diff --git "a/36674/metadata.json" "b/36674/metadata.json" new file mode 100644--- /dev/null +++ "b/36674/metadata.json" @@ -0,0 +1,13517 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "36674", + "quality_score": 0.7148, + "per_segment_quality_scores": [ + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 161.0, + "end": 161.0, + "probability": 0.0 + }, + { + "start": 177.2, + "end": 179.04, + "probability": 0.0332 + }, + { + "start": 189.22, + "end": 191.02, + "probability": 0.0551 + }, + { + "start": 193.43, + "end": 194.58, + "probability": 0.0385 + }, + { + "start": 195.39, + "end": 197.52, + "probability": 0.2214 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.0, + "end": 450.0, + "probability": 0.0 + }, + { + "start": 450.12, + "end": 450.6, + "probability": 0.0306 + }, + { + "start": 451.8, + "end": 452.74, + "probability": 0.1278 + }, + { + "start": 454.16, + "end": 454.73, + "probability": 0.0025 + }, + { + "start": 455.0, + "end": 455.48, + "probability": 0.0648 + }, + { + "start": 455.66, + "end": 458.02, + "probability": 0.1304 + }, + { + "start": 459.41, + "end": 460.26, + "probability": 0.0481 + }, + { + "start": 464.28, + "end": 465.82, + "probability": 0.1012 + }, + { + "start": 467.56, + "end": 470.44, + "probability": 0.0348 + }, + { + "start": 471.62, + "end": 472.24, + "probability": 0.0301 + }, + { + "start": 472.8, + "end": 474.36, + "probability": 0.0222 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 577.0, + "end": 577.0, + "probability": 0.0 + }, + { + "start": 578.14, + "end": 581.64, + "probability": 0.1216 + }, + { + "start": 581.78, + "end": 584.8, + "probability": 0.0307 + }, + { + "start": 587.68, + "end": 588.56, + "probability": 0.1888 + }, + { + "start": 588.56, + "end": 590.06, + "probability": 0.1326 + }, + { + "start": 590.06, + "end": 591.08, + "probability": 0.4234 + }, + { + "start": 591.56, + "end": 591.76, + "probability": 0.4304 + }, + { + "start": 593.08, + "end": 594.3, + "probability": 0.0882 + }, + { + "start": 594.38, + "end": 595.64, + "probability": 0.0362 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 703.0, + "end": 703.0, + "probability": 0.0 + }, + { + "start": 715.4, + "end": 716.8, + "probability": 0.1497 + }, + { + "start": 716.8, + "end": 718.16, + "probability": 0.0596 + }, + { + "start": 725.28, + "end": 726.22, + "probability": 0.1576 + }, + { + "start": 726.78, + "end": 727.64, + "probability": 0.1159 + }, + { + "start": 728.48, + "end": 728.97, + "probability": 0.1401 + }, + { + "start": 730.26, + "end": 731.96, + "probability": 0.2748 + }, + { + "start": 736.6, + "end": 737.5, + "probability": 0.1001 + }, + { + "start": 762.8, + "end": 764.04, + "probability": 0.6858 + }, + { + "start": 764.78, + "end": 766.74, + "probability": 0.0621 + }, + { + "start": 767.36, + "end": 769.34, + "probability": 0.2593 + }, + { + "start": 770.36, + "end": 771.34, + "probability": 0.02 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.0, + "end": 836.0, + "probability": 0.0 + }, + { + "start": 836.16, + "end": 837.9, + "probability": 0.7133 + }, + { + "start": 839.1, + "end": 839.8, + "probability": 0.962 + }, + { + "start": 840.8, + "end": 841.44, + "probability": 0.7983 + }, + { + "start": 842.28, + "end": 843.6, + "probability": 0.8898 + }, + { + "start": 845.3, + "end": 847.26, + "probability": 0.8209 + }, + { + "start": 849.14, + "end": 850.52, + "probability": 0.9815 + }, + { + "start": 851.1, + "end": 851.38, + "probability": 0.4662 + }, + { + "start": 853.04, + "end": 856.2, + "probability": 0.9736 + }, + { + "start": 857.34, + "end": 861.62, + "probability": 0.6574 + }, + { + "start": 862.56, + "end": 864.54, + "probability": 0.9533 + }, + { + "start": 864.98, + "end": 867.84, + "probability": 0.9702 + }, + { + "start": 868.84, + "end": 873.6, + "probability": 0.9739 + }, + { + "start": 874.52, + "end": 876.6, + "probability": 0.7191 + }, + { + "start": 877.58, + "end": 877.88, + "probability": 0.8948 + }, + { + "start": 878.58, + "end": 879.64, + "probability": 0.5547 + }, + { + "start": 880.02, + "end": 880.98, + "probability": 0.8252 + }, + { + "start": 881.32, + "end": 882.72, + "probability": 0.9815 + }, + { + "start": 882.72, + "end": 886.98, + "probability": 0.991 + }, + { + "start": 887.06, + "end": 888.72, + "probability": 0.9648 + }, + { + "start": 888.78, + "end": 889.24, + "probability": 0.9429 + }, + { + "start": 890.18, + "end": 893.64, + "probability": 0.8601 + }, + { + "start": 894.98, + "end": 897.54, + "probability": 0.857 + }, + { + "start": 898.4, + "end": 899.38, + "probability": 0.7108 + }, + { + "start": 900.04, + "end": 902.7, + "probability": 0.9229 + }, + { + "start": 903.12, + "end": 906.76, + "probability": 0.9217 + }, + { + "start": 908.76, + "end": 911.58, + "probability": 0.9125 + }, + { + "start": 913.57, + "end": 916.84, + "probability": 0.9772 + }, + { + "start": 917.94, + "end": 919.48, + "probability": 0.9849 + }, + { + "start": 920.28, + "end": 922.06, + "probability": 0.5748 + }, + { + "start": 923.06, + "end": 925.06, + "probability": 0.8586 + }, + { + "start": 926.4, + "end": 929.4, + "probability": 0.9756 + }, + { + "start": 930.4, + "end": 931.12, + "probability": 0.8555 + }, + { + "start": 931.84, + "end": 934.9, + "probability": 0.9457 + }, + { + "start": 935.66, + "end": 937.28, + "probability": 0.9951 + }, + { + "start": 937.72, + "end": 938.86, + "probability": 0.9937 + }, + { + "start": 939.2, + "end": 941.33, + "probability": 0.9639 + }, + { + "start": 942.08, + "end": 945.59, + "probability": 0.9235 + }, + { + "start": 947.0, + "end": 949.4, + "probability": 0.8714 + }, + { + "start": 949.88, + "end": 950.65, + "probability": 0.8693 + }, + { + "start": 952.18, + "end": 953.56, + "probability": 0.7418 + }, + { + "start": 954.34, + "end": 955.96, + "probability": 0.8377 + }, + { + "start": 956.46, + "end": 959.46, + "probability": 0.9853 + }, + { + "start": 960.24, + "end": 961.36, + "probability": 0.9301 + }, + { + "start": 962.36, + "end": 963.76, + "probability": 0.9609 + }, + { + "start": 965.16, + "end": 967.2, + "probability": 0.9872 + }, + { + "start": 967.28, + "end": 968.6, + "probability": 0.6443 + }, + { + "start": 968.94, + "end": 971.12, + "probability": 0.7535 + }, + { + "start": 972.42, + "end": 976.12, + "probability": 0.9526 + }, + { + "start": 977.1, + "end": 979.54, + "probability": 0.9954 + }, + { + "start": 980.56, + "end": 981.54, + "probability": 0.9946 + }, + { + "start": 982.88, + "end": 984.68, + "probability": 0.8672 + }, + { + "start": 985.14, + "end": 987.28, + "probability": 0.9622 + }, + { + "start": 988.18, + "end": 991.64, + "probability": 0.8681 + }, + { + "start": 992.38, + "end": 994.28, + "probability": 0.9415 + }, + { + "start": 994.98, + "end": 995.72, + "probability": 0.2863 + }, + { + "start": 995.86, + "end": 996.52, + "probability": 0.8604 + }, + { + "start": 997.3, + "end": 999.38, + "probability": 0.8866 + }, + { + "start": 999.54, + "end": 1000.28, + "probability": 0.9106 + }, + { + "start": 1001.24, + "end": 1001.44, + "probability": 0.4146 + }, + { + "start": 1002.06, + "end": 1002.2, + "probability": 0.0091 + }, + { + "start": 1002.2, + "end": 1004.46, + "probability": 0.9046 + }, + { + "start": 1005.06, + "end": 1006.16, + "probability": 0.9865 + }, + { + "start": 1007.64, + "end": 1008.36, + "probability": 0.9763 + }, + { + "start": 1009.94, + "end": 1009.94, + "probability": 0.0787 + }, + { + "start": 1009.94, + "end": 1009.94, + "probability": 0.0493 + }, + { + "start": 1009.94, + "end": 1013.28, + "probability": 0.928 + }, + { + "start": 1013.8, + "end": 1014.56, + "probability": 0.8633 + }, + { + "start": 1015.38, + "end": 1018.74, + "probability": 0.8618 + }, + { + "start": 1019.42, + "end": 1021.92, + "probability": 0.9371 + }, + { + "start": 1024.04, + "end": 1024.28, + "probability": 0.1198 + }, + { + "start": 1024.28, + "end": 1024.86, + "probability": 0.672 + }, + { + "start": 1025.38, + "end": 1026.28, + "probability": 0.0801 + }, + { + "start": 1026.54, + "end": 1029.14, + "probability": 0.288 + }, + { + "start": 1029.32, + "end": 1029.8, + "probability": 0.3365 + }, + { + "start": 1030.48, + "end": 1032.72, + "probability": 0.8799 + }, + { + "start": 1034.84, + "end": 1035.66, + "probability": 0.897 + }, + { + "start": 1037.0, + "end": 1038.32, + "probability": 0.7542 + }, + { + "start": 1039.4, + "end": 1041.41, + "probability": 0.8672 + }, + { + "start": 1043.16, + "end": 1045.12, + "probability": 0.9812 + }, + { + "start": 1046.22, + "end": 1047.68, + "probability": 0.9956 + }, + { + "start": 1047.76, + "end": 1047.96, + "probability": 0.9759 + }, + { + "start": 1048.6, + "end": 1049.4, + "probability": 0.9818 + }, + { + "start": 1050.82, + "end": 1051.1, + "probability": 0.3544 + }, + { + "start": 1051.62, + "end": 1052.46, + "probability": 0.767 + }, + { + "start": 1053.06, + "end": 1053.56, + "probability": 0.9902 + }, + { + "start": 1054.74, + "end": 1054.74, + "probability": 0.0333 + }, + { + "start": 1054.74, + "end": 1056.01, + "probability": 0.854 + }, + { + "start": 1056.92, + "end": 1057.58, + "probability": 0.4584 + }, + { + "start": 1059.04, + "end": 1060.02, + "probability": 0.6892 + }, + { + "start": 1060.14, + "end": 1062.4, + "probability": 0.9901 + }, + { + "start": 1063.62, + "end": 1066.02, + "probability": 0.9941 + }, + { + "start": 1067.26, + "end": 1067.92, + "probability": 0.7582 + }, + { + "start": 1068.9, + "end": 1070.74, + "probability": 0.9146 + }, + { + "start": 1071.3, + "end": 1072.8, + "probability": 0.9454 + }, + { + "start": 1072.84, + "end": 1073.88, + "probability": 0.633 + }, + { + "start": 1075.7, + "end": 1076.64, + "probability": 0.8721 + }, + { + "start": 1077.72, + "end": 1078.66, + "probability": 0.9834 + }, + { + "start": 1079.92, + "end": 1080.36, + "probability": 0.7939 + }, + { + "start": 1081.12, + "end": 1082.86, + "probability": 0.8329 + }, + { + "start": 1083.64, + "end": 1084.06, + "probability": 0.9426 + }, + { + "start": 1085.78, + "end": 1086.38, + "probability": 0.8821 + }, + { + "start": 1088.2, + "end": 1088.76, + "probability": 0.937 + }, + { + "start": 1090.1, + "end": 1090.66, + "probability": 0.957 + }, + { + "start": 1090.82, + "end": 1091.74, + "probability": 0.9649 + }, + { + "start": 1092.02, + "end": 1093.08, + "probability": 0.768 + }, + { + "start": 1093.92, + "end": 1096.08, + "probability": 0.8462 + }, + { + "start": 1097.56, + "end": 1098.98, + "probability": 0.9972 + }, + { + "start": 1099.98, + "end": 1101.75, + "probability": 0.8843 + }, + { + "start": 1102.34, + "end": 1104.28, + "probability": 0.9777 + }, + { + "start": 1104.28, + "end": 1106.26, + "probability": 0.9585 + }, + { + "start": 1106.7, + "end": 1107.72, + "probability": 0.8472 + }, + { + "start": 1108.24, + "end": 1112.12, + "probability": 0.7876 + }, + { + "start": 1113.26, + "end": 1115.52, + "probability": 0.9941 + }, + { + "start": 1116.04, + "end": 1117.0, + "probability": 0.8267 + }, + { + "start": 1117.2, + "end": 1120.76, + "probability": 0.948 + }, + { + "start": 1121.42, + "end": 1122.1, + "probability": 0.9158 + }, + { + "start": 1122.64, + "end": 1123.44, + "probability": 0.6155 + }, + { + "start": 1123.86, + "end": 1124.18, + "probability": 0.7915 + }, + { + "start": 1125.9, + "end": 1126.82, + "probability": 0.9504 + }, + { + "start": 1127.84, + "end": 1129.38, + "probability": 0.8385 + }, + { + "start": 1129.98, + "end": 1132.42, + "probability": 0.922 + }, + { + "start": 1132.88, + "end": 1133.67, + "probability": 0.8993 + }, + { + "start": 1133.82, + "end": 1136.87, + "probability": 0.983 + }, + { + "start": 1137.37, + "end": 1138.57, + "probability": 0.8269 + }, + { + "start": 1139.75, + "end": 1141.97, + "probability": 0.9722 + }, + { + "start": 1142.75, + "end": 1145.15, + "probability": 0.9933 + }, + { + "start": 1145.29, + "end": 1147.45, + "probability": 0.9705 + }, + { + "start": 1147.83, + "end": 1148.11, + "probability": 0.8391 + }, + { + "start": 1148.15, + "end": 1149.39, + "probability": 0.8997 + }, + { + "start": 1149.83, + "end": 1150.51, + "probability": 0.9644 + }, + { + "start": 1151.55, + "end": 1152.55, + "probability": 0.8755 + }, + { + "start": 1153.07, + "end": 1154.59, + "probability": 0.9844 + }, + { + "start": 1155.27, + "end": 1156.45, + "probability": 0.8732 + }, + { + "start": 1156.59, + "end": 1157.77, + "probability": 0.9946 + }, + { + "start": 1157.97, + "end": 1158.53, + "probability": 0.8298 + }, + { + "start": 1159.11, + "end": 1160.47, + "probability": 0.92 + }, + { + "start": 1161.23, + "end": 1163.39, + "probability": 0.9526 + }, + { + "start": 1164.23, + "end": 1165.93, + "probability": 0.8949 + }, + { + "start": 1166.81, + "end": 1168.43, + "probability": 0.8035 + }, + { + "start": 1169.83, + "end": 1170.75, + "probability": 0.9669 + }, + { + "start": 1171.49, + "end": 1172.73, + "probability": 0.9072 + }, + { + "start": 1173.21, + "end": 1174.03, + "probability": 0.6692 + }, + { + "start": 1174.55, + "end": 1179.01, + "probability": 0.9695 + }, + { + "start": 1179.45, + "end": 1182.77, + "probability": 0.9968 + }, + { + "start": 1183.57, + "end": 1184.95, + "probability": 0.998 + }, + { + "start": 1185.15, + "end": 1188.41, + "probability": 0.9951 + }, + { + "start": 1189.71, + "end": 1191.65, + "probability": 0.9761 + }, + { + "start": 1192.87, + "end": 1195.09, + "probability": 0.9358 + }, + { + "start": 1195.17, + "end": 1195.47, + "probability": 0.7594 + }, + { + "start": 1195.81, + "end": 1196.45, + "probability": 0.7195 + }, + { + "start": 1197.85, + "end": 1199.05, + "probability": 0.7049 + }, + { + "start": 1199.67, + "end": 1200.77, + "probability": 0.9829 + }, + { + "start": 1201.49, + "end": 1205.89, + "probability": 0.9832 + }, + { + "start": 1206.21, + "end": 1207.51, + "probability": 0.863 + }, + { + "start": 1209.37, + "end": 1210.65, + "probability": 0.4865 + }, + { + "start": 1211.39, + "end": 1212.17, + "probability": 0.9243 + }, + { + "start": 1212.89, + "end": 1213.53, + "probability": 0.9347 + }, + { + "start": 1213.63, + "end": 1216.35, + "probability": 0.9342 + }, + { + "start": 1217.19, + "end": 1219.41, + "probability": 0.8395 + }, + { + "start": 1220.07, + "end": 1221.19, + "probability": 0.9581 + }, + { + "start": 1221.96, + "end": 1223.37, + "probability": 0.871 + }, + { + "start": 1223.99, + "end": 1227.77, + "probability": 0.9883 + }, + { + "start": 1227.99, + "end": 1228.21, + "probability": 0.9268 + }, + { + "start": 1228.77, + "end": 1230.3, + "probability": 0.8883 + }, + { + "start": 1231.77, + "end": 1233.35, + "probability": 0.5986 + }, + { + "start": 1233.39, + "end": 1233.81, + "probability": 0.6773 + }, + { + "start": 1234.43, + "end": 1235.13, + "probability": 0.7915 + }, + { + "start": 1235.19, + "end": 1236.36, + "probability": 0.6381 + }, + { + "start": 1236.91, + "end": 1238.83, + "probability": 0.409 + }, + { + "start": 1239.47, + "end": 1240.87, + "probability": 0.9276 + }, + { + "start": 1240.93, + "end": 1241.21, + "probability": 0.6118 + }, + { + "start": 1241.37, + "end": 1242.87, + "probability": 0.8228 + }, + { + "start": 1244.33, + "end": 1246.23, + "probability": 0.8482 + }, + { + "start": 1247.99, + "end": 1248.45, + "probability": 0.9445 + }, + { + "start": 1249.01, + "end": 1249.91, + "probability": 0.8083 + }, + { + "start": 1250.53, + "end": 1251.99, + "probability": 0.9447 + }, + { + "start": 1252.07, + "end": 1253.27, + "probability": 0.8674 + }, + { + "start": 1253.29, + "end": 1254.75, + "probability": 0.8805 + }, + { + "start": 1255.39, + "end": 1256.29, + "probability": 0.9324 + }, + { + "start": 1256.83, + "end": 1257.53, + "probability": 0.7664 + }, + { + "start": 1257.67, + "end": 1259.47, + "probability": 0.9214 + }, + { + "start": 1259.83, + "end": 1262.29, + "probability": 0.9959 + }, + { + "start": 1263.69, + "end": 1263.75, + "probability": 0.0091 + }, + { + "start": 1281.88, + "end": 1285.52, + "probability": 0.1017 + }, + { + "start": 1295.62, + "end": 1303.8, + "probability": 0.0693 + }, + { + "start": 1305.62, + "end": 1310.76, + "probability": 0.1114 + }, + { + "start": 1311.24, + "end": 1311.24, + "probability": 0.5083 + }, + { + "start": 1312.13, + "end": 1313.48, + "probability": 0.2422 + }, + { + "start": 1313.48, + "end": 1314.86, + "probability": 0.0225 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.0, + "end": 1405.0, + "probability": 0.0 + }, + { + "start": 1405.54, + "end": 1405.9, + "probability": 0.0261 + }, + { + "start": 1407.58, + "end": 1409.46, + "probability": 0.9431 + }, + { + "start": 1410.62, + "end": 1413.22, + "probability": 0.6973 + }, + { + "start": 1414.74, + "end": 1418.14, + "probability": 0.3062 + }, + { + "start": 1418.7, + "end": 1420.6, + "probability": 0.7212 + }, + { + "start": 1420.72, + "end": 1423.2, + "probability": 0.9913 + }, + { + "start": 1424.76, + "end": 1426.04, + "probability": 0.8916 + }, + { + "start": 1426.28, + "end": 1429.18, + "probability": 0.8717 + }, + { + "start": 1432.74, + "end": 1434.22, + "probability": 0.4999 + }, + { + "start": 1436.44, + "end": 1437.36, + "probability": 0.7713 + }, + { + "start": 1437.96, + "end": 1439.26, + "probability": 0.7373 + }, + { + "start": 1439.36, + "end": 1440.9, + "probability": 0.5948 + }, + { + "start": 1441.14, + "end": 1441.49, + "probability": 0.8938 + }, + { + "start": 1442.14, + "end": 1442.14, + "probability": 0.446 + }, + { + "start": 1442.68, + "end": 1443.51, + "probability": 0.9971 + }, + { + "start": 1444.22, + "end": 1448.34, + "probability": 0.9624 + }, + { + "start": 1448.92, + "end": 1449.54, + "probability": 0.8027 + }, + { + "start": 1450.1, + "end": 1451.6, + "probability": 0.8582 + }, + { + "start": 1452.2, + "end": 1453.16, + "probability": 0.8391 + }, + { + "start": 1453.4, + "end": 1454.41, + "probability": 0.4987 + }, + { + "start": 1455.26, + "end": 1456.76, + "probability": 0.6953 + }, + { + "start": 1458.72, + "end": 1461.92, + "probability": 0.667 + }, + { + "start": 1462.6, + "end": 1463.62, + "probability": 0.7223 + }, + { + "start": 1465.98, + "end": 1467.7, + "probability": 0.6782 + }, + { + "start": 1468.84, + "end": 1469.16, + "probability": 0.9785 + }, + { + "start": 1471.66, + "end": 1473.22, + "probability": 0.6663 + }, + { + "start": 1473.3, + "end": 1473.7, + "probability": 0.6011 + }, + { + "start": 1473.8, + "end": 1474.48, + "probability": 0.626 + }, + { + "start": 1474.7, + "end": 1476.14, + "probability": 0.9872 + }, + { + "start": 1477.4, + "end": 1480.36, + "probability": 0.8772 + }, + { + "start": 1481.16, + "end": 1482.1, + "probability": 0.7753 + }, + { + "start": 1484.28, + "end": 1485.56, + "probability": 0.8656 + }, + { + "start": 1487.1, + "end": 1489.08, + "probability": 0.9625 + }, + { + "start": 1492.04, + "end": 1492.78, + "probability": 0.8452 + }, + { + "start": 1494.0, + "end": 1496.22, + "probability": 0.938 + }, + { + "start": 1496.54, + "end": 1499.42, + "probability": 0.7215 + }, + { + "start": 1500.9, + "end": 1501.1, + "probability": 0.797 + }, + { + "start": 1502.54, + "end": 1504.98, + "probability": 0.6937 + }, + { + "start": 1505.6, + "end": 1506.92, + "probability": 0.3357 + }, + { + "start": 1507.8, + "end": 1508.74, + "probability": 0.9761 + }, + { + "start": 1509.38, + "end": 1510.12, + "probability": 0.9583 + }, + { + "start": 1511.26, + "end": 1512.22, + "probability": 0.9091 + }, + { + "start": 1513.36, + "end": 1514.28, + "probability": 0.8319 + }, + { + "start": 1515.48, + "end": 1515.64, + "probability": 0.4471 + }, + { + "start": 1515.84, + "end": 1516.92, + "probability": 0.5727 + }, + { + "start": 1517.04, + "end": 1519.26, + "probability": 0.7159 + }, + { + "start": 1519.32, + "end": 1519.7, + "probability": 0.752 + }, + { + "start": 1520.72, + "end": 1521.3, + "probability": 0.3898 + }, + { + "start": 1521.4, + "end": 1521.94, + "probability": 0.8077 + }, + { + "start": 1522.1, + "end": 1522.84, + "probability": 0.8069 + }, + { + "start": 1522.94, + "end": 1523.9, + "probability": 0.9741 + }, + { + "start": 1524.38, + "end": 1525.96, + "probability": 0.9218 + }, + { + "start": 1529.64, + "end": 1530.84, + "probability": 0.1446 + }, + { + "start": 1530.84, + "end": 1531.61, + "probability": 0.5352 + }, + { + "start": 1531.95, + "end": 1533.93, + "probability": 0.6487 + }, + { + "start": 1534.3, + "end": 1537.3, + "probability": 0.8365 + }, + { + "start": 1537.44, + "end": 1538.86, + "probability": 0.9313 + }, + { + "start": 1539.52, + "end": 1539.84, + "probability": 0.6713 + }, + { + "start": 1539.96, + "end": 1540.88, + "probability": 0.8619 + }, + { + "start": 1540.92, + "end": 1542.68, + "probability": 0.7932 + }, + { + "start": 1542.82, + "end": 1544.2, + "probability": 0.5182 + }, + { + "start": 1546.06, + "end": 1546.76, + "probability": 0.6863 + }, + { + "start": 1547.86, + "end": 1550.08, + "probability": 0.9658 + }, + { + "start": 1550.22, + "end": 1550.72, + "probability": 0.7199 + }, + { + "start": 1550.76, + "end": 1551.06, + "probability": 0.9052 + }, + { + "start": 1556.88, + "end": 1557.2, + "probability": 0.4826 + }, + { + "start": 1558.17, + "end": 1563.24, + "probability": 0.9699 + }, + { + "start": 1563.64, + "end": 1565.3, + "probability": 0.884 + }, + { + "start": 1566.26, + "end": 1566.72, + "probability": 0.5098 + }, + { + "start": 1568.08, + "end": 1572.22, + "probability": 0.8875 + }, + { + "start": 1573.06, + "end": 1574.08, + "probability": 0.6687 + }, + { + "start": 1574.8, + "end": 1577.88, + "probability": 0.959 + }, + { + "start": 1578.6, + "end": 1579.28, + "probability": 0.9337 + }, + { + "start": 1580.34, + "end": 1581.4, + "probability": 0.946 + }, + { + "start": 1582.36, + "end": 1583.66, + "probability": 0.6024 + }, + { + "start": 1585.18, + "end": 1592.9, + "probability": 0.6653 + }, + { + "start": 1593.54, + "end": 1593.74, + "probability": 0.8867 + }, + { + "start": 1594.58, + "end": 1597.15, + "probability": 0.856 + }, + { + "start": 1598.68, + "end": 1602.22, + "probability": 0.6724 + }, + { + "start": 1603.54, + "end": 1605.34, + "probability": 0.5713 + }, + { + "start": 1605.66, + "end": 1606.32, + "probability": 0.3766 + }, + { + "start": 1607.3, + "end": 1607.86, + "probability": 0.4821 + }, + { + "start": 1609.84, + "end": 1610.89, + "probability": 0.8584 + }, + { + "start": 1611.16, + "end": 1612.53, + "probability": 0.7944 + }, + { + "start": 1613.1, + "end": 1614.36, + "probability": 0.7673 + }, + { + "start": 1615.34, + "end": 1617.4, + "probability": 0.6136 + }, + { + "start": 1617.7, + "end": 1618.15, + "probability": 0.6293 + }, + { + "start": 1618.86, + "end": 1620.26, + "probability": 0.9951 + }, + { + "start": 1621.0, + "end": 1622.06, + "probability": 0.9464 + }, + { + "start": 1623.32, + "end": 1623.74, + "probability": 0.9368 + }, + { + "start": 1625.24, + "end": 1625.34, + "probability": 0.0015 + }, + { + "start": 1626.14, + "end": 1626.6, + "probability": 0.3138 + }, + { + "start": 1627.4, + "end": 1629.94, + "probability": 0.2669 + }, + { + "start": 1630.78, + "end": 1630.96, + "probability": 0.0417 + }, + { + "start": 1630.96, + "end": 1630.96, + "probability": 0.3072 + }, + { + "start": 1630.96, + "end": 1630.96, + "probability": 0.2326 + }, + { + "start": 1630.96, + "end": 1631.62, + "probability": 0.2925 + }, + { + "start": 1631.9, + "end": 1632.04, + "probability": 0.535 + }, + { + "start": 1632.16, + "end": 1632.59, + "probability": 0.3321 + }, + { + "start": 1633.14, + "end": 1636.06, + "probability": 0.9299 + }, + { + "start": 1636.82, + "end": 1638.31, + "probability": 0.8308 + }, + { + "start": 1638.74, + "end": 1639.48, + "probability": 0.9092 + }, + { + "start": 1639.58, + "end": 1640.06, + "probability": 0.1451 + }, + { + "start": 1641.22, + "end": 1641.72, + "probability": 0.4354 + }, + { + "start": 1642.98, + "end": 1647.3, + "probability": 0.8743 + }, + { + "start": 1647.86, + "end": 1649.38, + "probability": 0.9142 + }, + { + "start": 1649.98, + "end": 1653.45, + "probability": 0.7891 + }, + { + "start": 1655.58, + "end": 1655.58, + "probability": 0.7422 + }, + { + "start": 1656.3, + "end": 1657.72, + "probability": 0.8684 + }, + { + "start": 1658.18, + "end": 1658.42, + "probability": 0.3086 + }, + { + "start": 1659.12, + "end": 1661.22, + "probability": 0.9873 + }, + { + "start": 1662.68, + "end": 1663.35, + "probability": 0.3752 + }, + { + "start": 1664.3, + "end": 1667.46, + "probability": 0.9172 + }, + { + "start": 1667.82, + "end": 1673.36, + "probability": 0.6599 + }, + { + "start": 1673.84, + "end": 1675.58, + "probability": 0.9414 + }, + { + "start": 1676.28, + "end": 1676.78, + "probability": 0.5956 + }, + { + "start": 1677.22, + "end": 1680.04, + "probability": 0.6996 + }, + { + "start": 1680.16, + "end": 1680.3, + "probability": 0.7892 + }, + { + "start": 1680.64, + "end": 1682.2, + "probability": 0.9682 + }, + { + "start": 1682.34, + "end": 1684.54, + "probability": 0.8203 + }, + { + "start": 1685.54, + "end": 1686.33, + "probability": 0.9346 + }, + { + "start": 1686.46, + "end": 1687.6, + "probability": 0.8854 + }, + { + "start": 1687.68, + "end": 1689.18, + "probability": 0.8477 + }, + { + "start": 1689.94, + "end": 1690.96, + "probability": 0.5807 + }, + { + "start": 1692.3, + "end": 1692.82, + "probability": 0.4047 + }, + { + "start": 1693.56, + "end": 1695.24, + "probability": 0.9238 + }, + { + "start": 1695.32, + "end": 1697.27, + "probability": 0.8804 + }, + { + "start": 1697.46, + "end": 1698.04, + "probability": 0.8365 + }, + { + "start": 1698.62, + "end": 1702.08, + "probability": 0.4375 + }, + { + "start": 1702.56, + "end": 1702.94, + "probability": 0.9209 + }, + { + "start": 1704.06, + "end": 1708.38, + "probability": 0.6707 + }, + { + "start": 1710.4, + "end": 1713.32, + "probability": 0.9429 + }, + { + "start": 1714.1, + "end": 1715.18, + "probability": 0.6407 + }, + { + "start": 1717.4, + "end": 1719.98, + "probability": 0.9196 + }, + { + "start": 1720.78, + "end": 1724.29, + "probability": 0.7408 + }, + { + "start": 1724.7, + "end": 1725.3, + "probability": 0.6993 + }, + { + "start": 1725.62, + "end": 1726.18, + "probability": 0.6566 + }, + { + "start": 1727.32, + "end": 1730.26, + "probability": 0.8589 + }, + { + "start": 1730.9, + "end": 1731.82, + "probability": 0.5557 + }, + { + "start": 1732.06, + "end": 1733.14, + "probability": 0.7781 + }, + { + "start": 1733.44, + "end": 1734.8, + "probability": 0.9098 + }, + { + "start": 1735.7, + "end": 1738.12, + "probability": 0.8623 + }, + { + "start": 1738.82, + "end": 1741.01, + "probability": 0.6732 + }, + { + "start": 1741.3, + "end": 1741.6, + "probability": 0.5088 + }, + { + "start": 1744.08, + "end": 1745.7, + "probability": 0.7656 + }, + { + "start": 1747.36, + "end": 1749.36, + "probability": 0.9915 + }, + { + "start": 1750.62, + "end": 1751.22, + "probability": 0.6162 + }, + { + "start": 1754.54, + "end": 1756.62, + "probability": 0.6424 + }, + { + "start": 1758.46, + "end": 1761.64, + "probability": 0.4827 + }, + { + "start": 1762.44, + "end": 1764.54, + "probability": 0.021 + }, + { + "start": 1764.54, + "end": 1766.54, + "probability": 0.0636 + }, + { + "start": 1767.24, + "end": 1768.15, + "probability": 0.7668 + }, + { + "start": 1769.42, + "end": 1771.14, + "probability": 0.8511 + }, + { + "start": 1772.38, + "end": 1772.94, + "probability": 0.1346 + }, + { + "start": 1772.94, + "end": 1773.66, + "probability": 0.1599 + }, + { + "start": 1773.82, + "end": 1774.12, + "probability": 0.0188 + }, + { + "start": 1774.4, + "end": 1776.65, + "probability": 0.2588 + }, + { + "start": 1777.3, + "end": 1779.58, + "probability": 0.6641 + }, + { + "start": 1779.88, + "end": 1780.58, + "probability": 0.7908 + }, + { + "start": 1781.9, + "end": 1784.56, + "probability": 0.5383 + }, + { + "start": 1785.44, + "end": 1786.38, + "probability": 0.9646 + }, + { + "start": 1786.68, + "end": 1788.6, + "probability": 0.9644 + }, + { + "start": 1788.9, + "end": 1789.93, + "probability": 0.915 + }, + { + "start": 1791.74, + "end": 1791.98, + "probability": 0.8462 + }, + { + "start": 1792.56, + "end": 1793.15, + "probability": 0.8102 + }, + { + "start": 1793.92, + "end": 1794.96, + "probability": 0.7078 + }, + { + "start": 1795.62, + "end": 1801.92, + "probability": 0.9749 + }, + { + "start": 1802.44, + "end": 1803.56, + "probability": 0.5014 + }, + { + "start": 1804.72, + "end": 1806.06, + "probability": 0.9152 + }, + { + "start": 1807.16, + "end": 1808.28, + "probability": 0.6205 + }, + { + "start": 1809.12, + "end": 1810.2, + "probability": 0.635 + }, + { + "start": 1810.38, + "end": 1813.46, + "probability": 0.761 + }, + { + "start": 1813.82, + "end": 1814.52, + "probability": 0.325 + }, + { + "start": 1814.66, + "end": 1815.52, + "probability": 0.6426 + }, + { + "start": 1815.8, + "end": 1816.64, + "probability": 0.352 + }, + { + "start": 1817.18, + "end": 1818.24, + "probability": 0.559 + }, + { + "start": 1819.38, + "end": 1821.24, + "probability": 0.8726 + }, + { + "start": 1822.0, + "end": 1825.44, + "probability": 0.8886 + }, + { + "start": 1825.5, + "end": 1828.66, + "probability": 0.9133 + }, + { + "start": 1828.76, + "end": 1830.6, + "probability": 0.4802 + }, + { + "start": 1831.2, + "end": 1832.12, + "probability": 0.7693 + }, + { + "start": 1832.2, + "end": 1833.9, + "probability": 0.8477 + }, + { + "start": 1834.0, + "end": 1835.02, + "probability": 0.9468 + }, + { + "start": 1837.5, + "end": 1837.84, + "probability": 0.9609 + }, + { + "start": 1839.98, + "end": 1840.34, + "probability": 0.2925 + }, + { + "start": 1840.44, + "end": 1841.18, + "probability": 0.7472 + }, + { + "start": 1841.34, + "end": 1843.96, + "probability": 0.9968 + }, + { + "start": 1845.14, + "end": 1847.16, + "probability": 0.6789 + }, + { + "start": 1847.3, + "end": 1850.62, + "probability": 0.9253 + }, + { + "start": 1851.58, + "end": 1852.02, + "probability": 0.4581 + }, + { + "start": 1853.14, + "end": 1854.78, + "probability": 0.7173 + }, + { + "start": 1855.46, + "end": 1856.88, + "probability": 0.9833 + }, + { + "start": 1856.9, + "end": 1857.82, + "probability": 0.6421 + }, + { + "start": 1858.26, + "end": 1862.76, + "probability": 0.8087 + }, + { + "start": 1863.26, + "end": 1864.48, + "probability": 0.7219 + }, + { + "start": 1865.62, + "end": 1866.86, + "probability": 0.5007 + }, + { + "start": 1866.98, + "end": 1868.54, + "probability": 0.6333 + }, + { + "start": 1869.29, + "end": 1874.78, + "probability": 0.8129 + }, + { + "start": 1874.84, + "end": 1875.28, + "probability": 0.8264 + }, + { + "start": 1877.26, + "end": 1879.4, + "probability": 0.9827 + }, + { + "start": 1879.88, + "end": 1882.24, + "probability": 0.9272 + }, + { + "start": 1882.34, + "end": 1882.78, + "probability": 0.7166 + }, + { + "start": 1897.04, + "end": 1897.16, + "probability": 0.3204 + }, + { + "start": 1897.28, + "end": 1899.22, + "probability": 0.6368 + }, + { + "start": 1900.76, + "end": 1903.24, + "probability": 0.8368 + }, + { + "start": 1904.66, + "end": 1905.84, + "probability": 0.9181 + }, + { + "start": 1905.9, + "end": 1906.68, + "probability": 0.8158 + }, + { + "start": 1907.12, + "end": 1907.22, + "probability": 0.5388 + }, + { + "start": 1907.56, + "end": 1908.2, + "probability": 0.7612 + }, + { + "start": 1909.16, + "end": 1909.6, + "probability": 0.5193 + }, + { + "start": 1910.78, + "end": 1913.42, + "probability": 0.9591 + }, + { + "start": 1913.42, + "end": 1915.1, + "probability": 0.5646 + }, + { + "start": 1915.14, + "end": 1916.9, + "probability": 0.2912 + }, + { + "start": 1917.06, + "end": 1917.68, + "probability": 0.9678 + }, + { + "start": 1921.6, + "end": 1921.64, + "probability": 0.0041 + }, + { + "start": 1921.64, + "end": 1922.36, + "probability": 0.7616 + }, + { + "start": 1923.92, + "end": 1924.5, + "probability": 0.8184 + }, + { + "start": 1926.42, + "end": 1929.1, + "probability": 0.9673 + }, + { + "start": 1930.4, + "end": 1932.46, + "probability": 0.98 + }, + { + "start": 1932.64, + "end": 1937.18, + "probability": 0.9972 + }, + { + "start": 1938.84, + "end": 1939.4, + "probability": 0.9609 + }, + { + "start": 1940.48, + "end": 1941.56, + "probability": 0.9893 + }, + { + "start": 1942.94, + "end": 1945.18, + "probability": 0.7396 + }, + { + "start": 1946.66, + "end": 1947.22, + "probability": 0.8203 + }, + { + "start": 1947.3, + "end": 1952.6, + "probability": 0.9812 + }, + { + "start": 1953.46, + "end": 1956.6, + "probability": 0.8638 + }, + { + "start": 1957.84, + "end": 1961.42, + "probability": 0.9736 + }, + { + "start": 1961.8, + "end": 1964.26, + "probability": 0.8684 + }, + { + "start": 1965.16, + "end": 1966.0, + "probability": 0.8325 + }, + { + "start": 1966.2, + "end": 1966.86, + "probability": 0.5495 + }, + { + "start": 1966.98, + "end": 1969.1, + "probability": 0.9257 + }, + { + "start": 1969.8, + "end": 1971.1, + "probability": 0.998 + }, + { + "start": 1971.72, + "end": 1973.32, + "probability": 0.9077 + }, + { + "start": 1974.6, + "end": 1974.96, + "probability": 0.9004 + }, + { + "start": 1975.54, + "end": 1978.94, + "probability": 0.9581 + }, + { + "start": 1979.72, + "end": 1983.3, + "probability": 0.9414 + }, + { + "start": 1983.94, + "end": 1985.16, + "probability": 0.9486 + }, + { + "start": 1985.2, + "end": 1986.86, + "probability": 0.9807 + }, + { + "start": 1986.96, + "end": 1987.94, + "probability": 0.7018 + }, + { + "start": 1988.58, + "end": 1989.24, + "probability": 0.9543 + }, + { + "start": 1990.04, + "end": 1990.76, + "probability": 0.7067 + }, + { + "start": 1991.5, + "end": 1995.3, + "probability": 0.988 + }, + { + "start": 1996.5, + "end": 1998.7, + "probability": 0.9774 + }, + { + "start": 1998.7, + "end": 2001.04, + "probability": 0.6433 + }, + { + "start": 2002.98, + "end": 2003.52, + "probability": 0.9534 + }, + { + "start": 2004.14, + "end": 2004.9, + "probability": 0.6724 + }, + { + "start": 2005.5, + "end": 2006.98, + "probability": 0.914 + }, + { + "start": 2007.46, + "end": 2010.44, + "probability": 0.9554 + }, + { + "start": 2011.52, + "end": 2011.72, + "probability": 0.5146 + }, + { + "start": 2011.94, + "end": 2014.86, + "probability": 0.8319 + }, + { + "start": 2015.58, + "end": 2016.64, + "probability": 0.6819 + }, + { + "start": 2017.8, + "end": 2019.98, + "probability": 0.8594 + }, + { + "start": 2021.04, + "end": 2021.93, + "probability": 0.9429 + }, + { + "start": 2022.1, + "end": 2023.14, + "probability": 0.8644 + }, + { + "start": 2023.18, + "end": 2024.2, + "probability": 0.9755 + }, + { + "start": 2024.28, + "end": 2024.92, + "probability": 0.9193 + }, + { + "start": 2025.7, + "end": 2027.16, + "probability": 0.6081 + }, + { + "start": 2027.16, + "end": 2030.94, + "probability": 0.8768 + }, + { + "start": 2030.94, + "end": 2036.6, + "probability": 0.9974 + }, + { + "start": 2036.82, + "end": 2039.06, + "probability": 0.9408 + }, + { + "start": 2039.9, + "end": 2042.0, + "probability": 0.7574 + }, + { + "start": 2042.7, + "end": 2044.3, + "probability": 0.8402 + }, + { + "start": 2044.32, + "end": 2044.56, + "probability": 0.3814 + }, + { + "start": 2044.6, + "end": 2044.99, + "probability": 0.3689 + }, + { + "start": 2045.42, + "end": 2046.36, + "probability": 0.902 + }, + { + "start": 2046.7, + "end": 2047.66, + "probability": 0.3839 + }, + { + "start": 2047.9, + "end": 2048.44, + "probability": 0.8806 + }, + { + "start": 2049.22, + "end": 2050.36, + "probability": 0.51 + }, + { + "start": 2051.02, + "end": 2054.18, + "probability": 0.9432 + }, + { + "start": 2054.44, + "end": 2055.38, + "probability": 0.9602 + }, + { + "start": 2056.32, + "end": 2059.28, + "probability": 0.8992 + }, + { + "start": 2060.76, + "end": 2065.12, + "probability": 0.9088 + }, + { + "start": 2065.98, + "end": 2066.3, + "probability": 0.67 + }, + { + "start": 2066.36, + "end": 2066.98, + "probability": 0.7401 + }, + { + "start": 2067.14, + "end": 2070.36, + "probability": 0.9771 + }, + { + "start": 2070.72, + "end": 2071.6, + "probability": 0.7648 + }, + { + "start": 2071.82, + "end": 2072.0, + "probability": 0.7803 + }, + { + "start": 2073.02, + "end": 2075.6, + "probability": 0.5045 + }, + { + "start": 2076.2, + "end": 2077.54, + "probability": 0.7154 + }, + { + "start": 2078.4, + "end": 2078.88, + "probability": 0.971 + }, + { + "start": 2079.42, + "end": 2081.9, + "probability": 0.8218 + }, + { + "start": 2083.89, + "end": 2086.6, + "probability": 0.7924 + }, + { + "start": 2087.26, + "end": 2090.32, + "probability": 0.7897 + }, + { + "start": 2090.32, + "end": 2093.28, + "probability": 0.9142 + }, + { + "start": 2093.32, + "end": 2094.26, + "probability": 0.5981 + }, + { + "start": 2094.74, + "end": 2099.32, + "probability": 0.9478 + }, + { + "start": 2099.64, + "end": 2103.44, + "probability": 0.9915 + }, + { + "start": 2103.68, + "end": 2106.82, + "probability": 0.9692 + }, + { + "start": 2107.72, + "end": 2110.12, + "probability": 0.9592 + }, + { + "start": 2110.58, + "end": 2110.94, + "probability": 0.706 + }, + { + "start": 2111.1, + "end": 2113.86, + "probability": 0.6962 + }, + { + "start": 2113.92, + "end": 2116.78, + "probability": 0.9662 + }, + { + "start": 2116.92, + "end": 2121.12, + "probability": 0.9338 + }, + { + "start": 2121.54, + "end": 2122.84, + "probability": 0.994 + }, + { + "start": 2123.52, + "end": 2126.82, + "probability": 0.9361 + }, + { + "start": 2127.38, + "end": 2128.22, + "probability": 0.9447 + }, + { + "start": 2128.8, + "end": 2132.18, + "probability": 0.8437 + }, + { + "start": 2133.0, + "end": 2134.06, + "probability": 0.7277 + }, + { + "start": 2134.52, + "end": 2137.26, + "probability": 0.9821 + }, + { + "start": 2137.4, + "end": 2140.56, + "probability": 0.9605 + }, + { + "start": 2141.4, + "end": 2145.24, + "probability": 0.9917 + }, + { + "start": 2145.7, + "end": 2147.59, + "probability": 0.8138 + }, + { + "start": 2147.76, + "end": 2148.12, + "probability": 0.5053 + }, + { + "start": 2148.62, + "end": 2150.72, + "probability": 0.8776 + }, + { + "start": 2151.84, + "end": 2152.81, + "probability": 0.7305 + }, + { + "start": 2153.0, + "end": 2155.48, + "probability": 0.9816 + }, + { + "start": 2155.6, + "end": 2158.1, + "probability": 0.9503 + }, + { + "start": 2158.68, + "end": 2160.04, + "probability": 0.8991 + }, + { + "start": 2160.2, + "end": 2161.84, + "probability": 0.9784 + }, + { + "start": 2162.26, + "end": 2163.32, + "probability": 0.9833 + }, + { + "start": 2163.54, + "end": 2166.66, + "probability": 0.9945 + }, + { + "start": 2166.82, + "end": 2168.32, + "probability": 0.9683 + }, + { + "start": 2168.42, + "end": 2170.41, + "probability": 0.9939 + }, + { + "start": 2171.36, + "end": 2171.76, + "probability": 0.7928 + }, + { + "start": 2172.18, + "end": 2177.68, + "probability": 0.9211 + }, + { + "start": 2178.88, + "end": 2179.52, + "probability": 0.5908 + }, + { + "start": 2179.98, + "end": 2180.53, + "probability": 0.8927 + }, + { + "start": 2180.82, + "end": 2181.02, + "probability": 0.4543 + }, + { + "start": 2181.12, + "end": 2187.48, + "probability": 0.9438 + }, + { + "start": 2188.64, + "end": 2190.18, + "probability": 0.7003 + }, + { + "start": 2190.42, + "end": 2193.16, + "probability": 0.8489 + }, + { + "start": 2193.64, + "end": 2196.24, + "probability": 0.9835 + }, + { + "start": 2196.96, + "end": 2197.66, + "probability": 0.6569 + }, + { + "start": 2198.04, + "end": 2201.04, + "probability": 0.787 + }, + { + "start": 2201.16, + "end": 2202.78, + "probability": 0.9937 + }, + { + "start": 2204.0, + "end": 2204.58, + "probability": 0.6648 + }, + { + "start": 2205.28, + "end": 2206.28, + "probability": 0.99 + }, + { + "start": 2207.0, + "end": 2207.84, + "probability": 0.923 + }, + { + "start": 2208.42, + "end": 2209.18, + "probability": 0.968 + }, + { + "start": 2209.64, + "end": 2210.6, + "probability": 0.9728 + }, + { + "start": 2210.92, + "end": 2212.84, + "probability": 0.9982 + }, + { + "start": 2213.26, + "end": 2214.56, + "probability": 0.9976 + }, + { + "start": 2214.74, + "end": 2215.4, + "probability": 0.7448 + }, + { + "start": 2215.84, + "end": 2219.74, + "probability": 0.9705 + }, + { + "start": 2220.22, + "end": 2220.92, + "probability": 0.5656 + }, + { + "start": 2221.12, + "end": 2225.9, + "probability": 0.9105 + }, + { + "start": 2226.22, + "end": 2226.22, + "probability": 0.8345 + }, + { + "start": 2226.76, + "end": 2230.46, + "probability": 0.9472 + }, + { + "start": 2230.46, + "end": 2234.28, + "probability": 0.9881 + }, + { + "start": 2234.68, + "end": 2234.98, + "probability": 0.8173 + }, + { + "start": 2235.04, + "end": 2236.62, + "probability": 0.6945 + }, + { + "start": 2236.68, + "end": 2238.58, + "probability": 0.7061 + }, + { + "start": 2239.38, + "end": 2241.12, + "probability": 0.9631 + }, + { + "start": 2241.32, + "end": 2243.78, + "probability": 0.8421 + }, + { + "start": 2244.44, + "end": 2248.18, + "probability": 0.9828 + }, + { + "start": 2248.72, + "end": 2249.4, + "probability": 0.8236 + }, + { + "start": 2249.62, + "end": 2254.14, + "probability": 0.9118 + }, + { + "start": 2254.3, + "end": 2255.12, + "probability": 0.8676 + }, + { + "start": 2255.54, + "end": 2256.52, + "probability": 0.9739 + }, + { + "start": 2256.96, + "end": 2257.64, + "probability": 0.9382 + }, + { + "start": 2257.82, + "end": 2258.08, + "probability": 0.5459 + }, + { + "start": 2258.26, + "end": 2258.46, + "probability": 0.4768 + }, + { + "start": 2258.66, + "end": 2261.96, + "probability": 0.863 + }, + { + "start": 2262.12, + "end": 2262.68, + "probability": 0.6807 + }, + { + "start": 2263.14, + "end": 2263.92, + "probability": 0.522 + }, + { + "start": 2264.24, + "end": 2265.0, + "probability": 0.8733 + }, + { + "start": 2265.36, + "end": 2267.02, + "probability": 0.9076 + }, + { + "start": 2267.52, + "end": 2271.12, + "probability": 0.9152 + }, + { + "start": 2271.12, + "end": 2275.46, + "probability": 0.9665 + }, + { + "start": 2275.72, + "end": 2278.88, + "probability": 0.9306 + }, + { + "start": 2279.08, + "end": 2282.32, + "probability": 0.9958 + }, + { + "start": 2282.64, + "end": 2284.06, + "probability": 0.8549 + }, + { + "start": 2284.16, + "end": 2285.52, + "probability": 0.9787 + }, + { + "start": 2286.5, + "end": 2287.38, + "probability": 0.9349 + }, + { + "start": 2287.7, + "end": 2288.12, + "probability": 0.7285 + }, + { + "start": 2288.22, + "end": 2288.54, + "probability": 0.8154 + }, + { + "start": 2288.66, + "end": 2290.06, + "probability": 0.9551 + }, + { + "start": 2290.78, + "end": 2290.96, + "probability": 0.688 + }, + { + "start": 2291.02, + "end": 2292.26, + "probability": 0.9665 + }, + { + "start": 2294.34, + "end": 2295.58, + "probability": 0.9354 + }, + { + "start": 2296.78, + "end": 2297.74, + "probability": 0.7781 + }, + { + "start": 2297.98, + "end": 2298.26, + "probability": 0.837 + }, + { + "start": 2298.48, + "end": 2299.78, + "probability": 0.5422 + }, + { + "start": 2299.84, + "end": 2300.28, + "probability": 0.9359 + }, + { + "start": 2300.44, + "end": 2301.07, + "probability": 0.4146 + }, + { + "start": 2302.34, + "end": 2304.04, + "probability": 0.9272 + }, + { + "start": 2304.62, + "end": 2305.0, + "probability": 0.7746 + }, + { + "start": 2306.14, + "end": 2309.16, + "probability": 0.911 + }, + { + "start": 2310.1, + "end": 2311.08, + "probability": 0.5225 + }, + { + "start": 2311.22, + "end": 2311.54, + "probability": 0.6597 + }, + { + "start": 2312.4, + "end": 2313.58, + "probability": 0.4462 + }, + { + "start": 2314.02, + "end": 2316.5, + "probability": 0.974 + }, + { + "start": 2318.32, + "end": 2319.48, + "probability": 0.9341 + }, + { + "start": 2320.06, + "end": 2321.22, + "probability": 0.7648 + }, + { + "start": 2322.2, + "end": 2324.42, + "probability": 0.9446 + }, + { + "start": 2324.72, + "end": 2326.78, + "probability": 0.9924 + }, + { + "start": 2328.44, + "end": 2330.08, + "probability": 0.3359 + }, + { + "start": 2331.08, + "end": 2333.0, + "probability": 0.8219 + }, + { + "start": 2333.16, + "end": 2333.91, + "probability": 0.8979 + }, + { + "start": 2334.9, + "end": 2337.3, + "probability": 0.9856 + }, + { + "start": 2337.42, + "end": 2338.46, + "probability": 0.7897 + }, + { + "start": 2339.22, + "end": 2342.08, + "probability": 0.8704 + }, + { + "start": 2342.26, + "end": 2342.83, + "probability": 0.9519 + }, + { + "start": 2343.06, + "end": 2343.51, + "probability": 0.9844 + }, + { + "start": 2344.38, + "end": 2345.42, + "probability": 0.9323 + }, + { + "start": 2345.9, + "end": 2349.4, + "probability": 0.9154 + }, + { + "start": 2349.46, + "end": 2350.46, + "probability": 0.9595 + }, + { + "start": 2352.24, + "end": 2352.56, + "probability": 0.4889 + }, + { + "start": 2352.76, + "end": 2353.34, + "probability": 0.5875 + }, + { + "start": 2353.42, + "end": 2356.98, + "probability": 0.9779 + }, + { + "start": 2357.9, + "end": 2358.2, + "probability": 0.6755 + }, + { + "start": 2359.1, + "end": 2364.16, + "probability": 0.6152 + }, + { + "start": 2364.38, + "end": 2364.52, + "probability": 0.606 + }, + { + "start": 2365.7, + "end": 2366.68, + "probability": 0.655 + }, + { + "start": 2366.84, + "end": 2370.32, + "probability": 0.9916 + }, + { + "start": 2371.46, + "end": 2374.27, + "probability": 0.8937 + }, + { + "start": 2374.48, + "end": 2377.42, + "probability": 0.9696 + }, + { + "start": 2378.4, + "end": 2380.4, + "probability": 0.9084 + }, + { + "start": 2380.64, + "end": 2383.02, + "probability": 0.7678 + }, + { + "start": 2383.8, + "end": 2386.08, + "probability": 0.8711 + }, + { + "start": 2388.28, + "end": 2388.56, + "probability": 0.4625 + }, + { + "start": 2388.76, + "end": 2392.56, + "probability": 0.9874 + }, + { + "start": 2393.3, + "end": 2395.72, + "probability": 0.9946 + }, + { + "start": 2395.82, + "end": 2399.1, + "probability": 0.9213 + }, + { + "start": 2399.16, + "end": 2399.88, + "probability": 0.6155 + }, + { + "start": 2400.46, + "end": 2402.58, + "probability": 0.9614 + }, + { + "start": 2403.08, + "end": 2406.08, + "probability": 0.9977 + }, + { + "start": 2407.04, + "end": 2410.1, + "probability": 0.8144 + }, + { + "start": 2410.54, + "end": 2411.26, + "probability": 0.6409 + }, + { + "start": 2411.46, + "end": 2415.06, + "probability": 0.9903 + }, + { + "start": 2415.86, + "end": 2418.18, + "probability": 0.7021 + }, + { + "start": 2418.8, + "end": 2420.1, + "probability": 0.5842 + }, + { + "start": 2420.16, + "end": 2420.68, + "probability": 0.5948 + }, + { + "start": 2420.82, + "end": 2424.01, + "probability": 0.9863 + }, + { + "start": 2424.58, + "end": 2425.56, + "probability": 0.7765 + }, + { + "start": 2425.98, + "end": 2426.98, + "probability": 0.6209 + }, + { + "start": 2428.06, + "end": 2429.44, + "probability": 0.7141 + }, + { + "start": 2430.66, + "end": 2431.78, + "probability": 0.8442 + }, + { + "start": 2431.82, + "end": 2434.14, + "probability": 0.8816 + }, + { + "start": 2434.65, + "end": 2437.14, + "probability": 0.8612 + }, + { + "start": 2437.74, + "end": 2440.32, + "probability": 0.957 + }, + { + "start": 2441.12, + "end": 2444.94, + "probability": 0.8958 + }, + { + "start": 2444.94, + "end": 2447.62, + "probability": 0.9759 + }, + { + "start": 2447.84, + "end": 2448.38, + "probability": 0.791 + }, + { + "start": 2448.52, + "end": 2450.04, + "probability": 0.9817 + }, + { + "start": 2450.38, + "end": 2453.21, + "probability": 0.6276 + }, + { + "start": 2453.94, + "end": 2455.02, + "probability": 0.5397 + }, + { + "start": 2455.22, + "end": 2457.12, + "probability": 0.9662 + }, + { + "start": 2457.22, + "end": 2459.28, + "probability": 0.817 + }, + { + "start": 2459.38, + "end": 2461.08, + "probability": 0.9246 + }, + { + "start": 2461.6, + "end": 2465.36, + "probability": 0.9858 + }, + { + "start": 2465.36, + "end": 2470.8, + "probability": 0.9623 + }, + { + "start": 2471.5, + "end": 2472.4, + "probability": 0.9993 + }, + { + "start": 2473.0, + "end": 2474.46, + "probability": 0.9831 + }, + { + "start": 2474.88, + "end": 2476.27, + "probability": 0.9906 + }, + { + "start": 2477.1, + "end": 2477.26, + "probability": 0.9227 + }, + { + "start": 2478.2, + "end": 2479.16, + "probability": 0.6665 + }, + { + "start": 2480.44, + "end": 2482.96, + "probability": 0.5084 + }, + { + "start": 2482.98, + "end": 2483.58, + "probability": 0.0079 + }, + { + "start": 2483.76, + "end": 2483.92, + "probability": 0.349 + }, + { + "start": 2483.92, + "end": 2484.84, + "probability": 0.8306 + }, + { + "start": 2485.66, + "end": 2486.52, + "probability": 0.7492 + }, + { + "start": 2488.44, + "end": 2490.02, + "probability": 0.993 + }, + { + "start": 2490.8, + "end": 2494.68, + "probability": 0.7806 + }, + { + "start": 2495.74, + "end": 2497.38, + "probability": 0.9277 + }, + { + "start": 2498.68, + "end": 2499.66, + "probability": 0.7081 + }, + { + "start": 2500.88, + "end": 2501.96, + "probability": 0.9963 + }, + { + "start": 2503.9, + "end": 2504.68, + "probability": 0.5904 + }, + { + "start": 2504.68, + "end": 2507.32, + "probability": 0.9979 + }, + { + "start": 2507.7, + "end": 2511.1, + "probability": 0.9951 + }, + { + "start": 2511.68, + "end": 2515.78, + "probability": 0.737 + }, + { + "start": 2516.16, + "end": 2518.22, + "probability": 0.8435 + }, + { + "start": 2518.94, + "end": 2520.02, + "probability": 0.9512 + }, + { + "start": 2520.12, + "end": 2522.52, + "probability": 0.9871 + }, + { + "start": 2523.0, + "end": 2523.62, + "probability": 0.9141 + }, + { + "start": 2523.72, + "end": 2524.22, + "probability": 0.9245 + }, + { + "start": 2524.74, + "end": 2525.78, + "probability": 0.7611 + }, + { + "start": 2525.8, + "end": 2526.56, + "probability": 0.1948 + }, + { + "start": 2526.56, + "end": 2527.82, + "probability": 0.8818 + }, + { + "start": 2528.38, + "end": 2529.04, + "probability": 0.9116 + }, + { + "start": 2530.02, + "end": 2532.88, + "probability": 0.9214 + }, + { + "start": 2533.08, + "end": 2533.63, + "probability": 0.9097 + }, + { + "start": 2534.0, + "end": 2535.66, + "probability": 0.6729 + }, + { + "start": 2536.08, + "end": 2537.44, + "probability": 0.9849 + }, + { + "start": 2537.9, + "end": 2538.88, + "probability": 0.8556 + }, + { + "start": 2539.36, + "end": 2540.8, + "probability": 0.8758 + }, + { + "start": 2541.54, + "end": 2542.36, + "probability": 0.4622 + }, + { + "start": 2542.36, + "end": 2543.02, + "probability": 0.4999 + }, + { + "start": 2543.66, + "end": 2546.01, + "probability": 0.844 + }, + { + "start": 2546.88, + "end": 2547.45, + "probability": 0.9202 + }, + { + "start": 2548.28, + "end": 2553.04, + "probability": 0.697 + }, + { + "start": 2553.96, + "end": 2554.52, + "probability": 0.2903 + }, + { + "start": 2555.14, + "end": 2557.48, + "probability": 0.957 + }, + { + "start": 2557.66, + "end": 2558.18, + "probability": 0.5601 + }, + { + "start": 2558.3, + "end": 2559.86, + "probability": 0.7559 + }, + { + "start": 2560.46, + "end": 2564.72, + "probability": 0.986 + }, + { + "start": 2564.9, + "end": 2568.02, + "probability": 0.9906 + }, + { + "start": 2568.2, + "end": 2569.87, + "probability": 0.4928 + }, + { + "start": 2570.12, + "end": 2571.72, + "probability": 0.6979 + }, + { + "start": 2572.04, + "end": 2572.82, + "probability": 0.4653 + }, + { + "start": 2573.2, + "end": 2573.7, + "probability": 0.9198 + }, + { + "start": 2573.72, + "end": 2575.6, + "probability": 0.949 + }, + { + "start": 2576.34, + "end": 2577.76, + "probability": 0.1462 + }, + { + "start": 2578.5, + "end": 2578.52, + "probability": 0.2654 + }, + { + "start": 2578.52, + "end": 2581.0, + "probability": 0.8867 + }, + { + "start": 2583.66, + "end": 2585.77, + "probability": 0.8748 + }, + { + "start": 2586.02, + "end": 2589.62, + "probability": 0.5915 + }, + { + "start": 2590.36, + "end": 2590.36, + "probability": 0.0573 + }, + { + "start": 2590.36, + "end": 2592.24, + "probability": 0.9418 + }, + { + "start": 2592.38, + "end": 2595.66, + "probability": 0.9706 + }, + { + "start": 2596.38, + "end": 2596.58, + "probability": 0.4107 + }, + { + "start": 2596.66, + "end": 2601.8, + "probability": 0.99 + }, + { + "start": 2602.08, + "end": 2603.48, + "probability": 0.985 + }, + { + "start": 2605.18, + "end": 2607.64, + "probability": 0.8418 + }, + { + "start": 2609.18, + "end": 2610.2, + "probability": 0.9146 + }, + { + "start": 2612.19, + "end": 2615.18, + "probability": 0.5127 + }, + { + "start": 2618.04, + "end": 2621.36, + "probability": 0.853 + }, + { + "start": 2622.14, + "end": 2624.16, + "probability": 0.993 + }, + { + "start": 2625.56, + "end": 2627.56, + "probability": 0.9126 + }, + { + "start": 2627.7, + "end": 2629.98, + "probability": 0.9583 + }, + { + "start": 2630.56, + "end": 2632.46, + "probability": 0.9956 + }, + { + "start": 2632.68, + "end": 2633.52, + "probability": 0.9702 + }, + { + "start": 2633.88, + "end": 2634.24, + "probability": 0.9368 + }, + { + "start": 2635.88, + "end": 2636.52, + "probability": 0.8647 + }, + { + "start": 2639.18, + "end": 2641.46, + "probability": 0.996 + }, + { + "start": 2642.22, + "end": 2644.54, + "probability": 0.9194 + }, + { + "start": 2646.0, + "end": 2647.72, + "probability": 0.9027 + }, + { + "start": 2649.32, + "end": 2650.3, + "probability": 0.923 + }, + { + "start": 2651.02, + "end": 2652.82, + "probability": 0.9698 + }, + { + "start": 2653.52, + "end": 2656.68, + "probability": 0.8856 + }, + { + "start": 2657.26, + "end": 2658.94, + "probability": 0.9099 + }, + { + "start": 2659.6, + "end": 2665.74, + "probability": 0.9949 + }, + { + "start": 2666.64, + "end": 2670.34, + "probability": 0.9895 + }, + { + "start": 2671.18, + "end": 2676.1, + "probability": 0.8287 + }, + { + "start": 2676.42, + "end": 2679.9, + "probability": 0.9924 + }, + { + "start": 2679.9, + "end": 2684.44, + "probability": 0.9983 + }, + { + "start": 2685.18, + "end": 2690.0, + "probability": 0.9885 + }, + { + "start": 2690.6, + "end": 2692.0, + "probability": 0.7329 + }, + { + "start": 2692.32, + "end": 2693.0, + "probability": 0.8315 + }, + { + "start": 2694.48, + "end": 2699.94, + "probability": 0.9888 + }, + { + "start": 2700.24, + "end": 2702.32, + "probability": 0.8203 + }, + { + "start": 2703.62, + "end": 2706.28, + "probability": 0.8303 + }, + { + "start": 2706.8, + "end": 2708.52, + "probability": 0.6555 + }, + { + "start": 2709.26, + "end": 2710.3, + "probability": 0.922 + }, + { + "start": 2710.96, + "end": 2711.3, + "probability": 0.4952 + }, + { + "start": 2711.86, + "end": 2713.38, + "probability": 0.9763 + }, + { + "start": 2714.44, + "end": 2716.06, + "probability": 0.9268 + }, + { + "start": 2716.86, + "end": 2718.14, + "probability": 0.9289 + }, + { + "start": 2718.66, + "end": 2719.54, + "probability": 0.4925 + }, + { + "start": 2719.94, + "end": 2722.62, + "probability": 0.9706 + }, + { + "start": 2722.72, + "end": 2725.26, + "probability": 0.7668 + }, + { + "start": 2726.9, + "end": 2727.78, + "probability": 0.7527 + }, + { + "start": 2729.44, + "end": 2736.02, + "probability": 0.9816 + }, + { + "start": 2736.36, + "end": 2737.2, + "probability": 0.824 + }, + { + "start": 2738.04, + "end": 2744.34, + "probability": 0.9805 + }, + { + "start": 2744.86, + "end": 2748.86, + "probability": 0.9766 + }, + { + "start": 2749.86, + "end": 2750.26, + "probability": 0.8284 + }, + { + "start": 2751.3, + "end": 2751.8, + "probability": 0.8748 + }, + { + "start": 2752.78, + "end": 2754.7, + "probability": 0.9967 + }, + { + "start": 2755.4, + "end": 2756.07, + "probability": 0.9009 + }, + { + "start": 2757.5, + "end": 2759.2, + "probability": 0.8017 + }, + { + "start": 2759.34, + "end": 2759.94, + "probability": 0.4002 + }, + { + "start": 2760.92, + "end": 2763.6, + "probability": 0.9956 + }, + { + "start": 2764.12, + "end": 2766.88, + "probability": 0.6797 + }, + { + "start": 2767.06, + "end": 2767.5, + "probability": 0.8958 + }, + { + "start": 2767.7, + "end": 2768.72, + "probability": 0.5698 + }, + { + "start": 2769.46, + "end": 2773.54, + "probability": 0.9922 + }, + { + "start": 2773.94, + "end": 2775.04, + "probability": 0.8136 + }, + { + "start": 2775.66, + "end": 2776.22, + "probability": 0.7938 + }, + { + "start": 2776.66, + "end": 2779.38, + "probability": 0.98 + }, + { + "start": 2780.16, + "end": 2781.18, + "probability": 0.9305 + }, + { + "start": 2781.48, + "end": 2782.59, + "probability": 0.9951 + }, + { + "start": 2783.58, + "end": 2785.12, + "probability": 0.9911 + }, + { + "start": 2785.98, + "end": 2788.76, + "probability": 0.9629 + }, + { + "start": 2789.28, + "end": 2791.56, + "probability": 0.6816 + }, + { + "start": 2791.96, + "end": 2792.36, + "probability": 0.8337 + }, + { + "start": 2792.74, + "end": 2794.16, + "probability": 0.9927 + }, + { + "start": 2795.64, + "end": 2796.1, + "probability": 0.4902 + }, + { + "start": 2797.14, + "end": 2799.68, + "probability": 0.9125 + }, + { + "start": 2800.3, + "end": 2801.76, + "probability": 0.9118 + }, + { + "start": 2802.38, + "end": 2802.98, + "probability": 0.8144 + }, + { + "start": 2803.5, + "end": 2804.76, + "probability": 0.9233 + }, + { + "start": 2805.62, + "end": 2809.58, + "probability": 0.8153 + }, + { + "start": 2810.42, + "end": 2815.02, + "probability": 0.9179 + }, + { + "start": 2815.88, + "end": 2818.0, + "probability": 0.9608 + }, + { + "start": 2818.9, + "end": 2820.42, + "probability": 0.8814 + }, + { + "start": 2820.52, + "end": 2823.28, + "probability": 0.973 + }, + { + "start": 2824.46, + "end": 2828.12, + "probability": 0.9277 + }, + { + "start": 2829.06, + "end": 2834.12, + "probability": 0.7619 + }, + { + "start": 2834.78, + "end": 2835.92, + "probability": 0.9904 + }, + { + "start": 2836.72, + "end": 2837.36, + "probability": 0.9345 + }, + { + "start": 2837.9, + "end": 2838.54, + "probability": 0.813 + }, + { + "start": 2840.46, + "end": 2842.94, + "probability": 0.5675 + }, + { + "start": 2843.38, + "end": 2848.02, + "probability": 0.9376 + }, + { + "start": 2848.32, + "end": 2850.36, + "probability": 0.8326 + }, + { + "start": 2850.76, + "end": 2851.52, + "probability": 0.9019 + }, + { + "start": 2852.44, + "end": 2858.2, + "probability": 0.9906 + }, + { + "start": 2858.45, + "end": 2861.22, + "probability": 0.8645 + }, + { + "start": 2861.6, + "end": 2864.86, + "probability": 0.9926 + }, + { + "start": 2865.78, + "end": 2866.1, + "probability": 0.6995 + }, + { + "start": 2866.8, + "end": 2870.26, + "probability": 0.9951 + }, + { + "start": 2870.94, + "end": 2875.88, + "probability": 0.6616 + }, + { + "start": 2877.0, + "end": 2878.38, + "probability": 0.7647 + }, + { + "start": 2879.06, + "end": 2881.16, + "probability": 0.7407 + }, + { + "start": 2882.24, + "end": 2889.72, + "probability": 0.9761 + }, + { + "start": 2889.96, + "end": 2891.54, + "probability": 0.7592 + }, + { + "start": 2892.02, + "end": 2894.74, + "probability": 0.9838 + }, + { + "start": 2894.96, + "end": 2897.32, + "probability": 0.7998 + }, + { + "start": 2897.52, + "end": 2901.8, + "probability": 0.4864 + }, + { + "start": 2902.66, + "end": 2904.28, + "probability": 0.616 + }, + { + "start": 2904.64, + "end": 2909.22, + "probability": 0.9971 + }, + { + "start": 2910.04, + "end": 2913.1, + "probability": 0.9318 + }, + { + "start": 2914.5, + "end": 2915.16, + "probability": 0.5637 + }, + { + "start": 2918.1, + "end": 2919.9, + "probability": 0.7268 + }, + { + "start": 2920.92, + "end": 2924.14, + "probability": 0.6874 + }, + { + "start": 2924.3, + "end": 2925.82, + "probability": 0.3575 + }, + { + "start": 2927.0, + "end": 2933.74, + "probability": 0.7028 + }, + { + "start": 2934.38, + "end": 2936.86, + "probability": 0.7066 + }, + { + "start": 2937.94, + "end": 2942.24, + "probability": 0.8612 + }, + { + "start": 2943.1, + "end": 2944.28, + "probability": 0.9951 + }, + { + "start": 2944.36, + "end": 2947.58, + "probability": 0.9347 + }, + { + "start": 2949.04, + "end": 2951.14, + "probability": 0.9907 + }, + { + "start": 2952.96, + "end": 2955.76, + "probability": 0.5713 + }, + { + "start": 2955.96, + "end": 2957.48, + "probability": 0.9043 + }, + { + "start": 2958.44, + "end": 2959.66, + "probability": 0.5871 + }, + { + "start": 2959.78, + "end": 2962.68, + "probability": 0.9943 + }, + { + "start": 2963.4, + "end": 2966.22, + "probability": 0.9572 + }, + { + "start": 2967.14, + "end": 2968.97, + "probability": 0.9932 + }, + { + "start": 2970.32, + "end": 2970.66, + "probability": 0.6525 + }, + { + "start": 2970.72, + "end": 2974.86, + "probability": 0.9456 + }, + { + "start": 2975.06, + "end": 2976.78, + "probability": 0.9963 + }, + { + "start": 2977.18, + "end": 2980.36, + "probability": 0.9722 + }, + { + "start": 2980.98, + "end": 2984.56, + "probability": 0.9746 + }, + { + "start": 2985.1, + "end": 2986.76, + "probability": 0.989 + }, + { + "start": 2987.36, + "end": 2987.6, + "probability": 0.7363 + }, + { + "start": 2988.72, + "end": 2991.04, + "probability": 0.8371 + }, + { + "start": 2992.06, + "end": 2992.32, + "probability": 0.0562 + }, + { + "start": 2993.26, + "end": 2996.72, + "probability": 0.6986 + }, + { + "start": 2997.41, + "end": 3001.66, + "probability": 0.8625 + }, + { + "start": 3002.46, + "end": 3004.19, + "probability": 0.939 + }, + { + "start": 3006.28, + "end": 3010.16, + "probability": 0.993 + }, + { + "start": 3010.96, + "end": 3014.76, + "probability": 0.8773 + }, + { + "start": 3015.28, + "end": 3017.5, + "probability": 0.7937 + }, + { + "start": 3017.64, + "end": 3019.78, + "probability": 0.7483 + }, + { + "start": 3020.24, + "end": 3021.62, + "probability": 0.9792 + }, + { + "start": 3023.02, + "end": 3024.32, + "probability": 0.694 + }, + { + "start": 3025.2, + "end": 3027.18, + "probability": 0.9282 + }, + { + "start": 3028.38, + "end": 3028.96, + "probability": 0.8441 + }, + { + "start": 3030.26, + "end": 3033.96, + "probability": 0.9971 + }, + { + "start": 3034.74, + "end": 3036.5, + "probability": 0.9916 + }, + { + "start": 3036.82, + "end": 3039.02, + "probability": 0.9492 + }, + { + "start": 3039.56, + "end": 3040.64, + "probability": 0.559 + }, + { + "start": 3041.4, + "end": 3043.12, + "probability": 0.9053 + }, + { + "start": 3044.28, + "end": 3046.26, + "probability": 0.9706 + }, + { + "start": 3047.74, + "end": 3049.7, + "probability": 0.8528 + }, + { + "start": 3051.28, + "end": 3054.78, + "probability": 0.8384 + }, + { + "start": 3055.32, + "end": 3056.12, + "probability": 0.749 + }, + { + "start": 3056.58, + "end": 3058.12, + "probability": 0.4134 + }, + { + "start": 3058.84, + "end": 3060.24, + "probability": 0.5969 + }, + { + "start": 3060.26, + "end": 3065.45, + "probability": 0.4777 + }, + { + "start": 3065.64, + "end": 3066.24, + "probability": 0.5227 + }, + { + "start": 3066.28, + "end": 3067.12, + "probability": 0.4184 + }, + { + "start": 3067.28, + "end": 3069.42, + "probability": 0.1117 + }, + { + "start": 3070.22, + "end": 3071.7, + "probability": 0.9832 + }, + { + "start": 3073.06, + "end": 3075.98, + "probability": 0.7955 + }, + { + "start": 3076.6, + "end": 3078.22, + "probability": 0.4766 + }, + { + "start": 3078.44, + "end": 3078.54, + "probability": 0.6157 + }, + { + "start": 3079.3, + "end": 3080.44, + "probability": 0.8211 + }, + { + "start": 3081.5, + "end": 3082.43, + "probability": 0.1237 + }, + { + "start": 3082.64, + "end": 3084.68, + "probability": 0.5316 + }, + { + "start": 3086.54, + "end": 3088.16, + "probability": 0.7603 + }, + { + "start": 3089.32, + "end": 3089.74, + "probability": 0.2976 + }, + { + "start": 3090.1, + "end": 3091.44, + "probability": 0.9689 + }, + { + "start": 3092.06, + "end": 3092.5, + "probability": 0.946 + }, + { + "start": 3095.01, + "end": 3096.32, + "probability": 0.8177 + }, + { + "start": 3096.56, + "end": 3097.3, + "probability": 0.3469 + }, + { + "start": 3097.76, + "end": 3098.44, + "probability": 0.0073 + }, + { + "start": 3098.5, + "end": 3101.48, + "probability": 0.0429 + }, + { + "start": 3101.66, + "end": 3106.18, + "probability": 0.5197 + }, + { + "start": 3107.46, + "end": 3107.46, + "probability": 0.1886 + }, + { + "start": 3108.34, + "end": 3111.06, + "probability": 0.9965 + }, + { + "start": 3111.06, + "end": 3113.92, + "probability": 0.9547 + }, + { + "start": 3114.78, + "end": 3117.42, + "probability": 0.7137 + }, + { + "start": 3117.78, + "end": 3121.28, + "probability": 0.9777 + }, + { + "start": 3122.84, + "end": 3126.44, + "probability": 0.8556 + }, + { + "start": 3127.02, + "end": 3129.4, + "probability": 0.4458 + }, + { + "start": 3132.02, + "end": 3132.14, + "probability": 0.0857 + }, + { + "start": 3132.14, + "end": 3132.14, + "probability": 0.2677 + }, + { + "start": 3132.14, + "end": 3132.16, + "probability": 0.196 + }, + { + "start": 3132.16, + "end": 3132.82, + "probability": 0.0934 + }, + { + "start": 3133.14, + "end": 3133.8, + "probability": 0.1619 + }, + { + "start": 3134.16, + "end": 3134.98, + "probability": 0.4585 + }, + { + "start": 3136.5, + "end": 3136.66, + "probability": 0.4081 + }, + { + "start": 3138.4, + "end": 3140.24, + "probability": 0.9657 + }, + { + "start": 3140.58, + "end": 3140.78, + "probability": 0.0021 + }, + { + "start": 3141.7, + "end": 3142.42, + "probability": 0.0203 + }, + { + "start": 3142.42, + "end": 3142.68, + "probability": 0.3997 + }, + { + "start": 3143.2, + "end": 3145.16, + "probability": 0.9082 + }, + { + "start": 3145.74, + "end": 3147.86, + "probability": 0.9876 + }, + { + "start": 3148.32, + "end": 3151.44, + "probability": 0.984 + }, + { + "start": 3151.96, + "end": 3155.74, + "probability": 0.984 + }, + { + "start": 3156.12, + "end": 3157.28, + "probability": 0.8466 + }, + { + "start": 3158.18, + "end": 3161.32, + "probability": 0.9477 + }, + { + "start": 3162.04, + "end": 3164.24, + "probability": 0.99 + }, + { + "start": 3164.58, + "end": 3167.28, + "probability": 0.6188 + }, + { + "start": 3168.0, + "end": 3172.0, + "probability": 0.996 + }, + { + "start": 3172.58, + "end": 3173.96, + "probability": 0.3841 + }, + { + "start": 3174.4, + "end": 3178.22, + "probability": 0.9692 + }, + { + "start": 3178.58, + "end": 3183.1, + "probability": 0.9831 + }, + { + "start": 3183.82, + "end": 3189.78, + "probability": 0.9605 + }, + { + "start": 3190.3, + "end": 3191.32, + "probability": 0.9256 + }, + { + "start": 3191.88, + "end": 3193.38, + "probability": 0.9533 + }, + { + "start": 3194.38, + "end": 3198.86, + "probability": 0.9443 + }, + { + "start": 3199.28, + "end": 3200.3, + "probability": 0.3077 + }, + { + "start": 3200.46, + "end": 3201.14, + "probability": 0.3143 + }, + { + "start": 3201.24, + "end": 3202.95, + "probability": 0.1067 + }, + { + "start": 3204.06, + "end": 3204.58, + "probability": 0.8916 + }, + { + "start": 3204.7, + "end": 3207.9, + "probability": 0.9977 + }, + { + "start": 3207.9, + "end": 3211.06, + "probability": 0.9991 + }, + { + "start": 3211.34, + "end": 3213.66, + "probability": 0.9877 + }, + { + "start": 3213.68, + "end": 3214.06, + "probability": 0.6361 + }, + { + "start": 3214.06, + "end": 3214.16, + "probability": 0.6648 + }, + { + "start": 3214.72, + "end": 3214.72, + "probability": 0.2862 + }, + { + "start": 3214.72, + "end": 3214.96, + "probability": 0.514 + }, + { + "start": 3220.7, + "end": 3224.12, + "probability": 0.1118 + }, + { + "start": 3224.96, + "end": 3225.74, + "probability": 0.6178 + }, + { + "start": 3225.74, + "end": 3226.38, + "probability": 0.8267 + }, + { + "start": 3226.74, + "end": 3229.17, + "probability": 0.9905 + }, + { + "start": 3230.26, + "end": 3230.34, + "probability": 0.0384 + }, + { + "start": 3230.34, + "end": 3232.0, + "probability": 0.9159 + }, + { + "start": 3232.32, + "end": 3232.74, + "probability": 0.8698 + }, + { + "start": 3232.86, + "end": 3233.08, + "probability": 0.4445 + }, + { + "start": 3240.86, + "end": 3241.84, + "probability": 0.5719 + }, + { + "start": 3242.58, + "end": 3243.35, + "probability": 0.5547 + }, + { + "start": 3244.78, + "end": 3246.26, + "probability": 0.486 + }, + { + "start": 3247.14, + "end": 3251.16, + "probability": 0.9222 + }, + { + "start": 3252.1, + "end": 3253.46, + "probability": 0.9351 + }, + { + "start": 3254.76, + "end": 3255.0, + "probability": 0.9912 + }, + { + "start": 3256.02, + "end": 3258.42, + "probability": 0.9022 + }, + { + "start": 3258.9, + "end": 3259.12, + "probability": 0.4162 + }, + { + "start": 3259.26, + "end": 3260.1, + "probability": 0.8296 + }, + { + "start": 3260.2, + "end": 3261.46, + "probability": 0.6442 + }, + { + "start": 3262.2, + "end": 3262.52, + "probability": 0.5483 + }, + { + "start": 3263.7, + "end": 3265.28, + "probability": 0.8398 + }, + { + "start": 3266.52, + "end": 3266.86, + "probability": 0.8313 + }, + { + "start": 3267.74, + "end": 3269.26, + "probability": 0.9977 + }, + { + "start": 3270.28, + "end": 3273.0, + "probability": 0.8993 + }, + { + "start": 3275.14, + "end": 3277.92, + "probability": 0.9564 + }, + { + "start": 3278.82, + "end": 3280.62, + "probability": 0.9976 + }, + { + "start": 3281.62, + "end": 3285.78, + "probability": 0.9893 + }, + { + "start": 3286.4, + "end": 3286.92, + "probability": 0.6634 + }, + { + "start": 3287.88, + "end": 3288.7, + "probability": 0.677 + }, + { + "start": 3288.78, + "end": 3290.9, + "probability": 0.9927 + }, + { + "start": 3290.9, + "end": 3294.94, + "probability": 0.9696 + }, + { + "start": 3296.0, + "end": 3297.72, + "probability": 0.9749 + }, + { + "start": 3298.24, + "end": 3298.7, + "probability": 0.9619 + }, + { + "start": 3300.0, + "end": 3303.38, + "probability": 0.9979 + }, + { + "start": 3303.82, + "end": 3305.16, + "probability": 0.9993 + }, + { + "start": 3305.26, + "end": 3307.12, + "probability": 0.9971 + }, + { + "start": 3307.84, + "end": 3308.9, + "probability": 0.7887 + }, + { + "start": 3309.4, + "end": 3311.02, + "probability": 0.9418 + }, + { + "start": 3311.34, + "end": 3313.06, + "probability": 0.9954 + }, + { + "start": 3313.26, + "end": 3314.68, + "probability": 0.936 + }, + { + "start": 3315.02, + "end": 3317.68, + "probability": 0.9972 + }, + { + "start": 3319.12, + "end": 3319.24, + "probability": 0.5362 + }, + { + "start": 3319.32, + "end": 3322.72, + "probability": 0.986 + }, + { + "start": 3322.72, + "end": 3325.0, + "probability": 0.8516 + }, + { + "start": 3325.68, + "end": 3325.9, + "probability": 0.9738 + }, + { + "start": 3326.48, + "end": 3326.86, + "probability": 0.8953 + }, + { + "start": 3327.96, + "end": 3332.62, + "probability": 0.7931 + }, + { + "start": 3333.4, + "end": 3334.76, + "probability": 0.7956 + }, + { + "start": 3334.82, + "end": 3336.06, + "probability": 0.9994 + }, + { + "start": 3337.06, + "end": 3341.36, + "probability": 0.9858 + }, + { + "start": 3341.56, + "end": 3342.8, + "probability": 0.0968 + }, + { + "start": 3342.8, + "end": 3343.08, + "probability": 0.047 + }, + { + "start": 3344.8, + "end": 3346.26, + "probability": 0.2837 + }, + { + "start": 3347.36, + "end": 3348.86, + "probability": 0.689 + }, + { + "start": 3349.48, + "end": 3349.6, + "probability": 0.2445 + }, + { + "start": 3354.19, + "end": 3354.46, + "probability": 0.6988 + }, + { + "start": 3355.24, + "end": 3357.94, + "probability": 0.5079 + }, + { + "start": 3358.73, + "end": 3360.67, + "probability": 0.9334 + }, + { + "start": 3360.73, + "end": 3360.95, + "probability": 0.8242 + }, + { + "start": 3362.79, + "end": 3362.89, + "probability": 0.234 + }, + { + "start": 3362.89, + "end": 3362.97, + "probability": 0.116 + }, + { + "start": 3362.97, + "end": 3363.28, + "probability": 0.3557 + }, + { + "start": 3364.5, + "end": 3365.71, + "probability": 0.9712 + }, + { + "start": 3365.89, + "end": 3368.31, + "probability": 0.9121 + }, + { + "start": 3368.87, + "end": 3370.53, + "probability": 0.9865 + }, + { + "start": 3370.61, + "end": 3371.53, + "probability": 0.9758 + }, + { + "start": 3371.85, + "end": 3375.47, + "probability": 0.9866 + }, + { + "start": 3375.55, + "end": 3376.04, + "probability": 0.6372 + }, + { + "start": 3376.95, + "end": 3378.59, + "probability": 0.9967 + }, + { + "start": 3379.23, + "end": 3381.27, + "probability": 0.9959 + }, + { + "start": 3382.43, + "end": 3382.57, + "probability": 0.1266 + }, + { + "start": 3382.65, + "end": 3384.19, + "probability": 0.9639 + }, + { + "start": 3384.19, + "end": 3384.26, + "probability": 0.0585 + }, + { + "start": 3384.73, + "end": 3386.85, + "probability": 0.158 + }, + { + "start": 3387.07, + "end": 3388.17, + "probability": 0.429 + }, + { + "start": 3388.21, + "end": 3389.09, + "probability": 0.3976 + }, + { + "start": 3389.53, + "end": 3390.11, + "probability": 0.4167 + }, + { + "start": 3390.35, + "end": 3390.47, + "probability": 0.0433 + }, + { + "start": 3390.63, + "end": 3391.97, + "probability": 0.0097 + }, + { + "start": 3392.07, + "end": 3392.28, + "probability": 0.1105 + }, + { + "start": 3393.41, + "end": 3393.69, + "probability": 0.3352 + }, + { + "start": 3393.87, + "end": 3394.15, + "probability": 0.6737 + }, + { + "start": 3394.93, + "end": 3397.63, + "probability": 0.9043 + }, + { + "start": 3399.89, + "end": 3400.57, + "probability": 0.1046 + }, + { + "start": 3400.57, + "end": 3400.59, + "probability": 0.019 + }, + { + "start": 3401.17, + "end": 3401.39, + "probability": 0.0806 + }, + { + "start": 3401.39, + "end": 3401.39, + "probability": 0.0229 + }, + { + "start": 3401.39, + "end": 3401.39, + "probability": 0.0263 + }, + { + "start": 3401.39, + "end": 3401.39, + "probability": 0.3709 + }, + { + "start": 3401.39, + "end": 3403.41, + "probability": 0.4621 + }, + { + "start": 3403.67, + "end": 3405.07, + "probability": 0.938 + }, + { + "start": 3405.13, + "end": 3405.87, + "probability": 0.724 + }, + { + "start": 3406.69, + "end": 3408.11, + "probability": 0.6925 + }, + { + "start": 3409.35, + "end": 3411.43, + "probability": 0.2893 + }, + { + "start": 3411.43, + "end": 3411.89, + "probability": 0.7627 + }, + { + "start": 3411.97, + "end": 3414.05, + "probability": 0.9746 + }, + { + "start": 3414.23, + "end": 3414.77, + "probability": 0.7513 + }, + { + "start": 3415.21, + "end": 3415.77, + "probability": 0.0238 + }, + { + "start": 3415.87, + "end": 3416.91, + "probability": 0.0991 + }, + { + "start": 3417.13, + "end": 3419.37, + "probability": 0.3952 + }, + { + "start": 3419.43, + "end": 3421.53, + "probability": 0.7152 + }, + { + "start": 3421.71, + "end": 3421.91, + "probability": 0.2004 + }, + { + "start": 3421.91, + "end": 3422.13, + "probability": 0.3821 + }, + { + "start": 3423.67, + "end": 3425.91, + "probability": 0.1514 + }, + { + "start": 3426.53, + "end": 3428.76, + "probability": 0.0356 + }, + { + "start": 3429.51, + "end": 3430.27, + "probability": 0.1123 + }, + { + "start": 3430.75, + "end": 3433.53, + "probability": 0.9878 + }, + { + "start": 3434.25, + "end": 3434.79, + "probability": 0.4991 + }, + { + "start": 3434.99, + "end": 3435.39, + "probability": 0.6233 + }, + { + "start": 3435.47, + "end": 3437.39, + "probability": 0.6628 + }, + { + "start": 3438.05, + "end": 3442.89, + "probability": 0.9445 + }, + { + "start": 3442.89, + "end": 3446.81, + "probability": 0.984 + }, + { + "start": 3447.09, + "end": 3448.87, + "probability": 0.6913 + }, + { + "start": 3449.35, + "end": 3450.85, + "probability": 0.9438 + }, + { + "start": 3451.21, + "end": 3454.27, + "probability": 0.9962 + }, + { + "start": 3454.33, + "end": 3454.97, + "probability": 0.2513 + }, + { + "start": 3455.21, + "end": 3458.11, + "probability": 0.9863 + }, + { + "start": 3458.47, + "end": 3461.77, + "probability": 0.9005 + }, + { + "start": 3461.93, + "end": 3462.25, + "probability": 0.6155 + }, + { + "start": 3462.29, + "end": 3463.59, + "probability": 0.9886 + }, + { + "start": 3463.95, + "end": 3464.11, + "probability": 0.51 + }, + { + "start": 3464.17, + "end": 3465.37, + "probability": 0.7178 + }, + { + "start": 3465.75, + "end": 3466.39, + "probability": 0.4719 + }, + { + "start": 3466.87, + "end": 3469.35, + "probability": 0.9451 + }, + { + "start": 3469.43, + "end": 3470.56, + "probability": 0.8418 + }, + { + "start": 3470.95, + "end": 3471.73, + "probability": 0.6251 + }, + { + "start": 3471.83, + "end": 3472.93, + "probability": 0.9641 + }, + { + "start": 3473.51, + "end": 3474.95, + "probability": 0.8427 + }, + { + "start": 3475.41, + "end": 3476.77, + "probability": 0.9448 + }, + { + "start": 3477.23, + "end": 3478.21, + "probability": 0.7348 + }, + { + "start": 3478.89, + "end": 3479.63, + "probability": 0.1713 + }, + { + "start": 3479.63, + "end": 3480.43, + "probability": 0.0027 + }, + { + "start": 3482.81, + "end": 3483.17, + "probability": 0.7385 + }, + { + "start": 3484.89, + "end": 3486.21, + "probability": 0.9975 + }, + { + "start": 3487.11, + "end": 3488.59, + "probability": 0.9725 + }, + { + "start": 3489.57, + "end": 3490.75, + "probability": 0.834 + }, + { + "start": 3491.31, + "end": 3493.35, + "probability": 0.9524 + }, + { + "start": 3493.87, + "end": 3498.23, + "probability": 0.9997 + }, + { + "start": 3498.34, + "end": 3501.27, + "probability": 0.9988 + }, + { + "start": 3503.21, + "end": 3504.11, + "probability": 0.8542 + }, + { + "start": 3504.89, + "end": 3508.33, + "probability": 0.9489 + }, + { + "start": 3509.73, + "end": 3512.29, + "probability": 0.8601 + }, + { + "start": 3513.03, + "end": 3513.95, + "probability": 0.9886 + }, + { + "start": 3514.99, + "end": 3516.25, + "probability": 0.7553 + }, + { + "start": 3518.27, + "end": 3518.89, + "probability": 0.8311 + }, + { + "start": 3519.99, + "end": 3526.11, + "probability": 0.9361 + }, + { + "start": 3526.77, + "end": 3527.97, + "probability": 0.8757 + }, + { + "start": 3528.43, + "end": 3531.31, + "probability": 0.9591 + }, + { + "start": 3531.31, + "end": 3534.15, + "probability": 0.9349 + }, + { + "start": 3535.11, + "end": 3536.39, + "probability": 0.9797 + }, + { + "start": 3539.01, + "end": 3539.39, + "probability": 0.7421 + }, + { + "start": 3540.71, + "end": 3542.07, + "probability": 0.9939 + }, + { + "start": 3543.47, + "end": 3544.95, + "probability": 0.9629 + }, + { + "start": 3545.77, + "end": 3546.11, + "probability": 0.9805 + }, + { + "start": 3548.57, + "end": 3553.31, + "probability": 0.9879 + }, + { + "start": 3553.39, + "end": 3555.45, + "probability": 0.8566 + }, + { + "start": 3555.59, + "end": 3556.02, + "probability": 0.8421 + }, + { + "start": 3557.37, + "end": 3561.15, + "probability": 0.902 + }, + { + "start": 3561.85, + "end": 3563.85, + "probability": 0.7837 + }, + { + "start": 3564.77, + "end": 3565.75, + "probability": 0.7674 + }, + { + "start": 3565.91, + "end": 3567.17, + "probability": 0.9532 + }, + { + "start": 3567.83, + "end": 3568.17, + "probability": 0.9865 + }, + { + "start": 3568.69, + "end": 3570.71, + "probability": 0.7904 + }, + { + "start": 3570.71, + "end": 3573.93, + "probability": 0.9688 + }, + { + "start": 3573.93, + "end": 3577.17, + "probability": 0.9994 + }, + { + "start": 3577.65, + "end": 3580.43, + "probability": 0.9956 + }, + { + "start": 3580.49, + "end": 3581.03, + "probability": 0.8667 + }, + { + "start": 3582.59, + "end": 3584.07, + "probability": 0.0525 + }, + { + "start": 3584.67, + "end": 3585.23, + "probability": 0.0377 + }, + { + "start": 3585.29, + "end": 3586.41, + "probability": 0.5711 + }, + { + "start": 3586.61, + "end": 3587.11, + "probability": 0.4467 + }, + { + "start": 3587.15, + "end": 3588.43, + "probability": 0.9837 + }, + { + "start": 3588.55, + "end": 3590.33, + "probability": 0.681 + }, + { + "start": 3590.39, + "end": 3591.73, + "probability": 0.9876 + }, + { + "start": 3592.41, + "end": 3597.55, + "probability": 0.9937 + }, + { + "start": 3597.55, + "end": 3601.93, + "probability": 0.9994 + }, + { + "start": 3602.45, + "end": 3604.16, + "probability": 0.9944 + }, + { + "start": 3606.15, + "end": 3606.23, + "probability": 0.0891 + }, + { + "start": 3606.23, + "end": 3607.19, + "probability": 0.9012 + }, + { + "start": 3607.37, + "end": 3609.47, + "probability": 0.7345 + }, + { + "start": 3609.93, + "end": 3611.43, + "probability": 0.991 + }, + { + "start": 3612.13, + "end": 3613.93, + "probability": 0.9911 + }, + { + "start": 3614.61, + "end": 3620.33, + "probability": 0.9974 + }, + { + "start": 3622.39, + "end": 3623.83, + "probability": 0.9978 + }, + { + "start": 3624.87, + "end": 3626.15, + "probability": 0.7937 + }, + { + "start": 3627.45, + "end": 3628.59, + "probability": 0.9204 + }, + { + "start": 3630.57, + "end": 3631.03, + "probability": 0.5674 + }, + { + "start": 3631.03, + "end": 3631.19, + "probability": 0.3416 + }, + { + "start": 3631.63, + "end": 3632.69, + "probability": 0.4557 + }, + { + "start": 3632.75, + "end": 3633.73, + "probability": 0.9863 + }, + { + "start": 3635.51, + "end": 3636.81, + "probability": 0.8956 + }, + { + "start": 3637.43, + "end": 3639.53, + "probability": 0.9855 + }, + { + "start": 3641.11, + "end": 3642.13, + "probability": 0.9358 + }, + { + "start": 3642.59, + "end": 3644.09, + "probability": 0.9753 + }, + { + "start": 3644.25, + "end": 3647.17, + "probability": 0.9393 + }, + { + "start": 3647.73, + "end": 3648.81, + "probability": 0.9645 + }, + { + "start": 3649.59, + "end": 3650.53, + "probability": 0.6634 + }, + { + "start": 3651.55, + "end": 3653.07, + "probability": 0.8723 + }, + { + "start": 3653.21, + "end": 3653.77, + "probability": 0.7868 + }, + { + "start": 3654.31, + "end": 3654.67, + "probability": 0.8951 + }, + { + "start": 3656.05, + "end": 3657.25, + "probability": 0.7701 + }, + { + "start": 3657.37, + "end": 3658.03, + "probability": 0.8583 + }, + { + "start": 3658.85, + "end": 3662.67, + "probability": 0.8486 + }, + { + "start": 3676.77, + "end": 3677.27, + "probability": 0.403 + }, + { + "start": 3677.45, + "end": 3678.21, + "probability": 0.1227 + }, + { + "start": 3680.8, + "end": 3681.33, + "probability": 0.0473 + }, + { + "start": 3681.91, + "end": 3683.41, + "probability": 0.0027 + }, + { + "start": 3689.15, + "end": 3691.43, + "probability": 0.0708 + }, + { + "start": 3691.95, + "end": 3692.51, + "probability": 0.1172 + }, + { + "start": 3694.96, + "end": 3696.53, + "probability": 0.0248 + }, + { + "start": 3696.55, + "end": 3697.35, + "probability": 0.1899 + }, + { + "start": 3697.37, + "end": 3699.64, + "probability": 0.0303 + }, + { + "start": 3703.63, + "end": 3705.5, + "probability": 0.104 + }, + { + "start": 3706.87, + "end": 3707.19, + "probability": 0.0233 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.0, + "end": 3773.0, + "probability": 0.0 + }, + { + "start": 3773.24, + "end": 3774.34, + "probability": 0.8405 + }, + { + "start": 3774.34, + "end": 3774.34, + "probability": 0.1925 + }, + { + "start": 3774.34, + "end": 3774.94, + "probability": 0.9238 + }, + { + "start": 3775.94, + "end": 3778.82, + "probability": 0.8941 + }, + { + "start": 3779.28, + "end": 3780.7, + "probability": 0.8666 + }, + { + "start": 3781.78, + "end": 3782.08, + "probability": 0.6514 + }, + { + "start": 3782.32, + "end": 3782.98, + "probability": 0.7238 + }, + { + "start": 3783.1, + "end": 3785.16, + "probability": 0.663 + }, + { + "start": 3786.66, + "end": 3787.44, + "probability": 0.8429 + }, + { + "start": 3787.54, + "end": 3787.88, + "probability": 0.6456 + }, + { + "start": 3788.1, + "end": 3788.34, + "probability": 0.9221 + }, + { + "start": 3788.8, + "end": 3789.02, + "probability": 0.7908 + }, + { + "start": 3789.1, + "end": 3789.84, + "probability": 0.7173 + }, + { + "start": 3789.9, + "end": 3790.56, + "probability": 0.6271 + }, + { + "start": 3790.82, + "end": 3792.42, + "probability": 0.7019 + }, + { + "start": 3792.96, + "end": 3793.1, + "probability": 0.869 + }, + { + "start": 3795.96, + "end": 3796.4, + "probability": 0.0329 + }, + { + "start": 3796.4, + "end": 3796.84, + "probability": 0.1244 + }, + { + "start": 3798.68, + "end": 3799.3, + "probability": 0.8499 + }, + { + "start": 3800.04, + "end": 3804.24, + "probability": 0.8177 + }, + { + "start": 3804.7, + "end": 3806.12, + "probability": 0.8035 + }, + { + "start": 3806.56, + "end": 3809.38, + "probability": 0.9905 + }, + { + "start": 3809.38, + "end": 3811.6, + "probability": 0.9995 + }, + { + "start": 3812.48, + "end": 3812.64, + "probability": 0.7996 + }, + { + "start": 3812.7, + "end": 3813.08, + "probability": 0.9097 + }, + { + "start": 3813.58, + "end": 3815.12, + "probability": 0.9911 + }, + { + "start": 3815.34, + "end": 3817.82, + "probability": 0.98 + }, + { + "start": 3818.32, + "end": 3818.42, + "probability": 0.6515 + }, + { + "start": 3818.7, + "end": 3819.4, + "probability": 0.9434 + }, + { + "start": 3819.76, + "end": 3821.05, + "probability": 0.5752 + }, + { + "start": 3821.46, + "end": 3825.32, + "probability": 0.8949 + }, + { + "start": 3825.58, + "end": 3825.9, + "probability": 0.6479 + }, + { + "start": 3826.4, + "end": 3827.22, + "probability": 0.9565 + }, + { + "start": 3827.82, + "end": 3829.54, + "probability": 0.9531 + }, + { + "start": 3829.96, + "end": 3832.42, + "probability": 0.9962 + }, + { + "start": 3832.94, + "end": 3834.16, + "probability": 0.8648 + }, + { + "start": 3834.52, + "end": 3835.8, + "probability": 0.9734 + }, + { + "start": 3836.48, + "end": 3839.12, + "probability": 0.8901 + }, + { + "start": 3839.48, + "end": 3840.88, + "probability": 0.7866 + }, + { + "start": 3842.98, + "end": 3843.42, + "probability": 0.3992 + }, + { + "start": 3843.74, + "end": 3843.86, + "probability": 0.4261 + }, + { + "start": 3843.86, + "end": 3845.8, + "probability": 0.4665 + }, + { + "start": 3845.82, + "end": 3846.54, + "probability": 0.9018 + }, + { + "start": 3847.36, + "end": 3847.6, + "probability": 0.7673 + }, + { + "start": 3847.9, + "end": 3848.65, + "probability": 0.7655 + }, + { + "start": 3850.72, + "end": 3851.14, + "probability": 0.7909 + }, + { + "start": 3851.86, + "end": 3851.86, + "probability": 0.0836 + }, + { + "start": 3851.86, + "end": 3852.12, + "probability": 0.0453 + }, + { + "start": 3852.12, + "end": 3852.12, + "probability": 0.672 + }, + { + "start": 3852.12, + "end": 3853.86, + "probability": 0.1719 + }, + { + "start": 3853.86, + "end": 3856.4, + "probability": 0.1839 + }, + { + "start": 3856.76, + "end": 3856.86, + "probability": 0.2206 + }, + { + "start": 3857.48, + "end": 3858.82, + "probability": 0.7479 + }, + { + "start": 3859.06, + "end": 3859.38, + "probability": 0.6422 + }, + { + "start": 3859.46, + "end": 3859.84, + "probability": 0.3912 + }, + { + "start": 3859.84, + "end": 3861.56, + "probability": 0.9272 + }, + { + "start": 3861.62, + "end": 3861.68, + "probability": 0.1521 + }, + { + "start": 3861.68, + "end": 3862.6, + "probability": 0.9398 + }, + { + "start": 3862.68, + "end": 3864.51, + "probability": 0.9785 + }, + { + "start": 3865.72, + "end": 3870.16, + "probability": 0.96 + }, + { + "start": 3871.54, + "end": 3872.28, + "probability": 0.8837 + }, + { + "start": 3873.56, + "end": 3876.36, + "probability": 0.9923 + }, + { + "start": 3877.48, + "end": 3885.0, + "probability": 0.9741 + }, + { + "start": 3885.8, + "end": 3888.2, + "probability": 0.9913 + }, + { + "start": 3888.66, + "end": 3892.41, + "probability": 0.9901 + }, + { + "start": 3893.2, + "end": 3894.82, + "probability": 0.8649 + }, + { + "start": 3895.22, + "end": 3895.46, + "probability": 0.7187 + }, + { + "start": 3895.66, + "end": 3897.52, + "probability": 0.9434 + }, + { + "start": 3898.24, + "end": 3900.06, + "probability": 0.8975 + }, + { + "start": 3900.94, + "end": 3901.26, + "probability": 0.7835 + }, + { + "start": 3902.16, + "end": 3906.08, + "probability": 0.9894 + }, + { + "start": 3906.54, + "end": 3908.46, + "probability": 0.9178 + }, + { + "start": 3909.4, + "end": 3910.3, + "probability": 0.9442 + }, + { + "start": 3910.72, + "end": 3910.92, + "probability": 0.8098 + }, + { + "start": 3911.4, + "end": 3913.0, + "probability": 0.7934 + }, + { + "start": 3913.26, + "end": 3915.58, + "probability": 0.9941 + }, + { + "start": 3917.58, + "end": 3921.41, + "probability": 0.0536 + }, + { + "start": 3921.92, + "end": 3922.18, + "probability": 0.7747 + }, + { + "start": 3922.83, + "end": 3924.66, + "probability": 0.2428 + }, + { + "start": 3925.38, + "end": 3926.4, + "probability": 0.1979 + }, + { + "start": 3927.08, + "end": 3930.24, + "probability": 0.7526 + }, + { + "start": 3931.26, + "end": 3934.64, + "probability": 0.9411 + }, + { + "start": 3935.0, + "end": 3937.31, + "probability": 0.9971 + }, + { + "start": 3937.7, + "end": 3939.6, + "probability": 0.9902 + }, + { + "start": 3940.36, + "end": 3944.64, + "probability": 0.9972 + }, + { + "start": 3945.18, + "end": 3946.62, + "probability": 0.6031 + }, + { + "start": 3946.76, + "end": 3949.98, + "probability": 0.9868 + }, + { + "start": 3950.18, + "end": 3950.9, + "probability": 0.7459 + }, + { + "start": 3951.68, + "end": 3952.72, + "probability": 0.9074 + }, + { + "start": 3952.76, + "end": 3954.5, + "probability": 0.9879 + }, + { + "start": 3954.92, + "end": 3956.88, + "probability": 0.9816 + }, + { + "start": 3956.92, + "end": 3959.9, + "probability": 0.8286 + }, + { + "start": 3960.7, + "end": 3961.66, + "probability": 0.2574 + }, + { + "start": 3963.94, + "end": 3965.06, + "probability": 0.0403 + }, + { + "start": 3965.06, + "end": 3965.22, + "probability": 0.2577 + }, + { + "start": 3966.4, + "end": 3969.74, + "probability": 0.441 + }, + { + "start": 3971.28, + "end": 3973.41, + "probability": 0.4767 + }, + { + "start": 3974.44, + "end": 3977.76, + "probability": 0.9724 + }, + { + "start": 3978.9, + "end": 3979.26, + "probability": 0.8869 + }, + { + "start": 3981.78, + "end": 3983.56, + "probability": 0.7732 + }, + { + "start": 3984.18, + "end": 3986.57, + "probability": 0.9836 + }, + { + "start": 3987.64, + "end": 3988.5, + "probability": 0.9905 + }, + { + "start": 3989.3, + "end": 3990.44, + "probability": 0.8375 + }, + { + "start": 3990.96, + "end": 3991.38, + "probability": 0.3283 + }, + { + "start": 3992.12, + "end": 3992.82, + "probability": 0.884 + }, + { + "start": 3993.68, + "end": 3997.54, + "probability": 0.9961 + }, + { + "start": 3998.1, + "end": 3998.98, + "probability": 0.9517 + }, + { + "start": 4000.96, + "end": 4001.9, + "probability": 0.5627 + }, + { + "start": 4002.98, + "end": 4003.16, + "probability": 0.2419 + }, + { + "start": 4003.78, + "end": 4005.14, + "probability": 0.7237 + }, + { + "start": 4006.12, + "end": 4008.5, + "probability": 0.8225 + }, + { + "start": 4009.14, + "end": 4011.14, + "probability": 0.9542 + }, + { + "start": 4016.08, + "end": 4019.28, + "probability": 0.868 + }, + { + "start": 4020.48, + "end": 4020.9, + "probability": 0.3114 + }, + { + "start": 4021.5, + "end": 4023.35, + "probability": 0.7771 + }, + { + "start": 4024.02, + "end": 4025.0, + "probability": 0.9263 + }, + { + "start": 4025.2, + "end": 4026.64, + "probability": 0.7526 + }, + { + "start": 4026.88, + "end": 4028.24, + "probability": 0.9618 + }, + { + "start": 4028.34, + "end": 4029.48, + "probability": 0.9324 + }, + { + "start": 4029.62, + "end": 4030.48, + "probability": 0.9211 + }, + { + "start": 4031.48, + "end": 4031.68, + "probability": 0.9822 + }, + { + "start": 4032.48, + "end": 4035.0, + "probability": 0.9717 + }, + { + "start": 4036.1, + "end": 4037.5, + "probability": 0.8262 + }, + { + "start": 4038.86, + "end": 4039.22, + "probability": 0.7266 + }, + { + "start": 4040.72, + "end": 4041.04, + "probability": 0.9082 + }, + { + "start": 4042.52, + "end": 4043.87, + "probability": 0.6303 + }, + { + "start": 4045.0, + "end": 4046.72, + "probability": 0.8448 + }, + { + "start": 4047.88, + "end": 4048.4, + "probability": 0.8279 + }, + { + "start": 4049.86, + "end": 4051.31, + "probability": 0.937 + }, + { + "start": 4052.5, + "end": 4054.84, + "probability": 0.9412 + }, + { + "start": 4056.1, + "end": 4058.7, + "probability": 0.9893 + }, + { + "start": 4059.8, + "end": 4061.44, + "probability": 0.8546 + }, + { + "start": 4063.08, + "end": 4064.6, + "probability": 0.6869 + }, + { + "start": 4066.18, + "end": 4067.52, + "probability": 0.7839 + }, + { + "start": 4068.42, + "end": 4070.38, + "probability": 0.9815 + }, + { + "start": 4071.32, + "end": 4075.62, + "probability": 0.9532 + }, + { + "start": 4076.54, + "end": 4076.86, + "probability": 0.9488 + }, + { + "start": 4077.54, + "end": 4078.56, + "probability": 0.9572 + }, + { + "start": 4080.4, + "end": 4084.2, + "probability": 0.7971 + }, + { + "start": 4085.28, + "end": 4086.2, + "probability": 0.9376 + }, + { + "start": 4087.84, + "end": 4088.98, + "probability": 0.9887 + }, + { + "start": 4091.36, + "end": 4096.24, + "probability": 0.9041 + }, + { + "start": 4097.06, + "end": 4097.36, + "probability": 0.7481 + }, + { + "start": 4097.88, + "end": 4098.9, + "probability": 0.6766 + }, + { + "start": 4100.36, + "end": 4100.98, + "probability": 0.6997 + }, + { + "start": 4101.12, + "end": 4104.4, + "probability": 0.7901 + }, + { + "start": 4107.06, + "end": 4109.06, + "probability": 0.8147 + }, + { + "start": 4109.94, + "end": 4111.66, + "probability": 0.9727 + }, + { + "start": 4112.54, + "end": 4116.06, + "probability": 0.8385 + }, + { + "start": 4116.76, + "end": 4118.48, + "probability": 0.589 + }, + { + "start": 4120.18, + "end": 4120.72, + "probability": 0.8644 + }, + { + "start": 4122.4, + "end": 4125.0, + "probability": 0.967 + }, + { + "start": 4125.84, + "end": 4129.97, + "probability": 0.9882 + }, + { + "start": 4131.12, + "end": 4132.86, + "probability": 0.9811 + }, + { + "start": 4133.7, + "end": 4137.06, + "probability": 0.9397 + }, + { + "start": 4138.96, + "end": 4142.04, + "probability": 0.9964 + }, + { + "start": 4143.16, + "end": 4144.86, + "probability": 0.7136 + }, + { + "start": 4145.5, + "end": 4147.46, + "probability": 0.7469 + }, + { + "start": 4147.6, + "end": 4151.82, + "probability": 0.9817 + }, + { + "start": 4152.54, + "end": 4156.14, + "probability": 0.52 + }, + { + "start": 4158.9, + "end": 4159.6, + "probability": 0.8425 + }, + { + "start": 4160.24, + "end": 4162.12, + "probability": 0.9836 + }, + { + "start": 4162.64, + "end": 4163.46, + "probability": 0.9971 + }, + { + "start": 4164.12, + "end": 4165.74, + "probability": 0.9995 + }, + { + "start": 4166.4, + "end": 4169.44, + "probability": 0.9995 + }, + { + "start": 4170.08, + "end": 4175.06, + "probability": 0.9325 + }, + { + "start": 4175.06, + "end": 4177.54, + "probability": 0.9936 + }, + { + "start": 4178.16, + "end": 4180.5, + "probability": 0.9979 + }, + { + "start": 4181.06, + "end": 4181.68, + "probability": 0.9752 + }, + { + "start": 4182.4, + "end": 4185.1, + "probability": 0.9995 + }, + { + "start": 4186.52, + "end": 4187.26, + "probability": 0.8903 + }, + { + "start": 4187.8, + "end": 4188.32, + "probability": 0.9571 + }, + { + "start": 4189.96, + "end": 4191.18, + "probability": 0.8684 + }, + { + "start": 4192.76, + "end": 4193.7, + "probability": 0.7632 + }, + { + "start": 4194.6, + "end": 4200.66, + "probability": 0.9873 + }, + { + "start": 4200.76, + "end": 4201.3, + "probability": 0.8077 + }, + { + "start": 4202.36, + "end": 4203.78, + "probability": 0.9101 + }, + { + "start": 4204.72, + "end": 4205.38, + "probability": 0.8589 + }, + { + "start": 4206.4, + "end": 4207.2, + "probability": 0.9905 + }, + { + "start": 4208.5, + "end": 4209.4, + "probability": 0.987 + }, + { + "start": 4210.82, + "end": 4214.64, + "probability": 0.9365 + }, + { + "start": 4216.08, + "end": 4217.0, + "probability": 0.6429 + }, + { + "start": 4218.92, + "end": 4222.76, + "probability": 0.7859 + }, + { + "start": 4223.28, + "end": 4224.74, + "probability": 0.9904 + }, + { + "start": 4226.0, + "end": 4227.2, + "probability": 0.6125 + }, + { + "start": 4228.58, + "end": 4230.68, + "probability": 0.2978 + }, + { + "start": 4231.22, + "end": 4235.26, + "probability": 0.5918 + }, + { + "start": 4236.32, + "end": 4236.86, + "probability": 0.207 + }, + { + "start": 4237.04, + "end": 4238.66, + "probability": 0.5547 + }, + { + "start": 4238.8, + "end": 4239.66, + "probability": 0.7394 + }, + { + "start": 4240.3, + "end": 4240.74, + "probability": 0.4019 + }, + { + "start": 4242.34, + "end": 4244.34, + "probability": 0.9497 + }, + { + "start": 4245.98, + "end": 4246.2, + "probability": 0.804 + }, + { + "start": 4246.44, + "end": 4249.88, + "probability": 0.9937 + }, + { + "start": 4250.72, + "end": 4252.32, + "probability": 0.4576 + }, + { + "start": 4253.1, + "end": 4254.3, + "probability": 0.6741 + }, + { + "start": 4255.02, + "end": 4256.1, + "probability": 0.8595 + }, + { + "start": 4257.08, + "end": 4260.32, + "probability": 0.9561 + }, + { + "start": 4261.04, + "end": 4264.18, + "probability": 0.9878 + }, + { + "start": 4265.34, + "end": 4273.0, + "probability": 0.9919 + }, + { + "start": 4273.52, + "end": 4276.54, + "probability": 0.938 + }, + { + "start": 4277.44, + "end": 4278.32, + "probability": 0.8514 + }, + { + "start": 4278.78, + "end": 4282.76, + "probability": 0.9774 + }, + { + "start": 4283.3, + "end": 4285.84, + "probability": 0.9894 + }, + { + "start": 4286.76, + "end": 4288.4, + "probability": 0.7197 + }, + { + "start": 4289.54, + "end": 4290.72, + "probability": 0.9845 + }, + { + "start": 4291.62, + "end": 4292.04, + "probability": 0.8284 + }, + { + "start": 4292.74, + "end": 4296.14, + "probability": 0.9866 + }, + { + "start": 4297.12, + "end": 4299.56, + "probability": 0.987 + }, + { + "start": 4300.14, + "end": 4300.58, + "probability": 0.7016 + }, + { + "start": 4301.36, + "end": 4302.0, + "probability": 0.8945 + }, + { + "start": 4302.86, + "end": 4303.7, + "probability": 0.9094 + }, + { + "start": 4304.4, + "end": 4305.98, + "probability": 0.9277 + }, + { + "start": 4307.1, + "end": 4309.05, + "probability": 0.7529 + }, + { + "start": 4309.84, + "end": 4310.42, + "probability": 0.3569 + }, + { + "start": 4311.06, + "end": 4314.06, + "probability": 0.273 + }, + { + "start": 4314.6, + "end": 4320.98, + "probability": 0.8632 + }, + { + "start": 4321.46, + "end": 4325.06, + "probability": 0.9877 + }, + { + "start": 4325.39, + "end": 4331.98, + "probability": 0.9915 + }, + { + "start": 4332.16, + "end": 4332.64, + "probability": 0.7609 + }, + { + "start": 4332.96, + "end": 4334.9, + "probability": 0.8772 + }, + { + "start": 4335.1, + "end": 4335.99, + "probability": 0.516 + }, + { + "start": 4337.34, + "end": 4341.04, + "probability": 0.9815 + }, + { + "start": 4341.58, + "end": 4342.38, + "probability": 0.9592 + }, + { + "start": 4343.36, + "end": 4344.68, + "probability": 0.6743 + }, + { + "start": 4345.5, + "end": 4347.34, + "probability": 0.8666 + }, + { + "start": 4347.9, + "end": 4349.73, + "probability": 0.9558 + }, + { + "start": 4350.24, + "end": 4351.24, + "probability": 0.775 + }, + { + "start": 4352.04, + "end": 4352.86, + "probability": 0.9722 + }, + { + "start": 4353.42, + "end": 4355.14, + "probability": 0.9147 + }, + { + "start": 4355.7, + "end": 4356.52, + "probability": 0.8995 + }, + { + "start": 4357.56, + "end": 4359.54, + "probability": 0.8052 + }, + { + "start": 4361.04, + "end": 4364.4, + "probability": 0.8328 + }, + { + "start": 4365.12, + "end": 4366.56, + "probability": 0.9272 + }, + { + "start": 4368.02, + "end": 4369.42, + "probability": 0.9189 + }, + { + "start": 4369.58, + "end": 4371.6, + "probability": 0.8721 + }, + { + "start": 4372.96, + "end": 4376.38, + "probability": 0.9086 + }, + { + "start": 4376.88, + "end": 4377.9, + "probability": 0.366 + }, + { + "start": 4378.38, + "end": 4379.02, + "probability": 0.4295 + }, + { + "start": 4379.34, + "end": 4380.14, + "probability": 0.5687 + }, + { + "start": 4380.2, + "end": 4381.87, + "probability": 0.9275 + }, + { + "start": 4382.74, + "end": 4383.52, + "probability": 0.7163 + }, + { + "start": 4383.76, + "end": 4385.08, + "probability": 0.9498 + }, + { + "start": 4386.5, + "end": 4389.76, + "probability": 0.8442 + }, + { + "start": 4391.36, + "end": 4391.52, + "probability": 0.0489 + }, + { + "start": 4392.38, + "end": 4393.08, + "probability": 0.9429 + }, + { + "start": 4394.44, + "end": 4395.54, + "probability": 0.7479 + }, + { + "start": 4395.54, + "end": 4398.12, + "probability": 0.5353 + }, + { + "start": 4398.12, + "end": 4400.14, + "probability": 0.6815 + }, + { + "start": 4400.56, + "end": 4401.16, + "probability": 0.8116 + }, + { + "start": 4401.66, + "end": 4404.86, + "probability": 0.8895 + }, + { + "start": 4406.56, + "end": 4408.08, + "probability": 0.8147 + }, + { + "start": 4408.24, + "end": 4410.58, + "probability": 0.6626 + }, + { + "start": 4412.54, + "end": 4413.62, + "probability": 0.6249 + }, + { + "start": 4414.16, + "end": 4414.44, + "probability": 0.2356 + }, + { + "start": 4414.82, + "end": 4416.24, + "probability": 0.2206 + }, + { + "start": 4416.9, + "end": 4419.0, + "probability": 0.77 + }, + { + "start": 4420.42, + "end": 4421.14, + "probability": 0.8779 + }, + { + "start": 4421.74, + "end": 4423.86, + "probability": 0.964 + }, + { + "start": 4424.78, + "end": 4426.56, + "probability": 0.8615 + }, + { + "start": 4427.06, + "end": 4429.56, + "probability": 0.8883 + }, + { + "start": 4430.42, + "end": 4431.76, + "probability": 0.9883 + }, + { + "start": 4432.08, + "end": 4433.78, + "probability": 0.8344 + }, + { + "start": 4434.36, + "end": 4436.18, + "probability": 0.9807 + }, + { + "start": 4437.1, + "end": 4438.02, + "probability": 0.9766 + }, + { + "start": 4438.6, + "end": 4442.1, + "probability": 0.7642 + }, + { + "start": 4442.64, + "end": 4444.7, + "probability": 0.9901 + }, + { + "start": 4445.38, + "end": 4447.36, + "probability": 0.7702 + }, + { + "start": 4447.86, + "end": 4448.62, + "probability": 0.7094 + }, + { + "start": 4448.9, + "end": 4449.49, + "probability": 0.9302 + }, + { + "start": 4449.74, + "end": 4450.2, + "probability": 0.4756 + }, + { + "start": 4450.66, + "end": 4456.52, + "probability": 0.9532 + }, + { + "start": 4456.78, + "end": 4457.4, + "probability": 0.6275 + }, + { + "start": 4457.86, + "end": 4459.49, + "probability": 0.9646 + }, + { + "start": 4460.21, + "end": 4462.08, + "probability": 0.9508 + }, + { + "start": 4463.18, + "end": 4467.8, + "probability": 0.8579 + }, + { + "start": 4468.72, + "end": 4469.56, + "probability": 0.9646 + }, + { + "start": 4469.7, + "end": 4474.48, + "probability": 0.974 + }, + { + "start": 4475.0, + "end": 4476.34, + "probability": 0.8891 + }, + { + "start": 4477.26, + "end": 4478.44, + "probability": 0.8507 + }, + { + "start": 4479.04, + "end": 4483.5, + "probability": 0.9491 + }, + { + "start": 4484.02, + "end": 4486.74, + "probability": 0.9749 + }, + { + "start": 4486.9, + "end": 4487.72, + "probability": 0.6801 + }, + { + "start": 4488.48, + "end": 4491.18, + "probability": 0.9338 + }, + { + "start": 4492.42, + "end": 4495.94, + "probability": 0.9744 + }, + { + "start": 4496.46, + "end": 4497.02, + "probability": 0.9377 + }, + { + "start": 4498.32, + "end": 4502.58, + "probability": 0.9645 + }, + { + "start": 4504.18, + "end": 4509.34, + "probability": 0.9022 + }, + { + "start": 4512.02, + "end": 4512.56, + "probability": 0.8657 + }, + { + "start": 4514.3, + "end": 4517.82, + "probability": 0.7217 + }, + { + "start": 4518.36, + "end": 4519.3, + "probability": 0.9237 + }, + { + "start": 4520.62, + "end": 4524.12, + "probability": 0.7932 + }, + { + "start": 4524.76, + "end": 4525.46, + "probability": 0.634 + }, + { + "start": 4526.0, + "end": 4527.2, + "probability": 0.9531 + }, + { + "start": 4528.2, + "end": 4529.38, + "probability": 0.6757 + }, + { + "start": 4530.34, + "end": 4531.28, + "probability": 0.7994 + }, + { + "start": 4531.84, + "end": 4533.7, + "probability": 0.8249 + }, + { + "start": 4534.72, + "end": 4538.18, + "probability": 0.8683 + }, + { + "start": 4538.38, + "end": 4541.47, + "probability": 0.9463 + }, + { + "start": 4542.64, + "end": 4547.42, + "probability": 0.9888 + }, + { + "start": 4548.78, + "end": 4550.94, + "probability": 0.9897 + }, + { + "start": 4551.4, + "end": 4554.98, + "probability": 0.9927 + }, + { + "start": 4555.24, + "end": 4559.96, + "probability": 0.801 + }, + { + "start": 4560.04, + "end": 4562.18, + "probability": 0.8722 + }, + { + "start": 4562.38, + "end": 4563.24, + "probability": 0.7589 + }, + { + "start": 4564.14, + "end": 4564.26, + "probability": 0.8471 + }, + { + "start": 4565.26, + "end": 4565.48, + "probability": 0.5767 + }, + { + "start": 4567.2, + "end": 4569.56, + "probability": 0.8804 + }, + { + "start": 4570.44, + "end": 4570.84, + "probability": 0.7847 + }, + { + "start": 4571.84, + "end": 4573.32, + "probability": 0.9548 + }, + { + "start": 4573.92, + "end": 4579.56, + "probability": 0.9622 + }, + { + "start": 4579.56, + "end": 4583.62, + "probability": 0.989 + }, + { + "start": 4584.58, + "end": 4586.1, + "probability": 0.7741 + }, + { + "start": 4587.36, + "end": 4593.53, + "probability": 0.9524 + }, + { + "start": 4594.16, + "end": 4594.9, + "probability": 0.8727 + }, + { + "start": 4595.98, + "end": 4599.02, + "probability": 0.7404 + }, + { + "start": 4599.62, + "end": 4599.86, + "probability": 0.6352 + }, + { + "start": 4600.48, + "end": 4601.82, + "probability": 0.8199 + }, + { + "start": 4602.56, + "end": 4603.72, + "probability": 0.9395 + }, + { + "start": 4604.26, + "end": 4604.65, + "probability": 0.9917 + }, + { + "start": 4605.2, + "end": 4605.82, + "probability": 0.9971 + }, + { + "start": 4606.62, + "end": 4608.84, + "probability": 0.9916 + }, + { + "start": 4609.22, + "end": 4610.26, + "probability": 0.5434 + }, + { + "start": 4610.88, + "end": 4612.94, + "probability": 0.9575 + }, + { + "start": 4614.5, + "end": 4614.82, + "probability": 0.6842 + }, + { + "start": 4615.56, + "end": 4618.04, + "probability": 0.9899 + }, + { + "start": 4619.54, + "end": 4622.52, + "probability": 0.9994 + }, + { + "start": 4623.42, + "end": 4625.76, + "probability": 0.7808 + }, + { + "start": 4626.86, + "end": 4629.82, + "probability": 0.8783 + }, + { + "start": 4630.26, + "end": 4631.46, + "probability": 0.7617 + }, + { + "start": 4631.9, + "end": 4632.54, + "probability": 0.7733 + }, + { + "start": 4633.26, + "end": 4634.16, + "probability": 0.967 + }, + { + "start": 4634.92, + "end": 4637.6, + "probability": 0.9035 + }, + { + "start": 4637.6, + "end": 4641.16, + "probability": 0.9187 + }, + { + "start": 4641.94, + "end": 4644.24, + "probability": 0.9985 + }, + { + "start": 4644.24, + "end": 4647.48, + "probability": 0.9897 + }, + { + "start": 4648.76, + "end": 4649.84, + "probability": 0.5499 + }, + { + "start": 4650.46, + "end": 4654.88, + "probability": 0.9943 + }, + { + "start": 4656.26, + "end": 4661.12, + "probability": 0.8378 + }, + { + "start": 4661.2, + "end": 4666.52, + "probability": 0.9972 + }, + { + "start": 4667.7, + "end": 4670.24, + "probability": 0.8832 + }, + { + "start": 4670.74, + "end": 4671.78, + "probability": 0.9331 + }, + { + "start": 4672.66, + "end": 4675.24, + "probability": 0.927 + }, + { + "start": 4675.78, + "end": 4680.58, + "probability": 0.9642 + }, + { + "start": 4681.42, + "end": 4684.5, + "probability": 0.9727 + }, + { + "start": 4685.06, + "end": 4686.18, + "probability": 0.8319 + }, + { + "start": 4686.58, + "end": 4689.62, + "probability": 0.9329 + }, + { + "start": 4689.96, + "end": 4694.46, + "probability": 0.9631 + }, + { + "start": 4694.46, + "end": 4697.82, + "probability": 0.9556 + }, + { + "start": 4698.76, + "end": 4702.0, + "probability": 0.9976 + }, + { + "start": 4702.4, + "end": 4702.99, + "probability": 0.832 + }, + { + "start": 4703.9, + "end": 4705.08, + "probability": 0.8384 + }, + { + "start": 4705.44, + "end": 4706.46, + "probability": 0.7608 + }, + { + "start": 4706.82, + "end": 4707.72, + "probability": 0.4216 + }, + { + "start": 4708.02, + "end": 4708.54, + "probability": 0.7786 + }, + { + "start": 4708.62, + "end": 4708.72, + "probability": 0.7289 + }, + { + "start": 4709.22, + "end": 4712.55, + "probability": 0.9789 + }, + { + "start": 4712.82, + "end": 4716.78, + "probability": 0.9854 + }, + { + "start": 4717.64, + "end": 4717.8, + "probability": 0.5508 + }, + { + "start": 4718.84, + "end": 4720.92, + "probability": 0.662 + }, + { + "start": 4721.46, + "end": 4724.32, + "probability": 0.4545 + }, + { + "start": 4724.98, + "end": 4726.18, + "probability": 0.8277 + }, + { + "start": 4726.98, + "end": 4730.32, + "probability": 0.9617 + }, + { + "start": 4731.06, + "end": 4733.3, + "probability": 0.9897 + }, + { + "start": 4734.32, + "end": 4739.52, + "probability": 0.6632 + }, + { + "start": 4739.62, + "end": 4741.3, + "probability": 0.8525 + }, + { + "start": 4741.7, + "end": 4742.64, + "probability": 0.9385 + }, + { + "start": 4742.72, + "end": 4743.24, + "probability": 0.8727 + }, + { + "start": 4743.5, + "end": 4745.28, + "probability": 0.8074 + }, + { + "start": 4745.38, + "end": 4745.72, + "probability": 0.4705 + }, + { + "start": 4745.76, + "end": 4747.01, + "probability": 0.9976 + }, + { + "start": 4747.58, + "end": 4748.8, + "probability": 0.8336 + }, + { + "start": 4749.56, + "end": 4751.02, + "probability": 0.757 + }, + { + "start": 4756.62, + "end": 4757.68, + "probability": 0.487 + }, + { + "start": 4765.34, + "end": 4765.44, + "probability": 0.0106 + }, + { + "start": 4768.64, + "end": 4769.56, + "probability": 0.8017 + }, + { + "start": 4770.66, + "end": 4772.14, + "probability": 0.668 + }, + { + "start": 4772.78, + "end": 4774.7, + "probability": 0.9781 + }, + { + "start": 4775.26, + "end": 4780.0, + "probability": 0.9934 + }, + { + "start": 4780.18, + "end": 4781.62, + "probability": 0.9949 + }, + { + "start": 4782.1, + "end": 4785.66, + "probability": 0.9941 + }, + { + "start": 4786.24, + "end": 4786.86, + "probability": 0.7816 + }, + { + "start": 4787.06, + "end": 4792.02, + "probability": 0.993 + }, + { + "start": 4792.54, + "end": 4794.84, + "probability": 0.9895 + }, + { + "start": 4796.34, + "end": 4797.0, + "probability": 0.1414 + }, + { + "start": 4797.12, + "end": 4799.32, + "probability": 0.9475 + }, + { + "start": 4800.14, + "end": 4800.38, + "probability": 0.0049 + }, + { + "start": 4801.0, + "end": 4804.18, + "probability": 0.9248 + }, + { + "start": 4804.84, + "end": 4807.16, + "probability": 0.8866 + }, + { + "start": 4808.98, + "end": 4809.72, + "probability": 0.7755 + }, + { + "start": 4810.24, + "end": 4812.4, + "probability": 0.8251 + }, + { + "start": 4813.14, + "end": 4814.76, + "probability": 0.9895 + }, + { + "start": 4815.38, + "end": 4820.18, + "probability": 0.9424 + }, + { + "start": 4821.34, + "end": 4821.62, + "probability": 0.4163 + }, + { + "start": 4821.62, + "end": 4823.64, + "probability": 0.8153 + }, + { + "start": 4824.46, + "end": 4824.72, + "probability": 0.8811 + }, + { + "start": 4825.24, + "end": 4827.26, + "probability": 0.938 + }, + { + "start": 4828.14, + "end": 4831.78, + "probability": 0.9787 + }, + { + "start": 4832.12, + "end": 4834.38, + "probability": 0.9716 + }, + { + "start": 4835.08, + "end": 4835.14, + "probability": 0.8008 + }, + { + "start": 4835.76, + "end": 4836.1, + "probability": 0.9805 + }, + { + "start": 4836.74, + "end": 4837.24, + "probability": 0.4975 + }, + { + "start": 4837.78, + "end": 4838.38, + "probability": 0.9736 + }, + { + "start": 4839.28, + "end": 4839.52, + "probability": 0.5814 + }, + { + "start": 4840.8, + "end": 4844.26, + "probability": 0.8855 + }, + { + "start": 4844.84, + "end": 4846.48, + "probability": 0.9448 + }, + { + "start": 4847.54, + "end": 4848.08, + "probability": 0.7083 + }, + { + "start": 4848.68, + "end": 4849.3, + "probability": 0.8891 + }, + { + "start": 4849.44, + "end": 4852.98, + "probability": 0.9049 + }, + { + "start": 4853.84, + "end": 4854.8, + "probability": 0.8535 + }, + { + "start": 4855.7, + "end": 4857.14, + "probability": 0.9641 + }, + { + "start": 4858.42, + "end": 4861.76, + "probability": 0.9619 + }, + { + "start": 4861.94, + "end": 4863.4, + "probability": 0.9793 + }, + { + "start": 4863.96, + "end": 4865.22, + "probability": 0.9834 + }, + { + "start": 4865.88, + "end": 4868.18, + "probability": 0.9751 + }, + { + "start": 4868.42, + "end": 4869.0, + "probability": 0.9486 + }, + { + "start": 4869.42, + "end": 4869.74, + "probability": 0.3834 + }, + { + "start": 4869.86, + "end": 4870.38, + "probability": 0.679 + }, + { + "start": 4871.12, + "end": 4871.88, + "probability": 0.9912 + }, + { + "start": 4872.8, + "end": 4875.18, + "probability": 0.96 + }, + { + "start": 4875.78, + "end": 4877.6, + "probability": 0.8832 + }, + { + "start": 4879.46, + "end": 4880.5, + "probability": 0.8467 + }, + { + "start": 4881.4, + "end": 4881.94, + "probability": 0.8654 + }, + { + "start": 4882.5, + "end": 4883.94, + "probability": 0.7514 + }, + { + "start": 4884.72, + "end": 4885.42, + "probability": 0.5939 + }, + { + "start": 4886.12, + "end": 4891.22, + "probability": 0.9614 + }, + { + "start": 4891.8, + "end": 4898.98, + "probability": 0.9979 + }, + { + "start": 4899.56, + "end": 4900.9, + "probability": 0.9691 + }, + { + "start": 4902.18, + "end": 4906.34, + "probability": 0.9868 + }, + { + "start": 4907.3, + "end": 4912.46, + "probability": 0.891 + }, + { + "start": 4913.2, + "end": 4915.7, + "probability": 0.9872 + }, + { + "start": 4916.14, + "end": 4917.58, + "probability": 0.9727 + }, + { + "start": 4918.54, + "end": 4921.98, + "probability": 0.9711 + }, + { + "start": 4922.54, + "end": 4925.26, + "probability": 0.9003 + }, + { + "start": 4925.78, + "end": 4928.47, + "probability": 0.7871 + }, + { + "start": 4928.56, + "end": 4932.92, + "probability": 0.8219 + }, + { + "start": 4933.08, + "end": 4935.09, + "probability": 0.998 + }, + { + "start": 4936.42, + "end": 4937.42, + "probability": 0.9888 + }, + { + "start": 4938.5, + "end": 4943.2, + "probability": 0.9172 + }, + { + "start": 4943.7, + "end": 4944.16, + "probability": 0.7733 + }, + { + "start": 4944.36, + "end": 4946.68, + "probability": 0.9159 + }, + { + "start": 4946.92, + "end": 4947.64, + "probability": 0.8048 + }, + { + "start": 4948.36, + "end": 4949.96, + "probability": 0.7025 + }, + { + "start": 4950.74, + "end": 4953.02, + "probability": 0.8893 + }, + { + "start": 4954.0, + "end": 4954.02, + "probability": 0.4607 + }, + { + "start": 4954.78, + "end": 4959.78, + "probability": 0.9338 + }, + { + "start": 4961.34, + "end": 4962.98, + "probability": 0.9785 + }, + { + "start": 4963.96, + "end": 4969.2, + "probability": 0.9841 + }, + { + "start": 4969.78, + "end": 4970.41, + "probability": 0.9913 + }, + { + "start": 4970.66, + "end": 4972.88, + "probability": 0.9443 + }, + { + "start": 4973.26, + "end": 4974.04, + "probability": 0.8252 + }, + { + "start": 4974.18, + "end": 4975.1, + "probability": 0.8262 + }, + { + "start": 4975.44, + "end": 4975.78, + "probability": 0.5953 + }, + { + "start": 4975.92, + "end": 4976.3, + "probability": 0.6753 + }, + { + "start": 4976.68, + "end": 4977.3, + "probability": 0.6068 + }, + { + "start": 4977.64, + "end": 4980.14, + "probability": 0.9497 + }, + { + "start": 4980.64, + "end": 4984.84, + "probability": 0.9071 + }, + { + "start": 4984.84, + "end": 4988.48, + "probability": 0.9082 + }, + { + "start": 4988.96, + "end": 4990.16, + "probability": 0.9185 + }, + { + "start": 4990.94, + "end": 4991.18, + "probability": 0.7933 + }, + { + "start": 4992.18, + "end": 4993.62, + "probability": 0.9497 + }, + { + "start": 4994.2, + "end": 4996.44, + "probability": 0.9652 + }, + { + "start": 4997.46, + "end": 5000.0, + "probability": 0.9658 + }, + { + "start": 5000.98, + "end": 5005.3, + "probability": 0.9919 + }, + { + "start": 5005.96, + "end": 5010.54, + "probability": 0.9619 + }, + { + "start": 5010.96, + "end": 5013.0, + "probability": 0.7485 + }, + { + "start": 5014.18, + "end": 5015.24, + "probability": 0.8508 + }, + { + "start": 5016.26, + "end": 5021.42, + "probability": 0.941 + }, + { + "start": 5022.34, + "end": 5022.96, + "probability": 0.8356 + }, + { + "start": 5023.82, + "end": 5024.04, + "probability": 0.9892 + }, + { + "start": 5024.72, + "end": 5027.6, + "probability": 0.9932 + }, + { + "start": 5028.52, + "end": 5030.0, + "probability": 0.7706 + }, + { + "start": 5030.18, + "end": 5033.62, + "probability": 0.9763 + }, + { + "start": 5033.92, + "end": 5035.12, + "probability": 0.9756 + }, + { + "start": 5035.82, + "end": 5039.62, + "probability": 0.7149 + }, + { + "start": 5040.16, + "end": 5041.36, + "probability": 0.9477 + }, + { + "start": 5041.5, + "end": 5041.8, + "probability": 0.0552 + }, + { + "start": 5042.38, + "end": 5044.12, + "probability": 0.4639 + }, + { + "start": 5044.46, + "end": 5045.6, + "probability": 0.8484 + }, + { + "start": 5045.74, + "end": 5046.3, + "probability": 0.4502 + }, + { + "start": 5046.56, + "end": 5048.62, + "probability": 0.8757 + }, + { + "start": 5049.16, + "end": 5049.62, + "probability": 0.8512 + }, + { + "start": 5050.14, + "end": 5054.3, + "probability": 0.9793 + }, + { + "start": 5054.86, + "end": 5056.88, + "probability": 0.9512 + }, + { + "start": 5057.48, + "end": 5057.94, + "probability": 0.5774 + }, + { + "start": 5058.16, + "end": 5058.68, + "probability": 0.9359 + }, + { + "start": 5058.84, + "end": 5062.4, + "probability": 0.9958 + }, + { + "start": 5063.02, + "end": 5068.42, + "probability": 0.7915 + }, + { + "start": 5068.82, + "end": 5069.24, + "probability": 0.8453 + }, + { + "start": 5069.66, + "end": 5071.54, + "probability": 0.8713 + }, + { + "start": 5071.92, + "end": 5072.28, + "probability": 0.785 + }, + { + "start": 5073.08, + "end": 5076.48, + "probability": 0.7731 + }, + { + "start": 5077.0, + "end": 5079.18, + "probability": 0.8381 + }, + { + "start": 5079.98, + "end": 5081.74, + "probability": 0.983 + }, + { + "start": 5082.12, + "end": 5083.88, + "probability": 0.9757 + }, + { + "start": 5084.48, + "end": 5085.82, + "probability": 0.6392 + }, + { + "start": 5086.42, + "end": 5088.5, + "probability": 0.877 + }, + { + "start": 5089.18, + "end": 5090.02, + "probability": 0.8454 + }, + { + "start": 5091.02, + "end": 5094.48, + "probability": 0.9966 + }, + { + "start": 5095.2, + "end": 5095.74, + "probability": 0.7984 + }, + { + "start": 5096.48, + "end": 5097.78, + "probability": 0.8931 + }, + { + "start": 5098.18, + "end": 5098.36, + "probability": 0.9504 + }, + { + "start": 5099.12, + "end": 5101.28, + "probability": 0.9614 + }, + { + "start": 5102.78, + "end": 5103.42, + "probability": 0.4037 + }, + { + "start": 5103.66, + "end": 5105.54, + "probability": 0.7391 + }, + { + "start": 5105.64, + "end": 5106.56, + "probability": 0.2332 + }, + { + "start": 5106.62, + "end": 5110.7, + "probability": 0.2743 + }, + { + "start": 5111.72, + "end": 5114.78, + "probability": 0.4002 + }, + { + "start": 5122.0, + "end": 5126.34, + "probability": 0.0558 + }, + { + "start": 5126.98, + "end": 5128.18, + "probability": 0.0572 + }, + { + "start": 5139.72, + "end": 5141.76, + "probability": 0.1075 + }, + { + "start": 5152.6, + "end": 5155.54, + "probability": 0.1095 + }, + { + "start": 5158.02, + "end": 5159.96, + "probability": 0.023 + }, + { + "start": 5164.28, + "end": 5169.42, + "probability": 0.0627 + }, + { + "start": 5177.94, + "end": 5180.6, + "probability": 0.0695 + }, + { + "start": 5181.32, + "end": 5184.02, + "probability": 0.0379 + }, + { + "start": 5185.11, + "end": 5185.65, + "probability": 0.0735 + }, + { + "start": 5189.32, + "end": 5190.08, + "probability": 0.0647 + }, + { + "start": 5191.36, + "end": 5194.24, + "probability": 0.0024 + }, + { + "start": 5195.24, + "end": 5196.86, + "probability": 0.1848 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.0, + "end": 5357.0, + "probability": 0.0 + }, + { + "start": 5357.3, + "end": 5358.98, + "probability": 0.0358 + }, + { + "start": 5359.42, + "end": 5361.72, + "probability": 0.0852 + }, + { + "start": 5362.46, + "end": 5362.82, + "probability": 0.0357 + }, + { + "start": 5363.38, + "end": 5364.3, + "probability": 0.1303 + }, + { + "start": 5364.46, + "end": 5364.56, + "probability": 0.093 + }, + { + "start": 5364.56, + "end": 5364.56, + "probability": 0.1781 + }, + { + "start": 5364.56, + "end": 5364.72, + "probability": 0.2426 + }, + { + "start": 5364.72, + "end": 5364.72, + "probability": 0.2708 + }, + { + "start": 5364.72, + "end": 5366.98, + "probability": 0.4114 + }, + { + "start": 5367.14, + "end": 5367.38, + "probability": 0.5423 + }, + { + "start": 5367.92, + "end": 5367.92, + "probability": 0.2452 + }, + { + "start": 5368.76, + "end": 5370.84, + "probability": 0.2442 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5491.0, + "end": 5491.0, + "probability": 0.0 + }, + { + "start": 5509.34, + "end": 5517.06, + "probability": 0.1313 + }, + { + "start": 5518.2, + "end": 5518.82, + "probability": 0.0577 + }, + { + "start": 5520.9, + "end": 5521.78, + "probability": 0.1015 + }, + { + "start": 5523.12, + "end": 5523.64, + "probability": 0.3023 + }, + { + "start": 5524.36, + "end": 5525.2, + "probability": 0.0364 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.0, + "end": 5627.0, + "probability": 0.0 + }, + { + "start": 5627.74, + "end": 5627.86, + "probability": 0.1992 + }, + { + "start": 5627.86, + "end": 5627.86, + "probability": 0.1034 + }, + { + "start": 5627.86, + "end": 5627.86, + "probability": 0.2759 + }, + { + "start": 5627.86, + "end": 5631.6, + "probability": 0.5021 + }, + { + "start": 5639.02, + "end": 5639.86, + "probability": 0.1062 + }, + { + "start": 5643.22, + "end": 5645.04, + "probability": 0.0493 + }, + { + "start": 5646.34, + "end": 5646.74, + "probability": 0.0471 + }, + { + "start": 5648.99, + "end": 5651.0, + "probability": 0.0755 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.0, + "end": 5762.0, + "probability": 0.0 + }, + { + "start": 5762.34, + "end": 5765.38, + "probability": 0.039 + }, + { + "start": 5765.66, + "end": 5765.66, + "probability": 0.1073 + }, + { + "start": 5765.66, + "end": 5765.66, + "probability": 0.0641 + }, + { + "start": 5765.92, + "end": 5766.98, + "probability": 0.0209 + }, + { + "start": 5766.98, + "end": 5770.5, + "probability": 0.0281 + }, + { + "start": 5781.26, + "end": 5786.66, + "probability": 0.0991 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.0, + "end": 5891.0, + "probability": 0.0 + }, + { + "start": 5891.36, + "end": 5891.76, + "probability": 0.4671 + }, + { + "start": 5891.76, + "end": 5891.76, + "probability": 0.1005 + }, + { + "start": 5891.76, + "end": 5891.76, + "probability": 0.0791 + }, + { + "start": 5891.76, + "end": 5891.76, + "probability": 0.2284 + }, + { + "start": 5891.76, + "end": 5894.78, + "probability": 0.7414 + }, + { + "start": 5894.94, + "end": 5895.98, + "probability": 0.6652 + }, + { + "start": 5896.4, + "end": 5896.68, + "probability": 0.3802 + }, + { + "start": 5897.08, + "end": 5898.46, + "probability": 0.7126 + }, + { + "start": 5899.86, + "end": 5901.04, + "probability": 0.5015 + }, + { + "start": 5901.78, + "end": 5904.24, + "probability": 0.9873 + }, + { + "start": 5904.7, + "end": 5905.64, + "probability": 0.7199 + }, + { + "start": 5906.04, + "end": 5908.37, + "probability": 0.3728 + }, + { + "start": 5908.64, + "end": 5909.62, + "probability": 0.9958 + }, + { + "start": 5910.5, + "end": 5913.2, + "probability": 0.9521 + }, + { + "start": 5913.28, + "end": 5915.46, + "probability": 0.9872 + }, + { + "start": 5915.56, + "end": 5916.46, + "probability": 0.9287 + }, + { + "start": 5916.5, + "end": 5920.36, + "probability": 0.9868 + }, + { + "start": 5921.02, + "end": 5923.24, + "probability": 0.0042 + }, + { + "start": 5925.0, + "end": 5925.28, + "probability": 0.0373 + }, + { + "start": 5925.28, + "end": 5925.28, + "probability": 0.1715 + }, + { + "start": 5925.28, + "end": 5925.46, + "probability": 0.0792 + }, + { + "start": 5925.46, + "end": 5928.25, + "probability": 0.3987 + }, + { + "start": 5928.72, + "end": 5930.0, + "probability": 0.5139 + }, + { + "start": 5930.52, + "end": 5932.58, + "probability": 0.8383 + }, + { + "start": 5933.1, + "end": 5936.34, + "probability": 0.9484 + }, + { + "start": 5936.66, + "end": 5937.8, + "probability": 0.3448 + }, + { + "start": 5938.02, + "end": 5939.24, + "probability": 0.8238 + }, + { + "start": 5939.7, + "end": 5940.84, + "probability": 0.8462 + }, + { + "start": 5941.22, + "end": 5941.9, + "probability": 0.9818 + }, + { + "start": 5942.0, + "end": 5942.76, + "probability": 0.9542 + }, + { + "start": 5943.56, + "end": 5943.82, + "probability": 0.9479 + }, + { + "start": 5944.58, + "end": 5948.36, + "probability": 0.9095 + }, + { + "start": 5949.68, + "end": 5950.58, + "probability": 0.6023 + }, + { + "start": 5951.36, + "end": 5952.06, + "probability": 0.9113 + }, + { + "start": 5952.94, + "end": 5954.28, + "probability": 0.9446 + }, + { + "start": 5954.84, + "end": 5957.7, + "probability": 0.8209 + }, + { + "start": 5957.98, + "end": 5959.46, + "probability": 0.6177 + }, + { + "start": 5960.1, + "end": 5961.18, + "probability": 0.4982 + }, + { + "start": 5979.2, + "end": 5980.8, + "probability": 0.1166 + }, + { + "start": 5980.86, + "end": 5985.52, + "probability": 0.548 + }, + { + "start": 5985.86, + "end": 5989.0, + "probability": 0.8245 + }, + { + "start": 5989.02, + "end": 5993.14, + "probability": 0.8435 + }, + { + "start": 5993.94, + "end": 5995.74, + "probability": 0.895 + }, + { + "start": 5996.52, + "end": 5997.14, + "probability": 0.7862 + }, + { + "start": 5997.46, + "end": 5998.02, + "probability": 0.3793 + }, + { + "start": 5998.17, + "end": 6000.6, + "probability": 0.9309 + }, + { + "start": 6000.9, + "end": 6002.1, + "probability": 0.5391 + }, + { + "start": 6002.68, + "end": 6003.64, + "probability": 0.6392 + }, + { + "start": 6003.92, + "end": 6004.39, + "probability": 0.6414 + }, + { + "start": 6005.04, + "end": 6006.0, + "probability": 0.9751 + }, + { + "start": 6006.6, + "end": 6007.6, + "probability": 0.8696 + }, + { + "start": 6008.08, + "end": 6008.24, + "probability": 0.0151 + }, + { + "start": 6008.32, + "end": 6008.98, + "probability": 0.4011 + }, + { + "start": 6009.58, + "end": 6010.46, + "probability": 0.5492 + }, + { + "start": 6011.1, + "end": 6011.64, + "probability": 0.3353 + }, + { + "start": 6012.46, + "end": 6012.9, + "probability": 0.8729 + }, + { + "start": 6013.84, + "end": 6016.08, + "probability": 0.7562 + }, + { + "start": 6016.08, + "end": 6018.7, + "probability": 0.9746 + }, + { + "start": 6018.86, + "end": 6021.56, + "probability": 0.9364 + }, + { + "start": 6021.84, + "end": 6024.54, + "probability": 0.7556 + }, + { + "start": 6024.66, + "end": 6024.82, + "probability": 0.1405 + }, + { + "start": 6024.82, + "end": 6025.31, + "probability": 0.5444 + }, + { + "start": 6025.56, + "end": 6025.88, + "probability": 0.7566 + }, + { + "start": 6026.04, + "end": 6027.04, + "probability": 0.5133 + }, + { + "start": 6027.1, + "end": 6027.28, + "probability": 0.407 + }, + { + "start": 6027.3, + "end": 6028.28, + "probability": 0.4736 + }, + { + "start": 6028.46, + "end": 6029.82, + "probability": 0.6628 + }, + { + "start": 6030.04, + "end": 6031.54, + "probability": 0.6154 + }, + { + "start": 6033.04, + "end": 6034.46, + "probability": 0.9526 + }, + { + "start": 6034.82, + "end": 6035.4, + "probability": 0.9509 + }, + { + "start": 6035.8, + "end": 6038.22, + "probability": 0.9185 + }, + { + "start": 6038.81, + "end": 6039.94, + "probability": 0.6855 + }, + { + "start": 6040.88, + "end": 6042.36, + "probability": 0.9976 + }, + { + "start": 6042.78, + "end": 6045.06, + "probability": 0.7927 + }, + { + "start": 6045.56, + "end": 6048.75, + "probability": 0.8101 + }, + { + "start": 6049.32, + "end": 6052.52, + "probability": 0.9438 + }, + { + "start": 6052.6, + "end": 6053.5, + "probability": 0.985 + }, + { + "start": 6053.78, + "end": 6054.16, + "probability": 0.5941 + }, + { + "start": 6054.4, + "end": 6058.42, + "probability": 0.98 + }, + { + "start": 6058.42, + "end": 6058.92, + "probability": 0.0626 + }, + { + "start": 6059.28, + "end": 6061.08, + "probability": 0.8418 + }, + { + "start": 6061.64, + "end": 6064.0, + "probability": 0.9231 + }, + { + "start": 6064.22, + "end": 6066.66, + "probability": 0.9939 + }, + { + "start": 6067.78, + "end": 6069.62, + "probability": 0.778 + }, + { + "start": 6070.18, + "end": 6070.24, + "probability": 0.2608 + }, + { + "start": 6070.24, + "end": 6071.88, + "probability": 0.6584 + }, + { + "start": 6072.4, + "end": 6073.28, + "probability": 0.8879 + }, + { + "start": 6073.68, + "end": 6076.24, + "probability": 0.967 + }, + { + "start": 6076.32, + "end": 6076.98, + "probability": 0.5641 + }, + { + "start": 6077.1, + "end": 6077.32, + "probability": 0.9329 + }, + { + "start": 6077.52, + "end": 6077.66, + "probability": 0.5982 + }, + { + "start": 6077.76, + "end": 6078.18, + "probability": 0.8213 + }, + { + "start": 6081.56, + "end": 6082.0, + "probability": 0.5606 + }, + { + "start": 6082.0, + "end": 6083.4, + "probability": 0.7236 + }, + { + "start": 6083.52, + "end": 6085.14, + "probability": 0.7455 + }, + { + "start": 6085.4, + "end": 6086.68, + "probability": 0.9808 + }, + { + "start": 6086.82, + "end": 6087.68, + "probability": 0.8128 + }, + { + "start": 6087.88, + "end": 6089.34, + "probability": 0.8218 + }, + { + "start": 6089.94, + "end": 6091.84, + "probability": 0.9508 + }, + { + "start": 6092.0, + "end": 6093.78, + "probability": 0.9016 + }, + { + "start": 6094.12, + "end": 6098.06, + "probability": 0.9565 + }, + { + "start": 6098.46, + "end": 6099.26, + "probability": 0.7626 + }, + { + "start": 6099.84, + "end": 6099.96, + "probability": 0.2317 + }, + { + "start": 6099.96, + "end": 6101.98, + "probability": 0.9822 + }, + { + "start": 6102.34, + "end": 6103.44, + "probability": 0.696 + }, + { + "start": 6104.16, + "end": 6106.76, + "probability": 0.8088 + }, + { + "start": 6115.6, + "end": 6115.78, + "probability": 0.569 + }, + { + "start": 6116.3, + "end": 6116.98, + "probability": 0.8469 + }, + { + "start": 6117.56, + "end": 6118.24, + "probability": 0.934 + }, + { + "start": 6118.78, + "end": 6119.24, + "probability": 0.2902 + }, + { + "start": 6120.24, + "end": 6123.76, + "probability": 0.8438 + }, + { + "start": 6124.84, + "end": 6125.12, + "probability": 0.5276 + }, + { + "start": 6125.82, + "end": 6129.24, + "probability": 0.7584 + }, + { + "start": 6130.34, + "end": 6131.5, + "probability": 0.997 + }, + { + "start": 6131.6, + "end": 6132.31, + "probability": 0.9976 + }, + { + "start": 6132.5, + "end": 6134.01, + "probability": 0.774 + }, + { + "start": 6134.62, + "end": 6136.54, + "probability": 0.997 + }, + { + "start": 6136.96, + "end": 6140.44, + "probability": 0.8896 + }, + { + "start": 6141.56, + "end": 6141.56, + "probability": 0.8198 + }, + { + "start": 6142.44, + "end": 6142.82, + "probability": 0.9518 + }, + { + "start": 6143.56, + "end": 6145.18, + "probability": 0.9946 + }, + { + "start": 6145.86, + "end": 6147.36, + "probability": 0.9182 + }, + { + "start": 6148.02, + "end": 6149.36, + "probability": 0.7386 + }, + { + "start": 6149.92, + "end": 6150.9, + "probability": 0.9195 + }, + { + "start": 6151.46, + "end": 6152.18, + "probability": 0.7174 + }, + { + "start": 6152.76, + "end": 6153.8, + "probability": 0.908 + }, + { + "start": 6154.34, + "end": 6154.88, + "probability": 0.5709 + }, + { + "start": 6155.46, + "end": 6155.94, + "probability": 0.9624 + }, + { + "start": 6156.64, + "end": 6157.12, + "probability": 0.9216 + }, + { + "start": 6157.2, + "end": 6158.32, + "probability": 0.9639 + }, + { + "start": 6158.8, + "end": 6159.0, + "probability": 0.5654 + }, + { + "start": 6160.62, + "end": 6162.2, + "probability": 0.901 + }, + { + "start": 6163.52, + "end": 6166.38, + "probability": 0.9261 + }, + { + "start": 6166.58, + "end": 6169.22, + "probability": 0.7572 + }, + { + "start": 6169.44, + "end": 6171.74, + "probability": 0.7758 + }, + { + "start": 6171.94, + "end": 6175.68, + "probability": 0.9616 + }, + { + "start": 6177.24, + "end": 6178.06, + "probability": 0.4047 + }, + { + "start": 6178.36, + "end": 6178.36, + "probability": 0.6894 + }, + { + "start": 6178.5, + "end": 6182.2, + "probability": 0.8793 + }, + { + "start": 6182.56, + "end": 6183.56, + "probability": 0.9538 + }, + { + "start": 6184.66, + "end": 6187.64, + "probability": 0.0259 + }, + { + "start": 6188.98, + "end": 6189.22, + "probability": 0.0923 + }, + { + "start": 6189.22, + "end": 6189.22, + "probability": 0.0798 + }, + { + "start": 6189.22, + "end": 6192.02, + "probability": 0.1347 + }, + { + "start": 6192.94, + "end": 6193.2, + "probability": 0.3706 + }, + { + "start": 6193.36, + "end": 6195.6, + "probability": 0.9722 + }, + { + "start": 6196.46, + "end": 6197.42, + "probability": 0.9707 + }, + { + "start": 6198.34, + "end": 6199.94, + "probability": 0.9943 + }, + { + "start": 6200.68, + "end": 6202.62, + "probability": 0.8949 + }, + { + "start": 6203.32, + "end": 6204.78, + "probability": 0.5622 + }, + { + "start": 6205.34, + "end": 6205.98, + "probability": 0.9346 + }, + { + "start": 6206.84, + "end": 6208.34, + "probability": 0.9438 + }, + { + "start": 6208.74, + "end": 6210.0, + "probability": 0.7437 + }, + { + "start": 6210.44, + "end": 6211.22, + "probability": 0.7395 + }, + { + "start": 6211.32, + "end": 6213.76, + "probability": 0.8195 + }, + { + "start": 6214.04, + "end": 6214.42, + "probability": 0.7168 + }, + { + "start": 6214.9, + "end": 6219.14, + "probability": 0.9956 + }, + { + "start": 6219.66, + "end": 6222.02, + "probability": 0.9924 + }, + { + "start": 6222.1, + "end": 6224.54, + "probability": 0.9207 + }, + { + "start": 6225.0, + "end": 6225.68, + "probability": 0.7598 + }, + { + "start": 6226.33, + "end": 6231.13, + "probability": 0.9045 + }, + { + "start": 6231.98, + "end": 6232.1, + "probability": 0.5915 + }, + { + "start": 6232.16, + "end": 6234.3, + "probability": 0.7164 + }, + { + "start": 6234.98, + "end": 6235.9, + "probability": 0.7322 + }, + { + "start": 6236.64, + "end": 6238.3, + "probability": 0.9151 + }, + { + "start": 6238.4, + "end": 6238.98, + "probability": 0.4824 + }, + { + "start": 6239.54, + "end": 6245.86, + "probability": 0.9083 + }, + { + "start": 6247.58, + "end": 6249.78, + "probability": 0.7549 + }, + { + "start": 6249.92, + "end": 6251.86, + "probability": 0.2354 + }, + { + "start": 6252.38, + "end": 6252.76, + "probability": 0.2066 + }, + { + "start": 6252.76, + "end": 6253.68, + "probability": 0.3753 + }, + { + "start": 6253.96, + "end": 6254.75, + "probability": 0.6594 + }, + { + "start": 6255.58, + "end": 6255.92, + "probability": 0.4697 + }, + { + "start": 6256.32, + "end": 6257.62, + "probability": 0.6869 + }, + { + "start": 6257.76, + "end": 6260.8, + "probability": 0.9485 + }, + { + "start": 6260.86, + "end": 6262.18, + "probability": 0.8977 + }, + { + "start": 6262.7, + "end": 6264.46, + "probability": 0.9756 + }, + { + "start": 6265.0, + "end": 6265.77, + "probability": 0.8931 + }, + { + "start": 6266.08, + "end": 6266.78, + "probability": 0.8725 + }, + { + "start": 6267.3, + "end": 6268.18, + "probability": 0.9119 + }, + { + "start": 6268.84, + "end": 6273.19, + "probability": 0.8692 + }, + { + "start": 6274.22, + "end": 6277.18, + "probability": 0.8208 + }, + { + "start": 6277.54, + "end": 6282.64, + "probability": 0.9907 + }, + { + "start": 6283.22, + "end": 6284.79, + "probability": 0.9889 + }, + { + "start": 6285.2, + "end": 6287.6, + "probability": 0.9941 + }, + { + "start": 6287.6, + "end": 6292.18, + "probability": 0.9153 + }, + { + "start": 6292.76, + "end": 6296.78, + "probability": 0.9686 + }, + { + "start": 6297.08, + "end": 6299.04, + "probability": 0.9935 + }, + { + "start": 6299.36, + "end": 6301.44, + "probability": 0.9246 + }, + { + "start": 6301.7, + "end": 6301.9, + "probability": 0.7848 + }, + { + "start": 6302.18, + "end": 6302.78, + "probability": 0.3732 + }, + { + "start": 6303.02, + "end": 6305.86, + "probability": 0.8049 + }, + { + "start": 6318.8, + "end": 6321.66, + "probability": 0.7686 + }, + { + "start": 6322.9, + "end": 6325.2, + "probability": 0.5391 + }, + { + "start": 6325.68, + "end": 6328.5, + "probability": 0.9436 + }, + { + "start": 6329.86, + "end": 6332.14, + "probability": 0.9031 + }, + { + "start": 6332.82, + "end": 6333.34, + "probability": 0.9961 + }, + { + "start": 6334.62, + "end": 6336.72, + "probability": 0.9973 + }, + { + "start": 6336.88, + "end": 6337.76, + "probability": 0.6988 + }, + { + "start": 6338.72, + "end": 6340.42, + "probability": 0.968 + }, + { + "start": 6340.96, + "end": 6342.38, + "probability": 0.7696 + }, + { + "start": 6343.3, + "end": 6344.82, + "probability": 0.9509 + }, + { + "start": 6344.94, + "end": 6345.3, + "probability": 0.7341 + }, + { + "start": 6345.62, + "end": 6348.18, + "probability": 0.9321 + }, + { + "start": 6348.46, + "end": 6349.84, + "probability": 0.8308 + }, + { + "start": 6350.44, + "end": 6352.02, + "probability": 0.8838 + }, + { + "start": 6352.58, + "end": 6354.14, + "probability": 0.814 + }, + { + "start": 6354.4, + "end": 6355.56, + "probability": 0.9217 + }, + { + "start": 6356.38, + "end": 6357.94, + "probability": 0.8795 + }, + { + "start": 6358.84, + "end": 6359.86, + "probability": 0.8897 + }, + { + "start": 6362.28, + "end": 6362.34, + "probability": 0.0126 + }, + { + "start": 6362.34, + "end": 6362.34, + "probability": 0.0424 + }, + { + "start": 6362.34, + "end": 6362.88, + "probability": 0.342 + }, + { + "start": 6363.86, + "end": 6367.6, + "probability": 0.7991 + }, + { + "start": 6367.84, + "end": 6372.34, + "probability": 0.7727 + }, + { + "start": 6373.52, + "end": 6377.02, + "probability": 0.7512 + }, + { + "start": 6377.18, + "end": 6377.38, + "probability": 0.4769 + }, + { + "start": 6378.26, + "end": 6380.36, + "probability": 0.4252 + }, + { + "start": 6380.52, + "end": 6380.52, + "probability": 0.4688 + }, + { + "start": 6380.6, + "end": 6381.02, + "probability": 0.6124 + }, + { + "start": 6381.16, + "end": 6381.4, + "probability": 0.4343 + }, + { + "start": 6382.28, + "end": 6383.94, + "probability": 0.9301 + }, + { + "start": 6384.44, + "end": 6387.56, + "probability": 0.9007 + }, + { + "start": 6388.58, + "end": 6391.14, + "probability": 0.7355 + }, + { + "start": 6391.9, + "end": 6393.06, + "probability": 0.9599 + }, + { + "start": 6393.88, + "end": 6396.82, + "probability": 0.9292 + }, + { + "start": 6397.54, + "end": 6400.02, + "probability": 0.8105 + }, + { + "start": 6401.26, + "end": 6403.06, + "probability": 0.999 + }, + { + "start": 6404.08, + "end": 6405.08, + "probability": 0.9826 + }, + { + "start": 6405.96, + "end": 6407.92, + "probability": 0.7838 + }, + { + "start": 6408.92, + "end": 6410.88, + "probability": 0.9977 + }, + { + "start": 6411.62, + "end": 6412.26, + "probability": 0.6844 + }, + { + "start": 6413.1, + "end": 6413.62, + "probability": 0.9053 + }, + { + "start": 6414.48, + "end": 6416.27, + "probability": 0.9702 + }, + { + "start": 6417.06, + "end": 6417.96, + "probability": 0.9301 + }, + { + "start": 6418.82, + "end": 6419.44, + "probability": 0.6975 + }, + { + "start": 6420.2, + "end": 6420.2, + "probability": 0.0038 + }, + { + "start": 6420.96, + "end": 6421.12, + "probability": 0.9657 + }, + { + "start": 6422.02, + "end": 6424.86, + "probability": 0.96 + }, + { + "start": 6425.38, + "end": 6425.5, + "probability": 0.6078 + }, + { + "start": 6425.58, + "end": 6425.74, + "probability": 0.7936 + }, + { + "start": 6425.8, + "end": 6427.06, + "probability": 0.4748 + }, + { + "start": 6427.34, + "end": 6431.82, + "probability": 0.7473 + }, + { + "start": 6431.92, + "end": 6434.2, + "probability": 0.7922 + }, + { + "start": 6435.44, + "end": 6439.74, + "probability": 0.9738 + }, + { + "start": 6440.34, + "end": 6442.08, + "probability": 0.9805 + }, + { + "start": 6442.7, + "end": 6443.78, + "probability": 0.7403 + }, + { + "start": 6445.3, + "end": 6447.32, + "probability": 0.9885 + }, + { + "start": 6448.06, + "end": 6449.72, + "probability": 0.7375 + }, + { + "start": 6449.74, + "end": 6450.5, + "probability": 0.7005 + }, + { + "start": 6450.76, + "end": 6452.02, + "probability": 0.8203 + }, + { + "start": 6452.74, + "end": 6455.9, + "probability": 0.8245 + }, + { + "start": 6456.46, + "end": 6456.94, + "probability": 0.8606 + }, + { + "start": 6457.16, + "end": 6460.84, + "probability": 0.8441 + }, + { + "start": 6461.62, + "end": 6463.18, + "probability": 0.6641 + }, + { + "start": 6464.42, + "end": 6468.12, + "probability": 0.7689 + }, + { + "start": 6468.82, + "end": 6470.12, + "probability": 0.6486 + }, + { + "start": 6470.82, + "end": 6474.18, + "probability": 0.5233 + }, + { + "start": 6474.58, + "end": 6475.36, + "probability": 0.8658 + }, + { + "start": 6475.52, + "end": 6476.18, + "probability": 0.8 + }, + { + "start": 6477.1, + "end": 6478.16, + "probability": 0.9941 + }, + { + "start": 6479.06, + "end": 6482.64, + "probability": 0.1222 + }, + { + "start": 6482.74, + "end": 6485.09, + "probability": 0.9614 + }, + { + "start": 6486.42, + "end": 6488.9, + "probability": 0.9604 + }, + { + "start": 6489.6, + "end": 6492.42, + "probability": 0.9759 + }, + { + "start": 6493.04, + "end": 6494.38, + "probability": 0.5957 + }, + { + "start": 6495.1, + "end": 6496.05, + "probability": 0.7957 + }, + { + "start": 6497.24, + "end": 6500.19, + "probability": 0.7253 + }, + { + "start": 6501.58, + "end": 6505.32, + "probability": 0.9357 + }, + { + "start": 6506.06, + "end": 6508.1, + "probability": 0.949 + }, + { + "start": 6508.98, + "end": 6511.08, + "probability": 0.6031 + }, + { + "start": 6512.26, + "end": 6513.76, + "probability": 0.8274 + }, + { + "start": 6514.68, + "end": 6518.38, + "probability": 0.7625 + }, + { + "start": 6519.28, + "end": 6522.58, + "probability": 0.958 + }, + { + "start": 6523.54, + "end": 6525.96, + "probability": 0.6787 + }, + { + "start": 6527.06, + "end": 6528.4, + "probability": 0.9947 + }, + { + "start": 6529.4, + "end": 6530.68, + "probability": 0.9602 + }, + { + "start": 6532.02, + "end": 6533.34, + "probability": 0.9924 + }, + { + "start": 6534.16, + "end": 6534.44, + "probability": 0.5938 + }, + { + "start": 6535.46, + "end": 6535.58, + "probability": 0.1534 + }, + { + "start": 6535.58, + "end": 6535.72, + "probability": 0.0812 + }, + { + "start": 6535.84, + "end": 6537.4, + "probability": 0.8813 + }, + { + "start": 6538.08, + "end": 6539.58, + "probability": 0.9983 + }, + { + "start": 6540.76, + "end": 6542.08, + "probability": 0.7871 + }, + { + "start": 6543.18, + "end": 6544.84, + "probability": 0.9997 + }, + { + "start": 6545.46, + "end": 6546.76, + "probability": 0.9992 + }, + { + "start": 6547.4, + "end": 6549.18, + "probability": 0.9989 + }, + { + "start": 6551.14, + "end": 6553.88, + "probability": 0.8962 + }, + { + "start": 6554.62, + "end": 6555.68, + "probability": 0.9568 + }, + { + "start": 6556.52, + "end": 6560.16, + "probability": 0.7881 + }, + { + "start": 6560.22, + "end": 6562.02, + "probability": 0.7566 + }, + { + "start": 6562.28, + "end": 6563.5, + "probability": 0.6707 + }, + { + "start": 6564.06, + "end": 6566.4, + "probability": 0.8454 + }, + { + "start": 6566.92, + "end": 6570.42, + "probability": 0.9052 + }, + { + "start": 6571.08, + "end": 6571.82, + "probability": 0.9481 + }, + { + "start": 6572.3, + "end": 6576.0, + "probability": 0.9937 + }, + { + "start": 6576.78, + "end": 6577.54, + "probability": 0.6917 + }, + { + "start": 6578.38, + "end": 6580.82, + "probability": 0.8983 + }, + { + "start": 6582.0, + "end": 6582.45, + "probability": 0.8999 + }, + { + "start": 6583.18, + "end": 6586.66, + "probability": 0.8315 + }, + { + "start": 6587.1, + "end": 6587.62, + "probability": 0.9277 + }, + { + "start": 6588.02, + "end": 6588.92, + "probability": 0.7695 + }, + { + "start": 6589.74, + "end": 6590.3, + "probability": 0.5021 + }, + { + "start": 6592.04, + "end": 6593.38, + "probability": 0.8613 + }, + { + "start": 6594.04, + "end": 6597.02, + "probability": 0.8853 + }, + { + "start": 6597.68, + "end": 6599.5, + "probability": 0.9366 + }, + { + "start": 6599.82, + "end": 6600.3, + "probability": 0.7878 + }, + { + "start": 6600.36, + "end": 6602.34, + "probability": 0.6585 + }, + { + "start": 6602.42, + "end": 6604.7, + "probability": 0.7643 + }, + { + "start": 6605.38, + "end": 6608.86, + "probability": 0.9919 + }, + { + "start": 6609.56, + "end": 6612.64, + "probability": 0.6037 + }, + { + "start": 6612.86, + "end": 6614.39, + "probability": 0.8337 + }, + { + "start": 6614.6, + "end": 6615.26, + "probability": 0.5218 + }, + { + "start": 6615.34, + "end": 6616.92, + "probability": 0.5388 + }, + { + "start": 6617.76, + "end": 6619.14, + "probability": 0.4442 + }, + { + "start": 6619.3, + "end": 6622.18, + "probability": 0.9113 + }, + { + "start": 6622.9, + "end": 6625.1, + "probability": 0.9468 + }, + { + "start": 6625.34, + "end": 6628.1, + "probability": 0.8434 + }, + { + "start": 6629.08, + "end": 6630.34, + "probability": 0.9312 + }, + { + "start": 6630.4, + "end": 6631.28, + "probability": 0.8055 + }, + { + "start": 6631.52, + "end": 6634.6, + "probability": 0.9921 + }, + { + "start": 6635.02, + "end": 6636.28, + "probability": 0.8982 + }, + { + "start": 6636.44, + "end": 6637.6, + "probability": 0.9174 + }, + { + "start": 6638.92, + "end": 6642.46, + "probability": 0.9756 + }, + { + "start": 6642.56, + "end": 6643.94, + "probability": 0.9656 + }, + { + "start": 6644.48, + "end": 6647.22, + "probability": 0.9827 + }, + { + "start": 6647.22, + "end": 6651.06, + "probability": 0.9475 + }, + { + "start": 6651.42, + "end": 6652.72, + "probability": 0.7828 + }, + { + "start": 6652.94, + "end": 6653.68, + "probability": 0.6373 + }, + { + "start": 6654.18, + "end": 6654.82, + "probability": 0.8188 + }, + { + "start": 6655.2, + "end": 6655.74, + "probability": 0.6577 + }, + { + "start": 6655.86, + "end": 6656.8, + "probability": 0.9551 + }, + { + "start": 6657.38, + "end": 6658.84, + "probability": 0.9545 + }, + { + "start": 6659.46, + "end": 6662.24, + "probability": 0.9358 + }, + { + "start": 6662.76, + "end": 6662.86, + "probability": 0.7274 + }, + { + "start": 6663.52, + "end": 6665.1, + "probability": 0.9474 + }, + { + "start": 6666.54, + "end": 6666.8, + "probability": 0.2026 + }, + { + "start": 6666.88, + "end": 6670.92, + "probability": 0.7997 + }, + { + "start": 6671.34, + "end": 6676.02, + "probability": 0.9744 + }, + { + "start": 6676.18, + "end": 6679.94, + "probability": 0.9465 + }, + { + "start": 6680.98, + "end": 6684.12, + "probability": 0.9895 + }, + { + "start": 6684.18, + "end": 6686.02, + "probability": 0.9956 + }, + { + "start": 6686.14, + "end": 6689.66, + "probability": 0.9583 + }, + { + "start": 6690.22, + "end": 6693.84, + "probability": 0.9824 + }, + { + "start": 6694.16, + "end": 6696.3, + "probability": 0.9319 + }, + { + "start": 6698.04, + "end": 6698.8, + "probability": 0.837 + }, + { + "start": 6699.0, + "end": 6704.44, + "probability": 0.8369 + }, + { + "start": 6704.58, + "end": 6705.12, + "probability": 0.5782 + }, + { + "start": 6705.18, + "end": 6705.6, + "probability": 0.8171 + }, + { + "start": 6705.88, + "end": 6706.6, + "probability": 0.9133 + }, + { + "start": 6706.78, + "end": 6707.02, + "probability": 0.7267 + }, + { + "start": 6707.12, + "end": 6708.28, + "probability": 0.8935 + }, + { + "start": 6708.68, + "end": 6709.68, + "probability": 0.7506 + }, + { + "start": 6710.66, + "end": 6712.72, + "probability": 0.7506 + }, + { + "start": 6715.24, + "end": 6716.96, + "probability": 0.9001 + }, + { + "start": 6717.02, + "end": 6719.38, + "probability": 0.9538 + }, + { + "start": 6719.72, + "end": 6723.18, + "probability": 0.9858 + }, + { + "start": 6723.82, + "end": 6724.3, + "probability": 0.3374 + }, + { + "start": 6724.44, + "end": 6725.9, + "probability": 0.2956 + }, + { + "start": 6725.96, + "end": 6726.7, + "probability": 0.7638 + }, + { + "start": 6726.82, + "end": 6729.67, + "probability": 0.9766 + }, + { + "start": 6730.6, + "end": 6732.04, + "probability": 0.2916 + }, + { + "start": 6732.96, + "end": 6735.63, + "probability": 0.9666 + }, + { + "start": 6736.26, + "end": 6741.56, + "probability": 0.9919 + }, + { + "start": 6741.64, + "end": 6743.04, + "probability": 0.9973 + }, + { + "start": 6744.6, + "end": 6744.92, + "probability": 0.2362 + }, + { + "start": 6744.92, + "end": 6744.92, + "probability": 0.2902 + }, + { + "start": 6744.92, + "end": 6747.5, + "probability": 0.865 + }, + { + "start": 6748.8, + "end": 6752.1, + "probability": 0.0813 + }, + { + "start": 6752.4, + "end": 6754.2, + "probability": 0.3822 + }, + { + "start": 6754.76, + "end": 6756.02, + "probability": 0.1319 + }, + { + "start": 6756.02, + "end": 6757.78, + "probability": 0.7819 + }, + { + "start": 6757.86, + "end": 6758.44, + "probability": 0.709 + }, + { + "start": 6759.04, + "end": 6759.26, + "probability": 0.0884 + }, + { + "start": 6759.52, + "end": 6761.56, + "probability": 0.7666 + }, + { + "start": 6761.9, + "end": 6764.72, + "probability": 0.8294 + }, + { + "start": 6765.22, + "end": 6766.02, + "probability": 0.7773 + }, + { + "start": 6767.04, + "end": 6767.42, + "probability": 0.5728 + }, + { + "start": 6774.34, + "end": 6778.42, + "probability": 0.285 + }, + { + "start": 6779.26, + "end": 6787.76, + "probability": 0.001 + }, + { + "start": 6792.12, + "end": 6794.34, + "probability": 0.0438 + }, + { + "start": 6799.7, + "end": 6800.34, + "probability": 0.0088 + }, + { + "start": 6800.36, + "end": 6803.252, + "probability": 0.0 + } + ], + "segments_count": 2700, + "words_count": 12672, + "avg_words_per_segment": 4.6933, + "avg_segment_duration": 1.3537, + "avg_words_per_minute": 111.7585, + "plenum_id": "36674", + "duration": 6803.24, + "title": null, + "plenum_date": "2014-04-29" +} \ No newline at end of file