diff --git "a/50833/metadata.json" "b/50833/metadata.json" new file mode 100644--- /dev/null +++ "b/50833/metadata.json" @@ -0,0 +1,50202 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "50833", + "quality_score": 0.9172, + "per_segment_quality_scores": [ + { + "start": 88.15, + "end": 90.38, + "probability": 0.7498 + }, + { + "start": 90.8, + "end": 92.07, + "probability": 0.5396 + }, + { + "start": 92.76, + "end": 96.0, + "probability": 0.8904 + }, + { + "start": 96.16, + "end": 96.32, + "probability": 0.7288 + }, + { + "start": 96.46, + "end": 97.37, + "probability": 0.9952 + }, + { + "start": 97.46, + "end": 98.16, + "probability": 0.9417 + }, + { + "start": 98.7, + "end": 99.02, + "probability": 0.9029 + }, + { + "start": 99.34, + "end": 101.52, + "probability": 0.937 + }, + { + "start": 101.66, + "end": 103.96, + "probability": 0.5889 + }, + { + "start": 105.6, + "end": 108.7, + "probability": 0.9565 + }, + { + "start": 109.56, + "end": 110.56, + "probability": 0.7118 + }, + { + "start": 111.68, + "end": 116.42, + "probability": 0.9587 + }, + { + "start": 117.12, + "end": 117.73, + "probability": 0.9907 + }, + { + "start": 119.08, + "end": 123.22, + "probability": 0.8551 + }, + { + "start": 123.8, + "end": 127.04, + "probability": 0.9561 + }, + { + "start": 127.8, + "end": 129.74, + "probability": 0.8845 + }, + { + "start": 130.54, + "end": 130.62, + "probability": 0.0007 + }, + { + "start": 130.62, + "end": 134.98, + "probability": 0.9199 + }, + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 135.0, + "end": 135.0, + "probability": 0.0 + }, + { + "start": 151.7, + "end": 151.92, + "probability": 0.0058 + }, + { + "start": 152.62, + "end": 157.1, + "probability": 0.9829 + }, + { + "start": 157.16, + "end": 160.26, + "probability": 0.8194 + }, + { + "start": 160.9, + "end": 162.92, + "probability": 0.9924 + }, + { + "start": 163.2, + "end": 163.9, + "probability": 0.351 + }, + { + "start": 164.06, + "end": 164.48, + "probability": 0.9353 + }, + { + "start": 164.6, + "end": 165.24, + "probability": 0.7452 + }, + { + "start": 165.6, + "end": 167.56, + "probability": 0.9637 + }, + { + "start": 168.12, + "end": 173.18, + "probability": 0.8347 + }, + { + "start": 173.56, + "end": 176.82, + "probability": 0.8375 + }, + { + "start": 178.06, + "end": 181.48, + "probability": 0.9386 + }, + { + "start": 181.78, + "end": 183.24, + "probability": 0.9889 + }, + { + "start": 183.96, + "end": 187.5, + "probability": 0.7851 + }, + { + "start": 187.56, + "end": 190.6, + "probability": 0.7634 + }, + { + "start": 191.24, + "end": 196.56, + "probability": 0.9791 + }, + { + "start": 196.92, + "end": 196.92, + "probability": 0.0349 + }, + { + "start": 196.92, + "end": 200.34, + "probability": 0.9194 + }, + { + "start": 200.92, + "end": 203.72, + "probability": 0.8463 + }, + { + "start": 204.4, + "end": 207.02, + "probability": 0.9453 + }, + { + "start": 207.5, + "end": 210.32, + "probability": 0.9588 + }, + { + "start": 210.82, + "end": 212.6, + "probability": 0.7699 + }, + { + "start": 213.14, + "end": 215.2, + "probability": 0.7464 + }, + { + "start": 216.34, + "end": 222.92, + "probability": 0.7215 + }, + { + "start": 223.06, + "end": 224.0, + "probability": 0.7494 + }, + { + "start": 224.54, + "end": 225.86, + "probability": 0.6674 + }, + { + "start": 226.52, + "end": 229.12, + "probability": 0.6054 + }, + { + "start": 232.54, + "end": 233.86, + "probability": 0.9746 + }, + { + "start": 234.66, + "end": 236.84, + "probability": 0.8182 + }, + { + "start": 237.7, + "end": 240.04, + "probability": 0.8918 + }, + { + "start": 240.44, + "end": 243.1, + "probability": 0.9282 + }, + { + "start": 243.54, + "end": 247.96, + "probability": 0.9347 + }, + { + "start": 248.44, + "end": 250.12, + "probability": 0.8627 + }, + { + "start": 250.44, + "end": 252.3, + "probability": 0.975 + }, + { + "start": 253.16, + "end": 254.78, + "probability": 0.6869 + }, + { + "start": 254.9, + "end": 258.34, + "probability": 0.7438 + }, + { + "start": 258.88, + "end": 263.06, + "probability": 0.9907 + }, + { + "start": 263.06, + "end": 266.92, + "probability": 0.9845 + }, + { + "start": 267.62, + "end": 270.28, + "probability": 0.9638 + }, + { + "start": 270.76, + "end": 272.2, + "probability": 0.9692 + }, + { + "start": 272.68, + "end": 276.52, + "probability": 0.8745 + }, + { + "start": 276.52, + "end": 279.7, + "probability": 0.9814 + }, + { + "start": 280.12, + "end": 282.92, + "probability": 0.983 + }, + { + "start": 283.96, + "end": 286.78, + "probability": 0.8705 + }, + { + "start": 286.88, + "end": 289.5, + "probability": 0.8628 + }, + { + "start": 289.5, + "end": 294.38, + "probability": 0.9706 + }, + { + "start": 294.58, + "end": 300.52, + "probability": 0.9917 + }, + { + "start": 301.06, + "end": 306.36, + "probability": 0.957 + }, + { + "start": 307.42, + "end": 310.3, + "probability": 0.964 + }, + { + "start": 310.3, + "end": 315.24, + "probability": 0.9741 + }, + { + "start": 316.38, + "end": 324.0, + "probability": 0.9124 + }, + { + "start": 324.54, + "end": 325.5, + "probability": 0.9799 + }, + { + "start": 326.26, + "end": 327.6, + "probability": 0.9631 + }, + { + "start": 328.3, + "end": 332.36, + "probability": 0.9867 + }, + { + "start": 332.98, + "end": 335.96, + "probability": 0.8616 + }, + { + "start": 335.98, + "end": 339.38, + "probability": 0.7698 + }, + { + "start": 340.38, + "end": 340.78, + "probability": 0.4913 + }, + { + "start": 340.88, + "end": 343.7, + "probability": 0.654 + }, + { + "start": 343.8, + "end": 346.04, + "probability": 0.7754 + }, + { + "start": 346.76, + "end": 352.12, + "probability": 0.9543 + }, + { + "start": 352.72, + "end": 356.18, + "probability": 0.7998 + }, + { + "start": 356.46, + "end": 363.7, + "probability": 0.9407 + }, + { + "start": 364.08, + "end": 366.5, + "probability": 0.8732 + }, + { + "start": 368.14, + "end": 370.64, + "probability": 0.7625 + }, + { + "start": 370.82, + "end": 376.92, + "probability": 0.9188 + }, + { + "start": 377.58, + "end": 382.14, + "probability": 0.776 + }, + { + "start": 382.14, + "end": 387.24, + "probability": 0.9585 + }, + { + "start": 387.84, + "end": 391.28, + "probability": 0.949 + }, + { + "start": 391.78, + "end": 393.8, + "probability": 0.985 + }, + { + "start": 394.46, + "end": 399.6, + "probability": 0.9771 + }, + { + "start": 399.6, + "end": 407.42, + "probability": 0.9851 + }, + { + "start": 407.6, + "end": 408.1, + "probability": 0.4099 + }, + { + "start": 408.66, + "end": 413.16, + "probability": 0.9915 + }, + { + "start": 414.36, + "end": 417.0, + "probability": 0.9016 + }, + { + "start": 417.0, + "end": 420.8, + "probability": 0.913 + }, + { + "start": 421.34, + "end": 424.32, + "probability": 0.9959 + }, + { + "start": 424.92, + "end": 427.76, + "probability": 0.6701 + }, + { + "start": 428.28, + "end": 430.28, + "probability": 0.9965 + }, + { + "start": 430.98, + "end": 434.92, + "probability": 0.9831 + }, + { + "start": 434.92, + "end": 440.76, + "probability": 0.9823 + }, + { + "start": 441.22, + "end": 442.5, + "probability": 0.8752 + }, + { + "start": 444.26, + "end": 446.9, + "probability": 0.7731 + }, + { + "start": 448.12, + "end": 448.76, + "probability": 0.8458 + }, + { + "start": 449.36, + "end": 452.16, + "probability": 0.8242 + }, + { + "start": 453.98, + "end": 457.76, + "probability": 0.9395 + }, + { + "start": 458.36, + "end": 460.2, + "probability": 0.9631 + }, + { + "start": 461.02, + "end": 462.34, + "probability": 0.8889 + }, + { + "start": 462.5, + "end": 463.22, + "probability": 0.6879 + }, + { + "start": 463.6, + "end": 464.34, + "probability": 0.4998 + }, + { + "start": 464.92, + "end": 467.72, + "probability": 0.6973 + }, + { + "start": 468.76, + "end": 470.68, + "probability": 0.9461 + }, + { + "start": 471.38, + "end": 476.96, + "probability": 0.7853 + }, + { + "start": 476.96, + "end": 479.76, + "probability": 0.71 + }, + { + "start": 480.42, + "end": 482.46, + "probability": 0.996 + }, + { + "start": 482.76, + "end": 487.94, + "probability": 0.8013 + }, + { + "start": 487.94, + "end": 490.92, + "probability": 0.9715 + }, + { + "start": 491.08, + "end": 495.0, + "probability": 0.9951 + }, + { + "start": 495.54, + "end": 496.76, + "probability": 0.5038 + }, + { + "start": 496.86, + "end": 499.68, + "probability": 0.9863 + }, + { + "start": 505.82, + "end": 507.26, + "probability": 0.6201 + }, + { + "start": 507.3, + "end": 507.78, + "probability": 0.8842 + }, + { + "start": 507.84, + "end": 510.38, + "probability": 0.9231 + }, + { + "start": 510.46, + "end": 515.38, + "probability": 0.6821 + }, + { + "start": 515.52, + "end": 518.5, + "probability": 0.8483 + }, + { + "start": 518.5, + "end": 521.24, + "probability": 0.9342 + }, + { + "start": 521.5, + "end": 522.06, + "probability": 0.6817 + }, + { + "start": 522.46, + "end": 524.84, + "probability": 0.9823 + }, + { + "start": 524.84, + "end": 526.82, + "probability": 0.9924 + }, + { + "start": 526.88, + "end": 529.28, + "probability": 0.9707 + }, + { + "start": 529.5, + "end": 532.12, + "probability": 0.9196 + }, + { + "start": 532.46, + "end": 533.48, + "probability": 0.8423 + }, + { + "start": 533.6, + "end": 535.56, + "probability": 0.9392 + }, + { + "start": 535.68, + "end": 535.98, + "probability": 0.1669 + }, + { + "start": 536.28, + "end": 538.4, + "probability": 0.6266 + }, + { + "start": 539.08, + "end": 540.9, + "probability": 0.9671 + }, + { + "start": 540.9, + "end": 543.04, + "probability": 0.8407 + }, + { + "start": 543.24, + "end": 543.42, + "probability": 0.7238 + }, + { + "start": 543.44, + "end": 545.52, + "probability": 0.7574 + }, + { + "start": 545.88, + "end": 549.58, + "probability": 0.9766 + }, + { + "start": 549.76, + "end": 550.04, + "probability": 0.8192 + }, + { + "start": 550.14, + "end": 551.92, + "probability": 0.9578 + }, + { + "start": 552.82, + "end": 557.58, + "probability": 0.9907 + }, + { + "start": 557.92, + "end": 559.88, + "probability": 0.9214 + }, + { + "start": 559.88, + "end": 561.98, + "probability": 0.9988 + }, + { + "start": 562.2, + "end": 563.9, + "probability": 0.8732 + }, + { + "start": 564.3, + "end": 567.22, + "probability": 0.9974 + }, + { + "start": 567.22, + "end": 569.74, + "probability": 0.9993 + }, + { + "start": 570.04, + "end": 571.16, + "probability": 0.7775 + }, + { + "start": 571.34, + "end": 573.12, + "probability": 0.9587 + }, + { + "start": 573.5, + "end": 574.58, + "probability": 0.7454 + }, + { + "start": 574.62, + "end": 575.04, + "probability": 0.5295 + }, + { + "start": 575.26, + "end": 576.47, + "probability": 0.9956 + }, + { + "start": 576.74, + "end": 578.06, + "probability": 0.8321 + }, + { + "start": 578.52, + "end": 582.24, + "probability": 0.714 + }, + { + "start": 582.7, + "end": 585.38, + "probability": 0.996 + }, + { + "start": 585.96, + "end": 587.3, + "probability": 0.8369 + }, + { + "start": 587.42, + "end": 590.68, + "probability": 0.9928 + }, + { + "start": 591.4, + "end": 595.0, + "probability": 0.9969 + }, + { + "start": 595.18, + "end": 597.82, + "probability": 0.9885 + }, + { + "start": 598.5, + "end": 600.78, + "probability": 0.8744 + }, + { + "start": 601.18, + "end": 601.48, + "probability": 0.2662 + }, + { + "start": 601.48, + "end": 603.2, + "probability": 0.6911 + }, + { + "start": 603.3, + "end": 605.22, + "probability": 0.7859 + }, + { + "start": 606.38, + "end": 608.14, + "probability": 0.6376 + }, + { + "start": 608.62, + "end": 612.98, + "probability": 0.9937 + }, + { + "start": 613.02, + "end": 614.43, + "probability": 0.9917 + }, + { + "start": 615.54, + "end": 616.98, + "probability": 0.9636 + }, + { + "start": 618.22, + "end": 622.24, + "probability": 0.9614 + }, + { + "start": 622.86, + "end": 624.4, + "probability": 0.922 + }, + { + "start": 625.06, + "end": 627.57, + "probability": 0.7429 + }, + { + "start": 628.4, + "end": 631.59, + "probability": 0.9889 + }, + { + "start": 631.84, + "end": 634.44, + "probability": 0.9855 + }, + { + "start": 635.48, + "end": 640.2, + "probability": 0.9924 + }, + { + "start": 640.56, + "end": 643.36, + "probability": 0.8759 + }, + { + "start": 643.82, + "end": 645.1, + "probability": 0.9365 + }, + { + "start": 645.94, + "end": 650.39, + "probability": 0.9011 + }, + { + "start": 650.4, + "end": 653.5, + "probability": 0.985 + }, + { + "start": 653.92, + "end": 657.06, + "probability": 0.9753 + }, + { + "start": 657.06, + "end": 661.3, + "probability": 0.8979 + }, + { + "start": 661.34, + "end": 664.56, + "probability": 0.9647 + }, + { + "start": 664.64, + "end": 665.88, + "probability": 0.9763 + }, + { + "start": 666.72, + "end": 667.64, + "probability": 0.0605 + }, + { + "start": 668.94, + "end": 670.66, + "probability": 0.3679 + }, + { + "start": 671.08, + "end": 673.64, + "probability": 0.198 + }, + { + "start": 675.1, + "end": 677.72, + "probability": 0.9417 + }, + { + "start": 677.94, + "end": 679.05, + "probability": 0.2121 + }, + { + "start": 679.82, + "end": 680.74, + "probability": 0.7998 + }, + { + "start": 681.52, + "end": 682.12, + "probability": 0.1123 + }, + { + "start": 683.5, + "end": 683.6, + "probability": 0.0269 + }, + { + "start": 683.6, + "end": 685.8, + "probability": 0.9258 + }, + { + "start": 686.52, + "end": 688.7, + "probability": 0.9741 + }, + { + "start": 688.72, + "end": 689.76, + "probability": 0.9512 + }, + { + "start": 690.24, + "end": 694.18, + "probability": 0.9954 + }, + { + "start": 694.34, + "end": 694.92, + "probability": 0.6247 + }, + { + "start": 695.5, + "end": 697.64, + "probability": 0.9558 + }, + { + "start": 698.26, + "end": 703.3, + "probability": 0.9178 + }, + { + "start": 704.38, + "end": 704.96, + "probability": 0.2533 + }, + { + "start": 704.96, + "end": 706.78, + "probability": 0.887 + }, + { + "start": 708.34, + "end": 709.88, + "probability": 0.0398 + }, + { + "start": 709.98, + "end": 710.86, + "probability": 0.6393 + }, + { + "start": 711.06, + "end": 713.98, + "probability": 0.906 + }, + { + "start": 714.3, + "end": 715.6, + "probability": 0.7769 + }, + { + "start": 716.06, + "end": 717.78, + "probability": 0.811 + }, + { + "start": 718.96, + "end": 721.18, + "probability": 0.9218 + }, + { + "start": 721.9, + "end": 726.6, + "probability": 0.7738 + }, + { + "start": 727.04, + "end": 728.76, + "probability": 0.6079 + }, + { + "start": 729.12, + "end": 731.16, + "probability": 0.9728 + }, + { + "start": 731.5, + "end": 732.91, + "probability": 0.9682 + }, + { + "start": 733.12, + "end": 735.42, + "probability": 0.7466 + }, + { + "start": 735.96, + "end": 738.44, + "probability": 0.8958 + }, + { + "start": 738.72, + "end": 740.58, + "probability": 0.9902 + }, + { + "start": 741.36, + "end": 743.94, + "probability": 0.8853 + }, + { + "start": 743.94, + "end": 749.0, + "probability": 0.9834 + }, + { + "start": 749.34, + "end": 749.56, + "probability": 0.7233 + }, + { + "start": 749.76, + "end": 750.66, + "probability": 0.747 + }, + { + "start": 751.96, + "end": 756.8, + "probability": 0.865 + }, + { + "start": 757.6, + "end": 758.92, + "probability": 0.9627 + }, + { + "start": 758.96, + "end": 760.7, + "probability": 0.9163 + }, + { + "start": 760.74, + "end": 761.54, + "probability": 0.9408 + }, + { + "start": 762.46, + "end": 764.96, + "probability": 0.6681 + }, + { + "start": 764.96, + "end": 766.25, + "probability": 0.9824 + }, + { + "start": 767.1, + "end": 769.66, + "probability": 0.9162 + }, + { + "start": 769.96, + "end": 772.84, + "probability": 0.9612 + }, + { + "start": 773.78, + "end": 774.22, + "probability": 0.5479 + }, + { + "start": 774.22, + "end": 776.68, + "probability": 0.7442 + }, + { + "start": 776.9, + "end": 777.32, + "probability": 0.8468 + }, + { + "start": 777.58, + "end": 780.18, + "probability": 0.988 + }, + { + "start": 780.52, + "end": 782.72, + "probability": 0.7826 + }, + { + "start": 783.22, + "end": 784.08, + "probability": 0.7031 + }, + { + "start": 784.1, + "end": 784.78, + "probability": 0.7811 + }, + { + "start": 785.64, + "end": 788.86, + "probability": 0.9779 + }, + { + "start": 789.06, + "end": 790.7, + "probability": 0.8825 + }, + { + "start": 791.42, + "end": 794.86, + "probability": 0.8573 + }, + { + "start": 794.96, + "end": 795.34, + "probability": 0.5187 + }, + { + "start": 795.4, + "end": 796.06, + "probability": 0.6273 + }, + { + "start": 796.16, + "end": 802.4, + "probability": 0.8337 + }, + { + "start": 803.2, + "end": 804.94, + "probability": 0.8999 + }, + { + "start": 805.62, + "end": 808.9, + "probability": 0.9852 + }, + { + "start": 809.22, + "end": 811.03, + "probability": 0.828 + }, + { + "start": 811.2, + "end": 818.38, + "probability": 0.9965 + }, + { + "start": 818.64, + "end": 821.76, + "probability": 0.4182 + }, + { + "start": 821.96, + "end": 822.58, + "probability": 0.7878 + }, + { + "start": 822.64, + "end": 825.9, + "probability": 0.9922 + }, + { + "start": 826.72, + "end": 828.28, + "probability": 0.7494 + }, + { + "start": 828.58, + "end": 833.08, + "probability": 0.9927 + }, + { + "start": 833.16, + "end": 834.1, + "probability": 0.8645 + }, + { + "start": 834.18, + "end": 835.62, + "probability": 0.8732 + }, + { + "start": 835.72, + "end": 837.44, + "probability": 0.8707 + }, + { + "start": 837.46, + "end": 841.08, + "probability": 0.9705 + }, + { + "start": 841.22, + "end": 842.48, + "probability": 0.9752 + }, + { + "start": 842.72, + "end": 843.08, + "probability": 0.3134 + }, + { + "start": 843.66, + "end": 845.4, + "probability": 0.9188 + }, + { + "start": 845.42, + "end": 846.42, + "probability": 0.5902 + }, + { + "start": 846.78, + "end": 848.24, + "probability": 0.9503 + }, + { + "start": 848.3, + "end": 850.64, + "probability": 0.9943 + }, + { + "start": 850.84, + "end": 852.24, + "probability": 0.9165 + }, + { + "start": 852.86, + "end": 853.46, + "probability": 0.6811 + }, + { + "start": 853.66, + "end": 858.86, + "probability": 0.9358 + }, + { + "start": 859.14, + "end": 865.2, + "probability": 0.9284 + }, + { + "start": 865.24, + "end": 866.46, + "probability": 0.6279 + }, + { + "start": 867.06, + "end": 870.84, + "probability": 0.9875 + }, + { + "start": 871.26, + "end": 873.06, + "probability": 0.8184 + }, + { + "start": 873.32, + "end": 875.68, + "probability": 0.7754 + }, + { + "start": 876.38, + "end": 878.66, + "probability": 0.981 + }, + { + "start": 879.3, + "end": 880.62, + "probability": 0.755 + }, + { + "start": 880.72, + "end": 882.7, + "probability": 0.9744 + }, + { + "start": 882.94, + "end": 883.34, + "probability": 0.8477 + }, + { + "start": 883.44, + "end": 883.96, + "probability": 0.557 + }, + { + "start": 883.96, + "end": 885.54, + "probability": 0.7089 + }, + { + "start": 885.7, + "end": 887.36, + "probability": 0.6736 + }, + { + "start": 887.36, + "end": 887.89, + "probability": 0.2086 + }, + { + "start": 888.48, + "end": 889.54, + "probability": 0.4039 + }, + { + "start": 890.3, + "end": 891.36, + "probability": 0.3393 + }, + { + "start": 892.54, + "end": 896.68, + "probability": 0.822 + }, + { + "start": 897.22, + "end": 899.29, + "probability": 0.5388 + }, + { + "start": 900.1, + "end": 905.1, + "probability": 0.9732 + }, + { + "start": 905.1, + "end": 909.04, + "probability": 0.9873 + }, + { + "start": 909.58, + "end": 912.36, + "probability": 0.9622 + }, + { + "start": 912.64, + "end": 915.08, + "probability": 0.7289 + }, + { + "start": 915.26, + "end": 919.78, + "probability": 0.9602 + }, + { + "start": 919.86, + "end": 921.7, + "probability": 0.9436 + }, + { + "start": 921.84, + "end": 924.52, + "probability": 0.9717 + }, + { + "start": 925.48, + "end": 927.26, + "probability": 0.9987 + }, + { + "start": 927.26, + "end": 930.1, + "probability": 0.9891 + }, + { + "start": 930.96, + "end": 933.48, + "probability": 0.9318 + }, + { + "start": 933.72, + "end": 934.54, + "probability": 0.8878 + }, + { + "start": 935.14, + "end": 939.0, + "probability": 0.9767 + }, + { + "start": 939.1, + "end": 940.42, + "probability": 0.8763 + }, + { + "start": 940.82, + "end": 943.0, + "probability": 0.9825 + }, + { + "start": 943.02, + "end": 947.08, + "probability": 0.8481 + }, + { + "start": 947.62, + "end": 949.06, + "probability": 0.9631 + }, + { + "start": 949.66, + "end": 950.42, + "probability": 0.743 + }, + { + "start": 951.52, + "end": 952.3, + "probability": 0.0596 + }, + { + "start": 952.84, + "end": 955.3, + "probability": 0.8351 + }, + { + "start": 955.52, + "end": 955.84, + "probability": 0.3926 + }, + { + "start": 955.84, + "end": 957.76, + "probability": 0.4698 + }, + { + "start": 957.86, + "end": 959.66, + "probability": 0.8291 + }, + { + "start": 959.92, + "end": 960.68, + "probability": 0.7058 + }, + { + "start": 961.62, + "end": 962.18, + "probability": 0.3021 + }, + { + "start": 963.2, + "end": 967.22, + "probability": 0.9668 + }, + { + "start": 967.58, + "end": 971.28, + "probability": 0.9979 + }, + { + "start": 972.26, + "end": 972.9, + "probability": 0.8449 + }, + { + "start": 972.92, + "end": 976.52, + "probability": 0.75 + }, + { + "start": 977.28, + "end": 978.2, + "probability": 0.8823 + }, + { + "start": 979.08, + "end": 980.88, + "probability": 0.8377 + }, + { + "start": 981.7, + "end": 982.34, + "probability": 0.5132 + }, + { + "start": 982.86, + "end": 985.64, + "probability": 0.9959 + }, + { + "start": 986.36, + "end": 989.18, + "probability": 0.9922 + }, + { + "start": 989.18, + "end": 991.84, + "probability": 0.9636 + }, + { + "start": 992.22, + "end": 993.0, + "probability": 0.8371 + }, + { + "start": 993.74, + "end": 997.06, + "probability": 0.9663 + }, + { + "start": 997.06, + "end": 1001.08, + "probability": 0.994 + }, + { + "start": 1001.8, + "end": 1004.38, + "probability": 0.9489 + }, + { + "start": 1005.33, + "end": 1008.18, + "probability": 0.8012 + }, + { + "start": 1008.8, + "end": 1010.02, + "probability": 0.9764 + }, + { + "start": 1011.62, + "end": 1014.96, + "probability": 0.9764 + }, + { + "start": 1014.98, + "end": 1015.98, + "probability": 0.9528 + }, + { + "start": 1016.46, + "end": 1018.64, + "probability": 0.9816 + }, + { + "start": 1018.72, + "end": 1022.54, + "probability": 0.9266 + }, + { + "start": 1023.78, + "end": 1024.48, + "probability": 0.8758 + }, + { + "start": 1025.32, + "end": 1030.98, + "probability": 0.978 + }, + { + "start": 1032.12, + "end": 1035.68, + "probability": 0.8872 + }, + { + "start": 1036.44, + "end": 1040.02, + "probability": 0.9432 + }, + { + "start": 1040.02, + "end": 1045.14, + "probability": 0.9987 + }, + { + "start": 1046.16, + "end": 1048.88, + "probability": 0.9919 + }, + { + "start": 1048.88, + "end": 1050.88, + "probability": 0.9788 + }, + { + "start": 1051.36, + "end": 1053.96, + "probability": 0.9232 + }, + { + "start": 1054.7, + "end": 1058.26, + "probability": 0.7762 + }, + { + "start": 1058.26, + "end": 1061.64, + "probability": 0.9714 + }, + { + "start": 1062.7, + "end": 1065.68, + "probability": 0.9469 + }, + { + "start": 1066.34, + "end": 1068.54, + "probability": 0.9873 + }, + { + "start": 1069.04, + "end": 1074.1, + "probability": 0.9973 + }, + { + "start": 1074.1, + "end": 1079.66, + "probability": 0.9876 + }, + { + "start": 1081.24, + "end": 1081.8, + "probability": 0.4292 + }, + { + "start": 1082.62, + "end": 1085.84, + "probability": 0.7369 + }, + { + "start": 1088.76, + "end": 1089.92, + "probability": 0.6129 + }, + { + "start": 1089.96, + "end": 1090.42, + "probability": 0.895 + }, + { + "start": 1090.46, + "end": 1093.24, + "probability": 0.9218 + }, + { + "start": 1093.3, + "end": 1094.36, + "probability": 0.7731 + }, + { + "start": 1094.44, + "end": 1097.56, + "probability": 0.9843 + }, + { + "start": 1097.64, + "end": 1098.9, + "probability": 0.9203 + }, + { + "start": 1098.94, + "end": 1102.38, + "probability": 0.7494 + }, + { + "start": 1102.96, + "end": 1107.02, + "probability": 0.9893 + }, + { + "start": 1107.1, + "end": 1111.34, + "probability": 0.9355 + }, + { + "start": 1111.82, + "end": 1113.36, + "probability": 0.8244 + }, + { + "start": 1114.28, + "end": 1115.44, + "probability": 0.6337 + }, + { + "start": 1115.52, + "end": 1118.12, + "probability": 0.9366 + }, + { + "start": 1118.54, + "end": 1122.28, + "probability": 0.9873 + }, + { + "start": 1122.28, + "end": 1127.16, + "probability": 0.9956 + }, + { + "start": 1127.86, + "end": 1133.2, + "probability": 0.9714 + }, + { + "start": 1133.34, + "end": 1137.02, + "probability": 0.985 + }, + { + "start": 1137.02, + "end": 1139.94, + "probability": 0.9935 + }, + { + "start": 1140.02, + "end": 1144.92, + "probability": 0.9878 + }, + { + "start": 1145.24, + "end": 1146.58, + "probability": 0.7768 + }, + { + "start": 1146.76, + "end": 1147.7, + "probability": 0.7847 + }, + { + "start": 1147.76, + "end": 1149.12, + "probability": 0.8287 + }, + { + "start": 1149.16, + "end": 1151.1, + "probability": 0.9269 + }, + { + "start": 1151.28, + "end": 1152.98, + "probability": 0.9875 + }, + { + "start": 1153.48, + "end": 1153.94, + "probability": 0.7795 + }, + { + "start": 1153.96, + "end": 1157.02, + "probability": 0.9924 + }, + { + "start": 1157.22, + "end": 1162.26, + "probability": 0.9947 + }, + { + "start": 1162.38, + "end": 1164.8, + "probability": 0.9941 + }, + { + "start": 1164.92, + "end": 1165.36, + "probability": 0.2672 + }, + { + "start": 1165.36, + "end": 1167.24, + "probability": 0.883 + }, + { + "start": 1167.68, + "end": 1168.8, + "probability": 0.831 + }, + { + "start": 1169.52, + "end": 1169.98, + "probability": 0.8704 + }, + { + "start": 1170.9, + "end": 1173.6, + "probability": 0.9297 + }, + { + "start": 1173.68, + "end": 1176.22, + "probability": 0.8385 + }, + { + "start": 1177.72, + "end": 1184.38, + "probability": 0.9495 + }, + { + "start": 1184.98, + "end": 1186.82, + "probability": 0.9733 + }, + { + "start": 1187.36, + "end": 1187.94, + "probability": 0.5083 + }, + { + "start": 1188.26, + "end": 1192.28, + "probability": 0.9805 + }, + { + "start": 1193.18, + "end": 1197.1, + "probability": 0.992 + }, + { + "start": 1197.62, + "end": 1198.42, + "probability": 0.7364 + }, + { + "start": 1198.84, + "end": 1201.3, + "probability": 0.7969 + }, + { + "start": 1201.8, + "end": 1202.58, + "probability": 0.9395 + }, + { + "start": 1203.12, + "end": 1206.06, + "probability": 0.8893 + }, + { + "start": 1206.66, + "end": 1208.38, + "probability": 0.9246 + }, + { + "start": 1208.82, + "end": 1213.94, + "probability": 0.9668 + }, + { + "start": 1214.06, + "end": 1219.14, + "probability": 0.886 + }, + { + "start": 1219.56, + "end": 1222.52, + "probability": 0.8975 + }, + { + "start": 1223.16, + "end": 1224.0, + "probability": 0.5621 + }, + { + "start": 1224.0, + "end": 1226.16, + "probability": 0.9799 + }, + { + "start": 1226.32, + "end": 1227.08, + "probability": 0.6962 + }, + { + "start": 1227.58, + "end": 1232.06, + "probability": 0.5216 + }, + { + "start": 1232.3, + "end": 1232.5, + "probability": 0.4804 + }, + { + "start": 1232.62, + "end": 1232.76, + "probability": 0.011 + }, + { + "start": 1233.18, + "end": 1239.3, + "probability": 0.8013 + }, + { + "start": 1239.92, + "end": 1243.14, + "probability": 0.8099 + }, + { + "start": 1243.14, + "end": 1245.1, + "probability": 0.9797 + }, + { + "start": 1245.5, + "end": 1249.68, + "probability": 0.9508 + }, + { + "start": 1249.78, + "end": 1251.32, + "probability": 0.0338 + }, + { + "start": 1251.32, + "end": 1252.24, + "probability": 0.9644 + }, + { + "start": 1253.48, + "end": 1254.66, + "probability": 0.6972 + }, + { + "start": 1254.72, + "end": 1256.04, + "probability": 0.8589 + }, + { + "start": 1257.04, + "end": 1260.94, + "probability": 0.5645 + }, + { + "start": 1261.0, + "end": 1263.76, + "probability": 0.5277 + }, + { + "start": 1264.21, + "end": 1266.9, + "probability": 0.6024 + }, + { + "start": 1268.8, + "end": 1269.48, + "probability": 0.7939 + }, + { + "start": 1270.32, + "end": 1271.32, + "probability": 0.7683 + }, + { + "start": 1274.34, + "end": 1275.42, + "probability": 0.9011 + }, + { + "start": 1276.16, + "end": 1277.14, + "probability": 0.4359 + }, + { + "start": 1277.16, + "end": 1279.66, + "probability": 0.67 + }, + { + "start": 1281.0, + "end": 1283.24, + "probability": 0.9578 + }, + { + "start": 1283.24, + "end": 1286.2, + "probability": 0.8193 + }, + { + "start": 1287.0, + "end": 1287.44, + "probability": 0.797 + }, + { + "start": 1288.2, + "end": 1290.78, + "probability": 0.8851 + }, + { + "start": 1290.98, + "end": 1291.74, + "probability": 0.6858 + }, + { + "start": 1292.26, + "end": 1296.76, + "probability": 0.886 + }, + { + "start": 1298.84, + "end": 1300.72, + "probability": 0.791 + }, + { + "start": 1300.74, + "end": 1301.72, + "probability": 0.7167 + }, + { + "start": 1301.78, + "end": 1303.62, + "probability": 0.4192 + }, + { + "start": 1304.14, + "end": 1305.75, + "probability": 0.5616 + }, + { + "start": 1307.84, + "end": 1309.82, + "probability": 0.8883 + }, + { + "start": 1311.02, + "end": 1312.38, + "probability": 0.9365 + }, + { + "start": 1315.72, + "end": 1317.58, + "probability": 0.9727 + }, + { + "start": 1318.1, + "end": 1321.42, + "probability": 0.9383 + }, + { + "start": 1322.04, + "end": 1326.66, + "probability": 0.981 + }, + { + "start": 1327.46, + "end": 1329.42, + "probability": 0.9806 + }, + { + "start": 1329.42, + "end": 1333.38, + "probability": 0.9404 + }, + { + "start": 1334.18, + "end": 1337.12, + "probability": 0.9651 + }, + { + "start": 1337.86, + "end": 1341.14, + "probability": 0.9975 + }, + { + "start": 1341.74, + "end": 1344.06, + "probability": 0.9857 + }, + { + "start": 1344.62, + "end": 1347.18, + "probability": 0.976 + }, + { + "start": 1347.98, + "end": 1352.14, + "probability": 0.9659 + }, + { + "start": 1352.84, + "end": 1357.02, + "probability": 0.7899 + }, + { + "start": 1357.56, + "end": 1360.84, + "probability": 0.9845 + }, + { + "start": 1361.48, + "end": 1364.53, + "probability": 0.89 + }, + { + "start": 1365.16, + "end": 1367.4, + "probability": 0.834 + }, + { + "start": 1367.98, + "end": 1370.52, + "probability": 0.9431 + }, + { + "start": 1371.3, + "end": 1374.96, + "probability": 0.9549 + }, + { + "start": 1375.48, + "end": 1377.88, + "probability": 0.8242 + }, + { + "start": 1378.46, + "end": 1382.04, + "probability": 0.9957 + }, + { + "start": 1383.08, + "end": 1386.84, + "probability": 0.9179 + }, + { + "start": 1387.54, + "end": 1391.02, + "probability": 0.7559 + }, + { + "start": 1391.92, + "end": 1394.0, + "probability": 0.7635 + }, + { + "start": 1395.04, + "end": 1400.48, + "probability": 0.7894 + }, + { + "start": 1400.54, + "end": 1402.16, + "probability": 0.9893 + }, + { + "start": 1402.7, + "end": 1404.46, + "probability": 0.9965 + }, + { + "start": 1405.28, + "end": 1409.7, + "probability": 0.9863 + }, + { + "start": 1410.58, + "end": 1411.14, + "probability": 0.8313 + }, + { + "start": 1411.78, + "end": 1414.58, + "probability": 0.9794 + }, + { + "start": 1415.54, + "end": 1420.48, + "probability": 0.9776 + }, + { + "start": 1421.56, + "end": 1426.06, + "probability": 0.7957 + }, + { + "start": 1426.5, + "end": 1429.72, + "probability": 0.8914 + }, + { + "start": 1429.72, + "end": 1432.78, + "probability": 0.9757 + }, + { + "start": 1433.36, + "end": 1434.4, + "probability": 0.8508 + }, + { + "start": 1434.52, + "end": 1435.37, + "probability": 0.8622 + }, + { + "start": 1437.08, + "end": 1441.2, + "probability": 0.8907 + }, + { + "start": 1441.82, + "end": 1447.96, + "probability": 0.9697 + }, + { + "start": 1447.96, + "end": 1452.42, + "probability": 0.9774 + }, + { + "start": 1452.78, + "end": 1455.32, + "probability": 0.8928 + }, + { + "start": 1455.86, + "end": 1457.0, + "probability": 0.583 + }, + { + "start": 1457.54, + "end": 1461.82, + "probability": 0.8404 + }, + { + "start": 1461.82, + "end": 1466.14, + "probability": 0.9785 + }, + { + "start": 1467.1, + "end": 1470.2, + "probability": 0.8995 + }, + { + "start": 1470.26, + "end": 1471.96, + "probability": 0.9071 + }, + { + "start": 1472.52, + "end": 1477.28, + "probability": 0.9631 + }, + { + "start": 1477.76, + "end": 1478.24, + "probability": 0.8465 + }, + { + "start": 1478.92, + "end": 1480.42, + "probability": 0.9641 + }, + { + "start": 1481.0, + "end": 1484.56, + "probability": 0.9813 + }, + { + "start": 1485.5, + "end": 1489.82, + "probability": 0.9491 + }, + { + "start": 1490.34, + "end": 1494.38, + "probability": 0.9888 + }, + { + "start": 1494.38, + "end": 1497.66, + "probability": 0.9826 + }, + { + "start": 1498.18, + "end": 1499.48, + "probability": 0.9087 + }, + { + "start": 1500.2, + "end": 1501.46, + "probability": 0.6685 + }, + { + "start": 1502.02, + "end": 1503.22, + "probability": 0.9751 + }, + { + "start": 1503.76, + "end": 1505.1, + "probability": 0.9551 + }, + { + "start": 1505.62, + "end": 1510.16, + "probability": 0.871 + }, + { + "start": 1510.56, + "end": 1513.88, + "probability": 0.9609 + }, + { + "start": 1514.32, + "end": 1517.4, + "probability": 0.977 + }, + { + "start": 1518.26, + "end": 1519.84, + "probability": 0.8406 + }, + { + "start": 1520.32, + "end": 1526.06, + "probability": 0.7729 + }, + { + "start": 1526.58, + "end": 1527.86, + "probability": 0.9199 + }, + { + "start": 1528.54, + "end": 1529.93, + "probability": 0.8646 + }, + { + "start": 1532.56, + "end": 1532.6, + "probability": 0.0242 + }, + { + "start": 1532.6, + "end": 1537.6, + "probability": 0.9626 + }, + { + "start": 1538.36, + "end": 1543.06, + "probability": 0.941 + }, + { + "start": 1543.62, + "end": 1544.7, + "probability": 0.7547 + }, + { + "start": 1545.54, + "end": 1548.54, + "probability": 0.8672 + }, + { + "start": 1549.62, + "end": 1552.18, + "probability": 0.9234 + }, + { + "start": 1552.18, + "end": 1555.32, + "probability": 0.9859 + }, + { + "start": 1555.68, + "end": 1557.86, + "probability": 0.9719 + }, + { + "start": 1558.6, + "end": 1560.89, + "probability": 0.7676 + }, + { + "start": 1561.5, + "end": 1563.98, + "probability": 0.8434 + }, + { + "start": 1564.54, + "end": 1567.3, + "probability": 0.9575 + }, + { + "start": 1567.86, + "end": 1571.38, + "probability": 0.9739 + }, + { + "start": 1572.14, + "end": 1576.48, + "probability": 0.902 + }, + { + "start": 1577.0, + "end": 1578.02, + "probability": 0.7918 + }, + { + "start": 1580.12, + "end": 1582.2, + "probability": 0.9884 + }, + { + "start": 1582.2, + "end": 1584.98, + "probability": 0.9288 + }, + { + "start": 1585.54, + "end": 1587.6, + "probability": 0.905 + }, + { + "start": 1588.76, + "end": 1589.78, + "probability": 0.5447 + }, + { + "start": 1590.52, + "end": 1595.82, + "probability": 0.9956 + }, + { + "start": 1596.74, + "end": 1602.68, + "probability": 0.978 + }, + { + "start": 1603.54, + "end": 1606.82, + "probability": 0.987 + }, + { + "start": 1608.0, + "end": 1612.16, + "probability": 0.9911 + }, + { + "start": 1612.8, + "end": 1615.68, + "probability": 0.9795 + }, + { + "start": 1617.34, + "end": 1617.76, + "probability": 0.7539 + }, + { + "start": 1618.42, + "end": 1622.92, + "probability": 0.9706 + }, + { + "start": 1623.6, + "end": 1625.54, + "probability": 0.9191 + }, + { + "start": 1625.54, + "end": 1629.64, + "probability": 0.9723 + }, + { + "start": 1630.2, + "end": 1631.3, + "probability": 0.9707 + }, + { + "start": 1632.0, + "end": 1634.14, + "probability": 0.9903 + }, + { + "start": 1634.14, + "end": 1637.48, + "probability": 0.9068 + }, + { + "start": 1637.58, + "end": 1640.7, + "probability": 0.8186 + }, + { + "start": 1640.7, + "end": 1643.54, + "probability": 0.942 + }, + { + "start": 1644.46, + "end": 1645.32, + "probability": 0.8282 + }, + { + "start": 1645.92, + "end": 1647.5, + "probability": 0.9489 + }, + { + "start": 1648.22, + "end": 1649.5, + "probability": 0.9934 + }, + { + "start": 1650.04, + "end": 1654.16, + "probability": 0.9614 + }, + { + "start": 1654.82, + "end": 1657.64, + "probability": 0.9696 + }, + { + "start": 1658.52, + "end": 1661.44, + "probability": 0.8981 + }, + { + "start": 1662.04, + "end": 1664.42, + "probability": 0.9589 + }, + { + "start": 1665.5, + "end": 1668.5, + "probability": 0.9958 + }, + { + "start": 1669.12, + "end": 1670.08, + "probability": 0.6474 + }, + { + "start": 1670.7, + "end": 1673.31, + "probability": 0.9751 + }, + { + "start": 1674.36, + "end": 1677.36, + "probability": 0.9569 + }, + { + "start": 1678.1, + "end": 1682.1, + "probability": 0.9762 + }, + { + "start": 1682.58, + "end": 1683.44, + "probability": 0.7372 + }, + { + "start": 1685.2, + "end": 1685.8, + "probability": 0.0001 + }, + { + "start": 1686.54, + "end": 1687.88, + "probability": 0.0459 + }, + { + "start": 1689.8, + "end": 1689.8, + "probability": 0.2583 + }, + { + "start": 1689.8, + "end": 1689.8, + "probability": 0.0211 + }, + { + "start": 1689.8, + "end": 1690.66, + "probability": 0.4648 + }, + { + "start": 1690.68, + "end": 1693.1, + "probability": 0.9629 + }, + { + "start": 1693.24, + "end": 1693.98, + "probability": 0.9523 + }, + { + "start": 1695.06, + "end": 1696.0, + "probability": 0.9874 + }, + { + "start": 1697.0, + "end": 1701.54, + "probability": 0.8974 + }, + { + "start": 1701.58, + "end": 1707.54, + "probability": 0.9846 + }, + { + "start": 1708.1, + "end": 1710.02, + "probability": 0.957 + }, + { + "start": 1710.8, + "end": 1714.66, + "probability": 0.9963 + }, + { + "start": 1715.12, + "end": 1718.36, + "probability": 0.9966 + }, + { + "start": 1719.0, + "end": 1723.18, + "probability": 0.9855 + }, + { + "start": 1723.74, + "end": 1723.94, + "probability": 0.6899 + }, + { + "start": 1724.28, + "end": 1725.2, + "probability": 0.6394 + }, + { + "start": 1725.26, + "end": 1726.68, + "probability": 0.9907 + }, + { + "start": 1726.7, + "end": 1727.52, + "probability": 0.7675 + }, + { + "start": 1728.18, + "end": 1729.46, + "probability": 0.9104 + }, + { + "start": 1729.62, + "end": 1732.13, + "probability": 0.9845 + }, + { + "start": 1733.06, + "end": 1735.38, + "probability": 0.8211 + }, + { + "start": 1735.52, + "end": 1736.64, + "probability": 0.5533 + }, + { + "start": 1737.18, + "end": 1738.86, + "probability": 0.5924 + }, + { + "start": 1739.3, + "end": 1742.12, + "probability": 0.8472 + }, + { + "start": 1743.04, + "end": 1744.28, + "probability": 0.2041 + }, + { + "start": 1745.12, + "end": 1746.35, + "probability": 0.1187 + }, + { + "start": 1746.46, + "end": 1747.18, + "probability": 0.345 + }, + { + "start": 1747.18, + "end": 1748.36, + "probability": 0.6141 + }, + { + "start": 1748.4, + "end": 1750.64, + "probability": 0.9953 + }, + { + "start": 1751.3, + "end": 1751.68, + "probability": 0.2204 + }, + { + "start": 1752.52, + "end": 1755.76, + "probability": 0.9507 + }, + { + "start": 1755.86, + "end": 1758.48, + "probability": 0.9752 + }, + { + "start": 1759.82, + "end": 1759.82, + "probability": 0.1084 + }, + { + "start": 1759.82, + "end": 1760.14, + "probability": 0.6437 + }, + { + "start": 1760.62, + "end": 1761.72, + "probability": 0.8727 + }, + { + "start": 1761.9, + "end": 1762.18, + "probability": 0.7957 + }, + { + "start": 1762.28, + "end": 1763.6, + "probability": 0.8647 + }, + { + "start": 1763.66, + "end": 1765.98, + "probability": 0.8823 + }, + { + "start": 1766.34, + "end": 1767.02, + "probability": 0.8232 + }, + { + "start": 1767.02, + "end": 1768.98, + "probability": 0.934 + }, + { + "start": 1769.1, + "end": 1771.26, + "probability": 0.9683 + }, + { + "start": 1773.12, + "end": 1774.88, + "probability": 0.848 + }, + { + "start": 1775.66, + "end": 1778.28, + "probability": 0.8555 + }, + { + "start": 1781.02, + "end": 1783.02, + "probability": 0.0243 + }, + { + "start": 1785.3, + "end": 1786.28, + "probability": 0.1583 + }, + { + "start": 1786.84, + "end": 1787.38, + "probability": 0.0897 + }, + { + "start": 1787.38, + "end": 1788.1, + "probability": 0.3985 + }, + { + "start": 1788.1, + "end": 1789.32, + "probability": 0.7995 + }, + { + "start": 1789.7, + "end": 1789.7, + "probability": 0.4168 + }, + { + "start": 1789.7, + "end": 1792.98, + "probability": 0.7795 + }, + { + "start": 1793.3, + "end": 1793.98, + "probability": 0.5722 + }, + { + "start": 1794.06, + "end": 1794.67, + "probability": 0.6565 + }, + { + "start": 1796.1, + "end": 1798.15, + "probability": 0.7903 + }, + { + "start": 1798.3, + "end": 1799.65, + "probability": 0.977 + }, + { + "start": 1800.18, + "end": 1801.86, + "probability": 0.7627 + }, + { + "start": 1802.02, + "end": 1803.04, + "probability": 0.6836 + }, + { + "start": 1803.2, + "end": 1804.02, + "probability": 0.926 + }, + { + "start": 1804.12, + "end": 1804.96, + "probability": 0.8796 + }, + { + "start": 1806.16, + "end": 1807.97, + "probability": 0.8824 + }, + { + "start": 1808.72, + "end": 1809.62, + "probability": 0.8413 + }, + { + "start": 1810.2, + "end": 1811.82, + "probability": 0.9941 + }, + { + "start": 1812.34, + "end": 1813.5, + "probability": 0.9734 + }, + { + "start": 1814.32, + "end": 1816.14, + "probability": 0.9615 + }, + { + "start": 1816.3, + "end": 1817.7, + "probability": 0.9699 + }, + { + "start": 1818.46, + "end": 1819.3, + "probability": 0.6376 + }, + { + "start": 1819.68, + "end": 1820.46, + "probability": 0.8383 + }, + { + "start": 1820.54, + "end": 1822.92, + "probability": 0.9717 + }, + { + "start": 1823.04, + "end": 1825.92, + "probability": 0.9786 + }, + { + "start": 1825.92, + "end": 1828.5, + "probability": 0.9946 + }, + { + "start": 1829.02, + "end": 1830.88, + "probability": 0.997 + }, + { + "start": 1832.0, + "end": 1833.76, + "probability": 0.938 + }, + { + "start": 1833.84, + "end": 1835.2, + "probability": 0.9679 + }, + { + "start": 1835.82, + "end": 1837.9, + "probability": 0.9184 + }, + { + "start": 1838.94, + "end": 1840.04, + "probability": 0.8772 + }, + { + "start": 1840.06, + "end": 1842.4, + "probability": 0.9824 + }, + { + "start": 1842.56, + "end": 1843.58, + "probability": 0.5812 + }, + { + "start": 1844.32, + "end": 1845.46, + "probability": 0.967 + }, + { + "start": 1846.5, + "end": 1846.87, + "probability": 0.9092 + }, + { + "start": 1847.16, + "end": 1850.88, + "probability": 0.95 + }, + { + "start": 1851.4, + "end": 1853.04, + "probability": 0.8047 + }, + { + "start": 1853.56, + "end": 1856.62, + "probability": 0.9524 + }, + { + "start": 1858.1, + "end": 1860.52, + "probability": 0.8385 + }, + { + "start": 1861.18, + "end": 1862.85, + "probability": 0.8651 + }, + { + "start": 1864.08, + "end": 1865.6, + "probability": 0.9131 + }, + { + "start": 1865.64, + "end": 1869.07, + "probability": 0.9922 + }, + { + "start": 1869.32, + "end": 1869.32, + "probability": 0.2647 + }, + { + "start": 1869.32, + "end": 1870.56, + "probability": 0.728 + }, + { + "start": 1871.52, + "end": 1872.82, + "probability": 0.8315 + }, + { + "start": 1873.2, + "end": 1875.44, + "probability": 0.996 + }, + { + "start": 1876.08, + "end": 1877.34, + "probability": 0.978 + }, + { + "start": 1877.76, + "end": 1877.94, + "probability": 0.8284 + }, + { + "start": 1878.46, + "end": 1881.04, + "probability": 0.7922 + }, + { + "start": 1881.16, + "end": 1884.84, + "probability": 0.8029 + }, + { + "start": 1885.58, + "end": 1887.48, + "probability": 0.9866 + }, + { + "start": 1887.74, + "end": 1890.64, + "probability": 0.6998 + }, + { + "start": 1891.1, + "end": 1892.84, + "probability": 0.9961 + }, + { + "start": 1893.4, + "end": 1894.7, + "probability": 0.7817 + }, + { + "start": 1895.98, + "end": 1897.7, + "probability": 0.9531 + }, + { + "start": 1898.34, + "end": 1900.6, + "probability": 0.6508 + }, + { + "start": 1901.2, + "end": 1902.38, + "probability": 0.7989 + }, + { + "start": 1903.08, + "end": 1905.36, + "probability": 0.9912 + }, + { + "start": 1905.88, + "end": 1908.64, + "probability": 0.99 + }, + { + "start": 1909.04, + "end": 1911.8, + "probability": 0.9873 + }, + { + "start": 1912.18, + "end": 1913.36, + "probability": 0.6855 + }, + { + "start": 1913.48, + "end": 1919.16, + "probability": 0.8408 + }, + { + "start": 1919.32, + "end": 1919.64, + "probability": 0.7246 + }, + { + "start": 1919.88, + "end": 1921.34, + "probability": 0.9766 + }, + { + "start": 1921.46, + "end": 1922.3, + "probability": 0.7207 + }, + { + "start": 1922.9, + "end": 1924.66, + "probability": 0.7841 + }, + { + "start": 1925.08, + "end": 1925.96, + "probability": 0.9759 + }, + { + "start": 1926.56, + "end": 1931.18, + "probability": 0.9736 + }, + { + "start": 1931.18, + "end": 1934.45, + "probability": 0.9987 + }, + { + "start": 1935.1, + "end": 1936.32, + "probability": 0.8566 + }, + { + "start": 1937.32, + "end": 1938.46, + "probability": 0.7734 + }, + { + "start": 1938.54, + "end": 1943.34, + "probability": 0.9915 + }, + { + "start": 1943.92, + "end": 1944.9, + "probability": 0.5218 + }, + { + "start": 1945.08, + "end": 1948.34, + "probability": 0.9601 + }, + { + "start": 1948.46, + "end": 1952.4, + "probability": 0.6639 + }, + { + "start": 1952.4, + "end": 1957.74, + "probability": 0.7703 + }, + { + "start": 1957.8, + "end": 1960.7, + "probability": 0.9971 + }, + { + "start": 1960.96, + "end": 1962.38, + "probability": 0.7446 + }, + { + "start": 1962.92, + "end": 1964.18, + "probability": 0.6419 + }, + { + "start": 1964.28, + "end": 1966.14, + "probability": 0.9278 + }, + { + "start": 1971.0, + "end": 1972.94, + "probability": 0.8789 + }, + { + "start": 1974.06, + "end": 1978.2, + "probability": 0.9578 + }, + { + "start": 1978.76, + "end": 1979.97, + "probability": 0.9016 + }, + { + "start": 1980.18, + "end": 1980.96, + "probability": 0.586 + }, + { + "start": 1981.18, + "end": 1986.76, + "probability": 0.9985 + }, + { + "start": 1987.42, + "end": 1989.72, + "probability": 0.7902 + }, + { + "start": 1989.84, + "end": 1994.46, + "probability": 0.976 + }, + { + "start": 1994.98, + "end": 1997.96, + "probability": 0.9657 + }, + { + "start": 1997.96, + "end": 2002.32, + "probability": 0.9934 + }, + { + "start": 2002.86, + "end": 2005.98, + "probability": 0.9953 + }, + { + "start": 2006.0, + "end": 2009.76, + "probability": 0.9352 + }, + { + "start": 2010.76, + "end": 2014.88, + "probability": 0.921 + }, + { + "start": 2014.96, + "end": 2015.52, + "probability": 0.8767 + }, + { + "start": 2016.54, + "end": 2017.9, + "probability": 0.7745 + }, + { + "start": 2017.98, + "end": 2019.81, + "probability": 0.9742 + }, + { + "start": 2020.54, + "end": 2021.1, + "probability": 0.4877 + }, + { + "start": 2021.28, + "end": 2024.2, + "probability": 0.9277 + }, + { + "start": 2024.54, + "end": 2026.31, + "probability": 0.9609 + }, + { + "start": 2027.14, + "end": 2027.94, + "probability": 0.7986 + }, + { + "start": 2028.08, + "end": 2029.62, + "probability": 0.835 + }, + { + "start": 2029.94, + "end": 2031.54, + "probability": 0.9512 + }, + { + "start": 2032.02, + "end": 2032.36, + "probability": 0.4809 + }, + { + "start": 2033.12, + "end": 2035.06, + "probability": 0.8883 + }, + { + "start": 2035.22, + "end": 2036.32, + "probability": 0.0958 + }, + { + "start": 2037.96, + "end": 2040.48, + "probability": 0.3634 + }, + { + "start": 2040.48, + "end": 2042.26, + "probability": 0.6631 + }, + { + "start": 2042.5, + "end": 2047.0, + "probability": 0.9395 + }, + { + "start": 2047.16, + "end": 2048.78, + "probability": 0.8276 + }, + { + "start": 2049.54, + "end": 2050.37, + "probability": 0.8843 + }, + { + "start": 2050.56, + "end": 2054.54, + "probability": 0.9735 + }, + { + "start": 2055.44, + "end": 2058.02, + "probability": 0.959 + }, + { + "start": 2058.1, + "end": 2061.0, + "probability": 0.8233 + }, + { + "start": 2061.0, + "end": 2062.82, + "probability": 0.6644 + }, + { + "start": 2063.26, + "end": 2064.34, + "probability": 0.7822 + }, + { + "start": 2064.42, + "end": 2065.44, + "probability": 0.6111 + }, + { + "start": 2068.42, + "end": 2068.9, + "probability": 0.5787 + }, + { + "start": 2069.56, + "end": 2069.66, + "probability": 0.0019 + }, + { + "start": 2069.66, + "end": 2069.66, + "probability": 0.1907 + }, + { + "start": 2069.66, + "end": 2074.12, + "probability": 0.6299 + }, + { + "start": 2074.72, + "end": 2076.94, + "probability": 0.8259 + }, + { + "start": 2076.98, + "end": 2077.94, + "probability": 0.7408 + }, + { + "start": 2078.14, + "end": 2078.78, + "probability": 0.8169 + }, + { + "start": 2078.86, + "end": 2080.0, + "probability": 0.9084 + }, + { + "start": 2080.38, + "end": 2081.56, + "probability": 0.8822 + }, + { + "start": 2081.84, + "end": 2085.6, + "probability": 0.9815 + }, + { + "start": 2085.9, + "end": 2090.48, + "probability": 0.9507 + }, + { + "start": 2090.48, + "end": 2094.84, + "probability": 0.9966 + }, + { + "start": 2095.12, + "end": 2095.48, + "probability": 0.258 + }, + { + "start": 2095.48, + "end": 2098.34, + "probability": 0.8516 + }, + { + "start": 2098.96, + "end": 2099.7, + "probability": 0.9222 + }, + { + "start": 2100.32, + "end": 2101.02, + "probability": 0.6049 + }, + { + "start": 2101.1, + "end": 2104.4, + "probability": 0.0783 + }, + { + "start": 2107.32, + "end": 2108.28, + "probability": 0.2604 + }, + { + "start": 2108.98, + "end": 2110.08, + "probability": 0.788 + }, + { + "start": 2110.5, + "end": 2111.22, + "probability": 0.7152 + }, + { + "start": 2111.9, + "end": 2113.62, + "probability": 0.5898 + }, + { + "start": 2114.46, + "end": 2115.08, + "probability": 0.5941 + }, + { + "start": 2115.22, + "end": 2116.52, + "probability": 0.9277 + }, + { + "start": 2116.6, + "end": 2121.32, + "probability": 0.9795 + }, + { + "start": 2121.34, + "end": 2122.04, + "probability": 0.8982 + }, + { + "start": 2122.94, + "end": 2126.42, + "probability": 0.9206 + }, + { + "start": 2127.58, + "end": 2128.02, + "probability": 0.8008 + }, + { + "start": 2128.74, + "end": 2136.92, + "probability": 0.9778 + }, + { + "start": 2137.56, + "end": 2137.98, + "probability": 0.6781 + }, + { + "start": 2138.94, + "end": 2139.89, + "probability": 0.5944 + }, + { + "start": 2140.86, + "end": 2147.32, + "probability": 0.9946 + }, + { + "start": 2147.98, + "end": 2153.71, + "probability": 0.869 + }, + { + "start": 2154.36, + "end": 2157.4, + "probability": 0.8381 + }, + { + "start": 2158.04, + "end": 2160.94, + "probability": 0.9862 + }, + { + "start": 2161.42, + "end": 2162.26, + "probability": 0.8752 + }, + { + "start": 2162.76, + "end": 2163.66, + "probability": 0.7623 + }, + { + "start": 2164.44, + "end": 2166.78, + "probability": 0.913 + }, + { + "start": 2167.2, + "end": 2168.96, + "probability": 0.7759 + }, + { + "start": 2169.5, + "end": 2170.18, + "probability": 0.9413 + }, + { + "start": 2170.78, + "end": 2178.46, + "probability": 0.8768 + }, + { + "start": 2179.54, + "end": 2184.84, + "probability": 0.9827 + }, + { + "start": 2185.42, + "end": 2186.7, + "probability": 0.9487 + }, + { + "start": 2187.04, + "end": 2190.02, + "probability": 0.9756 + }, + { + "start": 2190.54, + "end": 2191.46, + "probability": 0.7956 + }, + { + "start": 2191.5, + "end": 2193.54, + "probability": 0.9897 + }, + { + "start": 2193.66, + "end": 2194.9, + "probability": 0.7416 + }, + { + "start": 2195.12, + "end": 2197.14, + "probability": 0.9911 + }, + { + "start": 2198.06, + "end": 2199.34, + "probability": 0.9922 + }, + { + "start": 2201.32, + "end": 2207.94, + "probability": 0.9968 + }, + { + "start": 2208.58, + "end": 2211.96, + "probability": 0.9944 + }, + { + "start": 2212.28, + "end": 2216.42, + "probability": 0.9754 + }, + { + "start": 2216.92, + "end": 2220.0, + "probability": 0.9977 + }, + { + "start": 2220.62, + "end": 2225.52, + "probability": 0.8617 + }, + { + "start": 2225.96, + "end": 2232.3, + "probability": 0.8224 + }, + { + "start": 2232.62, + "end": 2236.56, + "probability": 0.8887 + }, + { + "start": 2236.96, + "end": 2239.54, + "probability": 0.6311 + }, + { + "start": 2239.64, + "end": 2239.92, + "probability": 0.5098 + }, + { + "start": 2240.38, + "end": 2241.8, + "probability": 0.5597 + }, + { + "start": 2241.8, + "end": 2242.4, + "probability": 0.4847 + }, + { + "start": 2242.44, + "end": 2242.92, + "probability": 0.3415 + }, + { + "start": 2243.28, + "end": 2244.36, + "probability": 0.9539 + }, + { + "start": 2244.78, + "end": 2245.76, + "probability": 0.9619 + }, + { + "start": 2246.56, + "end": 2247.24, + "probability": 0.8559 + }, + { + "start": 2247.84, + "end": 2249.42, + "probability": 0.7353 + }, + { + "start": 2251.7, + "end": 2254.88, + "probability": 0.487 + }, + { + "start": 2256.08, + "end": 2257.78, + "probability": 0.346 + }, + { + "start": 2257.86, + "end": 2258.34, + "probability": 0.6337 + }, + { + "start": 2258.64, + "end": 2259.22, + "probability": 0.0006 + }, + { + "start": 2261.0, + "end": 2262.4, + "probability": 0.0122 + }, + { + "start": 2267.18, + "end": 2271.48, + "probability": 0.4728 + }, + { + "start": 2274.22, + "end": 2275.22, + "probability": 0.5425 + }, + { + "start": 2276.14, + "end": 2277.74, + "probability": 0.4242 + }, + { + "start": 2277.94, + "end": 2282.32, + "probability": 0.7566 + }, + { + "start": 2282.5, + "end": 2284.84, + "probability": 0.1501 + }, + { + "start": 2284.88, + "end": 2286.14, + "probability": 0.3913 + }, + { + "start": 2287.0, + "end": 2288.48, + "probability": 0.5811 + }, + { + "start": 2288.48, + "end": 2291.8, + "probability": 0.8294 + }, + { + "start": 2291.94, + "end": 2291.98, + "probability": 0.006 + }, + { + "start": 2291.98, + "end": 2291.98, + "probability": 0.0705 + }, + { + "start": 2291.98, + "end": 2291.98, + "probability": 0.0716 + }, + { + "start": 2291.98, + "end": 2295.32, + "probability": 0.3474 + }, + { + "start": 2297.12, + "end": 2298.52, + "probability": 0.6474 + }, + { + "start": 2298.56, + "end": 2299.3, + "probability": 0.926 + }, + { + "start": 2299.46, + "end": 2300.5, + "probability": 0.2297 + }, + { + "start": 2301.26, + "end": 2301.64, + "probability": 0.7834 + }, + { + "start": 2302.58, + "end": 2302.68, + "probability": 0.3519 + }, + { + "start": 2304.16, + "end": 2305.6, + "probability": 0.4819 + }, + { + "start": 2306.02, + "end": 2310.94, + "probability": 0.8899 + }, + { + "start": 2311.5, + "end": 2319.06, + "probability": 0.8843 + }, + { + "start": 2319.06, + "end": 2320.42, + "probability": 0.9356 + }, + { + "start": 2321.0, + "end": 2323.2, + "probability": 0.9399 + }, + { + "start": 2323.54, + "end": 2325.02, + "probability": 0.7316 + }, + { + "start": 2325.26, + "end": 2327.24, + "probability": 0.8518 + }, + { + "start": 2327.6, + "end": 2330.26, + "probability": 0.7181 + }, + { + "start": 2330.26, + "end": 2334.88, + "probability": 0.7889 + }, + { + "start": 2334.92, + "end": 2336.32, + "probability": 0.9761 + }, + { + "start": 2336.72, + "end": 2342.18, + "probability": 0.7594 + }, + { + "start": 2342.76, + "end": 2343.76, + "probability": 0.8264 + }, + { + "start": 2344.24, + "end": 2345.38, + "probability": 0.8872 + }, + { + "start": 2345.68, + "end": 2348.2, + "probability": 0.9534 + }, + { + "start": 2349.1, + "end": 2350.04, + "probability": 0.6675 + }, + { + "start": 2350.68, + "end": 2350.68, + "probability": 0.0589 + }, + { + "start": 2350.68, + "end": 2351.46, + "probability": 0.8346 + }, + { + "start": 2351.7, + "end": 2352.78, + "probability": 0.9585 + }, + { + "start": 2353.18, + "end": 2358.36, + "probability": 0.9473 + }, + { + "start": 2358.94, + "end": 2359.58, + "probability": 0.7799 + }, + { + "start": 2360.14, + "end": 2361.94, + "probability": 0.6777 + }, + { + "start": 2363.42, + "end": 2369.1, + "probability": 0.9855 + }, + { + "start": 2369.18, + "end": 2369.92, + "probability": 0.8219 + }, + { + "start": 2369.98, + "end": 2370.62, + "probability": 0.9432 + }, + { + "start": 2370.76, + "end": 2371.46, + "probability": 0.9072 + }, + { + "start": 2371.82, + "end": 2374.2, + "probability": 0.8177 + }, + { + "start": 2377.72, + "end": 2379.77, + "probability": 0.3914 + }, + { + "start": 2381.32, + "end": 2381.8, + "probability": 0.297 + }, + { + "start": 2381.94, + "end": 2384.14, + "probability": 0.677 + }, + { + "start": 2384.82, + "end": 2385.58, + "probability": 0.8381 + }, + { + "start": 2385.72, + "end": 2387.14, + "probability": 0.9234 + }, + { + "start": 2387.58, + "end": 2388.22, + "probability": 0.4702 + }, + { + "start": 2389.88, + "end": 2390.16, + "probability": 0.0072 + }, + { + "start": 2390.16, + "end": 2390.18, + "probability": 0.07 + }, + { + "start": 2390.18, + "end": 2392.36, + "probability": 0.8133 + }, + { + "start": 2392.54, + "end": 2394.8, + "probability": 0.9119 + }, + { + "start": 2395.52, + "end": 2398.16, + "probability": 0.4443 + }, + { + "start": 2398.34, + "end": 2400.64, + "probability": 0.9003 + }, + { + "start": 2401.08, + "end": 2402.7, + "probability": 0.9299 + }, + { + "start": 2404.03, + "end": 2407.82, + "probability": 0.8553 + }, + { + "start": 2408.12, + "end": 2409.58, + "probability": 0.0144 + }, + { + "start": 2409.58, + "end": 2409.96, + "probability": 0.3796 + }, + { + "start": 2411.48, + "end": 2411.94, + "probability": 0.3358 + }, + { + "start": 2413.28, + "end": 2417.76, + "probability": 0.9405 + }, + { + "start": 2417.76, + "end": 2422.28, + "probability": 0.9792 + }, + { + "start": 2423.04, + "end": 2427.02, + "probability": 0.8053 + }, + { + "start": 2427.92, + "end": 2429.32, + "probability": 0.8942 + }, + { + "start": 2431.42, + "end": 2433.6, + "probability": 0.947 + }, + { + "start": 2433.74, + "end": 2437.44, + "probability": 0.9321 + }, + { + "start": 2438.04, + "end": 2444.66, + "probability": 0.5225 + }, + { + "start": 2444.78, + "end": 2449.48, + "probability": 0.7922 + }, + { + "start": 2450.52, + "end": 2456.72, + "probability": 0.9199 + }, + { + "start": 2460.86, + "end": 2465.34, + "probability": 0.9513 + }, + { + "start": 2466.1, + "end": 2467.36, + "probability": 0.4966 + }, + { + "start": 2467.64, + "end": 2470.62, + "probability": 0.4652 + }, + { + "start": 2470.62, + "end": 2470.62, + "probability": 0.0903 + }, + { + "start": 2470.62, + "end": 2470.62, + "probability": 0.0493 + }, + { + "start": 2470.62, + "end": 2472.94, + "probability": 0.5626 + }, + { + "start": 2473.52, + "end": 2476.86, + "probability": 0.7462 + }, + { + "start": 2478.34, + "end": 2483.16, + "probability": 0.9953 + }, + { + "start": 2484.94, + "end": 2488.78, + "probability": 0.991 + }, + { + "start": 2488.78, + "end": 2491.94, + "probability": 0.9946 + }, + { + "start": 2492.96, + "end": 2496.01, + "probability": 0.9926 + }, + { + "start": 2496.88, + "end": 2499.98, + "probability": 0.9791 + }, + { + "start": 2500.52, + "end": 2504.28, + "probability": 0.985 + }, + { + "start": 2505.04, + "end": 2507.72, + "probability": 0.9878 + }, + { + "start": 2508.12, + "end": 2510.27, + "probability": 0.9209 + }, + { + "start": 2510.88, + "end": 2512.84, + "probability": 0.9967 + }, + { + "start": 2513.34, + "end": 2515.62, + "probability": 0.9746 + }, + { + "start": 2515.66, + "end": 2516.38, + "probability": 0.7029 + }, + { + "start": 2517.14, + "end": 2517.52, + "probability": 0.6596 + }, + { + "start": 2519.14, + "end": 2522.62, + "probability": 0.9547 + }, + { + "start": 2523.24, + "end": 2527.04, + "probability": 0.9924 + }, + { + "start": 2527.72, + "end": 2528.85, + "probability": 0.9873 + }, + { + "start": 2529.54, + "end": 2533.74, + "probability": 0.9928 + }, + { + "start": 2534.5, + "end": 2535.59, + "probability": 0.6071 + }, + { + "start": 2536.18, + "end": 2540.68, + "probability": 0.9945 + }, + { + "start": 2541.44, + "end": 2544.44, + "probability": 0.974 + }, + { + "start": 2545.24, + "end": 2547.46, + "probability": 0.9188 + }, + { + "start": 2548.72, + "end": 2552.46, + "probability": 0.8728 + }, + { + "start": 2553.14, + "end": 2556.86, + "probability": 0.8291 + }, + { + "start": 2557.82, + "end": 2559.86, + "probability": 0.9652 + }, + { + "start": 2559.9, + "end": 2565.3, + "probability": 0.9972 + }, + { + "start": 2566.18, + "end": 2569.66, + "probability": 0.9712 + }, + { + "start": 2570.22, + "end": 2573.48, + "probability": 0.9774 + }, + { + "start": 2573.76, + "end": 2575.74, + "probability": 0.8758 + }, + { + "start": 2575.98, + "end": 2580.72, + "probability": 0.9131 + }, + { + "start": 2580.78, + "end": 2582.76, + "probability": 0.9828 + }, + { + "start": 2583.02, + "end": 2584.82, + "probability": 0.9846 + }, + { + "start": 2586.72, + "end": 2587.62, + "probability": 0.8859 + }, + { + "start": 2587.8, + "end": 2589.78, + "probability": 0.9741 + }, + { + "start": 2589.9, + "end": 2592.08, + "probability": 0.9891 + }, + { + "start": 2593.24, + "end": 2597.9, + "probability": 0.9254 + }, + { + "start": 2599.24, + "end": 2601.54, + "probability": 0.8597 + }, + { + "start": 2601.94, + "end": 2603.68, + "probability": 0.8076 + }, + { + "start": 2603.78, + "end": 2604.9, + "probability": 0.6249 + }, + { + "start": 2605.68, + "end": 2607.38, + "probability": 0.9956 + }, + { + "start": 2608.2, + "end": 2611.88, + "probability": 0.9726 + }, + { + "start": 2612.22, + "end": 2614.98, + "probability": 0.9783 + }, + { + "start": 2616.0, + "end": 2617.98, + "probability": 0.9237 + }, + { + "start": 2618.1, + "end": 2621.44, + "probability": 0.9147 + }, + { + "start": 2622.0, + "end": 2626.1, + "probability": 0.9666 + }, + { + "start": 2626.1, + "end": 2631.06, + "probability": 0.9979 + }, + { + "start": 2633.14, + "end": 2637.44, + "probability": 0.9954 + }, + { + "start": 2638.4, + "end": 2639.84, + "probability": 0.9982 + }, + { + "start": 2640.38, + "end": 2643.86, + "probability": 0.9358 + }, + { + "start": 2644.42, + "end": 2646.2, + "probability": 0.9937 + }, + { + "start": 2646.78, + "end": 2648.74, + "probability": 0.9473 + }, + { + "start": 2648.84, + "end": 2650.08, + "probability": 0.8907 + }, + { + "start": 2650.16, + "end": 2651.58, + "probability": 0.9059 + }, + { + "start": 2651.62, + "end": 2656.96, + "probability": 0.9861 + }, + { + "start": 2659.52, + "end": 2660.9, + "probability": 0.857 + }, + { + "start": 2661.18, + "end": 2665.76, + "probability": 0.9902 + }, + { + "start": 2667.12, + "end": 2668.64, + "probability": 0.9985 + }, + { + "start": 2668.64, + "end": 2671.64, + "probability": 0.9667 + }, + { + "start": 2672.84, + "end": 2677.78, + "probability": 0.999 + }, + { + "start": 2677.78, + "end": 2682.18, + "probability": 0.9972 + }, + { + "start": 2682.72, + "end": 2687.22, + "probability": 0.9032 + }, + { + "start": 2688.2, + "end": 2691.12, + "probability": 0.9989 + }, + { + "start": 2691.24, + "end": 2691.54, + "probability": 0.837 + }, + { + "start": 2692.46, + "end": 2696.94, + "probability": 0.9925 + }, + { + "start": 2697.14, + "end": 2698.76, + "probability": 0.9984 + }, + { + "start": 2699.34, + "end": 2700.5, + "probability": 0.9736 + }, + { + "start": 2701.0, + "end": 2704.56, + "probability": 0.9978 + }, + { + "start": 2704.96, + "end": 2706.64, + "probability": 0.9961 + }, + { + "start": 2707.18, + "end": 2712.08, + "probability": 0.998 + }, + { + "start": 2712.08, + "end": 2717.62, + "probability": 0.9627 + }, + { + "start": 2718.52, + "end": 2721.04, + "probability": 0.9842 + }, + { + "start": 2721.2, + "end": 2722.12, + "probability": 0.5919 + }, + { + "start": 2722.22, + "end": 2722.66, + "probability": 0.7621 + }, + { + "start": 2722.86, + "end": 2724.46, + "probability": 0.8769 + }, + { + "start": 2725.16, + "end": 2727.4, + "probability": 0.8497 + }, + { + "start": 2728.02, + "end": 2733.2, + "probability": 0.9906 + }, + { + "start": 2735.14, + "end": 2738.66, + "probability": 0.9614 + }, + { + "start": 2739.58, + "end": 2742.68, + "probability": 0.995 + }, + { + "start": 2743.38, + "end": 2749.08, + "probability": 0.9926 + }, + { + "start": 2750.14, + "end": 2752.82, + "probability": 0.9988 + }, + { + "start": 2753.62, + "end": 2754.32, + "probability": 0.855 + }, + { + "start": 2754.44, + "end": 2758.58, + "probability": 0.8738 + }, + { + "start": 2759.34, + "end": 2761.3, + "probability": 0.9619 + }, + { + "start": 2761.82, + "end": 2765.8, + "probability": 0.9891 + }, + { + "start": 2766.42, + "end": 2770.5, + "probability": 0.9958 + }, + { + "start": 2771.54, + "end": 2773.16, + "probability": 0.8549 + }, + { + "start": 2774.08, + "end": 2776.6, + "probability": 0.9875 + }, + { + "start": 2777.46, + "end": 2782.08, + "probability": 0.9834 + }, + { + "start": 2782.2, + "end": 2782.68, + "probability": 0.7842 + }, + { + "start": 2783.32, + "end": 2785.67, + "probability": 0.8298 + }, + { + "start": 2788.11, + "end": 2792.5, + "probability": 0.7435 + }, + { + "start": 2792.52, + "end": 2794.06, + "probability": 0.7584 + }, + { + "start": 2795.46, + "end": 2797.64, + "probability": 0.6456 + }, + { + "start": 2803.68, + "end": 2805.54, + "probability": 0.698 + }, + { + "start": 2806.48, + "end": 2807.98, + "probability": 0.8378 + }, + { + "start": 2807.98, + "end": 2811.74, + "probability": 0.9666 + }, + { + "start": 2811.78, + "end": 2815.22, + "probability": 0.9268 + }, + { + "start": 2815.82, + "end": 2820.22, + "probability": 0.9976 + }, + { + "start": 2820.22, + "end": 2826.18, + "probability": 0.9956 + }, + { + "start": 2826.82, + "end": 2830.22, + "probability": 0.9895 + }, + { + "start": 2831.1, + "end": 2833.8, + "probability": 0.9035 + }, + { + "start": 2833.8, + "end": 2837.36, + "probability": 0.9963 + }, + { + "start": 2837.82, + "end": 2840.9, + "probability": 0.989 + }, + { + "start": 2841.68, + "end": 2848.72, + "probability": 0.9836 + }, + { + "start": 2848.72, + "end": 2854.02, + "probability": 0.986 + }, + { + "start": 2854.02, + "end": 2859.0, + "probability": 0.949 + }, + { + "start": 2859.68, + "end": 2861.16, + "probability": 0.9793 + }, + { + "start": 2861.9, + "end": 2862.38, + "probability": 0.6124 + }, + { + "start": 2862.48, + "end": 2866.72, + "probability": 0.9635 + }, + { + "start": 2867.3, + "end": 2870.74, + "probability": 0.9745 + }, + { + "start": 2871.56, + "end": 2872.14, + "probability": 0.824 + }, + { + "start": 2872.36, + "end": 2874.98, + "probability": 0.9456 + }, + { + "start": 2874.98, + "end": 2879.44, + "probability": 0.9886 + }, + { + "start": 2880.02, + "end": 2883.9, + "probability": 0.9463 + }, + { + "start": 2884.14, + "end": 2888.92, + "probability": 0.9752 + }, + { + "start": 2889.62, + "end": 2890.52, + "probability": 0.6665 + }, + { + "start": 2890.64, + "end": 2892.36, + "probability": 0.9416 + }, + { + "start": 2892.44, + "end": 2897.52, + "probability": 0.9583 + }, + { + "start": 2897.52, + "end": 2901.26, + "probability": 0.9948 + }, + { + "start": 2901.76, + "end": 2905.7, + "probability": 0.9336 + }, + { + "start": 2905.78, + "end": 2906.3, + "probability": 0.7171 + }, + { + "start": 2906.86, + "end": 2909.52, + "probability": 0.6178 + }, + { + "start": 2909.68, + "end": 2912.36, + "probability": 0.0157 + }, + { + "start": 2913.02, + "end": 2914.94, + "probability": 0.0411 + }, + { + "start": 2914.94, + "end": 2915.26, + "probability": 0.0989 + }, + { + "start": 2915.64, + "end": 2916.86, + "probability": 0.8241 + }, + { + "start": 2916.92, + "end": 2922.24, + "probability": 0.795 + }, + { + "start": 2924.0, + "end": 2927.32, + "probability": 0.7545 + }, + { + "start": 2928.3, + "end": 2931.1, + "probability": 0.861 + }, + { + "start": 2931.1, + "end": 2934.11, + "probability": 0.706 + }, + { + "start": 2935.28, + "end": 2938.24, + "probability": 0.7648 + }, + { + "start": 2938.38, + "end": 2938.76, + "probability": 0.5299 + }, + { + "start": 2938.82, + "end": 2939.58, + "probability": 0.5916 + }, + { + "start": 2950.91, + "end": 2952.11, + "probability": 0.0806 + }, + { + "start": 2954.24, + "end": 2955.34, + "probability": 0.0385 + }, + { + "start": 2958.68, + "end": 2958.88, + "probability": 0.0047 + }, + { + "start": 2967.12, + "end": 2970.73, + "probability": 0.2952 + }, + { + "start": 2973.1, + "end": 2975.19, + "probability": 0.2701 + }, + { + "start": 2976.74, + "end": 2977.18, + "probability": 0.018 + }, + { + "start": 2978.62, + "end": 2983.2, + "probability": 0.1693 + }, + { + "start": 2983.2, + "end": 2986.64, + "probability": 0.6646 + }, + { + "start": 2987.84, + "end": 2989.44, + "probability": 0.0559 + }, + { + "start": 2991.38, + "end": 2992.74, + "probability": 0.4699 + }, + { + "start": 2992.74, + "end": 2997.36, + "probability": 0.0796 + }, + { + "start": 2998.6, + "end": 2999.08, + "probability": 0.04 + }, + { + "start": 2999.18, + "end": 3000.48, + "probability": 0.0387 + }, + { + "start": 3000.48, + "end": 3001.04, + "probability": 0.0648 + }, + { + "start": 3001.1, + "end": 3001.1, + "probability": 0.0153 + }, + { + "start": 3002.22, + "end": 3006.22, + "probability": 0.0762 + }, + { + "start": 3024.0, + "end": 3024.0, + "probability": 0.0 + }, + { + "start": 3024.0, + "end": 3024.0, + "probability": 0.0 + }, + { + "start": 3024.0, + "end": 3024.0, + "probability": 0.0 + }, + { + "start": 3024.0, + "end": 3024.0, + "probability": 0.0 + }, + { + "start": 3024.0, + "end": 3024.0, + "probability": 0.0 + }, + { + "start": 3024.0, + "end": 3024.0, + "probability": 0.0 + }, + { + "start": 3024.0, + "end": 3024.0, + "probability": 0.0 + }, + { + "start": 3024.0, + "end": 3024.0, + "probability": 0.0 + }, + { + "start": 3024.0, + "end": 3024.0, + "probability": 0.0 + }, + { + "start": 3024.0, + "end": 3024.0, + "probability": 0.0 + }, + { + "start": 3024.14, + "end": 3024.14, + "probability": 0.1873 + }, + { + "start": 3024.14, + "end": 3024.14, + "probability": 0.0654 + }, + { + "start": 3024.14, + "end": 3024.14, + "probability": 0.1345 + }, + { + "start": 3024.14, + "end": 3024.35, + "probability": 0.1296 + }, + { + "start": 3024.72, + "end": 3026.08, + "probability": 0.5438 + }, + { + "start": 3026.18, + "end": 3027.18, + "probability": 0.6349 + }, + { + "start": 3029.05, + "end": 3032.66, + "probability": 0.9543 + }, + { + "start": 3033.72, + "end": 3035.46, + "probability": 0.9965 + }, + { + "start": 3035.78, + "end": 3039.86, + "probability": 0.987 + }, + { + "start": 3039.88, + "end": 3040.8, + "probability": 0.998 + }, + { + "start": 3041.86, + "end": 3045.48, + "probability": 0.9282 + }, + { + "start": 3046.2, + "end": 3047.98, + "probability": 0.9865 + }, + { + "start": 3048.08, + "end": 3050.1, + "probability": 0.7251 + }, + { + "start": 3050.2, + "end": 3050.89, + "probability": 0.9991 + }, + { + "start": 3052.3, + "end": 3056.28, + "probability": 0.9956 + }, + { + "start": 3056.28, + "end": 3061.4, + "probability": 0.9978 + }, + { + "start": 3061.8, + "end": 3064.44, + "probability": 0.9882 + }, + { + "start": 3064.44, + "end": 3067.58, + "probability": 0.9912 + }, + { + "start": 3068.1, + "end": 3068.8, + "probability": 0.9246 + }, + { + "start": 3068.9, + "end": 3069.14, + "probability": 0.5757 + }, + { + "start": 3069.26, + "end": 3071.54, + "probability": 0.9421 + }, + { + "start": 3071.64, + "end": 3071.88, + "probability": 0.5483 + }, + { + "start": 3071.88, + "end": 3075.32, + "probability": 0.985 + }, + { + "start": 3075.8, + "end": 3077.88, + "probability": 0.9471 + }, + { + "start": 3077.92, + "end": 3082.94, + "probability": 0.9118 + }, + { + "start": 3083.08, + "end": 3086.24, + "probability": 0.9988 + }, + { + "start": 3086.3, + "end": 3089.28, + "probability": 0.9819 + }, + { + "start": 3089.28, + "end": 3093.3, + "probability": 0.9854 + }, + { + "start": 3094.12, + "end": 3095.96, + "probability": 0.7471 + }, + { + "start": 3096.12, + "end": 3096.52, + "probability": 0.8156 + }, + { + "start": 3096.54, + "end": 3096.8, + "probability": 0.9027 + }, + { + "start": 3096.86, + "end": 3097.3, + "probability": 0.9035 + }, + { + "start": 3097.66, + "end": 3098.06, + "probability": 0.8599 + }, + { + "start": 3098.5, + "end": 3103.44, + "probability": 0.9967 + }, + { + "start": 3103.76, + "end": 3106.88, + "probability": 0.9604 + }, + { + "start": 3107.22, + "end": 3113.52, + "probability": 0.9964 + }, + { + "start": 3117.74, + "end": 3118.02, + "probability": 0.2752 + }, + { + "start": 3118.21, + "end": 3119.36, + "probability": 0.8113 + }, + { + "start": 3119.36, + "end": 3120.2, + "probability": 0.7568 + }, + { + "start": 3120.32, + "end": 3123.3, + "probability": 0.9965 + }, + { + "start": 3123.4, + "end": 3126.14, + "probability": 0.855 + }, + { + "start": 3126.5, + "end": 3127.0, + "probability": 0.9526 + }, + { + "start": 3127.2, + "end": 3129.66, + "probability": 0.9862 + }, + { + "start": 3129.78, + "end": 3130.8, + "probability": 0.9744 + }, + { + "start": 3130.98, + "end": 3132.84, + "probability": 0.9929 + }, + { + "start": 3133.36, + "end": 3134.24, + "probability": 0.8702 + }, + { + "start": 3134.38, + "end": 3135.92, + "probability": 0.9827 + }, + { + "start": 3136.02, + "end": 3137.32, + "probability": 0.9852 + }, + { + "start": 3137.52, + "end": 3138.44, + "probability": 0.468 + }, + { + "start": 3138.62, + "end": 3139.16, + "probability": 0.9655 + }, + { + "start": 3139.46, + "end": 3142.52, + "probability": 0.9868 + }, + { + "start": 3142.82, + "end": 3143.82, + "probability": 0.9631 + }, + { + "start": 3144.74, + "end": 3144.9, + "probability": 0.4099 + }, + { + "start": 3144.92, + "end": 3149.66, + "probability": 0.9583 + }, + { + "start": 3150.3, + "end": 3154.82, + "probability": 0.9878 + }, + { + "start": 3154.96, + "end": 3155.86, + "probability": 0.8422 + }, + { + "start": 3156.24, + "end": 3157.08, + "probability": 0.97 + }, + { + "start": 3157.16, + "end": 3160.68, + "probability": 0.9939 + }, + { + "start": 3160.82, + "end": 3165.58, + "probability": 0.9502 + }, + { + "start": 3165.96, + "end": 3166.16, + "probability": 0.8204 + }, + { + "start": 3166.28, + "end": 3166.54, + "probability": 0.6505 + }, + { + "start": 3166.64, + "end": 3167.1, + "probability": 0.9649 + }, + { + "start": 3167.16, + "end": 3167.74, + "probability": 0.635 + }, + { + "start": 3168.02, + "end": 3169.86, + "probability": 0.5844 + }, + { + "start": 3170.02, + "end": 3170.3, + "probability": 0.4456 + }, + { + "start": 3170.58, + "end": 3171.4, + "probability": 0.7788 + }, + { + "start": 3171.52, + "end": 3172.28, + "probability": 0.8782 + }, + { + "start": 3172.52, + "end": 3174.5, + "probability": 0.9948 + }, + { + "start": 3174.5, + "end": 3178.18, + "probability": 0.9989 + }, + { + "start": 3178.64, + "end": 3181.02, + "probability": 0.995 + }, + { + "start": 3181.64, + "end": 3183.09, + "probability": 0.9961 + }, + { + "start": 3184.2, + "end": 3187.36, + "probability": 0.7184 + }, + { + "start": 3187.48, + "end": 3188.06, + "probability": 0.9122 + }, + { + "start": 3188.12, + "end": 3189.3, + "probability": 0.9686 + }, + { + "start": 3189.32, + "end": 3189.84, + "probability": 0.8469 + }, + { + "start": 3190.22, + "end": 3191.64, + "probability": 0.9086 + }, + { + "start": 3191.66, + "end": 3192.26, + "probability": 0.7903 + }, + { + "start": 3192.54, + "end": 3196.82, + "probability": 0.9854 + }, + { + "start": 3196.84, + "end": 3198.3, + "probability": 0.9951 + }, + { + "start": 3199.06, + "end": 3199.36, + "probability": 0.9136 + }, + { + "start": 3199.48, + "end": 3201.14, + "probability": 0.712 + }, + { + "start": 3201.34, + "end": 3202.54, + "probability": 0.8486 + }, + { + "start": 3202.74, + "end": 3204.24, + "probability": 0.6835 + }, + { + "start": 3204.46, + "end": 3204.68, + "probability": 0.7793 + }, + { + "start": 3205.38, + "end": 3207.94, + "probability": 0.8676 + }, + { + "start": 3208.58, + "end": 3212.74, + "probability": 0.7795 + }, + { + "start": 3226.04, + "end": 3227.02, + "probability": 0.606 + }, + { + "start": 3227.1, + "end": 3228.02, + "probability": 0.8304 + }, + { + "start": 3228.2, + "end": 3230.0, + "probability": 0.9784 + }, + { + "start": 3230.16, + "end": 3232.14, + "probability": 0.7636 + }, + { + "start": 3232.72, + "end": 3235.52, + "probability": 0.9253 + }, + { + "start": 3236.06, + "end": 3241.98, + "probability": 0.9553 + }, + { + "start": 3241.98, + "end": 3247.76, + "probability": 0.9939 + }, + { + "start": 3248.72, + "end": 3249.7, + "probability": 0.6865 + }, + { + "start": 3250.16, + "end": 3252.72, + "probability": 0.9819 + }, + { + "start": 3252.72, + "end": 3255.75, + "probability": 0.9913 + }, + { + "start": 3256.88, + "end": 3259.08, + "probability": 0.9939 + }, + { + "start": 3259.08, + "end": 3262.5, + "probability": 0.9928 + }, + { + "start": 3263.0, + "end": 3267.98, + "probability": 0.9828 + }, + { + "start": 3268.78, + "end": 3271.54, + "probability": 0.9805 + }, + { + "start": 3272.44, + "end": 3276.92, + "probability": 0.9975 + }, + { + "start": 3276.92, + "end": 3281.0, + "probability": 0.9991 + }, + { + "start": 3281.52, + "end": 3281.92, + "probability": 0.8588 + }, + { + "start": 3283.08, + "end": 3286.92, + "probability": 0.0285 + }, + { + "start": 3287.68, + "end": 3292.56, + "probability": 0.9788 + }, + { + "start": 3293.06, + "end": 3296.04, + "probability": 0.9945 + }, + { + "start": 3297.06, + "end": 3297.38, + "probability": 0.441 + }, + { + "start": 3297.46, + "end": 3299.7, + "probability": 0.9875 + }, + { + "start": 3299.7, + "end": 3303.42, + "probability": 0.9814 + }, + { + "start": 3304.44, + "end": 3306.4, + "probability": 0.7838 + }, + { + "start": 3306.54, + "end": 3307.18, + "probability": 0.7617 + }, + { + "start": 3307.26, + "end": 3311.66, + "probability": 0.9523 + }, + { + "start": 3312.26, + "end": 3316.1, + "probability": 0.7786 + }, + { + "start": 3316.68, + "end": 3319.76, + "probability": 0.9403 + }, + { + "start": 3320.6, + "end": 3323.16, + "probability": 0.9974 + }, + { + "start": 3323.16, + "end": 3327.14, + "probability": 0.998 + }, + { + "start": 3327.98, + "end": 3329.92, + "probability": 0.9903 + }, + { + "start": 3330.08, + "end": 3335.76, + "probability": 0.9905 + }, + { + "start": 3336.2, + "end": 3336.96, + "probability": 0.4277 + }, + { + "start": 3339.0, + "end": 3342.0, + "probability": 0.8201 + }, + { + "start": 3342.36, + "end": 3345.32, + "probability": 0.998 + }, + { + "start": 3345.32, + "end": 3348.66, + "probability": 0.9137 + }, + { + "start": 3349.48, + "end": 3352.16, + "probability": 0.5783 + }, + { + "start": 3352.52, + "end": 3356.54, + "probability": 0.8948 + }, + { + "start": 3356.76, + "end": 3360.92, + "probability": 0.9432 + }, + { + "start": 3361.36, + "end": 3363.42, + "probability": 0.7712 + }, + { + "start": 3363.6, + "end": 3369.1, + "probability": 0.8349 + }, + { + "start": 3369.2, + "end": 3369.88, + "probability": 0.6813 + }, + { + "start": 3370.06, + "end": 3370.66, + "probability": 0.7148 + }, + { + "start": 3374.34, + "end": 3379.5, + "probability": 0.1053 + }, + { + "start": 3379.5, + "end": 3381.52, + "probability": 0.0384 + }, + { + "start": 3382.68, + "end": 3384.5, + "probability": 0.0491 + }, + { + "start": 3386.3, + "end": 3388.52, + "probability": 0.0584 + }, + { + "start": 3388.52, + "end": 3391.44, + "probability": 0.6811 + }, + { + "start": 3391.62, + "end": 3392.64, + "probability": 0.9465 + }, + { + "start": 3395.36, + "end": 3395.96, + "probability": 0.3516 + }, + { + "start": 3396.33, + "end": 3400.14, + "probability": 0.7418 + }, + { + "start": 3400.24, + "end": 3400.85, + "probability": 0.9946 + }, + { + "start": 3401.72, + "end": 3404.02, + "probability": 0.9961 + }, + { + "start": 3414.9, + "end": 3415.52, + "probability": 0.4219 + }, + { + "start": 3415.78, + "end": 3419.44, + "probability": 0.7676 + }, + { + "start": 3419.6, + "end": 3420.48, + "probability": 0.8856 + }, + { + "start": 3422.2, + "end": 3425.48, + "probability": 0.9363 + }, + { + "start": 3425.66, + "end": 3426.5, + "probability": 0.4792 + }, + { + "start": 3427.46, + "end": 3429.42, + "probability": 0.9343 + }, + { + "start": 3430.7, + "end": 3434.62, + "probability": 0.9144 + }, + { + "start": 3435.14, + "end": 3438.06, + "probability": 0.828 + }, + { + "start": 3438.5, + "end": 3440.32, + "probability": 0.7319 + }, + { + "start": 3453.48, + "end": 3455.04, + "probability": 0.632 + }, + { + "start": 3455.56, + "end": 3457.64, + "probability": 0.6082 + }, + { + "start": 3458.84, + "end": 3466.94, + "probability": 0.9249 + }, + { + "start": 3466.94, + "end": 3468.66, + "probability": 0.9937 + }, + { + "start": 3469.8, + "end": 3471.72, + "probability": 0.9298 + }, + { + "start": 3472.46, + "end": 3473.78, + "probability": 0.9932 + }, + { + "start": 3473.88, + "end": 3475.44, + "probability": 0.9675 + }, + { + "start": 3476.02, + "end": 3477.21, + "probability": 0.9653 + }, + { + "start": 3477.64, + "end": 3481.55, + "probability": 0.9725 + }, + { + "start": 3482.32, + "end": 3486.92, + "probability": 0.8081 + }, + { + "start": 3486.92, + "end": 3487.06, + "probability": 0.1342 + }, + { + "start": 3487.06, + "end": 3488.84, + "probability": 0.3514 + }, + { + "start": 3489.14, + "end": 3489.84, + "probability": 0.6733 + }, + { + "start": 3489.92, + "end": 3492.98, + "probability": 0.5439 + }, + { + "start": 3494.06, + "end": 3496.18, + "probability": 0.9228 + }, + { + "start": 3497.2, + "end": 3500.95, + "probability": 0.8143 + }, + { + "start": 3501.54, + "end": 3505.18, + "probability": 0.9692 + }, + { + "start": 3505.72, + "end": 3507.08, + "probability": 0.9604 + }, + { + "start": 3508.24, + "end": 3510.36, + "probability": 0.9883 + }, + { + "start": 3510.42, + "end": 3514.28, + "probability": 0.9961 + }, + { + "start": 3515.58, + "end": 3519.08, + "probability": 0.8768 + }, + { + "start": 3519.08, + "end": 3521.54, + "probability": 0.9978 + }, + { + "start": 3521.6, + "end": 3522.38, + "probability": 0.5779 + }, + { + "start": 3523.92, + "end": 3527.5, + "probability": 0.6778 + }, + { + "start": 3528.36, + "end": 3530.74, + "probability": 0.9888 + }, + { + "start": 3530.96, + "end": 3531.38, + "probability": 0.5352 + }, + { + "start": 3531.5, + "end": 3535.4, + "probability": 0.8337 + }, + { + "start": 3535.52, + "end": 3538.4, + "probability": 0.8927 + }, + { + "start": 3538.96, + "end": 3539.84, + "probability": 0.8751 + }, + { + "start": 3541.78, + "end": 3542.14, + "probability": 0.608 + }, + { + "start": 3542.7, + "end": 3542.94, + "probability": 0.7657 + }, + { + "start": 3543.02, + "end": 3546.96, + "probability": 0.9604 + }, + { + "start": 3548.3, + "end": 3552.54, + "probability": 0.8399 + }, + { + "start": 3552.54, + "end": 3556.18, + "probability": 0.9167 + }, + { + "start": 3556.68, + "end": 3557.86, + "probability": 0.9902 + }, + { + "start": 3557.94, + "end": 3558.36, + "probability": 0.8696 + }, + { + "start": 3558.42, + "end": 3560.48, + "probability": 0.9556 + }, + { + "start": 3561.44, + "end": 3563.8, + "probability": 0.9874 + }, + { + "start": 3564.5, + "end": 3566.62, + "probability": 0.8555 + }, + { + "start": 3567.72, + "end": 3569.34, + "probability": 0.9971 + }, + { + "start": 3569.92, + "end": 3572.48, + "probability": 0.8186 + }, + { + "start": 3572.5, + "end": 3574.2, + "probability": 0.8034 + }, + { + "start": 3574.96, + "end": 3576.12, + "probability": 0.6416 + }, + { + "start": 3577.48, + "end": 3580.44, + "probability": 0.9888 + }, + { + "start": 3582.22, + "end": 3583.64, + "probability": 0.7441 + }, + { + "start": 3584.66, + "end": 3588.46, + "probability": 0.9735 + }, + { + "start": 3589.54, + "end": 3590.82, + "probability": 0.9244 + }, + { + "start": 3591.4, + "end": 3597.04, + "probability": 0.8794 + }, + { + "start": 3598.34, + "end": 3600.94, + "probability": 0.8049 + }, + { + "start": 3600.96, + "end": 3602.52, + "probability": 0.9351 + }, + { + "start": 3602.62, + "end": 3606.48, + "probability": 0.9165 + }, + { + "start": 3607.32, + "end": 3611.4, + "probability": 0.9714 + }, + { + "start": 3611.4, + "end": 3614.74, + "probability": 0.9974 + }, + { + "start": 3617.85, + "end": 3618.84, + "probability": 0.1775 + }, + { + "start": 3619.6, + "end": 3620.28, + "probability": 0.948 + }, + { + "start": 3620.6, + "end": 3622.3, + "probability": 0.3903 + }, + { + "start": 3622.36, + "end": 3623.08, + "probability": 0.6636 + }, + { + "start": 3626.06, + "end": 3627.1, + "probability": 0.2871 + }, + { + "start": 3627.34, + "end": 3630.08, + "probability": 0.7603 + }, + { + "start": 3630.48, + "end": 3630.98, + "probability": 0.3772 + }, + { + "start": 3631.12, + "end": 3631.36, + "probability": 0.7815 + }, + { + "start": 3631.48, + "end": 3634.2, + "probability": 0.9182 + }, + { + "start": 3634.32, + "end": 3636.18, + "probability": 0.7491 + }, + { + "start": 3637.12, + "end": 3637.82, + "probability": 0.8535 + }, + { + "start": 3638.36, + "end": 3640.52, + "probability": 0.6333 + }, + { + "start": 3640.6, + "end": 3644.02, + "probability": 0.6795 + }, + { + "start": 3644.14, + "end": 3648.04, + "probability": 0.995 + }, + { + "start": 3648.88, + "end": 3650.08, + "probability": 0.8419 + }, + { + "start": 3652.26, + "end": 3655.64, + "probability": 0.9905 + }, + { + "start": 3657.28, + "end": 3658.28, + "probability": 0.9884 + }, + { + "start": 3659.94, + "end": 3662.4, + "probability": 0.9941 + }, + { + "start": 3662.54, + "end": 3663.84, + "probability": 0.6575 + }, + { + "start": 3664.6, + "end": 3667.14, + "probability": 0.6978 + }, + { + "start": 3667.9, + "end": 3669.08, + "probability": 0.7944 + }, + { + "start": 3669.94, + "end": 3671.28, + "probability": 0.9985 + }, + { + "start": 3672.68, + "end": 3674.66, + "probability": 0.8176 + }, + { + "start": 3675.2, + "end": 3676.56, + "probability": 0.8115 + }, + { + "start": 3676.82, + "end": 3677.46, + "probability": 0.842 + }, + { + "start": 3677.94, + "end": 3680.92, + "probability": 0.5781 + }, + { + "start": 3681.82, + "end": 3684.04, + "probability": 0.9077 + }, + { + "start": 3684.58, + "end": 3685.28, + "probability": 0.8211 + }, + { + "start": 3686.12, + "end": 3686.92, + "probability": 0.9221 + }, + { + "start": 3687.7, + "end": 3689.38, + "probability": 0.7315 + }, + { + "start": 3690.64, + "end": 3698.4, + "probability": 0.9553 + }, + { + "start": 3699.58, + "end": 3704.68, + "probability": 0.998 + }, + { + "start": 3705.7, + "end": 3706.32, + "probability": 0.8216 + }, + { + "start": 3706.4, + "end": 3707.0, + "probability": 0.7466 + }, + { + "start": 3707.24, + "end": 3707.96, + "probability": 0.45 + }, + { + "start": 3707.96, + "end": 3708.4, + "probability": 0.8851 + }, + { + "start": 3710.04, + "end": 3711.02, + "probability": 0.7744 + }, + { + "start": 3711.9, + "end": 3714.8, + "probability": 0.9388 + }, + { + "start": 3715.84, + "end": 3718.04, + "probability": 0.79 + }, + { + "start": 3719.38, + "end": 3720.96, + "probability": 0.9086 + }, + { + "start": 3721.48, + "end": 3722.3, + "probability": 0.8824 + }, + { + "start": 3723.26, + "end": 3724.02, + "probability": 0.9631 + }, + { + "start": 3724.26, + "end": 3731.36, + "probability": 0.9041 + }, + { + "start": 3732.52, + "end": 3733.84, + "probability": 0.5328 + }, + { + "start": 3735.82, + "end": 3737.94, + "probability": 0.8143 + }, + { + "start": 3739.42, + "end": 3742.58, + "probability": 0.9493 + }, + { + "start": 3743.74, + "end": 3745.04, + "probability": 0.7869 + }, + { + "start": 3746.62, + "end": 3747.7, + "probability": 0.9875 + }, + { + "start": 3748.32, + "end": 3752.6, + "probability": 0.9646 + }, + { + "start": 3752.66, + "end": 3753.74, + "probability": 0.8716 + }, + { + "start": 3754.54, + "end": 3756.46, + "probability": 0.8843 + }, + { + "start": 3757.04, + "end": 3759.0, + "probability": 0.7494 + }, + { + "start": 3759.78, + "end": 3763.02, + "probability": 0.927 + }, + { + "start": 3763.96, + "end": 3769.98, + "probability": 0.8191 + }, + { + "start": 3770.02, + "end": 3773.82, + "probability": 0.9896 + }, + { + "start": 3774.14, + "end": 3777.92, + "probability": 0.9923 + }, + { + "start": 3778.94, + "end": 3780.04, + "probability": 0.9734 + }, + { + "start": 3780.7, + "end": 3783.72, + "probability": 0.0622 + }, + { + "start": 3784.36, + "end": 3785.46, + "probability": 0.7386 + }, + { + "start": 3786.5, + "end": 3790.32, + "probability": 0.949 + }, + { + "start": 3791.54, + "end": 3792.3, + "probability": 0.9092 + }, + { + "start": 3793.5, + "end": 3799.68, + "probability": 0.9769 + }, + { + "start": 3800.12, + "end": 3802.1, + "probability": 0.981 + }, + { + "start": 3803.2, + "end": 3806.34, + "probability": 0.9109 + }, + { + "start": 3806.94, + "end": 3807.88, + "probability": 0.9385 + }, + { + "start": 3808.5, + "end": 3809.78, + "probability": 0.9961 + }, + { + "start": 3810.64, + "end": 3812.48, + "probability": 0.9767 + }, + { + "start": 3813.18, + "end": 3814.56, + "probability": 0.7933 + }, + { + "start": 3815.12, + "end": 3817.88, + "probability": 0.9734 + }, + { + "start": 3818.48, + "end": 3819.92, + "probability": 0.8977 + }, + { + "start": 3821.1, + "end": 3823.96, + "probability": 0.9143 + }, + { + "start": 3824.82, + "end": 3828.4, + "probability": 0.9193 + }, + { + "start": 3829.04, + "end": 3832.3, + "probability": 0.8939 + }, + { + "start": 3833.42, + "end": 3836.88, + "probability": 0.9424 + }, + { + "start": 3837.9, + "end": 3841.77, + "probability": 0.9459 + }, + { + "start": 3842.96, + "end": 3843.74, + "probability": 0.9331 + }, + { + "start": 3844.56, + "end": 3844.86, + "probability": 0.8037 + }, + { + "start": 3845.66, + "end": 3849.1, + "probability": 0.8427 + }, + { + "start": 3849.56, + "end": 3851.02, + "probability": 0.9696 + }, + { + "start": 3851.7, + "end": 3853.1, + "probability": 0.9749 + }, + { + "start": 3853.52, + "end": 3857.26, + "probability": 0.8265 + }, + { + "start": 3859.0, + "end": 3862.7, + "probability": 0.9462 + }, + { + "start": 3863.42, + "end": 3865.3, + "probability": 0.869 + }, + { + "start": 3865.98, + "end": 3866.48, + "probability": 0.5234 + }, + { + "start": 3867.08, + "end": 3867.9, + "probability": 0.9609 + }, + { + "start": 3868.02, + "end": 3868.98, + "probability": 0.8494 + }, + { + "start": 3869.12, + "end": 3871.26, + "probability": 0.7387 + }, + { + "start": 3871.84, + "end": 3873.04, + "probability": 0.8412 + }, + { + "start": 3873.56, + "end": 3873.64, + "probability": 0.5455 + }, + { + "start": 3873.7, + "end": 3876.4, + "probability": 0.989 + }, + { + "start": 3877.42, + "end": 3878.36, + "probability": 0.9004 + }, + { + "start": 3879.54, + "end": 3883.54, + "probability": 0.9788 + }, + { + "start": 3884.5, + "end": 3886.52, + "probability": 0.9527 + }, + { + "start": 3887.02, + "end": 3887.92, + "probability": 0.9158 + }, + { + "start": 3889.02, + "end": 3891.02, + "probability": 0.9941 + }, + { + "start": 3891.72, + "end": 3893.54, + "probability": 0.934 + }, + { + "start": 3894.1, + "end": 3895.22, + "probability": 0.9419 + }, + { + "start": 3895.8, + "end": 3900.44, + "probability": 0.8174 + }, + { + "start": 3900.44, + "end": 3900.8, + "probability": 0.4462 + }, + { + "start": 3901.84, + "end": 3902.3, + "probability": 0.7251 + }, + { + "start": 3903.0, + "end": 3909.1, + "probability": 0.9945 + }, + { + "start": 3909.82, + "end": 3913.42, + "probability": 0.9816 + }, + { + "start": 3914.08, + "end": 3918.58, + "probability": 0.9542 + }, + { + "start": 3919.44, + "end": 3920.24, + "probability": 0.8399 + }, + { + "start": 3921.8, + "end": 3923.18, + "probability": 0.9943 + }, + { + "start": 3924.02, + "end": 3924.77, + "probability": 0.8522 + }, + { + "start": 3925.64, + "end": 3926.39, + "probability": 0.7839 + }, + { + "start": 3927.26, + "end": 3929.12, + "probability": 0.9954 + }, + { + "start": 3930.48, + "end": 3931.84, + "probability": 0.9901 + }, + { + "start": 3932.64, + "end": 3935.56, + "probability": 0.9757 + }, + { + "start": 3935.56, + "end": 3937.1, + "probability": 0.8366 + }, + { + "start": 3938.4, + "end": 3940.3, + "probability": 0.9646 + }, + { + "start": 3941.18, + "end": 3942.38, + "probability": 0.9709 + }, + { + "start": 3942.94, + "end": 3945.06, + "probability": 0.8327 + }, + { + "start": 3945.62, + "end": 3947.82, + "probability": 0.8741 + }, + { + "start": 3947.94, + "end": 3949.5, + "probability": 0.9796 + }, + { + "start": 3949.6, + "end": 3950.48, + "probability": 0.9279 + }, + { + "start": 3951.02, + "end": 3954.02, + "probability": 0.9751 + }, + { + "start": 3954.58, + "end": 3956.66, + "probability": 0.8064 + }, + { + "start": 3957.7, + "end": 3958.76, + "probability": 0.9175 + }, + { + "start": 3959.56, + "end": 3960.22, + "probability": 0.846 + }, + { + "start": 3961.08, + "end": 3962.78, + "probability": 0.9294 + }, + { + "start": 3962.94, + "end": 3963.72, + "probability": 0.6585 + }, + { + "start": 3964.76, + "end": 3966.56, + "probability": 0.6743 + }, + { + "start": 3967.16, + "end": 3967.54, + "probability": 0.7957 + }, + { + "start": 3968.08, + "end": 3970.27, + "probability": 0.5817 + }, + { + "start": 3970.9, + "end": 3970.9, + "probability": 0.1879 + }, + { + "start": 3970.9, + "end": 3971.48, + "probability": 0.7263 + }, + { + "start": 3972.06, + "end": 3972.64, + "probability": 0.953 + }, + { + "start": 3973.24, + "end": 3973.66, + "probability": 0.6385 + }, + { + "start": 3974.64, + "end": 3978.18, + "probability": 0.4074 + }, + { + "start": 3978.18, + "end": 3979.18, + "probability": 0.5991 + }, + { + "start": 3980.62, + "end": 3981.54, + "probability": 0.5177 + }, + { + "start": 3981.78, + "end": 3985.16, + "probability": 0.981 + }, + { + "start": 3985.3, + "end": 3985.5, + "probability": 0.2358 + }, + { + "start": 3985.5, + "end": 3986.24, + "probability": 0.3665 + }, + { + "start": 3986.5, + "end": 3988.18, + "probability": 0.8654 + }, + { + "start": 3988.36, + "end": 3993.55, + "probability": 0.8979 + }, + { + "start": 3994.58, + "end": 3997.06, + "probability": 0.9321 + }, + { + "start": 3997.56, + "end": 3998.99, + "probability": 0.9922 + }, + { + "start": 3999.76, + "end": 4004.14, + "probability": 0.9973 + }, + { + "start": 4004.24, + "end": 4005.36, + "probability": 0.8214 + }, + { + "start": 4005.76, + "end": 4008.46, + "probability": 0.9398 + }, + { + "start": 4008.98, + "end": 4012.7, + "probability": 0.9959 + }, + { + "start": 4012.94, + "end": 4015.98, + "probability": 0.9614 + }, + { + "start": 4016.06, + "end": 4016.52, + "probability": 0.7535 + }, + { + "start": 4017.0, + "end": 4019.74, + "probability": 0.7884 + }, + { + "start": 4020.8, + "end": 4022.32, + "probability": 0.8286 + }, + { + "start": 4023.16, + "end": 4027.0, + "probability": 0.915 + }, + { + "start": 4028.14, + "end": 4029.24, + "probability": 0.8149 + }, + { + "start": 4035.04, + "end": 4039.28, + "probability": 0.8907 + }, + { + "start": 4040.74, + "end": 4043.32, + "probability": 0.5835 + }, + { + "start": 4043.78, + "end": 4045.62, + "probability": 0.8278 + }, + { + "start": 4047.24, + "end": 4049.64, + "probability": 0.891 + }, + { + "start": 4050.76, + "end": 4057.26, + "probability": 0.9953 + }, + { + "start": 4057.48, + "end": 4064.56, + "probability": 0.7515 + }, + { + "start": 4064.7, + "end": 4066.7, + "probability": 0.9388 + }, + { + "start": 4068.54, + "end": 4074.82, + "probability": 0.9302 + }, + { + "start": 4074.98, + "end": 4077.18, + "probability": 0.9709 + }, + { + "start": 4078.0, + "end": 4079.54, + "probability": 0.7674 + }, + { + "start": 4080.12, + "end": 4084.34, + "probability": 0.9129 + }, + { + "start": 4085.14, + "end": 4093.72, + "probability": 0.9768 + }, + { + "start": 4093.72, + "end": 4098.62, + "probability": 0.9873 + }, + { + "start": 4098.72, + "end": 4101.44, + "probability": 0.9917 + }, + { + "start": 4102.2, + "end": 4106.2, + "probability": 0.9658 + }, + { + "start": 4106.2, + "end": 4112.66, + "probability": 0.998 + }, + { + "start": 4113.32, + "end": 4116.8, + "probability": 0.9967 + }, + { + "start": 4116.8, + "end": 4120.08, + "probability": 0.9966 + }, + { + "start": 4120.74, + "end": 4126.64, + "probability": 0.9885 + }, + { + "start": 4126.78, + "end": 4127.38, + "probability": 0.6268 + }, + { + "start": 4127.52, + "end": 4128.92, + "probability": 0.8022 + }, + { + "start": 4129.52, + "end": 4138.18, + "probability": 0.9569 + }, + { + "start": 4139.1, + "end": 4141.66, + "probability": 0.9016 + }, + { + "start": 4142.62, + "end": 4144.66, + "probability": 0.9081 + }, + { + "start": 4145.4, + "end": 4148.0, + "probability": 0.9961 + }, + { + "start": 4148.68, + "end": 4151.18, + "probability": 0.9894 + }, + { + "start": 4151.7, + "end": 4156.42, + "probability": 0.8424 + }, + { + "start": 4157.16, + "end": 4159.32, + "probability": 0.7606 + }, + { + "start": 4159.4, + "end": 4167.26, + "probability": 0.925 + }, + { + "start": 4167.26, + "end": 4172.76, + "probability": 0.9789 + }, + { + "start": 4174.5, + "end": 4178.16, + "probability": 0.962 + }, + { + "start": 4178.88, + "end": 4187.34, + "probability": 0.9961 + }, + { + "start": 4188.0, + "end": 4188.38, + "probability": 0.4547 + }, + { + "start": 4188.46, + "end": 4194.98, + "probability": 0.9304 + }, + { + "start": 4195.62, + "end": 4198.3, + "probability": 0.968 + }, + { + "start": 4199.14, + "end": 4204.54, + "probability": 0.9918 + }, + { + "start": 4204.6, + "end": 4210.18, + "probability": 0.9765 + }, + { + "start": 4210.26, + "end": 4211.18, + "probability": 0.9112 + }, + { + "start": 4211.66, + "end": 4212.5, + "probability": 0.9438 + }, + { + "start": 4213.74, + "end": 4217.46, + "probability": 0.9885 + }, + { + "start": 4218.42, + "end": 4225.4, + "probability": 0.9733 + }, + { + "start": 4225.58, + "end": 4228.6, + "probability": 0.8869 + }, + { + "start": 4228.64, + "end": 4230.36, + "probability": 0.9572 + }, + { + "start": 4231.0, + "end": 4232.68, + "probability": 0.9669 + }, + { + "start": 4232.82, + "end": 4233.48, + "probability": 0.8804 + }, + { + "start": 4234.38, + "end": 4236.58, + "probability": 0.8153 + }, + { + "start": 4237.44, + "end": 4239.0, + "probability": 0.9282 + }, + { + "start": 4239.34, + "end": 4244.12, + "probability": 0.8094 + }, + { + "start": 4244.9, + "end": 4248.42, + "probability": 0.9429 + }, + { + "start": 4249.0, + "end": 4249.78, + "probability": 0.8284 + }, + { + "start": 4252.3, + "end": 4253.96, + "probability": 0.8428 + }, + { + "start": 4254.12, + "end": 4255.07, + "probability": 0.9736 + }, + { + "start": 4255.54, + "end": 4256.42, + "probability": 0.6366 + }, + { + "start": 4256.48, + "end": 4257.32, + "probability": 0.6762 + }, + { + "start": 4259.1, + "end": 4260.1, + "probability": 0.8721 + }, + { + "start": 4260.34, + "end": 4263.26, + "probability": 0.9983 + }, + { + "start": 4264.74, + "end": 4270.06, + "probability": 0.9837 + }, + { + "start": 4271.24, + "end": 4272.14, + "probability": 0.9628 + }, + { + "start": 4273.3, + "end": 4276.04, + "probability": 0.9756 + }, + { + "start": 4276.76, + "end": 4280.9, + "probability": 0.9988 + }, + { + "start": 4281.66, + "end": 4284.06, + "probability": 0.8509 + }, + { + "start": 4284.88, + "end": 4286.92, + "probability": 0.9636 + }, + { + "start": 4287.52, + "end": 4289.44, + "probability": 0.9819 + }, + { + "start": 4290.78, + "end": 4293.04, + "probability": 0.9824 + }, + { + "start": 4293.1, + "end": 4296.06, + "probability": 0.9717 + }, + { + "start": 4296.7, + "end": 4299.28, + "probability": 0.7808 + }, + { + "start": 4299.92, + "end": 4302.16, + "probability": 0.9962 + }, + { + "start": 4302.82, + "end": 4307.11, + "probability": 0.8982 + }, + { + "start": 4308.38, + "end": 4311.76, + "probability": 0.9567 + }, + { + "start": 4311.76, + "end": 4314.84, + "probability": 0.9942 + }, + { + "start": 4315.72, + "end": 4320.06, + "probability": 0.9985 + }, + { + "start": 4321.68, + "end": 4325.54, + "probability": 0.9969 + }, + { + "start": 4326.82, + "end": 4331.1, + "probability": 0.9977 + }, + { + "start": 4331.84, + "end": 4335.38, + "probability": 0.9955 + }, + { + "start": 4335.52, + "end": 4336.62, + "probability": 0.9597 + }, + { + "start": 4337.42, + "end": 4338.44, + "probability": 0.9728 + }, + { + "start": 4338.56, + "end": 4339.34, + "probability": 0.9514 + }, + { + "start": 4339.58, + "end": 4340.74, + "probability": 0.9736 + }, + { + "start": 4341.5, + "end": 4343.24, + "probability": 0.9979 + }, + { + "start": 4343.76, + "end": 4345.54, + "probability": 0.9988 + }, + { + "start": 4346.12, + "end": 4348.25, + "probability": 0.998 + }, + { + "start": 4349.76, + "end": 4354.56, + "probability": 0.9591 + }, + { + "start": 4355.4, + "end": 4357.52, + "probability": 0.9716 + }, + { + "start": 4358.12, + "end": 4360.12, + "probability": 0.9983 + }, + { + "start": 4361.12, + "end": 4363.6, + "probability": 0.998 + }, + { + "start": 4364.36, + "end": 4367.58, + "probability": 0.9333 + }, + { + "start": 4368.18, + "end": 4372.88, + "probability": 0.99 + }, + { + "start": 4372.88, + "end": 4376.96, + "probability": 0.9968 + }, + { + "start": 4378.2, + "end": 4381.02, + "probability": 0.9978 + }, + { + "start": 4382.3, + "end": 4384.08, + "probability": 0.9711 + }, + { + "start": 4385.24, + "end": 4388.52, + "probability": 0.809 + }, + { + "start": 4388.7, + "end": 4390.06, + "probability": 0.9211 + }, + { + "start": 4390.96, + "end": 4392.32, + "probability": 0.8992 + }, + { + "start": 4392.86, + "end": 4397.76, + "probability": 0.803 + }, + { + "start": 4397.88, + "end": 4399.9, + "probability": 0.9025 + }, + { + "start": 4400.08, + "end": 4403.04, + "probability": 0.9565 + }, + { + "start": 4404.32, + "end": 4407.9, + "probability": 0.9043 + }, + { + "start": 4408.02, + "end": 4411.82, + "probability": 0.9844 + }, + { + "start": 4412.72, + "end": 4415.48, + "probability": 0.9841 + }, + { + "start": 4415.48, + "end": 4419.2, + "probability": 0.9314 + }, + { + "start": 4419.36, + "end": 4423.46, + "probability": 0.8889 + }, + { + "start": 4423.46, + "end": 4424.02, + "probability": 0.9379 + }, + { + "start": 4426.26, + "end": 4426.48, + "probability": 0.1115 + }, + { + "start": 4426.5, + "end": 4430.72, + "probability": 0.876 + }, + { + "start": 4431.22, + "end": 4432.18, + "probability": 0.4816 + }, + { + "start": 4432.3, + "end": 4433.4, + "probability": 0.2173 + }, + { + "start": 4433.4, + "end": 4434.62, + "probability": 0.7062 + }, + { + "start": 4436.24, + "end": 4437.5, + "probability": 0.9744 + }, + { + "start": 4437.74, + "end": 4439.22, + "probability": 0.3295 + }, + { + "start": 4441.72, + "end": 4442.5, + "probability": 0.28 + }, + { + "start": 4443.12, + "end": 4443.12, + "probability": 0.0315 + }, + { + "start": 4443.12, + "end": 4443.12, + "probability": 0.2891 + }, + { + "start": 4443.12, + "end": 4445.96, + "probability": 0.3655 + }, + { + "start": 4446.48, + "end": 4447.24, + "probability": 0.7768 + }, + { + "start": 4447.34, + "end": 4447.62, + "probability": 0.7413 + }, + { + "start": 4448.18, + "end": 4448.9, + "probability": 0.5651 + }, + { + "start": 4449.14, + "end": 4451.26, + "probability": 0.9707 + }, + { + "start": 4451.42, + "end": 4452.62, + "probability": 0.9572 + }, + { + "start": 4453.2, + "end": 4454.94, + "probability": 0.8926 + }, + { + "start": 4455.04, + "end": 4457.04, + "probability": 0.6812 + }, + { + "start": 4457.74, + "end": 4459.54, + "probability": 0.828 + }, + { + "start": 4459.66, + "end": 4464.08, + "probability": 0.8836 + }, + { + "start": 4464.32, + "end": 4465.24, + "probability": 0.5052 + }, + { + "start": 4466.92, + "end": 4469.17, + "probability": 0.9053 + }, + { + "start": 4470.06, + "end": 4471.46, + "probability": 0.6329 + }, + { + "start": 4471.64, + "end": 4472.12, + "probability": 0.3496 + }, + { + "start": 4472.16, + "end": 4472.84, + "probability": 0.5471 + }, + { + "start": 4473.69, + "end": 4478.72, + "probability": 0.0452 + }, + { + "start": 4486.1, + "end": 4486.38, + "probability": 0.1201 + }, + { + "start": 4493.74, + "end": 4494.36, + "probability": 0.1041 + }, + { + "start": 4494.36, + "end": 4494.36, + "probability": 0.6523 + }, + { + "start": 4494.36, + "end": 4494.36, + "probability": 0.731 + }, + { + "start": 4494.36, + "end": 4498.4, + "probability": 0.6521 + }, + { + "start": 4498.52, + "end": 4501.12, + "probability": 0.8165 + }, + { + "start": 4501.64, + "end": 4505.18, + "probability": 0.7497 + }, + { + "start": 4506.2, + "end": 4507.92, + "probability": 0.9939 + }, + { + "start": 4507.92, + "end": 4510.9, + "probability": 0.8606 + }, + { + "start": 4511.3, + "end": 4512.54, + "probability": 0.7805 + }, + { + "start": 4512.66, + "end": 4514.78, + "probability": 0.4725 + }, + { + "start": 4514.84, + "end": 4516.26, + "probability": 0.9784 + }, + { + "start": 4516.42, + "end": 4516.88, + "probability": 0.7127 + }, + { + "start": 4516.98, + "end": 4517.22, + "probability": 0.7982 + }, + { + "start": 4521.2, + "end": 4526.0, + "probability": 0.4908 + }, + { + "start": 4526.47, + "end": 4531.58, + "probability": 0.7612 + }, + { + "start": 4532.26, + "end": 4537.32, + "probability": 0.9391 + }, + { + "start": 4537.7, + "end": 4539.46, + "probability": 0.2364 + }, + { + "start": 4540.16, + "end": 4540.82, + "probability": 0.1275 + }, + { + "start": 4540.82, + "end": 4540.82, + "probability": 0.0657 + }, + { + "start": 4540.84, + "end": 4544.54, + "probability": 0.8264 + }, + { + "start": 4545.06, + "end": 4547.26, + "probability": 0.7924 + }, + { + "start": 4547.5, + "end": 4549.58, + "probability": 0.7807 + }, + { + "start": 4550.0, + "end": 4551.82, + "probability": 0.4237 + }, + { + "start": 4551.88, + "end": 4555.54, + "probability": 0.8845 + }, + { + "start": 4555.62, + "end": 4555.78, + "probability": 0.754 + }, + { + "start": 4556.6, + "end": 4558.52, + "probability": 0.896 + }, + { + "start": 4558.94, + "end": 4561.08, + "probability": 0.983 + }, + { + "start": 4563.2, + "end": 4564.96, + "probability": 0.8801 + }, + { + "start": 4565.6, + "end": 4568.38, + "probability": 0.6667 + }, + { + "start": 4568.92, + "end": 4572.42, + "probability": 0.7326 + }, + { + "start": 4573.54, + "end": 4576.48, + "probability": 0.7858 + }, + { + "start": 4576.98, + "end": 4578.44, + "probability": 0.6506 + }, + { + "start": 4578.44, + "end": 4579.5, + "probability": 0.7966 + }, + { + "start": 4583.32, + "end": 4584.44, + "probability": 0.6534 + }, + { + "start": 4585.22, + "end": 4585.86, + "probability": 0.7843 + }, + { + "start": 4586.12, + "end": 4588.82, + "probability": 0.9668 + }, + { + "start": 4588.82, + "end": 4592.58, + "probability": 0.9882 + }, + { + "start": 4593.34, + "end": 4594.08, + "probability": 0.6414 + }, + { + "start": 4594.8, + "end": 4598.3, + "probability": 0.8152 + }, + { + "start": 4598.88, + "end": 4603.36, + "probability": 0.9813 + }, + { + "start": 4603.8, + "end": 4607.24, + "probability": 0.9963 + }, + { + "start": 4607.98, + "end": 4611.7, + "probability": 0.9946 + }, + { + "start": 4611.7, + "end": 4615.16, + "probability": 0.9975 + }, + { + "start": 4616.18, + "end": 4618.26, + "probability": 0.996 + }, + { + "start": 4618.26, + "end": 4621.58, + "probability": 0.9927 + }, + { + "start": 4622.14, + "end": 4624.44, + "probability": 0.9952 + }, + { + "start": 4625.06, + "end": 4627.46, + "probability": 0.8794 + }, + { + "start": 4627.92, + "end": 4631.42, + "probability": 0.9912 + }, + { + "start": 4632.48, + "end": 4633.6, + "probability": 0.8274 + }, + { + "start": 4633.68, + "end": 4635.62, + "probability": 0.9816 + }, + { + "start": 4635.98, + "end": 4638.56, + "probability": 0.9837 + }, + { + "start": 4639.66, + "end": 4643.62, + "probability": 0.9956 + }, + { + "start": 4643.62, + "end": 4648.34, + "probability": 0.9548 + }, + { + "start": 4649.38, + "end": 4653.3, + "probability": 0.9814 + }, + { + "start": 4653.3, + "end": 4658.3, + "probability": 0.9862 + }, + { + "start": 4658.82, + "end": 4662.62, + "probability": 0.9591 + }, + { + "start": 4663.68, + "end": 4668.1, + "probability": 0.9978 + }, + { + "start": 4668.1, + "end": 4673.94, + "probability": 0.992 + }, + { + "start": 4674.56, + "end": 4678.4, + "probability": 0.9979 + }, + { + "start": 4678.4, + "end": 4683.18, + "probability": 0.9937 + }, + { + "start": 4683.66, + "end": 4684.23, + "probability": 0.0834 + }, + { + "start": 4684.72, + "end": 4685.2, + "probability": 0.839 + }, + { + "start": 4685.62, + "end": 4687.76, + "probability": 0.663 + }, + { + "start": 4688.28, + "end": 4691.58, + "probability": 0.9032 + }, + { + "start": 4693.18, + "end": 4694.4, + "probability": 0.8119 + }, + { + "start": 4694.52, + "end": 4697.26, + "probability": 0.8473 + }, + { + "start": 4712.68, + "end": 4712.68, + "probability": 0.1769 + }, + { + "start": 4712.68, + "end": 4712.68, + "probability": 0.0463 + }, + { + "start": 4712.68, + "end": 4712.68, + "probability": 0.0217 + }, + { + "start": 4712.68, + "end": 4712.68, + "probability": 0.1739 + }, + { + "start": 4712.68, + "end": 4712.68, + "probability": 0.0311 + }, + { + "start": 4730.18, + "end": 4734.44, + "probability": 0.5834 + }, + { + "start": 4736.32, + "end": 4737.78, + "probability": 0.6579 + }, + { + "start": 4738.94, + "end": 4742.12, + "probability": 0.8978 + }, + { + "start": 4742.12, + "end": 4743.94, + "probability": 0.7511 + }, + { + "start": 4744.54, + "end": 4750.06, + "probability": 0.7511 + }, + { + "start": 4750.14, + "end": 4752.06, + "probability": 0.8475 + }, + { + "start": 4753.4, + "end": 4754.22, + "probability": 0.4221 + }, + { + "start": 4754.34, + "end": 4754.4, + "probability": 0.0115 + }, + { + "start": 4754.4, + "end": 4758.26, + "probability": 0.6021 + }, + { + "start": 4758.26, + "end": 4759.98, + "probability": 0.8511 + }, + { + "start": 4760.18, + "end": 4762.56, + "probability": 0.7236 + }, + { + "start": 4762.6, + "end": 4763.0, + "probability": 0.7678 + }, + { + "start": 4763.32, + "end": 4763.98, + "probability": 0.4587 + }, + { + "start": 4764.64, + "end": 4764.88, + "probability": 0.8466 + }, + { + "start": 4764.92, + "end": 4765.68, + "probability": 0.8205 + }, + { + "start": 4766.02, + "end": 4767.54, + "probability": 0.7348 + }, + { + "start": 4767.78, + "end": 4769.72, + "probability": 0.9407 + }, + { + "start": 4771.75, + "end": 4772.52, + "probability": 0.3043 + }, + { + "start": 4773.28, + "end": 4776.22, + "probability": 0.7118 + }, + { + "start": 4776.92, + "end": 4779.96, + "probability": 0.8778 + }, + { + "start": 4780.2, + "end": 4781.3, + "probability": 0.8894 + }, + { + "start": 4781.78, + "end": 4783.0, + "probability": 0.8837 + }, + { + "start": 4783.5, + "end": 4783.76, + "probability": 0.4149 + }, + { + "start": 4783.76, + "end": 4787.74, + "probability": 0.837 + }, + { + "start": 4788.24, + "end": 4788.34, + "probability": 0.1231 + }, + { + "start": 4788.34, + "end": 4792.96, + "probability": 0.8034 + }, + { + "start": 4793.86, + "end": 4796.64, + "probability": 0.8796 + }, + { + "start": 4801.12, + "end": 4805.0, + "probability": 0.9385 + }, + { + "start": 4805.68, + "end": 4806.76, + "probability": 0.8573 + }, + { + "start": 4807.28, + "end": 4808.02, + "probability": 0.8961 + }, + { + "start": 4808.36, + "end": 4811.58, + "probability": 0.7518 + }, + { + "start": 4811.7, + "end": 4812.84, + "probability": 0.9069 + }, + { + "start": 4813.5, + "end": 4816.24, + "probability": 0.9825 + }, + { + "start": 4817.12, + "end": 4817.88, + "probability": 0.6349 + }, + { + "start": 4817.98, + "end": 4820.58, + "probability": 0.834 + }, + { + "start": 4820.64, + "end": 4823.94, + "probability": 0.9219 + }, + { + "start": 4824.04, + "end": 4827.82, + "probability": 0.9959 + }, + { + "start": 4827.82, + "end": 4828.72, + "probability": 0.6034 + }, + { + "start": 4829.08, + "end": 4829.74, + "probability": 0.8576 + }, + { + "start": 4829.86, + "end": 4830.62, + "probability": 0.9427 + }, + { + "start": 4831.04, + "end": 4833.52, + "probability": 0.9927 + }, + { + "start": 4833.52, + "end": 4836.44, + "probability": 0.9559 + }, + { + "start": 4836.52, + "end": 4840.02, + "probability": 0.9639 + }, + { + "start": 4840.44, + "end": 4841.32, + "probability": 0.8225 + }, + { + "start": 4841.74, + "end": 4842.7, + "probability": 0.6718 + }, + { + "start": 4842.7, + "end": 4844.06, + "probability": 0.8217 + }, + { + "start": 4844.52, + "end": 4849.0, + "probability": 0.9927 + }, + { + "start": 4849.0, + "end": 4852.82, + "probability": 0.9846 + }, + { + "start": 4853.1, + "end": 4853.88, + "probability": 0.9026 + }, + { + "start": 4854.04, + "end": 4854.92, + "probability": 0.8482 + }, + { + "start": 4855.0, + "end": 4858.58, + "probability": 0.9961 + }, + { + "start": 4858.76, + "end": 4859.98, + "probability": 0.9022 + }, + { + "start": 4860.34, + "end": 4861.54, + "probability": 0.937 + }, + { + "start": 4861.7, + "end": 4862.78, + "probability": 0.9036 + }, + { + "start": 4863.02, + "end": 4863.54, + "probability": 0.5731 + }, + { + "start": 4863.82, + "end": 4867.14, + "probability": 0.9792 + }, + { + "start": 4867.5, + "end": 4868.35, + "probability": 0.9631 + }, + { + "start": 4868.5, + "end": 4871.84, + "probability": 0.893 + }, + { + "start": 4872.2, + "end": 4875.78, + "probability": 0.8079 + }, + { + "start": 4876.12, + "end": 4877.4, + "probability": 0.9918 + }, + { + "start": 4877.64, + "end": 4878.76, + "probability": 0.9862 + }, + { + "start": 4878.86, + "end": 4880.74, + "probability": 0.9869 + }, + { + "start": 4881.14, + "end": 4885.98, + "probability": 0.9949 + }, + { + "start": 4886.19, + "end": 4891.64, + "probability": 0.993 + }, + { + "start": 4891.74, + "end": 4893.24, + "probability": 0.9297 + }, + { + "start": 4893.6, + "end": 4895.51, + "probability": 0.9938 + }, + { + "start": 4895.86, + "end": 4898.46, + "probability": 0.9928 + }, + { + "start": 4898.8, + "end": 4900.38, + "probability": 0.9216 + }, + { + "start": 4900.44, + "end": 4903.24, + "probability": 0.9823 + }, + { + "start": 4903.6, + "end": 4904.82, + "probability": 0.9941 + }, + { + "start": 4904.92, + "end": 4905.31, + "probability": 0.6197 + }, + { + "start": 4905.42, + "end": 4908.7, + "probability": 0.9233 + }, + { + "start": 4909.02, + "end": 4909.9, + "probability": 0.9443 + }, + { + "start": 4910.04, + "end": 4911.28, + "probability": 0.9185 + }, + { + "start": 4911.6, + "end": 4913.12, + "probability": 0.7842 + }, + { + "start": 4913.46, + "end": 4915.98, + "probability": 0.9634 + }, + { + "start": 4916.36, + "end": 4920.86, + "probability": 0.9927 + }, + { + "start": 4920.88, + "end": 4922.86, + "probability": 0.8591 + }, + { + "start": 4923.0, + "end": 4924.56, + "probability": 0.9627 + }, + { + "start": 4924.88, + "end": 4927.28, + "probability": 0.995 + }, + { + "start": 4927.9, + "end": 4931.14, + "probability": 0.8772 + }, + { + "start": 4932.2, + "end": 4932.34, + "probability": 0.1698 + }, + { + "start": 4932.34, + "end": 4935.0, + "probability": 0.7372 + }, + { + "start": 4935.32, + "end": 4935.54, + "probability": 0.8094 + }, + { + "start": 4936.16, + "end": 4938.42, + "probability": 0.7497 + }, + { + "start": 4938.76, + "end": 4940.02, + "probability": 0.9888 + }, + { + "start": 4940.24, + "end": 4942.56, + "probability": 0.6881 + }, + { + "start": 4943.02, + "end": 4944.16, + "probability": 0.9124 + }, + { + "start": 4945.3, + "end": 4947.16, + "probability": 0.8802 + }, + { + "start": 4947.4, + "end": 4951.3, + "probability": 0.7121 + }, + { + "start": 4952.14, + "end": 4954.86, + "probability": 0.6048 + }, + { + "start": 4955.56, + "end": 4959.48, + "probability": 0.974 + }, + { + "start": 4960.34, + "end": 4961.32, + "probability": 0.6759 + }, + { + "start": 4961.78, + "end": 4965.62, + "probability": 0.986 + }, + { + "start": 4966.24, + "end": 4966.34, + "probability": 0.4344 + }, + { + "start": 4966.98, + "end": 4972.14, + "probability": 0.6355 + }, + { + "start": 4972.68, + "end": 4980.08, + "probability": 0.9245 + }, + { + "start": 4981.34, + "end": 4982.32, + "probability": 0.9586 + }, + { + "start": 4982.42, + "end": 4985.62, + "probability": 0.9674 + }, + { + "start": 4985.8, + "end": 4988.62, + "probability": 0.2243 + }, + { + "start": 4989.38, + "end": 4993.14, + "probability": 0.6307 + }, + { + "start": 4993.14, + "end": 4994.22, + "probability": 0.5421 + }, + { + "start": 4994.26, + "end": 4994.34, + "probability": 0.1888 + }, + { + "start": 4994.34, + "end": 4994.34, + "probability": 0.5051 + }, + { + "start": 4994.34, + "end": 4994.9, + "probability": 0.7436 + }, + { + "start": 4994.92, + "end": 4996.08, + "probability": 0.6865 + }, + { + "start": 4996.14, + "end": 4997.26, + "probability": 0.893 + }, + { + "start": 4997.26, + "end": 4997.54, + "probability": 0.4141 + }, + { + "start": 4998.12, + "end": 4999.24, + "probability": 0.5918 + }, + { + "start": 5000.06, + "end": 5001.64, + "probability": 0.8807 + }, + { + "start": 5001.86, + "end": 5003.98, + "probability": 0.9066 + }, + { + "start": 5004.16, + "end": 5007.3, + "probability": 0.8405 + }, + { + "start": 5007.6, + "end": 5009.38, + "probability": 0.8349 + }, + { + "start": 5009.48, + "end": 5016.4, + "probability": 0.9497 + }, + { + "start": 5016.4, + "end": 5022.16, + "probability": 0.9973 + }, + { + "start": 5024.14, + "end": 5028.0, + "probability": 0.914 + }, + { + "start": 5028.82, + "end": 5031.66, + "probability": 0.9954 + }, + { + "start": 5031.66, + "end": 5035.14, + "probability": 0.9849 + }, + { + "start": 5035.3, + "end": 5036.5, + "probability": 0.491 + }, + { + "start": 5037.27, + "end": 5039.92, + "probability": 0.7294 + }, + { + "start": 5040.14, + "end": 5044.98, + "probability": 0.984 + }, + { + "start": 5045.12, + "end": 5045.32, + "probability": 0.0215 + }, + { + "start": 5045.52, + "end": 5046.86, + "probability": 0.7452 + }, + { + "start": 5046.9, + "end": 5052.9, + "probability": 0.9198 + }, + { + "start": 5053.7, + "end": 5058.46, + "probability": 0.7553 + }, + { + "start": 5059.16, + "end": 5060.98, + "probability": 0.6471 + }, + { + "start": 5061.5, + "end": 5067.36, + "probability": 0.9584 + }, + { + "start": 5067.36, + "end": 5071.84, + "probability": 0.9514 + }, + { + "start": 5071.94, + "end": 5072.86, + "probability": 0.5466 + }, + { + "start": 5072.88, + "end": 5075.14, + "probability": 0.8354 + }, + { + "start": 5075.18, + "end": 5076.0, + "probability": 0.8993 + }, + { + "start": 5076.76, + "end": 5078.14, + "probability": 0.9443 + }, + { + "start": 5078.34, + "end": 5084.54, + "probability": 0.9374 + }, + { + "start": 5084.54, + "end": 5087.24, + "probability": 0.7471 + }, + { + "start": 5087.9, + "end": 5089.1, + "probability": 0.3193 + }, + { + "start": 5089.88, + "end": 5092.6, + "probability": 0.8352 + }, + { + "start": 5092.82, + "end": 5094.12, + "probability": 0.7624 + }, + { + "start": 5094.12, + "end": 5094.64, + "probability": 0.3192 + }, + { + "start": 5094.66, + "end": 5095.38, + "probability": 0.6253 + }, + { + "start": 5097.68, + "end": 5103.74, + "probability": 0.018 + }, + { + "start": 5111.3, + "end": 5112.44, + "probability": 0.0714 + }, + { + "start": 5112.44, + "end": 5112.44, + "probability": 0.026 + }, + { + "start": 5112.44, + "end": 5112.46, + "probability": 0.4193 + }, + { + "start": 5112.46, + "end": 5113.34, + "probability": 0.337 + }, + { + "start": 5114.18, + "end": 5115.66, + "probability": 0.6617 + }, + { + "start": 5116.26, + "end": 5117.32, + "probability": 0.7141 + }, + { + "start": 5118.0, + "end": 5119.06, + "probability": 0.7918 + }, + { + "start": 5119.14, + "end": 5125.26, + "probability": 0.9333 + }, + { + "start": 5126.48, + "end": 5129.54, + "probability": 0.9959 + }, + { + "start": 5129.66, + "end": 5134.34, + "probability": 0.826 + }, + { + "start": 5134.44, + "end": 5135.58, + "probability": 0.3708 + }, + { + "start": 5136.64, + "end": 5141.6, + "probability": 0.9817 + }, + { + "start": 5143.72, + "end": 5145.12, + "probability": 0.7999 + }, + { + "start": 5145.22, + "end": 5145.7, + "probability": 0.472 + }, + { + "start": 5146.24, + "end": 5149.38, + "probability": 0.5983 + }, + { + "start": 5149.52, + "end": 5151.8, + "probability": 0.9883 + }, + { + "start": 5172.24, + "end": 5174.46, + "probability": 0.8083 + }, + { + "start": 5176.0, + "end": 5176.0, + "probability": 0.892 + }, + { + "start": 5176.0, + "end": 5176.0, + "probability": 0.0016 + }, + { + "start": 5177.42, + "end": 5182.62, + "probability": 0.916 + }, + { + "start": 5182.8, + "end": 5183.0, + "probability": 0.3989 + }, + { + "start": 5184.54, + "end": 5185.52, + "probability": 0.7556 + }, + { + "start": 5186.36, + "end": 5188.16, + "probability": 0.3683 + }, + { + "start": 5188.88, + "end": 5191.22, + "probability": 0.9893 + }, + { + "start": 5191.22, + "end": 5194.8, + "probability": 0.9951 + }, + { + "start": 5196.12, + "end": 5199.68, + "probability": 0.8277 + }, + { + "start": 5200.66, + "end": 5203.68, + "probability": 0.8727 + }, + { + "start": 5203.86, + "end": 5207.0, + "probability": 0.9338 + }, + { + "start": 5208.6, + "end": 5209.78, + "probability": 0.1623 + }, + { + "start": 5210.2, + "end": 5211.84, + "probability": 0.7812 + }, + { + "start": 5212.0, + "end": 5213.52, + "probability": 0.8743 + }, + { + "start": 5213.94, + "end": 5217.1, + "probability": 0.8419 + }, + { + "start": 5218.36, + "end": 5220.0, + "probability": 0.2295 + }, + { + "start": 5220.98, + "end": 5222.64, + "probability": 0.7682 + }, + { + "start": 5223.76, + "end": 5227.38, + "probability": 0.8872 + }, + { + "start": 5227.38, + "end": 5230.36, + "probability": 0.7053 + }, + { + "start": 5231.0, + "end": 5232.54, + "probability": 0.9939 + }, + { + "start": 5233.22, + "end": 5236.52, + "probability": 0.9669 + }, + { + "start": 5237.8, + "end": 5241.04, + "probability": 0.9568 + }, + { + "start": 5241.04, + "end": 5246.6, + "probability": 0.8059 + }, + { + "start": 5248.12, + "end": 5250.04, + "probability": 0.8138 + }, + { + "start": 5250.18, + "end": 5250.98, + "probability": 0.8824 + }, + { + "start": 5251.02, + "end": 5251.82, + "probability": 0.8945 + }, + { + "start": 5252.22, + "end": 5255.58, + "probability": 0.9463 + }, + { + "start": 5257.1, + "end": 5259.48, + "probability": 0.8506 + }, + { + "start": 5260.32, + "end": 5261.34, + "probability": 0.9331 + }, + { + "start": 5261.94, + "end": 5262.88, + "probability": 0.6072 + }, + { + "start": 5264.6, + "end": 5265.46, + "probability": 0.6494 + }, + { + "start": 5265.6, + "end": 5268.64, + "probability": 0.7838 + }, + { + "start": 5269.28, + "end": 5277.3, + "probability": 0.8468 + }, + { + "start": 5278.02, + "end": 5279.7, + "probability": 0.6277 + }, + { + "start": 5280.84, + "end": 5284.26, + "probability": 0.7786 + }, + { + "start": 5285.6, + "end": 5286.08, + "probability": 0.5203 + }, + { + "start": 5286.22, + "end": 5288.24, + "probability": 0.6826 + }, + { + "start": 5288.26, + "end": 5288.8, + "probability": 0.8534 + }, + { + "start": 5288.9, + "end": 5291.84, + "probability": 0.6949 + }, + { + "start": 5291.96, + "end": 5293.64, + "probability": 0.7786 + }, + { + "start": 5293.92, + "end": 5297.36, + "probability": 0.6814 + }, + { + "start": 5300.0, + "end": 5303.42, + "probability": 0.7962 + }, + { + "start": 5303.5, + "end": 5306.92, + "probability": 0.733 + }, + { + "start": 5308.88, + "end": 5311.04, + "probability": 0.856 + }, + { + "start": 5311.18, + "end": 5313.54, + "probability": 0.9917 + }, + { + "start": 5313.54, + "end": 5315.46, + "probability": 0.8643 + }, + { + "start": 5317.39, + "end": 5321.34, + "probability": 0.9827 + }, + { + "start": 5322.2, + "end": 5328.4, + "probability": 0.886 + }, + { + "start": 5328.4, + "end": 5334.14, + "probability": 0.9253 + }, + { + "start": 5335.5, + "end": 5337.2, + "probability": 0.7929 + }, + { + "start": 5337.46, + "end": 5339.06, + "probability": 0.6971 + }, + { + "start": 5339.56, + "end": 5341.28, + "probability": 0.8545 + }, + { + "start": 5342.14, + "end": 5343.22, + "probability": 0.8109 + }, + { + "start": 5343.8, + "end": 5348.1, + "probability": 0.8109 + }, + { + "start": 5348.62, + "end": 5353.11, + "probability": 0.9777 + }, + { + "start": 5354.04, + "end": 5356.38, + "probability": 0.7556 + }, + { + "start": 5356.78, + "end": 5357.58, + "probability": 0.7914 + }, + { + "start": 5358.2, + "end": 5359.02, + "probability": 0.9929 + }, + { + "start": 5359.24, + "end": 5360.94, + "probability": 0.944 + }, + { + "start": 5361.24, + "end": 5361.5, + "probability": 0.0285 + }, + { + "start": 5361.64, + "end": 5362.36, + "probability": 0.7578 + }, + { + "start": 5362.46, + "end": 5364.44, + "probability": 0.3563 + }, + { + "start": 5364.52, + "end": 5364.7, + "probability": 0.7618 + }, + { + "start": 5367.14, + "end": 5369.78, + "probability": 0.9395 + }, + { + "start": 5370.76, + "end": 5374.22, + "probability": 0.7917 + }, + { + "start": 5374.26, + "end": 5375.78, + "probability": 0.7119 + }, + { + "start": 5376.2, + "end": 5377.64, + "probability": 0.9432 + }, + { + "start": 5390.06, + "end": 5392.06, + "probability": 0.6801 + }, + { + "start": 5392.92, + "end": 5396.34, + "probability": 0.9858 + }, + { + "start": 5396.4, + "end": 5397.02, + "probability": 0.9222 + }, + { + "start": 5397.1, + "end": 5399.36, + "probability": 0.8207 + }, + { + "start": 5400.04, + "end": 5402.4, + "probability": 0.9954 + }, + { + "start": 5402.4, + "end": 5406.4, + "probability": 0.9143 + }, + { + "start": 5407.78, + "end": 5412.18, + "probability": 0.9354 + }, + { + "start": 5413.12, + "end": 5418.84, + "probability": 0.9889 + }, + { + "start": 5419.42, + "end": 5423.8, + "probability": 0.8528 + }, + { + "start": 5424.88, + "end": 5430.64, + "probability": 0.9868 + }, + { + "start": 5431.56, + "end": 5435.92, + "probability": 0.9932 + }, + { + "start": 5435.92, + "end": 5439.44, + "probability": 0.9589 + }, + { + "start": 5440.68, + "end": 5446.24, + "probability": 0.9315 + }, + { + "start": 5447.42, + "end": 5448.06, + "probability": 0.3794 + }, + { + "start": 5449.24, + "end": 5452.8, + "probability": 0.9953 + }, + { + "start": 5452.8, + "end": 5457.74, + "probability": 0.9576 + }, + { + "start": 5458.72, + "end": 5463.22, + "probability": 0.9731 + }, + { + "start": 5463.48, + "end": 5466.08, + "probability": 0.9983 + }, + { + "start": 5466.96, + "end": 5472.18, + "probability": 0.9568 + }, + { + "start": 5472.3, + "end": 5472.86, + "probability": 0.7958 + }, + { + "start": 5473.56, + "end": 5475.76, + "probability": 0.9982 + }, + { + "start": 5476.4, + "end": 5479.2, + "probability": 0.9819 + }, + { + "start": 5479.3, + "end": 5479.78, + "probability": 0.6429 + }, + { + "start": 5479.86, + "end": 5481.18, + "probability": 0.9702 + }, + { + "start": 5481.7, + "end": 5484.4, + "probability": 0.9902 + }, + { + "start": 5485.44, + "end": 5487.52, + "probability": 0.8922 + }, + { + "start": 5487.66, + "end": 5491.2, + "probability": 0.9678 + }, + { + "start": 5491.98, + "end": 5494.88, + "probability": 0.9782 + }, + { + "start": 5494.88, + "end": 5499.58, + "probability": 0.8721 + }, + { + "start": 5500.34, + "end": 5505.5, + "probability": 0.7611 + }, + { + "start": 5505.56, + "end": 5507.6, + "probability": 0.9808 + }, + { + "start": 5509.3, + "end": 5511.9, + "probability": 0.9818 + }, + { + "start": 5511.98, + "end": 5514.56, + "probability": 0.7864 + }, + { + "start": 5515.48, + "end": 5518.02, + "probability": 0.9953 + }, + { + "start": 5518.36, + "end": 5520.08, + "probability": 0.9995 + }, + { + "start": 5520.86, + "end": 5523.56, + "probability": 0.9949 + }, + { + "start": 5523.68, + "end": 5529.8, + "probability": 0.9851 + }, + { + "start": 5530.04, + "end": 5530.84, + "probability": 0.9504 + }, + { + "start": 5530.94, + "end": 5533.82, + "probability": 0.9689 + }, + { + "start": 5534.64, + "end": 5536.82, + "probability": 0.8899 + }, + { + "start": 5537.5, + "end": 5542.74, + "probability": 0.9878 + }, + { + "start": 5542.86, + "end": 5546.27, + "probability": 0.8076 + }, + { + "start": 5546.98, + "end": 5549.88, + "probability": 0.9937 + }, + { + "start": 5549.96, + "end": 5551.26, + "probability": 0.9907 + }, + { + "start": 5551.46, + "end": 5554.52, + "probability": 0.9639 + }, + { + "start": 5555.06, + "end": 5555.48, + "probability": 0.8652 + }, + { + "start": 5555.58, + "end": 5556.6, + "probability": 0.8197 + }, + { + "start": 5556.64, + "end": 5559.96, + "probability": 0.9461 + }, + { + "start": 5560.1, + "end": 5560.32, + "probability": 0.8623 + }, + { + "start": 5560.98, + "end": 5561.46, + "probability": 0.5229 + }, + { + "start": 5562.52, + "end": 5564.08, + "probability": 0.6126 + }, + { + "start": 5565.56, + "end": 5567.02, + "probability": 0.5573 + }, + { + "start": 5567.24, + "end": 5569.96, + "probability": 0.8457 + }, + { + "start": 5574.17, + "end": 5578.84, + "probability": 0.7417 + }, + { + "start": 5583.76, + "end": 5589.18, + "probability": 0.8589 + }, + { + "start": 5590.82, + "end": 5591.32, + "probability": 0.7954 + }, + { + "start": 5591.44, + "end": 5592.66, + "probability": 0.7794 + }, + { + "start": 5592.92, + "end": 5593.46, + "probability": 0.5055 + }, + { + "start": 5593.86, + "end": 5595.08, + "probability": 0.8838 + }, + { + "start": 5596.5, + "end": 5599.7, + "probability": 0.837 + }, + { + "start": 5599.88, + "end": 5600.68, + "probability": 0.7844 + }, + { + "start": 5601.36, + "end": 5602.12, + "probability": 0.7865 + }, + { + "start": 5602.4, + "end": 5604.85, + "probability": 0.8174 + }, + { + "start": 5605.52, + "end": 5609.7, + "probability": 0.6736 + }, + { + "start": 5610.1, + "end": 5610.42, + "probability": 0.3021 + }, + { + "start": 5610.56, + "end": 5611.06, + "probability": 0.4875 + }, + { + "start": 5611.58, + "end": 5613.43, + "probability": 0.5685 + }, + { + "start": 5614.04, + "end": 5615.22, + "probability": 0.8678 + }, + { + "start": 5616.04, + "end": 5619.1, + "probability": 0.541 + }, + { + "start": 5619.8, + "end": 5622.42, + "probability": 0.6785 + }, + { + "start": 5622.96, + "end": 5627.14, + "probability": 0.6196 + }, + { + "start": 5627.7, + "end": 5629.92, + "probability": 0.853 + }, + { + "start": 5631.22, + "end": 5633.44, + "probability": 0.6382 + }, + { + "start": 5633.88, + "end": 5634.78, + "probability": 0.3189 + }, + { + "start": 5635.36, + "end": 5637.32, + "probability": 0.8795 + }, + { + "start": 5638.12, + "end": 5640.58, + "probability": 0.7986 + }, + { + "start": 5640.9, + "end": 5642.84, + "probability": 0.855 + }, + { + "start": 5642.9, + "end": 5645.36, + "probability": 0.7919 + }, + { + "start": 5646.04, + "end": 5647.14, + "probability": 0.4953 + }, + { + "start": 5647.8, + "end": 5649.8, + "probability": 0.4687 + }, + { + "start": 5650.52, + "end": 5651.02, + "probability": 0.6147 + }, + { + "start": 5651.46, + "end": 5652.42, + "probability": 0.637 + }, + { + "start": 5653.06, + "end": 5653.48, + "probability": 0.8044 + }, + { + "start": 5653.68, + "end": 5653.86, + "probability": 0.8759 + }, + { + "start": 5653.92, + "end": 5656.58, + "probability": 0.8429 + }, + { + "start": 5656.76, + "end": 5658.36, + "probability": 0.9591 + }, + { + "start": 5658.84, + "end": 5660.42, + "probability": 0.937 + }, + { + "start": 5660.5, + "end": 5661.04, + "probability": 0.514 + }, + { + "start": 5661.24, + "end": 5661.78, + "probability": 0.7073 + }, + { + "start": 5661.9, + "end": 5663.52, + "probability": 0.9883 + }, + { + "start": 5664.34, + "end": 5668.24, + "probability": 0.853 + }, + { + "start": 5668.96, + "end": 5669.14, + "probability": 0.4607 + }, + { + "start": 5669.18, + "end": 5670.54, + "probability": 0.7413 + }, + { + "start": 5670.9, + "end": 5675.19, + "probability": 0.6742 + }, + { + "start": 5676.96, + "end": 5677.78, + "probability": 0.9647 + }, + { + "start": 5677.88, + "end": 5679.06, + "probability": 0.856 + }, + { + "start": 5680.56, + "end": 5683.92, + "probability": 0.9379 + }, + { + "start": 5684.02, + "end": 5684.92, + "probability": 0.9604 + }, + { + "start": 5685.5, + "end": 5687.15, + "probability": 0.9644 + }, + { + "start": 5688.56, + "end": 5690.74, + "probability": 0.9982 + }, + { + "start": 5690.74, + "end": 5695.3, + "probability": 0.7484 + }, + { + "start": 5695.48, + "end": 5696.36, + "probability": 0.2962 + }, + { + "start": 5696.68, + "end": 5700.86, + "probability": 0.8815 + }, + { + "start": 5701.1, + "end": 5703.3, + "probability": 0.6702 + }, + { + "start": 5703.44, + "end": 5703.98, + "probability": 0.6609 + }, + { + "start": 5704.02, + "end": 5704.58, + "probability": 0.7206 + }, + { + "start": 5708.54, + "end": 5708.62, + "probability": 0.2844 + }, + { + "start": 5709.82, + "end": 5713.46, + "probability": 0.051 + }, + { + "start": 5713.75, + "end": 5719.96, + "probability": 0.0476 + }, + { + "start": 5720.66, + "end": 5721.1, + "probability": 0.0314 + }, + { + "start": 5721.1, + "end": 5723.94, + "probability": 0.5215 + }, + { + "start": 5724.1, + "end": 5725.56, + "probability": 0.8677 + }, + { + "start": 5727.16, + "end": 5728.4, + "probability": 0.2471 + }, + { + "start": 5730.14, + "end": 5730.5, + "probability": 0.5555 + }, + { + "start": 5731.38, + "end": 5733.26, + "probability": 0.7386 + }, + { + "start": 5733.8, + "end": 5735.07, + "probability": 0.9966 + }, + { + "start": 5736.22, + "end": 5740.38, + "probability": 0.8575 + }, + { + "start": 5740.38, + "end": 5744.56, + "probability": 0.9227 + }, + { + "start": 5744.7, + "end": 5745.9, + "probability": 0.576 + }, + { + "start": 5747.88, + "end": 5748.72, + "probability": 0.001 + }, + { + "start": 5748.72, + "end": 5748.72, + "probability": 0.1954 + }, + { + "start": 5748.72, + "end": 5748.72, + "probability": 0.5983 + }, + { + "start": 5748.72, + "end": 5749.65, + "probability": 0.404 + }, + { + "start": 5751.18, + "end": 5753.52, + "probability": 0.9817 + }, + { + "start": 5753.66, + "end": 5755.52, + "probability": 0.837 + }, + { + "start": 5755.7, + "end": 5756.26, + "probability": 0.7552 + }, + { + "start": 5758.72, + "end": 5761.92, + "probability": 0.8112 + }, + { + "start": 5762.16, + "end": 5766.08, + "probability": 0.6388 + }, + { + "start": 5766.2, + "end": 5767.38, + "probability": 0.3823 + }, + { + "start": 5768.14, + "end": 5770.82, + "probability": 0.9559 + }, + { + "start": 5774.84, + "end": 5775.9, + "probability": 0.7208 + }, + { + "start": 5778.42, + "end": 5779.96, + "probability": 0.6414 + }, + { + "start": 5780.04, + "end": 5781.48, + "probability": 0.7741 + }, + { + "start": 5781.5, + "end": 5782.6, + "probability": 0.7598 + }, + { + "start": 5782.68, + "end": 5784.4, + "probability": 0.8333 + }, + { + "start": 5784.52, + "end": 5784.93, + "probability": 0.9348 + }, + { + "start": 5786.76, + "end": 5787.4, + "probability": 0.9588 + }, + { + "start": 5788.42, + "end": 5790.38, + "probability": 0.9823 + }, + { + "start": 5790.48, + "end": 5791.12, + "probability": 0.4901 + }, + { + "start": 5791.22, + "end": 5792.3, + "probability": 0.58 + }, + { + "start": 5792.58, + "end": 5795.72, + "probability": 0.8816 + }, + { + "start": 5804.66, + "end": 5805.72, + "probability": 0.5996 + }, + { + "start": 5807.34, + "end": 5809.1, + "probability": 0.8419 + }, + { + "start": 5809.78, + "end": 5810.64, + "probability": 0.9276 + }, + { + "start": 5812.54, + "end": 5814.5, + "probability": 0.9694 + }, + { + "start": 5815.62, + "end": 5816.28, + "probability": 0.6591 + }, + { + "start": 5816.88, + "end": 5819.06, + "probability": 0.9526 + }, + { + "start": 5820.3, + "end": 5824.46, + "probability": 0.9163 + }, + { + "start": 5827.18, + "end": 5827.52, + "probability": 0.7788 + }, + { + "start": 5828.48, + "end": 5831.56, + "probability": 0.6944 + }, + { + "start": 5832.12, + "end": 5834.3, + "probability": 0.7917 + }, + { + "start": 5835.39, + "end": 5838.48, + "probability": 0.985 + }, + { + "start": 5840.4, + "end": 5842.22, + "probability": 0.9744 + }, + { + "start": 5842.4, + "end": 5843.26, + "probability": 0.9413 + }, + { + "start": 5843.52, + "end": 5845.5, + "probability": 0.9058 + }, + { + "start": 5846.14, + "end": 5847.58, + "probability": 0.8011 + }, + { + "start": 5849.04, + "end": 5850.96, + "probability": 0.9829 + }, + { + "start": 5851.3, + "end": 5851.94, + "probability": 0.671 + }, + { + "start": 5851.96, + "end": 5852.8, + "probability": 0.9206 + }, + { + "start": 5852.94, + "end": 5853.6, + "probability": 0.6212 + }, + { + "start": 5856.14, + "end": 5856.7, + "probability": 0.9077 + }, + { + "start": 5857.58, + "end": 5860.38, + "probability": 0.9707 + }, + { + "start": 5863.12, + "end": 5864.68, + "probability": 0.9562 + }, + { + "start": 5866.74, + "end": 5869.44, + "probability": 0.7604 + }, + { + "start": 5870.48, + "end": 5871.4, + "probability": 0.931 + }, + { + "start": 5872.34, + "end": 5873.44, + "probability": 0.9233 + }, + { + "start": 5874.98, + "end": 5877.16, + "probability": 0.6756 + }, + { + "start": 5878.32, + "end": 5879.86, + "probability": 0.865 + }, + { + "start": 5880.54, + "end": 5881.82, + "probability": 0.8339 + }, + { + "start": 5882.8, + "end": 5884.84, + "probability": 0.9294 + }, + { + "start": 5885.9, + "end": 5890.66, + "probability": 0.6332 + }, + { + "start": 5893.84, + "end": 5895.8, + "probability": 0.9419 + }, + { + "start": 5896.42, + "end": 5898.66, + "probability": 0.8849 + }, + { + "start": 5899.3, + "end": 5901.82, + "probability": 0.9472 + }, + { + "start": 5903.58, + "end": 5904.52, + "probability": 0.5087 + }, + { + "start": 5905.78, + "end": 5906.44, + "probability": 0.8688 + }, + { + "start": 5907.12, + "end": 5907.96, + "probability": 0.7614 + }, + { + "start": 5910.26, + "end": 5912.52, + "probability": 0.6953 + }, + { + "start": 5912.62, + "end": 5914.54, + "probability": 0.7681 + }, + { + "start": 5914.9, + "end": 5917.17, + "probability": 0.8102 + }, + { + "start": 5918.64, + "end": 5919.58, + "probability": 0.9004 + }, + { + "start": 5919.68, + "end": 5922.36, + "probability": 0.9916 + }, + { + "start": 5923.12, + "end": 5924.8, + "probability": 0.9494 + }, + { + "start": 5925.54, + "end": 5925.64, + "probability": 0.8823 + }, + { + "start": 5926.62, + "end": 5927.56, + "probability": 0.8979 + }, + { + "start": 5930.06, + "end": 5933.76, + "probability": 0.9091 + }, + { + "start": 5934.46, + "end": 5936.78, + "probability": 0.7262 + }, + { + "start": 5937.4, + "end": 5939.64, + "probability": 0.3794 + }, + { + "start": 5940.28, + "end": 5942.74, + "probability": 0.959 + }, + { + "start": 5943.26, + "end": 5944.56, + "probability": 0.9423 + }, + { + "start": 5945.34, + "end": 5945.66, + "probability": 0.9733 + }, + { + "start": 5946.64, + "end": 5950.46, + "probability": 0.8711 + }, + { + "start": 5953.74, + "end": 5954.5, + "probability": 0.6859 + }, + { + "start": 5955.34, + "end": 5957.42, + "probability": 0.9964 + }, + { + "start": 5959.38, + "end": 5962.08, + "probability": 0.9566 + }, + { + "start": 5962.8, + "end": 5963.8, + "probability": 0.9858 + }, + { + "start": 5963.96, + "end": 5968.64, + "probability": 0.9509 + }, + { + "start": 5970.0, + "end": 5971.12, + "probability": 0.9871 + }, + { + "start": 5972.28, + "end": 5975.78, + "probability": 0.9739 + }, + { + "start": 5977.38, + "end": 5978.8, + "probability": 0.5852 + }, + { + "start": 5979.36, + "end": 5981.06, + "probability": 0.2838 + }, + { + "start": 5981.34, + "end": 5981.66, + "probability": 0.4921 + }, + { + "start": 5981.96, + "end": 5983.16, + "probability": 0.991 + }, + { + "start": 5983.7, + "end": 5984.91, + "probability": 0.7968 + }, + { + "start": 5985.58, + "end": 5987.28, + "probability": 0.9824 + }, + { + "start": 5989.42, + "end": 5989.48, + "probability": 0.0871 + }, + { + "start": 5989.48, + "end": 5990.0, + "probability": 0.6367 + }, + { + "start": 5990.22, + "end": 5993.28, + "probability": 0.9165 + }, + { + "start": 5993.48, + "end": 5994.4, + "probability": 0.747 + }, + { + "start": 5995.12, + "end": 5997.94, + "probability": 0.5773 + }, + { + "start": 5999.14, + "end": 6002.66, + "probability": 0.4422 + }, + { + "start": 6003.0, + "end": 6004.16, + "probability": 0.8028 + }, + { + "start": 6004.72, + "end": 6007.06, + "probability": 0.4855 + }, + { + "start": 6007.06, + "end": 6008.6, + "probability": 0.5127 + }, + { + "start": 6008.72, + "end": 6009.72, + "probability": 0.8659 + }, + { + "start": 6012.55, + "end": 6012.9, + "probability": 0.122 + }, + { + "start": 6013.84, + "end": 6015.54, + "probability": 0.0931 + }, + { + "start": 6015.68, + "end": 6017.24, + "probability": 0.3404 + }, + { + "start": 6018.1, + "end": 6018.47, + "probability": 0.779 + }, + { + "start": 6018.88, + "end": 6019.28, + "probability": 0.4832 + }, + { + "start": 6019.6, + "end": 6021.06, + "probability": 0.1279 + }, + { + "start": 6021.1, + "end": 6024.44, + "probability": 0.9232 + }, + { + "start": 6024.48, + "end": 6024.9, + "probability": 0.0315 + }, + { + "start": 6024.9, + "end": 6025.74, + "probability": 0.6275 + }, + { + "start": 6025.8, + "end": 6027.08, + "probability": 0.4939 + }, + { + "start": 6027.18, + "end": 6029.7, + "probability": 0.7102 + }, + { + "start": 6030.26, + "end": 6031.84, + "probability": 0.6771 + }, + { + "start": 6031.9, + "end": 6032.93, + "probability": 0.766 + }, + { + "start": 6034.38, + "end": 6035.14, + "probability": 0.9385 + }, + { + "start": 6035.26, + "end": 6036.29, + "probability": 0.8611 + }, + { + "start": 6036.8, + "end": 6038.36, + "probability": 0.9663 + }, + { + "start": 6039.28, + "end": 6040.96, + "probability": 0.8452 + }, + { + "start": 6041.74, + "end": 6042.86, + "probability": 0.8605 + }, + { + "start": 6042.86, + "end": 6043.52, + "probability": 0.788 + }, + { + "start": 6044.64, + "end": 6045.54, + "probability": 0.0806 + }, + { + "start": 6045.54, + "end": 6047.14, + "probability": 0.8732 + }, + { + "start": 6047.54, + "end": 6047.82, + "probability": 0.8546 + }, + { + "start": 6047.82, + "end": 6051.82, + "probability": 0.9373 + }, + { + "start": 6053.2, + "end": 6055.16, + "probability": 0.7806 + }, + { + "start": 6055.68, + "end": 6056.54, + "probability": 0.999 + }, + { + "start": 6057.1, + "end": 6058.24, + "probability": 0.73 + }, + { + "start": 6060.22, + "end": 6063.12, + "probability": 0.9901 + }, + { + "start": 6063.94, + "end": 6064.88, + "probability": 0.9865 + }, + { + "start": 6066.52, + "end": 6067.7, + "probability": 0.9487 + }, + { + "start": 6067.74, + "end": 6069.86, + "probability": 0.8966 + }, + { + "start": 6070.62, + "end": 6071.56, + "probability": 0.573 + }, + { + "start": 6071.62, + "end": 6075.56, + "probability": 0.7747 + }, + { + "start": 6075.79, + "end": 6078.54, + "probability": 0.9344 + }, + { + "start": 6078.98, + "end": 6082.98, + "probability": 0.4822 + }, + { + "start": 6085.56, + "end": 6087.36, + "probability": 0.4215 + }, + { + "start": 6089.03, + "end": 6090.68, + "probability": 0.5052 + }, + { + "start": 6096.86, + "end": 6101.1, + "probability": 0.9709 + }, + { + "start": 6102.46, + "end": 6104.94, + "probability": 0.0632 + }, + { + "start": 6105.44, + "end": 6105.52, + "probability": 0.0098 + }, + { + "start": 6105.52, + "end": 6106.7, + "probability": 0.8158 + }, + { + "start": 6107.66, + "end": 6111.4, + "probability": 0.8309 + }, + { + "start": 6111.92, + "end": 6117.38, + "probability": 0.988 + }, + { + "start": 6118.54, + "end": 6119.4, + "probability": 0.0893 + }, + { + "start": 6119.54, + "end": 6120.38, + "probability": 0.1178 + }, + { + "start": 6120.7, + "end": 6123.92, + "probability": 0.7677 + }, + { + "start": 6123.92, + "end": 6127.62, + "probability": 0.7261 + }, + { + "start": 6127.68, + "end": 6127.96, + "probability": 0.788 + }, + { + "start": 6127.98, + "end": 6130.48, + "probability": 0.9644 + }, + { + "start": 6130.86, + "end": 6133.88, + "probability": 0.5768 + }, + { + "start": 6133.88, + "end": 6134.44, + "probability": 0.2143 + }, + { + "start": 6134.46, + "end": 6135.03, + "probability": 0.7231 + }, + { + "start": 6135.24, + "end": 6139.06, + "probability": 0.8487 + }, + { + "start": 6141.1, + "end": 6143.0, + "probability": 0.5486 + }, + { + "start": 6143.42, + "end": 6144.42, + "probability": 0.7256 + }, + { + "start": 6144.54, + "end": 6149.26, + "probability": 0.8488 + }, + { + "start": 6149.72, + "end": 6149.72, + "probability": 0.1176 + }, + { + "start": 6149.72, + "end": 6150.5, + "probability": 0.3008 + }, + { + "start": 6150.52, + "end": 6150.52, + "probability": 0.005 + }, + { + "start": 6151.06, + "end": 6154.31, + "probability": 0.5398 + }, + { + "start": 6157.64, + "end": 6160.56, + "probability": 0.2401 + }, + { + "start": 6160.74, + "end": 6161.9, + "probability": 0.7161 + }, + { + "start": 6161.94, + "end": 6162.52, + "probability": 0.8673 + }, + { + "start": 6162.84, + "end": 6163.54, + "probability": 0.486 + }, + { + "start": 6164.9, + "end": 6169.62, + "probability": 0.6632 + }, + { + "start": 6170.28, + "end": 6171.02, + "probability": 0.6922 + }, + { + "start": 6172.02, + "end": 6175.18, + "probability": 0.8555 + }, + { + "start": 6176.5, + "end": 6179.76, + "probability": 0.9341 + }, + { + "start": 6180.18, + "end": 6180.52, + "probability": 0.7445 + }, + { + "start": 6180.64, + "end": 6181.8, + "probability": 0.7042 + }, + { + "start": 6182.8, + "end": 6186.24, + "probability": 0.9485 + }, + { + "start": 6186.48, + "end": 6186.84, + "probability": 0.668 + }, + { + "start": 6187.12, + "end": 6188.26, + "probability": 0.6075 + }, + { + "start": 6188.56, + "end": 6190.36, + "probability": 0.5414 + }, + { + "start": 6190.96, + "end": 6192.8, + "probability": 0.1589 + }, + { + "start": 6195.22, + "end": 6195.64, + "probability": 0.2014 + }, + { + "start": 6195.66, + "end": 6196.96, + "probability": 0.2632 + }, + { + "start": 6196.96, + "end": 6197.67, + "probability": 0.1424 + }, + { + "start": 6199.74, + "end": 6199.8, + "probability": 0.1899 + }, + { + "start": 6201.25, + "end": 6202.16, + "probability": 0.2912 + }, + { + "start": 6203.32, + "end": 6203.44, + "probability": 0.1262 + }, + { + "start": 6204.78, + "end": 6210.02, + "probability": 0.0391 + }, + { + "start": 6213.22, + "end": 6214.82, + "probability": 0.149 + }, + { + "start": 6215.96, + "end": 6218.76, + "probability": 0.0214 + }, + { + "start": 6218.76, + "end": 6220.12, + "probability": 0.0283 + }, + { + "start": 6222.82, + "end": 6223.7, + "probability": 0.0721 + }, + { + "start": 6223.7, + "end": 6224.52, + "probability": 0.1323 + }, + { + "start": 6228.98, + "end": 6230.28, + "probability": 0.0238 + }, + { + "start": 6230.28, + "end": 6233.02, + "probability": 0.0106 + }, + { + "start": 6233.02, + "end": 6235.46, + "probability": 0.0549 + }, + { + "start": 6236.45, + "end": 6238.94, + "probability": 0.0247 + }, + { + "start": 6240.54, + "end": 6240.64, + "probability": 0.0045 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6264.0, + "end": 6264.0, + "probability": 0.0 + }, + { + "start": 6265.66, + "end": 6265.88, + "probability": 0.1048 + }, + { + "start": 6265.88, + "end": 6267.12, + "probability": 0.0967 + }, + { + "start": 6270.15, + "end": 6272.06, + "probability": 0.0065 + }, + { + "start": 6276.42, + "end": 6282.1, + "probability": 0.2312 + }, + { + "start": 6282.1, + "end": 6282.1, + "probability": 0.2403 + }, + { + "start": 6282.9, + "end": 6283.38, + "probability": 0.0207 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.0, + "end": 6395.0, + "probability": 0.0 + }, + { + "start": 6395.88, + "end": 6396.24, + "probability": 0.1173 + }, + { + "start": 6396.24, + "end": 6397.08, + "probability": 0.1031 + }, + { + "start": 6397.16, + "end": 6400.53, + "probability": 0.6318 + }, + { + "start": 6401.54, + "end": 6403.52, + "probability": 0.5169 + }, + { + "start": 6404.56, + "end": 6404.6, + "probability": 0.4174 + }, + { + "start": 6404.68, + "end": 6405.0, + "probability": 0.8799 + }, + { + "start": 6405.39, + "end": 6408.26, + "probability": 0.6111 + }, + { + "start": 6408.34, + "end": 6411.86, + "probability": 0.9247 + }, + { + "start": 6411.86, + "end": 6414.08, + "probability": 0.9541 + }, + { + "start": 6415.24, + "end": 6419.64, + "probability": 0.9707 + }, + { + "start": 6419.64, + "end": 6423.24, + "probability": 0.9836 + }, + { + "start": 6423.4, + "end": 6428.66, + "probability": 0.9095 + }, + { + "start": 6428.76, + "end": 6431.24, + "probability": 0.943 + }, + { + "start": 6432.2, + "end": 6435.32, + "probability": 0.9721 + }, + { + "start": 6435.32, + "end": 6438.54, + "probability": 0.9897 + }, + { + "start": 6439.46, + "end": 6441.98, + "probability": 0.749 + }, + { + "start": 6443.18, + "end": 6444.48, + "probability": 0.9917 + }, + { + "start": 6444.6, + "end": 6446.1, + "probability": 0.8355 + }, + { + "start": 6446.18, + "end": 6449.42, + "probability": 0.9049 + }, + { + "start": 6450.12, + "end": 6451.82, + "probability": 0.9971 + }, + { + "start": 6452.02, + "end": 6454.44, + "probability": 0.9412 + }, + { + "start": 6455.68, + "end": 6458.1, + "probability": 0.7852 + }, + { + "start": 6458.7, + "end": 6461.24, + "probability": 0.9896 + }, + { + "start": 6461.56, + "end": 6463.0, + "probability": 0.907 + }, + { + "start": 6464.22, + "end": 6467.42, + "probability": 0.993 + }, + { + "start": 6468.86, + "end": 6471.9, + "probability": 0.9758 + }, + { + "start": 6471.96, + "end": 6473.96, + "probability": 0.984 + }, + { + "start": 6474.98, + "end": 6477.38, + "probability": 0.9692 + }, + { + "start": 6478.36, + "end": 6479.14, + "probability": 0.7204 + }, + { + "start": 6480.02, + "end": 6480.82, + "probability": 0.7432 + }, + { + "start": 6481.1, + "end": 6482.72, + "probability": 0.9918 + }, + { + "start": 6483.02, + "end": 6484.22, + "probability": 0.9956 + }, + { + "start": 6485.08, + "end": 6488.22, + "probability": 0.9861 + }, + { + "start": 6488.98, + "end": 6490.86, + "probability": 0.9911 + }, + { + "start": 6491.8, + "end": 6493.58, + "probability": 0.8069 + }, + { + "start": 6494.26, + "end": 6498.74, + "probability": 0.9938 + }, + { + "start": 6499.78, + "end": 6502.44, + "probability": 0.9651 + }, + { + "start": 6502.44, + "end": 6506.2, + "probability": 0.9569 + }, + { + "start": 6507.48, + "end": 6509.04, + "probability": 0.9424 + }, + { + "start": 6510.96, + "end": 6513.04, + "probability": 0.8528 + }, + { + "start": 6513.84, + "end": 6514.62, + "probability": 0.6741 + }, + { + "start": 6515.62, + "end": 6521.26, + "probability": 0.98 + }, + { + "start": 6521.56, + "end": 6522.34, + "probability": 0.9495 + }, + { + "start": 6522.54, + "end": 6523.7, + "probability": 0.9779 + }, + { + "start": 6524.44, + "end": 6525.62, + "probability": 0.896 + }, + { + "start": 6526.76, + "end": 6528.46, + "probability": 0.9364 + }, + { + "start": 6529.34, + "end": 6530.92, + "probability": 0.9942 + }, + { + "start": 6531.62, + "end": 6533.92, + "probability": 0.9438 + }, + { + "start": 6534.02, + "end": 6534.8, + "probability": 0.9987 + }, + { + "start": 6535.8, + "end": 6536.5, + "probability": 0.7472 + }, + { + "start": 6537.18, + "end": 6540.0, + "probability": 0.914 + }, + { + "start": 6540.94, + "end": 6544.52, + "probability": 0.9888 + }, + { + "start": 6545.14, + "end": 6547.12, + "probability": 0.6551 + }, + { + "start": 6548.06, + "end": 6549.12, + "probability": 0.5475 + }, + { + "start": 6549.92, + "end": 6550.87, + "probability": 0.9698 + }, + { + "start": 6551.9, + "end": 6554.34, + "probability": 0.9625 + }, + { + "start": 6555.5, + "end": 6559.72, + "probability": 0.993 + }, + { + "start": 6559.94, + "end": 6560.46, + "probability": 0.8985 + }, + { + "start": 6561.2, + "end": 6564.0, + "probability": 0.9955 + }, + { + "start": 6564.62, + "end": 6565.26, + "probability": 0.7834 + }, + { + "start": 6565.96, + "end": 6570.86, + "probability": 0.9985 + }, + { + "start": 6571.82, + "end": 6574.42, + "probability": 0.9785 + }, + { + "start": 6575.2, + "end": 6575.66, + "probability": 0.811 + }, + { + "start": 6575.86, + "end": 6576.2, + "probability": 0.8087 + }, + { + "start": 6576.28, + "end": 6576.62, + "probability": 0.9071 + }, + { + "start": 6576.74, + "end": 6577.18, + "probability": 0.7394 + }, + { + "start": 6578.62, + "end": 6580.54, + "probability": 0.9871 + }, + { + "start": 6580.7, + "end": 6581.66, + "probability": 0.795 + }, + { + "start": 6582.5, + "end": 6584.54, + "probability": 0.9671 + }, + { + "start": 6586.46, + "end": 6589.74, + "probability": 0.9701 + }, + { + "start": 6591.12, + "end": 6597.8, + "probability": 0.9326 + }, + { + "start": 6599.22, + "end": 6601.5, + "probability": 0.8391 + }, + { + "start": 6601.56, + "end": 6601.96, + "probability": 0.7275 + }, + { + "start": 6602.3, + "end": 6603.04, + "probability": 0.6575 + }, + { + "start": 6604.2, + "end": 6606.96, + "probability": 0.8092 + }, + { + "start": 6608.24, + "end": 6609.2, + "probability": 0.9907 + }, + { + "start": 6609.2, + "end": 6611.46, + "probability": 0.9574 + }, + { + "start": 6611.6, + "end": 6614.1, + "probability": 0.9667 + }, + { + "start": 6614.24, + "end": 6615.72, + "probability": 0.9612 + }, + { + "start": 6616.54, + "end": 6617.42, + "probability": 0.6277 + }, + { + "start": 6619.48, + "end": 6620.38, + "probability": 0.7545 + }, + { + "start": 6622.32, + "end": 6624.24, + "probability": 0.2633 + }, + { + "start": 6625.92, + "end": 6628.68, + "probability": 0.7472 + }, + { + "start": 6630.7, + "end": 6633.04, + "probability": 0.8482 + }, + { + "start": 6634.64, + "end": 6640.12, + "probability": 0.8408 + }, + { + "start": 6640.66, + "end": 6643.92, + "probability": 0.9746 + }, + { + "start": 6645.44, + "end": 6646.44, + "probability": 0.7347 + }, + { + "start": 6647.66, + "end": 6652.54, + "probability": 0.7738 + }, + { + "start": 6654.56, + "end": 6655.96, + "probability": 0.8132 + }, + { + "start": 6656.0, + "end": 6658.7, + "probability": 0.8782 + }, + { + "start": 6659.36, + "end": 6663.04, + "probability": 0.6667 + }, + { + "start": 6663.4, + "end": 6666.04, + "probability": 0.9941 + }, + { + "start": 6667.58, + "end": 6669.84, + "probability": 0.9951 + }, + { + "start": 6670.14, + "end": 6674.62, + "probability": 0.9372 + }, + { + "start": 6674.62, + "end": 6679.02, + "probability": 0.9966 + }, + { + "start": 6679.67, + "end": 6681.56, + "probability": 0.9529 + }, + { + "start": 6682.24, + "end": 6683.72, + "probability": 0.958 + }, + { + "start": 6684.98, + "end": 6692.3, + "probability": 0.9914 + }, + { + "start": 6693.02, + "end": 6694.3, + "probability": 0.8067 + }, + { + "start": 6695.34, + "end": 6698.58, + "probability": 0.7033 + }, + { + "start": 6699.62, + "end": 6700.8, + "probability": 0.8029 + }, + { + "start": 6701.8, + "end": 6703.56, + "probability": 0.7778 + }, + { + "start": 6705.34, + "end": 6708.14, + "probability": 0.9976 + }, + { + "start": 6708.3, + "end": 6710.9, + "probability": 0.6515 + }, + { + "start": 6712.04, + "end": 6714.24, + "probability": 0.9794 + }, + { + "start": 6714.84, + "end": 6715.4, + "probability": 0.4074 + }, + { + "start": 6715.46, + "end": 6716.58, + "probability": 0.6057 + }, + { + "start": 6718.21, + "end": 6719.5, + "probability": 0.4909 + }, + { + "start": 6719.68, + "end": 6723.88, + "probability": 0.9682 + }, + { + "start": 6723.96, + "end": 6724.78, + "probability": 0.9665 + }, + { + "start": 6725.72, + "end": 6726.88, + "probability": 0.9963 + }, + { + "start": 6728.12, + "end": 6729.1, + "probability": 0.9482 + }, + { + "start": 6729.92, + "end": 6731.1, + "probability": 0.9622 + }, + { + "start": 6732.24, + "end": 6734.42, + "probability": 0.6069 + }, + { + "start": 6734.82, + "end": 6737.4, + "probability": 0.9797 + }, + { + "start": 6737.88, + "end": 6739.02, + "probability": 0.9053 + }, + { + "start": 6740.22, + "end": 6743.04, + "probability": 0.8388 + }, + { + "start": 6744.26, + "end": 6745.06, + "probability": 0.9763 + }, + { + "start": 6746.06, + "end": 6749.82, + "probability": 0.8786 + }, + { + "start": 6751.2, + "end": 6751.76, + "probability": 0.4822 + }, + { + "start": 6752.38, + "end": 6754.1, + "probability": 0.8431 + }, + { + "start": 6755.06, + "end": 6757.82, + "probability": 0.8591 + }, + { + "start": 6758.44, + "end": 6759.74, + "probability": 0.8965 + }, + { + "start": 6761.22, + "end": 6761.86, + "probability": 0.5136 + }, + { + "start": 6762.3, + "end": 6763.9, + "probability": 0.8859 + }, + { + "start": 6764.36, + "end": 6768.12, + "probability": 0.8899 + }, + { + "start": 6768.48, + "end": 6770.8, + "probability": 0.7662 + }, + { + "start": 6772.48, + "end": 6775.18, + "probability": 0.8842 + }, + { + "start": 6776.14, + "end": 6778.5, + "probability": 0.991 + }, + { + "start": 6778.86, + "end": 6779.84, + "probability": 0.9976 + }, + { + "start": 6780.32, + "end": 6780.74, + "probability": 0.3372 + }, + { + "start": 6780.94, + "end": 6784.48, + "probability": 0.9954 + }, + { + "start": 6785.36, + "end": 6787.82, + "probability": 0.9662 + }, + { + "start": 6788.04, + "end": 6790.49, + "probability": 0.823 + }, + { + "start": 6790.86, + "end": 6792.3, + "probability": 0.9973 + }, + { + "start": 6792.46, + "end": 6795.74, + "probability": 0.955 + }, + { + "start": 6796.88, + "end": 6799.7, + "probability": 0.6005 + }, + { + "start": 6800.54, + "end": 6803.22, + "probability": 0.9944 + }, + { + "start": 6803.7, + "end": 6807.66, + "probability": 0.9748 + }, + { + "start": 6808.5, + "end": 6809.26, + "probability": 0.6672 + }, + { + "start": 6809.72, + "end": 6811.2, + "probability": 0.9825 + }, + { + "start": 6811.7, + "end": 6813.36, + "probability": 0.9631 + }, + { + "start": 6813.62, + "end": 6814.82, + "probability": 0.8385 + }, + { + "start": 6815.4, + "end": 6816.66, + "probability": 0.8984 + }, + { + "start": 6818.04, + "end": 6818.04, + "probability": 0.015 + }, + { + "start": 6818.04, + "end": 6819.72, + "probability": 0.8173 + }, + { + "start": 6819.88, + "end": 6820.44, + "probability": 0.7596 + }, + { + "start": 6822.56, + "end": 6823.43, + "probability": 0.7959 + }, + { + "start": 6823.54, + "end": 6824.1, + "probability": 0.7468 + }, + { + "start": 6824.22, + "end": 6825.76, + "probability": 0.8563 + }, + { + "start": 6825.78, + "end": 6826.56, + "probability": 0.9236 + }, + { + "start": 6827.04, + "end": 6829.4, + "probability": 0.9806 + }, + { + "start": 6829.94, + "end": 6832.72, + "probability": 0.7193 + }, + { + "start": 6833.5, + "end": 6835.96, + "probability": 0.9744 + }, + { + "start": 6836.52, + "end": 6842.4, + "probability": 0.9539 + }, + { + "start": 6842.8, + "end": 6845.54, + "probability": 0.9714 + }, + { + "start": 6846.08, + "end": 6846.94, + "probability": 0.3129 + }, + { + "start": 6846.94, + "end": 6847.28, + "probability": 0.6974 + }, + { + "start": 6848.18, + "end": 6849.54, + "probability": 0.8888 + }, + { + "start": 6849.92, + "end": 6850.58, + "probability": 0.9019 + }, + { + "start": 6851.14, + "end": 6855.16, + "probability": 0.9879 + }, + { + "start": 6855.98, + "end": 6859.14, + "probability": 0.9951 + }, + { + "start": 6859.7, + "end": 6861.76, + "probability": 0.9736 + }, + { + "start": 6862.38, + "end": 6864.4, + "probability": 0.9699 + }, + { + "start": 6865.22, + "end": 6867.92, + "probability": 0.9446 + }, + { + "start": 6868.64, + "end": 6870.28, + "probability": 0.98 + }, + { + "start": 6870.82, + "end": 6872.22, + "probability": 0.8826 + }, + { + "start": 6872.26, + "end": 6875.56, + "probability": 0.707 + }, + { + "start": 6875.56, + "end": 6881.54, + "probability": 0.9679 + }, + { + "start": 6882.1, + "end": 6883.66, + "probability": 0.8775 + }, + { + "start": 6884.58, + "end": 6886.02, + "probability": 0.8469 + }, + { + "start": 6886.6, + "end": 6888.32, + "probability": 0.9729 + }, + { + "start": 6889.2, + "end": 6889.88, + "probability": 0.9231 + }, + { + "start": 6890.54, + "end": 6893.8, + "probability": 0.9714 + }, + { + "start": 6894.48, + "end": 6896.46, + "probability": 0.949 + }, + { + "start": 6897.78, + "end": 6898.67, + "probability": 0.958 + }, + { + "start": 6899.8, + "end": 6900.86, + "probability": 0.9888 + }, + { + "start": 6900.98, + "end": 6903.76, + "probability": 0.958 + }, + { + "start": 6904.1, + "end": 6907.26, + "probability": 0.9255 + }, + { + "start": 6907.36, + "end": 6908.42, + "probability": 0.6967 + }, + { + "start": 6908.46, + "end": 6910.72, + "probability": 0.9719 + }, + { + "start": 6911.32, + "end": 6913.92, + "probability": 0.7918 + }, + { + "start": 6915.22, + "end": 6916.36, + "probability": 0.9395 + }, + { + "start": 6917.18, + "end": 6917.62, + "probability": 0.5439 + }, + { + "start": 6918.68, + "end": 6921.32, + "probability": 0.7911 + }, + { + "start": 6921.46, + "end": 6923.44, + "probability": 0.8804 + }, + { + "start": 6923.86, + "end": 6926.12, + "probability": 0.9639 + }, + { + "start": 6926.5, + "end": 6926.96, + "probability": 0.6067 + }, + { + "start": 6927.1, + "end": 6929.13, + "probability": 0.8229 + }, + { + "start": 6929.56, + "end": 6930.64, + "probability": 0.5814 + }, + { + "start": 6931.16, + "end": 6931.78, + "probability": 0.7914 + }, + { + "start": 6933.02, + "end": 6935.16, + "probability": 0.7083 + }, + { + "start": 6935.3, + "end": 6938.38, + "probability": 0.9869 + }, + { + "start": 6938.74, + "end": 6940.0, + "probability": 0.999 + }, + { + "start": 6940.72, + "end": 6942.98, + "probability": 0.9571 + }, + { + "start": 6943.12, + "end": 6944.46, + "probability": 0.9971 + }, + { + "start": 6944.98, + "end": 6947.36, + "probability": 0.9233 + }, + { + "start": 6947.7, + "end": 6948.3, + "probability": 0.7584 + }, + { + "start": 6948.82, + "end": 6950.86, + "probability": 0.9558 + }, + { + "start": 6950.94, + "end": 6955.1, + "probability": 0.763 + }, + { + "start": 6956.72, + "end": 6960.08, + "probability": 0.9368 + }, + { + "start": 6960.2, + "end": 6963.28, + "probability": 0.8454 + }, + { + "start": 6963.44, + "end": 6963.54, + "probability": 0.026 + }, + { + "start": 6963.54, + "end": 6966.06, + "probability": 0.9659 + }, + { + "start": 6967.2, + "end": 6971.08, + "probability": 0.984 + }, + { + "start": 6971.9, + "end": 6975.42, + "probability": 0.9757 + }, + { + "start": 6995.6, + "end": 6996.46, + "probability": 0.5675 + }, + { + "start": 6996.96, + "end": 6998.12, + "probability": 0.9367 + }, + { + "start": 6998.26, + "end": 6999.32, + "probability": 0.8916 + }, + { + "start": 6999.4, + "end": 7000.04, + "probability": 0.5485 + }, + { + "start": 7000.68, + "end": 7003.04, + "probability": 0.9871 + }, + { + "start": 7003.82, + "end": 7006.08, + "probability": 0.9939 + }, + { + "start": 7006.8, + "end": 7010.86, + "probability": 0.9709 + }, + { + "start": 7011.46, + "end": 7012.74, + "probability": 0.7803 + }, + { + "start": 7013.7, + "end": 7015.54, + "probability": 0.9826 + }, + { + "start": 7016.46, + "end": 7019.5, + "probability": 0.9961 + }, + { + "start": 7019.58, + "end": 7022.94, + "probability": 0.9953 + }, + { + "start": 7022.94, + "end": 7026.0, + "probability": 0.9176 + }, + { + "start": 7026.06, + "end": 7027.06, + "probability": 0.8865 + }, + { + "start": 7027.88, + "end": 7030.34, + "probability": 0.7201 + }, + { + "start": 7031.24, + "end": 7032.12, + "probability": 0.9788 + }, + { + "start": 7033.5, + "end": 7035.7, + "probability": 0.9842 + }, + { + "start": 7036.58, + "end": 7038.16, + "probability": 0.923 + }, + { + "start": 7038.32, + "end": 7042.14, + "probability": 0.9209 + }, + { + "start": 7043.0, + "end": 7043.62, + "probability": 0.9574 + }, + { + "start": 7044.62, + "end": 7046.64, + "probability": 0.9385 + }, + { + "start": 7047.68, + "end": 7048.73, + "probability": 0.9712 + }, + { + "start": 7049.78, + "end": 7052.86, + "probability": 0.995 + }, + { + "start": 7053.62, + "end": 7055.98, + "probability": 0.7775 + }, + { + "start": 7056.84, + "end": 7058.45, + "probability": 0.9993 + }, + { + "start": 7059.32, + "end": 7062.27, + "probability": 0.9854 + }, + { + "start": 7062.52, + "end": 7063.64, + "probability": 0.9437 + }, + { + "start": 7064.28, + "end": 7069.14, + "probability": 0.9734 + }, + { + "start": 7069.76, + "end": 7076.45, + "probability": 0.8215 + }, + { + "start": 7079.46, + "end": 7081.88, + "probability": 0.9071 + }, + { + "start": 7082.84, + "end": 7082.96, + "probability": 0.36 + }, + { + "start": 7084.26, + "end": 7086.4, + "probability": 0.9368 + }, + { + "start": 7086.44, + "end": 7086.74, + "probability": 0.4355 + }, + { + "start": 7087.2, + "end": 7090.52, + "probability": 0.9867 + }, + { + "start": 7091.48, + "end": 7093.66, + "probability": 0.9918 + }, + { + "start": 7093.88, + "end": 7098.16, + "probability": 0.9621 + }, + { + "start": 7099.18, + "end": 7104.48, + "probability": 0.993 + }, + { + "start": 7105.52, + "end": 7108.94, + "probability": 0.9971 + }, + { + "start": 7109.0, + "end": 7113.6, + "probability": 0.993 + }, + { + "start": 7116.22, + "end": 7123.44, + "probability": 0.9912 + }, + { + "start": 7124.04, + "end": 7126.86, + "probability": 0.9808 + }, + { + "start": 7128.56, + "end": 7130.1, + "probability": 0.9181 + }, + { + "start": 7130.92, + "end": 7134.22, + "probability": 0.9961 + }, + { + "start": 7134.22, + "end": 7137.48, + "probability": 0.9977 + }, + { + "start": 7138.88, + "end": 7141.68, + "probability": 0.9958 + }, + { + "start": 7142.36, + "end": 7144.46, + "probability": 0.9911 + }, + { + "start": 7145.66, + "end": 7149.18, + "probability": 0.9137 + }, + { + "start": 7150.2, + "end": 7155.3, + "probability": 0.9918 + }, + { + "start": 7156.7, + "end": 7161.34, + "probability": 0.9338 + }, + { + "start": 7161.96, + "end": 7163.94, + "probability": 0.9905 + }, + { + "start": 7164.76, + "end": 7166.9, + "probability": 0.9985 + }, + { + "start": 7167.8, + "end": 7172.74, + "probability": 0.9389 + }, + { + "start": 7173.4, + "end": 7175.9, + "probability": 0.9953 + }, + { + "start": 7176.7, + "end": 7178.46, + "probability": 0.998 + }, + { + "start": 7178.72, + "end": 7179.98, + "probability": 0.6198 + }, + { + "start": 7182.28, + "end": 7183.86, + "probability": 0.8645 + }, + { + "start": 7184.74, + "end": 7185.94, + "probability": 0.8099 + }, + { + "start": 7187.24, + "end": 7189.38, + "probability": 0.8885 + }, + { + "start": 7190.02, + "end": 7191.88, + "probability": 0.9741 + }, + { + "start": 7192.38, + "end": 7195.62, + "probability": 0.9954 + }, + { + "start": 7195.86, + "end": 7200.02, + "probability": 0.6714 + }, + { + "start": 7200.72, + "end": 7204.22, + "probability": 0.8146 + }, + { + "start": 7204.56, + "end": 7208.56, + "probability": 0.9413 + }, + { + "start": 7209.56, + "end": 7209.84, + "probability": 0.577 + }, + { + "start": 7209.86, + "end": 7211.8, + "probability": 0.7515 + }, + { + "start": 7211.8, + "end": 7212.88, + "probability": 0.4786 + }, + { + "start": 7213.32, + "end": 7213.58, + "probability": 0.5271 + }, + { + "start": 7214.18, + "end": 7215.44, + "probability": 0.92 + }, + { + "start": 7216.04, + "end": 7219.38, + "probability": 0.8689 + }, + { + "start": 7220.2, + "end": 7225.34, + "probability": 0.9473 + }, + { + "start": 7226.26, + "end": 7230.22, + "probability": 0.9974 + }, + { + "start": 7231.52, + "end": 7234.34, + "probability": 0.8901 + }, + { + "start": 7234.34, + "end": 7239.74, + "probability": 0.9951 + }, + { + "start": 7240.42, + "end": 7245.22, + "probability": 0.9907 + }, + { + "start": 7245.22, + "end": 7247.82, + "probability": 0.8298 + }, + { + "start": 7248.22, + "end": 7251.3, + "probability": 0.9111 + }, + { + "start": 7252.04, + "end": 7257.52, + "probability": 0.9929 + }, + { + "start": 7257.88, + "end": 7264.22, + "probability": 0.9832 + }, + { + "start": 7264.6, + "end": 7265.26, + "probability": 0.7872 + }, + { + "start": 7265.36, + "end": 7269.28, + "probability": 0.9932 + }, + { + "start": 7270.04, + "end": 7274.32, + "probability": 0.9973 + }, + { + "start": 7274.42, + "end": 7275.52, + "probability": 0.7344 + }, + { + "start": 7275.94, + "end": 7279.28, + "probability": 0.9441 + }, + { + "start": 7280.04, + "end": 7286.96, + "probability": 0.9264 + }, + { + "start": 7287.1, + "end": 7288.16, + "probability": 0.8447 + }, + { + "start": 7289.04, + "end": 7292.6, + "probability": 0.6928 + }, + { + "start": 7293.74, + "end": 7296.18, + "probability": 0.7539 + }, + { + "start": 7296.94, + "end": 7298.32, + "probability": 0.9368 + }, + { + "start": 7305.7, + "end": 7306.74, + "probability": 0.7096 + }, + { + "start": 7307.34, + "end": 7307.34, + "probability": 0.5782 + }, + { + "start": 7307.34, + "end": 7309.28, + "probability": 0.6783 + }, + { + "start": 7309.52, + "end": 7310.84, + "probability": 0.8075 + }, + { + "start": 7310.88, + "end": 7313.1, + "probability": 0.9894 + }, + { + "start": 7313.44, + "end": 7315.26, + "probability": 0.8208 + }, + { + "start": 7315.36, + "end": 7316.6, + "probability": 0.8656 + }, + { + "start": 7316.82, + "end": 7318.92, + "probability": 0.8512 + }, + { + "start": 7319.18, + "end": 7320.27, + "probability": 0.8848 + }, + { + "start": 7320.56, + "end": 7323.8, + "probability": 0.9912 + }, + { + "start": 7324.98, + "end": 7326.08, + "probability": 0.6846 + }, + { + "start": 7326.88, + "end": 7329.06, + "probability": 0.8102 + }, + { + "start": 7329.82, + "end": 7333.68, + "probability": 0.9559 + }, + { + "start": 7334.38, + "end": 7336.28, + "probability": 0.7148 + }, + { + "start": 7336.48, + "end": 7339.74, + "probability": 0.9954 + }, + { + "start": 7340.4, + "end": 7345.42, + "probability": 0.9967 + }, + { + "start": 7346.72, + "end": 7349.54, + "probability": 0.9989 + }, + { + "start": 7350.16, + "end": 7354.82, + "probability": 0.9972 + }, + { + "start": 7356.12, + "end": 7359.3, + "probability": 0.9987 + }, + { + "start": 7360.14, + "end": 7361.6, + "probability": 0.7134 + }, + { + "start": 7362.42, + "end": 7368.2, + "probability": 0.9855 + }, + { + "start": 7368.44, + "end": 7370.92, + "probability": 0.9124 + }, + { + "start": 7371.02, + "end": 7371.92, + "probability": 0.5527 + }, + { + "start": 7372.88, + "end": 7378.58, + "probability": 0.9985 + }, + { + "start": 7379.06, + "end": 7380.88, + "probability": 0.9974 + }, + { + "start": 7381.48, + "end": 7382.38, + "probability": 0.9989 + }, + { + "start": 7383.0, + "end": 7384.2, + "probability": 0.9335 + }, + { + "start": 7385.24, + "end": 7386.8, + "probability": 0.8602 + }, + { + "start": 7386.96, + "end": 7389.54, + "probability": 0.9974 + }, + { + "start": 7390.32, + "end": 7396.78, + "probability": 0.9916 + }, + { + "start": 7396.78, + "end": 7402.3, + "probability": 0.9903 + }, + { + "start": 7403.52, + "end": 7408.44, + "probability": 0.991 + }, + { + "start": 7408.48, + "end": 7412.44, + "probability": 0.9997 + }, + { + "start": 7413.02, + "end": 7416.86, + "probability": 0.7601 + }, + { + "start": 7417.44, + "end": 7422.34, + "probability": 0.9906 + }, + { + "start": 7423.02, + "end": 7424.52, + "probability": 0.9692 + }, + { + "start": 7425.22, + "end": 7426.14, + "probability": 0.8394 + }, + { + "start": 7426.22, + "end": 7427.34, + "probability": 0.917 + }, + { + "start": 7427.66, + "end": 7430.5, + "probability": 0.8969 + }, + { + "start": 7430.6, + "end": 7432.14, + "probability": 0.912 + }, + { + "start": 7433.0, + "end": 7434.14, + "probability": 0.8515 + }, + { + "start": 7434.78, + "end": 7436.12, + "probability": 0.8544 + }, + { + "start": 7436.92, + "end": 7438.78, + "probability": 0.9871 + }, + { + "start": 7439.48, + "end": 7441.3, + "probability": 0.9974 + }, + { + "start": 7441.84, + "end": 7443.72, + "probability": 0.9587 + }, + { + "start": 7444.88, + "end": 7446.32, + "probability": 0.6475 + }, + { + "start": 7447.3, + "end": 7451.18, + "probability": 0.9981 + }, + { + "start": 7451.86, + "end": 7453.36, + "probability": 0.9709 + }, + { + "start": 7454.1, + "end": 7457.16, + "probability": 0.9984 + }, + { + "start": 7457.16, + "end": 7460.7, + "probability": 0.9347 + }, + { + "start": 7462.38, + "end": 7464.24, + "probability": 0.9622 + }, + { + "start": 7464.84, + "end": 7470.16, + "probability": 0.9917 + }, + { + "start": 7471.32, + "end": 7473.82, + "probability": 0.985 + }, + { + "start": 7474.32, + "end": 7476.76, + "probability": 0.9946 + }, + { + "start": 7478.12, + "end": 7479.62, + "probability": 0.7033 + }, + { + "start": 7480.4, + "end": 7485.24, + "probability": 0.901 + }, + { + "start": 7485.86, + "end": 7486.84, + "probability": 0.9744 + }, + { + "start": 7487.56, + "end": 7490.14, + "probability": 0.9744 + }, + { + "start": 7490.9, + "end": 7495.3, + "probability": 0.8551 + }, + { + "start": 7495.3, + "end": 7499.74, + "probability": 0.9677 + }, + { + "start": 7500.32, + "end": 7501.86, + "probability": 0.9967 + }, + { + "start": 7502.38, + "end": 7502.74, + "probability": 0.4999 + }, + { + "start": 7502.86, + "end": 7504.04, + "probability": 0.7264 + }, + { + "start": 7504.42, + "end": 7507.96, + "probability": 0.9702 + }, + { + "start": 7508.56, + "end": 7511.8, + "probability": 0.982 + }, + { + "start": 7512.08, + "end": 7512.48, + "probability": 0.885 + }, + { + "start": 7512.56, + "end": 7514.58, + "probability": 0.6078 + }, + { + "start": 7515.44, + "end": 7517.52, + "probability": 0.9993 + }, + { + "start": 7518.22, + "end": 7520.76, + "probability": 0.9849 + }, + { + "start": 7521.56, + "end": 7521.92, + "probability": 0.9587 + }, + { + "start": 7527.08, + "end": 7530.24, + "probability": 0.9151 + }, + { + "start": 7546.62, + "end": 7548.92, + "probability": 0.7557 + }, + { + "start": 7549.7, + "end": 7552.68, + "probability": 0.8125 + }, + { + "start": 7552.9, + "end": 7558.46, + "probability": 0.9482 + }, + { + "start": 7559.82, + "end": 7567.94, + "probability": 0.9797 + }, + { + "start": 7569.99, + "end": 7573.7, + "probability": 0.8873 + }, + { + "start": 7574.5, + "end": 7577.98, + "probability": 0.9958 + }, + { + "start": 7578.12, + "end": 7579.36, + "probability": 0.9927 + }, + { + "start": 7580.18, + "end": 7582.86, + "probability": 0.9131 + }, + { + "start": 7583.8, + "end": 7587.06, + "probability": 0.9746 + }, + { + "start": 7587.62, + "end": 7590.92, + "probability": 0.9422 + }, + { + "start": 7591.5, + "end": 7592.62, + "probability": 0.7312 + }, + { + "start": 7593.66, + "end": 7594.4, + "probability": 0.746 + }, + { + "start": 7595.1, + "end": 7599.34, + "probability": 0.9858 + }, + { + "start": 7600.0, + "end": 7601.48, + "probability": 0.7523 + }, + { + "start": 7602.22, + "end": 7602.58, + "probability": 0.0273 + }, + { + "start": 7602.58, + "end": 7602.58, + "probability": 0.131 + }, + { + "start": 7602.58, + "end": 7603.1, + "probability": 0.1856 + }, + { + "start": 7603.12, + "end": 7603.46, + "probability": 0.529 + }, + { + "start": 7603.5, + "end": 7604.3, + "probability": 0.6549 + }, + { + "start": 7604.36, + "end": 7606.76, + "probability": 0.8918 + }, + { + "start": 7606.84, + "end": 7614.0, + "probability": 0.8911 + }, + { + "start": 7614.68, + "end": 7620.32, + "probability": 0.9976 + }, + { + "start": 7620.46, + "end": 7624.48, + "probability": 0.9362 + }, + { + "start": 7626.06, + "end": 7630.76, + "probability": 0.9967 + }, + { + "start": 7630.76, + "end": 7634.36, + "probability": 0.9878 + }, + { + "start": 7634.36, + "end": 7639.82, + "probability": 0.9865 + }, + { + "start": 7641.02, + "end": 7643.86, + "probability": 0.997 + }, + { + "start": 7643.86, + "end": 7647.72, + "probability": 0.995 + }, + { + "start": 7647.8, + "end": 7648.7, + "probability": 0.968 + }, + { + "start": 7648.88, + "end": 7650.18, + "probability": 0.9985 + }, + { + "start": 7650.74, + "end": 7655.98, + "probability": 0.9941 + }, + { + "start": 7656.64, + "end": 7660.16, + "probability": 0.9701 + }, + { + "start": 7661.32, + "end": 7663.44, + "probability": 0.9946 + }, + { + "start": 7663.72, + "end": 7666.88, + "probability": 0.9122 + }, + { + "start": 7666.88, + "end": 7669.6, + "probability": 0.896 + }, + { + "start": 7681.56, + "end": 7682.58, + "probability": 0.1114 + }, + { + "start": 7684.62, + "end": 7685.4, + "probability": 0.0838 + }, + { + "start": 7685.4, + "end": 7685.4, + "probability": 0.0225 + }, + { + "start": 7685.4, + "end": 7686.76, + "probability": 0.0825 + }, + { + "start": 7686.76, + "end": 7687.1, + "probability": 0.3211 + }, + { + "start": 7687.96, + "end": 7688.12, + "probability": 0.1375 + }, + { + "start": 7688.12, + "end": 7690.42, + "probability": 0.9781 + }, + { + "start": 7690.56, + "end": 7694.64, + "probability": 0.9915 + }, + { + "start": 7695.16, + "end": 7696.96, + "probability": 0.9553 + }, + { + "start": 7697.6, + "end": 7703.02, + "probability": 0.8882 + }, + { + "start": 7703.56, + "end": 7707.92, + "probability": 0.9963 + }, + { + "start": 7708.86, + "end": 7709.26, + "probability": 0.5623 + }, + { + "start": 7709.88, + "end": 7711.04, + "probability": 0.7997 + }, + { + "start": 7711.66, + "end": 7715.01, + "probability": 0.9951 + }, + { + "start": 7715.48, + "end": 7717.36, + "probability": 0.9896 + }, + { + "start": 7718.22, + "end": 7719.08, + "probability": 0.9285 + }, + { + "start": 7719.74, + "end": 7722.88, + "probability": 0.9988 + }, + { + "start": 7722.88, + "end": 7726.72, + "probability": 0.9815 + }, + { + "start": 7727.3, + "end": 7733.96, + "probability": 0.8909 + }, + { + "start": 7734.06, + "end": 7734.32, + "probability": 0.7734 + }, + { + "start": 7735.0, + "end": 7738.58, + "probability": 0.7842 + }, + { + "start": 7738.72, + "end": 7739.62, + "probability": 0.7277 + }, + { + "start": 7740.08, + "end": 7741.36, + "probability": 0.956 + }, + { + "start": 7741.6, + "end": 7742.7, + "probability": 0.8933 + }, + { + "start": 7746.98, + "end": 7753.42, + "probability": 0.9692 + }, + { + "start": 7755.2, + "end": 7757.96, + "probability": 0.9622 + }, + { + "start": 7762.36, + "end": 7763.24, + "probability": 0.5017 + }, + { + "start": 7763.32, + "end": 7763.7, + "probability": 0.8358 + }, + { + "start": 7765.0, + "end": 7767.2, + "probability": 0.9896 + }, + { + "start": 7768.22, + "end": 7769.7, + "probability": 0.9126 + }, + { + "start": 7771.1, + "end": 7774.38, + "probability": 0.7112 + }, + { + "start": 7774.92, + "end": 7776.3, + "probability": 0.8413 + }, + { + "start": 7777.14, + "end": 7780.92, + "probability": 0.8698 + }, + { + "start": 7781.1, + "end": 7782.81, + "probability": 0.9755 + }, + { + "start": 7783.3, + "end": 7784.48, + "probability": 0.8774 + }, + { + "start": 7784.52, + "end": 7786.12, + "probability": 0.9819 + }, + { + "start": 7786.86, + "end": 7787.74, + "probability": 0.9758 + }, + { + "start": 7787.82, + "end": 7789.92, + "probability": 0.9808 + }, + { + "start": 7790.04, + "end": 7791.42, + "probability": 0.9814 + }, + { + "start": 7791.72, + "end": 7792.74, + "probability": 0.7765 + }, + { + "start": 7793.1, + "end": 7794.0, + "probability": 0.4965 + }, + { + "start": 7794.14, + "end": 7794.44, + "probability": 0.42 + }, + { + "start": 7794.58, + "end": 7795.5, + "probability": 0.9907 + }, + { + "start": 7795.98, + "end": 7796.76, + "probability": 0.975 + }, + { + "start": 7797.34, + "end": 7799.9, + "probability": 0.9352 + }, + { + "start": 7800.4, + "end": 7801.6, + "probability": 0.8982 + }, + { + "start": 7802.44, + "end": 7804.9, + "probability": 0.7695 + }, + { + "start": 7805.24, + "end": 7807.66, + "probability": 0.9858 + }, + { + "start": 7808.1, + "end": 7809.3, + "probability": 0.7849 + }, + { + "start": 7809.36, + "end": 7810.76, + "probability": 0.9717 + }, + { + "start": 7810.92, + "end": 7813.44, + "probability": 0.9032 + }, + { + "start": 7814.08, + "end": 7818.71, + "probability": 0.8726 + }, + { + "start": 7819.08, + "end": 7819.8, + "probability": 0.9614 + }, + { + "start": 7819.96, + "end": 7821.1, + "probability": 0.9969 + }, + { + "start": 7821.76, + "end": 7824.2, + "probability": 0.6855 + }, + { + "start": 7824.34, + "end": 7825.66, + "probability": 0.8843 + }, + { + "start": 7826.14, + "end": 7826.86, + "probability": 0.9794 + }, + { + "start": 7829.04, + "end": 7830.86, + "probability": 0.9509 + }, + { + "start": 7831.12, + "end": 7833.96, + "probability": 0.9189 + }, + { + "start": 7836.08, + "end": 7837.86, + "probability": 0.6078 + }, + { + "start": 7854.66, + "end": 7854.82, + "probability": 0.6544 + }, + { + "start": 7855.84, + "end": 7858.7, + "probability": 0.8514 + }, + { + "start": 7860.1, + "end": 7860.94, + "probability": 0.9739 + }, + { + "start": 7862.3, + "end": 7867.04, + "probability": 0.8577 + }, + { + "start": 7867.16, + "end": 7871.42, + "probability": 0.9678 + }, + { + "start": 7871.96, + "end": 7876.2, + "probability": 0.9935 + }, + { + "start": 7876.48, + "end": 7879.04, + "probability": 0.9163 + }, + { + "start": 7879.62, + "end": 7882.32, + "probability": 0.9606 + }, + { + "start": 7883.7, + "end": 7886.26, + "probability": 0.9952 + }, + { + "start": 7886.26, + "end": 7891.2, + "probability": 0.9395 + }, + { + "start": 7891.9, + "end": 7895.46, + "probability": 0.9821 + }, + { + "start": 7895.98, + "end": 7896.75, + "probability": 0.6648 + }, + { + "start": 7898.7, + "end": 7903.32, + "probability": 0.9804 + }, + { + "start": 7904.18, + "end": 7905.4, + "probability": 0.9021 + }, + { + "start": 7905.48, + "end": 7908.22, + "probability": 0.9951 + }, + { + "start": 7908.96, + "end": 7914.64, + "probability": 0.9713 + }, + { + "start": 7915.7, + "end": 7916.28, + "probability": 0.5125 + }, + { + "start": 7916.78, + "end": 7918.16, + "probability": 0.8419 + }, + { + "start": 7918.3, + "end": 7924.6, + "probability": 0.9773 + }, + { + "start": 7925.92, + "end": 7929.7, + "probability": 0.9961 + }, + { + "start": 7930.58, + "end": 7932.16, + "probability": 0.7388 + }, + { + "start": 7932.36, + "end": 7933.06, + "probability": 0.6441 + }, + { + "start": 7933.08, + "end": 7938.18, + "probability": 0.8767 + }, + { + "start": 7938.38, + "end": 7942.88, + "probability": 0.8809 + }, + { + "start": 7943.76, + "end": 7944.62, + "probability": 0.8428 + }, + { + "start": 7944.72, + "end": 7947.04, + "probability": 0.9648 + }, + { + "start": 7947.2, + "end": 7948.08, + "probability": 0.5625 + }, + { + "start": 7949.56, + "end": 7952.1, + "probability": 0.9972 + }, + { + "start": 7952.76, + "end": 7954.3, + "probability": 0.9143 + }, + { + "start": 7955.48, + "end": 7956.76, + "probability": 0.9142 + }, + { + "start": 7957.22, + "end": 7958.68, + "probability": 0.4532 + }, + { + "start": 7959.0, + "end": 7961.72, + "probability": 0.7894 + }, + { + "start": 7962.28, + "end": 7964.68, + "probability": 0.9733 + }, + { + "start": 7965.58, + "end": 7968.44, + "probability": 0.8281 + }, + { + "start": 7969.46, + "end": 7970.44, + "probability": 0.9822 + }, + { + "start": 7971.48, + "end": 7972.58, + "probability": 0.9033 + }, + { + "start": 7973.22, + "end": 7980.03, + "probability": 0.9688 + }, + { + "start": 7981.58, + "end": 7987.19, + "probability": 0.9908 + }, + { + "start": 7989.56, + "end": 7990.82, + "probability": 0.8751 + }, + { + "start": 7991.0, + "end": 7997.04, + "probability": 0.9427 + }, + { + "start": 7997.92, + "end": 7999.47, + "probability": 0.9798 + }, + { + "start": 8000.62, + "end": 8003.18, + "probability": 0.998 + }, + { + "start": 8004.12, + "end": 8007.5, + "probability": 0.6301 + }, + { + "start": 8008.24, + "end": 8009.48, + "probability": 0.3743 + }, + { + "start": 8010.36, + "end": 8012.82, + "probability": 0.9956 + }, + { + "start": 8012.92, + "end": 8015.6, + "probability": 0.9938 + }, + { + "start": 8016.9, + "end": 8021.34, + "probability": 0.9928 + }, + { + "start": 8021.48, + "end": 8023.8, + "probability": 0.9727 + }, + { + "start": 8024.96, + "end": 8026.28, + "probability": 0.5288 + }, + { + "start": 8028.84, + "end": 8032.26, + "probability": 0.9589 + }, + { + "start": 8033.08, + "end": 8037.07, + "probability": 0.992 + }, + { + "start": 8037.52, + "end": 8037.9, + "probability": 0.3605 + }, + { + "start": 8037.98, + "end": 8038.78, + "probability": 0.3464 + }, + { + "start": 8039.06, + "end": 8040.4, + "probability": 0.4965 + }, + { + "start": 8040.9, + "end": 8045.44, + "probability": 0.9169 + }, + { + "start": 8047.46, + "end": 8048.7, + "probability": 0.7406 + }, + { + "start": 8048.98, + "end": 8049.5, + "probability": 0.8299 + }, + { + "start": 8049.58, + "end": 8055.58, + "probability": 0.9835 + }, + { + "start": 8055.58, + "end": 8060.82, + "probability": 0.9989 + }, + { + "start": 8061.18, + "end": 8062.18, + "probability": 0.8933 + }, + { + "start": 8062.96, + "end": 8065.54, + "probability": 0.9179 + }, + { + "start": 8065.62, + "end": 8068.02, + "probability": 0.95 + }, + { + "start": 8075.18, + "end": 8078.38, + "probability": 0.8438 + }, + { + "start": 8092.78, + "end": 8093.02, + "probability": 0.4473 + }, + { + "start": 8093.1, + "end": 8094.24, + "probability": 0.6547 + }, + { + "start": 8094.64, + "end": 8095.46, + "probability": 0.8322 + }, + { + "start": 8095.52, + "end": 8097.08, + "probability": 0.7122 + }, + { + "start": 8097.1, + "end": 8098.66, + "probability": 0.9206 + }, + { + "start": 8099.74, + "end": 8101.34, + "probability": 0.9493 + }, + { + "start": 8103.84, + "end": 8108.08, + "probability": 0.9482 + }, + { + "start": 8108.36, + "end": 8110.92, + "probability": 0.9937 + }, + { + "start": 8111.74, + "end": 8114.84, + "probability": 0.998 + }, + { + "start": 8114.84, + "end": 8118.94, + "probability": 0.9615 + }, + { + "start": 8120.1, + "end": 8124.04, + "probability": 0.9973 + }, + { + "start": 8124.98, + "end": 8130.24, + "probability": 0.9974 + }, + { + "start": 8131.06, + "end": 8131.38, + "probability": 0.3612 + }, + { + "start": 8131.52, + "end": 8132.8, + "probability": 0.9189 + }, + { + "start": 8132.92, + "end": 8134.86, + "probability": 0.9709 + }, + { + "start": 8135.4, + "end": 8137.58, + "probability": 0.9944 + }, + { + "start": 8138.44, + "end": 8142.31, + "probability": 0.9939 + }, + { + "start": 8142.54, + "end": 8147.9, + "probability": 0.9796 + }, + { + "start": 8148.16, + "end": 8148.79, + "probability": 0.9338 + }, + { + "start": 8149.5, + "end": 8153.1, + "probability": 0.998 + }, + { + "start": 8153.1, + "end": 8156.3, + "probability": 0.9969 + }, + { + "start": 8156.56, + "end": 8157.62, + "probability": 0.7103 + }, + { + "start": 8159.0, + "end": 8160.72, + "probability": 0.9927 + }, + { + "start": 8161.28, + "end": 8162.34, + "probability": 0.9978 + }, + { + "start": 8162.98, + "end": 8163.97, + "probability": 0.9988 + }, + { + "start": 8164.58, + "end": 8165.64, + "probability": 0.9949 + }, + { + "start": 8166.42, + "end": 8167.9, + "probability": 0.7617 + }, + { + "start": 8169.02, + "end": 8174.02, + "probability": 0.9976 + }, + { + "start": 8174.7, + "end": 8180.86, + "probability": 0.9878 + }, + { + "start": 8181.8, + "end": 8185.1, + "probability": 0.9985 + }, + { + "start": 8186.5, + "end": 8190.22, + "probability": 0.9998 + }, + { + "start": 8190.22, + "end": 8196.14, + "probability": 0.9934 + }, + { + "start": 8196.6, + "end": 8199.34, + "probability": 0.9103 + }, + { + "start": 8203.18, + "end": 8204.16, + "probability": 0.938 + }, + { + "start": 8205.16, + "end": 8209.04, + "probability": 0.9928 + }, + { + "start": 8210.14, + "end": 8213.38, + "probability": 0.9058 + }, + { + "start": 8213.84, + "end": 8215.9, + "probability": 0.9233 + }, + { + "start": 8216.04, + "end": 8217.22, + "probability": 0.4267 + }, + { + "start": 8218.2, + "end": 8221.36, + "probability": 0.9304 + }, + { + "start": 8222.02, + "end": 8223.42, + "probability": 0.6842 + }, + { + "start": 8223.44, + "end": 8224.1, + "probability": 0.628 + }, + { + "start": 8224.5, + "end": 8226.0, + "probability": 0.6537 + }, + { + "start": 8232.68, + "end": 8233.68, + "probability": 0.2151 + }, + { + "start": 8242.4, + "end": 8243.4, + "probability": 0.0448 + }, + { + "start": 8243.4, + "end": 8243.4, + "probability": 0.0391 + }, + { + "start": 8243.4, + "end": 8243.4, + "probability": 0.0274 + }, + { + "start": 8243.4, + "end": 8243.4, + "probability": 0.2641 + }, + { + "start": 8243.4, + "end": 8244.86, + "probability": 0.2826 + }, + { + "start": 8247.22, + "end": 8249.04, + "probability": 0.6246 + }, + { + "start": 8250.6, + "end": 8251.74, + "probability": 0.8988 + }, + { + "start": 8251.86, + "end": 8254.89, + "probability": 0.9736 + }, + { + "start": 8255.04, + "end": 8255.95, + "probability": 0.9448 + }, + { + "start": 8256.18, + "end": 8257.2, + "probability": 0.6483 + }, + { + "start": 8257.88, + "end": 8257.9, + "probability": 0.0129 + }, + { + "start": 8258.84, + "end": 8259.46, + "probability": 0.0807 + }, + { + "start": 8259.9, + "end": 8261.4, + "probability": 0.535 + }, + { + "start": 8266.54, + "end": 8267.56, + "probability": 0.1723 + }, + { + "start": 8268.66, + "end": 8269.12, + "probability": 0.7711 + }, + { + "start": 8269.3, + "end": 8274.58, + "probability": 0.965 + }, + { + "start": 8275.24, + "end": 8276.01, + "probability": 0.9932 + }, + { + "start": 8276.66, + "end": 8279.01, + "probability": 0.9334 + }, + { + "start": 8279.3, + "end": 8282.32, + "probability": 0.8832 + }, + { + "start": 8283.1, + "end": 8285.28, + "probability": 0.7517 + }, + { + "start": 8285.42, + "end": 8286.64, + "probability": 0.3858 + }, + { + "start": 8286.94, + "end": 8290.26, + "probability": 0.8781 + }, + { + "start": 8290.76, + "end": 8292.56, + "probability": 0.8096 + }, + { + "start": 8292.6, + "end": 8293.42, + "probability": 0.644 + }, + { + "start": 8294.04, + "end": 8297.84, + "probability": 0.0241 + }, + { + "start": 8304.38, + "end": 8304.38, + "probability": 0.0132 + }, + { + "start": 8304.38, + "end": 8304.38, + "probability": 0.0455 + }, + { + "start": 8304.38, + "end": 8304.38, + "probability": 0.0146 + }, + { + "start": 8310.3, + "end": 8311.12, + "probability": 0.0815 + }, + { + "start": 8311.12, + "end": 8313.48, + "probability": 0.2426 + }, + { + "start": 8314.14, + "end": 8315.64, + "probability": 0.7561 + }, + { + "start": 8316.34, + "end": 8317.16, + "probability": 0.658 + }, + { + "start": 8317.46, + "end": 8319.22, + "probability": 0.8967 + }, + { + "start": 8320.0, + "end": 8323.82, + "probability": 0.9842 + }, + { + "start": 8323.82, + "end": 8326.4, + "probability": 0.8962 + }, + { + "start": 8326.46, + "end": 8327.8, + "probability": 0.4902 + }, + { + "start": 8328.86, + "end": 8332.16, + "probability": 0.892 + }, + { + "start": 8332.76, + "end": 8333.38, + "probability": 0.7615 + }, + { + "start": 8333.8, + "end": 8334.68, + "probability": 0.7353 + }, + { + "start": 8336.64, + "end": 8339.04, + "probability": 0.0401 + }, + { + "start": 8339.28, + "end": 8340.58, + "probability": 0.064 + }, + { + "start": 8342.36, + "end": 8343.66, + "probability": 0.043 + }, + { + "start": 8352.56, + "end": 8353.24, + "probability": 0.198 + }, + { + "start": 8353.24, + "end": 8354.38, + "probability": 0.4279 + }, + { + "start": 8355.16, + "end": 8357.18, + "probability": 0.7511 + }, + { + "start": 8357.54, + "end": 8359.84, + "probability": 0.9662 + }, + { + "start": 8361.3, + "end": 8362.0, + "probability": 0.7978 + }, + { + "start": 8362.16, + "end": 8365.52, + "probability": 0.974 + }, + { + "start": 8365.56, + "end": 8369.94, + "probability": 0.9534 + }, + { + "start": 8370.12, + "end": 8372.22, + "probability": 0.7489 + }, + { + "start": 8372.4, + "end": 8378.1, + "probability": 0.9176 + }, + { + "start": 8378.74, + "end": 8380.46, + "probability": 0.3727 + }, + { + "start": 8381.46, + "end": 8382.38, + "probability": 0.7951 + }, + { + "start": 8383.06, + "end": 8385.22, + "probability": 0.8073 + }, + { + "start": 8385.76, + "end": 8387.12, + "probability": 0.918 + }, + { + "start": 8387.28, + "end": 8388.38, + "probability": 0.7375 + }, + { + "start": 8392.46, + "end": 8393.84, + "probability": 0.6869 + }, + { + "start": 8394.68, + "end": 8397.08, + "probability": 0.6783 + }, + { + "start": 8401.16, + "end": 8402.5, + "probability": 0.6321 + }, + { + "start": 8403.5, + "end": 8405.14, + "probability": 0.8799 + }, + { + "start": 8406.74, + "end": 8409.32, + "probability": 0.8995 + }, + { + "start": 8409.8, + "end": 8410.84, + "probability": 0.9682 + }, + { + "start": 8411.26, + "end": 8412.84, + "probability": 0.9971 + }, + { + "start": 8420.3, + "end": 8420.9, + "probability": 0.0511 + }, + { + "start": 8420.9, + "end": 8421.1, + "probability": 0.0412 + }, + { + "start": 8438.42, + "end": 8439.26, + "probability": 0.1685 + }, + { + "start": 8439.46, + "end": 8440.94, + "probability": 0.7285 + }, + { + "start": 8441.98, + "end": 8444.04, + "probability": 0.524 + }, + { + "start": 8447.2, + "end": 8450.14, + "probability": 0.7044 + }, + { + "start": 8450.28, + "end": 8452.88, + "probability": 0.9607 + }, + { + "start": 8454.3, + "end": 8457.64, + "probability": 0.6816 + }, + { + "start": 8458.42, + "end": 8460.44, + "probability": 0.6661 + }, + { + "start": 8460.6, + "end": 8465.74, + "probability": 0.9802 + }, + { + "start": 8465.74, + "end": 8466.8, + "probability": 0.0668 + }, + { + "start": 8467.58, + "end": 8468.42, + "probability": 0.1225 + }, + { + "start": 8468.62, + "end": 8474.58, + "probability": 0.3856 + }, + { + "start": 8475.16, + "end": 8478.9, + "probability": 0.9084 + }, + { + "start": 8479.62, + "end": 8481.98, + "probability": 0.0252 + }, + { + "start": 8482.78, + "end": 8483.0, + "probability": 0.0961 + }, + { + "start": 8483.0, + "end": 8486.1, + "probability": 0.9433 + }, + { + "start": 8486.8, + "end": 8490.44, + "probability": 0.9907 + }, + { + "start": 8491.74, + "end": 8495.44, + "probability": 0.6808 + }, + { + "start": 8496.16, + "end": 8500.12, + "probability": 0.9476 + }, + { + "start": 8501.04, + "end": 8505.58, + "probability": 0.9563 + }, + { + "start": 8506.18, + "end": 8509.5, + "probability": 0.9946 + }, + { + "start": 8510.02, + "end": 8511.98, + "probability": 0.9136 + }, + { + "start": 8512.66, + "end": 8518.42, + "probability": 0.9606 + }, + { + "start": 8519.06, + "end": 8522.12, + "probability": 0.9905 + }, + { + "start": 8522.12, + "end": 8524.56, + "probability": 0.9785 + }, + { + "start": 8525.42, + "end": 8525.74, + "probability": 0.7088 + }, + { + "start": 8525.84, + "end": 8530.42, + "probability": 0.9974 + }, + { + "start": 8531.12, + "end": 8533.86, + "probability": 0.9978 + }, + { + "start": 8534.58, + "end": 8537.18, + "probability": 0.9966 + }, + { + "start": 8537.18, + "end": 8541.22, + "probability": 0.9788 + }, + { + "start": 8542.64, + "end": 8547.78, + "probability": 0.9802 + }, + { + "start": 8548.28, + "end": 8551.78, + "probability": 0.9761 + }, + { + "start": 8551.78, + "end": 8554.52, + "probability": 0.9896 + }, + { + "start": 8555.38, + "end": 8555.72, + "probability": 0.4647 + }, + { + "start": 8555.9, + "end": 8558.98, + "probability": 0.9979 + }, + { + "start": 8558.98, + "end": 8562.4, + "probability": 0.9955 + }, + { + "start": 8563.32, + "end": 8566.74, + "probability": 0.991 + }, + { + "start": 8566.74, + "end": 8571.76, + "probability": 0.895 + }, + { + "start": 8572.34, + "end": 8576.2, + "probability": 0.7456 + }, + { + "start": 8577.02, + "end": 8579.24, + "probability": 0.9963 + }, + { + "start": 8579.24, + "end": 8582.4, + "probability": 0.9516 + }, + { + "start": 8582.96, + "end": 8584.96, + "probability": 0.9803 + }, + { + "start": 8585.68, + "end": 8586.4, + "probability": 0.9412 + }, + { + "start": 8586.46, + "end": 8592.06, + "probability": 0.9183 + }, + { + "start": 8592.06, + "end": 8595.72, + "probability": 0.9863 + }, + { + "start": 8596.54, + "end": 8599.92, + "probability": 0.9145 + }, + { + "start": 8599.92, + "end": 8603.6, + "probability": 0.9765 + }, + { + "start": 8604.24, + "end": 8607.16, + "probability": 0.8775 + }, + { + "start": 8607.72, + "end": 8609.8, + "probability": 0.9642 + }, + { + "start": 8610.6, + "end": 8610.76, + "probability": 0.3376 + }, + { + "start": 8610.9, + "end": 8614.66, + "probability": 0.9424 + }, + { + "start": 8614.66, + "end": 8619.2, + "probability": 0.9259 + }, + { + "start": 8619.74, + "end": 8624.64, + "probability": 0.8443 + }, + { + "start": 8625.5, + "end": 8628.42, + "probability": 0.9264 + }, + { + "start": 8628.42, + "end": 8632.08, + "probability": 0.9941 + }, + { + "start": 8632.92, + "end": 8637.24, + "probability": 0.7948 + }, + { + "start": 8638.08, + "end": 8641.88, + "probability": 0.9323 + }, + { + "start": 8642.06, + "end": 8646.18, + "probability": 0.9969 + }, + { + "start": 8646.36, + "end": 8650.58, + "probability": 0.9742 + }, + { + "start": 8650.6, + "end": 8652.9, + "probability": 0.922 + }, + { + "start": 8653.0, + "end": 8653.26, + "probability": 0.8162 + }, + { + "start": 8654.5, + "end": 8655.5, + "probability": 0.5876 + }, + { + "start": 8655.8, + "end": 8657.88, + "probability": 0.9771 + }, + { + "start": 8658.02, + "end": 8659.76, + "probability": 0.8806 + }, + { + "start": 8660.4, + "end": 8661.78, + "probability": 0.8762 + }, + { + "start": 8666.66, + "end": 8668.98, + "probability": 0.7342 + }, + { + "start": 8669.52, + "end": 8671.14, + "probability": 0.7647 + }, + { + "start": 8671.9, + "end": 8672.82, + "probability": 0.7145 + }, + { + "start": 8673.52, + "end": 8675.2, + "probability": 0.9466 + }, + { + "start": 8675.94, + "end": 8678.84, + "probability": 0.8726 + }, + { + "start": 8679.56, + "end": 8682.28, + "probability": 0.8965 + }, + { + "start": 8682.88, + "end": 8684.46, + "probability": 0.6656 + }, + { + "start": 8685.08, + "end": 8686.62, + "probability": 0.979 + }, + { + "start": 8687.36, + "end": 8690.76, + "probability": 0.0903 + }, + { + "start": 8690.76, + "end": 8690.76, + "probability": 0.5379 + }, + { + "start": 8690.76, + "end": 8691.5, + "probability": 0.7474 + }, + { + "start": 8691.54, + "end": 8692.23, + "probability": 0.938 + }, + { + "start": 8694.16, + "end": 8695.2, + "probability": 0.6339 + }, + { + "start": 8696.2, + "end": 8697.04, + "probability": 0.9121 + }, + { + "start": 8697.1, + "end": 8698.04, + "probability": 0.9362 + }, + { + "start": 8698.98, + "end": 8700.44, + "probability": 0.998 + }, + { + "start": 8702.78, + "end": 8705.14, + "probability": 0.515 + }, + { + "start": 8705.7, + "end": 8706.12, + "probability": 0.8826 + }, + { + "start": 8707.66, + "end": 8708.52, + "probability": 0.6221 + }, + { + "start": 8709.4, + "end": 8711.66, + "probability": 0.937 + }, + { + "start": 8712.36, + "end": 8713.6, + "probability": 0.9469 + }, + { + "start": 8714.36, + "end": 8721.82, + "probability": 0.9757 + }, + { + "start": 8722.34, + "end": 8723.36, + "probability": 0.8899 + }, + { + "start": 8724.12, + "end": 8725.36, + "probability": 0.9868 + }, + { + "start": 8726.18, + "end": 8726.26, + "probability": 0.5727 + }, + { + "start": 8726.42, + "end": 8730.36, + "probability": 0.8683 + }, + { + "start": 8731.2, + "end": 8733.16, + "probability": 0.7079 + }, + { + "start": 8734.1, + "end": 8738.48, + "probability": 0.9482 + }, + { + "start": 8739.34, + "end": 8746.46, + "probability": 0.9483 + }, + { + "start": 8746.96, + "end": 8748.44, + "probability": 0.9016 + }, + { + "start": 8749.06, + "end": 8752.34, + "probability": 0.9426 + }, + { + "start": 8752.94, + "end": 8754.32, + "probability": 0.9673 + }, + { + "start": 8755.2, + "end": 8759.82, + "probability": 0.9889 + }, + { + "start": 8760.32, + "end": 8762.96, + "probability": 0.9126 + }, + { + "start": 8762.96, + "end": 8767.2, + "probability": 0.8881 + }, + { + "start": 8767.84, + "end": 8770.46, + "probability": 0.9883 + }, + { + "start": 8771.22, + "end": 8773.02, + "probability": 0.9436 + }, + { + "start": 8773.68, + "end": 8780.58, + "probability": 0.861 + }, + { + "start": 8781.32, + "end": 8783.72, + "probability": 0.9961 + }, + { + "start": 8784.52, + "end": 8787.32, + "probability": 0.965 + }, + { + "start": 8787.96, + "end": 8789.56, + "probability": 0.9782 + }, + { + "start": 8790.16, + "end": 8791.82, + "probability": 0.9453 + }, + { + "start": 8792.54, + "end": 8794.87, + "probability": 0.9078 + }, + { + "start": 8795.7, + "end": 8796.69, + "probability": 0.7534 + }, + { + "start": 8797.58, + "end": 8798.48, + "probability": 0.7933 + }, + { + "start": 8799.26, + "end": 8800.82, + "probability": 0.8635 + }, + { + "start": 8801.42, + "end": 8802.5, + "probability": 0.7993 + }, + { + "start": 8803.98, + "end": 8804.7, + "probability": 0.8824 + }, + { + "start": 8805.44, + "end": 8807.01, + "probability": 0.998 + }, + { + "start": 8807.68, + "end": 8809.04, + "probability": 0.7905 + }, + { + "start": 8809.58, + "end": 8811.34, + "probability": 0.8391 + }, + { + "start": 8811.98, + "end": 8815.62, + "probability": 0.9442 + }, + { + "start": 8816.66, + "end": 8817.8, + "probability": 0.9978 + }, + { + "start": 8818.48, + "end": 8819.48, + "probability": 0.9522 + }, + { + "start": 8821.1, + "end": 8823.9, + "probability": 0.9327 + }, + { + "start": 8824.84, + "end": 8826.01, + "probability": 0.7976 + }, + { + "start": 8827.58, + "end": 8829.24, + "probability": 0.8029 + }, + { + "start": 8830.2, + "end": 8831.3, + "probability": 0.5391 + }, + { + "start": 8831.84, + "end": 8834.54, + "probability": 0.998 + }, + { + "start": 8835.12, + "end": 8841.56, + "probability": 0.9985 + }, + { + "start": 8842.52, + "end": 8844.68, + "probability": 0.9958 + }, + { + "start": 8845.16, + "end": 8845.54, + "probability": 0.8157 + }, + { + "start": 8846.44, + "end": 8849.5, + "probability": 0.7751 + }, + { + "start": 8850.12, + "end": 8851.18, + "probability": 0.8085 + }, + { + "start": 8852.04, + "end": 8857.08, + "probability": 0.9489 + }, + { + "start": 8858.02, + "end": 8863.44, + "probability": 0.9895 + }, + { + "start": 8863.56, + "end": 8867.38, + "probability": 0.8942 + }, + { + "start": 8871.1, + "end": 8872.78, + "probability": 0.576 + }, + { + "start": 8873.56, + "end": 8876.2, + "probability": 0.8343 + }, + { + "start": 8876.94, + "end": 8880.48, + "probability": 0.9861 + }, + { + "start": 8881.08, + "end": 8883.32, + "probability": 0.8468 + }, + { + "start": 8883.76, + "end": 8885.72, + "probability": 0.9214 + }, + { + "start": 8886.14, + "end": 8887.48, + "probability": 0.7981 + }, + { + "start": 8887.56, + "end": 8890.78, + "probability": 0.9478 + }, + { + "start": 8890.82, + "end": 8891.82, + "probability": 0.7983 + }, + { + "start": 8892.24, + "end": 8892.86, + "probability": 0.3159 + }, + { + "start": 8893.66, + "end": 8895.3, + "probability": 0.7538 + }, + { + "start": 8896.0, + "end": 8896.08, + "probability": 0.0097 + }, + { + "start": 8896.08, + "end": 8898.46, + "probability": 0.5628 + }, + { + "start": 8898.54, + "end": 8899.8, + "probability": 0.4274 + }, + { + "start": 8900.2, + "end": 8903.44, + "probability": 0.9298 + }, + { + "start": 8904.04, + "end": 8905.18, + "probability": 0.7938 + }, + { + "start": 8912.3, + "end": 8912.4, + "probability": 0.2555 + }, + { + "start": 8924.92, + "end": 8927.4, + "probability": 0.0364 + }, + { + "start": 8930.58, + "end": 8932.84, + "probability": 0.0568 + }, + { + "start": 8932.84, + "end": 8933.58, + "probability": 0.1225 + }, + { + "start": 8933.65, + "end": 8933.96, + "probability": 0.0322 + }, + { + "start": 8934.72, + "end": 8936.7, + "probability": 0.3069 + }, + { + "start": 8937.48, + "end": 8937.98, + "probability": 0.0435 + }, + { + "start": 8937.98, + "end": 8937.98, + "probability": 0.047 + }, + { + "start": 8937.98, + "end": 8937.98, + "probability": 0.2564 + }, + { + "start": 8937.98, + "end": 8937.98, + "probability": 0.0096 + }, + { + "start": 8937.98, + "end": 8937.98, + "probability": 0.0139 + }, + { + "start": 8937.98, + "end": 8937.98, + "probability": 0.224 + }, + { + "start": 8937.98, + "end": 8940.74, + "probability": 0.6522 + }, + { + "start": 8953.32, + "end": 8956.02, + "probability": 0.7361 + }, + { + "start": 8957.86, + "end": 8958.0, + "probability": 0.0547 + }, + { + "start": 8958.0, + "end": 8958.02, + "probability": 0.1788 + }, + { + "start": 8958.02, + "end": 8958.02, + "probability": 0.1944 + }, + { + "start": 8958.02, + "end": 8958.02, + "probability": 0.128 + }, + { + "start": 8958.02, + "end": 8963.58, + "probability": 0.6819 + }, + { + "start": 8964.72, + "end": 8965.96, + "probability": 0.8852 + }, + { + "start": 8967.18, + "end": 8969.84, + "probability": 0.9797 + }, + { + "start": 8971.34, + "end": 8974.56, + "probability": 0.9955 + }, + { + "start": 8975.56, + "end": 8981.82, + "probability": 0.9985 + }, + { + "start": 8981.88, + "end": 8982.76, + "probability": 0.914 + }, + { + "start": 8982.82, + "end": 8984.06, + "probability": 0.9816 + }, + { + "start": 8985.44, + "end": 8988.8, + "probability": 0.9731 + }, + { + "start": 8989.54, + "end": 8992.52, + "probability": 0.88 + }, + { + "start": 8993.42, + "end": 8996.36, + "probability": 0.9946 + }, + { + "start": 8997.22, + "end": 8998.42, + "probability": 0.8819 + }, + { + "start": 8999.94, + "end": 9001.7, + "probability": 0.9688 + }, + { + "start": 9002.64, + "end": 9003.54, + "probability": 0.8586 + }, + { + "start": 9004.22, + "end": 9008.64, + "probability": 0.9927 + }, + { + "start": 9009.26, + "end": 9010.84, + "probability": 0.8175 + }, + { + "start": 9011.6, + "end": 9020.2, + "probability": 0.9443 + }, + { + "start": 9022.08, + "end": 9023.6, + "probability": 0.7399 + }, + { + "start": 9024.62, + "end": 9025.52, + "probability": 0.658 + }, + { + "start": 9026.5, + "end": 9029.46, + "probability": 0.9312 + }, + { + "start": 9029.56, + "end": 9030.56, + "probability": 0.6613 + }, + { + "start": 9031.56, + "end": 9032.24, + "probability": 0.5506 + }, + { + "start": 9033.3, + "end": 9036.16, + "probability": 0.9124 + }, + { + "start": 9037.06, + "end": 9038.5, + "probability": 0.999 + }, + { + "start": 9039.08, + "end": 9042.3, + "probability": 0.9669 + }, + { + "start": 9042.46, + "end": 9044.74, + "probability": 0.894 + }, + { + "start": 9045.58, + "end": 9047.18, + "probability": 0.7941 + }, + { + "start": 9047.7, + "end": 9050.52, + "probability": 0.9928 + }, + { + "start": 9051.04, + "end": 9054.56, + "probability": 0.9204 + }, + { + "start": 9055.2, + "end": 9057.8, + "probability": 0.7887 + }, + { + "start": 9058.88, + "end": 9061.78, + "probability": 0.8354 + }, + { + "start": 9062.82, + "end": 9066.02, + "probability": 0.9703 + }, + { + "start": 9066.62, + "end": 9069.17, + "probability": 0.9462 + }, + { + "start": 9070.08, + "end": 9072.98, + "probability": 0.8106 + }, + { + "start": 9073.08, + "end": 9074.74, + "probability": 0.902 + }, + { + "start": 9075.76, + "end": 9077.3, + "probability": 0.918 + }, + { + "start": 9078.06, + "end": 9078.28, + "probability": 0.3423 + }, + { + "start": 9079.04, + "end": 9080.04, + "probability": 0.4407 + }, + { + "start": 9080.92, + "end": 9081.32, + "probability": 0.4185 + }, + { + "start": 9082.36, + "end": 9084.12, + "probability": 0.8069 + }, + { + "start": 9084.18, + "end": 9084.92, + "probability": 0.9214 + }, + { + "start": 9085.56, + "end": 9086.28, + "probability": 0.0228 + }, + { + "start": 9086.28, + "end": 9088.3, + "probability": 0.868 + }, + { + "start": 9089.66, + "end": 9091.11, + "probability": 0.6383 + }, + { + "start": 9092.3, + "end": 9096.65, + "probability": 0.8988 + }, + { + "start": 9097.88, + "end": 9099.24, + "probability": 0.8188 + }, + { + "start": 9100.38, + "end": 9100.52, + "probability": 0.7971 + }, + { + "start": 9100.6, + "end": 9104.04, + "probability": 0.9959 + }, + { + "start": 9104.6, + "end": 9106.54, + "probability": 0.9985 + }, + { + "start": 9107.06, + "end": 9111.0, + "probability": 0.9623 + }, + { + "start": 9112.92, + "end": 9115.26, + "probability": 0.9863 + }, + { + "start": 9115.54, + "end": 9119.94, + "probability": 0.9174 + }, + { + "start": 9119.94, + "end": 9123.1, + "probability": 0.9761 + }, + { + "start": 9123.74, + "end": 9125.36, + "probability": 0.9803 + }, + { + "start": 9126.72, + "end": 9127.82, + "probability": 0.5335 + }, + { + "start": 9128.54, + "end": 9128.54, + "probability": 0.0007 + }, + { + "start": 9129.16, + "end": 9129.96, + "probability": 0.5727 + }, + { + "start": 9130.74, + "end": 9130.76, + "probability": 0.0054 + }, + { + "start": 9131.48, + "end": 9131.7, + "probability": 0.4552 + }, + { + "start": 9132.4, + "end": 9132.86, + "probability": 0.4935 + }, + { + "start": 9132.86, + "end": 9134.56, + "probability": 0.1021 + }, + { + "start": 9134.56, + "end": 9134.8, + "probability": 0.0407 + }, + { + "start": 9134.82, + "end": 9136.83, + "probability": 0.6592 + }, + { + "start": 9137.64, + "end": 9139.94, + "probability": 0.923 + }, + { + "start": 9141.48, + "end": 9141.98, + "probability": 0.733 + }, + { + "start": 9142.54, + "end": 9147.14, + "probability": 0.9116 + }, + { + "start": 9147.3, + "end": 9148.64, + "probability": 0.6795 + }, + { + "start": 9149.44, + "end": 9151.62, + "probability": 0.9542 + }, + { + "start": 9153.06, + "end": 9154.02, + "probability": 0.8293 + }, + { + "start": 9154.6, + "end": 9156.26, + "probability": 0.9731 + }, + { + "start": 9156.48, + "end": 9160.94, + "probability": 0.9014 + }, + { + "start": 9161.62, + "end": 9162.68, + "probability": 0.9003 + }, + { + "start": 9163.6, + "end": 9166.78, + "probability": 0.6656 + }, + { + "start": 9167.82, + "end": 9169.32, + "probability": 0.8298 + }, + { + "start": 9170.62, + "end": 9173.12, + "probability": 0.9688 + }, + { + "start": 9174.36, + "end": 9174.98, + "probability": 0.8839 + }, + { + "start": 9175.06, + "end": 9179.36, + "probability": 0.9731 + }, + { + "start": 9180.04, + "end": 9180.98, + "probability": 0.8193 + }, + { + "start": 9181.04, + "end": 9182.18, + "probability": 0.9829 + }, + { + "start": 9182.6, + "end": 9183.9, + "probability": 0.9789 + }, + { + "start": 9184.22, + "end": 9185.06, + "probability": 0.9173 + }, + { + "start": 9185.16, + "end": 9186.6, + "probability": 0.8273 + }, + { + "start": 9186.76, + "end": 9192.02, + "probability": 0.6901 + }, + { + "start": 9192.66, + "end": 9195.4, + "probability": 0.7958 + }, + { + "start": 9196.2, + "end": 9197.58, + "probability": 0.7655 + }, + { + "start": 9198.92, + "end": 9199.54, + "probability": 0.8397 + }, + { + "start": 9199.88, + "end": 9200.94, + "probability": 0.5472 + }, + { + "start": 9201.02, + "end": 9203.52, + "probability": 0.998 + }, + { + "start": 9203.52, + "end": 9207.34, + "probability": 0.9219 + }, + { + "start": 9207.94, + "end": 9210.74, + "probability": 0.7331 + }, + { + "start": 9211.18, + "end": 9214.02, + "probability": 0.9956 + }, + { + "start": 9214.24, + "end": 9217.72, + "probability": 0.9789 + }, + { + "start": 9218.88, + "end": 9222.58, + "probability": 0.7925 + }, + { + "start": 9222.76, + "end": 9224.8, + "probability": 0.8208 + }, + { + "start": 9225.44, + "end": 9228.22, + "probability": 0.9952 + }, + { + "start": 9228.8, + "end": 9233.32, + "probability": 0.9977 + }, + { + "start": 9235.16, + "end": 9238.02, + "probability": 0.9996 + }, + { + "start": 9238.02, + "end": 9241.12, + "probability": 0.9821 + }, + { + "start": 9241.3, + "end": 9242.32, + "probability": 0.6606 + }, + { + "start": 9243.6, + "end": 9245.84, + "probability": 0.9302 + }, + { + "start": 9246.7, + "end": 9248.28, + "probability": 0.8386 + }, + { + "start": 9249.0, + "end": 9249.9, + "probability": 0.9024 + }, + { + "start": 9250.94, + "end": 9256.79, + "probability": 0.9917 + }, + { + "start": 9258.12, + "end": 9258.92, + "probability": 0.9126 + }, + { + "start": 9259.16, + "end": 9264.84, + "probability": 0.9513 + }, + { + "start": 9265.7, + "end": 9266.28, + "probability": 0.6257 + }, + { + "start": 9266.9, + "end": 9267.72, + "probability": 0.989 + }, + { + "start": 9268.38, + "end": 9269.1, + "probability": 0.9963 + }, + { + "start": 9271.04, + "end": 9271.9, + "probability": 0.8856 + }, + { + "start": 9272.86, + "end": 9274.36, + "probability": 0.9668 + }, + { + "start": 9274.46, + "end": 9275.72, + "probability": 0.6966 + }, + { + "start": 9275.8, + "end": 9277.94, + "probability": 0.9761 + }, + { + "start": 9279.26, + "end": 9285.06, + "probability": 0.9352 + }, + { + "start": 9285.34, + "end": 9287.4, + "probability": 0.8203 + }, + { + "start": 9288.32, + "end": 9289.3, + "probability": 0.9658 + }, + { + "start": 9289.6, + "end": 9293.56, + "probability": 0.9727 + }, + { + "start": 9293.56, + "end": 9296.14, + "probability": 0.9269 + }, + { + "start": 9298.16, + "end": 9300.21, + "probability": 0.4858 + }, + { + "start": 9301.64, + "end": 9303.14, + "probability": 0.8311 + }, + { + "start": 9303.88, + "end": 9305.22, + "probability": 0.8159 + }, + { + "start": 9306.12, + "end": 9306.58, + "probability": 0.6427 + }, + { + "start": 9306.62, + "end": 9307.22, + "probability": 0.7248 + }, + { + "start": 9307.86, + "end": 9308.58, + "probability": 0.9905 + }, + { + "start": 9308.68, + "end": 9310.14, + "probability": 0.9397 + }, + { + "start": 9312.1, + "end": 9314.02, + "probability": 0.2202 + }, + { + "start": 9314.02, + "end": 9314.02, + "probability": 0.0099 + }, + { + "start": 9314.02, + "end": 9316.34, + "probability": 0.6898 + }, + { + "start": 9317.32, + "end": 9320.66, + "probability": 0.7748 + }, + { + "start": 9321.4, + "end": 9326.58, + "probability": 0.953 + }, + { + "start": 9327.14, + "end": 9329.04, + "probability": 0.5615 + }, + { + "start": 9329.48, + "end": 9331.9, + "probability": 0.5507 + }, + { + "start": 9332.16, + "end": 9333.62, + "probability": 0.3581 + }, + { + "start": 9334.32, + "end": 9335.06, + "probability": 0.755 + }, + { + "start": 9335.16, + "end": 9335.62, + "probability": 0.239 + }, + { + "start": 9336.26, + "end": 9338.74, + "probability": 0.9468 + }, + { + "start": 9339.36, + "end": 9340.36, + "probability": 0.6469 + }, + { + "start": 9341.56, + "end": 9342.28, + "probability": 0.4014 + }, + { + "start": 9342.78, + "end": 9343.3, + "probability": 0.4735 + }, + { + "start": 9343.3, + "end": 9347.92, + "probability": 0.98 + }, + { + "start": 9348.64, + "end": 9350.92, + "probability": 0.917 + }, + { + "start": 9351.66, + "end": 9356.7, + "probability": 0.986 + }, + { + "start": 9357.36, + "end": 9358.2, + "probability": 0.648 + }, + { + "start": 9359.0, + "end": 9359.48, + "probability": 0.7531 + }, + { + "start": 9359.64, + "end": 9362.84, + "probability": 0.9479 + }, + { + "start": 9363.54, + "end": 9366.98, + "probability": 0.9974 + }, + { + "start": 9366.98, + "end": 9370.3, + "probability": 0.959 + }, + { + "start": 9371.18, + "end": 9372.51, + "probability": 0.9594 + }, + { + "start": 9373.58, + "end": 9375.02, + "probability": 0.9655 + }, + { + "start": 9376.12, + "end": 9377.24, + "probability": 0.9503 + }, + { + "start": 9378.56, + "end": 9381.58, + "probability": 0.8222 + }, + { + "start": 9382.46, + "end": 9384.08, + "probability": 0.9441 + }, + { + "start": 9385.14, + "end": 9388.94, + "probability": 0.9508 + }, + { + "start": 9389.76, + "end": 9390.24, + "probability": 0.866 + }, + { + "start": 9390.36, + "end": 9394.38, + "probability": 0.871 + }, + { + "start": 9394.44, + "end": 9395.34, + "probability": 0.6493 + }, + { + "start": 9396.44, + "end": 9400.12, + "probability": 0.8579 + }, + { + "start": 9401.02, + "end": 9402.36, + "probability": 0.894 + }, + { + "start": 9403.7, + "end": 9404.52, + "probability": 0.8321 + }, + { + "start": 9405.4, + "end": 9413.04, + "probability": 0.9039 + }, + { + "start": 9414.04, + "end": 9420.66, + "probability": 0.806 + }, + { + "start": 9421.46, + "end": 9422.04, + "probability": 0.6496 + }, + { + "start": 9422.1, + "end": 9428.04, + "probability": 0.9982 + }, + { + "start": 9428.58, + "end": 9430.3, + "probability": 0.7882 + }, + { + "start": 9431.36, + "end": 9435.28, + "probability": 0.7854 + }, + { + "start": 9435.44, + "end": 9436.38, + "probability": 0.7544 + }, + { + "start": 9439.14, + "end": 9439.76, + "probability": 0.0287 + }, + { + "start": 9439.76, + "end": 9440.58, + "probability": 0.8566 + }, + { + "start": 9440.74, + "end": 9442.24, + "probability": 0.7032 + }, + { + "start": 9443.66, + "end": 9444.62, + "probability": 0.6132 + }, + { + "start": 9444.68, + "end": 9450.48, + "probability": 0.8895 + }, + { + "start": 9451.44, + "end": 9452.38, + "probability": 0.6646 + }, + { + "start": 9453.04, + "end": 9454.22, + "probability": 0.8862 + }, + { + "start": 9455.36, + "end": 9456.58, + "probability": 0.7933 + }, + { + "start": 9458.0, + "end": 9459.12, + "probability": 0.9547 + }, + { + "start": 9460.24, + "end": 9461.92, + "probability": 0.9742 + }, + { + "start": 9462.96, + "end": 9464.8, + "probability": 0.995 + }, + { + "start": 9465.52, + "end": 9467.94, + "probability": 0.9304 + }, + { + "start": 9469.46, + "end": 9472.02, + "probability": 0.6502 + }, + { + "start": 9475.84, + "end": 9476.02, + "probability": 0.0109 + }, + { + "start": 9476.02, + "end": 9476.02, + "probability": 0.0282 + }, + { + "start": 9476.02, + "end": 9478.52, + "probability": 0.4393 + }, + { + "start": 9478.64, + "end": 9481.18, + "probability": 0.4275 + }, + { + "start": 9481.24, + "end": 9483.06, + "probability": 0.7746 + }, + { + "start": 9485.12, + "end": 9485.12, + "probability": 0.0294 + }, + { + "start": 9485.39, + "end": 9487.21, + "probability": 0.4092 + }, + { + "start": 9487.36, + "end": 9489.6, + "probability": 0.5688 + }, + { + "start": 9490.32, + "end": 9490.84, + "probability": 0.8346 + }, + { + "start": 9490.84, + "end": 9491.82, + "probability": 0.7805 + }, + { + "start": 9491.94, + "end": 9492.5, + "probability": 0.6861 + }, + { + "start": 9492.6, + "end": 9497.52, + "probability": 0.9685 + }, + { + "start": 9498.12, + "end": 9498.78, + "probability": 0.6724 + }, + { + "start": 9498.98, + "end": 9500.34, + "probability": 0.3182 + }, + { + "start": 9500.54, + "end": 9502.51, + "probability": 0.6054 + }, + { + "start": 9503.16, + "end": 9503.4, + "probability": 0.1762 + }, + { + "start": 9503.4, + "end": 9504.18, + "probability": 0.2307 + }, + { + "start": 9505.06, + "end": 9508.0, + "probability": 0.9327 + }, + { + "start": 9509.75, + "end": 9510.68, + "probability": 0.4124 + }, + { + "start": 9511.12, + "end": 9511.72, + "probability": 0.6911 + }, + { + "start": 9513.54, + "end": 9514.04, + "probability": 0.4979 + }, + { + "start": 9514.74, + "end": 9519.56, + "probability": 0.7429 + }, + { + "start": 9520.36, + "end": 9522.88, + "probability": 0.6226 + }, + { + "start": 9523.02, + "end": 9526.48, + "probability": 0.9854 + }, + { + "start": 9526.9, + "end": 9528.38, + "probability": 0.8368 + }, + { + "start": 9528.5, + "end": 9532.44, + "probability": 0.9876 + }, + { + "start": 9533.02, + "end": 9535.48, + "probability": 0.6428 + }, + { + "start": 9535.64, + "end": 9535.9, + "probability": 0.4789 + }, + { + "start": 9536.2, + "end": 9536.54, + "probability": 0.2579 + }, + { + "start": 9536.56, + "end": 9537.44, + "probability": 0.7195 + }, + { + "start": 9537.82, + "end": 9538.5, + "probability": 0.8547 + }, + { + "start": 9539.52, + "end": 9540.5, + "probability": 0.9562 + }, + { + "start": 9540.52, + "end": 9543.48, + "probability": 0.7661 + }, + { + "start": 9545.0, + "end": 9548.3, + "probability": 0.767 + }, + { + "start": 9549.04, + "end": 9550.4, + "probability": 0.7437 + }, + { + "start": 9551.22, + "end": 9552.88, + "probability": 0.6399 + }, + { + "start": 9555.3, + "end": 9556.79, + "probability": 0.6297 + }, + { + "start": 9558.2, + "end": 9560.9, + "probability": 0.9977 + }, + { + "start": 9561.86, + "end": 9562.72, + "probability": 0.442 + }, + { + "start": 9563.1, + "end": 9565.48, + "probability": 0.8572 + }, + { + "start": 9565.56, + "end": 9567.62, + "probability": 0.9313 + }, + { + "start": 9568.54, + "end": 9571.34, + "probability": 0.7243 + }, + { + "start": 9571.82, + "end": 9574.38, + "probability": 0.8208 + }, + { + "start": 9574.38, + "end": 9576.18, + "probability": 0.6335 + }, + { + "start": 9576.2, + "end": 9576.22, + "probability": 0.9222 + }, + { + "start": 9576.22, + "end": 9577.24, + "probability": 0.9694 + }, + { + "start": 9577.34, + "end": 9578.62, + "probability": 0.9776 + }, + { + "start": 9579.16, + "end": 9580.56, + "probability": 0.482 + }, + { + "start": 9581.04, + "end": 9581.28, + "probability": 0.3506 + }, + { + "start": 9581.54, + "end": 9582.42, + "probability": 0.9145 + }, + { + "start": 9583.4, + "end": 9584.58, + "probability": 0.8308 + }, + { + "start": 9585.0, + "end": 9588.49, + "probability": 0.6894 + }, + { + "start": 9590.14, + "end": 9590.16, + "probability": 0.4607 + }, + { + "start": 9590.3, + "end": 9591.0, + "probability": 0.7193 + }, + { + "start": 9591.12, + "end": 9595.82, + "probability": 0.9785 + }, + { + "start": 9596.06, + "end": 9596.88, + "probability": 0.6523 + }, + { + "start": 9597.14, + "end": 9597.63, + "probability": 0.6482 + }, + { + "start": 9597.72, + "end": 9601.0, + "probability": 0.7508 + }, + { + "start": 9601.52, + "end": 9604.68, + "probability": 0.7069 + }, + { + "start": 9604.68, + "end": 9605.98, + "probability": 0.6715 + }, + { + "start": 9605.98, + "end": 9606.68, + "probability": 0.5592 + }, + { + "start": 9606.7, + "end": 9607.46, + "probability": 0.6132 + }, + { + "start": 9608.0, + "end": 9612.26, + "probability": 0.8268 + }, + { + "start": 9612.76, + "end": 9614.6, + "probability": 0.3544 + }, + { + "start": 9614.6, + "end": 9615.78, + "probability": 0.7691 + }, + { + "start": 9616.96, + "end": 9619.18, + "probability": 0.6343 + }, + { + "start": 9619.74, + "end": 9622.96, + "probability": 0.9559 + }, + { + "start": 9622.96, + "end": 9626.0, + "probability": 0.8617 + }, + { + "start": 9626.06, + "end": 9628.48, + "probability": 0.2785 + }, + { + "start": 9629.22, + "end": 9631.74, + "probability": 0.7906 + }, + { + "start": 9632.42, + "end": 9634.8, + "probability": 0.6439 + }, + { + "start": 9634.94, + "end": 9635.92, + "probability": 0.952 + }, + { + "start": 9636.46, + "end": 9636.7, + "probability": 0.2251 + }, + { + "start": 9637.34, + "end": 9638.3, + "probability": 0.7992 + }, + { + "start": 9638.4, + "end": 9639.22, + "probability": 0.6971 + }, + { + "start": 9639.38, + "end": 9641.28, + "probability": 0.7184 + }, + { + "start": 9641.28, + "end": 9642.18, + "probability": 0.4683 + }, + { + "start": 9642.34, + "end": 9645.9, + "probability": 0.9927 + }, + { + "start": 9646.06, + "end": 9647.08, + "probability": 0.6708 + }, + { + "start": 9647.74, + "end": 9648.38, + "probability": 0.6919 + }, + { + "start": 9648.9, + "end": 9650.68, + "probability": 0.9956 + }, + { + "start": 9651.18, + "end": 9652.96, + "probability": 0.9088 + }, + { + "start": 9653.52, + "end": 9654.8, + "probability": 0.9695 + }, + { + "start": 9655.4, + "end": 9657.98, + "probability": 0.1021 + }, + { + "start": 9657.98, + "end": 9658.08, + "probability": 0.3647 + }, + { + "start": 9658.54, + "end": 9659.58, + "probability": 0.7866 + }, + { + "start": 9660.06, + "end": 9662.04, + "probability": 0.9802 + }, + { + "start": 9662.14, + "end": 9662.9, + "probability": 0.6532 + }, + { + "start": 9663.34, + "end": 9668.64, + "probability": 0.9822 + }, + { + "start": 9668.64, + "end": 9672.18, + "probability": 0.9902 + }, + { + "start": 9673.06, + "end": 9673.46, + "probability": 0.4081 + }, + { + "start": 9673.54, + "end": 9673.78, + "probability": 0.8073 + }, + { + "start": 9673.92, + "end": 9674.5, + "probability": 0.7434 + }, + { + "start": 9674.82, + "end": 9678.86, + "probability": 0.9164 + }, + { + "start": 9679.3, + "end": 9681.16, + "probability": 0.9573 + }, + { + "start": 9681.54, + "end": 9683.4, + "probability": 0.7372 + }, + { + "start": 9683.8, + "end": 9687.64, + "probability": 0.9686 + }, + { + "start": 9688.12, + "end": 9688.12, + "probability": 0.2979 + }, + { + "start": 9688.12, + "end": 9688.12, + "probability": 0.3142 + }, + { + "start": 9688.12, + "end": 9688.12, + "probability": 0.2681 + }, + { + "start": 9688.12, + "end": 9690.96, + "probability": 0.6551 + }, + { + "start": 9691.38, + "end": 9692.96, + "probability": 0.9774 + }, + { + "start": 9693.46, + "end": 9693.78, + "probability": 0.6631 + }, + { + "start": 9694.42, + "end": 9697.3, + "probability": 0.9867 + }, + { + "start": 9697.78, + "end": 9700.28, + "probability": 0.6997 + }, + { + "start": 9700.48, + "end": 9704.0, + "probability": 0.681 + }, + { + "start": 9704.2, + "end": 9706.12, + "probability": 0.9181 + }, + { + "start": 9707.12, + "end": 9709.02, + "probability": 0.1679 + }, + { + "start": 9710.46, + "end": 9712.14, + "probability": 0.7236 + }, + { + "start": 9712.72, + "end": 9714.1, + "probability": 0.8822 + }, + { + "start": 9716.58, + "end": 9717.58, + "probability": 0.9846 + }, + { + "start": 9720.52, + "end": 9722.02, + "probability": 0.586 + }, + { + "start": 9722.04, + "end": 9722.04, + "probability": 0.4445 + }, + { + "start": 9722.04, + "end": 9722.68, + "probability": 0.8196 + }, + { + "start": 9722.74, + "end": 9724.55, + "probability": 0.8392 + }, + { + "start": 9725.1, + "end": 9726.9, + "probability": 0.897 + }, + { + "start": 9727.92, + "end": 9733.75, + "probability": 0.9891 + }, + { + "start": 9734.04, + "end": 9735.7, + "probability": 0.8566 + }, + { + "start": 9736.36, + "end": 9737.14, + "probability": 0.8793 + }, + { + "start": 9737.16, + "end": 9738.56, + "probability": 0.9784 + }, + { + "start": 9738.66, + "end": 9744.36, + "probability": 0.8601 + }, + { + "start": 9744.44, + "end": 9745.3, + "probability": 0.9826 + }, + { + "start": 9745.4, + "end": 9748.26, + "probability": 0.9963 + }, + { + "start": 9748.26, + "end": 9752.56, + "probability": 0.962 + }, + { + "start": 9752.72, + "end": 9752.76, + "probability": 0.1115 + }, + { + "start": 9752.84, + "end": 9753.08, + "probability": 0.8002 + }, + { + "start": 9753.16, + "end": 9753.74, + "probability": 0.8112 + }, + { + "start": 9753.82, + "end": 9756.04, + "probability": 0.9431 + }, + { + "start": 9756.16, + "end": 9757.04, + "probability": 0.941 + }, + { + "start": 9757.16, + "end": 9759.16, + "probability": 0.8685 + }, + { + "start": 9759.88, + "end": 9761.66, + "probability": 0.9683 + }, + { + "start": 9761.78, + "end": 9765.1, + "probability": 0.9946 + }, + { + "start": 9765.62, + "end": 9766.3, + "probability": 0.6112 + }, + { + "start": 9766.38, + "end": 9767.72, + "probability": 0.8714 + }, + { + "start": 9768.08, + "end": 9769.12, + "probability": 0.7521 + }, + { + "start": 9769.18, + "end": 9769.98, + "probability": 0.8843 + }, + { + "start": 9772.27, + "end": 9779.32, + "probability": 0.6355 + }, + { + "start": 9779.78, + "end": 9780.26, + "probability": 0.7461 + }, + { + "start": 9780.52, + "end": 9781.7, + "probability": 0.9517 + }, + { + "start": 9782.26, + "end": 9783.86, + "probability": 0.9966 + }, + { + "start": 9784.08, + "end": 9785.7, + "probability": 0.8853 + }, + { + "start": 9785.84, + "end": 9785.84, + "probability": 0.2523 + }, + { + "start": 9785.84, + "end": 9785.86, + "probability": 0.738 + }, + { + "start": 9786.18, + "end": 9788.3, + "probability": 0.5441 + }, + { + "start": 9788.76, + "end": 9789.26, + "probability": 0.1555 + }, + { + "start": 9789.34, + "end": 9789.44, + "probability": 0.332 + }, + { + "start": 9789.44, + "end": 9789.48, + "probability": 0.1643 + }, + { + "start": 9789.48, + "end": 9790.52, + "probability": 0.897 + }, + { + "start": 9790.76, + "end": 9791.44, + "probability": 0.7446 + }, + { + "start": 9791.72, + "end": 9793.66, + "probability": 0.9646 + }, + { + "start": 9794.06, + "end": 9795.58, + "probability": 0.8083 + }, + { + "start": 9795.74, + "end": 9798.14, + "probability": 0.6675 + }, + { + "start": 9798.24, + "end": 9800.84, + "probability": 0.9687 + }, + { + "start": 9802.06, + "end": 9805.1, + "probability": 0.9066 + }, + { + "start": 9805.86, + "end": 9807.3, + "probability": 0.9805 + }, + { + "start": 9807.52, + "end": 9809.26, + "probability": 0.9911 + }, + { + "start": 9809.42, + "end": 9809.72, + "probability": 0.6227 + }, + { + "start": 9809.8, + "end": 9812.0, + "probability": 0.9955 + }, + { + "start": 9812.14, + "end": 9813.18, + "probability": 0.8562 + }, + { + "start": 9813.6, + "end": 9815.66, + "probability": 0.9932 + }, + { + "start": 9816.38, + "end": 9819.08, + "probability": 0.9876 + }, + { + "start": 9819.14, + "end": 9820.64, + "probability": 0.9819 + }, + { + "start": 9821.02, + "end": 9822.16, + "probability": 0.6699 + }, + { + "start": 9822.74, + "end": 9826.24, + "probability": 0.9973 + }, + { + "start": 9826.86, + "end": 9832.6, + "probability": 0.9819 + }, + { + "start": 9832.76, + "end": 9834.1, + "probability": 0.9297 + }, + { + "start": 9834.18, + "end": 9836.06, + "probability": 0.7886 + }, + { + "start": 9836.16, + "end": 9837.18, + "probability": 0.9575 + }, + { + "start": 9838.5, + "end": 9840.32, + "probability": 0.0036 + }, + { + "start": 9840.32, + "end": 9841.4, + "probability": 0.6526 + }, + { + "start": 9841.8, + "end": 9843.1, + "probability": 0.4878 + }, + { + "start": 9843.79, + "end": 9847.8, + "probability": 0.9929 + }, + { + "start": 9847.92, + "end": 9854.56, + "probability": 0.9807 + }, + { + "start": 9855.12, + "end": 9859.28, + "probability": 0.8825 + }, + { + "start": 9860.88, + "end": 9861.64, + "probability": 0.6952 + }, + { + "start": 9861.64, + "end": 9861.74, + "probability": 0.1003 + }, + { + "start": 9861.82, + "end": 9862.06, + "probability": 0.1344 + }, + { + "start": 9862.06, + "end": 9862.06, + "probability": 0.0918 + }, + { + "start": 9862.22, + "end": 9862.9, + "probability": 0.6765 + }, + { + "start": 9862.98, + "end": 9863.38, + "probability": 0.7829 + }, + { + "start": 9863.58, + "end": 9864.56, + "probability": 0.7116 + }, + { + "start": 9865.88, + "end": 9866.18, + "probability": 0.1097 + }, + { + "start": 9866.82, + "end": 9870.02, + "probability": 0.4942 + }, + { + "start": 9870.98, + "end": 9871.94, + "probability": 0.1271 + }, + { + "start": 9873.56, + "end": 9874.32, + "probability": 0.0097 + }, + { + "start": 9874.54, + "end": 9874.72, + "probability": 0.1869 + }, + { + "start": 9874.8, + "end": 9876.16, + "probability": 0.5835 + }, + { + "start": 9876.96, + "end": 9878.2, + "probability": 0.6952 + }, + { + "start": 9879.02, + "end": 9879.42, + "probability": 0.6587 + }, + { + "start": 9882.01, + "end": 9885.98, + "probability": 0.8568 + }, + { + "start": 9886.76, + "end": 9888.38, + "probability": 0.8232 + }, + { + "start": 9888.5, + "end": 9888.9, + "probability": 0.2999 + }, + { + "start": 9889.12, + "end": 9889.48, + "probability": 0.494 + }, + { + "start": 9889.58, + "end": 9889.82, + "probability": 0.8077 + }, + { + "start": 9889.84, + "end": 9890.96, + "probability": 0.8935 + }, + { + "start": 9891.1, + "end": 9893.22, + "probability": 0.795 + }, + { + "start": 9893.56, + "end": 9895.12, + "probability": 0.8763 + }, + { + "start": 9895.12, + "end": 9895.82, + "probability": 0.9922 + }, + { + "start": 9896.04, + "end": 9898.08, + "probability": 0.9771 + }, + { + "start": 9898.08, + "end": 9899.92, + "probability": 0.7904 + }, + { + "start": 9900.04, + "end": 9903.42, + "probability": 0.9807 + }, + { + "start": 9903.42, + "end": 9907.2, + "probability": 0.9973 + }, + { + "start": 9907.32, + "end": 9907.92, + "probability": 0.6105 + }, + { + "start": 9907.98, + "end": 9910.18, + "probability": 0.999 + }, + { + "start": 9910.84, + "end": 9911.5, + "probability": 0.9295 + }, + { + "start": 9911.6, + "end": 9916.26, + "probability": 0.9763 + }, + { + "start": 9916.46, + "end": 9918.22, + "probability": 0.9535 + }, + { + "start": 9918.32, + "end": 9920.02, + "probability": 0.9912 + }, + { + "start": 9922.0, + "end": 9924.82, + "probability": 0.9974 + }, + { + "start": 9924.84, + "end": 9929.22, + "probability": 0.9915 + }, + { + "start": 9929.34, + "end": 9930.59, + "probability": 0.7546 + }, + { + "start": 9931.38, + "end": 9932.26, + "probability": 0.6944 + }, + { + "start": 9932.3, + "end": 9933.28, + "probability": 0.988 + }, + { + "start": 9934.08, + "end": 9938.5, + "probability": 0.9915 + }, + { + "start": 9938.5, + "end": 9942.72, + "probability": 0.9944 + }, + { + "start": 9943.22, + "end": 9945.34, + "probability": 0.7782 + }, + { + "start": 9945.42, + "end": 9947.48, + "probability": 0.9147 + }, + { + "start": 9948.06, + "end": 9948.4, + "probability": 0.4616 + }, + { + "start": 9948.54, + "end": 9949.2, + "probability": 0.9027 + }, + { + "start": 9949.2, + "end": 9952.76, + "probability": 0.8766 + }, + { + "start": 9952.84, + "end": 9955.68, + "probability": 0.7011 + }, + { + "start": 9956.34, + "end": 9959.64, + "probability": 0.9833 + }, + { + "start": 9959.64, + "end": 9963.36, + "probability": 0.9777 + }, + { + "start": 9963.42, + "end": 9964.64, + "probability": 0.8802 + }, + { + "start": 9967.18, + "end": 9971.38, + "probability": 0.986 + }, + { + "start": 9971.44, + "end": 9975.34, + "probability": 0.9922 + }, + { + "start": 9976.0, + "end": 9977.56, + "probability": 0.9824 + }, + { + "start": 9978.22, + "end": 9983.45, + "probability": 0.9725 + }, + { + "start": 9985.94, + "end": 9987.5, + "probability": 0.9638 + }, + { + "start": 9988.2, + "end": 9993.32, + "probability": 0.9943 + }, + { + "start": 9993.46, + "end": 9993.66, + "probability": 0.3739 + }, + { + "start": 9994.0, + "end": 9994.54, + "probability": 0.9399 + }, + { + "start": 9995.02, + "end": 9998.42, + "probability": 0.9976 + }, + { + "start": 9998.42, + "end": 10003.56, + "probability": 0.997 + }, + { + "start": 10004.26, + "end": 10005.02, + "probability": 0.9739 + }, + { + "start": 10005.32, + "end": 10014.06, + "probability": 0.9365 + }, + { + "start": 10015.3, + "end": 10020.64, + "probability": 0.9818 + }, + { + "start": 10020.64, + "end": 10021.0, + "probability": 0.9058 + }, + { + "start": 10021.1, + "end": 10022.74, + "probability": 0.9686 + }, + { + "start": 10023.36, + "end": 10026.46, + "probability": 0.9944 + }, + { + "start": 10026.98, + "end": 10028.32, + "probability": 0.918 + }, + { + "start": 10028.84, + "end": 10030.5, + "probability": 0.7504 + }, + { + "start": 10031.9, + "end": 10034.28, + "probability": 0.9701 + }, + { + "start": 10034.46, + "end": 10035.44, + "probability": 0.7072 + }, + { + "start": 10035.58, + "end": 10036.52, + "probability": 0.9149 + }, + { + "start": 10037.08, + "end": 10037.8, + "probability": 0.7589 + }, + { + "start": 10038.32, + "end": 10041.36, + "probability": 0.9963 + }, + { + "start": 10041.56, + "end": 10043.42, + "probability": 0.7501 + }, + { + "start": 10043.6, + "end": 10044.88, + "probability": 0.804 + }, + { + "start": 10044.9, + "end": 10045.28, + "probability": 0.5249 + }, + { + "start": 10045.34, + "end": 10045.56, + "probability": 0.75 + }, + { + "start": 10045.68, + "end": 10046.58, + "probability": 0.7196 + }, + { + "start": 10046.62, + "end": 10048.56, + "probability": 0.9907 + }, + { + "start": 10048.94, + "end": 10051.7, + "probability": 0.9797 + }, + { + "start": 10051.92, + "end": 10057.64, + "probability": 0.9762 + }, + { + "start": 10057.64, + "end": 10061.34, + "probability": 0.9956 + }, + { + "start": 10061.48, + "end": 10067.38, + "probability": 0.9998 + }, + { + "start": 10067.9, + "end": 10069.12, + "probability": 0.3787 + }, + { + "start": 10069.94, + "end": 10073.04, + "probability": 0.772 + }, + { + "start": 10073.14, + "end": 10074.4, + "probability": 0.6553 + }, + { + "start": 10074.5, + "end": 10078.68, + "probability": 0.9814 + }, + { + "start": 10078.7, + "end": 10082.7, + "probability": 0.9958 + }, + { + "start": 10084.1, + "end": 10086.84, + "probability": 0.9943 + }, + { + "start": 10087.56, + "end": 10090.22, + "probability": 0.9939 + }, + { + "start": 10090.22, + "end": 10094.0, + "probability": 0.8751 + }, + { + "start": 10094.2, + "end": 10095.06, + "probability": 0.8734 + }, + { + "start": 10095.42, + "end": 10095.92, + "probability": 0.6361 + }, + { + "start": 10096.26, + "end": 10097.8, + "probability": 0.6548 + }, + { + "start": 10097.96, + "end": 10098.6, + "probability": 0.7313 + }, + { + "start": 10098.66, + "end": 10104.4, + "probability": 0.9877 + }, + { + "start": 10105.2, + "end": 10106.12, + "probability": 0.4957 + }, + { + "start": 10106.18, + "end": 10107.42, + "probability": 0.785 + }, + { + "start": 10107.56, + "end": 10108.18, + "probability": 0.7418 + }, + { + "start": 10108.36, + "end": 10109.18, + "probability": 0.8058 + }, + { + "start": 10109.76, + "end": 10111.94, + "probability": 0.9447 + }, + { + "start": 10112.04, + "end": 10115.64, + "probability": 0.9889 + }, + { + "start": 10116.16, + "end": 10119.3, + "probability": 0.9474 + }, + { + "start": 10119.84, + "end": 10122.36, + "probability": 0.9438 + }, + { + "start": 10122.88, + "end": 10128.62, + "probability": 0.9791 + }, + { + "start": 10129.34, + "end": 10130.86, + "probability": 0.7456 + }, + { + "start": 10131.04, + "end": 10132.8, + "probability": 0.6948 + }, + { + "start": 10133.6, + "end": 10134.84, + "probability": 0.9022 + }, + { + "start": 10135.5, + "end": 10138.84, + "probability": 0.9116 + }, + { + "start": 10141.83, + "end": 10142.35, + "probability": 0.0359 + }, + { + "start": 10143.18, + "end": 10147.94, + "probability": 0.9272 + }, + { + "start": 10148.26, + "end": 10148.48, + "probability": 0.7742 + }, + { + "start": 10149.0, + "end": 10150.32, + "probability": 0.0218 + }, + { + "start": 10150.82, + "end": 10150.82, + "probability": 0.2162 + }, + { + "start": 10150.82, + "end": 10150.82, + "probability": 0.038 + }, + { + "start": 10150.82, + "end": 10151.52, + "probability": 0.4029 + }, + { + "start": 10152.66, + "end": 10154.26, + "probability": 0.7438 + }, + { + "start": 10154.32, + "end": 10158.39, + "probability": 0.946 + }, + { + "start": 10165.56, + "end": 10167.08, + "probability": 0.7818 + }, + { + "start": 10168.1, + "end": 10170.88, + "probability": 0.9798 + }, + { + "start": 10172.18, + "end": 10174.34, + "probability": 0.9919 + }, + { + "start": 10175.38, + "end": 10177.46, + "probability": 0.9742 + }, + { + "start": 10178.3, + "end": 10181.3, + "probability": 0.7495 + }, + { + "start": 10182.0, + "end": 10183.26, + "probability": 0.5747 + }, + { + "start": 10184.02, + "end": 10185.02, + "probability": 0.7775 + }, + { + "start": 10185.58, + "end": 10188.06, + "probability": 0.9836 + }, + { + "start": 10189.14, + "end": 10191.22, + "probability": 0.7429 + }, + { + "start": 10192.52, + "end": 10194.9, + "probability": 0.9301 + }, + { + "start": 10195.84, + "end": 10196.94, + "probability": 0.8576 + }, + { + "start": 10197.06, + "end": 10201.78, + "probability": 0.9855 + }, + { + "start": 10202.22, + "end": 10204.66, + "probability": 0.9872 + }, + { + "start": 10205.56, + "end": 10209.58, + "probability": 0.98 + }, + { + "start": 10209.64, + "end": 10210.48, + "probability": 0.7638 + }, + { + "start": 10211.32, + "end": 10212.12, + "probability": 0.9127 + }, + { + "start": 10212.54, + "end": 10215.9, + "probability": 0.9313 + }, + { + "start": 10216.88, + "end": 10218.9, + "probability": 0.9907 + }, + { + "start": 10219.82, + "end": 10224.44, + "probability": 0.9614 + }, + { + "start": 10225.66, + "end": 10227.44, + "probability": 0.9941 + }, + { + "start": 10227.98, + "end": 10229.48, + "probability": 0.9619 + }, + { + "start": 10230.28, + "end": 10234.42, + "probability": 0.8779 + }, + { + "start": 10235.58, + "end": 10236.76, + "probability": 0.7076 + }, + { + "start": 10237.28, + "end": 10238.98, + "probability": 0.8422 + }, + { + "start": 10240.1, + "end": 10241.74, + "probability": 0.9712 + }, + { + "start": 10242.52, + "end": 10245.62, + "probability": 0.9908 + }, + { + "start": 10246.86, + "end": 10247.36, + "probability": 0.8779 + }, + { + "start": 10248.14, + "end": 10251.32, + "probability": 0.883 + }, + { + "start": 10252.4, + "end": 10252.96, + "probability": 0.8361 + }, + { + "start": 10253.48, + "end": 10254.72, + "probability": 0.7528 + }, + { + "start": 10255.36, + "end": 10256.64, + "probability": 0.6794 + }, + { + "start": 10257.46, + "end": 10258.26, + "probability": 0.7307 + }, + { + "start": 10258.86, + "end": 10260.0, + "probability": 0.4251 + }, + { + "start": 10260.58, + "end": 10262.12, + "probability": 0.8136 + }, + { + "start": 10262.86, + "end": 10265.26, + "probability": 0.9287 + }, + { + "start": 10265.76, + "end": 10267.22, + "probability": 0.9347 + }, + { + "start": 10268.2, + "end": 10269.48, + "probability": 0.7877 + }, + { + "start": 10270.28, + "end": 10274.98, + "probability": 0.9894 + }, + { + "start": 10275.38, + "end": 10275.94, + "probability": 0.8809 + }, + { + "start": 10276.7, + "end": 10278.28, + "probability": 0.9782 + }, + { + "start": 10279.08, + "end": 10283.7, + "probability": 0.9976 + }, + { + "start": 10284.06, + "end": 10285.1, + "probability": 0.9225 + }, + { + "start": 10285.78, + "end": 10289.44, + "probability": 0.9952 + }, + { + "start": 10290.84, + "end": 10291.16, + "probability": 0.9897 + }, + { + "start": 10292.18, + "end": 10296.64, + "probability": 0.8621 + }, + { + "start": 10297.4, + "end": 10299.8, + "probability": 0.9677 + }, + { + "start": 10300.62, + "end": 10302.2, + "probability": 0.6682 + }, + { + "start": 10302.38, + "end": 10302.88, + "probability": 0.9156 + }, + { + "start": 10304.0, + "end": 10305.68, + "probability": 0.9183 + }, + { + "start": 10306.56, + "end": 10308.66, + "probability": 0.9932 + }, + { + "start": 10309.3, + "end": 10315.34, + "probability": 0.9941 + }, + { + "start": 10316.1, + "end": 10317.08, + "probability": 0.6332 + }, + { + "start": 10317.98, + "end": 10318.73, + "probability": 0.7023 + }, + { + "start": 10319.56, + "end": 10321.84, + "probability": 0.8903 + }, + { + "start": 10322.3, + "end": 10324.08, + "probability": 0.8816 + }, + { + "start": 10324.56, + "end": 10326.38, + "probability": 0.8126 + }, + { + "start": 10326.98, + "end": 10328.28, + "probability": 0.98 + }, + { + "start": 10328.46, + "end": 10331.08, + "probability": 0.6854 + }, + { + "start": 10331.08, + "end": 10331.88, + "probability": 0.6282 + }, + { + "start": 10332.92, + "end": 10334.17, + "probability": 0.6514 + }, + { + "start": 10335.08, + "end": 10335.68, + "probability": 0.9638 + }, + { + "start": 10336.28, + "end": 10339.8, + "probability": 0.7519 + }, + { + "start": 10340.7, + "end": 10343.84, + "probability": 0.9458 + }, + { + "start": 10344.4, + "end": 10345.06, + "probability": 0.6058 + }, + { + "start": 10345.44, + "end": 10346.18, + "probability": 0.7019 + }, + { + "start": 10348.66, + "end": 10350.38, + "probability": 0.1613 + }, + { + "start": 10352.74, + "end": 10353.16, + "probability": 0.0124 + }, + { + "start": 10353.74, + "end": 10358.64, + "probability": 0.0192 + }, + { + "start": 10359.32, + "end": 10362.72, + "probability": 0.0189 + }, + { + "start": 10363.86, + "end": 10364.86, + "probability": 0.3408 + }, + { + "start": 10365.84, + "end": 10367.32, + "probability": 0.376 + }, + { + "start": 10367.94, + "end": 10370.06, + "probability": 0.6173 + }, + { + "start": 10370.26, + "end": 10372.08, + "probability": 0.9283 + }, + { + "start": 10372.96, + "end": 10376.48, + "probability": 0.8081 + }, + { + "start": 10376.7, + "end": 10377.7, + "probability": 0.2764 + }, + { + "start": 10378.64, + "end": 10381.92, + "probability": 0.748 + }, + { + "start": 10382.06, + "end": 10384.84, + "probability": 0.9326 + }, + { + "start": 10391.96, + "end": 10393.16, + "probability": 0.5127 + }, + { + "start": 10393.58, + "end": 10393.58, + "probability": 0.276 + }, + { + "start": 10393.58, + "end": 10394.42, + "probability": 0.717 + }, + { + "start": 10394.64, + "end": 10401.26, + "probability": 0.9937 + }, + { + "start": 10402.38, + "end": 10406.58, + "probability": 0.9882 + }, + { + "start": 10406.68, + "end": 10409.24, + "probability": 0.9915 + }, + { + "start": 10409.82, + "end": 10412.06, + "probability": 0.9971 + }, + { + "start": 10412.24, + "end": 10415.24, + "probability": 0.9907 + }, + { + "start": 10416.18, + "end": 10419.34, + "probability": 0.9732 + }, + { + "start": 10419.34, + "end": 10422.22, + "probability": 0.9954 + }, + { + "start": 10422.76, + "end": 10428.22, + "probability": 0.9971 + }, + { + "start": 10428.6, + "end": 10434.4, + "probability": 0.9953 + }, + { + "start": 10434.84, + "end": 10435.72, + "probability": 0.8863 + }, + { + "start": 10435.82, + "end": 10436.66, + "probability": 0.9812 + }, + { + "start": 10436.72, + "end": 10437.48, + "probability": 0.9253 + }, + { + "start": 10438.06, + "end": 10440.42, + "probability": 0.9968 + }, + { + "start": 10440.6, + "end": 10442.76, + "probability": 0.8993 + }, + { + "start": 10443.14, + "end": 10445.84, + "probability": 0.9909 + }, + { + "start": 10445.84, + "end": 10448.92, + "probability": 0.9985 + }, + { + "start": 10449.36, + "end": 10450.18, + "probability": 0.9691 + }, + { + "start": 10450.54, + "end": 10453.58, + "probability": 0.9901 + }, + { + "start": 10453.74, + "end": 10454.2, + "probability": 0.8312 + }, + { + "start": 10454.84, + "end": 10456.06, + "probability": 0.801 + }, + { + "start": 10456.5, + "end": 10457.46, + "probability": 0.9047 + }, + { + "start": 10457.88, + "end": 10462.16, + "probability": 0.9623 + }, + { + "start": 10462.44, + "end": 10463.56, + "probability": 0.9833 + }, + { + "start": 10464.42, + "end": 10466.78, + "probability": 0.994 + }, + { + "start": 10467.54, + "end": 10471.5, + "probability": 0.9934 + }, + { + "start": 10471.9, + "end": 10475.34, + "probability": 0.9982 + }, + { + "start": 10475.48, + "end": 10476.44, + "probability": 0.9675 + }, + { + "start": 10476.76, + "end": 10480.96, + "probability": 0.998 + }, + { + "start": 10481.68, + "end": 10482.52, + "probability": 0.9778 + }, + { + "start": 10483.48, + "end": 10484.44, + "probability": 0.8026 + }, + { + "start": 10485.46, + "end": 10487.64, + "probability": 0.7847 + }, + { + "start": 10488.04, + "end": 10489.88, + "probability": 0.9963 + }, + { + "start": 10490.64, + "end": 10492.46, + "probability": 0.7041 + }, + { + "start": 10492.56, + "end": 10494.28, + "probability": 0.9937 + }, + { + "start": 10494.62, + "end": 10495.92, + "probability": 0.9268 + }, + { + "start": 10495.98, + "end": 10497.4, + "probability": 0.95 + }, + { + "start": 10498.3, + "end": 10499.58, + "probability": 0.706 + }, + { + "start": 10499.92, + "end": 10504.96, + "probability": 0.998 + }, + { + "start": 10504.96, + "end": 10509.92, + "probability": 0.9993 + }, + { + "start": 10510.0, + "end": 10511.12, + "probability": 0.6497 + }, + { + "start": 10511.88, + "end": 10516.68, + "probability": 0.9987 + }, + { + "start": 10517.22, + "end": 10520.38, + "probability": 0.998 + }, + { + "start": 10520.38, + "end": 10524.04, + "probability": 0.9995 + }, + { + "start": 10524.46, + "end": 10526.08, + "probability": 0.9548 + }, + { + "start": 10526.6, + "end": 10528.32, + "probability": 0.9927 + }, + { + "start": 10528.66, + "end": 10531.18, + "probability": 0.8465 + }, + { + "start": 10531.62, + "end": 10532.82, + "probability": 0.7333 + }, + { + "start": 10532.9, + "end": 10537.2, + "probability": 0.9948 + }, + { + "start": 10537.45, + "end": 10541.5, + "probability": 0.9938 + }, + { + "start": 10541.98, + "end": 10542.78, + "probability": 0.92 + }, + { + "start": 10543.32, + "end": 10545.16, + "probability": 0.9113 + }, + { + "start": 10545.56, + "end": 10549.26, + "probability": 0.965 + }, + { + "start": 10550.58, + "end": 10553.68, + "probability": 0.9007 + }, + { + "start": 10554.24, + "end": 10555.56, + "probability": 0.6431 + }, + { + "start": 10555.94, + "end": 10556.96, + "probability": 0.9636 + }, + { + "start": 10557.36, + "end": 10558.34, + "probability": 0.8212 + }, + { + "start": 10558.54, + "end": 10561.74, + "probability": 0.9958 + }, + { + "start": 10562.2, + "end": 10564.9, + "probability": 0.9402 + }, + { + "start": 10564.9, + "end": 10567.4, + "probability": 0.9841 + }, + { + "start": 10567.88, + "end": 10572.78, + "probability": 0.9957 + }, + { + "start": 10572.78, + "end": 10577.06, + "probability": 0.9987 + }, + { + "start": 10577.44, + "end": 10581.06, + "probability": 0.9917 + }, + { + "start": 10581.64, + "end": 10582.08, + "probability": 0.8591 + }, + { + "start": 10582.44, + "end": 10583.04, + "probability": 0.8316 + }, + { + "start": 10583.36, + "end": 10584.32, + "probability": 0.8784 + }, + { + "start": 10584.38, + "end": 10585.12, + "probability": 0.7363 + }, + { + "start": 10585.46, + "end": 10588.42, + "probability": 0.7331 + }, + { + "start": 10588.74, + "end": 10589.98, + "probability": 0.7976 + }, + { + "start": 10590.3, + "end": 10591.94, + "probability": 0.999 + }, + { + "start": 10592.54, + "end": 10595.34, + "probability": 0.9736 + }, + { + "start": 10595.74, + "end": 10596.32, + "probability": 0.7131 + }, + { + "start": 10596.36, + "end": 10597.48, + "probability": 0.8232 + }, + { + "start": 10597.52, + "end": 10598.62, + "probability": 0.9695 + }, + { + "start": 10598.96, + "end": 10600.28, + "probability": 0.9844 + }, + { + "start": 10600.34, + "end": 10600.74, + "probability": 0.7538 + }, + { + "start": 10602.92, + "end": 10605.26, + "probability": 0.6758 + }, + { + "start": 10606.02, + "end": 10610.76, + "probability": 0.7456 + }, + { + "start": 10611.52, + "end": 10612.94, + "probability": 0.9431 + }, + { + "start": 10624.72, + "end": 10626.12, + "probability": 0.4059 + }, + { + "start": 10627.08, + "end": 10629.72, + "probability": 0.8721 + }, + { + "start": 10630.78, + "end": 10630.9, + "probability": 0.1338 + }, + { + "start": 10630.98, + "end": 10630.98, + "probability": 0.5528 + }, + { + "start": 10630.98, + "end": 10632.12, + "probability": 0.3668 + }, + { + "start": 10633.56, + "end": 10635.6, + "probability": 0.9702 + }, + { + "start": 10637.16, + "end": 10640.4, + "probability": 0.9995 + }, + { + "start": 10640.4, + "end": 10644.18, + "probability": 0.9981 + }, + { + "start": 10644.96, + "end": 10645.42, + "probability": 0.4981 + }, + { + "start": 10646.14, + "end": 10648.56, + "probability": 0.9941 + }, + { + "start": 10648.56, + "end": 10653.3, + "probability": 0.9891 + }, + { + "start": 10653.8, + "end": 10655.7, + "probability": 0.9325 + }, + { + "start": 10656.62, + "end": 10658.36, + "probability": 0.9364 + }, + { + "start": 10659.02, + "end": 10660.72, + "probability": 0.9629 + }, + { + "start": 10661.32, + "end": 10666.84, + "probability": 0.9852 + }, + { + "start": 10667.58, + "end": 10668.74, + "probability": 0.7929 + }, + { + "start": 10668.86, + "end": 10672.78, + "probability": 0.9101 + }, + { + "start": 10673.32, + "end": 10677.32, + "probability": 0.985 + }, + { + "start": 10678.32, + "end": 10680.7, + "probability": 0.9749 + }, + { + "start": 10681.34, + "end": 10683.12, + "probability": 0.9443 + }, + { + "start": 10683.57, + "end": 10687.34, + "probability": 0.9597 + }, + { + "start": 10687.34, + "end": 10691.54, + "probability": 0.9739 + }, + { + "start": 10692.04, + "end": 10697.54, + "probability": 0.9617 + }, + { + "start": 10698.32, + "end": 10701.34, + "probability": 0.9155 + }, + { + "start": 10701.84, + "end": 10704.32, + "probability": 0.9098 + }, + { + "start": 10704.39, + "end": 10707.7, + "probability": 0.9375 + }, + { + "start": 10708.26, + "end": 10708.48, + "probability": 0.5531 + }, + { + "start": 10709.04, + "end": 10710.08, + "probability": 0.0832 + }, + { + "start": 10710.3, + "end": 10711.32, + "probability": 0.6232 + }, + { + "start": 10712.24, + "end": 10714.92, + "probability": 0.7241 + }, + { + "start": 10717.34, + "end": 10719.0, + "probability": 0.9419 + }, + { + "start": 10721.56, + "end": 10722.48, + "probability": 0.7294 + }, + { + "start": 10722.7, + "end": 10725.72, + "probability": 0.9931 + }, + { + "start": 10725.72, + "end": 10729.02, + "probability": 0.9991 + }, + { + "start": 10729.3, + "end": 10730.62, + "probability": 0.9867 + }, + { + "start": 10731.18, + "end": 10732.34, + "probability": 0.9504 + }, + { + "start": 10733.02, + "end": 10735.8, + "probability": 0.979 + }, + { + "start": 10736.16, + "end": 10737.32, + "probability": 0.9577 + }, + { + "start": 10737.42, + "end": 10739.2, + "probability": 0.9937 + }, + { + "start": 10740.3, + "end": 10743.16, + "probability": 0.9917 + }, + { + "start": 10743.7, + "end": 10745.32, + "probability": 0.8935 + }, + { + "start": 10745.88, + "end": 10747.54, + "probability": 0.8917 + }, + { + "start": 10747.64, + "end": 10751.82, + "probability": 0.9923 + }, + { + "start": 10751.82, + "end": 10755.38, + "probability": 0.9928 + }, + { + "start": 10755.52, + "end": 10757.8, + "probability": 0.9971 + }, + { + "start": 10758.34, + "end": 10759.86, + "probability": 0.7277 + }, + { + "start": 10759.92, + "end": 10762.94, + "probability": 0.9966 + }, + { + "start": 10762.98, + "end": 10764.78, + "probability": 0.998 + }, + { + "start": 10765.12, + "end": 10767.28, + "probability": 0.9956 + }, + { + "start": 10767.88, + "end": 10770.54, + "probability": 0.9896 + }, + { + "start": 10770.98, + "end": 10774.42, + "probability": 0.9197 + }, + { + "start": 10774.42, + "end": 10778.08, + "probability": 0.993 + }, + { + "start": 10778.6, + "end": 10783.42, + "probability": 0.9699 + }, + { + "start": 10783.42, + "end": 10786.94, + "probability": 0.9988 + }, + { + "start": 10787.56, + "end": 10793.26, + "probability": 0.965 + }, + { + "start": 10793.72, + "end": 10798.54, + "probability": 0.986 + }, + { + "start": 10798.92, + "end": 10800.68, + "probability": 0.999 + }, + { + "start": 10801.06, + "end": 10802.88, + "probability": 0.9751 + }, + { + "start": 10803.18, + "end": 10806.52, + "probability": 0.9843 + }, + { + "start": 10806.86, + "end": 10810.42, + "probability": 0.9415 + }, + { + "start": 10810.52, + "end": 10812.34, + "probability": 0.9392 + }, + { + "start": 10813.44, + "end": 10815.18, + "probability": 0.6118 + }, + { + "start": 10815.4, + "end": 10817.53, + "probability": 0.7942 + }, + { + "start": 10818.56, + "end": 10822.58, + "probability": 0.9536 + }, + { + "start": 10822.78, + "end": 10825.98, + "probability": 0.7144 + }, + { + "start": 10826.06, + "end": 10826.64, + "probability": 0.9234 + }, + { + "start": 10826.8, + "end": 10827.78, + "probability": 0.6577 + }, + { + "start": 10828.16, + "end": 10833.0, + "probability": 0.0384 + }, + { + "start": 10836.6, + "end": 10840.83, + "probability": 0.782 + }, + { + "start": 10841.42, + "end": 10841.42, + "probability": 0.378 + }, + { + "start": 10841.62, + "end": 10844.1, + "probability": 0.7795 + }, + { + "start": 10844.68, + "end": 10849.72, + "probability": 0.7248 + }, + { + "start": 10850.28, + "end": 10853.04, + "probability": 0.7932 + }, + { + "start": 10853.14, + "end": 10854.26, + "probability": 0.4701 + }, + { + "start": 10854.74, + "end": 10855.5, + "probability": 0.8456 + }, + { + "start": 10856.8, + "end": 10860.64, + "probability": 0.9403 + }, + { + "start": 10860.68, + "end": 10862.4, + "probability": 0.8522 + }, + { + "start": 10863.0, + "end": 10864.18, + "probability": 0.7176 + }, + { + "start": 10865.16, + "end": 10868.84, + "probability": 0.9921 + }, + { + "start": 10869.38, + "end": 10872.44, + "probability": 0.7612 + }, + { + "start": 10873.54, + "end": 10874.9, + "probability": 0.9776 + }, + { + "start": 10876.14, + "end": 10879.68, + "probability": 0.8403 + }, + { + "start": 10881.22, + "end": 10882.84, + "probability": 0.6105 + }, + { + "start": 10886.54, + "end": 10887.66, + "probability": 0.6281 + }, + { + "start": 10888.28, + "end": 10890.58, + "probability": 0.8847 + }, + { + "start": 10892.0, + "end": 10892.94, + "probability": 0.1943 + }, + { + "start": 10894.2, + "end": 10894.74, + "probability": 0.7707 + }, + { + "start": 10894.9, + "end": 10896.98, + "probability": 0.8783 + }, + { + "start": 10897.16, + "end": 10898.46, + "probability": 0.8184 + }, + { + "start": 10899.58, + "end": 10903.68, + "probability": 0.9899 + }, + { + "start": 10903.68, + "end": 10909.48, + "probability": 0.8906 + }, + { + "start": 10910.44, + "end": 10914.34, + "probability": 0.7369 + }, + { + "start": 10915.12, + "end": 10917.42, + "probability": 0.9523 + }, + { + "start": 10919.22, + "end": 10922.0, + "probability": 0.977 + }, + { + "start": 10922.0, + "end": 10925.58, + "probability": 0.947 + }, + { + "start": 10925.72, + "end": 10927.06, + "probability": 0.8761 + }, + { + "start": 10927.58, + "end": 10930.56, + "probability": 0.9873 + }, + { + "start": 10931.52, + "end": 10933.78, + "probability": 0.8872 + }, + { + "start": 10934.5, + "end": 10935.04, + "probability": 0.9033 + }, + { + "start": 10935.44, + "end": 10939.38, + "probability": 0.9018 + }, + { + "start": 10939.38, + "end": 10943.64, + "probability": 0.7327 + }, + { + "start": 10944.2, + "end": 10946.2, + "probability": 0.9686 + }, + { + "start": 10946.28, + "end": 10947.12, + "probability": 0.8946 + }, + { + "start": 10947.34, + "end": 10948.06, + "probability": 0.4956 + }, + { + "start": 10948.9, + "end": 10952.96, + "probability": 0.9158 + }, + { + "start": 10953.76, + "end": 10956.7, + "probability": 0.8856 + }, + { + "start": 10957.2, + "end": 10959.08, + "probability": 0.8882 + }, + { + "start": 10959.52, + "end": 10960.82, + "probability": 0.6735 + }, + { + "start": 10960.82, + "end": 10963.76, + "probability": 0.9486 + }, + { + "start": 10964.14, + "end": 10965.62, + "probability": 0.6731 + }, + { + "start": 10966.24, + "end": 10967.74, + "probability": 0.9214 + }, + { + "start": 10969.3, + "end": 10972.16, + "probability": 0.9913 + }, + { + "start": 10972.8, + "end": 10976.54, + "probability": 0.9878 + }, + { + "start": 10977.1, + "end": 10979.38, + "probability": 0.9957 + }, + { + "start": 10980.26, + "end": 10981.2, + "probability": 0.9314 + }, + { + "start": 10981.24, + "end": 10983.2, + "probability": 0.8467 + }, + { + "start": 10983.7, + "end": 10984.94, + "probability": 0.9967 + }, + { + "start": 10985.8, + "end": 10989.56, + "probability": 0.9163 + }, + { + "start": 10990.04, + "end": 10991.94, + "probability": 0.9481 + }, + { + "start": 10993.52, + "end": 10998.2, + "probability": 0.9131 + }, + { + "start": 10998.7, + "end": 11000.5, + "probability": 0.9924 + }, + { + "start": 11000.6, + "end": 11001.36, + "probability": 0.9343 + }, + { + "start": 11001.52, + "end": 11008.46, + "probability": 0.9834 + }, + { + "start": 11010.5, + "end": 11012.55, + "probability": 0.981 + }, + { + "start": 11013.06, + "end": 11015.4, + "probability": 0.8674 + }, + { + "start": 11015.7, + "end": 11018.18, + "probability": 0.9969 + }, + { + "start": 11019.44, + "end": 11022.46, + "probability": 0.9634 + }, + { + "start": 11023.06, + "end": 11025.36, + "probability": 0.9351 + }, + { + "start": 11026.04, + "end": 11027.2, + "probability": 0.4346 + }, + { + "start": 11027.62, + "end": 11031.54, + "probability": 0.9868 + }, + { + "start": 11032.26, + "end": 11035.0, + "probability": 0.9631 + }, + { + "start": 11035.28, + "end": 11037.16, + "probability": 0.9905 + }, + { + "start": 11037.82, + "end": 11038.48, + "probability": 0.9862 + }, + { + "start": 11039.0, + "end": 11039.52, + "probability": 0.605 + }, + { + "start": 11040.78, + "end": 11042.68, + "probability": 0.6853 + }, + { + "start": 11043.46, + "end": 11045.22, + "probability": 0.8771 + }, + { + "start": 11046.34, + "end": 11051.58, + "probability": 0.7865 + }, + { + "start": 11052.06, + "end": 11053.34, + "probability": 0.9408 + }, + { + "start": 11054.0, + "end": 11058.62, + "probability": 0.9919 + }, + { + "start": 11059.06, + "end": 11059.64, + "probability": 0.7049 + }, + { + "start": 11059.72, + "end": 11060.28, + "probability": 0.9272 + }, + { + "start": 11060.96, + "end": 11061.96, + "probability": 0.8108 + }, + { + "start": 11062.14, + "end": 11063.56, + "probability": 0.9177 + }, + { + "start": 11063.86, + "end": 11064.88, + "probability": 0.6918 + }, + { + "start": 11065.3, + "end": 11065.64, + "probability": 0.8271 + }, + { + "start": 11066.0, + "end": 11067.24, + "probability": 0.8945 + }, + { + "start": 11067.7, + "end": 11069.82, + "probability": 0.9059 + }, + { + "start": 11070.14, + "end": 11075.62, + "probability": 0.9779 + }, + { + "start": 11076.9, + "end": 11077.78, + "probability": 0.7345 + }, + { + "start": 11079.14, + "end": 11080.18, + "probability": 0.56 + }, + { + "start": 11080.26, + "end": 11081.98, + "probability": 0.8462 + }, + { + "start": 11082.46, + "end": 11086.86, + "probability": 0.9728 + }, + { + "start": 11087.48, + "end": 11091.37, + "probability": 0.9834 + }, + { + "start": 11093.44, + "end": 11096.94, + "probability": 0.7348 + }, + { + "start": 11096.94, + "end": 11098.18, + "probability": 0.7526 + }, + { + "start": 11099.82, + "end": 11100.08, + "probability": 0.3447 + }, + { + "start": 11100.2, + "end": 11102.0, + "probability": 0.8326 + }, + { + "start": 11102.86, + "end": 11107.14, + "probability": 0.9645 + }, + { + "start": 11107.18, + "end": 11107.9, + "probability": 0.4351 + }, + { + "start": 11107.92, + "end": 11109.19, + "probability": 0.598 + }, + { + "start": 11109.82, + "end": 11111.32, + "probability": 0.4567 + }, + { + "start": 11111.44, + "end": 11115.66, + "probability": 0.9727 + }, + { + "start": 11116.08, + "end": 11119.62, + "probability": 0.9297 + }, + { + "start": 11120.02, + "end": 11121.24, + "probability": 0.8901 + }, + { + "start": 11121.9, + "end": 11126.22, + "probability": 0.8441 + }, + { + "start": 11126.56, + "end": 11128.44, + "probability": 0.9697 + }, + { + "start": 11128.62, + "end": 11129.76, + "probability": 0.8656 + }, + { + "start": 11130.16, + "end": 11132.08, + "probability": 0.7879 + }, + { + "start": 11132.38, + "end": 11133.22, + "probability": 0.784 + }, + { + "start": 11133.3, + "end": 11134.64, + "probability": 0.8225 + }, + { + "start": 11134.78, + "end": 11135.62, + "probability": 0.1479 + }, + { + "start": 11136.48, + "end": 11139.82, + "probability": 0.9113 + }, + { + "start": 11140.02, + "end": 11142.72, + "probability": 0.9664 + }, + { + "start": 11143.0, + "end": 11144.02, + "probability": 0.8988 + }, + { + "start": 11144.06, + "end": 11145.0, + "probability": 0.9683 + }, + { + "start": 11145.36, + "end": 11148.1, + "probability": 0.8446 + }, + { + "start": 11148.38, + "end": 11151.18, + "probability": 0.9797 + }, + { + "start": 11151.2, + "end": 11157.96, + "probability": 0.9922 + }, + { + "start": 11158.06, + "end": 11158.32, + "probability": 0.5384 + }, + { + "start": 11158.5, + "end": 11159.04, + "probability": 0.7292 + }, + { + "start": 11159.48, + "end": 11161.88, + "probability": 0.7635 + }, + { + "start": 11162.06, + "end": 11163.53, + "probability": 0.8343 + }, + { + "start": 11164.04, + "end": 11165.36, + "probability": 0.9782 + }, + { + "start": 11166.58, + "end": 11168.62, + "probability": 0.8512 + }, + { + "start": 11168.84, + "end": 11170.48, + "probability": 0.8186 + }, + { + "start": 11171.14, + "end": 11172.54, + "probability": 0.3723 + }, + { + "start": 11173.54, + "end": 11175.26, + "probability": 0.9852 + }, + { + "start": 11175.38, + "end": 11177.37, + "probability": 0.7028 + }, + { + "start": 11180.06, + "end": 11180.7, + "probability": 0.5635 + }, + { + "start": 11181.14, + "end": 11182.42, + "probability": 0.6051 + }, + { + "start": 11182.68, + "end": 11182.68, + "probability": 0.4184 + }, + { + "start": 11182.68, + "end": 11183.6, + "probability": 0.8248 + }, + { + "start": 11183.64, + "end": 11189.56, + "probability": 0.9104 + }, + { + "start": 11190.8, + "end": 11192.54, + "probability": 0.9941 + }, + { + "start": 11192.62, + "end": 11193.3, + "probability": 0.4922 + }, + { + "start": 11193.62, + "end": 11194.8, + "probability": 0.8026 + }, + { + "start": 11195.26, + "end": 11198.72, + "probability": 0.9769 + }, + { + "start": 11199.38, + "end": 11199.86, + "probability": 0.7561 + }, + { + "start": 11200.42, + "end": 11206.42, + "probability": 0.9482 + }, + { + "start": 11206.88, + "end": 11207.72, + "probability": 0.7791 + }, + { + "start": 11207.8, + "end": 11209.28, + "probability": 0.9902 + }, + { + "start": 11209.42, + "end": 11210.96, + "probability": 0.7985 + }, + { + "start": 11211.44, + "end": 11212.96, + "probability": 0.8223 + }, + { + "start": 11213.1, + "end": 11214.64, + "probability": 0.9158 + }, + { + "start": 11215.06, + "end": 11217.1, + "probability": 0.9913 + }, + { + "start": 11217.44, + "end": 11220.74, + "probability": 0.8834 + }, + { + "start": 11221.3, + "end": 11224.56, + "probability": 0.9692 + }, + { + "start": 11224.64, + "end": 11225.88, + "probability": 0.7663 + }, + { + "start": 11226.64, + "end": 11228.14, + "probability": 0.8892 + }, + { + "start": 11228.48, + "end": 11234.44, + "probability": 0.8725 + }, + { + "start": 11235.04, + "end": 11236.54, + "probability": 0.9982 + }, + { + "start": 11237.16, + "end": 11238.11, + "probability": 0.251 + }, + { + "start": 11239.0, + "end": 11239.68, + "probability": 0.5829 + }, + { + "start": 11239.76, + "end": 11244.22, + "probability": 0.9764 + }, + { + "start": 11244.72, + "end": 11248.4, + "probability": 0.938 + }, + { + "start": 11248.9, + "end": 11255.48, + "probability": 0.9384 + }, + { + "start": 11255.56, + "end": 11262.04, + "probability": 0.6739 + }, + { + "start": 11262.08, + "end": 11264.07, + "probability": 0.9925 + }, + { + "start": 11264.46, + "end": 11266.04, + "probability": 0.8435 + }, + { + "start": 11266.7, + "end": 11271.88, + "probability": 0.9368 + }, + { + "start": 11271.9, + "end": 11275.74, + "probability": 0.7461 + }, + { + "start": 11276.34, + "end": 11277.5, + "probability": 0.9849 + }, + { + "start": 11277.54, + "end": 11278.72, + "probability": 0.8017 + }, + { + "start": 11278.84, + "end": 11282.68, + "probability": 0.9941 + }, + { + "start": 11282.74, + "end": 11285.64, + "probability": 0.9934 + }, + { + "start": 11285.74, + "end": 11287.26, + "probability": 0.7948 + }, + { + "start": 11288.02, + "end": 11290.68, + "probability": 0.9961 + }, + { + "start": 11291.44, + "end": 11295.4, + "probability": 0.9773 + }, + { + "start": 11295.54, + "end": 11296.82, + "probability": 0.7704 + }, + { + "start": 11297.32, + "end": 11299.16, + "probability": 0.7704 + }, + { + "start": 11299.54, + "end": 11300.76, + "probability": 0.9836 + }, + { + "start": 11301.02, + "end": 11302.93, + "probability": 0.9275 + }, + { + "start": 11303.14, + "end": 11304.86, + "probability": 0.967 + }, + { + "start": 11306.12, + "end": 11306.5, + "probability": 0.8621 + }, + { + "start": 11306.56, + "end": 11310.08, + "probability": 0.9893 + }, + { + "start": 11310.3, + "end": 11313.66, + "probability": 0.9751 + }, + { + "start": 11314.04, + "end": 11316.74, + "probability": 0.9969 + }, + { + "start": 11317.12, + "end": 11318.54, + "probability": 0.9829 + }, + { + "start": 11319.18, + "end": 11320.58, + "probability": 0.725 + }, + { + "start": 11320.86, + "end": 11324.38, + "probability": 0.9198 + }, + { + "start": 11325.38, + "end": 11327.5, + "probability": 0.9458 + }, + { + "start": 11327.58, + "end": 11328.98, + "probability": 0.9775 + }, + { + "start": 11329.44, + "end": 11330.9, + "probability": 0.9773 + }, + { + "start": 11331.06, + "end": 11333.66, + "probability": 0.9945 + }, + { + "start": 11334.12, + "end": 11335.94, + "probability": 0.9768 + }, + { + "start": 11335.98, + "end": 11336.72, + "probability": 0.9553 + }, + { + "start": 11337.22, + "end": 11342.2, + "probability": 0.9438 + }, + { + "start": 11342.46, + "end": 11343.62, + "probability": 0.8818 + }, + { + "start": 11343.74, + "end": 11345.2, + "probability": 0.8258 + }, + { + "start": 11346.52, + "end": 11347.74, + "probability": 0.6826 + }, + { + "start": 11348.12, + "end": 11348.4, + "probability": 0.4796 + }, + { + "start": 11348.46, + "end": 11348.82, + "probability": 0.8489 + }, + { + "start": 11348.9, + "end": 11352.02, + "probability": 0.8251 + }, + { + "start": 11352.64, + "end": 11355.11, + "probability": 0.978 + }, + { + "start": 11355.78, + "end": 11358.6, + "probability": 0.9442 + }, + { + "start": 11358.68, + "end": 11360.96, + "probability": 0.9475 + }, + { + "start": 11361.08, + "end": 11362.38, + "probability": 0.8222 + }, + { + "start": 11362.42, + "end": 11362.64, + "probability": 0.8662 + }, + { + "start": 11362.72, + "end": 11363.36, + "probability": 0.834 + }, + { + "start": 11363.82, + "end": 11364.88, + "probability": 0.8281 + }, + { + "start": 11364.94, + "end": 11365.64, + "probability": 0.9538 + }, + { + "start": 11366.0, + "end": 11367.0, + "probability": 0.807 + }, + { + "start": 11367.0, + "end": 11370.84, + "probability": 0.9409 + }, + { + "start": 11371.12, + "end": 11372.14, + "probability": 0.2158 + }, + { + "start": 11372.64, + "end": 11374.24, + "probability": 0.7704 + }, + { + "start": 11374.24, + "end": 11376.14, + "probability": 0.8866 + }, + { + "start": 11376.54, + "end": 11378.28, + "probability": 0.9279 + }, + { + "start": 11379.42, + "end": 11380.9, + "probability": 0.6486 + }, + { + "start": 11381.36, + "end": 11385.54, + "probability": 0.9497 + }, + { + "start": 11385.62, + "end": 11385.62, + "probability": 0.6363 + }, + { + "start": 11385.96, + "end": 11388.68, + "probability": 0.7848 + }, + { + "start": 11388.96, + "end": 11393.04, + "probability": 0.9896 + }, + { + "start": 11393.34, + "end": 11393.48, + "probability": 0.6218 + }, + { + "start": 11393.98, + "end": 11395.56, + "probability": 0.9417 + }, + { + "start": 11396.28, + "end": 11399.18, + "probability": 0.8244 + }, + { + "start": 11409.24, + "end": 11412.1, + "probability": 0.5934 + }, + { + "start": 11412.88, + "end": 11414.88, + "probability": 0.8507 + }, + { + "start": 11414.88, + "end": 11414.88, + "probability": 0.0458 + }, + { + "start": 11414.88, + "end": 11417.1, + "probability": 0.9246 + }, + { + "start": 11417.18, + "end": 11419.66, + "probability": 0.8952 + }, + { + "start": 11419.76, + "end": 11424.09, + "probability": 0.9219 + }, + { + "start": 11425.4, + "end": 11429.26, + "probability": 0.995 + }, + { + "start": 11430.04, + "end": 11435.38, + "probability": 0.9993 + }, + { + "start": 11436.38, + "end": 11438.36, + "probability": 0.9876 + }, + { + "start": 11438.36, + "end": 11440.78, + "probability": 0.9954 + }, + { + "start": 11441.56, + "end": 11445.42, + "probability": 0.9808 + }, + { + "start": 11445.42, + "end": 11450.1, + "probability": 0.9978 + }, + { + "start": 11451.08, + "end": 11451.38, + "probability": 0.2529 + }, + { + "start": 11451.4, + "end": 11454.52, + "probability": 0.9384 + }, + { + "start": 11454.68, + "end": 11457.8, + "probability": 0.9823 + }, + { + "start": 11459.5, + "end": 11459.5, + "probability": 0.1477 + }, + { + "start": 11459.5, + "end": 11460.46, + "probability": 0.797 + }, + { + "start": 11460.52, + "end": 11462.66, + "probability": 0.5044 + }, + { + "start": 11462.8, + "end": 11464.44, + "probability": 0.9788 + }, + { + "start": 11465.02, + "end": 11466.3, + "probability": 0.874 + }, + { + "start": 11467.36, + "end": 11471.46, + "probability": 0.7564 + }, + { + "start": 11471.78, + "end": 11473.7, + "probability": 0.4973 + }, + { + "start": 11474.44, + "end": 11476.48, + "probability": 0.3163 + }, + { + "start": 11476.68, + "end": 11480.2, + "probability": 0.9193 + }, + { + "start": 11480.92, + "end": 11481.02, + "probability": 0.0002 + }, + { + "start": 11481.54, + "end": 11481.54, + "probability": 0.0034 + }, + { + "start": 11481.54, + "end": 11486.26, + "probability": 0.897 + }, + { + "start": 11486.26, + "end": 11490.6, + "probability": 0.9992 + }, + { + "start": 11490.6, + "end": 11495.18, + "probability": 0.9902 + }, + { + "start": 11496.18, + "end": 11501.12, + "probability": 0.9855 + }, + { + "start": 11501.12, + "end": 11506.04, + "probability": 0.9417 + }, + { + "start": 11506.1, + "end": 11508.86, + "probability": 0.9675 + }, + { + "start": 11509.64, + "end": 11511.84, + "probability": 0.938 + }, + { + "start": 11511.84, + "end": 11514.42, + "probability": 0.8337 + }, + { + "start": 11515.02, + "end": 11520.78, + "probability": 0.9304 + }, + { + "start": 11521.28, + "end": 11524.02, + "probability": 0.9964 + }, + { + "start": 11525.48, + "end": 11529.0, + "probability": 0.9391 + }, + { + "start": 11529.64, + "end": 11533.98, + "probability": 0.9765 + }, + { + "start": 11534.76, + "end": 11536.9, + "probability": 0.998 + }, + { + "start": 11536.9, + "end": 11540.44, + "probability": 0.9734 + }, + { + "start": 11541.18, + "end": 11543.48, + "probability": 0.9932 + }, + { + "start": 11543.48, + "end": 11546.26, + "probability": 0.9985 + }, + { + "start": 11546.38, + "end": 11548.4, + "probability": 0.988 + }, + { + "start": 11548.98, + "end": 11550.66, + "probability": 0.9733 + }, + { + "start": 11551.36, + "end": 11551.8, + "probability": 0.6181 + }, + { + "start": 11552.0, + "end": 11553.9, + "probability": 0.813 + }, + { + "start": 11553.94, + "end": 11558.8, + "probability": 0.9814 + }, + { + "start": 11560.42, + "end": 11563.6, + "probability": 0.9911 + }, + { + "start": 11564.46, + "end": 11567.54, + "probability": 0.9326 + }, + { + "start": 11567.54, + "end": 11571.46, + "probability": 0.9951 + }, + { + "start": 11572.14, + "end": 11574.18, + "probability": 0.9885 + }, + { + "start": 11574.62, + "end": 11576.44, + "probability": 0.9917 + }, + { + "start": 11576.9, + "end": 11580.74, + "probability": 0.9834 + }, + { + "start": 11580.74, + "end": 11584.76, + "probability": 0.9941 + }, + { + "start": 11584.86, + "end": 11587.4, + "probability": 0.9949 + }, + { + "start": 11588.12, + "end": 11588.54, + "probability": 0.7992 + }, + { + "start": 11589.38, + "end": 11592.62, + "probability": 0.8448 + }, + { + "start": 11592.76, + "end": 11593.12, + "probability": 0.4628 + }, + { + "start": 11593.14, + "end": 11593.46, + "probability": 0.7549 + }, + { + "start": 11593.56, + "end": 11595.18, + "probability": 0.8839 + }, + { + "start": 11595.32, + "end": 11597.8, + "probability": 0.98 + }, + { + "start": 11598.78, + "end": 11602.34, + "probability": 0.7905 + }, + { + "start": 11602.38, + "end": 11603.56, + "probability": 0.8657 + }, + { + "start": 11604.54, + "end": 11605.42, + "probability": 0.3064 + }, + { + "start": 11605.66, + "end": 11608.98, + "probability": 0.8942 + }, + { + "start": 11609.96, + "end": 11610.6, + "probability": 0.5651 + }, + { + "start": 11610.68, + "end": 11611.32, + "probability": 0.7794 + }, + { + "start": 11611.34, + "end": 11612.36, + "probability": 0.7635 + }, + { + "start": 11617.43, + "end": 11620.72, + "probability": 0.0787 + }, + { + "start": 11629.72, + "end": 11630.18, + "probability": 0.0034 + }, + { + "start": 11630.18, + "end": 11630.32, + "probability": 0.0422 + }, + { + "start": 11630.32, + "end": 11630.48, + "probability": 0.0153 + }, + { + "start": 11630.48, + "end": 11630.48, + "probability": 0.5406 + }, + { + "start": 11630.48, + "end": 11634.16, + "probability": 0.6049 + }, + { + "start": 11634.86, + "end": 11637.28, + "probability": 0.6912 + }, + { + "start": 11637.28, + "end": 11640.88, + "probability": 0.988 + }, + { + "start": 11642.76, + "end": 11646.16, + "probability": 0.8659 + }, + { + "start": 11646.86, + "end": 11647.52, + "probability": 0.7943 + }, + { + "start": 11648.26, + "end": 11648.94, + "probability": 0.0024 + }, + { + "start": 11650.1, + "end": 11651.4, + "probability": 0.663 + }, + { + "start": 11651.46, + "end": 11651.56, + "probability": 0.9461 + }, + { + "start": 11652.04, + "end": 11654.1, + "probability": 0.9628 + }, + { + "start": 11655.2, + "end": 11655.58, + "probability": 0.82 + }, + { + "start": 11655.66, + "end": 11657.96, + "probability": 0.9565 + }, + { + "start": 11658.18, + "end": 11660.74, + "probability": 0.5616 + }, + { + "start": 11660.78, + "end": 11661.8, + "probability": 0.6284 + }, + { + "start": 11662.2, + "end": 11663.0, + "probability": 0.2815 + }, + { + "start": 11664.04, + "end": 11665.98, + "probability": 0.9635 + }, + { + "start": 11666.16, + "end": 11668.04, + "probability": 0.6932 + }, + { + "start": 11668.58, + "end": 11669.4, + "probability": 0.4346 + }, + { + "start": 11669.56, + "end": 11670.32, + "probability": 0.7025 + }, + { + "start": 11670.36, + "end": 11671.3, + "probability": 0.5754 + }, + { + "start": 11699.02, + "end": 11701.82, + "probability": 0.0386 + }, + { + "start": 11701.98, + "end": 11705.21, + "probability": 0.051 + }, + { + "start": 11705.94, + "end": 11709.2, + "probability": 0.1374 + }, + { + "start": 11710.5, + "end": 11714.28, + "probability": 0.3052 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.0 + }, + { + "start": 11775.82, + "end": 11778.45, + "probability": 0.2363 + }, + { + "start": 11779.52, + "end": 11782.3, + "probability": 0.9866 + }, + { + "start": 11783.0, + "end": 11784.62, + "probability": 0.9934 + }, + { + "start": 11785.26, + "end": 11789.32, + "probability": 0.9974 + }, + { + "start": 11790.16, + "end": 11793.06, + "probability": 0.8296 + }, + { + "start": 11793.72, + "end": 11795.86, + "probability": 0.8342 + }, + { + "start": 11796.64, + "end": 11798.85, + "probability": 0.6253 + }, + { + "start": 11799.58, + "end": 11801.66, + "probability": 0.8913 + }, + { + "start": 11802.76, + "end": 11804.77, + "probability": 0.9621 + }, + { + "start": 11805.54, + "end": 11807.24, + "probability": 0.9016 + }, + { + "start": 11808.1, + "end": 11815.8, + "probability": 0.9976 + }, + { + "start": 11816.52, + "end": 11817.6, + "probability": 0.9611 + }, + { + "start": 11818.94, + "end": 11821.2, + "probability": 0.9859 + }, + { + "start": 11822.02, + "end": 11825.3, + "probability": 0.9826 + }, + { + "start": 11826.2, + "end": 11828.02, + "probability": 0.9928 + }, + { + "start": 11828.66, + "end": 11831.94, + "probability": 0.9965 + }, + { + "start": 11832.7, + "end": 11835.12, + "probability": 0.8165 + }, + { + "start": 11835.94, + "end": 11837.5, + "probability": 0.9924 + }, + { + "start": 11838.16, + "end": 11841.34, + "probability": 0.7855 + }, + { + "start": 11841.86, + "end": 11843.7, + "probability": 0.9945 + }, + { + "start": 11844.34, + "end": 11846.54, + "probability": 0.9868 + }, + { + "start": 11847.1, + "end": 11850.18, + "probability": 0.8594 + }, + { + "start": 11851.08, + "end": 11851.15, + "probability": 0.0518 + }, + { + "start": 11851.98, + "end": 11853.32, + "probability": 0.853 + }, + { + "start": 11853.88, + "end": 11854.8, + "probability": 0.9436 + }, + { + "start": 11855.4, + "end": 11857.84, + "probability": 0.9684 + }, + { + "start": 11858.7, + "end": 11862.38, + "probability": 0.964 + }, + { + "start": 11862.44, + "end": 11867.38, + "probability": 0.9956 + }, + { + "start": 11867.92, + "end": 11870.92, + "probability": 0.9808 + }, + { + "start": 11872.18, + "end": 11874.44, + "probability": 0.9838 + }, + { + "start": 11875.14, + "end": 11877.12, + "probability": 0.9053 + }, + { + "start": 11877.9, + "end": 11880.36, + "probability": 0.9588 + }, + { + "start": 11881.12, + "end": 11881.3, + "probability": 0.9172 + }, + { + "start": 11881.76, + "end": 11883.16, + "probability": 0.9928 + }, + { + "start": 11883.7, + "end": 11887.66, + "probability": 0.9861 + }, + { + "start": 11888.32, + "end": 11891.56, + "probability": 0.9993 + }, + { + "start": 11892.14, + "end": 11893.64, + "probability": 0.7488 + }, + { + "start": 11893.82, + "end": 11897.7, + "probability": 0.993 + }, + { + "start": 11898.3, + "end": 11901.02, + "probability": 0.8546 + }, + { + "start": 11901.58, + "end": 11902.63, + "probability": 0.9467 + }, + { + "start": 11903.58, + "end": 11903.58, + "probability": 0.3405 + }, + { + "start": 11903.74, + "end": 11904.06, + "probability": 0.7023 + }, + { + "start": 11904.26, + "end": 11907.54, + "probability": 0.9495 + }, + { + "start": 11907.7, + "end": 11910.12, + "probability": 0.9911 + }, + { + "start": 11910.72, + "end": 11912.3, + "probability": 0.8745 + }, + { + "start": 11913.52, + "end": 11917.41, + "probability": 0.9959 + }, + { + "start": 11918.78, + "end": 11925.7, + "probability": 0.998 + }, + { + "start": 11926.74, + "end": 11930.54, + "probability": 0.9913 + }, + { + "start": 11931.32, + "end": 11936.54, + "probability": 0.7089 + }, + { + "start": 11937.08, + "end": 11938.38, + "probability": 0.9907 + }, + { + "start": 11939.58, + "end": 11946.78, + "probability": 0.986 + }, + { + "start": 11947.58, + "end": 11948.2, + "probability": 0.8347 + }, + { + "start": 11948.54, + "end": 11952.06, + "probability": 0.9941 + }, + { + "start": 11952.12, + "end": 11955.9, + "probability": 0.9946 + }, + { + "start": 11956.64, + "end": 11960.42, + "probability": 0.9306 + }, + { + "start": 11961.12, + "end": 11965.14, + "probability": 0.9911 + }, + { + "start": 11965.76, + "end": 11968.12, + "probability": 0.8959 + }, + { + "start": 11968.88, + "end": 11969.82, + "probability": 0.9419 + }, + { + "start": 11970.4, + "end": 11971.46, + "probability": 0.2563 + }, + { + "start": 11973.08, + "end": 11976.08, + "probability": 0.9521 + }, + { + "start": 11976.76, + "end": 11980.96, + "probability": 0.9678 + }, + { + "start": 11981.2, + "end": 11984.98, + "probability": 0.9813 + }, + { + "start": 11985.46, + "end": 11987.8, + "probability": 0.7576 + }, + { + "start": 11988.4, + "end": 11990.92, + "probability": 0.9958 + }, + { + "start": 11991.46, + "end": 11996.0, + "probability": 0.9852 + }, + { + "start": 11996.6, + "end": 11997.42, + "probability": 0.6174 + }, + { + "start": 11997.5, + "end": 12000.74, + "probability": 0.9873 + }, + { + "start": 12001.16, + "end": 12004.32, + "probability": 0.9344 + }, + { + "start": 12005.4, + "end": 12007.96, + "probability": 0.8882 + }, + { + "start": 12008.78, + "end": 12009.77, + "probability": 0.47 + }, + { + "start": 12009.88, + "end": 12011.62, + "probability": 0.8007 + }, + { + "start": 12011.64, + "end": 12015.0, + "probability": 0.8624 + }, + { + "start": 12016.32, + "end": 12016.9, + "probability": 0.3224 + }, + { + "start": 12016.9, + "end": 12018.3, + "probability": 0.5775 + }, + { + "start": 12019.34, + "end": 12026.4, + "probability": 0.9582 + }, + { + "start": 12027.26, + "end": 12028.66, + "probability": 0.7615 + }, + { + "start": 12030.12, + "end": 12033.42, + "probability": 0.9985 + }, + { + "start": 12034.18, + "end": 12037.54, + "probability": 0.9891 + }, + { + "start": 12038.22, + "end": 12039.14, + "probability": 0.9893 + }, + { + "start": 12039.76, + "end": 12040.42, + "probability": 0.8271 + }, + { + "start": 12041.12, + "end": 12042.48, + "probability": 0.9837 + }, + { + "start": 12043.68, + "end": 12045.0, + "probability": 0.9624 + }, + { + "start": 12045.7, + "end": 12047.84, + "probability": 0.9259 + }, + { + "start": 12049.1, + "end": 12050.3, + "probability": 0.855 + }, + { + "start": 12051.44, + "end": 12052.22, + "probability": 0.829 + }, + { + "start": 12052.92, + "end": 12054.82, + "probability": 0.9659 + }, + { + "start": 12057.2, + "end": 12059.34, + "probability": 0.999 + }, + { + "start": 12061.52, + "end": 12063.24, + "probability": 0.6754 + }, + { + "start": 12064.04, + "end": 12065.32, + "probability": 0.8306 + }, + { + "start": 12065.6, + "end": 12066.22, + "probability": 0.299 + }, + { + "start": 12066.4, + "end": 12067.24, + "probability": 0.4821 + }, + { + "start": 12067.42, + "end": 12069.32, + "probability": 0.5188 + }, + { + "start": 12069.32, + "end": 12070.0, + "probability": 0.4793 + }, + { + "start": 12070.56, + "end": 12071.9, + "probability": 0.7406 + }, + { + "start": 12072.72, + "end": 12075.41, + "probability": 0.9968 + }, + { + "start": 12075.7, + "end": 12080.02, + "probability": 0.8931 + }, + { + "start": 12080.14, + "end": 12080.76, + "probability": 0.4101 + }, + { + "start": 12082.5, + "end": 12084.08, + "probability": 0.9973 + }, + { + "start": 12084.48, + "end": 12085.6, + "probability": 0.9238 + }, + { + "start": 12086.36, + "end": 12087.44, + "probability": 0.8345 + }, + { + "start": 12087.8, + "end": 12088.42, + "probability": 0.4982 + }, + { + "start": 12088.84, + "end": 12089.5, + "probability": 0.5905 + }, + { + "start": 12089.68, + "end": 12090.46, + "probability": 0.4088 + }, + { + "start": 12090.74, + "end": 12091.98, + "probability": 0.8125 + }, + { + "start": 12092.58, + "end": 12092.88, + "probability": 0.0015 + }, + { + "start": 12095.22, + "end": 12096.04, + "probability": 0.1962 + }, + { + "start": 12097.14, + "end": 12097.32, + "probability": 0.8867 + }, + { + "start": 12100.66, + "end": 12103.4, + "probability": 0.9319 + }, + { + "start": 12104.14, + "end": 12104.14, + "probability": 0.9905 + }, + { + "start": 12104.14, + "end": 12105.62, + "probability": 0.2094 + }, + { + "start": 12105.62, + "end": 12109.66, + "probability": 0.9724 + }, + { + "start": 12109.68, + "end": 12113.28, + "probability": 0.5083 + }, + { + "start": 12113.5, + "end": 12116.06, + "probability": 0.3112 + }, + { + "start": 12116.24, + "end": 12117.58, + "probability": 0.6871 + }, + { + "start": 12117.78, + "end": 12121.16, + "probability": 0.8639 + }, + { + "start": 12121.58, + "end": 12123.0, + "probability": 0.8347 + }, + { + "start": 12123.42, + "end": 12124.16, + "probability": 0.2439 + }, + { + "start": 12124.66, + "end": 12127.38, + "probability": 0.2803 + }, + { + "start": 12128.24, + "end": 12129.06, + "probability": 0.0661 + }, + { + "start": 12129.86, + "end": 12129.86, + "probability": 0.1329 + }, + { + "start": 12129.86, + "end": 12130.06, + "probability": 0.037 + }, + { + "start": 12130.5, + "end": 12132.51, + "probability": 0.988 + }, + { + "start": 12132.92, + "end": 12134.6, + "probability": 0.6705 + }, + { + "start": 12134.6, + "end": 12136.94, + "probability": 0.518 + }, + { + "start": 12139.68, + "end": 12142.57, + "probability": 0.0766 + }, + { + "start": 12143.48, + "end": 12144.68, + "probability": 0.1624 + }, + { + "start": 12148.66, + "end": 12149.78, + "probability": 0.7885 + }, + { + "start": 12150.54, + "end": 12153.62, + "probability": 0.4084 + }, + { + "start": 12154.22, + "end": 12154.22, + "probability": 0.1586 + }, + { + "start": 12155.72, + "end": 12157.26, + "probability": 0.3702 + }, + { + "start": 12157.48, + "end": 12157.62, + "probability": 0.0449 + }, + { + "start": 12162.26, + "end": 12163.24, + "probability": 0.0268 + }, + { + "start": 12163.28, + "end": 12167.98, + "probability": 0.5193 + }, + { + "start": 12167.98, + "end": 12169.48, + "probability": 0.055 + }, + { + "start": 12169.8, + "end": 12171.2, + "probability": 0.5943 + }, + { + "start": 12172.62, + "end": 12174.8, + "probability": 0.1068 + }, + { + "start": 12174.8, + "end": 12176.36, + "probability": 0.0296 + }, + { + "start": 12176.36, + "end": 12178.06, + "probability": 0.0226 + }, + { + "start": 12178.44, + "end": 12179.26, + "probability": 0.0126 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12223.0, + "end": 12223.0, + "probability": 0.0 + }, + { + "start": 12234.84, + "end": 12237.52, + "probability": 0.0826 + }, + { + "start": 12238.06, + "end": 12240.34, + "probability": 0.026 + }, + { + "start": 12240.34, + "end": 12240.98, + "probability": 0.036 + }, + { + "start": 12242.28, + "end": 12242.48, + "probability": 0.4735 + }, + { + "start": 12242.48, + "end": 12243.66, + "probability": 0.1649 + }, + { + "start": 12257.68, + "end": 12258.04, + "probability": 0.062 + }, + { + "start": 12258.04, + "end": 12258.12, + "probability": 0.146 + }, + { + "start": 12258.12, + "end": 12258.42, + "probability": 0.1026 + }, + { + "start": 12258.64, + "end": 12259.5, + "probability": 0.0712 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.0, + "end": 12364.0, + "probability": 0.0 + }, + { + "start": 12364.88, + "end": 12365.1, + "probability": 0.0484 + }, + { + "start": 12365.1, + "end": 12365.1, + "probability": 0.2114 + }, + { + "start": 12365.1, + "end": 12365.1, + "probability": 0.1488 + }, + { + "start": 12365.1, + "end": 12365.1, + "probability": 0.0374 + }, + { + "start": 12365.1, + "end": 12365.81, + "probability": 0.3947 + }, + { + "start": 12368.16, + "end": 12368.32, + "probability": 0.4541 + }, + { + "start": 12369.3, + "end": 12372.6, + "probability": 0.7065 + }, + { + "start": 12373.2, + "end": 12378.18, + "probability": 0.9837 + }, + { + "start": 12379.42, + "end": 12381.82, + "probability": 0.9736 + }, + { + "start": 12383.14, + "end": 12385.02, + "probability": 0.9958 + }, + { + "start": 12385.14, + "end": 12386.18, + "probability": 0.9842 + }, + { + "start": 12386.4, + "end": 12389.31, + "probability": 0.9974 + }, + { + "start": 12389.96, + "end": 12394.2, + "probability": 0.9537 + }, + { + "start": 12394.96, + "end": 12399.54, + "probability": 0.9294 + }, + { + "start": 12400.24, + "end": 12401.14, + "probability": 0.8292 + }, + { + "start": 12402.14, + "end": 12405.52, + "probability": 0.9844 + }, + { + "start": 12407.3, + "end": 12412.68, + "probability": 0.866 + }, + { + "start": 12414.3, + "end": 12417.38, + "probability": 0.9155 + }, + { + "start": 12417.46, + "end": 12418.46, + "probability": 0.7731 + }, + { + "start": 12418.78, + "end": 12421.62, + "probability": 0.9774 + }, + { + "start": 12423.08, + "end": 12425.86, + "probability": 0.9519 + }, + { + "start": 12426.82, + "end": 12429.7, + "probability": 0.9861 + }, + { + "start": 12429.88, + "end": 12431.26, + "probability": 0.9013 + }, + { + "start": 12431.3, + "end": 12432.46, + "probability": 0.98 + }, + { + "start": 12432.66, + "end": 12434.6, + "probability": 0.6543 + }, + { + "start": 12436.18, + "end": 12437.88, + "probability": 0.6533 + }, + { + "start": 12438.02, + "end": 12439.56, + "probability": 0.9355 + }, + { + "start": 12439.66, + "end": 12441.92, + "probability": 0.9619 + }, + { + "start": 12442.08, + "end": 12443.34, + "probability": 0.7313 + }, + { + "start": 12443.46, + "end": 12449.38, + "probability": 0.9545 + }, + { + "start": 12449.5, + "end": 12451.58, + "probability": 0.9963 + }, + { + "start": 12452.78, + "end": 12453.86, + "probability": 0.9334 + }, + { + "start": 12455.16, + "end": 12456.74, + "probability": 0.901 + }, + { + "start": 12458.36, + "end": 12464.74, + "probability": 0.9396 + }, + { + "start": 12465.02, + "end": 12468.1, + "probability": 0.9897 + }, + { + "start": 12469.46, + "end": 12472.54, + "probability": 0.7299 + }, + { + "start": 12472.6, + "end": 12473.88, + "probability": 0.8594 + }, + { + "start": 12474.8, + "end": 12480.06, + "probability": 0.9932 + }, + { + "start": 12480.12, + "end": 12484.9, + "probability": 0.9873 + }, + { + "start": 12485.36, + "end": 12488.02, + "probability": 0.9966 + }, + { + "start": 12489.38, + "end": 12491.04, + "probability": 0.8489 + }, + { + "start": 12493.1, + "end": 12497.22, + "probability": 0.9961 + }, + { + "start": 12498.6, + "end": 12501.6, + "probability": 0.8139 + }, + { + "start": 12502.52, + "end": 12507.44, + "probability": 0.9957 + }, + { + "start": 12509.94, + "end": 12512.0, + "probability": 0.6375 + }, + { + "start": 12513.56, + "end": 12518.9, + "probability": 0.9927 + }, + { + "start": 12520.22, + "end": 12521.06, + "probability": 0.9616 + }, + { + "start": 12521.08, + "end": 12521.88, + "probability": 0.7793 + }, + { + "start": 12522.02, + "end": 12526.62, + "probability": 0.9935 + }, + { + "start": 12526.62, + "end": 12532.0, + "probability": 0.9985 + }, + { + "start": 12533.16, + "end": 12534.71, + "probability": 0.9966 + }, + { + "start": 12535.26, + "end": 12536.2, + "probability": 0.9523 + }, + { + "start": 12537.26, + "end": 12543.88, + "probability": 0.9796 + }, + { + "start": 12545.08, + "end": 12549.78, + "probability": 0.9957 + }, + { + "start": 12550.92, + "end": 12552.16, + "probability": 0.9661 + }, + { + "start": 12552.3, + "end": 12554.5, + "probability": 0.9592 + }, + { + "start": 12555.02, + "end": 12557.64, + "probability": 0.9961 + }, + { + "start": 12557.76, + "end": 12561.9, + "probability": 0.9701 + }, + { + "start": 12562.92, + "end": 12565.64, + "probability": 0.9333 + }, + { + "start": 12566.82, + "end": 12570.72, + "probability": 0.5267 + }, + { + "start": 12570.72, + "end": 12574.0, + "probability": 0.9917 + }, + { + "start": 12575.18, + "end": 12577.08, + "probability": 0.9883 + }, + { + "start": 12577.8, + "end": 12583.7, + "probability": 0.9906 + }, + { + "start": 12584.96, + "end": 12592.12, + "probability": 0.9994 + }, + { + "start": 12592.12, + "end": 12599.16, + "probability": 0.9995 + }, + { + "start": 12600.6, + "end": 12602.18, + "probability": 0.5544 + }, + { + "start": 12602.89, + "end": 12604.58, + "probability": 0.8789 + }, + { + "start": 12605.48, + "end": 12606.56, + "probability": 0.9692 + }, + { + "start": 12607.06, + "end": 12608.56, + "probability": 0.9412 + }, + { + "start": 12608.86, + "end": 12609.56, + "probability": 0.8593 + }, + { + "start": 12609.56, + "end": 12610.58, + "probability": 0.4905 + }, + { + "start": 12611.58, + "end": 12612.78, + "probability": 0.9264 + }, + { + "start": 12613.54, + "end": 12616.86, + "probability": 0.9953 + }, + { + "start": 12617.64, + "end": 12621.12, + "probability": 0.9834 + }, + { + "start": 12621.84, + "end": 12623.88, + "probability": 0.9287 + }, + { + "start": 12624.0, + "end": 12628.48, + "probability": 0.9785 + }, + { + "start": 12629.64, + "end": 12635.28, + "probability": 0.9897 + }, + { + "start": 12635.9, + "end": 12642.16, + "probability": 0.9872 + }, + { + "start": 12642.16, + "end": 12647.82, + "probability": 0.9971 + }, + { + "start": 12648.76, + "end": 12651.52, + "probability": 0.6206 + }, + { + "start": 12652.7, + "end": 12653.82, + "probability": 0.5729 + }, + { + "start": 12654.06, + "end": 12655.83, + "probability": 0.9856 + }, + { + "start": 12656.24, + "end": 12661.72, + "probability": 0.9644 + }, + { + "start": 12663.02, + "end": 12666.0, + "probability": 0.9968 + }, + { + "start": 12666.52, + "end": 12673.44, + "probability": 0.993 + }, + { + "start": 12674.28, + "end": 12675.66, + "probability": 0.8851 + }, + { + "start": 12676.46, + "end": 12678.2, + "probability": 0.8734 + }, + { + "start": 12678.26, + "end": 12681.66, + "probability": 0.8687 + }, + { + "start": 12682.4, + "end": 12687.0, + "probability": 0.97 + }, + { + "start": 12687.44, + "end": 12691.44, + "probability": 0.9978 + }, + { + "start": 12692.3, + "end": 12694.9, + "probability": 0.9055 + }, + { + "start": 12694.9, + "end": 12697.42, + "probability": 0.9993 + }, + { + "start": 12697.96, + "end": 12700.44, + "probability": 0.8655 + }, + { + "start": 12700.58, + "end": 12702.72, + "probability": 0.9249 + }, + { + "start": 12704.21, + "end": 12708.1, + "probability": 0.8767 + }, + { + "start": 12708.88, + "end": 12709.64, + "probability": 0.7519 + }, + { + "start": 12710.68, + "end": 12711.54, + "probability": 0.9309 + }, + { + "start": 12712.98, + "end": 12715.74, + "probability": 0.9983 + }, + { + "start": 12716.46, + "end": 12720.62, + "probability": 0.9944 + }, + { + "start": 12720.86, + "end": 12723.98, + "probability": 0.9928 + }, + { + "start": 12724.06, + "end": 12725.0, + "probability": 0.9352 + }, + { + "start": 12725.34, + "end": 12726.78, + "probability": 0.8805 + }, + { + "start": 12727.36, + "end": 12728.96, + "probability": 0.9531 + }, + { + "start": 12729.9, + "end": 12730.86, + "probability": 0.9858 + }, + { + "start": 12731.12, + "end": 12731.94, + "probability": 0.9072 + }, + { + "start": 12732.06, + "end": 12738.3, + "probability": 0.9915 + }, + { + "start": 12739.46, + "end": 12740.0, + "probability": 0.8181 + }, + { + "start": 12740.44, + "end": 12741.32, + "probability": 0.6848 + }, + { + "start": 12741.44, + "end": 12745.08, + "probability": 0.9321 + }, + { + "start": 12745.56, + "end": 12748.88, + "probability": 0.9513 + }, + { + "start": 12749.02, + "end": 12751.56, + "probability": 0.7153 + }, + { + "start": 12752.52, + "end": 12754.86, + "probability": 0.9838 + }, + { + "start": 12755.7, + "end": 12758.02, + "probability": 0.999 + }, + { + "start": 12758.02, + "end": 12760.88, + "probability": 0.9987 + }, + { + "start": 12762.56, + "end": 12766.72, + "probability": 0.9988 + }, + { + "start": 12767.52, + "end": 12767.94, + "probability": 0.5207 + }, + { + "start": 12768.0, + "end": 12770.14, + "probability": 0.6253 + }, + { + "start": 12770.24, + "end": 12771.26, + "probability": 0.874 + }, + { + "start": 12773.16, + "end": 12774.11, + "probability": 0.9473 + }, + { + "start": 12774.38, + "end": 12774.84, + "probability": 0.5706 + }, + { + "start": 12774.92, + "end": 12779.76, + "probability": 0.8206 + }, + { + "start": 12779.76, + "end": 12784.78, + "probability": 0.9923 + }, + { + "start": 12785.78, + "end": 12789.32, + "probability": 0.9142 + }, + { + "start": 12790.34, + "end": 12792.52, + "probability": 0.8756 + }, + { + "start": 12792.56, + "end": 12794.4, + "probability": 0.9778 + }, + { + "start": 12794.48, + "end": 12797.1, + "probability": 0.949 + }, + { + "start": 12797.86, + "end": 12800.0, + "probability": 0.9128 + }, + { + "start": 12800.64, + "end": 12802.1, + "probability": 0.9513 + }, + { + "start": 12802.9, + "end": 12803.82, + "probability": 0.8892 + }, + { + "start": 12803.96, + "end": 12805.44, + "probability": 0.9272 + }, + { + "start": 12807.75, + "end": 12810.12, + "probability": 0.8 + }, + { + "start": 12810.56, + "end": 12810.74, + "probability": 0.1747 + }, + { + "start": 12810.86, + "end": 12815.22, + "probability": 0.7475 + }, + { + "start": 12815.3, + "end": 12815.64, + "probability": 0.8088 + }, + { + "start": 12816.7, + "end": 12816.82, + "probability": 0.0106 + }, + { + "start": 12819.64, + "end": 12821.82, + "probability": 0.9942 + }, + { + "start": 12822.32, + "end": 12826.22, + "probability": 0.8127 + }, + { + "start": 12827.2, + "end": 12832.46, + "probability": 0.9893 + }, + { + "start": 12833.14, + "end": 12836.3, + "probability": 0.9973 + }, + { + "start": 12837.0, + "end": 12841.96, + "probability": 0.9977 + }, + { + "start": 12842.6, + "end": 12845.5, + "probability": 0.9897 + }, + { + "start": 12846.1, + "end": 12847.34, + "probability": 0.9825 + }, + { + "start": 12847.9, + "end": 12852.98, + "probability": 0.9794 + }, + { + "start": 12853.76, + "end": 12857.98, + "probability": 0.9854 + }, + { + "start": 12857.98, + "end": 12861.6, + "probability": 0.9984 + }, + { + "start": 12862.98, + "end": 12865.46, + "probability": 0.9777 + }, + { + "start": 12866.68, + "end": 12867.54, + "probability": 0.9976 + }, + { + "start": 12868.1, + "end": 12871.88, + "probability": 0.6447 + }, + { + "start": 12872.6, + "end": 12873.66, + "probability": 0.9562 + }, + { + "start": 12874.28, + "end": 12877.48, + "probability": 0.9619 + }, + { + "start": 12878.44, + "end": 12882.08, + "probability": 0.9869 + }, + { + "start": 12882.54, + "end": 12885.18, + "probability": 0.8922 + }, + { + "start": 12885.62, + "end": 12886.52, + "probability": 0.6956 + }, + { + "start": 12887.0, + "end": 12887.58, + "probability": 0.9586 + }, + { + "start": 12888.22, + "end": 12892.42, + "probability": 0.9776 + }, + { + "start": 12893.26, + "end": 12894.88, + "probability": 0.7267 + }, + { + "start": 12895.42, + "end": 12897.3, + "probability": 0.9684 + }, + { + "start": 12897.84, + "end": 12901.0, + "probability": 0.9965 + }, + { + "start": 12901.98, + "end": 12904.36, + "probability": 0.9473 + }, + { + "start": 12904.8, + "end": 12906.1, + "probability": 0.7309 + }, + { + "start": 12906.64, + "end": 12908.44, + "probability": 0.666 + }, + { + "start": 12909.64, + "end": 12915.48, + "probability": 0.8971 + }, + { + "start": 12926.78, + "end": 12929.36, + "probability": 0.5259 + }, + { + "start": 12930.48, + "end": 12935.7, + "probability": 0.9575 + }, + { + "start": 12936.28, + "end": 12939.34, + "probability": 0.6659 + }, + { + "start": 12940.83, + "end": 12945.58, + "probability": 0.8151 + }, + { + "start": 12946.2, + "end": 12952.18, + "probability": 0.9994 + }, + { + "start": 12953.76, + "end": 12958.08, + "probability": 0.8107 + }, + { + "start": 12958.78, + "end": 12960.46, + "probability": 0.9514 + }, + { + "start": 12960.6, + "end": 12962.26, + "probability": 0.9982 + }, + { + "start": 12962.7, + "end": 12965.22, + "probability": 0.7891 + }, + { + "start": 12965.38, + "end": 12965.86, + "probability": 0.9666 + }, + { + "start": 12966.04, + "end": 12966.44, + "probability": 0.3465 + }, + { + "start": 12966.48, + "end": 12967.36, + "probability": 0.6658 + }, + { + "start": 12967.48, + "end": 12968.6, + "probability": 0.9069 + }, + { + "start": 12969.5, + "end": 12974.22, + "probability": 0.9558 + }, + { + "start": 12975.04, + "end": 12979.6, + "probability": 0.9757 + }, + { + "start": 12980.44, + "end": 12984.4, + "probability": 0.964 + }, + { + "start": 12984.64, + "end": 12986.28, + "probability": 0.7264 + }, + { + "start": 12986.42, + "end": 12989.41, + "probability": 0.9845 + }, + { + "start": 12990.12, + "end": 12994.6, + "probability": 0.9929 + }, + { + "start": 12994.6, + "end": 12998.96, + "probability": 0.9954 + }, + { + "start": 13000.24, + "end": 13004.0, + "probability": 0.9926 + }, + { + "start": 13004.42, + "end": 13004.74, + "probability": 0.4316 + }, + { + "start": 13004.86, + "end": 13007.78, + "probability": 0.9773 + }, + { + "start": 13007.78, + "end": 13012.78, + "probability": 0.9601 + }, + { + "start": 13013.64, + "end": 13015.62, + "probability": 0.4158 + }, + { + "start": 13016.2, + "end": 13018.0, + "probability": 0.9622 + }, + { + "start": 13018.68, + "end": 13019.98, + "probability": 0.9619 + }, + { + "start": 13020.96, + "end": 13022.32, + "probability": 0.9968 + }, + { + "start": 13022.52, + "end": 13024.0, + "probability": 0.809 + }, + { + "start": 13024.34, + "end": 13028.64, + "probability": 0.9851 + }, + { + "start": 13028.8, + "end": 13031.22, + "probability": 0.9796 + }, + { + "start": 13031.54, + "end": 13033.92, + "probability": 0.944 + }, + { + "start": 13034.3, + "end": 13037.76, + "probability": 0.8298 + }, + { + "start": 13038.47, + "end": 13046.62, + "probability": 0.9532 + }, + { + "start": 13047.16, + "end": 13049.74, + "probability": 0.9673 + }, + { + "start": 13050.28, + "end": 13052.44, + "probability": 0.9596 + }, + { + "start": 13053.08, + "end": 13061.22, + "probability": 0.9956 + }, + { + "start": 13061.24, + "end": 13067.78, + "probability": 0.9997 + }, + { + "start": 13070.04, + "end": 13072.28, + "probability": 0.477 + }, + { + "start": 13075.42, + "end": 13075.58, + "probability": 0.7704 + }, + { + "start": 13075.58, + "end": 13075.58, + "probability": 0.3579 + }, + { + "start": 13075.58, + "end": 13075.58, + "probability": 0.1767 + }, + { + "start": 13075.58, + "end": 13075.58, + "probability": 0.0323 + }, + { + "start": 13075.58, + "end": 13077.48, + "probability": 0.6387 + }, + { + "start": 13078.28, + "end": 13082.04, + "probability": 0.8917 + }, + { + "start": 13084.03, + "end": 13086.78, + "probability": 0.7543 + }, + { + "start": 13087.72, + "end": 13089.71, + "probability": 0.9071 + }, + { + "start": 13090.22, + "end": 13093.08, + "probability": 0.9932 + }, + { + "start": 13093.18, + "end": 13093.86, + "probability": 0.3138 + }, + { + "start": 13094.9, + "end": 13098.42, + "probability": 0.9952 + }, + { + "start": 13098.94, + "end": 13100.22, + "probability": 0.9788 + }, + { + "start": 13101.22, + "end": 13104.4, + "probability": 0.9977 + }, + { + "start": 13104.58, + "end": 13108.58, + "probability": 0.9993 + }, + { + "start": 13109.4, + "end": 13116.9, + "probability": 0.9481 + }, + { + "start": 13117.6, + "end": 13122.16, + "probability": 0.9906 + }, + { + "start": 13122.8, + "end": 13127.2, + "probability": 0.9978 + }, + { + "start": 13127.72, + "end": 13129.86, + "probability": 0.8888 + }, + { + "start": 13130.02, + "end": 13133.9, + "probability": 0.9689 + }, + { + "start": 13134.64, + "end": 13135.18, + "probability": 0.4659 + }, + { + "start": 13135.24, + "end": 13138.94, + "probability": 0.9908 + }, + { + "start": 13138.94, + "end": 13143.16, + "probability": 0.9588 + }, + { + "start": 13143.22, + "end": 13143.44, + "probability": 0.7249 + }, + { + "start": 13145.7, + "end": 13147.86, + "probability": 0.7136 + }, + { + "start": 13148.06, + "end": 13151.12, + "probability": 0.7746 + }, + { + "start": 13151.8, + "end": 13153.62, + "probability": 0.9666 + }, + { + "start": 13154.66, + "end": 13157.1, + "probability": 0.8092 + }, + { + "start": 13157.62, + "end": 13159.3, + "probability": 0.7283 + }, + { + "start": 13159.62, + "end": 13162.9, + "probability": 0.7546 + }, + { + "start": 13163.02, + "end": 13164.6, + "probability": 0.0311 + }, + { + "start": 13165.32, + "end": 13166.66, + "probability": 0.7775 + }, + { + "start": 13172.87, + "end": 13175.28, + "probability": 0.5756 + }, + { + "start": 13177.26, + "end": 13177.94, + "probability": 0.5615 + }, + { + "start": 13179.88, + "end": 13180.82, + "probability": 0.8804 + }, + { + "start": 13182.48, + "end": 13183.2, + "probability": 0.8202 + }, + { + "start": 13184.2, + "end": 13185.02, + "probability": 0.8214 + }, + { + "start": 13186.2, + "end": 13187.16, + "probability": 0.9792 + }, + { + "start": 13188.18, + "end": 13189.14, + "probability": 0.8129 + }, + { + "start": 13190.88, + "end": 13191.68, + "probability": 0.9647 + }, + { + "start": 13192.52, + "end": 13193.48, + "probability": 0.8675 + }, + { + "start": 13195.24, + "end": 13196.94, + "probability": 0.9194 + }, + { + "start": 13199.02, + "end": 13200.88, + "probability": 0.7124 + }, + { + "start": 13202.2, + "end": 13203.06, + "probability": 0.5997 + }, + { + "start": 13204.16, + "end": 13205.06, + "probability": 0.5223 + }, + { + "start": 13206.4, + "end": 13207.26, + "probability": 0.8957 + }, + { + "start": 13208.14, + "end": 13209.04, + "probability": 0.7679 + }, + { + "start": 13210.98, + "end": 13212.52, + "probability": 0.8346 + }, + { + "start": 13213.52, + "end": 13214.48, + "probability": 0.8514 + }, + { + "start": 13215.62, + "end": 13216.56, + "probability": 0.9205 + }, + { + "start": 13218.76, + "end": 13220.84, + "probability": 0.8651 + }, + { + "start": 13223.88, + "end": 13224.6, + "probability": 0.8557 + }, + { + "start": 13228.46, + "end": 13230.28, + "probability": 0.8366 + }, + { + "start": 13231.86, + "end": 13234.51, + "probability": 0.7959 + }, + { + "start": 13237.16, + "end": 13238.54, + "probability": 0.8402 + }, + { + "start": 13246.46, + "end": 13247.14, + "probability": 0.7307 + }, + { + "start": 13248.56, + "end": 13249.42, + "probability": 0.567 + }, + { + "start": 13250.7, + "end": 13253.62, + "probability": 0.5551 + }, + { + "start": 13256.9, + "end": 13258.24, + "probability": 0.953 + }, + { + "start": 13259.26, + "end": 13260.04, + "probability": 0.7827 + }, + { + "start": 13261.74, + "end": 13263.62, + "probability": 0.8448 + }, + { + "start": 13264.88, + "end": 13265.92, + "probability": 0.7284 + }, + { + "start": 13267.64, + "end": 13268.64, + "probability": 0.9771 + }, + { + "start": 13270.26, + "end": 13271.68, + "probability": 0.2879 + }, + { + "start": 13279.78, + "end": 13280.66, + "probability": 0.7185 + }, + { + "start": 13282.04, + "end": 13283.12, + "probability": 0.4049 + }, + { + "start": 13285.74, + "end": 13286.38, + "probability": 0.6435 + }, + { + "start": 13288.28, + "end": 13288.9, + "probability": 0.8385 + }, + { + "start": 13290.9, + "end": 13293.96, + "probability": 0.7237 + }, + { + "start": 13295.52, + "end": 13296.36, + "probability": 0.9545 + }, + { + "start": 13297.7, + "end": 13298.02, + "probability": 0.9565 + }, + { + "start": 13300.06, + "end": 13301.06, + "probability": 0.5147 + }, + { + "start": 13302.46, + "end": 13304.88, + "probability": 0.5974 + }, + { + "start": 13306.2, + "end": 13308.26, + "probability": 0.9238 + }, + { + "start": 13309.08, + "end": 13311.48, + "probability": 0.7856 + }, + { + "start": 13312.34, + "end": 13313.06, + "probability": 0.8355 + }, + { + "start": 13316.28, + "end": 13317.12, + "probability": 0.5826 + }, + { + "start": 13318.56, + "end": 13320.4, + "probability": 0.7059 + }, + { + "start": 13323.26, + "end": 13324.4, + "probability": 0.2961 + }, + { + "start": 13325.3, + "end": 13325.96, + "probability": 0.7819 + }, + { + "start": 13327.36, + "end": 13328.24, + "probability": 0.8626 + }, + { + "start": 13329.24, + "end": 13331.12, + "probability": 0.4405 + }, + { + "start": 13332.7, + "end": 13333.8, + "probability": 0.5369 + }, + { + "start": 13334.72, + "end": 13335.64, + "probability": 0.9556 + }, + { + "start": 13336.86, + "end": 13337.72, + "probability": 0.8637 + }, + { + "start": 13339.96, + "end": 13340.66, + "probability": 0.9732 + }, + { + "start": 13341.68, + "end": 13342.68, + "probability": 0.8347 + }, + { + "start": 13343.94, + "end": 13345.0, + "probability": 0.9839 + }, + { + "start": 13346.44, + "end": 13347.48, + "probability": 0.7997 + }, + { + "start": 13349.44, + "end": 13349.66, + "probability": 0.1907 + }, + { + "start": 13351.26, + "end": 13352.54, + "probability": 0.3273 + }, + { + "start": 13353.98, + "end": 13355.08, + "probability": 0.4872 + }, + { + "start": 13356.44, + "end": 13357.3, + "probability": 0.6885 + }, + { + "start": 13359.16, + "end": 13361.04, + "probability": 0.7301 + }, + { + "start": 13362.1, + "end": 13363.06, + "probability": 0.9159 + }, + { + "start": 13366.88, + "end": 13367.94, + "probability": 0.5269 + }, + { + "start": 13370.68, + "end": 13371.68, + "probability": 0.5333 + }, + { + "start": 13372.84, + "end": 13373.12, + "probability": 0.6652 + }, + { + "start": 13375.88, + "end": 13376.74, + "probability": 0.571 + }, + { + "start": 13378.2, + "end": 13379.28, + "probability": 0.7551 + }, + { + "start": 13380.36, + "end": 13381.1, + "probability": 0.8439 + }, + { + "start": 13382.62, + "end": 13383.6, + "probability": 0.564 + }, + { + "start": 13384.94, + "end": 13385.88, + "probability": 0.7196 + }, + { + "start": 13389.22, + "end": 13389.58, + "probability": 0.9847 + }, + { + "start": 13391.12, + "end": 13392.04, + "probability": 0.8275 + }, + { + "start": 13395.66, + "end": 13398.94, + "probability": 0.8175 + }, + { + "start": 13399.58, + "end": 13400.02, + "probability": 0.9521 + }, + { + "start": 13401.6, + "end": 13402.44, + "probability": 0.8585 + }, + { + "start": 13403.0, + "end": 13403.86, + "probability": 0.7189 + }, + { + "start": 13404.94, + "end": 13406.0, + "probability": 0.5541 + }, + { + "start": 13406.74, + "end": 13407.4, + "probability": 0.7247 + }, + { + "start": 13408.42, + "end": 13409.28, + "probability": 0.7944 + }, + { + "start": 13410.2, + "end": 13411.5, + "probability": 0.7418 + }, + { + "start": 13412.34, + "end": 13413.72, + "probability": 0.583 + }, + { + "start": 13414.6, + "end": 13415.32, + "probability": 0.8935 + }, + { + "start": 13416.54, + "end": 13417.58, + "probability": 0.8662 + }, + { + "start": 13418.8, + "end": 13419.64, + "probability": 0.795 + }, + { + "start": 13420.18, + "end": 13421.38, + "probability": 0.861 + }, + { + "start": 13422.66, + "end": 13423.34, + "probability": 0.9806 + }, + { + "start": 13424.76, + "end": 13425.56, + "probability": 0.7558 + }, + { + "start": 13432.84, + "end": 13436.46, + "probability": 0.5015 + }, + { + "start": 13437.62, + "end": 13438.56, + "probability": 0.966 + }, + { + "start": 13439.68, + "end": 13440.12, + "probability": 0.6161 + }, + { + "start": 13442.24, + "end": 13443.18, + "probability": 0.5706 + }, + { + "start": 13444.2, + "end": 13445.26, + "probability": 0.8429 + }, + { + "start": 13455.44, + "end": 13455.72, + "probability": 0.4937 + }, + { + "start": 13457.6, + "end": 13458.62, + "probability": 0.6838 + }, + { + "start": 13460.02, + "end": 13460.88, + "probability": 0.9458 + }, + { + "start": 13461.98, + "end": 13462.76, + "probability": 0.7539 + }, + { + "start": 13466.17, + "end": 13469.38, + "probability": 0.5863 + }, + { + "start": 13472.28, + "end": 13475.54, + "probability": 0.1671 + }, + { + "start": 13482.44, + "end": 13483.24, + "probability": 0.6763 + }, + { + "start": 13484.42, + "end": 13485.28, + "probability": 0.5729 + }, + { + "start": 13486.36, + "end": 13487.36, + "probability": 0.705 + }, + { + "start": 13487.9, + "end": 13488.76, + "probability": 0.845 + }, + { + "start": 13489.68, + "end": 13491.04, + "probability": 0.9258 + }, + { + "start": 13491.86, + "end": 13492.58, + "probability": 0.8702 + }, + { + "start": 13494.12, + "end": 13494.82, + "probability": 0.8098 + }, + { + "start": 13495.58, + "end": 13496.3, + "probability": 0.7098 + }, + { + "start": 13497.94, + "end": 13498.78, + "probability": 0.9817 + }, + { + "start": 13499.54, + "end": 13500.72, + "probability": 0.7864 + }, + { + "start": 13502.48, + "end": 13502.84, + "probability": 0.9434 + }, + { + "start": 13503.52, + "end": 13504.4, + "probability": 0.9157 + }, + { + "start": 13505.4, + "end": 13506.14, + "probability": 0.9931 + }, + { + "start": 13507.26, + "end": 13508.04, + "probability": 0.9757 + }, + { + "start": 13508.84, + "end": 13509.78, + "probability": 0.9648 + }, + { + "start": 13512.78, + "end": 13514.28, + "probability": 0.104 + }, + { + "start": 13516.26, + "end": 13517.2, + "probability": 0.7311 + }, + { + "start": 13518.78, + "end": 13519.46, + "probability": 0.7317 + }, + { + "start": 13520.85, + "end": 13523.76, + "probability": 0.4858 + }, + { + "start": 13525.38, + "end": 13527.1, + "probability": 0.8882 + }, + { + "start": 13528.86, + "end": 13529.64, + "probability": 0.9269 + }, + { + "start": 13530.7, + "end": 13531.64, + "probability": 0.8399 + }, + { + "start": 13533.28, + "end": 13534.66, + "probability": 0.9807 + }, + { + "start": 13535.54, + "end": 13536.4, + "probability": 0.8554 + }, + { + "start": 13537.22, + "end": 13537.7, + "probability": 0.9751 + }, + { + "start": 13539.1, + "end": 13540.18, + "probability": 0.735 + }, + { + "start": 13541.14, + "end": 13541.84, + "probability": 0.4795 + }, + { + "start": 13543.2, + "end": 13544.12, + "probability": 0.8623 + }, + { + "start": 13545.44, + "end": 13546.08, + "probability": 0.9368 + }, + { + "start": 13549.46, + "end": 13550.14, + "probability": 0.2946 + }, + { + "start": 13551.76, + "end": 13553.18, + "probability": 0.5163 + }, + { + "start": 13554.72, + "end": 13555.46, + "probability": 0.8009 + }, + { + "start": 13557.42, + "end": 13558.04, + "probability": 0.5101 + }, + { + "start": 13560.42, + "end": 13561.94, + "probability": 0.6597 + }, + { + "start": 13565.96, + "end": 13568.22, + "probability": 0.6943 + }, + { + "start": 13569.04, + "end": 13569.88, + "probability": 0.4959 + }, + { + "start": 13571.54, + "end": 13572.32, + "probability": 0.7619 + }, + { + "start": 13576.92, + "end": 13577.2, + "probability": 0.7775 + }, + { + "start": 13578.62, + "end": 13579.58, + "probability": 0.3201 + }, + { + "start": 13580.89, + "end": 13583.14, + "probability": 0.7893 + }, + { + "start": 13584.6, + "end": 13585.9, + "probability": 0.903 + }, + { + "start": 13586.62, + "end": 13587.42, + "probability": 0.9373 + }, + { + "start": 13588.52, + "end": 13589.84, + "probability": 0.9658 + }, + { + "start": 13590.52, + "end": 13591.58, + "probability": 0.8315 + }, + { + "start": 13594.0, + "end": 13595.16, + "probability": 0.8057 + }, + { + "start": 13596.52, + "end": 13597.44, + "probability": 0.9168 + }, + { + "start": 13598.46, + "end": 13598.94, + "probability": 0.9691 + }, + { + "start": 13600.52, + "end": 13602.04, + "probability": 0.8475 + }, + { + "start": 13603.5, + "end": 13604.18, + "probability": 0.5014 + }, + { + "start": 13606.0, + "end": 13607.02, + "probability": 0.7422 + }, + { + "start": 13608.18, + "end": 13609.1, + "probability": 0.9347 + }, + { + "start": 13611.28, + "end": 13612.3, + "probability": 0.6604 + }, + { + "start": 13614.29, + "end": 13616.44, + "probability": 0.5642 + }, + { + "start": 13618.52, + "end": 13619.44, + "probability": 0.8066 + }, + { + "start": 13621.8, + "end": 13623.02, + "probability": 0.7847 + }, + { + "start": 13624.44, + "end": 13628.4, + "probability": 0.5096 + }, + { + "start": 13629.28, + "end": 13629.6, + "probability": 0.9785 + }, + { + "start": 13632.06, + "end": 13632.58, + "probability": 0.4112 + }, + { + "start": 13633.92, + "end": 13634.64, + "probability": 0.5858 + }, + { + "start": 13635.72, + "end": 13636.54, + "probability": 0.7358 + }, + { + "start": 13637.66, + "end": 13638.36, + "probability": 0.8731 + }, + { + "start": 13638.98, + "end": 13639.96, + "probability": 0.7275 + }, + { + "start": 13641.76, + "end": 13642.18, + "probability": 0.7979 + }, + { + "start": 13643.22, + "end": 13644.12, + "probability": 0.8847 + }, + { + "start": 13645.72, + "end": 13646.24, + "probability": 0.6614 + }, + { + "start": 13646.94, + "end": 13647.78, + "probability": 0.9518 + }, + { + "start": 13649.68, + "end": 13650.2, + "probability": 0.9582 + }, + { + "start": 13652.04, + "end": 13652.78, + "probability": 0.9762 + }, + { + "start": 13653.92, + "end": 13654.94, + "probability": 0.7074 + }, + { + "start": 13655.7, + "end": 13656.68, + "probability": 0.7715 + }, + { + "start": 13657.9, + "end": 13658.34, + "probability": 0.9162 + }, + { + "start": 13659.24, + "end": 13660.16, + "probability": 0.7503 + }, + { + "start": 13662.26, + "end": 13662.9, + "probability": 0.7087 + }, + { + "start": 13663.84, + "end": 13666.12, + "probability": 0.5866 + }, + { + "start": 13666.78, + "end": 13669.11, + "probability": 0.7065 + }, + { + "start": 13670.4, + "end": 13671.48, + "probability": 0.9235 + }, + { + "start": 13673.4, + "end": 13675.58, + "probability": 0.8923 + }, + { + "start": 13676.68, + "end": 13677.22, + "probability": 0.9663 + }, + { + "start": 13680.82, + "end": 13681.48, + "probability": 0.6086 + }, + { + "start": 13683.26, + "end": 13683.88, + "probability": 0.711 + }, + { + "start": 13685.88, + "end": 13686.54, + "probability": 0.5803 + }, + { + "start": 13690.0, + "end": 13690.98, + "probability": 0.6802 + }, + { + "start": 13692.16, + "end": 13692.86, + "probability": 0.8544 + }, + { + "start": 13696.88, + "end": 13697.82, + "probability": 0.9047 + }, + { + "start": 13698.44, + "end": 13699.32, + "probability": 0.686 + }, + { + "start": 13701.04, + "end": 13701.9, + "probability": 0.9102 + }, + { + "start": 13703.0, + "end": 13703.9, + "probability": 0.9754 + }, + { + "start": 13705.52, + "end": 13706.14, + "probability": 0.9785 + }, + { + "start": 13708.74, + "end": 13709.42, + "probability": 0.4475 + }, + { + "start": 13710.8, + "end": 13713.26, + "probability": 0.7376 + }, + { + "start": 13714.18, + "end": 13714.54, + "probability": 0.7972 + }, + { + "start": 13716.22, + "end": 13717.32, + "probability": 0.7266 + }, + { + "start": 13719.08, + "end": 13721.88, + "probability": 0.7947 + }, + { + "start": 13725.08, + "end": 13726.28, + "probability": 0.1523 + }, + { + "start": 13726.84, + "end": 13727.7, + "probability": 0.8028 + }, + { + "start": 13728.66, + "end": 13729.06, + "probability": 0.8896 + }, + { + "start": 13732.08, + "end": 13732.84, + "probability": 0.604 + }, + { + "start": 13734.22, + "end": 13734.58, + "probability": 0.9126 + }, + { + "start": 13735.76, + "end": 13736.16, + "probability": 0.9416 + }, + { + "start": 13737.92, + "end": 13740.14, + "probability": 0.9927 + }, + { + "start": 13741.22, + "end": 13743.14, + "probability": 0.9481 + }, + { + "start": 13744.58, + "end": 13745.36, + "probability": 0.9004 + }, + { + "start": 13747.22, + "end": 13748.36, + "probability": 0.926 + }, + { + "start": 13749.26, + "end": 13750.72, + "probability": 0.4397 + }, + { + "start": 13750.74, + "end": 13754.52, + "probability": 0.8023 + }, + { + "start": 13754.82, + "end": 13756.26, + "probability": 0.3012 + }, + { + "start": 13757.86, + "end": 13758.24, + "probability": 0.887 + }, + { + "start": 13760.16, + "end": 13764.84, + "probability": 0.7554 + }, + { + "start": 13765.84, + "end": 13768.5, + "probability": 0.9787 + }, + { + "start": 13769.36, + "end": 13770.3, + "probability": 0.8219 + }, + { + "start": 13771.3, + "end": 13772.46, + "probability": 0.807 + }, + { + "start": 13773.22, + "end": 13773.78, + "probability": 0.5403 + }, + { + "start": 13775.12, + "end": 13775.96, + "probability": 0.6204 + }, + { + "start": 13776.84, + "end": 13777.84, + "probability": 0.58 + }, + { + "start": 13783.24, + "end": 13784.21, + "probability": 0.5603 + }, + { + "start": 13785.7, + "end": 13786.42, + "probability": 0.6752 + }, + { + "start": 13787.87, + "end": 13789.54, + "probability": 0.5612 + }, + { + "start": 13790.84, + "end": 13791.5, + "probability": 0.9602 + }, + { + "start": 13792.26, + "end": 13793.1, + "probability": 0.8034 + }, + { + "start": 13793.68, + "end": 13797.3, + "probability": 0.8965 + }, + { + "start": 13798.42, + "end": 13801.54, + "probability": 0.8494 + }, + { + "start": 13803.98, + "end": 13804.92, + "probability": 0.6193 + }, + { + "start": 13805.5, + "end": 13806.26, + "probability": 0.7492 + }, + { + "start": 13806.82, + "end": 13807.62, + "probability": 0.9623 + }, + { + "start": 13808.92, + "end": 13809.56, + "probability": 0.4747 + }, + { + "start": 13810.16, + "end": 13811.0, + "probability": 0.5075 + }, + { + "start": 13812.42, + "end": 13813.14, + "probability": 0.7277 + }, + { + "start": 13813.66, + "end": 13814.32, + "probability": 0.8467 + }, + { + "start": 13815.26, + "end": 13815.9, + "probability": 0.9182 + }, + { + "start": 13816.62, + "end": 13817.86, + "probability": 0.9182 + }, + { + "start": 13818.78, + "end": 13819.46, + "probability": 0.9581 + }, + { + "start": 13827.18, + "end": 13827.72, + "probability": 0.669 + }, + { + "start": 13829.88, + "end": 13831.72, + "probability": 0.9092 + }, + { + "start": 13833.78, + "end": 13834.62, + "probability": 0.8389 + }, + { + "start": 13837.68, + "end": 13839.88, + "probability": 0.6862 + }, + { + "start": 13841.42, + "end": 13845.0, + "probability": 0.4578 + }, + { + "start": 13846.4, + "end": 13847.26, + "probability": 0.7962 + }, + { + "start": 13848.42, + "end": 13849.08, + "probability": 0.8054 + }, + { + "start": 13849.74, + "end": 13850.72, + "probability": 0.9255 + }, + { + "start": 13852.54, + "end": 13853.08, + "probability": 0.8855 + }, + { + "start": 13853.84, + "end": 13854.7, + "probability": 0.9187 + }, + { + "start": 13855.6, + "end": 13856.22, + "probability": 0.981 + }, + { + "start": 13858.66, + "end": 13859.7, + "probability": 0.3589 + }, + { + "start": 13861.1, + "end": 13862.0, + "probability": 0.5351 + }, + { + "start": 13863.72, + "end": 13864.5, + "probability": 0.752 + }, + { + "start": 13866.38, + "end": 13867.04, + "probability": 0.7351 + }, + { + "start": 13867.96, + "end": 13868.8, + "probability": 0.9028 + }, + { + "start": 13869.78, + "end": 13870.4, + "probability": 0.7825 + }, + { + "start": 13872.5, + "end": 13873.38, + "probability": 0.8927 + }, + { + "start": 13874.78, + "end": 13877.4, + "probability": 0.9343 + }, + { + "start": 13879.16, + "end": 13879.98, + "probability": 0.8604 + }, + { + "start": 13881.06, + "end": 13881.84, + "probability": 0.7545 + }, + { + "start": 13882.82, + "end": 13883.84, + "probability": 0.9735 + }, + { + "start": 13885.08, + "end": 13888.3, + "probability": 0.8588 + }, + { + "start": 13889.08, + "end": 13889.9, + "probability": 0.8456 + }, + { + "start": 13890.72, + "end": 13891.3, + "probability": 0.9525 + }, + { + "start": 13891.98, + "end": 13893.38, + "probability": 0.8919 + }, + { + "start": 13894.14, + "end": 13894.9, + "probability": 0.7312 + }, + { + "start": 13895.88, + "end": 13897.32, + "probability": 0.8349 + }, + { + "start": 13898.4, + "end": 13900.48, + "probability": 0.7273 + }, + { + "start": 13901.8, + "end": 13903.54, + "probability": 0.8199 + }, + { + "start": 13904.56, + "end": 13905.54, + "probability": 0.811 + }, + { + "start": 13906.44, + "end": 13907.08, + "probability": 0.9612 + }, + { + "start": 13908.14, + "end": 13909.98, + "probability": 0.563 + }, + { + "start": 13912.34, + "end": 13913.08, + "probability": 0.6937 + }, + { + "start": 13914.1, + "end": 13914.66, + "probability": 0.9576 + }, + { + "start": 13915.36, + "end": 13917.32, + "probability": 0.9193 + }, + { + "start": 13917.9, + "end": 13918.84, + "probability": 0.7817 + }, + { + "start": 13919.88, + "end": 13920.6, + "probability": 0.8277 + }, + { + "start": 13921.24, + "end": 13922.18, + "probability": 0.9762 + }, + { + "start": 13922.94, + "end": 13925.24, + "probability": 0.9112 + }, + { + "start": 13926.08, + "end": 13928.42, + "probability": 0.6138 + }, + { + "start": 13928.94, + "end": 13929.92, + "probability": 0.8004 + }, + { + "start": 13930.61, + "end": 13935.16, + "probability": 0.834 + }, + { + "start": 13935.36, + "end": 13936.32, + "probability": 0.8248 + }, + { + "start": 13936.64, + "end": 13938.32, + "probability": 0.8222 + }, + { + "start": 13940.28, + "end": 13940.64, + "probability": 0.4627 + }, + { + "start": 13941.6, + "end": 13943.45, + "probability": 0.9944 + }, + { + "start": 13944.06, + "end": 13946.06, + "probability": 0.4492 + }, + { + "start": 13946.3, + "end": 13949.26, + "probability": 0.6704 + }, + { + "start": 13949.32, + "end": 13950.02, + "probability": 0.7351 + }, + { + "start": 13950.18, + "end": 13951.16, + "probability": 0.8789 + }, + { + "start": 13951.22, + "end": 13955.26, + "probability": 0.9793 + }, + { + "start": 13958.7, + "end": 13959.8, + "probability": 0.0281 + }, + { + "start": 13965.8, + "end": 13965.86, + "probability": 0.097 + }, + { + "start": 13967.16, + "end": 13967.86, + "probability": 0.1649 + }, + { + "start": 13969.32, + "end": 13970.9, + "probability": 0.162 + }, + { + "start": 13970.9, + "end": 13971.04, + "probability": 0.0324 + }, + { + "start": 13971.04, + "end": 13971.06, + "probability": 0.0203 + }, + { + "start": 14015.54, + "end": 14016.9, + "probability": 0.0894 + }, + { + "start": 14016.9, + "end": 14016.9, + "probability": 0.0008 + }, + { + "start": 14020.7, + "end": 14030.0, + "probability": 0.3406 + }, + { + "start": 14036.4, + "end": 14039.76, + "probability": 0.3946 + }, + { + "start": 14040.64, + "end": 14046.68, + "probability": 0.9926 + }, + { + "start": 14046.88, + "end": 14050.14, + "probability": 0.9672 + }, + { + "start": 14050.56, + "end": 14052.42, + "probability": 0.9093 + }, + { + "start": 14056.74, + "end": 14059.52, + "probability": 0.8756 + }, + { + "start": 14082.46, + "end": 14088.0, + "probability": 0.6907 + }, + { + "start": 14090.04, + "end": 14093.86, + "probability": 0.8141 + }, + { + "start": 14094.78, + "end": 14096.14, + "probability": 0.6609 + }, + { + "start": 14097.2, + "end": 14098.02, + "probability": 0.9233 + }, + { + "start": 14099.44, + "end": 14102.2, + "probability": 0.7559 + }, + { + "start": 14102.48, + "end": 14103.82, + "probability": 0.6782 + }, + { + "start": 14104.26, + "end": 14105.22, + "probability": 0.9267 + }, + { + "start": 14106.52, + "end": 14108.82, + "probability": 0.6371 + }, + { + "start": 14109.46, + "end": 14113.56, + "probability": 0.9968 + }, + { + "start": 14114.18, + "end": 14115.34, + "probability": 0.9824 + }, + { + "start": 14117.94, + "end": 14119.2, + "probability": 0.9181 + }, + { + "start": 14120.84, + "end": 14123.38, + "probability": 0.9788 + }, + { + "start": 14124.96, + "end": 14127.08, + "probability": 0.948 + }, + { + "start": 14128.84, + "end": 14129.98, + "probability": 0.922 + }, + { + "start": 14130.82, + "end": 14132.02, + "probability": 0.9968 + }, + { + "start": 14133.3, + "end": 14134.28, + "probability": 0.9959 + }, + { + "start": 14135.86, + "end": 14137.18, + "probability": 0.9975 + }, + { + "start": 14139.3, + "end": 14141.04, + "probability": 0.8411 + }, + { + "start": 14142.14, + "end": 14144.36, + "probability": 0.9543 + }, + { + "start": 14146.64, + "end": 14149.77, + "probability": 0.9824 + }, + { + "start": 14152.86, + "end": 14155.28, + "probability": 0.9858 + }, + { + "start": 14159.48, + "end": 14160.12, + "probability": 0.8735 + }, + { + "start": 14162.24, + "end": 14164.04, + "probability": 0.8408 + }, + { + "start": 14164.88, + "end": 14166.14, + "probability": 0.9675 + }, + { + "start": 14168.54, + "end": 14169.34, + "probability": 0.6363 + }, + { + "start": 14171.74, + "end": 14177.84, + "probability": 0.912 + }, + { + "start": 14180.86, + "end": 14185.18, + "probability": 0.8674 + }, + { + "start": 14186.94, + "end": 14193.62, + "probability": 0.9702 + }, + { + "start": 14194.56, + "end": 14196.96, + "probability": 0.7338 + }, + { + "start": 14198.32, + "end": 14200.4, + "probability": 0.6481 + }, + { + "start": 14202.42, + "end": 14206.64, + "probability": 0.9313 + }, + { + "start": 14207.58, + "end": 14210.16, + "probability": 0.9578 + }, + { + "start": 14211.88, + "end": 14214.0, + "probability": 0.9879 + }, + { + "start": 14217.08, + "end": 14217.46, + "probability": 0.985 + }, + { + "start": 14219.48, + "end": 14221.14, + "probability": 0.9403 + }, + { + "start": 14222.46, + "end": 14223.94, + "probability": 0.717 + }, + { + "start": 14224.78, + "end": 14226.54, + "probability": 0.7521 + }, + { + "start": 14227.1, + "end": 14228.84, + "probability": 0.9972 + }, + { + "start": 14229.46, + "end": 14230.18, + "probability": 0.9305 + }, + { + "start": 14234.98, + "end": 14237.96, + "probability": 0.9851 + }, + { + "start": 14240.44, + "end": 14242.13, + "probability": 0.9897 + }, + { + "start": 14245.04, + "end": 14245.56, + "probability": 0.7721 + }, + { + "start": 14250.36, + "end": 14253.55, + "probability": 0.6561 + }, + { + "start": 14255.2, + "end": 14256.1, + "probability": 0.5827 + }, + { + "start": 14257.16, + "end": 14257.84, + "probability": 0.9463 + }, + { + "start": 14258.4, + "end": 14260.48, + "probability": 0.906 + }, + { + "start": 14261.64, + "end": 14262.28, + "probability": 0.8883 + }, + { + "start": 14263.22, + "end": 14265.1, + "probability": 0.7847 + }, + { + "start": 14265.74, + "end": 14267.54, + "probability": 0.8549 + }, + { + "start": 14268.54, + "end": 14270.34, + "probability": 0.9937 + }, + { + "start": 14271.38, + "end": 14273.46, + "probability": 0.9946 + }, + { + "start": 14274.54, + "end": 14275.32, + "probability": 0.7947 + }, + { + "start": 14277.54, + "end": 14278.62, + "probability": 0.9746 + }, + { + "start": 14280.48, + "end": 14284.38, + "probability": 0.714 + }, + { + "start": 14285.14, + "end": 14286.6, + "probability": 0.9842 + }, + { + "start": 14287.9, + "end": 14293.08, + "probability": 0.9983 + }, + { + "start": 14293.78, + "end": 14294.74, + "probability": 0.7016 + }, + { + "start": 14298.42, + "end": 14301.16, + "probability": 0.9941 + }, + { + "start": 14301.94, + "end": 14304.09, + "probability": 0.8172 + }, + { + "start": 14305.0, + "end": 14305.84, + "probability": 0.8506 + }, + { + "start": 14305.94, + "end": 14306.38, + "probability": 0.6229 + }, + { + "start": 14306.4, + "end": 14306.6, + "probability": 0.7728 + }, + { + "start": 14306.8, + "end": 14307.18, + "probability": 0.3558 + }, + { + "start": 14308.48, + "end": 14309.1, + "probability": 0.9316 + }, + { + "start": 14309.5, + "end": 14310.46, + "probability": 0.8423 + }, + { + "start": 14311.0, + "end": 14312.04, + "probability": 0.5958 + }, + { + "start": 14312.3, + "end": 14313.66, + "probability": 0.75 + }, + { + "start": 14313.98, + "end": 14315.0, + "probability": 0.9568 + }, + { + "start": 14316.2, + "end": 14317.33, + "probability": 0.9722 + }, + { + "start": 14317.8, + "end": 14320.76, + "probability": 0.9487 + }, + { + "start": 14321.56, + "end": 14322.04, + "probability": 0.9774 + }, + { + "start": 14323.76, + "end": 14324.52, + "probability": 0.7104 + }, + { + "start": 14325.32, + "end": 14329.06, + "probability": 0.9465 + }, + { + "start": 14330.84, + "end": 14334.08, + "probability": 0.9301 + }, + { + "start": 14334.96, + "end": 14336.84, + "probability": 0.8896 + }, + { + "start": 14338.18, + "end": 14344.54, + "probability": 0.9761 + }, + { + "start": 14346.08, + "end": 14346.68, + "probability": 0.5418 + }, + { + "start": 14348.04, + "end": 14350.8, + "probability": 0.8192 + }, + { + "start": 14352.08, + "end": 14355.76, + "probability": 0.8266 + }, + { + "start": 14356.72, + "end": 14360.46, + "probability": 0.9901 + }, + { + "start": 14362.2, + "end": 14363.4, + "probability": 0.992 + }, + { + "start": 14364.0, + "end": 14365.0, + "probability": 0.8483 + }, + { + "start": 14366.26, + "end": 14366.82, + "probability": 0.9758 + }, + { + "start": 14367.7, + "end": 14369.96, + "probability": 0.9819 + }, + { + "start": 14370.82, + "end": 14373.46, + "probability": 0.981 + }, + { + "start": 14374.38, + "end": 14375.74, + "probability": 0.9084 + }, + { + "start": 14376.72, + "end": 14378.5, + "probability": 0.8907 + }, + { + "start": 14379.18, + "end": 14380.94, + "probability": 0.5878 + }, + { + "start": 14381.68, + "end": 14382.64, + "probability": 0.9989 + }, + { + "start": 14383.22, + "end": 14385.42, + "probability": 0.7417 + }, + { + "start": 14385.94, + "end": 14386.78, + "probability": 0.7365 + }, + { + "start": 14387.98, + "end": 14392.7, + "probability": 0.9804 + }, + { + "start": 14395.8, + "end": 14397.16, + "probability": 0.5486 + }, + { + "start": 14398.44, + "end": 14399.96, + "probability": 0.8408 + }, + { + "start": 14401.14, + "end": 14402.58, + "probability": 0.9124 + }, + { + "start": 14403.5, + "end": 14404.94, + "probability": 0.9807 + }, + { + "start": 14406.82, + "end": 14407.48, + "probability": 0.9834 + }, + { + "start": 14407.56, + "end": 14409.46, + "probability": 0.9902 + }, + { + "start": 14410.4, + "end": 14410.92, + "probability": 0.862 + }, + { + "start": 14412.08, + "end": 14414.18, + "probability": 0.8975 + }, + { + "start": 14415.82, + "end": 14416.58, + "probability": 0.6403 + }, + { + "start": 14417.48, + "end": 14419.9, + "probability": 0.6434 + }, + { + "start": 14420.7, + "end": 14423.48, + "probability": 0.9609 + }, + { + "start": 14424.22, + "end": 14425.26, + "probability": 0.8989 + }, + { + "start": 14425.8, + "end": 14426.96, + "probability": 0.9224 + }, + { + "start": 14427.6, + "end": 14428.96, + "probability": 0.9463 + }, + { + "start": 14429.74, + "end": 14431.14, + "probability": 0.9971 + }, + { + "start": 14431.68, + "end": 14432.96, + "probability": 0.6189 + }, + { + "start": 14434.58, + "end": 14437.42, + "probability": 0.9275 + }, + { + "start": 14438.5, + "end": 14439.24, + "probability": 0.6812 + }, + { + "start": 14440.08, + "end": 14441.96, + "probability": 0.9951 + }, + { + "start": 14443.18, + "end": 14443.64, + "probability": 0.7952 + }, + { + "start": 14444.36, + "end": 14445.1, + "probability": 0.4793 + }, + { + "start": 14448.7, + "end": 14449.22, + "probability": 0.9795 + }, + { + "start": 14450.28, + "end": 14452.7, + "probability": 0.8545 + }, + { + "start": 14453.66, + "end": 14456.72, + "probability": 0.786 + }, + { + "start": 14457.88, + "end": 14461.3, + "probability": 0.7928 + }, + { + "start": 14462.06, + "end": 14463.04, + "probability": 0.9812 + }, + { + "start": 14464.62, + "end": 14467.8, + "probability": 0.9009 + }, + { + "start": 14469.52, + "end": 14470.42, + "probability": 0.7677 + }, + { + "start": 14471.9, + "end": 14475.3, + "probability": 0.9673 + }, + { + "start": 14479.88, + "end": 14482.88, + "probability": 0.9952 + }, + { + "start": 14483.7, + "end": 14485.14, + "probability": 0.82 + }, + { + "start": 14487.06, + "end": 14489.6, + "probability": 0.9434 + }, + { + "start": 14491.62, + "end": 14492.92, + "probability": 0.959 + }, + { + "start": 14495.82, + "end": 14498.26, + "probability": 0.9362 + }, + { + "start": 14500.24, + "end": 14501.62, + "probability": 0.7566 + }, + { + "start": 14503.24, + "end": 14504.82, + "probability": 0.9932 + }, + { + "start": 14507.04, + "end": 14509.36, + "probability": 0.9917 + }, + { + "start": 14511.12, + "end": 14511.56, + "probability": 0.6536 + }, + { + "start": 14512.16, + "end": 14514.02, + "probability": 0.7063 + }, + { + "start": 14514.92, + "end": 14517.04, + "probability": 0.9988 + }, + { + "start": 14518.64, + "end": 14519.8, + "probability": 0.9013 + }, + { + "start": 14521.3, + "end": 14522.82, + "probability": 0.6931 + }, + { + "start": 14523.42, + "end": 14525.4, + "probability": 0.7351 + }, + { + "start": 14528.82, + "end": 14529.2, + "probability": 0.0223 + }, + { + "start": 14530.1, + "end": 14532.1, + "probability": 0.8737 + }, + { + "start": 14533.54, + "end": 14536.66, + "probability": 0.8119 + }, + { + "start": 14538.66, + "end": 14540.08, + "probability": 0.9902 + }, + { + "start": 14540.6, + "end": 14542.03, + "probability": 0.9983 + }, + { + "start": 14543.92, + "end": 14545.16, + "probability": 0.9897 + }, + { + "start": 14546.3, + "end": 14547.9, + "probability": 0.8659 + }, + { + "start": 14549.86, + "end": 14550.68, + "probability": 0.9432 + }, + { + "start": 14551.46, + "end": 14551.78, + "probability": 0.9919 + }, + { + "start": 14552.48, + "end": 14555.56, + "probability": 0.9088 + }, + { + "start": 14557.34, + "end": 14558.16, + "probability": 0.9487 + }, + { + "start": 14559.36, + "end": 14560.06, + "probability": 0.8891 + }, + { + "start": 14560.1, + "end": 14561.6, + "probability": 0.9536 + }, + { + "start": 14561.84, + "end": 14564.24, + "probability": 0.8667 + }, + { + "start": 14565.22, + "end": 14566.16, + "probability": 0.9902 + }, + { + "start": 14566.66, + "end": 14567.65, + "probability": 0.9888 + }, + { + "start": 14568.96, + "end": 14569.96, + "probability": 0.9973 + }, + { + "start": 14570.08, + "end": 14570.97, + "probability": 0.9912 + }, + { + "start": 14572.42, + "end": 14574.08, + "probability": 0.8323 + }, + { + "start": 14574.36, + "end": 14575.42, + "probability": 0.8339 + }, + { + "start": 14575.66, + "end": 14576.82, + "probability": 0.7113 + }, + { + "start": 14577.48, + "end": 14578.98, + "probability": 0.9843 + }, + { + "start": 14579.64, + "end": 14580.52, + "probability": 0.369 + }, + { + "start": 14580.64, + "end": 14583.54, + "probability": 0.8807 + }, + { + "start": 14584.32, + "end": 14588.66, + "probability": 0.9117 + }, + { + "start": 14589.6, + "end": 14592.08, + "probability": 0.9312 + }, + { + "start": 14593.06, + "end": 14594.56, + "probability": 0.9022 + }, + { + "start": 14595.1, + "end": 14597.06, + "probability": 0.8302 + }, + { + "start": 14597.66, + "end": 14602.46, + "probability": 0.7072 + }, + { + "start": 14603.98, + "end": 14610.86, + "probability": 0.9615 + }, + { + "start": 14612.58, + "end": 14614.24, + "probability": 0.9963 + }, + { + "start": 14617.9, + "end": 14618.2, + "probability": 0.8992 + }, + { + "start": 14619.12, + "end": 14621.76, + "probability": 0.9883 + }, + { + "start": 14625.22, + "end": 14627.0, + "probability": 0.9634 + }, + { + "start": 14627.54, + "end": 14631.47, + "probability": 0.8703 + }, + { + "start": 14632.86, + "end": 14635.16, + "probability": 0.8951 + }, + { + "start": 14635.8, + "end": 14636.26, + "probability": 0.8844 + }, + { + "start": 14636.94, + "end": 14637.24, + "probability": 0.737 + }, + { + "start": 14638.02, + "end": 14638.86, + "probability": 0.9746 + }, + { + "start": 14641.2, + "end": 14645.8, + "probability": 0.9925 + }, + { + "start": 14647.36, + "end": 14650.16, + "probability": 0.9675 + }, + { + "start": 14651.22, + "end": 14652.24, + "probability": 0.8872 + }, + { + "start": 14653.5, + "end": 14654.66, + "probability": 0.9587 + }, + { + "start": 14655.34, + "end": 14655.72, + "probability": 0.8788 + }, + { + "start": 14656.3, + "end": 14659.14, + "probability": 0.9563 + }, + { + "start": 14659.98, + "end": 14660.72, + "probability": 0.978 + }, + { + "start": 14661.7, + "end": 14662.28, + "probability": 0.7916 + }, + { + "start": 14663.84, + "end": 14665.66, + "probability": 0.996 + }, + { + "start": 14668.26, + "end": 14670.36, + "probability": 0.961 + }, + { + "start": 14670.9, + "end": 14675.68, + "probability": 0.9797 + }, + { + "start": 14678.18, + "end": 14678.72, + "probability": 0.8098 + }, + { + "start": 14679.86, + "end": 14681.44, + "probability": 0.9682 + }, + { + "start": 14682.84, + "end": 14684.54, + "probability": 0.9982 + }, + { + "start": 14685.68, + "end": 14688.04, + "probability": 0.9124 + }, + { + "start": 14688.74, + "end": 14691.8, + "probability": 0.9636 + }, + { + "start": 14692.5, + "end": 14693.24, + "probability": 0.6486 + }, + { + "start": 14693.9, + "end": 14695.94, + "probability": 0.9761 + }, + { + "start": 14696.44, + "end": 14700.34, + "probability": 0.9559 + }, + { + "start": 14701.42, + "end": 14707.78, + "probability": 0.8618 + }, + { + "start": 14708.72, + "end": 14711.08, + "probability": 0.9928 + }, + { + "start": 14711.48, + "end": 14713.2, + "probability": 0.9928 + }, + { + "start": 14714.26, + "end": 14715.9, + "probability": 0.8104 + }, + { + "start": 14716.94, + "end": 14718.78, + "probability": 0.9624 + }, + { + "start": 14719.58, + "end": 14722.34, + "probability": 0.9807 + }, + { + "start": 14723.38, + "end": 14723.92, + "probability": 0.7839 + }, + { + "start": 14725.54, + "end": 14727.64, + "probability": 0.8905 + }, + { + "start": 14728.84, + "end": 14729.89, + "probability": 0.4994 + }, + { + "start": 14730.78, + "end": 14733.88, + "probability": 0.9932 + }, + { + "start": 14734.34, + "end": 14735.62, + "probability": 0.9131 + }, + { + "start": 14736.6, + "end": 14738.46, + "probability": 0.7546 + }, + { + "start": 14739.34, + "end": 14740.1, + "probability": 0.5552 + }, + { + "start": 14740.5, + "end": 14741.12, + "probability": 0.9423 + }, + { + "start": 14741.22, + "end": 14741.92, + "probability": 0.8903 + }, + { + "start": 14742.38, + "end": 14744.32, + "probability": 0.9817 + }, + { + "start": 14745.32, + "end": 14746.06, + "probability": 0.6342 + }, + { + "start": 14746.58, + "end": 14748.98, + "probability": 0.8522 + }, + { + "start": 14749.84, + "end": 14751.9, + "probability": 0.8374 + }, + { + "start": 14752.06, + "end": 14753.22, + "probability": 0.784 + }, + { + "start": 14753.78, + "end": 14755.58, + "probability": 0.9966 + }, + { + "start": 14756.28, + "end": 14757.8, + "probability": 0.994 + }, + { + "start": 14758.92, + "end": 14760.58, + "probability": 0.634 + }, + { + "start": 14761.32, + "end": 14765.82, + "probability": 0.9169 + }, + { + "start": 14766.32, + "end": 14772.06, + "probability": 0.9197 + }, + { + "start": 14772.34, + "end": 14772.86, + "probability": 0.6632 + }, + { + "start": 14773.12, + "end": 14775.1, + "probability": 0.9831 + }, + { + "start": 14777.06, + "end": 14778.86, + "probability": 0.9225 + }, + { + "start": 14780.1, + "end": 14782.42, + "probability": 0.9902 + }, + { + "start": 14783.1, + "end": 14783.6, + "probability": 0.3751 + }, + { + "start": 14783.8, + "end": 14784.78, + "probability": 0.9946 + }, + { + "start": 14785.82, + "end": 14788.06, + "probability": 0.8007 + }, + { + "start": 14788.32, + "end": 14791.64, + "probability": 0.8762 + }, + { + "start": 14792.3, + "end": 14793.4, + "probability": 0.552 + }, + { + "start": 14793.4, + "end": 14795.8, + "probability": 0.9875 + }, + { + "start": 14796.24, + "end": 14796.72, + "probability": 0.9644 + }, + { + "start": 14797.0, + "end": 14799.12, + "probability": 0.8224 + }, + { + "start": 14799.88, + "end": 14804.18, + "probability": 0.8354 + }, + { + "start": 14804.74, + "end": 14805.68, + "probability": 0.0114 + }, + { + "start": 14828.42, + "end": 14830.22, + "probability": 0.5875 + }, + { + "start": 14831.04, + "end": 14831.64, + "probability": 0.984 + }, + { + "start": 14833.34, + "end": 14833.86, + "probability": 0.6325 + }, + { + "start": 14834.72, + "end": 14835.62, + "probability": 0.9778 + }, + { + "start": 14836.66, + "end": 14837.98, + "probability": 0.9146 + }, + { + "start": 14839.02, + "end": 14841.02, + "probability": 0.9595 + }, + { + "start": 14841.78, + "end": 14845.68, + "probability": 0.9617 + }, + { + "start": 14846.96, + "end": 14851.26, + "probability": 0.9849 + }, + { + "start": 14851.26, + "end": 14855.12, + "probability": 0.9857 + }, + { + "start": 14856.0, + "end": 14856.86, + "probability": 0.5001 + }, + { + "start": 14857.9, + "end": 14858.36, + "probability": 0.9914 + }, + { + "start": 14859.44, + "end": 14864.88, + "probability": 0.9759 + }, + { + "start": 14865.56, + "end": 14868.9, + "probability": 0.8945 + }, + { + "start": 14870.2, + "end": 14872.76, + "probability": 0.9913 + }, + { + "start": 14873.98, + "end": 14874.56, + "probability": 0.7166 + }, + { + "start": 14874.98, + "end": 14876.22, + "probability": 0.8944 + }, + { + "start": 14876.36, + "end": 14880.98, + "probability": 0.9893 + }, + { + "start": 14881.9, + "end": 14884.04, + "probability": 0.9951 + }, + { + "start": 14885.04, + "end": 14887.78, + "probability": 0.8881 + }, + { + "start": 14887.92, + "end": 14890.02, + "probability": 0.8392 + }, + { + "start": 14890.3, + "end": 14891.98, + "probability": 0.9749 + }, + { + "start": 14892.62, + "end": 14892.96, + "probability": 0.5934 + }, + { + "start": 14893.88, + "end": 14898.52, + "probability": 0.9967 + }, + { + "start": 14899.08, + "end": 14900.66, + "probability": 0.8861 + }, + { + "start": 14901.44, + "end": 14902.66, + "probability": 0.9889 + }, + { + "start": 14903.22, + "end": 14904.6, + "probability": 0.9797 + }, + { + "start": 14905.4, + "end": 14906.96, + "probability": 0.9838 + }, + { + "start": 14907.54, + "end": 14909.02, + "probability": 0.951 + }, + { + "start": 14910.18, + "end": 14913.96, + "probability": 0.9829 + }, + { + "start": 14915.14, + "end": 14915.84, + "probability": 0.9072 + }, + { + "start": 14917.8, + "end": 14919.78, + "probability": 0.9604 + }, + { + "start": 14920.74, + "end": 14923.92, + "probability": 0.9092 + }, + { + "start": 14923.92, + "end": 14929.18, + "probability": 0.9329 + }, + { + "start": 14929.98, + "end": 14933.44, + "probability": 0.9933 + }, + { + "start": 14934.2, + "end": 14937.28, + "probability": 0.5711 + }, + { + "start": 14937.8, + "end": 14942.14, + "probability": 0.9881 + }, + { + "start": 14942.98, + "end": 14946.6, + "probability": 0.9955 + }, + { + "start": 14947.12, + "end": 14957.29, + "probability": 0.9519 + }, + { + "start": 14958.8, + "end": 14960.78, + "probability": 0.7107 + }, + { + "start": 14961.86, + "end": 14963.69, + "probability": 0.7531 + }, + { + "start": 14964.78, + "end": 14968.12, + "probability": 0.7215 + }, + { + "start": 14968.88, + "end": 14971.32, + "probability": 0.6905 + }, + { + "start": 14971.9, + "end": 14975.72, + "probability": 0.7468 + }, + { + "start": 14977.08, + "end": 14977.08, + "probability": 0.0387 + }, + { + "start": 14977.08, + "end": 14977.08, + "probability": 0.1758 + }, + { + "start": 14977.08, + "end": 14982.88, + "probability": 0.799 + }, + { + "start": 14983.62, + "end": 14989.5, + "probability": 0.6611 + }, + { + "start": 14990.66, + "end": 14996.38, + "probability": 0.7467 + }, + { + "start": 14996.38, + "end": 15000.5, + "probability": 0.9995 + }, + { + "start": 15001.06, + "end": 15007.84, + "probability": 0.9952 + }, + { + "start": 15008.5, + "end": 15011.42, + "probability": 0.8608 + }, + { + "start": 15011.92, + "end": 15015.58, + "probability": 0.8654 + }, + { + "start": 15016.36, + "end": 15020.82, + "probability": 0.9912 + }, + { + "start": 15020.82, + "end": 15026.62, + "probability": 0.9055 + }, + { + "start": 15026.88, + "end": 15029.54, + "probability": 0.9731 + }, + { + "start": 15029.68, + "end": 15030.92, + "probability": 0.7041 + }, + { + "start": 15031.4, + "end": 15034.94, + "probability": 0.7623 + }, + { + "start": 15035.46, + "end": 15039.66, + "probability": 0.9937 + }, + { + "start": 15039.66, + "end": 15042.26, + "probability": 0.9983 + }, + { + "start": 15042.86, + "end": 15046.0, + "probability": 0.8983 + }, + { + "start": 15046.64, + "end": 15050.02, + "probability": 0.9957 + }, + { + "start": 15050.88, + "end": 15055.72, + "probability": 0.8918 + }, + { + "start": 15055.72, + "end": 15059.84, + "probability": 0.9969 + }, + { + "start": 15060.56, + "end": 15064.99, + "probability": 0.8877 + }, + { + "start": 15065.74, + "end": 15067.86, + "probability": 0.9303 + }, + { + "start": 15068.42, + "end": 15071.68, + "probability": 0.801 + }, + { + "start": 15072.6, + "end": 15075.42, + "probability": 0.9878 + }, + { + "start": 15075.98, + "end": 15081.58, + "probability": 0.9932 + }, + { + "start": 15081.92, + "end": 15087.8, + "probability": 0.9799 + }, + { + "start": 15088.34, + "end": 15093.42, + "probability": 0.9935 + }, + { + "start": 15094.84, + "end": 15099.2, + "probability": 0.9761 + }, + { + "start": 15100.12, + "end": 15100.58, + "probability": 0.6666 + }, + { + "start": 15101.48, + "end": 15102.48, + "probability": 0.2019 + }, + { + "start": 15102.6, + "end": 15105.26, + "probability": 0.8446 + }, + { + "start": 15105.92, + "end": 15107.86, + "probability": 0.686 + }, + { + "start": 15108.5, + "end": 15109.46, + "probability": 0.7059 + }, + { + "start": 15110.1, + "end": 15114.0, + "probability": 0.9775 + }, + { + "start": 15114.0, + "end": 15116.62, + "probability": 0.7908 + }, + { + "start": 15117.96, + "end": 15121.34, + "probability": 0.5756 + }, + { + "start": 15122.26, + "end": 15126.22, + "probability": 0.7532 + }, + { + "start": 15126.96, + "end": 15130.04, + "probability": 0.6462 + }, + { + "start": 15130.88, + "end": 15133.42, + "probability": 0.9865 + }, + { + "start": 15133.94, + "end": 15135.74, + "probability": 0.8577 + }, + { + "start": 15136.48, + "end": 15139.88, + "probability": 0.9908 + }, + { + "start": 15140.4, + "end": 15143.8, + "probability": 0.9727 + }, + { + "start": 15144.4, + "end": 15148.08, + "probability": 0.9976 + }, + { + "start": 15148.98, + "end": 15155.35, + "probability": 0.911 + }, + { + "start": 15155.58, + "end": 15158.14, + "probability": 0.5025 + }, + { + "start": 15159.2, + "end": 15160.6, + "probability": 0.8571 + }, + { + "start": 15160.74, + "end": 15162.3, + "probability": 0.7917 + }, + { + "start": 15162.42, + "end": 15164.66, + "probability": 0.7697 + }, + { + "start": 15165.6, + "end": 15171.58, + "probability": 0.8119 + }, + { + "start": 15172.48, + "end": 15177.66, + "probability": 0.96 + }, + { + "start": 15178.52, + "end": 15182.08, + "probability": 0.9851 + }, + { + "start": 15182.62, + "end": 15183.64, + "probability": 0.7517 + }, + { + "start": 15184.04, + "end": 15185.52, + "probability": 0.3422 + }, + { + "start": 15185.62, + "end": 15188.1, + "probability": 0.8638 + }, + { + "start": 15188.78, + "end": 15194.28, + "probability": 0.9848 + }, + { + "start": 15195.1, + "end": 15199.98, + "probability": 0.9712 + }, + { + "start": 15200.8, + "end": 15205.1, + "probability": 0.9533 + }, + { + "start": 15205.78, + "end": 15210.64, + "probability": 0.6533 + }, + { + "start": 15211.0, + "end": 15216.92, + "probability": 0.9512 + }, + { + "start": 15217.76, + "end": 15220.46, + "probability": 0.9934 + }, + { + "start": 15220.46, + "end": 15224.86, + "probability": 0.8282 + }, + { + "start": 15225.84, + "end": 15226.46, + "probability": 0.764 + }, + { + "start": 15227.4, + "end": 15232.94, + "probability": 0.8238 + }, + { + "start": 15232.96, + "end": 15234.36, + "probability": 0.9521 + }, + { + "start": 15234.82, + "end": 15239.76, + "probability": 0.9524 + }, + { + "start": 15240.4, + "end": 15244.67, + "probability": 0.9711 + }, + { + "start": 15245.42, + "end": 15253.64, + "probability": 0.9214 + }, + { + "start": 15254.14, + "end": 15257.52, + "probability": 0.8411 + }, + { + "start": 15258.36, + "end": 15258.54, + "probability": 0.6316 + }, + { + "start": 15258.62, + "end": 15260.08, + "probability": 0.9665 + }, + { + "start": 15260.16, + "end": 15267.82, + "probability": 0.9648 + }, + { + "start": 15268.56, + "end": 15270.96, + "probability": 0.7939 + }, + { + "start": 15271.84, + "end": 15278.1, + "probability": 0.9389 + }, + { + "start": 15278.3, + "end": 15282.32, + "probability": 0.6323 + }, + { + "start": 15283.42, + "end": 15285.02, + "probability": 0.9976 + }, + { + "start": 15285.7, + "end": 15288.7, + "probability": 0.9102 + }, + { + "start": 15289.58, + "end": 15293.7, + "probability": 0.8032 + }, + { + "start": 15294.82, + "end": 15298.0, + "probability": 0.7739 + }, + { + "start": 15299.2, + "end": 15300.16, + "probability": 0.8263 + }, + { + "start": 15300.74, + "end": 15302.78, + "probability": 0.6327 + }, + { + "start": 15303.42, + "end": 15308.14, + "probability": 0.9803 + }, + { + "start": 15308.2, + "end": 15309.32, + "probability": 0.8353 + }, + { + "start": 15310.2, + "end": 15311.44, + "probability": 0.959 + }, + { + "start": 15312.49, + "end": 15315.38, + "probability": 0.5889 + }, + { + "start": 15315.4, + "end": 15322.4, + "probability": 0.9746 + }, + { + "start": 15322.6, + "end": 15324.14, + "probability": 0.7811 + }, + { + "start": 15324.9, + "end": 15330.78, + "probability": 0.9005 + }, + { + "start": 15331.07, + "end": 15337.1, + "probability": 0.9922 + }, + { + "start": 15337.28, + "end": 15338.42, + "probability": 0.6239 + }, + { + "start": 15338.96, + "end": 15340.58, + "probability": 0.9949 + }, + { + "start": 15341.08, + "end": 15345.2, + "probability": 0.8784 + }, + { + "start": 15345.34, + "end": 15352.66, + "probability": 0.9521 + }, + { + "start": 15353.18, + "end": 15355.92, + "probability": 0.6688 + }, + { + "start": 15356.0, + "end": 15358.4, + "probability": 0.796 + }, + { + "start": 15358.74, + "end": 15360.0, + "probability": 0.5694 + }, + { + "start": 15360.54, + "end": 15364.64, + "probability": 0.4371 + }, + { + "start": 15364.76, + "end": 15366.16, + "probability": 0.978 + }, + { + "start": 15366.72, + "end": 15368.16, + "probability": 0.8308 + }, + { + "start": 15368.66, + "end": 15372.78, + "probability": 0.9608 + }, + { + "start": 15373.26, + "end": 15377.16, + "probability": 0.9335 + }, + { + "start": 15377.6, + "end": 15383.22, + "probability": 0.9752 + }, + { + "start": 15384.02, + "end": 15387.8, + "probability": 0.9474 + }, + { + "start": 15388.08, + "end": 15388.1, + "probability": 0.6561 + }, + { + "start": 15388.26, + "end": 15390.84, + "probability": 0.9334 + }, + { + "start": 15390.86, + "end": 15393.34, + "probability": 0.999 + }, + { + "start": 15393.62, + "end": 15393.72, + "probability": 0.5434 + }, + { + "start": 15394.12, + "end": 15396.44, + "probability": 0.7943 + }, + { + "start": 15396.6, + "end": 15399.86, + "probability": 0.8416 + }, + { + "start": 15400.28, + "end": 15400.28, + "probability": 0.1734 + }, + { + "start": 15400.28, + "end": 15400.28, + "probability": 0.3185 + }, + { + "start": 15400.28, + "end": 15401.88, + "probability": 0.9287 + }, + { + "start": 15402.1, + "end": 15402.56, + "probability": 0.7762 + }, + { + "start": 15402.66, + "end": 15404.24, + "probability": 0.9511 + }, + { + "start": 15405.06, + "end": 15408.22, + "probability": 0.5652 + }, + { + "start": 15408.32, + "end": 15411.78, + "probability": 0.5946 + }, + { + "start": 15411.96, + "end": 15417.46, + "probability": 0.9561 + }, + { + "start": 15418.5, + "end": 15424.22, + "probability": 0.753 + }, + { + "start": 15424.28, + "end": 15425.16, + "probability": 0.8527 + }, + { + "start": 15427.8, + "end": 15428.5, + "probability": 0.7781 + }, + { + "start": 15436.16, + "end": 15439.0, + "probability": 0.7866 + }, + { + "start": 15439.54, + "end": 15442.12, + "probability": 0.7204 + }, + { + "start": 15442.26, + "end": 15442.82, + "probability": 0.357 + }, + { + "start": 15442.82, + "end": 15443.08, + "probability": 0.5678 + }, + { + "start": 15443.88, + "end": 15444.9, + "probability": 0.6794 + }, + { + "start": 15445.72, + "end": 15448.8, + "probability": 0.856 + }, + { + "start": 15449.6, + "end": 15449.96, + "probability": 0.5184 + }, + { + "start": 15450.32, + "end": 15453.42, + "probability": 0.4491 + }, + { + "start": 15454.28, + "end": 15456.92, + "probability": 0.7883 + }, + { + "start": 15457.54, + "end": 15458.06, + "probability": 0.6966 + }, + { + "start": 15458.74, + "end": 15459.98, + "probability": 0.9808 + }, + { + "start": 15460.76, + "end": 15463.1, + "probability": 0.9232 + }, + { + "start": 15463.4, + "end": 15464.5, + "probability": 0.5857 + }, + { + "start": 15464.66, + "end": 15465.42, + "probability": 0.6922 + }, + { + "start": 15465.8, + "end": 15467.66, + "probability": 0.8449 + }, + { + "start": 15468.26, + "end": 15470.41, + "probability": 0.9468 + }, + { + "start": 15470.62, + "end": 15476.2, + "probability": 0.9265 + }, + { + "start": 15476.36, + "end": 15477.06, + "probability": 0.7477 + }, + { + "start": 15477.62, + "end": 15479.54, + "probability": 0.969 + }, + { + "start": 15479.9, + "end": 15481.1, + "probability": 0.8353 + }, + { + "start": 15481.26, + "end": 15481.9, + "probability": 0.5806 + }, + { + "start": 15482.4, + "end": 15482.92, + "probability": 0.8351 + }, + { + "start": 15482.98, + "end": 15483.92, + "probability": 0.694 + }, + { + "start": 15483.94, + "end": 15484.68, + "probability": 0.7867 + }, + { + "start": 15485.04, + "end": 15486.34, + "probability": 0.9878 + }, + { + "start": 15486.74, + "end": 15487.16, + "probability": 0.4751 + }, + { + "start": 15487.24, + "end": 15490.78, + "probability": 0.8842 + }, + { + "start": 15490.78, + "end": 15493.9, + "probability": 0.9364 + }, + { + "start": 15494.12, + "end": 15495.34, + "probability": 0.8896 + }, + { + "start": 15495.42, + "end": 15495.62, + "probability": 0.7417 + }, + { + "start": 15496.14, + "end": 15498.5, + "probability": 0.5991 + }, + { + "start": 15498.72, + "end": 15501.7, + "probability": 0.9595 + }, + { + "start": 15503.56, + "end": 15504.42, + "probability": 0.0192 + }, + { + "start": 15506.48, + "end": 15507.62, + "probability": 0.1661 + }, + { + "start": 15509.64, + "end": 15510.04, + "probability": 0.4875 + }, + { + "start": 15510.9, + "end": 15511.7, + "probability": 0.8525 + }, + { + "start": 15512.88, + "end": 15513.2, + "probability": 0.8784 + }, + { + "start": 15514.42, + "end": 15516.22, + "probability": 0.7252 + }, + { + "start": 15517.46, + "end": 15518.22, + "probability": 0.7327 + }, + { + "start": 15520.24, + "end": 15520.68, + "probability": 0.9679 + }, + { + "start": 15521.78, + "end": 15522.78, + "probability": 0.8522 + }, + { + "start": 15526.3, + "end": 15526.86, + "probability": 0.9466 + }, + { + "start": 15529.4, + "end": 15530.32, + "probability": 0.9136 + }, + { + "start": 15531.7, + "end": 15534.1, + "probability": 0.9507 + }, + { + "start": 15535.56, + "end": 15536.0, + "probability": 0.6766 + }, + { + "start": 15537.52, + "end": 15538.72, + "probability": 0.6797 + }, + { + "start": 15539.26, + "end": 15540.68, + "probability": 0.6184 + }, + { + "start": 15541.78, + "end": 15543.12, + "probability": 0.5603 + }, + { + "start": 15549.48, + "end": 15549.84, + "probability": 0.7603 + }, + { + "start": 15551.54, + "end": 15552.44, + "probability": 0.5823 + }, + { + "start": 15553.88, + "end": 15554.36, + "probability": 0.78 + }, + { + "start": 15555.66, + "end": 15556.38, + "probability": 0.908 + }, + { + "start": 15558.12, + "end": 15558.94, + "probability": 0.6562 + }, + { + "start": 15561.6, + "end": 15562.52, + "probability": 0.9143 + }, + { + "start": 15563.68, + "end": 15565.28, + "probability": 0.7831 + }, + { + "start": 15566.18, + "end": 15567.02, + "probability": 0.9279 + }, + { + "start": 15568.22, + "end": 15568.8, + "probability": 0.9486 + }, + { + "start": 15570.9, + "end": 15571.88, + "probability": 0.9509 + }, + { + "start": 15573.34, + "end": 15574.14, + "probability": 0.9722 + }, + { + "start": 15575.3, + "end": 15576.28, + "probability": 0.7949 + }, + { + "start": 15577.12, + "end": 15578.16, + "probability": 0.7936 + }, + { + "start": 15579.52, + "end": 15580.7, + "probability": 0.7931 + }, + { + "start": 15581.84, + "end": 15584.14, + "probability": 0.8589 + }, + { + "start": 15585.36, + "end": 15586.1, + "probability": 0.635 + }, + { + "start": 15587.7, + "end": 15588.5, + "probability": 0.6034 + }, + { + "start": 15589.78, + "end": 15590.9, + "probability": 0.9784 + }, + { + "start": 15592.1, + "end": 15592.9, + "probability": 0.8848 + }, + { + "start": 15594.4, + "end": 15596.5, + "probability": 0.8385 + }, + { + "start": 15599.04, + "end": 15599.96, + "probability": 0.8555 + }, + { + "start": 15600.94, + "end": 15601.5, + "probability": 0.5883 + }, + { + "start": 15603.28, + "end": 15604.24, + "probability": 0.9746 + }, + { + "start": 15605.08, + "end": 15605.54, + "probability": 0.9658 + }, + { + "start": 15607.72, + "end": 15608.44, + "probability": 0.4247 + }, + { + "start": 15609.54, + "end": 15610.82, + "probability": 0.9661 + }, + { + "start": 15611.78, + "end": 15612.76, + "probability": 0.8947 + }, + { + "start": 15613.54, + "end": 15615.14, + "probability": 0.8947 + }, + { + "start": 15616.06, + "end": 15617.18, + "probability": 0.894 + }, + { + "start": 15618.72, + "end": 15619.36, + "probability": 0.5254 + }, + { + "start": 15620.72, + "end": 15621.42, + "probability": 0.9278 + }, + { + "start": 15622.46, + "end": 15623.52, + "probability": 0.9862 + }, + { + "start": 15624.68, + "end": 15626.1, + "probability": 0.7394 + }, + { + "start": 15627.02, + "end": 15627.8, + "probability": 0.9426 + }, + { + "start": 15629.28, + "end": 15630.26, + "probability": 0.9384 + }, + { + "start": 15631.62, + "end": 15632.12, + "probability": 0.9302 + }, + { + "start": 15634.4, + "end": 15635.26, + "probability": 0.7943 + }, + { + "start": 15636.42, + "end": 15636.82, + "probability": 0.6226 + }, + { + "start": 15637.92, + "end": 15638.52, + "probability": 0.807 + }, + { + "start": 15639.3, + "end": 15639.62, + "probability": 0.8936 + }, + { + "start": 15641.14, + "end": 15642.1, + "probability": 0.674 + }, + { + "start": 15643.14, + "end": 15643.86, + "probability": 0.5696 + }, + { + "start": 15645.24, + "end": 15646.2, + "probability": 0.7968 + }, + { + "start": 15649.24, + "end": 15650.26, + "probability": 0.8927 + }, + { + "start": 15651.76, + "end": 15652.72, + "probability": 0.6963 + }, + { + "start": 15653.54, + "end": 15654.24, + "probability": 0.9415 + }, + { + "start": 15655.4, + "end": 15656.52, + "probability": 0.8731 + }, + { + "start": 15662.5, + "end": 15663.3, + "probability": 0.4701 + }, + { + "start": 15664.26, + "end": 15665.1, + "probability": 0.6695 + }, + { + "start": 15666.56, + "end": 15667.28, + "probability": 0.83 + }, + { + "start": 15669.24, + "end": 15669.92, + "probability": 0.726 + }, + { + "start": 15670.78, + "end": 15671.84, + "probability": 0.821 + }, + { + "start": 15672.88, + "end": 15673.84, + "probability": 0.9421 + }, + { + "start": 15674.36, + "end": 15675.4, + "probability": 0.9603 + }, + { + "start": 15676.42, + "end": 15676.84, + "probability": 0.9902 + }, + { + "start": 15678.14, + "end": 15678.98, + "probability": 0.8962 + }, + { + "start": 15680.3, + "end": 15680.98, + "probability": 0.9644 + }, + { + "start": 15683.3, + "end": 15684.14, + "probability": 0.8514 + }, + { + "start": 15686.82, + "end": 15688.5, + "probability": 0.9812 + }, + { + "start": 15689.16, + "end": 15689.9, + "probability": 0.9693 + }, + { + "start": 15692.58, + "end": 15693.38, + "probability": 0.5903 + }, + { + "start": 15696.42, + "end": 15697.56, + "probability": 0.5925 + }, + { + "start": 15699.34, + "end": 15700.18, + "probability": 0.6118 + }, + { + "start": 15701.42, + "end": 15702.28, + "probability": 0.7631 + }, + { + "start": 15703.46, + "end": 15704.4, + "probability": 0.9045 + }, + { + "start": 15705.92, + "end": 15706.96, + "probability": 0.9449 + }, + { + "start": 15708.38, + "end": 15708.76, + "probability": 0.5846 + }, + { + "start": 15709.9, + "end": 15710.78, + "probability": 0.7324 + }, + { + "start": 15711.36, + "end": 15711.88, + "probability": 0.9948 + }, + { + "start": 15713.08, + "end": 15714.06, + "probability": 0.9807 + }, + { + "start": 15715.06, + "end": 15715.58, + "probability": 0.9736 + }, + { + "start": 15717.28, + "end": 15718.48, + "probability": 0.9801 + }, + { + "start": 15720.48, + "end": 15720.96, + "probability": 0.9834 + }, + { + "start": 15722.76, + "end": 15723.7, + "probability": 0.7221 + }, + { + "start": 15724.26, + "end": 15725.14, + "probability": 0.708 + }, + { + "start": 15726.16, + "end": 15727.18, + "probability": 0.607 + }, + { + "start": 15727.72, + "end": 15728.3, + "probability": 0.7364 + }, + { + "start": 15730.1, + "end": 15731.0, + "probability": 0.777 + }, + { + "start": 15731.96, + "end": 15732.36, + "probability": 0.9617 + }, + { + "start": 15733.46, + "end": 15734.86, + "probability": 0.4989 + }, + { + "start": 15736.1, + "end": 15738.84, + "probability": 0.9374 + }, + { + "start": 15739.66, + "end": 15740.54, + "probability": 0.9725 + }, + { + "start": 15741.48, + "end": 15742.7, + "probability": 0.9368 + }, + { + "start": 15744.36, + "end": 15745.06, + "probability": 0.927 + }, + { + "start": 15746.32, + "end": 15747.02, + "probability": 0.5784 + }, + { + "start": 15748.26, + "end": 15749.04, + "probability": 0.736 + }, + { + "start": 15750.16, + "end": 15751.04, + "probability": 0.6162 + }, + { + "start": 15752.5, + "end": 15754.8, + "probability": 0.5711 + }, + { + "start": 15756.52, + "end": 15757.44, + "probability": 0.8446 + }, + { + "start": 15759.44, + "end": 15760.2, + "probability": 0.8275 + }, + { + "start": 15761.72, + "end": 15762.56, + "probability": 0.9329 + }, + { + "start": 15763.38, + "end": 15764.1, + "probability": 0.8457 + }, + { + "start": 15765.3, + "end": 15766.42, + "probability": 0.8969 + }, + { + "start": 15767.78, + "end": 15768.22, + "probability": 0.8796 + }, + { + "start": 15770.08, + "end": 15771.06, + "probability": 0.6956 + }, + { + "start": 15771.82, + "end": 15772.3, + "probability": 0.9092 + }, + { + "start": 15773.52, + "end": 15774.36, + "probability": 0.976 + }, + { + "start": 15775.56, + "end": 15777.14, + "probability": 0.3605 + }, + { + "start": 15779.18, + "end": 15779.96, + "probability": 0.638 + }, + { + "start": 15781.64, + "end": 15782.5, + "probability": 0.7432 + }, + { + "start": 15783.5, + "end": 15784.18, + "probability": 0.6948 + }, + { + "start": 15785.8, + "end": 15786.58, + "probability": 0.7444 + }, + { + "start": 15788.5, + "end": 15789.48, + "probability": 0.7228 + }, + { + "start": 15791.5, + "end": 15792.36, + "probability": 0.8775 + }, + { + "start": 15794.35, + "end": 15796.42, + "probability": 0.9512 + }, + { + "start": 15797.14, + "end": 15798.2, + "probability": 0.9712 + }, + { + "start": 15799.66, + "end": 15800.22, + "probability": 0.9951 + }, + { + "start": 15801.3, + "end": 15802.0, + "probability": 0.7932 + }, + { + "start": 15803.46, + "end": 15804.22, + "probability": 0.7493 + }, + { + "start": 15805.72, + "end": 15806.26, + "probability": 0.9849 + }, + { + "start": 15808.28, + "end": 15809.44, + "probability": 0.4238 + }, + { + "start": 15811.4, + "end": 15811.72, + "probability": 0.6715 + }, + { + "start": 15813.18, + "end": 15813.86, + "probability": 0.7419 + }, + { + "start": 15814.8, + "end": 15816.86, + "probability": 0.8093 + }, + { + "start": 15817.64, + "end": 15818.2, + "probability": 0.7734 + }, + { + "start": 15820.58, + "end": 15821.4, + "probability": 0.6607 + }, + { + "start": 15823.11, + "end": 15825.26, + "probability": 0.8588 + }, + { + "start": 15826.2, + "end": 15827.2, + "probability": 0.8396 + }, + { + "start": 15834.36, + "end": 15835.6, + "probability": 0.7402 + }, + { + "start": 15838.2, + "end": 15840.12, + "probability": 0.59 + }, + { + "start": 15841.46, + "end": 15844.96, + "probability": 0.8437 + }, + { + "start": 15849.46, + "end": 15850.14, + "probability": 0.6351 + }, + { + "start": 15851.44, + "end": 15851.92, + "probability": 0.7557 + }, + { + "start": 15854.42, + "end": 15855.4, + "probability": 0.81 + }, + { + "start": 15856.62, + "end": 15857.24, + "probability": 0.5178 + }, + { + "start": 15858.48, + "end": 15859.34, + "probability": 0.8854 + }, + { + "start": 15860.5, + "end": 15861.2, + "probability": 0.8309 + }, + { + "start": 15862.06, + "end": 15862.78, + "probability": 0.6644 + }, + { + "start": 15864.54, + "end": 15866.28, + "probability": 0.979 + }, + { + "start": 15867.34, + "end": 15868.08, + "probability": 0.9718 + }, + { + "start": 15869.82, + "end": 15871.36, + "probability": 0.7375 + }, + { + "start": 15877.06, + "end": 15877.38, + "probability": 0.7676 + }, + { + "start": 15879.08, + "end": 15881.06, + "probability": 0.7106 + }, + { + "start": 15882.76, + "end": 15883.6, + "probability": 0.5494 + }, + { + "start": 15884.44, + "end": 15885.24, + "probability": 0.8262 + }, + { + "start": 15888.4, + "end": 15888.98, + "probability": 0.9274 + }, + { + "start": 15891.5, + "end": 15892.44, + "probability": 0.6638 + }, + { + "start": 15893.96, + "end": 15895.14, + "probability": 0.4824 + }, + { + "start": 15895.98, + "end": 15896.74, + "probability": 0.8228 + }, + { + "start": 15897.99, + "end": 15900.24, + "probability": 0.9198 + }, + { + "start": 15900.98, + "end": 15901.34, + "probability": 0.7736 + }, + { + "start": 15903.64, + "end": 15904.58, + "probability": 0.5222 + }, + { + "start": 15905.98, + "end": 15906.52, + "probability": 0.6056 + }, + { + "start": 15908.3, + "end": 15909.36, + "probability": 0.823 + }, + { + "start": 15910.52, + "end": 15911.14, + "probability": 0.9731 + }, + { + "start": 15912.7, + "end": 15914.26, + "probability": 0.8322 + }, + { + "start": 15915.62, + "end": 15916.42, + "probability": 0.5567 + }, + { + "start": 15917.98, + "end": 15919.08, + "probability": 0.9575 + }, + { + "start": 15919.94, + "end": 15920.44, + "probability": 0.9845 + }, + { + "start": 15923.16, + "end": 15924.2, + "probability": 0.5583 + }, + { + "start": 15925.86, + "end": 15926.7, + "probability": 0.5573 + }, + { + "start": 15927.92, + "end": 15928.94, + "probability": 0.6062 + }, + { + "start": 15930.38, + "end": 15931.2, + "probability": 0.7656 + }, + { + "start": 15932.96, + "end": 15934.14, + "probability": 0.8561 + }, + { + "start": 15935.22, + "end": 15935.8, + "probability": 0.9915 + }, + { + "start": 15936.7, + "end": 15937.78, + "probability": 0.5524 + }, + { + "start": 15938.5, + "end": 15939.0, + "probability": 0.9564 + }, + { + "start": 15940.32, + "end": 15941.3, + "probability": 0.8045 + }, + { + "start": 15942.1, + "end": 15942.74, + "probability": 0.7319 + }, + { + "start": 15944.14, + "end": 15944.92, + "probability": 0.7258 + }, + { + "start": 15946.18, + "end": 15946.52, + "probability": 0.5991 + }, + { + "start": 15947.68, + "end": 15948.66, + "probability": 0.7373 + }, + { + "start": 15954.08, + "end": 15955.32, + "probability": 0.6944 + }, + { + "start": 15957.66, + "end": 15958.4, + "probability": 0.5354 + }, + { + "start": 15959.62, + "end": 15959.96, + "probability": 0.5874 + }, + { + "start": 15960.7, + "end": 15961.46, + "probability": 0.8811 + }, + { + "start": 15962.44, + "end": 15964.28, + "probability": 0.9334 + }, + { + "start": 15964.86, + "end": 15965.56, + "probability": 0.9294 + }, + { + "start": 15966.68, + "end": 15969.0, + "probability": 0.7576 + }, + { + "start": 15969.82, + "end": 15970.22, + "probability": 0.9806 + }, + { + "start": 15971.76, + "end": 15972.38, + "probability": 0.6105 + }, + { + "start": 15972.96, + "end": 15974.2, + "probability": 0.9845 + }, + { + "start": 15975.32, + "end": 15976.1, + "probability": 0.9246 + }, + { + "start": 15977.88, + "end": 15979.86, + "probability": 0.6031 + }, + { + "start": 15981.0, + "end": 15981.34, + "probability": 0.9888 + }, + { + "start": 15982.0, + "end": 15982.96, + "probability": 0.9666 + }, + { + "start": 15984.0, + "end": 15984.38, + "probability": 0.528 + }, + { + "start": 15985.14, + "end": 15985.94, + "probability": 0.6807 + }, + { + "start": 15986.9, + "end": 15987.24, + "probability": 0.9469 + }, + { + "start": 15989.28, + "end": 15990.04, + "probability": 0.8094 + }, + { + "start": 15991.04, + "end": 15991.68, + "probability": 0.7529 + }, + { + "start": 15993.32, + "end": 15993.94, + "probability": 0.5767 + }, + { + "start": 15996.24, + "end": 15997.32, + "probability": 0.9615 + }, + { + "start": 15998.18, + "end": 15998.92, + "probability": 0.936 + }, + { + "start": 15999.62, + "end": 16000.56, + "probability": 0.9702 + }, + { + "start": 16001.74, + "end": 16002.64, + "probability": 0.7348 + }, + { + "start": 16003.9, + "end": 16004.14, + "probability": 0.9253 + }, + { + "start": 16004.88, + "end": 16005.14, + "probability": 0.9957 + }, + { + "start": 16006.04, + "end": 16007.0, + "probability": 0.9644 + }, + { + "start": 16008.4, + "end": 16009.24, + "probability": 0.9718 + }, + { + "start": 16009.88, + "end": 16010.78, + "probability": 0.8164 + }, + { + "start": 16011.9, + "end": 16012.16, + "probability": 0.9832 + }, + { + "start": 16013.72, + "end": 16014.75, + "probability": 0.6259 + }, + { + "start": 16015.68, + "end": 16016.0, + "probability": 0.7581 + }, + { + "start": 16017.4, + "end": 16018.34, + "probability": 0.8563 + }, + { + "start": 16019.3, + "end": 16021.8, + "probability": 0.7807 + }, + { + "start": 16023.14, + "end": 16023.46, + "probability": 0.5723 + }, + { + "start": 16024.52, + "end": 16025.36, + "probability": 0.9362 + }, + { + "start": 16026.26, + "end": 16028.42, + "probability": 0.9181 + }, + { + "start": 16029.32, + "end": 16031.44, + "probability": 0.9966 + }, + { + "start": 16032.76, + "end": 16033.14, + "probability": 0.967 + }, + { + "start": 16033.86, + "end": 16034.54, + "probability": 0.9869 + }, + { + "start": 16035.76, + "end": 16036.04, + "probability": 0.9568 + }, + { + "start": 16036.72, + "end": 16037.64, + "probability": 0.9706 + }, + { + "start": 16039.34, + "end": 16040.3, + "probability": 0.9286 + }, + { + "start": 16041.4, + "end": 16042.64, + "probability": 0.4523 + }, + { + "start": 16043.54, + "end": 16043.78, + "probability": 0.59 + }, + { + "start": 16045.28, + "end": 16047.2, + "probability": 0.738 + }, + { + "start": 16047.28, + "end": 16050.0, + "probability": 0.6752 + }, + { + "start": 16050.32, + "end": 16052.82, + "probability": 0.3419 + }, + { + "start": 16052.84, + "end": 16054.38, + "probability": 0.7312 + }, + { + "start": 16055.6, + "end": 16056.18, + "probability": 0.5153 + }, + { + "start": 16056.94, + "end": 16058.82, + "probability": 0.8401 + }, + { + "start": 16060.0, + "end": 16060.58, + "probability": 0.7213 + }, + { + "start": 16061.22, + "end": 16062.0, + "probability": 0.7236 + }, + { + "start": 16063.76, + "end": 16064.3, + "probability": 0.5725 + }, + { + "start": 16066.24, + "end": 16066.72, + "probability": 0.4864 + }, + { + "start": 16069.24, + "end": 16069.88, + "probability": 0.445 + }, + { + "start": 16070.9, + "end": 16071.52, + "probability": 0.5084 + }, + { + "start": 16072.42, + "end": 16073.52, + "probability": 0.8865 + }, + { + "start": 16074.52, + "end": 16075.16, + "probability": 0.8591 + }, + { + "start": 16076.06, + "end": 16076.94, + "probability": 0.7465 + }, + { + "start": 16077.7, + "end": 16079.54, + "probability": 0.7618 + }, + { + "start": 16080.72, + "end": 16081.38, + "probability": 0.951 + }, + { + "start": 16083.72, + "end": 16084.74, + "probability": 0.5613 + }, + { + "start": 16085.8, + "end": 16087.88, + "probability": 0.9738 + }, + { + "start": 16088.5, + "end": 16089.12, + "probability": 0.9135 + }, + { + "start": 16090.06, + "end": 16091.0, + "probability": 0.8741 + }, + { + "start": 16091.86, + "end": 16093.8, + "probability": 0.6798 + }, + { + "start": 16094.94, + "end": 16095.52, + "probability": 0.671 + }, + { + "start": 16096.24, + "end": 16096.96, + "probability": 0.781 + }, + { + "start": 16097.92, + "end": 16098.56, + "probability": 0.902 + }, + { + "start": 16099.4, + "end": 16100.6, + "probability": 0.7882 + }, + { + "start": 16101.36, + "end": 16102.22, + "probability": 0.8844 + }, + { + "start": 16103.08, + "end": 16106.78, + "probability": 0.8983 + }, + { + "start": 16107.76, + "end": 16111.2, + "probability": 0.5766 + }, + { + "start": 16112.06, + "end": 16112.58, + "probability": 0.4969 + }, + { + "start": 16113.36, + "end": 16114.2, + "probability": 0.7273 + }, + { + "start": 16115.2, + "end": 16115.74, + "probability": 0.723 + }, + { + "start": 16116.26, + "end": 16117.08, + "probability": 0.8868 + }, + { + "start": 16118.3, + "end": 16118.92, + "probability": 0.8606 + }, + { + "start": 16119.56, + "end": 16120.36, + "probability": 0.9228 + }, + { + "start": 16121.06, + "end": 16121.72, + "probability": 0.9717 + }, + { + "start": 16122.66, + "end": 16123.66, + "probability": 0.3381 + }, + { + "start": 16124.62, + "end": 16125.32, + "probability": 0.5993 + }, + { + "start": 16125.98, + "end": 16126.72, + "probability": 0.9292 + }, + { + "start": 16127.54, + "end": 16128.14, + "probability": 0.9453 + }, + { + "start": 16128.96, + "end": 16129.74, + "probability": 0.9303 + }, + { + "start": 16130.68, + "end": 16133.72, + "probability": 0.688 + }, + { + "start": 16134.66, + "end": 16135.06, + "probability": 0.125 + }, + { + "start": 16136.38, + "end": 16138.88, + "probability": 0.6354 + }, + { + "start": 16139.54, + "end": 16140.12, + "probability": 0.7161 + }, + { + "start": 16142.3, + "end": 16143.28, + "probability": 0.9185 + }, + { + "start": 16143.92, + "end": 16144.72, + "probability": 0.6577 + }, + { + "start": 16145.88, + "end": 16146.7, + "probability": 0.6653 + }, + { + "start": 16147.32, + "end": 16147.92, + "probability": 0.851 + }, + { + "start": 16148.86, + "end": 16149.8, + "probability": 0.8703 + }, + { + "start": 16150.36, + "end": 16150.9, + "probability": 0.8916 + }, + { + "start": 16151.76, + "end": 16152.5, + "probability": 0.9567 + }, + { + "start": 16153.26, + "end": 16153.86, + "probability": 0.9474 + }, + { + "start": 16155.12, + "end": 16155.76, + "probability": 0.7707 + }, + { + "start": 16156.42, + "end": 16157.08, + "probability": 0.4974 + }, + { + "start": 16158.88, + "end": 16160.28, + "probability": 0.8198 + }, + { + "start": 16160.8, + "end": 16161.54, + "probability": 0.73 + }, + { + "start": 16162.36, + "end": 16163.3, + "probability": 0.8866 + }, + { + "start": 16164.06, + "end": 16164.72, + "probability": 0.751 + }, + { + "start": 16166.14, + "end": 16167.58, + "probability": 0.8373 + }, + { + "start": 16168.64, + "end": 16170.88, + "probability": 0.6935 + }, + { + "start": 16171.7, + "end": 16172.46, + "probability": 0.771 + }, + { + "start": 16173.72, + "end": 16174.74, + "probability": 0.7201 + }, + { + "start": 16175.86, + "end": 16176.52, + "probability": 0.5552 + }, + { + "start": 16177.8, + "end": 16178.58, + "probability": 0.7476 + }, + { + "start": 16179.46, + "end": 16180.1, + "probability": 0.6737 + }, + { + "start": 16181.7, + "end": 16182.4, + "probability": 0.915 + }, + { + "start": 16183.3, + "end": 16184.02, + "probability": 0.6183 + }, + { + "start": 16185.1, + "end": 16185.82, + "probability": 0.4467 + }, + { + "start": 16186.76, + "end": 16187.44, + "probability": 0.9273 + }, + { + "start": 16188.28, + "end": 16190.22, + "probability": 0.8787 + }, + { + "start": 16191.02, + "end": 16191.72, + "probability": 0.6921 + }, + { + "start": 16192.36, + "end": 16193.14, + "probability": 0.8124 + }, + { + "start": 16194.42, + "end": 16195.28, + "probability": 0.9688 + }, + { + "start": 16195.86, + "end": 16196.46, + "probability": 0.9694 + }, + { + "start": 16197.46, + "end": 16197.9, + "probability": 0.1466 + }, + { + "start": 16197.9, + "end": 16197.9, + "probability": 0.0368 + }, + { + "start": 16197.9, + "end": 16198.38, + "probability": 0.3348 + }, + { + "start": 16199.24, + "end": 16202.56, + "probability": 0.1185 + }, + { + "start": 16202.92, + "end": 16203.66, + "probability": 0.0122 + }, + { + "start": 16203.7, + "end": 16206.24, + "probability": 0.0367 + }, + { + "start": 16206.26, + "end": 16206.94, + "probability": 0.1399 + }, + { + "start": 16207.0, + "end": 16208.26, + "probability": 0.198 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16331.0, + "end": 16331.0, + "probability": 0.0 + }, + { + "start": 16334.92, + "end": 16340.44, + "probability": 0.9568 + }, + { + "start": 16346.5, + "end": 16351.3, + "probability": 0.6626 + }, + { + "start": 16351.3, + "end": 16355.8, + "probability": 0.7043 + }, + { + "start": 16356.98, + "end": 16357.2, + "probability": 0.0008 + }, + { + "start": 16358.46, + "end": 16358.74, + "probability": 0.0752 + }, + { + "start": 16359.3, + "end": 16362.2, + "probability": 0.283 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.0, + "end": 16477.0, + "probability": 0.0 + }, + { + "start": 16477.16, + "end": 16479.8, + "probability": 0.7839 + }, + { + "start": 16480.32, + "end": 16481.74, + "probability": 0.9462 + }, + { + "start": 16482.58, + "end": 16484.74, + "probability": 0.9806 + }, + { + "start": 16484.96, + "end": 16487.56, + "probability": 0.9548 + }, + { + "start": 16488.3, + "end": 16489.24, + "probability": 0.9722 + }, + { + "start": 16489.34, + "end": 16493.66, + "probability": 0.9644 + }, + { + "start": 16494.48, + "end": 16497.6, + "probability": 0.9983 + }, + { + "start": 16498.24, + "end": 16501.56, + "probability": 0.8498 + }, + { + "start": 16502.1, + "end": 16503.52, + "probability": 0.8319 + }, + { + "start": 16503.62, + "end": 16505.16, + "probability": 0.9779 + }, + { + "start": 16506.62, + "end": 16511.92, + "probability": 0.8654 + }, + { + "start": 16511.94, + "end": 16513.02, + "probability": 0.7478 + }, + { + "start": 16513.46, + "end": 16516.14, + "probability": 0.8875 + }, + { + "start": 16517.24, + "end": 16519.04, + "probability": 0.4934 + }, + { + "start": 16519.12, + "end": 16523.04, + "probability": 0.8511 + }, + { + "start": 16523.32, + "end": 16528.84, + "probability": 0.6837 + }, + { + "start": 16530.28, + "end": 16531.34, + "probability": 0.8434 + }, + { + "start": 16531.82, + "end": 16532.96, + "probability": 0.9568 + }, + { + "start": 16533.06, + "end": 16535.04, + "probability": 0.7323 + }, + { + "start": 16535.62, + "end": 16537.88, + "probability": 0.9008 + }, + { + "start": 16538.78, + "end": 16540.02, + "probability": 0.9166 + }, + { + "start": 16540.14, + "end": 16540.7, + "probability": 0.9803 + }, + { + "start": 16540.72, + "end": 16542.18, + "probability": 0.4921 + }, + { + "start": 16542.26, + "end": 16543.74, + "probability": 0.8813 + }, + { + "start": 16544.62, + "end": 16546.9, + "probability": 0.9803 + }, + { + "start": 16546.9, + "end": 16550.46, + "probability": 0.9899 + }, + { + "start": 16552.02, + "end": 16552.92, + "probability": 0.8507 + }, + { + "start": 16553.5, + "end": 16555.38, + "probability": 0.9773 + }, + { + "start": 16555.96, + "end": 16561.62, + "probability": 0.9863 + }, + { + "start": 16563.18, + "end": 16567.32, + "probability": 0.9957 + }, + { + "start": 16567.32, + "end": 16569.9, + "probability": 0.9243 + }, + { + "start": 16570.66, + "end": 16571.06, + "probability": 0.3817 + }, + { + "start": 16571.66, + "end": 16575.44, + "probability": 0.9969 + }, + { + "start": 16575.52, + "end": 16577.9, + "probability": 0.8097 + }, + { + "start": 16578.66, + "end": 16580.54, + "probability": 0.8643 + }, + { + "start": 16581.14, + "end": 16581.58, + "probability": 0.4498 + }, + { + "start": 16581.82, + "end": 16583.32, + "probability": 0.8695 + }, + { + "start": 16583.54, + "end": 16584.84, + "probability": 0.999 + }, + { + "start": 16585.38, + "end": 16586.6, + "probability": 0.9556 + }, + { + "start": 16588.12, + "end": 16590.3, + "probability": 0.9705 + }, + { + "start": 16590.42, + "end": 16591.24, + "probability": 0.9452 + }, + { + "start": 16591.24, + "end": 16595.2, + "probability": 0.9949 + }, + { + "start": 16595.88, + "end": 16598.54, + "probability": 0.9561 + }, + { + "start": 16599.16, + "end": 16601.66, + "probability": 0.7774 + }, + { + "start": 16602.12, + "end": 16603.94, + "probability": 0.8962 + }, + { + "start": 16604.48, + "end": 16610.98, + "probability": 0.9929 + }, + { + "start": 16610.98, + "end": 16617.32, + "probability": 0.9867 + }, + { + "start": 16617.62, + "end": 16618.92, + "probability": 0.8488 + }, + { + "start": 16619.2, + "end": 16620.66, + "probability": 0.6782 + }, + { + "start": 16621.3, + "end": 16621.96, + "probability": 0.5734 + }, + { + "start": 16623.45, + "end": 16627.94, + "probability": 0.9895 + }, + { + "start": 16628.22, + "end": 16630.12, + "probability": 0.9274 + }, + { + "start": 16630.98, + "end": 16635.3, + "probability": 0.9712 + }, + { + "start": 16635.42, + "end": 16638.12, + "probability": 0.9688 + }, + { + "start": 16638.2, + "end": 16638.7, + "probability": 0.7971 + }, + { + "start": 16639.14, + "end": 16641.08, + "probability": 0.9804 + }, + { + "start": 16641.26, + "end": 16642.86, + "probability": 0.7038 + }, + { + "start": 16651.42, + "end": 16653.48, + "probability": 0.8636 + }, + { + "start": 16654.3, + "end": 16657.04, + "probability": 0.6924 + }, + { + "start": 16657.7, + "end": 16658.3, + "probability": 0.6162 + }, + { + "start": 16658.3, + "end": 16658.88, + "probability": 0.5114 + }, + { + "start": 16659.2, + "end": 16659.72, + "probability": 0.8264 + }, + { + "start": 16660.14, + "end": 16662.3, + "probability": 0.9738 + }, + { + "start": 16662.64, + "end": 16662.8, + "probability": 0.605 + }, + { + "start": 16663.32, + "end": 16663.56, + "probability": 0.7776 + }, + { + "start": 16664.99, + "end": 16665.59, + "probability": 0.2756 + }, + { + "start": 16667.28, + "end": 16667.74, + "probability": 0.9023 + }, + { + "start": 16668.34, + "end": 16670.48, + "probability": 0.6071 + }, + { + "start": 16671.18, + "end": 16674.18, + "probability": 0.7009 + }, + { + "start": 16675.3, + "end": 16678.3, + "probability": 0.9465 + }, + { + "start": 16679.08, + "end": 16682.46, + "probability": 0.993 + }, + { + "start": 16683.22, + "end": 16685.54, + "probability": 0.9471 + }, + { + "start": 16686.08, + "end": 16688.24, + "probability": 0.7363 + }, + { + "start": 16689.02, + "end": 16692.44, + "probability": 0.9959 + }, + { + "start": 16693.28, + "end": 16695.48, + "probability": 0.8409 + }, + { + "start": 16696.04, + "end": 16697.62, + "probability": 0.9823 + }, + { + "start": 16698.14, + "end": 16699.56, + "probability": 0.9944 + }, + { + "start": 16700.2, + "end": 16702.0, + "probability": 0.9985 + }, + { + "start": 16702.66, + "end": 16702.92, + "probability": 0.7877 + }, + { + "start": 16703.18, + "end": 16707.96, + "probability": 0.9959 + }, + { + "start": 16708.54, + "end": 16711.5, + "probability": 0.996 + }, + { + "start": 16712.16, + "end": 16712.38, + "probability": 0.7598 + }, + { + "start": 16714.26, + "end": 16716.44, + "probability": 0.9869 + }, + { + "start": 16717.22, + "end": 16719.64, + "probability": 0.9408 + }, + { + "start": 16720.76, + "end": 16722.38, + "probability": 0.9961 + }, + { + "start": 16723.3, + "end": 16724.2, + "probability": 0.8866 + }, + { + "start": 16724.76, + "end": 16726.76, + "probability": 0.9307 + }, + { + "start": 16727.32, + "end": 16730.16, + "probability": 0.887 + }, + { + "start": 16730.74, + "end": 16732.84, + "probability": 0.9465 + }, + { + "start": 16733.5, + "end": 16736.06, + "probability": 0.9976 + }, + { + "start": 16737.06, + "end": 16739.56, + "probability": 0.8619 + }, + { + "start": 16740.26, + "end": 16740.36, + "probability": 0.3993 + }, + { + "start": 16741.64, + "end": 16742.4, + "probability": 0.0703 + }, + { + "start": 16742.58, + "end": 16744.66, + "probability": 0.418 + }, + { + "start": 16744.82, + "end": 16745.48, + "probability": 0.6174 + }, + { + "start": 16745.5, + "end": 16749.7, + "probability": 0.2756 + }, + { + "start": 16749.84, + "end": 16751.54, + "probability": 0.4489 + }, + { + "start": 16751.68, + "end": 16753.74, + "probability": 0.8716 + }, + { + "start": 16754.3, + "end": 16755.92, + "probability": 0.1211 + }, + { + "start": 16756.56, + "end": 16757.98, + "probability": 0.258 + }, + { + "start": 16758.24, + "end": 16760.22, + "probability": 0.8073 + }, + { + "start": 16760.48, + "end": 16761.78, + "probability": 0.9925 + }, + { + "start": 16762.38, + "end": 16764.3, + "probability": 0.9907 + }, + { + "start": 16770.68, + "end": 16773.61, + "probability": 0.9811 + }, + { + "start": 16774.66, + "end": 16778.64, + "probability": 0.9554 + }, + { + "start": 16779.4, + "end": 16784.1, + "probability": 0.8113 + }, + { + "start": 16784.64, + "end": 16786.18, + "probability": 0.9326 + }, + { + "start": 16786.72, + "end": 16789.03, + "probability": 0.7169 + }, + { + "start": 16789.68, + "end": 16790.44, + "probability": 0.942 + }, + { + "start": 16790.56, + "end": 16794.06, + "probability": 0.9917 + }, + { + "start": 16795.4, + "end": 16797.34, + "probability": 0.9668 + }, + { + "start": 16797.8, + "end": 16800.06, + "probability": 0.9993 + }, + { + "start": 16800.88, + "end": 16803.02, + "probability": 0.809 + }, + { + "start": 16803.84, + "end": 16808.12, + "probability": 0.9683 + }, + { + "start": 16808.12, + "end": 16811.68, + "probability": 0.9993 + }, + { + "start": 16813.42, + "end": 16815.05, + "probability": 0.8087 + }, + { + "start": 16815.48, + "end": 16815.52, + "probability": 0.6011 + }, + { + "start": 16815.56, + "end": 16819.38, + "probability": 0.9702 + }, + { + "start": 16819.92, + "end": 16820.22, + "probability": 0.9387 + }, + { + "start": 16820.24, + "end": 16825.14, + "probability": 0.8174 + }, + { + "start": 16825.88, + "end": 16826.82, + "probability": 0.6298 + }, + { + "start": 16826.92, + "end": 16828.1, + "probability": 0.9107 + }, + { + "start": 16828.34, + "end": 16829.0, + "probability": 0.6394 + }, + { + "start": 16829.18, + "end": 16832.8, + "probability": 0.9125 + }, + { + "start": 16833.5, + "end": 16835.3, + "probability": 0.858 + }, + { + "start": 16836.22, + "end": 16839.1, + "probability": 0.8712 + }, + { + "start": 16839.74, + "end": 16842.4, + "probability": 0.9974 + }, + { + "start": 16842.96, + "end": 16846.41, + "probability": 0.987 + }, + { + "start": 16847.0, + "end": 16847.0, + "probability": 0.3414 + }, + { + "start": 16847.0, + "end": 16847.0, + "probability": 0.3052 + }, + { + "start": 16847.08, + "end": 16847.7, + "probability": 0.5742 + }, + { + "start": 16848.42, + "end": 16851.0, + "probability": 0.9865 + }, + { + "start": 16851.62, + "end": 16854.36, + "probability": 0.9943 + }, + { + "start": 16855.26, + "end": 16856.52, + "probability": 0.9757 + }, + { + "start": 16856.56, + "end": 16861.62, + "probability": 0.9713 + }, + { + "start": 16862.16, + "end": 16863.43, + "probability": 0.9844 + }, + { + "start": 16864.08, + "end": 16866.66, + "probability": 0.975 + }, + { + "start": 16868.06, + "end": 16868.44, + "probability": 0.6936 + }, + { + "start": 16869.96, + "end": 16872.58, + "probability": 0.9422 + }, + { + "start": 16873.26, + "end": 16875.66, + "probability": 0.7878 + }, + { + "start": 16876.94, + "end": 16879.14, + "probability": 0.9034 + }, + { + "start": 16879.52, + "end": 16881.0, + "probability": 0.9374 + }, + { + "start": 16883.36, + "end": 16885.06, + "probability": 0.8514 + }, + { + "start": 16899.42, + "end": 16900.14, + "probability": 0.6914 + }, + { + "start": 16901.2, + "end": 16902.06, + "probability": 0.6337 + }, + { + "start": 16904.62, + "end": 16906.76, + "probability": 0.8923 + }, + { + "start": 16907.38, + "end": 16907.9, + "probability": 0.8561 + }, + { + "start": 16909.7, + "end": 16913.48, + "probability": 0.9959 + }, + { + "start": 16913.48, + "end": 16918.72, + "probability": 0.9795 + }, + { + "start": 16919.46, + "end": 16924.64, + "probability": 0.9925 + }, + { + "start": 16925.2, + "end": 16927.86, + "probability": 0.859 + }, + { + "start": 16928.34, + "end": 16930.9, + "probability": 0.967 + }, + { + "start": 16931.26, + "end": 16932.12, + "probability": 0.951 + }, + { + "start": 16932.56, + "end": 16933.38, + "probability": 0.9672 + }, + { + "start": 16933.66, + "end": 16934.5, + "probability": 0.9482 + }, + { + "start": 16934.8, + "end": 16939.06, + "probability": 0.994 + }, + { + "start": 16939.06, + "end": 16943.76, + "probability": 0.9977 + }, + { + "start": 16944.36, + "end": 16949.06, + "probability": 0.9893 + }, + { + "start": 16951.58, + "end": 16954.94, + "probability": 0.9979 + }, + { + "start": 16954.94, + "end": 16959.38, + "probability": 0.9932 + }, + { + "start": 16959.96, + "end": 16963.18, + "probability": 0.8834 + }, + { + "start": 16964.1, + "end": 16967.82, + "probability": 0.8479 + }, + { + "start": 16967.82, + "end": 16971.62, + "probability": 0.9968 + }, + { + "start": 16972.34, + "end": 16977.44, + "probability": 0.9784 + }, + { + "start": 16978.3, + "end": 16983.38, + "probability": 0.9934 + }, + { + "start": 16984.28, + "end": 16987.7, + "probability": 0.9724 + }, + { + "start": 16987.84, + "end": 16992.32, + "probability": 0.9948 + }, + { + "start": 16993.32, + "end": 16998.22, + "probability": 0.8215 + }, + { + "start": 16998.3, + "end": 16998.98, + "probability": 0.7945 + }, + { + "start": 16999.34, + "end": 17000.88, + "probability": 0.8339 + }, + { + "start": 17001.54, + "end": 17001.96, + "probability": 0.6328 + }, + { + "start": 17003.18, + "end": 17007.44, + "probability": 0.8311 + }, + { + "start": 17008.32, + "end": 17011.88, + "probability": 0.9896 + }, + { + "start": 17012.9, + "end": 17016.7, + "probability": 0.9945 + }, + { + "start": 17016.96, + "end": 17021.18, + "probability": 0.9938 + }, + { + "start": 17022.16, + "end": 17028.54, + "probability": 0.9309 + }, + { + "start": 17028.54, + "end": 17034.06, + "probability": 0.9967 + }, + { + "start": 17034.78, + "end": 17035.66, + "probability": 0.6501 + }, + { + "start": 17035.78, + "end": 17039.76, + "probability": 0.9956 + }, + { + "start": 17039.76, + "end": 17043.26, + "probability": 0.9986 + }, + { + "start": 17044.4, + "end": 17049.82, + "probability": 0.9929 + }, + { + "start": 17050.02, + "end": 17051.18, + "probability": 0.7311 + }, + { + "start": 17051.8, + "end": 17055.66, + "probability": 0.9945 + }, + { + "start": 17056.28, + "end": 17056.84, + "probability": 0.9291 + }, + { + "start": 17058.08, + "end": 17061.36, + "probability": 0.9966 + }, + { + "start": 17061.36, + "end": 17065.7, + "probability": 0.9991 + }, + { + "start": 17066.48, + "end": 17067.96, + "probability": 0.6307 + }, + { + "start": 17069.34, + "end": 17076.36, + "probability": 0.9763 + }, + { + "start": 17076.98, + "end": 17078.9, + "probability": 0.8589 + }, + { + "start": 17079.34, + "end": 17082.1, + "probability": 0.9918 + }, + { + "start": 17082.68, + "end": 17085.08, + "probability": 0.9963 + }, + { + "start": 17085.78, + "end": 17088.64, + "probability": 0.9849 + }, + { + "start": 17089.44, + "end": 17091.72, + "probability": 0.7526 + }, + { + "start": 17092.08, + "end": 17092.26, + "probability": 0.721 + }, + { + "start": 17092.54, + "end": 17094.58, + "probability": 0.968 + }, + { + "start": 17094.62, + "end": 17096.16, + "probability": 0.5614 + }, + { + "start": 17097.48, + "end": 17098.2, + "probability": 0.0377 + }, + { + "start": 17103.24, + "end": 17106.72, + "probability": 0.2473 + }, + { + "start": 17119.44, + "end": 17122.44, + "probability": 0.6767 + }, + { + "start": 17123.26, + "end": 17125.84, + "probability": 0.778 + }, + { + "start": 17125.94, + "end": 17129.06, + "probability": 0.8495 + }, + { + "start": 17129.98, + "end": 17133.04, + "probability": 0.996 + }, + { + "start": 17134.0, + "end": 17137.3, + "probability": 0.896 + }, + { + "start": 17138.12, + "end": 17144.78, + "probability": 0.8003 + }, + { + "start": 17145.16, + "end": 17147.52, + "probability": 0.7826 + }, + { + "start": 17148.14, + "end": 17151.78, + "probability": 0.9148 + }, + { + "start": 17152.94, + "end": 17158.62, + "probability": 0.9863 + }, + { + "start": 17159.34, + "end": 17161.36, + "probability": 0.9307 + }, + { + "start": 17161.48, + "end": 17166.0, + "probability": 0.8559 + }, + { + "start": 17166.5, + "end": 17168.48, + "probability": 0.847 + }, + { + "start": 17170.28, + "end": 17173.14, + "probability": 0.7281 + }, + { + "start": 17174.2, + "end": 17174.48, + "probability": 0.5553 + }, + { + "start": 17174.54, + "end": 17177.06, + "probability": 0.9932 + }, + { + "start": 17177.14, + "end": 17178.1, + "probability": 0.7444 + }, + { + "start": 17178.16, + "end": 17179.12, + "probability": 0.785 + }, + { + "start": 17179.9, + "end": 17183.54, + "probability": 0.9704 + }, + { + "start": 17184.12, + "end": 17190.06, + "probability": 0.7456 + }, + { + "start": 17190.78, + "end": 17193.96, + "probability": 0.9875 + }, + { + "start": 17193.98, + "end": 17194.94, + "probability": 0.8242 + }, + { + "start": 17196.16, + "end": 17196.6, + "probability": 0.5282 + }, + { + "start": 17196.8, + "end": 17200.34, + "probability": 0.9509 + }, + { + "start": 17200.76, + "end": 17201.49, + "probability": 0.8313 + }, + { + "start": 17202.14, + "end": 17203.5, + "probability": 0.8496 + }, + { + "start": 17203.64, + "end": 17204.58, + "probability": 0.6337 + }, + { + "start": 17204.78, + "end": 17205.7, + "probability": 0.9372 + }, + { + "start": 17206.18, + "end": 17207.92, + "probability": 0.9788 + }, + { + "start": 17208.04, + "end": 17209.16, + "probability": 0.4777 + }, + { + "start": 17209.22, + "end": 17210.16, + "probability": 0.5676 + }, + { + "start": 17210.2, + "end": 17210.92, + "probability": 0.8978 + }, + { + "start": 17211.46, + "end": 17214.06, + "probability": 0.9341 + }, + { + "start": 17214.14, + "end": 17215.02, + "probability": 0.6494 + }, + { + "start": 17215.06, + "end": 17216.46, + "probability": 0.7246 + }, + { + "start": 17217.4, + "end": 17219.62, + "probability": 0.9727 + }, + { + "start": 17220.4, + "end": 17221.36, + "probability": 0.9404 + }, + { + "start": 17222.16, + "end": 17224.02, + "probability": 0.6669 + }, + { + "start": 17224.56, + "end": 17227.72, + "probability": 0.5768 + }, + { + "start": 17228.5, + "end": 17233.14, + "probability": 0.9067 + }, + { + "start": 17233.94, + "end": 17234.82, + "probability": 0.4472 + }, + { + "start": 17235.54, + "end": 17236.92, + "probability": 0.9222 + }, + { + "start": 17236.98, + "end": 17237.84, + "probability": 0.7148 + }, + { + "start": 17238.06, + "end": 17239.32, + "probability": 0.6336 + }, + { + "start": 17239.36, + "end": 17240.14, + "probability": 0.7757 + }, + { + "start": 17242.54, + "end": 17247.08, + "probability": 0.9193 + }, + { + "start": 17247.24, + "end": 17247.5, + "probability": 0.5483 + }, + { + "start": 17247.96, + "end": 17249.98, + "probability": 0.8508 + }, + { + "start": 17250.28, + "end": 17251.56, + "probability": 0.4806 + }, + { + "start": 17251.66, + "end": 17253.2, + "probability": 0.47 + }, + { + "start": 17253.32, + "end": 17257.15, + "probability": 0.984 + }, + { + "start": 17258.24, + "end": 17259.98, + "probability": 0.8763 + }, + { + "start": 17260.08, + "end": 17260.98, + "probability": 0.9586 + }, + { + "start": 17261.44, + "end": 17263.08, + "probability": 0.494 + }, + { + "start": 17263.14, + "end": 17264.48, + "probability": 0.8979 + }, + { + "start": 17265.04, + "end": 17268.98, + "probability": 0.9741 + }, + { + "start": 17269.32, + "end": 17275.06, + "probability": 0.9793 + }, + { + "start": 17275.18, + "end": 17276.06, + "probability": 0.8277 + }, + { + "start": 17276.48, + "end": 17278.74, + "probability": 0.9057 + }, + { + "start": 17279.08, + "end": 17280.02, + "probability": 0.5701 + }, + { + "start": 17281.16, + "end": 17283.58, + "probability": 0.734 + }, + { + "start": 17284.12, + "end": 17287.22, + "probability": 0.7935 + }, + { + "start": 17288.54, + "end": 17289.1, + "probability": 0.1962 + }, + { + "start": 17319.44, + "end": 17320.62, + "probability": 0.5159 + }, + { + "start": 17320.88, + "end": 17322.9, + "probability": 0.7038 + }, + { + "start": 17323.06, + "end": 17324.4, + "probability": 0.8143 + }, + { + "start": 17325.32, + "end": 17326.77, + "probability": 0.8208 + }, + { + "start": 17328.02, + "end": 17329.78, + "probability": 0.9845 + }, + { + "start": 17330.16, + "end": 17334.06, + "probability": 0.7998 + }, + { + "start": 17335.66, + "end": 17341.56, + "probability": 0.9583 + }, + { + "start": 17342.3, + "end": 17343.44, + "probability": 0.7369 + }, + { + "start": 17344.98, + "end": 17349.06, + "probability": 0.9864 + }, + { + "start": 17349.14, + "end": 17353.1, + "probability": 0.9905 + }, + { + "start": 17353.78, + "end": 17355.02, + "probability": 0.9771 + }, + { + "start": 17356.9, + "end": 17359.7, + "probability": 0.9018 + }, + { + "start": 17359.7, + "end": 17362.54, + "probability": 0.9471 + }, + { + "start": 17363.42, + "end": 17367.08, + "probability": 0.8943 + }, + { + "start": 17367.9, + "end": 17370.1, + "probability": 0.9779 + }, + { + "start": 17371.58, + "end": 17374.32, + "probability": 0.9846 + }, + { + "start": 17375.2, + "end": 17377.78, + "probability": 0.9872 + }, + { + "start": 17378.62, + "end": 17380.14, + "probability": 0.9786 + }, + { + "start": 17380.22, + "end": 17380.92, + "probability": 0.602 + }, + { + "start": 17381.4, + "end": 17383.48, + "probability": 0.979 + }, + { + "start": 17384.76, + "end": 17385.32, + "probability": 0.6837 + }, + { + "start": 17386.76, + "end": 17389.96, + "probability": 0.9589 + }, + { + "start": 17390.38, + "end": 17392.2, + "probability": 0.8611 + }, + { + "start": 17392.32, + "end": 17393.72, + "probability": 0.5453 + }, + { + "start": 17393.94, + "end": 17394.4, + "probability": 0.6694 + }, + { + "start": 17394.48, + "end": 17395.0, + "probability": 0.6249 + }, + { + "start": 17395.98, + "end": 17397.28, + "probability": 0.7901 + }, + { + "start": 17397.38, + "end": 17398.34, + "probability": 0.6799 + }, + { + "start": 17398.46, + "end": 17399.28, + "probability": 0.3925 + }, + { + "start": 17399.7, + "end": 17400.36, + "probability": 0.9484 + }, + { + "start": 17401.98, + "end": 17406.96, + "probability": 0.9417 + }, + { + "start": 17407.78, + "end": 17410.28, + "probability": 0.8809 + }, + { + "start": 17410.86, + "end": 17413.08, + "probability": 0.8514 + }, + { + "start": 17414.18, + "end": 17417.22, + "probability": 0.8545 + }, + { + "start": 17418.3, + "end": 17421.34, + "probability": 0.9838 + }, + { + "start": 17421.98, + "end": 17424.66, + "probability": 0.9818 + }, + { + "start": 17425.32, + "end": 17428.3, + "probability": 0.9298 + }, + { + "start": 17430.28, + "end": 17433.26, + "probability": 0.9064 + }, + { + "start": 17433.82, + "end": 17437.24, + "probability": 0.85 + }, + { + "start": 17438.54, + "end": 17441.68, + "probability": 0.9391 + }, + { + "start": 17442.56, + "end": 17445.46, + "probability": 0.9951 + }, + { + "start": 17446.08, + "end": 17448.12, + "probability": 0.8622 + }, + { + "start": 17448.74, + "end": 17448.94, + "probability": 0.1273 + }, + { + "start": 17449.02, + "end": 17453.08, + "probability": 0.8964 + }, + { + "start": 17456.58, + "end": 17459.88, + "probability": 0.9385 + }, + { + "start": 17459.9, + "end": 17462.78, + "probability": 0.9963 + }, + { + "start": 17463.98, + "end": 17464.28, + "probability": 0.6762 + }, + { + "start": 17464.4, + "end": 17469.6, + "probability": 0.9894 + }, + { + "start": 17470.68, + "end": 17470.84, + "probability": 0.0195 + }, + { + "start": 17470.96, + "end": 17474.62, + "probability": 0.968 + }, + { + "start": 17474.96, + "end": 17475.58, + "probability": 0.6895 + }, + { + "start": 17475.64, + "end": 17478.26, + "probability": 0.9764 + }, + { + "start": 17479.26, + "end": 17479.44, + "probability": 0.3092 + }, + { + "start": 17480.24, + "end": 17482.04, + "probability": 0.8841 + }, + { + "start": 17482.92, + "end": 17486.6, + "probability": 0.963 + }, + { + "start": 17487.94, + "end": 17490.94, + "probability": 0.9493 + }, + { + "start": 17490.94, + "end": 17494.08, + "probability": 0.9652 + }, + { + "start": 17494.32, + "end": 17495.94, + "probability": 0.989 + }, + { + "start": 17497.0, + "end": 17497.66, + "probability": 0.795 + }, + { + "start": 17498.76, + "end": 17500.94, + "probability": 0.9047 + }, + { + "start": 17501.14, + "end": 17502.72, + "probability": 0.4988 + }, + { + "start": 17503.8, + "end": 17504.62, + "probability": 0.949 + }, + { + "start": 17504.72, + "end": 17505.36, + "probability": 0.7042 + }, + { + "start": 17505.44, + "end": 17506.08, + "probability": 0.8384 + }, + { + "start": 17506.16, + "end": 17509.04, + "probability": 0.9891 + }, + { + "start": 17509.56, + "end": 17513.88, + "probability": 0.9763 + }, + { + "start": 17514.36, + "end": 17516.7, + "probability": 0.7637 + }, + { + "start": 17516.8, + "end": 17518.48, + "probability": 0.9264 + }, + { + "start": 17519.0, + "end": 17521.1, + "probability": 0.7244 + }, + { + "start": 17521.3, + "end": 17522.8, + "probability": 0.9182 + }, + { + "start": 17523.82, + "end": 17527.12, + "probability": 0.8374 + }, + { + "start": 17527.78, + "end": 17529.18, + "probability": 0.8685 + }, + { + "start": 17529.24, + "end": 17533.62, + "probability": 0.9271 + }, + { + "start": 17533.62, + "end": 17537.62, + "probability": 0.9543 + }, + { + "start": 17538.24, + "end": 17540.44, + "probability": 0.8161 + }, + { + "start": 17541.16, + "end": 17541.86, + "probability": 0.9775 + }, + { + "start": 17541.96, + "end": 17542.54, + "probability": 0.9728 + }, + { + "start": 17543.44, + "end": 17545.66, + "probability": 0.8934 + }, + { + "start": 17546.46, + "end": 17548.32, + "probability": 0.9716 + }, + { + "start": 17548.74, + "end": 17550.38, + "probability": 0.8872 + }, + { + "start": 17550.44, + "end": 17553.72, + "probability": 0.9963 + }, + { + "start": 17554.88, + "end": 17556.66, + "probability": 0.9741 + }, + { + "start": 17557.28, + "end": 17558.56, + "probability": 0.6114 + }, + { + "start": 17558.6, + "end": 17562.14, + "probability": 0.9355 + }, + { + "start": 17562.46, + "end": 17565.5, + "probability": 0.989 + }, + { + "start": 17565.5, + "end": 17568.1, + "probability": 0.9962 + }, + { + "start": 17568.74, + "end": 17570.78, + "probability": 0.9929 + }, + { + "start": 17570.84, + "end": 17572.18, + "probability": 0.9566 + }, + { + "start": 17573.44, + "end": 17576.66, + "probability": 0.9308 + }, + { + "start": 17576.66, + "end": 17578.92, + "probability": 0.9871 + }, + { + "start": 17579.04, + "end": 17579.4, + "probability": 0.7906 + }, + { + "start": 17579.92, + "end": 17581.1, + "probability": 0.971 + }, + { + "start": 17581.24, + "end": 17585.82, + "probability": 0.9908 + }, + { + "start": 17586.7, + "end": 17589.28, + "probability": 0.9921 + }, + { + "start": 17590.3, + "end": 17592.52, + "probability": 0.9963 + }, + { + "start": 17592.52, + "end": 17596.38, + "probability": 0.9967 + }, + { + "start": 17596.5, + "end": 17600.96, + "probability": 0.6724 + }, + { + "start": 17601.62, + "end": 17604.32, + "probability": 0.8937 + }, + { + "start": 17604.64, + "end": 17606.48, + "probability": 0.9973 + }, + { + "start": 17607.04, + "end": 17610.16, + "probability": 0.9476 + }, + { + "start": 17610.58, + "end": 17612.45, + "probability": 0.6011 + }, + { + "start": 17613.5, + "end": 17614.26, + "probability": 0.9602 + }, + { + "start": 17616.14, + "end": 17617.54, + "probability": 0.9535 + }, + { + "start": 17619.14, + "end": 17621.54, + "probability": 0.8965 + }, + { + "start": 17621.82, + "end": 17623.9, + "probability": 0.607 + }, + { + "start": 17624.3, + "end": 17627.22, + "probability": 0.6575 + }, + { + "start": 17627.44, + "end": 17629.94, + "probability": 0.9512 + }, + { + "start": 17630.14, + "end": 17632.6, + "probability": 0.9919 + }, + { + "start": 17632.74, + "end": 17636.34, + "probability": 0.9885 + }, + { + "start": 17637.94, + "end": 17638.26, + "probability": 0.6888 + }, + { + "start": 17639.9, + "end": 17641.18, + "probability": 0.9946 + }, + { + "start": 17641.28, + "end": 17641.54, + "probability": 0.3043 + }, + { + "start": 17641.58, + "end": 17642.4, + "probability": 0.7535 + }, + { + "start": 17643.44, + "end": 17645.66, + "probability": 0.9655 + }, + { + "start": 17647.12, + "end": 17648.52, + "probability": 0.974 + }, + { + "start": 17650.96, + "end": 17652.18, + "probability": 0.6995 + }, + { + "start": 17652.54, + "end": 17654.2, + "probability": 0.999 + }, + { + "start": 17655.18, + "end": 17658.1, + "probability": 0.9734 + }, + { + "start": 17658.64, + "end": 17659.74, + "probability": 0.7374 + }, + { + "start": 17661.04, + "end": 17665.42, + "probability": 0.9207 + }, + { + "start": 17666.08, + "end": 17667.4, + "probability": 0.9241 + }, + { + "start": 17668.7, + "end": 17670.88, + "probability": 0.7417 + }, + { + "start": 17670.94, + "end": 17672.44, + "probability": 0.9168 + }, + { + "start": 17672.56, + "end": 17672.64, + "probability": 0.9451 + }, + { + "start": 17673.48, + "end": 17677.02, + "probability": 0.9502 + }, + { + "start": 17678.26, + "end": 17680.02, + "probability": 0.9363 + }, + { + "start": 17680.64, + "end": 17681.38, + "probability": 0.8813 + }, + { + "start": 17681.58, + "end": 17686.52, + "probability": 0.9389 + }, + { + "start": 17686.52, + "end": 17689.4, + "probability": 0.869 + }, + { + "start": 17689.64, + "end": 17692.2, + "probability": 0.9795 + }, + { + "start": 17692.52, + "end": 17694.22, + "probability": 0.9939 + }, + { + "start": 17695.0, + "end": 17697.1, + "probability": 0.9959 + }, + { + "start": 17697.74, + "end": 17698.36, + "probability": 0.9172 + }, + { + "start": 17699.28, + "end": 17701.78, + "probability": 0.9678 + }, + { + "start": 17702.62, + "end": 17704.58, + "probability": 0.9477 + }, + { + "start": 17704.72, + "end": 17709.9, + "probability": 0.8815 + }, + { + "start": 17711.26, + "end": 17713.66, + "probability": 0.9132 + }, + { + "start": 17713.7, + "end": 17716.04, + "probability": 0.8516 + }, + { + "start": 17716.1, + "end": 17717.08, + "probability": 0.9305 + }, + { + "start": 17717.1, + "end": 17718.3, + "probability": 0.9196 + }, + { + "start": 17718.44, + "end": 17719.46, + "probability": 0.1397 + }, + { + "start": 17719.76, + "end": 17722.18, + "probability": 0.895 + }, + { + "start": 17722.22, + "end": 17723.08, + "probability": 0.9325 + }, + { + "start": 17723.84, + "end": 17728.17, + "probability": 0.8694 + }, + { + "start": 17729.84, + "end": 17730.44, + "probability": 0.8955 + }, + { + "start": 17730.54, + "end": 17731.66, + "probability": 0.715 + }, + { + "start": 17731.72, + "end": 17737.14, + "probability": 0.8727 + }, + { + "start": 17737.14, + "end": 17739.68, + "probability": 0.9583 + }, + { + "start": 17741.2, + "end": 17746.9, + "probability": 0.9459 + }, + { + "start": 17747.64, + "end": 17747.64, + "probability": 0.6233 + }, + { + "start": 17747.64, + "end": 17748.8, + "probability": 0.7 + }, + { + "start": 17749.04, + "end": 17749.84, + "probability": 0.5083 + }, + { + "start": 17750.74, + "end": 17752.45, + "probability": 0.8887 + }, + { + "start": 17753.02, + "end": 17753.37, + "probability": 0.0765 + }, + { + "start": 17753.8, + "end": 17756.48, + "probability": 0.7816 + }, + { + "start": 17757.72, + "end": 17759.6, + "probability": 0.9783 + }, + { + "start": 17760.32, + "end": 17760.8, + "probability": 0.6992 + }, + { + "start": 17761.12, + "end": 17762.66, + "probability": 0.9696 + }, + { + "start": 17763.4, + "end": 17764.3, + "probability": 0.8092 + }, + { + "start": 17765.56, + "end": 17766.4, + "probability": 0.5785 + }, + { + "start": 17766.48, + "end": 17767.6, + "probability": 0.723 + }, + { + "start": 17767.66, + "end": 17769.17, + "probability": 0.8978 + }, + { + "start": 17769.28, + "end": 17770.02, + "probability": 0.9062 + }, + { + "start": 17770.14, + "end": 17770.28, + "probability": 0.6031 + }, + { + "start": 17770.42, + "end": 17770.98, + "probability": 0.7405 + }, + { + "start": 17772.0, + "end": 17773.0, + "probability": 0.7148 + }, + { + "start": 17773.02, + "end": 17774.08, + "probability": 0.9211 + }, + { + "start": 17774.2, + "end": 17775.18, + "probability": 0.6948 + }, + { + "start": 17775.18, + "end": 17776.48, + "probability": 0.6775 + }, + { + "start": 17776.48, + "end": 17776.62, + "probability": 0.6785 + }, + { + "start": 17777.38, + "end": 17777.62, + "probability": 0.5625 + }, + { + "start": 17777.66, + "end": 17778.0, + "probability": 0.6658 + }, + { + "start": 17778.1, + "end": 17778.4, + "probability": 0.8306 + }, + { + "start": 17778.74, + "end": 17781.59, + "probability": 0.6315 + }, + { + "start": 17782.38, + "end": 17785.32, + "probability": 0.8494 + }, + { + "start": 17785.52, + "end": 17788.16, + "probability": 0.7156 + }, + { + "start": 17788.72, + "end": 17789.72, + "probability": 0.5254 + }, + { + "start": 17789.76, + "end": 17790.18, + "probability": 0.2329 + }, + { + "start": 17791.24, + "end": 17791.94, + "probability": 0.8646 + }, + { + "start": 17792.64, + "end": 17792.86, + "probability": 0.4885 + }, + { + "start": 17792.88, + "end": 17793.7, + "probability": 0.7695 + }, + { + "start": 17793.78, + "end": 17795.26, + "probability": 0.8886 + }, + { + "start": 17795.5, + "end": 17796.4, + "probability": 0.6855 + }, + { + "start": 17799.34, + "end": 17802.48, + "probability": 0.7365 + }, + { + "start": 17802.74, + "end": 17803.24, + "probability": 0.6638 + }, + { + "start": 17803.7, + "end": 17803.7, + "probability": 0.3155 + }, + { + "start": 17803.7, + "end": 17803.72, + "probability": 0.1701 + }, + { + "start": 17803.72, + "end": 17803.72, + "probability": 0.0909 + }, + { + "start": 17803.72, + "end": 17804.0, + "probability": 0.6788 + }, + { + "start": 17804.04, + "end": 17804.36, + "probability": 0.7663 + }, + { + "start": 17804.5, + "end": 17804.88, + "probability": 0.9495 + }, + { + "start": 17804.96, + "end": 17808.7, + "probability": 0.9669 + }, + { + "start": 17809.28, + "end": 17809.82, + "probability": 0.6501 + }, + { + "start": 17809.84, + "end": 17810.32, + "probability": 0.5788 + }, + { + "start": 17810.46, + "end": 17811.38, + "probability": 0.902 + }, + { + "start": 17826.3, + "end": 17826.8, + "probability": 0.4363 + }, + { + "start": 17826.8, + "end": 17826.8, + "probability": 0.0573 + }, + { + "start": 17826.8, + "end": 17829.18, + "probability": 0.6716 + }, + { + "start": 17829.44, + "end": 17833.12, + "probability": 0.9492 + }, + { + "start": 17833.26, + "end": 17833.8, + "probability": 0.7607 + }, + { + "start": 17834.7, + "end": 17835.1, + "probability": 0.3733 + }, + { + "start": 17835.1, + "end": 17836.16, + "probability": 0.9148 + }, + { + "start": 17836.54, + "end": 17838.1, + "probability": 0.456 + }, + { + "start": 17838.16, + "end": 17838.6, + "probability": 0.7674 + }, + { + "start": 17838.94, + "end": 17843.98, + "probability": 0.6354 + }, + { + "start": 17844.42, + "end": 17846.4, + "probability": 0.9961 + }, + { + "start": 17847.16, + "end": 17849.48, + "probability": 0.9986 + }, + { + "start": 17849.84, + "end": 17850.29, + "probability": 0.73 + }, + { + "start": 17850.54, + "end": 17853.28, + "probability": 0.9497 + }, + { + "start": 17853.36, + "end": 17854.62, + "probability": 0.8984 + }, + { + "start": 17857.42, + "end": 17859.88, + "probability": 0.9303 + }, + { + "start": 17860.14, + "end": 17867.64, + "probability": 0.9739 + }, + { + "start": 17868.68, + "end": 17873.82, + "probability": 0.9896 + }, + { + "start": 17874.32, + "end": 17875.88, + "probability": 0.9985 + }, + { + "start": 17876.32, + "end": 17878.72, + "probability": 0.9533 + }, + { + "start": 17878.72, + "end": 17882.02, + "probability": 0.9984 + }, + { + "start": 17883.12, + "end": 17885.7, + "probability": 0.9641 + }, + { + "start": 17886.42, + "end": 17888.24, + "probability": 0.9867 + }, + { + "start": 17889.17, + "end": 17893.68, + "probability": 0.9681 + }, + { + "start": 17894.26, + "end": 17898.34, + "probability": 0.9954 + }, + { + "start": 17899.1, + "end": 17900.02, + "probability": 0.9849 + }, + { + "start": 17900.76, + "end": 17902.9, + "probability": 0.9593 + }, + { + "start": 17904.16, + "end": 17905.76, + "probability": 0.9139 + }, + { + "start": 17905.98, + "end": 17908.44, + "probability": 0.9821 + }, + { + "start": 17908.78, + "end": 17912.68, + "probability": 0.9969 + }, + { + "start": 17913.32, + "end": 17914.4, + "probability": 0.9413 + }, + { + "start": 17914.48, + "end": 17915.08, + "probability": 0.6247 + }, + { + "start": 17915.16, + "end": 17917.92, + "probability": 0.9112 + }, + { + "start": 17918.5, + "end": 17920.38, + "probability": 0.7361 + }, + { + "start": 17920.46, + "end": 17921.02, + "probability": 0.5682 + }, + { + "start": 17921.92, + "end": 17921.94, + "probability": 0.0673 + }, + { + "start": 17921.94, + "end": 17924.54, + "probability": 0.9734 + }, + { + "start": 17925.06, + "end": 17926.38, + "probability": 0.9509 + }, + { + "start": 17926.42, + "end": 17929.2, + "probability": 0.9535 + }, + { + "start": 17929.74, + "end": 17932.52, + "probability": 0.9802 + }, + { + "start": 17932.54, + "end": 17932.88, + "probability": 0.6848 + }, + { + "start": 17933.58, + "end": 17934.9, + "probability": 0.7208 + }, + { + "start": 17935.28, + "end": 17937.24, + "probability": 0.6341 + }, + { + "start": 17937.84, + "end": 17940.36, + "probability": 0.9932 + }, + { + "start": 17940.36, + "end": 17943.54, + "probability": 0.9901 + }, + { + "start": 17944.46, + "end": 17944.88, + "probability": 0.0002 + }, + { + "start": 17944.88, + "end": 17945.08, + "probability": 0.1751 + }, + { + "start": 17950.36, + "end": 17951.02, + "probability": 0.5857 + }, + { + "start": 17977.28, + "end": 17977.36, + "probability": 0.2703 + }, + { + "start": 17977.36, + "end": 17981.4, + "probability": 0.8136 + }, + { + "start": 17982.26, + "end": 17983.34, + "probability": 0.782 + }, + { + "start": 17984.34, + "end": 17987.48, + "probability": 0.9398 + }, + { + "start": 17987.52, + "end": 17988.42, + "probability": 0.8602 + }, + { + "start": 17988.66, + "end": 17989.46, + "probability": 0.7642 + }, + { + "start": 17990.04, + "end": 17991.42, + "probability": 0.9125 + }, + { + "start": 17992.92, + "end": 17997.14, + "probability": 0.9969 + }, + { + "start": 17998.2, + "end": 17999.0, + "probability": 0.9236 + }, + { + "start": 17999.08, + "end": 18003.08, + "probability": 0.9955 + }, + { + "start": 18004.0, + "end": 18006.18, + "probability": 0.8814 + }, + { + "start": 18007.58, + "end": 18009.18, + "probability": 0.8173 + }, + { + "start": 18010.5, + "end": 18015.66, + "probability": 0.8573 + }, + { + "start": 18017.3, + "end": 18023.98, + "probability": 0.9884 + }, + { + "start": 18024.68, + "end": 18026.2, + "probability": 0.7404 + }, + { + "start": 18026.84, + "end": 18027.54, + "probability": 0.9258 + }, + { + "start": 18028.4, + "end": 18029.88, + "probability": 0.4546 + }, + { + "start": 18029.96, + "end": 18030.28, + "probability": 0.8052 + }, + { + "start": 18030.36, + "end": 18031.0, + "probability": 0.654 + }, + { + "start": 18031.02, + "end": 18032.46, + "probability": 0.9275 + }, + { + "start": 18033.12, + "end": 18035.36, + "probability": 0.9564 + }, + { + "start": 18035.7, + "end": 18038.8, + "probability": 0.9244 + }, + { + "start": 18039.48, + "end": 18041.26, + "probability": 0.9617 + }, + { + "start": 18042.86, + "end": 18045.9, + "probability": 0.9497 + }, + { + "start": 18047.06, + "end": 18049.64, + "probability": 0.9594 + }, + { + "start": 18049.7, + "end": 18050.98, + "probability": 0.8721 + }, + { + "start": 18051.86, + "end": 18054.84, + "probability": 0.9463 + }, + { + "start": 18055.6, + "end": 18059.2, + "probability": 0.9416 + }, + { + "start": 18059.86, + "end": 18062.56, + "probability": 0.989 + }, + { + "start": 18063.06, + "end": 18065.04, + "probability": 0.9377 + }, + { + "start": 18065.68, + "end": 18067.24, + "probability": 0.8355 + }, + { + "start": 18068.24, + "end": 18070.96, + "probability": 0.6519 + }, + { + "start": 18071.48, + "end": 18073.54, + "probability": 0.8063 + }, + { + "start": 18074.4, + "end": 18075.32, + "probability": 0.9943 + }, + { + "start": 18075.8, + "end": 18080.48, + "probability": 0.9348 + }, + { + "start": 18081.56, + "end": 18085.7, + "probability": 0.9961 + }, + { + "start": 18085.7, + "end": 18091.5, + "probability": 0.988 + }, + { + "start": 18091.5, + "end": 18096.78, + "probability": 0.9807 + }, + { + "start": 18097.3, + "end": 18102.94, + "probability": 0.983 + }, + { + "start": 18103.56, + "end": 18106.7, + "probability": 0.7152 + }, + { + "start": 18108.52, + "end": 18109.42, + "probability": 0.9326 + }, + { + "start": 18109.5, + "end": 18112.0, + "probability": 0.9718 + }, + { + "start": 18112.04, + "end": 18113.88, + "probability": 0.8694 + }, + { + "start": 18114.7, + "end": 18115.94, + "probability": 0.7745 + }, + { + "start": 18116.06, + "end": 18119.72, + "probability": 0.9619 + }, + { + "start": 18119.72, + "end": 18123.06, + "probability": 0.9973 + }, + { + "start": 18123.78, + "end": 18125.8, + "probability": 0.9679 + }, + { + "start": 18126.3, + "end": 18127.66, + "probability": 0.9765 + }, + { + "start": 18128.14, + "end": 18128.58, + "probability": 0.2987 + }, + { + "start": 18128.66, + "end": 18129.58, + "probability": 0.5861 + }, + { + "start": 18130.1, + "end": 18132.12, + "probability": 0.986 + }, + { + "start": 18132.9, + "end": 18133.18, + "probability": 0.4431 + }, + { + "start": 18133.68, + "end": 18137.26, + "probability": 0.9773 + }, + { + "start": 18138.34, + "end": 18143.38, + "probability": 0.8518 + }, + { + "start": 18143.84, + "end": 18145.26, + "probability": 0.7504 + }, + { + "start": 18146.22, + "end": 18147.94, + "probability": 0.9974 + }, + { + "start": 18148.1, + "end": 18150.0, + "probability": 0.8949 + }, + { + "start": 18150.5, + "end": 18152.94, + "probability": 0.9899 + }, + { + "start": 18152.94, + "end": 18156.54, + "probability": 0.9932 + }, + { + "start": 18157.42, + "end": 18161.28, + "probability": 0.9798 + }, + { + "start": 18161.74, + "end": 18163.06, + "probability": 0.9894 + }, + { + "start": 18164.18, + "end": 18165.5, + "probability": 0.9462 + }, + { + "start": 18165.64, + "end": 18166.4, + "probability": 0.6197 + }, + { + "start": 18166.44, + "end": 18166.84, + "probability": 0.5499 + }, + { + "start": 18167.2, + "end": 18168.54, + "probability": 0.9976 + }, + { + "start": 18168.98, + "end": 18171.0, + "probability": 0.9794 + }, + { + "start": 18171.58, + "end": 18172.82, + "probability": 0.9897 + }, + { + "start": 18173.7, + "end": 18176.82, + "probability": 0.9876 + }, + { + "start": 18177.38, + "end": 18179.88, + "probability": 0.98 + }, + { + "start": 18180.38, + "end": 18180.88, + "probability": 0.9855 + }, + { + "start": 18180.92, + "end": 18185.7, + "probability": 0.9968 + }, + { + "start": 18186.74, + "end": 18190.92, + "probability": 0.9873 + }, + { + "start": 18190.96, + "end": 18192.14, + "probability": 0.99 + }, + { + "start": 18192.6, + "end": 18193.12, + "probability": 0.7334 + }, + { + "start": 18193.88, + "end": 18196.38, + "probability": 0.9985 + }, + { + "start": 18197.26, + "end": 18198.28, + "probability": 0.6805 + }, + { + "start": 18198.98, + "end": 18202.9, + "probability": 0.9867 + }, + { + "start": 18203.44, + "end": 18206.36, + "probability": 0.9877 + }, + { + "start": 18206.88, + "end": 18208.72, + "probability": 0.9421 + }, + { + "start": 18209.14, + "end": 18211.92, + "probability": 0.9877 + }, + { + "start": 18212.32, + "end": 18213.06, + "probability": 0.4697 + }, + { + "start": 18213.62, + "end": 18214.52, + "probability": 0.8321 + }, + { + "start": 18215.2, + "end": 18218.3, + "probability": 0.9836 + }, + { + "start": 18219.38, + "end": 18223.16, + "probability": 0.9263 + }, + { + "start": 18223.6, + "end": 18226.98, + "probability": 0.829 + }, + { + "start": 18227.44, + "end": 18227.7, + "probability": 0.2565 + }, + { + "start": 18227.7, + "end": 18228.18, + "probability": 0.4651 + }, + { + "start": 18228.5, + "end": 18229.12, + "probability": 0.7685 + }, + { + "start": 18229.8, + "end": 18232.9, + "probability": 0.9467 + }, + { + "start": 18235.52, + "end": 18241.24, + "probability": 0.9362 + }, + { + "start": 18244.24, + "end": 18246.92, + "probability": 0.773 + }, + { + "start": 18248.08, + "end": 18249.12, + "probability": 0.8286 + }, + { + "start": 18249.9, + "end": 18250.5, + "probability": 0.7384 + }, + { + "start": 18251.5, + "end": 18252.34, + "probability": 0.5866 + }, + { + "start": 18252.42, + "end": 18253.38, + "probability": 0.9338 + }, + { + "start": 18257.84, + "end": 18259.72, + "probability": 0.7925 + }, + { + "start": 18260.9, + "end": 18261.74, + "probability": 0.8322 + }, + { + "start": 18261.82, + "end": 18262.04, + "probability": 0.5231 + }, + { + "start": 18262.12, + "end": 18262.86, + "probability": 0.7165 + }, + { + "start": 18263.24, + "end": 18264.52, + "probability": 0.4016 + }, + { + "start": 18264.66, + "end": 18268.96, + "probability": 0.9436 + }, + { + "start": 18269.12, + "end": 18273.92, + "probability": 0.744 + }, + { + "start": 18275.64, + "end": 18276.46, + "probability": 0.9907 + }, + { + "start": 18276.46, + "end": 18280.24, + "probability": 0.9873 + }, + { + "start": 18280.6, + "end": 18282.42, + "probability": 0.6642 + }, + { + "start": 18284.4, + "end": 18286.58, + "probability": 0.9644 + }, + { + "start": 18287.46, + "end": 18290.32, + "probability": 0.9769 + }, + { + "start": 18291.94, + "end": 18294.56, + "probability": 0.8262 + }, + { + "start": 18296.26, + "end": 18297.8, + "probability": 0.5646 + }, + { + "start": 18298.26, + "end": 18303.7, + "probability": 0.7822 + }, + { + "start": 18305.84, + "end": 18307.54, + "probability": 0.7018 + }, + { + "start": 18307.74, + "end": 18310.53, + "probability": 0.6664 + }, + { + "start": 18311.38, + "end": 18312.14, + "probability": 0.5252 + }, + { + "start": 18313.3, + "end": 18314.38, + "probability": 0.5669 + }, + { + "start": 18314.38, + "end": 18316.53, + "probability": 0.9377 + }, + { + "start": 18318.3, + "end": 18322.46, + "probability": 0.9952 + }, + { + "start": 18323.28, + "end": 18324.08, + "probability": 0.7344 + }, + { + "start": 18324.24, + "end": 18325.96, + "probability": 0.7661 + }, + { + "start": 18326.08, + "end": 18327.12, + "probability": 0.9639 + }, + { + "start": 18327.86, + "end": 18330.32, + "probability": 0.9897 + }, + { + "start": 18331.42, + "end": 18333.4, + "probability": 0.699 + }, + { + "start": 18333.82, + "end": 18336.28, + "probability": 0.9531 + }, + { + "start": 18336.92, + "end": 18339.78, + "probability": 0.8591 + }, + { + "start": 18340.26, + "end": 18343.7, + "probability": 0.7995 + }, + { + "start": 18343.72, + "end": 18345.2, + "probability": 0.9937 + }, + { + "start": 18345.56, + "end": 18346.52, + "probability": 0.6978 + }, + { + "start": 18346.54, + "end": 18346.78, + "probability": 0.0437 + }, + { + "start": 18346.86, + "end": 18348.3, + "probability": 0.9272 + }, + { + "start": 18349.16, + "end": 18349.64, + "probability": 0.5647 + }, + { + "start": 18349.78, + "end": 18350.4, + "probability": 0.854 + }, + { + "start": 18350.5, + "end": 18350.9, + "probability": 0.6146 + }, + { + "start": 18351.22, + "end": 18352.22, + "probability": 0.5182 + }, + { + "start": 18352.32, + "end": 18352.8, + "probability": 0.2437 + }, + { + "start": 18355.68, + "end": 18357.5, + "probability": 0.1906 + }, + { + "start": 18358.26, + "end": 18359.02, + "probability": 0.0702 + }, + { + "start": 18360.28, + "end": 18363.0, + "probability": 0.6563 + }, + { + "start": 18363.3, + "end": 18364.2, + "probability": 0.7193 + }, + { + "start": 18366.32, + "end": 18370.5, + "probability": 0.9946 + }, + { + "start": 18370.76, + "end": 18371.65, + "probability": 0.9848 + }, + { + "start": 18371.9, + "end": 18372.84, + "probability": 0.9772 + }, + { + "start": 18373.0, + "end": 18373.58, + "probability": 0.8212 + }, + { + "start": 18374.08, + "end": 18378.98, + "probability": 0.9828 + }, + { + "start": 18380.36, + "end": 18382.92, + "probability": 0.991 + }, + { + "start": 18385.12, + "end": 18388.06, + "probability": 0.9961 + }, + { + "start": 18388.32, + "end": 18389.04, + "probability": 0.8523 + }, + { + "start": 18389.44, + "end": 18390.06, + "probability": 0.3448 + }, + { + "start": 18391.04, + "end": 18393.16, + "probability": 0.999 + }, + { + "start": 18394.04, + "end": 18395.08, + "probability": 0.788 + }, + { + "start": 18395.12, + "end": 18397.4, + "probability": 0.9681 + }, + { + "start": 18397.48, + "end": 18397.98, + "probability": 0.4447 + }, + { + "start": 18399.78, + "end": 18403.26, + "probability": 0.9612 + }, + { + "start": 18404.76, + "end": 18405.42, + "probability": 0.9202 + }, + { + "start": 18405.82, + "end": 18407.12, + "probability": 0.9326 + }, + { + "start": 18407.34, + "end": 18409.16, + "probability": 0.6504 + }, + { + "start": 18409.22, + "end": 18410.36, + "probability": 0.9119 + }, + { + "start": 18410.82, + "end": 18412.6, + "probability": 0.8924 + }, + { + "start": 18413.12, + "end": 18414.34, + "probability": 0.9709 + }, + { + "start": 18414.4, + "end": 18416.96, + "probability": 0.938 + }, + { + "start": 18418.48, + "end": 18421.4, + "probability": 0.9883 + }, + { + "start": 18421.94, + "end": 18425.42, + "probability": 0.9188 + }, + { + "start": 18426.62, + "end": 18428.9, + "probability": 0.9761 + }, + { + "start": 18430.5, + "end": 18433.82, + "probability": 0.9958 + }, + { + "start": 18433.82, + "end": 18437.94, + "probability": 0.9847 + }, + { + "start": 18438.08, + "end": 18442.22, + "probability": 0.9949 + }, + { + "start": 18442.36, + "end": 18443.1, + "probability": 0.7751 + }, + { + "start": 18445.14, + "end": 18446.0, + "probability": 0.6989 + }, + { + "start": 18447.74, + "end": 18450.92, + "probability": 0.9535 + }, + { + "start": 18451.1, + "end": 18453.24, + "probability": 0.9772 + }, + { + "start": 18453.4, + "end": 18457.86, + "probability": 0.988 + }, + { + "start": 18458.06, + "end": 18461.64, + "probability": 0.9823 + }, + { + "start": 18462.34, + "end": 18467.38, + "probability": 0.9961 + }, + { + "start": 18467.94, + "end": 18469.14, + "probability": 0.711 + }, + { + "start": 18469.42, + "end": 18476.3, + "probability": 0.936 + }, + { + "start": 18478.32, + "end": 18479.88, + "probability": 0.9807 + }, + { + "start": 18481.54, + "end": 18482.68, + "probability": 0.9907 + }, + { + "start": 18482.76, + "end": 18483.34, + "probability": 0.8304 + }, + { + "start": 18483.44, + "end": 18484.22, + "probability": 0.7412 + }, + { + "start": 18484.26, + "end": 18486.92, + "probability": 0.9959 + }, + { + "start": 18487.32, + "end": 18488.14, + "probability": 0.9786 + }, + { + "start": 18488.46, + "end": 18496.76, + "probability": 0.9838 + }, + { + "start": 18497.0, + "end": 18500.64, + "probability": 0.9919 + }, + { + "start": 18501.36, + "end": 18502.52, + "probability": 0.5482 + }, + { + "start": 18502.6, + "end": 18503.08, + "probability": 0.7231 + }, + { + "start": 18503.38, + "end": 18505.32, + "probability": 0.836 + }, + { + "start": 18506.27, + "end": 18510.24, + "probability": 0.9893 + }, + { + "start": 18510.92, + "end": 18513.78, + "probability": 0.992 + }, + { + "start": 18513.88, + "end": 18514.72, + "probability": 0.8456 + }, + { + "start": 18515.44, + "end": 18518.56, + "probability": 0.9299 + }, + { + "start": 18519.36, + "end": 18519.7, + "probability": 0.7571 + }, + { + "start": 18519.98, + "end": 18520.18, + "probability": 0.5931 + }, + { + "start": 18520.18, + "end": 18520.84, + "probability": 0.5197 + }, + { + "start": 18521.06, + "end": 18523.08, + "probability": 0.784 + }, + { + "start": 18523.74, + "end": 18524.84, + "probability": 0.6102 + }, + { + "start": 18526.68, + "end": 18528.22, + "probability": 0.3928 + }, + { + "start": 18528.22, + "end": 18528.22, + "probability": 0.0089 + }, + { + "start": 18528.22, + "end": 18528.7, + "probability": 0.4735 + }, + { + "start": 18530.08, + "end": 18531.04, + "probability": 0.6154 + }, + { + "start": 18531.04, + "end": 18531.48, + "probability": 0.7289 + }, + { + "start": 18540.96, + "end": 18541.2, + "probability": 0.2786 + }, + { + "start": 18542.14, + "end": 18544.06, + "probability": 0.8157 + }, + { + "start": 18555.6, + "end": 18557.74, + "probability": 0.6779 + }, + { + "start": 18558.78, + "end": 18560.84, + "probability": 0.9554 + }, + { + "start": 18560.94, + "end": 18561.68, + "probability": 0.8051 + }, + { + "start": 18562.06, + "end": 18562.9, + "probability": 0.9636 + }, + { + "start": 18564.14, + "end": 18568.26, + "probability": 0.9584 + }, + { + "start": 18569.62, + "end": 18573.68, + "probability": 0.8142 + }, + { + "start": 18575.12, + "end": 18577.44, + "probability": 0.9116 + }, + { + "start": 18578.1, + "end": 18580.76, + "probability": 0.7632 + }, + { + "start": 18582.97, + "end": 18584.1, + "probability": 0.7517 + }, + { + "start": 18585.82, + "end": 18588.5, + "probability": 0.8375 + }, + { + "start": 18589.12, + "end": 18593.24, + "probability": 0.9842 + }, + { + "start": 18593.24, + "end": 18596.51, + "probability": 0.8582 + }, + { + "start": 18597.88, + "end": 18600.96, + "probability": 0.8081 + }, + { + "start": 18601.58, + "end": 18603.26, + "probability": 0.9907 + }, + { + "start": 18604.68, + "end": 18606.48, + "probability": 0.9102 + }, + { + "start": 18607.0, + "end": 18608.48, + "probability": 0.8942 + }, + { + "start": 18609.28, + "end": 18613.4, + "probability": 0.8381 + }, + { + "start": 18613.7, + "end": 18617.06, + "probability": 0.9959 + }, + { + "start": 18617.96, + "end": 18619.16, + "probability": 0.9912 + }, + { + "start": 18620.04, + "end": 18624.5, + "probability": 0.9741 + }, + { + "start": 18625.24, + "end": 18627.76, + "probability": 0.9705 + }, + { + "start": 18628.56, + "end": 18630.72, + "probability": 0.9846 + }, + { + "start": 18632.12, + "end": 18632.9, + "probability": 0.9388 + }, + { + "start": 18635.16, + "end": 18636.94, + "probability": 0.9939 + }, + { + "start": 18637.58, + "end": 18639.58, + "probability": 0.9923 + }, + { + "start": 18639.58, + "end": 18643.4, + "probability": 0.9824 + }, + { + "start": 18644.4, + "end": 18646.66, + "probability": 0.9746 + }, + { + "start": 18646.66, + "end": 18648.96, + "probability": 0.9991 + }, + { + "start": 18649.24, + "end": 18649.74, + "probability": 0.8379 + }, + { + "start": 18650.38, + "end": 18654.86, + "probability": 0.9963 + }, + { + "start": 18655.6, + "end": 18656.68, + "probability": 0.9959 + }, + { + "start": 18657.5, + "end": 18658.57, + "probability": 0.9817 + }, + { + "start": 18659.26, + "end": 18660.74, + "probability": 0.8789 + }, + { + "start": 18661.74, + "end": 18664.04, + "probability": 0.8085 + }, + { + "start": 18664.18, + "end": 18665.58, + "probability": 0.9492 + }, + { + "start": 18665.62, + "end": 18667.24, + "probability": 0.4285 + }, + { + "start": 18668.8, + "end": 18671.5, + "probability": 0.9569 + }, + { + "start": 18672.02, + "end": 18674.44, + "probability": 0.9506 + }, + { + "start": 18675.38, + "end": 18676.32, + "probability": 0.752 + }, + { + "start": 18676.42, + "end": 18678.64, + "probability": 0.9401 + }, + { + "start": 18679.32, + "end": 18680.22, + "probability": 0.9158 + }, + { + "start": 18681.18, + "end": 18684.14, + "probability": 0.9889 + }, + { + "start": 18684.76, + "end": 18687.98, + "probability": 0.9532 + }, + { + "start": 18688.72, + "end": 18689.48, + "probability": 0.919 + }, + { + "start": 18690.18, + "end": 18692.54, + "probability": 0.9985 + }, + { + "start": 18693.22, + "end": 18695.54, + "probability": 0.9958 + }, + { + "start": 18695.86, + "end": 18696.06, + "probability": 0.718 + }, + { + "start": 18696.28, + "end": 18696.98, + "probability": 0.5784 + }, + { + "start": 18697.62, + "end": 18698.0, + "probability": 0.9336 + }, + { + "start": 18698.86, + "end": 18699.78, + "probability": 0.7148 + }, + { + "start": 18699.86, + "end": 18701.44, + "probability": 0.9149 + }, + { + "start": 18702.18, + "end": 18705.72, + "probability": 0.9355 + }, + { + "start": 18705.9, + "end": 18706.18, + "probability": 0.6215 + }, + { + "start": 18707.1, + "end": 18707.94, + "probability": 0.4477 + }, + { + "start": 18710.0, + "end": 18711.2, + "probability": 0.8224 + }, + { + "start": 18726.4, + "end": 18726.4, + "probability": 0.4531 + }, + { + "start": 18726.4, + "end": 18726.4, + "probability": 0.0349 + }, + { + "start": 18726.4, + "end": 18726.4, + "probability": 0.2122 + }, + { + "start": 18726.4, + "end": 18726.4, + "probability": 0.1327 + }, + { + "start": 18732.42, + "end": 18733.24, + "probability": 0.77 + }, + { + "start": 18733.76, + "end": 18735.46, + "probability": 0.6025 + }, + { + "start": 18736.3, + "end": 18740.32, + "probability": 0.5719 + }, + { + "start": 18740.32, + "end": 18742.5, + "probability": 0.8821 + }, + { + "start": 18743.04, + "end": 18743.46, + "probability": 0.3477 + }, + { + "start": 18744.24, + "end": 18745.16, + "probability": 0.5074 + }, + { + "start": 18746.02, + "end": 18749.04, + "probability": 0.7339 + }, + { + "start": 18750.06, + "end": 18753.72, + "probability": 0.8625 + }, + { + "start": 18754.5, + "end": 18757.2, + "probability": 0.1485 + }, + { + "start": 18770.92, + "end": 18770.92, + "probability": 0.0743 + }, + { + "start": 18770.92, + "end": 18770.92, + "probability": 0.0252 + }, + { + "start": 18770.92, + "end": 18770.92, + "probability": 0.2326 + }, + { + "start": 18770.92, + "end": 18770.92, + "probability": 0.165 + }, + { + "start": 18770.92, + "end": 18772.14, + "probability": 0.5568 + }, + { + "start": 18772.88, + "end": 18773.78, + "probability": 0.6324 + }, + { + "start": 18776.1, + "end": 18782.9, + "probability": 0.5277 + }, + { + "start": 18783.78, + "end": 18793.08, + "probability": 0.8314 + }, + { + "start": 18793.08, + "end": 18797.84, + "probability": 0.9605 + }, + { + "start": 18799.5, + "end": 18802.74, + "probability": 0.9831 + }, + { + "start": 18804.76, + "end": 18807.63, + "probability": 0.9328 + }, + { + "start": 18809.48, + "end": 18811.0, + "probability": 0.7363 + }, + { + "start": 18812.76, + "end": 18813.12, + "probability": 0.1265 + }, + { + "start": 18813.98, + "end": 18815.34, + "probability": 0.9636 + }, + { + "start": 18816.94, + "end": 18817.68, + "probability": 0.992 + }, + { + "start": 18820.64, + "end": 18822.32, + "probability": 0.8894 + }, + { + "start": 18825.42, + "end": 18827.6, + "probability": 0.9497 + }, + { + "start": 18828.44, + "end": 18830.66, + "probability": 0.9633 + }, + { + "start": 18832.2, + "end": 18834.98, + "probability": 0.9926 + }, + { + "start": 18835.54, + "end": 18837.0, + "probability": 0.9934 + }, + { + "start": 18838.28, + "end": 18840.2, + "probability": 0.9907 + }, + { + "start": 18841.44, + "end": 18842.5, + "probability": 0.9653 + }, + { + "start": 18843.56, + "end": 18844.45, + "probability": 0.9905 + }, + { + "start": 18846.38, + "end": 18847.74, + "probability": 0.9951 + }, + { + "start": 18849.66, + "end": 18851.07, + "probability": 0.9968 + }, + { + "start": 18852.12, + "end": 18854.04, + "probability": 0.9967 + }, + { + "start": 18855.68, + "end": 18857.8, + "probability": 0.9981 + }, + { + "start": 18857.98, + "end": 18862.04, + "probability": 0.9824 + }, + { + "start": 18862.44, + "end": 18862.74, + "probability": 0.0622 + }, + { + "start": 18862.74, + "end": 18865.08, + "probability": 0.8429 + }, + { + "start": 18865.5, + "end": 18867.98, + "probability": 0.9951 + }, + { + "start": 18868.98, + "end": 18873.86, + "probability": 0.9759 + }, + { + "start": 18875.3, + "end": 18878.6, + "probability": 0.9963 + }, + { + "start": 18879.1, + "end": 18880.34, + "probability": 0.9979 + }, + { + "start": 18881.06, + "end": 18882.16, + "probability": 0.9368 + }, + { + "start": 18882.42, + "end": 18887.06, + "probability": 0.9523 + }, + { + "start": 18887.48, + "end": 18888.24, + "probability": 0.9492 + }, + { + "start": 18889.2, + "end": 18893.8, + "probability": 0.9638 + }, + { + "start": 18893.8, + "end": 18896.86, + "probability": 0.9678 + }, + { + "start": 18898.9, + "end": 18900.36, + "probability": 0.7142 + }, + { + "start": 18900.96, + "end": 18902.74, + "probability": 0.9554 + }, + { + "start": 18903.6, + "end": 18906.88, + "probability": 0.9957 + }, + { + "start": 18907.66, + "end": 18909.18, + "probability": 0.9508 + }, + { + "start": 18909.44, + "end": 18909.94, + "probability": 0.8897 + }, + { + "start": 18910.3, + "end": 18913.06, + "probability": 0.9963 + }, + { + "start": 18913.44, + "end": 18914.78, + "probability": 0.9729 + }, + { + "start": 18915.38, + "end": 18916.16, + "probability": 0.5779 + }, + { + "start": 18916.74, + "end": 18917.62, + "probability": 0.9876 + }, + { + "start": 18918.92, + "end": 18921.52, + "probability": 0.9507 + }, + { + "start": 18921.62, + "end": 18923.0, + "probability": 0.9857 + }, + { + "start": 18923.46, + "end": 18924.34, + "probability": 0.9057 + }, + { + "start": 18924.62, + "end": 18924.98, + "probability": 0.8184 + }, + { + "start": 18925.02, + "end": 18926.2, + "probability": 0.9721 + }, + { + "start": 18926.28, + "end": 18926.76, + "probability": 0.6779 + }, + { + "start": 18927.76, + "end": 18935.02, + "probability": 0.9982 + }, + { + "start": 18935.3, + "end": 18939.82, + "probability": 0.9917 + }, + { + "start": 18940.6, + "end": 18940.98, + "probability": 0.7627 + }, + { + "start": 18942.34, + "end": 18943.22, + "probability": 0.9932 + }, + { + "start": 18943.28, + "end": 18946.76, + "probability": 0.9973 + }, + { + "start": 18947.02, + "end": 18949.18, + "probability": 0.9497 + }, + { + "start": 18950.84, + "end": 18954.84, + "probability": 0.774 + }, + { + "start": 18955.38, + "end": 18956.4, + "probability": 0.9434 + }, + { + "start": 18957.46, + "end": 18960.54, + "probability": 0.9934 + }, + { + "start": 18961.3, + "end": 18962.32, + "probability": 0.9296 + }, + { + "start": 18962.5, + "end": 18963.14, + "probability": 0.8677 + }, + { + "start": 18963.28, + "end": 18967.42, + "probability": 0.9933 + }, + { + "start": 18967.42, + "end": 18970.56, + "probability": 0.9984 + }, + { + "start": 18971.78, + "end": 18973.3, + "probability": 0.9834 + }, + { + "start": 18974.3, + "end": 18975.72, + "probability": 0.9556 + }, + { + "start": 18975.84, + "end": 18976.81, + "probability": 0.9377 + }, + { + "start": 18976.94, + "end": 18978.2, + "probability": 0.7843 + }, + { + "start": 18978.52, + "end": 18978.78, + "probability": 0.5867 + }, + { + "start": 18978.8, + "end": 18981.66, + "probability": 0.9959 + }, + { + "start": 18981.92, + "end": 18982.66, + "probability": 0.4972 + }, + { + "start": 18982.78, + "end": 18983.9, + "probability": 0.9163 + }, + { + "start": 19005.16, + "end": 19005.9, + "probability": 0.6649 + }, + { + "start": 19006.32, + "end": 19008.98, + "probability": 0.6403 + }, + { + "start": 19011.74, + "end": 19013.1, + "probability": 0.9615 + }, + { + "start": 19013.32, + "end": 19020.1, + "probability": 0.9713 + }, + { + "start": 19020.72, + "end": 19024.6, + "probability": 0.9811 + }, + { + "start": 19025.56, + "end": 19028.38, + "probability": 0.9978 + }, + { + "start": 19028.38, + "end": 19031.96, + "probability": 0.9955 + }, + { + "start": 19033.02, + "end": 19036.92, + "probability": 0.9988 + }, + { + "start": 19036.92, + "end": 19041.76, + "probability": 0.9969 + }, + { + "start": 19042.82, + "end": 19043.84, + "probability": 0.8926 + }, + { + "start": 19044.72, + "end": 19045.96, + "probability": 0.9302 + }, + { + "start": 19046.52, + "end": 19050.94, + "probability": 0.8888 + }, + { + "start": 19053.34, + "end": 19054.76, + "probability": 0.9858 + }, + { + "start": 19056.37, + "end": 19060.36, + "probability": 0.8412 + }, + { + "start": 19061.26, + "end": 19069.2, + "probability": 0.6714 + }, + { + "start": 19071.12, + "end": 19076.68, + "probability": 0.9985 + }, + { + "start": 19077.3, + "end": 19079.94, + "probability": 0.9131 + }, + { + "start": 19080.88, + "end": 19085.24, + "probability": 0.9819 + }, + { + "start": 19085.98, + "end": 19086.64, + "probability": 0.7597 + }, + { + "start": 19087.44, + "end": 19095.4, + "probability": 0.987 + }, + { + "start": 19095.5, + "end": 19103.0, + "probability": 0.9829 + }, + { + "start": 19103.74, + "end": 19105.04, + "probability": 0.9038 + }, + { + "start": 19105.78, + "end": 19108.4, + "probability": 0.9886 + }, + { + "start": 19108.98, + "end": 19113.4, + "probability": 0.9867 + }, + { + "start": 19114.18, + "end": 19116.74, + "probability": 0.8712 + }, + { + "start": 19117.28, + "end": 19120.2, + "probability": 0.994 + }, + { + "start": 19121.04, + "end": 19123.62, + "probability": 0.9757 + }, + { + "start": 19124.38, + "end": 19127.76, + "probability": 0.9939 + }, + { + "start": 19127.76, + "end": 19133.26, + "probability": 0.9941 + }, + { + "start": 19134.04, + "end": 19136.4, + "probability": 0.9685 + }, + { + "start": 19136.48, + "end": 19139.16, + "probability": 0.9478 + }, + { + "start": 19139.92, + "end": 19146.62, + "probability": 0.9986 + }, + { + "start": 19147.46, + "end": 19150.62, + "probability": 0.9995 + }, + { + "start": 19151.2, + "end": 19159.08, + "probability": 0.9995 + }, + { + "start": 19159.88, + "end": 19162.04, + "probability": 0.998 + }, + { + "start": 19162.7, + "end": 19163.88, + "probability": 0.83 + }, + { + "start": 19164.64, + "end": 19165.38, + "probability": 0.8956 + }, + { + "start": 19166.16, + "end": 19167.64, + "probability": 0.962 + }, + { + "start": 19169.02, + "end": 19173.68, + "probability": 0.955 + }, + { + "start": 19174.28, + "end": 19178.1, + "probability": 0.984 + }, + { + "start": 19179.04, + "end": 19181.9, + "probability": 0.8707 + }, + { + "start": 19182.78, + "end": 19183.9, + "probability": 0.8336 + }, + { + "start": 19184.6, + "end": 19185.9, + "probability": 0.8846 + }, + { + "start": 19186.5, + "end": 19188.6, + "probability": 0.9836 + }, + { + "start": 19189.2, + "end": 19191.1, + "probability": 0.928 + }, + { + "start": 19191.82, + "end": 19197.46, + "probability": 0.9954 + }, + { + "start": 19197.92, + "end": 19200.24, + "probability": 0.9704 + }, + { + "start": 19200.32, + "end": 19200.52, + "probability": 0.3728 + }, + { + "start": 19201.94, + "end": 19201.94, + "probability": 0.507 + }, + { + "start": 19201.94, + "end": 19204.0, + "probability": 0.7095 + }, + { + "start": 19204.02, + "end": 19204.92, + "probability": 0.9511 + }, + { + "start": 19205.48, + "end": 19207.23, + "probability": 0.9888 + }, + { + "start": 19207.76, + "end": 19209.5, + "probability": 0.7852 + }, + { + "start": 19209.66, + "end": 19211.0, + "probability": 0.8027 + }, + { + "start": 19211.04, + "end": 19211.72, + "probability": 0.9753 + }, + { + "start": 19212.02, + "end": 19213.0, + "probability": 0.8906 + }, + { + "start": 19213.14, + "end": 19213.86, + "probability": 0.7861 + }, + { + "start": 19214.4, + "end": 19217.18, + "probability": 0.8988 + }, + { + "start": 19217.72, + "end": 19220.54, + "probability": 0.8857 + }, + { + "start": 19221.08, + "end": 19225.28, + "probability": 0.9973 + }, + { + "start": 19225.92, + "end": 19227.34, + "probability": 0.9622 + }, + { + "start": 19227.84, + "end": 19229.52, + "probability": 0.971 + }, + { + "start": 19229.86, + "end": 19233.08, + "probability": 0.9761 + }, + { + "start": 19233.2, + "end": 19235.66, + "probability": 0.6048 + }, + { + "start": 19235.66, + "end": 19236.15, + "probability": 0.6939 + }, + { + "start": 19260.93, + "end": 19261.21, + "probability": 0.0192 + }, + { + "start": 19261.21, + "end": 19261.73, + "probability": 0.1629 + }, + { + "start": 19261.73, + "end": 19263.29, + "probability": 0.5647 + }, + { + "start": 19263.37, + "end": 19265.51, + "probability": 0.9116 + }, + { + "start": 19265.71, + "end": 19266.59, + "probability": 0.5244 + }, + { + "start": 19267.89, + "end": 19269.59, + "probability": 0.6387 + }, + { + "start": 19270.07, + "end": 19272.53, + "probability": 0.9896 + }, + { + "start": 19272.85, + "end": 19276.05, + "probability": 0.9837 + }, + { + "start": 19276.61, + "end": 19279.19, + "probability": 0.9554 + }, + { + "start": 19280.03, + "end": 19281.65, + "probability": 0.8885 + }, + { + "start": 19282.13, + "end": 19285.45, + "probability": 0.7027 + }, + { + "start": 19286.13, + "end": 19286.59, + "probability": 0.5092 + }, + { + "start": 19286.67, + "end": 19289.75, + "probability": 0.9814 + }, + { + "start": 19290.19, + "end": 19292.61, + "probability": 0.9336 + }, + { + "start": 19293.37, + "end": 19295.23, + "probability": 0.9932 + }, + { + "start": 19295.35, + "end": 19297.25, + "probability": 0.9948 + }, + { + "start": 19297.37, + "end": 19299.61, + "probability": 0.6985 + }, + { + "start": 19299.99, + "end": 19302.39, + "probability": 0.9976 + }, + { + "start": 19302.39, + "end": 19305.61, + "probability": 0.9956 + }, + { + "start": 19305.73, + "end": 19308.37, + "probability": 0.9153 + }, + { + "start": 19308.37, + "end": 19310.63, + "probability": 0.9849 + }, + { + "start": 19310.73, + "end": 19313.45, + "probability": 0.8794 + }, + { + "start": 19313.61, + "end": 19314.93, + "probability": 0.814 + }, + { + "start": 19315.21, + "end": 19317.85, + "probability": 0.9813 + }, + { + "start": 19317.99, + "end": 19320.37, + "probability": 0.9758 + }, + { + "start": 19320.71, + "end": 19322.31, + "probability": 0.897 + }, + { + "start": 19322.85, + "end": 19324.79, + "probability": 0.8335 + }, + { + "start": 19325.65, + "end": 19326.09, + "probability": 0.4907 + }, + { + "start": 19326.09, + "end": 19328.07, + "probability": 0.4251 + }, + { + "start": 19328.29, + "end": 19328.59, + "probability": 0.4817 + }, + { + "start": 19328.85, + "end": 19329.61, + "probability": 0.425 + }, + { + "start": 19329.71, + "end": 19331.49, + "probability": 0.9946 + }, + { + "start": 19331.97, + "end": 19333.65, + "probability": 0.937 + }, + { + "start": 19335.95, + "end": 19336.41, + "probability": 0.2486 + }, + { + "start": 19336.41, + "end": 19336.41, + "probability": 0.4042 + }, + { + "start": 19336.41, + "end": 19339.51, + "probability": 0.8411 + }, + { + "start": 19340.1, + "end": 19341.73, + "probability": 0.9703 + }, + { + "start": 19341.73, + "end": 19343.11, + "probability": 0.9712 + }, + { + "start": 19343.31, + "end": 19343.93, + "probability": 0.3784 + }, + { + "start": 19343.93, + "end": 19344.29, + "probability": 0.4778 + }, + { + "start": 19344.85, + "end": 19345.91, + "probability": 0.9884 + }, + { + "start": 19345.99, + "end": 19347.39, + "probability": 0.7617 + }, + { + "start": 19348.33, + "end": 19351.53, + "probability": 0.9926 + }, + { + "start": 19351.67, + "end": 19354.77, + "probability": 0.8773 + }, + { + "start": 19354.77, + "end": 19358.39, + "probability": 0.995 + }, + { + "start": 19358.57, + "end": 19359.85, + "probability": 0.578 + }, + { + "start": 19359.91, + "end": 19363.53, + "probability": 0.9893 + }, + { + "start": 19364.07, + "end": 19364.19, + "probability": 0.0655 + }, + { + "start": 19364.19, + "end": 19366.17, + "probability": 0.5854 + }, + { + "start": 19367.15, + "end": 19367.15, + "probability": 0.108 + }, + { + "start": 19367.15, + "end": 19368.75, + "probability": 0.7446 + }, + { + "start": 19369.34, + "end": 19371.65, + "probability": 0.5526 + }, + { + "start": 19372.85, + "end": 19373.41, + "probability": 0.2527 + }, + { + "start": 19373.41, + "end": 19373.71, + "probability": 0.1487 + }, + { + "start": 19373.77, + "end": 19376.13, + "probability": 0.7596 + }, + { + "start": 19376.13, + "end": 19376.93, + "probability": 0.4964 + }, + { + "start": 19376.97, + "end": 19381.75, + "probability": 0.0809 + }, + { + "start": 19381.75, + "end": 19381.75, + "probability": 0.0182 + }, + { + "start": 19381.75, + "end": 19381.75, + "probability": 0.0119 + }, + { + "start": 19381.75, + "end": 19381.75, + "probability": 0.2143 + }, + { + "start": 19381.75, + "end": 19382.83, + "probability": 0.4865 + }, + { + "start": 19383.81, + "end": 19387.59, + "probability": 0.9672 + }, + { + "start": 19387.59, + "end": 19390.89, + "probability": 0.6779 + }, + { + "start": 19391.85, + "end": 19392.27, + "probability": 0.6988 + }, + { + "start": 19392.95, + "end": 19395.45, + "probability": 0.9027 + }, + { + "start": 19395.79, + "end": 19398.19, + "probability": 0.9099 + }, + { + "start": 19398.89, + "end": 19399.03, + "probability": 0.1981 + }, + { + "start": 19399.11, + "end": 19399.89, + "probability": 0.6353 + }, + { + "start": 19399.91, + "end": 19401.51, + "probability": 0.8929 + }, + { + "start": 19401.73, + "end": 19402.31, + "probability": 0.9397 + }, + { + "start": 19403.19, + "end": 19407.22, + "probability": 0.9704 + }, + { + "start": 19407.77, + "end": 19412.75, + "probability": 0.9865 + }, + { + "start": 19412.83, + "end": 19415.09, + "probability": 0.9868 + }, + { + "start": 19415.09, + "end": 19416.91, + "probability": 0.9185 + }, + { + "start": 19417.47, + "end": 19419.87, + "probability": 0.9952 + }, + { + "start": 19419.93, + "end": 19422.53, + "probability": 0.9251 + }, + { + "start": 19422.81, + "end": 19424.61, + "probability": 0.8129 + }, + { + "start": 19426.07, + "end": 19426.07, + "probability": 0.4238 + }, + { + "start": 19426.25, + "end": 19429.99, + "probability": 0.9849 + }, + { + "start": 19430.07, + "end": 19431.11, + "probability": 0.9882 + }, + { + "start": 19431.43, + "end": 19432.87, + "probability": 0.6573 + }, + { + "start": 19433.23, + "end": 19434.27, + "probability": 0.9811 + }, + { + "start": 19434.41, + "end": 19438.13, + "probability": 0.9883 + }, + { + "start": 19438.51, + "end": 19440.33, + "probability": 0.9883 + }, + { + "start": 19440.47, + "end": 19443.06, + "probability": 0.927 + }, + { + "start": 19443.31, + "end": 19444.81, + "probability": 0.947 + }, + { + "start": 19445.25, + "end": 19448.39, + "probability": 0.9948 + }, + { + "start": 19448.75, + "end": 19449.97, + "probability": 0.9216 + }, + { + "start": 19450.07, + "end": 19453.31, + "probability": 0.9888 + }, + { + "start": 19453.59, + "end": 19454.47, + "probability": 0.9532 + }, + { + "start": 19454.51, + "end": 19455.03, + "probability": 0.8564 + }, + { + "start": 19455.09, + "end": 19455.77, + "probability": 0.8465 + }, + { + "start": 19455.83, + "end": 19456.23, + "probability": 0.7048 + }, + { + "start": 19456.65, + "end": 19458.07, + "probability": 0.9067 + }, + { + "start": 19458.33, + "end": 19458.95, + "probability": 0.7546 + }, + { + "start": 19459.17, + "end": 19459.81, + "probability": 0.6472 + }, + { + "start": 19460.09, + "end": 19461.85, + "probability": 0.9661 + }, + { + "start": 19462.07, + "end": 19463.05, + "probability": 0.5191 + }, + { + "start": 19463.09, + "end": 19463.51, + "probability": 0.5832 + }, + { + "start": 19463.53, + "end": 19463.62, + "probability": 0.4028 + }, + { + "start": 19464.29, + "end": 19464.69, + "probability": 0.6763 + }, + { + "start": 19465.45, + "end": 19467.33, + "probability": 0.9863 + }, + { + "start": 19467.91, + "end": 19468.25, + "probability": 0.6583 + }, + { + "start": 19469.05, + "end": 19470.69, + "probability": 0.9101 + }, + { + "start": 19471.29, + "end": 19472.41, + "probability": 0.8126 + }, + { + "start": 19473.61, + "end": 19475.17, + "probability": 0.9248 + }, + { + "start": 19476.53, + "end": 19477.41, + "probability": 0.5926 + }, + { + "start": 19478.29, + "end": 19480.37, + "probability": 0.4869 + }, + { + "start": 19480.73, + "end": 19482.87, + "probability": 0.476 + }, + { + "start": 19484.73, + "end": 19484.91, + "probability": 0.4522 + }, + { + "start": 19484.91, + "end": 19486.01, + "probability": 0.4184 + }, + { + "start": 19491.31, + "end": 19493.65, + "probability": 0.7228 + }, + { + "start": 19494.27, + "end": 19496.83, + "probability": 0.9137 + }, + { + "start": 19497.79, + "end": 19500.19, + "probability": 0.7282 + }, + { + "start": 19501.45, + "end": 19501.77, + "probability": 0.8757 + }, + { + "start": 19501.95, + "end": 19503.87, + "probability": 0.8251 + }, + { + "start": 19504.19, + "end": 19504.47, + "probability": 0.8774 + }, + { + "start": 19505.15, + "end": 19505.65, + "probability": 0.8815 + }, + { + "start": 19507.61, + "end": 19510.19, + "probability": 0.9106 + }, + { + "start": 19511.65, + "end": 19514.49, + "probability": 0.8703 + }, + { + "start": 19515.09, + "end": 19515.63, + "probability": 0.6755 + }, + { + "start": 19515.65, + "end": 19516.03, + "probability": 0.4303 + }, + { + "start": 19516.05, + "end": 19517.09, + "probability": 0.9751 + }, + { + "start": 19517.13, + "end": 19518.27, + "probability": 0.8564 + }, + { + "start": 19518.41, + "end": 19519.39, + "probability": 0.8176 + }, + { + "start": 19520.13, + "end": 19520.76, + "probability": 0.9277 + }, + { + "start": 19520.97, + "end": 19522.61, + "probability": 0.8773 + }, + { + "start": 19523.49, + "end": 19525.21, + "probability": 0.9728 + }, + { + "start": 19526.17, + "end": 19526.87, + "probability": 0.1192 + }, + { + "start": 19527.29, + "end": 19527.49, + "probability": 0.5747 + }, + { + "start": 19528.69, + "end": 19530.85, + "probability": 0.8623 + }, + { + "start": 19533.54, + "end": 19537.03, + "probability": 0.8486 + }, + { + "start": 19537.73, + "end": 19541.27, + "probability": 0.9294 + }, + { + "start": 19541.27, + "end": 19543.51, + "probability": 0.9994 + }, + { + "start": 19543.59, + "end": 19546.27, + "probability": 0.8562 + }, + { + "start": 19547.11, + "end": 19549.47, + "probability": 0.6641 + }, + { + "start": 19550.15, + "end": 19550.59, + "probability": 0.8651 + }, + { + "start": 19551.55, + "end": 19553.5, + "probability": 0.9901 + }, + { + "start": 19553.87, + "end": 19556.79, + "probability": 0.8341 + }, + { + "start": 19557.21, + "end": 19560.75, + "probability": 0.9513 + }, + { + "start": 19561.57, + "end": 19565.31, + "probability": 0.9782 + }, + { + "start": 19565.41, + "end": 19565.83, + "probability": 0.8951 + }, + { + "start": 19566.39, + "end": 19569.37, + "probability": 0.9985 + }, + { + "start": 19570.25, + "end": 19574.03, + "probability": 0.9738 + }, + { + "start": 19574.59, + "end": 19575.27, + "probability": 0.8326 + }, + { + "start": 19576.03, + "end": 19576.95, + "probability": 0.9357 + }, + { + "start": 19577.49, + "end": 19578.91, + "probability": 0.5153 + }, + { + "start": 19579.07, + "end": 19579.81, + "probability": 0.6383 + }, + { + "start": 19580.57, + "end": 19582.33, + "probability": 0.9072 + }, + { + "start": 19583.21, + "end": 19585.73, + "probability": 0.9933 + }, + { + "start": 19586.63, + "end": 19586.65, + "probability": 0.0584 + }, + { + "start": 19587.17, + "end": 19588.03, + "probability": 0.1659 + }, + { + "start": 19588.03, + "end": 19588.03, + "probability": 0.1949 + }, + { + "start": 19588.03, + "end": 19588.53, + "probability": 0.751 + }, + { + "start": 19589.45, + "end": 19591.95, + "probability": 0.9751 + }, + { + "start": 19592.65, + "end": 19594.63, + "probability": 0.822 + }, + { + "start": 19595.29, + "end": 19597.39, + "probability": 0.9945 + }, + { + "start": 19597.99, + "end": 19598.73, + "probability": 0.9896 + }, + { + "start": 19600.03, + "end": 19602.45, + "probability": 0.9388 + }, + { + "start": 19603.05, + "end": 19604.61, + "probability": 0.7607 + }, + { + "start": 19604.67, + "end": 19607.43, + "probability": 0.9221 + }, + { + "start": 19608.35, + "end": 19611.55, + "probability": 0.9599 + }, + { + "start": 19611.63, + "end": 19616.79, + "probability": 0.9847 + }, + { + "start": 19617.45, + "end": 19619.23, + "probability": 0.5046 + }, + { + "start": 19619.57, + "end": 19620.09, + "probability": 0.7612 + }, + { + "start": 19620.91, + "end": 19623.97, + "probability": 0.8188 + }, + { + "start": 19624.69, + "end": 19626.99, + "probability": 0.9503 + }, + { + "start": 19628.21, + "end": 19629.93, + "probability": 0.8965 + }, + { + "start": 19630.73, + "end": 19633.91, + "probability": 0.9866 + }, + { + "start": 19635.09, + "end": 19638.33, + "probability": 0.9956 + }, + { + "start": 19638.45, + "end": 19639.61, + "probability": 0.9949 + }, + { + "start": 19641.29, + "end": 19642.27, + "probability": 0.7709 + }, + { + "start": 19643.05, + "end": 19644.55, + "probability": 0.9973 + }, + { + "start": 19645.07, + "end": 19647.65, + "probability": 0.9539 + }, + { + "start": 19648.23, + "end": 19649.2, + "probability": 0.8438 + }, + { + "start": 19650.09, + "end": 19652.57, + "probability": 0.8926 + }, + { + "start": 19653.11, + "end": 19655.41, + "probability": 0.9908 + }, + { + "start": 19656.13, + "end": 19658.23, + "probability": 0.8383 + }, + { + "start": 19658.23, + "end": 19661.55, + "probability": 0.9954 + }, + { + "start": 19662.71, + "end": 19662.97, + "probability": 0.137 + }, + { + "start": 19663.01, + "end": 19665.81, + "probability": 0.9667 + }, + { + "start": 19666.25, + "end": 19669.55, + "probability": 0.9429 + }, + { + "start": 19669.97, + "end": 19671.53, + "probability": 0.9645 + }, + { + "start": 19673.29, + "end": 19674.65, + "probability": 0.8153 + }, + { + "start": 19675.49, + "end": 19678.51, + "probability": 0.9424 + }, + { + "start": 19678.93, + "end": 19682.17, + "probability": 0.6789 + }, + { + "start": 19682.71, + "end": 19683.65, + "probability": 0.7897 + }, + { + "start": 19684.37, + "end": 19685.89, + "probability": 0.9739 + }, + { + "start": 19685.99, + "end": 19688.87, + "probability": 0.797 + }, + { + "start": 19688.95, + "end": 19690.71, + "probability": 0.9946 + }, + { + "start": 19692.64, + "end": 19694.63, + "probability": 0.7124 + }, + { + "start": 19695.31, + "end": 19696.57, + "probability": 0.9928 + }, + { + "start": 19697.31, + "end": 19700.63, + "probability": 0.9883 + }, + { + "start": 19701.53, + "end": 19704.63, + "probability": 0.8269 + }, + { + "start": 19705.83, + "end": 19706.39, + "probability": 0.8557 + }, + { + "start": 19706.65, + "end": 19707.01, + "probability": 0.907 + }, + { + "start": 19707.21, + "end": 19707.51, + "probability": 0.9104 + }, + { + "start": 19707.65, + "end": 19708.53, + "probability": 0.9902 + }, + { + "start": 19710.03, + "end": 19711.73, + "probability": 0.8942 + }, + { + "start": 19711.81, + "end": 19713.93, + "probability": 0.9665 + }, + { + "start": 19714.4, + "end": 19717.11, + "probability": 0.9414 + }, + { + "start": 19717.33, + "end": 19718.29, + "probability": 0.876 + }, + { + "start": 19719.29, + "end": 19722.03, + "probability": 0.986 + }, + { + "start": 19724.71, + "end": 19725.05, + "probability": 0.6953 + }, + { + "start": 19725.09, + "end": 19727.69, + "probability": 0.9952 + }, + { + "start": 19727.81, + "end": 19730.05, + "probability": 0.7927 + }, + { + "start": 19730.23, + "end": 19733.89, + "probability": 0.9833 + }, + { + "start": 19734.41, + "end": 19736.79, + "probability": 0.9433 + }, + { + "start": 19737.61, + "end": 19738.85, + "probability": 0.907 + }, + { + "start": 19739.51, + "end": 19741.25, + "probability": 0.9893 + }, + { + "start": 19741.93, + "end": 19744.73, + "probability": 0.9513 + }, + { + "start": 19745.09, + "end": 19745.41, + "probability": 0.7178 + }, + { + "start": 19745.71, + "end": 19746.53, + "probability": 0.551 + }, + { + "start": 19747.39, + "end": 19748.93, + "probability": 0.8833 + }, + { + "start": 19750.01, + "end": 19751.27, + "probability": 0.754 + }, + { + "start": 19751.69, + "end": 19752.85, + "probability": 0.8556 + }, + { + "start": 19769.51, + "end": 19770.05, + "probability": 0.6064 + }, + { + "start": 19770.67, + "end": 19770.69, + "probability": 0.5508 + }, + { + "start": 19770.69, + "end": 19771.57, + "probability": 0.8027 + }, + { + "start": 19771.61, + "end": 19772.95, + "probability": 0.6068 + }, + { + "start": 19773.11, + "end": 19773.93, + "probability": 0.5718 + }, + { + "start": 19774.65, + "end": 19775.61, + "probability": 0.8177 + }, + { + "start": 19775.79, + "end": 19777.73, + "probability": 0.9421 + }, + { + "start": 19777.87, + "end": 19780.73, + "probability": 0.942 + }, + { + "start": 19781.37, + "end": 19785.23, + "probability": 0.9832 + }, + { + "start": 19785.43, + "end": 19785.71, + "probability": 0.7383 + }, + { + "start": 19786.83, + "end": 19788.47, + "probability": 0.8413 + }, + { + "start": 19789.11, + "end": 19789.63, + "probability": 0.9419 + }, + { + "start": 19790.47, + "end": 19792.91, + "probability": 0.9529 + }, + { + "start": 19792.95, + "end": 19793.83, + "probability": 0.7693 + }, + { + "start": 19794.51, + "end": 19797.27, + "probability": 0.9858 + }, + { + "start": 19798.07, + "end": 19799.09, + "probability": 0.9882 + }, + { + "start": 19799.17, + "end": 19800.81, + "probability": 0.9027 + }, + { + "start": 19801.25, + "end": 19804.37, + "probability": 0.9945 + }, + { + "start": 19805.05, + "end": 19808.03, + "probability": 0.6649 + }, + { + "start": 19808.77, + "end": 19809.41, + "probability": 0.7299 + }, + { + "start": 19809.41, + "end": 19812.93, + "probability": 0.128 + }, + { + "start": 19812.93, + "end": 19817.45, + "probability": 0.7679 + }, + { + "start": 19817.97, + "end": 19821.91, + "probability": 0.9327 + }, + { + "start": 19822.35, + "end": 19826.01, + "probability": 0.8949 + }, + { + "start": 19826.59, + "end": 19827.65, + "probability": 0.6564 + }, + { + "start": 19827.71, + "end": 19828.89, + "probability": 0.9323 + }, + { + "start": 19828.95, + "end": 19830.65, + "probability": 0.9383 + }, + { + "start": 19831.15, + "end": 19833.27, + "probability": 0.6027 + }, + { + "start": 19833.87, + "end": 19836.63, + "probability": 0.6694 + }, + { + "start": 19837.49, + "end": 19837.83, + "probability": 0.9433 + }, + { + "start": 19837.93, + "end": 19838.57, + "probability": 0.8354 + }, + { + "start": 19838.67, + "end": 19839.09, + "probability": 0.6552 + }, + { + "start": 19839.11, + "end": 19840.09, + "probability": 0.988 + }, + { + "start": 19840.17, + "end": 19841.27, + "probability": 0.8813 + }, + { + "start": 19841.31, + "end": 19842.09, + "probability": 0.8585 + }, + { + "start": 19842.53, + "end": 19842.97, + "probability": 0.9912 + }, + { + "start": 19843.65, + "end": 19844.87, + "probability": 0.7456 + }, + { + "start": 19845.61, + "end": 19847.0, + "probability": 0.9611 + }, + { + "start": 19847.19, + "end": 19848.75, + "probability": 0.5034 + }, + { + "start": 19848.89, + "end": 19849.07, + "probability": 0.8565 + }, + { + "start": 19849.11, + "end": 19849.89, + "probability": 0.4984 + }, + { + "start": 19851.27, + "end": 19852.83, + "probability": 0.7822 + }, + { + "start": 19853.51, + "end": 19853.79, + "probability": 0.938 + }, + { + "start": 19854.61, + "end": 19858.99, + "probability": 0.7747 + }, + { + "start": 19859.15, + "end": 19859.27, + "probability": 0.1459 + }, + { + "start": 19859.39, + "end": 19860.29, + "probability": 0.4235 + }, + { + "start": 19860.35, + "end": 19864.79, + "probability": 0.8961 + }, + { + "start": 19865.77, + "end": 19867.69, + "probability": 0.2481 + }, + { + "start": 19867.69, + "end": 19867.79, + "probability": 0.4631 + }, + { + "start": 19868.35, + "end": 19869.09, + "probability": 0.5511 + }, + { + "start": 19869.19, + "end": 19869.31, + "probability": 0.1045 + }, + { + "start": 19869.31, + "end": 19872.71, + "probability": 0.9557 + }, + { + "start": 19872.85, + "end": 19873.32, + "probability": 0.7253 + }, + { + "start": 19874.13, + "end": 19875.13, + "probability": 0.8037 + }, + { + "start": 19875.45, + "end": 19876.19, + "probability": 0.8858 + }, + { + "start": 19876.27, + "end": 19876.67, + "probability": 0.7549 + }, + { + "start": 19876.75, + "end": 19877.39, + "probability": 0.4406 + }, + { + "start": 19877.59, + "end": 19878.15, + "probability": 0.9116 + }, + { + "start": 19878.53, + "end": 19880.67, + "probability": 0.9463 + }, + { + "start": 19880.87, + "end": 19881.53, + "probability": 0.1156 + }, + { + "start": 19881.53, + "end": 19882.67, + "probability": 0.2811 + }, + { + "start": 19883.41, + "end": 19884.97, + "probability": 0.8103 + }, + { + "start": 19885.53, + "end": 19888.55, + "probability": 0.5797 + }, + { + "start": 19889.01, + "end": 19891.61, + "probability": 0.9039 + }, + { + "start": 19891.77, + "end": 19892.33, + "probability": 0.7877 + }, + { + "start": 19892.37, + "end": 19892.93, + "probability": 0.9532 + }, + { + "start": 19893.15, + "end": 19893.43, + "probability": 0.4957 + }, + { + "start": 19894.17, + "end": 19896.59, + "probability": 0.9409 + }, + { + "start": 19896.65, + "end": 19897.02, + "probability": 0.498 + }, + { + "start": 19897.15, + "end": 19898.93, + "probability": 0.8657 + }, + { + "start": 19898.95, + "end": 19899.61, + "probability": 0.8374 + }, + { + "start": 19900.01, + "end": 19900.94, + "probability": 0.7676 + }, + { + "start": 19901.15, + "end": 19902.75, + "probability": 0.7942 + }, + { + "start": 19902.81, + "end": 19903.61, + "probability": 0.9442 + }, + { + "start": 19904.23, + "end": 19908.87, + "probability": 0.9812 + }, + { + "start": 19909.51, + "end": 19911.65, + "probability": 0.908 + }, + { + "start": 19912.29, + "end": 19913.69, + "probability": 0.9404 + }, + { + "start": 19913.87, + "end": 19917.87, + "probability": 0.9817 + }, + { + "start": 19917.95, + "end": 19919.39, + "probability": 0.8201 + }, + { + "start": 19919.43, + "end": 19921.01, + "probability": 0.6763 + }, + { + "start": 19921.49, + "end": 19923.71, + "probability": 0.9533 + }, + { + "start": 19923.87, + "end": 19924.39, + "probability": 0.6794 + }, + { + "start": 19924.79, + "end": 19925.73, + "probability": 0.9637 + }, + { + "start": 19926.09, + "end": 19928.83, + "probability": 0.9257 + }, + { + "start": 19929.05, + "end": 19929.91, + "probability": 0.7568 + }, + { + "start": 19929.97, + "end": 19930.47, + "probability": 0.665 + }, + { + "start": 19930.51, + "end": 19930.95, + "probability": 0.7257 + }, + { + "start": 19931.35, + "end": 19934.57, + "probability": 0.9961 + }, + { + "start": 19935.03, + "end": 19935.89, + "probability": 0.936 + }, + { + "start": 19936.43, + "end": 19937.13, + "probability": 0.9204 + }, + { + "start": 19937.25, + "end": 19938.29, + "probability": 0.9279 + }, + { + "start": 19938.83, + "end": 19939.73, + "probability": 0.9213 + }, + { + "start": 19939.77, + "end": 19940.93, + "probability": 0.7316 + }, + { + "start": 19941.39, + "end": 19942.37, + "probability": 0.7358 + }, + { + "start": 19942.53, + "end": 19943.47, + "probability": 0.8122 + }, + { + "start": 19943.69, + "end": 19945.15, + "probability": 0.9909 + }, + { + "start": 19945.33, + "end": 19946.12, + "probability": 0.8114 + }, + { + "start": 19946.61, + "end": 19947.27, + "probability": 0.834 + }, + { + "start": 19948.07, + "end": 19949.83, + "probability": 0.9226 + }, + { + "start": 19949.93, + "end": 19951.39, + "probability": 0.9506 + }, + { + "start": 19951.73, + "end": 19953.11, + "probability": 0.7992 + }, + { + "start": 19953.19, + "end": 19956.91, + "probability": 0.9637 + }, + { + "start": 19957.39, + "end": 19957.94, + "probability": 0.8604 + }, + { + "start": 19958.61, + "end": 19959.47, + "probability": 0.9568 + }, + { + "start": 19959.57, + "end": 19961.65, + "probability": 0.9543 + }, + { + "start": 19962.09, + "end": 19964.33, + "probability": 0.9951 + }, + { + "start": 19965.81, + "end": 19965.83, + "probability": 0.0847 + }, + { + "start": 19965.83, + "end": 19968.93, + "probability": 0.5695 + }, + { + "start": 19969.03, + "end": 19970.85, + "probability": 0.6127 + }, + { + "start": 19970.97, + "end": 19978.01, + "probability": 0.8285 + }, + { + "start": 19978.33, + "end": 19981.13, + "probability": 0.5779 + }, + { + "start": 19981.55, + "end": 19983.13, + "probability": 0.7824 + }, + { + "start": 19983.61, + "end": 19985.13, + "probability": 0.921 + }, + { + "start": 19985.61, + "end": 19987.49, + "probability": 0.4493 + }, + { + "start": 19987.57, + "end": 19989.45, + "probability": 0.5666 + }, + { + "start": 19989.67, + "end": 19989.67, + "probability": 0.4146 + }, + { + "start": 19990.01, + "end": 19990.43, + "probability": 0.6761 + }, + { + "start": 19990.81, + "end": 19996.69, + "probability": 0.9727 + }, + { + "start": 19996.85, + "end": 19998.41, + "probability": 0.4974 + }, + { + "start": 19998.43, + "end": 19999.21, + "probability": 0.6903 + }, + { + "start": 19999.23, + "end": 20000.23, + "probability": 0.9552 + }, + { + "start": 20000.29, + "end": 20003.73, + "probability": 0.9792 + }, + { + "start": 20003.79, + "end": 20004.25, + "probability": 0.9512 + }, + { + "start": 20004.85, + "end": 20008.33, + "probability": 0.845 + }, + { + "start": 20008.85, + "end": 20011.13, + "probability": 0.7018 + }, + { + "start": 20011.15, + "end": 20012.53, + "probability": 0.9897 + }, + { + "start": 20012.65, + "end": 20012.83, + "probability": 0.6067 + }, + { + "start": 20013.39, + "end": 20014.13, + "probability": 0.539 + }, + { + "start": 20014.21, + "end": 20017.49, + "probability": 0.7236 + }, + { + "start": 20018.35, + "end": 20018.59, + "probability": 0.2587 + }, + { + "start": 20026.47, + "end": 20029.05, + "probability": 0.4357 + }, + { + "start": 20029.05, + "end": 20029.73, + "probability": 0.6038 + }, + { + "start": 20031.59, + "end": 20034.67, + "probability": 0.9034 + }, + { + "start": 20035.41, + "end": 20038.17, + "probability": 0.9759 + }, + { + "start": 20040.11, + "end": 20044.21, + "probability": 0.993 + }, + { + "start": 20044.61, + "end": 20049.93, + "probability": 0.9668 + }, + { + "start": 20050.79, + "end": 20051.69, + "probability": 0.8212 + }, + { + "start": 20052.41, + "end": 20054.97, + "probability": 0.9684 + }, + { + "start": 20056.33, + "end": 20057.97, + "probability": 0.1073 + }, + { + "start": 20059.05, + "end": 20060.83, + "probability": 0.9333 + }, + { + "start": 20062.13, + "end": 20064.79, + "probability": 0.9532 + }, + { + "start": 20065.53, + "end": 20067.91, + "probability": 0.9613 + }, + { + "start": 20069.03, + "end": 20070.49, + "probability": 0.4828 + }, + { + "start": 20071.27, + "end": 20075.11, + "probability": 0.9603 + }, + { + "start": 20075.95, + "end": 20076.91, + "probability": 0.9539 + }, + { + "start": 20078.03, + "end": 20081.89, + "probability": 0.9345 + }, + { + "start": 20082.99, + "end": 20084.11, + "probability": 0.571 + }, + { + "start": 20084.75, + "end": 20086.27, + "probability": 0.9922 + }, + { + "start": 20087.29, + "end": 20088.85, + "probability": 0.7181 + }, + { + "start": 20089.57, + "end": 20091.99, + "probability": 0.988 + }, + { + "start": 20093.03, + "end": 20095.07, + "probability": 0.9793 + }, + { + "start": 20095.13, + "end": 20099.11, + "probability": 0.9897 + }, + { + "start": 20099.11, + "end": 20102.89, + "probability": 0.9993 + }, + { + "start": 20103.67, + "end": 20108.55, + "probability": 0.9985 + }, + { + "start": 20109.23, + "end": 20110.89, + "probability": 0.9741 + }, + { + "start": 20111.35, + "end": 20111.97, + "probability": 0.743 + }, + { + "start": 20112.05, + "end": 20114.51, + "probability": 0.9531 + }, + { + "start": 20114.63, + "end": 20118.05, + "probability": 0.826 + }, + { + "start": 20118.43, + "end": 20119.86, + "probability": 0.9946 + }, + { + "start": 20120.63, + "end": 20121.6, + "probability": 0.9925 + }, + { + "start": 20121.71, + "end": 20122.91, + "probability": 0.9663 + }, + { + "start": 20122.93, + "end": 20123.47, + "probability": 0.8511 + }, + { + "start": 20123.49, + "end": 20124.11, + "probability": 0.6927 + }, + { + "start": 20124.47, + "end": 20124.67, + "probability": 0.0223 + }, + { + "start": 20124.69, + "end": 20125.61, + "probability": 0.4951 + }, + { + "start": 20126.37, + "end": 20127.33, + "probability": 0.7431 + }, + { + "start": 20127.97, + "end": 20131.15, + "probability": 0.9613 + }, + { + "start": 20131.55, + "end": 20133.39, + "probability": 0.8851 + }, + { + "start": 20133.47, + "end": 20134.49, + "probability": 0.979 + }, + { + "start": 20135.03, + "end": 20138.23, + "probability": 0.8177 + }, + { + "start": 20138.31, + "end": 20138.89, + "probability": 0.5531 + }, + { + "start": 20138.95, + "end": 20139.65, + "probability": 0.8629 + }, + { + "start": 20139.79, + "end": 20140.81, + "probability": 0.9659 + }, + { + "start": 20140.83, + "end": 20142.31, + "probability": 0.9924 + }, + { + "start": 20142.79, + "end": 20143.97, + "probability": 0.9827 + }, + { + "start": 20144.03, + "end": 20145.53, + "probability": 0.9664 + }, + { + "start": 20145.61, + "end": 20146.09, + "probability": 0.8665 + }, + { + "start": 20146.09, + "end": 20146.61, + "probability": 0.4962 + }, + { + "start": 20147.23, + "end": 20148.67, + "probability": 0.6355 + }, + { + "start": 20149.45, + "end": 20149.87, + "probability": 0.0053 + }, + { + "start": 20149.87, + "end": 20150.77, + "probability": 0.466 + }, + { + "start": 20152.17, + "end": 20153.95, + "probability": 0.448 + }, + { + "start": 20154.97, + "end": 20157.55, + "probability": 0.2085 + }, + { + "start": 20157.93, + "end": 20159.19, + "probability": 0.1841 + }, + { + "start": 20160.49, + "end": 20161.23, + "probability": 0.4271 + }, + { + "start": 20164.59, + "end": 20164.59, + "probability": 0.1033 + }, + { + "start": 20164.59, + "end": 20164.59, + "probability": 0.1995 + }, + { + "start": 20164.59, + "end": 20165.95, + "probability": 0.0942 + }, + { + "start": 20166.07, + "end": 20167.35, + "probability": 0.4296 + }, + { + "start": 20167.35, + "end": 20169.21, + "probability": 0.4777 + }, + { + "start": 20170.27, + "end": 20170.97, + "probability": 0.6876 + }, + { + "start": 20171.21, + "end": 20173.65, + "probability": 0.6659 + }, + { + "start": 20174.25, + "end": 20174.27, + "probability": 0.3389 + }, + { + "start": 20174.27, + "end": 20174.49, + "probability": 0.5416 + }, + { + "start": 20174.65, + "end": 20176.14, + "probability": 0.7431 + }, + { + "start": 20176.43, + "end": 20180.75, + "probability": 0.9468 + }, + { + "start": 20181.57, + "end": 20184.97, + "probability": 0.7769 + }, + { + "start": 20185.45, + "end": 20185.77, + "probability": 0.441 + }, + { + "start": 20185.95, + "end": 20188.67, + "probability": 0.8782 + }, + { + "start": 20188.91, + "end": 20193.03, + "probability": 0.9975 + }, + { + "start": 20193.09, + "end": 20197.73, + "probability": 0.9977 + }, + { + "start": 20197.73, + "end": 20201.75, + "probability": 0.9971 + }, + { + "start": 20202.15, + "end": 20204.33, + "probability": 0.9952 + }, + { + "start": 20205.21, + "end": 20209.57, + "probability": 0.9732 + }, + { + "start": 20210.3, + "end": 20213.73, + "probability": 0.9556 + }, + { + "start": 20213.87, + "end": 20220.57, + "probability": 0.9091 + }, + { + "start": 20220.85, + "end": 20221.91, + "probability": 0.9971 + }, + { + "start": 20223.31, + "end": 20223.43, + "probability": 0.0907 + }, + { + "start": 20223.43, + "end": 20225.67, + "probability": 0.8341 + }, + { + "start": 20225.79, + "end": 20226.82, + "probability": 0.9932 + }, + { + "start": 20227.49, + "end": 20229.71, + "probability": 0.769 + }, + { + "start": 20229.81, + "end": 20232.57, + "probability": 0.9214 + }, + { + "start": 20232.87, + "end": 20236.67, + "probability": 0.8721 + }, + { + "start": 20236.77, + "end": 20237.87, + "probability": 0.6701 + }, + { + "start": 20238.17, + "end": 20240.19, + "probability": 0.8199 + }, + { + "start": 20240.27, + "end": 20242.77, + "probability": 0.8204 + }, + { + "start": 20243.83, + "end": 20245.15, + "probability": 0.9345 + }, + { + "start": 20245.33, + "end": 20245.79, + "probability": 0.726 + }, + { + "start": 20245.85, + "end": 20250.61, + "probability": 0.9578 + }, + { + "start": 20250.63, + "end": 20251.67, + "probability": 0.7707 + }, + { + "start": 20252.25, + "end": 20253.59, + "probability": 0.7155 + }, + { + "start": 20253.75, + "end": 20254.85, + "probability": 0.8289 + }, + { + "start": 20255.05, + "end": 20255.47, + "probability": 0.4539 + }, + { + "start": 20255.49, + "end": 20257.65, + "probability": 0.9556 + }, + { + "start": 20258.19, + "end": 20259.79, + "probability": 0.8284 + }, + { + "start": 20260.01, + "end": 20261.41, + "probability": 0.8833 + }, + { + "start": 20263.25, + "end": 20266.67, + "probability": 0.9408 + }, + { + "start": 20266.73, + "end": 20270.15, + "probability": 0.9956 + }, + { + "start": 20270.27, + "end": 20270.45, + "probability": 0.5636 + }, + { + "start": 20270.85, + "end": 20272.03, + "probability": 0.7836 + }, + { + "start": 20272.27, + "end": 20275.93, + "probability": 0.9692 + }, + { + "start": 20275.93, + "end": 20280.39, + "probability": 0.9875 + }, + { + "start": 20280.75, + "end": 20285.29, + "probability": 0.9791 + }, + { + "start": 20285.77, + "end": 20290.37, + "probability": 0.9951 + }, + { + "start": 20290.43, + "end": 20291.11, + "probability": 0.7668 + }, + { + "start": 20291.31, + "end": 20294.77, + "probability": 0.7357 + }, + { + "start": 20295.39, + "end": 20295.75, + "probability": 0.6186 + }, + { + "start": 20295.85, + "end": 20297.11, + "probability": 0.9956 + }, + { + "start": 20297.15, + "end": 20297.64, + "probability": 0.7619 + }, + { + "start": 20298.09, + "end": 20298.99, + "probability": 0.9336 + }, + { + "start": 20299.05, + "end": 20302.7, + "probability": 0.9167 + }, + { + "start": 20303.81, + "end": 20305.53, + "probability": 0.9915 + }, + { + "start": 20305.87, + "end": 20308.41, + "probability": 0.7797 + }, + { + "start": 20309.07, + "end": 20312.15, + "probability": 0.9767 + }, + { + "start": 20312.23, + "end": 20313.01, + "probability": 0.7942 + }, + { + "start": 20313.41, + "end": 20317.25, + "probability": 0.9043 + }, + { + "start": 20317.37, + "end": 20318.39, + "probability": 0.7157 + }, + { + "start": 20318.91, + "end": 20321.35, + "probability": 0.9804 + }, + { + "start": 20321.59, + "end": 20323.75, + "probability": 0.8703 + }, + { + "start": 20324.31, + "end": 20328.59, + "probability": 0.815 + }, + { + "start": 20328.73, + "end": 20329.55, + "probability": 0.5731 + }, + { + "start": 20329.77, + "end": 20331.85, + "probability": 0.9863 + }, + { + "start": 20332.19, + "end": 20332.93, + "probability": 0.6475 + }, + { + "start": 20333.35, + "end": 20335.79, + "probability": 0.7577 + }, + { + "start": 20335.85, + "end": 20337.29, + "probability": 0.4872 + }, + { + "start": 20337.33, + "end": 20337.97, + "probability": 0.1156 + }, + { + "start": 20338.33, + "end": 20340.21, + "probability": 0.9392 + }, + { + "start": 20340.47, + "end": 20342.79, + "probability": 0.9438 + }, + { + "start": 20342.93, + "end": 20344.39, + "probability": 0.8301 + }, + { + "start": 20344.51, + "end": 20346.57, + "probability": 0.7161 + }, + { + "start": 20346.65, + "end": 20347.33, + "probability": 0.6891 + }, + { + "start": 20347.61, + "end": 20349.21, + "probability": 0.8811 + }, + { + "start": 20349.75, + "end": 20351.11, + "probability": 0.4076 + }, + { + "start": 20351.31, + "end": 20352.67, + "probability": 0.4566 + }, + { + "start": 20352.94, + "end": 20356.05, + "probability": 0.9312 + }, + { + "start": 20356.61, + "end": 20358.45, + "probability": 0.9298 + }, + { + "start": 20358.53, + "end": 20359.75, + "probability": 0.8997 + }, + { + "start": 20360.09, + "end": 20360.85, + "probability": 0.8633 + }, + { + "start": 20361.33, + "end": 20361.81, + "probability": 0.0103 + }, + { + "start": 20361.81, + "end": 20361.91, + "probability": 0.4788 + }, + { + "start": 20362.25, + "end": 20364.25, + "probability": 0.8203 + }, + { + "start": 20364.75, + "end": 20366.91, + "probability": 0.6274 + }, + { + "start": 20366.99, + "end": 20368.0, + "probability": 0.9837 + }, + { + "start": 20368.55, + "end": 20369.95, + "probability": 0.4821 + }, + { + "start": 20369.97, + "end": 20370.69, + "probability": 0.9023 + }, + { + "start": 20370.79, + "end": 20370.97, + "probability": 0.2987 + }, + { + "start": 20371.65, + "end": 20372.13, + "probability": 0.9482 + }, + { + "start": 20372.25, + "end": 20375.77, + "probability": 0.9849 + }, + { + "start": 20375.95, + "end": 20377.73, + "probability": 0.9141 + }, + { + "start": 20377.79, + "end": 20381.67, + "probability": 0.9047 + }, + { + "start": 20382.29, + "end": 20383.93, + "probability": 0.9521 + }, + { + "start": 20384.01, + "end": 20384.27, + "probability": 0.704 + }, + { + "start": 20384.33, + "end": 20388.89, + "probability": 0.9826 + }, + { + "start": 20389.21, + "end": 20393.09, + "probability": 0.7227 + }, + { + "start": 20393.27, + "end": 20396.85, + "probability": 0.9043 + }, + { + "start": 20397.01, + "end": 20397.63, + "probability": 0.6582 + }, + { + "start": 20398.59, + "end": 20404.71, + "probability": 0.9304 + }, + { + "start": 20404.83, + "end": 20407.43, + "probability": 0.9792 + }, + { + "start": 20407.92, + "end": 20408.81, + "probability": 0.9055 + }, + { + "start": 20408.91, + "end": 20410.21, + "probability": 0.6593 + }, + { + "start": 20410.31, + "end": 20413.43, + "probability": 0.9477 + }, + { + "start": 20413.59, + "end": 20417.41, + "probability": 0.9121 + }, + { + "start": 20417.83, + "end": 20420.12, + "probability": 0.6582 + }, + { + "start": 20420.35, + "end": 20422.29, + "probability": 0.8767 + }, + { + "start": 20422.55, + "end": 20422.69, + "probability": 0.5859 + }, + { + "start": 20423.05, + "end": 20423.21, + "probability": 0.9918 + }, + { + "start": 20423.25, + "end": 20423.71, + "probability": 0.983 + }, + { + "start": 20423.85, + "end": 20424.93, + "probability": 0.9819 + }, + { + "start": 20425.03, + "end": 20425.53, + "probability": 0.6759 + }, + { + "start": 20425.69, + "end": 20426.57, + "probability": 0.9893 + }, + { + "start": 20427.05, + "end": 20428.83, + "probability": 0.991 + }, + { + "start": 20428.97, + "end": 20429.79, + "probability": 0.8542 + }, + { + "start": 20429.89, + "end": 20430.35, + "probability": 0.4876 + }, + { + "start": 20430.45, + "end": 20430.93, + "probability": 0.9747 + }, + { + "start": 20431.11, + "end": 20431.89, + "probability": 0.8235 + }, + { + "start": 20432.33, + "end": 20432.73, + "probability": 0.5045 + }, + { + "start": 20432.81, + "end": 20433.41, + "probability": 0.7867 + }, + { + "start": 20433.55, + "end": 20433.69, + "probability": 0.9328 + }, + { + "start": 20433.79, + "end": 20434.65, + "probability": 0.6492 + }, + { + "start": 20434.95, + "end": 20435.85, + "probability": 0.7373 + }, + { + "start": 20436.15, + "end": 20438.69, + "probability": 0.8509 + }, + { + "start": 20439.13, + "end": 20440.67, + "probability": 0.8045 + }, + { + "start": 20441.01, + "end": 20441.33, + "probability": 0.3973 + }, + { + "start": 20441.45, + "end": 20445.19, + "probability": 0.1644 + }, + { + "start": 20445.39, + "end": 20445.89, + "probability": 0.5707 + }, + { + "start": 20446.51, + "end": 20447.13, + "probability": 0.4844 + }, + { + "start": 20447.21, + "end": 20447.85, + "probability": 0.9671 + }, + { + "start": 20447.97, + "end": 20448.51, + "probability": 0.6297 + }, + { + "start": 20448.63, + "end": 20450.05, + "probability": 0.6736 + }, + { + "start": 20450.35, + "end": 20453.74, + "probability": 0.946 + }, + { + "start": 20454.21, + "end": 20454.49, + "probability": 0.8051 + }, + { + "start": 20454.59, + "end": 20456.25, + "probability": 0.7847 + }, + { + "start": 20456.37, + "end": 20459.83, + "probability": 0.9945 + }, + { + "start": 20460.79, + "end": 20462.41, + "probability": 0.9314 + }, + { + "start": 20462.89, + "end": 20467.09, + "probability": 0.9805 + }, + { + "start": 20467.41, + "end": 20469.17, + "probability": 0.8291 + }, + { + "start": 20469.29, + "end": 20471.33, + "probability": 0.9893 + }, + { + "start": 20471.75, + "end": 20474.49, + "probability": 0.9639 + }, + { + "start": 20474.61, + "end": 20476.07, + "probability": 0.7751 + }, + { + "start": 20476.49, + "end": 20479.25, + "probability": 0.9951 + }, + { + "start": 20479.45, + "end": 20480.53, + "probability": 0.7566 + }, + { + "start": 20480.95, + "end": 20481.79, + "probability": 0.8582 + }, + { + "start": 20482.15, + "end": 20484.85, + "probability": 0.9431 + }, + { + "start": 20484.87, + "end": 20486.19, + "probability": 0.9575 + }, + { + "start": 20486.41, + "end": 20486.95, + "probability": 0.8847 + }, + { + "start": 20487.63, + "end": 20487.83, + "probability": 0.0 + }, + { + "start": 20489.27, + "end": 20491.05, + "probability": 0.1334 + }, + { + "start": 20491.65, + "end": 20496.25, + "probability": 0.9891 + }, + { + "start": 20496.53, + "end": 20498.45, + "probability": 0.9833 + }, + { + "start": 20499.43, + "end": 20503.19, + "probability": 0.8433 + }, + { + "start": 20503.41, + "end": 20504.67, + "probability": 0.8843 + }, + { + "start": 20505.27, + "end": 20508.23, + "probability": 0.9824 + }, + { + "start": 20508.99, + "end": 20510.43, + "probability": 0.999 + }, + { + "start": 20511.53, + "end": 20514.17, + "probability": 0.9275 + }, + { + "start": 20514.61, + "end": 20515.11, + "probability": 0.5556 + }, + { + "start": 20515.15, + "end": 20515.47, + "probability": 0.636 + }, + { + "start": 20515.57, + "end": 20518.87, + "probability": 0.9937 + }, + { + "start": 20518.87, + "end": 20522.55, + "probability": 0.9979 + }, + { + "start": 20522.75, + "end": 20523.27, + "probability": 0.5677 + }, + { + "start": 20523.81, + "end": 20526.23, + "probability": 0.747 + }, + { + "start": 20526.85, + "end": 20528.25, + "probability": 0.9788 + }, + { + "start": 20528.55, + "end": 20533.37, + "probability": 0.9917 + }, + { + "start": 20533.75, + "end": 20534.73, + "probability": 0.8762 + }, + { + "start": 20535.53, + "end": 20538.53, + "probability": 0.8262 + }, + { + "start": 20538.59, + "end": 20539.03, + "probability": 0.6273 + }, + { + "start": 20542.39, + "end": 20546.47, + "probability": 0.9907 + }, + { + "start": 20546.57, + "end": 20547.65, + "probability": 0.7347 + }, + { + "start": 20547.95, + "end": 20549.11, + "probability": 0.8877 + }, + { + "start": 20549.65, + "end": 20551.63, + "probability": 0.9885 + }, + { + "start": 20551.67, + "end": 20556.65, + "probability": 0.9982 + }, + { + "start": 20557.09, + "end": 20561.45, + "probability": 0.9264 + }, + { + "start": 20561.59, + "end": 20562.55, + "probability": 0.9689 + }, + { + "start": 20563.33, + "end": 20565.99, + "probability": 0.9941 + }, + { + "start": 20566.41, + "end": 20571.71, + "probability": 0.9948 + }, + { + "start": 20572.41, + "end": 20574.07, + "probability": 0.9422 + }, + { + "start": 20574.45, + "end": 20574.85, + "probability": 0.6378 + }, + { + "start": 20574.87, + "end": 20575.11, + "probability": 0.8144 + }, + { + "start": 20575.13, + "end": 20575.79, + "probability": 0.9526 + }, + { + "start": 20575.91, + "end": 20576.51, + "probability": 0.8936 + }, + { + "start": 20576.75, + "end": 20578.52, + "probability": 0.8239 + }, + { + "start": 20578.91, + "end": 20584.01, + "probability": 0.9622 + }, + { + "start": 20584.19, + "end": 20589.75, + "probability": 0.8522 + }, + { + "start": 20589.83, + "end": 20590.39, + "probability": 0.3061 + }, + { + "start": 20590.91, + "end": 20593.13, + "probability": 0.8681 + }, + { + "start": 20593.13, + "end": 20596.47, + "probability": 0.9573 + }, + { + "start": 20596.85, + "end": 20599.77, + "probability": 0.9482 + }, + { + "start": 20600.09, + "end": 20601.57, + "probability": 0.9679 + }, + { + "start": 20601.73, + "end": 20602.69, + "probability": 0.8047 + }, + { + "start": 20602.87, + "end": 20606.87, + "probability": 0.7124 + }, + { + "start": 20606.95, + "end": 20611.31, + "probability": 0.98 + }, + { + "start": 20611.45, + "end": 20612.87, + "probability": 0.9781 + }, + { + "start": 20613.33, + "end": 20615.39, + "probability": 0.8575 + }, + { + "start": 20615.51, + "end": 20618.03, + "probability": 0.9965 + }, + { + "start": 20618.37, + "end": 20619.57, + "probability": 0.9799 + }, + { + "start": 20619.73, + "end": 20621.13, + "probability": 0.8572 + }, + { + "start": 20621.17, + "end": 20622.23, + "probability": 0.9557 + }, + { + "start": 20622.49, + "end": 20623.05, + "probability": 0.9202 + }, + { + "start": 20623.21, + "end": 20625.11, + "probability": 0.9124 + }, + { + "start": 20625.25, + "end": 20628.85, + "probability": 0.9761 + }, + { + "start": 20629.11, + "end": 20629.93, + "probability": 0.5133 + }, + { + "start": 20630.35, + "end": 20633.09, + "probability": 0.9777 + }, + { + "start": 20633.09, + "end": 20635.65, + "probability": 0.7786 + }, + { + "start": 20636.03, + "end": 20638.45, + "probability": 0.9963 + }, + { + "start": 20639.05, + "end": 20639.97, + "probability": 0.9517 + }, + { + "start": 20640.05, + "end": 20644.89, + "probability": 0.9956 + }, + { + "start": 20645.05, + "end": 20646.23, + "probability": 0.7832 + }, + { + "start": 20646.75, + "end": 20648.03, + "probability": 0.677 + }, + { + "start": 20648.49, + "end": 20649.99, + "probability": 0.9401 + }, + { + "start": 20650.03, + "end": 20650.33, + "probability": 0.5238 + }, + { + "start": 20650.39, + "end": 20650.61, + "probability": 0.6794 + }, + { + "start": 20650.93, + "end": 20653.29, + "probability": 0.9777 + }, + { + "start": 20653.39, + "end": 20655.65, + "probability": 0.9978 + }, + { + "start": 20656.37, + "end": 20659.75, + "probability": 0.999 + }, + { + "start": 20660.35, + "end": 20662.55, + "probability": 0.7822 + }, + { + "start": 20663.05, + "end": 20666.83, + "probability": 0.9966 + }, + { + "start": 20666.97, + "end": 20668.53, + "probability": 0.9957 + }, + { + "start": 20669.27, + "end": 20670.53, + "probability": 0.8063 + }, + { + "start": 20670.71, + "end": 20675.25, + "probability": 0.9376 + }, + { + "start": 20675.29, + "end": 20678.61, + "probability": 0.8738 + }, + { + "start": 20679.15, + "end": 20682.29, + "probability": 0.9913 + }, + { + "start": 20682.41, + "end": 20684.91, + "probability": 0.935 + }, + { + "start": 20684.99, + "end": 20685.56, + "probability": 0.8051 + }, + { + "start": 20686.19, + "end": 20688.17, + "probability": 0.9963 + }, + { + "start": 20688.85, + "end": 20689.99, + "probability": 0.8916 + }, + { + "start": 20690.61, + "end": 20690.97, + "probability": 0.8901 + }, + { + "start": 20691.05, + "end": 20692.61, + "probability": 0.9254 + }, + { + "start": 20692.75, + "end": 20693.19, + "probability": 0.5461 + }, + { + "start": 20693.25, + "end": 20697.67, + "probability": 0.9897 + }, + { + "start": 20697.93, + "end": 20700.65, + "probability": 0.9988 + }, + { + "start": 20701.27, + "end": 20704.73, + "probability": 0.958 + }, + { + "start": 20704.73, + "end": 20708.51, + "probability": 0.8042 + }, + { + "start": 20708.65, + "end": 20710.37, + "probability": 0.8813 + }, + { + "start": 20710.51, + "end": 20713.13, + "probability": 0.7945 + }, + { + "start": 20713.33, + "end": 20716.49, + "probability": 0.9861 + }, + { + "start": 20717.97, + "end": 20719.43, + "probability": 0.7756 + }, + { + "start": 20719.97, + "end": 20721.49, + "probability": 0.9149 + }, + { + "start": 20721.95, + "end": 20723.77, + "probability": 0.9907 + }, + { + "start": 20723.93, + "end": 20726.11, + "probability": 0.7169 + }, + { + "start": 20726.11, + "end": 20727.73, + "probability": 0.969 + }, + { + "start": 20727.77, + "end": 20728.95, + "probability": 0.9555 + }, + { + "start": 20729.69, + "end": 20733.81, + "probability": 0.7495 + }, + { + "start": 20733.81, + "end": 20737.55, + "probability": 0.9972 + }, + { + "start": 20737.75, + "end": 20742.17, + "probability": 0.9862 + }, + { + "start": 20742.21, + "end": 20743.09, + "probability": 0.9644 + }, + { + "start": 20743.79, + "end": 20744.69, + "probability": 0.6201 + }, + { + "start": 20744.89, + "end": 20747.69, + "probability": 0.9912 + }, + { + "start": 20748.45, + "end": 20752.59, + "probability": 0.8627 + }, + { + "start": 20752.71, + "end": 20754.45, + "probability": 0.7472 + }, + { + "start": 20755.31, + "end": 20755.51, + "probability": 0.5587 + }, + { + "start": 20755.61, + "end": 20757.75, + "probability": 0.9109 + }, + { + "start": 20757.93, + "end": 20758.05, + "probability": 0.4722 + }, + { + "start": 20758.63, + "end": 20759.23, + "probability": 0.6543 + }, + { + "start": 20759.83, + "end": 20762.45, + "probability": 0.7749 + }, + { + "start": 20763.13, + "end": 20765.53, + "probability": 0.9816 + }, + { + "start": 20766.03, + "end": 20768.99, + "probability": 0.9673 + }, + { + "start": 20770.59, + "end": 20773.01, + "probability": 0.1735 + }, + { + "start": 20773.01, + "end": 20773.01, + "probability": 0.2363 + }, + { + "start": 20773.01, + "end": 20773.01, + "probability": 0.4268 + }, + { + "start": 20773.01, + "end": 20773.79, + "probability": 0.8021 + }, + { + "start": 20773.93, + "end": 20774.28, + "probability": 0.7395 + }, + { + "start": 20774.61, + "end": 20775.99, + "probability": 0.5392 + }, + { + "start": 20776.05, + "end": 20776.93, + "probability": 0.4237 + }, + { + "start": 20777.41, + "end": 20781.61, + "probability": 0.0467 + }, + { + "start": 20783.23, + "end": 20783.31, + "probability": 0.0078 + }, + { + "start": 20783.31, + "end": 20783.31, + "probability": 0.2049 + }, + { + "start": 20783.31, + "end": 20783.31, + "probability": 0.0336 + }, + { + "start": 20783.31, + "end": 20783.31, + "probability": 0.0113 + }, + { + "start": 20783.31, + "end": 20784.44, + "probability": 0.638 + }, + { + "start": 20785.01, + "end": 20788.61, + "probability": 0.9969 + }, + { + "start": 20788.75, + "end": 20791.77, + "probability": 0.9402 + }, + { + "start": 20791.81, + "end": 20794.87, + "probability": 0.9404 + }, + { + "start": 20795.59, + "end": 20799.83, + "probability": 0.703 + }, + { + "start": 20799.93, + "end": 20800.37, + "probability": 0.7979 + }, + { + "start": 20800.43, + "end": 20801.77, + "probability": 0.8035 + }, + { + "start": 20802.19, + "end": 20804.27, + "probability": 0.9387 + }, + { + "start": 20804.47, + "end": 20804.91, + "probability": 0.5351 + }, + { + "start": 20805.25, + "end": 20805.8, + "probability": 0.7057 + }, + { + "start": 20806.03, + "end": 20810.51, + "probability": 0.8637 + }, + { + "start": 20810.91, + "end": 20812.09, + "probability": 0.9344 + }, + { + "start": 20812.17, + "end": 20812.71, + "probability": 0.8849 + }, + { + "start": 20812.85, + "end": 20815.99, + "probability": 0.9661 + }, + { + "start": 20817.87, + "end": 20821.5, + "probability": 0.9805 + }, + { + "start": 20821.91, + "end": 20824.27, + "probability": 0.4896 + }, + { + "start": 20824.41, + "end": 20825.67, + "probability": 0.9915 + }, + { + "start": 20826.37, + "end": 20828.53, + "probability": 0.9675 + }, + { + "start": 20828.57, + "end": 20831.83, + "probability": 0.818 + }, + { + "start": 20831.95, + "end": 20834.01, + "probability": 0.9772 + }, + { + "start": 20834.41, + "end": 20838.57, + "probability": 0.9408 + }, + { + "start": 20838.61, + "end": 20840.57, + "probability": 0.6448 + }, + { + "start": 20840.57, + "end": 20841.11, + "probability": 0.6148 + }, + { + "start": 20841.17, + "end": 20841.57, + "probability": 0.6628 + }, + { + "start": 20841.75, + "end": 20842.45, + "probability": 0.8022 + }, + { + "start": 20843.27, + "end": 20845.69, + "probability": 0.3212 + }, + { + "start": 20845.69, + "end": 20848.23, + "probability": 0.1068 + }, + { + "start": 20848.23, + "end": 20848.95, + "probability": 0.4249 + }, + { + "start": 20849.03, + "end": 20849.53, + "probability": 0.6883 + }, + { + "start": 20849.77, + "end": 20851.61, + "probability": 0.7891 + }, + { + "start": 20852.31, + "end": 20854.39, + "probability": 0.9023 + }, + { + "start": 20854.97, + "end": 20858.79, + "probability": 0.998 + }, + { + "start": 20858.79, + "end": 20862.85, + "probability": 0.9929 + }, + { + "start": 20863.01, + "end": 20865.09, + "probability": 0.9993 + }, + { + "start": 20865.27, + "end": 20866.43, + "probability": 0.9789 + }, + { + "start": 20867.51, + "end": 20868.71, + "probability": 0.9489 + }, + { + "start": 20869.23, + "end": 20872.27, + "probability": 0.7634 + }, + { + "start": 20872.89, + "end": 20874.61, + "probability": 0.9908 + }, + { + "start": 20875.13, + "end": 20879.79, + "probability": 0.9922 + }, + { + "start": 20879.93, + "end": 20880.85, + "probability": 0.8313 + }, + { + "start": 20880.97, + "end": 20881.05, + "probability": 0.1353 + }, + { + "start": 20881.09, + "end": 20882.79, + "probability": 0.8127 + }, + { + "start": 20884.13, + "end": 20886.99, + "probability": 0.9114 + }, + { + "start": 20887.03, + "end": 20889.38, + "probability": 0.9169 + }, + { + "start": 20890.19, + "end": 20894.89, + "probability": 0.9909 + }, + { + "start": 20895.19, + "end": 20897.61, + "probability": 0.9355 + }, + { + "start": 20898.05, + "end": 20899.41, + "probability": 0.7749 + }, + { + "start": 20899.51, + "end": 20900.91, + "probability": 0.5453 + }, + { + "start": 20901.45, + "end": 20902.69, + "probability": 0.7238 + }, + { + "start": 20903.39, + "end": 20904.81, + "probability": 0.9589 + }, + { + "start": 20904.95, + "end": 20907.19, + "probability": 0.9668 + }, + { + "start": 20907.77, + "end": 20909.47, + "probability": 0.9351 + }, + { + "start": 20909.93, + "end": 20911.51, + "probability": 0.8792 + }, + { + "start": 20911.91, + "end": 20913.85, + "probability": 0.9818 + }, + { + "start": 20914.03, + "end": 20914.77, + "probability": 0.7779 + }, + { + "start": 20915.19, + "end": 20919.35, + "probability": 0.9431 + }, + { + "start": 20919.39, + "end": 20920.63, + "probability": 0.9468 + }, + { + "start": 20921.11, + "end": 20923.89, + "probability": 0.9925 + }, + { + "start": 20924.33, + "end": 20926.03, + "probability": 0.5115 + }, + { + "start": 20926.21, + "end": 20926.71, + "probability": 0.9351 + }, + { + "start": 20927.91, + "end": 20930.65, + "probability": 0.9648 + }, + { + "start": 20931.33, + "end": 20933.45, + "probability": 0.9876 + }, + { + "start": 20934.31, + "end": 20934.87, + "probability": 0.522 + }, + { + "start": 20934.97, + "end": 20935.37, + "probability": 0.7734 + }, + { + "start": 20935.41, + "end": 20936.6, + "probability": 0.9739 + }, + { + "start": 20936.81, + "end": 20937.79, + "probability": 0.9849 + }, + { + "start": 20938.01, + "end": 20938.57, + "probability": 0.8208 + }, + { + "start": 20939.93, + "end": 20940.99, + "probability": 0.9883 + }, + { + "start": 20941.13, + "end": 20942.33, + "probability": 0.9917 + }, + { + "start": 20942.53, + "end": 20942.77, + "probability": 0.9015 + }, + { + "start": 20942.91, + "end": 20943.71, + "probability": 0.499 + }, + { + "start": 20943.81, + "end": 20944.63, + "probability": 0.8785 + }, + { + "start": 20944.77, + "end": 20948.55, + "probability": 0.9509 + }, + { + "start": 20948.69, + "end": 20952.65, + "probability": 0.9017 + }, + { + "start": 20952.87, + "end": 20953.91, + "probability": 0.9521 + }, + { + "start": 20954.27, + "end": 20959.89, + "probability": 0.9886 + }, + { + "start": 20960.65, + "end": 20962.31, + "probability": 0.4084 + }, + { + "start": 20962.39, + "end": 20962.61, + "probability": 0.1267 + }, + { + "start": 20962.99, + "end": 20965.81, + "probability": 0.9033 + }, + { + "start": 20966.53, + "end": 20968.75, + "probability": 0.087 + }, + { + "start": 20968.75, + "end": 20975.15, + "probability": 0.9452 + }, + { + "start": 20975.25, + "end": 20975.59, + "probability": 0.5941 + }, + { + "start": 20975.69, + "end": 20977.07, + "probability": 0.6505 + }, + { + "start": 20977.61, + "end": 20977.97, + "probability": 0.5553 + }, + { + "start": 20978.21, + "end": 20978.89, + "probability": 0.906 + }, + { + "start": 20979.21, + "end": 20979.99, + "probability": 0.9325 + }, + { + "start": 20980.23, + "end": 20985.35, + "probability": 0.989 + }, + { + "start": 20986.03, + "end": 20986.51, + "probability": 0.9161 + }, + { + "start": 20986.63, + "end": 20990.81, + "probability": 0.913 + }, + { + "start": 20992.25, + "end": 20994.21, + "probability": 0.8668 + }, + { + "start": 20994.37, + "end": 20995.41, + "probability": 0.9705 + }, + { + "start": 20995.51, + "end": 20996.57, + "probability": 0.6033 + }, + { + "start": 20998.33, + "end": 21003.39, + "probability": 0.8887 + }, + { + "start": 21004.31, + "end": 21004.41, + "probability": 0.0988 + }, + { + "start": 21005.09, + "end": 21008.53, + "probability": 0.8525 + }, + { + "start": 21009.45, + "end": 21014.43, + "probability": 0.9297 + }, + { + "start": 21014.49, + "end": 21015.63, + "probability": 0.4488 + }, + { + "start": 21017.25, + "end": 21021.13, + "probability": 0.9065 + }, + { + "start": 21021.13, + "end": 21023.31, + "probability": 0.9832 + }, + { + "start": 21023.77, + "end": 21025.25, + "probability": 0.8223 + }, + { + "start": 21025.71, + "end": 21029.33, + "probability": 0.8667 + }, + { + "start": 21029.37, + "end": 21033.63, + "probability": 0.4861 + }, + { + "start": 21034.31, + "end": 21036.87, + "probability": 0.9979 + }, + { + "start": 21036.87, + "end": 21038.87, + "probability": 0.9253 + }, + { + "start": 21039.07, + "end": 21042.51, + "probability": 0.9692 + }, + { + "start": 21042.83, + "end": 21043.09, + "probability": 0.7007 + }, + { + "start": 21043.41, + "end": 21044.85, + "probability": 0.9868 + }, + { + "start": 21045.06, + "end": 21047.33, + "probability": 0.1526 + }, + { + "start": 21047.37, + "end": 21048.69, + "probability": 0.6089 + }, + { + "start": 21049.05, + "end": 21050.17, + "probability": 0.5476 + }, + { + "start": 21050.87, + "end": 21051.45, + "probability": 0.2808 + }, + { + "start": 21051.97, + "end": 21054.43, + "probability": 0.8306 + }, + { + "start": 21054.53, + "end": 21057.33, + "probability": 0.8252 + }, + { + "start": 21057.93, + "end": 21061.47, + "probability": 0.7484 + }, + { + "start": 21061.55, + "end": 21064.35, + "probability": 0.9458 + }, + { + "start": 21064.53, + "end": 21064.89, + "probability": 0.5363 + }, + { + "start": 21065.01, + "end": 21066.21, + "probability": 0.9504 + }, + { + "start": 21066.21, + "end": 21067.81, + "probability": 0.7532 + }, + { + "start": 21068.51, + "end": 21071.03, + "probability": 0.9863 + }, + { + "start": 21071.21, + "end": 21071.89, + "probability": 0.1035 + }, + { + "start": 21072.11, + "end": 21075.39, + "probability": 0.9955 + }, + { + "start": 21075.57, + "end": 21076.05, + "probability": 0.5973 + }, + { + "start": 21076.13, + "end": 21079.93, + "probability": 0.9788 + }, + { + "start": 21080.19, + "end": 21080.61, + "probability": 0.6113 + }, + { + "start": 21080.99, + "end": 21084.91, + "probability": 0.9808 + }, + { + "start": 21085.27, + "end": 21086.95, + "probability": 0.8714 + }, + { + "start": 21087.47, + "end": 21093.19, + "probability": 0.9626 + }, + { + "start": 21093.25, + "end": 21095.13, + "probability": 0.9858 + }, + { + "start": 21095.31, + "end": 21097.11, + "probability": 0.9433 + }, + { + "start": 21097.93, + "end": 21099.74, + "probability": 0.8726 + }, + { + "start": 21100.07, + "end": 21100.43, + "probability": 0.5958 + }, + { + "start": 21100.73, + "end": 21101.25, + "probability": 0.9332 + }, + { + "start": 21101.45, + "end": 21103.23, + "probability": 0.8609 + }, + { + "start": 21103.71, + "end": 21106.23, + "probability": 0.9858 + }, + { + "start": 21106.31, + "end": 21107.87, + "probability": 0.9959 + }, + { + "start": 21108.01, + "end": 21109.65, + "probability": 0.9896 + }, + { + "start": 21109.67, + "end": 21110.23, + "probability": 0.7435 + }, + { + "start": 21110.59, + "end": 21111.83, + "probability": 0.8952 + }, + { + "start": 21112.55, + "end": 21112.55, + "probability": 0.2194 + }, + { + "start": 21112.55, + "end": 21114.49, + "probability": 0.9866 + }, + { + "start": 21115.07, + "end": 21118.31, + "probability": 0.7667 + }, + { + "start": 21119.03, + "end": 21120.99, + "probability": 0.8927 + }, + { + "start": 21121.83, + "end": 21122.63, + "probability": 0.8253 + }, + { + "start": 21122.71, + "end": 21125.59, + "probability": 0.9744 + }, + { + "start": 21125.59, + "end": 21128.45, + "probability": 0.9965 + }, + { + "start": 21129.19, + "end": 21129.79, + "probability": 0.8552 + }, + { + "start": 21130.15, + "end": 21131.64, + "probability": 0.877 + }, + { + "start": 21132.69, + "end": 21136.37, + "probability": 0.8648 + }, + { + "start": 21136.55, + "end": 21137.39, + "probability": 0.9868 + }, + { + "start": 21137.53, + "end": 21138.39, + "probability": 0.2721 + }, + { + "start": 21139.01, + "end": 21142.57, + "probability": 0.9382 + }, + { + "start": 21143.43, + "end": 21144.29, + "probability": 0.8029 + }, + { + "start": 21145.07, + "end": 21146.17, + "probability": 0.9727 + }, + { + "start": 21146.31, + "end": 21147.95, + "probability": 0.9954 + }, + { + "start": 21148.05, + "end": 21149.73, + "probability": 0.8641 + }, + { + "start": 21150.35, + "end": 21153.09, + "probability": 0.8795 + }, + { + "start": 21153.27, + "end": 21157.33, + "probability": 0.9985 + }, + { + "start": 21157.81, + "end": 21160.65, + "probability": 0.9946 + }, + { + "start": 21160.65, + "end": 21165.15, + "probability": 0.9725 + }, + { + "start": 21165.33, + "end": 21167.83, + "probability": 0.9762 + }, + { + "start": 21168.23, + "end": 21169.79, + "probability": 0.871 + }, + { + "start": 21170.47, + "end": 21173.69, + "probability": 0.9443 + }, + { + "start": 21174.23, + "end": 21177.03, + "probability": 0.9174 + }, + { + "start": 21177.03, + "end": 21179.29, + "probability": 0.9954 + }, + { + "start": 21179.87, + "end": 21181.51, + "probability": 0.887 + }, + { + "start": 21183.35, + "end": 21185.35, + "probability": 0.9609 + }, + { + "start": 21185.45, + "end": 21186.25, + "probability": 0.3303 + }, + { + "start": 21186.45, + "end": 21188.89, + "probability": 0.9873 + }, + { + "start": 21189.73, + "end": 21190.45, + "probability": 0.5627 + }, + { + "start": 21190.61, + "end": 21190.75, + "probability": 0.9468 + }, + { + "start": 21190.91, + "end": 21195.31, + "probability": 0.9676 + }, + { + "start": 21195.43, + "end": 21196.09, + "probability": 0.6156 + }, + { + "start": 21196.15, + "end": 21196.97, + "probability": 0.5183 + }, + { + "start": 21197.05, + "end": 21197.19, + "probability": 0.8148 + }, + { + "start": 21197.67, + "end": 21198.85, + "probability": 0.6958 + }, + { + "start": 21200.11, + "end": 21203.71, + "probability": 0.9659 + }, + { + "start": 21203.83, + "end": 21207.09, + "probability": 0.9596 + }, + { + "start": 21207.35, + "end": 21211.63, + "probability": 0.9961 + }, + { + "start": 21211.63, + "end": 21214.97, + "probability": 0.9937 + }, + { + "start": 21215.11, + "end": 21217.67, + "probability": 0.9979 + }, + { + "start": 21217.99, + "end": 21220.15, + "probability": 0.7899 + }, + { + "start": 21220.61, + "end": 21224.61, + "probability": 0.9983 + }, + { + "start": 21224.61, + "end": 21230.25, + "probability": 0.9748 + }, + { + "start": 21230.31, + "end": 21231.79, + "probability": 0.9406 + }, + { + "start": 21232.85, + "end": 21237.95, + "probability": 0.8661 + }, + { + "start": 21238.55, + "end": 21240.39, + "probability": 0.9528 + }, + { + "start": 21240.59, + "end": 21243.35, + "probability": 0.9917 + }, + { + "start": 21243.69, + "end": 21247.91, + "probability": 0.987 + }, + { + "start": 21247.95, + "end": 21248.69, + "probability": 0.7301 + }, + { + "start": 21248.99, + "end": 21249.29, + "probability": 0.6895 + }, + { + "start": 21249.29, + "end": 21250.1, + "probability": 0.615 + }, + { + "start": 21252.03, + "end": 21252.03, + "probability": 0.1451 + }, + { + "start": 21252.03, + "end": 21254.25, + "probability": 0.5784 + }, + { + "start": 21254.31, + "end": 21256.73, + "probability": 0.9128 + }, + { + "start": 21257.05, + "end": 21257.89, + "probability": 0.5704 + }, + { + "start": 21257.91, + "end": 21258.01, + "probability": 0.6148 + }, + { + "start": 21258.01, + "end": 21258.25, + "probability": 0.9175 + }, + { + "start": 21258.35, + "end": 21259.13, + "probability": 0.4917 + }, + { + "start": 21259.35, + "end": 21260.19, + "probability": 0.8379 + }, + { + "start": 21260.93, + "end": 21261.01, + "probability": 0.5664 + }, + { + "start": 21267.91, + "end": 21268.53, + "probability": 0.4029 + }, + { + "start": 21269.17, + "end": 21271.71, + "probability": 0.7357 + }, + { + "start": 21274.49, + "end": 21274.83, + "probability": 0.9341 + }, + { + "start": 21275.65, + "end": 21282.32, + "probability": 0.2644 + }, + { + "start": 21288.91, + "end": 21289.43, + "probability": 0.134 + }, + { + "start": 21289.43, + "end": 21292.37, + "probability": 0.3934 + }, + { + "start": 21293.53, + "end": 21297.15, + "probability": 0.9888 + }, + { + "start": 21298.75, + "end": 21298.95, + "probability": 0.1881 + }, + { + "start": 21298.95, + "end": 21301.11, + "probability": 0.7869 + }, + { + "start": 21302.75, + "end": 21303.91, + "probability": 0.7737 + }, + { + "start": 21303.99, + "end": 21305.01, + "probability": 0.5928 + }, + { + "start": 21305.07, + "end": 21306.63, + "probability": 0.8455 + }, + { + "start": 21307.27, + "end": 21309.91, + "probability": 0.9707 + }, + { + "start": 21310.13, + "end": 21313.09, + "probability": 0.6514 + }, + { + "start": 21315.11, + "end": 21319.11, + "probability": 0.7388 + }, + { + "start": 21319.81, + "end": 21323.97, + "probability": 0.7869 + }, + { + "start": 21324.63, + "end": 21327.71, + "probability": 0.9907 + }, + { + "start": 21328.09, + "end": 21328.73, + "probability": 0.7669 + }, + { + "start": 21328.97, + "end": 21333.57, + "probability": 0.7514 + }, + { + "start": 21334.03, + "end": 21336.21, + "probability": 0.4558 + }, + { + "start": 21336.91, + "end": 21337.73, + "probability": 0.4471 + }, + { + "start": 21337.87, + "end": 21338.17, + "probability": 0.9155 + }, + { + "start": 21338.25, + "end": 21343.81, + "probability": 0.8909 + }, + { + "start": 21344.37, + "end": 21348.91, + "probability": 0.986 + }, + { + "start": 21349.09, + "end": 21349.19, + "probability": 0.0253 + }, + { + "start": 21349.19, + "end": 21349.19, + "probability": 0.2106 + }, + { + "start": 21349.19, + "end": 21349.19, + "probability": 0.312 + }, + { + "start": 21349.19, + "end": 21349.19, + "probability": 0.0709 + }, + { + "start": 21349.19, + "end": 21351.55, + "probability": 0.7891 + }, + { + "start": 21351.71, + "end": 21352.39, + "probability": 0.613 + }, + { + "start": 21354.97, + "end": 21355.87, + "probability": 0.6856 + }, + { + "start": 21356.39, + "end": 21359.61, + "probability": 0.7464 + }, + { + "start": 21360.33, + "end": 21361.01, + "probability": 0.8201 + }, + { + "start": 21361.09, + "end": 21361.31, + "probability": 0.505 + }, + { + "start": 21361.43, + "end": 21363.91, + "probability": 0.9164 + }, + { + "start": 21364.71, + "end": 21368.22, + "probability": 0.909 + }, + { + "start": 21370.69, + "end": 21373.73, + "probability": 0.979 + }, + { + "start": 21374.91, + "end": 21379.13, + "probability": 0.9724 + }, + { + "start": 21379.23, + "end": 21381.19, + "probability": 0.9969 + }, + { + "start": 21381.89, + "end": 21383.47, + "probability": 0.9949 + }, + { + "start": 21384.19, + "end": 21387.37, + "probability": 0.6657 + }, + { + "start": 21387.55, + "end": 21388.59, + "probability": 0.9397 + }, + { + "start": 21389.41, + "end": 21391.03, + "probability": 0.8822 + }, + { + "start": 21391.11, + "end": 21391.65, + "probability": 0.6383 + }, + { + "start": 21393.23, + "end": 21397.49, + "probability": 0.9894 + }, + { + "start": 21398.29, + "end": 21399.93, + "probability": 0.9009 + }, + { + "start": 21401.03, + "end": 21402.63, + "probability": 0.9739 + }, + { + "start": 21403.95, + "end": 21403.95, + "probability": 0.9575 + }, + { + "start": 21404.97, + "end": 21406.57, + "probability": 0.3416 + }, + { + "start": 21406.83, + "end": 21410.17, + "probability": 0.9914 + }, + { + "start": 21413.04, + "end": 21414.13, + "probability": 0.5438 + }, + { + "start": 21414.91, + "end": 21417.17, + "probability": 0.7354 + }, + { + "start": 21417.93, + "end": 21418.87, + "probability": 0.9762 + }, + { + "start": 21419.45, + "end": 21421.13, + "probability": 0.9871 + }, + { + "start": 21421.67, + "end": 21423.63, + "probability": 0.9921 + }, + { + "start": 21424.77, + "end": 21426.17, + "probability": 0.9453 + }, + { + "start": 21427.03, + "end": 21429.81, + "probability": 0.994 + }, + { + "start": 21429.89, + "end": 21431.75, + "probability": 0.9989 + }, + { + "start": 21433.11, + "end": 21435.07, + "probability": 0.9891 + }, + { + "start": 21435.39, + "end": 21436.93, + "probability": 0.956 + }, + { + "start": 21437.85, + "end": 21442.15, + "probability": 0.9888 + }, + { + "start": 21442.37, + "end": 21443.55, + "probability": 0.946 + }, + { + "start": 21444.29, + "end": 21444.69, + "probability": 0.7798 + }, + { + "start": 21444.83, + "end": 21447.59, + "probability": 0.9009 + }, + { + "start": 21448.47, + "end": 21448.79, + "probability": 0.7012 + }, + { + "start": 21448.89, + "end": 21449.53, + "probability": 0.8432 + }, + { + "start": 21449.65, + "end": 21451.91, + "probability": 0.9703 + }, + { + "start": 21453.31, + "end": 21454.71, + "probability": 0.6615 + }, + { + "start": 21455.17, + "end": 21460.55, + "probability": 0.9893 + }, + { + "start": 21460.67, + "end": 21461.37, + "probability": 0.5845 + }, + { + "start": 21461.45, + "end": 21461.97, + "probability": 0.6239 + }, + { + "start": 21462.35, + "end": 21464.19, + "probability": 0.9802 + }, + { + "start": 21465.17, + "end": 21466.71, + "probability": 0.7923 + }, + { + "start": 21468.37, + "end": 21472.19, + "probability": 0.8176 + }, + { + "start": 21473.13, + "end": 21474.07, + "probability": 0.719 + }, + { + "start": 21474.11, + "end": 21476.61, + "probability": 0.9885 + }, + { + "start": 21476.91, + "end": 21478.07, + "probability": 0.4951 + }, + { + "start": 21478.31, + "end": 21480.45, + "probability": 0.9531 + }, + { + "start": 21481.23, + "end": 21482.77, + "probability": 0.9418 + }, + { + "start": 21482.81, + "end": 21484.95, + "probability": 0.9563 + }, + { + "start": 21486.57, + "end": 21488.17, + "probability": 0.9938 + }, + { + "start": 21488.51, + "end": 21489.53, + "probability": 0.949 + }, + { + "start": 21490.55, + "end": 21491.65, + "probability": 0.8303 + }, + { + "start": 21491.71, + "end": 21495.99, + "probability": 0.9204 + }, + { + "start": 21496.17, + "end": 21497.29, + "probability": 0.887 + }, + { + "start": 21497.65, + "end": 21498.77, + "probability": 0.9725 + }, + { + "start": 21499.45, + "end": 21499.63, + "probability": 0.7637 + }, + { + "start": 21499.81, + "end": 21501.79, + "probability": 0.975 + }, + { + "start": 21502.27, + "end": 21505.93, + "probability": 0.9958 + }, + { + "start": 21506.91, + "end": 21508.97, + "probability": 0.9868 + }, + { + "start": 21509.07, + "end": 21509.49, + "probability": 0.5894 + }, + { + "start": 21509.53, + "end": 21516.83, + "probability": 0.9902 + }, + { + "start": 21517.29, + "end": 21519.63, + "probability": 0.9609 + }, + { + "start": 21520.31, + "end": 21521.47, + "probability": 0.8798 + }, + { + "start": 21522.21, + "end": 21525.75, + "probability": 0.9961 + }, + { + "start": 21525.99, + "end": 21527.17, + "probability": 0.9845 + }, + { + "start": 21527.81, + "end": 21530.07, + "probability": 0.9994 + }, + { + "start": 21531.13, + "end": 21531.67, + "probability": 0.6066 + }, + { + "start": 21532.13, + "end": 21539.25, + "probability": 0.9955 + }, + { + "start": 21540.19, + "end": 21544.27, + "probability": 0.9951 + }, + { + "start": 21544.43, + "end": 21547.83, + "probability": 0.869 + }, + { + "start": 21548.51, + "end": 21549.29, + "probability": 0.9946 + }, + { + "start": 21549.87, + "end": 21552.85, + "probability": 0.9552 + }, + { + "start": 21553.67, + "end": 21560.51, + "probability": 0.9802 + }, + { + "start": 21561.01, + "end": 21564.51, + "probability": 0.9973 + }, + { + "start": 21565.25, + "end": 21566.63, + "probability": 0.9619 + }, + { + "start": 21567.45, + "end": 21570.75, + "probability": 0.9933 + }, + { + "start": 21570.87, + "end": 21571.95, + "probability": 0.9971 + }, + { + "start": 21572.13, + "end": 21573.63, + "probability": 0.9771 + }, + { + "start": 21575.17, + "end": 21577.39, + "probability": 0.9982 + }, + { + "start": 21578.15, + "end": 21580.51, + "probability": 0.9249 + }, + { + "start": 21581.33, + "end": 21582.88, + "probability": 0.8145 + }, + { + "start": 21583.99, + "end": 21588.89, + "probability": 0.8224 + }, + { + "start": 21589.67, + "end": 21591.29, + "probability": 0.7575 + }, + { + "start": 21592.27, + "end": 21593.07, + "probability": 0.8557 + }, + { + "start": 21593.19, + "end": 21593.29, + "probability": 0.4873 + }, + { + "start": 21593.29, + "end": 21594.01, + "probability": 0.5598 + }, + { + "start": 21594.65, + "end": 21595.21, + "probability": 0.2943 + }, + { + "start": 21595.29, + "end": 21596.29, + "probability": 0.8025 + }, + { + "start": 21596.89, + "end": 21598.97, + "probability": 0.7039 + }, + { + "start": 21599.93, + "end": 21601.41, + "probability": 0.9321 + }, + { + "start": 21602.07, + "end": 21602.73, + "probability": 0.6488 + }, + { + "start": 21603.47, + "end": 21605.83, + "probability": 0.6698 + }, + { + "start": 21606.41, + "end": 21609.29, + "probability": 0.8478 + }, + { + "start": 21609.75, + "end": 21613.83, + "probability": 0.9949 + }, + { + "start": 21614.55, + "end": 21617.81, + "probability": 0.9562 + }, + { + "start": 21617.83, + "end": 21618.51, + "probability": 0.4834 + }, + { + "start": 21618.61, + "end": 21620.47, + "probability": 0.9053 + }, + { + "start": 21621.07, + "end": 21624.15, + "probability": 0.9972 + }, + { + "start": 21624.39, + "end": 21624.71, + "probability": 0.7917 + }, + { + "start": 21624.71, + "end": 21625.29, + "probability": 0.6054 + }, + { + "start": 21625.53, + "end": 21628.61, + "probability": 0.8367 + }, + { + "start": 21647.29, + "end": 21648.23, + "probability": 0.4406 + }, + { + "start": 21650.65, + "end": 21653.45, + "probability": 0.697 + }, + { + "start": 21654.79, + "end": 21655.53, + "probability": 0.7107 + }, + { + "start": 21657.79, + "end": 21658.55, + "probability": 0.9214 + }, + { + "start": 21658.63, + "end": 21659.77, + "probability": 0.9079 + }, + { + "start": 21659.81, + "end": 21666.33, + "probability": 0.9637 + }, + { + "start": 21666.33, + "end": 21670.65, + "probability": 0.6527 + }, + { + "start": 21670.89, + "end": 21673.69, + "probability": 0.9075 + }, + { + "start": 21674.47, + "end": 21675.05, + "probability": 0.8079 + }, + { + "start": 21675.61, + "end": 21677.59, + "probability": 0.9777 + }, + { + "start": 21677.61, + "end": 21679.81, + "probability": 0.7554 + }, + { + "start": 21680.23, + "end": 21685.95, + "probability": 0.9505 + }, + { + "start": 21687.89, + "end": 21689.73, + "probability": 0.9337 + }, + { + "start": 21690.83, + "end": 21691.21, + "probability": 0.8285 + }, + { + "start": 21691.65, + "end": 21695.77, + "probability": 0.9806 + }, + { + "start": 21695.87, + "end": 21696.65, + "probability": 0.8005 + }, + { + "start": 21697.31, + "end": 21698.31, + "probability": 0.8065 + }, + { + "start": 21698.37, + "end": 21704.27, + "probability": 0.8989 + }, + { + "start": 21704.53, + "end": 21705.15, + "probability": 0.8816 + }, + { + "start": 21706.87, + "end": 21708.05, + "probability": 0.8855 + }, + { + "start": 21708.11, + "end": 21711.33, + "probability": 0.8747 + }, + { + "start": 21712.19, + "end": 21717.15, + "probability": 0.9956 + }, + { + "start": 21717.71, + "end": 21718.33, + "probability": 0.9979 + }, + { + "start": 21720.35, + "end": 21723.69, + "probability": 0.9976 + }, + { + "start": 21724.89, + "end": 21727.87, + "probability": 0.9858 + }, + { + "start": 21730.59, + "end": 21733.21, + "probability": 0.5913 + }, + { + "start": 21733.33, + "end": 21734.15, + "probability": 0.6326 + }, + { + "start": 21734.53, + "end": 21736.57, + "probability": 0.8527 + }, + { + "start": 21737.01, + "end": 21739.53, + "probability": 0.7531 + }, + { + "start": 21739.91, + "end": 21741.39, + "probability": 0.6532 + }, + { + "start": 21744.25, + "end": 21747.87, + "probability": 0.9711 + }, + { + "start": 21748.59, + "end": 21753.23, + "probability": 0.7996 + }, + { + "start": 21753.89, + "end": 21759.69, + "probability": 0.9975 + }, + { + "start": 21760.35, + "end": 21761.61, + "probability": 0.967 + }, + { + "start": 21762.69, + "end": 21766.23, + "probability": 0.9805 + }, + { + "start": 21766.91, + "end": 21768.09, + "probability": 0.9203 + }, + { + "start": 21769.05, + "end": 21772.19, + "probability": 0.995 + }, + { + "start": 21772.81, + "end": 21775.63, + "probability": 0.9972 + }, + { + "start": 21776.25, + "end": 21777.54, + "probability": 0.9638 + }, + { + "start": 21778.37, + "end": 21780.15, + "probability": 0.9498 + }, + { + "start": 21780.81, + "end": 21783.35, + "probability": 0.8981 + }, + { + "start": 21783.51, + "end": 21785.45, + "probability": 0.9663 + }, + { + "start": 21785.61, + "end": 21787.73, + "probability": 0.9967 + }, + { + "start": 21788.61, + "end": 21792.09, + "probability": 0.9397 + }, + { + "start": 21792.71, + "end": 21795.89, + "probability": 0.9708 + }, + { + "start": 21797.47, + "end": 21798.81, + "probability": 0.7566 + }, + { + "start": 21798.89, + "end": 21801.01, + "probability": 0.9457 + }, + { + "start": 21801.91, + "end": 21804.39, + "probability": 0.9969 + }, + { + "start": 21804.39, + "end": 21807.25, + "probability": 0.9366 + }, + { + "start": 21808.61, + "end": 21810.71, + "probability": 0.9596 + }, + { + "start": 21811.01, + "end": 21812.31, + "probability": 0.9808 + }, + { + "start": 21812.55, + "end": 21813.37, + "probability": 0.7901 + }, + { + "start": 21814.35, + "end": 21817.83, + "probability": 0.9668 + }, + { + "start": 21817.85, + "end": 21818.07, + "probability": 0.7821 + }, + { + "start": 21818.81, + "end": 21819.79, + "probability": 0.5762 + }, + { + "start": 21819.85, + "end": 21822.82, + "probability": 0.9409 + }, + { + "start": 21824.35, + "end": 21824.45, + "probability": 0.4575 + }, + { + "start": 21825.49, + "end": 21825.49, + "probability": 0.0 + }, + { + "start": 21825.49, + "end": 21826.79, + "probability": 0.8569 + }, + { + "start": 21827.99, + "end": 21828.79, + "probability": 0.9115 + }, + { + "start": 21829.71, + "end": 21831.36, + "probability": 0.959 + }, + { + "start": 21832.91, + "end": 21834.23, + "probability": 0.8915 + }, + { + "start": 21834.61, + "end": 21836.09, + "probability": 0.6089 + }, + { + "start": 21836.65, + "end": 21837.37, + "probability": 0.9447 + }, + { + "start": 21837.39, + "end": 21839.13, + "probability": 0.8166 + }, + { + "start": 21839.51, + "end": 21840.87, + "probability": 0.8996 + }, + { + "start": 21840.93, + "end": 21842.03, + "probability": 0.9719 + }, + { + "start": 21843.43, + "end": 21844.95, + "probability": 0.5375 + }, + { + "start": 21845.15, + "end": 21847.33, + "probability": 0.5134 + }, + { + "start": 21849.69, + "end": 21851.43, + "probability": 0.791 + }, + { + "start": 21852.51, + "end": 21854.44, + "probability": 0.9949 + }, + { + "start": 21855.07, + "end": 21856.57, + "probability": 0.7804 + }, + { + "start": 21857.35, + "end": 21860.53, + "probability": 0.9876 + }, + { + "start": 21861.33, + "end": 21865.17, + "probability": 0.7168 + }, + { + "start": 21865.37, + "end": 21867.71, + "probability": 0.9283 + }, + { + "start": 21867.85, + "end": 21870.79, + "probability": 0.9907 + }, + { + "start": 21871.33, + "end": 21872.55, + "probability": 0.9697 + }, + { + "start": 21873.25, + "end": 21875.35, + "probability": 0.9868 + }, + { + "start": 21875.83, + "end": 21877.71, + "probability": 0.9976 + }, + { + "start": 21878.99, + "end": 21880.33, + "probability": 0.9164 + }, + { + "start": 21881.31, + "end": 21883.09, + "probability": 0.8688 + }, + { + "start": 21885.71, + "end": 21887.31, + "probability": 0.9925 + }, + { + "start": 21888.11, + "end": 21889.23, + "probability": 0.8169 + }, + { + "start": 21889.91, + "end": 21891.47, + "probability": 0.9951 + }, + { + "start": 21891.89, + "end": 21893.35, + "probability": 0.9946 + }, + { + "start": 21893.81, + "end": 21895.45, + "probability": 0.9957 + }, + { + "start": 21896.07, + "end": 21899.25, + "probability": 0.9832 + }, + { + "start": 21899.77, + "end": 21900.73, + "probability": 0.7734 + }, + { + "start": 21901.25, + "end": 21902.65, + "probability": 0.9284 + }, + { + "start": 21903.13, + "end": 21906.39, + "probability": 0.9948 + }, + { + "start": 21907.01, + "end": 21910.77, + "probability": 0.5292 + }, + { + "start": 21911.51, + "end": 21913.15, + "probability": 0.9095 + }, + { + "start": 21913.29, + "end": 21913.69, + "probability": 0.8719 + }, + { + "start": 21913.73, + "end": 21914.77, + "probability": 0.8572 + }, + { + "start": 21915.25, + "end": 21918.95, + "probability": 0.937 + }, + { + "start": 21919.83, + "end": 21924.81, + "probability": 0.9095 + }, + { + "start": 21926.23, + "end": 21926.23, + "probability": 0.0147 + }, + { + "start": 21926.23, + "end": 21928.43, + "probability": 0.6056 + }, + { + "start": 21928.51, + "end": 21928.89, + "probability": 0.8824 + }, + { + "start": 21929.03, + "end": 21929.79, + "probability": 0.4807 + }, + { + "start": 21929.79, + "end": 21930.53, + "probability": 0.271 + }, + { + "start": 21931.11, + "end": 21933.01, + "probability": 0.6904 + }, + { + "start": 21934.17, + "end": 21936.09, + "probability": 0.5363 + }, + { + "start": 21937.23, + "end": 21937.31, + "probability": 0.8726 + }, + { + "start": 21943.47, + "end": 21944.15, + "probability": 0.4125 + }, + { + "start": 21944.15, + "end": 21945.69, + "probability": 0.7428 + }, + { + "start": 21945.79, + "end": 21946.01, + "probability": 0.7168 + }, + { + "start": 21947.13, + "end": 21947.77, + "probability": 0.414 + }, + { + "start": 21947.79, + "end": 21948.35, + "probability": 0.7109 + }, + { + "start": 21948.91, + "end": 21950.11, + "probability": 0.7162 + }, + { + "start": 21950.15, + "end": 21950.97, + "probability": 0.949 + }, + { + "start": 21954.11, + "end": 21954.61, + "probability": 0.483 + }, + { + "start": 21955.35, + "end": 21957.23, + "probability": 0.9716 + }, + { + "start": 21961.25, + "end": 21961.69, + "probability": 0.7501 + }, + { + "start": 21963.39, + "end": 21965.35, + "probability": 0.9618 + }, + { + "start": 21966.07, + "end": 21967.47, + "probability": 0.9813 + }, + { + "start": 21967.89, + "end": 21969.69, + "probability": 0.2435 + }, + { + "start": 21970.92, + "end": 21973.99, + "probability": 0.4009 + }, + { + "start": 21974.09, + "end": 21975.27, + "probability": 0.8364 + }, + { + "start": 21976.45, + "end": 21976.65, + "probability": 0.1033 + }, + { + "start": 21977.25, + "end": 21979.85, + "probability": 0.3246 + }, + { + "start": 21979.85, + "end": 21979.85, + "probability": 0.5025 + }, + { + "start": 21979.85, + "end": 21980.47, + "probability": 0.0702 + }, + { + "start": 21981.27, + "end": 21983.51, + "probability": 0.4116 + }, + { + "start": 21986.89, + "end": 21987.79, + "probability": 0.9568 + }, + { + "start": 21988.49, + "end": 21988.56, + "probability": 0.3319 + }, + { + "start": 21989.85, + "end": 21991.43, + "probability": 0.8611 + }, + { + "start": 21991.85, + "end": 21992.89, + "probability": 0.3561 + }, + { + "start": 21995.87, + "end": 21996.95, + "probability": 0.8084 + }, + { + "start": 21997.03, + "end": 21999.41, + "probability": 0.9135 + }, + { + "start": 22000.25, + "end": 22004.05, + "probability": 0.5134 + }, + { + "start": 22006.67, + "end": 22008.95, + "probability": 0.9685 + }, + { + "start": 22009.83, + "end": 22013.34, + "probability": 0.8472 + }, + { + "start": 22014.57, + "end": 22014.57, + "probability": 0.0435 + }, + { + "start": 22014.57, + "end": 22016.01, + "probability": 0.7153 + }, + { + "start": 22016.99, + "end": 22018.69, + "probability": 0.6235 + }, + { + "start": 22022.55, + "end": 22023.72, + "probability": 0.7334 + }, + { + "start": 22024.97, + "end": 22031.49, + "probability": 0.856 + }, + { + "start": 22032.75, + "end": 22033.63, + "probability": 0.9512 + }, + { + "start": 22034.57, + "end": 22037.43, + "probability": 0.7592 + }, + { + "start": 22038.61, + "end": 22042.05, + "probability": 0.9578 + }, + { + "start": 22042.05, + "end": 22045.41, + "probability": 0.9946 + }, + { + "start": 22046.27, + "end": 22049.15, + "probability": 0.987 + }, + { + "start": 22050.05, + "end": 22056.31, + "probability": 0.9573 + }, + { + "start": 22056.31, + "end": 22062.81, + "probability": 0.9373 + }, + { + "start": 22062.87, + "end": 22064.93, + "probability": 0.9927 + }, + { + "start": 22065.49, + "end": 22068.67, + "probability": 0.9695 + }, + { + "start": 22069.37, + "end": 22073.03, + "probability": 0.9945 + }, + { + "start": 22074.09, + "end": 22075.77, + "probability": 0.9971 + }, + { + "start": 22076.33, + "end": 22079.83, + "probability": 0.8946 + }, + { + "start": 22082.29, + "end": 22085.67, + "probability": 0.7657 + }, + { + "start": 22086.69, + "end": 22091.09, + "probability": 0.7668 + }, + { + "start": 22091.75, + "end": 22093.43, + "probability": 0.9552 + }, + { + "start": 22093.97, + "end": 22097.77, + "probability": 0.9915 + }, + { + "start": 22098.45, + "end": 22102.17, + "probability": 0.996 + }, + { + "start": 22102.17, + "end": 22105.81, + "probability": 0.9967 + }, + { + "start": 22107.65, + "end": 22108.87, + "probability": 0.7941 + }, + { + "start": 22109.01, + "end": 22113.57, + "probability": 0.7171 + }, + { + "start": 22113.57, + "end": 22116.79, + "probability": 0.9959 + }, + { + "start": 22116.79, + "end": 22122.73, + "probability": 0.9921 + }, + { + "start": 22123.69, + "end": 22127.75, + "probability": 0.9654 + }, + { + "start": 22127.75, + "end": 22132.37, + "probability": 0.9645 + }, + { + "start": 22134.29, + "end": 22138.61, + "probability": 0.9938 + }, + { + "start": 22138.61, + "end": 22143.29, + "probability": 0.998 + }, + { + "start": 22143.73, + "end": 22144.31, + "probability": 0.7838 + }, + { + "start": 22144.49, + "end": 22146.15, + "probability": 0.8528 + }, + { + "start": 22147.21, + "end": 22150.25, + "probability": 0.9805 + }, + { + "start": 22152.17, + "end": 22154.97, + "probability": 0.9593 + }, + { + "start": 22155.49, + "end": 22157.97, + "probability": 0.9938 + }, + { + "start": 22158.91, + "end": 22162.17, + "probability": 0.6699 + }, + { + "start": 22163.03, + "end": 22165.73, + "probability": 0.8545 + }, + { + "start": 22166.25, + "end": 22168.07, + "probability": 0.9251 + }, + { + "start": 22168.71, + "end": 22172.55, + "probability": 0.9641 + }, + { + "start": 22173.95, + "end": 22177.23, + "probability": 0.9928 + }, + { + "start": 22177.23, + "end": 22183.51, + "probability": 0.9984 + }, + { + "start": 22183.93, + "end": 22186.87, + "probability": 0.9754 + }, + { + "start": 22187.87, + "end": 22188.25, + "probability": 0.622 + }, + { + "start": 22188.39, + "end": 22195.93, + "probability": 0.978 + }, + { + "start": 22196.51, + "end": 22202.23, + "probability": 0.9919 + }, + { + "start": 22203.11, + "end": 22207.76, + "probability": 0.9729 + }, + { + "start": 22207.89, + "end": 22208.57, + "probability": 0.7856 + }, + { + "start": 22209.01, + "end": 22213.49, + "probability": 0.8687 + }, + { + "start": 22214.39, + "end": 22220.51, + "probability": 0.9676 + }, + { + "start": 22221.97, + "end": 22223.79, + "probability": 0.9814 + }, + { + "start": 22224.51, + "end": 22229.91, + "probability": 0.995 + }, + { + "start": 22230.71, + "end": 22233.39, + "probability": 0.986 + }, + { + "start": 22233.51, + "end": 22235.41, + "probability": 0.8717 + }, + { + "start": 22235.95, + "end": 22237.51, + "probability": 0.9904 + }, + { + "start": 22238.79, + "end": 22239.31, + "probability": 0.8559 + }, + { + "start": 22239.47, + "end": 22241.23, + "probability": 0.9897 + }, + { + "start": 22241.63, + "end": 22243.81, + "probability": 0.9648 + }, + { + "start": 22244.37, + "end": 22247.19, + "probability": 0.8795 + }, + { + "start": 22247.29, + "end": 22249.61, + "probability": 0.8632 + }, + { + "start": 22250.05, + "end": 22253.47, + "probability": 0.9917 + }, + { + "start": 22254.67, + "end": 22258.37, + "probability": 0.9969 + }, + { + "start": 22258.37, + "end": 22261.79, + "probability": 0.9949 + }, + { + "start": 22262.77, + "end": 22264.49, + "probability": 0.8699 + }, + { + "start": 22265.03, + "end": 22269.69, + "probability": 0.9866 + }, + { + "start": 22269.69, + "end": 22274.27, + "probability": 0.9979 + }, + { + "start": 22275.21, + "end": 22275.99, + "probability": 0.2909 + }, + { + "start": 22276.17, + "end": 22277.23, + "probability": 0.9833 + }, + { + "start": 22277.33, + "end": 22281.35, + "probability": 0.9927 + }, + { + "start": 22281.89, + "end": 22286.71, + "probability": 0.9984 + }, + { + "start": 22287.53, + "end": 22292.21, + "probability": 0.6932 + }, + { + "start": 22292.27, + "end": 22293.51, + "probability": 0.819 + }, + { + "start": 22293.97, + "end": 22294.85, + "probability": 0.7796 + }, + { + "start": 22295.43, + "end": 22296.67, + "probability": 0.9766 + }, + { + "start": 22297.01, + "end": 22299.19, + "probability": 0.9366 + }, + { + "start": 22299.75, + "end": 22304.85, + "probability": 0.9976 + }, + { + "start": 22305.07, + "end": 22306.31, + "probability": 0.6741 + }, + { + "start": 22306.47, + "end": 22307.05, + "probability": 0.6571 + }, + { + "start": 22307.19, + "end": 22308.85, + "probability": 0.9471 + }, + { + "start": 22309.89, + "end": 22310.45, + "probability": 0.9186 + }, + { + "start": 22311.09, + "end": 22311.29, + "probability": 0.6272 + }, + { + "start": 22313.47, + "end": 22314.11, + "probability": 0.8215 + }, + { + "start": 22315.57, + "end": 22317.19, + "probability": 0.9263 + }, + { + "start": 22334.37, + "end": 22337.01, + "probability": 0.6224 + }, + { + "start": 22337.69, + "end": 22339.27, + "probability": 0.6481 + }, + { + "start": 22339.63, + "end": 22340.49, + "probability": 0.8669 + }, + { + "start": 22341.39, + "end": 22342.37, + "probability": 0.8518 + }, + { + "start": 22342.83, + "end": 22343.53, + "probability": 0.8496 + }, + { + "start": 22343.71, + "end": 22344.19, + "probability": 0.9556 + }, + { + "start": 22344.27, + "end": 22345.17, + "probability": 0.7782 + }, + { + "start": 22346.25, + "end": 22349.29, + "probability": 0.9024 + }, + { + "start": 22350.07, + "end": 22350.79, + "probability": 0.5989 + }, + { + "start": 22350.85, + "end": 22356.69, + "probability": 0.9561 + }, + { + "start": 22357.69, + "end": 22362.41, + "probability": 0.607 + }, + { + "start": 22363.07, + "end": 22364.47, + "probability": 0.6278 + }, + { + "start": 22365.13, + "end": 22368.01, + "probability": 0.9948 + }, + { + "start": 22368.95, + "end": 22374.49, + "probability": 0.8612 + }, + { + "start": 22375.37, + "end": 22377.57, + "probability": 0.9227 + }, + { + "start": 22378.15, + "end": 22379.63, + "probability": 0.9709 + }, + { + "start": 22379.83, + "end": 22380.37, + "probability": 0.806 + }, + { + "start": 22380.71, + "end": 22382.13, + "probability": 0.9753 + }, + { + "start": 22382.49, + "end": 22383.33, + "probability": 0.9781 + }, + { + "start": 22383.55, + "end": 22384.57, + "probability": 0.9094 + }, + { + "start": 22385.71, + "end": 22388.78, + "probability": 0.9827 + }, + { + "start": 22389.45, + "end": 22392.17, + "probability": 0.3887 + }, + { + "start": 22392.31, + "end": 22394.69, + "probability": 0.9887 + }, + { + "start": 22395.83, + "end": 22397.97, + "probability": 0.8058 + }, + { + "start": 22398.59, + "end": 22398.91, + "probability": 0.9863 + }, + { + "start": 22399.45, + "end": 22400.65, + "probability": 0.9458 + }, + { + "start": 22400.71, + "end": 22403.41, + "probability": 0.7508 + }, + { + "start": 22403.41, + "end": 22403.43, + "probability": 0.5037 + }, + { + "start": 22403.49, + "end": 22404.59, + "probability": 0.7146 + }, + { + "start": 22404.83, + "end": 22405.95, + "probability": 0.8644 + }, + { + "start": 22406.47, + "end": 22408.37, + "probability": 0.903 + }, + { + "start": 22408.39, + "end": 22410.05, + "probability": 0.7418 + }, + { + "start": 22410.81, + "end": 22413.11, + "probability": 0.8771 + }, + { + "start": 22413.53, + "end": 22416.39, + "probability": 0.9816 + }, + { + "start": 22417.05, + "end": 22417.71, + "probability": 0.848 + }, + { + "start": 22418.27, + "end": 22423.47, + "probability": 0.9622 + }, + { + "start": 22423.87, + "end": 22425.51, + "probability": 0.9864 + }, + { + "start": 22426.01, + "end": 22426.6, + "probability": 0.8444 + }, + { + "start": 22426.79, + "end": 22428.65, + "probability": 0.6537 + }, + { + "start": 22428.89, + "end": 22429.34, + "probability": 0.5128 + }, + { + "start": 22429.67, + "end": 22430.29, + "probability": 0.812 + }, + { + "start": 22430.41, + "end": 22432.51, + "probability": 0.8887 + }, + { + "start": 22432.87, + "end": 22433.76, + "probability": 0.99 + }, + { + "start": 22434.31, + "end": 22436.19, + "probability": 0.9728 + }, + { + "start": 22436.85, + "end": 22437.31, + "probability": 0.6508 + }, + { + "start": 22437.39, + "end": 22440.81, + "probability": 0.6305 + }, + { + "start": 22441.55, + "end": 22443.15, + "probability": 0.9449 + }, + { + "start": 22443.17, + "end": 22443.83, + "probability": 0.5763 + }, + { + "start": 22443.87, + "end": 22444.83, + "probability": 0.9214 + }, + { + "start": 22445.31, + "end": 22445.63, + "probability": 0.4029 + }, + { + "start": 22445.65, + "end": 22446.47, + "probability": 0.9501 + }, + { + "start": 22446.57, + "end": 22448.09, + "probability": 0.9683 + }, + { + "start": 22448.65, + "end": 22449.79, + "probability": 0.9627 + }, + { + "start": 22449.93, + "end": 22451.02, + "probability": 0.9932 + }, + { + "start": 22451.77, + "end": 22453.09, + "probability": 0.7336 + }, + { + "start": 22453.35, + "end": 22455.55, + "probability": 0.9643 + }, + { + "start": 22456.05, + "end": 22458.37, + "probability": 0.9917 + }, + { + "start": 22458.71, + "end": 22462.05, + "probability": 0.891 + }, + { + "start": 22462.27, + "end": 22464.61, + "probability": 0.7336 + }, + { + "start": 22464.99, + "end": 22466.39, + "probability": 0.83 + }, + { + "start": 22466.51, + "end": 22467.27, + "probability": 0.6122 + }, + { + "start": 22467.33, + "end": 22469.41, + "probability": 0.864 + }, + { + "start": 22469.97, + "end": 22470.69, + "probability": 0.7534 + }, + { + "start": 22470.71, + "end": 22472.83, + "probability": 0.9731 + }, + { + "start": 22473.27, + "end": 22474.49, + "probability": 0.8947 + }, + { + "start": 22474.61, + "end": 22475.41, + "probability": 0.8418 + }, + { + "start": 22475.49, + "end": 22476.11, + "probability": 0.4727 + }, + { + "start": 22476.67, + "end": 22479.97, + "probability": 0.8693 + }, + { + "start": 22480.49, + "end": 22481.77, + "probability": 0.997 + }, + { + "start": 22482.69, + "end": 22484.49, + "probability": 0.9894 + }, + { + "start": 22484.55, + "end": 22486.71, + "probability": 0.9577 + }, + { + "start": 22487.21, + "end": 22488.25, + "probability": 0.0991 + }, + { + "start": 22488.37, + "end": 22489.67, + "probability": 0.9739 + }, + { + "start": 22490.17, + "end": 22492.33, + "probability": 0.9917 + }, + { + "start": 22492.41, + "end": 22492.93, + "probability": 0.5205 + }, + { + "start": 22493.83, + "end": 22496.29, + "probability": 0.9376 + }, + { + "start": 22496.55, + "end": 22499.25, + "probability": 0.9343 + }, + { + "start": 22499.89, + "end": 22502.65, + "probability": 0.9313 + }, + { + "start": 22502.89, + "end": 22505.55, + "probability": 0.8983 + }, + { + "start": 22505.59, + "end": 22509.61, + "probability": 0.955 + }, + { + "start": 22510.25, + "end": 22513.55, + "probability": 0.8252 + }, + { + "start": 22513.55, + "end": 22515.36, + "probability": 0.9714 + }, + { + "start": 22516.17, + "end": 22516.99, + "probability": 0.87 + }, + { + "start": 22517.13, + "end": 22517.83, + "probability": 0.4671 + }, + { + "start": 22518.43, + "end": 22519.27, + "probability": 0.3615 + }, + { + "start": 22519.35, + "end": 22520.11, + "probability": 0.7209 + }, + { + "start": 22520.21, + "end": 22521.37, + "probability": 0.874 + }, + { + "start": 22521.49, + "end": 22523.29, + "probability": 0.8618 + }, + { + "start": 22523.77, + "end": 22525.15, + "probability": 0.963 + }, + { + "start": 22525.65, + "end": 22526.51, + "probability": 0.7028 + }, + { + "start": 22527.07, + "end": 22530.29, + "probability": 0.8567 + }, + { + "start": 22530.75, + "end": 22532.17, + "probability": 0.875 + }, + { + "start": 22532.41, + "end": 22534.67, + "probability": 0.9349 + }, + { + "start": 22535.17, + "end": 22537.17, + "probability": 0.9077 + }, + { + "start": 22537.39, + "end": 22537.89, + "probability": 0.74 + }, + { + "start": 22538.11, + "end": 22542.17, + "probability": 0.8906 + }, + { + "start": 22542.73, + "end": 22544.87, + "probability": 0.8593 + }, + { + "start": 22545.01, + "end": 22546.27, + "probability": 0.8115 + }, + { + "start": 22546.61, + "end": 22549.47, + "probability": 0.9146 + }, + { + "start": 22549.95, + "end": 22552.91, + "probability": 0.896 + }, + { + "start": 22552.91, + "end": 22556.57, + "probability": 0.894 + }, + { + "start": 22556.63, + "end": 22556.63, + "probability": 0.3844 + }, + { + "start": 22556.63, + "end": 22558.19, + "probability": 0.9036 + }, + { + "start": 22558.57, + "end": 22559.07, + "probability": 0.86 + }, + { + "start": 22559.65, + "end": 22560.47, + "probability": 0.7342 + }, + { + "start": 22560.55, + "end": 22561.55, + "probability": 0.5315 + }, + { + "start": 22562.01, + "end": 22562.69, + "probability": 0.8271 + }, + { + "start": 22562.75, + "end": 22565.31, + "probability": 0.9434 + }, + { + "start": 22565.31, + "end": 22567.45, + "probability": 0.8142 + }, + { + "start": 22567.45, + "end": 22567.85, + "probability": 0.5045 + }, + { + "start": 22567.85, + "end": 22568.31, + "probability": 0.3785 + }, + { + "start": 22568.31, + "end": 22568.31, + "probability": 0.2044 + }, + { + "start": 22568.31, + "end": 22571.51, + "probability": 0.8976 + }, + { + "start": 22571.97, + "end": 22573.13, + "probability": 0.5908 + }, + { + "start": 22573.43, + "end": 22576.39, + "probability": 0.949 + }, + { + "start": 22576.39, + "end": 22578.93, + "probability": 0.9764 + }, + { + "start": 22578.93, + "end": 22579.51, + "probability": 0.7586 + }, + { + "start": 22579.81, + "end": 22580.59, + "probability": 0.4719 + }, + { + "start": 22580.63, + "end": 22582.37, + "probability": 0.8501 + }, + { + "start": 22583.89, + "end": 22584.21, + "probability": 0.8678 + }, + { + "start": 22584.21, + "end": 22587.05, + "probability": 0.9865 + }, + { + "start": 22587.17, + "end": 22588.27, + "probability": 0.9639 + }, + { + "start": 22596.97, + "end": 22597.97, + "probability": 0.491 + }, + { + "start": 22599.01, + "end": 22600.3, + "probability": 0.2424 + }, + { + "start": 22615.03, + "end": 22618.07, + "probability": 0.8687 + }, + { + "start": 22619.17, + "end": 22620.27, + "probability": 0.947 + }, + { + "start": 22621.83, + "end": 22624.13, + "probability": 0.9961 + }, + { + "start": 22625.29, + "end": 22627.51, + "probability": 0.9875 + }, + { + "start": 22629.85, + "end": 22629.93, + "probability": 0.2491 + }, + { + "start": 22630.05, + "end": 22631.63, + "probability": 0.5715 + }, + { + "start": 22631.77, + "end": 22632.47, + "probability": 0.9971 + }, + { + "start": 22633.91, + "end": 22635.24, + "probability": 0.9891 + }, + { + "start": 22636.17, + "end": 22638.74, + "probability": 0.9907 + }, + { + "start": 22639.79, + "end": 22642.71, + "probability": 0.9148 + }, + { + "start": 22643.87, + "end": 22645.62, + "probability": 0.8522 + }, + { + "start": 22646.75, + "end": 22648.61, + "probability": 0.9951 + }, + { + "start": 22649.77, + "end": 22651.95, + "probability": 0.6617 + }, + { + "start": 22653.55, + "end": 22657.29, + "probability": 0.9062 + }, + { + "start": 22658.37, + "end": 22659.83, + "probability": 0.814 + }, + { + "start": 22660.95, + "end": 22663.65, + "probability": 0.9875 + }, + { + "start": 22665.41, + "end": 22665.55, + "probability": 0.4116 + }, + { + "start": 22665.63, + "end": 22666.91, + "probability": 0.8735 + }, + { + "start": 22666.97, + "end": 22669.13, + "probability": 0.9197 + }, + { + "start": 22669.79, + "end": 22672.25, + "probability": 0.9741 + }, + { + "start": 22673.09, + "end": 22674.27, + "probability": 0.9871 + }, + { + "start": 22675.29, + "end": 22677.83, + "probability": 0.8646 + }, + { + "start": 22678.45, + "end": 22679.39, + "probability": 0.7491 + }, + { + "start": 22681.25, + "end": 22683.21, + "probability": 0.9688 + }, + { + "start": 22683.23, + "end": 22684.05, + "probability": 0.6355 + }, + { + "start": 22684.74, + "end": 22686.99, + "probability": 0.7158 + }, + { + "start": 22689.82, + "end": 22691.83, + "probability": 0.9213 + }, + { + "start": 22693.73, + "end": 22696.71, + "probability": 0.861 + }, + { + "start": 22696.99, + "end": 22698.91, + "probability": 0.7452 + }, + { + "start": 22699.67, + "end": 22700.31, + "probability": 0.7655 + }, + { + "start": 22700.99, + "end": 22703.63, + "probability": 0.9836 + }, + { + "start": 22704.19, + "end": 22705.35, + "probability": 0.9764 + }, + { + "start": 22705.93, + "end": 22709.9, + "probability": 0.7018 + }, + { + "start": 22711.23, + "end": 22714.23, + "probability": 0.9951 + }, + { + "start": 22714.99, + "end": 22717.07, + "probability": 0.9938 + }, + { + "start": 22717.91, + "end": 22719.03, + "probability": 0.7991 + }, + { + "start": 22719.55, + "end": 22721.45, + "probability": 0.9542 + }, + { + "start": 22722.35, + "end": 22723.11, + "probability": 0.9771 + }, + { + "start": 22724.29, + "end": 22725.47, + "probability": 0.9782 + }, + { + "start": 22726.35, + "end": 22726.77, + "probability": 0.6387 + }, + { + "start": 22726.89, + "end": 22729.45, + "probability": 0.9008 + }, + { + "start": 22730.31, + "end": 22734.45, + "probability": 0.9202 + }, + { + "start": 22735.67, + "end": 22738.05, + "probability": 0.9873 + }, + { + "start": 22738.91, + "end": 22741.13, + "probability": 0.7959 + }, + { + "start": 22742.83, + "end": 22743.61, + "probability": 0.7119 + }, + { + "start": 22745.45, + "end": 22747.09, + "probability": 0.8102 + }, + { + "start": 22748.01, + "end": 22749.73, + "probability": 0.9969 + }, + { + "start": 22749.73, + "end": 22751.93, + "probability": 0.6557 + }, + { + "start": 22752.63, + "end": 22755.59, + "probability": 0.96 + }, + { + "start": 22756.21, + "end": 22758.01, + "probability": 0.7993 + }, + { + "start": 22758.59, + "end": 22760.23, + "probability": 0.9836 + }, + { + "start": 22760.97, + "end": 22763.6, + "probability": 0.9524 + }, + { + "start": 22764.99, + "end": 22766.31, + "probability": 0.8845 + }, + { + "start": 22769.63, + "end": 22773.41, + "probability": 0.7975 + }, + { + "start": 22773.55, + "end": 22774.65, + "probability": 0.8141 + }, + { + "start": 22775.11, + "end": 22777.75, + "probability": 0.9932 + }, + { + "start": 22779.41, + "end": 22780.11, + "probability": 0.9138 + }, + { + "start": 22780.79, + "end": 22781.31, + "probability": 0.8619 + }, + { + "start": 22781.51, + "end": 22783.74, + "probability": 0.9937 + }, + { + "start": 22783.91, + "end": 22786.67, + "probability": 0.6666 + }, + { + "start": 22786.67, + "end": 22788.83, + "probability": 0.8805 + }, + { + "start": 22789.57, + "end": 22792.97, + "probability": 0.9691 + }, + { + "start": 22794.37, + "end": 22797.23, + "probability": 0.6492 + }, + { + "start": 22798.05, + "end": 22800.11, + "probability": 0.9423 + }, + { + "start": 22801.01, + "end": 22802.93, + "probability": 0.9893 + }, + { + "start": 22804.01, + "end": 22806.63, + "probability": 0.9967 + }, + { + "start": 22807.23, + "end": 22809.37, + "probability": 0.9746 + }, + { + "start": 22810.05, + "end": 22811.39, + "probability": 0.9811 + }, + { + "start": 22811.61, + "end": 22813.03, + "probability": 0.9476 + }, + { + "start": 22813.49, + "end": 22814.09, + "probability": 0.8238 + }, + { + "start": 22814.25, + "end": 22815.01, + "probability": 0.7675 + }, + { + "start": 22815.59, + "end": 22816.99, + "probability": 0.8455 + }, + { + "start": 22817.39, + "end": 22818.36, + "probability": 0.8057 + }, + { + "start": 22818.55, + "end": 22819.75, + "probability": 0.7245 + }, + { + "start": 22819.95, + "end": 22820.29, + "probability": 0.8161 + }, + { + "start": 22820.59, + "end": 22821.35, + "probability": 0.4601 + }, + { + "start": 22821.69, + "end": 22823.2, + "probability": 0.9305 + }, + { + "start": 22824.57, + "end": 22825.95, + "probability": 0.9276 + }, + { + "start": 22835.23, + "end": 22836.33, + "probability": 0.261 + }, + { + "start": 22837.37, + "end": 22840.39, + "probability": 0.1276 + }, + { + "start": 22863.89, + "end": 22866.93, + "probability": 0.5496 + }, + { + "start": 22867.11, + "end": 22868.05, + "probability": 0.4104 + }, + { + "start": 22868.23, + "end": 22868.95, + "probability": 0.6423 + }, + { + "start": 22869.77, + "end": 22873.83, + "probability": 0.8592 + }, + { + "start": 22875.75, + "end": 22877.55, + "probability": 0.7978 + }, + { + "start": 22877.55, + "end": 22880.73, + "probability": 0.9509 + }, + { + "start": 22883.15, + "end": 22883.59, + "probability": 0.7306 + }, + { + "start": 22883.71, + "end": 22886.19, + "probability": 0.5447 + }, + { + "start": 22887.07, + "end": 22890.19, + "probability": 0.9165 + }, + { + "start": 22890.45, + "end": 22893.0, + "probability": 0.7426 + }, + { + "start": 22893.55, + "end": 22894.41, + "probability": 0.6352 + }, + { + "start": 22895.57, + "end": 22899.17, + "probability": 0.9829 + }, + { + "start": 22900.15, + "end": 22901.43, + "probability": 0.9498 + }, + { + "start": 22902.27, + "end": 22905.59, + "probability": 0.9406 + }, + { + "start": 22906.49, + "end": 22907.76, + "probability": 0.7165 + }, + { + "start": 22909.17, + "end": 22910.35, + "probability": 0.8922 + }, + { + "start": 22912.11, + "end": 22913.53, + "probability": 0.713 + }, + { + "start": 22913.59, + "end": 22916.63, + "probability": 0.841 + }, + { + "start": 22916.89, + "end": 22917.33, + "probability": 0.0314 + }, + { + "start": 22918.59, + "end": 22919.89, + "probability": 0.8459 + }, + { + "start": 22920.71, + "end": 22920.89, + "probability": 0.705 + }, + { + "start": 22922.79, + "end": 22926.43, + "probability": 0.7009 + }, + { + "start": 22927.01, + "end": 22930.13, + "probability": 0.8205 + }, + { + "start": 22930.99, + "end": 22931.29, + "probability": 0.5504 + }, + { + "start": 22931.45, + "end": 22933.07, + "probability": 0.6367 + }, + { + "start": 22933.07, + "end": 22935.95, + "probability": 0.8391 + }, + { + "start": 22936.71, + "end": 22937.07, + "probability": 0.4681 + }, + { + "start": 22937.13, + "end": 22937.87, + "probability": 0.8691 + }, + { + "start": 22938.01, + "end": 22941.57, + "probability": 0.8862 + }, + { + "start": 22942.71, + "end": 22944.61, + "probability": 0.9738 + }, + { + "start": 22944.61, + "end": 22946.91, + "probability": 0.9839 + }, + { + "start": 22948.91, + "end": 22951.01, + "probability": 0.8176 + }, + { + "start": 22952.61, + "end": 22955.05, + "probability": 0.648 + }, + { + "start": 22955.09, + "end": 22955.23, + "probability": 0.1968 + }, + { + "start": 22955.25, + "end": 22955.51, + "probability": 0.841 + }, + { + "start": 22955.57, + "end": 22957.77, + "probability": 0.921 + }, + { + "start": 22958.27, + "end": 22958.75, + "probability": 0.681 + }, + { + "start": 22958.83, + "end": 22960.25, + "probability": 0.726 + }, + { + "start": 22961.4, + "end": 22962.97, + "probability": 0.8558 + }, + { + "start": 22964.75, + "end": 22965.23, + "probability": 0.5241 + }, + { + "start": 22967.16, + "end": 22968.45, + "probability": 0.8573 + }, + { + "start": 22970.71, + "end": 22971.61, + "probability": 0.1579 + }, + { + "start": 22971.75, + "end": 22978.19, + "probability": 0.7561 + }, + { + "start": 22978.57, + "end": 22980.47, + "probability": 0.7621 + }, + { + "start": 22981.39, + "end": 22982.42, + "probability": 0.9764 + }, + { + "start": 22984.39, + "end": 22984.83, + "probability": 0.2403 + }, + { + "start": 22984.83, + "end": 22985.67, + "probability": 0.4736 + }, + { + "start": 22986.33, + "end": 22987.94, + "probability": 0.4875 + }, + { + "start": 22989.03, + "end": 22991.65, + "probability": 0.7189 + }, + { + "start": 22992.01, + "end": 22992.35, + "probability": 0.6449 + }, + { + "start": 22993.15, + "end": 22993.45, + "probability": 0.6405 + }, + { + "start": 22993.61, + "end": 22993.67, + "probability": 0.0214 + }, + { + "start": 22993.67, + "end": 22996.21, + "probability": 0.0212 + }, + { + "start": 22996.31, + "end": 22996.77, + "probability": 0.7323 + }, + { + "start": 22997.65, + "end": 22997.89, + "probability": 0.796 + }, + { + "start": 22998.17, + "end": 23000.71, + "probability": 0.0099 + }, + { + "start": 23000.71, + "end": 23000.71, + "probability": 0.0854 + }, + { + "start": 23000.71, + "end": 23001.59, + "probability": 0.1531 + }, + { + "start": 23001.83, + "end": 23002.51, + "probability": 0.8371 + }, + { + "start": 23002.89, + "end": 23003.29, + "probability": 0.3995 + }, + { + "start": 23004.37, + "end": 23007.63, + "probability": 0.6653 + }, + { + "start": 23007.81, + "end": 23008.21, + "probability": 0.0619 + }, + { + "start": 23008.53, + "end": 23008.65, + "probability": 0.2473 + }, + { + "start": 23008.87, + "end": 23009.63, + "probability": 0.2445 + }, + { + "start": 23009.89, + "end": 23010.19, + "probability": 0.0603 + }, + { + "start": 23010.19, + "end": 23010.41, + "probability": 0.0359 + }, + { + "start": 23012.23, + "end": 23015.27, + "probability": 0.656 + }, + { + "start": 23016.29, + "end": 23019.29, + "probability": 0.717 + }, + { + "start": 23019.89, + "end": 23020.39, + "probability": 0.6064 + }, + { + "start": 23021.23, + "end": 23022.79, + "probability": 0.9526 + }, + { + "start": 23023.67, + "end": 23024.01, + "probability": 0.6233 + }, + { + "start": 23024.05, + "end": 23026.07, + "probability": 0.8652 + }, + { + "start": 23026.19, + "end": 23028.79, + "probability": 0.9471 + }, + { + "start": 23030.79, + "end": 23032.93, + "probability": 0.8867 + }, + { + "start": 23033.05, + "end": 23035.75, + "probability": 0.7692 + }, + { + "start": 23036.55, + "end": 23038.59, + "probability": 0.9223 + }, + { + "start": 23040.33, + "end": 23041.81, + "probability": 0.6322 + }, + { + "start": 23041.81, + "end": 23044.29, + "probability": 0.9795 + }, + { + "start": 23047.41, + "end": 23047.45, + "probability": 0.0267 + }, + { + "start": 23047.45, + "end": 23049.64, + "probability": 0.7714 + }, + { + "start": 23050.57, + "end": 23054.69, + "probability": 0.8138 + }, + { + "start": 23055.13, + "end": 23055.99, + "probability": 0.8838 + }, + { + "start": 23058.57, + "end": 23061.95, + "probability": 0.6663 + }, + { + "start": 23062.19, + "end": 23065.11, + "probability": 0.8582 + }, + { + "start": 23065.29, + "end": 23067.65, + "probability": 0.7914 + }, + { + "start": 23067.67, + "end": 23072.33, + "probability": 0.8286 + }, + { + "start": 23073.33, + "end": 23075.17, + "probability": 0.24 + }, + { + "start": 23076.63, + "end": 23079.17, + "probability": 0.6624 + }, + { + "start": 23080.41, + "end": 23082.67, + "probability": 0.8826 + }, + { + "start": 23083.23, + "end": 23084.15, + "probability": 0.5967 + }, + { + "start": 23084.71, + "end": 23086.19, + "probability": 0.6084 + }, + { + "start": 23087.37, + "end": 23090.55, + "probability": 0.5525 + }, + { + "start": 23090.63, + "end": 23091.07, + "probability": 0.6274 + }, + { + "start": 23091.67, + "end": 23095.48, + "probability": 0.9927 + }, + { + "start": 23096.69, + "end": 23098.16, + "probability": 0.9927 + }, + { + "start": 23098.89, + "end": 23102.03, + "probability": 0.8962 + }, + { + "start": 23102.43, + "end": 23103.43, + "probability": 0.9146 + }, + { + "start": 23103.75, + "end": 23105.2, + "probability": 0.9865 + }, + { + "start": 23105.47, + "end": 23106.45, + "probability": 0.9929 + }, + { + "start": 23107.61, + "end": 23107.96, + "probability": 0.3468 + }, + { + "start": 23108.11, + "end": 23108.57, + "probability": 0.3538 + }, + { + "start": 23108.69, + "end": 23110.03, + "probability": 0.9021 + }, + { + "start": 23110.09, + "end": 23110.45, + "probability": 0.5188 + }, + { + "start": 23110.55, + "end": 23112.15, + "probability": 0.7356 + }, + { + "start": 23112.87, + "end": 23113.57, + "probability": 0.9868 + }, + { + "start": 23113.69, + "end": 23114.45, + "probability": 0.507 + }, + { + "start": 23114.97, + "end": 23115.27, + "probability": 0.5267 + }, + { + "start": 23116.65, + "end": 23116.77, + "probability": 0.6205 + }, + { + "start": 23116.77, + "end": 23117.53, + "probability": 0.6493 + }, + { + "start": 23117.59, + "end": 23118.51, + "probability": 0.9828 + }, + { + "start": 23118.99, + "end": 23120.38, + "probability": 0.2707 + }, + { + "start": 23122.77, + "end": 23123.61, + "probability": 0.5141 + }, + { + "start": 23124.49, + "end": 23125.95, + "probability": 0.4789 + }, + { + "start": 23126.99, + "end": 23127.67, + "probability": 0.613 + }, + { + "start": 23128.31, + "end": 23128.33, + "probability": 0.004 + }, + { + "start": 23128.33, + "end": 23128.91, + "probability": 0.1638 + }, + { + "start": 23129.51, + "end": 23131.01, + "probability": 0.8142 + }, + { + "start": 23131.79, + "end": 23133.83, + "probability": 0.9951 + }, + { + "start": 23134.33, + "end": 23135.21, + "probability": 0.7306 + }, + { + "start": 23135.93, + "end": 23136.79, + "probability": 0.3542 + }, + { + "start": 23136.87, + "end": 23138.55, + "probability": 0.9791 + }, + { + "start": 23139.25, + "end": 23141.67, + "probability": 0.9321 + }, + { + "start": 23142.65, + "end": 23143.25, + "probability": 0.6899 + }, + { + "start": 23143.65, + "end": 23143.95, + "probability": 0.8577 + }, + { + "start": 23145.05, + "end": 23146.39, + "probability": 0.5215 + }, + { + "start": 23151.33, + "end": 23154.61, + "probability": 0.9678 + }, + { + "start": 23155.29, + "end": 23155.73, + "probability": 0.8509 + }, + { + "start": 23156.33, + "end": 23157.23, + "probability": 0.6163 + }, + { + "start": 23161.17, + "end": 23161.55, + "probability": 0.7191 + }, + { + "start": 23164.11, + "end": 23164.55, + "probability": 0.8801 + }, + { + "start": 23165.47, + "end": 23166.17, + "probability": 0.1733 + }, + { + "start": 23166.17, + "end": 23166.9, + "probability": 0.1571 + }, + { + "start": 23167.77, + "end": 23168.91, + "probability": 0.035 + }, + { + "start": 23168.91, + "end": 23169.71, + "probability": 0.1329 + }, + { + "start": 23171.17, + "end": 23171.57, + "probability": 0.8259 + }, + { + "start": 23173.41, + "end": 23174.23, + "probability": 0.9371 + }, + { + "start": 23176.72, + "end": 23177.47, + "probability": 0.17 + }, + { + "start": 23177.47, + "end": 23177.81, + "probability": 0.071 + }, + { + "start": 23177.87, + "end": 23180.03, + "probability": 0.7959 + }, + { + "start": 23180.21, + "end": 23182.91, + "probability": 0.9767 + }, + { + "start": 23183.09, + "end": 23184.57, + "probability": 0.5548 + }, + { + "start": 23184.93, + "end": 23185.37, + "probability": 0.6688 + }, + { + "start": 23187.81, + "end": 23187.91, + "probability": 0.7316 + }, + { + "start": 23189.45, + "end": 23189.83, + "probability": 0.8026 + }, + { + "start": 23190.81, + "end": 23193.21, + "probability": 0.7833 + }, + { + "start": 23193.31, + "end": 23194.61, + "probability": 0.2991 + }, + { + "start": 23196.17, + "end": 23196.81, + "probability": 0.3942 + }, + { + "start": 23196.85, + "end": 23197.43, + "probability": 0.2151 + }, + { + "start": 23198.86, + "end": 23200.83, + "probability": 0.0554 + }, + { + "start": 23201.73, + "end": 23201.93, + "probability": 0.0013 + }, + { + "start": 23201.93, + "end": 23201.93, + "probability": 0.5515 + }, + { + "start": 23201.93, + "end": 23201.93, + "probability": 0.1893 + }, + { + "start": 23201.93, + "end": 23202.37, + "probability": 0.0502 + }, + { + "start": 23202.53, + "end": 23204.92, + "probability": 0.787 + }, + { + "start": 23205.19, + "end": 23205.53, + "probability": 0.8217 + }, + { + "start": 23206.13, + "end": 23207.17, + "probability": 0.526 + }, + { + "start": 23208.39, + "end": 23213.07, + "probability": 0.4058 + }, + { + "start": 23213.37, + "end": 23216.15, + "probability": 0.9858 + }, + { + "start": 23216.15, + "end": 23219.47, + "probability": 0.903 + }, + { + "start": 23221.87, + "end": 23222.63, + "probability": 0.049 + }, + { + "start": 23222.63, + "end": 23223.49, + "probability": 0.0536 + }, + { + "start": 23226.21, + "end": 23227.67, + "probability": 0.5821 + }, + { + "start": 23227.67, + "end": 23229.65, + "probability": 0.7443 + }, + { + "start": 23229.65, + "end": 23230.33, + "probability": 0.8037 + }, + { + "start": 23231.99, + "end": 23232.65, + "probability": 0.6544 + }, + { + "start": 23232.87, + "end": 23235.91, + "probability": 0.9903 + }, + { + "start": 23238.05, + "end": 23238.79, + "probability": 0.1918 + }, + { + "start": 23238.97, + "end": 23240.53, + "probability": 0.1053 + }, + { + "start": 23240.79, + "end": 23242.73, + "probability": 0.0874 + }, + { + "start": 23242.93, + "end": 23243.39, + "probability": 0.7075 + }, + { + "start": 23244.59, + "end": 23246.53, + "probability": 0.4568 + }, + { + "start": 23247.15, + "end": 23249.15, + "probability": 0.6797 + }, + { + "start": 23249.39, + "end": 23251.07, + "probability": 0.5311 + }, + { + "start": 23251.11, + "end": 23251.57, + "probability": 0.8752 + }, + { + "start": 23251.67, + "end": 23255.23, + "probability": 0.9801 + }, + { + "start": 23255.43, + "end": 23256.47, + "probability": 0.6469 + }, + { + "start": 23256.51, + "end": 23257.07, + "probability": 0.4219 + }, + { + "start": 23257.17, + "end": 23257.19, + "probability": 0.4072 + }, + { + "start": 23258.87, + "end": 23260.35, + "probability": 0.9798 + }, + { + "start": 23260.39, + "end": 23260.45, + "probability": 0.6523 + }, + { + "start": 23260.57, + "end": 23262.79, + "probability": 0.9917 + }, + { + "start": 23262.87, + "end": 23264.38, + "probability": 0.7179 + }, + { + "start": 23264.57, + "end": 23265.47, + "probability": 0.8206 + }, + { + "start": 23266.25, + "end": 23268.07, + "probability": 0.6828 + }, + { + "start": 23268.69, + "end": 23269.87, + "probability": 0.7776 + }, + { + "start": 23269.97, + "end": 23272.77, + "probability": 0.5548 + }, + { + "start": 23273.71, + "end": 23274.75, + "probability": 0.9091 + }, + { + "start": 23275.39, + "end": 23276.41, + "probability": 0.867 + }, + { + "start": 23279.39, + "end": 23280.41, + "probability": 0.9716 + }, + { + "start": 23281.09, + "end": 23281.23, + "probability": 0.5435 + }, + { + "start": 23281.31, + "end": 23281.77, + "probability": 0.7765 + }, + { + "start": 23281.89, + "end": 23283.65, + "probability": 0.8246 + }, + { + "start": 23283.73, + "end": 23287.89, + "probability": 0.9922 + }, + { + "start": 23287.89, + "end": 23291.73, + "probability": 0.9919 + }, + { + "start": 23292.79, + "end": 23293.89, + "probability": 0.9817 + }, + { + "start": 23294.01, + "end": 23298.99, + "probability": 0.9583 + }, + { + "start": 23299.95, + "end": 23303.09, + "probability": 0.9985 + }, + { + "start": 23303.09, + "end": 23306.27, + "probability": 0.9856 + }, + { + "start": 23306.83, + "end": 23307.55, + "probability": 0.8508 + }, + { + "start": 23308.27, + "end": 23313.81, + "probability": 0.9823 + }, + { + "start": 23313.91, + "end": 23316.15, + "probability": 0.9976 + }, + { + "start": 23317.41, + "end": 23318.37, + "probability": 0.8767 + }, + { + "start": 23318.63, + "end": 23319.79, + "probability": 0.8501 + }, + { + "start": 23319.87, + "end": 23321.45, + "probability": 0.9512 + }, + { + "start": 23322.13, + "end": 23323.67, + "probability": 0.9633 + }, + { + "start": 23323.73, + "end": 23324.83, + "probability": 0.9912 + }, + { + "start": 23324.93, + "end": 23328.99, + "probability": 0.9875 + }, + { + "start": 23328.99, + "end": 23332.09, + "probability": 0.998 + }, + { + "start": 23332.21, + "end": 23334.07, + "probability": 0.9157 + }, + { + "start": 23334.15, + "end": 23338.63, + "probability": 0.984 + }, + { + "start": 23339.21, + "end": 23340.37, + "probability": 0.766 + }, + { + "start": 23340.83, + "end": 23342.65, + "probability": 0.982 + }, + { + "start": 23342.73, + "end": 23345.11, + "probability": 0.9806 + }, + { + "start": 23345.65, + "end": 23346.47, + "probability": 0.8805 + }, + { + "start": 23347.15, + "end": 23350.71, + "probability": 0.9838 + }, + { + "start": 23350.83, + "end": 23351.46, + "probability": 0.9077 + }, + { + "start": 23351.83, + "end": 23354.41, + "probability": 0.9396 + }, + { + "start": 23354.77, + "end": 23355.85, + "probability": 0.9592 + }, + { + "start": 23355.93, + "end": 23357.87, + "probability": 0.855 + }, + { + "start": 23358.79, + "end": 23360.83, + "probability": 0.9956 + }, + { + "start": 23361.57, + "end": 23363.25, + "probability": 0.7756 + }, + { + "start": 23363.59, + "end": 23366.97, + "probability": 0.9787 + }, + { + "start": 23366.97, + "end": 23371.69, + "probability": 0.9941 + }, + { + "start": 23371.77, + "end": 23374.29, + "probability": 0.9945 + }, + { + "start": 23375.07, + "end": 23378.75, + "probability": 0.8845 + }, + { + "start": 23379.77, + "end": 23380.71, + "probability": 0.9355 + }, + { + "start": 23381.49, + "end": 23384.43, + "probability": 0.9985 + }, + { + "start": 23385.15, + "end": 23386.25, + "probability": 0.8367 + }, + { + "start": 23386.29, + "end": 23387.95, + "probability": 0.8006 + }, + { + "start": 23388.03, + "end": 23390.53, + "probability": 0.9392 + }, + { + "start": 23391.27, + "end": 23395.57, + "probability": 0.9059 + }, + { + "start": 23395.57, + "end": 23398.71, + "probability": 0.9819 + }, + { + "start": 23399.19, + "end": 23404.89, + "probability": 0.9658 + }, + { + "start": 23405.01, + "end": 23405.51, + "probability": 0.401 + }, + { + "start": 23405.67, + "end": 23406.45, + "probability": 0.9521 + }, + { + "start": 23406.95, + "end": 23407.75, + "probability": 0.7005 + }, + { + "start": 23408.71, + "end": 23412.55, + "probability": 0.9178 + }, + { + "start": 23412.81, + "end": 23414.53, + "probability": 0.8425 + }, + { + "start": 23414.59, + "end": 23417.15, + "probability": 0.9854 + }, + { + "start": 23417.15, + "end": 23420.19, + "probability": 0.9967 + }, + { + "start": 23420.33, + "end": 23421.47, + "probability": 0.8951 + }, + { + "start": 23421.55, + "end": 23423.45, + "probability": 0.8972 + }, + { + "start": 23424.79, + "end": 23426.02, + "probability": 0.6532 + }, + { + "start": 23427.45, + "end": 23429.01, + "probability": 0.7273 + }, + { + "start": 23429.85, + "end": 23431.65, + "probability": 0.9917 + }, + { + "start": 23432.25, + "end": 23432.91, + "probability": 0.8206 + }, + { + "start": 23432.97, + "end": 23434.49, + "probability": 0.9818 + }, + { + "start": 23434.59, + "end": 23436.01, + "probability": 0.9978 + }, + { + "start": 23436.15, + "end": 23436.83, + "probability": 0.9088 + }, + { + "start": 23436.89, + "end": 23437.77, + "probability": 0.9021 + }, + { + "start": 23437.81, + "end": 23439.07, + "probability": 0.9236 + }, + { + "start": 23439.57, + "end": 23441.57, + "probability": 0.9951 + }, + { + "start": 23442.29, + "end": 23444.69, + "probability": 0.9951 + }, + { + "start": 23445.19, + "end": 23447.69, + "probability": 0.7281 + }, + { + "start": 23448.39, + "end": 23450.01, + "probability": 0.77 + }, + { + "start": 23451.11, + "end": 23453.63, + "probability": 0.8107 + }, + { + "start": 23454.71, + "end": 23455.41, + "probability": 0.7464 + }, + { + "start": 23455.95, + "end": 23456.45, + "probability": 0.2194 + }, + { + "start": 23456.45, + "end": 23458.59, + "probability": 0.8184 + }, + { + "start": 23459.15, + "end": 23460.73, + "probability": 0.9282 + }, + { + "start": 23461.49, + "end": 23463.33, + "probability": 0.8508 + }, + { + "start": 23463.37, + "end": 23464.53, + "probability": 0.8699 + }, + { + "start": 23464.65, + "end": 23466.01, + "probability": 0.9413 + }, + { + "start": 23466.05, + "end": 23467.55, + "probability": 0.692 + }, + { + "start": 23467.57, + "end": 23468.63, + "probability": 0.629 + }, + { + "start": 23469.19, + "end": 23470.01, + "probability": 0.6455 + }, + { + "start": 23470.33, + "end": 23472.59, + "probability": 0.6814 + }, + { + "start": 23472.65, + "end": 23473.41, + "probability": 0.771 + }, + { + "start": 23474.17, + "end": 23475.27, + "probability": 0.6102 + }, + { + "start": 23475.83, + "end": 23479.99, + "probability": 0.7972 + }, + { + "start": 23480.37, + "end": 23481.8, + "probability": 0.6303 + }, + { + "start": 23482.83, + "end": 23484.59, + "probability": 0.9839 + }, + { + "start": 23485.49, + "end": 23485.95, + "probability": 0.8115 + }, + { + "start": 23487.01, + "end": 23488.77, + "probability": 0.8447 + }, + { + "start": 23489.33, + "end": 23490.95, + "probability": 0.9674 + }, + { + "start": 23491.03, + "end": 23492.83, + "probability": 0.9871 + }, + { + "start": 23493.87, + "end": 23496.21, + "probability": 0.9698 + }, + { + "start": 23496.31, + "end": 23496.73, + "probability": 0.39 + }, + { + "start": 23497.03, + "end": 23498.11, + "probability": 0.9082 + }, + { + "start": 23498.31, + "end": 23499.19, + "probability": 0.6703 + }, + { + "start": 23500.33, + "end": 23505.43, + "probability": 0.9504 + }, + { + "start": 23505.57, + "end": 23506.03, + "probability": 0.7244 + }, + { + "start": 23506.09, + "end": 23509.03, + "probability": 0.9087 + }, + { + "start": 23510.23, + "end": 23511.39, + "probability": 0.8323 + }, + { + "start": 23512.09, + "end": 23515.48, + "probability": 0.9563 + }, + { + "start": 23515.85, + "end": 23516.33, + "probability": 0.8685 + }, + { + "start": 23516.67, + "end": 23518.83, + "probability": 0.9315 + }, + { + "start": 23519.77, + "end": 23524.53, + "probability": 0.9954 + }, + { + "start": 23524.81, + "end": 23526.03, + "probability": 0.7868 + }, + { + "start": 23526.03, + "end": 23526.23, + "probability": 0.7799 + }, + { + "start": 23526.29, + "end": 23526.57, + "probability": 0.9119 + }, + { + "start": 23526.61, + "end": 23526.98, + "probability": 0.9858 + }, + { + "start": 23528.01, + "end": 23530.31, + "probability": 0.8043 + }, + { + "start": 23530.65, + "end": 23531.67, + "probability": 0.8269 + }, + { + "start": 23532.21, + "end": 23534.91, + "probability": 0.9606 + }, + { + "start": 23534.91, + "end": 23537.17, + "probability": 0.9983 + }, + { + "start": 23537.79, + "end": 23539.06, + "probability": 0.8787 + }, + { + "start": 23539.48, + "end": 23540.37, + "probability": 0.5503 + }, + { + "start": 23540.63, + "end": 23541.67, + "probability": 0.8737 + }, + { + "start": 23541.71, + "end": 23544.15, + "probability": 0.9069 + }, + { + "start": 23544.51, + "end": 23546.53, + "probability": 0.9622 + }, + { + "start": 23548.27, + "end": 23548.75, + "probability": 0.3512 + }, + { + "start": 23548.81, + "end": 23549.62, + "probability": 0.9354 + }, + { + "start": 23550.05, + "end": 23551.13, + "probability": 0.9118 + }, + { + "start": 23551.19, + "end": 23551.57, + "probability": 0.877 + }, + { + "start": 23551.63, + "end": 23552.55, + "probability": 0.9269 + }, + { + "start": 23553.21, + "end": 23553.97, + "probability": 0.9425 + }, + { + "start": 23554.03, + "end": 23554.43, + "probability": 0.6198 + }, + { + "start": 23574.97, + "end": 23577.35, + "probability": 0.5327 + }, + { + "start": 23577.35, + "end": 23577.45, + "probability": 0.1598 + }, + { + "start": 23577.45, + "end": 23578.03, + "probability": 0.6186 + }, + { + "start": 23578.31, + "end": 23579.35, + "probability": 0.6316 + }, + { + "start": 23580.41, + "end": 23580.75, + "probability": 0.6829 + }, + { + "start": 23586.91, + "end": 23588.43, + "probability": 0.7273 + }, + { + "start": 23589.29, + "end": 23590.27, + "probability": 0.7888 + }, + { + "start": 23591.59, + "end": 23593.37, + "probability": 0.8665 + }, + { + "start": 23594.31, + "end": 23594.97, + "probability": 0.8624 + }, + { + "start": 23597.87, + "end": 23599.07, + "probability": 0.8556 + }, + { + "start": 23601.31, + "end": 23604.27, + "probability": 0.9864 + }, + { + "start": 23605.99, + "end": 23607.03, + "probability": 0.9961 + }, + { + "start": 23607.11, + "end": 23610.55, + "probability": 0.9948 + }, + { + "start": 23611.33, + "end": 23613.11, + "probability": 0.9992 + }, + { + "start": 23614.05, + "end": 23616.69, + "probability": 0.8358 + }, + { + "start": 23618.13, + "end": 23620.17, + "probability": 0.8768 + }, + { + "start": 23620.33, + "end": 23622.09, + "probability": 0.9983 + }, + { + "start": 23623.39, + "end": 23626.11, + "probability": 0.8833 + }, + { + "start": 23626.29, + "end": 23629.95, + "probability": 0.9884 + }, + { + "start": 23630.31, + "end": 23631.29, + "probability": 0.8569 + }, + { + "start": 23631.83, + "end": 23632.6, + "probability": 0.6782 + }, + { + "start": 23633.33, + "end": 23638.51, + "probability": 0.9788 + }, + { + "start": 23639.39, + "end": 23641.89, + "probability": 0.9691 + }, + { + "start": 23642.95, + "end": 23644.81, + "probability": 0.9368 + }, + { + "start": 23645.63, + "end": 23646.6, + "probability": 0.8781 + }, + { + "start": 23647.03, + "end": 23649.67, + "probability": 0.848 + }, + { + "start": 23650.61, + "end": 23651.35, + "probability": 0.8216 + }, + { + "start": 23652.77, + "end": 23656.79, + "probability": 0.9028 + }, + { + "start": 23656.97, + "end": 23659.47, + "probability": 0.8038 + }, + { + "start": 23660.59, + "end": 23662.27, + "probability": 0.8843 + }, + { + "start": 23662.83, + "end": 23663.45, + "probability": 0.7725 + }, + { + "start": 23667.59, + "end": 23669.23, + "probability": 0.8682 + }, + { + "start": 23669.71, + "end": 23673.49, + "probability": 0.8976 + }, + { + "start": 23675.37, + "end": 23681.25, + "probability": 0.926 + }, + { + "start": 23683.45, + "end": 23687.15, + "probability": 0.9948 + }, + { + "start": 23687.77, + "end": 23690.37, + "probability": 0.9497 + }, + { + "start": 23691.27, + "end": 23693.49, + "probability": 0.8402 + }, + { + "start": 23694.25, + "end": 23694.95, + "probability": 0.9758 + }, + { + "start": 23696.37, + "end": 23700.05, + "probability": 0.9282 + }, + { + "start": 23702.49, + "end": 23704.67, + "probability": 0.8163 + }, + { + "start": 23705.07, + "end": 23708.25, + "probability": 0.995 + }, + { + "start": 23709.85, + "end": 23710.85, + "probability": 0.8624 + }, + { + "start": 23711.59, + "end": 23717.05, + "probability": 0.8497 + }, + { + "start": 23717.13, + "end": 23720.63, + "probability": 0.949 + }, + { + "start": 23721.65, + "end": 23721.77, + "probability": 0.7208 + }, + { + "start": 23721.87, + "end": 23725.53, + "probability": 0.6652 + }, + { + "start": 23725.67, + "end": 23726.35, + "probability": 0.6754 + }, + { + "start": 23726.53, + "end": 23727.03, + "probability": 0.875 + }, + { + "start": 23727.39, + "end": 23727.71, + "probability": 0.9052 + }, + { + "start": 23727.79, + "end": 23728.8, + "probability": 0.8169 + }, + { + "start": 23729.25, + "end": 23733.29, + "probability": 0.8848 + }, + { + "start": 23733.44, + "end": 23737.43, + "probability": 0.9594 + }, + { + "start": 23737.75, + "end": 23739.07, + "probability": 0.6412 + }, + { + "start": 23739.93, + "end": 23742.99, + "probability": 0.7778 + }, + { + "start": 23744.35, + "end": 23745.17, + "probability": 0.9746 + }, + { + "start": 23746.11, + "end": 23746.95, + "probability": 0.9748 + }, + { + "start": 23747.51, + "end": 23748.17, + "probability": 0.9716 + }, + { + "start": 23751.87, + "end": 23752.35, + "probability": 0.858 + }, + { + "start": 23753.65, + "end": 23759.13, + "probability": 0.989 + }, + { + "start": 23760.17, + "end": 23760.93, + "probability": 0.9978 + }, + { + "start": 23762.03, + "end": 23763.07, + "probability": 0.9986 + }, + { + "start": 23766.17, + "end": 23767.99, + "probability": 0.7824 + }, + { + "start": 23768.93, + "end": 23769.09, + "probability": 0.7326 + }, + { + "start": 23769.79, + "end": 23770.63, + "probability": 0.6583 + }, + { + "start": 23771.55, + "end": 23772.31, + "probability": 0.9612 + }, + { + "start": 23773.63, + "end": 23775.47, + "probability": 0.8162 + }, + { + "start": 23781.59, + "end": 23782.01, + "probability": 0.8112 + }, + { + "start": 23782.51, + "end": 23783.24, + "probability": 0.4561 + }, + { + "start": 23784.39, + "end": 23785.59, + "probability": 0.91 + }, + { + "start": 23785.85, + "end": 23787.27, + "probability": 0.8285 + }, + { + "start": 23788.25, + "end": 23788.95, + "probability": 0.8154 + }, + { + "start": 23790.59, + "end": 23793.08, + "probability": 0.9935 + }, + { + "start": 23795.45, + "end": 23796.19, + "probability": 0.9867 + }, + { + "start": 23796.83, + "end": 23802.16, + "probability": 0.9989 + }, + { + "start": 23802.25, + "end": 23804.85, + "probability": 0.9192 + }, + { + "start": 23805.87, + "end": 23809.99, + "probability": 0.8386 + }, + { + "start": 23811.15, + "end": 23812.89, + "probability": 0.8873 + }, + { + "start": 23813.47, + "end": 23815.43, + "probability": 0.8853 + }, + { + "start": 23816.63, + "end": 23817.77, + "probability": 0.939 + }, + { + "start": 23818.53, + "end": 23821.65, + "probability": 0.9893 + }, + { + "start": 23822.71, + "end": 23824.77, + "probability": 0.9717 + }, + { + "start": 23826.99, + "end": 23829.61, + "probability": 0.7328 + }, + { + "start": 23831.01, + "end": 23833.25, + "probability": 0.8193 + }, + { + "start": 23835.55, + "end": 23839.01, + "probability": 0.9031 + }, + { + "start": 23839.75, + "end": 23842.87, + "probability": 0.9346 + }, + { + "start": 23843.51, + "end": 23846.45, + "probability": 0.9617 + }, + { + "start": 23847.07, + "end": 23848.29, + "probability": 0.8767 + }, + { + "start": 23848.85, + "end": 23854.93, + "probability": 0.8525 + }, + { + "start": 23856.31, + "end": 23860.35, + "probability": 0.9766 + }, + { + "start": 23860.43, + "end": 23860.43, + "probability": 0.3894 + }, + { + "start": 23860.43, + "end": 23861.21, + "probability": 0.5837 + }, + { + "start": 23861.59, + "end": 23862.37, + "probability": 0.5299 + }, + { + "start": 23862.99, + "end": 23865.33, + "probability": 0.532 + }, + { + "start": 23865.33, + "end": 23866.25, + "probability": 0.8998 + }, + { + "start": 23866.35, + "end": 23866.47, + "probability": 0.06 + }, + { + "start": 23866.47, + "end": 23867.13, + "probability": 0.5504 + }, + { + "start": 23867.13, + "end": 23867.95, + "probability": 0.6945 + }, + { + "start": 23868.25, + "end": 23868.65, + "probability": 0.8893 + }, + { + "start": 23868.65, + "end": 23869.73, + "probability": 0.5957 + }, + { + "start": 23873.97, + "end": 23874.37, + "probability": 0.1228 + }, + { + "start": 23874.37, + "end": 23874.37, + "probability": 0.5299 + }, + { + "start": 23874.37, + "end": 23874.37, + "probability": 0.1234 + }, + { + "start": 23874.37, + "end": 23874.51, + "probability": 0.0463 + }, + { + "start": 23874.51, + "end": 23875.11, + "probability": 0.6464 + }, + { + "start": 23875.31, + "end": 23877.25, + "probability": 0.7536 + }, + { + "start": 23879.33, + "end": 23879.33, + "probability": 0.6011 + }, + { + "start": 23888.27, + "end": 23889.45, + "probability": 0.2851 + }, + { + "start": 23890.15, + "end": 23892.23, + "probability": 0.5445 + }, + { + "start": 23892.77, + "end": 23893.85, + "probability": 0.7388 + }, + { + "start": 23894.21, + "end": 23894.73, + "probability": 0.7188 + }, + { + "start": 23894.83, + "end": 23895.19, + "probability": 0.891 + }, + { + "start": 23895.33, + "end": 23895.99, + "probability": 0.8032 + }, + { + "start": 23896.21, + "end": 23897.23, + "probability": 0.9549 + }, + { + "start": 23897.83, + "end": 23898.03, + "probability": 0.8423 + }, + { + "start": 23901.51, + "end": 23903.05, + "probability": 0.5825 + }, + { + "start": 23904.17, + "end": 23904.79, + "probability": 0.7742 + }, + { + "start": 23908.27, + "end": 23909.59, + "probability": 0.2742 + }, + { + "start": 23917.91, + "end": 23918.59, + "probability": 0.0962 + }, + { + "start": 23918.65, + "end": 23920.87, + "probability": 0.518 + }, + { + "start": 23920.91, + "end": 23921.05, + "probability": 0.7188 + }, + { + "start": 23922.19, + "end": 23925.83, + "probability": 0.8864 + }, + { + "start": 23928.39, + "end": 23931.21, + "probability": 0.6685 + }, + { + "start": 23931.93, + "end": 23934.73, + "probability": 0.9507 + }, + { + "start": 23934.73, + "end": 23937.35, + "probability": 0.9738 + }, + { + "start": 23937.81, + "end": 23939.07, + "probability": 0.5795 + }, + { + "start": 23939.11, + "end": 23939.21, + "probability": 0.8816 + }, + { + "start": 23947.23, + "end": 23948.01, + "probability": 0.4898 + }, + { + "start": 23948.23, + "end": 23950.25, + "probability": 0.92 + }, + { + "start": 23951.89, + "end": 23952.85, + "probability": 0.8752 + }, + { + "start": 23956.69, + "end": 23958.17, + "probability": 0.7258 + }, + { + "start": 23959.57, + "end": 23960.65, + "probability": 0.9486 + }, + { + "start": 23961.79, + "end": 23963.11, + "probability": 0.7727 + }, + { + "start": 23965.79, + "end": 23968.1, + "probability": 0.9656 + }, + { + "start": 23969.45, + "end": 23973.15, + "probability": 0.9344 + }, + { + "start": 23974.07, + "end": 23976.65, + "probability": 0.9995 + }, + { + "start": 23977.73, + "end": 23978.91, + "probability": 0.9972 + }, + { + "start": 23980.03, + "end": 23981.95, + "probability": 0.9759 + }, + { + "start": 23983.77, + "end": 23986.15, + "probability": 0.9775 + }, + { + "start": 23986.79, + "end": 23995.03, + "probability": 0.9981 + }, + { + "start": 23996.19, + "end": 23997.85, + "probability": 0.9902 + }, + { + "start": 23998.87, + "end": 24000.61, + "probability": 0.9993 + }, + { + "start": 24001.75, + "end": 24002.73, + "probability": 0.9314 + }, + { + "start": 24004.55, + "end": 24007.09, + "probability": 0.9806 + }, + { + "start": 24007.23, + "end": 24008.07, + "probability": 0.7759 + }, + { + "start": 24008.51, + "end": 24011.29, + "probability": 0.9357 + }, + { + "start": 24012.41, + "end": 24015.09, + "probability": 0.9678 + }, + { + "start": 24016.75, + "end": 24022.37, + "probability": 0.9865 + }, + { + "start": 24023.33, + "end": 24027.53, + "probability": 0.8837 + }, + { + "start": 24027.87, + "end": 24032.21, + "probability": 0.9835 + }, + { + "start": 24033.41, + "end": 24035.53, + "probability": 0.9927 + }, + { + "start": 24038.03, + "end": 24041.41, + "probability": 0.9835 + }, + { + "start": 24042.67, + "end": 24043.57, + "probability": 0.9283 + }, + { + "start": 24044.63, + "end": 24045.57, + "probability": 0.8212 + }, + { + "start": 24047.25, + "end": 24049.61, + "probability": 0.9576 + }, + { + "start": 24051.11, + "end": 24054.37, + "probability": 0.9341 + }, + { + "start": 24056.03, + "end": 24058.33, + "probability": 0.9591 + }, + { + "start": 24058.93, + "end": 24060.27, + "probability": 0.8875 + }, + { + "start": 24061.65, + "end": 24063.99, + "probability": 0.9675 + }, + { + "start": 24064.71, + "end": 24067.09, + "probability": 0.9578 + }, + { + "start": 24067.93, + "end": 24069.01, + "probability": 0.8954 + }, + { + "start": 24069.69, + "end": 24070.31, + "probability": 0.8863 + }, + { + "start": 24071.27, + "end": 24071.93, + "probability": 0.7137 + }, + { + "start": 24073.59, + "end": 24075.57, + "probability": 0.9883 + }, + { + "start": 24076.09, + "end": 24076.93, + "probability": 0.9873 + }, + { + "start": 24077.35, + "end": 24078.15, + "probability": 0.9826 + }, + { + "start": 24078.61, + "end": 24079.23, + "probability": 0.1881 + }, + { + "start": 24079.49, + "end": 24081.17, + "probability": 0.7214 + }, + { + "start": 24081.53, + "end": 24083.41, + "probability": 0.8226 + }, + { + "start": 24083.97, + "end": 24087.77, + "probability": 0.9948 + }, + { + "start": 24089.49, + "end": 24091.59, + "probability": 0.8385 + }, + { + "start": 24092.53, + "end": 24097.79, + "probability": 0.9835 + }, + { + "start": 24099.51, + "end": 24100.17, + "probability": 0.9167 + }, + { + "start": 24100.45, + "end": 24100.65, + "probability": 0.6677 + }, + { + "start": 24101.49, + "end": 24104.09, + "probability": 0.9705 + }, + { + "start": 24105.35, + "end": 24109.31, + "probability": 0.9146 + }, + { + "start": 24110.67, + "end": 24111.67, + "probability": 0.6895 + }, + { + "start": 24113.43, + "end": 24115.57, + "probability": 0.9728 + }, + { + "start": 24116.27, + "end": 24117.57, + "probability": 0.814 + }, + { + "start": 24117.71, + "end": 24121.35, + "probability": 0.9613 + }, + { + "start": 24121.83, + "end": 24124.69, + "probability": 0.9307 + }, + { + "start": 24126.17, + "end": 24128.19, + "probability": 0.6904 + }, + { + "start": 24130.49, + "end": 24131.61, + "probability": 0.8711 + }, + { + "start": 24133.09, + "end": 24134.95, + "probability": 0.9669 + }, + { + "start": 24135.85, + "end": 24138.77, + "probability": 0.997 + }, + { + "start": 24139.71, + "end": 24142.51, + "probability": 0.9703 + }, + { + "start": 24143.27, + "end": 24144.87, + "probability": 0.9926 + }, + { + "start": 24145.93, + "end": 24149.65, + "probability": 0.9766 + }, + { + "start": 24152.53, + "end": 24154.19, + "probability": 0.9762 + }, + { + "start": 24154.89, + "end": 24156.01, + "probability": 0.8476 + }, + { + "start": 24157.31, + "end": 24159.41, + "probability": 0.9221 + }, + { + "start": 24161.01, + "end": 24161.65, + "probability": 0.6911 + }, + { + "start": 24162.95, + "end": 24164.11, + "probability": 0.8171 + }, + { + "start": 24165.67, + "end": 24167.79, + "probability": 0.9398 + }, + { + "start": 24168.51, + "end": 24170.39, + "probability": 0.9958 + }, + { + "start": 24170.99, + "end": 24173.57, + "probability": 0.8556 + }, + { + "start": 24175.15, + "end": 24175.57, + "probability": 0.7212 + }, + { + "start": 24177.05, + "end": 24178.23, + "probability": 0.9408 + }, + { + "start": 24179.89, + "end": 24181.58, + "probability": 0.9767 + }, + { + "start": 24184.63, + "end": 24185.11, + "probability": 0.779 + }, + { + "start": 24185.27, + "end": 24187.31, + "probability": 0.674 + }, + { + "start": 24187.33, + "end": 24192.95, + "probability": 0.993 + }, + { + "start": 24193.55, + "end": 24195.03, + "probability": 0.832 + }, + { + "start": 24196.05, + "end": 24199.01, + "probability": 0.9883 + }, + { + "start": 24201.77, + "end": 24204.05, + "probability": 0.8132 + }, + { + "start": 24204.45, + "end": 24205.35, + "probability": 0.6251 + }, + { + "start": 24206.49, + "end": 24207.39, + "probability": 0.986 + }, + { + "start": 24208.99, + "end": 24211.19, + "probability": 0.9674 + }, + { + "start": 24213.25, + "end": 24219.21, + "probability": 0.8369 + }, + { + "start": 24219.67, + "end": 24220.47, + "probability": 0.8593 + }, + { + "start": 24220.99, + "end": 24222.55, + "probability": 0.7858 + }, + { + "start": 24223.95, + "end": 24227.01, + "probability": 0.9535 + }, + { + "start": 24227.01, + "end": 24231.03, + "probability": 0.9485 + }, + { + "start": 24231.13, + "end": 24232.01, + "probability": 0.9705 + }, + { + "start": 24232.09, + "end": 24232.65, + "probability": 0.6984 + }, + { + "start": 24232.69, + "end": 24233.13, + "probability": 0.7528 + }, + { + "start": 24233.73, + "end": 24235.37, + "probability": 0.8339 + }, + { + "start": 24235.49, + "end": 24237.03, + "probability": 0.9353 + }, + { + "start": 24237.83, + "end": 24240.47, + "probability": 0.7664 + }, + { + "start": 24240.95, + "end": 24244.65, + "probability": 0.9846 + }, + { + "start": 24245.57, + "end": 24247.83, + "probability": 0.8959 + }, + { + "start": 24250.65, + "end": 24255.39, + "probability": 0.9953 + }, + { + "start": 24256.43, + "end": 24257.91, + "probability": 0.8934 + }, + { + "start": 24258.35, + "end": 24264.01, + "probability": 0.981 + }, + { + "start": 24264.57, + "end": 24265.49, + "probability": 0.9702 + }, + { + "start": 24266.07, + "end": 24267.35, + "probability": 0.9005 + }, + { + "start": 24268.21, + "end": 24270.35, + "probability": 0.959 + }, + { + "start": 24272.25, + "end": 24275.09, + "probability": 0.8911 + }, + { + "start": 24275.69, + "end": 24276.99, + "probability": 0.6774 + }, + { + "start": 24277.25, + "end": 24277.95, + "probability": 0.9525 + }, + { + "start": 24278.01, + "end": 24278.41, + "probability": 0.9046 + }, + { + "start": 24278.49, + "end": 24278.93, + "probability": 0.9789 + }, + { + "start": 24278.99, + "end": 24279.57, + "probability": 0.9577 + }, + { + "start": 24279.93, + "end": 24281.17, + "probability": 0.8113 + }, + { + "start": 24281.21, + "end": 24283.97, + "probability": 0.8932 + }, + { + "start": 24284.95, + "end": 24285.6, + "probability": 0.8153 + }, + { + "start": 24287.33, + "end": 24288.63, + "probability": 0.9839 + }, + { + "start": 24292.05, + "end": 24294.15, + "probability": 0.9915 + }, + { + "start": 24295.25, + "end": 24297.13, + "probability": 0.9937 + }, + { + "start": 24298.09, + "end": 24298.67, + "probability": 0.6078 + }, + { + "start": 24302.33, + "end": 24305.77, + "probability": 0.9993 + }, + { + "start": 24306.09, + "end": 24307.09, + "probability": 0.8511 + }, + { + "start": 24307.19, + "end": 24309.07, + "probability": 0.9131 + }, + { + "start": 24312.01, + "end": 24315.2, + "probability": 0.9944 + }, + { + "start": 24315.55, + "end": 24317.08, + "probability": 0.7213 + }, + { + "start": 24317.65, + "end": 24320.06, + "probability": 0.9285 + }, + { + "start": 24321.05, + "end": 24321.85, + "probability": 0.8708 + }, + { + "start": 24322.13, + "end": 24323.59, + "probability": 0.9114 + }, + { + "start": 24323.69, + "end": 24324.39, + "probability": 0.8059 + }, + { + "start": 24326.29, + "end": 24329.95, + "probability": 0.9883 + }, + { + "start": 24330.41, + "end": 24331.78, + "probability": 0.8805 + }, + { + "start": 24332.03, + "end": 24333.17, + "probability": 0.7214 + }, + { + "start": 24333.63, + "end": 24334.29, + "probability": 0.4396 + }, + { + "start": 24335.41, + "end": 24339.85, + "probability": 0.9981 + }, + { + "start": 24340.25, + "end": 24341.05, + "probability": 0.8358 + }, + { + "start": 24342.57, + "end": 24345.01, + "probability": 0.9905 + }, + { + "start": 24346.05, + "end": 24346.47, + "probability": 0.9886 + }, + { + "start": 24348.33, + "end": 24349.73, + "probability": 0.9237 + }, + { + "start": 24352.39, + "end": 24353.67, + "probability": 0.882 + }, + { + "start": 24354.37, + "end": 24355.21, + "probability": 0.896 + }, + { + "start": 24356.25, + "end": 24359.47, + "probability": 0.8438 + }, + { + "start": 24359.57, + "end": 24359.93, + "probability": 0.6202 + }, + { + "start": 24361.27, + "end": 24364.35, + "probability": 0.9961 + }, + { + "start": 24365.31, + "end": 24368.05, + "probability": 0.953 + }, + { + "start": 24369.37, + "end": 24372.13, + "probability": 0.7648 + }, + { + "start": 24373.77, + "end": 24377.83, + "probability": 0.9783 + }, + { + "start": 24378.53, + "end": 24381.43, + "probability": 0.9752 + }, + { + "start": 24381.75, + "end": 24386.13, + "probability": 0.9858 + }, + { + "start": 24387.69, + "end": 24390.99, + "probability": 0.8746 + }, + { + "start": 24391.37, + "end": 24392.97, + "probability": 0.8625 + }, + { + "start": 24394.81, + "end": 24396.35, + "probability": 0.9189 + }, + { + "start": 24396.43, + "end": 24396.81, + "probability": 0.6874 + }, + { + "start": 24396.89, + "end": 24399.77, + "probability": 0.9578 + }, + { + "start": 24400.21, + "end": 24401.39, + "probability": 0.9735 + }, + { + "start": 24402.29, + "end": 24403.27, + "probability": 0.8659 + }, + { + "start": 24404.23, + "end": 24405.63, + "probability": 0.5904 + }, + { + "start": 24406.83, + "end": 24408.97, + "probability": 0.9539 + }, + { + "start": 24409.61, + "end": 24411.23, + "probability": 0.7488 + }, + { + "start": 24413.29, + "end": 24417.33, + "probability": 0.9805 + }, + { + "start": 24418.71, + "end": 24421.83, + "probability": 0.9896 + }, + { + "start": 24422.89, + "end": 24428.77, + "probability": 0.6445 + }, + { + "start": 24428.87, + "end": 24430.93, + "probability": 0.8045 + }, + { + "start": 24433.67, + "end": 24435.83, + "probability": 0.7933 + }, + { + "start": 24436.43, + "end": 24437.07, + "probability": 0.962 + }, + { + "start": 24437.99, + "end": 24438.61, + "probability": 0.7812 + }, + { + "start": 24440.45, + "end": 24441.51, + "probability": 0.9959 + }, + { + "start": 24445.73, + "end": 24451.21, + "probability": 0.9783 + }, + { + "start": 24452.13, + "end": 24455.33, + "probability": 0.96 + }, + { + "start": 24457.11, + "end": 24462.17, + "probability": 0.979 + }, + { + "start": 24462.17, + "end": 24467.77, + "probability": 0.993 + }, + { + "start": 24468.83, + "end": 24469.27, + "probability": 0.7386 + }, + { + "start": 24469.35, + "end": 24470.07, + "probability": 0.9411 + }, + { + "start": 24470.41, + "end": 24471.07, + "probability": 0.893 + }, + { + "start": 24471.53, + "end": 24473.75, + "probability": 0.9967 + }, + { + "start": 24474.35, + "end": 24475.81, + "probability": 0.9299 + }, + { + "start": 24476.39, + "end": 24480.21, + "probability": 0.9667 + }, + { + "start": 24481.65, + "end": 24481.91, + "probability": 0.8829 + }, + { + "start": 24482.69, + "end": 24483.39, + "probability": 0.5883 + }, + { + "start": 24484.07, + "end": 24484.48, + "probability": 0.7998 + }, + { + "start": 24488.75, + "end": 24493.13, + "probability": 0.8054 + }, + { + "start": 24494.09, + "end": 24494.99, + "probability": 0.7539 + }, + { + "start": 24495.09, + "end": 24496.63, + "probability": 0.8932 + }, + { + "start": 24497.79, + "end": 24498.07, + "probability": 0.6893 + }, + { + "start": 24509.23, + "end": 24510.25, + "probability": 0.7168 + }, + { + "start": 24511.47, + "end": 24514.37, + "probability": 0.7935 + }, + { + "start": 24514.75, + "end": 24516.59, + "probability": 0.9826 + }, + { + "start": 24516.65, + "end": 24516.95, + "probability": 0.9794 + }, + { + "start": 24536.99, + "end": 24540.13, + "probability": 0.4767 + }, + { + "start": 24540.73, + "end": 24542.29, + "probability": 0.6061 + }, + { + "start": 24545.29, + "end": 24545.29, + "probability": 0.0778 + }, + { + "start": 24545.29, + "end": 24545.29, + "probability": 0.0924 + }, + { + "start": 24545.29, + "end": 24545.49, + "probability": 0.14 + }, + { + "start": 24545.49, + "end": 24548.87, + "probability": 0.9614 + }, + { + "start": 24549.03, + "end": 24549.15, + "probability": 0.0 + }, + { + "start": 24551.51, + "end": 24551.51, + "probability": 0.042 + }, + { + "start": 24551.51, + "end": 24552.75, + "probability": 0.4439 + }, + { + "start": 24552.75, + "end": 24553.49, + "probability": 0.6761 + }, + { + "start": 24556.01, + "end": 24558.71, + "probability": 0.6899 + }, + { + "start": 24560.19, + "end": 24561.29, + "probability": 0.9017 + }, + { + "start": 24566.79, + "end": 24568.73, + "probability": 0.0408 + }, + { + "start": 24569.09, + "end": 24570.01, + "probability": 0.5595 + }, + { + "start": 24570.15, + "end": 24571.87, + "probability": 0.9731 + }, + { + "start": 24572.45, + "end": 24573.89, + "probability": 0.5461 + }, + { + "start": 24575.77, + "end": 24578.79, + "probability": 0.9411 + }, + { + "start": 24579.83, + "end": 24580.83, + "probability": 0.9686 + }, + { + "start": 24582.07, + "end": 24583.53, + "probability": 0.8698 + }, + { + "start": 24583.65, + "end": 24586.43, + "probability": 0.9238 + }, + { + "start": 24587.19, + "end": 24590.49, + "probability": 0.9282 + }, + { + "start": 24592.23, + "end": 24594.59, + "probability": 0.999 + }, + { + "start": 24594.59, + "end": 24598.11, + "probability": 0.9957 + }, + { + "start": 24599.33, + "end": 24600.79, + "probability": 0.9995 + }, + { + "start": 24601.95, + "end": 24603.23, + "probability": 0.9973 + }, + { + "start": 24603.37, + "end": 24607.45, + "probability": 0.8438 + }, + { + "start": 24608.37, + "end": 24611.35, + "probability": 0.9906 + }, + { + "start": 24613.13, + "end": 24614.63, + "probability": 0.9478 + }, + { + "start": 24616.11, + "end": 24618.49, + "probability": 0.9622 + }, + { + "start": 24620.83, + "end": 24625.77, + "probability": 0.9772 + }, + { + "start": 24625.77, + "end": 24629.41, + "probability": 0.9943 + }, + { + "start": 24630.29, + "end": 24634.45, + "probability": 0.9502 + }, + { + "start": 24634.71, + "end": 24636.77, + "probability": 0.9886 + }, + { + "start": 24638.33, + "end": 24639.01, + "probability": 0.7208 + }, + { + "start": 24639.15, + "end": 24640.77, + "probability": 0.8344 + }, + { + "start": 24641.09, + "end": 24642.33, + "probability": 0.8151 + }, + { + "start": 24643.29, + "end": 24647.65, + "probability": 0.9555 + }, + { + "start": 24648.33, + "end": 24649.57, + "probability": 0.833 + }, + { + "start": 24650.39, + "end": 24651.71, + "probability": 0.9719 + }, + { + "start": 24652.91, + "end": 24654.71, + "probability": 0.9237 + }, + { + "start": 24656.01, + "end": 24658.85, + "probability": 0.9816 + }, + { + "start": 24658.91, + "end": 24659.73, + "probability": 0.809 + }, + { + "start": 24659.79, + "end": 24660.47, + "probability": 0.7799 + }, + { + "start": 24661.67, + "end": 24663.27, + "probability": 0.9893 + }, + { + "start": 24665.95, + "end": 24668.57, + "probability": 0.9111 + }, + { + "start": 24668.83, + "end": 24669.77, + "probability": 0.9824 + }, + { + "start": 24670.41, + "end": 24672.27, + "probability": 0.8579 + }, + { + "start": 24673.61, + "end": 24674.43, + "probability": 0.7024 + }, + { + "start": 24675.77, + "end": 24678.01, + "probability": 0.9967 + }, + { + "start": 24678.55, + "end": 24680.21, + "probability": 0.9893 + }, + { + "start": 24681.63, + "end": 24682.93, + "probability": 0.8281 + }, + { + "start": 24683.05, + "end": 24685.76, + "probability": 0.9207 + }, + { + "start": 24686.15, + "end": 24687.13, + "probability": 0.596 + }, + { + "start": 24687.17, + "end": 24687.71, + "probability": 0.5867 + }, + { + "start": 24687.87, + "end": 24690.91, + "probability": 0.941 + }, + { + "start": 24691.11, + "end": 24692.33, + "probability": 0.893 + }, + { + "start": 24692.51, + "end": 24692.89, + "probability": 0.8319 + }, + { + "start": 24693.57, + "end": 24694.41, + "probability": 0.2408 + }, + { + "start": 24695.85, + "end": 24696.83, + "probability": 0.5889 + }, + { + "start": 24697.53, + "end": 24698.45, + "probability": 0.6317 + }, + { + "start": 24698.67, + "end": 24699.65, + "probability": 0.6689 + }, + { + "start": 24699.75, + "end": 24702.67, + "probability": 0.8998 + }, + { + "start": 24702.93, + "end": 24704.03, + "probability": 0.1864 + }, + { + "start": 24704.29, + "end": 24705.99, + "probability": 0.6044 + }, + { + "start": 24706.01, + "end": 24706.87, + "probability": 0.9178 + }, + { + "start": 24706.91, + "end": 24710.37, + "probability": 0.9432 + }, + { + "start": 24712.03, + "end": 24716.43, + "probability": 0.9958 + }, + { + "start": 24718.45, + "end": 24719.39, + "probability": 0.8722 + }, + { + "start": 24721.47, + "end": 24724.13, + "probability": 0.9968 + }, + { + "start": 24726.87, + "end": 24730.71, + "probability": 0.9983 + }, + { + "start": 24732.01, + "end": 24732.21, + "probability": 0.9418 + }, + { + "start": 24732.33, + "end": 24734.83, + "probability": 0.9912 + }, + { + "start": 24734.83, + "end": 24739.49, + "probability": 0.7365 + }, + { + "start": 24741.09, + "end": 24742.59, + "probability": 0.9685 + }, + { + "start": 24742.75, + "end": 24744.47, + "probability": 0.8171 + }, + { + "start": 24744.97, + "end": 24745.05, + "probability": 0.1701 + }, + { + "start": 24745.13, + "end": 24746.65, + "probability": 0.9707 + }, + { + "start": 24747.37, + "end": 24750.69, + "probability": 0.9878 + }, + { + "start": 24751.23, + "end": 24751.69, + "probability": 0.4708 + }, + { + "start": 24751.77, + "end": 24752.73, + "probability": 0.817 + }, + { + "start": 24753.23, + "end": 24755.79, + "probability": 0.9872 + }, + { + "start": 24756.55, + "end": 24757.75, + "probability": 0.5319 + }, + { + "start": 24757.97, + "end": 24759.69, + "probability": 0.934 + }, + { + "start": 24760.11, + "end": 24762.99, + "probability": 0.9897 + }, + { + "start": 24763.77, + "end": 24767.27, + "probability": 0.981 + }, + { + "start": 24767.83, + "end": 24771.33, + "probability": 0.9299 + }, + { + "start": 24772.07, + "end": 24773.33, + "probability": 0.8817 + }, + { + "start": 24773.43, + "end": 24774.03, + "probability": 0.7451 + }, + { + "start": 24774.53, + "end": 24779.33, + "probability": 0.9928 + }, + { + "start": 24780.21, + "end": 24782.21, + "probability": 0.9622 + }, + { + "start": 24782.91, + "end": 24783.91, + "probability": 0.9694 + }, + { + "start": 24784.43, + "end": 24786.23, + "probability": 0.9906 + }, + { + "start": 24786.73, + "end": 24789.21, + "probability": 0.9941 + }, + { + "start": 24789.75, + "end": 24791.13, + "probability": 0.8075 + }, + { + "start": 24791.69, + "end": 24793.03, + "probability": 0.9367 + }, + { + "start": 24793.97, + "end": 24796.65, + "probability": 0.975 + }, + { + "start": 24797.37, + "end": 24799.85, + "probability": 0.8806 + }, + { + "start": 24801.03, + "end": 24803.21, + "probability": 0.9182 + }, + { + "start": 24804.25, + "end": 24807.25, + "probability": 0.9238 + }, + { + "start": 24807.67, + "end": 24811.37, + "probability": 0.7752 + }, + { + "start": 24812.43, + "end": 24816.34, + "probability": 0.7886 + }, + { + "start": 24816.51, + "end": 24821.31, + "probability": 0.9983 + }, + { + "start": 24821.31, + "end": 24824.79, + "probability": 0.9803 + }, + { + "start": 24825.67, + "end": 24827.79, + "probability": 0.9242 + }, + { + "start": 24828.29, + "end": 24831.67, + "probability": 0.9842 + }, + { + "start": 24832.25, + "end": 24834.41, + "probability": 0.8537 + }, + { + "start": 24835.15, + "end": 24837.83, + "probability": 0.986 + }, + { + "start": 24837.83, + "end": 24840.45, + "probability": 0.9602 + }, + { + "start": 24841.17, + "end": 24843.85, + "probability": 0.6836 + }, + { + "start": 24844.49, + "end": 24846.29, + "probability": 0.9723 + }, + { + "start": 24846.73, + "end": 24851.43, + "probability": 0.9864 + }, + { + "start": 24852.77, + "end": 24855.27, + "probability": 0.9922 + }, + { + "start": 24855.27, + "end": 24859.19, + "probability": 0.8844 + }, + { + "start": 24859.61, + "end": 24864.81, + "probability": 0.9927 + }, + { + "start": 24865.25, + "end": 24868.4, + "probability": 0.9967 + }, + { + "start": 24868.47, + "end": 24870.59, + "probability": 0.9791 + }, + { + "start": 24871.47, + "end": 24874.27, + "probability": 0.9137 + }, + { + "start": 24874.55, + "end": 24875.13, + "probability": 0.7498 + }, + { + "start": 24875.27, + "end": 24876.43, + "probability": 0.9484 + }, + { + "start": 24877.25, + "end": 24881.57, + "probability": 0.9957 + }, + { + "start": 24881.95, + "end": 24886.15, + "probability": 0.9889 + }, + { + "start": 24886.15, + "end": 24886.91, + "probability": 0.6543 + }, + { + "start": 24887.47, + "end": 24888.91, + "probability": 0.9688 + }, + { + "start": 24890.75, + "end": 24892.05, + "probability": 0.7924 + }, + { + "start": 24892.87, + "end": 24893.55, + "probability": 0.7322 + }, + { + "start": 24894.79, + "end": 24897.39, + "probability": 0.9875 + }, + { + "start": 24897.39, + "end": 24901.99, + "probability": 0.9925 + }, + { + "start": 24902.03, + "end": 24903.35, + "probability": 0.7488 + }, + { + "start": 24903.69, + "end": 24904.97, + "probability": 0.9844 + }, + { + "start": 24905.07, + "end": 24906.07, + "probability": 0.9558 + }, + { + "start": 24906.75, + "end": 24908.87, + "probability": 0.9566 + }, + { + "start": 24909.33, + "end": 24911.58, + "probability": 0.8656 + }, + { + "start": 24912.69, + "end": 24916.79, + "probability": 0.9756 + }, + { + "start": 24916.93, + "end": 24918.47, + "probability": 0.9857 + }, + { + "start": 24918.81, + "end": 24920.91, + "probability": 0.7515 + }, + { + "start": 24921.01, + "end": 24922.37, + "probability": 0.9408 + }, + { + "start": 24922.87, + "end": 24926.47, + "probability": 0.9976 + }, + { + "start": 24927.37, + "end": 24929.43, + "probability": 0.9765 + }, + { + "start": 24929.53, + "end": 24932.17, + "probability": 0.9949 + }, + { + "start": 24932.51, + "end": 24932.95, + "probability": 0.8915 + }, + { + "start": 24933.63, + "end": 24935.58, + "probability": 0.786 + }, + { + "start": 24937.09, + "end": 24939.35, + "probability": 0.9341 + }, + { + "start": 24940.25, + "end": 24942.45, + "probability": 0.9652 + }, + { + "start": 24942.57, + "end": 24944.37, + "probability": 0.6545 + }, + { + "start": 24944.85, + "end": 24945.07, + "probability": 0.5135 + }, + { + "start": 24945.23, + "end": 24945.89, + "probability": 0.9832 + }, + { + "start": 24946.09, + "end": 24946.75, + "probability": 0.9321 + }, + { + "start": 24947.47, + "end": 24951.95, + "probability": 0.9476 + }, + { + "start": 24952.47, + "end": 24956.27, + "probability": 0.9561 + }, + { + "start": 24958.87, + "end": 24960.67, + "probability": 0.4982 + }, + { + "start": 24960.67, + "end": 24962.23, + "probability": 0.6647 + }, + { + "start": 24962.83, + "end": 24964.73, + "probability": 0.9207 + }, + { + "start": 24965.93, + "end": 24967.09, + "probability": 0.9123 + }, + { + "start": 24967.95, + "end": 24969.05, + "probability": 0.9682 + }, + { + "start": 24969.67, + "end": 24970.77, + "probability": 0.7836 + }, + { + "start": 24971.35, + "end": 24977.53, + "probability": 0.9963 + }, + { + "start": 24978.33, + "end": 24981.27, + "probability": 0.9944 + }, + { + "start": 24982.65, + "end": 24983.49, + "probability": 0.9406 + }, + { + "start": 24983.61, + "end": 24984.87, + "probability": 0.9382 + }, + { + "start": 24985.17, + "end": 24987.41, + "probability": 0.9503 + }, + { + "start": 24988.15, + "end": 24991.1, + "probability": 0.9974 + }, + { + "start": 24992.01, + "end": 24994.91, + "probability": 0.9426 + }, + { + "start": 24995.55, + "end": 24999.01, + "probability": 0.9938 + }, + { + "start": 24999.83, + "end": 25001.97, + "probability": 0.9717 + }, + { + "start": 25002.17, + "end": 25005.11, + "probability": 0.9967 + }, + { + "start": 25006.83, + "end": 25010.47, + "probability": 0.9558 + }, + { + "start": 25010.85, + "end": 25011.85, + "probability": 0.4987 + }, + { + "start": 25012.97, + "end": 25016.73, + "probability": 0.9512 + }, + { + "start": 25016.73, + "end": 25021.25, + "probability": 0.9456 + }, + { + "start": 25022.07, + "end": 25024.91, + "probability": 0.9941 + }, + { + "start": 25025.71, + "end": 25027.77, + "probability": 0.8652 + }, + { + "start": 25028.39, + "end": 25030.93, + "probability": 0.8442 + }, + { + "start": 25032.57, + "end": 25033.55, + "probability": 0.9342 + }, + { + "start": 25033.85, + "end": 25034.63, + "probability": 0.9277 + }, + { + "start": 25034.65, + "end": 25035.37, + "probability": 0.9825 + }, + { + "start": 25035.79, + "end": 25037.05, + "probability": 0.9269 + }, + { + "start": 25037.21, + "end": 25037.93, + "probability": 0.9813 + }, + { + "start": 25038.07, + "end": 25038.69, + "probability": 0.824 + }, + { + "start": 25038.73, + "end": 25039.23, + "probability": 0.7859 + }, + { + "start": 25039.85, + "end": 25041.23, + "probability": 0.9935 + }, + { + "start": 25041.33, + "end": 25041.95, + "probability": 0.838 + }, + { + "start": 25042.09, + "end": 25043.99, + "probability": 0.8872 + }, + { + "start": 25045.15, + "end": 25050.53, + "probability": 0.9921 + }, + { + "start": 25052.29, + "end": 25056.57, + "probability": 0.9805 + }, + { + "start": 25056.65, + "end": 25062.27, + "probability": 0.9702 + }, + { + "start": 25063.15, + "end": 25065.59, + "probability": 0.9659 + }, + { + "start": 25066.05, + "end": 25067.37, + "probability": 0.9079 + }, + { + "start": 25067.73, + "end": 25068.69, + "probability": 0.7406 + }, + { + "start": 25068.87, + "end": 25070.07, + "probability": 0.5156 + }, + { + "start": 25070.17, + "end": 25073.71, + "probability": 0.9964 + }, + { + "start": 25074.37, + "end": 25078.43, + "probability": 0.9951 + }, + { + "start": 25078.43, + "end": 25082.49, + "probability": 0.9626 + }, + { + "start": 25083.41, + "end": 25087.39, + "probability": 0.99 + }, + { + "start": 25088.11, + "end": 25093.67, + "probability": 0.9756 + }, + { + "start": 25094.19, + "end": 25097.15, + "probability": 0.9795 + }, + { + "start": 25097.61, + "end": 25099.59, + "probability": 0.9988 + }, + { + "start": 25101.05, + "end": 25102.09, + "probability": 0.9951 + }, + { + "start": 25102.17, + "end": 25103.85, + "probability": 0.9971 + }, + { + "start": 25104.33, + "end": 25105.87, + "probability": 0.6518 + }, + { + "start": 25106.03, + "end": 25108.31, + "probability": 0.999 + }, + { + "start": 25108.31, + "end": 25110.51, + "probability": 0.9974 + }, + { + "start": 25110.67, + "end": 25113.19, + "probability": 0.9885 + }, + { + "start": 25113.19, + "end": 25115.99, + "probability": 0.9836 + }, + { + "start": 25116.51, + "end": 25118.85, + "probability": 0.9834 + }, + { + "start": 25120.12, + "end": 25123.23, + "probability": 0.8178 + }, + { + "start": 25126.41, + "end": 25127.37, + "probability": 0.6665 + }, + { + "start": 25127.97, + "end": 25131.41, + "probability": 0.9834 + }, + { + "start": 25132.05, + "end": 25133.01, + "probability": 0.8276 + }, + { + "start": 25133.57, + "end": 25138.97, + "probability": 0.9831 + }, + { + "start": 25139.39, + "end": 25143.53, + "probability": 0.7 + }, + { + "start": 25143.59, + "end": 25146.25, + "probability": 0.9678 + }, + { + "start": 25146.69, + "end": 25149.69, + "probability": 0.9688 + }, + { + "start": 25150.25, + "end": 25151.87, + "probability": 0.7059 + }, + { + "start": 25152.61, + "end": 25153.23, + "probability": 0.5661 + }, + { + "start": 25153.29, + "end": 25154.59, + "probability": 0.9086 + }, + { + "start": 25154.65, + "end": 25155.69, + "probability": 0.988 + }, + { + "start": 25156.41, + "end": 25158.23, + "probability": 0.9614 + }, + { + "start": 25158.23, + "end": 25160.21, + "probability": 0.8794 + }, + { + "start": 25161.53, + "end": 25163.77, + "probability": 0.9893 + }, + { + "start": 25164.09, + "end": 25168.87, + "probability": 0.8766 + }, + { + "start": 25168.87, + "end": 25174.61, + "probability": 0.9917 + }, + { + "start": 25175.11, + "end": 25177.09, + "probability": 0.9873 + }, + { + "start": 25177.63, + "end": 25180.15, + "probability": 0.7999 + }, + { + "start": 25180.69, + "end": 25182.43, + "probability": 0.8219 + }, + { + "start": 25182.79, + "end": 25184.15, + "probability": 0.8199 + }, + { + "start": 25185.67, + "end": 25188.37, + "probability": 0.5175 + }, + { + "start": 25188.91, + "end": 25191.33, + "probability": 0.6801 + }, + { + "start": 25192.13, + "end": 25194.07, + "probability": 0.8691 + }, + { + "start": 25195.19, + "end": 25196.07, + "probability": 0.7651 + }, + { + "start": 25196.98, + "end": 25197.05, + "probability": 0.39 + }, + { + "start": 25197.05, + "end": 25199.79, + "probability": 0.8367 + }, + { + "start": 25200.29, + "end": 25204.73, + "probability": 0.9645 + }, + { + "start": 25205.29, + "end": 25208.69, + "probability": 0.9877 + }, + { + "start": 25208.81, + "end": 25209.73, + "probability": 0.9561 + }, + { + "start": 25210.81, + "end": 25213.43, + "probability": 0.8943 + }, + { + "start": 25214.17, + "end": 25216.72, + "probability": 0.8211 + }, + { + "start": 25217.49, + "end": 25219.67, + "probability": 0.9976 + }, + { + "start": 25221.47, + "end": 25222.57, + "probability": 0.8521 + }, + { + "start": 25223.09, + "end": 25223.87, + "probability": 0.8548 + }, + { + "start": 25224.37, + "end": 25226.75, + "probability": 0.8392 + }, + { + "start": 25227.11, + "end": 25228.59, + "probability": 0.7949 + }, + { + "start": 25229.19, + "end": 25230.05, + "probability": 0.8122 + }, + { + "start": 25230.65, + "end": 25234.55, + "probability": 0.9373 + }, + { + "start": 25234.63, + "end": 25235.83, + "probability": 0.8182 + }, + { + "start": 25236.59, + "end": 25240.27, + "probability": 0.9116 + }, + { + "start": 25242.33, + "end": 25245.01, + "probability": 0.9501 + }, + { + "start": 25245.31, + "end": 25247.79, + "probability": 0.9644 + }, + { + "start": 25247.93, + "end": 25250.03, + "probability": 0.9936 + }, + { + "start": 25250.03, + "end": 25252.19, + "probability": 0.9461 + }, + { + "start": 25252.19, + "end": 25252.33, + "probability": 0.6313 + }, + { + "start": 25252.33, + "end": 25252.57, + "probability": 0.4355 + }, + { + "start": 25252.99, + "end": 25254.47, + "probability": 0.8774 + }, + { + "start": 25254.53, + "end": 25257.21, + "probability": 0.9961 + }, + { + "start": 25257.31, + "end": 25257.47, + "probability": 0.7614 + }, + { + "start": 25257.71, + "end": 25258.9, + "probability": 0.9932 + }, + { + "start": 25259.93, + "end": 25260.31, + "probability": 0.0813 + }, + { + "start": 25260.31, + "end": 25260.31, + "probability": 0.6035 + }, + { + "start": 25260.31, + "end": 25260.97, + "probability": 0.5298 + }, + { + "start": 25261.35, + "end": 25262.71, + "probability": 0.7175 + }, + { + "start": 25262.81, + "end": 25262.97, + "probability": 0.8105 + }, + { + "start": 25263.59, + "end": 25266.01, + "probability": 0.8328 + }, + { + "start": 25266.91, + "end": 25267.63, + "probability": 0.7247 + }, + { + "start": 25268.11, + "end": 25269.47, + "probability": 0.853 + }, + { + "start": 25269.61, + "end": 25271.87, + "probability": 0.8876 + }, + { + "start": 25273.53, + "end": 25277.83, + "probability": 0.9409 + }, + { + "start": 25278.23, + "end": 25278.75, + "probability": 0.6602 + }, + { + "start": 25283.95, + "end": 25285.65, + "probability": 0.7863 + }, + { + "start": 25286.39, + "end": 25287.45, + "probability": 0.8121 + }, + { + "start": 25288.19, + "end": 25292.31, + "probability": 0.9397 + }, + { + "start": 25292.93, + "end": 25295.69, + "probability": 0.9102 + }, + { + "start": 25295.81, + "end": 25301.71, + "probability": 0.9943 + }, + { + "start": 25302.33, + "end": 25305.01, + "probability": 0.9827 + }, + { + "start": 25305.01, + "end": 25309.95, + "probability": 0.9861 + }, + { + "start": 25310.53, + "end": 25313.89, + "probability": 0.7875 + }, + { + "start": 25315.01, + "end": 25317.35, + "probability": 0.6813 + }, + { + "start": 25317.35, + "end": 25317.55, + "probability": 0.128 + }, + { + "start": 25317.55, + "end": 25317.63, + "probability": 0.4261 + }, + { + "start": 25317.65, + "end": 25317.91, + "probability": 0.595 + }, + { + "start": 25318.07, + "end": 25319.29, + "probability": 0.9686 + }, + { + "start": 25319.39, + "end": 25320.19, + "probability": 0.8207 + }, + { + "start": 25320.75, + "end": 25320.91, + "probability": 0.6726 + }, + { + "start": 25322.17, + "end": 25323.26, + "probability": 0.0476 + }, + { + "start": 25325.55, + "end": 25325.55, + "probability": 0.1946 + }, + { + "start": 25325.55, + "end": 25325.97, + "probability": 0.2074 + }, + { + "start": 25326.29, + "end": 25330.67, + "probability": 0.8174 + }, + { + "start": 25331.69, + "end": 25336.83, + "probability": 0.8066 + }, + { + "start": 25337.29, + "end": 25339.67, + "probability": 0.9896 + }, + { + "start": 25340.25, + "end": 25342.97, + "probability": 0.981 + }, + { + "start": 25343.65, + "end": 25344.05, + "probability": 0.9187 + }, + { + "start": 25345.89, + "end": 25348.23, + "probability": 0.6803 + }, + { + "start": 25349.65, + "end": 25350.13, + "probability": 0.765 + }, + { + "start": 25350.23, + "end": 25352.19, + "probability": 0.8311 + }, + { + "start": 25352.69, + "end": 25354.65, + "probability": 0.9517 + }, + { + "start": 25355.11, + "end": 25356.83, + "probability": 0.9642 + }, + { + "start": 25356.97, + "end": 25358.25, + "probability": 0.8481 + }, + { + "start": 25358.85, + "end": 25362.37, + "probability": 0.9003 + }, + { + "start": 25363.05, + "end": 25365.29, + "probability": 0.8718 + }, + { + "start": 25365.59, + "end": 25366.27, + "probability": 0.8887 + }, + { + "start": 25366.69, + "end": 25371.21, + "probability": 0.9909 + }, + { + "start": 25372.11, + "end": 25379.53, + "probability": 0.9417 + }, + { + "start": 25380.15, + "end": 25382.03, + "probability": 0.9629 + }, + { + "start": 25382.35, + "end": 25383.89, + "probability": 0.7825 + }, + { + "start": 25384.07, + "end": 25386.49, + "probability": 0.9727 + }, + { + "start": 25387.05, + "end": 25387.79, + "probability": 0.8805 + }, + { + "start": 25388.55, + "end": 25394.31, + "probability": 0.9826 + }, + { + "start": 25394.31, + "end": 25400.35, + "probability": 0.9776 + }, + { + "start": 25401.29, + "end": 25405.73, + "probability": 0.9772 + }, + { + "start": 25405.93, + "end": 25412.31, + "probability": 0.9759 + }, + { + "start": 25412.45, + "end": 25413.35, + "probability": 0.7382 + }, + { + "start": 25414.09, + "end": 25416.71, + "probability": 0.9932 + }, + { + "start": 25417.27, + "end": 25420.77, + "probability": 0.9904 + }, + { + "start": 25420.77, + "end": 25424.11, + "probability": 0.9761 + }, + { + "start": 25424.95, + "end": 25427.17, + "probability": 0.6663 + }, + { + "start": 25427.53, + "end": 25428.41, + "probability": 0.7144 + }, + { + "start": 25429.15, + "end": 25433.11, + "probability": 0.748 + }, + { + "start": 25435.07, + "end": 25439.45, + "probability": 0.9924 + }, + { + "start": 25439.45, + "end": 25444.61, + "probability": 0.9955 + }, + { + "start": 25445.41, + "end": 25446.65, + "probability": 0.7907 + }, + { + "start": 25447.23, + "end": 25452.41, + "probability": 0.64 + }, + { + "start": 25453.41, + "end": 25454.39, + "probability": 0.7819 + }, + { + "start": 25455.03, + "end": 25459.37, + "probability": 0.9261 + }, + { + "start": 25459.37, + "end": 25462.97, + "probability": 0.9929 + }, + { + "start": 25463.41, + "end": 25464.2, + "probability": 0.9465 + }, + { + "start": 25465.15, + "end": 25465.99, + "probability": 0.2896 + }, + { + "start": 25466.45, + "end": 25468.25, + "probability": 0.54 + }, + { + "start": 25469.09, + "end": 25470.75, + "probability": 0.9659 + }, + { + "start": 25471.51, + "end": 25472.23, + "probability": 0.9075 + }, + { + "start": 25472.49, + "end": 25477.63, + "probability": 0.9701 + }, + { + "start": 25478.67, + "end": 25487.89, + "probability": 0.9888 + }, + { + "start": 25488.49, + "end": 25493.09, + "probability": 0.9976 + }, + { + "start": 25494.35, + "end": 25498.63, + "probability": 0.9311 + }, + { + "start": 25499.09, + "end": 25501.81, + "probability": 0.9539 + }, + { + "start": 25502.31, + "end": 25503.34, + "probability": 0.9392 + }, + { + "start": 25503.81, + "end": 25509.09, + "probability": 0.96 + }, + { + "start": 25509.69, + "end": 25516.75, + "probability": 0.9854 + }, + { + "start": 25516.75, + "end": 25523.53, + "probability": 0.9962 + }, + { + "start": 25524.35, + "end": 25527.87, + "probability": 0.9099 + }, + { + "start": 25528.39, + "end": 25532.15, + "probability": 0.9979 + }, + { + "start": 25532.15, + "end": 25536.73, + "probability": 0.9981 + }, + { + "start": 25537.15, + "end": 25537.29, + "probability": 0.5019 + }, + { + "start": 25537.35, + "end": 25537.77, + "probability": 0.827 + }, + { + "start": 25538.27, + "end": 25544.65, + "probability": 0.9935 + }, + { + "start": 25544.65, + "end": 25549.25, + "probability": 0.8903 + }, + { + "start": 25549.85, + "end": 25550.8, + "probability": 0.7356 + }, + { + "start": 25551.75, + "end": 25554.03, + "probability": 0.9954 + }, + { + "start": 25554.81, + "end": 25562.59, + "probability": 0.9709 + }, + { + "start": 25563.11, + "end": 25564.31, + "probability": 0.9643 + }, + { + "start": 25564.95, + "end": 25565.95, + "probability": 0.9636 + }, + { + "start": 25566.53, + "end": 25567.81, + "probability": 0.6096 + }, + { + "start": 25568.27, + "end": 25569.45, + "probability": 0.9331 + }, + { + "start": 25569.95, + "end": 25572.07, + "probability": 0.7228 + }, + { + "start": 25572.79, + "end": 25575.12, + "probability": 0.5689 + }, + { + "start": 25576.15, + "end": 25579.03, + "probability": 0.7641 + }, + { + "start": 25579.9, + "end": 25582.12, + "probability": 0.9603 + }, + { + "start": 25582.91, + "end": 25586.61, + "probability": 0.0245 + }, + { + "start": 25586.61, + "end": 25588.01, + "probability": 0.3778 + }, + { + "start": 25588.13, + "end": 25589.05, + "probability": 0.2412 + }, + { + "start": 25590.4, + "end": 25590.97, + "probability": 0.351 + }, + { + "start": 25590.97, + "end": 25591.55, + "probability": 0.6392 + }, + { + "start": 25592.47, + "end": 25594.63, + "probability": 0.7225 + }, + { + "start": 25595.43, + "end": 25598.73, + "probability": 0.9337 + }, + { + "start": 25598.98, + "end": 25603.37, + "probability": 0.9993 + }, + { + "start": 25603.37, + "end": 25609.09, + "probability": 0.9945 + }, + { + "start": 25609.79, + "end": 25611.81, + "probability": 0.9091 + }, + { + "start": 25612.63, + "end": 25614.97, + "probability": 0.9722 + }, + { + "start": 25615.61, + "end": 25619.83, + "probability": 0.8692 + }, + { + "start": 25620.45, + "end": 25621.71, + "probability": 0.5039 + }, + { + "start": 25622.01, + "end": 25624.13, + "probability": 0.9805 + }, + { + "start": 25624.57, + "end": 25626.01, + "probability": 0.9441 + }, + { + "start": 25626.25, + "end": 25627.41, + "probability": 0.9297 + }, + { + "start": 25627.95, + "end": 25636.21, + "probability": 0.9536 + }, + { + "start": 25636.45, + "end": 25637.11, + "probability": 0.5657 + }, + { + "start": 25637.19, + "end": 25640.93, + "probability": 0.9812 + }, + { + "start": 25641.57, + "end": 25642.59, + "probability": 0.8418 + }, + { + "start": 25642.95, + "end": 25645.01, + "probability": 0.9363 + }, + { + "start": 25645.47, + "end": 25647.71, + "probability": 0.9702 + }, + { + "start": 25648.47, + "end": 25653.89, + "probability": 0.9639 + }, + { + "start": 25653.89, + "end": 25657.45, + "probability": 0.9624 + }, + { + "start": 25658.05, + "end": 25663.35, + "probability": 0.9976 + }, + { + "start": 25663.87, + "end": 25670.03, + "probability": 0.9993 + }, + { + "start": 25670.71, + "end": 25674.91, + "probability": 0.9845 + }, + { + "start": 25675.65, + "end": 25678.21, + "probability": 0.9367 + }, + { + "start": 25678.67, + "end": 25683.59, + "probability": 0.9971 + }, + { + "start": 25683.59, + "end": 25689.75, + "probability": 0.9395 + }, + { + "start": 25690.47, + "end": 25692.71, + "probability": 0.4988 + }, + { + "start": 25693.13, + "end": 25696.69, + "probability": 0.9767 + }, + { + "start": 25696.81, + "end": 25699.65, + "probability": 0.9547 + }, + { + "start": 25699.71, + "end": 25701.35, + "probability": 0.9382 + }, + { + "start": 25701.89, + "end": 25703.57, + "probability": 0.9037 + }, + { + "start": 25704.23, + "end": 25704.65, + "probability": 0.7632 + }, + { + "start": 25705.07, + "end": 25706.12, + "probability": 0.9837 + }, + { + "start": 25706.51, + "end": 25709.73, + "probability": 0.6978 + }, + { + "start": 25710.29, + "end": 25712.51, + "probability": 0.9178 + }, + { + "start": 25713.23, + "end": 25715.19, + "probability": 0.8359 + }, + { + "start": 25716.75, + "end": 25719.27, + "probability": 0.9883 + }, + { + "start": 25719.27, + "end": 25722.89, + "probability": 0.9983 + }, + { + "start": 25723.45, + "end": 25725.41, + "probability": 0.9952 + }, + { + "start": 25725.77, + "end": 25726.77, + "probability": 0.7058 + }, + { + "start": 25726.77, + "end": 25727.31, + "probability": 0.6417 + }, + { + "start": 25727.63, + "end": 25730.41, + "probability": 0.746 + }, + { + "start": 25730.95, + "end": 25731.47, + "probability": 0.0907 + }, + { + "start": 25732.03, + "end": 25736.47, + "probability": 0.9216 + }, + { + "start": 25736.53, + "end": 25737.29, + "probability": 0.5426 + }, + { + "start": 25737.37, + "end": 25738.63, + "probability": 0.9209 + }, + { + "start": 25738.77, + "end": 25741.53, + "probability": 0.5272 + }, + { + "start": 25742.67, + "end": 25743.55, + "probability": 0.3036 + }, + { + "start": 25743.71, + "end": 25745.65, + "probability": 0.339 + }, + { + "start": 25745.65, + "end": 25746.77, + "probability": 0.3722 + }, + { + "start": 25746.91, + "end": 25747.98, + "probability": 0.5042 + }, + { + "start": 25748.31, + "end": 25749.13, + "probability": 0.2629 + }, + { + "start": 25749.85, + "end": 25751.83, + "probability": 0.724 + }, + { + "start": 25752.11, + "end": 25756.96, + "probability": 0.964 + }, + { + "start": 25758.68, + "end": 25759.87, + "probability": 0.2178 + }, + { + "start": 25759.93, + "end": 25764.81, + "probability": 0.7803 + }, + { + "start": 25765.41, + "end": 25767.81, + "probability": 0.9154 + }, + { + "start": 25768.27, + "end": 25770.35, + "probability": 0.7707 + }, + { + "start": 25770.39, + "end": 25771.79, + "probability": 0.3618 + }, + { + "start": 25772.71, + "end": 25773.7, + "probability": 0.7864 + }, + { + "start": 25774.17, + "end": 25775.83, + "probability": 0.2746 + }, + { + "start": 25775.95, + "end": 25777.07, + "probability": 0.023 + }, + { + "start": 25778.23, + "end": 25781.45, + "probability": 0.7776 + }, + { + "start": 25781.69, + "end": 25790.39, + "probability": 0.6233 + }, + { + "start": 25790.79, + "end": 25793.01, + "probability": 0.9406 + }, + { + "start": 25793.57, + "end": 25793.71, + "probability": 0.1716 + }, + { + "start": 25793.71, + "end": 25795.0, + "probability": 0.8205 + }, + { + "start": 25795.45, + "end": 25801.75, + "probability": 0.9099 + }, + { + "start": 25801.89, + "end": 25801.89, + "probability": 0.1938 + }, + { + "start": 25801.89, + "end": 25804.01, + "probability": 0.7342 + }, + { + "start": 25804.05, + "end": 25810.27, + "probability": 0.9878 + }, + { + "start": 25810.83, + "end": 25812.15, + "probability": 0.5539 + }, + { + "start": 25812.35, + "end": 25814.89, + "probability": 0.8388 + }, + { + "start": 25815.43, + "end": 25816.65, + "probability": 0.9673 + }, + { + "start": 25816.83, + "end": 25817.19, + "probability": 0.3391 + }, + { + "start": 25817.83, + "end": 25820.67, + "probability": 0.9854 + }, + { + "start": 25820.87, + "end": 25821.01, + "probability": 0.4805 + }, + { + "start": 25821.01, + "end": 25821.11, + "probability": 0.3749 + }, + { + "start": 25821.45, + "end": 25823.01, + "probability": 0.3673 + }, + { + "start": 25823.47, + "end": 25824.57, + "probability": 0.3473 + }, + { + "start": 25824.67, + "end": 25828.63, + "probability": 0.2401 + }, + { + "start": 25828.73, + "end": 25829.23, + "probability": 0.2512 + }, + { + "start": 25829.35, + "end": 25830.25, + "probability": 0.2947 + }, + { + "start": 25831.35, + "end": 25833.17, + "probability": 0.8675 + }, + { + "start": 25834.23, + "end": 25838.19, + "probability": 0.8567 + }, + { + "start": 25838.51, + "end": 25841.61, + "probability": 0.9249 + }, + { + "start": 25841.73, + "end": 25843.98, + "probability": 0.6866 + }, + { + "start": 25845.31, + "end": 25846.63, + "probability": 0.8734 + }, + { + "start": 25847.21, + "end": 25852.31, + "probability": 0.8586 + }, + { + "start": 25852.39, + "end": 25854.49, + "probability": 0.9651 + }, + { + "start": 25854.99, + "end": 25857.59, + "probability": 0.9878 + }, + { + "start": 25857.99, + "end": 25862.71, + "probability": 0.9921 + }, + { + "start": 25863.23, + "end": 25868.17, + "probability": 0.9261 + }, + { + "start": 25868.71, + "end": 25873.71, + "probability": 0.9135 + }, + { + "start": 25873.95, + "end": 25875.83, + "probability": 0.9917 + }, + { + "start": 25876.29, + "end": 25876.71, + "probability": 0.2702 + }, + { + "start": 25876.75, + "end": 25877.47, + "probability": 0.8388 + }, + { + "start": 25877.75, + "end": 25881.77, + "probability": 0.7156 + }, + { + "start": 25883.18, + "end": 25886.93, + "probability": 0.7749 + }, + { + "start": 25887.13, + "end": 25888.53, + "probability": 0.9438 + }, + { + "start": 25889.15, + "end": 25891.51, + "probability": 0.9922 + }, + { + "start": 25891.77, + "end": 25897.37, + "probability": 0.9685 + }, + { + "start": 25897.93, + "end": 25901.87, + "probability": 0.9968 + }, + { + "start": 25901.87, + "end": 25907.81, + "probability": 0.939 + }, + { + "start": 25907.97, + "end": 25909.03, + "probability": 0.685 + }, + { + "start": 25909.75, + "end": 25911.15, + "probability": 0.861 + }, + { + "start": 25911.31, + "end": 25915.25, + "probability": 0.8347 + }, + { + "start": 25915.55, + "end": 25916.71, + "probability": 0.8183 + }, + { + "start": 25916.93, + "end": 25922.91, + "probability": 0.7231 + }, + { + "start": 25923.73, + "end": 25925.93, + "probability": 0.5508 + }, + { + "start": 25926.57, + "end": 25930.51, + "probability": 0.9943 + }, + { + "start": 25930.91, + "end": 25932.9, + "probability": 0.9971 + }, + { + "start": 25933.59, + "end": 25935.69, + "probability": 0.9217 + }, + { + "start": 25936.09, + "end": 25938.09, + "probability": 0.9726 + }, + { + "start": 25938.45, + "end": 25941.95, + "probability": 0.8213 + }, + { + "start": 25942.39, + "end": 25946.41, + "probability": 0.9981 + }, + { + "start": 25946.41, + "end": 25950.29, + "probability": 0.9956 + }, + { + "start": 25950.67, + "end": 25952.19, + "probability": 0.717 + }, + { + "start": 25952.97, + "end": 25957.75, + "probability": 0.8468 + }, + { + "start": 25958.37, + "end": 25960.58, + "probability": 0.9729 + }, + { + "start": 25961.45, + "end": 25962.23, + "probability": 0.9219 + }, + { + "start": 25962.45, + "end": 25963.53, + "probability": 0.9784 + }, + { + "start": 25963.73, + "end": 25967.61, + "probability": 0.9945 + }, + { + "start": 25967.97, + "end": 25969.35, + "probability": 0.7692 + }, + { + "start": 25969.85, + "end": 25972.01, + "probability": 0.5869 + }, + { + "start": 25972.31, + "end": 25973.77, + "probability": 0.9148 + }, + { + "start": 25973.97, + "end": 25980.03, + "probability": 0.9778 + }, + { + "start": 25980.03, + "end": 25985.33, + "probability": 0.9209 + }, + { + "start": 25985.51, + "end": 25986.27, + "probability": 0.0005 + }, + { + "start": 25986.39, + "end": 25994.35, + "probability": 0.6161 + }, + { + "start": 25995.15, + "end": 25999.05, + "probability": 0.6997 + }, + { + "start": 25999.61, + "end": 26001.43, + "probability": 0.7705 + }, + { + "start": 26002.05, + "end": 26002.85, + "probability": 0.7857 + }, + { + "start": 26003.95, + "end": 26006.61, + "probability": 0.9483 + }, + { + "start": 26007.03, + "end": 26008.47, + "probability": 0.9849 + }, + { + "start": 26009.23, + "end": 26012.69, + "probability": 0.9837 + }, + { + "start": 26013.07, + "end": 26020.24, + "probability": 0.9489 + }, + { + "start": 26020.87, + "end": 26025.13, + "probability": 0.9908 + }, + { + "start": 26025.33, + "end": 26028.21, + "probability": 0.8481 + }, + { + "start": 26028.41, + "end": 26029.29, + "probability": 0.6971 + }, + { + "start": 26029.63, + "end": 26030.78, + "probability": 0.8917 + }, + { + "start": 26031.41, + "end": 26032.73, + "probability": 0.9664 + }, + { + "start": 26032.89, + "end": 26033.19, + "probability": 0.8148 + }, + { + "start": 26034.25, + "end": 26035.51, + "probability": 0.7992 + }, + { + "start": 26035.63, + "end": 26035.95, + "probability": 0.8739 + }, + { + "start": 26036.07, + "end": 26039.87, + "probability": 0.8921 + }, + { + "start": 26039.97, + "end": 26041.01, + "probability": 0.9213 + }, + { + "start": 26041.25, + "end": 26043.51, + "probability": 0.9694 + }, + { + "start": 26043.57, + "end": 26045.17, + "probability": 0.942 + }, + { + "start": 26045.55, + "end": 26046.51, + "probability": 0.8016 + }, + { + "start": 26047.21, + "end": 26051.79, + "probability": 0.9807 + }, + { + "start": 26051.91, + "end": 26052.8, + "probability": 0.998 + }, + { + "start": 26053.61, + "end": 26054.57, + "probability": 0.9561 + }, + { + "start": 26055.21, + "end": 26056.67, + "probability": 0.5742 + }, + { + "start": 26056.93, + "end": 26061.55, + "probability": 0.877 + }, + { + "start": 26062.91, + "end": 26064.27, + "probability": 0.522 + }, + { + "start": 26064.31, + "end": 26065.13, + "probability": 0.3809 + }, + { + "start": 26065.77, + "end": 26071.47, + "probability": 0.9915 + }, + { + "start": 26072.19, + "end": 26075.17, + "probability": 0.9907 + }, + { + "start": 26075.54, + "end": 26076.92, + "probability": 0.9403 + }, + { + "start": 26077.11, + "end": 26078.31, + "probability": 0.917 + }, + { + "start": 26079.09, + "end": 26080.85, + "probability": 0.9937 + }, + { + "start": 26081.37, + "end": 26081.71, + "probability": 0.3579 + }, + { + "start": 26082.39, + "end": 26084.55, + "probability": 0.9465 + }, + { + "start": 26085.11, + "end": 26087.89, + "probability": 0.7034 + }, + { + "start": 26088.37, + "end": 26092.77, + "probability": 0.8039 + }, + { + "start": 26092.81, + "end": 26093.17, + "probability": 0.8619 + }, + { + "start": 26096.27, + "end": 26097.83, + "probability": 0.7088 + }, + { + "start": 26098.37, + "end": 26100.01, + "probability": 0.797 + }, + { + "start": 26101.01, + "end": 26102.63, + "probability": 0.8887 + }, + { + "start": 26103.19, + "end": 26105.33, + "probability": 0.9481 + }, + { + "start": 26105.67, + "end": 26107.13, + "probability": 0.7386 + }, + { + "start": 26107.63, + "end": 26108.01, + "probability": 0.4892 + }, + { + "start": 26108.09, + "end": 26108.57, + "probability": 0.7472 + }, + { + "start": 26109.07, + "end": 26110.11, + "probability": 0.8864 + }, + { + "start": 26110.17, + "end": 26110.75, + "probability": 0.8241 + }, + { + "start": 26111.13, + "end": 26113.49, + "probability": 0.9821 + }, + { + "start": 26114.25, + "end": 26116.65, + "probability": 0.9202 + }, + { + "start": 26116.83, + "end": 26119.47, + "probability": 0.9394 + }, + { + "start": 26120.65, + "end": 26121.27, + "probability": 0.713 + }, + { + "start": 26121.27, + "end": 26121.91, + "probability": 0.6517 + }, + { + "start": 26121.99, + "end": 26123.53, + "probability": 0.9006 + }, + { + "start": 26123.77, + "end": 26124.93, + "probability": 0.9517 + }, + { + "start": 26125.55, + "end": 26126.97, + "probability": 0.9314 + }, + { + "start": 26127.09, + "end": 26127.83, + "probability": 0.6562 + }, + { + "start": 26128.31, + "end": 26134.73, + "probability": 0.8739 + }, + { + "start": 26134.73, + "end": 26135.89, + "probability": 0.7496 + }, + { + "start": 26136.35, + "end": 26136.83, + "probability": 0.6292 + }, + { + "start": 26137.35, + "end": 26137.61, + "probability": 0.948 + }, + { + "start": 26138.37, + "end": 26141.63, + "probability": 0.9807 + }, + { + "start": 26141.63, + "end": 26145.25, + "probability": 0.9631 + }, + { + "start": 26145.65, + "end": 26148.81, + "probability": 0.961 + }, + { + "start": 26149.03, + "end": 26150.01, + "probability": 0.8511 + }, + { + "start": 26150.11, + "end": 26150.85, + "probability": 0.6515 + }, + { + "start": 26150.89, + "end": 26151.81, + "probability": 0.5343 + }, + { + "start": 26152.05, + "end": 26155.05, + "probability": 0.9819 + }, + { + "start": 26155.15, + "end": 26156.69, + "probability": 0.4397 + }, + { + "start": 26156.75, + "end": 26159.83, + "probability": 0.7073 + }, + { + "start": 26160.13, + "end": 26162.81, + "probability": 0.9519 + }, + { + "start": 26162.99, + "end": 26164.53, + "probability": 0.8158 + }, + { + "start": 26165.03, + "end": 26168.89, + "probability": 0.7596 + }, + { + "start": 26169.49, + "end": 26171.37, + "probability": 0.9982 + }, + { + "start": 26171.43, + "end": 26172.95, + "probability": 0.9941 + }, + { + "start": 26173.35, + "end": 26175.89, + "probability": 0.8177 + }, + { + "start": 26175.97, + "end": 26178.45, + "probability": 0.9811 + }, + { + "start": 26178.53, + "end": 26179.31, + "probability": 0.7991 + }, + { + "start": 26179.49, + "end": 26182.15, + "probability": 0.6439 + }, + { + "start": 26182.71, + "end": 26182.89, + "probability": 0.0624 + }, + { + "start": 26182.89, + "end": 26184.15, + "probability": 0.7965 + }, + { + "start": 26184.15, + "end": 26184.89, + "probability": 0.5817 + }, + { + "start": 26185.13, + "end": 26188.59, + "probability": 0.7578 + }, + { + "start": 26188.77, + "end": 26189.63, + "probability": 0.6775 + }, + { + "start": 26189.71, + "end": 26190.49, + "probability": 0.5925 + }, + { + "start": 26190.55, + "end": 26191.35, + "probability": 0.9344 + }, + { + "start": 26191.71, + "end": 26194.01, + "probability": 0.6801 + }, + { + "start": 26194.09, + "end": 26195.15, + "probability": 0.9433 + }, + { + "start": 26195.73, + "end": 26197.91, + "probability": 0.9289 + }, + { + "start": 26198.65, + "end": 26201.39, + "probability": 0.6432 + }, + { + "start": 26202.23, + "end": 26207.15, + "probability": 0.8842 + }, + { + "start": 26207.83, + "end": 26210.25, + "probability": 0.9868 + }, + { + "start": 26210.49, + "end": 26211.33, + "probability": 0.8474 + }, + { + "start": 26211.53, + "end": 26211.67, + "probability": 0.2171 + }, + { + "start": 26211.99, + "end": 26214.41, + "probability": 0.9817 + }, + { + "start": 26214.41, + "end": 26216.53, + "probability": 0.8994 + }, + { + "start": 26216.65, + "end": 26217.29, + "probability": 0.5256 + }, + { + "start": 26217.71, + "end": 26219.16, + "probability": 0.7332 + }, + { + "start": 26219.53, + "end": 26221.89, + "probability": 0.8474 + }, + { + "start": 26221.97, + "end": 26223.05, + "probability": 0.9968 + }, + { + "start": 26223.57, + "end": 26226.59, + "probability": 0.7086 + }, + { + "start": 26227.43, + "end": 26232.85, + "probability": 0.9304 + }, + { + "start": 26233.21, + "end": 26233.91, + "probability": 0.838 + }, + { + "start": 26234.05, + "end": 26234.57, + "probability": 0.8271 + }, + { + "start": 26234.61, + "end": 26239.51, + "probability": 0.9641 + }, + { + "start": 26239.85, + "end": 26246.61, + "probability": 0.9484 + }, + { + "start": 26246.73, + "end": 26247.63, + "probability": 0.5577 + }, + { + "start": 26247.63, + "end": 26249.53, + "probability": 0.6316 + }, + { + "start": 26249.63, + "end": 26253.75, + "probability": 0.7494 + }, + { + "start": 26253.75, + "end": 26257.85, + "probability": 0.9599 + }, + { + "start": 26258.27, + "end": 26258.79, + "probability": 0.7717 + }, + { + "start": 26258.85, + "end": 26265.27, + "probability": 0.246 + }, + { + "start": 26265.27, + "end": 26267.11, + "probability": 0.7069 + }, + { + "start": 26267.23, + "end": 26267.33, + "probability": 0.5057 + }, + { + "start": 26268.33, + "end": 26268.33, + "probability": 0.256 + }, + { + "start": 26268.39, + "end": 26270.19, + "probability": 0.8692 + }, + { + "start": 26271.07, + "end": 26271.86, + "probability": 0.4413 + }, + { + "start": 26271.95, + "end": 26273.35, + "probability": 0.8807 + }, + { + "start": 26273.43, + "end": 26273.83, + "probability": 0.6918 + }, + { + "start": 26273.91, + "end": 26274.33, + "probability": 0.6985 + }, + { + "start": 26278.61, + "end": 26279.49, + "probability": 0.4918 + }, + { + "start": 26281.21, + "end": 26285.83, + "probability": 0.9243 + }, + { + "start": 26287.11, + "end": 26287.95, + "probability": 0.0014 + }, + { + "start": 26289.23, + "end": 26290.83, + "probability": 0.7585 + }, + { + "start": 26291.19, + "end": 26292.63, + "probability": 0.6578 + }, + { + "start": 26292.99, + "end": 26293.45, + "probability": 0.4919 + }, + { + "start": 26296.01, + "end": 26297.47, + "probability": 0.4252 + }, + { + "start": 26297.47, + "end": 26298.99, + "probability": 0.8021 + }, + { + "start": 26299.09, + "end": 26301.21, + "probability": 0.7623 + }, + { + "start": 26301.87, + "end": 26303.59, + "probability": 0.8533 + }, + { + "start": 26304.89, + "end": 26311.95, + "probability": 0.9923 + }, + { + "start": 26312.27, + "end": 26313.07, + "probability": 0.8625 + }, + { + "start": 26313.39, + "end": 26316.29, + "probability": 0.9956 + }, + { + "start": 26316.61, + "end": 26319.41, + "probability": 0.9911 + }, + { + "start": 26319.87, + "end": 26320.79, + "probability": 0.9742 + }, + { + "start": 26320.83, + "end": 26322.27, + "probability": 0.9339 + }, + { + "start": 26322.69, + "end": 26324.27, + "probability": 0.9292 + }, + { + "start": 26325.65, + "end": 26325.65, + "probability": 0.1088 + }, + { + "start": 26325.65, + "end": 26330.47, + "probability": 0.9465 + }, + { + "start": 26331.07, + "end": 26333.27, + "probability": 0.991 + }, + { + "start": 26334.07, + "end": 26337.13, + "probability": 0.991 + }, + { + "start": 26337.77, + "end": 26343.87, + "probability": 0.991 + }, + { + "start": 26344.71, + "end": 26345.41, + "probability": 0.7001 + }, + { + "start": 26346.05, + "end": 26351.77, + "probability": 0.9948 + }, + { + "start": 26352.05, + "end": 26353.37, + "probability": 0.9735 + }, + { + "start": 26353.75, + "end": 26355.29, + "probability": 0.9725 + }, + { + "start": 26356.01, + "end": 26358.55, + "probability": 0.9244 + }, + { + "start": 26359.05, + "end": 26361.65, + "probability": 0.9447 + }, + { + "start": 26361.87, + "end": 26363.47, + "probability": 0.9958 + }, + { + "start": 26364.23, + "end": 26364.95, + "probability": 0.689 + }, + { + "start": 26365.53, + "end": 26366.89, + "probability": 0.9707 + }, + { + "start": 26367.15, + "end": 26368.95, + "probability": 0.9954 + }, + { + "start": 26369.37, + "end": 26371.33, + "probability": 0.9938 + }, + { + "start": 26371.61, + "end": 26373.05, + "probability": 0.8032 + }, + { + "start": 26373.45, + "end": 26374.85, + "probability": 0.9964 + }, + { + "start": 26375.05, + "end": 26376.69, + "probability": 0.887 + }, + { + "start": 26377.05, + "end": 26380.36, + "probability": 0.9917 + }, + { + "start": 26380.61, + "end": 26381.41, + "probability": 0.9717 + }, + { + "start": 26382.29, + "end": 26382.93, + "probability": 0.8413 + }, + { + "start": 26383.03, + "end": 26384.77, + "probability": 0.915 + }, + { + "start": 26384.81, + "end": 26389.03, + "probability": 0.9854 + }, + { + "start": 26389.31, + "end": 26389.57, + "probability": 0.5964 + }, + { + "start": 26389.85, + "end": 26390.07, + "probability": 0.289 + }, + { + "start": 26390.07, + "end": 26391.73, + "probability": 0.7924 + }, + { + "start": 26392.31, + "end": 26393.35, + "probability": 0.9618 + }, + { + "start": 26399.55, + "end": 26400.31, + "probability": 0.5173 + }, + { + "start": 26401.01, + "end": 26401.75, + "probability": 0.8017 + }, + { + "start": 26402.37, + "end": 26402.73, + "probability": 0.6543 + }, + { + "start": 26402.89, + "end": 26404.35, + "probability": 0.9484 + }, + { + "start": 26404.47, + "end": 26404.89, + "probability": 0.6377 + }, + { + "start": 26405.53, + "end": 26406.71, + "probability": 0.9611 + }, + { + "start": 26407.19, + "end": 26407.79, + "probability": 0.9277 + }, + { + "start": 26407.85, + "end": 26408.83, + "probability": 0.9586 + }, + { + "start": 26409.19, + "end": 26411.45, + "probability": 0.8324 + }, + { + "start": 26411.93, + "end": 26413.51, + "probability": 0.6724 + }, + { + "start": 26413.81, + "end": 26414.69, + "probability": 0.6851 + }, + { + "start": 26414.73, + "end": 26415.03, + "probability": 0.8478 + }, + { + "start": 26415.71, + "end": 26418.13, + "probability": 0.8862 + }, + { + "start": 26418.43, + "end": 26419.67, + "probability": 0.8618 + }, + { + "start": 26419.91, + "end": 26421.31, + "probability": 0.4084 + }, + { + "start": 26421.31, + "end": 26421.41, + "probability": 0.4039 + }, + { + "start": 26421.41, + "end": 26423.17, + "probability": 0.7411 + }, + { + "start": 26423.17, + "end": 26423.57, + "probability": 0.4858 + }, + { + "start": 26423.57, + "end": 26425.45, + "probability": 0.9185 + }, + { + "start": 26425.75, + "end": 26425.85, + "probability": 0.0137 + }, + { + "start": 26425.85, + "end": 26427.21, + "probability": 0.8809 + }, + { + "start": 26427.35, + "end": 26427.49, + "probability": 0.3131 + }, + { + "start": 26427.59, + "end": 26428.53, + "probability": 0.5515 + }, + { + "start": 26428.61, + "end": 26432.43, + "probability": 0.641 + }, + { + "start": 26432.43, + "end": 26433.03, + "probability": 0.4592 + }, + { + "start": 26433.13, + "end": 26434.75, + "probability": 0.7491 + }, + { + "start": 26434.83, + "end": 26435.52, + "probability": 0.906 + }, + { + "start": 26435.55, + "end": 26437.31, + "probability": 0.8546 + }, + { + "start": 26437.31, + "end": 26439.47, + "probability": 0.9892 + }, + { + "start": 26439.89, + "end": 26441.21, + "probability": 0.9936 + }, + { + "start": 26441.67, + "end": 26445.81, + "probability": 0.7158 + }, + { + "start": 26445.81, + "end": 26447.97, + "probability": 0.9938 + }, + { + "start": 26448.63, + "end": 26451.29, + "probability": 0.9793 + }, + { + "start": 26452.29, + "end": 26453.75, + "probability": 0.8543 + }, + { + "start": 26453.83, + "end": 26455.03, + "probability": 0.587 + }, + { + "start": 26455.15, + "end": 26455.83, + "probability": 0.939 + }, + { + "start": 26456.51, + "end": 26461.47, + "probability": 0.993 + }, + { + "start": 26461.59, + "end": 26462.17, + "probability": 0.7966 + }, + { + "start": 26462.65, + "end": 26463.81, + "probability": 0.785 + }, + { + "start": 26463.83, + "end": 26464.11, + "probability": 0.5902 + }, + { + "start": 26464.53, + "end": 26464.81, + "probability": 0.9745 + }, + { + "start": 26465.59, + "end": 26466.25, + "probability": 0.5712 + }, + { + "start": 26466.67, + "end": 26470.45, + "probability": 0.9679 + }, + { + "start": 26470.45, + "end": 26474.97, + "probability": 0.978 + }, + { + "start": 26475.77, + "end": 26476.43, + "probability": 0.817 + }, + { + "start": 26477.37, + "end": 26479.31, + "probability": 0.9951 + }, + { + "start": 26479.93, + "end": 26480.39, + "probability": 0.275 + }, + { + "start": 26480.49, + "end": 26481.11, + "probability": 0.3662 + }, + { + "start": 26481.57, + "end": 26481.89, + "probability": 0.9235 + }, + { + "start": 26482.63, + "end": 26483.05, + "probability": 0.8794 + }, + { + "start": 26483.67, + "end": 26484.87, + "probability": 0.7155 + }, + { + "start": 26485.01, + "end": 26486.33, + "probability": 0.9883 + }, + { + "start": 26486.91, + "end": 26490.49, + "probability": 0.9321 + }, + { + "start": 26490.89, + "end": 26490.89, + "probability": 0.1749 + }, + { + "start": 26490.89, + "end": 26493.29, + "probability": 0.9773 + }, + { + "start": 26493.83, + "end": 26494.61, + "probability": 0.9675 + }, + { + "start": 26494.75, + "end": 26495.19, + "probability": 0.7119 + }, + { + "start": 26495.39, + "end": 26498.99, + "probability": 0.9702 + }, + { + "start": 26499.33, + "end": 26500.37, + "probability": 0.9448 + }, + { + "start": 26500.77, + "end": 26501.65, + "probability": 0.9758 + }, + { + "start": 26501.91, + "end": 26502.01, + "probability": 0.795 + }, + { + "start": 26502.75, + "end": 26503.73, + "probability": 0.7528 + }, + { + "start": 26503.81, + "end": 26508.17, + "probability": 0.7694 + }, + { + "start": 26508.17, + "end": 26513.09, + "probability": 0.8785 + }, + { + "start": 26513.55, + "end": 26514.17, + "probability": 0.6168 + }, + { + "start": 26514.35, + "end": 26515.77, + "probability": 0.9854 + }, + { + "start": 26516.17, + "end": 26518.17, + "probability": 0.9861 + }, + { + "start": 26518.79, + "end": 26519.89, + "probability": 0.9573 + }, + { + "start": 26520.01, + "end": 26521.19, + "probability": 0.8748 + }, + { + "start": 26521.61, + "end": 26525.64, + "probability": 0.9889 + }, + { + "start": 26525.97, + "end": 26527.19, + "probability": 0.9303 + }, + { + "start": 26527.29, + "end": 26528.61, + "probability": 0.8447 + }, + { + "start": 26529.03, + "end": 26529.47, + "probability": 0.7137 + }, + { + "start": 26529.47, + "end": 26530.27, + "probability": 0.7056 + }, + { + "start": 26530.37, + "end": 26532.33, + "probability": 0.9982 + }, + { + "start": 26532.33, + "end": 26535.45, + "probability": 0.9829 + }, + { + "start": 26535.57, + "end": 26536.49, + "probability": 0.4467 + }, + { + "start": 26536.71, + "end": 26536.91, + "probability": 0.0053 + }, + { + "start": 26536.91, + "end": 26538.77, + "probability": 0.7273 + }, + { + "start": 26539.39, + "end": 26543.37, + "probability": 0.9951 + }, + { + "start": 26543.8, + "end": 26545.35, + "probability": 0.4893 + }, + { + "start": 26545.57, + "end": 26550.91, + "probability": 0.9628 + }, + { + "start": 26551.13, + "end": 26553.12, + "probability": 0.4885 + }, + { + "start": 26554.15, + "end": 26555.92, + "probability": 0.6944 + }, + { + "start": 26556.21, + "end": 26557.01, + "probability": 0.6566 + }, + { + "start": 26557.01, + "end": 26557.01, + "probability": 0.0499 + }, + { + "start": 26557.01, + "end": 26559.47, + "probability": 0.8589 + }, + { + "start": 26559.77, + "end": 26564.99, + "probability": 0.9984 + }, + { + "start": 26565.03, + "end": 26568.15, + "probability": 0.9565 + }, + { + "start": 26568.61, + "end": 26569.41, + "probability": 0.4453 + }, + { + "start": 26569.51, + "end": 26570.13, + "probability": 0.9301 + }, + { + "start": 26570.45, + "end": 26572.79, + "probability": 0.9292 + }, + { + "start": 26573.33, + "end": 26577.19, + "probability": 0.9556 + }, + { + "start": 26577.55, + "end": 26578.29, + "probability": 0.3853 + }, + { + "start": 26578.37, + "end": 26579.26, + "probability": 0.8396 + }, + { + "start": 26580.63, + "end": 26586.75, + "probability": 0.3762 + }, + { + "start": 26587.15, + "end": 26589.43, + "probability": 0.5739 + }, + { + "start": 26592.41, + "end": 26593.03, + "probability": 0.5533 + }, + { + "start": 26593.03, + "end": 26593.03, + "probability": 0.0312 + }, + { + "start": 26593.03, + "end": 26594.29, + "probability": 0.234 + }, + { + "start": 26594.61, + "end": 26594.61, + "probability": 0.083 + }, + { + "start": 26594.61, + "end": 26595.89, + "probability": 0.8953 + }, + { + "start": 26595.97, + "end": 26597.55, + "probability": 0.9741 + }, + { + "start": 26597.77, + "end": 26598.87, + "probability": 0.9554 + }, + { + "start": 26598.97, + "end": 26599.73, + "probability": 0.8883 + }, + { + "start": 26599.85, + "end": 26603.13, + "probability": 0.6762 + }, + { + "start": 26603.39, + "end": 26606.13, + "probability": 0.8809 + }, + { + "start": 26606.33, + "end": 26607.09, + "probability": 0.2431 + }, + { + "start": 26607.09, + "end": 26607.79, + "probability": 0.3318 + }, + { + "start": 26607.93, + "end": 26610.97, + "probability": 0.0926 + }, + { + "start": 26610.97, + "end": 26612.41, + "probability": 0.0545 + }, + { + "start": 26612.69, + "end": 26613.89, + "probability": 0.1645 + }, + { + "start": 26613.89, + "end": 26614.51, + "probability": 0.3298 + }, + { + "start": 26614.85, + "end": 26615.37, + "probability": 0.163 + }, + { + "start": 26615.43, + "end": 26616.77, + "probability": 0.1552 + }, + { + "start": 26617.31, + "end": 26617.97, + "probability": 0.573 + }, + { + "start": 26618.55, + "end": 26619.23, + "probability": 0.6764 + }, + { + "start": 26619.75, + "end": 26619.99, + "probability": 0.8503 + }, + { + "start": 26623.17, + "end": 26624.39, + "probability": 0.752 + }, + { + "start": 26624.51, + "end": 26628.59, + "probability": 0.966 + }, + { + "start": 26629.37, + "end": 26630.91, + "probability": 0.7967 + }, + { + "start": 26631.45, + "end": 26636.01, + "probability": 0.973 + }, + { + "start": 26636.05, + "end": 26637.73, + "probability": 0.4651 + }, + { + "start": 26637.99, + "end": 26638.94, + "probability": 0.929 + }, + { + "start": 26639.59, + "end": 26640.71, + "probability": 0.3378 + }, + { + "start": 26641.39, + "end": 26642.55, + "probability": 0.5249 + }, + { + "start": 26642.55, + "end": 26642.99, + "probability": 0.8537 + }, + { + "start": 26643.53, + "end": 26644.73, + "probability": 0.8251 + }, + { + "start": 26645.07, + "end": 26647.25, + "probability": 0.7481 + }, + { + "start": 26647.63, + "end": 26651.97, + "probability": 0.8931 + }, + { + "start": 26652.35, + "end": 26654.19, + "probability": 0.7873 + }, + { + "start": 26654.59, + "end": 26655.35, + "probability": 0.0059 + }, + { + "start": 26656.43, + "end": 26657.45, + "probability": 0.9858 + }, + { + "start": 26658.87, + "end": 26659.17, + "probability": 0.5472 + }, + { + "start": 26659.39, + "end": 26659.73, + "probability": 0.8385 + }, + { + "start": 26661.79, + "end": 26664.13, + "probability": 0.9614 + }, + { + "start": 26667.83, + "end": 26671.03, + "probability": 0.9687 + }, + { + "start": 26671.65, + "end": 26672.21, + "probability": 0.2721 + }, + { + "start": 26673.37, + "end": 26674.23, + "probability": 0.7955 + }, + { + "start": 26676.15, + "end": 26678.31, + "probability": 0.7709 + }, + { + "start": 26678.79, + "end": 26679.27, + "probability": 0.4724 + }, + { + "start": 26679.81, + "end": 26681.49, + "probability": 0.2985 + }, + { + "start": 26681.55, + "end": 26681.97, + "probability": 0.7821 + }, + { + "start": 26682.29, + "end": 26683.63, + "probability": 0.3862 + }, + { + "start": 26683.79, + "end": 26684.59, + "probability": 0.5608 + }, + { + "start": 26684.73, + "end": 26686.39, + "probability": 0.3495 + }, + { + "start": 26686.57, + "end": 26688.67, + "probability": 0.0308 + }, + { + "start": 26688.67, + "end": 26688.67, + "probability": 0.1692 + }, + { + "start": 26688.67, + "end": 26689.91, + "probability": 0.5294 + }, + { + "start": 26690.43, + "end": 26693.03, + "probability": 0.8531 + }, + { + "start": 26694.23, + "end": 26694.97, + "probability": 0.6097 + }, + { + "start": 26695.51, + "end": 26698.87, + "probability": 0.6412 + }, + { + "start": 26699.95, + "end": 26701.77, + "probability": 0.9989 + }, + { + "start": 26701.77, + "end": 26704.13, + "probability": 0.9292 + }, + { + "start": 26705.39, + "end": 26707.43, + "probability": 0.9913 + }, + { + "start": 26707.43, + "end": 26710.09, + "probability": 0.868 + }, + { + "start": 26710.91, + "end": 26712.73, + "probability": 0.9068 + }, + { + "start": 26712.91, + "end": 26716.67, + "probability": 0.7759 + }, + { + "start": 26717.17, + "end": 26718.07, + "probability": 0.993 + }, + { + "start": 26719.73, + "end": 26722.71, + "probability": 0.9764 + }, + { + "start": 26722.81, + "end": 26723.73, + "probability": 0.801 + }, + { + "start": 26724.49, + "end": 26726.29, + "probability": 0.9757 + }, + { + "start": 26728.61, + "end": 26731.67, + "probability": 0.9049 + }, + { + "start": 26732.59, + "end": 26734.25, + "probability": 0.7942 + }, + { + "start": 26735.33, + "end": 26739.73, + "probability": 0.9543 + }, + { + "start": 26742.05, + "end": 26742.41, + "probability": 0.5177 + }, + { + "start": 26743.35, + "end": 26743.41, + "probability": 0.1275 + }, + { + "start": 26743.41, + "end": 26745.77, + "probability": 0.7731 + }, + { + "start": 26746.93, + "end": 26748.21, + "probability": 0.9159 + }, + { + "start": 26748.27, + "end": 26749.73, + "probability": 0.9652 + }, + { + "start": 26750.97, + "end": 26753.5, + "probability": 0.9911 + }, + { + "start": 26753.77, + "end": 26754.79, + "probability": 0.9888 + }, + { + "start": 26756.07, + "end": 26758.13, + "probability": 0.9579 + }, + { + "start": 26758.23, + "end": 26763.87, + "probability": 0.8923 + }, + { + "start": 26765.55, + "end": 26768.35, + "probability": 0.9774 + }, + { + "start": 26768.75, + "end": 26769.39, + "probability": 0.9606 + }, + { + "start": 26769.43, + "end": 26770.23, + "probability": 0.5833 + }, + { + "start": 26771.31, + "end": 26773.61, + "probability": 0.8826 + }, + { + "start": 26774.91, + "end": 26776.13, + "probability": 0.9117 + }, + { + "start": 26776.95, + "end": 26779.13, + "probability": 0.9734 + }, + { + "start": 26780.29, + "end": 26781.39, + "probability": 0.9578 + }, + { + "start": 26781.61, + "end": 26782.91, + "probability": 0.9879 + }, + { + "start": 26783.69, + "end": 26786.33, + "probability": 0.8978 + }, + { + "start": 26787.47, + "end": 26789.49, + "probability": 0.9872 + }, + { + "start": 26790.63, + "end": 26793.29, + "probability": 0.9248 + }, + { + "start": 26794.51, + "end": 26798.67, + "probability": 0.987 + }, + { + "start": 26799.91, + "end": 26803.75, + "probability": 0.996 + }, + { + "start": 26804.67, + "end": 26805.78, + "probability": 0.7729 + }, + { + "start": 26806.35, + "end": 26808.71, + "probability": 0.9948 + }, + { + "start": 26809.65, + "end": 26811.89, + "probability": 0.9467 + }, + { + "start": 26812.87, + "end": 26815.59, + "probability": 0.9887 + }, + { + "start": 26816.29, + "end": 26818.15, + "probability": 0.7521 + }, + { + "start": 26818.85, + "end": 26821.07, + "probability": 0.9325 + }, + { + "start": 26821.81, + "end": 26824.71, + "probability": 0.9774 + }, + { + "start": 26825.85, + "end": 26826.49, + "probability": 0.9914 + }, + { + "start": 26828.23, + "end": 26828.91, + "probability": 0.8802 + }, + { + "start": 26829.43, + "end": 26829.61, + "probability": 0.8269 + }, + { + "start": 26829.69, + "end": 26831.09, + "probability": 0.9623 + }, + { + "start": 26831.51, + "end": 26832.65, + "probability": 0.9318 + }, + { + "start": 26832.69, + "end": 26834.22, + "probability": 0.9785 + }, + { + "start": 26835.03, + "end": 26836.49, + "probability": 0.8779 + }, + { + "start": 26838.9, + "end": 26839.79, + "probability": 0.9424 + }, + { + "start": 26839.93, + "end": 26841.37, + "probability": 0.8549 + }, + { + "start": 26841.39, + "end": 26841.39, + "probability": 0.5937 + }, + { + "start": 26841.43, + "end": 26841.77, + "probability": 0.7208 + }, + { + "start": 26842.79, + "end": 26843.69, + "probability": 0.3042 + }, + { + "start": 26843.79, + "end": 26844.66, + "probability": 0.4441 + }, + { + "start": 26845.09, + "end": 26845.29, + "probability": 0.7971 + }, + { + "start": 26845.49, + "end": 26846.85, + "probability": 0.975 + }, + { + "start": 26846.91, + "end": 26848.08, + "probability": 0.9874 + }, + { + "start": 26849.03, + "end": 26849.49, + "probability": 0.7395 + }, + { + "start": 26852.43, + "end": 26852.59, + "probability": 0.1722 + }, + { + "start": 26852.59, + "end": 26852.81, + "probability": 0.3157 + }, + { + "start": 26852.95, + "end": 26854.23, + "probability": 0.6706 + }, + { + "start": 26854.43, + "end": 26856.43, + "probability": 0.9569 + }, + { + "start": 26856.97, + "end": 26859.11, + "probability": 0.8898 + }, + { + "start": 26860.51, + "end": 26861.65, + "probability": 0.7151 + }, + { + "start": 26861.97, + "end": 26862.73, + "probability": 0.8351 + }, + { + "start": 26862.77, + "end": 26867.23, + "probability": 0.9989 + }, + { + "start": 26867.23, + "end": 26869.39, + "probability": 0.9861 + }, + { + "start": 26870.87, + "end": 26871.09, + "probability": 0.717 + }, + { + "start": 26871.21, + "end": 26874.87, + "probability": 0.9897 + }, + { + "start": 26876.05, + "end": 26878.51, + "probability": 0.9717 + }, + { + "start": 26879.43, + "end": 26881.09, + "probability": 0.7735 + }, + { + "start": 26881.83, + "end": 26884.43, + "probability": 0.9979 + }, + { + "start": 26885.45, + "end": 26888.75, + "probability": 0.9098 + }, + { + "start": 26889.23, + "end": 26891.33, + "probability": 0.8501 + }, + { + "start": 26892.69, + "end": 26894.53, + "probability": 0.8276 + }, + { + "start": 26895.59, + "end": 26896.21, + "probability": 0.8341 + }, + { + "start": 26897.23, + "end": 26898.57, + "probability": 0.9328 + }, + { + "start": 26899.39, + "end": 26901.13, + "probability": 0.9111 + }, + { + "start": 26901.25, + "end": 26902.65, + "probability": 0.8908 + }, + { + "start": 26904.05, + "end": 26904.71, + "probability": 0.9363 + }, + { + "start": 26905.49, + "end": 26910.65, + "probability": 0.9002 + }, + { + "start": 26912.01, + "end": 26914.47, + "probability": 0.7273 + }, + { + "start": 26915.33, + "end": 26916.93, + "probability": 0.8308 + }, + { + "start": 26917.51, + "end": 26918.31, + "probability": 0.9764 + }, + { + "start": 26919.69, + "end": 26922.21, + "probability": 0.9869 + }, + { + "start": 26922.33, + "end": 26923.51, + "probability": 0.7694 + }, + { + "start": 26924.39, + "end": 26925.27, + "probability": 0.2835 + }, + { + "start": 26925.55, + "end": 26926.41, + "probability": 0.737 + }, + { + "start": 26926.49, + "end": 26927.43, + "probability": 0.9297 + }, + { + "start": 26928.25, + "end": 26928.43, + "probability": 0.6458 + }, + { + "start": 26928.55, + "end": 26928.79, + "probability": 0.9403 + }, + { + "start": 26928.87, + "end": 26933.11, + "probability": 0.98 + }, + { + "start": 26933.11, + "end": 26939.05, + "probability": 0.9972 + }, + { + "start": 26940.37, + "end": 26942.61, + "probability": 0.9974 + }, + { + "start": 26943.71, + "end": 26948.85, + "probability": 0.9342 + }, + { + "start": 26948.89, + "end": 26949.43, + "probability": 0.2675 + }, + { + "start": 26950.21, + "end": 26952.43, + "probability": 0.9467 + }, + { + "start": 26953.17, + "end": 26956.37, + "probability": 0.9979 + }, + { + "start": 26956.37, + "end": 26959.63, + "probability": 0.9653 + }, + { + "start": 26960.47, + "end": 26961.29, + "probability": 0.5348 + }, + { + "start": 26961.39, + "end": 26965.37, + "probability": 0.9235 + }, + { + "start": 26965.43, + "end": 26966.61, + "probability": 0.5699 + }, + { + "start": 26967.33, + "end": 26968.46, + "probability": 0.99 + }, + { + "start": 26969.37, + "end": 26970.25, + "probability": 0.6149 + }, + { + "start": 26970.81, + "end": 26972.59, + "probability": 0.585 + }, + { + "start": 26973.71, + "end": 26973.95, + "probability": 0.2058 + }, + { + "start": 26974.77, + "end": 26976.49, + "probability": 0.7026 + }, + { + "start": 26976.49, + "end": 26976.85, + "probability": 0.9405 + }, + { + "start": 26978.29, + "end": 26980.18, + "probability": 0.9849 + }, + { + "start": 26981.01, + "end": 26984.91, + "probability": 0.9624 + }, + { + "start": 26985.61, + "end": 26987.69, + "probability": 0.9839 + }, + { + "start": 26988.05, + "end": 26990.89, + "probability": 0.9548 + }, + { + "start": 26991.85, + "end": 26992.07, + "probability": 0.2848 + }, + { + "start": 26992.21, + "end": 26992.45, + "probability": 0.8146 + }, + { + "start": 26992.55, + "end": 26996.65, + "probability": 0.9386 + }, + { + "start": 26996.77, + "end": 26999.91, + "probability": 0.9174 + }, + { + "start": 27000.63, + "end": 27002.25, + "probability": 0.9912 + }, + { + "start": 27002.81, + "end": 27005.83, + "probability": 0.998 + }, + { + "start": 27006.87, + "end": 27007.67, + "probability": 0.8054 + }, + { + "start": 27008.59, + "end": 27011.41, + "probability": 0.9615 + }, + { + "start": 27012.69, + "end": 27015.83, + "probability": 0.9968 + }, + { + "start": 27015.83, + "end": 27020.57, + "probability": 0.9618 + }, + { + "start": 27021.27, + "end": 27024.67, + "probability": 0.9521 + }, + { + "start": 27024.67, + "end": 27027.35, + "probability": 0.9967 + }, + { + "start": 27027.89, + "end": 27029.07, + "probability": 0.9606 + }, + { + "start": 27029.21, + "end": 27031.05, + "probability": 0.9978 + }, + { + "start": 27032.17, + "end": 27034.19, + "probability": 0.8777 + }, + { + "start": 27035.49, + "end": 27036.89, + "probability": 0.9575 + }, + { + "start": 27037.67, + "end": 27039.19, + "probability": 0.9952 + }, + { + "start": 27040.25, + "end": 27041.55, + "probability": 0.9965 + }, + { + "start": 27042.29, + "end": 27043.31, + "probability": 0.8915 + }, + { + "start": 27044.33, + "end": 27044.55, + "probability": 0.6652 + }, + { + "start": 27045.77, + "end": 27048.53, + "probability": 0.9896 + }, + { + "start": 27048.73, + "end": 27049.41, + "probability": 0.902 + }, + { + "start": 27050.11, + "end": 27053.13, + "probability": 0.9941 + }, + { + "start": 27053.85, + "end": 27057.27, + "probability": 0.9979 + }, + { + "start": 27058.17, + "end": 27063.05, + "probability": 0.9902 + }, + { + "start": 27063.87, + "end": 27064.25, + "probability": 0.7899 + }, + { + "start": 27064.33, + "end": 27067.63, + "probability": 0.9977 + }, + { + "start": 27068.41, + "end": 27070.69, + "probability": 0.8182 + }, + { + "start": 27072.47, + "end": 27075.21, + "probability": 0.7571 + }, + { + "start": 27075.21, + "end": 27077.29, + "probability": 0.8536 + }, + { + "start": 27077.95, + "end": 27079.33, + "probability": 0.9399 + }, + { + "start": 27079.81, + "end": 27084.57, + "probability": 0.9943 + }, + { + "start": 27084.57, + "end": 27089.21, + "probability": 0.993 + }, + { + "start": 27089.91, + "end": 27093.15, + "probability": 0.9985 + }, + { + "start": 27094.01, + "end": 27097.81, + "probability": 0.9908 + }, + { + "start": 27098.65, + "end": 27101.43, + "probability": 0.9934 + }, + { + "start": 27101.43, + "end": 27108.07, + "probability": 0.998 + }, + { + "start": 27109.31, + "end": 27109.57, + "probability": 0.7091 + }, + { + "start": 27110.21, + "end": 27112.05, + "probability": 0.9987 + }, + { + "start": 27112.97, + "end": 27115.01, + "probability": 0.8725 + }, + { + "start": 27115.89, + "end": 27118.15, + "probability": 0.9188 + }, + { + "start": 27119.83, + "end": 27122.71, + "probability": 0.9632 + }, + { + "start": 27123.49, + "end": 27124.65, + "probability": 0.9761 + }, + { + "start": 27125.51, + "end": 27127.97, + "probability": 0.9759 + }, + { + "start": 27127.97, + "end": 27130.91, + "probability": 0.9977 + }, + { + "start": 27131.57, + "end": 27133.95, + "probability": 0.9989 + }, + { + "start": 27134.57, + "end": 27135.61, + "probability": 0.7939 + }, + { + "start": 27135.65, + "end": 27140.45, + "probability": 0.9702 + }, + { + "start": 27141.31, + "end": 27142.01, + "probability": 0.8213 + }, + { + "start": 27143.17, + "end": 27147.29, + "probability": 0.5698 + }, + { + "start": 27148.27, + "end": 27148.27, + "probability": 0.0295 + }, + { + "start": 27148.27, + "end": 27148.31, + "probability": 0.3159 + }, + { + "start": 27148.43, + "end": 27149.05, + "probability": 0.6468 + }, + { + "start": 27149.17, + "end": 27151.43, + "probability": 0.804 + }, + { + "start": 27152.13, + "end": 27157.49, + "probability": 0.9912 + }, + { + "start": 27158.39, + "end": 27160.23, + "probability": 0.8704 + }, + { + "start": 27160.29, + "end": 27160.63, + "probability": 0.7316 + }, + { + "start": 27161.29, + "end": 27163.43, + "probability": 0.8391 + }, + { + "start": 27163.85, + "end": 27169.29, + "probability": 0.8547 + }, + { + "start": 27170.79, + "end": 27171.85, + "probability": 0.8052 + }, + { + "start": 27206.31, + "end": 27206.55, + "probability": 0.7536 + }, + { + "start": 27209.55, + "end": 27210.19, + "probability": 0.7505 + }, + { + "start": 27211.19, + "end": 27211.65, + "probability": 0.8142 + }, + { + "start": 27212.35, + "end": 27214.79, + "probability": 0.7123 + }, + { + "start": 27215.93, + "end": 27218.75, + "probability": 0.9963 + }, + { + "start": 27218.75, + "end": 27222.07, + "probability": 0.999 + }, + { + "start": 27223.59, + "end": 27226.15, + "probability": 0.9726 + }, + { + "start": 27226.15, + "end": 27229.39, + "probability": 0.9988 + }, + { + "start": 27229.63, + "end": 27232.81, + "probability": 0.9912 + }, + { + "start": 27233.71, + "end": 27236.01, + "probability": 0.9855 + }, + { + "start": 27236.01, + "end": 27238.59, + "probability": 0.9873 + }, + { + "start": 27238.63, + "end": 27240.29, + "probability": 0.7621 + }, + { + "start": 27241.07, + "end": 27243.61, + "probability": 0.9914 + }, + { + "start": 27244.29, + "end": 27246.21, + "probability": 0.9854 + }, + { + "start": 27246.35, + "end": 27247.21, + "probability": 0.9823 + }, + { + "start": 27247.35, + "end": 27249.73, + "probability": 0.9329 + }, + { + "start": 27251.19, + "end": 27252.87, + "probability": 0.9515 + }, + { + "start": 27254.49, + "end": 27259.29, + "probability": 0.993 + }, + { + "start": 27259.41, + "end": 27263.21, + "probability": 0.9888 + }, + { + "start": 27264.17, + "end": 27267.25, + "probability": 0.9873 + }, + { + "start": 27267.79, + "end": 27268.98, + "probability": 0.9736 + }, + { + "start": 27269.91, + "end": 27271.15, + "probability": 0.9911 + }, + { + "start": 27271.29, + "end": 27272.37, + "probability": 0.877 + }, + { + "start": 27272.41, + "end": 27275.07, + "probability": 0.9851 + }, + { + "start": 27275.85, + "end": 27277.83, + "probability": 0.7757 + }, + { + "start": 27278.01, + "end": 27279.01, + "probability": 0.7772 + }, + { + "start": 27279.19, + "end": 27279.67, + "probability": 0.8116 + }, + { + "start": 27280.25, + "end": 27285.93, + "probability": 0.9365 + }, + { + "start": 27287.45, + "end": 27290.49, + "probability": 0.9307 + }, + { + "start": 27290.49, + "end": 27293.11, + "probability": 0.9442 + }, + { + "start": 27293.73, + "end": 27296.37, + "probability": 0.9722 + }, + { + "start": 27296.37, + "end": 27298.55, + "probability": 0.9987 + }, + { + "start": 27299.43, + "end": 27300.69, + "probability": 0.889 + }, + { + "start": 27301.07, + "end": 27304.97, + "probability": 0.8023 + }, + { + "start": 27305.25, + "end": 27305.81, + "probability": 0.9746 + }, + { + "start": 27307.19, + "end": 27310.41, + "probability": 0.6692 + }, + { + "start": 27310.49, + "end": 27311.61, + "probability": 0.6391 + }, + { + "start": 27311.67, + "end": 27314.27, + "probability": 0.9526 + }, + { + "start": 27314.77, + "end": 27315.53, + "probability": 0.838 + }, + { + "start": 27315.75, + "end": 27318.43, + "probability": 0.9352 + }, + { + "start": 27319.21, + "end": 27321.63, + "probability": 0.9646 + }, + { + "start": 27321.81, + "end": 27324.89, + "probability": 0.8933 + }, + { + "start": 27325.83, + "end": 27326.99, + "probability": 0.9637 + }, + { + "start": 27327.07, + "end": 27329.37, + "probability": 0.9921 + }, + { + "start": 27329.39, + "end": 27331.95, + "probability": 0.9841 + }, + { + "start": 27332.67, + "end": 27335.79, + "probability": 0.9812 + }, + { + "start": 27336.73, + "end": 27337.51, + "probability": 0.7519 + }, + { + "start": 27338.49, + "end": 27342.85, + "probability": 0.9961 + }, + { + "start": 27343.51, + "end": 27349.13, + "probability": 0.9465 + }, + { + "start": 27349.17, + "end": 27356.29, + "probability": 0.991 + }, + { + "start": 27356.59, + "end": 27359.37, + "probability": 0.9436 + }, + { + "start": 27360.07, + "end": 27361.31, + "probability": 0.9494 + }, + { + "start": 27361.39, + "end": 27364.35, + "probability": 0.9993 + }, + { + "start": 27364.45, + "end": 27367.83, + "probability": 0.9902 + }, + { + "start": 27368.09, + "end": 27371.23, + "probability": 0.949 + }, + { + "start": 27371.95, + "end": 27376.49, + "probability": 0.7899 + }, + { + "start": 27376.89, + "end": 27378.37, + "probability": 0.5976 + }, + { + "start": 27378.47, + "end": 27379.69, + "probability": 0.976 + }, + { + "start": 27380.53, + "end": 27380.95, + "probability": 0.8152 + }, + { + "start": 27381.33, + "end": 27385.57, + "probability": 0.9862 + }, + { + "start": 27386.25, + "end": 27391.85, + "probability": 0.9614 + }, + { + "start": 27391.85, + "end": 27398.05, + "probability": 0.9852 + }, + { + "start": 27398.05, + "end": 27404.89, + "probability": 0.9985 + }, + { + "start": 27404.89, + "end": 27409.45, + "probability": 0.9993 + }, + { + "start": 27410.07, + "end": 27412.67, + "probability": 0.7599 + }, + { + "start": 27413.45, + "end": 27415.75, + "probability": 0.9418 + }, + { + "start": 27415.95, + "end": 27417.63, + "probability": 0.9299 + }, + { + "start": 27417.63, + "end": 27419.05, + "probability": 0.8875 + }, + { + "start": 27419.25, + "end": 27421.13, + "probability": 0.9806 + }, + { + "start": 27422.01, + "end": 27429.67, + "probability": 0.9905 + }, + { + "start": 27430.67, + "end": 27433.81, + "probability": 0.9851 + }, + { + "start": 27434.27, + "end": 27436.85, + "probability": 0.9534 + }, + { + "start": 27437.37, + "end": 27437.57, + "probability": 0.9746 + }, + { + "start": 27438.77, + "end": 27439.31, + "probability": 0.481 + }, + { + "start": 27440.09, + "end": 27441.49, + "probability": 0.6095 + }, + { + "start": 27441.85, + "end": 27445.01, + "probability": 0.9699 + }, + { + "start": 27445.05, + "end": 27447.46, + "probability": 0.9977 + }, + { + "start": 27448.19, + "end": 27450.85, + "probability": 0.9373 + }, + { + "start": 27451.83, + "end": 27455.83, + "probability": 0.9005 + }, + { + "start": 27456.47, + "end": 27459.13, + "probability": 0.9665 + }, + { + "start": 27459.29, + "end": 27460.67, + "probability": 0.9968 + }, + { + "start": 27461.15, + "end": 27464.43, + "probability": 0.9785 + }, + { + "start": 27465.41, + "end": 27469.61, + "probability": 0.9076 + }, + { + "start": 27469.89, + "end": 27471.45, + "probability": 0.9373 + }, + { + "start": 27472.29, + "end": 27473.06, + "probability": 0.6842 + }, + { + "start": 27473.79, + "end": 27475.83, + "probability": 0.7407 + }, + { + "start": 27476.03, + "end": 27478.07, + "probability": 0.8642 + }, + { + "start": 27478.61, + "end": 27481.63, + "probability": 0.9595 + }, + { + "start": 27482.39, + "end": 27484.31, + "probability": 0.8884 + }, + { + "start": 27484.47, + "end": 27485.97, + "probability": 0.9242 + }, + { + "start": 27486.39, + "end": 27488.79, + "probability": 0.9807 + }, + { + "start": 27489.71, + "end": 27492.35, + "probability": 0.9478 + }, + { + "start": 27492.99, + "end": 27496.93, + "probability": 0.8031 + }, + { + "start": 27497.49, + "end": 27500.15, + "probability": 0.991 + }, + { + "start": 27500.15, + "end": 27502.05, + "probability": 0.995 + }, + { + "start": 27502.91, + "end": 27503.77, + "probability": 0.9904 + }, + { + "start": 27504.39, + "end": 27506.39, + "probability": 0.92 + }, + { + "start": 27507.03, + "end": 27507.95, + "probability": 0.7486 + }, + { + "start": 27508.07, + "end": 27510.45, + "probability": 0.984 + }, + { + "start": 27510.53, + "end": 27511.65, + "probability": 0.8131 + }, + { + "start": 27511.71, + "end": 27513.53, + "probability": 0.8548 + }, + { + "start": 27514.17, + "end": 27514.67, + "probability": 0.8132 + }, + { + "start": 27514.77, + "end": 27516.99, + "probability": 0.9418 + }, + { + "start": 27516.99, + "end": 27519.65, + "probability": 0.9969 + }, + { + "start": 27521.01, + "end": 27522.89, + "probability": 0.9871 + }, + { + "start": 27523.37, + "end": 27523.85, + "probability": 0.8532 + }, + { + "start": 27525.05, + "end": 27526.19, + "probability": 0.688 + }, + { + "start": 27526.35, + "end": 27528.61, + "probability": 0.9945 + }, + { + "start": 27529.57, + "end": 27533.69, + "probability": 0.9899 + }, + { + "start": 27533.89, + "end": 27534.09, + "probability": 0.8557 + }, + { + "start": 27534.99, + "end": 27535.49, + "probability": 0.8933 + }, + { + "start": 27536.23, + "end": 27538.65, + "probability": 0.9279 + }, + { + "start": 27539.23, + "end": 27540.79, + "probability": 0.994 + }, + { + "start": 27540.91, + "end": 27543.65, + "probability": 0.9717 + }, + { + "start": 27544.29, + "end": 27547.41, + "probability": 0.9542 + }, + { + "start": 27547.41, + "end": 27549.55, + "probability": 0.7527 + }, + { + "start": 27550.79, + "end": 27553.17, + "probability": 0.8545 + }, + { + "start": 27553.17, + "end": 27556.41, + "probability": 0.9622 + }, + { + "start": 27557.15, + "end": 27560.99, + "probability": 0.9923 + }, + { + "start": 27561.41, + "end": 27564.41, + "probability": 0.9226 + }, + { + "start": 27564.41, + "end": 27566.71, + "probability": 0.9712 + }, + { + "start": 27569.93, + "end": 27570.35, + "probability": 0.6545 + }, + { + "start": 27570.45, + "end": 27571.5, + "probability": 0.7309 + }, + { + "start": 27571.73, + "end": 27572.39, + "probability": 0.8746 + }, + { + "start": 27572.49, + "end": 27573.67, + "probability": 0.6505 + }, + { + "start": 27574.09, + "end": 27574.59, + "probability": 0.9534 + }, + { + "start": 27576.57, + "end": 27577.31, + "probability": 0.5989 + }, + { + "start": 27578.23, + "end": 27578.47, + "probability": 0.6279 + }, + { + "start": 27578.47, + "end": 27580.23, + "probability": 0.862 + }, + { + "start": 27580.35, + "end": 27580.65, + "probability": 0.7165 + }, + { + "start": 27581.33, + "end": 27581.69, + "probability": 0.8985 + }, + { + "start": 27582.17, + "end": 27583.0, + "probability": 0.8047 + }, + { + "start": 27583.61, + "end": 27584.86, + "probability": 0.6767 + }, + { + "start": 27585.71, + "end": 27588.43, + "probability": 0.9541 + }, + { + "start": 27588.59, + "end": 27590.27, + "probability": 0.8947 + }, + { + "start": 27596.51, + "end": 27597.93, + "probability": 0.5217 + }, + { + "start": 27597.97, + "end": 27600.33, + "probability": 0.9346 + }, + { + "start": 27618.85, + "end": 27618.85, + "probability": 0.1984 + }, + { + "start": 27618.85, + "end": 27618.85, + "probability": 0.1093 + }, + { + "start": 27618.85, + "end": 27620.65, + "probability": 0.6341 + }, + { + "start": 27620.73, + "end": 27623.61, + "probability": 0.9526 + }, + { + "start": 27624.15, + "end": 27626.19, + "probability": 0.2518 + }, + { + "start": 27626.29, + "end": 27626.33, + "probability": 0.067 + }, + { + "start": 27626.33, + "end": 27626.43, + "probability": 0.2269 + }, + { + "start": 27627.09, + "end": 27627.77, + "probability": 0.9763 + }, + { + "start": 27628.71, + "end": 27629.37, + "probability": 0.807 + }, + { + "start": 27629.63, + "end": 27631.21, + "probability": 0.9214 + }, + { + "start": 27631.95, + "end": 27635.55, + "probability": 0.8563 + }, + { + "start": 27635.91, + "end": 27638.91, + "probability": 0.9894 + }, + { + "start": 27639.55, + "end": 27642.95, + "probability": 0.4947 + }, + { + "start": 27643.55, + "end": 27644.39, + "probability": 0.5677 + }, + { + "start": 27644.39, + "end": 27645.47, + "probability": 0.7175 + }, + { + "start": 27646.71, + "end": 27647.01, + "probability": 0.5672 + }, + { + "start": 27647.23, + "end": 27648.71, + "probability": 0.8068 + }, + { + "start": 27650.95, + "end": 27652.09, + "probability": 0.7176 + }, + { + "start": 27671.97, + "end": 27674.05, + "probability": 0.6706 + }, + { + "start": 27674.67, + "end": 27677.04, + "probability": 0.9036 + }, + { + "start": 27678.79, + "end": 27681.21, + "probability": 0.9935 + }, + { + "start": 27681.45, + "end": 27682.79, + "probability": 0.9424 + }, + { + "start": 27682.89, + "end": 27686.53, + "probability": 0.9863 + }, + { + "start": 27686.59, + "end": 27693.27, + "probability": 0.9952 + }, + { + "start": 27694.41, + "end": 27701.77, + "probability": 0.9913 + }, + { + "start": 27702.03, + "end": 27703.03, + "probability": 0.1176 + }, + { + "start": 27703.11, + "end": 27704.37, + "probability": 0.8291 + }, + { + "start": 27704.47, + "end": 27709.01, + "probability": 0.9039 + }, + { + "start": 27709.05, + "end": 27709.97, + "probability": 0.8442 + }, + { + "start": 27710.39, + "end": 27711.87, + "probability": 0.9572 + }, + { + "start": 27711.97, + "end": 27713.5, + "probability": 0.825 + }, + { + "start": 27714.73, + "end": 27717.81, + "probability": 0.8114 + }, + { + "start": 27718.57, + "end": 27720.81, + "probability": 0.9871 + }, + { + "start": 27720.99, + "end": 27723.59, + "probability": 0.9077 + }, + { + "start": 27724.37, + "end": 27726.93, + "probability": 0.9625 + }, + { + "start": 27727.05, + "end": 27728.85, + "probability": 0.9897 + }, + { + "start": 27729.87, + "end": 27732.57, + "probability": 0.6454 + }, + { + "start": 27733.35, + "end": 27736.87, + "probability": 0.667 + }, + { + "start": 27738.11, + "end": 27742.21, + "probability": 0.7948 + }, + { + "start": 27743.09, + "end": 27745.35, + "probability": 0.7088 + }, + { + "start": 27747.99, + "end": 27748.45, + "probability": 0.9602 + }, + { + "start": 27748.83, + "end": 27752.89, + "probability": 0.9453 + }, + { + "start": 27752.89, + "end": 27757.51, + "probability": 0.868 + }, + { + "start": 27758.05, + "end": 27761.17, + "probability": 0.9572 + }, + { + "start": 27761.97, + "end": 27764.81, + "probability": 0.8845 + }, + { + "start": 27764.95, + "end": 27765.81, + "probability": 0.4117 + }, + { + "start": 27765.89, + "end": 27767.89, + "probability": 0.9897 + }, + { + "start": 27768.01, + "end": 27768.91, + "probability": 0.4521 + }, + { + "start": 27769.69, + "end": 27770.25, + "probability": 0.7598 + }, + { + "start": 27770.87, + "end": 27777.95, + "probability": 0.9899 + }, + { + "start": 27778.53, + "end": 27780.99, + "probability": 0.8093 + }, + { + "start": 27781.87, + "end": 27784.05, + "probability": 0.6095 + }, + { + "start": 27784.57, + "end": 27786.02, + "probability": 0.8746 + }, + { + "start": 27786.19, + "end": 27792.37, + "probability": 0.9451 + }, + { + "start": 27792.51, + "end": 27795.01, + "probability": 0.9692 + }, + { + "start": 27795.59, + "end": 27797.68, + "probability": 0.6104 + }, + { + "start": 27798.55, + "end": 27801.19, + "probability": 0.797 + }, + { + "start": 27801.25, + "end": 27803.81, + "probability": 0.9518 + }, + { + "start": 27803.93, + "end": 27804.21, + "probability": 0.8516 + }, + { + "start": 27804.77, + "end": 27809.05, + "probability": 0.8074 + }, + { + "start": 27809.17, + "end": 27813.53, + "probability": 0.9724 + }, + { + "start": 27814.47, + "end": 27816.11, + "probability": 0.9921 + }, + { + "start": 27816.83, + "end": 27818.12, + "probability": 0.8361 + }, + { + "start": 27818.69, + "end": 27819.99, + "probability": 0.9879 + }, + { + "start": 27820.77, + "end": 27822.09, + "probability": 0.9417 + }, + { + "start": 27822.45, + "end": 27826.31, + "probability": 0.5926 + }, + { + "start": 27826.47, + "end": 27827.55, + "probability": 0.978 + }, + { + "start": 27827.65, + "end": 27828.27, + "probability": 0.942 + }, + { + "start": 27828.31, + "end": 27829.59, + "probability": 0.5045 + }, + { + "start": 27830.21, + "end": 27835.81, + "probability": 0.9917 + }, + { + "start": 27837.09, + "end": 27837.95, + "probability": 0.5093 + }, + { + "start": 27838.11, + "end": 27839.23, + "probability": 0.9951 + }, + { + "start": 27839.33, + "end": 27841.23, + "probability": 0.8129 + }, + { + "start": 27842.11, + "end": 27848.25, + "probability": 0.9107 + }, + { + "start": 27848.25, + "end": 27851.13, + "probability": 0.9972 + }, + { + "start": 27852.55, + "end": 27857.85, + "probability": 0.9891 + }, + { + "start": 27857.85, + "end": 27861.71, + "probability": 0.9597 + }, + { + "start": 27862.05, + "end": 27864.42, + "probability": 0.7977 + }, + { + "start": 27866.53, + "end": 27868.03, + "probability": 0.9941 + }, + { + "start": 27868.91, + "end": 27872.59, + "probability": 0.9847 + }, + { + "start": 27872.73, + "end": 27876.75, + "probability": 0.9049 + }, + { + "start": 27877.51, + "end": 27879.83, + "probability": 0.6879 + }, + { + "start": 27879.95, + "end": 27880.15, + "probability": 0.7625 + }, + { + "start": 27880.23, + "end": 27883.15, + "probability": 0.9668 + }, + { + "start": 27883.27, + "end": 27885.79, + "probability": 0.9618 + }, + { + "start": 27887.6, + "end": 27890.07, + "probability": 0.9967 + }, + { + "start": 27890.19, + "end": 27891.79, + "probability": 0.9797 + }, + { + "start": 27892.53, + "end": 27893.32, + "probability": 0.9088 + }, + { + "start": 27893.69, + "end": 27894.87, + "probability": 0.8096 + }, + { + "start": 27895.01, + "end": 27897.33, + "probability": 0.9606 + }, + { + "start": 27898.17, + "end": 27901.51, + "probability": 0.7966 + }, + { + "start": 27901.59, + "end": 27902.23, + "probability": 0.8057 + }, + { + "start": 27902.33, + "end": 27903.37, + "probability": 0.4085 + }, + { + "start": 27903.51, + "end": 27904.11, + "probability": 0.7653 + }, + { + "start": 27904.63, + "end": 27908.01, + "probability": 0.9589 + }, + { + "start": 27908.61, + "end": 27912.91, + "probability": 0.9168 + }, + { + "start": 27913.43, + "end": 27915.65, + "probability": 0.9591 + }, + { + "start": 27916.05, + "end": 27924.75, + "probability": 0.9796 + }, + { + "start": 27925.47, + "end": 27929.87, + "probability": 0.8528 + }, + { + "start": 27930.47, + "end": 27931.25, + "probability": 0.9973 + }, + { + "start": 27931.37, + "end": 27935.99, + "probability": 0.98 + }, + { + "start": 27936.99, + "end": 27937.41, + "probability": 0.4968 + }, + { + "start": 27937.51, + "end": 27942.17, + "probability": 0.9939 + }, + { + "start": 27943.39, + "end": 27948.07, + "probability": 0.9364 + }, + { + "start": 27948.41, + "end": 27948.87, + "probability": 0.513 + }, + { + "start": 27949.35, + "end": 27949.93, + "probability": 0.9414 + }, + { + "start": 27951.31, + "end": 27954.47, + "probability": 0.8705 + }, + { + "start": 27954.71, + "end": 27956.89, + "probability": 0.7529 + }, + { + "start": 27957.03, + "end": 27958.31, + "probability": 0.8528 + }, + { + "start": 27959.19, + "end": 27961.15, + "probability": 0.9887 + }, + { + "start": 27961.89, + "end": 27966.89, + "probability": 0.9949 + }, + { + "start": 27967.53, + "end": 27970.33, + "probability": 0.7345 + }, + { + "start": 27970.41, + "end": 27973.45, + "probability": 0.8341 + }, + { + "start": 27974.15, + "end": 27976.27, + "probability": 0.7356 + }, + { + "start": 27977.01, + "end": 27978.89, + "probability": 0.9322 + }, + { + "start": 27979.59, + "end": 27981.45, + "probability": 0.7417 + }, + { + "start": 27981.83, + "end": 27983.59, + "probability": 0.9606 + }, + { + "start": 27983.59, + "end": 27986.11, + "probability": 0.9787 + }, + { + "start": 27987.41, + "end": 27989.93, + "probability": 0.9954 + }, + { + "start": 27989.93, + "end": 27992.89, + "probability": 0.9945 + }, + { + "start": 27992.99, + "end": 27995.21, + "probability": 0.9564 + }, + { + "start": 27996.21, + "end": 27999.27, + "probability": 0.9843 + }, + { + "start": 27999.85, + "end": 28003.77, + "probability": 0.7548 + }, + { + "start": 28005.41, + "end": 28006.67, + "probability": 0.9634 + }, + { + "start": 28007.23, + "end": 28009.81, + "probability": 0.9655 + }, + { + "start": 28010.04, + "end": 28013.63, + "probability": 0.9053 + }, + { + "start": 28014.07, + "end": 28017.45, + "probability": 0.9942 + }, + { + "start": 28017.63, + "end": 28019.23, + "probability": 0.9958 + }, + { + "start": 28019.59, + "end": 28023.65, + "probability": 0.9565 + }, + { + "start": 28024.33, + "end": 28026.73, + "probability": 0.8666 + }, + { + "start": 28026.81, + "end": 28027.29, + "probability": 0.8718 + }, + { + "start": 28027.43, + "end": 28030.25, + "probability": 0.9028 + }, + { + "start": 28030.71, + "end": 28033.35, + "probability": 0.9343 + }, + { + "start": 28034.17, + "end": 28037.99, + "probability": 0.9854 + }, + { + "start": 28038.45, + "end": 28040.19, + "probability": 0.9663 + }, + { + "start": 28040.49, + "end": 28044.01, + "probability": 0.9201 + }, + { + "start": 28044.31, + "end": 28045.59, + "probability": 0.8153 + }, + { + "start": 28049.09, + "end": 28050.65, + "probability": 0.7891 + }, + { + "start": 28050.79, + "end": 28051.15, + "probability": 0.2966 + }, + { + "start": 28051.61, + "end": 28057.43, + "probability": 0.7933 + }, + { + "start": 28057.43, + "end": 28062.07, + "probability": 0.9803 + }, + { + "start": 28062.15, + "end": 28064.59, + "probability": 0.8561 + }, + { + "start": 28065.35, + "end": 28069.65, + "probability": 0.707 + }, + { + "start": 28070.35, + "end": 28072.29, + "probability": 0.9388 + }, + { + "start": 28073.33, + "end": 28075.75, + "probability": 0.853 + }, + { + "start": 28076.15, + "end": 28078.33, + "probability": 0.9121 + }, + { + "start": 28078.95, + "end": 28080.23, + "probability": 0.8706 + }, + { + "start": 28080.81, + "end": 28084.91, + "probability": 0.864 + }, + { + "start": 28085.31, + "end": 28088.97, + "probability": 0.9629 + }, + { + "start": 28088.97, + "end": 28091.73, + "probability": 0.9932 + }, + { + "start": 28092.51, + "end": 28094.19, + "probability": 0.979 + }, + { + "start": 28095.41, + "end": 28096.89, + "probability": 0.9402 + }, + { + "start": 28097.69, + "end": 28101.21, + "probability": 0.8872 + }, + { + "start": 28102.15, + "end": 28109.39, + "probability": 0.9826 + }, + { + "start": 28109.45, + "end": 28110.57, + "probability": 0.9293 + }, + { + "start": 28111.27, + "end": 28112.57, + "probability": 0.9778 + }, + { + "start": 28112.85, + "end": 28116.57, + "probability": 0.9456 + }, + { + "start": 28116.71, + "end": 28118.05, + "probability": 0.8467 + }, + { + "start": 28118.99, + "end": 28122.67, + "probability": 0.9751 + }, + { + "start": 28123.27, + "end": 28123.45, + "probability": 0.6808 + }, + { + "start": 28123.57, + "end": 28125.72, + "probability": 0.9666 + }, + { + "start": 28126.29, + "end": 28128.47, + "probability": 0.9899 + }, + { + "start": 28129.91, + "end": 28130.73, + "probability": 0.934 + }, + { + "start": 28131.71, + "end": 28132.49, + "probability": 0.5837 + }, + { + "start": 28132.93, + "end": 28137.85, + "probability": 0.9751 + }, + { + "start": 28138.67, + "end": 28140.31, + "probability": 0.8662 + }, + { + "start": 28141.09, + "end": 28143.29, + "probability": 0.976 + }, + { + "start": 28143.47, + "end": 28146.43, + "probability": 0.9991 + }, + { + "start": 28146.89, + "end": 28148.27, + "probability": 0.9549 + }, + { + "start": 28149.07, + "end": 28151.85, + "probability": 0.9365 + }, + { + "start": 28151.85, + "end": 28154.11, + "probability": 0.9786 + }, + { + "start": 28154.67, + "end": 28155.75, + "probability": 0.9232 + }, + { + "start": 28155.91, + "end": 28157.01, + "probability": 0.7445 + }, + { + "start": 28157.05, + "end": 28162.55, + "probability": 0.9496 + }, + { + "start": 28162.55, + "end": 28164.99, + "probability": 0.9884 + }, + { + "start": 28165.17, + "end": 28167.37, + "probability": 0.9741 + }, + { + "start": 28167.65, + "end": 28168.93, + "probability": 0.9941 + }, + { + "start": 28169.23, + "end": 28169.55, + "probability": 0.3695 + }, + { + "start": 28169.59, + "end": 28170.07, + "probability": 0.8608 + }, + { + "start": 28170.37, + "end": 28172.91, + "probability": 0.855 + }, + { + "start": 28173.93, + "end": 28174.93, + "probability": 0.0695 + }, + { + "start": 28175.03, + "end": 28176.41, + "probability": 0.8537 + }, + { + "start": 28176.87, + "end": 28178.01, + "probability": 0.8779 + }, + { + "start": 28178.11, + "end": 28179.27, + "probability": 0.9043 + }, + { + "start": 28179.33, + "end": 28179.53, + "probability": 0.2561 + }, + { + "start": 28179.67, + "end": 28181.41, + "probability": 0.7572 + }, + { + "start": 28181.93, + "end": 28183.69, + "probability": 0.9945 + }, + { + "start": 28184.15, + "end": 28185.27, + "probability": 0.6924 + }, + { + "start": 28185.53, + "end": 28189.69, + "probability": 0.9328 + }, + { + "start": 28189.77, + "end": 28190.41, + "probability": 0.9684 + }, + { + "start": 28191.13, + "end": 28194.91, + "probability": 0.9984 + }, + { + "start": 28195.33, + "end": 28198.59, + "probability": 0.9675 + }, + { + "start": 28199.25, + "end": 28202.43, + "probability": 0.9502 + }, + { + "start": 28202.97, + "end": 28206.47, + "probability": 0.8491 + }, + { + "start": 28206.59, + "end": 28208.67, + "probability": 0.9607 + }, + { + "start": 28209.33, + "end": 28211.31, + "probability": 0.8746 + }, + { + "start": 28211.41, + "end": 28214.29, + "probability": 0.8737 + }, + { + "start": 28214.99, + "end": 28219.59, + "probability": 0.8524 + }, + { + "start": 28219.67, + "end": 28223.21, + "probability": 0.9871 + }, + { + "start": 28223.45, + "end": 28224.61, + "probability": 0.9445 + }, + { + "start": 28225.11, + "end": 28228.67, + "probability": 0.9215 + }, + { + "start": 28228.99, + "end": 28232.43, + "probability": 0.9697 + }, + { + "start": 28232.43, + "end": 28235.17, + "probability": 0.9805 + }, + { + "start": 28235.61, + "end": 28238.56, + "probability": 0.8389 + }, + { + "start": 28238.77, + "end": 28242.89, + "probability": 0.9396 + }, + { + "start": 28243.21, + "end": 28246.09, + "probability": 0.9658 + }, + { + "start": 28246.33, + "end": 28250.05, + "probability": 0.9751 + }, + { + "start": 28250.43, + "end": 28252.01, + "probability": 0.8583 + }, + { + "start": 28252.09, + "end": 28253.98, + "probability": 0.9648 + }, + { + "start": 28254.61, + "end": 28255.63, + "probability": 0.7648 + }, + { + "start": 28255.71, + "end": 28256.75, + "probability": 0.933 + }, + { + "start": 28257.11, + "end": 28258.25, + "probability": 0.9342 + }, + { + "start": 28258.57, + "end": 28261.11, + "probability": 0.9695 + }, + { + "start": 28261.33, + "end": 28263.73, + "probability": 0.9925 + }, + { + "start": 28264.19, + "end": 28267.49, + "probability": 0.9367 + }, + { + "start": 28267.87, + "end": 28270.01, + "probability": 0.9692 + }, + { + "start": 28270.49, + "end": 28273.77, + "probability": 0.8354 + }, + { + "start": 28273.91, + "end": 28273.91, + "probability": 0.2088 + }, + { + "start": 28273.91, + "end": 28274.57, + "probability": 0.5022 + }, + { + "start": 28275.05, + "end": 28279.07, + "probability": 0.812 + }, + { + "start": 28279.65, + "end": 28281.69, + "probability": 0.9956 + }, + { + "start": 28281.99, + "end": 28282.99, + "probability": 0.8837 + }, + { + "start": 28283.67, + "end": 28286.09, + "probability": 0.9327 + }, + { + "start": 28286.55, + "end": 28290.41, + "probability": 0.9384 + }, + { + "start": 28290.81, + "end": 28294.35, + "probability": 0.9943 + }, + { + "start": 28294.91, + "end": 28297.99, + "probability": 0.9814 + }, + { + "start": 28298.11, + "end": 28300.79, + "probability": 0.9561 + }, + { + "start": 28300.79, + "end": 28304.37, + "probability": 0.9692 + }, + { + "start": 28304.59, + "end": 28304.77, + "probability": 0.6645 + }, + { + "start": 28306.05, + "end": 28308.19, + "probability": 0.8235 + }, + { + "start": 28308.47, + "end": 28310.71, + "probability": 0.6903 + }, + { + "start": 28310.73, + "end": 28311.51, + "probability": 0.5939 + }, + { + "start": 28312.23, + "end": 28313.61, + "probability": 0.8309 + }, + { + "start": 28315.75, + "end": 28316.41, + "probability": 0.6579 + }, + { + "start": 28318.31, + "end": 28321.57, + "probability": 0.9789 + }, + { + "start": 28321.95, + "end": 28322.05, + "probability": 0.4892 + }, + { + "start": 28322.57, + "end": 28323.75, + "probability": 0.999 + }, + { + "start": 28324.61, + "end": 28326.15, + "probability": 0.8733 + }, + { + "start": 28326.31, + "end": 28326.87, + "probability": 0.4651 + }, + { + "start": 28328.07, + "end": 28330.87, + "probability": 0.6121 + }, + { + "start": 28330.87, + "end": 28330.87, + "probability": 0.2067 + }, + { + "start": 28330.87, + "end": 28332.23, + "probability": 0.8216 + }, + { + "start": 28332.61, + "end": 28334.53, + "probability": 0.6626 + }, + { + "start": 28335.37, + "end": 28336.31, + "probability": 0.1503 + }, + { + "start": 28336.45, + "end": 28341.09, + "probability": 0.8927 + }, + { + "start": 28342.03, + "end": 28343.23, + "probability": 0.5937 + }, + { + "start": 28343.53, + "end": 28346.15, + "probability": 0.7447 + }, + { + "start": 28347.49, + "end": 28348.51, + "probability": 0.8548 + }, + { + "start": 28349.03, + "end": 28349.45, + "probability": 0.2542 + }, + { + "start": 28350.15, + "end": 28355.61, + "probability": 0.9252 + }, + { + "start": 28356.57, + "end": 28357.97, + "probability": 0.7672 + }, + { + "start": 28359.01, + "end": 28360.01, + "probability": 0.8002 + }, + { + "start": 28360.65, + "end": 28365.58, + "probability": 0.8292 + }, + { + "start": 28366.11, + "end": 28367.43, + "probability": 0.7208 + }, + { + "start": 28368.31, + "end": 28375.07, + "probability": 0.9363 + }, + { + "start": 28377.49, + "end": 28380.73, + "probability": 0.9836 + }, + { + "start": 28380.99, + "end": 28382.87, + "probability": 0.8698 + }, + { + "start": 28383.31, + "end": 28386.71, + "probability": 0.9914 + }, + { + "start": 28387.81, + "end": 28388.97, + "probability": 0.764 + }, + { + "start": 28389.83, + "end": 28391.15, + "probability": 0.9148 + }, + { + "start": 28392.43, + "end": 28394.57, + "probability": 0.8953 + }, + { + "start": 28395.05, + "end": 28401.11, + "probability": 0.9102 + }, + { + "start": 28401.49, + "end": 28402.55, + "probability": 0.7699 + }, + { + "start": 28403.41, + "end": 28406.55, + "probability": 0.957 + }, + { + "start": 28407.01, + "end": 28409.75, + "probability": 0.8394 + }, + { + "start": 28410.35, + "end": 28415.25, + "probability": 0.7517 + }, + { + "start": 28416.01, + "end": 28419.75, + "probability": 0.8335 + }, + { + "start": 28420.57, + "end": 28427.27, + "probability": 0.9922 + }, + { + "start": 28427.81, + "end": 28428.83, + "probability": 0.8547 + }, + { + "start": 28430.29, + "end": 28431.87, + "probability": 0.4952 + }, + { + "start": 28432.39, + "end": 28433.29, + "probability": 0.5259 + }, + { + "start": 28433.85, + "end": 28436.57, + "probability": 0.9199 + }, + { + "start": 28436.75, + "end": 28437.89, + "probability": 0.5451 + }, + { + "start": 28437.97, + "end": 28438.67, + "probability": 0.854 + }, + { + "start": 28438.93, + "end": 28439.27, + "probability": 0.7664 + }, + { + "start": 28439.27, + "end": 28440.71, + "probability": 0.644 + }, + { + "start": 28440.73, + "end": 28441.79, + "probability": 0.828 + }, + { + "start": 28442.25, + "end": 28444.15, + "probability": 0.9951 + }, + { + "start": 28444.79, + "end": 28444.91, + "probability": 0.1579 + }, + { + "start": 28444.91, + "end": 28445.97, + "probability": 0.0603 + }, + { + "start": 28446.19, + "end": 28446.61, + "probability": 0.7548 + }, + { + "start": 28447.55, + "end": 28451.67, + "probability": 0.5178 + }, + { + "start": 28451.67, + "end": 28453.83, + "probability": 0.682 + }, + { + "start": 28454.05, + "end": 28455.61, + "probability": 0.5943 + }, + { + "start": 28455.73, + "end": 28455.97, + "probability": 0.9332 + }, + { + "start": 28456.07, + "end": 28461.51, + "probability": 0.9518 + }, + { + "start": 28462.01, + "end": 28465.23, + "probability": 0.8007 + }, + { + "start": 28465.85, + "end": 28467.47, + "probability": 0.8656 + }, + { + "start": 28467.53, + "end": 28468.17, + "probability": 0.8394 + }, + { + "start": 28468.51, + "end": 28474.39, + "probability": 0.9491 + }, + { + "start": 28474.97, + "end": 28476.77, + "probability": 0.5989 + }, + { + "start": 28476.77, + "end": 28477.89, + "probability": 0.9829 + }, + { + "start": 28479.73, + "end": 28484.19, + "probability": 0.9847 + }, + { + "start": 28484.19, + "end": 28487.33, + "probability": 0.9945 + }, + { + "start": 28487.83, + "end": 28490.23, + "probability": 0.7414 + }, + { + "start": 28490.77, + "end": 28491.65, + "probability": 0.1377 + }, + { + "start": 28492.09, + "end": 28492.86, + "probability": 0.5489 + }, + { + "start": 28493.93, + "end": 28497.99, + "probability": 0.9275 + }, + { + "start": 28498.41, + "end": 28501.99, + "probability": 0.9837 + }, + { + "start": 28502.51, + "end": 28503.87, + "probability": 0.8778 + }, + { + "start": 28504.65, + "end": 28505.45, + "probability": 0.7544 + }, + { + "start": 28505.53, + "end": 28508.93, + "probability": 0.8757 + }, + { + "start": 28509.97, + "end": 28514.45, + "probability": 0.8851 + }, + { + "start": 28515.01, + "end": 28515.71, + "probability": 0.9202 + }, + { + "start": 28516.37, + "end": 28519.27, + "probability": 0.6626 + }, + { + "start": 28519.71, + "end": 28522.75, + "probability": 0.9947 + }, + { + "start": 28522.75, + "end": 28528.61, + "probability": 0.9963 + }, + { + "start": 28529.31, + "end": 28531.37, + "probability": 0.648 + }, + { + "start": 28531.83, + "end": 28538.07, + "probability": 0.947 + }, + { + "start": 28538.45, + "end": 28538.99, + "probability": 0.7053 + }, + { + "start": 28539.11, + "end": 28542.31, + "probability": 0.8277 + }, + { + "start": 28542.83, + "end": 28546.09, + "probability": 0.8911 + }, + { + "start": 28546.83, + "end": 28548.17, + "probability": 0.9035 + }, + { + "start": 28548.27, + "end": 28550.75, + "probability": 0.9451 + }, + { + "start": 28551.53, + "end": 28554.33, + "probability": 0.9745 + }, + { + "start": 28554.67, + "end": 28555.65, + "probability": 0.93 + }, + { + "start": 28556.83, + "end": 28559.09, + "probability": 0.925 + }, + { + "start": 28559.89, + "end": 28566.19, + "probability": 0.9972 + }, + { + "start": 28566.19, + "end": 28571.85, + "probability": 0.9965 + }, + { + "start": 28571.99, + "end": 28573.98, + "probability": 0.833 + }, + { + "start": 28575.17, + "end": 28576.43, + "probability": 0.8618 + }, + { + "start": 28576.59, + "end": 28577.59, + "probability": 0.749 + }, + { + "start": 28578.03, + "end": 28579.07, + "probability": 0.837 + }, + { + "start": 28579.49, + "end": 28580.51, + "probability": 0.9629 + }, + { + "start": 28580.99, + "end": 28582.17, + "probability": 0.9709 + }, + { + "start": 28582.21, + "end": 28583.37, + "probability": 0.9189 + }, + { + "start": 28583.97, + "end": 28592.47, + "probability": 0.984 + }, + { + "start": 28592.93, + "end": 28595.28, + "probability": 0.9762 + }, + { + "start": 28596.57, + "end": 28596.64, + "probability": 0.1263 + }, + { + "start": 28597.19, + "end": 28597.8, + "probability": 0.5406 + }, + { + "start": 28598.73, + "end": 28599.87, + "probability": 0.9443 + }, + { + "start": 28600.43, + "end": 28605.95, + "probability": 0.8999 + }, + { + "start": 28606.11, + "end": 28606.57, + "probability": 0.7823 + }, + { + "start": 28606.83, + "end": 28610.91, + "probability": 0.9456 + }, + { + "start": 28611.05, + "end": 28612.87, + "probability": 0.7326 + }, + { + "start": 28613.29, + "end": 28618.67, + "probability": 0.9514 + }, + { + "start": 28618.75, + "end": 28619.39, + "probability": 0.8204 + }, + { + "start": 28619.81, + "end": 28621.95, + "probability": 0.8731 + }, + { + "start": 28622.39, + "end": 28624.75, + "probability": 0.9729 + }, + { + "start": 28625.67, + "end": 28626.51, + "probability": 0.7614 + }, + { + "start": 28626.71, + "end": 28630.47, + "probability": 0.9803 + }, + { + "start": 28630.73, + "end": 28634.61, + "probability": 0.9492 + }, + { + "start": 28635.21, + "end": 28636.05, + "probability": 0.3357 + }, + { + "start": 28636.63, + "end": 28637.81, + "probability": 0.7605 + }, + { + "start": 28637.81, + "end": 28638.13, + "probability": 0.3223 + }, + { + "start": 28638.21, + "end": 28639.27, + "probability": 0.9792 + }, + { + "start": 28639.51, + "end": 28642.19, + "probability": 0.9935 + }, + { + "start": 28642.53, + "end": 28645.19, + "probability": 0.9777 + }, + { + "start": 28645.75, + "end": 28648.61, + "probability": 0.8922 + }, + { + "start": 28648.73, + "end": 28649.44, + "probability": 0.8459 + }, + { + "start": 28649.91, + "end": 28654.59, + "probability": 0.9945 + }, + { + "start": 28654.59, + "end": 28659.71, + "probability": 0.8789 + }, + { + "start": 28660.05, + "end": 28661.33, + "probability": 0.7015 + }, + { + "start": 28661.67, + "end": 28663.24, + "probability": 0.9248 + }, + { + "start": 28664.45, + "end": 28665.97, + "probability": 0.8922 + }, + { + "start": 28666.43, + "end": 28667.23, + "probability": 0.9536 + }, + { + "start": 28667.47, + "end": 28668.77, + "probability": 0.8669 + }, + { + "start": 28668.85, + "end": 28670.41, + "probability": 0.9719 + }, + { + "start": 28670.59, + "end": 28677.67, + "probability": 0.9203 + }, + { + "start": 28678.19, + "end": 28681.95, + "probability": 0.9804 + }, + { + "start": 28682.73, + "end": 28684.91, + "probability": 0.9296 + }, + { + "start": 28685.03, + "end": 28685.45, + "probability": 0.8521 + }, + { + "start": 28685.57, + "end": 28687.01, + "probability": 0.8406 + }, + { + "start": 28687.31, + "end": 28688.11, + "probability": 0.8581 + }, + { + "start": 28688.51, + "end": 28690.09, + "probability": 0.9752 + }, + { + "start": 28690.47, + "end": 28691.93, + "probability": 0.8971 + }, + { + "start": 28692.19, + "end": 28695.31, + "probability": 0.9958 + }, + { + "start": 28695.67, + "end": 28697.41, + "probability": 0.9106 + }, + { + "start": 28697.89, + "end": 28703.73, + "probability": 0.9788 + }, + { + "start": 28703.87, + "end": 28706.52, + "probability": 0.9724 + }, + { + "start": 28707.77, + "end": 28711.29, + "probability": 0.968 + }, + { + "start": 28711.73, + "end": 28713.39, + "probability": 0.865 + }, + { + "start": 28713.63, + "end": 28715.11, + "probability": 0.3541 + }, + { + "start": 28716.07, + "end": 28716.71, + "probability": 0.1124 + }, + { + "start": 28717.09, + "end": 28719.83, + "probability": 0.9717 + }, + { + "start": 28720.21, + "end": 28723.61, + "probability": 0.952 + }, + { + "start": 28723.97, + "end": 28726.07, + "probability": 0.9281 + }, + { + "start": 28727.0, + "end": 28731.69, + "probability": 0.9966 + }, + { + "start": 28732.03, + "end": 28735.11, + "probability": 0.8985 + }, + { + "start": 28735.39, + "end": 28736.89, + "probability": 0.9878 + }, + { + "start": 28737.11, + "end": 28737.69, + "probability": 0.8768 + }, + { + "start": 28738.25, + "end": 28746.37, + "probability": 0.9768 + }, + { + "start": 28746.85, + "end": 28749.17, + "probability": 0.8242 + }, + { + "start": 28749.49, + "end": 28750.05, + "probability": 0.3783 + }, + { + "start": 28750.81, + "end": 28752.57, + "probability": 0.8333 + }, + { + "start": 28752.83, + "end": 28754.53, + "probability": 0.8458 + }, + { + "start": 28754.91, + "end": 28755.77, + "probability": 0.8979 + }, + { + "start": 28757.03, + "end": 28757.19, + "probability": 0.4753 + }, + { + "start": 28757.19, + "end": 28758.05, + "probability": 0.8027 + }, + { + "start": 28758.73, + "end": 28759.21, + "probability": 0.4342 + }, + { + "start": 28760.39, + "end": 28762.99, + "probability": 0.3767 + }, + { + "start": 28763.37, + "end": 28764.81, + "probability": 0.1429 + }, + { + "start": 28765.23, + "end": 28768.13, + "probability": 0.6838 + }, + { + "start": 28768.33, + "end": 28769.55, + "probability": 0.2836 + }, + { + "start": 28769.55, + "end": 28771.19, + "probability": 0.6324 + }, + { + "start": 28771.55, + "end": 28771.85, + "probability": 0.382 + }, + { + "start": 28772.07, + "end": 28774.55, + "probability": 0.5682 + }, + { + "start": 28775.57, + "end": 28777.19, + "probability": 0.0924 + }, + { + "start": 28777.89, + "end": 28779.03, + "probability": 0.5407 + }, + { + "start": 28783.21, + "end": 28788.27, + "probability": 0.742 + }, + { + "start": 28790.67, + "end": 28792.57, + "probability": 0.9612 + }, + { + "start": 28794.35, + "end": 28796.59, + "probability": 0.9966 + }, + { + "start": 28797.33, + "end": 28798.13, + "probability": 0.8605 + }, + { + "start": 28798.21, + "end": 28798.39, + "probability": 0.5272 + }, + { + "start": 28798.43, + "end": 28799.05, + "probability": 0.5974 + }, + { + "start": 28799.05, + "end": 28800.32, + "probability": 0.9985 + }, + { + "start": 28803.88, + "end": 28808.11, + "probability": 0.8615 + }, + { + "start": 28808.61, + "end": 28810.31, + "probability": 0.8535 + }, + { + "start": 28811.63, + "end": 28812.17, + "probability": 0.9578 + }, + { + "start": 28812.21, + "end": 28813.69, + "probability": 0.9574 + }, + { + "start": 28813.77, + "end": 28815.33, + "probability": 0.5858 + }, + { + "start": 28815.33, + "end": 28815.97, + "probability": 0.7534 + }, + { + "start": 28816.03, + "end": 28817.59, + "probability": 0.9341 + }, + { + "start": 28818.49, + "end": 28819.85, + "probability": 0.7215 + }, + { + "start": 28820.37, + "end": 28820.99, + "probability": 0.4165 + }, + { + "start": 28820.99, + "end": 28822.73, + "probability": 0.6852 + }, + { + "start": 28822.81, + "end": 28824.95, + "probability": 0.9331 + }, + { + "start": 28825.11, + "end": 28826.21, + "probability": 0.7126 + }, + { + "start": 28827.54, + "end": 28829.03, + "probability": 0.6607 + }, + { + "start": 28829.17, + "end": 28829.79, + "probability": 0.56 + }, + { + "start": 28829.81, + "end": 28830.45, + "probability": 0.5588 + }, + { + "start": 28830.53, + "end": 28834.09, + "probability": 0.6234 + }, + { + "start": 28834.17, + "end": 28834.61, + "probability": 0.3454 + }, + { + "start": 28834.61, + "end": 28837.45, + "probability": 0.8939 + }, + { + "start": 28838.09, + "end": 28839.79, + "probability": 0.9819 + }, + { + "start": 28840.13, + "end": 28845.85, + "probability": 0.9451 + }, + { + "start": 28845.89, + "end": 28847.91, + "probability": 0.7649 + }, + { + "start": 28848.05, + "end": 28849.03, + "probability": 0.9209 + }, + { + "start": 28849.33, + "end": 28852.85, + "probability": 0.9865 + }, + { + "start": 28853.23, + "end": 28856.01, + "probability": 0.7526 + }, + { + "start": 28856.37, + "end": 28857.75, + "probability": 0.9917 + }, + { + "start": 28858.21, + "end": 28863.51, + "probability": 0.9154 + }, + { + "start": 28863.89, + "end": 28868.03, + "probability": 0.9863 + }, + { + "start": 28868.45, + "end": 28869.59, + "probability": 0.9902 + }, + { + "start": 28869.71, + "end": 28870.89, + "probability": 0.9971 + }, + { + "start": 28872.63, + "end": 28876.35, + "probability": 0.9707 + }, + { + "start": 28877.71, + "end": 28882.85, + "probability": 0.9934 + }, + { + "start": 28883.45, + "end": 28884.38, + "probability": 0.9945 + }, + { + "start": 28884.87, + "end": 28887.75, + "probability": 0.9983 + }, + { + "start": 28888.29, + "end": 28888.91, + "probability": 0.4348 + }, + { + "start": 28889.75, + "end": 28891.37, + "probability": 0.6596 + }, + { + "start": 28892.29, + "end": 28899.89, + "probability": 0.98 + }, + { + "start": 28900.09, + "end": 28900.57, + "probability": 0.5244 + }, + { + "start": 28901.07, + "end": 28902.11, + "probability": 0.9456 + }, + { + "start": 28902.95, + "end": 28905.39, + "probability": 0.9753 + }, + { + "start": 28905.85, + "end": 28906.91, + "probability": 0.6141 + }, + { + "start": 28906.99, + "end": 28907.35, + "probability": 0.5585 + }, + { + "start": 28907.37, + "end": 28908.97, + "probability": 0.9552 + }, + { + "start": 28909.37, + "end": 28911.09, + "probability": 0.9895 + }, + { + "start": 28911.57, + "end": 28913.49, + "probability": 0.99 + }, + { + "start": 28914.05, + "end": 28915.41, + "probability": 0.9409 + }, + { + "start": 28915.53, + "end": 28917.17, + "probability": 0.9885 + }, + { + "start": 28917.57, + "end": 28919.55, + "probability": 0.9983 + }, + { + "start": 28920.15, + "end": 28925.65, + "probability": 0.7561 + }, + { + "start": 28925.95, + "end": 28926.31, + "probability": 0.5927 + }, + { + "start": 28926.51, + "end": 28926.87, + "probability": 0.7839 + }, + { + "start": 28927.21, + "end": 28929.45, + "probability": 0.9844 + }, + { + "start": 28929.87, + "end": 28931.11, + "probability": 0.9973 + }, + { + "start": 28931.15, + "end": 28934.79, + "probability": 0.8976 + }, + { + "start": 28935.77, + "end": 28936.05, + "probability": 0.6885 + }, + { + "start": 28936.21, + "end": 28936.31, + "probability": 0.1313 + }, + { + "start": 28936.43, + "end": 28938.73, + "probability": 0.9707 + }, + { + "start": 28939.07, + "end": 28940.15, + "probability": 0.3748 + }, + { + "start": 28942.41, + "end": 28944.45, + "probability": 0.9575 + }, + { + "start": 28945.23, + "end": 28948.53, + "probability": 0.9339 + }, + { + "start": 28948.59, + "end": 28951.91, + "probability": 0.8935 + }, + { + "start": 28951.95, + "end": 28953.45, + "probability": 0.7773 + }, + { + "start": 28953.79, + "end": 28955.35, + "probability": 0.8101 + }, + { + "start": 28955.99, + "end": 28957.21, + "probability": 0.9675 + }, + { + "start": 28957.35, + "end": 28959.58, + "probability": 0.9915 + }, + { + "start": 28960.87, + "end": 28961.69, + "probability": 0.5244 + }, + { + "start": 28963.25, + "end": 28965.55, + "probability": 0.9829 + }, + { + "start": 28966.91, + "end": 28970.63, + "probability": 0.5085 + }, + { + "start": 28970.85, + "end": 28972.89, + "probability": 0.2803 + }, + { + "start": 28972.89, + "end": 28973.73, + "probability": 0.0861 + }, + { + "start": 28976.79, + "end": 28983.4, + "probability": 0.7591 + }, + { + "start": 28985.81, + "end": 28986.91, + "probability": 0.5735 + }, + { + "start": 28991.57, + "end": 28995.51, + "probability": 0.0185 + } + ], + "segments_count": 10037, + "words_count": 49135, + "avg_words_per_segment": 4.8954, + "avg_segment_duration": 2.0609, + "avg_words_per_minute": 101.5557, + "plenum_id": "50833", + "duration": 29029.4, + "title": null, + "plenum_date": "2016-03-02" +} \ No newline at end of file