diff --git "a/65152/metadata.json" "b/65152/metadata.json" new file mode 100644--- /dev/null +++ "b/65152/metadata.json" @@ -0,0 +1,32497 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "65152", + "quality_score": 0.8961, + "per_segment_quality_scores": [ + { + "start": 81.0, + "end": 81.0, + "probability": 0.0 + }, + { + "start": 81.0, + "end": 81.0, + "probability": 0.0 + }, + { + "start": 81.14, + "end": 82.66, + "probability": 0.4395 + }, + { + "start": 83.76, + "end": 85.72, + "probability": 0.6675 + }, + { + "start": 86.66, + "end": 88.04, + "probability": 0.7581 + }, + { + "start": 89.4, + "end": 93.24, + "probability": 0.8738 + }, + { + "start": 94.38, + "end": 100.02, + "probability": 0.8138 + }, + { + "start": 100.02, + "end": 104.44, + "probability": 0.9826 + }, + { + "start": 105.62, + "end": 107.02, + "probability": 0.7922 + }, + { + "start": 107.84, + "end": 110.9, + "probability": 0.9944 + }, + { + "start": 111.88, + "end": 112.02, + "probability": 0.7059 + }, + { + "start": 114.86, + "end": 117.84, + "probability": 0.8252 + }, + { + "start": 118.66, + "end": 119.5, + "probability": 0.9487 + }, + { + "start": 120.56, + "end": 122.94, + "probability": 0.9902 + }, + { + "start": 124.04, + "end": 125.24, + "probability": 0.7989 + }, + { + "start": 125.84, + "end": 131.84, + "probability": 0.9753 + }, + { + "start": 132.54, + "end": 135.96, + "probability": 0.9769 + }, + { + "start": 137.2, + "end": 141.74, + "probability": 0.7302 + }, + { + "start": 141.96, + "end": 143.68, + "probability": 0.908 + }, + { + "start": 145.62, + "end": 146.44, + "probability": 0.606 + }, + { + "start": 147.82, + "end": 152.92, + "probability": 0.9575 + }, + { + "start": 153.9, + "end": 156.06, + "probability": 0.6348 + }, + { + "start": 156.64, + "end": 157.16, + "probability": 0.2414 + }, + { + "start": 157.8, + "end": 159.5, + "probability": 0.8052 + }, + { + "start": 160.38, + "end": 161.66, + "probability": 0.764 + }, + { + "start": 163.3, + "end": 164.52, + "probability": 0.5517 + }, + { + "start": 165.04, + "end": 168.2, + "probability": 0.9236 + }, + { + "start": 169.02, + "end": 171.06, + "probability": 0.8254 + }, + { + "start": 173.62, + "end": 175.58, + "probability": 0.9741 + }, + { + "start": 176.3, + "end": 178.4, + "probability": 0.6775 + }, + { + "start": 178.54, + "end": 179.46, + "probability": 0.8098 + }, + { + "start": 180.38, + "end": 187.08, + "probability": 0.8817 + }, + { + "start": 187.08, + "end": 191.36, + "probability": 0.951 + }, + { + "start": 191.74, + "end": 195.56, + "probability": 0.8544 + }, + { + "start": 196.2, + "end": 198.68, + "probability": 0.998 + }, + { + "start": 199.32, + "end": 201.88, + "probability": 0.7097 + }, + { + "start": 202.2, + "end": 205.24, + "probability": 0.6568 + }, + { + "start": 206.02, + "end": 206.09, + "probability": 0.4647 + }, + { + "start": 206.48, + "end": 212.16, + "probability": 0.9379 + }, + { + "start": 212.72, + "end": 215.84, + "probability": 0.8601 + }, + { + "start": 216.3, + "end": 216.56, + "probability": 0.7129 + }, + { + "start": 227.76, + "end": 229.58, + "probability": 0.6365 + }, + { + "start": 230.12, + "end": 230.94, + "probability": 0.3418 + }, + { + "start": 233.54, + "end": 235.82, + "probability": 0.7704 + }, + { + "start": 236.42, + "end": 237.36, + "probability": 0.7794 + }, + { + "start": 238.32, + "end": 243.1, + "probability": 0.9449 + }, + { + "start": 243.1, + "end": 246.3, + "probability": 0.8357 + }, + { + "start": 247.24, + "end": 249.92, + "probability": 0.9741 + }, + { + "start": 250.58, + "end": 253.06, + "probability": 0.848 + }, + { + "start": 253.66, + "end": 255.52, + "probability": 0.9442 + }, + { + "start": 256.52, + "end": 259.58, + "probability": 0.7484 + }, + { + "start": 260.54, + "end": 263.34, + "probability": 0.8133 + }, + { + "start": 263.54, + "end": 264.3, + "probability": 0.6252 + }, + { + "start": 265.14, + "end": 266.74, + "probability": 0.8857 + }, + { + "start": 267.5, + "end": 270.76, + "probability": 0.8717 + }, + { + "start": 271.84, + "end": 276.94, + "probability": 0.9569 + }, + { + "start": 277.5, + "end": 280.18, + "probability": 0.8799 + }, + { + "start": 280.7, + "end": 281.86, + "probability": 0.5363 + }, + { + "start": 282.68, + "end": 285.5, + "probability": 0.7613 + }, + { + "start": 286.32, + "end": 288.62, + "probability": 0.9229 + }, + { + "start": 288.62, + "end": 292.46, + "probability": 0.5545 + }, + { + "start": 292.6, + "end": 295.38, + "probability": 0.751 + }, + { + "start": 295.66, + "end": 302.26, + "probability": 0.8174 + }, + { + "start": 302.28, + "end": 306.06, + "probability": 0.8979 + }, + { + "start": 306.28, + "end": 307.0, + "probability": 0.3336 + }, + { + "start": 307.54, + "end": 311.0, + "probability": 0.868 + }, + { + "start": 311.7, + "end": 317.24, + "probability": 0.9746 + }, + { + "start": 317.96, + "end": 321.12, + "probability": 0.9659 + }, + { + "start": 322.06, + "end": 324.48, + "probability": 0.9595 + }, + { + "start": 324.76, + "end": 327.94, + "probability": 0.5194 + }, + { + "start": 328.08, + "end": 330.34, + "probability": 0.8115 + }, + { + "start": 330.62, + "end": 333.38, + "probability": 0.7461 + }, + { + "start": 337.94, + "end": 340.18, + "probability": 0.9941 + }, + { + "start": 340.22, + "end": 341.2, + "probability": 0.5913 + }, + { + "start": 341.22, + "end": 343.48, + "probability": 0.9114 + }, + { + "start": 343.9, + "end": 346.6, + "probability": 0.9456 + }, + { + "start": 347.55, + "end": 351.28, + "probability": 0.8907 + }, + { + "start": 351.54, + "end": 352.78, + "probability": 0.965 + }, + { + "start": 352.82, + "end": 355.0, + "probability": 0.9401 + }, + { + "start": 355.04, + "end": 358.88, + "probability": 0.9951 + }, + { + "start": 360.25, + "end": 364.32, + "probability": 0.9486 + }, + { + "start": 365.14, + "end": 365.24, + "probability": 0.3472 + }, + { + "start": 365.56, + "end": 366.74, + "probability": 0.9679 + }, + { + "start": 367.2, + "end": 370.3, + "probability": 0.894 + }, + { + "start": 371.86, + "end": 373.56, + "probability": 0.5777 + }, + { + "start": 373.76, + "end": 375.46, + "probability": 0.7115 + }, + { + "start": 375.46, + "end": 377.84, + "probability": 0.7998 + }, + { + "start": 377.84, + "end": 380.26, + "probability": 0.9867 + }, + { + "start": 380.28, + "end": 383.1, + "probability": 0.9518 + }, + { + "start": 383.42, + "end": 384.6, + "probability": 0.1934 + }, + { + "start": 384.86, + "end": 385.18, + "probability": 0.0183 + }, + { + "start": 385.18, + "end": 385.72, + "probability": 0.3857 + }, + { + "start": 385.84, + "end": 389.56, + "probability": 0.7053 + }, + { + "start": 389.56, + "end": 395.22, + "probability": 0.8569 + }, + { + "start": 395.48, + "end": 397.38, + "probability": 0.9895 + }, + { + "start": 397.44, + "end": 398.54, + "probability": 0.9961 + }, + { + "start": 398.64, + "end": 401.86, + "probability": 0.942 + }, + { + "start": 401.86, + "end": 402.62, + "probability": 0.5112 + }, + { + "start": 402.78, + "end": 403.27, + "probability": 0.5731 + }, + { + "start": 403.36, + "end": 406.9, + "probability": 0.924 + }, + { + "start": 407.1, + "end": 412.2, + "probability": 0.8508 + }, + { + "start": 413.36, + "end": 414.4, + "probability": 0.8523 + }, + { + "start": 414.5, + "end": 416.28, + "probability": 0.5168 + }, + { + "start": 416.44, + "end": 419.56, + "probability": 0.9958 + }, + { + "start": 419.56, + "end": 423.12, + "probability": 0.9291 + }, + { + "start": 423.12, + "end": 425.26, + "probability": 0.9868 + }, + { + "start": 425.72, + "end": 426.2, + "probability": 0.342 + }, + { + "start": 426.24, + "end": 428.12, + "probability": 0.9673 + }, + { + "start": 428.24, + "end": 428.5, + "probability": 0.3039 + }, + { + "start": 428.5, + "end": 429.32, + "probability": 0.6702 + }, + { + "start": 430.48, + "end": 432.32, + "probability": 0.7543 + }, + { + "start": 432.48, + "end": 433.6, + "probability": 0.8213 + }, + { + "start": 433.9, + "end": 436.14, + "probability": 0.9429 + }, + { + "start": 436.82, + "end": 438.06, + "probability": 0.98 + }, + { + "start": 438.12, + "end": 440.13, + "probability": 0.8972 + }, + { + "start": 440.82, + "end": 442.26, + "probability": 0.8185 + }, + { + "start": 442.26, + "end": 442.98, + "probability": 0.8106 + }, + { + "start": 442.98, + "end": 443.94, + "probability": 0.9093 + }, + { + "start": 444.08, + "end": 449.5, + "probability": 0.8641 + }, + { + "start": 449.54, + "end": 450.74, + "probability": 0.9681 + }, + { + "start": 451.14, + "end": 455.2, + "probability": 0.9606 + }, + { + "start": 455.36, + "end": 456.32, + "probability": 0.9355 + }, + { + "start": 456.34, + "end": 458.1, + "probability": 0.8003 + }, + { + "start": 458.5, + "end": 460.72, + "probability": 0.848 + }, + { + "start": 460.88, + "end": 461.24, + "probability": 0.8767 + }, + { + "start": 462.16, + "end": 463.7, + "probability": 0.7314 + }, + { + "start": 463.8, + "end": 465.6, + "probability": 0.511 + }, + { + "start": 465.8, + "end": 466.8, + "probability": 0.7114 + }, + { + "start": 466.94, + "end": 467.72, + "probability": 0.702 + }, + { + "start": 467.84, + "end": 470.34, + "probability": 0.8664 + }, + { + "start": 470.76, + "end": 472.26, + "probability": 0.9356 + }, + { + "start": 472.92, + "end": 474.42, + "probability": 0.9731 + }, + { + "start": 475.14, + "end": 475.4, + "probability": 0.435 + }, + { + "start": 475.64, + "end": 477.14, + "probability": 0.6452 + }, + { + "start": 477.36, + "end": 480.24, + "probability": 0.8798 + }, + { + "start": 481.38, + "end": 488.94, + "probability": 0.9922 + }, + { + "start": 489.2, + "end": 490.04, + "probability": 0.9771 + }, + { + "start": 490.88, + "end": 491.38, + "probability": 0.7544 + }, + { + "start": 491.42, + "end": 494.14, + "probability": 0.9819 + }, + { + "start": 494.2, + "end": 494.76, + "probability": 0.9907 + }, + { + "start": 495.12, + "end": 495.96, + "probability": 0.6784 + }, + { + "start": 496.5, + "end": 498.78, + "probability": 0.9839 + }, + { + "start": 498.88, + "end": 500.02, + "probability": 0.965 + }, + { + "start": 500.22, + "end": 502.08, + "probability": 0.9349 + }, + { + "start": 502.7, + "end": 507.22, + "probability": 0.7458 + }, + { + "start": 507.22, + "end": 509.92, + "probability": 0.9937 + }, + { + "start": 511.0, + "end": 515.9, + "probability": 0.9989 + }, + { + "start": 516.0, + "end": 518.67, + "probability": 0.9834 + }, + { + "start": 519.06, + "end": 523.62, + "probability": 0.9891 + }, + { + "start": 524.82, + "end": 527.92, + "probability": 0.9434 + }, + { + "start": 528.02, + "end": 529.42, + "probability": 0.9802 + }, + { + "start": 529.6, + "end": 530.52, + "probability": 0.7829 + }, + { + "start": 530.62, + "end": 531.02, + "probability": 0.8268 + }, + { + "start": 531.12, + "end": 533.1, + "probability": 0.5638 + }, + { + "start": 533.32, + "end": 534.46, + "probability": 0.6954 + }, + { + "start": 535.08, + "end": 538.28, + "probability": 0.4834 + }, + { + "start": 538.62, + "end": 539.52, + "probability": 0.7615 + }, + { + "start": 539.6, + "end": 540.9, + "probability": 0.8445 + }, + { + "start": 542.15, + "end": 549.28, + "probability": 0.9797 + }, + { + "start": 549.48, + "end": 550.38, + "probability": 0.6031 + }, + { + "start": 551.14, + "end": 554.32, + "probability": 0.8795 + }, + { + "start": 555.08, + "end": 559.72, + "probability": 0.9819 + }, + { + "start": 559.8, + "end": 561.21, + "probability": 0.9971 + }, + { + "start": 561.78, + "end": 565.76, + "probability": 0.9761 + }, + { + "start": 565.76, + "end": 569.78, + "probability": 0.9497 + }, + { + "start": 570.72, + "end": 574.3, + "probability": 0.871 + }, + { + "start": 575.26, + "end": 577.56, + "probability": 0.8791 + }, + { + "start": 578.1, + "end": 578.82, + "probability": 0.7641 + }, + { + "start": 578.88, + "end": 579.84, + "probability": 0.9792 + }, + { + "start": 579.9, + "end": 584.76, + "probability": 0.9679 + }, + { + "start": 585.6, + "end": 589.04, + "probability": 0.897 + }, + { + "start": 590.0, + "end": 592.74, + "probability": 0.8979 + }, + { + "start": 593.68, + "end": 598.94, + "probability": 0.9312 + }, + { + "start": 600.14, + "end": 602.06, + "probability": 0.9882 + }, + { + "start": 602.26, + "end": 602.96, + "probability": 0.7151 + }, + { + "start": 603.02, + "end": 605.52, + "probability": 0.9484 + }, + { + "start": 605.62, + "end": 608.44, + "probability": 0.9594 + }, + { + "start": 609.28, + "end": 614.74, + "probability": 0.9636 + }, + { + "start": 615.68, + "end": 620.04, + "probability": 0.9915 + }, + { + "start": 621.06, + "end": 621.92, + "probability": 0.8975 + }, + { + "start": 623.08, + "end": 625.12, + "probability": 0.9924 + }, + { + "start": 625.98, + "end": 627.68, + "probability": 0.9917 + }, + { + "start": 628.4, + "end": 629.56, + "probability": 0.9409 + }, + { + "start": 630.08, + "end": 635.22, + "probability": 0.9561 + }, + { + "start": 636.12, + "end": 641.28, + "probability": 0.9496 + }, + { + "start": 641.92, + "end": 645.48, + "probability": 0.7399 + }, + { + "start": 646.2, + "end": 647.12, + "probability": 0.8074 + }, + { + "start": 647.76, + "end": 650.65, + "probability": 0.6911 + }, + { + "start": 651.46, + "end": 653.58, + "probability": 0.9687 + }, + { + "start": 654.54, + "end": 657.33, + "probability": 0.9572 + }, + { + "start": 657.94, + "end": 660.88, + "probability": 0.9191 + }, + { + "start": 661.92, + "end": 665.08, + "probability": 0.9871 + }, + { + "start": 665.64, + "end": 666.78, + "probability": 0.9312 + }, + { + "start": 666.9, + "end": 669.44, + "probability": 0.978 + }, + { + "start": 669.8, + "end": 671.98, + "probability": 0.812 + }, + { + "start": 673.54, + "end": 675.12, + "probability": 0.914 + }, + { + "start": 675.9, + "end": 682.82, + "probability": 0.9892 + }, + { + "start": 682.82, + "end": 685.72, + "probability": 0.9992 + }, + { + "start": 686.46, + "end": 689.1, + "probability": 0.8108 + }, + { + "start": 689.82, + "end": 693.02, + "probability": 0.9762 + }, + { + "start": 693.02, + "end": 697.78, + "probability": 0.95 + }, + { + "start": 697.96, + "end": 699.42, + "probability": 0.9402 + }, + { + "start": 699.98, + "end": 702.24, + "probability": 0.6555 + }, + { + "start": 702.96, + "end": 704.54, + "probability": 0.8516 + }, + { + "start": 705.32, + "end": 710.98, + "probability": 0.9128 + }, + { + "start": 711.91, + "end": 715.0, + "probability": 0.8242 + }, + { + "start": 715.08, + "end": 719.42, + "probability": 0.9333 + }, + { + "start": 719.76, + "end": 722.12, + "probability": 0.9653 + }, + { + "start": 722.96, + "end": 728.36, + "probability": 0.9395 + }, + { + "start": 729.0, + "end": 730.78, + "probability": 0.6423 + }, + { + "start": 730.98, + "end": 732.26, + "probability": 0.946 + }, + { + "start": 732.72, + "end": 733.7, + "probability": 0.9436 + }, + { + "start": 733.78, + "end": 736.7, + "probability": 0.6112 + }, + { + "start": 736.84, + "end": 739.22, + "probability": 0.9684 + }, + { + "start": 739.98, + "end": 743.5, + "probability": 0.9979 + }, + { + "start": 743.92, + "end": 747.52, + "probability": 0.9288 + }, + { + "start": 748.4, + "end": 749.64, + "probability": 0.7524 + }, + { + "start": 750.42, + "end": 753.5, + "probability": 0.9905 + }, + { + "start": 754.02, + "end": 754.6, + "probability": 0.9709 + }, + { + "start": 755.14, + "end": 758.1, + "probability": 0.8431 + }, + { + "start": 758.66, + "end": 760.52, + "probability": 0.9729 + }, + { + "start": 763.52, + "end": 765.26, + "probability": 0.8251 + }, + { + "start": 765.58, + "end": 765.68, + "probability": 0.4706 + }, + { + "start": 766.58, + "end": 770.04, + "probability": 0.9005 + }, + { + "start": 770.18, + "end": 771.4, + "probability": 0.5461 + }, + { + "start": 771.6, + "end": 775.5, + "probability": 0.8789 + }, + { + "start": 775.5, + "end": 781.16, + "probability": 0.7471 + }, + { + "start": 781.76, + "end": 783.86, + "probability": 0.8059 + }, + { + "start": 784.42, + "end": 784.86, + "probability": 0.6915 + }, + { + "start": 784.9, + "end": 791.42, + "probability": 0.9907 + }, + { + "start": 792.72, + "end": 793.54, + "probability": 0.9739 + }, + { + "start": 795.72, + "end": 796.52, + "probability": 0.6737 + }, + { + "start": 797.14, + "end": 800.4, + "probability": 0.7612 + }, + { + "start": 800.52, + "end": 802.38, + "probability": 0.6868 + }, + { + "start": 803.84, + "end": 805.36, + "probability": 0.7733 + }, + { + "start": 807.1, + "end": 808.2, + "probability": 0.887 + }, + { + "start": 808.56, + "end": 809.1, + "probability": 0.4939 + }, + { + "start": 809.18, + "end": 814.08, + "probability": 0.9784 + }, + { + "start": 814.9, + "end": 816.26, + "probability": 0.9528 + }, + { + "start": 817.12, + "end": 818.04, + "probability": 0.8991 + }, + { + "start": 818.7, + "end": 821.0, + "probability": 0.8238 + }, + { + "start": 821.76, + "end": 823.9, + "probability": 0.5691 + }, + { + "start": 824.46, + "end": 826.68, + "probability": 0.8479 + }, + { + "start": 826.82, + "end": 830.24, + "probability": 0.9971 + }, + { + "start": 830.6, + "end": 833.28, + "probability": 0.9962 + }, + { + "start": 834.3, + "end": 836.78, + "probability": 0.7527 + }, + { + "start": 836.78, + "end": 840.04, + "probability": 0.6901 + }, + { + "start": 840.76, + "end": 841.18, + "probability": 0.5029 + }, + { + "start": 841.26, + "end": 841.6, + "probability": 0.6004 + }, + { + "start": 841.7, + "end": 845.28, + "probability": 0.9121 + }, + { + "start": 846.6, + "end": 851.22, + "probability": 0.9414 + }, + { + "start": 851.22, + "end": 854.1, + "probability": 0.9982 + }, + { + "start": 854.24, + "end": 855.56, + "probability": 0.6454 + }, + { + "start": 856.46, + "end": 859.86, + "probability": 0.9937 + }, + { + "start": 861.1, + "end": 866.6, + "probability": 0.9984 + }, + { + "start": 867.74, + "end": 871.88, + "probability": 0.948 + }, + { + "start": 872.66, + "end": 875.2, + "probability": 0.9945 + }, + { + "start": 875.38, + "end": 876.48, + "probability": 0.7155 + }, + { + "start": 878.32, + "end": 881.88, + "probability": 0.9926 + }, + { + "start": 881.96, + "end": 883.5, + "probability": 0.9427 + }, + { + "start": 883.54, + "end": 885.6, + "probability": 0.9471 + }, + { + "start": 887.44, + "end": 889.6, + "probability": 0.9897 + }, + { + "start": 890.38, + "end": 895.94, + "probability": 0.9969 + }, + { + "start": 897.54, + "end": 900.32, + "probability": 0.9972 + }, + { + "start": 902.1, + "end": 904.04, + "probability": 0.9942 + }, + { + "start": 905.1, + "end": 908.28, + "probability": 0.9142 + }, + { + "start": 908.68, + "end": 911.02, + "probability": 0.9983 + }, + { + "start": 911.94, + "end": 917.62, + "probability": 0.9971 + }, + { + "start": 917.72, + "end": 918.88, + "probability": 0.8482 + }, + { + "start": 919.66, + "end": 920.78, + "probability": 0.9764 + }, + { + "start": 921.62, + "end": 923.44, + "probability": 0.9884 + }, + { + "start": 924.22, + "end": 925.82, + "probability": 0.9482 + }, + { + "start": 926.66, + "end": 927.98, + "probability": 0.967 + }, + { + "start": 928.14, + "end": 929.14, + "probability": 0.9897 + }, + { + "start": 929.46, + "end": 930.92, + "probability": 0.8393 + }, + { + "start": 932.9, + "end": 935.22, + "probability": 0.9773 + }, + { + "start": 936.2, + "end": 937.56, + "probability": 0.7979 + }, + { + "start": 940.14, + "end": 942.18, + "probability": 0.9763 + }, + { + "start": 942.22, + "end": 944.04, + "probability": 0.9958 + }, + { + "start": 945.76, + "end": 947.48, + "probability": 0.535 + }, + { + "start": 948.52, + "end": 950.52, + "probability": 0.8724 + }, + { + "start": 953.82, + "end": 956.76, + "probability": 0.9723 + }, + { + "start": 957.94, + "end": 961.78, + "probability": 0.9995 + }, + { + "start": 961.92, + "end": 966.36, + "probability": 0.9967 + }, + { + "start": 966.36, + "end": 971.14, + "probability": 0.9957 + }, + { + "start": 973.14, + "end": 974.66, + "probability": 0.6882 + }, + { + "start": 975.48, + "end": 978.34, + "probability": 0.8911 + }, + { + "start": 978.5, + "end": 980.06, + "probability": 0.9834 + }, + { + "start": 981.0, + "end": 983.78, + "probability": 0.7496 + }, + { + "start": 985.46, + "end": 991.68, + "probability": 0.9866 + }, + { + "start": 992.45, + "end": 996.1, + "probability": 0.9967 + }, + { + "start": 996.72, + "end": 1000.08, + "probability": 0.9958 + }, + { + "start": 1000.86, + "end": 1005.08, + "probability": 0.9808 + }, + { + "start": 1005.74, + "end": 1007.64, + "probability": 0.9967 + }, + { + "start": 1008.5, + "end": 1009.06, + "probability": 0.8632 + }, + { + "start": 1009.64, + "end": 1012.7, + "probability": 0.9902 + }, + { + "start": 1013.24, + "end": 1016.82, + "probability": 0.9657 + }, + { + "start": 1017.66, + "end": 1022.08, + "probability": 0.8867 + }, + { + "start": 1023.0, + "end": 1027.28, + "probability": 0.9697 + }, + { + "start": 1027.28, + "end": 1031.78, + "probability": 0.9823 + }, + { + "start": 1032.12, + "end": 1034.8, + "probability": 0.8925 + }, + { + "start": 1035.66, + "end": 1037.86, + "probability": 0.8854 + }, + { + "start": 1039.64, + "end": 1045.08, + "probability": 0.9726 + }, + { + "start": 1045.68, + "end": 1047.28, + "probability": 0.756 + }, + { + "start": 1047.58, + "end": 1048.58, + "probability": 0.9151 + }, + { + "start": 1048.62, + "end": 1053.62, + "probability": 0.9407 + }, + { + "start": 1055.04, + "end": 1058.26, + "probability": 0.9657 + }, + { + "start": 1059.14, + "end": 1066.18, + "probability": 0.9385 + }, + { + "start": 1067.0, + "end": 1067.92, + "probability": 0.9819 + }, + { + "start": 1069.42, + "end": 1072.44, + "probability": 0.9866 + }, + { + "start": 1073.54, + "end": 1074.86, + "probability": 0.9768 + }, + { + "start": 1076.28, + "end": 1079.26, + "probability": 0.9905 + }, + { + "start": 1080.28, + "end": 1083.22, + "probability": 0.8297 + }, + { + "start": 1083.34, + "end": 1086.44, + "probability": 0.988 + }, + { + "start": 1086.86, + "end": 1088.86, + "probability": 0.9561 + }, + { + "start": 1092.68, + "end": 1095.86, + "probability": 0.8282 + }, + { + "start": 1098.31, + "end": 1101.96, + "probability": 0.9725 + }, + { + "start": 1102.5, + "end": 1103.94, + "probability": 0.9182 + }, + { + "start": 1105.0, + "end": 1108.1, + "probability": 0.8839 + }, + { + "start": 1108.68, + "end": 1110.34, + "probability": 0.7438 + }, + { + "start": 1110.92, + "end": 1111.96, + "probability": 0.9519 + }, + { + "start": 1112.68, + "end": 1113.56, + "probability": 0.9316 + }, + { + "start": 1113.56, + "end": 1114.42, + "probability": 0.9394 + }, + { + "start": 1114.7, + "end": 1117.92, + "probability": 0.9236 + }, + { + "start": 1118.84, + "end": 1120.44, + "probability": 0.9256 + }, + { + "start": 1122.72, + "end": 1125.14, + "probability": 0.4846 + }, + { + "start": 1126.58, + "end": 1126.58, + "probability": 0.0062 + }, + { + "start": 1126.58, + "end": 1131.2, + "probability": 0.9058 + }, + { + "start": 1132.34, + "end": 1137.48, + "probability": 0.8915 + }, + { + "start": 1137.48, + "end": 1141.46, + "probability": 0.9976 + }, + { + "start": 1143.6, + "end": 1147.1, + "probability": 0.9945 + }, + { + "start": 1147.94, + "end": 1151.04, + "probability": 0.973 + }, + { + "start": 1151.04, + "end": 1153.88, + "probability": 0.9703 + }, + { + "start": 1155.06, + "end": 1157.24, + "probability": 0.9962 + }, + { + "start": 1159.0, + "end": 1161.32, + "probability": 0.7902 + }, + { + "start": 1162.62, + "end": 1166.4, + "probability": 0.9966 + }, + { + "start": 1166.5, + "end": 1167.2, + "probability": 0.8781 + }, + { + "start": 1168.4, + "end": 1176.26, + "probability": 0.965 + }, + { + "start": 1177.92, + "end": 1180.44, + "probability": 0.5349 + }, + { + "start": 1180.52, + "end": 1183.32, + "probability": 0.8277 + }, + { + "start": 1184.12, + "end": 1185.46, + "probability": 0.87 + }, + { + "start": 1186.0, + "end": 1189.6, + "probability": 0.9727 + }, + { + "start": 1190.14, + "end": 1193.24, + "probability": 0.9536 + }, + { + "start": 1195.38, + "end": 1196.66, + "probability": 0.8707 + }, + { + "start": 1197.22, + "end": 1201.38, + "probability": 0.9957 + }, + { + "start": 1202.06, + "end": 1203.88, + "probability": 0.8678 + }, + { + "start": 1203.98, + "end": 1204.9, + "probability": 0.8255 + }, + { + "start": 1205.1, + "end": 1208.76, + "probability": 0.8334 + }, + { + "start": 1209.58, + "end": 1212.84, + "probability": 0.9969 + }, + { + "start": 1212.84, + "end": 1215.24, + "probability": 0.9683 + }, + { + "start": 1215.66, + "end": 1218.74, + "probability": 0.9883 + }, + { + "start": 1220.22, + "end": 1222.44, + "probability": 0.8246 + }, + { + "start": 1222.66, + "end": 1223.77, + "probability": 0.9215 + }, + { + "start": 1225.58, + "end": 1229.4, + "probability": 0.967 + }, + { + "start": 1230.16, + "end": 1233.82, + "probability": 0.8898 + }, + { + "start": 1234.14, + "end": 1237.64, + "probability": 0.847 + }, + { + "start": 1238.86, + "end": 1242.1, + "probability": 0.9573 + }, + { + "start": 1242.52, + "end": 1244.0, + "probability": 0.5095 + }, + { + "start": 1244.12, + "end": 1244.94, + "probability": 0.4505 + }, + { + "start": 1245.76, + "end": 1247.92, + "probability": 0.7985 + }, + { + "start": 1248.96, + "end": 1250.24, + "probability": 0.852 + }, + { + "start": 1250.94, + "end": 1251.88, + "probability": 0.6512 + }, + { + "start": 1251.92, + "end": 1252.56, + "probability": 0.8014 + }, + { + "start": 1252.6, + "end": 1253.14, + "probability": 0.8503 + }, + { + "start": 1253.16, + "end": 1254.42, + "probability": 0.8462 + }, + { + "start": 1255.28, + "end": 1257.62, + "probability": 0.9706 + }, + { + "start": 1258.32, + "end": 1260.34, + "probability": 0.8837 + }, + { + "start": 1260.46, + "end": 1265.26, + "probability": 0.9063 + }, + { + "start": 1266.28, + "end": 1271.24, + "probability": 0.9951 + }, + { + "start": 1271.24, + "end": 1276.42, + "probability": 0.9935 + }, + { + "start": 1277.14, + "end": 1278.1, + "probability": 0.9676 + }, + { + "start": 1278.84, + "end": 1281.48, + "probability": 0.9944 + }, + { + "start": 1282.08, + "end": 1284.92, + "probability": 0.9473 + }, + { + "start": 1285.7, + "end": 1287.98, + "probability": 0.928 + }, + { + "start": 1288.4, + "end": 1291.22, + "probability": 0.9286 + }, + { + "start": 1291.66, + "end": 1294.25, + "probability": 0.8475 + }, + { + "start": 1294.93, + "end": 1298.46, + "probability": 0.9935 + }, + { + "start": 1299.4, + "end": 1304.48, + "probability": 0.9052 + }, + { + "start": 1305.86, + "end": 1309.18, + "probability": 0.962 + }, + { + "start": 1309.28, + "end": 1312.76, + "probability": 0.974 + }, + { + "start": 1313.1, + "end": 1315.46, + "probability": 0.969 + }, + { + "start": 1316.04, + "end": 1318.7, + "probability": 0.9848 + }, + { + "start": 1319.54, + "end": 1321.88, + "probability": 0.9956 + }, + { + "start": 1322.4, + "end": 1323.71, + "probability": 0.9102 + }, + { + "start": 1324.26, + "end": 1326.26, + "probability": 0.7837 + }, + { + "start": 1326.78, + "end": 1331.42, + "probability": 0.9702 + }, + { + "start": 1331.72, + "end": 1335.84, + "probability": 0.9969 + }, + { + "start": 1335.9, + "end": 1338.96, + "probability": 0.9845 + }, + { + "start": 1339.06, + "end": 1343.48, + "probability": 0.9855 + }, + { + "start": 1343.78, + "end": 1344.64, + "probability": 0.4194 + }, + { + "start": 1344.68, + "end": 1345.1, + "probability": 0.777 + }, + { + "start": 1345.24, + "end": 1347.52, + "probability": 0.8545 + }, + { + "start": 1347.68, + "end": 1353.2, + "probability": 0.9962 + }, + { + "start": 1353.28, + "end": 1355.64, + "probability": 0.8246 + }, + { + "start": 1356.08, + "end": 1358.74, + "probability": 0.9912 + }, + { + "start": 1359.7, + "end": 1360.76, + "probability": 0.67 + }, + { + "start": 1360.88, + "end": 1362.02, + "probability": 0.8757 + }, + { + "start": 1362.12, + "end": 1363.96, + "probability": 0.98 + }, + { + "start": 1363.96, + "end": 1366.1, + "probability": 0.9727 + }, + { + "start": 1366.54, + "end": 1368.12, + "probability": 0.9901 + }, + { + "start": 1368.28, + "end": 1371.54, + "probability": 0.991 + }, + { + "start": 1371.54, + "end": 1374.3, + "probability": 0.9369 + }, + { + "start": 1374.74, + "end": 1375.22, + "probability": 0.4217 + }, + { + "start": 1375.22, + "end": 1375.82, + "probability": 0.3165 + }, + { + "start": 1375.84, + "end": 1377.72, + "probability": 0.7632 + }, + { + "start": 1377.72, + "end": 1377.72, + "probability": 0.4127 + }, + { + "start": 1377.72, + "end": 1379.42, + "probability": 0.905 + }, + { + "start": 1379.72, + "end": 1380.94, + "probability": 0.6733 + }, + { + "start": 1380.94, + "end": 1382.02, + "probability": 0.4642 + }, + { + "start": 1382.24, + "end": 1383.6, + "probability": 0.938 + }, + { + "start": 1384.0, + "end": 1384.6, + "probability": 0.1688 + }, + { + "start": 1384.72, + "end": 1385.26, + "probability": 0.1012 + }, + { + "start": 1385.28, + "end": 1385.28, + "probability": 0.2194 + }, + { + "start": 1385.28, + "end": 1387.35, + "probability": 0.7776 + }, + { + "start": 1387.52, + "end": 1388.16, + "probability": 0.7115 + }, + { + "start": 1388.84, + "end": 1390.54, + "probability": 0.6215 + }, + { + "start": 1390.56, + "end": 1393.04, + "probability": 0.6804 + }, + { + "start": 1393.56, + "end": 1396.42, + "probability": 0.7919 + }, + { + "start": 1396.68, + "end": 1401.7, + "probability": 0.8506 + }, + { + "start": 1402.32, + "end": 1405.5, + "probability": 0.7744 + }, + { + "start": 1405.6, + "end": 1406.85, + "probability": 0.9912 + }, + { + "start": 1407.54, + "end": 1409.12, + "probability": 0.9906 + }, + { + "start": 1409.76, + "end": 1415.04, + "probability": 0.95 + }, + { + "start": 1415.04, + "end": 1418.54, + "probability": 0.9991 + }, + { + "start": 1419.06, + "end": 1420.19, + "probability": 0.9609 + }, + { + "start": 1420.98, + "end": 1423.84, + "probability": 0.3481 + }, + { + "start": 1423.98, + "end": 1424.8, + "probability": 0.5352 + }, + { + "start": 1424.9, + "end": 1426.36, + "probability": 0.7726 + }, + { + "start": 1426.5, + "end": 1429.82, + "probability": 0.9613 + }, + { + "start": 1430.38, + "end": 1431.52, + "probability": 0.7437 + }, + { + "start": 1431.62, + "end": 1433.4, + "probability": 0.998 + }, + { + "start": 1433.92, + "end": 1434.78, + "probability": 0.7466 + }, + { + "start": 1434.88, + "end": 1440.28, + "probability": 0.991 + }, + { + "start": 1440.4, + "end": 1441.74, + "probability": 0.9291 + }, + { + "start": 1442.32, + "end": 1444.82, + "probability": 0.6677 + }, + { + "start": 1445.3, + "end": 1446.46, + "probability": 0.9202 + }, + { + "start": 1446.58, + "end": 1449.06, + "probability": 0.9424 + }, + { + "start": 1449.06, + "end": 1450.06, + "probability": 0.5878 + }, + { + "start": 1450.28, + "end": 1450.28, + "probability": 0.1444 + }, + { + "start": 1450.28, + "end": 1451.82, + "probability": 0.0806 + }, + { + "start": 1451.82, + "end": 1451.82, + "probability": 0.4406 + }, + { + "start": 1451.94, + "end": 1453.92, + "probability": 0.9318 + }, + { + "start": 1454.36, + "end": 1456.16, + "probability": 0.967 + }, + { + "start": 1456.34, + "end": 1457.0, + "probability": 0.7593 + }, + { + "start": 1457.46, + "end": 1458.24, + "probability": 0.5192 + }, + { + "start": 1458.58, + "end": 1461.36, + "probability": 0.9336 + }, + { + "start": 1461.96, + "end": 1465.48, + "probability": 0.8428 + }, + { + "start": 1465.52, + "end": 1466.1, + "probability": 0.7452 + }, + { + "start": 1466.6, + "end": 1471.24, + "probability": 0.9342 + }, + { + "start": 1471.8, + "end": 1473.6, + "probability": 0.5767 + }, + { + "start": 1473.68, + "end": 1474.94, + "probability": 0.8027 + }, + { + "start": 1475.16, + "end": 1479.02, + "probability": 0.9531 + }, + { + "start": 1479.38, + "end": 1481.28, + "probability": 0.7025 + }, + { + "start": 1481.64, + "end": 1483.7, + "probability": 0.9876 + }, + { + "start": 1484.22, + "end": 1486.54, + "probability": 0.8815 + }, + { + "start": 1486.54, + "end": 1489.92, + "probability": 0.8955 + }, + { + "start": 1489.96, + "end": 1490.24, + "probability": 0.4407 + }, + { + "start": 1490.62, + "end": 1492.9, + "probability": 0.5005 + }, + { + "start": 1492.92, + "end": 1493.6, + "probability": 0.7043 + }, + { + "start": 1494.3, + "end": 1494.4, + "probability": 0.4764 + }, + { + "start": 1494.46, + "end": 1495.66, + "probability": 0.68 + }, + { + "start": 1496.18, + "end": 1497.36, + "probability": 0.9062 + }, + { + "start": 1498.68, + "end": 1501.44, + "probability": 0.9718 + }, + { + "start": 1502.66, + "end": 1506.5, + "probability": 0.8122 + }, + { + "start": 1506.7, + "end": 1507.6, + "probability": 0.7579 + }, + { + "start": 1508.06, + "end": 1510.12, + "probability": 0.9932 + }, + { + "start": 1510.3, + "end": 1512.92, + "probability": 0.9836 + }, + { + "start": 1513.8, + "end": 1517.12, + "probability": 0.5124 + }, + { + "start": 1517.22, + "end": 1519.18, + "probability": 0.6888 + }, + { + "start": 1519.28, + "end": 1523.38, + "probability": 0.9908 + }, + { + "start": 1523.38, + "end": 1528.42, + "probability": 0.9763 + }, + { + "start": 1528.6, + "end": 1529.72, + "probability": 0.9197 + }, + { + "start": 1529.74, + "end": 1530.78, + "probability": 0.3495 + }, + { + "start": 1530.96, + "end": 1533.24, + "probability": 0.8693 + }, + { + "start": 1533.5, + "end": 1537.34, + "probability": 0.7782 + }, + { + "start": 1537.55, + "end": 1541.18, + "probability": 0.9666 + }, + { + "start": 1541.58, + "end": 1543.82, + "probability": 0.9912 + }, + { + "start": 1544.66, + "end": 1547.13, + "probability": 0.7751 + }, + { + "start": 1547.92, + "end": 1552.02, + "probability": 0.9982 + }, + { + "start": 1552.14, + "end": 1553.86, + "probability": 0.9572 + }, + { + "start": 1555.22, + "end": 1560.72, + "probability": 0.9915 + }, + { + "start": 1560.92, + "end": 1562.26, + "probability": 0.9688 + }, + { + "start": 1562.38, + "end": 1564.78, + "probability": 0.9785 + }, + { + "start": 1565.38, + "end": 1567.7, + "probability": 0.9934 + }, + { + "start": 1567.84, + "end": 1572.2, + "probability": 0.8983 + }, + { + "start": 1573.06, + "end": 1575.54, + "probability": 0.8445 + }, + { + "start": 1575.6, + "end": 1578.66, + "probability": 0.9951 + }, + { + "start": 1578.9, + "end": 1580.18, + "probability": 0.6232 + }, + { + "start": 1581.06, + "end": 1583.86, + "probability": 0.9396 + }, + { + "start": 1584.08, + "end": 1586.14, + "probability": 0.9962 + }, + { + "start": 1586.54, + "end": 1587.8, + "probability": 0.7771 + }, + { + "start": 1588.06, + "end": 1589.62, + "probability": 0.6996 + }, + { + "start": 1589.7, + "end": 1590.84, + "probability": 0.7423 + }, + { + "start": 1591.3, + "end": 1591.7, + "probability": 0.3417 + }, + { + "start": 1592.34, + "end": 1593.6, + "probability": 0.8364 + }, + { + "start": 1593.72, + "end": 1596.52, + "probability": 0.9961 + }, + { + "start": 1597.24, + "end": 1602.38, + "probability": 0.9933 + }, + { + "start": 1603.42, + "end": 1604.1, + "probability": 0.4835 + }, + { + "start": 1604.84, + "end": 1609.96, + "probability": 0.9491 + }, + { + "start": 1610.84, + "end": 1613.76, + "probability": 0.9551 + }, + { + "start": 1614.56, + "end": 1616.92, + "probability": 0.8695 + }, + { + "start": 1618.22, + "end": 1620.92, + "probability": 0.9985 + }, + { + "start": 1620.92, + "end": 1627.7, + "probability": 0.9871 + }, + { + "start": 1628.24, + "end": 1632.37, + "probability": 0.9397 + }, + { + "start": 1632.6, + "end": 1632.8, + "probability": 0.8331 + }, + { + "start": 1632.94, + "end": 1633.9, + "probability": 0.6952 + }, + { + "start": 1634.36, + "end": 1635.04, + "probability": 0.5952 + }, + { + "start": 1635.38, + "end": 1638.02, + "probability": 0.8055 + }, + { + "start": 1638.14, + "end": 1639.72, + "probability": 0.7498 + }, + { + "start": 1640.68, + "end": 1645.24, + "probability": 0.712 + }, + { + "start": 1645.76, + "end": 1648.02, + "probability": 0.9263 + }, + { + "start": 1648.5, + "end": 1650.88, + "probability": 0.9973 + }, + { + "start": 1651.16, + "end": 1651.58, + "probability": 0.4124 + }, + { + "start": 1651.8, + "end": 1652.42, + "probability": 0.8584 + }, + { + "start": 1652.5, + "end": 1654.02, + "probability": 0.8826 + }, + { + "start": 1655.9, + "end": 1657.48, + "probability": 0.6159 + }, + { + "start": 1658.96, + "end": 1663.76, + "probability": 0.814 + }, + { + "start": 1664.84, + "end": 1667.6, + "probability": 0.9958 + }, + { + "start": 1668.1, + "end": 1669.06, + "probability": 0.1412 + }, + { + "start": 1671.64, + "end": 1671.64, + "probability": 0.2591 + }, + { + "start": 1671.64, + "end": 1675.98, + "probability": 0.8891 + }, + { + "start": 1676.28, + "end": 1676.76, + "probability": 0.7541 + }, + { + "start": 1676.88, + "end": 1677.68, + "probability": 0.7373 + }, + { + "start": 1678.24, + "end": 1679.3, + "probability": 0.7423 + }, + { + "start": 1679.58, + "end": 1680.26, + "probability": 0.6284 + }, + { + "start": 1680.32, + "end": 1682.8, + "probability": 0.9892 + }, + { + "start": 1683.64, + "end": 1686.32, + "probability": 0.904 + }, + { + "start": 1687.62, + "end": 1688.82, + "probability": 0.3673 + }, + { + "start": 1688.94, + "end": 1690.56, + "probability": 0.9963 + }, + { + "start": 1691.06, + "end": 1692.34, + "probability": 0.5439 + }, + { + "start": 1692.48, + "end": 1692.86, + "probability": 0.8058 + }, + { + "start": 1693.0, + "end": 1693.26, + "probability": 0.7933 + }, + { + "start": 1693.26, + "end": 1694.12, + "probability": 0.9688 + }, + { + "start": 1696.42, + "end": 1699.94, + "probability": 0.6141 + }, + { + "start": 1704.64, + "end": 1705.5, + "probability": 0.3868 + }, + { + "start": 1706.16, + "end": 1709.38, + "probability": 0.7323 + }, + { + "start": 1710.16, + "end": 1715.94, + "probability": 0.7454 + }, + { + "start": 1716.9, + "end": 1721.78, + "probability": 0.9552 + }, + { + "start": 1722.6, + "end": 1724.62, + "probability": 0.9384 + }, + { + "start": 1725.1, + "end": 1729.22, + "probability": 0.712 + }, + { + "start": 1729.28, + "end": 1731.28, + "probability": 0.7439 + }, + { + "start": 1731.42, + "end": 1733.3, + "probability": 0.9476 + }, + { + "start": 1733.68, + "end": 1735.36, + "probability": 0.91 + }, + { + "start": 1735.46, + "end": 1742.56, + "probability": 0.9422 + }, + { + "start": 1742.56, + "end": 1750.16, + "probability": 0.9739 + }, + { + "start": 1750.36, + "end": 1751.56, + "probability": 0.8078 + }, + { + "start": 1752.42, + "end": 1752.58, + "probability": 0.2568 + }, + { + "start": 1752.74, + "end": 1755.68, + "probability": 0.9951 + }, + { + "start": 1756.48, + "end": 1757.76, + "probability": 0.9062 + }, + { + "start": 1757.84, + "end": 1758.82, + "probability": 0.9654 + }, + { + "start": 1758.96, + "end": 1759.86, + "probability": 0.7764 + }, + { + "start": 1759.9, + "end": 1763.44, + "probability": 0.6623 + }, + { + "start": 1764.22, + "end": 1768.62, + "probability": 0.9318 + }, + { + "start": 1768.98, + "end": 1769.68, + "probability": 0.8252 + }, + { + "start": 1769.68, + "end": 1769.84, + "probability": 0.4874 + }, + { + "start": 1769.94, + "end": 1772.44, + "probability": 0.9783 + }, + { + "start": 1773.0, + "end": 1775.92, + "probability": 0.6873 + }, + { + "start": 1777.72, + "end": 1778.28, + "probability": 0.0736 + }, + { + "start": 1778.28, + "end": 1778.56, + "probability": 0.2758 + }, + { + "start": 1778.96, + "end": 1779.82, + "probability": 0.4803 + }, + { + "start": 1780.46, + "end": 1781.54, + "probability": 0.8804 + }, + { + "start": 1781.6, + "end": 1783.78, + "probability": 0.8541 + }, + { + "start": 1784.38, + "end": 1786.92, + "probability": 0.9548 + }, + { + "start": 1787.04, + "end": 1789.22, + "probability": 0.8876 + }, + { + "start": 1790.52, + "end": 1792.58, + "probability": 0.8943 + }, + { + "start": 1792.68, + "end": 1794.12, + "probability": 0.8833 + }, + { + "start": 1794.56, + "end": 1794.92, + "probability": 0.4805 + }, + { + "start": 1794.92, + "end": 1795.94, + "probability": 0.913 + }, + { + "start": 1796.02, + "end": 1797.1, + "probability": 0.9597 + }, + { + "start": 1797.54, + "end": 1799.02, + "probability": 0.9726 + }, + { + "start": 1799.2, + "end": 1800.96, + "probability": 0.5713 + }, + { + "start": 1801.06, + "end": 1802.42, + "probability": 0.9714 + }, + { + "start": 1802.85, + "end": 1805.68, + "probability": 0.6852 + }, + { + "start": 1805.7, + "end": 1807.94, + "probability": 0.9683 + }, + { + "start": 1808.2, + "end": 1809.56, + "probability": 0.9977 + }, + { + "start": 1810.36, + "end": 1812.34, + "probability": 0.9582 + }, + { + "start": 1813.62, + "end": 1816.14, + "probability": 0.9967 + }, + { + "start": 1816.54, + "end": 1819.82, + "probability": 0.8327 + }, + { + "start": 1820.68, + "end": 1821.38, + "probability": 0.8669 + }, + { + "start": 1821.7, + "end": 1822.48, + "probability": 0.9675 + }, + { + "start": 1822.54, + "end": 1823.38, + "probability": 0.8544 + }, + { + "start": 1823.42, + "end": 1829.2, + "probability": 0.8931 + }, + { + "start": 1830.16, + "end": 1831.38, + "probability": 0.6357 + }, + { + "start": 1831.66, + "end": 1832.04, + "probability": 0.3553 + }, + { + "start": 1832.3, + "end": 1833.98, + "probability": 0.8369 + }, + { + "start": 1834.02, + "end": 1836.46, + "probability": 0.7935 + }, + { + "start": 1836.92, + "end": 1841.02, + "probability": 0.9371 + }, + { + "start": 1841.64, + "end": 1845.44, + "probability": 0.9815 + }, + { + "start": 1846.28, + "end": 1846.88, + "probability": 0.8864 + }, + { + "start": 1847.26, + "end": 1851.34, + "probability": 0.6956 + }, + { + "start": 1860.92, + "end": 1865.42, + "probability": 0.7964 + }, + { + "start": 1865.62, + "end": 1869.7, + "probability": 0.9673 + }, + { + "start": 1870.22, + "end": 1871.58, + "probability": 0.9795 + }, + { + "start": 1871.74, + "end": 1876.4, + "probability": 0.7232 + }, + { + "start": 1876.68, + "end": 1881.28, + "probability": 0.9887 + }, + { + "start": 1881.75, + "end": 1884.77, + "probability": 0.2404 + }, + { + "start": 1885.88, + "end": 1887.44, + "probability": 0.8749 + }, + { + "start": 1888.76, + "end": 1892.9, + "probability": 0.7629 + }, + { + "start": 1893.56, + "end": 1894.6, + "probability": 0.8684 + }, + { + "start": 1894.72, + "end": 1900.36, + "probability": 0.7661 + }, + { + "start": 1901.06, + "end": 1907.2, + "probability": 0.9286 + }, + { + "start": 1907.28, + "end": 1909.68, + "probability": 0.7496 + }, + { + "start": 1909.8, + "end": 1911.3, + "probability": 0.8923 + }, + { + "start": 1911.48, + "end": 1914.92, + "probability": 0.5873 + }, + { + "start": 1915.12, + "end": 1917.36, + "probability": 0.9676 + }, + { + "start": 1917.68, + "end": 1918.18, + "probability": 0.5471 + }, + { + "start": 1919.42, + "end": 1923.04, + "probability": 0.9418 + }, + { + "start": 1923.6, + "end": 1926.26, + "probability": 0.7508 + }, + { + "start": 1926.84, + "end": 1928.08, + "probability": 0.4212 + }, + { + "start": 1928.68, + "end": 1933.68, + "probability": 0.9573 + }, + { + "start": 1933.92, + "end": 1935.6, + "probability": 0.4972 + }, + { + "start": 1936.12, + "end": 1938.28, + "probability": 0.8647 + }, + { + "start": 1941.38, + "end": 1942.24, + "probability": 0.7992 + }, + { + "start": 1943.06, + "end": 1944.02, + "probability": 0.9255 + }, + { + "start": 1945.1, + "end": 1946.4, + "probability": 0.8618 + }, + { + "start": 1953.44, + "end": 1954.16, + "probability": 0.5949 + }, + { + "start": 1955.52, + "end": 1956.32, + "probability": 0.8392 + }, + { + "start": 1957.54, + "end": 1958.22, + "probability": 0.7892 + }, + { + "start": 1959.34, + "end": 1961.72, + "probability": 0.684 + }, + { + "start": 1961.84, + "end": 1965.5, + "probability": 0.8509 + }, + { + "start": 1966.5, + "end": 1972.2, + "probability": 0.9208 + }, + { + "start": 1973.16, + "end": 1977.06, + "probability": 0.9854 + }, + { + "start": 1977.92, + "end": 1980.4, + "probability": 0.9683 + }, + { + "start": 1981.02, + "end": 1984.16, + "probability": 0.6041 + }, + { + "start": 1984.76, + "end": 1985.82, + "probability": 0.9863 + }, + { + "start": 1986.18, + "end": 1986.46, + "probability": 0.7251 + }, + { + "start": 1988.9, + "end": 1990.58, + "probability": 0.3701 + }, + { + "start": 1994.14, + "end": 2000.3, + "probability": 0.5847 + }, + { + "start": 2001.42, + "end": 2003.86, + "probability": 0.6226 + }, + { + "start": 2004.94, + "end": 2009.35, + "probability": 0.9929 + }, + { + "start": 2011.32, + "end": 2012.2, + "probability": 0.9528 + }, + { + "start": 2012.76, + "end": 2015.16, + "probability": 0.95 + }, + { + "start": 2015.68, + "end": 2020.76, + "probability": 0.798 + }, + { + "start": 2021.26, + "end": 2024.26, + "probability": 0.9949 + }, + { + "start": 2025.74, + "end": 2032.66, + "probability": 0.9867 + }, + { + "start": 2033.56, + "end": 2040.46, + "probability": 0.9969 + }, + { + "start": 2041.52, + "end": 2046.42, + "probability": 0.901 + }, + { + "start": 2046.72, + "end": 2048.38, + "probability": 0.9268 + }, + { + "start": 2048.62, + "end": 2050.94, + "probability": 0.948 + }, + { + "start": 2051.68, + "end": 2058.2, + "probability": 0.9991 + }, + { + "start": 2058.2, + "end": 2064.18, + "probability": 0.9995 + }, + { + "start": 2064.34, + "end": 2069.34, + "probability": 0.8487 + }, + { + "start": 2069.76, + "end": 2072.98, + "probability": 0.7608 + }, + { + "start": 2073.9, + "end": 2076.8, + "probability": 0.8969 + }, + { + "start": 2077.46, + "end": 2079.7, + "probability": 0.9658 + }, + { + "start": 2080.36, + "end": 2085.16, + "probability": 0.9512 + }, + { + "start": 2086.3, + "end": 2094.36, + "probability": 0.9454 + }, + { + "start": 2094.96, + "end": 2095.52, + "probability": 0.8242 + }, + { + "start": 2096.42, + "end": 2100.86, + "probability": 0.996 + }, + { + "start": 2100.86, + "end": 2104.4, + "probability": 0.9816 + }, + { + "start": 2105.36, + "end": 2109.82, + "probability": 0.9497 + }, + { + "start": 2110.44, + "end": 2113.28, + "probability": 0.9162 + }, + { + "start": 2113.48, + "end": 2116.62, + "probability": 0.9756 + }, + { + "start": 2117.82, + "end": 2124.52, + "probability": 0.9523 + }, + { + "start": 2124.52, + "end": 2129.18, + "probability": 0.9757 + }, + { + "start": 2129.68, + "end": 2132.0, + "probability": 0.9711 + }, + { + "start": 2133.2, + "end": 2136.7, + "probability": 0.9873 + }, + { + "start": 2137.52, + "end": 2138.28, + "probability": 0.705 + }, + { + "start": 2139.04, + "end": 2142.52, + "probability": 0.9565 + }, + { + "start": 2144.72, + "end": 2145.31, + "probability": 0.6592 + }, + { + "start": 2145.74, + "end": 2148.32, + "probability": 0.9694 + }, + { + "start": 2148.46, + "end": 2150.18, + "probability": 0.998 + }, + { + "start": 2151.06, + "end": 2156.32, + "probability": 0.9793 + }, + { + "start": 2156.32, + "end": 2161.6, + "probability": 0.8863 + }, + { + "start": 2161.74, + "end": 2167.62, + "probability": 0.8125 + }, + { + "start": 2167.62, + "end": 2174.36, + "probability": 0.9926 + }, + { + "start": 2174.56, + "end": 2175.52, + "probability": 0.5036 + }, + { + "start": 2175.9, + "end": 2176.5, + "probability": 0.8869 + }, + { + "start": 2178.32, + "end": 2182.72, + "probability": 0.9902 + }, + { + "start": 2182.72, + "end": 2186.02, + "probability": 0.9852 + }, + { + "start": 2186.86, + "end": 2191.34, + "probability": 0.9399 + }, + { + "start": 2191.42, + "end": 2191.72, + "probability": 0.4764 + }, + { + "start": 2191.82, + "end": 2192.22, + "probability": 0.8727 + }, + { + "start": 2192.32, + "end": 2194.4, + "probability": 0.8987 + }, + { + "start": 2195.26, + "end": 2196.56, + "probability": 0.8608 + }, + { + "start": 2196.66, + "end": 2201.12, + "probability": 0.9903 + }, + { + "start": 2202.16, + "end": 2202.7, + "probability": 0.9333 + }, + { + "start": 2202.96, + "end": 2207.62, + "probability": 0.9302 + }, + { + "start": 2207.98, + "end": 2209.42, + "probability": 0.7175 + }, + { + "start": 2210.18, + "end": 2213.24, + "probability": 0.9976 + }, + { + "start": 2213.88, + "end": 2216.4, + "probability": 0.9254 + }, + { + "start": 2217.04, + "end": 2220.5, + "probability": 0.9863 + }, + { + "start": 2220.66, + "end": 2222.4, + "probability": 0.9875 + }, + { + "start": 2223.74, + "end": 2224.86, + "probability": 0.8682 + }, + { + "start": 2225.1, + "end": 2225.56, + "probability": 0.6347 + }, + { + "start": 2225.72, + "end": 2227.58, + "probability": 0.8488 + }, + { + "start": 2227.66, + "end": 2231.8, + "probability": 0.989 + }, + { + "start": 2232.0, + "end": 2233.3, + "probability": 0.9871 + }, + { + "start": 2233.38, + "end": 2235.9, + "probability": 0.9825 + }, + { + "start": 2236.12, + "end": 2238.34, + "probability": 0.9915 + }, + { + "start": 2238.9, + "end": 2239.76, + "probability": 0.9805 + }, + { + "start": 2240.0, + "end": 2242.6, + "probability": 0.8358 + }, + { + "start": 2242.7, + "end": 2246.74, + "probability": 0.9916 + }, + { + "start": 2247.32, + "end": 2249.82, + "probability": 0.8817 + }, + { + "start": 2250.42, + "end": 2253.49, + "probability": 0.9785 + }, + { + "start": 2253.54, + "end": 2258.52, + "probability": 0.9904 + }, + { + "start": 2258.68, + "end": 2263.56, + "probability": 0.9711 + }, + { + "start": 2263.56, + "end": 2271.62, + "probability": 0.9927 + }, + { + "start": 2272.56, + "end": 2273.22, + "probability": 0.9653 + }, + { + "start": 2274.58, + "end": 2277.06, + "probability": 0.6614 + }, + { + "start": 2277.26, + "end": 2277.58, + "probability": 0.3512 + }, + { + "start": 2277.62, + "end": 2280.02, + "probability": 0.9377 + }, + { + "start": 2281.26, + "end": 2283.56, + "probability": 0.9695 + }, + { + "start": 2284.1, + "end": 2290.17, + "probability": 0.9637 + }, + { + "start": 2291.46, + "end": 2294.6, + "probability": 0.9932 + }, + { + "start": 2294.72, + "end": 2295.2, + "probability": 0.6788 + }, + { + "start": 2295.26, + "end": 2296.34, + "probability": 0.894 + }, + { + "start": 2296.46, + "end": 2298.68, + "probability": 0.6333 + }, + { + "start": 2299.12, + "end": 2300.22, + "probability": 0.954 + }, + { + "start": 2300.4, + "end": 2306.4, + "probability": 0.9512 + }, + { + "start": 2306.4, + "end": 2309.72, + "probability": 0.9933 + }, + { + "start": 2311.44, + "end": 2313.7, + "probability": 0.9897 + }, + { + "start": 2313.7, + "end": 2317.8, + "probability": 0.9877 + }, + { + "start": 2318.02, + "end": 2318.52, + "probability": 0.7677 + }, + { + "start": 2318.9, + "end": 2323.83, + "probability": 0.8802 + }, + { + "start": 2323.9, + "end": 2328.26, + "probability": 0.9893 + }, + { + "start": 2328.96, + "end": 2330.7, + "probability": 0.7632 + }, + { + "start": 2331.56, + "end": 2336.42, + "probability": 0.9725 + }, + { + "start": 2336.92, + "end": 2341.06, + "probability": 0.9232 + }, + { + "start": 2341.62, + "end": 2346.96, + "probability": 0.9882 + }, + { + "start": 2347.34, + "end": 2350.88, + "probability": 0.9983 + }, + { + "start": 2351.4, + "end": 2356.89, + "probability": 0.8114 + }, + { + "start": 2357.84, + "end": 2358.68, + "probability": 0.2821 + }, + { + "start": 2359.4, + "end": 2362.94, + "probability": 0.9854 + }, + { + "start": 2363.16, + "end": 2367.08, + "probability": 0.9942 + }, + { + "start": 2367.08, + "end": 2371.54, + "probability": 0.9802 + }, + { + "start": 2372.8, + "end": 2373.48, + "probability": 0.7405 + }, + { + "start": 2373.62, + "end": 2374.3, + "probability": 0.6591 + }, + { + "start": 2374.42, + "end": 2377.46, + "probability": 0.8924 + }, + { + "start": 2378.14, + "end": 2381.94, + "probability": 0.9908 + }, + { + "start": 2381.94, + "end": 2386.8, + "probability": 0.9953 + }, + { + "start": 2387.64, + "end": 2390.4, + "probability": 0.8307 + }, + { + "start": 2390.4, + "end": 2394.78, + "probability": 0.9664 + }, + { + "start": 2394.9, + "end": 2396.86, + "probability": 0.6915 + }, + { + "start": 2397.74, + "end": 2399.74, + "probability": 0.7367 + }, + { + "start": 2400.04, + "end": 2400.58, + "probability": 0.5636 + }, + { + "start": 2400.74, + "end": 2403.88, + "probability": 0.9875 + }, + { + "start": 2403.88, + "end": 2407.21, + "probability": 0.9984 + }, + { + "start": 2408.4, + "end": 2411.14, + "probability": 0.9583 + }, + { + "start": 2411.74, + "end": 2415.06, + "probability": 0.9753 + }, + { + "start": 2415.52, + "end": 2419.74, + "probability": 0.8239 + }, + { + "start": 2419.82, + "end": 2424.58, + "probability": 0.9581 + }, + { + "start": 2424.62, + "end": 2428.08, + "probability": 0.9377 + }, + { + "start": 2428.08, + "end": 2433.06, + "probability": 0.9966 + }, + { + "start": 2433.82, + "end": 2433.96, + "probability": 0.2595 + }, + { + "start": 2433.96, + "end": 2434.66, + "probability": 0.5689 + }, + { + "start": 2434.72, + "end": 2438.41, + "probability": 0.9727 + }, + { + "start": 2438.58, + "end": 2442.64, + "probability": 0.9973 + }, + { + "start": 2442.88, + "end": 2443.16, + "probability": 0.7235 + }, + { + "start": 2443.56, + "end": 2446.04, + "probability": 0.8017 + }, + { + "start": 2446.24, + "end": 2449.6, + "probability": 0.8069 + }, + { + "start": 2450.32, + "end": 2452.74, + "probability": 0.5166 + }, + { + "start": 2453.8, + "end": 2456.14, + "probability": 0.8462 + }, + { + "start": 2456.9, + "end": 2458.02, + "probability": 0.9971 + }, + { + "start": 2458.66, + "end": 2460.28, + "probability": 0.9742 + }, + { + "start": 2460.96, + "end": 2464.32, + "probability": 0.9916 + }, + { + "start": 2464.32, + "end": 2468.16, + "probability": 0.9839 + }, + { + "start": 2468.84, + "end": 2472.66, + "probability": 0.4089 + }, + { + "start": 2472.66, + "end": 2478.1, + "probability": 0.9865 + }, + { + "start": 2478.3, + "end": 2481.78, + "probability": 0.7776 + }, + { + "start": 2481.88, + "end": 2482.1, + "probability": 0.5223 + }, + { + "start": 2482.76, + "end": 2483.68, + "probability": 0.8389 + }, + { + "start": 2483.72, + "end": 2484.58, + "probability": 0.7472 + }, + { + "start": 2486.98, + "end": 2486.98, + "probability": 0.0614 + }, + { + "start": 2486.98, + "end": 2488.3, + "probability": 0.6718 + }, + { + "start": 2489.04, + "end": 2491.16, + "probability": 0.9951 + }, + { + "start": 2492.06, + "end": 2497.74, + "probability": 0.9966 + }, + { + "start": 2498.44, + "end": 2502.4, + "probability": 0.8968 + }, + { + "start": 2502.89, + "end": 2505.6, + "probability": 0.9211 + }, + { + "start": 2506.02, + "end": 2506.2, + "probability": 0.5487 + }, + { + "start": 2508.8, + "end": 2510.4, + "probability": 0.5345 + }, + { + "start": 2510.52, + "end": 2513.0, + "probability": 0.5461 + }, + { + "start": 2522.8, + "end": 2524.86, + "probability": 0.8906 + }, + { + "start": 2525.78, + "end": 2526.32, + "probability": 0.6523 + }, + { + "start": 2526.7, + "end": 2527.06, + "probability": 0.4312 + }, + { + "start": 2527.1, + "end": 2527.9, + "probability": 0.6667 + }, + { + "start": 2528.06, + "end": 2528.8, + "probability": 0.8934 + }, + { + "start": 2528.94, + "end": 2538.26, + "probability": 0.9915 + }, + { + "start": 2538.5, + "end": 2542.9, + "probability": 0.9863 + }, + { + "start": 2543.42, + "end": 2547.76, + "probability": 0.9958 + }, + { + "start": 2547.94, + "end": 2551.18, + "probability": 0.9624 + }, + { + "start": 2551.28, + "end": 2552.9, + "probability": 0.9138 + }, + { + "start": 2553.92, + "end": 2558.04, + "probability": 0.9452 + }, + { + "start": 2559.06, + "end": 2559.7, + "probability": 0.8429 + }, + { + "start": 2559.86, + "end": 2560.52, + "probability": 0.8283 + }, + { + "start": 2560.62, + "end": 2562.08, + "probability": 0.9377 + }, + { + "start": 2562.2, + "end": 2564.6, + "probability": 0.9424 + }, + { + "start": 2565.66, + "end": 2570.5, + "probability": 0.891 + }, + { + "start": 2570.62, + "end": 2571.64, + "probability": 0.6661 + }, + { + "start": 2572.2, + "end": 2576.08, + "probability": 0.6579 + }, + { + "start": 2576.08, + "end": 2578.62, + "probability": 0.7779 + }, + { + "start": 2579.2, + "end": 2581.94, + "probability": 0.9274 + }, + { + "start": 2582.42, + "end": 2584.76, + "probability": 0.9788 + }, + { + "start": 2584.76, + "end": 2587.34, + "probability": 0.9915 + }, + { + "start": 2588.12, + "end": 2594.3, + "probability": 0.9925 + }, + { + "start": 2594.64, + "end": 2596.16, + "probability": 0.4752 + }, + { + "start": 2596.18, + "end": 2596.86, + "probability": 0.7 + }, + { + "start": 2597.5, + "end": 2599.19, + "probability": 0.7356 + }, + { + "start": 2601.04, + "end": 2602.52, + "probability": 0.6505 + }, + { + "start": 2603.04, + "end": 2607.22, + "probability": 0.9946 + }, + { + "start": 2607.66, + "end": 2612.18, + "probability": 0.9973 + }, + { + "start": 2612.58, + "end": 2616.0, + "probability": 0.9901 + }, + { + "start": 2616.52, + "end": 2617.64, + "probability": 0.7369 + }, + { + "start": 2618.26, + "end": 2624.48, + "probability": 0.9911 + }, + { + "start": 2624.68, + "end": 2625.18, + "probability": 0.661 + }, + { + "start": 2625.45, + "end": 2627.7, + "probability": 0.399 + }, + { + "start": 2628.28, + "end": 2631.34, + "probability": 0.9917 + }, + { + "start": 2631.34, + "end": 2634.36, + "probability": 0.9968 + }, + { + "start": 2634.44, + "end": 2635.14, + "probability": 0.8451 + }, + { + "start": 2635.2, + "end": 2635.84, + "probability": 0.7535 + }, + { + "start": 2636.26, + "end": 2639.26, + "probability": 0.7497 + }, + { + "start": 2639.76, + "end": 2640.71, + "probability": 0.8833 + }, + { + "start": 2641.04, + "end": 2643.06, + "probability": 0.998 + }, + { + "start": 2643.34, + "end": 2645.92, + "probability": 0.9963 + }, + { + "start": 2646.16, + "end": 2646.34, + "probability": 0.688 + }, + { + "start": 2646.44, + "end": 2648.2, + "probability": 0.981 + }, + { + "start": 2648.54, + "end": 2651.34, + "probability": 0.8132 + }, + { + "start": 2651.6, + "end": 2652.94, + "probability": 0.8979 + }, + { + "start": 2653.66, + "end": 2658.62, + "probability": 0.9972 + }, + { + "start": 2660.04, + "end": 2660.32, + "probability": 0.4849 + }, + { + "start": 2660.42, + "end": 2661.92, + "probability": 0.9574 + }, + { + "start": 2662.1, + "end": 2664.0, + "probability": 0.9637 + }, + { + "start": 2664.04, + "end": 2667.38, + "probability": 0.9838 + }, + { + "start": 2668.02, + "end": 2669.74, + "probability": 0.9288 + }, + { + "start": 2671.64, + "end": 2675.5, + "probability": 0.9979 + }, + { + "start": 2676.04, + "end": 2681.24, + "probability": 0.9853 + }, + { + "start": 2681.24, + "end": 2688.62, + "probability": 0.994 + }, + { + "start": 2689.4, + "end": 2694.22, + "probability": 0.7676 + }, + { + "start": 2694.44, + "end": 2695.1, + "probability": 0.6658 + }, + { + "start": 2695.2, + "end": 2696.32, + "probability": 0.9192 + }, + { + "start": 2696.8, + "end": 2703.08, + "probability": 0.9897 + }, + { + "start": 2703.18, + "end": 2705.62, + "probability": 0.9837 + }, + { + "start": 2705.62, + "end": 2709.82, + "probability": 0.9949 + }, + { + "start": 2710.38, + "end": 2711.3, + "probability": 0.8233 + }, + { + "start": 2711.42, + "end": 2713.34, + "probability": 0.9893 + }, + { + "start": 2713.56, + "end": 2714.3, + "probability": 0.5144 + }, + { + "start": 2714.74, + "end": 2715.4, + "probability": 0.7423 + }, + { + "start": 2716.11, + "end": 2720.24, + "probability": 0.9112 + }, + { + "start": 2720.44, + "end": 2728.08, + "probability": 0.9819 + }, + { + "start": 2728.22, + "end": 2730.58, + "probability": 0.7628 + }, + { + "start": 2730.58, + "end": 2733.74, + "probability": 0.9991 + }, + { + "start": 2734.34, + "end": 2737.9, + "probability": 0.9969 + }, + { + "start": 2737.96, + "end": 2740.64, + "probability": 0.934 + }, + { + "start": 2740.94, + "end": 2742.18, + "probability": 0.8313 + }, + { + "start": 2742.18, + "end": 2743.92, + "probability": 0.9975 + }, + { + "start": 2744.89, + "end": 2750.7, + "probability": 0.9969 + }, + { + "start": 2751.2, + "end": 2753.3, + "probability": 0.4986 + }, + { + "start": 2753.86, + "end": 2754.3, + "probability": 0.8621 + }, + { + "start": 2754.8, + "end": 2759.56, + "probability": 0.988 + }, + { + "start": 2760.02, + "end": 2762.74, + "probability": 0.9837 + }, + { + "start": 2763.24, + "end": 2763.8, + "probability": 0.9659 + }, + { + "start": 2764.12, + "end": 2764.67, + "probability": 0.947 + }, + { + "start": 2765.04, + "end": 2769.3, + "probability": 0.998 + }, + { + "start": 2769.3, + "end": 2774.12, + "probability": 0.9921 + }, + { + "start": 2774.32, + "end": 2776.4, + "probability": 0.9983 + }, + { + "start": 2776.48, + "end": 2780.44, + "probability": 0.9946 + }, + { + "start": 2780.92, + "end": 2783.42, + "probability": 0.9255 + }, + { + "start": 2784.32, + "end": 2788.62, + "probability": 0.9987 + }, + { + "start": 2789.16, + "end": 2795.22, + "probability": 0.9953 + }, + { + "start": 2795.92, + "end": 2798.76, + "probability": 0.9907 + }, + { + "start": 2800.2, + "end": 2804.8, + "probability": 0.9963 + }, + { + "start": 2806.02, + "end": 2806.36, + "probability": 0.5295 + }, + { + "start": 2806.66, + "end": 2811.26, + "probability": 0.974 + }, + { + "start": 2811.92, + "end": 2814.78, + "probability": 0.9812 + }, + { + "start": 2815.38, + "end": 2818.9, + "probability": 0.9937 + }, + { + "start": 2819.36, + "end": 2823.14, + "probability": 0.9659 + }, + { + "start": 2823.68, + "end": 2828.5, + "probability": 0.9983 + }, + { + "start": 2828.74, + "end": 2830.84, + "probability": 0.9207 + }, + { + "start": 2831.06, + "end": 2834.66, + "probability": 0.8879 + }, + { + "start": 2835.58, + "end": 2838.6, + "probability": 0.8326 + }, + { + "start": 2839.5, + "end": 2842.08, + "probability": 0.9971 + }, + { + "start": 2842.38, + "end": 2845.62, + "probability": 0.9598 + }, + { + "start": 2845.94, + "end": 2847.02, + "probability": 0.9367 + }, + { + "start": 2847.06, + "end": 2848.28, + "probability": 0.8234 + }, + { + "start": 2848.98, + "end": 2857.46, + "probability": 0.9709 + }, + { + "start": 2858.04, + "end": 2864.19, + "probability": 0.9878 + }, + { + "start": 2864.56, + "end": 2865.64, + "probability": 0.6862 + }, + { + "start": 2866.0, + "end": 2867.78, + "probability": 0.861 + }, + { + "start": 2868.5, + "end": 2869.78, + "probability": 0.8916 + }, + { + "start": 2869.94, + "end": 2873.46, + "probability": 0.8481 + }, + { + "start": 2873.96, + "end": 2877.12, + "probability": 0.7329 + }, + { + "start": 2877.82, + "end": 2881.84, + "probability": 0.912 + }, + { + "start": 2882.34, + "end": 2883.83, + "probability": 0.9807 + }, + { + "start": 2884.0, + "end": 2889.74, + "probability": 0.9889 + }, + { + "start": 2891.08, + "end": 2894.76, + "probability": 0.9497 + }, + { + "start": 2894.88, + "end": 2895.12, + "probability": 0.7538 + }, + { + "start": 2895.18, + "end": 2899.88, + "probability": 0.7887 + }, + { + "start": 2899.88, + "end": 2902.98, + "probability": 0.8901 + }, + { + "start": 2903.74, + "end": 2907.38, + "probability": 0.9917 + }, + { + "start": 2907.38, + "end": 2910.58, + "probability": 0.9566 + }, + { + "start": 2911.48, + "end": 2916.76, + "probability": 0.6697 + }, + { + "start": 2917.24, + "end": 2917.46, + "probability": 0.514 + }, + { + "start": 2917.8, + "end": 2921.6, + "probability": 0.959 + }, + { + "start": 2921.74, + "end": 2922.82, + "probability": 0.6994 + }, + { + "start": 2923.06, + "end": 2927.42, + "probability": 0.7508 + }, + { + "start": 2927.76, + "end": 2928.38, + "probability": 0.8676 + }, + { + "start": 2929.68, + "end": 2931.6, + "probability": 0.9438 + }, + { + "start": 2933.58, + "end": 2937.46, + "probability": 0.8925 + }, + { + "start": 2937.46, + "end": 2939.0, + "probability": 0.7401 + }, + { + "start": 2939.16, + "end": 2940.58, + "probability": 0.5755 + }, + { + "start": 2941.12, + "end": 2944.78, + "probability": 0.861 + }, + { + "start": 2945.3, + "end": 2948.72, + "probability": 0.8901 + }, + { + "start": 2949.34, + "end": 2953.28, + "probability": 0.9688 + }, + { + "start": 2956.72, + "end": 2958.34, + "probability": 0.9449 + }, + { + "start": 2963.84, + "end": 2965.44, + "probability": 0.5953 + }, + { + "start": 2966.42, + "end": 2967.92, + "probability": 0.8917 + }, + { + "start": 2969.22, + "end": 2970.04, + "probability": 0.8255 + }, + { + "start": 2970.14, + "end": 2973.22, + "probability": 0.8754 + }, + { + "start": 2974.02, + "end": 2976.58, + "probability": 0.675 + }, + { + "start": 2977.57, + "end": 2981.62, + "probability": 0.9927 + }, + { + "start": 2983.04, + "end": 2983.84, + "probability": 0.444 + }, + { + "start": 2983.98, + "end": 2984.64, + "probability": 0.934 + }, + { + "start": 2985.36, + "end": 2988.06, + "probability": 0.9958 + }, + { + "start": 2988.22, + "end": 2991.74, + "probability": 0.9844 + }, + { + "start": 2993.4, + "end": 3000.08, + "probability": 0.7484 + }, + { + "start": 3000.78, + "end": 3002.93, + "probability": 0.9204 + }, + { + "start": 3003.08, + "end": 3005.14, + "probability": 0.9958 + }, + { + "start": 3005.96, + "end": 3008.52, + "probability": 0.92 + }, + { + "start": 3009.2, + "end": 3010.34, + "probability": 0.9728 + }, + { + "start": 3011.42, + "end": 3015.72, + "probability": 0.9844 + }, + { + "start": 3016.02, + "end": 3017.45, + "probability": 0.2532 + }, + { + "start": 3019.36, + "end": 3023.58, + "probability": 0.973 + }, + { + "start": 3024.4, + "end": 3025.62, + "probability": 0.8134 + }, + { + "start": 3026.58, + "end": 3027.98, + "probability": 0.9386 + }, + { + "start": 3029.18, + "end": 3031.08, + "probability": 0.9697 + }, + { + "start": 3032.6, + "end": 3036.44, + "probability": 0.9966 + }, + { + "start": 3037.36, + "end": 3041.04, + "probability": 0.991 + }, + { + "start": 3042.18, + "end": 3045.02, + "probability": 0.9978 + }, + { + "start": 3046.3, + "end": 3047.62, + "probability": 0.9995 + }, + { + "start": 3048.48, + "end": 3053.18, + "probability": 0.9983 + }, + { + "start": 3053.18, + "end": 3056.6, + "probability": 0.9934 + }, + { + "start": 3057.3, + "end": 3058.68, + "probability": 0.8205 + }, + { + "start": 3059.46, + "end": 3060.56, + "probability": 0.489 + }, + { + "start": 3061.9, + "end": 3063.68, + "probability": 0.8571 + }, + { + "start": 3064.82, + "end": 3068.44, + "probability": 0.9931 + }, + { + "start": 3068.66, + "end": 3070.0, + "probability": 0.5568 + }, + { + "start": 3070.82, + "end": 3072.06, + "probability": 0.5859 + }, + { + "start": 3072.1, + "end": 3073.0, + "probability": 0.8492 + }, + { + "start": 3073.44, + "end": 3074.16, + "probability": 0.6781 + }, + { + "start": 3074.22, + "end": 3075.62, + "probability": 0.6258 + }, + { + "start": 3075.62, + "end": 3077.28, + "probability": 0.7751 + }, + { + "start": 3077.38, + "end": 3078.1, + "probability": 0.7753 + }, + { + "start": 3078.24, + "end": 3080.32, + "probability": 0.9159 + }, + { + "start": 3080.44, + "end": 3083.48, + "probability": 0.828 + }, + { + "start": 3084.12, + "end": 3085.64, + "probability": 0.9995 + }, + { + "start": 3086.78, + "end": 3087.54, + "probability": 0.6927 + }, + { + "start": 3088.76, + "end": 3091.04, + "probability": 0.9939 + }, + { + "start": 3091.1, + "end": 3093.08, + "probability": 0.9902 + }, + { + "start": 3094.06, + "end": 3096.56, + "probability": 0.9053 + }, + { + "start": 3097.7, + "end": 3099.44, + "probability": 0.9983 + }, + { + "start": 3100.74, + "end": 3101.72, + "probability": 0.8752 + }, + { + "start": 3101.82, + "end": 3102.58, + "probability": 0.8764 + }, + { + "start": 3103.04, + "end": 3103.54, + "probability": 0.707 + }, + { + "start": 3104.04, + "end": 3106.22, + "probability": 0.9353 + }, + { + "start": 3107.62, + "end": 3113.88, + "probability": 0.9196 + }, + { + "start": 3113.88, + "end": 3118.26, + "probability": 0.854 + }, + { + "start": 3119.28, + "end": 3121.7, + "probability": 0.7118 + }, + { + "start": 3121.78, + "end": 3123.08, + "probability": 0.9747 + }, + { + "start": 3123.1, + "end": 3123.48, + "probability": 0.4242 + }, + { + "start": 3124.14, + "end": 3127.66, + "probability": 0.8176 + }, + { + "start": 3127.7, + "end": 3131.38, + "probability": 0.986 + }, + { + "start": 3131.46, + "end": 3133.08, + "probability": 0.8466 + }, + { + "start": 3133.58, + "end": 3133.93, + "probability": 0.6355 + }, + { + "start": 3134.46, + "end": 3135.09, + "probability": 0.9946 + }, + { + "start": 3135.8, + "end": 3139.12, + "probability": 0.8438 + }, + { + "start": 3140.08, + "end": 3141.06, + "probability": 0.9314 + }, + { + "start": 3141.58, + "end": 3144.28, + "probability": 0.9626 + }, + { + "start": 3144.68, + "end": 3145.08, + "probability": 0.8992 + }, + { + "start": 3145.68, + "end": 3147.66, + "probability": 0.9964 + }, + { + "start": 3148.48, + "end": 3153.64, + "probability": 0.8179 + }, + { + "start": 3154.59, + "end": 3157.06, + "probability": 0.7886 + }, + { + "start": 3157.18, + "end": 3159.08, + "probability": 0.8956 + }, + { + "start": 3160.2, + "end": 3164.98, + "probability": 0.9933 + }, + { + "start": 3165.03, + "end": 3167.92, + "probability": 0.9895 + }, + { + "start": 3167.98, + "end": 3168.6, + "probability": 0.8228 + }, + { + "start": 3168.7, + "end": 3169.48, + "probability": 0.9419 + }, + { + "start": 3169.58, + "end": 3170.24, + "probability": 0.7465 + }, + { + "start": 3170.86, + "end": 3176.0, + "probability": 0.9798 + }, + { + "start": 3176.0, + "end": 3180.46, + "probability": 0.9882 + }, + { + "start": 3180.64, + "end": 3181.34, + "probability": 0.8557 + }, + { + "start": 3182.3, + "end": 3184.53, + "probability": 0.991 + }, + { + "start": 3185.02, + "end": 3185.64, + "probability": 0.8659 + }, + { + "start": 3186.38, + "end": 3187.62, + "probability": 0.9963 + }, + { + "start": 3188.52, + "end": 3191.62, + "probability": 0.7647 + }, + { + "start": 3193.07, + "end": 3198.6, + "probability": 0.9897 + }, + { + "start": 3199.14, + "end": 3201.0, + "probability": 0.0195 + }, + { + "start": 3201.26, + "end": 3201.42, + "probability": 0.0751 + }, + { + "start": 3201.78, + "end": 3201.82, + "probability": 0.8164 + }, + { + "start": 3202.7, + "end": 3209.08, + "probability": 0.9978 + }, + { + "start": 3209.98, + "end": 3215.27, + "probability": 0.8903 + }, + { + "start": 3216.32, + "end": 3218.01, + "probability": 0.998 + }, + { + "start": 3218.84, + "end": 3223.64, + "probability": 0.9932 + }, + { + "start": 3224.38, + "end": 3224.58, + "probability": 0.3767 + }, + { + "start": 3224.6, + "end": 3225.58, + "probability": 0.5273 + }, + { + "start": 3225.7, + "end": 3228.14, + "probability": 0.7237 + }, + { + "start": 3228.26, + "end": 3229.3, + "probability": 0.8196 + }, + { + "start": 3230.26, + "end": 3231.7, + "probability": 0.4205 + }, + { + "start": 3234.29, + "end": 3236.36, + "probability": 0.169 + }, + { + "start": 3236.36, + "end": 3236.36, + "probability": 0.0876 + }, + { + "start": 3236.36, + "end": 3236.36, + "probability": 0.1308 + }, + { + "start": 3236.36, + "end": 3238.22, + "probability": 0.5844 + }, + { + "start": 3238.72, + "end": 3240.52, + "probability": 0.8891 + }, + { + "start": 3241.14, + "end": 3243.5, + "probability": 0.9705 + }, + { + "start": 3244.32, + "end": 3244.8, + "probability": 0.7991 + }, + { + "start": 3245.08, + "end": 3246.28, + "probability": 0.9893 + }, + { + "start": 3246.84, + "end": 3247.14, + "probability": 0.521 + }, + { + "start": 3247.24, + "end": 3247.98, + "probability": 0.8423 + }, + { + "start": 3248.08, + "end": 3249.82, + "probability": 0.9736 + }, + { + "start": 3251.81, + "end": 3253.18, + "probability": 0.8203 + }, + { + "start": 3253.36, + "end": 3254.96, + "probability": 0.6346 + }, + { + "start": 3255.52, + "end": 3256.28, + "probability": 0.8667 + }, + { + "start": 3256.44, + "end": 3257.02, + "probability": 0.8068 + }, + { + "start": 3257.22, + "end": 3258.74, + "probability": 0.9797 + }, + { + "start": 3259.38, + "end": 3261.12, + "probability": 0.888 + }, + { + "start": 3261.64, + "end": 3262.96, + "probability": 0.9801 + }, + { + "start": 3263.88, + "end": 3265.3, + "probability": 0.981 + }, + { + "start": 3266.6, + "end": 3270.38, + "probability": 0.8901 + }, + { + "start": 3270.42, + "end": 3271.6, + "probability": 0.9707 + }, + { + "start": 3272.08, + "end": 3273.06, + "probability": 0.9117 + }, + { + "start": 3273.28, + "end": 3274.64, + "probability": 0.8281 + }, + { + "start": 3275.14, + "end": 3277.2, + "probability": 0.9724 + }, + { + "start": 3277.76, + "end": 3281.46, + "probability": 0.9888 + }, + { + "start": 3282.1, + "end": 3285.02, + "probability": 0.9847 + }, + { + "start": 3285.02, + "end": 3288.22, + "probability": 0.9938 + }, + { + "start": 3288.4, + "end": 3290.74, + "probability": 0.9871 + }, + { + "start": 3291.2, + "end": 3292.18, + "probability": 0.6289 + }, + { + "start": 3292.86, + "end": 3293.52, + "probability": 0.6808 + }, + { + "start": 3294.04, + "end": 3295.18, + "probability": 0.8428 + }, + { + "start": 3295.28, + "end": 3298.82, + "probability": 0.9729 + }, + { + "start": 3298.9, + "end": 3301.62, + "probability": 0.9982 + }, + { + "start": 3302.52, + "end": 3303.78, + "probability": 0.9634 + }, + { + "start": 3304.7, + "end": 3307.76, + "probability": 0.7798 + }, + { + "start": 3307.92, + "end": 3310.02, + "probability": 0.9973 + }, + { + "start": 3310.22, + "end": 3311.76, + "probability": 0.9285 + }, + { + "start": 3312.36, + "end": 3315.48, + "probability": 0.9101 + }, + { + "start": 3316.56, + "end": 3319.16, + "probability": 0.896 + }, + { + "start": 3319.16, + "end": 3323.5, + "probability": 0.9651 + }, + { + "start": 3324.64, + "end": 3325.28, + "probability": 0.677 + }, + { + "start": 3326.72, + "end": 3328.4, + "probability": 0.904 + }, + { + "start": 3328.4, + "end": 3330.8, + "probability": 0.9821 + }, + { + "start": 3330.86, + "end": 3331.62, + "probability": 0.6951 + }, + { + "start": 3331.68, + "end": 3332.42, + "probability": 0.9094 + }, + { + "start": 3332.94, + "end": 3334.72, + "probability": 0.957 + }, + { + "start": 3335.12, + "end": 3336.22, + "probability": 0.9008 + }, + { + "start": 3336.34, + "end": 3337.76, + "probability": 0.9668 + }, + { + "start": 3338.36, + "end": 3339.65, + "probability": 0.8351 + }, + { + "start": 3341.02, + "end": 3342.46, + "probability": 0.7881 + }, + { + "start": 3343.74, + "end": 3343.94, + "probability": 0.5982 + }, + { + "start": 3344.04, + "end": 3347.36, + "probability": 0.9484 + }, + { + "start": 3347.42, + "end": 3347.9, + "probability": 0.4329 + }, + { + "start": 3347.98, + "end": 3348.58, + "probability": 0.7617 + }, + { + "start": 3349.32, + "end": 3350.52, + "probability": 0.6948 + }, + { + "start": 3350.84, + "end": 3351.26, + "probability": 0.647 + }, + { + "start": 3351.26, + "end": 3351.26, + "probability": 0.652 + }, + { + "start": 3351.4, + "end": 3352.08, + "probability": 0.707 + }, + { + "start": 3352.22, + "end": 3353.36, + "probability": 0.972 + }, + { + "start": 3353.63, + "end": 3356.52, + "probability": 0.791 + }, + { + "start": 3356.52, + "end": 3357.68, + "probability": 0.7767 + }, + { + "start": 3358.94, + "end": 3360.64, + "probability": 0.9738 + }, + { + "start": 3360.78, + "end": 3363.8, + "probability": 0.9714 + }, + { + "start": 3364.44, + "end": 3367.39, + "probability": 0.9632 + }, + { + "start": 3368.0, + "end": 3368.5, + "probability": 0.856 + }, + { + "start": 3368.62, + "end": 3369.34, + "probability": 0.6961 + }, + { + "start": 3369.54, + "end": 3371.84, + "probability": 0.988 + }, + { + "start": 3372.62, + "end": 3376.74, + "probability": 0.9388 + }, + { + "start": 3376.9, + "end": 3377.46, + "probability": 0.7163 + }, + { + "start": 3377.94, + "end": 3378.88, + "probability": 0.9792 + }, + { + "start": 3379.48, + "end": 3384.28, + "probability": 0.9702 + }, + { + "start": 3385.4, + "end": 3388.66, + "probability": 0.7146 + }, + { + "start": 3388.68, + "end": 3390.42, + "probability": 0.8969 + }, + { + "start": 3391.42, + "end": 3393.84, + "probability": 0.9567 + }, + { + "start": 3394.3, + "end": 3395.8, + "probability": 0.1216 + }, + { + "start": 3398.06, + "end": 3398.06, + "probability": 0.0981 + }, + { + "start": 3398.06, + "end": 3398.06, + "probability": 0.0236 + }, + { + "start": 3398.06, + "end": 3398.06, + "probability": 0.3996 + }, + { + "start": 3398.06, + "end": 3398.06, + "probability": 0.2593 + }, + { + "start": 3398.06, + "end": 3398.4, + "probability": 0.2815 + }, + { + "start": 3398.4, + "end": 3399.12, + "probability": 0.9165 + }, + { + "start": 3399.96, + "end": 3403.8, + "probability": 0.6494 + }, + { + "start": 3403.8, + "end": 3405.46, + "probability": 0.7502 + }, + { + "start": 3406.16, + "end": 3408.5, + "probability": 0.9082 + }, + { + "start": 3409.58, + "end": 3409.7, + "probability": 0.2878 + }, + { + "start": 3411.6, + "end": 3412.9, + "probability": 0.0221 + }, + { + "start": 3418.2, + "end": 3418.64, + "probability": 0.1753 + }, + { + "start": 3419.46, + "end": 3420.32, + "probability": 0.2173 + }, + { + "start": 3436.34, + "end": 3437.82, + "probability": 0.2879 + }, + { + "start": 3445.6, + "end": 3446.44, + "probability": 0.0365 + }, + { + "start": 3446.48, + "end": 3448.76, + "probability": 0.2295 + }, + { + "start": 3450.88, + "end": 3452.56, + "probability": 0.0169 + }, + { + "start": 3452.56, + "end": 3452.64, + "probability": 0.0133 + }, + { + "start": 3464.81, + "end": 3474.58, + "probability": 0.381 + }, + { + "start": 3474.68, + "end": 3480.32, + "probability": 0.7254 + }, + { + "start": 3480.82, + "end": 3484.1, + "probability": 0.7897 + }, + { + "start": 3484.56, + "end": 3485.66, + "probability": 0.7019 + }, + { + "start": 3486.32, + "end": 3487.98, + "probability": 0.6313 + }, + { + "start": 3490.06, + "end": 3492.97, + "probability": 0.9237 + }, + { + "start": 3498.0, + "end": 3498.32, + "probability": 0.3068 + }, + { + "start": 3498.36, + "end": 3501.06, + "probability": 0.563 + }, + { + "start": 3501.06, + "end": 3503.82, + "probability": 0.992 + }, + { + "start": 3505.0, + "end": 3506.32, + "probability": 0.5497 + }, + { + "start": 3506.34, + "end": 3508.76, + "probability": 0.6268 + }, + { + "start": 3508.76, + "end": 3511.94, + "probability": 0.7065 + }, + { + "start": 3513.08, + "end": 3514.16, + "probability": 0.9663 + }, + { + "start": 3517.62, + "end": 3518.58, + "probability": 0.3206 + }, + { + "start": 3519.14, + "end": 3520.16, + "probability": 0.7129 + }, + { + "start": 3520.56, + "end": 3523.18, + "probability": 0.5401 + }, + { + "start": 3523.92, + "end": 3525.15, + "probability": 0.8531 + }, + { + "start": 3525.24, + "end": 3528.68, + "probability": 0.6877 + }, + { + "start": 3529.4, + "end": 3530.14, + "probability": 0.6142 + }, + { + "start": 3530.32, + "end": 3533.18, + "probability": 0.6557 + }, + { + "start": 3535.38, + "end": 3539.42, + "probability": 0.593 + }, + { + "start": 3539.42, + "end": 3542.62, + "probability": 0.7058 + }, + { + "start": 3544.12, + "end": 3551.19, + "probability": 0.6633 + }, + { + "start": 3551.52, + "end": 3552.2, + "probability": 0.3986 + }, + { + "start": 3553.02, + "end": 3556.88, + "probability": 0.7536 + }, + { + "start": 3557.12, + "end": 3559.4, + "probability": 0.8421 + }, + { + "start": 3559.48, + "end": 3562.84, + "probability": 0.8566 + }, + { + "start": 3563.42, + "end": 3564.14, + "probability": 0.5665 + }, + { + "start": 3564.28, + "end": 3565.74, + "probability": 0.4799 + }, + { + "start": 3566.68, + "end": 3569.44, + "probability": 0.899 + }, + { + "start": 3570.56, + "end": 3571.2, + "probability": 0.9222 + }, + { + "start": 3571.58, + "end": 3576.52, + "probability": 0.8823 + }, + { + "start": 3576.96, + "end": 3577.94, + "probability": 0.8695 + }, + { + "start": 3578.46, + "end": 3580.6, + "probability": 0.9778 + }, + { + "start": 3581.24, + "end": 3584.63, + "probability": 0.9092 + }, + { + "start": 3585.38, + "end": 3585.82, + "probability": 0.3362 + }, + { + "start": 3585.82, + "end": 3587.9, + "probability": 0.7016 + }, + { + "start": 3588.08, + "end": 3589.28, + "probability": 0.4754 + }, + { + "start": 3589.6, + "end": 3593.76, + "probability": 0.8845 + }, + { + "start": 3593.94, + "end": 3594.6, + "probability": 0.5474 + }, + { + "start": 3594.74, + "end": 3595.24, + "probability": 0.146 + }, + { + "start": 3595.24, + "end": 3595.64, + "probability": 0.3695 + }, + { + "start": 3604.18, + "end": 3609.56, + "probability": 0.126 + }, + { + "start": 3609.6, + "end": 3611.05, + "probability": 0.0096 + }, + { + "start": 3614.58, + "end": 3614.58, + "probability": 0.0518 + }, + { + "start": 3614.58, + "end": 3614.98, + "probability": 0.1703 + }, + { + "start": 3615.62, + "end": 3617.4, + "probability": 0.7951 + }, + { + "start": 3617.64, + "end": 3619.82, + "probability": 0.7961 + }, + { + "start": 3619.82, + "end": 3624.24, + "probability": 0.8474 + }, + { + "start": 3626.4, + "end": 3627.24, + "probability": 0.3499 + }, + { + "start": 3627.24, + "end": 3630.18, + "probability": 0.085 + }, + { + "start": 3633.53, + "end": 3635.18, + "probability": 0.0994 + }, + { + "start": 3651.7, + "end": 3652.28, + "probability": 0.0142 + }, + { + "start": 3652.28, + "end": 3655.22, + "probability": 0.749 + }, + { + "start": 3655.32, + "end": 3656.1, + "probability": 0.9843 + }, + { + "start": 3657.06, + "end": 3658.18, + "probability": 0.0834 + }, + { + "start": 3658.18, + "end": 3658.18, + "probability": 0.0452 + }, + { + "start": 3658.18, + "end": 3660.06, + "probability": 0.671 + }, + { + "start": 3660.98, + "end": 3662.6, + "probability": 0.6718 + }, + { + "start": 3663.12, + "end": 3665.32, + "probability": 0.9647 + }, + { + "start": 3665.32, + "end": 3668.22, + "probability": 0.7558 + }, + { + "start": 3668.36, + "end": 3669.22, + "probability": 0.6852 + }, + { + "start": 3669.32, + "end": 3673.36, + "probability": 0.9145 + }, + { + "start": 3674.02, + "end": 3676.2, + "probability": 0.9092 + }, + { + "start": 3676.3, + "end": 3680.35, + "probability": 0.8292 + }, + { + "start": 3681.28, + "end": 3682.04, + "probability": 0.6385 + }, + { + "start": 3682.12, + "end": 3685.9, + "probability": 0.9103 + }, + { + "start": 3685.9, + "end": 3687.06, + "probability": 0.809 + }, + { + "start": 3687.82, + "end": 3687.82, + "probability": 0.0169 + }, + { + "start": 3687.82, + "end": 3689.06, + "probability": 0.3129 + }, + { + "start": 3689.12, + "end": 3691.72, + "probability": 0.9127 + }, + { + "start": 3691.88, + "end": 3694.72, + "probability": 0.8341 + }, + { + "start": 3695.2, + "end": 3697.12, + "probability": 0.9773 + }, + { + "start": 3697.32, + "end": 3699.18, + "probability": 0.9631 + }, + { + "start": 3699.26, + "end": 3700.06, + "probability": 0.16 + }, + { + "start": 3700.66, + "end": 3701.66, + "probability": 0.8679 + }, + { + "start": 3701.8, + "end": 3704.8, + "probability": 0.6733 + }, + { + "start": 3705.02, + "end": 3705.94, + "probability": 0.6691 + }, + { + "start": 3706.36, + "end": 3707.38, + "probability": 0.9561 + }, + { + "start": 3707.4, + "end": 3708.26, + "probability": 0.9679 + }, + { + "start": 3708.36, + "end": 3709.2, + "probability": 0.8966 + }, + { + "start": 3709.48, + "end": 3711.2, + "probability": 0.806 + }, + { + "start": 3711.84, + "end": 3715.42, + "probability": 0.8168 + }, + { + "start": 3715.84, + "end": 3717.3, + "probability": 0.7818 + }, + { + "start": 3717.62, + "end": 3718.7, + "probability": 0.8485 + }, + { + "start": 3718.82, + "end": 3720.98, + "probability": 0.6842 + }, + { + "start": 3721.12, + "end": 3721.32, + "probability": 0.8989 + }, + { + "start": 3722.4, + "end": 3726.62, + "probability": 0.8113 + }, + { + "start": 3726.8, + "end": 3728.2, + "probability": 0.9804 + }, + { + "start": 3728.46, + "end": 3729.2, + "probability": 0.6764 + }, + { + "start": 3729.2, + "end": 3730.8, + "probability": 0.5542 + }, + { + "start": 3730.92, + "end": 3732.38, + "probability": 0.7124 + }, + { + "start": 3733.14, + "end": 3734.7, + "probability": 0.9927 + }, + { + "start": 3734.86, + "end": 3736.26, + "probability": 0.8823 + }, + { + "start": 3736.78, + "end": 3741.0, + "probability": 0.9926 + }, + { + "start": 3741.12, + "end": 3742.22, + "probability": 0.5888 + }, + { + "start": 3742.34, + "end": 3743.48, + "probability": 0.8702 + }, + { + "start": 3743.58, + "end": 3743.7, + "probability": 0.7644 + }, + { + "start": 3744.44, + "end": 3746.02, + "probability": 0.6963 + }, + { + "start": 3746.42, + "end": 3750.72, + "probability": 0.9775 + }, + { + "start": 3751.36, + "end": 3751.78, + "probability": 0.1435 + }, + { + "start": 3751.78, + "end": 3753.62, + "probability": 0.6416 + }, + { + "start": 3753.66, + "end": 3754.82, + "probability": 0.5341 + }, + { + "start": 3755.14, + "end": 3756.78, + "probability": 0.7358 + }, + { + "start": 3756.92, + "end": 3758.5, + "probability": 0.6512 + }, + { + "start": 3759.24, + "end": 3760.62, + "probability": 0.7902 + }, + { + "start": 3762.18, + "end": 3766.2, + "probability": 0.9841 + }, + { + "start": 3767.78, + "end": 3769.92, + "probability": 0.8428 + }, + { + "start": 3770.68, + "end": 3771.58, + "probability": 0.5063 + }, + { + "start": 3772.24, + "end": 3774.73, + "probability": 0.8161 + }, + { + "start": 3777.3, + "end": 3781.62, + "probability": 0.7562 + }, + { + "start": 3782.12, + "end": 3786.7, + "probability": 0.6713 + }, + { + "start": 3787.52, + "end": 3789.68, + "probability": 0.6805 + }, + { + "start": 3790.72, + "end": 3793.82, + "probability": 0.9386 + }, + { + "start": 3794.46, + "end": 3798.92, + "probability": 0.9895 + }, + { + "start": 3799.72, + "end": 3800.32, + "probability": 0.2801 + }, + { + "start": 3801.44, + "end": 3803.28, + "probability": 0.684 + }, + { + "start": 3803.42, + "end": 3810.24, + "probability": 0.9255 + }, + { + "start": 3810.84, + "end": 3817.24, + "probability": 0.918 + }, + { + "start": 3817.86, + "end": 3819.98, + "probability": 0.9422 + }, + { + "start": 3820.04, + "end": 3821.6, + "probability": 0.9329 + }, + { + "start": 3822.24, + "end": 3823.46, + "probability": 0.9749 + }, + { + "start": 3823.66, + "end": 3825.1, + "probability": 0.8779 + }, + { + "start": 3826.42, + "end": 3826.42, + "probability": 0.5233 + }, + { + "start": 3826.42, + "end": 3827.02, + "probability": 0.1872 + }, + { + "start": 3829.26, + "end": 3830.54, + "probability": 0.6843 + }, + { + "start": 3830.83, + "end": 3840.26, + "probability": 0.9689 + }, + { + "start": 3847.54, + "end": 3848.62, + "probability": 0.713 + }, + { + "start": 3849.14, + "end": 3853.56, + "probability": 0.9299 + }, + { + "start": 3855.6, + "end": 3857.12, + "probability": 0.4171 + }, + { + "start": 3858.54, + "end": 3861.24, + "probability": 0.9937 + }, + { + "start": 3862.16, + "end": 3864.58, + "probability": 0.9951 + }, + { + "start": 3865.92, + "end": 3868.08, + "probability": 0.0852 + }, + { + "start": 3868.74, + "end": 3872.24, + "probability": 0.9611 + }, + { + "start": 3873.24, + "end": 3873.94, + "probability": 0.6124 + }, + { + "start": 3875.38, + "end": 3876.66, + "probability": 0.5377 + }, + { + "start": 3877.18, + "end": 3878.12, + "probability": 0.9537 + }, + { + "start": 3879.2, + "end": 3881.72, + "probability": 0.9547 + }, + { + "start": 3882.96, + "end": 3886.28, + "probability": 0.6655 + }, + { + "start": 3890.44, + "end": 3902.52, + "probability": 0.6858 + }, + { + "start": 3903.38, + "end": 3904.36, + "probability": 0.9111 + }, + { + "start": 3905.36, + "end": 3915.4, + "probability": 0.5627 + }, + { + "start": 3916.06, + "end": 3916.52, + "probability": 0.343 + }, + { + "start": 3918.34, + "end": 3920.16, + "probability": 0.7694 + }, + { + "start": 3921.62, + "end": 3926.14, + "probability": 0.9868 + }, + { + "start": 3927.6, + "end": 3929.08, + "probability": 0.743 + }, + { + "start": 3932.4, + "end": 3935.16, + "probability": 0.9901 + }, + { + "start": 3935.7, + "end": 3940.58, + "probability": 0.9824 + }, + { + "start": 3941.5, + "end": 3944.94, + "probability": 0.7471 + }, + { + "start": 3945.44, + "end": 3948.54, + "probability": 0.9545 + }, + { + "start": 3949.22, + "end": 3952.22, + "probability": 0.9243 + }, + { + "start": 3952.78, + "end": 3958.68, + "probability": 0.9199 + }, + { + "start": 3959.68, + "end": 3965.02, + "probability": 0.9526 + }, + { + "start": 3965.5, + "end": 3969.58, + "probability": 0.9708 + }, + { + "start": 3972.1, + "end": 3976.08, + "probability": 0.9307 + }, + { + "start": 3976.38, + "end": 3977.88, + "probability": 0.947 + }, + { + "start": 3978.64, + "end": 3981.14, + "probability": 0.9614 + }, + { + "start": 3981.74, + "end": 3984.36, + "probability": 0.9988 + }, + { + "start": 3984.56, + "end": 3984.86, + "probability": 0.9085 + }, + { + "start": 3985.04, + "end": 3986.66, + "probability": 0.8004 + }, + { + "start": 3987.32, + "end": 3992.74, + "probability": 0.9927 + }, + { + "start": 3993.66, + "end": 3994.4, + "probability": 0.8815 + }, + { + "start": 3995.08, + "end": 3997.92, + "probability": 0.761 + }, + { + "start": 3998.08, + "end": 3999.1, + "probability": 0.5879 + }, + { + "start": 3999.1, + "end": 4002.3, + "probability": 0.7775 + }, + { + "start": 4002.68, + "end": 4004.9, + "probability": 0.7234 + }, + { + "start": 4005.4, + "end": 4007.68, + "probability": 0.9937 + }, + { + "start": 4007.86, + "end": 4009.14, + "probability": 0.4887 + }, + { + "start": 4010.0, + "end": 4011.24, + "probability": 0.8779 + }, + { + "start": 4013.36, + "end": 4015.66, + "probability": 0.8411 + }, + { + "start": 4016.28, + "end": 4017.54, + "probability": 0.8895 + }, + { + "start": 4018.06, + "end": 4020.56, + "probability": 0.3654 + }, + { + "start": 4033.96, + "end": 4034.9, + "probability": 0.6541 + }, + { + "start": 4036.4, + "end": 4037.44, + "probability": 0.7749 + }, + { + "start": 4038.16, + "end": 4040.28, + "probability": 0.9017 + }, + { + "start": 4041.62, + "end": 4047.98, + "probability": 0.9753 + }, + { + "start": 4047.98, + "end": 4054.1, + "probability": 0.9836 + }, + { + "start": 4054.5, + "end": 4055.28, + "probability": 0.5796 + }, + { + "start": 4055.84, + "end": 4060.94, + "probability": 0.8197 + }, + { + "start": 4062.06, + "end": 4069.56, + "probability": 0.7083 + }, + { + "start": 4070.48, + "end": 4072.0, + "probability": 0.6082 + }, + { + "start": 4072.46, + "end": 4074.1, + "probability": 0.9016 + }, + { + "start": 4074.22, + "end": 4080.0, + "probability": 0.7973 + }, + { + "start": 4081.26, + "end": 4086.38, + "probability": 0.2717 + }, + { + "start": 4086.54, + "end": 4087.98, + "probability": 0.6641 + }, + { + "start": 4088.14, + "end": 4089.1, + "probability": 0.924 + }, + { + "start": 4089.54, + "end": 4092.04, + "probability": 0.8204 + }, + { + "start": 4092.72, + "end": 4095.64, + "probability": 0.427 + }, + { + "start": 4098.8, + "end": 4100.02, + "probability": 0.0327 + }, + { + "start": 4101.4, + "end": 4102.46, + "probability": 0.8975 + }, + { + "start": 4103.22, + "end": 4108.78, + "probability": 0.9919 + }, + { + "start": 4109.42, + "end": 4112.14, + "probability": 0.9003 + }, + { + "start": 4112.46, + "end": 4117.34, + "probability": 0.9594 + }, + { + "start": 4119.18, + "end": 4124.54, + "probability": 0.4533 + }, + { + "start": 4124.7, + "end": 4125.76, + "probability": 0.7902 + }, + { + "start": 4126.2, + "end": 4127.78, + "probability": 0.7885 + }, + { + "start": 4127.96, + "end": 4130.28, + "probability": 0.5762 + }, + { + "start": 4130.84, + "end": 4132.84, + "probability": 0.7329 + }, + { + "start": 4132.84, + "end": 4136.28, + "probability": 0.9963 + }, + { + "start": 4136.5, + "end": 4137.64, + "probability": 0.5834 + }, + { + "start": 4137.98, + "end": 4138.78, + "probability": 0.9007 + }, + { + "start": 4138.9, + "end": 4143.42, + "probability": 0.9298 + }, + { + "start": 4143.64, + "end": 4144.66, + "probability": 0.4932 + }, + { + "start": 4144.68, + "end": 4145.92, + "probability": 0.5036 + }, + { + "start": 4146.84, + "end": 4148.62, + "probability": 0.8276 + }, + { + "start": 4149.36, + "end": 4149.82, + "probability": 0.6343 + }, + { + "start": 4149.9, + "end": 4150.72, + "probability": 0.4363 + }, + { + "start": 4151.26, + "end": 4152.4, + "probability": 0.7255 + }, + { + "start": 4171.19, + "end": 4174.12, + "probability": 0.1504 + }, + { + "start": 4174.66, + "end": 4174.68, + "probability": 0.0065 + }, + { + "start": 4174.68, + "end": 4174.74, + "probability": 0.0418 + }, + { + "start": 4174.74, + "end": 4175.02, + "probability": 0.2098 + }, + { + "start": 4175.02, + "end": 4178.92, + "probability": 0.627 + }, + { + "start": 4181.12, + "end": 4181.5, + "probability": 0.3746 + }, + { + "start": 4184.56, + "end": 4185.18, + "probability": 0.0811 + }, + { + "start": 4185.18, + "end": 4187.58, + "probability": 0.1242 + }, + { + "start": 4199.3, + "end": 4200.22, + "probability": 0.0368 + }, + { + "start": 4203.58, + "end": 4205.76, + "probability": 0.1633 + }, + { + "start": 4211.76, + "end": 4212.5, + "probability": 0.1845 + }, + { + "start": 4213.62, + "end": 4214.52, + "probability": 0.6102 + }, + { + "start": 4215.56, + "end": 4216.34, + "probability": 0.2774 + }, + { + "start": 4216.98, + "end": 4217.34, + "probability": 0.1408 + }, + { + "start": 4218.28, + "end": 4219.04, + "probability": 0.095 + }, + { + "start": 4221.62, + "end": 4221.76, + "probability": 0.1212 + }, + { + "start": 4223.98, + "end": 4228.48, + "probability": 0.0165 + }, + { + "start": 4228.58, + "end": 4229.26, + "probability": 0.0302 + }, + { + "start": 4230.04, + "end": 4234.12, + "probability": 0.0284 + }, + { + "start": 4235.06, + "end": 4235.5, + "probability": 0.1182 + }, + { + "start": 4236.0, + "end": 4236.0, + "probability": 0.0 + }, + { + "start": 4236.0, + "end": 4236.0, + "probability": 0.0 + }, + { + "start": 4236.0, + "end": 4236.0, + "probability": 0.0 + }, + { + "start": 4236.0, + "end": 4236.0, + "probability": 0.0 + }, + { + "start": 4236.0, + "end": 4236.0, + "probability": 0.0 + }, + { + "start": 4236.0, + "end": 4236.0, + "probability": 0.0 + }, + { + "start": 4236.0, + "end": 4236.0, + "probability": 0.0 + }, + { + "start": 4236.0, + "end": 4236.0, + "probability": 0.0 + }, + { + "start": 4236.0, + "end": 4236.0, + "probability": 0.0 + }, + { + "start": 4236.0, + "end": 4236.0, + "probability": 0.0 + }, + { + "start": 4236.0, + "end": 4236.0, + "probability": 0.0 + }, + { + "start": 4236.24, + "end": 4236.28, + "probability": 0.0351 + }, + { + "start": 4236.28, + "end": 4236.28, + "probability": 0.1452 + }, + { + "start": 4236.28, + "end": 4236.28, + "probability": 0.158 + }, + { + "start": 4236.28, + "end": 4236.28, + "probability": 0.0785 + }, + { + "start": 4236.28, + "end": 4237.18, + "probability": 0.1151 + }, + { + "start": 4237.82, + "end": 4240.3, + "probability": 0.5522 + }, + { + "start": 4240.88, + "end": 4246.28, + "probability": 0.9294 + }, + { + "start": 4246.66, + "end": 4249.92, + "probability": 0.9619 + }, + { + "start": 4250.86, + "end": 4255.9, + "probability": 0.8777 + }, + { + "start": 4256.84, + "end": 4257.63, + "probability": 0.7537 + }, + { + "start": 4258.32, + "end": 4259.04, + "probability": 0.8962 + }, + { + "start": 4259.16, + "end": 4260.5, + "probability": 0.7995 + }, + { + "start": 4260.6, + "end": 4267.3, + "probability": 0.773 + }, + { + "start": 4268.24, + "end": 4271.34, + "probability": 0.9647 + }, + { + "start": 4272.04, + "end": 4276.56, + "probability": 0.9897 + }, + { + "start": 4276.56, + "end": 4281.9, + "probability": 0.977 + }, + { + "start": 4283.56, + "end": 4288.54, + "probability": 0.8026 + }, + { + "start": 4288.88, + "end": 4290.18, + "probability": 0.9322 + }, + { + "start": 4290.42, + "end": 4293.04, + "probability": 0.9187 + }, + { + "start": 4295.98, + "end": 4299.08, + "probability": 0.7494 + }, + { + "start": 4299.44, + "end": 4301.34, + "probability": 0.9788 + }, + { + "start": 4302.2, + "end": 4303.24, + "probability": 0.9396 + }, + { + "start": 4304.1, + "end": 4307.38, + "probability": 0.7872 + }, + { + "start": 4308.52, + "end": 4309.38, + "probability": 0.7983 + }, + { + "start": 4309.96, + "end": 4311.26, + "probability": 0.8849 + }, + { + "start": 4311.42, + "end": 4313.2, + "probability": 0.988 + }, + { + "start": 4313.66, + "end": 4316.36, + "probability": 0.9534 + }, + { + "start": 4316.54, + "end": 4317.16, + "probability": 0.7693 + }, + { + "start": 4317.84, + "end": 4319.12, + "probability": 0.8535 + }, + { + "start": 4320.4, + "end": 4320.66, + "probability": 0.5153 + }, + { + "start": 4320.78, + "end": 4322.92, + "probability": 0.937 + }, + { + "start": 4323.1, + "end": 4328.22, + "probability": 0.7958 + }, + { + "start": 4329.06, + "end": 4331.6, + "probability": 0.9678 + }, + { + "start": 4332.12, + "end": 4334.86, + "probability": 0.8039 + }, + { + "start": 4335.94, + "end": 4337.12, + "probability": 0.7984 + }, + { + "start": 4338.38, + "end": 4341.33, + "probability": 0.998 + }, + { + "start": 4342.0, + "end": 4343.88, + "probability": 0.9938 + }, + { + "start": 4344.56, + "end": 4347.46, + "probability": 0.7518 + }, + { + "start": 4348.2, + "end": 4351.6, + "probability": 0.9454 + }, + { + "start": 4351.92, + "end": 4352.82, + "probability": 0.7409 + }, + { + "start": 4353.36, + "end": 4354.02, + "probability": 0.9285 + }, + { + "start": 4354.22, + "end": 4358.2, + "probability": 0.8322 + }, + { + "start": 4358.52, + "end": 4360.26, + "probability": 0.7538 + }, + { + "start": 4361.02, + "end": 4363.36, + "probability": 0.8203 + }, + { + "start": 4363.52, + "end": 4364.64, + "probability": 0.8621 + }, + { + "start": 4365.1, + "end": 4365.6, + "probability": 0.2611 + }, + { + "start": 4366.16, + "end": 4368.94, + "probability": 0.5111 + }, + { + "start": 4370.04, + "end": 4370.54, + "probability": 0.7405 + }, + { + "start": 4371.38, + "end": 4372.4, + "probability": 0.8501 + }, + { + "start": 4372.98, + "end": 4374.2, + "probability": 0.9099 + }, + { + "start": 4374.32, + "end": 4378.82, + "probability": 0.9712 + }, + { + "start": 4380.24, + "end": 4381.94, + "probability": 0.9468 + }, + { + "start": 4382.68, + "end": 4387.32, + "probability": 0.9561 + }, + { + "start": 4387.48, + "end": 4388.12, + "probability": 0.6975 + }, + { + "start": 4388.94, + "end": 4389.76, + "probability": 0.3999 + }, + { + "start": 4390.34, + "end": 4393.88, + "probability": 0.786 + }, + { + "start": 4394.58, + "end": 4398.08, + "probability": 0.9829 + }, + { + "start": 4399.18, + "end": 4399.9, + "probability": 0.9658 + }, + { + "start": 4400.48, + "end": 4406.52, + "probability": 0.7701 + }, + { + "start": 4406.94, + "end": 4407.9, + "probability": 0.7931 + }, + { + "start": 4407.94, + "end": 4409.12, + "probability": 0.5644 + }, + { + "start": 4409.62, + "end": 4410.8, + "probability": 0.8501 + }, + { + "start": 4410.94, + "end": 4411.76, + "probability": 0.9871 + }, + { + "start": 4413.36, + "end": 4414.85, + "probability": 0.9189 + }, + { + "start": 4415.7, + "end": 4416.68, + "probability": 0.7163 + }, + { + "start": 4417.22, + "end": 4418.24, + "probability": 0.7201 + }, + { + "start": 4418.34, + "end": 4422.32, + "probability": 0.9924 + }, + { + "start": 4422.5, + "end": 4423.24, + "probability": 0.8809 + }, + { + "start": 4423.54, + "end": 4425.04, + "probability": 0.9885 + }, + { + "start": 4425.26, + "end": 4427.2, + "probability": 0.9367 + }, + { + "start": 4428.89, + "end": 4432.62, + "probability": 0.9852 + }, + { + "start": 4433.8, + "end": 4436.28, + "probability": 0.8821 + }, + { + "start": 4436.4, + "end": 4438.94, + "probability": 0.8225 + }, + { + "start": 4438.94, + "end": 4441.17, + "probability": 0.9844 + }, + { + "start": 4441.7, + "end": 4442.5, + "probability": 0.9163 + }, + { + "start": 4442.68, + "end": 4443.56, + "probability": 0.7 + }, + { + "start": 4443.76, + "end": 4445.28, + "probability": 0.7664 + }, + { + "start": 4445.7, + "end": 4446.3, + "probability": 0.7808 + }, + { + "start": 4446.38, + "end": 4447.46, + "probability": 0.7897 + }, + { + "start": 4447.7, + "end": 4448.48, + "probability": 0.5111 + }, + { + "start": 4449.26, + "end": 4452.52, + "probability": 0.8728 + }, + { + "start": 4453.54, + "end": 4455.19, + "probability": 0.9958 + }, + { + "start": 4455.4, + "end": 4457.2, + "probability": 0.9294 + }, + { + "start": 4458.24, + "end": 4460.5, + "probability": 0.8256 + }, + { + "start": 4461.16, + "end": 4463.42, + "probability": 0.9357 + }, + { + "start": 4464.32, + "end": 4466.68, + "probability": 0.9788 + }, + { + "start": 4467.3, + "end": 4471.16, + "probability": 0.6052 + }, + { + "start": 4471.74, + "end": 4474.26, + "probability": 0.992 + }, + { + "start": 4475.42, + "end": 4476.32, + "probability": 0.7325 + }, + { + "start": 4476.34, + "end": 4476.68, + "probability": 0.4539 + }, + { + "start": 4476.86, + "end": 4478.09, + "probability": 0.71 + }, + { + "start": 4478.16, + "end": 4479.12, + "probability": 0.8801 + }, + { + "start": 4479.46, + "end": 4483.24, + "probability": 0.9751 + }, + { + "start": 4483.24, + "end": 4488.68, + "probability": 0.9926 + }, + { + "start": 4488.78, + "end": 4490.02, + "probability": 0.8453 + }, + { + "start": 4490.12, + "end": 4491.14, + "probability": 0.7994 + }, + { + "start": 4491.74, + "end": 4496.16, + "probability": 0.9331 + }, + { + "start": 4496.42, + "end": 4499.14, + "probability": 0.0898 + }, + { + "start": 4499.14, + "end": 4499.76, + "probability": 0.1252 + }, + { + "start": 4499.76, + "end": 4500.28, + "probability": 0.6726 + }, + { + "start": 4500.42, + "end": 4501.1, + "probability": 0.8706 + }, + { + "start": 4501.22, + "end": 4501.98, + "probability": 0.849 + }, + { + "start": 4503.38, + "end": 4506.16, + "probability": 0.8152 + }, + { + "start": 4507.18, + "end": 4509.46, + "probability": 0.9919 + }, + { + "start": 4509.98, + "end": 4513.48, + "probability": 0.9719 + }, + { + "start": 4516.58, + "end": 4522.82, + "probability": 0.9718 + }, + { + "start": 4523.38, + "end": 4527.42, + "probability": 0.7334 + }, + { + "start": 4528.46, + "end": 4532.5, + "probability": 0.9952 + }, + { + "start": 4533.0, + "end": 4534.32, + "probability": 0.9454 + }, + { + "start": 4534.4, + "end": 4535.48, + "probability": 0.5536 + }, + { + "start": 4535.88, + "end": 4537.46, + "probability": 0.9492 + }, + { + "start": 4538.48, + "end": 4542.46, + "probability": 0.8921 + }, + { + "start": 4542.46, + "end": 4544.82, + "probability": 0.9586 + }, + { + "start": 4544.98, + "end": 4545.74, + "probability": 0.7715 + }, + { + "start": 4546.12, + "end": 4546.61, + "probability": 0.7749 + }, + { + "start": 4547.3, + "end": 4550.6, + "probability": 0.9551 + }, + { + "start": 4551.04, + "end": 4552.2, + "probability": 0.8716 + }, + { + "start": 4552.6, + "end": 4557.36, + "probability": 0.9891 + }, + { + "start": 4558.0, + "end": 4560.42, + "probability": 0.991 + }, + { + "start": 4560.48, + "end": 4561.74, + "probability": 0.8762 + }, + { + "start": 4562.6, + "end": 4564.67, + "probability": 0.9287 + }, + { + "start": 4565.38, + "end": 4567.9, + "probability": 0.7657 + }, + { + "start": 4568.34, + "end": 4570.26, + "probability": 0.9867 + }, + { + "start": 4570.3, + "end": 4575.82, + "probability": 0.9768 + }, + { + "start": 4576.02, + "end": 4576.86, + "probability": 0.8699 + }, + { + "start": 4577.24, + "end": 4578.9, + "probability": 0.8389 + }, + { + "start": 4579.64, + "end": 4582.22, + "probability": 0.9556 + }, + { + "start": 4582.42, + "end": 4583.8, + "probability": 0.9849 + }, + { + "start": 4584.14, + "end": 4587.16, + "probability": 0.7798 + }, + { + "start": 4587.76, + "end": 4589.26, + "probability": 0.736 + }, + { + "start": 4589.78, + "end": 4592.44, + "probability": 0.9541 + }, + { + "start": 4592.96, + "end": 4593.66, + "probability": 0.6534 + }, + { + "start": 4593.82, + "end": 4596.7, + "probability": 0.9932 + }, + { + "start": 4596.7, + "end": 4598.72, + "probability": 0.9927 + }, + { + "start": 4599.46, + "end": 4603.88, + "probability": 0.6991 + }, + { + "start": 4604.74, + "end": 4610.54, + "probability": 0.9608 + }, + { + "start": 4611.16, + "end": 4614.82, + "probability": 0.9987 + }, + { + "start": 4615.14, + "end": 4615.66, + "probability": 0.5586 + }, + { + "start": 4615.78, + "end": 4618.9, + "probability": 0.8245 + }, + { + "start": 4619.54, + "end": 4621.06, + "probability": 0.5777 + }, + { + "start": 4622.06, + "end": 4624.08, + "probability": 0.9056 + }, + { + "start": 4651.12, + "end": 4654.0, + "probability": 0.7965 + }, + { + "start": 4657.8, + "end": 4661.14, + "probability": 0.969 + }, + { + "start": 4661.14, + "end": 4663.72, + "probability": 0.9956 + }, + { + "start": 4664.96, + "end": 4668.22, + "probability": 0.8911 + }, + { + "start": 4668.8, + "end": 4674.08, + "probability": 0.9547 + }, + { + "start": 4674.88, + "end": 4678.94, + "probability": 0.9111 + }, + { + "start": 4679.72, + "end": 4681.46, + "probability": 0.9272 + }, + { + "start": 4683.38, + "end": 4685.0, + "probability": 0.9084 + }, + { + "start": 4686.36, + "end": 4688.02, + "probability": 0.8631 + }, + { + "start": 4688.94, + "end": 4691.2, + "probability": 0.9907 + }, + { + "start": 4692.42, + "end": 4696.66, + "probability": 0.9302 + }, + { + "start": 4698.52, + "end": 4699.96, + "probability": 0.969 + }, + { + "start": 4700.56, + "end": 4701.08, + "probability": 0.9985 + }, + { + "start": 4702.24, + "end": 4702.58, + "probability": 0.5 + }, + { + "start": 4703.92, + "end": 4707.92, + "probability": 0.8169 + }, + { + "start": 4708.44, + "end": 4709.14, + "probability": 0.8363 + }, + { + "start": 4710.1, + "end": 4712.82, + "probability": 0.8606 + }, + { + "start": 4713.3, + "end": 4714.44, + "probability": 0.9191 + }, + { + "start": 4715.7, + "end": 4720.28, + "probability": 0.9426 + }, + { + "start": 4721.1, + "end": 4724.36, + "probability": 0.8921 + }, + { + "start": 4725.39, + "end": 4729.74, + "probability": 0.9902 + }, + { + "start": 4730.12, + "end": 4731.1, + "probability": 0.9387 + }, + { + "start": 4731.52, + "end": 4732.5, + "probability": 0.9966 + }, + { + "start": 4732.6, + "end": 4733.4, + "probability": 0.9967 + }, + { + "start": 4733.56, + "end": 4736.32, + "probability": 0.9977 + }, + { + "start": 4736.94, + "end": 4738.04, + "probability": 0.6653 + }, + { + "start": 4738.74, + "end": 4743.48, + "probability": 0.9714 + }, + { + "start": 4744.44, + "end": 4746.1, + "probability": 0.9065 + }, + { + "start": 4746.22, + "end": 4746.52, + "probability": 0.6742 + }, + { + "start": 4746.82, + "end": 4751.0, + "probability": 0.519 + }, + { + "start": 4751.0, + "end": 4751.0, + "probability": 0.03 + }, + { + "start": 4751.0, + "end": 4752.9, + "probability": 0.5223 + }, + { + "start": 4753.8, + "end": 4755.27, + "probability": 0.1288 + }, + { + "start": 4756.0, + "end": 4756.06, + "probability": 0.13 + }, + { + "start": 4756.06, + "end": 4756.06, + "probability": 0.1148 + }, + { + "start": 4756.06, + "end": 4756.06, + "probability": 0.0596 + }, + { + "start": 4756.06, + "end": 4756.38, + "probability": 0.356 + }, + { + "start": 4756.4, + "end": 4757.42, + "probability": 0.6303 + }, + { + "start": 4757.7, + "end": 4763.12, + "probability": 0.9387 + }, + { + "start": 4763.28, + "end": 4764.58, + "probability": 0.5815 + }, + { + "start": 4765.6, + "end": 4768.38, + "probability": 0.9058 + }, + { + "start": 4768.82, + "end": 4769.6, + "probability": 0.5056 + }, + { + "start": 4769.86, + "end": 4770.56, + "probability": 0.2433 + }, + { + "start": 4770.56, + "end": 4771.86, + "probability": 0.6875 + }, + { + "start": 4777.82, + "end": 4777.82, + "probability": 0.1065 + }, + { + "start": 4777.82, + "end": 4777.82, + "probability": 0.0143 + }, + { + "start": 4777.82, + "end": 4777.82, + "probability": 0.0407 + }, + { + "start": 4777.82, + "end": 4777.86, + "probability": 0.0397 + }, + { + "start": 4777.86, + "end": 4777.94, + "probability": 0.0396 + }, + { + "start": 4793.44, + "end": 4794.12, + "probability": 0.2738 + }, + { + "start": 4794.3, + "end": 4794.76, + "probability": 0.3138 + }, + { + "start": 4795.4, + "end": 4796.56, + "probability": 0.739 + }, + { + "start": 4797.9, + "end": 4801.18, + "probability": 0.9875 + }, + { + "start": 4801.2, + "end": 4804.24, + "probability": 0.9852 + }, + { + "start": 4806.88, + "end": 4807.58, + "probability": 0.7945 + }, + { + "start": 4807.68, + "end": 4809.03, + "probability": 0.9469 + }, + { + "start": 4809.36, + "end": 4811.2, + "probability": 0.5561 + }, + { + "start": 4811.2, + "end": 4812.9, + "probability": 0.9885 + }, + { + "start": 4813.02, + "end": 4814.16, + "probability": 0.4966 + }, + { + "start": 4814.78, + "end": 4820.4, + "probability": 0.9617 + }, + { + "start": 4823.54, + "end": 4826.4, + "probability": 0.9655 + }, + { + "start": 4826.4, + "end": 4829.66, + "probability": 0.8168 + }, + { + "start": 4829.7, + "end": 4831.24, + "probability": 0.3121 + }, + { + "start": 4831.66, + "end": 4834.66, + "probability": 0.7039 + }, + { + "start": 4835.12, + "end": 4836.4, + "probability": 0.8642 + }, + { + "start": 4838.48, + "end": 4840.52, + "probability": 0.6285 + }, + { + "start": 4841.26, + "end": 4843.78, + "probability": 0.7274 + }, + { + "start": 4845.48, + "end": 4846.06, + "probability": 0.6524 + }, + { + "start": 4846.22, + "end": 4846.94, + "probability": 0.8513 + }, + { + "start": 4847.1, + "end": 4849.06, + "probability": 0.9094 + }, + { + "start": 4850.52, + "end": 4851.76, + "probability": 0.6039 + }, + { + "start": 4852.0, + "end": 4857.02, + "probability": 0.9537 + }, + { + "start": 4857.02, + "end": 4862.72, + "probability": 0.722 + }, + { + "start": 4863.0, + "end": 4864.48, + "probability": 0.9863 + }, + { + "start": 4864.6, + "end": 4865.16, + "probability": 0.9873 + }, + { + "start": 4865.92, + "end": 4866.82, + "probability": 0.6075 + }, + { + "start": 4867.64, + "end": 4872.36, + "probability": 0.9917 + }, + { + "start": 4872.86, + "end": 4876.24, + "probability": 0.8682 + }, + { + "start": 4876.72, + "end": 4879.56, + "probability": 0.7816 + }, + { + "start": 4879.82, + "end": 4880.58, + "probability": 0.5327 + }, + { + "start": 4881.04, + "end": 4883.74, + "probability": 0.9747 + }, + { + "start": 4883.82, + "end": 4886.26, + "probability": 0.9615 + }, + { + "start": 4886.86, + "end": 4890.38, + "probability": 0.9604 + }, + { + "start": 4890.92, + "end": 4892.38, + "probability": 0.9957 + }, + { + "start": 4892.44, + "end": 4893.23, + "probability": 0.9527 + }, + { + "start": 4893.76, + "end": 4894.26, + "probability": 0.4722 + }, + { + "start": 4894.64, + "end": 4896.44, + "probability": 0.2279 + }, + { + "start": 4896.5, + "end": 4897.56, + "probability": 0.8606 + }, + { + "start": 4897.98, + "end": 4902.5, + "probability": 0.801 + }, + { + "start": 4902.5, + "end": 4907.2, + "probability": 0.8971 + }, + { + "start": 4907.26, + "end": 4909.08, + "probability": 0.7738 + }, + { + "start": 4909.92, + "end": 4914.9, + "probability": 0.9559 + }, + { + "start": 4915.18, + "end": 4917.8, + "probability": 0.8934 + }, + { + "start": 4918.3, + "end": 4919.54, + "probability": 0.9291 + }, + { + "start": 4919.72, + "end": 4920.1, + "probability": 0.9489 + }, + { + "start": 4920.76, + "end": 4922.88, + "probability": 0.9709 + }, + { + "start": 4922.96, + "end": 4925.36, + "probability": 0.6404 + }, + { + "start": 4925.98, + "end": 4925.98, + "probability": 0.3551 + }, + { + "start": 4925.98, + "end": 4927.24, + "probability": 0.1502 + }, + { + "start": 4928.36, + "end": 4930.39, + "probability": 0.9314 + }, + { + "start": 4930.84, + "end": 4933.56, + "probability": 0.6115 + }, + { + "start": 4933.66, + "end": 4938.18, + "probability": 0.9342 + }, + { + "start": 4938.34, + "end": 4940.56, + "probability": 0.856 + }, + { + "start": 4941.18, + "end": 4943.22, + "probability": 0.9921 + }, + { + "start": 4943.22, + "end": 4945.58, + "probability": 0.9939 + }, + { + "start": 4945.68, + "end": 4947.04, + "probability": 0.7967 + }, + { + "start": 4947.48, + "end": 4951.88, + "probability": 0.8926 + }, + { + "start": 4951.88, + "end": 4956.4, + "probability": 0.9863 + }, + { + "start": 4956.68, + "end": 4957.32, + "probability": 0.6386 + }, + { + "start": 4957.38, + "end": 4958.16, + "probability": 0.7546 + }, + { + "start": 4958.32, + "end": 4961.32, + "probability": 0.9449 + }, + { + "start": 4961.44, + "end": 4963.52, + "probability": 0.9186 + }, + { + "start": 4963.78, + "end": 4966.3, + "probability": 0.9134 + }, + { + "start": 4966.38, + "end": 4967.38, + "probability": 0.5772 + }, + { + "start": 4967.38, + "end": 4969.48, + "probability": 0.6796 + }, + { + "start": 4969.82, + "end": 4973.98, + "probability": 0.6656 + }, + { + "start": 4974.26, + "end": 4977.84, + "probability": 0.8788 + }, + { + "start": 4980.2, + "end": 4980.52, + "probability": 0.4683 + }, + { + "start": 4980.54, + "end": 4981.3, + "probability": 0.5843 + }, + { + "start": 4981.38, + "end": 4982.52, + "probability": 0.7249 + }, + { + "start": 4982.62, + "end": 4984.1, + "probability": 0.9546 + }, + { + "start": 4985.32, + "end": 4986.14, + "probability": 0.5641 + }, + { + "start": 4986.3, + "end": 4990.14, + "probability": 0.9173 + }, + { + "start": 4990.78, + "end": 4995.36, + "probability": 0.782 + }, + { + "start": 4995.48, + "end": 4995.8, + "probability": 0.48 + }, + { + "start": 4995.86, + "end": 4996.76, + "probability": 0.9109 + }, + { + "start": 4997.42, + "end": 4997.8, + "probability": 0.7805 + }, + { + "start": 4998.72, + "end": 5000.74, + "probability": 0.99 + }, + { + "start": 5000.74, + "end": 5003.42, + "probability": 0.9782 + }, + { + "start": 5004.08, + "end": 5006.78, + "probability": 0.9289 + }, + { + "start": 5007.52, + "end": 5011.64, + "probability": 0.584 + }, + { + "start": 5012.2, + "end": 5013.52, + "probability": 0.9055 + }, + { + "start": 5013.74, + "end": 5016.38, + "probability": 0.9962 + }, + { + "start": 5016.38, + "end": 5020.88, + "probability": 0.9761 + }, + { + "start": 5021.52, + "end": 5025.84, + "probability": 0.976 + }, + { + "start": 5025.84, + "end": 5032.4, + "probability": 0.9948 + }, + { + "start": 5033.16, + "end": 5035.86, + "probability": 0.6642 + }, + { + "start": 5035.86, + "end": 5039.9, + "probability": 0.9929 + }, + { + "start": 5040.62, + "end": 5045.84, + "probability": 0.9404 + }, + { + "start": 5046.16, + "end": 5047.47, + "probability": 0.8955 + }, + { + "start": 5047.58, + "end": 5048.9, + "probability": 0.5423 + }, + { + "start": 5049.52, + "end": 5052.04, + "probability": 0.7052 + }, + { + "start": 5052.34, + "end": 5055.76, + "probability": 0.9608 + }, + { + "start": 5056.36, + "end": 5056.64, + "probability": 0.6374 + }, + { + "start": 5056.84, + "end": 5059.04, + "probability": 0.9536 + }, + { + "start": 5059.54, + "end": 5060.66, + "probability": 0.923 + }, + { + "start": 5060.82, + "end": 5061.32, + "probability": 0.8206 + }, + { + "start": 5061.48, + "end": 5062.18, + "probability": 0.9332 + }, + { + "start": 5062.22, + "end": 5063.9, + "probability": 0.8689 + }, + { + "start": 5063.9, + "end": 5066.5, + "probability": 0.7795 + }, + { + "start": 5067.42, + "end": 5072.06, + "probability": 0.9585 + }, + { + "start": 5072.58, + "end": 5074.62, + "probability": 0.82 + }, + { + "start": 5075.18, + "end": 5077.1, + "probability": 0.9072 + }, + { + "start": 5077.66, + "end": 5079.16, + "probability": 0.7819 + }, + { + "start": 5079.92, + "end": 5080.56, + "probability": 0.6561 + }, + { + "start": 5080.6, + "end": 5081.32, + "probability": 0.851 + }, + { + "start": 5081.42, + "end": 5085.06, + "probability": 0.9963 + }, + { + "start": 5085.2, + "end": 5086.54, + "probability": 0.6872 + }, + { + "start": 5087.02, + "end": 5088.16, + "probability": 0.9647 + }, + { + "start": 5088.9, + "end": 5089.14, + "probability": 0.2717 + }, + { + "start": 5089.14, + "end": 5089.24, + "probability": 0.3817 + }, + { + "start": 5089.48, + "end": 5089.82, + "probability": 0.6014 + }, + { + "start": 5089.82, + "end": 5090.49, + "probability": 0.3601 + }, + { + "start": 5090.92, + "end": 5091.32, + "probability": 0.9686 + }, + { + "start": 5092.12, + "end": 5097.12, + "probability": 0.8717 + }, + { + "start": 5097.5, + "end": 5099.75, + "probability": 0.8867 + }, + { + "start": 5100.67, + "end": 5101.03, + "probability": 0.0636 + }, + { + "start": 5101.28, + "end": 5104.26, + "probability": 0.6435 + }, + { + "start": 5104.9, + "end": 5108.3, + "probability": 0.7177 + }, + { + "start": 5108.92, + "end": 5109.68, + "probability": 0.7058 + }, + { + "start": 5109.8, + "end": 5110.5, + "probability": 0.5797 + }, + { + "start": 5110.52, + "end": 5111.52, + "probability": 0.6884 + }, + { + "start": 5139.16, + "end": 5141.65, + "probability": 0.1036 + }, + { + "start": 5143.13, + "end": 5145.0, + "probability": 0.0181 + }, + { + "start": 5146.12, + "end": 5150.86, + "probability": 0.1677 + }, + { + "start": 5171.28, + "end": 5171.6, + "probability": 0.0333 + }, + { + "start": 5174.04, + "end": 5175.3, + "probability": 0.5884 + }, + { + "start": 5176.54, + "end": 5177.28, + "probability": 0.0029 + }, + { + "start": 5177.64, + "end": 5179.08, + "probability": 0.0 + }, + { + "start": 5194.92, + "end": 5197.42, + "probability": 0.1374 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.24, + "end": 5213.36, + "probability": 0.0656 + }, + { + "start": 5213.36, + "end": 5217.58, + "probability": 0.0967 + }, + { + "start": 5217.58, + "end": 5218.34, + "probability": 0.0764 + }, + { + "start": 5218.76, + "end": 5218.76, + "probability": 0.0879 + }, + { + "start": 5218.76, + "end": 5218.76, + "probability": 0.0544 + }, + { + "start": 5218.76, + "end": 5218.76, + "probability": 0.0263 + }, + { + "start": 5218.76, + "end": 5223.92, + "probability": 0.684 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.0, + "end": 5335.0, + "probability": 0.0 + }, + { + "start": 5335.28, + "end": 5335.28, + "probability": 0.0037 + }, + { + "start": 5336.6, + "end": 5337.46, + "probability": 0.1503 + }, + { + "start": 5339.54, + "end": 5340.38, + "probability": 0.0693 + }, + { + "start": 5347.02, + "end": 5348.7, + "probability": 0.009 + }, + { + "start": 5349.42, + "end": 5351.93, + "probability": 0.0468 + }, + { + "start": 5398.54, + "end": 5399.3, + "probability": 0.1315 + }, + { + "start": 5399.8, + "end": 5403.18, + "probability": 0.1699 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.0, + "end": 5459.0, + "probability": 0.0 + }, + { + "start": 5459.3, + "end": 5460.16, + "probability": 0.9927 + }, + { + "start": 5460.74, + "end": 5462.86, + "probability": 0.9584 + }, + { + "start": 5462.86, + "end": 5464.42, + "probability": 0.878 + }, + { + "start": 5464.94, + "end": 5465.42, + "probability": 0.4435 + }, + { + "start": 5465.76, + "end": 5466.18, + "probability": 0.7831 + }, + { + "start": 5466.28, + "end": 5468.56, + "probability": 0.9764 + }, + { + "start": 5468.82, + "end": 5470.5, + "probability": 0.9814 + }, + { + "start": 5470.76, + "end": 5473.2, + "probability": 0.8235 + }, + { + "start": 5473.24, + "end": 5475.44, + "probability": 0.8385 + }, + { + "start": 5475.82, + "end": 5476.5, + "probability": 0.7981 + }, + { + "start": 5476.9, + "end": 5478.44, + "probability": 0.9774 + }, + { + "start": 5478.48, + "end": 5479.12, + "probability": 0.8952 + }, + { + "start": 5479.2, + "end": 5480.12, + "probability": 0.9843 + }, + { + "start": 5480.28, + "end": 5482.02, + "probability": 0.9821 + }, + { + "start": 5482.3, + "end": 5482.96, + "probability": 0.9929 + }, + { + "start": 5483.44, + "end": 5486.34, + "probability": 0.691 + }, + { + "start": 5486.76, + "end": 5489.66, + "probability": 0.9895 + }, + { + "start": 5490.7, + "end": 5491.52, + "probability": 0.7816 + }, + { + "start": 5491.58, + "end": 5492.54, + "probability": 0.9646 + }, + { + "start": 5492.6, + "end": 5493.58, + "probability": 0.9671 + }, + { + "start": 5493.9, + "end": 5494.86, + "probability": 0.9519 + }, + { + "start": 5495.1, + "end": 5497.42, + "probability": 0.991 + }, + { + "start": 5497.8, + "end": 5498.28, + "probability": 0.5319 + }, + { + "start": 5499.2, + "end": 5499.48, + "probability": 0.7979 + }, + { + "start": 5499.56, + "end": 5502.32, + "probability": 0.8209 + }, + { + "start": 5502.36, + "end": 5506.1, + "probability": 0.9663 + }, + { + "start": 5506.48, + "end": 5507.18, + "probability": 0.8686 + }, + { + "start": 5507.22, + "end": 5508.5, + "probability": 0.8015 + }, + { + "start": 5508.86, + "end": 5512.16, + "probability": 0.951 + }, + { + "start": 5512.3, + "end": 5512.64, + "probability": 0.5075 + }, + { + "start": 5512.7, + "end": 5514.34, + "probability": 0.9888 + }, + { + "start": 5514.44, + "end": 5515.06, + "probability": 0.838 + }, + { + "start": 5515.64, + "end": 5516.82, + "probability": 0.9628 + }, + { + "start": 5517.42, + "end": 5518.68, + "probability": 0.9657 + }, + { + "start": 5518.82, + "end": 5519.48, + "probability": 0.5594 + }, + { + "start": 5519.5, + "end": 5521.05, + "probability": 0.9941 + }, + { + "start": 5521.28, + "end": 5522.38, + "probability": 0.9639 + }, + { + "start": 5523.16, + "end": 5525.32, + "probability": 0.9896 + }, + { + "start": 5525.62, + "end": 5526.64, + "probability": 0.6491 + }, + { + "start": 5526.74, + "end": 5529.36, + "probability": 0.747 + }, + { + "start": 5529.66, + "end": 5533.12, + "probability": 0.9189 + }, + { + "start": 5533.16, + "end": 5535.1, + "probability": 0.9969 + }, + { + "start": 5535.18, + "end": 5536.0, + "probability": 0.5226 + }, + { + "start": 5536.12, + "end": 5537.4, + "probability": 0.9862 + }, + { + "start": 5537.68, + "end": 5538.69, + "probability": 0.5884 + }, + { + "start": 5539.42, + "end": 5540.71, + "probability": 0.8332 + }, + { + "start": 5540.96, + "end": 5542.08, + "probability": 0.9829 + }, + { + "start": 5542.32, + "end": 5543.38, + "probability": 0.9788 + }, + { + "start": 5544.12, + "end": 5544.84, + "probability": 0.981 + }, + { + "start": 5545.3, + "end": 5546.6, + "probability": 0.9214 + }, + { + "start": 5547.94, + "end": 5549.29, + "probability": 0.9905 + }, + { + "start": 5549.52, + "end": 5551.24, + "probability": 0.9949 + }, + { + "start": 5551.54, + "end": 5553.14, + "probability": 0.7806 + }, + { + "start": 5553.72, + "end": 5556.74, + "probability": 0.9964 + }, + { + "start": 5557.36, + "end": 5560.46, + "probability": 0.9607 + }, + { + "start": 5561.38, + "end": 5567.68, + "probability": 0.6678 + }, + { + "start": 5567.98, + "end": 5568.88, + "probability": 0.8329 + }, + { + "start": 5569.42, + "end": 5570.42, + "probability": 0.8682 + }, + { + "start": 5570.78, + "end": 5571.24, + "probability": 0.7342 + }, + { + "start": 5571.72, + "end": 5573.75, + "probability": 0.9786 + }, + { + "start": 5574.5, + "end": 5576.91, + "probability": 0.9194 + }, + { + "start": 5577.36, + "end": 5578.9, + "probability": 0.9484 + }, + { + "start": 5579.14, + "end": 5582.26, + "probability": 0.9927 + }, + { + "start": 5582.38, + "end": 5583.7, + "probability": 0.7747 + }, + { + "start": 5584.64, + "end": 5589.5, + "probability": 0.9902 + }, + { + "start": 5590.22, + "end": 5591.98, + "probability": 0.9259 + }, + { + "start": 5592.16, + "end": 5595.94, + "probability": 0.9462 + }, + { + "start": 5596.2, + "end": 5596.62, + "probability": 0.7199 + }, + { + "start": 5598.12, + "end": 5599.94, + "probability": 0.9193 + }, + { + "start": 5600.18, + "end": 5604.32, + "probability": 0.9376 + }, + { + "start": 5609.5, + "end": 5610.58, + "probability": 0.0154 + }, + { + "start": 5616.74, + "end": 5621.82, + "probability": 0.0282 + }, + { + "start": 5622.08, + "end": 5624.02, + "probability": 0.1496 + }, + { + "start": 5649.76, + "end": 5652.14, + "probability": 0.329 + }, + { + "start": 5653.08, + "end": 5654.5, + "probability": 0.916 + }, + { + "start": 5654.54, + "end": 5655.16, + "probability": 0.6723 + }, + { + "start": 5657.24, + "end": 5660.62, + "probability": 0.7027 + }, + { + "start": 5661.56, + "end": 5664.29, + "probability": 0.9321 + }, + { + "start": 5665.66, + "end": 5666.44, + "probability": 0.415 + }, + { + "start": 5666.76, + "end": 5669.66, + "probability": 0.9092 + }, + { + "start": 5670.66, + "end": 5671.9, + "probability": 0.5934 + }, + { + "start": 5672.04, + "end": 5673.76, + "probability": 0.6683 + }, + { + "start": 5673.86, + "end": 5675.02, + "probability": 0.5949 + }, + { + "start": 5675.12, + "end": 5675.6, + "probability": 0.6901 + }, + { + "start": 5676.52, + "end": 5677.3, + "probability": 0.2031 + }, + { + "start": 5677.76, + "end": 5680.88, + "probability": 0.5244 + }, + { + "start": 5685.68, + "end": 5691.0, + "probability": 0.9937 + }, + { + "start": 5691.46, + "end": 5693.82, + "probability": 0.5995 + }, + { + "start": 5694.36, + "end": 5695.96, + "probability": 0.0972 + }, + { + "start": 5699.8, + "end": 5699.8, + "probability": 0.0143 + }, + { + "start": 5700.52, + "end": 5700.92, + "probability": 0.2215 + }, + { + "start": 5704.58, + "end": 5706.72, + "probability": 0.3614 + }, + { + "start": 5706.72, + "end": 5707.46, + "probability": 0.1764 + }, + { + "start": 5707.86, + "end": 5709.6, + "probability": 0.4553 + }, + { + "start": 5709.94, + "end": 5710.8, + "probability": 0.3948 + }, + { + "start": 5711.58, + "end": 5714.58, + "probability": 0.4849 + }, + { + "start": 5714.6, + "end": 5715.88, + "probability": 0.0704 + }, + { + "start": 5715.96, + "end": 5716.54, + "probability": 0.8726 + }, + { + "start": 5716.56, + "end": 5717.52, + "probability": 0.911 + }, + { + "start": 5717.68, + "end": 5720.6, + "probability": 0.4566 + }, + { + "start": 5725.56, + "end": 5726.8, + "probability": 0.6507 + }, + { + "start": 5728.2, + "end": 5732.88, + "probability": 0.6672 + }, + { + "start": 5732.88, + "end": 5734.8, + "probability": 0.8341 + }, + { + "start": 5734.9, + "end": 5735.98, + "probability": 0.8931 + }, + { + "start": 5736.12, + "end": 5738.38, + "probability": 0.8498 + }, + { + "start": 5739.28, + "end": 5741.62, + "probability": 0.9224 + }, + { + "start": 5742.04, + "end": 5745.96, + "probability": 0.9727 + }, + { + "start": 5746.07, + "end": 5749.78, + "probability": 0.8518 + }, + { + "start": 5750.7, + "end": 5752.46, + "probability": 0.5241 + }, + { + "start": 5752.46, + "end": 5754.62, + "probability": 0.8318 + }, + { + "start": 5754.93, + "end": 5755.4, + "probability": 0.2201 + }, + { + "start": 5755.4, + "end": 5758.99, + "probability": 0.8705 + }, + { + "start": 5759.38, + "end": 5762.92, + "probability": 0.8045 + }, + { + "start": 5763.12, + "end": 5765.62, + "probability": 0.6716 + }, + { + "start": 5766.62, + "end": 5768.08, + "probability": 0.3223 + }, + { + "start": 5768.6, + "end": 5770.0, + "probability": 0.6872 + }, + { + "start": 5771.36, + "end": 5773.04, + "probability": 0.8679 + }, + { + "start": 5773.46, + "end": 5773.94, + "probability": 0.9778 + }, + { + "start": 5775.06, + "end": 5779.26, + "probability": 0.9413 + }, + { + "start": 5779.48, + "end": 5781.96, + "probability": 0.7685 + }, + { + "start": 5782.04, + "end": 5784.96, + "probability": 0.7279 + }, + { + "start": 5785.62, + "end": 5787.06, + "probability": 0.3521 + }, + { + "start": 5787.38, + "end": 5791.16, + "probability": 0.8768 + }, + { + "start": 5791.46, + "end": 5792.48, + "probability": 0.6793 + }, + { + "start": 5792.68, + "end": 5793.3, + "probability": 0.6743 + }, + { + "start": 5793.32, + "end": 5794.18, + "probability": 0.7349 + }, + { + "start": 5804.08, + "end": 5807.74, + "probability": 0.0535 + }, + { + "start": 5807.74, + "end": 5810.48, + "probability": 0.0383 + }, + { + "start": 5812.06, + "end": 5813.32, + "probability": 0.0604 + }, + { + "start": 5814.46, + "end": 5814.84, + "probability": 0.0665 + }, + { + "start": 5814.84, + "end": 5816.26, + "probability": 0.4031 + }, + { + "start": 5816.54, + "end": 5818.44, + "probability": 0.6572 + }, + { + "start": 5819.06, + "end": 5824.28, + "probability": 0.9249 + }, + { + "start": 5824.44, + "end": 5824.54, + "probability": 0.4365 + }, + { + "start": 5826.77, + "end": 5827.32, + "probability": 0.1089 + }, + { + "start": 5827.32, + "end": 5827.38, + "probability": 0.1221 + }, + { + "start": 5827.94, + "end": 5829.02, + "probability": 0.9191 + }, + { + "start": 5830.6, + "end": 5830.78, + "probability": 0.4437 + }, + { + "start": 5831.2, + "end": 5833.74, + "probability": 0.8765 + }, + { + "start": 5834.54, + "end": 5835.46, + "probability": 0.6578 + }, + { + "start": 5842.2, + "end": 5843.54, + "probability": 0.8519 + }, + { + "start": 5848.24, + "end": 5850.48, + "probability": 0.5178 + }, + { + "start": 5852.58, + "end": 5853.42, + "probability": 0.3849 + }, + { + "start": 5853.42, + "end": 5858.22, + "probability": 0.9886 + }, + { + "start": 5858.44, + "end": 5859.62, + "probability": 0.569 + }, + { + "start": 5860.34, + "end": 5861.18, + "probability": 0.9459 + }, + { + "start": 5862.26, + "end": 5867.38, + "probability": 0.7842 + }, + { + "start": 5867.54, + "end": 5870.16, + "probability": 0.7729 + }, + { + "start": 5870.7, + "end": 5872.42, + "probability": 0.5397 + }, + { + "start": 5872.8, + "end": 5877.46, + "probability": 0.843 + }, + { + "start": 5878.48, + "end": 5880.28, + "probability": 0.5654 + }, + { + "start": 5880.48, + "end": 5881.24, + "probability": 0.1663 + }, + { + "start": 5881.98, + "end": 5882.94, + "probability": 0.7447 + }, + { + "start": 5883.8, + "end": 5885.9, + "probability": 0.7408 + }, + { + "start": 5886.52, + "end": 5889.5, + "probability": 0.9846 + }, + { + "start": 5889.6, + "end": 5890.7, + "probability": 0.9912 + }, + { + "start": 5894.96, + "end": 5896.56, + "probability": 0.7624 + }, + { + "start": 5906.74, + "end": 5907.68, + "probability": 0.4255 + }, + { + "start": 5909.62, + "end": 5911.58, + "probability": 0.7272 + }, + { + "start": 5911.7, + "end": 5912.54, + "probability": 0.9167 + }, + { + "start": 5912.82, + "end": 5917.16, + "probability": 0.647 + }, + { + "start": 5918.48, + "end": 5920.42, + "probability": 0.9937 + }, + { + "start": 5921.68, + "end": 5923.02, + "probability": 0.9461 + }, + { + "start": 5923.1, + "end": 5925.12, + "probability": 0.8901 + }, + { + "start": 5925.58, + "end": 5931.04, + "probability": 0.9056 + }, + { + "start": 5932.16, + "end": 5935.68, + "probability": 0.9959 + }, + { + "start": 5936.76, + "end": 5941.16, + "probability": 0.9927 + }, + { + "start": 5942.5, + "end": 5943.42, + "probability": 0.9243 + }, + { + "start": 5944.32, + "end": 5945.36, + "probability": 0.7528 + }, + { + "start": 5947.06, + "end": 5947.92, + "probability": 0.9997 + }, + { + "start": 5949.42, + "end": 5950.56, + "probability": 0.9092 + }, + { + "start": 5951.86, + "end": 5953.64, + "probability": 0.8495 + }, + { + "start": 5954.16, + "end": 5957.54, + "probability": 0.8424 + }, + { + "start": 5958.16, + "end": 5959.3, + "probability": 0.9894 + }, + { + "start": 5959.98, + "end": 5962.92, + "probability": 0.9613 + }, + { + "start": 5963.52, + "end": 5965.38, + "probability": 0.9435 + }, + { + "start": 5967.74, + "end": 5968.64, + "probability": 0.9236 + }, + { + "start": 5968.66, + "end": 5969.44, + "probability": 0.6289 + }, + { + "start": 5969.88, + "end": 5972.48, + "probability": 0.9962 + }, + { + "start": 5973.04, + "end": 5973.76, + "probability": 0.8468 + }, + { + "start": 5973.86, + "end": 5975.0, + "probability": 0.9553 + }, + { + "start": 5975.1, + "end": 5976.18, + "probability": 0.9731 + }, + { + "start": 5976.82, + "end": 5978.2, + "probability": 0.8889 + }, + { + "start": 5980.54, + "end": 5981.8, + "probability": 0.8531 + }, + { + "start": 5982.42, + "end": 5983.84, + "probability": 0.9989 + }, + { + "start": 5984.1, + "end": 5986.4, + "probability": 0.7979 + }, + { + "start": 5986.8, + "end": 5987.74, + "probability": 0.9312 + }, + { + "start": 5987.88, + "end": 5989.78, + "probability": 0.9717 + }, + { + "start": 5990.44, + "end": 5991.7, + "probability": 0.9451 + }, + { + "start": 5992.18, + "end": 5994.51, + "probability": 0.9277 + }, + { + "start": 5994.9, + "end": 5995.6, + "probability": 0.9464 + }, + { + "start": 5995.88, + "end": 5996.88, + "probability": 0.9834 + }, + { + "start": 5997.5, + "end": 5998.04, + "probability": 0.8613 + }, + { + "start": 5998.86, + "end": 6000.88, + "probability": 0.9883 + }, + { + "start": 6002.04, + "end": 6003.34, + "probability": 0.8956 + }, + { + "start": 6003.42, + "end": 6004.1, + "probability": 0.7208 + }, + { + "start": 6004.14, + "end": 6004.28, + "probability": 0.8534 + }, + { + "start": 6004.42, + "end": 6005.36, + "probability": 0.8989 + }, + { + "start": 6005.64, + "end": 6007.0, + "probability": 0.9591 + }, + { + "start": 6007.16, + "end": 6008.08, + "probability": 0.9939 + }, + { + "start": 6008.82, + "end": 6010.0, + "probability": 0.9014 + }, + { + "start": 6010.44, + "end": 6011.62, + "probability": 0.9692 + }, + { + "start": 6012.24, + "end": 6013.78, + "probability": 0.8167 + }, + { + "start": 6014.52, + "end": 6016.58, + "probability": 0.8609 + }, + { + "start": 6017.28, + "end": 6018.42, + "probability": 0.8351 + }, + { + "start": 6020.18, + "end": 6022.66, + "probability": 0.6438 + }, + { + "start": 6022.78, + "end": 6023.48, + "probability": 0.8372 + }, + { + "start": 6024.44, + "end": 6027.84, + "probability": 0.9882 + }, + { + "start": 6028.92, + "end": 6030.64, + "probability": 0.922 + }, + { + "start": 6031.16, + "end": 6032.14, + "probability": 0.9193 + }, + { + "start": 6032.78, + "end": 6033.46, + "probability": 0.8057 + }, + { + "start": 6034.46, + "end": 6036.36, + "probability": 0.6774 + }, + { + "start": 6036.92, + "end": 6037.42, + "probability": 0.9483 + }, + { + "start": 6038.16, + "end": 6039.92, + "probability": 0.9819 + }, + { + "start": 6041.0, + "end": 6041.88, + "probability": 0.6526 + }, + { + "start": 6043.12, + "end": 6044.32, + "probability": 0.9918 + }, + { + "start": 6044.36, + "end": 6045.36, + "probability": 0.882 + }, + { + "start": 6045.4, + "end": 6047.04, + "probability": 0.6499 + }, + { + "start": 6047.12, + "end": 6049.38, + "probability": 0.7101 + }, + { + "start": 6050.3, + "end": 6051.18, + "probability": 0.7366 + }, + { + "start": 6051.88, + "end": 6055.2, + "probability": 0.9338 + }, + { + "start": 6055.72, + "end": 6059.52, + "probability": 0.9482 + }, + { + "start": 6060.62, + "end": 6061.74, + "probability": 0.9852 + }, + { + "start": 6062.52, + "end": 6064.38, + "probability": 0.6966 + }, + { + "start": 6065.08, + "end": 6069.5, + "probability": 0.7095 + }, + { + "start": 6070.36, + "end": 6071.82, + "probability": 0.986 + }, + { + "start": 6071.84, + "end": 6073.02, + "probability": 0.8093 + }, + { + "start": 6073.1, + "end": 6074.74, + "probability": 0.9773 + }, + { + "start": 6075.9, + "end": 6078.8, + "probability": 0.9594 + }, + { + "start": 6080.48, + "end": 6081.9, + "probability": 0.9745 + }, + { + "start": 6082.24, + "end": 6085.32, + "probability": 0.99 + }, + { + "start": 6085.54, + "end": 6086.76, + "probability": 0.9282 + }, + { + "start": 6087.1, + "end": 6090.0, + "probability": 0.8193 + }, + { + "start": 6090.86, + "end": 6094.26, + "probability": 0.9477 + }, + { + "start": 6096.04, + "end": 6097.56, + "probability": 0.7341 + }, + { + "start": 6097.58, + "end": 6100.5, + "probability": 0.905 + }, + { + "start": 6101.18, + "end": 6103.4, + "probability": 0.9978 + }, + { + "start": 6104.22, + "end": 6105.22, + "probability": 0.9521 + }, + { + "start": 6106.7, + "end": 6107.46, + "probability": 0.9845 + }, + { + "start": 6109.46, + "end": 6114.06, + "probability": 0.9761 + }, + { + "start": 6114.06, + "end": 6117.92, + "probability": 0.9993 + }, + { + "start": 6118.52, + "end": 6120.24, + "probability": 0.9829 + }, + { + "start": 6122.06, + "end": 6128.06, + "probability": 0.9893 + }, + { + "start": 6128.76, + "end": 6131.82, + "probability": 0.7438 + }, + { + "start": 6132.08, + "end": 6132.36, + "probability": 0.792 + }, + { + "start": 6132.42, + "end": 6134.32, + "probability": 0.9331 + }, + { + "start": 6134.74, + "end": 6135.52, + "probability": 0.9116 + }, + { + "start": 6135.62, + "end": 6136.38, + "probability": 0.9564 + }, + { + "start": 6136.8, + "end": 6142.06, + "probability": 0.9438 + }, + { + "start": 6142.8, + "end": 6146.7, + "probability": 0.9769 + }, + { + "start": 6147.04, + "end": 6148.82, + "probability": 0.9858 + }, + { + "start": 6149.56, + "end": 6156.0, + "probability": 0.9955 + }, + { + "start": 6157.58, + "end": 6162.52, + "probability": 0.9947 + }, + { + "start": 6163.34, + "end": 6166.5, + "probability": 0.488 + }, + { + "start": 6167.02, + "end": 6174.98, + "probability": 0.9771 + }, + { + "start": 6175.2, + "end": 6175.66, + "probability": 0.944 + }, + { + "start": 6176.18, + "end": 6176.7, + "probability": 0.7583 + }, + { + "start": 6177.96, + "end": 6180.46, + "probability": 0.8301 + }, + { + "start": 6181.04, + "end": 6183.92, + "probability": 0.7202 + }, + { + "start": 6185.14, + "end": 6190.04, + "probability": 0.9418 + }, + { + "start": 6191.24, + "end": 6194.76, + "probability": 0.7649 + }, + { + "start": 6196.08, + "end": 6197.26, + "probability": 0.7801 + }, + { + "start": 6197.94, + "end": 6199.5, + "probability": 0.9964 + }, + { + "start": 6200.66, + "end": 6207.28, + "probability": 0.9912 + }, + { + "start": 6208.34, + "end": 6212.0, + "probability": 0.8896 + }, + { + "start": 6212.54, + "end": 6217.62, + "probability": 0.9772 + }, + { + "start": 6217.9, + "end": 6220.36, + "probability": 0.9005 + }, + { + "start": 6220.84, + "end": 6221.42, + "probability": 0.3 + }, + { + "start": 6221.54, + "end": 6224.94, + "probability": 0.9717 + }, + { + "start": 6226.86, + "end": 6229.9, + "probability": 0.9809 + }, + { + "start": 6230.82, + "end": 6233.64, + "probability": 0.5301 + }, + { + "start": 6234.42, + "end": 6238.18, + "probability": 0.9834 + }, + { + "start": 6238.54, + "end": 6240.5, + "probability": 0.768 + }, + { + "start": 6240.6, + "end": 6242.6, + "probability": 0.6961 + }, + { + "start": 6243.2, + "end": 6244.2, + "probability": 0.7684 + }, + { + "start": 6245.4, + "end": 6247.8, + "probability": 0.9954 + }, + { + "start": 6249.52, + "end": 6251.72, + "probability": 0.8811 + }, + { + "start": 6252.74, + "end": 6254.7, + "probability": 0.9452 + }, + { + "start": 6255.3, + "end": 6258.96, + "probability": 0.8043 + }, + { + "start": 6260.02, + "end": 6260.98, + "probability": 0.6032 + }, + { + "start": 6262.8, + "end": 6266.16, + "probability": 0.9891 + }, + { + "start": 6266.84, + "end": 6269.58, + "probability": 0.7527 + }, + { + "start": 6270.82, + "end": 6273.82, + "probability": 0.9971 + }, + { + "start": 6274.76, + "end": 6275.38, + "probability": 0.9495 + }, + { + "start": 6276.02, + "end": 6280.22, + "probability": 0.9159 + }, + { + "start": 6280.74, + "end": 6283.04, + "probability": 0.9846 + }, + { + "start": 6284.02, + "end": 6287.46, + "probability": 0.9749 + }, + { + "start": 6288.18, + "end": 6291.28, + "probability": 0.9819 + }, + { + "start": 6292.12, + "end": 6293.68, + "probability": 0.5281 + }, + { + "start": 6293.94, + "end": 6299.74, + "probability": 0.8244 + }, + { + "start": 6300.4, + "end": 6303.36, + "probability": 0.9959 + }, + { + "start": 6303.94, + "end": 6305.06, + "probability": 0.5934 + }, + { + "start": 6305.14, + "end": 6306.84, + "probability": 0.7998 + }, + { + "start": 6307.28, + "end": 6309.18, + "probability": 0.9785 + }, + { + "start": 6309.76, + "end": 6312.42, + "probability": 0.9861 + }, + { + "start": 6312.56, + "end": 6313.88, + "probability": 0.9932 + }, + { + "start": 6315.2, + "end": 6317.0, + "probability": 0.782 + }, + { + "start": 6317.3, + "end": 6319.98, + "probability": 0.9834 + }, + { + "start": 6320.38, + "end": 6321.27, + "probability": 0.8412 + }, + { + "start": 6322.44, + "end": 6324.38, + "probability": 0.9424 + }, + { + "start": 6324.68, + "end": 6324.9, + "probability": 0.7952 + }, + { + "start": 6326.16, + "end": 6328.48, + "probability": 0.6912 + }, + { + "start": 6329.48, + "end": 6331.24, + "probability": 0.9377 + }, + { + "start": 6331.82, + "end": 6333.26, + "probability": 0.5144 + }, + { + "start": 6335.74, + "end": 6338.08, + "probability": 0.1386 + }, + { + "start": 6340.04, + "end": 6341.06, + "probability": 0.3601 + }, + { + "start": 6344.36, + "end": 6344.78, + "probability": 0.022 + }, + { + "start": 6346.38, + "end": 6348.9, + "probability": 0.1522 + }, + { + "start": 6363.56, + "end": 6363.56, + "probability": 0.0207 + }, + { + "start": 6383.8, + "end": 6385.62, + "probability": 0.843 + }, + { + "start": 6386.6, + "end": 6388.16, + "probability": 0.7391 + }, + { + "start": 6389.36, + "end": 6391.5, + "probability": 0.7489 + }, + { + "start": 6393.68, + "end": 6394.7, + "probability": 0.2511 + }, + { + "start": 6395.73, + "end": 6396.8, + "probability": 0.6993 + }, + { + "start": 6396.8, + "end": 6396.8, + "probability": 0.1988 + }, + { + "start": 6396.8, + "end": 6397.5, + "probability": 0.5495 + }, + { + "start": 6397.88, + "end": 6399.3, + "probability": 0.8418 + }, + { + "start": 6399.82, + "end": 6400.38, + "probability": 0.8412 + }, + { + "start": 6400.98, + "end": 6401.32, + "probability": 0.0439 + }, + { + "start": 6402.26, + "end": 6403.12, + "probability": 0.2896 + }, + { + "start": 6404.54, + "end": 6407.28, + "probability": 0.9316 + }, + { + "start": 6408.34, + "end": 6410.96, + "probability": 0.9689 + }, + { + "start": 6411.76, + "end": 6413.26, + "probability": 0.7533 + }, + { + "start": 6413.26, + "end": 6415.96, + "probability": 0.697 + }, + { + "start": 6415.96, + "end": 6418.12, + "probability": 0.2116 + }, + { + "start": 6418.26, + "end": 6420.3, + "probability": 0.9355 + }, + { + "start": 6420.3, + "end": 6425.82, + "probability": 0.6753 + }, + { + "start": 6426.48, + "end": 6428.82, + "probability": 0.6158 + }, + { + "start": 6430.46, + "end": 6435.94, + "probability": 0.4315 + }, + { + "start": 6436.86, + "end": 6439.64, + "probability": 0.6779 + }, + { + "start": 6439.76, + "end": 6441.56, + "probability": 0.5227 + }, + { + "start": 6441.72, + "end": 6442.54, + "probability": 0.6943 + }, + { + "start": 6442.58, + "end": 6446.28, + "probability": 0.88 + }, + { + "start": 6447.18, + "end": 6449.32, + "probability": 0.8033 + }, + { + "start": 6449.4, + "end": 6453.26, + "probability": 0.7239 + }, + { + "start": 6453.36, + "end": 6455.46, + "probability": 0.6628 + }, + { + "start": 6457.82, + "end": 6460.66, + "probability": 0.246 + }, + { + "start": 6460.66, + "end": 6461.72, + "probability": 0.7161 + }, + { + "start": 6462.5, + "end": 6464.16, + "probability": 0.8367 + }, + { + "start": 6464.88, + "end": 6471.5, + "probability": 0.9607 + }, + { + "start": 6471.72, + "end": 6472.76, + "probability": 0.6579 + }, + { + "start": 6473.42, + "end": 6475.78, + "probability": 0.9872 + }, + { + "start": 6476.64, + "end": 6477.08, + "probability": 0.8039 + }, + { + "start": 6478.2, + "end": 6481.4, + "probability": 0.6243 + }, + { + "start": 6481.46, + "end": 6484.18, + "probability": 0.7632 + }, + { + "start": 6484.3, + "end": 6487.02, + "probability": 0.5523 + }, + { + "start": 6487.04, + "end": 6487.9, + "probability": 0.7112 + }, + { + "start": 6508.1, + "end": 6511.78, + "probability": 0.0367 + }, + { + "start": 6513.37, + "end": 6519.61, + "probability": 0.0143 + }, + { + "start": 6520.48, + "end": 6525.7, + "probability": 0.0924 + }, + { + "start": 6526.76, + "end": 6529.78, + "probability": 0.2499 + }, + { + "start": 6530.34, + "end": 6533.06, + "probability": 0.0716 + }, + { + "start": 6533.58, + "end": 6534.42, + "probability": 0.0596 + }, + { + "start": 6539.88, + "end": 6541.84, + "probability": 0.0046 + }, + { + "start": 6541.84, + "end": 6542.9, + "probability": 0.0638 + }, + { + "start": 6545.68, + "end": 6547.84, + "probability": 0.085 + }, + { + "start": 6548.0, + "end": 6548.7, + "probability": 0.0623 + }, + { + "start": 6552.98, + "end": 6553.52, + "probability": 0.167 + }, + { + "start": 6554.76, + "end": 6555.16, + "probability": 0.0659 + }, + { + "start": 6568.0, + "end": 6568.0, + "probability": 0.0 + }, + { + "start": 6568.0, + "end": 6568.0, + "probability": 0.0 + }, + { + "start": 6568.0, + "end": 6568.0, + "probability": 0.0 + }, + { + "start": 6568.0, + "end": 6568.0, + "probability": 0.0 + }, + { + "start": 6568.0, + "end": 6568.0, + "probability": 0.0 + }, + { + "start": 6568.0, + "end": 6568.0, + "probability": 0.0 + }, + { + "start": 6568.0, + "end": 6568.0, + "probability": 0.0 + }, + { + "start": 6568.0, + "end": 6568.0, + "probability": 0.0 + }, + { + "start": 6568.0, + "end": 6568.0, + "probability": 0.0 + }, + { + "start": 6568.24, + "end": 6568.24, + "probability": 0.0977 + }, + { + "start": 6568.24, + "end": 6568.24, + "probability": 0.0527 + }, + { + "start": 6568.24, + "end": 6569.36, + "probability": 0.4318 + }, + { + "start": 6572.39, + "end": 6574.34, + "probability": 0.6288 + }, + { + "start": 6575.42, + "end": 6578.06, + "probability": 0.9642 + }, + { + "start": 6578.92, + "end": 6587.06, + "probability": 0.9921 + }, + { + "start": 6589.14, + "end": 6594.8, + "probability": 0.8848 + }, + { + "start": 6595.58, + "end": 6598.32, + "probability": 0.9691 + }, + { + "start": 6599.14, + "end": 6601.14, + "probability": 0.5197 + }, + { + "start": 6602.3, + "end": 6602.74, + "probability": 0.622 + }, + { + "start": 6602.84, + "end": 6612.84, + "probability": 0.9111 + }, + { + "start": 6613.76, + "end": 6616.18, + "probability": 0.9775 + }, + { + "start": 6616.88, + "end": 6619.64, + "probability": 0.9729 + }, + { + "start": 6620.36, + "end": 6620.84, + "probability": 0.756 + }, + { + "start": 6622.07, + "end": 6625.1, + "probability": 0.9604 + }, + { + "start": 6625.94, + "end": 6628.38, + "probability": 0.9377 + }, + { + "start": 6629.2, + "end": 6632.34, + "probability": 0.8998 + }, + { + "start": 6632.34, + "end": 6634.92, + "probability": 0.9878 + }, + { + "start": 6635.3, + "end": 6635.8, + "probability": 0.5453 + }, + { + "start": 6636.4, + "end": 6639.32, + "probability": 0.8812 + }, + { + "start": 6639.46, + "end": 6641.56, + "probability": 0.8354 + }, + { + "start": 6641.58, + "end": 6647.46, + "probability": 0.9717 + }, + { + "start": 6648.22, + "end": 6651.08, + "probability": 0.975 + }, + { + "start": 6651.08, + "end": 6654.54, + "probability": 0.9368 + }, + { + "start": 6655.62, + "end": 6657.04, + "probability": 0.4663 + }, + { + "start": 6657.32, + "end": 6658.22, + "probability": 0.6374 + }, + { + "start": 6659.2, + "end": 6661.96, + "probability": 0.9933 + }, + { + "start": 6663.06, + "end": 6664.18, + "probability": 0.845 + }, + { + "start": 6665.72, + "end": 6671.16, + "probability": 0.9831 + }, + { + "start": 6671.94, + "end": 6674.32, + "probability": 0.9901 + }, + { + "start": 6674.7, + "end": 6675.7, + "probability": 0.8389 + }, + { + "start": 6675.78, + "end": 6678.48, + "probability": 0.9818 + }, + { + "start": 6678.48, + "end": 6681.74, + "probability": 0.9718 + }, + { + "start": 6683.18, + "end": 6687.48, + "probability": 0.9946 + }, + { + "start": 6687.56, + "end": 6688.38, + "probability": 0.9197 + }, + { + "start": 6689.14, + "end": 6693.32, + "probability": 0.8256 + }, + { + "start": 6693.38, + "end": 6695.1, + "probability": 0.9326 + }, + { + "start": 6695.7, + "end": 6698.42, + "probability": 0.958 + }, + { + "start": 6698.52, + "end": 6699.82, + "probability": 0.8687 + }, + { + "start": 6700.42, + "end": 6702.32, + "probability": 0.9383 + }, + { + "start": 6703.46, + "end": 6706.12, + "probability": 0.709 + }, + { + "start": 6706.94, + "end": 6708.6, + "probability": 0.988 + }, + { + "start": 6708.74, + "end": 6709.0, + "probability": 0.827 + }, + { + "start": 6709.28, + "end": 6712.0, + "probability": 0.9108 + }, + { + "start": 6712.54, + "end": 6716.66, + "probability": 0.9854 + }, + { + "start": 6717.06, + "end": 6720.76, + "probability": 0.9951 + }, + { + "start": 6720.88, + "end": 6722.64, + "probability": 0.9874 + }, + { + "start": 6723.5, + "end": 6726.9, + "probability": 0.8694 + }, + { + "start": 6727.72, + "end": 6735.22, + "probability": 0.9521 + }, + { + "start": 6735.34, + "end": 6736.62, + "probability": 0.9692 + }, + { + "start": 6737.0, + "end": 6738.14, + "probability": 0.8852 + }, + { + "start": 6738.54, + "end": 6739.64, + "probability": 0.9326 + }, + { + "start": 6739.78, + "end": 6742.84, + "probability": 0.967 + }, + { + "start": 6743.76, + "end": 6748.62, + "probability": 0.9899 + }, + { + "start": 6748.74, + "end": 6752.91, + "probability": 0.9901 + }, + { + "start": 6753.26, + "end": 6758.0, + "probability": 0.9648 + }, + { + "start": 6758.64, + "end": 6763.86, + "probability": 0.9964 + }, + { + "start": 6764.44, + "end": 6766.18, + "probability": 0.871 + }, + { + "start": 6766.22, + "end": 6767.13, + "probability": 0.7334 + }, + { + "start": 6768.38, + "end": 6768.74, + "probability": 0.1022 + }, + { + "start": 6769.8, + "end": 6769.8, + "probability": 0.2063 + }, + { + "start": 6769.94, + "end": 6770.42, + "probability": 0.7597 + }, + { + "start": 6770.8, + "end": 6774.4, + "probability": 0.9974 + }, + { + "start": 6776.38, + "end": 6777.56, + "probability": 0.9955 + }, + { + "start": 6777.86, + "end": 6778.72, + "probability": 0.7319 + }, + { + "start": 6778.78, + "end": 6779.78, + "probability": 0.6362 + }, + { + "start": 6780.48, + "end": 6781.2, + "probability": 0.7124 + }, + { + "start": 6782.38, + "end": 6783.4, + "probability": 0.995 + }, + { + "start": 6783.54, + "end": 6786.19, + "probability": 0.7417 + }, + { + "start": 6786.34, + "end": 6788.2, + "probability": 0.9669 + }, + { + "start": 6788.56, + "end": 6791.16, + "probability": 0.51 + }, + { + "start": 6791.28, + "end": 6792.22, + "probability": 0.7844 + }, + { + "start": 6792.9, + "end": 6795.08, + "probability": 0.9855 + }, + { + "start": 6795.66, + "end": 6796.18, + "probability": 0.6658 + }, + { + "start": 6796.8, + "end": 6799.06, + "probability": 0.9917 + }, + { + "start": 6799.22, + "end": 6799.76, + "probability": 0.9347 + }, + { + "start": 6800.5, + "end": 6803.92, + "probability": 0.9896 + }, + { + "start": 6804.4, + "end": 6805.12, + "probability": 0.7135 + }, + { + "start": 6805.78, + "end": 6808.62, + "probability": 0.7968 + }, + { + "start": 6808.92, + "end": 6809.22, + "probability": 0.6927 + }, + { + "start": 6810.2, + "end": 6810.22, + "probability": 0.4141 + }, + { + "start": 6810.74, + "end": 6813.56, + "probability": 0.8665 + }, + { + "start": 6813.64, + "end": 6814.18, + "probability": 0.605 + }, + { + "start": 6814.86, + "end": 6816.22, + "probability": 0.9781 + }, + { + "start": 6816.38, + "end": 6817.62, + "probability": 0.6498 + }, + { + "start": 6818.18, + "end": 6822.38, + "probability": 0.9908 + }, + { + "start": 6822.52, + "end": 6822.8, + "probability": 0.5222 + }, + { + "start": 6822.84, + "end": 6826.46, + "probability": 0.9492 + }, + { + "start": 6826.46, + "end": 6829.37, + "probability": 0.9937 + }, + { + "start": 6829.86, + "end": 6834.0, + "probability": 0.869 + }, + { + "start": 6834.04, + "end": 6834.04, + "probability": 0.0498 + }, + { + "start": 6834.12, + "end": 6835.48, + "probability": 0.8059 + }, + { + "start": 6835.54, + "end": 6835.96, + "probability": 0.9564 + }, + { + "start": 6836.74, + "end": 6837.62, + "probability": 0.8753 + }, + { + "start": 6839.68, + "end": 6845.32, + "probability": 0.9971 + }, + { + "start": 6846.52, + "end": 6850.5, + "probability": 0.8218 + }, + { + "start": 6850.6, + "end": 6852.56, + "probability": 0.9048 + }, + { + "start": 6853.52, + "end": 6855.0, + "probability": 0.9412 + }, + { + "start": 6855.2, + "end": 6856.96, + "probability": 0.8062 + }, + { + "start": 6857.12, + "end": 6859.82, + "probability": 0.9888 + }, + { + "start": 6860.5, + "end": 6864.16, + "probability": 0.9934 + }, + { + "start": 6864.16, + "end": 6866.64, + "probability": 0.928 + }, + { + "start": 6866.78, + "end": 6871.0, + "probability": 0.7411 + }, + { + "start": 6871.66, + "end": 6877.86, + "probability": 0.9934 + }, + { + "start": 6878.04, + "end": 6881.96, + "probability": 0.943 + }, + { + "start": 6882.58, + "end": 6883.44, + "probability": 0.7569 + }, + { + "start": 6884.16, + "end": 6887.1, + "probability": 0.95 + }, + { + "start": 6888.16, + "end": 6890.41, + "probability": 0.1072 + }, + { + "start": 6892.02, + "end": 6893.18, + "probability": 0.4988 + }, + { + "start": 6893.36, + "end": 6895.33, + "probability": 0.8901 + }, + { + "start": 6896.74, + "end": 6899.36, + "probability": 0.859 + }, + { + "start": 6899.58, + "end": 6902.78, + "probability": 0.7371 + }, + { + "start": 6902.86, + "end": 6903.62, + "probability": 0.0192 + }, + { + "start": 6904.02, + "end": 6904.42, + "probability": 0.4297 + }, + { + "start": 6904.44, + "end": 6904.8, + "probability": 0.0428 + }, + { + "start": 6904.8, + "end": 6904.86, + "probability": 0.604 + }, + { + "start": 6904.86, + "end": 6907.92, + "probability": 0.7983 + }, + { + "start": 6908.58, + "end": 6909.98, + "probability": 0.0185 + }, + { + "start": 6910.1, + "end": 6910.36, + "probability": 0.2394 + }, + { + "start": 6910.46, + "end": 6910.62, + "probability": 0.0185 + }, + { + "start": 6911.06, + "end": 6913.42, + "probability": 0.71 + }, + { + "start": 6913.52, + "end": 6914.02, + "probability": 0.7839 + }, + { + "start": 6914.32, + "end": 6915.2, + "probability": 0.8281 + }, + { + "start": 6915.36, + "end": 6918.46, + "probability": 0.9437 + }, + { + "start": 6918.58, + "end": 6919.06, + "probability": 0.9457 + }, + { + "start": 6919.42, + "end": 6920.64, + "probability": 0.8864 + }, + { + "start": 6920.76, + "end": 6921.22, + "probability": 0.9893 + }, + { + "start": 6921.78, + "end": 6922.66, + "probability": 0.8613 + }, + { + "start": 6923.94, + "end": 6927.38, + "probability": 0.7273 + }, + { + "start": 6927.66, + "end": 6929.54, + "probability": 0.9068 + }, + { + "start": 6929.58, + "end": 6932.62, + "probability": 0.9814 + }, + { + "start": 6933.35, + "end": 6935.29, + "probability": 0.9067 + }, + { + "start": 6935.86, + "end": 6937.0, + "probability": 0.2989 + }, + { + "start": 6938.04, + "end": 6941.72, + "probability": 0.1614 + }, + { + "start": 6941.9, + "end": 6942.37, + "probability": 0.4373 + }, + { + "start": 6942.6, + "end": 6943.22, + "probability": 0.4378 + }, + { + "start": 6944.5, + "end": 6944.5, + "probability": 0.3146 + }, + { + "start": 6944.5, + "end": 6945.36, + "probability": 0.7809 + }, + { + "start": 6945.5, + "end": 6945.9, + "probability": 0.8398 + }, + { + "start": 6945.98, + "end": 6946.68, + "probability": 0.9036 + }, + { + "start": 6947.58, + "end": 6948.86, + "probability": 0.7482 + }, + { + "start": 6949.7, + "end": 6950.42, + "probability": 0.9762 + }, + { + "start": 6951.7, + "end": 6954.88, + "probability": 0.9706 + }, + { + "start": 6955.16, + "end": 6957.18, + "probability": 0.7695 + }, + { + "start": 6957.24, + "end": 6958.18, + "probability": 0.936 + }, + { + "start": 6958.26, + "end": 6960.94, + "probability": 0.5649 + }, + { + "start": 6961.26, + "end": 6964.08, + "probability": 0.9271 + }, + { + "start": 6965.26, + "end": 6967.14, + "probability": 0.8427 + }, + { + "start": 6968.03, + "end": 6969.34, + "probability": 0.9375 + }, + { + "start": 6969.46, + "end": 6969.88, + "probability": 0.8358 + }, + { + "start": 6970.28, + "end": 6971.58, + "probability": 0.7465 + }, + { + "start": 6971.66, + "end": 6971.94, + "probability": 0.7466 + }, + { + "start": 6972.34, + "end": 6973.32, + "probability": 0.4746 + }, + { + "start": 6973.54, + "end": 6974.48, + "probability": 0.6401 + }, + { + "start": 6974.56, + "end": 6975.16, + "probability": 0.5623 + }, + { + "start": 6975.48, + "end": 6975.84, + "probability": 0.8082 + }, + { + "start": 6975.86, + "end": 6978.92, + "probability": 0.5025 + }, + { + "start": 6979.22, + "end": 6983.14, + "probability": 0.9057 + }, + { + "start": 6983.7, + "end": 6984.6, + "probability": 0.7024 + }, + { + "start": 6984.7, + "end": 6985.69, + "probability": 0.8426 + }, + { + "start": 6985.92, + "end": 6986.5, + "probability": 0.9736 + }, + { + "start": 6986.92, + "end": 6987.7, + "probability": 0.9757 + }, + { + "start": 6987.78, + "end": 6988.28, + "probability": 0.9786 + }, + { + "start": 6988.4, + "end": 6989.72, + "probability": 0.9556 + }, + { + "start": 6989.8, + "end": 6991.66, + "probability": 0.917 + }, + { + "start": 6992.02, + "end": 6993.36, + "probability": 0.8691 + }, + { + "start": 6993.58, + "end": 6994.79, + "probability": 0.9624 + }, + { + "start": 6995.12, + "end": 6996.35, + "probability": 0.9868 + }, + { + "start": 6997.16, + "end": 7003.46, + "probability": 0.9946 + }, + { + "start": 7003.46, + "end": 7006.22, + "probability": 0.7839 + }, + { + "start": 7006.68, + "end": 7010.7, + "probability": 0.9935 + }, + { + "start": 7011.24, + "end": 7014.88, + "probability": 0.9734 + }, + { + "start": 7014.98, + "end": 7016.58, + "probability": 0.9439 + }, + { + "start": 7017.12, + "end": 7019.94, + "probability": 0.9981 + }, + { + "start": 7019.94, + "end": 7022.92, + "probability": 0.9971 + }, + { + "start": 7023.84, + "end": 7024.96, + "probability": 0.9636 + }, + { + "start": 7026.0, + "end": 7027.12, + "probability": 0.8603 + }, + { + "start": 7027.38, + "end": 7028.42, + "probability": 0.9523 + }, + { + "start": 7028.62, + "end": 7032.24, + "probability": 0.0882 + }, + { + "start": 7032.24, + "end": 7032.48, + "probability": 0.0632 + }, + { + "start": 7032.48, + "end": 7033.3, + "probability": 0.297 + }, + { + "start": 7033.54, + "end": 7036.44, + "probability": 0.8939 + }, + { + "start": 7036.68, + "end": 7037.54, + "probability": 0.5491 + }, + { + "start": 7037.66, + "end": 7038.76, + "probability": 0.7815 + }, + { + "start": 7038.92, + "end": 7039.9, + "probability": 0.8924 + }, + { + "start": 7039.94, + "end": 7040.54, + "probability": 0.749 + }, + { + "start": 7040.94, + "end": 7041.75, + "probability": 0.7667 + }, + { + "start": 7042.04, + "end": 7044.06, + "probability": 0.9868 + }, + { + "start": 7044.32, + "end": 7045.38, + "probability": 0.9761 + }, + { + "start": 7045.44, + "end": 7047.64, + "probability": 0.8487 + }, + { + "start": 7047.78, + "end": 7048.84, + "probability": 0.8995 + }, + { + "start": 7049.28, + "end": 7053.18, + "probability": 0.9951 + }, + { + "start": 7053.66, + "end": 7055.52, + "probability": 0.9673 + }, + { + "start": 7055.92, + "end": 7057.38, + "probability": 0.7437 + }, + { + "start": 7057.68, + "end": 7062.34, + "probability": 0.9727 + }, + { + "start": 7062.86, + "end": 7066.38, + "probability": 0.96 + }, + { + "start": 7066.48, + "end": 7067.28, + "probability": 0.7339 + }, + { + "start": 7068.06, + "end": 7072.48, + "probability": 0.9551 + }, + { + "start": 7072.86, + "end": 7076.74, + "probability": 0.9624 + }, + { + "start": 7076.74, + "end": 7079.9, + "probability": 0.9923 + }, + { + "start": 7080.32, + "end": 7082.38, + "probability": 0.7894 + }, + { + "start": 7082.9, + "end": 7082.98, + "probability": 0.2693 + }, + { + "start": 7083.14, + "end": 7084.86, + "probability": 0.967 + }, + { + "start": 7085.26, + "end": 7087.48, + "probability": 0.9927 + }, + { + "start": 7087.94, + "end": 7089.78, + "probability": 0.9313 + }, + { + "start": 7090.0, + "end": 7092.52, + "probability": 0.8037 + }, + { + "start": 7092.52, + "end": 7096.42, + "probability": 0.9617 + }, + { + "start": 7096.6, + "end": 7100.68, + "probability": 0.9463 + }, + { + "start": 7101.06, + "end": 7105.48, + "probability": 0.9009 + }, + { + "start": 7105.5, + "end": 7107.42, + "probability": 0.698 + }, + { + "start": 7107.98, + "end": 7109.36, + "probability": 0.633 + }, + { + "start": 7109.42, + "end": 7111.52, + "probability": 0.7136 + }, + { + "start": 7111.96, + "end": 7112.48, + "probability": 0.7917 + }, + { + "start": 7112.62, + "end": 7115.6, + "probability": 0.7688 + }, + { + "start": 7116.04, + "end": 7118.74, + "probability": 0.9468 + }, + { + "start": 7120.26, + "end": 7121.74, + "probability": 0.939 + }, + { + "start": 7122.48, + "end": 7125.04, + "probability": 0.9214 + }, + { + "start": 7132.88, + "end": 7134.34, + "probability": 0.7317 + }, + { + "start": 7156.28, + "end": 7158.1, + "probability": 0.8193 + }, + { + "start": 7169.68, + "end": 7169.68, + "probability": 0.2705 + }, + { + "start": 7169.68, + "end": 7170.86, + "probability": 0.6444 + }, + { + "start": 7174.32, + "end": 7179.78, + "probability": 0.9732 + }, + { + "start": 7179.92, + "end": 7180.42, + "probability": 0.6358 + }, + { + "start": 7181.34, + "end": 7184.2, + "probability": 0.7252 + }, + { + "start": 7186.22, + "end": 7187.0, + "probability": 0.001 + }, + { + "start": 7188.34, + "end": 7188.9, + "probability": 0.9038 + }, + { + "start": 7189.0, + "end": 7189.7, + "probability": 0.6593 + }, + { + "start": 7189.98, + "end": 7193.4, + "probability": 0.898 + }, + { + "start": 7194.9, + "end": 7196.12, + "probability": 0.9297 + }, + { + "start": 7197.4, + "end": 7198.4, + "probability": 0.705 + }, + { + "start": 7200.04, + "end": 7201.04, + "probability": 0.7477 + }, + { + "start": 7203.02, + "end": 7204.96, + "probability": 0.8645 + }, + { + "start": 7207.54, + "end": 7210.22, + "probability": 0.9395 + }, + { + "start": 7211.84, + "end": 7212.8, + "probability": 0.8658 + }, + { + "start": 7213.86, + "end": 7215.52, + "probability": 0.925 + }, + { + "start": 7219.72, + "end": 7223.3, + "probability": 0.7319 + }, + { + "start": 7224.88, + "end": 7229.16, + "probability": 0.9909 + }, + { + "start": 7230.46, + "end": 7232.17, + "probability": 0.6188 + }, + { + "start": 7234.12, + "end": 7235.96, + "probability": 0.9935 + }, + { + "start": 7237.7, + "end": 7238.5, + "probability": 0.9408 + }, + { + "start": 7240.16, + "end": 7241.17, + "probability": 0.8208 + }, + { + "start": 7242.3, + "end": 7246.54, + "probability": 0.9682 + }, + { + "start": 7247.3, + "end": 7249.66, + "probability": 0.6968 + }, + { + "start": 7250.44, + "end": 7251.58, + "probability": 0.8584 + }, + { + "start": 7255.22, + "end": 7257.38, + "probability": 0.8005 + }, + { + "start": 7259.34, + "end": 7260.18, + "probability": 0.9007 + }, + { + "start": 7260.22, + "end": 7262.1, + "probability": 0.7638 + }, + { + "start": 7262.1, + "end": 7264.24, + "probability": 0.952 + }, + { + "start": 7273.36, + "end": 7273.5, + "probability": 0.4907 + }, + { + "start": 7277.44, + "end": 7280.36, + "probability": 0.2757 + }, + { + "start": 7280.44, + "end": 7280.82, + "probability": 0.5748 + }, + { + "start": 7280.98, + "end": 7282.22, + "probability": 0.7061 + }, + { + "start": 7282.28, + "end": 7283.32, + "probability": 0.8564 + }, + { + "start": 7283.66, + "end": 7291.7, + "probability": 0.958 + }, + { + "start": 7292.7, + "end": 7296.86, + "probability": 0.7512 + }, + { + "start": 7300.8, + "end": 7302.24, + "probability": 0.3135 + }, + { + "start": 7303.26, + "end": 7304.04, + "probability": 0.9534 + }, + { + "start": 7306.4, + "end": 7309.0, + "probability": 0.6783 + }, + { + "start": 7310.24, + "end": 7312.84, + "probability": 0.9202 + }, + { + "start": 7313.66, + "end": 7317.38, + "probability": 0.3756 + }, + { + "start": 7318.76, + "end": 7322.28, + "probability": 0.2671 + }, + { + "start": 7322.32, + "end": 7323.06, + "probability": 0.6912 + }, + { + "start": 7323.18, + "end": 7323.66, + "probability": 0.1555 + }, + { + "start": 7323.9, + "end": 7324.84, + "probability": 0.4871 + }, + { + "start": 7325.7, + "end": 7326.22, + "probability": 0.8286 + }, + { + "start": 7326.32, + "end": 7326.6, + "probability": 0.1489 + }, + { + "start": 7326.86, + "end": 7327.8, + "probability": 0.6208 + }, + { + "start": 7328.24, + "end": 7328.34, + "probability": 0.5062 + }, + { + "start": 7329.8, + "end": 7330.5, + "probability": 0.5828 + }, + { + "start": 7330.88, + "end": 7331.32, + "probability": 0.6351 + }, + { + "start": 7331.44, + "end": 7331.54, + "probability": 0.8123 + }, + { + "start": 7331.68, + "end": 7338.7, + "probability": 0.7521 + }, + { + "start": 7339.08, + "end": 7339.8, + "probability": 0.7804 + }, + { + "start": 7340.5, + "end": 7340.98, + "probability": 0.1731 + }, + { + "start": 7340.98, + "end": 7343.86, + "probability": 0.7377 + }, + { + "start": 7344.12, + "end": 7346.06, + "probability": 0.0602 + }, + { + "start": 7348.4, + "end": 7352.72, + "probability": 0.8135 + }, + { + "start": 7352.72, + "end": 7359.26, + "probability": 0.9697 + }, + { + "start": 7360.38, + "end": 7361.16, + "probability": 0.7592 + }, + { + "start": 7362.2, + "end": 7364.22, + "probability": 0.8154 + }, + { + "start": 7364.3, + "end": 7365.52, + "probability": 0.959 + }, + { + "start": 7365.68, + "end": 7366.34, + "probability": 0.8091 + }, + { + "start": 7367.08, + "end": 7369.04, + "probability": 0.9746 + }, + { + "start": 7369.38, + "end": 7370.74, + "probability": 0.4938 + }, + { + "start": 7371.12, + "end": 7372.9, + "probability": 0.9003 + }, + { + "start": 7373.1, + "end": 7375.81, + "probability": 0.6665 + }, + { + "start": 7376.06, + "end": 7377.16, + "probability": 0.6655 + }, + { + "start": 7377.28, + "end": 7378.22, + "probability": 0.1631 + }, + { + "start": 7378.42, + "end": 7379.56, + "probability": 0.3704 + }, + { + "start": 7379.78, + "end": 7380.84, + "probability": 0.7778 + }, + { + "start": 7381.26, + "end": 7383.0, + "probability": 0.8214 + }, + { + "start": 7383.0, + "end": 7386.74, + "probability": 0.4119 + }, + { + "start": 7386.86, + "end": 7388.48, + "probability": 0.5052 + }, + { + "start": 7388.86, + "end": 7391.3, + "probability": 0.5851 + }, + { + "start": 7391.7, + "end": 7391.77, + "probability": 0.0262 + }, + { + "start": 7392.92, + "end": 7393.78, + "probability": 0.2688 + }, + { + "start": 7394.44, + "end": 7398.24, + "probability": 0.8587 + }, + { + "start": 7399.86, + "end": 7402.16, + "probability": 0.6744 + }, + { + "start": 7402.16, + "end": 7403.88, + "probability": 0.6526 + }, + { + "start": 7404.22, + "end": 7405.52, + "probability": 0.596 + }, + { + "start": 7405.56, + "end": 7405.88, + "probability": 0.407 + }, + { + "start": 7406.9, + "end": 7408.08, + "probability": 0.8422 + }, + { + "start": 7408.14, + "end": 7408.86, + "probability": 0.7382 + }, + { + "start": 7408.92, + "end": 7409.88, + "probability": 0.9658 + }, + { + "start": 7409.96, + "end": 7410.24, + "probability": 0.8506 + }, + { + "start": 7410.34, + "end": 7410.44, + "probability": 0.4211 + }, + { + "start": 7411.2, + "end": 7412.86, + "probability": 0.7144 + }, + { + "start": 7414.38, + "end": 7414.38, + "probability": 0.2624 + }, + { + "start": 7414.38, + "end": 7414.73, + "probability": 0.767 + }, + { + "start": 7415.24, + "end": 7417.52, + "probability": 0.7855 + }, + { + "start": 7417.56, + "end": 7422.26, + "probability": 0.8699 + }, + { + "start": 7422.94, + "end": 7428.5, + "probability": 0.7386 + }, + { + "start": 7429.1, + "end": 7431.02, + "probability": 0.9766 + }, + { + "start": 7431.96, + "end": 7432.58, + "probability": 0.39 + }, + { + "start": 7434.12, + "end": 7436.96, + "probability": 0.7182 + }, + { + "start": 7436.96, + "end": 7437.28, + "probability": 0.5086 + }, + { + "start": 7437.28, + "end": 7437.78, + "probability": 0.6621 + }, + { + "start": 7437.84, + "end": 7438.86, + "probability": 0.9471 + }, + { + "start": 7439.24, + "end": 7443.56, + "probability": 0.8232 + }, + { + "start": 7444.56, + "end": 7447.2, + "probability": 0.7825 + }, + { + "start": 7448.78, + "end": 7451.02, + "probability": 0.9021 + }, + { + "start": 7451.6, + "end": 7452.24, + "probability": 0.7459 + }, + { + "start": 7452.34, + "end": 7454.71, + "probability": 0.6082 + }, + { + "start": 7454.9, + "end": 7456.18, + "probability": 0.7251 + }, + { + "start": 7457.42, + "end": 7458.8, + "probability": 0.7778 + }, + { + "start": 7458.98, + "end": 7463.6, + "probability": 0.9816 + }, + { + "start": 7463.76, + "end": 7466.2, + "probability": 0.9888 + }, + { + "start": 7467.64, + "end": 7468.94, + "probability": 0.2685 + }, + { + "start": 7468.94, + "end": 7469.54, + "probability": 0.4324 + }, + { + "start": 7469.9, + "end": 7471.76, + "probability": 0.7282 + }, + { + "start": 7471.92, + "end": 7472.64, + "probability": 0.1675 + }, + { + "start": 7472.64, + "end": 7472.92, + "probability": 0.6722 + }, + { + "start": 7472.98, + "end": 7473.56, + "probability": 0.4934 + }, + { + "start": 7473.58, + "end": 7474.06, + "probability": 0.5672 + }, + { + "start": 7474.9, + "end": 7476.24, + "probability": 0.5714 + }, + { + "start": 7476.26, + "end": 7478.32, + "probability": 0.9619 + }, + { + "start": 7493.38, + "end": 7495.25, + "probability": 0.7113 + }, + { + "start": 7496.12, + "end": 7498.1, + "probability": 0.6198 + }, + { + "start": 7498.92, + "end": 7500.98, + "probability": 0.9855 + }, + { + "start": 7501.5, + "end": 7503.0, + "probability": 0.6541 + }, + { + "start": 7503.48, + "end": 7508.18, + "probability": 0.9885 + }, + { + "start": 7508.72, + "end": 7512.58, + "probability": 0.7516 + }, + { + "start": 7513.16, + "end": 7516.82, + "probability": 0.9683 + }, + { + "start": 7517.54, + "end": 7519.22, + "probability": 0.9893 + }, + { + "start": 7519.64, + "end": 7520.96, + "probability": 0.8896 + }, + { + "start": 7521.52, + "end": 7526.22, + "probability": 0.9928 + }, + { + "start": 7526.22, + "end": 7529.98, + "probability": 0.9985 + }, + { + "start": 7530.36, + "end": 7531.71, + "probability": 0.0024 + }, + { + "start": 7532.02, + "end": 7533.12, + "probability": 0.7612 + }, + { + "start": 7533.6, + "end": 7536.58, + "probability": 0.7086 + }, + { + "start": 7536.58, + "end": 7540.66, + "probability": 0.9884 + }, + { + "start": 7540.78, + "end": 7543.12, + "probability": 0.8558 + }, + { + "start": 7543.66, + "end": 7545.16, + "probability": 0.9366 + }, + { + "start": 7546.1, + "end": 7546.96, + "probability": 0.9772 + }, + { + "start": 7547.56, + "end": 7550.84, + "probability": 0.9871 + }, + { + "start": 7551.64, + "end": 7552.69, + "probability": 0.7451 + }, + { + "start": 7553.8, + "end": 7556.06, + "probability": 0.9398 + }, + { + "start": 7556.6, + "end": 7556.74, + "probability": 0.9294 + }, + { + "start": 7557.28, + "end": 7562.12, + "probability": 0.9502 + }, + { + "start": 7562.16, + "end": 7563.04, + "probability": 0.6511 + }, + { + "start": 7563.5, + "end": 7564.62, + "probability": 0.8005 + }, + { + "start": 7564.64, + "end": 7565.64, + "probability": 0.9854 + }, + { + "start": 7566.28, + "end": 7566.28, + "probability": 0.0418 + }, + { + "start": 7566.28, + "end": 7572.74, + "probability": 0.9698 + }, + { + "start": 7573.38, + "end": 7575.96, + "probability": 0.7928 + }, + { + "start": 7576.98, + "end": 7578.32, + "probability": 0.7933 + }, + { + "start": 7578.98, + "end": 7580.78, + "probability": 0.97 + }, + { + "start": 7580.94, + "end": 7581.56, + "probability": 0.6093 + }, + { + "start": 7582.12, + "end": 7585.78, + "probability": 0.9307 + }, + { + "start": 7586.38, + "end": 7587.26, + "probability": 0.7714 + }, + { + "start": 7587.84, + "end": 7595.3, + "probability": 0.9858 + }, + { + "start": 7595.9, + "end": 7597.26, + "probability": 0.7588 + }, + { + "start": 7597.88, + "end": 7599.33, + "probability": 0.8113 + }, + { + "start": 7599.76, + "end": 7601.02, + "probability": 0.9965 + }, + { + "start": 7601.26, + "end": 7602.48, + "probability": 0.5956 + }, + { + "start": 7603.0, + "end": 7606.52, + "probability": 0.9533 + }, + { + "start": 7606.92, + "end": 7608.06, + "probability": 0.7445 + }, + { + "start": 7609.14, + "end": 7611.66, + "probability": 0.8767 + }, + { + "start": 7611.82, + "end": 7612.84, + "probability": 0.8043 + }, + { + "start": 7613.18, + "end": 7614.9, + "probability": 0.9927 + }, + { + "start": 7615.42, + "end": 7619.24, + "probability": 0.9987 + }, + { + "start": 7619.24, + "end": 7624.46, + "probability": 0.965 + }, + { + "start": 7625.04, + "end": 7631.54, + "probability": 0.9971 + }, + { + "start": 7631.68, + "end": 7634.16, + "probability": 0.8099 + }, + { + "start": 7634.74, + "end": 7635.74, + "probability": 0.9716 + }, + { + "start": 7635.92, + "end": 7637.46, + "probability": 0.9196 + }, + { + "start": 7637.78, + "end": 7642.0, + "probability": 0.9888 + }, + { + "start": 7642.6, + "end": 7645.72, + "probability": 0.8645 + }, + { + "start": 7646.24, + "end": 7648.46, + "probability": 0.9639 + }, + { + "start": 7649.14, + "end": 7651.76, + "probability": 0.9564 + }, + { + "start": 7651.76, + "end": 7656.1, + "probability": 0.9545 + }, + { + "start": 7656.6, + "end": 7659.62, + "probability": 0.9694 + }, + { + "start": 7659.98, + "end": 7661.1, + "probability": 0.8702 + }, + { + "start": 7661.52, + "end": 7664.5, + "probability": 0.8933 + }, + { + "start": 7664.98, + "end": 7666.5, + "probability": 0.9703 + }, + { + "start": 7666.94, + "end": 7668.24, + "probability": 0.8112 + }, + { + "start": 7668.78, + "end": 7670.2, + "probability": 0.9902 + }, + { + "start": 7670.74, + "end": 7672.74, + "probability": 0.6995 + }, + { + "start": 7673.14, + "end": 7673.14, + "probability": 0.1143 + }, + { + "start": 7673.14, + "end": 7674.54, + "probability": 0.7347 + }, + { + "start": 7675.28, + "end": 7675.86, + "probability": 0.8304 + }, + { + "start": 7677.78, + "end": 7680.78, + "probability": 0.8693 + }, + { + "start": 7684.1, + "end": 7684.32, + "probability": 0.1481 + }, + { + "start": 7684.32, + "end": 7686.3, + "probability": 0.8673 + }, + { + "start": 7687.04, + "end": 7687.38, + "probability": 0.6237 + }, + { + "start": 7687.46, + "end": 7688.7, + "probability": 0.9264 + }, + { + "start": 7688.72, + "end": 7689.58, + "probability": 0.8535 + }, + { + "start": 7689.6, + "end": 7690.14, + "probability": 0.404 + }, + { + "start": 7690.84, + "end": 7692.68, + "probability": 0.8884 + }, + { + "start": 7693.56, + "end": 7695.82, + "probability": 0.9288 + }, + { + "start": 7696.9, + "end": 7699.08, + "probability": 0.9788 + }, + { + "start": 7700.04, + "end": 7701.9, + "probability": 0.9518 + }, + { + "start": 7702.28, + "end": 7702.6, + "probability": 0.8256 + }, + { + "start": 7702.66, + "end": 7703.48, + "probability": 0.9662 + }, + { + "start": 7703.9, + "end": 7706.8, + "probability": 0.9565 + }, + { + "start": 7706.8, + "end": 7707.63, + "probability": 0.8947 + }, + { + "start": 7708.5, + "end": 7709.95, + "probability": 0.9927 + }, + { + "start": 7710.92, + "end": 7710.92, + "probability": 0.0527 + }, + { + "start": 7710.92, + "end": 7710.92, + "probability": 0.4091 + }, + { + "start": 7710.92, + "end": 7712.08, + "probability": 0.8488 + }, + { + "start": 7712.14, + "end": 7712.92, + "probability": 0.9365 + }, + { + "start": 7713.4, + "end": 7717.7, + "probability": 0.8218 + }, + { + "start": 7718.26, + "end": 7722.28, + "probability": 0.978 + }, + { + "start": 7722.58, + "end": 7724.96, + "probability": 0.9395 + }, + { + "start": 7725.0, + "end": 7729.16, + "probability": 0.6177 + }, + { + "start": 7729.54, + "end": 7730.38, + "probability": 0.7177 + }, + { + "start": 7730.46, + "end": 7733.8, + "probability": 0.816 + }, + { + "start": 7734.08, + "end": 7734.2, + "probability": 0.0408 + }, + { + "start": 7734.26, + "end": 7734.94, + "probability": 0.205 + }, + { + "start": 7737.62, + "end": 7740.66, + "probability": 0.2906 + }, + { + "start": 7744.18, + "end": 7749.48, + "probability": 0.1903 + }, + { + "start": 7750.15, + "end": 7751.92, + "probability": 0.1948 + }, + { + "start": 7752.7, + "end": 7753.36, + "probability": 0.4715 + }, + { + "start": 7756.64, + "end": 7758.26, + "probability": 0.2318 + }, + { + "start": 7759.28, + "end": 7763.58, + "probability": 0.0253 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.0, + "end": 7840.0, + "probability": 0.0 + }, + { + "start": 7840.1, + "end": 7842.33, + "probability": 0.5386 + }, + { + "start": 7846.82, + "end": 7854.88, + "probability": 0.9601 + }, + { + "start": 7855.2, + "end": 7857.3, + "probability": 0.5294 + }, + { + "start": 7857.78, + "end": 7862.44, + "probability": 0.9873 + }, + { + "start": 7862.44, + "end": 7866.42, + "probability": 0.955 + }, + { + "start": 7867.02, + "end": 7868.16, + "probability": 0.4991 + }, + { + "start": 7868.52, + "end": 7872.88, + "probability": 0.9468 + }, + { + "start": 7873.44, + "end": 7876.58, + "probability": 0.9609 + }, + { + "start": 7885.14, + "end": 7886.7, + "probability": 0.7242 + }, + { + "start": 7888.6, + "end": 7889.4, + "probability": 0.7329 + }, + { + "start": 7889.6, + "end": 7890.58, + "probability": 0.9399 + }, + { + "start": 7890.72, + "end": 7891.86, + "probability": 0.4595 + }, + { + "start": 7894.44, + "end": 7898.74, + "probability": 0.9961 + }, + { + "start": 7900.14, + "end": 7905.94, + "probability": 0.408 + }, + { + "start": 7905.94, + "end": 7906.92, + "probability": 0.8096 + }, + { + "start": 7907.52, + "end": 7913.9, + "probability": 0.7893 + }, + { + "start": 7914.2, + "end": 7915.08, + "probability": 0.7656 + }, + { + "start": 7915.2, + "end": 7917.88, + "probability": 0.9611 + }, + { + "start": 7919.54, + "end": 7922.26, + "probability": 0.9848 + }, + { + "start": 7923.22, + "end": 7927.8, + "probability": 0.9984 + }, + { + "start": 7928.32, + "end": 7929.8, + "probability": 0.2391 + }, + { + "start": 7931.56, + "end": 7932.32, + "probability": 0.3705 + }, + { + "start": 7933.32, + "end": 7935.54, + "probability": 0.6167 + }, + { + "start": 7935.66, + "end": 7938.66, + "probability": 0.9552 + }, + { + "start": 7938.7, + "end": 7939.02, + "probability": 0.5852 + }, + { + "start": 7939.04, + "end": 7939.6, + "probability": 0.9258 + }, + { + "start": 7940.04, + "end": 7940.74, + "probability": 0.9454 + }, + { + "start": 7941.38, + "end": 7941.94, + "probability": 0.5963 + }, + { + "start": 7942.16, + "end": 7943.2, + "probability": 0.7479 + }, + { + "start": 7943.68, + "end": 7946.74, + "probability": 0.9699 + }, + { + "start": 7947.26, + "end": 7951.57, + "probability": 0.9133 + }, + { + "start": 7952.7, + "end": 7954.48, + "probability": 0.9311 + }, + { + "start": 7955.2, + "end": 7957.04, + "probability": 0.8312 + }, + { + "start": 7959.16, + "end": 7963.01, + "probability": 0.9087 + }, + { + "start": 7964.16, + "end": 7965.54, + "probability": 0.7754 + }, + { + "start": 7965.62, + "end": 7966.24, + "probability": 0.6852 + }, + { + "start": 7966.88, + "end": 7973.1, + "probability": 0.9235 + }, + { + "start": 7974.76, + "end": 7978.62, + "probability": 0.8752 + }, + { + "start": 7980.26, + "end": 7983.68, + "probability": 0.9814 + }, + { + "start": 7985.46, + "end": 7991.22, + "probability": 0.7452 + }, + { + "start": 7992.42, + "end": 7996.78, + "probability": 0.6982 + }, + { + "start": 7997.98, + "end": 7999.02, + "probability": 0.9863 + }, + { + "start": 8000.1, + "end": 8004.08, + "probability": 0.8598 + }, + { + "start": 8004.94, + "end": 8007.78, + "probability": 0.9902 + }, + { + "start": 8007.92, + "end": 8008.27, + "probability": 0.863 + }, + { + "start": 8009.54, + "end": 8011.56, + "probability": 0.9519 + }, + { + "start": 8013.16, + "end": 8014.84, + "probability": 0.9888 + }, + { + "start": 8015.22, + "end": 8018.58, + "probability": 0.9882 + }, + { + "start": 8019.38, + "end": 8020.01, + "probability": 0.9136 + }, + { + "start": 8021.04, + "end": 8022.64, + "probability": 0.8582 + }, + { + "start": 8022.74, + "end": 8023.88, + "probability": 0.9021 + }, + { + "start": 8024.04, + "end": 8024.6, + "probability": 0.5055 + }, + { + "start": 8025.02, + "end": 8025.96, + "probability": 0.7456 + }, + { + "start": 8026.54, + "end": 8027.52, + "probability": 0.4762 + }, + { + "start": 8028.86, + "end": 8033.84, + "probability": 0.8878 + }, + { + "start": 8034.96, + "end": 8039.1, + "probability": 0.7628 + }, + { + "start": 8039.86, + "end": 8044.76, + "probability": 0.9455 + }, + { + "start": 8045.3, + "end": 8045.82, + "probability": 0.8883 + }, + { + "start": 8047.08, + "end": 8049.43, + "probability": 0.7555 + }, + { + "start": 8051.6, + "end": 8054.42, + "probability": 0.9067 + }, + { + "start": 8055.38, + "end": 8056.4, + "probability": 0.8174 + }, + { + "start": 8058.04, + "end": 8063.08, + "probability": 0.8723 + }, + { + "start": 8063.58, + "end": 8064.84, + "probability": 0.7587 + }, + { + "start": 8065.08, + "end": 8067.38, + "probability": 0.8763 + }, + { + "start": 8067.38, + "end": 8071.36, + "probability": 0.8787 + }, + { + "start": 8071.4, + "end": 8072.32, + "probability": 0.7801 + }, + { + "start": 8072.46, + "end": 8074.58, + "probability": 0.7697 + }, + { + "start": 8075.4, + "end": 8075.64, + "probability": 0.4667 + }, + { + "start": 8076.6, + "end": 8077.18, + "probability": 0.8875 + }, + { + "start": 8077.7, + "end": 8078.18, + "probability": 0.9653 + }, + { + "start": 8078.44, + "end": 8079.02, + "probability": 0.9797 + }, + { + "start": 8079.14, + "end": 8079.64, + "probability": 0.6392 + }, + { + "start": 8079.76, + "end": 8080.26, + "probability": 0.9589 + }, + { + "start": 8080.54, + "end": 8081.62, + "probability": 0.9496 + }, + { + "start": 8082.88, + "end": 8088.84, + "probability": 0.9568 + }, + { + "start": 8089.52, + "end": 8092.42, + "probability": 0.901 + }, + { + "start": 8093.18, + "end": 8093.94, + "probability": 0.7803 + }, + { + "start": 8094.08, + "end": 8094.96, + "probability": 0.7147 + }, + { + "start": 8095.64, + "end": 8099.48, + "probability": 0.7738 + }, + { + "start": 8101.32, + "end": 8104.24, + "probability": 0.7962 + }, + { + "start": 8105.28, + "end": 8105.44, + "probability": 0.4881 + }, + { + "start": 8105.44, + "end": 8109.2, + "probability": 0.9146 + }, + { + "start": 8109.68, + "end": 8112.44, + "probability": 0.9246 + }, + { + "start": 8113.7, + "end": 8115.74, + "probability": 0.6645 + }, + { + "start": 8116.16, + "end": 8118.16, + "probability": 0.9949 + }, + { + "start": 8119.54, + "end": 8123.0, + "probability": 0.9538 + }, + { + "start": 8125.08, + "end": 8126.0, + "probability": 0.4388 + }, + { + "start": 8127.2, + "end": 8129.64, + "probability": 0.6007 + }, + { + "start": 8130.74, + "end": 8132.46, + "probability": 0.9641 + }, + { + "start": 8133.1, + "end": 8136.1, + "probability": 0.6789 + }, + { + "start": 8137.14, + "end": 8137.34, + "probability": 0.7104 + }, + { + "start": 8137.4, + "end": 8138.82, + "probability": 0.9429 + }, + { + "start": 8138.9, + "end": 8145.38, + "probability": 0.9587 + }, + { + "start": 8146.28, + "end": 8149.9, + "probability": 0.9962 + }, + { + "start": 8150.68, + "end": 8152.66, + "probability": 0.9168 + }, + { + "start": 8153.46, + "end": 8159.58, + "probability": 0.9943 + }, + { + "start": 8159.76, + "end": 8160.64, + "probability": 0.7851 + }, + { + "start": 8160.68, + "end": 8161.84, + "probability": 0.8358 + }, + { + "start": 8163.36, + "end": 8164.66, + "probability": 0.7288 + }, + { + "start": 8165.02, + "end": 8166.31, + "probability": 0.5112 + }, + { + "start": 8166.56, + "end": 8167.26, + "probability": 0.2682 + }, + { + "start": 8168.24, + "end": 8171.54, + "probability": 0.8296 + }, + { + "start": 8172.3, + "end": 8173.36, + "probability": 0.6303 + }, + { + "start": 8174.62, + "end": 8175.14, + "probability": 0.8576 + }, + { + "start": 8176.16, + "end": 8178.04, + "probability": 0.7275 + }, + { + "start": 8178.86, + "end": 8180.02, + "probability": 0.6479 + }, + { + "start": 8181.0, + "end": 8181.62, + "probability": 0.9761 + }, + { + "start": 8184.1, + "end": 8184.32, + "probability": 0.015 + }, + { + "start": 8184.32, + "end": 8184.64, + "probability": 0.0507 + }, + { + "start": 8184.64, + "end": 8189.16, + "probability": 0.6695 + }, + { + "start": 8190.02, + "end": 8190.52, + "probability": 0.5629 + }, + { + "start": 8191.54, + "end": 8192.64, + "probability": 0.7386 + }, + { + "start": 8193.64, + "end": 8194.76, + "probability": 0.8138 + }, + { + "start": 8195.62, + "end": 8199.32, + "probability": 0.542 + }, + { + "start": 8200.32, + "end": 8201.04, + "probability": 0.1246 + }, + { + "start": 8202.02, + "end": 8205.3, + "probability": 0.5511 + }, + { + "start": 8205.38, + "end": 8205.98, + "probability": 0.5778 + }, + { + "start": 8206.02, + "end": 8211.06, + "probability": 0.8617 + }, + { + "start": 8211.06, + "end": 8215.42, + "probability": 0.9565 + }, + { + "start": 8216.5, + "end": 8220.56, + "probability": 0.9792 + }, + { + "start": 8221.12, + "end": 8225.02, + "probability": 0.9836 + }, + { + "start": 8225.46, + "end": 8226.56, + "probability": 0.4769 + }, + { + "start": 8227.56, + "end": 8230.7, + "probability": 0.615 + }, + { + "start": 8232.14, + "end": 8232.76, + "probability": 0.4977 + }, + { + "start": 8233.92, + "end": 8239.2, + "probability": 0.8267 + }, + { + "start": 8239.58, + "end": 8241.36, + "probability": 0.8475 + }, + { + "start": 8241.92, + "end": 8243.92, + "probability": 0.9833 + }, + { + "start": 8246.35, + "end": 8248.68, + "probability": 0.7009 + }, + { + "start": 8248.74, + "end": 8249.62, + "probability": 0.3052 + }, + { + "start": 8249.62, + "end": 8250.18, + "probability": 0.3666 + }, + { + "start": 8250.44, + "end": 8251.58, + "probability": 0.7595 + }, + { + "start": 8251.62, + "end": 8256.08, + "probability": 0.8753 + }, + { + "start": 8257.08, + "end": 8257.7, + "probability": 0.7185 + }, + { + "start": 8257.8, + "end": 8258.08, + "probability": 0.4666 + }, + { + "start": 8258.2, + "end": 8262.04, + "probability": 0.7356 + }, + { + "start": 8262.72, + "end": 8264.84, + "probability": 0.6722 + }, + { + "start": 8265.64, + "end": 8266.78, + "probability": 0.7701 + }, + { + "start": 8268.62, + "end": 8270.2, + "probability": 0.6821 + }, + { + "start": 8270.36, + "end": 8274.64, + "probability": 0.6682 + }, + { + "start": 8276.16, + "end": 8283.16, + "probability": 0.9878 + }, + { + "start": 8283.16, + "end": 8285.29, + "probability": 0.9417 + }, + { + "start": 8285.76, + "end": 8288.58, + "probability": 0.9875 + }, + { + "start": 8289.3, + "end": 8293.62, + "probability": 0.3241 + }, + { + "start": 8293.62, + "end": 8295.06, + "probability": 0.2815 + }, + { + "start": 8295.76, + "end": 8296.3, + "probability": 0.9697 + }, + { + "start": 8297.44, + "end": 8298.54, + "probability": 0.8279 + }, + { + "start": 8300.22, + "end": 8301.48, + "probability": 0.2914 + }, + { + "start": 8301.84, + "end": 8304.7, + "probability": 0.8599 + }, + { + "start": 8306.58, + "end": 8307.4, + "probability": 0.6878 + }, + { + "start": 8307.5, + "end": 8308.92, + "probability": 0.6829 + }, + { + "start": 8310.34, + "end": 8311.72, + "probability": 0.988 + }, + { + "start": 8312.66, + "end": 8313.66, + "probability": 0.6003 + }, + { + "start": 8313.76, + "end": 8314.62, + "probability": 0.4636 + }, + { + "start": 8315.6, + "end": 8319.26, + "probability": 0.8606 + }, + { + "start": 8319.64, + "end": 8323.28, + "probability": 0.9639 + }, + { + "start": 8323.5, + "end": 8324.12, + "probability": 0.9739 + }, + { + "start": 8324.92, + "end": 8326.94, + "probability": 0.4078 + }, + { + "start": 8328.04, + "end": 8329.2, + "probability": 0.7625 + }, + { + "start": 8329.28, + "end": 8329.7, + "probability": 0.5974 + }, + { + "start": 8330.18, + "end": 8330.48, + "probability": 0.8237 + }, + { + "start": 8330.5, + "end": 8331.96, + "probability": 0.8599 + }, + { + "start": 8332.86, + "end": 8335.48, + "probability": 0.9538 + }, + { + "start": 8335.62, + "end": 8338.4, + "probability": 0.677 + }, + { + "start": 8339.0, + "end": 8340.96, + "probability": 0.9769 + }, + { + "start": 8341.62, + "end": 8341.8, + "probability": 0.6922 + }, + { + "start": 8343.38, + "end": 8345.26, + "probability": 0.9592 + }, + { + "start": 8345.5, + "end": 8347.04, + "probability": 0.9634 + }, + { + "start": 8347.18, + "end": 8349.4, + "probability": 0.8905 + }, + { + "start": 8350.1, + "end": 8351.5, + "probability": 0.9614 + }, + { + "start": 8351.68, + "end": 8353.18, + "probability": 0.9912 + }, + { + "start": 8353.54, + "end": 8354.92, + "probability": 0.1102 + }, + { + "start": 8355.3, + "end": 8357.58, + "probability": 0.9774 + }, + { + "start": 8358.66, + "end": 8362.16, + "probability": 0.9185 + }, + { + "start": 8366.78, + "end": 8368.84, + "probability": 0.5 + }, + { + "start": 8369.14, + "end": 8371.3, + "probability": 0.6643 + }, + { + "start": 8372.36, + "end": 8374.64, + "probability": 0.999 + }, + { + "start": 8374.96, + "end": 8375.38, + "probability": 0.8987 + }, + { + "start": 8375.56, + "end": 8378.58, + "probability": 0.9953 + }, + { + "start": 8379.74, + "end": 8382.26, + "probability": 0.9951 + }, + { + "start": 8382.68, + "end": 8384.4, + "probability": 0.8608 + }, + { + "start": 8385.1, + "end": 8389.2, + "probability": 0.972 + }, + { + "start": 8389.92, + "end": 8393.84, + "probability": 0.9922 + }, + { + "start": 8394.52, + "end": 8398.8, + "probability": 0.9741 + }, + { + "start": 8399.26, + "end": 8401.0, + "probability": 0.953 + }, + { + "start": 8401.56, + "end": 8402.26, + "probability": 0.7253 + }, + { + "start": 8402.66, + "end": 8405.42, + "probability": 0.9873 + }, + { + "start": 8405.42, + "end": 8408.5, + "probability": 0.997 + }, + { + "start": 8409.02, + "end": 8411.16, + "probability": 0.9978 + }, + { + "start": 8411.98, + "end": 8415.44, + "probability": 0.9305 + }, + { + "start": 8415.58, + "end": 8417.04, + "probability": 0.915 + }, + { + "start": 8418.12, + "end": 8421.72, + "probability": 0.7054 + }, + { + "start": 8422.22, + "end": 8426.6, + "probability": 0.9932 + }, + { + "start": 8427.04, + "end": 8429.42, + "probability": 0.9462 + }, + { + "start": 8429.86, + "end": 8430.74, + "probability": 0.86 + }, + { + "start": 8432.96, + "end": 8435.9, + "probability": 0.4859 + }, + { + "start": 8436.42, + "end": 8438.2, + "probability": 0.9168 + }, + { + "start": 8438.54, + "end": 8438.98, + "probability": 0.4575 + }, + { + "start": 8439.62, + "end": 8445.06, + "probability": 0.9541 + }, + { + "start": 8445.06, + "end": 8449.1, + "probability": 0.9971 + }, + { + "start": 8450.04, + "end": 8454.82, + "probability": 0.9586 + }, + { + "start": 8455.34, + "end": 8457.32, + "probability": 0.9998 + }, + { + "start": 8457.86, + "end": 8461.88, + "probability": 0.6567 + }, + { + "start": 8462.48, + "end": 8464.52, + "probability": 0.7822 + }, + { + "start": 8465.36, + "end": 8467.9, + "probability": 0.9952 + }, + { + "start": 8468.48, + "end": 8469.6, + "probability": 0.9497 + }, + { + "start": 8470.34, + "end": 8474.18, + "probability": 0.9331 + }, + { + "start": 8474.9, + "end": 8477.08, + "probability": 0.9893 + }, + { + "start": 8477.34, + "end": 8478.16, + "probability": 0.6786 + }, + { + "start": 8478.78, + "end": 8479.76, + "probability": 0.9888 + }, + { + "start": 8480.88, + "end": 8486.08, + "probability": 0.972 + }, + { + "start": 8487.2, + "end": 8493.24, + "probability": 0.9851 + }, + { + "start": 8494.02, + "end": 8497.42, + "probability": 0.9906 + }, + { + "start": 8498.08, + "end": 8500.2, + "probability": 0.9156 + }, + { + "start": 8500.34, + "end": 8503.04, + "probability": 0.9863 + }, + { + "start": 8503.4, + "end": 8504.2, + "probability": 0.4515 + }, + { + "start": 8505.0, + "end": 8509.56, + "probability": 0.9824 + }, + { + "start": 8509.84, + "end": 8510.76, + "probability": 0.9643 + }, + { + "start": 8511.22, + "end": 8512.9, + "probability": 0.9211 + }, + { + "start": 8513.3, + "end": 8513.92, + "probability": 0.7114 + }, + { + "start": 8514.62, + "end": 8518.72, + "probability": 0.7983 + }, + { + "start": 8519.62, + "end": 8527.16, + "probability": 0.9624 + }, + { + "start": 8527.16, + "end": 8532.98, + "probability": 0.9865 + }, + { + "start": 8533.56, + "end": 8534.58, + "probability": 0.5144 + }, + { + "start": 8535.4, + "end": 8538.96, + "probability": 0.9087 + }, + { + "start": 8539.98, + "end": 8540.68, + "probability": 0.5938 + }, + { + "start": 8541.26, + "end": 8544.8, + "probability": 0.9014 + }, + { + "start": 8544.8, + "end": 8548.2, + "probability": 0.9598 + }, + { + "start": 8548.66, + "end": 8554.0, + "probability": 0.9124 + }, + { + "start": 8554.58, + "end": 8559.36, + "probability": 0.9872 + }, + { + "start": 8560.16, + "end": 8560.74, + "probability": 0.8084 + }, + { + "start": 8561.42, + "end": 8565.04, + "probability": 0.9224 + }, + { + "start": 8565.36, + "end": 8565.96, + "probability": 0.8155 + }, + { + "start": 8566.32, + "end": 8569.06, + "probability": 0.9461 + }, + { + "start": 8569.8, + "end": 8574.18, + "probability": 0.7013 + }, + { + "start": 8574.72, + "end": 8576.7, + "probability": 0.981 + }, + { + "start": 8578.52, + "end": 8580.44, + "probability": 0.8464 + }, + { + "start": 8580.9, + "end": 8582.6, + "probability": 0.99 + }, + { + "start": 8582.88, + "end": 8584.12, + "probability": 0.9 + }, + { + "start": 8584.58, + "end": 8586.42, + "probability": 0.9403 + }, + { + "start": 8586.48, + "end": 8588.0, + "probability": 0.8958 + }, + { + "start": 8588.58, + "end": 8594.98, + "probability": 0.8818 + }, + { + "start": 8596.7, + "end": 8602.68, + "probability": 0.8793 + }, + { + "start": 8603.06, + "end": 8605.26, + "probability": 0.9115 + }, + { + "start": 8606.08, + "end": 8608.76, + "probability": 0.6476 + }, + { + "start": 8609.57, + "end": 8613.08, + "probability": 0.9951 + }, + { + "start": 8613.74, + "end": 8615.94, + "probability": 0.9974 + }, + { + "start": 8616.5, + "end": 8618.04, + "probability": 0.458 + }, + { + "start": 8619.2, + "end": 8623.94, + "probability": 0.9878 + }, + { + "start": 8624.46, + "end": 8629.88, + "probability": 0.662 + }, + { + "start": 8630.38, + "end": 8636.3, + "probability": 0.999 + }, + { + "start": 8636.66, + "end": 8637.78, + "probability": 0.9039 + }, + { + "start": 8638.36, + "end": 8641.08, + "probability": 0.6772 + }, + { + "start": 8643.57, + "end": 8645.6, + "probability": 0.9213 + }, + { + "start": 8648.14, + "end": 8649.02, + "probability": 0.9943 + }, + { + "start": 8649.66, + "end": 8650.6, + "probability": 0.9939 + }, + { + "start": 8652.78, + "end": 8657.7, + "probability": 0.9193 + }, + { + "start": 8658.32, + "end": 8663.48, + "probability": 0.9807 + }, + { + "start": 8663.66, + "end": 8665.82, + "probability": 0.9603 + }, + { + "start": 8665.88, + "end": 8669.16, + "probability": 0.9913 + }, + { + "start": 8669.72, + "end": 8670.32, + "probability": 0.9397 + }, + { + "start": 8670.7, + "end": 8675.38, + "probability": 0.9918 + }, + { + "start": 8675.78, + "end": 8679.7, + "probability": 0.9907 + }, + { + "start": 8679.78, + "end": 8683.6, + "probability": 0.9847 + }, + { + "start": 8684.2, + "end": 8685.58, + "probability": 0.9246 + }, + { + "start": 8686.24, + "end": 8691.48, + "probability": 0.9708 + }, + { + "start": 8691.98, + "end": 8695.42, + "probability": 0.9204 + }, + { + "start": 8695.58, + "end": 8697.78, + "probability": 0.5401 + }, + { + "start": 8698.2, + "end": 8699.48, + "probability": 0.8203 + }, + { + "start": 8700.02, + "end": 8706.96, + "probability": 0.8478 + }, + { + "start": 8707.42, + "end": 8707.96, + "probability": 0.8574 + }, + { + "start": 8708.56, + "end": 8713.08, + "probability": 0.9584 + }, + { + "start": 8713.56, + "end": 8714.64, + "probability": 0.8684 + }, + { + "start": 8715.02, + "end": 8716.66, + "probability": 0.9902 + }, + { + "start": 8717.2, + "end": 8717.86, + "probability": 0.8443 + }, + { + "start": 8718.34, + "end": 8721.28, + "probability": 0.9688 + }, + { + "start": 8721.28, + "end": 8724.68, + "probability": 0.9918 + }, + { + "start": 8725.68, + "end": 8726.4, + "probability": 0.9941 + }, + { + "start": 8727.14, + "end": 8728.24, + "probability": 0.9628 + }, + { + "start": 8729.36, + "end": 8733.36, + "probability": 0.9955 + }, + { + "start": 8733.4, + "end": 8735.48, + "probability": 0.8699 + }, + { + "start": 8736.4, + "end": 8738.1, + "probability": 0.6961 + }, + { + "start": 8738.42, + "end": 8739.04, + "probability": 0.6893 + }, + { + "start": 8739.42, + "end": 8742.32, + "probability": 0.9929 + }, + { + "start": 8743.04, + "end": 8747.42, + "probability": 0.9966 + }, + { + "start": 8747.42, + "end": 8752.32, + "probability": 0.9937 + }, + { + "start": 8753.64, + "end": 8758.62, + "probability": 0.9166 + }, + { + "start": 8759.2, + "end": 8760.28, + "probability": 0.7957 + }, + { + "start": 8760.9, + "end": 8762.06, + "probability": 0.9294 + }, + { + "start": 8762.5, + "end": 8767.36, + "probability": 0.9915 + }, + { + "start": 8768.32, + "end": 8770.48, + "probability": 0.8785 + }, + { + "start": 8771.04, + "end": 8774.04, + "probability": 0.9721 + }, + { + "start": 8774.62, + "end": 8777.14, + "probability": 0.7839 + }, + { + "start": 8778.0, + "end": 8780.42, + "probability": 0.9868 + }, + { + "start": 8783.1, + "end": 8785.34, + "probability": 0.8303 + }, + { + "start": 8785.92, + "end": 8788.68, + "probability": 0.6907 + }, + { + "start": 8789.96, + "end": 8790.52, + "probability": 0.8226 + }, + { + "start": 8792.68, + "end": 8794.08, + "probability": 0.6142 + }, + { + "start": 8820.32, + "end": 8821.24, + "probability": 0.6089 + }, + { + "start": 8821.8, + "end": 8825.02, + "probability": 0.042 + }, + { + "start": 8825.76, + "end": 8828.84, + "probability": 0.2399 + }, + { + "start": 8836.8, + "end": 8836.8, + "probability": 0.2708 + }, + { + "start": 8836.8, + "end": 8836.92, + "probability": 0.2217 + }, + { + "start": 8839.26, + "end": 8841.14, + "probability": 0.8611 + }, + { + "start": 8841.5, + "end": 8842.81, + "probability": 0.8991 + }, + { + "start": 8842.94, + "end": 8844.86, + "probability": 0.8617 + }, + { + "start": 8846.98, + "end": 8852.3, + "probability": 0.994 + }, + { + "start": 8852.78, + "end": 8857.76, + "probability": 0.5742 + }, + { + "start": 8858.96, + "end": 8860.68, + "probability": 0.3871 + }, + { + "start": 8862.02, + "end": 8863.36, + "probability": 0.9548 + }, + { + "start": 8870.4, + "end": 8870.84, + "probability": 0.269 + }, + { + "start": 8870.84, + "end": 8873.62, + "probability": 0.8655 + }, + { + "start": 8873.76, + "end": 8875.24, + "probability": 0.9754 + }, + { + "start": 8877.88, + "end": 8881.1, + "probability": 0.9898 + }, + { + "start": 8882.06, + "end": 8885.76, + "probability": 0.9825 + }, + { + "start": 8889.36, + "end": 8890.82, + "probability": 0.7682 + }, + { + "start": 8891.06, + "end": 8895.66, + "probability": 0.9548 + }, + { + "start": 8895.86, + "end": 8897.52, + "probability": 0.8744 + }, + { + "start": 8898.38, + "end": 8900.38, + "probability": 0.8685 + }, + { + "start": 8902.94, + "end": 8908.58, + "probability": 0.9788 + }, + { + "start": 8908.84, + "end": 8909.66, + "probability": 0.7494 + }, + { + "start": 8911.14, + "end": 8913.48, + "probability": 0.9299 + }, + { + "start": 8914.2, + "end": 8919.98, + "probability": 0.7413 + }, + { + "start": 8922.46, + "end": 8923.32, + "probability": 0.4419 + }, + { + "start": 8923.58, + "end": 8925.74, + "probability": 0.9102 + }, + { + "start": 8925.88, + "end": 8931.8, + "probability": 0.9014 + }, + { + "start": 8933.58, + "end": 8939.38, + "probability": 0.9124 + }, + { + "start": 8940.1, + "end": 8945.36, + "probability": 0.9841 + }, + { + "start": 8945.36, + "end": 8949.62, + "probability": 0.9967 + }, + { + "start": 8949.84, + "end": 8950.28, + "probability": 0.5061 + }, + { + "start": 8950.32, + "end": 8955.12, + "probability": 0.9679 + }, + { + "start": 8958.76, + "end": 8962.12, + "probability": 0.9971 + }, + { + "start": 8962.94, + "end": 8966.64, + "probability": 0.9814 + }, + { + "start": 8968.52, + "end": 8969.5, + "probability": 0.6937 + }, + { + "start": 8969.72, + "end": 8970.16, + "probability": 0.6954 + }, + { + "start": 8970.18, + "end": 8975.38, + "probability": 0.8993 + }, + { + "start": 8976.02, + "end": 8979.54, + "probability": 0.9339 + }, + { + "start": 8980.14, + "end": 8983.1, + "probability": 0.891 + }, + { + "start": 8984.24, + "end": 8990.44, + "probability": 0.9966 + }, + { + "start": 8991.12, + "end": 8994.48, + "probability": 0.9887 + }, + { + "start": 8995.74, + "end": 8999.42, + "probability": 0.9798 + }, + { + "start": 8999.9, + "end": 9002.8, + "probability": 0.8585 + }, + { + "start": 9009.36, + "end": 9010.64, + "probability": 0.8878 + }, + { + "start": 9011.26, + "end": 9012.3, + "probability": 0.0222 + }, + { + "start": 9014.06, + "end": 9015.5, + "probability": 0.1479 + }, + { + "start": 9021.34, + "end": 9022.04, + "probability": 0.0168 + }, + { + "start": 9022.04, + "end": 9024.18, + "probability": 0.1882 + }, + { + "start": 9024.94, + "end": 9028.22, + "probability": 0.8826 + }, + { + "start": 9029.28, + "end": 9032.12, + "probability": 0.8535 + }, + { + "start": 9033.58, + "end": 9034.66, + "probability": 0.8154 + }, + { + "start": 9034.82, + "end": 9035.4, + "probability": 0.8638 + }, + { + "start": 9035.5, + "end": 9037.54, + "probability": 0.948 + }, + { + "start": 9037.64, + "end": 9038.08, + "probability": 0.6812 + }, + { + "start": 9039.14, + "end": 9040.0, + "probability": 0.907 + }, + { + "start": 9040.22, + "end": 9045.66, + "probability": 0.9908 + }, + { + "start": 9046.36, + "end": 9047.64, + "probability": 0.9985 + }, + { + "start": 9048.48, + "end": 9052.02, + "probability": 0.4708 + }, + { + "start": 9052.56, + "end": 9054.1, + "probability": 0.8867 + }, + { + "start": 9055.08, + "end": 9058.02, + "probability": 0.7506 + }, + { + "start": 9058.44, + "end": 9064.52, + "probability": 0.9813 + }, + { + "start": 9064.86, + "end": 9065.88, + "probability": 0.8156 + }, + { + "start": 9066.42, + "end": 9070.88, + "probability": 0.9875 + }, + { + "start": 9072.04, + "end": 9074.4, + "probability": 0.9822 + }, + { + "start": 9076.44, + "end": 9078.2, + "probability": 0.9792 + }, + { + "start": 9078.32, + "end": 9084.62, + "probability": 0.9836 + }, + { + "start": 9085.28, + "end": 9090.62, + "probability": 0.673 + }, + { + "start": 9090.76, + "end": 9091.02, + "probability": 0.8549 + }, + { + "start": 9091.14, + "end": 9094.82, + "probability": 0.9009 + }, + { + "start": 9096.9, + "end": 9102.36, + "probability": 0.9837 + }, + { + "start": 9102.8, + "end": 9104.82, + "probability": 0.5442 + }, + { + "start": 9104.9, + "end": 9105.44, + "probability": 0.8671 + }, + { + "start": 9106.26, + "end": 9111.26, + "probability": 0.9247 + }, + { + "start": 9111.26, + "end": 9114.82, + "probability": 0.8926 + }, + { + "start": 9115.7, + "end": 9121.2, + "probability": 0.9541 + }, + { + "start": 9121.3, + "end": 9123.3, + "probability": 0.9668 + }, + { + "start": 9123.42, + "end": 9130.72, + "probability": 0.994 + }, + { + "start": 9132.5, + "end": 9135.66, + "probability": 0.9959 + }, + { + "start": 9136.94, + "end": 9137.94, + "probability": 0.7683 + }, + { + "start": 9139.11, + "end": 9141.78, + "probability": 0.9924 + }, + { + "start": 9142.56, + "end": 9145.88, + "probability": 0.9244 + }, + { + "start": 9146.2, + "end": 9147.76, + "probability": 0.9835 + }, + { + "start": 9147.84, + "end": 9151.98, + "probability": 0.9718 + }, + { + "start": 9152.06, + "end": 9152.58, + "probability": 0.6583 + }, + { + "start": 9154.18, + "end": 9155.0, + "probability": 0.663 + }, + { + "start": 9155.46, + "end": 9156.74, + "probability": 0.9802 + }, + { + "start": 9161.3, + "end": 9161.84, + "probability": 0.634 + }, + { + "start": 9161.98, + "end": 9162.38, + "probability": 0.9374 + }, + { + "start": 9162.5, + "end": 9169.26, + "probability": 0.9715 + }, + { + "start": 9170.3, + "end": 9172.86, + "probability": 0.8196 + }, + { + "start": 9173.78, + "end": 9175.28, + "probability": 0.9555 + }, + { + "start": 9176.06, + "end": 9178.94, + "probability": 0.9326 + }, + { + "start": 9179.94, + "end": 9184.6, + "probability": 0.9707 + }, + { + "start": 9186.22, + "end": 9188.2, + "probability": 0.6857 + }, + { + "start": 9188.6, + "end": 9189.56, + "probability": 0.8462 + }, + { + "start": 9189.66, + "end": 9190.82, + "probability": 0.9738 + }, + { + "start": 9191.6, + "end": 9194.74, + "probability": 0.9714 + }, + { + "start": 9194.84, + "end": 9196.02, + "probability": 0.8629 + }, + { + "start": 9196.78, + "end": 9201.6, + "probability": 0.9766 + }, + { + "start": 9202.24, + "end": 9203.3, + "probability": 0.7767 + }, + { + "start": 9204.6, + "end": 9205.72, + "probability": 0.3979 + }, + { + "start": 9206.5, + "end": 9211.94, + "probability": 0.9683 + }, + { + "start": 9212.08, + "end": 9220.98, + "probability": 0.8773 + }, + { + "start": 9221.92, + "end": 9223.95, + "probability": 0.9982 + }, + { + "start": 9224.52, + "end": 9226.28, + "probability": 0.7268 + }, + { + "start": 9226.86, + "end": 9230.02, + "probability": 0.9254 + }, + { + "start": 9230.88, + "end": 9231.5, + "probability": 0.9621 + }, + { + "start": 9232.88, + "end": 9233.36, + "probability": 0.6446 + }, + { + "start": 9235.56, + "end": 9236.82, + "probability": 0.4322 + }, + { + "start": 9237.04, + "end": 9239.74, + "probability": 0.9895 + }, + { + "start": 9240.04, + "end": 9242.24, + "probability": 0.8878 + }, + { + "start": 9242.28, + "end": 9247.9, + "probability": 0.9881 + }, + { + "start": 9247.98, + "end": 9248.6, + "probability": 0.8617 + }, + { + "start": 9248.68, + "end": 9254.6, + "probability": 0.9915 + }, + { + "start": 9255.56, + "end": 9255.94, + "probability": 0.4579 + }, + { + "start": 9256.06, + "end": 9260.24, + "probability": 0.9932 + }, + { + "start": 9261.2, + "end": 9269.12, + "probability": 0.9871 + }, + { + "start": 9271.74, + "end": 9278.88, + "probability": 0.9779 + }, + { + "start": 9280.54, + "end": 9286.7, + "probability": 0.9977 + }, + { + "start": 9286.84, + "end": 9287.82, + "probability": 0.7865 + }, + { + "start": 9288.82, + "end": 9293.36, + "probability": 0.9826 + }, + { + "start": 9294.38, + "end": 9295.58, + "probability": 0.986 + }, + { + "start": 9296.16, + "end": 9299.22, + "probability": 0.9945 + }, + { + "start": 9300.24, + "end": 9301.72, + "probability": 0.991 + }, + { + "start": 9303.46, + "end": 9310.12, + "probability": 0.946 + }, + { + "start": 9311.28, + "end": 9316.12, + "probability": 0.9944 + }, + { + "start": 9317.76, + "end": 9319.06, + "probability": 0.7544 + }, + { + "start": 9320.82, + "end": 9325.76, + "probability": 0.9799 + }, + { + "start": 9328.45, + "end": 9330.72, + "probability": 0.2158 + }, + { + "start": 9332.9, + "end": 9334.02, + "probability": 0.9402 + }, + { + "start": 9334.62, + "end": 9335.5, + "probability": 0.8456 + }, + { + "start": 9336.82, + "end": 9337.5, + "probability": 0.4017 + }, + { + "start": 9338.04, + "end": 9339.8, + "probability": 0.6837 + }, + { + "start": 9340.52, + "end": 9342.54, + "probability": 0.9773 + }, + { + "start": 9342.96, + "end": 9344.54, + "probability": 0.9922 + }, + { + "start": 9344.7, + "end": 9344.82, + "probability": 0.1424 + }, + { + "start": 9344.82, + "end": 9345.67, + "probability": 0.0607 + }, + { + "start": 9346.72, + "end": 9347.56, + "probability": 0.8628 + }, + { + "start": 9348.64, + "end": 9354.9, + "probability": 0.981 + }, + { + "start": 9355.8, + "end": 9357.01, + "probability": 0.4813 + }, + { + "start": 9357.68, + "end": 9358.16, + "probability": 0.6679 + }, + { + "start": 9358.34, + "end": 9359.3, + "probability": 0.6939 + }, + { + "start": 9359.72, + "end": 9363.68, + "probability": 0.9287 + }, + { + "start": 9363.82, + "end": 9365.02, + "probability": 0.9075 + }, + { + "start": 9365.14, + "end": 9366.28, + "probability": 0.8904 + }, + { + "start": 9366.68, + "end": 9368.48, + "probability": 0.9883 + }, + { + "start": 9369.14, + "end": 9372.94, + "probability": 0.9706 + }, + { + "start": 9373.28, + "end": 9376.88, + "probability": 0.7055 + }, + { + "start": 9377.32, + "end": 9380.86, + "probability": 0.9951 + }, + { + "start": 9380.86, + "end": 9384.32, + "probability": 0.8148 + }, + { + "start": 9384.6, + "end": 9386.84, + "probability": 0.9935 + }, + { + "start": 9386.94, + "end": 9387.74, + "probability": 0.8023 + }, + { + "start": 9388.08, + "end": 9392.2, + "probability": 0.8008 + }, + { + "start": 9392.2, + "end": 9398.02, + "probability": 0.7392 + }, + { + "start": 9398.36, + "end": 9404.72, + "probability": 0.9966 + }, + { + "start": 9405.32, + "end": 9409.02, + "probability": 0.996 + }, + { + "start": 9409.54, + "end": 9412.94, + "probability": 0.8196 + }, + { + "start": 9413.2, + "end": 9414.48, + "probability": 0.7835 + }, + { + "start": 9415.02, + "end": 9419.78, + "probability": 0.7856 + }, + { + "start": 9420.38, + "end": 9421.68, + "probability": 0.7313 + }, + { + "start": 9422.8, + "end": 9424.02, + "probability": 0.94 + }, + { + "start": 9425.56, + "end": 9426.88, + "probability": 0.6957 + }, + { + "start": 9426.98, + "end": 9434.0, + "probability": 0.9894 + }, + { + "start": 9434.54, + "end": 9438.44, + "probability": 0.9912 + }, + { + "start": 9438.86, + "end": 9442.88, + "probability": 0.9616 + }, + { + "start": 9444.94, + "end": 9446.94, + "probability": 0.994 + }, + { + "start": 9447.14, + "end": 9447.46, + "probability": 0.6148 + }, + { + "start": 9447.54, + "end": 9447.72, + "probability": 0.7875 + }, + { + "start": 9447.78, + "end": 9449.86, + "probability": 0.9924 + }, + { + "start": 9449.86, + "end": 9451.94, + "probability": 0.9725 + }, + { + "start": 9452.64, + "end": 9456.34, + "probability": 0.6986 + }, + { + "start": 9460.26, + "end": 9461.92, + "probability": 0.1469 + }, + { + "start": 9471.84, + "end": 9474.82, + "probability": 0.0624 + }, + { + "start": 9474.82, + "end": 9474.84, + "probability": 0.0589 + }, + { + "start": 9475.32, + "end": 9476.2, + "probability": 0.104 + }, + { + "start": 9477.08, + "end": 9478.54, + "probability": 0.0061 + }, + { + "start": 9479.42, + "end": 9479.84, + "probability": 0.0553 + }, + { + "start": 9480.54, + "end": 9480.64, + "probability": 0.2908 + }, + { + "start": 9480.64, + "end": 9480.72, + "probability": 0.2266 + }, + { + "start": 9480.72, + "end": 9482.02, + "probability": 0.5238 + }, + { + "start": 9483.24, + "end": 9486.9, + "probability": 0.9458 + }, + { + "start": 9486.92, + "end": 9488.28, + "probability": 0.9339 + }, + { + "start": 9489.06, + "end": 9489.96, + "probability": 0.7662 + }, + { + "start": 9490.0, + "end": 9491.8, + "probability": 0.8556 + }, + { + "start": 9493.09, + "end": 9495.44, + "probability": 0.601 + }, + { + "start": 9497.16, + "end": 9497.8, + "probability": 0.6358 + }, + { + "start": 9497.84, + "end": 9498.06, + "probability": 0.6045 + }, + { + "start": 9498.14, + "end": 9499.82, + "probability": 0.9683 + }, + { + "start": 9500.06, + "end": 9501.3, + "probability": 0.9556 + }, + { + "start": 9501.86, + "end": 9502.16, + "probability": 0.7533 + }, + { + "start": 9502.22, + "end": 9502.66, + "probability": 0.9825 + }, + { + "start": 9502.92, + "end": 9506.37, + "probability": 0.7013 + }, + { + "start": 9506.8, + "end": 9509.12, + "probability": 0.9775 + }, + { + "start": 9509.26, + "end": 9510.66, + "probability": 0.0607 + }, + { + "start": 9511.22, + "end": 9512.56, + "probability": 0.9614 + }, + { + "start": 9513.26, + "end": 9514.48, + "probability": 0.8258 + }, + { + "start": 9514.52, + "end": 9517.44, + "probability": 0.8235 + }, + { + "start": 9525.78, + "end": 9527.28, + "probability": 0.6114 + }, + { + "start": 9528.28, + "end": 9528.68, + "probability": 0.9388 + }, + { + "start": 9530.08, + "end": 9532.4, + "probability": 0.3993 + }, + { + "start": 9532.52, + "end": 9535.62, + "probability": 0.304 + }, + { + "start": 9537.04, + "end": 9539.38, + "probability": 0.9019 + }, + { + "start": 9540.58, + "end": 9543.74, + "probability": 0.7943 + }, + { + "start": 9545.76, + "end": 9548.36, + "probability": 0.9272 + }, + { + "start": 9549.48, + "end": 9550.96, + "probability": 0.802 + }, + { + "start": 9552.18, + "end": 9556.14, + "probability": 0.99 + }, + { + "start": 9556.14, + "end": 9560.14, + "probability": 0.9941 + }, + { + "start": 9561.88, + "end": 9565.74, + "probability": 0.8561 + }, + { + "start": 9567.08, + "end": 9569.12, + "probability": 0.8235 + }, + { + "start": 9569.98, + "end": 9575.36, + "probability": 0.8499 + }, + { + "start": 9576.82, + "end": 9577.8, + "probability": 0.5082 + }, + { + "start": 9578.58, + "end": 9579.94, + "probability": 0.9825 + }, + { + "start": 9579.94, + "end": 9581.52, + "probability": 0.8471 + }, + { + "start": 9581.66, + "end": 9582.62, + "probability": 0.9932 + }, + { + "start": 9582.66, + "end": 9584.62, + "probability": 0.9963 + }, + { + "start": 9585.24, + "end": 9588.64, + "probability": 0.9653 + }, + { + "start": 9588.86, + "end": 9590.42, + "probability": 0.8726 + }, + { + "start": 9590.52, + "end": 9591.02, + "probability": 0.5658 + }, + { + "start": 9591.92, + "end": 9594.66, + "probability": 0.9184 + }, + { + "start": 9595.1, + "end": 9596.06, + "probability": 0.9745 + }, + { + "start": 9597.44, + "end": 9599.72, + "probability": 0.9427 + }, + { + "start": 9600.16, + "end": 9603.58, + "probability": 0.9086 + }, + { + "start": 9604.16, + "end": 9605.32, + "probability": 0.6632 + }, + { + "start": 9605.52, + "end": 9607.68, + "probability": 0.8831 + }, + { + "start": 9608.26, + "end": 9609.2, + "probability": 0.6631 + }, + { + "start": 9609.4, + "end": 9610.06, + "probability": 0.8869 + }, + { + "start": 9610.24, + "end": 9612.3, + "probability": 0.9527 + }, + { + "start": 9613.82, + "end": 9614.4, + "probability": 0.5204 + }, + { + "start": 9615.12, + "end": 9615.94, + "probability": 0.7002 + }, + { + "start": 9616.4, + "end": 9617.22, + "probability": 0.8541 + }, + { + "start": 9617.6, + "end": 9618.24, + "probability": 0.7902 + }, + { + "start": 9618.36, + "end": 9622.74, + "probability": 0.9764 + }, + { + "start": 9624.06, + "end": 9625.24, + "probability": 0.937 + }, + { + "start": 9625.28, + "end": 9626.66, + "probability": 0.9927 + }, + { + "start": 9626.8, + "end": 9627.68, + "probability": 0.6401 + }, + { + "start": 9628.12, + "end": 9629.68, + "probability": 0.9688 + }, + { + "start": 9630.32, + "end": 9630.8, + "probability": 0.9908 + }, + { + "start": 9631.74, + "end": 9637.14, + "probability": 0.9946 + }, + { + "start": 9637.2, + "end": 9638.48, + "probability": 0.9971 + }, + { + "start": 9638.6, + "end": 9639.56, + "probability": 0.6387 + }, + { + "start": 9640.16, + "end": 9640.94, + "probability": 0.8972 + }, + { + "start": 9643.06, + "end": 9645.5, + "probability": 0.9946 + }, + { + "start": 9646.52, + "end": 9650.18, + "probability": 0.9924 + }, + { + "start": 9650.66, + "end": 9653.58, + "probability": 0.9818 + }, + { + "start": 9655.1, + "end": 9659.28, + "probability": 0.8978 + }, + { + "start": 9660.1, + "end": 9662.56, + "probability": 0.6027 + }, + { + "start": 9664.02, + "end": 9666.74, + "probability": 0.9961 + }, + { + "start": 9666.86, + "end": 9669.16, + "probability": 0.9553 + }, + { + "start": 9671.21, + "end": 9674.16, + "probability": 0.9952 + }, + { + "start": 9674.18, + "end": 9674.8, + "probability": 0.8947 + }, + { + "start": 9675.04, + "end": 9675.64, + "probability": 0.92 + }, + { + "start": 9676.96, + "end": 9679.28, + "probability": 0.9935 + }, + { + "start": 9679.86, + "end": 9683.08, + "probability": 0.9982 + }, + { + "start": 9683.66, + "end": 9684.52, + "probability": 0.7079 + }, + { + "start": 9684.84, + "end": 9685.48, + "probability": 0.7368 + }, + { + "start": 9686.26, + "end": 9689.7, + "probability": 0.6363 + }, + { + "start": 9690.12, + "end": 9691.18, + "probability": 0.9761 + }, + { + "start": 9691.7, + "end": 9696.34, + "probability": 0.9641 + }, + { + "start": 9696.46, + "end": 9700.26, + "probability": 0.9944 + }, + { + "start": 9700.26, + "end": 9702.76, + "probability": 0.9603 + }, + { + "start": 9703.56, + "end": 9704.14, + "probability": 0.6016 + }, + { + "start": 9705.22, + "end": 9707.66, + "probability": 0.9395 + }, + { + "start": 9707.76, + "end": 9708.48, + "probability": 0.6565 + }, + { + "start": 9708.52, + "end": 9709.44, + "probability": 0.9492 + }, + { + "start": 9709.86, + "end": 9711.94, + "probability": 0.895 + }, + { + "start": 9712.66, + "end": 9713.84, + "probability": 0.912 + }, + { + "start": 9713.96, + "end": 9718.22, + "probability": 0.9438 + }, + { + "start": 9721.66, + "end": 9723.02, + "probability": 0.8629 + }, + { + "start": 9724.08, + "end": 9726.72, + "probability": 0.3409 + }, + { + "start": 9727.34, + "end": 9728.52, + "probability": 0.5047 + }, + { + "start": 9730.68, + "end": 9734.74, + "probability": 0.8898 + }, + { + "start": 9735.32, + "end": 9744.24, + "probability": 0.7429 + }, + { + "start": 9744.88, + "end": 9746.66, + "probability": 0.5689 + }, + { + "start": 9747.6, + "end": 9751.08, + "probability": 0.9907 + }, + { + "start": 9752.02, + "end": 9753.1, + "probability": 0.8289 + }, + { + "start": 9753.58, + "end": 9756.6, + "probability": 0.9633 + }, + { + "start": 9756.98, + "end": 9761.98, + "probability": 0.762 + }, + { + "start": 9762.24, + "end": 9762.7, + "probability": 0.6081 + }, + { + "start": 9762.78, + "end": 9764.42, + "probability": 0.4013 + }, + { + "start": 9765.06, + "end": 9766.34, + "probability": 0.9321 + }, + { + "start": 9767.1, + "end": 9768.6, + "probability": 0.8859 + }, + { + "start": 9768.84, + "end": 9770.34, + "probability": 0.747 + }, + { + "start": 9771.2, + "end": 9773.58, + "probability": 0.8928 + }, + { + "start": 9773.82, + "end": 9775.54, + "probability": 0.7844 + }, + { + "start": 9775.94, + "end": 9779.72, + "probability": 0.9951 + }, + { + "start": 9780.26, + "end": 9782.22, + "probability": 0.9939 + }, + { + "start": 9782.84, + "end": 9783.9, + "probability": 0.5136 + }, + { + "start": 9784.48, + "end": 9787.66, + "probability": 0.8812 + }, + { + "start": 9787.9, + "end": 9789.58, + "probability": 0.9541 + }, + { + "start": 9790.94, + "end": 9791.72, + "probability": 0.875 + }, + { + "start": 9792.9, + "end": 9795.14, + "probability": 0.8066 + }, + { + "start": 9795.7, + "end": 9796.96, + "probability": 0.7898 + }, + { + "start": 9797.64, + "end": 9798.84, + "probability": 0.7351 + }, + { + "start": 9799.5, + "end": 9802.28, + "probability": 0.8539 + }, + { + "start": 9803.6, + "end": 9805.8, + "probability": 0.8514 + }, + { + "start": 9806.56, + "end": 9808.88, + "probability": 0.9658 + }, + { + "start": 9809.7, + "end": 9811.08, + "probability": 0.077 + }, + { + "start": 9812.13, + "end": 9815.37, + "probability": 0.5397 + }, + { + "start": 9816.32, + "end": 9818.32, + "probability": 0.715 + }, + { + "start": 9820.32, + "end": 9829.18, + "probability": 0.5597 + }, + { + "start": 9830.32, + "end": 9833.0, + "probability": 0.9418 + }, + { + "start": 9833.8, + "end": 9838.74, + "probability": 0.6061 + }, + { + "start": 9839.38, + "end": 9841.5, + "probability": 0.9909 + }, + { + "start": 9843.58, + "end": 9844.52, + "probability": 0.705 + }, + { + "start": 9845.28, + "end": 9847.4, + "probability": 0.9634 + }, + { + "start": 9847.4, + "end": 9850.82, + "probability": 0.9959 + }, + { + "start": 9851.2, + "end": 9854.3, + "probability": 0.9554 + }, + { + "start": 9855.02, + "end": 9856.82, + "probability": 0.9987 + }, + { + "start": 9857.56, + "end": 9859.14, + "probability": 0.9344 + }, + { + "start": 9859.8, + "end": 9860.22, + "probability": 0.5299 + }, + { + "start": 9860.8, + "end": 9865.82, + "probability": 0.9412 + }, + { + "start": 9866.68, + "end": 9867.6, + "probability": 0.8632 + }, + { + "start": 9868.48, + "end": 9870.12, + "probability": 0.6701 + }, + { + "start": 9870.82, + "end": 9875.7, + "probability": 0.9732 + }, + { + "start": 9876.52, + "end": 9877.5, + "probability": 0.7471 + }, + { + "start": 9878.42, + "end": 9879.5, + "probability": 0.9987 + }, + { + "start": 9880.28, + "end": 9882.38, + "probability": 0.7075 + }, + { + "start": 9883.22, + "end": 9884.5, + "probability": 0.9622 + }, + { + "start": 9885.04, + "end": 9886.04, + "probability": 0.1442 + }, + { + "start": 9886.58, + "end": 9887.82, + "probability": 0.8431 + }, + { + "start": 9888.62, + "end": 9889.68, + "probability": 0.9861 + }, + { + "start": 9889.72, + "end": 9890.7, + "probability": 0.9088 + }, + { + "start": 9891.08, + "end": 9892.0, + "probability": 0.7974 + }, + { + "start": 9892.16, + "end": 9893.18, + "probability": 0.9718 + }, + { + "start": 9893.92, + "end": 9896.8, + "probability": 0.9976 + }, + { + "start": 9896.8, + "end": 9901.36, + "probability": 0.9783 + }, + { + "start": 9901.48, + "end": 9901.86, + "probability": 0.7593 + }, + { + "start": 9902.3, + "end": 9903.0, + "probability": 0.4296 + }, + { + "start": 9903.66, + "end": 9903.86, + "probability": 0.7571 + }, + { + "start": 9905.5, + "end": 9907.1, + "probability": 0.9792 + }, + { + "start": 9907.7, + "end": 9909.82, + "probability": 0.946 + }, + { + "start": 9911.06, + "end": 9912.36, + "probability": 0.9922 + }, + { + "start": 9913.5, + "end": 9914.12, + "probability": 0.8509 + }, + { + "start": 9915.18, + "end": 9920.34, + "probability": 0.9816 + }, + { + "start": 9921.12, + "end": 9923.2, + "probability": 0.9983 + }, + { + "start": 9923.48, + "end": 9926.6, + "probability": 0.9933 + }, + { + "start": 9926.96, + "end": 9927.32, + "probability": 0.7296 + }, + { + "start": 9928.48, + "end": 9929.94, + "probability": 0.7583 + }, + { + "start": 9929.94, + "end": 9931.7, + "probability": 0.5236 + }, + { + "start": 9932.54, + "end": 9933.7, + "probability": 0.8123 + }, + { + "start": 9934.34, + "end": 9935.14, + "probability": 0.5594 + }, + { + "start": 9936.38, + "end": 9936.96, + "probability": 0.8435 + }, + { + "start": 9940.48, + "end": 9941.78, + "probability": 0.9094 + }, + { + "start": 9942.98, + "end": 9945.46, + "probability": 0.6746 + }, + { + "start": 9946.4, + "end": 9950.9, + "probability": 0.9606 + }, + { + "start": 9951.42, + "end": 9952.4, + "probability": 0.609 + }, + { + "start": 9952.96, + "end": 9953.74, + "probability": 0.7498 + }, + { + "start": 9953.9, + "end": 9954.54, + "probability": 0.6512 + }, + { + "start": 9955.48, + "end": 9957.1, + "probability": 0.9961 + }, + { + "start": 9957.88, + "end": 9961.82, + "probability": 0.9869 + }, + { + "start": 9962.64, + "end": 9966.9, + "probability": 0.9504 + }, + { + "start": 9968.22, + "end": 9971.32, + "probability": 0.7583 + }, + { + "start": 9971.92, + "end": 9972.74, + "probability": 0.5413 + }, + { + "start": 9973.44, + "end": 9976.04, + "probability": 0.9767 + }, + { + "start": 9976.36, + "end": 9978.24, + "probability": 0.8934 + }, + { + "start": 9978.8, + "end": 9979.82, + "probability": 0.999 + }, + { + "start": 9980.38, + "end": 9982.98, + "probability": 0.9688 + }, + { + "start": 9984.72, + "end": 9985.26, + "probability": 0.8204 + }, + { + "start": 9986.02, + "end": 9986.4, + "probability": 0.464 + }, + { + "start": 9986.58, + "end": 9989.66, + "probability": 0.7769 + }, + { + "start": 9989.74, + "end": 9990.65, + "probability": 0.8849 + }, + { + "start": 9991.24, + "end": 9991.76, + "probability": 0.8742 + }, + { + "start": 9991.88, + "end": 9993.8, + "probability": 0.7818 + }, + { + "start": 9994.74, + "end": 9996.2, + "probability": 0.2308 + }, + { + "start": 9996.52, + "end": 10000.02, + "probability": 0.9436 + }, + { + "start": 10011.12, + "end": 10012.3, + "probability": 0.3024 + }, + { + "start": 10012.34, + "end": 10012.52, + "probability": 0.8523 + }, + { + "start": 10012.88, + "end": 10013.02, + "probability": 0.5331 + }, + { + "start": 10013.02, + "end": 10013.52, + "probability": 0.6252 + }, + { + "start": 10014.14, + "end": 10015.46, + "probability": 0.7217 + }, + { + "start": 10016.28, + "end": 10023.6, + "probability": 0.9365 + }, + { + "start": 10024.7, + "end": 10026.04, + "probability": 0.5629 + }, + { + "start": 10026.34, + "end": 10030.98, + "probability": 0.8803 + }, + { + "start": 10031.0, + "end": 10032.12, + "probability": 0.9468 + }, + { + "start": 10032.48, + "end": 10033.14, + "probability": 0.3856 + }, + { + "start": 10034.16, + "end": 10035.8, + "probability": 0.831 + }, + { + "start": 10036.78, + "end": 10041.04, + "probability": 0.9567 + }, + { + "start": 10041.1, + "end": 10043.36, + "probability": 0.8615 + }, + { + "start": 10044.44, + "end": 10050.2, + "probability": 0.9564 + }, + { + "start": 10050.82, + "end": 10053.6, + "probability": 0.9946 + }, + { + "start": 10054.22, + "end": 10054.94, + "probability": 0.8106 + }, + { + "start": 10055.02, + "end": 10056.2, + "probability": 0.612 + }, + { + "start": 10057.06, + "end": 10058.64, + "probability": 0.9745 + }, + { + "start": 10058.68, + "end": 10063.86, + "probability": 0.9946 + }, + { + "start": 10064.6, + "end": 10066.72, + "probability": 0.8761 + }, + { + "start": 10066.98, + "end": 10067.44, + "probability": 0.7612 + }, + { + "start": 10067.54, + "end": 10072.16, + "probability": 0.7451 + }, + { + "start": 10072.44, + "end": 10073.2, + "probability": 0.5409 + }, + { + "start": 10074.1, + "end": 10077.86, + "probability": 0.9937 + }, + { + "start": 10078.86, + "end": 10084.18, + "probability": 0.7899 + }, + { + "start": 10084.34, + "end": 10085.74, + "probability": 0.9218 + }, + { + "start": 10086.7, + "end": 10089.94, + "probability": 0.9863 + }, + { + "start": 10092.3, + "end": 10095.96, + "probability": 0.5066 + }, + { + "start": 10096.68, + "end": 10100.76, + "probability": 0.9043 + }, + { + "start": 10101.52, + "end": 10104.68, + "probability": 0.8607 + }, + { + "start": 10105.18, + "end": 10108.52, + "probability": 0.817 + }, + { + "start": 10109.28, + "end": 10113.22, + "probability": 0.9864 + }, + { + "start": 10114.04, + "end": 10116.26, + "probability": 0.8984 + }, + { + "start": 10117.26, + "end": 10122.38, + "probability": 0.9792 + }, + { + "start": 10122.62, + "end": 10128.0, + "probability": 0.9949 + }, + { + "start": 10129.26, + "end": 10131.88, + "probability": 0.9863 + }, + { + "start": 10132.64, + "end": 10134.24, + "probability": 0.9952 + }, + { + "start": 10134.46, + "end": 10134.94, + "probability": 0.735 + }, + { + "start": 10135.04, + "end": 10137.22, + "probability": 0.9863 + }, + { + "start": 10137.82, + "end": 10139.12, + "probability": 0.8729 + }, + { + "start": 10139.16, + "end": 10143.28, + "probability": 0.997 + }, + { + "start": 10144.5, + "end": 10147.46, + "probability": 0.9763 + }, + { + "start": 10148.18, + "end": 10149.14, + "probability": 0.7805 + }, + { + "start": 10149.7, + "end": 10150.86, + "probability": 0.8587 + }, + { + "start": 10151.4, + "end": 10155.1, + "probability": 0.9178 + }, + { + "start": 10156.1, + "end": 10164.86, + "probability": 0.9697 + }, + { + "start": 10164.86, + "end": 10165.78, + "probability": 0.7952 + }, + { + "start": 10166.02, + "end": 10168.14, + "probability": 0.9719 + }, + { + "start": 10169.04, + "end": 10169.06, + "probability": 0.6127 + }, + { + "start": 10169.06, + "end": 10172.12, + "probability": 0.7728 + }, + { + "start": 10173.28, + "end": 10175.72, + "probability": 0.6585 + }, + { + "start": 10176.3, + "end": 10178.18, + "probability": 0.9478 + }, + { + "start": 10179.72, + "end": 10183.85, + "probability": 0.9871 + }, + { + "start": 10185.04, + "end": 10186.82, + "probability": 0.9854 + }, + { + "start": 10188.08, + "end": 10191.44, + "probability": 0.6142 + }, + { + "start": 10192.22, + "end": 10197.6, + "probability": 0.9789 + }, + { + "start": 10198.66, + "end": 10203.3, + "probability": 0.9529 + }, + { + "start": 10203.3, + "end": 10207.74, + "probability": 0.9825 + }, + { + "start": 10209.14, + "end": 10213.9, + "probability": 0.9907 + }, + { + "start": 10214.34, + "end": 10217.7, + "probability": 0.9472 + }, + { + "start": 10217.82, + "end": 10221.04, + "probability": 0.9968 + }, + { + "start": 10221.04, + "end": 10223.9, + "probability": 0.9938 + }, + { + "start": 10225.38, + "end": 10227.1, + "probability": 0.8771 + }, + { + "start": 10227.32, + "end": 10227.78, + "probability": 0.6291 + }, + { + "start": 10228.1, + "end": 10230.16, + "probability": 0.9475 + }, + { + "start": 10230.4, + "end": 10238.28, + "probability": 0.9756 + }, + { + "start": 10238.84, + "end": 10241.64, + "probability": 0.9915 + }, + { + "start": 10242.72, + "end": 10245.46, + "probability": 0.5186 + }, + { + "start": 10245.62, + "end": 10246.9, + "probability": 0.4392 + }, + { + "start": 10248.04, + "end": 10250.28, + "probability": 0.8511 + }, + { + "start": 10250.38, + "end": 10253.54, + "probability": 0.9451 + }, + { + "start": 10253.6, + "end": 10254.62, + "probability": 0.9248 + }, + { + "start": 10255.9, + "end": 10259.86, + "probability": 0.8978 + }, + { + "start": 10260.38, + "end": 10261.58, + "probability": 0.9705 + }, + { + "start": 10261.78, + "end": 10268.42, + "probability": 0.9899 + }, + { + "start": 10269.36, + "end": 10271.3, + "probability": 0.9958 + }, + { + "start": 10271.72, + "end": 10273.57, + "probability": 0.869 + }, + { + "start": 10274.08, + "end": 10275.82, + "probability": 0.6129 + }, + { + "start": 10276.0, + "end": 10277.1, + "probability": 0.743 + }, + { + "start": 10278.14, + "end": 10278.84, + "probability": 0.7309 + }, + { + "start": 10278.98, + "end": 10282.44, + "probability": 0.9499 + }, + { + "start": 10282.94, + "end": 10287.46, + "probability": 0.9797 + }, + { + "start": 10288.7, + "end": 10289.12, + "probability": 0.7613 + }, + { + "start": 10289.16, + "end": 10289.86, + "probability": 0.8229 + }, + { + "start": 10290.06, + "end": 10292.82, + "probability": 0.8077 + }, + { + "start": 10292.92, + "end": 10294.72, + "probability": 0.9692 + }, + { + "start": 10295.7, + "end": 10300.44, + "probability": 0.8577 + }, + { + "start": 10300.44, + "end": 10304.82, + "probability": 0.9836 + }, + { + "start": 10305.3, + "end": 10306.78, + "probability": 0.8467 + }, + { + "start": 10307.88, + "end": 10311.26, + "probability": 0.9907 + }, + { + "start": 10312.08, + "end": 10313.96, + "probability": 0.7224 + }, + { + "start": 10314.16, + "end": 10315.68, + "probability": 0.9715 + }, + { + "start": 10316.16, + "end": 10318.52, + "probability": 0.9966 + }, + { + "start": 10318.9, + "end": 10323.94, + "probability": 0.971 + }, + { + "start": 10324.72, + "end": 10325.06, + "probability": 0.6559 + }, + { + "start": 10325.42, + "end": 10328.8, + "probability": 0.8343 + }, + { + "start": 10329.5, + "end": 10332.39, + "probability": 0.9098 + }, + { + "start": 10333.23, + "end": 10336.38, + "probability": 0.9982 + }, + { + "start": 10336.46, + "end": 10336.96, + "probability": 0.8195 + }, + { + "start": 10337.44, + "end": 10339.26, + "probability": 0.9107 + }, + { + "start": 10340.04, + "end": 10341.24, + "probability": 0.9888 + }, + { + "start": 10341.66, + "end": 10343.02, + "probability": 0.9722 + }, + { + "start": 10343.2, + "end": 10345.62, + "probability": 0.9232 + }, + { + "start": 10346.3, + "end": 10347.6, + "probability": 0.8633 + }, + { + "start": 10348.0, + "end": 10351.82, + "probability": 0.9678 + }, + { + "start": 10352.54, + "end": 10354.3, + "probability": 0.9569 + }, + { + "start": 10354.46, + "end": 10355.4, + "probability": 0.9011 + }, + { + "start": 10355.46, + "end": 10356.24, + "probability": 0.9513 + }, + { + "start": 10356.72, + "end": 10357.58, + "probability": 0.9446 + }, + { + "start": 10358.18, + "end": 10361.24, + "probability": 0.9768 + }, + { + "start": 10361.66, + "end": 10366.04, + "probability": 0.8359 + }, + { + "start": 10366.54, + "end": 10368.26, + "probability": 0.7106 + }, + { + "start": 10368.7, + "end": 10371.08, + "probability": 0.983 + }, + { + "start": 10371.28, + "end": 10373.42, + "probability": 0.8593 + }, + { + "start": 10373.94, + "end": 10376.18, + "probability": 0.981 + }, + { + "start": 10376.9, + "end": 10379.02, + "probability": 0.8121 + }, + { + "start": 10379.54, + "end": 10380.98, + "probability": 0.924 + }, + { + "start": 10381.12, + "end": 10383.47, + "probability": 0.999 + }, + { + "start": 10384.2, + "end": 10384.5, + "probability": 0.7087 + }, + { + "start": 10384.66, + "end": 10388.62, + "probability": 0.9877 + }, + { + "start": 10389.52, + "end": 10393.62, + "probability": 0.7754 + }, + { + "start": 10394.42, + "end": 10397.24, + "probability": 0.7564 + }, + { + "start": 10398.88, + "end": 10399.78, + "probability": 0.5841 + }, + { + "start": 10400.2, + "end": 10400.84, + "probability": 0.7995 + }, + { + "start": 10400.96, + "end": 10402.46, + "probability": 0.9907 + }, + { + "start": 10403.18, + "end": 10404.5, + "probability": 0.8144 + }, + { + "start": 10404.94, + "end": 10406.72, + "probability": 0.9728 + }, + { + "start": 10406.84, + "end": 10410.92, + "probability": 0.98 + }, + { + "start": 10411.66, + "end": 10416.4, + "probability": 0.8455 + }, + { + "start": 10417.02, + "end": 10420.48, + "probability": 0.6733 + }, + { + "start": 10421.58, + "end": 10423.2, + "probability": 0.9652 + }, + { + "start": 10423.94, + "end": 10426.64, + "probability": 0.8228 + }, + { + "start": 10427.22, + "end": 10430.34, + "probability": 0.9833 + }, + { + "start": 10431.08, + "end": 10436.3, + "probability": 0.9487 + }, + { + "start": 10436.4, + "end": 10438.36, + "probability": 0.9893 + }, + { + "start": 10438.62, + "end": 10439.34, + "probability": 0.6618 + }, + { + "start": 10439.64, + "end": 10440.52, + "probability": 0.8908 + }, + { + "start": 10440.58, + "end": 10441.44, + "probability": 0.8692 + }, + { + "start": 10442.08, + "end": 10445.72, + "probability": 0.8403 + }, + { + "start": 10445.76, + "end": 10447.84, + "probability": 0.9285 + }, + { + "start": 10448.6, + "end": 10450.24, + "probability": 0.8102 + }, + { + "start": 10450.34, + "end": 10451.58, + "probability": 0.9058 + }, + { + "start": 10451.96, + "end": 10454.86, + "probability": 0.9958 + }, + { + "start": 10455.36, + "end": 10461.14, + "probability": 0.851 + }, + { + "start": 10461.94, + "end": 10467.88, + "probability": 0.9761 + }, + { + "start": 10469.06, + "end": 10472.32, + "probability": 0.7992 + }, + { + "start": 10473.04, + "end": 10474.7, + "probability": 0.9258 + }, + { + "start": 10475.22, + "end": 10479.26, + "probability": 0.8062 + }, + { + "start": 10480.34, + "end": 10480.82, + "probability": 0.786 + }, + { + "start": 10480.92, + "end": 10481.34, + "probability": 0.5096 + }, + { + "start": 10481.52, + "end": 10481.98, + "probability": 0.8088 + }, + { + "start": 10482.1, + "end": 10484.68, + "probability": 0.9742 + }, + { + "start": 10484.72, + "end": 10485.98, + "probability": 0.8498 + }, + { + "start": 10486.06, + "end": 10487.06, + "probability": 0.9775 + }, + { + "start": 10487.98, + "end": 10490.3, + "probability": 0.9175 + }, + { + "start": 10490.88, + "end": 10493.04, + "probability": 0.6192 + }, + { + "start": 10493.28, + "end": 10493.64, + "probability": 0.3195 + }, + { + "start": 10493.92, + "end": 10496.18, + "probability": 0.521 + }, + { + "start": 10496.32, + "end": 10497.44, + "probability": 0.7353 + }, + { + "start": 10497.8, + "end": 10501.6, + "probability": 0.8672 + }, + { + "start": 10502.06, + "end": 10505.38, + "probability": 0.9098 + }, + { + "start": 10505.66, + "end": 10505.9, + "probability": 0.4056 + }, + { + "start": 10506.32, + "end": 10511.38, + "probability": 0.9619 + }, + { + "start": 10511.68, + "end": 10512.5, + "probability": 0.8978 + }, + { + "start": 10512.68, + "end": 10514.33, + "probability": 0.4094 + }, + { + "start": 10515.94, + "end": 10521.36, + "probability": 0.9877 + }, + { + "start": 10521.36, + "end": 10527.76, + "probability": 0.9315 + }, + { + "start": 10528.4, + "end": 10530.02, + "probability": 0.9972 + }, + { + "start": 10530.74, + "end": 10533.9, + "probability": 0.9912 + }, + { + "start": 10534.14, + "end": 10535.76, + "probability": 0.9968 + }, + { + "start": 10536.32, + "end": 10538.94, + "probability": 0.9736 + }, + { + "start": 10539.74, + "end": 10543.92, + "probability": 0.8806 + }, + { + "start": 10544.54, + "end": 10547.94, + "probability": 0.9831 + }, + { + "start": 10547.94, + "end": 10552.62, + "probability": 0.9095 + }, + { + "start": 10552.84, + "end": 10553.82, + "probability": 0.894 + }, + { + "start": 10554.1, + "end": 10554.46, + "probability": 0.7745 + }, + { + "start": 10554.96, + "end": 10558.7, + "probability": 0.9964 + }, + { + "start": 10558.7, + "end": 10562.28, + "probability": 0.9989 + }, + { + "start": 10563.34, + "end": 10565.7, + "probability": 0.991 + }, + { + "start": 10565.88, + "end": 10571.64, + "probability": 0.8675 + }, + { + "start": 10571.72, + "end": 10572.3, + "probability": 0.6024 + }, + { + "start": 10572.48, + "end": 10573.06, + "probability": 0.7837 + }, + { + "start": 10573.16, + "end": 10573.92, + "probability": 0.992 + }, + { + "start": 10574.58, + "end": 10577.48, + "probability": 0.5558 + }, + { + "start": 10577.9, + "end": 10583.24, + "probability": 0.9712 + }, + { + "start": 10584.08, + "end": 10587.22, + "probability": 0.9856 + }, + { + "start": 10587.96, + "end": 10593.88, + "probability": 0.9914 + }, + { + "start": 10594.06, + "end": 10599.06, + "probability": 0.9883 + }, + { + "start": 10599.68, + "end": 10601.7, + "probability": 0.9985 + }, + { + "start": 10602.14, + "end": 10603.1, + "probability": 0.6403 + }, + { + "start": 10603.16, + "end": 10605.64, + "probability": 0.9797 + }, + { + "start": 10606.24, + "end": 10607.72, + "probability": 0.9214 + }, + { + "start": 10608.34, + "end": 10610.66, + "probability": 0.9574 + }, + { + "start": 10611.02, + "end": 10611.48, + "probability": 0.9119 + }, + { + "start": 10612.58, + "end": 10615.14, + "probability": 0.9447 + }, + { + "start": 10615.2, + "end": 10618.34, + "probability": 0.9639 + }, + { + "start": 10619.0, + "end": 10621.34, + "probability": 0.772 + }, + { + "start": 10621.62, + "end": 10622.58, + "probability": 0.7692 + }, + { + "start": 10625.84, + "end": 10627.28, + "probability": 0.9614 + }, + { + "start": 10629.72, + "end": 10632.1, + "probability": 0.9557 + }, + { + "start": 10632.74, + "end": 10633.56, + "probability": 0.7659 + }, + { + "start": 10633.9, + "end": 10634.3, + "probability": 0.5389 + }, + { + "start": 10635.58, + "end": 10636.28, + "probability": 0.7899 + }, + { + "start": 10638.4, + "end": 10639.94, + "probability": 0.9618 + }, + { + "start": 10640.02, + "end": 10642.98, + "probability": 0.8577 + }, + { + "start": 10645.73, + "end": 10647.6, + "probability": 0.7029 + }, + { + "start": 10651.27, + "end": 10653.96, + "probability": 0.8125 + }, + { + "start": 10654.12, + "end": 10656.16, + "probability": 0.8398 + }, + { + "start": 10656.38, + "end": 10656.68, + "probability": 0.5224 + }, + { + "start": 10658.1, + "end": 10658.54, + "probability": 0.7781 + }, + { + "start": 10659.52, + "end": 10663.94, + "probability": 0.7006 + }, + { + "start": 10667.82, + "end": 10670.08, + "probability": 0.8333 + }, + { + "start": 10674.62, + "end": 10675.54, + "probability": 0.7404 + }, + { + "start": 10676.22, + "end": 10682.6, + "probability": 0.8665 + }, + { + "start": 10682.98, + "end": 10684.98, + "probability": 0.8982 + }, + { + "start": 10685.66, + "end": 10689.48, + "probability": 0.8162 + }, + { + "start": 10690.02, + "end": 10691.49, + "probability": 0.0404 + }, + { + "start": 10692.58, + "end": 10694.46, + "probability": 0.8736 + }, + { + "start": 10695.46, + "end": 10697.42, + "probability": 0.7358 + }, + { + "start": 10698.8, + "end": 10703.48, + "probability": 0.6184 + }, + { + "start": 10704.36, + "end": 10710.02, + "probability": 0.9893 + }, + { + "start": 10710.68, + "end": 10716.04, + "probability": 0.9878 + }, + { + "start": 10716.96, + "end": 10723.56, + "probability": 0.8181 + }, + { + "start": 10724.28, + "end": 10728.68, + "probability": 0.746 + }, + { + "start": 10728.84, + "end": 10731.86, + "probability": 0.9633 + }, + { + "start": 10732.66, + "end": 10734.76, + "probability": 0.8158 + }, + { + "start": 10735.48, + "end": 10737.02, + "probability": 0.715 + }, + { + "start": 10737.04, + "end": 10741.66, + "probability": 0.8347 + }, + { + "start": 10741.68, + "end": 10744.64, + "probability": 0.9061 + }, + { + "start": 10744.82, + "end": 10748.0, + "probability": 0.9988 + }, + { + "start": 10749.98, + "end": 10756.1, + "probability": 0.9027 + }, + { + "start": 10756.88, + "end": 10759.84, + "probability": 0.455 + }, + { + "start": 10759.84, + "end": 10760.84, + "probability": 0.5105 + }, + { + "start": 10761.18, + "end": 10763.34, + "probability": 0.829 + }, + { + "start": 10763.46, + "end": 10765.5, + "probability": 0.6367 + }, + { + "start": 10766.66, + "end": 10767.8, + "probability": 0.9982 + }, + { + "start": 10770.76, + "end": 10772.86, + "probability": 0.9556 + }, + { + "start": 10774.14, + "end": 10774.92, + "probability": 0.9395 + }, + { + "start": 10775.54, + "end": 10778.6, + "probability": 0.9958 + }, + { + "start": 10778.7, + "end": 10782.26, + "probability": 0.9968 + }, + { + "start": 10782.44, + "end": 10784.3, + "probability": 0.9907 + }, + { + "start": 10785.04, + "end": 10790.82, + "probability": 0.9907 + }, + { + "start": 10790.92, + "end": 10791.8, + "probability": 0.8631 + }, + { + "start": 10791.9, + "end": 10793.74, + "probability": 0.8853 + }, + { + "start": 10794.5, + "end": 10799.2, + "probability": 0.9184 + }, + { + "start": 10800.92, + "end": 10801.92, + "probability": 0.7664 + }, + { + "start": 10802.96, + "end": 10804.92, + "probability": 0.7159 + }, + { + "start": 10805.22, + "end": 10807.06, + "probability": 0.8569 + }, + { + "start": 10807.16, + "end": 10808.03, + "probability": 0.3612 + }, + { + "start": 10808.18, + "end": 10810.48, + "probability": 0.9976 + }, + { + "start": 10810.68, + "end": 10816.61, + "probability": 0.8258 + }, + { + "start": 10817.38, + "end": 10817.82, + "probability": 0.6975 + }, + { + "start": 10818.34, + "end": 10819.88, + "probability": 0.9833 + }, + { + "start": 10820.48, + "end": 10823.26, + "probability": 0.8181 + }, + { + "start": 10823.84, + "end": 10829.54, + "probability": 0.9642 + }, + { + "start": 10831.26, + "end": 10832.92, + "probability": 0.7474 + }, + { + "start": 10834.22, + "end": 10837.62, + "probability": 0.8927 + }, + { + "start": 10838.44, + "end": 10840.36, + "probability": 0.9542 + }, + { + "start": 10841.26, + "end": 10843.42, + "probability": 0.6556 + }, + { + "start": 10844.14, + "end": 10845.68, + "probability": 0.9666 + }, + { + "start": 10846.3, + "end": 10848.3, + "probability": 0.9641 + }, + { + "start": 10848.46, + "end": 10849.56, + "probability": 0.8655 + }, + { + "start": 10850.04, + "end": 10852.72, + "probability": 0.9852 + }, + { + "start": 10853.56, + "end": 10854.0, + "probability": 0.5146 + }, + { + "start": 10854.14, + "end": 10855.28, + "probability": 0.9337 + }, + { + "start": 10855.38, + "end": 10856.54, + "probability": 0.5064 + }, + { + "start": 10856.72, + "end": 10863.86, + "probability": 0.9314 + }, + { + "start": 10864.7, + "end": 10866.54, + "probability": 0.5647 + }, + { + "start": 10866.7, + "end": 10868.02, + "probability": 0.9496 + }, + { + "start": 10868.08, + "end": 10870.97, + "probability": 0.9844 + }, + { + "start": 10871.4, + "end": 10872.1, + "probability": 0.4183 + }, + { + "start": 10873.52, + "end": 10876.36, + "probability": 0.9951 + }, + { + "start": 10876.96, + "end": 10878.7, + "probability": 0.8567 + }, + { + "start": 10879.28, + "end": 10884.44, + "probability": 0.9846 + }, + { + "start": 10884.94, + "end": 10885.14, + "probability": 0.717 + }, + { + "start": 10885.24, + "end": 10886.62, + "probability": 0.7161 + }, + { + "start": 10886.78, + "end": 10887.48, + "probability": 0.8825 + }, + { + "start": 10887.62, + "end": 10890.34, + "probability": 0.9945 + }, + { + "start": 10890.46, + "end": 10891.64, + "probability": 0.5252 + }, + { + "start": 10891.72, + "end": 10895.24, + "probability": 0.9817 + }, + { + "start": 10895.82, + "end": 10896.8, + "probability": 0.1575 + }, + { + "start": 10897.26, + "end": 10899.04, + "probability": 0.9357 + }, + { + "start": 10899.24, + "end": 10905.34, + "probability": 0.985 + }, + { + "start": 10909.04, + "end": 10910.3, + "probability": 0.5646 + }, + { + "start": 10911.62, + "end": 10913.7, + "probability": 0.674 + }, + { + "start": 10914.24, + "end": 10914.58, + "probability": 0.0579 + }, + { + "start": 10914.58, + "end": 10916.62, + "probability": 0.1484 + }, + { + "start": 10917.14, + "end": 10917.82, + "probability": 0.422 + }, + { + "start": 10918.08, + "end": 10922.9, + "probability": 0.9619 + }, + { + "start": 10922.9, + "end": 10924.04, + "probability": 0.6637 + }, + { + "start": 10924.04, + "end": 10930.9, + "probability": 0.989 + }, + { + "start": 10931.28, + "end": 10935.0, + "probability": 0.9888 + }, + { + "start": 10935.12, + "end": 10937.42, + "probability": 0.8545 + }, + { + "start": 10938.42, + "end": 10942.18, + "probability": 0.6727 + }, + { + "start": 10942.18, + "end": 10942.48, + "probability": 0.0559 + }, + { + "start": 10942.48, + "end": 10949.98, + "probability": 0.8013 + }, + { + "start": 10952.88, + "end": 10956.88, + "probability": 0.6223 + }, + { + "start": 10957.74, + "end": 10959.36, + "probability": 0.7585 + }, + { + "start": 10959.62, + "end": 10962.46, + "probability": 0.6189 + }, + { + "start": 10962.56, + "end": 10963.1, + "probability": 0.505 + }, + { + "start": 10963.16, + "end": 10963.38, + "probability": 0.1678 + }, + { + "start": 10963.38, + "end": 10963.76, + "probability": 0.6012 + }, + { + "start": 10965.41, + "end": 10967.1, + "probability": 0.5023 + }, + { + "start": 10967.8, + "end": 10969.44, + "probability": 0.4945 + }, + { + "start": 10969.66, + "end": 10973.7, + "probability": 0.9831 + }, + { + "start": 10974.58, + "end": 10979.36, + "probability": 0.8215 + }, + { + "start": 10979.9, + "end": 10983.38, + "probability": 0.6146 + }, + { + "start": 10984.1, + "end": 10984.64, + "probability": 0.2185 + }, + { + "start": 10985.92, + "end": 10986.3, + "probability": 0.5063 + }, + { + "start": 10986.66, + "end": 10988.58, + "probability": 0.7031 + }, + { + "start": 10989.7, + "end": 10989.7, + "probability": 0.2767 + }, + { + "start": 10989.7, + "end": 10991.26, + "probability": 0.7316 + }, + { + "start": 10994.12, + "end": 10996.7, + "probability": 0.3615 + }, + { + "start": 10997.92, + "end": 10998.2, + "probability": 0.2291 + }, + { + "start": 10998.2, + "end": 10998.2, + "probability": 0.016 + }, + { + "start": 10998.2, + "end": 10998.9, + "probability": 0.1026 + }, + { + "start": 10999.0, + "end": 11000.98, + "probability": 0.5398 + }, + { + "start": 11001.06, + "end": 11001.48, + "probability": 0.5903 + }, + { + "start": 11001.76, + "end": 11002.82, + "probability": 0.6987 + }, + { + "start": 11003.56, + "end": 11004.66, + "probability": 0.8692 + }, + { + "start": 11004.66, + "end": 11005.16, + "probability": 0.7142 + }, + { + "start": 11005.5, + "end": 11006.82, + "probability": 0.0029 + }, + { + "start": 11008.26, + "end": 11009.94, + "probability": 0.5001 + }, + { + "start": 11010.84, + "end": 11011.46, + "probability": 0.5273 + }, + { + "start": 11011.56, + "end": 11012.77, + "probability": 0.2639 + }, + { + "start": 11012.9, + "end": 11013.36, + "probability": 0.6743 + }, + { + "start": 11013.54, + "end": 11014.52, + "probability": 0.6329 + }, + { + "start": 11014.52, + "end": 11015.66, + "probability": 0.8489 + }, + { + "start": 11015.84, + "end": 11021.56, + "probability": 0.031 + }, + { + "start": 11023.12, + "end": 11023.66, + "probability": 0.0473 + }, + { + "start": 11023.66, + "end": 11025.5, + "probability": 0.4742 + }, + { + "start": 11025.56, + "end": 11026.92, + "probability": 0.7585 + }, + { + "start": 11027.22, + "end": 11027.94, + "probability": 0.1971 + }, + { + "start": 11027.94, + "end": 11028.34, + "probability": 0.5923 + }, + { + "start": 11028.84, + "end": 11035.76, + "probability": 0.1418 + }, + { + "start": 11036.26, + "end": 11040.9, + "probability": 0.7301 + }, + { + "start": 11041.04, + "end": 11042.16, + "probability": 0.9389 + }, + { + "start": 11043.3, + "end": 11043.84, + "probability": 0.7941 + }, + { + "start": 11044.06, + "end": 11045.3, + "probability": 0.5147 + }, + { + "start": 11045.38, + "end": 11045.92, + "probability": 0.9604 + }, + { + "start": 11045.98, + "end": 11049.18, + "probability": 0.8467 + }, + { + "start": 11049.3, + "end": 11050.88, + "probability": 0.2225 + }, + { + "start": 11051.38, + "end": 11054.06, + "probability": 0.7887 + }, + { + "start": 11054.16, + "end": 11056.7, + "probability": 0.9805 + }, + { + "start": 11056.86, + "end": 11057.9, + "probability": 0.8582 + }, + { + "start": 11057.94, + "end": 11062.98, + "probability": 0.0151 + }, + { + "start": 11063.16, + "end": 11064.42, + "probability": 0.1784 + }, + { + "start": 11064.66, + "end": 11064.72, + "probability": 0.0253 + }, + { + "start": 11064.72, + "end": 11064.82, + "probability": 0.0888 + }, + { + "start": 11064.92, + "end": 11064.94, + "probability": 0.6374 + }, + { + "start": 11065.82, + "end": 11068.88, + "probability": 0.7974 + }, + { + "start": 11069.96, + "end": 11073.42, + "probability": 0.9883 + }, + { + "start": 11074.34, + "end": 11076.04, + "probability": 0.6533 + }, + { + "start": 11077.36, + "end": 11080.24, + "probability": 0.9285 + }, + { + "start": 11081.04, + "end": 11082.4, + "probability": 0.8288 + }, + { + "start": 11083.9, + "end": 11087.82, + "probability": 0.9982 + }, + { + "start": 11088.04, + "end": 11089.28, + "probability": 0.541 + }, + { + "start": 11090.3, + "end": 11092.82, + "probability": 0.9937 + }, + { + "start": 11092.9, + "end": 11093.78, + "probability": 0.9261 + }, + { + "start": 11093.88, + "end": 11094.62, + "probability": 0.8877 + }, + { + "start": 11094.76, + "end": 11096.06, + "probability": 0.998 + }, + { + "start": 11098.16, + "end": 11098.7, + "probability": 0.7961 + }, + { + "start": 11098.78, + "end": 11102.02, + "probability": 0.9888 + }, + { + "start": 11102.4, + "end": 11106.46, + "probability": 0.9897 + }, + { + "start": 11107.24, + "end": 11110.5, + "probability": 0.9233 + }, + { + "start": 11111.68, + "end": 11115.7, + "probability": 0.9953 + }, + { + "start": 11116.74, + "end": 11118.3, + "probability": 0.7495 + }, + { + "start": 11119.22, + "end": 11125.14, + "probability": 0.963 + }, + { + "start": 11126.5, + "end": 11127.72, + "probability": 0.7895 + }, + { + "start": 11128.56, + "end": 11133.42, + "probability": 0.9795 + }, + { + "start": 11133.96, + "end": 11136.73, + "probability": 0.9971 + }, + { + "start": 11137.0, + "end": 11141.46, + "probability": 0.9327 + }, + { + "start": 11142.06, + "end": 11143.3, + "probability": 0.7034 + }, + { + "start": 11144.86, + "end": 11146.48, + "probability": 0.8713 + }, + { + "start": 11147.1, + "end": 11150.02, + "probability": 0.9268 + }, + { + "start": 11150.3, + "end": 11153.56, + "probability": 0.9897 + }, + { + "start": 11153.9, + "end": 11155.06, + "probability": 0.7048 + }, + { + "start": 11156.38, + "end": 11159.84, + "probability": 0.9937 + }, + { + "start": 11160.34, + "end": 11161.22, + "probability": 0.9687 + }, + { + "start": 11161.7, + "end": 11164.8, + "probability": 0.9458 + }, + { + "start": 11165.66, + "end": 11168.62, + "probability": 0.9727 + }, + { + "start": 11169.72, + "end": 11172.74, + "probability": 0.9612 + }, + { + "start": 11173.14, + "end": 11177.22, + "probability": 0.9985 + }, + { + "start": 11177.42, + "end": 11184.44, + "probability": 0.9979 + }, + { + "start": 11185.52, + "end": 11185.9, + "probability": 0.577 + }, + { + "start": 11186.6, + "end": 11192.74, + "probability": 0.998 + }, + { + "start": 11193.1, + "end": 11193.76, + "probability": 0.4953 + }, + { + "start": 11194.1, + "end": 11196.04, + "probability": 0.9818 + }, + { + "start": 11197.1, + "end": 11198.32, + "probability": 0.9741 + }, + { + "start": 11198.56, + "end": 11199.36, + "probability": 0.7626 + }, + { + "start": 11199.94, + "end": 11200.36, + "probability": 0.7727 + }, + { + "start": 11200.42, + "end": 11201.24, + "probability": 0.9794 + }, + { + "start": 11201.3, + "end": 11203.76, + "probability": 0.9619 + }, + { + "start": 11204.38, + "end": 11204.99, + "probability": 0.94 + }, + { + "start": 11206.24, + "end": 11207.1, + "probability": 0.981 + }, + { + "start": 11207.86, + "end": 11213.6, + "probability": 0.9243 + }, + { + "start": 11213.94, + "end": 11215.46, + "probability": 0.8948 + }, + { + "start": 11215.92, + "end": 11217.18, + "probability": 0.9529 + }, + { + "start": 11219.34, + "end": 11225.72, + "probability": 0.9982 + }, + { + "start": 11227.2, + "end": 11230.78, + "probability": 0.9774 + }, + { + "start": 11231.48, + "end": 11234.86, + "probability": 0.999 + }, + { + "start": 11234.86, + "end": 11239.18, + "probability": 0.9922 + }, + { + "start": 11239.5, + "end": 11240.48, + "probability": 0.9477 + }, + { + "start": 11241.22, + "end": 11242.0, + "probability": 0.9391 + }, + { + "start": 11242.42, + "end": 11246.96, + "probability": 0.9686 + }, + { + "start": 11246.96, + "end": 11250.12, + "probability": 0.9941 + }, + { + "start": 11251.88, + "end": 11257.98, + "probability": 0.9962 + }, + { + "start": 11257.98, + "end": 11264.9, + "probability": 0.9927 + }, + { + "start": 11266.0, + "end": 11272.74, + "probability": 0.6733 + }, + { + "start": 11272.78, + "end": 11273.92, + "probability": 0.9406 + }, + { + "start": 11275.4, + "end": 11278.44, + "probability": 0.9969 + }, + { + "start": 11279.12, + "end": 11283.26, + "probability": 0.9146 + }, + { + "start": 11283.92, + "end": 11286.76, + "probability": 0.9822 + }, + { + "start": 11288.1, + "end": 11290.86, + "probability": 0.9962 + }, + { + "start": 11290.86, + "end": 11295.48, + "probability": 0.9972 + }, + { + "start": 11295.58, + "end": 11296.92, + "probability": 0.599 + }, + { + "start": 11297.12, + "end": 11297.62, + "probability": 0.5053 + }, + { + "start": 11298.78, + "end": 11301.72, + "probability": 0.9943 + }, + { + "start": 11302.56, + "end": 11303.38, + "probability": 0.6075 + }, + { + "start": 11304.06, + "end": 11307.72, + "probability": 0.9839 + }, + { + "start": 11308.08, + "end": 11312.68, + "probability": 0.9176 + }, + { + "start": 11313.06, + "end": 11316.48, + "probability": 0.9843 + }, + { + "start": 11317.9, + "end": 11321.6, + "probability": 0.9773 + }, + { + "start": 11322.08, + "end": 11324.36, + "probability": 0.9441 + }, + { + "start": 11324.74, + "end": 11327.22, + "probability": 0.9958 + }, + { + "start": 11327.58, + "end": 11329.0, + "probability": 0.7224 + }, + { + "start": 11329.16, + "end": 11331.02, + "probability": 0.9817 + }, + { + "start": 11332.4, + "end": 11337.1, + "probability": 0.8604 + }, + { + "start": 11337.1, + "end": 11341.74, + "probability": 0.9927 + }, + { + "start": 11342.36, + "end": 11346.08, + "probability": 0.9948 + }, + { + "start": 11346.92, + "end": 11348.52, + "probability": 0.7064 + }, + { + "start": 11349.46, + "end": 11353.84, + "probability": 0.9848 + }, + { + "start": 11353.84, + "end": 11358.48, + "probability": 0.9923 + }, + { + "start": 11358.94, + "end": 11361.3, + "probability": 0.9773 + }, + { + "start": 11362.06, + "end": 11364.7, + "probability": 0.9434 + }, + { + "start": 11366.85, + "end": 11367.6, + "probability": 0.0639 + }, + { + "start": 11367.6, + "end": 11368.5, + "probability": 0.5622 + }, + { + "start": 11369.38, + "end": 11370.38, + "probability": 0.7552 + }, + { + "start": 11371.52, + "end": 11376.88, + "probability": 0.985 + }, + { + "start": 11376.88, + "end": 11380.66, + "probability": 0.9965 + }, + { + "start": 11381.18, + "end": 11385.96, + "probability": 0.9132 + }, + { + "start": 11386.72, + "end": 11389.18, + "probability": 0.9951 + }, + { + "start": 11389.66, + "end": 11395.8, + "probability": 0.931 + }, + { + "start": 11396.5, + "end": 11396.7, + "probability": 0.4006 + }, + { + "start": 11396.8, + "end": 11397.34, + "probability": 0.9583 + }, + { + "start": 11397.72, + "end": 11403.04, + "probability": 0.716 + }, + { + "start": 11403.86, + "end": 11405.54, + "probability": 0.7255 + }, + { + "start": 11406.18, + "end": 11409.24, + "probability": 0.9715 + }, + { + "start": 11409.66, + "end": 11413.56, + "probability": 0.6995 + }, + { + "start": 11414.3, + "end": 11416.42, + "probability": 0.9917 + }, + { + "start": 11417.6, + "end": 11418.12, + "probability": 0.8591 + }, + { + "start": 11418.84, + "end": 11422.96, + "probability": 0.987 + }, + { + "start": 11422.96, + "end": 11427.98, + "probability": 0.9988 + }, + { + "start": 11427.98, + "end": 11432.9, + "probability": 0.9986 + }, + { + "start": 11433.74, + "end": 11439.06, + "probability": 0.9937 + }, + { + "start": 11439.82, + "end": 11441.22, + "probability": 0.4358 + }, + { + "start": 11442.3, + "end": 11443.0, + "probability": 0.8394 + }, + { + "start": 11443.74, + "end": 11448.78, + "probability": 0.9979 + }, + { + "start": 11449.76, + "end": 11452.88, + "probability": 0.9877 + }, + { + "start": 11453.96, + "end": 11454.91, + "probability": 0.8508 + }, + { + "start": 11456.02, + "end": 11459.1, + "probability": 0.8495 + }, + { + "start": 11459.64, + "end": 11463.18, + "probability": 0.9602 + }, + { + "start": 11464.72, + "end": 11468.12, + "probability": 0.9676 + }, + { + "start": 11468.64, + "end": 11469.87, + "probability": 0.9136 + }, + { + "start": 11470.04, + "end": 11472.74, + "probability": 0.9932 + }, + { + "start": 11473.24, + "end": 11475.5, + "probability": 0.9961 + }, + { + "start": 11476.26, + "end": 11478.8, + "probability": 0.9603 + }, + { + "start": 11479.76, + "end": 11482.24, + "probability": 0.9963 + }, + { + "start": 11482.72, + "end": 11485.24, + "probability": 0.9934 + }, + { + "start": 11486.26, + "end": 11489.56, + "probability": 0.9679 + }, + { + "start": 11490.18, + "end": 11493.76, + "probability": 0.988 + }, + { + "start": 11494.36, + "end": 11496.04, + "probability": 0.9893 + }, + { + "start": 11496.76, + "end": 11499.64, + "probability": 0.981 + }, + { + "start": 11500.22, + "end": 11500.72, + "probability": 0.3825 + }, + { + "start": 11500.72, + "end": 11504.08, + "probability": 0.9829 + }, + { + "start": 11505.68, + "end": 11508.34, + "probability": 0.9598 + }, + { + "start": 11509.18, + "end": 11514.86, + "probability": 0.9893 + }, + { + "start": 11514.86, + "end": 11520.63, + "probability": 0.9878 + }, + { + "start": 11521.28, + "end": 11524.77, + "probability": 0.933 + }, + { + "start": 11525.12, + "end": 11528.2, + "probability": 0.9695 + }, + { + "start": 11529.36, + "end": 11532.0, + "probability": 0.9113 + }, + { + "start": 11535.02, + "end": 11538.34, + "probability": 0.9994 + }, + { + "start": 11538.37, + "end": 11541.4, + "probability": 0.9913 + }, + { + "start": 11542.28, + "end": 11545.74, + "probability": 0.9984 + }, + { + "start": 11546.14, + "end": 11547.41, + "probability": 0.9927 + }, + { + "start": 11548.3, + "end": 11551.38, + "probability": 0.9796 + }, + { + "start": 11552.44, + "end": 11554.68, + "probability": 0.9933 + }, + { + "start": 11555.52, + "end": 11561.38, + "probability": 0.9493 + }, + { + "start": 11561.8, + "end": 11566.06, + "probability": 0.9965 + }, + { + "start": 11566.9, + "end": 11570.04, + "probability": 0.9785 + }, + { + "start": 11570.58, + "end": 11574.44, + "probability": 0.9862 + }, + { + "start": 11575.58, + "end": 11576.62, + "probability": 0.4698 + }, + { + "start": 11577.3, + "end": 11579.52, + "probability": 0.9882 + }, + { + "start": 11579.52, + "end": 11584.38, + "probability": 0.9977 + }, + { + "start": 11584.86, + "end": 11586.64, + "probability": 0.9958 + }, + { + "start": 11587.2, + "end": 11590.08, + "probability": 0.9703 + }, + { + "start": 11590.56, + "end": 11593.34, + "probability": 0.9822 + }, + { + "start": 11594.16, + "end": 11595.68, + "probability": 0.9621 + }, + { + "start": 11596.32, + "end": 11597.3, + "probability": 0.9044 + }, + { + "start": 11597.42, + "end": 11599.08, + "probability": 0.9085 + }, + { + "start": 11599.42, + "end": 11600.46, + "probability": 0.9567 + }, + { + "start": 11600.8, + "end": 11602.14, + "probability": 0.9972 + }, + { + "start": 11603.0, + "end": 11604.02, + "probability": 0.8872 + }, + { + "start": 11604.98, + "end": 11607.34, + "probability": 0.9164 + }, + { + "start": 11607.82, + "end": 11611.82, + "probability": 0.9836 + }, + { + "start": 11612.72, + "end": 11615.78, + "probability": 0.9963 + }, + { + "start": 11616.12, + "end": 11616.5, + "probability": 0.7651 + }, + { + "start": 11617.42, + "end": 11619.74, + "probability": 0.9889 + }, + { + "start": 11619.84, + "end": 11622.81, + "probability": 0.9836 + }, + { + "start": 11623.88, + "end": 11624.42, + "probability": 0.7858 + }, + { + "start": 11624.5, + "end": 11627.34, + "probability": 0.9756 + }, + { + "start": 11627.46, + "end": 11627.72, + "probability": 0.7517 + }, + { + "start": 11628.48, + "end": 11631.18, + "probability": 0.987 + }, + { + "start": 11632.2, + "end": 11632.7, + "probability": 0.7806 + }, + { + "start": 11633.52, + "end": 11634.24, + "probability": 0.9692 + }, + { + "start": 11635.36, + "end": 11636.14, + "probability": 0.8689 + }, + { + "start": 11640.14, + "end": 11641.06, + "probability": 0.7667 + }, + { + "start": 11641.44, + "end": 11642.3, + "probability": 0.8518 + }, + { + "start": 11642.36, + "end": 11644.14, + "probability": 0.8201 + }, + { + "start": 11644.22, + "end": 11645.74, + "probability": 0.9427 + }, + { + "start": 11646.52, + "end": 11649.8, + "probability": 0.9961 + }, + { + "start": 11651.34, + "end": 11653.04, + "probability": 0.8184 + }, + { + "start": 11655.36, + "end": 11657.08, + "probability": 0.9473 + }, + { + "start": 11657.66, + "end": 11659.1, + "probability": 0.2741 + }, + { + "start": 11664.22, + "end": 11665.0, + "probability": 0.9224 + }, + { + "start": 11665.26, + "end": 11665.66, + "probability": 0.8477 + }, + { + "start": 11665.82, + "end": 11669.5, + "probability": 0.9915 + }, + { + "start": 11671.1, + "end": 11672.08, + "probability": 0.0796 + }, + { + "start": 11672.64, + "end": 11672.98, + "probability": 0.4733 + }, + { + "start": 11673.1, + "end": 11676.92, + "probability": 0.8749 + }, + { + "start": 11676.92, + "end": 11680.2, + "probability": 0.9901 + }, + { + "start": 11681.28, + "end": 11685.14, + "probability": 0.9971 + }, + { + "start": 11686.76, + "end": 11694.68, + "probability": 0.9859 + }, + { + "start": 11695.82, + "end": 11696.98, + "probability": 0.9727 + }, + { + "start": 11697.16, + "end": 11699.26, + "probability": 0.9302 + }, + { + "start": 11699.44, + "end": 11700.72, + "probability": 0.9867 + }, + { + "start": 11701.48, + "end": 11703.42, + "probability": 0.9399 + }, + { + "start": 11703.76, + "end": 11704.6, + "probability": 0.9453 + }, + { + "start": 11705.68, + "end": 11707.76, + "probability": 0.9933 + }, + { + "start": 11708.42, + "end": 11711.08, + "probability": 0.7815 + }, + { + "start": 11711.6, + "end": 11712.12, + "probability": 0.8464 + }, + { + "start": 11712.64, + "end": 11713.3, + "probability": 0.8494 + }, + { + "start": 11714.34, + "end": 11717.2, + "probability": 0.8618 + }, + { + "start": 11718.14, + "end": 11719.36, + "probability": 0.9701 + }, + { + "start": 11720.08, + "end": 11724.84, + "probability": 0.6534 + }, + { + "start": 11725.36, + "end": 11728.16, + "probability": 0.9924 + }, + { + "start": 11728.34, + "end": 11730.6, + "probability": 0.9585 + }, + { + "start": 11731.36, + "end": 11731.92, + "probability": 0.5264 + }, + { + "start": 11734.64, + "end": 11736.54, + "probability": 0.756 + }, + { + "start": 11738.04, + "end": 11739.04, + "probability": 0.9406 + }, + { + "start": 11739.74, + "end": 11740.92, + "probability": 0.9408 + }, + { + "start": 11741.88, + "end": 11742.64, + "probability": 0.7966 + }, + { + "start": 11744.54, + "end": 11747.15, + "probability": 0.9954 + }, + { + "start": 11749.3, + "end": 11755.4, + "probability": 0.9961 + }, + { + "start": 11755.68, + "end": 11758.2, + "probability": 0.8046 + }, + { + "start": 11759.62, + "end": 11765.02, + "probability": 0.9938 + }, + { + "start": 11765.58, + "end": 11768.94, + "probability": 0.9845 + }, + { + "start": 11770.02, + "end": 11771.62, + "probability": 0.787 + }, + { + "start": 11773.58, + "end": 11776.68, + "probability": 0.9985 + }, + { + "start": 11777.46, + "end": 11778.78, + "probability": 0.6633 + }, + { + "start": 11780.3, + "end": 11785.98, + "probability": 0.6958 + }, + { + "start": 11787.16, + "end": 11792.77, + "probability": 0.9452 + }, + { + "start": 11793.66, + "end": 11794.14, + "probability": 0.5978 + }, + { + "start": 11795.34, + "end": 11797.7, + "probability": 0.7486 + }, + { + "start": 11798.74, + "end": 11800.58, + "probability": 0.9177 + }, + { + "start": 11800.88, + "end": 11804.88, + "probability": 0.7081 + }, + { + "start": 11805.78, + "end": 11808.16, + "probability": 0.9971 + }, + { + "start": 11811.14, + "end": 11819.44, + "probability": 0.9837 + }, + { + "start": 11819.64, + "end": 11820.67, + "probability": 0.9172 + }, + { + "start": 11821.36, + "end": 11823.72, + "probability": 0.9565 + }, + { + "start": 11824.1, + "end": 11826.04, + "probability": 0.9095 + }, + { + "start": 11826.54, + "end": 11828.12, + "probability": 0.9946 + }, + { + "start": 11828.62, + "end": 11829.18, + "probability": 0.5756 + }, + { + "start": 11829.19, + "end": 11829.5, + "probability": 0.3709 + }, + { + "start": 11829.56, + "end": 11830.3, + "probability": 0.6118 + }, + { + "start": 11830.5, + "end": 11836.7, + "probability": 0.9975 + }, + { + "start": 11836.72, + "end": 11837.82, + "probability": 0.8366 + }, + { + "start": 11838.28, + "end": 11840.4, + "probability": 0.9898 + }, + { + "start": 11840.7, + "end": 11843.34, + "probability": 0.9253 + }, + { + "start": 11843.38, + "end": 11843.76, + "probability": 0.3192 + }, + { + "start": 11843.76, + "end": 11844.02, + "probability": 0.294 + }, + { + "start": 11844.02, + "end": 11846.12, + "probability": 0.9932 + }, + { + "start": 11846.28, + "end": 11848.96, + "probability": 0.9484 + }, + { + "start": 11849.78, + "end": 11850.12, + "probability": 0.6436 + }, + { + "start": 11851.38, + "end": 11851.46, + "probability": 0.1381 + }, + { + "start": 11851.46, + "end": 11851.46, + "probability": 0.0674 + }, + { + "start": 11851.46, + "end": 11852.54, + "probability": 0.4824 + }, + { + "start": 11853.36, + "end": 11854.64, + "probability": 0.7109 + }, + { + "start": 11854.72, + "end": 11856.3, + "probability": 0.9585 + }, + { + "start": 11862.4, + "end": 11863.86, + "probability": 0.4265 + }, + { + "start": 11863.86, + "end": 11867.28, + "probability": 0.8223 + }, + { + "start": 11867.4, + "end": 11867.4, + "probability": 0.6716 + }, + { + "start": 11867.4, + "end": 11867.4, + "probability": 0.1722 + }, + { + "start": 11867.4, + "end": 11867.56, + "probability": 0.2683 + }, + { + "start": 11867.66, + "end": 11870.64, + "probability": 0.9622 + }, + { + "start": 11871.02, + "end": 11871.66, + "probability": 0.9731 + }, + { + "start": 11873.42, + "end": 11874.41, + "probability": 0.5636 + }, + { + "start": 11875.62, + "end": 11877.2, + "probability": 0.9768 + }, + { + "start": 11877.3, + "end": 11880.1, + "probability": 0.9933 + }, + { + "start": 11881.68, + "end": 11885.74, + "probability": 0.9287 + }, + { + "start": 11886.46, + "end": 11892.22, + "probability": 0.9802 + }, + { + "start": 11893.23, + "end": 11897.6, + "probability": 0.9984 + }, + { + "start": 11898.5, + "end": 11899.96, + "probability": 0.9393 + }, + { + "start": 11900.14, + "end": 11901.94, + "probability": 0.765 + }, + { + "start": 11902.4, + "end": 11904.16, + "probability": 0.9794 + }, + { + "start": 11905.0, + "end": 11906.22, + "probability": 0.696 + }, + { + "start": 11906.32, + "end": 11908.87, + "probability": 0.9121 + }, + { + "start": 11910.66, + "end": 11913.68, + "probability": 0.9003 + }, + { + "start": 11916.74, + "end": 11918.51, + "probability": 0.3554 + }, + { + "start": 11918.86, + "end": 11918.94, + "probability": 0.072 + }, + { + "start": 11919.14, + "end": 11919.14, + "probability": 0.119 + }, + { + "start": 11919.14, + "end": 11920.21, + "probability": 0.2403 + }, + { + "start": 11920.28, + "end": 11921.26, + "probability": 0.7285 + }, + { + "start": 11921.36, + "end": 11922.8, + "probability": 0.86 + }, + { + "start": 11923.28, + "end": 11924.88, + "probability": 0.6798 + }, + { + "start": 11924.96, + "end": 11926.3, + "probability": 0.73 + }, + { + "start": 11926.44, + "end": 11927.4, + "probability": 0.7277 + }, + { + "start": 11927.96, + "end": 11931.1, + "probability": 0.8586 + }, + { + "start": 11931.24, + "end": 11933.2, + "probability": 0.9653 + }, + { + "start": 11933.2, + "end": 11936.87, + "probability": 0.8295 + }, + { + "start": 11937.6, + "end": 11938.82, + "probability": 0.1352 + }, + { + "start": 11939.44, + "end": 11942.12, + "probability": 0.877 + }, + { + "start": 11942.56, + "end": 11944.08, + "probability": 0.8875 + }, + { + "start": 11953.32, + "end": 11955.06, + "probability": 0.8047 + }, + { + "start": 11955.38, + "end": 11955.9, + "probability": 0.8571 + }, + { + "start": 11957.42, + "end": 11958.24, + "probability": 0.8312 + }, + { + "start": 11958.34, + "end": 11960.02, + "probability": 0.9219 + }, + { + "start": 11960.04, + "end": 11962.74, + "probability": 0.8152 + }, + { + "start": 11962.78, + "end": 11963.64, + "probability": 0.8569 + }, + { + "start": 11965.02, + "end": 11965.74, + "probability": 0.8595 + }, + { + "start": 11966.74, + "end": 11968.58, + "probability": 0.6562 + }, + { + "start": 11979.48, + "end": 11982.86, + "probability": 0.0978 + }, + { + "start": 12001.92, + "end": 12003.18, + "probability": 0.008 + }, + { + "start": 12003.28, + "end": 12003.86, + "probability": 0.0214 + }, + { + "start": 12003.88, + "end": 12005.04, + "probability": 0.197 + }, + { + "start": 12008.14, + "end": 12010.66, + "probability": 0.0928 + }, + { + "start": 12012.84, + "end": 12013.92, + "probability": 0.0269 + }, + { + "start": 12016.33, + "end": 12018.25, + "probability": 0.0626 + }, + { + "start": 12018.62, + "end": 12024.68, + "probability": 0.035 + }, + { + "start": 12024.72, + "end": 12024.86, + "probability": 0.03 + }, + { + "start": 12024.86, + "end": 12025.42, + "probability": 0.15 + }, + { + "start": 12027.47, + "end": 12029.87, + "probability": 0.0539 + }, + { + "start": 12031.64, + "end": 12037.14, + "probability": 0.0342 + }, + { + "start": 12039.48, + "end": 12040.42, + "probability": 0.0571 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.0, + "end": 12044.0, + "probability": 0.0 + }, + { + "start": 12044.16, + "end": 12047.88, + "probability": 0.9636 + }, + { + "start": 12048.74, + "end": 12049.78, + "probability": 0.5664 + }, + { + "start": 12049.92, + "end": 12052.6, + "probability": 0.9621 + }, + { + "start": 12053.4, + "end": 12058.6, + "probability": 0.918 + }, + { + "start": 12059.36, + "end": 12064.68, + "probability": 0.9376 + }, + { + "start": 12065.34, + "end": 12069.12, + "probability": 0.9886 + }, + { + "start": 12069.72, + "end": 12076.96, + "probability": 0.9959 + }, + { + "start": 12078.12, + "end": 12078.78, + "probability": 0.7902 + }, + { + "start": 12079.66, + "end": 12083.38, + "probability": 0.9804 + }, + { + "start": 12084.42, + "end": 12087.16, + "probability": 0.9043 + }, + { + "start": 12087.7, + "end": 12090.2, + "probability": 0.9268 + }, + { + "start": 12090.86, + "end": 12095.42, + "probability": 0.9888 + }, + { + "start": 12096.22, + "end": 12099.18, + "probability": 0.9458 + }, + { + "start": 12099.72, + "end": 12101.82, + "probability": 0.999 + }, + { + "start": 12103.68, + "end": 12105.34, + "probability": 0.8629 + }, + { + "start": 12105.62, + "end": 12108.3, + "probability": 0.9823 + }, + { + "start": 12108.3, + "end": 12113.04, + "probability": 0.9884 + }, + { + "start": 12114.16, + "end": 12118.62, + "probability": 0.9517 + }, + { + "start": 12118.62, + "end": 12124.52, + "probability": 0.9969 + }, + { + "start": 12124.94, + "end": 12128.12, + "probability": 0.9757 + }, + { + "start": 12128.22, + "end": 12129.08, + "probability": 0.7005 + }, + { + "start": 12129.12, + "end": 12134.3, + "probability": 0.9919 + }, + { + "start": 12136.04, + "end": 12136.48, + "probability": 0.8224 + }, + { + "start": 12137.4, + "end": 12138.86, + "probability": 0.9958 + }, + { + "start": 12140.48, + "end": 12141.82, + "probability": 0.9032 + }, + { + "start": 12142.66, + "end": 12144.0, + "probability": 0.9978 + }, + { + "start": 12145.06, + "end": 12150.18, + "probability": 0.9824 + }, + { + "start": 12150.8, + "end": 12152.48, + "probability": 0.888 + }, + { + "start": 12153.22, + "end": 12154.48, + "probability": 0.8411 + }, + { + "start": 12154.54, + "end": 12158.18, + "probability": 0.9881 + }, + { + "start": 12159.96, + "end": 12161.26, + "probability": 0.909 + }, + { + "start": 12161.54, + "end": 12164.6, + "probability": 0.967 + }, + { + "start": 12164.6, + "end": 12167.1, + "probability": 0.8261 + }, + { + "start": 12168.6, + "end": 12170.86, + "probability": 0.9614 + }, + { + "start": 12173.2, + "end": 12174.36, + "probability": 0.9481 + }, + { + "start": 12175.66, + "end": 12177.94, + "probability": 0.6664 + }, + { + "start": 12178.04, + "end": 12178.7, + "probability": 0.612 + }, + { + "start": 12179.14, + "end": 12179.7, + "probability": 0.6112 + }, + { + "start": 12179.88, + "end": 12182.94, + "probability": 0.9068 + }, + { + "start": 12183.4, + "end": 12186.08, + "probability": 0.9774 + }, + { + "start": 12186.08, + "end": 12188.44, + "probability": 0.9876 + }, + { + "start": 12188.82, + "end": 12190.62, + "probability": 0.9474 + }, + { + "start": 12191.6, + "end": 12193.04, + "probability": 0.7373 + }, + { + "start": 12193.52, + "end": 12196.52, + "probability": 0.8499 + }, + { + "start": 12197.1, + "end": 12197.52, + "probability": 0.3632 + }, + { + "start": 12197.6, + "end": 12198.68, + "probability": 0.8723 + }, + { + "start": 12198.68, + "end": 12199.94, + "probability": 0.8812 + }, + { + "start": 12201.08, + "end": 12202.34, + "probability": 0.0199 + }, + { + "start": 12202.98, + "end": 12204.72, + "probability": 0.9711 + }, + { + "start": 12205.76, + "end": 12210.44, + "probability": 0.9919 + }, + { + "start": 12210.88, + "end": 12212.12, + "probability": 0.9817 + }, + { + "start": 12212.54, + "end": 12214.64, + "probability": 0.9885 + }, + { + "start": 12215.34, + "end": 12215.8, + "probability": 0.434 + }, + { + "start": 12216.64, + "end": 12218.72, + "probability": 0.8782 + }, + { + "start": 12218.82, + "end": 12219.24, + "probability": 0.8727 + }, + { + "start": 12219.42, + "end": 12224.38, + "probability": 0.9316 + }, + { + "start": 12225.96, + "end": 12227.58, + "probability": 0.9631 + }, + { + "start": 12227.76, + "end": 12230.06, + "probability": 0.8541 + }, + { + "start": 12231.24, + "end": 12232.26, + "probability": 0.7851 + }, + { + "start": 12232.96, + "end": 12233.3, + "probability": 0.5946 + }, + { + "start": 12235.38, + "end": 12236.48, + "probability": 0.5791 + }, + { + "start": 12237.1, + "end": 12238.58, + "probability": 0.9631 + }, + { + "start": 12238.96, + "end": 12239.86, + "probability": 0.9439 + }, + { + "start": 12239.94, + "end": 12240.28, + "probability": 0.7739 + }, + { + "start": 12240.76, + "end": 12241.3, + "probability": 0.9304 + }, + { + "start": 12241.86, + "end": 12242.78, + "probability": 0.1102 + }, + { + "start": 12243.32, + "end": 12243.62, + "probability": 0.1395 + }, + { + "start": 12243.74, + "end": 12247.98, + "probability": 0.2372 + }, + { + "start": 12248.54, + "end": 12248.98, + "probability": 0.1152 + }, + { + "start": 12249.02, + "end": 12249.36, + "probability": 0.017 + }, + { + "start": 12249.98, + "end": 12250.54, + "probability": 0.049 + }, + { + "start": 12250.54, + "end": 12250.54, + "probability": 0.1711 + }, + { + "start": 12250.54, + "end": 12251.0, + "probability": 0.178 + }, + { + "start": 12251.02, + "end": 12251.06, + "probability": 0.2339 + }, + { + "start": 12251.06, + "end": 12256.18, + "probability": 0.7565 + }, + { + "start": 12256.22, + "end": 12259.12, + "probability": 0.5374 + }, + { + "start": 12259.18, + "end": 12259.24, + "probability": 0.0444 + }, + { + "start": 12259.24, + "end": 12259.56, + "probability": 0.0255 + }, + { + "start": 12259.56, + "end": 12261.96, + "probability": 0.9399 + }, + { + "start": 12262.08, + "end": 12262.98, + "probability": 0.5999 + }, + { + "start": 12262.98, + "end": 12264.18, + "probability": 0.167 + }, + { + "start": 12264.36, + "end": 12265.06, + "probability": 0.9431 + }, + { + "start": 12265.14, + "end": 12265.21, + "probability": 0.3973 + }, + { + "start": 12265.58, + "end": 12266.9, + "probability": 0.1783 + }, + { + "start": 12267.0, + "end": 12268.54, + "probability": 0.7827 + }, + { + "start": 12268.56, + "end": 12269.56, + "probability": 0.9677 + }, + { + "start": 12269.76, + "end": 12270.52, + "probability": 0.336 + }, + { + "start": 12270.66, + "end": 12270.66, + "probability": 0.1147 + }, + { + "start": 12270.82, + "end": 12271.87, + "probability": 0.7487 + }, + { + "start": 12272.0, + "end": 12272.08, + "probability": 0.137 + }, + { + "start": 12272.3, + "end": 12272.72, + "probability": 0.1783 + }, + { + "start": 12272.72, + "end": 12273.04, + "probability": 0.6878 + }, + { + "start": 12273.3, + "end": 12275.28, + "probability": 0.4716 + }, + { + "start": 12275.28, + "end": 12278.26, + "probability": 0.6595 + }, + { + "start": 12278.26, + "end": 12279.7, + "probability": 0.6424 + }, + { + "start": 12279.7, + "end": 12279.98, + "probability": 0.7092 + }, + { + "start": 12279.98, + "end": 12280.8, + "probability": 0.4035 + }, + { + "start": 12280.92, + "end": 12281.04, + "probability": 0.0203 + }, + { + "start": 12281.04, + "end": 12283.4, + "probability": 0.8402 + }, + { + "start": 12283.94, + "end": 12284.4, + "probability": 0.1685 + }, + { + "start": 12284.62, + "end": 12284.98, + "probability": 0.1123 + }, + { + "start": 12285.72, + "end": 12286.9, + "probability": 0.5437 + }, + { + "start": 12286.9, + "end": 12287.78, + "probability": 0.2376 + }, + { + "start": 12287.92, + "end": 12289.38, + "probability": 0.6907 + }, + { + "start": 12289.86, + "end": 12291.28, + "probability": 0.9671 + }, + { + "start": 12291.36, + "end": 12293.27, + "probability": 0.3952 + }, + { + "start": 12294.28, + "end": 12294.28, + "probability": 0.017 + }, + { + "start": 12294.28, + "end": 12296.96, + "probability": 0.4251 + }, + { + "start": 12297.02, + "end": 12297.98, + "probability": 0.7858 + }, + { + "start": 12297.98, + "end": 12298.68, + "probability": 0.1585 + }, + { + "start": 12298.76, + "end": 12299.2, + "probability": 0.8705 + }, + { + "start": 12299.26, + "end": 12299.92, + "probability": 0.3302 + }, + { + "start": 12300.2, + "end": 12301.04, + "probability": 0.1924 + }, + { + "start": 12301.22, + "end": 12302.31, + "probability": 0.3162 + }, + { + "start": 12303.5, + "end": 12308.1, + "probability": 0.9914 + }, + { + "start": 12309.42, + "end": 12309.48, + "probability": 0.1616 + }, + { + "start": 12309.7, + "end": 12310.12, + "probability": 0.3721 + }, + { + "start": 12310.58, + "end": 12314.14, + "probability": 0.8909 + }, + { + "start": 12314.58, + "end": 12320.02, + "probability": 0.9858 + }, + { + "start": 12320.56, + "end": 12321.0, + "probability": 0.2509 + }, + { + "start": 12321.82, + "end": 12327.98, + "probability": 0.9981 + }, + { + "start": 12331.1, + "end": 12335.46, + "probability": 0.9965 + }, + { + "start": 12335.46, + "end": 12338.62, + "probability": 0.9817 + }, + { + "start": 12339.1, + "end": 12341.44, + "probability": 0.9121 + }, + { + "start": 12342.88, + "end": 12344.82, + "probability": 0.71 + }, + { + "start": 12345.7, + "end": 12350.16, + "probability": 0.9982 + }, + { + "start": 12350.78, + "end": 12352.08, + "probability": 0.8266 + }, + { + "start": 12352.72, + "end": 12354.48, + "probability": 0.8162 + }, + { + "start": 12356.3, + "end": 12357.36, + "probability": 0.9558 + }, + { + "start": 12357.82, + "end": 12359.6, + "probability": 0.974 + }, + { + "start": 12361.07, + "end": 12365.84, + "probability": 0.9377 + }, + { + "start": 12365.98, + "end": 12368.32, + "probability": 0.7717 + }, + { + "start": 12369.76, + "end": 12371.6, + "probability": 0.944 + }, + { + "start": 12372.26, + "end": 12373.8, + "probability": 0.9796 + }, + { + "start": 12374.28, + "end": 12375.66, + "probability": 0.913 + }, + { + "start": 12377.4, + "end": 12378.86, + "probability": 0.8425 + }, + { + "start": 12379.28, + "end": 12381.36, + "probability": 0.8042 + }, + { + "start": 12381.76, + "end": 12383.46, + "probability": 0.9967 + }, + { + "start": 12384.28, + "end": 12386.12, + "probability": 0.998 + }, + { + "start": 12386.22, + "end": 12387.86, + "probability": 0.9633 + }, + { + "start": 12388.22, + "end": 12389.54, + "probability": 0.9963 + }, + { + "start": 12390.92, + "end": 12397.16, + "probability": 0.9803 + }, + { + "start": 12401.68, + "end": 12402.72, + "probability": 0.7714 + }, + { + "start": 12406.12, + "end": 12407.66, + "probability": 0.9154 + }, + { + "start": 12409.12, + "end": 12409.9, + "probability": 0.6294 + }, + { + "start": 12410.58, + "end": 12412.82, + "probability": 0.0046 + }, + { + "start": 12413.34, + "end": 12414.68, + "probability": 0.6721 + }, + { + "start": 12415.76, + "end": 12418.92, + "probability": 0.989 + }, + { + "start": 12420.5, + "end": 12424.12, + "probability": 0.9569 + }, + { + "start": 12424.84, + "end": 12425.86, + "probability": 0.9126 + }, + { + "start": 12426.42, + "end": 12427.76, + "probability": 0.9514 + }, + { + "start": 12428.06, + "end": 12429.3, + "probability": 0.9912 + }, + { + "start": 12430.14, + "end": 12431.98, + "probability": 0.4445 + }, + { + "start": 12431.98, + "end": 12433.5, + "probability": 0.0511 + }, + { + "start": 12435.34, + "end": 12437.2, + "probability": 0.8994 + }, + { + "start": 12437.36, + "end": 12438.26, + "probability": 0.4713 + }, + { + "start": 12438.36, + "end": 12439.7, + "probability": 0.7251 + }, + { + "start": 12439.78, + "end": 12442.96, + "probability": 0.8127 + }, + { + "start": 12443.66, + "end": 12446.44, + "probability": 0.4539 + }, + { + "start": 12446.6, + "end": 12446.84, + "probability": 0.0449 + }, + { + "start": 12446.84, + "end": 12446.98, + "probability": 0.4552 + }, + { + "start": 12447.12, + "end": 12447.22, + "probability": 0.8085 + }, + { + "start": 12447.28, + "end": 12453.9, + "probability": 0.9164 + }, + { + "start": 12454.06, + "end": 12454.88, + "probability": 0.8267 + }, + { + "start": 12454.96, + "end": 12455.56, + "probability": 0.3569 + }, + { + "start": 12456.58, + "end": 12456.58, + "probability": 0.1308 + }, + { + "start": 12456.58, + "end": 12457.49, + "probability": 0.8433 + }, + { + "start": 12457.9, + "end": 12460.44, + "probability": 0.4322 + }, + { + "start": 12461.06, + "end": 12462.92, + "probability": 0.9541 + }, + { + "start": 12463.52, + "end": 12465.42, + "probability": 0.9493 + }, + { + "start": 12465.56, + "end": 12466.42, + "probability": 0.8879 + }, + { + "start": 12467.02, + "end": 12469.03, + "probability": 0.0144 + }, + { + "start": 12469.92, + "end": 12472.29, + "probability": 0.0948 + }, + { + "start": 12474.66, + "end": 12478.37, + "probability": 0.134 + }, + { + "start": 12478.6, + "end": 12479.0, + "probability": 0.2499 + }, + { + "start": 12479.54, + "end": 12480.4, + "probability": 0.0618 + }, + { + "start": 12480.54, + "end": 12480.92, + "probability": 0.3626 + }, + { + "start": 12481.46, + "end": 12485.3, + "probability": 0.2565 + }, + { + "start": 12485.8, + "end": 12488.99, + "probability": 0.3427 + }, + { + "start": 12490.04, + "end": 12490.46, + "probability": 0.7295 + }, + { + "start": 12492.62, + "end": 12495.51, + "probability": 0.0304 + }, + { + "start": 12496.9, + "end": 12497.7, + "probability": 0.1191 + }, + { + "start": 12499.19, + "end": 12503.14, + "probability": 0.0529 + }, + { + "start": 12503.34, + "end": 12503.5, + "probability": 0.0469 + }, + { + "start": 12503.5, + "end": 12504.4, + "probability": 0.0871 + }, + { + "start": 12504.52, + "end": 12506.68, + "probability": 0.0413 + }, + { + "start": 12506.74, + "end": 12506.92, + "probability": 0.0415 + }, + { + "start": 12506.92, + "end": 12506.96, + "probability": 0.1675 + }, + { + "start": 12506.96, + "end": 12506.96, + "probability": 0.0345 + }, + { + "start": 12506.96, + "end": 12506.98, + "probability": 0.1202 + }, + { + "start": 12507.0, + "end": 12507.0, + "probability": 0.0 + }, + { + "start": 12507.0, + "end": 12507.0, + "probability": 0.0 + }, + { + "start": 12507.0, + "end": 12507.0, + "probability": 0.0 + }, + { + "start": 12507.0, + "end": 12507.0, + "probability": 0.0 + }, + { + "start": 12507.0, + "end": 12507.0, + "probability": 0.0 + }, + { + "start": 12507.0, + "end": 12507.0, + "probability": 0.0 + }, + { + "start": 12507.0, + "end": 12507.0, + "probability": 0.0 + }, + { + "start": 12507.24, + "end": 12508.96, + "probability": 0.1125 + }, + { + "start": 12508.96, + "end": 12509.78, + "probability": 0.2555 + }, + { + "start": 12509.78, + "end": 12509.78, + "probability": 0.0936 + }, + { + "start": 12509.78, + "end": 12511.22, + "probability": 0.6291 + }, + { + "start": 12511.22, + "end": 12513.1, + "probability": 0.776 + }, + { + "start": 12513.14, + "end": 12518.18, + "probability": 0.9872 + }, + { + "start": 12519.28, + "end": 12521.94, + "probability": 0.9944 + }, + { + "start": 12522.4, + "end": 12527.12, + "probability": 0.9889 + }, + { + "start": 12527.26, + "end": 12527.7, + "probability": 0.6132 + }, + { + "start": 12528.26, + "end": 12532.21, + "probability": 0.7993 + }, + { + "start": 12533.24, + "end": 12534.78, + "probability": 0.5412 + }, + { + "start": 12535.08, + "end": 12539.44, + "probability": 0.9355 + }, + { + "start": 12540.6, + "end": 12541.9, + "probability": 0.4742 + }, + { + "start": 12542.36, + "end": 12544.7, + "probability": 0.4683 + }, + { + "start": 12544.76, + "end": 12545.6, + "probability": 0.5539 + }, + { + "start": 12546.12, + "end": 12546.32, + "probability": 0.9185 + }, + { + "start": 12546.38, + "end": 12547.84, + "probability": 0.6377 + }, + { + "start": 12548.02, + "end": 12548.78, + "probability": 0.4711 + }, + { + "start": 12549.06, + "end": 12550.92, + "probability": 0.6222 + }, + { + "start": 12551.0, + "end": 12552.76, + "probability": 0.8168 + }, + { + "start": 12553.6, + "end": 12555.44, + "probability": 0.7153 + }, + { + "start": 12555.56, + "end": 12557.78, + "probability": 0.5218 + }, + { + "start": 12557.84, + "end": 12559.13, + "probability": 0.1228 + }, + { + "start": 12561.54, + "end": 12562.98, + "probability": 0.9888 + }, + { + "start": 12563.04, + "end": 12564.94, + "probability": 0.7507 + }, + { + "start": 12565.0, + "end": 12568.62, + "probability": 0.9747 + }, + { + "start": 12569.08, + "end": 12571.28, + "probability": 0.9919 + }, + { + "start": 12571.42, + "end": 12575.42, + "probability": 0.916 + }, + { + "start": 12575.5, + "end": 12576.48, + "probability": 0.721 + }, + { + "start": 12577.38, + "end": 12579.12, + "probability": 0.0197 + }, + { + "start": 12579.28, + "end": 12579.68, + "probability": 0.2763 + }, + { + "start": 12580.46, + "end": 12583.14, + "probability": 0.8546 + }, + { + "start": 12583.22, + "end": 12584.66, + "probability": 0.696 + }, + { + "start": 12584.74, + "end": 12587.48, + "probability": 0.9495 + }, + { + "start": 12587.52, + "end": 12590.02, + "probability": 0.9964 + }, + { + "start": 12590.72, + "end": 12591.62, + "probability": 0.7852 + }, + { + "start": 12592.08, + "end": 12593.18, + "probability": 0.7239 + }, + { + "start": 12593.28, + "end": 12597.14, + "probability": 0.9958 + }, + { + "start": 12597.14, + "end": 12601.34, + "probability": 0.9622 + }, + { + "start": 12602.02, + "end": 12603.62, + "probability": 0.5902 + }, + { + "start": 12604.16, + "end": 12610.38, + "probability": 0.986 + }, + { + "start": 12610.58, + "end": 12615.54, + "probability": 0.8715 + }, + { + "start": 12616.28, + "end": 12619.84, + "probability": 0.9917 + }, + { + "start": 12619.84, + "end": 12622.42, + "probability": 0.9075 + }, + { + "start": 12622.78, + "end": 12623.46, + "probability": 0.6937 + }, + { + "start": 12623.6, + "end": 12625.32, + "probability": 0.9773 + }, + { + "start": 12625.76, + "end": 12626.76, + "probability": 0.9831 + }, + { + "start": 12627.12, + "end": 12628.4, + "probability": 0.8009 + }, + { + "start": 12628.5, + "end": 12629.01, + "probability": 0.9185 + }, + { + "start": 12629.27, + "end": 12629.89, + "probability": 0.2764 + }, + { + "start": 12630.37, + "end": 12633.59, + "probability": 0.9873 + }, + { + "start": 12633.99, + "end": 12636.67, + "probability": 0.9694 + }, + { + "start": 12636.67, + "end": 12639.15, + "probability": 0.7507 + }, + { + "start": 12639.45, + "end": 12640.63, + "probability": 0.7813 + }, + { + "start": 12641.15, + "end": 12641.49, + "probability": 0.4521 + }, + { + "start": 12641.67, + "end": 12642.73, + "probability": 0.9368 + }, + { + "start": 12642.85, + "end": 12645.11, + "probability": 0.9972 + }, + { + "start": 12645.39, + "end": 12649.09, + "probability": 0.992 + }, + { + "start": 12649.09, + "end": 12652.71, + "probability": 0.9535 + }, + { + "start": 12652.95, + "end": 12654.01, + "probability": 0.9971 + }, + { + "start": 12654.57, + "end": 12656.85, + "probability": 0.7331 + }, + { + "start": 12656.85, + "end": 12657.51, + "probability": 0.8239 + }, + { + "start": 12657.85, + "end": 12658.17, + "probability": 0.9075 + }, + { + "start": 12658.35, + "end": 12661.03, + "probability": 0.9844 + }, + { + "start": 12661.11, + "end": 12661.63, + "probability": 0.7893 + }, + { + "start": 12661.93, + "end": 12663.17, + "probability": 0.9889 + }, + { + "start": 12663.41, + "end": 12664.11, + "probability": 0.9334 + }, + { + "start": 12664.17, + "end": 12664.67, + "probability": 0.9109 + }, + { + "start": 12665.53, + "end": 12667.39, + "probability": 0.8442 + }, + { + "start": 12667.73, + "end": 12673.19, + "probability": 0.7489 + }, + { + "start": 12673.41, + "end": 12676.79, + "probability": 0.96 + }, + { + "start": 12677.19, + "end": 12678.75, + "probability": 0.9359 + }, + { + "start": 12679.01, + "end": 12682.87, + "probability": 0.9172 + }, + { + "start": 12683.25, + "end": 12685.19, + "probability": 0.9817 + }, + { + "start": 12685.65, + "end": 12687.61, + "probability": 0.9949 + }, + { + "start": 12687.78, + "end": 12690.63, + "probability": 0.9601 + }, + { + "start": 12691.35, + "end": 12692.74, + "probability": 0.9301 + }, + { + "start": 12693.13, + "end": 12696.29, + "probability": 0.9382 + }, + { + "start": 12697.44, + "end": 12699.91, + "probability": 0.7637 + }, + { + "start": 12700.37, + "end": 12703.29, + "probability": 0.0741 + }, + { + "start": 12705.15, + "end": 12706.81, + "probability": 0.4576 + }, + { + "start": 12714.73, + "end": 12716.97, + "probability": 0.3636 + }, + { + "start": 12724.27, + "end": 12725.49, + "probability": 0.0209 + }, + { + "start": 12725.49, + "end": 12728.31, + "probability": 0.1521 + }, + { + "start": 12736.86, + "end": 12738.01, + "probability": 0.0374 + }, + { + "start": 12738.51, + "end": 12738.91, + "probability": 0.0743 + }, + { + "start": 12749.73, + "end": 12750.27, + "probability": 0.0007 + }, + { + "start": 12755.23, + "end": 12758.03, + "probability": 0.2243 + }, + { + "start": 12758.03, + "end": 12758.03, + "probability": 0.0062 + }, + { + "start": 12758.03, + "end": 12758.09, + "probability": 0.0435 + }, + { + "start": 12758.09, + "end": 12758.61, + "probability": 0.0371 + }, + { + "start": 12759.41, + "end": 12760.97, + "probability": 0.0246 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12761.0, + "end": 12761.0, + "probability": 0.0 + }, + { + "start": 12771.02, + "end": 12773.28, + "probability": 0.6988 + }, + { + "start": 12774.84, + "end": 12775.88, + "probability": 0.744 + }, + { + "start": 12785.32, + "end": 12787.28, + "probability": 0.1971 + }, + { + "start": 12787.34, + "end": 12788.43, + "probability": 0.4987 + }, + { + "start": 12789.44, + "end": 12791.34, + "probability": 0.5853 + }, + { + "start": 12791.66, + "end": 12793.84, + "probability": 0.7064 + }, + { + "start": 12794.0, + "end": 12795.12, + "probability": 0.9673 + }, + { + "start": 12795.74, + "end": 12799.14, + "probability": 0.9212 + }, + { + "start": 12800.0, + "end": 12800.8, + "probability": 0.3611 + }, + { + "start": 12801.59, + "end": 12804.88, + "probability": 0.5131 + }, + { + "start": 12809.26, + "end": 12810.22, + "probability": 0.3412 + }, + { + "start": 12811.02, + "end": 12815.02, + "probability": 0.6369 + }, + { + "start": 12815.76, + "end": 12821.14, + "probability": 0.911 + }, + { + "start": 12821.32, + "end": 12823.28, + "probability": 0.4402 + }, + { + "start": 12823.44, + "end": 12826.08, + "probability": 0.8055 + }, + { + "start": 12827.0, + "end": 12830.84, + "probability": 0.9952 + }, + { + "start": 12831.52, + "end": 12836.08, + "probability": 0.9696 + }, + { + "start": 12837.08, + "end": 12842.66, + "probability": 0.9958 + }, + { + "start": 12843.42, + "end": 12848.74, + "probability": 0.9907 + }, + { + "start": 12850.98, + "end": 12854.76, + "probability": 0.8664 + }, + { + "start": 12855.44, + "end": 12858.28, + "probability": 0.985 + }, + { + "start": 12858.28, + "end": 12862.4, + "probability": 0.9873 + }, + { + "start": 12862.88, + "end": 12864.86, + "probability": 0.9359 + }, + { + "start": 12865.36, + "end": 12868.44, + "probability": 0.9885 + }, + { + "start": 12870.1, + "end": 12871.68, + "probability": 0.7958 + }, + { + "start": 12871.74, + "end": 12876.5, + "probability": 0.9883 + }, + { + "start": 12877.46, + "end": 12884.26, + "probability": 0.9928 + }, + { + "start": 12884.82, + "end": 12887.62, + "probability": 0.9931 + }, + { + "start": 12888.48, + "end": 12889.62, + "probability": 0.7981 + }, + { + "start": 12889.7, + "end": 12893.46, + "probability": 0.9656 + }, + { + "start": 12893.46, + "end": 12896.8, + "probability": 0.9836 + }, + { + "start": 12897.34, + "end": 12903.16, + "probability": 0.9543 + }, + { + "start": 12903.56, + "end": 12908.26, + "probability": 0.9712 + }, + { + "start": 12909.48, + "end": 12913.24, + "probability": 0.9623 + }, + { + "start": 12913.24, + "end": 12916.6, + "probability": 0.9983 + }, + { + "start": 12917.0, + "end": 12924.44, + "probability": 0.7164 + }, + { + "start": 12924.68, + "end": 12926.14, + "probability": 0.9954 + }, + { + "start": 12926.64, + "end": 12929.4, + "probability": 0.0329 + }, + { + "start": 12929.76, + "end": 12930.2, + "probability": 0.2995 + }, + { + "start": 12930.2, + "end": 12933.62, + "probability": 0.8585 + }, + { + "start": 12934.64, + "end": 12935.9, + "probability": 0.3971 + }, + { + "start": 12936.66, + "end": 12940.62, + "probability": 0.9346 + }, + { + "start": 12940.94, + "end": 12946.12, + "probability": 0.9904 + }, + { + "start": 12947.36, + "end": 12951.14, + "probability": 0.8159 + }, + { + "start": 12951.14, + "end": 12953.28, + "probability": 0.9408 + }, + { + "start": 12953.58, + "end": 12955.54, + "probability": 0.862 + }, + { + "start": 12955.62, + "end": 12958.92, + "probability": 0.9404 + }, + { + "start": 12958.92, + "end": 12963.26, + "probability": 0.9777 + }, + { + "start": 12963.42, + "end": 12968.22, + "probability": 0.9912 + }, + { + "start": 12968.42, + "end": 12972.06, + "probability": 0.7835 + }, + { + "start": 12972.34, + "end": 12975.14, + "probability": 0.868 + }, + { + "start": 12975.5, + "end": 12978.16, + "probability": 0.9621 + }, + { + "start": 12978.16, + "end": 12982.4, + "probability": 0.9756 + }, + { + "start": 12982.58, + "end": 12984.96, + "probability": 0.9942 + }, + { + "start": 12984.96, + "end": 12989.76, + "probability": 0.9028 + }, + { + "start": 12990.42, + "end": 12992.88, + "probability": 0.9792 + }, + { + "start": 12993.12, + "end": 12995.96, + "probability": 0.9594 + }, + { + "start": 12996.68, + "end": 12999.7, + "probability": 0.964 + }, + { + "start": 12999.7, + "end": 13004.8, + "probability": 0.9901 + }, + { + "start": 13006.64, + "end": 13009.62, + "probability": 0.9188 + }, + { + "start": 13010.24, + "end": 13013.94, + "probability": 0.9858 + }, + { + "start": 13014.88, + "end": 13017.32, + "probability": 0.8998 + }, + { + "start": 13017.62, + "end": 13022.28, + "probability": 0.9858 + }, + { + "start": 13023.58, + "end": 13024.2, + "probability": 0.5351 + }, + { + "start": 13024.28, + "end": 13026.58, + "probability": 0.9679 + }, + { + "start": 13026.58, + "end": 13029.04, + "probability": 0.9907 + }, + { + "start": 13029.78, + "end": 13033.82, + "probability": 0.9644 + }, + { + "start": 13034.74, + "end": 13034.86, + "probability": 0.144 + }, + { + "start": 13034.86, + "end": 13035.44, + "probability": 0.0273 + }, + { + "start": 13036.32, + "end": 13037.24, + "probability": 0.7058 + }, + { + "start": 13037.3, + "end": 13037.78, + "probability": 0.8313 + }, + { + "start": 13038.02, + "end": 13039.86, + "probability": 0.7788 + }, + { + "start": 13039.98, + "end": 13043.87, + "probability": 0.9819 + }, + { + "start": 13044.02, + "end": 13045.36, + "probability": 0.6021 + }, + { + "start": 13045.96, + "end": 13048.1, + "probability": 0.3887 + }, + { + "start": 13048.26, + "end": 13052.06, + "probability": 0.8508 + }, + { + "start": 13052.4, + "end": 13054.72, + "probability": 0.789 + }, + { + "start": 13055.06, + "end": 13057.48, + "probability": 0.8202 + }, + { + "start": 13057.84, + "end": 13060.36, + "probability": 0.9185 + }, + { + "start": 13060.58, + "end": 13065.28, + "probability": 0.9497 + }, + { + "start": 13065.56, + "end": 13068.16, + "probability": 0.9862 + }, + { + "start": 13068.72, + "end": 13071.18, + "probability": 0.918 + }, + { + "start": 13071.22, + "end": 13074.42, + "probability": 0.8895 + }, + { + "start": 13074.86, + "end": 13075.72, + "probability": 0.6552 + }, + { + "start": 13075.78, + "end": 13080.96, + "probability": 0.8537 + }, + { + "start": 13080.96, + "end": 13085.6, + "probability": 0.8073 + }, + { + "start": 13086.3, + "end": 13088.96, + "probability": 0.8779 + }, + { + "start": 13088.96, + "end": 13094.36, + "probability": 0.9905 + }, + { + "start": 13094.82, + "end": 13097.82, + "probability": 0.9769 + }, + { + "start": 13097.82, + "end": 13102.39, + "probability": 0.9253 + }, + { + "start": 13102.66, + "end": 13104.1, + "probability": 0.9155 + }, + { + "start": 13104.54, + "end": 13106.83, + "probability": 0.7258 + }, + { + "start": 13107.04, + "end": 13108.02, + "probability": 0.6848 + }, + { + "start": 13108.14, + "end": 13109.3, + "probability": 0.9094 + }, + { + "start": 13109.68, + "end": 13113.22, + "probability": 0.825 + }, + { + "start": 13113.52, + "end": 13114.58, + "probability": 0.4814 + }, + { + "start": 13115.4, + "end": 13116.82, + "probability": 0.7056 + }, + { + "start": 13116.92, + "end": 13121.68, + "probability": 0.9306 + }, + { + "start": 13122.06, + "end": 13122.54, + "probability": 0.8544 + }, + { + "start": 13122.66, + "end": 13126.04, + "probability": 0.7928 + }, + { + "start": 13126.44, + "end": 13128.78, + "probability": 0.9385 + }, + { + "start": 13128.88, + "end": 13129.72, + "probability": 0.76 + }, + { + "start": 13129.76, + "end": 13130.64, + "probability": 0.7367 + }, + { + "start": 13130.98, + "end": 13131.8, + "probability": 0.6013 + }, + { + "start": 13131.9, + "end": 13132.68, + "probability": 0.7452 + }, + { + "start": 13137.44, + "end": 13140.38, + "probability": 0.8502 + }, + { + "start": 13140.82, + "end": 13141.42, + "probability": 0.8093 + }, + { + "start": 13141.46, + "end": 13141.86, + "probability": 0.623 + }, + { + "start": 13141.96, + "end": 13142.42, + "probability": 0.4927 + }, + { + "start": 13142.42, + "end": 13143.43, + "probability": 0.7876 + }, + { + "start": 13146.68, + "end": 13148.56, + "probability": 0.0436 + }, + { + "start": 13148.56, + "end": 13150.22, + "probability": 0.7552 + }, + { + "start": 13150.52, + "end": 13153.88, + "probability": 0.6676 + }, + { + "start": 13158.1, + "end": 13159.44, + "probability": 0.7224 + }, + { + "start": 13159.48, + "end": 13162.86, + "probability": 0.9834 + }, + { + "start": 13162.86, + "end": 13163.18, + "probability": 0.2469 + }, + { + "start": 13163.3, + "end": 13163.9, + "probability": 0.5959 + }, + { + "start": 13167.12, + "end": 13167.44, + "probability": 0.2592 + }, + { + "start": 13171.27, + "end": 13173.58, + "probability": 0.0226 + }, + { + "start": 13174.62, + "end": 13174.96, + "probability": 0.0033 + }, + { + "start": 13175.74, + "end": 13176.52, + "probability": 0.0488 + }, + { + "start": 13177.22, + "end": 13177.22, + "probability": 0.0649 + }, + { + "start": 13178.56, + "end": 13179.34, + "probability": 0.0995 + }, + { + "start": 13180.32, + "end": 13182.6, + "probability": 0.914 + }, + { + "start": 13182.74, + "end": 13185.44, + "probability": 0.9927 + }, + { + "start": 13185.44, + "end": 13187.66, + "probability": 0.9954 + }, + { + "start": 13187.74, + "end": 13188.02, + "probability": 0.2175 + }, + { + "start": 13188.6, + "end": 13189.74, + "probability": 0.7534 + }, + { + "start": 13189.86, + "end": 13191.31, + "probability": 0.9847 + }, + { + "start": 13192.46, + "end": 13193.36, + "probability": 0.6717 + }, + { + "start": 13195.62, + "end": 13198.74, + "probability": 0.812 + }, + { + "start": 13199.24, + "end": 13199.32, + "probability": 0.0548 + }, + { + "start": 13199.32, + "end": 13200.9, + "probability": 0.945 + }, + { + "start": 13201.02, + "end": 13201.92, + "probability": 0.7777 + }, + { + "start": 13203.8, + "end": 13206.12, + "probability": 0.2468 + }, + { + "start": 13206.12, + "end": 13207.31, + "probability": 0.5013 + }, + { + "start": 13209.18, + "end": 13209.28, + "probability": 0.2694 + }, + { + "start": 13211.62, + "end": 13213.0, + "probability": 0.7468 + }, + { + "start": 13213.3, + "end": 13214.82, + "probability": 0.4683 + }, + { + "start": 13214.92, + "end": 13216.31, + "probability": 0.7084 + }, + { + "start": 13217.02, + "end": 13219.2, + "probability": 0.9113 + }, + { + "start": 13219.24, + "end": 13219.82, + "probability": 0.7744 + }, + { + "start": 13222.42, + "end": 13224.3, + "probability": 0.8065 + }, + { + "start": 13225.52, + "end": 13227.5, + "probability": 0.7023 + }, + { + "start": 13227.62, + "end": 13230.62, + "probability": 0.9207 + }, + { + "start": 13230.82, + "end": 13233.04, + "probability": 0.9683 + }, + { + "start": 13233.92, + "end": 13237.47, + "probability": 0.9946 + }, + { + "start": 13238.22, + "end": 13241.08, + "probability": 0.9685 + }, + { + "start": 13241.12, + "end": 13243.5, + "probability": 0.9812 + }, + { + "start": 13244.78, + "end": 13255.18, + "probability": 0.9861 + }, + { + "start": 13255.86, + "end": 13260.04, + "probability": 0.8841 + }, + { + "start": 13260.48, + "end": 13264.72, + "probability": 0.9916 + }, + { + "start": 13264.88, + "end": 13266.2, + "probability": 0.7975 + }, + { + "start": 13267.06, + "end": 13273.7, + "probability": 0.9431 + }, + { + "start": 13274.34, + "end": 13278.38, + "probability": 0.9221 + }, + { + "start": 13279.24, + "end": 13283.74, + "probability": 0.9856 + }, + { + "start": 13283.74, + "end": 13291.16, + "probability": 0.9865 + }, + { + "start": 13291.24, + "end": 13294.26, + "probability": 0.8512 + }, + { + "start": 13294.74, + "end": 13299.32, + "probability": 0.9545 + }, + { + "start": 13300.7, + "end": 13301.8, + "probability": 0.5816 + }, + { + "start": 13301.9, + "end": 13302.32, + "probability": 0.7101 + }, + { + "start": 13302.32, + "end": 13303.56, + "probability": 0.9355 + }, + { + "start": 13303.62, + "end": 13304.56, + "probability": 0.8099 + }, + { + "start": 13305.28, + "end": 13306.64, + "probability": 0.6306 + }, + { + "start": 13306.8, + "end": 13309.8, + "probability": 0.8751 + }, + { + "start": 13309.84, + "end": 13312.56, + "probability": 0.9741 + }, + { + "start": 13312.62, + "end": 13317.56, + "probability": 0.9995 + }, + { + "start": 13318.24, + "end": 13323.44, + "probability": 0.8149 + }, + { + "start": 13324.04, + "end": 13324.66, + "probability": 0.8009 + }, + { + "start": 13325.02, + "end": 13325.52, + "probability": 0.5082 + }, + { + "start": 13325.8, + "end": 13332.8, + "probability": 0.8304 + }, + { + "start": 13332.8, + "end": 13337.88, + "probability": 0.8772 + }, + { + "start": 13338.08, + "end": 13344.06, + "probability": 0.9878 + }, + { + "start": 13345.36, + "end": 13348.98, + "probability": 0.7984 + }, + { + "start": 13348.98, + "end": 13351.92, + "probability": 0.9111 + }, + { + "start": 13352.4, + "end": 13357.36, + "probability": 0.6421 + }, + { + "start": 13357.5, + "end": 13360.9, + "probability": 0.666 + }, + { + "start": 13361.44, + "end": 13363.62, + "probability": 0.9963 + }, + { + "start": 13364.44, + "end": 13367.58, + "probability": 0.9337 + }, + { + "start": 13367.68, + "end": 13369.18, + "probability": 0.8485 + }, + { + "start": 13369.3, + "end": 13371.18, + "probability": 0.8684 + }, + { + "start": 13371.58, + "end": 13376.16, + "probability": 0.9974 + }, + { + "start": 13377.36, + "end": 13377.36, + "probability": 0.3637 + }, + { + "start": 13377.36, + "end": 13382.96, + "probability": 0.9585 + }, + { + "start": 13382.96, + "end": 13385.98, + "probability": 0.934 + }, + { + "start": 13387.82, + "end": 13389.98, + "probability": 0.9951 + }, + { + "start": 13390.78, + "end": 13397.0, + "probability": 0.9561 + }, + { + "start": 13397.08, + "end": 13398.04, + "probability": 0.905 + }, + { + "start": 13398.62, + "end": 13403.22, + "probability": 0.9538 + }, + { + "start": 13403.8, + "end": 13407.28, + "probability": 0.9959 + }, + { + "start": 13407.28, + "end": 13412.22, + "probability": 0.9604 + }, + { + "start": 13413.0, + "end": 13416.16, + "probability": 0.7988 + }, + { + "start": 13417.0, + "end": 13422.56, + "probability": 0.9438 + }, + { + "start": 13423.02, + "end": 13424.48, + "probability": 0.8547 + }, + { + "start": 13425.18, + "end": 13426.64, + "probability": 0.9332 + }, + { + "start": 13427.12, + "end": 13431.34, + "probability": 0.9982 + }, + { + "start": 13431.34, + "end": 13434.92, + "probability": 0.998 + }, + { + "start": 13435.64, + "end": 13437.22, + "probability": 0.9047 + }, + { + "start": 13438.02, + "end": 13442.88, + "probability": 0.9944 + }, + { + "start": 13443.52, + "end": 13445.02, + "probability": 0.9352 + }, + { + "start": 13445.46, + "end": 13446.18, + "probability": 0.4387 + }, + { + "start": 13446.28, + "end": 13447.16, + "probability": 0.7466 + }, + { + "start": 13447.8, + "end": 13450.94, + "probability": 0.9741 + }, + { + "start": 13451.52, + "end": 13453.14, + "probability": 0.995 + }, + { + "start": 13453.64, + "end": 13455.18, + "probability": 0.9753 + }, + { + "start": 13455.32, + "end": 13456.84, + "probability": 0.9476 + }, + { + "start": 13457.96, + "end": 13458.58, + "probability": 0.9115 + }, + { + "start": 13458.88, + "end": 13459.28, + "probability": 0.6868 + }, + { + "start": 13459.42, + "end": 13464.84, + "probability": 0.987 + }, + { + "start": 13465.3, + "end": 13468.44, + "probability": 0.9498 + }, + { + "start": 13469.14, + "end": 13471.04, + "probability": 0.6942 + }, + { + "start": 13471.72, + "end": 13473.2, + "probability": 0.7871 + }, + { + "start": 13473.42, + "end": 13474.46, + "probability": 0.9155 + }, + { + "start": 13474.82, + "end": 13480.9, + "probability": 0.9784 + }, + { + "start": 13481.3, + "end": 13484.06, + "probability": 0.8639 + }, + { + "start": 13484.62, + "end": 13485.58, + "probability": 0.822 + }, + { + "start": 13485.64, + "end": 13486.1, + "probability": 0.8524 + }, + { + "start": 13486.78, + "end": 13487.84, + "probability": 0.5506 + }, + { + "start": 13487.9, + "end": 13489.56, + "probability": 0.7314 + }, + { + "start": 13490.32, + "end": 13491.52, + "probability": 0.9929 + }, + { + "start": 13491.98, + "end": 13492.68, + "probability": 0.8065 + }, + { + "start": 13494.88, + "end": 13494.96, + "probability": 0.6509 + }, + { + "start": 13520.78, + "end": 13523.06, + "probability": 0.621 + }, + { + "start": 13524.04, + "end": 13526.44, + "probability": 0.8064 + }, + { + "start": 13526.52, + "end": 13529.42, + "probability": 0.9612 + }, + { + "start": 13530.18, + "end": 13531.5, + "probability": 0.8601 + }, + { + "start": 13532.3, + "end": 13533.98, + "probability": 0.9896 + }, + { + "start": 13534.56, + "end": 13535.0, + "probability": 0.6527 + }, + { + "start": 13535.08, + "end": 13536.16, + "probability": 0.6171 + }, + { + "start": 13536.4, + "end": 13537.68, + "probability": 0.9482 + }, + { + "start": 13539.14, + "end": 13542.74, + "probability": 0.8047 + }, + { + "start": 13542.86, + "end": 13544.74, + "probability": 0.9923 + }, + { + "start": 13545.58, + "end": 13546.98, + "probability": 0.8303 + }, + { + "start": 13547.04, + "end": 13547.36, + "probability": 0.8298 + }, + { + "start": 13547.5, + "end": 13547.86, + "probability": 0.9435 + }, + { + "start": 13547.94, + "end": 13548.26, + "probability": 0.9919 + }, + { + "start": 13548.42, + "end": 13548.58, + "probability": 0.7033 + }, + { + "start": 13548.68, + "end": 13549.32, + "probability": 0.7961 + }, + { + "start": 13550.42, + "end": 13553.1, + "probability": 0.9926 + }, + { + "start": 13554.3, + "end": 13556.3, + "probability": 0.4401 + }, + { + "start": 13556.96, + "end": 13559.36, + "probability": 0.9553 + }, + { + "start": 13560.22, + "end": 13562.56, + "probability": 0.9431 + }, + { + "start": 13563.24, + "end": 13564.98, + "probability": 0.8952 + }, + { + "start": 13565.94, + "end": 13567.12, + "probability": 0.8405 + }, + { + "start": 13568.2, + "end": 13570.88, + "probability": 0.9417 + }, + { + "start": 13571.44, + "end": 13572.5, + "probability": 0.8932 + }, + { + "start": 13573.6, + "end": 13576.56, + "probability": 0.6838 + }, + { + "start": 13577.18, + "end": 13579.48, + "probability": 0.8112 + }, + { + "start": 13580.28, + "end": 13580.94, + "probability": 0.8901 + }, + { + "start": 13581.16, + "end": 13582.18, + "probability": 0.8076 + }, + { + "start": 13582.2, + "end": 13583.7, + "probability": 0.969 + }, + { + "start": 13584.0, + "end": 13584.2, + "probability": 0.6613 + }, + { + "start": 13585.1, + "end": 13586.84, + "probability": 0.771 + }, + { + "start": 13587.94, + "end": 13591.46, + "probability": 0.9949 + }, + { + "start": 13592.28, + "end": 13592.82, + "probability": 0.4427 + }, + { + "start": 13593.4, + "end": 13595.74, + "probability": 0.9702 + }, + { + "start": 13596.42, + "end": 13598.26, + "probability": 0.9827 + }, + { + "start": 13598.62, + "end": 13599.74, + "probability": 0.8386 + }, + { + "start": 13599.9, + "end": 13600.6, + "probability": 0.6869 + }, + { + "start": 13601.24, + "end": 13604.1, + "probability": 0.9324 + }, + { + "start": 13605.04, + "end": 13608.02, + "probability": 0.9875 + }, + { + "start": 13608.02, + "end": 13609.86, + "probability": 0.9442 + }, + { + "start": 13610.48, + "end": 13613.14, + "probability": 0.946 + }, + { + "start": 13614.38, + "end": 13615.22, + "probability": 0.7598 + }, + { + "start": 13616.16, + "end": 13620.4, + "probability": 0.8919 + }, + { + "start": 13621.12, + "end": 13625.32, + "probability": 0.9771 + }, + { + "start": 13625.32, + "end": 13631.03, + "probability": 0.9929 + }, + { + "start": 13632.28, + "end": 13634.83, + "probability": 0.8778 + }, + { + "start": 13636.3, + "end": 13639.4, + "probability": 0.8947 + }, + { + "start": 13639.4, + "end": 13641.3, + "probability": 0.9675 + }, + { + "start": 13642.7, + "end": 13643.56, + "probability": 0.8384 + }, + { + "start": 13644.08, + "end": 13645.06, + "probability": 0.9658 + }, + { + "start": 13647.72, + "end": 13649.02, + "probability": 0.7466 + }, + { + "start": 13649.9, + "end": 13654.46, + "probability": 0.9309 + }, + { + "start": 13655.12, + "end": 13659.86, + "probability": 0.9873 + }, + { + "start": 13660.42, + "end": 13662.7, + "probability": 0.9937 + }, + { + "start": 13662.77, + "end": 13666.14, + "probability": 0.9804 + }, + { + "start": 13666.34, + "end": 13667.42, + "probability": 0.9081 + }, + { + "start": 13667.96, + "end": 13669.32, + "probability": 0.9971 + }, + { + "start": 13670.72, + "end": 13675.36, + "probability": 0.7542 + }, + { + "start": 13676.7, + "end": 13677.72, + "probability": 0.8926 + }, + { + "start": 13677.86, + "end": 13681.2, + "probability": 0.9972 + }, + { + "start": 13681.92, + "end": 13686.78, + "probability": 0.9733 + }, + { + "start": 13687.9, + "end": 13688.06, + "probability": 0.0852 + }, + { + "start": 13688.14, + "end": 13692.0, + "probability": 0.7665 + }, + { + "start": 13692.04, + "end": 13696.64, + "probability": 0.7597 + }, + { + "start": 13697.1, + "end": 13700.26, + "probability": 0.8523 + }, + { + "start": 13701.22, + "end": 13702.4, + "probability": 0.8694 + }, + { + "start": 13702.48, + "end": 13703.0, + "probability": 0.3558 + }, + { + "start": 13703.06, + "end": 13703.4, + "probability": 0.85 + }, + { + "start": 13703.62, + "end": 13705.24, + "probability": 0.9623 + }, + { + "start": 13706.44, + "end": 13710.62, + "probability": 0.9588 + }, + { + "start": 13710.62, + "end": 13715.72, + "probability": 0.9951 + }, + { + "start": 13717.2, + "end": 13718.34, + "probability": 0.995 + }, + { + "start": 13718.86, + "end": 13722.66, + "probability": 0.7392 + }, + { + "start": 13723.8, + "end": 13725.24, + "probability": 0.9015 + }, + { + "start": 13725.42, + "end": 13727.1, + "probability": 0.9775 + }, + { + "start": 13727.1, + "end": 13730.26, + "probability": 0.9839 + }, + { + "start": 13731.4, + "end": 13733.78, + "probability": 0.8324 + }, + { + "start": 13734.56, + "end": 13737.06, + "probability": 0.981 + }, + { + "start": 13738.12, + "end": 13744.34, + "probability": 0.953 + }, + { + "start": 13745.32, + "end": 13747.18, + "probability": 0.8286 + }, + { + "start": 13747.34, + "end": 13750.14, + "probability": 0.8487 + }, + { + "start": 13751.24, + "end": 13755.78, + "probability": 0.8806 + }, + { + "start": 13755.78, + "end": 13760.42, + "probability": 0.9492 + }, + { + "start": 13761.5, + "end": 13763.78, + "probability": 0.7004 + }, + { + "start": 13764.78, + "end": 13766.98, + "probability": 0.7997 + }, + { + "start": 13768.0, + "end": 13768.8, + "probability": 0.8291 + }, + { + "start": 13768.88, + "end": 13771.98, + "probability": 0.9639 + }, + { + "start": 13772.12, + "end": 13773.74, + "probability": 0.7401 + }, + { + "start": 13774.64, + "end": 13777.46, + "probability": 0.9953 + }, + { + "start": 13777.98, + "end": 13778.82, + "probability": 0.8001 + }, + { + "start": 13778.9, + "end": 13783.6, + "probability": 0.8676 + }, + { + "start": 13784.26, + "end": 13787.18, + "probability": 0.84 + }, + { + "start": 13788.42, + "end": 13789.24, + "probability": 0.7781 + }, + { + "start": 13789.76, + "end": 13790.68, + "probability": 0.8959 + }, + { + "start": 13791.34, + "end": 13793.98, + "probability": 0.9714 + }, + { + "start": 13794.54, + "end": 13796.96, + "probability": 0.7514 + }, + { + "start": 13797.1, + "end": 13799.9, + "probability": 0.7407 + }, + { + "start": 13800.74, + "end": 13803.92, + "probability": 0.9813 + }, + { + "start": 13803.92, + "end": 13807.42, + "probability": 0.8184 + }, + { + "start": 13808.26, + "end": 13812.64, + "probability": 0.9161 + }, + { + "start": 13813.6, + "end": 13817.5, + "probability": 0.9875 + }, + { + "start": 13818.52, + "end": 13819.52, + "probability": 0.7385 + }, + { + "start": 13819.66, + "end": 13821.8, + "probability": 0.9749 + }, + { + "start": 13821.8, + "end": 13824.84, + "probability": 0.9932 + }, + { + "start": 13825.52, + "end": 13827.86, + "probability": 0.8591 + }, + { + "start": 13828.52, + "end": 13829.62, + "probability": 0.804 + }, + { + "start": 13830.6, + "end": 13832.84, + "probability": 0.6327 + }, + { + "start": 13833.48, + "end": 13835.08, + "probability": 0.8077 + }, + { + "start": 13835.7, + "end": 13837.16, + "probability": 0.6696 + }, + { + "start": 13837.7, + "end": 13839.24, + "probability": 0.9983 + }, + { + "start": 13839.24, + "end": 13842.16, + "probability": 0.9164 + }, + { + "start": 13842.24, + "end": 13844.98, + "probability": 0.9379 + }, + { + "start": 13846.38, + "end": 13850.54, + "probability": 0.9753 + }, + { + "start": 13851.1, + "end": 13855.9, + "probability": 0.9312 + }, + { + "start": 13856.2, + "end": 13860.22, + "probability": 0.8462 + }, + { + "start": 13860.84, + "end": 13861.7, + "probability": 0.9474 + }, + { + "start": 13862.52, + "end": 13864.36, + "probability": 0.8065 + }, + { + "start": 13865.28, + "end": 13868.22, + "probability": 0.9952 + }, + { + "start": 13869.14, + "end": 13872.78, + "probability": 0.9878 + }, + { + "start": 13873.44, + "end": 13876.08, + "probability": 0.988 + }, + { + "start": 13879.16, + "end": 13879.72, + "probability": 0.1766 + }, + { + "start": 13879.72, + "end": 13882.05, + "probability": 0.7039 + }, + { + "start": 13882.82, + "end": 13885.24, + "probability": 0.9905 + }, + { + "start": 13885.64, + "end": 13887.72, + "probability": 0.9662 + }, + { + "start": 13887.92, + "end": 13888.74, + "probability": 0.5754 + }, + { + "start": 13889.88, + "end": 13893.54, + "probability": 0.8789 + }, + { + "start": 13894.5, + "end": 13897.24, + "probability": 0.9549 + }, + { + "start": 13897.86, + "end": 13900.06, + "probability": 0.9924 + }, + { + "start": 13900.78, + "end": 13902.72, + "probability": 0.9845 + }, + { + "start": 13903.54, + "end": 13906.46, + "probability": 0.9673 + }, + { + "start": 13907.58, + "end": 13909.47, + "probability": 0.729 + }, + { + "start": 13910.6, + "end": 13911.58, + "probability": 0.9187 + }, + { + "start": 13912.3, + "end": 13914.38, + "probability": 0.8959 + }, + { + "start": 13914.52, + "end": 13918.12, + "probability": 0.9891 + }, + { + "start": 13918.66, + "end": 13919.52, + "probability": 0.5163 + }, + { + "start": 13920.26, + "end": 13924.74, + "probability": 0.9921 + }, + { + "start": 13925.78, + "end": 13926.28, + "probability": 0.8979 + }, + { + "start": 13927.44, + "end": 13929.48, + "probability": 0.8984 + }, + { + "start": 13930.98, + "end": 13931.59, + "probability": 0.9053 + }, + { + "start": 13932.72, + "end": 13934.64, + "probability": 0.9601 + }, + { + "start": 13935.48, + "end": 13937.12, + "probability": 0.9468 + }, + { + "start": 13937.88, + "end": 13941.5, + "probability": 0.9621 + }, + { + "start": 13942.4, + "end": 13943.94, + "probability": 0.788 + }, + { + "start": 13944.08, + "end": 13948.46, + "probability": 0.856 + }, + { + "start": 13949.12, + "end": 13953.08, + "probability": 0.8844 + }, + { + "start": 13954.36, + "end": 13954.76, + "probability": 0.8297 + }, + { + "start": 13956.26, + "end": 13958.46, + "probability": 0.9893 + }, + { + "start": 13959.58, + "end": 13961.74, + "probability": 0.9141 + }, + { + "start": 13962.56, + "end": 13965.82, + "probability": 0.8264 + }, + { + "start": 13966.18, + "end": 13966.72, + "probability": 0.8392 + }, + { + "start": 13967.52, + "end": 13967.74, + "probability": 0.7664 + }, + { + "start": 13968.56, + "end": 13969.01, + "probability": 0.9136 + }, + { + "start": 13969.58, + "end": 13971.81, + "probability": 0.9888 + }, + { + "start": 13973.01, + "end": 13974.56, + "probability": 0.9169 + }, + { + "start": 13975.62, + "end": 13977.38, + "probability": 0.787 + }, + { + "start": 13978.12, + "end": 13979.94, + "probability": 0.6677 + }, + { + "start": 13980.0, + "end": 13980.0, + "probability": 0.8294 + }, + { + "start": 13980.0, + "end": 13980.0, + "probability": 0.7835 + }, + { + "start": 13980.0, + "end": 13980.0, + "probability": 0.3777 + }, + { + "start": 13980.14, + "end": 13982.38, + "probability": 0.7626 + }, + { + "start": 13982.48, + "end": 13983.82, + "probability": 0.931 + }, + { + "start": 13984.74, + "end": 13984.9, + "probability": 0.0074 + }, + { + "start": 13984.9, + "end": 13984.92, + "probability": 0.1182 + }, + { + "start": 13984.92, + "end": 13984.92, + "probability": 0.0086 + }, + { + "start": 13984.92, + "end": 13984.92, + "probability": 0.0149 + }, + { + "start": 13984.92, + "end": 13985.18, + "probability": 0.1243 + }, + { + "start": 13985.2, + "end": 13985.74, + "probability": 0.2112 + }, + { + "start": 13986.92, + "end": 13987.96, + "probability": 0.652 + }, + { + "start": 13988.16, + "end": 13989.36, + "probability": 0.8965 + }, + { + "start": 13989.44, + "end": 13991.04, + "probability": 0.8145 + }, + { + "start": 13991.14, + "end": 13991.74, + "probability": 0.6444 + }, + { + "start": 13992.18, + "end": 13992.28, + "probability": 0.4321 + }, + { + "start": 13992.68, + "end": 13993.68, + "probability": 0.8426 + }, + { + "start": 13994.23, + "end": 13998.2, + "probability": 0.9532 + }, + { + "start": 13998.68, + "end": 14000.64, + "probability": 0.9556 + }, + { + "start": 14000.94, + "end": 14001.32, + "probability": 0.9316 + }, + { + "start": 14002.02, + "end": 14004.92, + "probability": 0.8937 + }, + { + "start": 14005.62, + "end": 14006.88, + "probability": 0.7816 + }, + { + "start": 14007.04, + "end": 14009.36, + "probability": 0.9551 + }, + { + "start": 14009.98, + "end": 14011.44, + "probability": 0.9258 + }, + { + "start": 14011.68, + "end": 14013.34, + "probability": 0.9081 + }, + { + "start": 14013.94, + "end": 14015.0, + "probability": 0.9482 + }, + { + "start": 14015.28, + "end": 14018.2, + "probability": 0.6797 + }, + { + "start": 14018.2, + "end": 14018.36, + "probability": 0.2092 + }, + { + "start": 14018.58, + "end": 14018.88, + "probability": 0.2118 + }, + { + "start": 14018.88, + "end": 14020.48, + "probability": 0.5725 + }, + { + "start": 14021.2, + "end": 14022.5, + "probability": 0.7124 + }, + { + "start": 14022.54, + "end": 14026.08, + "probability": 0.7799 + }, + { + "start": 14026.52, + "end": 14027.72, + "probability": 0.838 + }, + { + "start": 14029.28, + "end": 14030.22, + "probability": 0.6605 + }, + { + "start": 14030.46, + "end": 14031.6, + "probability": 0.9346 + }, + { + "start": 14032.46, + "end": 14034.84, + "probability": 0.3295 + }, + { + "start": 14035.26, + "end": 14035.7, + "probability": 0.5198 + }, + { + "start": 14036.72, + "end": 14040.08, + "probability": 0.7308 + }, + { + "start": 14040.22, + "end": 14041.44, + "probability": 0.6257 + }, + { + "start": 14041.44, + "end": 14041.62, + "probability": 0.817 + }, + { + "start": 14043.16, + "end": 14043.58, + "probability": 0.3885 + }, + { + "start": 14043.72, + "end": 14045.5, + "probability": 0.8072 + }, + { + "start": 14046.3, + "end": 14047.7, + "probability": 0.933 + }, + { + "start": 14048.26, + "end": 14050.3, + "probability": 0.9969 + }, + { + "start": 14050.84, + "end": 14056.04, + "probability": 0.9919 + }, + { + "start": 14057.08, + "end": 14060.2, + "probability": 0.9974 + }, + { + "start": 14061.64, + "end": 14065.18, + "probability": 0.9752 + }, + { + "start": 14066.02, + "end": 14070.12, + "probability": 0.9742 + }, + { + "start": 14070.12, + "end": 14072.72, + "probability": 0.9865 + }, + { + "start": 14073.22, + "end": 14076.38, + "probability": 0.9891 + }, + { + "start": 14077.3, + "end": 14078.32, + "probability": 0.9346 + }, + { + "start": 14078.96, + "end": 14080.68, + "probability": 0.9919 + }, + { + "start": 14081.24, + "end": 14084.3, + "probability": 0.9872 + }, + { + "start": 14085.28, + "end": 14085.86, + "probability": 0.8023 + }, + { + "start": 14086.88, + "end": 14091.6, + "probability": 0.9945 + }, + { + "start": 14091.6, + "end": 14096.18, + "probability": 0.9102 + }, + { + "start": 14097.18, + "end": 14097.64, + "probability": 0.0001 + }, + { + "start": 14099.16, + "end": 14099.92, + "probability": 0.2047 + }, + { + "start": 14099.92, + "end": 14100.18, + "probability": 0.4785 + }, + { + "start": 14100.28, + "end": 14102.32, + "probability": 0.9426 + }, + { + "start": 14102.52, + "end": 14105.56, + "probability": 0.9944 + }, + { + "start": 14105.94, + "end": 14110.9, + "probability": 0.9854 + }, + { + "start": 14111.7, + "end": 14112.1, + "probability": 0.5235 + }, + { + "start": 14112.2, + "end": 14113.44, + "probability": 0.7849 + }, + { + "start": 14113.62, + "end": 14114.68, + "probability": 0.7706 + }, + { + "start": 14114.86, + "end": 14115.24, + "probability": 0.7388 + }, + { + "start": 14115.32, + "end": 14115.48, + "probability": 0.7222 + }, + { + "start": 14115.54, + "end": 14117.84, + "probability": 0.9863 + }, + { + "start": 14118.52, + "end": 14121.1, + "probability": 0.9949 + }, + { + "start": 14121.54, + "end": 14122.36, + "probability": 0.5171 + }, + { + "start": 14136.82, + "end": 14137.42, + "probability": 0.3335 + }, + { + "start": 14137.46, + "end": 14139.24, + "probability": 0.6943 + }, + { + "start": 14139.3, + "end": 14141.32, + "probability": 0.9612 + }, + { + "start": 14141.44, + "end": 14141.64, + "probability": 0.5342 + }, + { + "start": 14141.86, + "end": 14142.08, + "probability": 0.7018 + }, + { + "start": 14142.1, + "end": 14142.94, + "probability": 0.7759 + }, + { + "start": 14143.6, + "end": 14146.46, + "probability": 0.8843 + }, + { + "start": 14146.46, + "end": 14150.22, + "probability": 0.9933 + }, + { + "start": 14150.78, + "end": 14151.06, + "probability": 0.048 + }, + { + "start": 14151.06, + "end": 14152.62, + "probability": 0.5737 + }, + { + "start": 14153.14, + "end": 14154.62, + "probability": 0.7231 + }, + { + "start": 14157.5, + "end": 14158.66, + "probability": 0.0806 + }, + { + "start": 14158.66, + "end": 14160.62, + "probability": 0.0841 + }, + { + "start": 14165.98, + "end": 14166.84, + "probability": 0.6721 + }, + { + "start": 14167.12, + "end": 14169.34, + "probability": 0.5812 + }, + { + "start": 14169.42, + "end": 14170.62, + "probability": 0.9064 + }, + { + "start": 14170.76, + "end": 14171.62, + "probability": 0.658 + }, + { + "start": 14171.72, + "end": 14171.78, + "probability": 0.8337 + }, + { + "start": 14171.86, + "end": 14171.92, + "probability": 0.8133 + }, + { + "start": 14172.0, + "end": 14173.8, + "probability": 0.9557 + }, + { + "start": 14174.76, + "end": 14174.94, + "probability": 0.2588 + }, + { + "start": 14175.04, + "end": 14176.14, + "probability": 0.7767 + }, + { + "start": 14176.32, + "end": 14176.54, + "probability": 0.4735 + }, + { + "start": 14177.12, + "end": 14178.12, + "probability": 0.6222 + }, + { + "start": 14179.58, + "end": 14180.38, + "probability": 0.3764 + }, + { + "start": 14180.5, + "end": 14181.06, + "probability": 0.5992 + }, + { + "start": 14181.46, + "end": 14182.66, + "probability": 0.8831 + }, + { + "start": 14182.7, + "end": 14186.68, + "probability": 0.9911 + }, + { + "start": 14187.24, + "end": 14191.22, + "probability": 0.9486 + }, + { + "start": 14192.58, + "end": 14194.52, + "probability": 0.6863 + }, + { + "start": 14195.2, + "end": 14199.16, + "probability": 0.8864 + }, + { + "start": 14199.4, + "end": 14201.22, + "probability": 0.9158 + }, + { + "start": 14201.78, + "end": 14203.16, + "probability": 0.8731 + }, + { + "start": 14203.96, + "end": 14207.62, + "probability": 0.9935 + }, + { + "start": 14207.62, + "end": 14213.22, + "probability": 0.9883 + }, + { + "start": 14213.92, + "end": 14214.74, + "probability": 0.8908 + }, + { + "start": 14215.04, + "end": 14215.94, + "probability": 0.9362 + }, + { + "start": 14216.36, + "end": 14217.08, + "probability": 0.9224 + }, + { + "start": 14217.14, + "end": 14218.3, + "probability": 0.872 + }, + { + "start": 14218.64, + "end": 14221.06, + "probability": 0.9017 + }, + { + "start": 14221.06, + "end": 14226.28, + "probability": 0.7403 + }, + { + "start": 14226.4, + "end": 14227.24, + "probability": 0.9198 + }, + { + "start": 14227.94, + "end": 14231.04, + "probability": 0.9927 + }, + { + "start": 14232.32, + "end": 14232.9, + "probability": 0.4303 + }, + { + "start": 14233.38, + "end": 14234.64, + "probability": 0.6462 + }, + { + "start": 14235.08, + "end": 14236.28, + "probability": 0.8944 + }, + { + "start": 14236.72, + "end": 14238.82, + "probability": 0.5217 + }, + { + "start": 14239.24, + "end": 14242.82, + "probability": 0.9375 + }, + { + "start": 14243.52, + "end": 14248.2, + "probability": 0.8835 + }, + { + "start": 14248.94, + "end": 14251.5, + "probability": 0.8703 + }, + { + "start": 14252.34, + "end": 14254.68, + "probability": 0.9479 + }, + { + "start": 14254.98, + "end": 14259.1, + "probability": 0.8876 + }, + { + "start": 14259.82, + "end": 14265.6, + "probability": 0.8555 + }, + { + "start": 14266.4, + "end": 14269.9, + "probability": 0.9725 + }, + { + "start": 14270.44, + "end": 14275.84, + "probability": 0.9019 + }, + { + "start": 14275.84, + "end": 14279.98, + "probability": 0.8431 + }, + { + "start": 14280.06, + "end": 14281.66, + "probability": 0.761 + }, + { + "start": 14282.34, + "end": 14284.02, + "probability": 0.7202 + }, + { + "start": 14284.74, + "end": 14288.66, + "probability": 0.8547 + }, + { + "start": 14288.66, + "end": 14294.56, + "probability": 0.9761 + }, + { + "start": 14295.36, + "end": 14298.3, + "probability": 0.9052 + }, + { + "start": 14298.66, + "end": 14304.74, + "probability": 0.8931 + }, + { + "start": 14305.56, + "end": 14308.44, + "probability": 0.8167 + }, + { + "start": 14308.52, + "end": 14311.12, + "probability": 0.7965 + }, + { + "start": 14311.72, + "end": 14314.94, + "probability": 0.9803 + }, + { + "start": 14314.94, + "end": 14320.31, + "probability": 0.9794 + }, + { + "start": 14321.58, + "end": 14323.6, + "probability": 0.9801 + }, + { + "start": 14324.3, + "end": 14328.26, + "probability": 0.9348 + }, + { + "start": 14328.72, + "end": 14332.66, + "probability": 0.9854 + }, + { + "start": 14333.04, + "end": 14336.46, + "probability": 0.952 + }, + { + "start": 14337.3, + "end": 14341.5, + "probability": 0.9886 + }, + { + "start": 14341.5, + "end": 14346.66, + "probability": 0.9982 + }, + { + "start": 14346.94, + "end": 14354.08, + "probability": 0.5389 + }, + { + "start": 14354.48, + "end": 14358.3, + "probability": 0.9577 + }, + { + "start": 14359.2, + "end": 14360.02, + "probability": 0.7647 + }, + { + "start": 14360.58, + "end": 14362.26, + "probability": 0.7695 + }, + { + "start": 14362.82, + "end": 14366.42, + "probability": 0.9027 + }, + { + "start": 14367.04, + "end": 14371.08, + "probability": 0.9803 + }, + { + "start": 14371.08, + "end": 14374.7, + "probability": 0.9933 + }, + { + "start": 14375.36, + "end": 14380.9, + "probability": 0.9955 + }, + { + "start": 14381.5, + "end": 14384.3, + "probability": 0.848 + }, + { + "start": 14384.92, + "end": 14389.54, + "probability": 0.9865 + }, + { + "start": 14390.34, + "end": 14397.02, + "probability": 0.9954 + }, + { + "start": 14397.58, + "end": 14406.28, + "probability": 0.9919 + }, + { + "start": 14406.96, + "end": 14408.4, + "probability": 0.937 + }, + { + "start": 14409.21, + "end": 14412.04, + "probability": 0.5556 + }, + { + "start": 14412.4, + "end": 14415.3, + "probability": 0.4338 + }, + { + "start": 14415.42, + "end": 14417.08, + "probability": 0.5041 + }, + { + "start": 14417.64, + "end": 14420.58, + "probability": 0.9282 + }, + { + "start": 14420.58, + "end": 14424.28, + "probability": 0.9888 + }, + { + "start": 14424.28, + "end": 14425.1, + "probability": 0.764 + }, + { + "start": 14425.14, + "end": 14427.88, + "probability": 0.8185 + }, + { + "start": 14427.88, + "end": 14428.25, + "probability": 0.5721 + }, + { + "start": 14428.48, + "end": 14430.58, + "probability": 0.5904 + }, + { + "start": 14430.72, + "end": 14432.18, + "probability": 0.8072 + }, + { + "start": 14444.74, + "end": 14445.85, + "probability": 0.5446 + }, + { + "start": 14446.88, + "end": 14447.28, + "probability": 0.7279 + }, + { + "start": 14453.1, + "end": 14454.58, + "probability": 0.662 + }, + { + "start": 14456.14, + "end": 14457.92, + "probability": 0.7846 + }, + { + "start": 14458.7, + "end": 14460.44, + "probability": 0.9304 + }, + { + "start": 14460.78, + "end": 14461.82, + "probability": 0.9978 + }, + { + "start": 14462.68, + "end": 14470.34, + "probability": 0.9942 + }, + { + "start": 14470.34, + "end": 14478.28, + "probability": 0.9979 + }, + { + "start": 14479.84, + "end": 14483.64, + "probability": 0.8546 + }, + { + "start": 14484.62, + "end": 14489.2, + "probability": 0.9925 + }, + { + "start": 14489.2, + "end": 14492.96, + "probability": 0.9993 + }, + { + "start": 14493.74, + "end": 14498.42, + "probability": 0.9634 + }, + { + "start": 14499.16, + "end": 14504.1, + "probability": 0.9992 + }, + { + "start": 14506.02, + "end": 14509.4, + "probability": 0.9859 + }, + { + "start": 14512.44, + "end": 14514.16, + "probability": 0.9976 + }, + { + "start": 14514.6, + "end": 14518.84, + "probability": 0.9955 + }, + { + "start": 14520.16, + "end": 14522.44, + "probability": 0.9883 + }, + { + "start": 14523.52, + "end": 14528.24, + "probability": 0.9965 + }, + { + "start": 14528.6, + "end": 14534.26, + "probability": 0.7844 + }, + { + "start": 14534.88, + "end": 14537.28, + "probability": 0.7101 + }, + { + "start": 14540.24, + "end": 14541.82, + "probability": 0.6536 + }, + { + "start": 14542.4, + "end": 14544.96, + "probability": 0.8979 + }, + { + "start": 14545.68, + "end": 14550.72, + "probability": 0.9863 + }, + { + "start": 14552.18, + "end": 14553.52, + "probability": 0.8364 + }, + { + "start": 14554.08, + "end": 14556.12, + "probability": 0.9876 + }, + { + "start": 14558.16, + "end": 14561.54, + "probability": 0.9741 + }, + { + "start": 14562.62, + "end": 14565.26, + "probability": 0.7788 + }, + { + "start": 14566.12, + "end": 14569.6, + "probability": 0.976 + }, + { + "start": 14569.82, + "end": 14570.68, + "probability": 0.6894 + }, + { + "start": 14571.26, + "end": 14574.2, + "probability": 0.9862 + }, + { + "start": 14575.02, + "end": 14576.48, + "probability": 0.9016 + }, + { + "start": 14577.22, + "end": 14579.8, + "probability": 0.7927 + }, + { + "start": 14579.9, + "end": 14583.2, + "probability": 0.983 + }, + { + "start": 14584.06, + "end": 14584.5, + "probability": 0.8986 + }, + { + "start": 14585.14, + "end": 14591.3, + "probability": 0.9766 + }, + { + "start": 14592.64, + "end": 14594.04, + "probability": 0.9061 + }, + { + "start": 14595.04, + "end": 14596.89, + "probability": 0.8483 + }, + { + "start": 14597.6, + "end": 14598.96, + "probability": 0.9284 + }, + { + "start": 14600.34, + "end": 14601.44, + "probability": 0.9631 + }, + { + "start": 14601.78, + "end": 14607.37, + "probability": 0.5874 + }, + { + "start": 14608.3, + "end": 14609.68, + "probability": 0.7524 + }, + { + "start": 14609.74, + "end": 14612.14, + "probability": 0.9225 + }, + { + "start": 14613.44, + "end": 14615.68, + "probability": 0.9746 + }, + { + "start": 14616.98, + "end": 14618.74, + "probability": 0.9578 + }, + { + "start": 14619.54, + "end": 14623.82, + "probability": 0.9924 + }, + { + "start": 14624.34, + "end": 14625.18, + "probability": 0.8529 + }, + { + "start": 14625.36, + "end": 14626.14, + "probability": 0.6648 + }, + { + "start": 14626.14, + "end": 14628.12, + "probability": 0.8765 + }, + { + "start": 14628.46, + "end": 14634.82, + "probability": 0.9484 + }, + { + "start": 14635.76, + "end": 14640.34, + "probability": 0.9985 + }, + { + "start": 14640.34, + "end": 14643.86, + "probability": 0.9065 + }, + { + "start": 14643.96, + "end": 14644.52, + "probability": 0.759 + }, + { + "start": 14645.44, + "end": 14647.3, + "probability": 0.8549 + }, + { + "start": 14647.42, + "end": 14649.01, + "probability": 0.8635 + }, + { + "start": 14649.14, + "end": 14649.9, + "probability": 0.4039 + }, + { + "start": 14650.0, + "end": 14651.5, + "probability": 0.8694 + }, + { + "start": 14666.04, + "end": 14666.94, + "probability": 0.2591 + }, + { + "start": 14667.02, + "end": 14667.68, + "probability": 0.089 + }, + { + "start": 14671.48, + "end": 14673.58, + "probability": 0.4405 + }, + { + "start": 14673.66, + "end": 14675.04, + "probability": 0.7345 + }, + { + "start": 14676.06, + "end": 14681.68, + "probability": 0.95 + }, + { + "start": 14681.84, + "end": 14683.08, + "probability": 0.6317 + }, + { + "start": 14683.98, + "end": 14687.52, + "probability": 0.9423 + }, + { + "start": 14688.78, + "end": 14689.59, + "probability": 0.5199 + }, + { + "start": 14690.24, + "end": 14694.52, + "probability": 0.9741 + }, + { + "start": 14694.64, + "end": 14698.34, + "probability": 0.9484 + }, + { + "start": 14699.04, + "end": 14701.72, + "probability": 0.8598 + }, + { + "start": 14702.22, + "end": 14704.51, + "probability": 0.9888 + }, + { + "start": 14704.64, + "end": 14707.52, + "probability": 0.9886 + }, + { + "start": 14708.44, + "end": 14709.78, + "probability": 0.9987 + }, + { + "start": 14710.86, + "end": 14717.02, + "probability": 0.9612 + }, + { + "start": 14717.72, + "end": 14719.88, + "probability": 0.9125 + }, + { + "start": 14720.4, + "end": 14726.14, + "probability": 0.7225 + }, + { + "start": 14726.14, + "end": 14731.56, + "probability": 0.9214 + }, + { + "start": 14732.28, + "end": 14735.24, + "probability": 0.9811 + }, + { + "start": 14735.82, + "end": 14740.46, + "probability": 0.9865 + }, + { + "start": 14740.82, + "end": 14743.22, + "probability": 0.9956 + }, + { + "start": 14743.3, + "end": 14744.12, + "probability": 0.9685 + }, + { + "start": 14744.6, + "end": 14747.9, + "probability": 0.9793 + }, + { + "start": 14748.42, + "end": 14750.21, + "probability": 0.5835 + }, + { + "start": 14751.18, + "end": 14751.74, + "probability": 0.3782 + }, + { + "start": 14751.74, + "end": 14753.92, + "probability": 0.8222 + }, + { + "start": 14754.12, + "end": 14754.36, + "probability": 0.8652 + }, + { + "start": 14754.44, + "end": 14755.28, + "probability": 0.8896 + }, + { + "start": 14755.7, + "end": 14756.92, + "probability": 0.9177 + }, + { + "start": 14757.34, + "end": 14759.14, + "probability": 0.5835 + }, + { + "start": 14759.62, + "end": 14761.6, + "probability": 0.811 + }, + { + "start": 14762.4, + "end": 14765.04, + "probability": 0.9575 + }, + { + "start": 14765.12, + "end": 14770.55, + "probability": 0.9814 + }, + { + "start": 14770.58, + "end": 14775.2, + "probability": 0.968 + }, + { + "start": 14776.02, + "end": 14780.88, + "probability": 0.9772 + }, + { + "start": 14780.96, + "end": 14781.6, + "probability": 0.4957 + }, + { + "start": 14781.66, + "end": 14783.84, + "probability": 0.6158 + }, + { + "start": 14784.04, + "end": 14785.98, + "probability": 0.9954 + }, + { + "start": 14787.1, + "end": 14791.74, + "probability": 0.9807 + }, + { + "start": 14792.22, + "end": 14794.26, + "probability": 0.6899 + }, + { + "start": 14794.58, + "end": 14798.32, + "probability": 0.9912 + }, + { + "start": 14798.86, + "end": 14802.46, + "probability": 0.9814 + }, + { + "start": 14802.46, + "end": 14806.74, + "probability": 0.9119 + }, + { + "start": 14807.3, + "end": 14809.66, + "probability": 0.9274 + }, + { + "start": 14810.02, + "end": 14813.46, + "probability": 0.9946 + }, + { + "start": 14814.12, + "end": 14817.08, + "probability": 0.7506 + }, + { + "start": 14817.12, + "end": 14819.36, + "probability": 0.8176 + }, + { + "start": 14820.0, + "end": 14825.0, + "probability": 0.7854 + }, + { + "start": 14825.5, + "end": 14828.66, + "probability": 0.9943 + }, + { + "start": 14828.66, + "end": 14831.82, + "probability": 0.9946 + }, + { + "start": 14831.94, + "end": 14834.34, + "probability": 0.9942 + }, + { + "start": 14834.94, + "end": 14837.54, + "probability": 0.984 + }, + { + "start": 14837.88, + "end": 14840.09, + "probability": 0.6993 + }, + { + "start": 14840.92, + "end": 14841.08, + "probability": 0.4443 + }, + { + "start": 14841.38, + "end": 14842.58, + "probability": 0.9568 + }, + { + "start": 14842.94, + "end": 14848.02, + "probability": 0.8917 + }, + { + "start": 14848.56, + "end": 14850.82, + "probability": 0.8627 + }, + { + "start": 14851.22, + "end": 14860.46, + "probability": 0.9367 + }, + { + "start": 14861.16, + "end": 14867.84, + "probability": 0.9785 + }, + { + "start": 14868.22, + "end": 14873.8, + "probability": 0.9984 + }, + { + "start": 14874.44, + "end": 14878.08, + "probability": 0.9239 + }, + { + "start": 14878.32, + "end": 14878.74, + "probability": 0.7039 + }, + { + "start": 14878.8, + "end": 14879.36, + "probability": 0.6531 + }, + { + "start": 14879.76, + "end": 14880.66, + "probability": 0.7858 + }, + { + "start": 14897.52, + "end": 14897.9, + "probability": 0.7995 + }, + { + "start": 14898.18, + "end": 14898.44, + "probability": 0.1693 + }, + { + "start": 14899.58, + "end": 14900.94, + "probability": 0.6745 + }, + { + "start": 14901.0, + "end": 14902.0, + "probability": 0.7269 + }, + { + "start": 14903.58, + "end": 14908.66, + "probability": 0.9216 + }, + { + "start": 14910.42, + "end": 14914.02, + "probability": 0.9537 + }, + { + "start": 14914.82, + "end": 14918.72, + "probability": 0.9901 + }, + { + "start": 14918.8, + "end": 14919.68, + "probability": 0.9507 + }, + { + "start": 14920.06, + "end": 14920.62, + "probability": 0.8125 + }, + { + "start": 14921.22, + "end": 14921.7, + "probability": 0.8478 + }, + { + "start": 14922.26, + "end": 14926.22, + "probability": 0.8961 + }, + { + "start": 14927.0, + "end": 14929.44, + "probability": 0.9429 + }, + { + "start": 14929.96, + "end": 14931.6, + "probability": 0.6507 + }, + { + "start": 14931.88, + "end": 14933.36, + "probability": 0.9077 + }, + { + "start": 14933.58, + "end": 14937.42, + "probability": 0.7361 + }, + { + "start": 14937.56, + "end": 14942.56, + "probability": 0.7079 + }, + { + "start": 14942.65, + "end": 14945.9, + "probability": 0.9668 + }, + { + "start": 14947.1, + "end": 14949.9, + "probability": 0.9214 + }, + { + "start": 14950.46, + "end": 14952.22, + "probability": 0.8057 + }, + { + "start": 14952.38, + "end": 14955.56, + "probability": 0.9857 + }, + { + "start": 14955.94, + "end": 14959.6, + "probability": 0.5512 + }, + { + "start": 14960.06, + "end": 14963.7, + "probability": 0.9803 + }, + { + "start": 14963.86, + "end": 14966.0, + "probability": 0.9054 + }, + { + "start": 14966.36, + "end": 14967.6, + "probability": 0.8783 + }, + { + "start": 14967.74, + "end": 14969.38, + "probability": 0.7832 + }, + { + "start": 14969.86, + "end": 14975.93, + "probability": 0.6766 + }, + { + "start": 14976.76, + "end": 14978.96, + "probability": 0.598 + }, + { + "start": 14978.98, + "end": 14979.52, + "probability": 0.7939 + }, + { + "start": 14979.92, + "end": 14981.78, + "probability": 0.8169 + }, + { + "start": 14983.83, + "end": 14986.58, + "probability": 0.4197 + }, + { + "start": 14987.3, + "end": 14989.82, + "probability": 0.6373 + }, + { + "start": 14990.4, + "end": 14990.74, + "probability": 0.5283 + }, + { + "start": 14990.82, + "end": 14995.42, + "probability": 0.8569 + }, + { + "start": 14995.54, + "end": 14997.3, + "probability": 0.9647 + }, + { + "start": 14997.38, + "end": 14998.96, + "probability": 0.97 + }, + { + "start": 14999.12, + "end": 14999.8, + "probability": 0.4737 + }, + { + "start": 15000.48, + "end": 15003.02, + "probability": 0.8206 + }, + { + "start": 15003.3, + "end": 15007.15, + "probability": 0.8524 + }, + { + "start": 15007.46, + "end": 15008.06, + "probability": 0.59 + }, + { + "start": 15008.4, + "end": 15009.96, + "probability": 0.9862 + }, + { + "start": 15010.08, + "end": 15012.94, + "probability": 0.8029 + }, + { + "start": 15013.08, + "end": 15014.26, + "probability": 0.9585 + }, + { + "start": 15014.92, + "end": 15016.5, + "probability": 0.9548 + }, + { + "start": 15016.66, + "end": 15018.92, + "probability": 0.7061 + }, + { + "start": 15019.18, + "end": 15023.08, + "probability": 0.854 + }, + { + "start": 15023.16, + "end": 15027.22, + "probability": 0.9839 + }, + { + "start": 15027.98, + "end": 15028.74, + "probability": 0.3627 + }, + { + "start": 15028.82, + "end": 15029.88, + "probability": 0.9937 + }, + { + "start": 15029.96, + "end": 15031.58, + "probability": 0.9512 + }, + { + "start": 15032.08, + "end": 15034.7, + "probability": 0.4764 + }, + { + "start": 15034.8, + "end": 15037.58, + "probability": 0.9216 + }, + { + "start": 15037.58, + "end": 15041.22, + "probability": 0.907 + }, + { + "start": 15042.74, + "end": 15047.1, + "probability": 0.4147 + }, + { + "start": 15047.7, + "end": 15049.9, + "probability": 0.6799 + }, + { + "start": 15050.3, + "end": 15051.42, + "probability": 0.8064 + }, + { + "start": 15051.5, + "end": 15054.12, + "probability": 0.6208 + }, + { + "start": 15054.16, + "end": 15055.05, + "probability": 0.5026 + }, + { + "start": 15056.0, + "end": 15061.52, + "probability": 0.7513 + }, + { + "start": 15061.98, + "end": 15064.33, + "probability": 0.7695 + }, + { + "start": 15065.08, + "end": 15067.18, + "probability": 0.7447 + }, + { + "start": 15067.68, + "end": 15074.95, + "probability": 0.9438 + }, + { + "start": 15075.44, + "end": 15076.48, + "probability": 0.7988 + }, + { + "start": 15076.6, + "end": 15077.11, + "probability": 0.9496 + }, + { + "start": 15077.5, + "end": 15078.88, + "probability": 0.9677 + }, + { + "start": 15078.88, + "end": 15079.84, + "probability": 0.9269 + }, + { + "start": 15080.22, + "end": 15081.1, + "probability": 0.8563 + }, + { + "start": 15081.14, + "end": 15083.56, + "probability": 0.5812 + }, + { + "start": 15083.66, + "end": 15084.9, + "probability": 0.8292 + }, + { + "start": 15084.96, + "end": 15091.0, + "probability": 0.9442 + }, + { + "start": 15091.78, + "end": 15093.84, + "probability": 0.6205 + }, + { + "start": 15094.14, + "end": 15097.54, + "probability": 0.9847 + }, + { + "start": 15097.64, + "end": 15098.1, + "probability": 0.8754 + }, + { + "start": 15098.16, + "end": 15098.66, + "probability": 0.6765 + }, + { + "start": 15098.86, + "end": 15099.62, + "probability": 0.6601 + }, + { + "start": 15099.94, + "end": 15102.56, + "probability": 0.7969 + }, + { + "start": 15102.56, + "end": 15104.98, + "probability": 0.9482 + }, + { + "start": 15105.06, + "end": 15105.34, + "probability": 0.509 + }, + { + "start": 15105.7, + "end": 15105.98, + "probability": 0.4455 + }, + { + "start": 15106.64, + "end": 15107.12, + "probability": 0.9709 + }, + { + "start": 15107.18, + "end": 15108.43, + "probability": 0.897 + }, + { + "start": 15108.5, + "end": 15109.96, + "probability": 0.8727 + }, + { + "start": 15110.62, + "end": 15112.24, + "probability": 0.9218 + }, + { + "start": 15112.78, + "end": 15114.16, + "probability": 0.6191 + }, + { + "start": 15114.78, + "end": 15118.76, + "probability": 0.535 + }, + { + "start": 15118.84, + "end": 15120.92, + "probability": 0.9304 + }, + { + "start": 15121.5, + "end": 15125.52, + "probability": 0.9471 + }, + { + "start": 15125.58, + "end": 15126.36, + "probability": 0.4569 + }, + { + "start": 15126.4, + "end": 15128.28, + "probability": 0.8304 + }, + { + "start": 15128.66, + "end": 15129.3, + "probability": 0.7954 + }, + { + "start": 15129.42, + "end": 15129.84, + "probability": 0.8065 + }, + { + "start": 15130.44, + "end": 15130.88, + "probability": 0.6626 + }, + { + "start": 15131.08, + "end": 15131.38, + "probability": 0.5464 + }, + { + "start": 15133.16, + "end": 15133.44, + "probability": 0.6851 + }, + { + "start": 15134.16, + "end": 15137.0, + "probability": 0.9167 + }, + { + "start": 15155.8, + "end": 15157.78, + "probability": 0.6521 + }, + { + "start": 15158.38, + "end": 15160.06, + "probability": 0.6996 + }, + { + "start": 15160.74, + "end": 15161.56, + "probability": 0.5276 + }, + { + "start": 15162.7, + "end": 15163.76, + "probability": 0.9757 + }, + { + "start": 15165.2, + "end": 15169.46, + "probability": 0.9883 + }, + { + "start": 15170.68, + "end": 15173.2, + "probability": 0.9958 + }, + { + "start": 15173.28, + "end": 15175.28, + "probability": 0.8741 + }, + { + "start": 15176.38, + "end": 15183.42, + "probability": 0.979 + }, + { + "start": 15183.42, + "end": 15189.3, + "probability": 0.8007 + }, + { + "start": 15189.5, + "end": 15191.66, + "probability": 0.9902 + }, + { + "start": 15192.64, + "end": 15200.2, + "probability": 0.9902 + }, + { + "start": 15201.56, + "end": 15205.9, + "probability": 0.9991 + }, + { + "start": 15205.9, + "end": 15209.68, + "probability": 0.8975 + }, + { + "start": 15211.66, + "end": 15214.02, + "probability": 0.7852 + }, + { + "start": 15214.26, + "end": 15216.38, + "probability": 0.9752 + }, + { + "start": 15217.56, + "end": 15222.3, + "probability": 0.9752 + }, + { + "start": 15222.66, + "end": 15223.32, + "probability": 0.8535 + }, + { + "start": 15224.36, + "end": 15231.4, + "probability": 0.9037 + }, + { + "start": 15231.96, + "end": 15237.64, + "probability": 0.9501 + }, + { + "start": 15238.82, + "end": 15239.82, + "probability": 0.6437 + }, + { + "start": 15240.04, + "end": 15240.49, + "probability": 0.9767 + }, + { + "start": 15242.28, + "end": 15244.94, + "probability": 0.998 + }, + { + "start": 15245.02, + "end": 15246.71, + "probability": 0.9829 + }, + { + "start": 15246.9, + "end": 15248.04, + "probability": 0.0788 + }, + { + "start": 15248.66, + "end": 15249.24, + "probability": 0.1136 + }, + { + "start": 15250.18, + "end": 15251.24, + "probability": 0.4365 + }, + { + "start": 15251.24, + "end": 15251.38, + "probability": 0.7026 + }, + { + "start": 15251.4, + "end": 15253.0, + "probability": 0.3723 + }, + { + "start": 15253.26, + "end": 15253.6, + "probability": 0.5324 + }, + { + "start": 15253.6, + "end": 15254.46, + "probability": 0.7337 + }, + { + "start": 15255.08, + "end": 15256.13, + "probability": 0.8943 + }, + { + "start": 15257.2, + "end": 15261.36, + "probability": 0.9816 + }, + { + "start": 15269.94, + "end": 15270.76, + "probability": 0.8758 + }, + { + "start": 15287.52, + "end": 15287.54, + "probability": 0.3338 + }, + { + "start": 15287.54, + "end": 15290.06, + "probability": 0.5752 + }, + { + "start": 15290.44, + "end": 15292.44, + "probability": 0.9796 + }, + { + "start": 15295.02, + "end": 15296.5, + "probability": 0.9012 + }, + { + "start": 15298.46, + "end": 15302.18, + "probability": 0.8636 + }, + { + "start": 15303.07, + "end": 15303.14, + "probability": 0.0273 + }, + { + "start": 15303.14, + "end": 15303.14, + "probability": 0.2932 + }, + { + "start": 15303.14, + "end": 15303.14, + "probability": 0.3417 + }, + { + "start": 15303.14, + "end": 15303.14, + "probability": 0.4168 + }, + { + "start": 15303.14, + "end": 15303.14, + "probability": 0.0944 + }, + { + "start": 15303.14, + "end": 15304.64, + "probability": 0.4488 + }, + { + "start": 15305.86, + "end": 15306.46, + "probability": 0.2545 + }, + { + "start": 15321.5, + "end": 15322.62, + "probability": 0.6234 + }, + { + "start": 15322.84, + "end": 15324.08, + "probability": 0.8779 + }, + { + "start": 15324.86, + "end": 15325.94, + "probability": 0.8986 + }, + { + "start": 15326.0, + "end": 15326.98, + "probability": 0.915 + }, + { + "start": 15328.56, + "end": 15331.68, + "probability": 0.9928 + }, + { + "start": 15332.44, + "end": 15336.2, + "probability": 0.9768 + }, + { + "start": 15336.62, + "end": 15336.84, + "probability": 0.3912 + }, + { + "start": 15337.84, + "end": 15341.14, + "probability": 0.8516 + }, + { + "start": 15342.06, + "end": 15346.12, + "probability": 0.9054 + }, + { + "start": 15347.46, + "end": 15351.9, + "probability": 0.9352 + }, + { + "start": 15352.98, + "end": 15354.9, + "probability": 0.9835 + }, + { + "start": 15355.42, + "end": 15357.34, + "probability": 0.9968 + }, + { + "start": 15358.3, + "end": 15359.04, + "probability": 0.5363 + }, + { + "start": 15360.02, + "end": 15360.68, + "probability": 0.9342 + }, + { + "start": 15361.56, + "end": 15362.28, + "probability": 0.8158 + }, + { + "start": 15363.38, + "end": 15364.58, + "probability": 0.9954 + }, + { + "start": 15366.26, + "end": 15372.56, + "probability": 0.9943 + }, + { + "start": 15373.72, + "end": 15380.36, + "probability": 0.9921 + }, + { + "start": 15382.08, + "end": 15385.98, + "probability": 0.9828 + }, + { + "start": 15386.4, + "end": 15388.96, + "probability": 0.9905 + }, + { + "start": 15389.02, + "end": 15389.96, + "probability": 0.9963 + }, + { + "start": 15390.7, + "end": 15392.21, + "probability": 0.8832 + }, + { + "start": 15394.16, + "end": 15397.86, + "probability": 0.998 + }, + { + "start": 15399.5, + "end": 15401.76, + "probability": 0.9576 + }, + { + "start": 15402.0, + "end": 15403.1, + "probability": 0.7439 + }, + { + "start": 15403.32, + "end": 15408.08, + "probability": 0.9983 + }, + { + "start": 15408.08, + "end": 15412.1, + "probability": 0.6014 + }, + { + "start": 15412.84, + "end": 15413.72, + "probability": 0.9341 + }, + { + "start": 15415.92, + "end": 15419.3, + "probability": 0.9178 + }, + { + "start": 15420.38, + "end": 15423.78, + "probability": 0.7812 + }, + { + "start": 15424.38, + "end": 15425.22, + "probability": 0.8071 + }, + { + "start": 15425.92, + "end": 15426.84, + "probability": 0.9141 + }, + { + "start": 15427.74, + "end": 15427.98, + "probability": 0.4814 + }, + { + "start": 15428.76, + "end": 15430.56, + "probability": 0.9892 + }, + { + "start": 15431.12, + "end": 15433.92, + "probability": 0.9567 + }, + { + "start": 15435.12, + "end": 15435.98, + "probability": 0.7373 + }, + { + "start": 15436.68, + "end": 15438.83, + "probability": 0.9727 + }, + { + "start": 15440.04, + "end": 15442.52, + "probability": 0.7886 + }, + { + "start": 15444.02, + "end": 15445.33, + "probability": 0.787 + }, + { + "start": 15445.76, + "end": 15446.56, + "probability": 0.9494 + }, + { + "start": 15447.68, + "end": 15450.1, + "probability": 0.9961 + }, + { + "start": 15450.84, + "end": 15452.18, + "probability": 0.9775 + }, + { + "start": 15453.72, + "end": 15454.8, + "probability": 0.9941 + }, + { + "start": 15455.46, + "end": 15456.78, + "probability": 0.9929 + }, + { + "start": 15457.58, + "end": 15464.58, + "probability": 0.9443 + }, + { + "start": 15465.74, + "end": 15466.58, + "probability": 0.7231 + }, + { + "start": 15468.36, + "end": 15469.86, + "probability": 0.9792 + }, + { + "start": 15470.64, + "end": 15472.62, + "probability": 0.985 + }, + { + "start": 15473.66, + "end": 15475.52, + "probability": 0.9271 + }, + { + "start": 15477.8, + "end": 15479.66, + "probability": 0.9784 + }, + { + "start": 15480.46, + "end": 15485.44, + "probability": 0.9678 + }, + { + "start": 15485.44, + "end": 15486.52, + "probability": 0.8793 + }, + { + "start": 15486.92, + "end": 15487.98, + "probability": 0.5424 + }, + { + "start": 15488.7, + "end": 15491.68, + "probability": 0.9345 + }, + { + "start": 15493.52, + "end": 15495.4, + "probability": 0.9989 + }, + { + "start": 15496.4, + "end": 15500.7, + "probability": 0.9566 + }, + { + "start": 15500.8, + "end": 15503.1, + "probability": 0.9673 + }, + { + "start": 15503.82, + "end": 15505.3, + "probability": 0.9122 + }, + { + "start": 15505.94, + "end": 15507.26, + "probability": 0.9948 + }, + { + "start": 15507.8, + "end": 15509.28, + "probability": 0.9982 + }, + { + "start": 15510.34, + "end": 15511.88, + "probability": 0.9998 + }, + { + "start": 15512.58, + "end": 15513.49, + "probability": 0.9851 + }, + { + "start": 15513.74, + "end": 15517.44, + "probability": 0.9956 + }, + { + "start": 15518.72, + "end": 15521.66, + "probability": 0.9813 + }, + { + "start": 15522.54, + "end": 15522.88, + "probability": 0.6257 + }, + { + "start": 15523.92, + "end": 15524.92, + "probability": 0.5711 + }, + { + "start": 15525.44, + "end": 15527.54, + "probability": 0.9994 + }, + { + "start": 15527.94, + "end": 15530.68, + "probability": 0.9857 + }, + { + "start": 15531.52, + "end": 15531.8, + "probability": 0.6857 + }, + { + "start": 15532.2, + "end": 15532.74, + "probability": 0.8531 + }, + { + "start": 15535.4, + "end": 15537.46, + "probability": 0.8869 + }, + { + "start": 15563.34, + "end": 15564.16, + "probability": 0.6881 + }, + { + "start": 15565.74, + "end": 15567.64, + "probability": 0.8419 + }, + { + "start": 15569.02, + "end": 15571.44, + "probability": 0.9722 + }, + { + "start": 15571.84, + "end": 15574.9, + "probability": 0.9951 + }, + { + "start": 15575.58, + "end": 15578.72, + "probability": 0.954 + }, + { + "start": 15579.62, + "end": 15582.7, + "probability": 0.7539 + }, + { + "start": 15583.32, + "end": 15584.68, + "probability": 0.8282 + }, + { + "start": 15584.68, + "end": 15587.34, + "probability": 0.9995 + }, + { + "start": 15588.0, + "end": 15589.9, + "probability": 0.999 + }, + { + "start": 15590.5, + "end": 15592.27, + "probability": 0.9873 + }, + { + "start": 15592.36, + "end": 15594.92, + "probability": 0.9857 + }, + { + "start": 15595.32, + "end": 15598.83, + "probability": 0.9906 + }, + { + "start": 15599.84, + "end": 15604.58, + "probability": 0.9988 + }, + { + "start": 15604.96, + "end": 15606.66, + "probability": 0.8896 + }, + { + "start": 15607.14, + "end": 15608.82, + "probability": 0.9964 + }, + { + "start": 15609.14, + "end": 15611.8, + "probability": 0.9951 + }, + { + "start": 15612.3, + "end": 15613.88, + "probability": 0.8462 + }, + { + "start": 15613.96, + "end": 15614.64, + "probability": 0.8759 + }, + { + "start": 15615.06, + "end": 15620.0, + "probability": 0.9968 + }, + { + "start": 15620.4, + "end": 15622.52, + "probability": 0.9971 + }, + { + "start": 15623.2, + "end": 15628.04, + "probability": 0.9968 + }, + { + "start": 15628.74, + "end": 15630.49, + "probability": 0.8813 + }, + { + "start": 15631.1, + "end": 15631.76, + "probability": 0.6114 + }, + { + "start": 15631.86, + "end": 15632.7, + "probability": 0.9771 + }, + { + "start": 15632.84, + "end": 15636.76, + "probability": 0.9956 + }, + { + "start": 15636.76, + "end": 15639.9, + "probability": 0.9941 + }, + { + "start": 15640.4, + "end": 15641.2, + "probability": 0.6716 + }, + { + "start": 15641.52, + "end": 15642.02, + "probability": 0.6271 + }, + { + "start": 15642.32, + "end": 15643.06, + "probability": 0.9524 + }, + { + "start": 15643.22, + "end": 15643.86, + "probability": 0.9764 + }, + { + "start": 15643.94, + "end": 15644.48, + "probability": 0.7369 + }, + { + "start": 15644.88, + "end": 15647.44, + "probability": 0.987 + }, + { + "start": 15648.06, + "end": 15649.24, + "probability": 0.9961 + }, + { + "start": 15649.32, + "end": 15650.75, + "probability": 0.9954 + }, + { + "start": 15651.72, + "end": 15654.6, + "probability": 0.9795 + }, + { + "start": 15655.48, + "end": 15655.97, + "probability": 0.8265 + }, + { + "start": 15656.42, + "end": 15657.9, + "probability": 0.6708 + }, + { + "start": 15658.32, + "end": 15659.24, + "probability": 0.7427 + }, + { + "start": 15659.52, + "end": 15659.94, + "probability": 0.7222 + }, + { + "start": 15660.28, + "end": 15660.92, + "probability": 0.7423 + }, + { + "start": 15660.94, + "end": 15663.06, + "probability": 0.7121 + }, + { + "start": 15663.4, + "end": 15665.66, + "probability": 0.868 + }, + { + "start": 15665.76, + "end": 15668.16, + "probability": 0.9868 + }, + { + "start": 15668.36, + "end": 15670.38, + "probability": 0.7793 + }, + { + "start": 15670.96, + "end": 15673.0, + "probability": 0.9937 + }, + { + "start": 15674.02, + "end": 15676.9, + "probability": 0.9811 + }, + { + "start": 15677.16, + "end": 15678.74, + "probability": 0.9985 + }, + { + "start": 15679.64, + "end": 15684.34, + "probability": 0.9988 + }, + { + "start": 15684.8, + "end": 15687.24, + "probability": 0.6297 + }, + { + "start": 15687.32, + "end": 15687.92, + "probability": 0.7128 + }, + { + "start": 15688.08, + "end": 15689.04, + "probability": 0.8965 + }, + { + "start": 15689.32, + "end": 15690.16, + "probability": 0.9805 + }, + { + "start": 15690.48, + "end": 15691.23, + "probability": 0.9889 + }, + { + "start": 15691.5, + "end": 15692.39, + "probability": 0.9595 + }, + { + "start": 15692.72, + "end": 15694.62, + "probability": 0.9343 + }, + { + "start": 15695.58, + "end": 15699.42, + "probability": 0.9978 + }, + { + "start": 15699.88, + "end": 15707.44, + "probability": 0.9951 + }, + { + "start": 15708.0, + "end": 15710.8, + "probability": 0.9892 + }, + { + "start": 15711.14, + "end": 15715.8, + "probability": 0.9985 + }, + { + "start": 15716.3, + "end": 15717.98, + "probability": 0.5339 + }, + { + "start": 15718.5, + "end": 15720.42, + "probability": 0.9965 + }, + { + "start": 15720.52, + "end": 15720.7, + "probability": 0.6972 + }, + { + "start": 15721.66, + "end": 15722.22, + "probability": 0.6268 + }, + { + "start": 15722.58, + "end": 15723.62, + "probability": 0.9266 + }, + { + "start": 15725.58, + "end": 15731.42, + "probability": 0.0314 + }, + { + "start": 15732.42, + "end": 15735.62, + "probability": 0.6038 + }, + { + "start": 15735.64, + "end": 15737.88, + "probability": 0.9725 + }, + { + "start": 15737.9, + "end": 15739.24, + "probability": 0.7109 + }, + { + "start": 15755.26, + "end": 15756.28, + "probability": 0.2645 + }, + { + "start": 15758.04, + "end": 15760.26, + "probability": 0.3585 + }, + { + "start": 15761.4, + "end": 15764.62, + "probability": 0.3937 + }, + { + "start": 15765.84, + "end": 15767.98, + "probability": 0.3898 + }, + { + "start": 15768.08, + "end": 15773.18, + "probability": 0.1151 + }, + { + "start": 15773.18, + "end": 15773.78, + "probability": 0.2205 + }, + { + "start": 15774.7, + "end": 15777.94, + "probability": 0.8357 + }, + { + "start": 15778.72, + "end": 15781.34, + "probability": 0.9673 + }, + { + "start": 15781.4, + "end": 15783.1, + "probability": 0.9973 + }, + { + "start": 15783.76, + "end": 15788.44, + "probability": 0.9894 + }, + { + "start": 15788.44, + "end": 15790.9, + "probability": 0.8712 + }, + { + "start": 15790.9, + "end": 15793.04, + "probability": 0.3951 + }, + { + "start": 15793.12, + "end": 15795.84, + "probability": 0.6524 + }, + { + "start": 15797.76, + "end": 15800.28, + "probability": 0.8865 + }, + { + "start": 15801.12, + "end": 15801.92, + "probability": 0.026 + }, + { + "start": 15801.98, + "end": 15802.5, + "probability": 0.2701 + }, + { + "start": 15802.56, + "end": 15803.82, + "probability": 0.6176 + }, + { + "start": 15803.82, + "end": 15804.82, + "probability": 0.803 + }, + { + "start": 15804.96, + "end": 15808.08, + "probability": 0.9817 + }, + { + "start": 15808.18, + "end": 15809.03, + "probability": 0.8994 + }, + { + "start": 15809.7, + "end": 15811.65, + "probability": 0.903 + }, + { + "start": 15812.48, + "end": 15814.54, + "probability": 0.9901 + }, + { + "start": 15815.0, + "end": 15816.1, + "probability": 0.9219 + }, + { + "start": 15816.28, + "end": 15821.54, + "probability": 0.9856 + }, + { + "start": 15822.0, + "end": 15824.36, + "probability": 0.9329 + }, + { + "start": 15824.44, + "end": 15825.44, + "probability": 0.8756 + }, + { + "start": 15825.9, + "end": 15827.38, + "probability": 0.9507 + }, + { + "start": 15827.98, + "end": 15831.6, + "probability": 0.8799 + }, + { + "start": 15832.02, + "end": 15834.68, + "probability": 0.9954 + }, + { + "start": 15835.42, + "end": 15836.84, + "probability": 0.8359 + }, + { + "start": 15837.3, + "end": 15838.6, + "probability": 0.7576 + }, + { + "start": 15838.62, + "end": 15839.8, + "probability": 0.0969 + }, + { + "start": 15839.88, + "end": 15841.92, + "probability": 0.7941 + }, + { + "start": 15841.92, + "end": 15842.32, + "probability": 0.3853 + }, + { + "start": 15842.36, + "end": 15843.7, + "probability": 0.9427 + }, + { + "start": 15843.86, + "end": 15844.78, + "probability": 0.5522 + }, + { + "start": 15844.82, + "end": 15845.38, + "probability": 0.3929 + }, + { + "start": 15845.56, + "end": 15846.4, + "probability": 0.5019 + }, + { + "start": 15846.6, + "end": 15848.26, + "probability": 0.7699 + }, + { + "start": 15849.38, + "end": 15850.8, + "probability": 0.6595 + }, + { + "start": 15851.34, + "end": 15854.46, + "probability": 0.955 + }, + { + "start": 15855.04, + "end": 15856.94, + "probability": 0.8529 + }, + { + "start": 15857.5, + "end": 15861.14, + "probability": 0.8638 + }, + { + "start": 15861.8, + "end": 15863.86, + "probability": 0.981 + }, + { + "start": 15864.04, + "end": 15864.96, + "probability": 0.9932 + }, + { + "start": 15865.4, + "end": 15866.2, + "probability": 0.739 + }, + { + "start": 15866.24, + "end": 15868.66, + "probability": 0.8505 + }, + { + "start": 15869.26, + "end": 15871.72, + "probability": 0.99 + }, + { + "start": 15872.56, + "end": 15876.82, + "probability": 0.9769 + }, + { + "start": 15877.28, + "end": 15879.44, + "probability": 0.7095 + }, + { + "start": 15880.1, + "end": 15884.3, + "probability": 0.9595 + }, + { + "start": 15884.84, + "end": 15886.18, + "probability": 0.7002 + }, + { + "start": 15886.58, + "end": 15887.13, + "probability": 0.8638 + }, + { + "start": 15887.82, + "end": 15889.14, + "probability": 0.7325 + }, + { + "start": 15889.4, + "end": 15891.2, + "probability": 0.7639 + }, + { + "start": 15891.54, + "end": 15893.49, + "probability": 0.9865 + }, + { + "start": 15894.32, + "end": 15895.4, + "probability": 0.9229 + }, + { + "start": 15896.06, + "end": 15899.24, + "probability": 0.869 + }, + { + "start": 15899.74, + "end": 15900.58, + "probability": 0.9463 + }, + { + "start": 15900.72, + "end": 15901.36, + "probability": 0.5896 + }, + { + "start": 15901.5, + "end": 15902.38, + "probability": 0.7956 + }, + { + "start": 15902.88, + "end": 15905.5, + "probability": 0.9604 + }, + { + "start": 15906.16, + "end": 15908.58, + "probability": 0.9741 + }, + { + "start": 15910.04, + "end": 15915.92, + "probability": 0.9903 + }, + { + "start": 15916.36, + "end": 15917.99, + "probability": 0.9864 + }, + { + "start": 15918.66, + "end": 15920.38, + "probability": 0.7187 + }, + { + "start": 15920.74, + "end": 15926.48, + "probability": 0.9777 + }, + { + "start": 15926.8, + "end": 15933.36, + "probability": 0.9318 + }, + { + "start": 15933.66, + "end": 15936.34, + "probability": 0.7602 + }, + { + "start": 15936.86, + "end": 15936.88, + "probability": 0.3993 + }, + { + "start": 15936.88, + "end": 15944.66, + "probability": 0.9695 + }, + { + "start": 15945.0, + "end": 15945.98, + "probability": 0.5934 + }, + { + "start": 15946.34, + "end": 15946.52, + "probability": 0.0003 + }, + { + "start": 15949.46, + "end": 15949.7, + "probability": 0.1731 + }, + { + "start": 15949.7, + "end": 15950.28, + "probability": 0.4606 + }, + { + "start": 15951.54, + "end": 15953.82, + "probability": 0.0745 + }, + { + "start": 15954.36, + "end": 15956.64, + "probability": 0.4652 + }, + { + "start": 15956.82, + "end": 15958.8, + "probability": 0.156 + }, + { + "start": 15959.22, + "end": 15959.22, + "probability": 0.038 + }, + { + "start": 15960.18, + "end": 15962.2, + "probability": 0.2758 + }, + { + "start": 15962.2, + "end": 15964.06, + "probability": 0.1201 + }, + { + "start": 15964.42, + "end": 15964.66, + "probability": 0.0312 + }, + { + "start": 15964.66, + "end": 15965.1, + "probability": 0.1596 + }, + { + "start": 15965.2, + "end": 15965.36, + "probability": 0.0065 + }, + { + "start": 15965.36, + "end": 15966.86, + "probability": 0.1449 + }, + { + "start": 15966.86, + "end": 15968.3, + "probability": 0.0501 + }, + { + "start": 15968.3, + "end": 15969.6, + "probability": 0.0791 + }, + { + "start": 15973.14, + "end": 15974.22, + "probability": 0.5399 + }, + { + "start": 15975.3, + "end": 15978.28, + "probability": 0.7795 + }, + { + "start": 15979.26, + "end": 15979.34, + "probability": 0.545 + }, + { + "start": 15979.4, + "end": 15979.66, + "probability": 0.8456 + }, + { + "start": 15979.78, + "end": 15986.02, + "probability": 0.9912 + }, + { + "start": 15986.12, + "end": 15987.52, + "probability": 0.9926 + }, + { + "start": 15987.56, + "end": 15989.8, + "probability": 0.0393 + }, + { + "start": 15989.8, + "end": 15990.62, + "probability": 0.653 + }, + { + "start": 15990.7, + "end": 15991.56, + "probability": 0.6553 + }, + { + "start": 15991.56, + "end": 15993.58, + "probability": 0.8389 + }, + { + "start": 15994.22, + "end": 15994.88, + "probability": 0.9781 + }, + { + "start": 15996.0, + "end": 16000.1, + "probability": 0.9932 + }, + { + "start": 16000.1, + "end": 16003.18, + "probability": 0.9717 + }, + { + "start": 16003.6, + "end": 16004.78, + "probability": 0.877 + }, + { + "start": 16005.88, + "end": 16009.1, + "probability": 0.9823 + }, + { + "start": 16009.16, + "end": 16014.46, + "probability": 0.9954 + }, + { + "start": 16014.72, + "end": 16016.04, + "probability": 0.9751 + }, + { + "start": 16016.14, + "end": 16016.64, + "probability": 0.7328 + }, + { + "start": 16016.68, + "end": 16017.1, + "probability": 0.5316 + }, + { + "start": 16018.3, + "end": 16018.8, + "probability": 0.9329 + }, + { + "start": 16020.16, + "end": 16021.84, + "probability": 0.991 + }, + { + "start": 16022.14, + "end": 16024.44, + "probability": 0.7878 + }, + { + "start": 16024.5, + "end": 16025.64, + "probability": 0.7017 + }, + { + "start": 16025.76, + "end": 16026.1, + "probability": 0.6387 + }, + { + "start": 16026.3, + "end": 16026.38, + "probability": 0.3643 + }, + { + "start": 16026.48, + "end": 16027.56, + "probability": 0.914 + }, + { + "start": 16028.26, + "end": 16031.68, + "probability": 0.8329 + }, + { + "start": 16031.9, + "end": 16032.54, + "probability": 0.4516 + }, + { + "start": 16032.78, + "end": 16033.72, + "probability": 0.8069 + }, + { + "start": 16034.36, + "end": 16037.12, + "probability": 0.9541 + }, + { + "start": 16037.26, + "end": 16038.02, + "probability": 0.7651 + }, + { + "start": 16039.02, + "end": 16041.36, + "probability": 0.9893 + }, + { + "start": 16041.48, + "end": 16042.7, + "probability": 0.724 + }, + { + "start": 16043.32, + "end": 16044.3, + "probability": 0.9751 + }, + { + "start": 16045.72, + "end": 16047.74, + "probability": 0.763 + }, + { + "start": 16047.88, + "end": 16048.76, + "probability": 0.6179 + }, + { + "start": 16048.86, + "end": 16051.94, + "probability": 0.9641 + }, + { + "start": 16053.38, + "end": 16053.38, + "probability": 0.0307 + }, + { + "start": 16053.38, + "end": 16056.36, + "probability": 0.9861 + }, + { + "start": 16060.21, + "end": 16061.92, + "probability": 0.8101 + }, + { + "start": 16062.03, + "end": 16063.94, + "probability": 0.8006 + }, + { + "start": 16063.94, + "end": 16065.8, + "probability": 0.7978 + }, + { + "start": 16066.66, + "end": 16067.18, + "probability": 0.9297 + }, + { + "start": 16068.18, + "end": 16068.5, + "probability": 0.9795 + }, + { + "start": 16069.7, + "end": 16074.06, + "probability": 0.9971 + }, + { + "start": 16075.16, + "end": 16075.3, + "probability": 0.4127 + }, + { + "start": 16075.48, + "end": 16077.66, + "probability": 0.8435 + }, + { + "start": 16079.28, + "end": 16083.52, + "probability": 0.9555 + }, + { + "start": 16083.52, + "end": 16085.8, + "probability": 0.9919 + }, + { + "start": 16085.88, + "end": 16087.96, + "probability": 0.8973 + }, + { + "start": 16088.44, + "end": 16088.84, + "probability": 0.2325 + }, + { + "start": 16088.88, + "end": 16089.2, + "probability": 0.559 + }, + { + "start": 16089.22, + "end": 16091.32, + "probability": 0.8505 + }, + { + "start": 16092.12, + "end": 16093.44, + "probability": 0.712 + }, + { + "start": 16093.92, + "end": 16096.66, + "probability": 0.9805 + }, + { + "start": 16096.76, + "end": 16097.96, + "probability": 0.6449 + }, + { + "start": 16100.99, + "end": 16103.64, + "probability": 0.7673 + }, + { + "start": 16103.72, + "end": 16104.47, + "probability": 0.8818 + }, + { + "start": 16104.82, + "end": 16106.5, + "probability": 0.8886 + }, + { + "start": 16106.5, + "end": 16108.88, + "probability": 0.9932 + }, + { + "start": 16109.18, + "end": 16110.64, + "probability": 0.9971 + }, + { + "start": 16110.64, + "end": 16112.52, + "probability": 0.8948 + }, + { + "start": 16113.48, + "end": 16115.88, + "probability": 0.9956 + }, + { + "start": 16115.96, + "end": 16117.59, + "probability": 0.9104 + }, + { + "start": 16118.56, + "end": 16119.38, + "probability": 0.2967 + }, + { + "start": 16121.28, + "end": 16124.36, + "probability": 0.9696 + }, + { + "start": 16124.46, + "end": 16124.96, + "probability": 0.831 + }, + { + "start": 16125.02, + "end": 16126.94, + "probability": 0.9484 + }, + { + "start": 16127.28, + "end": 16128.16, + "probability": 0.9366 + }, + { + "start": 16128.22, + "end": 16130.08, + "probability": 0.9122 + }, + { + "start": 16130.28, + "end": 16130.86, + "probability": 0.6122 + }, + { + "start": 16131.18, + "end": 16131.9, + "probability": 0.0481 + }, + { + "start": 16131.9, + "end": 16131.9, + "probability": 0.0375 + }, + { + "start": 16131.9, + "end": 16135.06, + "probability": 0.6806 + }, + { + "start": 16135.54, + "end": 16135.7, + "probability": 0.8996 + }, + { + "start": 16135.78, + "end": 16137.74, + "probability": 0.9133 + }, + { + "start": 16137.76, + "end": 16139.19, + "probability": 0.9822 + }, + { + "start": 16139.46, + "end": 16140.12, + "probability": 0.7966 + }, + { + "start": 16140.58, + "end": 16141.96, + "probability": 0.8779 + }, + { + "start": 16142.24, + "end": 16142.88, + "probability": 0.0813 + }, + { + "start": 16143.14, + "end": 16143.26, + "probability": 0.0952 + }, + { + "start": 16143.26, + "end": 16145.86, + "probability": 0.756 + }, + { + "start": 16145.92, + "end": 16146.22, + "probability": 0.6524 + }, + { + "start": 16146.28, + "end": 16148.82, + "probability": 0.8436 + }, + { + "start": 16148.9, + "end": 16149.32, + "probability": 0.6958 + }, + { + "start": 16149.98, + "end": 16152.44, + "probability": 0.7518 + }, + { + "start": 16153.08, + "end": 16154.08, + "probability": 0.5591 + }, + { + "start": 16154.1, + "end": 16158.84, + "probability": 0.9351 + }, + { + "start": 16158.88, + "end": 16159.43, + "probability": 0.894 + }, + { + "start": 16160.2, + "end": 16162.32, + "probability": 0.8461 + }, + { + "start": 16162.36, + "end": 16162.72, + "probability": 0.9614 + }, + { + "start": 16163.47, + "end": 16164.9, + "probability": 0.8049 + }, + { + "start": 16165.7, + "end": 16166.42, + "probability": 0.8379 + }, + { + "start": 16166.5, + "end": 16166.64, + "probability": 0.8768 + }, + { + "start": 16166.72, + "end": 16167.58, + "probability": 0.9766 + }, + { + "start": 16168.02, + "end": 16168.14, + "probability": 0.342 + }, + { + "start": 16168.48, + "end": 16169.78, + "probability": 0.7477 + }, + { + "start": 16169.86, + "end": 16170.8, + "probability": 0.9092 + }, + { + "start": 16171.02, + "end": 16172.98, + "probability": 0.9133 + }, + { + "start": 16173.18, + "end": 16174.5, + "probability": 0.9551 + }, + { + "start": 16174.64, + "end": 16174.72, + "probability": 0.7364 + }, + { + "start": 16174.78, + "end": 16175.56, + "probability": 0.8294 + }, + { + "start": 16176.26, + "end": 16178.54, + "probability": 0.7878 + }, + { + "start": 16178.54, + "end": 16180.14, + "probability": 0.9386 + }, + { + "start": 16180.42, + "end": 16182.02, + "probability": 0.946 + }, + { + "start": 16182.04, + "end": 16183.54, + "probability": 0.7793 + }, + { + "start": 16183.64, + "end": 16183.86, + "probability": 0.8268 + }, + { + "start": 16184.32, + "end": 16186.96, + "probability": 0.9683 + }, + { + "start": 16186.96, + "end": 16187.78, + "probability": 0.9606 + }, + { + "start": 16187.82, + "end": 16190.28, + "probability": 0.9929 + }, + { + "start": 16190.32, + "end": 16190.64, + "probability": 0.9673 + }, + { + "start": 16190.98, + "end": 16192.48, + "probability": 0.9662 + }, + { + "start": 16192.9, + "end": 16195.22, + "probability": 0.8228 + }, + { + "start": 16195.24, + "end": 16195.97, + "probability": 0.9961 + }, + { + "start": 16196.4, + "end": 16199.34, + "probability": 0.9939 + }, + { + "start": 16200.26, + "end": 16201.6, + "probability": 0.9076 + }, + { + "start": 16201.68, + "end": 16202.26, + "probability": 0.5489 + }, + { + "start": 16202.36, + "end": 16202.54, + "probability": 0.543 + }, + { + "start": 16202.58, + "end": 16203.32, + "probability": 0.7311 + }, + { + "start": 16203.34, + "end": 16203.94, + "probability": 0.9932 + }, + { + "start": 16204.02, + "end": 16204.64, + "probability": 0.7394 + }, + { + "start": 16205.12, + "end": 16207.2, + "probability": 0.6578 + }, + { + "start": 16207.26, + "end": 16208.42, + "probability": 0.4942 + }, + { + "start": 16208.48, + "end": 16208.68, + "probability": 0.6832 + }, + { + "start": 16208.92, + "end": 16210.32, + "probability": 0.739 + }, + { + "start": 16210.34, + "end": 16210.78, + "probability": 0.6523 + }, + { + "start": 16211.5, + "end": 16215.88, + "probability": 0.9888 + }, + { + "start": 16215.96, + "end": 16216.04, + "probability": 0.2916 + }, + { + "start": 16216.2, + "end": 16216.94, + "probability": 0.6878 + }, + { + "start": 16217.0, + "end": 16219.26, + "probability": 0.9446 + }, + { + "start": 16219.7, + "end": 16220.42, + "probability": 0.5272 + }, + { + "start": 16220.54, + "end": 16220.68, + "probability": 0.7217 + }, + { + "start": 16220.86, + "end": 16221.32, + "probability": 0.9281 + }, + { + "start": 16221.56, + "end": 16221.8, + "probability": 0.8599 + }, + { + "start": 16221.92, + "end": 16223.2, + "probability": 0.8054 + }, + { + "start": 16223.28, + "end": 16223.38, + "probability": 0.5063 + }, + { + "start": 16223.92, + "end": 16226.22, + "probability": 0.937 + }, + { + "start": 16226.22, + "end": 16229.46, + "probability": 0.9991 + }, + { + "start": 16229.96, + "end": 16231.78, + "probability": 0.6738 + }, + { + "start": 16231.86, + "end": 16233.66, + "probability": 0.7031 + }, + { + "start": 16234.32, + "end": 16235.1, + "probability": 0.7064 + }, + { + "start": 16235.18, + "end": 16235.56, + "probability": 0.2901 + }, + { + "start": 16235.66, + "end": 16238.78, + "probability": 0.7209 + }, + { + "start": 16238.84, + "end": 16239.82, + "probability": 0.885 + }, + { + "start": 16240.22, + "end": 16241.22, + "probability": 0.9829 + }, + { + "start": 16241.62, + "end": 16243.06, + "probability": 0.7354 + }, + { + "start": 16243.08, + "end": 16244.0, + "probability": 0.74 + }, + { + "start": 16244.32, + "end": 16244.88, + "probability": 0.7811 + }, + { + "start": 16245.38, + "end": 16248.1, + "probability": 0.845 + }, + { + "start": 16248.16, + "end": 16248.86, + "probability": 0.61 + }, + { + "start": 16249.1, + "end": 16250.2, + "probability": 0.9958 + }, + { + "start": 16250.52, + "end": 16250.76, + "probability": 0.6861 + }, + { + "start": 16250.82, + "end": 16251.3, + "probability": 0.6857 + }, + { + "start": 16251.68, + "end": 16254.14, + "probability": 0.9912 + }, + { + "start": 16254.22, + "end": 16256.22, + "probability": 0.9883 + }, + { + "start": 16256.5, + "end": 16257.48, + "probability": 0.9587 + }, + { + "start": 16258.08, + "end": 16259.26, + "probability": 0.9614 + }, + { + "start": 16259.74, + "end": 16262.54, + "probability": 0.876 + }, + { + "start": 16263.06, + "end": 16267.92, + "probability": 0.9506 + }, + { + "start": 16268.24, + "end": 16269.44, + "probability": 0.9346 + }, + { + "start": 16269.52, + "end": 16270.96, + "probability": 0.9825 + }, + { + "start": 16271.02, + "end": 16273.84, + "probability": 0.9977 + }, + { + "start": 16273.92, + "end": 16274.26, + "probability": 0.5929 + }, + { + "start": 16274.6, + "end": 16276.56, + "probability": 0.6021 + }, + { + "start": 16276.86, + "end": 16279.0, + "probability": 0.4563 + }, + { + "start": 16279.46, + "end": 16280.42, + "probability": 0.7417 + }, + { + "start": 16281.06, + "end": 16281.96, + "probability": 0.114 + }, + { + "start": 16284.38, + "end": 16285.9, + "probability": 0.0526 + }, + { + "start": 16285.9, + "end": 16287.44, + "probability": 0.0416 + }, + { + "start": 16287.44, + "end": 16287.5, + "probability": 0.0747 + }, + { + "start": 16287.62, + "end": 16288.92, + "probability": 0.2761 + }, + { + "start": 16289.48, + "end": 16291.9, + "probability": 0.4185 + }, + { + "start": 16292.22, + "end": 16293.35, + "probability": 0.6373 + }, + { + "start": 16294.1, + "end": 16296.4, + "probability": 0.7571 + }, + { + "start": 16297.74, + "end": 16298.76, + "probability": 0.9508 + }, + { + "start": 16299.16, + "end": 16299.64, + "probability": 0.9408 + }, + { + "start": 16299.84, + "end": 16301.14, + "probability": 0.9922 + }, + { + "start": 16301.64, + "end": 16303.5, + "probability": 0.9946 + }, + { + "start": 16303.86, + "end": 16304.6, + "probability": 0.5942 + }, + { + "start": 16304.94, + "end": 16305.7, + "probability": 0.9846 + }, + { + "start": 16306.68, + "end": 16312.04, + "probability": 0.967 + }, + { + "start": 16312.18, + "end": 16318.68, + "probability": 0.9677 + }, + { + "start": 16319.36, + "end": 16321.1, + "probability": 0.913 + }, + { + "start": 16321.7, + "end": 16323.78, + "probability": 0.983 + }, + { + "start": 16324.1, + "end": 16324.68, + "probability": 0.8599 + }, + { + "start": 16325.08, + "end": 16325.38, + "probability": 0.9771 + }, + { + "start": 16326.22, + "end": 16326.46, + "probability": 0.942 + }, + { + "start": 16327.06, + "end": 16327.36, + "probability": 0.799 + }, + { + "start": 16328.58, + "end": 16329.26, + "probability": 0.8814 + }, + { + "start": 16330.12, + "end": 16331.58, + "probability": 0.9617 + }, + { + "start": 16331.72, + "end": 16333.2, + "probability": 0.8195 + }, + { + "start": 16334.14, + "end": 16336.2, + "probability": 0.4932 + }, + { + "start": 16337.24, + "end": 16340.22, + "probability": 0.8752 + }, + { + "start": 16340.62, + "end": 16342.8, + "probability": 0.9905 + }, + { + "start": 16342.84, + "end": 16344.08, + "probability": 0.8711 + }, + { + "start": 16344.08, + "end": 16346.06, + "probability": 0.9773 + }, + { + "start": 16346.42, + "end": 16347.3, + "probability": 0.8807 + }, + { + "start": 16347.44, + "end": 16348.62, + "probability": 0.9768 + }, + { + "start": 16348.74, + "end": 16350.16, + "probability": 0.8779 + }, + { + "start": 16350.42, + "end": 16354.88, + "probability": 0.9851 + }, + { + "start": 16355.06, + "end": 16355.9, + "probability": 0.8571 + }, + { + "start": 16356.56, + "end": 16357.13, + "probability": 0.8555 + }, + { + "start": 16357.92, + "end": 16361.12, + "probability": 0.9414 + }, + { + "start": 16361.46, + "end": 16361.9, + "probability": 0.6744 + }, + { + "start": 16361.98, + "end": 16362.68, + "probability": 0.6665 + }, + { + "start": 16362.78, + "end": 16363.02, + "probability": 0.0256 + }, + { + "start": 16363.04, + "end": 16364.36, + "probability": 0.6113 + }, + { + "start": 16364.64, + "end": 16365.46, + "probability": 0.9753 + }, + { + "start": 16365.6, + "end": 16366.02, + "probability": 0.7093 + }, + { + "start": 16366.5, + "end": 16370.38, + "probability": 0.7583 + }, + { + "start": 16370.88, + "end": 16371.4, + "probability": 0.6435 + }, + { + "start": 16371.52, + "end": 16374.18, + "probability": 0.9244 + }, + { + "start": 16376.4, + "end": 16376.76, + "probability": 0.273 + }, + { + "start": 16376.76, + "end": 16378.26, + "probability": 0.6589 + }, + { + "start": 16378.4, + "end": 16379.52, + "probability": 0.7931 + }, + { + "start": 16379.56, + "end": 16380.16, + "probability": 0.5169 + }, + { + "start": 16380.24, + "end": 16380.98, + "probability": 0.5696 + }, + { + "start": 16381.68, + "end": 16383.36, + "probability": 0.8342 + }, + { + "start": 16383.46, + "end": 16384.76, + "probability": 0.8741 + }, + { + "start": 16384.88, + "end": 16385.1, + "probability": 0.6554 + }, + { + "start": 16385.28, + "end": 16386.18, + "probability": 0.6132 + }, + { + "start": 16386.4, + "end": 16389.96, + "probability": 0.9909 + }, + { + "start": 16390.22, + "end": 16391.84, + "probability": 0.7065 + }, + { + "start": 16391.92, + "end": 16393.08, + "probability": 0.9777 + }, + { + "start": 16393.84, + "end": 16397.8, + "probability": 0.9918 + }, + { + "start": 16398.32, + "end": 16404.12, + "probability": 0.8823 + }, + { + "start": 16404.18, + "end": 16405.8, + "probability": 0.8348 + }, + { + "start": 16405.94, + "end": 16406.58, + "probability": 0.8078 + }, + { + "start": 16407.34, + "end": 16409.64, + "probability": 0.9888 + }, + { + "start": 16409.88, + "end": 16410.88, + "probability": 0.7792 + }, + { + "start": 16411.2, + "end": 16412.2, + "probability": 0.8914 + }, + { + "start": 16412.4, + "end": 16413.2, + "probability": 0.965 + }, + { + "start": 16413.24, + "end": 16414.3, + "probability": 0.803 + }, + { + "start": 16414.46, + "end": 16415.16, + "probability": 0.8235 + }, + { + "start": 16415.84, + "end": 16416.7, + "probability": 0.8444 + }, + { + "start": 16416.7, + "end": 16417.68, + "probability": 0.8777 + }, + { + "start": 16417.78, + "end": 16418.75, + "probability": 0.8343 + }, + { + "start": 16420.26, + "end": 16422.0, + "probability": 0.7268 + }, + { + "start": 16422.14, + "end": 16422.64, + "probability": 0.9229 + }, + { + "start": 16423.52, + "end": 16428.56, + "probability": 0.9858 + }, + { + "start": 16429.52, + "end": 16431.68, + "probability": 0.9951 + }, + { + "start": 16431.86, + "end": 16435.42, + "probability": 0.9795 + }, + { + "start": 16435.64, + "end": 16437.28, + "probability": 0.9851 + }, + { + "start": 16437.46, + "end": 16439.08, + "probability": 0.9112 + }, + { + "start": 16439.76, + "end": 16442.76, + "probability": 0.8278 + }, + { + "start": 16443.9, + "end": 16446.28, + "probability": 0.8792 + }, + { + "start": 16446.4, + "end": 16447.2, + "probability": 0.9675 + }, + { + "start": 16447.26, + "end": 16452.42, + "probability": 0.9517 + }, + { + "start": 16453.7, + "end": 16455.22, + "probability": 0.7138 + }, + { + "start": 16455.24, + "end": 16457.22, + "probability": 0.9818 + }, + { + "start": 16457.36, + "end": 16459.06, + "probability": 0.8926 + }, + { + "start": 16459.96, + "end": 16460.44, + "probability": 0.9102 + }, + { + "start": 16460.48, + "end": 16461.16, + "probability": 0.9723 + }, + { + "start": 16461.22, + "end": 16464.94, + "probability": 0.9106 + }, + { + "start": 16465.06, + "end": 16465.86, + "probability": 0.981 + }, + { + "start": 16465.96, + "end": 16469.0, + "probability": 0.996 + }, + { + "start": 16469.52, + "end": 16471.78, + "probability": 0.9268 + }, + { + "start": 16472.42, + "end": 16472.98, + "probability": 0.5347 + }, + { + "start": 16474.34, + "end": 16474.78, + "probability": 0.0171 + }, + { + "start": 16475.94, + "end": 16478.12, + "probability": 0.6937 + }, + { + "start": 16478.22, + "end": 16480.24, + "probability": 0.9752 + }, + { + "start": 16480.56, + "end": 16482.76, + "probability": 0.0377 + }, + { + "start": 16482.98, + "end": 16484.78, + "probability": 0.3573 + }, + { + "start": 16485.18, + "end": 16487.1, + "probability": 0.8615 + }, + { + "start": 16487.2, + "end": 16487.98, + "probability": 0.6451 + }, + { + "start": 16488.0, + "end": 16489.26, + "probability": 0.7691 + }, + { + "start": 16489.68, + "end": 16495.48, + "probability": 0.7749 + }, + { + "start": 16495.68, + "end": 16495.86, + "probability": 0.0979 + }, + { + "start": 16495.86, + "end": 16495.92, + "probability": 0.1271 + }, + { + "start": 16496.18, + "end": 16496.97, + "probability": 0.143 + }, + { + "start": 16498.24, + "end": 16502.36, + "probability": 0.887 + }, + { + "start": 16502.52, + "end": 16503.6, + "probability": 0.7177 + }, + { + "start": 16503.9, + "end": 16503.9, + "probability": 0.0872 + }, + { + "start": 16503.9, + "end": 16504.98, + "probability": 0.7668 + }, + { + "start": 16505.38, + "end": 16507.04, + "probability": 0.8688 + }, + { + "start": 16507.2, + "end": 16512.54, + "probability": 0.7862 + }, + { + "start": 16513.14, + "end": 16516.41, + "probability": 0.9581 + }, + { + "start": 16516.84, + "end": 16519.85, + "probability": 0.9507 + }, + { + "start": 16520.42, + "end": 16523.7, + "probability": 0.8062 + }, + { + "start": 16524.06, + "end": 16524.99, + "probability": 0.9446 + }, + { + "start": 16526.64, + "end": 16529.88, + "probability": 0.9702 + }, + { + "start": 16530.02, + "end": 16531.3, + "probability": 0.8729 + }, + { + "start": 16531.72, + "end": 16533.76, + "probability": 0.9149 + }, + { + "start": 16533.88, + "end": 16534.46, + "probability": 0.8303 + }, + { + "start": 16534.84, + "end": 16535.9, + "probability": 0.8434 + }, + { + "start": 16536.1, + "end": 16536.7, + "probability": 0.3558 + }, + { + "start": 16536.76, + "end": 16538.4, + "probability": 0.948 + }, + { + "start": 16538.44, + "end": 16539.42, + "probability": 0.8849 + }, + { + "start": 16539.46, + "end": 16541.2, + "probability": 0.8593 + }, + { + "start": 16541.66, + "end": 16543.8, + "probability": 0.8064 + }, + { + "start": 16544.24, + "end": 16546.04, + "probability": 0.9932 + }, + { + "start": 16546.12, + "end": 16547.44, + "probability": 0.9002 + }, + { + "start": 16548.38, + "end": 16548.72, + "probability": 0.8639 + }, + { + "start": 16548.86, + "end": 16549.34, + "probability": 0.7571 + }, + { + "start": 16549.44, + "end": 16551.3, + "probability": 0.89 + }, + { + "start": 16551.4, + "end": 16555.34, + "probability": 0.9935 + }, + { + "start": 16555.84, + "end": 16556.79, + "probability": 0.8984 + }, + { + "start": 16557.38, + "end": 16557.6, + "probability": 0.6316 + }, + { + "start": 16559.69, + "end": 16562.54, + "probability": 0.395 + }, + { + "start": 16562.54, + "end": 16562.74, + "probability": 0.1304 + }, + { + "start": 16562.74, + "end": 16562.78, + "probability": 0.6425 + }, + { + "start": 16563.12, + "end": 16565.46, + "probability": 0.6139 + }, + { + "start": 16565.46, + "end": 16567.36, + "probability": 0.3464 + }, + { + "start": 16567.62, + "end": 16571.58, + "probability": 0.8105 + }, + { + "start": 16571.6, + "end": 16573.28, + "probability": 0.9722 + }, + { + "start": 16573.32, + "end": 16576.6, + "probability": 0.3471 + }, + { + "start": 16576.88, + "end": 16578.08, + "probability": 0.5683 + }, + { + "start": 16578.2, + "end": 16579.1, + "probability": 0.6399 + }, + { + "start": 16579.36, + "end": 16579.36, + "probability": 0.0023 + }, + { + "start": 16579.84, + "end": 16581.56, + "probability": 0.0384 + }, + { + "start": 16582.16, + "end": 16582.42, + "probability": 0.1448 + }, + { + "start": 16582.5, + "end": 16585.82, + "probability": 0.6676 + }, + { + "start": 16587.02, + "end": 16590.78, + "probability": 0.7644 + }, + { + "start": 16592.76, + "end": 16592.76, + "probability": 0.0116 + }, + { + "start": 16593.96, + "end": 16595.7, + "probability": 0.0962 + }, + { + "start": 16596.34, + "end": 16598.4, + "probability": 0.0334 + }, + { + "start": 16599.02, + "end": 16599.4, + "probability": 0.3369 + }, + { + "start": 16600.39, + "end": 16602.6, + "probability": 0.7925 + }, + { + "start": 16602.66, + "end": 16603.32, + "probability": 0.9515 + }, + { + "start": 16603.42, + "end": 16604.16, + "probability": 0.6453 + }, + { + "start": 16604.44, + "end": 16605.92, + "probability": 0.8337 + }, + { + "start": 16608.76, + "end": 16611.42, + "probability": 0.7925 + }, + { + "start": 16611.42, + "end": 16612.08, + "probability": 0.4014 + }, + { + "start": 16612.08, + "end": 16612.74, + "probability": 0.7183 + }, + { + "start": 16612.86, + "end": 16614.04, + "probability": 0.998 + }, + { + "start": 16614.32, + "end": 16617.26, + "probability": 0.9901 + }, + { + "start": 16619.3, + "end": 16622.38, + "probability": 0.6938 + }, + { + "start": 16623.86, + "end": 16624.78, + "probability": 0.8952 + }, + { + "start": 16626.62, + "end": 16629.68, + "probability": 0.9723 + }, + { + "start": 16629.8, + "end": 16631.04, + "probability": 0.5974 + }, + { + "start": 16631.36, + "end": 16631.82, + "probability": 0.9015 + }, + { + "start": 16632.24, + "end": 16634.04, + "probability": 0.9485 + }, + { + "start": 16634.12, + "end": 16635.94, + "probability": 0.7255 + }, + { + "start": 16636.3, + "end": 16640.22, + "probability": 0.8277 + }, + { + "start": 16640.4, + "end": 16640.4, + "probability": 0.0142 + }, + { + "start": 16640.4, + "end": 16642.26, + "probability": 0.3707 + }, + { + "start": 16642.26, + "end": 16642.88, + "probability": 0.1686 + }, + { + "start": 16643.0, + "end": 16643.8, + "probability": 0.3726 + }, + { + "start": 16645.68, + "end": 16645.96, + "probability": 0.1128 + }, + { + "start": 16646.06, + "end": 16646.08, + "probability": 0.4845 + }, + { + "start": 16646.08, + "end": 16646.38, + "probability": 0.5403 + }, + { + "start": 16646.82, + "end": 16646.96, + "probability": 0.4068 + }, + { + "start": 16646.96, + "end": 16647.38, + "probability": 0.5767 + }, + { + "start": 16647.42, + "end": 16647.64, + "probability": 0.5765 + }, + { + "start": 16647.68, + "end": 16650.08, + "probability": 0.9396 + }, + { + "start": 16650.4, + "end": 16652.79, + "probability": 0.7261 + }, + { + "start": 16653.5, + "end": 16655.64, + "probability": 0.9401 + }, + { + "start": 16656.6, + "end": 16657.26, + "probability": 0.8342 + }, + { + "start": 16662.36, + "end": 16665.22, + "probability": 0.6846 + }, + { + "start": 16666.1, + "end": 16669.2, + "probability": 0.9054 + }, + { + "start": 16670.0, + "end": 16671.28, + "probability": 0.8142 + }, + { + "start": 16671.32, + "end": 16672.12, + "probability": 0.6831 + }, + { + "start": 16672.28, + "end": 16672.8, + "probability": 0.8898 + }, + { + "start": 16674.1, + "end": 16674.52, + "probability": 0.9785 + }, + { + "start": 16676.5, + "end": 16676.54, + "probability": 0.0772 + }, + { + "start": 16676.54, + "end": 16677.68, + "probability": 0.5399 + }, + { + "start": 16678.96, + "end": 16680.42, + "probability": 0.9958 + }, + { + "start": 16680.98, + "end": 16682.14, + "probability": 0.9935 + }, + { + "start": 16683.12, + "end": 16683.96, + "probability": 0.6149 + }, + { + "start": 16684.04, + "end": 16687.22, + "probability": 0.9419 + }, + { + "start": 16687.92, + "end": 16689.08, + "probability": 0.9941 + }, + { + "start": 16690.3, + "end": 16697.2, + "probability": 0.9814 + }, + { + "start": 16698.02, + "end": 16700.52, + "probability": 0.8813 + }, + { + "start": 16701.12, + "end": 16706.9, + "probability": 0.9934 + }, + { + "start": 16707.42, + "end": 16709.48, + "probability": 0.9224 + }, + { + "start": 16710.78, + "end": 16712.06, + "probability": 0.9828 + }, + { + "start": 16712.76, + "end": 16713.52, + "probability": 0.8616 + }, + { + "start": 16714.16, + "end": 16715.04, + "probability": 0.4889 + }, + { + "start": 16715.88, + "end": 16717.67, + "probability": 0.8085 + }, + { + "start": 16718.42, + "end": 16719.26, + "probability": 0.6499 + }, + { + "start": 16720.38, + "end": 16725.28, + "probability": 0.9909 + }, + { + "start": 16725.28, + "end": 16730.94, + "probability": 0.6036 + }, + { + "start": 16731.78, + "end": 16733.96, + "probability": 0.9149 + }, + { + "start": 16735.5, + "end": 16736.64, + "probability": 0.6807 + }, + { + "start": 16737.76, + "end": 16738.7, + "probability": 0.8708 + }, + { + "start": 16739.72, + "end": 16741.06, + "probability": 0.9062 + }, + { + "start": 16742.74, + "end": 16749.16, + "probability": 0.981 + }, + { + "start": 16753.4, + "end": 16754.52, + "probability": 0.99 + }, + { + "start": 16755.54, + "end": 16758.74, + "probability": 0.9993 + }, + { + "start": 16759.54, + "end": 16760.6, + "probability": 0.9696 + }, + { + "start": 16761.36, + "end": 16763.7, + "probability": 0.7751 + }, + { + "start": 16764.26, + "end": 16766.86, + "probability": 0.9974 + }, + { + "start": 16767.12, + "end": 16768.16, + "probability": 0.9301 + }, + { + "start": 16768.6, + "end": 16771.84, + "probability": 0.9882 + }, + { + "start": 16773.04, + "end": 16774.48, + "probability": 0.8404 + }, + { + "start": 16774.7, + "end": 16778.0, + "probability": 0.9491 + }, + { + "start": 16778.26, + "end": 16779.26, + "probability": 0.7433 + }, + { + "start": 16780.18, + "end": 16784.34, + "probability": 0.9633 + }, + { + "start": 16785.32, + "end": 16789.6, + "probability": 0.9928 + }, + { + "start": 16790.54, + "end": 16792.56, + "probability": 0.9413 + }, + { + "start": 16793.04, + "end": 16796.96, + "probability": 0.8597 + }, + { + "start": 16798.18, + "end": 16803.54, + "probability": 0.9951 + }, + { + "start": 16804.96, + "end": 16808.2, + "probability": 0.9209 + }, + { + "start": 16808.7, + "end": 16809.7, + "probability": 0.8443 + }, + { + "start": 16810.14, + "end": 16815.44, + "probability": 0.8645 + }, + { + "start": 16816.42, + "end": 16818.44, + "probability": 0.9765 + }, + { + "start": 16819.56, + "end": 16821.56, + "probability": 0.9134 + }, + { + "start": 16822.22, + "end": 16824.16, + "probability": 0.9733 + }, + { + "start": 16824.92, + "end": 16827.38, + "probability": 0.9901 + }, + { + "start": 16828.66, + "end": 16831.62, + "probability": 0.9053 + }, + { + "start": 16832.5, + "end": 16834.6, + "probability": 0.9414 + }, + { + "start": 16836.12, + "end": 16841.76, + "probability": 0.9567 + }, + { + "start": 16842.28, + "end": 16844.82, + "probability": 0.9863 + }, + { + "start": 16845.86, + "end": 16848.32, + "probability": 0.9954 + }, + { + "start": 16849.2, + "end": 16856.74, + "probability": 0.9661 + }, + { + "start": 16857.78, + "end": 16858.28, + "probability": 0.8542 + }, + { + "start": 16859.44, + "end": 16862.26, + "probability": 0.9819 + }, + { + "start": 16863.18, + "end": 16866.08, + "probability": 0.9722 + }, + { + "start": 16867.42, + "end": 16870.28, + "probability": 0.995 + }, + { + "start": 16871.12, + "end": 16871.62, + "probability": 0.981 + }, + { + "start": 16872.66, + "end": 16874.12, + "probability": 0.9494 + }, + { + "start": 16874.66, + "end": 16878.96, + "probability": 0.9618 + }, + { + "start": 16880.04, + "end": 16881.32, + "probability": 0.9686 + }, + { + "start": 16882.54, + "end": 16884.3, + "probability": 0.9966 + }, + { + "start": 16884.38, + "end": 16885.6, + "probability": 0.498 + }, + { + "start": 16887.36, + "end": 16890.38, + "probability": 0.957 + }, + { + "start": 16891.26, + "end": 16893.34, + "probability": 0.9417 + }, + { + "start": 16894.36, + "end": 16895.27, + "probability": 0.9729 + }, + { + "start": 16896.12, + "end": 16898.74, + "probability": 0.9805 + }, + { + "start": 16898.88, + "end": 16902.92, + "probability": 0.9846 + }, + { + "start": 16904.3, + "end": 16908.6, + "probability": 0.9899 + }, + { + "start": 16909.4, + "end": 16910.34, + "probability": 0.9238 + }, + { + "start": 16911.1, + "end": 16912.82, + "probability": 0.963 + }, + { + "start": 16913.48, + "end": 16918.16, + "probability": 0.9897 + }, + { + "start": 16918.98, + "end": 16919.92, + "probability": 0.8411 + }, + { + "start": 16920.72, + "end": 16924.2, + "probability": 0.9335 + }, + { + "start": 16925.26, + "end": 16927.34, + "probability": 0.7482 + }, + { + "start": 16927.92, + "end": 16928.58, + "probability": 0.7967 + }, + { + "start": 16929.42, + "end": 16929.78, + "probability": 0.8693 + }, + { + "start": 16931.02, + "end": 16933.5, + "probability": 0.8154 + }, + { + "start": 16935.5, + "end": 16936.28, + "probability": 0.8033 + }, + { + "start": 16937.14, + "end": 16939.6, + "probability": 0.983 + }, + { + "start": 16940.76, + "end": 16947.58, + "probability": 0.9891 + }, + { + "start": 16948.16, + "end": 16949.68, + "probability": 0.7852 + }, + { + "start": 16950.34, + "end": 16951.64, + "probability": 0.8458 + }, + { + "start": 16952.38, + "end": 16953.9, + "probability": 0.9927 + }, + { + "start": 16955.22, + "end": 16957.74, + "probability": 0.9396 + }, + { + "start": 16958.54, + "end": 16962.14, + "probability": 0.9287 + }, + { + "start": 16963.14, + "end": 16964.86, + "probability": 0.9908 + }, + { + "start": 16965.68, + "end": 16966.86, + "probability": 0.9744 + }, + { + "start": 16967.04, + "end": 16969.58, + "probability": 0.9917 + }, + { + "start": 16970.52, + "end": 16970.88, + "probability": 0.9483 + }, + { + "start": 16971.54, + "end": 16972.42, + "probability": 0.3922 + }, + { + "start": 16972.48, + "end": 16972.5, + "probability": 0.3959 + }, + { + "start": 16972.5, + "end": 16972.5, + "probability": 0.6623 + }, + { + "start": 16972.5, + "end": 16973.24, + "probability": 0.2532 + }, + { + "start": 16973.32, + "end": 16974.24, + "probability": 0.9921 + }, + { + "start": 16974.88, + "end": 16976.5, + "probability": 0.9218 + }, + { + "start": 16976.64, + "end": 16977.3, + "probability": 0.9912 + }, + { + "start": 16977.96, + "end": 16978.58, + "probability": 0.016 + }, + { + "start": 16981.06, + "end": 16981.8, + "probability": 0.024 + }, + { + "start": 16981.8, + "end": 16983.34, + "probability": 0.1063 + }, + { + "start": 16983.56, + "end": 16984.47, + "probability": 0.354 + }, + { + "start": 16985.2, + "end": 16986.28, + "probability": 0.2493 + }, + { + "start": 16986.36, + "end": 16988.8, + "probability": 0.6542 + }, + { + "start": 16988.88, + "end": 16989.32, + "probability": 0.3763 + }, + { + "start": 16989.68, + "end": 16991.06, + "probability": 0.0939 + }, + { + "start": 16993.58, + "end": 16994.06, + "probability": 0.0391 + }, + { + "start": 16994.06, + "end": 16994.4, + "probability": 0.0621 + }, + { + "start": 16994.56, + "end": 16994.58, + "probability": 0.2723 + }, + { + "start": 16994.6, + "end": 16996.34, + "probability": 0.608 + }, + { + "start": 16997.42, + "end": 17000.9, + "probability": 0.7724 + }, + { + "start": 17001.22, + "end": 17003.72, + "probability": 0.97 + }, + { + "start": 17004.48, + "end": 17007.02, + "probability": 0.9972 + }, + { + "start": 17007.68, + "end": 17009.48, + "probability": 0.8173 + }, + { + "start": 17010.3, + "end": 17012.6, + "probability": 0.6366 + }, + { + "start": 17013.02, + "end": 17016.54, + "probability": 0.7543 + }, + { + "start": 17017.14, + "end": 17020.22, + "probability": 0.9551 + }, + { + "start": 17020.94, + "end": 17024.5, + "probability": 0.9955 + }, + { + "start": 17025.8, + "end": 17031.96, + "probability": 0.9854 + }, + { + "start": 17032.78, + "end": 17034.72, + "probability": 0.7555 + }, + { + "start": 17035.48, + "end": 17038.16, + "probability": 0.7078 + }, + { + "start": 17038.92, + "end": 17045.9, + "probability": 0.7127 + }, + { + "start": 17046.5, + "end": 17047.8, + "probability": 0.7307 + }, + { + "start": 17051.12, + "end": 17053.08, + "probability": 0.1678 + }, + { + "start": 17054.06, + "end": 17054.06, + "probability": 0.0494 + }, + { + "start": 17054.06, + "end": 17055.22, + "probability": 0.0622 + }, + { + "start": 17056.16, + "end": 17059.04, + "probability": 0.7911 + }, + { + "start": 17059.48, + "end": 17060.42, + "probability": 0.7274 + }, + { + "start": 17060.82, + "end": 17063.1, + "probability": 0.9955 + }, + { + "start": 17064.38, + "end": 17067.86, + "probability": 0.8601 + }, + { + "start": 17068.32, + "end": 17070.0, + "probability": 0.8415 + }, + { + "start": 17070.08, + "end": 17070.8, + "probability": 0.7583 + }, + { + "start": 17070.92, + "end": 17074.76, + "probability": 0.9574 + }, + { + "start": 17076.1, + "end": 17076.82, + "probability": 0.917 + }, + { + "start": 17078.04, + "end": 17079.46, + "probability": 0.9303 + }, + { + "start": 17079.86, + "end": 17084.24, + "probability": 0.9017 + }, + { + "start": 17084.6, + "end": 17084.6, + "probability": 0.0962 + }, + { + "start": 17085.8, + "end": 17088.86, + "probability": 0.1789 + }, + { + "start": 17088.86, + "end": 17096.26, + "probability": 0.8219 + }, + { + "start": 17096.86, + "end": 17097.22, + "probability": 0.3803 + }, + { + "start": 17097.8, + "end": 17100.06, + "probability": 0.2711 + }, + { + "start": 17100.18, + "end": 17103.56, + "probability": 0.1945 + }, + { + "start": 17105.44, + "end": 17108.54, + "probability": 0.1825 + }, + { + "start": 17108.84, + "end": 17111.66, + "probability": 0.4966 + }, + { + "start": 17112.98, + "end": 17114.08, + "probability": 0.0152 + }, + { + "start": 17114.5, + "end": 17115.5, + "probability": 0.0735 + }, + { + "start": 17117.8, + "end": 17118.0, + "probability": 0.4644 + }, + { + "start": 17118.0, + "end": 17120.32, + "probability": 0.0321 + }, + { + "start": 17121.22, + "end": 17124.08, + "probability": 0.4328 + }, + { + "start": 17125.04, + "end": 17127.64, + "probability": 0.033 + }, + { + "start": 17127.98, + "end": 17129.35, + "probability": 0.2107 + }, + { + "start": 17129.38, + "end": 17131.18, + "probability": 0.022 + }, + { + "start": 17131.86, + "end": 17134.14, + "probability": 0.2914 + }, + { + "start": 17134.18, + "end": 17134.42, + "probability": 0.1416 + }, + { + "start": 17135.58, + "end": 17139.16, + "probability": 0.3435 + }, + { + "start": 17141.24, + "end": 17141.34, + "probability": 0.0186 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.0, + "end": 17193.0, + "probability": 0.0 + }, + { + "start": 17193.16, + "end": 17193.2, + "probability": 0.102 + }, + { + "start": 17193.2, + "end": 17193.3, + "probability": 0.0801 + }, + { + "start": 17193.84, + "end": 17197.14, + "probability": 0.6977 + }, + { + "start": 17197.64, + "end": 17200.12, + "probability": 0.8406 + }, + { + "start": 17200.66, + "end": 17204.68, + "probability": 0.9929 + }, + { + "start": 17204.86, + "end": 17205.26, + "probability": 0.2759 + }, + { + "start": 17205.42, + "end": 17206.1, + "probability": 0.7015 + }, + { + "start": 17206.36, + "end": 17208.8, + "probability": 0.9867 + }, + { + "start": 17208.86, + "end": 17209.38, + "probability": 0.8059 + }, + { + "start": 17209.9, + "end": 17210.38, + "probability": 0.6317 + }, + { + "start": 17210.62, + "end": 17210.82, + "probability": 0.5894 + }, + { + "start": 17211.48, + "end": 17213.83, + "probability": 0.8824 + }, + { + "start": 17232.38, + "end": 17233.42, + "probability": 0.726 + }, + { + "start": 17234.2, + "end": 17236.36, + "probability": 0.8645 + }, + { + "start": 17237.82, + "end": 17240.8, + "probability": 0.9746 + }, + { + "start": 17241.72, + "end": 17243.09, + "probability": 0.9934 + }, + { + "start": 17243.96, + "end": 17244.92, + "probability": 0.8215 + }, + { + "start": 17246.6, + "end": 17249.2, + "probability": 0.5733 + }, + { + "start": 17250.0, + "end": 17250.36, + "probability": 0.6687 + }, + { + "start": 17251.8, + "end": 17252.65, + "probability": 0.7195 + }, + { + "start": 17253.46, + "end": 17254.22, + "probability": 0.8675 + }, + { + "start": 17255.08, + "end": 17255.64, + "probability": 0.9906 + }, + { + "start": 17257.18, + "end": 17258.74, + "probability": 0.9859 + }, + { + "start": 17259.56, + "end": 17261.4, + "probability": 0.6995 + }, + { + "start": 17263.12, + "end": 17263.7, + "probability": 0.8861 + }, + { + "start": 17265.46, + "end": 17273.8, + "probability": 0.9829 + }, + { + "start": 17274.86, + "end": 17282.0, + "probability": 0.9319 + }, + { + "start": 17283.1, + "end": 17285.84, + "probability": 0.8229 + }, + { + "start": 17286.54, + "end": 17289.0, + "probability": 0.98 + }, + { + "start": 17290.14, + "end": 17292.38, + "probability": 0.9076 + }, + { + "start": 17292.98, + "end": 17294.38, + "probability": 0.9456 + }, + { + "start": 17295.6, + "end": 17296.43, + "probability": 0.0762 + }, + { + "start": 17299.66, + "end": 17304.04, + "probability": 0.9122 + }, + { + "start": 17304.28, + "end": 17307.18, + "probability": 0.9398 + }, + { + "start": 17307.32, + "end": 17308.7, + "probability": 0.9313 + }, + { + "start": 17308.88, + "end": 17310.58, + "probability": 0.8269 + }, + { + "start": 17310.62, + "end": 17313.22, + "probability": 0.9069 + }, + { + "start": 17314.16, + "end": 17315.1, + "probability": 0.8345 + }, + { + "start": 17315.84, + "end": 17317.04, + "probability": 0.6177 + }, + { + "start": 17317.94, + "end": 17319.74, + "probability": 0.9302 + }, + { + "start": 17320.62, + "end": 17321.86, + "probability": 0.7829 + }, + { + "start": 17323.26, + "end": 17324.2, + "probability": 0.7454 + }, + { + "start": 17324.84, + "end": 17327.16, + "probability": 0.9241 + }, + { + "start": 17328.16, + "end": 17329.06, + "probability": 0.5291 + }, + { + "start": 17330.32, + "end": 17331.68, + "probability": 0.9402 + }, + { + "start": 17332.2, + "end": 17333.92, + "probability": 0.9483 + }, + { + "start": 17334.68, + "end": 17336.86, + "probability": 0.8942 + }, + { + "start": 17338.02, + "end": 17339.16, + "probability": 0.5565 + }, + { + "start": 17339.32, + "end": 17340.3, + "probability": 0.9652 + }, + { + "start": 17340.38, + "end": 17346.76, + "probability": 0.9519 + }, + { + "start": 17348.54, + "end": 17352.42, + "probability": 0.9871 + }, + { + "start": 17352.42, + "end": 17356.02, + "probability": 0.9984 + }, + { + "start": 17356.62, + "end": 17357.74, + "probability": 0.9839 + }, + { + "start": 17359.0, + "end": 17361.12, + "probability": 0.9949 + }, + { + "start": 17362.18, + "end": 17364.24, + "probability": 0.9972 + }, + { + "start": 17365.28, + "end": 17369.66, + "probability": 0.9464 + }, + { + "start": 17369.8, + "end": 17374.34, + "probability": 0.9937 + }, + { + "start": 17374.98, + "end": 17376.62, + "probability": 0.9939 + }, + { + "start": 17377.74, + "end": 17378.26, + "probability": 0.8656 + }, + { + "start": 17379.2, + "end": 17383.96, + "probability": 0.9787 + }, + { + "start": 17384.96, + "end": 17386.32, + "probability": 0.7978 + }, + { + "start": 17386.42, + "end": 17389.16, + "probability": 0.9941 + }, + { + "start": 17390.0, + "end": 17392.8, + "probability": 0.9813 + }, + { + "start": 17393.82, + "end": 17396.66, + "probability": 0.9955 + }, + { + "start": 17398.96, + "end": 17399.44, + "probability": 0.759 + }, + { + "start": 17400.66, + "end": 17405.66, + "probability": 0.9928 + }, + { + "start": 17405.76, + "end": 17410.52, + "probability": 0.8965 + }, + { + "start": 17410.94, + "end": 17417.2, + "probability": 0.9646 + }, + { + "start": 17418.42, + "end": 17422.72, + "probability": 0.6687 + }, + { + "start": 17423.72, + "end": 17425.38, + "probability": 0.9689 + }, + { + "start": 17427.02, + "end": 17428.28, + "probability": 0.7419 + }, + { + "start": 17428.44, + "end": 17431.86, + "probability": 0.9634 + }, + { + "start": 17431.96, + "end": 17435.48, + "probability": 0.8743 + }, + { + "start": 17436.4, + "end": 17438.47, + "probability": 0.9626 + }, + { + "start": 17440.02, + "end": 17441.8, + "probability": 0.9946 + }, + { + "start": 17442.98, + "end": 17443.52, + "probability": 0.4563 + }, + { + "start": 17443.6, + "end": 17447.94, + "probability": 0.9927 + }, + { + "start": 17448.78, + "end": 17451.68, + "probability": 0.7123 + }, + { + "start": 17452.67, + "end": 17455.36, + "probability": 0.9705 + }, + { + "start": 17455.78, + "end": 17460.1, + "probability": 0.9958 + }, + { + "start": 17461.26, + "end": 17462.22, + "probability": 0.758 + }, + { + "start": 17462.34, + "end": 17466.44, + "probability": 0.8879 + }, + { + "start": 17466.86, + "end": 17472.18, + "probability": 0.985 + }, + { + "start": 17472.26, + "end": 17472.94, + "probability": 0.8672 + }, + { + "start": 17473.72, + "end": 17475.98, + "probability": 0.9873 + }, + { + "start": 17476.82, + "end": 17481.1, + "probability": 0.9766 + }, + { + "start": 17481.72, + "end": 17482.63, + "probability": 0.9924 + }, + { + "start": 17482.9, + "end": 17483.22, + "probability": 0.5743 + }, + { + "start": 17483.36, + "end": 17485.48, + "probability": 0.9631 + }, + { + "start": 17485.6, + "end": 17486.05, + "probability": 0.5005 + }, + { + "start": 17487.72, + "end": 17489.82, + "probability": 0.9561 + }, + { + "start": 17491.6, + "end": 17493.76, + "probability": 0.8331 + }, + { + "start": 17494.8, + "end": 17496.24, + "probability": 0.7661 + }, + { + "start": 17496.72, + "end": 17497.44, + "probability": 0.7776 + }, + { + "start": 17497.62, + "end": 17502.76, + "probability": 0.8829 + }, + { + "start": 17504.38, + "end": 17507.0, + "probability": 0.5918 + }, + { + "start": 17507.0, + "end": 17510.5, + "probability": 0.8945 + }, + { + "start": 17511.56, + "end": 17511.66, + "probability": 0.1702 + }, + { + "start": 17511.82, + "end": 17513.82, + "probability": 0.88 + }, + { + "start": 17513.98, + "end": 17516.38, + "probability": 0.9961 + }, + { + "start": 17517.68, + "end": 17519.2, + "probability": 0.9014 + }, + { + "start": 17519.34, + "end": 17523.2, + "probability": 0.9982 + }, + { + "start": 17524.04, + "end": 17527.48, + "probability": 0.9937 + }, + { + "start": 17529.14, + "end": 17531.21, + "probability": 0.9902 + }, + { + "start": 17531.94, + "end": 17533.2, + "probability": 0.6658 + }, + { + "start": 17533.34, + "end": 17536.58, + "probability": 0.7822 + }, + { + "start": 17538.32, + "end": 17541.38, + "probability": 0.6873 + }, + { + "start": 17541.38, + "end": 17546.4, + "probability": 0.9751 + }, + { + "start": 17547.08, + "end": 17548.08, + "probability": 0.7848 + }, + { + "start": 17548.68, + "end": 17549.9, + "probability": 0.9963 + }, + { + "start": 17550.0, + "end": 17550.92, + "probability": 0.7994 + }, + { + "start": 17550.98, + "end": 17551.48, + "probability": 0.7856 + }, + { + "start": 17552.22, + "end": 17552.96, + "probability": 0.8206 + }, + { + "start": 17553.82, + "end": 17555.86, + "probability": 0.812 + }, + { + "start": 17555.98, + "end": 17556.78, + "probability": 0.8866 + }, + { + "start": 17556.9, + "end": 17557.8, + "probability": 0.9459 + }, + { + "start": 17557.86, + "end": 17558.76, + "probability": 0.4212 + }, + { + "start": 17558.96, + "end": 17565.08, + "probability": 0.8604 + }, + { + "start": 17565.9, + "end": 17568.88, + "probability": 0.8121 + }, + { + "start": 17569.76, + "end": 17570.02, + "probability": 0.0209 + }, + { + "start": 17571.32, + "end": 17572.94, + "probability": 0.0048 + }, + { + "start": 17574.1, + "end": 17577.66, + "probability": 0.9766 + }, + { + "start": 17578.2, + "end": 17584.56, + "probability": 0.9688 + }, + { + "start": 17585.24, + "end": 17589.48, + "probability": 0.8341 + }, + { + "start": 17590.06, + "end": 17594.04, + "probability": 0.7464 + }, + { + "start": 17595.34, + "end": 17596.24, + "probability": 0.6265 + }, + { + "start": 17596.36, + "end": 17599.28, + "probability": 0.9719 + }, + { + "start": 17599.28, + "end": 17602.62, + "probability": 0.9395 + }, + { + "start": 17602.72, + "end": 17606.46, + "probability": 0.9922 + }, + { + "start": 17606.58, + "end": 17608.0, + "probability": 0.8146 + }, + { + "start": 17609.06, + "end": 17614.0, + "probability": 0.9951 + }, + { + "start": 17614.29, + "end": 17619.52, + "probability": 0.9894 + }, + { + "start": 17621.42, + "end": 17623.22, + "probability": 0.9786 + }, + { + "start": 17624.16, + "end": 17624.79, + "probability": 0.5344 + }, + { + "start": 17625.1, + "end": 17625.6, + "probability": 0.7947 + }, + { + "start": 17625.9, + "end": 17630.02, + "probability": 0.7023 + }, + { + "start": 17630.56, + "end": 17631.52, + "probability": 0.7029 + }, + { + "start": 17632.16, + "end": 17633.54, + "probability": 0.8633 + }, + { + "start": 17634.02, + "end": 17636.1, + "probability": 0.9272 + }, + { + "start": 17636.16, + "end": 17638.62, + "probability": 0.9771 + }, + { + "start": 17638.62, + "end": 17642.04, + "probability": 0.999 + }, + { + "start": 17643.66, + "end": 17653.12, + "probability": 0.9644 + }, + { + "start": 17654.32, + "end": 17655.52, + "probability": 0.4834 + }, + { + "start": 17656.76, + "end": 17660.32, + "probability": 0.5679 + }, + { + "start": 17660.4, + "end": 17662.92, + "probability": 0.8612 + }, + { + "start": 17663.04, + "end": 17663.62, + "probability": 0.4698 + }, + { + "start": 17664.06, + "end": 17668.32, + "probability": 0.9362 + }, + { + "start": 17668.6, + "end": 17671.38, + "probability": 0.9862 + }, + { + "start": 17672.48, + "end": 17673.04, + "probability": 0.7642 + }, + { + "start": 17673.9, + "end": 17678.22, + "probability": 0.8616 + }, + { + "start": 17679.48, + "end": 17683.86, + "probability": 0.9893 + }, + { + "start": 17684.08, + "end": 17685.66, + "probability": 0.7468 + }, + { + "start": 17685.72, + "end": 17688.6, + "probability": 0.952 + }, + { + "start": 17689.22, + "end": 17691.2, + "probability": 0.6596 + }, + { + "start": 17692.34, + "end": 17694.74, + "probability": 0.9366 + }, + { + "start": 17695.98, + "end": 17697.8, + "probability": 0.9885 + }, + { + "start": 17697.96, + "end": 17698.89, + "probability": 0.9491 + }, + { + "start": 17699.12, + "end": 17704.36, + "probability": 0.9787 + }, + { + "start": 17704.48, + "end": 17705.38, + "probability": 0.7849 + }, + { + "start": 17706.26, + "end": 17709.84, + "probability": 0.922 + }, + { + "start": 17709.86, + "end": 17710.86, + "probability": 0.9824 + }, + { + "start": 17710.94, + "end": 17713.14, + "probability": 0.9301 + }, + { + "start": 17713.14, + "end": 17715.1, + "probability": 0.7934 + }, + { + "start": 17716.04, + "end": 17717.56, + "probability": 0.7629 + }, + { + "start": 17718.82, + "end": 17721.5, + "probability": 0.5029 + }, + { + "start": 17722.46, + "end": 17723.22, + "probability": 0.2509 + }, + { + "start": 17723.26, + "end": 17727.42, + "probability": 0.8813 + }, + { + "start": 17728.9, + "end": 17732.76, + "probability": 0.99 + }, + { + "start": 17733.54, + "end": 17737.78, + "probability": 0.9883 + }, + { + "start": 17737.78, + "end": 17741.68, + "probability": 0.9917 + }, + { + "start": 17743.06, + "end": 17745.06, + "probability": 0.9873 + }, + { + "start": 17745.58, + "end": 17748.66, + "probability": 0.937 + }, + { + "start": 17749.46, + "end": 17750.41, + "probability": 0.8302 + }, + { + "start": 17751.94, + "end": 17754.54, + "probability": 0.7186 + }, + { + "start": 17754.64, + "end": 17758.48, + "probability": 0.8776 + }, + { + "start": 17759.04, + "end": 17764.58, + "probability": 0.9473 + }, + { + "start": 17764.86, + "end": 17767.99, + "probability": 0.9976 + }, + { + "start": 17768.68, + "end": 17775.42, + "probability": 0.992 + }, + { + "start": 17775.42, + "end": 17779.98, + "probability": 0.9195 + }, + { + "start": 17780.8, + "end": 17781.32, + "probability": 0.7553 + }, + { + "start": 17782.76, + "end": 17784.96, + "probability": 0.9899 + }, + { + "start": 17785.74, + "end": 17790.66, + "probability": 0.6007 + }, + { + "start": 17792.58, + "end": 17796.9, + "probability": 0.9902 + }, + { + "start": 17797.92, + "end": 17800.68, + "probability": 0.605 + }, + { + "start": 17800.78, + "end": 17801.72, + "probability": 0.6737 + }, + { + "start": 17802.8, + "end": 17807.72, + "probability": 0.957 + }, + { + "start": 17807.72, + "end": 17812.92, + "probability": 0.9637 + }, + { + "start": 17813.1, + "end": 17817.66, + "probability": 0.9595 + }, + { + "start": 17819.16, + "end": 17822.32, + "probability": 0.7847 + }, + { + "start": 17823.14, + "end": 17825.4, + "probability": 0.8988 + }, + { + "start": 17825.52, + "end": 17827.04, + "probability": 0.8938 + }, + { + "start": 17827.48, + "end": 17829.36, + "probability": 0.9269 + }, + { + "start": 17830.12, + "end": 17832.82, + "probability": 0.9097 + }, + { + "start": 17833.26, + "end": 17835.04, + "probability": 0.8484 + }, + { + "start": 17835.2, + "end": 17838.22, + "probability": 0.9844 + }, + { + "start": 17838.36, + "end": 17844.26, + "probability": 0.9634 + }, + { + "start": 17845.22, + "end": 17845.76, + "probability": 0.7014 + }, + { + "start": 17846.08, + "end": 17846.52, + "probability": 0.521 + }, + { + "start": 17846.56, + "end": 17848.94, + "probability": 0.8139 + }, + { + "start": 17850.46, + "end": 17851.0, + "probability": 0.4716 + }, + { + "start": 17851.12, + "end": 17856.68, + "probability": 0.8857 + }, + { + "start": 17856.68, + "end": 17859.46, + "probability": 0.9909 + }, + { + "start": 17859.54, + "end": 17861.86, + "probability": 0.9549 + }, + { + "start": 17862.64, + "end": 17865.14, + "probability": 0.7367 + }, + { + "start": 17865.48, + "end": 17866.3, + "probability": 0.6498 + }, + { + "start": 17867.04, + "end": 17868.36, + "probability": 0.047 + }, + { + "start": 17868.8, + "end": 17869.08, + "probability": 0.0123 + }, + { + "start": 17869.08, + "end": 17871.62, + "probability": 0.5921 + }, + { + "start": 17872.52, + "end": 17875.46, + "probability": 0.8033 + }, + { + "start": 17876.44, + "end": 17880.42, + "probability": 0.8619 + }, + { + "start": 17880.56, + "end": 17881.5, + "probability": 0.53 + }, + { + "start": 17881.64, + "end": 17884.8, + "probability": 0.9789 + }, + { + "start": 17885.92, + "end": 17887.92, + "probability": 0.9627 + }, + { + "start": 17888.38, + "end": 17890.25, + "probability": 0.9859 + }, + { + "start": 17890.98, + "end": 17892.28, + "probability": 0.9442 + }, + { + "start": 17892.8, + "end": 17895.24, + "probability": 0.9889 + }, + { + "start": 17895.24, + "end": 17900.24, + "probability": 0.4718 + }, + { + "start": 17900.64, + "end": 17903.18, + "probability": 0.9442 + }, + { + "start": 17903.26, + "end": 17904.5, + "probability": 0.9288 + }, + { + "start": 17905.1, + "end": 17907.0, + "probability": 0.6813 + }, + { + "start": 17907.04, + "end": 17908.79, + "probability": 0.7537 + }, + { + "start": 17909.3, + "end": 17909.92, + "probability": 0.7925 + }, + { + "start": 17910.02, + "end": 17913.52, + "probability": 0.8857 + }, + { + "start": 17913.66, + "end": 17914.66, + "probability": 0.9193 + }, + { + "start": 17914.8, + "end": 17915.76, + "probability": 0.9029 + }, + { + "start": 17916.36, + "end": 17922.02, + "probability": 0.9846 + }, + { + "start": 17923.22, + "end": 17924.28, + "probability": 0.7097 + }, + { + "start": 17924.44, + "end": 17926.42, + "probability": 0.9697 + }, + { + "start": 17926.48, + "end": 17927.2, + "probability": 0.947 + }, + { + "start": 17929.02, + "end": 17932.28, + "probability": 0.9785 + }, + { + "start": 17936.74, + "end": 17937.96, + "probability": 0.8427 + }, + { + "start": 17938.1, + "end": 17939.14, + "probability": 0.8098 + }, + { + "start": 17939.32, + "end": 17940.44, + "probability": 0.7605 + }, + { + "start": 17940.7, + "end": 17946.16, + "probability": 0.8255 + }, + { + "start": 17946.26, + "end": 17946.89, + "probability": 0.9941 + }, + { + "start": 17947.66, + "end": 17949.28, + "probability": 0.6711 + }, + { + "start": 17950.2, + "end": 17951.68, + "probability": 0.9928 + }, + { + "start": 17952.48, + "end": 17956.78, + "probability": 0.9524 + }, + { + "start": 17956.78, + "end": 17958.8, + "probability": 0.902 + }, + { + "start": 17959.46, + "end": 17960.54, + "probability": 0.8744 + }, + { + "start": 17961.8, + "end": 17964.83, + "probability": 0.5144 + }, + { + "start": 17965.62, + "end": 17969.7, + "probability": 0.9226 + }, + { + "start": 17970.64, + "end": 17973.64, + "probability": 0.8586 + }, + { + "start": 17975.66, + "end": 17976.24, + "probability": 0.8375 + }, + { + "start": 17976.92, + "end": 17977.5, + "probability": 0.8982 + }, + { + "start": 17978.28, + "end": 17982.98, + "probability": 0.8959 + }, + { + "start": 17983.68, + "end": 17986.14, + "probability": 0.8711 + }, + { + "start": 17986.96, + "end": 17989.13, + "probability": 0.975 + }, + { + "start": 17990.09, + "end": 17997.92, + "probability": 0.9938 + }, + { + "start": 17999.48, + "end": 18000.94, + "probability": 0.8295 + }, + { + "start": 18001.02, + "end": 18001.38, + "probability": 0.9061 + }, + { + "start": 18001.96, + "end": 18006.84, + "probability": 0.9344 + }, + { + "start": 18008.1, + "end": 18010.88, + "probability": 0.0853 + }, + { + "start": 18010.88, + "end": 18010.9, + "probability": 0.0169 + }, + { + "start": 18010.9, + "end": 18012.14, + "probability": 0.6071 + }, + { + "start": 18012.18, + "end": 18012.94, + "probability": 0.7612 + }, + { + "start": 18013.0, + "end": 18013.88, + "probability": 0.8087 + }, + { + "start": 18014.68, + "end": 18018.36, + "probability": 0.8805 + }, + { + "start": 18019.06, + "end": 18019.71, + "probability": 0.7197 + }, + { + "start": 18020.28, + "end": 18022.66, + "probability": 0.9958 + }, + { + "start": 18022.82, + "end": 18023.4, + "probability": 0.542 + }, + { + "start": 18023.74, + "end": 18028.22, + "probability": 0.9837 + }, + { + "start": 18028.6, + "end": 18029.06, + "probability": 0.3912 + }, + { + "start": 18029.82, + "end": 18031.26, + "probability": 0.9958 + }, + { + "start": 18032.62, + "end": 18033.52, + "probability": 0.8328 + }, + { + "start": 18033.62, + "end": 18034.92, + "probability": 0.929 + }, + { + "start": 18035.0, + "end": 18035.68, + "probability": 0.5081 + }, + { + "start": 18035.68, + "end": 18036.6, + "probability": 0.583 + }, + { + "start": 18050.6, + "end": 18051.54, + "probability": 0.1394 + }, + { + "start": 18051.54, + "end": 18051.54, + "probability": 0.0574 + }, + { + "start": 18051.54, + "end": 18051.7, + "probability": 0.1867 + }, + { + "start": 18052.58, + "end": 18053.66, + "probability": 0.2696 + }, + { + "start": 18054.44, + "end": 18058.04, + "probability": 0.2698 + }, + { + "start": 18058.94, + "end": 18060.88, + "probability": 0.8417 + }, + { + "start": 18061.44, + "end": 18062.58, + "probability": 0.712 + }, + { + "start": 18063.72, + "end": 18067.34, + "probability": 0.4492 + }, + { + "start": 18067.4, + "end": 18067.5, + "probability": 0.0297 + }, + { + "start": 18067.5, + "end": 18067.94, + "probability": 0.6282 + }, + { + "start": 18068.08, + "end": 18068.36, + "probability": 0.6851 + }, + { + "start": 18068.5, + "end": 18070.16, + "probability": 0.7632 + }, + { + "start": 18070.6, + "end": 18072.18, + "probability": 0.6058 + }, + { + "start": 18072.76, + "end": 18074.12, + "probability": 0.0776 + }, + { + "start": 18075.96, + "end": 18077.2, + "probability": 0.4665 + }, + { + "start": 18077.38, + "end": 18081.08, + "probability": 0.7993 + }, + { + "start": 18081.16, + "end": 18081.88, + "probability": 0.8166 + }, + { + "start": 18081.98, + "end": 18082.24, + "probability": 0.6972 + }, + { + "start": 18082.32, + "end": 18084.68, + "probability": 0.9939 + }, + { + "start": 18085.18, + "end": 18087.08, + "probability": 0.9966 + }, + { + "start": 18088.04, + "end": 18088.94, + "probability": 0.9694 + }, + { + "start": 18089.06, + "end": 18091.32, + "probability": 0.9961 + }, + { + "start": 18091.42, + "end": 18091.86, + "probability": 0.8918 + }, + { + "start": 18091.92, + "end": 18093.34, + "probability": 0.8802 + }, + { + "start": 18093.38, + "end": 18096.06, + "probability": 0.9231 + }, + { + "start": 18097.1, + "end": 18099.5, + "probability": 0.9814 + }, + { + "start": 18099.56, + "end": 18100.16, + "probability": 0.7277 + }, + { + "start": 18100.3, + "end": 18102.4, + "probability": 0.9844 + }, + { + "start": 18103.12, + "end": 18104.04, + "probability": 0.5076 + }, + { + "start": 18104.9, + "end": 18109.9, + "probability": 0.7808 + }, + { + "start": 18109.94, + "end": 18113.64, + "probability": 0.9177 + }, + { + "start": 18113.96, + "end": 18118.52, + "probability": 0.9636 + }, + { + "start": 18119.48, + "end": 18121.14, + "probability": 0.7623 + }, + { + "start": 18121.96, + "end": 18124.56, + "probability": 0.9938 + }, + { + "start": 18124.62, + "end": 18125.46, + "probability": 0.4784 + }, + { + "start": 18126.02, + "end": 18129.26, + "probability": 0.944 + }, + { + "start": 18129.4, + "end": 18129.94, + "probability": 0.4053 + }, + { + "start": 18130.2, + "end": 18131.9, + "probability": 0.9623 + }, + { + "start": 18132.3, + "end": 18132.95, + "probability": 0.9434 + }, + { + "start": 18133.48, + "end": 18134.07, + "probability": 0.9263 + }, + { + "start": 18135.48, + "end": 18138.12, + "probability": 0.9655 + }, + { + "start": 18138.36, + "end": 18138.93, + "probability": 0.769 + }, + { + "start": 18139.0, + "end": 18140.48, + "probability": 0.8856 + }, + { + "start": 18140.56, + "end": 18142.09, + "probability": 0.959 + }, + { + "start": 18142.56, + "end": 18147.62, + "probability": 0.8284 + }, + { + "start": 18147.62, + "end": 18153.18, + "probability": 0.9974 + }, + { + "start": 18153.76, + "end": 18154.04, + "probability": 0.9017 + }, + { + "start": 18154.88, + "end": 18155.35, + "probability": 0.5073 + }, + { + "start": 18157.74, + "end": 18158.16, + "probability": 0.7557 + }, + { + "start": 18158.58, + "end": 18160.58, + "probability": 0.9805 + }, + { + "start": 18160.66, + "end": 18164.28, + "probability": 0.855 + }, + { + "start": 18164.6, + "end": 18166.12, + "probability": 0.8414 + }, + { + "start": 18166.18, + "end": 18170.36, + "probability": 0.9915 + }, + { + "start": 18170.36, + "end": 18173.68, + "probability": 0.9769 + }, + { + "start": 18174.28, + "end": 18180.71, + "probability": 0.981 + }, + { + "start": 18183.02, + "end": 18185.08, + "probability": 0.9582 + }, + { + "start": 18185.42, + "end": 18185.86, + "probability": 0.7261 + }, + { + "start": 18186.66, + "end": 18187.76, + "probability": 0.7297 + }, + { + "start": 18187.84, + "end": 18189.02, + "probability": 0.8134 + }, + { + "start": 18189.16, + "end": 18191.64, + "probability": 0.8875 + }, + { + "start": 18192.44, + "end": 18195.3, + "probability": 0.8913 + }, + { + "start": 18197.62, + "end": 18200.82, + "probability": 0.9976 + }, + { + "start": 18201.32, + "end": 18207.72, + "probability": 0.986 + }, + { + "start": 18209.66, + "end": 18211.78, + "probability": 0.8425 + }, + { + "start": 18212.42, + "end": 18214.09, + "probability": 0.9653 + }, + { + "start": 18214.26, + "end": 18217.84, + "probability": 0.976 + }, + { + "start": 18218.6, + "end": 18219.62, + "probability": 0.7231 + }, + { + "start": 18220.36, + "end": 18220.86, + "probability": 0.4371 + }, + { + "start": 18221.85, + "end": 18225.3, + "probability": 0.9102 + }, + { + "start": 18225.3, + "end": 18225.56, + "probability": 0.2625 + }, + { + "start": 18226.18, + "end": 18226.42, + "probability": 0.0501 + }, + { + "start": 18226.42, + "end": 18231.62, + "probability": 0.9357 + }, + { + "start": 18232.6, + "end": 18233.62, + "probability": 0.8483 + }, + { + "start": 18234.26, + "end": 18235.94, + "probability": 0.9929 + }, + { + "start": 18237.36, + "end": 18240.4, + "probability": 0.798 + }, + { + "start": 18240.98, + "end": 18242.4, + "probability": 0.7574 + }, + { + "start": 18243.92, + "end": 18247.1, + "probability": 0.8813 + }, + { + "start": 18248.12, + "end": 18249.58, + "probability": 0.6983 + }, + { + "start": 18250.26, + "end": 18251.54, + "probability": 0.8864 + }, + { + "start": 18252.42, + "end": 18254.14, + "probability": 0.8997 + }, + { + "start": 18254.14, + "end": 18256.78, + "probability": 0.9864 + }, + { + "start": 18257.4, + "end": 18258.78, + "probability": 0.8192 + }, + { + "start": 18259.58, + "end": 18265.9, + "probability": 0.9912 + }, + { + "start": 18266.38, + "end": 18267.78, + "probability": 0.9939 + }, + { + "start": 18269.06, + "end": 18271.2, + "probability": 0.9954 + }, + { + "start": 18271.2, + "end": 18274.96, + "probability": 0.947 + }, + { + "start": 18275.78, + "end": 18276.7, + "probability": 0.7189 + }, + { + "start": 18276.84, + "end": 18277.78, + "probability": 0.9162 + }, + { + "start": 18278.26, + "end": 18283.8, + "probability": 0.9382 + }, + { + "start": 18284.42, + "end": 18285.92, + "probability": 0.9771 + }, + { + "start": 18286.42, + "end": 18288.78, + "probability": 0.9628 + }, + { + "start": 18289.22, + "end": 18289.92, + "probability": 0.7962 + }, + { + "start": 18290.44, + "end": 18291.04, + "probability": 0.8767 + }, + { + "start": 18291.08, + "end": 18292.88, + "probability": 0.9486 + }, + { + "start": 18292.98, + "end": 18294.32, + "probability": 0.9159 + }, + { + "start": 18294.84, + "end": 18296.26, + "probability": 0.8521 + }, + { + "start": 18296.74, + "end": 18301.26, + "probability": 0.9209 + }, + { + "start": 18301.42, + "end": 18302.64, + "probability": 0.8336 + }, + { + "start": 18303.26, + "end": 18307.7, + "probability": 0.9492 + }, + { + "start": 18308.34, + "end": 18308.54, + "probability": 0.3397 + }, + { + "start": 18308.58, + "end": 18312.81, + "probability": 0.5836 + }, + { + "start": 18313.72, + "end": 18314.38, + "probability": 0.7847 + }, + { + "start": 18314.92, + "end": 18318.68, + "probability": 0.9731 + }, + { + "start": 18318.84, + "end": 18325.02, + "probability": 0.946 + }, + { + "start": 18325.18, + "end": 18325.79, + "probability": 0.5987 + }, + { + "start": 18326.16, + "end": 18327.12, + "probability": 0.891 + }, + { + "start": 18327.7, + "end": 18329.25, + "probability": 0.5773 + }, + { + "start": 18330.32, + "end": 18334.2, + "probability": 0.9766 + }, + { + "start": 18334.88, + "end": 18335.44, + "probability": 0.8655 + }, + { + "start": 18335.72, + "end": 18338.54, + "probability": 0.9978 + }, + { + "start": 18338.54, + "end": 18343.48, + "probability": 0.9905 + }, + { + "start": 18345.0, + "end": 18346.4, + "probability": 0.1888 + }, + { + "start": 18346.42, + "end": 18347.98, + "probability": 0.6401 + }, + { + "start": 18349.8, + "end": 18353.22, + "probability": 0.5465 + }, + { + "start": 18354.06, + "end": 18359.32, + "probability": 0.5534 + }, + { + "start": 18359.86, + "end": 18361.08, + "probability": 0.7785 + }, + { + "start": 18361.86, + "end": 18361.92, + "probability": 0.3173 + }, + { + "start": 18361.92, + "end": 18361.92, + "probability": 0.074 + }, + { + "start": 18361.92, + "end": 18361.92, + "probability": 0.1939 + }, + { + "start": 18361.92, + "end": 18361.92, + "probability": 0.2773 + }, + { + "start": 18361.92, + "end": 18361.92, + "probability": 0.2598 + }, + { + "start": 18361.92, + "end": 18364.4, + "probability": 0.6828 + }, + { + "start": 18364.4, + "end": 18365.4, + "probability": 0.2289 + }, + { + "start": 18367.62, + "end": 18369.96, + "probability": 0.0344 + }, + { + "start": 18370.6, + "end": 18371.14, + "probability": 0.3314 + }, + { + "start": 18371.26, + "end": 18373.12, + "probability": 0.3918 + }, + { + "start": 18373.66, + "end": 18374.5, + "probability": 0.9673 + }, + { + "start": 18376.26, + "end": 18376.76, + "probability": 0.0489 + }, + { + "start": 18377.76, + "end": 18378.72, + "probability": 0.3012 + }, + { + "start": 18380.24, + "end": 18380.32, + "probability": 0.5461 + }, + { + "start": 18380.46, + "end": 18384.16, + "probability": 0.9232 + }, + { + "start": 18384.26, + "end": 18385.8, + "probability": 0.8689 + }, + { + "start": 18385.88, + "end": 18387.12, + "probability": 0.9883 + }, + { + "start": 18387.88, + "end": 18390.54, + "probability": 0.9811 + }, + { + "start": 18390.62, + "end": 18391.74, + "probability": 0.97 + }, + { + "start": 18392.42, + "end": 18395.42, + "probability": 0.951 + }, + { + "start": 18396.16, + "end": 18397.02, + "probability": 0.9636 + }, + { + "start": 18397.84, + "end": 18397.94, + "probability": 0.5592 + }, + { + "start": 18398.58, + "end": 18398.88, + "probability": 0.6044 + }, + { + "start": 18399.98, + "end": 18401.96, + "probability": 0.9495 + }, + { + "start": 18403.0, + "end": 18405.82, + "probability": 0.9961 + }, + { + "start": 18405.84, + "end": 18409.26, + "probability": 0.995 + }, + { + "start": 18409.4, + "end": 18410.62, + "probability": 0.9091 + }, + { + "start": 18411.42, + "end": 18412.32, + "probability": 0.7394 + }, + { + "start": 18413.02, + "end": 18414.04, + "probability": 0.8894 + }, + { + "start": 18414.34, + "end": 18415.14, + "probability": 0.8049 + }, + { + "start": 18415.22, + "end": 18416.12, + "probability": 0.7939 + }, + { + "start": 18416.12, + "end": 18418.76, + "probability": 0.86 + }, + { + "start": 18420.0, + "end": 18425.84, + "probability": 0.9463 + }, + { + "start": 18426.58, + "end": 18427.54, + "probability": 0.4097 + }, + { + "start": 18428.18, + "end": 18430.44, + "probability": 0.9237 + }, + { + "start": 18431.42, + "end": 18432.03, + "probability": 0.9856 + }, + { + "start": 18432.62, + "end": 18434.6, + "probability": 0.9413 + }, + { + "start": 18435.72, + "end": 18440.08, + "probability": 0.8892 + }, + { + "start": 18441.12, + "end": 18443.14, + "probability": 0.8363 + }, + { + "start": 18443.8, + "end": 18447.84, + "probability": 0.9077 + }, + { + "start": 18448.68, + "end": 18450.85, + "probability": 0.4776 + }, + { + "start": 18450.94, + "end": 18453.2, + "probability": 0.9085 + }, + { + "start": 18453.6, + "end": 18454.98, + "probability": 0.5895 + }, + { + "start": 18455.46, + "end": 18455.95, + "probability": 0.9741 + }, + { + "start": 18456.68, + "end": 18458.33, + "probability": 0.9575 + }, + { + "start": 18458.7, + "end": 18459.6, + "probability": 0.9581 + }, + { + "start": 18459.64, + "end": 18460.82, + "probability": 0.9866 + }, + { + "start": 18462.38, + "end": 18466.14, + "probability": 0.9259 + }, + { + "start": 18466.32, + "end": 18469.56, + "probability": 0.7382 + }, + { + "start": 18469.56, + "end": 18472.12, + "probability": 0.8643 + }, + { + "start": 18473.2, + "end": 18477.46, + "probability": 0.7273 + }, + { + "start": 18477.92, + "end": 18479.14, + "probability": 0.9 + }, + { + "start": 18479.56, + "end": 18480.26, + "probability": 0.8463 + }, + { + "start": 18480.42, + "end": 18481.34, + "probability": 0.8559 + }, + { + "start": 18481.64, + "end": 18484.36, + "probability": 0.933 + }, + { + "start": 18485.3, + "end": 18487.26, + "probability": 0.9977 + }, + { + "start": 18488.0, + "end": 18490.4, + "probability": 0.9487 + }, + { + "start": 18491.36, + "end": 18494.16, + "probability": 0.9453 + }, + { + "start": 18494.88, + "end": 18497.14, + "probability": 0.9912 + }, + { + "start": 18497.54, + "end": 18498.6, + "probability": 0.9546 + }, + { + "start": 18498.68, + "end": 18498.9, + "probability": 0.7267 + }, + { + "start": 18498.92, + "end": 18501.54, + "probability": 0.9294 + }, + { + "start": 18502.48, + "end": 18503.5, + "probability": 0.45 + }, + { + "start": 18504.3, + "end": 18505.4, + "probability": 0.992 + }, + { + "start": 18505.66, + "end": 18507.32, + "probability": 0.9932 + }, + { + "start": 18507.36, + "end": 18508.02, + "probability": 0.9264 + }, + { + "start": 18508.08, + "end": 18509.44, + "probability": 0.9533 + }, + { + "start": 18509.54, + "end": 18510.0, + "probability": 0.9455 + }, + { + "start": 18510.06, + "end": 18510.6, + "probability": 0.8806 + }, + { + "start": 18510.72, + "end": 18517.1, + "probability": 0.9875 + }, + { + "start": 18517.16, + "end": 18520.42, + "probability": 0.9985 + }, + { + "start": 18520.94, + "end": 18522.58, + "probability": 0.9301 + }, + { + "start": 18522.74, + "end": 18528.0, + "probability": 0.9984 + }, + { + "start": 18528.04, + "end": 18530.66, + "probability": 0.9865 + }, + { + "start": 18531.22, + "end": 18532.68, + "probability": 0.9343 + }, + { + "start": 18533.76, + "end": 18538.58, + "probability": 0.9937 + }, + { + "start": 18538.94, + "end": 18540.72, + "probability": 0.9882 + }, + { + "start": 18540.82, + "end": 18541.66, + "probability": 0.9922 + }, + { + "start": 18542.44, + "end": 18543.25, + "probability": 0.6216 + }, + { + "start": 18543.82, + "end": 18545.58, + "probability": 0.999 + }, + { + "start": 18545.68, + "end": 18547.9, + "probability": 0.9948 + }, + { + "start": 18547.92, + "end": 18550.98, + "probability": 0.9565 + }, + { + "start": 18551.38, + "end": 18553.74, + "probability": 0.9668 + }, + { + "start": 18554.14, + "end": 18554.86, + "probability": 0.8142 + }, + { + "start": 18554.96, + "end": 18557.14, + "probability": 0.9678 + }, + { + "start": 18557.14, + "end": 18559.72, + "probability": 0.9902 + }, + { + "start": 18560.28, + "end": 18562.8, + "probability": 0.9907 + }, + { + "start": 18563.6, + "end": 18567.0, + "probability": 0.9569 + }, + { + "start": 18567.02, + "end": 18568.32, + "probability": 0.8828 + }, + { + "start": 18569.08, + "end": 18572.46, + "probability": 0.9296 + }, + { + "start": 18572.84, + "end": 18573.47, + "probability": 0.7214 + }, + { + "start": 18574.64, + "end": 18576.36, + "probability": 0.9768 + }, + { + "start": 18576.4, + "end": 18577.36, + "probability": 0.7428 + }, + { + "start": 18577.72, + "end": 18580.4, + "probability": 0.9971 + }, + { + "start": 18581.1, + "end": 18586.04, + "probability": 0.993 + }, + { + "start": 18586.38, + "end": 18587.4, + "probability": 0.5116 + }, + { + "start": 18588.02, + "end": 18588.04, + "probability": 0.1618 + }, + { + "start": 18588.04, + "end": 18588.04, + "probability": 0.5039 + }, + { + "start": 18588.08, + "end": 18588.85, + "probability": 0.5 + }, + { + "start": 18588.98, + "end": 18590.36, + "probability": 0.5752 + }, + { + "start": 18591.88, + "end": 18592.81, + "probability": 0.056 + }, + { + "start": 18594.22, + "end": 18595.82, + "probability": 0.9612 + }, + { + "start": 18595.9, + "end": 18597.4, + "probability": 0.952 + }, + { + "start": 18597.44, + "end": 18599.22, + "probability": 0.6802 + }, + { + "start": 18608.12, + "end": 18609.32, + "probability": 0.3687 + }, + { + "start": 18609.32, + "end": 18610.86, + "probability": 0.5368 + }, + { + "start": 18611.28, + "end": 18615.92, + "probability": 0.953 + }, + { + "start": 18617.42, + "end": 18621.86, + "probability": 0.6941 + }, + { + "start": 18621.88, + "end": 18626.94, + "probability": 0.7148 + }, + { + "start": 18627.0, + "end": 18627.96, + "probability": 0.7264 + }, + { + "start": 18628.8, + "end": 18632.42, + "probability": 0.7798 + }, + { + "start": 18634.26, + "end": 18635.78, + "probability": 0.6543 + }, + { + "start": 18638.8, + "end": 18641.32, + "probability": 0.8556 + }, + { + "start": 18643.58, + "end": 18646.12, + "probability": 0.8081 + }, + { + "start": 18646.98, + "end": 18648.42, + "probability": 0.8661 + }, + { + "start": 18651.86, + "end": 18652.78, + "probability": 0.4896 + }, + { + "start": 18653.72, + "end": 18656.32, + "probability": 0.9835 + }, + { + "start": 18657.54, + "end": 18657.7, + "probability": 0.0133 + }, + { + "start": 18657.7, + "end": 18659.28, + "probability": 0.4913 + }, + { + "start": 18674.62, + "end": 18675.98, + "probability": 0.3747 + }, + { + "start": 18676.16, + "end": 18676.81, + "probability": 0.7267 + }, + { + "start": 18677.66, + "end": 18679.16, + "probability": 0.6582 + }, + { + "start": 18680.82, + "end": 18684.94, + "probability": 0.9604 + }, + { + "start": 18684.94, + "end": 18692.16, + "probability": 0.9288 + }, + { + "start": 18693.86, + "end": 18696.7, + "probability": 0.7588 + }, + { + "start": 18697.76, + "end": 18701.1, + "probability": 0.9699 + }, + { + "start": 18702.56, + "end": 18703.8, + "probability": 0.9677 + }, + { + "start": 18704.4, + "end": 18709.74, + "probability": 0.9964 + }, + { + "start": 18711.04, + "end": 18713.4, + "probability": 0.9748 + }, + { + "start": 18715.52, + "end": 18720.92, + "probability": 0.9399 + }, + { + "start": 18721.86, + "end": 18726.6, + "probability": 0.9988 + }, + { + "start": 18728.04, + "end": 18730.0, + "probability": 0.8785 + }, + { + "start": 18731.0, + "end": 18733.2, + "probability": 0.8035 + }, + { + "start": 18734.54, + "end": 18735.44, + "probability": 0.5573 + }, + { + "start": 18736.28, + "end": 18740.64, + "probability": 0.9816 + }, + { + "start": 18742.3, + "end": 18742.8, + "probability": 0.7905 + }, + { + "start": 18743.48, + "end": 18744.7, + "probability": 0.8936 + }, + { + "start": 18745.76, + "end": 18746.98, + "probability": 0.9517 + }, + { + "start": 18747.82, + "end": 18749.66, + "probability": 0.9254 + }, + { + "start": 18750.56, + "end": 18752.0, + "probability": 0.6522 + }, + { + "start": 18753.04, + "end": 18761.1, + "probability": 0.9771 + }, + { + "start": 18761.1, + "end": 18766.02, + "probability": 0.9596 + }, + { + "start": 18766.72, + "end": 18771.92, + "probability": 0.9887 + }, + { + "start": 18772.0, + "end": 18773.08, + "probability": 0.9464 + }, + { + "start": 18774.68, + "end": 18776.78, + "probability": 0.9802 + }, + { + "start": 18778.06, + "end": 18778.7, + "probability": 0.7499 + }, + { + "start": 18779.34, + "end": 18786.36, + "probability": 0.999 + }, + { + "start": 18786.7, + "end": 18793.8, + "probability": 0.9956 + }, + { + "start": 18795.38, + "end": 18799.88, + "probability": 0.9785 + }, + { + "start": 18799.88, + "end": 18805.26, + "probability": 0.9552 + }, + { + "start": 18806.98, + "end": 18814.32, + "probability": 0.9677 + }, + { + "start": 18815.6, + "end": 18816.7, + "probability": 0.8744 + }, + { + "start": 18817.86, + "end": 18827.98, + "probability": 0.993 + }, + { + "start": 18829.46, + "end": 18831.34, + "probability": 0.8882 + }, + { + "start": 18832.54, + "end": 18833.6, + "probability": 0.9855 + }, + { + "start": 18834.24, + "end": 18838.94, + "probability": 0.9852 + }, + { + "start": 18840.4, + "end": 18844.9, + "probability": 0.9287 + }, + { + "start": 18845.42, + "end": 18852.32, + "probability": 0.996 + }, + { + "start": 18852.32, + "end": 18858.4, + "probability": 0.9927 + }, + { + "start": 18859.66, + "end": 18864.76, + "probability": 0.9944 + }, + { + "start": 18865.32, + "end": 18867.88, + "probability": 0.9927 + }, + { + "start": 18868.52, + "end": 18870.34, + "probability": 0.9389 + }, + { + "start": 18871.56, + "end": 18872.56, + "probability": 0.9977 + }, + { + "start": 18873.52, + "end": 18882.94, + "probability": 0.9798 + }, + { + "start": 18884.1, + "end": 18888.22, + "probability": 0.8589 + }, + { + "start": 18888.92, + "end": 18891.6, + "probability": 0.9627 + }, + { + "start": 18892.7, + "end": 18894.28, + "probability": 0.71 + }, + { + "start": 18894.8, + "end": 18895.36, + "probability": 0.7263 + }, + { + "start": 18896.78, + "end": 18897.18, + "probability": 0.5479 + }, + { + "start": 18898.26, + "end": 18900.04, + "probability": 0.8119 + }, + { + "start": 18919.88, + "end": 18922.84, + "probability": 0.7042 + }, + { + "start": 18923.22, + "end": 18924.16, + "probability": 0.6497 + }, + { + "start": 18925.3, + "end": 18927.24, + "probability": 0.7626 + }, + { + "start": 18929.48, + "end": 18930.6, + "probability": 0.9337 + }, + { + "start": 18930.66, + "end": 18934.93, + "probability": 0.9039 + }, + { + "start": 18935.98, + "end": 18936.6, + "probability": 0.5619 + }, + { + "start": 18936.76, + "end": 18938.12, + "probability": 0.8593 + }, + { + "start": 18939.18, + "end": 18942.08, + "probability": 0.9897 + }, + { + "start": 18942.4, + "end": 18944.22, + "probability": 0.9972 + }, + { + "start": 18945.36, + "end": 18949.64, + "probability": 0.9967 + }, + { + "start": 18950.52, + "end": 18951.83, + "probability": 0.9689 + }, + { + "start": 18954.06, + "end": 18957.12, + "probability": 0.9811 + }, + { + "start": 18957.26, + "end": 18957.84, + "probability": 0.6968 + }, + { + "start": 18958.68, + "end": 18964.14, + "probability": 0.9977 + }, + { + "start": 18964.26, + "end": 18965.32, + "probability": 0.999 + }, + { + "start": 18966.28, + "end": 18971.04, + "probability": 0.9793 + }, + { + "start": 18972.94, + "end": 18974.18, + "probability": 0.5746 + }, + { + "start": 18975.18, + "end": 18979.38, + "probability": 0.955 + }, + { + "start": 18980.3, + "end": 18981.9, + "probability": 0.9966 + }, + { + "start": 18982.7, + "end": 18983.68, + "probability": 0.9687 + }, + { + "start": 18986.26, + "end": 18987.64, + "probability": 0.8413 + }, + { + "start": 18988.52, + "end": 18993.2, + "probability": 0.9944 + }, + { + "start": 18993.2, + "end": 18997.94, + "probability": 0.9958 + }, + { + "start": 18999.16, + "end": 19000.08, + "probability": 0.8743 + }, + { + "start": 19002.08, + "end": 19004.94, + "probability": 0.9954 + }, + { + "start": 19004.94, + "end": 19007.8, + "probability": 0.9972 + }, + { + "start": 19008.38, + "end": 19012.06, + "probability": 0.9944 + }, + { + "start": 19012.14, + "end": 19013.94, + "probability": 0.998 + }, + { + "start": 19014.6, + "end": 19017.34, + "probability": 0.9209 + }, + { + "start": 19017.46, + "end": 19017.94, + "probability": 0.7227 + }, + { + "start": 19018.04, + "end": 19019.26, + "probability": 0.6032 + }, + { + "start": 19019.56, + "end": 19020.46, + "probability": 0.8301 + }, + { + "start": 19020.58, + "end": 19022.1, + "probability": 0.993 + }, + { + "start": 19022.9, + "end": 19029.78, + "probability": 0.9348 + }, + { + "start": 19029.78, + "end": 19035.18, + "probability": 0.9576 + }, + { + "start": 19035.26, + "end": 19036.2, + "probability": 0.8942 + }, + { + "start": 19036.38, + "end": 19038.6, + "probability": 0.9493 + }, + { + "start": 19038.96, + "end": 19039.66, + "probability": 0.5076 + }, + { + "start": 19039.82, + "end": 19040.92, + "probability": 0.9013 + }, + { + "start": 19041.24, + "end": 19044.14, + "probability": 0.9674 + }, + { + "start": 19044.14, + "end": 19044.88, + "probability": 0.7736 + }, + { + "start": 19045.24, + "end": 19049.4, + "probability": 0.9634 + }, + { + "start": 19050.9, + "end": 19052.28, + "probability": 0.9699 + }, + { + "start": 19052.56, + "end": 19053.76, + "probability": 0.9961 + }, + { + "start": 19054.6, + "end": 19057.64, + "probability": 0.9766 + }, + { + "start": 19058.32, + "end": 19059.0, + "probability": 0.9737 + }, + { + "start": 19060.1, + "end": 19060.49, + "probability": 0.8842 + }, + { + "start": 19060.88, + "end": 19061.76, + "probability": 0.797 + }, + { + "start": 19062.26, + "end": 19064.64, + "probability": 0.9631 + }, + { + "start": 19065.34, + "end": 19065.64, + "probability": 0.5021 + }, + { + "start": 19065.74, + "end": 19069.7, + "probability": 0.9631 + }, + { + "start": 19069.82, + "end": 19070.56, + "probability": 0.6476 + }, + { + "start": 19070.76, + "end": 19072.84, + "probability": 0.9709 + }, + { + "start": 19073.76, + "end": 19078.92, + "probability": 0.9157 + }, + { + "start": 19079.26, + "end": 19079.92, + "probability": 0.745 + }, + { + "start": 19080.06, + "end": 19081.38, + "probability": 0.6741 + }, + { + "start": 19081.82, + "end": 19082.52, + "probability": 0.6958 + }, + { + "start": 19083.58, + "end": 19085.64, + "probability": 0.993 + }, + { + "start": 19086.22, + "end": 19089.78, + "probability": 0.9863 + }, + { + "start": 19089.78, + "end": 19093.5, + "probability": 0.9899 + }, + { + "start": 19094.16, + "end": 19097.48, + "probability": 0.9895 + }, + { + "start": 19097.74, + "end": 19099.98, + "probability": 0.934 + }, + { + "start": 19101.08, + "end": 19108.64, + "probability": 0.9945 + }, + { + "start": 19109.46, + "end": 19112.58, + "probability": 0.8857 + }, + { + "start": 19113.62, + "end": 19116.76, + "probability": 0.993 + }, + { + "start": 19117.2, + "end": 19118.62, + "probability": 0.8304 + }, + { + "start": 19118.98, + "end": 19121.9, + "probability": 0.853 + }, + { + "start": 19121.9, + "end": 19126.18, + "probability": 0.9929 + }, + { + "start": 19127.34, + "end": 19133.0, + "probability": 0.9746 + }, + { + "start": 19133.98, + "end": 19135.92, + "probability": 0.9476 + }, + { + "start": 19136.06, + "end": 19137.06, + "probability": 0.8666 + }, + { + "start": 19140.04, + "end": 19145.28, + "probability": 0.9764 + }, + { + "start": 19145.58, + "end": 19147.56, + "probability": 0.9961 + }, + { + "start": 19148.14, + "end": 19148.7, + "probability": 0.9156 + }, + { + "start": 19149.8, + "end": 19152.98, + "probability": 0.9979 + }, + { + "start": 19153.34, + "end": 19155.82, + "probability": 0.9976 + }, + { + "start": 19156.18, + "end": 19156.92, + "probability": 0.8045 + }, + { + "start": 19157.14, + "end": 19158.62, + "probability": 0.9021 + }, + { + "start": 19158.98, + "end": 19159.58, + "probability": 0.8974 + }, + { + "start": 19159.86, + "end": 19161.04, + "probability": 0.9812 + }, + { + "start": 19161.88, + "end": 19164.88, + "probability": 0.9799 + }, + { + "start": 19165.46, + "end": 19169.7, + "probability": 0.9949 + }, + { + "start": 19169.8, + "end": 19171.38, + "probability": 0.9626 + }, + { + "start": 19171.42, + "end": 19172.46, + "probability": 0.8785 + }, + { + "start": 19173.04, + "end": 19175.92, + "probability": 0.9924 + }, + { + "start": 19176.3, + "end": 19178.16, + "probability": 0.9968 + }, + { + "start": 19178.6, + "end": 19183.7, + "probability": 0.9253 + }, + { + "start": 19184.14, + "end": 19185.2, + "probability": 0.9993 + }, + { + "start": 19185.28, + "end": 19186.84, + "probability": 0.9957 + }, + { + "start": 19186.96, + "end": 19187.2, + "probability": 0.7656 + }, + { + "start": 19187.5, + "end": 19191.1, + "probability": 0.9971 + }, + { + "start": 19191.1, + "end": 19194.28, + "probability": 0.9899 + }, + { + "start": 19194.4, + "end": 19194.7, + "probability": 0.3016 + }, + { + "start": 19194.7, + "end": 19194.9, + "probability": 0.6477 + }, + { + "start": 19197.36, + "end": 19199.36, + "probability": 0.8314 + }, + { + "start": 19200.5, + "end": 19202.56, + "probability": 0.9028 + }, + { + "start": 19202.66, + "end": 19203.86, + "probability": 0.738 + }, + { + "start": 19203.92, + "end": 19204.85, + "probability": 0.9492 + }, + { + "start": 19206.0, + "end": 19206.28, + "probability": 0.5735 + }, + { + "start": 19206.44, + "end": 19207.92, + "probability": 0.9646 + }, + { + "start": 19208.38, + "end": 19209.92, + "probability": 0.6035 + }, + { + "start": 19210.04, + "end": 19211.8, + "probability": 0.7371 + }, + { + "start": 19211.82, + "end": 19213.88, + "probability": 0.8783 + }, + { + "start": 19213.9, + "end": 19214.16, + "probability": 0.1481 + }, + { + "start": 19214.32, + "end": 19215.84, + "probability": 0.9727 + }, + { + "start": 19218.28, + "end": 19219.66, + "probability": 0.0164 + }, + { + "start": 19220.34, + "end": 19220.38, + "probability": 0.6889 + }, + { + "start": 19220.38, + "end": 19221.26, + "probability": 0.0088 + }, + { + "start": 19223.08, + "end": 19224.0, + "probability": 0.2607 + }, + { + "start": 19224.14, + "end": 19226.18, + "probability": 0.9828 + }, + { + "start": 19226.28, + "end": 19229.52, + "probability": 0.2865 + }, + { + "start": 19232.62, + "end": 19234.34, + "probability": 0.5518 + }, + { + "start": 19235.66, + "end": 19236.74, + "probability": 0.9865 + }, + { + "start": 19238.96, + "end": 19239.78, + "probability": 0.7374 + }, + { + "start": 19240.34, + "end": 19241.56, + "probability": 0.8461 + }, + { + "start": 19242.68, + "end": 19245.0, + "probability": 0.7136 + }, + { + "start": 19247.32, + "end": 19248.04, + "probability": 0.7158 + }, + { + "start": 19248.04, + "end": 19248.56, + "probability": 0.0206 + }, + { + "start": 19251.04, + "end": 19251.44, + "probability": 0.4406 + }, + { + "start": 19264.6, + "end": 19266.44, + "probability": 0.5837 + }, + { + "start": 19266.48, + "end": 19267.9, + "probability": 0.9326 + }, + { + "start": 19276.58, + "end": 19277.26, + "probability": 0.2733 + }, + { + "start": 19277.3, + "end": 19279.04, + "probability": 0.8458 + }, + { + "start": 19279.28, + "end": 19281.08, + "probability": 0.4154 + }, + { + "start": 19281.44, + "end": 19282.34, + "probability": 0.0822 + }, + { + "start": 19284.08, + "end": 19287.24, + "probability": 0.8833 + }, + { + "start": 19287.54, + "end": 19287.98, + "probability": 0.234 + } + ], + "segments_count": 6496, + "words_count": 33175, + "avg_words_per_segment": 5.107, + "avg_segment_duration": 2.1655, + "avg_words_per_minute": 102.0739, + "plenum_id": "65152", + "duration": 19500.58, + "title": null, + "plenum_date": "2017-06-28" +} \ No newline at end of file