + "start": 1731.4, + "end": 1734.32, + "probability": 0.7104 + }, + { + "start": 1734.94, + "end": 1737.32, + "probability": 0.9719 + }, + { + "start": 1738.78, + "end": 1742.02, + "probability": 0.9743 + }, + { + "start": 1742.92, + "end": 1747.4, + "probability": 0.989 + }, + { + "start": 1748.82, + "end": 1751.1, + "probability": 0.8794 + }, + { + "start": 1753.0, + "end": 1755.58, + "probability": 0.892 + }, + { + "start": 1756.78, + "end": 1758.0, + "probability": 0.5974 + }, + { + "start": 1760.8, + "end": 1761.42, + "probability": 0.2518 + }, + { + "start": 1761.42, + "end": 1762.23, + "probability": 0.54 + }, + { + "start": 1762.62, + "end": 1763.28, + "probability": 0.5191 + }, + { + "start": 1763.48, + "end": 1763.93, + "probability": 0.6245 + }, + { + "start": 1764.86, + "end": 1767.62, + "probability": 0.978 + }, + { + "start": 1768.98, + "end": 1769.58, + "probability": 0.0076 + }, + { + "start": 1769.58, + "end": 1770.22, + "probability": 0.3922 + }, + { + "start": 1770.98, + "end": 1772.64, + "probability": 0.8679 + }, + { + "start": 1773.58, + "end": 1775.26, + "probability": 0.3432 + }, + { + "start": 1775.5, + "end": 1779.32, + "probability": 0.9886 + }, + { + "start": 1780.42, + "end": 1783.0, + "probability": 0.9961 + }, + { + "start": 1783.16, + "end": 1784.0, + "probability": 0.9121 + }, + { + "start": 1784.58, + "end": 1786.66, + "probability": 0.9731 + }, + { + "start": 1787.38, + "end": 1791.42, + "probability": 0.9775 + }, + { + "start": 1791.64, + "end": 1792.32, + "probability": 0.7307 + }, + { + "start": 1793.14, + "end": 1796.3, + "probability": 0.9795 + }, + { + "start": 1796.92, + "end": 1798.22, + "probability": 0.9719 + }, + { + "start": 1798.28, + "end": 1804.06, + "probability": 0.9886 + }, + { + "start": 1805.88, + "end": 1808.6, + "probability": 0.7471 + }, + { + "start": 1808.78, + "end": 1809.8, + "probability": 0.9302 + }, + { + "start": 1810.34, + "end": 1811.82, + "probability": 0.9902 + }, + { + "start": 1811.86, + "end": 1812.67, + "probability": 0.9402 + }, + { + "start": 1813.38, + "end": 1814.18, + "probability": 0.8756 + }, + { + "start": 1814.26, + "end": 1815.3, + "probability": 0.9775 + }, + { + "start": 1816.0, + "end": 1816.6, + "probability": 0.4772 + }, + { + "start": 1817.12, + "end": 1821.32, + "probability": 0.9778 + }, + { + "start": 1822.1, + "end": 1825.2, + "probability": 0.9858 + }, + { + "start": 1826.18, + "end": 1828.92, + "probability": 0.8795 + }, + { + "start": 1829.64, + "end": 1831.16, + "probability": 0.9297 + }, + { + "start": 1833.22, + "end": 1837.74, + "probability": 0.9463 + }, + { + "start": 1838.74, + "end": 1840.12, + "probability": 0.9594 + }, + { + "start": 1840.78, + "end": 1842.86, + "probability": 0.8808 + }, + { + "start": 1843.32, + "end": 1844.66, + "probability": 0.898 + }, + { + "start": 1845.78, + "end": 1847.3, + "probability": 0.9854 + }, + { + "start": 1847.86, + "end": 1849.88, + "probability": 0.8904 + }, + { + "start": 1850.1, + "end": 1853.24, + "probability": 0.979 + }, + { + "start": 1853.64, + "end": 1854.52, + "probability": 0.856 + }, + { + "start": 1855.76, + "end": 1856.02, + "probability": 0.8747 + }, + { + "start": 1856.54, + "end": 1858.08, + "probability": 0.9509 + }, + { + "start": 1858.32, + "end": 1858.94, + "probability": 0.9202 + }, + { + "start": 1859.04, + "end": 1861.06, + "probability": 0.9565 + }, + { + "start": 1862.2, + "end": 1864.44, + "probability": 0.8937 + }, + { + "start": 1866.86, + "end": 1867.74, + "probability": 0.8643 + }, + { + "start": 1867.84, + "end": 1869.54, + "probability": 0.5518 + }, + { + "start": 1869.84, + "end": 1871.14, + "probability": 0.9865 + }, + { + "start": 1871.4, + "end": 1872.98, + "probability": 0.6416 + }, + { + "start": 1874.2, + "end": 1877.4, + "probability": 0.984 + }, + { + "start": 1877.98, + "end": 1880.52, + "probability": 0.9915 + }, + { + "start": 1880.58, + "end": 1882.4, + "probability": 0.5757 + }, + { + "start": 1882.46, + "end": 1885.24, + "probability": 0.7728 + }, + { + "start": 1886.14, + "end": 1887.32, + "probability": 0.7823 + }, + { + "start": 1888.2, + "end": 1890.46, + "probability": 0.9921 + }, + { + "start": 1891.5, + "end": 1892.64, + "probability": 0.8745 + }, + { + "start": 1893.54, + "end": 1895.32, + "probability": 0.9057 + }, + { + "start": 1895.9, + "end": 1896.5, + "probability": 0.939 + }, + { + "start": 1898.14, + "end": 1898.46, + "probability": 0.4198 + }, + { + "start": 1898.52, + "end": 1899.22, + "probability": 0.9487 + }, + { + "start": 1899.32, + "end": 1905.22, + "probability": 0.9509 + }, + { + "start": 1906.32, + "end": 1907.56, + "probability": 0.8845 + }, + { + "start": 1907.76, + "end": 1908.84, + "probability": 0.897 + }, + { + "start": 1909.02, + "end": 1909.96, + "probability": 0.9966 + }, + { + "start": 1910.02, + "end": 1910.96, + "probability": 0.8841 + }, + { + "start": 1922.54, + "end": 1923.32, + "probability": 0.4776 + }, + { + "start": 1923.36, + "end": 1923.36, + "probability": 0.0982 + }, + { + "start": 1923.36, + "end": 1923.36, + "probability": 0.0699 + }, + { + "start": 1923.36, + "end": 1923.36, + "probability": 0.0272 + }, + { + "start": 1923.36, + "end": 1923.36, + "probability": 0.0231 + }, + { + "start": 1923.36, + "end": 1924.91, + "probability": 0.1683 + }, + { + "start": 1925.32, + "end": 1926.44, + "probability": 0.6142 + }, + { + "start": 1926.78, + "end": 1927.94, + "probability": 0.8973 + }, + { + "start": 1929.16, + "end": 1932.36, + "probability": 0.8314 + }, + { + "start": 1932.9, + "end": 1934.86, + "probability": 0.8774 + }, + { + "start": 1935.9, + "end": 1936.8, + "probability": 0.8799 + }, + { + "start": 1936.9, + "end": 1937.52, + "probability": 0.6708 + }, + { + "start": 1937.72, + "end": 1941.32, + "probability": 0.936 + }, + { + "start": 1942.22, + "end": 1945.0, + "probability": 0.6634 + }, + { + "start": 1947.28, + "end": 1948.86, + "probability": 0.9069 + }, + { + "start": 1949.28, + "end": 1951.28, + "probability": 0.966 + }, + { + "start": 1951.62, + "end": 1953.54, + "probability": 0.9628 + }, + { + "start": 1954.3, + "end": 1955.14, + "probability": 0.8941 + }, + { + "start": 1955.58, + "end": 1956.42, + "probability": 0.9714 + }, + { + "start": 1956.84, + "end": 1957.7, + "probability": 0.9468 + }, + { + "start": 1958.14, + "end": 1962.58, + "probability": 0.9927 + }, + { + "start": 1963.76, + "end": 1965.26, + "probability": 0.9932 + }, + { + "start": 1966.2, + "end": 1968.3, + "probability": 0.9479 + }, + { + "start": 1969.84, + "end": 1972.04, + "probability": 0.9823 + }, + { + "start": 1972.66, + "end": 1975.24, + "probability": 0.9546 + }, + { + "start": 1976.56, + "end": 1979.28, + "probability": 0.9917 + }, + { + "start": 1980.14, + "end": 1982.76, + "probability": 0.9685 + }, + { + "start": 1983.4, + "end": 1985.3, + "probability": 0.8002 + }, + { + "start": 1985.44, + "end": 1985.8, + "probability": 0.6235 + }, + { + "start": 1987.24, + "end": 1990.46, + "probability": 0.9957 + }, + { + "start": 1991.14, + "end": 1992.12, + "probability": 0.8009 + }, + { + "start": 1992.22, + "end": 1993.72, + "probability": 0.8703 + }, + { + "start": 1994.0, + "end": 1994.7, + "probability": 0.9489 + }, + { + "start": 1994.88, + "end": 1995.7, + "probability": 0.9891 + }, + { + "start": 1995.82, + "end": 1996.7, + "probability": 0.9834 + }, + { + "start": 1997.92, + "end": 2000.58, + "probability": 0.9956 + }, + { + "start": 2002.2, + "end": 2004.04, + "probability": 0.9397 + }, + { + "start": 2004.92, + "end": 2007.03, + "probability": 0.9393 + }, + { + "start": 2007.54, + "end": 2008.3, + "probability": 0.7972 + }, + { + "start": 2008.44, + "end": 2009.68, + "probability": 0.8429 + }, + { + "start": 2010.48, + "end": 2012.58, + "probability": 0.8519 + }, + { + "start": 2013.76, + "end": 2015.72, + "probability": 0.9886 + }, + { + "start": 2016.4, + "end": 2018.34, + "probability": 0.9502 + }, + { + "start": 2018.6, + "end": 2019.32, + "probability": 0.7207 + }, + { + "start": 2019.38, + "end": 2020.02, + "probability": 0.8777 + }, + { + "start": 2020.22, + "end": 2021.2, + "probability": 0.7455 + }, + { + "start": 2022.18, + "end": 2023.1, + "probability": 0.9668 + }, + { + "start": 2023.74, + "end": 2024.76, + "probability": 0.6423 + }, + { + "start": 2025.14, + "end": 2026.32, + "probability": 0.8429 + }, + { + "start": 2026.98, + "end": 2028.08, + "probability": 0.8732 + }, + { + "start": 2029.04, + "end": 2033.62, + "probability": 0.9731 + }, + { + "start": 2034.54, + "end": 2035.84, + "probability": 0.938 + }, + { + "start": 2035.94, + "end": 2036.9, + "probability": 0.9775 + }, + { + "start": 2036.94, + "end": 2039.38, + "probability": 0.9365 + }, + { + "start": 2040.66, + "end": 2041.32, + "probability": 0.778 + }, + { + "start": 2042.18, + "end": 2043.1, + "probability": 0.5203 + }, + { + "start": 2043.1, + "end": 2043.52, + "probability": 0.9008 + }, + { + "start": 2043.58, + "end": 2044.1, + "probability": 0.9409 + }, + { + "start": 2044.16, + "end": 2044.78, + "probability": 0.5033 + }, + { + "start": 2045.42, + "end": 2045.68, + "probability": 0.9195 + }, + { + "start": 2046.34, + "end": 2047.0, + "probability": 0.8127 + }, + { + "start": 2047.44, + "end": 2048.28, + "probability": 0.8062 + }, + { + "start": 2049.38, + "end": 2050.84, + "probability": 0.8307 + }, + { + "start": 2051.7, + "end": 2052.9, + "probability": 0.6729 + }, + { + "start": 2052.94, + "end": 2054.64, + "probability": 0.9875 + }, + { + "start": 2055.58, + "end": 2057.18, + "probability": 0.9137 + }, + { + "start": 2058.48, + "end": 2060.22, + "probability": 0.6649 + }, + { + "start": 2061.1, + "end": 2062.78, + "probability": 0.4371 + }, + { + "start": 2063.54, + "end": 2064.18, + "probability": 0.3557 + }, + { + "start": 2064.98, + "end": 2067.46, + "probability": 0.736 + }, + { + "start": 2068.66, + "end": 2070.9, + "probability": 0.9862 + }, + { + "start": 2071.2, + "end": 2073.0, + "probability": 0.8581 + }, + { + "start": 2073.18, + "end": 2073.62, + "probability": 0.8234 + }, + { + "start": 2073.74, + "end": 2075.16, + "probability": 0.9873 + }, + { + "start": 2076.26, + "end": 2078.3, + "probability": 0.9935 + }, + { + "start": 2078.94, + "end": 2080.98, + "probability": 0.8665 + }, + { + "start": 2082.58, + "end": 2083.18, + "probability": 0.8827 + }, + { + "start": 2083.28, + "end": 2086.2, + "probability": 0.9448 + }, + { + "start": 2086.2, + "end": 2089.56, + "probability": 0.9375 + }, + { + "start": 2090.16, + "end": 2090.52, + "probability": 0.7017 + }, + { + "start": 2092.04, + "end": 2097.42, + "probability": 0.9979 + }, + { + "start": 2098.36, + "end": 2101.54, + "probability": 0.8601 + }, + { + "start": 2103.08, + "end": 2103.86, + "probability": 0.9355 + }, + { + "start": 2105.78, + "end": 2107.02, + "probability": 0.9158 + }, + { + "start": 2107.2, + "end": 2110.22, + "probability": 0.0866 + }, + { + "start": 2110.22, + "end": 2110.22, + "probability": 0.0612 + }, + { + "start": 2110.22, + "end": 2110.86, + "probability": 0.9421 + }, + { + "start": 2112.42, + "end": 2113.8, + "probability": 0.8742 + }, + { + "start": 2113.86, + "end": 2114.56, + "probability": 0.7437 + }, + { + "start": 2114.91, + "end": 2117.2, + "probability": 0.9601 + }, + { + "start": 2118.36, + "end": 2119.46, + "probability": 0.9402 + }, + { + "start": 2120.42, + "end": 2120.9, + "probability": 0.555 + }, + { + "start": 2122.56, + "end": 2126.64, + "probability": 0.9863 + }, + { + "start": 2127.48, + "end": 2128.48, + "probability": 0.9961 + }, + { + "start": 2128.6, + "end": 2129.26, + "probability": 0.9912 + }, + { + "start": 2129.86, + "end": 2132.72, + "probability": 0.9646 + }, + { + "start": 2133.48, + "end": 2133.64, + "probability": 0.5085 + }, + { + "start": 2133.84, + "end": 2136.38, + "probability": 0.9771 + }, + { + "start": 2137.14, + "end": 2138.68, + "probability": 0.9706 + }, + { + "start": 2139.44, + "end": 2142.14, + "probability": 0.8253 + }, + { + "start": 2142.36, + "end": 2147.06, + "probability": 0.975 + }, + { + "start": 2147.2, + "end": 2148.14, + "probability": 0.9556 + }, + { + "start": 2148.76, + "end": 2151.06, + "probability": 0.9666 + }, + { + "start": 2151.98, + "end": 2153.46, + "probability": 0.9716 + }, + { + "start": 2154.02, + "end": 2156.38, + "probability": 0.9723 + }, + { + "start": 2157.52, + "end": 2158.48, + "probability": 0.8577 + }, + { + "start": 2160.0, + "end": 2162.86, + "probability": 0.9637 + }, + { + "start": 2162.86, + "end": 2167.0, + "probability": 0.95 + }, + { + "start": 2168.46, + "end": 2168.72, + "probability": 0.5059 + }, + { + "start": 2170.2, + "end": 2171.24, + "probability": 0.8697 + }, + { + "start": 2171.46, + "end": 2172.92, + "probability": 0.7237 + }, + { + "start": 2173.72, + "end": 2174.54, + "probability": 0.9771 + }, + { + "start": 2175.8, + "end": 2178.82, + "probability": 0.986 + }, + { + "start": 2179.44, + "end": 2180.46, + "probability": 0.7152 + }, + { + "start": 2180.96, + "end": 2183.04, + "probability": 0.6765 + }, + { + "start": 2183.08, + "end": 2185.22, + "probability": 0.7109 + }, + { + "start": 2185.66, + "end": 2186.2, + "probability": 0.8295 + }, + { + "start": 2186.46, + "end": 2190.32, + "probability": 0.7816 + }, + { + "start": 2193.14, + "end": 2193.5, + "probability": 0.8211 + }, + { + "start": 2193.56, + "end": 2194.28, + "probability": 0.5616 + }, + { + "start": 2194.4, + "end": 2194.98, + "probability": 0.8855 + }, + { + "start": 2195.12, + "end": 2198.64, + "probability": 0.9141 + }, + { + "start": 2199.74, + "end": 2200.84, + "probability": 0.9665 + }, + { + "start": 2201.5, + "end": 2203.36, + "probability": 0.9812 + }, + { + "start": 2203.74, + "end": 2204.0, + "probability": 0.6339 + }, + { + "start": 2205.38, + "end": 2208.92, + "probability": 0.9466 + }, + { + "start": 2209.54, + "end": 2212.54, + "probability": 0.9774 + }, + { + "start": 2214.74, + "end": 2216.9, + "probability": 0.9825 + }, + { + "start": 2218.28, + "end": 2219.9, + "probability": 0.9662 + }, + { + "start": 2220.76, + "end": 2225.2, + "probability": 0.9932 + }, + { + "start": 2225.28, + "end": 2226.36, + "probability": 0.9487 + }, + { + "start": 2229.02, + "end": 2229.6, + "probability": 0.7731 + }, + { + "start": 2230.52, + "end": 2235.84, + "probability": 0.9966 + }, + { + "start": 2235.94, + "end": 2237.0, + "probability": 0.899 + }, + { + "start": 2237.64, + "end": 2240.36, + "probability": 0.7232 + }, + { + "start": 2240.96, + "end": 2243.06, + "probability": 0.9407 + }, + { + "start": 2256.84, + "end": 2257.08, + "probability": 0.5441 + }, + { + "start": 2257.18, + "end": 2257.52, + "probability": 0.0776 + }, + { + "start": 2257.52, + "end": 2257.62, + "probability": 0.0537 + }, + { + "start": 2257.62, + "end": 2258.04, + "probability": 0.2604 + }, + { + "start": 2258.04, + "end": 2258.06, + "probability": 0.1219 + }, + { + "start": 2258.06, + "end": 2258.06, + "probability": 0.1702 + }, + { + "start": 2258.14, + "end": 2258.84, + "probability": 0.1294 + }, + { + "start": 2266.74, + "end": 2268.92, + "probability": 0.3765 + }, + { + "start": 2284.64, + "end": 2288.32, + "probability": 0.9985 + }, + { + "start": 2288.54, + "end": 2289.69, + "probability": 0.6457 + }, + { + "start": 2291.62, + "end": 2295.1, + "probability": 0.9967 + }, + { + "start": 2297.2, + "end": 2301.48, + "probability": 0.9327 + }, + { + "start": 2302.82, + "end": 2304.62, + "probability": 0.9766 + }, + { + "start": 2306.58, + "end": 2307.14, + "probability": 0.7106 + }, + { + "start": 2307.18, + "end": 2307.96, + "probability": 0.845 + }, + { + "start": 2308.14, + "end": 2316.62, + "probability": 0.9961 + }, + { + "start": 2318.98, + "end": 2319.78, + "probability": 0.9907 + }, + { + "start": 2320.54, + "end": 2320.78, + "probability": 0.8665 + }, + { + "start": 2321.18, + "end": 2321.6, + "probability": 0.8183 + }, + { + "start": 2322.1, + "end": 2325.16, + "probability": 0.9673 + }, + { + "start": 2326.96, + "end": 2329.42, + "probability": 0.6724 + }, + { + "start": 2330.84, + "end": 2333.86, + "probability": 0.9875 + }, + { + "start": 2335.76, + "end": 2337.6, + "probability": 0.8425 + }, + { + "start": 2340.12, + "end": 2342.64, + "probability": 0.9966 + }, + { + "start": 2342.64, + "end": 2347.42, + "probability": 0.9993 + }, + { + "start": 2348.56, + "end": 2350.74, + "probability": 0.874 + }, + { + "start": 2351.92, + "end": 2358.66, + "probability": 0.8296 + }, + { + "start": 2360.22, + "end": 2363.54, + "probability": 0.9752 + }, + { + "start": 2363.64, + "end": 2365.26, + "probability": 0.92 + }, + { + "start": 2366.62, + "end": 2367.96, + "probability": 0.7318 + }, + { + "start": 2367.96, + "end": 2369.34, + "probability": 0.2462 + }, + { + "start": 2369.94, + "end": 2372.76, + "probability": 0.9626 + }, + { + "start": 2372.76, + "end": 2373.4, + "probability": 0.7835 + }, + { + "start": 2374.4, + "end": 2374.66, + "probability": 0.9373 + }, + { + "start": 2375.4, + "end": 2377.58, + "probability": 0.9184 + }, + { + "start": 2378.2, + "end": 2379.52, + "probability": 0.9728 + }, + { + "start": 2381.44, + "end": 2387.54, + "probability": 0.9867 + }, + { + "start": 2387.54, + "end": 2392.7, + "probability": 0.9984 + }, + { + "start": 2394.02, + "end": 2395.98, + "probability": 0.9443 + }, + { + "start": 2396.58, + "end": 2400.94, + "probability": 0.9716 + }, + { + "start": 2401.64, + "end": 2402.64, + "probability": 0.9051 + }, + { + "start": 2403.68, + "end": 2408.36, + "probability": 0.9756 + }, + { + "start": 2409.08, + "end": 2414.52, + "probability": 0.9925 + }, + { + "start": 2416.64, + "end": 2417.46, + "probability": 0.9518 + }, + { + "start": 2417.68, + "end": 2420.52, + "probability": 0.9941 + }, + { + "start": 2421.1, + "end": 2421.86, + "probability": 0.286 + }, + { + "start": 2422.64, + "end": 2424.18, + "probability": 0.9961 + }, + { + "start": 2424.62, + "end": 2429.64, + "probability": 0.9712 + }, + { + "start": 2429.64, + "end": 2435.24, + "probability": 0.9762 + }, + { + "start": 2435.74, + "end": 2439.14, + "probability": 0.9818 + }, + { + "start": 2439.66, + "end": 2442.04, + "probability": 0.9 + }, + { + "start": 2443.4, + "end": 2445.06, + "probability": 0.998 + }, + { + "start": 2445.84, + "end": 2452.02, + "probability": 0.9984 + }, + { + "start": 2453.06, + "end": 2454.28, + "probability": 0.9977 + }, + { + "start": 2454.96, + "end": 2459.2, + "probability": 0.9889 + }, + { + "start": 2460.68, + "end": 2461.76, + "probability": 0.9973 + }, + { + "start": 2462.28, + "end": 2468.88, + "probability": 0.9964 + }, + { + "start": 2469.66, + "end": 2470.56, + "probability": 0.9998 + }, + { + "start": 2471.32, + "end": 2473.46, + "probability": 0.8671 + }, + { + "start": 2475.02, + "end": 2478.0, + "probability": 0.9255 + }, + { + "start": 2479.08, + "end": 2480.74, + "probability": 0.7707 + }, + { + "start": 2481.44, + "end": 2481.6, + "probability": 0.9644 + }, + { + "start": 2486.56, + "end": 2487.36, + "probability": 0.3566 + }, + { + "start": 2488.2, + "end": 2490.36, + "probability": 0.8584 + }, + { + "start": 2490.96, + "end": 2492.34, + "probability": 0.9553 + }, + { + "start": 2492.94, + "end": 2494.04, + "probability": 0.8844 + }, + { + "start": 2494.62, + "end": 2495.66, + "probability": 0.9453 + }, + { + "start": 2496.34, + "end": 2498.16, + "probability": 0.9712 + }, + { + "start": 2499.14, + "end": 2504.06, + "probability": 0.9932 + }, + { + "start": 2504.06, + "end": 2507.84, + "probability": 0.9928 + }, + { + "start": 2507.94, + "end": 2508.66, + "probability": 0.6428 + }, + { + "start": 2509.5, + "end": 2514.54, + "probability": 0.9638 + }, + { + "start": 2515.32, + "end": 2522.5, + "probability": 0.9563 + }, + { + "start": 2523.78, + "end": 2526.16, + "probability": 0.9889 + }, + { + "start": 2527.0, + "end": 2532.34, + "probability": 0.9789 + }, + { + "start": 2533.34, + "end": 2537.4, + "probability": 0.991 + }, + { + "start": 2538.7, + "end": 2542.98, + "probability": 0.9756 + }, + { + "start": 2543.7, + "end": 2545.48, + "probability": 0.9969 + }, + { + "start": 2546.3, + "end": 2547.41, + "probability": 0.5286 + }, + { + "start": 2548.48, + "end": 2549.84, + "probability": 0.3421 + }, + { + "start": 2550.2, + "end": 2551.12, + "probability": 0.6658 + }, + { + "start": 2552.08, + "end": 2553.92, + "probability": 0.5388 + }, + { + "start": 2554.1, + "end": 2558.04, + "probability": 0.9899 + }, + { + "start": 2558.64, + "end": 2559.54, + "probability": 0.939 + }, + { + "start": 2560.16, + "end": 2564.14, + "probability": 0.9893 + }, + { + "start": 2565.84, + "end": 2568.98, + "probability": 0.9525 + }, + { + "start": 2569.74, + "end": 2576.12, + "probability": 0.9814 + }, + { + "start": 2576.68, + "end": 2577.66, + "probability": 0.2257 + }, + { + "start": 2578.44, + "end": 2581.26, + "probability": 0.9941 + }, + { + "start": 2581.88, + "end": 2584.84, + "probability": 0.8008 + }, + { + "start": 2586.72, + "end": 2587.6, + "probability": 0.9332 + }, + { + "start": 2588.18, + "end": 2592.54, + "probability": 0.9763 + }, + { + "start": 2592.74, + "end": 2597.5, + "probability": 0.9661 + }, + { + "start": 2597.68, + "end": 2598.48, + "probability": 0.9666 + }, + { + "start": 2599.12, + "end": 2602.52, + "probability": 0.9875 + }, + { + "start": 2603.6, + "end": 2609.54, + "probability": 0.9455 + }, + { + "start": 2610.14, + "end": 2615.12, + "probability": 0.9969 + }, + { + "start": 2616.32, + "end": 2618.34, + "probability": 0.9505 + }, + { + "start": 2619.36, + "end": 2623.82, + "probability": 0.9829 + }, + { + "start": 2624.78, + "end": 2627.08, + "probability": 0.997 + }, + { + "start": 2627.14, + "end": 2628.81, + "probability": 0.0702 + }, + { + "start": 2631.76, + "end": 2631.8, + "probability": 0.2324 + }, + { + "start": 2631.8, + "end": 2631.8, + "probability": 0.0481 + }, + { + "start": 2631.8, + "end": 2631.8, + "probability": 0.081 + }, + { + "start": 2631.8, + "end": 2632.08, + "probability": 0.4792 + }, + { + "start": 2633.56, + "end": 2636.12, + "probability": 0.6304 + }, + { + "start": 2636.56, + "end": 2640.48, + "probability": 0.9167 + }, + { + "start": 2641.56, + "end": 2645.66, + "probability": 0.9895 + }, + { + "start": 2646.74, + "end": 2650.2, + "probability": 0.9559 + }, + { + "start": 2650.98, + "end": 2652.36, + "probability": 0.9696 + }, + { + "start": 2653.6, + "end": 2654.46, + "probability": 0.0074 + }, + { + "start": 2654.56, + "end": 2655.12, + "probability": 0.7039 + }, + { + "start": 2656.04, + "end": 2656.82, + "probability": 0.6611 + }, + { + "start": 2657.8, + "end": 2659.24, + "probability": 0.6119 + }, + { + "start": 2659.44, + "end": 2662.46, + "probability": 0.5738 + }, + { + "start": 2662.76, + "end": 2665.52, + "probability": 0.7351 + }, + { + "start": 2666.66, + "end": 2668.64, + "probability": 0.0588 + }, + { + "start": 2669.28, + "end": 2672.44, + "probability": 0.8306 + }, + { + "start": 2674.38, + "end": 2675.7, + "probability": 0.2427 + }, + { + "start": 2678.28, + "end": 2680.42, + "probability": 0.0504 + }, + { + "start": 2681.12, + "end": 2682.04, + "probability": 0.0808 + }, + { + "start": 2689.32, + "end": 2689.5, + "probability": 0.2172 + }, + { + "start": 2689.58, + "end": 2691.36, + "probability": 0.9639 + }, + { + "start": 2691.46, + "end": 2698.96, + "probability": 0.7931 + }, + { + "start": 2700.24, + "end": 2703.42, + "probability": 0.9201 + }, + { + "start": 2703.82, + "end": 2704.32, + "probability": 0.8823 + }, + { + "start": 2706.2, + "end": 2710.46, + "probability": 0.9914 + }, + { + "start": 2711.6, + "end": 2712.68, + "probability": 0.7516 + }, + { + "start": 2713.28, + "end": 2718.32, + "probability": 0.9989 + }, + { + "start": 2719.32, + "end": 2721.56, + "probability": 0.9976 + }, + { + "start": 2721.56, + "end": 2723.8, + "probability": 0.9609 + }, + { + "start": 2724.98, + "end": 2727.56, + "probability": 0.9727 + }, + { + "start": 2728.52, + "end": 2732.62, + "probability": 0.8358 + }, + { + "start": 2733.18, + "end": 2733.72, + "probability": 0.7581 + }, + { + "start": 2734.8, + "end": 2736.54, + "probability": 0.9558 + }, + { + "start": 2737.74, + "end": 2740.48, + "probability": 0.9837 + }, + { + "start": 2741.18, + "end": 2745.42, + "probability": 0.9988 + }, + { + "start": 2746.22, + "end": 2746.74, + "probability": 0.727 + }, + { + "start": 2748.28, + "end": 2750.64, + "probability": 0.8356 + }, + { + "start": 2751.24, + "end": 2752.42, + "probability": 0.8077 + }, + { + "start": 2753.76, + "end": 2759.34, + "probability": 0.9924 + }, + { + "start": 2760.24, + "end": 2763.06, + "probability": 0.9673 + }, + { + "start": 2764.14, + "end": 2769.54, + "probability": 0.994 + }, + { + "start": 2770.5, + "end": 2773.96, + "probability": 0.9897 + }, + { + "start": 2773.96, + "end": 2778.32, + "probability": 0.7769 + }, + { + "start": 2778.98, + "end": 2780.92, + "probability": 0.9519 + }, + { + "start": 2782.18, + "end": 2783.17, + "probability": 0.949 + }, + { + "start": 2784.06, + "end": 2785.72, + "probability": 0.9457 + }, + { + "start": 2787.2, + "end": 2791.22, + "probability": 0.8082 + }, + { + "start": 2792.18, + "end": 2793.84, + "probability": 0.9674 + }, + { + "start": 2794.34, + "end": 2800.2, + "probability": 0.9984 + }, + { + "start": 2800.76, + "end": 2802.04, + "probability": 0.9961 + }, + { + "start": 2802.66, + "end": 2804.68, + "probability": 0.6061 + }, + { + "start": 2805.24, + "end": 2809.16, + "probability": 0.9825 + }, + { + "start": 2809.7, + "end": 2810.94, + "probability": 0.9014 + }, + { + "start": 2812.34, + "end": 2813.22, + "probability": 0.5372 + }, + { + "start": 2813.8, + "end": 2815.84, + "probability": 0.9929 + }, + { + "start": 2816.42, + "end": 2819.5, + "probability": 0.9471 + }, + { + "start": 2820.18, + "end": 2821.48, + "probability": 0.9821 + }, + { + "start": 2822.44, + "end": 2822.93, + "probability": 0.9941 + }, + { + "start": 2823.7, + "end": 2828.12, + "probability": 0.9735 + }, + { + "start": 2829.04, + "end": 2832.52, + "probability": 0.9486 + }, + { + "start": 2832.58, + "end": 2832.58, + "probability": 0.2854 + }, + { + "start": 2832.58, + "end": 2832.58, + "probability": 0.2404 + }, + { + "start": 2832.58, + "end": 2834.56, + "probability": 0.6362 + }, + { + "start": 2835.22, + "end": 2837.14, + "probability": 0.528 + }, + { + "start": 2837.16, + "end": 2837.88, + "probability": 0.589 + }, + { + "start": 2838.0, + "end": 2839.42, + "probability": 0.6495 + }, + { + "start": 2839.72, + "end": 2840.53, + "probability": 0.937 + }, + { + "start": 2840.74, + "end": 2844.82, + "probability": 0.964 + }, + { + "start": 2845.6, + "end": 2846.36, + "probability": 0.909 + }, + { + "start": 2848.48, + "end": 2852.56, + "probability": 0.9867 + }, + { + "start": 2853.2, + "end": 2855.52, + "probability": 0.9791 + }, + { + "start": 2855.64, + "end": 2856.38, + "probability": 0.702 + }, + { + "start": 2857.06, + "end": 2857.68, + "probability": 0.773 + }, + { + "start": 2858.36, + "end": 2859.3, + "probability": 0.9109 + }, + { + "start": 2860.38, + "end": 2863.66, + "probability": 0.9836 + }, + { + "start": 2864.36, + "end": 2865.04, + "probability": 0.9067 + }, + { + "start": 2865.9, + "end": 2868.28, + "probability": 0.9876 + }, + { + "start": 2868.92, + "end": 2870.26, + "probability": 0.796 + }, + { + "start": 2870.9, + "end": 2873.72, + "probability": 0.8838 + }, + { + "start": 2874.34, + "end": 2877.12, + "probability": 0.9549 + }, + { + "start": 2877.72, + "end": 2878.33, + "probability": 0.9792 + }, + { + "start": 2879.1, + "end": 2884.5, + "probability": 0.9909 + }, + { + "start": 2885.64, + "end": 2888.46, + "probability": 0.9941 + }, + { + "start": 2889.22, + "end": 2891.62, + "probability": 0.8931 + }, + { + "start": 2892.36, + "end": 2895.8, + "probability": 0.99 + }, + { + "start": 2897.52, + "end": 2898.42, + "probability": 0.6914 + }, + { + "start": 2898.98, + "end": 2901.74, + "probability": 0.9872 + }, + { + "start": 2902.28, + "end": 2903.42, + "probability": 0.9809 + }, + { + "start": 2904.78, + "end": 2911.44, + "probability": 0.9628 + }, + { + "start": 2912.1, + "end": 2915.42, + "probability": 0.993 + }, + { + "start": 2915.42, + "end": 2919.7, + "probability": 0.9972 + }, + { + "start": 2919.96, + "end": 2920.5, + "probability": 0.6133 + }, + { + "start": 2921.52, + "end": 2922.44, + "probability": 0.8818 + }, + { + "start": 2922.56, + "end": 2926.76, + "probability": 0.91 + }, + { + "start": 2928.24, + "end": 2928.98, + "probability": 0.7351 + }, + { + "start": 2929.18, + "end": 2933.86, + "probability": 0.8998 + }, + { + "start": 2934.9, + "end": 2936.24, + "probability": 0.7233 + }, + { + "start": 2936.78, + "end": 2938.76, + "probability": 0.9971 + }, + { + "start": 2941.4, + "end": 2942.56, + "probability": 0.9326 + }, + { + "start": 2943.3, + "end": 2945.06, + "probability": 0.9758 + }, + { + "start": 2946.34, + "end": 2948.08, + "probability": 0.8652 + }, + { + "start": 2948.8, + "end": 2953.54, + "probability": 0.8918 + }, + { + "start": 2954.16, + "end": 2956.2, + "probability": 0.9417 + }, + { + "start": 2956.82, + "end": 2958.0, + "probability": 0.5977 + }, + { + "start": 2958.54, + "end": 2961.72, + "probability": 0.8913 + }, + { + "start": 2962.26, + "end": 2967.2, + "probability": 0.9922 + }, + { + "start": 2967.82, + "end": 2971.9, + "probability": 0.9821 + }, + { + "start": 2972.14, + "end": 2974.14, + "probability": 0.8583 + }, + { + "start": 2974.76, + "end": 2976.32, + "probability": 0.7411 + }, + { + "start": 2976.8, + "end": 2978.18, + "probability": 0.8462 + }, + { + "start": 2978.84, + "end": 2979.29, + "probability": 0.5481 + }, + { + "start": 2981.64, + "end": 2984.36, + "probability": 0.8556 + }, + { + "start": 2985.4, + "end": 2986.44, + "probability": 0.9453 + }, + { + "start": 2987.6, + "end": 2991.3, + "probability": 0.7438 + }, + { + "start": 2998.39, + "end": 3001.58, + "probability": 0.7651 + }, + { + "start": 3003.58, + "end": 3005.52, + "probability": 0.5476 + }, + { + "start": 3006.24, + "end": 3006.9, + "probability": 0.3779 + }, + { + "start": 3006.9, + "end": 3008.19, + "probability": 0.2097 + }, + { + "start": 3008.34, + "end": 3008.83, + "probability": 0.2502 + }, + { + "start": 3010.58, + "end": 3013.02, + "probability": 0.9655 + }, + { + "start": 3018.56, + "end": 3019.64, + "probability": 0.764 + }, + { + "start": 3019.78, + "end": 3020.71, + "probability": 0.9893 + }, + { + "start": 3020.88, + "end": 3021.42, + "probability": 0.7761 + }, + { + "start": 3024.94, + "end": 3025.76, + "probability": 0.6681 + }, + { + "start": 3027.14, + "end": 3028.73, + "probability": 0.992 + }, + { + "start": 3030.6, + "end": 3030.7, + "probability": 0.7959 + }, + { + "start": 3031.96, + "end": 3033.72, + "probability": 0.9985 + }, + { + "start": 3035.68, + "end": 3036.98, + "probability": 0.7317 + }, + { + "start": 3037.08, + "end": 3040.4, + "probability": 0.9989 + }, + { + "start": 3041.26, + "end": 3043.92, + "probability": 0.9992 + }, + { + "start": 3044.68, + "end": 3045.04, + "probability": 0.7907 + }, + { + "start": 3045.56, + "end": 3047.16, + "probability": 0.991 + }, + { + "start": 3048.34, + "end": 3051.16, + "probability": 0.7995 + }, + { + "start": 3051.7, + "end": 3056.64, + "probability": 0.987 + }, + { + "start": 3056.98, + "end": 3060.7, + "probability": 0.9826 + }, + { + "start": 3061.78, + "end": 3063.88, + "probability": 0.3983 + }, + { + "start": 3064.1, + "end": 3066.56, + "probability": 0.554 + }, + { + "start": 3066.68, + "end": 3070.66, + "probability": 0.998 + }, + { + "start": 3072.16, + "end": 3073.96, + "probability": 0.8594 + }, + { + "start": 3075.36, + "end": 3076.6, + "probability": 0.9951 + }, + { + "start": 3077.36, + "end": 3078.66, + "probability": 0.545 + }, + { + "start": 3079.04, + "end": 3082.66, + "probability": 0.9214 + }, + { + "start": 3084.12, + "end": 3084.52, + "probability": 0.4672 + }, + { + "start": 3084.98, + "end": 3085.52, + "probability": 0.7623 + }, + { + "start": 3085.74, + "end": 3088.24, + "probability": 0.9653 + }, + { + "start": 3089.26, + "end": 3090.24, + "probability": 0.4599 + }, + { + "start": 3091.02, + "end": 3093.1, + "probability": 0.9507 + }, + { + "start": 3094.14, + "end": 3095.0, + "probability": 0.4064 + }, + { + "start": 3095.34, + "end": 3095.92, + "probability": 0.8603 + }, + { + "start": 3097.46, + "end": 3099.98, + "probability": 0.9829 + }, + { + "start": 3100.24, + "end": 3100.94, + "probability": 0.0524 + }, + { + "start": 3101.14, + "end": 3101.46, + "probability": 0.8385 + }, + { + "start": 3101.78, + "end": 3105.46, + "probability": 0.9941 + }, + { + "start": 3105.9, + "end": 3108.82, + "probability": 0.9999 + }, + { + "start": 3109.36, + "end": 3111.64, + "probability": 0.9931 + }, + { + "start": 3111.64, + "end": 3114.32, + "probability": 0.9988 + }, + { + "start": 3114.62, + "end": 3116.12, + "probability": 0.9831 + }, + { + "start": 3117.02, + "end": 3117.32, + "probability": 0.7253 + }, + { + "start": 3117.76, + "end": 3118.38, + "probability": 0.724 + }, + { + "start": 3119.62, + "end": 3123.08, + "probability": 0.9929 + }, + { + "start": 3124.6, + "end": 3124.6, + "probability": 0.0267 + }, + { + "start": 3124.6, + "end": 3126.88, + "probability": 0.9462 + }, + { + "start": 3127.74, + "end": 3130.14, + "probability": 0.6679 + }, + { + "start": 3130.22, + "end": 3132.06, + "probability": 0.9499 + }, + { + "start": 3132.84, + "end": 3135.26, + "probability": 0.9932 + }, + { + "start": 3135.26, + "end": 3138.74, + "probability": 0.9644 + }, + { + "start": 3139.3, + "end": 3140.96, + "probability": 0.8979 + }, + { + "start": 3141.52, + "end": 3146.8, + "probability": 0.999 + }, + { + "start": 3147.48, + "end": 3149.0, + "probability": 0.9343 + }, + { + "start": 3149.42, + "end": 3149.76, + "probability": 0.8166 + }, + { + "start": 3150.6, + "end": 3152.96, + "probability": 0.95 + }, + { + "start": 3154.02, + "end": 3154.64, + "probability": 0.3819 + }, + { + "start": 3154.66, + "end": 3158.4, + "probability": 0.9946 + }, + { + "start": 3158.48, + "end": 3161.08, + "probability": 0.9918 + }, + { + "start": 3161.24, + "end": 3164.1, + "probability": 0.978 + }, + { + "start": 3165.14, + "end": 3166.52, + "probability": 0.9262 + }, + { + "start": 3167.54, + "end": 3168.28, + "probability": 0.8345 + }, + { + "start": 3169.36, + "end": 3170.48, + "probability": 0.9546 + }, + { + "start": 3171.44, + "end": 3172.26, + "probability": 0.6034 + }, + { + "start": 3173.3, + "end": 3173.54, + "probability": 0.9667 + }, + { + "start": 3176.88, + "end": 3179.82, + "probability": 0.2245 + }, + { + "start": 3180.46, + "end": 3183.6, + "probability": 0.9176 + }, + { + "start": 3184.54, + "end": 3188.38, + "probability": 0.9967 + }, + { + "start": 3189.06, + "end": 3194.02, + "probability": 0.8904 + }, + { + "start": 3195.1, + "end": 3195.96, + "probability": 0.8474 + }, + { + "start": 3196.1, + "end": 3200.02, + "probability": 0.9853 + }, + { + "start": 3200.98, + "end": 3203.88, + "probability": 0.999 + }, + { + "start": 3203.92, + "end": 3205.96, + "probability": 0.9982 + }, + { + "start": 3206.7, + "end": 3208.2, + "probability": 0.9589 + }, + { + "start": 3210.74, + "end": 3210.92, + "probability": 0.7346 + }, + { + "start": 3211.6, + "end": 3214.36, + "probability": 0.6978 + }, + { + "start": 3215.36, + "end": 3215.46, + "probability": 0.0745 + }, + { + "start": 3216.14, + "end": 3216.18, + "probability": 0.0707 + }, + { + "start": 3216.98, + "end": 3217.3, + "probability": 0.4475 + }, + { + "start": 3218.0, + "end": 3222.68, + "probability": 0.867 + }, + { + "start": 3223.14, + "end": 3224.66, + "probability": 0.8682 + }, + { + "start": 3225.16, + "end": 3227.8, + "probability": 0.9932 + }, + { + "start": 3230.74, + "end": 3233.22, + "probability": 0.9241 + }, + { + "start": 3233.76, + "end": 3235.06, + "probability": 0.0701 + }, + { + "start": 3235.74, + "end": 3236.14, + "probability": 0.303 + }, + { + "start": 3236.24, + "end": 3236.92, + "probability": 0.4867 + }, + { + "start": 3237.88, + "end": 3240.18, + "probability": 0.7344 + }, + { + "start": 3240.86, + "end": 3243.14, + "probability": 0.4519 + }, + { + "start": 3243.72, + "end": 3246.98, + "probability": 0.9847 + }, + { + "start": 3247.44, + "end": 3248.72, + "probability": 0.4792 + }, + { + "start": 3249.38, + "end": 3249.94, + "probability": 0.3879 + }, + { + "start": 3250.4, + "end": 3253.22, + "probability": 0.5357 + }, + { + "start": 3253.9, + "end": 3253.98, + "probability": 0.3329 + }, + { + "start": 3253.98, + "end": 3256.98, + "probability": 0.9958 + }, + { + "start": 3257.68, + "end": 3260.44, + "probability": 0.9263 + }, + { + "start": 3261.02, + "end": 3263.52, + "probability": 0.9644 + }, + { + "start": 3264.5, + "end": 3267.02, + "probability": 0.6871 + }, + { + "start": 3267.54, + "end": 3268.06, + "probability": 0.8787 + }, + { + "start": 3269.44, + "end": 3274.0, + "probability": 0.2422 + }, + { + "start": 3277.58, + "end": 3277.82, + "probability": 0.1301 + }, + { + "start": 3277.82, + "end": 3277.82, + "probability": 0.2351 + }, + { + "start": 3277.82, + "end": 3278.86, + "probability": 0.2238 + }, + { + "start": 3279.12, + "end": 3281.92, + "probability": 0.9722 + }, + { + "start": 3282.38, + "end": 3284.14, + "probability": 0.9342 + }, + { + "start": 3285.08, + "end": 3287.92, + "probability": 0.9707 + }, + { + "start": 3288.56, + "end": 3289.38, + "probability": 0.6891 + }, + { + "start": 3290.04, + "end": 3290.96, + "probability": 0.4705 + }, + { + "start": 3291.56, + "end": 3293.56, + "probability": 0.903 + }, + { + "start": 3294.94, + "end": 3295.96, + "probability": 0.9788 + }, + { + "start": 3297.22, + "end": 3299.5, + "probability": 0.9019 + }, + { + "start": 3300.56, + "end": 3301.16, + "probability": 0.9951 + }, + { + "start": 3302.15, + "end": 3303.12, + "probability": 0.9891 + }, + { + "start": 3304.08, + "end": 3306.7, + "probability": 0.9935 + }, + { + "start": 3307.62, + "end": 3308.96, + "probability": 0.9906 + }, + { + "start": 3309.08, + "end": 3310.86, + "probability": 0.0971 + }, + { + "start": 3311.04, + "end": 3313.82, + "probability": 0.8036 + }, + { + "start": 3313.82, + "end": 3314.22, + "probability": 0.2784 + }, + { + "start": 3314.32, + "end": 3317.24, + "probability": 0.6377 + }, + { + "start": 3317.96, + "end": 3318.24, + "probability": 0.2392 + }, + { + "start": 3318.24, + "end": 3318.24, + "probability": 0.3748 + }, + { + "start": 3318.24, + "end": 3318.24, + "probability": 0.5792 + }, + { + "start": 3318.24, + "end": 3319.24, + "probability": 0.7882 + }, + { + "start": 3319.5, + "end": 3322.36, + "probability": 0.7618 + }, + { + "start": 3322.62, + "end": 3323.62, + "probability": 0.4822 + }, + { + "start": 3323.73, + "end": 3326.9, + "probability": 0.8657 + }, + { + "start": 3327.44, + "end": 3330.96, + "probability": 0.8773 + }, + { + "start": 3331.0, + "end": 3332.5, + "probability": 0.7522 + }, + { + "start": 3347.02, + "end": 3347.82, + "probability": 0.7179 + }, + { + "start": 3348.34, + "end": 3350.6, + "probability": 0.9899 + }, + { + "start": 3351.96, + "end": 3353.82, + "probability": 0.9954 + }, + { + "start": 3354.5, + "end": 3355.96, + "probability": 0.777 + }, + { + "start": 3356.84, + "end": 3360.08, + "probability": 0.8189 + }, + { + "start": 3361.72, + "end": 3362.22, + "probability": 0.8036 + }, + { + "start": 3362.88, + "end": 3367.4, + "probability": 0.9824 + }, + { + "start": 3367.7, + "end": 3369.31, + "probability": 0.9623 + }, + { + "start": 3370.4, + "end": 3374.02, + "probability": 0.8882 + }, + { + "start": 3374.62, + "end": 3374.92, + "probability": 0.9343 + }, + { + "start": 3376.88, + "end": 3378.44, + "probability": 0.92 + }, + { + "start": 3379.8, + "end": 3381.58, + "probability": 0.2958 + }, + { + "start": 3382.78, + "end": 3382.88, + "probability": 0.044 + }, + { + "start": 3382.88, + "end": 3383.42, + "probability": 0.6912 + }, + { + "start": 3383.48, + "end": 3384.12, + "probability": 0.692 + }, + { + "start": 3384.28, + "end": 3384.95, + "probability": 0.3107 + }, + { + "start": 3385.3, + "end": 3385.6, + "probability": 0.1909 + }, + { + "start": 3385.68, + "end": 3388.54, + "probability": 0.762 + }, + { + "start": 3389.28, + "end": 3390.3, + "probability": 0.9358 + }, + { + "start": 3391.28, + "end": 3392.0, + "probability": 0.9419 + }, + { + "start": 3392.18, + "end": 3394.76, + "probability": 0.0917 + }, + { + "start": 3394.76, + "end": 3396.54, + "probability": 0.743 + }, + { + "start": 3397.4, + "end": 3398.1, + "probability": 0.67 + }, + { + "start": 3398.64, + "end": 3400.42, + "probability": 0.8788 + }, + { + "start": 3400.98, + "end": 3401.74, + "probability": 0.9305 + }, + { + "start": 3402.0, + "end": 3402.26, + "probability": 0.8656 + }, + { + "start": 3403.18, + "end": 3406.14, + "probability": 0.634 + }, + { + "start": 3407.64, + "end": 3407.84, + "probability": 0.4652 + }, + { + "start": 3407.84, + "end": 3407.84, + "probability": 0.15 + }, + { + "start": 3407.84, + "end": 3407.84, + "probability": 0.1829 + }, + { + "start": 3407.84, + "end": 3407.84, + "probability": 0.2091 + }, + { + "start": 3407.84, + "end": 3407.98, + "probability": 0.4246 + }, + { + "start": 3408.3, + "end": 3408.62, + "probability": 0.5923 + }, + { + "start": 3408.78, + "end": 3409.0, + "probability": 0.4372 + }, + { + "start": 3409.2, + "end": 3410.56, + "probability": 0.6828 + }, + { + "start": 3411.32, + "end": 3412.46, + "probability": 0.5721 + }, + { + "start": 3413.02, + "end": 3413.96, + "probability": 0.9658 + }, + { + "start": 3414.06, + "end": 3414.86, + "probability": 0.4549 + }, + { + "start": 3414.92, + "end": 3416.74, + "probability": 0.8042 + }, + { + "start": 3418.4, + "end": 3420.7, + "probability": 0.8638 + }, + { + "start": 3420.7, + "end": 3423.44, + "probability": 0.6438 + }, + { + "start": 3423.78, + "end": 3424.36, + "probability": 0.6111 + }, + { + "start": 3424.46, + "end": 3425.18, + "probability": 0.6778 + }, + { + "start": 3425.3, + "end": 3426.14, + "probability": 0.7673 + }, + { + "start": 3426.2, + "end": 3426.9, + "probability": 0.8296 + }, + { + "start": 3427.3, + "end": 3428.66, + "probability": 0.8822 + }, + { + "start": 3428.8, + "end": 3429.94, + "probability": 0.9844 + }, + { + "start": 3430.58, + "end": 3431.32, + "probability": 0.2135 + }, + { + "start": 3431.32, + "end": 3432.84, + "probability": 0.8271 + }, + { + "start": 3433.48, + "end": 3437.5, + "probability": 0.9751 + }, + { + "start": 3438.22, + "end": 3444.96, + "probability": 0.7497 + }, + { + "start": 3445.3, + "end": 3445.82, + "probability": 0.323 + }, + { + "start": 3446.24, + "end": 3447.76, + "probability": 0.998 + }, + { + "start": 3448.22, + "end": 3449.54, + "probability": 0.9868 + }, + { + "start": 3450.14, + "end": 3450.24, + "probability": 0.6281 + }, + { + "start": 3450.74, + "end": 3453.06, + "probability": 0.8583 + }, + { + "start": 3453.16, + "end": 3454.98, + "probability": 0.7365 + }, + { + "start": 3455.64, + "end": 3457.0, + "probability": 0.5928 + }, + { + "start": 3457.0, + "end": 3457.24, + "probability": 0.7517 + }, + { + "start": 3459.4, + "end": 3460.68, + "probability": 0.6597 + }, + { + "start": 3461.82, + "end": 3462.24, + "probability": 0.1471 + }, + { + "start": 3462.24, + "end": 3462.31, + "probability": 0.0665 + }, + { + "start": 3464.18, + "end": 3464.18, + "probability": 0.1949 + }, + { + "start": 3464.18, + "end": 3464.28, + "probability": 0.0364 + }, + { + "start": 3464.64, + "end": 3467.16, + "probability": 0.6831 + }, + { + "start": 3467.72, + "end": 3469.1, + "probability": 0.6691 + }, + { + "start": 3469.72, + "end": 3471.86, + "probability": 0.9304 + }, + { + "start": 3472.56, + "end": 3476.37, + "probability": 0.6532 + }, + { + "start": 3477.42, + "end": 3477.42, + "probability": 0.0783 + }, + { + "start": 3477.42, + "end": 3479.18, + "probability": 0.4539 + }, + { + "start": 3480.24, + "end": 3483.52, + "probability": 0.7901 + }, + { + "start": 3484.04, + "end": 3486.36, + "probability": 0.802 + }, + { + "start": 3486.68, + "end": 3487.68, + "probability": 0.0344 + }, + { + "start": 3487.68, + "end": 3487.68, + "probability": 0.1917 + }, + { + "start": 3488.0, + "end": 3488.72, + "probability": 0.7341 + }, + { + "start": 3488.8, + "end": 3490.4, + "probability": 0.8425 + }, + { + "start": 3490.46, + "end": 3490.99, + "probability": 0.6177 + }, + { + "start": 3491.06, + "end": 3491.87, + "probability": 0.8578 + }, + { + "start": 3493.22, + "end": 3497.34, + "probability": 0.8637 + }, + { + "start": 3497.84, + "end": 3498.06, + "probability": 0.7236 + }, + { + "start": 3498.96, + "end": 3500.3, + "probability": 0.9866 + }, + { + "start": 3500.6, + "end": 3501.48, + "probability": 0.6471 + }, + { + "start": 3501.6, + "end": 3506.6, + "probability": 0.7798 + }, + { + "start": 3506.72, + "end": 3507.76, + "probability": 0.9658 + }, + { + "start": 3508.86, + "end": 3510.4, + "probability": 0.4787 + }, + { + "start": 3510.9, + "end": 3514.4, + "probability": 0.9908 + }, + { + "start": 3515.36, + "end": 3518.12, + "probability": 0.6987 + }, + { + "start": 3518.42, + "end": 3521.04, + "probability": 0.9939 + }, + { + "start": 3521.2, + "end": 3522.14, + "probability": 0.7501 + }, + { + "start": 3522.82, + "end": 3523.12, + "probability": 0.7699 + }, + { + "start": 3524.02, + "end": 3524.56, + "probability": 0.7333 + }, + { + "start": 3525.06, + "end": 3526.93, + "probability": 0.8145 + }, + { + "start": 3527.42, + "end": 3529.86, + "probability": 0.6413 + }, + { + "start": 3529.98, + "end": 3532.51, + "probability": 0.2698 + }, + { + "start": 3532.76, + "end": 3534.28, + "probability": 0.1282 + }, + { + "start": 3534.96, + "end": 3536.8, + "probability": 0.1505 + }, + { + "start": 3536.8, + "end": 3536.8, + "probability": 0.2701 + }, + { + "start": 3536.8, + "end": 3538.48, + "probability": 0.3671 + }, + { + "start": 3539.66, + "end": 3540.48, + "probability": 0.738 + }, + { + "start": 3540.72, + "end": 3544.3, + "probability": 0.8902 + }, + { + "start": 3545.18, + "end": 3547.38, + "probability": 0.9889 + }, + { + "start": 3547.56, + "end": 3549.16, + "probability": 0.796 + }, + { + "start": 3549.7, + "end": 3550.72, + "probability": 0.1222 + }, + { + "start": 3552.94, + "end": 3556.42, + "probability": 0.959 + }, + { + "start": 3556.62, + "end": 3556.86, + "probability": 0.4659 + }, + { + "start": 3557.12, + "end": 3557.84, + "probability": 0.8945 + }, + { + "start": 3557.86, + "end": 3558.86, + "probability": 0.8345 + }, + { + "start": 3559.34, + "end": 3562.1, + "probability": 0.9715 + }, + { + "start": 3562.26, + "end": 3566.0, + "probability": 0.6685 + }, + { + "start": 3566.42, + "end": 3566.56, + "probability": 0.158 + }, + { + "start": 3566.64, + "end": 3566.64, + "probability": 0.5012 + }, + { + "start": 3566.66, + "end": 3566.84, + "probability": 0.0933 + }, + { + "start": 3566.86, + "end": 3567.08, + "probability": 0.8453 + }, + { + "start": 3567.84, + "end": 3570.14, + "probability": 0.9779 + }, + { + "start": 3570.88, + "end": 3573.22, + "probability": 0.0232 + }, + { + "start": 3573.32, + "end": 3573.34, + "probability": 0.3344 + }, + { + "start": 3573.5, + "end": 3573.5, + "probability": 0.3266 + }, + { + "start": 3573.5, + "end": 3573.52, + "probability": 0.0544 + }, + { + "start": 3573.52, + "end": 3573.58, + "probability": 0.1245 + }, + { + "start": 3573.58, + "end": 3573.68, + "probability": 0.2997 + }, + { + "start": 3573.96, + "end": 3575.57, + "probability": 0.6605 + }, + { + "start": 3576.12, + "end": 3578.26, + "probability": 0.9854 + }, + { + "start": 3578.38, + "end": 3579.84, + "probability": 0.9352 + }, + { + "start": 3581.3, + "end": 3582.84, + "probability": 0.0359 + }, + { + "start": 3583.06, + "end": 3584.2, + "probability": 0.6497 + }, + { + "start": 3585.26, + "end": 3586.6, + "probability": 0.5022 + }, + { + "start": 3586.88, + "end": 3588.06, + "probability": 0.5684 + }, + { + "start": 3588.54, + "end": 3589.32, + "probability": 0.7929 + }, + { + "start": 3591.06, + "end": 3593.54, + "probability": 0.1802 + }, + { + "start": 3593.8, + "end": 3593.92, + "probability": 0.3739 + }, + { + "start": 3593.92, + "end": 3593.92, + "probability": 0.0588 + }, + { + "start": 3593.92, + "end": 3595.21, + "probability": 0.1704 + }, + { + "start": 3608.22, + "end": 3608.32, + "probability": 0.115 + }, + { + "start": 3608.32, + "end": 3608.88, + "probability": 0.3115 + }, + { + "start": 3609.32, + "end": 3609.32, + "probability": 0.0854 + }, + { + "start": 3609.32, + "end": 3609.32, + "probability": 0.2955 + }, + { + "start": 3609.32, + "end": 3609.32, + "probability": 0.1545 + }, + { + "start": 3609.32, + "end": 3609.32, + "probability": 0.0802 + }, + { + "start": 3609.32, + "end": 3610.16, + "probability": 0.5095 + }, + { + "start": 3610.8, + "end": 3613.48, + "probability": 0.8291 + }, + { + "start": 3613.48, + "end": 3616.18, + "probability": 0.7955 + }, + { + "start": 3619.02, + "end": 3619.6, + "probability": 0.9754 + }, + { + "start": 3619.86, + "end": 3621.42, + "probability": 0.889 + }, + { + "start": 3621.8, + "end": 3624.24, + "probability": 0.8315 + }, + { + "start": 3624.56, + "end": 3627.46, + "probability": 0.9689 + }, + { + "start": 3627.96, + "end": 3628.6, + "probability": 0.5551 + }, + { + "start": 3629.34, + "end": 3631.3, + "probability": 0.9702 + }, + { + "start": 3632.0, + "end": 3634.1, + "probability": 0.933 + }, + { + "start": 3635.06, + "end": 3635.48, + "probability": 0.8045 + }, + { + "start": 3635.54, + "end": 3637.71, + "probability": 0.7467 + }, + { + "start": 3637.88, + "end": 3639.18, + "probability": 0.9488 + }, + { + "start": 3639.72, + "end": 3644.24, + "probability": 0.9596 + }, + { + "start": 3645.12, + "end": 3645.34, + "probability": 0.4141 + }, + { + "start": 3645.46, + "end": 3646.06, + "probability": 0.743 + }, + { + "start": 3646.3, + "end": 3648.8, + "probability": 0.9619 + }, + { + "start": 3649.2, + "end": 3652.0, + "probability": 0.958 + }, + { + "start": 3652.94, + "end": 3654.32, + "probability": 0.8842 + }, + { + "start": 3654.5, + "end": 3655.74, + "probability": 0.6265 + }, + { + "start": 3656.02, + "end": 3657.02, + "probability": 0.8936 + }, + { + "start": 3657.62, + "end": 3658.07, + "probability": 0.9019 + }, + { + "start": 3660.41, + "end": 3661.26, + "probability": 0.7666 + }, + { + "start": 3661.72, + "end": 3662.33, + "probability": 0.9494 + }, + { + "start": 3662.8, + "end": 3664.16, + "probability": 0.9663 + }, + { + "start": 3664.54, + "end": 3664.88, + "probability": 0.9404 + }, + { + "start": 3665.24, + "end": 3667.28, + "probability": 0.9465 + }, + { + "start": 3667.38, + "end": 3668.0, + "probability": 0.6701 + }, + { + "start": 3668.02, + "end": 3670.42, + "probability": 0.2715 + }, + { + "start": 3670.46, + "end": 3671.46, + "probability": 0.7222 + }, + { + "start": 3671.46, + "end": 3674.18, + "probability": 0.203 + }, + { + "start": 3675.1, + "end": 3676.1, + "probability": 0.5374 + }, + { + "start": 3676.2, + "end": 3678.56, + "probability": 0.4309 + }, + { + "start": 3678.64, + "end": 3679.18, + "probability": 0.7773 + }, + { + "start": 3679.38, + "end": 3680.4, + "probability": 0.4295 + }, + { + "start": 3680.4, + "end": 3683.32, + "probability": 0.9301 + }, + { + "start": 3683.72, + "end": 3689.56, + "probability": 0.9839 + }, + { + "start": 3689.56, + "end": 3692.48, + "probability": 0.9932 + }, + { + "start": 3692.84, + "end": 3693.0, + "probability": 0.4931 + }, + { + "start": 3693.32, + "end": 3693.52, + "probability": 0.6513 + }, + { + "start": 3693.84, + "end": 3694.16, + "probability": 0.8903 + }, + { + "start": 3694.38, + "end": 3694.62, + "probability": 0.9915 + }, + { + "start": 3694.68, + "end": 3695.02, + "probability": 0.9557 + }, + { + "start": 3695.06, + "end": 3695.26, + "probability": 0.8395 + }, + { + "start": 3695.32, + "end": 3695.6, + "probability": 0.9452 + }, + { + "start": 3696.12, + "end": 3697.6, + "probability": 0.8051 + }, + { + "start": 3699.02, + "end": 3699.8, + "probability": 0.304 + }, + { + "start": 3699.8, + "end": 3700.14, + "probability": 0.0729 + }, + { + "start": 3700.54, + "end": 3701.48, + "probability": 0.6771 + }, + { + "start": 3701.72, + "end": 3703.04, + "probability": 0.8618 + }, + { + "start": 3703.82, + "end": 3706.94, + "probability": 0.9871 + }, + { + "start": 3707.66, + "end": 3710.7, + "probability": 0.8761 + }, + { + "start": 3710.7, + "end": 3712.46, + "probability": 0.9927 + }, + { + "start": 3712.6, + "end": 3713.84, + "probability": 0.7434 + }, + { + "start": 3713.86, + "end": 3714.96, + "probability": 0.5668 + }, + { + "start": 3715.14, + "end": 3716.01, + "probability": 0.8185 + }, + { + "start": 3716.18, + "end": 3717.3, + "probability": 0.9064 + }, + { + "start": 3717.32, + "end": 3718.94, + "probability": 0.9091 + }, + { + "start": 3718.96, + "end": 3721.29, + "probability": 0.9934 + }, + { + "start": 3721.84, + "end": 3722.79, + "probability": 0.9771 + }, + { + "start": 3723.98, + "end": 3726.24, + "probability": 0.7324 + }, + { + "start": 3726.78, + "end": 3731.33, + "probability": 0.0409 + }, + { + "start": 3734.44, + "end": 3734.74, + "probability": 0.2938 + }, + { + "start": 3745.26, + "end": 3746.36, + "probability": 0.4547 + }, + { + "start": 3748.98, + "end": 3750.22, + "probability": 0.5814 + }, + { + "start": 3752.64, + "end": 3758.7, + "probability": 0.015 + }, + { + "start": 3760.34, + "end": 3760.62, + "probability": 0.0692 + }, + { + "start": 3760.62, + "end": 3761.12, + "probability": 0.0352 + }, + { + "start": 3761.12, + "end": 3762.28, + "probability": 0.0406 + }, + { + "start": 3767.82, + "end": 3769.0, + "probability": 0.187 + }, + { + "start": 3790.42, + "end": 3791.06, + "probability": 0.2144 + }, + { + "start": 3803.9, + "end": 3807.5, + "probability": 0.5639 + }, + { + "start": 3808.82, + "end": 3811.32, + "probability": 0.5458 + }, + { + "start": 3812.02, + "end": 3813.0, + "probability": 0.7129 + }, + { + "start": 3817.64, + "end": 3819.16, + "probability": 0.8204 + }, + { + "start": 3819.86, + "end": 3821.18, + "probability": 0.6946 + }, + { + "start": 3821.82, + "end": 3822.78, + "probability": 0.3933 + }, + { + "start": 3823.26, + "end": 3824.2, + "probability": 0.7691 + }, + { + "start": 3825.32, + "end": 3826.07, + "probability": 0.9326 + }, + { + "start": 3826.4, + "end": 3826.58, + "probability": 0.2778 + }, + { + "start": 3826.72, + "end": 3831.56, + "probability": 0.9551 + }, + { + "start": 3831.82, + "end": 3832.66, + "probability": 0.8944 + }, + { + "start": 3832.96, + "end": 3834.94, + "probability": 0.8643 + }, + { + "start": 3835.06, + "end": 3835.96, + "probability": 0.8919 + }, + { + "start": 3840.36, + "end": 3840.36, + "probability": 0.007 + }, + { + "start": 3840.36, + "end": 3842.68, + "probability": 0.7837 + }, + { + "start": 3843.5, + "end": 3844.42, + "probability": 0.8036 + }, + { + "start": 3845.02, + "end": 3846.34, + "probability": 0.898 + }, + { + "start": 3847.36, + "end": 3849.66, + "probability": 0.9354 + }, + { + "start": 3851.74, + "end": 3852.36, + "probability": 0.9778 + }, + { + "start": 3854.0, + "end": 3855.64, + "probability": 0.5675 + }, + { + "start": 3856.54, + "end": 3859.34, + "probability": 0.6367 + }, + { + "start": 3860.08, + "end": 3861.42, + "probability": 0.8281 + }, + { + "start": 3862.5, + "end": 3864.98, + "probability": 0.9896 + }, + { + "start": 3865.5, + "end": 3866.52, + "probability": 0.9486 + }, + { + "start": 3867.58, + "end": 3869.38, + "probability": 0.9118 + }, + { + "start": 3870.06, + "end": 3871.24, + "probability": 0.9761 + }, + { + "start": 3872.96, + "end": 3874.46, + "probability": 0.8267 + }, + { + "start": 3876.74, + "end": 3877.88, + "probability": 0.9651 + }, + { + "start": 3877.96, + "end": 3878.98, + "probability": 0.6497 + }, + { + "start": 3879.12, + "end": 3882.04, + "probability": 0.6047 + }, + { + "start": 3882.6, + "end": 3884.08, + "probability": 0.8624 + }, + { + "start": 3885.04, + "end": 3886.86, + "probability": 0.8856 + }, + { + "start": 3887.0, + "end": 3888.04, + "probability": 0.9814 + }, + { + "start": 3889.12, + "end": 3890.74, + "probability": 0.9907 + }, + { + "start": 3891.78, + "end": 3893.58, + "probability": 0.9785 + }, + { + "start": 3894.12, + "end": 3894.84, + "probability": 0.8366 + }, + { + "start": 3895.76, + "end": 3899.06, + "probability": 0.9246 + }, + { + "start": 3899.9, + "end": 3902.16, + "probability": 0.554 + }, + { + "start": 3903.0, + "end": 3904.32, + "probability": 0.9811 + }, + { + "start": 3905.36, + "end": 3908.86, + "probability": 0.9718 + }, + { + "start": 3909.42, + "end": 3911.78, + "probability": 0.9566 + }, + { + "start": 3912.76, + "end": 3915.64, + "probability": 0.9433 + }, + { + "start": 3916.28, + "end": 3919.3, + "probability": 0.9078 + }, + { + "start": 3920.24, + "end": 3920.94, + "probability": 0.9951 + }, + { + "start": 3922.0, + "end": 3925.82, + "probability": 0.953 + }, + { + "start": 3928.42, + "end": 3932.12, + "probability": 0.7499 + }, + { + "start": 3933.4, + "end": 3935.92, + "probability": 0.7519 + }, + { + "start": 3936.92, + "end": 3938.42, + "probability": 0.9481 + }, + { + "start": 3939.26, + "end": 3941.8, + "probability": 0.5218 + }, + { + "start": 3942.92, + "end": 3945.94, + "probability": 0.6645 + }, + { + "start": 3946.84, + "end": 3949.52, + "probability": 0.7522 + }, + { + "start": 3950.22, + "end": 3951.44, + "probability": 0.8347 + }, + { + "start": 3952.0, + "end": 3953.98, + "probability": 0.9301 + }, + { + "start": 3954.9, + "end": 3958.6, + "probability": 0.9463 + }, + { + "start": 3958.98, + "end": 3960.34, + "probability": 0.7017 + }, + { + "start": 3961.48, + "end": 3963.22, + "probability": 0.7105 + }, + { + "start": 3964.54, + "end": 3967.08, + "probability": 0.9883 + }, + { + "start": 3968.64, + "end": 3970.26, + "probability": 0.981 + }, + { + "start": 3971.7, + "end": 3974.01, + "probability": 0.9615 + }, + { + "start": 3974.34, + "end": 3975.26, + "probability": 0.9884 + }, + { + "start": 3976.18, + "end": 3978.1, + "probability": 0.6875 + }, + { + "start": 3978.96, + "end": 3979.92, + "probability": 0.8424 + }, + { + "start": 3980.66, + "end": 3983.94, + "probability": 0.7372 + }, + { + "start": 3984.9, + "end": 3986.92, + "probability": 0.9162 + }, + { + "start": 3990.06, + "end": 3992.62, + "probability": 0.9978 + }, + { + "start": 3993.72, + "end": 3996.04, + "probability": 0.8164 + }, + { + "start": 3997.16, + "end": 3999.04, + "probability": 0.9539 + }, + { + "start": 3999.84, + "end": 4002.56, + "probability": 0.8084 + }, + { + "start": 4003.04, + "end": 4005.02, + "probability": 0.7253 + }, + { + "start": 4006.4, + "end": 4006.64, + "probability": 0.1951 + }, + { + "start": 4006.64, + "end": 4012.7, + "probability": 0.4955 + }, + { + "start": 4013.54, + "end": 4013.98, + "probability": 0.1775 + }, + { + "start": 4013.98, + "end": 4016.56, + "probability": 0.8285 + }, + { + "start": 4016.82, + "end": 4019.46, + "probability": 0.2656 + }, + { + "start": 4019.98, + "end": 4020.56, + "probability": 0.6439 + }, + { + "start": 4022.0, + "end": 4023.68, + "probability": 0.0318 + }, + { + "start": 4023.72, + "end": 4024.7, + "probability": 0.724 + }, + { + "start": 4024.98, + "end": 4025.96, + "probability": 0.8992 + }, + { + "start": 4027.0, + "end": 4027.64, + "probability": 0.3587 + }, + { + "start": 4027.82, + "end": 4029.62, + "probability": 0.8887 + }, + { + "start": 4029.68, + "end": 4031.12, + "probability": 0.5623 + }, + { + "start": 4031.48, + "end": 4032.73, + "probability": 0.9033 + }, + { + "start": 4033.34, + "end": 4035.92, + "probability": 0.8611 + }, + { + "start": 4036.68, + "end": 4038.22, + "probability": 0.7642 + }, + { + "start": 4039.42, + "end": 4041.64, + "probability": 0.5098 + }, + { + "start": 4042.62, + "end": 4042.62, + "probability": 0.0163 + }, + { + "start": 4042.62, + "end": 4045.66, + "probability": 0.8882 + }, + { + "start": 4047.08, + "end": 4048.48, + "probability": 0.7863 + }, + { + "start": 4049.02, + "end": 4050.5, + "probability": 0.8139 + }, + { + "start": 4051.18, + "end": 4052.28, + "probability": 0.7935 + }, + { + "start": 4052.62, + "end": 4055.84, + "probability": 0.6794 + }, + { + "start": 4056.18, + "end": 4057.13, + "probability": 0.6371 + }, + { + "start": 4058.2, + "end": 4061.1, + "probability": 0.9966 + }, + { + "start": 4061.84, + "end": 4062.36, + "probability": 0.8989 + }, + { + "start": 4063.18, + "end": 4064.74, + "probability": 0.9724 + }, + { + "start": 4066.64, + "end": 4069.06, + "probability": 0.988 + }, + { + "start": 4069.14, + "end": 4071.88, + "probability": 0.992 + }, + { + "start": 4072.44, + "end": 4076.32, + "probability": 0.8135 + }, + { + "start": 4076.92, + "end": 4078.5, + "probability": 0.3509 + }, + { + "start": 4079.44, + "end": 4081.6, + "probability": 0.7646 + }, + { + "start": 4082.58, + "end": 4085.38, + "probability": 0.5974 + }, + { + "start": 4086.24, + "end": 4088.18, + "probability": 0.8643 + }, + { + "start": 4088.9, + "end": 4091.82, + "probability": 0.9446 + }, + { + "start": 4093.14, + "end": 4094.06, + "probability": 0.7164 + }, + { + "start": 4095.1, + "end": 4095.34, + "probability": 0.83 + }, + { + "start": 4096.34, + "end": 4098.38, + "probability": 0.954 + }, + { + "start": 4099.36, + "end": 4100.34, + "probability": 0.7338 + }, + { + "start": 4101.08, + "end": 4102.7, + "probability": 0.9771 + }, + { + "start": 4103.64, + "end": 4104.78, + "probability": 0.464 + }, + { + "start": 4106.8, + "end": 4109.02, + "probability": 0.9364 + }, + { + "start": 4109.9, + "end": 4113.2, + "probability": 0.9663 + }, + { + "start": 4114.28, + "end": 4115.44, + "probability": 0.8879 + }, + { + "start": 4115.96, + "end": 4116.26, + "probability": 0.6394 + }, + { + "start": 4119.08, + "end": 4119.75, + "probability": 0.8833 + }, + { + "start": 4120.36, + "end": 4123.42, + "probability": 0.3991 + }, + { + "start": 4124.22, + "end": 4124.9, + "probability": 0.7276 + }, + { + "start": 4126.3, + "end": 4127.42, + "probability": 0.6153 + }, + { + "start": 4128.12, + "end": 4129.58, + "probability": 0.4861 + }, + { + "start": 4130.3, + "end": 4134.02, + "probability": 0.8526 + }, + { + "start": 4134.02, + "end": 4137.24, + "probability": 0.9939 + }, + { + "start": 4138.2, + "end": 4139.9, + "probability": 0.8041 + }, + { + "start": 4141.18, + "end": 4144.6, + "probability": 0.7907 + }, + { + "start": 4145.22, + "end": 4146.94, + "probability": 0.8334 + }, + { + "start": 4148.0, + "end": 4149.52, + "probability": 0.9033 + }, + { + "start": 4149.62, + "end": 4150.12, + "probability": 0.8414 + }, + { + "start": 4150.52, + "end": 4152.46, + "probability": 0.9149 + }, + { + "start": 4153.32, + "end": 4154.52, + "probability": 0.9581 + }, + { + "start": 4155.16, + "end": 4156.9, + "probability": 0.6494 + }, + { + "start": 4157.04, + "end": 4157.42, + "probability": 0.9668 + }, + { + "start": 4158.88, + "end": 4160.36, + "probability": 0.9107 + }, + { + "start": 4161.3, + "end": 4163.04, + "probability": 0.9668 + }, + { + "start": 4164.7, + "end": 4165.2, + "probability": 0.4072 + }, + { + "start": 4166.1, + "end": 4168.7, + "probability": 0.6728 + }, + { + "start": 4169.56, + "end": 4171.96, + "probability": 0.5905 + }, + { + "start": 4172.52, + "end": 4173.26, + "probability": 0.7863 + }, + { + "start": 4174.5, + "end": 4177.66, + "probability": 0.9946 + }, + { + "start": 4179.32, + "end": 4181.26, + "probability": 0.9907 + }, + { + "start": 4182.04, + "end": 4182.88, + "probability": 0.9459 + }, + { + "start": 4184.2, + "end": 4186.04, + "probability": 0.9142 + }, + { + "start": 4186.38, + "end": 4187.82, + "probability": 0.8932 + }, + { + "start": 4188.44, + "end": 4193.08, + "probability": 0.9644 + }, + { + "start": 4194.26, + "end": 4195.32, + "probability": 0.7202 + }, + { + "start": 4196.28, + "end": 4196.76, + "probability": 0.9902 + }, + { + "start": 4198.1, + "end": 4202.36, + "probability": 0.9969 + }, + { + "start": 4203.0, + "end": 4204.86, + "probability": 0.9978 + }, + { + "start": 4205.38, + "end": 4206.04, + "probability": 0.89 + }, + { + "start": 4206.92, + "end": 4209.54, + "probability": 0.9461 + }, + { + "start": 4209.76, + "end": 4210.44, + "probability": 0.8932 + }, + { + "start": 4211.2, + "end": 4214.8, + "probability": 0.994 + }, + { + "start": 4215.26, + "end": 4216.94, + "probability": 0.9922 + }, + { + "start": 4218.14, + "end": 4218.7, + "probability": 0.4145 + }, + { + "start": 4219.24, + "end": 4219.92, + "probability": 0.6317 + }, + { + "start": 4220.46, + "end": 4221.58, + "probability": 0.5295 + }, + { + "start": 4222.3, + "end": 4223.75, + "probability": 0.9926 + }, + { + "start": 4223.84, + "end": 4224.7, + "probability": 0.2781 + }, + { + "start": 4225.04, + "end": 4225.64, + "probability": 0.7076 + }, + { + "start": 4225.7, + "end": 4227.12, + "probability": 0.87 + }, + { + "start": 4227.98, + "end": 4229.66, + "probability": 0.9331 + }, + { + "start": 4230.78, + "end": 4231.91, + "probability": 0.9792 + }, + { + "start": 4232.58, + "end": 4237.92, + "probability": 0.9621 + }, + { + "start": 4238.26, + "end": 4239.7, + "probability": 0.9214 + }, + { + "start": 4240.12, + "end": 4240.78, + "probability": 0.7578 + }, + { + "start": 4241.12, + "end": 4241.86, + "probability": 0.9113 + }, + { + "start": 4241.9, + "end": 4242.86, + "probability": 0.8756 + }, + { + "start": 4243.5, + "end": 4248.18, + "probability": 0.9947 + }, + { + "start": 4248.72, + "end": 4249.26, + "probability": 0.3729 + }, + { + "start": 4250.2, + "end": 4251.02, + "probability": 0.9609 + }, + { + "start": 4251.18, + "end": 4254.02, + "probability": 0.0217 + }, + { + "start": 4254.02, + "end": 4254.02, + "probability": 0.2335 + }, + { + "start": 4254.02, + "end": 4254.68, + "probability": 0.5654 + }, + { + "start": 4255.06, + "end": 4258.42, + "probability": 0.8933 + }, + { + "start": 4258.94, + "end": 4259.04, + "probability": 0.6957 + }, + { + "start": 4259.66, + "end": 4263.26, + "probability": 0.9865 + }, + { + "start": 4263.66, + "end": 4267.36, + "probability": 0.9132 + }, + { + "start": 4267.84, + "end": 4270.08, + "probability": 0.9558 + }, + { + "start": 4270.4, + "end": 4272.3, + "probability": 0.9102 + }, + { + "start": 4272.42, + "end": 4273.22, + "probability": 0.5392 + }, + { + "start": 4273.7, + "end": 4275.84, + "probability": 0.9128 + }, + { + "start": 4277.36, + "end": 4281.94, + "probability": 0.4918 + }, + { + "start": 4283.34, + "end": 4286.04, + "probability": 0.8769 + }, + { + "start": 4286.42, + "end": 4289.64, + "probability": 0.6838 + }, + { + "start": 4289.64, + "end": 4292.14, + "probability": 0.9736 + }, + { + "start": 4293.14, + "end": 4295.08, + "probability": 0.803 + }, + { + "start": 4297.3, + "end": 4297.74, + "probability": 0.5712 + }, + { + "start": 4299.28, + "end": 4301.72, + "probability": 0.1672 + }, + { + "start": 4301.74, + "end": 4303.46, + "probability": 0.665 + }, + { + "start": 4304.06, + "end": 4306.32, + "probability": 0.8286 + }, + { + "start": 4307.38, + "end": 4307.58, + "probability": 0.5654 + }, + { + "start": 4307.96, + "end": 4308.28, + "probability": 0.8847 + }, + { + "start": 4309.06, + "end": 4312.02, + "probability": 0.9695 + }, + { + "start": 4313.12, + "end": 4318.98, + "probability": 0.9794 + }, + { + "start": 4320.04, + "end": 4323.48, + "probability": 0.9191 + }, + { + "start": 4324.4, + "end": 4324.8, + "probability": 0.7586 + }, + { + "start": 4326.92, + "end": 4332.08, + "probability": 0.9933 + }, + { + "start": 4333.4, + "end": 4337.34, + "probability": 0.9917 + }, + { + "start": 4338.16, + "end": 4340.92, + "probability": 0.9994 + }, + { + "start": 4342.48, + "end": 4344.72, + "probability": 0.9959 + }, + { + "start": 4347.96, + "end": 4350.28, + "probability": 0.0972 + }, + { + "start": 4350.82, + "end": 4353.5, + "probability": 0.0999 + }, + { + "start": 4354.52, + "end": 4358.8, + "probability": 0.0873 + }, + { + "start": 4359.06, + "end": 4360.56, + "probability": 0.9403 + }, + { + "start": 4363.28, + "end": 4364.38, + "probability": 0.915 + }, + { + "start": 4366.0, + "end": 4370.1, + "probability": 0.8616 + }, + { + "start": 4370.1, + "end": 4373.84, + "probability": 0.9956 + }, + { + "start": 4374.64, + "end": 4377.88, + "probability": 0.9977 + }, + { + "start": 4378.96, + "end": 4380.68, + "probability": 0.9948 + }, + { + "start": 4381.48, + "end": 4383.04, + "probability": 0.9975 + }, + { + "start": 4384.34, + "end": 4389.2, + "probability": 0.9766 + }, + { + "start": 4389.62, + "end": 4390.6, + "probability": 0.8088 + }, + { + "start": 4391.64, + "end": 4394.34, + "probability": 0.9536 + }, + { + "start": 4394.48, + "end": 4396.7, + "probability": 0.9946 + }, + { + "start": 4398.34, + "end": 4402.66, + "probability": 0.9948 + }, + { + "start": 4402.92, + "end": 4403.7, + "probability": 0.8595 + }, + { + "start": 4404.9, + "end": 4408.32, + "probability": 0.9967 + }, + { + "start": 4408.32, + "end": 4412.22, + "probability": 0.9993 + }, + { + "start": 4414.58, + "end": 4415.92, + "probability": 0.7635 + }, + { + "start": 4416.72, + "end": 4418.64, + "probability": 0.345 + }, + { + "start": 4419.58, + "end": 4423.96, + "probability": 0.9438 + }, + { + "start": 4425.46, + "end": 4427.62, + "probability": 0.9971 + }, + { + "start": 4428.96, + "end": 4430.28, + "probability": 0.9339 + }, + { + "start": 4431.84, + "end": 4433.12, + "probability": 0.9954 + }, + { + "start": 4434.26, + "end": 4435.74, + "probability": 0.9941 + }, + { + "start": 4436.72, + "end": 4441.68, + "probability": 0.9934 + }, + { + "start": 4443.92, + "end": 4446.52, + "probability": 0.9975 + }, + { + "start": 4446.52, + "end": 4448.78, + "probability": 0.9977 + }, + { + "start": 4450.14, + "end": 4452.38, + "probability": 0.987 + }, + { + "start": 4453.34, + "end": 4455.8, + "probability": 0.9902 + }, + { + "start": 4456.68, + "end": 4460.6, + "probability": 0.99 + }, + { + "start": 4461.86, + "end": 4464.18, + "probability": 0.9956 + }, + { + "start": 4465.26, + "end": 4467.16, + "probability": 0.9961 + }, + { + "start": 4468.66, + "end": 4473.0, + "probability": 0.9952 + }, + { + "start": 4474.24, + "end": 4477.0, + "probability": 0.8342 + }, + { + "start": 4477.88, + "end": 4481.42, + "probability": 0.9865 + }, + { + "start": 4482.48, + "end": 4485.62, + "probability": 0.9913 + }, + { + "start": 4486.28, + "end": 4489.3, + "probability": 0.9837 + }, + { + "start": 4490.84, + "end": 4493.82, + "probability": 0.9971 + }, + { + "start": 4494.78, + "end": 4497.76, + "probability": 0.9575 + }, + { + "start": 4498.08, + "end": 4498.38, + "probability": 0.6709 + }, + { + "start": 4501.22, + "end": 4505.0, + "probability": 0.9516 + }, + { + "start": 4505.84, + "end": 4506.54, + "probability": 0.9507 + }, + { + "start": 4507.22, + "end": 4507.66, + "probability": 0.6535 + }, + { + "start": 4508.4, + "end": 4509.46, + "probability": 0.4987 + }, + { + "start": 4511.16, + "end": 4512.68, + "probability": 0.9541 + }, + { + "start": 4512.86, + "end": 4516.42, + "probability": 0.998 + }, + { + "start": 4517.54, + "end": 4521.42, + "probability": 0.9974 + }, + { + "start": 4523.82, + "end": 4527.68, + "probability": 0.9946 + }, + { + "start": 4529.12, + "end": 4533.04, + "probability": 0.9965 + }, + { + "start": 4534.18, + "end": 4535.3, + "probability": 0.9966 + }, + { + "start": 4536.6, + "end": 4538.1, + "probability": 0.8446 + }, + { + "start": 4539.02, + "end": 4543.48, + "probability": 0.9958 + }, + { + "start": 4544.34, + "end": 4545.12, + "probability": 0.9722 + }, + { + "start": 4546.36, + "end": 4548.44, + "probability": 0.9819 + }, + { + "start": 4549.44, + "end": 4550.56, + "probability": 0.9951 + }, + { + "start": 4552.58, + "end": 4553.96, + "probability": 0.8868 + }, + { + "start": 4554.62, + "end": 4555.6, + "probability": 0.857 + }, + { + "start": 4556.52, + "end": 4557.42, + "probability": 0.7811 + }, + { + "start": 4558.76, + "end": 4560.5, + "probability": 0.9344 + }, + { + "start": 4561.74, + "end": 4566.96, + "probability": 0.9941 + }, + { + "start": 4567.56, + "end": 4568.62, + "probability": 0.8547 + }, + { + "start": 4569.78, + "end": 4571.44, + "probability": 0.9765 + }, + { + "start": 4572.36, + "end": 4573.78, + "probability": 0.9709 + }, + { + "start": 4574.48, + "end": 4578.28, + "probability": 0.9979 + }, + { + "start": 4579.34, + "end": 4580.64, + "probability": 0.9755 + }, + { + "start": 4581.68, + "end": 4582.0, + "probability": 0.7194 + }, + { + "start": 4585.74, + "end": 4587.44, + "probability": 0.8512 + }, + { + "start": 4589.03, + "end": 4591.54, + "probability": 0.9837 + }, + { + "start": 4592.4, + "end": 4593.64, + "probability": 0.8896 + }, + { + "start": 4596.68, + "end": 4598.22, + "probability": 0.6436 + }, + { + "start": 4599.0, + "end": 4601.12, + "probability": 0.8634 + }, + { + "start": 4602.0, + "end": 4602.26, + "probability": 0.9801 + }, + { + "start": 4603.52, + "end": 4604.72, + "probability": 0.9489 + }, + { + "start": 4605.26, + "end": 4606.9, + "probability": 0.4727 + }, + { + "start": 4607.68, + "end": 4609.96, + "probability": 0.6459 + }, + { + "start": 4611.87, + "end": 4614.85, + "probability": 0.9805 + }, + { + "start": 4615.62, + "end": 4618.66, + "probability": 0.7804 + }, + { + "start": 4621.8, + "end": 4621.96, + "probability": 0.748 + }, + { + "start": 4624.62, + "end": 4627.62, + "probability": 0.8892 + }, + { + "start": 4631.14, + "end": 4633.24, + "probability": 0.6066 + }, + { + "start": 4633.62, + "end": 4635.92, + "probability": 0.7036 + }, + { + "start": 4637.94, + "end": 4638.22, + "probability": 0.4526 + }, + { + "start": 4639.16, + "end": 4641.88, + "probability": 0.4997 + }, + { + "start": 4642.94, + "end": 4646.62, + "probability": 0.7078 + }, + { + "start": 4648.71, + "end": 4652.68, + "probability": 0.7981 + }, + { + "start": 4653.8, + "end": 4654.56, + "probability": 0.3276 + }, + { + "start": 4655.44, + "end": 4657.46, + "probability": 0.6094 + }, + { + "start": 4659.06, + "end": 4660.08, + "probability": 0.9679 + }, + { + "start": 4661.82, + "end": 4663.18, + "probability": 0.6334 + }, + { + "start": 4663.32, + "end": 4665.74, + "probability": 0.8621 + }, + { + "start": 4666.3, + "end": 4666.98, + "probability": 0.7761 + }, + { + "start": 4667.58, + "end": 4672.52, + "probability": 0.6384 + }, + { + "start": 4674.78, + "end": 4679.3, + "probability": 0.5537 + }, + { + "start": 4680.06, + "end": 4680.96, + "probability": 0.7849 + }, + { + "start": 4682.38, + "end": 4683.84, + "probability": 0.5762 + }, + { + "start": 4684.46, + "end": 4685.04, + "probability": 0.772 + }, + { + "start": 4685.68, + "end": 4688.74, + "probability": 0.9312 + }, + { + "start": 4689.12, + "end": 4689.8, + "probability": 0.1796 + }, + { + "start": 4689.8, + "end": 4690.3, + "probability": 0.0643 + }, + { + "start": 4690.48, + "end": 4690.6, + "probability": 0.0107 + }, + { + "start": 4691.8, + "end": 4692.06, + "probability": 0.2227 + }, + { + "start": 4692.16, + "end": 4692.16, + "probability": 0.3074 + }, + { + "start": 4692.16, + "end": 4693.58, + "probability": 0.8052 + }, + { + "start": 4693.88, + "end": 4698.02, + "probability": 0.9341 + }, + { + "start": 4698.52, + "end": 4701.52, + "probability": 0.1119 + }, + { + "start": 4702.08, + "end": 4705.1, + "probability": 0.9049 + }, + { + "start": 4705.96, + "end": 4707.3, + "probability": 0.5979 + }, + { + "start": 4707.54, + "end": 4712.04, + "probability": 0.9918 + }, + { + "start": 4712.74, + "end": 4714.34, + "probability": 0.8724 + }, + { + "start": 4714.96, + "end": 4717.08, + "probability": 0.9478 + }, + { + "start": 4718.8, + "end": 4721.58, + "probability": 0.6864 + }, + { + "start": 4721.86, + "end": 4724.08, + "probability": 0.756 + }, + { + "start": 4725.02, + "end": 4727.86, + "probability": 0.7903 + }, + { + "start": 4728.66, + "end": 4731.53, + "probability": 0.9454 + }, + { + "start": 4732.34, + "end": 4733.76, + "probability": 0.8637 + }, + { + "start": 4734.22, + "end": 4736.8, + "probability": 0.9284 + }, + { + "start": 4737.3, + "end": 4742.84, + "probability": 0.7417 + }, + { + "start": 4743.6, + "end": 4746.75, + "probability": 0.9809 + }, + { + "start": 4746.88, + "end": 4747.94, + "probability": 0.5958 + }, + { + "start": 4748.67, + "end": 4750.1, + "probability": 0.7775 + }, + { + "start": 4750.74, + "end": 4750.84, + "probability": 0.5429 + }, + { + "start": 4751.24, + "end": 4755.08, + "probability": 0.8906 + }, + { + "start": 4755.22, + "end": 4756.72, + "probability": 0.6579 + }, + { + "start": 4756.84, + "end": 4758.1, + "probability": 0.7835 + }, + { + "start": 4758.16, + "end": 4760.04, + "probability": 0.9526 + }, + { + "start": 4760.94, + "end": 4762.32, + "probability": 0.835 + }, + { + "start": 4762.4, + "end": 4762.98, + "probability": 0.7091 + }, + { + "start": 4763.2, + "end": 4764.1, + "probability": 0.7747 + }, + { + "start": 4764.7, + "end": 4765.8, + "probability": 0.9412 + }, + { + "start": 4768.04, + "end": 4770.94, + "probability": 0.7637 + }, + { + "start": 4777.52, + "end": 4777.66, + "probability": 0.036 + }, + { + "start": 4777.66, + "end": 4778.93, + "probability": 0.7738 + }, + { + "start": 4780.74, + "end": 4782.39, + "probability": 0.9539 + }, + { + "start": 4783.46, + "end": 4785.39, + "probability": 0.8821 + }, + { + "start": 4787.38, + "end": 4788.1, + "probability": 0.8232 + }, + { + "start": 4788.92, + "end": 4790.56, + "probability": 0.8967 + }, + { + "start": 4790.66, + "end": 4795.14, + "probability": 0.9219 + }, + { + "start": 4798.45, + "end": 4800.48, + "probability": 0.6689 + }, + { + "start": 4800.68, + "end": 4802.26, + "probability": 0.7453 + }, + { + "start": 4802.5, + "end": 4804.74, + "probability": 0.9036 + }, + { + "start": 4804.88, + "end": 4805.52, + "probability": 0.8458 + }, + { + "start": 4806.64, + "end": 4808.12, + "probability": 0.9652 + }, + { + "start": 4808.74, + "end": 4809.12, + "probability": 0.8259 + }, + { + "start": 4809.24, + "end": 4811.8, + "probability": 0.9269 + }, + { + "start": 4812.02, + "end": 4816.6, + "probability": 0.9636 + }, + { + "start": 4816.68, + "end": 4816.84, + "probability": 0.3588 + }, + { + "start": 4817.54, + "end": 4818.86, + "probability": 0.5261 + }, + { + "start": 4819.82, + "end": 4822.04, + "probability": 0.0887 + }, + { + "start": 4822.44, + "end": 4822.68, + "probability": 0.5242 + }, + { + "start": 4824.02, + "end": 4824.34, + "probability": 0.5764 + }, + { + "start": 4824.72, + "end": 4826.2, + "probability": 0.959 + }, + { + "start": 4829.82, + "end": 4831.72, + "probability": 0.1278 + }, + { + "start": 4832.38, + "end": 4833.58, + "probability": 0.9971 + }, + { + "start": 4834.66, + "end": 4837.84, + "probability": 0.9879 + }, + { + "start": 4838.66, + "end": 4838.66, + "probability": 0.3758 + }, + { + "start": 4838.66, + "end": 4842.74, + "probability": 0.9272 + }, + { + "start": 4843.72, + "end": 4845.12, + "probability": 0.7253 + }, + { + "start": 4845.92, + "end": 4850.06, + "probability": 0.9028 + }, + { + "start": 4850.28, + "end": 4851.02, + "probability": 0.6673 + }, + { + "start": 4851.66, + "end": 4855.94, + "probability": 0.9225 + }, + { + "start": 4856.78, + "end": 4859.86, + "probability": 0.9554 + }, + { + "start": 4860.48, + "end": 4862.6, + "probability": 0.6287 + }, + { + "start": 4863.86, + "end": 4866.32, + "probability": 0.9865 + }, + { + "start": 4866.98, + "end": 4872.88, + "probability": 0.9993 + }, + { + "start": 4873.22, + "end": 4875.56, + "probability": 0.8783 + }, + { + "start": 4876.38, + "end": 4879.46, + "probability": 0.953 + }, + { + "start": 4880.0, + "end": 4880.74, + "probability": 0.944 + }, + { + "start": 4882.92, + "end": 4883.98, + "probability": 0.7457 + }, + { + "start": 4886.3, + "end": 4889.96, + "probability": 0.7197 + }, + { + "start": 4890.44, + "end": 4891.25, + "probability": 0.8053 + }, + { + "start": 4892.18, + "end": 4893.12, + "probability": 0.8945 + }, + { + "start": 4894.96, + "end": 4897.6, + "probability": 0.9612 + }, + { + "start": 4897.82, + "end": 4901.4, + "probability": 0.8164 + }, + { + "start": 4901.4, + "end": 4902.7, + "probability": 0.847 + }, + { + "start": 4903.32, + "end": 4905.38, + "probability": 0.6074 + }, + { + "start": 4905.94, + "end": 4907.06, + "probability": 0.8896 + }, + { + "start": 4907.64, + "end": 4912.17, + "probability": 0.8852 + }, + { + "start": 4914.08, + "end": 4919.3, + "probability": 0.865 + }, + { + "start": 4920.44, + "end": 4923.06, + "probability": 0.9916 + }, + { + "start": 4923.72, + "end": 4926.08, + "probability": 0.5396 + }, + { + "start": 4926.58, + "end": 4929.74, + "probability": 0.8672 + }, + { + "start": 4930.46, + "end": 4933.24, + "probability": 0.7538 + }, + { + "start": 4935.74, + "end": 4937.33, + "probability": 0.0561 + }, + { + "start": 4937.36, + "end": 4937.36, + "probability": 0.044 + }, + { + "start": 4937.76, + "end": 4941.9, + "probability": 0.7597 + }, + { + "start": 4942.64, + "end": 4944.38, + "probability": 0.9323 + }, + { + "start": 4944.38, + "end": 4945.18, + "probability": 0.5298 + }, + { + "start": 4945.82, + "end": 4948.36, + "probability": 0.884 + }, + { + "start": 4949.64, + "end": 4949.68, + "probability": 0.0067 + }, + { + "start": 4950.67, + "end": 4951.32, + "probability": 0.0809 + }, + { + "start": 4951.32, + "end": 4952.76, + "probability": 0.1546 + }, + { + "start": 4953.62, + "end": 4955.21, + "probability": 0.9766 + }, + { + "start": 4955.74, + "end": 4957.48, + "probability": 0.9444 + }, + { + "start": 4958.1, + "end": 4958.54, + "probability": 0.496 + }, + { + "start": 4958.6, + "end": 4960.42, + "probability": 0.9539 + }, + { + "start": 4960.92, + "end": 4963.48, + "probability": 0.8883 + }, + { + "start": 4964.26, + "end": 4966.26, + "probability": 0.7513 + }, + { + "start": 4966.26, + "end": 4970.88, + "probability": 0.8477 + }, + { + "start": 4971.28, + "end": 4973.06, + "probability": 0.8477 + }, + { + "start": 4973.18, + "end": 4974.3, + "probability": 0.8387 + }, + { + "start": 4974.8, + "end": 4977.8, + "probability": 0.7151 + }, + { + "start": 4977.84, + "end": 4979.28, + "probability": 0.8531 + }, + { + "start": 4979.6, + "end": 4981.44, + "probability": 0.7986 + }, + { + "start": 4981.84, + "end": 4984.48, + "probability": 0.9279 + }, + { + "start": 4985.04, + "end": 4986.02, + "probability": 0.8505 + }, + { + "start": 4986.12, + "end": 4987.82, + "probability": 0.7462 + }, + { + "start": 4988.49, + "end": 4991.16, + "probability": 0.7849 + }, + { + "start": 4991.48, + "end": 4993.58, + "probability": 0.7691 + }, + { + "start": 4993.88, + "end": 4995.84, + "probability": 0.9069 + }, + { + "start": 4996.2, + "end": 4997.44, + "probability": 0.6524 + }, + { + "start": 4997.84, + "end": 4998.94, + "probability": 0.8468 + }, + { + "start": 4999.34, + "end": 4999.44, + "probability": 0.0081 + }, + { + "start": 4999.44, + "end": 4999.72, + "probability": 0.2394 + }, + { + "start": 4999.78, + "end": 5001.12, + "probability": 0.9178 + }, + { + "start": 5002.18, + "end": 5003.58, + "probability": 0.981 + }, + { + "start": 5003.92, + "end": 5004.64, + "probability": 0.7062 + }, + { + "start": 5004.98, + "end": 5005.6, + "probability": 0.5873 + }, + { + "start": 5006.64, + "end": 5009.81, + "probability": 0.9775 + }, + { + "start": 5010.42, + "end": 5011.62, + "probability": 0.7158 + }, + { + "start": 5011.72, + "end": 5012.72, + "probability": 0.9043 + }, + { + "start": 5013.36, + "end": 5013.86, + "probability": 0.7375 + }, + { + "start": 5013.94, + "end": 5016.8, + "probability": 0.9349 + }, + { + "start": 5016.86, + "end": 5018.5, + "probability": 0.5718 + }, + { + "start": 5019.0, + "end": 5019.76, + "probability": 0.527 + }, + { + "start": 5019.84, + "end": 5020.89, + "probability": 0.8646 + }, + { + "start": 5021.12, + "end": 5022.66, + "probability": 0.4862 + }, + { + "start": 5023.04, + "end": 5024.0, + "probability": 0.8117 + }, + { + "start": 5024.18, + "end": 5025.34, + "probability": 0.6185 + }, + { + "start": 5025.48, + "end": 5027.94, + "probability": 0.7771 + }, + { + "start": 5028.26, + "end": 5029.2, + "probability": 0.9268 + }, + { + "start": 5029.34, + "end": 5031.38, + "probability": 0.7569 + }, + { + "start": 5031.52, + "end": 5033.14, + "probability": 0.3958 + }, + { + "start": 5033.5, + "end": 5033.5, + "probability": 0.1708 + }, + { + "start": 5033.5, + "end": 5033.78, + "probability": 0.8477 + }, + { + "start": 5034.7, + "end": 5036.54, + "probability": 0.9657 + }, + { + "start": 5036.92, + "end": 5037.86, + "probability": 0.8271 + }, + { + "start": 5037.92, + "end": 5039.72, + "probability": 0.6757 + }, + { + "start": 5039.72, + "end": 5041.41, + "probability": 0.5031 + }, + { + "start": 5042.95, + "end": 5043.46, + "probability": 0.1663 + }, + { + "start": 5043.46, + "end": 5043.46, + "probability": 0.1099 + }, + { + "start": 5043.46, + "end": 5043.46, + "probability": 0.1322 + }, + { + "start": 5043.46, + "end": 5044.74, + "probability": 0.2966 + }, + { + "start": 5045.12, + "end": 5047.8, + "probability": 0.4754 + }, + { + "start": 5047.8, + "end": 5047.92, + "probability": 0.3998 + }, + { + "start": 5047.98, + "end": 5050.68, + "probability": 0.9648 + }, + { + "start": 5051.3, + "end": 5053.6, + "probability": 0.8425 + }, + { + "start": 5053.7, + "end": 5055.89, + "probability": 0.7705 + }, + { + "start": 5056.18, + "end": 5059.72, + "probability": 0.5338 + }, + { + "start": 5060.0, + "end": 5062.52, + "probability": 0.8638 + }, + { + "start": 5062.92, + "end": 5064.52, + "probability": 0.7999 + }, + { + "start": 5064.58, + "end": 5066.1, + "probability": 0.8487 + }, + { + "start": 5066.18, + "end": 5068.44, + "probability": 0.9492 + }, + { + "start": 5069.06, + "end": 5075.58, + "probability": 0.9362 + }, + { + "start": 5075.64, + "end": 5077.82, + "probability": 0.989 + }, + { + "start": 5077.86, + "end": 5078.32, + "probability": 0.501 + }, + { + "start": 5078.52, + "end": 5079.22, + "probability": 0.9485 + }, + { + "start": 5080.3, + "end": 5080.36, + "probability": 0.0864 + }, + { + "start": 5080.38, + "end": 5083.9, + "probability": 0.9575 + }, + { + "start": 5084.02, + "end": 5084.77, + "probability": 0.8471 + }, + { + "start": 5085.48, + "end": 5089.66, + "probability": 0.9779 + }, + { + "start": 5090.22, + "end": 5092.4, + "probability": 0.9252 + }, + { + "start": 5093.66, + "end": 5095.4, + "probability": 0.9073 + }, + { + "start": 5097.04, + "end": 5097.68, + "probability": 0.5773 + }, + { + "start": 5098.86, + "end": 5099.72, + "probability": 0.5703 + }, + { + "start": 5099.74, + "end": 5100.44, + "probability": 0.9014 + }, + { + "start": 5100.54, + "end": 5102.36, + "probability": 0.6733 + }, + { + "start": 5102.52, + "end": 5107.5, + "probability": 0.981 + }, + { + "start": 5109.2, + "end": 5110.88, + "probability": 0.9836 + }, + { + "start": 5111.76, + "end": 5113.5, + "probability": 0.9907 + }, + { + "start": 5113.5, + "end": 5116.66, + "probability": 0.9932 + }, + { + "start": 5117.42, + "end": 5120.36, + "probability": 0.6656 + }, + { + "start": 5121.04, + "end": 5122.88, + "probability": 0.9909 + }, + { + "start": 5123.58, + "end": 5125.34, + "probability": 0.979 + }, + { + "start": 5125.82, + "end": 5128.72, + "probability": 0.9692 + }, + { + "start": 5130.22, + "end": 5131.0, + "probability": 0.7095 + }, + { + "start": 5131.2, + "end": 5131.98, + "probability": 0.7684 + }, + { + "start": 5132.02, + "end": 5133.54, + "probability": 0.9324 + }, + { + "start": 5134.28, + "end": 5137.64, + "probability": 0.7922 + }, + { + "start": 5138.6, + "end": 5142.92, + "probability": 0.9949 + }, + { + "start": 5143.66, + "end": 5145.86, + "probability": 0.9275 + }, + { + "start": 5146.08, + "end": 5146.64, + "probability": 0.6536 + }, + { + "start": 5146.88, + "end": 5149.58, + "probability": 0.9751 + }, + { + "start": 5150.56, + "end": 5151.27, + "probability": 0.9902 + }, + { + "start": 5152.44, + "end": 5156.32, + "probability": 0.9947 + }, + { + "start": 5156.8, + "end": 5159.08, + "probability": 0.9925 + }, + { + "start": 5159.22, + "end": 5159.9, + "probability": 0.7841 + }, + { + "start": 5160.9, + "end": 5165.08, + "probability": 0.9831 + }, + { + "start": 5165.46, + "end": 5171.22, + "probability": 0.9913 + }, + { + "start": 5172.02, + "end": 5172.97, + "probability": 0.5103 + }, + { + "start": 5174.08, + "end": 5174.48, + "probability": 0.7983 + }, + { + "start": 5174.76, + "end": 5176.04, + "probability": 0.7749 + }, + { + "start": 5176.18, + "end": 5178.18, + "probability": 0.9173 + }, + { + "start": 5179.08, + "end": 5180.14, + "probability": 0.8448 + }, + { + "start": 5180.68, + "end": 5181.78, + "probability": 0.8139 + }, + { + "start": 5182.1, + "end": 5183.4, + "probability": 0.9337 + }, + { + "start": 5183.48, + "end": 5184.78, + "probability": 0.8369 + }, + { + "start": 5185.44, + "end": 5187.78, + "probability": 0.9871 + }, + { + "start": 5187.78, + "end": 5192.36, + "probability": 0.9769 + }, + { + "start": 5192.72, + "end": 5193.36, + "probability": 0.5831 + }, + { + "start": 5194.38, + "end": 5199.66, + "probability": 0.936 + }, + { + "start": 5200.08, + "end": 5202.68, + "probability": 0.9462 + }, + { + "start": 5203.22, + "end": 5204.5, + "probability": 0.7509 + }, + { + "start": 5205.58, + "end": 5205.98, + "probability": 0.6823 + }, + { + "start": 5207.12, + "end": 5209.26, + "probability": 0.9771 + }, + { + "start": 5209.36, + "end": 5211.96, + "probability": 0.9389 + }, + { + "start": 5212.46, + "end": 5214.3, + "probability": 0.9226 + }, + { + "start": 5215.0, + "end": 5218.08, + "probability": 0.9115 + }, + { + "start": 5218.82, + "end": 5219.96, + "probability": 0.9992 + }, + { + "start": 5220.78, + "end": 5222.14, + "probability": 0.7952 + }, + { + "start": 5223.48, + "end": 5225.78, + "probability": 0.9085 + }, + { + "start": 5225.86, + "end": 5227.34, + "probability": 0.7559 + }, + { + "start": 5228.0, + "end": 5230.8, + "probability": 0.9927 + }, + { + "start": 5231.16, + "end": 5234.2, + "probability": 0.6936 + }, + { + "start": 5234.94, + "end": 5236.96, + "probability": 0.9846 + }, + { + "start": 5237.04, + "end": 5238.44, + "probability": 0.6982 + }, + { + "start": 5238.5, + "end": 5243.4, + "probability": 0.8768 + }, + { + "start": 5243.92, + "end": 5244.78, + "probability": 0.727 + }, + { + "start": 5245.1, + "end": 5247.32, + "probability": 0.6699 + }, + { + "start": 5248.06, + "end": 5252.04, + "probability": 0.9038 + }, + { + "start": 5252.68, + "end": 5254.8, + "probability": 0.7349 + }, + { + "start": 5255.66, + "end": 5258.0, + "probability": 0.8231 + }, + { + "start": 5258.64, + "end": 5261.88, + "probability": 0.7682 + }, + { + "start": 5262.88, + "end": 5264.02, + "probability": 0.6407 + }, + { + "start": 5264.7, + "end": 5267.0, + "probability": 0.6129 + }, + { + "start": 5267.9, + "end": 5272.6, + "probability": 0.8762 + }, + { + "start": 5273.02, + "end": 5281.04, + "probability": 0.9503 + }, + { + "start": 5281.88, + "end": 5282.76, + "probability": 0.0304 + }, + { + "start": 5282.76, + "end": 5283.7, + "probability": 0.6502 + }, + { + "start": 5284.34, + "end": 5289.62, + "probability": 0.9854 + }, + { + "start": 5289.62, + "end": 5295.72, + "probability": 0.957 + }, + { + "start": 5295.72, + "end": 5300.5, + "probability": 0.9949 + }, + { + "start": 5301.88, + "end": 5302.56, + "probability": 0.6059 + }, + { + "start": 5303.14, + "end": 5309.26, + "probability": 0.8994 + }, + { + "start": 5310.36, + "end": 5317.78, + "probability": 0.9968 + }, + { + "start": 5318.16, + "end": 5320.42, + "probability": 0.907 + }, + { + "start": 5321.08, + "end": 5325.84, + "probability": 0.9893 + }, + { + "start": 5325.84, + "end": 5331.22, + "probability": 0.9997 + }, + { + "start": 5332.04, + "end": 5333.28, + "probability": 0.981 + }, + { + "start": 5333.42, + "end": 5334.0, + "probability": 0.8423 + }, + { + "start": 5334.06, + "end": 5336.86, + "probability": 0.9424 + }, + { + "start": 5336.86, + "end": 5340.24, + "probability": 0.8642 + }, + { + "start": 5341.1, + "end": 5345.0, + "probability": 0.7533 + }, + { + "start": 5345.36, + "end": 5350.96, + "probability": 0.9927 + }, + { + "start": 5351.66, + "end": 5356.54, + "probability": 0.8938 + }, + { + "start": 5357.28, + "end": 5360.78, + "probability": 0.8713 + }, + { + "start": 5360.78, + "end": 5364.26, + "probability": 0.9393 + }, + { + "start": 5364.8, + "end": 5369.94, + "probability": 0.993 + }, + { + "start": 5369.94, + "end": 5375.84, + "probability": 0.9265 + }, + { + "start": 5375.88, + "end": 5377.46, + "probability": 0.8192 + }, + { + "start": 5378.04, + "end": 5384.58, + "probability": 0.9808 + }, + { + "start": 5385.38, + "end": 5386.9, + "probability": 0.8981 + }, + { + "start": 5388.08, + "end": 5389.94, + "probability": 0.9031 + }, + { + "start": 5391.02, + "end": 5392.16, + "probability": 0.9185 + }, + { + "start": 5392.48, + "end": 5394.68, + "probability": 0.8958 + }, + { + "start": 5394.74, + "end": 5398.5, + "probability": 0.917 + }, + { + "start": 5399.0, + "end": 5402.98, + "probability": 0.9772 + }, + { + "start": 5403.7, + "end": 5406.3, + "probability": 0.8933 + }, + { + "start": 5406.46, + "end": 5411.96, + "probability": 0.9703 + }, + { + "start": 5414.42, + "end": 5416.56, + "probability": 0.7562 + }, + { + "start": 5417.14, + "end": 5418.46, + "probability": 0.668 + }, + { + "start": 5419.28, + "end": 5420.48, + "probability": 0.8315 + }, + { + "start": 5420.7, + "end": 5422.27, + "probability": 0.8495 + }, + { + "start": 5422.88, + "end": 5423.78, + "probability": 0.9751 + }, + { + "start": 5424.1, + "end": 5425.2, + "probability": 0.8219 + }, + { + "start": 5425.26, + "end": 5429.88, + "probability": 0.9277 + }, + { + "start": 5430.0, + "end": 5430.68, + "probability": 0.7517 + }, + { + "start": 5431.14, + "end": 5432.74, + "probability": 0.872 + }, + { + "start": 5433.3, + "end": 5437.5, + "probability": 0.9756 + }, + { + "start": 5437.96, + "end": 5439.68, + "probability": 0.9299 + }, + { + "start": 5440.02, + "end": 5442.26, + "probability": 0.9856 + }, + { + "start": 5442.66, + "end": 5445.7, + "probability": 0.9542 + }, + { + "start": 5446.28, + "end": 5449.26, + "probability": 0.9663 + }, + { + "start": 5449.38, + "end": 5449.6, + "probability": 0.7737 + }, + { + "start": 5450.34, + "end": 5452.66, + "probability": 0.8336 + }, + { + "start": 5453.48, + "end": 5453.58, + "probability": 0.3635 + }, + { + "start": 5453.64, + "end": 5454.18, + "probability": 0.8656 + }, + { + "start": 5454.46, + "end": 5458.28, + "probability": 0.9746 + }, + { + "start": 5458.66, + "end": 5459.86, + "probability": 0.4549 + }, + { + "start": 5460.0, + "end": 5461.02, + "probability": 0.9471 + }, + { + "start": 5461.48, + "end": 5461.86, + "probability": 0.8638 + }, + { + "start": 5462.66, + "end": 5463.78, + "probability": 0.9818 + }, + { + "start": 5464.78, + "end": 5465.06, + "probability": 0.0715 + }, + { + "start": 5465.8, + "end": 5466.29, + "probability": 0.2254 + }, + { + "start": 5467.2, + "end": 5468.38, + "probability": 0.5571 + }, + { + "start": 5470.5, + "end": 5472.86, + "probability": 0.2108 + }, + { + "start": 5472.96, + "end": 5473.87, + "probability": 0.5005 + }, + { + "start": 5474.7, + "end": 5477.26, + "probability": 0.8107 + }, + { + "start": 5478.56, + "end": 5481.16, + "probability": 0.9828 + }, + { + "start": 5482.24, + "end": 5483.94, + "probability": 0.8284 + }, + { + "start": 5484.84, + "end": 5484.9, + "probability": 0.2268 + }, + { + "start": 5484.9, + "end": 5485.94, + "probability": 0.6058 + }, + { + "start": 5491.56, + "end": 5493.95, + "probability": 0.7131 + }, + { + "start": 5494.82, + "end": 5495.48, + "probability": 0.7831 + }, + { + "start": 5497.82, + "end": 5503.06, + "probability": 0.9776 + }, + { + "start": 5504.48, + "end": 5507.32, + "probability": 0.9149 + }, + { + "start": 5507.42, + "end": 5508.14, + "probability": 0.892 + }, + { + "start": 5508.44, + "end": 5509.42, + "probability": 0.0031 + }, + { + "start": 5511.44, + "end": 5511.78, + "probability": 0.6838 + }, + { + "start": 5512.6, + "end": 5516.22, + "probability": 0.9584 + }, + { + "start": 5517.34, + "end": 5520.46, + "probability": 0.9925 + }, + { + "start": 5522.08, + "end": 5525.06, + "probability": 0.9919 + }, + { + "start": 5526.68, + "end": 5531.54, + "probability": 0.9932 + }, + { + "start": 5531.54, + "end": 5537.54, + "probability": 0.9935 + }, + { + "start": 5538.4, + "end": 5540.4, + "probability": 0.9332 + }, + { + "start": 5541.62, + "end": 5544.32, + "probability": 0.997 + }, + { + "start": 5544.64, + "end": 5545.32, + "probability": 0.7298 + }, + { + "start": 5549.34, + "end": 5550.48, + "probability": 0.9054 + }, + { + "start": 5551.36, + "end": 5552.26, + "probability": 0.6139 + }, + { + "start": 5553.34, + "end": 5556.52, + "probability": 0.9811 + }, + { + "start": 5558.36, + "end": 5561.58, + "probability": 0.9666 + }, + { + "start": 5562.44, + "end": 5564.74, + "probability": 0.9685 + }, + { + "start": 5565.28, + "end": 5570.7, + "probability": 0.9954 + }, + { + "start": 5571.62, + "end": 5575.42, + "probability": 0.8221 + }, + { + "start": 5575.94, + "end": 5577.58, + "probability": 0.8126 + }, + { + "start": 5578.14, + "end": 5581.48, + "probability": 0.9805 + }, + { + "start": 5582.84, + "end": 5583.34, + "probability": 0.8982 + }, + { + "start": 5584.18, + "end": 5587.2, + "probability": 0.971 + }, + { + "start": 5588.42, + "end": 5590.2, + "probability": 0.9727 + }, + { + "start": 5592.12, + "end": 5592.64, + "probability": 0.4035 + }, + { + "start": 5593.38, + "end": 5593.58, + "probability": 0.7158 + }, + { + "start": 5595.28, + "end": 5595.88, + "probability": 0.5449 + }, + { + "start": 5596.64, + "end": 5596.94, + "probability": 0.8606 + }, + { + "start": 5598.8, + "end": 5599.42, + "probability": 0.9003 + }, + { + "start": 5600.24, + "end": 5602.84, + "probability": 0.9947 + }, + { + "start": 5604.06, + "end": 5611.72, + "probability": 0.8745 + }, + { + "start": 5612.68, + "end": 5612.78, + "probability": 0.6006 + }, + { + "start": 5613.66, + "end": 5617.3, + "probability": 0.9978 + }, + { + "start": 5617.94, + "end": 5618.6, + "probability": 0.9751 + }, + { + "start": 5619.14, + "end": 5621.02, + "probability": 0.9993 + }, + { + "start": 5622.9, + "end": 5624.36, + "probability": 0.8149 + }, + { + "start": 5625.82, + "end": 5631.14, + "probability": 0.9935 + }, + { + "start": 5632.46, + "end": 5636.6, + "probability": 0.949 + }, + { + "start": 5638.98, + "end": 5641.42, + "probability": 0.8086 + }, + { + "start": 5643.08, + "end": 5647.12, + "probability": 0.9805 + }, + { + "start": 5647.86, + "end": 5650.88, + "probability": 0.9806 + }, + { + "start": 5651.98, + "end": 5654.12, + "probability": 0.8654 + }, + { + "start": 5657.12, + "end": 5660.62, + "probability": 0.7991 + }, + { + "start": 5662.4, + "end": 5666.42, + "probability": 0.982 + }, + { + "start": 5667.24, + "end": 5668.98, + "probability": 0.9435 + }, + { + "start": 5670.3, + "end": 5672.34, + "probability": 0.9969 + }, + { + "start": 5673.8, + "end": 5674.85, + "probability": 0.4977 + }, + { + "start": 5676.06, + "end": 5678.8, + "probability": 0.8302 + }, + { + "start": 5680.24, + "end": 5683.64, + "probability": 0.9909 + }, + { + "start": 5683.64, + "end": 5687.06, + "probability": 0.9978 + }, + { + "start": 5687.42, + "end": 5689.7, + "probability": 0.9937 + }, + { + "start": 5690.5, + "end": 5691.84, + "probability": 0.8271 + }, + { + "start": 5692.64, + "end": 5694.9, + "probability": 0.9722 + }, + { + "start": 5696.74, + "end": 5697.96, + "probability": 0.891 + }, + { + "start": 5699.46, + "end": 5701.28, + "probability": 0.9034 + }, + { + "start": 5702.22, + "end": 5704.86, + "probability": 0.993 + }, + { + "start": 5705.4, + "end": 5708.98, + "probability": 0.9927 + }, + { + "start": 5710.04, + "end": 5711.96, + "probability": 0.9908 + }, + { + "start": 5712.9, + "end": 5716.04, + "probability": 0.9878 + }, + { + "start": 5716.34, + "end": 5719.62, + "probability": 0.996 + }, + { + "start": 5720.06, + "end": 5722.82, + "probability": 0.9564 + }, + { + "start": 5724.42, + "end": 5725.04, + "probability": 0.9036 + }, + { + "start": 5726.18, + "end": 5726.3, + "probability": 0.4058 + }, + { + "start": 5727.8, + "end": 5728.18, + "probability": 0.6866 + }, + { + "start": 5729.38, + "end": 5729.64, + "probability": 0.8983 + }, + { + "start": 5730.68, + "end": 5732.4, + "probability": 0.9784 + }, + { + "start": 5732.8, + "end": 5734.95, + "probability": 0.9966 + }, + { + "start": 5737.3, + "end": 5737.88, + "probability": 0.5587 + }, + { + "start": 5740.26, + "end": 5742.7, + "probability": 0.9956 + }, + { + "start": 5745.68, + "end": 5746.46, + "probability": 0.9543 + }, + { + "start": 5746.72, + "end": 5747.18, + "probability": 0.4942 + }, + { + "start": 5748.94, + "end": 5751.88, + "probability": 0.4729 + }, + { + "start": 5752.02, + "end": 5753.3, + "probability": 0.9463 + }, + { + "start": 5753.52, + "end": 5755.38, + "probability": 0.4924 + }, + { + "start": 5756.63, + "end": 5758.74, + "probability": 0.8194 + }, + { + "start": 5760.04, + "end": 5761.24, + "probability": 0.3766 + }, + { + "start": 5764.02, + "end": 5765.2, + "probability": 0.0955 + }, + { + "start": 5765.2, + "end": 5767.94, + "probability": 0.818 + }, + { + "start": 5769.0, + "end": 5771.54, + "probability": 0.5126 + }, + { + "start": 5772.64, + "end": 5773.16, + "probability": 0.0626 + }, + { + "start": 5773.16, + "end": 5775.6, + "probability": 0.5969 + }, + { + "start": 5776.34, + "end": 5779.86, + "probability": 0.8946 + }, + { + "start": 5781.14, + "end": 5782.42, + "probability": 0.0448 + }, + { + "start": 5782.86, + "end": 5783.08, + "probability": 0.1571 + }, + { + "start": 5783.6, + "end": 5788.76, + "probability": 0.9567 + }, + { + "start": 5789.06, + "end": 5791.3, + "probability": 0.9727 + }, + { + "start": 5792.38, + "end": 5792.38, + "probability": 0.0031 + }, + { + "start": 5792.38, + "end": 5793.7, + "probability": 0.3211 + }, + { + "start": 5793.98, + "end": 5797.86, + "probability": 0.0698 + }, + { + "start": 5798.78, + "end": 5803.26, + "probability": 0.2986 + }, + { + "start": 5804.08, + "end": 5806.58, + "probability": 0.3408 + }, + { + "start": 5807.56, + "end": 5809.82, + "probability": 0.136 + }, + { + "start": 5810.06, + "end": 5810.16, + "probability": 0.0391 + }, + { + "start": 5810.16, + "end": 5812.16, + "probability": 0.7141 + }, + { + "start": 5812.16, + "end": 5813.64, + "probability": 0.6711 + }, + { + "start": 5814.6, + "end": 5817.2, + "probability": 0.8008 + }, + { + "start": 5817.24, + "end": 5819.94, + "probability": 0.9526 + }, + { + "start": 5820.18, + "end": 5820.93, + "probability": 0.106 + }, + { + "start": 5821.58, + "end": 5822.34, + "probability": 0.3412 + }, + { + "start": 5822.58, + "end": 5822.88, + "probability": 0.0518 + }, + { + "start": 5822.88, + "end": 5824.04, + "probability": 0.6831 + }, + { + "start": 5825.06, + "end": 5826.26, + "probability": 0.858 + }, + { + "start": 5826.96, + "end": 5827.88, + "probability": 0.9304 + }, + { + "start": 5828.52, + "end": 5831.5, + "probability": 0.815 + }, + { + "start": 5831.72, + "end": 5832.97, + "probability": 0.9897 + }, + { + "start": 5833.2, + "end": 5835.06, + "probability": 0.8113 + }, + { + "start": 5835.16, + "end": 5835.44, + "probability": 0.7892 + }, + { + "start": 5836.12, + "end": 5837.5, + "probability": 0.9094 + }, + { + "start": 5838.54, + "end": 5842.54, + "probability": 0.9919 + }, + { + "start": 5844.06, + "end": 5844.84, + "probability": 0.0059 + }, + { + "start": 5845.22, + "end": 5846.28, + "probability": 0.4255 + }, + { + "start": 5846.86, + "end": 5846.96, + "probability": 0.0616 + }, + { + "start": 5846.96, + "end": 5848.2, + "probability": 0.8398 + }, + { + "start": 5849.11, + "end": 5849.32, + "probability": 0.2371 + }, + { + "start": 5849.42, + "end": 5851.66, + "probability": 0.8665 + }, + { + "start": 5853.02, + "end": 5855.3, + "probability": 0.9756 + }, + { + "start": 5855.94, + "end": 5857.26, + "probability": 0.2224 + }, + { + "start": 5857.92, + "end": 5857.94, + "probability": 0.0151 + }, + { + "start": 5858.1, + "end": 5859.18, + "probability": 0.828 + }, + { + "start": 5859.88, + "end": 5860.56, + "probability": 0.9644 + }, + { + "start": 5861.36, + "end": 5861.84, + "probability": 0.023 + }, + { + "start": 5862.58, + "end": 5863.2, + "probability": 0.1898 + }, + { + "start": 5863.54, + "end": 5864.63, + "probability": 0.0095 + }, + { + "start": 5865.0, + "end": 5869.31, + "probability": 0.9082 + }, + { + "start": 5869.9, + "end": 5871.72, + "probability": 0.4843 + }, + { + "start": 5872.26, + "end": 5872.28, + "probability": 0.216 + }, + { + "start": 5872.28, + "end": 5873.0, + "probability": 0.0166 + }, + { + "start": 5873.06, + "end": 5874.36, + "probability": 0.2352 + }, + { + "start": 5874.5, + "end": 5877.02, + "probability": 0.7246 + }, + { + "start": 5877.7, + "end": 5878.36, + "probability": 0.7573 + }, + { + "start": 5879.42, + "end": 5882.7, + "probability": 0.8723 + }, + { + "start": 5883.76, + "end": 5884.94, + "probability": 0.8406 + }, + { + "start": 5885.6, + "end": 5886.72, + "probability": 0.9771 + }, + { + "start": 5887.62, + "end": 5889.17, + "probability": 0.8687 + }, + { + "start": 5890.34, + "end": 5891.62, + "probability": 0.5604 + }, + { + "start": 5891.82, + "end": 5891.84, + "probability": 0.5934 + }, + { + "start": 5891.84, + "end": 5893.62, + "probability": 0.9548 + }, + { + "start": 5894.82, + "end": 5898.68, + "probability": 0.9856 + }, + { + "start": 5898.84, + "end": 5901.63, + "probability": 0.8749 + }, + { + "start": 5902.0, + "end": 5903.04, + "probability": 0.9811 + }, + { + "start": 5904.96, + "end": 5907.26, + "probability": 0.77 + }, + { + "start": 5907.46, + "end": 5910.56, + "probability": 0.8445 + }, + { + "start": 5912.24, + "end": 5914.62, + "probability": 0.5286 + }, + { + "start": 5915.12, + "end": 5917.32, + "probability": 0.9269 + }, + { + "start": 5918.22, + "end": 5920.56, + "probability": 0.9946 + }, + { + "start": 5920.66, + "end": 5922.58, + "probability": 0.9925 + }, + { + "start": 5923.86, + "end": 5927.32, + "probability": 0.9847 + }, + { + "start": 5928.7, + "end": 5932.32, + "probability": 0.9696 + }, + { + "start": 5933.0, + "end": 5934.2, + "probability": 0.8152 + }, + { + "start": 5934.44, + "end": 5936.6, + "probability": 0.9865 + }, + { + "start": 5938.13, + "end": 5940.46, + "probability": 0.9093 + }, + { + "start": 5940.92, + "end": 5940.92, + "probability": 0.7347 + }, + { + "start": 5940.92, + "end": 5941.62, + "probability": 0.7254 + }, + { + "start": 5942.34, + "end": 5945.62, + "probability": 0.944 + }, + { + "start": 5946.92, + "end": 5950.4, + "probability": 0.9849 + }, + { + "start": 5951.56, + "end": 5955.08, + "probability": 0.9933 + }, + { + "start": 5956.06, + "end": 5959.9, + "probability": 0.9917 + }, + { + "start": 5960.36, + "end": 5962.36, + "probability": 0.9175 + }, + { + "start": 5964.1, + "end": 5966.3, + "probability": 0.5556 + }, + { + "start": 5966.32, + "end": 5971.01, + "probability": 0.9753 + }, + { + "start": 5971.94, + "end": 5976.04, + "probability": 0.9937 + }, + { + "start": 5976.68, + "end": 5979.54, + "probability": 0.8269 + }, + { + "start": 5980.6, + "end": 5980.8, + "probability": 0.2555 + }, + { + "start": 5981.0, + "end": 5985.22, + "probability": 0.9772 + }, + { + "start": 5985.94, + "end": 5991.76, + "probability": 0.9763 + }, + { + "start": 5992.88, + "end": 5995.68, + "probability": 0.6091 + }, + { + "start": 5996.8, + "end": 5998.4, + "probability": 0.7501 + }, + { + "start": 5999.22, + "end": 6007.3, + "probability": 0.9893 + }, + { + "start": 6007.84, + "end": 6008.5, + "probability": 0.7735 + }, + { + "start": 6009.86, + "end": 6011.96, + "probability": 0.645 + }, + { + "start": 6012.2, + "end": 6013.52, + "probability": 0.6975 + }, + { + "start": 6014.02, + "end": 6016.4, + "probability": 0.8129 + }, + { + "start": 6016.92, + "end": 6019.0, + "probability": 0.9814 + }, + { + "start": 6020.16, + "end": 6021.2, + "probability": 0.912 + }, + { + "start": 6021.98, + "end": 6023.44, + "probability": 0.986 + }, + { + "start": 6025.3, + "end": 6026.54, + "probability": 0.0137 + }, + { + "start": 6027.86, + "end": 6031.64, + "probability": 0.0207 + }, + { + "start": 6032.7, + "end": 6033.18, + "probability": 0.0948 + }, + { + "start": 6033.18, + "end": 6033.22, + "probability": 0.7471 + }, + { + "start": 6033.22, + "end": 6033.26, + "probability": 0.0508 + }, + { + "start": 6033.26, + "end": 6033.26, + "probability": 0.1797 + }, + { + "start": 6033.26, + "end": 6033.92, + "probability": 0.326 + }, + { + "start": 6033.92, + "end": 6036.55, + "probability": 0.9478 + }, + { + "start": 6037.24, + "end": 6041.32, + "probability": 0.8656 + }, + { + "start": 6041.78, + "end": 6043.02, + "probability": 0.9833 + }, + { + "start": 6043.38, + "end": 6044.73, + "probability": 0.2388 + }, + { + "start": 6045.44, + "end": 6048.98, + "probability": 0.9773 + }, + { + "start": 6049.1, + "end": 6050.4, + "probability": 0.9768 + }, + { + "start": 6050.7, + "end": 6055.4, + "probability": 0.9932 + }, + { + "start": 6055.82, + "end": 6056.84, + "probability": 0.9868 + }, + { + "start": 6056.96, + "end": 6057.77, + "probability": 0.8427 + }, + { + "start": 6057.78, + "end": 6059.9, + "probability": 0.999 + }, + { + "start": 6060.24, + "end": 6061.32, + "probability": 0.9902 + }, + { + "start": 6061.88, + "end": 6068.32, + "probability": 0.9962 + }, + { + "start": 6068.56, + "end": 6074.41, + "probability": 0.9785 + }, + { + "start": 6074.48, + "end": 6076.3, + "probability": 0.9093 + }, + { + "start": 6076.88, + "end": 6078.86, + "probability": 0.9933 + }, + { + "start": 6079.24, + "end": 6081.86, + "probability": 0.9327 + }, + { + "start": 6082.6, + "end": 6085.14, + "probability": 0.9395 + }, + { + "start": 6085.24, + "end": 6086.74, + "probability": 0.9097 + }, + { + "start": 6086.74, + "end": 6087.84, + "probability": 0.6816 + }, + { + "start": 6087.86, + "end": 6088.68, + "probability": 0.174 + }, + { + "start": 6088.68, + "end": 6088.82, + "probability": 0.0826 + }, + { + "start": 6090.08, + "end": 6092.22, + "probability": 0.5593 + }, + { + "start": 6092.22, + "end": 6093.54, + "probability": 0.9117 + }, + { + "start": 6094.0, + "end": 6096.16, + "probability": 0.884 + }, + { + "start": 6096.24, + "end": 6098.03, + "probability": 0.493 + }, + { + "start": 6099.32, + "end": 6099.54, + "probability": 0.007 + }, + { + "start": 6106.6, + "end": 6106.82, + "probability": 0.2908 + }, + { + "start": 6106.82, + "end": 6109.28, + "probability": 0.0424 + }, + { + "start": 6109.28, + "end": 6109.28, + "probability": 0.2011 + }, + { + "start": 6109.28, + "end": 6109.32, + "probability": 0.4041 + }, + { + "start": 6109.32, + "end": 6111.08, + "probability": 0.4406 + }, + { + "start": 6112.08, + "end": 6112.64, + "probability": 0.2671 + }, + { + "start": 6113.84, + "end": 6113.84, + "probability": 0.0391 + }, + { + "start": 6113.84, + "end": 6115.32, + "probability": 0.7105 + }, + { + "start": 6115.68, + "end": 6116.56, + "probability": 0.9247 + }, + { + "start": 6117.08, + "end": 6120.12, + "probability": 0.9902 + }, + { + "start": 6120.12, + "end": 6121.36, + "probability": 0.8657 + }, + { + "start": 6121.7, + "end": 6123.2, + "probability": 0.4192 + }, + { + "start": 6123.58, + "end": 6125.24, + "probability": 0.3717 + }, + { + "start": 6125.84, + "end": 6127.76, + "probability": 0.9538 + }, + { + "start": 6127.9, + "end": 6129.26, + "probability": 0.0785 + }, + { + "start": 6130.38, + "end": 6134.36, + "probability": 0.9922 + }, + { + "start": 6134.44, + "end": 6136.29, + "probability": 0.9832 + }, + { + "start": 6136.86, + "end": 6137.84, + "probability": 0.9937 + }, + { + "start": 6138.12, + "end": 6140.18, + "probability": 0.9209 + }, + { + "start": 6140.84, + "end": 6142.46, + "probability": 0.9672 + }, + { + "start": 6142.58, + "end": 6146.3, + "probability": 0.9855 + }, + { + "start": 6146.32, + "end": 6148.54, + "probability": 0.9988 + }, + { + "start": 6148.82, + "end": 6150.72, + "probability": 0.9773 + }, + { + "start": 6151.04, + "end": 6153.18, + "probability": 0.995 + }, + { + "start": 6153.26, + "end": 6154.94, + "probability": 0.9969 + }, + { + "start": 6154.94, + "end": 6157.14, + "probability": 0.6587 + }, + { + "start": 6157.14, + "end": 6158.62, + "probability": 0.9012 + }, + { + "start": 6158.8, + "end": 6159.72, + "probability": 0.7483 + }, + { + "start": 6159.78, + "end": 6160.14, + "probability": 0.8394 + }, + { + "start": 6160.97, + "end": 6161.84, + "probability": 0.986 + }, + { + "start": 6162.6, + "end": 6165.54, + "probability": 0.8367 + }, + { + "start": 6165.68, + "end": 6166.9, + "probability": 0.9622 + }, + { + "start": 6167.0, + "end": 6167.02, + "probability": 0.3773 + }, + { + "start": 6167.16, + "end": 6167.86, + "probability": 0.6757 + }, + { + "start": 6167.86, + "end": 6172.16, + "probability": 0.9463 + }, + { + "start": 6172.36, + "end": 6175.08, + "probability": 0.9935 + }, + { + "start": 6175.16, + "end": 6175.85, + "probability": 0.819 + }, + { + "start": 6176.88, + "end": 6179.2, + "probability": 0.9509 + }, + { + "start": 6180.38, + "end": 6184.84, + "probability": 0.9975 + }, + { + "start": 6185.3, + "end": 6188.42, + "probability": 0.9897 + }, + { + "start": 6189.34, + "end": 6193.16, + "probability": 0.9819 + }, + { + "start": 6193.64, + "end": 6194.78, + "probability": 0.8311 + }, + { + "start": 6195.32, + "end": 6197.6, + "probability": 0.9158 + }, + { + "start": 6197.96, + "end": 6199.6, + "probability": 0.9028 + }, + { + "start": 6200.62, + "end": 6204.2, + "probability": 0.9476 + }, + { + "start": 6204.36, + "end": 6208.36, + "probability": 0.9816 + }, + { + "start": 6208.46, + "end": 6210.32, + "probability": 0.9821 + }, + { + "start": 6210.74, + "end": 6214.54, + "probability": 0.9843 + }, + { + "start": 6214.54, + "end": 6217.18, + "probability": 0.9966 + }, + { + "start": 6217.9, + "end": 6219.46, + "probability": 0.8156 + }, + { + "start": 6219.96, + "end": 6222.74, + "probability": 0.9982 + }, + { + "start": 6222.78, + "end": 6224.14, + "probability": 0.7948 + }, + { + "start": 6224.34, + "end": 6225.32, + "probability": 0.943 + }, + { + "start": 6225.66, + "end": 6226.82, + "probability": 0.7908 + }, + { + "start": 6227.4, + "end": 6231.06, + "probability": 0.965 + }, + { + "start": 6231.7, + "end": 6235.56, + "probability": 0.9779 + }, + { + "start": 6236.14, + "end": 6237.04, + "probability": 0.5181 + }, + { + "start": 6237.18, + "end": 6237.96, + "probability": 0.8343 + }, + { + "start": 6238.2, + "end": 6238.76, + "probability": 0.8476 + }, + { + "start": 6238.86, + "end": 6239.88, + "probability": 0.7584 + }, + { + "start": 6240.3, + "end": 6241.88, + "probability": 0.9905 + }, + { + "start": 6242.04, + "end": 6243.74, + "probability": 0.9574 + }, + { + "start": 6244.96, + "end": 6248.04, + "probability": 0.9656 + }, + { + "start": 6248.7, + "end": 6252.3, + "probability": 0.9975 + }, + { + "start": 6252.94, + "end": 6256.8, + "probability": 0.7108 + }, + { + "start": 6258.26, + "end": 6260.56, + "probability": 0.9917 + }, + { + "start": 6260.64, + "end": 6261.48, + "probability": 0.7343 + }, + { + "start": 6261.62, + "end": 6265.2, + "probability": 0.814 + }, + { + "start": 6265.2, + "end": 6267.44, + "probability": 0.5883 + }, + { + "start": 6268.32, + "end": 6272.52, + "probability": 0.99 + }, + { + "start": 6272.68, + "end": 6273.34, + "probability": 0.8605 + }, + { + "start": 6273.48, + "end": 6274.24, + "probability": 0.8993 + }, + { + "start": 6274.38, + "end": 6275.14, + "probability": 0.5718 + }, + { + "start": 6276.06, + "end": 6277.12, + "probability": 0.9697 + }, + { + "start": 6278.2, + "end": 6280.6, + "probability": 0.7916 + }, + { + "start": 6281.4, + "end": 6285.36, + "probability": 0.9358 + }, + { + "start": 6286.1, + "end": 6289.78, + "probability": 0.8514 + }, + { + "start": 6289.86, + "end": 6290.5, + "probability": 0.8063 + }, + { + "start": 6290.66, + "end": 6291.55, + "probability": 0.9909 + }, + { + "start": 6292.1, + "end": 6294.26, + "probability": 0.9957 + }, + { + "start": 6294.4, + "end": 6295.16, + "probability": 0.939 + }, + { + "start": 6295.28, + "end": 6296.64, + "probability": 0.9705 + }, + { + "start": 6298.38, + "end": 6301.48, + "probability": 0.9417 + }, + { + "start": 6302.2, + "end": 6306.7, + "probability": 0.9819 + }, + { + "start": 6307.24, + "end": 6309.72, + "probability": 0.994 + }, + { + "start": 6309.8, + "end": 6313.52, + "probability": 0.9735 + }, + { + "start": 6313.8, + "end": 6315.74, + "probability": 0.8669 + }, + { + "start": 6316.66, + "end": 6318.92, + "probability": 0.9608 + }, + { + "start": 6319.68, + "end": 6321.1, + "probability": 0.9821 + }, + { + "start": 6321.82, + "end": 6324.8, + "probability": 0.9877 + }, + { + "start": 6325.22, + "end": 6326.52, + "probability": 0.8752 + }, + { + "start": 6326.88, + "end": 6327.72, + "probability": 0.844 + }, + { + "start": 6327.82, + "end": 6328.4, + "probability": 0.9221 + }, + { + "start": 6328.56, + "end": 6329.62, + "probability": 0.8626 + }, + { + "start": 6330.46, + "end": 6333.86, + "probability": 0.9678 + }, + { + "start": 6334.26, + "end": 6334.68, + "probability": 0.8076 + }, + { + "start": 6334.68, + "end": 6335.84, + "probability": 0.8381 + }, + { + "start": 6336.36, + "end": 6339.06, + "probability": 0.9559 + }, + { + "start": 6350.52, + "end": 6350.56, + "probability": 0.2142 + }, + { + "start": 6350.56, + "end": 6351.92, + "probability": 0.5373 + }, + { + "start": 6353.1, + "end": 6356.61, + "probability": 0.9427 + }, + { + "start": 6357.38, + "end": 6359.24, + "probability": 0.9932 + }, + { + "start": 6359.34, + "end": 6360.63, + "probability": 0.9985 + }, + { + "start": 6361.58, + "end": 6364.16, + "probability": 0.9751 + }, + { + "start": 6364.8, + "end": 6367.24, + "probability": 0.957 + }, + { + "start": 6367.8, + "end": 6372.32, + "probability": 0.9802 + }, + { + "start": 6372.82, + "end": 6373.98, + "probability": 0.9541 + }, + { + "start": 6374.2, + "end": 6375.18, + "probability": 0.8752 + }, + { + "start": 6375.54, + "end": 6376.5, + "probability": 0.8445 + }, + { + "start": 6376.56, + "end": 6376.9, + "probability": 0.9371 + }, + { + "start": 6377.02, + "end": 6377.28, + "probability": 0.2497 + }, + { + "start": 6377.32, + "end": 6377.64, + "probability": 0.427 + }, + { + "start": 6377.76, + "end": 6378.77, + "probability": 0.4812 + }, + { + "start": 6379.36, + "end": 6381.46, + "probability": 0.7451 + }, + { + "start": 6381.68, + "end": 6384.9, + "probability": 0.2908 + }, + { + "start": 6385.48, + "end": 6386.28, + "probability": 0.6482 + }, + { + "start": 6386.28, + "end": 6386.56, + "probability": 0.6748 + }, + { + "start": 6389.44, + "end": 6390.42, + "probability": 0.0555 + }, + { + "start": 6390.42, + "end": 6390.42, + "probability": 0.0437 + }, + { + "start": 6390.42, + "end": 6391.88, + "probability": 0.4637 + }, + { + "start": 6391.96, + "end": 6392.75, + "probability": 0.5618 + }, + { + "start": 6392.98, + "end": 6394.16, + "probability": 0.5347 + }, + { + "start": 6394.16, + "end": 6395.22, + "probability": 0.4665 + }, + { + "start": 6395.36, + "end": 6396.2, + "probability": 0.8058 + }, + { + "start": 6396.34, + "end": 6397.38, + "probability": 0.8494 + }, + { + "start": 6397.98, + "end": 6402.8, + "probability": 0.9014 + }, + { + "start": 6403.62, + "end": 6404.08, + "probability": 0.7944 + }, + { + "start": 6404.78, + "end": 6405.5, + "probability": 0.768 + }, + { + "start": 6405.5, + "end": 6405.9, + "probability": 0.8441 + }, + { + "start": 6405.96, + "end": 6407.02, + "probability": 0.8716 + }, + { + "start": 6408.28, + "end": 6411.52, + "probability": 0.9888 + }, + { + "start": 6411.88, + "end": 6412.78, + "probability": 0.6965 + }, + { + "start": 6412.9, + "end": 6414.34, + "probability": 0.9321 + }, + { + "start": 6414.34, + "end": 6415.56, + "probability": 0.9539 + }, + { + "start": 6416.0, + "end": 6416.88, + "probability": 0.2519 + }, + { + "start": 6416.88, + "end": 6419.92, + "probability": 0.9968 + }, + { + "start": 6420.8, + "end": 6421.72, + "probability": 0.7599 + }, + { + "start": 6423.0, + "end": 6425.56, + "probability": 0.7187 + }, + { + "start": 6426.58, + "end": 6429.46, + "probability": 0.9704 + }, + { + "start": 6431.02, + "end": 6431.72, + "probability": 0.6947 + }, + { + "start": 6436.2, + "end": 6437.94, + "probability": 0.8049 + }, + { + "start": 6439.16, + "end": 6441.5, + "probability": 0.9417 + }, + { + "start": 6443.2, + "end": 6444.16, + "probability": 0.7313 + }, + { + "start": 6445.1, + "end": 6447.4, + "probability": 0.9258 + }, + { + "start": 6448.32, + "end": 6450.64, + "probability": 0.9944 + }, + { + "start": 6451.28, + "end": 6452.16, + "probability": 0.5136 + }, + { + "start": 6452.92, + "end": 6458.16, + "probability": 0.9958 + }, + { + "start": 6459.4, + "end": 6462.5, + "probability": 0.8498 + }, + { + "start": 6462.94, + "end": 6464.06, + "probability": 0.9282 + }, + { + "start": 6464.14, + "end": 6465.9, + "probability": 0.9905 + }, + { + "start": 6466.24, + "end": 6467.14, + "probability": 0.7955 + }, + { + "start": 6467.34, + "end": 6468.06, + "probability": 0.6738 + }, + { + "start": 6468.94, + "end": 6469.82, + "probability": 0.9453 + }, + { + "start": 6470.6, + "end": 6472.08, + "probability": 0.9958 + }, + { + "start": 6472.3, + "end": 6473.54, + "probability": 0.9914 + }, + { + "start": 6473.92, + "end": 6475.42, + "probability": 0.98 + }, + { + "start": 6476.76, + "end": 6479.08, + "probability": 0.8089 + }, + { + "start": 6480.04, + "end": 6484.26, + "probability": 0.9778 + }, + { + "start": 6484.7, + "end": 6486.28, + "probability": 0.9526 + }, + { + "start": 6487.24, + "end": 6488.34, + "probability": 0.9291 + }, + { + "start": 6489.2, + "end": 6489.98, + "probability": 0.9649 + }, + { + "start": 6490.8, + "end": 6493.02, + "probability": 0.9368 + }, + { + "start": 6494.38, + "end": 6496.24, + "probability": 0.998 + }, + { + "start": 6496.96, + "end": 6499.7, + "probability": 0.86 + }, + { + "start": 6499.8, + "end": 6502.16, + "probability": 0.9978 + }, + { + "start": 6503.28, + "end": 6511.14, + "probability": 0.8976 + }, + { + "start": 6511.72, + "end": 6513.3, + "probability": 0.9985 + }, + { + "start": 6514.06, + "end": 6516.02, + "probability": 0.9482 + }, + { + "start": 6516.48, + "end": 6518.98, + "probability": 0.9026 + }, + { + "start": 6519.76, + "end": 6523.38, + "probability": 0.9745 + }, + { + "start": 6523.52, + "end": 6524.32, + "probability": 0.7663 + }, + { + "start": 6524.68, + "end": 6528.34, + "probability": 0.9855 + }, + { + "start": 6528.92, + "end": 6530.56, + "probability": 0.9988 + }, + { + "start": 6530.9, + "end": 6533.98, + "probability": 0.5452 + }, + { + "start": 6535.22, + "end": 6536.52, + "probability": 0.5574 + }, + { + "start": 6536.76, + "end": 6537.76, + "probability": 0.1975 + }, + { + "start": 6537.98, + "end": 6539.48, + "probability": 0.6303 + }, + { + "start": 6539.5, + "end": 6541.54, + "probability": 0.7729 + }, + { + "start": 6541.54, + "end": 6546.76, + "probability": 0.5583 + }, + { + "start": 6548.36, + "end": 6550.92, + "probability": 0.936 + }, + { + "start": 6552.12, + "end": 6553.98, + "probability": 0.9604 + }, + { + "start": 6555.02, + "end": 6560.24, + "probability": 0.9924 + }, + { + "start": 6561.86, + "end": 6563.88, + "probability": 0.9972 + }, + { + "start": 6564.96, + "end": 6571.1, + "probability": 0.9492 + }, + { + "start": 6571.86, + "end": 6577.8, + "probability": 0.8451 + }, + { + "start": 6580.08, + "end": 6581.1, + "probability": 0.3072 + }, + { + "start": 6584.3, + "end": 6586.72, + "probability": 0.889 + }, + { + "start": 6587.12, + "end": 6590.38, + "probability": 0.8855 + }, + { + "start": 6590.38, + "end": 6590.74, + "probability": 0.2395 + }, + { + "start": 6590.88, + "end": 6592.04, + "probability": 0.2124 + }, + { + "start": 6592.22, + "end": 6593.26, + "probability": 0.9019 + }, + { + "start": 6594.76, + "end": 6595.5, + "probability": 0.5049 + }, + { + "start": 6595.82, + "end": 6597.24, + "probability": 0.1162 + }, + { + "start": 6597.24, + "end": 6597.4, + "probability": 0.1607 + }, + { + "start": 6597.54, + "end": 6600.08, + "probability": 0.5048 + }, + { + "start": 6600.54, + "end": 6603.74, + "probability": 0.4785 + }, + { + "start": 6603.74, + "end": 6608.86, + "probability": 0.7041 + }, + { + "start": 6609.2, + "end": 6611.37, + "probability": 0.2171 + }, + { + "start": 6611.7, + "end": 6613.88, + "probability": 0.4494 + }, + { + "start": 6614.6, + "end": 6619.16, + "probability": 0.9369 + }, + { + "start": 6619.64, + "end": 6620.82, + "probability": 0.5085 + }, + { + "start": 6621.44, + "end": 6622.03, + "probability": 0.8944 + }, + { + "start": 6634.0, + "end": 6634.1, + "probability": 0.0162 + }, + { + "start": 6634.1, + "end": 6634.1, + "probability": 0.1034 + }, + { + "start": 6634.1, + "end": 6634.1, + "probability": 0.1013 + }, + { + "start": 6634.1, + "end": 6634.1, + "probability": 0.1384 + }, + { + "start": 6634.1, + "end": 6634.1, + "probability": 0.0845 + }, + { + "start": 6634.1, + "end": 6634.1, + "probability": 0.0768 + }, + { + "start": 6634.1, + "end": 6636.0, + "probability": 0.7794 + }, + { + "start": 6637.22, + "end": 6638.26, + "probability": 0.3797 + }, + { + "start": 6639.74, + "end": 6640.98, + "probability": 0.9824 + }, + { + "start": 6641.58, + "end": 6642.1, + "probability": 0.4068 + }, + { + "start": 6642.2, + "end": 6643.58, + "probability": 0.8438 + }, + { + "start": 6644.66, + "end": 6646.26, + "probability": 0.9871 + }, + { + "start": 6646.74, + "end": 6648.98, + "probability": 0.8859 + }, + { + "start": 6649.92, + "end": 6651.48, + "probability": 0.9312 + }, + { + "start": 6652.26, + "end": 6654.14, + "probability": 0.7503 + }, + { + "start": 6654.54, + "end": 6658.3, + "probability": 0.9425 + }, + { + "start": 6658.72, + "end": 6660.06, + "probability": 0.9766 + }, + { + "start": 6660.98, + "end": 6662.3, + "probability": 0.9668 + }, + { + "start": 6663.16, + "end": 6664.76, + "probability": 0.9771 + }, + { + "start": 6665.28, + "end": 6667.54, + "probability": 0.896 + }, + { + "start": 6668.42, + "end": 6671.7, + "probability": 0.9713 + }, + { + "start": 6672.5, + "end": 6674.92, + "probability": 0.9441 + }, + { + "start": 6675.8, + "end": 6677.48, + "probability": 0.9795 + }, + { + "start": 6678.04, + "end": 6679.52, + "probability": 0.7007 + }, + { + "start": 6680.18, + "end": 6680.22, + "probability": 0.0044 + }, + { + "start": 6687.64, + "end": 6688.4, + "probability": 0.0087 + }, + { + "start": 6692.54, + "end": 6692.84, + "probability": 0.4148 + }, + { + "start": 6693.55, + "end": 6694.88, + "probability": 0.9479 + }, + { + "start": 6696.66, + "end": 6697.28, + "probability": 0.0735 + }, + { + "start": 6697.86, + "end": 6698.74, + "probability": 0.057 + }, + { + "start": 6698.74, + "end": 6699.34, + "probability": 0.1776 + }, + { + "start": 6699.34, + "end": 6699.98, + "probability": 0.1518 + }, + { + "start": 6700.0, + "end": 6700.0, + "probability": 0.0 + }, + { + "start": 6700.26, + "end": 6700.36, + "probability": 0.0944 + }, + { + "start": 6700.36, + "end": 6700.36, + "probability": 0.0152 + }, + { + "start": 6700.36, + "end": 6700.88, + "probability": 0.1582 + }, + { + "start": 6700.9, + "end": 6701.7, + "probability": 0.6304 + }, + { + "start": 6702.24, + "end": 6708.04, + "probability": 0.7349 + }, + { + "start": 6708.58, + "end": 6711.62, + "probability": 0.3903 + }, + { + "start": 6711.68, + "end": 6712.04, + "probability": 0.7938 + }, + { + "start": 6712.42, + "end": 6713.88, + "probability": 0.9328 + }, + { + "start": 6714.02, + "end": 6715.54, + "probability": 0.9934 + }, + { + "start": 6715.96, + "end": 6717.8, + "probability": 0.9321 + }, + { + "start": 6718.04, + "end": 6719.08, + "probability": 0.967 + }, + { + "start": 6719.52, + "end": 6720.52, + "probability": 0.959 + }, + { + "start": 6721.34, + "end": 6725.22, + "probability": 0.95 + }, + { + "start": 6725.26, + "end": 6728.06, + "probability": 0.998 + }, + { + "start": 6728.56, + "end": 6731.76, + "probability": 0.6704 + }, + { + "start": 6731.78, + "end": 6737.39, + "probability": 0.9297 + }, + { + "start": 6739.11, + "end": 6740.3, + "probability": 0.6589 + }, + { + "start": 6741.0, + "end": 6744.4, + "probability": 0.9951 + }, + { + "start": 6745.06, + "end": 6748.02, + "probability": 0.8272 + }, + { + "start": 6748.74, + "end": 6750.0, + "probability": 0.6325 + }, + { + "start": 6750.4, + "end": 6753.08, + "probability": 0.9299 + }, + { + "start": 6753.68, + "end": 6755.2, + "probability": 0.9382 + }, + { + "start": 6756.28, + "end": 6757.68, + "probability": 0.9401 + }, + { + "start": 6759.06, + "end": 6762.18, + "probability": 0.8751 + }, + { + "start": 6763.06, + "end": 6764.56, + "probability": 0.8989 + }, + { + "start": 6764.82, + "end": 6768.94, + "probability": 0.9712 + }, + { + "start": 6769.86, + "end": 6771.74, + "probability": 0.3195 + }, + { + "start": 6772.02, + "end": 6777.36, + "probability": 0.4272 + }, + { + "start": 6777.36, + "end": 6778.68, + "probability": 0.402 + }, + { + "start": 6784.08, + "end": 6784.96, + "probability": 0.0091 + }, + { + "start": 6784.96, + "end": 6786.04, + "probability": 0.0605 + }, + { + "start": 6786.04, + "end": 6787.6, + "probability": 0.8036 + }, + { + "start": 6788.72, + "end": 6790.14, + "probability": 0.9612 + }, + { + "start": 6791.28, + "end": 6791.94, + "probability": 0.9775 + }, + { + "start": 6793.5, + "end": 6794.3, + "probability": 0.915 + }, + { + "start": 6794.52, + "end": 6795.16, + "probability": 0.524 + }, + { + "start": 6795.3, + "end": 6797.28, + "probability": 0.9513 + }, + { + "start": 6797.56, + "end": 6802.52, + "probability": 0.9705 + }, + { + "start": 6803.34, + "end": 6803.34, + "probability": 0.0835 + }, + { + "start": 6803.34, + "end": 6807.2, + "probability": 0.5801 + }, + { + "start": 6807.34, + "end": 6807.34, + "probability": 0.5523 + }, + { + "start": 6807.34, + "end": 6807.34, + "probability": 0.1683 + }, + { + "start": 6807.34, + "end": 6808.6, + "probability": 0.4403 + }, + { + "start": 6808.84, + "end": 6811.22, + "probability": 0.861 + }, + { + "start": 6811.95, + "end": 6814.06, + "probability": 0.77 + }, + { + "start": 6814.64, + "end": 6814.92, + "probability": 0.1046 + }, + { + "start": 6814.94, + "end": 6819.22, + "probability": 0.9919 + }, + { + "start": 6820.06, + "end": 6820.36, + "probability": 0.4467 + }, + { + "start": 6820.42, + "end": 6821.84, + "probability": 0.6586 + }, + { + "start": 6822.84, + "end": 6827.06, + "probability": 0.8997 + }, + { + "start": 6827.62, + "end": 6827.66, + "probability": 0.1589 + }, + { + "start": 6827.66, + "end": 6828.46, + "probability": 0.2959 + }, + { + "start": 6828.63, + "end": 6830.34, + "probability": 0.7756 + }, + { + "start": 6831.54, + "end": 6832.26, + "probability": 0.1067 + }, + { + "start": 6832.4, + "end": 6833.1, + "probability": 0.19 + }, + { + "start": 6833.54, + "end": 6838.28, + "probability": 0.9019 + }, + { + "start": 6838.28, + "end": 6840.94, + "probability": 0.4986 + }, + { + "start": 6840.94, + "end": 6842.3, + "probability": 0.9559 + }, + { + "start": 6842.49, + "end": 6844.41, + "probability": 0.9431 + }, + { + "start": 6845.2, + "end": 6845.26, + "probability": 0.5106 + }, + { + "start": 6845.26, + "end": 6845.26, + "probability": 0.1797 + }, + { + "start": 6845.26, + "end": 6845.82, + "probability": 0.1794 + }, + { + "start": 6847.4, + "end": 6847.76, + "probability": 0.6329 + }, + { + "start": 6848.14, + "end": 6851.52, + "probability": 0.8713 + }, + { + "start": 6852.18, + "end": 6852.64, + "probability": 0.0193 + }, + { + "start": 6852.64, + "end": 6852.64, + "probability": 0.4071 + }, + { + "start": 6852.64, + "end": 6853.67, + "probability": 0.3361 + }, + { + "start": 6853.92, + "end": 6855.18, + "probability": 0.6225 + }, + { + "start": 6855.22, + "end": 6855.8, + "probability": 0.6661 + }, + { + "start": 6855.82, + "end": 6855.92, + "probability": 0.7607 + }, + { + "start": 6856.26, + "end": 6856.6, + "probability": 0.7986 + }, + { + "start": 6856.88, + "end": 6859.02, + "probability": 0.8513 + }, + { + "start": 6860.16, + "end": 6864.32, + "probability": 0.9832 + }, + { + "start": 6865.9, + "end": 6867.82, + "probability": 0.9975 + }, + { + "start": 6868.62, + "end": 6870.78, + "probability": 0.996 + }, + { + "start": 6871.32, + "end": 6871.86, + "probability": 0.9042 + }, + { + "start": 6872.86, + "end": 6874.54, + "probability": 0.8481 + }, + { + "start": 6876.0, + "end": 6876.6, + "probability": 0.9637 + }, + { + "start": 6877.12, + "end": 6879.3, + "probability": 0.9931 + }, + { + "start": 6879.86, + "end": 6880.52, + "probability": 0.9937 + }, + { + "start": 6881.3, + "end": 6881.76, + "probability": 0.6552 + }, + { + "start": 6882.58, + "end": 6885.6, + "probability": 0.9829 + }, + { + "start": 6886.4, + "end": 6890.98, + "probability": 0.9707 + }, + { + "start": 6891.68, + "end": 6896.1, + "probability": 0.9906 + }, + { + "start": 6896.6, + "end": 6898.74, + "probability": 0.8504 + }, + { + "start": 6898.94, + "end": 6899.84, + "probability": 0.9973 + }, + { + "start": 6900.34, + "end": 6902.54, + "probability": 0.8284 + }, + { + "start": 6903.2, + "end": 6904.32, + "probability": 0.6487 + }, + { + "start": 6905.08, + "end": 6905.86, + "probability": 0.9255 + }, + { + "start": 6906.44, + "end": 6908.16, + "probability": 0.4978 + }, + { + "start": 6908.3, + "end": 6912.5, + "probability": 0.7312 + }, + { + "start": 6912.92, + "end": 6915.6, + "probability": 0.6986 + }, + { + "start": 6915.72, + "end": 6916.74, + "probability": 0.9041 + }, + { + "start": 6916.74, + "end": 6918.0, + "probability": 0.6778 + }, + { + "start": 6918.1, + "end": 6919.27, + "probability": 0.9702 + }, + { + "start": 6919.5, + "end": 6920.76, + "probability": 0.7918 + }, + { + "start": 6921.26, + "end": 6922.26, + "probability": 0.088 + }, + { + "start": 6922.54, + "end": 6923.78, + "probability": 0.7825 + }, + { + "start": 6923.82, + "end": 6924.16, + "probability": 0.8831 + }, + { + "start": 6924.66, + "end": 6925.28, + "probability": 0.0079 + }, + { + "start": 6926.58, + "end": 6927.28, + "probability": 0.5251 + }, + { + "start": 6927.28, + "end": 6927.28, + "probability": 0.0731 + }, + { + "start": 6927.28, + "end": 6927.28, + "probability": 0.0664 + }, + { + "start": 6927.28, + "end": 6927.28, + "probability": 0.0296 + }, + { + "start": 6927.28, + "end": 6927.64, + "probability": 0.0316 + }, + { + "start": 6930.3, + "end": 6933.8, + "probability": 0.8862 + }, + { + "start": 6934.48, + "end": 6936.26, + "probability": 0.9813 + }, + { + "start": 6936.8, + "end": 6938.58, + "probability": 0.937 + }, + { + "start": 6938.62, + "end": 6939.5, + "probability": 0.7118 + }, + { + "start": 6940.38, + "end": 6942.88, + "probability": 0.8169 + }, + { + "start": 6944.08, + "end": 6945.2, + "probability": 0.8582 + }, + { + "start": 6946.3, + "end": 6948.22, + "probability": 0.5879 + }, + { + "start": 6948.32, + "end": 6949.2, + "probability": 0.3504 + }, + { + "start": 6949.94, + "end": 6952.12, + "probability": 0.8584 + }, + { + "start": 6952.82, + "end": 6956.52, + "probability": 0.9971 + }, + { + "start": 6956.52, + "end": 6959.3, + "probability": 0.9988 + }, + { + "start": 6959.44, + "end": 6960.9, + "probability": 0.8133 + }, + { + "start": 6961.52, + "end": 6962.98, + "probability": 0.9794 + }, + { + "start": 6963.7, + "end": 6964.74, + "probability": 0.9441 + }, + { + "start": 6965.52, + "end": 6965.78, + "probability": 0.1572 + }, + { + "start": 6965.78, + "end": 6967.84, + "probability": 0.7905 + }, + { + "start": 6968.6, + "end": 6972.44, + "probability": 0.6596 + }, + { + "start": 6972.44, + "end": 6973.06, + "probability": 0.589 + }, + { + "start": 6973.28, + "end": 6975.82, + "probability": 0.8154 + }, + { + "start": 6976.38, + "end": 6977.64, + "probability": 0.7195 + }, + { + "start": 6978.74, + "end": 6980.26, + "probability": 0.9932 + }, + { + "start": 6980.34, + "end": 6981.76, + "probability": 0.9678 + }, + { + "start": 6983.02, + "end": 6986.4, + "probability": 0.961 + }, + { + "start": 6987.18, + "end": 6987.88, + "probability": 0.7654 + }, + { + "start": 6988.9, + "end": 6991.7, + "probability": 0.9465 + }, + { + "start": 6992.2, + "end": 6993.28, + "probability": 0.8341 + }, + { + "start": 6993.42, + "end": 6994.11, + "probability": 0.9546 + }, + { + "start": 6995.02, + "end": 6996.14, + "probability": 0.9701 + }, + { + "start": 6996.44, + "end": 6997.46, + "probability": 0.5005 + }, + { + "start": 6998.12, + "end": 7000.06, + "probability": 0.7874 + }, + { + "start": 7001.1, + "end": 7002.5, + "probability": 0.7401 + }, + { + "start": 7002.96, + "end": 7005.6, + "probability": 0.9668 + }, + { + "start": 7006.46, + "end": 7006.94, + "probability": 0.8793 + }, + { + "start": 7007.66, + "end": 7009.84, + "probability": 0.568 + }, + { + "start": 7009.98, + "end": 7010.52, + "probability": 0.5352 + }, + { + "start": 7010.62, + "end": 7013.9, + "probability": 0.9895 + }, + { + "start": 7014.72, + "end": 7015.02, + "probability": 0.759 + }, + { + "start": 7015.96, + "end": 7018.4, + "probability": 0.8993 + }, + { + "start": 7019.22, + "end": 7019.98, + "probability": 0.9515 + }, + { + "start": 7020.62, + "end": 7022.72, + "probability": 0.9469 + }, + { + "start": 7023.44, + "end": 7028.46, + "probability": 0.9917 + }, + { + "start": 7028.96, + "end": 7029.9, + "probability": 0.9834 + }, + { + "start": 7030.66, + "end": 7031.62, + "probability": 0.8546 + }, + { + "start": 7032.16, + "end": 7032.8, + "probability": 0.727 + }, + { + "start": 7033.4, + "end": 7036.56, + "probability": 0.933 + }, + { + "start": 7037.06, + "end": 7039.14, + "probability": 0.9824 + }, + { + "start": 7039.64, + "end": 7040.82, + "probability": 0.8618 + }, + { + "start": 7041.54, + "end": 7043.1, + "probability": 0.9167 + }, + { + "start": 7044.28, + "end": 7046.0, + "probability": 0.8535 + }, + { + "start": 7046.14, + "end": 7047.68, + "probability": 0.3806 + }, + { + "start": 7048.3, + "end": 7049.0, + "probability": 0.5007 + }, + { + "start": 7049.62, + "end": 7054.8, + "probability": 0.8916 + }, + { + "start": 7055.24, + "end": 7056.76, + "probability": 0.8477 + }, + { + "start": 7057.3, + "end": 7059.28, + "probability": 0.905 + }, + { + "start": 7059.9, + "end": 7061.78, + "probability": 0.6951 + }, + { + "start": 7064.18, + "end": 7064.42, + "probability": 0.0265 + }, + { + "start": 7065.5, + "end": 7068.46, + "probability": 0.0992 + }, + { + "start": 7068.66, + "end": 7071.54, + "probability": 0.2585 + }, + { + "start": 7071.62, + "end": 7073.52, + "probability": 0.2453 + }, + { + "start": 7074.2, + "end": 7075.76, + "probability": 0.2916 + }, + { + "start": 7108.08, + "end": 7108.74, + "probability": 0.0134 + }, + { + "start": 7110.89, + "end": 7110.96, + "probability": 0.4213 + }, + { + "start": 7111.72, + "end": 7112.64, + "probability": 0.0066 + }, + { + "start": 7119.38, + "end": 7124.68, + "probability": 0.0426 + }, + { + "start": 7125.42, + "end": 7127.24, + "probability": 0.0134 + }, + { + "start": 7127.44, + "end": 7128.26, + "probability": 0.2416 + }, + { + "start": 7128.26, + "end": 7128.94, + "probability": 0.1135 + }, + { + "start": 7129.32, + "end": 7130.74, + "probability": 0.007 + }, + { + "start": 7130.88, + "end": 7132.36, + "probability": 0.027 + }, + { + "start": 7134.68, + "end": 7136.76, + "probability": 0.1076 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.0, + "end": 7137.0, + "probability": 0.0 + }, + { + "start": 7137.83, + "end": 7140.53, + "probability": 0.0418 + }, + { + "start": 7140.68, + "end": 7140.7, + "probability": 0.0414 + }, + { + "start": 7140.7, + "end": 7142.38, + "probability": 0.5345 + }, + { + "start": 7143.3, + "end": 7146.28, + "probability": 0.948 + }, + { + "start": 7146.5, + "end": 7147.28, + "probability": 0.9285 + }, + { + "start": 7150.74, + "end": 7150.74, + "probability": 0.0667 + }, + { + "start": 7150.74, + "end": 7151.94, + "probability": 0.2775 + }, + { + "start": 7153.58, + "end": 7153.58, + "probability": 0.0423 + }, + { + "start": 7153.58, + "end": 7154.54, + "probability": 0.3644 + }, + { + "start": 7154.64, + "end": 7156.11, + "probability": 0.885 + }, + { + "start": 7156.22, + "end": 7156.66, + "probability": 0.7314 + }, + { + "start": 7156.94, + "end": 7157.68, + "probability": 0.643 + }, + { + "start": 7158.3, + "end": 7160.88, + "probability": 0.4925 + }, + { + "start": 7161.58, + "end": 7162.36, + "probability": 0.5072 + }, + { + "start": 7163.46, + "end": 7164.42, + "probability": 0.7882 + }, + { + "start": 7167.54, + "end": 7171.82, + "probability": 0.8672 + }, + { + "start": 7172.04, + "end": 7173.2, + "probability": 0.9228 + }, + { + "start": 7173.92, + "end": 7175.2, + "probability": 0.6884 + }, + { + "start": 7176.42, + "end": 7178.71, + "probability": 0.901 + }, + { + "start": 7179.92, + "end": 7181.0, + "probability": 0.9972 + }, + { + "start": 7182.24, + "end": 7186.96, + "probability": 0.9326 + }, + { + "start": 7189.1, + "end": 7189.66, + "probability": 0.5556 + }, + { + "start": 7189.76, + "end": 7192.16, + "probability": 0.869 + }, + { + "start": 7192.28, + "end": 7193.48, + "probability": 0.9194 + }, + { + "start": 7194.48, + "end": 7194.68, + "probability": 0.6457 + }, + { + "start": 7195.08, + "end": 7196.48, + "probability": 0.9895 + }, + { + "start": 7196.58, + "end": 7197.46, + "probability": 0.9092 + }, + { + "start": 7197.56, + "end": 7197.86, + "probability": 0.6582 + }, + { + "start": 7198.0, + "end": 7199.35, + "probability": 0.6711 + }, + { + "start": 7200.7, + "end": 7201.72, + "probability": 0.8798 + }, + { + "start": 7201.94, + "end": 7204.3, + "probability": 0.9951 + }, + { + "start": 7205.86, + "end": 7205.92, + "probability": 0.0093 + }, + { + "start": 7205.92, + "end": 7206.72, + "probability": 0.7798 + }, + { + "start": 7206.72, + "end": 7207.32, + "probability": 0.9844 + }, + { + "start": 7208.76, + "end": 7210.82, + "probability": 0.7713 + }, + { + "start": 7211.24, + "end": 7212.08, + "probability": 0.5659 + }, + { + "start": 7212.14, + "end": 7213.1, + "probability": 0.8437 + }, + { + "start": 7213.24, + "end": 7213.28, + "probability": 0.0472 + }, + { + "start": 7213.36, + "end": 7214.7, + "probability": 0.9297 + }, + { + "start": 7215.62, + "end": 7216.4, + "probability": 0.8385 + }, + { + "start": 7217.63, + "end": 7219.25, + "probability": 0.0291 + }, + { + "start": 7219.56, + "end": 7220.9, + "probability": 0.6306 + }, + { + "start": 7221.04, + "end": 7224.22, + "probability": 0.8248 + }, + { + "start": 7227.78, + "end": 7228.62, + "probability": 0.0557 + }, + { + "start": 7228.62, + "end": 7232.02, + "probability": 0.8188 + }, + { + "start": 7232.74, + "end": 7236.48, + "probability": 0.8936 + }, + { + "start": 7237.22, + "end": 7237.44, + "probability": 0.694 + }, + { + "start": 7238.98, + "end": 7241.66, + "probability": 0.7971 + }, + { + "start": 7242.38, + "end": 7246.38, + "probability": 0.8522 + }, + { + "start": 7248.04, + "end": 7248.9, + "probability": 0.7919 + }, + { + "start": 7249.42, + "end": 7251.1, + "probability": 0.7379 + }, + { + "start": 7252.22, + "end": 7253.62, + "probability": 0.8837 + }, + { + "start": 7254.14, + "end": 7254.86, + "probability": 0.8938 + }, + { + "start": 7257.14, + "end": 7259.62, + "probability": 0.8765 + }, + { + "start": 7260.22, + "end": 7260.56, + "probability": 0.8026 + }, + { + "start": 7260.84, + "end": 7265.72, + "probability": 0.9784 + }, + { + "start": 7267.1, + "end": 7271.2, + "probability": 0.9701 + }, + { + "start": 7272.3, + "end": 7275.38, + "probability": 0.8398 + }, + { + "start": 7276.04, + "end": 7276.92, + "probability": 0.9567 + }, + { + "start": 7278.02, + "end": 7279.22, + "probability": 0.9402 + }, + { + "start": 7280.94, + "end": 7282.08, + "probability": 0.928 + }, + { + "start": 7282.64, + "end": 7286.04, + "probability": 0.9923 + }, + { + "start": 7286.56, + "end": 7287.18, + "probability": 0.9092 + }, + { + "start": 7288.86, + "end": 7290.56, + "probability": 0.9912 + }, + { + "start": 7291.08, + "end": 7291.92, + "probability": 0.949 + }, + { + "start": 7292.84, + "end": 7295.3, + "probability": 0.8879 + }, + { + "start": 7296.52, + "end": 7297.6, + "probability": 0.9585 + }, + { + "start": 7298.18, + "end": 7300.58, + "probability": 0.9941 + }, + { + "start": 7302.24, + "end": 7304.38, + "probability": 0.9706 + }, + { + "start": 7304.94, + "end": 7306.66, + "probability": 0.5944 + }, + { + "start": 7307.28, + "end": 7309.06, + "probability": 0.8362 + }, + { + "start": 7310.28, + "end": 7312.06, + "probability": 0.9585 + }, + { + "start": 7312.54, + "end": 7313.9, + "probability": 0.9794 + }, + { + "start": 7314.94, + "end": 7317.24, + "probability": 0.7173 + }, + { + "start": 7317.38, + "end": 7318.08, + "probability": 0.6176 + }, + { + "start": 7318.5, + "end": 7319.0, + "probability": 0.562 + }, + { + "start": 7319.0, + "end": 7319.62, + "probability": 0.9364 + }, + { + "start": 7319.74, + "end": 7321.79, + "probability": 0.9136 + }, + { + "start": 7323.28, + "end": 7327.94, + "probability": 0.9826 + }, + { + "start": 7327.94, + "end": 7334.1, + "probability": 0.9814 + }, + { + "start": 7334.46, + "end": 7336.94, + "probability": 0.9491 + }, + { + "start": 7337.48, + "end": 7341.08, + "probability": 0.9984 + }, + { + "start": 7341.3, + "end": 7345.78, + "probability": 0.9872 + }, + { + "start": 7345.86, + "end": 7346.96, + "probability": 0.9905 + }, + { + "start": 7348.56, + "end": 7349.22, + "probability": 0.9426 + }, + { + "start": 7350.18, + "end": 7351.14, + "probability": 0.9265 + }, + { + "start": 7351.98, + "end": 7353.58, + "probability": 0.9879 + }, + { + "start": 7354.36, + "end": 7356.28, + "probability": 0.8015 + }, + { + "start": 7357.32, + "end": 7358.82, + "probability": 0.9375 + }, + { + "start": 7359.58, + "end": 7361.42, + "probability": 0.8968 + }, + { + "start": 7362.34, + "end": 7363.2, + "probability": 0.8604 + }, + { + "start": 7364.61, + "end": 7366.7, + "probability": 0.7106 + }, + { + "start": 7367.14, + "end": 7370.42, + "probability": 0.9474 + }, + { + "start": 7371.6, + "end": 7375.52, + "probability": 0.8966 + }, + { + "start": 7376.36, + "end": 7376.98, + "probability": 0.6049 + }, + { + "start": 7377.16, + "end": 7378.24, + "probability": 0.9493 + }, + { + "start": 7379.22, + "end": 7380.42, + "probability": 0.6716 + }, + { + "start": 7380.6, + "end": 7381.3, + "probability": 0.8052 + }, + { + "start": 7381.76, + "end": 7382.12, + "probability": 0.5914 + }, + { + "start": 7382.5, + "end": 7383.3, + "probability": 0.82 + }, + { + "start": 7383.36, + "end": 7384.3, + "probability": 0.8744 + }, + { + "start": 7384.76, + "end": 7387.88, + "probability": 0.9639 + }, + { + "start": 7388.14, + "end": 7388.98, + "probability": 0.9168 + }, + { + "start": 7389.26, + "end": 7389.7, + "probability": 0.5448 + }, + { + "start": 7390.56, + "end": 7391.28, + "probability": 0.7603 + }, + { + "start": 7391.74, + "end": 7395.0, + "probability": 0.8341 + }, + { + "start": 7395.64, + "end": 7396.2, + "probability": 0.625 + }, + { + "start": 7397.32, + "end": 7399.98, + "probability": 0.8254 + }, + { + "start": 7400.8, + "end": 7401.56, + "probability": 0.7473 + }, + { + "start": 7402.24, + "end": 7403.24, + "probability": 0.9055 + }, + { + "start": 7406.0, + "end": 7408.08, + "probability": 0.888 + }, + { + "start": 7409.98, + "end": 7410.34, + "probability": 0.8618 + }, + { + "start": 7410.92, + "end": 7411.45, + "probability": 0.6753 + }, + { + "start": 7413.54, + "end": 7415.82, + "probability": 0.7764 + }, + { + "start": 7417.02, + "end": 7417.48, + "probability": 0.907 + }, + { + "start": 7418.54, + "end": 7418.6, + "probability": 0.0625 + }, + { + "start": 7419.76, + "end": 7420.3, + "probability": 0.0 + }, + { + "start": 7421.84, + "end": 7424.94, + "probability": 0.0409 + }, + { + "start": 7425.0, + "end": 7429.4, + "probability": 0.6183 + }, + { + "start": 7430.56, + "end": 7431.74, + "probability": 0.8188 + }, + { + "start": 7432.92, + "end": 7434.14, + "probability": 0.8358 + }, + { + "start": 7435.14, + "end": 7437.6, + "probability": 0.9855 + }, + { + "start": 7439.54, + "end": 7442.3, + "probability": 0.9846 + }, + { + "start": 7442.68, + "end": 7442.94, + "probability": 0.3867 + }, + { + "start": 7443.06, + "end": 7444.16, + "probability": 0.822 + }, + { + "start": 7444.8, + "end": 7445.86, + "probability": 0.9869 + }, + { + "start": 7446.96, + "end": 7447.97, + "probability": 0.8829 + }, + { + "start": 7448.12, + "end": 7448.6, + "probability": 0.7047 + }, + { + "start": 7448.74, + "end": 7450.54, + "probability": 0.7979 + }, + { + "start": 7450.7, + "end": 7450.8, + "probability": 0.6797 + }, + { + "start": 7451.0, + "end": 7451.34, + "probability": 0.6247 + }, + { + "start": 7452.7, + "end": 7454.92, + "probability": 0.9328 + }, + { + "start": 7455.58, + "end": 7457.14, + "probability": 0.6773 + }, + { + "start": 7457.9, + "end": 7461.46, + "probability": 0.9883 + }, + { + "start": 7462.28, + "end": 7463.14, + "probability": 0.9956 + }, + { + "start": 7465.16, + "end": 7470.12, + "probability": 0.9879 + }, + { + "start": 7470.42, + "end": 7472.06, + "probability": 0.9953 + }, + { + "start": 7472.96, + "end": 7474.36, + "probability": 0.7784 + }, + { + "start": 7475.44, + "end": 7478.5, + "probability": 0.8098 + }, + { + "start": 7479.18, + "end": 7479.66, + "probability": 0.8901 + }, + { + "start": 7479.86, + "end": 7481.71, + "probability": 0.9858 + }, + { + "start": 7482.58, + "end": 7485.0, + "probability": 0.936 + }, + { + "start": 7485.3, + "end": 7487.24, + "probability": 0.9707 + }, + { + "start": 7487.46, + "end": 7487.56, + "probability": 0.7062 + }, + { + "start": 7487.98, + "end": 7493.98, + "probability": 0.9854 + }, + { + "start": 7494.62, + "end": 7496.88, + "probability": 0.7298 + }, + { + "start": 7498.98, + "end": 7500.5, + "probability": 0.8922 + }, + { + "start": 7501.54, + "end": 7501.78, + "probability": 0.9849 + }, + { + "start": 7502.8, + "end": 7505.56, + "probability": 0.918 + }, + { + "start": 7506.36, + "end": 7507.7, + "probability": 0.8146 + }, + { + "start": 7508.44, + "end": 7510.92, + "probability": 0.9862 + }, + { + "start": 7511.44, + "end": 7513.9, + "probability": 0.8957 + }, + { + "start": 7514.42, + "end": 7517.42, + "probability": 0.997 + }, + { + "start": 7517.42, + "end": 7521.01, + "probability": 0.9634 + }, + { + "start": 7532.76, + "end": 7533.36, + "probability": 0.0393 + }, + { + "start": 7533.36, + "end": 7534.1, + "probability": 0.0397 + }, + { + "start": 7534.1, + "end": 7534.1, + "probability": 0.0414 + }, + { + "start": 7534.1, + "end": 7535.94, + "probability": 0.2561 + }, + { + "start": 7536.7, + "end": 7538.74, + "probability": 0.799 + }, + { + "start": 7539.18, + "end": 7540.84, + "probability": 0.4168 + }, + { + "start": 7540.96, + "end": 7541.6, + "probability": 0.92 + }, + { + "start": 7542.06, + "end": 7542.48, + "probability": 0.8735 + }, + { + "start": 7542.8, + "end": 7543.52, + "probability": 0.1414 + }, + { + "start": 7544.14, + "end": 7545.45, + "probability": 0.1184 + }, + { + "start": 7546.12, + "end": 7546.86, + "probability": 0.143 + }, + { + "start": 7547.86, + "end": 7550.94, + "probability": 0.9163 + }, + { + "start": 7551.58, + "end": 7556.94, + "probability": 0.9832 + }, + { + "start": 7557.58, + "end": 7558.42, + "probability": 0.8475 + }, + { + "start": 7558.84, + "end": 7560.74, + "probability": 0.8999 + }, + { + "start": 7560.96, + "end": 7563.42, + "probability": 0.7372 + }, + { + "start": 7565.02, + "end": 7565.78, + "probability": 0.8697 + }, + { + "start": 7566.46, + "end": 7567.44, + "probability": 0.8723 + }, + { + "start": 7567.54, + "end": 7568.36, + "probability": 0.6388 + }, + { + "start": 7568.8, + "end": 7570.2, + "probability": 0.7651 + }, + { + "start": 7570.96, + "end": 7572.02, + "probability": 0.8343 + }, + { + "start": 7572.68, + "end": 7574.08, + "probability": 0.9523 + }, + { + "start": 7574.28, + "end": 7575.7, + "probability": 0.7387 + }, + { + "start": 7575.76, + "end": 7576.02, + "probability": 0.5476 + }, + { + "start": 7576.1, + "end": 7576.52, + "probability": 0.6594 + }, + { + "start": 7576.98, + "end": 7579.1, + "probability": 0.845 + }, + { + "start": 7595.52, + "end": 7598.5, + "probability": 0.7497 + }, + { + "start": 7599.08, + "end": 7606.28, + "probability": 0.9683 + }, + { + "start": 7607.14, + "end": 7611.54, + "probability": 0.8099 + }, + { + "start": 7612.64, + "end": 7613.5, + "probability": 0.9321 + }, + { + "start": 7614.34, + "end": 7615.5, + "probability": 0.9006 + }, + { + "start": 7616.26, + "end": 7618.17, + "probability": 0.9995 + }, + { + "start": 7619.0, + "end": 7619.48, + "probability": 0.7595 + }, + { + "start": 7620.64, + "end": 7623.15, + "probability": 0.832 + }, + { + "start": 7623.76, + "end": 7624.64, + "probability": 0.6834 + }, + { + "start": 7625.58, + "end": 7629.86, + "probability": 0.9922 + }, + { + "start": 7630.6, + "end": 7631.48, + "probability": 0.9223 + }, + { + "start": 7632.79, + "end": 7635.22, + "probability": 0.9833 + }, + { + "start": 7635.38, + "end": 7638.78, + "probability": 0.7556 + }, + { + "start": 7639.58, + "end": 7641.9, + "probability": 0.8948 + }, + { + "start": 7642.4, + "end": 7644.76, + "probability": 0.7984 + }, + { + "start": 7646.64, + "end": 7647.52, + "probability": 0.9938 + }, + { + "start": 7648.86, + "end": 7649.04, + "probability": 0.6372 + }, + { + "start": 7650.14, + "end": 7652.82, + "probability": 0.7834 + }, + { + "start": 7653.86, + "end": 7657.62, + "probability": 0.9595 + }, + { + "start": 7657.62, + "end": 7660.48, + "probability": 0.9707 + }, + { + "start": 7662.32, + "end": 7664.58, + "probability": 0.9972 + }, + { + "start": 7665.12, + "end": 7667.2, + "probability": 0.829 + }, + { + "start": 7667.78, + "end": 7671.1, + "probability": 0.9628 + }, + { + "start": 7673.04, + "end": 7678.3, + "probability": 0.9808 + }, + { + "start": 7681.52, + "end": 7683.96, + "probability": 0.8461 + }, + { + "start": 7684.94, + "end": 7687.16, + "probability": 0.9838 + }, + { + "start": 7688.08, + "end": 7691.54, + "probability": 0.9754 + }, + { + "start": 7692.1, + "end": 7694.36, + "probability": 0.7582 + }, + { + "start": 7694.92, + "end": 7696.38, + "probability": 0.7053 + }, + { + "start": 7697.74, + "end": 7700.1, + "probability": 0.9391 + }, + { + "start": 7700.86, + "end": 7702.84, + "probability": 0.9903 + }, + { + "start": 7704.5, + "end": 7707.0, + "probability": 0.9284 + }, + { + "start": 7707.6, + "end": 7707.88, + "probability": 0.9974 + }, + { + "start": 7708.56, + "end": 7712.94, + "probability": 0.9818 + }, + { + "start": 7712.96, + "end": 7716.6, + "probability": 0.9951 + }, + { + "start": 7717.62, + "end": 7723.35, + "probability": 0.9893 + }, + { + "start": 7724.24, + "end": 7726.2, + "probability": 0.7583 + }, + { + "start": 7727.08, + "end": 7728.04, + "probability": 0.4344 + }, + { + "start": 7728.28, + "end": 7730.18, + "probability": 0.992 + }, + { + "start": 7730.76, + "end": 7732.58, + "probability": 0.8514 + }, + { + "start": 7733.92, + "end": 7737.48, + "probability": 0.8578 + }, + { + "start": 7738.24, + "end": 7739.96, + "probability": 0.9717 + }, + { + "start": 7740.5, + "end": 7741.94, + "probability": 0.9951 + }, + { + "start": 7742.52, + "end": 7745.66, + "probability": 0.8794 + }, + { + "start": 7746.42, + "end": 7747.24, + "probability": 0.498 + }, + { + "start": 7748.38, + "end": 7749.76, + "probability": 0.729 + }, + { + "start": 7750.76, + "end": 7752.9, + "probability": 0.9939 + }, + { + "start": 7754.5, + "end": 7760.02, + "probability": 0.9937 + }, + { + "start": 7760.72, + "end": 7761.84, + "probability": 0.982 + }, + { + "start": 7763.1, + "end": 7768.78, + "probability": 0.9965 + }, + { + "start": 7769.44, + "end": 7771.41, + "probability": 0.9767 + }, + { + "start": 7772.46, + "end": 7773.66, + "probability": 0.6451 + }, + { + "start": 7773.83, + "end": 7779.16, + "probability": 0.9414 + }, + { + "start": 7780.52, + "end": 7785.52, + "probability": 0.9652 + }, + { + "start": 7786.28, + "end": 7788.36, + "probability": 0.88 + }, + { + "start": 7789.5, + "end": 7792.92, + "probability": 0.9277 + }, + { + "start": 7793.64, + "end": 7795.1, + "probability": 0.9951 + }, + { + "start": 7796.44, + "end": 7799.5, + "probability": 0.9862 + }, + { + "start": 7799.68, + "end": 7803.48, + "probability": 0.9971 + }, + { + "start": 7803.98, + "end": 7804.94, + "probability": 0.9836 + }, + { + "start": 7806.28, + "end": 7808.07, + "probability": 0.9201 + }, + { + "start": 7808.94, + "end": 7813.28, + "probability": 0.9717 + }, + { + "start": 7814.96, + "end": 7815.64, + "probability": 0.7112 + }, + { + "start": 7816.92, + "end": 7819.82, + "probability": 0.9478 + }, + { + "start": 7821.44, + "end": 7822.56, + "probability": 0.9565 + }, + { + "start": 7823.34, + "end": 7824.28, + "probability": 0.5282 + }, + { + "start": 7825.54, + "end": 7826.32, + "probability": 0.7963 + }, + { + "start": 7827.32, + "end": 7830.4, + "probability": 0.991 + }, + { + "start": 7831.26, + "end": 7832.72, + "probability": 0.8874 + }, + { + "start": 7834.06, + "end": 7836.96, + "probability": 0.9846 + }, + { + "start": 7837.62, + "end": 7841.12, + "probability": 0.9202 + }, + { + "start": 7846.99, + "end": 7848.06, + "probability": 0.0347 + }, + { + "start": 7848.66, + "end": 7848.82, + "probability": 0.2189 + }, + { + "start": 7848.82, + "end": 7848.88, + "probability": 0.0971 + }, + { + "start": 7848.88, + "end": 7849.54, + "probability": 0.5302 + }, + { + "start": 7850.46, + "end": 7851.59, + "probability": 0.8557 + }, + { + "start": 7852.66, + "end": 7852.82, + "probability": 0.2163 + }, + { + "start": 7852.82, + "end": 7852.9, + "probability": 0.3714 + }, + { + "start": 7853.0, + "end": 7856.62, + "probability": 0.7667 + }, + { + "start": 7859.42, + "end": 7860.26, + "probability": 0.1544 + }, + { + "start": 7861.32, + "end": 7862.19, + "probability": 0.2735 + }, + { + "start": 7862.92, + "end": 7864.14, + "probability": 0.529 + }, + { + "start": 7864.88, + "end": 7867.16, + "probability": 0.9613 + }, + { + "start": 7868.42, + "end": 7870.4, + "probability": 0.9784 + }, + { + "start": 7870.76, + "end": 7871.96, + "probability": 0.1133 + }, + { + "start": 7871.96, + "end": 7872.4, + "probability": 0.4746 + }, + { + "start": 7872.46, + "end": 7872.8, + "probability": 0.6229 + }, + { + "start": 7872.86, + "end": 7873.54, + "probability": 0.8109 + }, + { + "start": 7874.68, + "end": 7874.96, + "probability": 0.1207 + }, + { + "start": 7875.36, + "end": 7879.86, + "probability": 0.7713 + }, + { + "start": 7880.22, + "end": 7881.52, + "probability": 0.7422 + }, + { + "start": 7881.86, + "end": 7883.24, + "probability": 0.8632 + }, + { + "start": 7883.26, + "end": 7884.84, + "probability": 0.545 + }, + { + "start": 7885.08, + "end": 7886.28, + "probability": 0.9697 + }, + { + "start": 7886.54, + "end": 7889.48, + "probability": 0.7489 + }, + { + "start": 7890.74, + "end": 7891.54, + "probability": 0.0963 + }, + { + "start": 7891.54, + "end": 7892.76, + "probability": 0.9277 + }, + { + "start": 7893.14, + "end": 7893.36, + "probability": 0.5916 + }, + { + "start": 7893.78, + "end": 7895.36, + "probability": 0.9836 + }, + { + "start": 7895.52, + "end": 7896.82, + "probability": 0.9858 + }, + { + "start": 7897.08, + "end": 7898.4, + "probability": 0.3882 + }, + { + "start": 7899.5, + "end": 7900.06, + "probability": 0.5943 + }, + { + "start": 7901.96, + "end": 7903.02, + "probability": 0.8462 + }, + { + "start": 7903.86, + "end": 7905.9, + "probability": 0.9901 + }, + { + "start": 7906.56, + "end": 7907.22, + "probability": 0.8889 + }, + { + "start": 7908.28, + "end": 7910.34, + "probability": 0.7632 + }, + { + "start": 7910.62, + "end": 7911.64, + "probability": 0.5402 + }, + { + "start": 7912.0, + "end": 7915.14, + "probability": 0.7996 + }, + { + "start": 7915.52, + "end": 7915.7, + "probability": 0.8329 + }, + { + "start": 7916.26, + "end": 7917.14, + "probability": 0.5616 + }, + { + "start": 7917.54, + "end": 7920.5, + "probability": 0.9637 + }, + { + "start": 7920.56, + "end": 7921.2, + "probability": 0.5814 + }, + { + "start": 7921.68, + "end": 7923.34, + "probability": 0.9038 + }, + { + "start": 7926.4, + "end": 7928.64, + "probability": 0.8791 + }, + { + "start": 7930.51, + "end": 7930.94, + "probability": 0.0059 + }, + { + "start": 7931.68, + "end": 7932.14, + "probability": 0.5477 + }, + { + "start": 7941.8, + "end": 7942.42, + "probability": 0.0094 + }, + { + "start": 7942.44, + "end": 7942.48, + "probability": 0.0574 + }, + { + "start": 7942.48, + "end": 7942.48, + "probability": 0.066 + }, + { + "start": 7942.48, + "end": 7942.48, + "probability": 0.0548 + }, + { + "start": 7942.48, + "end": 7942.48, + "probability": 0.1488 + }, + { + "start": 7942.6, + "end": 7946.18, + "probability": 0.8677 + }, + { + "start": 7946.3, + "end": 7948.0, + "probability": 0.8969 + }, + { + "start": 7954.14, + "end": 7958.07, + "probability": 0.9702 + }, + { + "start": 7959.48, + "end": 7960.58, + "probability": 0.8679 + }, + { + "start": 7960.8, + "end": 7962.86, + "probability": 0.8311 + }, + { + "start": 7963.3, + "end": 7964.26, + "probability": 0.9109 + }, + { + "start": 7964.5, + "end": 7965.58, + "probability": 0.7903 + }, + { + "start": 7965.78, + "end": 7966.34, + "probability": 0.6916 + }, + { + "start": 7967.68, + "end": 7969.6, + "probability": 0.9321 + }, + { + "start": 7971.2, + "end": 7972.44, + "probability": 0.0409 + }, + { + "start": 7972.96, + "end": 7978.06, + "probability": 0.8466 + }, + { + "start": 7978.06, + "end": 7978.34, + "probability": 0.3162 + }, + { + "start": 7979.04, + "end": 7979.46, + "probability": 0.032 + }, + { + "start": 7979.76, + "end": 7981.84, + "probability": 0.5605 + }, + { + "start": 7983.46, + "end": 7983.46, + "probability": 0.0696 + }, + { + "start": 7983.46, + "end": 7984.94, + "probability": 0.7434 + }, + { + "start": 7985.04, + "end": 7986.08, + "probability": 0.0417 + }, + { + "start": 7986.08, + "end": 7988.08, + "probability": 0.831 + }, + { + "start": 7988.32, + "end": 7990.88, + "probability": 0.9799 + }, + { + "start": 7992.24, + "end": 7995.4, + "probability": 0.9875 + }, + { + "start": 7996.52, + "end": 7997.4, + "probability": 0.6708 + }, + { + "start": 7997.46, + "end": 7998.86, + "probability": 0.8115 + }, + { + "start": 7999.04, + "end": 8000.39, + "probability": 0.5182 + }, + { + "start": 8001.48, + "end": 8001.8, + "probability": 0.548 + }, + { + "start": 8002.24, + "end": 8002.72, + "probability": 0.928 + }, + { + "start": 8002.88, + "end": 8007.66, + "probability": 0.8743 + }, + { + "start": 8007.74, + "end": 8008.74, + "probability": 0.5932 + }, + { + "start": 8009.52, + "end": 8010.5, + "probability": 0.958 + }, + { + "start": 8011.9, + "end": 8015.92, + "probability": 0.5405 + }, + { + "start": 8017.6, + "end": 8017.92, + "probability": 0.0253 + }, + { + "start": 8017.92, + "end": 8020.18, + "probability": 0.5467 + }, + { + "start": 8021.04, + "end": 8022.3, + "probability": 0.391 + }, + { + "start": 8024.66, + "end": 8026.06, + "probability": 0.5821 + }, + { + "start": 8026.14, + "end": 8026.62, + "probability": 0.5635 + }, + { + "start": 8026.76, + "end": 8027.68, + "probability": 0.8945 + }, + { + "start": 8027.86, + "end": 8030.42, + "probability": 0.9197 + }, + { + "start": 8030.58, + "end": 8031.4, + "probability": 0.53 + }, + { + "start": 8033.76, + "end": 8036.0, + "probability": 0.5909 + }, + { + "start": 8036.12, + "end": 8038.58, + "probability": 0.894 + }, + { + "start": 8038.62, + "end": 8041.18, + "probability": 0.5635 + }, + { + "start": 8044.74, + "end": 8044.94, + "probability": 0.2408 + }, + { + "start": 8046.48, + "end": 8047.68, + "probability": 0.7159 + }, + { + "start": 8047.78, + "end": 8051.68, + "probability": 0.6587 + }, + { + "start": 8053.46, + "end": 8055.64, + "probability": 0.6243 + }, + { + "start": 8057.22, + "end": 8057.38, + "probability": 0.118 + }, + { + "start": 8058.97, + "end": 8060.24, + "probability": 0.0855 + }, + { + "start": 8060.86, + "end": 8061.92, + "probability": 0.1685 + }, + { + "start": 8063.4, + "end": 8064.28, + "probability": 0.0823 + }, + { + "start": 8066.24, + "end": 8068.46, + "probability": 0.0379 + }, + { + "start": 8068.86, + "end": 8069.34, + "probability": 0.2253 + }, + { + "start": 8070.76, + "end": 8070.8, + "probability": 0.013 + }, + { + "start": 8077.68, + "end": 8079.18, + "probability": 0.0046 + }, + { + "start": 8082.28, + "end": 8083.52, + "probability": 0.0016 + }, + { + "start": 8089.26, + "end": 8091.52, + "probability": 0.03 + }, + { + "start": 8092.2, + "end": 8092.48, + "probability": 0.1596 + }, + { + "start": 8096.38, + "end": 8096.38, + "probability": 0.044 + }, + { + "start": 8098.12, + "end": 8098.98, + "probability": 0.0762 + }, + { + "start": 8099.74, + "end": 8101.9, + "probability": 0.0239 + }, + { + "start": 8103.09, + "end": 8104.37, + "probability": 0.0833 + }, + { + "start": 8105.78, + "end": 8107.52, + "probability": 0.0924 + }, + { + "start": 8107.52, + "end": 8110.16, + "probability": 0.1539 + }, + { + "start": 8111.12, + "end": 8111.4, + "probability": 0.0031 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.0, + "end": 8127.0, + "probability": 0.0 + }, + { + "start": 8127.24, + "end": 8127.74, + "probability": 0.134 + }, + { + "start": 8127.74, + "end": 8127.74, + "probability": 0.0435 + }, + { + "start": 8127.74, + "end": 8127.74, + "probability": 0.0676 + }, + { + "start": 8127.74, + "end": 8128.32, + "probability": 0.059 + }, + { + "start": 8128.74, + "end": 8130.44, + "probability": 0.5609 + }, + { + "start": 8130.88, + "end": 8131.61, + "probability": 0.705 + }, + { + "start": 8132.4, + "end": 8132.91, + "probability": 0.6979 + }, + { + "start": 8133.38, + "end": 8134.81, + "probability": 0.9189 + }, + { + "start": 8135.24, + "end": 8138.02, + "probability": 0.9756 + }, + { + "start": 8138.28, + "end": 8139.24, + "probability": 0.7468 + }, + { + "start": 8139.24, + "end": 8142.24, + "probability": 0.4039 + }, + { + "start": 8142.32, + "end": 8143.46, + "probability": 0.9142 + }, + { + "start": 8143.74, + "end": 8144.04, + "probability": 0.5938 + }, + { + "start": 8144.18, + "end": 8145.64, + "probability": 0.2894 + }, + { + "start": 8145.84, + "end": 8146.56, + "probability": 0.1638 + }, + { + "start": 8147.32, + "end": 8147.32, + "probability": 0.1783 + }, + { + "start": 8147.32, + "end": 8147.62, + "probability": 0.7407 + }, + { + "start": 8148.36, + "end": 8149.21, + "probability": 0.7109 + }, + { + "start": 8149.58, + "end": 8150.12, + "probability": 0.9536 + }, + { + "start": 8150.48, + "end": 8151.22, + "probability": 0.8882 + }, + { + "start": 8151.36, + "end": 8152.01, + "probability": 0.9702 + }, + { + "start": 8155.32, + "end": 8158.66, + "probability": 0.7454 + }, + { + "start": 8159.2, + "end": 8160.2, + "probability": 0.9722 + }, + { + "start": 8160.28, + "end": 8164.98, + "probability": 0.9064 + }, + { + "start": 8165.38, + "end": 8166.22, + "probability": 0.9054 + }, + { + "start": 8166.38, + "end": 8168.78, + "probability": 0.7949 + }, + { + "start": 8169.42, + "end": 8171.08, + "probability": 0.551 + }, + { + "start": 8171.56, + "end": 8176.0, + "probability": 0.8653 + }, + { + "start": 8176.46, + "end": 8176.92, + "probability": 0.6278 + }, + { + "start": 8177.6, + "end": 8180.5, + "probability": 0.9366 + }, + { + "start": 8181.22, + "end": 8181.24, + "probability": 0.1835 + }, + { + "start": 8181.24, + "end": 8184.18, + "probability": 0.8693 + }, + { + "start": 8184.26, + "end": 8188.46, + "probability": 0.9785 + }, + { + "start": 8189.02, + "end": 8190.12, + "probability": 0.8682 + }, + { + "start": 8191.78, + "end": 8196.02, + "probability": 0.9835 + }, + { + "start": 8196.68, + "end": 8198.36, + "probability": 0.8481 + }, + { + "start": 8198.78, + "end": 8201.94, + "probability": 0.998 + }, + { + "start": 8202.46, + "end": 8204.06, + "probability": 0.9656 + }, + { + "start": 8204.4, + "end": 8205.22, + "probability": 0.9736 + }, + { + "start": 8205.66, + "end": 8207.24, + "probability": 0.993 + }, + { + "start": 8207.86, + "end": 8209.32, + "probability": 0.8585 + }, + { + "start": 8209.44, + "end": 8215.08, + "probability": 0.7856 + }, + { + "start": 8215.46, + "end": 8216.08, + "probability": 0.4821 + }, + { + "start": 8216.18, + "end": 8217.0, + "probability": 0.861 + }, + { + "start": 8217.28, + "end": 8220.01, + "probability": 0.9385 + }, + { + "start": 8220.84, + "end": 8224.2, + "probability": 0.7 + }, + { + "start": 8225.18, + "end": 8229.28, + "probability": 0.943 + }, + { + "start": 8229.52, + "end": 8231.52, + "probability": 0.9915 + }, + { + "start": 8231.66, + "end": 8232.72, + "probability": 0.9741 + }, + { + "start": 8233.3, + "end": 8234.26, + "probability": 0.4212 + }, + { + "start": 8234.68, + "end": 8234.82, + "probability": 0.6183 + }, + { + "start": 8235.32, + "end": 8237.24, + "probability": 0.7225 + }, + { + "start": 8238.16, + "end": 8239.74, + "probability": 0.9666 + }, + { + "start": 8240.48, + "end": 8242.64, + "probability": 0.9795 + }, + { + "start": 8243.34, + "end": 8247.38, + "probability": 0.9921 + }, + { + "start": 8249.06, + "end": 8249.46, + "probability": 0.9768 + }, + { + "start": 8249.98, + "end": 8251.32, + "probability": 0.998 + }, + { + "start": 8252.36, + "end": 8254.7, + "probability": 0.9753 + }, + { + "start": 8254.76, + "end": 8255.14, + "probability": 0.7826 + }, + { + "start": 8255.44, + "end": 8257.22, + "probability": 0.9854 + }, + { + "start": 8258.34, + "end": 8259.18, + "probability": 0.7438 + }, + { + "start": 8260.98, + "end": 8261.48, + "probability": 0.5304 + }, + { + "start": 8263.5, + "end": 8265.96, + "probability": 0.8165 + }, + { + "start": 8266.56, + "end": 8267.2, + "probability": 0.049 + }, + { + "start": 8269.02, + "end": 8269.4, + "probability": 0.3106 + }, + { + "start": 8269.6, + "end": 8270.12, + "probability": 0.4879 + }, + { + "start": 8271.14, + "end": 8273.42, + "probability": 0.7915 + }, + { + "start": 8274.06, + "end": 8274.46, + "probability": 0.4955 + }, + { + "start": 8276.66, + "end": 8277.92, + "probability": 0.3059 + }, + { + "start": 8282.54, + "end": 8283.66, + "probability": 0.2818 + }, + { + "start": 8284.42, + "end": 8284.88, + "probability": 0.5198 + }, + { + "start": 8288.56, + "end": 8289.45, + "probability": 0.6875 + }, + { + "start": 8289.52, + "end": 8289.76, + "probability": 0.9684 + }, + { + "start": 8290.08, + "end": 8290.88, + "probability": 0.9863 + }, + { + "start": 8291.66, + "end": 8294.48, + "probability": 0.2022 + }, + { + "start": 8295.1, + "end": 8296.26, + "probability": 0.7845 + }, + { + "start": 8297.46, + "end": 8299.46, + "probability": 0.8198 + }, + { + "start": 8302.26, + "end": 8303.36, + "probability": 0.635 + }, + { + "start": 8304.1, + "end": 8306.78, + "probability": 0.9496 + }, + { + "start": 8307.34, + "end": 8308.0, + "probability": 0.7827 + }, + { + "start": 8309.34, + "end": 8310.94, + "probability": 0.6875 + }, + { + "start": 8312.42, + "end": 8315.4, + "probability": 0.644 + }, + { + "start": 8315.68, + "end": 8316.31, + "probability": 0.9997 + }, + { + "start": 8317.24, + "end": 8318.27, + "probability": 0.7998 + }, + { + "start": 8322.28, + "end": 8327.02, + "probability": 0.9131 + }, + { + "start": 8327.32, + "end": 8328.24, + "probability": 0.8324 + }, + { + "start": 8329.98, + "end": 8330.61, + "probability": 0.3505 + }, + { + "start": 8332.02, + "end": 8333.72, + "probability": 0.7517 + }, + { + "start": 8334.08, + "end": 8334.86, + "probability": 0.9208 + }, + { + "start": 8335.32, + "end": 8337.16, + "probability": 0.9755 + }, + { + "start": 8337.96, + "end": 8340.22, + "probability": 0.6801 + }, + { + "start": 8342.0, + "end": 8342.3, + "probability": 0.0953 + }, + { + "start": 8342.3, + "end": 8346.88, + "probability": 0.976 + }, + { + "start": 8347.7, + "end": 8350.58, + "probability": 0.9539 + }, + { + "start": 8350.62, + "end": 8351.24, + "probability": 0.6578 + }, + { + "start": 8351.94, + "end": 8356.6, + "probability": 0.9348 + }, + { + "start": 8356.76, + "end": 8357.46, + "probability": 0.8514 + }, + { + "start": 8357.58, + "end": 8357.98, + "probability": 0.6482 + }, + { + "start": 8358.52, + "end": 8360.18, + "probability": 0.9239 + }, + { + "start": 8361.78, + "end": 8363.76, + "probability": 0.9239 + }, + { + "start": 8364.42, + "end": 8365.16, + "probability": 0.9632 + }, + { + "start": 8366.06, + "end": 8366.56, + "probability": 0.5715 + }, + { + "start": 8366.66, + "end": 8373.32, + "probability": 0.9066 + }, + { + "start": 8373.66, + "end": 8374.32, + "probability": 0.7366 + }, + { + "start": 8374.52, + "end": 8378.46, + "probability": 0.9891 + }, + { + "start": 8379.54, + "end": 8383.08, + "probability": 0.9905 + }, + { + "start": 8383.24, + "end": 8384.66, + "probability": 0.941 + }, + { + "start": 8384.7, + "end": 8385.52, + "probability": 0.7225 + }, + { + "start": 8386.16, + "end": 8391.48, + "probability": 0.984 + }, + { + "start": 8392.24, + "end": 8397.52, + "probability": 0.9393 + }, + { + "start": 8398.02, + "end": 8400.56, + "probability": 0.9807 + }, + { + "start": 8403.22, + "end": 8403.32, + "probability": 0.0304 + }, + { + "start": 8403.32, + "end": 8405.88, + "probability": 0.9064 + }, + { + "start": 8407.34, + "end": 8409.2, + "probability": 0.8337 + }, + { + "start": 8409.3, + "end": 8417.0, + "probability": 0.9921 + }, + { + "start": 8417.9, + "end": 8420.66, + "probability": 0.8943 + }, + { + "start": 8420.82, + "end": 8425.74, + "probability": 0.975 + }, + { + "start": 8426.3, + "end": 8427.04, + "probability": 0.8119 + }, + { + "start": 8427.32, + "end": 8428.4, + "probability": 0.828 + }, + { + "start": 8428.5, + "end": 8430.6, + "probability": 0.9788 + }, + { + "start": 8431.16, + "end": 8432.36, + "probability": 0.8893 + }, + { + "start": 8433.34, + "end": 8435.84, + "probability": 0.9814 + }, + { + "start": 8436.54, + "end": 8438.92, + "probability": 0.9983 + }, + { + "start": 8439.34, + "end": 8444.22, + "probability": 0.9762 + }, + { + "start": 8444.22, + "end": 8447.82, + "probability": 0.9775 + }, + { + "start": 8448.32, + "end": 8449.9, + "probability": 0.7682 + }, + { + "start": 8450.46, + "end": 8453.04, + "probability": 0.9951 + }, + { + "start": 8453.52, + "end": 8454.82, + "probability": 0.9985 + }, + { + "start": 8455.04, + "end": 8460.73, + "probability": 0.9844 + }, + { + "start": 8462.06, + "end": 8463.12, + "probability": 0.9495 + }, + { + "start": 8463.26, + "end": 8464.55, + "probability": 0.9951 + }, + { + "start": 8464.98, + "end": 8465.8, + "probability": 0.7459 + }, + { + "start": 8466.16, + "end": 8467.34, + "probability": 0.7998 + }, + { + "start": 8467.62, + "end": 8467.92, + "probability": 0.8102 + }, + { + "start": 8468.46, + "end": 8468.82, + "probability": 0.696 + }, + { + "start": 8469.02, + "end": 8469.98, + "probability": 0.8569 + }, + { + "start": 8470.02, + "end": 8471.44, + "probability": 0.6992 + }, + { + "start": 8471.84, + "end": 8472.58, + "probability": 0.8855 + }, + { + "start": 8473.06, + "end": 8476.12, + "probability": 0.9555 + }, + { + "start": 8477.12, + "end": 8480.14, + "probability": 0.952 + }, + { + "start": 8481.28, + "end": 8481.5, + "probability": 0.7441 + }, + { + "start": 8481.52, + "end": 8482.82, + "probability": 0.9134 + }, + { + "start": 8482.98, + "end": 8486.08, + "probability": 0.9939 + }, + { + "start": 8487.38, + "end": 8488.82, + "probability": 0.6266 + }, + { + "start": 8489.46, + "end": 8491.54, + "probability": 0.7816 + }, + { + "start": 8492.08, + "end": 8496.14, + "probability": 0.981 + }, + { + "start": 8496.14, + "end": 8499.94, + "probability": 0.945 + }, + { + "start": 8500.46, + "end": 8504.24, + "probability": 0.9798 + }, + { + "start": 8504.9, + "end": 8507.3, + "probability": 0.9661 + }, + { + "start": 8507.86, + "end": 8510.12, + "probability": 0.9963 + }, + { + "start": 8511.48, + "end": 8511.92, + "probability": 0.5299 + }, + { + "start": 8512.08, + "end": 8514.34, + "probability": 0.8971 + }, + { + "start": 8514.7, + "end": 8518.24, + "probability": 0.9423 + }, + { + "start": 8518.62, + "end": 8524.88, + "probability": 0.9146 + }, + { + "start": 8524.98, + "end": 8525.36, + "probability": 0.5589 + }, + { + "start": 8525.4, + "end": 8526.0, + "probability": 0.6633 + }, + { + "start": 8526.18, + "end": 8526.68, + "probability": 0.3319 + }, + { + "start": 8527.62, + "end": 8529.28, + "probability": 0.915 + }, + { + "start": 8529.92, + "end": 8531.44, + "probability": 0.7847 + }, + { + "start": 8531.98, + "end": 8534.82, + "probability": 0.9873 + }, + { + "start": 8535.32, + "end": 8538.1, + "probability": 0.6784 + }, + { + "start": 8538.96, + "end": 8542.64, + "probability": 0.9905 + }, + { + "start": 8542.64, + "end": 8544.62, + "probability": 0.918 + }, + { + "start": 8545.16, + "end": 8546.9, + "probability": 0.9951 + }, + { + "start": 8547.04, + "end": 8548.42, + "probability": 0.9282 + }, + { + "start": 8549.1, + "end": 8550.48, + "probability": 0.9784 + }, + { + "start": 8551.02, + "end": 8553.24, + "probability": 0.9575 + }, + { + "start": 8553.84, + "end": 8557.8, + "probability": 0.993 + }, + { + "start": 8559.02, + "end": 8561.14, + "probability": 0.9668 + }, + { + "start": 8561.9, + "end": 8563.97, + "probability": 0.7832 + }, + { + "start": 8564.62, + "end": 8564.8, + "probability": 0.5734 + }, + { + "start": 8565.16, + "end": 8571.66, + "probability": 0.9355 + }, + { + "start": 8572.06, + "end": 8573.0, + "probability": 0.8091 + }, + { + "start": 8573.46, + "end": 8574.88, + "probability": 0.8972 + }, + { + "start": 8575.26, + "end": 8575.54, + "probability": 0.2975 + }, + { + "start": 8576.52, + "end": 8579.36, + "probability": 0.8428 + }, + { + "start": 8579.66, + "end": 8581.06, + "probability": 0.998 + }, + { + "start": 8581.6, + "end": 8583.64, + "probability": 0.9863 + }, + { + "start": 8583.72, + "end": 8584.76, + "probability": 0.9797 + }, + { + "start": 8584.94, + "end": 8585.42, + "probability": 0.8581 + }, + { + "start": 8585.64, + "end": 8587.28, + "probability": 0.8806 + }, + { + "start": 8587.96, + "end": 8592.24, + "probability": 0.675 + }, + { + "start": 8593.58, + "end": 8598.66, + "probability": 0.8819 + }, + { + "start": 8599.3, + "end": 8601.07, + "probability": 0.752 + }, + { + "start": 8601.66, + "end": 8602.52, + "probability": 0.9429 + }, + { + "start": 8603.1, + "end": 8605.47, + "probability": 0.9348 + }, + { + "start": 8607.6, + "end": 8613.5, + "probability": 0.8226 + }, + { + "start": 8613.9, + "end": 8615.5, + "probability": 0.9846 + }, + { + "start": 8615.96, + "end": 8620.9, + "probability": 0.8284 + }, + { + "start": 8621.48, + "end": 8623.74, + "probability": 0.712 + }, + { + "start": 8624.44, + "end": 8627.22, + "probability": 0.9945 + }, + { + "start": 8627.96, + "end": 8629.7, + "probability": 0.6762 + }, + { + "start": 8629.9, + "end": 8633.52, + "probability": 0.8056 + }, + { + "start": 8633.58, + "end": 8634.42, + "probability": 0.5518 + }, + { + "start": 8635.02, + "end": 8637.18, + "probability": 0.9949 + }, + { + "start": 8637.8, + "end": 8640.84, + "probability": 0.737 + }, + { + "start": 8641.46, + "end": 8643.84, + "probability": 0.7834 + }, + { + "start": 8644.62, + "end": 8644.76, + "probability": 0.5726 + }, + { + "start": 8645.18, + "end": 8648.72, + "probability": 0.968 + }, + { + "start": 8648.82, + "end": 8652.34, + "probability": 0.8224 + }, + { + "start": 8653.76, + "end": 8658.22, + "probability": 0.9945 + }, + { + "start": 8658.36, + "end": 8659.08, + "probability": 0.5962 + }, + { + "start": 8659.46, + "end": 8659.62, + "probability": 0.7142 + }, + { + "start": 8659.72, + "end": 8662.02, + "probability": 0.9836 + }, + { + "start": 8662.46, + "end": 8663.28, + "probability": 0.9564 + }, + { + "start": 8663.38, + "end": 8663.92, + "probability": 0.9706 + }, + { + "start": 8664.18, + "end": 8668.58, + "probability": 0.9869 + }, + { + "start": 8669.3, + "end": 8673.76, + "probability": 0.6157 + }, + { + "start": 8674.64, + "end": 8677.48, + "probability": 0.7036 + }, + { + "start": 8677.82, + "end": 8683.18, + "probability": 0.932 + }, + { + "start": 8683.42, + "end": 8685.4, + "probability": 0.8674 + }, + { + "start": 8685.98, + "end": 8686.98, + "probability": 0.854 + }, + { + "start": 8687.94, + "end": 8689.78, + "probability": 0.9661 + }, + { + "start": 8690.68, + "end": 8693.14, + "probability": 0.9851 + }, + { + "start": 8693.32, + "end": 8694.82, + "probability": 0.9762 + }, + { + "start": 8696.0, + "end": 8696.66, + "probability": 0.4142 + }, + { + "start": 8696.68, + "end": 8697.52, + "probability": 0.8342 + }, + { + "start": 8697.64, + "end": 8700.86, + "probability": 0.9897 + }, + { + "start": 8701.72, + "end": 8704.3, + "probability": 0.9095 + }, + { + "start": 8704.74, + "end": 8706.34, + "probability": 0.9639 + }, + { + "start": 8706.62, + "end": 8709.62, + "probability": 0.9132 + }, + { + "start": 8710.12, + "end": 8711.8, + "probability": 0.8831 + }, + { + "start": 8712.28, + "end": 8715.84, + "probability": 0.9304 + }, + { + "start": 8716.44, + "end": 8717.28, + "probability": 0.9851 + }, + { + "start": 8717.88, + "end": 8718.84, + "probability": 0.9067 + }, + { + "start": 8719.32, + "end": 8724.62, + "probability": 0.9947 + }, + { + "start": 8724.74, + "end": 8728.52, + "probability": 0.9833 + }, + { + "start": 8729.24, + "end": 8731.78, + "probability": 0.8461 + }, + { + "start": 8732.4, + "end": 8734.74, + "probability": 0.8701 + }, + { + "start": 8735.32, + "end": 8736.8, + "probability": 0.7017 + }, + { + "start": 8737.42, + "end": 8741.5, + "probability": 0.9787 + }, + { + "start": 8742.0, + "end": 8744.26, + "probability": 0.5865 + }, + { + "start": 8744.82, + "end": 8745.86, + "probability": 0.8595 + }, + { + "start": 8746.88, + "end": 8749.6, + "probability": 0.6266 + }, + { + "start": 8750.12, + "end": 8752.0, + "probability": 0.948 + }, + { + "start": 8752.72, + "end": 8753.24, + "probability": 0.565 + }, + { + "start": 8754.08, + "end": 8756.26, + "probability": 0.6848 + }, + { + "start": 8756.74, + "end": 8757.34, + "probability": 0.4081 + }, + { + "start": 8757.48, + "end": 8758.4, + "probability": 0.7253 + }, + { + "start": 8760.96, + "end": 8763.06, + "probability": 0.1677 + }, + { + "start": 8767.24, + "end": 8769.9, + "probability": 0.6302 + }, + { + "start": 8770.48, + "end": 8772.2, + "probability": 0.5952 + }, + { + "start": 8772.52, + "end": 8774.5, + "probability": 0.594 + }, + { + "start": 8775.12, + "end": 8779.48, + "probability": 0.0844 + }, + { + "start": 8780.74, + "end": 8781.48, + "probability": 0.1719 + }, + { + "start": 8781.48, + "end": 8783.12, + "probability": 0.6357 + }, + { + "start": 8785.07, + "end": 8785.72, + "probability": 0.1199 + }, + { + "start": 8786.04, + "end": 8786.04, + "probability": 0.0564 + }, + { + "start": 8786.04, + "end": 8787.22, + "probability": 0.353 + }, + { + "start": 8787.42, + "end": 8789.32, + "probability": 0.1294 + }, + { + "start": 8792.74, + "end": 8793.74, + "probability": 0.5853 + }, + { + "start": 8794.24, + "end": 8795.84, + "probability": 0.9978 + }, + { + "start": 8797.19, + "end": 8798.32, + "probability": 0.4078 + }, + { + "start": 8798.86, + "end": 8800.4, + "probability": 0.7207 + }, + { + "start": 8800.64, + "end": 8804.58, + "probability": 0.9819 + }, + { + "start": 8804.62, + "end": 8806.96, + "probability": 0.6993 + }, + { + "start": 8807.1, + "end": 8808.06, + "probability": 0.8793 + }, + { + "start": 8809.98, + "end": 8811.6, + "probability": 0.7982 + }, + { + "start": 8811.7, + "end": 8813.36, + "probability": 0.6777 + }, + { + "start": 8814.36, + "end": 8820.48, + "probability": 0.7626 + }, + { + "start": 8821.02, + "end": 8825.46, + "probability": 0.6225 + }, + { + "start": 8826.2, + "end": 8829.68, + "probability": 0.5011 + }, + { + "start": 8830.32, + "end": 8832.08, + "probability": 0.0417 + }, + { + "start": 8832.08, + "end": 8832.46, + "probability": 0.0325 + }, + { + "start": 8832.46, + "end": 8835.3, + "probability": 0.7105 + }, + { + "start": 8835.94, + "end": 8837.08, + "probability": 0.5592 + }, + { + "start": 8838.44, + "end": 8838.44, + "probability": 0.1943 + }, + { + "start": 8838.44, + "end": 8838.7, + "probability": 0.8148 + }, + { + "start": 8838.76, + "end": 8841.68, + "probability": 0.9964 + }, + { + "start": 8842.64, + "end": 8845.9, + "probability": 0.9971 + }, + { + "start": 8846.0, + "end": 8847.64, + "probability": 0.5706 + }, + { + "start": 8848.04, + "end": 8850.4, + "probability": 0.9734 + }, + { + "start": 8851.56, + "end": 8852.59, + "probability": 0.9889 + }, + { + "start": 8853.58, + "end": 8854.66, + "probability": 0.9817 + }, + { + "start": 8855.7, + "end": 8856.66, + "probability": 0.9958 + }, + { + "start": 8857.82, + "end": 8859.59, + "probability": 0.968 + }, + { + "start": 8860.58, + "end": 8861.86, + "probability": 0.9977 + }, + { + "start": 8862.4, + "end": 8863.44, + "probability": 0.9502 + }, + { + "start": 8864.1, + "end": 8864.86, + "probability": 0.9502 + }, + { + "start": 8865.74, + "end": 8866.54, + "probability": 0.9631 + }, + { + "start": 8867.2, + "end": 8868.48, + "probability": 0.8992 + }, + { + "start": 8868.88, + "end": 8869.38, + "probability": 0.7589 + }, + { + "start": 8869.68, + "end": 8870.16, + "probability": 0.7985 + }, + { + "start": 8870.22, + "end": 8870.8, + "probability": 0.9961 + }, + { + "start": 8873.3, + "end": 8876.46, + "probability": 0.922 + }, + { + "start": 8877.12, + "end": 8877.62, + "probability": 0.6152 + }, + { + "start": 8878.5, + "end": 8878.94, + "probability": 0.6155 + }, + { + "start": 8879.54, + "end": 8880.12, + "probability": 0.5572 + }, + { + "start": 8880.28, + "end": 8881.38, + "probability": 0.9873 + }, + { + "start": 8881.64, + "end": 8882.8, + "probability": 0.7485 + }, + { + "start": 8883.72, + "end": 8887.12, + "probability": 0.063 + }, + { + "start": 8887.94, + "end": 8889.1, + "probability": 0.0314 + }, + { + "start": 8889.51, + "end": 8892.97, + "probability": 0.9526 + }, + { + "start": 8894.24, + "end": 8894.88, + "probability": 0.7003 + }, + { + "start": 8896.0, + "end": 8896.46, + "probability": 0.029 + }, + { + "start": 8896.46, + "end": 8897.32, + "probability": 0.4023 + }, + { + "start": 8897.44, + "end": 8901.74, + "probability": 0.8125 + }, + { + "start": 8901.74, + "end": 8903.98, + "probability": 0.7904 + }, + { + "start": 8904.46, + "end": 8905.12, + "probability": 0.062 + }, + { + "start": 8905.12, + "end": 8906.34, + "probability": 0.7039 + }, + { + "start": 8906.7, + "end": 8908.32, + "probability": 0.6583 + }, + { + "start": 8909.78, + "end": 8911.08, + "probability": 0.5728 + }, + { + "start": 8911.56, + "end": 8915.76, + "probability": 0.9404 + }, + { + "start": 8916.62, + "end": 8918.6, + "probability": 0.877 + }, + { + "start": 8919.42, + "end": 8919.56, + "probability": 0.8123 + }, + { + "start": 8920.24, + "end": 8923.2, + "probability": 0.7627 + }, + { + "start": 8923.98, + "end": 8925.9, + "probability": 0.9877 + }, + { + "start": 8926.38, + "end": 8926.6, + "probability": 0.9661 + }, + { + "start": 8928.58, + "end": 8929.23, + "probability": 0.7133 + }, + { + "start": 8931.0, + "end": 8934.2, + "probability": 0.9313 + }, + { + "start": 8935.44, + "end": 8936.53, + "probability": 0.9965 + }, + { + "start": 8936.76, + "end": 8938.28, + "probability": 0.0738 + }, + { + "start": 8938.3, + "end": 8938.3, + "probability": 0.1903 + }, + { + "start": 8938.66, + "end": 8941.76, + "probability": 0.9854 + }, + { + "start": 8941.8, + "end": 8942.36, + "probability": 0.9922 + }, + { + "start": 8946.44, + "end": 8946.98, + "probability": 0.4879 + }, + { + "start": 8949.06, + "end": 8953.34, + "probability": 0.7647 + }, + { + "start": 8953.5, + "end": 8954.18, + "probability": 0.7773 + }, + { + "start": 8954.26, + "end": 8954.98, + "probability": 0.4023 + }, + { + "start": 8956.04, + "end": 8957.18, + "probability": 0.8892 + }, + { + "start": 8957.74, + "end": 8959.14, + "probability": 0.9644 + }, + { + "start": 8960.14, + "end": 8961.24, + "probability": 0.9504 + }, + { + "start": 8961.42, + "end": 8962.38, + "probability": 0.6838 + }, + { + "start": 8963.46, + "end": 8965.76, + "probability": 0.9795 + }, + { + "start": 8967.4, + "end": 8968.48, + "probability": 0.9268 + }, + { + "start": 8969.14, + "end": 8969.94, + "probability": 0.7096 + }, + { + "start": 8970.22, + "end": 8974.26, + "probability": 0.9917 + }, + { + "start": 8975.1, + "end": 8976.88, + "probability": 0.7358 + }, + { + "start": 8977.6, + "end": 8980.16, + "probability": 0.755 + }, + { + "start": 8981.46, + "end": 8984.68, + "probability": 0.9553 + }, + { + "start": 8986.22, + "end": 8987.4, + "probability": 0.9771 + }, + { + "start": 8988.72, + "end": 8991.72, + "probability": 0.9937 + }, + { + "start": 8992.7, + "end": 8994.68, + "probability": 0.993 + }, + { + "start": 8995.32, + "end": 8997.54, + "probability": 0.8657 + }, + { + "start": 8997.86, + "end": 9001.26, + "probability": 0.6509 + }, + { + "start": 9002.62, + "end": 9003.9, + "probability": 0.9788 + }, + { + "start": 9004.0, + "end": 9004.28, + "probability": 0.7947 + }, + { + "start": 9004.66, + "end": 9006.04, + "probability": 0.6452 + }, + { + "start": 9006.24, + "end": 9007.16, + "probability": 0.903 + }, + { + "start": 9007.34, + "end": 9008.37, + "probability": 0.9846 + }, + { + "start": 9008.56, + "end": 9009.9, + "probability": 0.9377 + }, + { + "start": 9010.78, + "end": 9012.48, + "probability": 0.8961 + }, + { + "start": 9012.64, + "end": 9013.52, + "probability": 0.8731 + }, + { + "start": 9014.48, + "end": 9015.22, + "probability": 0.6335 + }, + { + "start": 9016.14, + "end": 9019.36, + "probability": 0.9956 + }, + { + "start": 9019.8, + "end": 9019.94, + "probability": 0.524 + }, + { + "start": 9019.98, + "end": 9020.68, + "probability": 0.5559 + }, + { + "start": 9020.82, + "end": 9022.3, + "probability": 0.7188 + }, + { + "start": 9025.32, + "end": 9026.94, + "probability": 0.9915 + }, + { + "start": 9028.44, + "end": 9031.84, + "probability": 0.989 + }, + { + "start": 9033.34, + "end": 9034.38, + "probability": 0.8087 + }, + { + "start": 9035.56, + "end": 9037.37, + "probability": 0.9706 + }, + { + "start": 9038.5, + "end": 9041.7, + "probability": 0.8506 + }, + { + "start": 9043.28, + "end": 9045.84, + "probability": 0.9868 + }, + { + "start": 9046.26, + "end": 9048.54, + "probability": 0.9082 + }, + { + "start": 9051.28, + "end": 9051.96, + "probability": 0.8126 + }, + { + "start": 9052.04, + "end": 9052.6, + "probability": 0.7541 + }, + { + "start": 9052.72, + "end": 9055.34, + "probability": 0.772 + }, + { + "start": 9055.78, + "end": 9056.14, + "probability": 0.7894 + }, + { + "start": 9056.44, + "end": 9058.46, + "probability": 0.9875 + }, + { + "start": 9059.18, + "end": 9061.12, + "probability": 0.967 + }, + { + "start": 9062.3, + "end": 9063.64, + "probability": 0.0395 + }, + { + "start": 9064.12, + "end": 9069.06, + "probability": 0.956 + }, + { + "start": 9069.14, + "end": 9069.14, + "probability": 0.0215 + }, + { + "start": 9069.14, + "end": 9069.76, + "probability": 0.1657 + }, + { + "start": 9070.42, + "end": 9070.42, + "probability": 0.0591 + }, + { + "start": 9070.42, + "end": 9070.42, + "probability": 0.0571 + }, + { + "start": 9070.42, + "end": 9071.92, + "probability": 0.594 + }, + { + "start": 9072.38, + "end": 9074.54, + "probability": 0.9551 + }, + { + "start": 9075.26, + "end": 9076.64, + "probability": 0.1282 + }, + { + "start": 9078.74, + "end": 9079.44, + "probability": 0.0665 + }, + { + "start": 9079.44, + "end": 9079.54, + "probability": 0.0156 + }, + { + "start": 9079.54, + "end": 9079.74, + "probability": 0.1772 + }, + { + "start": 9079.74, + "end": 9079.74, + "probability": 0.0598 + }, + { + "start": 9079.74, + "end": 9079.74, + "probability": 0.1179 + }, + { + "start": 9079.74, + "end": 9079.74, + "probability": 0.5424 + }, + { + "start": 9079.74, + "end": 9083.22, + "probability": 0.5975 + }, + { + "start": 9084.06, + "end": 9086.96, + "probability": 0.1459 + }, + { + "start": 9086.96, + "end": 9087.18, + "probability": 0.0177 + }, + { + "start": 9087.18, + "end": 9087.18, + "probability": 0.228 + }, + { + "start": 9087.18, + "end": 9087.22, + "probability": 0.013 + }, + { + "start": 9087.22, + "end": 9087.64, + "probability": 0.143 + }, + { + "start": 9087.86, + "end": 9090.68, + "probability": 0.8254 + }, + { + "start": 9090.7, + "end": 9092.14, + "probability": 0.8283 + }, + { + "start": 9092.22, + "end": 9093.34, + "probability": 0.9329 + }, + { + "start": 9093.48, + "end": 9094.76, + "probability": 0.9735 + }, + { + "start": 9095.46, + "end": 9095.62, + "probability": 0.7331 + }, + { + "start": 9095.72, + "end": 9096.5, + "probability": 0.7952 + }, + { + "start": 9096.82, + "end": 9097.65, + "probability": 0.8994 + }, + { + "start": 9098.1, + "end": 9100.5, + "probability": 0.863 + }, + { + "start": 9101.34, + "end": 9102.48, + "probability": 0.8851 + }, + { + "start": 9103.24, + "end": 9103.64, + "probability": 0.7941 + }, + { + "start": 9103.7, + "end": 9103.82, + "probability": 0.5576 + }, + { + "start": 9103.88, + "end": 9105.4, + "probability": 0.8979 + }, + { + "start": 9105.5, + "end": 9105.7, + "probability": 0.757 + }, + { + "start": 9106.18, + "end": 9106.8, + "probability": 0.8824 + }, + { + "start": 9107.12, + "end": 9107.75, + "probability": 0.9844 + }, + { + "start": 9109.32, + "end": 9109.76, + "probability": 0.7922 + }, + { + "start": 9110.4, + "end": 9111.14, + "probability": 0.7081 + }, + { + "start": 9111.28, + "end": 9112.42, + "probability": 0.2765 + }, + { + "start": 9112.92, + "end": 9116.46, + "probability": 0.737 + }, + { + "start": 9117.44, + "end": 9120.62, + "probability": 0.9861 + }, + { + "start": 9121.22, + "end": 9121.52, + "probability": 0.8236 + }, + { + "start": 9122.14, + "end": 9123.32, + "probability": 0.9971 + }, + { + "start": 9124.38, + "end": 9125.04, + "probability": 0.7853 + }, + { + "start": 9125.12, + "end": 9125.7, + "probability": 0.0266 + }, + { + "start": 9125.8, + "end": 9126.16, + "probability": 0.9463 + }, + { + "start": 9126.26, + "end": 9126.86, + "probability": 0.6587 + }, + { + "start": 9127.26, + "end": 9127.34, + "probability": 0.0012 + }, + { + "start": 9135.2, + "end": 9135.98, + "probability": 0.0233 + }, + { + "start": 9136.14, + "end": 9136.16, + "probability": 0.1108 + }, + { + "start": 9136.16, + "end": 9136.16, + "probability": 0.033 + }, + { + "start": 9136.16, + "end": 9136.16, + "probability": 0.1388 + }, + { + "start": 9136.16, + "end": 9136.16, + "probability": 0.0645 + }, + { + "start": 9136.16, + "end": 9136.16, + "probability": 0.0669 + }, + { + "start": 9136.16, + "end": 9136.62, + "probability": 0.0737 + }, + { + "start": 9136.73, + "end": 9138.02, + "probability": 0.0602 + }, + { + "start": 9143.44, + "end": 9145.88, + "probability": 0.0558 + }, + { + "start": 9148.07, + "end": 9150.74, + "probability": 0.0975 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.0, + "end": 9257.0, + "probability": 0.0 + }, + { + "start": 9257.18, + "end": 9257.68, + "probability": 0.0235 + }, + { + "start": 9257.68, + "end": 9257.68, + "probability": 0.0247 + }, + { + "start": 9257.68, + "end": 9258.48, + "probability": 0.1528 + }, + { + "start": 9258.88, + "end": 9259.74, + "probability": 0.7646 + }, + { + "start": 9259.84, + "end": 9262.44, + "probability": 0.8462 + }, + { + "start": 9262.8, + "end": 9263.6, + "probability": 0.6822 + }, + { + "start": 9265.38, + "end": 9268.38, + "probability": 0.6253 + }, + { + "start": 9268.86, + "end": 9271.62, + "probability": 0.8715 + }, + { + "start": 9271.66, + "end": 9273.08, + "probability": 0.7027 + }, + { + "start": 9273.46, + "end": 9275.72, + "probability": 0.7039 + }, + { + "start": 9276.16, + "end": 9279.0, + "probability": 0.9705 + }, + { + "start": 9279.6, + "end": 9284.1, + "probability": 0.9885 + }, + { + "start": 9284.3, + "end": 9286.5, + "probability": 0.9951 + }, + { + "start": 9287.92, + "end": 9289.28, + "probability": 0.9149 + }, + { + "start": 9289.98, + "end": 9290.82, + "probability": 0.9966 + }, + { + "start": 9291.64, + "end": 9292.38, + "probability": 0.7905 + }, + { + "start": 9292.54, + "end": 9295.58, + "probability": 0.9489 + }, + { + "start": 9295.58, + "end": 9298.58, + "probability": 0.9047 + }, + { + "start": 9299.12, + "end": 9301.0, + "probability": 0.9084 + }, + { + "start": 9301.14, + "end": 9303.14, + "probability": 0.6418 + }, + { + "start": 9303.88, + "end": 9307.76, + "probability": 0.7051 + }, + { + "start": 9307.92, + "end": 9311.12, + "probability": 0.8447 + }, + { + "start": 9311.18, + "end": 9314.22, + "probability": 0.891 + }, + { + "start": 9314.4, + "end": 9316.74, + "probability": 0.9713 + }, + { + "start": 9316.74, + "end": 9319.14, + "probability": 0.9916 + }, + { + "start": 9319.2, + "end": 9319.24, + "probability": 0.1222 + }, + { + "start": 9319.24, + "end": 9319.66, + "probability": 0.5198 + }, + { + "start": 9319.98, + "end": 9324.76, + "probability": 0.6923 + }, + { + "start": 9326.52, + "end": 9330.78, + "probability": 0.038 + }, + { + "start": 9330.78, + "end": 9330.78, + "probability": 0.0147 + }, + { + "start": 9330.78, + "end": 9330.78, + "probability": 0.1598 + }, + { + "start": 9330.78, + "end": 9330.78, + "probability": 0.1574 + }, + { + "start": 9330.78, + "end": 9330.8, + "probability": 0.0608 + }, + { + "start": 9330.8, + "end": 9332.72, + "probability": 0.7286 + }, + { + "start": 9333.54, + "end": 9336.1, + "probability": 0.0111 + }, + { + "start": 9336.42, + "end": 9336.42, + "probability": 0.4079 + }, + { + "start": 9336.42, + "end": 9338.72, + "probability": 0.5084 + }, + { + "start": 9339.46, + "end": 9339.9, + "probability": 0.414 + }, + { + "start": 9340.24, + "end": 9341.98, + "probability": 0.5379 + }, + { + "start": 9342.0, + "end": 9342.1, + "probability": 0.4447 + }, + { + "start": 9342.1, + "end": 9343.5, + "probability": 0.7936 + }, + { + "start": 9344.1, + "end": 9345.98, + "probability": 0.4615 + }, + { + "start": 9346.02, + "end": 9346.64, + "probability": 0.8785 + }, + { + "start": 9346.84, + "end": 9348.92, + "probability": 0.8289 + }, + { + "start": 9349.12, + "end": 9349.48, + "probability": 0.5982 + }, + { + "start": 9349.5, + "end": 9351.98, + "probability": 0.9246 + }, + { + "start": 9352.2, + "end": 9354.72, + "probability": 0.938 + }, + { + "start": 9355.9, + "end": 9356.8, + "probability": 0.7756 + }, + { + "start": 9359.02, + "end": 9363.7, + "probability": 0.9866 + }, + { + "start": 9364.48, + "end": 9367.04, + "probability": 0.7406 + }, + { + "start": 9367.46, + "end": 9369.1, + "probability": 0.7566 + }, + { + "start": 9369.38, + "end": 9370.8, + "probability": 0.7307 + }, + { + "start": 9371.0, + "end": 9371.1, + "probability": 0.375 + }, + { + "start": 9371.56, + "end": 9373.6, + "probability": 0.7503 + }, + { + "start": 9373.6, + "end": 9374.52, + "probability": 0.9498 + }, + { + "start": 9374.52, + "end": 9375.54, + "probability": 0.7173 + }, + { + "start": 9375.58, + "end": 9375.66, + "probability": 0.0316 + }, + { + "start": 9375.66, + "end": 9376.12, + "probability": 0.5407 + }, + { + "start": 9376.18, + "end": 9376.48, + "probability": 0.9441 + }, + { + "start": 9376.5, + "end": 9377.16, + "probability": 0.9736 + }, + { + "start": 9377.28, + "end": 9379.5, + "probability": 0.9902 + }, + { + "start": 9379.78, + "end": 9381.28, + "probability": 0.6642 + }, + { + "start": 9381.32, + "end": 9381.88, + "probability": 0.7228 + }, + { + "start": 9382.74, + "end": 9382.88, + "probability": 0.667 + }, + { + "start": 9383.4, + "end": 9384.62, + "probability": 0.9331 + }, + { + "start": 9385.16, + "end": 9386.84, + "probability": 0.79 + }, + { + "start": 9387.76, + "end": 9390.78, + "probability": 0.4198 + }, + { + "start": 9391.08, + "end": 9392.92, + "probability": 0.9965 + }, + { + "start": 9394.42, + "end": 9395.04, + "probability": 0.7367 + }, + { + "start": 9396.98, + "end": 9397.64, + "probability": 0.7112 + }, + { + "start": 9399.16, + "end": 9403.76, + "probability": 0.9341 + }, + { + "start": 9404.3, + "end": 9405.42, + "probability": 0.2706 + }, + { + "start": 9405.44, + "end": 9407.0, + "probability": 0.8279 + }, + { + "start": 9407.58, + "end": 9408.74, + "probability": 0.9514 + }, + { + "start": 9409.38, + "end": 9410.64, + "probability": 0.9938 + }, + { + "start": 9410.9, + "end": 9413.1, + "probability": 0.9824 + }, + { + "start": 9413.68, + "end": 9414.0, + "probability": 0.7347 + }, + { + "start": 9414.4, + "end": 9415.08, + "probability": 0.3857 + }, + { + "start": 9417.27, + "end": 9420.8, + "probability": 0.9826 + }, + { + "start": 9420.94, + "end": 9421.88, + "probability": 0.8459 + }, + { + "start": 9422.0, + "end": 9423.04, + "probability": 0.9291 + }, + { + "start": 9423.18, + "end": 9424.46, + "probability": 0.7856 + }, + { + "start": 9425.38, + "end": 9426.46, + "probability": 0.9132 + }, + { + "start": 9426.7, + "end": 9427.42, + "probability": 0.8069 + }, + { + "start": 9427.6, + "end": 9428.3, + "probability": 0.7858 + }, + { + "start": 9429.26, + "end": 9432.2, + "probability": 0.9547 + }, + { + "start": 9432.54, + "end": 9433.66, + "probability": 0.9579 + }, + { + "start": 9433.66, + "end": 9435.44, + "probability": 0.9624 + }, + { + "start": 9436.16, + "end": 9437.92, + "probability": 0.7552 + }, + { + "start": 9438.52, + "end": 9442.18, + "probability": 0.9353 + }, + { + "start": 9442.68, + "end": 9443.0, + "probability": 0.7387 + }, + { + "start": 9443.16, + "end": 9444.48, + "probability": 0.8221 + }, + { + "start": 9444.56, + "end": 9446.24, + "probability": 0.748 + }, + { + "start": 9446.72, + "end": 9449.76, + "probability": 0.7806 + }, + { + "start": 9450.5, + "end": 9453.36, + "probability": 0.9675 + }, + { + "start": 9453.68, + "end": 9455.32, + "probability": 0.9712 + }, + { + "start": 9455.74, + "end": 9459.08, + "probability": 0.984 + }, + { + "start": 9459.62, + "end": 9462.51, + "probability": 0.8914 + }, + { + "start": 9463.72, + "end": 9466.0, + "probability": 0.9735 + }, + { + "start": 9466.72, + "end": 9468.78, + "probability": 0.9874 + }, + { + "start": 9469.22, + "end": 9469.7, + "probability": 0.6243 + }, + { + "start": 9470.26, + "end": 9472.72, + "probability": 0.9927 + }, + { + "start": 9476.04, + "end": 9479.82, + "probability": 0.9969 + }, + { + "start": 9489.82, + "end": 9490.86, + "probability": 0.5886 + }, + { + "start": 9491.4, + "end": 9492.68, + "probability": 0.2021 + }, + { + "start": 9493.66, + "end": 9494.16, + "probability": 0.8969 + }, + { + "start": 9494.82, + "end": 9496.1, + "probability": 0.7784 + }, + { + "start": 9496.54, + "end": 9500.82, + "probability": 0.7981 + }, + { + "start": 9501.58, + "end": 9501.8, + "probability": 0.825 + }, + { + "start": 9502.82, + "end": 9503.56, + "probability": 0.7635 + }, + { + "start": 9504.6, + "end": 9505.5, + "probability": 0.8327 + }, + { + "start": 9506.66, + "end": 9508.78, + "probability": 0.9867 + }, + { + "start": 9509.54, + "end": 9510.18, + "probability": 0.4242 + }, + { + "start": 9510.54, + "end": 9511.67, + "probability": 0.6572 + }, + { + "start": 9512.05, + "end": 9514.06, + "probability": 0.4095 + }, + { + "start": 9514.14, + "end": 9514.68, + "probability": 0.5049 + }, + { + "start": 9515.08, + "end": 9515.5, + "probability": 0.6075 + }, + { + "start": 9515.82, + "end": 9515.9, + "probability": 0.7886 + }, + { + "start": 9515.94, + "end": 9516.75, + "probability": 0.4955 + }, + { + "start": 9517.22, + "end": 9517.3, + "probability": 0.5349 + }, + { + "start": 9517.3, + "end": 9517.54, + "probability": 0.5966 + }, + { + "start": 9518.4, + "end": 9519.54, + "probability": 0.6477 + }, + { + "start": 9519.86, + "end": 9522.7, + "probability": 0.2542 + }, + { + "start": 9522.7, + "end": 9524.1, + "probability": 0.4026 + }, + { + "start": 9524.12, + "end": 9524.46, + "probability": 0.2691 + }, + { + "start": 9524.46, + "end": 9529.82, + "probability": 0.0872 + }, + { + "start": 9530.32, + "end": 9530.66, + "probability": 0.1007 + }, + { + "start": 9530.66, + "end": 9530.74, + "probability": 0.0184 + }, + { + "start": 9530.76, + "end": 9531.44, + "probability": 0.3765 + }, + { + "start": 9532.18, + "end": 9533.46, + "probability": 0.9399 + }, + { + "start": 9534.08, + "end": 9538.06, + "probability": 0.683 + }, + { + "start": 9538.88, + "end": 9541.34, + "probability": 0.6489 + }, + { + "start": 9541.78, + "end": 9542.96, + "probability": 0.7735 + }, + { + "start": 9543.2, + "end": 9544.0, + "probability": 0.9563 + }, + { + "start": 9544.32, + "end": 9545.68, + "probability": 0.7473 + }, + { + "start": 9545.72, + "end": 9547.48, + "probability": 0.873 + }, + { + "start": 9547.52, + "end": 9548.18, + "probability": 0.836 + }, + { + "start": 9548.32, + "end": 9551.56, + "probability": 0.9523 + }, + { + "start": 9552.02, + "end": 9558.22, + "probability": 0.9971 + }, + { + "start": 9558.5, + "end": 9559.46, + "probability": 0.8186 + }, + { + "start": 9559.58, + "end": 9560.3, + "probability": 0.8696 + }, + { + "start": 9560.78, + "end": 9562.44, + "probability": 0.706 + }, + { + "start": 9563.02, + "end": 9563.58, + "probability": 0.7519 + }, + { + "start": 9564.14, + "end": 9566.06, + "probability": 0.9255 + }, + { + "start": 9566.88, + "end": 9567.48, + "probability": 0.6671 + }, + { + "start": 9568.1, + "end": 9569.26, + "probability": 0.9753 + }, + { + "start": 9569.38, + "end": 9571.74, + "probability": 0.9435 + }, + { + "start": 9572.08, + "end": 9573.36, + "probability": 0.9953 + }, + { + "start": 9573.66, + "end": 9575.89, + "probability": 0.9811 + }, + { + "start": 9576.28, + "end": 9577.74, + "probability": 0.9797 + }, + { + "start": 9578.48, + "end": 9578.48, + "probability": 0.593 + }, + { + "start": 9579.04, + "end": 9579.44, + "probability": 0.4398 + }, + { + "start": 9580.48, + "end": 9582.66, + "probability": 0.1206 + }, + { + "start": 9583.34, + "end": 9588.22, + "probability": 0.8444 + }, + { + "start": 9588.5, + "end": 9591.9, + "probability": 0.9851 + }, + { + "start": 9591.9, + "end": 9594.74, + "probability": 0.9978 + }, + { + "start": 9594.9, + "end": 9595.16, + "probability": 0.446 + }, + { + "start": 9595.45, + "end": 9596.74, + "probability": 0.0019 + }, + { + "start": 9597.74, + "end": 9598.26, + "probability": 0.4095 + }, + { + "start": 9598.26, + "end": 9598.72, + "probability": 0.2609 + }, + { + "start": 9599.12, + "end": 9599.74, + "probability": 0.1733 + }, + { + "start": 9599.74, + "end": 9601.9, + "probability": 0.6215 + }, + { + "start": 9602.24, + "end": 9603.06, + "probability": 0.832 + }, + { + "start": 9603.4, + "end": 9604.42, + "probability": 0.574 + }, + { + "start": 9604.54, + "end": 9605.0, + "probability": 0.8525 + }, + { + "start": 9605.34, + "end": 9606.36, + "probability": 0.7404 + }, + { + "start": 9606.38, + "end": 9608.9, + "probability": 0.8374 + }, + { + "start": 9609.32, + "end": 9610.62, + "probability": 0.6284 + }, + { + "start": 9612.7, + "end": 9613.57, + "probability": 0.7002 + }, + { + "start": 9616.46, + "end": 9618.7, + "probability": 0.6858 + }, + { + "start": 9619.72, + "end": 9621.38, + "probability": 0.8346 + }, + { + "start": 9622.32, + "end": 9623.9, + "probability": 0.9983 + }, + { + "start": 9624.56, + "end": 9625.0, + "probability": 0.9964 + }, + { + "start": 9626.26, + "end": 9630.16, + "probability": 0.9971 + }, + { + "start": 9630.16, + "end": 9632.68, + "probability": 0.9987 + }, + { + "start": 9633.92, + "end": 9636.68, + "probability": 0.9601 + }, + { + "start": 9637.44, + "end": 9637.8, + "probability": 0.9036 + }, + { + "start": 9638.48, + "end": 9640.46, + "probability": 0.9976 + }, + { + "start": 9641.42, + "end": 9642.32, + "probability": 0.7922 + }, + { + "start": 9643.3, + "end": 9645.5, + "probability": 0.998 + }, + { + "start": 9646.1, + "end": 9647.6, + "probability": 0.9952 + }, + { + "start": 9648.64, + "end": 9650.78, + "probability": 0.7444 + }, + { + "start": 9651.6, + "end": 9652.4, + "probability": 0.9614 + }, + { + "start": 9653.34, + "end": 9654.96, + "probability": 0.9971 + }, + { + "start": 9655.36, + "end": 9656.6, + "probability": 0.9772 + }, + { + "start": 9657.18, + "end": 9657.28, + "probability": 0.0428 + }, + { + "start": 9659.5, + "end": 9660.34, + "probability": 0.2618 + }, + { + "start": 9660.38, + "end": 9661.22, + "probability": 0.8746 + }, + { + "start": 9663.7, + "end": 9663.7, + "probability": 0.2674 + }, + { + "start": 9663.7, + "end": 9665.5, + "probability": 0.7769 + }, + { + "start": 9665.84, + "end": 9667.02, + "probability": 0.8947 + }, + { + "start": 9668.6, + "end": 9669.16, + "probability": 0.5367 + }, + { + "start": 9669.24, + "end": 9670.18, + "probability": 0.8013 + }, + { + "start": 9671.32, + "end": 9675.74, + "probability": 0.965 + }, + { + "start": 9677.24, + "end": 9678.08, + "probability": 0.9423 + }, + { + "start": 9678.68, + "end": 9680.0, + "probability": 0.9777 + }, + { + "start": 9680.5, + "end": 9683.6, + "probability": 0.6885 + }, + { + "start": 9684.4, + "end": 9686.32, + "probability": 0.9343 + }, + { + "start": 9686.96, + "end": 9687.7, + "probability": 0.9399 + }, + { + "start": 9687.98, + "end": 9688.38, + "probability": 0.7269 + }, + { + "start": 9688.9, + "end": 9691.06, + "probability": 0.9864 + }, + { + "start": 9691.7, + "end": 9692.86, + "probability": 0.908 + }, + { + "start": 9693.66, + "end": 9694.08, + "probability": 0.9648 + }, + { + "start": 9694.76, + "end": 9696.42, + "probability": 0.9945 + }, + { + "start": 9697.36, + "end": 9701.54, + "probability": 0.9127 + }, + { + "start": 9702.2, + "end": 9704.34, + "probability": 0.9914 + }, + { + "start": 9704.34, + "end": 9707.28, + "probability": 0.9357 + }, + { + "start": 9707.56, + "end": 9708.96, + "probability": 0.9543 + }, + { + "start": 9709.54, + "end": 9711.6, + "probability": 0.9917 + }, + { + "start": 9712.52, + "end": 9715.0, + "probability": 0.9961 + }, + { + "start": 9715.62, + "end": 9716.24, + "probability": 0.9902 + }, + { + "start": 9717.14, + "end": 9717.76, + "probability": 0.8345 + }, + { + "start": 9718.46, + "end": 9719.92, + "probability": 0.8906 + }, + { + "start": 9721.58, + "end": 9724.1, + "probability": 0.8552 + }, + { + "start": 9725.28, + "end": 9725.52, + "probability": 0.1168 + }, + { + "start": 9725.52, + "end": 9730.64, + "probability": 0.9515 + }, + { + "start": 9731.1, + "end": 9731.42, + "probability": 0.661 + }, + { + "start": 9732.4, + "end": 9732.86, + "probability": 0.8926 + }, + { + "start": 9733.02, + "end": 9733.66, + "probability": 0.7371 + }, + { + "start": 9733.74, + "end": 9735.82, + "probability": 0.9773 + }, + { + "start": 9737.08, + "end": 9738.7, + "probability": 0.9165 + }, + { + "start": 9739.68, + "end": 9742.18, + "probability": 0.7126 + }, + { + "start": 9743.34, + "end": 9747.18, + "probability": 0.7473 + }, + { + "start": 9747.94, + "end": 9750.56, + "probability": 0.8133 + }, + { + "start": 9751.58, + "end": 9752.74, + "probability": 0.9956 + }, + { + "start": 9752.9, + "end": 9755.56, + "probability": 0.9692 + }, + { + "start": 9756.4, + "end": 9757.74, + "probability": 0.908 + }, + { + "start": 9758.96, + "end": 9759.72, + "probability": 0.5959 + }, + { + "start": 9760.48, + "end": 9762.74, + "probability": 0.9959 + }, + { + "start": 9763.18, + "end": 9765.84, + "probability": 0.9989 + }, + { + "start": 9766.94, + "end": 9768.22, + "probability": 0.9995 + }, + { + "start": 9769.0, + "end": 9770.3, + "probability": 0.9 + }, + { + "start": 9770.84, + "end": 9775.76, + "probability": 0.8794 + }, + { + "start": 9777.34, + "end": 9778.18, + "probability": 0.9179 + }, + { + "start": 9778.82, + "end": 9779.42, + "probability": 0.9313 + }, + { + "start": 9780.4, + "end": 9782.18, + "probability": 0.8467 + }, + { + "start": 9782.36, + "end": 9782.92, + "probability": 0.5465 + }, + { + "start": 9783.82, + "end": 9784.6, + "probability": 0.9178 + }, + { + "start": 9785.14, + "end": 9787.44, + "probability": 0.9365 + }, + { + "start": 9788.12, + "end": 9791.02, + "probability": 0.9872 + }, + { + "start": 9792.1, + "end": 9792.6, + "probability": 0.8265 + }, + { + "start": 9793.3, + "end": 9797.96, + "probability": 0.9943 + }, + { + "start": 9798.26, + "end": 9798.36, + "probability": 0.5346 + }, + { + "start": 9798.48, + "end": 9799.2, + "probability": 0.6112 + }, + { + "start": 9799.74, + "end": 9800.18, + "probability": 0.9642 + }, + { + "start": 9800.98, + "end": 9802.7, + "probability": 0.9026 + }, + { + "start": 9802.78, + "end": 9804.28, + "probability": 0.9342 + }, + { + "start": 9804.76, + "end": 9808.0, + "probability": 0.9956 + }, + { + "start": 9808.72, + "end": 9813.62, + "probability": 0.9968 + }, + { + "start": 9814.3, + "end": 9816.3, + "probability": 0.9274 + }, + { + "start": 9816.84, + "end": 9818.14, + "probability": 0.9385 + }, + { + "start": 9818.58, + "end": 9819.64, + "probability": 0.932 + }, + { + "start": 9820.68, + "end": 9821.4, + "probability": 0.6403 + }, + { + "start": 9821.7, + "end": 9822.5, + "probability": 0.7716 + }, + { + "start": 9823.0, + "end": 9825.66, + "probability": 0.992 + }, + { + "start": 9826.62, + "end": 9828.88, + "probability": 0.9834 + }, + { + "start": 9829.6, + "end": 9830.66, + "probability": 0.772 + }, + { + "start": 9831.5, + "end": 9833.06, + "probability": 0.0947 + }, + { + "start": 9833.08, + "end": 9833.58, + "probability": 0.9342 + }, + { + "start": 9834.1, + "end": 9837.96, + "probability": 0.8475 + }, + { + "start": 9838.14, + "end": 9839.46, + "probability": 0.7146 + }, + { + "start": 9839.74, + "end": 9840.16, + "probability": 0.5812 + }, + { + "start": 9841.06, + "end": 9843.82, + "probability": 0.6904 + }, + { + "start": 9844.54, + "end": 9845.5, + "probability": 0.746 + }, + { + "start": 9846.24, + "end": 9849.28, + "probability": 0.9667 + }, + { + "start": 9849.52, + "end": 9850.66, + "probability": 0.986 + }, + { + "start": 9850.92, + "end": 9854.62, + "probability": 0.9517 + }, + { + "start": 9855.32, + "end": 9856.7, + "probability": 0.8811 + }, + { + "start": 9856.8, + "end": 9858.44, + "probability": 0.8277 + }, + { + "start": 9859.26, + "end": 9861.24, + "probability": 0.9937 + }, + { + "start": 9862.02, + "end": 9863.84, + "probability": 0.9815 + }, + { + "start": 9864.34, + "end": 9865.19, + "probability": 0.9501 + }, + { + "start": 9865.28, + "end": 9867.4, + "probability": 0.8908 + }, + { + "start": 9867.8, + "end": 9868.82, + "probability": 0.7401 + }, + { + "start": 9869.1, + "end": 9869.8, + "probability": 0.7254 + }, + { + "start": 9869.9, + "end": 9871.18, + "probability": 0.9944 + }, + { + "start": 9871.84, + "end": 9876.14, + "probability": 0.9877 + }, + { + "start": 9876.82, + "end": 9878.8, + "probability": 0.9927 + }, + { + "start": 9878.86, + "end": 9879.53, + "probability": 0.9853 + }, + { + "start": 9880.0, + "end": 9881.84, + "probability": 0.8681 + }, + { + "start": 9881.98, + "end": 9882.42, + "probability": 0.4358 + }, + { + "start": 9882.42, + "end": 9883.8, + "probability": 0.7844 + }, + { + "start": 9884.0, + "end": 9885.46, + "probability": 0.7383 + }, + { + "start": 9886.44, + "end": 9887.18, + "probability": 0.8123 + }, + { + "start": 9887.26, + "end": 9890.46, + "probability": 0.9717 + }, + { + "start": 9891.96, + "end": 9895.58, + "probability": 0.9356 + }, + { + "start": 9895.88, + "end": 9898.0, + "probability": 0.8656 + }, + { + "start": 9898.82, + "end": 9899.94, + "probability": 0.8823 + }, + { + "start": 9900.36, + "end": 9900.8, + "probability": 0.8872 + }, + { + "start": 9901.64, + "end": 9902.32, + "probability": 0.8459 + }, + { + "start": 9902.7, + "end": 9903.98, + "probability": 0.9007 + }, + { + "start": 9904.78, + "end": 9905.59, + "probability": 0.0946 + }, + { + "start": 9906.64, + "end": 9908.81, + "probability": 0.4929 + }, + { + "start": 9909.92, + "end": 9911.32, + "probability": 0.1311 + }, + { + "start": 9912.36, + "end": 9914.38, + "probability": 0.5693 + }, + { + "start": 9915.84, + "end": 9916.38, + "probability": 0.0395 + }, + { + "start": 9916.9, + "end": 9916.9, + "probability": 0.1794 + }, + { + "start": 9917.18, + "end": 9918.6, + "probability": 0.3464 + }, + { + "start": 9920.14, + "end": 9920.6, + "probability": 0.0117 + }, + { + "start": 9920.6, + "end": 9921.94, + "probability": 0.9727 + }, + { + "start": 9925.08, + "end": 9929.28, + "probability": 0.7531 + }, + { + "start": 9931.04, + "end": 9931.6, + "probability": 0.9012 + }, + { + "start": 9932.7, + "end": 9934.38, + "probability": 0.8999 + }, + { + "start": 9935.9, + "end": 9937.21, + "probability": 0.9283 + }, + { + "start": 9938.34, + "end": 9940.86, + "probability": 0.9588 + }, + { + "start": 9941.56, + "end": 9942.66, + "probability": 0.9993 + }, + { + "start": 9943.66, + "end": 9944.06, + "probability": 0.9347 + }, + { + "start": 9945.4, + "end": 9947.04, + "probability": 0.8335 + }, + { + "start": 9947.78, + "end": 9949.06, + "probability": 0.9851 + }, + { + "start": 9949.66, + "end": 9951.06, + "probability": 0.9481 + }, + { + "start": 9951.14, + "end": 9953.64, + "probability": 0.4501 + }, + { + "start": 9953.78, + "end": 9953.82, + "probability": 0.0656 + }, + { + "start": 9953.82, + "end": 9954.34, + "probability": 0.566 + }, + { + "start": 9955.08, + "end": 9958.04, + "probability": 0.9143 + }, + { + "start": 9958.88, + "end": 9959.56, + "probability": 0.9755 + }, + { + "start": 9960.08, + "end": 9961.7, + "probability": 0.9923 + }, + { + "start": 9962.02, + "end": 9963.52, + "probability": 0.8638 + }, + { + "start": 9964.28, + "end": 9964.94, + "probability": 0.6827 + }, + { + "start": 9966.4, + "end": 9968.0, + "probability": 0.9945 + }, + { + "start": 9968.96, + "end": 9970.88, + "probability": 0.9438 + }, + { + "start": 9971.46, + "end": 9975.96, + "probability": 0.9493 + }, + { + "start": 9976.48, + "end": 9976.92, + "probability": 0.9628 + }, + { + "start": 9977.94, + "end": 9979.3, + "probability": 0.9097 + }, + { + "start": 9980.06, + "end": 9980.56, + "probability": 0.878 + }, + { + "start": 9981.64, + "end": 9982.88, + "probability": 0.9673 + }, + { + "start": 9983.54, + "end": 9988.06, + "probability": 0.7206 + }, + { + "start": 9988.66, + "end": 9991.04, + "probability": 0.9824 + }, + { + "start": 9992.24, + "end": 9995.68, + "probability": 0.9568 + }, + { + "start": 9996.06, + "end": 9997.06, + "probability": 0.9563 + }, + { + "start": 9998.14, + "end": 9999.16, + "probability": 0.8453 + }, + { + "start": 9999.78, + "end": 10001.5, + "probability": 0.0595 + }, + { + "start": 10002.18, + "end": 10002.18, + "probability": 0.0152 + }, + { + "start": 10002.2, + "end": 10005.08, + "probability": 0.8337 + }, + { + "start": 10005.58, + "end": 10006.92, + "probability": 0.8533 + }, + { + "start": 10008.56, + "end": 10008.93, + "probability": 0.1081 + }, + { + "start": 10009.94, + "end": 10013.62, + "probability": 0.9625 + }, + { + "start": 10014.1, + "end": 10016.52, + "probability": 0.9634 + }, + { + "start": 10016.8, + "end": 10017.34, + "probability": 0.7739 + }, + { + "start": 10017.9, + "end": 10018.9, + "probability": 0.9948 + }, + { + "start": 10021.46, + "end": 10022.22, + "probability": 0.688 + }, + { + "start": 10024.22, + "end": 10025.06, + "probability": 0.9961 + }, + { + "start": 10025.76, + "end": 10027.5, + "probability": 0.9985 + }, + { + "start": 10028.26, + "end": 10029.04, + "probability": 0.4634 + }, + { + "start": 10030.08, + "end": 10031.67, + "probability": 0.9719 + }, + { + "start": 10033.24, + "end": 10033.96, + "probability": 0.5142 + }, + { + "start": 10034.52, + "end": 10036.1, + "probability": 0.7857 + }, + { + "start": 10036.98, + "end": 10039.32, + "probability": 0.7268 + }, + { + "start": 10039.86, + "end": 10042.06, + "probability": 0.8179 + }, + { + "start": 10043.18, + "end": 10044.08, + "probability": 0.7235 + }, + { + "start": 10045.62, + "end": 10047.62, + "probability": 0.9453 + }, + { + "start": 10048.84, + "end": 10049.58, + "probability": 0.9744 + }, + { + "start": 10050.64, + "end": 10051.54, + "probability": 0.943 + }, + { + "start": 10052.12, + "end": 10054.34, + "probability": 0.9875 + }, + { + "start": 10055.62, + "end": 10056.8, + "probability": 0.8755 + }, + { + "start": 10057.52, + "end": 10057.52, + "probability": 0.2103 + }, + { + "start": 10057.52, + "end": 10057.52, + "probability": 0.1731 + }, + { + "start": 10057.52, + "end": 10057.52, + "probability": 0.0513 + }, + { + "start": 10057.52, + "end": 10058.68, + "probability": 0.9724 + }, + { + "start": 10059.14, + "end": 10059.22, + "probability": 0.0758 + }, + { + "start": 10059.22, + "end": 10060.16, + "probability": 0.4681 + }, + { + "start": 10060.18, + "end": 10060.83, + "probability": 0.659 + }, + { + "start": 10061.4, + "end": 10061.86, + "probability": 0.8262 + }, + { + "start": 10062.56, + "end": 10063.05, + "probability": 0.8719 + }, + { + "start": 10063.5, + "end": 10064.08, + "probability": 0.8577 + }, + { + "start": 10065.32, + "end": 10067.16, + "probability": 0.7749 + }, + { + "start": 10067.78, + "end": 10068.76, + "probability": 0.9739 + }, + { + "start": 10069.36, + "end": 10072.0, + "probability": 0.6399 + }, + { + "start": 10072.02, + "end": 10074.2, + "probability": 0.2834 + }, + { + "start": 10075.74, + "end": 10077.58, + "probability": 0.3538 + }, + { + "start": 10077.9, + "end": 10080.98, + "probability": 0.8003 + }, + { + "start": 10082.68, + "end": 10083.8, + "probability": 0.2577 + }, + { + "start": 10088.47, + "end": 10090.94, + "probability": 0.7213 + }, + { + "start": 10091.0, + "end": 10093.87, + "probability": 0.2646 + }, + { + "start": 10095.28, + "end": 10096.44, + "probability": 0.4203 + }, + { + "start": 10096.54, + "end": 10098.06, + "probability": 0.6947 + }, + { + "start": 10098.58, + "end": 10101.38, + "probability": 0.9379 + }, + { + "start": 10102.86, + "end": 10103.44, + "probability": 0.9684 + }, + { + "start": 10105.1, + "end": 10105.76, + "probability": 0.9457 + }, + { + "start": 10107.96, + "end": 10108.7, + "probability": 0.9337 + }, + { + "start": 10110.12, + "end": 10111.2, + "probability": 0.0469 + }, + { + "start": 10111.52, + "end": 10113.78, + "probability": 0.6988 + }, + { + "start": 10114.32, + "end": 10114.98, + "probability": 0.3547 + }, + { + "start": 10115.58, + "end": 10116.56, + "probability": 0.7531 + }, + { + "start": 10117.62, + "end": 10117.9, + "probability": 0.0364 + }, + { + "start": 10118.06, + "end": 10118.58, + "probability": 0.7279 + }, + { + "start": 10120.66, + "end": 10123.96, + "probability": 0.9295 + }, + { + "start": 10124.3, + "end": 10124.52, + "probability": 0.6883 + }, + { + "start": 10124.74, + "end": 10126.14, + "probability": 0.5564 + }, + { + "start": 10126.38, + "end": 10127.4, + "probability": 0.7427 + }, + { + "start": 10128.22, + "end": 10129.14, + "probability": 0.7583 + }, + { + "start": 10130.4, + "end": 10131.14, + "probability": 0.0025 + }, + { + "start": 10131.4, + "end": 10131.66, + "probability": 0.1143 + }, + { + "start": 10132.14, + "end": 10133.58, + "probability": 0.5675 + }, + { + "start": 10134.52, + "end": 10136.72, + "probability": 0.7283 + }, + { + "start": 10137.75, + "end": 10140.26, + "probability": 0.5085 + }, + { + "start": 10140.36, + "end": 10142.58, + "probability": 0.8263 + }, + { + "start": 10142.84, + "end": 10146.0, + "probability": 0.7858 + }, + { + "start": 10147.28, + "end": 10148.22, + "probability": 0.7545 + }, + { + "start": 10149.82, + "end": 10154.08, + "probability": 0.8933 + }, + { + "start": 10155.06, + "end": 10155.86, + "probability": 0.9162 + }, + { + "start": 10156.72, + "end": 10157.1, + "probability": 0.7965 + }, + { + "start": 10157.78, + "end": 10158.86, + "probability": 0.4973 + }, + { + "start": 10159.66, + "end": 10160.32, + "probability": 0.513 + }, + { + "start": 10160.94, + "end": 10161.2, + "probability": 0.9492 + }, + { + "start": 10162.5, + "end": 10163.08, + "probability": 0.8559 + }, + { + "start": 10163.72, + "end": 10164.46, + "probability": 0.8042 + }, + { + "start": 10164.68, + "end": 10166.6, + "probability": 0.8918 + }, + { + "start": 10167.24, + "end": 10167.54, + "probability": 0.3882 + }, + { + "start": 10167.88, + "end": 10168.16, + "probability": 0.1937 + }, + { + "start": 10168.86, + "end": 10170.02, + "probability": 0.15 + }, + { + "start": 10170.06, + "end": 10171.16, + "probability": 0.8213 + }, + { + "start": 10171.34, + "end": 10174.62, + "probability": 0.9938 + }, + { + "start": 10176.0, + "end": 10177.02, + "probability": 0.064 + }, + { + "start": 10177.12, + "end": 10178.08, + "probability": 0.4141 + }, + { + "start": 10178.12, + "end": 10179.54, + "probability": 0.9981 + }, + { + "start": 10181.94, + "end": 10185.06, + "probability": 0.057 + }, + { + "start": 10185.64, + "end": 10186.24, + "probability": 0.0345 + }, + { + "start": 10186.6, + "end": 10187.14, + "probability": 0.0809 + }, + { + "start": 10191.96, + "end": 10194.48, + "probability": 0.6984 + }, + { + "start": 10195.48, + "end": 10196.12, + "probability": 0.5967 + }, + { + "start": 10197.94, + "end": 10199.7, + "probability": 0.2908 + }, + { + "start": 10200.7, + "end": 10202.0, + "probability": 0.8745 + }, + { + "start": 10202.74, + "end": 10204.4, + "probability": 0.9917 + }, + { + "start": 10205.18, + "end": 10205.98, + "probability": 0.7546 + }, + { + "start": 10206.34, + "end": 10207.42, + "probability": 0.9379 + }, + { + "start": 10208.9, + "end": 10209.93, + "probability": 0.7575 + }, + { + "start": 10210.12, + "end": 10211.17, + "probability": 0.9424 + }, + { + "start": 10211.26, + "end": 10214.28, + "probability": 0.7691 + }, + { + "start": 10214.38, + "end": 10214.98, + "probability": 0.9756 + }, + { + "start": 10216.04, + "end": 10216.26, + "probability": 0.8175 + }, + { + "start": 10217.02, + "end": 10218.0, + "probability": 0.6562 + }, + { + "start": 10218.72, + "end": 10218.9, + "probability": 0.8946 + }, + { + "start": 10219.96, + "end": 10221.26, + "probability": 0.9769 + }, + { + "start": 10222.8, + "end": 10223.04, + "probability": 0.9568 + }, + { + "start": 10223.76, + "end": 10225.86, + "probability": 0.9902 + }, + { + "start": 10226.42, + "end": 10227.04, + "probability": 0.932 + }, + { + "start": 10227.8, + "end": 10228.7, + "probability": 0.9772 + }, + { + "start": 10229.5, + "end": 10231.22, + "probability": 0.8285 + }, + { + "start": 10232.76, + "end": 10232.76, + "probability": 0.0088 + }, + { + "start": 10232.76, + "end": 10234.26, + "probability": 0.7719 + }, + { + "start": 10234.44, + "end": 10235.98, + "probability": 0.9218 + }, + { + "start": 10236.26, + "end": 10237.52, + "probability": 0.9762 + }, + { + "start": 10237.66, + "end": 10238.98, + "probability": 0.2176 + }, + { + "start": 10240.22, + "end": 10242.26, + "probability": 0.1707 + }, + { + "start": 10243.56, + "end": 10248.04, + "probability": 0.9929 + }, + { + "start": 10250.02, + "end": 10250.64, + "probability": 0.8065 + }, + { + "start": 10253.24, + "end": 10253.94, + "probability": 0.6701 + }, + { + "start": 10256.44, + "end": 10257.18, + "probability": 0.9632 + }, + { + "start": 10258.62, + "end": 10259.8, + "probability": 0.6783 + }, + { + "start": 10261.64, + "end": 10263.46, + "probability": 0.8707 + }, + { + "start": 10264.96, + "end": 10266.78, + "probability": 0.8671 + }, + { + "start": 10267.22, + "end": 10269.4, + "probability": 0.9948 + }, + { + "start": 10270.16, + "end": 10272.7, + "probability": 0.9996 + }, + { + "start": 10273.44, + "end": 10274.32, + "probability": 0.7512 + }, + { + "start": 10275.56, + "end": 10276.7, + "probability": 0.7751 + }, + { + "start": 10277.68, + "end": 10281.18, + "probability": 0.9937 + }, + { + "start": 10281.82, + "end": 10282.88, + "probability": 0.9941 + }, + { + "start": 10283.96, + "end": 10284.7, + "probability": 0.8795 + }, + { + "start": 10285.94, + "end": 10288.32, + "probability": 0.9926 + }, + { + "start": 10288.44, + "end": 10289.38, + "probability": 0.9329 + }, + { + "start": 10289.68, + "end": 10291.48, + "probability": 0.6803 + }, + { + "start": 10292.04, + "end": 10293.96, + "probability": 0.9759 + }, + { + "start": 10295.54, + "end": 10297.5, + "probability": 0.9397 + }, + { + "start": 10298.56, + "end": 10300.1, + "probability": 0.9265 + }, + { + "start": 10301.72, + "end": 10303.33, + "probability": 0.9881 + }, + { + "start": 10303.9, + "end": 10304.68, + "probability": 0.5817 + }, + { + "start": 10306.22, + "end": 10307.58, + "probability": 0.9744 + }, + { + "start": 10309.26, + "end": 10312.04, + "probability": 0.9855 + }, + { + "start": 10312.26, + "end": 10312.7, + "probability": 0.8124 + }, + { + "start": 10313.18, + "end": 10313.9, + "probability": 0.911 + }, + { + "start": 10315.76, + "end": 10317.84, + "probability": 0.8826 + }, + { + "start": 10319.04, + "end": 10322.54, + "probability": 0.9945 + }, + { + "start": 10323.5, + "end": 10324.8, + "probability": 0.9937 + }, + { + "start": 10326.04, + "end": 10328.38, + "probability": 0.9972 + }, + { + "start": 10329.0, + "end": 10329.7, + "probability": 0.9993 + }, + { + "start": 10331.0, + "end": 10331.72, + "probability": 0.6188 + }, + { + "start": 10333.08, + "end": 10334.32, + "probability": 0.9718 + }, + { + "start": 10335.28, + "end": 10336.34, + "probability": 0.8399 + }, + { + "start": 10337.9, + "end": 10339.58, + "probability": 0.7861 + }, + { + "start": 10341.1, + "end": 10344.92, + "probability": 0.9966 + }, + { + "start": 10344.96, + "end": 10345.5, + "probability": 0.8021 + }, + { + "start": 10345.7, + "end": 10346.04, + "probability": 0.362 + }, + { + "start": 10347.3, + "end": 10349.54, + "probability": 0.9876 + }, + { + "start": 10349.88, + "end": 10353.1, + "probability": 0.8659 + }, + { + "start": 10354.36, + "end": 10355.43, + "probability": 0.1834 + }, + { + "start": 10355.92, + "end": 10357.32, + "probability": 0.9746 + }, + { + "start": 10358.12, + "end": 10359.38, + "probability": 0.7507 + }, + { + "start": 10359.72, + "end": 10360.86, + "probability": 0.9832 + }, + { + "start": 10361.4, + "end": 10363.1, + "probability": 0.9768 + }, + { + "start": 10363.26, + "end": 10363.7, + "probability": 0.4997 + }, + { + "start": 10365.08, + "end": 10365.64, + "probability": 0.9881 + }, + { + "start": 10367.2, + "end": 10367.82, + "probability": 0.8081 + }, + { + "start": 10368.12, + "end": 10370.76, + "probability": 0.9397 + }, + { + "start": 10370.8, + "end": 10371.62, + "probability": 0.9362 + }, + { + "start": 10372.7, + "end": 10373.64, + "probability": 0.9227 + }, + { + "start": 10375.44, + "end": 10376.9, + "probability": 0.9233 + }, + { + "start": 10378.36, + "end": 10380.78, + "probability": 0.9969 + }, + { + "start": 10382.24, + "end": 10383.28, + "probability": 0.9911 + }, + { + "start": 10384.48, + "end": 10385.6, + "probability": 0.9826 + }, + { + "start": 10386.78, + "end": 10388.13, + "probability": 0.8784 + }, + { + "start": 10389.0, + "end": 10390.22, + "probability": 0.9998 + }, + { + "start": 10393.58, + "end": 10395.26, + "probability": 0.9663 + }, + { + "start": 10396.24, + "end": 10396.9, + "probability": 0.7088 + }, + { + "start": 10397.66, + "end": 10398.98, + "probability": 0.9917 + }, + { + "start": 10400.86, + "end": 10401.38, + "probability": 0.214 + }, + { + "start": 10401.48, + "end": 10401.5, + "probability": 0.0002 + }, + { + "start": 10402.3, + "end": 10402.4, + "probability": 0.1442 + }, + { + "start": 10402.4, + "end": 10403.34, + "probability": 0.7507 + }, + { + "start": 10404.48, + "end": 10404.48, + "probability": 0.3117 + }, + { + "start": 10404.48, + "end": 10405.68, + "probability": 0.949 + }, + { + "start": 10407.48, + "end": 10408.72, + "probability": 0.8648 + }, + { + "start": 10409.94, + "end": 10410.82, + "probability": 0.7686 + }, + { + "start": 10415.6, + "end": 10417.38, + "probability": 0.7403 + }, + { + "start": 10418.32, + "end": 10420.94, + "probability": 0.6977 + }, + { + "start": 10422.16, + "end": 10422.8, + "probability": 0.5256 + }, + { + "start": 10424.02, + "end": 10424.48, + "probability": 0.7673 + }, + { + "start": 10425.28, + "end": 10426.7, + "probability": 0.9377 + }, + { + "start": 10427.64, + "end": 10429.62, + "probability": 0.9044 + }, + { + "start": 10431.66, + "end": 10432.64, + "probability": 0.033 + }, + { + "start": 10432.64, + "end": 10432.82, + "probability": 0.042 + }, + { + "start": 10432.98, + "end": 10434.26, + "probability": 0.7314 + }, + { + "start": 10434.74, + "end": 10437.08, + "probability": 0.6114 + }, + { + "start": 10438.1, + "end": 10439.04, + "probability": 0.8169 + }, + { + "start": 10439.82, + "end": 10445.84, + "probability": 0.9577 + }, + { + "start": 10446.24, + "end": 10449.28, + "probability": 0.0319 + }, + { + "start": 10450.2, + "end": 10450.9, + "probability": 0.1836 + }, + { + "start": 10450.9, + "end": 10451.0, + "probability": 0.2125 + }, + { + "start": 10451.0, + "end": 10452.44, + "probability": 0.994 + }, + { + "start": 10452.88, + "end": 10453.88, + "probability": 0.9347 + }, + { + "start": 10454.82, + "end": 10455.88, + "probability": 0.9518 + }, + { + "start": 10458.02, + "end": 10459.52, + "probability": 0.9919 + }, + { + "start": 10460.36, + "end": 10461.92, + "probability": 0.9893 + }, + { + "start": 10463.52, + "end": 10466.08, + "probability": 0.8173 + }, + { + "start": 10467.04, + "end": 10470.88, + "probability": 0.9976 + }, + { + "start": 10471.58, + "end": 10472.44, + "probability": 0.8704 + }, + { + "start": 10473.12, + "end": 10473.55, + "probability": 0.9165 + }, + { + "start": 10474.06, + "end": 10474.54, + "probability": 0.5322 + }, + { + "start": 10476.3, + "end": 10477.08, + "probability": 0.7254 + }, + { + "start": 10477.94, + "end": 10480.84, + "probability": 0.049 + }, + { + "start": 10483.4, + "end": 10483.4, + "probability": 0.0962 + }, + { + "start": 10483.4, + "end": 10483.9, + "probability": 0.251 + }, + { + "start": 10485.7, + "end": 10488.72, + "probability": 0.9463 + }, + { + "start": 10490.06, + "end": 10492.76, + "probability": 0.9958 + }, + { + "start": 10493.72, + "end": 10494.78, + "probability": 0.9626 + }, + { + "start": 10495.94, + "end": 10499.0, + "probability": 0.9854 + }, + { + "start": 10500.14, + "end": 10502.56, + "probability": 0.8304 + }, + { + "start": 10503.78, + "end": 10505.04, + "probability": 0.9792 + }, + { + "start": 10505.98, + "end": 10506.58, + "probability": 0.9246 + }, + { + "start": 10507.16, + "end": 10510.82, + "probability": 0.9873 + }, + { + "start": 10511.28, + "end": 10512.46, + "probability": 0.9604 + }, + { + "start": 10512.52, + "end": 10515.04, + "probability": 0.9969 + }, + { + "start": 10516.24, + "end": 10519.82, + "probability": 0.9834 + }, + { + "start": 10520.82, + "end": 10523.84, + "probability": 0.9884 + }, + { + "start": 10524.84, + "end": 10528.14, + "probability": 0.9946 + }, + { + "start": 10528.96, + "end": 10529.9, + "probability": 0.9985 + }, + { + "start": 10530.88, + "end": 10532.14, + "probability": 0.9002 + }, + { + "start": 10532.72, + "end": 10535.9, + "probability": 0.9646 + }, + { + "start": 10536.72, + "end": 10537.88, + "probability": 0.9768 + }, + { + "start": 10539.18, + "end": 10542.4, + "probability": 0.9705 + }, + { + "start": 10544.16, + "end": 10545.6, + "probability": 0.8488 + }, + { + "start": 10547.22, + "end": 10548.74, + "probability": 0.7506 + }, + { + "start": 10549.76, + "end": 10554.52, + "probability": 0.9922 + }, + { + "start": 10557.24, + "end": 10557.36, + "probability": 0.9719 + }, + { + "start": 10558.94, + "end": 10559.92, + "probability": 0.7803 + }, + { + "start": 10560.28, + "end": 10561.16, + "probability": 0.158 + }, + { + "start": 10561.44, + "end": 10562.7, + "probability": 0.9093 + }, + { + "start": 10563.06, + "end": 10566.68, + "probability": 0.6943 + }, + { + "start": 10569.78, + "end": 10571.0, + "probability": 0.4857 + }, + { + "start": 10571.08, + "end": 10571.1, + "probability": 0.0969 + }, + { + "start": 10571.1, + "end": 10572.24, + "probability": 0.6759 + }, + { + "start": 10575.2, + "end": 10581.12, + "probability": 0.7618 + }, + { + "start": 10581.22, + "end": 10581.34, + "probability": 0.3596 + }, + { + "start": 10581.4, + "end": 10581.62, + "probability": 0.4207 + }, + { + "start": 10581.96, + "end": 10582.98, + "probability": 0.8683 + }, + { + "start": 10583.54, + "end": 10584.96, + "probability": 0.6813 + }, + { + "start": 10585.98, + "end": 10586.68, + "probability": 0.1381 + }, + { + "start": 10588.4, + "end": 10588.46, + "probability": 0.0916 + }, + { + "start": 10588.46, + "end": 10590.26, + "probability": 0.8486 + }, + { + "start": 10590.36, + "end": 10591.2, + "probability": 0.5436 + }, + { + "start": 10591.28, + "end": 10593.49, + "probability": 0.9796 + }, + { + "start": 10594.08, + "end": 10595.36, + "probability": 0.4621 + }, + { + "start": 10595.74, + "end": 10601.54, + "probability": 0.4046 + }, + { + "start": 10601.56, + "end": 10602.61, + "probability": 0.6662 + }, + { + "start": 10603.43, + "end": 10605.28, + "probability": 0.8556 + }, + { + "start": 10607.7, + "end": 10610.9, + "probability": 0.9214 + }, + { + "start": 10613.06, + "end": 10617.54, + "probability": 0.9932 + }, + { + "start": 10618.8, + "end": 10620.66, + "probability": 0.999 + }, + { + "start": 10621.66, + "end": 10626.92, + "probability": 0.9973 + }, + { + "start": 10629.02, + "end": 10631.34, + "probability": 0.9958 + }, + { + "start": 10631.94, + "end": 10633.28, + "probability": 0.9929 + }, + { + "start": 10633.38, + "end": 10636.34, + "probability": 0.9963 + }, + { + "start": 10636.72, + "end": 10637.82, + "probability": 0.9839 + }, + { + "start": 10639.28, + "end": 10640.24, + "probability": 0.9941 + }, + { + "start": 10641.34, + "end": 10642.02, + "probability": 0.6652 + }, + { + "start": 10643.04, + "end": 10644.49, + "probability": 0.9954 + }, + { + "start": 10645.7, + "end": 10646.52, + "probability": 0.9013 + }, + { + "start": 10647.8, + "end": 10649.14, + "probability": 0.9021 + }, + { + "start": 10650.42, + "end": 10651.62, + "probability": 0.9258 + }, + { + "start": 10652.48, + "end": 10653.18, + "probability": 0.7382 + }, + { + "start": 10653.24, + "end": 10654.84, + "probability": 0.9664 + }, + { + "start": 10655.16, + "end": 10657.08, + "probability": 0.9215 + }, + { + "start": 10657.84, + "end": 10658.78, + "probability": 0.9143 + }, + { + "start": 10659.18, + "end": 10662.54, + "probability": 0.9955 + }, + { + "start": 10662.72, + "end": 10664.44, + "probability": 0.8224 + }, + { + "start": 10665.14, + "end": 10665.6, + "probability": 0.9131 + }, + { + "start": 10667.14, + "end": 10668.84, + "probability": 0.9982 + }, + { + "start": 10669.66, + "end": 10671.04, + "probability": 0.8797 + }, + { + "start": 10671.6, + "end": 10672.77, + "probability": 0.9792 + }, + { + "start": 10674.3, + "end": 10677.48, + "probability": 0.7876 + }, + { + "start": 10677.9, + "end": 10679.14, + "probability": 0.9682 + }, + { + "start": 10680.4, + "end": 10681.16, + "probability": 0.8144 + }, + { + "start": 10682.42, + "end": 10683.4, + "probability": 0.9305 + }, + { + "start": 10684.14, + "end": 10689.5, + "probability": 0.0652 + }, + { + "start": 10689.5, + "end": 10692.46, + "probability": 0.9977 + }, + { + "start": 10693.24, + "end": 10694.3, + "probability": 0.0726 + }, + { + "start": 10695.46, + "end": 10697.78, + "probability": 0.908 + }, + { + "start": 10699.18, + "end": 10699.96, + "probability": 0.0499 + }, + { + "start": 10699.98, + "end": 10702.72, + "probability": 0.3253 + }, + { + "start": 10703.1, + "end": 10704.48, + "probability": 0.833 + }, + { + "start": 10705.08, + "end": 10706.16, + "probability": 0.8032 + }, + { + "start": 10706.54, + "end": 10708.6, + "probability": 0.9845 + }, + { + "start": 10708.64, + "end": 10709.4, + "probability": 0.8081 + }, + { + "start": 10710.74, + "end": 10710.86, + "probability": 0.149 + }, + { + "start": 10710.86, + "end": 10710.88, + "probability": 0.4637 + }, + { + "start": 10710.88, + "end": 10711.46, + "probability": 0.8088 + }, + { + "start": 10712.38, + "end": 10713.92, + "probability": 0.677 + }, + { + "start": 10714.06, + "end": 10714.92, + "probability": 0.7789 + }, + { + "start": 10715.56, + "end": 10716.42, + "probability": 0.7808 + }, + { + "start": 10719.18, + "end": 10721.14, + "probability": 0.8789 + }, + { + "start": 10721.86, + "end": 10724.7, + "probability": 0.5792 + }, + { + "start": 10726.92, + "end": 10731.26, + "probability": 0.6503 + }, + { + "start": 10731.36, + "end": 10731.5, + "probability": 0.6185 + }, + { + "start": 10733.68, + "end": 10734.24, + "probability": 0.1329 + }, + { + "start": 10735.06, + "end": 10737.2, + "probability": 0.0752 + }, + { + "start": 10739.6, + "end": 10740.88, + "probability": 0.4017 + }, + { + "start": 10743.33, + "end": 10745.7, + "probability": 0.6708 + }, + { + "start": 10746.78, + "end": 10747.96, + "probability": 0.8658 + }, + { + "start": 10748.38, + "end": 10752.56, + "probability": 0.7271 + }, + { + "start": 10752.76, + "end": 10756.16, + "probability": 0.9672 + }, + { + "start": 10757.44, + "end": 10757.86, + "probability": 0.561 + }, + { + "start": 10759.0, + "end": 10760.58, + "probability": 0.7646 + }, + { + "start": 10760.58, + "end": 10762.46, + "probability": 0.9839 + }, + { + "start": 10763.02, + "end": 10763.1, + "probability": 0.0049 + }, + { + "start": 10763.1, + "end": 10765.74, + "probability": 0.9819 + }, + { + "start": 10766.52, + "end": 10771.66, + "probability": 0.9344 + }, + { + "start": 10772.84, + "end": 10775.84, + "probability": 0.3422 + }, + { + "start": 10776.58, + "end": 10778.46, + "probability": 0.9318 + }, + { + "start": 10779.02, + "end": 10781.04, + "probability": 0.5716 + }, + { + "start": 10782.58, + "end": 10784.52, + "probability": 0.5768 + }, + { + "start": 10784.9, + "end": 10788.74, + "probability": 0.7968 + }, + { + "start": 10789.22, + "end": 10791.28, + "probability": 0.7966 + }, + { + "start": 10791.37, + "end": 10794.38, + "probability": 0.0796 + }, + { + "start": 10794.38, + "end": 10794.38, + "probability": 0.0305 + }, + { + "start": 10794.38, + "end": 10795.58, + "probability": 0.7819 + }, + { + "start": 10795.72, + "end": 10796.24, + "probability": 0.6264 + }, + { + "start": 10797.64, + "end": 10798.14, + "probability": 0.8042 + }, + { + "start": 10798.6, + "end": 10799.98, + "probability": 0.7842 + }, + { + "start": 10800.1, + "end": 10803.18, + "probability": 0.9861 + }, + { + "start": 10803.78, + "end": 10804.56, + "probability": 0.9298 + }, + { + "start": 10805.66, + "end": 10807.48, + "probability": 0.9901 + }, + { + "start": 10808.78, + "end": 10811.92, + "probability": 0.993 + }, + { + "start": 10812.88, + "end": 10815.78, + "probability": 0.9964 + }, + { + "start": 10816.58, + "end": 10817.02, + "probability": 0.024 + }, + { + "start": 10817.04, + "end": 10823.82, + "probability": 0.7454 + }, + { + "start": 10823.82, + "end": 10830.3, + "probability": 0.9493 + }, + { + "start": 10831.04, + "end": 10831.04, + "probability": 0.0165 + }, + { + "start": 10831.04, + "end": 10831.04, + "probability": 0.1065 + }, + { + "start": 10831.08, + "end": 10832.7, + "probability": 0.4504 + }, + { + "start": 10832.7, + "end": 10835.52, + "probability": 0.701 + }, + { + "start": 10837.14, + "end": 10839.52, + "probability": 0.9907 + }, + { + "start": 10839.84, + "end": 10840.18, + "probability": 0.9124 + }, + { + "start": 10840.4, + "end": 10841.0, + "probability": 0.7335 + }, + { + "start": 10842.0, + "end": 10842.4, + "probability": 0.4148 + }, + { + "start": 10842.44, + "end": 10844.7, + "probability": 0.7825 + }, + { + "start": 10845.56, + "end": 10846.84, + "probability": 0.9715 + }, + { + "start": 10847.68, + "end": 10848.48, + "probability": 0.9916 + }, + { + "start": 10849.2, + "end": 10850.48, + "probability": 0.9321 + }, + { + "start": 10851.16, + "end": 10853.94, + "probability": 0.0029 + }, + { + "start": 10854.62, + "end": 10854.98, + "probability": 0.0635 + }, + { + "start": 10854.98, + "end": 10854.98, + "probability": 0.0323 + }, + { + "start": 10854.98, + "end": 10854.98, + "probability": 0.2536 + }, + { + "start": 10855.04, + "end": 10855.86, + "probability": 0.623 + }, + { + "start": 10856.26, + "end": 10858.82, + "probability": 0.8114 + }, + { + "start": 10858.98, + "end": 10861.1, + "probability": 0.8536 + }, + { + "start": 10861.46, + "end": 10863.1, + "probability": 0.9445 + }, + { + "start": 10863.3, + "end": 10864.02, + "probability": 0.4023 + }, + { + "start": 10864.02, + "end": 10865.18, + "probability": 0.507 + }, + { + "start": 10866.24, + "end": 10868.44, + "probability": 0.6329 + }, + { + "start": 10869.08, + "end": 10871.18, + "probability": 0.9629 + }, + { + "start": 10872.34, + "end": 10874.74, + "probability": 0.9528 + }, + { + "start": 10876.38, + "end": 10877.88, + "probability": 0.8965 + }, + { + "start": 10878.96, + "end": 10882.34, + "probability": 0.6798 + }, + { + "start": 10883.8, + "end": 10884.7, + "probability": 0.924 + }, + { + "start": 10885.72, + "end": 10886.72, + "probability": 0.9923 + }, + { + "start": 10887.58, + "end": 10888.06, + "probability": 0.803 + }, + { + "start": 10889.88, + "end": 10890.4, + "probability": 0.922 + }, + { + "start": 10891.04, + "end": 10892.34, + "probability": 0.9334 + }, + { + "start": 10893.6, + "end": 10895.52, + "probability": 0.7899 + }, + { + "start": 10896.88, + "end": 10897.4, + "probability": 0.8695 + }, + { + "start": 10899.04, + "end": 10900.42, + "probability": 0.8547 + }, + { + "start": 10901.96, + "end": 10902.86, + "probability": 0.8351 + }, + { + "start": 10902.98, + "end": 10906.84, + "probability": 0.9127 + }, + { + "start": 10907.64, + "end": 10908.12, + "probability": 0.2198 + }, + { + "start": 10909.54, + "end": 10914.66, + "probability": 0.9479 + }, + { + "start": 10914.8, + "end": 10917.2, + "probability": 0.8806 + }, + { + "start": 10918.32, + "end": 10920.52, + "probability": 0.8779 + }, + { + "start": 10920.66, + "end": 10923.7, + "probability": 0.9919 + }, + { + "start": 10924.7, + "end": 10930.86, + "probability": 0.9954 + }, + { + "start": 10931.88, + "end": 10932.26, + "probability": 0.8406 + }, + { + "start": 10932.98, + "end": 10933.9, + "probability": 0.7392 + }, + { + "start": 10934.12, + "end": 10938.84, + "probability": 0.9868 + }, + { + "start": 10939.92, + "end": 10941.64, + "probability": 0.8637 + }, + { + "start": 10942.18, + "end": 10944.38, + "probability": 0.9144 + }, + { + "start": 10945.44, + "end": 10946.92, + "probability": 0.9177 + }, + { + "start": 10947.48, + "end": 10947.68, + "probability": 0.8674 + }, + { + "start": 10948.64, + "end": 10949.22, + "probability": 0.9937 + }, + { + "start": 10949.8, + "end": 10951.78, + "probability": 0.9695 + }, + { + "start": 10952.34, + "end": 10955.3, + "probability": 0.9425 + }, + { + "start": 10955.88, + "end": 10957.06, + "probability": 0.8412 + }, + { + "start": 10957.96, + "end": 10959.3, + "probability": 0.9279 + }, + { + "start": 10960.24, + "end": 10962.11, + "probability": 0.9624 + }, + { + "start": 10963.1, + "end": 10964.28, + "probability": 0.7099 + }, + { + "start": 10964.62, + "end": 10965.42, + "probability": 0.5947 + }, + { + "start": 10965.56, + "end": 10967.3, + "probability": 0.575 + }, + { + "start": 10968.74, + "end": 10969.38, + "probability": 0.09 + }, + { + "start": 10969.84, + "end": 10970.3, + "probability": 0.3491 + }, + { + "start": 10970.36, + "end": 10973.4, + "probability": 0.76 + }, + { + "start": 10973.64, + "end": 10975.16, + "probability": 0.6206 + }, + { + "start": 10976.14, + "end": 10977.52, + "probability": 0.7706 + }, + { + "start": 10978.0, + "end": 10978.86, + "probability": 0.8223 + }, + { + "start": 10979.5, + "end": 10980.26, + "probability": 0.5387 + }, + { + "start": 10980.4, + "end": 10981.72, + "probability": 0.0535 + }, + { + "start": 10981.72, + "end": 10981.92, + "probability": 0.4162 + }, + { + "start": 10981.92, + "end": 10982.77, + "probability": 0.1123 + }, + { + "start": 10984.74, + "end": 10986.56, + "probability": 0.0159 + }, + { + "start": 10986.9, + "end": 10987.08, + "probability": 0.057 + }, + { + "start": 10987.08, + "end": 10989.3, + "probability": 0.9749 + }, + { + "start": 10989.5, + "end": 10990.6, + "probability": 0.4954 + }, + { + "start": 10991.08, + "end": 10995.4, + "probability": 0.9085 + }, + { + "start": 10995.54, + "end": 10997.1, + "probability": 0.99 + }, + { + "start": 10997.62, + "end": 10998.38, + "probability": 0.6498 + }, + { + "start": 10998.62, + "end": 10999.42, + "probability": 0.4972 + }, + { + "start": 11000.48, + "end": 11001.4, + "probability": 0.9542 + }, + { + "start": 11001.48, + "end": 11002.02, + "probability": 0.8966 + }, + { + "start": 11002.1, + "end": 11002.4, + "probability": 0.8597 + }, + { + "start": 11002.5, + "end": 11004.46, + "probability": 0.9717 + }, + { + "start": 11004.62, + "end": 11005.41, + "probability": 0.9514 + }, + { + "start": 11005.5, + "end": 11006.28, + "probability": 0.4919 + }, + { + "start": 11007.44, + "end": 11008.0, + "probability": 0.0483 + }, + { + "start": 11008.0, + "end": 11008.04, + "probability": 0.4205 + }, + { + "start": 11008.44, + "end": 11014.78, + "probability": 0.9348 + }, + { + "start": 11015.36, + "end": 11015.36, + "probability": 0.0217 + }, + { + "start": 11015.36, + "end": 11016.96, + "probability": 0.5365 + }, + { + "start": 11017.98, + "end": 11018.56, + "probability": 0.1307 + }, + { + "start": 11018.66, + "end": 11021.02, + "probability": 0.9834 + }, + { + "start": 11022.46, + "end": 11022.46, + "probability": 0.1362 + }, + { + "start": 11022.8, + "end": 11025.68, + "probability": 0.9358 + }, + { + "start": 11027.3, + "end": 11028.04, + "probability": 0.5743 + }, + { + "start": 11028.04, + "end": 11028.04, + "probability": 0.0896 + }, + { + "start": 11028.04, + "end": 11028.04, + "probability": 0.0361 + }, + { + "start": 11028.04, + "end": 11028.6, + "probability": 0.7454 + }, + { + "start": 11030.55, + "end": 11030.9, + "probability": 0.3772 + }, + { + "start": 11035.68, + "end": 11037.3, + "probability": 0.925 + }, + { + "start": 11037.4, + "end": 11037.94, + "probability": 0.2976 + }, + { + "start": 11040.28, + "end": 11040.96, + "probability": 0.7434 + }, + { + "start": 11043.16, + "end": 11045.76, + "probability": 0.6097 + }, + { + "start": 11051.54, + "end": 11055.7, + "probability": 0.1359 + }, + { + "start": 11055.72, + "end": 11056.22, + "probability": 0.0512 + }, + { + "start": 11056.96, + "end": 11057.17, + "probability": 0.0617 + }, + { + "start": 11057.46, + "end": 11058.88, + "probability": 0.5205 + }, + { + "start": 11059.74, + "end": 11062.22, + "probability": 0.4975 + }, + { + "start": 11063.12, + "end": 11063.86, + "probability": 0.0191 + }, + { + "start": 11064.48, + "end": 11064.92, + "probability": 0.0992 + }, + { + "start": 11064.92, + "end": 11066.32, + "probability": 0.0471 + }, + { + "start": 11068.6, + "end": 11069.86, + "probability": 0.0476 + }, + { + "start": 11073.68, + "end": 11074.94, + "probability": 0.0591 + }, + { + "start": 11088.5, + "end": 11090.5, + "probability": 0.002 + }, + { + "start": 11092.12, + "end": 11094.2, + "probability": 0.1612 + }, + { + "start": 11094.88, + "end": 11096.22, + "probability": 0.0611 + }, + { + "start": 11097.3, + "end": 11097.98, + "probability": 0.165 + }, + { + "start": 11099.22, + "end": 11099.22, + "probability": 0.3044 + }, + { + "start": 11103.42, + "end": 11103.42, + "probability": 0.0585 + }, + { + "start": 11103.44, + "end": 11103.44, + "probability": 0.2154 + }, + { + "start": 11103.44, + "end": 11107.56, + "probability": 0.0556 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.0, + "end": 11114.0, + "probability": 0.0 + }, + { + "start": 11114.5, + "end": 11114.5, + "probability": 0.125 + }, + { + "start": 11114.5, + "end": 11114.5, + "probability": 0.0823 + }, + { + "start": 11114.5, + "end": 11114.5, + "probability": 0.0549 + }, + { + "start": 11114.5, + "end": 11114.5, + "probability": 0.0706 + }, + { + "start": 11114.5, + "end": 11114.5, + "probability": 0.091 + }, + { + "start": 11114.5, + "end": 11116.71, + "probability": 0.1683 + }, + { + "start": 11116.76, + "end": 11120.1, + "probability": 0.9754 + }, + { + "start": 11121.4, + "end": 11122.58, + "probability": 0.9715 + }, + { + "start": 11123.52, + "end": 11126.26, + "probability": 0.9666 + }, + { + "start": 11126.44, + "end": 11129.22, + "probability": 0.9878 + }, + { + "start": 11129.54, + "end": 11131.98, + "probability": 0.968 + }, + { + "start": 11133.2, + "end": 11134.02, + "probability": 0.8127 + }, + { + "start": 11135.08, + "end": 11139.18, + "probability": 0.9888 + }, + { + "start": 11140.06, + "end": 11141.12, + "probability": 0.8356 + }, + { + "start": 11141.58, + "end": 11142.14, + "probability": 0.7014 + }, + { + "start": 11142.84, + "end": 11143.84, + "probability": 0.7217 + }, + { + "start": 11144.86, + "end": 11146.09, + "probability": 0.9108 + }, + { + "start": 11146.32, + "end": 11149.82, + "probability": 0.9863 + }, + { + "start": 11150.72, + "end": 11152.68, + "probability": 0.8669 + }, + { + "start": 11153.18, + "end": 11160.32, + "probability": 0.9961 + }, + { + "start": 11161.28, + "end": 11163.5, + "probability": 0.9989 + }, + { + "start": 11164.2, + "end": 11168.68, + "probability": 0.9981 + }, + { + "start": 11168.68, + "end": 11173.54, + "probability": 0.9908 + }, + { + "start": 11174.96, + "end": 11177.22, + "probability": 0.991 + }, + { + "start": 11178.0, + "end": 11179.82, + "probability": 0.9688 + }, + { + "start": 11180.6, + "end": 11182.42, + "probability": 0.8691 + }, + { + "start": 11183.18, + "end": 11185.14, + "probability": 0.985 + }, + { + "start": 11185.48, + "end": 11187.98, + "probability": 0.9976 + }, + { + "start": 11188.54, + "end": 11190.04, + "probability": 0.9976 + }, + { + "start": 11190.54, + "end": 11192.72, + "probability": 0.9951 + }, + { + "start": 11194.28, + "end": 11194.62, + "probability": 0.7734 + }, + { + "start": 11195.58, + "end": 11198.32, + "probability": 0.9219 + }, + { + "start": 11198.9, + "end": 11200.4, + "probability": 0.7999 + }, + { + "start": 11201.14, + "end": 11202.9, + "probability": 0.9968 + }, + { + "start": 11203.6, + "end": 11204.92, + "probability": 0.5796 + }, + { + "start": 11205.9, + "end": 11209.79, + "probability": 0.0255 + }, + { + "start": 11212.44, + "end": 11212.44, + "probability": 0.1651 + }, + { + "start": 11212.44, + "end": 11212.44, + "probability": 0.1112 + }, + { + "start": 11212.44, + "end": 11212.44, + "probability": 0.0665 + }, + { + "start": 11212.44, + "end": 11212.44, + "probability": 0.0181 + }, + { + "start": 11212.44, + "end": 11218.14, + "probability": 0.8403 + }, + { + "start": 11218.48, + "end": 11223.0, + "probability": 0.9336 + }, + { + "start": 11223.2, + "end": 11224.11, + "probability": 0.9097 + }, + { + "start": 11225.68, + "end": 11228.98, + "probability": 0.6254 + }, + { + "start": 11228.98, + "end": 11233.1, + "probability": 0.9979 + }, + { + "start": 11233.96, + "end": 11235.8, + "probability": 0.8625 + }, + { + "start": 11236.32, + "end": 11237.22, + "probability": 0.0442 + }, + { + "start": 11237.54, + "end": 11238.6, + "probability": 0.8079 + }, + { + "start": 11240.84, + "end": 11240.84, + "probability": 0.0263 + }, + { + "start": 11240.84, + "end": 11244.38, + "probability": 0.7181 + }, + { + "start": 11244.86, + "end": 11247.14, + "probability": 0.8683 + }, + { + "start": 11247.78, + "end": 11248.22, + "probability": 0.7511 + }, + { + "start": 11248.78, + "end": 11251.51, + "probability": 0.9946 + }, + { + "start": 11252.42, + "end": 11254.5, + "probability": 0.9816 + }, + { + "start": 11266.24, + "end": 11266.84, + "probability": 0.1706 + }, + { + "start": 11266.84, + "end": 11266.84, + "probability": 0.0393 + }, + { + "start": 11266.84, + "end": 11266.84, + "probability": 0.0353 + }, + { + "start": 11266.84, + "end": 11266.84, + "probability": 0.0998 + }, + { + "start": 11266.84, + "end": 11272.74, + "probability": 0.7148 + }, + { + "start": 11273.26, + "end": 11274.56, + "probability": 0.8637 + }, + { + "start": 11275.1, + "end": 11275.2, + "probability": 0.2427 + }, + { + "start": 11275.8, + "end": 11276.4, + "probability": 0.6245 + }, + { + "start": 11276.58, + "end": 11278.4, + "probability": 0.8409 + }, + { + "start": 11278.64, + "end": 11279.48, + "probability": 0.8193 + }, + { + "start": 11279.88, + "end": 11281.1, + "probability": 0.9863 + }, + { + "start": 11281.6, + "end": 11284.44, + "probability": 0.1672 + }, + { + "start": 11287.0, + "end": 11288.16, + "probability": 0.7856 + }, + { + "start": 11288.32, + "end": 11289.28, + "probability": 0.0555 + }, + { + "start": 11289.34, + "end": 11290.24, + "probability": 0.5883 + }, + { + "start": 11290.86, + "end": 11291.72, + "probability": 0.7075 + }, + { + "start": 11291.72, + "end": 11292.24, + "probability": 0.0296 + }, + { + "start": 11292.32, + "end": 11292.46, + "probability": 0.4417 + }, + { + "start": 11292.46, + "end": 11294.82, + "probability": 0.4367 + }, + { + "start": 11295.72, + "end": 11296.24, + "probability": 0.8785 + }, + { + "start": 11297.53, + "end": 11299.02, + "probability": 0.1348 + }, + { + "start": 11300.04, + "end": 11302.34, + "probability": 0.1973 + }, + { + "start": 11304.68, + "end": 11304.68, + "probability": 0.0546 + }, + { + "start": 11304.68, + "end": 11304.68, + "probability": 0.0538 + }, + { + "start": 11304.68, + "end": 11304.68, + "probability": 0.1451 + }, + { + "start": 11304.68, + "end": 11305.58, + "probability": 0.0528 + }, + { + "start": 11306.34, + "end": 11307.88, + "probability": 0.0577 + }, + { + "start": 11308.3, + "end": 11308.58, + "probability": 0.2724 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11398.0, + "end": 11398.0, + "probability": 0.0 + }, + { + "start": 11405.3, + "end": 11407.64, + "probability": 0.075 + }, + { + "start": 11407.64, + "end": 11407.7, + "probability": 0.2243 + }, + { + "start": 11408.52, + "end": 11409.97, + "probability": 0.1579 + }, + { + "start": 11411.62, + "end": 11414.64, + "probability": 0.2357 + }, + { + "start": 11426.74, + "end": 11427.98, + "probability": 0.5975 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11532.26, + "end": 11535.09, + "probability": 0.9866 + }, + { + "start": 11535.62, + "end": 11537.28, + "probability": 0.9971 + }, + { + "start": 11537.62, + "end": 11539.6, + "probability": 0.6528 + }, + { + "start": 11539.6, + "end": 11541.42, + "probability": 0.5783 + }, + { + "start": 11541.52, + "end": 11545.56, + "probability": 0.9945 + }, + { + "start": 11545.68, + "end": 11545.9, + "probability": 0.2814 + }, + { + "start": 11546.66, + "end": 11547.46, + "probability": 0.0473 + }, + { + "start": 11547.46, + "end": 11547.46, + "probability": 0.0648 + }, + { + "start": 11547.46, + "end": 11548.4, + "probability": 0.0597 + }, + { + "start": 11551.46, + "end": 11552.82, + "probability": 0.5437 + }, + { + "start": 11553.56, + "end": 11554.3, + "probability": 0.4207 + }, + { + "start": 11554.58, + "end": 11555.06, + "probability": 0.7377 + }, + { + "start": 11555.22, + "end": 11556.32, + "probability": 0.01 + }, + { + "start": 11556.32, + "end": 11556.84, + "probability": 0.5557 + }, + { + "start": 11556.92, + "end": 11557.88, + "probability": 0.8459 + }, + { + "start": 11558.24, + "end": 11561.22, + "probability": 0.9834 + }, + { + "start": 11561.8, + "end": 11563.8, + "probability": 0.2133 + }, + { + "start": 11566.54, + "end": 11567.24, + "probability": 0.8538 + }, + { + "start": 11568.46, + "end": 11569.14, + "probability": 0.3574 + }, + { + "start": 11569.84, + "end": 11570.16, + "probability": 0.2896 + }, + { + "start": 11570.38, + "end": 11570.54, + "probability": 0.1466 + }, + { + "start": 11572.1, + "end": 11572.22, + "probability": 0.0051 + }, + { + "start": 11572.26, + "end": 11572.7, + "probability": 0.7062 + }, + { + "start": 11572.8, + "end": 11574.64, + "probability": 0.7851 + }, + { + "start": 11575.06, + "end": 11577.44, + "probability": 0.9946 + }, + { + "start": 11577.8, + "end": 11578.5, + "probability": 0.8523 + }, + { + "start": 11578.92, + "end": 11579.76, + "probability": 0.9675 + }, + { + "start": 11579.86, + "end": 11580.66, + "probability": 0.8509 + }, + { + "start": 11581.02, + "end": 11582.64, + "probability": 0.9485 + }, + { + "start": 11583.36, + "end": 11587.04, + "probability": 0.7098 + }, + { + "start": 11587.56, + "end": 11590.24, + "probability": 0.8989 + }, + { + "start": 11590.34, + "end": 11591.24, + "probability": 0.7908 + }, + { + "start": 11592.5, + "end": 11592.94, + "probability": 0.8385 + }, + { + "start": 11594.26, + "end": 11596.12, + "probability": 0.4348 + }, + { + "start": 11596.24, + "end": 11598.32, + "probability": 0.9912 + }, + { + "start": 11599.18, + "end": 11599.9, + "probability": 0.2752 + }, + { + "start": 11600.12, + "end": 11603.52, + "probability": 0.9709 + }, + { + "start": 11604.0, + "end": 11604.06, + "probability": 0.12 + }, + { + "start": 11604.06, + "end": 11604.06, + "probability": 0.4032 + }, + { + "start": 11604.06, + "end": 11604.06, + "probability": 0.0329 + }, + { + "start": 11604.06, + "end": 11604.34, + "probability": 0.5186 + }, + { + "start": 11606.2, + "end": 11607.34, + "probability": 0.5554 + }, + { + "start": 11608.64, + "end": 11609.86, + "probability": 0.8013 + }, + { + "start": 11609.92, + "end": 11611.26, + "probability": 0.9539 + }, + { + "start": 11611.3, + "end": 11612.26, + "probability": 0.6178 + }, + { + "start": 11613.04, + "end": 11614.1, + "probability": 0.9632 + }, + { + "start": 11614.28, + "end": 11618.9, + "probability": 0.9942 + }, + { + "start": 11619.36, + "end": 11620.26, + "probability": 0.7447 + }, + { + "start": 11621.54, + "end": 11622.24, + "probability": 0.8693 + }, + { + "start": 11624.06, + "end": 11626.54, + "probability": 0.9869 + }, + { + "start": 11626.62, + "end": 11629.14, + "probability": 0.9963 + }, + { + "start": 11629.14, + "end": 11631.34, + "probability": 0.997 + }, + { + "start": 11632.42, + "end": 11634.12, + "probability": 0.9993 + }, + { + "start": 11634.78, + "end": 11637.56, + "probability": 0.9983 + }, + { + "start": 11638.02, + "end": 11639.29, + "probability": 0.79 + }, + { + "start": 11639.82, + "end": 11640.88, + "probability": 0.9893 + }, + { + "start": 11641.9, + "end": 11645.0, + "probability": 0.9956 + }, + { + "start": 11646.1, + "end": 11650.0, + "probability": 0.9941 + }, + { + "start": 11650.44, + "end": 11651.64, + "probability": 0.924 + }, + { + "start": 11652.04, + "end": 11652.44, + "probability": 0.7575 + }, + { + "start": 11654.32, + "end": 11655.34, + "probability": 0.5051 + }, + { + "start": 11655.54, + "end": 11656.36, + "probability": 0.0915 + }, + { + "start": 11656.36, + "end": 11658.42, + "probability": 0.1103 + }, + { + "start": 11658.42, + "end": 11658.48, + "probability": 0.1699 + }, + { + "start": 11660.2, + "end": 11661.86, + "probability": 0.538 + }, + { + "start": 11661.86, + "end": 11662.08, + "probability": 0.4125 + }, + { + "start": 11662.5, + "end": 11662.76, + "probability": 0.4227 + }, + { + "start": 11663.08, + "end": 11665.76, + "probability": 0.6898 + }, + { + "start": 11667.12, + "end": 11667.78, + "probability": 0.2702 + }, + { + "start": 11668.61, + "end": 11668.68, + "probability": 0.0479 + }, + { + "start": 11669.26, + "end": 11670.66, + "probability": 0.1716 + }, + { + "start": 11670.66, + "end": 11671.1, + "probability": 0.5094 + }, + { + "start": 11671.16, + "end": 11672.86, + "probability": 0.56 + }, + { + "start": 11672.86, + "end": 11672.86, + "probability": 0.3001 + }, + { + "start": 11672.94, + "end": 11675.02, + "probability": 0.7006 + }, + { + "start": 11675.68, + "end": 11676.14, + "probability": 0.786 + }, + { + "start": 11676.36, + "end": 11678.54, + "probability": 0.4477 + }, + { + "start": 11679.16, + "end": 11679.16, + "probability": 0.2717 + }, + { + "start": 11679.16, + "end": 11679.16, + "probability": 0.112 + }, + { + "start": 11679.16, + "end": 11679.16, + "probability": 0.1398 + }, + { + "start": 11679.16, + "end": 11679.34, + "probability": 0.1412 + }, + { + "start": 11679.34, + "end": 11681.24, + "probability": 0.1127 + }, + { + "start": 11681.3, + "end": 11682.9, + "probability": 0.5907 + }, + { + "start": 11682.9, + "end": 11684.18, + "probability": 0.8107 + }, + { + "start": 11684.38, + "end": 11689.04, + "probability": 0.9489 + }, + { + "start": 11689.4, + "end": 11690.78, + "probability": 0.0277 + }, + { + "start": 11690.94, + "end": 11690.94, + "probability": 0.0895 + }, + { + "start": 11690.94, + "end": 11690.94, + "probability": 0.2482 + }, + { + "start": 11690.94, + "end": 11690.94, + "probability": 0.0481 + }, + { + "start": 11690.94, + "end": 11690.94, + "probability": 0.0486 + }, + { + "start": 11690.94, + "end": 11693.34, + "probability": 0.9682 + }, + { + "start": 11693.34, + "end": 11696.66, + "probability": 0.8532 + }, + { + "start": 11696.78, + "end": 11697.14, + "probability": 0.4113 + }, + { + "start": 11697.26, + "end": 11699.48, + "probability": 0.6687 + }, + { + "start": 11699.82, + "end": 11701.36, + "probability": 0.9688 + }, + { + "start": 11702.92, + "end": 11702.96, + "probability": 0.0105 + }, + { + "start": 11702.96, + "end": 11705.04, + "probability": 0.7808 + }, + { + "start": 11705.44, + "end": 11706.0, + "probability": 0.3514 + }, + { + "start": 11706.16, + "end": 11708.2, + "probability": 0.9274 + }, + { + "start": 11711.34, + "end": 11711.86, + "probability": 0.1919 + }, + { + "start": 11713.64, + "end": 11713.74, + "probability": 0.3795 + }, + { + "start": 11713.94, + "end": 11720.13, + "probability": 0.7545 + }, + { + "start": 11720.48, + "end": 11723.3, + "probability": 0.6655 + }, + { + "start": 11724.32, + "end": 11724.42, + "probability": 0.0662 + }, + { + "start": 11724.42, + "end": 11725.89, + "probability": 0.6917 + }, + { + "start": 11727.54, + "end": 11730.3, + "probability": 0.5493 + }, + { + "start": 11733.54, + "end": 11733.78, + "probability": 0.0093 + }, + { + "start": 11736.52, + "end": 11736.64, + "probability": 0.129 + }, + { + "start": 11737.3, + "end": 11738.44, + "probability": 0.4955 + }, + { + "start": 11740.6, + "end": 11741.88, + "probability": 0.017 + }, + { + "start": 11741.92, + "end": 11742.9, + "probability": 0.0782 + }, + { + "start": 11745.24, + "end": 11746.5, + "probability": 0.7191 + }, + { + "start": 11747.2, + "end": 11747.2, + "probability": 0.002 + }, + { + "start": 11748.64, + "end": 11748.64, + "probability": 0.1073 + }, + { + "start": 11748.64, + "end": 11748.64, + "probability": 0.1587 + }, + { + "start": 11748.64, + "end": 11750.02, + "probability": 0.083 + }, + { + "start": 11751.2, + "end": 11751.65, + "probability": 0.2327 + }, + { + "start": 11757.08, + "end": 11758.78, + "probability": 0.7815 + }, + { + "start": 11760.21, + "end": 11763.16, + "probability": 0.0499 + }, + { + "start": 11763.5, + "end": 11764.7, + "probability": 0.6335 + }, + { + "start": 11765.85, + "end": 11768.68, + "probability": 0.142 + }, + { + "start": 11768.92, + "end": 11768.92, + "probability": 0.218 + }, + { + "start": 11768.92, + "end": 11768.92, + "probability": 0.0614 + }, + { + "start": 11768.92, + "end": 11768.92, + "probability": 0.0887 + }, + { + "start": 11768.92, + "end": 11769.28, + "probability": 0.0188 + }, + { + "start": 11770.36, + "end": 11770.36, + "probability": 0.0602 + }, + { + "start": 11770.36, + "end": 11772.94, + "probability": 0.6285 + }, + { + "start": 11774.38, + "end": 11777.58, + "probability": 0.9701 + }, + { + "start": 11779.12, + "end": 11779.42, + "probability": 0.6889 + }, + { + "start": 11789.88, + "end": 11790.16, + "probability": 0.1191 + }, + { + "start": 11790.16, + "end": 11790.16, + "probability": 0.1696 + }, + { + "start": 11790.16, + "end": 11790.16, + "probability": 0.2666 + }, + { + "start": 11790.16, + "end": 11790.16, + "probability": 0.0521 + }, + { + "start": 11790.16, + "end": 11791.64, + "probability": 0.562 + }, + { + "start": 11791.72, + "end": 11793.82, + "probability": 0.4488 + }, + { + "start": 11793.82, + "end": 11797.68, + "probability": 0.7947 + }, + { + "start": 11799.78, + "end": 11800.88, + "probability": 0.8293 + }, + { + "start": 11800.98, + "end": 11801.84, + "probability": 0.9446 + }, + { + "start": 11802.22, + "end": 11803.58, + "probability": 0.7223 + }, + { + "start": 11803.74, + "end": 11806.9, + "probability": 0.9956 + }, + { + "start": 11807.06, + "end": 11809.48, + "probability": 0.9473 + }, + { + "start": 11810.18, + "end": 11810.48, + "probability": 0.6348 + }, + { + "start": 11811.66, + "end": 11812.34, + "probability": 0.8922 + }, + { + "start": 11812.92, + "end": 11814.16, + "probability": 0.9679 + }, + { + "start": 11814.6, + "end": 11817.94, + "probability": 0.9773 + }, + { + "start": 11819.3, + "end": 11822.36, + "probability": 0.99 + }, + { + "start": 11822.86, + "end": 11823.35, + "probability": 0.9072 + }, + { + "start": 11824.32, + "end": 11826.4, + "probability": 0.7378 + }, + { + "start": 11826.48, + "end": 11826.96, + "probability": 0.7665 + }, + { + "start": 11827.18, + "end": 11827.64, + "probability": 0.895 + }, + { + "start": 11827.96, + "end": 11828.48, + "probability": 0.8184 + }, + { + "start": 11829.32, + "end": 11830.46, + "probability": 0.5458 + }, + { + "start": 11830.94, + "end": 11831.96, + "probability": 0.8916 + }, + { + "start": 11833.12, + "end": 11833.82, + "probability": 0.4694 + }, + { + "start": 11833.9, + "end": 11836.8, + "probability": 0.9861 + }, + { + "start": 11836.84, + "end": 11837.78, + "probability": 0.964 + }, + { + "start": 11838.48, + "end": 11841.3, + "probability": 0.7502 + }, + { + "start": 11842.26, + "end": 11845.6, + "probability": 0.9798 + }, + { + "start": 11846.32, + "end": 11853.56, + "probability": 0.9752 + }, + { + "start": 11854.44, + "end": 11854.54, + "probability": 0.0303 + }, + { + "start": 11854.54, + "end": 11854.54, + "probability": 0.1534 + }, + { + "start": 11854.54, + "end": 11854.54, + "probability": 0.062 + }, + { + "start": 11854.54, + "end": 11855.67, + "probability": 0.6173 + }, + { + "start": 11856.06, + "end": 11857.26, + "probability": 0.8384 + }, + { + "start": 11857.74, + "end": 11857.74, + "probability": 0.1252 + }, + { + "start": 11857.74, + "end": 11857.74, + "probability": 0.087 + }, + { + "start": 11857.74, + "end": 11857.74, + "probability": 0.6265 + }, + { + "start": 11857.74, + "end": 11862.06, + "probability": 0.6204 + }, + { + "start": 11862.5, + "end": 11865.18, + "probability": 0.7967 + }, + { + "start": 11865.7, + "end": 11867.26, + "probability": 0.9943 + }, + { + "start": 11869.72, + "end": 11869.8, + "probability": 0.1034 + }, + { + "start": 11869.8, + "end": 11869.8, + "probability": 0.0125 + }, + { + "start": 11869.8, + "end": 11870.42, + "probability": 0.3067 + }, + { + "start": 11870.54, + "end": 11874.26, + "probability": 0.7227 + }, + { + "start": 11874.94, + "end": 11875.88, + "probability": 0.8277 + }, + { + "start": 11876.08, + "end": 11881.42, + "probability": 0.951 + }, + { + "start": 11882.5, + "end": 11885.16, + "probability": 0.9644 + }, + { + "start": 11885.94, + "end": 11886.94, + "probability": 0.5032 + }, + { + "start": 11888.84, + "end": 11888.94, + "probability": 0.7073 + }, + { + "start": 11889.88, + "end": 11890.72, + "probability": 0.9732 + }, + { + "start": 11891.5, + "end": 11892.54, + "probability": 0.9677 + }, + { + "start": 11893.16, + "end": 11896.32, + "probability": 0.8584 + }, + { + "start": 11897.38, + "end": 11899.52, + "probability": 0.8247 + }, + { + "start": 11900.26, + "end": 11902.58, + "probability": 0.9347 + }, + { + "start": 11903.22, + "end": 11904.24, + "probability": 0.0273 + }, + { + "start": 11904.24, + "end": 11908.08, + "probability": 0.8218 + }, + { + "start": 11908.66, + "end": 11912.3, + "probability": 0.8986 + }, + { + "start": 11913.04, + "end": 11914.6, + "probability": 0.9202 + }, + { + "start": 11915.0, + "end": 11918.9, + "probability": 0.983 + }, + { + "start": 11919.02, + "end": 11923.0, + "probability": 0.9821 + }, + { + "start": 11923.9, + "end": 11926.86, + "probability": 0.8608 + }, + { + "start": 11926.86, + "end": 11929.6, + "probability": 0.852 + }, + { + "start": 11930.64, + "end": 11933.62, + "probability": 0.9956 + }, + { + "start": 11933.96, + "end": 11935.0, + "probability": 0.9221 + }, + { + "start": 11936.16, + "end": 11936.18, + "probability": 0.0355 + }, + { + "start": 11936.18, + "end": 11936.18, + "probability": 0.1163 + }, + { + "start": 11936.18, + "end": 11937.44, + "probability": 0.5513 + }, + { + "start": 11937.62, + "end": 11940.0, + "probability": 0.6128 + }, + { + "start": 11940.26, + "end": 11940.54, + "probability": 0.6605 + }, + { + "start": 11940.54, + "end": 11942.46, + "probability": 0.5435 + }, + { + "start": 11942.5, + "end": 11943.5, + "probability": 0.0268 + }, + { + "start": 11944.02, + "end": 11946.12, + "probability": 0.9886 + }, + { + "start": 11946.46, + "end": 11951.38, + "probability": 0.909 + }, + { + "start": 11952.12, + "end": 11952.7, + "probability": 0.8943 + }, + { + "start": 11953.24, + "end": 11953.62, + "probability": 0.66 + }, + { + "start": 11954.92, + "end": 11957.02, + "probability": 0.9233 + }, + { + "start": 11957.28, + "end": 11960.82, + "probability": 0.1877 + }, + { + "start": 11961.6, + "end": 11963.12, + "probability": 0.9756 + }, + { + "start": 11963.4, + "end": 11964.8, + "probability": 0.9704 + }, + { + "start": 11964.94, + "end": 11965.97, + "probability": 0.4987 + }, + { + "start": 11966.98, + "end": 11968.26, + "probability": 0.877 + }, + { + "start": 11969.48, + "end": 11970.82, + "probability": 0.7148 + }, + { + "start": 11971.74, + "end": 11973.7, + "probability": 0.988 + }, + { + "start": 11973.78, + "end": 11975.96, + "probability": 0.9979 + }, + { + "start": 11976.59, + "end": 11978.0, + "probability": 0.2326 + }, + { + "start": 11978.0, + "end": 11978.42, + "probability": 0.3368 + }, + { + "start": 11978.92, + "end": 11981.04, + "probability": 0.5341 + }, + { + "start": 11981.94, + "end": 11982.1, + "probability": 0.0404 + }, + { + "start": 11982.1, + "end": 11982.1, + "probability": 0.0996 + }, + { + "start": 11982.1, + "end": 11982.74, + "probability": 0.0215 + }, + { + "start": 11982.86, + "end": 11984.38, + "probability": 0.2074 + }, + { + "start": 11984.97, + "end": 11986.68, + "probability": 0.771 + }, + { + "start": 11986.72, + "end": 11987.3, + "probability": 0.9295 + }, + { + "start": 11987.5, + "end": 11991.02, + "probability": 0.8453 + }, + { + "start": 11991.76, + "end": 11993.76, + "probability": 0.9884 + }, + { + "start": 11994.82, + "end": 11996.24, + "probability": 0.9756 + }, + { + "start": 11996.52, + "end": 11997.16, + "probability": 0.268 + }, + { + "start": 11997.32, + "end": 11997.74, + "probability": 0.4721 + }, + { + "start": 11997.88, + "end": 11999.34, + "probability": 0.918 + }, + { + "start": 11999.48, + "end": 12001.04, + "probability": 0.8147 + }, + { + "start": 12001.58, + "end": 12002.2, + "probability": 0.9447 + }, + { + "start": 12004.74, + "end": 12007.2, + "probability": 0.965 + }, + { + "start": 12007.2, + "end": 12009.26, + "probability": 0.9953 + }, + { + "start": 12009.32, + "end": 12010.26, + "probability": 0.8889 + }, + { + "start": 12010.7, + "end": 12012.38, + "probability": 0.9755 + }, + { + "start": 12012.9, + "end": 12016.88, + "probability": 0.9932 + }, + { + "start": 12017.42, + "end": 12019.52, + "probability": 0.8736 + }, + { + "start": 12020.24, + "end": 12021.28, + "probability": 0.6863 + }, + { + "start": 12021.8, + "end": 12022.9, + "probability": 0.9254 + }, + { + "start": 12023.5, + "end": 12024.96, + "probability": 0.9106 + }, + { + "start": 12025.98, + "end": 12027.74, + "probability": 0.9984 + }, + { + "start": 12027.9, + "end": 12029.31, + "probability": 0.9866 + }, + { + "start": 12030.04, + "end": 12031.34, + "probability": 0.9934 + }, + { + "start": 12031.46, + "end": 12032.08, + "probability": 0.7195 + }, + { + "start": 12032.12, + "end": 12032.84, + "probability": 0.9087 + }, + { + "start": 12033.48, + "end": 12036.48, + "probability": 0.9918 + }, + { + "start": 12037.12, + "end": 12039.44, + "probability": 0.9934 + }, + { + "start": 12039.72, + "end": 12042.1, + "probability": 0.9932 + }, + { + "start": 12042.74, + "end": 12044.68, + "probability": 0.9971 + }, + { + "start": 12045.66, + "end": 12047.38, + "probability": 0.9754 + }, + { + "start": 12048.04, + "end": 12049.02, + "probability": 0.9282 + }, + { + "start": 12049.5, + "end": 12051.9, + "probability": 0.9878 + }, + { + "start": 12052.36, + "end": 12053.3, + "probability": 0.6884 + }, + { + "start": 12054.34, + "end": 12057.48, + "probability": 0.7717 + }, + { + "start": 12059.36, + "end": 12059.36, + "probability": 0.1673 + }, + { + "start": 12059.36, + "end": 12060.51, + "probability": 0.2237 + }, + { + "start": 12061.04, + "end": 12061.52, + "probability": 0.035 + }, + { + "start": 12061.58, + "end": 12062.14, + "probability": 0.2925 + }, + { + "start": 12062.16, + "end": 12063.28, + "probability": 0.7542 + }, + { + "start": 12063.98, + "end": 12066.58, + "probability": 0.9324 + }, + { + "start": 12067.28, + "end": 12070.56, + "probability": 0.9976 + }, + { + "start": 12070.8, + "end": 12073.5, + "probability": 0.9965 + }, + { + "start": 12073.56, + "end": 12077.16, + "probability": 0.9932 + }, + { + "start": 12077.72, + "end": 12079.6, + "probability": 0.9401 + }, + { + "start": 12080.42, + "end": 12082.64, + "probability": 0.9948 + }, + { + "start": 12083.32, + "end": 12086.16, + "probability": 0.7852 + }, + { + "start": 12086.94, + "end": 12088.74, + "probability": 0.9934 + }, + { + "start": 12089.66, + "end": 12091.52, + "probability": 0.996 + }, + { + "start": 12092.56, + "end": 12096.92, + "probability": 0.8352 + }, + { + "start": 12097.6, + "end": 12100.96, + "probability": 0.8178 + }, + { + "start": 12101.32, + "end": 12102.08, + "probability": 0.9834 + }, + { + "start": 12103.04, + "end": 12104.26, + "probability": 0.6299 + }, + { + "start": 12104.76, + "end": 12107.14, + "probability": 0.844 + }, + { + "start": 12107.14, + "end": 12107.82, + "probability": 0.685 + }, + { + "start": 12108.68, + "end": 12109.52, + "probability": 0.7929 + }, + { + "start": 12109.76, + "end": 12109.8, + "probability": 0.3615 + }, + { + "start": 12109.8, + "end": 12110.48, + "probability": 0.8451 + }, + { + "start": 12110.68, + "end": 12113.56, + "probability": 0.9017 + }, + { + "start": 12115.72, + "end": 12115.86, + "probability": 0.1837 + }, + { + "start": 12115.86, + "end": 12116.77, + "probability": 0.9468 + }, + { + "start": 12116.89, + "end": 12117.41, + "probability": 0.9135 + }, + { + "start": 12118.25, + "end": 12119.11, + "probability": 0.8385 + }, + { + "start": 12120.53, + "end": 12122.19, + "probability": 0.8412 + }, + { + "start": 12124.17, + "end": 12124.87, + "probability": 0.8528 + }, + { + "start": 12126.25, + "end": 12129.51, + "probability": 0.9931 + }, + { + "start": 12130.43, + "end": 12131.89, + "probability": 0.9935 + }, + { + "start": 12133.45, + "end": 12134.23, + "probability": 0.6418 + }, + { + "start": 12134.91, + "end": 12135.07, + "probability": 0.9874 + }, + { + "start": 12136.11, + "end": 12138.65, + "probability": 0.9183 + }, + { + "start": 12140.71, + "end": 12140.81, + "probability": 0.0666 + }, + { + "start": 12140.81, + "end": 12143.81, + "probability": 0.6927 + }, + { + "start": 12145.01, + "end": 12146.79, + "probability": 0.7424 + }, + { + "start": 12147.11, + "end": 12148.03, + "probability": 0.7694 + }, + { + "start": 12148.97, + "end": 12150.44, + "probability": 0.7233 + }, + { + "start": 12150.81, + "end": 12152.53, + "probability": 0.9076 + }, + { + "start": 12153.07, + "end": 12153.63, + "probability": 0.4069 + }, + { + "start": 12154.53, + "end": 12156.21, + "probability": 0.6516 + }, + { + "start": 12156.35, + "end": 12156.95, + "probability": 0.4982 + }, + { + "start": 12158.07, + "end": 12159.17, + "probability": 0.7323 + }, + { + "start": 12161.17, + "end": 12161.23, + "probability": 0.0431 + }, + { + "start": 12161.23, + "end": 12161.23, + "probability": 0.6211 + }, + { + "start": 12161.23, + "end": 12163.35, + "probability": 0.9676 + }, + { + "start": 12164.37, + "end": 12165.05, + "probability": 0.9404 + }, + { + "start": 12166.23, + "end": 12166.89, + "probability": 0.0316 + }, + { + "start": 12166.89, + "end": 12166.89, + "probability": 0.0851 + }, + { + "start": 12166.89, + "end": 12167.87, + "probability": 0.4473 + }, + { + "start": 12169.29, + "end": 12170.27, + "probability": 0.0553 + }, + { + "start": 12170.59, + "end": 12171.54, + "probability": 0.5403 + }, + { + "start": 12172.81, + "end": 12173.93, + "probability": 0.0509 + }, + { + "start": 12175.31, + "end": 12175.41, + "probability": 0.1869 + }, + { + "start": 12175.41, + "end": 12175.41, + "probability": 0.0324 + }, + { + "start": 12175.41, + "end": 12176.01, + "probability": 0.3868 + }, + { + "start": 12177.01, + "end": 12177.13, + "probability": 0.0256 + }, + { + "start": 12179.41, + "end": 12179.41, + "probability": 0.3235 + }, + { + "start": 12179.91, + "end": 12180.03, + "probability": 0.012 + }, + { + "start": 12180.03, + "end": 12180.05, + "probability": 0.0403 + }, + { + "start": 12180.05, + "end": 12180.05, + "probability": 0.0565 + }, + { + "start": 12180.06, + "end": 12182.22, + "probability": 0.7742 + }, + { + "start": 12182.87, + "end": 12184.15, + "probability": 0.6255 + }, + { + "start": 12185.81, + "end": 12186.29, + "probability": 0.4886 + }, + { + "start": 12186.39, + "end": 12187.95, + "probability": 0.9488 + }, + { + "start": 12188.31, + "end": 12191.99, + "probability": 0.7324 + }, + { + "start": 12192.09, + "end": 12194.69, + "probability": 0.9819 + }, + { + "start": 12194.69, + "end": 12197.95, + "probability": 0.9964 + }, + { + "start": 12199.03, + "end": 12199.05, + "probability": 0.0364 + }, + { + "start": 12199.05, + "end": 12201.09, + "probability": 0.974 + }, + { + "start": 12202.25, + "end": 12204.41, + "probability": 0.0907 + }, + { + "start": 12204.41, + "end": 12205.27, + "probability": 0.0824 + }, + { + "start": 12206.29, + "end": 12208.56, + "probability": 0.7316 + }, + { + "start": 12208.59, + "end": 12208.73, + "probability": 0.4105 + }, + { + "start": 12208.87, + "end": 12209.99, + "probability": 0.5294 + }, + { + "start": 12210.77, + "end": 12214.31, + "probability": 0.8584 + }, + { + "start": 12214.73, + "end": 12215.51, + "probability": 0.9523 + }, + { + "start": 12216.49, + "end": 12216.67, + "probability": 0.1316 + }, + { + "start": 12216.67, + "end": 12217.33, + "probability": 0.7177 + }, + { + "start": 12217.49, + "end": 12218.71, + "probability": 0.7158 + }, + { + "start": 12219.07, + "end": 12220.94, + "probability": 0.84 + }, + { + "start": 12221.33, + "end": 12222.57, + "probability": 0.9779 + }, + { + "start": 12223.41, + "end": 12226.71, + "probability": 0.8285 + }, + { + "start": 12228.03, + "end": 12228.85, + "probability": 0.7317 + }, + { + "start": 12229.01, + "end": 12229.93, + "probability": 0.3506 + }, + { + "start": 12230.45, + "end": 12231.07, + "probability": 0.6072 + }, + { + "start": 12232.09, + "end": 12233.21, + "probability": 0.2566 + }, + { + "start": 12233.35, + "end": 12234.11, + "probability": 0.6856 + }, + { + "start": 12235.89, + "end": 12238.29, + "probability": 0.4207 + }, + { + "start": 12240.41, + "end": 12244.03, + "probability": 0.1228 + }, + { + "start": 12247.83, + "end": 12249.01, + "probability": 0.1457 + }, + { + "start": 12249.01, + "end": 12251.51, + "probability": 0.4737 + }, + { + "start": 12252.65, + "end": 12254.69, + "probability": 0.0041 + }, + { + "start": 12255.87, + "end": 12256.77, + "probability": 0.4493 + }, + { + "start": 12261.79, + "end": 12261.81, + "probability": 0.0006 + }, + { + "start": 12263.31, + "end": 12263.31, + "probability": 0.1222 + }, + { + "start": 12263.31, + "end": 12264.44, + "probability": 0.0666 + }, + { + "start": 12269.15, + "end": 12269.71, + "probability": 0.0615 + }, + { + "start": 12271.07, + "end": 12275.91, + "probability": 0.1587 + }, + { + "start": 12281.71, + "end": 12283.45, + "probability": 0.0494 + }, + { + "start": 12285.7, + "end": 12285.87, + "probability": 0.1144 + }, + { + "start": 12285.87, + "end": 12288.09, + "probability": 0.076 + }, + { + "start": 12288.45, + "end": 12288.89, + "probability": 0.0069 + }, + { + "start": 12289.23, + "end": 12290.11, + "probability": 0.4373 + }, + { + "start": 12291.43, + "end": 12292.43, + "probability": 0.078 + }, + { + "start": 12292.62, + "end": 12293.41, + "probability": 0.4498 + }, + { + "start": 12295.05, + "end": 12295.13, + "probability": 0.2957 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.0, + "end": 12310.0, + "probability": 0.0 + }, + { + "start": 12310.58, + "end": 12310.76, + "probability": 0.0937 + }, + { + "start": 12310.76, + "end": 12310.76, + "probability": 0.0728 + }, + { + "start": 12310.76, + "end": 12310.76, + "probability": 0.106 + }, + { + "start": 12310.76, + "end": 12310.76, + "probability": 0.0013 + }, + { + "start": 12310.76, + "end": 12312.92, + "probability": 0.7173 + }, + { + "start": 12313.64, + "end": 12317.32, + "probability": 0.2619 + }, + { + "start": 12317.8, + "end": 12318.44, + "probability": 0.5318 + }, + { + "start": 12319.64, + "end": 12319.94, + "probability": 0.7607 + }, + { + "start": 12320.12, + "end": 12320.79, + "probability": 0.6953 + }, + { + "start": 12321.78, + "end": 12326.46, + "probability": 0.9355 + }, + { + "start": 12326.72, + "end": 12327.86, + "probability": 0.9858 + }, + { + "start": 12328.06, + "end": 12328.52, + "probability": 0.1149 + }, + { + "start": 12328.52, + "end": 12329.98, + "probability": 0.7615 + }, + { + "start": 12330.42, + "end": 12331.78, + "probability": 0.9327 + }, + { + "start": 12331.8, + "end": 12332.34, + "probability": 0.9347 + }, + { + "start": 12332.76, + "end": 12334.34, + "probability": 0.6668 + }, + { + "start": 12335.12, + "end": 12336.52, + "probability": 0.678 + }, + { + "start": 12337.0, + "end": 12338.84, + "probability": 0.976 + }, + { + "start": 12338.9, + "end": 12344.66, + "probability": 0.9464 + }, + { + "start": 12345.68, + "end": 12346.1, + "probability": 0.0164 + }, + { + "start": 12346.1, + "end": 12346.2, + "probability": 0.6047 + }, + { + "start": 12346.72, + "end": 12348.12, + "probability": 0.1418 + }, + { + "start": 12348.44, + "end": 12348.54, + "probability": 0.0145 + }, + { + "start": 12348.54, + "end": 12348.86, + "probability": 0.5291 + }, + { + "start": 12349.0, + "end": 12349.24, + "probability": 0.6069 + }, + { + "start": 12349.34, + "end": 12350.0, + "probability": 0.6376 + }, + { + "start": 12350.08, + "end": 12350.48, + "probability": 0.6553 + }, + { + "start": 12350.98, + "end": 12352.98, + "probability": 0.7218 + }, + { + "start": 12353.2, + "end": 12353.2, + "probability": 0.0311 + }, + { + "start": 12353.2, + "end": 12353.74, + "probability": 0.8457 + }, + { + "start": 12354.64, + "end": 12355.24, + "probability": 0.3646 + }, + { + "start": 12355.7, + "end": 12357.02, + "probability": 0.9648 + }, + { + "start": 12358.66, + "end": 12359.26, + "probability": 0.8809 + }, + { + "start": 12359.74, + "end": 12359.74, + "probability": 0.1577 + }, + { + "start": 12359.74, + "end": 12361.48, + "probability": 0.8335 + }, + { + "start": 12362.22, + "end": 12362.4, + "probability": 0.0679 + }, + { + "start": 12362.4, + "end": 12365.02, + "probability": 0.9243 + }, + { + "start": 12365.04, + "end": 12369.0, + "probability": 0.921 + }, + { + "start": 12371.46, + "end": 12373.9, + "probability": 0.1853 + }, + { + "start": 12373.9, + "end": 12374.0, + "probability": 0.0437 + }, + { + "start": 12375.26, + "end": 12375.3, + "probability": 0.1165 + }, + { + "start": 12375.3, + "end": 12375.3, + "probability": 0.0473 + }, + { + "start": 12375.3, + "end": 12375.3, + "probability": 0.3972 + }, + { + "start": 12375.3, + "end": 12376.26, + "probability": 0.4239 + }, + { + "start": 12376.64, + "end": 12377.38, + "probability": 0.6579 + }, + { + "start": 12377.42, + "end": 12378.36, + "probability": 0.4931 + }, + { + "start": 12379.58, + "end": 12380.16, + "probability": 0.1401 + }, + { + "start": 12381.1, + "end": 12384.88, + "probability": 0.0911 + }, + { + "start": 12384.88, + "end": 12384.98, + "probability": 0.6157 + }, + { + "start": 12385.54, + "end": 12385.98, + "probability": 0.7317 + }, + { + "start": 12386.22, + "end": 12386.4, + "probability": 0.7822 + }, + { + "start": 12386.56, + "end": 12386.68, + "probability": 0.7185 + }, + { + "start": 12386.72, + "end": 12386.93, + "probability": 0.0374 + }, + { + "start": 12387.72, + "end": 12388.48, + "probability": 0.5987 + }, + { + "start": 12388.8, + "end": 12389.92, + "probability": 0.3023 + }, + { + "start": 12390.06, + "end": 12391.0, + "probability": 0.8581 + }, + { + "start": 12391.54, + "end": 12391.72, + "probability": 0.003 + }, + { + "start": 12391.74, + "end": 12391.88, + "probability": 0.3979 + }, + { + "start": 12393.04, + "end": 12393.28, + "probability": 0.5809 + }, + { + "start": 12393.66, + "end": 12397.02, + "probability": 0.9154 + }, + { + "start": 12397.68, + "end": 12398.16, + "probability": 0.8715 + }, + { + "start": 12398.56, + "end": 12399.52, + "probability": 0.9572 + }, + { + "start": 12399.84, + "end": 12402.76, + "probability": 0.9945 + }, + { + "start": 12404.04, + "end": 12405.02, + "probability": 0.9975 + }, + { + "start": 12405.68, + "end": 12406.32, + "probability": 0.8523 + }, + { + "start": 12406.54, + "end": 12408.54, + "probability": 0.7751 + }, + { + "start": 12408.68, + "end": 12410.33, + "probability": 0.9817 + }, + { + "start": 12411.1, + "end": 12412.52, + "probability": 0.8979 + }, + { + "start": 12413.48, + "end": 12416.66, + "probability": 0.8861 + }, + { + "start": 12417.24, + "end": 12419.88, + "probability": 0.9458 + }, + { + "start": 12420.82, + "end": 12423.66, + "probability": 0.9473 + }, + { + "start": 12424.36, + "end": 12426.54, + "probability": 0.9558 + }, + { + "start": 12428.0, + "end": 12429.46, + "probability": 0.6383 + }, + { + "start": 12429.74, + "end": 12430.08, + "probability": 0.0393 + }, + { + "start": 12430.1, + "end": 12430.18, + "probability": 0.4373 + }, + { + "start": 12430.32, + "end": 12430.42, + "probability": 0.6445 + }, + { + "start": 12430.52, + "end": 12430.52, + "probability": 0.3816 + }, + { + "start": 12430.6, + "end": 12431.2, + "probability": 0.8583 + }, + { + "start": 12431.38, + "end": 12433.3, + "probability": 0.8691 + }, + { + "start": 12433.78, + "end": 12434.16, + "probability": 0.7407 + }, + { + "start": 12434.18, + "end": 12434.94, + "probability": 0.6938 + }, + { + "start": 12435.06, + "end": 12435.14, + "probability": 0.4973 + }, + { + "start": 12435.2, + "end": 12435.81, + "probability": 0.8245 + }, + { + "start": 12436.34, + "end": 12436.6, + "probability": 0.0561 + }, + { + "start": 12436.68, + "end": 12436.68, + "probability": 0.0055 + }, + { + "start": 12436.86, + "end": 12436.96, + "probability": 0.2808 + }, + { + "start": 12437.2, + "end": 12437.9, + "probability": 0.7365 + }, + { + "start": 12437.96, + "end": 12440.32, + "probability": 0.937 + }, + { + "start": 12440.62, + "end": 12441.14, + "probability": 0.6855 + }, + { + "start": 12441.28, + "end": 12442.68, + "probability": 0.7734 + }, + { + "start": 12442.68, + "end": 12442.84, + "probability": 0.5731 + }, + { + "start": 12442.84, + "end": 12443.84, + "probability": 0.8684 + }, + { + "start": 12443.86, + "end": 12445.28, + "probability": 0.497 + }, + { + "start": 12447.22, + "end": 12447.64, + "probability": 0.5521 + }, + { + "start": 12447.76, + "end": 12447.98, + "probability": 0.7503 + }, + { + "start": 12448.24, + "end": 12449.38, + "probability": 0.6839 + }, + { + "start": 12449.58, + "end": 12449.6, + "probability": 0.0113 + }, + { + "start": 12449.82, + "end": 12451.24, + "probability": 0.939 + }, + { + "start": 12451.84, + "end": 12452.7, + "probability": 0.8499 + }, + { + "start": 12452.84, + "end": 12453.22, + "probability": 0.8111 + }, + { + "start": 12453.26, + "end": 12453.52, + "probability": 0.8076 + }, + { + "start": 12453.54, + "end": 12454.58, + "probability": 0.9136 + }, + { + "start": 12454.68, + "end": 12455.14, + "probability": 0.6892 + }, + { + "start": 12455.14, + "end": 12455.62, + "probability": 0.5111 + }, + { + "start": 12455.7, + "end": 12456.31, + "probability": 0.7141 + }, + { + "start": 12456.86, + "end": 12460.0, + "probability": 0.6189 + }, + { + "start": 12460.22, + "end": 12460.22, + "probability": 0.1433 + }, + { + "start": 12460.22, + "end": 12460.22, + "probability": 0.0438 + }, + { + "start": 12460.22, + "end": 12460.22, + "probability": 0.259 + }, + { + "start": 12460.22, + "end": 12461.23, + "probability": 0.5796 + }, + { + "start": 12461.6, + "end": 12463.16, + "probability": 0.4331 + }, + { + "start": 12463.32, + "end": 12464.46, + "probability": 0.8835 + }, + { + "start": 12464.7, + "end": 12467.0, + "probability": 0.7602 + }, + { + "start": 12467.42, + "end": 12471.23, + "probability": 0.8025 + }, + { + "start": 12471.58, + "end": 12472.47, + "probability": 0.7301 + }, + { + "start": 12472.6, + "end": 12473.32, + "probability": 0.2791 + }, + { + "start": 12473.62, + "end": 12473.9, + "probability": 0.2023 + }, + { + "start": 12473.9, + "end": 12474.12, + "probability": 0.3746 + }, + { + "start": 12474.38, + "end": 12477.74, + "probability": 0.7737 + }, + { + "start": 12478.55, + "end": 12478.67, + "probability": 0.3358 + }, + { + "start": 12478.9, + "end": 12478.9, + "probability": 0.1207 + }, + { + "start": 12478.9, + "end": 12480.46, + "probability": 0.9382 + }, + { + "start": 12480.7, + "end": 12482.18, + "probability": 0.9624 + }, + { + "start": 12482.32, + "end": 12482.78, + "probability": 0.7408 + }, + { + "start": 12483.86, + "end": 12485.5, + "probability": 0.0551 + }, + { + "start": 12485.84, + "end": 12487.94, + "probability": 0.7591 + }, + { + "start": 12488.22, + "end": 12490.72, + "probability": 0.9298 + }, + { + "start": 12491.06, + "end": 12491.88, + "probability": 0.4878 + }, + { + "start": 12491.96, + "end": 12491.98, + "probability": 0.4022 + }, + { + "start": 12492.08, + "end": 12493.2, + "probability": 0.7004 + }, + { + "start": 12493.2, + "end": 12495.74, + "probability": 0.6313 + }, + { + "start": 12495.74, + "end": 12497.22, + "probability": 0.8784 + }, + { + "start": 12498.58, + "end": 12499.36, + "probability": 0.1861 + }, + { + "start": 12499.68, + "end": 12502.2, + "probability": 0.13 + }, + { + "start": 12502.74, + "end": 12504.52, + "probability": 0.8113 + }, + { + "start": 12504.64, + "end": 12504.86, + "probability": 0.0808 + }, + { + "start": 12504.86, + "end": 12506.82, + "probability": 0.9048 + }, + { + "start": 12507.0, + "end": 12507.42, + "probability": 0.2645 + }, + { + "start": 12507.42, + "end": 12507.66, + "probability": 0.5873 + }, + { + "start": 12508.04, + "end": 12508.04, + "probability": 0.35 + }, + { + "start": 12508.28, + "end": 12508.84, + "probability": 0.6538 + }, + { + "start": 12508.92, + "end": 12512.6, + "probability": 0.9683 + }, + { + "start": 12512.62, + "end": 12512.62, + "probability": 0.281 + }, + { + "start": 12512.62, + "end": 12512.68, + "probability": 0.2926 + }, + { + "start": 12512.96, + "end": 12513.9, + "probability": 0.9274 + }, + { + "start": 12515.96, + "end": 12516.14, + "probability": 0.1377 + }, + { + "start": 12516.14, + "end": 12516.18, + "probability": 0.0348 + }, + { + "start": 12516.28, + "end": 12516.28, + "probability": 0.2614 + }, + { + "start": 12516.28, + "end": 12517.56, + "probability": 0.4703 + }, + { + "start": 12517.56, + "end": 12517.76, + "probability": 0.3953 + }, + { + "start": 12517.92, + "end": 12518.4, + "probability": 0.2489 + }, + { + "start": 12518.72, + "end": 12521.78, + "probability": 0.9785 + }, + { + "start": 12522.12, + "end": 12525.92, + "probability": 0.9753 + }, + { + "start": 12526.06, + "end": 12526.82, + "probability": 0.0264 + }, + { + "start": 12527.12, + "end": 12527.14, + "probability": 0.0402 + }, + { + "start": 12527.14, + "end": 12528.12, + "probability": 0.4713 + }, + { + "start": 12528.14, + "end": 12528.14, + "probability": 0.5596 + }, + { + "start": 12528.14, + "end": 12530.04, + "probability": 0.8064 + }, + { + "start": 12530.66, + "end": 12530.78, + "probability": 0.1604 + }, + { + "start": 12530.78, + "end": 12532.3, + "probability": 0.7088 + }, + { + "start": 12532.82, + "end": 12533.36, + "probability": 0.7844 + }, + { + "start": 12533.94, + "end": 12535.82, + "probability": 0.5918 + }, + { + "start": 12536.5, + "end": 12538.45, + "probability": 0.9927 + }, + { + "start": 12539.1, + "end": 12541.88, + "probability": 0.9937 + }, + { + "start": 12542.56, + "end": 12543.26, + "probability": 0.7244 + }, + { + "start": 12543.44, + "end": 12543.82, + "probability": 0.6169 + }, + { + "start": 12544.66, + "end": 12545.52, + "probability": 0.9352 + }, + { + "start": 12547.3, + "end": 12547.54, + "probability": 0.754 + }, + { + "start": 12548.16, + "end": 12548.3, + "probability": 0.7732 + }, + { + "start": 12551.36, + "end": 12551.48, + "probability": 0.0223 + }, + { + "start": 12551.48, + "end": 12551.48, + "probability": 0.414 + }, + { + "start": 12551.48, + "end": 12554.52, + "probability": 0.6042 + }, + { + "start": 12554.74, + "end": 12555.82, + "probability": 0.8498 + }, + { + "start": 12556.52, + "end": 12561.58, + "probability": 0.9838 + }, + { + "start": 12562.14, + "end": 12566.42, + "probability": 0.9167 + }, + { + "start": 12569.74, + "end": 12573.18, + "probability": 0.9844 + }, + { + "start": 12573.8, + "end": 12573.9, + "probability": 0.019 + }, + { + "start": 12573.9, + "end": 12575.37, + "probability": 0.6471 + }, + { + "start": 12576.92, + "end": 12577.48, + "probability": 0.4175 + }, + { + "start": 12577.84, + "end": 12579.86, + "probability": 0.455 + }, + { + "start": 12579.86, + "end": 12580.48, + "probability": 0.4618 + }, + { + "start": 12581.36, + "end": 12585.22, + "probability": 0.9988 + }, + { + "start": 12586.24, + "end": 12588.24, + "probability": 0.9519 + }, + { + "start": 12589.86, + "end": 12589.86, + "probability": 0.1522 + }, + { + "start": 12589.86, + "end": 12592.86, + "probability": 0.871 + }, + { + "start": 12593.06, + "end": 12594.48, + "probability": 0.7317 + }, + { + "start": 12596.12, + "end": 12602.58, + "probability": 0.4768 + }, + { + "start": 12605.18, + "end": 12605.88, + "probability": 0.718 + }, + { + "start": 12609.82, + "end": 12609.82, + "probability": 0.7495 + }, + { + "start": 12611.4, + "end": 12614.04, + "probability": 0.3054 + }, + { + "start": 12614.04, + "end": 12614.43, + "probability": 0.1837 + }, + { + "start": 12617.1, + "end": 12620.66, + "probability": 0.7237 + }, + { + "start": 12623.16, + "end": 12623.16, + "probability": 0.0992 + }, + { + "start": 12623.16, + "end": 12623.16, + "probability": 0.5024 + }, + { + "start": 12623.16, + "end": 12624.32, + "probability": 0.0578 + }, + { + "start": 12624.32, + "end": 12624.32, + "probability": 0.2178 + }, + { + "start": 12624.32, + "end": 12624.32, + "probability": 0.1309 + }, + { + "start": 12624.32, + "end": 12624.32, + "probability": 0.0825 + }, + { + "start": 12624.32, + "end": 12624.32, + "probability": 0.0745 + }, + { + "start": 12624.32, + "end": 12625.81, + "probability": 0.333 + }, + { + "start": 12627.14, + "end": 12629.42, + "probability": 0.5784 + }, + { + "start": 12630.22, + "end": 12632.02, + "probability": 0.9344 + }, + { + "start": 12633.24, + "end": 12635.76, + "probability": 0.9395 + }, + { + "start": 12637.32, + "end": 12638.62, + "probability": 0.9504 + }, + { + "start": 12639.8, + "end": 12641.24, + "probability": 0.995 + }, + { + "start": 12642.44, + "end": 12643.67, + "probability": 0.999 + }, + { + "start": 12645.04, + "end": 12646.36, + "probability": 0.9648 + }, + { + "start": 12647.56, + "end": 12651.94, + "probability": 0.999 + }, + { + "start": 12652.72, + "end": 12657.39, + "probability": 0.999 + }, + { + "start": 12658.34, + "end": 12661.7, + "probability": 0.9952 + }, + { + "start": 12662.38, + "end": 12663.96, + "probability": 0.8098 + }, + { + "start": 12664.98, + "end": 12667.32, + "probability": 0.9971 + }, + { + "start": 12667.96, + "end": 12671.04, + "probability": 0.9991 + }, + { + "start": 12671.12, + "end": 12671.64, + "probability": 0.2637 + }, + { + "start": 12672.3, + "end": 12675.22, + "probability": 0.8276 + }, + { + "start": 12677.36, + "end": 12678.35, + "probability": 0.7596 + }, + { + "start": 12678.9, + "end": 12681.96, + "probability": 0.9942 + }, + { + "start": 12681.98, + "end": 12684.56, + "probability": 0.9915 + }, + { + "start": 12684.62, + "end": 12685.4, + "probability": 0.73 + }, + { + "start": 12685.46, + "end": 12686.0, + "probability": 0.5656 + }, + { + "start": 12686.92, + "end": 12687.26, + "probability": 0.7053 + }, + { + "start": 12688.16, + "end": 12689.86, + "probability": 0.9485 + }, + { + "start": 12690.0, + "end": 12690.6, + "probability": 0.6091 + }, + { + "start": 12690.98, + "end": 12694.28, + "probability": 0.7008 + }, + { + "start": 12695.22, + "end": 12696.4, + "probability": 0.9916 + }, + { + "start": 12697.22, + "end": 12698.76, + "probability": 0.8049 + }, + { + "start": 12699.46, + "end": 12700.1, + "probability": 0.6532 + }, + { + "start": 12701.05, + "end": 12704.68, + "probability": 0.5065 + }, + { + "start": 12705.56, + "end": 12705.56, + "probability": 0.3015 + }, + { + "start": 12705.56, + "end": 12707.98, + "probability": 0.6402 + }, + { + "start": 12708.34, + "end": 12709.44, + "probability": 0.7176 + }, + { + "start": 12710.22, + "end": 12713.1, + "probability": 0.6996 + }, + { + "start": 12713.1, + "end": 12717.42, + "probability": 0.2176 + }, + { + "start": 12717.56, + "end": 12718.88, + "probability": 0.8125 + }, + { + "start": 12718.94, + "end": 12721.46, + "probability": 0.9514 + }, + { + "start": 12722.22, + "end": 12724.18, + "probability": 0.7832 + }, + { + "start": 12724.58, + "end": 12729.76, + "probability": 0.8286 + }, + { + "start": 12729.98, + "end": 12734.1, + "probability": 0.9649 + }, + { + "start": 12734.52, + "end": 12735.24, + "probability": 0.6632 + }, + { + "start": 12735.86, + "end": 12737.36, + "probability": 0.5349 + }, + { + "start": 12738.15, + "end": 12739.48, + "probability": 0.6638 + }, + { + "start": 12740.1, + "end": 12741.44, + "probability": 0.754 + }, + { + "start": 12741.6, + "end": 12742.14, + "probability": 0.6706 + }, + { + "start": 12742.4, + "end": 12742.94, + "probability": 0.8621 + }, + { + "start": 12743.02, + "end": 12745.62, + "probability": 0.0997 + }, + { + "start": 12746.46, + "end": 12746.56, + "probability": 0.536 + }, + { + "start": 12758.14, + "end": 12758.48, + "probability": 0.0236 + }, + { + "start": 12758.48, + "end": 12760.06, + "probability": 0.4247 + }, + { + "start": 12760.76, + "end": 12763.36, + "probability": 0.5873 + }, + { + "start": 12763.96, + "end": 12768.5, + "probability": 0.9536 + }, + { + "start": 12769.14, + "end": 12772.42, + "probability": 0.9484 + }, + { + "start": 12773.02, + "end": 12774.1, + "probability": 0.9722 + }, + { + "start": 12774.48, + "end": 12776.36, + "probability": 0.7676 + }, + { + "start": 12776.86, + "end": 12778.64, + "probability": 0.96 + }, + { + "start": 12779.38, + "end": 12781.8, + "probability": 0.8545 + }, + { + "start": 12782.8, + "end": 12782.8, + "probability": 0.205 + }, + { + "start": 12783.04, + "end": 12784.42, + "probability": 0.0634 + }, + { + "start": 12803.02, + "end": 12805.28, + "probability": 0.694 + }, + { + "start": 12815.18, + "end": 12818.68, + "probability": 0.4305 + }, + { + "start": 12819.26, + "end": 12821.6, + "probability": 0.5362 + }, + { + "start": 12821.6, + "end": 12824.72, + "probability": 0.9123 + }, + { + "start": 12836.9, + "end": 12839.12, + "probability": 0.5982 + }, + { + "start": 12844.5, + "end": 12844.98, + "probability": 0.5691 + }, + { + "start": 12845.13, + "end": 12847.48, + "probability": 0.9872 + }, + { + "start": 12847.52, + "end": 12847.74, + "probability": 0.6736 + }, + { + "start": 12847.88, + "end": 12849.12, + "probability": 0.724 + }, + { + "start": 12850.12, + "end": 12852.68, + "probability": 0.9884 + }, + { + "start": 12853.28, + "end": 12854.38, + "probability": 0.959 + }, + { + "start": 12854.56, + "end": 12859.86, + "probability": 0.9665 + }, + { + "start": 12860.78, + "end": 12863.34, + "probability": 0.995 + }, + { + "start": 12863.56, + "end": 12865.2, + "probability": 0.9783 + }, + { + "start": 12865.98, + "end": 12868.4, + "probability": 0.9959 + }, + { + "start": 12868.86, + "end": 12869.72, + "probability": 0.8595 + }, + { + "start": 12870.02, + "end": 12872.88, + "probability": 0.956 + }, + { + "start": 12873.5, + "end": 12877.28, + "probability": 0.9703 + }, + { + "start": 12877.28, + "end": 12881.48, + "probability": 0.8748 + }, + { + "start": 12882.14, + "end": 12885.36, + "probability": 0.9909 + }, + { + "start": 12886.86, + "end": 12890.34, + "probability": 0.9437 + }, + { + "start": 12891.28, + "end": 12894.14, + "probability": 0.9106 + }, + { + "start": 12894.28, + "end": 12896.48, + "probability": 0.9499 + }, + { + "start": 12896.5, + "end": 12898.7, + "probability": 0.9957 + }, + { + "start": 12899.4, + "end": 12903.12, + "probability": 0.978 + }, + { + "start": 12904.18, + "end": 12907.69, + "probability": 0.9966 + }, + { + "start": 12908.5, + "end": 12911.18, + "probability": 0.9937 + }, + { + "start": 12911.18, + "end": 12914.66, + "probability": 0.9935 + }, + { + "start": 12915.36, + "end": 12919.76, + "probability": 0.953 + }, + { + "start": 12920.34, + "end": 12921.22, + "probability": 0.4931 + }, + { + "start": 12921.92, + "end": 12926.74, + "probability": 0.9699 + }, + { + "start": 12927.24, + "end": 12927.8, + "probability": 0.804 + }, + { + "start": 12928.14, + "end": 12930.1, + "probability": 0.8653 + }, + { + "start": 12930.18, + "end": 12932.96, + "probability": 0.8206 + }, + { + "start": 12933.54, + "end": 12934.56, + "probability": 0.8375 + }, + { + "start": 12935.06, + "end": 12936.82, + "probability": 0.9878 + }, + { + "start": 12937.22, + "end": 12940.5, + "probability": 0.8487 + }, + { + "start": 12941.98, + "end": 12945.28, + "probability": 0.972 + }, + { + "start": 12945.92, + "end": 12947.04, + "probability": 0.9344 + }, + { + "start": 12947.34, + "end": 12949.97, + "probability": 0.981 + }, + { + "start": 12950.92, + "end": 12955.4, + "probability": 0.8112 + }, + { + "start": 12956.26, + "end": 12956.86, + "probability": 0.6956 + }, + { + "start": 12957.0, + "end": 12960.66, + "probability": 0.9952 + }, + { + "start": 12960.76, + "end": 12961.14, + "probability": 0.5567 + }, + { + "start": 12961.74, + "end": 12963.34, + "probability": 0.6483 + }, + { + "start": 12963.58, + "end": 12967.42, + "probability": 0.904 + }, + { + "start": 12968.48, + "end": 12970.44, + "probability": 0.4817 + }, + { + "start": 12971.76, + "end": 12972.42, + "probability": 0.5533 + }, + { + "start": 12973.4, + "end": 12975.3, + "probability": 0.8319 + }, + { + "start": 12983.38, + "end": 12983.38, + "probability": 0.0379 + }, + { + "start": 12983.38, + "end": 12983.38, + "probability": 0.3778 + }, + { + "start": 12983.38, + "end": 12983.38, + "probability": 0.4003 + }, + { + "start": 12983.38, + "end": 12983.38, + "probability": 0.1305 + }, + { + "start": 12992.32, + "end": 12992.88, + "probability": 0.1105 + }, + { + "start": 12992.88, + "end": 12994.84, + "probability": 0.3471 + }, + { + "start": 12994.88, + "end": 12997.8, + "probability": 0.7413 + }, + { + "start": 12997.92, + "end": 12998.3, + "probability": 0.5703 + }, + { + "start": 12998.5, + "end": 12998.7, + "probability": 0.8955 + }, + { + "start": 12999.18, + "end": 13002.52, + "probability": 0.8188 + }, + { + "start": 13003.32, + "end": 13003.56, + "probability": 0.7422 + }, + { + "start": 13003.66, + "end": 13006.42, + "probability": 0.9618 + }, + { + "start": 13006.54, + "end": 13007.92, + "probability": 0.8715 + }, + { + "start": 13008.08, + "end": 13011.84, + "probability": 0.7188 + }, + { + "start": 13011.88, + "end": 13012.56, + "probability": 0.5738 + }, + { + "start": 13012.68, + "end": 13013.04, + "probability": 0.8735 + }, + { + "start": 13018.92, + "end": 13022.18, + "probability": 0.775 + }, + { + "start": 13024.34, + "end": 13025.52, + "probability": 0.7537 + }, + { + "start": 13025.56, + "end": 13027.1, + "probability": 0.9764 + }, + { + "start": 13027.4, + "end": 13028.24, + "probability": 0.9679 + }, + { + "start": 13028.32, + "end": 13029.46, + "probability": 0.8315 + }, + { + "start": 13030.54, + "end": 13035.68, + "probability": 0.9924 + }, + { + "start": 13035.68, + "end": 13039.76, + "probability": 0.9959 + }, + { + "start": 13039.76, + "end": 13044.34, + "probability": 0.7752 + }, + { + "start": 13044.92, + "end": 13047.96, + "probability": 0.9878 + }, + { + "start": 13047.96, + "end": 13051.28, + "probability": 0.9961 + }, + { + "start": 13051.38, + "end": 13056.58, + "probability": 0.9903 + }, + { + "start": 13056.98, + "end": 13059.5, + "probability": 0.9946 + }, + { + "start": 13059.5, + "end": 13065.36, + "probability": 0.8237 + }, + { + "start": 13065.66, + "end": 13069.12, + "probability": 0.9857 + }, + { + "start": 13070.0, + "end": 13076.78, + "probability": 0.6329 + }, + { + "start": 13077.06, + "end": 13078.22, + "probability": 0.8592 + }, + { + "start": 13078.28, + "end": 13078.74, + "probability": 0.6939 + }, + { + "start": 13079.26, + "end": 13080.56, + "probability": 0.809 + }, + { + "start": 13080.74, + "end": 13083.4, + "probability": 0.9565 + }, + { + "start": 13084.36, + "end": 13085.8, + "probability": 0.6483 + }, + { + "start": 13088.64, + "end": 13092.36, + "probability": 0.9556 + }, + { + "start": 13093.1, + "end": 13096.06, + "probability": 0.7948 + }, + { + "start": 13096.56, + "end": 13096.92, + "probability": 0.735 + }, + { + "start": 13096.98, + "end": 13096.98, + "probability": 0.004 + }, + { + "start": 13097.74, + "end": 13098.9, + "probability": 0.9956 + }, + { + "start": 13099.26, + "end": 13100.5, + "probability": 0.71 + }, + { + "start": 13101.42, + "end": 13102.41, + "probability": 0.9819 + }, + { + "start": 13104.16, + "end": 13105.02, + "probability": 0.6156 + }, + { + "start": 13107.7, + "end": 13109.34, + "probability": 0.8472 + }, + { + "start": 13109.34, + "end": 13109.9, + "probability": 0.8342 + }, + { + "start": 13110.74, + "end": 13115.1, + "probability": 0.6954 + }, + { + "start": 13115.96, + "end": 13121.92, + "probability": 0.9918 + }, + { + "start": 13123.14, + "end": 13127.32, + "probability": 0.9854 + }, + { + "start": 13129.04, + "end": 13132.58, + "probability": 0.8506 + }, + { + "start": 13133.38, + "end": 13137.54, + "probability": 0.9393 + }, + { + "start": 13137.62, + "end": 13140.78, + "probability": 0.9536 + }, + { + "start": 13142.4, + "end": 13146.3, + "probability": 0.9929 + }, + { + "start": 13146.3, + "end": 13152.02, + "probability": 0.8818 + }, + { + "start": 13154.96, + "end": 13155.72, + "probability": 0.5588 + }, + { + "start": 13155.94, + "end": 13158.9, + "probability": 0.5409 + }, + { + "start": 13160.87, + "end": 13163.04, + "probability": 0.9137 + }, + { + "start": 13163.18, + "end": 13165.42, + "probability": 0.9313 + }, + { + "start": 13166.04, + "end": 13166.4, + "probability": 0.6658 + }, + { + "start": 13167.02, + "end": 13171.2, + "probability": 0.9226 + }, + { + "start": 13171.74, + "end": 13173.48, + "probability": 0.9232 + }, + { + "start": 13174.86, + "end": 13175.32, + "probability": 0.1102 + }, + { + "start": 13179.14, + "end": 13180.08, + "probability": 0.7884 + }, + { + "start": 13180.22, + "end": 13182.76, + "probability": 0.9554 + }, + { + "start": 13182.82, + "end": 13183.22, + "probability": 0.6657 + }, + { + "start": 13183.36, + "end": 13184.86, + "probability": 0.9636 + }, + { + "start": 13185.48, + "end": 13189.66, + "probability": 0.9443 + }, + { + "start": 13190.36, + "end": 13191.94, + "probability": 0.9788 + }, + { + "start": 13193.02, + "end": 13194.98, + "probability": 0.8652 + }, + { + "start": 13194.98, + "end": 13197.36, + "probability": 0.7494 + }, + { + "start": 13197.4, + "end": 13199.94, + "probability": 0.9395 + }, + { + "start": 13200.4, + "end": 13202.6, + "probability": 0.992 + }, + { + "start": 13202.8, + "end": 13203.72, + "probability": 0.8115 + }, + { + "start": 13204.28, + "end": 13206.62, + "probability": 0.8913 + }, + { + "start": 13207.14, + "end": 13211.84, + "probability": 0.9664 + }, + { + "start": 13212.96, + "end": 13213.6, + "probability": 0.6929 + }, + { + "start": 13213.66, + "end": 13214.4, + "probability": 0.7755 + }, + { + "start": 13214.58, + "end": 13216.38, + "probability": 0.9423 + }, + { + "start": 13216.56, + "end": 13217.98, + "probability": 0.7128 + }, + { + "start": 13218.18, + "end": 13219.4, + "probability": 0.9396 + }, + { + "start": 13221.02, + "end": 13222.58, + "probability": 0.5726 + }, + { + "start": 13223.24, + "end": 13225.3, + "probability": 0.746 + }, + { + "start": 13226.16, + "end": 13236.88, + "probability": 0.101 + }, + { + "start": 13244.8, + "end": 13245.1, + "probability": 0.8427 + }, + { + "start": 13245.1, + "end": 13245.22, + "probability": 0.0674 + }, + { + "start": 13245.22, + "end": 13245.22, + "probability": 0.1549 + }, + { + "start": 13245.22, + "end": 13245.22, + "probability": 0.2868 + }, + { + "start": 13245.22, + "end": 13247.06, + "probability": 0.6802 + }, + { + "start": 13247.16, + "end": 13247.76, + "probability": 0.5525 + }, + { + "start": 13249.1, + "end": 13249.62, + "probability": 0.8567 + }, + { + "start": 13250.54, + "end": 13250.54, + "probability": 0.3355 + }, + { + "start": 13250.54, + "end": 13250.54, + "probability": 0.7602 + }, + { + "start": 13250.54, + "end": 13250.54, + "probability": 0.0807 + }, + { + "start": 13250.54, + "end": 13253.12, + "probability": 0.6072 + }, + { + "start": 13253.32, + "end": 13254.06, + "probability": 0.7599 + }, + { + "start": 13254.4, + "end": 13255.98, + "probability": 0.8745 + }, + { + "start": 13256.96, + "end": 13259.56, + "probability": 0.6955 + }, + { + "start": 13267.28, + "end": 13269.4, + "probability": 0.6797 + }, + { + "start": 13270.18, + "end": 13272.94, + "probability": 0.9236 + }, + { + "start": 13273.08, + "end": 13274.62, + "probability": 0.6179 + }, + { + "start": 13274.78, + "end": 13275.82, + "probability": 0.8043 + }, + { + "start": 13275.92, + "end": 13276.84, + "probability": 0.5191 + }, + { + "start": 13276.9, + "end": 13278.5, + "probability": 0.6995 + }, + { + "start": 13279.24, + "end": 13282.26, + "probability": 0.6911 + }, + { + "start": 13282.26, + "end": 13284.3, + "probability": 0.3146 + }, + { + "start": 13284.6, + "end": 13285.88, + "probability": 0.9033 + }, + { + "start": 13286.5, + "end": 13291.24, + "probability": 0.6315 + }, + { + "start": 13292.18, + "end": 13296.54, + "probability": 0.8203 + }, + { + "start": 13297.16, + "end": 13298.98, + "probability": 0.9364 + }, + { + "start": 13298.98, + "end": 13304.26, + "probability": 0.9546 + }, + { + "start": 13306.31, + "end": 13307.92, + "probability": 0.9819 + }, + { + "start": 13308.24, + "end": 13308.56, + "probability": 0.7313 + }, + { + "start": 13311.2, + "end": 13312.98, + "probability": 0.6903 + }, + { + "start": 13313.12, + "end": 13315.16, + "probability": 0.8353 + }, + { + "start": 13315.24, + "end": 13316.68, + "probability": 0.879 + }, + { + "start": 13317.14, + "end": 13318.86, + "probability": 0.5913 + }, + { + "start": 13319.6, + "end": 13320.08, + "probability": 0.4834 + }, + { + "start": 13321.04, + "end": 13324.4, + "probability": 0.7433 + }, + { + "start": 13324.72, + "end": 13326.28, + "probability": 0.9062 + }, + { + "start": 13326.94, + "end": 13327.68, + "probability": 0.5623 + }, + { + "start": 13327.84, + "end": 13327.84, + "probability": 0.3325 + }, + { + "start": 13327.84, + "end": 13328.6, + "probability": 0.9031 + }, + { + "start": 13328.76, + "end": 13329.56, + "probability": 0.7048 + }, + { + "start": 13329.68, + "end": 13330.96, + "probability": 0.8919 + }, + { + "start": 13331.54, + "end": 13336.3, + "probability": 0.9292 + }, + { + "start": 13336.8, + "end": 13341.54, + "probability": 0.9707 + }, + { + "start": 13341.54, + "end": 13347.26, + "probability": 0.9276 + }, + { + "start": 13347.62, + "end": 13353.36, + "probability": 0.9827 + }, + { + "start": 13353.36, + "end": 13359.08, + "probability": 0.9932 + }, + { + "start": 13359.52, + "end": 13360.46, + "probability": 0.7321 + }, + { + "start": 13360.98, + "end": 13363.42, + "probability": 0.8688 + }, + { + "start": 13363.78, + "end": 13366.66, + "probability": 0.8211 + }, + { + "start": 13367.56, + "end": 13367.92, + "probability": 0.8462 + }, + { + "start": 13368.16, + "end": 13369.14, + "probability": 0.5787 + }, + { + "start": 13369.34, + "end": 13372.32, + "probability": 0.7019 + }, + { + "start": 13373.3, + "end": 13376.62, + "probability": 0.9917 + }, + { + "start": 13376.84, + "end": 13377.48, + "probability": 0.6824 + }, + { + "start": 13378.0, + "end": 13379.62, + "probability": 0.8345 + }, + { + "start": 13380.46, + "end": 13381.78, + "probability": 0.8411 + }, + { + "start": 13387.8, + "end": 13388.86, + "probability": 0.0446 + }, + { + "start": 13388.86, + "end": 13389.75, + "probability": 0.2153 + }, + { + "start": 13390.62, + "end": 13390.62, + "probability": 0.2805 + }, + { + "start": 13390.68, + "end": 13392.21, + "probability": 0.8013 + }, + { + "start": 13395.18, + "end": 13395.44, + "probability": 0.3364 + }, + { + "start": 13395.46, + "end": 13396.1, + "probability": 0.5981 + }, + { + "start": 13397.24, + "end": 13397.82, + "probability": 0.7376 + }, + { + "start": 13399.22, + "end": 13400.48, + "probability": 0.7742 + }, + { + "start": 13401.32, + "end": 13402.04, + "probability": 0.9448 + }, + { + "start": 13402.22, + "end": 13403.44, + "probability": 0.625 + }, + { + "start": 13404.68, + "end": 13405.04, + "probability": 0.3488 + }, + { + "start": 13405.1, + "end": 13405.6, + "probability": 0.5768 + }, + { + "start": 13405.66, + "end": 13408.06, + "probability": 0.6336 + }, + { + "start": 13416.78, + "end": 13417.53, + "probability": 0.6486 + }, + { + "start": 13419.61, + "end": 13422.98, + "probability": 0.5862 + }, + { + "start": 13423.76, + "end": 13427.46, + "probability": 0.8099 + }, + { + "start": 13428.32, + "end": 13428.66, + "probability": 0.6815 + }, + { + "start": 13430.92, + "end": 13431.6, + "probability": 0.375 + }, + { + "start": 13435.06, + "end": 13435.16, + "probability": 0.4215 + }, + { + "start": 13437.62, + "end": 13439.64, + "probability": 0.9006 + }, + { + "start": 13439.74, + "end": 13442.88, + "probability": 0.7488 + }, + { + "start": 13443.08, + "end": 13447.4, + "probability": 0.8104 + }, + { + "start": 13448.22, + "end": 13448.56, + "probability": 0.6256 + }, + { + "start": 13448.62, + "end": 13450.66, + "probability": 0.9359 + }, + { + "start": 13450.84, + "end": 13452.2, + "probability": 0.7427 + }, + { + "start": 13452.6, + "end": 13453.56, + "probability": 0.4376 + }, + { + "start": 13455.0, + "end": 13455.0, + "probability": 0.0603 + }, + { + "start": 13455.0, + "end": 13458.14, + "probability": 0.7178 + }, + { + "start": 13458.34, + "end": 13459.0, + "probability": 0.8462 + }, + { + "start": 13459.76, + "end": 13463.06, + "probability": 0.8328 + }, + { + "start": 13463.12, + "end": 13464.02, + "probability": 0.8924 + }, + { + "start": 13464.78, + "end": 13466.76, + "probability": 0.6823 + }, + { + "start": 13466.8, + "end": 13466.8, + "probability": 0.0668 + }, + { + "start": 13466.8, + "end": 13468.46, + "probability": 0.4444 + }, + { + "start": 13469.14, + "end": 13469.9, + "probability": 0.2505 + }, + { + "start": 13471.58, + "end": 13472.08, + "probability": 0.6183 + }, + { + "start": 13472.28, + "end": 13472.28, + "probability": 0.0845 + }, + { + "start": 13472.28, + "end": 13473.2, + "probability": 0.3413 + }, + { + "start": 13473.36, + "end": 13474.48, + "probability": 0.6265 + }, + { + "start": 13474.54, + "end": 13477.42, + "probability": 0.7073 + }, + { + "start": 13478.56, + "end": 13479.08, + "probability": 0.5885 + }, + { + "start": 13479.78, + "end": 13480.85, + "probability": 0.7731 + }, + { + "start": 13485.6, + "end": 13485.74, + "probability": 0.2802 + }, + { + "start": 13495.84, + "end": 13498.26, + "probability": 0.589 + }, + { + "start": 13501.58, + "end": 13502.82, + "probability": 0.501 + }, + { + "start": 13502.82, + "end": 13503.78, + "probability": 0.8235 + }, + { + "start": 13504.16, + "end": 13505.08, + "probability": 0.1192 + }, + { + "start": 13505.66, + "end": 13509.72, + "probability": 0.1054 + }, + { + "start": 13511.3, + "end": 13512.54, + "probability": 0.0171 + }, + { + "start": 13520.64, + "end": 13525.52, + "probability": 0.0791 + }, + { + "start": 13526.52, + "end": 13527.5, + "probability": 0.0509 + }, + { + "start": 13528.26, + "end": 13529.22, + "probability": 0.114 + }, + { + "start": 13529.84, + "end": 13530.0, + "probability": 0.0934 + }, + { + "start": 13531.96, + "end": 13533.2, + "probability": 0.0268 + }, + { + "start": 13533.92, + "end": 13536.48, + "probability": 0.0903 + }, + { + "start": 13539.44, + "end": 13539.46, + "probability": 0.0052 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.0, + "end": 13594.0, + "probability": 0.0 + }, + { + "start": 13594.22, + "end": 13594.48, + "probability": 0.4718 + }, + { + "start": 13594.48, + "end": 13594.48, + "probability": 0.1638 + }, + { + "start": 13594.48, + "end": 13595.24, + "probability": 0.2864 + }, + { + "start": 13595.66, + "end": 13599.07, + "probability": 0.959 + }, + { + "start": 13600.48, + "end": 13601.77, + "probability": 0.776 + }, + { + "start": 13601.9, + "end": 13602.1, + "probability": 0.6346 + }, + { + "start": 13602.3, + "end": 13602.62, + "probability": 0.3668 + }, + { + "start": 13602.7, + "end": 13604.16, + "probability": 0.8846 + }, + { + "start": 13605.18, + "end": 13608.62, + "probability": 0.7032 + }, + { + "start": 13609.42, + "end": 13611.05, + "probability": 0.7297 + }, + { + "start": 13617.14, + "end": 13620.64, + "probability": 0.6118 + }, + { + "start": 13621.64, + "end": 13623.9, + "probability": 0.6538 + }, + { + "start": 13626.22, + "end": 13626.52, + "probability": 0.7529 + }, + { + "start": 13628.24, + "end": 13633.6, + "probability": 0.9873 + }, + { + "start": 13634.56, + "end": 13635.12, + "probability": 0.6121 + }, + { + "start": 13635.28, + "end": 13637.84, + "probability": 0.7725 + }, + { + "start": 13638.66, + "end": 13642.84, + "probability": 0.9777 + }, + { + "start": 13643.58, + "end": 13645.26, + "probability": 0.7965 + }, + { + "start": 13645.32, + "end": 13647.86, + "probability": 0.9947 + }, + { + "start": 13648.42, + "end": 13649.44, + "probability": 0.9679 + }, + { + "start": 13649.62, + "end": 13652.1, + "probability": 0.998 + }, + { + "start": 13652.96, + "end": 13655.92, + "probability": 0.9977 + }, + { + "start": 13656.48, + "end": 13659.86, + "probability": 0.979 + }, + { + "start": 13660.7, + "end": 13662.28, + "probability": 0.9883 + }, + { + "start": 13662.9, + "end": 13665.01, + "probability": 0.9303 + }, + { + "start": 13665.36, + "end": 13669.4, + "probability": 0.9943 + }, + { + "start": 13669.82, + "end": 13670.92, + "probability": 0.818 + }, + { + "start": 13671.88, + "end": 13672.02, + "probability": 0.0968 + }, + { + "start": 13672.2, + "end": 13674.14, + "probability": 0.9332 + }, + { + "start": 13674.68, + "end": 13678.64, + "probability": 0.9868 + }, + { + "start": 13679.4, + "end": 13679.52, + "probability": 0.7397 + }, + { + "start": 13679.64, + "end": 13681.12, + "probability": 0.978 + }, + { + "start": 13681.72, + "end": 13683.58, + "probability": 0.9839 + }, + { + "start": 13684.44, + "end": 13687.42, + "probability": 0.9629 + }, + { + "start": 13688.32, + "end": 13688.46, + "probability": 0.0432 + }, + { + "start": 13688.64, + "end": 13691.14, + "probability": 0.9951 + }, + { + "start": 13691.88, + "end": 13692.04, + "probability": 0.7358 + }, + { + "start": 13692.5, + "end": 13693.92, + "probability": 0.7623 + }, + { + "start": 13695.18, + "end": 13695.34, + "probability": 0.092 + }, + { + "start": 13695.54, + "end": 13696.8, + "probability": 0.8385 + }, + { + "start": 13697.5, + "end": 13699.96, + "probability": 0.9485 + }, + { + "start": 13700.6, + "end": 13702.32, + "probability": 0.9523 + }, + { + "start": 13702.38, + "end": 13705.14, + "probability": 0.8605 + }, + { + "start": 13705.78, + "end": 13708.38, + "probability": 0.9709 + }, + { + "start": 13708.6, + "end": 13710.14, + "probability": 0.9949 + }, + { + "start": 13710.8, + "end": 13711.58, + "probability": 0.9974 + }, + { + "start": 13711.94, + "end": 13712.56, + "probability": 0.9985 + }, + { + "start": 13713.0, + "end": 13714.86, + "probability": 0.9957 + }, + { + "start": 13715.6, + "end": 13717.8, + "probability": 0.9892 + }, + { + "start": 13718.04, + "end": 13719.14, + "probability": 0.996 + }, + { + "start": 13719.74, + "end": 13722.6, + "probability": 0.9991 + }, + { + "start": 13723.2, + "end": 13725.22, + "probability": 0.9353 + }, + { + "start": 13726.96, + "end": 13727.16, + "probability": 0.1031 + }, + { + "start": 13727.52, + "end": 13729.06, + "probability": 0.9954 + }, + { + "start": 13730.36, + "end": 13730.54, + "probability": 0.5264 + }, + { + "start": 13730.72, + "end": 13731.28, + "probability": 0.558 + }, + { + "start": 13731.4, + "end": 13732.24, + "probability": 0.8597 + }, + { + "start": 13732.64, + "end": 13734.92, + "probability": 0.9511 + }, + { + "start": 13734.92, + "end": 13737.38, + "probability": 0.9851 + }, + { + "start": 13738.22, + "end": 13738.34, + "probability": 0.0844 + }, + { + "start": 13738.46, + "end": 13740.68, + "probability": 0.9956 + }, + { + "start": 13741.48, + "end": 13741.62, + "probability": 0.4667 + }, + { + "start": 13741.7, + "end": 13744.54, + "probability": 0.9888 + }, + { + "start": 13744.72, + "end": 13746.4, + "probability": 0.8724 + }, + { + "start": 13746.92, + "end": 13749.58, + "probability": 0.9805 + }, + { + "start": 13749.68, + "end": 13751.72, + "probability": 0.9734 + }, + { + "start": 13752.32, + "end": 13755.1, + "probability": 0.9955 + }, + { + "start": 13755.1, + "end": 13758.98, + "probability": 0.9146 + }, + { + "start": 13759.54, + "end": 13760.72, + "probability": 0.8767 + }, + { + "start": 13760.86, + "end": 13763.66, + "probability": 0.9583 + }, + { + "start": 13764.44, + "end": 13767.04, + "probability": 0.8716 + }, + { + "start": 13767.18, + "end": 13770.92, + "probability": 0.9334 + }, + { + "start": 13771.08, + "end": 13771.4, + "probability": 0.2897 + }, + { + "start": 13772.34, + "end": 13772.44, + "probability": 0.1352 + }, + { + "start": 13772.44, + "end": 13772.44, + "probability": 0.3036 + }, + { + "start": 13772.44, + "end": 13775.04, + "probability": 0.652 + }, + { + "start": 13776.2, + "end": 13776.32, + "probability": 0.6268 + }, + { + "start": 13776.46, + "end": 13777.46, + "probability": 0.6358 + }, + { + "start": 13777.54, + "end": 13777.68, + "probability": 0.0808 + }, + { + "start": 13777.8, + "end": 13779.08, + "probability": 0.6465 + }, + { + "start": 13779.4, + "end": 13780.12, + "probability": 0.2933 + }, + { + "start": 13780.2, + "end": 13780.7, + "probability": 0.7967 + }, + { + "start": 13780.76, + "end": 13781.66, + "probability": 0.8523 + }, + { + "start": 13782.15, + "end": 13783.14, + "probability": 0.9482 + }, + { + "start": 13783.54, + "end": 13784.97, + "probability": 0.7255 + }, + { + "start": 13790.32, + "end": 13790.76, + "probability": 0.6094 + }, + { + "start": 13791.02, + "end": 13792.74, + "probability": 0.7136 + }, + { + "start": 13793.14, + "end": 13793.8, + "probability": 0.7121 + }, + { + "start": 13794.24, + "end": 13794.8, + "probability": 0.8215 + }, + { + "start": 13794.86, + "end": 13795.46, + "probability": 0.5807 + }, + { + "start": 13796.14, + "end": 13796.9, + "probability": 0.2409 + }, + { + "start": 13809.3, + "end": 13814.66, + "probability": 0.7023 + }, + { + "start": 13814.92, + "end": 13815.7, + "probability": 0.1366 + }, + { + "start": 13816.0, + "end": 13816.6, + "probability": 0.0885 + }, + { + "start": 13820.06, + "end": 13822.42, + "probability": 0.2685 + }, + { + "start": 13822.52, + "end": 13822.88, + "probability": 0.0424 + }, + { + "start": 13823.68, + "end": 13824.46, + "probability": 0.023 + }, + { + "start": 13825.56, + "end": 13831.38, + "probability": 0.1058 + }, + { + "start": 13834.79, + "end": 13836.46, + "probability": 0.0421 + }, + { + "start": 13839.41, + "end": 13840.68, + "probability": 0.0442 + }, + { + "start": 13841.2, + "end": 13842.42, + "probability": 0.0375 + }, + { + "start": 13844.52, + "end": 13847.56, + "probability": 0.0728 + }, + { + "start": 13847.56, + "end": 13848.26, + "probability": 0.0703 + }, + { + "start": 13851.99, + "end": 13852.4, + "probability": 0.1789 + }, + { + "start": 13852.48, + "end": 13852.6, + "probability": 0.0412 + }, + { + "start": 13852.6, + "end": 13853.5, + "probability": 0.0546 + }, + { + "start": 13853.5, + "end": 13854.56, + "probability": 0.2335 + }, + { + "start": 13860.4, + "end": 13862.82, + "probability": 0.2071 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13882.58, + "end": 13883.14, + "probability": 0.0701 + }, + { + "start": 13883.78, + "end": 13884.02, + "probability": 0.0119 + }, + { + "start": 13885.94, + "end": 13890.02, + "probability": 0.3278 + }, + { + "start": 13890.8, + "end": 13894.88, + "probability": 0.0228 + }, + { + "start": 13895.0, + "end": 13896.84, + "probability": 0.0463 + }, + { + "start": 13897.38, + "end": 13899.16, + "probability": 0.0966 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14001.0, + "end": 14001.0, + "probability": 0.0 + }, + { + "start": 14004.94, + "end": 14006.29, + "probability": 0.9987 + }, + { + "start": 14007.0, + "end": 14011.9, + "probability": 0.9927 + }, + { + "start": 14012.92, + "end": 14016.3, + "probability": 0.9813 + }, + { + "start": 14016.86, + "end": 14018.01, + "probability": 0.9593 + }, + { + "start": 14018.38, + "end": 14020.34, + "probability": 0.9118 + }, + { + "start": 14020.44, + "end": 14020.86, + "probability": 0.9486 + }, + { + "start": 14021.88, + "end": 14025.96, + "probability": 0.9788 + }, + { + "start": 14025.96, + "end": 14030.62, + "probability": 0.9567 + }, + { + "start": 14030.86, + "end": 14032.62, + "probability": 0.9582 + }, + { + "start": 14033.18, + "end": 14035.9, + "probability": 0.9927 + }, + { + "start": 14035.96, + "end": 14036.08, + "probability": 0.4114 + }, + { + "start": 14036.62, + "end": 14038.98, + "probability": 0.7749 + }, + { + "start": 14039.72, + "end": 14044.74, + "probability": 0.9673 + }, + { + "start": 14045.5, + "end": 14046.58, + "probability": 0.8298 + }, + { + "start": 14048.02, + "end": 14050.06, + "probability": 0.9773 + }, + { + "start": 14050.76, + "end": 14050.98, + "probability": 0.6324 + }, + { + "start": 14051.24, + "end": 14052.6, + "probability": 0.7054 + }, + { + "start": 14053.26, + "end": 14053.8, + "probability": 0.5612 + }, + { + "start": 14053.94, + "end": 14055.34, + "probability": 0.8047 + }, + { + "start": 14056.24, + "end": 14057.08, + "probability": 0.6543 + }, + { + "start": 14057.08, + "end": 14058.46, + "probability": 0.3579 + }, + { + "start": 14058.7, + "end": 14061.26, + "probability": 0.8361 + }, + { + "start": 14061.72, + "end": 14063.18, + "probability": 0.5478 + }, + { + "start": 14064.58, + "end": 14064.78, + "probability": 0.3401 + }, + { + "start": 14084.74, + "end": 14087.74, + "probability": 0.705 + }, + { + "start": 14087.9, + "end": 14090.44, + "probability": 0.9675 + }, + { + "start": 14090.44, + "end": 14093.02, + "probability": 0.8982 + }, + { + "start": 14093.18, + "end": 14094.88, + "probability": 0.1097 + }, + { + "start": 14095.8, + "end": 14098.18, + "probability": 0.0592 + }, + { + "start": 14098.18, + "end": 14102.29, + "probability": 0.8371 + }, + { + "start": 14102.84, + "end": 14104.94, + "probability": 0.9727 + }, + { + "start": 14104.94, + "end": 14108.56, + "probability": 0.6193 + }, + { + "start": 14108.82, + "end": 14111.04, + "probability": 0.4949 + }, + { + "start": 14111.28, + "end": 14111.64, + "probability": 0.5726 + }, + { + "start": 14111.98, + "end": 14112.84, + "probability": 0.5795 + }, + { + "start": 14113.26, + "end": 14113.92, + "probability": 0.7062 + }, + { + "start": 14115.38, + "end": 14115.74, + "probability": 0.6905 + }, + { + "start": 14115.86, + "end": 14116.64, + "probability": 0.7336 + }, + { + "start": 14117.08, + "end": 14117.82, + "probability": 0.8134 + }, + { + "start": 14118.0, + "end": 14120.82, + "probability": 0.9974 + }, + { + "start": 14120.82, + "end": 14124.18, + "probability": 0.9195 + }, + { + "start": 14124.76, + "end": 14125.86, + "probability": 0.9775 + }, + { + "start": 14126.22, + "end": 14126.98, + "probability": 0.8849 + }, + { + "start": 14127.22, + "end": 14129.7, + "probability": 0.9985 + }, + { + "start": 14130.32, + "end": 14132.58, + "probability": 0.8836 + }, + { + "start": 14133.14, + "end": 14135.6, + "probability": 0.9453 + }, + { + "start": 14135.7, + "end": 14140.46, + "probability": 0.9787 + }, + { + "start": 14141.12, + "end": 14143.76, + "probability": 0.9725 + }, + { + "start": 14144.24, + "end": 14146.94, + "probability": 0.9902 + }, + { + "start": 14146.94, + "end": 14149.92, + "probability": 0.9981 + }, + { + "start": 14150.4, + "end": 14154.66, + "probability": 0.7784 + }, + { + "start": 14154.66, + "end": 14158.38, + "probability": 0.7568 + }, + { + "start": 14159.14, + "end": 14163.22, + "probability": 0.9985 + }, + { + "start": 14163.22, + "end": 14166.04, + "probability": 0.9966 + }, + { + "start": 14166.98, + "end": 14169.02, + "probability": 0.7881 + }, + { + "start": 14169.66, + "end": 14171.44, + "probability": 0.89 + }, + { + "start": 14171.64, + "end": 14174.86, + "probability": 0.9616 + }, + { + "start": 14175.22, + "end": 14175.71, + "probability": 0.9529 + }, + { + "start": 14176.64, + "end": 14179.26, + "probability": 0.942 + }, + { + "start": 14179.44, + "end": 14180.66, + "probability": 0.7488 + }, + { + "start": 14180.72, + "end": 14181.4, + "probability": 0.6503 + }, + { + "start": 14181.68, + "end": 14183.74, + "probability": 0.6419 + }, + { + "start": 14184.38, + "end": 14185.82, + "probability": 0.9829 + }, + { + "start": 14186.14, + "end": 14187.38, + "probability": 0.6432 + }, + { + "start": 14187.62, + "end": 14188.56, + "probability": 0.8869 + }, + { + "start": 14189.14, + "end": 14191.76, + "probability": 0.8823 + }, + { + "start": 14191.96, + "end": 14195.0, + "probability": 0.9944 + }, + { + "start": 14195.0, + "end": 14197.3, + "probability": 0.8198 + }, + { + "start": 14197.6, + "end": 14198.24, + "probability": 0.5561 + }, + { + "start": 14198.5, + "end": 14199.1, + "probability": 0.4087 + }, + { + "start": 14201.2, + "end": 14201.48, + "probability": 0.4062 + }, + { + "start": 14202.14, + "end": 14203.26, + "probability": 0.8935 + }, + { + "start": 14203.76, + "end": 14205.16, + "probability": 0.6347 + }, + { + "start": 14205.54, + "end": 14205.8, + "probability": 0.5941 + }, + { + "start": 14205.8, + "end": 14206.12, + "probability": 0.7024 + }, + { + "start": 14206.22, + "end": 14208.66, + "probability": 0.8322 + }, + { + "start": 14208.86, + "end": 14211.2, + "probability": 0.7501 + }, + { + "start": 14212.08, + "end": 14217.12, + "probability": 0.9927 + }, + { + "start": 14218.36, + "end": 14220.32, + "probability": 0.9899 + }, + { + "start": 14220.48, + "end": 14223.06, + "probability": 0.945 + }, + { + "start": 14224.56, + "end": 14227.32, + "probability": 0.8827 + }, + { + "start": 14227.42, + "end": 14231.08, + "probability": 0.8533 + }, + { + "start": 14231.28, + "end": 14232.3, + "probability": 0.8428 + }, + { + "start": 14232.46, + "end": 14234.84, + "probability": 0.8777 + }, + { + "start": 14235.78, + "end": 14237.02, + "probability": 0.7816 + }, + { + "start": 14237.2, + "end": 14239.56, + "probability": 0.8892 + }, + { + "start": 14239.78, + "end": 14243.48, + "probability": 0.993 + }, + { + "start": 14243.62, + "end": 14248.9, + "probability": 0.8774 + }, + { + "start": 14249.02, + "end": 14253.34, + "probability": 0.9556 + }, + { + "start": 14254.14, + "end": 14254.82, + "probability": 0.6051 + }, + { + "start": 14255.26, + "end": 14256.48, + "probability": 0.6519 + }, + { + "start": 14257.2, + "end": 14258.2, + "probability": 0.5093 + }, + { + "start": 14258.3, + "end": 14260.12, + "probability": 0.8223 + }, + { + "start": 14260.12, + "end": 14261.41, + "probability": 0.8954 + }, + { + "start": 14263.8, + "end": 14264.98, + "probability": 0.6599 + }, + { + "start": 14266.62, + "end": 14267.68, + "probability": 0.8173 + }, + { + "start": 14267.84, + "end": 14273.53, + "probability": 0.9875 + }, + { + "start": 14274.69, + "end": 14278.49, + "probability": 0.854 + }, + { + "start": 14279.81, + "end": 14281.23, + "probability": 0.9921 + }, + { + "start": 14282.61, + "end": 14286.25, + "probability": 0.9638 + }, + { + "start": 14286.89, + "end": 14289.95, + "probability": 0.7654 + }, + { + "start": 14290.13, + "end": 14291.66, + "probability": 0.5378 + }, + { + "start": 14292.13, + "end": 14294.2, + "probability": 0.8555 + }, + { + "start": 14294.67, + "end": 14295.73, + "probability": 0.6798 + }, + { + "start": 14295.79, + "end": 14297.69, + "probability": 0.8055 + }, + { + "start": 14297.93, + "end": 14298.85, + "probability": 0.6135 + }, + { + "start": 14299.03, + "end": 14299.79, + "probability": 0.6886 + }, + { + "start": 14300.03, + "end": 14300.46, + "probability": 0.2307 + }, + { + "start": 14301.25, + "end": 14303.23, + "probability": 0.6007 + }, + { + "start": 14303.89, + "end": 14308.67, + "probability": 0.2822 + }, + { + "start": 14323.63, + "end": 14328.05, + "probability": 0.4611 + }, + { + "start": 14328.05, + "end": 14330.91, + "probability": 0.6322 + }, + { + "start": 14331.45, + "end": 14332.25, + "probability": 0.0699 + }, + { + "start": 14333.17, + "end": 14338.01, + "probability": 0.3938 + }, + { + "start": 14339.49, + "end": 14339.91, + "probability": 0.0283 + }, + { + "start": 14340.65, + "end": 14343.57, + "probability": 0.1678 + }, + { + "start": 14344.53, + "end": 14345.47, + "probability": 0.7091 + }, + { + "start": 14346.21, + "end": 14347.45, + "probability": 0.0031 + }, + { + "start": 14347.73, + "end": 14349.89, + "probability": 0.0405 + }, + { + "start": 14366.47, + "end": 14367.19, + "probability": 0.3514 + }, + { + "start": 14367.91, + "end": 14368.47, + "probability": 0.0257 + }, + { + "start": 14368.47, + "end": 14375.77, + "probability": 0.252 + }, + { + "start": 14376.05, + "end": 14377.21, + "probability": 0.0725 + }, + { + "start": 14377.27, + "end": 14378.91, + "probability": 0.5268 + }, + { + "start": 14379.43, + "end": 14380.41, + "probability": 0.3605 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14396.0, + "end": 14396.0, + "probability": 0.0 + }, + { + "start": 14397.64, + "end": 14404.62, + "probability": 0.0332 + }, + { + "start": 14404.62, + "end": 14407.9, + "probability": 0.2061 + }, + { + "start": 14408.2, + "end": 14412.86, + "probability": 0.0159 + }, + { + "start": 14412.94, + "end": 14413.12, + "probability": 0.0323 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14532.0, + "end": 14532.0, + "probability": 0.0 + }, + { + "start": 14537.18, + "end": 14538.86, + "probability": 0.5977 + }, + { + "start": 14538.94, + "end": 14540.92, + "probability": 0.8514 + }, + { + "start": 14540.98, + "end": 14542.42, + "probability": 0.7828 + }, + { + "start": 14542.84, + "end": 14542.88, + "probability": 0.0302 + }, + { + "start": 14542.9, + "end": 14544.04, + "probability": 0.4602 + }, + { + "start": 14544.12, + "end": 14546.5, + "probability": 0.7198 + }, + { + "start": 14546.7, + "end": 14547.62, + "probability": 0.5338 + }, + { + "start": 14547.68, + "end": 14549.9, + "probability": 0.7368 + }, + { + "start": 14550.62, + "end": 14550.94, + "probability": 0.6484 + }, + { + "start": 14551.02, + "end": 14553.54, + "probability": 0.711 + }, + { + "start": 14553.62, + "end": 14554.52, + "probability": 0.7786 + }, + { + "start": 14554.94, + "end": 14556.88, + "probability": 0.712 + }, + { + "start": 14557.36, + "end": 14558.62, + "probability": 0.7046 + }, + { + "start": 14558.64, + "end": 14559.52, + "probability": 0.5314 + }, + { + "start": 14559.58, + "end": 14561.16, + "probability": 0.5814 + }, + { + "start": 14561.42, + "end": 14562.2, + "probability": 0.721 + }, + { + "start": 14562.46, + "end": 14565.26, + "probability": 0.701 + }, + { + "start": 14565.7, + "end": 14567.14, + "probability": 0.2615 + }, + { + "start": 14567.5, + "end": 14568.72, + "probability": 0.5352 + }, + { + "start": 14568.8, + "end": 14569.12, + "probability": 0.5367 + }, + { + "start": 14569.62, + "end": 14570.42, + "probability": 0.6988 + }, + { + "start": 14570.98, + "end": 14571.72, + "probability": 0.6917 + }, + { + "start": 14571.82, + "end": 14572.5, + "probability": 0.5329 + }, + { + "start": 14572.86, + "end": 14573.7, + "probability": 0.8346 + }, + { + "start": 14573.74, + "end": 14574.29, + "probability": 0.5728 + }, + { + "start": 14574.56, + "end": 14574.76, + "probability": 0.788 + }, + { + "start": 14575.06, + "end": 14575.92, + "probability": 0.2724 + }, + { + "start": 14576.82, + "end": 14578.12, + "probability": 0.4972 + }, + { + "start": 14578.74, + "end": 14588.24, + "probability": 0.2608 + } + ], + "segments_count": 5733, + "words_count": 27046, + "avg_words_per_segment": 4.7176, + "avg_segment_duration": 1.6751, + "avg_words_per_minute": 111.1543, + "plenum_id": "10472", + "duration": 14599.17, + "title": null, + "plenum_date": "2010-12-01" +} \ No newline at end of file