diff --git "a/48468/metadata.json" "b/48468/metadata.json" new file mode 100644--- /dev/null +++ "b/48468/metadata.json" @@ -0,0 +1,52387 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "48468", + "quality_score": 0.9058, + "per_segment_quality_scores": [ + { + "start": 90.08, + "end": 90.66, + "probability": 0.1625 + }, + { + "start": 90.9, + "end": 91.8, + "probability": 0.6792 + }, + { + "start": 92.04, + "end": 97.5, + "probability": 0.9215 + }, + { + "start": 97.5, + "end": 101.62, + "probability": 0.9932 + }, + { + "start": 101.92, + "end": 103.04, + "probability": 0.7251 + }, + { + "start": 103.16, + "end": 105.76, + "probability": 0.854 + }, + { + "start": 105.94, + "end": 106.84, + "probability": 0.6196 + }, + { + "start": 107.58, + "end": 111.08, + "probability": 0.7812 + }, + { + "start": 111.26, + "end": 111.42, + "probability": 0.0037 + }, + { + "start": 134.9, + "end": 135.96, + "probability": 0.0729 + }, + { + "start": 136.87, + "end": 138.9, + "probability": 0.0415 + }, + { + "start": 138.92, + "end": 141.55, + "probability": 0.0529 + }, + { + "start": 144.52, + "end": 149.58, + "probability": 0.0573 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.32, + "end": 252.68, + "probability": 0.9486 + }, + { + "start": 253.36, + "end": 256.5, + "probability": 0.8419 + }, + { + "start": 257.62, + "end": 258.6, + "probability": 0.8311 + }, + { + "start": 259.24, + "end": 261.08, + "probability": 0.657 + }, + { + "start": 261.62, + "end": 263.5, + "probability": 0.8763 + }, + { + "start": 264.22, + "end": 265.32, + "probability": 0.952 + }, + { + "start": 266.12, + "end": 267.82, + "probability": 0.9401 + }, + { + "start": 268.56, + "end": 269.66, + "probability": 0.9078 + }, + { + "start": 270.46, + "end": 272.98, + "probability": 0.8894 + }, + { + "start": 273.72, + "end": 276.76, + "probability": 0.944 + }, + { + "start": 277.62, + "end": 278.6, + "probability": 0.8295 + }, + { + "start": 279.12, + "end": 280.46, + "probability": 0.4945 + }, + { + "start": 281.1, + "end": 281.92, + "probability": 0.6358 + }, + { + "start": 282.7, + "end": 283.14, + "probability": 0.8932 + }, + { + "start": 283.68, + "end": 284.76, + "probability": 0.8511 + }, + { + "start": 285.36, + "end": 287.46, + "probability": 0.9071 + }, + { + "start": 288.08, + "end": 288.84, + "probability": 0.7831 + }, + { + "start": 289.74, + "end": 292.34, + "probability": 0.9039 + }, + { + "start": 293.14, + "end": 295.32, + "probability": 0.9749 + }, + { + "start": 296.78, + "end": 300.36, + "probability": 0.7885 + }, + { + "start": 301.46, + "end": 303.06, + "probability": 0.7315 + }, + { + "start": 303.56, + "end": 306.02, + "probability": 0.9927 + }, + { + "start": 306.02, + "end": 308.96, + "probability": 0.9906 + }, + { + "start": 310.0, + "end": 310.28, + "probability": 0.7385 + }, + { + "start": 310.86, + "end": 313.88, + "probability": 0.8065 + }, + { + "start": 314.48, + "end": 315.26, + "probability": 0.199 + }, + { + "start": 315.4, + "end": 320.48, + "probability": 0.8436 + }, + { + "start": 321.02, + "end": 327.06, + "probability": 0.9856 + }, + { + "start": 329.48, + "end": 332.12, + "probability": 0.9207 + }, + { + "start": 332.36, + "end": 336.34, + "probability": 0.9292 + }, + { + "start": 336.82, + "end": 337.66, + "probability": 0.9199 + }, + { + "start": 337.76, + "end": 340.68, + "probability": 0.9975 + }, + { + "start": 341.04, + "end": 345.06, + "probability": 0.9215 + }, + { + "start": 345.1, + "end": 346.34, + "probability": 0.4942 + }, + { + "start": 346.68, + "end": 347.17, + "probability": 0.9863 + }, + { + "start": 347.98, + "end": 350.46, + "probability": 0.9909 + }, + { + "start": 351.4, + "end": 352.82, + "probability": 0.7577 + }, + { + "start": 352.86, + "end": 354.89, + "probability": 0.9928 + }, + { + "start": 354.94, + "end": 360.76, + "probability": 0.9932 + }, + { + "start": 361.4, + "end": 363.1, + "probability": 0.7626 + }, + { + "start": 363.98, + "end": 366.08, + "probability": 0.9678 + }, + { + "start": 366.82, + "end": 369.1, + "probability": 0.7482 + }, + { + "start": 369.6, + "end": 372.0, + "probability": 0.91 + }, + { + "start": 372.36, + "end": 374.6, + "probability": 0.9655 + }, + { + "start": 375.3, + "end": 377.36, + "probability": 0.979 + }, + { + "start": 377.42, + "end": 380.36, + "probability": 0.8032 + }, + { + "start": 380.62, + "end": 382.7, + "probability": 0.8369 + }, + { + "start": 382.82, + "end": 384.79, + "probability": 0.9917 + }, + { + "start": 385.16, + "end": 386.74, + "probability": 0.9385 + }, + { + "start": 386.88, + "end": 389.5, + "probability": 0.7935 + }, + { + "start": 390.06, + "end": 394.08, + "probability": 0.9103 + }, + { + "start": 394.52, + "end": 396.16, + "probability": 0.926 + }, + { + "start": 396.6, + "end": 398.54, + "probability": 0.6467 + }, + { + "start": 398.74, + "end": 401.29, + "probability": 0.9451 + }, + { + "start": 402.32, + "end": 404.32, + "probability": 0.9424 + }, + { + "start": 404.4, + "end": 406.0, + "probability": 0.8889 + }, + { + "start": 406.08, + "end": 406.44, + "probability": 0.8464 + }, + { + "start": 406.52, + "end": 407.98, + "probability": 0.7178 + }, + { + "start": 408.12, + "end": 410.16, + "probability": 0.9565 + }, + { + "start": 410.62, + "end": 411.64, + "probability": 0.6224 + }, + { + "start": 412.0, + "end": 413.66, + "probability": 0.9434 + }, + { + "start": 414.58, + "end": 417.06, + "probability": 0.9809 + }, + { + "start": 417.52, + "end": 421.06, + "probability": 0.9027 + }, + { + "start": 421.46, + "end": 422.34, + "probability": 0.8541 + }, + { + "start": 423.2, + "end": 428.76, + "probability": 0.9672 + }, + { + "start": 429.32, + "end": 430.35, + "probability": 0.999 + }, + { + "start": 431.54, + "end": 436.96, + "probability": 0.9514 + }, + { + "start": 437.4, + "end": 439.08, + "probability": 0.6495 + }, + { + "start": 439.26, + "end": 442.74, + "probability": 0.8306 + }, + { + "start": 443.28, + "end": 445.58, + "probability": 0.9803 + }, + { + "start": 446.18, + "end": 449.34, + "probability": 0.0253 + }, + { + "start": 449.34, + "end": 450.64, + "probability": 0.459 + }, + { + "start": 451.16, + "end": 453.4, + "probability": 0.2584 + }, + { + "start": 453.4, + "end": 453.68, + "probability": 0.282 + }, + { + "start": 453.96, + "end": 457.94, + "probability": 0.8489 + }, + { + "start": 458.02, + "end": 463.92, + "probability": 0.7989 + }, + { + "start": 464.04, + "end": 467.22, + "probability": 0.9462 + }, + { + "start": 467.38, + "end": 468.32, + "probability": 0.142 + }, + { + "start": 468.51, + "end": 470.98, + "probability": 0.6289 + }, + { + "start": 471.08, + "end": 474.34, + "probability": 0.6671 + }, + { + "start": 475.0, + "end": 476.62, + "probability": 0.6742 + }, + { + "start": 477.02, + "end": 477.88, + "probability": 0.5181 + }, + { + "start": 478.18, + "end": 480.64, + "probability": 0.9297 + }, + { + "start": 481.08, + "end": 484.12, + "probability": 0.9282 + }, + { + "start": 484.44, + "end": 485.76, + "probability": 0.8597 + }, + { + "start": 486.28, + "end": 487.96, + "probability": 0.9675 + }, + { + "start": 488.38, + "end": 489.22, + "probability": 0.9473 + }, + { + "start": 489.84, + "end": 492.6, + "probability": 0.7438 + }, + { + "start": 492.64, + "end": 494.2, + "probability": 0.9733 + }, + { + "start": 494.8, + "end": 495.82, + "probability": 0.6436 + }, + { + "start": 496.24, + "end": 497.7, + "probability": 0.807 + }, + { + "start": 497.82, + "end": 498.66, + "probability": 0.7236 + }, + { + "start": 498.96, + "end": 501.88, + "probability": 0.7379 + }, + { + "start": 502.34, + "end": 503.42, + "probability": 0.7364 + }, + { + "start": 503.48, + "end": 505.4, + "probability": 0.9567 + }, + { + "start": 505.98, + "end": 506.89, + "probability": 0.9951 + }, + { + "start": 507.84, + "end": 508.3, + "probability": 0.6047 + }, + { + "start": 508.52, + "end": 514.02, + "probability": 0.964 + }, + { + "start": 515.14, + "end": 519.12, + "probability": 0.9941 + }, + { + "start": 519.92, + "end": 524.48, + "probability": 0.6844 + }, + { + "start": 525.34, + "end": 525.98, + "probability": 0.6087 + }, + { + "start": 526.52, + "end": 532.66, + "probability": 0.9779 + }, + { + "start": 534.66, + "end": 537.26, + "probability": 0.8361 + }, + { + "start": 537.32, + "end": 538.0, + "probability": 0.7332 + }, + { + "start": 539.5, + "end": 539.6, + "probability": 0.6475 + }, + { + "start": 540.12, + "end": 540.96, + "probability": 0.6344 + }, + { + "start": 541.62, + "end": 546.46, + "probability": 0.9751 + }, + { + "start": 546.6, + "end": 550.36, + "probability": 0.9636 + }, + { + "start": 552.36, + "end": 562.48, + "probability": 0.4891 + }, + { + "start": 562.48, + "end": 562.48, + "probability": 0.055 + }, + { + "start": 562.48, + "end": 566.86, + "probability": 0.6016 + }, + { + "start": 567.02, + "end": 567.2, + "probability": 0.3861 + }, + { + "start": 567.44, + "end": 569.4, + "probability": 0.4237 + }, + { + "start": 570.16, + "end": 571.78, + "probability": 0.2935 + }, + { + "start": 572.36, + "end": 572.46, + "probability": 0.2352 + }, + { + "start": 575.72, + "end": 575.8, + "probability": 0.0519 + }, + { + "start": 575.8, + "end": 579.3, + "probability": 0.6744 + }, + { + "start": 580.74, + "end": 583.44, + "probability": 0.7635 + }, + { + "start": 583.66, + "end": 586.72, + "probability": 0.7496 + }, + { + "start": 587.34, + "end": 592.04, + "probability": 0.9573 + }, + { + "start": 592.14, + "end": 592.84, + "probability": 0.5 + }, + { + "start": 593.32, + "end": 598.44, + "probability": 0.5031 + }, + { + "start": 599.5, + "end": 603.0, + "probability": 0.0826 + }, + { + "start": 603.56, + "end": 604.14, + "probability": 0.0772 + }, + { + "start": 604.26, + "end": 605.0, + "probability": 0.4658 + }, + { + "start": 605.78, + "end": 607.84, + "probability": 0.0839 + }, + { + "start": 607.88, + "end": 609.08, + "probability": 0.0188 + }, + { + "start": 609.62, + "end": 611.2, + "probability": 0.7081 + }, + { + "start": 611.28, + "end": 614.34, + "probability": 0.6611 + }, + { + "start": 615.56, + "end": 620.94, + "probability": 0.6994 + }, + { + "start": 621.7, + "end": 625.48, + "probability": 0.4082 + }, + { + "start": 625.5, + "end": 627.24, + "probability": 0.9265 + }, + { + "start": 627.28, + "end": 630.34, + "probability": 0.7935 + }, + { + "start": 630.38, + "end": 634.88, + "probability": 0.9359 + }, + { + "start": 635.42, + "end": 641.92, + "probability": 0.8344 + }, + { + "start": 643.86, + "end": 647.78, + "probability": 0.9067 + }, + { + "start": 649.64, + "end": 656.46, + "probability": 0.8678 + }, + { + "start": 656.84, + "end": 661.28, + "probability": 0.8705 + }, + { + "start": 662.7, + "end": 667.36, + "probability": 0.8528 + }, + { + "start": 667.72, + "end": 671.02, + "probability": 0.9421 + }, + { + "start": 676.38, + "end": 678.28, + "probability": 0.6501 + }, + { + "start": 678.3, + "end": 678.3, + "probability": 0.3675 + }, + { + "start": 678.3, + "end": 679.26, + "probability": 0.4698 + }, + { + "start": 679.42, + "end": 680.66, + "probability": 0.8431 + }, + { + "start": 680.66, + "end": 684.4, + "probability": 0.9226 + }, + { + "start": 684.56, + "end": 688.08, + "probability": 0.9963 + }, + { + "start": 688.16, + "end": 688.98, + "probability": 0.7545 + }, + { + "start": 689.36, + "end": 692.42, + "probability": 0.9881 + }, + { + "start": 692.52, + "end": 693.22, + "probability": 0.5786 + }, + { + "start": 693.4, + "end": 694.04, + "probability": 0.7912 + }, + { + "start": 694.44, + "end": 695.9, + "probability": 0.9772 + }, + { + "start": 696.08, + "end": 699.26, + "probability": 0.7429 + }, + { + "start": 699.3, + "end": 704.64, + "probability": 0.7606 + }, + { + "start": 705.0, + "end": 706.84, + "probability": 0.9802 + }, + { + "start": 708.76, + "end": 711.74, + "probability": 0.9009 + }, + { + "start": 711.9, + "end": 714.76, + "probability": 0.5744 + }, + { + "start": 714.9, + "end": 722.08, + "probability": 0.9132 + }, + { + "start": 722.14, + "end": 722.52, + "probability": 0.6541 + }, + { + "start": 722.96, + "end": 723.76, + "probability": 0.8385 + }, + { + "start": 724.28, + "end": 728.74, + "probability": 0.7179 + }, + { + "start": 729.92, + "end": 739.34, + "probability": 0.7947 + }, + { + "start": 739.34, + "end": 747.22, + "probability": 0.9513 + }, + { + "start": 747.7, + "end": 749.6, + "probability": 0.9226 + }, + { + "start": 750.0, + "end": 750.72, + "probability": 0.6929 + }, + { + "start": 750.92, + "end": 751.69, + "probability": 0.7831 + }, + { + "start": 752.14, + "end": 752.5, + "probability": 0.4653 + }, + { + "start": 752.68, + "end": 753.16, + "probability": 0.8022 + }, + { + "start": 753.22, + "end": 754.31, + "probability": 0.9697 + }, + { + "start": 754.48, + "end": 755.98, + "probability": 0.797 + }, + { + "start": 756.5, + "end": 758.1, + "probability": 0.9761 + }, + { + "start": 758.98, + "end": 761.2, + "probability": 0.9503 + }, + { + "start": 761.94, + "end": 764.52, + "probability": 0.8092 + }, + { + "start": 765.26, + "end": 767.04, + "probability": 0.7314 + }, + { + "start": 767.24, + "end": 771.34, + "probability": 0.9132 + }, + { + "start": 771.64, + "end": 775.26, + "probability": 0.8485 + }, + { + "start": 775.6, + "end": 777.92, + "probability": 0.9372 + }, + { + "start": 778.14, + "end": 781.36, + "probability": 0.9865 + }, + { + "start": 781.48, + "end": 784.82, + "probability": 0.9905 + }, + { + "start": 785.28, + "end": 786.74, + "probability": 0.7138 + }, + { + "start": 786.88, + "end": 789.04, + "probability": 0.9723 + }, + { + "start": 789.14, + "end": 790.08, + "probability": 0.9381 + }, + { + "start": 790.42, + "end": 793.24, + "probability": 0.9523 + }, + { + "start": 793.84, + "end": 798.3, + "probability": 0.9568 + }, + { + "start": 798.74, + "end": 801.38, + "probability": 0.6311 + }, + { + "start": 801.9, + "end": 803.86, + "probability": 0.9118 + }, + { + "start": 804.02, + "end": 804.82, + "probability": 0.9278 + }, + { + "start": 804.9, + "end": 807.1, + "probability": 0.99 + }, + { + "start": 807.4, + "end": 809.84, + "probability": 0.9529 + }, + { + "start": 810.44, + "end": 814.0, + "probability": 0.981 + }, + { + "start": 814.1, + "end": 814.2, + "probability": 0.596 + }, + { + "start": 816.08, + "end": 816.18, + "probability": 0.4709 + }, + { + "start": 817.42, + "end": 818.84, + "probability": 0.7348 + }, + { + "start": 818.88, + "end": 820.15, + "probability": 0.436 + }, + { + "start": 820.82, + "end": 821.0, + "probability": 0.0389 + }, + { + "start": 821.06, + "end": 825.22, + "probability": 0.9052 + }, + { + "start": 825.58, + "end": 826.42, + "probability": 0.0378 + }, + { + "start": 826.72, + "end": 826.72, + "probability": 0.4761 + }, + { + "start": 826.82, + "end": 828.66, + "probability": 0.5317 + }, + { + "start": 828.78, + "end": 829.44, + "probability": 0.2377 + }, + { + "start": 829.52, + "end": 831.96, + "probability": 0.8143 + }, + { + "start": 832.06, + "end": 834.26, + "probability": 0.8552 + }, + { + "start": 834.32, + "end": 835.93, + "probability": 0.9005 + }, + { + "start": 836.72, + "end": 839.52, + "probability": 0.9428 + }, + { + "start": 840.24, + "end": 840.66, + "probability": 0.4641 + }, + { + "start": 841.16, + "end": 842.72, + "probability": 0.3998 + }, + { + "start": 843.18, + "end": 843.6, + "probability": 0.6934 + }, + { + "start": 847.06, + "end": 848.88, + "probability": 0.891 + }, + { + "start": 848.96, + "end": 851.66, + "probability": 0.9083 + }, + { + "start": 852.34, + "end": 855.58, + "probability": 0.9728 + }, + { + "start": 855.82, + "end": 857.42, + "probability": 0.9905 + }, + { + "start": 858.9, + "end": 860.14, + "probability": 0.9917 + }, + { + "start": 860.58, + "end": 862.42, + "probability": 0.8969 + }, + { + "start": 862.9, + "end": 865.38, + "probability": 0.9902 + }, + { + "start": 865.38, + "end": 868.4, + "probability": 0.8325 + }, + { + "start": 869.08, + "end": 873.34, + "probability": 0.624 + }, + { + "start": 873.9, + "end": 875.1, + "probability": 0.5263 + }, + { + "start": 886.02, + "end": 886.04, + "probability": 0.3107 + }, + { + "start": 886.04, + "end": 886.96, + "probability": 0.25 + }, + { + "start": 887.42, + "end": 888.18, + "probability": 0.6978 + }, + { + "start": 891.36, + "end": 894.76, + "probability": 0.9809 + }, + { + "start": 895.96, + "end": 899.72, + "probability": 0.9928 + }, + { + "start": 900.38, + "end": 901.58, + "probability": 0.8732 + }, + { + "start": 902.54, + "end": 904.78, + "probability": 0.9407 + }, + { + "start": 905.48, + "end": 907.86, + "probability": 0.7342 + }, + { + "start": 908.7, + "end": 911.6, + "probability": 0.8597 + }, + { + "start": 912.5, + "end": 915.48, + "probability": 0.6788 + }, + { + "start": 918.01, + "end": 920.82, + "probability": 0.59 + }, + { + "start": 920.86, + "end": 921.22, + "probability": 0.7458 + }, + { + "start": 921.46, + "end": 923.74, + "probability": 0.4373 + }, + { + "start": 924.8, + "end": 925.96, + "probability": 0.3943 + }, + { + "start": 926.94, + "end": 930.84, + "probability": 0.874 + }, + { + "start": 933.32, + "end": 933.58, + "probability": 0.5263 + }, + { + "start": 933.78, + "end": 940.5, + "probability": 0.866 + }, + { + "start": 940.96, + "end": 945.68, + "probability": 0.9696 + }, + { + "start": 945.74, + "end": 949.62, + "probability": 0.7411 + }, + { + "start": 950.56, + "end": 950.98, + "probability": 0.5822 + }, + { + "start": 951.12, + "end": 953.44, + "probability": 0.8858 + }, + { + "start": 953.48, + "end": 958.6, + "probability": 0.884 + }, + { + "start": 958.6, + "end": 963.6, + "probability": 0.9767 + }, + { + "start": 964.84, + "end": 967.64, + "probability": 0.9 + }, + { + "start": 967.8, + "end": 969.42, + "probability": 0.9626 + }, + { + "start": 969.6, + "end": 970.94, + "probability": 0.9961 + }, + { + "start": 971.74, + "end": 972.9, + "probability": 0.8818 + }, + { + "start": 973.94, + "end": 976.44, + "probability": 0.9976 + }, + { + "start": 977.5, + "end": 978.06, + "probability": 0.6335 + }, + { + "start": 978.12, + "end": 980.36, + "probability": 0.9598 + }, + { + "start": 980.76, + "end": 983.32, + "probability": 0.7871 + }, + { + "start": 983.98, + "end": 988.4, + "probability": 0.9862 + }, + { + "start": 989.48, + "end": 996.32, + "probability": 0.9673 + }, + { + "start": 996.86, + "end": 1003.84, + "probability": 0.9954 + }, + { + "start": 1004.04, + "end": 1007.54, + "probability": 0.9852 + }, + { + "start": 1008.5, + "end": 1017.34, + "probability": 0.6945 + }, + { + "start": 1017.94, + "end": 1022.8, + "probability": 0.7174 + }, + { + "start": 1023.8, + "end": 1028.46, + "probability": 0.9976 + }, + { + "start": 1028.52, + "end": 1028.88, + "probability": 0.8188 + }, + { + "start": 1029.02, + "end": 1029.32, + "probability": 0.8523 + }, + { + "start": 1029.42, + "end": 1031.46, + "probability": 0.7721 + }, + { + "start": 1032.26, + "end": 1034.82, + "probability": 0.9625 + }, + { + "start": 1036.02, + "end": 1037.54, + "probability": 0.8412 + }, + { + "start": 1037.62, + "end": 1041.94, + "probability": 0.969 + }, + { + "start": 1042.76, + "end": 1045.64, + "probability": 0.9983 + }, + { + "start": 1045.64, + "end": 1048.08, + "probability": 0.9941 + }, + { + "start": 1048.5, + "end": 1049.46, + "probability": 0.5067 + }, + { + "start": 1050.18, + "end": 1058.02, + "probability": 0.9805 + }, + { + "start": 1059.12, + "end": 1059.86, + "probability": 0.945 + }, + { + "start": 1060.3, + "end": 1060.96, + "probability": 0.9532 + }, + { + "start": 1061.5, + "end": 1062.14, + "probability": 0.73 + }, + { + "start": 1062.74, + "end": 1067.02, + "probability": 0.9343 + }, + { + "start": 1068.54, + "end": 1073.26, + "probability": 0.9838 + }, + { + "start": 1073.34, + "end": 1077.18, + "probability": 0.9811 + }, + { + "start": 1077.24, + "end": 1079.26, + "probability": 0.8442 + }, + { + "start": 1080.0, + "end": 1083.56, + "probability": 0.9895 + }, + { + "start": 1085.8, + "end": 1086.36, + "probability": 0.8684 + }, + { + "start": 1086.9, + "end": 1090.88, + "probability": 0.9904 + }, + { + "start": 1091.0, + "end": 1096.68, + "probability": 0.9938 + }, + { + "start": 1096.74, + "end": 1097.88, + "probability": 0.5556 + }, + { + "start": 1098.0, + "end": 1098.46, + "probability": 0.5974 + }, + { + "start": 1099.18, + "end": 1105.3, + "probability": 0.9929 + }, + { + "start": 1106.24, + "end": 1109.94, + "probability": 0.9653 + }, + { + "start": 1110.68, + "end": 1118.94, + "probability": 0.9984 + }, + { + "start": 1118.94, + "end": 1124.62, + "probability": 0.9937 + }, + { + "start": 1124.66, + "end": 1125.08, + "probability": 0.8644 + }, + { + "start": 1125.78, + "end": 1127.96, + "probability": 0.9298 + }, + { + "start": 1128.56, + "end": 1130.54, + "probability": 0.9466 + }, + { + "start": 1132.15, + "end": 1134.22, + "probability": 0.9454 + }, + { + "start": 1134.72, + "end": 1139.68, + "probability": 0.8081 + }, + { + "start": 1139.68, + "end": 1140.88, + "probability": 0.5304 + }, + { + "start": 1141.48, + "end": 1142.26, + "probability": 0.3594 + }, + { + "start": 1143.24, + "end": 1143.62, + "probability": 0.4654 + }, + { + "start": 1143.74, + "end": 1144.82, + "probability": 0.972 + }, + { + "start": 1144.98, + "end": 1146.68, + "probability": 0.9696 + }, + { + "start": 1146.76, + "end": 1149.32, + "probability": 0.9386 + }, + { + "start": 1149.36, + "end": 1153.3, + "probability": 0.998 + }, + { + "start": 1154.1, + "end": 1157.12, + "probability": 0.9869 + }, + { + "start": 1158.2, + "end": 1159.2, + "probability": 0.8752 + }, + { + "start": 1159.62, + "end": 1166.3, + "probability": 0.9963 + }, + { + "start": 1167.54, + "end": 1170.76, + "probability": 0.9886 + }, + { + "start": 1170.84, + "end": 1175.0, + "probability": 0.9432 + }, + { + "start": 1175.14, + "end": 1177.42, + "probability": 0.9574 + }, + { + "start": 1177.48, + "end": 1180.94, + "probability": 0.972 + }, + { + "start": 1180.94, + "end": 1183.84, + "probability": 0.9949 + }, + { + "start": 1184.6, + "end": 1185.3, + "probability": 0.934 + }, + { + "start": 1185.98, + "end": 1191.74, + "probability": 0.9926 + }, + { + "start": 1191.94, + "end": 1193.94, + "probability": 0.9968 + }, + { + "start": 1194.48, + "end": 1197.42, + "probability": 0.9972 + }, + { + "start": 1197.9, + "end": 1198.16, + "probability": 0.644 + }, + { + "start": 1198.28, + "end": 1198.7, + "probability": 0.9146 + }, + { + "start": 1199.02, + "end": 1203.58, + "probability": 0.7826 + }, + { + "start": 1204.36, + "end": 1205.04, + "probability": 0.5007 + }, + { + "start": 1205.28, + "end": 1207.72, + "probability": 0.9863 + }, + { + "start": 1207.72, + "end": 1211.36, + "probability": 0.9985 + }, + { + "start": 1211.6, + "end": 1214.92, + "probability": 0.8516 + }, + { + "start": 1215.86, + "end": 1216.14, + "probability": 0.3096 + }, + { + "start": 1216.78, + "end": 1218.5, + "probability": 0.8746 + }, + { + "start": 1219.02, + "end": 1223.47, + "probability": 0.9932 + }, + { + "start": 1224.66, + "end": 1226.72, + "probability": 0.9793 + }, + { + "start": 1228.8, + "end": 1231.66, + "probability": 0.9985 + }, + { + "start": 1231.66, + "end": 1234.7, + "probability": 0.9997 + }, + { + "start": 1235.78, + "end": 1241.28, + "probability": 0.9982 + }, + { + "start": 1241.28, + "end": 1246.48, + "probability": 0.9951 + }, + { + "start": 1247.16, + "end": 1252.2, + "probability": 0.9171 + }, + { + "start": 1253.0, + "end": 1256.8, + "probability": 0.833 + }, + { + "start": 1257.64, + "end": 1259.52, + "probability": 0.9102 + }, + { + "start": 1259.74, + "end": 1262.42, + "probability": 0.9622 + }, + { + "start": 1262.5, + "end": 1264.42, + "probability": 0.9971 + }, + { + "start": 1264.96, + "end": 1270.18, + "probability": 0.9896 + }, + { + "start": 1270.42, + "end": 1274.4, + "probability": 0.9717 + }, + { + "start": 1274.98, + "end": 1277.72, + "probability": 0.9616 + }, + { + "start": 1278.1, + "end": 1281.54, + "probability": 0.9829 + }, + { + "start": 1282.46, + "end": 1283.5, + "probability": 0.682 + }, + { + "start": 1283.68, + "end": 1286.84, + "probability": 0.952 + }, + { + "start": 1287.12, + "end": 1287.48, + "probability": 0.891 + }, + { + "start": 1292.08, + "end": 1292.8, + "probability": 0.9786 + }, + { + "start": 1292.94, + "end": 1297.94, + "probability": 0.9722 + }, + { + "start": 1298.42, + "end": 1299.48, + "probability": 0.7674 + }, + { + "start": 1299.66, + "end": 1300.26, + "probability": 0.8203 + }, + { + "start": 1300.7, + "end": 1304.58, + "probability": 0.986 + }, + { + "start": 1304.58, + "end": 1307.4, + "probability": 0.9624 + }, + { + "start": 1308.94, + "end": 1309.42, + "probability": 0.7443 + }, + { + "start": 1309.52, + "end": 1312.26, + "probability": 0.9788 + }, + { + "start": 1312.9, + "end": 1315.2, + "probability": 0.6643 + }, + { + "start": 1316.06, + "end": 1317.56, + "probability": 0.7879 + }, + { + "start": 1317.7, + "end": 1320.72, + "probability": 0.9624 + }, + { + "start": 1322.14, + "end": 1323.88, + "probability": 0.929 + }, + { + "start": 1325.5, + "end": 1328.66, + "probability": 0.921 + }, + { + "start": 1329.18, + "end": 1331.76, + "probability": 0.6754 + }, + { + "start": 1332.38, + "end": 1335.04, + "probability": 0.9531 + }, + { + "start": 1335.14, + "end": 1336.14, + "probability": 0.8471 + }, + { + "start": 1336.64, + "end": 1338.96, + "probability": 0.8553 + }, + { + "start": 1339.98, + "end": 1341.46, + "probability": 0.9739 + }, + { + "start": 1341.64, + "end": 1343.88, + "probability": 0.9121 + }, + { + "start": 1343.96, + "end": 1346.94, + "probability": 0.9184 + }, + { + "start": 1347.1, + "end": 1347.38, + "probability": 0.8579 + }, + { + "start": 1347.88, + "end": 1353.5, + "probability": 0.59 + }, + { + "start": 1353.58, + "end": 1354.34, + "probability": 0.4737 + }, + { + "start": 1354.64, + "end": 1357.4, + "probability": 0.8905 + }, + { + "start": 1357.68, + "end": 1359.18, + "probability": 0.9711 + }, + { + "start": 1359.8, + "end": 1364.36, + "probability": 0.8284 + }, + { + "start": 1364.98, + "end": 1368.48, + "probability": 0.7384 + }, + { + "start": 1368.94, + "end": 1371.86, + "probability": 0.7879 + }, + { + "start": 1371.86, + "end": 1376.12, + "probability": 0.8919 + }, + { + "start": 1376.7, + "end": 1377.6, + "probability": 0.6271 + }, + { + "start": 1378.78, + "end": 1384.12, + "probability": 0.9964 + }, + { + "start": 1385.02, + "end": 1386.2, + "probability": 0.4524 + }, + { + "start": 1386.28, + "end": 1387.78, + "probability": 0.9526 + }, + { + "start": 1387.98, + "end": 1393.0, + "probability": 0.9668 + }, + { + "start": 1393.16, + "end": 1395.12, + "probability": 0.9927 + }, + { + "start": 1395.16, + "end": 1395.42, + "probability": 0.7074 + }, + { + "start": 1395.48, + "end": 1398.24, + "probability": 0.8613 + }, + { + "start": 1398.92, + "end": 1399.76, + "probability": 0.8385 + }, + { + "start": 1407.82, + "end": 1408.32, + "probability": 0.6809 + }, + { + "start": 1408.98, + "end": 1410.32, + "probability": 0.8654 + }, + { + "start": 1411.36, + "end": 1418.8, + "probability": 0.9717 + }, + { + "start": 1418.98, + "end": 1424.58, + "probability": 0.9738 + }, + { + "start": 1424.78, + "end": 1427.02, + "probability": 0.9943 + }, + { + "start": 1427.44, + "end": 1431.74, + "probability": 0.8223 + }, + { + "start": 1431.74, + "end": 1434.8, + "probability": 0.9717 + }, + { + "start": 1434.8, + "end": 1439.02, + "probability": 0.9515 + }, + { + "start": 1439.26, + "end": 1439.64, + "probability": 0.8436 + }, + { + "start": 1439.9, + "end": 1440.34, + "probability": 0.8087 + }, + { + "start": 1440.4, + "end": 1441.8, + "probability": 0.9954 + }, + { + "start": 1442.08, + "end": 1444.18, + "probability": 0.5843 + }, + { + "start": 1444.22, + "end": 1446.44, + "probability": 0.7581 + }, + { + "start": 1447.22, + "end": 1449.38, + "probability": 0.4523 + }, + { + "start": 1449.44, + "end": 1453.12, + "probability": 0.6197 + }, + { + "start": 1453.22, + "end": 1455.12, + "probability": 0.9405 + }, + { + "start": 1455.64, + "end": 1456.36, + "probability": 0.6 + }, + { + "start": 1456.9, + "end": 1457.64, + "probability": 0.6964 + }, + { + "start": 1457.8, + "end": 1459.42, + "probability": 0.6479 + }, + { + "start": 1459.5, + "end": 1460.34, + "probability": 0.908 + }, + { + "start": 1460.44, + "end": 1463.94, + "probability": 0.9434 + }, + { + "start": 1464.1, + "end": 1464.84, + "probability": 0.6679 + }, + { + "start": 1465.38, + "end": 1467.26, + "probability": 0.9199 + }, + { + "start": 1467.4, + "end": 1474.96, + "probability": 0.953 + }, + { + "start": 1475.06, + "end": 1480.96, + "probability": 0.5099 + }, + { + "start": 1480.96, + "end": 1486.16, + "probability": 0.4552 + }, + { + "start": 1486.16, + "end": 1488.56, + "probability": 0.6639 + }, + { + "start": 1488.64, + "end": 1489.16, + "probability": 0.4015 + }, + { + "start": 1489.66, + "end": 1490.85, + "probability": 0.5659 + }, + { + "start": 1491.22, + "end": 1495.21, + "probability": 0.7073 + }, + { + "start": 1495.34, + "end": 1498.3, + "probability": 0.9824 + }, + { + "start": 1498.58, + "end": 1500.2, + "probability": 0.4044 + }, + { + "start": 1500.46, + "end": 1501.82, + "probability": 0.566 + }, + { + "start": 1501.82, + "end": 1504.28, + "probability": 0.7585 + }, + { + "start": 1504.84, + "end": 1508.12, + "probability": 0.2992 + }, + { + "start": 1508.62, + "end": 1509.22, + "probability": 0.7325 + }, + { + "start": 1509.34, + "end": 1509.98, + "probability": 0.5841 + }, + { + "start": 1510.36, + "end": 1513.3, + "probability": 0.7788 + }, + { + "start": 1513.38, + "end": 1514.12, + "probability": 0.4423 + }, + { + "start": 1514.32, + "end": 1514.88, + "probability": 0.9072 + }, + { + "start": 1514.98, + "end": 1516.43, + "probability": 0.6996 + }, + { + "start": 1517.06, + "end": 1519.22, + "probability": 0.9034 + }, + { + "start": 1519.5, + "end": 1520.82, + "probability": 0.6312 + }, + { + "start": 1520.96, + "end": 1521.72, + "probability": 0.7757 + }, + { + "start": 1522.24, + "end": 1526.26, + "probability": 0.7283 + }, + { + "start": 1526.26, + "end": 1529.68, + "probability": 0.9501 + }, + { + "start": 1530.0, + "end": 1531.06, + "probability": 0.8434 + }, + { + "start": 1531.32, + "end": 1531.6, + "probability": 0.7491 + }, + { + "start": 1533.12, + "end": 1533.5, + "probability": 0.4801 + }, + { + "start": 1533.58, + "end": 1535.76, + "probability": 0.7333 + }, + { + "start": 1536.88, + "end": 1538.08, + "probability": 0.6739 + }, + { + "start": 1538.12, + "end": 1539.24, + "probability": 0.8705 + }, + { + "start": 1539.28, + "end": 1540.78, + "probability": 0.9496 + }, + { + "start": 1540.86, + "end": 1543.08, + "probability": 0.8479 + }, + { + "start": 1544.1, + "end": 1544.6, + "probability": 0.8682 + }, + { + "start": 1544.64, + "end": 1547.98, + "probability": 0.9985 + }, + { + "start": 1548.0, + "end": 1552.58, + "probability": 0.9985 + }, + { + "start": 1552.92, + "end": 1554.0, + "probability": 0.5596 + }, + { + "start": 1554.76, + "end": 1556.94, + "probability": 0.9341 + }, + { + "start": 1557.04, + "end": 1562.36, + "probability": 0.984 + }, + { + "start": 1562.36, + "end": 1565.84, + "probability": 0.9985 + }, + { + "start": 1565.84, + "end": 1571.4, + "probability": 0.9406 + }, + { + "start": 1572.22, + "end": 1577.82, + "probability": 0.6911 + }, + { + "start": 1577.82, + "end": 1582.04, + "probability": 0.9968 + }, + { + "start": 1582.82, + "end": 1586.18, + "probability": 0.9067 + }, + { + "start": 1586.58, + "end": 1587.5, + "probability": 0.6134 + }, + { + "start": 1588.36, + "end": 1590.94, + "probability": 0.7345 + }, + { + "start": 1591.7, + "end": 1595.08, + "probability": 0.9937 + }, + { + "start": 1595.08, + "end": 1598.04, + "probability": 0.9961 + }, + { + "start": 1598.36, + "end": 1603.7, + "probability": 0.9976 + }, + { + "start": 1604.26, + "end": 1608.0, + "probability": 0.8801 + }, + { + "start": 1608.52, + "end": 1612.44, + "probability": 0.9907 + }, + { + "start": 1612.44, + "end": 1615.94, + "probability": 0.8696 + }, + { + "start": 1616.58, + "end": 1618.5, + "probability": 0.9964 + }, + { + "start": 1619.24, + "end": 1619.84, + "probability": 0.3299 + }, + { + "start": 1620.28, + "end": 1621.02, + "probability": 0.6892 + }, + { + "start": 1621.18, + "end": 1624.68, + "probability": 0.6055 + }, + { + "start": 1624.68, + "end": 1630.74, + "probability": 0.7142 + }, + { + "start": 1631.18, + "end": 1633.68, + "probability": 0.9941 + }, + { + "start": 1634.7, + "end": 1637.92, + "probability": 0.9862 + }, + { + "start": 1638.72, + "end": 1640.06, + "probability": 0.755 + }, + { + "start": 1641.68, + "end": 1646.88, + "probability": 0.9972 + }, + { + "start": 1647.52, + "end": 1653.46, + "probability": 0.9769 + }, + { + "start": 1653.56, + "end": 1656.52, + "probability": 0.9668 + }, + { + "start": 1657.4, + "end": 1657.68, + "probability": 0.5568 + }, + { + "start": 1657.82, + "end": 1659.7, + "probability": 0.9143 + }, + { + "start": 1659.82, + "end": 1662.16, + "probability": 0.9177 + }, + { + "start": 1663.0, + "end": 1668.2, + "probability": 0.9933 + }, + { + "start": 1668.92, + "end": 1673.84, + "probability": 0.9634 + }, + { + "start": 1674.46, + "end": 1678.26, + "probability": 0.8796 + }, + { + "start": 1678.96, + "end": 1682.02, + "probability": 0.1955 + }, + { + "start": 1682.02, + "end": 1683.37, + "probability": 0.6897 + }, + { + "start": 1683.96, + "end": 1689.6, + "probability": 0.9808 + }, + { + "start": 1690.34, + "end": 1693.7, + "probability": 0.6635 + }, + { + "start": 1693.86, + "end": 1696.1, + "probability": 0.8342 + }, + { + "start": 1696.18, + "end": 1697.84, + "probability": 0.7942 + }, + { + "start": 1698.36, + "end": 1699.26, + "probability": 0.7352 + }, + { + "start": 1700.0, + "end": 1703.0, + "probability": 0.9126 + }, + { + "start": 1703.4, + "end": 1704.56, + "probability": 0.8529 + }, + { + "start": 1705.32, + "end": 1705.7, + "probability": 0.6388 + }, + { + "start": 1706.28, + "end": 1707.44, + "probability": 0.6277 + }, + { + "start": 1707.46, + "end": 1708.62, + "probability": 0.2389 + }, + { + "start": 1708.68, + "end": 1709.74, + "probability": 0.0581 + }, + { + "start": 1711.16, + "end": 1715.76, + "probability": 0.9832 + }, + { + "start": 1716.74, + "end": 1719.72, + "probability": 0.9977 + }, + { + "start": 1720.32, + "end": 1727.28, + "probability": 0.9965 + }, + { + "start": 1727.76, + "end": 1733.76, + "probability": 0.9687 + }, + { + "start": 1733.88, + "end": 1735.46, + "probability": 0.6389 + }, + { + "start": 1736.51, + "end": 1743.64, + "probability": 0.9181 + }, + { + "start": 1744.02, + "end": 1744.16, + "probability": 0.1148 + }, + { + "start": 1744.16, + "end": 1744.16, + "probability": 0.0305 + }, + { + "start": 1744.16, + "end": 1745.89, + "probability": 0.7137 + }, + { + "start": 1746.4, + "end": 1750.14, + "probability": 0.7949 + }, + { + "start": 1751.06, + "end": 1753.46, + "probability": 0.7507 + }, + { + "start": 1753.64, + "end": 1755.5, + "probability": 0.8061 + }, + { + "start": 1755.52, + "end": 1756.8, + "probability": 0.7437 + }, + { + "start": 1756.92, + "end": 1758.32, + "probability": 0.5162 + }, + { + "start": 1758.5, + "end": 1763.86, + "probability": 0.9836 + }, + { + "start": 1763.96, + "end": 1764.18, + "probability": 0.714 + }, + { + "start": 1764.44, + "end": 1767.64, + "probability": 0.2791 + }, + { + "start": 1768.86, + "end": 1772.68, + "probability": 0.7165 + }, + { + "start": 1773.8, + "end": 1777.6, + "probability": 0.9919 + }, + { + "start": 1777.76, + "end": 1781.52, + "probability": 0.9961 + }, + { + "start": 1786.22, + "end": 1786.22, + "probability": 0.0835 + }, + { + "start": 1798.7, + "end": 1801.44, + "probability": 0.0533 + }, + { + "start": 1801.98, + "end": 1807.84, + "probability": 0.0674 + }, + { + "start": 1816.68, + "end": 1818.1, + "probability": 0.0288 + }, + { + "start": 1890.78, + "end": 1890.84, + "probability": 0.1297 + }, + { + "start": 1890.84, + "end": 1894.86, + "probability": 0.9964 + }, + { + "start": 1914.98, + "end": 1915.5, + "probability": 0.0858 + }, + { + "start": 1917.74, + "end": 1919.26, + "probability": 0.0061 + }, + { + "start": 1920.74, + "end": 1928.44, + "probability": 0.3108 + }, + { + "start": 1937.6, + "end": 1938.58, + "probability": 0.0686 + }, + { + "start": 1938.58, + "end": 1938.68, + "probability": 0.1361 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2043.0, + "end": 2043.0, + "probability": 0.0 + }, + { + "start": 2044.68, + "end": 2045.88, + "probability": 0.1053 + }, + { + "start": 2046.44, + "end": 2046.92, + "probability": 0.6454 + }, + { + "start": 2048.46, + "end": 2049.61, + "probability": 0.8175 + }, + { + "start": 2050.14, + "end": 2055.56, + "probability": 0.9491 + }, + { + "start": 2056.36, + "end": 2057.22, + "probability": 0.7034 + }, + { + "start": 2058.0, + "end": 2064.28, + "probability": 0.9966 + }, + { + "start": 2084.72, + "end": 2084.86, + "probability": 0.1125 + }, + { + "start": 2097.02, + "end": 2097.54, + "probability": 0.5761 + }, + { + "start": 2099.04, + "end": 2103.56, + "probability": 0.8484 + }, + { + "start": 2104.5, + "end": 2106.34, + "probability": 0.8445 + }, + { + "start": 2107.32, + "end": 2109.38, + "probability": 0.9865 + }, + { + "start": 2110.74, + "end": 2111.6, + "probability": 0.9668 + }, + { + "start": 2112.12, + "end": 2112.68, + "probability": 0.972 + }, + { + "start": 2113.22, + "end": 2116.78, + "probability": 0.9772 + }, + { + "start": 2117.02, + "end": 2118.04, + "probability": 0.9709 + }, + { + "start": 2118.52, + "end": 2120.6, + "probability": 0.9631 + }, + { + "start": 2121.94, + "end": 2124.7, + "probability": 0.9725 + }, + { + "start": 2124.7, + "end": 2130.18, + "probability": 0.9889 + }, + { + "start": 2130.84, + "end": 2132.94, + "probability": 0.9447 + }, + { + "start": 2133.9, + "end": 2138.08, + "probability": 0.9855 + }, + { + "start": 2138.76, + "end": 2140.38, + "probability": 0.9283 + }, + { + "start": 2142.24, + "end": 2146.78, + "probability": 0.9644 + }, + { + "start": 2147.42, + "end": 2150.44, + "probability": 0.9938 + }, + { + "start": 2151.86, + "end": 2154.78, + "probability": 0.9771 + }, + { + "start": 2154.78, + "end": 2158.96, + "probability": 0.9832 + }, + { + "start": 2160.18, + "end": 2164.64, + "probability": 0.9503 + }, + { + "start": 2165.1, + "end": 2167.04, + "probability": 0.8359 + }, + { + "start": 2167.78, + "end": 2170.4, + "probability": 0.9703 + }, + { + "start": 2172.5, + "end": 2177.08, + "probability": 0.9953 + }, + { + "start": 2177.48, + "end": 2182.38, + "probability": 0.9991 + }, + { + "start": 2182.92, + "end": 2184.26, + "probability": 0.9796 + }, + { + "start": 2185.3, + "end": 2188.0, + "probability": 0.9968 + }, + { + "start": 2188.74, + "end": 2192.02, + "probability": 0.9712 + }, + { + "start": 2194.36, + "end": 2197.32, + "probability": 0.9834 + }, + { + "start": 2198.22, + "end": 2199.56, + "probability": 0.9863 + }, + { + "start": 2200.54, + "end": 2201.96, + "probability": 0.67 + }, + { + "start": 2202.48, + "end": 2205.54, + "probability": 0.863 + }, + { + "start": 2206.34, + "end": 2208.02, + "probability": 0.9787 + }, + { + "start": 2209.06, + "end": 2210.46, + "probability": 0.7618 + }, + { + "start": 2211.3, + "end": 2215.98, + "probability": 0.9087 + }, + { + "start": 2216.94, + "end": 2220.14, + "probability": 0.9657 + }, + { + "start": 2220.68, + "end": 2221.52, + "probability": 0.9676 + }, + { + "start": 2223.24, + "end": 2227.22, + "probability": 0.9812 + }, + { + "start": 2228.26, + "end": 2230.18, + "probability": 0.9961 + }, + { + "start": 2230.86, + "end": 2231.78, + "probability": 0.9578 + }, + { + "start": 2233.54, + "end": 2237.1, + "probability": 0.9362 + }, + { + "start": 2238.18, + "end": 2241.54, + "probability": 0.9963 + }, + { + "start": 2241.54, + "end": 2245.22, + "probability": 0.9812 + }, + { + "start": 2246.02, + "end": 2246.38, + "probability": 0.7447 + }, + { + "start": 2246.9, + "end": 2253.76, + "probability": 0.9902 + }, + { + "start": 2253.88, + "end": 2254.42, + "probability": 0.8734 + }, + { + "start": 2254.88, + "end": 2257.86, + "probability": 0.999 + }, + { + "start": 2258.94, + "end": 2261.78, + "probability": 0.9491 + }, + { + "start": 2262.86, + "end": 2265.92, + "probability": 0.9933 + }, + { + "start": 2266.7, + "end": 2268.66, + "probability": 0.9443 + }, + { + "start": 2269.82, + "end": 2273.36, + "probability": 0.9728 + }, + { + "start": 2273.94, + "end": 2274.72, + "probability": 0.6952 + }, + { + "start": 2275.46, + "end": 2276.96, + "probability": 0.9738 + }, + { + "start": 2278.12, + "end": 2280.56, + "probability": 0.8408 + }, + { + "start": 2281.02, + "end": 2283.22, + "probability": 0.8335 + }, + { + "start": 2283.86, + "end": 2284.58, + "probability": 0.8524 + }, + { + "start": 2285.1, + "end": 2288.26, + "probability": 0.9003 + }, + { + "start": 2289.14, + "end": 2292.7, + "probability": 0.9168 + }, + { + "start": 2293.38, + "end": 2296.4, + "probability": 0.8296 + }, + { + "start": 2296.92, + "end": 2299.0, + "probability": 0.9919 + }, + { + "start": 2299.76, + "end": 2301.86, + "probability": 0.6588 + }, + { + "start": 2302.64, + "end": 2303.06, + "probability": 0.5417 + }, + { + "start": 2303.72, + "end": 2306.14, + "probability": 0.4992 + }, + { + "start": 2307.19, + "end": 2310.7, + "probability": 0.98 + }, + { + "start": 2311.42, + "end": 2315.62, + "probability": 0.9053 + }, + { + "start": 2316.78, + "end": 2320.28, + "probability": 0.825 + }, + { + "start": 2321.84, + "end": 2322.86, + "probability": 0.7817 + }, + { + "start": 2324.22, + "end": 2326.48, + "probability": 0.9839 + }, + { + "start": 2327.98, + "end": 2332.98, + "probability": 0.9399 + }, + { + "start": 2334.26, + "end": 2339.04, + "probability": 0.9955 + }, + { + "start": 2340.72, + "end": 2342.34, + "probability": 0.9705 + }, + { + "start": 2342.68, + "end": 2344.74, + "probability": 0.883 + }, + { + "start": 2345.4, + "end": 2348.22, + "probability": 0.8149 + }, + { + "start": 2348.84, + "end": 2352.38, + "probability": 0.8498 + }, + { + "start": 2353.12, + "end": 2353.66, + "probability": 0.8293 + }, + { + "start": 2354.48, + "end": 2358.12, + "probability": 0.9813 + }, + { + "start": 2359.09, + "end": 2361.36, + "probability": 0.698 + }, + { + "start": 2361.86, + "end": 2364.52, + "probability": 0.823 + }, + { + "start": 2364.56, + "end": 2367.24, + "probability": 0.9451 + }, + { + "start": 2368.82, + "end": 2374.82, + "probability": 0.8926 + }, + { + "start": 2375.54, + "end": 2376.68, + "probability": 0.6668 + }, + { + "start": 2377.2, + "end": 2378.46, + "probability": 0.9114 + }, + { + "start": 2379.08, + "end": 2379.32, + "probability": 0.5576 + }, + { + "start": 2380.24, + "end": 2383.58, + "probability": 0.9456 + }, + { + "start": 2384.28, + "end": 2386.26, + "probability": 0.7254 + }, + { + "start": 2387.46, + "end": 2387.9, + "probability": 0.7611 + }, + { + "start": 2388.24, + "end": 2392.18, + "probability": 0.994 + }, + { + "start": 2392.18, + "end": 2395.08, + "probability": 0.9752 + }, + { + "start": 2395.66, + "end": 2398.52, + "probability": 0.9459 + }, + { + "start": 2399.56, + "end": 2400.52, + "probability": 0.5613 + }, + { + "start": 2401.04, + "end": 2402.34, + "probability": 0.967 + }, + { + "start": 2404.08, + "end": 2406.4, + "probability": 0.9478 + }, + { + "start": 2407.22, + "end": 2409.5, + "probability": 0.9766 + }, + { + "start": 2409.98, + "end": 2414.46, + "probability": 0.9573 + }, + { + "start": 2416.16, + "end": 2418.72, + "probability": 0.9995 + }, + { + "start": 2418.72, + "end": 2421.72, + "probability": 0.9562 + }, + { + "start": 2443.48, + "end": 2444.04, + "probability": 0.2918 + }, + { + "start": 2444.04, + "end": 2444.6, + "probability": 0.5283 + }, + { + "start": 2445.38, + "end": 2447.44, + "probability": 0.792 + }, + { + "start": 2448.4, + "end": 2451.76, + "probability": 0.9347 + }, + { + "start": 2452.34, + "end": 2453.74, + "probability": 0.8961 + }, + { + "start": 2454.9, + "end": 2459.44, + "probability": 0.9461 + }, + { + "start": 2460.4, + "end": 2462.56, + "probability": 0.9536 + }, + { + "start": 2463.5, + "end": 2467.08, + "probability": 0.9616 + }, + { + "start": 2467.92, + "end": 2470.6, + "probability": 0.8777 + }, + { + "start": 2471.56, + "end": 2472.46, + "probability": 0.9869 + }, + { + "start": 2473.54, + "end": 2474.3, + "probability": 0.9908 + }, + { + "start": 2475.76, + "end": 2477.78, + "probability": 0.9605 + }, + { + "start": 2479.12, + "end": 2480.96, + "probability": 0.9924 + }, + { + "start": 2482.28, + "end": 2484.02, + "probability": 0.9464 + }, + { + "start": 2485.32, + "end": 2486.14, + "probability": 0.6305 + }, + { + "start": 2488.52, + "end": 2490.56, + "probability": 0.9924 + }, + { + "start": 2491.76, + "end": 2493.6, + "probability": 0.9901 + }, + { + "start": 2493.7, + "end": 2501.18, + "probability": 0.9547 + }, + { + "start": 2501.34, + "end": 2505.28, + "probability": 0.8552 + }, + { + "start": 2505.58, + "end": 2506.96, + "probability": 0.9596 + }, + { + "start": 2507.24, + "end": 2507.8, + "probability": 0.8095 + }, + { + "start": 2508.86, + "end": 2511.88, + "probability": 0.9682 + }, + { + "start": 2512.32, + "end": 2513.54, + "probability": 0.9874 + }, + { + "start": 2513.98, + "end": 2515.34, + "probability": 0.9438 + }, + { + "start": 2515.96, + "end": 2517.36, + "probability": 0.974 + }, + { + "start": 2518.18, + "end": 2521.84, + "probability": 0.97 + }, + { + "start": 2522.78, + "end": 2524.06, + "probability": 0.9993 + }, + { + "start": 2525.08, + "end": 2526.08, + "probability": 0.9768 + }, + { + "start": 2526.64, + "end": 2529.06, + "probability": 0.9922 + }, + { + "start": 2529.66, + "end": 2530.66, + "probability": 0.999 + }, + { + "start": 2531.6, + "end": 2532.42, + "probability": 0.9714 + }, + { + "start": 2533.32, + "end": 2535.9, + "probability": 0.9465 + }, + { + "start": 2536.9, + "end": 2538.74, + "probability": 0.9969 + }, + { + "start": 2539.86, + "end": 2540.98, + "probability": 0.9094 + }, + { + "start": 2541.88, + "end": 2544.7, + "probability": 0.9288 + }, + { + "start": 2545.56, + "end": 2547.18, + "probability": 0.9954 + }, + { + "start": 2548.04, + "end": 2549.9, + "probability": 0.9785 + }, + { + "start": 2550.88, + "end": 2553.46, + "probability": 0.8849 + }, + { + "start": 2554.7, + "end": 2556.02, + "probability": 0.9753 + }, + { + "start": 2556.78, + "end": 2557.76, + "probability": 0.8512 + }, + { + "start": 2558.74, + "end": 2559.54, + "probability": 0.9732 + }, + { + "start": 2560.44, + "end": 2561.38, + "probability": 0.9554 + }, + { + "start": 2562.34, + "end": 2563.74, + "probability": 0.8971 + }, + { + "start": 2565.12, + "end": 2567.98, + "probability": 0.9078 + }, + { + "start": 2569.38, + "end": 2572.48, + "probability": 0.8539 + }, + { + "start": 2573.52, + "end": 2573.8, + "probability": 0.5747 + }, + { + "start": 2574.92, + "end": 2575.92, + "probability": 0.7892 + }, + { + "start": 2576.7, + "end": 2578.44, + "probability": 0.7737 + }, + { + "start": 2579.34, + "end": 2583.02, + "probability": 0.9623 + }, + { + "start": 2583.88, + "end": 2586.59, + "probability": 0.9798 + }, + { + "start": 2588.96, + "end": 2593.88, + "probability": 0.995 + }, + { + "start": 2594.96, + "end": 2597.62, + "probability": 0.9166 + }, + { + "start": 2598.98, + "end": 2601.68, + "probability": 0.9975 + }, + { + "start": 2602.74, + "end": 2606.02, + "probability": 0.9677 + }, + { + "start": 2607.0, + "end": 2612.6, + "probability": 0.9976 + }, + { + "start": 2613.86, + "end": 2615.06, + "probability": 0.9847 + }, + { + "start": 2616.42, + "end": 2620.88, + "probability": 0.9948 + }, + { + "start": 2621.62, + "end": 2624.16, + "probability": 0.9967 + }, + { + "start": 2625.06, + "end": 2627.6, + "probability": 0.9668 + }, + { + "start": 2628.36, + "end": 2629.62, + "probability": 0.9971 + }, + { + "start": 2630.54, + "end": 2632.08, + "probability": 0.9478 + }, + { + "start": 2633.18, + "end": 2635.98, + "probability": 0.9004 + }, + { + "start": 2637.0, + "end": 2638.28, + "probability": 0.9949 + }, + { + "start": 2638.96, + "end": 2639.4, + "probability": 0.9966 + }, + { + "start": 2640.72, + "end": 2642.22, + "probability": 0.9994 + }, + { + "start": 2643.24, + "end": 2646.14, + "probability": 0.9782 + }, + { + "start": 2647.18, + "end": 2647.64, + "probability": 0.7245 + }, + { + "start": 2648.78, + "end": 2650.04, + "probability": 0.9932 + }, + { + "start": 2650.74, + "end": 2652.7, + "probability": 0.9833 + }, + { + "start": 2652.92, + "end": 2654.24, + "probability": 0.9771 + }, + { + "start": 2654.3, + "end": 2655.92, + "probability": 0.9979 + }, + { + "start": 2655.98, + "end": 2657.0, + "probability": 0.9741 + }, + { + "start": 2657.8, + "end": 2659.34, + "probability": 0.9307 + }, + { + "start": 2660.7, + "end": 2663.51, + "probability": 0.9932 + }, + { + "start": 2664.1, + "end": 2667.68, + "probability": 0.9958 + }, + { + "start": 2669.1, + "end": 2670.38, + "probability": 0.727 + }, + { + "start": 2671.24, + "end": 2672.92, + "probability": 0.998 + }, + { + "start": 2673.62, + "end": 2674.98, + "probability": 0.9917 + }, + { + "start": 2676.18, + "end": 2677.24, + "probability": 0.6788 + }, + { + "start": 2677.92, + "end": 2678.72, + "probability": 0.8593 + }, + { + "start": 2680.5, + "end": 2683.28, + "probability": 0.9938 + }, + { + "start": 2684.08, + "end": 2685.46, + "probability": 0.9307 + }, + { + "start": 2686.34, + "end": 2687.94, + "probability": 0.7093 + }, + { + "start": 2688.74, + "end": 2690.04, + "probability": 0.9906 + }, + { + "start": 2691.8, + "end": 2693.3, + "probability": 0.9468 + }, + { + "start": 2694.08, + "end": 2698.9, + "probability": 0.9819 + }, + { + "start": 2700.2, + "end": 2701.36, + "probability": 0.9017 + }, + { + "start": 2702.88, + "end": 2707.36, + "probability": 0.984 + }, + { + "start": 2708.44, + "end": 2711.66, + "probability": 0.8558 + }, + { + "start": 2712.36, + "end": 2714.36, + "probability": 0.8959 + }, + { + "start": 2715.0, + "end": 2716.66, + "probability": 0.9819 + }, + { + "start": 2717.68, + "end": 2719.18, + "probability": 0.9792 + }, + { + "start": 2720.8, + "end": 2724.68, + "probability": 0.9961 + }, + { + "start": 2725.8, + "end": 2728.08, + "probability": 0.9998 + }, + { + "start": 2729.2, + "end": 2732.14, + "probability": 0.9948 + }, + { + "start": 2733.0, + "end": 2736.24, + "probability": 0.9867 + }, + { + "start": 2737.54, + "end": 2740.98, + "probability": 0.9192 + }, + { + "start": 2741.96, + "end": 2744.84, + "probability": 0.9924 + }, + { + "start": 2745.7, + "end": 2746.74, + "probability": 0.862 + }, + { + "start": 2747.9, + "end": 2748.62, + "probability": 0.8147 + }, + { + "start": 2749.5, + "end": 2752.12, + "probability": 0.9719 + }, + { + "start": 2752.86, + "end": 2755.88, + "probability": 0.946 + }, + { + "start": 2756.58, + "end": 2761.38, + "probability": 0.9951 + }, + { + "start": 2762.32, + "end": 2763.12, + "probability": 0.9197 + }, + { + "start": 2764.9, + "end": 2767.48, + "probability": 0.9883 + }, + { + "start": 2768.2, + "end": 2770.8, + "probability": 0.9057 + }, + { + "start": 2771.82, + "end": 2773.98, + "probability": 0.998 + }, + { + "start": 2773.98, + "end": 2777.44, + "probability": 0.9966 + }, + { + "start": 2778.56, + "end": 2780.73, + "probability": 0.9863 + }, + { + "start": 2782.02, + "end": 2782.84, + "probability": 0.8002 + }, + { + "start": 2783.88, + "end": 2786.72, + "probability": 0.9762 + }, + { + "start": 2789.82, + "end": 2795.26, + "probability": 0.9969 + }, + { + "start": 2796.26, + "end": 2799.48, + "probability": 0.962 + }, + { + "start": 2800.06, + "end": 2803.8, + "probability": 0.9045 + }, + { + "start": 2805.46, + "end": 2810.52, + "probability": 0.9588 + }, + { + "start": 2811.1, + "end": 2811.66, + "probability": 0.4989 + }, + { + "start": 2812.38, + "end": 2813.52, + "probability": 0.9961 + }, + { + "start": 2814.6, + "end": 2815.46, + "probability": 0.9766 + }, + { + "start": 2816.88, + "end": 2820.52, + "probability": 0.9955 + }, + { + "start": 2821.4, + "end": 2821.68, + "probability": 0.6392 + }, + { + "start": 2821.82, + "end": 2826.88, + "probability": 0.9942 + }, + { + "start": 2828.14, + "end": 2828.94, + "probability": 0.9883 + }, + { + "start": 2830.08, + "end": 2834.38, + "probability": 0.9817 + }, + { + "start": 2835.74, + "end": 2837.2, + "probability": 0.6313 + }, + { + "start": 2838.78, + "end": 2841.24, + "probability": 0.8529 + }, + { + "start": 2842.0, + "end": 2843.42, + "probability": 0.9805 + }, + { + "start": 2844.38, + "end": 2849.88, + "probability": 0.9199 + }, + { + "start": 2850.04, + "end": 2854.28, + "probability": 0.9362 + }, + { + "start": 2855.86, + "end": 2857.04, + "probability": 0.9613 + }, + { + "start": 2858.64, + "end": 2862.18, + "probability": 0.9396 + }, + { + "start": 2863.68, + "end": 2865.88, + "probability": 0.9896 + }, + { + "start": 2866.98, + "end": 2869.9, + "probability": 0.8923 + }, + { + "start": 2870.98, + "end": 2872.1, + "probability": 0.8175 + }, + { + "start": 2874.28, + "end": 2875.79, + "probability": 0.9952 + }, + { + "start": 2876.94, + "end": 2878.7, + "probability": 0.9683 + }, + { + "start": 2879.9, + "end": 2883.74, + "probability": 0.9796 + }, + { + "start": 2884.3, + "end": 2886.14, + "probability": 0.9904 + }, + { + "start": 2887.0, + "end": 2889.06, + "probability": 0.9892 + }, + { + "start": 2890.74, + "end": 2894.86, + "probability": 0.9982 + }, + { + "start": 2894.86, + "end": 2898.92, + "probability": 0.8645 + }, + { + "start": 2899.02, + "end": 2900.48, + "probability": 0.7819 + }, + { + "start": 2901.0, + "end": 2903.2, + "probability": 0.9963 + }, + { + "start": 2904.12, + "end": 2905.18, + "probability": 0.834 + }, + { + "start": 2906.72, + "end": 2909.78, + "probability": 0.9651 + }, + { + "start": 2909.84, + "end": 2913.38, + "probability": 0.9807 + }, + { + "start": 2914.32, + "end": 2918.24, + "probability": 0.9905 + }, + { + "start": 2918.48, + "end": 2919.38, + "probability": 0.5813 + }, + { + "start": 2920.08, + "end": 2921.18, + "probability": 0.7595 + }, + { + "start": 2922.16, + "end": 2923.65, + "probability": 0.6455 + }, + { + "start": 2924.92, + "end": 2927.28, + "probability": 0.9163 + }, + { + "start": 2928.04, + "end": 2930.93, + "probability": 0.955 + }, + { + "start": 2931.1, + "end": 2931.52, + "probability": 0.8344 + }, + { + "start": 2931.68, + "end": 2932.26, + "probability": 0.3647 + }, + { + "start": 2932.58, + "end": 2933.16, + "probability": 0.83 + }, + { + "start": 2934.6, + "end": 2938.64, + "probability": 0.995 + }, + { + "start": 2939.36, + "end": 2941.22, + "probability": 0.9907 + }, + { + "start": 2943.2, + "end": 2945.5, + "probability": 0.8247 + }, + { + "start": 2946.86, + "end": 2951.72, + "probability": 0.9133 + }, + { + "start": 2952.84, + "end": 2954.0, + "probability": 0.7401 + }, + { + "start": 2956.08, + "end": 2958.02, + "probability": 0.7904 + }, + { + "start": 2958.54, + "end": 2960.22, + "probability": 0.9413 + }, + { + "start": 2961.04, + "end": 2962.62, + "probability": 0.9223 + }, + { + "start": 2963.58, + "end": 2966.04, + "probability": 0.989 + }, + { + "start": 2966.9, + "end": 2967.76, + "probability": 0.9993 + }, + { + "start": 2968.54, + "end": 2973.66, + "probability": 0.9666 + }, + { + "start": 2974.76, + "end": 2980.16, + "probability": 0.992 + }, + { + "start": 2981.02, + "end": 2982.54, + "probability": 0.5524 + }, + { + "start": 2983.2, + "end": 2984.22, + "probability": 0.9474 + }, + { + "start": 2985.0, + "end": 2989.14, + "probability": 0.9961 + }, + { + "start": 2989.84, + "end": 2990.67, + "probability": 0.7742 + }, + { + "start": 2993.34, + "end": 2995.48, + "probability": 0.9556 + }, + { + "start": 2996.18, + "end": 2998.38, + "probability": 0.9619 + }, + { + "start": 2999.06, + "end": 3000.75, + "probability": 0.8575 + }, + { + "start": 3001.26, + "end": 3003.32, + "probability": 0.9624 + }, + { + "start": 3004.3, + "end": 3007.56, + "probability": 0.8226 + }, + { + "start": 3008.48, + "end": 3011.44, + "probability": 0.9467 + }, + { + "start": 3012.22, + "end": 3013.68, + "probability": 0.9703 + }, + { + "start": 3015.08, + "end": 3019.54, + "probability": 0.9935 + }, + { + "start": 3020.68, + "end": 3023.74, + "probability": 0.9087 + }, + { + "start": 3024.44, + "end": 3027.02, + "probability": 0.7874 + }, + { + "start": 3027.62, + "end": 3030.32, + "probability": 0.9103 + }, + { + "start": 3030.84, + "end": 3032.74, + "probability": 0.9829 + }, + { + "start": 3034.0, + "end": 3036.4, + "probability": 0.9977 + }, + { + "start": 3039.2, + "end": 3040.56, + "probability": 0.607 + }, + { + "start": 3041.8, + "end": 3043.74, + "probability": 0.9698 + }, + { + "start": 3044.78, + "end": 3045.78, + "probability": 0.834 + }, + { + "start": 3046.62, + "end": 3050.88, + "probability": 0.9918 + }, + { + "start": 3051.72, + "end": 3052.76, + "probability": 0.6772 + }, + { + "start": 3053.58, + "end": 3055.38, + "probability": 0.9697 + }, + { + "start": 3056.46, + "end": 3058.5, + "probability": 0.9836 + }, + { + "start": 3059.62, + "end": 3060.34, + "probability": 0.6721 + }, + { + "start": 3060.5, + "end": 3062.58, + "probability": 0.9974 + }, + { + "start": 3064.12, + "end": 3065.34, + "probability": 0.5743 + }, + { + "start": 3065.48, + "end": 3071.62, + "probability": 0.9964 + }, + { + "start": 3072.56, + "end": 3076.52, + "probability": 0.9974 + }, + { + "start": 3077.4, + "end": 3078.73, + "probability": 0.9238 + }, + { + "start": 3079.9, + "end": 3081.64, + "probability": 0.8627 + }, + { + "start": 3082.74, + "end": 3085.64, + "probability": 0.9414 + }, + { + "start": 3086.26, + "end": 3088.2, + "probability": 0.985 + }, + { + "start": 3089.16, + "end": 3090.72, + "probability": 0.9451 + }, + { + "start": 3091.82, + "end": 3093.22, + "probability": 0.9936 + }, + { + "start": 3093.96, + "end": 3095.48, + "probability": 0.7593 + }, + { + "start": 3096.42, + "end": 3098.72, + "probability": 0.9944 + }, + { + "start": 3099.54, + "end": 3103.22, + "probability": 0.9028 + }, + { + "start": 3104.2, + "end": 3108.96, + "probability": 0.9912 + }, + { + "start": 3109.68, + "end": 3112.62, + "probability": 0.9755 + }, + { + "start": 3113.54, + "end": 3118.18, + "probability": 0.9885 + }, + { + "start": 3119.24, + "end": 3120.46, + "probability": 0.9982 + }, + { + "start": 3121.04, + "end": 3122.78, + "probability": 0.9981 + }, + { + "start": 3123.54, + "end": 3124.9, + "probability": 0.9548 + }, + { + "start": 3126.02, + "end": 3128.22, + "probability": 0.9946 + }, + { + "start": 3128.94, + "end": 3133.1, + "probability": 0.9217 + }, + { + "start": 3134.1, + "end": 3136.85, + "probability": 0.8075 + }, + { + "start": 3137.16, + "end": 3137.72, + "probability": 0.9781 + }, + { + "start": 3138.1, + "end": 3140.7, + "probability": 0.6894 + }, + { + "start": 3141.2, + "end": 3144.9, + "probability": 0.9927 + }, + { + "start": 3145.84, + "end": 3148.8, + "probability": 0.9941 + }, + { + "start": 3150.24, + "end": 3154.74, + "probability": 0.9935 + }, + { + "start": 3155.36, + "end": 3158.14, + "probability": 0.9479 + }, + { + "start": 3159.56, + "end": 3161.9, + "probability": 0.9908 + }, + { + "start": 3162.64, + "end": 3166.66, + "probability": 0.9718 + }, + { + "start": 3168.22, + "end": 3172.52, + "probability": 0.999 + }, + { + "start": 3174.54, + "end": 3175.94, + "probability": 0.9994 + }, + { + "start": 3176.58, + "end": 3178.5, + "probability": 0.912 + }, + { + "start": 3179.78, + "end": 3182.18, + "probability": 0.9985 + }, + { + "start": 3183.88, + "end": 3184.84, + "probability": 0.9852 + }, + { + "start": 3186.18, + "end": 3187.12, + "probability": 0.8553 + }, + { + "start": 3187.98, + "end": 3191.74, + "probability": 0.9985 + }, + { + "start": 3193.28, + "end": 3194.12, + "probability": 0.9898 + }, + { + "start": 3194.3, + "end": 3196.66, + "probability": 0.993 + }, + { + "start": 3198.2, + "end": 3200.42, + "probability": 0.9934 + }, + { + "start": 3201.06, + "end": 3203.6, + "probability": 0.9683 + }, + { + "start": 3204.38, + "end": 3205.38, + "probability": 0.6913 + }, + { + "start": 3206.1, + "end": 3207.1, + "probability": 0.9253 + }, + { + "start": 3207.78, + "end": 3212.26, + "probability": 0.9721 + }, + { + "start": 3213.3, + "end": 3216.08, + "probability": 0.9734 + }, + { + "start": 3216.86, + "end": 3219.34, + "probability": 0.9774 + }, + { + "start": 3220.1, + "end": 3221.0, + "probability": 0.9688 + }, + { + "start": 3223.42, + "end": 3224.6, + "probability": 0.8719 + }, + { + "start": 3227.78, + "end": 3230.3, + "probability": 0.9694 + }, + { + "start": 3231.74, + "end": 3233.28, + "probability": 0.9629 + }, + { + "start": 3234.26, + "end": 3238.12, + "probability": 0.7896 + }, + { + "start": 3239.42, + "end": 3239.88, + "probability": 0.9595 + }, + { + "start": 3241.78, + "end": 3244.16, + "probability": 0.9472 + }, + { + "start": 3247.48, + "end": 3251.36, + "probability": 0.7823 + }, + { + "start": 3252.38, + "end": 3255.22, + "probability": 0.9031 + }, + { + "start": 3256.62, + "end": 3259.82, + "probability": 0.8387 + }, + { + "start": 3260.64, + "end": 3263.12, + "probability": 0.9625 + }, + { + "start": 3263.82, + "end": 3265.14, + "probability": 0.8534 + }, + { + "start": 3266.04, + "end": 3267.52, + "probability": 0.9683 + }, + { + "start": 3268.86, + "end": 3269.76, + "probability": 0.9655 + }, + { + "start": 3270.76, + "end": 3271.24, + "probability": 0.9415 + }, + { + "start": 3272.96, + "end": 3273.2, + "probability": 0.8144 + }, + { + "start": 3274.28, + "end": 3276.2, + "probability": 0.9512 + }, + { + "start": 3277.38, + "end": 3278.14, + "probability": 0.9938 + }, + { + "start": 3279.34, + "end": 3281.68, + "probability": 0.9805 + }, + { + "start": 3282.68, + "end": 3286.46, + "probability": 0.8706 + }, + { + "start": 3286.56, + "end": 3287.08, + "probability": 0.8105 + }, + { + "start": 3287.28, + "end": 3290.02, + "probability": 0.751 + }, + { + "start": 3290.82, + "end": 3291.54, + "probability": 0.7908 + }, + { + "start": 3292.68, + "end": 3293.44, + "probability": 0.9275 + }, + { + "start": 3294.76, + "end": 3297.78, + "probability": 0.9409 + }, + { + "start": 3298.64, + "end": 3301.32, + "probability": 0.9208 + }, + { + "start": 3302.14, + "end": 3303.91, + "probability": 0.986 + }, + { + "start": 3305.96, + "end": 3307.9, + "probability": 0.9932 + }, + { + "start": 3310.84, + "end": 3313.56, + "probability": 0.9973 + }, + { + "start": 3314.72, + "end": 3317.1, + "probability": 0.9711 + }, + { + "start": 3318.78, + "end": 3319.74, + "probability": 0.9865 + }, + { + "start": 3320.36, + "end": 3321.68, + "probability": 0.7852 + }, + { + "start": 3321.82, + "end": 3324.36, + "probability": 0.9822 + }, + { + "start": 3325.06, + "end": 3326.14, + "probability": 0.8267 + }, + { + "start": 3327.22, + "end": 3329.0, + "probability": 0.9553 + }, + { + "start": 3329.6, + "end": 3332.62, + "probability": 0.9697 + }, + { + "start": 3333.58, + "end": 3335.4, + "probability": 0.9808 + }, + { + "start": 3336.48, + "end": 3337.92, + "probability": 0.9648 + }, + { + "start": 3338.9, + "end": 3340.22, + "probability": 0.9793 + }, + { + "start": 3341.02, + "end": 3342.26, + "probability": 0.988 + }, + { + "start": 3342.98, + "end": 3343.84, + "probability": 0.9827 + }, + { + "start": 3345.0, + "end": 3346.42, + "probability": 0.9954 + }, + { + "start": 3347.52, + "end": 3353.9, + "probability": 0.9852 + }, + { + "start": 3355.0, + "end": 3356.8, + "probability": 0.999 + }, + { + "start": 3357.64, + "end": 3358.92, + "probability": 0.9664 + }, + { + "start": 3361.32, + "end": 3365.84, + "probability": 0.9973 + }, + { + "start": 3366.2, + "end": 3368.82, + "probability": 0.9561 + }, + { + "start": 3368.86, + "end": 3371.14, + "probability": 0.9082 + }, + { + "start": 3372.0, + "end": 3372.78, + "probability": 0.6811 + }, + { + "start": 3381.52, + "end": 3383.18, + "probability": 0.057 + }, + { + "start": 3386.14, + "end": 3386.46, + "probability": 0.1529 + }, + { + "start": 3387.0, + "end": 3387.68, + "probability": 0.869 + }, + { + "start": 3388.98, + "end": 3391.86, + "probability": 0.955 + }, + { + "start": 3392.82, + "end": 3396.52, + "probability": 0.8649 + }, + { + "start": 3397.4, + "end": 3402.0, + "probability": 0.9811 + }, + { + "start": 3402.78, + "end": 3405.66, + "probability": 0.9541 + }, + { + "start": 3406.36, + "end": 3407.28, + "probability": 0.9178 + }, + { + "start": 3408.02, + "end": 3408.94, + "probability": 0.7683 + }, + { + "start": 3408.94, + "end": 3411.48, + "probability": 0.8773 + }, + { + "start": 3411.72, + "end": 3413.38, + "probability": 0.9733 + }, + { + "start": 3414.32, + "end": 3417.14, + "probability": 0.8462 + }, + { + "start": 3418.38, + "end": 3420.12, + "probability": 0.9786 + }, + { + "start": 3420.78, + "end": 3422.46, + "probability": 0.9772 + }, + { + "start": 3423.12, + "end": 3426.12, + "probability": 0.9684 + }, + { + "start": 3426.16, + "end": 3426.98, + "probability": 0.6477 + }, + { + "start": 3428.64, + "end": 3429.34, + "probability": 0.5835 + }, + { + "start": 3429.5, + "end": 3431.08, + "probability": 0.9883 + }, + { + "start": 3431.24, + "end": 3433.88, + "probability": 0.9685 + }, + { + "start": 3433.98, + "end": 3434.76, + "probability": 0.8296 + }, + { + "start": 3436.18, + "end": 3439.84, + "probability": 0.7903 + }, + { + "start": 3441.1, + "end": 3444.4, + "probability": 0.8006 + }, + { + "start": 3445.04, + "end": 3448.38, + "probability": 0.8913 + }, + { + "start": 3448.96, + "end": 3450.0, + "probability": 0.9318 + }, + { + "start": 3451.02, + "end": 3454.26, + "probability": 0.9904 + }, + { + "start": 3455.48, + "end": 3456.34, + "probability": 0.8181 + }, + { + "start": 3457.0, + "end": 3459.24, + "probability": 0.8931 + }, + { + "start": 3460.1, + "end": 3460.4, + "probability": 0.0852 + }, + { + "start": 3460.54, + "end": 3461.29, + "probability": 0.2274 + }, + { + "start": 3462.44, + "end": 3463.78, + "probability": 0.4951 + }, + { + "start": 3464.48, + "end": 3464.48, + "probability": 0.0091 + }, + { + "start": 3464.48, + "end": 3466.9, + "probability": 0.8893 + }, + { + "start": 3468.0, + "end": 3470.44, + "probability": 0.8204 + }, + { + "start": 3470.96, + "end": 3471.8, + "probability": 0.8552 + }, + { + "start": 3471.92, + "end": 3474.52, + "probability": 0.9282 + }, + { + "start": 3474.66, + "end": 3475.02, + "probability": 0.6679 + }, + { + "start": 3475.38, + "end": 3476.22, + "probability": 0.0985 + }, + { + "start": 3476.58, + "end": 3477.52, + "probability": 0.2848 + }, + { + "start": 3478.04, + "end": 3480.44, + "probability": 0.9757 + }, + { + "start": 3480.58, + "end": 3483.38, + "probability": 0.9921 + }, + { + "start": 3483.94, + "end": 3489.12, + "probability": 0.9489 + }, + { + "start": 3489.32, + "end": 3489.94, + "probability": 0.0116 + }, + { + "start": 3490.14, + "end": 3490.94, + "probability": 0.106 + }, + { + "start": 3490.94, + "end": 3493.3, + "probability": 0.5025 + }, + { + "start": 3494.88, + "end": 3497.5, + "probability": 0.96 + }, + { + "start": 3497.56, + "end": 3498.72, + "probability": 0.9418 + }, + { + "start": 3498.88, + "end": 3499.69, + "probability": 0.98 + }, + { + "start": 3499.98, + "end": 3501.12, + "probability": 0.9567 + }, + { + "start": 3502.08, + "end": 3503.58, + "probability": 0.7388 + }, + { + "start": 3503.58, + "end": 3504.32, + "probability": 0.74 + }, + { + "start": 3504.42, + "end": 3505.76, + "probability": 0.9454 + }, + { + "start": 3505.84, + "end": 3508.02, + "probability": 0.984 + }, + { + "start": 3508.06, + "end": 3509.6, + "probability": 0.9509 + }, + { + "start": 3510.32, + "end": 3513.08, + "probability": 0.9468 + }, + { + "start": 3513.62, + "end": 3521.94, + "probability": 0.9392 + }, + { + "start": 3522.44, + "end": 3523.34, + "probability": 0.8528 + }, + { + "start": 3524.56, + "end": 3526.88, + "probability": 0.9647 + }, + { + "start": 3527.9, + "end": 3530.66, + "probability": 0.981 + }, + { + "start": 3530.92, + "end": 3531.96, + "probability": 0.9882 + }, + { + "start": 3532.08, + "end": 3534.3, + "probability": 0.9864 + }, + { + "start": 3535.86, + "end": 3537.52, + "probability": 0.9937 + }, + { + "start": 3538.5, + "end": 3540.12, + "probability": 0.9945 + }, + { + "start": 3540.66, + "end": 3542.3, + "probability": 0.8198 + }, + { + "start": 3543.52, + "end": 3546.76, + "probability": 0.9573 + }, + { + "start": 3548.24, + "end": 3550.08, + "probability": 0.9937 + }, + { + "start": 3550.82, + "end": 3556.16, + "probability": 0.982 + }, + { + "start": 3557.26, + "end": 3561.28, + "probability": 0.9937 + }, + { + "start": 3561.28, + "end": 3566.84, + "probability": 0.9878 + }, + { + "start": 3568.12, + "end": 3569.28, + "probability": 0.7315 + }, + { + "start": 3569.78, + "end": 3572.0, + "probability": 0.9227 + }, + { + "start": 3572.26, + "end": 3573.68, + "probability": 0.6749 + }, + { + "start": 3574.76, + "end": 3576.36, + "probability": 0.9824 + }, + { + "start": 3576.96, + "end": 3579.64, + "probability": 0.9057 + }, + { + "start": 3581.28, + "end": 3584.54, + "probability": 0.9953 + }, + { + "start": 3584.6, + "end": 3585.7, + "probability": 0.9167 + }, + { + "start": 3585.72, + "end": 3586.24, + "probability": 0.9397 + }, + { + "start": 3586.5, + "end": 3587.38, + "probability": 0.9442 + }, + { + "start": 3588.06, + "end": 3591.92, + "probability": 0.9772 + }, + { + "start": 3592.58, + "end": 3594.62, + "probability": 0.9729 + }, + { + "start": 3595.02, + "end": 3596.92, + "probability": 0.8386 + }, + { + "start": 3597.92, + "end": 3601.04, + "probability": 0.9647 + }, + { + "start": 3601.52, + "end": 3603.12, + "probability": 0.6337 + }, + { + "start": 3604.08, + "end": 3606.14, + "probability": 0.8373 + }, + { + "start": 3606.9, + "end": 3609.88, + "probability": 0.9797 + }, + { + "start": 3609.88, + "end": 3613.92, + "probability": 0.9989 + }, + { + "start": 3614.96, + "end": 3617.2, + "probability": 0.9727 + }, + { + "start": 3618.12, + "end": 3619.92, + "probability": 0.9684 + }, + { + "start": 3620.44, + "end": 3626.56, + "probability": 0.9807 + }, + { + "start": 3627.52, + "end": 3630.96, + "probability": 0.9913 + }, + { + "start": 3631.7, + "end": 3632.6, + "probability": 0.6032 + }, + { + "start": 3632.72, + "end": 3637.04, + "probability": 0.9377 + }, + { + "start": 3637.3, + "end": 3637.92, + "probability": 0.8336 + }, + { + "start": 3639.24, + "end": 3642.6, + "probability": 0.7042 + }, + { + "start": 3643.68, + "end": 3647.88, + "probability": 0.795 + }, + { + "start": 3647.88, + "end": 3652.46, + "probability": 0.9829 + }, + { + "start": 3653.0, + "end": 3654.8, + "probability": 0.977 + }, + { + "start": 3655.96, + "end": 3656.71, + "probability": 0.5964 + }, + { + "start": 3657.66, + "end": 3658.76, + "probability": 0.7337 + }, + { + "start": 3658.9, + "end": 3660.11, + "probability": 0.9603 + }, + { + "start": 3660.24, + "end": 3661.08, + "probability": 0.8997 + }, + { + "start": 3662.12, + "end": 3663.6, + "probability": 0.9253 + }, + { + "start": 3664.14, + "end": 3665.42, + "probability": 0.9452 + }, + { + "start": 3665.64, + "end": 3667.84, + "probability": 0.9766 + }, + { + "start": 3669.06, + "end": 3672.9, + "probability": 0.9973 + }, + { + "start": 3674.2, + "end": 3678.44, + "probability": 0.9868 + }, + { + "start": 3679.16, + "end": 3682.5, + "probability": 0.9891 + }, + { + "start": 3682.5, + "end": 3687.8, + "probability": 0.9909 + }, + { + "start": 3688.02, + "end": 3688.82, + "probability": 0.6636 + }, + { + "start": 3689.72, + "end": 3692.9, + "probability": 0.9635 + }, + { + "start": 3692.9, + "end": 3695.66, + "probability": 0.9795 + }, + { + "start": 3696.74, + "end": 3699.94, + "probability": 0.9949 + }, + { + "start": 3700.76, + "end": 3702.4, + "probability": 0.9972 + }, + { + "start": 3703.16, + "end": 3707.74, + "probability": 0.9977 + }, + { + "start": 3708.48, + "end": 3709.55, + "probability": 0.8401 + }, + { + "start": 3710.96, + "end": 3714.04, + "probability": 0.9662 + }, + { + "start": 3715.02, + "end": 3720.44, + "probability": 0.9944 + }, + { + "start": 3721.0, + "end": 3722.7, + "probability": 0.9274 + }, + { + "start": 3723.54, + "end": 3724.26, + "probability": 0.7572 + }, + { + "start": 3724.78, + "end": 3728.64, + "probability": 0.779 + }, + { + "start": 3729.32, + "end": 3733.3, + "probability": 0.9269 + }, + { + "start": 3733.98, + "end": 3736.35, + "probability": 0.8114 + }, + { + "start": 3737.14, + "end": 3740.5, + "probability": 0.9818 + }, + { + "start": 3741.92, + "end": 3743.58, + "probability": 0.8988 + }, + { + "start": 3744.48, + "end": 3749.04, + "probability": 0.9562 + }, + { + "start": 3749.72, + "end": 3752.06, + "probability": 0.7461 + }, + { + "start": 3752.62, + "end": 3754.32, + "probability": 0.9846 + }, + { + "start": 3754.84, + "end": 3756.86, + "probability": 0.9771 + }, + { + "start": 3757.48, + "end": 3758.68, + "probability": 0.9771 + }, + { + "start": 3759.28, + "end": 3760.76, + "probability": 0.9958 + }, + { + "start": 3761.18, + "end": 3763.22, + "probability": 0.9582 + }, + { + "start": 3763.36, + "end": 3765.72, + "probability": 0.9886 + }, + { + "start": 3767.22, + "end": 3769.4, + "probability": 0.9972 + }, + { + "start": 3770.38, + "end": 3771.44, + "probability": 0.9849 + }, + { + "start": 3772.28, + "end": 3774.18, + "probability": 0.9599 + }, + { + "start": 3774.28, + "end": 3777.0, + "probability": 0.9787 + }, + { + "start": 3777.58, + "end": 3781.8, + "probability": 0.9885 + }, + { + "start": 3782.42, + "end": 3783.0, + "probability": 0.7539 + }, + { + "start": 3783.08, + "end": 3784.36, + "probability": 0.7451 + }, + { + "start": 3784.46, + "end": 3790.02, + "probability": 0.9961 + }, + { + "start": 3790.78, + "end": 3794.4, + "probability": 0.9385 + }, + { + "start": 3794.44, + "end": 3795.36, + "probability": 0.8625 + }, + { + "start": 3795.84, + "end": 3796.78, + "probability": 0.543 + }, + { + "start": 3796.88, + "end": 3798.14, + "probability": 0.9744 + }, + { + "start": 3798.92, + "end": 3802.0, + "probability": 0.9927 + }, + { + "start": 3803.0, + "end": 3807.58, + "probability": 0.974 + }, + { + "start": 3807.92, + "end": 3810.0, + "probability": 0.9674 + }, + { + "start": 3810.6, + "end": 3814.14, + "probability": 0.9932 + }, + { + "start": 3814.78, + "end": 3818.14, + "probability": 0.994 + }, + { + "start": 3819.64, + "end": 3820.86, + "probability": 0.9919 + }, + { + "start": 3821.56, + "end": 3826.1, + "probability": 0.9452 + }, + { + "start": 3827.28, + "end": 3828.9, + "probability": 0.9542 + }, + { + "start": 3829.54, + "end": 3832.26, + "probability": 0.9346 + }, + { + "start": 3833.1, + "end": 3835.66, + "probability": 0.9902 + }, + { + "start": 3836.56, + "end": 3841.78, + "probability": 0.9891 + }, + { + "start": 3842.6, + "end": 3844.74, + "probability": 0.9217 + }, + { + "start": 3845.38, + "end": 3848.24, + "probability": 0.993 + }, + { + "start": 3848.8, + "end": 3852.46, + "probability": 0.9907 + }, + { + "start": 3853.18, + "end": 3855.96, + "probability": 0.9884 + }, + { + "start": 3856.9, + "end": 3859.0, + "probability": 0.9836 + }, + { + "start": 3859.56, + "end": 3861.62, + "probability": 0.881 + }, + { + "start": 3862.38, + "end": 3865.69, + "probability": 0.9645 + }, + { + "start": 3866.42, + "end": 3870.8, + "probability": 0.8896 + }, + { + "start": 3870.8, + "end": 3874.92, + "probability": 0.9684 + }, + { + "start": 3876.34, + "end": 3878.88, + "probability": 0.8466 + }, + { + "start": 3879.38, + "end": 3881.18, + "probability": 0.8094 + }, + { + "start": 3881.92, + "end": 3886.38, + "probability": 0.9007 + }, + { + "start": 3886.94, + "end": 3888.24, + "probability": 0.9766 + }, + { + "start": 3889.34, + "end": 3892.04, + "probability": 0.9165 + }, + { + "start": 3892.58, + "end": 3895.04, + "probability": 0.9911 + }, + { + "start": 3895.72, + "end": 3896.64, + "probability": 0.7525 + }, + { + "start": 3896.76, + "end": 3900.22, + "probability": 0.8099 + }, + { + "start": 3900.26, + "end": 3904.34, + "probability": 0.8684 + }, + { + "start": 3905.0, + "end": 3907.18, + "probability": 0.9604 + }, + { + "start": 3908.2, + "end": 3908.54, + "probability": 0.5341 + }, + { + "start": 3908.64, + "end": 3910.5, + "probability": 0.9216 + }, + { + "start": 3910.52, + "end": 3912.0, + "probability": 0.8912 + }, + { + "start": 3912.86, + "end": 3914.66, + "probability": 0.8478 + }, + { + "start": 3914.82, + "end": 3915.46, + "probability": 0.6196 + }, + { + "start": 3915.58, + "end": 3916.94, + "probability": 0.949 + }, + { + "start": 3917.54, + "end": 3919.86, + "probability": 0.9589 + }, + { + "start": 3920.0, + "end": 3922.16, + "probability": 0.8945 + }, + { + "start": 3922.26, + "end": 3923.1, + "probability": 0.9076 + }, + { + "start": 3923.58, + "end": 3927.14, + "probability": 0.9915 + }, + { + "start": 3927.9, + "end": 3929.76, + "probability": 0.7228 + }, + { + "start": 3930.74, + "end": 3935.56, + "probability": 0.9897 + }, + { + "start": 3936.16, + "end": 3937.8, + "probability": 0.8346 + }, + { + "start": 3938.52, + "end": 3940.26, + "probability": 0.9806 + }, + { + "start": 3940.94, + "end": 3945.98, + "probability": 0.9178 + }, + { + "start": 3946.54, + "end": 3948.66, + "probability": 0.9861 + }, + { + "start": 3949.76, + "end": 3954.34, + "probability": 0.998 + }, + { + "start": 3954.34, + "end": 3958.7, + "probability": 0.998 + }, + { + "start": 3960.14, + "end": 3962.46, + "probability": 0.974 + }, + { + "start": 3963.16, + "end": 3965.04, + "probability": 0.984 + }, + { + "start": 3965.84, + "end": 3966.61, + "probability": 0.9924 + }, + { + "start": 3967.66, + "end": 3971.98, + "probability": 0.9875 + }, + { + "start": 3972.19, + "end": 3975.84, + "probability": 0.9707 + }, + { + "start": 3976.6, + "end": 3979.28, + "probability": 0.9941 + }, + { + "start": 3980.02, + "end": 3983.54, + "probability": 0.9978 + }, + { + "start": 3983.54, + "end": 3986.6, + "probability": 0.9982 + }, + { + "start": 3987.2, + "end": 3988.18, + "probability": 0.831 + }, + { + "start": 3989.34, + "end": 3991.1, + "probability": 0.946 + }, + { + "start": 3991.92, + "end": 3995.86, + "probability": 0.9858 + }, + { + "start": 3996.68, + "end": 3999.48, + "probability": 0.9949 + }, + { + "start": 3999.48, + "end": 4003.52, + "probability": 0.9785 + }, + { + "start": 4004.34, + "end": 4006.2, + "probability": 0.9824 + }, + { + "start": 4007.54, + "end": 4009.68, + "probability": 0.9833 + }, + { + "start": 4010.54, + "end": 4012.14, + "probability": 0.9973 + }, + { + "start": 4012.72, + "end": 4015.24, + "probability": 0.6852 + }, + { + "start": 4015.86, + "end": 4019.14, + "probability": 0.9704 + }, + { + "start": 4019.58, + "end": 4020.86, + "probability": 0.8523 + }, + { + "start": 4021.08, + "end": 4022.24, + "probability": 0.9812 + }, + { + "start": 4022.64, + "end": 4024.66, + "probability": 0.9949 + }, + { + "start": 4025.12, + "end": 4026.66, + "probability": 0.9863 + }, + { + "start": 4027.26, + "end": 4027.94, + "probability": 0.5723 + }, + { + "start": 4028.16, + "end": 4029.88, + "probability": 0.9335 + }, + { + "start": 4030.32, + "end": 4032.18, + "probability": 0.8365 + }, + { + "start": 4032.6, + "end": 4033.88, + "probability": 0.9867 + }, + { + "start": 4034.42, + "end": 4039.6, + "probability": 0.977 + }, + { + "start": 4040.08, + "end": 4041.64, + "probability": 0.8452 + }, + { + "start": 4042.42, + "end": 4048.72, + "probability": 0.931 + }, + { + "start": 4049.18, + "end": 4051.58, + "probability": 0.8525 + }, + { + "start": 4052.44, + "end": 4055.72, + "probability": 0.9982 + }, + { + "start": 4056.22, + "end": 4057.76, + "probability": 0.8459 + }, + { + "start": 4058.46, + "end": 4061.92, + "probability": 0.995 + }, + { + "start": 4063.46, + "end": 4064.54, + "probability": 0.9273 + }, + { + "start": 4065.48, + "end": 4068.52, + "probability": 0.9936 + }, + { + "start": 4069.08, + "end": 4072.9, + "probability": 0.873 + }, + { + "start": 4073.34, + "end": 4074.88, + "probability": 0.9849 + }, + { + "start": 4075.0, + "end": 4076.4, + "probability": 0.8219 + }, + { + "start": 4076.84, + "end": 4077.52, + "probability": 0.6718 + }, + { + "start": 4078.16, + "end": 4081.28, + "probability": 0.9419 + }, + { + "start": 4081.92, + "end": 4085.84, + "probability": 0.9799 + }, + { + "start": 4085.84, + "end": 4089.1, + "probability": 0.9952 + }, + { + "start": 4089.72, + "end": 4091.54, + "probability": 0.9917 + }, + { + "start": 4092.92, + "end": 4093.9, + "probability": 0.6417 + }, + { + "start": 4094.84, + "end": 4098.04, + "probability": 0.9954 + }, + { + "start": 4098.82, + "end": 4100.53, + "probability": 0.9636 + }, + { + "start": 4101.1, + "end": 4103.2, + "probability": 0.9934 + }, + { + "start": 4103.76, + "end": 4106.6, + "probability": 0.9889 + }, + { + "start": 4107.22, + "end": 4109.56, + "probability": 0.9541 + }, + { + "start": 4110.34, + "end": 4111.42, + "probability": 0.6336 + }, + { + "start": 4111.54, + "end": 4116.84, + "probability": 0.9652 + }, + { + "start": 4116.84, + "end": 4121.76, + "probability": 0.9814 + }, + { + "start": 4122.76, + "end": 4125.66, + "probability": 0.9832 + }, + { + "start": 4125.66, + "end": 4129.32, + "probability": 0.9724 + }, + { + "start": 4129.84, + "end": 4133.24, + "probability": 0.9956 + }, + { + "start": 4133.94, + "end": 4138.18, + "probability": 0.9976 + }, + { + "start": 4138.18, + "end": 4144.28, + "probability": 0.9556 + }, + { + "start": 4144.42, + "end": 4145.05, + "probability": 0.858 + }, + { + "start": 4145.86, + "end": 4149.72, + "probability": 0.9817 + }, + { + "start": 4150.42, + "end": 4154.88, + "probability": 0.9977 + }, + { + "start": 4155.46, + "end": 4158.92, + "probability": 0.9907 + }, + { + "start": 4159.4, + "end": 4160.98, + "probability": 0.8677 + }, + { + "start": 4161.66, + "end": 4165.68, + "probability": 0.9956 + }, + { + "start": 4166.4, + "end": 4169.46, + "probability": 0.9801 + }, + { + "start": 4169.46, + "end": 4172.9, + "probability": 0.9958 + }, + { + "start": 4173.72, + "end": 4177.78, + "probability": 0.988 + }, + { + "start": 4177.78, + "end": 4182.28, + "probability": 0.9978 + }, + { + "start": 4183.12, + "end": 4186.56, + "probability": 0.8745 + }, + { + "start": 4187.24, + "end": 4190.77, + "probability": 0.9358 + }, + { + "start": 4191.58, + "end": 4194.1, + "probability": 0.9732 + }, + { + "start": 4195.1, + "end": 4196.48, + "probability": 0.9236 + }, + { + "start": 4197.78, + "end": 4199.92, + "probability": 0.9911 + }, + { + "start": 4200.04, + "end": 4203.72, + "probability": 0.9927 + }, + { + "start": 4204.42, + "end": 4205.8, + "probability": 0.9719 + }, + { + "start": 4206.32, + "end": 4207.86, + "probability": 0.7084 + }, + { + "start": 4207.9, + "end": 4208.64, + "probability": 0.832 + }, + { + "start": 4209.04, + "end": 4210.06, + "probability": 0.6086 + }, + { + "start": 4210.44, + "end": 4212.6, + "probability": 0.9698 + }, + { + "start": 4213.08, + "end": 4215.36, + "probability": 0.9871 + }, + { + "start": 4216.16, + "end": 4217.56, + "probability": 0.9744 + }, + { + "start": 4218.1, + "end": 4221.26, + "probability": 0.8556 + }, + { + "start": 4221.96, + "end": 4226.76, + "probability": 0.9539 + }, + { + "start": 4228.18, + "end": 4231.26, + "probability": 0.986 + }, + { + "start": 4231.36, + "end": 4234.38, + "probability": 0.9969 + }, + { + "start": 4234.38, + "end": 4237.66, + "probability": 0.9974 + }, + { + "start": 4244.48, + "end": 4247.24, + "probability": 0.735 + }, + { + "start": 4248.24, + "end": 4249.08, + "probability": 0.9814 + }, + { + "start": 4249.4, + "end": 4250.52, + "probability": 0.9735 + }, + { + "start": 4250.6, + "end": 4252.52, + "probability": 0.8522 + }, + { + "start": 4254.94, + "end": 4257.76, + "probability": 0.9933 + }, + { + "start": 4258.5, + "end": 4259.12, + "probability": 0.7544 + }, + { + "start": 4260.9, + "end": 4264.24, + "probability": 0.9479 + }, + { + "start": 4265.24, + "end": 4271.32, + "probability": 0.9582 + }, + { + "start": 4271.64, + "end": 4272.12, + "probability": 0.3796 + }, + { + "start": 4272.18, + "end": 4275.94, + "probability": 0.9201 + }, + { + "start": 4276.68, + "end": 4277.82, + "probability": 0.9788 + }, + { + "start": 4278.96, + "end": 4282.18, + "probability": 0.9932 + }, + { + "start": 4283.82, + "end": 4287.62, + "probability": 0.9982 + }, + { + "start": 4288.4, + "end": 4290.78, + "probability": 0.9994 + }, + { + "start": 4291.32, + "end": 4293.74, + "probability": 0.9819 + }, + { + "start": 4294.5, + "end": 4296.6, + "probability": 0.9785 + }, + { + "start": 4297.8, + "end": 4302.48, + "probability": 0.998 + }, + { + "start": 4302.52, + "end": 4306.46, + "probability": 0.9961 + }, + { + "start": 4307.32, + "end": 4312.3, + "probability": 0.9563 + }, + { + "start": 4313.2, + "end": 4319.88, + "probability": 0.9971 + }, + { + "start": 4320.6, + "end": 4322.22, + "probability": 0.9984 + }, + { + "start": 4322.88, + "end": 4325.04, + "probability": 0.9597 + }, + { + "start": 4326.2, + "end": 4327.06, + "probability": 0.9373 + }, + { + "start": 4327.76, + "end": 4329.86, + "probability": 0.9922 + }, + { + "start": 4332.3, + "end": 4337.12, + "probability": 0.9971 + }, + { + "start": 4338.38, + "end": 4340.84, + "probability": 0.9958 + }, + { + "start": 4340.96, + "end": 4341.42, + "probability": 0.9375 + }, + { + "start": 4342.58, + "end": 4344.82, + "probability": 0.981 + }, + { + "start": 4344.9, + "end": 4346.66, + "probability": 0.8524 + }, + { + "start": 4347.04, + "end": 4348.38, + "probability": 0.9497 + }, + { + "start": 4349.56, + "end": 4353.02, + "probability": 0.9863 + }, + { + "start": 4353.8, + "end": 4356.16, + "probability": 0.966 + }, + { + "start": 4356.56, + "end": 4360.98, + "probability": 0.9364 + }, + { + "start": 4361.08, + "end": 4362.5, + "probability": 0.8281 + }, + { + "start": 4363.04, + "end": 4367.7, + "probability": 0.8308 + }, + { + "start": 4368.16, + "end": 4371.0, + "probability": 0.9577 + }, + { + "start": 4371.9, + "end": 4376.38, + "probability": 0.9946 + }, + { + "start": 4376.76, + "end": 4378.24, + "probability": 0.8628 + }, + { + "start": 4378.32, + "end": 4378.8, + "probability": 0.9728 + }, + { + "start": 4379.56, + "end": 4380.74, + "probability": 0.9457 + }, + { + "start": 4381.54, + "end": 4382.32, + "probability": 0.8606 + }, + { + "start": 4384.1, + "end": 4388.1, + "probability": 0.9927 + }, + { + "start": 4388.86, + "end": 4389.82, + "probability": 0.6864 + }, + { + "start": 4390.44, + "end": 4392.84, + "probability": 0.997 + }, + { + "start": 4392.84, + "end": 4395.4, + "probability": 0.9443 + }, + { + "start": 4396.66, + "end": 4399.42, + "probability": 0.9985 + }, + { + "start": 4400.04, + "end": 4402.04, + "probability": 0.999 + }, + { + "start": 4402.52, + "end": 4404.56, + "probability": 0.9247 + }, + { + "start": 4404.94, + "end": 4407.1, + "probability": 0.9524 + }, + { + "start": 4407.92, + "end": 4409.66, + "probability": 0.9951 + }, + { + "start": 4410.7, + "end": 4411.06, + "probability": 0.9895 + }, + { + "start": 4411.96, + "end": 4413.76, + "probability": 0.7537 + }, + { + "start": 4415.42, + "end": 4422.12, + "probability": 0.9991 + }, + { + "start": 4423.06, + "end": 4426.74, + "probability": 0.9938 + }, + { + "start": 4426.74, + "end": 4429.38, + "probability": 0.9888 + }, + { + "start": 4430.44, + "end": 4433.12, + "probability": 0.9934 + }, + { + "start": 4433.4, + "end": 4436.4, + "probability": 0.8118 + }, + { + "start": 4437.64, + "end": 4439.2, + "probability": 0.7184 + }, + { + "start": 4441.74, + "end": 4442.44, + "probability": 0.8487 + }, + { + "start": 4444.18, + "end": 4446.16, + "probability": 0.9291 + }, + { + "start": 4447.02, + "end": 4451.68, + "probability": 0.9902 + }, + { + "start": 4451.72, + "end": 4452.18, + "probability": 0.9488 + }, + { + "start": 4452.18, + "end": 4452.9, + "probability": 0.9144 + }, + { + "start": 4453.3, + "end": 4454.27, + "probability": 0.9351 + }, + { + "start": 4455.46, + "end": 4459.69, + "probability": 0.9191 + }, + { + "start": 4460.68, + "end": 4465.68, + "probability": 0.9668 + }, + { + "start": 4466.34, + "end": 4472.8, + "probability": 0.9101 + }, + { + "start": 4473.5, + "end": 4474.16, + "probability": 0.887 + }, + { + "start": 4474.86, + "end": 4477.68, + "probability": 0.9912 + }, + { + "start": 4478.56, + "end": 4480.54, + "probability": 0.7212 + }, + { + "start": 4480.96, + "end": 4486.34, + "probability": 0.9822 + }, + { + "start": 4487.32, + "end": 4490.94, + "probability": 0.925 + }, + { + "start": 4492.14, + "end": 4496.36, + "probability": 0.9951 + }, + { + "start": 4497.02, + "end": 4500.0, + "probability": 0.9249 + }, + { + "start": 4500.68, + "end": 4506.44, + "probability": 0.994 + }, + { + "start": 4507.06, + "end": 4508.42, + "probability": 0.9613 + }, + { + "start": 4509.2, + "end": 4512.14, + "probability": 0.9521 + }, + { + "start": 4512.68, + "end": 4513.76, + "probability": 0.8653 + }, + { + "start": 4514.14, + "end": 4518.86, + "probability": 0.9564 + }, + { + "start": 4519.34, + "end": 4520.24, + "probability": 0.7066 + }, + { + "start": 4520.36, + "end": 4521.48, + "probability": 0.8923 + }, + { + "start": 4521.58, + "end": 4522.44, + "probability": 0.9611 + }, + { + "start": 4522.92, + "end": 4523.92, + "probability": 0.761 + }, + { + "start": 4525.62, + "end": 4530.95, + "probability": 0.9407 + }, + { + "start": 4532.32, + "end": 4534.66, + "probability": 0.9779 + }, + { + "start": 4535.12, + "end": 4536.54, + "probability": 0.848 + }, + { + "start": 4537.72, + "end": 4542.54, + "probability": 0.9967 + }, + { + "start": 4544.62, + "end": 4545.58, + "probability": 0.7227 + }, + { + "start": 4547.64, + "end": 4556.24, + "probability": 0.0383 + }, + { + "start": 4556.96, + "end": 4559.06, + "probability": 0.1489 + }, + { + "start": 4561.62, + "end": 4565.54, + "probability": 0.2477 + }, + { + "start": 4565.88, + "end": 4567.24, + "probability": 0.2284 + }, + { + "start": 4567.86, + "end": 4569.72, + "probability": 0.1115 + }, + { + "start": 4583.2, + "end": 4585.86, + "probability": 0.3041 + }, + { + "start": 4587.27, + "end": 4595.52, + "probability": 0.061 + }, + { + "start": 4603.66, + "end": 4605.08, + "probability": 0.3475 + }, + { + "start": 4606.26, + "end": 4607.66, + "probability": 0.026 + }, + { + "start": 4617.26, + "end": 4619.02, + "probability": 0.3283 + }, + { + "start": 4619.02, + "end": 4622.6, + "probability": 0.9884 + }, + { + "start": 4622.62, + "end": 4625.7, + "probability": 0.7749 + }, + { + "start": 4625.92, + "end": 4629.18, + "probability": 0.6906 + }, + { + "start": 4629.44, + "end": 4631.3, + "probability": 0.9385 + }, + { + "start": 4634.32, + "end": 4636.76, + "probability": 0.9541 + }, + { + "start": 4649.38, + "end": 4650.32, + "probability": 0.6955 + }, + { + "start": 4650.38, + "end": 4655.84, + "probability": 0.8605 + }, + { + "start": 4666.84, + "end": 4670.54, + "probability": 0.772 + }, + { + "start": 4671.22, + "end": 4674.32, + "probability": 0.9819 + }, + { + "start": 4676.16, + "end": 4677.26, + "probability": 0.9072 + }, + { + "start": 4677.3, + "end": 4679.2, + "probability": 0.8404 + }, + { + "start": 4679.26, + "end": 4679.78, + "probability": 0.467 + }, + { + "start": 4679.92, + "end": 4681.64, + "probability": 0.9782 + }, + { + "start": 4686.26, + "end": 4692.1, + "probability": 0.6668 + }, + { + "start": 4693.7, + "end": 4697.2, + "probability": 0.9481 + }, + { + "start": 4697.24, + "end": 4697.76, + "probability": 0.8672 + }, + { + "start": 4697.92, + "end": 4698.77, + "probability": 0.9335 + }, + { + "start": 4706.24, + "end": 4711.7, + "probability": 0.84 + }, + { + "start": 4718.84, + "end": 4721.16, + "probability": 0.9223 + }, + { + "start": 4721.24, + "end": 4723.06, + "probability": 0.9937 + }, + { + "start": 4731.36, + "end": 4735.14, + "probability": 0.8077 + }, + { + "start": 4739.78, + "end": 4743.06, + "probability": 0.8138 + }, + { + "start": 4744.7, + "end": 4747.32, + "probability": 0.872 + }, + { + "start": 4750.64, + "end": 4755.22, + "probability": 0.9658 + }, + { + "start": 4756.72, + "end": 4758.26, + "probability": 0.4908 + }, + { + "start": 4758.88, + "end": 4761.68, + "probability": 0.5012 + }, + { + "start": 4766.14, + "end": 4770.32, + "probability": 0.9965 + }, + { + "start": 4771.16, + "end": 4777.18, + "probability": 0.8828 + }, + { + "start": 4777.18, + "end": 4782.58, + "probability": 0.9939 + }, + { + "start": 4783.82, + "end": 4786.76, + "probability": 0.7841 + }, + { + "start": 4787.96, + "end": 4789.65, + "probability": 0.6764 + }, + { + "start": 4790.14, + "end": 4790.42, + "probability": 0.3075 + }, + { + "start": 4790.5, + "end": 4791.26, + "probability": 0.2996 + }, + { + "start": 4791.42, + "end": 4792.82, + "probability": 0.8983 + }, + { + "start": 4794.42, + "end": 4797.3, + "probability": 0.987 + }, + { + "start": 4797.3, + "end": 4800.88, + "probability": 0.7451 + }, + { + "start": 4801.42, + "end": 4801.54, + "probability": 0.6353 + }, + { + "start": 4805.33, + "end": 4809.92, + "probability": 0.7744 + }, + { + "start": 4814.34, + "end": 4814.52, + "probability": 0.6498 + }, + { + "start": 4814.6, + "end": 4817.34, + "probability": 0.7801 + }, + { + "start": 4818.48, + "end": 4821.2, + "probability": 0.8863 + }, + { + "start": 4824.68, + "end": 4825.9, + "probability": 0.2997 + }, + { + "start": 4826.2, + "end": 4826.2, + "probability": 0.3428 + }, + { + "start": 4826.2, + "end": 4827.02, + "probability": 0.6878 + }, + { + "start": 4827.16, + "end": 4830.56, + "probability": 0.9877 + }, + { + "start": 4830.56, + "end": 4834.38, + "probability": 0.9395 + }, + { + "start": 4835.24, + "end": 4837.68, + "probability": 0.9436 + }, + { + "start": 4837.68, + "end": 4839.98, + "probability": 0.9908 + }, + { + "start": 4841.02, + "end": 4843.72, + "probability": 0.7242 + }, + { + "start": 4844.16, + "end": 4847.78, + "probability": 0.6018 + }, + { + "start": 4848.24, + "end": 4849.92, + "probability": 0.976 + }, + { + "start": 4851.08, + "end": 4851.88, + "probability": 0.7531 + }, + { + "start": 4851.94, + "end": 4856.44, + "probability": 0.9572 + }, + { + "start": 4857.92, + "end": 4861.84, + "probability": 0.8508 + }, + { + "start": 4862.93, + "end": 4866.16, + "probability": 0.8221 + }, + { + "start": 4866.24, + "end": 4871.42, + "probability": 0.9341 + }, + { + "start": 4873.9, + "end": 4877.56, + "probability": 0.9137 + }, + { + "start": 4877.64, + "end": 4881.36, + "probability": 0.9976 + }, + { + "start": 4882.5, + "end": 4885.2, + "probability": 0.7533 + }, + { + "start": 4885.24, + "end": 4886.56, + "probability": 0.9204 + }, + { + "start": 4888.28, + "end": 4890.14, + "probability": 0.6899 + }, + { + "start": 4890.14, + "end": 4892.58, + "probability": 0.8597 + }, + { + "start": 4893.32, + "end": 4898.1, + "probability": 0.7463 + }, + { + "start": 4898.38, + "end": 4902.24, + "probability": 0.9526 + }, + { + "start": 4904.06, + "end": 4909.48, + "probability": 0.7977 + }, + { + "start": 4909.76, + "end": 4910.62, + "probability": 0.5519 + }, + { + "start": 4911.22, + "end": 4912.38, + "probability": 0.6972 + }, + { + "start": 4913.66, + "end": 4917.66, + "probability": 0.8283 + }, + { + "start": 4918.16, + "end": 4922.58, + "probability": 0.7354 + }, + { + "start": 4924.52, + "end": 4925.22, + "probability": 0.4904 + }, + { + "start": 4925.38, + "end": 4925.78, + "probability": 0.532 + }, + { + "start": 4925.92, + "end": 4927.98, + "probability": 0.9288 + }, + { + "start": 4938.14, + "end": 4939.36, + "probability": 0.7407 + }, + { + "start": 4940.22, + "end": 4945.06, + "probability": 0.9875 + }, + { + "start": 4946.08, + "end": 4948.44, + "probability": 0.9924 + }, + { + "start": 4950.8, + "end": 4957.46, + "probability": 0.9764 + }, + { + "start": 4958.56, + "end": 4959.3, + "probability": 0.4335 + }, + { + "start": 4959.88, + "end": 4965.38, + "probability": 0.7492 + }, + { + "start": 4965.78, + "end": 4967.2, + "probability": 0.9907 + }, + { + "start": 4967.66, + "end": 4970.98, + "probability": 0.9068 + }, + { + "start": 4971.52, + "end": 4975.78, + "probability": 0.711 + }, + { + "start": 4976.8, + "end": 4979.84, + "probability": 0.9669 + }, + { + "start": 4980.38, + "end": 4981.23, + "probability": 0.6882 + }, + { + "start": 4981.64, + "end": 4982.28, + "probability": 0.4734 + }, + { + "start": 4982.28, + "end": 4983.6, + "probability": 0.9224 + }, + { + "start": 4983.98, + "end": 4985.22, + "probability": 0.7634 + }, + { + "start": 4985.22, + "end": 4985.72, + "probability": 0.5748 + }, + { + "start": 4986.04, + "end": 4988.5, + "probability": 0.8469 + }, + { + "start": 4988.56, + "end": 4989.8, + "probability": 0.9275 + }, + { + "start": 4990.42, + "end": 4991.5, + "probability": 0.9951 + }, + { + "start": 4992.82, + "end": 4994.66, + "probability": 0.7591 + }, + { + "start": 4995.64, + "end": 4998.08, + "probability": 0.7421 + }, + { + "start": 4998.08, + "end": 5002.42, + "probability": 0.7624 + }, + { + "start": 5002.84, + "end": 5004.66, + "probability": 0.8589 + }, + { + "start": 5004.78, + "end": 5005.77, + "probability": 0.8606 + }, + { + "start": 5006.26, + "end": 5007.14, + "probability": 0.8397 + }, + { + "start": 5007.8, + "end": 5010.54, + "probability": 0.9658 + }, + { + "start": 5011.1, + "end": 5012.74, + "probability": 0.9141 + }, + { + "start": 5012.8, + "end": 5013.12, + "probability": 0.9355 + }, + { + "start": 5014.7, + "end": 5015.32, + "probability": 0.4899 + }, + { + "start": 5015.42, + "end": 5018.34, + "probability": 0.8451 + }, + { + "start": 5018.88, + "end": 5021.1, + "probability": 0.9255 + }, + { + "start": 5021.84, + "end": 5023.33, + "probability": 0.8774 + }, + { + "start": 5025.84, + "end": 5029.42, + "probability": 0.7249 + }, + { + "start": 5029.62, + "end": 5030.58, + "probability": 0.4597 + }, + { + "start": 5031.28, + "end": 5032.5, + "probability": 0.9357 + }, + { + "start": 5032.58, + "end": 5032.76, + "probability": 0.6289 + }, + { + "start": 5032.8, + "end": 5033.68, + "probability": 0.8564 + }, + { + "start": 5033.76, + "end": 5035.44, + "probability": 0.5557 + }, + { + "start": 5036.18, + "end": 5038.34, + "probability": 0.8602 + }, + { + "start": 5038.44, + "end": 5040.86, + "probability": 0.9467 + }, + { + "start": 5041.5, + "end": 5042.26, + "probability": 0.7897 + }, + { + "start": 5043.66, + "end": 5047.56, + "probability": 0.5332 + }, + { + "start": 5047.8, + "end": 5048.57, + "probability": 0.9089 + }, + { + "start": 5048.74, + "end": 5049.56, + "probability": 0.9816 + }, + { + "start": 5052.2, + "end": 5052.96, + "probability": 0.5035 + }, + { + "start": 5053.42, + "end": 5054.84, + "probability": 0.9028 + }, + { + "start": 5055.28, + "end": 5059.84, + "probability": 0.7816 + }, + { + "start": 5059.94, + "end": 5060.98, + "probability": 0.6268 + }, + { + "start": 5061.04, + "end": 5061.34, + "probability": 0.3909 + }, + { + "start": 5064.26, + "end": 5066.44, + "probability": 0.6432 + }, + { + "start": 5067.6, + "end": 5069.62, + "probability": 0.9702 + }, + { + "start": 5071.16, + "end": 5075.96, + "probability": 0.9756 + }, + { + "start": 5076.56, + "end": 5078.6, + "probability": 0.8503 + }, + { + "start": 5078.8, + "end": 5081.94, + "probability": 0.93 + }, + { + "start": 5083.14, + "end": 5086.26, + "probability": 0.9165 + }, + { + "start": 5087.26, + "end": 5092.5, + "probability": 0.9946 + }, + { + "start": 5092.9, + "end": 5094.02, + "probability": 0.6401 + }, + { + "start": 5094.78, + "end": 5095.88, + "probability": 0.7455 + }, + { + "start": 5096.56, + "end": 5101.92, + "probability": 0.9753 + }, + { + "start": 5103.88, + "end": 5104.58, + "probability": 0.5099 + }, + { + "start": 5104.84, + "end": 5109.04, + "probability": 0.7453 + }, + { + "start": 5109.26, + "end": 5110.06, + "probability": 0.7354 + }, + { + "start": 5110.12, + "end": 5116.84, + "probability": 0.9592 + }, + { + "start": 5117.0, + "end": 5118.82, + "probability": 0.7224 + }, + { + "start": 5120.38, + "end": 5125.72, + "probability": 0.8281 + }, + { + "start": 5126.66, + "end": 5128.92, + "probability": 0.6711 + }, + { + "start": 5130.08, + "end": 5133.22, + "probability": 0.8198 + }, + { + "start": 5134.18, + "end": 5135.6, + "probability": 0.4683 + }, + { + "start": 5136.66, + "end": 5140.69, + "probability": 0.7767 + }, + { + "start": 5140.84, + "end": 5143.5, + "probability": 0.6818 + }, + { + "start": 5144.16, + "end": 5150.02, + "probability": 0.9243 + }, + { + "start": 5150.02, + "end": 5155.02, + "probability": 0.9151 + }, + { + "start": 5155.56, + "end": 5156.28, + "probability": 0.3822 + }, + { + "start": 5157.64, + "end": 5162.78, + "probability": 0.7712 + }, + { + "start": 5162.88, + "end": 5165.76, + "probability": 0.8573 + }, + { + "start": 5166.14, + "end": 5169.64, + "probability": 0.9242 + }, + { + "start": 5170.3, + "end": 5173.12, + "probability": 0.9868 + }, + { + "start": 5173.26, + "end": 5173.92, + "probability": 0.7181 + }, + { + "start": 5175.12, + "end": 5178.16, + "probability": 0.6803 + }, + { + "start": 5178.16, + "end": 5182.16, + "probability": 0.96 + }, + { + "start": 5183.6, + "end": 5186.22, + "probability": 0.7057 + }, + { + "start": 5186.22, + "end": 5189.52, + "probability": 0.9843 + }, + { + "start": 5190.84, + "end": 5193.0, + "probability": 0.6371 + }, + { + "start": 5193.22, + "end": 5193.22, + "probability": 0.6501 + }, + { + "start": 5193.22, + "end": 5195.9, + "probability": 0.857 + }, + { + "start": 5196.46, + "end": 5198.78, + "probability": 0.9093 + }, + { + "start": 5200.24, + "end": 5202.6, + "probability": 0.7616 + }, + { + "start": 5202.6, + "end": 5206.72, + "probability": 0.9914 + }, + { + "start": 5207.92, + "end": 5208.88, + "probability": 0.9537 + }, + { + "start": 5210.6, + "end": 5213.78, + "probability": 0.8848 + }, + { + "start": 5214.66, + "end": 5217.12, + "probability": 0.9025 + }, + { + "start": 5217.12, + "end": 5221.92, + "probability": 0.9847 + }, + { + "start": 5223.08, + "end": 5228.58, + "probability": 0.8205 + }, + { + "start": 5229.23, + "end": 5233.02, + "probability": 0.8708 + }, + { + "start": 5233.02, + "end": 5235.64, + "probability": 0.9357 + }, + { + "start": 5236.9, + "end": 5240.76, + "probability": 0.5458 + }, + { + "start": 5240.76, + "end": 5245.66, + "probability": 0.7601 + }, + { + "start": 5246.28, + "end": 5249.8, + "probability": 0.8861 + }, + { + "start": 5249.8, + "end": 5252.34, + "probability": 0.455 + }, + { + "start": 5252.52, + "end": 5253.34, + "probability": 0.6448 + }, + { + "start": 5253.96, + "end": 5256.28, + "probability": 0.9538 + }, + { + "start": 5256.98, + "end": 5257.94, + "probability": 0.6778 + }, + { + "start": 5258.08, + "end": 5260.94, + "probability": 0.8904 + }, + { + "start": 5263.12, + "end": 5263.82, + "probability": 0.8968 + }, + { + "start": 5265.06, + "end": 5268.36, + "probability": 0.7082 + }, + { + "start": 5269.18, + "end": 5270.56, + "probability": 0.3384 + }, + { + "start": 5270.84, + "end": 5274.99, + "probability": 0.5218 + }, + { + "start": 5275.58, + "end": 5278.36, + "probability": 0.9583 + }, + { + "start": 5278.48, + "end": 5279.14, + "probability": 0.2173 + }, + { + "start": 5280.2, + "end": 5283.18, + "probability": 0.7104 + }, + { + "start": 5285.86, + "end": 5289.92, + "probability": 0.9314 + }, + { + "start": 5290.06, + "end": 5292.06, + "probability": 0.9778 + }, + { + "start": 5292.78, + "end": 5297.02, + "probability": 0.9566 + }, + { + "start": 5298.34, + "end": 5302.58, + "probability": 0.9406 + }, + { + "start": 5303.24, + "end": 5305.42, + "probability": 0.9463 + }, + { + "start": 5305.94, + "end": 5309.12, + "probability": 0.9455 + }, + { + "start": 5309.74, + "end": 5311.3, + "probability": 0.9694 + }, + { + "start": 5312.04, + "end": 5317.72, + "probability": 0.948 + }, + { + "start": 5318.24, + "end": 5324.32, + "probability": 0.9744 + }, + { + "start": 5324.66, + "end": 5326.6, + "probability": 0.6537 + }, + { + "start": 5327.28, + "end": 5328.58, + "probability": 0.9087 + }, + { + "start": 5329.06, + "end": 5332.66, + "probability": 0.9716 + }, + { + "start": 5333.06, + "end": 5334.02, + "probability": 0.979 + }, + { + "start": 5335.18, + "end": 5338.1, + "probability": 0.9078 + }, + { + "start": 5338.26, + "end": 5338.36, + "probability": 0.7012 + }, + { + "start": 5339.56, + "end": 5339.74, + "probability": 0.5613 + }, + { + "start": 5339.9, + "end": 5344.26, + "probability": 0.7524 + }, + { + "start": 5344.72, + "end": 5345.04, + "probability": 0.4061 + }, + { + "start": 5345.1, + "end": 5345.46, + "probability": 0.8474 + }, + { + "start": 5345.52, + "end": 5347.02, + "probability": 0.9814 + }, + { + "start": 5347.84, + "end": 5348.38, + "probability": 0.5514 + }, + { + "start": 5348.44, + "end": 5350.96, + "probability": 0.9686 + }, + { + "start": 5352.46, + "end": 5357.06, + "probability": 0.5965 + }, + { + "start": 5357.58, + "end": 5360.16, + "probability": 0.9911 + }, + { + "start": 5360.64, + "end": 5360.8, + "probability": 0.7722 + }, + { + "start": 5360.96, + "end": 5363.05, + "probability": 0.8359 + }, + { + "start": 5363.58, + "end": 5364.48, + "probability": 0.8838 + }, + { + "start": 5365.08, + "end": 5367.74, + "probability": 0.836 + }, + { + "start": 5369.56, + "end": 5370.52, + "probability": 0.9364 + }, + { + "start": 5370.76, + "end": 5371.3, + "probability": 0.9924 + }, + { + "start": 5371.46, + "end": 5373.62, + "probability": 0.1378 + }, + { + "start": 5373.78, + "end": 5374.96, + "probability": 0.7026 + }, + { + "start": 5375.02, + "end": 5378.88, + "probability": 0.7832 + }, + { + "start": 5379.24, + "end": 5379.6, + "probability": 0.6508 + }, + { + "start": 5379.6, + "end": 5382.08, + "probability": 0.5829 + }, + { + "start": 5382.34, + "end": 5382.62, + "probability": 0.7649 + }, + { + "start": 5382.96, + "end": 5384.0, + "probability": 0.6085 + }, + { + "start": 5384.54, + "end": 5388.22, + "probability": 0.6163 + }, + { + "start": 5388.36, + "end": 5388.9, + "probability": 0.7299 + }, + { + "start": 5389.02, + "end": 5389.26, + "probability": 0.7182 + }, + { + "start": 5396.06, + "end": 5399.26, + "probability": 0.6566 + }, + { + "start": 5400.92, + "end": 5403.34, + "probability": 0.9499 + }, + { + "start": 5403.48, + "end": 5403.8, + "probability": 0.4412 + }, + { + "start": 5405.6, + "end": 5406.08, + "probability": 0.8837 + }, + { + "start": 5407.65, + "end": 5413.12, + "probability": 0.8397 + }, + { + "start": 5414.9, + "end": 5415.44, + "probability": 0.725 + }, + { + "start": 5415.98, + "end": 5416.48, + "probability": 0.4785 + }, + { + "start": 5417.78, + "end": 5418.14, + "probability": 0.5426 + }, + { + "start": 5419.06, + "end": 5424.76, + "probability": 0.974 + }, + { + "start": 5426.11, + "end": 5429.1, + "probability": 0.8185 + }, + { + "start": 5429.92, + "end": 5436.28, + "probability": 0.9937 + }, + { + "start": 5436.88, + "end": 5442.88, + "probability": 0.9684 + }, + { + "start": 5443.42, + "end": 5445.56, + "probability": 0.6955 + }, + { + "start": 5446.08, + "end": 5447.12, + "probability": 0.8174 + }, + { + "start": 5448.16, + "end": 5451.74, + "probability": 0.8551 + }, + { + "start": 5452.16, + "end": 5453.62, + "probability": 0.4329 + }, + { + "start": 5454.12, + "end": 5454.34, + "probability": 0.77 + }, + { + "start": 5456.84, + "end": 5459.58, + "probability": 0.5322 + }, + { + "start": 5460.42, + "end": 5462.84, + "probability": 0.438 + }, + { + "start": 5463.76, + "end": 5465.34, + "probability": 0.9147 + }, + { + "start": 5466.18, + "end": 5469.6, + "probability": 0.9761 + }, + { + "start": 5469.76, + "end": 5470.88, + "probability": 0.859 + }, + { + "start": 5471.5, + "end": 5474.12, + "probability": 0.973 + }, + { + "start": 5475.32, + "end": 5480.21, + "probability": 0.9056 + }, + { + "start": 5481.44, + "end": 5483.64, + "probability": 0.9069 + }, + { + "start": 5485.36, + "end": 5487.44, + "probability": 0.9135 + }, + { + "start": 5487.44, + "end": 5489.96, + "probability": 0.8691 + }, + { + "start": 5491.0, + "end": 5493.16, + "probability": 0.7268 + }, + { + "start": 5493.42, + "end": 5493.44, + "probability": 0.7939 + }, + { + "start": 5493.44, + "end": 5497.2, + "probability": 0.8155 + }, + { + "start": 5499.28, + "end": 5500.92, + "probability": 0.7213 + }, + { + "start": 5502.18, + "end": 5504.6, + "probability": 0.9115 + }, + { + "start": 5504.64, + "end": 5505.02, + "probability": 0.4638 + }, + { + "start": 5505.4, + "end": 5506.0, + "probability": 0.7281 + }, + { + "start": 5506.1, + "end": 5506.36, + "probability": 0.897 + }, + { + "start": 5506.68, + "end": 5508.92, + "probability": 0.9382 + }, + { + "start": 5509.56, + "end": 5510.0, + "probability": 0.7952 + }, + { + "start": 5511.34, + "end": 5513.38, + "probability": 0.997 + }, + { + "start": 5514.06, + "end": 5516.2, + "probability": 0.649 + }, + { + "start": 5517.18, + "end": 5520.52, + "probability": 0.9875 + }, + { + "start": 5521.32, + "end": 5526.22, + "probability": 0.9504 + }, + { + "start": 5526.22, + "end": 5532.26, + "probability": 0.9946 + }, + { + "start": 5532.28, + "end": 5534.88, + "probability": 0.7372 + }, + { + "start": 5537.0, + "end": 5538.26, + "probability": 0.7807 + }, + { + "start": 5540.06, + "end": 5542.38, + "probability": 0.9406 + }, + { + "start": 5543.04, + "end": 5545.38, + "probability": 0.9766 + }, + { + "start": 5546.18, + "end": 5547.34, + "probability": 0.8231 + }, + { + "start": 5548.06, + "end": 5553.96, + "probability": 0.9323 + }, + { + "start": 5554.04, + "end": 5559.56, + "probability": 0.9808 + }, + { + "start": 5559.68, + "end": 5560.32, + "probability": 0.5242 + }, + { + "start": 5560.84, + "end": 5563.36, + "probability": 0.7945 + }, + { + "start": 5563.96, + "end": 5566.4, + "probability": 0.946 + }, + { + "start": 5566.74, + "end": 5567.14, + "probability": 0.8146 + }, + { + "start": 5568.52, + "end": 5568.76, + "probability": 0.7751 + }, + { + "start": 5569.4, + "end": 5569.42, + "probability": 0.2016 + }, + { + "start": 5569.42, + "end": 5570.31, + "probability": 0.7794 + }, + { + "start": 5570.54, + "end": 5572.0, + "probability": 0.6765 + }, + { + "start": 5573.32, + "end": 5574.68, + "probability": 0.4491 + }, + { + "start": 5574.88, + "end": 5576.72, + "probability": 0.9411 + }, + { + "start": 5578.88, + "end": 5582.34, + "probability": 0.9847 + }, + { + "start": 5583.18, + "end": 5583.78, + "probability": 0.6859 + }, + { + "start": 5584.0, + "end": 5584.88, + "probability": 0.9274 + }, + { + "start": 5585.16, + "end": 5587.82, + "probability": 0.9928 + }, + { + "start": 5588.12, + "end": 5588.88, + "probability": 0.9464 + }, + { + "start": 5589.66, + "end": 5594.68, + "probability": 0.9356 + }, + { + "start": 5595.5, + "end": 5595.8, + "probability": 0.7457 + }, + { + "start": 5595.98, + "end": 5599.67, + "probability": 0.9766 + }, + { + "start": 5599.94, + "end": 5604.7, + "probability": 0.9798 + }, + { + "start": 5605.66, + "end": 5608.54, + "probability": 0.9856 + }, + { + "start": 5609.24, + "end": 5610.68, + "probability": 0.9552 + }, + { + "start": 5611.74, + "end": 5613.52, + "probability": 0.9163 + }, + { + "start": 5615.26, + "end": 5615.5, + "probability": 0.6623 + }, + { + "start": 5616.94, + "end": 5617.06, + "probability": 0.1066 + }, + { + "start": 5617.06, + "end": 5617.32, + "probability": 0.3934 + }, + { + "start": 5617.68, + "end": 5619.82, + "probability": 0.8042 + }, + { + "start": 5626.46, + "end": 5627.42, + "probability": 0.7515 + }, + { + "start": 5628.2, + "end": 5631.92, + "probability": 0.7138 + }, + { + "start": 5632.48, + "end": 5632.68, + "probability": 0.2129 + }, + { + "start": 5632.72, + "end": 5636.02, + "probability": 0.8634 + }, + { + "start": 5636.16, + "end": 5636.62, + "probability": 0.6329 + }, + { + "start": 5636.7, + "end": 5641.8, + "probability": 0.8651 + }, + { + "start": 5642.36, + "end": 5643.24, + "probability": 0.8548 + }, + { + "start": 5643.86, + "end": 5645.56, + "probability": 0.9769 + }, + { + "start": 5646.1, + "end": 5649.28, + "probability": 0.9614 + }, + { + "start": 5649.78, + "end": 5650.22, + "probability": 0.957 + }, + { + "start": 5650.5, + "end": 5654.84, + "probability": 0.9907 + }, + { + "start": 5655.2, + "end": 5658.6, + "probability": 0.9313 + }, + { + "start": 5659.06, + "end": 5660.76, + "probability": 0.9805 + }, + { + "start": 5661.26, + "end": 5661.5, + "probability": 0.8788 + }, + { + "start": 5662.6, + "end": 5663.8, + "probability": 0.7667 + }, + { + "start": 5665.44, + "end": 5667.8, + "probability": 0.5888 + }, + { + "start": 5672.68, + "end": 5675.22, + "probability": 0.9404 + }, + { + "start": 5675.22, + "end": 5678.76, + "probability": 0.9969 + }, + { + "start": 5682.18, + "end": 5682.18, + "probability": 0.0687 + }, + { + "start": 5682.18, + "end": 5684.34, + "probability": 0.5013 + }, + { + "start": 5684.98, + "end": 5686.34, + "probability": 0.7219 + }, + { + "start": 5687.52, + "end": 5692.0, + "probability": 0.8365 + }, + { + "start": 5692.76, + "end": 5696.6, + "probability": 0.5434 + }, + { + "start": 5697.24, + "end": 5697.26, + "probability": 0.3257 + }, + { + "start": 5697.26, + "end": 5697.74, + "probability": 0.6226 + }, + { + "start": 5698.34, + "end": 5700.78, + "probability": 0.8391 + }, + { + "start": 5701.3, + "end": 5704.68, + "probability": 0.9141 + }, + { + "start": 5705.96, + "end": 5706.28, + "probability": 0.6742 + }, + { + "start": 5707.78, + "end": 5708.92, + "probability": 0.688 + }, + { + "start": 5708.96, + "end": 5710.02, + "probability": 0.8069 + }, + { + "start": 5710.24, + "end": 5713.8, + "probability": 0.9857 + }, + { + "start": 5714.0, + "end": 5714.62, + "probability": 0.7029 + }, + { + "start": 5715.32, + "end": 5715.78, + "probability": 0.4298 + }, + { + "start": 5715.78, + "end": 5719.88, + "probability": 0.9863 + }, + { + "start": 5720.14, + "end": 5720.84, + "probability": 0.7717 + }, + { + "start": 5721.04, + "end": 5722.44, + "probability": 0.7148 + }, + { + "start": 5722.96, + "end": 5724.97, + "probability": 0.9274 + }, + { + "start": 5725.1, + "end": 5726.45, + "probability": 0.972 + }, + { + "start": 5727.5, + "end": 5731.28, + "probability": 0.9846 + }, + { + "start": 5731.98, + "end": 5736.96, + "probability": 0.9844 + }, + { + "start": 5737.04, + "end": 5740.7, + "probability": 0.7693 + }, + { + "start": 5741.16, + "end": 5747.08, + "probability": 0.9722 + }, + { + "start": 5747.24, + "end": 5748.3, + "probability": 0.9286 + }, + { + "start": 5749.08, + "end": 5750.16, + "probability": 0.9164 + }, + { + "start": 5751.08, + "end": 5754.82, + "probability": 0.9967 + }, + { + "start": 5755.98, + "end": 5760.1, + "probability": 0.9559 + }, + { + "start": 5760.72, + "end": 5761.82, + "probability": 0.9523 + }, + { + "start": 5762.72, + "end": 5763.98, + "probability": 0.7583 + }, + { + "start": 5765.1, + "end": 5765.32, + "probability": 0.4035 + }, + { + "start": 5765.42, + "end": 5766.19, + "probability": 0.9712 + }, + { + "start": 5766.5, + "end": 5768.82, + "probability": 0.9446 + }, + { + "start": 5768.9, + "end": 5769.8, + "probability": 0.991 + }, + { + "start": 5770.38, + "end": 5772.04, + "probability": 0.8657 + }, + { + "start": 5772.78, + "end": 5773.84, + "probability": 0.7433 + }, + { + "start": 5775.22, + "end": 5777.04, + "probability": 0.9497 + }, + { + "start": 5777.2, + "end": 5779.26, + "probability": 0.4171 + }, + { + "start": 5779.26, + "end": 5779.74, + "probability": 0.6761 + }, + { + "start": 5781.38, + "end": 5782.02, + "probability": 0.1954 + }, + { + "start": 5782.72, + "end": 5785.88, + "probability": 0.7494 + }, + { + "start": 5788.36, + "end": 5788.64, + "probability": 0.2641 + }, + { + "start": 5818.96, + "end": 5819.12, + "probability": 0.0922 + }, + { + "start": 5819.12, + "end": 5819.12, + "probability": 0.3033 + }, + { + "start": 5819.12, + "end": 5819.76, + "probability": 0.4537 + }, + { + "start": 5820.4, + "end": 5820.9, + "probability": 0.6302 + }, + { + "start": 5820.94, + "end": 5821.6, + "probability": 0.7892 + }, + { + "start": 5821.82, + "end": 5823.66, + "probability": 0.4705 + }, + { + "start": 5824.56, + "end": 5827.76, + "probability": 0.9806 + }, + { + "start": 5827.76, + "end": 5831.28, + "probability": 0.6928 + }, + { + "start": 5831.5, + "end": 5833.38, + "probability": 0.074 + }, + { + "start": 5834.22, + "end": 5836.6, + "probability": 0.8452 + }, + { + "start": 5837.26, + "end": 5839.86, + "probability": 0.829 + }, + { + "start": 5840.74, + "end": 5841.66, + "probability": 0.7215 + }, + { + "start": 5841.74, + "end": 5843.0, + "probability": 0.4418 + }, + { + "start": 5843.44, + "end": 5843.44, + "probability": 0.4347 + }, + { + "start": 5843.44, + "end": 5846.88, + "probability": 0.9297 + }, + { + "start": 5846.96, + "end": 5848.18, + "probability": 0.6891 + }, + { + "start": 5849.66, + "end": 5850.5, + "probability": 0.763 + }, + { + "start": 5851.54, + "end": 5854.12, + "probability": 0.9373 + }, + { + "start": 5855.34, + "end": 5858.26, + "probability": 0.7603 + }, + { + "start": 5858.92, + "end": 5859.96, + "probability": 0.8529 + }, + { + "start": 5860.68, + "end": 5861.4, + "probability": 0.8904 + }, + { + "start": 5861.5, + "end": 5862.44, + "probability": 0.8914 + }, + { + "start": 5862.54, + "end": 5865.58, + "probability": 0.9215 + }, + { + "start": 5866.1, + "end": 5866.96, + "probability": 0.6725 + }, + { + "start": 5867.5, + "end": 5869.38, + "probability": 0.7855 + }, + { + "start": 5869.96, + "end": 5873.52, + "probability": 0.841 + }, + { + "start": 5874.1, + "end": 5875.2, + "probability": 0.5273 + }, + { + "start": 5875.94, + "end": 5876.4, + "probability": 0.4189 + }, + { + "start": 5877.24, + "end": 5878.52, + "probability": 0.4557 + }, + { + "start": 5878.96, + "end": 5879.68, + "probability": 0.7706 + }, + { + "start": 5879.7, + "end": 5881.02, + "probability": 0.7974 + }, + { + "start": 5881.06, + "end": 5882.56, + "probability": 0.9488 + }, + { + "start": 5883.34, + "end": 5884.26, + "probability": 0.4796 + }, + { + "start": 5885.3, + "end": 5887.5, + "probability": 0.7107 + }, + { + "start": 5888.5, + "end": 5890.96, + "probability": 0.5838 + }, + { + "start": 5891.56, + "end": 5894.9, + "probability": 0.7543 + }, + { + "start": 5895.94, + "end": 5898.0, + "probability": 0.9873 + }, + { + "start": 5898.0, + "end": 5900.92, + "probability": 0.9751 + }, + { + "start": 5901.66, + "end": 5903.5, + "probability": 0.986 + }, + { + "start": 5903.5, + "end": 5906.58, + "probability": 0.9857 + }, + { + "start": 5906.72, + "end": 5909.22, + "probability": 0.8798 + }, + { + "start": 5910.0, + "end": 5911.34, + "probability": 0.6126 + }, + { + "start": 5912.68, + "end": 5912.82, + "probability": 0.1566 + }, + { + "start": 5912.82, + "end": 5914.72, + "probability": 0.5832 + }, + { + "start": 5914.92, + "end": 5916.62, + "probability": 0.4214 + }, + { + "start": 5917.16, + "end": 5919.68, + "probability": 0.9339 + }, + { + "start": 5920.22, + "end": 5923.44, + "probability": 0.7614 + }, + { + "start": 5924.22, + "end": 5926.62, + "probability": 0.9663 + }, + { + "start": 5927.56, + "end": 5929.78, + "probability": 0.7372 + }, + { + "start": 5930.34, + "end": 5931.9, + "probability": 0.8202 + }, + { + "start": 5932.48, + "end": 5934.62, + "probability": 0.8925 + }, + { + "start": 5935.14, + "end": 5937.0, + "probability": 0.8616 + }, + { + "start": 5937.8, + "end": 5939.6, + "probability": 0.7643 + }, + { + "start": 5941.41, + "end": 5943.4, + "probability": 0.6768 + }, + { + "start": 5946.34, + "end": 5946.86, + "probability": 0.4953 + }, + { + "start": 5947.4, + "end": 5947.9, + "probability": 0.0596 + }, + { + "start": 5947.9, + "end": 5949.18, + "probability": 0.8542 + }, + { + "start": 5949.3, + "end": 5952.32, + "probability": 0.7872 + }, + { + "start": 5952.44, + "end": 5952.54, + "probability": 0.5912 + }, + { + "start": 5954.02, + "end": 5954.86, + "probability": 0.861 + }, + { + "start": 5955.5, + "end": 5957.48, + "probability": 0.9326 + }, + { + "start": 5960.74, + "end": 5962.6, + "probability": 0.7611 + }, + { + "start": 5964.18, + "end": 5966.62, + "probability": 0.6984 + }, + { + "start": 5967.26, + "end": 5969.12, + "probability": 0.5785 + }, + { + "start": 5970.6, + "end": 5971.9, + "probability": 0.781 + }, + { + "start": 5972.48, + "end": 5974.96, + "probability": 0.7081 + }, + { + "start": 5977.72, + "end": 5981.66, + "probability": 0.7956 + }, + { + "start": 5981.66, + "end": 5985.68, + "probability": 0.8613 + }, + { + "start": 5985.82, + "end": 5987.6, + "probability": 0.929 + }, + { + "start": 5988.12, + "end": 5989.24, + "probability": 0.8288 + }, + { + "start": 5989.34, + "end": 5989.96, + "probability": 0.7347 + }, + { + "start": 5990.42, + "end": 5991.2, + "probability": 0.952 + }, + { + "start": 5991.3, + "end": 5993.22, + "probability": 0.7081 + }, + { + "start": 5994.34, + "end": 5995.06, + "probability": 0.6162 + }, + { + "start": 5996.2, + "end": 5997.94, + "probability": 0.626 + }, + { + "start": 5998.0, + "end": 5998.68, + "probability": 0.7735 + }, + { + "start": 5998.78, + "end": 6001.58, + "probability": 0.926 + }, + { + "start": 6001.58, + "end": 6004.52, + "probability": 0.9294 + }, + { + "start": 6005.48, + "end": 6010.24, + "probability": 0.8174 + }, + { + "start": 6010.28, + "end": 6011.24, + "probability": 0.8925 + }, + { + "start": 6012.22, + "end": 6012.74, + "probability": 0.8011 + }, + { + "start": 6013.54, + "end": 6015.54, + "probability": 0.8857 + }, + { + "start": 6015.68, + "end": 6017.44, + "probability": 0.938 + }, + { + "start": 6018.8, + "end": 6019.02, + "probability": 0.9097 + }, + { + "start": 6021.08, + "end": 6023.16, + "probability": 0.5888 + }, + { + "start": 6023.34, + "end": 6025.78, + "probability": 0.7518 + }, + { + "start": 6026.28, + "end": 6027.98, + "probability": 0.3572 + }, + { + "start": 6028.42, + "end": 6031.72, + "probability": 0.9742 + }, + { + "start": 6032.38, + "end": 6033.68, + "probability": 0.9808 + }, + { + "start": 6041.74, + "end": 6041.74, + "probability": 0.2763 + }, + { + "start": 6041.8, + "end": 6044.94, + "probability": 0.876 + }, + { + "start": 6055.66, + "end": 6056.78, + "probability": 0.3647 + }, + { + "start": 6056.78, + "end": 6059.46, + "probability": 0.6392 + }, + { + "start": 6060.66, + "end": 6061.7, + "probability": 0.8113 + }, + { + "start": 6062.92, + "end": 6069.48, + "probability": 0.9937 + }, + { + "start": 6072.21, + "end": 6073.42, + "probability": 0.3628 + }, + { + "start": 6074.62, + "end": 6075.3, + "probability": 0.6212 + }, + { + "start": 6075.48, + "end": 6075.76, + "probability": 0.5404 + }, + { + "start": 6076.1, + "end": 6078.38, + "probability": 0.9966 + }, + { + "start": 6078.96, + "end": 6080.9, + "probability": 0.9543 + }, + { + "start": 6081.5, + "end": 6082.72, + "probability": 0.8308 + }, + { + "start": 6082.76, + "end": 6084.36, + "probability": 0.9971 + }, + { + "start": 6085.08, + "end": 6086.92, + "probability": 0.9902 + }, + { + "start": 6086.92, + "end": 6090.84, + "probability": 0.981 + }, + { + "start": 6091.58, + "end": 6094.94, + "probability": 0.9335 + }, + { + "start": 6095.06, + "end": 6095.8, + "probability": 0.9076 + }, + { + "start": 6095.98, + "end": 6096.7, + "probability": 0.7168 + }, + { + "start": 6097.14, + "end": 6100.22, + "probability": 0.9983 + }, + { + "start": 6101.02, + "end": 6104.99, + "probability": 0.987 + }, + { + "start": 6105.52, + "end": 6107.68, + "probability": 0.9985 + }, + { + "start": 6107.68, + "end": 6110.14, + "probability": 0.9678 + }, + { + "start": 6110.68, + "end": 6113.1, + "probability": 0.9651 + }, + { + "start": 6113.16, + "end": 6113.56, + "probability": 0.4265 + }, + { + "start": 6113.64, + "end": 6115.5, + "probability": 0.9657 + }, + { + "start": 6116.44, + "end": 6118.92, + "probability": 0.979 + }, + { + "start": 6119.66, + "end": 6121.36, + "probability": 0.9941 + }, + { + "start": 6121.38, + "end": 6123.86, + "probability": 0.9901 + }, + { + "start": 6124.6, + "end": 6125.74, + "probability": 0.5385 + }, + { + "start": 6126.66, + "end": 6127.94, + "probability": 0.7032 + }, + { + "start": 6128.6, + "end": 6133.78, + "probability": 0.9619 + }, + { + "start": 6134.18, + "end": 6135.08, + "probability": 0.9546 + }, + { + "start": 6135.16, + "end": 6135.46, + "probability": 0.9672 + }, + { + "start": 6135.56, + "end": 6138.86, + "probability": 0.9777 + }, + { + "start": 6140.14, + "end": 6140.3, + "probability": 0.2738 + }, + { + "start": 6140.3, + "end": 6140.74, + "probability": 0.7869 + }, + { + "start": 6140.82, + "end": 6141.86, + "probability": 0.856 + }, + { + "start": 6142.08, + "end": 6144.04, + "probability": 0.9899 + }, + { + "start": 6146.08, + "end": 6146.78, + "probability": 0.3593 + }, + { + "start": 6146.86, + "end": 6149.5, + "probability": 0.9948 + }, + { + "start": 6150.38, + "end": 6152.48, + "probability": 0.9695 + }, + { + "start": 6152.82, + "end": 6157.82, + "probability": 0.9928 + }, + { + "start": 6157.86, + "end": 6161.44, + "probability": 0.9977 + }, + { + "start": 6161.6, + "end": 6164.12, + "probability": 0.985 + }, + { + "start": 6164.68, + "end": 6168.32, + "probability": 0.9634 + }, + { + "start": 6168.32, + "end": 6173.16, + "probability": 0.9771 + }, + { + "start": 6173.86, + "end": 6176.86, + "probability": 0.9984 + }, + { + "start": 6177.3, + "end": 6179.73, + "probability": 0.9978 + }, + { + "start": 6181.48, + "end": 6181.6, + "probability": 0.4934 + }, + { + "start": 6181.68, + "end": 6181.98, + "probability": 0.936 + }, + { + "start": 6182.04, + "end": 6185.26, + "probability": 0.9956 + }, + { + "start": 6185.26, + "end": 6187.7, + "probability": 0.9852 + }, + { + "start": 6187.82, + "end": 6188.92, + "probability": 0.8672 + }, + { + "start": 6190.12, + "end": 6194.0, + "probability": 0.9979 + }, + { + "start": 6194.9, + "end": 6198.24, + "probability": 0.9727 + }, + { + "start": 6198.88, + "end": 6204.48, + "probability": 0.996 + }, + { + "start": 6205.0, + "end": 6207.68, + "probability": 0.873 + }, + { + "start": 6208.56, + "end": 6210.08, + "probability": 0.9821 + }, + { + "start": 6210.18, + "end": 6211.28, + "probability": 0.9771 + }, + { + "start": 6211.42, + "end": 6214.28, + "probability": 0.9929 + }, + { + "start": 6214.56, + "end": 6217.58, + "probability": 0.9873 + }, + { + "start": 6218.04, + "end": 6220.4, + "probability": 0.9939 + }, + { + "start": 6220.4, + "end": 6223.84, + "probability": 0.873 + }, + { + "start": 6224.7, + "end": 6227.2, + "probability": 0.9922 + }, + { + "start": 6228.2, + "end": 6230.56, + "probability": 0.9989 + }, + { + "start": 6230.56, + "end": 6233.52, + "probability": 0.2824 + }, + { + "start": 6233.66, + "end": 6234.32, + "probability": 0.9067 + }, + { + "start": 6234.32, + "end": 6234.92, + "probability": 0.9829 + }, + { + "start": 6235.02, + "end": 6235.58, + "probability": 0.9561 + }, + { + "start": 6235.58, + "end": 6236.28, + "probability": 0.9423 + }, + { + "start": 6236.36, + "end": 6237.68, + "probability": 0.7944 + }, + { + "start": 6237.84, + "end": 6240.14, + "probability": 0.9584 + }, + { + "start": 6240.22, + "end": 6242.26, + "probability": 0.7402 + }, + { + "start": 6242.86, + "end": 6246.7, + "probability": 0.7603 + }, + { + "start": 6247.68, + "end": 6248.22, + "probability": 0.8018 + }, + { + "start": 6248.62, + "end": 6252.3, + "probability": 0.988 + }, + { + "start": 6252.32, + "end": 6254.34, + "probability": 0.9784 + }, + { + "start": 6254.8, + "end": 6257.34, + "probability": 0.9975 + }, + { + "start": 6257.88, + "end": 6262.68, + "probability": 0.9629 + }, + { + "start": 6264.4, + "end": 6268.64, + "probability": 0.9282 + }, + { + "start": 6268.68, + "end": 6269.74, + "probability": 0.8805 + }, + { + "start": 6271.4, + "end": 6272.98, + "probability": 0.7277 + }, + { + "start": 6273.02, + "end": 6273.62, + "probability": 0.8853 + }, + { + "start": 6273.64, + "end": 6276.24, + "probability": 0.6291 + }, + { + "start": 6276.34, + "end": 6279.0, + "probability": 0.9767 + }, + { + "start": 6279.5, + "end": 6281.64, + "probability": 0.6253 + }, + { + "start": 6282.28, + "end": 6285.1, + "probability": 0.8312 + }, + { + "start": 6285.74, + "end": 6287.28, + "probability": 0.9033 + }, + { + "start": 6287.42, + "end": 6291.3, + "probability": 0.9754 + }, + { + "start": 6291.51, + "end": 6294.84, + "probability": 0.9752 + }, + { + "start": 6295.3, + "end": 6298.32, + "probability": 0.7957 + }, + { + "start": 6298.9, + "end": 6300.92, + "probability": 0.9855 + }, + { + "start": 6301.32, + "end": 6302.6, + "probability": 0.4989 + }, + { + "start": 6302.68, + "end": 6303.46, + "probability": 0.7158 + }, + { + "start": 6304.3, + "end": 6307.11, + "probability": 0.9913 + }, + { + "start": 6308.22, + "end": 6310.22, + "probability": 0.8982 + }, + { + "start": 6311.52, + "end": 6315.76, + "probability": 0.9723 + }, + { + "start": 6316.1, + "end": 6317.17, + "probability": 0.5374 + }, + { + "start": 6317.58, + "end": 6321.02, + "probability": 0.9921 + }, + { + "start": 6321.62, + "end": 6322.03, + "probability": 0.9756 + }, + { + "start": 6323.58, + "end": 6324.77, + "probability": 0.8235 + }, + { + "start": 6325.06, + "end": 6325.42, + "probability": 0.9605 + }, + { + "start": 6326.14, + "end": 6326.57, + "probability": 0.6921 + }, + { + "start": 6328.08, + "end": 6328.64, + "probability": 0.6756 + }, + { + "start": 6328.9, + "end": 6330.74, + "probability": 0.7885 + }, + { + "start": 6330.78, + "end": 6332.28, + "probability": 0.981 + }, + { + "start": 6332.88, + "end": 6333.66, + "probability": 0.7425 + }, + { + "start": 6333.66, + "end": 6336.92, + "probability": 0.9884 + }, + { + "start": 6337.04, + "end": 6340.33, + "probability": 0.9985 + }, + { + "start": 6340.92, + "end": 6342.38, + "probability": 0.6392 + }, + { + "start": 6342.84, + "end": 6345.64, + "probability": 0.9946 + }, + { + "start": 6346.26, + "end": 6347.06, + "probability": 0.4144 + }, + { + "start": 6347.22, + "end": 6347.84, + "probability": 0.7233 + }, + { + "start": 6348.52, + "end": 6349.86, + "probability": 0.9358 + }, + { + "start": 6350.18, + "end": 6350.72, + "probability": 0.9852 + }, + { + "start": 6351.42, + "end": 6352.44, + "probability": 0.9619 + }, + { + "start": 6352.52, + "end": 6355.56, + "probability": 0.9756 + }, + { + "start": 6355.76, + "end": 6357.04, + "probability": 0.7221 + }, + { + "start": 6357.12, + "end": 6358.44, + "probability": 0.9839 + }, + { + "start": 6358.5, + "end": 6360.2, + "probability": 0.9906 + }, + { + "start": 6360.76, + "end": 6361.96, + "probability": 0.8357 + }, + { + "start": 6362.24, + "end": 6363.02, + "probability": 0.7433 + }, + { + "start": 6363.1, + "end": 6363.62, + "probability": 0.6563 + }, + { + "start": 6363.7, + "end": 6366.1, + "probability": 0.9939 + }, + { + "start": 6366.46, + "end": 6368.74, + "probability": 0.9901 + }, + { + "start": 6368.74, + "end": 6370.98, + "probability": 0.9994 + }, + { + "start": 6371.76, + "end": 6375.62, + "probability": 0.9956 + }, + { + "start": 6375.62, + "end": 6380.14, + "probability": 0.9427 + }, + { + "start": 6380.82, + "end": 6385.14, + "probability": 0.9655 + }, + { + "start": 6385.58, + "end": 6389.2, + "probability": 0.7572 + }, + { + "start": 6389.64, + "end": 6390.88, + "probability": 0.8271 + }, + { + "start": 6391.16, + "end": 6394.06, + "probability": 0.981 + }, + { + "start": 6394.92, + "end": 6397.2, + "probability": 0.9162 + }, + { + "start": 6397.92, + "end": 6399.02, + "probability": 0.7102 + }, + { + "start": 6399.12, + "end": 6400.6, + "probability": 0.9885 + }, + { + "start": 6401.97, + "end": 6405.68, + "probability": 0.9022 + }, + { + "start": 6406.42, + "end": 6408.54, + "probability": 0.9946 + }, + { + "start": 6408.54, + "end": 6412.88, + "probability": 0.9713 + }, + { + "start": 6413.8, + "end": 6415.9, + "probability": 0.857 + }, + { + "start": 6416.32, + "end": 6418.96, + "probability": 0.9891 + }, + { + "start": 6418.96, + "end": 6422.84, + "probability": 0.9471 + }, + { + "start": 6423.42, + "end": 6426.34, + "probability": 0.9526 + }, + { + "start": 6426.4, + "end": 6429.02, + "probability": 0.8721 + }, + { + "start": 6429.02, + "end": 6430.24, + "probability": 0.7597 + }, + { + "start": 6430.78, + "end": 6431.81, + "probability": 0.7716 + }, + { + "start": 6432.48, + "end": 6433.76, + "probability": 0.9844 + }, + { + "start": 6433.8, + "end": 6435.04, + "probability": 0.749 + }, + { + "start": 6435.88, + "end": 6440.68, + "probability": 0.4501 + }, + { + "start": 6440.8, + "end": 6440.84, + "probability": 0.1296 + }, + { + "start": 6440.84, + "end": 6443.5, + "probability": 0.8433 + }, + { + "start": 6443.9, + "end": 6444.44, + "probability": 0.8775 + }, + { + "start": 6444.54, + "end": 6447.58, + "probability": 0.9674 + }, + { + "start": 6447.58, + "end": 6451.14, + "probability": 0.9858 + }, + { + "start": 6454.68, + "end": 6456.7, + "probability": 0.605 + }, + { + "start": 6456.78, + "end": 6457.14, + "probability": 0.5575 + }, + { + "start": 6457.32, + "end": 6459.32, + "probability": 0.9653 + }, + { + "start": 6459.64, + "end": 6460.14, + "probability": 0.9655 + }, + { + "start": 6460.38, + "end": 6461.2, + "probability": 0.9265 + }, + { + "start": 6461.74, + "end": 6462.7, + "probability": 0.8853 + }, + { + "start": 6462.88, + "end": 6463.46, + "probability": 0.7146 + }, + { + "start": 6463.58, + "end": 6465.7, + "probability": 0.8156 + }, + { + "start": 6465.82, + "end": 6466.6, + "probability": 0.944 + }, + { + "start": 6467.02, + "end": 6468.84, + "probability": 0.9695 + }, + { + "start": 6469.24, + "end": 6470.44, + "probability": 0.7472 + }, + { + "start": 6471.32, + "end": 6472.28, + "probability": 0.5264 + }, + { + "start": 6473.32, + "end": 6473.56, + "probability": 0.6555 + }, + { + "start": 6473.56, + "end": 6473.7, + "probability": 0.304 + }, + { + "start": 6474.28, + "end": 6475.88, + "probability": 0.5093 + }, + { + "start": 6477.59, + "end": 6479.38, + "probability": 0.6748 + }, + { + "start": 6479.48, + "end": 6480.4, + "probability": 0.8158 + }, + { + "start": 6480.56, + "end": 6483.52, + "probability": 0.9841 + }, + { + "start": 6483.8, + "end": 6486.3, + "probability": 0.9954 + }, + { + "start": 6486.76, + "end": 6488.6, + "probability": 0.9978 + }, + { + "start": 6488.92, + "end": 6489.36, + "probability": 0.787 + }, + { + "start": 6489.92, + "end": 6491.78, + "probability": 0.7189 + }, + { + "start": 6492.32, + "end": 6496.04, + "probability": 0.8181 + }, + { + "start": 6496.76, + "end": 6497.86, + "probability": 0.8091 + }, + { + "start": 6499.74, + "end": 6501.62, + "probability": 0.9763 + }, + { + "start": 6502.5, + "end": 6503.04, + "probability": 0.0102 + }, + { + "start": 6514.98, + "end": 6519.7, + "probability": 0.5451 + }, + { + "start": 6521.28, + "end": 6527.12, + "probability": 0.9898 + }, + { + "start": 6527.22, + "end": 6532.9, + "probability": 0.9971 + }, + { + "start": 6532.9, + "end": 6537.62, + "probability": 0.9875 + }, + { + "start": 6538.0, + "end": 6540.58, + "probability": 0.9718 + }, + { + "start": 6541.1, + "end": 6543.48, + "probability": 0.9906 + }, + { + "start": 6544.5, + "end": 6547.36, + "probability": 0.9917 + }, + { + "start": 6547.36, + "end": 6551.36, + "probability": 0.9926 + }, + { + "start": 6552.44, + "end": 6555.46, + "probability": 0.7871 + }, + { + "start": 6555.56, + "end": 6560.22, + "probability": 0.8186 + }, + { + "start": 6560.38, + "end": 6561.5, + "probability": 0.9749 + }, + { + "start": 6561.66, + "end": 6569.02, + "probability": 0.9801 + }, + { + "start": 6569.02, + "end": 6573.92, + "probability": 0.9833 + }, + { + "start": 6574.0, + "end": 6576.06, + "probability": 0.9875 + }, + { + "start": 6576.66, + "end": 6576.86, + "probability": 0.9777 + }, + { + "start": 6578.8, + "end": 6579.34, + "probability": 0.6748 + }, + { + "start": 6579.48, + "end": 6582.12, + "probability": 0.9881 + }, + { + "start": 6582.26, + "end": 6587.62, + "probability": 0.838 + }, + { + "start": 6589.14, + "end": 6594.2, + "probability": 0.9784 + }, + { + "start": 6594.28, + "end": 6599.04, + "probability": 0.9865 + }, + { + "start": 6599.86, + "end": 6602.06, + "probability": 0.9801 + }, + { + "start": 6602.18, + "end": 6605.78, + "probability": 0.947 + }, + { + "start": 6605.9, + "end": 6608.07, + "probability": 0.999 + }, + { + "start": 6608.94, + "end": 6611.1, + "probability": 0.9921 + }, + { + "start": 6611.26, + "end": 6613.68, + "probability": 0.982 + }, + { + "start": 6614.16, + "end": 6617.3, + "probability": 0.995 + }, + { + "start": 6618.3, + "end": 6624.52, + "probability": 0.941 + }, + { + "start": 6625.04, + "end": 6628.98, + "probability": 0.9919 + }, + { + "start": 6629.16, + "end": 6631.98, + "probability": 0.996 + }, + { + "start": 6631.98, + "end": 6640.16, + "probability": 0.8767 + }, + { + "start": 6641.36, + "end": 6645.38, + "probability": 0.9994 + }, + { + "start": 6645.38, + "end": 6651.36, + "probability": 0.995 + }, + { + "start": 6654.54, + "end": 6657.86, + "probability": 0.9983 + }, + { + "start": 6657.86, + "end": 6661.54, + "probability": 0.9932 + }, + { + "start": 6662.18, + "end": 6663.94, + "probability": 0.9603 + }, + { + "start": 6664.02, + "end": 6666.4, + "probability": 0.9084 + }, + { + "start": 6667.06, + "end": 6668.28, + "probability": 0.7021 + }, + { + "start": 6668.36, + "end": 6669.0, + "probability": 0.9191 + }, + { + "start": 6669.0, + "end": 6672.84, + "probability": 0.9804 + }, + { + "start": 6674.04, + "end": 6674.4, + "probability": 0.7504 + }, + { + "start": 6674.64, + "end": 6674.84, + "probability": 0.1703 + }, + { + "start": 6674.84, + "end": 6678.68, + "probability": 0.8445 + }, + { + "start": 6678.68, + "end": 6681.26, + "probability": 0.9841 + }, + { + "start": 6681.6, + "end": 6685.42, + "probability": 0.9395 + }, + { + "start": 6686.2, + "end": 6688.8, + "probability": 0.9317 + }, + { + "start": 6690.0, + "end": 6695.9, + "probability": 0.6632 + }, + { + "start": 6696.64, + "end": 6698.68, + "probability": 0.6549 + }, + { + "start": 6698.84, + "end": 6701.56, + "probability": 0.9956 + }, + { + "start": 6701.82, + "end": 6707.18, + "probability": 0.9922 + }, + { + "start": 6707.88, + "end": 6711.78, + "probability": 0.985 + }, + { + "start": 6712.38, + "end": 6718.82, + "probability": 0.8783 + }, + { + "start": 6720.02, + "end": 6720.76, + "probability": 0.929 + }, + { + "start": 6720.82, + "end": 6723.14, + "probability": 0.9516 + }, + { + "start": 6723.6, + "end": 6729.44, + "probability": 0.9793 + }, + { + "start": 6729.48, + "end": 6731.81, + "probability": 0.9834 + }, + { + "start": 6732.4, + "end": 6737.03, + "probability": 0.9945 + }, + { + "start": 6737.2, + "end": 6743.06, + "probability": 0.9969 + }, + { + "start": 6743.56, + "end": 6744.72, + "probability": 0.4566 + }, + { + "start": 6744.9, + "end": 6745.16, + "probability": 0.3706 + }, + { + "start": 6745.22, + "end": 6748.84, + "probability": 0.9713 + }, + { + "start": 6749.2, + "end": 6751.54, + "probability": 0.989 + }, + { + "start": 6751.54, + "end": 6754.94, + "probability": 0.9108 + }, + { + "start": 6755.38, + "end": 6760.38, + "probability": 0.9525 + }, + { + "start": 6760.48, + "end": 6762.62, + "probability": 0.9976 + }, + { + "start": 6762.84, + "end": 6763.34, + "probability": 0.6924 + }, + { + "start": 6763.46, + "end": 6766.84, + "probability": 0.9888 + }, + { + "start": 6767.32, + "end": 6773.26, + "probability": 0.984 + }, + { + "start": 6773.46, + "end": 6773.76, + "probability": 0.5215 + }, + { + "start": 6774.44, + "end": 6776.44, + "probability": 0.9578 + }, + { + "start": 6777.05, + "end": 6781.22, + "probability": 0.8931 + }, + { + "start": 6781.9, + "end": 6785.24, + "probability": 0.9889 + }, + { + "start": 6785.24, + "end": 6785.72, + "probability": 0.8644 + }, + { + "start": 6785.76, + "end": 6786.12, + "probability": 0.8255 + }, + { + "start": 6786.44, + "end": 6789.76, + "probability": 0.9892 + }, + { + "start": 6795.08, + "end": 6795.54, + "probability": 0.5423 + }, + { + "start": 6795.54, + "end": 6796.5, + "probability": 0.3856 + }, + { + "start": 6796.78, + "end": 6805.1, + "probability": 0.9216 + }, + { + "start": 6805.4, + "end": 6808.52, + "probability": 0.9756 + }, + { + "start": 6808.58, + "end": 6809.3, + "probability": 0.9763 + }, + { + "start": 6809.86, + "end": 6813.5, + "probability": 0.4942 + }, + { + "start": 6813.5, + "end": 6816.48, + "probability": 0.9607 + }, + { + "start": 6818.77, + "end": 6823.76, + "probability": 0.8427 + }, + { + "start": 6823.9, + "end": 6825.02, + "probability": 0.5375 + }, + { + "start": 6825.62, + "end": 6826.92, + "probability": 0.7284 + }, + { + "start": 6827.5, + "end": 6831.26, + "probability": 0.9667 + }, + { + "start": 6832.3, + "end": 6834.68, + "probability": 0.9954 + }, + { + "start": 6834.98, + "end": 6836.64, + "probability": 0.9948 + }, + { + "start": 6837.34, + "end": 6840.08, + "probability": 0.9907 + }, + { + "start": 6840.78, + "end": 6842.4, + "probability": 0.9652 + }, + { + "start": 6843.36, + "end": 6844.28, + "probability": 0.704 + }, + { + "start": 6844.36, + "end": 6846.76, + "probability": 0.8362 + }, + { + "start": 6847.04, + "end": 6847.18, + "probability": 0.7563 + }, + { + "start": 6847.26, + "end": 6847.96, + "probability": 0.8525 + }, + { + "start": 6848.08, + "end": 6851.16, + "probability": 0.9769 + }, + { + "start": 6851.26, + "end": 6854.4, + "probability": 0.9294 + }, + { + "start": 6854.5, + "end": 6856.8, + "probability": 0.7944 + }, + { + "start": 6857.78, + "end": 6859.64, + "probability": 0.9864 + }, + { + "start": 6860.18, + "end": 6861.36, + "probability": 0.7293 + }, + { + "start": 6863.34, + "end": 6866.3, + "probability": 0.8894 + }, + { + "start": 6867.02, + "end": 6869.38, + "probability": 0.8857 + }, + { + "start": 6869.54, + "end": 6871.37, + "probability": 0.9719 + }, + { + "start": 6871.6, + "end": 6877.52, + "probability": 0.9933 + }, + { + "start": 6878.46, + "end": 6882.26, + "probability": 0.8984 + }, + { + "start": 6882.38, + "end": 6889.88, + "probability": 0.896 + }, + { + "start": 6890.62, + "end": 6897.44, + "probability": 0.6835 + }, + { + "start": 6898.3, + "end": 6900.44, + "probability": 0.9827 + }, + { + "start": 6900.76, + "end": 6902.82, + "probability": 0.9802 + }, + { + "start": 6903.0, + "end": 6904.33, + "probability": 0.953 + }, + { + "start": 6905.0, + "end": 6906.24, + "probability": 0.9486 + }, + { + "start": 6906.84, + "end": 6907.36, + "probability": 0.8809 + }, + { + "start": 6907.78, + "end": 6910.38, + "probability": 0.9543 + }, + { + "start": 6910.58, + "end": 6913.26, + "probability": 0.7529 + }, + { + "start": 6913.32, + "end": 6913.82, + "probability": 0.4384 + }, + { + "start": 6914.76, + "end": 6917.6, + "probability": 0.9095 + }, + { + "start": 6917.6, + "end": 6923.66, + "probability": 0.9352 + }, + { + "start": 6924.64, + "end": 6928.6, + "probability": 0.9907 + }, + { + "start": 6928.66, + "end": 6929.28, + "probability": 0.918 + }, + { + "start": 6930.54, + "end": 6934.6, + "probability": 0.9948 + }, + { + "start": 6935.14, + "end": 6941.08, + "probability": 0.9968 + }, + { + "start": 6941.08, + "end": 6948.28, + "probability": 0.9967 + }, + { + "start": 6949.08, + "end": 6950.54, + "probability": 0.9644 + }, + { + "start": 6951.44, + "end": 6955.06, + "probability": 0.972 + }, + { + "start": 6955.6, + "end": 6961.28, + "probability": 0.9409 + }, + { + "start": 6961.36, + "end": 6966.28, + "probability": 0.9915 + }, + { + "start": 6966.8, + "end": 6971.3, + "probability": 0.9985 + }, + { + "start": 6972.34, + "end": 6976.82, + "probability": 0.9163 + }, + { + "start": 6977.72, + "end": 6979.44, + "probability": 0.9863 + }, + { + "start": 6979.68, + "end": 6981.56, + "probability": 0.9865 + }, + { + "start": 6982.18, + "end": 6983.36, + "probability": 0.937 + }, + { + "start": 6983.38, + "end": 6984.18, + "probability": 0.9675 + }, + { + "start": 6984.96, + "end": 6987.2, + "probability": 0.9838 + }, + { + "start": 6987.32, + "end": 6988.08, + "probability": 0.9805 + }, + { + "start": 6988.16, + "end": 6992.26, + "probability": 0.9972 + }, + { + "start": 6993.86, + "end": 6997.38, + "probability": 0.9049 + }, + { + "start": 6998.22, + "end": 6998.66, + "probability": 0.5521 + }, + { + "start": 6998.66, + "end": 7000.34, + "probability": 0.9678 + }, + { + "start": 7000.52, + "end": 7002.7, + "probability": 0.8747 + }, + { + "start": 7004.29, + "end": 7006.78, + "probability": 0.9177 + }, + { + "start": 7007.0, + "end": 7008.32, + "probability": 0.9925 + }, + { + "start": 7008.38, + "end": 7010.08, + "probability": 0.7393 + }, + { + "start": 7010.18, + "end": 7011.02, + "probability": 0.6689 + }, + { + "start": 7011.4, + "end": 7013.06, + "probability": 0.9376 + }, + { + "start": 7013.42, + "end": 7016.22, + "probability": 0.9248 + }, + { + "start": 7016.38, + "end": 7018.5, + "probability": 0.9424 + }, + { + "start": 7018.58, + "end": 7019.7, + "probability": 0.6773 + }, + { + "start": 7020.14, + "end": 7022.4, + "probability": 0.8507 + }, + { + "start": 7023.28, + "end": 7025.12, + "probability": 0.0429 + }, + { + "start": 7025.62, + "end": 7025.92, + "probability": 0.7643 + }, + { + "start": 7026.1, + "end": 7026.98, + "probability": 0.8797 + }, + { + "start": 7027.14, + "end": 7029.2, + "probability": 0.7998 + }, + { + "start": 7029.2, + "end": 7030.02, + "probability": 0.6774 + }, + { + "start": 7030.16, + "end": 7031.38, + "probability": 0.6719 + }, + { + "start": 7032.12, + "end": 7033.04, + "probability": 0.9077 + }, + { + "start": 7033.12, + "end": 7034.42, + "probability": 0.8347 + }, + { + "start": 7034.5, + "end": 7035.22, + "probability": 0.8315 + }, + { + "start": 7035.62, + "end": 7037.24, + "probability": 0.6941 + }, + { + "start": 7037.42, + "end": 7038.44, + "probability": 0.1877 + }, + { + "start": 7039.0, + "end": 7040.46, + "probability": 0.9982 + }, + { + "start": 7040.74, + "end": 7042.44, + "probability": 0.9883 + }, + { + "start": 7042.64, + "end": 7044.54, + "probability": 0.976 + }, + { + "start": 7044.68, + "end": 7045.34, + "probability": 0.9243 + }, + { + "start": 7045.36, + "end": 7049.14, + "probability": 0.9814 + }, + { + "start": 7049.46, + "end": 7051.38, + "probability": 0.9561 + }, + { + "start": 7051.8, + "end": 7053.08, + "probability": 0.526 + }, + { + "start": 7053.46, + "end": 7056.16, + "probability": 0.9565 + }, + { + "start": 7056.4, + "end": 7057.06, + "probability": 0.6596 + }, + { + "start": 7058.24, + "end": 7059.94, + "probability": 0.6924 + }, + { + "start": 7060.02, + "end": 7063.74, + "probability": 0.8606 + }, + { + "start": 7067.69, + "end": 7073.22, + "probability": 0.7382 + }, + { + "start": 7073.42, + "end": 7074.55, + "probability": 0.8628 + }, + { + "start": 7075.38, + "end": 7076.24, + "probability": 0.8021 + }, + { + "start": 7076.3, + "end": 7077.18, + "probability": 0.987 + }, + { + "start": 7084.6, + "end": 7088.1, + "probability": 0.2434 + }, + { + "start": 7090.76, + "end": 7092.9, + "probability": 0.749 + }, + { + "start": 7094.77, + "end": 7095.14, + "probability": 0.1457 + }, + { + "start": 7097.14, + "end": 7100.14, + "probability": 0.7068 + }, + { + "start": 7100.78, + "end": 7102.74, + "probability": 0.7501 + }, + { + "start": 7102.96, + "end": 7105.18, + "probability": 0.7524 + }, + { + "start": 7105.32, + "end": 7106.66, + "probability": 0.2726 + }, + { + "start": 7107.34, + "end": 7110.46, + "probability": 0.9295 + }, + { + "start": 7110.46, + "end": 7113.2, + "probability": 0.9762 + }, + { + "start": 7113.34, + "end": 7113.58, + "probability": 0.2046 + }, + { + "start": 7113.62, + "end": 7115.3, + "probability": 0.9496 + }, + { + "start": 7115.78, + "end": 7115.96, + "probability": 0.1688 + }, + { + "start": 7116.64, + "end": 7117.56, + "probability": 0.6821 + }, + { + "start": 7118.08, + "end": 7122.04, + "probability": 0.9577 + }, + { + "start": 7122.76, + "end": 7124.35, + "probability": 0.6758 + }, + { + "start": 7125.04, + "end": 7131.02, + "probability": 0.9905 + }, + { + "start": 7131.32, + "end": 7132.78, + "probability": 0.4504 + }, + { + "start": 7133.64, + "end": 7137.04, + "probability": 0.7438 + }, + { + "start": 7141.61, + "end": 7145.32, + "probability": 0.7825 + }, + { + "start": 7145.42, + "end": 7146.3, + "probability": 0.9808 + }, + { + "start": 7148.18, + "end": 7151.24, + "probability": 0.7494 + }, + { + "start": 7151.92, + "end": 7154.28, + "probability": 0.8897 + }, + { + "start": 7154.86, + "end": 7159.1, + "probability": 0.9943 + }, + { + "start": 7159.1, + "end": 7163.42, + "probability": 0.9963 + }, + { + "start": 7164.02, + "end": 7166.82, + "probability": 0.9984 + }, + { + "start": 7167.3, + "end": 7168.7, + "probability": 0.7129 + }, + { + "start": 7168.78, + "end": 7172.16, + "probability": 0.9645 + }, + { + "start": 7172.46, + "end": 7174.14, + "probability": 0.8613 + }, + { + "start": 7176.46, + "end": 7178.86, + "probability": 0.4133 + }, + { + "start": 7178.92, + "end": 7179.88, + "probability": 0.1728 + }, + { + "start": 7179.88, + "end": 7183.96, + "probability": 0.9897 + }, + { + "start": 7183.96, + "end": 7187.12, + "probability": 0.9995 + }, + { + "start": 7188.42, + "end": 7189.32, + "probability": 0.8239 + }, + { + "start": 7189.56, + "end": 7190.96, + "probability": 0.9976 + }, + { + "start": 7191.2, + "end": 7193.47, + "probability": 0.9961 + }, + { + "start": 7194.34, + "end": 7204.22, + "probability": 0.937 + }, + { + "start": 7204.36, + "end": 7207.08, + "probability": 0.9029 + }, + { + "start": 7207.4, + "end": 7209.28, + "probability": 0.8809 + }, + { + "start": 7210.22, + "end": 7215.14, + "probability": 0.9937 + }, + { + "start": 7215.46, + "end": 7220.44, + "probability": 0.9934 + }, + { + "start": 7220.48, + "end": 7222.42, + "probability": 0.9969 + }, + { + "start": 7223.8, + "end": 7225.7, + "probability": 0.6414 + }, + { + "start": 7225.8, + "end": 7226.97, + "probability": 0.7508 + }, + { + "start": 7228.44, + "end": 7231.06, + "probability": 0.9767 + }, + { + "start": 7231.12, + "end": 7232.4, + "probability": 0.7514 + }, + { + "start": 7234.46, + "end": 7236.34, + "probability": 0.8937 + }, + { + "start": 7236.54, + "end": 7239.04, + "probability": 0.7655 + }, + { + "start": 7239.44, + "end": 7240.66, + "probability": 0.9426 + }, + { + "start": 7241.04, + "end": 7242.7, + "probability": 0.9427 + }, + { + "start": 7247.08, + "end": 7248.64, + "probability": 0.6866 + }, + { + "start": 7249.0, + "end": 7250.36, + "probability": 0.7727 + }, + { + "start": 7250.68, + "end": 7251.96, + "probability": 0.9138 + }, + { + "start": 7252.1, + "end": 7252.68, + "probability": 0.6378 + }, + { + "start": 7258.68, + "end": 7258.78, + "probability": 0.0367 + }, + { + "start": 7259.44, + "end": 7260.28, + "probability": 0.7092 + }, + { + "start": 7261.39, + "end": 7268.18, + "probability": 0.9715 + }, + { + "start": 7268.18, + "end": 7269.44, + "probability": 0.9098 + }, + { + "start": 7269.58, + "end": 7270.6, + "probability": 0.9684 + }, + { + "start": 7271.18, + "end": 7272.44, + "probability": 0.9697 + }, + { + "start": 7272.48, + "end": 7279.5, + "probability": 0.9863 + }, + { + "start": 7279.68, + "end": 7283.4, + "probability": 0.9635 + }, + { + "start": 7283.86, + "end": 7287.88, + "probability": 0.9173 + }, + { + "start": 7288.36, + "end": 7289.56, + "probability": 0.8256 + }, + { + "start": 7290.48, + "end": 7296.54, + "probability": 0.7186 + }, + { + "start": 7297.34, + "end": 7298.88, + "probability": 0.9667 + }, + { + "start": 7299.2, + "end": 7299.68, + "probability": 0.8787 + }, + { + "start": 7299.76, + "end": 7301.3, + "probability": 0.9495 + }, + { + "start": 7301.54, + "end": 7305.9, + "probability": 0.9974 + }, + { + "start": 7306.02, + "end": 7309.22, + "probability": 0.9799 + }, + { + "start": 7309.38, + "end": 7311.0, + "probability": 0.969 + }, + { + "start": 7311.32, + "end": 7312.32, + "probability": 0.7336 + }, + { + "start": 7312.64, + "end": 7316.26, + "probability": 0.8743 + }, + { + "start": 7316.54, + "end": 7318.2, + "probability": 0.9425 + }, + { + "start": 7319.3, + "end": 7320.5, + "probability": 0.9422 + }, + { + "start": 7321.96, + "end": 7325.44, + "probability": 0.9819 + }, + { + "start": 7325.9, + "end": 7326.42, + "probability": 0.6567 + }, + { + "start": 7326.76, + "end": 7327.34, + "probability": 0.9814 + }, + { + "start": 7328.02, + "end": 7329.82, + "probability": 0.9947 + }, + { + "start": 7330.16, + "end": 7330.94, + "probability": 0.4984 + }, + { + "start": 7331.3, + "end": 7332.6, + "probability": 0.7719 + }, + { + "start": 7332.68, + "end": 7337.66, + "probability": 0.9818 + }, + { + "start": 7338.6, + "end": 7339.72, + "probability": 0.9985 + }, + { + "start": 7339.92, + "end": 7346.72, + "probability": 0.9912 + }, + { + "start": 7346.72, + "end": 7355.08, + "probability": 0.989 + }, + { + "start": 7355.16, + "end": 7357.64, + "probability": 0.9984 + }, + { + "start": 7358.22, + "end": 7359.1, + "probability": 0.6184 + }, + { + "start": 7359.22, + "end": 7362.04, + "probability": 0.954 + }, + { + "start": 7362.68, + "end": 7363.6, + "probability": 0.854 + }, + { + "start": 7363.72, + "end": 7366.1, + "probability": 0.9054 + }, + { + "start": 7366.92, + "end": 7367.9, + "probability": 0.7155 + }, + { + "start": 7368.91, + "end": 7373.5, + "probability": 0.9121 + }, + { + "start": 7373.5, + "end": 7379.56, + "probability": 0.9726 + }, + { + "start": 7380.2, + "end": 7383.58, + "probability": 0.8248 + }, + { + "start": 7383.7, + "end": 7386.7, + "probability": 0.9829 + }, + { + "start": 7387.04, + "end": 7388.52, + "probability": 0.9874 + }, + { + "start": 7389.26, + "end": 7390.78, + "probability": 0.9424 + }, + { + "start": 7390.98, + "end": 7392.8, + "probability": 0.9807 + }, + { + "start": 7396.04, + "end": 7397.54, + "probability": 0.6133 + }, + { + "start": 7397.88, + "end": 7402.92, + "probability": 0.9836 + }, + { + "start": 7403.34, + "end": 7407.68, + "probability": 0.995 + }, + { + "start": 7408.48, + "end": 7410.2, + "probability": 0.8638 + }, + { + "start": 7411.18, + "end": 7417.42, + "probability": 0.9951 + }, + { + "start": 7418.06, + "end": 7419.4, + "probability": 0.8229 + }, + { + "start": 7419.72, + "end": 7424.14, + "probability": 0.9983 + }, + { + "start": 7424.14, + "end": 7428.98, + "probability": 0.9995 + }, + { + "start": 7429.58, + "end": 7431.54, + "probability": 0.9441 + }, + { + "start": 7432.62, + "end": 7435.38, + "probability": 0.9781 + }, + { + "start": 7435.74, + "end": 7437.36, + "probability": 0.6019 + }, + { + "start": 7437.48, + "end": 7438.82, + "probability": 0.909 + }, + { + "start": 7439.06, + "end": 7443.28, + "probability": 0.9629 + }, + { + "start": 7443.38, + "end": 7444.08, + "probability": 0.7893 + }, + { + "start": 7444.38, + "end": 7444.92, + "probability": 0.8717 + }, + { + "start": 7445.08, + "end": 7451.46, + "probability": 0.9981 + }, + { + "start": 7451.7, + "end": 7454.14, + "probability": 0.9831 + }, + { + "start": 7454.42, + "end": 7456.02, + "probability": 0.9976 + }, + { + "start": 7456.58, + "end": 7457.7, + "probability": 0.9478 + }, + { + "start": 7458.04, + "end": 7458.74, + "probability": 0.7416 + }, + { + "start": 7458.94, + "end": 7459.78, + "probability": 0.6978 + }, + { + "start": 7459.96, + "end": 7460.72, + "probability": 0.8982 + }, + { + "start": 7460.94, + "end": 7462.84, + "probability": 0.8787 + }, + { + "start": 7463.14, + "end": 7465.94, + "probability": 0.9672 + }, + { + "start": 7466.0, + "end": 7467.61, + "probability": 0.9536 + }, + { + "start": 7468.64, + "end": 7470.24, + "probability": 0.7495 + }, + { + "start": 7473.74, + "end": 7474.76, + "probability": 0.687 + }, + { + "start": 7474.82, + "end": 7475.64, + "probability": 0.8524 + }, + { + "start": 7475.84, + "end": 7482.46, + "probability": 0.9561 + }, + { + "start": 7482.74, + "end": 7486.14, + "probability": 0.9958 + }, + { + "start": 7486.4, + "end": 7489.26, + "probability": 0.9548 + }, + { + "start": 7489.92, + "end": 7491.62, + "probability": 0.9844 + }, + { + "start": 7491.8, + "end": 7493.02, + "probability": 0.8769 + }, + { + "start": 7494.6, + "end": 7495.55, + "probability": 0.9668 + }, + { + "start": 7498.46, + "end": 7500.24, + "probability": 0.9537 + }, + { + "start": 7501.18, + "end": 7508.12, + "probability": 0.9831 + }, + { + "start": 7510.02, + "end": 7512.14, + "probability": 0.9471 + }, + { + "start": 7513.24, + "end": 7518.94, + "probability": 0.9993 + }, + { + "start": 7518.95, + "end": 7525.06, + "probability": 0.9987 + }, + { + "start": 7527.36, + "end": 7528.84, + "probability": 0.8942 + }, + { + "start": 7529.52, + "end": 7534.12, + "probability": 0.9978 + }, + { + "start": 7534.38, + "end": 7534.58, + "probability": 0.561 + }, + { + "start": 7534.9, + "end": 7536.37, + "probability": 0.7483 + }, + { + "start": 7537.54, + "end": 7543.44, + "probability": 0.9238 + }, + { + "start": 7543.52, + "end": 7548.6, + "probability": 0.9954 + }, + { + "start": 7549.16, + "end": 7549.9, + "probability": 0.0143 + }, + { + "start": 7550.38, + "end": 7553.1, + "probability": 0.7472 + }, + { + "start": 7553.14, + "end": 7554.44, + "probability": 0.0056 + }, + { + "start": 7554.48, + "end": 7556.14, + "probability": 0.8738 + }, + { + "start": 7556.22, + "end": 7558.66, + "probability": 0.8576 + }, + { + "start": 7558.72, + "end": 7560.64, + "probability": 0.8865 + }, + { + "start": 7560.76, + "end": 7564.6, + "probability": 0.9974 + }, + { + "start": 7564.6, + "end": 7569.24, + "probability": 0.9958 + }, + { + "start": 7569.34, + "end": 7571.72, + "probability": 0.8418 + }, + { + "start": 7572.3, + "end": 7575.02, + "probability": 0.5709 + }, + { + "start": 7575.02, + "end": 7577.92, + "probability": 0.9365 + }, + { + "start": 7578.81, + "end": 7579.86, + "probability": 0.1002 + }, + { + "start": 7579.9, + "end": 7584.96, + "probability": 0.6942 + }, + { + "start": 7585.2, + "end": 7585.82, + "probability": 0.5271 + }, + { + "start": 7585.82, + "end": 7586.34, + "probability": 0.5975 + }, + { + "start": 7586.4, + "end": 7588.06, + "probability": 0.9322 + }, + { + "start": 7588.34, + "end": 7588.38, + "probability": 0.0001 + }, + { + "start": 7589.24, + "end": 7591.21, + "probability": 0.9523 + }, + { + "start": 7591.64, + "end": 7592.44, + "probability": 0.8034 + }, + { + "start": 7592.6, + "end": 7594.16, + "probability": 0.9735 + }, + { + "start": 7594.3, + "end": 7595.76, + "probability": 0.9723 + }, + { + "start": 7596.12, + "end": 7601.2, + "probability": 0.918 + }, + { + "start": 7601.26, + "end": 7604.88, + "probability": 0.9965 + }, + { + "start": 7605.1, + "end": 7609.2, + "probability": 0.9717 + }, + { + "start": 7609.36, + "end": 7612.62, + "probability": 0.995 + }, + { + "start": 7612.92, + "end": 7613.62, + "probability": 0.9241 + }, + { + "start": 7613.82, + "end": 7615.6, + "probability": 0.9934 + }, + { + "start": 7616.02, + "end": 7619.6, + "probability": 0.998 + }, + { + "start": 7620.52, + "end": 7623.02, + "probability": 0.9745 + }, + { + "start": 7623.02, + "end": 7626.12, + "probability": 0.9332 + }, + { + "start": 7626.64, + "end": 7630.66, + "probability": 0.9928 + }, + { + "start": 7630.66, + "end": 7633.8, + "probability": 0.835 + }, + { + "start": 7633.88, + "end": 7635.96, + "probability": 0.9837 + }, + { + "start": 7638.7, + "end": 7640.04, + "probability": 0.9556 + }, + { + "start": 7640.12, + "end": 7644.34, + "probability": 0.8424 + }, + { + "start": 7644.34, + "end": 7646.88, + "probability": 0.986 + }, + { + "start": 7647.48, + "end": 7651.24, + "probability": 0.9954 + }, + { + "start": 7651.56, + "end": 7654.9, + "probability": 0.9991 + }, + { + "start": 7656.46, + "end": 7658.9, + "probability": 0.9966 + }, + { + "start": 7659.12, + "end": 7660.1, + "probability": 0.9412 + }, + { + "start": 7660.66, + "end": 7662.46, + "probability": 0.9979 + }, + { + "start": 7662.58, + "end": 7665.96, + "probability": 0.9688 + }, + { + "start": 7666.34, + "end": 7671.04, + "probability": 0.9946 + }, + { + "start": 7671.04, + "end": 7673.96, + "probability": 0.9982 + }, + { + "start": 7674.12, + "end": 7675.82, + "probability": 0.9242 + }, + { + "start": 7676.54, + "end": 7678.86, + "probability": 0.998 + }, + { + "start": 7679.92, + "end": 7683.6, + "probability": 0.9807 + }, + { + "start": 7683.96, + "end": 7686.18, + "probability": 0.9326 + }, + { + "start": 7686.36, + "end": 7687.38, + "probability": 0.6494 + }, + { + "start": 7687.96, + "end": 7689.44, + "probability": 0.9164 + }, + { + "start": 7689.78, + "end": 7692.3, + "probability": 0.9834 + }, + { + "start": 7692.3, + "end": 7695.96, + "probability": 0.9105 + }, + { + "start": 7696.38, + "end": 7700.04, + "probability": 0.6855 + }, + { + "start": 7700.3, + "end": 7701.41, + "probability": 0.866 + }, + { + "start": 7701.92, + "end": 7703.5, + "probability": 0.9536 + }, + { + "start": 7704.46, + "end": 7705.56, + "probability": 0.9448 + }, + { + "start": 7705.96, + "end": 7708.5, + "probability": 0.9947 + }, + { + "start": 7709.64, + "end": 7713.6, + "probability": 0.7586 + }, + { + "start": 7714.2, + "end": 7715.2, + "probability": 0.9756 + }, + { + "start": 7715.36, + "end": 7716.46, + "probability": 0.964 + }, + { + "start": 7716.76, + "end": 7719.76, + "probability": 0.9738 + }, + { + "start": 7720.18, + "end": 7721.4, + "probability": 0.4906 + }, + { + "start": 7721.74, + "end": 7722.84, + "probability": 0.8927 + }, + { + "start": 7723.34, + "end": 7724.42, + "probability": 0.9871 + }, + { + "start": 7724.72, + "end": 7726.78, + "probability": 0.998 + }, + { + "start": 7726.78, + "end": 7731.28, + "probability": 0.9691 + }, + { + "start": 7731.5, + "end": 7735.0, + "probability": 0.9727 + }, + { + "start": 7735.58, + "end": 7741.98, + "probability": 0.9968 + }, + { + "start": 7742.14, + "end": 7743.62, + "probability": 0.9673 + }, + { + "start": 7744.2, + "end": 7746.84, + "probability": 0.9666 + }, + { + "start": 7747.04, + "end": 7747.82, + "probability": 0.9592 + }, + { + "start": 7747.82, + "end": 7751.66, + "probability": 0.9941 + }, + { + "start": 7751.92, + "end": 7755.2, + "probability": 0.9488 + }, + { + "start": 7755.48, + "end": 7758.16, + "probability": 0.9915 + }, + { + "start": 7758.16, + "end": 7760.6, + "probability": 0.9944 + }, + { + "start": 7760.86, + "end": 7761.12, + "probability": 0.7354 + }, + { + "start": 7761.9, + "end": 7764.38, + "probability": 0.9576 + }, + { + "start": 7764.74, + "end": 7769.26, + "probability": 0.9685 + }, + { + "start": 7769.92, + "end": 7772.64, + "probability": 0.9949 + }, + { + "start": 7773.0, + "end": 7774.48, + "probability": 0.0927 + }, + { + "start": 7774.58, + "end": 7775.86, + "probability": 0.8308 + }, + { + "start": 7775.92, + "end": 7777.8, + "probability": 0.937 + }, + { + "start": 7778.36, + "end": 7778.52, + "probability": 0.8787 + }, + { + "start": 7784.74, + "end": 7786.36, + "probability": 0.3409 + }, + { + "start": 7788.02, + "end": 7789.9, + "probability": 0.6884 + }, + { + "start": 7791.04, + "end": 7794.5, + "probability": 0.0289 + }, + { + "start": 7794.5, + "end": 7796.6, + "probability": 0.8025 + }, + { + "start": 7796.6, + "end": 7796.98, + "probability": 0.1601 + }, + { + "start": 7796.98, + "end": 7799.22, + "probability": 0.7115 + }, + { + "start": 7799.98, + "end": 7800.18, + "probability": 0.6287 + }, + { + "start": 7800.36, + "end": 7801.36, + "probability": 0.6394 + }, + { + "start": 7801.52, + "end": 7803.27, + "probability": 0.6451 + }, + { + "start": 7803.44, + "end": 7805.54, + "probability": 0.8709 + }, + { + "start": 7805.84, + "end": 7806.24, + "probability": 0.28 + }, + { + "start": 7807.2, + "end": 7807.42, + "probability": 0.0786 + }, + { + "start": 7807.42, + "end": 7807.44, + "probability": 0.2653 + }, + { + "start": 7807.44, + "end": 7808.14, + "probability": 0.2976 + }, + { + "start": 7808.54, + "end": 7809.54, + "probability": 0.0846 + }, + { + "start": 7809.54, + "end": 7809.72, + "probability": 0.0472 + }, + { + "start": 7809.72, + "end": 7811.28, + "probability": 0.4894 + }, + { + "start": 7811.4, + "end": 7811.68, + "probability": 0.3963 + }, + { + "start": 7811.88, + "end": 7812.18, + "probability": 0.5464 + }, + { + "start": 7812.18, + "end": 7812.48, + "probability": 0.5714 + }, + { + "start": 7812.84, + "end": 7814.71, + "probability": 0.905 + }, + { + "start": 7815.08, + "end": 7815.08, + "probability": 0.0108 + }, + { + "start": 7815.08, + "end": 7819.6, + "probability": 0.9728 + }, + { + "start": 7819.88, + "end": 7825.0, + "probability": 0.7648 + }, + { + "start": 7825.12, + "end": 7825.12, + "probability": 0.0891 + }, + { + "start": 7825.12, + "end": 7827.06, + "probability": 0.9211 + }, + { + "start": 7827.32, + "end": 7829.04, + "probability": 0.2897 + }, + { + "start": 7829.58, + "end": 7830.52, + "probability": 0.1461 + }, + { + "start": 7830.52, + "end": 7830.82, + "probability": 0.0105 + }, + { + "start": 7831.55, + "end": 7833.3, + "probability": 0.3455 + }, + { + "start": 7833.38, + "end": 7835.0, + "probability": 0.5194 + }, + { + "start": 7835.28, + "end": 7835.28, + "probability": 0.3699 + }, + { + "start": 7836.08, + "end": 7840.04, + "probability": 0.8334 + }, + { + "start": 7843.92, + "end": 7850.56, + "probability": 0.7776 + }, + { + "start": 7850.76, + "end": 7851.22, + "probability": 0.0809 + }, + { + "start": 7851.62, + "end": 7852.64, + "probability": 0.8994 + }, + { + "start": 7852.86, + "end": 7854.26, + "probability": 0.8857 + }, + { + "start": 7854.4, + "end": 7857.16, + "probability": 0.9893 + }, + { + "start": 7857.34, + "end": 7861.28, + "probability": 0.0289 + }, + { + "start": 7861.96, + "end": 7862.22, + "probability": 0.128 + }, + { + "start": 7862.22, + "end": 7865.48, + "probability": 0.5855 + }, + { + "start": 7865.66, + "end": 7866.76, + "probability": 0.8456 + }, + { + "start": 7866.98, + "end": 7867.77, + "probability": 0.8606 + }, + { + "start": 7867.9, + "end": 7869.38, + "probability": 0.9578 + }, + { + "start": 7870.0, + "end": 7875.0, + "probability": 0.936 + }, + { + "start": 7875.5, + "end": 7877.36, + "probability": 0.9878 + }, + { + "start": 7877.94, + "end": 7881.0, + "probability": 0.8889 + }, + { + "start": 7881.76, + "end": 7887.86, + "probability": 0.9897 + }, + { + "start": 7888.6, + "end": 7890.22, + "probability": 0.7383 + }, + { + "start": 7890.34, + "end": 7894.7, + "probability": 0.8565 + }, + { + "start": 7895.56, + "end": 7898.08, + "probability": 0.9839 + }, + { + "start": 7898.08, + "end": 7902.16, + "probability": 0.9957 + }, + { + "start": 7902.34, + "end": 7906.42, + "probability": 0.9014 + }, + { + "start": 7907.46, + "end": 7909.36, + "probability": 0.7965 + }, + { + "start": 7909.9, + "end": 7912.16, + "probability": 0.998 + }, + { + "start": 7913.1, + "end": 7915.4, + "probability": 0.9811 + }, + { + "start": 7915.4, + "end": 7918.44, + "probability": 0.8071 + }, + { + "start": 7919.98, + "end": 7924.3, + "probability": 0.862 + }, + { + "start": 7925.4, + "end": 7929.22, + "probability": 0.9858 + }, + { + "start": 7929.76, + "end": 7934.94, + "probability": 0.9973 + }, + { + "start": 7935.7, + "end": 7938.34, + "probability": 0.9113 + }, + { + "start": 7939.58, + "end": 7942.56, + "probability": 0.9912 + }, + { + "start": 7942.56, + "end": 7947.22, + "probability": 0.9973 + }, + { + "start": 7948.06, + "end": 7952.1, + "probability": 0.9866 + }, + { + "start": 7952.74, + "end": 7956.44, + "probability": 0.9752 + }, + { + "start": 7957.22, + "end": 7962.56, + "probability": 0.9762 + }, + { + "start": 7963.32, + "end": 7963.32, + "probability": 0.0105 + }, + { + "start": 7963.32, + "end": 7967.7, + "probability": 0.9976 + }, + { + "start": 7967.7, + "end": 7971.42, + "probability": 0.9969 + }, + { + "start": 7971.6, + "end": 7976.02, + "probability": 0.9941 + }, + { + "start": 7977.08, + "end": 7980.26, + "probability": 0.9854 + }, + { + "start": 7980.26, + "end": 7982.78, + "probability": 0.9992 + }, + { + "start": 7984.84, + "end": 7987.22, + "probability": 0.9249 + }, + { + "start": 7988.22, + "end": 7990.04, + "probability": 0.8764 + }, + { + "start": 7990.14, + "end": 7993.94, + "probability": 0.879 + }, + { + "start": 7994.08, + "end": 7994.36, + "probability": 0.7213 + }, + { + "start": 7996.28, + "end": 7997.76, + "probability": 0.6536 + }, + { + "start": 7997.92, + "end": 8003.16, + "probability": 0.8927 + }, + { + "start": 8003.48, + "end": 8005.28, + "probability": 0.9368 + }, + { + "start": 8014.7, + "end": 8016.14, + "probability": 0.4986 + }, + { + "start": 8016.5, + "end": 8018.38, + "probability": 0.774 + }, + { + "start": 8020.1, + "end": 8023.74, + "probability": 0.9316 + }, + { + "start": 8024.96, + "end": 8028.52, + "probability": 0.9736 + }, + { + "start": 8029.54, + "end": 8034.6, + "probability": 0.9631 + }, + { + "start": 8035.26, + "end": 8038.44, + "probability": 0.9912 + }, + { + "start": 8039.3, + "end": 8044.98, + "probability": 0.9949 + }, + { + "start": 8045.86, + "end": 8051.42, + "probability": 0.9746 + }, + { + "start": 8060.76, + "end": 8066.42, + "probability": 0.7297 + }, + { + "start": 8067.62, + "end": 8069.7, + "probability": 0.7832 + }, + { + "start": 8070.68, + "end": 8074.6, + "probability": 0.9854 + }, + { + "start": 8074.6, + "end": 8076.88, + "probability": 0.9673 + }, + { + "start": 8078.42, + "end": 8080.02, + "probability": 0.9769 + }, + { + "start": 8080.82, + "end": 8082.72, + "probability": 0.8582 + }, + { + "start": 8083.68, + "end": 8086.58, + "probability": 0.8756 + }, + { + "start": 8087.36, + "end": 8094.84, + "probability": 0.9043 + }, + { + "start": 8095.7, + "end": 8096.12, + "probability": 0.5815 + }, + { + "start": 8096.18, + "end": 8097.26, + "probability": 0.7469 + }, + { + "start": 8097.34, + "end": 8097.87, + "probability": 0.5029 + }, + { + "start": 8098.74, + "end": 8100.96, + "probability": 0.9888 + }, + { + "start": 8102.14, + "end": 8103.0, + "probability": 0.8597 + }, + { + "start": 8103.32, + "end": 8104.14, + "probability": 0.8519 + }, + { + "start": 8104.48, + "end": 8105.88, + "probability": 0.6271 + }, + { + "start": 8106.28, + "end": 8108.04, + "probability": 0.9307 + }, + { + "start": 8108.96, + "end": 8116.3, + "probability": 0.9812 + }, + { + "start": 8116.76, + "end": 8118.42, + "probability": 0.8336 + }, + { + "start": 8118.52, + "end": 8123.5, + "probability": 0.9974 + }, + { + "start": 8124.04, + "end": 8124.2, + "probability": 0.4559 + }, + { + "start": 8124.2, + "end": 8128.58, + "probability": 0.9917 + }, + { + "start": 8128.7, + "end": 8128.8, + "probability": 0.0079 + }, + { + "start": 8131.16, + "end": 8131.86, + "probability": 0.0393 + }, + { + "start": 8131.86, + "end": 8133.52, + "probability": 0.6055 + }, + { + "start": 8134.74, + "end": 8135.88, + "probability": 0.7733 + }, + { + "start": 8136.64, + "end": 8137.24, + "probability": 0.1085 + }, + { + "start": 8137.24, + "end": 8137.42, + "probability": 0.5808 + }, + { + "start": 8137.62, + "end": 8137.86, + "probability": 0.7617 + }, + { + "start": 8137.98, + "end": 8139.72, + "probability": 0.972 + }, + { + "start": 8139.86, + "end": 8140.0, + "probability": 0.337 + }, + { + "start": 8140.22, + "end": 8141.54, + "probability": 0.4107 + }, + { + "start": 8141.62, + "end": 8142.5, + "probability": 0.5472 + }, + { + "start": 8143.52, + "end": 8146.1, + "probability": 0.9642 + }, + { + "start": 8146.58, + "end": 8148.56, + "probability": 0.98 + }, + { + "start": 8149.3, + "end": 8151.16, + "probability": 0.9543 + }, + { + "start": 8151.72, + "end": 8152.92, + "probability": 0.951 + }, + { + "start": 8153.46, + "end": 8154.64, + "probability": 0.9555 + }, + { + "start": 8155.56, + "end": 8158.66, + "probability": 0.9877 + }, + { + "start": 8159.8, + "end": 8161.7, + "probability": 0.8342 + }, + { + "start": 8162.84, + "end": 8165.54, + "probability": 0.9272 + }, + { + "start": 8166.38, + "end": 8166.96, + "probability": 0.8355 + }, + { + "start": 8167.1, + "end": 8168.22, + "probability": 0.8086 + }, + { + "start": 8168.28, + "end": 8169.45, + "probability": 0.9577 + }, + { + "start": 8170.06, + "end": 8170.44, + "probability": 0.0291 + }, + { + "start": 8170.44, + "end": 8173.34, + "probability": 0.6737 + }, + { + "start": 8174.28, + "end": 8177.12, + "probability": 0.8181 + }, + { + "start": 8177.8, + "end": 8178.78, + "probability": 0.9911 + }, + { + "start": 8179.76, + "end": 8180.97, + "probability": 0.8668 + }, + { + "start": 8181.92, + "end": 8184.62, + "probability": 0.9893 + }, + { + "start": 8185.06, + "end": 8187.22, + "probability": 0.7664 + }, + { + "start": 8187.32, + "end": 8189.38, + "probability": 0.9796 + }, + { + "start": 8189.84, + "end": 8194.74, + "probability": 0.8837 + }, + { + "start": 8195.48, + "end": 8197.24, + "probability": 0.9038 + }, + { + "start": 8198.02, + "end": 8200.28, + "probability": 0.9801 + }, + { + "start": 8200.38, + "end": 8201.44, + "probability": 0.913 + }, + { + "start": 8202.04, + "end": 8203.32, + "probability": 0.9381 + }, + { + "start": 8204.12, + "end": 8205.62, + "probability": 0.7576 + }, + { + "start": 8206.16, + "end": 8211.74, + "probability": 0.9014 + }, + { + "start": 8212.54, + "end": 8214.4, + "probability": 0.9502 + }, + { + "start": 8215.28, + "end": 8218.0, + "probability": 0.8355 + }, + { + "start": 8218.6, + "end": 8220.22, + "probability": 0.6405 + }, + { + "start": 8221.0, + "end": 8222.68, + "probability": 0.8074 + }, + { + "start": 8223.28, + "end": 8226.14, + "probability": 0.263 + }, + { + "start": 8226.48, + "end": 8229.68, + "probability": 0.5883 + }, + { + "start": 8229.74, + "end": 8234.28, + "probability": 0.0389 + }, + { + "start": 8234.28, + "end": 8234.96, + "probability": 0.0921 + }, + { + "start": 8235.16, + "end": 8236.4, + "probability": 0.4594 + }, + { + "start": 8236.58, + "end": 8237.29, + "probability": 0.5401 + }, + { + "start": 8238.08, + "end": 8238.64, + "probability": 0.2426 + }, + { + "start": 8238.88, + "end": 8241.32, + "probability": 0.3521 + }, + { + "start": 8241.32, + "end": 8244.84, + "probability": 0.3369 + }, + { + "start": 8245.36, + "end": 8248.64, + "probability": 0.8613 + }, + { + "start": 8249.86, + "end": 8252.78, + "probability": 0.6678 + }, + { + "start": 8252.78, + "end": 8257.18, + "probability": 0.9967 + }, + { + "start": 8257.96, + "end": 8259.89, + "probability": 0.6013 + }, + { + "start": 8260.06, + "end": 8262.46, + "probability": 0.329 + }, + { + "start": 8262.64, + "end": 8262.64, + "probability": 0.1645 + }, + { + "start": 8262.66, + "end": 8264.59, + "probability": 0.8755 + }, + { + "start": 8264.62, + "end": 8265.86, + "probability": 0.614 + }, + { + "start": 8268.16, + "end": 8268.28, + "probability": 0.026 + }, + { + "start": 8268.28, + "end": 8268.3, + "probability": 0.0146 + }, + { + "start": 8269.12, + "end": 8270.09, + "probability": 0.1163 + }, + { + "start": 8270.42, + "end": 8271.34, + "probability": 0.0571 + }, + { + "start": 8271.46, + "end": 8272.18, + "probability": 0.2704 + }, + { + "start": 8272.8, + "end": 8272.82, + "probability": 0.0341 + }, + { + "start": 8272.82, + "end": 8272.82, + "probability": 0.1862 + }, + { + "start": 8272.82, + "end": 8277.36, + "probability": 0.9428 + }, + { + "start": 8277.48, + "end": 8280.86, + "probability": 0.9974 + }, + { + "start": 8281.64, + "end": 8286.02, + "probability": 0.9993 + }, + { + "start": 8286.74, + "end": 8292.14, + "probability": 0.9004 + }, + { + "start": 8293.1, + "end": 8294.94, + "probability": 0.154 + }, + { + "start": 8295.24, + "end": 8296.0, + "probability": 0.0091 + }, + { + "start": 8296.0, + "end": 8296.0, + "probability": 0.1488 + }, + { + "start": 8296.0, + "end": 8296.0, + "probability": 0.1862 + }, + { + "start": 8296.0, + "end": 8296.42, + "probability": 0.4166 + }, + { + "start": 8296.56, + "end": 8297.88, + "probability": 0.5326 + }, + { + "start": 8298.6, + "end": 8301.48, + "probability": 0.9292 + }, + { + "start": 8301.92, + "end": 8305.46, + "probability": 0.9854 + }, + { + "start": 8305.46, + "end": 8308.82, + "probability": 0.7748 + }, + { + "start": 8309.34, + "end": 8311.52, + "probability": 0.9951 + }, + { + "start": 8312.22, + "end": 8312.34, + "probability": 0.0809 + }, + { + "start": 8312.34, + "end": 8312.34, + "probability": 0.0166 + }, + { + "start": 8312.34, + "end": 8315.33, + "probability": 0.77 + }, + { + "start": 8316.24, + "end": 8317.9, + "probability": 0.9933 + }, + { + "start": 8318.58, + "end": 8319.62, + "probability": 0.3734 + }, + { + "start": 8320.71, + "end": 8322.08, + "probability": 0.4892 + }, + { + "start": 8322.08, + "end": 8323.27, + "probability": 0.5588 + }, + { + "start": 8324.24, + "end": 8325.02, + "probability": 0.9095 + }, + { + "start": 8325.58, + "end": 8326.32, + "probability": 0.6622 + }, + { + "start": 8326.88, + "end": 8329.22, + "probability": 0.4905 + }, + { + "start": 8329.66, + "end": 8331.18, + "probability": 0.0751 + }, + { + "start": 8331.18, + "end": 8331.74, + "probability": 0.0328 + }, + { + "start": 8333.3, + "end": 8333.4, + "probability": 0.0813 + }, + { + "start": 8333.4, + "end": 8333.4, + "probability": 0.0862 + }, + { + "start": 8333.4, + "end": 8333.46, + "probability": 0.2886 + }, + { + "start": 8333.46, + "end": 8335.34, + "probability": 0.6822 + }, + { + "start": 8335.84, + "end": 8336.02, + "probability": 0.7234 + }, + { + "start": 8336.42, + "end": 8337.66, + "probability": 0.8994 + }, + { + "start": 8338.66, + "end": 8338.66, + "probability": 0.005 + }, + { + "start": 8338.66, + "end": 8341.36, + "probability": 0.8687 + }, + { + "start": 8341.84, + "end": 8344.34, + "probability": 0.9624 + }, + { + "start": 8344.42, + "end": 8345.1, + "probability": 0.474 + }, + { + "start": 8345.14, + "end": 8345.89, + "probability": 0.8201 + }, + { + "start": 8347.06, + "end": 8353.64, + "probability": 0.9666 + }, + { + "start": 8353.76, + "end": 8354.14, + "probability": 0.8622 + }, + { + "start": 8354.58, + "end": 8355.3, + "probability": 0.6255 + }, + { + "start": 8355.6, + "end": 8356.56, + "probability": 0.7168 + }, + { + "start": 8356.74, + "end": 8357.46, + "probability": 0.4659 + }, + { + "start": 8357.52, + "end": 8357.54, + "probability": 0.3122 + }, + { + "start": 8357.62, + "end": 8358.36, + "probability": 0.8046 + }, + { + "start": 8359.34, + "end": 8361.34, + "probability": 0.4951 + }, + { + "start": 8361.38, + "end": 8361.96, + "probability": 0.2836 + }, + { + "start": 8362.86, + "end": 8370.58, + "probability": 0.97 + }, + { + "start": 8372.16, + "end": 8373.9, + "probability": 0.5027 + }, + { + "start": 8374.78, + "end": 8377.38, + "probability": 0.9368 + }, + { + "start": 8378.0, + "end": 8380.92, + "probability": 0.7769 + }, + { + "start": 8381.72, + "end": 8387.94, + "probability": 0.9706 + }, + { + "start": 8387.94, + "end": 8395.52, + "probability": 0.9291 + }, + { + "start": 8396.38, + "end": 8398.42, + "probability": 0.9207 + }, + { + "start": 8399.65, + "end": 8402.46, + "probability": 0.4292 + }, + { + "start": 8403.22, + "end": 8403.48, + "probability": 0.4749 + }, + { + "start": 8403.66, + "end": 8409.66, + "probability": 0.8966 + }, + { + "start": 8410.24, + "end": 8411.42, + "probability": 0.9663 + }, + { + "start": 8412.48, + "end": 8414.56, + "probability": 0.9702 + }, + { + "start": 8415.44, + "end": 8417.74, + "probability": 0.9891 + }, + { + "start": 8417.76, + "end": 8420.92, + "probability": 0.8656 + }, + { + "start": 8421.52, + "end": 8423.03, + "probability": 0.9873 + }, + { + "start": 8424.18, + "end": 8428.24, + "probability": 0.9735 + }, + { + "start": 8428.24, + "end": 8432.38, + "probability": 0.9685 + }, + { + "start": 8433.0, + "end": 8434.62, + "probability": 0.775 + }, + { + "start": 8434.72, + "end": 8436.79, + "probability": 0.6954 + }, + { + "start": 8437.44, + "end": 8441.86, + "probability": 0.7222 + }, + { + "start": 8442.44, + "end": 8444.54, + "probability": 0.9144 + }, + { + "start": 8445.06, + "end": 8447.0, + "probability": 0.8721 + }, + { + "start": 8447.56, + "end": 8449.54, + "probability": 0.9474 + }, + { + "start": 8450.24, + "end": 8451.35, + "probability": 0.9902 + }, + { + "start": 8452.28, + "end": 8456.24, + "probability": 0.9593 + }, + { + "start": 8456.24, + "end": 8460.46, + "probability": 0.9864 + }, + { + "start": 8460.98, + "end": 8463.56, + "probability": 0.6337 + }, + { + "start": 8463.94, + "end": 8464.36, + "probability": 0.5206 + }, + { + "start": 8464.42, + "end": 8466.68, + "probability": 0.8845 + }, + { + "start": 8466.9, + "end": 8469.24, + "probability": 0.6996 + }, + { + "start": 8469.9, + "end": 8471.64, + "probability": 0.6674 + }, + { + "start": 8471.86, + "end": 8473.48, + "probability": 0.4803 + }, + { + "start": 8473.52, + "end": 8474.5, + "probability": 0.7532 + }, + { + "start": 8475.62, + "end": 8478.68, + "probability": 0.9342 + }, + { + "start": 8479.42, + "end": 8481.88, + "probability": 0.6311 + }, + { + "start": 8481.88, + "end": 8482.62, + "probability": 0.3202 + }, + { + "start": 8485.54, + "end": 8487.98, + "probability": 0.6637 + }, + { + "start": 8488.14, + "end": 8489.66, + "probability": 0.8706 + }, + { + "start": 8490.24, + "end": 8490.24, + "probability": 0.0616 + }, + { + "start": 8490.24, + "end": 8490.36, + "probability": 0.2591 + }, + { + "start": 8490.46, + "end": 8493.36, + "probability": 0.6979 + }, + { + "start": 8493.54, + "end": 8494.14, + "probability": 0.0784 + }, + { + "start": 8494.14, + "end": 8494.63, + "probability": 0.8271 + }, + { + "start": 8494.78, + "end": 8495.68, + "probability": 0.7886 + }, + { + "start": 8495.82, + "end": 8499.24, + "probability": 0.8824 + }, + { + "start": 8499.72, + "end": 8502.02, + "probability": 0.9624 + }, + { + "start": 8502.1, + "end": 8505.02, + "probability": 0.7394 + }, + { + "start": 8505.44, + "end": 8507.5, + "probability": 0.6825 + }, + { + "start": 8507.54, + "end": 8510.8, + "probability": 0.6903 + }, + { + "start": 8511.4, + "end": 8513.82, + "probability": 0.616 + }, + { + "start": 8514.34, + "end": 8514.38, + "probability": 0.0297 + }, + { + "start": 8515.74, + "end": 8516.4, + "probability": 0.0063 + }, + { + "start": 8516.46, + "end": 8517.2, + "probability": 0.5358 + }, + { + "start": 8517.24, + "end": 8518.4, + "probability": 0.8121 + }, + { + "start": 8518.48, + "end": 8525.52, + "probability": 0.9152 + }, + { + "start": 8534.16, + "end": 8535.2, + "probability": 0.7595 + }, + { + "start": 8535.34, + "end": 8536.2, + "probability": 0.837 + }, + { + "start": 8536.64, + "end": 8540.22, + "probability": 0.8567 + }, + { + "start": 8540.56, + "end": 8543.8, + "probability": 0.9966 + }, + { + "start": 8543.8, + "end": 8546.22, + "probability": 0.9854 + }, + { + "start": 8546.54, + "end": 8547.12, + "probability": 0.856 + }, + { + "start": 8547.6, + "end": 8549.34, + "probability": 0.9316 + }, + { + "start": 8549.64, + "end": 8554.96, + "probability": 0.9502 + }, + { + "start": 8555.26, + "end": 8556.7, + "probability": 0.9521 + }, + { + "start": 8556.98, + "end": 8560.04, + "probability": 0.9702 + }, + { + "start": 8560.3, + "end": 8563.98, + "probability": 0.8638 + }, + { + "start": 8564.38, + "end": 8565.66, + "probability": 0.7891 + }, + { + "start": 8565.94, + "end": 8569.94, + "probability": 0.997 + }, + { + "start": 8570.04, + "end": 8574.24, + "probability": 0.9965 + }, + { + "start": 8574.76, + "end": 8577.0, + "probability": 0.912 + }, + { + "start": 8577.28, + "end": 8579.36, + "probability": 0.8737 + }, + { + "start": 8579.48, + "end": 8581.14, + "probability": 0.9883 + }, + { + "start": 8581.34, + "end": 8582.38, + "probability": 0.786 + }, + { + "start": 8582.42, + "end": 8583.6, + "probability": 0.9902 + }, + { + "start": 8583.84, + "end": 8585.68, + "probability": 0.9929 + }, + { + "start": 8585.8, + "end": 8590.16, + "probability": 0.9946 + }, + { + "start": 8590.52, + "end": 8591.32, + "probability": 0.961 + }, + { + "start": 8591.62, + "end": 8595.8, + "probability": 0.7472 + }, + { + "start": 8596.3, + "end": 8597.5, + "probability": 0.9497 + }, + { + "start": 8597.68, + "end": 8599.88, + "probability": 0.9237 + }, + { + "start": 8599.88, + "end": 8600.72, + "probability": 0.7889 + }, + { + "start": 8600.86, + "end": 8602.0, + "probability": 0.078 + }, + { + "start": 8602.24, + "end": 8603.8, + "probability": 0.0937 + }, + { + "start": 8604.62, + "end": 8605.8, + "probability": 0.1477 + }, + { + "start": 8607.16, + "end": 8610.96, + "probability": 0.4201 + }, + { + "start": 8611.04, + "end": 8611.86, + "probability": 0.2975 + }, + { + "start": 8612.28, + "end": 8615.32, + "probability": 0.9341 + }, + { + "start": 8615.44, + "end": 8619.58, + "probability": 0.3518 + }, + { + "start": 8620.24, + "end": 8621.68, + "probability": 0.7895 + }, + { + "start": 8621.86, + "end": 8623.06, + "probability": 0.1512 + }, + { + "start": 8623.06, + "end": 8627.72, + "probability": 0.6078 + }, + { + "start": 8627.76, + "end": 8630.52, + "probability": 0.5923 + }, + { + "start": 8630.62, + "end": 8635.74, + "probability": 0.957 + }, + { + "start": 8636.0, + "end": 8640.08, + "probability": 0.9341 + }, + { + "start": 8640.26, + "end": 8641.2, + "probability": 0.1819 + }, + { + "start": 8641.2, + "end": 8641.2, + "probability": 0.4663 + }, + { + "start": 8641.2, + "end": 8644.18, + "probability": 0.725 + }, + { + "start": 8644.38, + "end": 8646.6, + "probability": 0.4292 + }, + { + "start": 8646.66, + "end": 8647.32, + "probability": 0.8746 + }, + { + "start": 8648.22, + "end": 8649.3, + "probability": 0.2331 + }, + { + "start": 8649.36, + "end": 8651.04, + "probability": 0.7498 + }, + { + "start": 8651.74, + "end": 8653.28, + "probability": 0.766 + }, + { + "start": 8654.6, + "end": 8657.08, + "probability": 0.7512 + }, + { + "start": 8657.64, + "end": 8658.22, + "probability": 0.4229 + }, + { + "start": 8658.3, + "end": 8664.8, + "probability": 0.9666 + }, + { + "start": 8664.86, + "end": 8666.1, + "probability": 0.9139 + }, + { + "start": 8666.4, + "end": 8669.34, + "probability": 0.9962 + }, + { + "start": 8670.54, + "end": 8674.7, + "probability": 0.9609 + }, + { + "start": 8674.7, + "end": 8679.9, + "probability": 0.999 + }, + { + "start": 8680.98, + "end": 8684.48, + "probability": 0.9924 + }, + { + "start": 8684.48, + "end": 8688.52, + "probability": 0.8574 + }, + { + "start": 8689.02, + "end": 8693.56, + "probability": 0.9971 + }, + { + "start": 8694.2, + "end": 8699.32, + "probability": 0.9932 + }, + { + "start": 8700.1, + "end": 8704.98, + "probability": 0.9903 + }, + { + "start": 8704.98, + "end": 8707.04, + "probability": 0.9971 + }, + { + "start": 8707.88, + "end": 8711.46, + "probability": 0.9683 + }, + { + "start": 8711.46, + "end": 8715.04, + "probability": 0.8453 + }, + { + "start": 8715.22, + "end": 8717.24, + "probability": 0.9784 + }, + { + "start": 8717.28, + "end": 8718.6, + "probability": 0.9893 + }, + { + "start": 8719.18, + "end": 8721.59, + "probability": 0.978 + }, + { + "start": 8721.96, + "end": 8724.0, + "probability": 0.7045 + }, + { + "start": 8724.36, + "end": 8725.66, + "probability": 0.4957 + }, + { + "start": 8725.76, + "end": 8726.46, + "probability": 0.5514 + }, + { + "start": 8726.66, + "end": 8729.28, + "probability": 0.5845 + }, + { + "start": 8729.34, + "end": 8729.34, + "probability": 0.426 + }, + { + "start": 8729.38, + "end": 8732.16, + "probability": 0.9819 + }, + { + "start": 8732.18, + "end": 8734.14, + "probability": 0.9724 + }, + { + "start": 8734.56, + "end": 8735.06, + "probability": 0.7539 + }, + { + "start": 8735.06, + "end": 8736.2, + "probability": 0.3406 + }, + { + "start": 8736.2, + "end": 8737.04, + "probability": 0.1832 + }, + { + "start": 8737.04, + "end": 8737.34, + "probability": 0.1204 + }, + { + "start": 8737.68, + "end": 8739.42, + "probability": 0.8727 + }, + { + "start": 8739.74, + "end": 8741.74, + "probability": 0.9705 + }, + { + "start": 8741.94, + "end": 8742.76, + "probability": 0.8589 + }, + { + "start": 8743.54, + "end": 8745.26, + "probability": 0.8864 + }, + { + "start": 8746.0, + "end": 8748.94, + "probability": 0.9606 + }, + { + "start": 8748.94, + "end": 8752.98, + "probability": 0.9751 + }, + { + "start": 8752.98, + "end": 8753.66, + "probability": 0.3865 + }, + { + "start": 8753.7, + "end": 8754.56, + "probability": 0.3676 + }, + { + "start": 8755.4, + "end": 8756.38, + "probability": 0.8464 + }, + { + "start": 8756.66, + "end": 8762.96, + "probability": 0.8439 + }, + { + "start": 8763.18, + "end": 8763.6, + "probability": 0.3783 + }, + { + "start": 8765.1, + "end": 8765.42, + "probability": 0.0459 + }, + { + "start": 8765.42, + "end": 8765.44, + "probability": 0.0551 + }, + { + "start": 8765.44, + "end": 8766.0, + "probability": 0.0397 + }, + { + "start": 8766.0, + "end": 8766.46, + "probability": 0.2652 + }, + { + "start": 8766.62, + "end": 8767.52, + "probability": 0.3347 + }, + { + "start": 8767.52, + "end": 8767.52, + "probability": 0.4073 + }, + { + "start": 8767.52, + "end": 8768.32, + "probability": 0.087 + }, + { + "start": 8769.08, + "end": 8771.22, + "probability": 0.5531 + }, + { + "start": 8771.52, + "end": 8775.34, + "probability": 0.5659 + }, + { + "start": 8775.4, + "end": 8775.94, + "probability": 0.0725 + }, + { + "start": 8775.94, + "end": 8775.94, + "probability": 0.36 + }, + { + "start": 8775.94, + "end": 8777.02, + "probability": 0.7917 + }, + { + "start": 8777.08, + "end": 8780.08, + "probability": 0.5875 + }, + { + "start": 8780.64, + "end": 8780.98, + "probability": 0.0278 + }, + { + "start": 8781.72, + "end": 8785.18, + "probability": 0.0565 + }, + { + "start": 8787.44, + "end": 8787.44, + "probability": 0.1266 + }, + { + "start": 8787.44, + "end": 8788.64, + "probability": 0.6808 + }, + { + "start": 8789.24, + "end": 8790.84, + "probability": 0.7536 + }, + { + "start": 8791.0, + "end": 8794.42, + "probability": 0.9777 + }, + { + "start": 8794.8, + "end": 8796.68, + "probability": 0.9967 + }, + { + "start": 8796.68, + "end": 8798.42, + "probability": 0.9646 + }, + { + "start": 8798.94, + "end": 8800.62, + "probability": 0.8174 + }, + { + "start": 8800.68, + "end": 8802.06, + "probability": 0.8142 + }, + { + "start": 8802.16, + "end": 8802.52, + "probability": 0.3935 + }, + { + "start": 8802.62, + "end": 8803.12, + "probability": 0.671 + }, + { + "start": 8804.79, + "end": 8812.18, + "probability": 0.9893 + }, + { + "start": 8812.18, + "end": 8812.5, + "probability": 0.4415 + }, + { + "start": 8812.5, + "end": 8813.06, + "probability": 0.5984 + }, + { + "start": 8813.12, + "end": 8814.16, + "probability": 0.3107 + }, + { + "start": 8819.22, + "end": 8820.18, + "probability": 0.1982 + }, + { + "start": 8821.52, + "end": 8822.42, + "probability": 0.0092 + }, + { + "start": 8823.68, + "end": 8823.78, + "probability": 0.0171 + }, + { + "start": 8827.04, + "end": 8827.14, + "probability": 0.0004 + }, + { + "start": 8832.12, + "end": 8838.84, + "probability": 0.9888 + }, + { + "start": 8839.32, + "end": 8840.74, + "probability": 0.3314 + }, + { + "start": 8841.46, + "end": 8842.24, + "probability": 0.3165 + }, + { + "start": 8842.58, + "end": 8843.4, + "probability": 0.0335 + }, + { + "start": 8843.78, + "end": 8849.72, + "probability": 0.9714 + }, + { + "start": 8851.24, + "end": 8852.88, + "probability": 0.0277 + }, + { + "start": 8853.34, + "end": 8854.64, + "probability": 0.0599 + }, + { + "start": 8855.64, + "end": 8856.16, + "probability": 0.4433 + }, + { + "start": 8856.6, + "end": 8858.46, + "probability": 0.7307 + }, + { + "start": 8858.84, + "end": 8862.08, + "probability": 0.6372 + }, + { + "start": 8862.08, + "end": 8865.62, + "probability": 0.9731 + }, + { + "start": 8866.3, + "end": 8869.14, + "probability": 0.9819 + }, + { + "start": 8869.78, + "end": 8873.74, + "probability": 0.7642 + }, + { + "start": 8873.82, + "end": 8874.12, + "probability": 0.3786 + }, + { + "start": 8874.2, + "end": 8876.9, + "probability": 0.9578 + }, + { + "start": 8877.52, + "end": 8881.48, + "probability": 0.8828 + }, + { + "start": 8881.94, + "end": 8881.98, + "probability": 0.0486 + }, + { + "start": 8881.98, + "end": 8884.14, + "probability": 0.9795 + }, + { + "start": 8884.28, + "end": 8889.06, + "probability": 0.9084 + }, + { + "start": 8889.1, + "end": 8890.52, + "probability": 0.7837 + }, + { + "start": 8891.2, + "end": 8893.52, + "probability": 0.7197 + }, + { + "start": 8894.04, + "end": 8899.18, + "probability": 0.8083 + }, + { + "start": 8899.2, + "end": 8899.42, + "probability": 0.1209 + }, + { + "start": 8899.66, + "end": 8905.42, + "probability": 0.9717 + }, + { + "start": 8905.42, + "end": 8909.98, + "probability": 0.8715 + }, + { + "start": 8910.48, + "end": 8914.6, + "probability": 0.8204 + }, + { + "start": 8914.6, + "end": 8919.0, + "probability": 0.8882 + }, + { + "start": 8919.4, + "end": 8922.67, + "probability": 0.9347 + }, + { + "start": 8923.46, + "end": 8925.2, + "probability": 0.6713 + }, + { + "start": 8926.16, + "end": 8926.22, + "probability": 0.1607 + }, + { + "start": 8926.22, + "end": 8930.02, + "probability": 0.8732 + }, + { + "start": 8930.26, + "end": 8934.34, + "probability": 0.9736 + }, + { + "start": 8935.06, + "end": 8936.94, + "probability": 0.8882 + }, + { + "start": 8941.18, + "end": 8941.18, + "probability": 0.1748 + }, + { + "start": 8941.18, + "end": 8941.18, + "probability": 0.1958 + }, + { + "start": 8941.18, + "end": 8941.18, + "probability": 0.0605 + }, + { + "start": 8941.18, + "end": 8942.35, + "probability": 0.3612 + }, + { + "start": 8943.64, + "end": 8945.3, + "probability": 0.9822 + }, + { + "start": 8945.86, + "end": 8948.49, + "probability": 0.9977 + }, + { + "start": 8948.85, + "end": 8953.27, + "probability": 0.8751 + }, + { + "start": 8953.51, + "end": 8956.87, + "probability": 0.73 + }, + { + "start": 8957.31, + "end": 8957.31, + "probability": 0.2373 + }, + { + "start": 8957.31, + "end": 8959.48, + "probability": 0.79 + }, + { + "start": 8960.28, + "end": 8960.28, + "probability": 0.0319 + }, + { + "start": 8960.28, + "end": 8965.86, + "probability": 0.9049 + }, + { + "start": 8966.66, + "end": 8969.1, + "probability": 0.998 + }, + { + "start": 8969.62, + "end": 8973.26, + "probability": 0.6717 + }, + { + "start": 8974.18, + "end": 8974.73, + "probability": 0.0016 + }, + { + "start": 8974.76, + "end": 8977.1, + "probability": 0.6835 + }, + { + "start": 8977.1, + "end": 8978.26, + "probability": 0.0905 + }, + { + "start": 8978.62, + "end": 8978.62, + "probability": 0.087 + }, + { + "start": 8978.62, + "end": 8980.84, + "probability": 0.8782 + }, + { + "start": 8981.26, + "end": 8985.12, + "probability": 0.8354 + }, + { + "start": 8985.12, + "end": 8987.86, + "probability": 0.9147 + }, + { + "start": 8988.29, + "end": 8990.85, + "probability": 0.8283 + }, + { + "start": 8991.78, + "end": 8993.8, + "probability": 0.8632 + }, + { + "start": 8995.14, + "end": 8996.78, + "probability": 0.177 + }, + { + "start": 8996.94, + "end": 8999.32, + "probability": 0.8085 + }, + { + "start": 8999.74, + "end": 9004.3, + "probability": 0.9729 + }, + { + "start": 9004.46, + "end": 9005.18, + "probability": 0.3438 + }, + { + "start": 9005.58, + "end": 9005.58, + "probability": 0.0763 + }, + { + "start": 9005.58, + "end": 9005.94, + "probability": 0.3284 + }, + { + "start": 9006.14, + "end": 9008.1, + "probability": 0.9714 + }, + { + "start": 9008.58, + "end": 9008.96, + "probability": 0.8716 + }, + { + "start": 9008.98, + "end": 9010.96, + "probability": 0.9872 + }, + { + "start": 9011.4, + "end": 9012.66, + "probability": 0.7871 + }, + { + "start": 9012.66, + "end": 9014.44, + "probability": 0.6732 + }, + { + "start": 9014.62, + "end": 9015.44, + "probability": 0.188 + }, + { + "start": 9015.54, + "end": 9016.62, + "probability": 0.8804 + }, + { + "start": 9017.3, + "end": 9019.7, + "probability": 0.7357 + }, + { + "start": 9019.84, + "end": 9021.14, + "probability": 0.8274 + }, + { + "start": 9021.62, + "end": 9025.54, + "probability": 0.9396 + }, + { + "start": 9026.28, + "end": 9027.84, + "probability": 0.9582 + }, + { + "start": 9028.28, + "end": 9030.76, + "probability": 0.9268 + }, + { + "start": 9031.18, + "end": 9031.56, + "probability": 0.0991 + }, + { + "start": 9031.56, + "end": 9031.56, + "probability": 0.0354 + }, + { + "start": 9031.56, + "end": 9031.6, + "probability": 0.0546 + }, + { + "start": 9031.6, + "end": 9032.7, + "probability": 0.2118 + }, + { + "start": 9033.3, + "end": 9034.44, + "probability": 0.5061 + }, + { + "start": 9036.66, + "end": 9038.5, + "probability": 0.5967 + }, + { + "start": 9038.5, + "end": 9042.44, + "probability": 0.9281 + }, + { + "start": 9043.7, + "end": 9043.7, + "probability": 0.02 + }, + { + "start": 9043.7, + "end": 9047.52, + "probability": 0.7391 + }, + { + "start": 9047.72, + "end": 9050.14, + "probability": 0.9338 + }, + { + "start": 9051.52, + "end": 9054.14, + "probability": 0.9965 + }, + { + "start": 9054.26, + "end": 9055.66, + "probability": 0.8027 + }, + { + "start": 9055.82, + "end": 9057.14, + "probability": 0.4395 + }, + { + "start": 9057.9, + "end": 9061.22, + "probability": 0.9935 + }, + { + "start": 9061.84, + "end": 9062.22, + "probability": 0.9338 + }, + { + "start": 9062.22, + "end": 9062.9, + "probability": 0.71 + }, + { + "start": 9062.96, + "end": 9066.56, + "probability": 0.9608 + }, + { + "start": 9078.56, + "end": 9081.26, + "probability": 0.654 + }, + { + "start": 9081.92, + "end": 9083.04, + "probability": 0.6942 + }, + { + "start": 9084.68, + "end": 9090.48, + "probability": 0.9151 + }, + { + "start": 9091.24, + "end": 9091.58, + "probability": 0.7327 + }, + { + "start": 9092.38, + "end": 9093.84, + "probability": 0.8766 + }, + { + "start": 9094.46, + "end": 9098.1, + "probability": 0.9368 + }, + { + "start": 9099.12, + "end": 9102.15, + "probability": 0.7327 + }, + { + "start": 9103.4, + "end": 9106.2, + "probability": 0.9943 + }, + { + "start": 9107.32, + "end": 9111.0, + "probability": 0.9233 + }, + { + "start": 9111.6, + "end": 9113.1, + "probability": 0.616 + }, + { + "start": 9114.44, + "end": 9117.78, + "probability": 0.7437 + }, + { + "start": 9118.36, + "end": 9120.22, + "probability": 0.7433 + }, + { + "start": 9120.82, + "end": 9125.36, + "probability": 0.8981 + }, + { + "start": 9126.24, + "end": 9129.3, + "probability": 0.9867 + }, + { + "start": 9130.32, + "end": 9132.4, + "probability": 0.9561 + }, + { + "start": 9133.42, + "end": 9137.1, + "probability": 0.9154 + }, + { + "start": 9137.76, + "end": 9138.98, + "probability": 0.984 + }, + { + "start": 9139.52, + "end": 9143.38, + "probability": 0.7649 + }, + { + "start": 9144.2, + "end": 9146.42, + "probability": 0.8409 + }, + { + "start": 9146.94, + "end": 9150.26, + "probability": 0.9038 + }, + { + "start": 9150.66, + "end": 9153.2, + "probability": 0.9893 + }, + { + "start": 9153.94, + "end": 9156.22, + "probability": 0.9565 + }, + { + "start": 9157.0, + "end": 9159.02, + "probability": 0.9619 + }, + { + "start": 9159.56, + "end": 9161.54, + "probability": 0.9937 + }, + { + "start": 9162.12, + "end": 9167.0, + "probability": 0.9963 + }, + { + "start": 9167.56, + "end": 9167.72, + "probability": 0.0996 + }, + { + "start": 9167.72, + "end": 9167.72, + "probability": 0.6818 + }, + { + "start": 9167.72, + "end": 9168.84, + "probability": 0.5468 + }, + { + "start": 9169.31, + "end": 9169.52, + "probability": 0.7253 + }, + { + "start": 9169.56, + "end": 9170.54, + "probability": 0.4201 + }, + { + "start": 9171.4, + "end": 9172.34, + "probability": 0.1228 + }, + { + "start": 9172.8, + "end": 9174.88, + "probability": 0.3274 + }, + { + "start": 9175.22, + "end": 9176.56, + "probability": 0.168 + }, + { + "start": 9176.66, + "end": 9178.36, + "probability": 0.8822 + }, + { + "start": 9178.36, + "end": 9178.38, + "probability": 0.2561 + }, + { + "start": 9178.38, + "end": 9181.95, + "probability": 0.7298 + }, + { + "start": 9182.18, + "end": 9182.22, + "probability": 0.3385 + }, + { + "start": 9182.22, + "end": 9183.12, + "probability": 0.7427 + }, + { + "start": 9183.5, + "end": 9187.45, + "probability": 0.9969 + }, + { + "start": 9187.56, + "end": 9188.58, + "probability": 0.8882 + }, + { + "start": 9188.58, + "end": 9189.28, + "probability": 0.0992 + }, + { + "start": 9189.42, + "end": 9191.94, + "probability": 0.6139 + }, + { + "start": 9192.32, + "end": 9192.36, + "probability": 0.199 + }, + { + "start": 9192.36, + "end": 9197.1, + "probability": 0.9548 + }, + { + "start": 9197.7, + "end": 9198.56, + "probability": 0.2283 + }, + { + "start": 9198.72, + "end": 9200.02, + "probability": 0.5097 + }, + { + "start": 9200.06, + "end": 9202.02, + "probability": 0.8421 + }, + { + "start": 9202.1, + "end": 9202.52, + "probability": 0.1621 + }, + { + "start": 9202.7, + "end": 9203.5, + "probability": 0.0979 + }, + { + "start": 9203.5, + "end": 9203.72, + "probability": 0.0774 + }, + { + "start": 9203.72, + "end": 9203.72, + "probability": 0.3575 + }, + { + "start": 9203.72, + "end": 9204.2, + "probability": 0.3372 + }, + { + "start": 9204.86, + "end": 9205.3, + "probability": 0.042 + }, + { + "start": 9205.46, + "end": 9208.34, + "probability": 0.7847 + }, + { + "start": 9209.28, + "end": 9211.11, + "probability": 0.5987 + }, + { + "start": 9211.46, + "end": 9213.1, + "probability": 0.8877 + }, + { + "start": 9213.28, + "end": 9214.36, + "probability": 0.1889 + }, + { + "start": 9214.6, + "end": 9215.72, + "probability": 0.3247 + }, + { + "start": 9216.0, + "end": 9218.42, + "probability": 0.2595 + }, + { + "start": 9220.06, + "end": 9223.36, + "probability": 0.8897 + }, + { + "start": 9223.42, + "end": 9224.96, + "probability": 0.4281 + }, + { + "start": 9226.24, + "end": 9229.96, + "probability": 0.9141 + }, + { + "start": 9230.44, + "end": 9233.06, + "probability": 0.7018 + }, + { + "start": 9233.06, + "end": 9237.2, + "probability": 0.8843 + }, + { + "start": 9237.54, + "end": 9241.16, + "probability": 0.8536 + }, + { + "start": 9241.72, + "end": 9244.4, + "probability": 0.9229 + }, + { + "start": 9245.08, + "end": 9247.34, + "probability": 0.9486 + }, + { + "start": 9248.38, + "end": 9249.3, + "probability": 0.6876 + }, + { + "start": 9250.12, + "end": 9251.26, + "probability": 0.9608 + }, + { + "start": 9251.38, + "end": 9252.3, + "probability": 0.8986 + }, + { + "start": 9252.4, + "end": 9253.48, + "probability": 0.8376 + }, + { + "start": 9254.06, + "end": 9255.3, + "probability": 0.8945 + }, + { + "start": 9255.74, + "end": 9256.94, + "probability": 0.9825 + }, + { + "start": 9257.46, + "end": 9259.34, + "probability": 0.9988 + }, + { + "start": 9260.14, + "end": 9262.08, + "probability": 0.9904 + }, + { + "start": 9262.18, + "end": 9264.78, + "probability": 0.8696 + }, + { + "start": 9265.34, + "end": 9266.06, + "probability": 0.9544 + }, + { + "start": 9266.74, + "end": 9276.24, + "probability": 0.9731 + }, + { + "start": 9276.52, + "end": 9279.1, + "probability": 0.9443 + }, + { + "start": 9280.94, + "end": 9285.22, + "probability": 0.785 + }, + { + "start": 9286.1, + "end": 9288.76, + "probability": 0.9745 + }, + { + "start": 9289.66, + "end": 9294.76, + "probability": 0.9058 + }, + { + "start": 9295.38, + "end": 9299.98, + "probability": 0.9801 + }, + { + "start": 9300.52, + "end": 9303.88, + "probability": 0.8994 + }, + { + "start": 9304.44, + "end": 9308.64, + "probability": 0.6086 + }, + { + "start": 9308.64, + "end": 9312.0, + "probability": 0.9121 + }, + { + "start": 9312.44, + "end": 9317.78, + "probability": 0.9735 + }, + { + "start": 9318.72, + "end": 9320.66, + "probability": 0.9963 + }, + { + "start": 9321.22, + "end": 9327.08, + "probability": 0.9622 + }, + { + "start": 9327.5, + "end": 9328.68, + "probability": 0.9081 + }, + { + "start": 9329.0, + "end": 9330.06, + "probability": 0.8975 + }, + { + "start": 9330.3, + "end": 9331.4, + "probability": 0.964 + }, + { + "start": 9331.5, + "end": 9333.7, + "probability": 0.792 + }, + { + "start": 9333.9, + "end": 9335.16, + "probability": 0.9064 + }, + { + "start": 9335.78, + "end": 9337.78, + "probability": 0.8632 + }, + { + "start": 9338.38, + "end": 9344.0, + "probability": 0.9968 + }, + { + "start": 9344.44, + "end": 9346.0, + "probability": 0.7381 + }, + { + "start": 9346.92, + "end": 9349.88, + "probability": 0.8911 + }, + { + "start": 9349.96, + "end": 9352.46, + "probability": 0.8436 + }, + { + "start": 9353.18, + "end": 9355.82, + "probability": 0.9677 + }, + { + "start": 9356.66, + "end": 9360.5, + "probability": 0.998 + }, + { + "start": 9361.52, + "end": 9368.3, + "probability": 0.997 + }, + { + "start": 9368.74, + "end": 9371.74, + "probability": 0.9805 + }, + { + "start": 9371.74, + "end": 9375.22, + "probability": 0.8396 + }, + { + "start": 9376.0, + "end": 9378.36, + "probability": 0.8555 + }, + { + "start": 9379.0, + "end": 9383.34, + "probability": 0.7398 + }, + { + "start": 9384.0, + "end": 9389.4, + "probability": 0.7966 + }, + { + "start": 9389.4, + "end": 9391.04, + "probability": 0.8099 + }, + { + "start": 9391.72, + "end": 9397.3, + "probability": 0.9839 + }, + { + "start": 9397.84, + "end": 9402.3, + "probability": 0.9207 + }, + { + "start": 9403.0, + "end": 9404.14, + "probability": 0.9216 + }, + { + "start": 9404.18, + "end": 9407.18, + "probability": 0.9092 + }, + { + "start": 9407.8, + "end": 9410.7, + "probability": 0.0497 + }, + { + "start": 9410.7, + "end": 9410.7, + "probability": 0.1773 + }, + { + "start": 9410.7, + "end": 9411.98, + "probability": 0.7269 + }, + { + "start": 9413.0, + "end": 9416.66, + "probability": 0.9616 + }, + { + "start": 9417.64, + "end": 9419.26, + "probability": 0.8517 + }, + { + "start": 9419.98, + "end": 9421.86, + "probability": 0.933 + }, + { + "start": 9422.32, + "end": 9424.7, + "probability": 0.9622 + }, + { + "start": 9425.2, + "end": 9426.96, + "probability": 0.526 + }, + { + "start": 9427.86, + "end": 9433.6, + "probability": 0.9119 + }, + { + "start": 9434.3, + "end": 9438.42, + "probability": 0.9722 + }, + { + "start": 9439.34, + "end": 9442.96, + "probability": 0.9328 + }, + { + "start": 9443.44, + "end": 9444.28, + "probability": 0.7273 + }, + { + "start": 9444.64, + "end": 9446.84, + "probability": 0.9534 + }, + { + "start": 9447.56, + "end": 9448.72, + "probability": 0.9883 + }, + { + "start": 9449.3, + "end": 9454.88, + "probability": 0.9851 + }, + { + "start": 9455.46, + "end": 9457.72, + "probability": 0.9319 + }, + { + "start": 9458.24, + "end": 9459.42, + "probability": 0.9847 + }, + { + "start": 9460.0, + "end": 9460.82, + "probability": 0.4084 + }, + { + "start": 9461.84, + "end": 9465.14, + "probability": 0.9444 + }, + { + "start": 9465.7, + "end": 9468.04, + "probability": 0.592 + }, + { + "start": 9468.76, + "end": 9471.18, + "probability": 0.757 + }, + { + "start": 9471.42, + "end": 9473.48, + "probability": 0.763 + }, + { + "start": 9474.48, + "end": 9478.86, + "probability": 0.9733 + }, + { + "start": 9478.86, + "end": 9483.1, + "probability": 0.7876 + }, + { + "start": 9483.96, + "end": 9488.78, + "probability": 0.782 + }, + { + "start": 9489.18, + "end": 9492.46, + "probability": 0.9446 + }, + { + "start": 9493.0, + "end": 9496.54, + "probability": 0.9153 + }, + { + "start": 9497.3, + "end": 9501.1, + "probability": 0.9889 + }, + { + "start": 9501.1, + "end": 9505.96, + "probability": 0.9546 + }, + { + "start": 9506.36, + "end": 9508.22, + "probability": 0.6611 + }, + { + "start": 9508.74, + "end": 9511.04, + "probability": 0.7607 + }, + { + "start": 9512.0, + "end": 9513.64, + "probability": 0.9122 + }, + { + "start": 9514.56, + "end": 9518.86, + "probability": 0.9566 + }, + { + "start": 9519.32, + "end": 9521.1, + "probability": 0.9244 + }, + { + "start": 9521.66, + "end": 9523.04, + "probability": 0.9834 + }, + { + "start": 9523.24, + "end": 9524.94, + "probability": 0.7931 + }, + { + "start": 9525.06, + "end": 9529.72, + "probability": 0.9946 + }, + { + "start": 9530.24, + "end": 9535.5, + "probability": 0.9834 + }, + { + "start": 9536.28, + "end": 9537.86, + "probability": 0.9805 + }, + { + "start": 9538.68, + "end": 9541.38, + "probability": 0.9854 + }, + { + "start": 9542.34, + "end": 9544.96, + "probability": 0.9322 + }, + { + "start": 9545.72, + "end": 9548.96, + "probability": 0.9846 + }, + { + "start": 9549.6, + "end": 9550.92, + "probability": 0.9449 + }, + { + "start": 9551.28, + "end": 9552.32, + "probability": 0.982 + }, + { + "start": 9552.74, + "end": 9554.46, + "probability": 0.97 + }, + { + "start": 9554.86, + "end": 9557.8, + "probability": 0.9689 + }, + { + "start": 9557.88, + "end": 9560.27, + "probability": 0.8643 + }, + { + "start": 9561.46, + "end": 9562.32, + "probability": 0.5947 + }, + { + "start": 9562.54, + "end": 9567.06, + "probability": 0.9717 + }, + { + "start": 9567.52, + "end": 9570.32, + "probability": 0.9651 + }, + { + "start": 9570.78, + "end": 9571.66, + "probability": 0.6573 + }, + { + "start": 9572.14, + "end": 9576.36, + "probability": 0.8657 + }, + { + "start": 9577.12, + "end": 9578.82, + "probability": 0.6965 + }, + { + "start": 9579.54, + "end": 9579.84, + "probability": 0.6664 + }, + { + "start": 9579.98, + "end": 9582.08, + "probability": 0.9872 + }, + { + "start": 9582.22, + "end": 9584.12, + "probability": 0.8272 + }, + { + "start": 9584.68, + "end": 9587.34, + "probability": 0.8499 + }, + { + "start": 9587.88, + "end": 9592.2, + "probability": 0.8731 + }, + { + "start": 9592.2, + "end": 9599.02, + "probability": 0.9568 + }, + { + "start": 9599.72, + "end": 9603.54, + "probability": 0.738 + }, + { + "start": 9604.28, + "end": 9607.36, + "probability": 0.6173 + }, + { + "start": 9608.42, + "end": 9611.5, + "probability": 0.5785 + }, + { + "start": 9611.68, + "end": 9613.46, + "probability": 0.8406 + }, + { + "start": 9613.54, + "end": 9615.6, + "probability": 0.984 + }, + { + "start": 9616.0, + "end": 9618.18, + "probability": 0.9792 + }, + { + "start": 9618.8, + "end": 9621.24, + "probability": 0.8997 + }, + { + "start": 9621.92, + "end": 9624.32, + "probability": 0.9818 + }, + { + "start": 9624.82, + "end": 9629.74, + "probability": 0.7812 + }, + { + "start": 9630.18, + "end": 9632.8, + "probability": 0.9282 + }, + { + "start": 9632.88, + "end": 9638.64, + "probability": 0.9851 + }, + { + "start": 9638.76, + "end": 9640.06, + "probability": 0.599 + }, + { + "start": 9640.48, + "end": 9642.79, + "probability": 0.8485 + }, + { + "start": 9643.66, + "end": 9645.76, + "probability": 0.9282 + }, + { + "start": 9646.6, + "end": 9652.08, + "probability": 0.9949 + }, + { + "start": 9652.6, + "end": 9655.82, + "probability": 0.9802 + }, + { + "start": 9655.86, + "end": 9658.52, + "probability": 0.9759 + }, + { + "start": 9659.0, + "end": 9662.58, + "probability": 0.9585 + }, + { + "start": 9662.98, + "end": 9663.7, + "probability": 0.9856 + }, + { + "start": 9663.98, + "end": 9664.66, + "probability": 0.8008 + }, + { + "start": 9665.22, + "end": 9669.26, + "probability": 0.9899 + }, + { + "start": 9669.8, + "end": 9673.54, + "probability": 0.9937 + }, + { + "start": 9673.98, + "end": 9676.42, + "probability": 0.7718 + }, + { + "start": 9676.94, + "end": 9679.08, + "probability": 0.873 + }, + { + "start": 9679.7, + "end": 9680.5, + "probability": 0.8202 + }, + { + "start": 9681.22, + "end": 9682.84, + "probability": 0.8633 + }, + { + "start": 9683.4, + "end": 9684.52, + "probability": 0.7317 + }, + { + "start": 9684.9, + "end": 9689.5, + "probability": 0.7931 + }, + { + "start": 9707.78, + "end": 9708.9, + "probability": 0.6927 + }, + { + "start": 9710.36, + "end": 9712.5, + "probability": 0.7587 + }, + { + "start": 9713.62, + "end": 9718.88, + "probability": 0.9698 + }, + { + "start": 9718.88, + "end": 9725.1, + "probability": 0.9954 + }, + { + "start": 9725.1, + "end": 9731.54, + "probability": 0.9874 + }, + { + "start": 9732.56, + "end": 9733.58, + "probability": 0.7841 + }, + { + "start": 9735.44, + "end": 9738.18, + "probability": 0.9715 + }, + { + "start": 9738.68, + "end": 9744.3, + "probability": 0.9795 + }, + { + "start": 9744.3, + "end": 9748.86, + "probability": 0.9922 + }, + { + "start": 9749.5, + "end": 9754.98, + "probability": 0.97 + }, + { + "start": 9755.06, + "end": 9756.11, + "probability": 0.7502 + }, + { + "start": 9756.7, + "end": 9760.32, + "probability": 0.9796 + }, + { + "start": 9763.14, + "end": 9764.2, + "probability": 0.8962 + }, + { + "start": 9764.92, + "end": 9766.9, + "probability": 0.9103 + }, + { + "start": 9767.78, + "end": 9774.68, + "probability": 0.9355 + }, + { + "start": 9775.44, + "end": 9775.9, + "probability": 0.6981 + }, + { + "start": 9776.54, + "end": 9777.24, + "probability": 0.7626 + }, + { + "start": 9777.36, + "end": 9777.96, + "probability": 0.6141 + }, + { + "start": 9778.24, + "end": 9780.12, + "probability": 0.8902 + }, + { + "start": 9780.28, + "end": 9781.06, + "probability": 0.0539 + }, + { + "start": 9782.76, + "end": 9786.44, + "probability": 0.8605 + }, + { + "start": 9787.92, + "end": 9790.04, + "probability": 0.9611 + }, + { + "start": 9790.14, + "end": 9790.96, + "probability": 0.756 + }, + { + "start": 9791.44, + "end": 9792.4, + "probability": 0.7764 + }, + { + "start": 9792.94, + "end": 9794.98, + "probability": 0.7601 + }, + { + "start": 9796.11, + "end": 9799.48, + "probability": 0.8095 + }, + { + "start": 9799.64, + "end": 9802.0, + "probability": 0.9344 + }, + { + "start": 9802.28, + "end": 9804.98, + "probability": 0.995 + }, + { + "start": 9805.26, + "end": 9807.54, + "probability": 0.9585 + }, + { + "start": 9807.66, + "end": 9808.68, + "probability": 0.9011 + }, + { + "start": 9808.76, + "end": 9810.16, + "probability": 0.9466 + }, + { + "start": 9810.48, + "end": 9813.62, + "probability": 0.9543 + }, + { + "start": 9813.68, + "end": 9815.06, + "probability": 0.6479 + }, + { + "start": 9815.14, + "end": 9815.82, + "probability": 0.877 + }, + { + "start": 9818.32, + "end": 9821.7, + "probability": 0.9583 + }, + { + "start": 9821.7, + "end": 9827.54, + "probability": 0.7435 + }, + { + "start": 9828.0, + "end": 9829.52, + "probability": 0.8637 + }, + { + "start": 9830.0, + "end": 9831.74, + "probability": 0.7122 + }, + { + "start": 9832.22, + "end": 9836.24, + "probability": 0.9894 + }, + { + "start": 9836.4, + "end": 9840.48, + "probability": 0.991 + }, + { + "start": 9840.96, + "end": 9846.42, + "probability": 0.978 + }, + { + "start": 9846.42, + "end": 9853.06, + "probability": 0.9983 + }, + { + "start": 9853.2, + "end": 9857.88, + "probability": 0.9773 + }, + { + "start": 9858.98, + "end": 9860.36, + "probability": 0.8934 + }, + { + "start": 9861.14, + "end": 9865.94, + "probability": 0.8595 + }, + { + "start": 9865.94, + "end": 9869.7, + "probability": 0.9655 + }, + { + "start": 9870.1, + "end": 9872.36, + "probability": 0.9403 + }, + { + "start": 9873.04, + "end": 9878.72, + "probability": 0.8433 + }, + { + "start": 9880.26, + "end": 9884.88, + "probability": 0.6812 + }, + { + "start": 9885.32, + "end": 9887.18, + "probability": 0.7783 + }, + { + "start": 9887.56, + "end": 9892.8, + "probability": 0.981 + }, + { + "start": 9893.6, + "end": 9900.3, + "probability": 0.8772 + }, + { + "start": 9900.66, + "end": 9903.98, + "probability": 0.9433 + }, + { + "start": 9904.38, + "end": 9905.26, + "probability": 0.9172 + }, + { + "start": 9905.36, + "end": 9910.14, + "probability": 0.8158 + }, + { + "start": 9911.32, + "end": 9915.4, + "probability": 0.566 + }, + { + "start": 9916.48, + "end": 9918.12, + "probability": 0.6092 + }, + { + "start": 9918.62, + "end": 9920.02, + "probability": 0.8413 + }, + { + "start": 9920.1, + "end": 9922.66, + "probability": 0.9115 + }, + { + "start": 9922.82, + "end": 9924.14, + "probability": 0.9885 + }, + { + "start": 9925.52, + "end": 9926.16, + "probability": 0.0348 + }, + { + "start": 9926.16, + "end": 9932.88, + "probability": 0.978 + }, + { + "start": 9933.66, + "end": 9935.26, + "probability": 0.8537 + }, + { + "start": 9935.48, + "end": 9935.68, + "probability": 0.4393 + }, + { + "start": 9935.84, + "end": 9940.44, + "probability": 0.9097 + }, + { + "start": 9940.44, + "end": 9943.96, + "probability": 0.9581 + }, + { + "start": 9944.44, + "end": 9949.62, + "probability": 0.9863 + }, + { + "start": 9950.44, + "end": 9957.38, + "probability": 0.9571 + }, + { + "start": 9957.58, + "end": 9958.52, + "probability": 0.9451 + }, + { + "start": 9958.76, + "end": 9959.56, + "probability": 0.9614 + }, + { + "start": 9959.96, + "end": 9962.8, + "probability": 0.8563 + }, + { + "start": 9963.1, + "end": 9965.62, + "probability": 0.9373 + }, + { + "start": 9966.04, + "end": 9967.79, + "probability": 0.9888 + }, + { + "start": 9968.7, + "end": 9971.04, + "probability": 0.828 + }, + { + "start": 9971.1, + "end": 9972.28, + "probability": 0.7983 + }, + { + "start": 9972.62, + "end": 9978.0, + "probability": 0.98 + }, + { + "start": 9978.0, + "end": 9982.84, + "probability": 0.9986 + }, + { + "start": 9983.18, + "end": 9987.5, + "probability": 0.9936 + }, + { + "start": 9989.38, + "end": 9991.86, + "probability": 0.9279 + }, + { + "start": 9992.38, + "end": 9999.62, + "probability": 0.8448 + }, + { + "start": 9999.98, + "end": 10001.06, + "probability": 0.6659 + }, + { + "start": 10001.52, + "end": 10005.8, + "probability": 0.9896 + }, + { + "start": 10005.8, + "end": 10010.32, + "probability": 0.7594 + }, + { + "start": 10011.0, + "end": 10014.16, + "probability": 0.9692 + }, + { + "start": 10014.54, + "end": 10014.76, + "probability": 0.8553 + }, + { + "start": 10014.84, + "end": 10015.24, + "probability": 0.8205 + }, + { + "start": 10015.34, + "end": 10016.22, + "probability": 0.7282 + }, + { + "start": 10016.58, + "end": 10020.86, + "probability": 0.937 + }, + { + "start": 10020.94, + "end": 10021.16, + "probability": 0.683 + }, + { + "start": 10021.72, + "end": 10024.3, + "probability": 0.7729 + }, + { + "start": 10024.82, + "end": 10025.57, + "probability": 0.503 + }, + { + "start": 10026.58, + "end": 10028.62, + "probability": 0.975 + }, + { + "start": 10029.96, + "end": 10034.22, + "probability": 0.9609 + }, + { + "start": 10035.26, + "end": 10036.94, + "probability": 0.6711 + }, + { + "start": 10037.3, + "end": 10037.88, + "probability": 0.4185 + }, + { + "start": 10040.9, + "end": 10041.66, + "probability": 0.4215 + }, + { + "start": 10042.82, + "end": 10043.94, + "probability": 0.2929 + }, + { + "start": 10045.22, + "end": 10045.22, + "probability": 0.2394 + }, + { + "start": 10046.14, + "end": 10051.26, + "probability": 0.0126 + }, + { + "start": 10051.88, + "end": 10052.44, + "probability": 0.3397 + }, + { + "start": 10052.56, + "end": 10054.44, + "probability": 0.4373 + }, + { + "start": 10054.84, + "end": 10056.9, + "probability": 0.7417 + }, + { + "start": 10057.28, + "end": 10058.5, + "probability": 0.7598 + }, + { + "start": 10061.2, + "end": 10062.12, + "probability": 0.5039 + }, + { + "start": 10064.26, + "end": 10064.88, + "probability": 0.6373 + }, + { + "start": 10065.04, + "end": 10067.48, + "probability": 0.1958 + }, + { + "start": 10067.48, + "end": 10069.84, + "probability": 0.7403 + }, + { + "start": 10070.04, + "end": 10071.36, + "probability": 0.264 + }, + { + "start": 10091.86, + "end": 10093.9, + "probability": 0.1423 + }, + { + "start": 10093.9, + "end": 10096.62, + "probability": 0.4388 + }, + { + "start": 10096.68, + "end": 10101.7, + "probability": 0.8704 + }, + { + "start": 10102.2, + "end": 10104.0, + "probability": 0.8489 + }, + { + "start": 10105.08, + "end": 10107.58, + "probability": 0.9573 + }, + { + "start": 10108.12, + "end": 10112.32, + "probability": 0.967 + }, + { + "start": 10112.94, + "end": 10114.26, + "probability": 0.3323 + }, + { + "start": 10115.02, + "end": 10117.18, + "probability": 0.9667 + }, + { + "start": 10121.64, + "end": 10132.12, + "probability": 0.8667 + }, + { + "start": 10135.76, + "end": 10137.16, + "probability": 0.9856 + }, + { + "start": 10137.88, + "end": 10140.68, + "probability": 0.8504 + }, + { + "start": 10153.78, + "end": 10154.76, + "probability": 0.4213 + }, + { + "start": 10156.04, + "end": 10157.18, + "probability": 0.6877 + }, + { + "start": 10161.34, + "end": 10162.34, + "probability": 0.0661 + }, + { + "start": 10162.64, + "end": 10162.74, + "probability": 0.0498 + }, + { + "start": 10162.74, + "end": 10162.74, + "probability": 0.0178 + }, + { + "start": 10162.74, + "end": 10162.74, + "probability": 0.3636 + }, + { + "start": 10162.74, + "end": 10163.16, + "probability": 0.3219 + }, + { + "start": 10163.22, + "end": 10163.68, + "probability": 0.4587 + }, + { + "start": 10174.69, + "end": 10176.04, + "probability": 0.1421 + }, + { + "start": 10176.04, + "end": 10176.62, + "probability": 0.3261 + }, + { + "start": 10178.06, + "end": 10180.16, + "probability": 0.2301 + }, + { + "start": 10181.08, + "end": 10182.74, + "probability": 0.0084 + }, + { + "start": 10185.13, + "end": 10185.76, + "probability": 0.0059 + }, + { + "start": 10185.76, + "end": 10187.14, + "probability": 0.0291 + }, + { + "start": 10203.12, + "end": 10203.46, + "probability": 0.138 + }, + { + "start": 10205.08, + "end": 10205.38, + "probability": 0.0191 + }, + { + "start": 10248.4, + "end": 10251.94, + "probability": 0.9843 + }, + { + "start": 10253.32, + "end": 10255.88, + "probability": 0.5748 + }, + { + "start": 10258.36, + "end": 10261.66, + "probability": 0.9897 + }, + { + "start": 10262.66, + "end": 10263.9, + "probability": 0.861 + }, + { + "start": 10266.64, + "end": 10270.32, + "probability": 0.9048 + }, + { + "start": 10270.32, + "end": 10274.5, + "probability": 0.9838 + }, + { + "start": 10274.5, + "end": 10280.28, + "probability": 0.989 + }, + { + "start": 10283.12, + "end": 10287.5, + "probability": 0.9545 + }, + { + "start": 10288.88, + "end": 10293.36, + "probability": 0.9435 + }, + { + "start": 10294.3, + "end": 10295.54, + "probability": 0.824 + }, + { + "start": 10297.66, + "end": 10298.78, + "probability": 0.7686 + }, + { + "start": 10299.1, + "end": 10304.18, + "probability": 0.8954 + }, + { + "start": 10306.68, + "end": 10308.2, + "probability": 0.9163 + }, + { + "start": 10308.76, + "end": 10310.11, + "probability": 0.9941 + }, + { + "start": 10310.82, + "end": 10316.82, + "probability": 0.9388 + }, + { + "start": 10318.1, + "end": 10320.44, + "probability": 0.8182 + }, + { + "start": 10320.76, + "end": 10323.5, + "probability": 0.7402 + }, + { + "start": 10323.56, + "end": 10324.94, + "probability": 0.752 + }, + { + "start": 10326.44, + "end": 10328.34, + "probability": 0.9966 + }, + { + "start": 10329.16, + "end": 10331.24, + "probability": 0.9419 + }, + { + "start": 10332.04, + "end": 10338.52, + "probability": 0.9793 + }, + { + "start": 10340.3, + "end": 10341.5, + "probability": 0.9064 + }, + { + "start": 10341.7, + "end": 10343.52, + "probability": 0.7195 + }, + { + "start": 10343.62, + "end": 10344.82, + "probability": 0.6057 + }, + { + "start": 10345.62, + "end": 10347.0, + "probability": 0.8979 + }, + { + "start": 10348.44, + "end": 10349.12, + "probability": 0.9535 + }, + { + "start": 10349.74, + "end": 10352.76, + "probability": 0.8924 + }, + { + "start": 10354.78, + "end": 10357.92, + "probability": 0.8652 + }, + { + "start": 10358.92, + "end": 10359.92, + "probability": 0.6053 + }, + { + "start": 10359.98, + "end": 10362.68, + "probability": 0.9912 + }, + { + "start": 10363.98, + "end": 10366.2, + "probability": 0.9883 + }, + { + "start": 10366.64, + "end": 10367.74, + "probability": 0.1979 + }, + { + "start": 10368.62, + "end": 10369.86, + "probability": 0.8804 + }, + { + "start": 10370.82, + "end": 10373.3, + "probability": 0.4647 + }, + { + "start": 10375.9, + "end": 10378.68, + "probability": 0.7462 + }, + { + "start": 10380.3, + "end": 10382.88, + "probability": 0.9321 + }, + { + "start": 10383.14, + "end": 10384.18, + "probability": 0.9028 + }, + { + "start": 10384.48, + "end": 10385.22, + "probability": 0.2266 + }, + { + "start": 10385.76, + "end": 10386.16, + "probability": 0.8796 + }, + { + "start": 10386.26, + "end": 10387.14, + "probability": 0.9316 + }, + { + "start": 10387.14, + "end": 10389.42, + "probability": 0.8896 + }, + { + "start": 10389.6, + "end": 10390.06, + "probability": 0.8103 + }, + { + "start": 10394.25, + "end": 10395.36, + "probability": 0.7133 + }, + { + "start": 10395.5, + "end": 10398.4, + "probability": 0.9082 + }, + { + "start": 10398.92, + "end": 10399.86, + "probability": 0.9972 + }, + { + "start": 10400.24, + "end": 10401.1, + "probability": 0.9823 + }, + { + "start": 10402.12, + "end": 10402.52, + "probability": 0.0294 + }, + { + "start": 10402.56, + "end": 10403.2, + "probability": 0.6246 + }, + { + "start": 10403.76, + "end": 10405.46, + "probability": 0.8857 + }, + { + "start": 10406.32, + "end": 10411.32, + "probability": 0.968 + }, + { + "start": 10411.7, + "end": 10413.16, + "probability": 0.2197 + }, + { + "start": 10413.16, + "end": 10413.6, + "probability": 0.6877 + }, + { + "start": 10413.72, + "end": 10414.84, + "probability": 0.9104 + }, + { + "start": 10414.94, + "end": 10418.52, + "probability": 0.9919 + }, + { + "start": 10418.92, + "end": 10419.46, + "probability": 0.6878 + }, + { + "start": 10421.12, + "end": 10423.0, + "probability": 0.7637 + }, + { + "start": 10423.04, + "end": 10423.92, + "probability": 0.5756 + }, + { + "start": 10424.06, + "end": 10429.84, + "probability": 0.978 + }, + { + "start": 10430.55, + "end": 10431.16, + "probability": 0.0921 + }, + { + "start": 10431.36, + "end": 10431.58, + "probability": 0.766 + }, + { + "start": 10431.86, + "end": 10437.82, + "probability": 0.9951 + }, + { + "start": 10438.66, + "end": 10440.74, + "probability": 0.8881 + }, + { + "start": 10441.24, + "end": 10441.28, + "probability": 0.0338 + }, + { + "start": 10441.52, + "end": 10444.6, + "probability": 0.3112 + }, + { + "start": 10444.76, + "end": 10445.2, + "probability": 0.5677 + }, + { + "start": 10446.12, + "end": 10449.16, + "probability": 0.8131 + }, + { + "start": 10449.76, + "end": 10450.64, + "probability": 0.3317 + }, + { + "start": 10451.7, + "end": 10452.26, + "probability": 0.5734 + }, + { + "start": 10452.66, + "end": 10453.44, + "probability": 0.2251 + }, + { + "start": 10453.48, + "end": 10455.72, + "probability": 0.139 + }, + { + "start": 10456.2, + "end": 10461.36, + "probability": 0.9374 + }, + { + "start": 10462.6, + "end": 10470.28, + "probability": 0.9917 + }, + { + "start": 10470.4, + "end": 10470.8, + "probability": 0.7484 + }, + { + "start": 10470.86, + "end": 10472.1, + "probability": 0.9313 + }, + { + "start": 10473.42, + "end": 10475.92, + "probability": 0.9226 + }, + { + "start": 10477.08, + "end": 10480.0, + "probability": 0.8965 + }, + { + "start": 10480.88, + "end": 10481.96, + "probability": 0.957 + }, + { + "start": 10483.02, + "end": 10484.54, + "probability": 0.9404 + }, + { + "start": 10485.86, + "end": 10486.89, + "probability": 0.9919 + }, + { + "start": 10488.08, + "end": 10489.55, + "probability": 0.9969 + }, + { + "start": 10490.4, + "end": 10491.34, + "probability": 0.9989 + }, + { + "start": 10492.72, + "end": 10493.12, + "probability": 0.8607 + }, + { + "start": 10493.24, + "end": 10496.44, + "probability": 0.9976 + }, + { + "start": 10496.86, + "end": 10500.9, + "probability": 0.9953 + }, + { + "start": 10501.46, + "end": 10505.04, + "probability": 0.9803 + }, + { + "start": 10505.38, + "end": 10506.14, + "probability": 0.6909 + }, + { + "start": 10506.62, + "end": 10511.08, + "probability": 0.9611 + }, + { + "start": 10511.68, + "end": 10512.56, + "probability": 0.5954 + }, + { + "start": 10517.02, + "end": 10519.6, + "probability": 0.9875 + }, + { + "start": 10520.1, + "end": 10521.53, + "probability": 0.984 + }, + { + "start": 10522.3, + "end": 10523.74, + "probability": 0.5623 + }, + { + "start": 10524.3, + "end": 10528.7, + "probability": 0.9357 + }, + { + "start": 10528.92, + "end": 10530.32, + "probability": 0.7711 + }, + { + "start": 10530.4, + "end": 10531.36, + "probability": 0.656 + }, + { + "start": 10531.7, + "end": 10532.16, + "probability": 0.8707 + }, + { + "start": 10532.2, + "end": 10538.54, + "probability": 0.9374 + }, + { + "start": 10538.54, + "end": 10542.6, + "probability": 0.9977 + }, + { + "start": 10545.2, + "end": 10548.9, + "probability": 0.7926 + }, + { + "start": 10549.5, + "end": 10550.1, + "probability": 0.7838 + }, + { + "start": 10552.92, + "end": 10557.3, + "probability": 0.8332 + }, + { + "start": 10558.04, + "end": 10560.4, + "probability": 0.9556 + }, + { + "start": 10560.98, + "end": 10562.86, + "probability": 0.9039 + }, + { + "start": 10563.54, + "end": 10569.1, + "probability": 0.7925 + }, + { + "start": 10569.98, + "end": 10572.58, + "probability": 0.9006 + }, + { + "start": 10572.58, + "end": 10575.42, + "probability": 0.938 + }, + { + "start": 10575.96, + "end": 10577.92, + "probability": 0.9278 + }, + { + "start": 10579.4, + "end": 10581.16, + "probability": 0.7718 + }, + { + "start": 10581.82, + "end": 10583.02, + "probability": 0.774 + }, + { + "start": 10583.7, + "end": 10585.02, + "probability": 0.9191 + }, + { + "start": 10586.07, + "end": 10587.64, + "probability": 0.1082 + }, + { + "start": 10587.64, + "end": 10587.8, + "probability": 0.2587 + }, + { + "start": 10588.8, + "end": 10592.04, + "probability": 0.6467 + }, + { + "start": 10592.8, + "end": 10593.8, + "probability": 0.4542 + }, + { + "start": 10593.8, + "end": 10596.04, + "probability": 0.8469 + }, + { + "start": 10596.78, + "end": 10597.92, + "probability": 0.9312 + }, + { + "start": 10599.64, + "end": 10602.04, + "probability": 0.9336 + }, + { + "start": 10602.7, + "end": 10605.78, + "probability": 0.9731 + }, + { + "start": 10606.18, + "end": 10612.54, + "probability": 0.9808 + }, + { + "start": 10612.92, + "end": 10619.4, + "probability": 0.8959 + }, + { + "start": 10620.1, + "end": 10620.42, + "probability": 0.8273 + }, + { + "start": 10620.48, + "end": 10622.66, + "probability": 0.8638 + }, + { + "start": 10623.66, + "end": 10623.92, + "probability": 0.7002 + }, + { + "start": 10623.96, + "end": 10625.02, + "probability": 0.8845 + }, + { + "start": 10625.12, + "end": 10625.16, + "probability": 0.5944 + }, + { + "start": 10625.2, + "end": 10625.76, + "probability": 0.6 + }, + { + "start": 10625.86, + "end": 10628.18, + "probability": 0.9766 + }, + { + "start": 10628.52, + "end": 10631.9, + "probability": 0.9649 + }, + { + "start": 10631.9, + "end": 10635.58, + "probability": 0.8414 + }, + { + "start": 10636.12, + "end": 10636.82, + "probability": 0.5368 + }, + { + "start": 10638.24, + "end": 10639.88, + "probability": 0.9929 + }, + { + "start": 10641.42, + "end": 10646.6, + "probability": 0.9176 + }, + { + "start": 10647.52, + "end": 10650.9, + "probability": 0.8931 + }, + { + "start": 10651.46, + "end": 10652.44, + "probability": 0.8465 + }, + { + "start": 10654.18, + "end": 10655.2, + "probability": 0.9329 + }, + { + "start": 10655.7, + "end": 10657.8, + "probability": 0.9487 + }, + { + "start": 10658.24, + "end": 10660.82, + "probability": 0.4545 + }, + { + "start": 10661.36, + "end": 10662.58, + "probability": 0.6426 + }, + { + "start": 10663.22, + "end": 10668.68, + "probability": 0.9137 + }, + { + "start": 10669.7, + "end": 10674.1, + "probability": 0.9813 + }, + { + "start": 10674.62, + "end": 10677.14, + "probability": 0.9202 + }, + { + "start": 10677.52, + "end": 10683.38, + "probability": 0.8662 + }, + { + "start": 10683.92, + "end": 10685.06, + "probability": 0.8074 + }, + { + "start": 10685.42, + "end": 10686.69, + "probability": 0.9609 + }, + { + "start": 10687.22, + "end": 10688.64, + "probability": 0.979 + }, + { + "start": 10688.78, + "end": 10689.24, + "probability": 0.6115 + }, + { + "start": 10689.42, + "end": 10690.92, + "probability": 0.8833 + }, + { + "start": 10694.76, + "end": 10701.84, + "probability": 0.9984 + }, + { + "start": 10701.84, + "end": 10705.2, + "probability": 0.9992 + }, + { + "start": 10706.68, + "end": 10709.56, + "probability": 0.9994 + }, + { + "start": 10711.08, + "end": 10713.2, + "probability": 0.9708 + }, + { + "start": 10714.32, + "end": 10716.14, + "probability": 0.8719 + }, + { + "start": 10716.92, + "end": 10723.2, + "probability": 0.9932 + }, + { + "start": 10724.36, + "end": 10724.74, + "probability": 0.6003 + }, + { + "start": 10727.78, + "end": 10728.6, + "probability": 0.4798 + }, + { + "start": 10730.3, + "end": 10731.22, + "probability": 0.8761 + }, + { + "start": 10731.44, + "end": 10734.24, + "probability": 0.8565 + }, + { + "start": 10736.18, + "end": 10738.94, + "probability": 0.8577 + }, + { + "start": 10739.7, + "end": 10740.86, + "probability": 0.9771 + }, + { + "start": 10741.24, + "end": 10742.3, + "probability": 0.7966 + }, + { + "start": 10743.9, + "end": 10746.18, + "probability": 0.9904 + }, + { + "start": 10746.34, + "end": 10750.38, + "probability": 0.9611 + }, + { + "start": 10751.62, + "end": 10753.64, + "probability": 0.7382 + }, + { + "start": 10754.36, + "end": 10755.04, + "probability": 0.95 + }, + { + "start": 10756.72, + "end": 10758.31, + "probability": 0.9966 + }, + { + "start": 10759.62, + "end": 10762.12, + "probability": 0.9952 + }, + { + "start": 10763.0, + "end": 10764.38, + "probability": 0.6885 + }, + { + "start": 10765.06, + "end": 10766.4, + "probability": 0.8696 + }, + { + "start": 10766.54, + "end": 10767.74, + "probability": 0.98 + }, + { + "start": 10769.02, + "end": 10772.3, + "probability": 0.9938 + }, + { + "start": 10772.44, + "end": 10774.33, + "probability": 0.9897 + }, + { + "start": 10775.66, + "end": 10780.32, + "probability": 0.1484 + }, + { + "start": 10780.5, + "end": 10784.54, + "probability": 0.4737 + }, + { + "start": 10785.0, + "end": 10785.63, + "probability": 0.0916 + }, + { + "start": 10785.94, + "end": 10786.94, + "probability": 0.1775 + }, + { + "start": 10786.94, + "end": 10788.26, + "probability": 0.4095 + }, + { + "start": 10788.26, + "end": 10793.96, + "probability": 0.3645 + }, + { + "start": 10794.3, + "end": 10795.7, + "probability": 0.8479 + }, + { + "start": 10795.94, + "end": 10798.36, + "probability": 0.8235 + }, + { + "start": 10798.62, + "end": 10801.0, + "probability": 0.9307 + }, + { + "start": 10801.36, + "end": 10804.14, + "probability": 0.927 + }, + { + "start": 10804.24, + "end": 10805.36, + "probability": 0.9819 + }, + { + "start": 10806.18, + "end": 10806.88, + "probability": 0.367 + }, + { + "start": 10807.0, + "end": 10808.22, + "probability": 0.9043 + }, + { + "start": 10810.82, + "end": 10814.16, + "probability": 0.3714 + }, + { + "start": 10814.5, + "end": 10816.18, + "probability": 0.5597 + }, + { + "start": 10816.32, + "end": 10817.5, + "probability": 0.4121 + }, + { + "start": 10820.36, + "end": 10822.44, + "probability": 0.2007 + }, + { + "start": 10822.44, + "end": 10824.14, + "probability": 0.6828 + }, + { + "start": 10824.24, + "end": 10826.75, + "probability": 0.9434 + }, + { + "start": 10827.22, + "end": 10830.84, + "probability": 0.9934 + }, + { + "start": 10831.1, + "end": 10832.25, + "probability": 0.9895 + }, + { + "start": 10832.98, + "end": 10834.39, + "probability": 0.9971 + }, + { + "start": 10834.44, + "end": 10835.08, + "probability": 0.6002 + }, + { + "start": 10835.74, + "end": 10837.38, + "probability": 0.805 + }, + { + "start": 10837.38, + "end": 10838.14, + "probability": 0.1368 + }, + { + "start": 10838.38, + "end": 10839.92, + "probability": 0.2855 + }, + { + "start": 10839.92, + "end": 10842.06, + "probability": 0.9062 + }, + { + "start": 10842.52, + "end": 10843.36, + "probability": 0.5864 + }, + { + "start": 10843.42, + "end": 10843.74, + "probability": 0.0851 + }, + { + "start": 10843.74, + "end": 10844.14, + "probability": 0.6362 + }, + { + "start": 10844.28, + "end": 10845.26, + "probability": 0.7883 + }, + { + "start": 10845.3, + "end": 10847.6, + "probability": 0.9126 + }, + { + "start": 10848.06, + "end": 10848.99, + "probability": 0.9702 + }, + { + "start": 10850.36, + "end": 10853.6, + "probability": 0.6066 + }, + { + "start": 10854.44, + "end": 10858.5, + "probability": 0.899 + }, + { + "start": 10858.54, + "end": 10859.22, + "probability": 0.6851 + }, + { + "start": 10859.52, + "end": 10861.52, + "probability": 0.8445 + }, + { + "start": 10862.22, + "end": 10863.34, + "probability": 0.7448 + }, + { + "start": 10863.98, + "end": 10865.08, + "probability": 0.0225 + }, + { + "start": 10865.26, + "end": 10866.76, + "probability": 0.7151 + }, + { + "start": 10875.56, + "end": 10878.92, + "probability": 0.9922 + }, + { + "start": 10878.92, + "end": 10879.32, + "probability": 0.6844 + }, + { + "start": 10879.38, + "end": 10882.54, + "probability": 0.9609 + }, + { + "start": 10884.15, + "end": 10886.14, + "probability": 0.1396 + }, + { + "start": 10891.92, + "end": 10898.18, + "probability": 0.985 + }, + { + "start": 10898.88, + "end": 10903.16, + "probability": 0.9802 + }, + { + "start": 10904.1, + "end": 10908.82, + "probability": 0.9891 + }, + { + "start": 10910.16, + "end": 10911.22, + "probability": 0.7847 + }, + { + "start": 10912.36, + "end": 10918.8, + "probability": 0.9961 + }, + { + "start": 10919.96, + "end": 10922.78, + "probability": 0.9958 + }, + { + "start": 10923.28, + "end": 10924.1, + "probability": 0.8109 + }, + { + "start": 10924.44, + "end": 10930.0, + "probability": 0.9915 + }, + { + "start": 10930.46, + "end": 10932.56, + "probability": 0.8995 + }, + { + "start": 10932.6, + "end": 10940.18, + "probability": 0.9261 + }, + { + "start": 10941.56, + "end": 10942.94, + "probability": 0.8681 + }, + { + "start": 10943.82, + "end": 10947.52, + "probability": 0.9919 + }, + { + "start": 10948.42, + "end": 10952.42, + "probability": 0.923 + }, + { + "start": 10952.42, + "end": 10956.66, + "probability": 0.9922 + }, + { + "start": 10958.0, + "end": 10958.06, + "probability": 0.239 + }, + { + "start": 10958.22, + "end": 10959.18, + "probability": 0.9608 + }, + { + "start": 10959.24, + "end": 10962.78, + "probability": 0.8138 + }, + { + "start": 10963.44, + "end": 10967.58, + "probability": 0.9941 + }, + { + "start": 10968.74, + "end": 10973.04, + "probability": 0.9985 + }, + { + "start": 10973.18, + "end": 10977.54, + "probability": 0.9911 + }, + { + "start": 10978.26, + "end": 10981.64, + "probability": 0.9326 + }, + { + "start": 10982.28, + "end": 10989.44, + "probability": 0.9985 + }, + { + "start": 10989.9, + "end": 10990.66, + "probability": 0.865 + }, + { + "start": 10990.72, + "end": 10991.34, + "probability": 0.897 + }, + { + "start": 10992.82, + "end": 10995.08, + "probability": 0.9956 + }, + { + "start": 10996.73, + "end": 11001.34, + "probability": 0.9559 + }, + { + "start": 11002.98, + "end": 11006.34, + "probability": 0.9915 + }, + { + "start": 11006.78, + "end": 11010.18, + "probability": 0.9818 + }, + { + "start": 11011.46, + "end": 11013.36, + "probability": 0.9834 + }, + { + "start": 11013.48, + "end": 11016.7, + "probability": 0.8239 + }, + { + "start": 11017.74, + "end": 11023.72, + "probability": 0.9946 + }, + { + "start": 11024.36, + "end": 11026.4, + "probability": 0.9254 + }, + { + "start": 11027.02, + "end": 11031.38, + "probability": 0.9957 + }, + { + "start": 11031.38, + "end": 11034.98, + "probability": 0.9955 + }, + { + "start": 11035.5, + "end": 11039.9, + "probability": 0.9584 + }, + { + "start": 11041.48, + "end": 11045.84, + "probability": 0.9955 + }, + { + "start": 11046.48, + "end": 11048.0, + "probability": 0.7309 + }, + { + "start": 11048.42, + "end": 11050.7, + "probability": 0.9347 + }, + { + "start": 11051.72, + "end": 11055.34, + "probability": 0.9845 + }, + { + "start": 11055.92, + "end": 11057.98, + "probability": 0.9523 + }, + { + "start": 11058.6, + "end": 11059.62, + "probability": 0.5592 + }, + { + "start": 11060.28, + "end": 11064.04, + "probability": 0.8501 + }, + { + "start": 11065.1, + "end": 11068.68, + "probability": 0.9692 + }, + { + "start": 11069.26, + "end": 11074.8, + "probability": 0.9958 + }, + { + "start": 11075.72, + "end": 11078.88, + "probability": 0.9976 + }, + { + "start": 11078.88, + "end": 11081.02, + "probability": 0.9985 + }, + { + "start": 11081.62, + "end": 11088.14, + "probability": 0.9681 + }, + { + "start": 11088.62, + "end": 11091.28, + "probability": 0.7251 + }, + { + "start": 11091.8, + "end": 11095.94, + "probability": 0.9583 + }, + { + "start": 11097.08, + "end": 11097.9, + "probability": 0.6818 + }, + { + "start": 11098.0, + "end": 11098.78, + "probability": 0.7454 + }, + { + "start": 11098.9, + "end": 11100.7, + "probability": 0.8641 + }, + { + "start": 11101.44, + "end": 11105.74, + "probability": 0.9938 + }, + { + "start": 11105.74, + "end": 11110.42, + "probability": 0.9963 + }, + { + "start": 11110.88, + "end": 11112.22, + "probability": 0.9657 + }, + { + "start": 11112.56, + "end": 11113.38, + "probability": 0.7191 + }, + { + "start": 11113.58, + "end": 11114.52, + "probability": 0.9618 + }, + { + "start": 11115.44, + "end": 11119.98, + "probability": 0.9856 + }, + { + "start": 11120.12, + "end": 11121.36, + "probability": 0.7966 + }, + { + "start": 11122.08, + "end": 11122.44, + "probability": 0.3922 + }, + { + "start": 11122.58, + "end": 11123.12, + "probability": 0.7639 + }, + { + "start": 11123.24, + "end": 11125.32, + "probability": 0.9946 + }, + { + "start": 11125.46, + "end": 11125.7, + "probability": 0.5072 + }, + { + "start": 11126.2, + "end": 11127.72, + "probability": 0.9949 + }, + { + "start": 11127.82, + "end": 11129.22, + "probability": 0.9868 + }, + { + "start": 11129.78, + "end": 11131.12, + "probability": 0.9988 + }, + { + "start": 11131.22, + "end": 11134.9, + "probability": 0.9985 + }, + { + "start": 11135.3, + "end": 11137.44, + "probability": 0.8499 + }, + { + "start": 11138.14, + "end": 11139.96, + "probability": 0.9956 + }, + { + "start": 11140.16, + "end": 11141.82, + "probability": 0.82 + }, + { + "start": 11142.42, + "end": 11146.1, + "probability": 0.998 + }, + { + "start": 11146.76, + "end": 11150.32, + "probability": 0.97 + }, + { + "start": 11150.32, + "end": 11154.0, + "probability": 0.9849 + }, + { + "start": 11154.1, + "end": 11154.78, + "probability": 0.613 + }, + { + "start": 11154.88, + "end": 11156.28, + "probability": 0.7784 + }, + { + "start": 11156.88, + "end": 11160.46, + "probability": 0.9866 + }, + { + "start": 11160.46, + "end": 11162.4, + "probability": 0.9973 + }, + { + "start": 11162.52, + "end": 11166.12, + "probability": 0.9932 + }, + { + "start": 11166.38, + "end": 11168.36, + "probability": 0.9932 + }, + { + "start": 11168.52, + "end": 11169.84, + "probability": 0.8323 + }, + { + "start": 11170.2, + "end": 11171.66, + "probability": 0.7498 + }, + { + "start": 11172.6, + "end": 11172.6, + "probability": 0.081 + }, + { + "start": 11172.6, + "end": 11177.32, + "probability": 0.9286 + }, + { + "start": 11177.76, + "end": 11181.8, + "probability": 0.9521 + }, + { + "start": 11182.06, + "end": 11184.7, + "probability": 0.9203 + }, + { + "start": 11184.74, + "end": 11185.24, + "probability": 0.8097 + }, + { + "start": 11185.64, + "end": 11186.3, + "probability": 0.4392 + }, + { + "start": 11186.9, + "end": 11188.52, + "probability": 0.8284 + }, + { + "start": 11189.34, + "end": 11190.38, + "probability": 0.8785 + }, + { + "start": 11213.18, + "end": 11214.24, + "probability": 0.582 + }, + { + "start": 11218.1, + "end": 11218.76, + "probability": 0.7769 + }, + { + "start": 11219.44, + "end": 11219.7, + "probability": 0.5987 + }, + { + "start": 11220.0, + "end": 11220.78, + "probability": 0.7568 + }, + { + "start": 11221.18, + "end": 11221.98, + "probability": 0.5049 + }, + { + "start": 11222.06, + "end": 11223.48, + "probability": 0.7843 + }, + { + "start": 11223.62, + "end": 11229.26, + "probability": 0.9472 + }, + { + "start": 11229.5, + "end": 11234.4, + "probability": 0.9644 + }, + { + "start": 11236.06, + "end": 11237.04, + "probability": 0.7937 + }, + { + "start": 11238.14, + "end": 11243.52, + "probability": 0.971 + }, + { + "start": 11245.9, + "end": 11251.74, + "probability": 0.8748 + }, + { + "start": 11251.89, + "end": 11255.96, + "probability": 0.9872 + }, + { + "start": 11257.26, + "end": 11259.12, + "probability": 0.9932 + }, + { + "start": 11259.64, + "end": 11261.74, + "probability": 0.9812 + }, + { + "start": 11264.3, + "end": 11264.74, + "probability": 0.3753 + }, + { + "start": 11267.02, + "end": 11269.92, + "probability": 0.6765 + }, + { + "start": 11270.56, + "end": 11272.08, + "probability": 0.7445 + }, + { + "start": 11272.14, + "end": 11273.5, + "probability": 0.7406 + }, + { + "start": 11273.56, + "end": 11273.86, + "probability": 0.7083 + }, + { + "start": 11274.26, + "end": 11275.54, + "probability": 0.8313 + }, + { + "start": 11275.72, + "end": 11276.0, + "probability": 0.435 + }, + { + "start": 11276.04, + "end": 11276.34, + "probability": 0.6331 + }, + { + "start": 11277.78, + "end": 11278.8, + "probability": 0.9486 + }, + { + "start": 11278.96, + "end": 11279.6, + "probability": 0.7545 + }, + { + "start": 11279.8, + "end": 11285.44, + "probability": 0.905 + }, + { + "start": 11285.44, + "end": 11290.8, + "probability": 0.9932 + }, + { + "start": 11291.42, + "end": 11294.36, + "probability": 0.9913 + }, + { + "start": 11296.02, + "end": 11296.62, + "probability": 0.8204 + }, + { + "start": 11297.42, + "end": 11300.34, + "probability": 0.9877 + }, + { + "start": 11301.04, + "end": 11308.62, + "probability": 0.9004 + }, + { + "start": 11309.22, + "end": 11311.86, + "probability": 0.9788 + }, + { + "start": 11312.74, + "end": 11316.06, + "probability": 0.9663 + }, + { + "start": 11317.04, + "end": 11320.26, + "probability": 0.9794 + }, + { + "start": 11320.26, + "end": 11324.26, + "probability": 0.98 + }, + { + "start": 11325.68, + "end": 11330.14, + "probability": 0.821 + }, + { + "start": 11330.14, + "end": 11334.1, + "probability": 0.9681 + }, + { + "start": 11335.58, + "end": 11338.1, + "probability": 0.9967 + }, + { + "start": 11338.49, + "end": 11341.84, + "probability": 0.9985 + }, + { + "start": 11343.54, + "end": 11344.86, + "probability": 0.4811 + }, + { + "start": 11345.5, + "end": 11348.28, + "probability": 0.7084 + }, + { + "start": 11348.28, + "end": 11352.86, + "probability": 0.9032 + }, + { + "start": 11354.36, + "end": 11354.54, + "probability": 0.4088 + }, + { + "start": 11354.64, + "end": 11360.41, + "probability": 0.9873 + }, + { + "start": 11361.9, + "end": 11365.46, + "probability": 0.9961 + }, + { + "start": 11366.12, + "end": 11368.7, + "probability": 0.8019 + }, + { + "start": 11370.08, + "end": 11374.26, + "probability": 0.9834 + }, + { + "start": 11376.54, + "end": 11380.32, + "probability": 0.9925 + }, + { + "start": 11380.94, + "end": 11382.56, + "probability": 0.9933 + }, + { + "start": 11382.82, + "end": 11383.29, + "probability": 0.5673 + }, + { + "start": 11384.86, + "end": 11387.36, + "probability": 0.773 + }, + { + "start": 11388.42, + "end": 11390.72, + "probability": 0.7336 + }, + { + "start": 11391.48, + "end": 11391.54, + "probability": 0.0251 + }, + { + "start": 11391.54, + "end": 11393.02, + "probability": 0.8295 + }, + { + "start": 11393.98, + "end": 11397.12, + "probability": 0.9792 + }, + { + "start": 11398.1, + "end": 11399.92, + "probability": 0.8386 + }, + { + "start": 11399.96, + "end": 11403.92, + "probability": 0.8687 + }, + { + "start": 11404.8, + "end": 11408.18, + "probability": 0.9375 + }, + { + "start": 11408.82, + "end": 11410.38, + "probability": 0.9892 + }, + { + "start": 11411.1, + "end": 11411.82, + "probability": 0.7395 + }, + { + "start": 11412.74, + "end": 11416.44, + "probability": 0.9541 + }, + { + "start": 11416.44, + "end": 11420.74, + "probability": 0.9646 + }, + { + "start": 11422.28, + "end": 11424.82, + "probability": 0.9188 + }, + { + "start": 11425.78, + "end": 11426.6, + "probability": 0.8432 + }, + { + "start": 11426.96, + "end": 11433.4, + "probability": 0.9832 + }, + { + "start": 11433.4, + "end": 11437.92, + "probability": 0.936 + }, + { + "start": 11439.18, + "end": 11442.34, + "probability": 0.9846 + }, + { + "start": 11443.08, + "end": 11445.52, + "probability": 0.9929 + }, + { + "start": 11446.78, + "end": 11448.86, + "probability": 0.7491 + }, + { + "start": 11448.98, + "end": 11450.32, + "probability": 0.9512 + }, + { + "start": 11450.48, + "end": 11453.74, + "probability": 0.8084 + }, + { + "start": 11453.92, + "end": 11455.1, + "probability": 0.7588 + }, + { + "start": 11457.26, + "end": 11458.96, + "probability": 0.9418 + }, + { + "start": 11459.72, + "end": 11460.72, + "probability": 0.895 + }, + { + "start": 11460.78, + "end": 11465.24, + "probability": 0.9951 + }, + { + "start": 11466.2, + "end": 11466.84, + "probability": 0.6155 + }, + { + "start": 11468.62, + "end": 11472.28, + "probability": 0.9815 + }, + { + "start": 11472.28, + "end": 11476.34, + "probability": 0.9793 + }, + { + "start": 11476.4, + "end": 11479.98, + "probability": 0.7952 + }, + { + "start": 11479.98, + "end": 11482.42, + "probability": 0.9827 + }, + { + "start": 11483.9, + "end": 11485.9, + "probability": 0.7521 + }, + { + "start": 11486.68, + "end": 11490.0, + "probability": 0.8867 + }, + { + "start": 11491.38, + "end": 11493.16, + "probability": 0.662 + }, + { + "start": 11494.96, + "end": 11498.34, + "probability": 0.9822 + }, + { + "start": 11499.56, + "end": 11504.84, + "probability": 0.9932 + }, + { + "start": 11506.06, + "end": 11506.84, + "probability": 0.8295 + }, + { + "start": 11506.98, + "end": 11511.16, + "probability": 0.9769 + }, + { + "start": 11511.86, + "end": 11514.54, + "probability": 0.9732 + }, + { + "start": 11515.6, + "end": 11516.48, + "probability": 0.9514 + }, + { + "start": 11518.36, + "end": 11522.12, + "probability": 0.8995 + }, + { + "start": 11522.9, + "end": 11525.6, + "probability": 0.8672 + }, + { + "start": 11525.68, + "end": 11527.48, + "probability": 0.9653 + }, + { + "start": 11527.6, + "end": 11530.62, + "probability": 0.9771 + }, + { + "start": 11531.62, + "end": 11533.46, + "probability": 0.9893 + }, + { + "start": 11534.68, + "end": 11536.24, + "probability": 0.9982 + }, + { + "start": 11538.54, + "end": 11541.14, + "probability": 0.6842 + }, + { + "start": 11542.22, + "end": 11545.32, + "probability": 0.9242 + }, + { + "start": 11545.44, + "end": 11546.3, + "probability": 0.6117 + }, + { + "start": 11546.46, + "end": 11547.68, + "probability": 0.9758 + }, + { + "start": 11549.66, + "end": 11550.58, + "probability": 0.6457 + }, + { + "start": 11551.54, + "end": 11555.1, + "probability": 0.9713 + }, + { + "start": 11555.61, + "end": 11558.75, + "probability": 0.7162 + }, + { + "start": 11559.56, + "end": 11561.66, + "probability": 0.6283 + }, + { + "start": 11561.88, + "end": 11566.18, + "probability": 0.7628 + }, + { + "start": 11570.1, + "end": 11577.02, + "probability": 0.8401 + }, + { + "start": 11578.94, + "end": 11578.94, + "probability": 0.1186 + }, + { + "start": 11578.94, + "end": 11581.72, + "probability": 0.7198 + }, + { + "start": 11581.74, + "end": 11583.17, + "probability": 0.56 + }, + { + "start": 11585.36, + "end": 11587.36, + "probability": 0.7227 + }, + { + "start": 11587.4, + "end": 11589.22, + "probability": 0.9175 + }, + { + "start": 11589.6, + "end": 11591.96, + "probability": 0.8182 + }, + { + "start": 11592.3, + "end": 11593.1, + "probability": 0.687 + }, + { + "start": 11593.9, + "end": 11594.36, + "probability": 0.5494 + }, + { + "start": 11594.94, + "end": 11597.02, + "probability": 0.8995 + }, + { + "start": 11598.91, + "end": 11602.05, + "probability": 0.8123 + }, + { + "start": 11602.56, + "end": 11604.52, + "probability": 0.5396 + }, + { + "start": 11604.58, + "end": 11606.24, + "probability": 0.9335 + }, + { + "start": 11606.76, + "end": 11608.3, + "probability": 0.7879 + }, + { + "start": 11609.02, + "end": 11609.88, + "probability": 0.6594 + }, + { + "start": 11612.8, + "end": 11616.4, + "probability": 0.9773 + }, + { + "start": 11616.66, + "end": 11618.82, + "probability": 0.9958 + }, + { + "start": 11618.9, + "end": 11619.4, + "probability": 0.6804 + }, + { + "start": 11620.52, + "end": 11624.78, + "probability": 0.96 + }, + { + "start": 11626.7, + "end": 11629.96, + "probability": 0.7745 + }, + { + "start": 11630.0, + "end": 11630.42, + "probability": 0.0304 + }, + { + "start": 11631.18, + "end": 11632.86, + "probability": 0.8823 + }, + { + "start": 11633.36, + "end": 11637.67, + "probability": 0.9818 + }, + { + "start": 11638.42, + "end": 11638.94, + "probability": 0.958 + }, + { + "start": 11638.94, + "end": 11640.48, + "probability": 0.8936 + }, + { + "start": 11641.06, + "end": 11643.36, + "probability": 0.7694 + }, + { + "start": 11643.38, + "end": 11643.96, + "probability": 0.9496 + }, + { + "start": 11644.0, + "end": 11646.47, + "probability": 0.7236 + }, + { + "start": 11647.1, + "end": 11649.78, + "probability": 0.9906 + }, + { + "start": 11650.0, + "end": 11651.98, + "probability": 0.5822 + }, + { + "start": 11652.76, + "end": 11657.0, + "probability": 0.9629 + }, + { + "start": 11657.18, + "end": 11657.6, + "probability": 0.6314 + }, + { + "start": 11658.64, + "end": 11663.32, + "probability": 0.8967 + }, + { + "start": 11663.48, + "end": 11664.98, + "probability": 0.9769 + }, + { + "start": 11666.72, + "end": 11669.22, + "probability": 0.9144 + }, + { + "start": 11670.52, + "end": 11673.1, + "probability": 0.9554 + }, + { + "start": 11673.56, + "end": 11674.04, + "probability": 0.2856 + }, + { + "start": 11674.34, + "end": 11677.06, + "probability": 0.547 + }, + { + "start": 11678.34, + "end": 11682.6, + "probability": 0.9849 + }, + { + "start": 11682.9, + "end": 11683.18, + "probability": 0.7906 + }, + { + "start": 11683.34, + "end": 11684.24, + "probability": 0.5185 + }, + { + "start": 11685.02, + "end": 11686.13, + "probability": 0.9604 + }, + { + "start": 11687.22, + "end": 11688.12, + "probability": 0.9878 + }, + { + "start": 11688.32, + "end": 11688.88, + "probability": 0.4927 + }, + { + "start": 11689.28, + "end": 11691.04, + "probability": 0.9231 + }, + { + "start": 11691.58, + "end": 11693.24, + "probability": 0.9853 + }, + { + "start": 11694.08, + "end": 11694.46, + "probability": 0.8325 + }, + { + "start": 11695.22, + "end": 11698.08, + "probability": 0.9492 + }, + { + "start": 11698.78, + "end": 11701.06, + "probability": 0.8987 + }, + { + "start": 11701.74, + "end": 11702.22, + "probability": 0.8181 + }, + { + "start": 11702.26, + "end": 11705.02, + "probability": 0.8181 + }, + { + "start": 11705.22, + "end": 11706.82, + "probability": 0.801 + }, + { + "start": 11707.86, + "end": 11708.45, + "probability": 0.7739 + }, + { + "start": 11709.08, + "end": 11711.96, + "probability": 0.8917 + }, + { + "start": 11712.0, + "end": 11712.36, + "probability": 0.7109 + }, + { + "start": 11715.48, + "end": 11718.08, + "probability": 0.9092 + }, + { + "start": 11718.12, + "end": 11719.71, + "probability": 0.9939 + }, + { + "start": 11720.16, + "end": 11722.44, + "probability": 0.1375 + }, + { + "start": 11722.72, + "end": 11723.42, + "probability": 0.6316 + }, + { + "start": 11723.56, + "end": 11724.08, + "probability": 0.8453 + }, + { + "start": 11724.8, + "end": 11725.3, + "probability": 0.7342 + }, + { + "start": 11725.3, + "end": 11725.98, + "probability": 0.2684 + }, + { + "start": 11725.98, + "end": 11725.98, + "probability": 0.0085 + }, + { + "start": 11725.98, + "end": 11728.38, + "probability": 0.8241 + }, + { + "start": 11729.06, + "end": 11730.34, + "probability": 0.7769 + }, + { + "start": 11731.04, + "end": 11731.78, + "probability": 0.0415 + }, + { + "start": 11731.78, + "end": 11731.78, + "probability": 0.2795 + }, + { + "start": 11731.78, + "end": 11738.3, + "probability": 0.9734 + }, + { + "start": 11738.76, + "end": 11739.46, + "probability": 0.0159 + }, + { + "start": 11740.3, + "end": 11742.44, + "probability": 0.8933 + }, + { + "start": 11742.6, + "end": 11743.23, + "probability": 0.5122 + }, + { + "start": 11744.08, + "end": 11746.4, + "probability": 0.9065 + }, + { + "start": 11746.66, + "end": 11747.78, + "probability": 0.7929 + }, + { + "start": 11747.88, + "end": 11749.42, + "probability": 0.8195 + }, + { + "start": 11749.68, + "end": 11751.56, + "probability": 0.5826 + }, + { + "start": 11751.98, + "end": 11753.26, + "probability": 0.9891 + }, + { + "start": 11753.34, + "end": 11754.32, + "probability": 0.7969 + }, + { + "start": 11754.44, + "end": 11755.5, + "probability": 0.6255 + }, + { + "start": 11755.64, + "end": 11759.08, + "probability": 0.7777 + }, + { + "start": 11759.16, + "end": 11764.8, + "probability": 0.958 + }, + { + "start": 11765.66, + "end": 11766.12, + "probability": 0.5928 + }, + { + "start": 11766.88, + "end": 11769.24, + "probability": 0.5317 + }, + { + "start": 11770.06, + "end": 11772.88, + "probability": 0.9207 + }, + { + "start": 11775.9, + "end": 11778.36, + "probability": 0.6327 + }, + { + "start": 11778.42, + "end": 11780.46, + "probability": 0.9922 + }, + { + "start": 11784.37, + "end": 11785.66, + "probability": 0.8371 + }, + { + "start": 11785.76, + "end": 11787.8, + "probability": 0.9907 + }, + { + "start": 11787.92, + "end": 11788.72, + "probability": 0.9841 + }, + { + "start": 11789.02, + "end": 11789.82, + "probability": 0.9204 + }, + { + "start": 11789.86, + "end": 11790.34, + "probability": 0.7973 + }, + { + "start": 11790.52, + "end": 11791.4, + "probability": 0.7328 + }, + { + "start": 11792.06, + "end": 11794.68, + "probability": 0.5883 + }, + { + "start": 11795.92, + "end": 11797.3, + "probability": 0.7078 + }, + { + "start": 11805.32, + "end": 11806.3, + "probability": 0.8214 + }, + { + "start": 11807.32, + "end": 11808.34, + "probability": 0.5604 + }, + { + "start": 11811.62, + "end": 11814.28, + "probability": 0.9175 + }, + { + "start": 11815.6, + "end": 11820.08, + "probability": 0.9814 + }, + { + "start": 11821.3, + "end": 11822.64, + "probability": 0.9844 + }, + { + "start": 11823.28, + "end": 11825.74, + "probability": 0.9187 + }, + { + "start": 11826.52, + "end": 11827.18, + "probability": 0.3421 + }, + { + "start": 11827.86, + "end": 11830.38, + "probability": 0.8638 + }, + { + "start": 11830.82, + "end": 11835.24, + "probability": 0.994 + }, + { + "start": 11835.24, + "end": 11839.62, + "probability": 0.9866 + }, + { + "start": 11839.88, + "end": 11841.88, + "probability": 0.9957 + }, + { + "start": 11842.24, + "end": 11842.92, + "probability": 0.7895 + }, + { + "start": 11843.54, + "end": 11847.7, + "probability": 0.7964 + }, + { + "start": 11848.06, + "end": 11848.66, + "probability": 0.8356 + }, + { + "start": 11848.72, + "end": 11850.82, + "probability": 0.1613 + }, + { + "start": 11851.64, + "end": 11851.8, + "probability": 0.2958 + }, + { + "start": 11851.8, + "end": 11851.88, + "probability": 0.5087 + }, + { + "start": 11852.48, + "end": 11856.06, + "probability": 0.856 + }, + { + "start": 11856.16, + "end": 11858.18, + "probability": 0.9928 + }, + { + "start": 11859.56, + "end": 11859.56, + "probability": 0.2726 + }, + { + "start": 11859.56, + "end": 11860.2, + "probability": 0.3558 + }, + { + "start": 11860.2, + "end": 11862.18, + "probability": 0.6735 + }, + { + "start": 11862.3, + "end": 11863.69, + "probability": 0.224 + }, + { + "start": 11863.7, + "end": 11865.92, + "probability": 0.726 + }, + { + "start": 11866.0, + "end": 11866.96, + "probability": 0.7925 + }, + { + "start": 11867.04, + "end": 11868.14, + "probability": 0.8829 + }, + { + "start": 11868.72, + "end": 11870.64, + "probability": 0.8491 + }, + { + "start": 11871.46, + "end": 11872.6, + "probability": 0.6421 + }, + { + "start": 11873.12, + "end": 11876.7, + "probability": 0.9995 + }, + { + "start": 11877.5, + "end": 11878.52, + "probability": 1.0 + }, + { + "start": 11879.08, + "end": 11880.04, + "probability": 0.6101 + }, + { + "start": 11880.64, + "end": 11883.2, + "probability": 0.5919 + }, + { + "start": 11883.74, + "end": 11886.36, + "probability": 0.8761 + }, + { + "start": 11886.96, + "end": 11888.6, + "probability": 0.9744 + }, + { + "start": 11888.88, + "end": 11889.76, + "probability": 0.8947 + }, + { + "start": 11890.0, + "end": 11891.0, + "probability": 0.9433 + }, + { + "start": 11891.04, + "end": 11891.7, + "probability": 0.926 + }, + { + "start": 11892.14, + "end": 11892.96, + "probability": 0.9951 + }, + { + "start": 11893.64, + "end": 11896.4, + "probability": 0.9793 + }, + { + "start": 11896.8, + "end": 11898.32, + "probability": 0.6455 + }, + { + "start": 11898.74, + "end": 11899.5, + "probability": 0.879 + }, + { + "start": 11899.64, + "end": 11901.54, + "probability": 0.9845 + }, + { + "start": 11901.98, + "end": 11903.19, + "probability": 0.9897 + }, + { + "start": 11903.94, + "end": 11907.54, + "probability": 0.9648 + }, + { + "start": 11907.92, + "end": 11909.4, + "probability": 0.8558 + }, + { + "start": 11909.92, + "end": 11910.89, + "probability": 0.9893 + }, + { + "start": 11912.32, + "end": 11913.86, + "probability": 0.8901 + }, + { + "start": 11914.56, + "end": 11916.08, + "probability": 0.6744 + }, + { + "start": 11916.46, + "end": 11917.84, + "probability": 0.9629 + }, + { + "start": 11918.26, + "end": 11920.2, + "probability": 0.9983 + }, + { + "start": 11920.54, + "end": 11922.42, + "probability": 0.9802 + }, + { + "start": 11922.78, + "end": 11923.76, + "probability": 0.2964 + }, + { + "start": 11923.96, + "end": 11924.66, + "probability": 0.6075 + }, + { + "start": 11926.08, + "end": 11927.01, + "probability": 0.9161 + }, + { + "start": 11928.06, + "end": 11930.6, + "probability": 0.9738 + }, + { + "start": 11931.74, + "end": 11932.81, + "probability": 0.8022 + }, + { + "start": 11933.54, + "end": 11933.9, + "probability": 0.553 + }, + { + "start": 11933.98, + "end": 11934.75, + "probability": 0.8275 + }, + { + "start": 11935.22, + "end": 11937.18, + "probability": 0.9922 + }, + { + "start": 11937.92, + "end": 11938.86, + "probability": 0.9675 + }, + { + "start": 11939.5, + "end": 11943.04, + "probability": 0.9932 + }, + { + "start": 11943.12, + "end": 11944.16, + "probability": 0.702 + }, + { + "start": 11944.78, + "end": 11945.04, + "probability": 0.7677 + }, + { + "start": 11945.1, + "end": 11946.78, + "probability": 0.896 + }, + { + "start": 11947.52, + "end": 11949.24, + "probability": 0.9558 + }, + { + "start": 11950.0, + "end": 11951.26, + "probability": 0.9353 + }, + { + "start": 11951.76, + "end": 11954.4, + "probability": 0.9345 + }, + { + "start": 11955.0, + "end": 11956.24, + "probability": 0.7072 + }, + { + "start": 11957.64, + "end": 11958.9, + "probability": 0.6665 + }, + { + "start": 11958.98, + "end": 11964.22, + "probability": 0.9294 + }, + { + "start": 11964.36, + "end": 11965.52, + "probability": 0.06 + }, + { + "start": 11965.98, + "end": 11967.7, + "probability": 0.9634 + }, + { + "start": 11967.78, + "end": 11968.62, + "probability": 0.9136 + }, + { + "start": 11970.0, + "end": 11971.44, + "probability": 0.8826 + }, + { + "start": 11972.02, + "end": 11976.2, + "probability": 0.9686 + }, + { + "start": 11976.22, + "end": 11977.4, + "probability": 0.7293 + }, + { + "start": 11977.76, + "end": 11982.8, + "probability": 0.9343 + }, + { + "start": 11983.42, + "end": 11984.56, + "probability": 0.9033 + }, + { + "start": 11985.1, + "end": 11986.07, + "probability": 0.9827 + }, + { + "start": 11986.28, + "end": 11987.4, + "probability": 0.9165 + }, + { + "start": 11987.54, + "end": 11991.1, + "probability": 0.9946 + }, + { + "start": 11991.12, + "end": 11991.42, + "probability": 0.799 + }, + { + "start": 11991.42, + "end": 11993.74, + "probability": 0.9692 + }, + { + "start": 11994.24, + "end": 11997.34, + "probability": 0.6898 + }, + { + "start": 11997.82, + "end": 12000.66, + "probability": 0.9395 + }, + { + "start": 12000.74, + "end": 12005.08, + "probability": 0.9401 + }, + { + "start": 12005.74, + "end": 12008.76, + "probability": 0.9771 + }, + { + "start": 12009.2, + "end": 12010.86, + "probability": 0.9922 + }, + { + "start": 12011.0, + "end": 12011.48, + "probability": 0.7034 + }, + { + "start": 12011.6, + "end": 12013.22, + "probability": 0.8098 + }, + { + "start": 12013.48, + "end": 12014.92, + "probability": 0.9642 + }, + { + "start": 12015.58, + "end": 12016.24, + "probability": 0.6948 + }, + { + "start": 12016.38, + "end": 12018.76, + "probability": 0.9503 + }, + { + "start": 12020.59, + "end": 12022.86, + "probability": 0.5073 + }, + { + "start": 12022.96, + "end": 12024.24, + "probability": 0.6506 + }, + { + "start": 12025.66, + "end": 12026.78, + "probability": 0.8289 + }, + { + "start": 12030.28, + "end": 12031.64, + "probability": 0.5703 + }, + { + "start": 12032.66, + "end": 12034.4, + "probability": 0.8391 + }, + { + "start": 12036.42, + "end": 12041.64, + "probability": 0.8864 + }, + { + "start": 12041.98, + "end": 12043.78, + "probability": 0.7983 + }, + { + "start": 12043.84, + "end": 12044.74, + "probability": 0.7898 + }, + { + "start": 12045.08, + "end": 12045.52, + "probability": 0.8416 + }, + { + "start": 12045.52, + "end": 12046.42, + "probability": 0.8042 + }, + { + "start": 12047.2, + "end": 12047.66, + "probability": 0.4937 + }, + { + "start": 12047.66, + "end": 12047.66, + "probability": 0.2714 + }, + { + "start": 12047.66, + "end": 12048.0, + "probability": 0.4363 + }, + { + "start": 12048.0, + "end": 12048.3, + "probability": 0.5194 + }, + { + "start": 12048.8, + "end": 12050.92, + "probability": 0.7817 + }, + { + "start": 12051.0, + "end": 12051.98, + "probability": 0.8651 + }, + { + "start": 12051.98, + "end": 12052.2, + "probability": 0.621 + }, + { + "start": 12052.78, + "end": 12053.54, + "probability": 0.899 + }, + { + "start": 12054.44, + "end": 12055.84, + "probability": 0.989 + }, + { + "start": 12056.36, + "end": 12057.32, + "probability": 0.8624 + }, + { + "start": 12067.04, + "end": 12068.54, + "probability": 0.4911 + }, + { + "start": 12069.36, + "end": 12070.94, + "probability": 0.7828 + }, + { + "start": 12073.3, + "end": 12076.18, + "probability": 0.1416 + }, + { + "start": 12079.02, + "end": 12079.66, + "probability": 0.1597 + }, + { + "start": 12079.66, + "end": 12080.98, + "probability": 0.0527 + }, + { + "start": 12081.1, + "end": 12081.18, + "probability": 0.1723 + }, + { + "start": 12081.18, + "end": 12082.24, + "probability": 0.1695 + }, + { + "start": 12082.3, + "end": 12083.24, + "probability": 0.0291 + }, + { + "start": 12083.82, + "end": 12084.38, + "probability": 0.3254 + }, + { + "start": 12090.1, + "end": 12091.04, + "probability": 0.0837 + }, + { + "start": 12097.94, + "end": 12098.62, + "probability": 0.0816 + }, + { + "start": 12104.85, + "end": 12106.68, + "probability": 0.9875 + }, + { + "start": 12107.24, + "end": 12110.69, + "probability": 0.7522 + }, + { + "start": 12112.38, + "end": 12113.38, + "probability": 0.7066 + }, + { + "start": 12114.56, + "end": 12116.96, + "probability": 0.7597 + }, + { + "start": 12117.62, + "end": 12118.76, + "probability": 0.9243 + }, + { + "start": 12119.12, + "end": 12122.04, + "probability": 0.936 + }, + { + "start": 12122.86, + "end": 12127.16, + "probability": 0.9972 + }, + { + "start": 12127.78, + "end": 12129.9, + "probability": 0.9245 + }, + { + "start": 12131.0, + "end": 12134.98, + "probability": 0.9991 + }, + { + "start": 12135.68, + "end": 12137.56, + "probability": 0.9883 + }, + { + "start": 12138.56, + "end": 12143.96, + "probability": 0.9932 + }, + { + "start": 12144.54, + "end": 12147.12, + "probability": 0.998 + }, + { + "start": 12147.86, + "end": 12148.58, + "probability": 0.5168 + }, + { + "start": 12148.7, + "end": 12149.48, + "probability": 0.7322 + }, + { + "start": 12149.54, + "end": 12150.36, + "probability": 0.8619 + }, + { + "start": 12150.72, + "end": 12153.12, + "probability": 0.9729 + }, + { + "start": 12153.96, + "end": 12159.59, + "probability": 0.9966 + }, + { + "start": 12159.72, + "end": 12161.7, + "probability": 0.9903 + }, + { + "start": 12162.24, + "end": 12164.18, + "probability": 0.999 + }, + { + "start": 12164.32, + "end": 12165.1, + "probability": 0.807 + }, + { + "start": 12165.68, + "end": 12167.14, + "probability": 0.9441 + }, + { + "start": 12167.24, + "end": 12169.28, + "probability": 0.9956 + }, + { + "start": 12169.3, + "end": 12169.74, + "probability": 0.7656 + }, + { + "start": 12170.6, + "end": 12171.98, + "probability": 0.993 + }, + { + "start": 12172.62, + "end": 12172.92, + "probability": 0.6589 + }, + { + "start": 12173.02, + "end": 12173.64, + "probability": 0.7684 + }, + { + "start": 12173.92, + "end": 12174.44, + "probability": 0.7011 + }, + { + "start": 12175.1, + "end": 12176.56, + "probability": 0.973 + }, + { + "start": 12176.94, + "end": 12177.58, + "probability": 0.901 + }, + { + "start": 12189.58, + "end": 12189.82, + "probability": 0.7042 + }, + { + "start": 12190.1, + "end": 12190.72, + "probability": 0.6592 + }, + { + "start": 12190.84, + "end": 12191.88, + "probability": 0.9152 + }, + { + "start": 12192.04, + "end": 12195.68, + "probability": 0.892 + }, + { + "start": 12196.63, + "end": 12201.78, + "probability": 0.9361 + }, + { + "start": 12202.48, + "end": 12203.88, + "probability": 0.838 + }, + { + "start": 12204.44, + "end": 12206.74, + "probability": 0.8249 + }, + { + "start": 12207.48, + "end": 12211.24, + "probability": 0.9161 + }, + { + "start": 12212.16, + "end": 12216.34, + "probability": 0.8645 + }, + { + "start": 12216.52, + "end": 12217.62, + "probability": 0.5973 + }, + { + "start": 12218.34, + "end": 12224.8, + "probability": 0.9597 + }, + { + "start": 12225.64, + "end": 12227.98, + "probability": 0.6498 + }, + { + "start": 12228.16, + "end": 12229.16, + "probability": 0.7417 + }, + { + "start": 12229.88, + "end": 12236.28, + "probability": 0.9588 + }, + { + "start": 12236.7, + "end": 12238.72, + "probability": 0.8786 + }, + { + "start": 12238.74, + "end": 12239.24, + "probability": 0.7745 + }, + { + "start": 12239.98, + "end": 12246.82, + "probability": 0.7419 + }, + { + "start": 12246.94, + "end": 12247.84, + "probability": 0.9144 + }, + { + "start": 12248.22, + "end": 12248.66, + "probability": 0.5084 + }, + { + "start": 12249.22, + "end": 12251.8, + "probability": 0.9873 + }, + { + "start": 12252.0, + "end": 12252.82, + "probability": 0.8896 + }, + { + "start": 12252.9, + "end": 12255.46, + "probability": 0.9966 + }, + { + "start": 12255.54, + "end": 12256.08, + "probability": 0.7862 + }, + { + "start": 12256.76, + "end": 12259.02, + "probability": 0.8616 + }, + { + "start": 12259.6, + "end": 12265.06, + "probability": 0.9951 + }, + { + "start": 12265.76, + "end": 12271.38, + "probability": 0.808 + }, + { + "start": 12271.54, + "end": 12271.54, + "probability": 0.0625 + }, + { + "start": 12271.54, + "end": 12274.88, + "probability": 0.811 + }, + { + "start": 12277.7, + "end": 12277.94, + "probability": 0.0416 + }, + { + "start": 12277.94, + "end": 12277.94, + "probability": 0.0596 + }, + { + "start": 12277.94, + "end": 12278.22, + "probability": 0.0225 + }, + { + "start": 12278.38, + "end": 12279.94, + "probability": 0.6416 + }, + { + "start": 12280.4, + "end": 12286.54, + "probability": 0.9426 + }, + { + "start": 12287.14, + "end": 12289.04, + "probability": 0.9263 + }, + { + "start": 12289.18, + "end": 12292.42, + "probability": 0.9146 + }, + { + "start": 12293.18, + "end": 12294.18, + "probability": 0.891 + }, + { + "start": 12294.3, + "end": 12295.75, + "probability": 0.9866 + }, + { + "start": 12296.4, + "end": 12301.76, + "probability": 0.9833 + }, + { + "start": 12302.44, + "end": 12307.78, + "probability": 0.9653 + }, + { + "start": 12307.88, + "end": 12308.08, + "probability": 0.693 + }, + { + "start": 12308.36, + "end": 12309.06, + "probability": 0.3555 + }, + { + "start": 12309.08, + "end": 12312.92, + "probability": 0.9064 + }, + { + "start": 12314.36, + "end": 12316.08, + "probability": 0.5796 + }, + { + "start": 12316.18, + "end": 12316.22, + "probability": 0.0412 + }, + { + "start": 12316.44, + "end": 12317.78, + "probability": 0.9272 + }, + { + "start": 12317.82, + "end": 12320.22, + "probability": 0.9612 + }, + { + "start": 12322.94, + "end": 12324.9, + "probability": 0.015 + }, + { + "start": 12324.9, + "end": 12325.02, + "probability": 0.088 + }, + { + "start": 12325.64, + "end": 12328.12, + "probability": 0.9254 + }, + { + "start": 12328.66, + "end": 12329.48, + "probability": 0.5577 + }, + { + "start": 12329.5, + "end": 12330.88, + "probability": 0.7757 + }, + { + "start": 12331.06, + "end": 12334.14, + "probability": 0.4432 + }, + { + "start": 12335.02, + "end": 12335.86, + "probability": 0.8367 + }, + { + "start": 12337.52, + "end": 12338.84, + "probability": 0.8572 + }, + { + "start": 12339.66, + "end": 12342.28, + "probability": 0.7711 + }, + { + "start": 12350.04, + "end": 12351.86, + "probability": 0.8044 + }, + { + "start": 12352.62, + "end": 12353.74, + "probability": 0.7782 + }, + { + "start": 12354.98, + "end": 12357.92, + "probability": 0.9518 + }, + { + "start": 12359.3, + "end": 12361.42, + "probability": 0.8843 + }, + { + "start": 12362.74, + "end": 12363.08, + "probability": 0.9816 + }, + { + "start": 12363.64, + "end": 12364.58, + "probability": 0.9503 + }, + { + "start": 12365.4, + "end": 12365.84, + "probability": 0.7347 + }, + { + "start": 12366.36, + "end": 12367.1, + "probability": 0.8884 + }, + { + "start": 12368.74, + "end": 12372.32, + "probability": 0.6465 + }, + { + "start": 12374.28, + "end": 12375.58, + "probability": 0.387 + }, + { + "start": 12376.2, + "end": 12376.7, + "probability": 0.7744 + }, + { + "start": 12377.24, + "end": 12379.1, + "probability": 0.7446 + }, + { + "start": 12380.28, + "end": 12382.28, + "probability": 0.8525 + }, + { + "start": 12383.46, + "end": 12385.52, + "probability": 0.9447 + }, + { + "start": 12387.06, + "end": 12389.0, + "probability": 0.8528 + }, + { + "start": 12394.92, + "end": 12395.2, + "probability": 0.8253 + }, + { + "start": 12396.24, + "end": 12397.06, + "probability": 0.8154 + }, + { + "start": 12398.24, + "end": 12400.4, + "probability": 0.9401 + }, + { + "start": 12402.76, + "end": 12403.98, + "probability": 0.7159 + }, + { + "start": 12405.16, + "end": 12407.6, + "probability": 0.8617 + }, + { + "start": 12408.96, + "end": 12409.94, + "probability": 0.9871 + }, + { + "start": 12411.32, + "end": 12412.1, + "probability": 0.9594 + }, + { + "start": 12413.78, + "end": 12415.48, + "probability": 0.8971 + }, + { + "start": 12416.46, + "end": 12416.84, + "probability": 0.761 + }, + { + "start": 12417.5, + "end": 12418.26, + "probability": 0.9165 + }, + { + "start": 12420.0, + "end": 12421.04, + "probability": 0.6928 + }, + { + "start": 12421.56, + "end": 12422.42, + "probability": 0.5686 + }, + { + "start": 12423.1, + "end": 12423.48, + "probability": 0.9222 + }, + { + "start": 12424.26, + "end": 12425.44, + "probability": 0.8529 + }, + { + "start": 12426.2, + "end": 12426.62, + "probability": 0.9709 + }, + { + "start": 12427.5, + "end": 12428.58, + "probability": 0.9812 + }, + { + "start": 12429.18, + "end": 12429.62, + "probability": 0.7383 + }, + { + "start": 12430.3, + "end": 12431.12, + "probability": 0.9052 + }, + { + "start": 12434.36, + "end": 12436.62, + "probability": 0.6656 + }, + { + "start": 12438.02, + "end": 12440.94, + "probability": 0.9481 + }, + { + "start": 12442.36, + "end": 12442.94, + "probability": 0.9783 + }, + { + "start": 12443.9, + "end": 12444.94, + "probability": 0.8813 + }, + { + "start": 12445.52, + "end": 12447.44, + "probability": 0.9846 + }, + { + "start": 12448.1, + "end": 12455.56, + "probability": 0.6104 + }, + { + "start": 12456.46, + "end": 12458.56, + "probability": 0.9636 + }, + { + "start": 12459.6, + "end": 12461.42, + "probability": 0.8152 + }, + { + "start": 12463.15, + "end": 12465.56, + "probability": 0.9808 + }, + { + "start": 12466.56, + "end": 12469.26, + "probability": 0.9268 + }, + { + "start": 12470.72, + "end": 12472.46, + "probability": 0.8317 + }, + { + "start": 12473.54, + "end": 12473.96, + "probability": 0.8591 + }, + { + "start": 12474.82, + "end": 12475.72, + "probability": 0.9633 + }, + { + "start": 12476.84, + "end": 12478.82, + "probability": 0.8617 + }, + { + "start": 12479.7, + "end": 12480.02, + "probability": 0.605 + }, + { + "start": 12480.76, + "end": 12481.62, + "probability": 0.7096 + }, + { + "start": 12483.88, + "end": 12485.88, + "probability": 0.9066 + }, + { + "start": 12486.74, + "end": 12487.16, + "probability": 0.9692 + }, + { + "start": 12488.08, + "end": 12488.98, + "probability": 0.9578 + }, + { + "start": 12490.0, + "end": 12492.0, + "probability": 0.9953 + }, + { + "start": 12493.32, + "end": 12493.76, + "probability": 0.9919 + }, + { + "start": 12497.74, + "end": 12498.62, + "probability": 0.5 + }, + { + "start": 12499.54, + "end": 12499.84, + "probability": 0.8049 + }, + { + "start": 12500.82, + "end": 12501.7, + "probability": 0.8888 + }, + { + "start": 12503.04, + "end": 12503.5, + "probability": 0.9917 + }, + { + "start": 12504.2, + "end": 12505.28, + "probability": 0.8656 + }, + { + "start": 12506.7, + "end": 12508.62, + "probability": 0.9574 + }, + { + "start": 12509.4, + "end": 12510.44, + "probability": 0.9242 + }, + { + "start": 12511.5, + "end": 12511.98, + "probability": 0.9937 + }, + { + "start": 12512.66, + "end": 12513.64, + "probability": 0.7201 + }, + { + "start": 12514.88, + "end": 12517.0, + "probability": 0.9071 + }, + { + "start": 12518.16, + "end": 12520.44, + "probability": 0.7516 + }, + { + "start": 12522.26, + "end": 12522.72, + "probability": 0.9949 + }, + { + "start": 12524.18, + "end": 12525.18, + "probability": 0.6522 + }, + { + "start": 12526.74, + "end": 12529.34, + "probability": 0.8476 + }, + { + "start": 12538.2, + "end": 12540.34, + "probability": 0.5015 + }, + { + "start": 12541.38, + "end": 12541.68, + "probability": 0.6423 + }, + { + "start": 12542.54, + "end": 12543.36, + "probability": 0.918 + }, + { + "start": 12544.94, + "end": 12546.48, + "probability": 0.9871 + }, + { + "start": 12547.96, + "end": 12549.84, + "probability": 0.9358 + }, + { + "start": 12551.18, + "end": 12553.18, + "probability": 0.9484 + }, + { + "start": 12553.76, + "end": 12554.2, + "probability": 0.9266 + }, + { + "start": 12555.48, + "end": 12556.46, + "probability": 0.9591 + }, + { + "start": 12559.24, + "end": 12561.56, + "probability": 0.7036 + }, + { + "start": 12563.28, + "end": 12565.84, + "probability": 0.5313 + }, + { + "start": 12566.96, + "end": 12567.38, + "probability": 0.8513 + }, + { + "start": 12568.7, + "end": 12569.56, + "probability": 0.6427 + }, + { + "start": 12570.34, + "end": 12570.76, + "probability": 0.9455 + }, + { + "start": 12571.4, + "end": 12572.24, + "probability": 0.8701 + }, + { + "start": 12575.36, + "end": 12577.14, + "probability": 0.8796 + }, + { + "start": 12583.52, + "end": 12586.88, + "probability": 0.7165 + }, + { + "start": 12588.76, + "end": 12590.1, + "probability": 0.571 + }, + { + "start": 12593.04, + "end": 12593.32, + "probability": 0.6117 + }, + { + "start": 12594.06, + "end": 12594.32, + "probability": 0.7883 + }, + { + "start": 12595.24, + "end": 12596.14, + "probability": 0.6483 + }, + { + "start": 12596.84, + "end": 12597.32, + "probability": 0.9858 + }, + { + "start": 12598.02, + "end": 12598.82, + "probability": 0.8855 + }, + { + "start": 12600.14, + "end": 12600.78, + "probability": 0.9312 + }, + { + "start": 12601.42, + "end": 12602.0, + "probability": 0.9751 + }, + { + "start": 12602.68, + "end": 12604.62, + "probability": 0.9656 + }, + { + "start": 12606.92, + "end": 12613.02, + "probability": 0.8748 + }, + { + "start": 12614.18, + "end": 12616.34, + "probability": 0.8518 + }, + { + "start": 12616.96, + "end": 12619.62, + "probability": 0.672 + }, + { + "start": 12621.86, + "end": 12623.04, + "probability": 0.1813 + }, + { + "start": 12623.76, + "end": 12624.18, + "probability": 0.5582 + }, + { + "start": 12624.98, + "end": 12625.76, + "probability": 0.5987 + }, + { + "start": 12626.32, + "end": 12628.52, + "probability": 0.9276 + }, + { + "start": 12630.7, + "end": 12632.9, + "probability": 0.927 + }, + { + "start": 12633.88, + "end": 12636.68, + "probability": 0.8375 + }, + { + "start": 12637.86, + "end": 12640.42, + "probability": 0.9745 + }, + { + "start": 12641.4, + "end": 12643.8, + "probability": 0.5484 + }, + { + "start": 12644.96, + "end": 12646.66, + "probability": 0.9751 + }, + { + "start": 12647.62, + "end": 12648.02, + "probability": 0.9878 + }, + { + "start": 12649.66, + "end": 12652.1, + "probability": 0.7503 + }, + { + "start": 12652.86, + "end": 12654.04, + "probability": 0.7815 + }, + { + "start": 12654.66, + "end": 12655.12, + "probability": 0.9684 + }, + { + "start": 12655.66, + "end": 12656.52, + "probability": 0.9154 + }, + { + "start": 12665.22, + "end": 12666.9, + "probability": 0.7908 + }, + { + "start": 12668.06, + "end": 12668.5, + "probability": 0.6422 + }, + { + "start": 12669.24, + "end": 12670.0, + "probability": 0.8784 + }, + { + "start": 12671.3, + "end": 12671.66, + "probability": 0.7998 + }, + { + "start": 12672.42, + "end": 12673.44, + "probability": 0.9683 + }, + { + "start": 12675.18, + "end": 12675.68, + "probability": 0.9762 + }, + { + "start": 12676.44, + "end": 12677.48, + "probability": 0.8612 + }, + { + "start": 12678.54, + "end": 12683.5, + "probability": 0.9723 + }, + { + "start": 12684.18, + "end": 12684.56, + "probability": 0.9648 + }, + { + "start": 12685.2, + "end": 12686.08, + "probability": 0.8699 + }, + { + "start": 12686.62, + "end": 12686.62, + "probability": 0.5359 + }, + { + "start": 12689.88, + "end": 12690.96, + "probability": 0.8708 + }, + { + "start": 12691.7, + "end": 12692.0, + "probability": 0.9512 + }, + { + "start": 12692.64, + "end": 12693.98, + "probability": 0.7912 + }, + { + "start": 12694.58, + "end": 12696.72, + "probability": 0.8309 + }, + { + "start": 12698.32, + "end": 12699.68, + "probability": 0.9256 + }, + { + "start": 12701.08, + "end": 12704.8, + "probability": 0.9264 + }, + { + "start": 12705.8, + "end": 12706.2, + "probability": 0.9922 + }, + { + "start": 12707.02, + "end": 12708.1, + "probability": 0.7476 + }, + { + "start": 12709.36, + "end": 12709.84, + "probability": 0.9727 + }, + { + "start": 12710.9, + "end": 12711.7, + "probability": 0.7449 + }, + { + "start": 12712.62, + "end": 12713.0, + "probability": 0.6476 + }, + { + "start": 12713.72, + "end": 12714.64, + "probability": 0.7524 + }, + { + "start": 12715.48, + "end": 12715.82, + "probability": 0.9736 + }, + { + "start": 12716.62, + "end": 12717.5, + "probability": 0.7303 + }, + { + "start": 12719.3, + "end": 12720.04, + "probability": 0.759 + }, + { + "start": 12720.82, + "end": 12721.72, + "probability": 0.9236 + }, + { + "start": 12722.42, + "end": 12723.44, + "probability": 0.9857 + }, + { + "start": 12724.12, + "end": 12725.02, + "probability": 0.9888 + }, + { + "start": 12726.14, + "end": 12727.8, + "probability": 0.9168 + }, + { + "start": 12730.12, + "end": 12730.64, + "probability": 0.991 + }, + { + "start": 12731.78, + "end": 12736.1, + "probability": 0.8483 + }, + { + "start": 12737.36, + "end": 12737.76, + "probability": 0.9871 + }, + { + "start": 12738.32, + "end": 12738.94, + "probability": 0.9382 + }, + { + "start": 12741.6, + "end": 12742.72, + "probability": 0.569 + }, + { + "start": 12743.64, + "end": 12744.38, + "probability": 0.8504 + }, + { + "start": 12745.04, + "end": 12746.06, + "probability": 0.5907 + }, + { + "start": 12747.86, + "end": 12749.02, + "probability": 0.8924 + }, + { + "start": 12750.36, + "end": 12750.84, + "probability": 0.9645 + }, + { + "start": 12752.94, + "end": 12753.82, + "probability": 0.9295 + }, + { + "start": 12754.52, + "end": 12756.52, + "probability": 0.8804 + }, + { + "start": 12757.28, + "end": 12757.74, + "probability": 0.9863 + }, + { + "start": 12758.62, + "end": 12759.52, + "probability": 0.9869 + }, + { + "start": 12760.42, + "end": 12760.92, + "probability": 0.9941 + }, + { + "start": 12761.56, + "end": 12762.54, + "probability": 0.9253 + }, + { + "start": 12764.4, + "end": 12766.68, + "probability": 0.9091 + }, + { + "start": 12768.06, + "end": 12770.06, + "probability": 0.8397 + }, + { + "start": 12770.86, + "end": 12771.18, + "probability": 0.5791 + }, + { + "start": 12772.28, + "end": 12773.48, + "probability": 0.6647 + }, + { + "start": 12774.6, + "end": 12777.46, + "probability": 0.8542 + }, + { + "start": 12778.76, + "end": 12779.66, + "probability": 0.859 + }, + { + "start": 12781.66, + "end": 12784.08, + "probability": 0.8848 + }, + { + "start": 12785.84, + "end": 12792.36, + "probability": 0.9268 + }, + { + "start": 12792.96, + "end": 12794.96, + "probability": 0.9829 + }, + { + "start": 12795.64, + "end": 12798.7, + "probability": 0.925 + }, + { + "start": 12799.9, + "end": 12801.64, + "probability": 0.6397 + }, + { + "start": 12803.02, + "end": 12805.14, + "probability": 0.9518 + }, + { + "start": 12806.18, + "end": 12807.0, + "probability": 0.9951 + }, + { + "start": 12810.28, + "end": 12812.8, + "probability": 0.6856 + }, + { + "start": 12814.16, + "end": 12815.07, + "probability": 0.3314 + }, + { + "start": 12816.8, + "end": 12819.12, + "probability": 0.8808 + }, + { + "start": 12819.98, + "end": 12821.66, + "probability": 0.8297 + }, + { + "start": 12823.1, + "end": 12825.38, + "probability": 0.9542 + }, + { + "start": 12826.44, + "end": 12828.24, + "probability": 0.6981 + }, + { + "start": 12829.22, + "end": 12831.48, + "probability": 0.7515 + }, + { + "start": 12832.42, + "end": 12833.98, + "probability": 0.932 + }, + { + "start": 12835.28, + "end": 12836.32, + "probability": 0.9797 + }, + { + "start": 12838.76, + "end": 12839.7, + "probability": 0.9532 + }, + { + "start": 12840.82, + "end": 12845.04, + "probability": 0.9751 + }, + { + "start": 12845.68, + "end": 12846.42, + "probability": 0.9899 + }, + { + "start": 12847.0, + "end": 12848.02, + "probability": 0.508 + }, + { + "start": 12850.12, + "end": 12852.88, + "probability": 0.7193 + }, + { + "start": 12853.72, + "end": 12856.14, + "probability": 0.9716 + }, + { + "start": 12856.9, + "end": 12858.46, + "probability": 0.9681 + }, + { + "start": 12859.58, + "end": 12861.4, + "probability": 0.8861 + }, + { + "start": 12862.04, + "end": 12862.98, + "probability": 0.9891 + }, + { + "start": 12863.64, + "end": 12864.66, + "probability": 0.9484 + }, + { + "start": 12865.46, + "end": 12865.68, + "probability": 0.9917 + }, + { + "start": 12866.22, + "end": 12869.56, + "probability": 0.9902 + }, + { + "start": 12870.5, + "end": 12875.26, + "probability": 0.692 + }, + { + "start": 12875.86, + "end": 12878.4, + "probability": 0.9731 + }, + { + "start": 12879.04, + "end": 12881.84, + "probability": 0.9642 + }, + { + "start": 12882.68, + "end": 12884.24, + "probability": 0.5797 + }, + { + "start": 12884.78, + "end": 12885.96, + "probability": 0.9495 + }, + { + "start": 12887.14, + "end": 12890.52, + "probability": 0.9913 + }, + { + "start": 12891.32, + "end": 12892.24, + "probability": 0.9954 + }, + { + "start": 12893.74, + "end": 12894.66, + "probability": 0.6916 + }, + { + "start": 12895.32, + "end": 12897.08, + "probability": 0.8168 + }, + { + "start": 12897.38, + "end": 12899.38, + "probability": 0.9059 + }, + { + "start": 12900.09, + "end": 12908.14, + "probability": 0.873 + }, + { + "start": 12909.7, + "end": 12910.36, + "probability": 0.4778 + }, + { + "start": 12976.7, + "end": 12976.7, + "probability": 0.0185 + }, + { + "start": 12976.7, + "end": 12977.08, + "probability": 0.8255 + }, + { + "start": 12977.72, + "end": 12978.64, + "probability": 0.5883 + }, + { + "start": 12978.72, + "end": 12979.8, + "probability": 0.1975 + }, + { + "start": 12980.14, + "end": 12980.52, + "probability": 0.5154 + }, + { + "start": 12980.7, + "end": 12986.06, + "probability": 0.9202 + }, + { + "start": 12986.82, + "end": 12988.92, + "probability": 0.8129 + }, + { + "start": 12989.58, + "end": 12990.52, + "probability": 0.3336 + }, + { + "start": 12992.2, + "end": 12996.36, + "probability": 0.9915 + }, + { + "start": 12997.44, + "end": 12999.48, + "probability": 0.6485 + }, + { + "start": 13002.34, + "end": 13003.84, + "probability": 0.8952 + }, + { + "start": 13006.58, + "end": 13008.0, + "probability": 0.8489 + }, + { + "start": 13009.72, + "end": 13010.12, + "probability": 0.3116 + }, + { + "start": 13031.62, + "end": 13032.64, + "probability": 0.014 + }, + { + "start": 13032.64, + "end": 13032.66, + "probability": 0.0662 + }, + { + "start": 13032.66, + "end": 13032.66, + "probability": 0.0469 + }, + { + "start": 13032.66, + "end": 13032.66, + "probability": 0.0504 + }, + { + "start": 13032.66, + "end": 13033.52, + "probability": 0.819 + }, + { + "start": 13033.6, + "end": 13033.82, + "probability": 0.815 + }, + { + "start": 13033.92, + "end": 13037.18, + "probability": 0.8694 + }, + { + "start": 13037.26, + "end": 13037.66, + "probability": 0.8444 + }, + { + "start": 13038.12, + "end": 13038.84, + "probability": 0.9849 + }, + { + "start": 13045.0, + "end": 13046.86, + "probability": 0.5032 + }, + { + "start": 13051.14, + "end": 13054.58, + "probability": 0.8625 + }, + { + "start": 13054.72, + "end": 13055.18, + "probability": 0.4048 + }, + { + "start": 13055.36, + "end": 13058.2, + "probability": 0.9869 + }, + { + "start": 13058.2, + "end": 13061.04, + "probability": 0.9911 + }, + { + "start": 13061.78, + "end": 13064.48, + "probability": 0.7392 + }, + { + "start": 13065.48, + "end": 13066.34, + "probability": 0.9688 + }, + { + "start": 13067.92, + "end": 13069.62, + "probability": 0.8556 + }, + { + "start": 13070.0, + "end": 13071.72, + "probability": 0.7772 + }, + { + "start": 13085.82, + "end": 13086.74, + "probability": 0.7351 + }, + { + "start": 13086.82, + "end": 13088.38, + "probability": 0.6012 + }, + { + "start": 13090.06, + "end": 13091.04, + "probability": 0.7468 + }, + { + "start": 13093.74, + "end": 13096.08, + "probability": 0.9355 + }, + { + "start": 13096.52, + "end": 13098.2, + "probability": 0.9612 + }, + { + "start": 13100.14, + "end": 13104.08, + "probability": 0.9927 + }, + { + "start": 13105.66, + "end": 13106.94, + "probability": 0.7247 + }, + { + "start": 13108.68, + "end": 13109.42, + "probability": 0.8037 + }, + { + "start": 13111.08, + "end": 13111.68, + "probability": 0.8527 + }, + { + "start": 13112.9, + "end": 13115.08, + "probability": 0.9449 + }, + { + "start": 13115.26, + "end": 13116.62, + "probability": 0.6393 + }, + { + "start": 13116.92, + "end": 13119.12, + "probability": 0.9781 + }, + { + "start": 13120.74, + "end": 13121.36, + "probability": 0.9086 + }, + { + "start": 13122.1, + "end": 13123.12, + "probability": 0.9822 + }, + { + "start": 13124.24, + "end": 13125.82, + "probability": 0.9137 + }, + { + "start": 13126.22, + "end": 13127.78, + "probability": 0.9587 + }, + { + "start": 13128.0, + "end": 13132.4, + "probability": 0.8483 + }, + { + "start": 13132.58, + "end": 13132.94, + "probability": 0.8225 + }, + { + "start": 13133.16, + "end": 13133.52, + "probability": 0.3731 + }, + { + "start": 13135.22, + "end": 13136.56, + "probability": 0.739 + }, + { + "start": 13138.7, + "end": 13141.94, + "probability": 0.7733 + }, + { + "start": 13143.4, + "end": 13144.18, + "probability": 0.6496 + }, + { + "start": 13144.96, + "end": 13145.64, + "probability": 0.9639 + }, + { + "start": 13147.48, + "end": 13148.4, + "probability": 0.5054 + }, + { + "start": 13149.02, + "end": 13151.46, + "probability": 0.814 + }, + { + "start": 13153.68, + "end": 13154.42, + "probability": 0.9378 + }, + { + "start": 13155.8, + "end": 13157.8, + "probability": 0.8911 + }, + { + "start": 13159.44, + "end": 13160.3, + "probability": 0.738 + }, + { + "start": 13161.16, + "end": 13161.5, + "probability": 0.6807 + }, + { + "start": 13164.08, + "end": 13168.7, + "probability": 0.7297 + }, + { + "start": 13169.76, + "end": 13170.48, + "probability": 0.9877 + }, + { + "start": 13171.1, + "end": 13172.36, + "probability": 0.7659 + }, + { + "start": 13175.44, + "end": 13176.95, + "probability": 0.9253 + }, + { + "start": 13177.96, + "end": 13178.32, + "probability": 0.8295 + }, + { + "start": 13178.44, + "end": 13178.9, + "probability": 0.7532 + }, + { + "start": 13179.3, + "end": 13180.54, + "probability": 0.918 + }, + { + "start": 13182.6, + "end": 13189.92, + "probability": 0.973 + }, + { + "start": 13191.04, + "end": 13193.92, + "probability": 0.9001 + }, + { + "start": 13196.36, + "end": 13201.2, + "probability": 0.9025 + }, + { + "start": 13201.92, + "end": 13207.86, + "probability": 0.9716 + }, + { + "start": 13209.12, + "end": 13209.38, + "probability": 0.4819 + }, + { + "start": 13210.74, + "end": 13214.1, + "probability": 0.957 + }, + { + "start": 13215.36, + "end": 13216.24, + "probability": 0.5846 + }, + { + "start": 13217.52, + "end": 13218.74, + "probability": 0.5866 + }, + { + "start": 13218.82, + "end": 13224.62, + "probability": 0.9062 + }, + { + "start": 13225.34, + "end": 13226.36, + "probability": 0.8916 + }, + { + "start": 13226.42, + "end": 13231.26, + "probability": 0.9896 + }, + { + "start": 13233.9, + "end": 13234.44, + "probability": 0.4397 + }, + { + "start": 13234.8, + "end": 13238.12, + "probability": 0.9215 + }, + { + "start": 13240.06, + "end": 13241.08, + "probability": 0.885 + }, + { + "start": 13242.94, + "end": 13244.18, + "probability": 0.9684 + }, + { + "start": 13244.26, + "end": 13247.68, + "probability": 0.7233 + }, + { + "start": 13247.74, + "end": 13248.96, + "probability": 0.9796 + }, + { + "start": 13249.08, + "end": 13250.42, + "probability": 0.8743 + }, + { + "start": 13250.94, + "end": 13252.18, + "probability": 0.8175 + }, + { + "start": 13253.44, + "end": 13255.44, + "probability": 0.9709 + }, + { + "start": 13256.34, + "end": 13257.24, + "probability": 0.8591 + }, + { + "start": 13257.76, + "end": 13263.86, + "probability": 0.9462 + }, + { + "start": 13264.92, + "end": 13267.7, + "probability": 0.835 + }, + { + "start": 13269.14, + "end": 13272.58, + "probability": 0.9484 + }, + { + "start": 13272.9, + "end": 13275.12, + "probability": 0.9974 + }, + { + "start": 13275.92, + "end": 13279.02, + "probability": 0.996 + }, + { + "start": 13280.4, + "end": 13284.06, + "probability": 0.9762 + }, + { + "start": 13285.34, + "end": 13285.98, + "probability": 0.761 + }, + { + "start": 13286.76, + "end": 13288.6, + "probability": 0.9084 + }, + { + "start": 13288.76, + "end": 13290.56, + "probability": 0.9877 + }, + { + "start": 13291.46, + "end": 13294.58, + "probability": 0.9076 + }, + { + "start": 13295.96, + "end": 13297.88, + "probability": 0.9681 + }, + { + "start": 13300.44, + "end": 13302.48, + "probability": 0.4665 + }, + { + "start": 13302.98, + "end": 13306.56, + "probability": 0.9771 + }, + { + "start": 13308.36, + "end": 13310.18, + "probability": 0.9419 + }, + { + "start": 13313.04, + "end": 13317.36, + "probability": 0.8496 + }, + { + "start": 13320.62, + "end": 13321.16, + "probability": 0.6484 + }, + { + "start": 13321.3, + "end": 13322.3, + "probability": 0.9377 + }, + { + "start": 13325.56, + "end": 13326.3, + "probability": 0.7691 + }, + { + "start": 13326.36, + "end": 13327.62, + "probability": 0.9707 + }, + { + "start": 13327.7, + "end": 13329.12, + "probability": 0.8195 + }, + { + "start": 13329.18, + "end": 13330.3, + "probability": 0.9417 + }, + { + "start": 13332.71, + "end": 13334.34, + "probability": 0.7172 + }, + { + "start": 13334.34, + "end": 13334.7, + "probability": 0.7516 + }, + { + "start": 13334.86, + "end": 13335.34, + "probability": 0.6787 + }, + { + "start": 13335.48, + "end": 13336.06, + "probability": 0.6157 + }, + { + "start": 13336.06, + "end": 13336.78, + "probability": 0.8295 + }, + { + "start": 13340.38, + "end": 13342.54, + "probability": 0.908 + }, + { + "start": 13343.1, + "end": 13348.25, + "probability": 0.9869 + }, + { + "start": 13348.57, + "end": 13353.12, + "probability": 0.9951 + }, + { + "start": 13354.2, + "end": 13355.8, + "probability": 0.6896 + }, + { + "start": 13358.0, + "end": 13359.44, + "probability": 0.5377 + }, + { + "start": 13359.72, + "end": 13362.08, + "probability": 0.8696 + }, + { + "start": 13363.68, + "end": 13364.96, + "probability": 0.7585 + }, + { + "start": 13369.34, + "end": 13371.4, + "probability": 0.8861 + }, + { + "start": 13375.28, + "end": 13376.38, + "probability": 0.8956 + }, + { + "start": 13377.52, + "end": 13378.04, + "probability": 0.7032 + }, + { + "start": 13380.98, + "end": 13383.56, + "probability": 0.8511 + }, + { + "start": 13384.92, + "end": 13386.26, + "probability": 0.7895 + }, + { + "start": 13387.32, + "end": 13391.34, + "probability": 0.9541 + }, + { + "start": 13391.96, + "end": 13392.8, + "probability": 0.8617 + }, + { + "start": 13393.88, + "end": 13395.08, + "probability": 0.9795 + }, + { + "start": 13396.56, + "end": 13397.58, + "probability": 0.841 + }, + { + "start": 13399.06, + "end": 13402.44, + "probability": 0.9916 + }, + { + "start": 13402.62, + "end": 13406.5, + "probability": 0.8361 + }, + { + "start": 13407.64, + "end": 13413.58, + "probability": 0.9858 + }, + { + "start": 13415.52, + "end": 13418.04, + "probability": 0.8134 + }, + { + "start": 13420.98, + "end": 13422.9, + "probability": 0.2921 + }, + { + "start": 13425.5, + "end": 13431.5, + "probability": 0.7346 + }, + { + "start": 13432.24, + "end": 13433.88, + "probability": 0.9424 + }, + { + "start": 13434.58, + "end": 13436.14, + "probability": 0.9874 + }, + { + "start": 13437.1, + "end": 13439.78, + "probability": 0.8638 + }, + { + "start": 13441.14, + "end": 13442.22, + "probability": 0.0039 + }, + { + "start": 13442.66, + "end": 13445.94, + "probability": 0.9498 + }, + { + "start": 13446.38, + "end": 13451.54, + "probability": 0.9403 + }, + { + "start": 13451.54, + "end": 13455.72, + "probability": 0.9185 + }, + { + "start": 13455.92, + "end": 13456.94, + "probability": 0.8853 + }, + { + "start": 13457.72, + "end": 13460.38, + "probability": 0.9713 + }, + { + "start": 13461.78, + "end": 13461.96, + "probability": 0.3394 + }, + { + "start": 13463.24, + "end": 13463.4, + "probability": 0.2588 + }, + { + "start": 13463.66, + "end": 13463.76, + "probability": 0.4465 + }, + { + "start": 13464.1, + "end": 13465.44, + "probability": 0.762 + }, + { + "start": 13465.5, + "end": 13468.42, + "probability": 0.9542 + }, + { + "start": 13469.68, + "end": 13473.58, + "probability": 0.9811 + }, + { + "start": 13473.74, + "end": 13474.4, + "probability": 0.6756 + }, + { + "start": 13475.36, + "end": 13476.26, + "probability": 0.5016 + }, + { + "start": 13476.9, + "end": 13481.52, + "probability": 0.6695 + }, + { + "start": 13482.04, + "end": 13483.82, + "probability": 0.8143 + }, + { + "start": 13483.88, + "end": 13486.62, + "probability": 0.5059 + }, + { + "start": 13486.68, + "end": 13487.66, + "probability": 0.8523 + }, + { + "start": 13487.66, + "end": 13488.16, + "probability": 0.9177 + }, + { + "start": 13489.54, + "end": 13491.04, + "probability": 0.9491 + }, + { + "start": 13491.2, + "end": 13491.84, + "probability": 0.6902 + }, + { + "start": 13495.14, + "end": 13496.04, + "probability": 0.8374 + }, + { + "start": 13497.3, + "end": 13498.2, + "probability": 0.9698 + }, + { + "start": 13499.38, + "end": 13500.56, + "probability": 0.7683 + }, + { + "start": 13500.76, + "end": 13506.24, + "probability": 0.9906 + }, + { + "start": 13506.52, + "end": 13508.14, + "probability": 0.961 + }, + { + "start": 13509.06, + "end": 13509.94, + "probability": 0.8569 + }, + { + "start": 13510.82, + "end": 13512.28, + "probability": 0.5363 + }, + { + "start": 13515.0, + "end": 13516.48, + "probability": 0.7991 + }, + { + "start": 13517.1, + "end": 13519.8, + "probability": 0.9771 + }, + { + "start": 13523.28, + "end": 13525.42, + "probability": 0.9456 + }, + { + "start": 13526.7, + "end": 13527.92, + "probability": 0.9363 + }, + { + "start": 13529.74, + "end": 13536.6, + "probability": 0.9307 + }, + { + "start": 13537.32, + "end": 13539.24, + "probability": 0.9576 + }, + { + "start": 13539.76, + "end": 13541.23, + "probability": 0.9878 + }, + { + "start": 13542.04, + "end": 13543.46, + "probability": 0.9805 + }, + { + "start": 13544.36, + "end": 13545.18, + "probability": 0.8091 + }, + { + "start": 13546.32, + "end": 13546.95, + "probability": 0.6562 + }, + { + "start": 13547.64, + "end": 13550.18, + "probability": 0.8223 + }, + { + "start": 13550.66, + "end": 13552.36, + "probability": 0.9604 + }, + { + "start": 13552.42, + "end": 13554.79, + "probability": 0.8333 + }, + { + "start": 13555.32, + "end": 13560.0, + "probability": 0.9877 + }, + { + "start": 13561.46, + "end": 13563.28, + "probability": 0.9598 + }, + { + "start": 13564.18, + "end": 13565.4, + "probability": 0.761 + }, + { + "start": 13566.58, + "end": 13567.6, + "probability": 0.7493 + }, + { + "start": 13568.28, + "end": 13572.58, + "probability": 0.9704 + }, + { + "start": 13572.58, + "end": 13578.16, + "probability": 0.9945 + }, + { + "start": 13578.17, + "end": 13582.82, + "probability": 0.9671 + }, + { + "start": 13583.8, + "end": 13587.56, + "probability": 0.9831 + }, + { + "start": 13588.14, + "end": 13593.8, + "probability": 0.9926 + }, + { + "start": 13593.8, + "end": 13600.48, + "probability": 0.9885 + }, + { + "start": 13601.44, + "end": 13602.44, + "probability": 0.8162 + }, + { + "start": 13603.5, + "end": 13605.94, + "probability": 0.9884 + }, + { + "start": 13605.94, + "end": 13609.9, + "probability": 0.9599 + }, + { + "start": 13610.56, + "end": 13614.46, + "probability": 0.8327 + }, + { + "start": 13615.22, + "end": 13617.4, + "probability": 0.6466 + }, + { + "start": 13618.26, + "end": 13620.12, + "probability": 0.9811 + }, + { + "start": 13621.04, + "end": 13622.88, + "probability": 0.9014 + }, + { + "start": 13623.56, + "end": 13624.58, + "probability": 0.7889 + }, + { + "start": 13625.26, + "end": 13628.64, + "probability": 0.9446 + }, + { + "start": 13628.64, + "end": 13633.56, + "probability": 0.9783 + }, + { + "start": 13634.28, + "end": 13634.98, + "probability": 0.5001 + }, + { + "start": 13635.8, + "end": 13637.83, + "probability": 0.9777 + }, + { + "start": 13638.42, + "end": 13643.32, + "probability": 0.9837 + }, + { + "start": 13643.32, + "end": 13647.88, + "probability": 0.9971 + }, + { + "start": 13648.54, + "end": 13654.3, + "probability": 0.9377 + }, + { + "start": 13656.72, + "end": 13657.48, + "probability": 0.5103 + }, + { + "start": 13657.62, + "end": 13660.13, + "probability": 0.0316 + }, + { + "start": 13661.32, + "end": 13661.5, + "probability": 0.1385 + }, + { + "start": 13661.5, + "end": 13662.82, + "probability": 0.5471 + }, + { + "start": 13664.7, + "end": 13664.76, + "probability": 0.2689 + }, + { + "start": 13664.76, + "end": 13666.98, + "probability": 0.1764 + }, + { + "start": 13668.18, + "end": 13670.72, + "probability": 0.8755 + }, + { + "start": 13671.64, + "end": 13672.6, + "probability": 0.8335 + }, + { + "start": 13673.18, + "end": 13675.32, + "probability": 0.9389 + }, + { + "start": 13675.8, + "end": 13679.52, + "probability": 0.9941 + }, + { + "start": 13679.52, + "end": 13686.02, + "probability": 0.9844 + }, + { + "start": 13687.0, + "end": 13689.86, + "probability": 0.9966 + }, + { + "start": 13690.88, + "end": 13698.26, + "probability": 0.983 + }, + { + "start": 13698.48, + "end": 13698.76, + "probability": 0.6905 + }, + { + "start": 13699.74, + "end": 13700.56, + "probability": 0.4952 + }, + { + "start": 13700.58, + "end": 13701.64, + "probability": 0.9468 + }, + { + "start": 13701.9, + "end": 13702.08, + "probability": 0.4776 + }, + { + "start": 13702.24, + "end": 13704.98, + "probability": 0.9231 + }, + { + "start": 13705.0, + "end": 13705.3, + "probability": 0.7027 + }, + { + "start": 13705.34, + "end": 13706.78, + "probability": 0.8223 + }, + { + "start": 13709.84, + "end": 13712.04, + "probability": 0.3002 + }, + { + "start": 13714.38, + "end": 13716.46, + "probability": 0.9229 + }, + { + "start": 13719.2, + "end": 13719.76, + "probability": 0.4635 + }, + { + "start": 13728.06, + "end": 13729.84, + "probability": 0.1849 + }, + { + "start": 13735.34, + "end": 13739.5, + "probability": 0.023 + }, + { + "start": 13739.5, + "end": 13740.76, + "probability": 0.1001 + }, + { + "start": 13740.76, + "end": 13741.22, + "probability": 0.0558 + }, + { + "start": 13741.22, + "end": 13741.22, + "probability": 0.0316 + }, + { + "start": 13741.22, + "end": 13741.84, + "probability": 0.7324 + }, + { + "start": 13742.84, + "end": 13743.6, + "probability": 0.4587 + }, + { + "start": 13744.96, + "end": 13745.76, + "probability": 0.2179 + }, + { + "start": 13748.26, + "end": 13749.16, + "probability": 0.0383 + }, + { + "start": 13749.16, + "end": 13749.16, + "probability": 0.0246 + }, + { + "start": 13749.16, + "end": 13749.66, + "probability": 0.467 + }, + { + "start": 13750.28, + "end": 13758.04, + "probability": 0.8824 + }, + { + "start": 13758.82, + "end": 13761.76, + "probability": 0.7629 + }, + { + "start": 13766.3, + "end": 13768.04, + "probability": 0.2715 + }, + { + "start": 13770.88, + "end": 13770.92, + "probability": 0.0035 + }, + { + "start": 13775.1, + "end": 13775.96, + "probability": 0.1611 + }, + { + "start": 13776.86, + "end": 13778.0, + "probability": 0.9801 + }, + { + "start": 13779.52, + "end": 13783.98, + "probability": 0.6475 + }, + { + "start": 13786.7, + "end": 13788.08, + "probability": 0.6784 + }, + { + "start": 13788.26, + "end": 13788.72, + "probability": 0.8995 + }, + { + "start": 13789.24, + "end": 13790.14, + "probability": 0.3032 + }, + { + "start": 13790.88, + "end": 13793.88, + "probability": 0.6474 + }, + { + "start": 13794.98, + "end": 13802.5, + "probability": 0.9729 + }, + { + "start": 13803.58, + "end": 13804.96, + "probability": 0.7169 + }, + { + "start": 13812.28, + "end": 13816.1, + "probability": 0.5553 + }, + { + "start": 13816.48, + "end": 13817.4, + "probability": 0.6855 + }, + { + "start": 13818.68, + "end": 13819.58, + "probability": 0.9824 + }, + { + "start": 13821.14, + "end": 13822.36, + "probability": 0.6868 + }, + { + "start": 13825.82, + "end": 13827.16, + "probability": 0.9884 + }, + { + "start": 13829.12, + "end": 13830.6, + "probability": 0.9939 + }, + { + "start": 13832.03, + "end": 13834.2, + "probability": 0.847 + }, + { + "start": 13835.46, + "end": 13836.42, + "probability": 0.9468 + }, + { + "start": 13854.58, + "end": 13859.4, + "probability": 0.9845 + }, + { + "start": 13860.4, + "end": 13861.8, + "probability": 0.5658 + }, + { + "start": 13862.14, + "end": 13866.08, + "probability": 0.9806 + }, + { + "start": 13866.98, + "end": 13867.8, + "probability": 0.9447 + }, + { + "start": 13868.94, + "end": 13871.78, + "probability": 0.7044 + }, + { + "start": 13872.08, + "end": 13872.28, + "probability": 0.1734 + }, + { + "start": 13873.1, + "end": 13875.52, + "probability": 0.5169 + }, + { + "start": 13876.36, + "end": 13877.46, + "probability": 0.4093 + }, + { + "start": 13878.6, + "end": 13880.28, + "probability": 0.9824 + }, + { + "start": 13881.26, + "end": 13884.72, + "probability": 0.9689 + }, + { + "start": 13885.48, + "end": 13886.14, + "probability": 0.9203 + }, + { + "start": 13886.36, + "end": 13888.96, + "probability": 0.7759 + }, + { + "start": 13893.62, + "end": 13893.76, + "probability": 0.076 + }, + { + "start": 13894.58, + "end": 13898.84, + "probability": 0.0002 + }, + { + "start": 13905.32, + "end": 13905.8, + "probability": 0.0204 + }, + { + "start": 13942.34, + "end": 13944.22, + "probability": 0.8081 + }, + { + "start": 13944.48, + "end": 13949.2, + "probability": 0.9946 + }, + { + "start": 13949.96, + "end": 13952.98, + "probability": 0.9308 + }, + { + "start": 13953.96, + "end": 13954.4, + "probability": 0.7204 + }, + { + "start": 13954.5, + "end": 13954.94, + "probability": 0.9284 + }, + { + "start": 13955.1, + "end": 13958.72, + "probability": 0.9843 + }, + { + "start": 13959.34, + "end": 13960.16, + "probability": 0.813 + }, + { + "start": 13960.24, + "end": 13961.18, + "probability": 0.9985 + }, + { + "start": 13961.84, + "end": 13962.52, + "probability": 0.6753 + }, + { + "start": 13963.66, + "end": 13964.88, + "probability": 0.5899 + }, + { + "start": 13965.42, + "end": 13966.86, + "probability": 0.9742 + }, + { + "start": 13967.92, + "end": 13970.62, + "probability": 0.9923 + }, + { + "start": 13970.62, + "end": 13972.98, + "probability": 0.7344 + }, + { + "start": 13973.26, + "end": 13975.08, + "probability": 0.8706 + }, + { + "start": 13983.5, + "end": 13985.7, + "probability": 0.7567 + }, + { + "start": 13988.2, + "end": 13989.14, + "probability": 0.7015 + }, + { + "start": 13989.84, + "end": 13994.9, + "probability": 0.9963 + }, + { + "start": 13996.0, + "end": 13997.2, + "probability": 0.7642 + }, + { + "start": 13998.5, + "end": 13998.78, + "probability": 0.96 + }, + { + "start": 14000.22, + "end": 14003.48, + "probability": 0.9492 + }, + { + "start": 14005.46, + "end": 14006.56, + "probability": 0.9963 + }, + { + "start": 14007.1, + "end": 14010.16, + "probability": 0.9844 + }, + { + "start": 14011.5, + "end": 14013.26, + "probability": 0.9967 + }, + { + "start": 14014.14, + "end": 14015.3, + "probability": 0.6685 + }, + { + "start": 14015.46, + "end": 14018.82, + "probability": 0.8172 + }, + { + "start": 14018.92, + "end": 14019.52, + "probability": 0.7107 + }, + { + "start": 14019.7, + "end": 14024.04, + "probability": 0.9766 + }, + { + "start": 14024.12, + "end": 14025.38, + "probability": 0.9743 + }, + { + "start": 14025.52, + "end": 14025.62, + "probability": 0.5347 + }, + { + "start": 14026.64, + "end": 14028.86, + "probability": 0.9954 + }, + { + "start": 14029.68, + "end": 14032.78, + "probability": 0.9416 + }, + { + "start": 14033.82, + "end": 14035.34, + "probability": 0.8762 + }, + { + "start": 14035.44, + "end": 14039.74, + "probability": 0.9617 + }, + { + "start": 14040.38, + "end": 14042.52, + "probability": 0.9648 + }, + { + "start": 14043.3, + "end": 14044.6, + "probability": 0.7698 + }, + { + "start": 14044.86, + "end": 14047.28, + "probability": 0.7755 + }, + { + "start": 14047.36, + "end": 14047.71, + "probability": 0.8358 + }, + { + "start": 14048.98, + "end": 14051.48, + "probability": 0.9707 + }, + { + "start": 14052.28, + "end": 14053.38, + "probability": 0.7549 + }, + { + "start": 14053.92, + "end": 14055.14, + "probability": 0.7741 + }, + { + "start": 14055.32, + "end": 14056.06, + "probability": 0.5681 + }, + { + "start": 14056.16, + "end": 14059.1, + "probability": 0.9856 + }, + { + "start": 14060.06, + "end": 14061.56, + "probability": 0.9614 + }, + { + "start": 14062.12, + "end": 14064.22, + "probability": 0.8136 + }, + { + "start": 14064.24, + "end": 14064.73, + "probability": 0.5267 + }, + { + "start": 14066.11, + "end": 14068.68, + "probability": 0.9417 + }, + { + "start": 14069.16, + "end": 14072.44, + "probability": 0.7712 + }, + { + "start": 14072.46, + "end": 14074.48, + "probability": 0.6149 + }, + { + "start": 14074.8, + "end": 14076.8, + "probability": 0.516 + }, + { + "start": 14077.52, + "end": 14081.2, + "probability": 0.9883 + }, + { + "start": 14081.34, + "end": 14082.69, + "probability": 0.7383 + }, + { + "start": 14083.28, + "end": 14085.44, + "probability": 0.9755 + }, + { + "start": 14086.68, + "end": 14089.56, + "probability": 0.991 + }, + { + "start": 14089.7, + "end": 14089.92, + "probability": 0.4777 + }, + { + "start": 14089.94, + "end": 14090.58, + "probability": 0.7774 + }, + { + "start": 14091.04, + "end": 14093.18, + "probability": 0.9728 + }, + { + "start": 14093.66, + "end": 14094.28, + "probability": 0.9179 + }, + { + "start": 14095.08, + "end": 14095.26, + "probability": 0.5678 + }, + { + "start": 14095.32, + "end": 14097.3, + "probability": 0.9845 + }, + { + "start": 14097.98, + "end": 14098.78, + "probability": 0.9325 + }, + { + "start": 14099.4, + "end": 14102.68, + "probability": 0.9954 + }, + { + "start": 14102.92, + "end": 14103.66, + "probability": 0.8088 + }, + { + "start": 14104.38, + "end": 14105.56, + "probability": 0.8748 + }, + { + "start": 14105.68, + "end": 14107.36, + "probability": 0.9867 + }, + { + "start": 14107.86, + "end": 14110.72, + "probability": 0.9116 + }, + { + "start": 14110.72, + "end": 14114.66, + "probability": 0.8095 + }, + { + "start": 14115.22, + "end": 14116.52, + "probability": 0.983 + }, + { + "start": 14117.32, + "end": 14117.84, + "probability": 0.8489 + }, + { + "start": 14119.34, + "end": 14120.54, + "probability": 0.9487 + }, + { + "start": 14120.62, + "end": 14125.14, + "probability": 0.96 + }, + { + "start": 14125.4, + "end": 14126.97, + "probability": 0.9863 + }, + { + "start": 14127.04, + "end": 14127.64, + "probability": 0.9672 + }, + { + "start": 14128.9, + "end": 14131.24, + "probability": 0.9321 + }, + { + "start": 14131.96, + "end": 14136.4, + "probability": 0.9744 + }, + { + "start": 14136.4, + "end": 14136.81, + "probability": 0.4372 + }, + { + "start": 14137.12, + "end": 14141.44, + "probability": 0.9686 + }, + { + "start": 14142.32, + "end": 14143.32, + "probability": 0.8987 + }, + { + "start": 14143.44, + "end": 14145.84, + "probability": 0.8302 + }, + { + "start": 14146.88, + "end": 14148.12, + "probability": 0.9026 + }, + { + "start": 14149.28, + "end": 14150.24, + "probability": 0.9809 + }, + { + "start": 14150.76, + "end": 14153.2, + "probability": 0.9941 + }, + { + "start": 14153.76, + "end": 14158.4, + "probability": 0.9782 + }, + { + "start": 14158.5, + "end": 14164.62, + "probability": 0.9919 + }, + { + "start": 14165.18, + "end": 14166.16, + "probability": 0.9059 + }, + { + "start": 14167.48, + "end": 14168.12, + "probability": 0.6609 + }, + { + "start": 14168.28, + "end": 14170.06, + "probability": 0.8835 + }, + { + "start": 14170.62, + "end": 14170.9, + "probability": 0.0527 + }, + { + "start": 14171.1, + "end": 14175.44, + "probability": 0.854 + }, + { + "start": 14176.18, + "end": 14181.62, + "probability": 0.8706 + }, + { + "start": 14181.7, + "end": 14182.3, + "probability": 0.7095 + }, + { + "start": 14182.34, + "end": 14185.28, + "probability": 0.9939 + }, + { + "start": 14185.74, + "end": 14186.44, + "probability": 0.8208 + }, + { + "start": 14186.56, + "end": 14188.28, + "probability": 0.9948 + }, + { + "start": 14188.42, + "end": 14189.9, + "probability": 0.5943 + }, + { + "start": 14189.9, + "end": 14190.14, + "probability": 0.9046 + }, + { + "start": 14190.54, + "end": 14192.66, + "probability": 0.8472 + }, + { + "start": 14192.98, + "end": 14193.34, + "probability": 0.7999 + }, + { + "start": 14193.46, + "end": 14193.76, + "probability": 0.6835 + }, + { + "start": 14193.84, + "end": 14194.74, + "probability": 0.9282 + }, + { + "start": 14195.34, + "end": 14196.92, + "probability": 0.8839 + }, + { + "start": 14197.54, + "end": 14198.34, + "probability": 0.9512 + }, + { + "start": 14199.06, + "end": 14200.57, + "probability": 0.8843 + }, + { + "start": 14201.46, + "end": 14201.9, + "probability": 0.7198 + }, + { + "start": 14201.98, + "end": 14207.86, + "probability": 0.9751 + }, + { + "start": 14208.0, + "end": 14210.92, + "probability": 0.978 + }, + { + "start": 14211.14, + "end": 14212.13, + "probability": 0.9869 + }, + { + "start": 14212.5, + "end": 14213.08, + "probability": 0.885 + }, + { + "start": 14213.42, + "end": 14213.98, + "probability": 0.9201 + }, + { + "start": 14214.34, + "end": 14215.0, + "probability": 0.6254 + }, + { + "start": 14215.32, + "end": 14217.54, + "probability": 0.7088 + }, + { + "start": 14217.74, + "end": 14219.02, + "probability": 0.6095 + }, + { + "start": 14220.0, + "end": 14222.14, + "probability": 0.9827 + }, + { + "start": 14222.7, + "end": 14224.62, + "probability": 0.8856 + }, + { + "start": 14224.76, + "end": 14225.66, + "probability": 0.8991 + }, + { + "start": 14226.04, + "end": 14227.2, + "probability": 0.7826 + }, + { + "start": 14227.5, + "end": 14231.88, + "probability": 0.9961 + }, + { + "start": 14231.92, + "end": 14233.18, + "probability": 0.6994 + }, + { + "start": 14233.26, + "end": 14234.0, + "probability": 0.6952 + }, + { + "start": 14234.42, + "end": 14235.72, + "probability": 0.9197 + }, + { + "start": 14236.04, + "end": 14238.34, + "probability": 0.7993 + }, + { + "start": 14239.34, + "end": 14240.56, + "probability": 0.6669 + }, + { + "start": 14241.04, + "end": 14241.44, + "probability": 0.7422 + }, + { + "start": 14241.56, + "end": 14242.23, + "probability": 0.9669 + }, + { + "start": 14242.44, + "end": 14243.22, + "probability": 0.9722 + }, + { + "start": 14243.5, + "end": 14245.2, + "probability": 0.9839 + }, + { + "start": 14245.54, + "end": 14249.28, + "probability": 0.9976 + }, + { + "start": 14250.0, + "end": 14251.68, + "probability": 0.9119 + }, + { + "start": 14252.18, + "end": 14253.76, + "probability": 0.9917 + }, + { + "start": 14253.86, + "end": 14257.34, + "probability": 0.981 + }, + { + "start": 14257.48, + "end": 14259.46, + "probability": 0.9756 + }, + { + "start": 14259.78, + "end": 14262.82, + "probability": 0.9766 + }, + { + "start": 14263.7, + "end": 14264.28, + "probability": 0.4871 + }, + { + "start": 14264.36, + "end": 14265.58, + "probability": 0.9461 + }, + { + "start": 14266.08, + "end": 14272.22, + "probability": 0.9972 + }, + { + "start": 14272.76, + "end": 14274.14, + "probability": 0.6533 + }, + { + "start": 14274.82, + "end": 14275.02, + "probability": 0.0003 + }, + { + "start": 14275.94, + "end": 14276.8, + "probability": 0.7072 + }, + { + "start": 14276.96, + "end": 14279.1, + "probability": 0.4746 + }, + { + "start": 14279.26, + "end": 14282.06, + "probability": 0.9861 + }, + { + "start": 14282.24, + "end": 14282.88, + "probability": 0.9115 + }, + { + "start": 14282.9, + "end": 14283.42, + "probability": 0.8509 + }, + { + "start": 14283.68, + "end": 14286.08, + "probability": 0.9185 + }, + { + "start": 14286.78, + "end": 14294.04, + "probability": 0.9746 + }, + { + "start": 14294.5, + "end": 14295.6, + "probability": 0.967 + }, + { + "start": 14295.98, + "end": 14297.9, + "probability": 0.877 + }, + { + "start": 14298.04, + "end": 14298.4, + "probability": 0.5482 + }, + { + "start": 14298.74, + "end": 14301.68, + "probability": 0.995 + }, + { + "start": 14301.76, + "end": 14301.84, + "probability": 0.1583 + }, + { + "start": 14301.9, + "end": 14302.48, + "probability": 0.558 + }, + { + "start": 14302.8, + "end": 14303.1, + "probability": 0.6584 + }, + { + "start": 14303.18, + "end": 14306.52, + "probability": 0.9812 + }, + { + "start": 14306.9, + "end": 14308.28, + "probability": 0.9421 + }, + { + "start": 14308.56, + "end": 14309.32, + "probability": 0.642 + }, + { + "start": 14309.36, + "end": 14310.46, + "probability": 0.8203 + }, + { + "start": 14310.74, + "end": 14313.26, + "probability": 0.952 + }, + { + "start": 14313.66, + "end": 14314.74, + "probability": 0.9805 + }, + { + "start": 14315.46, + "end": 14316.62, + "probability": 0.9862 + }, + { + "start": 14317.06, + "end": 14318.7, + "probability": 0.9912 + }, + { + "start": 14318.98, + "end": 14322.5, + "probability": 0.9913 + }, + { + "start": 14323.02, + "end": 14324.08, + "probability": 0.8201 + }, + { + "start": 14325.6, + "end": 14327.26, + "probability": 0.8361 + }, + { + "start": 14327.28, + "end": 14329.74, + "probability": 0.9388 + }, + { + "start": 14330.36, + "end": 14333.64, + "probability": 0.9944 + }, + { + "start": 14335.12, + "end": 14336.88, + "probability": 0.9147 + }, + { + "start": 14337.42, + "end": 14343.16, + "probability": 0.96 + }, + { + "start": 14343.92, + "end": 14349.2, + "probability": 0.9741 + }, + { + "start": 14349.28, + "end": 14349.68, + "probability": 0.8511 + }, + { + "start": 14349.72, + "end": 14350.74, + "probability": 0.9231 + }, + { + "start": 14351.08, + "end": 14351.34, + "probability": 0.7736 + }, + { + "start": 14351.94, + "end": 14352.8, + "probability": 0.755 + }, + { + "start": 14352.86, + "end": 14357.22, + "probability": 0.6472 + }, + { + "start": 14358.08, + "end": 14359.38, + "probability": 0.7993 + }, + { + "start": 14360.5, + "end": 14364.77, + "probability": 0.8711 + }, + { + "start": 14365.12, + "end": 14365.84, + "probability": 0.4487 + }, + { + "start": 14366.06, + "end": 14367.34, + "probability": 0.5513 + }, + { + "start": 14368.58, + "end": 14368.66, + "probability": 0.0216 + }, + { + "start": 14368.66, + "end": 14369.56, + "probability": 0.9442 + }, + { + "start": 14369.7, + "end": 14369.92, + "probability": 0.5076 + }, + { + "start": 14370.78, + "end": 14370.92, + "probability": 0.3823 + }, + { + "start": 14371.06, + "end": 14371.22, + "probability": 0.8286 + }, + { + "start": 14371.48, + "end": 14373.54, + "probability": 0.7852 + }, + { + "start": 14373.6, + "end": 14374.1, + "probability": 0.7768 + }, + { + "start": 14374.16, + "end": 14375.02, + "probability": 0.9949 + }, + { + "start": 14375.26, + "end": 14376.23, + "probability": 0.9937 + }, + { + "start": 14376.82, + "end": 14378.1, + "probability": 0.7213 + }, + { + "start": 14378.78, + "end": 14380.04, + "probability": 0.9846 + }, + { + "start": 14380.16, + "end": 14383.1, + "probability": 0.916 + }, + { + "start": 14383.64, + "end": 14387.12, + "probability": 0.9963 + }, + { + "start": 14387.78, + "end": 14387.86, + "probability": 0.9958 + }, + { + "start": 14388.38, + "end": 14388.48, + "probability": 0.4879 + }, + { + "start": 14388.48, + "end": 14389.01, + "probability": 0.9102 + }, + { + "start": 14389.2, + "end": 14391.55, + "probability": 0.9397 + }, + { + "start": 14392.02, + "end": 14392.42, + "probability": 0.8505 + }, + { + "start": 14392.58, + "end": 14393.1, + "probability": 0.8122 + }, + { + "start": 14393.44, + "end": 14394.14, + "probability": 0.9107 + }, + { + "start": 14394.22, + "end": 14397.6, + "probability": 0.9765 + }, + { + "start": 14397.72, + "end": 14398.64, + "probability": 0.8417 + }, + { + "start": 14399.04, + "end": 14399.5, + "probability": 0.8497 + }, + { + "start": 14399.56, + "end": 14400.3, + "probability": 0.503 + }, + { + "start": 14400.66, + "end": 14402.68, + "probability": 0.9609 + }, + { + "start": 14402.96, + "end": 14405.86, + "probability": 0.9023 + }, + { + "start": 14406.5, + "end": 14408.08, + "probability": 0.936 + }, + { + "start": 14408.34, + "end": 14409.26, + "probability": 0.7456 + }, + { + "start": 14409.38, + "end": 14410.72, + "probability": 0.9976 + }, + { + "start": 14410.86, + "end": 14411.6, + "probability": 0.2413 + }, + { + "start": 14411.72, + "end": 14412.6, + "probability": 0.9968 + }, + { + "start": 14412.66, + "end": 14414.98, + "probability": 0.6733 + }, + { + "start": 14415.08, + "end": 14415.64, + "probability": 0.8376 + }, + { + "start": 14415.74, + "end": 14418.3, + "probability": 0.9963 + }, + { + "start": 14419.2, + "end": 14419.38, + "probability": 0.8806 + }, + { + "start": 14419.5, + "end": 14420.84, + "probability": 0.6967 + }, + { + "start": 14420.92, + "end": 14421.98, + "probability": 0.5299 + }, + { + "start": 14422.08, + "end": 14423.6, + "probability": 0.8121 + }, + { + "start": 14424.5, + "end": 14425.6, + "probability": 0.6427 + }, + { + "start": 14425.98, + "end": 14427.58, + "probability": 0.6771 + }, + { + "start": 14427.64, + "end": 14427.72, + "probability": 0.744 + }, + { + "start": 14427.82, + "end": 14428.38, + "probability": 0.7875 + }, + { + "start": 14428.48, + "end": 14428.88, + "probability": 0.7365 + }, + { + "start": 14429.22, + "end": 14429.32, + "probability": 0.1089 + }, + { + "start": 14429.46, + "end": 14430.34, + "probability": 0.9335 + }, + { + "start": 14430.64, + "end": 14432.0, + "probability": 0.5436 + }, + { + "start": 14432.16, + "end": 14433.2, + "probability": 0.7469 + }, + { + "start": 14433.44, + "end": 14435.22, + "probability": 0.9753 + }, + { + "start": 14435.26, + "end": 14436.26, + "probability": 0.9312 + }, + { + "start": 14436.36, + "end": 14437.62, + "probability": 0.9788 + }, + { + "start": 14437.92, + "end": 14438.74, + "probability": 0.8619 + }, + { + "start": 14438.84, + "end": 14439.39, + "probability": 0.1489 + }, + { + "start": 14440.72, + "end": 14442.48, + "probability": 0.5776 + }, + { + "start": 14442.62, + "end": 14442.62, + "probability": 0.5583 + }, + { + "start": 14442.76, + "end": 14445.8, + "probability": 0.988 + }, + { + "start": 14445.93, + "end": 14448.86, + "probability": 0.9534 + }, + { + "start": 14449.24, + "end": 14453.54, + "probability": 0.9987 + }, + { + "start": 14453.78, + "end": 14454.74, + "probability": 0.8947 + }, + { + "start": 14455.14, + "end": 14457.02, + "probability": 0.9698 + }, + { + "start": 14457.48, + "end": 14459.28, + "probability": 0.961 + }, + { + "start": 14459.56, + "end": 14462.88, + "probability": 0.9377 + }, + { + "start": 14462.94, + "end": 14463.74, + "probability": 0.9829 + }, + { + "start": 14464.5, + "end": 14465.86, + "probability": 0.7861 + }, + { + "start": 14466.04, + "end": 14466.48, + "probability": 0.5707 + }, + { + "start": 14466.66, + "end": 14467.9, + "probability": 0.9036 + }, + { + "start": 14468.42, + "end": 14471.77, + "probability": 0.9968 + }, + { + "start": 14472.64, + "end": 14474.54, + "probability": 0.9824 + }, + { + "start": 14475.54, + "end": 14476.5, + "probability": 0.5879 + }, + { + "start": 14476.6, + "end": 14478.4, + "probability": 0.9958 + }, + { + "start": 14478.78, + "end": 14482.28, + "probability": 0.98 + }, + { + "start": 14482.6, + "end": 14483.62, + "probability": 0.8874 + }, + { + "start": 14484.02, + "end": 14484.5, + "probability": 0.6533 + }, + { + "start": 14484.8, + "end": 14488.1, + "probability": 0.9662 + }, + { + "start": 14488.34, + "end": 14489.76, + "probability": 0.877 + }, + { + "start": 14492.28, + "end": 14495.52, + "probability": 0.2493 + }, + { + "start": 14496.54, + "end": 14498.58, + "probability": 0.4262 + }, + { + "start": 14501.46, + "end": 14503.42, + "probability": 0.6105 + }, + { + "start": 14504.08, + "end": 14504.86, + "probability": 0.4921 + }, + { + "start": 14505.12, + "end": 14507.24, + "probability": 0.7922 + }, + { + "start": 14507.28, + "end": 14508.58, + "probability": 0.9951 + }, + { + "start": 14508.66, + "end": 14511.56, + "probability": 0.9524 + }, + { + "start": 14512.14, + "end": 14513.1, + "probability": 0.7367 + }, + { + "start": 14513.12, + "end": 14514.3, + "probability": 0.4471 + }, + { + "start": 14514.8, + "end": 14515.5, + "probability": 0.8928 + }, + { + "start": 14515.6, + "end": 14516.04, + "probability": 0.4879 + }, + { + "start": 14516.1, + "end": 14518.16, + "probability": 0.8977 + }, + { + "start": 14518.2, + "end": 14519.32, + "probability": 0.9935 + }, + { + "start": 14519.38, + "end": 14519.98, + "probability": 0.6389 + }, + { + "start": 14520.08, + "end": 14520.8, + "probability": 0.1205 + }, + { + "start": 14520.82, + "end": 14521.9, + "probability": 0.9737 + }, + { + "start": 14522.02, + "end": 14522.62, + "probability": 0.6346 + }, + { + "start": 14522.64, + "end": 14523.66, + "probability": 0.9807 + }, + { + "start": 14523.74, + "end": 14524.02, + "probability": 0.8828 + }, + { + "start": 14524.1, + "end": 14525.16, + "probability": 0.7582 + }, + { + "start": 14525.36, + "end": 14527.24, + "probability": 0.7367 + }, + { + "start": 14527.48, + "end": 14531.18, + "probability": 0.963 + }, + { + "start": 14532.13, + "end": 14533.46, + "probability": 0.9056 + }, + { + "start": 14533.52, + "end": 14535.72, + "probability": 0.96 + }, + { + "start": 14535.92, + "end": 14537.22, + "probability": 0.6485 + }, + { + "start": 14538.06, + "end": 14538.76, + "probability": 0.9375 + }, + { + "start": 14538.98, + "end": 14539.6, + "probability": 0.7305 + }, + { + "start": 14539.64, + "end": 14542.25, + "probability": 0.7201 + }, + { + "start": 14542.36, + "end": 14542.64, + "probability": 0.3385 + }, + { + "start": 14542.64, + "end": 14543.92, + "probability": 0.6488 + }, + { + "start": 14544.98, + "end": 14546.42, + "probability": 0.5395 + }, + { + "start": 14547.64, + "end": 14548.8, + "probability": 0.9282 + }, + { + "start": 14551.84, + "end": 14555.18, + "probability": 0.7331 + }, + { + "start": 14555.72, + "end": 14557.52, + "probability": 0.6758 + }, + { + "start": 14559.76, + "end": 14559.92, + "probability": 0.1293 + }, + { + "start": 14560.38, + "end": 14562.94, + "probability": 0.8839 + }, + { + "start": 14564.18, + "end": 14567.14, + "probability": 0.9599 + }, + { + "start": 14568.14, + "end": 14569.28, + "probability": 0.9624 + }, + { + "start": 14570.24, + "end": 14572.86, + "probability": 0.9951 + }, + { + "start": 14572.94, + "end": 14576.14, + "probability": 0.8244 + }, + { + "start": 14577.64, + "end": 14580.18, + "probability": 0.9272 + }, + { + "start": 14581.96, + "end": 14582.64, + "probability": 0.7293 + }, + { + "start": 14583.02, + "end": 14584.58, + "probability": 0.9946 + }, + { + "start": 14585.14, + "end": 14587.44, + "probability": 0.9814 + }, + { + "start": 14588.76, + "end": 14591.98, + "probability": 0.9974 + }, + { + "start": 14594.9, + "end": 14599.2, + "probability": 0.6462 + }, + { + "start": 14599.82, + "end": 14602.44, + "probability": 0.9161 + }, + { + "start": 14602.58, + "end": 14602.9, + "probability": 0.6907 + }, + { + "start": 14603.04, + "end": 14609.1, + "probability": 0.8857 + }, + { + "start": 14609.46, + "end": 14610.4, + "probability": 0.96 + }, + { + "start": 14611.52, + "end": 14615.12, + "probability": 0.9668 + }, + { + "start": 14615.22, + "end": 14617.38, + "probability": 0.732 + }, + { + "start": 14618.74, + "end": 14619.1, + "probability": 0.6824 + }, + { + "start": 14619.22, + "end": 14620.92, + "probability": 0.8951 + }, + { + "start": 14621.56, + "end": 14625.5, + "probability": 0.7766 + }, + { + "start": 14626.46, + "end": 14626.7, + "probability": 0.6385 + }, + { + "start": 14629.08, + "end": 14631.5, + "probability": 0.1202 + }, + { + "start": 14632.02, + "end": 14632.36, + "probability": 0.1731 + }, + { + "start": 14632.36, + "end": 14633.0, + "probability": 0.0488 + }, + { + "start": 14633.42, + "end": 14635.54, + "probability": 0.9561 + }, + { + "start": 14635.68, + "end": 14636.74, + "probability": 0.7841 + }, + { + "start": 14636.98, + "end": 14637.35, + "probability": 0.0549 + }, + { + "start": 14639.58, + "end": 14639.58, + "probability": 0.0434 + }, + { + "start": 14639.58, + "end": 14642.78, + "probability": 0.9121 + }, + { + "start": 14642.9, + "end": 14643.52, + "probability": 0.8662 + }, + { + "start": 14644.66, + "end": 14645.9, + "probability": 0.6875 + }, + { + "start": 14646.2, + "end": 14648.61, + "probability": 0.8413 + }, + { + "start": 14649.98, + "end": 14652.54, + "probability": 0.9761 + }, + { + "start": 14652.6, + "end": 14653.4, + "probability": 0.91 + }, + { + "start": 14653.64, + "end": 14656.5, + "probability": 0.9604 + }, + { + "start": 14657.24, + "end": 14660.46, + "probability": 0.9963 + }, + { + "start": 14661.06, + "end": 14661.18, + "probability": 0.2245 + }, + { + "start": 14662.24, + "end": 14664.34, + "probability": 0.848 + }, + { + "start": 14664.96, + "end": 14666.12, + "probability": 0.2903 + }, + { + "start": 14666.2, + "end": 14666.96, + "probability": 0.6514 + }, + { + "start": 14667.04, + "end": 14670.66, + "probability": 0.9753 + }, + { + "start": 14670.9, + "end": 14671.52, + "probability": 0.77 + }, + { + "start": 14671.6, + "end": 14676.44, + "probability": 0.9678 + }, + { + "start": 14676.7, + "end": 14676.74, + "probability": 0.1138 + }, + { + "start": 14676.88, + "end": 14680.64, + "probability": 0.2588 + }, + { + "start": 14681.42, + "end": 14684.76, + "probability": 0.8123 + }, + { + "start": 14685.0, + "end": 14685.1, + "probability": 0.7466 + }, + { + "start": 14685.2, + "end": 14688.48, + "probability": 0.9011 + }, + { + "start": 14688.76, + "end": 14689.9, + "probability": 0.7478 + }, + { + "start": 14690.84, + "end": 14694.7, + "probability": 0.8244 + }, + { + "start": 14694.7, + "end": 14694.91, + "probability": 0.3234 + }, + { + "start": 14695.44, + "end": 14696.2, + "probability": 0.1073 + }, + { + "start": 14696.22, + "end": 14698.42, + "probability": 0.7228 + }, + { + "start": 14698.58, + "end": 14701.94, + "probability": 0.9614 + }, + { + "start": 14702.5, + "end": 14704.68, + "probability": 0.9007 + }, + { + "start": 14706.06, + "end": 14709.12, + "probability": 0.938 + }, + { + "start": 14709.24, + "end": 14711.6, + "probability": 0.6939 + }, + { + "start": 14711.96, + "end": 14714.74, + "probability": 0.99 + }, + { + "start": 14715.06, + "end": 14716.4, + "probability": 0.5855 + }, + { + "start": 14716.58, + "end": 14716.88, + "probability": 0.2253 + }, + { + "start": 14716.96, + "end": 14717.76, + "probability": 0.8923 + }, + { + "start": 14717.84, + "end": 14720.04, + "probability": 0.7346 + }, + { + "start": 14720.78, + "end": 14721.88, + "probability": 0.8263 + }, + { + "start": 14723.16, + "end": 14725.78, + "probability": 0.5789 + }, + { + "start": 14726.1, + "end": 14726.87, + "probability": 0.4256 + }, + { + "start": 14727.2, + "end": 14730.72, + "probability": 0.8887 + }, + { + "start": 14730.72, + "end": 14730.79, + "probability": 0.2928 + }, + { + "start": 14731.6, + "end": 14732.2, + "probability": 0.5065 + }, + { + "start": 14732.28, + "end": 14732.84, + "probability": 0.6816 + }, + { + "start": 14732.86, + "end": 14733.28, + "probability": 0.4157 + }, + { + "start": 14733.54, + "end": 14736.26, + "probability": 0.5822 + }, + { + "start": 14736.5, + "end": 14740.06, + "probability": 0.8214 + }, + { + "start": 14740.28, + "end": 14740.84, + "probability": 0.8844 + }, + { + "start": 14740.96, + "end": 14742.72, + "probability": 0.9636 + }, + { + "start": 14742.84, + "end": 14743.3, + "probability": 0.5217 + }, + { + "start": 14743.34, + "end": 14744.38, + "probability": 0.8768 + }, + { + "start": 14744.42, + "end": 14745.26, + "probability": 0.7014 + }, + { + "start": 14745.32, + "end": 14746.9, + "probability": 0.9669 + }, + { + "start": 14747.08, + "end": 14749.4, + "probability": 0.9849 + }, + { + "start": 14749.46, + "end": 14749.98, + "probability": 0.7743 + }, + { + "start": 14750.28, + "end": 14753.36, + "probability": 0.9197 + }, + { + "start": 14753.6, + "end": 14757.68, + "probability": 0.9033 + }, + { + "start": 14757.9, + "end": 14759.88, + "probability": 0.6164 + }, + { + "start": 14762.32, + "end": 14765.38, + "probability": 0.9709 + }, + { + "start": 14765.38, + "end": 14770.08, + "probability": 0.681 + }, + { + "start": 14770.28, + "end": 14771.68, + "probability": 0.4674 + }, + { + "start": 14772.42, + "end": 14775.56, + "probability": 0.9755 + }, + { + "start": 14776.16, + "end": 14778.3, + "probability": 0.9322 + }, + { + "start": 14778.78, + "end": 14780.78, + "probability": 0.9971 + }, + { + "start": 14785.26, + "end": 14786.56, + "probability": 0.3657 + }, + { + "start": 14788.56, + "end": 14790.16, + "probability": 0.9314 + }, + { + "start": 14791.58, + "end": 14793.08, + "probability": 0.9303 + }, + { + "start": 14794.66, + "end": 14796.62, + "probability": 0.8662 + }, + { + "start": 14796.94, + "end": 14798.1, + "probability": 0.8102 + }, + { + "start": 14798.16, + "end": 14799.78, + "probability": 0.799 + }, + { + "start": 14799.9, + "end": 14801.1, + "probability": 0.9561 + }, + { + "start": 14801.2, + "end": 14802.11, + "probability": 0.881 + }, + { + "start": 14802.78, + "end": 14805.68, + "probability": 0.8936 + }, + { + "start": 14805.68, + "end": 14810.72, + "probability": 0.986 + }, + { + "start": 14811.36, + "end": 14815.2, + "probability": 0.9024 + }, + { + "start": 14816.12, + "end": 14817.66, + "probability": 0.8074 + }, + { + "start": 14818.08, + "end": 14821.42, + "probability": 0.989 + }, + { + "start": 14822.5, + "end": 14823.58, + "probability": 0.9774 + }, + { + "start": 14823.64, + "end": 14829.12, + "probability": 0.9768 + }, + { + "start": 14830.16, + "end": 14831.34, + "probability": 0.9209 + }, + { + "start": 14831.86, + "end": 14833.04, + "probability": 0.9102 + }, + { + "start": 14834.3, + "end": 14835.48, + "probability": 0.7115 + }, + { + "start": 14837.16, + "end": 14841.02, + "probability": 0.9933 + }, + { + "start": 14841.76, + "end": 14843.36, + "probability": 0.9347 + }, + { + "start": 14844.42, + "end": 14847.64, + "probability": 0.9985 + }, + { + "start": 14847.64, + "end": 14852.06, + "probability": 0.8523 + }, + { + "start": 14852.22, + "end": 14853.34, + "probability": 0.9784 + }, + { + "start": 14853.98, + "end": 14856.32, + "probability": 0.981 + }, + { + "start": 14857.16, + "end": 14859.36, + "probability": 0.8643 + }, + { + "start": 14860.6, + "end": 14862.76, + "probability": 0.9683 + }, + { + "start": 14863.5, + "end": 14865.84, + "probability": 0.9834 + }, + { + "start": 14866.44, + "end": 14870.66, + "probability": 0.9928 + }, + { + "start": 14871.58, + "end": 14872.4, + "probability": 0.8201 + }, + { + "start": 14873.1, + "end": 14877.54, + "probability": 0.9609 + }, + { + "start": 14878.84, + "end": 14879.9, + "probability": 0.9961 + }, + { + "start": 14880.44, + "end": 14882.98, + "probability": 0.9421 + }, + { + "start": 14883.54, + "end": 14887.2, + "probability": 0.9763 + }, + { + "start": 14888.52, + "end": 14890.94, + "probability": 0.9858 + }, + { + "start": 14892.72, + "end": 14896.84, + "probability": 0.9722 + }, + { + "start": 14897.46, + "end": 14898.0, + "probability": 0.6573 + }, + { + "start": 14899.3, + "end": 14901.7, + "probability": 0.7615 + }, + { + "start": 14902.74, + "end": 14904.88, + "probability": 0.856 + }, + { + "start": 14906.82, + "end": 14910.62, + "probability": 0.8753 + }, + { + "start": 14911.58, + "end": 14912.32, + "probability": 0.9691 + }, + { + "start": 14913.44, + "end": 14918.16, + "probability": 0.9625 + }, + { + "start": 14919.08, + "end": 14925.14, + "probability": 0.9874 + }, + { + "start": 14926.16, + "end": 14929.92, + "probability": 0.995 + }, + { + "start": 14930.68, + "end": 14932.18, + "probability": 0.9988 + }, + { + "start": 14933.58, + "end": 14937.09, + "probability": 0.9977 + }, + { + "start": 14937.24, + "end": 14941.28, + "probability": 0.9606 + }, + { + "start": 14942.58, + "end": 14945.52, + "probability": 0.9915 + }, + { + "start": 14946.42, + "end": 14950.18, + "probability": 0.9937 + }, + { + "start": 14951.54, + "end": 14952.54, + "probability": 0.6705 + }, + { + "start": 14953.64, + "end": 14956.78, + "probability": 0.7126 + }, + { + "start": 14957.28, + "end": 14961.4, + "probability": 0.9897 + }, + { + "start": 14961.86, + "end": 14962.52, + "probability": 0.9471 + }, + { + "start": 14962.78, + "end": 14963.58, + "probability": 0.8756 + }, + { + "start": 14963.84, + "end": 14964.54, + "probability": 0.8375 + }, + { + "start": 14965.94, + "end": 14968.36, + "probability": 0.9788 + }, + { + "start": 14969.28, + "end": 14971.12, + "probability": 0.9248 + }, + { + "start": 14971.8, + "end": 14974.22, + "probability": 0.9087 + }, + { + "start": 14975.44, + "end": 14980.36, + "probability": 0.9081 + }, + { + "start": 14980.72, + "end": 14985.08, + "probability": 0.988 + }, + { + "start": 14986.34, + "end": 14990.08, + "probability": 0.985 + }, + { + "start": 14990.54, + "end": 14996.58, + "probability": 0.9951 + }, + { + "start": 14997.62, + "end": 14998.4, + "probability": 0.7049 + }, + { + "start": 14998.5, + "end": 14999.32, + "probability": 0.8902 + }, + { + "start": 14999.36, + "end": 15001.08, + "probability": 0.7684 + }, + { + "start": 15001.24, + "end": 15002.26, + "probability": 0.9049 + }, + { + "start": 15002.78, + "end": 15007.82, + "probability": 0.946 + }, + { + "start": 15008.98, + "end": 15012.24, + "probability": 0.9861 + }, + { + "start": 15013.48, + "end": 15016.66, + "probability": 0.9702 + }, + { + "start": 15017.98, + "end": 15022.18, + "probability": 0.8773 + }, + { + "start": 15024.42, + "end": 15027.14, + "probability": 0.8718 + }, + { + "start": 15028.6, + "end": 15030.64, + "probability": 0.6326 + }, + { + "start": 15031.28, + "end": 15032.34, + "probability": 0.7332 + }, + { + "start": 15033.9, + "end": 15035.54, + "probability": 0.8846 + }, + { + "start": 15036.4, + "end": 15039.9, + "probability": 0.9923 + }, + { + "start": 15040.42, + "end": 15046.92, + "probability": 0.9775 + }, + { + "start": 15048.26, + "end": 15049.74, + "probability": 0.5939 + }, + { + "start": 15050.76, + "end": 15052.24, + "probability": 0.9883 + }, + { + "start": 15053.4, + "end": 15058.8, + "probability": 0.9526 + }, + { + "start": 15059.68, + "end": 15062.9, + "probability": 0.9919 + }, + { + "start": 15064.68, + "end": 15068.6, + "probability": 0.931 + }, + { + "start": 15069.76, + "end": 15070.92, + "probability": 0.816 + }, + { + "start": 15071.82, + "end": 15074.5, + "probability": 0.9912 + }, + { + "start": 15075.26, + "end": 15076.42, + "probability": 0.9303 + }, + { + "start": 15077.44, + "end": 15078.26, + "probability": 0.9987 + }, + { + "start": 15079.6, + "end": 15081.06, + "probability": 0.9089 + }, + { + "start": 15081.62, + "end": 15084.08, + "probability": 0.4028 + }, + { + "start": 15086.82, + "end": 15087.76, + "probability": 0.2846 + }, + { + "start": 15088.06, + "end": 15095.26, + "probability": 0.8795 + }, + { + "start": 15096.08, + "end": 15099.28, + "probability": 0.9604 + }, + { + "start": 15100.2, + "end": 15101.46, + "probability": 0.9928 + }, + { + "start": 15102.28, + "end": 15103.14, + "probability": 0.8457 + }, + { + "start": 15104.52, + "end": 15109.84, + "probability": 0.9872 + }, + { + "start": 15110.88, + "end": 15114.08, + "probability": 0.9958 + }, + { + "start": 15114.64, + "end": 15116.06, + "probability": 0.9839 + }, + { + "start": 15116.96, + "end": 15123.26, + "probability": 0.9978 + }, + { + "start": 15123.96, + "end": 15124.64, + "probability": 0.612 + }, + { + "start": 15125.64, + "end": 15127.38, + "probability": 0.8852 + }, + { + "start": 15127.48, + "end": 15130.18, + "probability": 0.7289 + }, + { + "start": 15130.36, + "end": 15131.74, + "probability": 0.4575 + }, + { + "start": 15132.72, + "end": 15136.36, + "probability": 0.9819 + }, + { + "start": 15136.52, + "end": 15137.8, + "probability": 0.5383 + }, + { + "start": 15138.54, + "end": 15142.4, + "probability": 0.8329 + }, + { + "start": 15142.96, + "end": 15144.98, + "probability": 0.6252 + }, + { + "start": 15150.27, + "end": 15152.79, + "probability": 0.9707 + }, + { + "start": 15154.7, + "end": 15157.4, + "probability": 0.5564 + }, + { + "start": 15159.28, + "end": 15163.3, + "probability": 0.9754 + }, + { + "start": 15164.88, + "end": 15166.04, + "probability": 0.9103 + }, + { + "start": 15166.78, + "end": 15167.86, + "probability": 0.9591 + }, + { + "start": 15171.98, + "end": 15172.52, + "probability": 0.47 + }, + { + "start": 15172.52, + "end": 15175.9, + "probability": 0.914 + }, + { + "start": 15175.9, + "end": 15179.58, + "probability": 0.9645 + }, + { + "start": 15179.7, + "end": 15179.94, + "probability": 0.4057 + }, + { + "start": 15180.06, + "end": 15180.12, + "probability": 0.5333 + }, + { + "start": 15180.2, + "end": 15180.86, + "probability": 0.824 + }, + { + "start": 15180.92, + "end": 15181.7, + "probability": 0.8151 + }, + { + "start": 15183.24, + "end": 15190.84, + "probability": 0.9838 + }, + { + "start": 15192.14, + "end": 15194.18, + "probability": 0.996 + }, + { + "start": 15196.16, + "end": 15199.98, + "probability": 0.9866 + }, + { + "start": 15201.24, + "end": 15203.0, + "probability": 0.91 + }, + { + "start": 15203.12, + "end": 15203.76, + "probability": 0.8334 + }, + { + "start": 15204.24, + "end": 15205.06, + "probability": 0.9873 + }, + { + "start": 15206.7, + "end": 15210.96, + "probability": 0.9957 + }, + { + "start": 15212.16, + "end": 15215.18, + "probability": 0.9823 + }, + { + "start": 15215.24, + "end": 15216.22, + "probability": 0.7585 + }, + { + "start": 15216.9, + "end": 15217.48, + "probability": 0.7593 + }, + { + "start": 15218.46, + "end": 15219.88, + "probability": 0.9646 + }, + { + "start": 15220.52, + "end": 15223.06, + "probability": 0.9855 + }, + { + "start": 15224.36, + "end": 15225.92, + "probability": 0.804 + }, + { + "start": 15226.02, + "end": 15227.14, + "probability": 0.7993 + }, + { + "start": 15227.56, + "end": 15228.12, + "probability": 0.7297 + }, + { + "start": 15228.21, + "end": 15229.72, + "probability": 0.7471 + }, + { + "start": 15231.16, + "end": 15233.28, + "probability": 0.9351 + }, + { + "start": 15233.96, + "end": 15237.48, + "probability": 0.9692 + }, + { + "start": 15237.64, + "end": 15240.6, + "probability": 0.9775 + }, + { + "start": 15242.6, + "end": 15243.92, + "probability": 0.7717 + }, + { + "start": 15245.06, + "end": 15245.5, + "probability": 0.9954 + }, + { + "start": 15246.24, + "end": 15249.3, + "probability": 0.9297 + }, + { + "start": 15250.58, + "end": 15255.02, + "probability": 0.9984 + }, + { + "start": 15255.02, + "end": 15257.94, + "probability": 0.8306 + }, + { + "start": 15259.52, + "end": 15260.68, + "probability": 0.9962 + }, + { + "start": 15261.4, + "end": 15261.98, + "probability": 0.931 + }, + { + "start": 15263.48, + "end": 15264.46, + "probability": 0.7984 + }, + { + "start": 15264.72, + "end": 15267.66, + "probability": 0.977 + }, + { + "start": 15267.66, + "end": 15269.5, + "probability": 0.997 + }, + { + "start": 15270.32, + "end": 15273.12, + "probability": 0.9189 + }, + { + "start": 15274.8, + "end": 15277.72, + "probability": 0.9915 + }, + { + "start": 15277.8, + "end": 15279.64, + "probability": 0.9985 + }, + { + "start": 15279.76, + "end": 15280.32, + "probability": 0.9449 + }, + { + "start": 15280.88, + "end": 15284.0, + "probability": 0.9944 + }, + { + "start": 15285.04, + "end": 15286.04, + "probability": 0.9497 + }, + { + "start": 15287.18, + "end": 15291.13, + "probability": 0.9617 + }, + { + "start": 15293.28, + "end": 15294.4, + "probability": 0.3528 + }, + { + "start": 15295.42, + "end": 15298.22, + "probability": 0.6824 + }, + { + "start": 15300.12, + "end": 15301.86, + "probability": 0.8694 + }, + { + "start": 15302.28, + "end": 15303.02, + "probability": 0.8174 + }, + { + "start": 15303.06, + "end": 15304.1, + "probability": 0.9556 + }, + { + "start": 15304.86, + "end": 15306.64, + "probability": 0.9843 + }, + { + "start": 15308.16, + "end": 15309.26, + "probability": 0.728 + }, + { + "start": 15310.06, + "end": 15311.16, + "probability": 0.8906 + }, + { + "start": 15312.1, + "end": 15313.78, + "probability": 0.9824 + }, + { + "start": 15314.5, + "end": 15315.62, + "probability": 0.9808 + }, + { + "start": 15315.68, + "end": 15316.52, + "probability": 0.9785 + }, + { + "start": 15316.62, + "end": 15320.02, + "probability": 0.9894 + }, + { + "start": 15321.2, + "end": 15322.72, + "probability": 0.9983 + }, + { + "start": 15323.24, + "end": 15323.58, + "probability": 0.9253 + }, + { + "start": 15323.72, + "end": 15329.18, + "probability": 0.9867 + }, + { + "start": 15330.36, + "end": 15332.36, + "probability": 0.9977 + }, + { + "start": 15333.56, + "end": 15335.18, + "probability": 0.9973 + }, + { + "start": 15336.02, + "end": 15338.24, + "probability": 0.9404 + }, + { + "start": 15338.72, + "end": 15339.5, + "probability": 0.929 + }, + { + "start": 15340.12, + "end": 15341.9, + "probability": 0.9963 + }, + { + "start": 15341.98, + "end": 15345.64, + "probability": 0.9935 + }, + { + "start": 15347.7, + "end": 15352.32, + "probability": 0.9604 + }, + { + "start": 15352.56, + "end": 15353.84, + "probability": 0.9175 + }, + { + "start": 15353.88, + "end": 15355.08, + "probability": 0.8688 + }, + { + "start": 15355.14, + "end": 15359.72, + "probability": 0.9284 + }, + { + "start": 15359.98, + "end": 15363.46, + "probability": 0.989 + }, + { + "start": 15363.54, + "end": 15363.8, + "probability": 0.8128 + }, + { + "start": 15363.94, + "end": 15365.02, + "probability": 0.8242 + }, + { + "start": 15366.06, + "end": 15367.16, + "probability": 0.936 + }, + { + "start": 15368.28, + "end": 15370.02, + "probability": 0.9744 + }, + { + "start": 15370.22, + "end": 15375.23, + "probability": 0.9657 + }, + { + "start": 15376.22, + "end": 15381.38, + "probability": 0.9985 + }, + { + "start": 15382.4, + "end": 15383.66, + "probability": 0.7909 + }, + { + "start": 15384.26, + "end": 15386.2, + "probability": 0.7873 + }, + { + "start": 15386.34, + "end": 15387.28, + "probability": 0.9927 + }, + { + "start": 15387.44, + "end": 15389.0, + "probability": 0.7505 + }, + { + "start": 15389.18, + "end": 15394.32, + "probability": 0.9789 + }, + { + "start": 15395.26, + "end": 15397.4, + "probability": 0.9845 + }, + { + "start": 15398.0, + "end": 15398.36, + "probability": 0.5747 + }, + { + "start": 15398.66, + "end": 15399.02, + "probability": 0.9307 + }, + { + "start": 15399.06, + "end": 15403.44, + "probability": 0.916 + }, + { + "start": 15403.52, + "end": 15404.04, + "probability": 0.8643 + }, + { + "start": 15404.08, + "end": 15406.52, + "probability": 0.9502 + }, + { + "start": 15407.08, + "end": 15411.12, + "probability": 0.9647 + }, + { + "start": 15411.12, + "end": 15416.58, + "probability": 0.9652 + }, + { + "start": 15417.0, + "end": 15421.12, + "probability": 0.9798 + }, + { + "start": 15421.52, + "end": 15423.9, + "probability": 0.9958 + }, + { + "start": 15424.04, + "end": 15424.24, + "probability": 0.8648 + }, + { + "start": 15424.28, + "end": 15427.08, + "probability": 0.9893 + }, + { + "start": 15427.58, + "end": 15429.38, + "probability": 0.9854 + }, + { + "start": 15429.48, + "end": 15430.78, + "probability": 0.8863 + }, + { + "start": 15431.62, + "end": 15435.62, + "probability": 0.9593 + }, + { + "start": 15437.67, + "end": 15441.48, + "probability": 0.9981 + }, + { + "start": 15441.48, + "end": 15444.6, + "probability": 0.9968 + }, + { + "start": 15444.92, + "end": 15445.32, + "probability": 0.8203 + }, + { + "start": 15445.4, + "end": 15445.82, + "probability": 0.7258 + }, + { + "start": 15446.2, + "end": 15450.8, + "probability": 0.9921 + }, + { + "start": 15451.3, + "end": 15452.62, + "probability": 0.9619 + }, + { + "start": 15452.92, + "end": 15453.28, + "probability": 0.741 + }, + { + "start": 15454.24, + "end": 15454.68, + "probability": 0.5128 + }, + { + "start": 15454.7, + "end": 15457.08, + "probability": 0.5998 + }, + { + "start": 15458.22, + "end": 15459.24, + "probability": 0.5235 + }, + { + "start": 15459.28, + "end": 15460.04, + "probability": 0.611 + }, + { + "start": 15472.7, + "end": 15474.7, + "probability": 0.6887 + }, + { + "start": 15475.38, + "end": 15478.98, + "probability": 0.9624 + }, + { + "start": 15479.02, + "end": 15481.1, + "probability": 0.8282 + }, + { + "start": 15481.62, + "end": 15485.84, + "probability": 0.9664 + }, + { + "start": 15486.9, + "end": 15489.94, + "probability": 0.994 + }, + { + "start": 15490.88, + "end": 15492.7, + "probability": 0.9529 + }, + { + "start": 15492.86, + "end": 15495.36, + "probability": 0.8096 + }, + { + "start": 15495.4, + "end": 15498.22, + "probability": 0.9907 + }, + { + "start": 15499.28, + "end": 15502.12, + "probability": 0.9823 + }, + { + "start": 15502.12, + "end": 15506.01, + "probability": 0.9944 + }, + { + "start": 15506.72, + "end": 15509.8, + "probability": 0.9965 + }, + { + "start": 15510.5, + "end": 15514.04, + "probability": 0.9983 + }, + { + "start": 15514.2, + "end": 15518.38, + "probability": 0.9653 + }, + { + "start": 15519.36, + "end": 15521.52, + "probability": 0.9772 + }, + { + "start": 15521.52, + "end": 15523.98, + "probability": 0.9687 + }, + { + "start": 15524.48, + "end": 15524.58, + "probability": 0.4311 + }, + { + "start": 15524.72, + "end": 15524.96, + "probability": 0.8473 + }, + { + "start": 15525.12, + "end": 15528.94, + "probability": 0.9843 + }, + { + "start": 15528.94, + "end": 15533.28, + "probability": 0.9873 + }, + { + "start": 15533.9, + "end": 15538.0, + "probability": 0.9921 + }, + { + "start": 15538.66, + "end": 15541.36, + "probability": 0.99 + }, + { + "start": 15541.5, + "end": 15543.06, + "probability": 0.8097 + }, + { + "start": 15543.82, + "end": 15546.6, + "probability": 0.9604 + }, + { + "start": 15546.6, + "end": 15549.08, + "probability": 0.9891 + }, + { + "start": 15549.6, + "end": 15549.82, + "probability": 0.494 + }, + { + "start": 15549.86, + "end": 15550.34, + "probability": 0.8115 + }, + { + "start": 15550.42, + "end": 15555.96, + "probability": 0.9464 + }, + { + "start": 15557.22, + "end": 15559.64, + "probability": 0.9831 + }, + { + "start": 15559.72, + "end": 15563.4, + "probability": 0.967 + }, + { + "start": 15563.98, + "end": 15564.62, + "probability": 0.7727 + }, + { + "start": 15564.68, + "end": 15567.0, + "probability": 0.6879 + }, + { + "start": 15567.08, + "end": 15567.9, + "probability": 0.8837 + }, + { + "start": 15568.48, + "end": 15569.9, + "probability": 0.7783 + }, + { + "start": 15570.0, + "end": 15571.56, + "probability": 0.9876 + }, + { + "start": 15571.94, + "end": 15573.66, + "probability": 0.9852 + }, + { + "start": 15573.72, + "end": 15579.74, + "probability": 0.9837 + }, + { + "start": 15580.42, + "end": 15581.38, + "probability": 0.686 + }, + { + "start": 15581.4, + "end": 15584.86, + "probability": 0.7502 + }, + { + "start": 15585.24, + "end": 15587.44, + "probability": 0.9318 + }, + { + "start": 15588.12, + "end": 15591.74, + "probability": 0.9838 + }, + { + "start": 15591.94, + "end": 15592.22, + "probability": 0.5968 + }, + { + "start": 15592.78, + "end": 15594.08, + "probability": 0.423 + }, + { + "start": 15594.34, + "end": 15597.5, + "probability": 0.8767 + }, + { + "start": 15599.52, + "end": 15603.14, + "probability": 0.732 + }, + { + "start": 15604.56, + "end": 15607.22, + "probability": 0.8325 + }, + { + "start": 15609.22, + "end": 15610.36, + "probability": 0.7505 + }, + { + "start": 15612.76, + "end": 15614.9, + "probability": 0.7142 + }, + { + "start": 15617.3, + "end": 15623.7, + "probability": 0.9482 + }, + { + "start": 15624.58, + "end": 15628.24, + "probability": 0.478 + }, + { + "start": 15630.26, + "end": 15635.12, + "probability": 0.9897 + }, + { + "start": 15636.42, + "end": 15641.36, + "probability": 0.9735 + }, + { + "start": 15643.38, + "end": 15646.8, + "probability": 0.5285 + }, + { + "start": 15647.46, + "end": 15649.86, + "probability": 0.8395 + }, + { + "start": 15649.94, + "end": 15655.14, + "probability": 0.9683 + }, + { + "start": 15655.46, + "end": 15655.96, + "probability": 0.8213 + }, + { + "start": 15656.14, + "end": 15658.02, + "probability": 0.8148 + }, + { + "start": 15659.22, + "end": 15660.46, + "probability": 0.9512 + }, + { + "start": 15660.54, + "end": 15663.64, + "probability": 0.6671 + }, + { + "start": 15665.04, + "end": 15667.06, + "probability": 0.8242 + }, + { + "start": 15667.12, + "end": 15670.18, + "probability": 0.9572 + }, + { + "start": 15670.38, + "end": 15672.77, + "probability": 0.9902 + }, + { + "start": 15673.46, + "end": 15677.16, + "probability": 0.9814 + }, + { + "start": 15677.34, + "end": 15682.12, + "probability": 0.6637 + }, + { + "start": 15682.12, + "end": 15688.2, + "probability": 0.951 + }, + { + "start": 15688.22, + "end": 15689.88, + "probability": 0.9982 + }, + { + "start": 15690.72, + "end": 15693.3, + "probability": 0.9816 + }, + { + "start": 15694.16, + "end": 15695.62, + "probability": 0.9048 + }, + { + "start": 15695.74, + "end": 15696.78, + "probability": 0.577 + }, + { + "start": 15697.32, + "end": 15699.24, + "probability": 0.825 + }, + { + "start": 15699.42, + "end": 15700.38, + "probability": 0.9691 + }, + { + "start": 15703.98, + "end": 15707.96, + "probability": 0.9063 + }, + { + "start": 15708.58, + "end": 15711.88, + "probability": 0.9916 + }, + { + "start": 15712.04, + "end": 15712.93, + "probability": 0.9946 + }, + { + "start": 15713.18, + "end": 15714.31, + "probability": 0.9983 + }, + { + "start": 15714.98, + "end": 15718.6, + "probability": 0.8826 + }, + { + "start": 15719.12, + "end": 15722.08, + "probability": 0.7213 + }, + { + "start": 15723.06, + "end": 15726.8, + "probability": 0.9669 + }, + { + "start": 15726.8, + "end": 15729.52, + "probability": 0.9988 + }, + { + "start": 15729.96, + "end": 15734.16, + "probability": 0.9959 + }, + { + "start": 15734.36, + "end": 15737.28, + "probability": 0.9302 + }, + { + "start": 15737.86, + "end": 15738.76, + "probability": 0.7889 + }, + { + "start": 15738.88, + "end": 15741.1, + "probability": 0.9338 + }, + { + "start": 15741.38, + "end": 15741.98, + "probability": 0.5407 + }, + { + "start": 15743.7, + "end": 15752.28, + "probability": 0.9845 + }, + { + "start": 15752.38, + "end": 15753.07, + "probability": 0.4958 + }, + { + "start": 15753.54, + "end": 15756.22, + "probability": 0.2521 + }, + { + "start": 15756.22, + "end": 15757.62, + "probability": 0.7689 + }, + { + "start": 15757.74, + "end": 15760.86, + "probability": 0.9665 + }, + { + "start": 15760.86, + "end": 15763.56, + "probability": 0.995 + }, + { + "start": 15763.72, + "end": 15765.9, + "probability": 0.7606 + }, + { + "start": 15766.78, + "end": 15767.58, + "probability": 0.4528 + }, + { + "start": 15767.58, + "end": 15768.1, + "probability": 0.9845 + }, + { + "start": 15770.32, + "end": 15771.06, + "probability": 0.3744 + }, + { + "start": 15778.9, + "end": 15778.9, + "probability": 0.2961 + }, + { + "start": 15778.9, + "end": 15779.94, + "probability": 0.5104 + }, + { + "start": 15782.9, + "end": 15785.26, + "probability": 0.1893 + }, + { + "start": 15786.44, + "end": 15786.64, + "probability": 0.4043 + }, + { + "start": 15787.72, + "end": 15788.86, + "probability": 0.5835 + }, + { + "start": 15789.22, + "end": 15790.48, + "probability": 0.7686 + }, + { + "start": 15791.38, + "end": 15795.54, + "probability": 0.8223 + }, + { + "start": 15796.34, + "end": 15797.2, + "probability": 0.9446 + }, + { + "start": 15798.32, + "end": 15804.12, + "probability": 0.9867 + }, + { + "start": 15804.28, + "end": 15804.8, + "probability": 0.6451 + }, + { + "start": 15805.64, + "end": 15806.26, + "probability": 0.1247 + }, + { + "start": 15806.26, + "end": 15806.26, + "probability": 0.5414 + }, + { + "start": 15806.26, + "end": 15808.28, + "probability": 0.6019 + }, + { + "start": 15808.42, + "end": 15809.14, + "probability": 0.5236 + }, + { + "start": 15809.34, + "end": 15809.98, + "probability": 0.208 + }, + { + "start": 15810.3, + "end": 15813.78, + "probability": 0.694 + }, + { + "start": 15814.28, + "end": 15818.08, + "probability": 0.9858 + }, + { + "start": 15818.76, + "end": 15821.2, + "probability": 0.2198 + }, + { + "start": 15822.98, + "end": 15823.2, + "probability": 0.1394 + }, + { + "start": 15823.28, + "end": 15823.86, + "probability": 0.7076 + }, + { + "start": 15823.98, + "end": 15827.98, + "probability": 0.9852 + }, + { + "start": 15828.16, + "end": 15829.14, + "probability": 0.2261 + }, + { + "start": 15829.56, + "end": 15829.9, + "probability": 0.0058 + }, + { + "start": 15829.9, + "end": 15835.02, + "probability": 0.8899 + }, + { + "start": 15835.02, + "end": 15839.56, + "probability": 0.7672 + }, + { + "start": 15839.74, + "end": 15842.58, + "probability": 0.2782 + }, + { + "start": 15842.92, + "end": 15844.14, + "probability": 0.2161 + }, + { + "start": 15844.14, + "end": 15845.32, + "probability": 0.3138 + }, + { + "start": 15845.64, + "end": 15846.0, + "probability": 0.1911 + }, + { + "start": 15846.0, + "end": 15847.04, + "probability": 0.1856 + }, + { + "start": 15847.48, + "end": 15847.52, + "probability": 0.2524 + }, + { + "start": 15847.52, + "end": 15848.28, + "probability": 0.6268 + }, + { + "start": 15849.24, + "end": 15850.34, + "probability": 0.7108 + }, + { + "start": 15850.48, + "end": 15854.58, + "probability": 0.9205 + }, + { + "start": 15854.58, + "end": 15858.36, + "probability": 0.532 + }, + { + "start": 15859.54, + "end": 15859.54, + "probability": 0.0365 + }, + { + "start": 15859.54, + "end": 15860.36, + "probability": 0.5703 + }, + { + "start": 15860.38, + "end": 15860.82, + "probability": 0.6798 + }, + { + "start": 15860.92, + "end": 15862.24, + "probability": 0.9569 + }, + { + "start": 15862.3, + "end": 15864.83, + "probability": 0.7058 + }, + { + "start": 15865.2, + "end": 15868.44, + "probability": 0.8055 + }, + { + "start": 15868.44, + "end": 15870.34, + "probability": 0.0424 + }, + { + "start": 15870.34, + "end": 15872.54, + "probability": 0.0534 + }, + { + "start": 15873.46, + "end": 15874.66, + "probability": 0.2222 + }, + { + "start": 15875.44, + "end": 15877.46, + "probability": 0.1709 + }, + { + "start": 15878.5, + "end": 15878.62, + "probability": 0.0599 + }, + { + "start": 15878.62, + "end": 15878.62, + "probability": 0.3557 + }, + { + "start": 15878.62, + "end": 15879.46, + "probability": 0.107 + }, + { + "start": 15879.72, + "end": 15879.8, + "probability": 0.2419 + }, + { + "start": 15879.8, + "end": 15879.8, + "probability": 0.1624 + }, + { + "start": 15879.8, + "end": 15881.42, + "probability": 0.7137 + }, + { + "start": 15881.78, + "end": 15884.04, + "probability": 0.6997 + }, + { + "start": 15884.48, + "end": 15888.16, + "probability": 0.5972 + }, + { + "start": 15888.36, + "end": 15892.81, + "probability": 0.2662 + }, + { + "start": 15893.3, + "end": 15896.92, + "probability": 0.8903 + }, + { + "start": 15897.22, + "end": 15898.7, + "probability": 0.6899 + }, + { + "start": 15899.28, + "end": 15900.82, + "probability": 0.8614 + }, + { + "start": 15901.6, + "end": 15903.12, + "probability": 0.9859 + }, + { + "start": 15903.52, + "end": 15903.96, + "probability": 0.2503 + }, + { + "start": 15904.28, + "end": 15909.18, + "probability": 0.4405 + }, + { + "start": 15909.38, + "end": 15912.68, + "probability": 0.0004 + }, + { + "start": 15916.76, + "end": 15917.04, + "probability": 0.0057 + }, + { + "start": 15920.02, + "end": 15923.88, + "probability": 0.6808 + }, + { + "start": 15927.22, + "end": 15930.86, + "probability": 0.1041 + }, + { + "start": 15930.86, + "end": 15931.6, + "probability": 0.0094 + }, + { + "start": 15931.84, + "end": 15932.36, + "probability": 0.0409 + }, + { + "start": 15932.76, + "end": 15933.44, + "probability": 0.0429 + }, + { + "start": 15933.44, + "end": 15933.48, + "probability": 0.0154 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16040.0, + "end": 16040.0, + "probability": 0.0 + }, + { + "start": 16041.9, + "end": 16049.14, + "probability": 0.5509 + }, + { + "start": 16053.2, + "end": 16055.6, + "probability": 0.8715 + }, + { + "start": 16057.22, + "end": 16058.32, + "probability": 0.9165 + }, + { + "start": 16058.56, + "end": 16059.24, + "probability": 0.3856 + }, + { + "start": 16059.42, + "end": 16059.82, + "probability": 0.4951 + }, + { + "start": 16059.9, + "end": 16061.24, + "probability": 0.7321 + }, + { + "start": 16061.3, + "end": 16064.46, + "probability": 0.8483 + }, + { + "start": 16064.58, + "end": 16065.38, + "probability": 0.9152 + }, + { + "start": 16068.92, + "end": 16068.92, + "probability": 0.1189 + }, + { + "start": 16068.92, + "end": 16071.04, + "probability": 0.228 + }, + { + "start": 16071.7, + "end": 16073.1, + "probability": 0.7854 + }, + { + "start": 16073.94, + "end": 16075.84, + "probability": 0.7371 + }, + { + "start": 16075.84, + "end": 16078.96, + "probability": 0.5028 + }, + { + "start": 16079.88, + "end": 16081.44, + "probability": 0.6236 + }, + { + "start": 16081.44, + "end": 16082.58, + "probability": 0.7754 + }, + { + "start": 16082.98, + "end": 16084.7, + "probability": 0.7812 + }, + { + "start": 16084.84, + "end": 16087.1, + "probability": 0.8262 + }, + { + "start": 16087.52, + "end": 16087.96, + "probability": 0.7978 + }, + { + "start": 16088.34, + "end": 16090.1, + "probability": 0.9372 + }, + { + "start": 16090.7, + "end": 16091.86, + "probability": 0.7067 + }, + { + "start": 16091.9, + "end": 16092.8, + "probability": 0.6171 + }, + { + "start": 16092.8, + "end": 16093.24, + "probability": 0.5356 + }, + { + "start": 16093.64, + "end": 16094.24, + "probability": 0.6894 + }, + { + "start": 16094.78, + "end": 16099.18, + "probability": 0.4267 + }, + { + "start": 16101.06, + "end": 16103.36, + "probability": 0.7159 + }, + { + "start": 16103.42, + "end": 16104.12, + "probability": 0.7559 + }, + { + "start": 16104.14, + "end": 16106.76, + "probability": 0.8758 + }, + { + "start": 16106.76, + "end": 16110.2, + "probability": 0.786 + }, + { + "start": 16110.34, + "end": 16111.96, + "probability": 0.1924 + }, + { + "start": 16112.4, + "end": 16114.22, + "probability": 0.9016 + }, + { + "start": 16114.44, + "end": 16114.9, + "probability": 0.8244 + }, + { + "start": 16115.74, + "end": 16116.36, + "probability": 0.4367 + }, + { + "start": 16116.44, + "end": 16117.68, + "probability": 0.7275 + }, + { + "start": 16117.68, + "end": 16118.58, + "probability": 0.6648 + }, + { + "start": 16118.74, + "end": 16119.94, + "probability": 0.7463 + }, + { + "start": 16120.02, + "end": 16121.3, + "probability": 0.938 + }, + { + "start": 16121.34, + "end": 16124.12, + "probability": 0.8516 + }, + { + "start": 16124.66, + "end": 16125.42, + "probability": 0.7446 + }, + { + "start": 16125.5, + "end": 16128.28, + "probability": 0.9268 + }, + { + "start": 16128.68, + "end": 16131.42, + "probability": 0.4907 + }, + { + "start": 16132.48, + "end": 16134.88, + "probability": 0.965 + }, + { + "start": 16137.36, + "end": 16141.36, + "probability": 0.9935 + }, + { + "start": 16141.36, + "end": 16145.0, + "probability": 0.7731 + }, + { + "start": 16145.14, + "end": 16146.54, + "probability": 0.8076 + }, + { + "start": 16147.0, + "end": 16148.48, + "probability": 0.9762 + }, + { + "start": 16148.54, + "end": 16149.16, + "probability": 0.6188 + }, + { + "start": 16149.24, + "end": 16149.42, + "probability": 0.7002 + }, + { + "start": 16149.92, + "end": 16150.54, + "probability": 0.5868 + }, + { + "start": 16150.56, + "end": 16154.6, + "probability": 0.6906 + }, + { + "start": 16163.38, + "end": 16165.26, + "probability": 0.9082 + }, + { + "start": 16166.42, + "end": 16168.24, + "probability": 0.6336 + }, + { + "start": 16169.0, + "end": 16171.58, + "probability": 0.7271 + }, + { + "start": 16172.18, + "end": 16178.88, + "probability": 0.8783 + }, + { + "start": 16178.88, + "end": 16183.22, + "probability": 0.9969 + }, + { + "start": 16183.22, + "end": 16188.18, + "probability": 0.988 + }, + { + "start": 16188.18, + "end": 16189.5, + "probability": 0.8229 + }, + { + "start": 16190.48, + "end": 16192.5, + "probability": 0.6638 + }, + { + "start": 16193.5, + "end": 16197.4, + "probability": 0.9857 + }, + { + "start": 16198.06, + "end": 16202.96, + "probability": 0.7925 + }, + { + "start": 16203.66, + "end": 16207.18, + "probability": 0.806 + }, + { + "start": 16207.82, + "end": 16211.96, + "probability": 0.7198 + }, + { + "start": 16211.98, + "end": 16215.72, + "probability": 0.9347 + }, + { + "start": 16215.72, + "end": 16219.16, + "probability": 0.9875 + }, + { + "start": 16220.38, + "end": 16225.06, + "probability": 0.9973 + }, + { + "start": 16225.74, + "end": 16226.94, + "probability": 0.9439 + }, + { + "start": 16227.62, + "end": 16231.08, + "probability": 0.9966 + }, + { + "start": 16231.08, + "end": 16236.08, + "probability": 0.9195 + }, + { + "start": 16237.4, + "end": 16241.8, + "probability": 0.9904 + }, + { + "start": 16241.82, + "end": 16245.46, + "probability": 0.9992 + }, + { + "start": 16246.44, + "end": 16249.36, + "probability": 0.9968 + }, + { + "start": 16249.84, + "end": 16252.8, + "probability": 0.8575 + }, + { + "start": 16252.8, + "end": 16255.78, + "probability": 0.9966 + }, + { + "start": 16256.96, + "end": 16263.2, + "probability": 0.8979 + }, + { + "start": 16263.62, + "end": 16267.06, + "probability": 0.7441 + }, + { + "start": 16267.6, + "end": 16269.68, + "probability": 0.8366 + }, + { + "start": 16269.68, + "end": 16272.4, + "probability": 0.9457 + }, + { + "start": 16273.38, + "end": 16279.44, + "probability": 0.999 + }, + { + "start": 16279.44, + "end": 16284.98, + "probability": 0.9512 + }, + { + "start": 16285.8, + "end": 16286.3, + "probability": 0.6238 + }, + { + "start": 16286.46, + "end": 16291.36, + "probability": 0.991 + }, + { + "start": 16291.44, + "end": 16292.66, + "probability": 0.6689 + }, + { + "start": 16293.1, + "end": 16295.03, + "probability": 0.6063 + }, + { + "start": 16295.76, + "end": 16298.88, + "probability": 0.7691 + }, + { + "start": 16299.8, + "end": 16304.26, + "probability": 0.965 + }, + { + "start": 16304.92, + "end": 16309.74, + "probability": 0.9207 + }, + { + "start": 16309.74, + "end": 16314.06, + "probability": 0.9575 + }, + { + "start": 16314.98, + "end": 16315.54, + "probability": 0.678 + }, + { + "start": 16315.7, + "end": 16319.36, + "probability": 0.9644 + }, + { + "start": 16319.98, + "end": 16321.56, + "probability": 0.9907 + }, + { + "start": 16322.72, + "end": 16326.62, + "probability": 0.9922 + }, + { + "start": 16328.0, + "end": 16332.36, + "probability": 0.8381 + }, + { + "start": 16332.36, + "end": 16336.14, + "probability": 0.9808 + }, + { + "start": 16336.74, + "end": 16341.18, + "probability": 0.9705 + }, + { + "start": 16342.9, + "end": 16343.46, + "probability": 0.6617 + }, + { + "start": 16343.66, + "end": 16347.14, + "probability": 0.9951 + }, + { + "start": 16347.14, + "end": 16351.56, + "probability": 0.9976 + }, + { + "start": 16352.12, + "end": 16352.68, + "probability": 0.4708 + }, + { + "start": 16352.84, + "end": 16357.48, + "probability": 0.7252 + }, + { + "start": 16357.62, + "end": 16358.66, + "probability": 0.813 + }, + { + "start": 16358.98, + "end": 16361.06, + "probability": 0.6761 + }, + { + "start": 16362.28, + "end": 16365.34, + "probability": 0.9757 + }, + { + "start": 16365.94, + "end": 16369.02, + "probability": 0.9792 + }, + { + "start": 16369.76, + "end": 16370.3, + "probability": 0.2846 + }, + { + "start": 16370.76, + "end": 16372.18, + "probability": 0.8014 + }, + { + "start": 16372.46, + "end": 16375.16, + "probability": 0.8094 + }, + { + "start": 16375.18, + "end": 16375.54, + "probability": 0.6142 + }, + { + "start": 16378.5, + "end": 16382.1, + "probability": 0.7185 + }, + { + "start": 16382.62, + "end": 16387.56, + "probability": 0.9939 + }, + { + "start": 16387.6, + "end": 16387.92, + "probability": 0.4821 + }, + { + "start": 16388.04, + "end": 16395.22, + "probability": 0.9862 + }, + { + "start": 16395.9, + "end": 16399.96, + "probability": 0.8579 + }, + { + "start": 16400.3, + "end": 16402.04, + "probability": 0.9949 + }, + { + "start": 16403.34, + "end": 16406.52, + "probability": 0.9851 + }, + { + "start": 16406.52, + "end": 16409.68, + "probability": 0.9767 + }, + { + "start": 16409.84, + "end": 16411.03, + "probability": 0.8521 + }, + { + "start": 16411.34, + "end": 16412.72, + "probability": 0.4596 + }, + { + "start": 16412.78, + "end": 16416.08, + "probability": 0.9651 + }, + { + "start": 16416.34, + "end": 16417.76, + "probability": 0.8534 + }, + { + "start": 16418.08, + "end": 16419.8, + "probability": 0.7677 + }, + { + "start": 16420.38, + "end": 16422.2, + "probability": 0.9617 + }, + { + "start": 16422.26, + "end": 16424.22, + "probability": 0.7898 + }, + { + "start": 16428.1, + "end": 16429.76, + "probability": 0.363 + }, + { + "start": 16430.96, + "end": 16434.12, + "probability": 0.643 + }, + { + "start": 16434.66, + "end": 16436.3, + "probability": 0.8578 + }, + { + "start": 16436.3, + "end": 16440.22, + "probability": 0.9683 + }, + { + "start": 16440.46, + "end": 16445.2, + "probability": 0.9932 + }, + { + "start": 16445.6, + "end": 16447.28, + "probability": 0.8933 + }, + { + "start": 16447.82, + "end": 16448.72, + "probability": 0.6712 + }, + { + "start": 16449.18, + "end": 16449.8, + "probability": 0.8525 + }, + { + "start": 16449.9, + "end": 16454.5, + "probability": 0.9888 + }, + { + "start": 16455.42, + "end": 16456.34, + "probability": 0.7426 + }, + { + "start": 16456.82, + "end": 16463.06, + "probability": 0.7498 + }, + { + "start": 16463.68, + "end": 16464.94, + "probability": 0.8715 + }, + { + "start": 16466.08, + "end": 16470.56, + "probability": 0.9849 + }, + { + "start": 16471.0, + "end": 16474.0, + "probability": 0.9925 + }, + { + "start": 16474.4, + "end": 16478.72, + "probability": 0.9355 + }, + { + "start": 16479.2, + "end": 16482.46, + "probability": 0.9968 + }, + { + "start": 16483.02, + "end": 16484.76, + "probability": 0.9891 + }, + { + "start": 16484.76, + "end": 16488.06, + "probability": 0.971 + }, + { + "start": 16488.06, + "end": 16488.26, + "probability": 0.6891 + }, + { + "start": 16488.78, + "end": 16489.56, + "probability": 0.5021 + }, + { + "start": 16489.88, + "end": 16491.82, + "probability": 0.9207 + }, + { + "start": 16494.46, + "end": 16497.12, + "probability": 0.9412 + }, + { + "start": 16498.02, + "end": 16498.28, + "probability": 0.3072 + }, + { + "start": 16498.42, + "end": 16498.9, + "probability": 0.7937 + }, + { + "start": 16499.08, + "end": 16499.38, + "probability": 0.8607 + }, + { + "start": 16500.56, + "end": 16502.1, + "probability": 0.8429 + }, + { + "start": 16502.2, + "end": 16504.26, + "probability": 0.8652 + }, + { + "start": 16504.58, + "end": 16504.9, + "probability": 0.4959 + }, + { + "start": 16505.0, + "end": 16505.34, + "probability": 0.5522 + }, + { + "start": 16508.26, + "end": 16511.26, + "probability": 0.7284 + }, + { + "start": 16511.32, + "end": 16512.36, + "probability": 0.1952 + }, + { + "start": 16512.36, + "end": 16513.24, + "probability": 0.691 + }, + { + "start": 16513.32, + "end": 16514.84, + "probability": 0.4677 + }, + { + "start": 16515.54, + "end": 16515.66, + "probability": 0.3287 + }, + { + "start": 16515.68, + "end": 16516.76, + "probability": 0.6849 + }, + { + "start": 16517.9, + "end": 16519.32, + "probability": 0.7101 + }, + { + "start": 16520.74, + "end": 16521.42, + "probability": 0.459 + }, + { + "start": 16521.42, + "end": 16521.42, + "probability": 0.4865 + }, + { + "start": 16521.42, + "end": 16523.0, + "probability": 0.9818 + }, + { + "start": 16523.08, + "end": 16531.36, + "probability": 0.9872 + }, + { + "start": 16531.54, + "end": 16531.6, + "probability": 0.0645 + }, + { + "start": 16531.74, + "end": 16534.02, + "probability": 0.8923 + }, + { + "start": 16534.3, + "end": 16534.6, + "probability": 0.3808 + }, + { + "start": 16534.68, + "end": 16537.16, + "probability": 0.9879 + }, + { + "start": 16537.82, + "end": 16541.74, + "probability": 0.9949 + }, + { + "start": 16542.26, + "end": 16544.56, + "probability": 0.9486 + }, + { + "start": 16544.56, + "end": 16547.5, + "probability": 0.9961 + }, + { + "start": 16548.32, + "end": 16549.14, + "probability": 0.0567 + }, + { + "start": 16549.32, + "end": 16552.8, + "probability": 0.9712 + }, + { + "start": 16552.94, + "end": 16557.58, + "probability": 0.9897 + }, + { + "start": 16558.44, + "end": 16561.16, + "probability": 0.9829 + }, + { + "start": 16562.3, + "end": 16564.78, + "probability": 0.7113 + }, + { + "start": 16565.34, + "end": 16566.24, + "probability": 0.8346 + }, + { + "start": 16566.94, + "end": 16570.22, + "probability": 0.7815 + }, + { + "start": 16570.88, + "end": 16572.92, + "probability": 0.9678 + }, + { + "start": 16573.54, + "end": 16577.96, + "probability": 0.8975 + }, + { + "start": 16578.2, + "end": 16579.5, + "probability": 0.9689 + }, + { + "start": 16580.16, + "end": 16585.68, + "probability": 0.996 + }, + { + "start": 16585.68, + "end": 16589.1, + "probability": 0.9987 + }, + { + "start": 16589.72, + "end": 16592.08, + "probability": 0.9447 + }, + { + "start": 16592.54, + "end": 16594.3, + "probability": 0.998 + }, + { + "start": 16594.46, + "end": 16596.8, + "probability": 0.9584 + }, + { + "start": 16596.8, + "end": 16600.2, + "probability": 0.9992 + }, + { + "start": 16601.06, + "end": 16603.96, + "probability": 0.9698 + }, + { + "start": 16604.0, + "end": 16608.32, + "probability": 0.9963 + }, + { + "start": 16608.64, + "end": 16611.18, + "probability": 0.6316 + }, + { + "start": 16611.82, + "end": 16614.86, + "probability": 0.9893 + }, + { + "start": 16615.98, + "end": 16619.26, + "probability": 0.9984 + }, + { + "start": 16619.36, + "end": 16622.68, + "probability": 0.9773 + }, + { + "start": 16623.86, + "end": 16624.62, + "probability": 0.7304 + }, + { + "start": 16625.42, + "end": 16627.62, + "probability": 0.9896 + }, + { + "start": 16627.62, + "end": 16630.98, + "probability": 0.9182 + }, + { + "start": 16631.04, + "end": 16631.24, + "probability": 0.6054 + }, + { + "start": 16631.42, + "end": 16632.4, + "probability": 0.8395 + }, + { + "start": 16632.46, + "end": 16634.56, + "probability": 0.9709 + }, + { + "start": 16634.56, + "end": 16638.92, + "probability": 0.9805 + }, + { + "start": 16639.66, + "end": 16642.1, + "probability": 0.8936 + }, + { + "start": 16642.18, + "end": 16642.72, + "probability": 0.8025 + }, + { + "start": 16642.78, + "end": 16646.0, + "probability": 0.9926 + }, + { + "start": 16646.34, + "end": 16650.25, + "probability": 0.9973 + }, + { + "start": 16650.72, + "end": 16652.66, + "probability": 0.7209 + }, + { + "start": 16652.76, + "end": 16656.84, + "probability": 0.99 + }, + { + "start": 16656.84, + "end": 16660.98, + "probability": 0.9949 + }, + { + "start": 16661.54, + "end": 16663.56, + "probability": 0.9715 + }, + { + "start": 16663.82, + "end": 16666.54, + "probability": 0.9386 + }, + { + "start": 16666.88, + "end": 16667.32, + "probability": 0.8127 + }, + { + "start": 16667.32, + "end": 16667.46, + "probability": 0.3409 + }, + { + "start": 16667.94, + "end": 16669.96, + "probability": 0.7249 + }, + { + "start": 16670.6, + "end": 16671.74, + "probability": 0.6615 + }, + { + "start": 16682.58, + "end": 16684.46, + "probability": 0.7078 + }, + { + "start": 16685.1, + "end": 16689.26, + "probability": 0.9656 + }, + { + "start": 16689.8, + "end": 16691.26, + "probability": 0.8821 + }, + { + "start": 16691.88, + "end": 16694.06, + "probability": 0.8585 + }, + { + "start": 16694.8, + "end": 16697.06, + "probability": 0.839 + }, + { + "start": 16697.06, + "end": 16697.06, + "probability": 0.6071 + }, + { + "start": 16697.06, + "end": 16698.78, + "probability": 0.3799 + }, + { + "start": 16699.72, + "end": 16700.98, + "probability": 0.5537 + }, + { + "start": 16701.12, + "end": 16707.54, + "probability": 0.9749 + }, + { + "start": 16708.22, + "end": 16713.54, + "probability": 0.869 + }, + { + "start": 16714.08, + "end": 16717.86, + "probability": 0.9915 + }, + { + "start": 16718.4, + "end": 16718.76, + "probability": 0.6835 + }, + { + "start": 16718.78, + "end": 16720.46, + "probability": 0.8467 + }, + { + "start": 16720.54, + "end": 16721.0, + "probability": 0.6575 + }, + { + "start": 16721.08, + "end": 16722.56, + "probability": 0.9639 + }, + { + "start": 16722.98, + "end": 16723.18, + "probability": 0.1176 + }, + { + "start": 16723.18, + "end": 16725.02, + "probability": 0.9432 + }, + { + "start": 16725.6, + "end": 16728.66, + "probability": 0.9193 + }, + { + "start": 16729.48, + "end": 16729.72, + "probability": 0.3501 + }, + { + "start": 16729.84, + "end": 16732.9, + "probability": 0.8423 + }, + { + "start": 16732.9, + "end": 16736.3, + "probability": 0.8979 + }, + { + "start": 16736.88, + "end": 16739.1, + "probability": 0.9843 + }, + { + "start": 16739.1, + "end": 16742.18, + "probability": 0.7825 + }, + { + "start": 16742.32, + "end": 16745.12, + "probability": 0.9148 + }, + { + "start": 16746.02, + "end": 16749.86, + "probability": 0.9665 + }, + { + "start": 16750.38, + "end": 16755.08, + "probability": 0.9953 + }, + { + "start": 16755.54, + "end": 16760.2, + "probability": 0.9668 + }, + { + "start": 16760.98, + "end": 16761.26, + "probability": 0.3697 + }, + { + "start": 16761.4, + "end": 16765.72, + "probability": 0.903 + }, + { + "start": 16766.38, + "end": 16768.9, + "probability": 0.6302 + }, + { + "start": 16769.44, + "end": 16770.36, + "probability": 0.797 + }, + { + "start": 16771.48, + "end": 16772.32, + "probability": 0.6144 + }, + { + "start": 16772.46, + "end": 16773.1, + "probability": 0.7069 + }, + { + "start": 16773.6, + "end": 16776.94, + "probability": 0.3413 + }, + { + "start": 16777.7, + "end": 16778.22, + "probability": 0.0427 + }, + { + "start": 16778.32, + "end": 16778.9, + "probability": 0.5708 + }, + { + "start": 16779.0, + "end": 16779.56, + "probability": 0.4398 + }, + { + "start": 16779.76, + "end": 16780.68, + "probability": 0.6566 + }, + { + "start": 16781.2, + "end": 16781.76, + "probability": 0.8531 + }, + { + "start": 16782.32, + "end": 16787.28, + "probability": 0.2863 + }, + { + "start": 16787.28, + "end": 16788.28, + "probability": 0.5818 + }, + { + "start": 16788.3, + "end": 16793.18, + "probability": 0.8306 + }, + { + "start": 16793.52, + "end": 16795.98, + "probability": 0.9802 + }, + { + "start": 16797.02, + "end": 16800.7, + "probability": 0.8014 + }, + { + "start": 16800.7, + "end": 16805.02, + "probability": 0.9734 + }, + { + "start": 16805.44, + "end": 16809.3, + "probability": 0.8564 + }, + { + "start": 16810.38, + "end": 16813.46, + "probability": 0.8942 + }, + { + "start": 16813.8, + "end": 16816.66, + "probability": 0.7885 + }, + { + "start": 16817.06, + "end": 16818.7, + "probability": 0.9743 + }, + { + "start": 16819.36, + "end": 16821.28, + "probability": 0.9417 + }, + { + "start": 16821.4, + "end": 16825.42, + "probability": 0.9871 + }, + { + "start": 16826.02, + "end": 16826.28, + "probability": 0.525 + }, + { + "start": 16826.48, + "end": 16829.82, + "probability": 0.9832 + }, + { + "start": 16830.3, + "end": 16831.65, + "probability": 0.9719 + }, + { + "start": 16832.7, + "end": 16832.88, + "probability": 0.4725 + }, + { + "start": 16832.96, + "end": 16833.34, + "probability": 0.9687 + }, + { + "start": 16833.46, + "end": 16839.12, + "probability": 0.9805 + }, + { + "start": 16839.8, + "end": 16842.36, + "probability": 0.9776 + }, + { + "start": 16842.72, + "end": 16845.1, + "probability": 0.9946 + }, + { + "start": 16845.6, + "end": 16848.86, + "probability": 0.9849 + }, + { + "start": 16849.44, + "end": 16850.46, + "probability": 0.6691 + }, + { + "start": 16850.48, + "end": 16852.02, + "probability": 0.7496 + }, + { + "start": 16852.5, + "end": 16854.54, + "probability": 0.9584 + }, + { + "start": 16854.92, + "end": 16857.36, + "probability": 0.9795 + }, + { + "start": 16857.52, + "end": 16857.74, + "probability": 0.7078 + }, + { + "start": 16858.28, + "end": 16859.21, + "probability": 0.5539 + }, + { + "start": 16859.4, + "end": 16861.53, + "probability": 0.6761 + }, + { + "start": 16861.78, + "end": 16862.82, + "probability": 0.673 + }, + { + "start": 16862.96, + "end": 16863.3, + "probability": 0.4576 + }, + { + "start": 16863.3, + "end": 16864.74, + "probability": 0.686 + }, + { + "start": 16866.86, + "end": 16869.22, + "probability": 0.9632 + }, + { + "start": 16870.36, + "end": 16870.76, + "probability": 0.6967 + }, + { + "start": 16871.34, + "end": 16872.46, + "probability": 0.648 + }, + { + "start": 16881.4, + "end": 16884.42, + "probability": 0.7926 + }, + { + "start": 16885.56, + "end": 16886.82, + "probability": 0.2417 + }, + { + "start": 16886.84, + "end": 16888.3, + "probability": 0.8596 + }, + { + "start": 16888.46, + "end": 16890.72, + "probability": 0.9907 + }, + { + "start": 16891.62, + "end": 16893.12, + "probability": 0.9937 + }, + { + "start": 16893.76, + "end": 16896.66, + "probability": 0.9578 + }, + { + "start": 16897.24, + "end": 16899.0, + "probability": 0.7783 + }, + { + "start": 16900.0, + "end": 16901.36, + "probability": 0.9985 + }, + { + "start": 16901.46, + "end": 16904.5, + "probability": 0.9863 + }, + { + "start": 16905.38, + "end": 16908.6, + "probability": 0.6482 + }, + { + "start": 16909.28, + "end": 16914.74, + "probability": 0.9677 + }, + { + "start": 16915.94, + "end": 16917.34, + "probability": 0.9485 + }, + { + "start": 16918.26, + "end": 16919.32, + "probability": 0.7161 + }, + { + "start": 16919.74, + "end": 16921.5, + "probability": 0.2274 + }, + { + "start": 16921.7, + "end": 16921.78, + "probability": 0.4605 + }, + { + "start": 16922.1, + "end": 16922.1, + "probability": 0.3383 + }, + { + "start": 16922.2, + "end": 16922.44, + "probability": 0.4047 + }, + { + "start": 16922.52, + "end": 16923.74, + "probability": 0.903 + }, + { + "start": 16923.82, + "end": 16925.7, + "probability": 0.8856 + }, + { + "start": 16926.84, + "end": 16931.16, + "probability": 0.9365 + }, + { + "start": 16931.88, + "end": 16933.22, + "probability": 0.9917 + }, + { + "start": 16934.04, + "end": 16935.63, + "probability": 0.9863 + }, + { + "start": 16935.9, + "end": 16938.61, + "probability": 0.968 + }, + { + "start": 16939.28, + "end": 16941.34, + "probability": 0.6909 + }, + { + "start": 16941.74, + "end": 16947.06, + "probability": 0.9944 + }, + { + "start": 16947.06, + "end": 16950.78, + "probability": 0.9426 + }, + { + "start": 16951.44, + "end": 16954.84, + "probability": 0.8689 + }, + { + "start": 16954.92, + "end": 16957.76, + "probability": 0.9839 + }, + { + "start": 16958.56, + "end": 16961.37, + "probability": 0.9984 + }, + { + "start": 16963.76, + "end": 16965.0, + "probability": 0.601 + }, + { + "start": 16965.52, + "end": 16966.98, + "probability": 0.4912 + }, + { + "start": 16967.34, + "end": 16968.16, + "probability": 0.5385 + }, + { + "start": 16968.48, + "end": 16972.64, + "probability": 0.9387 + }, + { + "start": 16973.22, + "end": 16974.38, + "probability": 0.8381 + }, + { + "start": 16975.26, + "end": 16979.06, + "probability": 0.9919 + }, + { + "start": 16979.72, + "end": 16982.76, + "probability": 0.9961 + }, + { + "start": 16983.24, + "end": 16991.24, + "probability": 0.7589 + }, + { + "start": 16991.5, + "end": 16992.92, + "probability": 0.9377 + }, + { + "start": 16994.14, + "end": 16999.66, + "probability": 0.9878 + }, + { + "start": 17000.1, + "end": 17002.4, + "probability": 0.8752 + }, + { + "start": 17002.4, + "end": 17005.07, + "probability": 0.1987 + }, + { + "start": 17005.88, + "end": 17012.88, + "probability": 0.9683 + }, + { + "start": 17013.54, + "end": 17016.38, + "probability": 0.5012 + }, + { + "start": 17016.66, + "end": 17017.68, + "probability": 0.9683 + }, + { + "start": 17017.84, + "end": 17019.76, + "probability": 0.5317 + }, + { + "start": 17021.22, + "end": 17022.08, + "probability": 0.7541 + }, + { + "start": 17022.14, + "end": 17023.08, + "probability": 0.7534 + }, + { + "start": 17023.14, + "end": 17023.14, + "probability": 0.4544 + }, + { + "start": 17023.14, + "end": 17024.16, + "probability": 0.8032 + }, + { + "start": 17024.56, + "end": 17026.06, + "probability": 0.9812 + }, + { + "start": 17026.44, + "end": 17030.46, + "probability": 0.9933 + }, + { + "start": 17030.98, + "end": 17032.12, + "probability": 0.5809 + }, + { + "start": 17032.6, + "end": 17032.9, + "probability": 0.4647 + }, + { + "start": 17033.0, + "end": 17037.72, + "probability": 0.9709 + }, + { + "start": 17037.72, + "end": 17041.76, + "probability": 0.9858 + }, + { + "start": 17042.18, + "end": 17042.7, + "probability": 0.5042 + }, + { + "start": 17042.9, + "end": 17045.72, + "probability": 0.8058 + }, + { + "start": 17045.9, + "end": 17047.2, + "probability": 0.9473 + }, + { + "start": 17047.3, + "end": 17048.16, + "probability": 0.7155 + }, + { + "start": 17048.56, + "end": 17049.64, + "probability": 0.5327 + }, + { + "start": 17050.08, + "end": 17054.06, + "probability": 0.8302 + }, + { + "start": 17057.62, + "end": 17057.62, + "probability": 0.1834 + }, + { + "start": 17057.62, + "end": 17057.62, + "probability": 0.4319 + }, + { + "start": 17057.62, + "end": 17057.64, + "probability": 0.0396 + }, + { + "start": 17057.64, + "end": 17061.78, + "probability": 0.8161 + }, + { + "start": 17061.96, + "end": 17062.68, + "probability": 0.3963 + }, + { + "start": 17062.68, + "end": 17063.17, + "probability": 0.68 + }, + { + "start": 17063.62, + "end": 17067.4, + "probability": 0.9214 + }, + { + "start": 17067.4, + "end": 17071.0, + "probability": 0.9956 + }, + { + "start": 17071.84, + "end": 17073.38, + "probability": 0.9525 + }, + { + "start": 17074.14, + "end": 17076.16, + "probability": 0.9971 + }, + { + "start": 17076.64, + "end": 17078.66, + "probability": 0.8301 + }, + { + "start": 17078.74, + "end": 17080.42, + "probability": 0.9836 + }, + { + "start": 17080.62, + "end": 17081.08, + "probability": 0.8365 + }, + { + "start": 17081.16, + "end": 17084.44, + "probability": 0.9283 + }, + { + "start": 17084.52, + "end": 17087.54, + "probability": 0.7592 + }, + { + "start": 17087.64, + "end": 17089.46, + "probability": 0.9809 + }, + { + "start": 17089.52, + "end": 17093.22, + "probability": 0.9008 + }, + { + "start": 17093.34, + "end": 17095.14, + "probability": 0.8811 + }, + { + "start": 17095.46, + "end": 17099.52, + "probability": 0.897 + }, + { + "start": 17100.0, + "end": 17101.64, + "probability": 0.899 + }, + { + "start": 17102.1, + "end": 17103.14, + "probability": 0.9406 + }, + { + "start": 17103.58, + "end": 17105.06, + "probability": 0.8437 + }, + { + "start": 17105.12, + "end": 17109.01, + "probability": 0.6883 + }, + { + "start": 17109.18, + "end": 17109.64, + "probability": 0.7622 + }, + { + "start": 17110.84, + "end": 17111.34, + "probability": 0.2527 + }, + { + "start": 17111.5, + "end": 17112.92, + "probability": 0.5656 + }, + { + "start": 17113.66, + "end": 17114.72, + "probability": 0.1027 + }, + { + "start": 17114.78, + "end": 17117.66, + "probability": 0.6727 + }, + { + "start": 17117.66, + "end": 17122.96, + "probability": 0.9734 + }, + { + "start": 17123.18, + "end": 17124.02, + "probability": 0.7713 + }, + { + "start": 17125.4, + "end": 17125.8, + "probability": 0.0847 + }, + { + "start": 17129.06, + "end": 17129.06, + "probability": 0.0714 + }, + { + "start": 17129.06, + "end": 17129.68, + "probability": 0.1801 + }, + { + "start": 17129.88, + "end": 17132.48, + "probability": 0.999 + }, + { + "start": 17132.48, + "end": 17135.34, + "probability": 0.991 + }, + { + "start": 17135.46, + "end": 17139.44, + "probability": 0.912 + }, + { + "start": 17139.44, + "end": 17144.96, + "probability": 0.9681 + }, + { + "start": 17145.54, + "end": 17148.8, + "probability": 0.971 + }, + { + "start": 17148.82, + "end": 17151.26, + "probability": 0.9814 + }, + { + "start": 17152.02, + "end": 17159.3, + "probability": 0.2612 + }, + { + "start": 17159.84, + "end": 17161.24, + "probability": 0.8618 + }, + { + "start": 17161.56, + "end": 17164.25, + "probability": 0.9712 + }, + { + "start": 17164.42, + "end": 17166.58, + "probability": 0.8253 + }, + { + "start": 17166.78, + "end": 17168.06, + "probability": 0.9229 + }, + { + "start": 17168.3, + "end": 17171.38, + "probability": 0.998 + }, + { + "start": 17171.38, + "end": 17174.64, + "probability": 0.9961 + }, + { + "start": 17175.02, + "end": 17176.64, + "probability": 0.9971 + }, + { + "start": 17176.98, + "end": 17180.56, + "probability": 0.9738 + }, + { + "start": 17180.86, + "end": 17181.8, + "probability": 0.8505 + }, + { + "start": 17182.28, + "end": 17182.8, + "probability": 0.6183 + }, + { + "start": 17182.88, + "end": 17183.26, + "probability": 0.6989 + }, + { + "start": 17183.54, + "end": 17187.02, + "probability": 0.5119 + }, + { + "start": 17187.1, + "end": 17188.56, + "probability": 0.9855 + }, + { + "start": 17189.44, + "end": 17192.1, + "probability": 0.7391 + }, + { + "start": 17192.48, + "end": 17194.6, + "probability": 0.9961 + }, + { + "start": 17195.06, + "end": 17196.08, + "probability": 0.6252 + }, + { + "start": 17196.4, + "end": 17198.66, + "probability": 0.67 + }, + { + "start": 17198.88, + "end": 17202.8, + "probability": 0.9222 + }, + { + "start": 17203.26, + "end": 17205.08, + "probability": 0.8054 + }, + { + "start": 17205.36, + "end": 17206.6, + "probability": 0.965 + }, + { + "start": 17206.74, + "end": 17206.74, + "probability": 0.2514 + }, + { + "start": 17206.74, + "end": 17208.0, + "probability": 0.9281 + }, + { + "start": 17208.52, + "end": 17209.57, + "probability": 0.5179 + }, + { + "start": 17210.14, + "end": 17210.6, + "probability": 0.3676 + }, + { + "start": 17210.62, + "end": 17211.92, + "probability": 0.6014 + }, + { + "start": 17212.14, + "end": 17213.0, + "probability": 0.631 + }, + { + "start": 17213.14, + "end": 17214.5, + "probability": 0.8781 + }, + { + "start": 17214.52, + "end": 17219.54, + "probability": 0.8909 + }, + { + "start": 17219.94, + "end": 17220.84, + "probability": 0.6746 + }, + { + "start": 17220.98, + "end": 17222.32, + "probability": 0.9574 + }, + { + "start": 17222.6, + "end": 17224.82, + "probability": 0.9556 + }, + { + "start": 17225.18, + "end": 17227.42, + "probability": 0.8987 + }, + { + "start": 17227.86, + "end": 17230.38, + "probability": 0.7837 + }, + { + "start": 17230.6, + "end": 17231.97, + "probability": 0.9971 + }, + { + "start": 17232.1, + "end": 17235.86, + "probability": 0.9905 + }, + { + "start": 17236.26, + "end": 17239.78, + "probability": 0.9811 + }, + { + "start": 17239.88, + "end": 17241.62, + "probability": 0.9814 + }, + { + "start": 17241.88, + "end": 17246.16, + "probability": 0.9852 + }, + { + "start": 17246.56, + "end": 17248.98, + "probability": 0.8567 + }, + { + "start": 17249.08, + "end": 17252.36, + "probability": 0.6259 + }, + { + "start": 17252.44, + "end": 17252.76, + "probability": 0.0545 + }, + { + "start": 17252.82, + "end": 17254.06, + "probability": 0.4047 + }, + { + "start": 17254.68, + "end": 17256.3, + "probability": 0.0056 + }, + { + "start": 17256.3, + "end": 17256.52, + "probability": 0.6891 + }, + { + "start": 17256.64, + "end": 17257.78, + "probability": 0.2833 + }, + { + "start": 17257.86, + "end": 17259.94, + "probability": 0.6445 + }, + { + "start": 17260.3, + "end": 17263.07, + "probability": 0.6489 + }, + { + "start": 17263.3, + "end": 17263.76, + "probability": 0.2687 + }, + { + "start": 17264.04, + "end": 17265.1, + "probability": 0.3562 + }, + { + "start": 17265.84, + "end": 17268.48, + "probability": 0.5686 + }, + { + "start": 17268.54, + "end": 17272.48, + "probability": 0.9736 + }, + { + "start": 17272.74, + "end": 17274.7, + "probability": 0.9609 + }, + { + "start": 17274.78, + "end": 17274.98, + "probability": 0.9594 + }, + { + "start": 17275.1, + "end": 17276.04, + "probability": 0.985 + }, + { + "start": 17276.62, + "end": 17278.29, + "probability": 0.9966 + }, + { + "start": 17278.78, + "end": 17280.44, + "probability": 0.6395 + }, + { + "start": 17280.9, + "end": 17281.38, + "probability": 0.686 + }, + { + "start": 17281.54, + "end": 17285.54, + "probability": 0.9972 + }, + { + "start": 17286.28, + "end": 17288.82, + "probability": 0.2203 + }, + { + "start": 17288.94, + "end": 17290.32, + "probability": 0.9128 + }, + { + "start": 17290.6, + "end": 17297.06, + "probability": 0.9405 + }, + { + "start": 17297.06, + "end": 17302.84, + "probability": 0.9766 + }, + { + "start": 17302.94, + "end": 17304.04, + "probability": 0.9789 + }, + { + "start": 17304.2, + "end": 17305.12, + "probability": 0.9877 + }, + { + "start": 17305.32, + "end": 17305.92, + "probability": 0.6264 + }, + { + "start": 17306.38, + "end": 17307.38, + "probability": 0.8802 + }, + { + "start": 17307.44, + "end": 17307.98, + "probability": 0.6726 + }, + { + "start": 17308.1, + "end": 17310.32, + "probability": 0.9857 + }, + { + "start": 17310.32, + "end": 17313.4, + "probability": 0.9957 + }, + { + "start": 17313.76, + "end": 17314.96, + "probability": 0.9859 + }, + { + "start": 17315.08, + "end": 17315.95, + "probability": 0.9375 + }, + { + "start": 17316.46, + "end": 17317.86, + "probability": 0.9584 + }, + { + "start": 17317.92, + "end": 17320.82, + "probability": 0.9964 + }, + { + "start": 17321.2, + "end": 17322.1, + "probability": 0.8888 + }, + { + "start": 17322.58, + "end": 17323.36, + "probability": 0.8826 + }, + { + "start": 17323.46, + "end": 17324.34, + "probability": 0.7529 + }, + { + "start": 17324.36, + "end": 17325.28, + "probability": 0.7256 + }, + { + "start": 17325.3, + "end": 17326.46, + "probability": 0.5385 + }, + { + "start": 17327.26, + "end": 17329.92, + "probability": 0.9118 + }, + { + "start": 17330.0, + "end": 17334.74, + "probability": 0.8796 + }, + { + "start": 17335.68, + "end": 17340.4, + "probability": 0.7778 + }, + { + "start": 17340.7, + "end": 17341.63, + "probability": 0.9878 + }, + { + "start": 17342.92, + "end": 17345.08, + "probability": 0.8252 + }, + { + "start": 17345.54, + "end": 17346.34, + "probability": 0.5916 + }, + { + "start": 17346.56, + "end": 17349.3, + "probability": 0.7486 + }, + { + "start": 17351.12, + "end": 17352.08, + "probability": 0.1191 + }, + { + "start": 17352.96, + "end": 17358.6, + "probability": 0.4179 + }, + { + "start": 17358.8, + "end": 17361.06, + "probability": 0.8129 + }, + { + "start": 17363.88, + "end": 17367.68, + "probability": 0.7864 + }, + { + "start": 17373.4, + "end": 17375.4, + "probability": 0.645 + }, + { + "start": 17375.64, + "end": 17382.72, + "probability": 0.8198 + }, + { + "start": 17383.0, + "end": 17386.34, + "probability": 0.8554 + }, + { + "start": 17386.44, + "end": 17387.14, + "probability": 0.9629 + }, + { + "start": 17387.5, + "end": 17388.36, + "probability": 0.9011 + }, + { + "start": 17388.6, + "end": 17389.24, + "probability": 0.8401 + }, + { + "start": 17389.46, + "end": 17391.23, + "probability": 0.9927 + }, + { + "start": 17391.76, + "end": 17392.18, + "probability": 0.8359 + }, + { + "start": 17392.24, + "end": 17393.53, + "probability": 0.9907 + }, + { + "start": 17393.98, + "end": 17397.72, + "probability": 0.6963 + }, + { + "start": 17398.0, + "end": 17400.46, + "probability": 0.8417 + }, + { + "start": 17400.74, + "end": 17405.02, + "probability": 0.6494 + }, + { + "start": 17407.0, + "end": 17409.14, + "probability": 0.2611 + }, + { + "start": 17409.28, + "end": 17409.8, + "probability": 0.9115 + }, + { + "start": 17409.88, + "end": 17413.56, + "probability": 0.8979 + }, + { + "start": 17413.72, + "end": 17414.24, + "probability": 0.403 + }, + { + "start": 17414.24, + "end": 17416.44, + "probability": 0.9026 + }, + { + "start": 17416.62, + "end": 17418.3, + "probability": 0.508 + }, + { + "start": 17419.06, + "end": 17420.5, + "probability": 0.8254 + }, + { + "start": 17420.84, + "end": 17423.98, + "probability": 0.8403 + }, + { + "start": 17424.28, + "end": 17424.42, + "probability": 0.454 + }, + { + "start": 17424.52, + "end": 17424.94, + "probability": 0.6123 + }, + { + "start": 17425.36, + "end": 17426.58, + "probability": 0.9862 + }, + { + "start": 17426.8, + "end": 17429.84, + "probability": 0.8032 + }, + { + "start": 17430.5, + "end": 17435.06, + "probability": 0.7299 + }, + { + "start": 17436.22, + "end": 17437.82, + "probability": 0.175 + }, + { + "start": 17437.86, + "end": 17440.42, + "probability": 0.1524 + }, + { + "start": 17440.44, + "end": 17440.98, + "probability": 0.7989 + }, + { + "start": 17441.22, + "end": 17442.62, + "probability": 0.9465 + }, + { + "start": 17442.66, + "end": 17444.18, + "probability": 0.9938 + }, + { + "start": 17445.18, + "end": 17450.22, + "probability": 0.0959 + }, + { + "start": 17450.22, + "end": 17451.08, + "probability": 0.1312 + }, + { + "start": 17451.26, + "end": 17451.96, + "probability": 0.291 + }, + { + "start": 17452.22, + "end": 17452.72, + "probability": 0.4665 + }, + { + "start": 17454.29, + "end": 17457.14, + "probability": 0.2602 + }, + { + "start": 17457.72, + "end": 17460.82, + "probability": 0.8188 + }, + { + "start": 17460.82, + "end": 17463.34, + "probability": 0.3193 + }, + { + "start": 17463.84, + "end": 17466.32, + "probability": 0.6113 + }, + { + "start": 17467.56, + "end": 17468.53, + "probability": 0.192 + }, + { + "start": 17468.96, + "end": 17471.24, + "probability": 0.6445 + }, + { + "start": 17471.38, + "end": 17472.6, + "probability": 0.3756 + }, + { + "start": 17472.7, + "end": 17475.05, + "probability": 0.8151 + }, + { + "start": 17475.5, + "end": 17480.12, + "probability": 0.7506 + }, + { + "start": 17480.18, + "end": 17483.6, + "probability": 0.9209 + }, + { + "start": 17483.96, + "end": 17485.44, + "probability": 0.8109 + }, + { + "start": 17485.74, + "end": 17486.3, + "probability": 0.7223 + }, + { + "start": 17486.34, + "end": 17488.06, + "probability": 0.5265 + }, + { + "start": 17488.28, + "end": 17489.28, + "probability": 0.9243 + }, + { + "start": 17489.42, + "end": 17490.3, + "probability": 0.9552 + }, + { + "start": 17490.42, + "end": 17492.06, + "probability": 0.9783 + }, + { + "start": 17492.2, + "end": 17492.32, + "probability": 0.8634 + }, + { + "start": 17492.4, + "end": 17493.14, + "probability": 0.329 + }, + { + "start": 17493.38, + "end": 17494.92, + "probability": 0.7611 + }, + { + "start": 17495.2, + "end": 17496.2, + "probability": 0.6663 + }, + { + "start": 17496.22, + "end": 17497.02, + "probability": 0.8834 + }, + { + "start": 17497.3, + "end": 17498.28, + "probability": 0.7192 + }, + { + "start": 17498.64, + "end": 17500.43, + "probability": 0.8635 + }, + { + "start": 17501.86, + "end": 17503.78, + "probability": 0.8721 + }, + { + "start": 17506.48, + "end": 17506.74, + "probability": 0.2858 + }, + { + "start": 17514.36, + "end": 17518.55, + "probability": 0.1961 + }, + { + "start": 17519.58, + "end": 17519.78, + "probability": 0.01 + }, + { + "start": 17519.78, + "end": 17523.12, + "probability": 0.0874 + }, + { + "start": 17523.22, + "end": 17524.8, + "probability": 0.1797 + }, + { + "start": 17524.8, + "end": 17525.22, + "probability": 0.1083 + }, + { + "start": 17526.58, + "end": 17529.76, + "probability": 0.6388 + }, + { + "start": 17530.5, + "end": 17530.5, + "probability": 0.0079 + }, + { + "start": 17530.5, + "end": 17532.28, + "probability": 0.7316 + }, + { + "start": 17533.02, + "end": 17533.02, + "probability": 0.0116 + }, + { + "start": 17533.02, + "end": 17534.6, + "probability": 0.0764 + }, + { + "start": 17534.9, + "end": 17537.34, + "probability": 0.7688 + }, + { + "start": 17538.32, + "end": 17540.4, + "probability": 0.9421 + }, + { + "start": 17543.08, + "end": 17543.08, + "probability": 0.5008 + }, + { + "start": 17543.08, + "end": 17544.04, + "probability": 0.4166 + }, + { + "start": 17545.66, + "end": 17549.42, + "probability": 0.6094 + }, + { + "start": 17549.56, + "end": 17551.32, + "probability": 0.6201 + }, + { + "start": 17552.12, + "end": 17554.08, + "probability": 0.9709 + }, + { + "start": 17554.68, + "end": 17555.54, + "probability": 0.7157 + }, + { + "start": 17555.58, + "end": 17556.22, + "probability": 0.8526 + }, + { + "start": 17568.82, + "end": 17572.02, + "probability": 0.1443 + }, + { + "start": 17572.42, + "end": 17573.1, + "probability": 0.0102 + }, + { + "start": 17573.3, + "end": 17574.28, + "probability": 0.034 + }, + { + "start": 17574.36, + "end": 17574.52, + "probability": 0.7327 + }, + { + "start": 17574.94, + "end": 17577.42, + "probability": 0.5641 + }, + { + "start": 17580.26, + "end": 17581.82, + "probability": 0.328 + }, + { + "start": 17583.0, + "end": 17584.02, + "probability": 0.3097 + }, + { + "start": 17586.08, + "end": 17589.92, + "probability": 0.816 + }, + { + "start": 17591.04, + "end": 17591.62, + "probability": 0.3873 + }, + { + "start": 17591.66, + "end": 17594.34, + "probability": 0.8504 + }, + { + "start": 17596.0, + "end": 17599.98, + "probability": 0.9155 + }, + { + "start": 17600.5, + "end": 17601.94, + "probability": 0.4115 + }, + { + "start": 17603.24, + "end": 17606.36, + "probability": 0.9155 + }, + { + "start": 17606.48, + "end": 17609.22, + "probability": 0.765 + }, + { + "start": 17619.84, + "end": 17621.14, + "probability": 0.5378 + }, + { + "start": 17621.3, + "end": 17623.08, + "probability": 0.7492 + }, + { + "start": 17624.28, + "end": 17627.86, + "probability": 0.8922 + }, + { + "start": 17628.64, + "end": 17629.12, + "probability": 0.7416 + }, + { + "start": 17629.5, + "end": 17630.4, + "probability": 0.7683 + }, + { + "start": 17630.98, + "end": 17638.3, + "probability": 0.6769 + }, + { + "start": 17638.78, + "end": 17638.86, + "probability": 0.117 + }, + { + "start": 17638.86, + "end": 17644.71, + "probability": 0.7162 + }, + { + "start": 17645.76, + "end": 17645.94, + "probability": 0.1633 + }, + { + "start": 17645.98, + "end": 17650.22, + "probability": 0.9381 + }, + { + "start": 17651.58, + "end": 17653.2, + "probability": 0.784 + }, + { + "start": 17653.82, + "end": 17656.48, + "probability": 0.9165 + }, + { + "start": 17656.8, + "end": 17657.89, + "probability": 0.9319 + }, + { + "start": 17658.5, + "end": 17665.58, + "probability": 0.9877 + }, + { + "start": 17666.06, + "end": 17667.52, + "probability": 0.3328 + }, + { + "start": 17667.72, + "end": 17670.14, + "probability": 0.9566 + }, + { + "start": 17671.1, + "end": 17674.46, + "probability": 0.8833 + }, + { + "start": 17674.68, + "end": 17677.62, + "probability": 0.7491 + }, + { + "start": 17678.28, + "end": 17680.2, + "probability": 0.9437 + }, + { + "start": 17680.8, + "end": 17684.24, + "probability": 0.9965 + }, + { + "start": 17684.24, + "end": 17689.12, + "probability": 0.9603 + }, + { + "start": 17689.7, + "end": 17693.6, + "probability": 0.9919 + }, + { + "start": 17694.34, + "end": 17696.78, + "probability": 0.9945 + }, + { + "start": 17697.4, + "end": 17699.86, + "probability": 0.7034 + }, + { + "start": 17700.42, + "end": 17701.22, + "probability": 0.9481 + }, + { + "start": 17702.1, + "end": 17702.84, + "probability": 0.243 + }, + { + "start": 17702.92, + "end": 17704.84, + "probability": 0.771 + }, + { + "start": 17705.34, + "end": 17711.14, + "probability": 0.8848 + }, + { + "start": 17711.6, + "end": 17713.38, + "probability": 0.9106 + }, + { + "start": 17713.86, + "end": 17714.38, + "probability": 0.7324 + }, + { + "start": 17714.52, + "end": 17716.26, + "probability": 0.967 + }, + { + "start": 17716.46, + "end": 17717.44, + "probability": 0.7378 + }, + { + "start": 17718.26, + "end": 17721.82, + "probability": 0.989 + }, + { + "start": 17722.32, + "end": 17725.46, + "probability": 0.995 + }, + { + "start": 17726.14, + "end": 17728.78, + "probability": 0.8374 + }, + { + "start": 17729.2, + "end": 17733.44, + "probability": 0.9208 + }, + { + "start": 17734.0, + "end": 17735.08, + "probability": 0.917 + }, + { + "start": 17735.66, + "end": 17736.16, + "probability": 0.748 + }, + { + "start": 17736.46, + "end": 17738.54, + "probability": 0.8917 + }, + { + "start": 17738.76, + "end": 17740.4, + "probability": 0.7843 + }, + { + "start": 17741.24, + "end": 17744.64, + "probability": 0.9439 + }, + { + "start": 17745.56, + "end": 17750.24, + "probability": 0.9004 + }, + { + "start": 17751.0, + "end": 17752.68, + "probability": 0.92 + }, + { + "start": 17754.2, + "end": 17757.48, + "probability": 0.9397 + }, + { + "start": 17758.34, + "end": 17760.48, + "probability": 0.9937 + }, + { + "start": 17761.12, + "end": 17762.14, + "probability": 0.9727 + }, + { + "start": 17763.36, + "end": 17766.04, + "probability": 0.9821 + }, + { + "start": 17766.58, + "end": 17769.54, + "probability": 0.7164 + }, + { + "start": 17770.08, + "end": 17772.14, + "probability": 0.6739 + }, + { + "start": 17772.98, + "end": 17773.68, + "probability": 0.9308 + }, + { + "start": 17773.98, + "end": 17781.18, + "probability": 0.786 + }, + { + "start": 17782.12, + "end": 17783.58, + "probability": 0.9755 + }, + { + "start": 17785.28, + "end": 17788.12, + "probability": 0.31 + }, + { + "start": 17790.38, + "end": 17792.1, + "probability": 0.9875 + }, + { + "start": 17792.9, + "end": 17795.2, + "probability": 0.9676 + }, + { + "start": 17796.72, + "end": 17799.18, + "probability": 0.9929 + }, + { + "start": 17800.38, + "end": 17801.32, + "probability": 0.9599 + }, + { + "start": 17802.08, + "end": 17802.76, + "probability": 0.7947 + }, + { + "start": 17805.04, + "end": 17807.14, + "probability": 0.7417 + }, + { + "start": 17808.9, + "end": 17810.58, + "probability": 0.939 + }, + { + "start": 17811.3, + "end": 17812.94, + "probability": 0.9744 + }, + { + "start": 17814.82, + "end": 17817.46, + "probability": 0.9717 + }, + { + "start": 17818.76, + "end": 17820.64, + "probability": 0.9928 + }, + { + "start": 17822.4, + "end": 17826.06, + "probability": 0.9908 + }, + { + "start": 17826.44, + "end": 17827.16, + "probability": 0.461 + }, + { + "start": 17827.72, + "end": 17828.64, + "probability": 0.755 + }, + { + "start": 17829.02, + "end": 17830.82, + "probability": 0.9242 + }, + { + "start": 17831.94, + "end": 17832.96, + "probability": 0.1841 + }, + { + "start": 17833.76, + "end": 17834.84, + "probability": 0.8051 + }, + { + "start": 17834.98, + "end": 17836.1, + "probability": 0.984 + }, + { + "start": 17837.38, + "end": 17839.38, + "probability": 0.8977 + }, + { + "start": 17840.74, + "end": 17842.64, + "probability": 0.9954 + }, + { + "start": 17844.36, + "end": 17846.32, + "probability": 0.9266 + }, + { + "start": 17847.3, + "end": 17849.7, + "probability": 0.9941 + }, + { + "start": 17850.52, + "end": 17851.5, + "probability": 0.746 + }, + { + "start": 17853.02, + "end": 17856.02, + "probability": 0.971 + }, + { + "start": 17858.18, + "end": 17863.06, + "probability": 0.8142 + }, + { + "start": 17863.06, + "end": 17864.14, + "probability": 0.3696 + }, + { + "start": 17865.06, + "end": 17866.86, + "probability": 0.5718 + }, + { + "start": 17867.14, + "end": 17873.58, + "probability": 0.9937 + }, + { + "start": 17875.26, + "end": 17877.6, + "probability": 0.1855 + }, + { + "start": 17878.24, + "end": 17879.15, + "probability": 0.8784 + }, + { + "start": 17880.9, + "end": 17884.8, + "probability": 0.8493 + }, + { + "start": 17886.0, + "end": 17888.26, + "probability": 0.0621 + }, + { + "start": 17889.68, + "end": 17898.7, + "probability": 0.9432 + }, + { + "start": 17899.42, + "end": 17901.08, + "probability": 0.9965 + }, + { + "start": 17901.24, + "end": 17902.8, + "probability": 0.7114 + }, + { + "start": 17903.38, + "end": 17906.68, + "probability": 0.8957 + }, + { + "start": 17907.92, + "end": 17911.9, + "probability": 0.6461 + }, + { + "start": 17912.72, + "end": 17914.24, + "probability": 0.9239 + }, + { + "start": 17915.74, + "end": 17916.08, + "probability": 0.8311 + }, + { + "start": 17916.7, + "end": 17918.38, + "probability": 0.9861 + }, + { + "start": 17919.44, + "end": 17924.48, + "probability": 0.8153 + }, + { + "start": 17925.4, + "end": 17927.14, + "probability": 0.9434 + }, + { + "start": 17927.68, + "end": 17928.8, + "probability": 0.9487 + }, + { + "start": 17930.04, + "end": 17932.6, + "probability": 0.989 + }, + { + "start": 17932.78, + "end": 17936.88, + "probability": 0.9985 + }, + { + "start": 17937.18, + "end": 17939.6, + "probability": 0.9445 + }, + { + "start": 17939.94, + "end": 17941.98, + "probability": 0.817 + }, + { + "start": 17942.98, + "end": 17943.86, + "probability": 0.769 + }, + { + "start": 17944.56, + "end": 17950.2, + "probability": 0.9958 + }, + { + "start": 17952.38, + "end": 17953.7, + "probability": 0.9985 + }, + { + "start": 17955.0, + "end": 17956.14, + "probability": 0.8015 + }, + { + "start": 17956.74, + "end": 17960.36, + "probability": 0.9566 + }, + { + "start": 17962.0, + "end": 17967.6, + "probability": 0.9124 + }, + { + "start": 17968.28, + "end": 17970.16, + "probability": 0.9961 + }, + { + "start": 17970.8, + "end": 17972.94, + "probability": 0.9304 + }, + { + "start": 17976.44, + "end": 17976.72, + "probability": 0.484 + }, + { + "start": 17976.86, + "end": 17977.08, + "probability": 0.5851 + }, + { + "start": 17977.12, + "end": 17978.48, + "probability": 0.8881 + }, + { + "start": 17978.54, + "end": 17979.3, + "probability": 0.8528 + }, + { + "start": 17979.54, + "end": 17980.08, + "probability": 0.7608 + }, + { + "start": 17980.2, + "end": 17981.68, + "probability": 0.9093 + }, + { + "start": 17983.36, + "end": 17984.98, + "probability": 0.8958 + }, + { + "start": 17985.04, + "end": 17985.84, + "probability": 0.9064 + }, + { + "start": 17986.18, + "end": 17987.73, + "probability": 0.9873 + }, + { + "start": 17988.58, + "end": 17989.41, + "probability": 0.9869 + }, + { + "start": 17991.46, + "end": 17995.38, + "probability": 0.8724 + }, + { + "start": 17997.56, + "end": 17998.64, + "probability": 0.804 + }, + { + "start": 17999.44, + "end": 17999.44, + "probability": 0.5008 + }, + { + "start": 17999.44, + "end": 18001.38, + "probability": 0.9194 + }, + { + "start": 18003.08, + "end": 18003.78, + "probability": 0.0936 + }, + { + "start": 18004.56, + "end": 18005.58, + "probability": 0.9678 + }, + { + "start": 18006.16, + "end": 18007.1, + "probability": 0.9376 + }, + { + "start": 18007.18, + "end": 18007.8, + "probability": 0.7803 + }, + { + "start": 18008.04, + "end": 18009.22, + "probability": 0.7436 + }, + { + "start": 18009.46, + "end": 18011.82, + "probability": 0.9344 + }, + { + "start": 18012.68, + "end": 18013.62, + "probability": 0.5956 + }, + { + "start": 18014.38, + "end": 18019.36, + "probability": 0.9807 + }, + { + "start": 18020.48, + "end": 18021.04, + "probability": 0.7635 + }, + { + "start": 18021.76, + "end": 18023.82, + "probability": 0.9905 + }, + { + "start": 18024.06, + "end": 18027.37, + "probability": 0.9905 + }, + { + "start": 18029.0, + "end": 18035.76, + "probability": 0.9963 + }, + { + "start": 18036.12, + "end": 18038.44, + "probability": 0.8977 + }, + { + "start": 18038.62, + "end": 18038.92, + "probability": 0.5881 + }, + { + "start": 18039.84, + "end": 18041.74, + "probability": 0.9971 + }, + { + "start": 18042.0, + "end": 18044.24, + "probability": 0.9857 + }, + { + "start": 18044.54, + "end": 18045.02, + "probability": 0.0 + }, + { + "start": 18046.26, + "end": 18046.72, + "probability": 0.0696 + }, + { + "start": 18047.06, + "end": 18047.2, + "probability": 0.3288 + }, + { + "start": 18047.2, + "end": 18050.46, + "probability": 0.9533 + }, + { + "start": 18050.8, + "end": 18057.68, + "probability": 0.9333 + }, + { + "start": 18058.34, + "end": 18062.4, + "probability": 0.9964 + }, + { + "start": 18063.02, + "end": 18066.4, + "probability": 0.8834 + }, + { + "start": 18066.58, + "end": 18069.12, + "probability": 0.8888 + }, + { + "start": 18069.66, + "end": 18071.54, + "probability": 0.8994 + }, + { + "start": 18071.58, + "end": 18072.44, + "probability": 0.8547 + }, + { + "start": 18072.76, + "end": 18074.14, + "probability": 0.9743 + }, + { + "start": 18074.56, + "end": 18081.0, + "probability": 0.9354 + }, + { + "start": 18081.38, + "end": 18084.5, + "probability": 0.9963 + }, + { + "start": 18085.8, + "end": 18089.5, + "probability": 0.7373 + }, + { + "start": 18090.94, + "end": 18096.68, + "probability": 0.9857 + }, + { + "start": 18097.1, + "end": 18100.24, + "probability": 0.9875 + }, + { + "start": 18100.56, + "end": 18101.12, + "probability": 0.6235 + }, + { + "start": 18101.52, + "end": 18102.1, + "probability": 0.9597 + }, + { + "start": 18102.38, + "end": 18102.91, + "probability": 0.7207 + }, + { + "start": 18103.2, + "end": 18104.24, + "probability": 0.7871 + }, + { + "start": 18105.14, + "end": 18105.92, + "probability": 0.6481 + }, + { + "start": 18106.12, + "end": 18109.88, + "probability": 0.6668 + }, + { + "start": 18110.72, + "end": 18113.02, + "probability": 0.7585 + }, + { + "start": 18114.1, + "end": 18114.89, + "probability": 0.7777 + }, + { + "start": 18114.92, + "end": 18115.48, + "probability": 0.8572 + }, + { + "start": 18115.62, + "end": 18115.84, + "probability": 0.9609 + }, + { + "start": 18117.16, + "end": 18117.98, + "probability": 0.998 + }, + { + "start": 18118.92, + "end": 18120.1, + "probability": 0.9634 + }, + { + "start": 18120.22, + "end": 18120.4, + "probability": 0.2493 + }, + { + "start": 18120.7, + "end": 18120.86, + "probability": 0.2374 + }, + { + "start": 18121.42, + "end": 18124.18, + "probability": 0.8866 + }, + { + "start": 18124.6, + "end": 18126.12, + "probability": 0.6529 + }, + { + "start": 18126.26, + "end": 18126.26, + "probability": 0.263 + }, + { + "start": 18126.26, + "end": 18126.78, + "probability": 0.8651 + }, + { + "start": 18126.9, + "end": 18128.44, + "probability": 0.7453 + }, + { + "start": 18128.48, + "end": 18132.92, + "probability": 0.9275 + }, + { + "start": 18132.92, + "end": 18135.5, + "probability": 0.9644 + }, + { + "start": 18136.42, + "end": 18140.24, + "probability": 0.9961 + }, + { + "start": 18140.42, + "end": 18142.64, + "probability": 0.7577 + }, + { + "start": 18143.3, + "end": 18146.64, + "probability": 0.8656 + }, + { + "start": 18146.66, + "end": 18148.34, + "probability": 0.946 + }, + { + "start": 18149.24, + "end": 18150.86, + "probability": 0.9834 + }, + { + "start": 18150.86, + "end": 18153.56, + "probability": 0.9945 + }, + { + "start": 18153.64, + "end": 18155.84, + "probability": 0.9722 + }, + { + "start": 18156.62, + "end": 18158.24, + "probability": 0.9598 + }, + { + "start": 18158.4, + "end": 18159.82, + "probability": 0.9062 + }, + { + "start": 18159.86, + "end": 18162.85, + "probability": 0.9798 + }, + { + "start": 18163.68, + "end": 18167.8, + "probability": 0.8647 + }, + { + "start": 18168.66, + "end": 18171.1, + "probability": 0.9919 + }, + { + "start": 18171.1, + "end": 18173.56, + "probability": 0.9835 + }, + { + "start": 18173.64, + "end": 18176.86, + "probability": 0.9876 + }, + { + "start": 18176.94, + "end": 18179.58, + "probability": 0.9482 + }, + { + "start": 18180.44, + "end": 18182.3, + "probability": 0.2338 + }, + { + "start": 18182.3, + "end": 18185.1, + "probability": 0.9707 + }, + { + "start": 18185.1, + "end": 18187.62, + "probability": 0.9478 + }, + { + "start": 18188.98, + "end": 18193.32, + "probability": 0.8524 + }, + { + "start": 18193.52, + "end": 18196.06, + "probability": 0.9069 + }, + { + "start": 18196.82, + "end": 18200.64, + "probability": 0.925 + }, + { + "start": 18200.86, + "end": 18201.36, + "probability": 0.3583 + }, + { + "start": 18201.44, + "end": 18205.26, + "probability": 0.8729 + }, + { + "start": 18205.26, + "end": 18208.42, + "probability": 0.9919 + }, + { + "start": 18208.9, + "end": 18213.9, + "probability": 0.8405 + }, + { + "start": 18214.42, + "end": 18215.4, + "probability": 0.429 + }, + { + "start": 18215.56, + "end": 18217.34, + "probability": 0.612 + }, + { + "start": 18217.42, + "end": 18219.22, + "probability": 0.7301 + }, + { + "start": 18219.8, + "end": 18221.98, + "probability": 0.7923 + }, + { + "start": 18222.6, + "end": 18230.7, + "probability": 0.9767 + }, + { + "start": 18232.0, + "end": 18235.56, + "probability": 0.9318 + }, + { + "start": 18235.74, + "end": 18236.66, + "probability": 0.6672 + }, + { + "start": 18236.78, + "end": 18237.88, + "probability": 0.8018 + }, + { + "start": 18238.28, + "end": 18241.08, + "probability": 0.9919 + }, + { + "start": 18242.28, + "end": 18244.08, + "probability": 0.63 + }, + { + "start": 18244.26, + "end": 18244.32, + "probability": 0.6076 + }, + { + "start": 18244.32, + "end": 18247.08, + "probability": 0.7911 + }, + { + "start": 18247.64, + "end": 18248.28, + "probability": 0.3942 + }, + { + "start": 18248.46, + "end": 18250.66, + "probability": 0.9723 + }, + { + "start": 18251.02, + "end": 18254.66, + "probability": 0.7253 + }, + { + "start": 18255.34, + "end": 18259.68, + "probability": 0.925 + }, + { + "start": 18259.74, + "end": 18262.64, + "probability": 0.9762 + }, + { + "start": 18263.04, + "end": 18263.28, + "probability": 0.6797 + }, + { + "start": 18264.06, + "end": 18266.26, + "probability": 0.7681 + }, + { + "start": 18267.2, + "end": 18268.9, + "probability": 0.9076 + }, + { + "start": 18270.94, + "end": 18272.3, + "probability": 0.8977 + }, + { + "start": 18272.74, + "end": 18273.16, + "probability": 0.5199 + }, + { + "start": 18273.18, + "end": 18274.12, + "probability": 0.797 + }, + { + "start": 18274.32, + "end": 18275.3, + "probability": 0.8575 + }, + { + "start": 18278.24, + "end": 18279.28, + "probability": 0.9587 + }, + { + "start": 18279.74, + "end": 18280.82, + "probability": 0.9373 + }, + { + "start": 18281.1, + "end": 18281.6, + "probability": 0.7024 + }, + { + "start": 18281.72, + "end": 18283.04, + "probability": 0.5404 + }, + { + "start": 18283.14, + "end": 18284.66, + "probability": 0.8479 + }, + { + "start": 18285.18, + "end": 18287.18, + "probability": 0.8683 + }, + { + "start": 18290.96, + "end": 18298.04, + "probability": 0.2064 + }, + { + "start": 18298.04, + "end": 18300.84, + "probability": 0.939 + }, + { + "start": 18300.94, + "end": 18302.26, + "probability": 0.4418 + }, + { + "start": 18302.84, + "end": 18307.88, + "probability": 0.6846 + }, + { + "start": 18307.88, + "end": 18311.9, + "probability": 0.1309 + }, + { + "start": 18311.9, + "end": 18313.16, + "probability": 0.0205 + }, + { + "start": 18313.16, + "end": 18319.12, + "probability": 0.0246 + }, + { + "start": 18330.84, + "end": 18334.1, + "probability": 0.0184 + }, + { + "start": 18337.18, + "end": 18339.02, + "probability": 0.0231 + }, + { + "start": 18339.02, + "end": 18339.02, + "probability": 0.017 + }, + { + "start": 18339.69, + "end": 18340.18, + "probability": 0.1264 + }, + { + "start": 18340.18, + "end": 18341.46, + "probability": 0.2329 + }, + { + "start": 18341.6, + "end": 18343.38, + "probability": 0.1581 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.0, + "end": 18376.0, + "probability": 0.0 + }, + { + "start": 18376.3, + "end": 18376.4, + "probability": 0.0156 + }, + { + "start": 18376.4, + "end": 18376.4, + "probability": 0.1299 + }, + { + "start": 18376.4, + "end": 18376.4, + "probability": 0.0385 + }, + { + "start": 18376.4, + "end": 18377.04, + "probability": 0.0371 + }, + { + "start": 18377.04, + "end": 18377.95, + "probability": 0.7244 + }, + { + "start": 18378.6, + "end": 18385.08, + "probability": 0.9341 + }, + { + "start": 18385.56, + "end": 18386.96, + "probability": 0.7012 + }, + { + "start": 18387.04, + "end": 18388.78, + "probability": 0.8723 + }, + { + "start": 18388.98, + "end": 18390.5, + "probability": 0.6545 + }, + { + "start": 18390.74, + "end": 18395.96, + "probability": 0.939 + }, + { + "start": 18396.72, + "end": 18401.44, + "probability": 0.9878 + }, + { + "start": 18401.44, + "end": 18406.82, + "probability": 0.9825 + }, + { + "start": 18406.96, + "end": 18409.4, + "probability": 0.9724 + }, + { + "start": 18409.48, + "end": 18412.72, + "probability": 0.9929 + }, + { + "start": 18412.76, + "end": 18413.88, + "probability": 0.8822 + }, + { + "start": 18413.96, + "end": 18414.6, + "probability": 0.7066 + }, + { + "start": 18415.22, + "end": 18418.2, + "probability": 0.9873 + }, + { + "start": 18418.48, + "end": 18421.38, + "probability": 0.7517 + }, + { + "start": 18421.46, + "end": 18422.98, + "probability": 0.7458 + }, + { + "start": 18423.04, + "end": 18427.5, + "probability": 0.6774 + }, + { + "start": 18427.62, + "end": 18428.12, + "probability": 0.7854 + }, + { + "start": 18429.82, + "end": 18432.34, + "probability": 0.7527 + }, + { + "start": 18432.86, + "end": 18434.08, + "probability": 0.7905 + }, + { + "start": 18435.64, + "end": 18436.54, + "probability": 0.8744 + }, + { + "start": 18438.72, + "end": 18440.94, + "probability": 0.8571 + }, + { + "start": 18442.94, + "end": 18444.04, + "probability": 0.6751 + }, + { + "start": 18445.92, + "end": 18447.72, + "probability": 0.7837 + }, + { + "start": 18447.9, + "end": 18448.86, + "probability": 0.7335 + }, + { + "start": 18449.22, + "end": 18449.58, + "probability": 0.7976 + }, + { + "start": 18449.98, + "end": 18455.1, + "probability": 0.7263 + }, + { + "start": 18455.48, + "end": 18456.16, + "probability": 0.9312 + }, + { + "start": 18457.58, + "end": 18458.68, + "probability": 0.0259 + }, + { + "start": 18460.94, + "end": 18461.38, + "probability": 0.0079 + }, + { + "start": 18463.06, + "end": 18467.84, + "probability": 0.0493 + }, + { + "start": 18467.86, + "end": 18468.8, + "probability": 0.0343 + }, + { + "start": 18471.41, + "end": 18472.22, + "probability": 0.0296 + }, + { + "start": 18472.22, + "end": 18472.26, + "probability": 0.0223 + }, + { + "start": 18472.26, + "end": 18472.26, + "probability": 0.0815 + }, + { + "start": 18472.26, + "end": 18472.9, + "probability": 0.0397 + }, + { + "start": 18473.8, + "end": 18476.18, + "probability": 0.7621 + }, + { + "start": 18476.62, + "end": 18479.34, + "probability": 0.9601 + }, + { + "start": 18479.8, + "end": 18480.9, + "probability": 0.9055 + }, + { + "start": 18481.2, + "end": 18481.96, + "probability": 0.4597 + }, + { + "start": 18482.32, + "end": 18482.46, + "probability": 0.8539 + }, + { + "start": 18482.48, + "end": 18482.58, + "probability": 0.384 + }, + { + "start": 18483.1, + "end": 18483.58, + "probability": 0.7875 + }, + { + "start": 18484.24, + "end": 18486.96, + "probability": 0.9818 + }, + { + "start": 18487.16, + "end": 18488.48, + "probability": 0.8022 + }, + { + "start": 18488.88, + "end": 18490.54, + "probability": 0.9351 + }, + { + "start": 18490.96, + "end": 18493.86, + "probability": 0.3285 + }, + { + "start": 18494.0, + "end": 18495.3, + "probability": 0.9773 + }, + { + "start": 18495.52, + "end": 18496.8, + "probability": 0.7531 + }, + { + "start": 18497.16, + "end": 18498.42, + "probability": 0.6625 + }, + { + "start": 18499.46, + "end": 18500.22, + "probability": 0.6664 + }, + { + "start": 18500.66, + "end": 18502.4, + "probability": 0.8147 + }, + { + "start": 18502.84, + "end": 18503.06, + "probability": 0.8123 + }, + { + "start": 18505.3, + "end": 18507.86, + "probability": 0.7899 + }, + { + "start": 18507.86, + "end": 18511.06, + "probability": 0.6014 + }, + { + "start": 18512.16, + "end": 18513.34, + "probability": 0.666 + }, + { + "start": 18513.88, + "end": 18515.68, + "probability": 0.6994 + }, + { + "start": 18515.76, + "end": 18518.2, + "probability": 0.8005 + }, + { + "start": 18518.82, + "end": 18521.24, + "probability": 0.6093 + }, + { + "start": 18521.78, + "end": 18522.92, + "probability": 0.6422 + }, + { + "start": 18527.51, + "end": 18528.72, + "probability": 0.567 + }, + { + "start": 18528.72, + "end": 18529.45, + "probability": 0.5754 + }, + { + "start": 18530.22, + "end": 18533.0, + "probability": 0.7593 + }, + { + "start": 18533.18, + "end": 18535.16, + "probability": 0.8237 + }, + { + "start": 18538.82, + "end": 18540.2, + "probability": 0.6597 + }, + { + "start": 18540.34, + "end": 18541.45, + "probability": 0.9673 + }, + { + "start": 18541.84, + "end": 18542.02, + "probability": 0.7013 + }, + { + "start": 18544.0, + "end": 18545.43, + "probability": 0.9438 + }, + { + "start": 18545.88, + "end": 18546.48, + "probability": 0.5828 + }, + { + "start": 18546.54, + "end": 18547.42, + "probability": 0.7259 + }, + { + "start": 18547.58, + "end": 18548.92, + "probability": 0.7867 + }, + { + "start": 18549.1, + "end": 18552.88, + "probability": 0.9917 + }, + { + "start": 18554.14, + "end": 18558.42, + "probability": 0.9655 + }, + { + "start": 18559.18, + "end": 18564.5, + "probability": 0.9941 + }, + { + "start": 18565.3, + "end": 18570.12, + "probability": 0.8267 + }, + { + "start": 18571.78, + "end": 18572.72, + "probability": 0.8854 + }, + { + "start": 18573.96, + "end": 18577.8, + "probability": 0.9663 + }, + { + "start": 18578.82, + "end": 18583.42, + "probability": 0.9714 + }, + { + "start": 18585.0, + "end": 18585.56, + "probability": 0.2779 + }, + { + "start": 18585.56, + "end": 18586.96, + "probability": 0.9935 + }, + { + "start": 18587.92, + "end": 18588.16, + "probability": 0.4481 + }, + { + "start": 18588.2, + "end": 18592.42, + "probability": 0.9983 + }, + { + "start": 18592.48, + "end": 18596.16, + "probability": 0.9475 + }, + { + "start": 18596.68, + "end": 18599.68, + "probability": 0.9642 + }, + { + "start": 18599.78, + "end": 18602.18, + "probability": 0.9835 + }, + { + "start": 18603.0, + "end": 18606.34, + "probability": 0.986 + }, + { + "start": 18606.42, + "end": 18610.9, + "probability": 0.9946 + }, + { + "start": 18611.18, + "end": 18615.58, + "probability": 0.9791 + }, + { + "start": 18615.66, + "end": 18616.73, + "probability": 0.8337 + }, + { + "start": 18617.25, + "end": 18619.93, + "probability": 0.6748 + }, + { + "start": 18620.62, + "end": 18625.0, + "probability": 0.6937 + }, + { + "start": 18625.96, + "end": 18631.42, + "probability": 0.9844 + }, + { + "start": 18631.42, + "end": 18635.5, + "probability": 0.7536 + }, + { + "start": 18635.5, + "end": 18641.8, + "probability": 0.956 + }, + { + "start": 18642.34, + "end": 18649.3, + "probability": 0.9919 + }, + { + "start": 18652.06, + "end": 18653.64, + "probability": 0.2586 + }, + { + "start": 18653.64, + "end": 18653.64, + "probability": 0.4227 + }, + { + "start": 18653.64, + "end": 18653.64, + "probability": 0.0135 + }, + { + "start": 18653.64, + "end": 18654.94, + "probability": 0.2273 + }, + { + "start": 18655.54, + "end": 18659.34, + "probability": 0.2226 + }, + { + "start": 18659.52, + "end": 18661.22, + "probability": 0.6371 + }, + { + "start": 18661.28, + "end": 18663.28, + "probability": 0.7136 + }, + { + "start": 18663.3, + "end": 18663.36, + "probability": 0.1385 + }, + { + "start": 18663.4, + "end": 18663.75, + "probability": 0.0772 + }, + { + "start": 18665.88, + "end": 18666.8, + "probability": 0.1612 + }, + { + "start": 18667.72, + "end": 18668.72, + "probability": 0.1305 + }, + { + "start": 18669.4, + "end": 18671.0, + "probability": 0.5414 + }, + { + "start": 18671.0, + "end": 18671.87, + "probability": 0.7416 + }, + { + "start": 18672.32, + "end": 18673.76, + "probability": 0.5037 + }, + { + "start": 18674.1, + "end": 18675.86, + "probability": 0.61 + }, + { + "start": 18676.82, + "end": 18680.12, + "probability": 0.0897 + }, + { + "start": 18680.22, + "end": 18680.44, + "probability": 0.1082 + }, + { + "start": 18680.44, + "end": 18680.44, + "probability": 0.0557 + }, + { + "start": 18680.44, + "end": 18680.92, + "probability": 0.2292 + }, + { + "start": 18681.0, + "end": 18682.02, + "probability": 0.7313 + }, + { + "start": 18682.36, + "end": 18683.92, + "probability": 0.7357 + }, + { + "start": 18684.64, + "end": 18689.12, + "probability": 0.5903 + }, + { + "start": 18689.5, + "end": 18691.76, + "probability": 0.8017 + }, + { + "start": 18693.12, + "end": 18696.16, + "probability": 0.8342 + }, + { + "start": 18696.96, + "end": 18697.16, + "probability": 0.2695 + }, + { + "start": 18697.38, + "end": 18697.62, + "probability": 0.4437 + }, + { + "start": 18697.62, + "end": 18697.88, + "probability": 0.3726 + }, + { + "start": 18697.98, + "end": 18700.98, + "probability": 0.6545 + }, + { + "start": 18701.06, + "end": 18703.42, + "probability": 0.9417 + }, + { + "start": 18703.42, + "end": 18704.52, + "probability": 0.8438 + }, + { + "start": 18704.66, + "end": 18706.74, + "probability": 0.6499 + }, + { + "start": 18708.68, + "end": 18711.86, + "probability": 0.9163 + }, + { + "start": 18712.96, + "end": 18717.28, + "probability": 0.9578 + }, + { + "start": 18717.44, + "end": 18721.34, + "probability": 0.9978 + }, + { + "start": 18721.34, + "end": 18724.86, + "probability": 0.9971 + }, + { + "start": 18725.7, + "end": 18728.92, + "probability": 0.9958 + }, + { + "start": 18730.0, + "end": 18730.0, + "probability": 0.0981 + }, + { + "start": 18730.0, + "end": 18730.0, + "probability": 0.4139 + }, + { + "start": 18730.0, + "end": 18731.8, + "probability": 0.9345 + }, + { + "start": 18732.02, + "end": 18735.26, + "probability": 0.9792 + }, + { + "start": 18735.46, + "end": 18738.04, + "probability": 0.9714 + }, + { + "start": 18738.08, + "end": 18739.52, + "probability": 0.9253 + }, + { + "start": 18741.0, + "end": 18742.08, + "probability": 0.9487 + }, + { + "start": 18743.9, + "end": 18748.25, + "probability": 0.9983 + }, + { + "start": 18749.64, + "end": 18750.18, + "probability": 0.5039 + }, + { + "start": 18750.18, + "end": 18753.14, + "probability": 0.8296 + }, + { + "start": 18754.1, + "end": 18756.02, + "probability": 0.9971 + }, + { + "start": 18757.22, + "end": 18761.34, + "probability": 0.9609 + }, + { + "start": 18761.34, + "end": 18764.4, + "probability": 0.9938 + }, + { + "start": 18765.58, + "end": 18766.28, + "probability": 0.7228 + }, + { + "start": 18766.82, + "end": 18773.52, + "probability": 0.9934 + }, + { + "start": 18773.56, + "end": 18775.1, + "probability": 0.7797 + }, + { + "start": 18775.74, + "end": 18777.64, + "probability": 0.9904 + }, + { + "start": 18777.78, + "end": 18779.06, + "probability": 0.8727 + }, + { + "start": 18779.2, + "end": 18781.58, + "probability": 0.9967 + }, + { + "start": 18782.94, + "end": 18784.4, + "probability": 0.0047 + }, + { + "start": 18787.52, + "end": 18790.52, + "probability": 0.0494 + }, + { + "start": 18790.52, + "end": 18793.36, + "probability": 0.084 + }, + { + "start": 18793.36, + "end": 18793.58, + "probability": 0.0052 + }, + { + "start": 18793.84, + "end": 18794.94, + "probability": 0.2564 + }, + { + "start": 18795.38, + "end": 18795.98, + "probability": 0.5989 + }, + { + "start": 18796.12, + "end": 18796.78, + "probability": 0.6229 + }, + { + "start": 18796.9, + "end": 18797.76, + "probability": 0.6971 + }, + { + "start": 18798.76, + "end": 18800.78, + "probability": 0.2445 + }, + { + "start": 18800.78, + "end": 18801.46, + "probability": 0.0467 + }, + { + "start": 18801.46, + "end": 18801.6, + "probability": 0.1135 + }, + { + "start": 18801.82, + "end": 18802.22, + "probability": 0.1086 + }, + { + "start": 18802.3, + "end": 18802.36, + "probability": 0.1765 + }, + { + "start": 18802.36, + "end": 18803.52, + "probability": 0.3302 + }, + { + "start": 18803.64, + "end": 18805.26, + "probability": 0.7363 + }, + { + "start": 18805.32, + "end": 18806.1, + "probability": 0.6869 + }, + { + "start": 18806.2, + "end": 18807.26, + "probability": 0.5036 + }, + { + "start": 18807.38, + "end": 18808.76, + "probability": 0.9771 + }, + { + "start": 18808.9, + "end": 18810.9, + "probability": 0.9936 + }, + { + "start": 18811.02, + "end": 18812.44, + "probability": 0.9663 + }, + { + "start": 18812.72, + "end": 18813.06, + "probability": 0.6893 + }, + { + "start": 18813.18, + "end": 18814.04, + "probability": 0.6423 + }, + { + "start": 18814.14, + "end": 18817.28, + "probability": 0.9862 + }, + { + "start": 18817.7, + "end": 18818.08, + "probability": 0.6068 + }, + { + "start": 18818.34, + "end": 18818.66, + "probability": 0.5245 + }, + { + "start": 18819.72, + "end": 18819.9, + "probability": 0.0216 + }, + { + "start": 18819.9, + "end": 18819.9, + "probability": 0.1584 + }, + { + "start": 18819.9, + "end": 18820.56, + "probability": 0.1899 + }, + { + "start": 18820.7, + "end": 18824.15, + "probability": 0.8538 + }, + { + "start": 18824.66, + "end": 18826.86, + "probability": 0.5252 + }, + { + "start": 18827.02, + "end": 18830.76, + "probability": 0.6112 + }, + { + "start": 18831.6, + "end": 18831.7, + "probability": 0.2339 + }, + { + "start": 18831.7, + "end": 18831.7, + "probability": 0.2177 + }, + { + "start": 18831.7, + "end": 18834.14, + "probability": 0.9958 + }, + { + "start": 18834.24, + "end": 18836.02, + "probability": 0.9541 + }, + { + "start": 18836.78, + "end": 18838.48, + "probability": 0.9503 + }, + { + "start": 18838.58, + "end": 18839.86, + "probability": 0.9981 + }, + { + "start": 18839.94, + "end": 18841.4, + "probability": 0.9825 + }, + { + "start": 18841.84, + "end": 18843.88, + "probability": 0.9895 + }, + { + "start": 18843.92, + "end": 18845.78, + "probability": 0.998 + }, + { + "start": 18845.98, + "end": 18846.74, + "probability": 0.0326 + }, + { + "start": 18846.76, + "end": 18855.2, + "probability": 0.9536 + }, + { + "start": 18856.24, + "end": 18856.24, + "probability": 0.0406 + }, + { + "start": 18856.24, + "end": 18858.56, + "probability": 0.604 + }, + { + "start": 18859.22, + "end": 18862.08, + "probability": 0.5806 + }, + { + "start": 18862.48, + "end": 18863.88, + "probability": 0.8636 + }, + { + "start": 18864.0, + "end": 18865.54, + "probability": 0.9211 + }, + { + "start": 18865.54, + "end": 18866.17, + "probability": 0.1602 + }, + { + "start": 18866.46, + "end": 18867.72, + "probability": 0.6275 + }, + { + "start": 18867.72, + "end": 18874.7, + "probability": 0.9877 + }, + { + "start": 18874.88, + "end": 18875.9, + "probability": 0.679 + }, + { + "start": 18876.44, + "end": 18879.14, + "probability": 0.4012 + }, + { + "start": 18879.74, + "end": 18880.86, + "probability": 0.7302 + }, + { + "start": 18880.94, + "end": 18884.6, + "probability": 0.5758 + }, + { + "start": 18884.6, + "end": 18884.62, + "probability": 0.7035 + }, + { + "start": 18884.62, + "end": 18885.74, + "probability": 0.4997 + }, + { + "start": 18885.98, + "end": 18887.36, + "probability": 0.9824 + }, + { + "start": 18888.4, + "end": 18891.28, + "probability": 0.2537 + }, + { + "start": 18891.28, + "end": 18896.42, + "probability": 0.743 + }, + { + "start": 18896.46, + "end": 18900.2, + "probability": 0.9692 + }, + { + "start": 18900.54, + "end": 18903.06, + "probability": 0.5125 + }, + { + "start": 18903.54, + "end": 18907.44, + "probability": 0.0112 + }, + { + "start": 18908.3, + "end": 18909.09, + "probability": 0.0729 + }, + { + "start": 18910.24, + "end": 18911.66, + "probability": 0.5382 + }, + { + "start": 18911.78, + "end": 18913.12, + "probability": 0.9442 + }, + { + "start": 18913.96, + "end": 18919.06, + "probability": 0.9247 + }, + { + "start": 18919.7, + "end": 18922.25, + "probability": 0.8496 + }, + { + "start": 18922.4, + "end": 18925.58, + "probability": 0.966 + }, + { + "start": 18926.08, + "end": 18932.2, + "probability": 0.1804 + }, + { + "start": 18932.22, + "end": 18932.22, + "probability": 0.0281 + }, + { + "start": 18932.22, + "end": 18932.22, + "probability": 0.2928 + }, + { + "start": 18932.32, + "end": 18933.2, + "probability": 0.5034 + }, + { + "start": 18933.4, + "end": 18933.92, + "probability": 0.4998 + }, + { + "start": 18934.32, + "end": 18935.66, + "probability": 0.7926 + }, + { + "start": 18935.78, + "end": 18939.12, + "probability": 0.9753 + }, + { + "start": 18939.91, + "end": 18941.48, + "probability": 0.9143 + }, + { + "start": 18941.48, + "end": 18944.64, + "probability": 0.9276 + }, + { + "start": 18944.74, + "end": 18945.64, + "probability": 0.8131 + }, + { + "start": 18945.68, + "end": 18946.28, + "probability": 0.0518 + }, + { + "start": 18946.38, + "end": 18949.34, + "probability": 0.0266 + }, + { + "start": 18949.34, + "end": 18950.5, + "probability": 0.0116 + }, + { + "start": 18950.58, + "end": 18950.64, + "probability": 0.084 + }, + { + "start": 18950.64, + "end": 18950.94, + "probability": 0.2835 + }, + { + "start": 18951.06, + "end": 18952.48, + "probability": 0.5782 + }, + { + "start": 18952.48, + "end": 18954.14, + "probability": 0.8584 + }, + { + "start": 18954.44, + "end": 18955.92, + "probability": 0.9041 + }, + { + "start": 18956.24, + "end": 18956.66, + "probability": 0.835 + }, + { + "start": 18957.9, + "end": 18959.44, + "probability": 0.4857 + }, + { + "start": 18959.58, + "end": 18961.67, + "probability": 0.7095 + }, + { + "start": 18962.38, + "end": 18966.62, + "probability": 0.9984 + }, + { + "start": 18966.76, + "end": 18969.96, + "probability": 0.9978 + }, + { + "start": 18970.04, + "end": 18971.02, + "probability": 0.6346 + }, + { + "start": 18971.04, + "end": 18971.12, + "probability": 0.7398 + }, + { + "start": 18971.16, + "end": 18972.36, + "probability": 0.7749 + }, + { + "start": 18972.36, + "end": 18977.44, + "probability": 0.8361 + }, + { + "start": 18977.5, + "end": 18978.58, + "probability": 0.5896 + }, + { + "start": 18978.58, + "end": 18978.64, + "probability": 0.1762 + }, + { + "start": 18978.72, + "end": 18980.6, + "probability": 0.9193 + }, + { + "start": 18980.68, + "end": 18982.78, + "probability": 0.8344 + }, + { + "start": 18982.86, + "end": 18984.82, + "probability": 0.9251 + }, + { + "start": 18984.98, + "end": 18988.74, + "probability": 0.261 + }, + { + "start": 18988.74, + "end": 18988.74, + "probability": 0.1305 + }, + { + "start": 18988.74, + "end": 18989.44, + "probability": 0.6418 + }, + { + "start": 18990.52, + "end": 18991.82, + "probability": 0.9142 + }, + { + "start": 18992.18, + "end": 18994.54, + "probability": 0.8955 + }, + { + "start": 18994.7, + "end": 18996.14, + "probability": 0.6871 + }, + { + "start": 18996.24, + "end": 18998.86, + "probability": 0.9084 + }, + { + "start": 18999.38, + "end": 18999.38, + "probability": 0.642 + }, + { + "start": 18999.38, + "end": 19000.0, + "probability": 0.6109 + }, + { + "start": 19001.0, + "end": 19003.46, + "probability": 0.6426 + }, + { + "start": 19003.72, + "end": 19004.78, + "probability": 0.7582 + }, + { + "start": 19004.8, + "end": 19005.76, + "probability": 0.6344 + }, + { + "start": 19006.74, + "end": 19009.9, + "probability": 0.2289 + }, + { + "start": 19010.34, + "end": 19011.88, + "probability": 0.1564 + }, + { + "start": 19013.24, + "end": 19013.54, + "probability": 0.6362 + }, + { + "start": 19013.54, + "end": 19014.63, + "probability": 0.0136 + }, + { + "start": 19016.64, + "end": 19018.46, + "probability": 0.0008 + }, + { + "start": 19019.96, + "end": 19023.04, + "probability": 0.7925 + }, + { + "start": 19023.48, + "end": 19025.8, + "probability": 0.9279 + }, + { + "start": 19026.04, + "end": 19026.94, + "probability": 0.8622 + }, + { + "start": 19027.64, + "end": 19027.7, + "probability": 0.319 + }, + { + "start": 19027.7, + "end": 19032.38, + "probability": 0.8807 + }, + { + "start": 19034.34, + "end": 19035.86, + "probability": 0.3571 + }, + { + "start": 19035.86, + "end": 19038.32, + "probability": 0.853 + }, + { + "start": 19038.44, + "end": 19039.48, + "probability": 0.9019 + }, + { + "start": 19040.48, + "end": 19041.32, + "probability": 0.551 + }, + { + "start": 19042.64, + "end": 19043.72, + "probability": 0.541 + }, + { + "start": 19043.72, + "end": 19043.74, + "probability": 0.2247 + }, + { + "start": 19043.74, + "end": 19045.1, + "probability": 0.5 + }, + { + "start": 19045.6, + "end": 19047.58, + "probability": 0.7111 + }, + { + "start": 19049.14, + "end": 19051.06, + "probability": 0.4511 + }, + { + "start": 19052.57, + "end": 19054.3, + "probability": 0.9404 + }, + { + "start": 19054.48, + "end": 19054.88, + "probability": 0.6494 + }, + { + "start": 19056.46, + "end": 19057.16, + "probability": 0.4239 + }, + { + "start": 19057.38, + "end": 19057.62, + "probability": 0.6599 + }, + { + "start": 19057.78, + "end": 19063.63, + "probability": 0.8625 + }, + { + "start": 19064.68, + "end": 19072.0, + "probability": 0.9844 + }, + { + "start": 19072.0, + "end": 19078.38, + "probability": 0.9945 + }, + { + "start": 19078.7, + "end": 19081.58, + "probability": 0.9967 + }, + { + "start": 19082.06, + "end": 19087.62, + "probability": 0.9626 + }, + { + "start": 19087.62, + "end": 19093.14, + "probability": 0.9399 + }, + { + "start": 19093.58, + "end": 19093.68, + "probability": 0.1674 + }, + { + "start": 19093.68, + "end": 19093.68, + "probability": 0.5337 + }, + { + "start": 19093.68, + "end": 19095.22, + "probability": 0.875 + }, + { + "start": 19095.26, + "end": 19098.42, + "probability": 0.9948 + }, + { + "start": 19098.84, + "end": 19100.6, + "probability": 0.9178 + }, + { + "start": 19100.84, + "end": 19102.46, + "probability": 0.4932 + }, + { + "start": 19102.46, + "end": 19102.48, + "probability": 0.015 + }, + { + "start": 19102.48, + "end": 19103.58, + "probability": 0.6161 + }, + { + "start": 19104.54, + "end": 19105.46, + "probability": 0.57 + }, + { + "start": 19105.9, + "end": 19110.52, + "probability": 0.991 + }, + { + "start": 19110.7, + "end": 19114.9, + "probability": 0.5281 + }, + { + "start": 19115.38, + "end": 19118.98, + "probability": 0.9933 + }, + { + "start": 19119.06, + "end": 19120.1, + "probability": 0.7661 + }, + { + "start": 19120.26, + "end": 19124.16, + "probability": 0.8633 + }, + { + "start": 19125.06, + "end": 19128.24, + "probability": 0.9102 + }, + { + "start": 19128.48, + "end": 19128.76, + "probability": 0.4402 + }, + { + "start": 19128.8, + "end": 19129.42, + "probability": 0.9265 + }, + { + "start": 19129.48, + "end": 19132.54, + "probability": 0.9873 + }, + { + "start": 19132.72, + "end": 19134.4, + "probability": 0.9917 + }, + { + "start": 19134.72, + "end": 19134.98, + "probability": 0.0811 + }, + { + "start": 19135.0, + "end": 19135.24, + "probability": 0.1198 + }, + { + "start": 19135.44, + "end": 19135.46, + "probability": 0.2269 + }, + { + "start": 19135.46, + "end": 19135.76, + "probability": 0.0286 + }, + { + "start": 19135.76, + "end": 19140.44, + "probability": 0.485 + }, + { + "start": 19140.44, + "end": 19144.08, + "probability": 0.9843 + }, + { + "start": 19144.28, + "end": 19145.22, + "probability": 0.9029 + }, + { + "start": 19146.77, + "end": 19150.58, + "probability": 0.9994 + }, + { + "start": 19150.58, + "end": 19154.13, + "probability": 0.9989 + }, + { + "start": 19154.94, + "end": 19157.3, + "probability": 0.8402 + }, + { + "start": 19157.36, + "end": 19162.26, + "probability": 0.9642 + }, + { + "start": 19162.62, + "end": 19165.58, + "probability": 0.8354 + }, + { + "start": 19166.42, + "end": 19168.48, + "probability": 0.9226 + }, + { + "start": 19169.44, + "end": 19171.7, + "probability": 0.9896 + }, + { + "start": 19171.9, + "end": 19174.18, + "probability": 0.9954 + }, + { + "start": 19175.28, + "end": 19177.76, + "probability": 0.9878 + }, + { + "start": 19178.38, + "end": 19178.9, + "probability": 0.5444 + }, + { + "start": 19179.0, + "end": 19181.08, + "probability": 0.9619 + }, + { + "start": 19181.24, + "end": 19185.3, + "probability": 0.8862 + }, + { + "start": 19186.1, + "end": 19190.56, + "probability": 0.9884 + }, + { + "start": 19191.08, + "end": 19195.94, + "probability": 0.9862 + }, + { + "start": 19196.6, + "end": 19197.06, + "probability": 0.2175 + }, + { + "start": 19197.06, + "end": 19198.3, + "probability": 0.0975 + }, + { + "start": 19198.3, + "end": 19203.08, + "probability": 0.5412 + }, + { + "start": 19203.08, + "end": 19206.1, + "probability": 0.2081 + }, + { + "start": 19206.16, + "end": 19206.48, + "probability": 0.157 + }, + { + "start": 19208.2, + "end": 19208.32, + "probability": 0.0724 + }, + { + "start": 19208.32, + "end": 19208.52, + "probability": 0.0121 + }, + { + "start": 19208.52, + "end": 19208.52, + "probability": 0.1158 + }, + { + "start": 19208.52, + "end": 19213.06, + "probability": 0.5842 + }, + { + "start": 19213.12, + "end": 19215.6, + "probability": 0.7089 + }, + { + "start": 19216.92, + "end": 19218.76, + "probability": 0.9215 + }, + { + "start": 19219.28, + "end": 19219.38, + "probability": 0.1088 + }, + { + "start": 19219.38, + "end": 19219.38, + "probability": 0.5625 + }, + { + "start": 19219.38, + "end": 19223.4, + "probability": 0.6544 + }, + { + "start": 19224.09, + "end": 19224.16, + "probability": 0.4829 + }, + { + "start": 19224.32, + "end": 19224.32, + "probability": 0.5359 + }, + { + "start": 19224.32, + "end": 19224.32, + "probability": 0.4938 + }, + { + "start": 19224.32, + "end": 19224.32, + "probability": 0.5367 + }, + { + "start": 19224.32, + "end": 19225.93, + "probability": 0.3199 + }, + { + "start": 19226.98, + "end": 19228.78, + "probability": 0.4351 + }, + { + "start": 19229.42, + "end": 19230.33, + "probability": 0.9143 + }, + { + "start": 19230.9, + "end": 19234.98, + "probability": 0.9926 + }, + { + "start": 19235.9, + "end": 19241.84, + "probability": 0.9334 + }, + { + "start": 19242.38, + "end": 19245.11, + "probability": 0.9546 + }, + { + "start": 19245.7, + "end": 19246.8, + "probability": 0.985 + }, + { + "start": 19247.74, + "end": 19252.1, + "probability": 0.9743 + }, + { + "start": 19252.44, + "end": 19255.58, + "probability": 0.7273 + }, + { + "start": 19256.32, + "end": 19258.18, + "probability": 0.9553 + }, + { + "start": 19258.66, + "end": 19262.42, + "probability": 0.9912 + }, + { + "start": 19262.52, + "end": 19264.36, + "probability": 0.9731 + }, + { + "start": 19264.62, + "end": 19269.78, + "probability": 0.9898 + }, + { + "start": 19270.18, + "end": 19273.04, + "probability": 0.9352 + }, + { + "start": 19273.44, + "end": 19279.34, + "probability": 0.8976 + }, + { + "start": 19279.54, + "end": 19280.8, + "probability": 0.5003 + }, + { + "start": 19280.8, + "end": 19282.5, + "probability": 0.6349 + }, + { + "start": 19283.02, + "end": 19283.04, + "probability": 0.0106 + }, + { + "start": 19283.04, + "end": 19284.68, + "probability": 0.4137 + }, + { + "start": 19284.72, + "end": 19285.28, + "probability": 0.4605 + }, + { + "start": 19285.28, + "end": 19286.36, + "probability": 0.7058 + }, + { + "start": 19286.44, + "end": 19286.98, + "probability": 0.9159 + }, + { + "start": 19287.36, + "end": 19289.94, + "probability": 0.7005 + }, + { + "start": 19290.46, + "end": 19292.0, + "probability": 0.6659 + }, + { + "start": 19292.08, + "end": 19292.98, + "probability": 0.6252 + }, + { + "start": 19294.86, + "end": 19295.74, + "probability": 0.5113 + }, + { + "start": 19297.44, + "end": 19298.16, + "probability": 0.4959 + }, + { + "start": 19298.3, + "end": 19300.46, + "probability": 0.8371 + }, + { + "start": 19301.12, + "end": 19305.02, + "probability": 0.9512 + }, + { + "start": 19305.6, + "end": 19308.9, + "probability": 0.7156 + }, + { + "start": 19310.48, + "end": 19311.36, + "probability": 0.7779 + }, + { + "start": 19311.46, + "end": 19315.16, + "probability": 0.8105 + }, + { + "start": 19315.54, + "end": 19317.24, + "probability": 0.7659 + }, + { + "start": 19318.28, + "end": 19319.18, + "probability": 0.018 + }, + { + "start": 19319.18, + "end": 19320.84, + "probability": 0.7152 + }, + { + "start": 19321.02, + "end": 19321.48, + "probability": 0.4184 + }, + { + "start": 19321.6, + "end": 19322.5, + "probability": 0.6525 + }, + { + "start": 19322.52, + "end": 19322.72, + "probability": 0.5151 + }, + { + "start": 19322.8, + "end": 19323.46, + "probability": 0.8185 + }, + { + "start": 19323.68, + "end": 19327.68, + "probability": 0.5497 + }, + { + "start": 19329.0, + "end": 19331.38, + "probability": 0.998 + }, + { + "start": 19331.72, + "end": 19334.8, + "probability": 0.9932 + }, + { + "start": 19335.2, + "end": 19335.84, + "probability": 0.8213 + }, + { + "start": 19335.92, + "end": 19336.84, + "probability": 0.8062 + }, + { + "start": 19343.84, + "end": 19348.8, + "probability": 0.207 + }, + { + "start": 19349.52, + "end": 19351.36, + "probability": 0.4894 + }, + { + "start": 19351.44, + "end": 19353.06, + "probability": 0.5267 + }, + { + "start": 19353.7, + "end": 19360.42, + "probability": 0.9783 + }, + { + "start": 19361.08, + "end": 19365.02, + "probability": 0.9492 + }, + { + "start": 19365.02, + "end": 19367.82, + "probability": 0.953 + }, + { + "start": 19368.8, + "end": 19369.74, + "probability": 0.7371 + }, + { + "start": 19369.96, + "end": 19373.52, + "probability": 0.9581 + }, + { + "start": 19374.12, + "end": 19377.04, + "probability": 0.9805 + }, + { + "start": 19377.24, + "end": 19381.0, + "probability": 0.9885 + }, + { + "start": 19381.06, + "end": 19382.94, + "probability": 0.998 + }, + { + "start": 19383.42, + "end": 19383.42, + "probability": 0.2281 + }, + { + "start": 19383.42, + "end": 19383.9, + "probability": 0.5765 + }, + { + "start": 19384.08, + "end": 19389.72, + "probability": 0.9619 + }, + { + "start": 19390.52, + "end": 19395.92, + "probability": 0.8366 + }, + { + "start": 19396.06, + "end": 19398.54, + "probability": 0.137 + }, + { + "start": 19398.54, + "end": 19398.54, + "probability": 0.0347 + }, + { + "start": 19398.54, + "end": 19403.84, + "probability": 0.8289 + }, + { + "start": 19404.34, + "end": 19414.46, + "probability": 0.9959 + }, + { + "start": 19415.34, + "end": 19415.82, + "probability": 0.4983 + }, + { + "start": 19415.9, + "end": 19417.39, + "probability": 0.9941 + }, + { + "start": 19417.4, + "end": 19420.08, + "probability": 0.9282 + }, + { + "start": 19421.22, + "end": 19423.48, + "probability": 0.9567 + }, + { + "start": 19424.12, + "end": 19427.54, + "probability": 0.6418 + }, + { + "start": 19427.66, + "end": 19429.36, + "probability": 0.5248 + }, + { + "start": 19429.36, + "end": 19432.9, + "probability": 0.9048 + }, + { + "start": 19433.38, + "end": 19435.12, + "probability": 0.9451 + }, + { + "start": 19435.26, + "end": 19437.6, + "probability": 0.9434 + }, + { + "start": 19438.4, + "end": 19440.16, + "probability": 0.7534 + }, + { + "start": 19441.38, + "end": 19443.7, + "probability": 0.5021 + }, + { + "start": 19444.57, + "end": 19447.68, + "probability": 0.9053 + }, + { + "start": 19449.24, + "end": 19451.52, + "probability": 0.001 + }, + { + "start": 19453.22, + "end": 19455.98, + "probability": 0.0603 + }, + { + "start": 19456.18, + "end": 19460.22, + "probability": 0.6512 + }, + { + "start": 19461.36, + "end": 19464.22, + "probability": 0.2625 + }, + { + "start": 19465.54, + "end": 19466.68, + "probability": 0.1591 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.0, + "end": 19558.0, + "probability": 0.0 + }, + { + "start": 19558.18, + "end": 19558.66, + "probability": 0.1837 + }, + { + "start": 19559.24, + "end": 19560.3, + "probability": 0.4182 + }, + { + "start": 19561.88, + "end": 19563.82, + "probability": 0.627 + }, + { + "start": 19563.88, + "end": 19564.84, + "probability": 0.8652 + }, + { + "start": 19564.96, + "end": 19565.62, + "probability": 0.4778 + }, + { + "start": 19565.63, + "end": 19565.93, + "probability": 0.1281 + }, + { + "start": 19567.14, + "end": 19568.97, + "probability": 0.8477 + }, + { + "start": 19569.22, + "end": 19570.22, + "probability": 0.9278 + }, + { + "start": 19570.32, + "end": 19573.16, + "probability": 0.7888 + }, + { + "start": 19573.9, + "end": 19576.8, + "probability": 0.6151 + }, + { + "start": 19576.92, + "end": 19578.06, + "probability": 0.9314 + }, + { + "start": 19578.48, + "end": 19580.32, + "probability": 0.8733 + }, + { + "start": 19580.72, + "end": 19584.53, + "probability": 0.9638 + }, + { + "start": 19593.94, + "end": 19595.48, + "probability": 0.245 + }, + { + "start": 19595.48, + "end": 19596.86, + "probability": 0.894 + }, + { + "start": 19597.46, + "end": 19599.24, + "probability": 0.8154 + }, + { + "start": 19600.74, + "end": 19602.5, + "probability": 0.8594 + }, + { + "start": 19603.82, + "end": 19606.38, + "probability": 0.7766 + }, + { + "start": 19607.92, + "end": 19614.22, + "probability": 0.9385 + }, + { + "start": 19614.88, + "end": 19619.32, + "probability": 0.9955 + }, + { + "start": 19619.36, + "end": 19620.76, + "probability": 0.9832 + }, + { + "start": 19621.64, + "end": 19622.36, + "probability": 0.5901 + }, + { + "start": 19623.84, + "end": 19625.76, + "probability": 0.9837 + }, + { + "start": 19626.44, + "end": 19627.4, + "probability": 0.7822 + }, + { + "start": 19627.86, + "end": 19628.76, + "probability": 0.8285 + }, + { + "start": 19628.86, + "end": 19631.36, + "probability": 0.9951 + }, + { + "start": 19631.5, + "end": 19632.18, + "probability": 0.9451 + }, + { + "start": 19633.08, + "end": 19633.82, + "probability": 0.5716 + }, + { + "start": 19634.28, + "end": 19638.14, + "probability": 0.975 + }, + { + "start": 19638.8, + "end": 19641.74, + "probability": 0.7593 + }, + { + "start": 19642.26, + "end": 19644.48, + "probability": 0.9795 + }, + { + "start": 19644.84, + "end": 19647.9, + "probability": 0.9507 + }, + { + "start": 19648.8, + "end": 19649.92, + "probability": 0.9117 + }, + { + "start": 19650.04, + "end": 19651.28, + "probability": 0.7485 + }, + { + "start": 19651.64, + "end": 19653.14, + "probability": 0.9573 + }, + { + "start": 19653.28, + "end": 19655.82, + "probability": 0.9955 + }, + { + "start": 19656.42, + "end": 19661.22, + "probability": 0.9877 + }, + { + "start": 19661.92, + "end": 19662.72, + "probability": 0.9817 + }, + { + "start": 19662.82, + "end": 19664.84, + "probability": 0.9941 + }, + { + "start": 19665.96, + "end": 19672.76, + "probability": 0.9906 + }, + { + "start": 19673.1, + "end": 19676.96, + "probability": 0.9517 + }, + { + "start": 19677.5, + "end": 19680.52, + "probability": 0.9976 + }, + { + "start": 19681.82, + "end": 19683.74, + "probability": 0.9609 + }, + { + "start": 19684.08, + "end": 19686.66, + "probability": 0.8668 + }, + { + "start": 19687.12, + "end": 19688.2, + "probability": 0.6909 + }, + { + "start": 19688.3, + "end": 19691.92, + "probability": 0.9961 + }, + { + "start": 19692.08, + "end": 19693.18, + "probability": 0.971 + }, + { + "start": 19694.04, + "end": 19695.52, + "probability": 0.9954 + }, + { + "start": 19695.54, + "end": 19700.7, + "probability": 0.6006 + }, + { + "start": 19701.3, + "end": 19702.2, + "probability": 0.4601 + }, + { + "start": 19702.78, + "end": 19708.22, + "probability": 0.9638 + }, + { + "start": 19708.22, + "end": 19713.8, + "probability": 0.9883 + }, + { + "start": 19714.42, + "end": 19715.74, + "probability": 0.9673 + }, + { + "start": 19716.6, + "end": 19718.7, + "probability": 0.9056 + }, + { + "start": 19719.26, + "end": 19723.36, + "probability": 0.9663 + }, + { + "start": 19724.06, + "end": 19729.36, + "probability": 0.8476 + }, + { + "start": 19730.04, + "end": 19733.34, + "probability": 0.8821 + }, + { + "start": 19733.94, + "end": 19736.52, + "probability": 0.9707 + }, + { + "start": 19737.44, + "end": 19742.56, + "probability": 0.9707 + }, + { + "start": 19742.74, + "end": 19743.26, + "probability": 0.9212 + }, + { + "start": 19744.92, + "end": 19745.76, + "probability": 0.8759 + }, + { + "start": 19745.88, + "end": 19747.86, + "probability": 0.9935 + }, + { + "start": 19748.4, + "end": 19748.56, + "probability": 0.5107 + }, + { + "start": 19748.78, + "end": 19753.66, + "probability": 0.995 + }, + { + "start": 19753.9, + "end": 19756.52, + "probability": 0.997 + }, + { + "start": 19757.06, + "end": 19757.36, + "probability": 0.2436 + }, + { + "start": 19757.86, + "end": 19763.66, + "probability": 0.9922 + }, + { + "start": 19764.34, + "end": 19767.04, + "probability": 0.9944 + }, + { + "start": 19767.86, + "end": 19769.94, + "probability": 0.9784 + }, + { + "start": 19770.76, + "end": 19773.9, + "probability": 0.8781 + }, + { + "start": 19775.2, + "end": 19776.6, + "probability": 0.6246 + }, + { + "start": 19776.88, + "end": 19777.4, + "probability": 0.8085 + }, + { + "start": 19777.6, + "end": 19779.32, + "probability": 0.8557 + }, + { + "start": 19779.76, + "end": 19781.76, + "probability": 0.938 + }, + { + "start": 19782.0, + "end": 19787.68, + "probability": 0.9424 + }, + { + "start": 19788.12, + "end": 19790.1, + "probability": 0.985 + }, + { + "start": 19791.0, + "end": 19794.38, + "probability": 0.7413 + }, + { + "start": 19794.54, + "end": 19796.08, + "probability": 0.9428 + }, + { + "start": 19796.46, + "end": 19798.88, + "probability": 0.973 + }, + { + "start": 19799.36, + "end": 19804.37, + "probability": 0.9717 + }, + { + "start": 19804.62, + "end": 19805.96, + "probability": 0.7972 + }, + { + "start": 19806.24, + "end": 19807.2, + "probability": 0.938 + }, + { + "start": 19807.88, + "end": 19811.08, + "probability": 0.9668 + }, + { + "start": 19811.18, + "end": 19815.44, + "probability": 0.998 + }, + { + "start": 19815.6, + "end": 19816.86, + "probability": 0.206 + }, + { + "start": 19817.24, + "end": 19817.84, + "probability": 0.8428 + }, + { + "start": 19817.94, + "end": 19818.72, + "probability": 0.8848 + }, + { + "start": 19818.8, + "end": 19819.84, + "probability": 0.9782 + }, + { + "start": 19819.92, + "end": 19822.96, + "probability": 0.9858 + }, + { + "start": 19824.46, + "end": 19825.76, + "probability": 0.9202 + }, + { + "start": 19826.34, + "end": 19828.98, + "probability": 0.9979 + }, + { + "start": 19829.8, + "end": 19832.82, + "probability": 0.9972 + }, + { + "start": 19833.28, + "end": 19836.38, + "probability": 0.9993 + }, + { + "start": 19836.68, + "end": 19839.58, + "probability": 0.9162 + }, + { + "start": 19840.4, + "end": 19843.16, + "probability": 0.8687 + }, + { + "start": 19843.58, + "end": 19844.8, + "probability": 0.9434 + }, + { + "start": 19845.8, + "end": 19846.92, + "probability": 0.8244 + }, + { + "start": 19847.04, + "end": 19848.14, + "probability": 0.9504 + }, + { + "start": 19848.18, + "end": 19849.53, + "probability": 0.5218 + }, + { + "start": 19849.82, + "end": 19851.28, + "probability": 0.9618 + }, + { + "start": 19851.42, + "end": 19852.86, + "probability": 0.9426 + }, + { + "start": 19852.96, + "end": 19857.03, + "probability": 0.9929 + }, + { + "start": 19857.22, + "end": 19857.22, + "probability": 0.2991 + }, + { + "start": 19857.28, + "end": 19857.3, + "probability": 0.0857 + }, + { + "start": 19857.3, + "end": 19859.78, + "probability": 0.9072 + }, + { + "start": 19860.16, + "end": 19862.89, + "probability": 0.9928 + }, + { + "start": 19863.18, + "end": 19865.52, + "probability": 0.9875 + }, + { + "start": 19865.96, + "end": 19868.6, + "probability": 0.8114 + }, + { + "start": 19868.6, + "end": 19872.96, + "probability": 0.9766 + }, + { + "start": 19873.04, + "end": 19873.86, + "probability": 0.9239 + }, + { + "start": 19874.74, + "end": 19878.62, + "probability": 0.9528 + }, + { + "start": 19878.76, + "end": 19880.1, + "probability": 0.8881 + }, + { + "start": 19880.26, + "end": 19880.69, + "probability": 0.8176 + }, + { + "start": 19881.26, + "end": 19884.02, + "probability": 0.9882 + }, + { + "start": 19884.02, + "end": 19887.38, + "probability": 0.837 + }, + { + "start": 19887.58, + "end": 19888.78, + "probability": 0.863 + }, + { + "start": 19889.16, + "end": 19889.16, + "probability": 0.0556 + }, + { + "start": 19889.16, + "end": 19891.44, + "probability": 0.9976 + }, + { + "start": 19891.5, + "end": 19892.16, + "probability": 0.8507 + }, + { + "start": 19892.28, + "end": 19894.2, + "probability": 0.7419 + }, + { + "start": 19894.28, + "end": 19897.66, + "probability": 0.9021 + }, + { + "start": 19898.04, + "end": 19898.78, + "probability": 0.7753 + }, + { + "start": 19900.24, + "end": 19902.12, + "probability": 0.9539 + }, + { + "start": 19903.86, + "end": 19905.07, + "probability": 0.3185 + }, + { + "start": 19906.02, + "end": 19906.72, + "probability": 0.0405 + }, + { + "start": 19906.9, + "end": 19908.84, + "probability": 0.0601 + }, + { + "start": 19909.68, + "end": 19912.88, + "probability": 0.4468 + }, + { + "start": 19912.98, + "end": 19913.34, + "probability": 0.8879 + }, + { + "start": 19913.34, + "end": 19916.33, + "probability": 0.6916 + }, + { + "start": 19918.66, + "end": 19919.58, + "probability": 0.9283 + }, + { + "start": 19920.38, + "end": 19920.66, + "probability": 0.4224 + }, + { + "start": 19922.34, + "end": 19927.12, + "probability": 0.9812 + }, + { + "start": 19928.28, + "end": 19931.92, + "probability": 0.99 + }, + { + "start": 19932.94, + "end": 19932.94, + "probability": 0.1043 + }, + { + "start": 19933.1, + "end": 19933.1, + "probability": 0.2263 + }, + { + "start": 19933.1, + "end": 19933.1, + "probability": 0.1287 + }, + { + "start": 19933.1, + "end": 19936.7, + "probability": 0.9956 + }, + { + "start": 19937.58, + "end": 19940.6, + "probability": 0.9875 + }, + { + "start": 19941.26, + "end": 19943.38, + "probability": 0.4052 + }, + { + "start": 19943.58, + "end": 19946.64, + "probability": 0.3921 + }, + { + "start": 19946.96, + "end": 19947.94, + "probability": 0.1072 + }, + { + "start": 19948.2, + "end": 19949.02, + "probability": 0.2362 + }, + { + "start": 19949.14, + "end": 19949.14, + "probability": 0.2568 + }, + { + "start": 19949.36, + "end": 19950.44, + "probability": 0.4227 + }, + { + "start": 19950.64, + "end": 19952.3, + "probability": 0.1353 + }, + { + "start": 19953.02, + "end": 19953.92, + "probability": 0.0174 + }, + { + "start": 19953.92, + "end": 19954.62, + "probability": 0.1144 + }, + { + "start": 19955.26, + "end": 19959.3, + "probability": 0.685 + }, + { + "start": 19959.76, + "end": 19964.62, + "probability": 0.1136 + }, + { + "start": 19965.6, + "end": 19966.68, + "probability": 0.1099 + }, + { + "start": 19967.6, + "end": 19968.14, + "probability": 0.0804 + }, + { + "start": 19968.48, + "end": 19969.16, + "probability": 0.0485 + }, + { + "start": 19969.16, + "end": 19969.16, + "probability": 0.1221 + }, + { + "start": 19969.16, + "end": 19969.16, + "probability": 0.0892 + }, + { + "start": 19969.16, + "end": 19969.16, + "probability": 0.035 + }, + { + "start": 19969.16, + "end": 19970.18, + "probability": 0.2364 + }, + { + "start": 19970.4, + "end": 19971.16, + "probability": 0.6556 + }, + { + "start": 19972.06, + "end": 19973.87, + "probability": 0.9961 + }, + { + "start": 19974.82, + "end": 19976.3, + "probability": 0.998 + }, + { + "start": 19977.14, + "end": 19981.84, + "probability": 0.2479 + }, + { + "start": 19982.02, + "end": 19983.74, + "probability": 0.1222 + }, + { + "start": 19984.34, + "end": 19986.0, + "probability": 0.9542 + }, + { + "start": 19986.16, + "end": 19987.38, + "probability": 0.9035 + }, + { + "start": 19987.58, + "end": 19991.09, + "probability": 0.9465 + }, + { + "start": 19991.98, + "end": 19992.86, + "probability": 0.0415 + }, + { + "start": 19993.48, + "end": 19997.9, + "probability": 0.9292 + }, + { + "start": 19997.9, + "end": 19998.74, + "probability": 0.574 + }, + { + "start": 19998.82, + "end": 20001.02, + "probability": 0.5018 + }, + { + "start": 20001.18, + "end": 20002.94, + "probability": 0.732 + }, + { + "start": 20003.18, + "end": 20004.34, + "probability": 0.9367 + }, + { + "start": 20004.4, + "end": 20005.82, + "probability": 0.8966 + }, + { + "start": 20005.88, + "end": 20008.04, + "probability": 0.9507 + }, + { + "start": 20008.16, + "end": 20009.06, + "probability": 0.6333 + }, + { + "start": 20009.4, + "end": 20010.14, + "probability": 0.4618 + }, + { + "start": 20010.14, + "end": 20012.76, + "probability": 0.202 + }, + { + "start": 20013.56, + "end": 20017.44, + "probability": 0.6945 + }, + { + "start": 20017.64, + "end": 20018.94, + "probability": 0.6827 + }, + { + "start": 20019.02, + "end": 20020.6, + "probability": 0.8249 + }, + { + "start": 20021.0, + "end": 20024.16, + "probability": 0.7671 + }, + { + "start": 20024.34, + "end": 20025.62, + "probability": 0.0838 + }, + { + "start": 20025.64, + "end": 20026.08, + "probability": 0.6253 + }, + { + "start": 20026.08, + "end": 20030.42, + "probability": 0.964 + }, + { + "start": 20030.46, + "end": 20033.9, + "probability": 0.98 + }, + { + "start": 20033.9, + "end": 20036.48, + "probability": 0.936 + }, + { + "start": 20037.0, + "end": 20037.84, + "probability": 0.1139 + }, + { + "start": 20037.84, + "end": 20038.48, + "probability": 0.0848 + }, + { + "start": 20038.74, + "end": 20038.74, + "probability": 0.0095 + }, + { + "start": 20038.74, + "end": 20039.8, + "probability": 0.5122 + }, + { + "start": 20039.8, + "end": 20040.56, + "probability": 0.0295 + }, + { + "start": 20040.76, + "end": 20042.38, + "probability": 0.8555 + }, + { + "start": 20042.68, + "end": 20045.15, + "probability": 0.5815 + }, + { + "start": 20045.92, + "end": 20048.06, + "probability": 0.9193 + }, + { + "start": 20048.42, + "end": 20049.6, + "probability": 0.854 + }, + { + "start": 20049.6, + "end": 20051.3, + "probability": 0.5096 + }, + { + "start": 20051.48, + "end": 20054.0, + "probability": 0.5653 + }, + { + "start": 20054.14, + "end": 20057.76, + "probability": 0.9199 + }, + { + "start": 20057.94, + "end": 20059.3, + "probability": 0.9708 + }, + { + "start": 20059.42, + "end": 20064.66, + "probability": 0.8718 + }, + { + "start": 20064.66, + "end": 20064.68, + "probability": 0.9048 + }, + { + "start": 20064.84, + "end": 20066.78, + "probability": 0.9839 + }, + { + "start": 20066.94, + "end": 20069.64, + "probability": 0.9954 + }, + { + "start": 20069.7, + "end": 20070.68, + "probability": 0.7542 + }, + { + "start": 20070.7, + "end": 20072.8, + "probability": 0.39 + }, + { + "start": 20072.8, + "end": 20073.28, + "probability": 0.5422 + }, + { + "start": 20073.3, + "end": 20076.48, + "probability": 0.5644 + }, + { + "start": 20077.04, + "end": 20078.96, + "probability": 0.8389 + }, + { + "start": 20079.76, + "end": 20082.5, + "probability": 0.2801 + }, + { + "start": 20082.5, + "end": 20082.6, + "probability": 0.03 + }, + { + "start": 20082.6, + "end": 20082.6, + "probability": 0.2486 + }, + { + "start": 20082.6, + "end": 20082.6, + "probability": 0.4317 + }, + { + "start": 20082.6, + "end": 20083.12, + "probability": 0.6807 + }, + { + "start": 20083.2, + "end": 20083.74, + "probability": 0.6087 + }, + { + "start": 20083.82, + "end": 20084.14, + "probability": 0.4081 + }, + { + "start": 20084.2, + "end": 20085.5, + "probability": 0.91 + }, + { + "start": 20086.08, + "end": 20088.0, + "probability": 0.9521 + }, + { + "start": 20088.38, + "end": 20090.2, + "probability": 0.9702 + }, + { + "start": 20090.46, + "end": 20092.04, + "probability": 0.9473 + }, + { + "start": 20092.68, + "end": 20095.48, + "probability": 0.5359 + }, + { + "start": 20096.1, + "end": 20099.0, + "probability": 0.9567 + }, + { + "start": 20099.2, + "end": 20104.26, + "probability": 0.7206 + }, + { + "start": 20105.44, + "end": 20107.7, + "probability": 0.0118 + }, + { + "start": 20108.04, + "end": 20108.24, + "probability": 0.2734 + }, + { + "start": 20108.24, + "end": 20108.46, + "probability": 0.4887 + }, + { + "start": 20108.58, + "end": 20108.58, + "probability": 0.1397 + }, + { + "start": 20108.58, + "end": 20108.58, + "probability": 0.6192 + }, + { + "start": 20108.58, + "end": 20108.64, + "probability": 0.126 + }, + { + "start": 20108.64, + "end": 20108.64, + "probability": 0.2204 + }, + { + "start": 20108.64, + "end": 20109.2, + "probability": 0.4717 + }, + { + "start": 20109.58, + "end": 20113.5, + "probability": 0.7762 + }, + { + "start": 20113.6, + "end": 20118.06, + "probability": 0.9016 + }, + { + "start": 20118.36, + "end": 20124.16, + "probability": 0.0839 + }, + { + "start": 20124.2, + "end": 20125.48, + "probability": 0.0362 + }, + { + "start": 20126.62, + "end": 20130.9, + "probability": 0.0133 + }, + { + "start": 20130.9, + "end": 20131.82, + "probability": 0.0619 + }, + { + "start": 20131.82, + "end": 20133.01, + "probability": 0.4396 + }, + { + "start": 20135.34, + "end": 20135.97, + "probability": 0.6862 + }, + { + "start": 20137.46, + "end": 20138.12, + "probability": 0.3786 + }, + { + "start": 20140.22, + "end": 20147.04, + "probability": 0.496 + }, + { + "start": 20147.04, + "end": 20148.31, + "probability": 0.285 + }, + { + "start": 20150.12, + "end": 20150.96, + "probability": 0.1386 + }, + { + "start": 20152.15, + "end": 20155.34, + "probability": 0.5371 + }, + { + "start": 20156.09, + "end": 20159.44, + "probability": 0.6196 + }, + { + "start": 20159.64, + "end": 20160.9, + "probability": 0.7465 + }, + { + "start": 20161.32, + "end": 20163.98, + "probability": 0.7804 + }, + { + "start": 20164.36, + "end": 20166.7, + "probability": 0.1085 + }, + { + "start": 20167.86, + "end": 20168.72, + "probability": 0.0319 + }, + { + "start": 20170.08, + "end": 20170.88, + "probability": 0.0919 + }, + { + "start": 20170.88, + "end": 20172.94, + "probability": 0.2931 + }, + { + "start": 20173.3, + "end": 20174.92, + "probability": 0.3082 + }, + { + "start": 20176.14, + "end": 20177.1, + "probability": 0.3999 + }, + { + "start": 20177.56, + "end": 20182.06, + "probability": 0.8486 + }, + { + "start": 20182.22, + "end": 20183.06, + "probability": 0.5656 + }, + { + "start": 20183.1, + "end": 20184.34, + "probability": 0.9286 + }, + { + "start": 20184.76, + "end": 20191.02, + "probability": 0.3726 + }, + { + "start": 20191.18, + "end": 20193.68, + "probability": 0.8735 + }, + { + "start": 20193.78, + "end": 20199.06, + "probability": 0.8286 + }, + { + "start": 20199.44, + "end": 20202.72, + "probability": 0.8727 + }, + { + "start": 20202.82, + "end": 20204.45, + "probability": 0.9944 + }, + { + "start": 20205.12, + "end": 20206.08, + "probability": 0.8768 + }, + { + "start": 20206.66, + "end": 20211.38, + "probability": 0.0342 + }, + { + "start": 20212.08, + "end": 20216.28, + "probability": 0.0598 + }, + { + "start": 20217.29, + "end": 20222.58, + "probability": 0.2456 + }, + { + "start": 20222.66, + "end": 20223.7, + "probability": 0.7975 + }, + { + "start": 20223.7, + "end": 20224.32, + "probability": 0.6021 + }, + { + "start": 20224.76, + "end": 20226.16, + "probability": 0.7645 + }, + { + "start": 20226.78, + "end": 20228.3, + "probability": 0.8 + }, + { + "start": 20229.26, + "end": 20232.38, + "probability": 0.8791 + }, + { + "start": 20234.14, + "end": 20235.34, + "probability": 0.9189 + }, + { + "start": 20235.84, + "end": 20236.66, + "probability": 0.0477 + }, + { + "start": 20237.86, + "end": 20238.68, + "probability": 0.7113 + }, + { + "start": 20240.16, + "end": 20243.14, + "probability": 0.4371 + }, + { + "start": 20243.28, + "end": 20246.1, + "probability": 0.8098 + }, + { + "start": 20255.34, + "end": 20255.8, + "probability": 0.2401 + }, + { + "start": 20260.28, + "end": 20261.1, + "probability": 0.0181 + }, + { + "start": 20261.68, + "end": 20263.52, + "probability": 0.0535 + }, + { + "start": 20270.98, + "end": 20275.4, + "probability": 0.5435 + }, + { + "start": 20275.54, + "end": 20277.42, + "probability": 0.7388 + }, + { + "start": 20277.68, + "end": 20280.9, + "probability": 0.0344 + }, + { + "start": 20284.12, + "end": 20285.52, + "probability": 0.0221 + }, + { + "start": 20286.88, + "end": 20287.54, + "probability": 0.0353 + }, + { + "start": 20287.54, + "end": 20287.54, + "probability": 0.044 + }, + { + "start": 20287.54, + "end": 20287.54, + "probability": 0.1196 + }, + { + "start": 20287.54, + "end": 20287.54, + "probability": 0.8748 + }, + { + "start": 20287.54, + "end": 20294.5, + "probability": 0.953 + }, + { + "start": 20294.5, + "end": 20300.56, + "probability": 0.9929 + }, + { + "start": 20301.16, + "end": 20303.56, + "probability": 0.7563 + }, + { + "start": 20304.98, + "end": 20311.08, + "probability": 0.7773 + }, + { + "start": 20311.08, + "end": 20311.82, + "probability": 0.6616 + }, + { + "start": 20312.18, + "end": 20314.44, + "probability": 0.5847 + }, + { + "start": 20316.32, + "end": 20318.78, + "probability": 0.7938 + }, + { + "start": 20318.84, + "end": 20320.1, + "probability": 0.838 + }, + { + "start": 20320.32, + "end": 20320.55, + "probability": 0.9217 + }, + { + "start": 20320.94, + "end": 20321.58, + "probability": 0.5224 + }, + { + "start": 20322.28, + "end": 20324.12, + "probability": 0.8931 + }, + { + "start": 20324.26, + "end": 20325.58, + "probability": 0.418 + }, + { + "start": 20325.66, + "end": 20325.68, + "probability": 0.413 + }, + { + "start": 20325.68, + "end": 20325.68, + "probability": 0.1124 + }, + { + "start": 20325.68, + "end": 20326.71, + "probability": 0.3594 + }, + { + "start": 20327.46, + "end": 20328.93, + "probability": 0.8426 + }, + { + "start": 20329.5, + "end": 20332.88, + "probability": 0.5766 + }, + { + "start": 20332.88, + "end": 20336.7, + "probability": 0.9984 + }, + { + "start": 20337.2, + "end": 20339.66, + "probability": 0.9966 + }, + { + "start": 20340.1, + "end": 20342.8, + "probability": 0.8544 + }, + { + "start": 20342.94, + "end": 20343.85, + "probability": 0.8672 + }, + { + "start": 20344.38, + "end": 20345.46, + "probability": 0.8193 + }, + { + "start": 20345.76, + "end": 20346.94, + "probability": 0.9209 + }, + { + "start": 20347.0, + "end": 20347.86, + "probability": 0.9002 + }, + { + "start": 20347.9, + "end": 20349.1, + "probability": 0.8886 + }, + { + "start": 20349.84, + "end": 20350.14, + "probability": 0.9277 + }, + { + "start": 20350.54, + "end": 20350.82, + "probability": 0.7684 + }, + { + "start": 20350.9, + "end": 20353.48, + "probability": 0.9966 + }, + { + "start": 20354.18, + "end": 20356.16, + "probability": 0.4733 + }, + { + "start": 20356.51, + "end": 20358.08, + "probability": 0.9858 + }, + { + "start": 20358.16, + "end": 20360.38, + "probability": 0.9779 + }, + { + "start": 20360.38, + "end": 20362.81, + "probability": 0.9809 + }, + { + "start": 20363.88, + "end": 20364.1, + "probability": 0.598 + }, + { + "start": 20364.22, + "end": 20365.18, + "probability": 0.7541 + }, + { + "start": 20365.54, + "end": 20369.8, + "probability": 0.8876 + }, + { + "start": 20370.1, + "end": 20373.02, + "probability": 0.9806 + }, + { + "start": 20373.38, + "end": 20374.46, + "probability": 0.7967 + }, + { + "start": 20374.68, + "end": 20377.12, + "probability": 0.9849 + }, + { + "start": 20377.16, + "end": 20377.74, + "probability": 0.7975 + }, + { + "start": 20378.54, + "end": 20381.34, + "probability": 0.9714 + }, + { + "start": 20382.72, + "end": 20386.36, + "probability": 0.7199 + }, + { + "start": 20387.04, + "end": 20388.76, + "probability": 0.9276 + }, + { + "start": 20388.82, + "end": 20389.84, + "probability": 0.7112 + }, + { + "start": 20391.62, + "end": 20395.12, + "probability": 0.883 + }, + { + "start": 20396.36, + "end": 20397.92, + "probability": 0.9069 + }, + { + "start": 20398.0, + "end": 20398.54, + "probability": 0.5979 + }, + { + "start": 20398.54, + "end": 20400.5, + "probability": 0.9601 + }, + { + "start": 20402.2, + "end": 20403.26, + "probability": 0.811 + }, + { + "start": 20405.14, + "end": 20412.24, + "probability": 0.9385 + }, + { + "start": 20412.24, + "end": 20417.86, + "probability": 0.9221 + }, + { + "start": 20418.5, + "end": 20419.08, + "probability": 0.4206 + }, + { + "start": 20419.42, + "end": 20423.62, + "probability": 0.9928 + }, + { + "start": 20423.82, + "end": 20425.38, + "probability": 0.7693 + }, + { + "start": 20426.38, + "end": 20428.22, + "probability": 0.9659 + }, + { + "start": 20428.82, + "end": 20433.6, + "probability": 0.9922 + }, + { + "start": 20433.6, + "end": 20435.24, + "probability": 0.2987 + }, + { + "start": 20437.74, + "end": 20440.02, + "probability": 0.7231 + }, + { + "start": 20440.5, + "end": 20445.14, + "probability": 0.9923 + }, + { + "start": 20445.14, + "end": 20449.8, + "probability": 0.9937 + }, + { + "start": 20450.16, + "end": 20452.2, + "probability": 0.9613 + }, + { + "start": 20457.66, + "end": 20459.36, + "probability": 0.8716 + }, + { + "start": 20462.08, + "end": 20463.82, + "probability": 0.7253 + }, + { + "start": 20464.5, + "end": 20466.22, + "probability": 0.5806 + }, + { + "start": 20470.2, + "end": 20471.66, + "probability": 0.6019 + }, + { + "start": 20471.82, + "end": 20477.2, + "probability": 0.8605 + }, + { + "start": 20481.58, + "end": 20481.68, + "probability": 0.6029 + }, + { + "start": 20482.04, + "end": 20483.1, + "probability": 0.8255 + }, + { + "start": 20483.18, + "end": 20484.14, + "probability": 0.8132 + }, + { + "start": 20484.28, + "end": 20486.67, + "probability": 0.9836 + }, + { + "start": 20487.38, + "end": 20490.34, + "probability": 0.9837 + }, + { + "start": 20491.18, + "end": 20491.8, + "probability": 0.8444 + }, + { + "start": 20491.86, + "end": 20494.92, + "probability": 0.763 + }, + { + "start": 20496.22, + "end": 20504.74, + "probability": 0.9861 + }, + { + "start": 20504.74, + "end": 20508.5, + "probability": 0.8881 + }, + { + "start": 20509.42, + "end": 20511.56, + "probability": 0.7547 + }, + { + "start": 20512.76, + "end": 20513.48, + "probability": 0.8676 + }, + { + "start": 20514.16, + "end": 20517.82, + "probability": 0.8451 + }, + { + "start": 20518.5, + "end": 20523.9, + "probability": 0.841 + }, + { + "start": 20524.72, + "end": 20529.58, + "probability": 0.9566 + }, + { + "start": 20531.86, + "end": 20533.16, + "probability": 0.5931 + }, + { + "start": 20534.38, + "end": 20536.08, + "probability": 0.9713 + }, + { + "start": 20536.76, + "end": 20544.64, + "probability": 0.9279 + }, + { + "start": 20544.7, + "end": 20544.9, + "probability": 0.3519 + }, + { + "start": 20544.9, + "end": 20548.72, + "probability": 0.6261 + }, + { + "start": 20549.54, + "end": 20551.12, + "probability": 0.8062 + }, + { + "start": 20551.38, + "end": 20552.38, + "probability": 0.1523 + }, + { + "start": 20552.7, + "end": 20553.1, + "probability": 0.3159 + }, + { + "start": 20553.3, + "end": 20554.3, + "probability": 0.2574 + }, + { + "start": 20554.68, + "end": 20556.9, + "probability": 0.7664 + }, + { + "start": 20557.04, + "end": 20559.32, + "probability": 0.7301 + }, + { + "start": 20559.32, + "end": 20559.98, + "probability": 0.5027 + }, + { + "start": 20560.22, + "end": 20560.3, + "probability": 0.6688 + }, + { + "start": 20560.36, + "end": 20565.58, + "probability": 0.9728 + }, + { + "start": 20566.4, + "end": 20568.58, + "probability": 0.5732 + }, + { + "start": 20568.84, + "end": 20574.12, + "probability": 0.9876 + }, + { + "start": 20574.81, + "end": 20580.9, + "probability": 0.9116 + }, + { + "start": 20583.5, + "end": 20589.68, + "probability": 0.9941 + }, + { + "start": 20591.42, + "end": 20595.18, + "probability": 0.8206 + }, + { + "start": 20595.96, + "end": 20597.56, + "probability": 0.9812 + }, + { + "start": 20597.78, + "end": 20601.28, + "probability": 0.9878 + }, + { + "start": 20602.4, + "end": 20603.86, + "probability": 0.8041 + }, + { + "start": 20604.82, + "end": 20609.68, + "probability": 0.9497 + }, + { + "start": 20613.28, + "end": 20615.04, + "probability": 0.6493 + }, + { + "start": 20615.8, + "end": 20618.34, + "probability": 0.44 + }, + { + "start": 20619.88, + "end": 20625.88, + "probability": 0.9985 + }, + { + "start": 20627.16, + "end": 20627.82, + "probability": 0.1619 + }, + { + "start": 20627.82, + "end": 20629.99, + "probability": 0.2087 + }, + { + "start": 20630.82, + "end": 20631.28, + "probability": 0.4512 + }, + { + "start": 20634.98, + "end": 20635.58, + "probability": 0.1946 + }, + { + "start": 20635.66, + "end": 20637.42, + "probability": 0.1518 + }, + { + "start": 20637.48, + "end": 20640.52, + "probability": 0.0735 + }, + { + "start": 20640.78, + "end": 20642.02, + "probability": 0.0577 + }, + { + "start": 20642.74, + "end": 20643.08, + "probability": 0.0098 + }, + { + "start": 20644.08, + "end": 20645.06, + "probability": 0.0684 + }, + { + "start": 20645.06, + "end": 20647.68, + "probability": 0.8267 + }, + { + "start": 20647.68, + "end": 20653.6, + "probability": 0.8566 + }, + { + "start": 20654.64, + "end": 20656.6, + "probability": 0.0278 + }, + { + "start": 20658.76, + "end": 20662.48, + "probability": 0.0339 + }, + { + "start": 20664.61, + "end": 20664.82, + "probability": 0.0856 + }, + { + "start": 20665.54, + "end": 20666.94, + "probability": 0.4911 + }, + { + "start": 20669.74, + "end": 20677.02, + "probability": 0.899 + }, + { + "start": 20677.1, + "end": 20680.66, + "probability": 0.9895 + }, + { + "start": 20681.42, + "end": 20683.48, + "probability": 0.9634 + }, + { + "start": 20684.04, + "end": 20686.22, + "probability": 0.999 + }, + { + "start": 20686.84, + "end": 20688.6, + "probability": 0.6093 + }, + { + "start": 20688.83, + "end": 20690.08, + "probability": 0.7605 + }, + { + "start": 20690.08, + "end": 20690.78, + "probability": 0.8282 + }, + { + "start": 20691.8, + "end": 20694.68, + "probability": 0.4999 + }, + { + "start": 20697.13, + "end": 20702.22, + "probability": 0.9727 + }, + { + "start": 20703.58, + "end": 20709.02, + "probability": 0.9927 + }, + { + "start": 20709.02, + "end": 20715.02, + "probability": 0.9944 + }, + { + "start": 20716.1, + "end": 20719.32, + "probability": 0.9895 + }, + { + "start": 20720.4, + "end": 20723.46, + "probability": 0.9666 + }, + { + "start": 20724.02, + "end": 20727.12, + "probability": 0.9525 + }, + { + "start": 20730.48, + "end": 20732.68, + "probability": 0.884 + }, + { + "start": 20734.0, + "end": 20738.32, + "probability": 0.9814 + }, + { + "start": 20739.62, + "end": 20742.8, + "probability": 0.9933 + }, + { + "start": 20742.8, + "end": 20748.56, + "probability": 0.9545 + }, + { + "start": 20749.88, + "end": 20755.2, + "probability": 0.9995 + }, + { + "start": 20755.2, + "end": 20758.28, + "probability": 0.9998 + }, + { + "start": 20761.08, + "end": 20763.92, + "probability": 0.9341 + }, + { + "start": 20764.16, + "end": 20768.22, + "probability": 0.9287 + }, + { + "start": 20769.26, + "end": 20772.4, + "probability": 0.9877 + }, + { + "start": 20776.5, + "end": 20778.96, + "probability": 0.88 + }, + { + "start": 20779.04, + "end": 20782.96, + "probability": 0.9281 + }, + { + "start": 20784.02, + "end": 20788.22, + "probability": 0.9954 + }, + { + "start": 20789.42, + "end": 20792.32, + "probability": 0.3043 + }, + { + "start": 20792.86, + "end": 20794.0, + "probability": 0.7638 + }, + { + "start": 20794.22, + "end": 20796.54, + "probability": 0.5794 + }, + { + "start": 20796.8, + "end": 20797.55, + "probability": 0.6379 + }, + { + "start": 20798.06, + "end": 20800.94, + "probability": 0.9423 + }, + { + "start": 20801.5, + "end": 20806.84, + "probability": 0.8881 + }, + { + "start": 20807.96, + "end": 20808.28, + "probability": 0.7017 + }, + { + "start": 20808.34, + "end": 20816.64, + "probability": 0.9667 + }, + { + "start": 20817.34, + "end": 20824.38, + "probability": 0.9749 + }, + { + "start": 20826.62, + "end": 20832.16, + "probability": 0.9141 + }, + { + "start": 20834.9, + "end": 20836.16, + "probability": 0.9128 + }, + { + "start": 20836.94, + "end": 20838.18, + "probability": 0.7222 + }, + { + "start": 20838.3, + "end": 20842.34, + "probability": 0.9684 + }, + { + "start": 20842.8, + "end": 20845.2, + "probability": 0.8824 + }, + { + "start": 20846.8, + "end": 20848.96, + "probability": 0.9878 + }, + { + "start": 20850.02, + "end": 20852.94, + "probability": 0.978 + }, + { + "start": 20852.94, + "end": 20855.88, + "probability": 0.9971 + }, + { + "start": 20857.4, + "end": 20862.78, + "probability": 0.9915 + }, + { + "start": 20863.68, + "end": 20865.96, + "probability": 0.9941 + }, + { + "start": 20866.2, + "end": 20868.96, + "probability": 0.9917 + }, + { + "start": 20869.68, + "end": 20872.5, + "probability": 0.9918 + }, + { + "start": 20872.62, + "end": 20879.0, + "probability": 0.9678 + }, + { + "start": 20879.52, + "end": 20884.94, + "probability": 0.8931 + }, + { + "start": 20885.96, + "end": 20891.64, + "probability": 0.8815 + }, + { + "start": 20892.76, + "end": 20897.85, + "probability": 0.9493 + }, + { + "start": 20899.46, + "end": 20904.34, + "probability": 0.9419 + }, + { + "start": 20904.34, + "end": 20908.98, + "probability": 0.9758 + }, + { + "start": 20909.14, + "end": 20911.92, + "probability": 0.999 + }, + { + "start": 20911.92, + "end": 20916.44, + "probability": 0.956 + }, + { + "start": 20916.52, + "end": 20922.54, + "probability": 0.9988 + }, + { + "start": 20922.74, + "end": 20927.32, + "probability": 0.9943 + }, + { + "start": 20927.5, + "end": 20930.48, + "probability": 0.9309 + }, + { + "start": 20931.12, + "end": 20932.52, + "probability": 0.6242 + }, + { + "start": 20933.84, + "end": 20934.54, + "probability": 0.5486 + }, + { + "start": 20934.64, + "end": 20938.14, + "probability": 0.9653 + }, + { + "start": 20938.14, + "end": 20940.74, + "probability": 0.9702 + }, + { + "start": 20941.38, + "end": 20944.28, + "probability": 0.99 + }, + { + "start": 20945.28, + "end": 20946.23, + "probability": 0.8771 + }, + { + "start": 20949.58, + "end": 20951.8, + "probability": 0.8669 + }, + { + "start": 20951.98, + "end": 20958.02, + "probability": 0.9504 + }, + { + "start": 20960.9, + "end": 20964.18, + "probability": 0.9536 + }, + { + "start": 20964.64, + "end": 20971.5, + "probability": 0.9934 + }, + { + "start": 20971.92, + "end": 20973.63, + "probability": 0.6845 + }, + { + "start": 20977.4, + "end": 20977.5, + "probability": 0.1343 + }, + { + "start": 20977.5, + "end": 20979.62, + "probability": 0.6 + }, + { + "start": 20979.76, + "end": 20985.24, + "probability": 0.9412 + }, + { + "start": 20985.4, + "end": 20987.76, + "probability": 0.9092 + }, + { + "start": 20989.74, + "end": 20990.48, + "probability": 0.4673 + }, + { + "start": 20991.1, + "end": 20992.6, + "probability": 0.9309 + }, + { + "start": 20993.58, + "end": 20997.28, + "probability": 0.5531 + }, + { + "start": 20997.36, + "end": 21000.4, + "probability": 0.6841 + }, + { + "start": 21000.9, + "end": 21003.58, + "probability": 0.3669 + }, + { + "start": 21003.68, + "end": 21005.01, + "probability": 0.4211 + }, + { + "start": 21005.36, + "end": 21006.68, + "probability": 0.9929 + }, + { + "start": 21007.38, + "end": 21008.87, + "probability": 0.5734 + }, + { + "start": 21009.42, + "end": 21010.68, + "probability": 0.6602 + }, + { + "start": 21010.96, + "end": 21012.78, + "probability": 0.749 + }, + { + "start": 21012.92, + "end": 21014.4, + "probability": 0.8557 + }, + { + "start": 21015.1, + "end": 21016.46, + "probability": 0.7975 + }, + { + "start": 21017.0, + "end": 21022.28, + "probability": 0.8229 + }, + { + "start": 21023.24, + "end": 21026.58, + "probability": 0.9207 + }, + { + "start": 21026.64, + "end": 21027.52, + "probability": 0.5384 + }, + { + "start": 21027.98, + "end": 21033.12, + "probability": 0.8321 + }, + { + "start": 21033.34, + "end": 21036.08, + "probability": 0.7436 + }, + { + "start": 21036.28, + "end": 21037.4, + "probability": 0.6649 + }, + { + "start": 21037.94, + "end": 21044.6, + "probability": 0.9528 + }, + { + "start": 21045.14, + "end": 21047.32, + "probability": 0.776 + }, + { + "start": 21048.22, + "end": 21053.08, + "probability": 0.9852 + }, + { + "start": 21053.08, + "end": 21056.0, + "probability": 0.9833 + }, + { + "start": 21057.4, + "end": 21057.6, + "probability": 0.6494 + }, + { + "start": 21057.68, + "end": 21065.26, + "probability": 0.8533 + }, + { + "start": 21065.68, + "end": 21067.62, + "probability": 0.8378 + }, + { + "start": 21069.14, + "end": 21076.06, + "probability": 0.718 + }, + { + "start": 21076.72, + "end": 21082.48, + "probability": 0.9299 + }, + { + "start": 21082.48, + "end": 21087.22, + "probability": 0.9771 + }, + { + "start": 21088.54, + "end": 21095.02, + "probability": 0.8911 + }, + { + "start": 21095.26, + "end": 21097.92, + "probability": 0.7878 + }, + { + "start": 21098.82, + "end": 21101.88, + "probability": 0.9765 + }, + { + "start": 21101.9, + "end": 21105.74, + "probability": 0.8647 + }, + { + "start": 21105.94, + "end": 21108.64, + "probability": 0.8029 + }, + { + "start": 21109.36, + "end": 21111.5, + "probability": 0.9906 + }, + { + "start": 21111.5, + "end": 21115.12, + "probability": 0.6326 + }, + { + "start": 21115.24, + "end": 21115.8, + "probability": 0.4654 + }, + { + "start": 21118.26, + "end": 21120.72, + "probability": 0.9937 + }, + { + "start": 21120.82, + "end": 21125.36, + "probability": 0.9695 + }, + { + "start": 21125.94, + "end": 21129.28, + "probability": 0.9805 + }, + { + "start": 21129.44, + "end": 21131.06, + "probability": 0.9984 + }, + { + "start": 21131.62, + "end": 21135.3, + "probability": 0.9302 + }, + { + "start": 21135.3, + "end": 21142.36, + "probability": 0.9927 + }, + { + "start": 21142.56, + "end": 21142.64, + "probability": 0.3884 + }, + { + "start": 21142.64, + "end": 21143.94, + "probability": 0.5183 + }, + { + "start": 21144.3, + "end": 21145.24, + "probability": 0.8445 + }, + { + "start": 21145.54, + "end": 21146.58, + "probability": 0.8605 + }, + { + "start": 21147.0, + "end": 21148.88, + "probability": 0.7606 + }, + { + "start": 21148.98, + "end": 21150.36, + "probability": 0.8926 + }, + { + "start": 21150.36, + "end": 21155.66, + "probability": 0.9917 + }, + { + "start": 21155.98, + "end": 21156.24, + "probability": 0.6935 + }, + { + "start": 21157.04, + "end": 21159.68, + "probability": 0.9768 + }, + { + "start": 21160.04, + "end": 21163.38, + "probability": 0.7768 + }, + { + "start": 21175.3, + "end": 21176.52, + "probability": 0.0246 + }, + { + "start": 21182.22, + "end": 21182.91, + "probability": 0.0907 + }, + { + "start": 21185.44, + "end": 21188.74, + "probability": 0.1292 + }, + { + "start": 21188.96, + "end": 21190.28, + "probability": 0.0115 + }, + { + "start": 21192.5, + "end": 21194.92, + "probability": 0.1403 + }, + { + "start": 21211.6, + "end": 21213.26, + "probability": 0.5382 + }, + { + "start": 21214.1, + "end": 21215.08, + "probability": 0.9538 + }, + { + "start": 21216.24, + "end": 21221.18, + "probability": 0.9121 + }, + { + "start": 21221.66, + "end": 21223.12, + "probability": 0.9512 + }, + { + "start": 21224.0, + "end": 21225.75, + "probability": 0.9094 + }, + { + "start": 21226.24, + "end": 21228.12, + "probability": 0.6099 + }, + { + "start": 21228.16, + "end": 21228.86, + "probability": 0.6063 + }, + { + "start": 21229.34, + "end": 21230.1, + "probability": 0.7033 + }, + { + "start": 21230.54, + "end": 21231.4, + "probability": 0.8242 + }, + { + "start": 21231.64, + "end": 21234.08, + "probability": 0.802 + }, + { + "start": 21234.86, + "end": 21235.44, + "probability": 0.4491 + }, + { + "start": 21235.56, + "end": 21238.32, + "probability": 0.8771 + }, + { + "start": 21239.28, + "end": 21240.88, + "probability": 0.8594 + }, + { + "start": 21241.82, + "end": 21243.48, + "probability": 0.9891 + }, + { + "start": 21244.24, + "end": 21245.3, + "probability": 0.9926 + }, + { + "start": 21245.4, + "end": 21246.14, + "probability": 0.7719 + }, + { + "start": 21246.48, + "end": 21248.86, + "probability": 0.7645 + }, + { + "start": 21249.42, + "end": 21250.37, + "probability": 0.8296 + }, + { + "start": 21250.92, + "end": 21253.96, + "probability": 0.8108 + }, + { + "start": 21254.6, + "end": 21255.42, + "probability": 0.8614 + }, + { + "start": 21255.82, + "end": 21255.84, + "probability": 0.0016 + }, + { + "start": 21256.56, + "end": 21257.84, + "probability": 0.5259 + }, + { + "start": 21257.84, + "end": 21259.28, + "probability": 0.7864 + }, + { + "start": 21259.66, + "end": 21262.4, + "probability": 0.843 + }, + { + "start": 21264.06, + "end": 21265.79, + "probability": 0.9116 + }, + { + "start": 21266.04, + "end": 21268.28, + "probability": 0.9146 + }, + { + "start": 21268.62, + "end": 21270.12, + "probability": 0.8171 + }, + { + "start": 21270.66, + "end": 21271.66, + "probability": 0.7427 + }, + { + "start": 21272.78, + "end": 21274.6, + "probability": 0.8855 + }, + { + "start": 21275.88, + "end": 21277.06, + "probability": 0.8222 + }, + { + "start": 21278.3, + "end": 21284.78, + "probability": 0.997 + }, + { + "start": 21286.04, + "end": 21286.34, + "probability": 0.7913 + }, + { + "start": 21287.1, + "end": 21288.78, + "probability": 0.9746 + }, + { + "start": 21289.48, + "end": 21292.06, + "probability": 0.9968 + }, + { + "start": 21292.06, + "end": 21295.78, + "probability": 0.9906 + }, + { + "start": 21297.16, + "end": 21299.8, + "probability": 0.9525 + }, + { + "start": 21300.78, + "end": 21303.92, + "probability": 0.87 + }, + { + "start": 21304.48, + "end": 21310.08, + "probability": 0.9706 + }, + { + "start": 21310.3, + "end": 21311.52, + "probability": 0.989 + }, + { + "start": 21311.66, + "end": 21311.78, + "probability": 0.1767 + }, + { + "start": 21312.44, + "end": 21314.54, + "probability": 0.9932 + }, + { + "start": 21316.56, + "end": 21317.8, + "probability": 0.8936 + }, + { + "start": 21318.32, + "end": 21321.06, + "probability": 0.9746 + }, + { + "start": 21321.56, + "end": 21323.88, + "probability": 0.9844 + }, + { + "start": 21323.96, + "end": 21325.6, + "probability": 0.9939 + }, + { + "start": 21326.28, + "end": 21328.08, + "probability": 0.9966 + }, + { + "start": 21328.58, + "end": 21328.96, + "probability": 0.8648 + }, + { + "start": 21328.96, + "end": 21332.24, + "probability": 0.8425 + }, + { + "start": 21332.24, + "end": 21334.38, + "probability": 0.841 + }, + { + "start": 21334.78, + "end": 21335.86, + "probability": 0.7562 + }, + { + "start": 21336.84, + "end": 21338.92, + "probability": 0.8398 + }, + { + "start": 21339.5, + "end": 21340.74, + "probability": 0.9607 + }, + { + "start": 21341.5, + "end": 21344.94, + "probability": 0.9822 + }, + { + "start": 21345.5, + "end": 21346.94, + "probability": 0.9963 + }, + { + "start": 21347.64, + "end": 21348.46, + "probability": 0.5418 + }, + { + "start": 21348.98, + "end": 21350.88, + "probability": 0.3641 + }, + { + "start": 21351.44, + "end": 21353.0, + "probability": 0.9768 + }, + { + "start": 21353.84, + "end": 21353.96, + "probability": 0.0588 + }, + { + "start": 21353.96, + "end": 21354.68, + "probability": 0.8577 + }, + { + "start": 21354.86, + "end": 21356.36, + "probability": 0.7415 + }, + { + "start": 21356.46, + "end": 21357.3, + "probability": 0.6745 + }, + { + "start": 21357.44, + "end": 21357.6, + "probability": 0.368 + }, + { + "start": 21357.64, + "end": 21358.46, + "probability": 0.2952 + }, + { + "start": 21358.56, + "end": 21359.48, + "probability": 0.5285 + }, + { + "start": 21360.32, + "end": 21362.42, + "probability": 0.3929 + }, + { + "start": 21362.56, + "end": 21363.33, + "probability": 0.78 + }, + { + "start": 21363.42, + "end": 21364.1, + "probability": 0.5958 + }, + { + "start": 21364.22, + "end": 21365.64, + "probability": 0.237 + }, + { + "start": 21365.76, + "end": 21367.76, + "probability": 0.9536 + }, + { + "start": 21367.76, + "end": 21370.1, + "probability": 0.988 + }, + { + "start": 21370.62, + "end": 21372.6, + "probability": 0.5693 + }, + { + "start": 21373.26, + "end": 21374.24, + "probability": 0.9897 + }, + { + "start": 21374.26, + "end": 21374.34, + "probability": 0.6742 + }, + { + "start": 21374.34, + "end": 21376.46, + "probability": 0.8064 + }, + { + "start": 21376.54, + "end": 21376.74, + "probability": 0.3274 + }, + { + "start": 21376.76, + "end": 21376.76, + "probability": 0.6533 + }, + { + "start": 21376.84, + "end": 21378.86, + "probability": 0.796 + }, + { + "start": 21378.92, + "end": 21381.7, + "probability": 0.9694 + }, + { + "start": 21382.54, + "end": 21384.56, + "probability": 0.9847 + }, + { + "start": 21385.22, + "end": 21385.88, + "probability": 0.2858 + }, + { + "start": 21385.88, + "end": 21388.98, + "probability": 0.7511 + }, + { + "start": 21389.0, + "end": 21389.14, + "probability": 0.8139 + }, + { + "start": 21389.22, + "end": 21390.08, + "probability": 0.8103 + }, + { + "start": 21390.08, + "end": 21390.61, + "probability": 0.6357 + }, + { + "start": 21392.28, + "end": 21392.92, + "probability": 0.1789 + }, + { + "start": 21392.92, + "end": 21396.55, + "probability": 0.294 + }, + { + "start": 21396.84, + "end": 21398.28, + "probability": 0.8222 + }, + { + "start": 21398.56, + "end": 21400.12, + "probability": 0.8674 + }, + { + "start": 21400.2, + "end": 21401.5, + "probability": 0.5058 + }, + { + "start": 21402.28, + "end": 21403.1, + "probability": 0.3107 + }, + { + "start": 21403.22, + "end": 21403.38, + "probability": 0.341 + }, + { + "start": 21403.38, + "end": 21404.12, + "probability": 0.5425 + }, + { + "start": 21404.14, + "end": 21405.7, + "probability": 0.8178 + }, + { + "start": 21405.8, + "end": 21406.24, + "probability": 0.4421 + }, + { + "start": 21406.58, + "end": 21406.6, + "probability": 0.1278 + }, + { + "start": 21406.6, + "end": 21411.5, + "probability": 0.946 + }, + { + "start": 21411.5, + "end": 21415.72, + "probability": 0.9971 + }, + { + "start": 21415.76, + "end": 21416.8, + "probability": 0.8525 + }, + { + "start": 21416.8, + "end": 21420.18, + "probability": 0.6455 + }, + { + "start": 21420.26, + "end": 21423.68, + "probability": 0.9525 + }, + { + "start": 21423.68, + "end": 21426.74, + "probability": 0.9451 + }, + { + "start": 21427.66, + "end": 21428.76, + "probability": 0.9144 + }, + { + "start": 21428.8, + "end": 21430.18, + "probability": 0.9928 + }, + { + "start": 21430.18, + "end": 21431.64, + "probability": 0.7354 + }, + { + "start": 21431.68, + "end": 21431.88, + "probability": 0.3521 + }, + { + "start": 21431.88, + "end": 21431.88, + "probability": 0.9397 + }, + { + "start": 21431.88, + "end": 21432.96, + "probability": 0.9779 + }, + { + "start": 21433.22, + "end": 21433.9, + "probability": 0.9366 + }, + { + "start": 21434.9, + "end": 21435.88, + "probability": 0.9749 + }, + { + "start": 21436.04, + "end": 21437.12, + "probability": 0.8761 + }, + { + "start": 21437.56, + "end": 21437.78, + "probability": 0.8948 + }, + { + "start": 21441.42, + "end": 21442.19, + "probability": 0.8011 + }, + { + "start": 21442.66, + "end": 21444.48, + "probability": 0.5105 + }, + { + "start": 21444.76, + "end": 21447.1, + "probability": 0.7028 + }, + { + "start": 21447.3, + "end": 21447.52, + "probability": 0.0062 + }, + { + "start": 21447.52, + "end": 21449.12, + "probability": 0.5912 + }, + { + "start": 21449.2, + "end": 21449.68, + "probability": 0.6126 + }, + { + "start": 21449.72, + "end": 21450.72, + "probability": 0.9518 + }, + { + "start": 21450.72, + "end": 21452.06, + "probability": 0.5327 + }, + { + "start": 21452.22, + "end": 21454.38, + "probability": 0.8494 + }, + { + "start": 21454.38, + "end": 21457.64, + "probability": 0.9619 + }, + { + "start": 21458.76, + "end": 21461.9, + "probability": 0.8838 + }, + { + "start": 21461.92, + "end": 21463.8, + "probability": 0.74 + }, + { + "start": 21464.62, + "end": 21468.64, + "probability": 0.8976 + }, + { + "start": 21470.58, + "end": 21471.36, + "probability": 0.1122 + }, + { + "start": 21471.92, + "end": 21473.54, + "probability": 0.256 + }, + { + "start": 21473.72, + "end": 21474.86, + "probability": 0.598 + }, + { + "start": 21478.96, + "end": 21481.22, + "probability": 0.6303 + }, + { + "start": 21481.22, + "end": 21484.18, + "probability": 0.9935 + }, + { + "start": 21485.18, + "end": 21485.94, + "probability": 0.6572 + }, + { + "start": 21486.04, + "end": 21487.64, + "probability": 0.7616 + }, + { + "start": 21487.76, + "end": 21490.16, + "probability": 0.9979 + }, + { + "start": 21490.92, + "end": 21494.44, + "probability": 0.8931 + }, + { + "start": 21495.06, + "end": 21497.02, + "probability": 0.8942 + }, + { + "start": 21498.22, + "end": 21498.72, + "probability": 0.5272 + }, + { + "start": 21498.74, + "end": 21501.08, + "probability": 0.9497 + }, + { + "start": 21501.16, + "end": 21503.04, + "probability": 0.9331 + }, + { + "start": 21507.74, + "end": 21511.06, + "probability": 0.9645 + }, + { + "start": 21511.12, + "end": 21514.42, + "probability": 0.9843 + }, + { + "start": 21515.54, + "end": 21517.62, + "probability": 0.87 + }, + { + "start": 21518.72, + "end": 21520.84, + "probability": 0.999 + }, + { + "start": 21521.44, + "end": 21522.46, + "probability": 0.8739 + }, + { + "start": 21523.36, + "end": 21525.29, + "probability": 0.9548 + }, + { + "start": 21525.44, + "end": 21529.64, + "probability": 0.9928 + }, + { + "start": 21530.52, + "end": 21533.6, + "probability": 0.9907 + }, + { + "start": 21534.46, + "end": 21538.58, + "probability": 0.929 + }, + { + "start": 21539.38, + "end": 21541.2, + "probability": 0.4893 + }, + { + "start": 21541.94, + "end": 21544.12, + "probability": 0.7932 + }, + { + "start": 21544.88, + "end": 21546.8, + "probability": 0.9951 + }, + { + "start": 21546.88, + "end": 21547.68, + "probability": 0.841 + }, + { + "start": 21548.26, + "end": 21549.84, + "probability": 0.9853 + }, + { + "start": 21550.52, + "end": 21555.28, + "probability": 0.9214 + }, + { + "start": 21555.8, + "end": 21557.5, + "probability": 0.999 + }, + { + "start": 21558.08, + "end": 21559.84, + "probability": 0.7845 + }, + { + "start": 21560.4, + "end": 21566.82, + "probability": 0.9852 + }, + { + "start": 21566.83, + "end": 21569.48, + "probability": 0.8676 + }, + { + "start": 21569.62, + "end": 21570.82, + "probability": 0.8843 + }, + { + "start": 21570.86, + "end": 21571.08, + "probability": 0.7096 + }, + { + "start": 21571.4, + "end": 21573.78, + "probability": 0.8912 + }, + { + "start": 21574.34, + "end": 21575.98, + "probability": 0.6596 + }, + { + "start": 21576.8, + "end": 21578.74, + "probability": 0.7633 + }, + { + "start": 21584.28, + "end": 21586.3, + "probability": 0.4287 + }, + { + "start": 21587.98, + "end": 21595.36, + "probability": 0.1348 + }, + { + "start": 21595.44, + "end": 21599.02, + "probability": 0.8059 + }, + { + "start": 21599.5, + "end": 21601.1, + "probability": 0.9585 + }, + { + "start": 21602.94, + "end": 21605.1, + "probability": 0.8626 + }, + { + "start": 21605.44, + "end": 21606.24, + "probability": 0.8285 + }, + { + "start": 21606.34, + "end": 21607.18, + "probability": 0.6738 + }, + { + "start": 21607.9, + "end": 21608.72, + "probability": 0.8347 + }, + { + "start": 21609.02, + "end": 21612.06, + "probability": 0.8951 + }, + { + "start": 21613.06, + "end": 21618.64, + "probability": 0.4791 + }, + { + "start": 21620.12, + "end": 21622.24, + "probability": 0.1249 + }, + { + "start": 21624.46, + "end": 21626.92, + "probability": 0.3782 + }, + { + "start": 21630.08, + "end": 21630.98, + "probability": 0.0621 + }, + { + "start": 21633.31, + "end": 21635.12, + "probability": 0.5363 + }, + { + "start": 21635.72, + "end": 21635.82, + "probability": 0.264 + }, + { + "start": 21635.82, + "end": 21637.2, + "probability": 0.8068 + }, + { + "start": 21637.24, + "end": 21638.04, + "probability": 0.8767 + }, + { + "start": 21640.06, + "end": 21641.42, + "probability": 0.774 + }, + { + "start": 21642.26, + "end": 21643.65, + "probability": 0.9119 + }, + { + "start": 21644.7, + "end": 21645.5, + "probability": 0.7822 + }, + { + "start": 21647.04, + "end": 21651.72, + "probability": 0.8127 + }, + { + "start": 21653.18, + "end": 21655.22, + "probability": 0.9221 + }, + { + "start": 21657.58, + "end": 21662.66, + "probability": 0.9578 + }, + { + "start": 21662.66, + "end": 21666.2, + "probability": 0.9886 + }, + { + "start": 21667.86, + "end": 21669.8, + "probability": 0.9829 + }, + { + "start": 21672.66, + "end": 21674.02, + "probability": 0.6375 + }, + { + "start": 21674.34, + "end": 21675.68, + "probability": 0.5122 + }, + { + "start": 21675.92, + "end": 21676.5, + "probability": 0.6648 + }, + { + "start": 21676.6, + "end": 21677.6, + "probability": 0.6831 + }, + { + "start": 21678.82, + "end": 21682.88, + "probability": 0.9746 + }, + { + "start": 21683.44, + "end": 21684.46, + "probability": 0.7906 + }, + { + "start": 21685.66, + "end": 21687.86, + "probability": 0.7022 + }, + { + "start": 21688.4, + "end": 21689.74, + "probability": 0.6751 + }, + { + "start": 21690.42, + "end": 21692.74, + "probability": 0.9356 + }, + { + "start": 21693.46, + "end": 21695.34, + "probability": 0.8271 + }, + { + "start": 21695.96, + "end": 21696.86, + "probability": 0.9778 + }, + { + "start": 21697.84, + "end": 21698.92, + "probability": 0.9834 + }, + { + "start": 21699.44, + "end": 21701.88, + "probability": 0.9636 + }, + { + "start": 21702.44, + "end": 21703.74, + "probability": 0.9971 + }, + { + "start": 21704.1, + "end": 21705.42, + "probability": 0.9951 + }, + { + "start": 21705.54, + "end": 21706.5, + "probability": 0.9683 + }, + { + "start": 21706.6, + "end": 21709.8, + "probability": 0.9559 + }, + { + "start": 21711.12, + "end": 21715.06, + "probability": 0.993 + }, + { + "start": 21715.64, + "end": 21717.06, + "probability": 0.8882 + }, + { + "start": 21718.44, + "end": 21721.56, + "probability": 0.9529 + }, + { + "start": 21721.78, + "end": 21722.7, + "probability": 0.9608 + }, + { + "start": 21723.3, + "end": 21725.4, + "probability": 0.9989 + }, + { + "start": 21726.0, + "end": 21726.86, + "probability": 0.8768 + }, + { + "start": 21727.38, + "end": 21730.18, + "probability": 0.7712 + }, + { + "start": 21730.9, + "end": 21733.0, + "probability": 0.9983 + }, + { + "start": 21733.84, + "end": 21738.08, + "probability": 0.9533 + }, + { + "start": 21738.8, + "end": 21741.32, + "probability": 0.988 + }, + { + "start": 21742.74, + "end": 21747.82, + "probability": 0.9299 + }, + { + "start": 21748.6, + "end": 21750.3, + "probability": 0.8905 + }, + { + "start": 21751.02, + "end": 21751.72, + "probability": 0.8133 + }, + { + "start": 21752.16, + "end": 21754.64, + "probability": 0.9809 + }, + { + "start": 21755.86, + "end": 21757.24, + "probability": 0.9854 + }, + { + "start": 21757.72, + "end": 21758.18, + "probability": 0.7018 + }, + { + "start": 21758.24, + "end": 21758.84, + "probability": 0.9581 + }, + { + "start": 21758.92, + "end": 21760.04, + "probability": 0.9594 + }, + { + "start": 21760.82, + "end": 21764.86, + "probability": 0.989 + }, + { + "start": 21765.88, + "end": 21767.6, + "probability": 0.7571 + }, + { + "start": 21767.74, + "end": 21769.26, + "probability": 0.6968 + }, + { + "start": 21769.4, + "end": 21770.19, + "probability": 0.8779 + }, + { + "start": 21770.38, + "end": 21771.78, + "probability": 0.9823 + }, + { + "start": 21771.82, + "end": 21772.5, + "probability": 0.6289 + }, + { + "start": 21773.54, + "end": 21774.92, + "probability": 0.9805 + }, + { + "start": 21775.38, + "end": 21776.56, + "probability": 0.833 + }, + { + "start": 21776.62, + "end": 21779.3, + "probability": 0.9936 + }, + { + "start": 21780.7, + "end": 21782.78, + "probability": 0.9946 + }, + { + "start": 21782.78, + "end": 21785.22, + "probability": 0.9755 + }, + { + "start": 21785.38, + "end": 21785.82, + "probability": 0.6652 + }, + { + "start": 21785.94, + "end": 21786.48, + "probability": 0.692 + }, + { + "start": 21786.66, + "end": 21788.48, + "probability": 0.6298 + }, + { + "start": 21789.58, + "end": 21793.0, + "probability": 0.9484 + }, + { + "start": 21793.62, + "end": 21795.48, + "probability": 0.8773 + }, + { + "start": 21796.3, + "end": 21800.3, + "probability": 0.9545 + }, + { + "start": 21800.72, + "end": 21804.14, + "probability": 0.905 + }, + { + "start": 21805.02, + "end": 21809.58, + "probability": 0.9805 + }, + { + "start": 21810.06, + "end": 21811.06, + "probability": 0.9189 + }, + { + "start": 21811.72, + "end": 21813.2, + "probability": 0.9963 + }, + { + "start": 21814.02, + "end": 21815.06, + "probability": 0.9971 + }, + { + "start": 21815.24, + "end": 21815.46, + "probability": 0.6758 + }, + { + "start": 21815.52, + "end": 21818.74, + "probability": 0.9812 + }, + { + "start": 21819.08, + "end": 21823.94, + "probability": 0.9929 + }, + { + "start": 21824.26, + "end": 21826.5, + "probability": 0.9956 + }, + { + "start": 21827.56, + "end": 21828.26, + "probability": 0.7973 + }, + { + "start": 21828.86, + "end": 21829.82, + "probability": 0.9872 + }, + { + "start": 21830.32, + "end": 21834.36, + "probability": 0.9978 + }, + { + "start": 21834.58, + "end": 21834.8, + "probability": 0.2768 + }, + { + "start": 21835.28, + "end": 21837.16, + "probability": 0.6375 + }, + { + "start": 21837.82, + "end": 21838.98, + "probability": 0.8609 + }, + { + "start": 21842.16, + "end": 21844.16, + "probability": 0.6883 + }, + { + "start": 21854.52, + "end": 21855.06, + "probability": 0.4268 + }, + { + "start": 21855.14, + "end": 21856.22, + "probability": 0.9119 + }, + { + "start": 21856.96, + "end": 21859.7, + "probability": 0.4951 + }, + { + "start": 21860.26, + "end": 21861.06, + "probability": 0.6127 + }, + { + "start": 21863.18, + "end": 21864.49, + "probability": 0.9566 + }, + { + "start": 21866.1, + "end": 21868.46, + "probability": 0.9857 + }, + { + "start": 21870.22, + "end": 21871.6, + "probability": 0.8608 + }, + { + "start": 21873.36, + "end": 21875.08, + "probability": 0.986 + }, + { + "start": 21875.24, + "end": 21877.52, + "probability": 0.6015 + }, + { + "start": 21880.08, + "end": 21887.2, + "probability": 0.9961 + }, + { + "start": 21888.14, + "end": 21889.56, + "probability": 0.9969 + }, + { + "start": 21890.5, + "end": 21891.1, + "probability": 0.7437 + }, + { + "start": 21891.2, + "end": 21892.8, + "probability": 0.9313 + }, + { + "start": 21892.88, + "end": 21893.46, + "probability": 0.4163 + }, + { + "start": 21893.54, + "end": 21893.98, + "probability": 0.7596 + }, + { + "start": 21894.04, + "end": 21894.62, + "probability": 0.8815 + }, + { + "start": 21896.12, + "end": 21897.38, + "probability": 0.8594 + }, + { + "start": 21899.24, + "end": 21901.94, + "probability": 0.7548 + }, + { + "start": 21903.46, + "end": 21904.1, + "probability": 0.9076 + }, + { + "start": 21904.68, + "end": 21906.92, + "probability": 0.9926 + }, + { + "start": 21908.38, + "end": 21910.1, + "probability": 0.9814 + }, + { + "start": 21910.14, + "end": 21911.29, + "probability": 0.9338 + }, + { + "start": 21911.42, + "end": 21915.58, + "probability": 0.9972 + }, + { + "start": 21915.58, + "end": 21917.9, + "probability": 0.6489 + }, + { + "start": 21917.9, + "end": 21919.14, + "probability": 0.8979 + }, + { + "start": 21919.2, + "end": 21920.44, + "probability": 0.8438 + }, + { + "start": 21921.66, + "end": 21924.82, + "probability": 0.8398 + }, + { + "start": 21924.92, + "end": 21926.72, + "probability": 0.9988 + }, + { + "start": 21926.76, + "end": 21927.4, + "probability": 0.6504 + }, + { + "start": 21927.5, + "end": 21928.28, + "probability": 0.8479 + }, + { + "start": 21928.36, + "end": 21928.96, + "probability": 0.8301 + }, + { + "start": 21929.38, + "end": 21930.38, + "probability": 0.9429 + }, + { + "start": 21931.16, + "end": 21932.34, + "probability": 0.8865 + }, + { + "start": 21933.34, + "end": 21936.74, + "probability": 0.9943 + }, + { + "start": 21939.2, + "end": 21940.56, + "probability": 0.9889 + }, + { + "start": 21943.3, + "end": 21946.68, + "probability": 0.9912 + }, + { + "start": 21946.68, + "end": 21949.94, + "probability": 0.9995 + }, + { + "start": 21950.96, + "end": 21952.88, + "probability": 0.9929 + }, + { + "start": 21953.12, + "end": 21954.56, + "probability": 0.8646 + }, + { + "start": 21955.14, + "end": 21957.0, + "probability": 0.9966 + }, + { + "start": 21957.16, + "end": 21959.06, + "probability": 0.8906 + }, + { + "start": 21959.62, + "end": 21963.88, + "probability": 0.9852 + }, + { + "start": 21963.96, + "end": 21964.9, + "probability": 0.4769 + }, + { + "start": 21965.02, + "end": 21966.02, + "probability": 0.7695 + }, + { + "start": 21966.78, + "end": 21968.74, + "probability": 0.9692 + }, + { + "start": 21968.94, + "end": 21969.08, + "probability": 0.1378 + }, + { + "start": 21969.22, + "end": 21969.74, + "probability": 0.9307 + }, + { + "start": 21969.86, + "end": 21970.62, + "probability": 0.9401 + }, + { + "start": 21970.66, + "end": 21971.5, + "probability": 0.9758 + }, + { + "start": 21971.66, + "end": 21972.88, + "probability": 0.8198 + }, + { + "start": 21974.0, + "end": 21976.42, + "probability": 0.9543 + }, + { + "start": 21978.04, + "end": 21981.92, + "probability": 0.9321 + }, + { + "start": 21982.02, + "end": 21983.44, + "probability": 0.9971 + }, + { + "start": 21984.12, + "end": 21984.48, + "probability": 0.4021 + }, + { + "start": 21984.52, + "end": 21985.4, + "probability": 0.6559 + }, + { + "start": 21985.5, + "end": 21987.2, + "probability": 0.9161 + }, + { + "start": 21989.4, + "end": 21990.7, + "probability": 0.9504 + }, + { + "start": 21990.78, + "end": 21991.1, + "probability": 0.6327 + }, + { + "start": 21991.22, + "end": 21992.04, + "probability": 0.6696 + }, + { + "start": 21992.1, + "end": 21992.16, + "probability": 0.5611 + }, + { + "start": 21992.22, + "end": 21992.65, + "probability": 0.6403 + }, + { + "start": 21992.84, + "end": 21993.76, + "probability": 0.962 + }, + { + "start": 21994.12, + "end": 21994.24, + "probability": 0.1276 + }, + { + "start": 21995.52, + "end": 21996.69, + "probability": 0.9604 + }, + { + "start": 21996.98, + "end": 21999.21, + "probability": 0.9829 + }, + { + "start": 21999.34, + "end": 22003.56, + "probability": 0.931 + }, + { + "start": 22004.34, + "end": 22006.0, + "probability": 0.9985 + }, + { + "start": 22006.1, + "end": 22006.44, + "probability": 0.9296 + }, + { + "start": 22006.6, + "end": 22008.35, + "probability": 0.8982 + }, + { + "start": 22008.5, + "end": 22009.58, + "probability": 0.998 + }, + { + "start": 22009.9, + "end": 22010.59, + "probability": 0.9716 + }, + { + "start": 22010.84, + "end": 22012.08, + "probability": 0.9482 + }, + { + "start": 22012.16, + "end": 22012.85, + "probability": 0.9819 + }, + { + "start": 22014.64, + "end": 22017.94, + "probability": 0.9507 + }, + { + "start": 22019.36, + "end": 22021.92, + "probability": 0.9912 + }, + { + "start": 22022.02, + "end": 22023.26, + "probability": 0.667 + }, + { + "start": 22023.34, + "end": 22023.84, + "probability": 0.4319 + }, + { + "start": 22024.3, + "end": 22027.02, + "probability": 0.9214 + }, + { + "start": 22027.16, + "end": 22028.14, + "probability": 0.9937 + }, + { + "start": 22028.3, + "end": 22031.74, + "probability": 0.8984 + }, + { + "start": 22031.78, + "end": 22032.22, + "probability": 0.819 + }, + { + "start": 22033.1, + "end": 22033.62, + "probability": 0.4985 + }, + { + "start": 22033.78, + "end": 22035.24, + "probability": 0.9588 + }, + { + "start": 22035.72, + "end": 22037.24, + "probability": 0.9077 + }, + { + "start": 22037.32, + "end": 22039.05, + "probability": 0.9277 + }, + { + "start": 22039.86, + "end": 22041.28, + "probability": 0.9448 + }, + { + "start": 22041.4, + "end": 22042.14, + "probability": 0.9855 + }, + { + "start": 22042.32, + "end": 22043.81, + "probability": 0.974 + }, + { + "start": 22044.2, + "end": 22047.18, + "probability": 0.9976 + }, + { + "start": 22047.3, + "end": 22048.0, + "probability": 0.7518 + }, + { + "start": 22048.42, + "end": 22049.98, + "probability": 0.9786 + }, + { + "start": 22050.26, + "end": 22050.64, + "probability": 0.8718 + }, + { + "start": 22051.28, + "end": 22053.3, + "probability": 0.6847 + }, + { + "start": 22053.58, + "end": 22055.32, + "probability": 0.7108 + }, + { + "start": 22067.4, + "end": 22067.4, + "probability": 0.7749 + }, + { + "start": 22067.4, + "end": 22068.37, + "probability": 0.5 + }, + { + "start": 22069.78, + "end": 22072.36, + "probability": 0.9966 + }, + { + "start": 22072.44, + "end": 22072.64, + "probability": 0.6471 + }, + { + "start": 22074.86, + "end": 22076.72, + "probability": 0.8869 + }, + { + "start": 22077.3, + "end": 22079.54, + "probability": 0.7687 + }, + { + "start": 22080.78, + "end": 22084.44, + "probability": 0.9779 + }, + { + "start": 22085.7, + "end": 22087.5, + "probability": 0.8425 + }, + { + "start": 22087.72, + "end": 22089.88, + "probability": 0.9712 + }, + { + "start": 22090.02, + "end": 22091.22, + "probability": 0.9647 + }, + { + "start": 22091.84, + "end": 22095.52, + "probability": 0.9174 + }, + { + "start": 22095.94, + "end": 22098.71, + "probability": 0.9601 + }, + { + "start": 22100.72, + "end": 22103.98, + "probability": 0.9883 + }, + { + "start": 22105.06, + "end": 22107.62, + "probability": 0.8765 + }, + { + "start": 22108.18, + "end": 22111.67, + "probability": 0.9666 + }, + { + "start": 22112.34, + "end": 22114.22, + "probability": 0.833 + }, + { + "start": 22114.72, + "end": 22120.04, + "probability": 0.9523 + }, + { + "start": 22121.02, + "end": 22121.3, + "probability": 0.6064 + }, + { + "start": 22121.4, + "end": 22123.9, + "probability": 0.8861 + }, + { + "start": 22124.0, + "end": 22125.51, + "probability": 0.9805 + }, + { + "start": 22126.32, + "end": 22129.32, + "probability": 0.9528 + }, + { + "start": 22130.44, + "end": 22137.38, + "probability": 0.9259 + }, + { + "start": 22137.38, + "end": 22141.74, + "probability": 0.9058 + }, + { + "start": 22142.42, + "end": 22145.66, + "probability": 0.9933 + }, + { + "start": 22146.46, + "end": 22148.26, + "probability": 0.9968 + }, + { + "start": 22148.62, + "end": 22152.28, + "probability": 0.9954 + }, + { + "start": 22152.92, + "end": 22155.88, + "probability": 0.9979 + }, + { + "start": 22155.98, + "end": 22156.96, + "probability": 0.9099 + }, + { + "start": 22158.1, + "end": 22159.96, + "probability": 0.9006 + }, + { + "start": 22160.48, + "end": 22163.32, + "probability": 0.9468 + }, + { + "start": 22164.2, + "end": 22170.6, + "probability": 0.9952 + }, + { + "start": 22171.28, + "end": 22172.9, + "probability": 0.998 + }, + { + "start": 22173.06, + "end": 22176.34, + "probability": 0.9766 + }, + { + "start": 22177.06, + "end": 22179.46, + "probability": 0.8932 + }, + { + "start": 22179.56, + "end": 22183.54, + "probability": 0.9949 + }, + { + "start": 22184.64, + "end": 22186.02, + "probability": 0.9503 + }, + { + "start": 22186.36, + "end": 22187.44, + "probability": 0.7532 + }, + { + "start": 22187.5, + "end": 22191.4, + "probability": 0.9888 + }, + { + "start": 22192.14, + "end": 22193.86, + "probability": 0.8131 + }, + { + "start": 22194.24, + "end": 22194.86, + "probability": 0.6659 + }, + { + "start": 22195.04, + "end": 22198.44, + "probability": 0.9358 + }, + { + "start": 22198.44, + "end": 22202.34, + "probability": 0.9882 + }, + { + "start": 22205.06, + "end": 22206.36, + "probability": 0.7953 + }, + { + "start": 22207.28, + "end": 22209.76, + "probability": 0.9567 + }, + { + "start": 22210.28, + "end": 22212.94, + "probability": 0.9967 + }, + { + "start": 22212.94, + "end": 22215.86, + "probability": 0.9991 + }, + { + "start": 22216.72, + "end": 22219.72, + "probability": 0.9969 + }, + { + "start": 22221.7, + "end": 22223.88, + "probability": 0.9968 + }, + { + "start": 22224.54, + "end": 22226.32, + "probability": 0.9571 + }, + { + "start": 22226.84, + "end": 22228.32, + "probability": 0.9082 + }, + { + "start": 22229.0, + "end": 22234.36, + "probability": 0.9976 + }, + { + "start": 22240.3, + "end": 22244.44, + "probability": 0.9355 + }, + { + "start": 22245.18, + "end": 22246.08, + "probability": 0.9189 + }, + { + "start": 22246.68, + "end": 22248.36, + "probability": 0.9844 + }, + { + "start": 22248.92, + "end": 22251.2, + "probability": 0.8828 + }, + { + "start": 22251.76, + "end": 22252.18, + "probability": 0.8921 + }, + { + "start": 22252.62, + "end": 22255.36, + "probability": 0.9984 + }, + { + "start": 22255.76, + "end": 22256.34, + "probability": 0.7255 + }, + { + "start": 22256.68, + "end": 22258.38, + "probability": 0.9038 + }, + { + "start": 22258.76, + "end": 22260.8, + "probability": 0.9736 + }, + { + "start": 22262.04, + "end": 22266.54, + "probability": 0.9973 + }, + { + "start": 22267.1, + "end": 22270.92, + "probability": 0.578 + }, + { + "start": 22271.6, + "end": 22273.18, + "probability": 0.9153 + }, + { + "start": 22273.68, + "end": 22274.16, + "probability": 0.4069 + }, + { + "start": 22274.3, + "end": 22280.62, + "probability": 0.9924 + }, + { + "start": 22281.2, + "end": 22281.54, + "probability": 0.7013 + }, + { + "start": 22281.8, + "end": 22283.78, + "probability": 0.9204 + }, + { + "start": 22283.88, + "end": 22285.2, + "probability": 0.9679 + }, + { + "start": 22286.22, + "end": 22286.44, + "probability": 0.6362 + }, + { + "start": 22287.54, + "end": 22290.18, + "probability": 0.9578 + }, + { + "start": 22290.32, + "end": 22293.22, + "probability": 0.7457 + }, + { + "start": 22305.64, + "end": 22306.46, + "probability": 0.9363 + }, + { + "start": 22306.7, + "end": 22307.06, + "probability": 0.3819 + }, + { + "start": 22307.12, + "end": 22308.4, + "probability": 0.4559 + }, + { + "start": 22309.72, + "end": 22313.56, + "probability": 0.8131 + }, + { + "start": 22314.64, + "end": 22316.12, + "probability": 0.9905 + }, + { + "start": 22317.42, + "end": 22323.16, + "probability": 0.968 + }, + { + "start": 22324.12, + "end": 22329.36, + "probability": 0.9467 + }, + { + "start": 22330.4, + "end": 22331.4, + "probability": 0.7154 + }, + { + "start": 22331.64, + "end": 22335.6, + "probability": 0.9464 + }, + { + "start": 22335.72, + "end": 22338.94, + "probability": 0.9581 + }, + { + "start": 22339.38, + "end": 22342.12, + "probability": 0.8904 + }, + { + "start": 22342.66, + "end": 22345.66, + "probability": 0.9858 + }, + { + "start": 22345.82, + "end": 22347.3, + "probability": 0.7276 + }, + { + "start": 22347.6, + "end": 22351.98, + "probability": 0.9907 + }, + { + "start": 22352.22, + "end": 22352.5, + "probability": 0.4888 + }, + { + "start": 22352.66, + "end": 22353.14, + "probability": 0.7177 + }, + { + "start": 22353.5, + "end": 22355.0, + "probability": 0.7554 + }, + { + "start": 22355.46, + "end": 22359.82, + "probability": 0.7973 + }, + { + "start": 22359.92, + "end": 22360.72, + "probability": 0.8197 + }, + { + "start": 22360.92, + "end": 22361.9, + "probability": 0.9811 + }, + { + "start": 22362.26, + "end": 22363.6, + "probability": 0.8339 + }, + { + "start": 22363.94, + "end": 22365.42, + "probability": 0.9331 + }, + { + "start": 22365.56, + "end": 22367.59, + "probability": 0.9958 + }, + { + "start": 22368.22, + "end": 22369.56, + "probability": 0.9745 + }, + { + "start": 22370.56, + "end": 22373.72, + "probability": 0.9575 + }, + { + "start": 22374.18, + "end": 22375.34, + "probability": 0.8158 + }, + { + "start": 22375.54, + "end": 22376.88, + "probability": 0.9365 + }, + { + "start": 22376.96, + "end": 22383.84, + "probability": 0.9763 + }, + { + "start": 22386.44, + "end": 22388.96, + "probability": 0.8614 + }, + { + "start": 22390.18, + "end": 22391.98, + "probability": 0.8609 + }, + { + "start": 22392.12, + "end": 22397.24, + "probability": 0.8991 + }, + { + "start": 22397.42, + "end": 22399.08, + "probability": 0.9248 + }, + { + "start": 22399.86, + "end": 22404.98, + "probability": 0.9722 + }, + { + "start": 22405.1, + "end": 22406.7, + "probability": 0.8102 + }, + { + "start": 22407.24, + "end": 22408.42, + "probability": 0.7367 + }, + { + "start": 22408.54, + "end": 22411.42, + "probability": 0.9888 + }, + { + "start": 22412.6, + "end": 22417.44, + "probability": 0.8789 + }, + { + "start": 22418.68, + "end": 22419.48, + "probability": 0.7167 + }, + { + "start": 22419.58, + "end": 22423.1, + "probability": 0.986 + }, + { + "start": 22423.72, + "end": 22427.14, + "probability": 0.9895 + }, + { + "start": 22427.72, + "end": 22429.7, + "probability": 0.9597 + }, + { + "start": 22430.04, + "end": 22432.82, + "probability": 0.9822 + }, + { + "start": 22433.04, + "end": 22437.05, + "probability": 0.9821 + }, + { + "start": 22437.24, + "end": 22438.26, + "probability": 0.9995 + }, + { + "start": 22438.98, + "end": 22445.04, + "probability": 0.9627 + }, + { + "start": 22445.52, + "end": 22446.5, + "probability": 0.8145 + }, + { + "start": 22446.98, + "end": 22449.64, + "probability": 0.9634 + }, + { + "start": 22449.78, + "end": 22451.86, + "probability": 0.9985 + }, + { + "start": 22452.22, + "end": 22452.78, + "probability": 0.9509 + }, + { + "start": 22453.78, + "end": 22453.96, + "probability": 0.4117 + }, + { + "start": 22454.02, + "end": 22454.42, + "probability": 0.8401 + }, + { + "start": 22454.54, + "end": 22455.72, + "probability": 0.9667 + }, + { + "start": 22455.82, + "end": 22456.7, + "probability": 0.937 + }, + { + "start": 22456.78, + "end": 22460.3, + "probability": 0.9792 + }, + { + "start": 22460.46, + "end": 22464.42, + "probability": 0.9178 + }, + { + "start": 22465.2, + "end": 22470.1, + "probability": 0.9515 + }, + { + "start": 22470.6, + "end": 22476.82, + "probability": 0.9375 + }, + { + "start": 22477.22, + "end": 22477.8, + "probability": 0.4097 + }, + { + "start": 22478.14, + "end": 22478.76, + "probability": 0.8492 + }, + { + "start": 22479.62, + "end": 22481.06, + "probability": 0.9062 + }, + { + "start": 22481.58, + "end": 22483.74, + "probability": 0.974 + }, + { + "start": 22484.26, + "end": 22485.6, + "probability": 0.985 + }, + { + "start": 22485.92, + "end": 22488.24, + "probability": 0.9729 + }, + { + "start": 22489.02, + "end": 22493.14, + "probability": 0.9746 + }, + { + "start": 22493.16, + "end": 22494.22, + "probability": 0.7079 + }, + { + "start": 22494.3, + "end": 22494.7, + "probability": 0.3712 + }, + { + "start": 22494.78, + "end": 22495.12, + "probability": 0.7527 + }, + { + "start": 22495.62, + "end": 22498.68, + "probability": 0.9324 + }, + { + "start": 22499.06, + "end": 22503.24, + "probability": 0.9788 + }, + { + "start": 22504.26, + "end": 22507.24, + "probability": 0.9728 + }, + { + "start": 22508.04, + "end": 22510.16, + "probability": 0.9906 + }, + { + "start": 22510.58, + "end": 22513.78, + "probability": 0.9233 + }, + { + "start": 22513.98, + "end": 22516.94, + "probability": 0.974 + }, + { + "start": 22518.9, + "end": 22522.12, + "probability": 0.7268 + }, + { + "start": 22522.12, + "end": 22525.56, + "probability": 0.8776 + }, + { + "start": 22525.78, + "end": 22528.06, + "probability": 0.9245 + }, + { + "start": 22528.22, + "end": 22532.42, + "probability": 0.9785 + }, + { + "start": 22532.42, + "end": 22536.28, + "probability": 0.9954 + }, + { + "start": 22536.64, + "end": 22540.92, + "probability": 0.9901 + }, + { + "start": 22541.54, + "end": 22542.6, + "probability": 0.4652 + }, + { + "start": 22542.66, + "end": 22545.64, + "probability": 0.9011 + }, + { + "start": 22546.26, + "end": 22551.42, + "probability": 0.9873 + }, + { + "start": 22551.42, + "end": 22552.16, + "probability": 0.7277 + }, + { + "start": 22552.64, + "end": 22552.96, + "probability": 0.8188 + }, + { + "start": 22553.42, + "end": 22556.88, + "probability": 0.9973 + }, + { + "start": 22556.88, + "end": 22557.48, + "probability": 0.37 + }, + { + "start": 22557.56, + "end": 22559.7, + "probability": 0.9988 + }, + { + "start": 22559.78, + "end": 22562.18, + "probability": 0.5086 + }, + { + "start": 22562.54, + "end": 22562.96, + "probability": 0.1864 + }, + { + "start": 22563.0, + "end": 22565.58, + "probability": 0.7299 + }, + { + "start": 22565.58, + "end": 22569.26, + "probability": 0.9321 + }, + { + "start": 22569.4, + "end": 22570.02, + "probability": 0.7473 + }, + { + "start": 22570.18, + "end": 22570.72, + "probability": 0.8042 + }, + { + "start": 22570.82, + "end": 22571.22, + "probability": 0.9665 + }, + { + "start": 22571.3, + "end": 22571.53, + "probability": 0.91 + }, + { + "start": 22572.32, + "end": 22576.7, + "probability": 0.9987 + }, + { + "start": 22576.7, + "end": 22580.64, + "probability": 0.998 + }, + { + "start": 22581.14, + "end": 22582.76, + "probability": 0.9546 + }, + { + "start": 22583.08, + "end": 22587.14, + "probability": 0.9941 + }, + { + "start": 22587.6, + "end": 22591.92, + "probability": 0.9592 + }, + { + "start": 22592.34, + "end": 22592.96, + "probability": 0.6693 + }, + { + "start": 22593.28, + "end": 22594.68, + "probability": 0.6733 + }, + { + "start": 22594.78, + "end": 22596.42, + "probability": 0.9458 + }, + { + "start": 22612.48, + "end": 22613.0, + "probability": 0.7342 + }, + { + "start": 22613.3, + "end": 22613.88, + "probability": 0.3701 + }, + { + "start": 22614.18, + "end": 22615.44, + "probability": 0.5684 + }, + { + "start": 22615.56, + "end": 22616.64, + "probability": 0.634 + }, + { + "start": 22617.14, + "end": 22619.66, + "probability": 0.6562 + }, + { + "start": 22620.84, + "end": 22623.34, + "probability": 0.8578 + }, + { + "start": 22623.44, + "end": 22630.52, + "probability": 0.9383 + }, + { + "start": 22631.56, + "end": 22634.7, + "probability": 0.7275 + }, + { + "start": 22634.84, + "end": 22637.94, + "probability": 0.9122 + }, + { + "start": 22638.66, + "end": 22639.66, + "probability": 0.9418 + }, + { + "start": 22640.28, + "end": 22643.74, + "probability": 0.7746 + }, + { + "start": 22644.1, + "end": 22645.78, + "probability": 0.958 + }, + { + "start": 22645.94, + "end": 22647.48, + "probability": 0.9932 + }, + { + "start": 22648.22, + "end": 22650.0, + "probability": 0.8877 + }, + { + "start": 22650.84, + "end": 22655.24, + "probability": 0.5801 + }, + { + "start": 22655.54, + "end": 22657.4, + "probability": 0.5952 + }, + { + "start": 22657.88, + "end": 22662.54, + "probability": 0.7992 + }, + { + "start": 22662.8, + "end": 22664.2, + "probability": 0.9455 + }, + { + "start": 22664.3, + "end": 22664.86, + "probability": 0.9242 + }, + { + "start": 22664.98, + "end": 22665.64, + "probability": 0.795 + }, + { + "start": 22666.12, + "end": 22668.98, + "probability": 0.8088 + }, + { + "start": 22669.02, + "end": 22671.34, + "probability": 0.9913 + }, + { + "start": 22672.16, + "end": 22672.94, + "probability": 0.955 + }, + { + "start": 22673.62, + "end": 22677.6, + "probability": 0.7076 + }, + { + "start": 22677.7, + "end": 22679.1, + "probability": 0.7916 + }, + { + "start": 22679.5, + "end": 22683.48, + "probability": 0.9956 + }, + { + "start": 22683.48, + "end": 22686.74, + "probability": 0.9778 + }, + { + "start": 22687.0, + "end": 22687.62, + "probability": 0.9477 + }, + { + "start": 22687.74, + "end": 22688.5, + "probability": 0.593 + }, + { + "start": 22688.54, + "end": 22692.56, + "probability": 0.8933 + }, + { + "start": 22692.92, + "end": 22693.7, + "probability": 0.6138 + }, + { + "start": 22693.96, + "end": 22693.96, + "probability": 0.5729 + }, + { + "start": 22693.96, + "end": 22696.02, + "probability": 0.4751 + }, + { + "start": 22697.34, + "end": 22701.34, + "probability": 0.9211 + }, + { + "start": 22702.02, + "end": 22706.8, + "probability": 0.938 + }, + { + "start": 22707.66, + "end": 22711.4, + "probability": 0.9854 + }, + { + "start": 22712.3, + "end": 22717.24, + "probability": 0.6813 + }, + { + "start": 22717.24, + "end": 22721.76, + "probability": 0.8915 + }, + { + "start": 22721.84, + "end": 22724.8, + "probability": 0.803 + }, + { + "start": 22727.04, + "end": 22728.04, + "probability": 0.4904 + }, + { + "start": 22728.16, + "end": 22728.64, + "probability": 0.7857 + }, + { + "start": 22728.9, + "end": 22730.46, + "probability": 0.8554 + }, + { + "start": 22730.62, + "end": 22735.36, + "probability": 0.96 + }, + { + "start": 22735.38, + "end": 22737.48, + "probability": 0.8816 + }, + { + "start": 22738.26, + "end": 22740.4, + "probability": 0.9583 + }, + { + "start": 22740.56, + "end": 22743.78, + "probability": 0.9941 + }, + { + "start": 22744.4, + "end": 22748.76, + "probability": 0.9864 + }, + { + "start": 22748.78, + "end": 22750.53, + "probability": 0.9059 + }, + { + "start": 22751.48, + "end": 22756.96, + "probability": 0.9228 + }, + { + "start": 22757.18, + "end": 22759.24, + "probability": 0.5996 + }, + { + "start": 22759.66, + "end": 22762.38, + "probability": 0.7544 + }, + { + "start": 22762.52, + "end": 22762.8, + "probability": 0.3933 + }, + { + "start": 22763.18, + "end": 22763.58, + "probability": 0.782 + }, + { + "start": 22764.62, + "end": 22766.32, + "probability": 0.7514 + }, + { + "start": 22766.52, + "end": 22768.68, + "probability": 0.8292 + }, + { + "start": 22770.44, + "end": 22772.54, + "probability": 0.0096 + }, + { + "start": 22774.4, + "end": 22776.16, + "probability": 0.3991 + }, + { + "start": 22783.88, + "end": 22783.88, + "probability": 0.2819 + }, + { + "start": 22783.88, + "end": 22783.88, + "probability": 0.4525 + }, + { + "start": 22783.88, + "end": 22784.39, + "probability": 0.4653 + }, + { + "start": 22784.68, + "end": 22787.41, + "probability": 0.8154 + }, + { + "start": 22787.96, + "end": 22789.02, + "probability": 0.5678 + }, + { + "start": 22789.04, + "end": 22789.56, + "probability": 0.5262 + }, + { + "start": 22790.26, + "end": 22790.26, + "probability": 0.7296 + }, + { + "start": 22790.26, + "end": 22791.34, + "probability": 0.3608 + }, + { + "start": 22791.48, + "end": 22792.74, + "probability": 0.9658 + }, + { + "start": 22794.06, + "end": 22802.46, + "probability": 0.8549 + }, + { + "start": 22805.16, + "end": 22809.1, + "probability": 0.9413 + }, + { + "start": 22809.12, + "end": 22810.5, + "probability": 0.6991 + }, + { + "start": 22810.92, + "end": 22812.06, + "probability": 0.7334 + }, + { + "start": 22812.06, + "end": 22812.82, + "probability": 0.988 + }, + { + "start": 22817.5, + "end": 22820.63, + "probability": 0.8513 + }, + { + "start": 22820.9, + "end": 22823.26, + "probability": 0.8047 + }, + { + "start": 22824.0, + "end": 22826.52, + "probability": 0.9014 + }, + { + "start": 22827.24, + "end": 22830.26, + "probability": 0.8628 + }, + { + "start": 22831.14, + "end": 22833.62, + "probability": 0.7087 + }, + { + "start": 22835.74, + "end": 22836.22, + "probability": 0.2236 + }, + { + "start": 22836.22, + "end": 22836.22, + "probability": 0.0198 + }, + { + "start": 22836.22, + "end": 22836.94, + "probability": 0.4593 + }, + { + "start": 22837.6, + "end": 22839.24, + "probability": 0.8335 + }, + { + "start": 22839.38, + "end": 22841.9, + "probability": 0.9623 + }, + { + "start": 22841.98, + "end": 22844.38, + "probability": 0.9856 + }, + { + "start": 22845.22, + "end": 22845.72, + "probability": 0.8384 + }, + { + "start": 22845.84, + "end": 22847.38, + "probability": 0.9884 + }, + { + "start": 22847.48, + "end": 22851.3, + "probability": 0.9689 + }, + { + "start": 22851.3, + "end": 22858.58, + "probability": 0.9567 + }, + { + "start": 22858.72, + "end": 22858.96, + "probability": 0.8216 + }, + { + "start": 22859.76, + "end": 22862.34, + "probability": 0.9664 + }, + { + "start": 22863.1, + "end": 22864.28, + "probability": 0.8154 + }, + { + "start": 22864.34, + "end": 22869.1, + "probability": 0.9664 + }, + { + "start": 22869.16, + "end": 22869.62, + "probability": 0.6695 + }, + { + "start": 22869.9, + "end": 22871.46, + "probability": 0.6348 + }, + { + "start": 22871.56, + "end": 22873.24, + "probability": 0.6078 + }, + { + "start": 22873.4, + "end": 22874.4, + "probability": 0.5003 + }, + { + "start": 22876.98, + "end": 22877.82, + "probability": 0.0408 + }, + { + "start": 22877.82, + "end": 22877.82, + "probability": 0.0093 + }, + { + "start": 22877.82, + "end": 22877.98, + "probability": 0.3751 + }, + { + "start": 22878.2, + "end": 22878.9, + "probability": 0.7045 + }, + { + "start": 22879.08, + "end": 22879.89, + "probability": 0.9539 + }, + { + "start": 22880.16, + "end": 22883.23, + "probability": 0.9776 + }, + { + "start": 22884.3, + "end": 22887.44, + "probability": 0.9863 + }, + { + "start": 22888.92, + "end": 22889.17, + "probability": 0.2882 + }, + { + "start": 22890.18, + "end": 22894.34, + "probability": 0.9576 + }, + { + "start": 22895.38, + "end": 22897.5, + "probability": 0.1052 + }, + { + "start": 22897.66, + "end": 22900.27, + "probability": 0.6901 + }, + { + "start": 22901.38, + "end": 22903.84, + "probability": 0.366 + }, + { + "start": 22903.84, + "end": 22908.84, + "probability": 0.9653 + }, + { + "start": 22910.04, + "end": 22916.98, + "probability": 0.9733 + }, + { + "start": 22917.5, + "end": 22920.96, + "probability": 0.9761 + }, + { + "start": 22922.26, + "end": 22924.28, + "probability": 0.9002 + }, + { + "start": 22924.7, + "end": 22930.36, + "probability": 0.9958 + }, + { + "start": 22931.34, + "end": 22933.78, + "probability": 0.9975 + }, + { + "start": 22933.78, + "end": 22937.66, + "probability": 0.9918 + }, + { + "start": 22938.7, + "end": 22939.64, + "probability": 0.7583 + }, + { + "start": 22940.1, + "end": 22943.14, + "probability": 0.995 + }, + { + "start": 22943.24, + "end": 22947.02, + "probability": 0.9963 + }, + { + "start": 22947.84, + "end": 22949.92, + "probability": 0.9788 + }, + { + "start": 22950.38, + "end": 22954.98, + "probability": 0.9316 + }, + { + "start": 22954.98, + "end": 22959.58, + "probability": 0.9976 + }, + { + "start": 22961.72, + "end": 22963.08, + "probability": 0.3268 + }, + { + "start": 22963.08, + "end": 22965.38, + "probability": 0.958 + }, + { + "start": 22966.44, + "end": 22968.96, + "probability": 0.8065 + }, + { + "start": 22970.91, + "end": 22974.44, + "probability": 0.9939 + }, + { + "start": 22974.48, + "end": 22978.16, + "probability": 0.9933 + }, + { + "start": 22978.4, + "end": 22980.44, + "probability": 0.8079 + }, + { + "start": 22980.5, + "end": 22981.26, + "probability": 0.951 + }, + { + "start": 22982.88, + "end": 22983.5, + "probability": 0.7505 + }, + { + "start": 22984.08, + "end": 22988.12, + "probability": 0.9831 + }, + { + "start": 22988.12, + "end": 22995.63, + "probability": 0.9509 + }, + { + "start": 22995.72, + "end": 23000.3, + "probability": 0.7872 + }, + { + "start": 23000.88, + "end": 23001.98, + "probability": 0.9826 + }, + { + "start": 23002.04, + "end": 23003.34, + "probability": 0.8776 + }, + { + "start": 23004.44, + "end": 23007.06, + "probability": 0.9331 + }, + { + "start": 23007.16, + "end": 23012.18, + "probability": 0.9146 + }, + { + "start": 23012.62, + "end": 23013.04, + "probability": 0.5759 + }, + { + "start": 23013.54, + "end": 23014.68, + "probability": 0.9041 + }, + { + "start": 23015.02, + "end": 23016.38, + "probability": 0.8623 + }, + { + "start": 23016.92, + "end": 23023.14, + "probability": 0.9799 + }, + { + "start": 23023.2, + "end": 23029.8, + "probability": 0.8084 + }, + { + "start": 23030.4, + "end": 23033.7, + "probability": 0.9971 + }, + { + "start": 23033.78, + "end": 23036.18, + "probability": 0.9977 + }, + { + "start": 23036.18, + "end": 23040.66, + "probability": 0.9683 + }, + { + "start": 23041.26, + "end": 23042.9, + "probability": 0.9961 + }, + { + "start": 23043.98, + "end": 23051.08, + "probability": 0.999 + }, + { + "start": 23051.3, + "end": 23053.34, + "probability": 0.9886 + }, + { + "start": 23053.46, + "end": 23054.18, + "probability": 0.9853 + }, + { + "start": 23055.28, + "end": 23059.24, + "probability": 0.994 + }, + { + "start": 23059.38, + "end": 23060.02, + "probability": 0.3798 + }, + { + "start": 23060.12, + "end": 23060.36, + "probability": 0.6816 + }, + { + "start": 23060.44, + "end": 23065.86, + "probability": 0.9774 + }, + { + "start": 23065.88, + "end": 23070.18, + "probability": 0.98 + }, + { + "start": 23070.28, + "end": 23074.92, + "probability": 0.9927 + }, + { + "start": 23074.92, + "end": 23081.62, + "probability": 0.9879 + }, + { + "start": 23081.82, + "end": 23082.56, + "probability": 0.7168 + }, + { + "start": 23082.76, + "end": 23085.26, + "probability": 0.9744 + }, + { + "start": 23085.34, + "end": 23086.96, + "probability": 0.9897 + }, + { + "start": 23087.46, + "end": 23089.62, + "probability": 0.9729 + }, + { + "start": 23090.16, + "end": 23090.84, + "probability": 0.8875 + }, + { + "start": 23091.66, + "end": 23097.78, + "probability": 0.9834 + }, + { + "start": 23099.26, + "end": 23099.98, + "probability": 0.9617 + }, + { + "start": 23100.12, + "end": 23101.88, + "probability": 0.9805 + }, + { + "start": 23101.94, + "end": 23106.01, + "probability": 0.9507 + }, + { + "start": 23106.54, + "end": 23107.14, + "probability": 0.9556 + }, + { + "start": 23107.36, + "end": 23111.3, + "probability": 0.9854 + }, + { + "start": 23111.3, + "end": 23115.34, + "probability": 0.9986 + }, + { + "start": 23115.58, + "end": 23116.56, + "probability": 0.877 + }, + { + "start": 23116.6, + "end": 23121.86, + "probability": 0.9954 + }, + { + "start": 23121.96, + "end": 23124.4, + "probability": 0.9845 + }, + { + "start": 23124.44, + "end": 23126.76, + "probability": 0.9976 + }, + { + "start": 23127.3, + "end": 23129.47, + "probability": 0.9897 + }, + { + "start": 23130.98, + "end": 23135.83, + "probability": 0.9949 + }, + { + "start": 23137.5, + "end": 23141.58, + "probability": 0.9966 + }, + { + "start": 23142.3, + "end": 23146.12, + "probability": 0.9904 + }, + { + "start": 23146.58, + "end": 23146.58, + "probability": 0.8623 + }, + { + "start": 23147.14, + "end": 23148.26, + "probability": 0.7638 + }, + { + "start": 23148.8, + "end": 23151.26, + "probability": 0.9639 + }, + { + "start": 23152.54, + "end": 23153.32, + "probability": 0.8443 + }, + { + "start": 23153.4, + "end": 23153.74, + "probability": 0.7198 + }, + { + "start": 23153.8, + "end": 23154.58, + "probability": 0.8927 + }, + { + "start": 23154.88, + "end": 23157.12, + "probability": 0.9915 + }, + { + "start": 23157.6, + "end": 23158.49, + "probability": 0.9533 + }, + { + "start": 23159.26, + "end": 23161.64, + "probability": 0.9637 + }, + { + "start": 23161.98, + "end": 23163.92, + "probability": 0.9956 + }, + { + "start": 23164.84, + "end": 23167.84, + "probability": 0.9927 + }, + { + "start": 23168.78, + "end": 23169.04, + "probability": 0.4986 + }, + { + "start": 23169.12, + "end": 23174.78, + "probability": 0.9956 + }, + { + "start": 23175.3, + "end": 23179.86, + "probability": 0.9345 + }, + { + "start": 23180.5, + "end": 23183.02, + "probability": 0.9739 + }, + { + "start": 23183.02, + "end": 23187.08, + "probability": 0.9249 + }, + { + "start": 23187.32, + "end": 23187.6, + "probability": 0.3814 + }, + { + "start": 23187.84, + "end": 23188.34, + "probability": 0.8096 + }, + { + "start": 23188.4, + "end": 23191.88, + "probability": 0.9743 + }, + { + "start": 23191.88, + "end": 23195.23, + "probability": 0.9958 + }, + { + "start": 23195.94, + "end": 23197.32, + "probability": 0.9308 + }, + { + "start": 23197.38, + "end": 23199.5, + "probability": 0.9906 + }, + { + "start": 23199.74, + "end": 23200.56, + "probability": 0.8071 + }, + { + "start": 23200.58, + "end": 23206.5, + "probability": 0.9784 + }, + { + "start": 23206.84, + "end": 23211.78, + "probability": 0.998 + }, + { + "start": 23211.78, + "end": 23216.64, + "probability": 0.9931 + }, + { + "start": 23216.8, + "end": 23218.34, + "probability": 0.6614 + }, + { + "start": 23219.22, + "end": 23225.36, + "probability": 0.957 + }, + { + "start": 23225.42, + "end": 23225.8, + "probability": 0.84 + }, + { + "start": 23225.9, + "end": 23228.38, + "probability": 0.9688 + }, + { + "start": 23228.48, + "end": 23230.04, + "probability": 0.9514 + }, + { + "start": 23230.68, + "end": 23233.02, + "probability": 0.7183 + }, + { + "start": 23233.54, + "end": 23234.03, + "probability": 0.9341 + }, + { + "start": 23234.56, + "end": 23235.22, + "probability": 0.7594 + }, + { + "start": 23235.54, + "end": 23235.92, + "probability": 0.7688 + }, + { + "start": 23236.42, + "end": 23238.8, + "probability": 0.984 + }, + { + "start": 23238.86, + "end": 23240.08, + "probability": 0.9041 + }, + { + "start": 23240.76, + "end": 23243.74, + "probability": 0.9767 + }, + { + "start": 23244.32, + "end": 23244.56, + "probability": 0.6496 + }, + { + "start": 23244.74, + "end": 23247.16, + "probability": 0.8927 + }, + { + "start": 23247.36, + "end": 23250.72, + "probability": 0.9829 + }, + { + "start": 23250.72, + "end": 23254.46, + "probability": 0.9806 + }, + { + "start": 23254.56, + "end": 23255.21, + "probability": 0.9167 + }, + { + "start": 23256.14, + "end": 23262.0, + "probability": 0.9581 + }, + { + "start": 23262.14, + "end": 23267.68, + "probability": 0.9897 + }, + { + "start": 23267.94, + "end": 23270.66, + "probability": 0.9321 + }, + { + "start": 23270.84, + "end": 23275.22, + "probability": 0.9663 + }, + { + "start": 23275.22, + "end": 23278.06, + "probability": 0.9928 + }, + { + "start": 23278.22, + "end": 23282.75, + "probability": 0.9745 + }, + { + "start": 23284.32, + "end": 23288.71, + "probability": 0.9859 + }, + { + "start": 23289.14, + "end": 23292.88, + "probability": 0.8579 + }, + { + "start": 23293.06, + "end": 23296.0, + "probability": 0.9957 + }, + { + "start": 23296.0, + "end": 23299.38, + "probability": 0.9985 + }, + { + "start": 23301.1, + "end": 23304.26, + "probability": 0.7796 + }, + { + "start": 23304.88, + "end": 23306.96, + "probability": 0.9819 + }, + { + "start": 23307.34, + "end": 23308.24, + "probability": 0.5888 + }, + { + "start": 23308.34, + "end": 23308.44, + "probability": 0.0011 + }, + { + "start": 23308.66, + "end": 23309.96, + "probability": 0.3771 + }, + { + "start": 23310.02, + "end": 23313.28, + "probability": 0.8029 + }, + { + "start": 23313.62, + "end": 23315.5, + "probability": 0.6 + }, + { + "start": 23315.6, + "end": 23316.76, + "probability": 0.4371 + }, + { + "start": 23316.76, + "end": 23317.96, + "probability": 0.5775 + }, + { + "start": 23317.98, + "end": 23319.46, + "probability": 0.7801 + }, + { + "start": 23319.6, + "end": 23320.81, + "probability": 0.8871 + }, + { + "start": 23321.02, + "end": 23321.56, + "probability": 0.7231 + }, + { + "start": 23321.8, + "end": 23323.72, + "probability": 0.4969 + }, + { + "start": 23323.94, + "end": 23324.16, + "probability": 0.6914 + }, + { + "start": 23324.26, + "end": 23325.34, + "probability": 0.9846 + }, + { + "start": 23325.84, + "end": 23326.0, + "probability": 0.6957 + }, + { + "start": 23326.12, + "end": 23328.21, + "probability": 0.9929 + }, + { + "start": 23328.3, + "end": 23335.08, + "probability": 0.9985 + }, + { + "start": 23335.2, + "end": 23335.66, + "probability": 0.404 + }, + { + "start": 23335.68, + "end": 23339.14, + "probability": 0.9854 + }, + { + "start": 23339.98, + "end": 23342.34, + "probability": 0.7203 + }, + { + "start": 23343.08, + "end": 23347.0, + "probability": 0.9907 + }, + { + "start": 23347.12, + "end": 23353.26, + "probability": 0.999 + }, + { + "start": 23353.32, + "end": 23353.7, + "probability": 0.918 + }, + { + "start": 23353.78, + "end": 23359.54, + "probability": 0.9731 + }, + { + "start": 23359.62, + "end": 23366.18, + "probability": 0.9893 + }, + { + "start": 23366.62, + "end": 23371.06, + "probability": 0.9934 + }, + { + "start": 23371.5, + "end": 23375.38, + "probability": 0.9937 + }, + { + "start": 23375.48, + "end": 23379.4, + "probability": 0.9932 + }, + { + "start": 23379.6, + "end": 23385.93, + "probability": 0.9971 + }, + { + "start": 23386.82, + "end": 23387.1, + "probability": 0.5091 + }, + { + "start": 23387.18, + "end": 23390.7, + "probability": 0.9971 + }, + { + "start": 23390.78, + "end": 23393.58, + "probability": 0.9683 + }, + { + "start": 23393.99, + "end": 23394.66, + "probability": 0.1184 + }, + { + "start": 23395.46, + "end": 23395.46, + "probability": 0.4035 + }, + { + "start": 23395.62, + "end": 23399.26, + "probability": 0.6467 + }, + { + "start": 23399.26, + "end": 23402.9, + "probability": 0.9683 + }, + { + "start": 23402.96, + "end": 23408.7, + "probability": 0.9973 + }, + { + "start": 23408.72, + "end": 23412.94, + "probability": 0.9988 + }, + { + "start": 23413.02, + "end": 23414.55, + "probability": 0.9222 + }, + { + "start": 23416.2, + "end": 23422.12, + "probability": 0.9967 + }, + { + "start": 23422.3, + "end": 23422.98, + "probability": 0.9165 + }, + { + "start": 23424.46, + "end": 23427.04, + "probability": 0.7731 + }, + { + "start": 23427.7, + "end": 23429.08, + "probability": 0.9636 + }, + { + "start": 23429.24, + "end": 23431.26, + "probability": 0.857 + }, + { + "start": 23431.74, + "end": 23434.2, + "probability": 0.9757 + }, + { + "start": 23434.38, + "end": 23439.03, + "probability": 0.9979 + }, + { + "start": 23439.28, + "end": 23442.06, + "probability": 0.98 + }, + { + "start": 23442.2, + "end": 23445.36, + "probability": 0.9821 + }, + { + "start": 23446.26, + "end": 23449.1, + "probability": 0.9856 + }, + { + "start": 23449.1, + "end": 23453.26, + "probability": 0.9979 + }, + { + "start": 23453.54, + "end": 23454.62, + "probability": 0.8143 + }, + { + "start": 23454.72, + "end": 23455.2, + "probability": 0.7294 + }, + { + "start": 23455.32, + "end": 23455.68, + "probability": 0.8722 + }, + { + "start": 23455.74, + "end": 23456.18, + "probability": 0.9789 + }, + { + "start": 23456.3, + "end": 23456.4, + "probability": 0.9385 + }, + { + "start": 23457.16, + "end": 23458.24, + "probability": 0.5736 + }, + { + "start": 23459.16, + "end": 23463.08, + "probability": 0.9919 + }, + { + "start": 23463.46, + "end": 23466.72, + "probability": 0.8983 + }, + { + "start": 23467.38, + "end": 23469.08, + "probability": 0.9746 + }, + { + "start": 23469.18, + "end": 23470.12, + "probability": 0.6912 + }, + { + "start": 23470.32, + "end": 23472.54, + "probability": 0.9976 + }, + { + "start": 23473.3, + "end": 23475.88, + "probability": 0.9716 + }, + { + "start": 23477.06, + "end": 23480.46, + "probability": 0.6577 + }, + { + "start": 23480.46, + "end": 23484.4, + "probability": 0.9264 + }, + { + "start": 23485.42, + "end": 23486.34, + "probability": 0.5115 + }, + { + "start": 23486.48, + "end": 23490.06, + "probability": 0.9974 + }, + { + "start": 23490.2, + "end": 23495.39, + "probability": 0.9308 + }, + { + "start": 23495.42, + "end": 23500.04, + "probability": 0.8055 + }, + { + "start": 23500.12, + "end": 23501.12, + "probability": 0.8781 + }, + { + "start": 23501.24, + "end": 23502.82, + "probability": 0.6823 + }, + { + "start": 23503.46, + "end": 23505.88, + "probability": 0.7202 + }, + { + "start": 23506.46, + "end": 23511.88, + "probability": 0.9939 + }, + { + "start": 23512.74, + "end": 23515.78, + "probability": 0.9906 + }, + { + "start": 23516.82, + "end": 23522.3, + "probability": 0.8473 + }, + { + "start": 23522.92, + "end": 23525.2, + "probability": 0.9611 + }, + { + "start": 23525.72, + "end": 23527.26, + "probability": 0.703 + }, + { + "start": 23527.42, + "end": 23527.74, + "probability": 0.7556 + }, + { + "start": 23527.78, + "end": 23528.9, + "probability": 0.9296 + }, + { + "start": 23528.96, + "end": 23530.32, + "probability": 0.9316 + }, + { + "start": 23530.52, + "end": 23532.9, + "probability": 0.9912 + }, + { + "start": 23533.48, + "end": 23535.98, + "probability": 0.8723 + }, + { + "start": 23536.62, + "end": 23540.46, + "probability": 0.9567 + }, + { + "start": 23540.54, + "end": 23544.18, + "probability": 0.9867 + }, + { + "start": 23544.86, + "end": 23548.7, + "probability": 0.9905 + }, + { + "start": 23549.48, + "end": 23550.6, + "probability": 0.7961 + }, + { + "start": 23550.68, + "end": 23552.4, + "probability": 0.9487 + }, + { + "start": 23552.46, + "end": 23554.66, + "probability": 0.9495 + }, + { + "start": 23554.76, + "end": 23556.02, + "probability": 0.7393 + }, + { + "start": 23556.2, + "end": 23558.24, + "probability": 0.9708 + }, + { + "start": 23558.38, + "end": 23559.4, + "probability": 0.9099 + }, + { + "start": 23559.46, + "end": 23561.9, + "probability": 0.7037 + }, + { + "start": 23562.06, + "end": 23562.38, + "probability": 0.0388 + }, + { + "start": 23562.38, + "end": 23562.5, + "probability": 0.4742 + }, + { + "start": 23562.54, + "end": 23565.08, + "probability": 0.9358 + }, + { + "start": 23565.22, + "end": 23567.62, + "probability": 0.8773 + }, + { + "start": 23567.62, + "end": 23570.24, + "probability": 0.8818 + }, + { + "start": 23570.86, + "end": 23574.44, + "probability": 0.9982 + }, + { + "start": 23575.44, + "end": 23576.48, + "probability": 0.6198 + }, + { + "start": 23578.06, + "end": 23578.38, + "probability": 0.2185 + }, + { + "start": 23578.4, + "end": 23578.68, + "probability": 0.761 + }, + { + "start": 23578.82, + "end": 23580.18, + "probability": 0.8169 + }, + { + "start": 23580.44, + "end": 23580.74, + "probability": 0.2702 + }, + { + "start": 23580.84, + "end": 23585.32, + "probability": 0.6178 + }, + { + "start": 23585.56, + "end": 23586.12, + "probability": 0.9504 + }, + { + "start": 23587.34, + "end": 23589.38, + "probability": 0.7598 + }, + { + "start": 23590.14, + "end": 23593.66, + "probability": 0.9941 + }, + { + "start": 23594.18, + "end": 23599.38, + "probability": 0.9965 + }, + { + "start": 23601.44, + "end": 23605.86, + "probability": 0.8137 + }, + { + "start": 23606.96, + "end": 23610.2, + "probability": 0.9488 + }, + { + "start": 23610.74, + "end": 23612.22, + "probability": 0.9956 + }, + { + "start": 23612.96, + "end": 23615.8, + "probability": 0.8008 + }, + { + "start": 23615.86, + "end": 23616.3, + "probability": 0.8353 + }, + { + "start": 23616.84, + "end": 23618.5, + "probability": 0.8598 + }, + { + "start": 23618.86, + "end": 23620.72, + "probability": 0.9921 + }, + { + "start": 23620.98, + "end": 23623.44, + "probability": 0.9961 + }, + { + "start": 23624.04, + "end": 23626.2, + "probability": 0.9522 + }, + { + "start": 23626.28, + "end": 23628.68, + "probability": 0.9956 + }, + { + "start": 23629.51, + "end": 23632.32, + "probability": 0.9971 + }, + { + "start": 23632.48, + "end": 23633.82, + "probability": 0.7458 + }, + { + "start": 23633.86, + "end": 23635.52, + "probability": 0.8852 + }, + { + "start": 23635.74, + "end": 23635.98, + "probability": 0.851 + }, + { + "start": 23636.34, + "end": 23636.62, + "probability": 0.5158 + }, + { + "start": 23636.74, + "end": 23638.22, + "probability": 0.944 + }, + { + "start": 23638.52, + "end": 23643.64, + "probability": 0.9606 + }, + { + "start": 23643.8, + "end": 23644.34, + "probability": 0.8355 + }, + { + "start": 23645.06, + "end": 23645.38, + "probability": 0.7712 + }, + { + "start": 23645.76, + "end": 23647.04, + "probability": 0.9954 + }, + { + "start": 23648.26, + "end": 23649.88, + "probability": 0.9842 + }, + { + "start": 23651.66, + "end": 23653.32, + "probability": 0.6072 + }, + { + "start": 23654.68, + "end": 23656.16, + "probability": 0.5207 + }, + { + "start": 23656.78, + "end": 23658.78, + "probability": 0.7274 + }, + { + "start": 23658.88, + "end": 23661.6, + "probability": 0.4771 + }, + { + "start": 23661.88, + "end": 23664.9, + "probability": 0.7006 + }, + { + "start": 23665.12, + "end": 23667.96, + "probability": 0.6687 + }, + { + "start": 23668.08, + "end": 23669.26, + "probability": 0.788 + }, + { + "start": 23669.67, + "end": 23670.64, + "probability": 0.5215 + }, + { + "start": 23671.16, + "end": 23671.88, + "probability": 0.1695 + }, + { + "start": 23672.0, + "end": 23676.04, + "probability": 0.3812 + }, + { + "start": 23676.5, + "end": 23678.98, + "probability": 0.3624 + }, + { + "start": 23679.54, + "end": 23680.16, + "probability": 0.1465 + }, + { + "start": 23680.16, + "end": 23680.72, + "probability": 0.1527 + }, + { + "start": 23681.58, + "end": 23682.66, + "probability": 0.2634 + }, + { + "start": 23682.68, + "end": 23684.96, + "probability": 0.7715 + }, + { + "start": 23685.02, + "end": 23685.8, + "probability": 0.8002 + }, + { + "start": 23685.84, + "end": 23686.66, + "probability": 0.546 + }, + { + "start": 23687.1, + "end": 23687.56, + "probability": 0.3442 + }, + { + "start": 23687.78, + "end": 23688.14, + "probability": 0.3584 + }, + { + "start": 23688.14, + "end": 23688.24, + "probability": 0.8403 + }, + { + "start": 23689.86, + "end": 23692.54, + "probability": 0.2132 + }, + { + "start": 23692.74, + "end": 23692.92, + "probability": 0.2694 + }, + { + "start": 23692.92, + "end": 23694.42, + "probability": 0.9349 + }, + { + "start": 23695.38, + "end": 23696.44, + "probability": 0.5801 + }, + { + "start": 23696.58, + "end": 23698.38, + "probability": 0.6845 + }, + { + "start": 23700.02, + "end": 23700.68, + "probability": 0.1578 + }, + { + "start": 23703.21, + "end": 23704.56, + "probability": 0.2993 + }, + { + "start": 23704.88, + "end": 23706.56, + "probability": 0.5778 + }, + { + "start": 23706.64, + "end": 23708.32, + "probability": 0.363 + }, + { + "start": 23708.32, + "end": 23713.72, + "probability": 0.8841 + }, + { + "start": 23715.16, + "end": 23716.8, + "probability": 0.0732 + }, + { + "start": 23717.48, + "end": 23721.96, + "probability": 0.7258 + }, + { + "start": 23722.52, + "end": 23722.96, + "probability": 0.027 + }, + { + "start": 23722.96, + "end": 23722.96, + "probability": 0.2849 + }, + { + "start": 23722.96, + "end": 23722.96, + "probability": 0.3568 + }, + { + "start": 23722.96, + "end": 23722.96, + "probability": 0.0792 + }, + { + "start": 23722.96, + "end": 23725.56, + "probability": 0.5793 + }, + { + "start": 23733.54, + "end": 23733.88, + "probability": 0.2182 + }, + { + "start": 23733.88, + "end": 23736.99, + "probability": 0.7372 + }, + { + "start": 23739.14, + "end": 23741.52, + "probability": 0.8881 + }, + { + "start": 23742.86, + "end": 23745.14, + "probability": 0.9802 + }, + { + "start": 23745.92, + "end": 23749.94, + "probability": 0.9971 + }, + { + "start": 23750.6, + "end": 23752.64, + "probability": 0.7401 + }, + { + "start": 23754.66, + "end": 23761.76, + "probability": 0.5146 + }, + { + "start": 23762.6, + "end": 23765.86, + "probability": 0.545 + }, + { + "start": 23766.88, + "end": 23769.98, + "probability": 0.7307 + }, + { + "start": 23770.56, + "end": 23775.26, + "probability": 0.7317 + }, + { + "start": 23777.01, + "end": 23779.36, + "probability": 0.7175 + }, + { + "start": 23780.82, + "end": 23781.62, + "probability": 0.8484 + }, + { + "start": 23782.78, + "end": 23783.28, + "probability": 0.3522 + }, + { + "start": 23787.92, + "end": 23792.32, + "probability": 0.6931 + }, + { + "start": 23793.46, + "end": 23794.52, + "probability": 0.6116 + }, + { + "start": 23794.76, + "end": 23798.12, + "probability": 0.7838 + }, + { + "start": 23799.66, + "end": 23801.8, + "probability": 0.9514 + }, + { + "start": 23802.1, + "end": 23803.9, + "probability": 0.8193 + }, + { + "start": 23804.04, + "end": 23804.91, + "probability": 0.9872 + }, + { + "start": 23805.8, + "end": 23807.24, + "probability": 0.7091 + }, + { + "start": 23808.44, + "end": 23809.5, + "probability": 0.89 + }, + { + "start": 23810.66, + "end": 23814.2, + "probability": 0.7663 + }, + { + "start": 23815.34, + "end": 23817.8, + "probability": 0.9683 + }, + { + "start": 23817.8, + "end": 23824.7, + "probability": 0.9565 + }, + { + "start": 23825.24, + "end": 23828.3, + "probability": 0.8152 + }, + { + "start": 23829.74, + "end": 23831.86, + "probability": 0.6412 + }, + { + "start": 23832.0, + "end": 23832.86, + "probability": 0.662 + }, + { + "start": 23832.96, + "end": 23833.4, + "probability": 0.4936 + }, + { + "start": 23833.46, + "end": 23835.36, + "probability": 0.6681 + }, + { + "start": 23835.92, + "end": 23838.58, + "probability": 0.8929 + }, + { + "start": 23839.56, + "end": 23842.12, + "probability": 0.4834 + }, + { + "start": 23844.22, + "end": 23844.22, + "probability": 0.0824 + }, + { + "start": 23844.22, + "end": 23844.22, + "probability": 0.0853 + }, + { + "start": 23844.22, + "end": 23845.48, + "probability": 0.1381 + }, + { + "start": 23845.54, + "end": 23852.3, + "probability": 0.9507 + }, + { + "start": 23852.7, + "end": 23854.58, + "probability": 0.9052 + }, + { + "start": 23855.02, + "end": 23858.74, + "probability": 0.7515 + }, + { + "start": 23858.96, + "end": 23860.3, + "probability": 0.2785 + }, + { + "start": 23862.4, + "end": 23865.76, + "probability": 0.9697 + }, + { + "start": 23865.76, + "end": 23870.06, + "probability": 0.8456 + }, + { + "start": 23871.02, + "end": 23873.36, + "probability": 0.4861 + }, + { + "start": 23873.6, + "end": 23877.82, + "probability": 0.8144 + }, + { + "start": 23878.44, + "end": 23880.22, + "probability": 0.7816 + }, + { + "start": 23880.28, + "end": 23881.14, + "probability": 0.4215 + }, + { + "start": 23881.16, + "end": 23884.42, + "probability": 0.7975 + }, + { + "start": 23884.46, + "end": 23887.26, + "probability": 0.9691 + }, + { + "start": 23887.56, + "end": 23888.88, + "probability": 0.7877 + }, + { + "start": 23890.04, + "end": 23897.72, + "probability": 0.5093 + }, + { + "start": 23898.38, + "end": 23899.74, + "probability": 0.9826 + }, + { + "start": 23901.44, + "end": 23904.04, + "probability": 0.952 + }, + { + "start": 23904.06, + "end": 23906.68, + "probability": 0.7067 + }, + { + "start": 23907.04, + "end": 23908.16, + "probability": 0.5413 + }, + { + "start": 23908.74, + "end": 23909.68, + "probability": 0.891 + }, + { + "start": 23909.86, + "end": 23911.84, + "probability": 0.7398 + }, + { + "start": 23912.24, + "end": 23918.54, + "probability": 0.7817 + }, + { + "start": 23919.02, + "end": 23923.18, + "probability": 0.668 + }, + { + "start": 23923.62, + "end": 23923.84, + "probability": 0.0782 + }, + { + "start": 23923.84, + "end": 23924.88, + "probability": 0.3773 + }, + { + "start": 23925.3, + "end": 23925.92, + "probability": 0.0539 + }, + { + "start": 23925.92, + "end": 23926.5, + "probability": 0.5805 + }, + { + "start": 23926.8, + "end": 23928.72, + "probability": 0.799 + }, + { + "start": 23929.2, + "end": 23932.7, + "probability": 0.8323 + }, + { + "start": 23934.8, + "end": 23937.2, + "probability": 0.6063 + }, + { + "start": 23937.2, + "end": 23939.72, + "probability": 0.9917 + }, + { + "start": 23939.78, + "end": 23940.9, + "probability": 0.8379 + }, + { + "start": 23941.08, + "end": 23941.44, + "probability": 0.2531 + }, + { + "start": 23941.54, + "end": 23942.66, + "probability": 0.6624 + }, + { + "start": 23942.78, + "end": 23944.68, + "probability": 0.7874 + }, + { + "start": 23944.76, + "end": 23948.34, + "probability": 0.9198 + }, + { + "start": 23948.42, + "end": 23948.98, + "probability": 0.7983 + }, + { + "start": 23949.16, + "end": 23953.21, + "probability": 0.8543 + }, + { + "start": 23954.24, + "end": 23954.88, + "probability": 0.4703 + }, + { + "start": 23955.34, + "end": 23957.98, + "probability": 0.8289 + }, + { + "start": 23958.1, + "end": 23959.34, + "probability": 0.8139 + }, + { + "start": 23959.92, + "end": 23961.0, + "probability": 0.5804 + }, + { + "start": 23961.0, + "end": 23961.62, + "probability": 0.6126 + }, + { + "start": 23961.74, + "end": 23964.36, + "probability": 0.3095 + }, + { + "start": 23964.82, + "end": 23966.08, + "probability": 0.948 + }, + { + "start": 23966.18, + "end": 23967.3, + "probability": 0.9812 + }, + { + "start": 23967.36, + "end": 23968.7, + "probability": 0.8306 + }, + { + "start": 23969.92, + "end": 23971.92, + "probability": 0.8131 + }, + { + "start": 23972.58, + "end": 23976.58, + "probability": 0.5334 + }, + { + "start": 23977.1, + "end": 23979.44, + "probability": 0.9547 + }, + { + "start": 23979.54, + "end": 23979.94, + "probability": 0.4384 + }, + { + "start": 23979.94, + "end": 23980.8, + "probability": 0.7777 + }, + { + "start": 23981.36, + "end": 23983.14, + "probability": 0.9507 + }, + { + "start": 23999.44, + "end": 24002.24, + "probability": 0.685 + }, + { + "start": 24003.24, + "end": 24008.5, + "probability": 0.6756 + }, + { + "start": 24009.88, + "end": 24015.24, + "probability": 0.7946 + }, + { + "start": 24016.12, + "end": 24018.22, + "probability": 0.9203 + }, + { + "start": 24019.06, + "end": 24022.0, + "probability": 0.9797 + }, + { + "start": 24023.28, + "end": 24023.98, + "probability": 0.7586 + }, + { + "start": 24024.64, + "end": 24028.0, + "probability": 0.836 + }, + { + "start": 24028.08, + "end": 24029.66, + "probability": 0.7341 + }, + { + "start": 24030.8, + "end": 24033.68, + "probability": 0.97 + }, + { + "start": 24035.82, + "end": 24043.03, + "probability": 0.9986 + }, + { + "start": 24044.14, + "end": 24045.04, + "probability": 0.768 + }, + { + "start": 24045.14, + "end": 24047.52, + "probability": 0.9946 + }, + { + "start": 24047.64, + "end": 24048.3, + "probability": 0.7819 + }, + { + "start": 24049.38, + "end": 24050.24, + "probability": 0.7275 + }, + { + "start": 24050.38, + "end": 24050.88, + "probability": 0.9092 + }, + { + "start": 24051.1, + "end": 24052.32, + "probability": 0.8441 + }, + { + "start": 24052.42, + "end": 24053.08, + "probability": 0.7094 + }, + { + "start": 24053.2, + "end": 24053.62, + "probability": 0.2875 + }, + { + "start": 24053.76, + "end": 24056.78, + "probability": 0.9464 + }, + { + "start": 24057.7, + "end": 24060.02, + "probability": 0.919 + }, + { + "start": 24060.54, + "end": 24062.8, + "probability": 0.9729 + }, + { + "start": 24063.88, + "end": 24065.4, + "probability": 0.8721 + }, + { + "start": 24066.52, + "end": 24069.7, + "probability": 0.9456 + }, + { + "start": 24071.04, + "end": 24071.8, + "probability": 0.5288 + }, + { + "start": 24071.94, + "end": 24077.08, + "probability": 0.9745 + }, + { + "start": 24077.88, + "end": 24081.34, + "probability": 0.9302 + }, + { + "start": 24081.44, + "end": 24082.56, + "probability": 0.8661 + }, + { + "start": 24083.34, + "end": 24090.46, + "probability": 0.709 + }, + { + "start": 24090.46, + "end": 24095.02, + "probability": 0.8481 + }, + { + "start": 24096.46, + "end": 24097.02, + "probability": 0.3917 + }, + { + "start": 24097.16, + "end": 24100.52, + "probability": 0.5394 + }, + { + "start": 24100.64, + "end": 24102.02, + "probability": 0.965 + }, + { + "start": 24102.74, + "end": 24103.28, + "probability": 0.9067 + }, + { + "start": 24103.88, + "end": 24105.6, + "probability": 0.944 + }, + { + "start": 24106.3, + "end": 24108.58, + "probability": 0.8689 + }, + { + "start": 24109.9, + "end": 24112.34, + "probability": 0.7166 + }, + { + "start": 24112.56, + "end": 24121.02, + "probability": 0.8689 + }, + { + "start": 24121.7, + "end": 24122.42, + "probability": 0.8331 + }, + { + "start": 24122.5, + "end": 24123.44, + "probability": 0.6562 + }, + { + "start": 24124.26, + "end": 24129.08, + "probability": 0.9985 + }, + { + "start": 24129.56, + "end": 24130.86, + "probability": 0.621 + }, + { + "start": 24131.56, + "end": 24135.82, + "probability": 0.7123 + }, + { + "start": 24136.7, + "end": 24139.49, + "probability": 0.958 + }, + { + "start": 24140.26, + "end": 24143.7, + "probability": 0.7228 + }, + { + "start": 24144.96, + "end": 24147.12, + "probability": 0.4998 + }, + { + "start": 24148.64, + "end": 24149.98, + "probability": 0.504 + }, + { + "start": 24150.26, + "end": 24153.66, + "probability": 0.697 + }, + { + "start": 24155.78, + "end": 24157.76, + "probability": 0.9561 + }, + { + "start": 24158.42, + "end": 24162.58, + "probability": 0.9698 + }, + { + "start": 24163.56, + "end": 24165.14, + "probability": 0.9626 + }, + { + "start": 24165.88, + "end": 24166.92, + "probability": 0.9779 + }, + { + "start": 24167.76, + "end": 24171.48, + "probability": 0.9574 + }, + { + "start": 24171.64, + "end": 24173.64, + "probability": 0.6864 + }, + { + "start": 24174.44, + "end": 24176.12, + "probability": 0.6876 + }, + { + "start": 24177.24, + "end": 24179.78, + "probability": 0.9456 + }, + { + "start": 24180.48, + "end": 24183.0, + "probability": 0.6036 + }, + { + "start": 24184.14, + "end": 24184.84, + "probability": 0.3694 + }, + { + "start": 24186.86, + "end": 24187.98, + "probability": 0.4508 + }, + { + "start": 24188.88, + "end": 24190.48, + "probability": 0.5822 + }, + { + "start": 24190.56, + "end": 24193.64, + "probability": 0.634 + }, + { + "start": 24194.1, + "end": 24197.3, + "probability": 0.5732 + }, + { + "start": 24197.86, + "end": 24197.86, + "probability": 0.3409 + }, + { + "start": 24197.9, + "end": 24198.88, + "probability": 0.9583 + }, + { + "start": 24199.96, + "end": 24207.88, + "probability": 0.2185 + }, + { + "start": 24208.28, + "end": 24215.68, + "probability": 0.9817 + }, + { + "start": 24215.86, + "end": 24215.9, + "probability": 0.4088 + }, + { + "start": 24216.14, + "end": 24217.12, + "probability": 0.7091 + }, + { + "start": 24217.8, + "end": 24219.56, + "probability": 0.96 + }, + { + "start": 24240.56, + "end": 24240.7, + "probability": 0.5744 + }, + { + "start": 24242.58, + "end": 24243.32, + "probability": 0.6536 + }, + { + "start": 24243.46, + "end": 24244.16, + "probability": 0.6952 + }, + { + "start": 24244.68, + "end": 24245.4, + "probability": 0.74 + }, + { + "start": 24246.04, + "end": 24247.76, + "probability": 0.7424 + }, + { + "start": 24248.7, + "end": 24249.68, + "probability": 0.9422 + }, + { + "start": 24250.4, + "end": 24251.98, + "probability": 0.981 + }, + { + "start": 24253.42, + "end": 24255.82, + "probability": 0.936 + }, + { + "start": 24257.06, + "end": 24260.22, + "probability": 0.9598 + }, + { + "start": 24263.76, + "end": 24264.52, + "probability": 0.9854 + }, + { + "start": 24265.86, + "end": 24266.74, + "probability": 0.9819 + }, + { + "start": 24268.08, + "end": 24268.52, + "probability": 0.9094 + }, + { + "start": 24269.28, + "end": 24271.3, + "probability": 0.9995 + }, + { + "start": 24271.84, + "end": 24273.05, + "probability": 0.9407 + }, + { + "start": 24273.74, + "end": 24274.4, + "probability": 0.9649 + }, + { + "start": 24274.94, + "end": 24277.22, + "probability": 0.7957 + }, + { + "start": 24278.52, + "end": 24278.8, + "probability": 0.707 + }, + { + "start": 24279.94, + "end": 24280.28, + "probability": 0.9639 + }, + { + "start": 24281.04, + "end": 24281.54, + "probability": 0.9612 + }, + { + "start": 24283.02, + "end": 24284.52, + "probability": 0.9784 + }, + { + "start": 24285.62, + "end": 24287.42, + "probability": 0.9874 + }, + { + "start": 24287.48, + "end": 24288.8, + "probability": 0.7482 + }, + { + "start": 24288.96, + "end": 24289.56, + "probability": 0.873 + }, + { + "start": 24291.98, + "end": 24294.68, + "probability": 0.9272 + }, + { + "start": 24295.6, + "end": 24296.3, + "probability": 0.8508 + }, + { + "start": 24296.38, + "end": 24296.58, + "probability": 0.8241 + }, + { + "start": 24296.94, + "end": 24298.1, + "probability": 0.8423 + }, + { + "start": 24298.18, + "end": 24298.84, + "probability": 0.6152 + }, + { + "start": 24299.66, + "end": 24301.58, + "probability": 0.7764 + }, + { + "start": 24301.62, + "end": 24305.28, + "probability": 0.7891 + }, + { + "start": 24305.28, + "end": 24308.96, + "probability": 0.9945 + }, + { + "start": 24309.6, + "end": 24310.62, + "probability": 0.7646 + }, + { + "start": 24312.42, + "end": 24317.64, + "probability": 0.8054 + }, + { + "start": 24318.26, + "end": 24320.86, + "probability": 0.9033 + }, + { + "start": 24322.04, + "end": 24322.08, + "probability": 0.9058 + }, + { + "start": 24322.96, + "end": 24326.46, + "probability": 0.7973 + }, + { + "start": 24326.94, + "end": 24327.78, + "probability": 0.9229 + }, + { + "start": 24328.44, + "end": 24328.78, + "probability": 0.8643 + }, + { + "start": 24329.6, + "end": 24330.56, + "probability": 0.8438 + }, + { + "start": 24330.74, + "end": 24337.3, + "probability": 0.9819 + }, + { + "start": 24337.4, + "end": 24339.93, + "probability": 0.9973 + }, + { + "start": 24340.41, + "end": 24342.94, + "probability": 0.7392 + }, + { + "start": 24342.96, + "end": 24347.56, + "probability": 0.9901 + }, + { + "start": 24348.18, + "end": 24349.22, + "probability": 0.8062 + }, + { + "start": 24349.92, + "end": 24352.94, + "probability": 0.7443 + }, + { + "start": 24357.02, + "end": 24357.74, + "probability": 0.76 + }, + { + "start": 24357.9, + "end": 24363.58, + "probability": 0.9821 + }, + { + "start": 24364.04, + "end": 24364.58, + "probability": 0.8709 + }, + { + "start": 24365.52, + "end": 24366.8, + "probability": 0.9873 + }, + { + "start": 24367.54, + "end": 24371.0, + "probability": 0.9829 + }, + { + "start": 24371.74, + "end": 24373.28, + "probability": 0.8049 + }, + { + "start": 24374.02, + "end": 24377.18, + "probability": 0.9299 + }, + { + "start": 24377.52, + "end": 24381.3, + "probability": 0.9944 + }, + { + "start": 24385.82, + "end": 24387.5, + "probability": 0.7804 + }, + { + "start": 24388.1, + "end": 24389.98, + "probability": 0.7936 + }, + { + "start": 24391.34, + "end": 24391.8, + "probability": 0.5753 + }, + { + "start": 24392.58, + "end": 24393.76, + "probability": 0.9954 + }, + { + "start": 24395.96, + "end": 24397.16, + "probability": 0.7921 + }, + { + "start": 24398.12, + "end": 24402.48, + "probability": 0.9199 + }, + { + "start": 24403.54, + "end": 24404.22, + "probability": 0.5909 + }, + { + "start": 24406.64, + "end": 24407.74, + "probability": 0.9906 + }, + { + "start": 24409.52, + "end": 24410.4, + "probability": 0.7935 + }, + { + "start": 24411.0, + "end": 24415.12, + "probability": 0.9199 + }, + { + "start": 24415.56, + "end": 24416.3, + "probability": 0.9598 + }, + { + "start": 24417.9, + "end": 24418.7, + "probability": 0.7404 + }, + { + "start": 24419.46, + "end": 24422.96, + "probability": 0.9658 + }, + { + "start": 24423.58, + "end": 24426.84, + "probability": 0.963 + }, + { + "start": 24427.36, + "end": 24431.7, + "probability": 0.9443 + }, + { + "start": 24432.58, + "end": 24432.86, + "probability": 0.5843 + }, + { + "start": 24432.94, + "end": 24437.26, + "probability": 0.9475 + }, + { + "start": 24437.3, + "end": 24437.48, + "probability": 0.5118 + }, + { + "start": 24437.54, + "end": 24437.92, + "probability": 0.8152 + }, + { + "start": 24438.72, + "end": 24439.94, + "probability": 0.9927 + }, + { + "start": 24440.04, + "end": 24443.76, + "probability": 0.9065 + }, + { + "start": 24445.04, + "end": 24446.62, + "probability": 0.9957 + }, + { + "start": 24447.0, + "end": 24447.44, + "probability": 0.9875 + }, + { + "start": 24447.82, + "end": 24448.19, + "probability": 0.9869 + }, + { + "start": 24448.72, + "end": 24449.14, + "probability": 0.9805 + }, + { + "start": 24449.54, + "end": 24450.02, + "probability": 0.9854 + }, + { + "start": 24451.72, + "end": 24453.3, + "probability": 0.9946 + }, + { + "start": 24454.06, + "end": 24456.42, + "probability": 0.9728 + }, + { + "start": 24456.62, + "end": 24456.62, + "probability": 0.1233 + }, + { + "start": 24456.82, + "end": 24456.92, + "probability": 0.1781 + }, + { + "start": 24457.42, + "end": 24458.34, + "probability": 0.9689 + }, + { + "start": 24458.6, + "end": 24459.2, + "probability": 0.5569 + }, + { + "start": 24459.22, + "end": 24459.83, + "probability": 0.627 + }, + { + "start": 24460.72, + "end": 24463.52, + "probability": 0.9305 + }, + { + "start": 24464.52, + "end": 24465.36, + "probability": 0.7592 + }, + { + "start": 24466.48, + "end": 24467.66, + "probability": 0.9085 + }, + { + "start": 24468.76, + "end": 24470.02, + "probability": 0.9637 + }, + { + "start": 24471.94, + "end": 24473.68, + "probability": 0.9903 + }, + { + "start": 24474.28, + "end": 24475.84, + "probability": 0.8686 + }, + { + "start": 24476.74, + "end": 24477.46, + "probability": 0.5828 + }, + { + "start": 24477.6, + "end": 24478.52, + "probability": 0.6648 + }, + { + "start": 24478.8, + "end": 24482.1, + "probability": 0.9932 + }, + { + "start": 24482.86, + "end": 24485.16, + "probability": 0.9235 + }, + { + "start": 24485.6, + "end": 24486.82, + "probability": 0.8084 + }, + { + "start": 24487.44, + "end": 24490.52, + "probability": 0.9144 + }, + { + "start": 24491.54, + "end": 24492.38, + "probability": 0.5975 + }, + { + "start": 24492.88, + "end": 24493.88, + "probability": 0.9858 + }, + { + "start": 24494.2, + "end": 24496.18, + "probability": 0.9814 + }, + { + "start": 24496.7, + "end": 24497.9, + "probability": 0.8531 + }, + { + "start": 24498.04, + "end": 24498.04, + "probability": 0.2175 + }, + { + "start": 24498.04, + "end": 24499.9, + "probability": 0.9943 + }, + { + "start": 24500.16, + "end": 24501.68, + "probability": 0.8688 + }, + { + "start": 24501.8, + "end": 24502.43, + "probability": 0.5835 + }, + { + "start": 24502.99, + "end": 24506.42, + "probability": 0.8665 + }, + { + "start": 24506.5, + "end": 24507.1, + "probability": 0.6105 + }, + { + "start": 24507.5, + "end": 24509.9, + "probability": 0.7434 + }, + { + "start": 24509.94, + "end": 24513.32, + "probability": 0.7554 + }, + { + "start": 24513.38, + "end": 24513.9, + "probability": 0.6596 + }, + { + "start": 24545.6, + "end": 24545.92, + "probability": 0.344 + }, + { + "start": 24545.92, + "end": 24545.92, + "probability": 0.055 + }, + { + "start": 24545.92, + "end": 24548.18, + "probability": 0.5764 + }, + { + "start": 24549.12, + "end": 24551.46, + "probability": 0.8651 + }, + { + "start": 24552.32, + "end": 24554.92, + "probability": 0.9718 + }, + { + "start": 24555.82, + "end": 24557.1, + "probability": 0.5478 + }, + { + "start": 24559.4, + "end": 24562.98, + "probability": 0.8678 + }, + { + "start": 24564.26, + "end": 24567.48, + "probability": 0.9697 + }, + { + "start": 24568.16, + "end": 24570.34, + "probability": 0.9824 + }, + { + "start": 24570.94, + "end": 24576.34, + "probability": 0.948 + }, + { + "start": 24576.34, + "end": 24581.94, + "probability": 0.8899 + }, + { + "start": 24582.74, + "end": 24586.98, + "probability": 0.9724 + }, + { + "start": 24588.8, + "end": 24590.36, + "probability": 0.995 + }, + { + "start": 24591.4, + "end": 24596.08, + "probability": 0.9847 + }, + { + "start": 24596.8, + "end": 24599.24, + "probability": 0.946 + }, + { + "start": 24599.34, + "end": 24603.76, + "probability": 0.9126 + }, + { + "start": 24603.76, + "end": 24607.9, + "probability": 0.9968 + }, + { + "start": 24609.12, + "end": 24614.36, + "probability": 0.9912 + }, + { + "start": 24614.36, + "end": 24618.52, + "probability": 0.9993 + }, + { + "start": 24619.2, + "end": 24621.42, + "probability": 0.9813 + }, + { + "start": 24621.94, + "end": 24623.5, + "probability": 0.8914 + }, + { + "start": 24624.56, + "end": 24625.38, + "probability": 0.4341 + }, + { + "start": 24625.46, + "end": 24625.92, + "probability": 0.6693 + }, + { + "start": 24626.02, + "end": 24633.58, + "probability": 0.9819 + }, + { + "start": 24634.1, + "end": 24638.38, + "probability": 0.9835 + }, + { + "start": 24639.1, + "end": 24642.0, + "probability": 0.9629 + }, + { + "start": 24643.28, + "end": 24646.1, + "probability": 0.8346 + }, + { + "start": 24646.54, + "end": 24651.48, + "probability": 0.9943 + }, + { + "start": 24652.26, + "end": 24655.44, + "probability": 0.9138 + }, + { + "start": 24655.94, + "end": 24659.58, + "probability": 0.995 + }, + { + "start": 24659.58, + "end": 24662.48, + "probability": 0.9856 + }, + { + "start": 24663.16, + "end": 24664.6, + "probability": 0.9959 + }, + { + "start": 24665.56, + "end": 24667.66, + "probability": 0.9966 + }, + { + "start": 24668.18, + "end": 24670.74, + "probability": 0.9956 + }, + { + "start": 24671.36, + "end": 24672.68, + "probability": 0.9456 + }, + { + "start": 24673.1, + "end": 24676.26, + "probability": 0.9946 + }, + { + "start": 24676.74, + "end": 24679.56, + "probability": 0.8857 + }, + { + "start": 24680.22, + "end": 24682.62, + "probability": 0.9404 + }, + { + "start": 24684.36, + "end": 24687.88, + "probability": 0.7519 + }, + { + "start": 24688.46, + "end": 24690.22, + "probability": 0.9252 + }, + { + "start": 24691.34, + "end": 24693.94, + "probability": 0.9654 + }, + { + "start": 24694.8, + "end": 24696.88, + "probability": 0.9482 + }, + { + "start": 24697.36, + "end": 24700.46, + "probability": 0.9961 + }, + { + "start": 24700.84, + "end": 24702.76, + "probability": 0.9839 + }, + { + "start": 24703.52, + "end": 24704.08, + "probability": 0.8993 + }, + { + "start": 24704.88, + "end": 24708.06, + "probability": 0.8837 + }, + { + "start": 24708.68, + "end": 24711.78, + "probability": 0.9846 + }, + { + "start": 24712.36, + "end": 24714.18, + "probability": 0.8511 + }, + { + "start": 24714.9, + "end": 24716.36, + "probability": 0.9893 + }, + { + "start": 24717.32, + "end": 24718.2, + "probability": 0.6234 + }, + { + "start": 24718.94, + "end": 24723.22, + "probability": 0.9757 + }, + { + "start": 24723.38, + "end": 24725.46, + "probability": 0.9737 + }, + { + "start": 24726.26, + "end": 24727.66, + "probability": 0.8306 + }, + { + "start": 24728.32, + "end": 24730.3, + "probability": 0.9838 + }, + { + "start": 24730.86, + "end": 24735.88, + "probability": 0.9923 + }, + { + "start": 24736.98, + "end": 24738.96, + "probability": 0.9838 + }, + { + "start": 24739.6, + "end": 24745.4, + "probability": 0.9893 + }, + { + "start": 24745.88, + "end": 24748.18, + "probability": 0.972 + }, + { + "start": 24749.5, + "end": 24755.08, + "probability": 0.9956 + }, + { + "start": 24755.62, + "end": 24758.52, + "probability": 0.9872 + }, + { + "start": 24759.14, + "end": 24760.66, + "probability": 0.6519 + }, + { + "start": 24761.36, + "end": 24766.32, + "probability": 0.9963 + }, + { + "start": 24766.98, + "end": 24769.68, + "probability": 0.9974 + }, + { + "start": 24771.04, + "end": 24774.78, + "probability": 0.9976 + }, + { + "start": 24774.78, + "end": 24778.62, + "probability": 0.9705 + }, + { + "start": 24779.44, + "end": 24783.82, + "probability": 0.7777 + }, + { + "start": 24784.38, + "end": 24789.7, + "probability": 0.8056 + }, + { + "start": 24789.7, + "end": 24794.08, + "probability": 0.8593 + }, + { + "start": 24795.18, + "end": 24800.98, + "probability": 0.9808 + }, + { + "start": 24802.18, + "end": 24805.14, + "probability": 0.9746 + }, + { + "start": 24805.94, + "end": 24808.18, + "probability": 0.9814 + }, + { + "start": 24808.84, + "end": 24811.68, + "probability": 0.9515 + }, + { + "start": 24812.26, + "end": 24817.12, + "probability": 0.9801 + }, + { + "start": 24817.84, + "end": 24819.08, + "probability": 0.137 + }, + { + "start": 24819.1, + "end": 24822.2, + "probability": 0.9647 + }, + { + "start": 24823.1, + "end": 24827.56, + "probability": 0.9192 + }, + { + "start": 24827.7, + "end": 24830.88, + "probability": 0.9843 + }, + { + "start": 24831.8, + "end": 24833.24, + "probability": 0.81 + }, + { + "start": 24833.86, + "end": 24836.6, + "probability": 0.9954 + }, + { + "start": 24837.14, + "end": 24840.82, + "probability": 0.7691 + }, + { + "start": 24841.4, + "end": 24843.44, + "probability": 0.96 + }, + { + "start": 24844.24, + "end": 24846.86, + "probability": 0.8539 + }, + { + "start": 24847.68, + "end": 24849.58, + "probability": 0.9966 + }, + { + "start": 24850.18, + "end": 24852.18, + "probability": 0.4967 + }, + { + "start": 24852.2, + "end": 24854.58, + "probability": 0.9792 + }, + { + "start": 24855.3, + "end": 24855.98, + "probability": 0.9561 + }, + { + "start": 24856.54, + "end": 24857.3, + "probability": 0.9797 + }, + { + "start": 24857.88, + "end": 24859.56, + "probability": 0.939 + }, + { + "start": 24861.68, + "end": 24866.34, + "probability": 0.7609 + }, + { + "start": 24866.98, + "end": 24868.0, + "probability": 0.9896 + }, + { + "start": 24869.3, + "end": 24873.68, + "probability": 0.9817 + }, + { + "start": 24873.68, + "end": 24876.84, + "probability": 0.781 + }, + { + "start": 24877.0, + "end": 24877.62, + "probability": 0.4952 + }, + { + "start": 24878.08, + "end": 24879.82, + "probability": 0.9547 + }, + { + "start": 24880.38, + "end": 24881.5, + "probability": 0.9723 + }, + { + "start": 24882.02, + "end": 24884.04, + "probability": 0.9929 + }, + { + "start": 24884.62, + "end": 24888.08, + "probability": 0.9974 + }, + { + "start": 24888.78, + "end": 24891.52, + "probability": 0.995 + }, + { + "start": 24892.06, + "end": 24896.2, + "probability": 0.9906 + }, + { + "start": 24896.8, + "end": 24901.16, + "probability": 0.9933 + }, + { + "start": 24902.36, + "end": 24903.5, + "probability": 0.813 + }, + { + "start": 24904.08, + "end": 24906.86, + "probability": 0.9935 + }, + { + "start": 24907.36, + "end": 24912.38, + "probability": 0.9453 + }, + { + "start": 24913.82, + "end": 24916.7, + "probability": 0.9725 + }, + { + "start": 24916.7, + "end": 24919.44, + "probability": 0.9899 + }, + { + "start": 24920.16, + "end": 24923.24, + "probability": 0.9 + }, + { + "start": 24923.62, + "end": 24926.6, + "probability": 0.9714 + }, + { + "start": 24927.44, + "end": 24932.68, + "probability": 0.9941 + }, + { + "start": 24933.14, + "end": 24935.96, + "probability": 0.9719 + }, + { + "start": 24936.72, + "end": 24940.58, + "probability": 0.9906 + }, + { + "start": 24940.58, + "end": 24944.36, + "probability": 0.9991 + }, + { + "start": 24945.38, + "end": 24946.6, + "probability": 0.8321 + }, + { + "start": 24947.38, + "end": 24951.14, + "probability": 0.9979 + }, + { + "start": 24952.02, + "end": 24954.14, + "probability": 0.7069 + }, + { + "start": 24955.24, + "end": 24956.1, + "probability": 0.765 + }, + { + "start": 24956.78, + "end": 24960.22, + "probability": 0.9939 + }, + { + "start": 24960.76, + "end": 24965.4, + "probability": 0.9795 + }, + { + "start": 24966.4, + "end": 24968.74, + "probability": 0.9789 + }, + { + "start": 24968.74, + "end": 24971.44, + "probability": 0.9983 + }, + { + "start": 24972.6, + "end": 24975.22, + "probability": 0.9785 + }, + { + "start": 24976.02, + "end": 24977.18, + "probability": 0.5044 + }, + { + "start": 24977.7, + "end": 24979.88, + "probability": 0.9818 + }, + { + "start": 24980.42, + "end": 24984.94, + "probability": 0.9831 + }, + { + "start": 24985.46, + "end": 24986.5, + "probability": 0.2942 + }, + { + "start": 24987.5, + "end": 24990.8, + "probability": 0.8779 + }, + { + "start": 24991.16, + "end": 24992.74, + "probability": 0.7114 + }, + { + "start": 24993.08, + "end": 24995.14, + "probability": 0.9881 + }, + { + "start": 24995.6, + "end": 24998.24, + "probability": 0.7459 + }, + { + "start": 24999.62, + "end": 25002.36, + "probability": 0.9025 + }, + { + "start": 25003.16, + "end": 25004.42, + "probability": 0.7931 + }, + { + "start": 25004.94, + "end": 25005.82, + "probability": 0.9222 + }, + { + "start": 25006.34, + "end": 25008.82, + "probability": 0.9095 + }, + { + "start": 25008.86, + "end": 25009.76, + "probability": 0.9855 + }, + { + "start": 25010.16, + "end": 25010.96, + "probability": 0.9878 + }, + { + "start": 25011.08, + "end": 25012.6, + "probability": 0.8811 + }, + { + "start": 25013.68, + "end": 25015.2, + "probability": 0.9119 + }, + { + "start": 25016.12, + "end": 25019.4, + "probability": 0.9812 + }, + { + "start": 25019.96, + "end": 25024.2, + "probability": 0.9312 + }, + { + "start": 25024.56, + "end": 25026.1, + "probability": 0.9411 + }, + { + "start": 25026.8, + "end": 25027.86, + "probability": 0.9711 + }, + { + "start": 25029.46, + "end": 25035.04, + "probability": 0.9981 + }, + { + "start": 25035.7, + "end": 25040.7, + "probability": 0.7897 + }, + { + "start": 25041.76, + "end": 25043.82, + "probability": 0.7989 + }, + { + "start": 25044.44, + "end": 25047.4, + "probability": 0.9694 + }, + { + "start": 25047.4, + "end": 25050.16, + "probability": 0.9961 + }, + { + "start": 25050.86, + "end": 25055.18, + "probability": 0.9294 + }, + { + "start": 25055.74, + "end": 25059.74, + "probability": 0.9061 + }, + { + "start": 25060.28, + "end": 25061.14, + "probability": 0.9951 + }, + { + "start": 25061.92, + "end": 25063.66, + "probability": 0.9752 + }, + { + "start": 25067.84, + "end": 25068.68, + "probability": 0.5101 + }, + { + "start": 25069.18, + "end": 25073.62, + "probability": 0.9945 + }, + { + "start": 25073.62, + "end": 25077.8, + "probability": 0.9521 + }, + { + "start": 25078.9, + "end": 25079.68, + "probability": 0.6833 + }, + { + "start": 25080.26, + "end": 25081.74, + "probability": 0.7584 + }, + { + "start": 25082.7, + "end": 25085.98, + "probability": 0.976 + }, + { + "start": 25087.0, + "end": 25088.64, + "probability": 0.9902 + }, + { + "start": 25088.74, + "end": 25090.62, + "probability": 0.9155 + }, + { + "start": 25091.48, + "end": 25094.14, + "probability": 0.9819 + }, + { + "start": 25095.42, + "end": 25096.98, + "probability": 0.7668 + }, + { + "start": 25098.16, + "end": 25103.28, + "probability": 0.9842 + }, + { + "start": 25103.28, + "end": 25107.38, + "probability": 0.9937 + }, + { + "start": 25108.5, + "end": 25114.66, + "probability": 0.785 + }, + { + "start": 25115.0, + "end": 25117.64, + "probability": 0.9163 + }, + { + "start": 25118.52, + "end": 25121.22, + "probability": 0.9697 + }, + { + "start": 25121.96, + "end": 25124.42, + "probability": 0.9884 + }, + { + "start": 25125.0, + "end": 25129.94, + "probability": 0.969 + }, + { + "start": 25131.6, + "end": 25134.98, + "probability": 0.9982 + }, + { + "start": 25135.76, + "end": 25140.22, + "probability": 0.9575 + }, + { + "start": 25140.84, + "end": 25143.78, + "probability": 0.9805 + }, + { + "start": 25144.72, + "end": 25149.34, + "probability": 0.9795 + }, + { + "start": 25149.96, + "end": 25153.04, + "probability": 0.785 + }, + { + "start": 25154.08, + "end": 25156.88, + "probability": 0.9814 + }, + { + "start": 25157.18, + "end": 25158.2, + "probability": 0.9279 + }, + { + "start": 25158.9, + "end": 25162.78, + "probability": 0.9695 + }, + { + "start": 25163.78, + "end": 25164.66, + "probability": 0.8632 + }, + { + "start": 25165.54, + "end": 25172.68, + "probability": 0.9611 + }, + { + "start": 25173.6, + "end": 25178.04, + "probability": 0.9338 + }, + { + "start": 25178.54, + "end": 25179.66, + "probability": 0.7238 + }, + { + "start": 25180.34, + "end": 25182.24, + "probability": 0.8826 + }, + { + "start": 25182.9, + "end": 25186.38, + "probability": 0.8878 + }, + { + "start": 25186.38, + "end": 25190.64, + "probability": 0.907 + }, + { + "start": 25191.34, + "end": 25195.44, + "probability": 0.9838 + }, + { + "start": 25195.44, + "end": 25198.24, + "probability": 0.9916 + }, + { + "start": 25198.78, + "end": 25199.64, + "probability": 0.8374 + }, + { + "start": 25200.0, + "end": 25200.22, + "probability": 0.7052 + }, + { + "start": 25201.16, + "end": 25203.24, + "probability": 0.8295 + }, + { + "start": 25203.58, + "end": 25204.11, + "probability": 0.9747 + }, + { + "start": 25205.28, + "end": 25207.6, + "probability": 0.9097 + }, + { + "start": 25207.8, + "end": 25208.54, + "probability": 0.2671 + }, + { + "start": 25208.7, + "end": 25210.34, + "probability": 0.8188 + }, + { + "start": 25211.48, + "end": 25212.16, + "probability": 0.3309 + }, + { + "start": 25212.16, + "end": 25213.54, + "probability": 0.6295 + }, + { + "start": 25213.8, + "end": 25215.19, + "probability": 0.0481 + }, + { + "start": 25216.0, + "end": 25217.6, + "probability": 0.7482 + }, + { + "start": 25218.2, + "end": 25218.54, + "probability": 0.5589 + }, + { + "start": 25219.16, + "end": 25219.96, + "probability": 0.4313 + }, + { + "start": 25221.82, + "end": 25224.14, + "probability": 0.9589 + }, + { + "start": 25225.82, + "end": 25229.14, + "probability": 0.6556 + }, + { + "start": 25229.24, + "end": 25230.06, + "probability": 0.9824 + }, + { + "start": 25230.6, + "end": 25230.84, + "probability": 0.5042 + }, + { + "start": 25231.36, + "end": 25231.84, + "probability": 0.6221 + }, + { + "start": 25231.98, + "end": 25235.88, + "probability": 0.7994 + }, + { + "start": 25237.02, + "end": 25237.82, + "probability": 0.7842 + }, + { + "start": 25243.46, + "end": 25243.46, + "probability": 0.1937 + }, + { + "start": 25243.46, + "end": 25243.46, + "probability": 0.1452 + }, + { + "start": 25243.46, + "end": 25245.54, + "probability": 0.7298 + }, + { + "start": 25246.36, + "end": 25247.9, + "probability": 0.1237 + }, + { + "start": 25248.56, + "end": 25249.3, + "probability": 0.4161 + }, + { + "start": 25250.04, + "end": 25252.28, + "probability": 0.0121 + }, + { + "start": 25252.94, + "end": 25253.0, + "probability": 0.158 + }, + { + "start": 25253.0, + "end": 25253.0, + "probability": 0.0234 + }, + { + "start": 25253.0, + "end": 25253.2, + "probability": 0.2959 + }, + { + "start": 25253.28, + "end": 25257.5, + "probability": 0.9827 + }, + { + "start": 25258.16, + "end": 25261.32, + "probability": 0.8583 + }, + { + "start": 25261.98, + "end": 25265.18, + "probability": 0.9552 + }, + { + "start": 25265.78, + "end": 25267.0, + "probability": 0.6576 + }, + { + "start": 25267.62, + "end": 25268.7, + "probability": 0.7965 + }, + { + "start": 25269.14, + "end": 25272.33, + "probability": 0.6536 + }, + { + "start": 25272.92, + "end": 25273.56, + "probability": 0.022 + }, + { + "start": 25275.02, + "end": 25275.02, + "probability": 0.0441 + }, + { + "start": 25275.02, + "end": 25276.16, + "probability": 0.4247 + }, + { + "start": 25281.42, + "end": 25282.86, + "probability": 0.5471 + }, + { + "start": 25285.76, + "end": 25286.06, + "probability": 0.4171 + }, + { + "start": 25286.08, + "end": 25286.84, + "probability": 0.7923 + }, + { + "start": 25286.96, + "end": 25288.12, + "probability": 0.6469 + }, + { + "start": 25288.24, + "end": 25293.66, + "probability": 0.9943 + }, + { + "start": 25294.06, + "end": 25298.14, + "probability": 0.9705 + }, + { + "start": 25299.5, + "end": 25300.27, + "probability": 0.9993 + }, + { + "start": 25301.52, + "end": 25302.54, + "probability": 0.841 + }, + { + "start": 25303.6, + "end": 25304.9, + "probability": 0.8844 + }, + { + "start": 25304.9, + "end": 25309.38, + "probability": 0.7006 + }, + { + "start": 25309.92, + "end": 25311.42, + "probability": 0.8109 + }, + { + "start": 25311.88, + "end": 25312.86, + "probability": 0.2657 + }, + { + "start": 25313.0, + "end": 25313.56, + "probability": 0.8069 + }, + { + "start": 25313.66, + "end": 25314.94, + "probability": 0.8322 + }, + { + "start": 25315.68, + "end": 25317.9, + "probability": 0.9908 + }, + { + "start": 25318.9, + "end": 25322.2, + "probability": 0.8886 + }, + { + "start": 25322.8, + "end": 25324.54, + "probability": 0.9524 + }, + { + "start": 25324.58, + "end": 25325.06, + "probability": 0.6205 + }, + { + "start": 25325.32, + "end": 25325.76, + "probability": 0.6253 + }, + { + "start": 25325.94, + "end": 25326.68, + "probability": 0.9243 + }, + { + "start": 25329.02, + "end": 25331.0, + "probability": 0.6075 + }, + { + "start": 25331.06, + "end": 25332.5, + "probability": 0.9224 + }, + { + "start": 25332.52, + "end": 25335.3, + "probability": 0.9627 + }, + { + "start": 25336.18, + "end": 25342.32, + "probability": 0.8177 + }, + { + "start": 25343.42, + "end": 25349.28, + "probability": 0.8864 + }, + { + "start": 25349.88, + "end": 25352.38, + "probability": 0.9119 + }, + { + "start": 25352.72, + "end": 25358.6, + "probability": 0.8324 + }, + { + "start": 25358.72, + "end": 25362.02, + "probability": 0.8999 + }, + { + "start": 25363.08, + "end": 25365.18, + "probability": 0.6798 + }, + { + "start": 25365.74, + "end": 25366.94, + "probability": 0.9506 + }, + { + "start": 25367.02, + "end": 25370.64, + "probability": 0.9863 + }, + { + "start": 25371.38, + "end": 25374.04, + "probability": 0.9963 + }, + { + "start": 25374.32, + "end": 25374.88, + "probability": 0.8826 + }, + { + "start": 25375.2, + "end": 25375.84, + "probability": 0.9271 + }, + { + "start": 25376.04, + "end": 25377.52, + "probability": 0.9286 + }, + { + "start": 25378.44, + "end": 25380.92, + "probability": 0.9692 + }, + { + "start": 25382.28, + "end": 25386.72, + "probability": 0.6817 + }, + { + "start": 25387.9, + "end": 25392.9, + "probability": 0.9826 + }, + { + "start": 25392.9, + "end": 25396.62, + "probability": 0.9982 + }, + { + "start": 25396.76, + "end": 25399.22, + "probability": 0.6592 + }, + { + "start": 25399.26, + "end": 25400.72, + "probability": 0.8948 + }, + { + "start": 25401.5, + "end": 25402.12, + "probability": 0.4771 + }, + { + "start": 25403.86, + "end": 25405.36, + "probability": 0.6997 + }, + { + "start": 25405.4, + "end": 25406.44, + "probability": 0.8367 + }, + { + "start": 25406.56, + "end": 25409.58, + "probability": 0.9639 + }, + { + "start": 25409.82, + "end": 25412.44, + "probability": 0.8675 + }, + { + "start": 25413.22, + "end": 25413.56, + "probability": 0.4818 + }, + { + "start": 25413.7, + "end": 25414.42, + "probability": 0.6331 + }, + { + "start": 25414.64, + "end": 25415.16, + "probability": 0.7071 + }, + { + "start": 25415.76, + "end": 25421.3, + "probability": 0.9528 + }, + { + "start": 25422.1, + "end": 25424.46, + "probability": 0.9839 + }, + { + "start": 25427.67, + "end": 25432.44, + "probability": 0.9735 + }, + { + "start": 25432.44, + "end": 25434.82, + "probability": 0.7963 + }, + { + "start": 25437.56, + "end": 25439.18, + "probability": 0.9773 + }, + { + "start": 25439.84, + "end": 25440.92, + "probability": 0.9946 + }, + { + "start": 25441.32, + "end": 25446.02, + "probability": 0.9863 + }, + { + "start": 25446.02, + "end": 25449.06, + "probability": 0.9952 + }, + { + "start": 25450.32, + "end": 25452.85, + "probability": 0.8766 + }, + { + "start": 25453.6, + "end": 25455.52, + "probability": 0.853 + }, + { + "start": 25456.12, + "end": 25457.46, + "probability": 0.9141 + }, + { + "start": 25458.14, + "end": 25460.8, + "probability": 0.9763 + }, + { + "start": 25461.64, + "end": 25467.72, + "probability": 0.9927 + }, + { + "start": 25468.5, + "end": 25469.92, + "probability": 0.9903 + }, + { + "start": 25470.76, + "end": 25470.86, + "probability": 0.8275 + }, + { + "start": 25471.06, + "end": 25471.76, + "probability": 0.9496 + }, + { + "start": 25471.88, + "end": 25472.56, + "probability": 0.8131 + }, + { + "start": 25472.66, + "end": 25473.32, + "probability": 0.6171 + }, + { + "start": 25474.22, + "end": 25476.64, + "probability": 0.7849 + }, + { + "start": 25477.4, + "end": 25478.1, + "probability": 0.7555 + }, + { + "start": 25478.86, + "end": 25479.88, + "probability": 0.9611 + }, + { + "start": 25480.08, + "end": 25480.78, + "probability": 0.8969 + }, + { + "start": 25480.92, + "end": 25484.02, + "probability": 0.9868 + }, + { + "start": 25485.32, + "end": 25486.42, + "probability": 0.9509 + }, + { + "start": 25487.06, + "end": 25488.42, + "probability": 0.9761 + }, + { + "start": 25488.56, + "end": 25493.52, + "probability": 0.8457 + }, + { + "start": 25493.56, + "end": 25496.14, + "probability": 0.7946 + }, + { + "start": 25497.16, + "end": 25500.3, + "probability": 0.9925 + }, + { + "start": 25501.32, + "end": 25502.18, + "probability": 0.9568 + }, + { + "start": 25502.28, + "end": 25502.94, + "probability": 0.9677 + }, + { + "start": 25503.1, + "end": 25503.28, + "probability": 0.4818 + }, + { + "start": 25503.32, + "end": 25504.52, + "probability": 0.9434 + }, + { + "start": 25504.76, + "end": 25505.86, + "probability": 0.9716 + }, + { + "start": 25506.0, + "end": 25510.56, + "probability": 0.9812 + }, + { + "start": 25510.7, + "end": 25511.42, + "probability": 0.9708 + }, + { + "start": 25512.22, + "end": 25513.12, + "probability": 0.756 + }, + { + "start": 25514.12, + "end": 25517.82, + "probability": 0.9974 + }, + { + "start": 25518.42, + "end": 25523.74, + "probability": 0.9688 + }, + { + "start": 25523.74, + "end": 25525.14, + "probability": 0.7276 + }, + { + "start": 25525.64, + "end": 25526.34, + "probability": 0.8136 + }, + { + "start": 25528.84, + "end": 25529.5, + "probability": 0.2223 + }, + { + "start": 25537.6, + "end": 25537.7, + "probability": 0.0615 + }, + { + "start": 25538.32, + "end": 25539.66, + "probability": 0.0378 + }, + { + "start": 25546.04, + "end": 25546.4, + "probability": 0.2629 + }, + { + "start": 25546.4, + "end": 25547.02, + "probability": 0.4977 + }, + { + "start": 25547.84, + "end": 25548.72, + "probability": 0.7473 + }, + { + "start": 25549.82, + "end": 25552.68, + "probability": 0.6039 + }, + { + "start": 25552.78, + "end": 25557.04, + "probability": 0.7354 + }, + { + "start": 25557.86, + "end": 25561.72, + "probability": 0.6673 + }, + { + "start": 25562.38, + "end": 25566.47, + "probability": 0.4678 + }, + { + "start": 25567.44, + "end": 25569.46, + "probability": 0.862 + }, + { + "start": 25570.3, + "end": 25571.98, + "probability": 0.7324 + }, + { + "start": 25572.1, + "end": 25574.4, + "probability": 0.7983 + }, + { + "start": 25574.58, + "end": 25575.56, + "probability": 0.8797 + }, + { + "start": 25576.06, + "end": 25579.76, + "probability": 0.7196 + }, + { + "start": 25580.42, + "end": 25581.86, + "probability": 0.7722 + }, + { + "start": 25582.48, + "end": 25584.8, + "probability": 0.7848 + }, + { + "start": 25585.46, + "end": 25588.04, + "probability": 0.784 + }, + { + "start": 25589.11, + "end": 25593.82, + "probability": 0.644 + }, + { + "start": 25593.82, + "end": 25597.24, + "probability": 0.9767 + }, + { + "start": 25598.08, + "end": 25600.66, + "probability": 0.8867 + }, + { + "start": 25600.72, + "end": 25604.16, + "probability": 0.9929 + }, + { + "start": 25604.56, + "end": 25604.82, + "probability": 0.7995 + }, + { + "start": 25604.88, + "end": 25605.46, + "probability": 0.9798 + }, + { + "start": 25605.62, + "end": 25606.86, + "probability": 0.8775 + }, + { + "start": 25607.26, + "end": 25610.34, + "probability": 0.8704 + }, + { + "start": 25610.82, + "end": 25615.6, + "probability": 0.3269 + }, + { + "start": 25615.6, + "end": 25616.54, + "probability": 0.7108 + }, + { + "start": 25617.06, + "end": 25623.64, + "probability": 0.8235 + }, + { + "start": 25624.0, + "end": 25628.78, + "probability": 0.9579 + }, + { + "start": 25628.78, + "end": 25633.7, + "probability": 0.9571 + }, + { + "start": 25634.26, + "end": 25637.86, + "probability": 0.9728 + }, + { + "start": 25637.86, + "end": 25642.42, + "probability": 0.8327 + }, + { + "start": 25642.42, + "end": 25645.82, + "probability": 0.9695 + }, + { + "start": 25646.66, + "end": 25651.38, + "probability": 0.8013 + }, + { + "start": 25651.38, + "end": 25656.36, + "probability": 0.6803 + }, + { + "start": 25657.72, + "end": 25659.96, + "probability": 0.7194 + }, + { + "start": 25660.12, + "end": 25660.6, + "probability": 0.6571 + }, + { + "start": 25660.78, + "end": 25661.2, + "probability": 0.9525 + }, + { + "start": 25661.32, + "end": 25662.26, + "probability": 0.7599 + }, + { + "start": 25662.66, + "end": 25667.26, + "probability": 0.9332 + }, + { + "start": 25668.74, + "end": 25672.38, + "probability": 0.842 + }, + { + "start": 25672.4, + "end": 25676.42, + "probability": 0.8049 + }, + { + "start": 25676.92, + "end": 25681.92, + "probability": 0.7378 + }, + { + "start": 25681.92, + "end": 25685.04, + "probability": 0.8 + }, + { + "start": 25685.48, + "end": 25686.28, + "probability": 0.4427 + }, + { + "start": 25686.84, + "end": 25692.06, + "probability": 0.949 + }, + { + "start": 25692.06, + "end": 25696.28, + "probability": 0.604 + }, + { + "start": 25696.76, + "end": 25700.78, + "probability": 0.726 + }, + { + "start": 25701.28, + "end": 25705.36, + "probability": 0.7655 + }, + { + "start": 25705.9, + "end": 25707.16, + "probability": 0.6345 + }, + { + "start": 25707.48, + "end": 25711.28, + "probability": 0.9764 + }, + { + "start": 25712.04, + "end": 25714.08, + "probability": 0.6883 + }, + { + "start": 25714.22, + "end": 25717.38, + "probability": 0.7532 + }, + { + "start": 25717.76, + "end": 25720.4, + "probability": 0.9663 + }, + { + "start": 25721.06, + "end": 25725.1, + "probability": 0.9401 + }, + { + "start": 25725.76, + "end": 25730.16, + "probability": 0.7657 + }, + { + "start": 25730.68, + "end": 25733.34, + "probability": 0.7631 + }, + { + "start": 25733.86, + "end": 25736.04, + "probability": 0.9308 + }, + { + "start": 25737.3, + "end": 25738.96, + "probability": 0.9762 + }, + { + "start": 25739.84, + "end": 25741.62, + "probability": 0.9587 + }, + { + "start": 25743.28, + "end": 25743.76, + "probability": 0.8078 + }, + { + "start": 25744.96, + "end": 25749.0, + "probability": 0.8055 + }, + { + "start": 25749.72, + "end": 25756.1, + "probability": 0.9224 + }, + { + "start": 25756.52, + "end": 25758.24, + "probability": 0.5366 + }, + { + "start": 25758.42, + "end": 25758.92, + "probability": 0.9313 + }, + { + "start": 25759.24, + "end": 25759.62, + "probability": 0.509 + }, + { + "start": 25761.12, + "end": 25762.2, + "probability": 0.6198 + }, + { + "start": 25762.84, + "end": 25763.76, + "probability": 0.5634 + }, + { + "start": 25764.76, + "end": 25765.54, + "probability": 0.998 + }, + { + "start": 25767.22, + "end": 25769.54, + "probability": 0.6395 + }, + { + "start": 25770.78, + "end": 25772.84, + "probability": 0.6677 + }, + { + "start": 25773.4, + "end": 25778.12, + "probability": 0.6294 + }, + { + "start": 25778.24, + "end": 25781.62, + "probability": 0.9591 + }, + { + "start": 25782.76, + "end": 25783.6, + "probability": 0.8413 + }, + { + "start": 25783.74, + "end": 25787.23, + "probability": 0.7463 + }, + { + "start": 25788.52, + "end": 25789.36, + "probability": 0.8704 + }, + { + "start": 25790.34, + "end": 25790.88, + "probability": 0.6851 + }, + { + "start": 25792.16, + "end": 25793.0, + "probability": 0.606 + }, + { + "start": 25794.66, + "end": 25795.22, + "probability": 0.6384 + }, + { + "start": 25795.68, + "end": 25796.0, + "probability": 0.3258 + }, + { + "start": 25796.18, + "end": 25796.52, + "probability": 0.4834 + }, + { + "start": 25797.08, + "end": 25799.64, + "probability": 0.8454 + }, + { + "start": 25800.12, + "end": 25800.94, + "probability": 0.3528 + }, + { + "start": 25801.82, + "end": 25802.03, + "probability": 0.2835 + }, + { + "start": 25802.96, + "end": 25804.14, + "probability": 0.6792 + }, + { + "start": 25804.66, + "end": 25805.72, + "probability": 0.9653 + }, + { + "start": 25807.5, + "end": 25807.96, + "probability": 0.9219 + }, + { + "start": 25809.6, + "end": 25811.02, + "probability": 0.7978 + }, + { + "start": 25812.72, + "end": 25814.12, + "probability": 0.7956 + }, + { + "start": 25815.32, + "end": 25816.5, + "probability": 0.9799 + }, + { + "start": 25818.1, + "end": 25819.2, + "probability": 0.9731 + }, + { + "start": 25819.5, + "end": 25822.32, + "probability": 0.8501 + }, + { + "start": 25823.56, + "end": 25825.3, + "probability": 0.8271 + }, + { + "start": 25826.26, + "end": 25827.46, + "probability": 0.853 + }, + { + "start": 25829.22, + "end": 25829.82, + "probability": 0.8997 + }, + { + "start": 25830.84, + "end": 25831.38, + "probability": 0.5302 + }, + { + "start": 25832.32, + "end": 25835.16, + "probability": 0.9515 + }, + { + "start": 25836.54, + "end": 25837.52, + "probability": 0.5376 + }, + { + "start": 25837.68, + "end": 25839.08, + "probability": 0.9504 + }, + { + "start": 25840.02, + "end": 25840.9, + "probability": 0.5352 + }, + { + "start": 25842.16, + "end": 25842.84, + "probability": 0.7772 + }, + { + "start": 25842.98, + "end": 25843.92, + "probability": 0.814 + }, + { + "start": 25844.32, + "end": 25844.91, + "probability": 0.8881 + }, + { + "start": 25845.22, + "end": 25845.91, + "probability": 0.2974 + }, + { + "start": 25846.18, + "end": 25846.58, + "probability": 0.7233 + }, + { + "start": 25847.36, + "end": 25849.84, + "probability": 0.9753 + }, + { + "start": 25851.88, + "end": 25852.94, + "probability": 0.5307 + }, + { + "start": 25853.02, + "end": 25856.92, + "probability": 0.9085 + }, + { + "start": 25857.52, + "end": 25860.36, + "probability": 0.8426 + }, + { + "start": 25862.04, + "end": 25862.86, + "probability": 0.6223 + }, + { + "start": 25863.48, + "end": 25864.61, + "probability": 0.9639 + }, + { + "start": 25865.22, + "end": 25867.54, + "probability": 0.1007 + }, + { + "start": 25867.72, + "end": 25868.02, + "probability": 0.813 + }, + { + "start": 25868.06, + "end": 25869.08, + "probability": 0.938 + }, + { + "start": 25869.12, + "end": 25871.58, + "probability": 0.9063 + }, + { + "start": 25872.76, + "end": 25874.86, + "probability": 0.9299 + }, + { + "start": 25875.56, + "end": 25876.92, + "probability": 0.9559 + }, + { + "start": 25877.94, + "end": 25879.18, + "probability": 0.9106 + }, + { + "start": 25879.5, + "end": 25880.78, + "probability": 0.8755 + }, + { + "start": 25881.06, + "end": 25882.5, + "probability": 0.9592 + }, + { + "start": 25883.0, + "end": 25883.28, + "probability": 0.9629 + }, + { + "start": 25884.04, + "end": 25886.18, + "probability": 0.9507 + }, + { + "start": 25887.2, + "end": 25889.6, + "probability": 0.5767 + }, + { + "start": 25890.68, + "end": 25892.22, + "probability": 0.2008 + }, + { + "start": 25894.26, + "end": 25894.4, + "probability": 0.7598 + }, + { + "start": 25895.46, + "end": 25897.02, + "probability": 0.7778 + }, + { + "start": 25897.62, + "end": 25900.1, + "probability": 0.9531 + }, + { + "start": 25900.64, + "end": 25901.48, + "probability": 0.9929 + }, + { + "start": 25902.3, + "end": 25908.08, + "probability": 0.9463 + }, + { + "start": 25908.24, + "end": 25908.36, + "probability": 0.4329 + }, + { + "start": 25908.42, + "end": 25909.66, + "probability": 0.8894 + }, + { + "start": 25910.46, + "end": 25911.56, + "probability": 0.9915 + }, + { + "start": 25911.7, + "end": 25912.81, + "probability": 0.9958 + }, + { + "start": 25914.02, + "end": 25917.12, + "probability": 0.9231 + }, + { + "start": 25918.04, + "end": 25918.72, + "probability": 0.5401 + }, + { + "start": 25919.12, + "end": 25920.04, + "probability": 0.4943 + }, + { + "start": 25920.16, + "end": 25921.28, + "probability": 0.6175 + }, + { + "start": 25921.34, + "end": 25923.58, + "probability": 0.9356 + }, + { + "start": 25924.14, + "end": 25927.28, + "probability": 0.6948 + }, + { + "start": 25927.66, + "end": 25929.96, + "probability": 0.6284 + }, + { + "start": 25929.98, + "end": 25930.86, + "probability": 0.8868 + }, + { + "start": 25930.96, + "end": 25931.44, + "probability": 0.5964 + }, + { + "start": 25931.6, + "end": 25934.26, + "probability": 0.6567 + }, + { + "start": 25934.38, + "end": 25938.42, + "probability": 0.8171 + }, + { + "start": 25938.86, + "end": 25940.36, + "probability": 0.7267 + }, + { + "start": 25940.54, + "end": 25941.32, + "probability": 0.5181 + }, + { + "start": 25941.44, + "end": 25942.07, + "probability": 0.9203 + }, + { + "start": 25942.46, + "end": 25942.92, + "probability": 0.1331 + }, + { + "start": 25944.4, + "end": 25946.14, + "probability": 0.9653 + }, + { + "start": 25946.64, + "end": 25948.42, + "probability": 0.938 + }, + { + "start": 25948.54, + "end": 25948.97, + "probability": 0.8057 + }, + { + "start": 25949.78, + "end": 25950.58, + "probability": 0.9526 + }, + { + "start": 25951.7, + "end": 25951.8, + "probability": 0.5541 + }, + { + "start": 25952.66, + "end": 25955.36, + "probability": 0.9383 + }, + { + "start": 25957.22, + "end": 25958.88, + "probability": 0.6453 + }, + { + "start": 25959.64, + "end": 25965.94, + "probability": 0.7328 + }, + { + "start": 25967.1, + "end": 25968.62, + "probability": 0.6176 + }, + { + "start": 25970.1, + "end": 25970.78, + "probability": 0.7584 + }, + { + "start": 25971.64, + "end": 25972.72, + "probability": 0.9546 + }, + { + "start": 25972.86, + "end": 25974.94, + "probability": 0.5555 + }, + { + "start": 25975.02, + "end": 25976.86, + "probability": 0.8228 + }, + { + "start": 25977.16, + "end": 25978.6, + "probability": 0.1775 + }, + { + "start": 25979.04, + "end": 25979.76, + "probability": 0.7978 + }, + { + "start": 25980.16, + "end": 25981.24, + "probability": 0.8772 + }, + { + "start": 25982.28, + "end": 25985.4, + "probability": 0.5925 + }, + { + "start": 25988.42, + "end": 25989.98, + "probability": 0.4756 + }, + { + "start": 25990.26, + "end": 25991.68, + "probability": 0.6443 + }, + { + "start": 25992.54, + "end": 25994.44, + "probability": 0.5196 + }, + { + "start": 25994.98, + "end": 25998.48, + "probability": 0.7747 + }, + { + "start": 25998.48, + "end": 26001.06, + "probability": 0.6994 + }, + { + "start": 26001.3, + "end": 26002.4, + "probability": 0.6715 + }, + { + "start": 26003.04, + "end": 26004.46, + "probability": 0.8008 + }, + { + "start": 26005.7, + "end": 26007.62, + "probability": 0.6773 + }, + { + "start": 26007.7, + "end": 26011.42, + "probability": 0.7157 + }, + { + "start": 26012.22, + "end": 26012.44, + "probability": 0.7592 + }, + { + "start": 26012.76, + "end": 26013.26, + "probability": 0.4271 + }, + { + "start": 26013.72, + "end": 26015.68, + "probability": 0.6757 + }, + { + "start": 26016.04, + "end": 26016.87, + "probability": 0.7803 + }, + { + "start": 26017.52, + "end": 26019.58, + "probability": 0.2403 + }, + { + "start": 26021.06, + "end": 26023.36, + "probability": 0.9338 + }, + { + "start": 26023.98, + "end": 26024.5, + "probability": 0.5171 + }, + { + "start": 26024.5, + "end": 26026.16, + "probability": 0.9917 + }, + { + "start": 26026.24, + "end": 26026.69, + "probability": 0.929 + }, + { + "start": 26026.94, + "end": 26027.28, + "probability": 0.4913 + }, + { + "start": 26027.58, + "end": 26029.52, + "probability": 0.6478 + }, + { + "start": 26030.23, + "end": 26033.12, + "probability": 0.5854 + }, + { + "start": 26033.64, + "end": 26034.32, + "probability": 0.4604 + }, + { + "start": 26034.32, + "end": 26035.94, + "probability": 0.805 + }, + { + "start": 26036.06, + "end": 26036.3, + "probability": 0.3477 + }, + { + "start": 26036.44, + "end": 26037.3, + "probability": 0.855 + }, + { + "start": 26040.84, + "end": 26044.22, + "probability": 0.1202 + }, + { + "start": 26051.54, + "end": 26051.72, + "probability": 0.5075 + }, + { + "start": 26051.72, + "end": 26051.82, + "probability": 0.0873 + }, + { + "start": 26052.54, + "end": 26052.96, + "probability": 0.5616 + }, + { + "start": 26053.44, + "end": 26054.34, + "probability": 0.8181 + }, + { + "start": 26054.64, + "end": 26057.14, + "probability": 0.2793 + }, + { + "start": 26058.2, + "end": 26060.3, + "probability": 0.989 + }, + { + "start": 26060.92, + "end": 26068.04, + "probability": 0.8125 + }, + { + "start": 26068.18, + "end": 26068.98, + "probability": 0.6544 + }, + { + "start": 26070.64, + "end": 26073.08, + "probability": 0.3332 + }, + { + "start": 26073.48, + "end": 26076.12, + "probability": 0.9649 + }, + { + "start": 26076.7, + "end": 26077.1, + "probability": 0.0047 + }, + { + "start": 26077.1, + "end": 26078.58, + "probability": 0.9189 + }, + { + "start": 26078.64, + "end": 26079.42, + "probability": 0.851 + }, + { + "start": 26079.86, + "end": 26082.3, + "probability": 0.9106 + }, + { + "start": 26083.36, + "end": 26089.14, + "probability": 0.9763 + }, + { + "start": 26089.86, + "end": 26091.94, + "probability": 0.5613 + }, + { + "start": 26092.72, + "end": 26097.12, + "probability": 0.9937 + }, + { + "start": 26097.66, + "end": 26098.56, + "probability": 0.2765 + }, + { + "start": 26099.16, + "end": 26101.0, + "probability": 0.8954 + }, + { + "start": 26102.0, + "end": 26106.84, + "probability": 0.9922 + }, + { + "start": 26107.54, + "end": 26107.9, + "probability": 0.5978 + }, + { + "start": 26107.94, + "end": 26110.06, + "probability": 0.916 + }, + { + "start": 26110.12, + "end": 26111.2, + "probability": 0.8406 + }, + { + "start": 26111.42, + "end": 26111.92, + "probability": 0.4097 + }, + { + "start": 26111.98, + "end": 26112.4, + "probability": 0.8611 + }, + { + "start": 26114.14, + "end": 26116.26, + "probability": 0.8999 + }, + { + "start": 26116.32, + "end": 26117.02, + "probability": 0.7317 + }, + { + "start": 26117.08, + "end": 26118.14, + "probability": 0.7733 + }, + { + "start": 26120.28, + "end": 26123.14, + "probability": 0.7781 + }, + { + "start": 26123.46, + "end": 26123.64, + "probability": 0.3499 + }, + { + "start": 26123.96, + "end": 26127.6, + "probability": 0.9615 + }, + { + "start": 26127.68, + "end": 26132.2, + "probability": 0.9812 + }, + { + "start": 26133.0, + "end": 26135.54, + "probability": 0.9158 + }, + { + "start": 26135.58, + "end": 26137.02, + "probability": 0.6995 + }, + { + "start": 26137.52, + "end": 26138.36, + "probability": 0.8234 + }, + { + "start": 26139.14, + "end": 26145.18, + "probability": 0.9714 + }, + { + "start": 26145.24, + "end": 26145.72, + "probability": 0.8203 + }, + { + "start": 26146.06, + "end": 26147.54, + "probability": 0.0429 + }, + { + "start": 26147.54, + "end": 26148.64, + "probability": 0.9096 + }, + { + "start": 26148.82, + "end": 26150.78, + "probability": 0.9952 + }, + { + "start": 26151.7, + "end": 26152.94, + "probability": 0.996 + }, + { + "start": 26153.48, + "end": 26153.88, + "probability": 0.6433 + }, + { + "start": 26154.0, + "end": 26155.4, + "probability": 0.9575 + }, + { + "start": 26155.5, + "end": 26157.24, + "probability": 0.8095 + }, + { + "start": 26158.26, + "end": 26159.6, + "probability": 0.4337 + }, + { + "start": 26159.9, + "end": 26161.32, + "probability": 0.9205 + }, + { + "start": 26161.4, + "end": 26163.41, + "probability": 0.9274 + }, + { + "start": 26164.1, + "end": 26165.12, + "probability": 0.9796 + }, + { + "start": 26165.22, + "end": 26167.94, + "probability": 0.8525 + }, + { + "start": 26168.88, + "end": 26170.32, + "probability": 0.9932 + }, + { + "start": 26170.32, + "end": 26172.12, + "probability": 0.9805 + }, + { + "start": 26173.04, + "end": 26175.66, + "probability": 0.9913 + }, + { + "start": 26175.74, + "end": 26179.36, + "probability": 0.7912 + }, + { + "start": 26180.24, + "end": 26183.6, + "probability": 0.9989 + }, + { + "start": 26183.6, + "end": 26188.2, + "probability": 0.9932 + }, + { + "start": 26189.58, + "end": 26190.36, + "probability": 0.7783 + }, + { + "start": 26191.18, + "end": 26194.76, + "probability": 0.8606 + }, + { + "start": 26195.34, + "end": 26195.46, + "probability": 0.4443 + }, + { + "start": 26196.2, + "end": 26198.12, + "probability": 0.9731 + }, + { + "start": 26199.08, + "end": 26200.4, + "probability": 0.864 + }, + { + "start": 26201.2, + "end": 26202.64, + "probability": 0.9751 + }, + { + "start": 26202.88, + "end": 26204.52, + "probability": 0.9967 + }, + { + "start": 26204.64, + "end": 26207.84, + "probability": 0.9721 + }, + { + "start": 26208.42, + "end": 26209.88, + "probability": 0.9445 + }, + { + "start": 26210.42, + "end": 26211.88, + "probability": 0.9985 + }, + { + "start": 26212.22, + "end": 26216.42, + "probability": 0.9881 + }, + { + "start": 26216.84, + "end": 26219.65, + "probability": 0.8176 + }, + { + "start": 26220.76, + "end": 26222.16, + "probability": 0.939 + }, + { + "start": 26222.84, + "end": 26224.04, + "probability": 0.8754 + }, + { + "start": 26225.92, + "end": 26226.72, + "probability": 0.8682 + }, + { + "start": 26226.92, + "end": 26228.52, + "probability": 0.7942 + }, + { + "start": 26228.64, + "end": 26229.52, + "probability": 0.688 + }, + { + "start": 26229.56, + "end": 26230.16, + "probability": 0.86 + }, + { + "start": 26230.26, + "end": 26232.3, + "probability": 0.6153 + }, + { + "start": 26232.74, + "end": 26235.48, + "probability": 0.9927 + }, + { + "start": 26236.6, + "end": 26238.0, + "probability": 0.8813 + }, + { + "start": 26238.12, + "end": 26239.82, + "probability": 0.7863 + }, + { + "start": 26240.4, + "end": 26241.54, + "probability": 0.7866 + }, + { + "start": 26241.68, + "end": 26242.2, + "probability": 0.9478 + }, + { + "start": 26242.3, + "end": 26243.86, + "probability": 0.9784 + }, + { + "start": 26244.66, + "end": 26248.2, + "probability": 0.9634 + }, + { + "start": 26248.92, + "end": 26249.63, + "probability": 0.7293 + }, + { + "start": 26250.66, + "end": 26254.16, + "probability": 0.9976 + }, + { + "start": 26255.16, + "end": 26258.1, + "probability": 0.8131 + }, + { + "start": 26259.22, + "end": 26260.08, + "probability": 0.502 + }, + { + "start": 26260.14, + "end": 26262.18, + "probability": 0.7981 + }, + { + "start": 26262.32, + "end": 26262.82, + "probability": 0.8053 + }, + { + "start": 26263.2, + "end": 26267.24, + "probability": 0.9138 + }, + { + "start": 26267.32, + "end": 26269.0, + "probability": 0.9915 + }, + { + "start": 26269.04, + "end": 26269.5, + "probability": 0.2375 + }, + { + "start": 26269.8, + "end": 26270.96, + "probability": 0.9755 + }, + { + "start": 26271.6, + "end": 26272.47, + "probability": 0.4697 + }, + { + "start": 26272.74, + "end": 26274.42, + "probability": 0.7232 + }, + { + "start": 26274.58, + "end": 26275.54, + "probability": 0.3978 + }, + { + "start": 26275.6, + "end": 26276.22, + "probability": 0.9042 + }, + { + "start": 26276.46, + "end": 26276.92, + "probability": 0.7089 + }, + { + "start": 26276.94, + "end": 26277.82, + "probability": 0.8696 + }, + { + "start": 26278.74, + "end": 26281.04, + "probability": 0.5851 + }, + { + "start": 26281.1, + "end": 26281.9, + "probability": 0.9075 + }, + { + "start": 26283.08, + "end": 26285.2, + "probability": 0.9573 + }, + { + "start": 26285.26, + "end": 26286.82, + "probability": 0.6135 + }, + { + "start": 26286.9, + "end": 26290.0, + "probability": 0.9346 + }, + { + "start": 26290.28, + "end": 26290.78, + "probability": 0.737 + }, + { + "start": 26291.1, + "end": 26293.7, + "probability": 0.9186 + }, + { + "start": 26294.08, + "end": 26295.66, + "probability": 0.8589 + }, + { + "start": 26295.84, + "end": 26297.1, + "probability": 0.6665 + }, + { + "start": 26297.3, + "end": 26298.3, + "probability": 0.8984 + }, + { + "start": 26299.08, + "end": 26300.55, + "probability": 0.9409 + }, + { + "start": 26300.98, + "end": 26302.38, + "probability": 0.7396 + }, + { + "start": 26302.82, + "end": 26303.48, + "probability": 0.7808 + }, + { + "start": 26303.6, + "end": 26305.86, + "probability": 0.9802 + }, + { + "start": 26306.3, + "end": 26307.64, + "probability": 0.9763 + }, + { + "start": 26308.66, + "end": 26309.58, + "probability": 0.7808 + }, + { + "start": 26310.34, + "end": 26311.9, + "probability": 0.8153 + }, + { + "start": 26311.98, + "end": 26313.6, + "probability": 0.8228 + }, + { + "start": 26313.7, + "end": 26316.03, + "probability": 0.8633 + }, + { + "start": 26316.26, + "end": 26318.6, + "probability": 0.5215 + }, + { + "start": 26318.6, + "end": 26319.12, + "probability": 0.7477 + }, + { + "start": 26319.8, + "end": 26320.81, + "probability": 0.4797 + }, + { + "start": 26321.54, + "end": 26326.32, + "probability": 0.9966 + }, + { + "start": 26326.34, + "end": 26326.5, + "probability": 0.3178 + }, + { + "start": 26326.52, + "end": 26326.96, + "probability": 0.702 + }, + { + "start": 26327.3, + "end": 26329.02, + "probability": 0.9766 + }, + { + "start": 26330.28, + "end": 26331.06, + "probability": 0.9531 + }, + { + "start": 26331.2, + "end": 26335.66, + "probability": 0.9867 + }, + { + "start": 26336.18, + "end": 26340.82, + "probability": 0.9956 + }, + { + "start": 26340.94, + "end": 26341.86, + "probability": 0.9019 + }, + { + "start": 26342.2, + "end": 26342.56, + "probability": 0.7975 + }, + { + "start": 26342.98, + "end": 26345.38, + "probability": 0.973 + }, + { + "start": 26345.88, + "end": 26347.74, + "probability": 0.8413 + }, + { + "start": 26355.72, + "end": 26357.06, + "probability": 0.6493 + }, + { + "start": 26358.56, + "end": 26360.02, + "probability": 0.616 + }, + { + "start": 26361.54, + "end": 26363.9, + "probability": 0.7781 + }, + { + "start": 26364.38, + "end": 26364.52, + "probability": 0.6501 + }, + { + "start": 26365.38, + "end": 26368.46, + "probability": 0.8842 + }, + { + "start": 26369.06, + "end": 26371.0, + "probability": 0.9222 + }, + { + "start": 26371.94, + "end": 26375.08, + "probability": 0.9917 + }, + { + "start": 26375.08, + "end": 26377.56, + "probability": 0.9979 + }, + { + "start": 26377.82, + "end": 26378.7, + "probability": 0.8782 + }, + { + "start": 26380.04, + "end": 26381.2, + "probability": 0.8943 + }, + { + "start": 26381.86, + "end": 26383.34, + "probability": 0.9966 + }, + { + "start": 26383.48, + "end": 26386.24, + "probability": 0.9963 + }, + { + "start": 26386.6, + "end": 26388.38, + "probability": 0.8643 + }, + { + "start": 26389.78, + "end": 26391.04, + "probability": 0.9978 + }, + { + "start": 26391.66, + "end": 26392.16, + "probability": 0.6119 + }, + { + "start": 26392.92, + "end": 26394.5, + "probability": 0.9945 + }, + { + "start": 26395.12, + "end": 26395.96, + "probability": 0.8532 + }, + { + "start": 26396.0, + "end": 26396.8, + "probability": 0.8938 + }, + { + "start": 26396.86, + "end": 26399.12, + "probability": 0.8904 + }, + { + "start": 26399.16, + "end": 26401.86, + "probability": 0.9797 + }, + { + "start": 26402.0, + "end": 26403.88, + "probability": 0.8723 + }, + { + "start": 26404.02, + "end": 26404.94, + "probability": 0.8076 + }, + { + "start": 26405.0, + "end": 26406.9, + "probability": 0.9875 + }, + { + "start": 26407.02, + "end": 26407.44, + "probability": 0.8588 + }, + { + "start": 26408.18, + "end": 26409.56, + "probability": 0.8489 + }, + { + "start": 26409.84, + "end": 26412.4, + "probability": 0.9953 + }, + { + "start": 26413.58, + "end": 26414.6, + "probability": 0.7564 + }, + { + "start": 26416.52, + "end": 26417.56, + "probability": 0.9799 + }, + { + "start": 26417.6, + "end": 26419.44, + "probability": 0.9487 + }, + { + "start": 26419.54, + "end": 26422.56, + "probability": 0.9251 + }, + { + "start": 26422.56, + "end": 26422.99, + "probability": 0.4497 + }, + { + "start": 26423.38, + "end": 26427.46, + "probability": 0.9324 + }, + { + "start": 26427.6, + "end": 26429.62, + "probability": 0.9442 + }, + { + "start": 26429.82, + "end": 26430.42, + "probability": 0.8671 + }, + { + "start": 26430.86, + "end": 26431.48, + "probability": 0.7358 + }, + { + "start": 26431.54, + "end": 26432.9, + "probability": 0.751 + }, + { + "start": 26433.1, + "end": 26433.48, + "probability": 0.646 + }, + { + "start": 26433.92, + "end": 26434.08, + "probability": 0.729 + }, + { + "start": 26435.78, + "end": 26437.94, + "probability": 0.9308 + }, + { + "start": 26438.72, + "end": 26441.74, + "probability": 0.8636 + }, + { + "start": 26442.3, + "end": 26446.24, + "probability": 0.9629 + }, + { + "start": 26447.28, + "end": 26447.74, + "probability": 0.9912 + }, + { + "start": 26447.92, + "end": 26448.62, + "probability": 0.5101 + }, + { + "start": 26448.76, + "end": 26450.72, + "probability": 0.9243 + }, + { + "start": 26450.94, + "end": 26453.1, + "probability": 0.7867 + }, + { + "start": 26453.96, + "end": 26457.16, + "probability": 0.9788 + }, + { + "start": 26457.76, + "end": 26458.64, + "probability": 0.9603 + }, + { + "start": 26459.82, + "end": 26460.64, + "probability": 0.9282 + }, + { + "start": 26460.94, + "end": 26463.34, + "probability": 0.9669 + }, + { + "start": 26463.52, + "end": 26464.4, + "probability": 0.8301 + }, + { + "start": 26464.54, + "end": 26464.92, + "probability": 0.9424 + }, + { + "start": 26465.02, + "end": 26465.34, + "probability": 0.7459 + }, + { + "start": 26465.5, + "end": 26466.4, + "probability": 0.8989 + }, + { + "start": 26466.48, + "end": 26468.7, + "probability": 0.9454 + }, + { + "start": 26468.98, + "end": 26470.22, + "probability": 0.9531 + }, + { + "start": 26470.64, + "end": 26472.66, + "probability": 0.9459 + }, + { + "start": 26473.18, + "end": 26476.18, + "probability": 0.7564 + }, + { + "start": 26476.74, + "end": 26479.17, + "probability": 0.9118 + }, + { + "start": 26480.62, + "end": 26484.02, + "probability": 0.8267 + }, + { + "start": 26484.78, + "end": 26485.68, + "probability": 0.7169 + }, + { + "start": 26486.22, + "end": 26489.46, + "probability": 0.9399 + }, + { + "start": 26489.54, + "end": 26492.14, + "probability": 0.9501 + }, + { + "start": 26492.14, + "end": 26494.46, + "probability": 0.946 + }, + { + "start": 26494.9, + "end": 26496.66, + "probability": 0.9918 + }, + { + "start": 26497.04, + "end": 26497.54, + "probability": 0.5704 + }, + { + "start": 26497.7, + "end": 26501.96, + "probability": 0.9768 + }, + { + "start": 26502.36, + "end": 26502.96, + "probability": 0.6016 + }, + { + "start": 26503.52, + "end": 26507.74, + "probability": 0.9971 + }, + { + "start": 26508.64, + "end": 26508.9, + "probability": 0.801 + }, + { + "start": 26509.5, + "end": 26512.24, + "probability": 0.9881 + }, + { + "start": 26512.32, + "end": 26513.3, + "probability": 0.9281 + }, + { + "start": 26513.4, + "end": 26514.22, + "probability": 0.9684 + }, + { + "start": 26514.82, + "end": 26518.18, + "probability": 0.9913 + }, + { + "start": 26518.2, + "end": 26518.7, + "probability": 0.5176 + }, + { + "start": 26518.86, + "end": 26520.72, + "probability": 0.8186 + }, + { + "start": 26521.34, + "end": 26524.38, + "probability": 0.9045 + }, + { + "start": 26524.76, + "end": 26529.04, + "probability": 0.9255 + }, + { + "start": 26529.32, + "end": 26531.2, + "probability": 0.8179 + }, + { + "start": 26532.28, + "end": 26532.68, + "probability": 0.8795 + }, + { + "start": 26532.8, + "end": 26533.92, + "probability": 0.9941 + }, + { + "start": 26534.04, + "end": 26535.24, + "probability": 0.6357 + }, + { + "start": 26535.32, + "end": 26535.96, + "probability": 0.7196 + }, + { + "start": 26536.06, + "end": 26536.56, + "probability": 0.9114 + }, + { + "start": 26536.66, + "end": 26539.38, + "probability": 0.9946 + }, + { + "start": 26539.44, + "end": 26541.82, + "probability": 0.9641 + }, + { + "start": 26541.82, + "end": 26544.96, + "probability": 0.9939 + }, + { + "start": 26546.5, + "end": 26548.4, + "probability": 0.9907 + }, + { + "start": 26549.24, + "end": 26552.92, + "probability": 0.9974 + }, + { + "start": 26553.06, + "end": 26554.23, + "probability": 0.9793 + }, + { + "start": 26554.4, + "end": 26556.34, + "probability": 0.9303 + }, + { + "start": 26556.38, + "end": 26556.94, + "probability": 0.8134 + }, + { + "start": 26557.9, + "end": 26560.24, + "probability": 0.9912 + }, + { + "start": 26560.28, + "end": 26560.6, + "probability": 0.8232 + }, + { + "start": 26560.64, + "end": 26563.46, + "probability": 0.9972 + }, + { + "start": 26563.98, + "end": 26564.63, + "probability": 0.5482 + }, + { + "start": 26565.04, + "end": 26566.0, + "probability": 0.7594 + }, + { + "start": 26566.4, + "end": 26567.62, + "probability": 0.9655 + }, + { + "start": 26568.06, + "end": 26569.74, + "probability": 0.9771 + }, + { + "start": 26570.0, + "end": 26574.44, + "probability": 0.9467 + }, + { + "start": 26576.08, + "end": 26577.68, + "probability": 0.9071 + }, + { + "start": 26577.78, + "end": 26578.46, + "probability": 0.6258 + }, + { + "start": 26578.58, + "end": 26581.6, + "probability": 0.9976 + }, + { + "start": 26581.74, + "end": 26583.36, + "probability": 0.9932 + }, + { + "start": 26583.52, + "end": 26584.68, + "probability": 0.9907 + }, + { + "start": 26584.76, + "end": 26585.9, + "probability": 0.9985 + }, + { + "start": 26586.02, + "end": 26586.54, + "probability": 0.7411 + }, + { + "start": 26586.6, + "end": 26587.92, + "probability": 0.9927 + }, + { + "start": 26587.92, + "end": 26588.4, + "probability": 0.5771 + }, + { + "start": 26588.9, + "end": 26592.22, + "probability": 0.9736 + }, + { + "start": 26592.34, + "end": 26596.6, + "probability": 0.9359 + }, + { + "start": 26596.7, + "end": 26600.74, + "probability": 0.9896 + }, + { + "start": 26601.18, + "end": 26602.32, + "probability": 0.83 + }, + { + "start": 26602.56, + "end": 26603.66, + "probability": 0.866 + }, + { + "start": 26603.72, + "end": 26607.14, + "probability": 0.9938 + }, + { + "start": 26608.36, + "end": 26609.58, + "probability": 0.8641 + }, + { + "start": 26609.62, + "end": 26610.92, + "probability": 0.9043 + }, + { + "start": 26611.86, + "end": 26614.87, + "probability": 0.9837 + }, + { + "start": 26615.32, + "end": 26618.92, + "probability": 0.9924 + }, + { + "start": 26620.18, + "end": 26621.62, + "probability": 0.9735 + }, + { + "start": 26622.4, + "end": 26622.94, + "probability": 0.9303 + }, + { + "start": 26623.96, + "end": 26627.88, + "probability": 0.7067 + }, + { + "start": 26627.96, + "end": 26628.88, + "probability": 0.6149 + }, + { + "start": 26629.8, + "end": 26629.8, + "probability": 0.033 + }, + { + "start": 26629.8, + "end": 26629.8, + "probability": 0.0392 + }, + { + "start": 26629.8, + "end": 26632.34, + "probability": 0.9684 + }, + { + "start": 26632.46, + "end": 26633.16, + "probability": 0.087 + }, + { + "start": 26633.4, + "end": 26636.9, + "probability": 0.8232 + }, + { + "start": 26636.9, + "end": 26639.04, + "probability": 0.8818 + }, + { + "start": 26639.6, + "end": 26640.5, + "probability": 0.1423 + }, + { + "start": 26640.62, + "end": 26642.21, + "probability": 0.4295 + }, + { + "start": 26643.22, + "end": 26647.8, + "probability": 0.8751 + }, + { + "start": 26648.38, + "end": 26651.24, + "probability": 0.8227 + }, + { + "start": 26651.44, + "end": 26651.62, + "probability": 0.3182 + }, + { + "start": 26651.66, + "end": 26652.26, + "probability": 0.4763 + }, + { + "start": 26652.3, + "end": 26653.3, + "probability": 0.7255 + }, + { + "start": 26653.74, + "end": 26655.8, + "probability": 0.9724 + }, + { + "start": 26656.42, + "end": 26661.02, + "probability": 0.9576 + }, + { + "start": 26661.52, + "end": 26663.22, + "probability": 0.7627 + }, + { + "start": 26663.56, + "end": 26664.0, + "probability": 0.8121 + }, + { + "start": 26664.28, + "end": 26664.92, + "probability": 0.6466 + }, + { + "start": 26665.56, + "end": 26668.68, + "probability": 0.9649 + }, + { + "start": 26701.16, + "end": 26703.16, + "probability": 0.4715 + }, + { + "start": 26704.16, + "end": 26704.66, + "probability": 0.4778 + }, + { + "start": 26708.9, + "end": 26712.34, + "probability": 0.7401 + }, + { + "start": 26714.16, + "end": 26717.56, + "probability": 0.8855 + }, + { + "start": 26717.56, + "end": 26719.98, + "probability": 0.826 + }, + { + "start": 26722.26, + "end": 26722.42, + "probability": 0.0714 + }, + { + "start": 26722.42, + "end": 26724.56, + "probability": 0.8232 + }, + { + "start": 26724.56, + "end": 26726.54, + "probability": 0.9893 + }, + { + "start": 26727.76, + "end": 26730.42, + "probability": 0.9944 + }, + { + "start": 26732.68, + "end": 26735.58, + "probability": 0.9781 + }, + { + "start": 26735.78, + "end": 26741.04, + "probability": 0.6715 + }, + { + "start": 26742.32, + "end": 26744.86, + "probability": 0.8875 + }, + { + "start": 26745.0, + "end": 26747.92, + "probability": 0.6658 + }, + { + "start": 26749.26, + "end": 26751.88, + "probability": 0.9856 + }, + { + "start": 26751.88, + "end": 26754.76, + "probability": 0.9534 + }, + { + "start": 26755.32, + "end": 26755.96, + "probability": 0.4822 + }, + { + "start": 26759.89, + "end": 26765.56, + "probability": 0.7115 + }, + { + "start": 26766.4, + "end": 26768.24, + "probability": 0.6515 + }, + { + "start": 26768.38, + "end": 26771.52, + "probability": 0.9323 + }, + { + "start": 26772.64, + "end": 26774.2, + "probability": 0.9973 + }, + { + "start": 26775.22, + "end": 26778.44, + "probability": 0.5879 + }, + { + "start": 26779.52, + "end": 26780.72, + "probability": 0.6897 + }, + { + "start": 26780.82, + "end": 26785.24, + "probability": 0.3618 + }, + { + "start": 26786.6, + "end": 26787.26, + "probability": 0.5325 + }, + { + "start": 26787.44, + "end": 26792.58, + "probability": 0.9061 + }, + { + "start": 26792.96, + "end": 26793.84, + "probability": 0.9299 + }, + { + "start": 26795.54, + "end": 26799.1, + "probability": 0.6003 + }, + { + "start": 26801.78, + "end": 26803.5, + "probability": 0.7093 + }, + { + "start": 26803.52, + "end": 26803.86, + "probability": 0.1962 + }, + { + "start": 26803.92, + "end": 26806.96, + "probability": 0.5202 + }, + { + "start": 26808.5, + "end": 26811.82, + "probability": 0.5945 + }, + { + "start": 26812.14, + "end": 26814.26, + "probability": 0.8542 + }, + { + "start": 26815.06, + "end": 26817.34, + "probability": 0.6909 + }, + { + "start": 26818.24, + "end": 26822.7, + "probability": 0.8347 + }, + { + "start": 26823.38, + "end": 26825.42, + "probability": 0.7919 + }, + { + "start": 26827.48, + "end": 26829.24, + "probability": 0.5881 + }, + { + "start": 26829.24, + "end": 26831.44, + "probability": 0.6815 + }, + { + "start": 26832.08, + "end": 26836.42, + "probability": 0.8855 + }, + { + "start": 26837.56, + "end": 26840.56, + "probability": 0.7425 + }, + { + "start": 26840.56, + "end": 26844.08, + "probability": 0.9271 + }, + { + "start": 26846.26, + "end": 26848.46, + "probability": 0.506 + }, + { + "start": 26848.58, + "end": 26850.26, + "probability": 0.521 + }, + { + "start": 26850.46, + "end": 26854.58, + "probability": 0.7772 + }, + { + "start": 26855.94, + "end": 26858.16, + "probability": 0.7646 + }, + { + "start": 26858.16, + "end": 26861.42, + "probability": 0.9275 + }, + { + "start": 26863.56, + "end": 26864.5, + "probability": 0.883 + }, + { + "start": 26866.26, + "end": 26866.68, + "probability": 0.4825 + }, + { + "start": 26866.84, + "end": 26868.08, + "probability": 0.6217 + }, + { + "start": 26868.2, + "end": 26869.46, + "probability": 0.6516 + }, + { + "start": 26869.46, + "end": 26870.84, + "probability": 0.8229 + }, + { + "start": 26871.0, + "end": 26872.56, + "probability": 0.5189 + }, + { + "start": 26872.64, + "end": 26873.92, + "probability": 0.7904 + }, + { + "start": 26874.78, + "end": 26877.4, + "probability": 0.8988 + }, + { + "start": 26879.97, + "end": 26884.16, + "probability": 0.9573 + }, + { + "start": 26884.94, + "end": 26888.78, + "probability": 0.6717 + }, + { + "start": 26889.4, + "end": 26890.14, + "probability": 0.601 + }, + { + "start": 26891.4, + "end": 26894.52, + "probability": 0.8984 + }, + { + "start": 26896.48, + "end": 26899.98, + "probability": 0.8907 + }, + { + "start": 26901.2, + "end": 26901.98, + "probability": 0.9761 + }, + { + "start": 26904.48, + "end": 26907.56, + "probability": 0.8877 + }, + { + "start": 26908.26, + "end": 26911.1, + "probability": 0.6604 + }, + { + "start": 26911.2, + "end": 26912.16, + "probability": 0.7738 + }, + { + "start": 26912.74, + "end": 26915.48, + "probability": 0.9578 + }, + { + "start": 26917.83, + "end": 26921.74, + "probability": 0.8779 + }, + { + "start": 26922.56, + "end": 26924.24, + "probability": 0.4454 + }, + { + "start": 26925.2, + "end": 26926.68, + "probability": 0.9891 + }, + { + "start": 26927.54, + "end": 26930.78, + "probability": 0.9424 + }, + { + "start": 26931.94, + "end": 26932.38, + "probability": 0.6265 + }, + { + "start": 26933.62, + "end": 26936.18, + "probability": 0.9076 + }, + { + "start": 26937.08, + "end": 26938.42, + "probability": 0.5591 + }, + { + "start": 26939.96, + "end": 26941.26, + "probability": 0.3957 + }, + { + "start": 26941.4, + "end": 26942.66, + "probability": 0.475 + }, + { + "start": 26942.74, + "end": 26943.49, + "probability": 0.9514 + }, + { + "start": 26944.34, + "end": 26946.7, + "probability": 0.9209 + }, + { + "start": 26947.94, + "end": 26950.82, + "probability": 0.919 + }, + { + "start": 26951.42, + "end": 26953.08, + "probability": 0.9155 + }, + { + "start": 26954.9, + "end": 26955.74, + "probability": 0.7269 + }, + { + "start": 26956.48, + "end": 26957.48, + "probability": 0.7398 + }, + { + "start": 26958.7, + "end": 26961.56, + "probability": 0.9638 + }, + { + "start": 26962.18, + "end": 26963.44, + "probability": 0.8418 + }, + { + "start": 26964.26, + "end": 26965.12, + "probability": 0.6328 + }, + { + "start": 26965.18, + "end": 26966.18, + "probability": 0.6707 + }, + { + "start": 26966.6, + "end": 26966.83, + "probability": 0.8008 + }, + { + "start": 26968.96, + "end": 26969.72, + "probability": 0.9547 + }, + { + "start": 26970.56, + "end": 26971.2, + "probability": 0.9061 + }, + { + "start": 26972.24, + "end": 26975.26, + "probability": 0.8674 + }, + { + "start": 26977.0, + "end": 26979.28, + "probability": 0.7577 + }, + { + "start": 26980.84, + "end": 26983.64, + "probability": 0.8895 + }, + { + "start": 26984.24, + "end": 26986.6, + "probability": 0.7189 + }, + { + "start": 26987.4, + "end": 26987.4, + "probability": 0.8452 + }, + { + "start": 26987.4, + "end": 26987.74, + "probability": 0.957 + }, + { + "start": 26987.76, + "end": 26989.44, + "probability": 0.9146 + }, + { + "start": 26989.84, + "end": 26990.52, + "probability": 0.733 + }, + { + "start": 26991.96, + "end": 26991.96, + "probability": 0.3147 + }, + { + "start": 26992.76, + "end": 26993.4, + "probability": 0.1154 + }, + { + "start": 26993.6, + "end": 26993.6, + "probability": 0.2004 + }, + { + "start": 26993.6, + "end": 26994.74, + "probability": 0.7551 + }, + { + "start": 26996.12, + "end": 26996.74, + "probability": 0.9092 + }, + { + "start": 26996.82, + "end": 26997.55, + "probability": 0.5672 + }, + { + "start": 26997.7, + "end": 26998.28, + "probability": 0.6496 + }, + { + "start": 26998.42, + "end": 26999.64, + "probability": 0.7826 + }, + { + "start": 26999.84, + "end": 27000.16, + "probability": 0.5741 + }, + { + "start": 27000.18, + "end": 27000.72, + "probability": 0.8429 + }, + { + "start": 27001.8, + "end": 27003.76, + "probability": 0.7407 + }, + { + "start": 27003.8, + "end": 27006.92, + "probability": 0.7624 + }, + { + "start": 27007.06, + "end": 27013.84, + "probability": 0.8677 + }, + { + "start": 27014.24, + "end": 27014.32, + "probability": 0.1551 + }, + { + "start": 27014.32, + "end": 27015.82, + "probability": 0.1438 + }, + { + "start": 27015.82, + "end": 27017.02, + "probability": 0.7332 + }, + { + "start": 27017.84, + "end": 27019.21, + "probability": 0.9395 + }, + { + "start": 27020.04, + "end": 27020.84, + "probability": 0.9231 + }, + { + "start": 27021.02, + "end": 27021.68, + "probability": 0.96 + }, + { + "start": 27021.72, + "end": 27022.94, + "probability": 0.1981 + }, + { + "start": 27023.34, + "end": 27024.09, + "probability": 0.9718 + }, + { + "start": 27025.08, + "end": 27027.02, + "probability": 0.8208 + }, + { + "start": 27028.16, + "end": 27030.1, + "probability": 0.9546 + }, + { + "start": 27030.22, + "end": 27031.38, + "probability": 0.6372 + }, + { + "start": 27031.54, + "end": 27033.47, + "probability": 0.1254 + }, + { + "start": 27034.4, + "end": 27036.82, + "probability": 0.98 + }, + { + "start": 27036.92, + "end": 27037.66, + "probability": 0.9897 + }, + { + "start": 27037.94, + "end": 27038.71, + "probability": 0.3643 + }, + { + "start": 27039.12, + "end": 27039.78, + "probability": 0.7867 + }, + { + "start": 27040.44, + "end": 27043.18, + "probability": 0.9057 + }, + { + "start": 27044.64, + "end": 27045.86, + "probability": 0.7466 + }, + { + "start": 27046.96, + "end": 27047.9, + "probability": 0.674 + }, + { + "start": 27048.84, + "end": 27049.24, + "probability": 0.5591 + }, + { + "start": 27049.3, + "end": 27050.3, + "probability": 0.9278 + }, + { + "start": 27050.44, + "end": 27051.04, + "probability": 0.8912 + }, + { + "start": 27052.96, + "end": 27053.44, + "probability": 0.7515 + }, + { + "start": 27053.56, + "end": 27056.04, + "probability": 0.8361 + }, + { + "start": 27056.14, + "end": 27056.92, + "probability": 0.7251 + }, + { + "start": 27057.6, + "end": 27058.22, + "probability": 0.8606 + }, + { + "start": 27058.96, + "end": 27060.61, + "probability": 0.4906 + }, + { + "start": 27061.58, + "end": 27062.44, + "probability": 0.538 + }, + { + "start": 27063.24, + "end": 27063.44, + "probability": 0.5913 + }, + { + "start": 27063.56, + "end": 27064.4, + "probability": 0.4121 + }, + { + "start": 27064.8, + "end": 27066.76, + "probability": 0.6646 + }, + { + "start": 27067.0, + "end": 27069.16, + "probability": 0.6994 + }, + { + "start": 27069.8, + "end": 27070.04, + "probability": 0.8531 + }, + { + "start": 27072.6, + "end": 27073.38, + "probability": 0.2437 + }, + { + "start": 27074.32, + "end": 27074.74, + "probability": 0.0556 + }, + { + "start": 27074.74, + "end": 27075.92, + "probability": 0.1058 + }, + { + "start": 27075.92, + "end": 27076.78, + "probability": 0.0501 + }, + { + "start": 27076.86, + "end": 27077.44, + "probability": 0.0942 + }, + { + "start": 27077.44, + "end": 27078.8, + "probability": 0.4376 + }, + { + "start": 27078.86, + "end": 27080.34, + "probability": 0.5354 + }, + { + "start": 27080.44, + "end": 27081.0, + "probability": 0.4544 + }, + { + "start": 27081.14, + "end": 27081.24, + "probability": 0.4733 + }, + { + "start": 27081.24, + "end": 27082.06, + "probability": 0.4265 + }, + { + "start": 27083.94, + "end": 27087.14, + "probability": 0.5785 + }, + { + "start": 27087.78, + "end": 27090.78, + "probability": 0.5839 + }, + { + "start": 27091.3, + "end": 27092.42, + "probability": 0.3287 + }, + { + "start": 27093.64, + "end": 27098.08, + "probability": 0.8228 + }, + { + "start": 27098.26, + "end": 27098.9, + "probability": 0.0595 + }, + { + "start": 27098.98, + "end": 27099.8, + "probability": 0.6661 + }, + { + "start": 27099.82, + "end": 27100.44, + "probability": 0.6205 + }, + { + "start": 27100.88, + "end": 27102.7, + "probability": 0.7395 + }, + { + "start": 27102.82, + "end": 27104.42, + "probability": 0.6108 + }, + { + "start": 27105.58, + "end": 27106.72, + "probability": 0.8884 + }, + { + "start": 27107.3, + "end": 27108.46, + "probability": 0.7988 + }, + { + "start": 27108.58, + "end": 27109.3, + "probability": 0.5985 + }, + { + "start": 27110.1, + "end": 27114.58, + "probability": 0.6037 + }, + { + "start": 27115.18, + "end": 27117.86, + "probability": 0.8864 + }, + { + "start": 27118.72, + "end": 27122.96, + "probability": 0.9924 + }, + { + "start": 27122.96, + "end": 27125.5, + "probability": 0.9591 + }, + { + "start": 27126.42, + "end": 27129.54, + "probability": 0.8703 + }, + { + "start": 27130.2, + "end": 27134.22, + "probability": 0.9838 + }, + { + "start": 27134.96, + "end": 27138.9, + "probability": 0.944 + }, + { + "start": 27139.6, + "end": 27141.54, + "probability": 0.9392 + }, + { + "start": 27141.6, + "end": 27146.78, + "probability": 0.9709 + }, + { + "start": 27147.86, + "end": 27151.03, + "probability": 0.9162 + }, + { + "start": 27151.9, + "end": 27155.14, + "probability": 0.9863 + }, + { + "start": 27156.38, + "end": 27159.94, + "probability": 0.9377 + }, + { + "start": 27160.3, + "end": 27161.38, + "probability": 0.8757 + }, + { + "start": 27161.84, + "end": 27164.02, + "probability": 0.9949 + }, + { + "start": 27164.88, + "end": 27168.14, + "probability": 0.8908 + }, + { + "start": 27168.84, + "end": 27171.4, + "probability": 0.9824 + }, + { + "start": 27172.1, + "end": 27174.96, + "probability": 0.9946 + }, + { + "start": 27175.28, + "end": 27176.52, + "probability": 0.9294 + }, + { + "start": 27176.72, + "end": 27177.62, + "probability": 0.9808 + }, + { + "start": 27178.5, + "end": 27178.94, + "probability": 0.8471 + }, + { + "start": 27178.98, + "end": 27179.9, + "probability": 0.653 + }, + { + "start": 27180.06, + "end": 27180.8, + "probability": 0.9802 + }, + { + "start": 27181.28, + "end": 27186.0, + "probability": 0.9797 + }, + { + "start": 27186.36, + "end": 27187.06, + "probability": 0.4818 + }, + { + "start": 27187.32, + "end": 27190.66, + "probability": 0.7622 + }, + { + "start": 27191.2, + "end": 27193.06, + "probability": 0.9026 + }, + { + "start": 27196.52, + "end": 27197.98, + "probability": 0.9653 + }, + { + "start": 27203.1, + "end": 27203.46, + "probability": 0.2228 + }, + { + "start": 27211.5, + "end": 27211.8, + "probability": 0.2001 + }, + { + "start": 27211.8, + "end": 27214.94, + "probability": 0.5369 + }, + { + "start": 27215.5, + "end": 27218.14, + "probability": 0.7975 + }, + { + "start": 27219.22, + "end": 27222.98, + "probability": 0.4775 + }, + { + "start": 27225.44, + "end": 27226.36, + "probability": 0.2566 + }, + { + "start": 27227.06, + "end": 27227.08, + "probability": 0.0786 + }, + { + "start": 27227.08, + "end": 27229.68, + "probability": 0.7019 + }, + { + "start": 27230.04, + "end": 27232.72, + "probability": 0.7378 + }, + { + "start": 27233.2, + "end": 27235.4, + "probability": 0.7515 + }, + { + "start": 27245.92, + "end": 27247.62, + "probability": 0.3555 + }, + { + "start": 27247.92, + "end": 27248.02, + "probability": 0.4284 + }, + { + "start": 27248.02, + "end": 27250.06, + "probability": 0.856 + }, + { + "start": 27250.16, + "end": 27250.68, + "probability": 0.7682 + }, + { + "start": 27250.74, + "end": 27251.24, + "probability": 0.8263 + }, + { + "start": 27252.3, + "end": 27255.36, + "probability": 0.9865 + }, + { + "start": 27255.36, + "end": 27257.86, + "probability": 0.9951 + }, + { + "start": 27258.02, + "end": 27262.56, + "probability": 0.9777 + }, + { + "start": 27262.7, + "end": 27266.24, + "probability": 0.9961 + }, + { + "start": 27266.24, + "end": 27271.5, + "probability": 0.9923 + }, + { + "start": 27272.62, + "end": 27273.52, + "probability": 0.4912 + }, + { + "start": 27273.62, + "end": 27276.14, + "probability": 0.9333 + }, + { + "start": 27276.62, + "end": 27280.24, + "probability": 0.9944 + }, + { + "start": 27280.74, + "end": 27281.22, + "probability": 0.7283 + }, + { + "start": 27281.44, + "end": 27282.4, + "probability": 0.823 + }, + { + "start": 27282.42, + "end": 27283.44, + "probability": 0.6293 + }, + { + "start": 27283.52, + "end": 27284.02, + "probability": 0.4509 + }, + { + "start": 27284.56, + "end": 27288.06, + "probability": 0.9716 + }, + { + "start": 27288.06, + "end": 27290.76, + "probability": 0.9822 + }, + { + "start": 27291.12, + "end": 27292.24, + "probability": 0.6793 + }, + { + "start": 27292.6, + "end": 27293.48, + "probability": 0.8586 + }, + { + "start": 27293.6, + "end": 27294.84, + "probability": 0.9422 + }, + { + "start": 27295.26, + "end": 27296.24, + "probability": 0.9941 + }, + { + "start": 27296.42, + "end": 27299.32, + "probability": 0.8655 + }, + { + "start": 27299.36, + "end": 27299.6, + "probability": 0.357 + }, + { + "start": 27299.62, + "end": 27300.72, + "probability": 0.9545 + }, + { + "start": 27301.02, + "end": 27302.04, + "probability": 0.9431 + }, + { + "start": 27302.16, + "end": 27303.72, + "probability": 0.9167 + }, + { + "start": 27303.82, + "end": 27304.06, + "probability": 0.7444 + }, + { + "start": 27304.1, + "end": 27305.48, + "probability": 0.9963 + }, + { + "start": 27305.54, + "end": 27306.48, + "probability": 0.9553 + }, + { + "start": 27306.92, + "end": 27308.44, + "probability": 0.9882 + }, + { + "start": 27308.5, + "end": 27309.6, + "probability": 0.9429 + }, + { + "start": 27309.96, + "end": 27312.74, + "probability": 0.9871 + }, + { + "start": 27313.26, + "end": 27314.6, + "probability": 0.8697 + }, + { + "start": 27314.74, + "end": 27316.86, + "probability": 0.9841 + }, + { + "start": 27317.12, + "end": 27320.18, + "probability": 0.9965 + }, + { + "start": 27320.18, + "end": 27322.76, + "probability": 0.9917 + }, + { + "start": 27323.42, + "end": 27325.46, + "probability": 0.9014 + }, + { + "start": 27325.6, + "end": 27329.32, + "probability": 0.9543 + }, + { + "start": 27329.36, + "end": 27331.38, + "probability": 0.9939 + }, + { + "start": 27332.56, + "end": 27334.74, + "probability": 0.9978 + }, + { + "start": 27335.48, + "end": 27338.5, + "probability": 0.9841 + }, + { + "start": 27338.92, + "end": 27339.62, + "probability": 0.9202 + }, + { + "start": 27339.94, + "end": 27340.5, + "probability": 0.924 + }, + { + "start": 27340.62, + "end": 27341.08, + "probability": 0.8299 + }, + { + "start": 27342.06, + "end": 27346.42, + "probability": 0.8737 + }, + { + "start": 27346.54, + "end": 27346.92, + "probability": 0.3989 + }, + { + "start": 27346.98, + "end": 27347.68, + "probability": 0.8919 + }, + { + "start": 27347.88, + "end": 27348.7, + "probability": 0.8408 + }, + { + "start": 27348.78, + "end": 27350.42, + "probability": 0.9291 + }, + { + "start": 27350.5, + "end": 27350.99, + "probability": 0.8325 + }, + { + "start": 27351.44, + "end": 27352.22, + "probability": 0.9633 + }, + { + "start": 27353.41, + "end": 27355.62, + "probability": 0.9761 + }, + { + "start": 27355.68, + "end": 27356.6, + "probability": 0.9403 + }, + { + "start": 27356.72, + "end": 27357.52, + "probability": 0.8333 + }, + { + "start": 27358.02, + "end": 27361.62, + "probability": 0.993 + }, + { + "start": 27361.7, + "end": 27365.62, + "probability": 0.9946 + }, + { + "start": 27365.68, + "end": 27366.58, + "probability": 0.5045 + }, + { + "start": 27367.22, + "end": 27368.86, + "probability": 0.8451 + }, + { + "start": 27369.58, + "end": 27371.78, + "probability": 0.9072 + }, + { + "start": 27372.16, + "end": 27372.32, + "probability": 0.5223 + }, + { + "start": 27372.48, + "end": 27373.92, + "probability": 0.7894 + }, + { + "start": 27374.3, + "end": 27377.12, + "probability": 0.8713 + }, + { + "start": 27377.24, + "end": 27377.88, + "probability": 0.9411 + }, + { + "start": 27377.98, + "end": 27378.66, + "probability": 0.9423 + }, + { + "start": 27379.4, + "end": 27383.52, + "probability": 0.9659 + }, + { + "start": 27384.58, + "end": 27389.14, + "probability": 0.9799 + }, + { + "start": 27389.76, + "end": 27392.1, + "probability": 0.9976 + }, + { + "start": 27392.1, + "end": 27394.82, + "probability": 0.9316 + }, + { + "start": 27394.96, + "end": 27396.06, + "probability": 0.9908 + }, + { + "start": 27396.76, + "end": 27397.98, + "probability": 0.9649 + }, + { + "start": 27398.32, + "end": 27400.42, + "probability": 0.9782 + }, + { + "start": 27400.9, + "end": 27406.28, + "probability": 0.9812 + }, + { + "start": 27406.62, + "end": 27407.74, + "probability": 0.6664 + }, + { + "start": 27407.78, + "end": 27411.0, + "probability": 0.9927 + }, + { + "start": 27411.3, + "end": 27412.94, + "probability": 0.9462 + }, + { + "start": 27413.08, + "end": 27415.06, + "probability": 0.9738 + }, + { + "start": 27415.88, + "end": 27417.58, + "probability": 0.9745 + }, + { + "start": 27417.68, + "end": 27419.39, + "probability": 0.9653 + }, + { + "start": 27419.94, + "end": 27420.76, + "probability": 0.9813 + }, + { + "start": 27421.04, + "end": 27423.63, + "probability": 0.8605 + }, + { + "start": 27424.3, + "end": 27425.08, + "probability": 0.9041 + }, + { + "start": 27425.12, + "end": 27425.86, + "probability": 0.9637 + }, + { + "start": 27426.02, + "end": 27426.65, + "probability": 0.9325 + }, + { + "start": 27427.08, + "end": 27429.58, + "probability": 0.9373 + }, + { + "start": 27429.94, + "end": 27431.1, + "probability": 0.861 + }, + { + "start": 27431.26, + "end": 27433.26, + "probability": 0.7926 + }, + { + "start": 27433.64, + "end": 27435.16, + "probability": 0.9755 + }, + { + "start": 27435.52, + "end": 27438.54, + "probability": 0.9846 + }, + { + "start": 27438.54, + "end": 27441.78, + "probability": 0.9966 + }, + { + "start": 27442.06, + "end": 27443.32, + "probability": 0.9769 + }, + { + "start": 27443.5, + "end": 27443.9, + "probability": 0.764 + }, + { + "start": 27444.2, + "end": 27447.12, + "probability": 0.871 + }, + { + "start": 27447.6, + "end": 27449.34, + "probability": 0.8493 + }, + { + "start": 27449.38, + "end": 27449.5, + "probability": 0.3996 + }, + { + "start": 27449.52, + "end": 27451.14, + "probability": 0.8555 + }, + { + "start": 27451.28, + "end": 27451.52, + "probability": 0.8212 + }, + { + "start": 27451.74, + "end": 27452.28, + "probability": 0.8248 + }, + { + "start": 27453.46, + "end": 27455.84, + "probability": 0.7941 + }, + { + "start": 27460.76, + "end": 27463.32, + "probability": 0.9822 + }, + { + "start": 27463.32, + "end": 27463.94, + "probability": 0.2868 + }, + { + "start": 27464.1, + "end": 27467.14, + "probability": 0.8256 + }, + { + "start": 27467.64, + "end": 27468.2, + "probability": 0.6208 + }, + { + "start": 27485.76, + "end": 27486.56, + "probability": 0.7617 + }, + { + "start": 27487.74, + "end": 27489.58, + "probability": 0.6621 + }, + { + "start": 27491.3, + "end": 27493.74, + "probability": 0.9234 + }, + { + "start": 27495.74, + "end": 27497.52, + "probability": 0.9927 + }, + { + "start": 27498.64, + "end": 27501.06, + "probability": 0.9937 + }, + { + "start": 27502.26, + "end": 27504.74, + "probability": 0.9849 + }, + { + "start": 27505.84, + "end": 27508.78, + "probability": 0.9872 + }, + { + "start": 27510.86, + "end": 27514.32, + "probability": 0.9932 + }, + { + "start": 27514.32, + "end": 27520.76, + "probability": 0.9785 + }, + { + "start": 27522.6, + "end": 27526.5, + "probability": 0.9618 + }, + { + "start": 27527.66, + "end": 27530.44, + "probability": 0.8658 + }, + { + "start": 27531.14, + "end": 27532.92, + "probability": 0.9944 + }, + { + "start": 27533.26, + "end": 27534.98, + "probability": 0.9927 + }, + { + "start": 27535.66, + "end": 27536.71, + "probability": 0.6973 + }, + { + "start": 27537.38, + "end": 27540.0, + "probability": 0.979 + }, + { + "start": 27540.06, + "end": 27541.36, + "probability": 0.9563 + }, + { + "start": 27541.68, + "end": 27544.06, + "probability": 0.9873 + }, + { + "start": 27545.68, + "end": 27546.16, + "probability": 0.8818 + }, + { + "start": 27547.3, + "end": 27548.42, + "probability": 0.96 + }, + { + "start": 27549.54, + "end": 27551.06, + "probability": 0.8053 + }, + { + "start": 27552.32, + "end": 27554.96, + "probability": 0.9372 + }, + { + "start": 27556.08, + "end": 27557.88, + "probability": 0.769 + }, + { + "start": 27558.78, + "end": 27560.94, + "probability": 0.8831 + }, + { + "start": 27561.7, + "end": 27562.78, + "probability": 0.8112 + }, + { + "start": 27564.06, + "end": 27565.36, + "probability": 0.9806 + }, + { + "start": 27565.46, + "end": 27566.36, + "probability": 0.759 + }, + { + "start": 27566.5, + "end": 27569.5, + "probability": 0.9783 + }, + { + "start": 27569.5, + "end": 27572.72, + "probability": 0.9996 + }, + { + "start": 27574.2, + "end": 27575.86, + "probability": 0.9962 + }, + { + "start": 27576.52, + "end": 27578.88, + "probability": 0.8896 + }, + { + "start": 27579.76, + "end": 27582.28, + "probability": 0.9225 + }, + { + "start": 27583.52, + "end": 27585.82, + "probability": 0.7145 + }, + { + "start": 27586.4, + "end": 27589.44, + "probability": 0.9673 + }, + { + "start": 27589.86, + "end": 27590.79, + "probability": 0.9517 + }, + { + "start": 27591.78, + "end": 27593.15, + "probability": 0.8163 + }, + { + "start": 27593.7, + "end": 27596.68, + "probability": 0.9856 + }, + { + "start": 27596.68, + "end": 27599.7, + "probability": 0.9873 + }, + { + "start": 27602.12, + "end": 27603.26, + "probability": 0.7792 + }, + { + "start": 27604.2, + "end": 27606.9, + "probability": 0.8698 + }, + { + "start": 27607.52, + "end": 27610.2, + "probability": 0.9836 + }, + { + "start": 27610.9, + "end": 27613.91, + "probability": 0.9849 + }, + { + "start": 27615.36, + "end": 27617.66, + "probability": 0.6303 + }, + { + "start": 27618.74, + "end": 27621.02, + "probability": 0.9643 + }, + { + "start": 27621.54, + "end": 27627.3, + "probability": 0.9969 + }, + { + "start": 27628.3, + "end": 27630.06, + "probability": 0.9994 + }, + { + "start": 27631.94, + "end": 27633.46, + "probability": 0.7435 + }, + { + "start": 27634.28, + "end": 27637.8, + "probability": 0.8213 + }, + { + "start": 27639.16, + "end": 27640.7, + "probability": 0.9878 + }, + { + "start": 27641.72, + "end": 27645.52, + "probability": 0.959 + }, + { + "start": 27646.22, + "end": 27647.76, + "probability": 0.7768 + }, + { + "start": 27648.78, + "end": 27652.8, + "probability": 0.936 + }, + { + "start": 27653.42, + "end": 27658.36, + "probability": 0.8697 + }, + { + "start": 27659.08, + "end": 27661.9, + "probability": 0.8931 + }, + { + "start": 27663.12, + "end": 27664.98, + "probability": 0.8499 + }, + { + "start": 27665.76, + "end": 27670.46, + "probability": 0.9817 + }, + { + "start": 27670.46, + "end": 27674.4, + "probability": 0.9869 + }, + { + "start": 27674.84, + "end": 27675.9, + "probability": 0.8886 + }, + { + "start": 27676.72, + "end": 27678.04, + "probability": 0.9322 + }, + { + "start": 27678.56, + "end": 27680.06, + "probability": 0.9374 + }, + { + "start": 27680.66, + "end": 27685.6, + "probability": 0.9614 + }, + { + "start": 27686.42, + "end": 27686.5, + "probability": 0.0089 + }, + { + "start": 27686.5, + "end": 27687.94, + "probability": 0.6804 + }, + { + "start": 27688.78, + "end": 27689.2, + "probability": 0.6871 + }, + { + "start": 27690.62, + "end": 27692.6, + "probability": 0.7926 + }, + { + "start": 27693.08, + "end": 27696.12, + "probability": 0.974 + }, + { + "start": 27696.2, + "end": 27697.42, + "probability": 0.9066 + }, + { + "start": 27698.38, + "end": 27700.66, + "probability": 0.9868 + }, + { + "start": 27701.28, + "end": 27706.94, + "probability": 0.9949 + }, + { + "start": 27707.6, + "end": 27710.16, + "probability": 0.8374 + }, + { + "start": 27710.86, + "end": 27713.88, + "probability": 0.9884 + }, + { + "start": 27714.28, + "end": 27714.58, + "probability": 0.7126 + }, + { + "start": 27714.6, + "end": 27714.96, + "probability": 0.4813 + }, + { + "start": 27714.96, + "end": 27717.36, + "probability": 0.9315 + }, + { + "start": 27738.2, + "end": 27740.74, + "probability": 0.7635 + }, + { + "start": 27741.98, + "end": 27742.96, + "probability": 0.9461 + }, + { + "start": 27744.14, + "end": 27749.92, + "probability": 0.9941 + }, + { + "start": 27750.72, + "end": 27753.22, + "probability": 0.9319 + }, + { + "start": 27753.88, + "end": 27757.92, + "probability": 0.9942 + }, + { + "start": 27757.92, + "end": 27761.72, + "probability": 0.9995 + }, + { + "start": 27762.62, + "end": 27766.32, + "probability": 0.9976 + }, + { + "start": 27766.32, + "end": 27771.94, + "probability": 0.9951 + }, + { + "start": 27772.98, + "end": 27776.28, + "probability": 0.9957 + }, + { + "start": 27777.04, + "end": 27778.1, + "probability": 0.839 + }, + { + "start": 27778.92, + "end": 27780.32, + "probability": 0.9798 + }, + { + "start": 27781.04, + "end": 27788.32, + "probability": 0.9828 + }, + { + "start": 27788.52, + "end": 27794.48, + "probability": 0.9812 + }, + { + "start": 27794.54, + "end": 27797.6, + "probability": 0.9978 + }, + { + "start": 27797.6, + "end": 27803.24, + "probability": 0.9985 + }, + { + "start": 27803.94, + "end": 27808.1, + "probability": 0.9986 + }, + { + "start": 27808.82, + "end": 27810.16, + "probability": 0.9194 + }, + { + "start": 27810.72, + "end": 27812.48, + "probability": 0.6486 + }, + { + "start": 27812.52, + "end": 27813.0, + "probability": 0.9104 + }, + { + "start": 27813.28, + "end": 27819.24, + "probability": 0.8839 + }, + { + "start": 27820.06, + "end": 27826.94, + "probability": 0.976 + }, + { + "start": 27827.58, + "end": 27832.44, + "probability": 0.9873 + }, + { + "start": 27832.52, + "end": 27833.24, + "probability": 0.6524 + }, + { + "start": 27833.86, + "end": 27838.34, + "probability": 0.9813 + }, + { + "start": 27839.46, + "end": 27843.04, + "probability": 0.9774 + }, + { + "start": 27843.6, + "end": 27846.58, + "probability": 0.9746 + }, + { + "start": 27847.28, + "end": 27851.6, + "probability": 0.9946 + }, + { + "start": 27852.26, + "end": 27855.4, + "probability": 0.8067 + }, + { + "start": 27856.32, + "end": 27859.66, + "probability": 0.9966 + }, + { + "start": 27860.28, + "end": 27863.82, + "probability": 0.9944 + }, + { + "start": 27864.7, + "end": 27867.82, + "probability": 0.8296 + }, + { + "start": 27868.15, + "end": 27871.84, + "probability": 0.8145 + }, + { + "start": 27873.64, + "end": 27876.82, + "probability": 0.9789 + }, + { + "start": 27878.0, + "end": 27882.32, + "probability": 0.9861 + }, + { + "start": 27884.0, + "end": 27885.68, + "probability": 0.9893 + }, + { + "start": 27886.32, + "end": 27887.34, + "probability": 0.9971 + }, + { + "start": 27888.26, + "end": 27891.92, + "probability": 0.9182 + }, + { + "start": 27892.68, + "end": 27899.02, + "probability": 0.9927 + }, + { + "start": 27899.5, + "end": 27903.72, + "probability": 0.9835 + }, + { + "start": 27904.5, + "end": 27906.16, + "probability": 0.9895 + }, + { + "start": 27906.38, + "end": 27907.66, + "probability": 0.8372 + }, + { + "start": 27908.16, + "end": 27909.62, + "probability": 0.8026 + }, + { + "start": 27910.14, + "end": 27913.64, + "probability": 0.9429 + }, + { + "start": 27918.18, + "end": 27919.42, + "probability": 0.7062 + }, + { + "start": 27920.36, + "end": 27921.94, + "probability": 0.9326 + }, + { + "start": 27922.04, + "end": 27924.42, + "probability": 0.9866 + }, + { + "start": 27925.62, + "end": 27927.02, + "probability": 0.37 + }, + { + "start": 27927.14, + "end": 27929.3, + "probability": 0.5851 + }, + { + "start": 27929.32, + "end": 27930.8, + "probability": 0.9819 + }, + { + "start": 27932.02, + "end": 27932.24, + "probability": 0.0361 + }, + { + "start": 27932.24, + "end": 27934.64, + "probability": 0.6402 + }, + { + "start": 27934.64, + "end": 27937.1, + "probability": 0.5086 + }, + { + "start": 27937.1, + "end": 27938.64, + "probability": 0.7263 + }, + { + "start": 27939.16, + "end": 27942.18, + "probability": 0.7311 + }, + { + "start": 27942.6, + "end": 27943.64, + "probability": 0.5372 + }, + { + "start": 27943.64, + "end": 27944.7, + "probability": 0.7307 + }, + { + "start": 27944.88, + "end": 27947.28, + "probability": 0.9971 + }, + { + "start": 27947.38, + "end": 27948.02, + "probability": 0.6255 + }, + { + "start": 27948.02, + "end": 27948.88, + "probability": 0.8171 + }, + { + "start": 27949.12, + "end": 27949.14, + "probability": 0.5344 + }, + { + "start": 27949.14, + "end": 27949.14, + "probability": 0.1212 + }, + { + "start": 27949.14, + "end": 27949.36, + "probability": 0.6451 + }, + { + "start": 27949.38, + "end": 27954.08, + "probability": 0.921 + }, + { + "start": 27954.38, + "end": 27955.24, + "probability": 0.3057 + }, + { + "start": 27955.38, + "end": 27955.9, + "probability": 0.8641 + }, + { + "start": 27956.08, + "end": 27959.9, + "probability": 0.828 + }, + { + "start": 27959.96, + "end": 27960.64, + "probability": 0.584 + }, + { + "start": 27960.74, + "end": 27964.68, + "probability": 0.9751 + }, + { + "start": 27965.02, + "end": 27966.94, + "probability": 0.9629 + }, + { + "start": 27967.48, + "end": 27968.84, + "probability": 0.221 + }, + { + "start": 27969.22, + "end": 27970.12, + "probability": 0.8074 + }, + { + "start": 27970.72, + "end": 27973.24, + "probability": 0.9302 + }, + { + "start": 27973.46, + "end": 27979.24, + "probability": 0.9783 + }, + { + "start": 27979.46, + "end": 27981.02, + "probability": 0.9856 + }, + { + "start": 27981.52, + "end": 27984.48, + "probability": 0.9448 + }, + { + "start": 27984.96, + "end": 27987.34, + "probability": 0.9865 + }, + { + "start": 27988.12, + "end": 27989.2, + "probability": 0.9906 + }, + { + "start": 27989.9, + "end": 27992.88, + "probability": 0.8611 + }, + { + "start": 27993.4, + "end": 27995.82, + "probability": 0.959 + }, + { + "start": 27996.36, + "end": 28004.44, + "probability": 0.971 + }, + { + "start": 28004.94, + "end": 28005.96, + "probability": 0.9133 + }, + { + "start": 28006.1, + "end": 28007.9, + "probability": 0.9968 + }, + { + "start": 28008.28, + "end": 28010.99, + "probability": 0.9912 + }, + { + "start": 28011.64, + "end": 28012.72, + "probability": 0.8642 + }, + { + "start": 28013.46, + "end": 28014.76, + "probability": 0.8082 + }, + { + "start": 28014.92, + "end": 28017.18, + "probability": 0.9944 + }, + { + "start": 28017.18, + "end": 28017.58, + "probability": 0.3633 + }, + { + "start": 28017.58, + "end": 28019.98, + "probability": 0.5032 + }, + { + "start": 28020.38, + "end": 28022.98, + "probability": 0.8693 + }, + { + "start": 28023.46, + "end": 28023.6, + "probability": 0.2281 + }, + { + "start": 28023.6, + "end": 28024.44, + "probability": 0.6385 + }, + { + "start": 28024.54, + "end": 28024.84, + "probability": 0.2585 + }, + { + "start": 28024.84, + "end": 28024.84, + "probability": 0.5068 + }, + { + "start": 28024.84, + "end": 28026.02, + "probability": 0.915 + }, + { + "start": 28026.5, + "end": 28028.22, + "probability": 0.7255 + }, + { + "start": 28028.38, + "end": 28029.24, + "probability": 0.8984 + }, + { + "start": 28030.38, + "end": 28031.82, + "probability": 0.988 + }, + { + "start": 28032.76, + "end": 28035.04, + "probability": 0.6884 + }, + { + "start": 28035.06, + "end": 28035.6, + "probability": 0.8787 + }, + { + "start": 28035.64, + "end": 28035.98, + "probability": 0.8755 + }, + { + "start": 28036.54, + "end": 28036.74, + "probability": 0.9499 + }, + { + "start": 28038.38, + "end": 28039.82, + "probability": 0.9766 + }, + { + "start": 28039.82, + "end": 28040.78, + "probability": 0.9139 + }, + { + "start": 28040.9, + "end": 28043.24, + "probability": 0.9923 + }, + { + "start": 28043.34, + "end": 28044.88, + "probability": 0.9995 + }, + { + "start": 28045.0, + "end": 28045.4, + "probability": 0.3245 + }, + { + "start": 28045.6, + "end": 28047.76, + "probability": 0.9093 + }, + { + "start": 28047.76, + "end": 28047.88, + "probability": 0.7733 + }, + { + "start": 28047.88, + "end": 28049.6, + "probability": 0.2345 + }, + { + "start": 28049.66, + "end": 28050.18, + "probability": 0.951 + }, + { + "start": 28050.26, + "end": 28052.38, + "probability": 0.7492 + }, + { + "start": 28052.44, + "end": 28054.11, + "probability": 0.9198 + }, + { + "start": 28055.58, + "end": 28055.84, + "probability": 0.0039 + }, + { + "start": 28055.84, + "end": 28056.94, + "probability": 0.8807 + }, + { + "start": 28057.08, + "end": 28058.0, + "probability": 0.5871 + }, + { + "start": 28058.14, + "end": 28060.5, + "probability": 0.9155 + }, + { + "start": 28060.82, + "end": 28061.4, + "probability": 0.9293 + }, + { + "start": 28063.38, + "end": 28067.34, + "probability": 0.9167 + }, + { + "start": 28067.42, + "end": 28070.38, + "probability": 0.9525 + }, + { + "start": 28070.88, + "end": 28075.36, + "probability": 0.9257 + }, + { + "start": 28075.98, + "end": 28079.1, + "probability": 0.7728 + }, + { + "start": 28079.9, + "end": 28085.18, + "probability": 0.9347 + }, + { + "start": 28085.48, + "end": 28087.48, + "probability": 0.9958 + }, + { + "start": 28088.18, + "end": 28093.72, + "probability": 0.9683 + }, + { + "start": 28095.9, + "end": 28096.4, + "probability": 0.3587 + }, + { + "start": 28096.58, + "end": 28098.3, + "probability": 0.0023 + }, + { + "start": 28098.98, + "end": 28100.22, + "probability": 0.3064 + }, + { + "start": 28101.48, + "end": 28102.86, + "probability": 0.0152 + }, + { + "start": 28102.92, + "end": 28103.58, + "probability": 0.3823 + }, + { + "start": 28103.76, + "end": 28104.82, + "probability": 0.5153 + }, + { + "start": 28105.26, + "end": 28105.56, + "probability": 0.4349 + }, + { + "start": 28105.8, + "end": 28107.32, + "probability": 0.1005 + }, + { + "start": 28109.36, + "end": 28110.18, + "probability": 0.0791 + }, + { + "start": 28111.42, + "end": 28116.3, + "probability": 0.9626 + }, + { + "start": 28118.06, + "end": 28120.96, + "probability": 0.6454 + }, + { + "start": 28122.94, + "end": 28123.68, + "probability": 0.8413 + }, + { + "start": 28124.28, + "end": 28125.44, + "probability": 0.1524 + }, + { + "start": 28125.6, + "end": 28128.38, + "probability": 0.8698 + }, + { + "start": 28129.3, + "end": 28135.16, + "probability": 0.7124 + }, + { + "start": 28135.16, + "end": 28139.56, + "probability": 0.8407 + }, + { + "start": 28140.46, + "end": 28141.66, + "probability": 0.9578 + }, + { + "start": 28144.56, + "end": 28148.6, + "probability": 0.9751 + }, + { + "start": 28150.2, + "end": 28151.24, + "probability": 0.6645 + }, + { + "start": 28151.98, + "end": 28152.64, + "probability": 0.6786 + }, + { + "start": 28152.66, + "end": 28154.18, + "probability": 0.8073 + }, + { + "start": 28154.22, + "end": 28157.22, + "probability": 0.7502 + }, + { + "start": 28158.34, + "end": 28161.97, + "probability": 0.7633 + }, + { + "start": 28163.66, + "end": 28166.12, + "probability": 0.7532 + }, + { + "start": 28166.72, + "end": 28168.24, + "probability": 0.7921 + }, + { + "start": 28169.1, + "end": 28173.34, + "probability": 0.9591 + }, + { + "start": 28173.92, + "end": 28174.78, + "probability": 0.4804 + }, + { + "start": 28175.44, + "end": 28176.4, + "probability": 0.8679 + }, + { + "start": 28178.86, + "end": 28179.34, + "probability": 0.3738 + }, + { + "start": 28179.94, + "end": 28181.72, + "probability": 0.911 + }, + { + "start": 28182.36, + "end": 28187.0, + "probability": 0.8445 + }, + { + "start": 28187.92, + "end": 28190.24, + "probability": 0.9842 + }, + { + "start": 28191.44, + "end": 28193.9, + "probability": 0.8118 + }, + { + "start": 28194.84, + "end": 28195.95, + "probability": 0.8309 + }, + { + "start": 28198.56, + "end": 28202.82, + "probability": 0.9985 + }, + { + "start": 28203.2, + "end": 28205.24, + "probability": 0.7538 + }, + { + "start": 28205.78, + "end": 28206.18, + "probability": 0.9653 + }, + { + "start": 28206.7, + "end": 28208.74, + "probability": 0.1103 + }, + { + "start": 28208.74, + "end": 28208.74, + "probability": 0.1382 + }, + { + "start": 28208.74, + "end": 28208.94, + "probability": 0.4375 + }, + { + "start": 28209.28, + "end": 28211.34, + "probability": 0.6963 + }, + { + "start": 28211.76, + "end": 28213.12, + "probability": 0.6514 + }, + { + "start": 28213.12, + "end": 28215.38, + "probability": 0.9492 + }, + { + "start": 28215.44, + "end": 28220.3, + "probability": 0.6636 + }, + { + "start": 28222.58, + "end": 28224.0, + "probability": 0.2023 + }, + { + "start": 28225.16, + "end": 28225.16, + "probability": 0.0304 + }, + { + "start": 28225.16, + "end": 28225.16, + "probability": 0.0792 + }, + { + "start": 28225.44, + "end": 28225.44, + "probability": 0.1398 + }, + { + "start": 28225.44, + "end": 28225.52, + "probability": 0.1502 + }, + { + "start": 28225.52, + "end": 28227.36, + "probability": 0.1918 + }, + { + "start": 28228.48, + "end": 28228.96, + "probability": 0.238 + }, + { + "start": 28229.35, + "end": 28230.48, + "probability": 0.377 + }, + { + "start": 28230.76, + "end": 28231.28, + "probability": 0.4902 + }, + { + "start": 28232.48, + "end": 28233.76, + "probability": 0.5889 + }, + { + "start": 28233.84, + "end": 28234.56, + "probability": 0.6526 + }, + { + "start": 28235.28, + "end": 28238.74, + "probability": 0.7164 + }, + { + "start": 28238.78, + "end": 28239.42, + "probability": 0.6724 + }, + { + "start": 28239.48, + "end": 28241.1, + "probability": 0.7983 + }, + { + "start": 28241.18, + "end": 28243.16, + "probability": 0.9863 + }, + { + "start": 28243.16, + "end": 28245.54, + "probability": 0.8985 + }, + { + "start": 28245.68, + "end": 28246.44, + "probability": 0.1393 + }, + { + "start": 28247.6, + "end": 28247.6, + "probability": 0.2709 + }, + { + "start": 28247.6, + "end": 28247.62, + "probability": 0.0876 + }, + { + "start": 28247.62, + "end": 28247.97, + "probability": 0.5557 + }, + { + "start": 28248.32, + "end": 28248.54, + "probability": 0.528 + }, + { + "start": 28248.62, + "end": 28251.16, + "probability": 0.9966 + }, + { + "start": 28251.26, + "end": 28256.06, + "probability": 0.9583 + }, + { + "start": 28256.4, + "end": 28258.86, + "probability": 0.8071 + }, + { + "start": 28258.88, + "end": 28259.5, + "probability": 0.956 + }, + { + "start": 28261.28, + "end": 28263.65, + "probability": 0.6267 + }, + { + "start": 28263.88, + "end": 28265.02, + "probability": 0.5688 + }, + { + "start": 28265.02, + "end": 28265.76, + "probability": 0.2567 + }, + { + "start": 28265.84, + "end": 28266.66, + "probability": 0.6135 + }, + { + "start": 28266.92, + "end": 28268.5, + "probability": 0.5773 + }, + { + "start": 28268.76, + "end": 28270.52, + "probability": 0.5707 + }, + { + "start": 28270.96, + "end": 28273.7, + "probability": 0.7148 + }, + { + "start": 28274.18, + "end": 28277.36, + "probability": 0.6088 + }, + { + "start": 28277.44, + "end": 28278.3, + "probability": 0.6515 + }, + { + "start": 28278.44, + "end": 28279.54, + "probability": 0.5258 + }, + { + "start": 28279.94, + "end": 28284.3, + "probability": 0.4211 + }, + { + "start": 28285.22, + "end": 28286.98, + "probability": 0.0757 + }, + { + "start": 28286.98, + "end": 28287.64, + "probability": 0.2309 + }, + { + "start": 28287.92, + "end": 28289.58, + "probability": 0.6923 + }, + { + "start": 28291.04, + "end": 28292.34, + "probability": 0.0904 + }, + { + "start": 28292.58, + "end": 28293.26, + "probability": 0.2298 + }, + { + "start": 28293.36, + "end": 28295.92, + "probability": 0.7173 + }, + { + "start": 28296.3, + "end": 28296.84, + "probability": 0.4318 + }, + { + "start": 28296.92, + "end": 28297.77, + "probability": 0.6432 + }, + { + "start": 28298.2, + "end": 28299.98, + "probability": 0.0388 + }, + { + "start": 28299.98, + "end": 28299.98, + "probability": 0.0242 + }, + { + "start": 28299.98, + "end": 28300.86, + "probability": 0.312 + }, + { + "start": 28301.98, + "end": 28303.84, + "probability": 0.2529 + }, + { + "start": 28303.84, + "end": 28305.0, + "probability": 0.104 + }, + { + "start": 28305.88, + "end": 28308.48, + "probability": 0.7983 + }, + { + "start": 28309.02, + "end": 28312.1, + "probability": 0.5971 + }, + { + "start": 28312.84, + "end": 28314.5, + "probability": 0.9199 + }, + { + "start": 28315.38, + "end": 28316.74, + "probability": 0.4221 + }, + { + "start": 28318.7, + "end": 28321.1, + "probability": 0.8717 + }, + { + "start": 28322.04, + "end": 28325.22, + "probability": 0.9856 + }, + { + "start": 28325.7, + "end": 28328.62, + "probability": 0.9873 + }, + { + "start": 28329.06, + "end": 28329.46, + "probability": 0.0482 + }, + { + "start": 28329.54, + "end": 28332.42, + "probability": 0.5171 + }, + { + "start": 28332.82, + "end": 28333.7, + "probability": 0.6778 + }, + { + "start": 28334.21, + "end": 28336.76, + "probability": 0.7371 + }, + { + "start": 28336.86, + "end": 28337.73, + "probability": 0.9371 + }, + { + "start": 28338.8, + "end": 28339.5, + "probability": 0.7756 + }, + { + "start": 28340.04, + "end": 28340.98, + "probability": 0.8109 + }, + { + "start": 28341.64, + "end": 28342.6, + "probability": 0.9058 + }, + { + "start": 28343.38, + "end": 28344.08, + "probability": 0.2974 + }, + { + "start": 28344.16, + "end": 28345.56, + "probability": 0.4225 + }, + { + "start": 28345.84, + "end": 28347.7, + "probability": 0.5141 + }, + { + "start": 28349.08, + "end": 28350.96, + "probability": 0.7613 + }, + { + "start": 28351.76, + "end": 28353.88, + "probability": 0.8654 + }, + { + "start": 28353.88, + "end": 28354.82, + "probability": 0.4941 + }, + { + "start": 28355.1, + "end": 28355.6, + "probability": 0.4405 + }, + { + "start": 28355.6, + "end": 28357.38, + "probability": 0.278 + }, + { + "start": 28358.72, + "end": 28362.68, + "probability": 0.7479 + }, + { + "start": 28362.76, + "end": 28364.68, + "probability": 0.8076 + }, + { + "start": 28365.34, + "end": 28367.0, + "probability": 0.6919 + }, + { + "start": 28367.16, + "end": 28367.92, + "probability": 0.6807 + }, + { + "start": 28368.2, + "end": 28369.66, + "probability": 0.9024 + }, + { + "start": 28370.12, + "end": 28372.04, + "probability": 0.8592 + }, + { + "start": 28372.46, + "end": 28373.1, + "probability": 0.7813 + }, + { + "start": 28373.48, + "end": 28376.82, + "probability": 0.6119 + }, + { + "start": 28376.96, + "end": 28377.31, + "probability": 0.3108 + }, + { + "start": 28377.62, + "end": 28378.29, + "probability": 0.4565 + }, + { + "start": 28379.12, + "end": 28379.76, + "probability": 0.8721 + }, + { + "start": 28380.0, + "end": 28383.26, + "probability": 0.2348 + }, + { + "start": 28383.46, + "end": 28384.56, + "probability": 0.5645 + }, + { + "start": 28384.7, + "end": 28385.99, + "probability": 0.332 + }, + { + "start": 28386.88, + "end": 28386.94, + "probability": 0.019 + }, + { + "start": 28386.96, + "end": 28390.08, + "probability": 0.8372 + }, + { + "start": 28390.5, + "end": 28392.03, + "probability": 0.667 + }, + { + "start": 28392.82, + "end": 28394.36, + "probability": 0.7399 + }, + { + "start": 28395.9, + "end": 28398.84, + "probability": 0.2765 + }, + { + "start": 28399.52, + "end": 28401.56, + "probability": 0.5159 + }, + { + "start": 28401.56, + "end": 28402.66, + "probability": 0.056 + }, + { + "start": 28403.22, + "end": 28404.72, + "probability": 0.0767 + }, + { + "start": 28404.78, + "end": 28406.82, + "probability": 0.8181 + }, + { + "start": 28406.9, + "end": 28407.02, + "probability": 0.0825 + }, + { + "start": 28407.16, + "end": 28408.55, + "probability": 0.4029 + }, + { + "start": 28409.4, + "end": 28411.46, + "probability": 0.8939 + }, + { + "start": 28411.74, + "end": 28412.54, + "probability": 0.4904 + }, + { + "start": 28412.86, + "end": 28413.74, + "probability": 0.0237 + }, + { + "start": 28413.82, + "end": 28414.22, + "probability": 0.3039 + }, + { + "start": 28414.22, + "end": 28414.5, + "probability": 0.1035 + }, + { + "start": 28416.18, + "end": 28419.3, + "probability": 0.0894 + }, + { + "start": 28420.02, + "end": 28421.3, + "probability": 0.0391 + }, + { + "start": 28423.32, + "end": 28426.16, + "probability": 0.0474 + }, + { + "start": 28426.24, + "end": 28427.86, + "probability": 0.2964 + }, + { + "start": 28429.29, + "end": 28430.18, + "probability": 0.0338 + }, + { + "start": 28430.26, + "end": 28430.76, + "probability": 0.0709 + }, + { + "start": 28431.12, + "end": 28432.02, + "probability": 0.017 + }, + { + "start": 28435.74, + "end": 28438.68, + "probability": 0.2523 + }, + { + "start": 28441.18, + "end": 28442.88, + "probability": 0.0848 + }, + { + "start": 28445.22, + "end": 28445.22, + "probability": 0.1071 + }, + { + "start": 28445.22, + "end": 28448.16, + "probability": 0.2468 + }, + { + "start": 28448.2, + "end": 28448.8, + "probability": 0.3091 + }, + { + "start": 28449.62, + "end": 28450.14, + "probability": 0.2874 + }, + { + "start": 28451.14, + "end": 28451.22, + "probability": 0.0887 + }, + { + "start": 28452.08, + "end": 28452.48, + "probability": 0.0584 + }, + { + "start": 28453.46, + "end": 28453.92, + "probability": 0.0313 + }, + { + "start": 28455.56, + "end": 28455.98, + "probability": 0.1839 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.0, + "end": 28485.0, + "probability": 0.0 + }, + { + "start": 28485.22, + "end": 28485.52, + "probability": 0.1026 + }, + { + "start": 28485.52, + "end": 28485.52, + "probability": 0.1445 + }, + { + "start": 28485.52, + "end": 28485.52, + "probability": 0.4424 + }, + { + "start": 28485.52, + "end": 28485.52, + "probability": 0.0686 + }, + { + "start": 28485.52, + "end": 28487.44, + "probability": 0.4053 + }, + { + "start": 28487.72, + "end": 28489.24, + "probability": 0.5753 + }, + { + "start": 28489.34, + "end": 28490.14, + "probability": 0.427 + }, + { + "start": 28490.94, + "end": 28492.32, + "probability": 0.9589 + }, + { + "start": 28492.48, + "end": 28492.7, + "probability": 0.571 + }, + { + "start": 28492.96, + "end": 28493.26, + "probability": 0.659 + }, + { + "start": 28493.82, + "end": 28495.26, + "probability": 0.5027 + }, + { + "start": 28495.36, + "end": 28497.36, + "probability": 0.9514 + }, + { + "start": 28499.14, + "end": 28501.18, + "probability": 0.7676 + }, + { + "start": 28501.28, + "end": 28502.56, + "probability": 0.9792 + }, + { + "start": 28503.12, + "end": 28506.78, + "probability": 0.9675 + }, + { + "start": 28507.46, + "end": 28511.46, + "probability": 0.9934 + }, + { + "start": 28512.4, + "end": 28514.22, + "probability": 0.9124 + }, + { + "start": 28514.68, + "end": 28518.74, + "probability": 0.9784 + }, + { + "start": 28519.46, + "end": 28523.2, + "probability": 0.9899 + }, + { + "start": 28523.2, + "end": 28525.9, + "probability": 0.999 + }, + { + "start": 28526.66, + "end": 28530.08, + "probability": 0.9482 + }, + { + "start": 28530.68, + "end": 28534.16, + "probability": 0.9905 + }, + { + "start": 28534.48, + "end": 28535.66, + "probability": 0.9889 + }, + { + "start": 28535.9, + "end": 28537.1, + "probability": 0.9636 + }, + { + "start": 28537.12, + "end": 28538.58, + "probability": 0.9814 + }, + { + "start": 28539.02, + "end": 28540.58, + "probability": 0.7695 + }, + { + "start": 28541.16, + "end": 28542.08, + "probability": 0.9387 + }, + { + "start": 28542.76, + "end": 28544.88, + "probability": 0.9546 + }, + { + "start": 28547.46, + "end": 28550.06, + "probability": 0.9961 + }, + { + "start": 28550.58, + "end": 28557.78, + "probability": 0.9897 + }, + { + "start": 28558.34, + "end": 28561.26, + "probability": 0.9562 + }, + { + "start": 28561.34, + "end": 28562.62, + "probability": 0.9961 + }, + { + "start": 28562.82, + "end": 28563.44, + "probability": 0.3851 + }, + { + "start": 28563.56, + "end": 28565.16, + "probability": 0.6028 + }, + { + "start": 28583.48, + "end": 28583.48, + "probability": 0.3865 + }, + { + "start": 28583.48, + "end": 28586.98, + "probability": 0.6454 + }, + { + "start": 28587.46, + "end": 28593.22, + "probability": 0.8248 + }, + { + "start": 28593.74, + "end": 28596.8, + "probability": 0.6931 + }, + { + "start": 28596.8, + "end": 28601.08, + "probability": 0.9881 + }, + { + "start": 28601.68, + "end": 28603.3, + "probability": 0.8765 + }, + { + "start": 28603.96, + "end": 28607.0, + "probability": 0.5041 + }, + { + "start": 28607.74, + "end": 28610.3, + "probability": 0.7957 + }, + { + "start": 28624.02, + "end": 28625.36, + "probability": 0.6031 + }, + { + "start": 28625.78, + "end": 28628.3, + "probability": 0.9694 + }, + { + "start": 28628.46, + "end": 28629.38, + "probability": 0.84 + }, + { + "start": 28633.28, + "end": 28634.86, + "probability": 0.8064 + }, + { + "start": 28637.58, + "end": 28640.76, + "probability": 0.9692 + }, + { + "start": 28641.42, + "end": 28644.22, + "probability": 0.6844 + }, + { + "start": 28646.42, + "end": 28647.74, + "probability": 0.9019 + }, + { + "start": 28649.04, + "end": 28650.42, + "probability": 0.8815 + }, + { + "start": 28651.28, + "end": 28655.46, + "probability": 0.8401 + }, + { + "start": 28656.16, + "end": 28658.72, + "probability": 0.5009 + }, + { + "start": 28661.06, + "end": 28663.9, + "probability": 0.8233 + }, + { + "start": 28664.88, + "end": 28665.96, + "probability": 0.9371 + }, + { + "start": 28666.04, + "end": 28666.58, + "probability": 0.9408 + }, + { + "start": 28666.7, + "end": 28672.02, + "probability": 0.9295 + }, + { + "start": 28673.4, + "end": 28674.58, + "probability": 0.8475 + }, + { + "start": 28675.34, + "end": 28677.64, + "probability": 0.8479 + }, + { + "start": 28678.4, + "end": 28679.16, + "probability": 0.8494 + }, + { + "start": 28681.18, + "end": 28682.34, + "probability": 0.6996 + }, + { + "start": 28682.46, + "end": 28683.68, + "probability": 0.7297 + }, + { + "start": 28683.8, + "end": 28684.7, + "probability": 0.9346 + }, + { + "start": 28685.7, + "end": 28691.1, + "probability": 0.9639 + }, + { + "start": 28691.98, + "end": 28694.62, + "probability": 0.7964 + }, + { + "start": 28698.48, + "end": 28702.34, + "probability": 0.8252 + }, + { + "start": 28703.1, + "end": 28706.9, + "probability": 0.8484 + }, + { + "start": 28708.04, + "end": 28709.9, + "probability": 0.8469 + }, + { + "start": 28710.38, + "end": 28715.54, + "probability": 0.8556 + }, + { + "start": 28716.96, + "end": 28718.58, + "probability": 0.7675 + }, + { + "start": 28719.32, + "end": 28722.3, + "probability": 0.8899 + }, + { + "start": 28723.5, + "end": 28724.98, + "probability": 0.9724 + }, + { + "start": 28726.16, + "end": 28728.08, + "probability": 0.681 + }, + { + "start": 28729.06, + "end": 28734.08, + "probability": 0.8508 + }, + { + "start": 28735.0, + "end": 28741.9, + "probability": 0.9716 + }, + { + "start": 28742.66, + "end": 28743.54, + "probability": 0.591 + }, + { + "start": 28744.78, + "end": 28746.96, + "probability": 0.9658 + }, + { + "start": 28748.46, + "end": 28752.74, + "probability": 0.9077 + }, + { + "start": 28754.1, + "end": 28756.84, + "probability": 0.9137 + }, + { + "start": 28756.84, + "end": 28761.62, + "probability": 0.9733 + }, + { + "start": 28761.68, + "end": 28762.58, + "probability": 0.8683 + }, + { + "start": 28763.56, + "end": 28766.58, + "probability": 0.8729 + }, + { + "start": 28768.42, + "end": 28771.42, + "probability": 0.9385 + }, + { + "start": 28772.08, + "end": 28774.78, + "probability": 0.9058 + }, + { + "start": 28775.36, + "end": 28777.38, + "probability": 0.8978 + }, + { + "start": 28778.0, + "end": 28780.1, + "probability": 0.9835 + }, + { + "start": 28780.74, + "end": 28781.9, + "probability": 0.9946 + }, + { + "start": 28783.16, + "end": 28784.5, + "probability": 0.9604 + }, + { + "start": 28785.7, + "end": 28792.14, + "probability": 0.9808 + }, + { + "start": 28792.74, + "end": 28795.76, + "probability": 0.981 + }, + { + "start": 28797.78, + "end": 28798.22, + "probability": 0.7053 + }, + { + "start": 28798.94, + "end": 28800.34, + "probability": 0.9098 + }, + { + "start": 28801.5, + "end": 28802.54, + "probability": 0.6897 + }, + { + "start": 28802.66, + "end": 28804.22, + "probability": 0.9719 + }, + { + "start": 28804.6, + "end": 28805.54, + "probability": 0.9752 + }, + { + "start": 28805.78, + "end": 28808.98, + "probability": 0.8931 + }, + { + "start": 28809.96, + "end": 28810.56, + "probability": 0.6043 + }, + { + "start": 28811.96, + "end": 28813.66, + "probability": 0.9585 + }, + { + "start": 28814.36, + "end": 28815.3, + "probability": 0.9355 + }, + { + "start": 28816.4, + "end": 28816.96, + "probability": 0.873 + }, + { + "start": 28818.64, + "end": 28823.58, + "probability": 0.7321 + }, + { + "start": 28824.42, + "end": 28828.7, + "probability": 0.9611 + }, + { + "start": 28830.46, + "end": 28830.74, + "probability": 0.5106 + }, + { + "start": 28831.34, + "end": 28836.08, + "probability": 0.9846 + }, + { + "start": 28836.56, + "end": 28837.42, + "probability": 0.9519 + }, + { + "start": 28838.9, + "end": 28839.58, + "probability": 0.9698 + }, + { + "start": 28843.34, + "end": 28843.46, + "probability": 0.5607 + }, + { + "start": 28843.5, + "end": 28846.55, + "probability": 0.6025 + }, + { + "start": 28846.78, + "end": 28847.58, + "probability": 0.5388 + }, + { + "start": 28849.08, + "end": 28851.46, + "probability": 0.9843 + }, + { + "start": 28853.76, + "end": 28855.32, + "probability": 0.9937 + }, + { + "start": 28856.34, + "end": 28857.26, + "probability": 0.7172 + }, + { + "start": 28858.14, + "end": 28859.0, + "probability": 0.8224 + }, + { + "start": 28860.0, + "end": 28861.46, + "probability": 0.5248 + }, + { + "start": 28863.16, + "end": 28865.64, + "probability": 0.8309 + }, + { + "start": 28865.72, + "end": 28866.1, + "probability": 0.7401 + }, + { + "start": 28866.16, + "end": 28867.6, + "probability": 0.6416 + }, + { + "start": 28867.74, + "end": 28868.1, + "probability": 0.7673 + }, + { + "start": 28870.74, + "end": 28873.0, + "probability": 0.7418 + }, + { + "start": 28874.12, + "end": 28874.72, + "probability": 0.7209 + }, + { + "start": 28876.22, + "end": 28878.46, + "probability": 0.9626 + }, + { + "start": 28879.8, + "end": 28883.66, + "probability": 0.7764 + }, + { + "start": 28885.48, + "end": 28886.94, + "probability": 0.9884 + }, + { + "start": 28889.0, + "end": 28890.24, + "probability": 0.7761 + }, + { + "start": 28893.48, + "end": 28898.66, + "probability": 0.8389 + }, + { + "start": 28900.74, + "end": 28904.6, + "probability": 0.45 + }, + { + "start": 28905.58, + "end": 28907.16, + "probability": 0.9921 + }, + { + "start": 28907.86, + "end": 28911.08, + "probability": 0.9105 + }, + { + "start": 28913.78, + "end": 28914.22, + "probability": 0.7611 + }, + { + "start": 28914.3, + "end": 28914.94, + "probability": 0.896 + }, + { + "start": 28915.22, + "end": 28917.14, + "probability": 0.7527 + }, + { + "start": 28917.88, + "end": 28920.82, + "probability": 0.5754 + }, + { + "start": 28922.76, + "end": 28923.96, + "probability": 0.7713 + }, + { + "start": 28926.38, + "end": 28931.76, + "probability": 0.7907 + }, + { + "start": 28932.92, + "end": 28936.24, + "probability": 0.8489 + }, + { + "start": 28936.92, + "end": 28941.84, + "probability": 0.9451 + }, + { + "start": 28941.96, + "end": 28944.14, + "probability": 0.8011 + }, + { + "start": 28944.54, + "end": 28944.74, + "probability": 0.1432 + }, + { + "start": 28944.86, + "end": 28947.36, + "probability": 0.9746 + }, + { + "start": 28948.3, + "end": 28950.78, + "probability": 0.7435 + }, + { + "start": 28950.93, + "end": 28954.06, + "probability": 0.9941 + }, + { + "start": 28954.72, + "end": 28957.5, + "probability": 0.4951 + }, + { + "start": 28959.08, + "end": 28960.54, + "probability": 0.5477 + }, + { + "start": 28962.88, + "end": 28965.6, + "probability": 0.8652 + }, + { + "start": 28967.14, + "end": 28968.98, + "probability": 0.8576 + }, + { + "start": 28970.1, + "end": 28973.02, + "probability": 0.9899 + }, + { + "start": 28974.22, + "end": 28976.68, + "probability": 0.8618 + }, + { + "start": 28977.5, + "end": 28978.88, + "probability": 0.9911 + }, + { + "start": 28980.64, + "end": 28983.22, + "probability": 0.6126 + }, + { + "start": 28985.1, + "end": 28987.52, + "probability": 0.728 + }, + { + "start": 28988.3, + "end": 28989.38, + "probability": 0.9769 + }, + { + "start": 28990.02, + "end": 28990.7, + "probability": 0.993 + }, + { + "start": 28991.6, + "end": 28992.98, + "probability": 0.7935 + }, + { + "start": 28994.58, + "end": 28996.12, + "probability": 0.9783 + }, + { + "start": 28998.31, + "end": 29000.9, + "probability": 0.7398 + }, + { + "start": 29002.14, + "end": 29003.84, + "probability": 0.9085 + }, + { + "start": 29004.5, + "end": 29006.64, + "probability": 0.8247 + }, + { + "start": 29008.82, + "end": 29010.02, + "probability": 0.6321 + }, + { + "start": 29013.36, + "end": 29015.14, + "probability": 0.8655 + }, + { + "start": 29015.56, + "end": 29017.38, + "probability": 0.7759 + }, + { + "start": 29018.38, + "end": 29020.02, + "probability": 0.644 + }, + { + "start": 29020.9, + "end": 29022.16, + "probability": 0.9062 + }, + { + "start": 29024.76, + "end": 29027.22, + "probability": 0.8663 + }, + { + "start": 29028.04, + "end": 29028.9, + "probability": 0.7783 + }, + { + "start": 29031.02, + "end": 29032.3, + "probability": 0.8911 + }, + { + "start": 29033.66, + "end": 29034.36, + "probability": 0.6139 + }, + { + "start": 29034.44, + "end": 29035.3, + "probability": 0.6332 + }, + { + "start": 29035.72, + "end": 29038.18, + "probability": 0.9111 + }, + { + "start": 29039.64, + "end": 29041.62, + "probability": 0.5975 + }, + { + "start": 29042.86, + "end": 29044.4, + "probability": 0.9837 + }, + { + "start": 29048.1, + "end": 29050.28, + "probability": 0.9601 + }, + { + "start": 29051.54, + "end": 29055.02, + "probability": 0.9403 + }, + { + "start": 29056.42, + "end": 29058.64, + "probability": 0.7497 + }, + { + "start": 29059.68, + "end": 29060.9, + "probability": 0.7057 + }, + { + "start": 29061.3, + "end": 29063.6, + "probability": 0.7423 + }, + { + "start": 29064.6, + "end": 29067.52, + "probability": 0.9412 + }, + { + "start": 29068.14, + "end": 29071.26, + "probability": 0.7566 + }, + { + "start": 29072.62, + "end": 29073.86, + "probability": 0.9967 + }, + { + "start": 29075.18, + "end": 29076.88, + "probability": 0.8665 + }, + { + "start": 29077.98, + "end": 29078.76, + "probability": 0.7313 + }, + { + "start": 29080.6, + "end": 29081.72, + "probability": 0.5594 + }, + { + "start": 29084.52, + "end": 29084.7, + "probability": 0.9531 + }, + { + "start": 29085.7, + "end": 29087.78, + "probability": 0.9578 + }, + { + "start": 29088.66, + "end": 29089.58, + "probability": 0.9959 + }, + { + "start": 29090.12, + "end": 29091.28, + "probability": 0.9805 + }, + { + "start": 29093.68, + "end": 29096.06, + "probability": 0.7138 + }, + { + "start": 29096.48, + "end": 29098.42, + "probability": 0.7939 + }, + { + "start": 29098.9, + "end": 29100.68, + "probability": 0.906 + }, + { + "start": 29101.48, + "end": 29103.5, + "probability": 0.585 + }, + { + "start": 29104.18, + "end": 29105.12, + "probability": 0.8714 + }, + { + "start": 29105.8, + "end": 29107.56, + "probability": 0.9598 + }, + { + "start": 29108.3, + "end": 29111.07, + "probability": 0.7139 + }, + { + "start": 29111.64, + "end": 29112.16, + "probability": 0.7453 + }, + { + "start": 29114.12, + "end": 29114.8, + "probability": 0.6039 + }, + { + "start": 29114.88, + "end": 29115.56, + "probability": 0.5592 + }, + { + "start": 29115.88, + "end": 29119.24, + "probability": 0.8488 + }, + { + "start": 29119.86, + "end": 29122.26, + "probability": 0.8848 + }, + { + "start": 29122.88, + "end": 29125.72, + "probability": 0.8268 + }, + { + "start": 29125.82, + "end": 29126.5, + "probability": 0.5337 + }, + { + "start": 29126.52, + "end": 29126.78, + "probability": 0.8421 + }, + { + "start": 29129.12, + "end": 29133.3, + "probability": 0.631 + }, + { + "start": 29143.2, + "end": 29143.26, + "probability": 0.1995 + }, + { + "start": 29143.26, + "end": 29144.38, + "probability": 0.6423 + }, + { + "start": 29145.52, + "end": 29146.38, + "probability": 0.7992 + }, + { + "start": 29147.6, + "end": 29149.0, + "probability": 0.6524 + }, + { + "start": 29151.0, + "end": 29152.34, + "probability": 0.8428 + }, + { + "start": 29152.42, + "end": 29154.58, + "probability": 0.9443 + }, + { + "start": 29154.66, + "end": 29155.64, + "probability": 0.5833 + }, + { + "start": 29156.56, + "end": 29156.76, + "probability": 0.5767 + }, + { + "start": 29156.88, + "end": 29161.36, + "probability": 0.9744 + }, + { + "start": 29162.74, + "end": 29165.0, + "probability": 0.9255 + }, + { + "start": 29166.2, + "end": 29172.4, + "probability": 0.9828 + }, + { + "start": 29173.12, + "end": 29174.44, + "probability": 0.7858 + }, + { + "start": 29175.36, + "end": 29177.2, + "probability": 0.9841 + }, + { + "start": 29177.96, + "end": 29179.26, + "probability": 0.9407 + }, + { + "start": 29180.98, + "end": 29184.2, + "probability": 0.7724 + }, + { + "start": 29185.94, + "end": 29189.56, + "probability": 0.9943 + }, + { + "start": 29190.38, + "end": 29193.14, + "probability": 0.9609 + }, + { + "start": 29193.86, + "end": 29196.1, + "probability": 0.9954 + }, + { + "start": 29196.86, + "end": 29199.12, + "probability": 0.9917 + }, + { + "start": 29200.5, + "end": 29202.24, + "probability": 0.8603 + }, + { + "start": 29203.26, + "end": 29205.24, + "probability": 0.9502 + }, + { + "start": 29206.0, + "end": 29210.5, + "probability": 0.8574 + }, + { + "start": 29211.58, + "end": 29212.78, + "probability": 0.9264 + }, + { + "start": 29212.88, + "end": 29215.02, + "probability": 0.9972 + }, + { + "start": 29215.76, + "end": 29219.22, + "probability": 0.7847 + }, + { + "start": 29219.98, + "end": 29221.89, + "probability": 0.9884 + }, + { + "start": 29222.48, + "end": 29223.1, + "probability": 0.9319 + }, + { + "start": 29223.76, + "end": 29224.64, + "probability": 0.9298 + }, + { + "start": 29225.08, + "end": 29228.38, + "probability": 0.9658 + }, + { + "start": 29228.62, + "end": 29230.14, + "probability": 0.9924 + }, + { + "start": 29231.2, + "end": 29233.58, + "probability": 0.957 + }, + { + "start": 29233.58, + "end": 29236.5, + "probability": 0.9865 + }, + { + "start": 29237.22, + "end": 29239.74, + "probability": 0.5593 + }, + { + "start": 29240.16, + "end": 29242.2, + "probability": 0.9782 + }, + { + "start": 29243.3, + "end": 29244.8, + "probability": 0.9166 + }, + { + "start": 29245.66, + "end": 29247.54, + "probability": 0.8679 + }, + { + "start": 29248.58, + "end": 29251.46, + "probability": 0.7353 + }, + { + "start": 29252.46, + "end": 29257.48, + "probability": 0.9294 + }, + { + "start": 29258.36, + "end": 29259.4, + "probability": 0.6682 + }, + { + "start": 29260.06, + "end": 29262.87, + "probability": 0.91 + }, + { + "start": 29263.1, + "end": 29265.4, + "probability": 0.7009 + }, + { + "start": 29265.9, + "end": 29267.58, + "probability": 0.5483 + }, + { + "start": 29268.8, + "end": 29272.32, + "probability": 0.699 + }, + { + "start": 29273.32, + "end": 29273.74, + "probability": 0.7106 + }, + { + "start": 29273.8, + "end": 29275.5, + "probability": 0.9767 + }, + { + "start": 29275.68, + "end": 29277.08, + "probability": 0.6791 + }, + { + "start": 29277.66, + "end": 29278.48, + "probability": 0.9771 + }, + { + "start": 29279.1, + "end": 29279.34, + "probability": 0.8005 + }, + { + "start": 29280.24, + "end": 29281.52, + "probability": 0.9934 + }, + { + "start": 29282.14, + "end": 29283.12, + "probability": 0.7612 + }, + { + "start": 29283.94, + "end": 29284.86, + "probability": 0.6328 + }, + { + "start": 29285.98, + "end": 29286.74, + "probability": 0.4487 + }, + { + "start": 29286.84, + "end": 29288.46, + "probability": 0.9541 + }, + { + "start": 29288.62, + "end": 29291.84, + "probability": 0.9816 + }, + { + "start": 29291.96, + "end": 29293.08, + "probability": 0.8331 + }, + { + "start": 29293.88, + "end": 29295.82, + "probability": 0.9919 + }, + { + "start": 29296.82, + "end": 29300.3, + "probability": 0.4218 + }, + { + "start": 29300.5, + "end": 29301.36, + "probability": 0.8744 + }, + { + "start": 29302.55, + "end": 29306.02, + "probability": 0.9921 + }, + { + "start": 29306.38, + "end": 29307.36, + "probability": 0.9756 + }, + { + "start": 29308.18, + "end": 29310.21, + "probability": 0.9915 + }, + { + "start": 29310.28, + "end": 29311.26, + "probability": 0.5169 + }, + { + "start": 29311.42, + "end": 29313.96, + "probability": 0.8376 + }, + { + "start": 29314.36, + "end": 29319.12, + "probability": 0.9897 + }, + { + "start": 29320.38, + "end": 29322.64, + "probability": 0.9214 + }, + { + "start": 29322.78, + "end": 29326.68, + "probability": 0.9886 + }, + { + "start": 29326.78, + "end": 29328.2, + "probability": 0.7322 + }, + { + "start": 29329.18, + "end": 29333.44, + "probability": 0.9893 + }, + { + "start": 29334.05, + "end": 29336.16, + "probability": 0.978 + }, + { + "start": 29336.34, + "end": 29338.15, + "probability": 0.714 + }, + { + "start": 29338.4, + "end": 29340.36, + "probability": 0.9769 + }, + { + "start": 29340.82, + "end": 29343.68, + "probability": 0.975 + }, + { + "start": 29344.32, + "end": 29347.1, + "probability": 0.9203 + }, + { + "start": 29347.7, + "end": 29348.12, + "probability": 0.7433 + }, + { + "start": 29349.08, + "end": 29350.8, + "probability": 0.9193 + }, + { + "start": 29351.96, + "end": 29354.78, + "probability": 0.6865 + }, + { + "start": 29355.16, + "end": 29355.78, + "probability": 0.3233 + }, + { + "start": 29355.78, + "end": 29357.2, + "probability": 0.6051 + }, + { + "start": 29357.22, + "end": 29361.36, + "probability": 0.7993 + }, + { + "start": 29362.62, + "end": 29365.0, + "probability": 0.5243 + }, + { + "start": 29365.78, + "end": 29368.66, + "probability": 0.9292 + }, + { + "start": 29369.56, + "end": 29372.96, + "probability": 0.9792 + }, + { + "start": 29373.68, + "end": 29375.56, + "probability": 0.978 + }, + { + "start": 29376.24, + "end": 29380.84, + "probability": 0.9674 + }, + { + "start": 29381.12, + "end": 29381.5, + "probability": 0.7264 + }, + { + "start": 29382.26, + "end": 29387.74, + "probability": 0.9839 + }, + { + "start": 29387.74, + "end": 29394.1, + "probability": 0.999 + }, + { + "start": 29394.38, + "end": 29395.92, + "probability": 0.9627 + }, + { + "start": 29396.0, + "end": 29399.6, + "probability": 0.9971 + }, + { + "start": 29399.72, + "end": 29400.4, + "probability": 0.5265 + }, + { + "start": 29400.7, + "end": 29405.6, + "probability": 0.9904 + }, + { + "start": 29406.18, + "end": 29410.28, + "probability": 0.9901 + }, + { + "start": 29411.08, + "end": 29411.08, + "probability": 0.17 + }, + { + "start": 29411.08, + "end": 29412.04, + "probability": 0.4801 + }, + { + "start": 29412.48, + "end": 29416.12, + "probability": 0.7546 + }, + { + "start": 29416.36, + "end": 29417.26, + "probability": 0.8296 + }, + { + "start": 29418.0, + "end": 29419.44, + "probability": 0.5408 + }, + { + "start": 29420.2, + "end": 29421.96, + "probability": 0.5839 + }, + { + "start": 29422.06, + "end": 29425.8, + "probability": 0.9327 + }, + { + "start": 29426.42, + "end": 29429.36, + "probability": 0.9884 + }, + { + "start": 29429.86, + "end": 29433.52, + "probability": 0.7799 + }, + { + "start": 29434.28, + "end": 29435.38, + "probability": 0.8426 + }, + { + "start": 29436.6, + "end": 29444.54, + "probability": 0.2446 + }, + { + "start": 29444.82, + "end": 29444.82, + "probability": 0.1055 + }, + { + "start": 29444.82, + "end": 29445.88, + "probability": 0.1172 + }, + { + "start": 29449.44, + "end": 29451.36, + "probability": 0.0914 + }, + { + "start": 29454.0, + "end": 29454.88, + "probability": 0.2316 + }, + { + "start": 29460.44, + "end": 29465.62, + "probability": 0.8507 + }, + { + "start": 29466.6, + "end": 29468.14, + "probability": 0.6745 + }, + { + "start": 29468.18, + "end": 29468.84, + "probability": 0.7498 + }, + { + "start": 29473.62, + "end": 29475.0, + "probability": 0.5359 + }, + { + "start": 29475.1, + "end": 29476.32, + "probability": 0.5447 + }, + { + "start": 29476.4, + "end": 29479.9, + "probability": 0.9413 + }, + { + "start": 29479.9, + "end": 29483.86, + "probability": 0.9468 + }, + { + "start": 29484.4, + "end": 29488.52, + "probability": 0.9652 + }, + { + "start": 29489.06, + "end": 29491.44, + "probability": 0.8435 + }, + { + "start": 29491.9, + "end": 29493.64, + "probability": 0.6671 + }, + { + "start": 29493.74, + "end": 29493.84, + "probability": 0.7728 + }, + { + "start": 29494.84, + "end": 29495.38, + "probability": 0.6534 + }, + { + "start": 29495.98, + "end": 29497.38, + "probability": 0.9925 + }, + { + "start": 29497.94, + "end": 29497.94, + "probability": 0.0696 + }, + { + "start": 29497.94, + "end": 29497.94, + "probability": 0.061 + }, + { + "start": 29497.94, + "end": 29502.02, + "probability": 0.3456 + }, + { + "start": 29502.4, + "end": 29505.08, + "probability": 0.83 + }, + { + "start": 29505.64, + "end": 29508.14, + "probability": 0.8919 + }, + { + "start": 29508.52, + "end": 29509.06, + "probability": 0.7803 + }, + { + "start": 29510.3, + "end": 29511.3, + "probability": 0.3971 + }, + { + "start": 29512.7, + "end": 29517.82, + "probability": 0.995 + }, + { + "start": 29518.76, + "end": 29519.3, + "probability": 0.5211 + }, + { + "start": 29520.36, + "end": 29522.12, + "probability": 0.9867 + }, + { + "start": 29524.14, + "end": 29525.64, + "probability": 0.8128 + }, + { + "start": 29527.26, + "end": 29531.08, + "probability": 0.9886 + }, + { + "start": 29531.22, + "end": 29538.54, + "probability": 0.9478 + }, + { + "start": 29539.16, + "end": 29541.46, + "probability": 0.8491 + }, + { + "start": 29542.14, + "end": 29545.42, + "probability": 0.98 + }, + { + "start": 29546.32, + "end": 29552.36, + "probability": 0.8981 + }, + { + "start": 29553.92, + "end": 29558.31, + "probability": 0.8872 + }, + { + "start": 29559.54, + "end": 29560.66, + "probability": 0.8582 + }, + { + "start": 29562.46, + "end": 29565.72, + "probability": 0.9453 + }, + { + "start": 29567.16, + "end": 29568.23, + "probability": 0.6899 + }, + { + "start": 29569.94, + "end": 29570.86, + "probability": 0.902 + }, + { + "start": 29571.02, + "end": 29571.06, + "probability": 0.7202 + }, + { + "start": 29571.06, + "end": 29572.4, + "probability": 0.7495 + }, + { + "start": 29573.04, + "end": 29573.63, + "probability": 0.9004 + }, + { + "start": 29573.86, + "end": 29574.28, + "probability": 0.4376 + }, + { + "start": 29575.44, + "end": 29576.74, + "probability": 0.9448 + }, + { + "start": 29578.18, + "end": 29579.26, + "probability": 0.7637 + }, + { + "start": 29579.84, + "end": 29582.1, + "probability": 0.9788 + }, + { + "start": 29582.42, + "end": 29583.68, + "probability": 0.7905 + }, + { + "start": 29584.42, + "end": 29586.66, + "probability": 0.9858 + }, + { + "start": 29586.96, + "end": 29593.34, + "probability": 0.9391 + }, + { + "start": 29593.76, + "end": 29595.14, + "probability": 0.9388 + }, + { + "start": 29595.44, + "end": 29597.38, + "probability": 0.978 + }, + { + "start": 29599.08, + "end": 29600.74, + "probability": 0.7616 + }, + { + "start": 29601.48, + "end": 29602.4, + "probability": 0.9914 + }, + { + "start": 29603.54, + "end": 29603.92, + "probability": 0.7768 + }, + { + "start": 29604.44, + "end": 29607.29, + "probability": 0.9382 + }, + { + "start": 29608.88, + "end": 29613.6, + "probability": 0.9966 + }, + { + "start": 29614.16, + "end": 29617.24, + "probability": 0.9523 + }, + { + "start": 29617.24, + "end": 29619.5, + "probability": 0.993 + }, + { + "start": 29622.84, + "end": 29624.68, + "probability": 0.9915 + }, + { + "start": 29626.16, + "end": 29633.72, + "probability": 0.9971 + }, + { + "start": 29634.36, + "end": 29640.26, + "probability": 0.8095 + }, + { + "start": 29642.28, + "end": 29643.44, + "probability": 0.9327 + }, + { + "start": 29644.24, + "end": 29647.66, + "probability": 0.9973 + }, + { + "start": 29649.6, + "end": 29652.43, + "probability": 0.9826 + }, + { + "start": 29655.3, + "end": 29656.74, + "probability": 0.9064 + }, + { + "start": 29660.38, + "end": 29662.96, + "probability": 0.7981 + }, + { + "start": 29663.84, + "end": 29665.56, + "probability": 0.9915 + }, + { + "start": 29666.18, + "end": 29668.04, + "probability": 0.9639 + }, + { + "start": 29668.54, + "end": 29670.44, + "probability": 0.9867 + }, + { + "start": 29671.36, + "end": 29672.11, + "probability": 0.8174 + }, + { + "start": 29673.02, + "end": 29675.8, + "probability": 0.9636 + }, + { + "start": 29676.38, + "end": 29678.98, + "probability": 0.9492 + }, + { + "start": 29679.92, + "end": 29681.9, + "probability": 0.558 + }, + { + "start": 29682.92, + "end": 29683.98, + "probability": 0.8841 + }, + { + "start": 29684.3, + "end": 29687.38, + "probability": 0.9612 + }, + { + "start": 29689.58, + "end": 29692.1, + "probability": 0.8773 + }, + { + "start": 29693.04, + "end": 29695.76, + "probability": 0.9435 + }, + { + "start": 29697.58, + "end": 29698.52, + "probability": 0.97 + }, + { + "start": 29700.8, + "end": 29701.6, + "probability": 0.5229 + }, + { + "start": 29702.2, + "end": 29703.58, + "probability": 0.9314 + }, + { + "start": 29704.66, + "end": 29706.32, + "probability": 0.9141 + }, + { + "start": 29706.42, + "end": 29707.62, + "probability": 0.9533 + }, + { + "start": 29708.08, + "end": 29709.02, + "probability": 0.9516 + }, + { + "start": 29709.3, + "end": 29712.1, + "probability": 0.9243 + }, + { + "start": 29712.94, + "end": 29717.26, + "probability": 0.916 + }, + { + "start": 29718.06, + "end": 29718.58, + "probability": 0.7577 + }, + { + "start": 29721.26, + "end": 29722.56, + "probability": 0.9897 + }, + { + "start": 29723.06, + "end": 29729.08, + "probability": 0.9691 + }, + { + "start": 29730.0, + "end": 29731.68, + "probability": 0.9325 + }, + { + "start": 29732.56, + "end": 29736.98, + "probability": 0.9816 + }, + { + "start": 29737.3, + "end": 29737.74, + "probability": 0.7506 + }, + { + "start": 29738.5, + "end": 29740.6, + "probability": 0.5568 + }, + { + "start": 29741.0, + "end": 29741.46, + "probability": 0.9501 + }, + { + "start": 29741.48, + "end": 29744.72, + "probability": 0.8099 + }, + { + "start": 29744.78, + "end": 29747.18, + "probability": 0.9253 + }, + { + "start": 29747.8, + "end": 29748.51, + "probability": 0.8574 + }, + { + "start": 29753.7, + "end": 29754.7, + "probability": 0.9985 + }, + { + "start": 29755.54, + "end": 29760.22, + "probability": 0.9574 + }, + { + "start": 29760.32, + "end": 29761.24, + "probability": 0.7399 + }, + { + "start": 29761.5, + "end": 29771.04, + "probability": 0.9249 + }, + { + "start": 29773.84, + "end": 29775.28, + "probability": 0.6629 + }, + { + "start": 29775.84, + "end": 29779.54, + "probability": 0.9828 + }, + { + "start": 29779.86, + "end": 29784.42, + "probability": 0.9933 + }, + { + "start": 29784.52, + "end": 29785.95, + "probability": 0.927 + }, + { + "start": 29786.66, + "end": 29789.62, + "probability": 0.1557 + }, + { + "start": 29789.88, + "end": 29794.89, + "probability": 0.0454 + }, + { + "start": 29795.3, + "end": 29797.19, + "probability": 0.0826 + }, + { + "start": 29797.58, + "end": 29799.24, + "probability": 0.1924 + }, + { + "start": 29799.36, + "end": 29801.14, + "probability": 0.6882 + }, + { + "start": 29801.34, + "end": 29802.96, + "probability": 0.3716 + }, + { + "start": 29802.96, + "end": 29804.48, + "probability": 0.2683 + }, + { + "start": 29804.62, + "end": 29805.84, + "probability": 0.2756 + }, + { + "start": 29806.64, + "end": 29807.76, + "probability": 0.2231 + }, + { + "start": 29807.76, + "end": 29809.04, + "probability": 0.2795 + }, + { + "start": 29809.24, + "end": 29810.3, + "probability": 0.1075 + }, + { + "start": 29810.54, + "end": 29810.54, + "probability": 0.2702 + }, + { + "start": 29810.54, + "end": 29813.16, + "probability": 0.4963 + }, + { + "start": 29813.3, + "end": 29813.8, + "probability": 0.6749 + }, + { + "start": 29814.52, + "end": 29815.16, + "probability": 0.8428 + }, + { + "start": 29816.4, + "end": 29818.06, + "probability": 0.6334 + }, + { + "start": 29818.24, + "end": 29820.4, + "probability": 0.8564 + }, + { + "start": 29822.64, + "end": 29823.6, + "probability": 0.1877 + }, + { + "start": 29823.6, + "end": 29823.68, + "probability": 0.0574 + }, + { + "start": 29823.68, + "end": 29826.98, + "probability": 0.5909 + }, + { + "start": 29827.18, + "end": 29829.14, + "probability": 0.9497 + }, + { + "start": 29829.2, + "end": 29832.6, + "probability": 0.9559 + }, + { + "start": 29832.7, + "end": 29833.04, + "probability": 0.5244 + }, + { + "start": 29833.04, + "end": 29833.26, + "probability": 0.0271 + }, + { + "start": 29833.72, + "end": 29834.84, + "probability": 0.675 + }, + { + "start": 29834.98, + "end": 29835.93, + "probability": 0.8604 + }, + { + "start": 29835.96, + "end": 29837.52, + "probability": 0.6724 + }, + { + "start": 29838.18, + "end": 29839.38, + "probability": 0.2475 + }, + { + "start": 29839.44, + "end": 29841.26, + "probability": 0.4572 + }, + { + "start": 29841.26, + "end": 29841.26, + "probability": 0.501 + }, + { + "start": 29841.26, + "end": 29845.16, + "probability": 0.9018 + }, + { + "start": 29845.22, + "end": 29848.46, + "probability": 0.9106 + }, + { + "start": 29848.66, + "end": 29850.74, + "probability": 0.7346 + }, + { + "start": 29850.88, + "end": 29852.42, + "probability": 0.8384 + }, + { + "start": 29852.56, + "end": 29853.14, + "probability": 0.8016 + }, + { + "start": 29854.48, + "end": 29854.48, + "probability": 0.056 + }, + { + "start": 29854.48, + "end": 29859.48, + "probability": 0.8688 + }, + { + "start": 29859.84, + "end": 29864.32, + "probability": 0.7955 + }, + { + "start": 29864.72, + "end": 29865.32, + "probability": 0.8099 + }, + { + "start": 29866.12, + "end": 29871.46, + "probability": 0.9893 + }, + { + "start": 29872.06, + "end": 29876.7, + "probability": 0.696 + }, + { + "start": 29877.34, + "end": 29880.28, + "probability": 0.9883 + }, + { + "start": 29882.66, + "end": 29885.48, + "probability": 0.7328 + }, + { + "start": 29886.72, + "end": 29888.74, + "probability": 0.8311 + }, + { + "start": 29889.44, + "end": 29890.34, + "probability": 0.9269 + }, + { + "start": 29891.04, + "end": 29891.88, + "probability": 0.9066 + }, + { + "start": 29892.66, + "end": 29892.84, + "probability": 0.2657 + }, + { + "start": 29892.86, + "end": 29899.26, + "probability": 0.7744 + }, + { + "start": 29900.02, + "end": 29901.34, + "probability": 0.9551 + }, + { + "start": 29902.34, + "end": 29905.77, + "probability": 0.8765 + }, + { + "start": 29906.28, + "end": 29906.28, + "probability": 0.0442 + }, + { + "start": 29906.28, + "end": 29907.04, + "probability": 0.6477 + }, + { + "start": 29907.84, + "end": 29908.68, + "probability": 0.8845 + }, + { + "start": 29909.45, + "end": 29910.64, + "probability": 0.2489 + }, + { + "start": 29910.68, + "end": 29913.92, + "probability": 0.6285 + }, + { + "start": 29916.88, + "end": 29917.42, + "probability": 0.2974 + }, + { + "start": 29917.42, + "end": 29917.42, + "probability": 0.0005 + }, + { + "start": 29917.42, + "end": 29917.42, + "probability": 0.194 + }, + { + "start": 29917.42, + "end": 29918.14, + "probability": 0.0762 + }, + { + "start": 29918.2, + "end": 29920.9, + "probability": 0.7213 + }, + { + "start": 29921.24, + "end": 29922.26, + "probability": 0.6724 + }, + { + "start": 29922.48, + "end": 29925.3, + "probability": 0.6778 + }, + { + "start": 29925.38, + "end": 29928.52, + "probability": 0.9979 + }, + { + "start": 29928.88, + "end": 29932.64, + "probability": 0.9609 + }, + { + "start": 29933.22, + "end": 29934.1, + "probability": 0.8117 + }, + { + "start": 29934.5, + "end": 29939.12, + "probability": 0.9801 + }, + { + "start": 29939.12, + "end": 29943.28, + "probability": 0.9835 + }, + { + "start": 29948.3, + "end": 29950.8, + "probability": 0.989 + }, + { + "start": 29951.28, + "end": 29956.14, + "probability": 0.9938 + }, + { + "start": 29958.42, + "end": 29958.96, + "probability": 0.7171 + }, + { + "start": 29958.98, + "end": 29964.42, + "probability": 0.9881 + }, + { + "start": 29965.02, + "end": 29967.58, + "probability": 0.8914 + }, + { + "start": 29969.3, + "end": 29974.66, + "probability": 0.996 + }, + { + "start": 29975.76, + "end": 29978.42, + "probability": 0.8611 + }, + { + "start": 29979.12, + "end": 29983.18, + "probability": 0.9866 + }, + { + "start": 29983.34, + "end": 29984.05, + "probability": 0.9316 + }, + { + "start": 29985.42, + "end": 29986.54, + "probability": 0.4824 + }, + { + "start": 29986.96, + "end": 29991.22, + "probability": 0.9561 + }, + { + "start": 29993.34, + "end": 29995.5, + "probability": 0.979 + }, + { + "start": 29995.7, + "end": 29998.72, + "probability": 0.9739 + }, + { + "start": 29999.58, + "end": 30000.95, + "probability": 0.893 + }, + { + "start": 30002.68, + "end": 30004.3, + "probability": 0.9762 + }, + { + "start": 30004.98, + "end": 30005.5, + "probability": 0.7255 + }, + { + "start": 30007.96, + "end": 30010.84, + "probability": 0.9653 + }, + { + "start": 30012.02, + "end": 30013.22, + "probability": 0.6609 + }, + { + "start": 30013.22, + "end": 30016.04, + "probability": 0.9339 + }, + { + "start": 30016.26, + "end": 30016.54, + "probability": 0.0636 + }, + { + "start": 30017.7, + "end": 30018.5, + "probability": 0.0534 + }, + { + "start": 30018.68, + "end": 30019.26, + "probability": 0.5248 + }, + { + "start": 30019.26, + "end": 30019.28, + "probability": 0.623 + }, + { + "start": 30019.42, + "end": 30020.26, + "probability": 0.9427 + }, + { + "start": 30020.3, + "end": 30021.56, + "probability": 0.7059 + }, + { + "start": 30021.66, + "end": 30024.08, + "probability": 0.9463 + }, + { + "start": 30024.18, + "end": 30024.54, + "probability": 0.9931 + }, + { + "start": 30025.06, + "end": 30025.46, + "probability": 0.4399 + }, + { + "start": 30025.8, + "end": 30028.66, + "probability": 0.6648 + }, + { + "start": 30028.68, + "end": 30029.56, + "probability": 0.1476 + }, + { + "start": 30029.56, + "end": 30031.08, + "probability": 0.7249 + }, + { + "start": 30031.26, + "end": 30034.12, + "probability": 0.6586 + }, + { + "start": 30034.12, + "end": 30035.14, + "probability": 0.7266 + }, + { + "start": 30035.8, + "end": 30037.12, + "probability": 0.099 + }, + { + "start": 30037.12, + "end": 30037.12, + "probability": 0.2705 + }, + { + "start": 30037.12, + "end": 30037.9, + "probability": 0.1339 + }, + { + "start": 30038.08, + "end": 30040.94, + "probability": 0.3907 + }, + { + "start": 30041.44, + "end": 30042.54, + "probability": 0.2939 + }, + { + "start": 30042.94, + "end": 30046.34, + "probability": 0.6881 + }, + { + "start": 30046.5, + "end": 30046.78, + "probability": 0.4823 + }, + { + "start": 30046.88, + "end": 30051.3, + "probability": 0.306 + }, + { + "start": 30051.3, + "end": 30051.98, + "probability": 0.2175 + }, + { + "start": 30051.98, + "end": 30052.94, + "probability": 0.2108 + }, + { + "start": 30053.14, + "end": 30053.92, + "probability": 0.173 + }, + { + "start": 30053.92, + "end": 30055.3, + "probability": 0.7672 + }, + { + "start": 30055.4, + "end": 30056.2, + "probability": 0.5576 + }, + { + "start": 30056.36, + "end": 30057.68, + "probability": 0.9985 + }, + { + "start": 30058.54, + "end": 30058.7, + "probability": 0.7331 + }, + { + "start": 30058.72, + "end": 30059.38, + "probability": 0.2817 + }, + { + "start": 30059.62, + "end": 30060.64, + "probability": 0.8874 + }, + { + "start": 30060.76, + "end": 30060.78, + "probability": 0.9072 + }, + { + "start": 30061.4, + "end": 30062.9, + "probability": 0.8956 + }, + { + "start": 30063.34, + "end": 30064.45, + "probability": 0.6914 + }, + { + "start": 30064.86, + "end": 30067.14, + "probability": 0.9473 + }, + { + "start": 30067.32, + "end": 30069.54, + "probability": 0.9268 + }, + { + "start": 30071.0, + "end": 30077.46, + "probability": 0.9814 + }, + { + "start": 30078.1, + "end": 30085.0, + "probability": 0.9757 + }, + { + "start": 30085.3, + "end": 30087.04, + "probability": 0.6654 + }, + { + "start": 30087.06, + "end": 30091.98, + "probability": 0.9721 + }, + { + "start": 30092.66, + "end": 30093.58, + "probability": 0.9951 + }, + { + "start": 30095.92, + "end": 30098.32, + "probability": 0.9902 + }, + { + "start": 30100.34, + "end": 30101.3, + "probability": 0.8171 + }, + { + "start": 30101.32, + "end": 30102.11, + "probability": 0.379 + }, + { + "start": 30102.56, + "end": 30102.64, + "probability": 0.5754 + }, + { + "start": 30102.64, + "end": 30106.77, + "probability": 0.6909 + }, + { + "start": 30107.06, + "end": 30108.6, + "probability": 0.2759 + }, + { + "start": 30108.92, + "end": 30110.76, + "probability": 0.8704 + }, + { + "start": 30111.12, + "end": 30112.0, + "probability": 0.0677 + }, + { + "start": 30112.0, + "end": 30112.52, + "probability": 0.1554 + }, + { + "start": 30112.52, + "end": 30112.52, + "probability": 0.0192 + }, + { + "start": 30112.72, + "end": 30113.7, + "probability": 0.473 + }, + { + "start": 30113.7, + "end": 30114.38, + "probability": 0.2882 + }, + { + "start": 30114.84, + "end": 30115.66, + "probability": 0.6497 + }, + { + "start": 30115.74, + "end": 30116.26, + "probability": 0.6662 + }, + { + "start": 30118.32, + "end": 30121.16, + "probability": 0.8434 + }, + { + "start": 30122.66, + "end": 30124.06, + "probability": 0.9822 + }, + { + "start": 30128.16, + "end": 30129.04, + "probability": 0.0246 + }, + { + "start": 30130.48, + "end": 30131.08, + "probability": 0.1044 + }, + { + "start": 30132.0, + "end": 30135.08, + "probability": 0.0688 + }, + { + "start": 30135.08, + "end": 30135.4, + "probability": 0.5666 + }, + { + "start": 30135.8, + "end": 30136.98, + "probability": 0.5307 + }, + { + "start": 30137.1, + "end": 30141.22, + "probability": 0.9447 + }, + { + "start": 30141.52, + "end": 30141.82, + "probability": 0.1152 + }, + { + "start": 30141.82, + "end": 30142.44, + "probability": 0.2678 + }, + { + "start": 30142.54, + "end": 30144.02, + "probability": 0.8352 + }, + { + "start": 30144.02, + "end": 30144.56, + "probability": 0.3242 + }, + { + "start": 30144.56, + "end": 30145.46, + "probability": 0.4994 + }, + { + "start": 30145.68, + "end": 30148.16, + "probability": 0.6248 + }, + { + "start": 30149.38, + "end": 30149.52, + "probability": 0.4894 + }, + { + "start": 30149.52, + "end": 30152.28, + "probability": 0.9166 + }, + { + "start": 30152.28, + "end": 30152.82, + "probability": 0.5156 + }, + { + "start": 30152.96, + "end": 30153.04, + "probability": 0.8386 + }, + { + "start": 30153.04, + "end": 30155.0, + "probability": 0.935 + }, + { + "start": 30155.0, + "end": 30155.38, + "probability": 0.5943 + }, + { + "start": 30155.52, + "end": 30156.2, + "probability": 0.7202 + }, + { + "start": 30156.4, + "end": 30157.16, + "probability": 0.5308 + }, + { + "start": 30157.4, + "end": 30160.86, + "probability": 0.7164 + }, + { + "start": 30162.24, + "end": 30165.26, + "probability": 0.9377 + }, + { + "start": 30166.5, + "end": 30168.7, + "probability": 0.8727 + }, + { + "start": 30170.5, + "end": 30171.9, + "probability": 0.4905 + }, + { + "start": 30176.68, + "end": 30180.66, + "probability": 0.6632 + }, + { + "start": 30181.3, + "end": 30183.72, + "probability": 0.017 + }, + { + "start": 30184.98, + "end": 30185.68, + "probability": 0.0554 + }, + { + "start": 30187.38, + "end": 30188.06, + "probability": 0.5192 + }, + { + "start": 30188.6, + "end": 30193.7, + "probability": 0.7093 + }, + { + "start": 30194.86, + "end": 30195.22, + "probability": 0.8094 + }, + { + "start": 30195.9, + "end": 30196.72, + "probability": 0.9819 + }, + { + "start": 30197.48, + "end": 30198.78, + "probability": 0.9785 + }, + { + "start": 30199.74, + "end": 30200.34, + "probability": 0.9145 + }, + { + "start": 30202.06, + "end": 30204.5, + "probability": 0.7407 + }, + { + "start": 30204.6, + "end": 30205.68, + "probability": 0.8442 + }, + { + "start": 30205.84, + "end": 30207.68, + "probability": 0.7126 + }, + { + "start": 30207.82, + "end": 30209.22, + "probability": 0.7446 + }, + { + "start": 30209.86, + "end": 30213.68, + "probability": 0.9268 + }, + { + "start": 30214.06, + "end": 30218.9, + "probability": 0.9892 + }, + { + "start": 30219.46, + "end": 30220.38, + "probability": 0.9993 + }, + { + "start": 30221.1, + "end": 30223.26, + "probability": 0.9591 + }, + { + "start": 30224.12, + "end": 30224.3, + "probability": 0.627 + }, + { + "start": 30224.72, + "end": 30225.48, + "probability": 0.62 + }, + { + "start": 30226.06, + "end": 30230.24, + "probability": 0.9107 + }, + { + "start": 30230.56, + "end": 30232.18, + "probability": 0.9718 + }, + { + "start": 30248.9, + "end": 30249.62, + "probability": 0.2268 + }, + { + "start": 30250.72, + "end": 30252.27, + "probability": 0.6084 + }, + { + "start": 30254.24, + "end": 30260.68, + "probability": 0.9389 + }, + { + "start": 30261.28, + "end": 30262.08, + "probability": 0.5506 + }, + { + "start": 30262.9, + "end": 30264.76, + "probability": 0.918 + }, + { + "start": 30267.84, + "end": 30268.22, + "probability": 0.9298 + }, + { + "start": 30269.12, + "end": 30271.66, + "probability": 0.7806 + }, + { + "start": 30273.06, + "end": 30274.26, + "probability": 0.6169 + }, + { + "start": 30274.98, + "end": 30276.54, + "probability": 0.7835 + }, + { + "start": 30277.7, + "end": 30280.48, + "probability": 0.9092 + }, + { + "start": 30280.76, + "end": 30281.34, + "probability": 0.0431 + }, + { + "start": 30281.44, + "end": 30285.66, + "probability": 0.7407 + }, + { + "start": 30286.04, + "end": 30286.46, + "probability": 0.8253 + }, + { + "start": 30286.56, + "end": 30290.8, + "probability": 0.9317 + }, + { + "start": 30292.26, + "end": 30292.74, + "probability": 0.093 + }, + { + "start": 30294.02, + "end": 30294.92, + "probability": 0.8359 + }, + { + "start": 30295.06, + "end": 30296.2, + "probability": 0.9592 + }, + { + "start": 30296.4, + "end": 30297.18, + "probability": 0.4493 + }, + { + "start": 30297.9, + "end": 30302.14, + "probability": 0.9923 + }, + { + "start": 30302.7, + "end": 30305.46, + "probability": 0.8535 + }, + { + "start": 30306.32, + "end": 30309.07, + "probability": 0.9944 + }, + { + "start": 30310.92, + "end": 30313.1, + "probability": 0.9802 + }, + { + "start": 30314.02, + "end": 30317.96, + "probability": 0.9883 + }, + { + "start": 30318.22, + "end": 30321.7, + "probability": 0.9397 + }, + { + "start": 30322.76, + "end": 30323.66, + "probability": 0.8776 + }, + { + "start": 30324.02, + "end": 30325.14, + "probability": 0.9028 + }, + { + "start": 30325.6, + "end": 30328.82, + "probability": 0.9802 + }, + { + "start": 30329.4, + "end": 30337.12, + "probability": 0.9907 + }, + { + "start": 30338.12, + "end": 30339.54, + "probability": 0.794 + }, + { + "start": 30340.26, + "end": 30344.96, + "probability": 0.9731 + }, + { + "start": 30345.96, + "end": 30346.82, + "probability": 0.8472 + }, + { + "start": 30347.22, + "end": 30352.4, + "probability": 0.996 + }, + { + "start": 30352.4, + "end": 30357.46, + "probability": 0.9896 + }, + { + "start": 30358.22, + "end": 30358.22, + "probability": 0.289 + }, + { + "start": 30358.22, + "end": 30363.12, + "probability": 0.5176 + }, + { + "start": 30364.1, + "end": 30366.36, + "probability": 0.6874 + }, + { + "start": 30366.42, + "end": 30367.22, + "probability": 0.5088 + }, + { + "start": 30367.63, + "end": 30367.75, + "probability": 0.4565 + }, + { + "start": 30369.12, + "end": 30370.6, + "probability": 0.8554 + }, + { + "start": 30371.36, + "end": 30373.32, + "probability": 0.7482 + }, + { + "start": 30374.52, + "end": 30375.66, + "probability": 0.8174 + }, + { + "start": 30377.08, + "end": 30382.72, + "probability": 0.945 + }, + { + "start": 30382.72, + "end": 30387.7, + "probability": 0.9596 + }, + { + "start": 30388.28, + "end": 30391.72, + "probability": 0.9898 + }, + { + "start": 30392.26, + "end": 30393.38, + "probability": 0.938 + }, + { + "start": 30394.18, + "end": 30397.8, + "probability": 0.9404 + }, + { + "start": 30398.42, + "end": 30402.04, + "probability": 0.8988 + }, + { + "start": 30402.62, + "end": 30403.04, + "probability": 0.7446 + }, + { + "start": 30403.62, + "end": 30409.64, + "probability": 0.9744 + }, + { + "start": 30410.2, + "end": 30412.48, + "probability": 0.8865 + }, + { + "start": 30412.9, + "end": 30414.56, + "probability": 0.9313 + }, + { + "start": 30415.7, + "end": 30418.76, + "probability": 0.9217 + }, + { + "start": 30419.32, + "end": 30420.92, + "probability": 0.985 + }, + { + "start": 30421.52, + "end": 30424.08, + "probability": 0.9811 + }, + { + "start": 30424.68, + "end": 30425.79, + "probability": 0.6628 + }, + { + "start": 30426.24, + "end": 30429.46, + "probability": 0.8614 + }, + { + "start": 30429.96, + "end": 30431.32, + "probability": 0.8994 + }, + { + "start": 30432.36, + "end": 30435.46, + "probability": 0.9977 + }, + { + "start": 30435.46, + "end": 30439.86, + "probability": 0.9248 + }, + { + "start": 30440.74, + "end": 30444.64, + "probability": 0.9889 + }, + { + "start": 30445.34, + "end": 30446.58, + "probability": 0.9981 + }, + { + "start": 30447.2, + "end": 30449.66, + "probability": 0.7306 + }, + { + "start": 30450.18, + "end": 30451.42, + "probability": 0.9681 + }, + { + "start": 30452.34, + "end": 30454.94, + "probability": 0.8733 + }, + { + "start": 30455.79, + "end": 30461.26, + "probability": 0.9459 + }, + { + "start": 30461.26, + "end": 30464.94, + "probability": 0.9915 + }, + { + "start": 30465.82, + "end": 30472.54, + "probability": 0.969 + }, + { + "start": 30473.1, + "end": 30478.02, + "probability": 0.9871 + }, + { + "start": 30478.48, + "end": 30478.76, + "probability": 0.8389 + }, + { + "start": 30479.5, + "end": 30479.94, + "probability": 0.6 + }, + { + "start": 30480.0, + "end": 30481.44, + "probability": 0.8906 + }, + { + "start": 30486.0, + "end": 30487.4, + "probability": 0.7694 + }, + { + "start": 30487.88, + "end": 30488.76, + "probability": 0.1454 + }, + { + "start": 30489.06, + "end": 30489.16, + "probability": 0.7803 + }, + { + "start": 30490.06, + "end": 30491.36, + "probability": 0.683 + }, + { + "start": 30491.54, + "end": 30492.68, + "probability": 0.7593 + }, + { + "start": 30498.72, + "end": 30502.98, + "probability": 0.8608 + }, + { + "start": 30503.42, + "end": 30504.22, + "probability": 0.8317 + }, + { + "start": 30506.17, + "end": 30507.88, + "probability": 0.2385 + }, + { + "start": 30513.54, + "end": 30514.88, + "probability": 0.9941 + }, + { + "start": 30514.9, + "end": 30515.98, + "probability": 0.8852 + }, + { + "start": 30522.34, + "end": 30522.34, + "probability": 0.1009 + }, + { + "start": 30522.34, + "end": 30523.64, + "probability": 0.2118 + }, + { + "start": 30524.02, + "end": 30527.62, + "probability": 0.626 + }, + { + "start": 30528.94, + "end": 30531.24, + "probability": 0.817 + }, + { + "start": 30531.78, + "end": 30535.26, + "probability": 0.9477 + }, + { + "start": 30536.22, + "end": 30537.38, + "probability": 0.7465 + }, + { + "start": 30537.62, + "end": 30539.01, + "probability": 0.9111 + }, + { + "start": 30539.38, + "end": 30543.82, + "probability": 0.9912 + }, + { + "start": 30544.28, + "end": 30552.7, + "probability": 0.9615 + }, + { + "start": 30553.3, + "end": 30555.06, + "probability": 0.9966 + }, + { + "start": 30555.82, + "end": 30557.3, + "probability": 0.7409 + }, + { + "start": 30558.3, + "end": 30564.08, + "probability": 0.7496 + }, + { + "start": 30564.7, + "end": 30565.22, + "probability": 0.5094 + }, + { + "start": 30565.34, + "end": 30570.24, + "probability": 0.9824 + }, + { + "start": 30570.74, + "end": 30572.74, + "probability": 0.9904 + }, + { + "start": 30573.3, + "end": 30575.1, + "probability": 0.9031 + }, + { + "start": 30575.96, + "end": 30579.3, + "probability": 0.8721 + }, + { + "start": 30579.36, + "end": 30582.02, + "probability": 0.9883 + }, + { + "start": 30582.48, + "end": 30584.32, + "probability": 0.3193 + }, + { + "start": 30584.98, + "end": 30587.8, + "probability": 0.7664 + }, + { + "start": 30588.38, + "end": 30590.44, + "probability": 0.6448 + }, + { + "start": 30591.06, + "end": 30592.74, + "probability": 0.6186 + }, + { + "start": 30593.18, + "end": 30593.44, + "probability": 0.023 + }, + { + "start": 30593.44, + "end": 30596.4, + "probability": 0.9834 + }, + { + "start": 30597.04, + "end": 30598.9, + "probability": 0.9915 + }, + { + "start": 30599.62, + "end": 30601.52, + "probability": 0.8118 + }, + { + "start": 30601.72, + "end": 30603.4, + "probability": 0.66 + }, + { + "start": 30604.16, + "end": 30606.76, + "probability": 0.9568 + }, + { + "start": 30607.2, + "end": 30610.08, + "probability": 0.7952 + }, + { + "start": 30610.22, + "end": 30611.48, + "probability": 0.7146 + }, + { + "start": 30611.76, + "end": 30613.24, + "probability": 0.8916 + }, + { + "start": 30613.82, + "end": 30614.76, + "probability": 0.6698 + }, + { + "start": 30615.5, + "end": 30618.14, + "probability": 0.7099 + }, + { + "start": 30618.14, + "end": 30618.88, + "probability": 0.4793 + }, + { + "start": 30618.88, + "end": 30619.7, + "probability": 0.7675 + }, + { + "start": 30620.36, + "end": 30622.52, + "probability": 0.7949 + }, + { + "start": 30623.54, + "end": 30626.08, + "probability": 0.9506 + }, + { + "start": 30626.16, + "end": 30628.76, + "probability": 0.8927 + }, + { + "start": 30629.34, + "end": 30631.08, + "probability": 0.7894 + }, + { + "start": 30631.7, + "end": 30632.36, + "probability": 0.7386 + }, + { + "start": 30632.58, + "end": 30637.44, + "probability": 0.9729 + }, + { + "start": 30638.18, + "end": 30639.08, + "probability": 0.8644 + }, + { + "start": 30639.4, + "end": 30646.02, + "probability": 0.9818 + }, + { + "start": 30646.16, + "end": 30646.56, + "probability": 0.5034 + }, + { + "start": 30646.74, + "end": 30649.24, + "probability": 0.6126 + }, + { + "start": 30649.6, + "end": 30653.82, + "probability": 0.9971 + }, + { + "start": 30654.16, + "end": 30654.34, + "probability": 0.5954 + }, + { + "start": 30654.38, + "end": 30654.94, + "probability": 0.5077 + }, + { + "start": 30655.54, + "end": 30657.82, + "probability": 0.5801 + }, + { + "start": 30657.82, + "end": 30659.25, + "probability": 0.5518 + }, + { + "start": 30659.46, + "end": 30663.28, + "probability": 0.9362 + }, + { + "start": 30663.64, + "end": 30665.06, + "probability": 0.817 + }, + { + "start": 30667.88, + "end": 30668.66, + "probability": 0.3162 + }, + { + "start": 30668.68, + "end": 30669.62, + "probability": 0.4792 + }, + { + "start": 30669.8, + "end": 30670.48, + "probability": 0.4818 + }, + { + "start": 30677.44, + "end": 30682.94, + "probability": 0.1638 + }, + { + "start": 30684.22, + "end": 30688.14, + "probability": 0.597 + }, + { + "start": 30688.68, + "end": 30689.44, + "probability": 0.5618 + }, + { + "start": 30689.84, + "end": 30692.58, + "probability": 0.8275 + }, + { + "start": 30694.26, + "end": 30698.08, + "probability": 0.8508 + }, + { + "start": 30699.02, + "end": 30702.24, + "probability": 0.8672 + }, + { + "start": 30702.66, + "end": 30705.1, + "probability": 0.9269 + }, + { + "start": 30707.78, + "end": 30710.08, + "probability": 0.7846 + }, + { + "start": 30710.58, + "end": 30711.34, + "probability": 0.8342 + }, + { + "start": 30711.78, + "end": 30713.68, + "probability": 0.9515 + }, + { + "start": 30725.4, + "end": 30726.42, + "probability": 0.1888 + }, + { + "start": 30729.06, + "end": 30731.34, + "probability": 0.8511 + }, + { + "start": 30732.74, + "end": 30734.04, + "probability": 0.9258 + }, + { + "start": 30734.72, + "end": 30738.25, + "probability": 0.8937 + }, + { + "start": 30739.54, + "end": 30741.44, + "probability": 0.8527 + }, + { + "start": 30742.56, + "end": 30746.96, + "probability": 0.9969 + }, + { + "start": 30747.56, + "end": 30748.36, + "probability": 0.7357 + }, + { + "start": 30749.34, + "end": 30749.74, + "probability": 0.5918 + }, + { + "start": 30750.38, + "end": 30752.69, + "probability": 0.9855 + }, + { + "start": 30754.02, + "end": 30756.5, + "probability": 0.2716 + }, + { + "start": 30757.38, + "end": 30758.31, + "probability": 0.9502 + }, + { + "start": 30759.66, + "end": 30760.34, + "probability": 0.8355 + }, + { + "start": 30761.88, + "end": 30764.66, + "probability": 0.9046 + }, + { + "start": 30765.32, + "end": 30768.6, + "probability": 0.9991 + }, + { + "start": 30769.3, + "end": 30771.88, + "probability": 0.7446 + }, + { + "start": 30772.88, + "end": 30775.7, + "probability": 0.9962 + }, + { + "start": 30776.26, + "end": 30778.5, + "probability": 0.729 + }, + { + "start": 30779.02, + "end": 30781.08, + "probability": 0.9718 + }, + { + "start": 30782.02, + "end": 30782.86, + "probability": 0.6205 + }, + { + "start": 30783.48, + "end": 30785.0, + "probability": 0.9756 + }, + { + "start": 30785.62, + "end": 30790.94, + "probability": 0.978 + }, + { + "start": 30792.12, + "end": 30794.62, + "probability": 0.9781 + }, + { + "start": 30795.18, + "end": 30797.85, + "probability": 0.9332 + }, + { + "start": 30799.16, + "end": 30804.66, + "probability": 0.9785 + }, + { + "start": 30804.66, + "end": 30810.12, + "probability": 0.9678 + }, + { + "start": 30810.74, + "end": 30813.82, + "probability": 0.9431 + }, + { + "start": 30814.84, + "end": 30817.42, + "probability": 0.7735 + }, + { + "start": 30818.1, + "end": 30820.8, + "probability": 0.7966 + }, + { + "start": 30821.76, + "end": 30824.62, + "probability": 0.9701 + }, + { + "start": 30826.14, + "end": 30830.92, + "probability": 0.5658 + }, + { + "start": 30831.26, + "end": 30833.3, + "probability": 0.4709 + }, + { + "start": 30833.92, + "end": 30835.64, + "probability": 0.8438 + }, + { + "start": 30836.2, + "end": 30842.08, + "probability": 0.8619 + }, + { + "start": 30843.22, + "end": 30844.44, + "probability": 0.9619 + }, + { + "start": 30844.94, + "end": 30846.06, + "probability": 0.9436 + }, + { + "start": 30846.5, + "end": 30849.04, + "probability": 0.9031 + }, + { + "start": 30850.34, + "end": 30852.46, + "probability": 0.7433 + }, + { + "start": 30853.06, + "end": 30856.7, + "probability": 0.9802 + }, + { + "start": 30856.7, + "end": 30860.92, + "probability": 0.9611 + }, + { + "start": 30861.58, + "end": 30864.58, + "probability": 0.7839 + }, + { + "start": 30864.58, + "end": 30869.48, + "probability": 0.9915 + }, + { + "start": 30869.48, + "end": 30876.16, + "probability": 0.8316 + }, + { + "start": 30877.85, + "end": 30881.48, + "probability": 0.7668 + }, + { + "start": 30882.02, + "end": 30884.06, + "probability": 0.8667 + }, + { + "start": 30884.08, + "end": 30884.96, + "probability": 0.4188 + }, + { + "start": 30887.1, + "end": 30888.82, + "probability": 0.8549 + }, + { + "start": 30893.08, + "end": 30894.4, + "probability": 0.7733 + }, + { + "start": 30895.34, + "end": 30896.68, + "probability": 0.9941 + }, + { + "start": 30897.06, + "end": 30900.06, + "probability": 0.9865 + }, + { + "start": 30900.98, + "end": 30904.06, + "probability": 0.9535 + }, + { + "start": 30904.06, + "end": 30907.94, + "probability": 0.9244 + }, + { + "start": 30908.4, + "end": 30910.02, + "probability": 0.9596 + }, + { + "start": 30910.26, + "end": 30911.54, + "probability": 0.9963 + }, + { + "start": 30911.64, + "end": 30913.52, + "probability": 0.9954 + }, + { + "start": 30914.12, + "end": 30917.6, + "probability": 0.8722 + }, + { + "start": 30918.32, + "end": 30920.38, + "probability": 0.9144 + }, + { + "start": 30920.92, + "end": 30921.88, + "probability": 0.8614 + }, + { + "start": 30922.48, + "end": 30926.76, + "probability": 0.904 + }, + { + "start": 30927.48, + "end": 30929.22, + "probability": 0.9602 + }, + { + "start": 30930.46, + "end": 30933.12, + "probability": 0.8195 + }, + { + "start": 30933.74, + "end": 30937.66, + "probability": 0.9956 + }, + { + "start": 30937.74, + "end": 30939.42, + "probability": 0.9976 + }, + { + "start": 30939.92, + "end": 30940.62, + "probability": 0.7987 + }, + { + "start": 30945.14, + "end": 30950.1, + "probability": 0.8534 + }, + { + "start": 30950.74, + "end": 30951.54, + "probability": 0.9564 + }, + { + "start": 30952.1, + "end": 30958.74, + "probability": 0.9673 + }, + { + "start": 30959.2, + "end": 30960.36, + "probability": 0.6002 + }, + { + "start": 30960.4, + "end": 30960.66, + "probability": 0.9571 + }, + { + "start": 30960.72, + "end": 30963.76, + "probability": 0.9879 + }, + { + "start": 30963.82, + "end": 30964.46, + "probability": 0.9721 + }, + { + "start": 30964.9, + "end": 30966.82, + "probability": 0.956 + }, + { + "start": 30967.28, + "end": 30974.02, + "probability": 0.9854 + }, + { + "start": 30974.62, + "end": 30980.5, + "probability": 0.9856 + }, + { + "start": 30981.1, + "end": 30986.34, + "probability": 0.9305 + }, + { + "start": 30987.14, + "end": 30993.56, + "probability": 0.862 + }, + { + "start": 30994.12, + "end": 30995.24, + "probability": 0.9198 + }, + { + "start": 30995.82, + "end": 30998.22, + "probability": 0.6076 + }, + { + "start": 30998.32, + "end": 31001.66, + "probability": 0.9625 + }, + { + "start": 31002.16, + "end": 31002.76, + "probability": 0.7167 + }, + { + "start": 31002.86, + "end": 31003.31, + "probability": 0.5751 + }, + { + "start": 31004.7, + "end": 31008.76, + "probability": 0.975 + }, + { + "start": 31009.6, + "end": 31010.96, + "probability": 0.7855 + }, + { + "start": 31011.3, + "end": 31019.02, + "probability": 0.9838 + }, + { + "start": 31019.24, + "end": 31020.96, + "probability": 0.5916 + }, + { + "start": 31020.96, + "end": 31024.62, + "probability": 0.9889 + }, + { + "start": 31025.36, + "end": 31026.08, + "probability": 0.8724 + }, + { + "start": 31027.02, + "end": 31027.16, + "probability": 0.5092 + }, + { + "start": 31027.52, + "end": 31031.68, + "probability": 0.9297 + }, + { + "start": 31032.26, + "end": 31034.02, + "probability": 0.3464 + }, + { + "start": 31034.1, + "end": 31034.68, + "probability": 0.6352 + }, + { + "start": 31035.36, + "end": 31036.12, + "probability": 0.2173 + }, + { + "start": 31037.26, + "end": 31040.12, + "probability": 0.504 + }, + { + "start": 31040.32, + "end": 31042.98, + "probability": 0.9744 + }, + { + "start": 31043.4, + "end": 31045.36, + "probability": 0.4252 + }, + { + "start": 31045.76, + "end": 31048.88, + "probability": 0.761 + }, + { + "start": 31049.32, + "end": 31050.7, + "probability": 0.2007 + } + ], + "segments_count": 10474, + "words_count": 51584, + "avg_words_per_segment": 4.925, + "avg_segment_duration": 2.1583, + "avg_words_per_minute": 99.6424, + "plenum_id": "48468", + "duration": 31061.47, + "title": null, + "plenum_date": "2015-12-30" +} \ No newline at end of file