diff --git "a/10092/metadata.json" "b/10092/metadata.json" new file mode 100644--- /dev/null +++ "b/10092/metadata.json" @@ -0,0 +1,16507 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "10092", + "quality_score": 0.9374, + "per_segment_quality_scores": [ + { + "start": 61.23, + "end": 64.32, + "probability": 0.8004 + }, + { + "start": 64.94, + "end": 65.34, + "probability": 0.7965 + }, + { + "start": 65.56, + "end": 66.56, + "probability": 0.6853 + }, + { + "start": 66.78, + "end": 67.82, + "probability": 0.7126 + }, + { + "start": 67.94, + "end": 70.12, + "probability": 0.8459 + }, + { + "start": 70.74, + "end": 71.26, + "probability": 0.6865 + }, + { + "start": 71.26, + "end": 74.84, + "probability": 0.6154 + }, + { + "start": 75.48, + "end": 76.86, + "probability": 0.7451 + }, + { + "start": 76.98, + "end": 78.76, + "probability": 0.3317 + }, + { + "start": 79.18, + "end": 81.68, + "probability": 0.8221 + }, + { + "start": 82.41, + "end": 86.8, + "probability": 0.9963 + }, + { + "start": 86.8, + "end": 90.56, + "probability": 0.927 + }, + { + "start": 90.68, + "end": 90.84, + "probability": 0.6631 + }, + { + "start": 91.88, + "end": 94.6, + "probability": 0.8707 + }, + { + "start": 95.38, + "end": 96.3, + "probability": 0.7634 + }, + { + "start": 96.34, + "end": 96.94, + "probability": 0.6969 + }, + { + "start": 97.06, + "end": 99.0, + "probability": 0.9922 + }, + { + "start": 99.82, + "end": 103.86, + "probability": 0.889 + }, + { + "start": 104.26, + "end": 105.64, + "probability": 0.5497 + }, + { + "start": 106.22, + "end": 110.06, + "probability": 0.9919 + }, + { + "start": 110.06, + "end": 112.56, + "probability": 0.9979 + }, + { + "start": 114.02, + "end": 115.7, + "probability": 0.7884 + }, + { + "start": 116.12, + "end": 120.27, + "probability": 0.9185 + }, + { + "start": 120.5, + "end": 124.04, + "probability": 0.7042 + }, + { + "start": 124.68, + "end": 124.98, + "probability": 0.5059 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 138.84, + "end": 141.88, + "probability": 0.6036 + }, + { + "start": 143.02, + "end": 146.9, + "probability": 0.9442 + }, + { + "start": 146.98, + "end": 149.74, + "probability": 0.8519 + }, + { + "start": 150.94, + "end": 152.96, + "probability": 0.9973 + }, + { + "start": 153.14, + "end": 157.98, + "probability": 0.8895 + }, + { + "start": 158.34, + "end": 160.04, + "probability": 0.8915 + }, + { + "start": 160.36, + "end": 161.34, + "probability": 0.7044 + }, + { + "start": 161.44, + "end": 162.56, + "probability": 0.998 + }, + { + "start": 163.7, + "end": 168.04, + "probability": 0.9941 + }, + { + "start": 168.18, + "end": 170.16, + "probability": 0.9942 + }, + { + "start": 170.82, + "end": 171.46, + "probability": 0.4864 + }, + { + "start": 172.38, + "end": 173.88, + "probability": 0.7781 + }, + { + "start": 173.96, + "end": 174.44, + "probability": 0.6535 + }, + { + "start": 174.56, + "end": 179.84, + "probability": 0.9972 + }, + { + "start": 179.94, + "end": 184.36, + "probability": 0.9834 + }, + { + "start": 185.5, + "end": 189.74, + "probability": 0.7987 + }, + { + "start": 190.74, + "end": 194.64, + "probability": 0.9431 + }, + { + "start": 195.06, + "end": 196.5, + "probability": 0.9356 + }, + { + "start": 197.14, + "end": 200.9, + "probability": 0.9841 + }, + { + "start": 201.32, + "end": 202.38, + "probability": 0.9766 + }, + { + "start": 202.58, + "end": 203.03, + "probability": 0.6716 + }, + { + "start": 203.66, + "end": 208.1, + "probability": 0.9883 + }, + { + "start": 208.52, + "end": 210.17, + "probability": 0.913 + }, + { + "start": 211.58, + "end": 212.94, + "probability": 0.8091 + }, + { + "start": 213.52, + "end": 213.88, + "probability": 0.6797 + }, + { + "start": 214.82, + "end": 216.64, + "probability": 0.9857 + }, + { + "start": 217.6, + "end": 218.04, + "probability": 0.7114 + }, + { + "start": 218.42, + "end": 218.86, + "probability": 0.6653 + }, + { + "start": 218.98, + "end": 220.37, + "probability": 0.9219 + }, + { + "start": 221.38, + "end": 222.2, + "probability": 0.9779 + }, + { + "start": 223.54, + "end": 223.86, + "probability": 0.3804 + }, + { + "start": 223.9, + "end": 225.2, + "probability": 0.8608 + }, + { + "start": 225.3, + "end": 226.34, + "probability": 0.7141 + }, + { + "start": 226.52, + "end": 227.48, + "probability": 0.8644 + }, + { + "start": 227.6, + "end": 228.52, + "probability": 0.6541 + }, + { + "start": 228.9, + "end": 229.4, + "probability": 0.8242 + }, + { + "start": 229.76, + "end": 230.48, + "probability": 0.7638 + }, + { + "start": 230.64, + "end": 234.54, + "probability": 0.9741 + }, + { + "start": 235.16, + "end": 238.16, + "probability": 0.9967 + }, + { + "start": 238.2, + "end": 239.56, + "probability": 0.9178 + }, + { + "start": 240.22, + "end": 242.52, + "probability": 0.9806 + }, + { + "start": 243.46, + "end": 248.56, + "probability": 0.99 + }, + { + "start": 249.22, + "end": 250.32, + "probability": 0.7539 + }, + { + "start": 250.62, + "end": 253.58, + "probability": 0.9938 + }, + { + "start": 254.12, + "end": 257.0, + "probability": 0.9937 + }, + { + "start": 257.0, + "end": 260.14, + "probability": 0.9856 + }, + { + "start": 261.12, + "end": 264.36, + "probability": 0.9454 + }, + { + "start": 264.5, + "end": 271.26, + "probability": 0.9498 + }, + { + "start": 271.38, + "end": 274.72, + "probability": 0.9974 + }, + { + "start": 275.32, + "end": 278.18, + "probability": 0.9978 + }, + { + "start": 278.38, + "end": 281.43, + "probability": 0.9941 + }, + { + "start": 282.6, + "end": 286.2, + "probability": 0.913 + }, + { + "start": 286.66, + "end": 290.04, + "probability": 0.7887 + }, + { + "start": 290.7, + "end": 292.88, + "probability": 0.9626 + }, + { + "start": 293.6, + "end": 295.06, + "probability": 0.9421 + }, + { + "start": 297.16, + "end": 299.68, + "probability": 0.6966 + }, + { + "start": 300.3, + "end": 302.96, + "probability": 0.4793 + }, + { + "start": 303.14, + "end": 304.24, + "probability": 0.9904 + }, + { + "start": 304.4, + "end": 305.7, + "probability": 0.9514 + }, + { + "start": 307.66, + "end": 310.84, + "probability": 0.8801 + }, + { + "start": 317.44, + "end": 319.33, + "probability": 0.7899 + }, + { + "start": 320.96, + "end": 321.38, + "probability": 0.7306 + }, + { + "start": 322.0, + "end": 325.88, + "probability": 0.9797 + }, + { + "start": 325.88, + "end": 329.16, + "probability": 0.9394 + }, + { + "start": 329.86, + "end": 333.14, + "probability": 0.9968 + }, + { + "start": 334.2, + "end": 336.82, + "probability": 0.7994 + }, + { + "start": 336.82, + "end": 339.8, + "probability": 0.9986 + }, + { + "start": 341.24, + "end": 343.4, + "probability": 0.9061 + }, + { + "start": 343.86, + "end": 350.52, + "probability": 0.9926 + }, + { + "start": 350.86, + "end": 351.26, + "probability": 0.9845 + }, + { + "start": 352.24, + "end": 352.96, + "probability": 0.9235 + }, + { + "start": 354.14, + "end": 357.82, + "probability": 0.9616 + }, + { + "start": 359.0, + "end": 363.4, + "probability": 0.9315 + }, + { + "start": 364.54, + "end": 366.62, + "probability": 0.8422 + }, + { + "start": 367.68, + "end": 370.78, + "probability": 0.9962 + }, + { + "start": 371.76, + "end": 375.5, + "probability": 0.9952 + }, + { + "start": 376.78, + "end": 381.14, + "probability": 0.997 + }, + { + "start": 382.42, + "end": 384.18, + "probability": 0.6822 + }, + { + "start": 384.76, + "end": 385.82, + "probability": 0.586 + }, + { + "start": 386.4, + "end": 389.43, + "probability": 0.9688 + }, + { + "start": 390.3, + "end": 391.72, + "probability": 0.7568 + }, + { + "start": 392.42, + "end": 393.78, + "probability": 0.9503 + }, + { + "start": 394.3, + "end": 395.82, + "probability": 0.7495 + }, + { + "start": 396.92, + "end": 399.44, + "probability": 0.7986 + }, + { + "start": 399.5, + "end": 399.82, + "probability": 0.7266 + }, + { + "start": 400.02, + "end": 400.4, + "probability": 0.4576 + }, + { + "start": 400.46, + "end": 402.88, + "probability": 0.83 + }, + { + "start": 403.32, + "end": 404.58, + "probability": 0.5522 + }, + { + "start": 404.58, + "end": 407.18, + "probability": 0.8291 + }, + { + "start": 408.3, + "end": 410.86, + "probability": 0.7794 + }, + { + "start": 411.4, + "end": 413.04, + "probability": 0.944 + }, + { + "start": 414.9, + "end": 417.55, + "probability": 0.9634 + }, + { + "start": 418.54, + "end": 420.84, + "probability": 0.9912 + }, + { + "start": 421.82, + "end": 422.42, + "probability": 0.7071 + }, + { + "start": 423.08, + "end": 423.56, + "probability": 0.8246 + }, + { + "start": 424.62, + "end": 426.82, + "probability": 0.9927 + }, + { + "start": 428.12, + "end": 429.88, + "probability": 0.9891 + }, + { + "start": 431.12, + "end": 431.92, + "probability": 0.9529 + }, + { + "start": 432.62, + "end": 436.4, + "probability": 0.9958 + }, + { + "start": 437.4, + "end": 439.38, + "probability": 0.9929 + }, + { + "start": 440.56, + "end": 445.08, + "probability": 0.9951 + }, + { + "start": 445.84, + "end": 446.76, + "probability": 0.8844 + }, + { + "start": 447.38, + "end": 448.62, + "probability": 0.9932 + }, + { + "start": 449.08, + "end": 452.74, + "probability": 0.9961 + }, + { + "start": 453.34, + "end": 456.4, + "probability": 0.9949 + }, + { + "start": 456.8, + "end": 458.25, + "probability": 0.9621 + }, + { + "start": 458.58, + "end": 459.32, + "probability": 0.7011 + }, + { + "start": 460.52, + "end": 464.32, + "probability": 0.9627 + }, + { + "start": 464.44, + "end": 470.16, + "probability": 0.9482 + }, + { + "start": 470.72, + "end": 473.54, + "probability": 0.9631 + }, + { + "start": 474.06, + "end": 474.96, + "probability": 0.7439 + }, + { + "start": 475.9, + "end": 477.52, + "probability": 0.9838 + }, + { + "start": 477.92, + "end": 480.2, + "probability": 0.9951 + }, + { + "start": 481.08, + "end": 483.64, + "probability": 0.9753 + }, + { + "start": 483.92, + "end": 484.48, + "probability": 0.9728 + }, + { + "start": 484.66, + "end": 486.04, + "probability": 0.925 + }, + { + "start": 487.49, + "end": 491.5, + "probability": 0.9776 + }, + { + "start": 492.3, + "end": 492.64, + "probability": 0.9702 + }, + { + "start": 493.16, + "end": 494.32, + "probability": 0.8048 + }, + { + "start": 495.01, + "end": 496.94, + "probability": 0.9197 + }, + { + "start": 498.94, + "end": 500.74, + "probability": 0.8741 + }, + { + "start": 501.5, + "end": 505.9, + "probability": 0.9953 + }, + { + "start": 506.72, + "end": 509.02, + "probability": 0.9828 + }, + { + "start": 509.62, + "end": 514.32, + "probability": 0.9857 + }, + { + "start": 514.94, + "end": 516.86, + "probability": 0.9785 + }, + { + "start": 517.46, + "end": 518.3, + "probability": 0.908 + }, + { + "start": 518.74, + "end": 519.24, + "probability": 0.899 + }, + { + "start": 519.38, + "end": 520.76, + "probability": 0.9752 + }, + { + "start": 520.86, + "end": 522.32, + "probability": 0.9658 + }, + { + "start": 522.82, + "end": 525.46, + "probability": 0.9991 + }, + { + "start": 526.06, + "end": 527.34, + "probability": 0.9983 + }, + { + "start": 527.66, + "end": 528.2, + "probability": 0.9158 + }, + { + "start": 528.34, + "end": 528.78, + "probability": 0.8672 + }, + { + "start": 529.1, + "end": 529.6, + "probability": 0.7113 + }, + { + "start": 529.86, + "end": 531.02, + "probability": 0.968 + }, + { + "start": 531.52, + "end": 534.5, + "probability": 0.9498 + }, + { + "start": 535.2, + "end": 536.38, + "probability": 0.8593 + }, + { + "start": 536.5, + "end": 537.86, + "probability": 0.9634 + }, + { + "start": 538.34, + "end": 541.26, + "probability": 0.9787 + }, + { + "start": 541.74, + "end": 545.26, + "probability": 0.9943 + }, + { + "start": 545.32, + "end": 546.4, + "probability": 0.6287 + }, + { + "start": 546.88, + "end": 547.4, + "probability": 0.9868 + }, + { + "start": 547.7, + "end": 548.92, + "probability": 0.9912 + }, + { + "start": 549.42, + "end": 554.06, + "probability": 0.9655 + }, + { + "start": 554.06, + "end": 557.7, + "probability": 0.999 + }, + { + "start": 558.08, + "end": 558.5, + "probability": 0.9646 + }, + { + "start": 558.92, + "end": 560.52, + "probability": 0.9497 + }, + { + "start": 560.6, + "end": 561.48, + "probability": 0.9428 + }, + { + "start": 562.5, + "end": 565.74, + "probability": 0.687 + }, + { + "start": 567.64, + "end": 569.95, + "probability": 0.7394 + }, + { + "start": 570.98, + "end": 572.54, + "probability": 0.7769 + }, + { + "start": 572.72, + "end": 573.28, + "probability": 0.9325 + }, + { + "start": 573.42, + "end": 577.9, + "probability": 0.592 + }, + { + "start": 578.42, + "end": 578.84, + "probability": 0.7298 + }, + { + "start": 579.58, + "end": 581.58, + "probability": 0.2061 + }, + { + "start": 581.7, + "end": 581.78, + "probability": 0.2406 + }, + { + "start": 581.78, + "end": 582.32, + "probability": 0.5895 + }, + { + "start": 582.78, + "end": 583.44, + "probability": 0.8215 + }, + { + "start": 585.12, + "end": 585.84, + "probability": 0.3934 + }, + { + "start": 586.08, + "end": 587.56, + "probability": 0.7318 + }, + { + "start": 587.72, + "end": 588.48, + "probability": 0.9387 + }, + { + "start": 588.72, + "end": 589.1, + "probability": 0.859 + }, + { + "start": 589.3, + "end": 590.04, + "probability": 0.8207 + }, + { + "start": 590.64, + "end": 592.12, + "probability": 0.8047 + }, + { + "start": 594.02, + "end": 594.98, + "probability": 0.1514 + }, + { + "start": 595.28, + "end": 595.82, + "probability": 0.725 + }, + { + "start": 595.95, + "end": 601.24, + "probability": 0.9585 + }, + { + "start": 601.34, + "end": 603.92, + "probability": 0.9829 + }, + { + "start": 604.44, + "end": 607.66, + "probability": 0.9956 + }, + { + "start": 608.38, + "end": 609.58, + "probability": 0.9376 + }, + { + "start": 609.8, + "end": 610.32, + "probability": 0.9798 + }, + { + "start": 611.0, + "end": 612.3, + "probability": 0.2283 + }, + { + "start": 612.32, + "end": 613.02, + "probability": 0.8425 + }, + { + "start": 613.36, + "end": 614.5, + "probability": 0.828 + }, + { + "start": 615.08, + "end": 616.34, + "probability": 0.9513 + }, + { + "start": 617.06, + "end": 621.02, + "probability": 0.9562 + }, + { + "start": 621.78, + "end": 625.86, + "probability": 0.9883 + }, + { + "start": 626.28, + "end": 627.5, + "probability": 0.9773 + }, + { + "start": 627.98, + "end": 629.44, + "probability": 0.9101 + }, + { + "start": 630.22, + "end": 632.94, + "probability": 0.9919 + }, + { + "start": 633.64, + "end": 635.4, + "probability": 0.8716 + }, + { + "start": 636.0, + "end": 637.0, + "probability": 0.8737 + }, + { + "start": 637.62, + "end": 642.64, + "probability": 0.9785 + }, + { + "start": 643.78, + "end": 648.54, + "probability": 0.9857 + }, + { + "start": 649.54, + "end": 651.46, + "probability": 0.9872 + }, + { + "start": 652.04, + "end": 654.04, + "probability": 0.7369 + }, + { + "start": 654.6, + "end": 655.98, + "probability": 0.7705 + }, + { + "start": 662.16, + "end": 662.8, + "probability": 0.5902 + }, + { + "start": 662.98, + "end": 663.94, + "probability": 0.3701 + }, + { + "start": 664.0, + "end": 664.5, + "probability": 0.9321 + }, + { + "start": 664.86, + "end": 667.46, + "probability": 0.9618 + }, + { + "start": 668.44, + "end": 672.86, + "probability": 0.8904 + }, + { + "start": 674.95, + "end": 681.72, + "probability": 0.951 + }, + { + "start": 681.98, + "end": 682.08, + "probability": 0.1187 + }, + { + "start": 682.08, + "end": 685.26, + "probability": 0.6677 + }, + { + "start": 685.76, + "end": 690.34, + "probability": 0.9187 + }, + { + "start": 691.32, + "end": 693.7, + "probability": 0.7191 + }, + { + "start": 693.9, + "end": 696.7, + "probability": 0.9954 + }, + { + "start": 697.26, + "end": 698.78, + "probability": 0.6082 + }, + { + "start": 699.02, + "end": 700.06, + "probability": 0.9204 + }, + { + "start": 700.28, + "end": 703.62, + "probability": 0.8631 + }, + { + "start": 705.33, + "end": 706.92, + "probability": 0.2221 + }, + { + "start": 706.92, + "end": 708.38, + "probability": 0.8937 + }, + { + "start": 708.42, + "end": 710.8, + "probability": 0.9569 + }, + { + "start": 711.38, + "end": 714.6, + "probability": 0.7341 + }, + { + "start": 715.34, + "end": 718.82, + "probability": 0.8517 + }, + { + "start": 718.96, + "end": 721.88, + "probability": 0.9501 + }, + { + "start": 722.38, + "end": 728.66, + "probability": 0.8922 + }, + { + "start": 728.66, + "end": 737.12, + "probability": 0.9821 + }, + { + "start": 737.64, + "end": 739.48, + "probability": 0.8861 + }, + { + "start": 739.6, + "end": 742.66, + "probability": 0.993 + }, + { + "start": 743.08, + "end": 746.82, + "probability": 0.9336 + }, + { + "start": 747.4, + "end": 752.12, + "probability": 0.8731 + }, + { + "start": 752.72, + "end": 756.38, + "probability": 0.8709 + }, + { + "start": 756.9, + "end": 762.22, + "probability": 0.9828 + }, + { + "start": 762.5, + "end": 763.16, + "probability": 0.4386 + }, + { + "start": 763.4, + "end": 764.5, + "probability": 0.4333 + }, + { + "start": 765.28, + "end": 766.72, + "probability": 0.9176 + }, + { + "start": 766.82, + "end": 767.44, + "probability": 0.7239 + }, + { + "start": 767.58, + "end": 769.5, + "probability": 0.7695 + }, + { + "start": 769.66, + "end": 771.42, + "probability": 0.9681 + }, + { + "start": 771.5, + "end": 774.2, + "probability": 0.9445 + }, + { + "start": 774.82, + "end": 776.2, + "probability": 0.7247 + }, + { + "start": 776.3, + "end": 776.66, + "probability": 0.9237 + }, + { + "start": 776.7, + "end": 777.68, + "probability": 0.9968 + }, + { + "start": 777.84, + "end": 781.18, + "probability": 0.9834 + }, + { + "start": 782.4, + "end": 785.9, + "probability": 0.9849 + }, + { + "start": 786.06, + "end": 789.96, + "probability": 0.9171 + }, + { + "start": 789.96, + "end": 793.8, + "probability": 0.999 + }, + { + "start": 794.02, + "end": 794.48, + "probability": 0.7491 + }, + { + "start": 794.98, + "end": 797.62, + "probability": 0.807 + }, + { + "start": 798.5, + "end": 799.68, + "probability": 0.881 + }, + { + "start": 799.72, + "end": 800.14, + "probability": 0.7723 + }, + { + "start": 800.52, + "end": 801.18, + "probability": 0.4612 + }, + { + "start": 801.58, + "end": 802.66, + "probability": 0.8978 + }, + { + "start": 803.62, + "end": 804.86, + "probability": 0.6633 + }, + { + "start": 805.02, + "end": 805.1, + "probability": 0.5246 + }, + { + "start": 805.1, + "end": 807.1, + "probability": 0.9508 + }, + { + "start": 808.92, + "end": 813.82, + "probability": 0.9264 + }, + { + "start": 814.72, + "end": 819.68, + "probability": 0.9352 + }, + { + "start": 820.06, + "end": 820.94, + "probability": 0.5066 + }, + { + "start": 821.3, + "end": 822.34, + "probability": 0.8944 + }, + { + "start": 823.12, + "end": 825.07, + "probability": 0.9837 + }, + { + "start": 825.52, + "end": 829.6, + "probability": 0.6785 + }, + { + "start": 830.2, + "end": 831.98, + "probability": 0.7715 + }, + { + "start": 832.7, + "end": 833.66, + "probability": 0.6371 + }, + { + "start": 834.42, + "end": 836.24, + "probability": 0.8846 + }, + { + "start": 837.88, + "end": 838.9, + "probability": 0.8498 + }, + { + "start": 839.12, + "end": 843.02, + "probability": 0.9817 + }, + { + "start": 843.14, + "end": 844.35, + "probability": 0.7668 + }, + { + "start": 845.36, + "end": 849.9, + "probability": 0.9662 + }, + { + "start": 850.78, + "end": 851.6, + "probability": 0.5413 + }, + { + "start": 852.76, + "end": 855.62, + "probability": 0.9971 + }, + { + "start": 856.36, + "end": 857.4, + "probability": 0.9058 + }, + { + "start": 858.14, + "end": 858.63, + "probability": 0.9757 + }, + { + "start": 859.26, + "end": 860.44, + "probability": 0.9874 + }, + { + "start": 860.78, + "end": 861.72, + "probability": 0.9956 + }, + { + "start": 862.16, + "end": 864.34, + "probability": 0.9974 + }, + { + "start": 865.16, + "end": 866.98, + "probability": 0.9292 + }, + { + "start": 868.1, + "end": 870.7, + "probability": 0.9974 + }, + { + "start": 871.54, + "end": 874.6, + "probability": 0.9878 + }, + { + "start": 874.76, + "end": 876.9, + "probability": 0.9961 + }, + { + "start": 877.76, + "end": 880.06, + "probability": 0.9934 + }, + { + "start": 880.06, + "end": 882.8, + "probability": 0.8205 + }, + { + "start": 883.82, + "end": 884.94, + "probability": 0.775 + }, + { + "start": 885.98, + "end": 886.56, + "probability": 0.9477 + }, + { + "start": 887.32, + "end": 888.34, + "probability": 0.9809 + }, + { + "start": 888.92, + "end": 890.86, + "probability": 0.6567 + }, + { + "start": 892.16, + "end": 893.22, + "probability": 0.8882 + }, + { + "start": 894.52, + "end": 895.02, + "probability": 0.8215 + }, + { + "start": 896.2, + "end": 898.55, + "probability": 0.9134 + }, + { + "start": 899.14, + "end": 901.28, + "probability": 0.9092 + }, + { + "start": 901.7, + "end": 902.46, + "probability": 0.892 + }, + { + "start": 902.82, + "end": 903.82, + "probability": 0.9709 + }, + { + "start": 904.08, + "end": 905.94, + "probability": 0.8869 + }, + { + "start": 907.46, + "end": 909.86, + "probability": 0.986 + }, + { + "start": 910.02, + "end": 910.8, + "probability": 0.7721 + }, + { + "start": 915.16, + "end": 918.22, + "probability": 0.747 + }, + { + "start": 918.84, + "end": 923.32, + "probability": 0.9639 + }, + { + "start": 923.76, + "end": 928.96, + "probability": 0.9902 + }, + { + "start": 930.0, + "end": 931.58, + "probability": 0.9969 + }, + { + "start": 931.92, + "end": 933.12, + "probability": 0.9839 + }, + { + "start": 933.46, + "end": 933.96, + "probability": 0.5749 + }, + { + "start": 934.16, + "end": 935.26, + "probability": 0.5066 + }, + { + "start": 935.38, + "end": 936.12, + "probability": 0.952 + }, + { + "start": 936.62, + "end": 938.96, + "probability": 0.9881 + }, + { + "start": 939.56, + "end": 943.1, + "probability": 0.9612 + }, + { + "start": 943.8, + "end": 945.7, + "probability": 0.954 + }, + { + "start": 945.92, + "end": 950.04, + "probability": 0.9294 + }, + { + "start": 950.16, + "end": 953.52, + "probability": 0.8878 + }, + { + "start": 953.66, + "end": 957.92, + "probability": 0.9759 + }, + { + "start": 958.52, + "end": 960.16, + "probability": 0.9245 + }, + { + "start": 961.0, + "end": 964.64, + "probability": 0.9855 + }, + { + "start": 964.82, + "end": 967.98, + "probability": 0.9954 + }, + { + "start": 967.98, + "end": 970.44, + "probability": 0.8376 + }, + { + "start": 970.84, + "end": 972.02, + "probability": 0.9804 + }, + { + "start": 972.1, + "end": 974.82, + "probability": 0.9574 + }, + { + "start": 974.88, + "end": 979.5, + "probability": 0.9963 + }, + { + "start": 980.06, + "end": 980.66, + "probability": 0.7637 + }, + { + "start": 980.7, + "end": 985.92, + "probability": 0.9655 + }, + { + "start": 986.04, + "end": 987.9, + "probability": 0.9866 + }, + { + "start": 988.48, + "end": 992.62, + "probability": 0.9372 + }, + { + "start": 992.92, + "end": 995.92, + "probability": 0.9778 + }, + { + "start": 996.4, + "end": 999.36, + "probability": 0.9391 + }, + { + "start": 999.36, + "end": 1001.72, + "probability": 0.9911 + }, + { + "start": 1002.8, + "end": 1004.76, + "probability": 0.9954 + }, + { + "start": 1005.2, + "end": 1008.3, + "probability": 0.8079 + }, + { + "start": 1010.94, + "end": 1011.26, + "probability": 0.6639 + }, + { + "start": 1013.4, + "end": 1016.82, + "probability": 0.8796 + }, + { + "start": 1019.4, + "end": 1020.34, + "probability": 0.638 + }, + { + "start": 1020.64, + "end": 1021.06, + "probability": 0.799 + }, + { + "start": 1021.16, + "end": 1023.2, + "probability": 0.8946 + }, + { + "start": 1025.02, + "end": 1027.64, + "probability": 0.9985 + }, + { + "start": 1028.32, + "end": 1033.14, + "probability": 0.9808 + }, + { + "start": 1033.2, + "end": 1036.16, + "probability": 0.9982 + }, + { + "start": 1037.44, + "end": 1039.86, + "probability": 0.9849 + }, + { + "start": 1041.08, + "end": 1044.02, + "probability": 0.9204 + }, + { + "start": 1044.72, + "end": 1045.84, + "probability": 0.9673 + }, + { + "start": 1046.04, + "end": 1046.68, + "probability": 0.9914 + }, + { + "start": 1047.02, + "end": 1049.66, + "probability": 0.951 + }, + { + "start": 1050.06, + "end": 1051.86, + "probability": 0.9927 + }, + { + "start": 1053.2, + "end": 1054.56, + "probability": 0.971 + }, + { + "start": 1054.98, + "end": 1061.56, + "probability": 0.9958 + }, + { + "start": 1062.58, + "end": 1063.62, + "probability": 0.6256 + }, + { + "start": 1064.3, + "end": 1065.52, + "probability": 0.7756 + }, + { + "start": 1067.52, + "end": 1069.28, + "probability": 0.9988 + }, + { + "start": 1070.02, + "end": 1073.68, + "probability": 0.9979 + }, + { + "start": 1073.98, + "end": 1075.3, + "probability": 0.8827 + }, + { + "start": 1076.22, + "end": 1080.42, + "probability": 0.8095 + }, + { + "start": 1081.54, + "end": 1084.32, + "probability": 0.9987 + }, + { + "start": 1085.3, + "end": 1086.4, + "probability": 0.9719 + }, + { + "start": 1087.14, + "end": 1087.92, + "probability": 0.9743 + }, + { + "start": 1088.94, + "end": 1091.94, + "probability": 0.9978 + }, + { + "start": 1092.54, + "end": 1094.0, + "probability": 0.8431 + }, + { + "start": 1094.14, + "end": 1095.44, + "probability": 0.949 + }, + { + "start": 1095.56, + "end": 1098.18, + "probability": 0.9863 + }, + { + "start": 1098.74, + "end": 1102.38, + "probability": 0.9743 + }, + { + "start": 1103.58, + "end": 1104.92, + "probability": 0.9379 + }, + { + "start": 1105.04, + "end": 1106.28, + "probability": 0.993 + }, + { + "start": 1106.46, + "end": 1107.8, + "probability": 0.9969 + }, + { + "start": 1108.32, + "end": 1109.46, + "probability": 0.9863 + }, + { + "start": 1110.14, + "end": 1112.02, + "probability": 0.9971 + }, + { + "start": 1112.68, + "end": 1116.42, + "probability": 0.9969 + }, + { + "start": 1117.02, + "end": 1118.44, + "probability": 0.9998 + }, + { + "start": 1119.48, + "end": 1121.58, + "probability": 0.9938 + }, + { + "start": 1122.2, + "end": 1124.22, + "probability": 0.9906 + }, + { + "start": 1124.94, + "end": 1126.26, + "probability": 0.79 + }, + { + "start": 1127.16, + "end": 1129.98, + "probability": 0.7842 + }, + { + "start": 1130.56, + "end": 1133.62, + "probability": 0.9937 + }, + { + "start": 1134.22, + "end": 1139.22, + "probability": 0.9978 + }, + { + "start": 1140.54, + "end": 1142.36, + "probability": 0.9875 + }, + { + "start": 1142.96, + "end": 1145.04, + "probability": 0.6897 + }, + { + "start": 1145.42, + "end": 1146.02, + "probability": 0.7022 + }, + { + "start": 1146.82, + "end": 1147.27, + "probability": 0.6473 + }, + { + "start": 1153.66, + "end": 1154.44, + "probability": 0.5913 + }, + { + "start": 1155.4, + "end": 1156.12, + "probability": 0.7567 + }, + { + "start": 1157.28, + "end": 1159.28, + "probability": 0.9606 + }, + { + "start": 1160.62, + "end": 1161.56, + "probability": 0.9109 + }, + { + "start": 1163.14, + "end": 1164.64, + "probability": 0.9414 + }, + { + "start": 1165.6, + "end": 1167.74, + "probability": 0.7912 + }, + { + "start": 1169.18, + "end": 1172.24, + "probability": 0.96 + }, + { + "start": 1173.0, + "end": 1176.1, + "probability": 0.985 + }, + { + "start": 1177.06, + "end": 1179.28, + "probability": 0.989 + }, + { + "start": 1180.26, + "end": 1181.36, + "probability": 0.6169 + }, + { + "start": 1182.62, + "end": 1184.8, + "probability": 0.9896 + }, + { + "start": 1185.62, + "end": 1185.94, + "probability": 0.952 + }, + { + "start": 1188.1, + "end": 1189.28, + "probability": 0.9971 + }, + { + "start": 1190.4, + "end": 1192.04, + "probability": 0.9246 + }, + { + "start": 1193.88, + "end": 1196.08, + "probability": 0.9933 + }, + { + "start": 1197.0, + "end": 1200.22, + "probability": 0.9563 + }, + { + "start": 1201.0, + "end": 1204.92, + "probability": 0.9714 + }, + { + "start": 1205.58, + "end": 1206.34, + "probability": 0.9409 + }, + { + "start": 1208.16, + "end": 1209.16, + "probability": 0.9065 + }, + { + "start": 1209.68, + "end": 1210.22, + "probability": 0.9184 + }, + { + "start": 1211.0, + "end": 1212.42, + "probability": 0.9473 + }, + { + "start": 1213.52, + "end": 1216.02, + "probability": 0.9937 + }, + { + "start": 1217.26, + "end": 1219.36, + "probability": 0.9818 + }, + { + "start": 1220.28, + "end": 1222.56, + "probability": 0.998 + }, + { + "start": 1223.3, + "end": 1223.92, + "probability": 0.9978 + }, + { + "start": 1225.42, + "end": 1228.18, + "probability": 0.9961 + }, + { + "start": 1229.78, + "end": 1230.04, + "probability": 0.9443 + }, + { + "start": 1230.84, + "end": 1232.68, + "probability": 0.9976 + }, + { + "start": 1233.38, + "end": 1235.02, + "probability": 0.9972 + }, + { + "start": 1236.1, + "end": 1239.2, + "probability": 0.8586 + }, + { + "start": 1239.92, + "end": 1243.66, + "probability": 0.9925 + }, + { + "start": 1244.3, + "end": 1247.22, + "probability": 0.9016 + }, + { + "start": 1248.18, + "end": 1249.84, + "probability": 0.9783 + }, + { + "start": 1250.94, + "end": 1252.22, + "probability": 0.8428 + }, + { + "start": 1252.82, + "end": 1253.68, + "probability": 0.9816 + }, + { + "start": 1254.38, + "end": 1254.8, + "probability": 0.9793 + }, + { + "start": 1256.24, + "end": 1256.65, + "probability": 0.9985 + }, + { + "start": 1257.84, + "end": 1260.68, + "probability": 0.7256 + }, + { + "start": 1261.4, + "end": 1265.72, + "probability": 0.995 + }, + { + "start": 1266.38, + "end": 1267.72, + "probability": 0.9651 + }, + { + "start": 1268.4, + "end": 1268.94, + "probability": 0.7047 + }, + { + "start": 1269.54, + "end": 1272.32, + "probability": 0.9272 + }, + { + "start": 1272.98, + "end": 1276.14, + "probability": 0.9045 + }, + { + "start": 1277.66, + "end": 1279.58, + "probability": 0.7364 + }, + { + "start": 1280.54, + "end": 1282.8, + "probability": 0.7827 + }, + { + "start": 1283.22, + "end": 1284.44, + "probability": 0.6777 + }, + { + "start": 1284.56, + "end": 1286.5, + "probability": 0.948 + }, + { + "start": 1291.4, + "end": 1296.38, + "probability": 0.8792 + }, + { + "start": 1297.94, + "end": 1298.64, + "probability": 0.8082 + }, + { + "start": 1298.84, + "end": 1302.5, + "probability": 0.9722 + }, + { + "start": 1303.14, + "end": 1305.96, + "probability": 0.843 + }, + { + "start": 1306.84, + "end": 1309.24, + "probability": 0.9724 + }, + { + "start": 1310.2, + "end": 1312.26, + "probability": 0.9901 + }, + { + "start": 1315.4, + "end": 1318.38, + "probability": 0.7721 + }, + { + "start": 1319.04, + "end": 1326.62, + "probability": 0.9951 + }, + { + "start": 1327.36, + "end": 1330.3, + "probability": 0.937 + }, + { + "start": 1331.62, + "end": 1334.9, + "probability": 0.9041 + }, + { + "start": 1336.64, + "end": 1339.82, + "probability": 0.9968 + }, + { + "start": 1340.94, + "end": 1343.44, + "probability": 0.9966 + }, + { + "start": 1344.2, + "end": 1345.32, + "probability": 0.99 + }, + { + "start": 1346.26, + "end": 1347.26, + "probability": 0.7474 + }, + { + "start": 1347.42, + "end": 1348.8, + "probability": 0.9948 + }, + { + "start": 1349.18, + "end": 1351.76, + "probability": 0.9968 + }, + { + "start": 1355.74, + "end": 1356.82, + "probability": 0.889 + }, + { + "start": 1358.82, + "end": 1361.06, + "probability": 0.9282 + }, + { + "start": 1362.6, + "end": 1364.26, + "probability": 0.9917 + }, + { + "start": 1365.74, + "end": 1368.24, + "probability": 0.9706 + }, + { + "start": 1369.16, + "end": 1369.98, + "probability": 0.9837 + }, + { + "start": 1371.62, + "end": 1372.68, + "probability": 0.9907 + }, + { + "start": 1373.78, + "end": 1374.8, + "probability": 0.9989 + }, + { + "start": 1375.96, + "end": 1377.64, + "probability": 0.9684 + }, + { + "start": 1378.84, + "end": 1382.6, + "probability": 0.9932 + }, + { + "start": 1386.14, + "end": 1386.96, + "probability": 0.9165 + }, + { + "start": 1389.88, + "end": 1390.9, + "probability": 0.8669 + }, + { + "start": 1392.3, + "end": 1394.7, + "probability": 0.9249 + }, + { + "start": 1395.6, + "end": 1396.8, + "probability": 0.9719 + }, + { + "start": 1397.5, + "end": 1398.9, + "probability": 0.9926 + }, + { + "start": 1403.92, + "end": 1406.22, + "probability": 0.9794 + }, + { + "start": 1407.58, + "end": 1408.68, + "probability": 0.9443 + }, + { + "start": 1409.66, + "end": 1411.76, + "probability": 0.9929 + }, + { + "start": 1413.96, + "end": 1420.74, + "probability": 0.9977 + }, + { + "start": 1422.82, + "end": 1427.5, + "probability": 0.8918 + }, + { + "start": 1429.48, + "end": 1431.35, + "probability": 0.9333 + }, + { + "start": 1434.7, + "end": 1440.1, + "probability": 0.9706 + }, + { + "start": 1440.5, + "end": 1441.76, + "probability": 0.5815 + }, + { + "start": 1442.86, + "end": 1444.62, + "probability": 0.9731 + }, + { + "start": 1445.14, + "end": 1445.94, + "probability": 0.9209 + }, + { + "start": 1446.58, + "end": 1449.74, + "probability": 0.9817 + }, + { + "start": 1452.18, + "end": 1454.16, + "probability": 0.7578 + }, + { + "start": 1456.26, + "end": 1457.24, + "probability": 0.9475 + }, + { + "start": 1457.64, + "end": 1461.78, + "probability": 0.983 + }, + { + "start": 1461.78, + "end": 1465.84, + "probability": 0.7619 + }, + { + "start": 1466.34, + "end": 1471.12, + "probability": 0.9691 + }, + { + "start": 1472.86, + "end": 1475.62, + "probability": 0.8987 + }, + { + "start": 1476.34, + "end": 1479.56, + "probability": 0.9902 + }, + { + "start": 1479.98, + "end": 1482.44, + "probability": 0.7893 + }, + { + "start": 1483.52, + "end": 1484.78, + "probability": 0.8451 + }, + { + "start": 1485.78, + "end": 1487.7, + "probability": 0.9297 + }, + { + "start": 1488.08, + "end": 1489.52, + "probability": 0.9626 + }, + { + "start": 1489.84, + "end": 1491.56, + "probability": 0.9909 + }, + { + "start": 1491.94, + "end": 1492.24, + "probability": 0.7216 + }, + { + "start": 1492.28, + "end": 1492.74, + "probability": 0.5983 + }, + { + "start": 1493.02, + "end": 1494.42, + "probability": 0.8494 + }, + { + "start": 1495.6, + "end": 1496.32, + "probability": 0.7124 + }, + { + "start": 1496.42, + "end": 1498.12, + "probability": 0.856 + }, + { + "start": 1498.58, + "end": 1498.72, + "probability": 0.2204 + }, + { + "start": 1498.72, + "end": 1499.28, + "probability": 0.8859 + }, + { + "start": 1499.82, + "end": 1503.84, + "probability": 0.959 + }, + { + "start": 1504.82, + "end": 1505.8, + "probability": 0.7087 + }, + { + "start": 1506.96, + "end": 1508.58, + "probability": 0.6012 + }, + { + "start": 1508.94, + "end": 1513.1, + "probability": 0.9943 + }, + { + "start": 1513.2, + "end": 1515.26, + "probability": 0.8481 + }, + { + "start": 1515.88, + "end": 1519.94, + "probability": 0.9852 + }, + { + "start": 1520.0, + "end": 1524.14, + "probability": 0.748 + }, + { + "start": 1525.0, + "end": 1530.18, + "probability": 0.9932 + }, + { + "start": 1530.62, + "end": 1532.98, + "probability": 0.9402 + }, + { + "start": 1533.46, + "end": 1537.08, + "probability": 0.9346 + }, + { + "start": 1537.58, + "end": 1538.92, + "probability": 0.916 + }, + { + "start": 1539.06, + "end": 1542.34, + "probability": 0.9971 + }, + { + "start": 1542.34, + "end": 1546.33, + "probability": 0.9898 + }, + { + "start": 1547.58, + "end": 1549.58, + "probability": 0.9854 + }, + { + "start": 1549.72, + "end": 1555.86, + "probability": 0.8366 + }, + { + "start": 1556.2, + "end": 1557.5, + "probability": 0.9438 + }, + { + "start": 1557.84, + "end": 1558.92, + "probability": 0.9666 + }, + { + "start": 1559.0, + "end": 1560.6, + "probability": 0.9788 + }, + { + "start": 1560.66, + "end": 1562.53, + "probability": 0.8864 + }, + { + "start": 1563.04, + "end": 1567.09, + "probability": 0.8451 + }, + { + "start": 1567.54, + "end": 1569.32, + "probability": 0.9596 + }, + { + "start": 1569.86, + "end": 1573.26, + "probability": 0.9948 + }, + { + "start": 1573.92, + "end": 1578.12, + "probability": 0.8415 + }, + { + "start": 1578.66, + "end": 1580.6, + "probability": 0.9113 + }, + { + "start": 1580.66, + "end": 1585.38, + "probability": 0.9845 + }, + { + "start": 1585.8, + "end": 1588.7, + "probability": 0.9684 + }, + { + "start": 1589.06, + "end": 1593.74, + "probability": 0.9938 + }, + { + "start": 1594.36, + "end": 1596.36, + "probability": 0.9863 + }, + { + "start": 1596.48, + "end": 1596.7, + "probability": 0.288 + }, + { + "start": 1597.0, + "end": 1598.76, + "probability": 0.8549 + }, + { + "start": 1598.92, + "end": 1600.36, + "probability": 0.8064 + }, + { + "start": 1601.42, + "end": 1603.1, + "probability": 0.9544 + }, + { + "start": 1605.18, + "end": 1606.88, + "probability": 0.844 + }, + { + "start": 1607.08, + "end": 1608.14, + "probability": 0.8455 + }, + { + "start": 1608.46, + "end": 1611.12, + "probability": 0.9956 + }, + { + "start": 1613.3, + "end": 1617.72, + "probability": 0.9932 + }, + { + "start": 1619.1, + "end": 1622.1, + "probability": 0.9935 + }, + { + "start": 1623.1, + "end": 1624.17, + "probability": 0.9714 + }, + { + "start": 1625.1, + "end": 1625.94, + "probability": 0.9617 + }, + { + "start": 1626.94, + "end": 1627.74, + "probability": 0.9559 + }, + { + "start": 1629.84, + "end": 1630.3, + "probability": 0.9619 + }, + { + "start": 1630.4, + "end": 1632.96, + "probability": 0.9801 + }, + { + "start": 1633.08, + "end": 1633.56, + "probability": 0.6626 + }, + { + "start": 1634.62, + "end": 1636.52, + "probability": 0.8969 + }, + { + "start": 1637.44, + "end": 1638.44, + "probability": 0.8517 + }, + { + "start": 1639.4, + "end": 1644.96, + "probability": 0.9944 + }, + { + "start": 1646.3, + "end": 1653.02, + "probability": 0.9665 + }, + { + "start": 1653.72, + "end": 1655.08, + "probability": 0.8339 + }, + { + "start": 1655.64, + "end": 1658.18, + "probability": 0.992 + }, + { + "start": 1659.24, + "end": 1659.34, + "probability": 0.5044 + }, + { + "start": 1659.94, + "end": 1660.64, + "probability": 0.5907 + }, + { + "start": 1661.28, + "end": 1663.36, + "probability": 0.9799 + }, + { + "start": 1663.7, + "end": 1663.96, + "probability": 0.854 + }, + { + "start": 1664.64, + "end": 1666.52, + "probability": 0.8263 + }, + { + "start": 1666.66, + "end": 1669.0, + "probability": 0.9958 + }, + { + "start": 1669.25, + "end": 1675.12, + "probability": 0.9284 + }, + { + "start": 1675.76, + "end": 1678.6, + "probability": 0.9681 + }, + { + "start": 1681.26, + "end": 1683.82, + "probability": 0.967 + }, + { + "start": 1684.14, + "end": 1685.64, + "probability": 0.9949 + }, + { + "start": 1687.3, + "end": 1689.66, + "probability": 0.9958 + }, + { + "start": 1689.76, + "end": 1691.54, + "probability": 0.9982 + }, + { + "start": 1692.2, + "end": 1694.46, + "probability": 0.9902 + }, + { + "start": 1698.12, + "end": 1698.68, + "probability": 0.8292 + }, + { + "start": 1699.6, + "end": 1700.66, + "probability": 0.6893 + }, + { + "start": 1700.82, + "end": 1702.18, + "probability": 0.7062 + }, + { + "start": 1704.66, + "end": 1705.8, + "probability": 0.9652 + }, + { + "start": 1707.2, + "end": 1709.66, + "probability": 0.9688 + }, + { + "start": 1710.5, + "end": 1711.06, + "probability": 0.9815 + }, + { + "start": 1713.16, + "end": 1716.52, + "probability": 0.8346 + }, + { + "start": 1717.64, + "end": 1721.2, + "probability": 0.8933 + }, + { + "start": 1722.26, + "end": 1728.94, + "probability": 0.9763 + }, + { + "start": 1729.82, + "end": 1731.22, + "probability": 0.7681 + }, + { + "start": 1732.0, + "end": 1732.1, + "probability": 0.1819 + }, + { + "start": 1732.66, + "end": 1735.38, + "probability": 0.752 + }, + { + "start": 1735.38, + "end": 1737.16, + "probability": 0.6726 + }, + { + "start": 1737.78, + "end": 1738.1, + "probability": 0.6292 + }, + { + "start": 1739.74, + "end": 1743.28, + "probability": 0.919 + }, + { + "start": 1744.12, + "end": 1745.56, + "probability": 0.8469 + }, + { + "start": 1746.42, + "end": 1747.76, + "probability": 0.8809 + }, + { + "start": 1748.56, + "end": 1752.94, + "probability": 0.9789 + }, + { + "start": 1753.3, + "end": 1753.76, + "probability": 0.5984 + }, + { + "start": 1753.84, + "end": 1756.44, + "probability": 0.8144 + }, + { + "start": 1757.78, + "end": 1759.0, + "probability": 0.6852 + }, + { + "start": 1759.46, + "end": 1764.25, + "probability": 0.7912 + }, + { + "start": 1764.36, + "end": 1765.38, + "probability": 0.6695 + }, + { + "start": 1765.88, + "end": 1768.16, + "probability": 0.8025 + }, + { + "start": 1768.76, + "end": 1769.72, + "probability": 0.929 + }, + { + "start": 1770.94, + "end": 1772.12, + "probability": 0.9512 + }, + { + "start": 1772.4, + "end": 1772.5, + "probability": 0.462 + }, + { + "start": 1772.64, + "end": 1773.52, + "probability": 0.7072 + }, + { + "start": 1773.66, + "end": 1774.47, + "probability": 0.9644 + }, + { + "start": 1774.78, + "end": 1775.22, + "probability": 0.9841 + }, + { + "start": 1775.38, + "end": 1775.82, + "probability": 0.9737 + }, + { + "start": 1775.92, + "end": 1776.58, + "probability": 0.6772 + }, + { + "start": 1777.62, + "end": 1780.78, + "probability": 0.8466 + }, + { + "start": 1781.72, + "end": 1782.52, + "probability": 0.9279 + }, + { + "start": 1782.64, + "end": 1783.56, + "probability": 0.8619 + }, + { + "start": 1783.78, + "end": 1784.41, + "probability": 0.6269 + }, + { + "start": 1786.44, + "end": 1790.02, + "probability": 0.6916 + }, + { + "start": 1791.54, + "end": 1792.48, + "probability": 0.9362 + }, + { + "start": 1792.66, + "end": 1794.94, + "probability": 0.975 + }, + { + "start": 1795.1, + "end": 1797.9, + "probability": 0.7501 + }, + { + "start": 1799.44, + "end": 1805.22, + "probability": 0.8959 + }, + { + "start": 1807.06, + "end": 1809.76, + "probability": 0.8397 + }, + { + "start": 1810.52, + "end": 1812.3, + "probability": 0.9941 + }, + { + "start": 1813.18, + "end": 1813.78, + "probability": 0.9843 + }, + { + "start": 1814.68, + "end": 1817.27, + "probability": 0.6722 + }, + { + "start": 1818.6, + "end": 1823.9, + "probability": 0.8678 + }, + { + "start": 1824.62, + "end": 1826.12, + "probability": 0.9771 + }, + { + "start": 1826.2, + "end": 1828.91, + "probability": 0.9432 + }, + { + "start": 1831.22, + "end": 1833.22, + "probability": 0.9902 + }, + { + "start": 1833.56, + "end": 1835.4, + "probability": 0.6371 + }, + { + "start": 1835.8, + "end": 1836.86, + "probability": 0.7634 + }, + { + "start": 1837.44, + "end": 1839.32, + "probability": 0.9136 + }, + { + "start": 1840.8, + "end": 1842.84, + "probability": 0.9897 + }, + { + "start": 1843.12, + "end": 1845.72, + "probability": 0.9498 + }, + { + "start": 1846.68, + "end": 1847.74, + "probability": 0.7769 + }, + { + "start": 1848.1, + "end": 1848.66, + "probability": 0.7988 + }, + { + "start": 1848.76, + "end": 1852.2, + "probability": 0.9959 + }, + { + "start": 1852.72, + "end": 1853.67, + "probability": 0.6483 + }, + { + "start": 1854.38, + "end": 1857.5, + "probability": 0.9961 + }, + { + "start": 1858.22, + "end": 1859.29, + "probability": 0.9917 + }, + { + "start": 1859.62, + "end": 1861.76, + "probability": 0.9781 + }, + { + "start": 1862.3, + "end": 1866.58, + "probability": 0.9578 + }, + { + "start": 1867.46, + "end": 1868.16, + "probability": 0.9028 + }, + { + "start": 1868.76, + "end": 1871.42, + "probability": 0.9962 + }, + { + "start": 1871.6, + "end": 1872.18, + "probability": 0.9718 + }, + { + "start": 1872.62, + "end": 1873.44, + "probability": 0.7426 + }, + { + "start": 1874.04, + "end": 1876.94, + "probability": 0.7203 + }, + { + "start": 1876.94, + "end": 1877.7, + "probability": 0.7467 + }, + { + "start": 1878.2, + "end": 1882.32, + "probability": 0.9526 + }, + { + "start": 1883.28, + "end": 1884.28, + "probability": 0.9867 + }, + { + "start": 1886.63, + "end": 1890.96, + "probability": 0.5392 + }, + { + "start": 1891.7, + "end": 1897.16, + "probability": 0.787 + }, + { + "start": 1898.0, + "end": 1902.18, + "probability": 0.9412 + }, + { + "start": 1903.62, + "end": 1906.46, + "probability": 0.809 + }, + { + "start": 1907.38, + "end": 1908.28, + "probability": 0.9391 + }, + { + "start": 1909.02, + "end": 1912.96, + "probability": 0.6525 + }, + { + "start": 1913.74, + "end": 1917.36, + "probability": 0.9646 + }, + { + "start": 1918.0, + "end": 1918.96, + "probability": 0.9298 + }, + { + "start": 1919.82, + "end": 1920.82, + "probability": 0.9912 + }, + { + "start": 1922.08, + "end": 1922.98, + "probability": 0.9628 + }, + { + "start": 1923.68, + "end": 1927.28, + "probability": 0.9429 + }, + { + "start": 1928.86, + "end": 1930.22, + "probability": 0.9985 + }, + { + "start": 1930.94, + "end": 1932.64, + "probability": 0.8186 + }, + { + "start": 1933.4, + "end": 1936.04, + "probability": 0.9445 + }, + { + "start": 1937.08, + "end": 1939.08, + "probability": 0.8753 + }, + { + "start": 1939.82, + "end": 1942.78, + "probability": 0.9781 + }, + { + "start": 1943.54, + "end": 1946.92, + "probability": 0.9779 + }, + { + "start": 1947.5, + "end": 1948.94, + "probability": 0.9575 + }, + { + "start": 1950.6, + "end": 1951.92, + "probability": 0.9823 + }, + { + "start": 1953.66, + "end": 1955.2, + "probability": 0.9808 + }, + { + "start": 1957.0, + "end": 1957.58, + "probability": 0.9684 + }, + { + "start": 1958.32, + "end": 1960.2, + "probability": 0.9925 + }, + { + "start": 1961.8, + "end": 1964.16, + "probability": 0.8043 + }, + { + "start": 1964.96, + "end": 1966.28, + "probability": 0.9928 + }, + { + "start": 1967.04, + "end": 1970.28, + "probability": 0.9614 + }, + { + "start": 1972.32, + "end": 1973.2, + "probability": 0.9735 + }, + { + "start": 1974.14, + "end": 1977.02, + "probability": 0.9564 + }, + { + "start": 1977.9, + "end": 1980.74, + "probability": 0.9834 + }, + { + "start": 1982.1, + "end": 1983.46, + "probability": 0.9774 + }, + { + "start": 1984.48, + "end": 1986.48, + "probability": 0.9902 + }, + { + "start": 1987.2, + "end": 1989.78, + "probability": 0.7204 + }, + { + "start": 1990.26, + "end": 1993.98, + "probability": 0.9688 + }, + { + "start": 1994.66, + "end": 1998.02, + "probability": 0.9501 + }, + { + "start": 1998.46, + "end": 2000.76, + "probability": 0.8255 + }, + { + "start": 2000.86, + "end": 2003.0, + "probability": 0.9585 + }, + { + "start": 2004.26, + "end": 2009.04, + "probability": 0.9972 + }, + { + "start": 2009.86, + "end": 2014.4, + "probability": 0.9902 + }, + { + "start": 2015.02, + "end": 2017.68, + "probability": 0.8865 + }, + { + "start": 2018.44, + "end": 2021.16, + "probability": 0.7844 + }, + { + "start": 2021.62, + "end": 2022.24, + "probability": 0.911 + }, + { + "start": 2022.72, + "end": 2024.08, + "probability": 0.9842 + }, + { + "start": 2025.6, + "end": 2028.94, + "probability": 0.8546 + }, + { + "start": 2029.58, + "end": 2029.92, + "probability": 0.7882 + }, + { + "start": 2030.98, + "end": 2031.72, + "probability": 0.9421 + }, + { + "start": 2033.1, + "end": 2034.96, + "probability": 0.8394 + }, + { + "start": 2036.24, + "end": 2040.7, + "probability": 0.9808 + }, + { + "start": 2041.88, + "end": 2045.08, + "probability": 0.9932 + }, + { + "start": 2045.7, + "end": 2047.5, + "probability": 0.9276 + }, + { + "start": 2048.06, + "end": 2048.68, + "probability": 0.8219 + }, + { + "start": 2049.54, + "end": 2049.86, + "probability": 0.9673 + }, + { + "start": 2050.48, + "end": 2052.16, + "probability": 0.9964 + }, + { + "start": 2053.52, + "end": 2057.18, + "probability": 0.9935 + }, + { + "start": 2057.18, + "end": 2062.0, + "probability": 0.9965 + }, + { + "start": 2063.12, + "end": 2069.54, + "probability": 0.9899 + }, + { + "start": 2070.84, + "end": 2072.76, + "probability": 0.9979 + }, + { + "start": 2073.48, + "end": 2075.28, + "probability": 0.9485 + }, + { + "start": 2076.16, + "end": 2079.68, + "probability": 0.9983 + }, + { + "start": 2080.3, + "end": 2087.22, + "probability": 0.9731 + }, + { + "start": 2088.44, + "end": 2088.78, + "probability": 0.6879 + }, + { + "start": 2089.4, + "end": 2091.66, + "probability": 0.9753 + }, + { + "start": 2092.34, + "end": 2093.52, + "probability": 0.9519 + }, + { + "start": 2094.22, + "end": 2098.12, + "probability": 0.9818 + }, + { + "start": 2098.92, + "end": 2102.5, + "probability": 0.9976 + }, + { + "start": 2103.22, + "end": 2109.02, + "probability": 0.9304 + }, + { + "start": 2109.94, + "end": 2115.74, + "probability": 0.9954 + }, + { + "start": 2116.62, + "end": 2117.3, + "probability": 0.8574 + }, + { + "start": 2117.94, + "end": 2123.74, + "probability": 0.994 + }, + { + "start": 2124.82, + "end": 2125.86, + "probability": 0.5339 + }, + { + "start": 2126.66, + "end": 2129.38, + "probability": 0.5556 + }, + { + "start": 2129.52, + "end": 2133.22, + "probability": 0.9804 + }, + { + "start": 2134.3, + "end": 2136.62, + "probability": 0.9952 + }, + { + "start": 2137.84, + "end": 2140.72, + "probability": 0.9935 + }, + { + "start": 2141.92, + "end": 2142.98, + "probability": 0.9113 + }, + { + "start": 2143.5, + "end": 2146.34, + "probability": 0.9932 + }, + { + "start": 2146.86, + "end": 2147.56, + "probability": 0.999 + }, + { + "start": 2148.9, + "end": 2149.44, + "probability": 0.5294 + }, + { + "start": 2150.16, + "end": 2154.26, + "probability": 0.9879 + }, + { + "start": 2154.78, + "end": 2156.98, + "probability": 0.9423 + }, + { + "start": 2157.64, + "end": 2161.56, + "probability": 0.9656 + }, + { + "start": 2164.08, + "end": 2167.16, + "probability": 0.9622 + }, + { + "start": 2167.84, + "end": 2167.84, + "probability": 0.0343 + }, + { + "start": 2167.84, + "end": 2171.52, + "probability": 0.9805 + }, + { + "start": 2171.52, + "end": 2176.36, + "probability": 0.9624 + }, + { + "start": 2177.62, + "end": 2177.86, + "probability": 0.8911 + }, + { + "start": 2178.7, + "end": 2181.27, + "probability": 0.8818 + }, + { + "start": 2182.98, + "end": 2185.2, + "probability": 0.92 + }, + { + "start": 2185.92, + "end": 2188.54, + "probability": 0.9048 + }, + { + "start": 2189.14, + "end": 2191.4, + "probability": 0.9824 + }, + { + "start": 2192.34, + "end": 2194.16, + "probability": 0.8147 + }, + { + "start": 2194.8, + "end": 2196.64, + "probability": 0.9565 + }, + { + "start": 2197.58, + "end": 2199.5, + "probability": 0.8957 + }, + { + "start": 2200.16, + "end": 2201.9, + "probability": 0.9865 + }, + { + "start": 2203.26, + "end": 2204.44, + "probability": 0.824 + }, + { + "start": 2205.14, + "end": 2205.94, + "probability": 0.8901 + }, + { + "start": 2206.86, + "end": 2207.82, + "probability": 0.7872 + }, + { + "start": 2208.38, + "end": 2209.04, + "probability": 0.8762 + }, + { + "start": 2210.2, + "end": 2211.12, + "probability": 0.8555 + }, + { + "start": 2211.88, + "end": 2214.54, + "probability": 0.8745 + }, + { + "start": 2232.98, + "end": 2233.92, + "probability": 0.7679 + }, + { + "start": 2235.24, + "end": 2236.16, + "probability": 0.7936 + }, + { + "start": 2236.86, + "end": 2238.0, + "probability": 0.9823 + }, + { + "start": 2240.02, + "end": 2240.72, + "probability": 0.9301 + }, + { + "start": 2241.72, + "end": 2242.5, + "probability": 0.7412 + }, + { + "start": 2242.5, + "end": 2243.54, + "probability": 0.8572 + }, + { + "start": 2246.38, + "end": 2249.98, + "probability": 0.9958 + }, + { + "start": 2251.28, + "end": 2254.26, + "probability": 0.8745 + }, + { + "start": 2255.14, + "end": 2256.9, + "probability": 0.9971 + }, + { + "start": 2258.76, + "end": 2261.9, + "probability": 0.9935 + }, + { + "start": 2262.84, + "end": 2263.4, + "probability": 0.4907 + }, + { + "start": 2263.56, + "end": 2267.46, + "probability": 0.988 + }, + { + "start": 2268.14, + "end": 2269.48, + "probability": 0.6983 + }, + { + "start": 2270.34, + "end": 2271.04, + "probability": 0.7708 + }, + { + "start": 2272.8, + "end": 2273.7, + "probability": 0.9585 + }, + { + "start": 2275.18, + "end": 2276.62, + "probability": 0.973 + }, + { + "start": 2277.6, + "end": 2282.2, + "probability": 0.9958 + }, + { + "start": 2283.16, + "end": 2285.66, + "probability": 0.9663 + }, + { + "start": 2285.96, + "end": 2286.3, + "probability": 0.8288 + }, + { + "start": 2286.5, + "end": 2287.54, + "probability": 0.9034 + }, + { + "start": 2289.06, + "end": 2289.38, + "probability": 0.802 + }, + { + "start": 2289.56, + "end": 2292.56, + "probability": 0.7908 + }, + { + "start": 2293.72, + "end": 2299.2, + "probability": 0.9536 + }, + { + "start": 2300.36, + "end": 2302.06, + "probability": 0.8684 + }, + { + "start": 2302.16, + "end": 2304.22, + "probability": 0.6888 + }, + { + "start": 2304.96, + "end": 2308.2, + "probability": 0.9846 + }, + { + "start": 2309.16, + "end": 2310.96, + "probability": 0.9786 + }, + { + "start": 2311.84, + "end": 2313.68, + "probability": 0.8525 + }, + { + "start": 2314.86, + "end": 2317.32, + "probability": 0.6555 + }, + { + "start": 2318.44, + "end": 2322.04, + "probability": 0.9814 + }, + { + "start": 2322.22, + "end": 2324.0, + "probability": 0.9961 + }, + { + "start": 2324.84, + "end": 2326.28, + "probability": 0.9841 + }, + { + "start": 2327.62, + "end": 2328.42, + "probability": 0.9697 + }, + { + "start": 2329.24, + "end": 2330.6, + "probability": 0.8698 + }, + { + "start": 2331.24, + "end": 2333.3, + "probability": 0.9125 + }, + { + "start": 2334.2, + "end": 2336.72, + "probability": 0.9747 + }, + { + "start": 2337.62, + "end": 2340.7, + "probability": 0.9935 + }, + { + "start": 2342.24, + "end": 2347.84, + "probability": 0.9939 + }, + { + "start": 2348.68, + "end": 2350.48, + "probability": 0.9916 + }, + { + "start": 2351.24, + "end": 2352.22, + "probability": 0.8547 + }, + { + "start": 2353.46, + "end": 2354.96, + "probability": 0.9988 + }, + { + "start": 2355.1, + "end": 2355.6, + "probability": 0.9154 + }, + { + "start": 2355.66, + "end": 2359.12, + "probability": 0.965 + }, + { + "start": 2360.38, + "end": 2362.32, + "probability": 0.6398 + }, + { + "start": 2363.04, + "end": 2365.28, + "probability": 0.6639 + }, + { + "start": 2365.28, + "end": 2367.64, + "probability": 0.8641 + }, + { + "start": 2368.62, + "end": 2371.72, + "probability": 0.9797 + }, + { + "start": 2372.42, + "end": 2373.34, + "probability": 0.9427 + }, + { + "start": 2375.2, + "end": 2376.68, + "probability": 0.9963 + }, + { + "start": 2377.46, + "end": 2380.34, + "probability": 0.9675 + }, + { + "start": 2381.1, + "end": 2382.02, + "probability": 0.8867 + }, + { + "start": 2382.76, + "end": 2385.14, + "probability": 0.9577 + }, + { + "start": 2385.76, + "end": 2388.06, + "probability": 0.8529 + }, + { + "start": 2388.92, + "end": 2390.88, + "probability": 0.9789 + }, + { + "start": 2392.36, + "end": 2396.42, + "probability": 0.8021 + }, + { + "start": 2397.98, + "end": 2399.58, + "probability": 0.9789 + }, + { + "start": 2400.24, + "end": 2402.24, + "probability": 0.8286 + }, + { + "start": 2402.94, + "end": 2403.58, + "probability": 0.8666 + }, + { + "start": 2404.88, + "end": 2407.3, + "probability": 0.8252 + }, + { + "start": 2407.3, + "end": 2411.7, + "probability": 0.9053 + }, + { + "start": 2412.5, + "end": 2415.92, + "probability": 0.9968 + }, + { + "start": 2417.16, + "end": 2421.92, + "probability": 0.9989 + }, + { + "start": 2422.46, + "end": 2425.68, + "probability": 0.9982 + }, + { + "start": 2427.3, + "end": 2427.68, + "probability": 0.3971 + }, + { + "start": 2427.74, + "end": 2430.34, + "probability": 0.9963 + }, + { + "start": 2430.42, + "end": 2433.4, + "probability": 0.6652 + }, + { + "start": 2433.54, + "end": 2433.82, + "probability": 0.6418 + }, + { + "start": 2434.6, + "end": 2436.22, + "probability": 0.9062 + }, + { + "start": 2437.32, + "end": 2441.18, + "probability": 0.9949 + }, + { + "start": 2442.12, + "end": 2443.34, + "probability": 0.9873 + }, + { + "start": 2444.04, + "end": 2446.32, + "probability": 0.9536 + }, + { + "start": 2447.2, + "end": 2448.66, + "probability": 0.9951 + }, + { + "start": 2449.0, + "end": 2449.92, + "probability": 0.8864 + }, + { + "start": 2450.24, + "end": 2450.88, + "probability": 0.9802 + }, + { + "start": 2450.98, + "end": 2452.58, + "probability": 0.8434 + }, + { + "start": 2453.3, + "end": 2453.74, + "probability": 0.9838 + }, + { + "start": 2455.18, + "end": 2456.02, + "probability": 0.9195 + }, + { + "start": 2456.54, + "end": 2459.5, + "probability": 0.9962 + }, + { + "start": 2460.82, + "end": 2464.08, + "probability": 0.9946 + }, + { + "start": 2464.12, + "end": 2466.6, + "probability": 0.8593 + }, + { + "start": 2467.7, + "end": 2469.7, + "probability": 0.9918 + }, + { + "start": 2470.52, + "end": 2472.58, + "probability": 0.9964 + }, + { + "start": 2472.58, + "end": 2475.3, + "probability": 0.9315 + }, + { + "start": 2476.32, + "end": 2480.66, + "probability": 0.9795 + }, + { + "start": 2482.18, + "end": 2484.56, + "probability": 0.9921 + }, + { + "start": 2484.68, + "end": 2487.72, + "probability": 0.9827 + }, + { + "start": 2488.22, + "end": 2490.94, + "probability": 0.9846 + }, + { + "start": 2491.82, + "end": 2495.08, + "probability": 0.9298 + }, + { + "start": 2495.08, + "end": 2498.48, + "probability": 0.9601 + }, + { + "start": 2499.28, + "end": 2500.52, + "probability": 0.6657 + }, + { + "start": 2502.22, + "end": 2502.84, + "probability": 0.66 + }, + { + "start": 2502.92, + "end": 2503.72, + "probability": 0.8345 + }, + { + "start": 2503.82, + "end": 2506.7, + "probability": 0.9918 + }, + { + "start": 2508.08, + "end": 2512.58, + "probability": 0.9865 + }, + { + "start": 2513.16, + "end": 2518.68, + "probability": 0.9952 + }, + { + "start": 2519.28, + "end": 2520.04, + "probability": 0.9951 + }, + { + "start": 2521.1, + "end": 2522.06, + "probability": 0.7175 + }, + { + "start": 2522.14, + "end": 2523.02, + "probability": 0.7952 + }, + { + "start": 2523.1, + "end": 2526.66, + "probability": 0.8647 + }, + { + "start": 2526.72, + "end": 2527.4, + "probability": 0.8588 + }, + { + "start": 2528.56, + "end": 2531.52, + "probability": 0.9904 + }, + { + "start": 2532.24, + "end": 2535.66, + "probability": 0.9128 + }, + { + "start": 2536.66, + "end": 2537.4, + "probability": 0.7656 + }, + { + "start": 2537.5, + "end": 2539.64, + "probability": 0.9895 + }, + { + "start": 2541.16, + "end": 2543.54, + "probability": 0.7424 + }, + { + "start": 2544.26, + "end": 2545.86, + "probability": 0.731 + }, + { + "start": 2546.78, + "end": 2548.36, + "probability": 0.9253 + }, + { + "start": 2550.8, + "end": 2551.9, + "probability": 0.9752 + }, + { + "start": 2552.58, + "end": 2555.16, + "probability": 0.6608 + }, + { + "start": 2555.42, + "end": 2557.66, + "probability": 0.9913 + }, + { + "start": 2558.52, + "end": 2560.16, + "probability": 0.6617 + }, + { + "start": 2561.6, + "end": 2564.64, + "probability": 0.8691 + }, + { + "start": 2565.82, + "end": 2568.0, + "probability": 0.9509 + }, + { + "start": 2569.48, + "end": 2569.74, + "probability": 0.7903 + }, + { + "start": 2569.86, + "end": 2573.36, + "probability": 0.9909 + }, + { + "start": 2574.1, + "end": 2575.98, + "probability": 0.9967 + }, + { + "start": 2576.82, + "end": 2578.6, + "probability": 0.9526 + }, + { + "start": 2579.58, + "end": 2580.3, + "probability": 0.9855 + }, + { + "start": 2580.88, + "end": 2582.42, + "probability": 0.9722 + }, + { + "start": 2583.0, + "end": 2584.54, + "probability": 0.7367 + }, + { + "start": 2585.44, + "end": 2587.26, + "probability": 0.6831 + }, + { + "start": 2588.52, + "end": 2590.46, + "probability": 0.9962 + }, + { + "start": 2591.14, + "end": 2592.7, + "probability": 0.9963 + }, + { + "start": 2593.52, + "end": 2597.56, + "probability": 0.9969 + }, + { + "start": 2598.32, + "end": 2599.66, + "probability": 0.7147 + }, + { + "start": 2601.24, + "end": 2601.62, + "probability": 0.6442 + }, + { + "start": 2601.66, + "end": 2602.22, + "probability": 0.9501 + }, + { + "start": 2602.4, + "end": 2605.48, + "probability": 0.9714 + }, + { + "start": 2607.06, + "end": 2609.32, + "probability": 0.9469 + }, + { + "start": 2610.0, + "end": 2612.7, + "probability": 0.9871 + }, + { + "start": 2614.18, + "end": 2616.46, + "probability": 0.9932 + }, + { + "start": 2617.2, + "end": 2618.02, + "probability": 0.9471 + }, + { + "start": 2619.86, + "end": 2622.86, + "probability": 0.9774 + }, + { + "start": 2622.86, + "end": 2626.4, + "probability": 0.9151 + }, + { + "start": 2628.18, + "end": 2631.02, + "probability": 0.9966 + }, + { + "start": 2631.64, + "end": 2633.32, + "probability": 0.9954 + }, + { + "start": 2634.1, + "end": 2638.02, + "probability": 0.9665 + }, + { + "start": 2638.82, + "end": 2641.76, + "probability": 0.8361 + }, + { + "start": 2643.32, + "end": 2644.4, + "probability": 0.9143 + }, + { + "start": 2644.82, + "end": 2645.36, + "probability": 0.7108 + }, + { + "start": 2645.42, + "end": 2648.44, + "probability": 0.994 + }, + { + "start": 2649.52, + "end": 2652.96, + "probability": 0.9668 + }, + { + "start": 2653.8, + "end": 2656.72, + "probability": 0.9914 + }, + { + "start": 2657.7, + "end": 2658.8, + "probability": 0.8108 + }, + { + "start": 2659.84, + "end": 2663.62, + "probability": 0.9937 + }, + { + "start": 2664.2, + "end": 2667.8, + "probability": 0.9479 + }, + { + "start": 2668.42, + "end": 2669.14, + "probability": 0.9737 + }, + { + "start": 2670.46, + "end": 2672.36, + "probability": 0.9697 + }, + { + "start": 2672.44, + "end": 2672.92, + "probability": 0.8898 + }, + { + "start": 2673.08, + "end": 2675.46, + "probability": 0.9966 + }, + { + "start": 2676.08, + "end": 2678.06, + "probability": 0.8577 + }, + { + "start": 2678.82, + "end": 2681.56, + "probability": 0.9069 + }, + { + "start": 2683.02, + "end": 2687.28, + "probability": 0.9899 + }, + { + "start": 2688.26, + "end": 2690.16, + "probability": 0.9967 + }, + { + "start": 2690.28, + "end": 2690.96, + "probability": 0.86 + }, + { + "start": 2691.02, + "end": 2691.88, + "probability": 0.9676 + }, + { + "start": 2692.88, + "end": 2694.76, + "probability": 0.9705 + }, + { + "start": 2695.4, + "end": 2698.7, + "probability": 0.9866 + }, + { + "start": 2699.34, + "end": 2703.44, + "probability": 0.9922 + }, + { + "start": 2703.54, + "end": 2707.5, + "probability": 0.9899 + }, + { + "start": 2709.16, + "end": 2713.42, + "probability": 0.953 + }, + { + "start": 2714.18, + "end": 2714.78, + "probability": 0.7362 + }, + { + "start": 2714.88, + "end": 2715.38, + "probability": 0.5108 + }, + { + "start": 2715.44, + "end": 2719.04, + "probability": 0.9204 + }, + { + "start": 2720.48, + "end": 2721.56, + "probability": 0.8212 + }, + { + "start": 2723.4, + "end": 2724.48, + "probability": 0.807 + }, + { + "start": 2725.4, + "end": 2728.12, + "probability": 0.9927 + }, + { + "start": 2728.12, + "end": 2730.6, + "probability": 0.9629 + }, + { + "start": 2731.78, + "end": 2734.7, + "probability": 0.9966 + }, + { + "start": 2735.32, + "end": 2737.28, + "probability": 0.9481 + }, + { + "start": 2738.1, + "end": 2739.42, + "probability": 0.9807 + }, + { + "start": 2741.1, + "end": 2743.7, + "probability": 0.983 + }, + { + "start": 2744.36, + "end": 2748.5, + "probability": 0.9879 + }, + { + "start": 2749.88, + "end": 2751.5, + "probability": 0.9217 + }, + { + "start": 2752.46, + "end": 2755.44, + "probability": 0.7668 + }, + { + "start": 2756.54, + "end": 2758.72, + "probability": 0.995 + }, + { + "start": 2758.72, + "end": 2762.2, + "probability": 0.9977 + }, + { + "start": 2763.06, + "end": 2767.48, + "probability": 0.84 + }, + { + "start": 2768.02, + "end": 2771.44, + "probability": 0.9932 + }, + { + "start": 2771.44, + "end": 2776.06, + "probability": 0.9974 + }, + { + "start": 2777.24, + "end": 2779.96, + "probability": 0.9663 + }, + { + "start": 2780.84, + "end": 2783.98, + "probability": 0.9696 + }, + { + "start": 2784.84, + "end": 2787.4, + "probability": 0.9814 + }, + { + "start": 2788.28, + "end": 2789.06, + "probability": 0.999 + }, + { + "start": 2789.58, + "end": 2791.04, + "probability": 0.9544 + }, + { + "start": 2792.22, + "end": 2792.84, + "probability": 0.8721 + }, + { + "start": 2793.36, + "end": 2795.36, + "probability": 0.9663 + }, + { + "start": 2797.04, + "end": 2802.2, + "probability": 0.9975 + }, + { + "start": 2803.26, + "end": 2806.24, + "probability": 0.9067 + }, + { + "start": 2807.02, + "end": 2809.24, + "probability": 0.9613 + }, + { + "start": 2810.66, + "end": 2810.87, + "probability": 0.9322 + }, + { + "start": 2811.98, + "end": 2814.28, + "probability": 0.9915 + }, + { + "start": 2814.28, + "end": 2816.32, + "probability": 0.947 + }, + { + "start": 2817.76, + "end": 2820.04, + "probability": 0.6484 + }, + { + "start": 2821.18, + "end": 2823.44, + "probability": 0.9892 + }, + { + "start": 2824.68, + "end": 2828.78, + "probability": 0.9972 + }, + { + "start": 2829.56, + "end": 2830.14, + "probability": 0.6334 + }, + { + "start": 2830.98, + "end": 2833.4, + "probability": 0.8507 + }, + { + "start": 2834.26, + "end": 2836.24, + "probability": 0.9521 + }, + { + "start": 2837.02, + "end": 2838.16, + "probability": 0.9786 + }, + { + "start": 2838.6, + "end": 2839.62, + "probability": 0.6941 + }, + { + "start": 2840.8, + "end": 2842.64, + "probability": 0.8385 + }, + { + "start": 2842.82, + "end": 2845.92, + "probability": 0.9098 + }, + { + "start": 2846.86, + "end": 2849.6, + "probability": 0.991 + }, + { + "start": 2850.82, + "end": 2853.5, + "probability": 0.9473 + }, + { + "start": 2864.28, + "end": 2864.76, + "probability": 0.5121 + }, + { + "start": 2864.84, + "end": 2865.8, + "probability": 0.7042 + }, + { + "start": 2866.38, + "end": 2867.36, + "probability": 0.7914 + }, + { + "start": 2867.98, + "end": 2868.74, + "probability": 0.8613 + }, + { + "start": 2870.26, + "end": 2871.04, + "probability": 0.8553 + }, + { + "start": 2872.24, + "end": 2873.74, + "probability": 0.9898 + }, + { + "start": 2875.52, + "end": 2878.44, + "probability": 0.9893 + }, + { + "start": 2879.78, + "end": 2882.6, + "probability": 0.978 + }, + { + "start": 2884.34, + "end": 2884.76, + "probability": 0.5471 + }, + { + "start": 2886.04, + "end": 2887.46, + "probability": 0.7939 + }, + { + "start": 2888.72, + "end": 2892.12, + "probability": 0.9895 + }, + { + "start": 2893.7, + "end": 2897.6, + "probability": 0.9921 + }, + { + "start": 2899.44, + "end": 2901.6, + "probability": 0.996 + }, + { + "start": 2902.86, + "end": 2905.48, + "probability": 0.9863 + }, + { + "start": 2907.22, + "end": 2910.3, + "probability": 0.8162 + }, + { + "start": 2910.86, + "end": 2912.44, + "probability": 0.981 + }, + { + "start": 2914.4, + "end": 2915.4, + "probability": 0.6503 + }, + { + "start": 2916.74, + "end": 2921.82, + "probability": 0.9916 + }, + { + "start": 2921.86, + "end": 2922.22, + "probability": 0.5964 + }, + { + "start": 2922.36, + "end": 2923.2, + "probability": 0.8591 + }, + { + "start": 2923.64, + "end": 2926.62, + "probability": 0.7179 + }, + { + "start": 2926.72, + "end": 2927.74, + "probability": 0.5628 + }, + { + "start": 2927.82, + "end": 2928.96, + "probability": 0.8564 + }, + { + "start": 2929.24, + "end": 2930.22, + "probability": 0.6524 + }, + { + "start": 2930.64, + "end": 2931.52, + "probability": 0.7785 + }, + { + "start": 2932.32, + "end": 2934.9, + "probability": 0.9889 + }, + { + "start": 2935.04, + "end": 2939.5, + "probability": 0.9601 + }, + { + "start": 2940.12, + "end": 2942.02, + "probability": 0.6095 + }, + { + "start": 2943.56, + "end": 2949.2, + "probability": 0.9871 + }, + { + "start": 2949.34, + "end": 2950.44, + "probability": 0.3347 + }, + { + "start": 2951.34, + "end": 2953.24, + "probability": 0.7516 + }, + { + "start": 2954.06, + "end": 2954.62, + "probability": 0.7992 + }, + { + "start": 2954.68, + "end": 2959.32, + "probability": 0.9956 + }, + { + "start": 2959.38, + "end": 2961.1, + "probability": 0.9924 + }, + { + "start": 2961.94, + "end": 2963.12, + "probability": 0.5464 + }, + { + "start": 2963.3, + "end": 2964.92, + "probability": 0.5723 + }, + { + "start": 2965.38, + "end": 2965.8, + "probability": 0.7126 + }, + { + "start": 2965.9, + "end": 2966.66, + "probability": 0.9777 + }, + { + "start": 2966.72, + "end": 2972.94, + "probability": 0.7938 + }, + { + "start": 2973.36, + "end": 2973.52, + "probability": 0.0762 + }, + { + "start": 2973.52, + "end": 2974.32, + "probability": 0.8668 + }, + { + "start": 2974.92, + "end": 2976.46, + "probability": 0.9756 + }, + { + "start": 2977.36, + "end": 2978.26, + "probability": 0.6696 + }, + { + "start": 2978.36, + "end": 2986.76, + "probability": 0.9561 + }, + { + "start": 2987.28, + "end": 2990.08, + "probability": 0.9021 + }, + { + "start": 2990.84, + "end": 2994.06, + "probability": 0.9956 + }, + { + "start": 2994.48, + "end": 2998.74, + "probability": 0.9378 + }, + { + "start": 2999.28, + "end": 2999.6, + "probability": 0.9194 + }, + { + "start": 2999.74, + "end": 3001.7, + "probability": 0.9113 + }, + { + "start": 3001.76, + "end": 3004.46, + "probability": 0.9962 + }, + { + "start": 3005.14, + "end": 3007.14, + "probability": 0.9869 + }, + { + "start": 3007.66, + "end": 3008.78, + "probability": 0.979 + }, + { + "start": 3009.16, + "end": 3014.62, + "probability": 0.9904 + }, + { + "start": 3015.46, + "end": 3018.06, + "probability": 0.9885 + }, + { + "start": 3018.4, + "end": 3022.04, + "probability": 0.9987 + }, + { + "start": 3022.2, + "end": 3025.82, + "probability": 0.9648 + }, + { + "start": 3026.2, + "end": 3028.66, + "probability": 0.999 + }, + { + "start": 3029.12, + "end": 3032.3, + "probability": 0.8953 + }, + { + "start": 3032.54, + "end": 3035.24, + "probability": 0.9885 + }, + { + "start": 3035.7, + "end": 3036.36, + "probability": 0.949 + }, + { + "start": 3036.84, + "end": 3041.56, + "probability": 0.9961 + }, + { + "start": 3042.14, + "end": 3052.56, + "probability": 0.9736 + }, + { + "start": 3054.04, + "end": 3054.36, + "probability": 0.6738 + }, + { + "start": 3054.42, + "end": 3056.26, + "probability": 0.9844 + }, + { + "start": 3056.38, + "end": 3057.6, + "probability": 0.8351 + }, + { + "start": 3057.72, + "end": 3063.3, + "probability": 0.9928 + }, + { + "start": 3064.02, + "end": 3066.18, + "probability": 0.9668 + }, + { + "start": 3066.34, + "end": 3066.68, + "probability": 0.9613 + }, + { + "start": 3066.86, + "end": 3067.44, + "probability": 0.4382 + }, + { + "start": 3067.54, + "end": 3072.6, + "probability": 0.9839 + }, + { + "start": 3073.28, + "end": 3078.34, + "probability": 0.9928 + }, + { + "start": 3078.4, + "end": 3079.06, + "probability": 0.8454 + }, + { + "start": 3079.8, + "end": 3085.9, + "probability": 0.9806 + }, + { + "start": 3086.5, + "end": 3089.54, + "probability": 0.9953 + }, + { + "start": 3089.54, + "end": 3092.94, + "probability": 0.9937 + }, + { + "start": 3093.46, + "end": 3098.02, + "probability": 0.9856 + }, + { + "start": 3098.46, + "end": 3099.52, + "probability": 0.8988 + }, + { + "start": 3100.0, + "end": 3101.04, + "probability": 0.8216 + }, + { + "start": 3101.18, + "end": 3104.76, + "probability": 0.8294 + }, + { + "start": 3105.74, + "end": 3107.24, + "probability": 0.385 + }, + { + "start": 3107.28, + "end": 3108.72, + "probability": 0.7867 + }, + { + "start": 3108.8, + "end": 3111.7, + "probability": 0.8889 + }, + { + "start": 3112.32, + "end": 3114.82, + "probability": 0.8377 + }, + { + "start": 3114.9, + "end": 3116.38, + "probability": 0.9878 + }, + { + "start": 3116.64, + "end": 3119.5, + "probability": 0.989 + }, + { + "start": 3120.0, + "end": 3123.18, + "probability": 0.9438 + }, + { + "start": 3124.16, + "end": 3129.36, + "probability": 0.9979 + }, + { + "start": 3129.42, + "end": 3131.04, + "probability": 0.9877 + }, + { + "start": 3131.9, + "end": 3131.9, + "probability": 0.7456 + }, + { + "start": 3133.46, + "end": 3133.68, + "probability": 0.2344 + }, + { + "start": 3133.68, + "end": 3135.8, + "probability": 0.6576 + }, + { + "start": 3136.28, + "end": 3140.78, + "probability": 0.9925 + }, + { + "start": 3141.38, + "end": 3143.04, + "probability": 0.8784 + }, + { + "start": 3143.54, + "end": 3145.82, + "probability": 0.9104 + }, + { + "start": 3146.38, + "end": 3147.6, + "probability": 0.7717 + }, + { + "start": 3148.04, + "end": 3149.9, + "probability": 0.7132 + }, + { + "start": 3150.3, + "end": 3150.92, + "probability": 0.8985 + }, + { + "start": 3151.3, + "end": 3152.8, + "probability": 0.8857 + }, + { + "start": 3153.2, + "end": 3156.86, + "probability": 0.9592 + }, + { + "start": 3157.66, + "end": 3160.48, + "probability": 0.9719 + }, + { + "start": 3161.04, + "end": 3162.3, + "probability": 0.6639 + }, + { + "start": 3163.44, + "end": 3167.5, + "probability": 0.6089 + }, + { + "start": 3168.2, + "end": 3169.98, + "probability": 0.8066 + }, + { + "start": 3170.74, + "end": 3173.26, + "probability": 0.9967 + }, + { + "start": 3174.06, + "end": 3174.6, + "probability": 0.9177 + }, + { + "start": 3175.6, + "end": 3177.54, + "probability": 0.9224 + }, + { + "start": 3178.08, + "end": 3180.86, + "probability": 0.9531 + }, + { + "start": 3180.98, + "end": 3183.96, + "probability": 0.9957 + }, + { + "start": 3184.5, + "end": 3187.46, + "probability": 0.9937 + }, + { + "start": 3188.54, + "end": 3191.04, + "probability": 0.9984 + }, + { + "start": 3191.06, + "end": 3193.22, + "probability": 0.998 + }, + { + "start": 3194.48, + "end": 3195.98, + "probability": 0.7326 + }, + { + "start": 3196.0, + "end": 3196.32, + "probability": 0.8642 + }, + { + "start": 3196.36, + "end": 3198.14, + "probability": 0.9985 + }, + { + "start": 3198.62, + "end": 3199.98, + "probability": 0.9292 + }, + { + "start": 3200.06, + "end": 3200.26, + "probability": 0.4172 + }, + { + "start": 3200.38, + "end": 3203.12, + "probability": 0.9172 + }, + { + "start": 3203.82, + "end": 3205.9, + "probability": 0.9735 + }, + { + "start": 3206.02, + "end": 3207.22, + "probability": 0.9995 + }, + { + "start": 3207.74, + "end": 3209.26, + "probability": 0.6773 + }, + { + "start": 3209.66, + "end": 3210.78, + "probability": 0.6107 + }, + { + "start": 3210.96, + "end": 3212.56, + "probability": 0.9754 + }, + { + "start": 3212.94, + "end": 3215.88, + "probability": 0.818 + }, + { + "start": 3216.06, + "end": 3217.33, + "probability": 0.9279 + }, + { + "start": 3217.74, + "end": 3218.78, + "probability": 0.9019 + }, + { + "start": 3218.94, + "end": 3219.3, + "probability": 0.8461 + }, + { + "start": 3219.66, + "end": 3222.78, + "probability": 0.7435 + }, + { + "start": 3223.44, + "end": 3225.88, + "probability": 0.9912 + }, + { + "start": 3226.54, + "end": 3229.18, + "probability": 0.8596 + }, + { + "start": 3230.2, + "end": 3232.88, + "probability": 0.7598 + }, + { + "start": 3233.14, + "end": 3235.02, + "probability": 0.9814 + }, + { + "start": 3235.6, + "end": 3236.09, + "probability": 0.94 + }, + { + "start": 3237.0, + "end": 3239.84, + "probability": 0.9977 + }, + { + "start": 3240.2, + "end": 3241.8, + "probability": 0.9245 + }, + { + "start": 3242.16, + "end": 3245.13, + "probability": 0.9799 + }, + { + "start": 3245.92, + "end": 3247.42, + "probability": 0.7417 + }, + { + "start": 3248.42, + "end": 3252.34, + "probability": 0.9921 + }, + { + "start": 3252.96, + "end": 3254.44, + "probability": 0.897 + }, + { + "start": 3255.1, + "end": 3256.68, + "probability": 0.9631 + }, + { + "start": 3257.3, + "end": 3258.98, + "probability": 0.9415 + }, + { + "start": 3259.66, + "end": 3260.3, + "probability": 0.9359 + }, + { + "start": 3260.84, + "end": 3262.92, + "probability": 0.8112 + }, + { + "start": 3263.62, + "end": 3265.64, + "probability": 0.998 + }, + { + "start": 3265.9, + "end": 3269.58, + "probability": 0.9958 + }, + { + "start": 3270.14, + "end": 3273.98, + "probability": 0.9835 + }, + { + "start": 3274.12, + "end": 3274.4, + "probability": 0.7538 + }, + { + "start": 3275.0, + "end": 3277.26, + "probability": 0.9695 + }, + { + "start": 3277.38, + "end": 3279.44, + "probability": 0.9907 + }, + { + "start": 3280.22, + "end": 3282.18, + "probability": 0.8096 + }, + { + "start": 3282.52, + "end": 3286.62, + "probability": 0.9395 + }, + { + "start": 3302.78, + "end": 3302.78, + "probability": 0.0551 + }, + { + "start": 3302.78, + "end": 3303.56, + "probability": 0.5102 + }, + { + "start": 3304.94, + "end": 3305.82, + "probability": 0.8359 + }, + { + "start": 3306.68, + "end": 3308.18, + "probability": 0.9393 + }, + { + "start": 3309.64, + "end": 3312.6, + "probability": 0.9747 + }, + { + "start": 3313.46, + "end": 3318.68, + "probability": 0.9369 + }, + { + "start": 3319.22, + "end": 3322.02, + "probability": 0.9967 + }, + { + "start": 3322.6, + "end": 3323.56, + "probability": 0.8903 + }, + { + "start": 3324.24, + "end": 3325.22, + "probability": 0.796 + }, + { + "start": 3326.38, + "end": 3330.02, + "probability": 0.874 + }, + { + "start": 3330.78, + "end": 3333.18, + "probability": 0.9816 + }, + { + "start": 3334.12, + "end": 3337.56, + "probability": 0.9921 + }, + { + "start": 3338.44, + "end": 3340.8, + "probability": 0.9528 + }, + { + "start": 3341.32, + "end": 3343.82, + "probability": 0.9967 + }, + { + "start": 3345.26, + "end": 3348.64, + "probability": 0.8462 + }, + { + "start": 3349.2, + "end": 3352.86, + "probability": 0.967 + }, + { + "start": 3353.72, + "end": 3356.24, + "probability": 0.9958 + }, + { + "start": 3357.34, + "end": 3360.12, + "probability": 0.998 + }, + { + "start": 3360.17, + "end": 3363.54, + "probability": 0.9578 + }, + { + "start": 3364.1, + "end": 3364.74, + "probability": 0.7398 + }, + { + "start": 3366.4, + "end": 3370.32, + "probability": 0.9917 + }, + { + "start": 3370.68, + "end": 3371.78, + "probability": 0.9848 + }, + { + "start": 3372.4, + "end": 3375.08, + "probability": 0.9958 + }, + { + "start": 3375.66, + "end": 3377.98, + "probability": 0.7032 + }, + { + "start": 3378.72, + "end": 3379.63, + "probability": 0.9376 + }, + { + "start": 3380.52, + "end": 3381.46, + "probability": 0.7909 + }, + { + "start": 3381.92, + "end": 3385.32, + "probability": 0.9604 + }, + { + "start": 3386.14, + "end": 3388.72, + "probability": 0.9897 + }, + { + "start": 3390.12, + "end": 3394.38, + "probability": 0.9916 + }, + { + "start": 3395.37, + "end": 3396.72, + "probability": 0.9049 + }, + { + "start": 3397.7, + "end": 3398.0, + "probability": 0.6329 + }, + { + "start": 3398.82, + "end": 3404.42, + "probability": 0.9521 + }, + { + "start": 3405.06, + "end": 3407.84, + "probability": 0.8968 + }, + { + "start": 3408.34, + "end": 3411.74, + "probability": 0.9941 + }, + { + "start": 3412.68, + "end": 3415.64, + "probability": 0.9852 + }, + { + "start": 3416.82, + "end": 3420.04, + "probability": 0.9909 + }, + { + "start": 3420.82, + "end": 3425.78, + "probability": 0.9949 + }, + { + "start": 3426.28, + "end": 3429.28, + "probability": 0.9324 + }, + { + "start": 3429.28, + "end": 3432.8, + "probability": 0.9967 + }, + { + "start": 3433.66, + "end": 3435.48, + "probability": 0.9874 + }, + { + "start": 3435.59, + "end": 3438.8, + "probability": 0.948 + }, + { + "start": 3439.4, + "end": 3440.42, + "probability": 0.8173 + }, + { + "start": 3441.38, + "end": 3442.08, + "probability": 0.7333 + }, + { + "start": 3442.86, + "end": 3447.06, + "probability": 0.9836 + }, + { + "start": 3447.74, + "end": 3448.86, + "probability": 0.8721 + }, + { + "start": 3449.7, + "end": 3451.5, + "probability": 0.9906 + }, + { + "start": 3452.26, + "end": 3453.94, + "probability": 0.9981 + }, + { + "start": 3454.48, + "end": 3456.46, + "probability": 0.9977 + }, + { + "start": 3457.44, + "end": 3459.64, + "probability": 0.9771 + }, + { + "start": 3460.18, + "end": 3463.2, + "probability": 0.9982 + }, + { + "start": 3463.82, + "end": 3464.74, + "probability": 0.6929 + }, + { + "start": 3465.42, + "end": 3467.88, + "probability": 0.9572 + }, + { + "start": 3468.5, + "end": 3470.44, + "probability": 0.9922 + }, + { + "start": 3471.54, + "end": 3472.98, + "probability": 0.9951 + }, + { + "start": 3473.88, + "end": 3474.12, + "probability": 0.8551 + }, + { + "start": 3475.12, + "end": 3475.82, + "probability": 0.794 + }, + { + "start": 3477.16, + "end": 3478.68, + "probability": 0.7602 + }, + { + "start": 3479.36, + "end": 3480.8, + "probability": 0.9648 + }, + { + "start": 3481.36, + "end": 3482.2, + "probability": 0.6357 + }, + { + "start": 3482.8, + "end": 3483.74, + "probability": 0.9844 + }, + { + "start": 3484.52, + "end": 3487.57, + "probability": 0.773 + }, + { + "start": 3488.12, + "end": 3489.2, + "probability": 0.9861 + }, + { + "start": 3491.12, + "end": 3492.56, + "probability": 0.9966 + }, + { + "start": 3492.76, + "end": 3494.26, + "probability": 0.9874 + }, + { + "start": 3495.1, + "end": 3499.66, + "probability": 0.9864 + }, + { + "start": 3500.24, + "end": 3503.52, + "probability": 0.9989 + }, + { + "start": 3504.08, + "end": 3504.58, + "probability": 0.9698 + }, + { + "start": 3505.46, + "end": 3506.86, + "probability": 0.734 + }, + { + "start": 3507.38, + "end": 3508.56, + "probability": 0.9024 + }, + { + "start": 3509.08, + "end": 3510.56, + "probability": 0.5709 + }, + { + "start": 3512.0, + "end": 3513.06, + "probability": 0.7501 + }, + { + "start": 3514.4, + "end": 3515.24, + "probability": 0.8463 + }, + { + "start": 3515.72, + "end": 3518.3, + "probability": 0.9857 + }, + { + "start": 3518.84, + "end": 3520.44, + "probability": 0.9622 + }, + { + "start": 3521.24, + "end": 3524.98, + "probability": 0.9956 + }, + { + "start": 3525.56, + "end": 3527.6, + "probability": 0.9872 + }, + { + "start": 3528.48, + "end": 3530.38, + "probability": 0.9978 + }, + { + "start": 3530.38, + "end": 3532.94, + "probability": 0.9991 + }, + { + "start": 3533.66, + "end": 3535.6, + "probability": 0.908 + }, + { + "start": 3536.12, + "end": 3537.78, + "probability": 0.9726 + }, + { + "start": 3539.02, + "end": 3540.7, + "probability": 0.8669 + }, + { + "start": 3542.18, + "end": 3545.46, + "probability": 0.9569 + }, + { + "start": 3546.04, + "end": 3549.76, + "probability": 0.9525 + }, + { + "start": 3550.32, + "end": 3553.36, + "probability": 0.9556 + }, + { + "start": 3554.18, + "end": 3554.52, + "probability": 0.9315 + }, + { + "start": 3555.04, + "end": 3555.48, + "probability": 0.8337 + }, + { + "start": 3556.76, + "end": 3557.44, + "probability": 0.7889 + }, + { + "start": 3558.46, + "end": 3558.86, + "probability": 0.6636 + }, + { + "start": 3560.1, + "end": 3560.94, + "probability": 0.9729 + }, + { + "start": 3562.2, + "end": 3564.78, + "probability": 0.9757 + }, + { + "start": 3567.88, + "end": 3570.4, + "probability": 0.6635 + }, + { + "start": 3570.78, + "end": 3575.84, + "probability": 0.9624 + }, + { + "start": 3576.48, + "end": 3577.3, + "probability": 0.8721 + }, + { + "start": 3578.38, + "end": 3579.98, + "probability": 0.9329 + }, + { + "start": 3580.2, + "end": 3580.84, + "probability": 0.7995 + }, + { + "start": 3581.72, + "end": 3583.6, + "probability": 0.8856 + }, + { + "start": 3585.6, + "end": 3586.34, + "probability": 0.9412 + }, + { + "start": 3586.46, + "end": 3588.28, + "probability": 0.9522 + }, + { + "start": 3588.66, + "end": 3589.88, + "probability": 0.9212 + }, + { + "start": 3590.0, + "end": 3590.7, + "probability": 0.6066 + }, + { + "start": 3592.2, + "end": 3594.44, + "probability": 0.751 + }, + { + "start": 3613.72, + "end": 3614.94, + "probability": 0.724 + }, + { + "start": 3617.62, + "end": 3619.52, + "probability": 0.9693 + }, + { + "start": 3621.18, + "end": 3621.92, + "probability": 0.9514 + }, + { + "start": 3624.3, + "end": 3628.38, + "probability": 0.9761 + }, + { + "start": 3628.38, + "end": 3636.82, + "probability": 0.9762 + }, + { + "start": 3637.9, + "end": 3642.44, + "probability": 0.8351 + }, + { + "start": 3642.44, + "end": 3642.74, + "probability": 0.5982 + }, + { + "start": 3644.32, + "end": 3649.48, + "probability": 0.9014 + }, + { + "start": 3651.4, + "end": 3653.98, + "probability": 0.6031 + }, + { + "start": 3654.44, + "end": 3657.5, + "probability": 0.5096 + }, + { + "start": 3658.38, + "end": 3659.38, + "probability": 0.4401 + }, + { + "start": 3661.34, + "end": 3662.16, + "probability": 0.5257 + }, + { + "start": 3663.16, + "end": 3663.74, + "probability": 0.9621 + }, + { + "start": 3665.52, + "end": 3668.38, + "probability": 0.7891 + }, + { + "start": 3668.82, + "end": 3668.92, + "probability": 0.1275 + }, + { + "start": 3668.94, + "end": 3670.52, + "probability": 0.7806 + }, + { + "start": 3671.4, + "end": 3671.6, + "probability": 0.4665 + }, + { + "start": 3671.64, + "end": 3673.56, + "probability": 0.346 + }, + { + "start": 3674.42, + "end": 3675.6, + "probability": 0.9446 + }, + { + "start": 3676.64, + "end": 3679.93, + "probability": 0.9969 + }, + { + "start": 3680.78, + "end": 3682.08, + "probability": 0.8403 + }, + { + "start": 3682.78, + "end": 3685.18, + "probability": 0.9937 + }, + { + "start": 3685.34, + "end": 3688.52, + "probability": 0.9917 + }, + { + "start": 3689.68, + "end": 3690.82, + "probability": 0.3333 + }, + { + "start": 3691.6, + "end": 3696.1, + "probability": 0.9373 + }, + { + "start": 3696.22, + "end": 3696.98, + "probability": 0.6607 + }, + { + "start": 3699.66, + "end": 3701.78, + "probability": 0.8853 + }, + { + "start": 3702.78, + "end": 3706.06, + "probability": 0.99 + }, + { + "start": 3707.38, + "end": 3710.62, + "probability": 0.9852 + }, + { + "start": 3711.38, + "end": 3712.38, + "probability": 0.8784 + }, + { + "start": 3713.62, + "end": 3715.6, + "probability": 0.288 + }, + { + "start": 3717.0, + "end": 3719.9, + "probability": 0.992 + }, + { + "start": 3720.12, + "end": 3723.18, + "probability": 0.9955 + }, + { + "start": 3724.1, + "end": 3725.12, + "probability": 0.9874 + }, + { + "start": 3725.94, + "end": 3727.14, + "probability": 0.954 + }, + { + "start": 3727.88, + "end": 3728.96, + "probability": 0.9165 + }, + { + "start": 3729.92, + "end": 3732.62, + "probability": 0.9951 + }, + { + "start": 3733.46, + "end": 3733.8, + "probability": 0.9795 + }, + { + "start": 3735.02, + "end": 3737.42, + "probability": 0.9029 + }, + { + "start": 3738.7, + "end": 3740.08, + "probability": 0.8462 + }, + { + "start": 3741.76, + "end": 3742.54, + "probability": 0.7264 + }, + { + "start": 3742.84, + "end": 3744.96, + "probability": 0.9851 + }, + { + "start": 3744.98, + "end": 3745.96, + "probability": 0.9004 + }, + { + "start": 3747.04, + "end": 3748.02, + "probability": 0.9409 + }, + { + "start": 3748.96, + "end": 3749.44, + "probability": 0.7831 + }, + { + "start": 3750.88, + "end": 3751.48, + "probability": 0.87 + }, + { + "start": 3752.34, + "end": 3753.18, + "probability": 0.968 + }, + { + "start": 3753.44, + "end": 3755.08, + "probability": 0.2983 + }, + { + "start": 3755.28, + "end": 3755.28, + "probability": 0.6131 + }, + { + "start": 3755.28, + "end": 3756.5, + "probability": 0.0269 + }, + { + "start": 3759.48, + "end": 3759.96, + "probability": 0.0354 + }, + { + "start": 3761.48, + "end": 3767.42, + "probability": 0.9206 + }, + { + "start": 3769.68, + "end": 3770.22, + "probability": 0.2571 + }, + { + "start": 3771.28, + "end": 3772.58, + "probability": 0.733 + }, + { + "start": 3773.52, + "end": 3777.72, + "probability": 0.9756 + }, + { + "start": 3778.5, + "end": 3779.28, + "probability": 0.4203 + }, + { + "start": 3779.98, + "end": 3780.52, + "probability": 0.986 + }, + { + "start": 3781.2, + "end": 3781.78, + "probability": 0.9585 + }, + { + "start": 3782.98, + "end": 3783.9, + "probability": 0.7529 + }, + { + "start": 3784.58, + "end": 3785.18, + "probability": 0.7457 + }, + { + "start": 3786.14, + "end": 3789.18, + "probability": 0.9661 + }, + { + "start": 3789.34, + "end": 3789.72, + "probability": 0.9596 + }, + { + "start": 3789.88, + "end": 3790.7, + "probability": 0.7859 + }, + { + "start": 3792.34, + "end": 3796.82, + "probability": 0.9648 + }, + { + "start": 3797.64, + "end": 3799.1, + "probability": 0.9616 + }, + { + "start": 3800.38, + "end": 3802.14, + "probability": 0.9557 + }, + { + "start": 3802.82, + "end": 3804.62, + "probability": 0.9833 + }, + { + "start": 3805.48, + "end": 3808.18, + "probability": 0.9242 + }, + { + "start": 3808.84, + "end": 3811.68, + "probability": 0.861 + }, + { + "start": 3811.94, + "end": 3813.6, + "probability": 0.9275 + }, + { + "start": 3813.82, + "end": 3815.7, + "probability": 0.9086 + }, + { + "start": 3816.14, + "end": 3817.9, + "probability": 0.9976 + }, + { + "start": 3818.38, + "end": 3821.9, + "probability": 0.9985 + }, + { + "start": 3823.04, + "end": 3825.48, + "probability": 0.6105 + }, + { + "start": 3826.52, + "end": 3829.66, + "probability": 0.8787 + }, + { + "start": 3830.3, + "end": 3830.76, + "probability": 0.8983 + }, + { + "start": 3832.1, + "end": 3834.28, + "probability": 0.9831 + }, + { + "start": 3834.44, + "end": 3835.6, + "probability": 0.9297 + }, + { + "start": 3835.9, + "end": 3838.72, + "probability": 0.9825 + }, + { + "start": 3839.26, + "end": 3840.88, + "probability": 0.713 + }, + { + "start": 3841.68, + "end": 3843.64, + "probability": 0.8178 + }, + { + "start": 3844.66, + "end": 3845.54, + "probability": 0.918 + }, + { + "start": 3847.3, + "end": 3850.92, + "probability": 0.6619 + }, + { + "start": 3851.52, + "end": 3854.68, + "probability": 0.914 + }, + { + "start": 3855.46, + "end": 3855.88, + "probability": 0.819 + }, + { + "start": 3857.66, + "end": 3858.32, + "probability": 0.771 + }, + { + "start": 3858.46, + "end": 3859.1, + "probability": 0.8767 + }, + { + "start": 3859.26, + "end": 3860.52, + "probability": 0.876 + }, + { + "start": 3860.64, + "end": 3862.89, + "probability": 0.8872 + }, + { + "start": 3863.78, + "end": 3864.58, + "probability": 0.9863 + }, + { + "start": 3864.78, + "end": 3865.42, + "probability": 0.6895 + }, + { + "start": 3865.56, + "end": 3865.84, + "probability": 0.8171 + }, + { + "start": 3866.18, + "end": 3866.84, + "probability": 0.6197 + }, + { + "start": 3868.44, + "end": 3871.5, + "probability": 0.9312 + }, + { + "start": 3872.14, + "end": 3873.84, + "probability": 0.9877 + }, + { + "start": 3874.66, + "end": 3876.74, + "probability": 0.9087 + }, + { + "start": 3878.36, + "end": 3878.42, + "probability": 0.0178 + }, + { + "start": 3878.42, + "end": 3879.9, + "probability": 0.573 + }, + { + "start": 3880.92, + "end": 3881.5, + "probability": 0.4934 + }, + { + "start": 3882.42, + "end": 3885.76, + "probability": 0.8525 + }, + { + "start": 3887.48, + "end": 3887.8, + "probability": 0.4937 + }, + { + "start": 3887.88, + "end": 3888.68, + "probability": 0.9689 + }, + { + "start": 3889.98, + "end": 3890.54, + "probability": 0.937 + }, + { + "start": 3890.62, + "end": 3892.3, + "probability": 0.991 + }, + { + "start": 3893.78, + "end": 3895.84, + "probability": 0.9771 + }, + { + "start": 3896.06, + "end": 3897.68, + "probability": 0.6909 + }, + { + "start": 3898.1, + "end": 3900.0, + "probability": 0.7446 + }, + { + "start": 3900.74, + "end": 3904.0, + "probability": 0.9775 + }, + { + "start": 3904.76, + "end": 3905.14, + "probability": 0.7184 + }, + { + "start": 3905.8, + "end": 3906.08, + "probability": 0.7054 + }, + { + "start": 3907.04, + "end": 3908.66, + "probability": 0.9839 + }, + { + "start": 3909.56, + "end": 3909.98, + "probability": 0.4547 + }, + { + "start": 3910.52, + "end": 3912.5, + "probability": 0.895 + }, + { + "start": 3913.48, + "end": 3916.0, + "probability": 0.9611 + }, + { + "start": 3917.26, + "end": 3918.72, + "probability": 0.9849 + }, + { + "start": 3920.42, + "end": 3922.42, + "probability": 0.9762 + }, + { + "start": 3923.22, + "end": 3924.48, + "probability": 0.3564 + }, + { + "start": 3925.32, + "end": 3927.32, + "probability": 0.7303 + }, + { + "start": 3928.28, + "end": 3931.2, + "probability": 0.824 + }, + { + "start": 3934.34, + "end": 3937.9, + "probability": 0.6986 + }, + { + "start": 3939.88, + "end": 3939.88, + "probability": 0.0125 + }, + { + "start": 3939.88, + "end": 3940.16, + "probability": 0.068 + }, + { + "start": 3940.2, + "end": 3940.56, + "probability": 0.5272 + }, + { + "start": 3940.66, + "end": 3941.9, + "probability": 0.6229 + }, + { + "start": 3942.78, + "end": 3943.57, + "probability": 0.4949 + }, + { + "start": 3944.56, + "end": 3944.92, + "probability": 0.4394 + }, + { + "start": 3946.02, + "end": 3948.02, + "probability": 0.9492 + }, + { + "start": 3948.68, + "end": 3953.1, + "probability": 0.9845 + }, + { + "start": 3953.86, + "end": 3954.02, + "probability": 0.7378 + }, + { + "start": 3955.44, + "end": 3956.16, + "probability": 0.579 + }, + { + "start": 3956.16, + "end": 3958.26, + "probability": 0.7089 + }, + { + "start": 3960.26, + "end": 3962.84, + "probability": 0.7909 + }, + { + "start": 3964.96, + "end": 3969.14, + "probability": 0.9048 + }, + { + "start": 3969.24, + "end": 3970.26, + "probability": 0.9809 + }, + { + "start": 3970.44, + "end": 3972.7, + "probability": 0.8724 + }, + { + "start": 3972.96, + "end": 3975.54, + "probability": 0.8471 + }, + { + "start": 3976.36, + "end": 3977.02, + "probability": 0.9225 + }, + { + "start": 3978.06, + "end": 3978.5, + "probability": 0.7293 + }, + { + "start": 3978.76, + "end": 3979.58, + "probability": 0.9176 + }, + { + "start": 3979.82, + "end": 3981.0, + "probability": 0.8859 + }, + { + "start": 3981.58, + "end": 3982.36, + "probability": 0.8374 + }, + { + "start": 3983.18, + "end": 3987.82, + "probability": 0.8081 + }, + { + "start": 3988.08, + "end": 3990.3, + "probability": 0.7239 + }, + { + "start": 3990.38, + "end": 3991.13, + "probability": 0.9316 + }, + { + "start": 3993.71, + "end": 3996.76, + "probability": 0.9849 + }, + { + "start": 3996.92, + "end": 3997.58, + "probability": 0.8759 + }, + { + "start": 3998.78, + "end": 4000.34, + "probability": 0.7502 + }, + { + "start": 4000.96, + "end": 4001.73, + "probability": 0.0515 + }, + { + "start": 4003.8, + "end": 4004.72, + "probability": 0.564 + }, + { + "start": 4004.8, + "end": 4006.14, + "probability": 0.7476 + }, + { + "start": 4007.08, + "end": 4007.52, + "probability": 0.9859 + }, + { + "start": 4008.84, + "end": 4010.46, + "probability": 0.9695 + }, + { + "start": 4011.52, + "end": 4014.58, + "probability": 0.3838 + }, + { + "start": 4015.14, + "end": 4015.48, + "probability": 0.32 + }, + { + "start": 4015.84, + "end": 4016.56, + "probability": 0.9479 + }, + { + "start": 4016.82, + "end": 4018.04, + "probability": 0.9839 + }, + { + "start": 4019.24, + "end": 4022.46, + "probability": 0.9814 + }, + { + "start": 4023.22, + "end": 4025.08, + "probability": 0.9128 + }, + { + "start": 4026.0, + "end": 4028.42, + "probability": 0.8853 + }, + { + "start": 4029.08, + "end": 4031.08, + "probability": 0.855 + }, + { + "start": 4031.14, + "end": 4032.81, + "probability": 0.9548 + }, + { + "start": 4033.38, + "end": 4033.64, + "probability": 0.8723 + }, + { + "start": 4034.8, + "end": 4036.56, + "probability": 0.9359 + }, + { + "start": 4036.66, + "end": 4038.02, + "probability": 0.8544 + }, + { + "start": 4038.4, + "end": 4040.42, + "probability": 0.9395 + }, + { + "start": 4040.5, + "end": 4041.1, + "probability": 0.4633 + }, + { + "start": 4041.56, + "end": 4043.26, + "probability": 0.8311 + }, + { + "start": 4047.58, + "end": 4049.3, + "probability": 0.7285 + }, + { + "start": 4066.24, + "end": 4068.4, + "probability": 0.7773 + }, + { + "start": 4069.24, + "end": 4071.24, + "probability": 0.9929 + }, + { + "start": 4072.1, + "end": 4075.08, + "probability": 0.9791 + }, + { + "start": 4075.28, + "end": 4076.7, + "probability": 0.9963 + }, + { + "start": 4077.66, + "end": 4079.28, + "probability": 0.9547 + }, + { + "start": 4080.34, + "end": 4085.12, + "probability": 0.9838 + }, + { + "start": 4086.22, + "end": 4093.34, + "probability": 0.9975 + }, + { + "start": 4094.02, + "end": 4098.1, + "probability": 0.295 + }, + { + "start": 4098.7, + "end": 4100.68, + "probability": 0.5572 + }, + { + "start": 4101.74, + "end": 4102.88, + "probability": 0.6661 + }, + { + "start": 4103.18, + "end": 4105.02, + "probability": 0.9136 + }, + { + "start": 4105.04, + "end": 4108.64, + "probability": 0.9845 + }, + { + "start": 4109.64, + "end": 4113.4, + "probability": 0.9684 + }, + { + "start": 4114.44, + "end": 4118.46, + "probability": 0.8607 + }, + { + "start": 4119.04, + "end": 4122.0, + "probability": 0.9183 + }, + { + "start": 4122.82, + "end": 4128.72, + "probability": 0.996 + }, + { + "start": 4129.38, + "end": 4131.46, + "probability": 0.8673 + }, + { + "start": 4132.18, + "end": 4134.72, + "probability": 0.9696 + }, + { + "start": 4134.72, + "end": 4139.8, + "probability": 0.9977 + }, + { + "start": 4140.36, + "end": 4141.8, + "probability": 0.9703 + }, + { + "start": 4142.36, + "end": 4145.22, + "probability": 0.9976 + }, + { + "start": 4145.4, + "end": 4146.26, + "probability": 0.6589 + }, + { + "start": 4146.44, + "end": 4147.66, + "probability": 0.3309 + }, + { + "start": 4148.24, + "end": 4150.04, + "probability": 0.573 + }, + { + "start": 4150.14, + "end": 4153.04, + "probability": 0.9966 + }, + { + "start": 4153.26, + "end": 4154.86, + "probability": 0.9297 + }, + { + "start": 4155.4, + "end": 4156.42, + "probability": 0.9422 + }, + { + "start": 4156.66, + "end": 4160.42, + "probability": 0.9946 + }, + { + "start": 4161.42, + "end": 4165.88, + "probability": 0.8719 + }, + { + "start": 4166.64, + "end": 4173.52, + "probability": 0.8712 + }, + { + "start": 4174.2, + "end": 4179.36, + "probability": 0.994 + }, + { + "start": 4181.14, + "end": 4187.24, + "probability": 0.8772 + }, + { + "start": 4188.04, + "end": 4188.94, + "probability": 0.8876 + }, + { + "start": 4189.98, + "end": 4190.4, + "probability": 0.6636 + }, + { + "start": 4191.6, + "end": 4196.68, + "probability": 0.9812 + }, + { + "start": 4197.44, + "end": 4201.02, + "probability": 0.9564 + }, + { + "start": 4201.84, + "end": 4206.08, + "probability": 0.9855 + }, + { + "start": 4207.24, + "end": 4210.72, + "probability": 0.9881 + }, + { + "start": 4211.7, + "end": 4221.32, + "probability": 0.9969 + }, + { + "start": 4221.48, + "end": 4226.6, + "probability": 0.998 + }, + { + "start": 4227.96, + "end": 4230.42, + "probability": 0.845 + }, + { + "start": 4230.56, + "end": 4232.04, + "probability": 0.9408 + }, + { + "start": 4232.46, + "end": 4233.42, + "probability": 0.9408 + }, + { + "start": 4234.64, + "end": 4235.2, + "probability": 0.8036 + }, + { + "start": 4236.12, + "end": 4237.24, + "probability": 0.9747 + }, + { + "start": 4238.52, + "end": 4240.96, + "probability": 0.8909 + }, + { + "start": 4242.48, + "end": 4243.4, + "probability": 0.9901 + }, + { + "start": 4243.96, + "end": 4244.24, + "probability": 0.9575 + }, + { + "start": 4246.2, + "end": 4247.24, + "probability": 0.8977 + }, + { + "start": 4247.7, + "end": 4251.26, + "probability": 0.9977 + }, + { + "start": 4251.62, + "end": 4255.6, + "probability": 0.9769 + }, + { + "start": 4256.5, + "end": 4258.76, + "probability": 0.9919 + }, + { + "start": 4259.46, + "end": 4260.48, + "probability": 0.9315 + }, + { + "start": 4261.92, + "end": 4266.06, + "probability": 0.9722 + }, + { + "start": 4266.5, + "end": 4268.14, + "probability": 0.8042 + }, + { + "start": 4268.7, + "end": 4269.5, + "probability": 0.939 + }, + { + "start": 4270.52, + "end": 4272.66, + "probability": 0.9271 + }, + { + "start": 4272.76, + "end": 4273.28, + "probability": 0.9566 + }, + { + "start": 4273.68, + "end": 4276.08, + "probability": 0.992 + }, + { + "start": 4276.5, + "end": 4280.27, + "probability": 0.8896 + }, + { + "start": 4280.63, + "end": 4283.78, + "probability": 0.7213 + }, + { + "start": 4284.4, + "end": 4286.74, + "probability": 0.8108 + }, + { + "start": 4287.8, + "end": 4295.32, + "probability": 0.9709 + }, + { + "start": 4295.38, + "end": 4298.94, + "probability": 0.9865 + }, + { + "start": 4299.76, + "end": 4301.54, + "probability": 0.9638 + }, + { + "start": 4301.74, + "end": 4302.74, + "probability": 0.9703 + }, + { + "start": 4303.52, + "end": 4308.1, + "probability": 0.4985 + }, + { + "start": 4308.68, + "end": 4312.94, + "probability": 0.8501 + }, + { + "start": 4313.64, + "end": 4316.24, + "probability": 0.9921 + }, + { + "start": 4316.98, + "end": 4320.68, + "probability": 0.9895 + }, + { + "start": 4321.4, + "end": 4322.38, + "probability": 0.7023 + }, + { + "start": 4323.1, + "end": 4325.04, + "probability": 0.1388 + }, + { + "start": 4325.66, + "end": 4326.96, + "probability": 0.9042 + }, + { + "start": 4327.5, + "end": 4328.68, + "probability": 0.9807 + }, + { + "start": 4328.84, + "end": 4329.16, + "probability": 0.8196 + }, + { + "start": 4329.76, + "end": 4331.74, + "probability": 0.7783 + }, + { + "start": 4332.48, + "end": 4332.88, + "probability": 0.8585 + }, + { + "start": 4333.82, + "end": 4334.18, + "probability": 0.8293 + }, + { + "start": 4336.22, + "end": 4339.56, + "probability": 0.7921 + }, + { + "start": 4340.4, + "end": 4342.92, + "probability": 0.4979 + }, + { + "start": 4343.6, + "end": 4348.08, + "probability": 0.9236 + }, + { + "start": 4348.44, + "end": 4349.08, + "probability": 0.5695 + }, + { + "start": 4349.2, + "end": 4349.88, + "probability": 0.6881 + }, + { + "start": 4349.96, + "end": 4351.04, + "probability": 0.8376 + }, + { + "start": 4351.16, + "end": 4355.24, + "probability": 0.8904 + }, + { + "start": 4355.78, + "end": 4358.52, + "probability": 0.941 + }, + { + "start": 4358.72, + "end": 4359.14, + "probability": 0.9469 + }, + { + "start": 4359.16, + "end": 4364.31, + "probability": 0.9241 + }, + { + "start": 4364.54, + "end": 4366.84, + "probability": 0.7067 + }, + { + "start": 4367.48, + "end": 4369.12, + "probability": 0.9666 + }, + { + "start": 4369.58, + "end": 4372.38, + "probability": 0.9482 + }, + { + "start": 4373.44, + "end": 4374.28, + "probability": 0.7623 + }, + { + "start": 4374.52, + "end": 4376.76, + "probability": 0.7835 + }, + { + "start": 4378.08, + "end": 4380.99, + "probability": 0.6802 + }, + { + "start": 4382.02, + "end": 4385.76, + "probability": 0.9888 + }, + { + "start": 4386.5, + "end": 4389.6, + "probability": 0.9575 + }, + { + "start": 4390.38, + "end": 4391.9, + "probability": 0.8204 + }, + { + "start": 4392.98, + "end": 4394.74, + "probability": 0.8689 + }, + { + "start": 4396.2, + "end": 4398.0, + "probability": 0.9177 + }, + { + "start": 4398.5, + "end": 4401.06, + "probability": 0.8023 + }, + { + "start": 4401.3, + "end": 4403.98, + "probability": 0.9358 + }, + { + "start": 4404.68, + "end": 4408.9, + "probability": 0.8493 + }, + { + "start": 4409.56, + "end": 4413.0, + "probability": 0.803 + }, + { + "start": 4413.86, + "end": 4414.04, + "probability": 0.9084 + }, + { + "start": 4414.88, + "end": 4416.38, + "probability": 0.9904 + }, + { + "start": 4418.12, + "end": 4418.66, + "probability": 0.5348 + }, + { + "start": 4419.25, + "end": 4422.44, + "probability": 0.9696 + }, + { + "start": 4422.8, + "end": 4425.6, + "probability": 0.8111 + }, + { + "start": 4425.74, + "end": 4426.22, + "probability": 0.8954 + }, + { + "start": 4427.46, + "end": 4434.2, + "probability": 0.8818 + }, + { + "start": 4435.34, + "end": 4437.4, + "probability": 0.986 + }, + { + "start": 4437.46, + "end": 4440.02, + "probability": 0.9166 + }, + { + "start": 4440.28, + "end": 4440.96, + "probability": 0.7465 + }, + { + "start": 4441.12, + "end": 4443.24, + "probability": 0.6128 + }, + { + "start": 4443.72, + "end": 4444.14, + "probability": 0.9385 + }, + { + "start": 4445.46, + "end": 4447.8, + "probability": 0.9834 + }, + { + "start": 4448.34, + "end": 4451.5, + "probability": 0.7762 + }, + { + "start": 4452.16, + "end": 4455.16, + "probability": 0.3744 + }, + { + "start": 4456.98, + "end": 4458.76, + "probability": 0.6302 + }, + { + "start": 4459.74, + "end": 4465.08, + "probability": 0.9027 + }, + { + "start": 4465.76, + "end": 4471.22, + "probability": 0.9959 + }, + { + "start": 4472.32, + "end": 4474.84, + "probability": 0.9511 + }, + { + "start": 4475.04, + "end": 4477.04, + "probability": 0.9104 + }, + { + "start": 4477.7, + "end": 4478.46, + "probability": 0.9971 + }, + { + "start": 4479.16, + "end": 4480.16, + "probability": 0.9803 + }, + { + "start": 4481.06, + "end": 4483.16, + "probability": 0.993 + }, + { + "start": 4483.92, + "end": 4489.86, + "probability": 0.9489 + }, + { + "start": 4490.54, + "end": 4494.12, + "probability": 0.9965 + }, + { + "start": 4495.46, + "end": 4496.9, + "probability": 0.9372 + }, + { + "start": 4497.18, + "end": 4497.92, + "probability": 0.4897 + }, + { + "start": 4498.14, + "end": 4498.8, + "probability": 0.5168 + }, + { + "start": 4499.16, + "end": 4499.36, + "probability": 0.809 + }, + { + "start": 4499.88, + "end": 4501.7, + "probability": 0.9656 + }, + { + "start": 4503.04, + "end": 4507.52, + "probability": 0.9738 + }, + { + "start": 4507.6, + "end": 4508.84, + "probability": 0.9792 + }, + { + "start": 4509.32, + "end": 4510.18, + "probability": 0.6468 + }, + { + "start": 4510.98, + "end": 4514.02, + "probability": 0.9771 + }, + { + "start": 4514.08, + "end": 4516.84, + "probability": 0.9764 + }, + { + "start": 4517.8, + "end": 4518.92, + "probability": 0.976 + }, + { + "start": 4519.04, + "end": 4522.06, + "probability": 0.9609 + }, + { + "start": 4523.3, + "end": 4526.14, + "probability": 0.7557 + }, + { + "start": 4527.26, + "end": 4530.92, + "probability": 0.625 + }, + { + "start": 4532.24, + "end": 4534.94, + "probability": 0.9385 + }, + { + "start": 4535.44, + "end": 4538.96, + "probability": 0.8743 + }, + { + "start": 4540.4, + "end": 4543.2, + "probability": 0.9021 + }, + { + "start": 4544.44, + "end": 4546.14, + "probability": 0.9971 + }, + { + "start": 4546.66, + "end": 4549.06, + "probability": 0.9976 + }, + { + "start": 4549.3, + "end": 4551.62, + "probability": 0.8421 + }, + { + "start": 4551.8, + "end": 4552.18, + "probability": 0.8584 + }, + { + "start": 4552.9, + "end": 4553.62, + "probability": 0.9033 + }, + { + "start": 4554.32, + "end": 4556.08, + "probability": 0.7327 + }, + { + "start": 4556.56, + "end": 4559.08, + "probability": 0.9932 + }, + { + "start": 4559.26, + "end": 4560.38, + "probability": 0.8519 + }, + { + "start": 4560.86, + "end": 4562.74, + "probability": 0.8695 + }, + { + "start": 4563.62, + "end": 4566.82, + "probability": 0.9846 + }, + { + "start": 4567.22, + "end": 4569.06, + "probability": 0.9892 + }, + { + "start": 4569.68, + "end": 4572.24, + "probability": 0.764 + }, + { + "start": 4572.4, + "end": 4574.94, + "probability": 0.9155 + }, + { + "start": 4575.84, + "end": 4577.98, + "probability": 0.7258 + }, + { + "start": 4578.62, + "end": 4579.92, + "probability": 0.9852 + }, + { + "start": 4580.04, + "end": 4581.42, + "probability": 0.9504 + }, + { + "start": 4581.56, + "end": 4590.36, + "probability": 0.9829 + }, + { + "start": 4590.94, + "end": 4595.58, + "probability": 0.9834 + }, + { + "start": 4596.66, + "end": 4596.72, + "probability": 0.018 + }, + { + "start": 4596.72, + "end": 4599.0, + "probability": 0.99 + }, + { + "start": 4599.22, + "end": 4601.44, + "probability": 0.8745 + }, + { + "start": 4602.8, + "end": 4604.2, + "probability": 0.7754 + }, + { + "start": 4606.1, + "end": 4607.66, + "probability": 0.8906 + }, + { + "start": 4608.12, + "end": 4609.96, + "probability": 0.7216 + }, + { + "start": 4610.1, + "end": 4610.66, + "probability": 0.5806 + }, + { + "start": 4610.82, + "end": 4611.96, + "probability": 0.9932 + }, + { + "start": 4612.4, + "end": 4613.1, + "probability": 0.953 + }, + { + "start": 4614.2, + "end": 4614.56, + "probability": 0.4971 + }, + { + "start": 4614.68, + "end": 4616.2, + "probability": 0.6681 + }, + { + "start": 4616.67, + "end": 4621.08, + "probability": 0.9766 + }, + { + "start": 4621.78, + "end": 4622.2, + "probability": 0.646 + }, + { + "start": 4622.93, + "end": 4624.82, + "probability": 0.9878 + }, + { + "start": 4625.54, + "end": 4627.29, + "probability": 0.9875 + }, + { + "start": 4627.66, + "end": 4629.76, + "probability": 0.7514 + }, + { + "start": 4630.26, + "end": 4632.52, + "probability": 0.9017 + }, + { + "start": 4632.94, + "end": 4635.15, + "probability": 0.8911 + }, + { + "start": 4636.26, + "end": 4639.2, + "probability": 0.9406 + }, + { + "start": 4639.52, + "end": 4642.76, + "probability": 0.8449 + }, + { + "start": 4644.14, + "end": 4649.02, + "probability": 0.9659 + }, + { + "start": 4649.16, + "end": 4650.24, + "probability": 0.8251 + }, + { + "start": 4650.32, + "end": 4653.2, + "probability": 0.8719 + }, + { + "start": 4653.44, + "end": 4654.06, + "probability": 0.9295 + }, + { + "start": 4654.14, + "end": 4655.88, + "probability": 0.985 + }, + { + "start": 4656.74, + "end": 4660.8, + "probability": 0.9775 + }, + { + "start": 4661.64, + "end": 4664.46, + "probability": 0.9939 + }, + { + "start": 4665.92, + "end": 4671.6, + "probability": 0.991 + }, + { + "start": 4672.66, + "end": 4676.48, + "probability": 0.978 + }, + { + "start": 4677.1, + "end": 4677.62, + "probability": 0.9434 + }, + { + "start": 4677.8, + "end": 4678.76, + "probability": 0.9107 + }, + { + "start": 4678.86, + "end": 4681.66, + "probability": 0.9901 + }, + { + "start": 4681.88, + "end": 4683.84, + "probability": 0.9968 + }, + { + "start": 4684.52, + "end": 4687.52, + "probability": 0.8885 + }, + { + "start": 4688.82, + "end": 4690.2, + "probability": 0.8109 + }, + { + "start": 4690.58, + "end": 4694.6, + "probability": 0.9883 + }, + { + "start": 4694.64, + "end": 4697.26, + "probability": 0.9698 + }, + { + "start": 4698.06, + "end": 4701.12, + "probability": 0.889 + }, + { + "start": 4701.84, + "end": 4706.7, + "probability": 0.9954 + }, + { + "start": 4707.08, + "end": 4708.34, + "probability": 0.8345 + }, + { + "start": 4708.98, + "end": 4713.92, + "probability": 0.9938 + }, + { + "start": 4714.28, + "end": 4717.6, + "probability": 0.9712 + }, + { + "start": 4718.02, + "end": 4720.9, + "probability": 0.9659 + }, + { + "start": 4721.52, + "end": 4722.58, + "probability": 0.7998 + }, + { + "start": 4723.72, + "end": 4727.08, + "probability": 0.9437 + }, + { + "start": 4727.12, + "end": 4730.31, + "probability": 0.9881 + }, + { + "start": 4731.64, + "end": 4736.02, + "probability": 0.9954 + }, + { + "start": 4736.28, + "end": 4736.83, + "probability": 0.9604 + }, + { + "start": 4738.14, + "end": 4738.92, + "probability": 0.9956 + }, + { + "start": 4739.82, + "end": 4741.34, + "probability": 0.9059 + }, + { + "start": 4742.0, + "end": 4743.6, + "probability": 0.8706 + }, + { + "start": 4744.22, + "end": 4747.8, + "probability": 0.8123 + }, + { + "start": 4748.6, + "end": 4750.96, + "probability": 0.8221 + }, + { + "start": 4751.2, + "end": 4751.8, + "probability": 0.5687 + }, + { + "start": 4752.44, + "end": 4752.56, + "probability": 0.9737 + }, + { + "start": 4753.86, + "end": 4755.1, + "probability": 0.8814 + }, + { + "start": 4758.1, + "end": 4759.84, + "probability": 0.4053 + }, + { + "start": 4760.4, + "end": 4762.94, + "probability": 0.627 + }, + { + "start": 4763.06, + "end": 4765.74, + "probability": 0.9928 + }, + { + "start": 4766.78, + "end": 4769.16, + "probability": 0.6941 + }, + { + "start": 4770.2, + "end": 4773.76, + "probability": 0.9871 + }, + { + "start": 4773.96, + "end": 4774.78, + "probability": 0.8207 + }, + { + "start": 4775.02, + "end": 4776.3, + "probability": 0.9409 + }, + { + "start": 4777.04, + "end": 4782.74, + "probability": 0.9938 + }, + { + "start": 4782.88, + "end": 4786.84, + "probability": 0.9963 + }, + { + "start": 4787.72, + "end": 4791.82, + "probability": 0.9573 + }, + { + "start": 4792.72, + "end": 4792.92, + "probability": 0.6527 + }, + { + "start": 4793.2, + "end": 4795.94, + "probability": 0.8027 + }, + { + "start": 4796.06, + "end": 4799.26, + "probability": 0.9832 + }, + { + "start": 4799.56, + "end": 4801.24, + "probability": 0.8663 + }, + { + "start": 4801.76, + "end": 4806.04, + "probability": 0.8911 + }, + { + "start": 4806.98, + "end": 4808.86, + "probability": 0.8929 + }, + { + "start": 4811.66, + "end": 4813.38, + "probability": 0.9697 + }, + { + "start": 4816.0, + "end": 4819.74, + "probability": 0.9868 + }, + { + "start": 4820.38, + "end": 4822.76, + "probability": 0.992 + }, + { + "start": 4823.52, + "end": 4828.91, + "probability": 0.796 + }, + { + "start": 4830.48, + "end": 4832.36, + "probability": 0.4134 + }, + { + "start": 4833.08, + "end": 4833.76, + "probability": 0.7304 + }, + { + "start": 4836.15, + "end": 4841.24, + "probability": 0.9776 + }, + { + "start": 4842.88, + "end": 4845.26, + "probability": 0.6484 + }, + { + "start": 4846.62, + "end": 4849.2, + "probability": 0.8701 + }, + { + "start": 4850.36, + "end": 4851.56, + "probability": 0.8425 + }, + { + "start": 4852.82, + "end": 4853.36, + "probability": 0.6376 + }, + { + "start": 4854.46, + "end": 4855.6, + "probability": 0.9404 + }, + { + "start": 4856.2, + "end": 4857.42, + "probability": 0.996 + }, + { + "start": 4858.22, + "end": 4858.52, + "probability": 0.9349 + }, + { + "start": 4859.26, + "end": 4860.28, + "probability": 0.9994 + }, + { + "start": 4861.22, + "end": 4862.64, + "probability": 0.9734 + }, + { + "start": 4863.72, + "end": 4866.96, + "probability": 0.9993 + }, + { + "start": 4867.68, + "end": 4868.6, + "probability": 0.6896 + }, + { + "start": 4869.78, + "end": 4873.3, + "probability": 0.8324 + }, + { + "start": 4874.34, + "end": 4878.14, + "probability": 0.8537 + }, + { + "start": 4879.04, + "end": 4882.62, + "probability": 0.9877 + }, + { + "start": 4883.6, + "end": 4885.88, + "probability": 0.9933 + }, + { + "start": 4887.18, + "end": 4888.54, + "probability": 0.9753 + }, + { + "start": 4889.38, + "end": 4894.56, + "probability": 0.9727 + }, + { + "start": 4896.34, + "end": 4898.8, + "probability": 0.8309 + }, + { + "start": 4899.72, + "end": 4901.44, + "probability": 0.968 + }, + { + "start": 4902.16, + "end": 4905.9, + "probability": 0.9727 + }, + { + "start": 4906.98, + "end": 4907.78, + "probability": 0.6929 + }, + { + "start": 4909.58, + "end": 4911.92, + "probability": 0.9666 + }, + { + "start": 4912.52, + "end": 4913.56, + "probability": 0.9747 + }, + { + "start": 4915.5, + "end": 4916.02, + "probability": 0.9837 + }, + { + "start": 4917.06, + "end": 4918.6, + "probability": 0.9456 + }, + { + "start": 4919.7, + "end": 4921.66, + "probability": 0.9988 + }, + { + "start": 4922.86, + "end": 4923.68, + "probability": 0.9755 + }, + { + "start": 4925.0, + "end": 4927.14, + "probability": 0.9692 + }, + { + "start": 4927.86, + "end": 4930.72, + "probability": 0.9893 + }, + { + "start": 4932.02, + "end": 4932.62, + "probability": 0.5518 + }, + { + "start": 4933.78, + "end": 4934.32, + "probability": 0.9944 + }, + { + "start": 4934.88, + "end": 4938.6, + "probability": 0.9933 + }, + { + "start": 4939.92, + "end": 4942.38, + "probability": 0.9452 + }, + { + "start": 4944.84, + "end": 4949.46, + "probability": 0.9861 + }, + { + "start": 4952.8, + "end": 4957.8, + "probability": 0.9811 + }, + { + "start": 4959.26, + "end": 4960.32, + "probability": 0.8474 + }, + { + "start": 4961.88, + "end": 4962.96, + "probability": 0.9821 + }, + { + "start": 4964.64, + "end": 4967.16, + "probability": 0.9976 + }, + { + "start": 4968.0, + "end": 4968.9, + "probability": 0.995 + }, + { + "start": 4969.46, + "end": 4970.34, + "probability": 0.3495 + }, + { + "start": 4972.28, + "end": 4976.17, + "probability": 0.926 + }, + { + "start": 4977.1, + "end": 4978.58, + "probability": 0.998 + }, + { + "start": 4980.26, + "end": 4980.96, + "probability": 0.6261 + }, + { + "start": 4982.54, + "end": 4983.32, + "probability": 0.8579 + }, + { + "start": 4984.12, + "end": 4984.84, + "probability": 0.8242 + }, + { + "start": 4986.64, + "end": 4987.08, + "probability": 0.9635 + }, + { + "start": 4988.34, + "end": 4989.58, + "probability": 0.9705 + }, + { + "start": 4990.78, + "end": 4992.42, + "probability": 0.9882 + }, + { + "start": 4993.68, + "end": 4994.44, + "probability": 0.9522 + }, + { + "start": 4994.96, + "end": 4996.08, + "probability": 0.9985 + }, + { + "start": 4996.86, + "end": 4999.6, + "probability": 0.8318 + }, + { + "start": 5001.04, + "end": 5003.06, + "probability": 0.956 + }, + { + "start": 5004.4, + "end": 5005.08, + "probability": 0.6759 + }, + { + "start": 5005.9, + "end": 5008.88, + "probability": 0.9979 + }, + { + "start": 5010.08, + "end": 5010.28, + "probability": 0.9942 + }, + { + "start": 5015.36, + "end": 5016.66, + "probability": 0.9994 + }, + { + "start": 5017.94, + "end": 5018.32, + "probability": 0.2239 + }, + { + "start": 5018.94, + "end": 5019.96, + "probability": 0.9962 + }, + { + "start": 5021.48, + "end": 5023.77, + "probability": 0.9373 + }, + { + "start": 5025.22, + "end": 5025.88, + "probability": 0.9834 + }, + { + "start": 5028.62, + "end": 5029.16, + "probability": 0.902 + }, + { + "start": 5029.94, + "end": 5036.34, + "probability": 0.9937 + }, + { + "start": 5038.08, + "end": 5044.46, + "probability": 0.936 + }, + { + "start": 5046.36, + "end": 5046.74, + "probability": 0.9757 + }, + { + "start": 5047.66, + "end": 5049.12, + "probability": 0.9876 + }, + { + "start": 5051.6, + "end": 5052.42, + "probability": 0.8109 + }, + { + "start": 5053.84, + "end": 5057.76, + "probability": 0.9972 + }, + { + "start": 5059.38, + "end": 5060.38, + "probability": 0.8208 + }, + { + "start": 5061.78, + "end": 5063.78, + "probability": 0.9893 + }, + { + "start": 5064.36, + "end": 5066.3, + "probability": 0.8203 + }, + { + "start": 5067.48, + "end": 5068.14, + "probability": 0.8169 + }, + { + "start": 5069.5, + "end": 5070.1, + "probability": 0.974 + }, + { + "start": 5071.9, + "end": 5073.12, + "probability": 0.9952 + }, + { + "start": 5075.2, + "end": 5076.48, + "probability": 0.9966 + }, + { + "start": 5079.88, + "end": 5080.78, + "probability": 0.9077 + }, + { + "start": 5081.92, + "end": 5082.74, + "probability": 0.8951 + }, + { + "start": 5083.62, + "end": 5087.36, + "probability": 0.9709 + }, + { + "start": 5088.1, + "end": 5091.28, + "probability": 0.9321 + }, + { + "start": 5091.92, + "end": 5093.44, + "probability": 0.9938 + }, + { + "start": 5097.52, + "end": 5105.02, + "probability": 0.9934 + }, + { + "start": 5105.74, + "end": 5106.14, + "probability": 0.9209 + }, + { + "start": 5107.24, + "end": 5108.4, + "probability": 0.999 + }, + { + "start": 5109.82, + "end": 5112.34, + "probability": 0.9503 + }, + { + "start": 5113.92, + "end": 5116.44, + "probability": 0.9701 + }, + { + "start": 5116.98, + "end": 5118.89, + "probability": 0.7729 + }, + { + "start": 5120.72, + "end": 5121.64, + "probability": 0.8576 + }, + { + "start": 5122.22, + "end": 5122.68, + "probability": 0.9407 + }, + { + "start": 5124.5, + "end": 5125.66, + "probability": 0.6647 + }, + { + "start": 5126.7, + "end": 5133.42, + "probability": 0.7847 + }, + { + "start": 5134.28, + "end": 5134.94, + "probability": 0.7393 + }, + { + "start": 5139.2, + "end": 5140.88, + "probability": 0.5121 + }, + { + "start": 5142.32, + "end": 5146.46, + "probability": 0.9725 + }, + { + "start": 5147.62, + "end": 5149.5, + "probability": 0.9979 + }, + { + "start": 5150.68, + "end": 5151.18, + "probability": 0.9036 + }, + { + "start": 5152.14, + "end": 5152.7, + "probability": 0.9424 + }, + { + "start": 5153.78, + "end": 5157.8, + "probability": 0.9434 + }, + { + "start": 5159.22, + "end": 5160.54, + "probability": 0.9857 + }, + { + "start": 5161.3, + "end": 5162.18, + "probability": 0.9934 + }, + { + "start": 5162.96, + "end": 5163.56, + "probability": 0.8461 + }, + { + "start": 5165.28, + "end": 5169.48, + "probability": 0.9808 + }, + { + "start": 5170.76, + "end": 5174.46, + "probability": 0.8 + }, + { + "start": 5175.04, + "end": 5176.54, + "probability": 0.9366 + }, + { + "start": 5177.6, + "end": 5178.54, + "probability": 0.778 + }, + { + "start": 5179.46, + "end": 5184.33, + "probability": 0.8283 + }, + { + "start": 5186.44, + "end": 5188.46, + "probability": 0.9803 + }, + { + "start": 5189.48, + "end": 5190.12, + "probability": 0.9896 + }, + { + "start": 5191.08, + "end": 5193.1, + "probability": 0.9893 + }, + { + "start": 5195.3, + "end": 5196.18, + "probability": 0.6234 + }, + { + "start": 5197.3, + "end": 5197.72, + "probability": 0.9062 + }, + { + "start": 5198.26, + "end": 5202.14, + "probability": 0.8691 + }, + { + "start": 5205.4, + "end": 5207.1, + "probability": 0.9657 + }, + { + "start": 5209.16, + "end": 5209.82, + "probability": 0.7782 + }, + { + "start": 5212.04, + "end": 5214.4, + "probability": 0.9897 + }, + { + "start": 5218.42, + "end": 5220.72, + "probability": 0.9323 + }, + { + "start": 5222.76, + "end": 5229.02, + "probability": 0.9927 + }, + { + "start": 5230.08, + "end": 5230.94, + "probability": 0.726 + }, + { + "start": 5231.64, + "end": 5233.9, + "probability": 0.9897 + }, + { + "start": 5235.34, + "end": 5236.32, + "probability": 0.8248 + }, + { + "start": 5237.64, + "end": 5240.42, + "probability": 0.7502 + }, + { + "start": 5241.36, + "end": 5242.86, + "probability": 0.9711 + }, + { + "start": 5245.48, + "end": 5251.98, + "probability": 0.7747 + }, + { + "start": 5253.16, + "end": 5254.6, + "probability": 0.8526 + }, + { + "start": 5254.8, + "end": 5255.98, + "probability": 0.7111 + }, + { + "start": 5256.46, + "end": 5258.74, + "probability": 0.9589 + }, + { + "start": 5260.04, + "end": 5261.6, + "probability": 0.9325 + }, + { + "start": 5263.68, + "end": 5267.38, + "probability": 0.974 + }, + { + "start": 5268.12, + "end": 5269.72, + "probability": 0.683 + }, + { + "start": 5271.58, + "end": 5275.06, + "probability": 0.4521 + }, + { + "start": 5276.6, + "end": 5279.76, + "probability": 0.861 + }, + { + "start": 5280.36, + "end": 5282.3, + "probability": 0.9183 + }, + { + "start": 5283.26, + "end": 5283.96, + "probability": 0.9983 + }, + { + "start": 5284.84, + "end": 5286.12, + "probability": 0.9996 + }, + { + "start": 5286.86, + "end": 5287.86, + "probability": 0.8923 + }, + { + "start": 5288.86, + "end": 5289.4, + "probability": 0.9198 + }, + { + "start": 5291.36, + "end": 5292.34, + "probability": 0.974 + }, + { + "start": 5293.34, + "end": 5298.66, + "probability": 0.9091 + }, + { + "start": 5299.44, + "end": 5303.42, + "probability": 0.8207 + }, + { + "start": 5304.88, + "end": 5306.48, + "probability": 0.8155 + }, + { + "start": 5307.66, + "end": 5309.0, + "probability": 0.8627 + }, + { + "start": 5310.36, + "end": 5312.3, + "probability": 0.9666 + }, + { + "start": 5312.9, + "end": 5316.3, + "probability": 0.9557 + }, + { + "start": 5317.2, + "end": 5320.06, + "probability": 0.7938 + }, + { + "start": 5320.86, + "end": 5325.98, + "probability": 0.9932 + }, + { + "start": 5326.74, + "end": 5330.7, + "probability": 0.9854 + }, + { + "start": 5331.5, + "end": 5331.9, + "probability": 0.8035 + }, + { + "start": 5332.68, + "end": 5334.28, + "probability": 0.8576 + }, + { + "start": 5334.92, + "end": 5337.4, + "probability": 0.8322 + }, + { + "start": 5338.48, + "end": 5340.66, + "probability": 0.5954 + }, + { + "start": 5340.96, + "end": 5342.6, + "probability": 0.8871 + }, + { + "start": 5343.22, + "end": 5344.0, + "probability": 0.8316 + }, + { + "start": 5345.0, + "end": 5345.92, + "probability": 0.6984 + }, + { + "start": 5346.58, + "end": 5351.08, + "probability": 0.9281 + }, + { + "start": 5364.32, + "end": 5365.18, + "probability": 0.8128 + }, + { + "start": 5366.84, + "end": 5371.54, + "probability": 0.9861 + }, + { + "start": 5372.82, + "end": 5373.42, + "probability": 0.8549 + }, + { + "start": 5374.7, + "end": 5375.56, + "probability": 0.9609 + }, + { + "start": 5375.62, + "end": 5377.44, + "probability": 0.9923 + }, + { + "start": 5377.44, + "end": 5379.84, + "probability": 0.9878 + }, + { + "start": 5381.82, + "end": 5384.46, + "probability": 0.7417 + }, + { + "start": 5385.94, + "end": 5387.56, + "probability": 0.9811 + }, + { + "start": 5388.56, + "end": 5390.12, + "probability": 0.9663 + }, + { + "start": 5391.88, + "end": 5396.96, + "probability": 0.9187 + }, + { + "start": 5398.32, + "end": 5400.38, + "probability": 0.9959 + }, + { + "start": 5400.94, + "end": 5401.74, + "probability": 0.7979 + }, + { + "start": 5402.4, + "end": 5406.26, + "probability": 0.9232 + }, + { + "start": 5406.78, + "end": 5410.02, + "probability": 0.6654 + }, + { + "start": 5410.64, + "end": 5416.42, + "probability": 0.9954 + }, + { + "start": 5419.44, + "end": 5421.74, + "probability": 0.918 + }, + { + "start": 5422.68, + "end": 5426.86, + "probability": 0.9978 + }, + { + "start": 5427.56, + "end": 5433.2, + "probability": 0.9992 + }, + { + "start": 5434.5, + "end": 5435.8, + "probability": 0.9755 + }, + { + "start": 5436.44, + "end": 5438.14, + "probability": 0.9746 + }, + { + "start": 5438.74, + "end": 5439.76, + "probability": 0.9776 + }, + { + "start": 5440.3, + "end": 5442.32, + "probability": 0.8655 + }, + { + "start": 5443.56, + "end": 5449.58, + "probability": 0.9984 + }, + { + "start": 5450.12, + "end": 5450.7, + "probability": 0.7632 + }, + { + "start": 5451.62, + "end": 5452.28, + "probability": 0.9637 + }, + { + "start": 5453.94, + "end": 5454.32, + "probability": 0.8645 + }, + { + "start": 5455.06, + "end": 5456.16, + "probability": 0.9312 + }, + { + "start": 5456.7, + "end": 5460.68, + "probability": 0.9964 + }, + { + "start": 5461.34, + "end": 5465.88, + "probability": 0.9979 + }, + { + "start": 5467.64, + "end": 5470.74, + "probability": 0.9844 + }, + { + "start": 5471.88, + "end": 5472.68, + "probability": 0.9968 + }, + { + "start": 5473.72, + "end": 5476.0, + "probability": 0.9882 + }, + { + "start": 5477.18, + "end": 5479.58, + "probability": 0.9979 + }, + { + "start": 5479.58, + "end": 5483.3, + "probability": 0.9976 + }, + { + "start": 5483.96, + "end": 5487.1, + "probability": 0.9946 + }, + { + "start": 5487.1, + "end": 5489.6, + "probability": 0.9997 + }, + { + "start": 5491.24, + "end": 5493.88, + "probability": 0.9608 + }, + { + "start": 5494.14, + "end": 5496.36, + "probability": 0.9969 + }, + { + "start": 5497.28, + "end": 5503.88, + "probability": 0.9861 + }, + { + "start": 5504.26, + "end": 5507.68, + "probability": 0.9496 + }, + { + "start": 5508.8, + "end": 5511.82, + "probability": 0.9922 + }, + { + "start": 5511.84, + "end": 5516.48, + "probability": 0.8595 + }, + { + "start": 5516.72, + "end": 5517.68, + "probability": 0.9487 + }, + { + "start": 5518.38, + "end": 5519.48, + "probability": 0.9977 + }, + { + "start": 5520.9, + "end": 5522.46, + "probability": 0.9836 + }, + { + "start": 5522.98, + "end": 5526.34, + "probability": 0.9958 + }, + { + "start": 5527.04, + "end": 5530.68, + "probability": 0.9587 + }, + { + "start": 5530.68, + "end": 5532.78, + "probability": 0.9975 + }, + { + "start": 5534.68, + "end": 5539.28, + "probability": 0.9927 + }, + { + "start": 5539.3, + "end": 5544.48, + "probability": 0.9982 + }, + { + "start": 5544.6, + "end": 5547.28, + "probability": 0.9935 + }, + { + "start": 5548.24, + "end": 5553.54, + "probability": 0.993 + }, + { + "start": 5554.5, + "end": 5558.1, + "probability": 0.9969 + }, + { + "start": 5559.26, + "end": 5563.6, + "probability": 0.9151 + }, + { + "start": 5563.6, + "end": 5568.9, + "probability": 0.9937 + }, + { + "start": 5569.48, + "end": 5570.14, + "probability": 0.9625 + }, + { + "start": 5570.66, + "end": 5571.46, + "probability": 0.9881 + }, + { + "start": 5571.98, + "end": 5572.5, + "probability": 0.7648 + }, + { + "start": 5573.56, + "end": 5575.22, + "probability": 0.9409 + }, + { + "start": 5575.84, + "end": 5576.34, + "probability": 0.8006 + }, + { + "start": 5576.98, + "end": 5578.08, + "probability": 0.9443 + }, + { + "start": 5580.16, + "end": 5580.64, + "probability": 0.9217 + }, + { + "start": 5581.32, + "end": 5582.32, + "probability": 0.8578 + }, + { + "start": 5583.48, + "end": 5585.54, + "probability": 0.986 + }, + { + "start": 5586.34, + "end": 5586.86, + "probability": 0.9836 + }, + { + "start": 5587.54, + "end": 5592.32, + "probability": 0.999 + }, + { + "start": 5593.3, + "end": 5595.5, + "probability": 0.98 + }, + { + "start": 5596.02, + "end": 5600.36, + "probability": 0.9952 + }, + { + "start": 5601.28, + "end": 5604.02, + "probability": 0.9929 + }, + { + "start": 5604.02, + "end": 5607.34, + "probability": 0.8274 + }, + { + "start": 5608.44, + "end": 5612.7, + "probability": 0.9834 + }, + { + "start": 5613.2, + "end": 5614.38, + "probability": 0.8202 + }, + { + "start": 5614.88, + "end": 5617.2, + "probability": 0.969 + }, + { + "start": 5618.42, + "end": 5620.18, + "probability": 0.9509 + }, + { + "start": 5620.78, + "end": 5623.52, + "probability": 0.9953 + }, + { + "start": 5623.67, + "end": 5626.16, + "probability": 0.9984 + }, + { + "start": 5626.66, + "end": 5627.56, + "probability": 0.9064 + }, + { + "start": 5628.12, + "end": 5629.9, + "probability": 0.943 + }, + { + "start": 5630.82, + "end": 5631.42, + "probability": 0.7559 + }, + { + "start": 5632.02, + "end": 5633.02, + "probability": 0.5139 + }, + { + "start": 5633.94, + "end": 5637.36, + "probability": 0.8774 + }, + { + "start": 5637.66, + "end": 5641.14, + "probability": 0.9325 + }, + { + "start": 5642.08, + "end": 5645.06, + "probability": 0.9946 + }, + { + "start": 5645.06, + "end": 5648.16, + "probability": 0.9697 + }, + { + "start": 5650.52, + "end": 5654.18, + "probability": 0.9897 + }, + { + "start": 5654.34, + "end": 5655.9, + "probability": 0.8343 + }, + { + "start": 5656.02, + "end": 5660.09, + "probability": 0.9948 + }, + { + "start": 5660.6, + "end": 5664.8, + "probability": 0.9925 + }, + { + "start": 5664.8, + "end": 5668.8, + "probability": 0.9932 + }, + { + "start": 5669.9, + "end": 5673.74, + "probability": 0.9961 + }, + { + "start": 5674.54, + "end": 5678.92, + "probability": 0.9813 + }, + { + "start": 5678.92, + "end": 5682.5, + "probability": 0.9768 + }, + { + "start": 5683.04, + "end": 5687.56, + "probability": 0.949 + }, + { + "start": 5688.02, + "end": 5689.94, + "probability": 0.685 + }, + { + "start": 5690.66, + "end": 5693.62, + "probability": 0.9737 + }, + { + "start": 5694.32, + "end": 5696.8, + "probability": 0.7572 + }, + { + "start": 5696.8, + "end": 5699.23, + "probability": 0.9975 + }, + { + "start": 5699.98, + "end": 5703.4, + "probability": 0.9956 + }, + { + "start": 5703.4, + "end": 5707.12, + "probability": 0.9863 + }, + { + "start": 5707.8, + "end": 5708.26, + "probability": 0.7936 + }, + { + "start": 5708.38, + "end": 5709.22, + "probability": 0.902 + }, + { + "start": 5709.66, + "end": 5713.88, + "probability": 0.995 + }, + { + "start": 5714.04, + "end": 5714.64, + "probability": 0.9068 + }, + { + "start": 5715.0, + "end": 5716.12, + "probability": 0.953 + }, + { + "start": 5716.96, + "end": 5722.44, + "probability": 0.9188 + }, + { + "start": 5722.44, + "end": 5728.4, + "probability": 0.9867 + }, + { + "start": 5729.88, + "end": 5730.6, + "probability": 0.8131 + }, + { + "start": 5731.26, + "end": 5735.74, + "probability": 0.9973 + }, + { + "start": 5736.26, + "end": 5739.62, + "probability": 0.998 + }, + { + "start": 5740.98, + "end": 5745.9, + "probability": 0.9512 + }, + { + "start": 5746.08, + "end": 5746.78, + "probability": 0.8475 + }, + { + "start": 5747.18, + "end": 5749.52, + "probability": 0.7495 + }, + { + "start": 5750.54, + "end": 5750.78, + "probability": 0.6498 + }, + { + "start": 5751.04, + "end": 5752.12, + "probability": 0.9078 + }, + { + "start": 5752.52, + "end": 5755.0, + "probability": 0.9718 + }, + { + "start": 5755.5, + "end": 5756.8, + "probability": 0.7799 + }, + { + "start": 5758.94, + "end": 5759.56, + "probability": 0.9619 + }, + { + "start": 5760.3, + "end": 5763.74, + "probability": 0.9746 + }, + { + "start": 5764.54, + "end": 5767.42, + "probability": 0.9971 + }, + { + "start": 5767.86, + "end": 5768.42, + "probability": 0.4565 + }, + { + "start": 5768.52, + "end": 5769.4, + "probability": 0.9311 + }, + { + "start": 5769.54, + "end": 5770.62, + "probability": 0.9502 + }, + { + "start": 5770.88, + "end": 5774.74, + "probability": 0.949 + }, + { + "start": 5775.76, + "end": 5779.34, + "probability": 0.923 + }, + { + "start": 5779.94, + "end": 5784.1, + "probability": 0.7861 + }, + { + "start": 5784.5, + "end": 5788.64, + "probability": 0.9528 + }, + { + "start": 5788.64, + "end": 5791.6, + "probability": 0.9919 + }, + { + "start": 5792.3, + "end": 5797.24, + "probability": 0.9865 + }, + { + "start": 5797.24, + "end": 5801.7, + "probability": 0.9994 + }, + { + "start": 5803.68, + "end": 5806.68, + "probability": 0.9824 + }, + { + "start": 5807.06, + "end": 5808.64, + "probability": 0.7857 + }, + { + "start": 5809.2, + "end": 5811.14, + "probability": 0.9985 + }, + { + "start": 5811.68, + "end": 5815.08, + "probability": 0.9985 + }, + { + "start": 5815.08, + "end": 5817.92, + "probability": 0.9989 + }, + { + "start": 5818.54, + "end": 5822.56, + "probability": 0.9943 + }, + { + "start": 5823.6, + "end": 5826.24, + "probability": 0.9538 + }, + { + "start": 5826.84, + "end": 5833.0, + "probability": 0.9946 + }, + { + "start": 5834.08, + "end": 5838.68, + "probability": 0.9906 + }, + { + "start": 5841.08, + "end": 5841.56, + "probability": 0.925 + }, + { + "start": 5842.22, + "end": 5844.78, + "probability": 0.8855 + }, + { + "start": 5845.36, + "end": 5848.46, + "probability": 0.901 + }, + { + "start": 5848.96, + "end": 5849.18, + "probability": 0.7308 + }, + { + "start": 5849.7, + "end": 5850.48, + "probability": 0.785 + }, + { + "start": 5851.5, + "end": 5853.58, + "probability": 0.689 + }, + { + "start": 5854.18, + "end": 5855.52, + "probability": 0.9321 + }, + { + "start": 5856.28, + "end": 5856.78, + "probability": 0.692 + }, + { + "start": 5858.08, + "end": 5858.78, + "probability": 0.9795 + }, + { + "start": 5859.06, + "end": 5859.6, + "probability": 0.8843 + }, + { + "start": 5860.04, + "end": 5864.24, + "probability": 0.8004 + }, + { + "start": 5864.76, + "end": 5866.52, + "probability": 0.7691 + }, + { + "start": 5867.42, + "end": 5871.6, + "probability": 0.9699 + }, + { + "start": 5873.04, + "end": 5876.94, + "probability": 0.8604 + }, + { + "start": 5877.82, + "end": 5881.82, + "probability": 0.9924 + }, + { + "start": 5882.44, + "end": 5886.7, + "probability": 0.9964 + }, + { + "start": 5887.18, + "end": 5888.94, + "probability": 0.8323 + }, + { + "start": 5889.2, + "end": 5890.94, + "probability": 0.5363 + }, + { + "start": 5891.06, + "end": 5891.9, + "probability": 0.8317 + }, + { + "start": 5892.32, + "end": 5892.52, + "probability": 0.4975 + }, + { + "start": 5892.7, + "end": 5894.04, + "probability": 0.9823 + }, + { + "start": 5894.06, + "end": 5895.44, + "probability": 0.9684 + }, + { + "start": 5896.48, + "end": 5899.96, + "probability": 0.97 + }, + { + "start": 5901.63, + "end": 5904.94, + "probability": 0.8818 + }, + { + "start": 5905.8, + "end": 5910.54, + "probability": 0.7776 + }, + { + "start": 5911.16, + "end": 5912.6, + "probability": 0.7626 + }, + { + "start": 5913.32, + "end": 5917.48, + "probability": 0.9903 + }, + { + "start": 5918.24, + "end": 5919.92, + "probability": 0.588 + }, + { + "start": 5920.6, + "end": 5922.06, + "probability": 0.9785 + }, + { + "start": 5922.18, + "end": 5923.34, + "probability": 0.6727 + }, + { + "start": 5923.96, + "end": 5925.92, + "probability": 0.7943 + }, + { + "start": 5926.7, + "end": 5928.58, + "probability": 0.5036 + }, + { + "start": 5929.0, + "end": 5932.54, + "probability": 0.8154 + }, + { + "start": 5933.86, + "end": 5936.15, + "probability": 0.8704 + }, + { + "start": 5937.96, + "end": 5939.58, + "probability": 0.3027 + }, + { + "start": 5941.02, + "end": 5944.96, + "probability": 0.9656 + }, + { + "start": 5946.04, + "end": 5947.58, + "probability": 0.9263 + }, + { + "start": 5947.68, + "end": 5948.3, + "probability": 0.9255 + }, + { + "start": 5950.94, + "end": 5954.54, + "probability": 0.5045 + }, + { + "start": 5955.04, + "end": 5956.28, + "probability": 0.9381 + }, + { + "start": 5956.42, + "end": 5958.82, + "probability": 0.9699 + }, + { + "start": 5958.98, + "end": 5962.04, + "probability": 0.9493 + }, + { + "start": 5962.22, + "end": 5963.28, + "probability": 0.7314 + }, + { + "start": 5964.94, + "end": 5966.99, + "probability": 0.9665 + }, + { + "start": 5968.96, + "end": 5972.44, + "probability": 0.8212 + }, + { + "start": 5975.16, + "end": 5977.18, + "probability": 0.9928 + }, + { + "start": 5977.8, + "end": 5978.48, + "probability": 0.9845 + }, + { + "start": 5979.62, + "end": 5980.36, + "probability": 0.926 + }, + { + "start": 5981.56, + "end": 5982.2, + "probability": 0.6267 + }, + { + "start": 5983.64, + "end": 5984.38, + "probability": 0.9151 + }, + { + "start": 5985.66, + "end": 5986.48, + "probability": 0.8846 + }, + { + "start": 5988.26, + "end": 5989.08, + "probability": 0.6322 + }, + { + "start": 5989.52, + "end": 5994.18, + "probability": 0.9751 + }, + { + "start": 5994.88, + "end": 5996.56, + "probability": 0.529 + }, + { + "start": 5999.62, + "end": 6000.38, + "probability": 0.953 + }, + { + "start": 6002.12, + "end": 6002.92, + "probability": 0.9924 + }, + { + "start": 6004.8, + "end": 6006.58, + "probability": 0.9972 + }, + { + "start": 6007.16, + "end": 6009.94, + "probability": 0.8971 + }, + { + "start": 6011.28, + "end": 6015.18, + "probability": 0.9845 + }, + { + "start": 6015.96, + "end": 6017.28, + "probability": 0.9937 + }, + { + "start": 6018.28, + "end": 6019.08, + "probability": 0.9308 + }, + { + "start": 6020.48, + "end": 6020.82, + "probability": 0.5383 + }, + { + "start": 6020.84, + "end": 6024.04, + "probability": 0.9113 + }, + { + "start": 6025.6, + "end": 6027.13, + "probability": 0.5445 + }, + { + "start": 6028.28, + "end": 6030.16, + "probability": 0.9867 + }, + { + "start": 6031.34, + "end": 6034.14, + "probability": 0.9976 + }, + { + "start": 6034.44, + "end": 6035.24, + "probability": 0.9717 + }, + { + "start": 6035.92, + "end": 6036.6, + "probability": 0.9948 + }, + { + "start": 6037.3, + "end": 6037.58, + "probability": 0.9951 + }, + { + "start": 6038.52, + "end": 6040.72, + "probability": 0.982 + }, + { + "start": 6041.8, + "end": 6043.22, + "probability": 0.835 + }, + { + "start": 6045.3, + "end": 6045.84, + "probability": 0.8684 + }, + { + "start": 6046.92, + "end": 6049.7, + "probability": 0.9582 + }, + { + "start": 6050.88, + "end": 6054.22, + "probability": 0.9896 + }, + { + "start": 6057.22, + "end": 6059.04, + "probability": 0.725 + }, + { + "start": 6059.18, + "end": 6061.06, + "probability": 0.9746 + }, + { + "start": 6063.78, + "end": 6064.9, + "probability": 0.8883 + }, + { + "start": 6065.02, + "end": 6065.94, + "probability": 0.915 + }, + { + "start": 6066.1, + "end": 6068.6, + "probability": 0.9961 + }, + { + "start": 6069.34, + "end": 6070.52, + "probability": 0.7516 + }, + { + "start": 6072.06, + "end": 6074.22, + "probability": 0.4989 + }, + { + "start": 6075.52, + "end": 6078.32, + "probability": 0.687 + }, + { + "start": 6080.58, + "end": 6082.32, + "probability": 0.6816 + }, + { + "start": 6082.42, + "end": 6083.6, + "probability": 0.9707 + }, + { + "start": 6083.74, + "end": 6084.58, + "probability": 0.9837 + }, + { + "start": 6085.38, + "end": 6086.46, + "probability": 0.9575 + }, + { + "start": 6087.28, + "end": 6089.82, + "probability": 0.6746 + }, + { + "start": 6090.74, + "end": 6092.62, + "probability": 0.999 + }, + { + "start": 6093.5, + "end": 6094.22, + "probability": 0.9364 + }, + { + "start": 6096.6, + "end": 6097.54, + "probability": 0.9963 + }, + { + "start": 6097.62, + "end": 6098.34, + "probability": 0.9941 + }, + { + "start": 6098.48, + "end": 6098.9, + "probability": 0.8533 + }, + { + "start": 6099.94, + "end": 6101.74, + "probability": 0.9953 + }, + { + "start": 6102.12, + "end": 6102.82, + "probability": 0.9422 + }, + { + "start": 6104.58, + "end": 6105.38, + "probability": 0.7212 + }, + { + "start": 6105.94, + "end": 6106.64, + "probability": 0.8059 + }, + { + "start": 6108.04, + "end": 6109.66, + "probability": 0.8645 + }, + { + "start": 6110.04, + "end": 6111.96, + "probability": 0.9979 + }, + { + "start": 6113.64, + "end": 6115.6, + "probability": 0.9595 + }, + { + "start": 6117.7, + "end": 6121.62, + "probability": 0.9961 + }, + { + "start": 6122.98, + "end": 6123.52, + "probability": 0.9883 + }, + { + "start": 6124.36, + "end": 6126.92, + "probability": 0.961 + }, + { + "start": 6126.98, + "end": 6127.76, + "probability": 0.751 + }, + { + "start": 6129.72, + "end": 6130.36, + "probability": 0.868 + }, + { + "start": 6131.28, + "end": 6131.58, + "probability": 0.9988 + }, + { + "start": 6133.08, + "end": 6134.22, + "probability": 0.9959 + }, + { + "start": 6136.18, + "end": 6140.54, + "probability": 0.9902 + }, + { + "start": 6142.18, + "end": 6144.22, + "probability": 0.9993 + }, + { + "start": 6144.98, + "end": 6147.58, + "probability": 0.9893 + }, + { + "start": 6148.8, + "end": 6150.56, + "probability": 0.9973 + }, + { + "start": 6151.64, + "end": 6154.5, + "probability": 0.9885 + }, + { + "start": 6154.94, + "end": 6157.27, + "probability": 0.7199 + }, + { + "start": 6157.92, + "end": 6159.68, + "probability": 0.8672 + }, + { + "start": 6160.62, + "end": 6162.44, + "probability": 0.7898 + }, + { + "start": 6164.7, + "end": 6167.46, + "probability": 0.8707 + }, + { + "start": 6168.38, + "end": 6169.14, + "probability": 0.9514 + }, + { + "start": 6170.24, + "end": 6172.58, + "probability": 0.9883 + }, + { + "start": 6173.92, + "end": 6179.14, + "probability": 0.9885 + }, + { + "start": 6179.22, + "end": 6179.72, + "probability": 0.8304 + }, + { + "start": 6180.8, + "end": 6183.34, + "probability": 0.8472 + }, + { + "start": 6186.12, + "end": 6186.82, + "probability": 0.983 + }, + { + "start": 6187.84, + "end": 6189.78, + "probability": 0.9219 + }, + { + "start": 6191.68, + "end": 6193.5, + "probability": 0.9381 + }, + { + "start": 6194.34, + "end": 6195.88, + "probability": 0.9744 + }, + { + "start": 6197.24, + "end": 6199.02, + "probability": 0.9844 + }, + { + "start": 6200.22, + "end": 6200.74, + "probability": 0.5649 + }, + { + "start": 6202.1, + "end": 6205.12, + "probability": 0.8936 + }, + { + "start": 6205.3, + "end": 6207.96, + "probability": 0.7731 + }, + { + "start": 6209.14, + "end": 6210.68, + "probability": 0.9734 + }, + { + "start": 6213.12, + "end": 6215.38, + "probability": 0.9142 + }, + { + "start": 6216.24, + "end": 6220.7, + "probability": 0.9589 + }, + { + "start": 6223.37, + "end": 6225.74, + "probability": 0.6496 + }, + { + "start": 6225.82, + "end": 6227.78, + "probability": 0.6481 + }, + { + "start": 6228.38, + "end": 6231.5, + "probability": 0.7168 + }, + { + "start": 6231.74, + "end": 6233.16, + "probability": 0.2003 + }, + { + "start": 6233.16, + "end": 6233.56, + "probability": 0.8826 + }, + { + "start": 6233.66, + "end": 6236.58, + "probability": 0.9399 + }, + { + "start": 6238.34, + "end": 6242.58, + "probability": 0.7363 + }, + { + "start": 6242.94, + "end": 6245.7, + "probability": 0.7156 + }, + { + "start": 6246.74, + "end": 6249.04, + "probability": 0.9761 + }, + { + "start": 6250.22, + "end": 6250.58, + "probability": 0.7952 + }, + { + "start": 6251.64, + "end": 6253.59, + "probability": 0.583 + }, + { + "start": 6255.34, + "end": 6257.1, + "probability": 0.781 + }, + { + "start": 6258.12, + "end": 6261.12, + "probability": 0.7929 + }, + { + "start": 6261.96, + "end": 6263.08, + "probability": 0.7349 + }, + { + "start": 6264.86, + "end": 6266.26, + "probability": 0.9413 + }, + { + "start": 6266.58, + "end": 6267.1, + "probability": 0.2341 + }, + { + "start": 6267.16, + "end": 6270.04, + "probability": 0.9899 + }, + { + "start": 6270.26, + "end": 6271.62, + "probability": 0.8896 + }, + { + "start": 6271.83, + "end": 6274.54, + "probability": 0.843 + }, + { + "start": 6275.08, + "end": 6279.68, + "probability": 0.9959 + }, + { + "start": 6279.68, + "end": 6284.1, + "probability": 0.9956 + }, + { + "start": 6286.54, + "end": 6290.22, + "probability": 0.8236 + }, + { + "start": 6291.14, + "end": 6292.88, + "probability": 0.8486 + }, + { + "start": 6293.44, + "end": 6294.76, + "probability": 0.9954 + }, + { + "start": 6295.46, + "end": 6297.04, + "probability": 0.9972 + }, + { + "start": 6297.62, + "end": 6298.8, + "probability": 0.9688 + }, + { + "start": 6300.02, + "end": 6301.72, + "probability": 0.9957 + }, + { + "start": 6302.68, + "end": 6304.6, + "probability": 0.8783 + }, + { + "start": 6306.7, + "end": 6308.52, + "probability": 0.8224 + }, + { + "start": 6310.2, + "end": 6311.8, + "probability": 0.9014 + }, + { + "start": 6312.38, + "end": 6313.86, + "probability": 0.9346 + }, + { + "start": 6314.62, + "end": 6315.56, + "probability": 0.9618 + }, + { + "start": 6315.74, + "end": 6318.56, + "probability": 0.9663 + }, + { + "start": 6319.6, + "end": 6320.52, + "probability": 0.7751 + }, + { + "start": 6321.48, + "end": 6323.24, + "probability": 0.9955 + }, + { + "start": 6324.34, + "end": 6325.14, + "probability": 0.5432 + }, + { + "start": 6325.9, + "end": 6329.18, + "probability": 0.9928 + }, + { + "start": 6329.26, + "end": 6330.7, + "probability": 0.561 + }, + { + "start": 6331.92, + "end": 6334.2, + "probability": 0.8805 + }, + { + "start": 6335.88, + "end": 6337.37, + "probability": 0.9794 + }, + { + "start": 6337.88, + "end": 6340.38, + "probability": 0.9834 + }, + { + "start": 6342.76, + "end": 6343.14, + "probability": 0.7709 + }, + { + "start": 6345.36, + "end": 6346.22, + "probability": 0.8977 + }, + { + "start": 6348.24, + "end": 6349.7, + "probability": 0.8428 + }, + { + "start": 6353.4, + "end": 6356.64, + "probability": 0.7712 + }, + { + "start": 6357.4, + "end": 6358.68, + "probability": 0.9723 + }, + { + "start": 6361.6, + "end": 6362.78, + "probability": 0.9097 + }, + { + "start": 6362.8, + "end": 6366.82, + "probability": 0.922 + }, + { + "start": 6368.62, + "end": 6369.16, + "probability": 0.8538 + }, + { + "start": 6371.7, + "end": 6374.5, + "probability": 0.9922 + }, + { + "start": 6376.58, + "end": 6377.78, + "probability": 0.9977 + }, + { + "start": 6379.42, + "end": 6381.65, + "probability": 0.9976 + }, + { + "start": 6383.56, + "end": 6385.16, + "probability": 0.97 + }, + { + "start": 6386.04, + "end": 6390.56, + "probability": 0.9979 + }, + { + "start": 6392.48, + "end": 6394.44, + "probability": 0.8515 + }, + { + "start": 6395.42, + "end": 6396.9, + "probability": 0.9614 + }, + { + "start": 6398.36, + "end": 6399.3, + "probability": 0.8263 + }, + { + "start": 6400.06, + "end": 6402.84, + "probability": 0.9924 + }, + { + "start": 6404.22, + "end": 6405.38, + "probability": 0.9888 + }, + { + "start": 6406.92, + "end": 6409.92, + "probability": 0.746 + }, + { + "start": 6411.08, + "end": 6415.44, + "probability": 0.9637 + }, + { + "start": 6417.02, + "end": 6420.0, + "probability": 0.9911 + }, + { + "start": 6421.42, + "end": 6423.7, + "probability": 0.8889 + }, + { + "start": 6425.88, + "end": 6428.64, + "probability": 0.9834 + }, + { + "start": 6429.0, + "end": 6429.6, + "probability": 0.98 + }, + { + "start": 6430.46, + "end": 6432.98, + "probability": 0.9966 + }, + { + "start": 6433.46, + "end": 6436.24, + "probability": 0.9951 + }, + { + "start": 6437.12, + "end": 6442.62, + "probability": 0.9739 + }, + { + "start": 6443.86, + "end": 6446.22, + "probability": 0.9377 + }, + { + "start": 6446.22, + "end": 6449.32, + "probability": 0.9954 + }, + { + "start": 6450.56, + "end": 6456.1, + "probability": 0.9954 + }, + { + "start": 6457.24, + "end": 6457.26, + "probability": 0.4873 + }, + { + "start": 6458.72, + "end": 6460.46, + "probability": 0.9494 + }, + { + "start": 6461.16, + "end": 6466.02, + "probability": 0.9974 + }, + { + "start": 6466.18, + "end": 6466.7, + "probability": 0.0503 + }, + { + "start": 6467.34, + "end": 6468.59, + "probability": 0.9651 + }, + { + "start": 6469.5, + "end": 6470.38, + "probability": 0.9237 + }, + { + "start": 6471.52, + "end": 6474.54, + "probability": 0.9984 + }, + { + "start": 6475.24, + "end": 6477.22, + "probability": 0.9555 + }, + { + "start": 6477.3, + "end": 6478.36, + "probability": 0.9925 + }, + { + "start": 6479.32, + "end": 6481.1, + "probability": 0.8743 + }, + { + "start": 6481.64, + "end": 6483.08, + "probability": 0.9278 + }, + { + "start": 6483.14, + "end": 6485.56, + "probability": 0.9446 + }, + { + "start": 6486.22, + "end": 6487.44, + "probability": 0.8375 + }, + { + "start": 6488.86, + "end": 6491.82, + "probability": 0.9987 + }, + { + "start": 6493.08, + "end": 6493.76, + "probability": 0.9491 + }, + { + "start": 6494.36, + "end": 6495.8, + "probability": 0.9973 + }, + { + "start": 6496.98, + "end": 6497.16, + "probability": 0.7168 + }, + { + "start": 6497.98, + "end": 6500.76, + "probability": 0.7846 + }, + { + "start": 6501.3, + "end": 6502.18, + "probability": 0.8194 + }, + { + "start": 6502.34, + "end": 6503.64, + "probability": 0.6218 + }, + { + "start": 6504.92, + "end": 6505.86, + "probability": 0.872 + }, + { + "start": 6507.5, + "end": 6509.2, + "probability": 0.8757 + }, + { + "start": 6509.82, + "end": 6512.34, + "probability": 0.875 + }, + { + "start": 6513.5, + "end": 6514.8, + "probability": 0.9808 + }, + { + "start": 6515.78, + "end": 6519.68, + "probability": 0.9979 + }, + { + "start": 6520.66, + "end": 6523.2, + "probability": 0.9313 + }, + { + "start": 6524.16, + "end": 6525.44, + "probability": 0.9948 + }, + { + "start": 6527.28, + "end": 6528.68, + "probability": 0.9578 + }, + { + "start": 6529.28, + "end": 6532.14, + "probability": 0.9601 + }, + { + "start": 6532.88, + "end": 6534.5, + "probability": 0.9033 + }, + { + "start": 6535.26, + "end": 6536.1, + "probability": 0.908 + }, + { + "start": 6536.54, + "end": 6537.4, + "probability": 0.7047 + }, + { + "start": 6539.22, + "end": 6541.14, + "probability": 0.6411 + }, + { + "start": 6542.06, + "end": 6544.4, + "probability": 0.877 + }, + { + "start": 6544.48, + "end": 6545.39, + "probability": 0.6677 + }, + { + "start": 6546.16, + "end": 6548.38, + "probability": 0.7464 + }, + { + "start": 6549.1, + "end": 6553.62, + "probability": 0.9563 + }, + { + "start": 6554.42, + "end": 6558.54, + "probability": 0.9682 + }, + { + "start": 6559.34, + "end": 6562.1, + "probability": 0.9612 + }, + { + "start": 6562.54, + "end": 6565.18, + "probability": 0.9102 + }, + { + "start": 6565.94, + "end": 6566.6, + "probability": 0.5981 + }, + { + "start": 6567.38, + "end": 6569.42, + "probability": 0.647 + }, + { + "start": 6577.24, + "end": 6579.76, + "probability": 0.8435 + }, + { + "start": 6581.36, + "end": 6581.68, + "probability": 0.8936 + }, + { + "start": 6582.26, + "end": 6583.16, + "probability": 0.7814 + }, + { + "start": 6583.72, + "end": 6585.16, + "probability": 0.8264 + }, + { + "start": 6585.72, + "end": 6587.52, + "probability": 0.9588 + }, + { + "start": 6587.96, + "end": 6589.6, + "probability": 0.9809 + }, + { + "start": 6590.28, + "end": 6594.62, + "probability": 0.9775 + }, + { + "start": 6594.72, + "end": 6595.5, + "probability": 0.4122 + }, + { + "start": 6597.18, + "end": 6598.9, + "probability": 0.6154 + }, + { + "start": 6600.49, + "end": 6607.94, + "probability": 0.9894 + }, + { + "start": 6608.54, + "end": 6610.88, + "probability": 0.8474 + }, + { + "start": 6611.74, + "end": 6612.26, + "probability": 0.6889 + }, + { + "start": 6612.34, + "end": 6614.86, + "probability": 0.9734 + }, + { + "start": 6615.42, + "end": 6618.74, + "probability": 0.9896 + }, + { + "start": 6619.28, + "end": 6620.26, + "probability": 0.9228 + }, + { + "start": 6620.84, + "end": 6625.12, + "probability": 0.9987 + }, + { + "start": 6625.16, + "end": 6628.38, + "probability": 0.998 + }, + { + "start": 6629.12, + "end": 6630.18, + "probability": 0.9243 + }, + { + "start": 6631.3, + "end": 6632.38, + "probability": 0.1016 + }, + { + "start": 6632.38, + "end": 6635.38, + "probability": 0.9215 + }, + { + "start": 6636.14, + "end": 6638.8, + "probability": 0.7002 + }, + { + "start": 6640.06, + "end": 6641.56, + "probability": 0.8351 + }, + { + "start": 6647.6, + "end": 6648.3, + "probability": 0.3599 + }, + { + "start": 6648.48, + "end": 6648.98, + "probability": 0.8296 + }, + { + "start": 6649.2, + "end": 6650.14, + "probability": 0.8414 + }, + { + "start": 6650.92, + "end": 6654.26, + "probability": 0.8385 + }, + { + "start": 6655.24, + "end": 6656.76, + "probability": 0.9981 + }, + { + "start": 6657.42, + "end": 6660.98, + "probability": 0.991 + }, + { + "start": 6661.16, + "end": 6661.9, + "probability": 0.7986 + }, + { + "start": 6663.4, + "end": 6664.4, + "probability": 0.9338 + }, + { + "start": 6664.54, + "end": 6666.58, + "probability": 0.9159 + }, + { + "start": 6667.12, + "end": 6672.44, + "probability": 0.75 + }, + { + "start": 6672.7, + "end": 6674.62, + "probability": 0.9052 + }, + { + "start": 6674.9, + "end": 6675.3, + "probability": 0.4978 + }, + { + "start": 6675.44, + "end": 6680.16, + "probability": 0.9961 + }, + { + "start": 6680.76, + "end": 6683.46, + "probability": 0.9992 + }, + { + "start": 6684.12, + "end": 6686.48, + "probability": 0.8781 + }, + { + "start": 6686.48, + "end": 6687.52, + "probability": 0.1828 + }, + { + "start": 6687.52, + "end": 6688.02, + "probability": 0.8436 + }, + { + "start": 6688.1, + "end": 6689.1, + "probability": 0.877 + }, + { + "start": 6689.64, + "end": 6691.58, + "probability": 0.9676 + }, + { + "start": 6691.64, + "end": 6694.22, + "probability": 0.9878 + }, + { + "start": 6694.46, + "end": 6694.74, + "probability": 0.704 + }, + { + "start": 6696.68, + "end": 6696.8, + "probability": 0.6582 + }, + { + "start": 6696.98, + "end": 6698.5, + "probability": 0.9814 + }, + { + "start": 6699.16, + "end": 6701.63, + "probability": 0.8572 + }, + { + "start": 6702.28, + "end": 6705.08, + "probability": 0.9448 + }, + { + "start": 6705.26, + "end": 6707.72, + "probability": 0.836 + }, + { + "start": 6708.88, + "end": 6710.58, + "probability": 0.8088 + }, + { + "start": 6710.64, + "end": 6711.23, + "probability": 0.777 + }, + { + "start": 6711.68, + "end": 6715.24, + "probability": 0.8782 + }, + { + "start": 6715.44, + "end": 6715.62, + "probability": 0.3482 + }, + { + "start": 6715.74, + "end": 6716.14, + "probability": 0.7132 + }, + { + "start": 6718.46, + "end": 6718.94, + "probability": 0.5769 + }, + { + "start": 6719.08, + "end": 6719.88, + "probability": 0.4789 + }, + { + "start": 6719.88, + "end": 6720.58, + "probability": 0.7797 + }, + { + "start": 6720.66, + "end": 6722.28, + "probability": 0.5875 + }, + { + "start": 6722.36, + "end": 6727.94, + "probability": 0.9724 + }, + { + "start": 6728.52, + "end": 6730.4, + "probability": 0.9843 + }, + { + "start": 6730.62, + "end": 6733.32, + "probability": 0.9829 + }, + { + "start": 6734.18, + "end": 6736.7, + "probability": 0.9971 + }, + { + "start": 6736.7, + "end": 6740.36, + "probability": 0.9757 + }, + { + "start": 6741.24, + "end": 6743.25, + "probability": 0.7554 + }, + { + "start": 6743.26, + "end": 6745.8, + "probability": 0.9983 + }, + { + "start": 6746.24, + "end": 6749.58, + "probability": 0.984 + }, + { + "start": 6749.86, + "end": 6753.06, + "probability": 0.978 + }, + { + "start": 6753.06, + "end": 6756.52, + "probability": 0.9986 + }, + { + "start": 6757.34, + "end": 6760.3, + "probability": 0.9743 + }, + { + "start": 6762.62, + "end": 6764.84, + "probability": 0.7833 + }, + { + "start": 6765.88, + "end": 6768.14, + "probability": 0.9433 + }, + { + "start": 6768.92, + "end": 6773.36, + "probability": 0.998 + }, + { + "start": 6774.16, + "end": 6779.0, + "probability": 0.9958 + }, + { + "start": 6779.0, + "end": 6783.64, + "probability": 0.9929 + }, + { + "start": 6784.84, + "end": 6785.58, + "probability": 0.9317 + }, + { + "start": 6786.72, + "end": 6792.08, + "probability": 0.9628 + }, + { + "start": 6792.72, + "end": 6795.28, + "probability": 0.8709 + }, + { + "start": 6795.94, + "end": 6799.3, + "probability": 0.9287 + }, + { + "start": 6800.04, + "end": 6806.92, + "probability": 0.9883 + }, + { + "start": 6808.12, + "end": 6813.96, + "probability": 0.9948 + }, + { + "start": 6813.96, + "end": 6819.72, + "probability": 0.9364 + }, + { + "start": 6820.34, + "end": 6823.66, + "probability": 0.9618 + }, + { + "start": 6824.64, + "end": 6825.62, + "probability": 0.5545 + }, + { + "start": 6826.42, + "end": 6830.66, + "probability": 0.8798 + }, + { + "start": 6830.66, + "end": 6835.4, + "probability": 0.8414 + }, + { + "start": 6836.5, + "end": 6839.54, + "probability": 0.9946 + }, + { + "start": 6840.14, + "end": 6843.14, + "probability": 0.9514 + }, + { + "start": 6843.74, + "end": 6846.0, + "probability": 0.767 + }, + { + "start": 6846.58, + "end": 6850.0, + "probability": 0.9867 + }, + { + "start": 6851.02, + "end": 6851.42, + "probability": 0.7676 + }, + { + "start": 6852.52, + "end": 6853.1, + "probability": 0.9163 + }, + { + "start": 6853.68, + "end": 6857.9, + "probability": 0.9231 + }, + { + "start": 6858.08, + "end": 6858.64, + "probability": 0.795 + }, + { + "start": 6859.16, + "end": 6862.6, + "probability": 0.9945 + }, + { + "start": 6863.18, + "end": 6864.02, + "probability": 0.9079 + }, + { + "start": 6865.0, + "end": 6868.08, + "probability": 0.7641 + }, + { + "start": 6868.62, + "end": 6871.82, + "probability": 0.9771 + }, + { + "start": 6872.36, + "end": 6876.02, + "probability": 0.8846 + }, + { + "start": 6876.64, + "end": 6881.54, + "probability": 0.9891 + }, + { + "start": 6883.16, + "end": 6891.58, + "probability": 0.8726 + }, + { + "start": 6892.1, + "end": 6896.9, + "probability": 0.9592 + }, + { + "start": 6897.36, + "end": 6902.02, + "probability": 0.9644 + }, + { + "start": 6902.52, + "end": 6905.74, + "probability": 0.9578 + }, + { + "start": 6906.2, + "end": 6907.98, + "probability": 0.9406 + }, + { + "start": 6908.22, + "end": 6911.06, + "probability": 0.8945 + }, + { + "start": 6911.62, + "end": 6917.14, + "probability": 0.9709 + }, + { + "start": 6917.94, + "end": 6923.84, + "probability": 0.9868 + }, + { + "start": 6923.84, + "end": 6931.34, + "probability": 0.9933 + }, + { + "start": 6931.86, + "end": 6937.58, + "probability": 0.9913 + }, + { + "start": 6938.25, + "end": 6941.88, + "probability": 0.7238 + }, + { + "start": 6941.88, + "end": 6945.16, + "probability": 0.9918 + }, + { + "start": 6945.68, + "end": 6946.7, + "probability": 0.7961 + }, + { + "start": 6947.44, + "end": 6951.22, + "probability": 0.9671 + }, + { + "start": 6951.74, + "end": 6953.6, + "probability": 0.9749 + }, + { + "start": 6954.32, + "end": 6954.92, + "probability": 0.6493 + }, + { + "start": 6955.71, + "end": 6956.54, + "probability": 0.7058 + }, + { + "start": 6957.48, + "end": 6958.92, + "probability": 0.8855 + }, + { + "start": 6960.32, + "end": 6963.25, + "probability": 0.8661 + }, + { + "start": 6963.9, + "end": 6967.66, + "probability": 0.9709 + }, + { + "start": 6967.94, + "end": 6968.94, + "probability": 0.9315 + }, + { + "start": 6970.02, + "end": 6972.88, + "probability": 0.9912 + }, + { + "start": 6972.96, + "end": 6975.08, + "probability": 0.9983 + }, + { + "start": 6975.1, + "end": 6978.74, + "probability": 0.9922 + }, + { + "start": 6979.34, + "end": 6980.92, + "probability": 0.7417 + }, + { + "start": 6981.12, + "end": 6983.56, + "probability": 0.9954 + }, + { + "start": 6984.84, + "end": 6990.62, + "probability": 0.9849 + }, + { + "start": 6991.44, + "end": 6992.92, + "probability": 0.9441 + }, + { + "start": 6993.57, + "end": 6995.94, + "probability": 0.9987 + }, + { + "start": 6995.94, + "end": 6999.4, + "probability": 0.9084 + }, + { + "start": 7000.0, + "end": 7003.56, + "probability": 0.9917 + }, + { + "start": 7003.56, + "end": 7008.52, + "probability": 0.9507 + }, + { + "start": 7009.14, + "end": 7009.62, + "probability": 0.4382 + }, + { + "start": 7009.66, + "end": 7012.92, + "probability": 0.9852 + }, + { + "start": 7013.9, + "end": 7016.18, + "probability": 0.9806 + }, + { + "start": 7016.34, + "end": 7017.54, + "probability": 0.8699 + }, + { + "start": 7017.6, + "end": 7019.8, + "probability": 0.9893 + }, + { + "start": 7021.5, + "end": 7023.62, + "probability": 0.5999 + }, + { + "start": 7025.94, + "end": 7026.26, + "probability": 0.9446 + }, + { + "start": 7027.84, + "end": 7032.14, + "probability": 0.981 + }, + { + "start": 7032.68, + "end": 7035.42, + "probability": 0.978 + }, + { + "start": 7035.72, + "end": 7037.52, + "probability": 0.6817 + }, + { + "start": 7038.02, + "end": 7039.46, + "probability": 0.9662 + }, + { + "start": 7041.48, + "end": 7044.42, + "probability": 0.7692 + }, + { + "start": 7045.3, + "end": 7048.34, + "probability": 0.8177 + }, + { + "start": 7049.02, + "end": 7050.14, + "probability": 0.9661 + }, + { + "start": 7050.68, + "end": 7053.72, + "probability": 0.9967 + }, + { + "start": 7054.72, + "end": 7055.32, + "probability": 0.3617 + }, + { + "start": 7056.0, + "end": 7063.88, + "probability": 0.9817 + }, + { + "start": 7064.48, + "end": 7066.68, + "probability": 0.9972 + }, + { + "start": 7067.26, + "end": 7069.7, + "probability": 0.9937 + }, + { + "start": 7070.82, + "end": 7072.76, + "probability": 0.9051 + }, + { + "start": 7073.82, + "end": 7074.68, + "probability": 0.8225 + }, + { + "start": 7076.06, + "end": 7080.28, + "probability": 0.9966 + }, + { + "start": 7080.28, + "end": 7083.82, + "probability": 0.9915 + }, + { + "start": 7084.56, + "end": 7085.56, + "probability": 0.7749 + }, + { + "start": 7085.86, + "end": 7088.28, + "probability": 0.9751 + }, + { + "start": 7088.46, + "end": 7090.58, + "probability": 0.95 + }, + { + "start": 7091.2, + "end": 7094.7, + "probability": 0.9565 + }, + { + "start": 7094.82, + "end": 7096.34, + "probability": 0.8995 + }, + { + "start": 7097.88, + "end": 7099.24, + "probability": 0.8587 + }, + { + "start": 7099.4, + "end": 7102.02, + "probability": 0.8926 + }, + { + "start": 7103.04, + "end": 7106.2, + "probability": 0.9723 + }, + { + "start": 7107.04, + "end": 7110.22, + "probability": 0.6598 + }, + { + "start": 7111.5, + "end": 7112.82, + "probability": 0.8446 + }, + { + "start": 7113.32, + "end": 7115.68, + "probability": 0.7349 + }, + { + "start": 7116.18, + "end": 7117.34, + "probability": 0.9914 + }, + { + "start": 7118.28, + "end": 7120.12, + "probability": 0.9639 + }, + { + "start": 7120.94, + "end": 7124.2, + "probability": 0.971 + }, + { + "start": 7124.92, + "end": 7133.04, + "probability": 0.9814 + }, + { + "start": 7133.6, + "end": 7137.44, + "probability": 0.9329 + }, + { + "start": 7138.02, + "end": 7141.06, + "probability": 0.9896 + }, + { + "start": 7142.28, + "end": 7142.72, + "probability": 0.7578 + }, + { + "start": 7142.86, + "end": 7144.2, + "probability": 0.5504 + }, + { + "start": 7144.34, + "end": 7145.3, + "probability": 0.9722 + }, + { + "start": 7146.8, + "end": 7148.98, + "probability": 0.1121 + }, + { + "start": 7149.94, + "end": 7154.78, + "probability": 0.653 + }, + { + "start": 7155.3, + "end": 7159.48, + "probability": 0.7763 + }, + { + "start": 7167.52, + "end": 7167.62, + "probability": 0.0169 + }, + { + "start": 7167.8, + "end": 7167.8, + "probability": 0.1137 + }, + { + "start": 7167.8, + "end": 7167.8, + "probability": 0.1076 + }, + { + "start": 7167.8, + "end": 7169.84, + "probability": 0.4802 + }, + { + "start": 7171.04, + "end": 7171.54, + "probability": 0.556 + }, + { + "start": 7177.26, + "end": 7179.0, + "probability": 0.4438 + }, + { + "start": 7179.94, + "end": 7180.16, + "probability": 0.1267 + }, + { + "start": 7180.38, + "end": 7180.38, + "probability": 0.0505 + }, + { + "start": 7180.38, + "end": 7180.38, + "probability": 0.1142 + }, + { + "start": 7180.38, + "end": 7181.48, + "probability": 0.9253 + }, + { + "start": 7182.54, + "end": 7186.28, + "probability": 0.9896 + }, + { + "start": 7187.16, + "end": 7189.32, + "probability": 0.9656 + }, + { + "start": 7189.82, + "end": 7193.28, + "probability": 0.8058 + }, + { + "start": 7193.58, + "end": 7197.26, + "probability": 0.9941 + }, + { + "start": 7198.2, + "end": 7199.06, + "probability": 0.7785 + }, + { + "start": 7199.94, + "end": 7203.1, + "probability": 0.8409 + }, + { + "start": 7212.18, + "end": 7213.32, + "probability": 0.6653 + }, + { + "start": 7213.84, + "end": 7214.83, + "probability": 0.8988 + }, + { + "start": 7216.38, + "end": 7221.06, + "probability": 0.8536 + }, + { + "start": 7221.6, + "end": 7223.14, + "probability": 0.8716 + }, + { + "start": 7224.24, + "end": 7227.26, + "probability": 0.7923 + }, + { + "start": 7227.92, + "end": 7233.61, + "probability": 0.9259 + }, + { + "start": 7235.64, + "end": 7236.76, + "probability": 0.3739 + }, + { + "start": 7237.92, + "end": 7243.4, + "probability": 0.9185 + }, + { + "start": 7244.12, + "end": 7246.36, + "probability": 0.5821 + }, + { + "start": 7246.82, + "end": 7250.14, + "probability": 0.9947 + }, + { + "start": 7250.14, + "end": 7254.74, + "probability": 0.9707 + }, + { + "start": 7255.6, + "end": 7259.68, + "probability": 0.8483 + }, + { + "start": 7260.4, + "end": 7265.44, + "probability": 0.9697 + }, + { + "start": 7265.74, + "end": 7273.7, + "probability": 0.7588 + }, + { + "start": 7274.22, + "end": 7274.88, + "probability": 0.8138 + }, + { + "start": 7275.54, + "end": 7277.72, + "probability": 0.9898 + }, + { + "start": 7278.24, + "end": 7280.62, + "probability": 0.9512 + }, + { + "start": 7281.68, + "end": 7283.46, + "probability": 0.8893 + }, + { + "start": 7284.34, + "end": 7289.74, + "probability": 0.938 + }, + { + "start": 7290.34, + "end": 7292.7, + "probability": 0.9446 + }, + { + "start": 7293.32, + "end": 7299.08, + "probability": 0.8522 + }, + { + "start": 7299.16, + "end": 7302.74, + "probability": 0.5934 + }, + { + "start": 7303.74, + "end": 7304.66, + "probability": 0.6839 + }, + { + "start": 7305.66, + "end": 7307.98, + "probability": 0.5712 + }, + { + "start": 7308.5, + "end": 7311.74, + "probability": 0.9422 + }, + { + "start": 7312.26, + "end": 7315.0, + "probability": 0.6672 + }, + { + "start": 7318.0, + "end": 7320.68, + "probability": 0.4926 + }, + { + "start": 7321.92, + "end": 7324.58, + "probability": 0.8088 + }, + { + "start": 7324.78, + "end": 7325.28, + "probability": 0.8326 + }, + { + "start": 7327.22, + "end": 7328.86, + "probability": 0.6109 + }, + { + "start": 7330.04, + "end": 7332.66, + "probability": 0.8224 + }, + { + "start": 7333.4, + "end": 7337.72, + "probability": 0.999 + }, + { + "start": 7338.94, + "end": 7339.14, + "probability": 0.6574 + }, + { + "start": 7339.5, + "end": 7345.22, + "probability": 0.959 + }, + { + "start": 7346.74, + "end": 7351.46, + "probability": 0.9927 + }, + { + "start": 7352.36, + "end": 7354.66, + "probability": 0.8774 + }, + { + "start": 7355.0, + "end": 7357.76, + "probability": 0.7521 + }, + { + "start": 7358.52, + "end": 7363.94, + "probability": 0.9119 + }, + { + "start": 7364.74, + "end": 7365.04, + "probability": 0.9359 + }, + { + "start": 7372.78, + "end": 7374.08, + "probability": 0.2187 + }, + { + "start": 7375.35, + "end": 7375.8, + "probability": 0.195 + }, + { + "start": 7383.51, + "end": 7384.59, + "probability": 0.1386 + }, + { + "start": 7385.36, + "end": 7386.92, + "probability": 0.9882 + }, + { + "start": 7387.6, + "end": 7389.05, + "probability": 0.8184 + }, + { + "start": 7390.22, + "end": 7391.44, + "probability": 0.8218 + }, + { + "start": 7391.8, + "end": 7394.54, + "probability": 0.4824 + }, + { + "start": 7395.24, + "end": 7397.52, + "probability": 0.7035 + }, + { + "start": 7398.42, + "end": 7400.72, + "probability": 0.5758 + }, + { + "start": 7400.92, + "end": 7410.22, + "probability": 0.7061 + }, + { + "start": 7411.02, + "end": 7411.58, + "probability": 0.9126 + }, + { + "start": 7413.5, + "end": 7414.8, + "probability": 0.8161 + }, + { + "start": 7415.32, + "end": 7415.96, + "probability": 0.7035 + }, + { + "start": 7427.76, + "end": 7431.56, + "probability": 0.6321 + }, + { + "start": 7432.52, + "end": 7437.32, + "probability": 0.7037 + }, + { + "start": 7437.96, + "end": 7443.38, + "probability": 0.9854 + }, + { + "start": 7444.44, + "end": 7447.36, + "probability": 0.9962 + }, + { + "start": 7447.96, + "end": 7451.44, + "probability": 0.9682 + }, + { + "start": 7454.46, + "end": 7457.32, + "probability": 0.7557 + }, + { + "start": 7458.14, + "end": 7460.88, + "probability": 0.9613 + }, + { + "start": 7461.64, + "end": 7465.8, + "probability": 0.9099 + }, + { + "start": 7466.56, + "end": 7467.96, + "probability": 0.6664 + }, + { + "start": 7468.54, + "end": 7470.1, + "probability": 0.9487 + }, + { + "start": 7470.76, + "end": 7472.68, + "probability": 0.8997 + }, + { + "start": 7475.36, + "end": 7476.58, + "probability": 0.7336 + }, + { + "start": 7477.22, + "end": 7478.82, + "probability": 0.6085 + }, + { + "start": 7488.03, + "end": 7491.98, + "probability": 0.9152 + }, + { + "start": 7492.98, + "end": 7496.38, + "probability": 0.9971 + }, + { + "start": 7497.68, + "end": 7500.06, + "probability": 0.9837 + }, + { + "start": 7501.42, + "end": 7506.14, + "probability": 0.9644 + }, + { + "start": 7507.52, + "end": 7508.36, + "probability": 0.7449 + }, + { + "start": 7508.78, + "end": 7510.54, + "probability": 0.8042 + }, + { + "start": 7510.56, + "end": 7513.12, + "probability": 0.9856 + }, + { + "start": 7514.16, + "end": 7516.56, + "probability": 0.7881 + }, + { + "start": 7517.48, + "end": 7519.76, + "probability": 0.9065 + }, + { + "start": 7520.44, + "end": 7521.12, + "probability": 0.5538 + }, + { + "start": 7521.28, + "end": 7524.28, + "probability": 0.9958 + }, + { + "start": 7525.8, + "end": 7526.0, + "probability": 0.6775 + }, + { + "start": 7526.12, + "end": 7528.82, + "probability": 0.9927 + }, + { + "start": 7528.82, + "end": 7531.94, + "probability": 0.9384 + }, + { + "start": 7532.98, + "end": 7533.9, + "probability": 0.9727 + }, + { + "start": 7534.14, + "end": 7536.36, + "probability": 0.9815 + }, + { + "start": 7537.0, + "end": 7539.32, + "probability": 0.6854 + }, + { + "start": 7540.62, + "end": 7541.66, + "probability": 0.8677 + }, + { + "start": 7541.8, + "end": 7542.46, + "probability": 0.5702 + }, + { + "start": 7542.54, + "end": 7543.22, + "probability": 0.7217 + }, + { + "start": 7543.4, + "end": 7545.8, + "probability": 0.995 + }, + { + "start": 7545.84, + "end": 7548.42, + "probability": 0.708 + }, + { + "start": 7549.04, + "end": 7550.44, + "probability": 0.7019 + }, + { + "start": 7552.46, + "end": 7555.44, + "probability": 0.9526 + }, + { + "start": 7556.92, + "end": 7559.54, + "probability": 0.989 + }, + { + "start": 7561.42, + "end": 7562.58, + "probability": 0.9902 + }, + { + "start": 7563.56, + "end": 7566.28, + "probability": 0.9939 + }, + { + "start": 7567.34, + "end": 7567.86, + "probability": 0.6888 + }, + { + "start": 7568.4, + "end": 7570.44, + "probability": 0.9913 + }, + { + "start": 7571.9, + "end": 7575.04, + "probability": 0.9827 + }, + { + "start": 7598.28, + "end": 7600.52, + "probability": 0.6313 + }, + { + "start": 7604.88, + "end": 7604.98, + "probability": 0.3754 + }, + { + "start": 7605.78, + "end": 7606.58, + "probability": 0.087 + }, + { + "start": 7608.4, + "end": 7612.96, + "probability": 0.9089 + }, + { + "start": 7616.36, + "end": 7622.62, + "probability": 0.9917 + }, + { + "start": 7623.66, + "end": 7625.54, + "probability": 0.7784 + }, + { + "start": 7625.92, + "end": 7626.54, + "probability": 0.5405 + }, + { + "start": 7626.62, + "end": 7629.78, + "probability": 0.9824 + }, + { + "start": 7629.88, + "end": 7631.62, + "probability": 0.9643 + }, + { + "start": 7632.4, + "end": 7633.86, + "probability": 0.9857 + }, + { + "start": 7634.28, + "end": 7637.62, + "probability": 0.7309 + }, + { + "start": 7640.36, + "end": 7641.48, + "probability": 0.5266 + }, + { + "start": 7643.82, + "end": 7644.26, + "probability": 0.6251 + }, + { + "start": 7647.54, + "end": 7651.38, + "probability": 0.6591 + }, + { + "start": 7651.5, + "end": 7654.0, + "probability": 0.999 + }, + { + "start": 7656.12, + "end": 7660.86, + "probability": 0.988 + }, + { + "start": 7662.68, + "end": 7664.82, + "probability": 0.9986 + }, + { + "start": 7665.36, + "end": 7666.36, + "probability": 0.9926 + }, + { + "start": 7667.14, + "end": 7669.42, + "probability": 0.9989 + }, + { + "start": 7671.02, + "end": 7674.42, + "probability": 0.8871 + }, + { + "start": 7675.04, + "end": 7679.46, + "probability": 0.9952 + }, + { + "start": 7680.16, + "end": 7681.96, + "probability": 0.9735 + }, + { + "start": 7682.96, + "end": 7685.96, + "probability": 0.9937 + }, + { + "start": 7686.74, + "end": 7688.9, + "probability": 0.9626 + }, + { + "start": 7689.54, + "end": 7695.1, + "probability": 0.9976 + }, + { + "start": 7695.6, + "end": 7696.62, + "probability": 0.9855 + }, + { + "start": 7697.62, + "end": 7700.9, + "probability": 0.8685 + }, + { + "start": 7700.9, + "end": 7704.42, + "probability": 0.9866 + }, + { + "start": 7705.58, + "end": 7713.08, + "probability": 0.99 + }, + { + "start": 7713.7, + "end": 7715.98, + "probability": 0.9729 + }, + { + "start": 7716.76, + "end": 7720.46, + "probability": 0.9954 + }, + { + "start": 7721.14, + "end": 7725.06, + "probability": 0.9962 + }, + { + "start": 7725.52, + "end": 7735.14, + "probability": 0.9512 + }, + { + "start": 7735.82, + "end": 7738.94, + "probability": 0.9973 + }, + { + "start": 7739.9, + "end": 7743.76, + "probability": 0.9981 + }, + { + "start": 7745.02, + "end": 7749.08, + "probability": 0.922 + }, + { + "start": 7749.08, + "end": 7753.26, + "probability": 0.9976 + }, + { + "start": 7754.32, + "end": 7756.06, + "probability": 0.764 + }, + { + "start": 7756.9, + "end": 7758.88, + "probability": 0.994 + }, + { + "start": 7759.46, + "end": 7762.36, + "probability": 0.971 + }, + { + "start": 7762.86, + "end": 7763.42, + "probability": 0.7767 + }, + { + "start": 7763.54, + "end": 7764.88, + "probability": 0.8564 + }, + { + "start": 7765.42, + "end": 7770.26, + "probability": 0.9981 + }, + { + "start": 7770.26, + "end": 7775.42, + "probability": 0.9985 + }, + { + "start": 7776.28, + "end": 7777.18, + "probability": 0.8 + }, + { + "start": 7777.44, + "end": 7780.04, + "probability": 0.9897 + }, + { + "start": 7780.64, + "end": 7782.56, + "probability": 0.4225 + }, + { + "start": 7783.18, + "end": 7786.16, + "probability": 0.7471 + }, + { + "start": 7786.94, + "end": 7789.46, + "probability": 0.8982 + }, + { + "start": 7790.32, + "end": 7794.86, + "probability": 0.9922 + }, + { + "start": 7795.66, + "end": 7798.3, + "probability": 0.8921 + }, + { + "start": 7799.82, + "end": 7802.36, + "probability": 0.95 + }, + { + "start": 7803.52, + "end": 7807.08, + "probability": 0.9886 + }, + { + "start": 7807.08, + "end": 7810.76, + "probability": 0.9977 + }, + { + "start": 7811.5, + "end": 7813.46, + "probability": 0.8782 + }, + { + "start": 7813.9, + "end": 7816.94, + "probability": 0.7135 + }, + { + "start": 7817.64, + "end": 7820.08, + "probability": 0.9161 + }, + { + "start": 7821.0, + "end": 7823.92, + "probability": 0.9703 + }, + { + "start": 7824.82, + "end": 7829.08, + "probability": 0.9945 + }, + { + "start": 7829.52, + "end": 7830.94, + "probability": 0.8632 + }, + { + "start": 7831.5, + "end": 7834.64, + "probability": 0.9488 + }, + { + "start": 7835.28, + "end": 7837.58, + "probability": 0.9665 + }, + { + "start": 7838.2, + "end": 7843.42, + "probability": 0.9287 + }, + { + "start": 7844.9, + "end": 7846.32, + "probability": 0.9915 + }, + { + "start": 7847.04, + "end": 7850.0, + "probability": 0.9964 + }, + { + "start": 7850.0, + "end": 7854.36, + "probability": 0.9513 + }, + { + "start": 7854.84, + "end": 7856.88, + "probability": 0.9277 + }, + { + "start": 7857.9, + "end": 7860.58, + "probability": 0.8037 + }, + { + "start": 7861.22, + "end": 7863.46, + "probability": 0.6495 + }, + { + "start": 7864.1, + "end": 7868.22, + "probability": 0.9395 + }, + { + "start": 7869.26, + "end": 7870.22, + "probability": 0.8719 + }, + { + "start": 7870.72, + "end": 7873.4, + "probability": 0.9974 + }, + { + "start": 7873.84, + "end": 7875.98, + "probability": 0.9483 + }, + { + "start": 7876.84, + "end": 7880.68, + "probability": 0.9931 + }, + { + "start": 7880.76, + "end": 7886.2, + "probability": 0.9956 + }, + { + "start": 7886.76, + "end": 7889.9, + "probability": 0.9781 + }, + { + "start": 7890.06, + "end": 7892.26, + "probability": 0.3484 + }, + { + "start": 7892.78, + "end": 7894.92, + "probability": 0.9321 + }, + { + "start": 7896.04, + "end": 7899.88, + "probability": 0.9697 + }, + { + "start": 7901.22, + "end": 7904.74, + "probability": 0.857 + }, + { + "start": 7904.74, + "end": 7908.64, + "probability": 0.9922 + }, + { + "start": 7909.32, + "end": 7911.6, + "probability": 0.8026 + }, + { + "start": 7912.86, + "end": 7916.02, + "probability": 0.9084 + }, + { + "start": 7916.02, + "end": 7919.4, + "probability": 0.9881 + }, + { + "start": 7920.06, + "end": 7923.0, + "probability": 0.99 + }, + { + "start": 7923.58, + "end": 7927.14, + "probability": 0.927 + }, + { + "start": 7927.94, + "end": 7930.04, + "probability": 0.9031 + }, + { + "start": 7930.5, + "end": 7931.32, + "probability": 0.7641 + }, + { + "start": 7931.52, + "end": 7937.14, + "probability": 0.9603 + }, + { + "start": 7937.66, + "end": 7940.62, + "probability": 0.9967 + }, + { + "start": 7941.36, + "end": 7944.38, + "probability": 0.9883 + }, + { + "start": 7944.54, + "end": 7948.04, + "probability": 0.997 + }, + { + "start": 7948.86, + "end": 7950.18, + "probability": 0.9365 + }, + { + "start": 7950.78, + "end": 7954.72, + "probability": 0.9371 + }, + { + "start": 7955.68, + "end": 7960.02, + "probability": 0.9969 + }, + { + "start": 7960.02, + "end": 7965.52, + "probability": 0.9994 + }, + { + "start": 7967.48, + "end": 7968.83, + "probability": 0.8254 + }, + { + "start": 7969.96, + "end": 7974.38, + "probability": 0.9869 + }, + { + "start": 7975.0, + "end": 7977.84, + "probability": 0.6865 + }, + { + "start": 7978.44, + "end": 7978.96, + "probability": 0.5835 + }, + { + "start": 7980.08, + "end": 7980.36, + "probability": 0.7408 + }, + { + "start": 7981.38, + "end": 7983.98, + "probability": 0.9561 + }, + { + "start": 7985.3, + "end": 7985.4, + "probability": 0.7786 + }, + { + "start": 7986.2, + "end": 7987.04, + "probability": 0.4729 + }, + { + "start": 7988.91, + "end": 7991.36, + "probability": 0.6681 + }, + { + "start": 7991.7, + "end": 7993.38, + "probability": 0.9248 + }, + { + "start": 7993.94, + "end": 7996.8, + "probability": 0.9421 + }, + { + "start": 7997.22, + "end": 8001.62, + "probability": 0.9631 + }, + { + "start": 8001.74, + "end": 8006.24, + "probability": 0.9855 + }, + { + "start": 8006.24, + "end": 8008.78, + "probability": 0.9984 + }, + { + "start": 8008.86, + "end": 8013.38, + "probability": 0.9662 + }, + { + "start": 8013.63, + "end": 8017.16, + "probability": 0.9935 + }, + { + "start": 8021.2, + "end": 8023.7, + "probability": 0.8919 + }, + { + "start": 8024.62, + "end": 8026.02, + "probability": 0.9823 + }, + { + "start": 8026.72, + "end": 8029.76, + "probability": 0.952 + }, + { + "start": 8030.56, + "end": 8032.22, + "probability": 0.8444 + }, + { + "start": 8032.34, + "end": 8034.28, + "probability": 0.9443 + }, + { + "start": 8034.54, + "end": 8036.48, + "probability": 0.9172 + }, + { + "start": 8037.14, + "end": 8038.34, + "probability": 0.9891 + }, + { + "start": 8039.1, + "end": 8041.74, + "probability": 0.9791 + }, + { + "start": 8041.9, + "end": 8045.38, + "probability": 0.9937 + }, + { + "start": 8045.52, + "end": 8047.42, + "probability": 0.981 + }, + { + "start": 8048.42, + "end": 8051.16, + "probability": 0.9611 + }, + { + "start": 8051.7, + "end": 8053.92, + "probability": 0.9601 + }, + { + "start": 8062.92, + "end": 8062.92, + "probability": 0.0833 + }, + { + "start": 8062.92, + "end": 8062.92, + "probability": 0.0974 + }, + { + "start": 8062.92, + "end": 8065.0, + "probability": 0.6211 + }, + { + "start": 8065.1, + "end": 8065.78, + "probability": 0.7723 + }, + { + "start": 8066.26, + "end": 8069.3, + "probability": 0.8287 + }, + { + "start": 8070.58, + "end": 8071.2, + "probability": 0.4956 + }, + { + "start": 8072.0, + "end": 8073.54, + "probability": 0.9832 + }, + { + "start": 8073.7, + "end": 8074.66, + "probability": 0.8171 + }, + { + "start": 8075.06, + "end": 8076.3, + "probability": 0.966 + }, + { + "start": 8077.37, + "end": 8078.88, + "probability": 0.9959 + }, + { + "start": 8080.42, + "end": 8081.04, + "probability": 0.7272 + }, + { + "start": 8081.3, + "end": 8083.36, + "probability": 0.8007 + }, + { + "start": 8089.28, + "end": 8089.88, + "probability": 0.7949 + }, + { + "start": 8089.96, + "end": 8091.06, + "probability": 0.724 + }, + { + "start": 8091.2, + "end": 8091.56, + "probability": 0.5424 + }, + { + "start": 8091.64, + "end": 8093.52, + "probability": 0.9499 + }, + { + "start": 8093.58, + "end": 8096.26, + "probability": 0.9598 + }, + { + "start": 8097.08, + "end": 8101.38, + "probability": 0.9922 + }, + { + "start": 8101.6, + "end": 8105.22, + "probability": 0.9979 + }, + { + "start": 8105.5, + "end": 8106.36, + "probability": 0.9277 + }, + { + "start": 8106.82, + "end": 8111.52, + "probability": 0.8612 + }, + { + "start": 8111.58, + "end": 8111.94, + "probability": 0.5757 + }, + { + "start": 8112.56, + "end": 8115.79, + "probability": 0.9951 + }, + { + "start": 8116.02, + "end": 8119.12, + "probability": 0.9991 + }, + { + "start": 8119.66, + "end": 8120.94, + "probability": 0.6677 + }, + { + "start": 8121.26, + "end": 8123.02, + "probability": 0.9589 + }, + { + "start": 8123.58, + "end": 8126.98, + "probability": 0.986 + }, + { + "start": 8127.68, + "end": 8128.82, + "probability": 0.9352 + }, + { + "start": 8128.9, + "end": 8133.78, + "probability": 0.9886 + }, + { + "start": 8133.78, + "end": 8136.0, + "probability": 0.9995 + }, + { + "start": 8136.22, + "end": 8138.56, + "probability": 0.992 + }, + { + "start": 8138.92, + "end": 8140.4, + "probability": 0.9993 + }, + { + "start": 8141.14, + "end": 8143.76, + "probability": 0.9683 + }, + { + "start": 8144.12, + "end": 8146.22, + "probability": 0.7934 + }, + { + "start": 8146.38, + "end": 8147.98, + "probability": 0.9125 + }, + { + "start": 8148.32, + "end": 8149.78, + "probability": 0.9591 + }, + { + "start": 8150.38, + "end": 8152.48, + "probability": 0.9966 + }, + { + "start": 8153.22, + "end": 8154.6, + "probability": 0.9924 + }, + { + "start": 8156.04, + "end": 8156.74, + "probability": 0.9535 + }, + { + "start": 8157.78, + "end": 8160.18, + "probability": 0.9043 + }, + { + "start": 8161.64, + "end": 8166.1, + "probability": 0.9941 + }, + { + "start": 8166.1, + "end": 8169.18, + "probability": 0.9877 + }, + { + "start": 8170.06, + "end": 8172.18, + "probability": 0.9983 + }, + { + "start": 8172.74, + "end": 8173.16, + "probability": 0.8676 + }, + { + "start": 8173.28, + "end": 8178.41, + "probability": 0.9909 + }, + { + "start": 8179.88, + "end": 8185.44, + "probability": 0.0429 + }, + { + "start": 8186.44, + "end": 8189.2, + "probability": 0.9094 + }, + { + "start": 8193.96, + "end": 8195.8, + "probability": 0.5109 + }, + { + "start": 8195.88, + "end": 8195.92, + "probability": 0.4147 + }, + { + "start": 8196.1, + "end": 8197.76, + "probability": 0.6603 + }, + { + "start": 8197.82, + "end": 8200.68, + "probability": 0.9365 + }, + { + "start": 8201.04, + "end": 8202.53, + "probability": 0.1014 + }, + { + "start": 8206.2, + "end": 8209.78, + "probability": 0.7319 + }, + { + "start": 8210.9, + "end": 8212.8, + "probability": 0.9279 + }, + { + "start": 8213.32, + "end": 8214.9, + "probability": 0.9449 + }, + { + "start": 8215.5, + "end": 8218.44, + "probability": 0.9653 + }, + { + "start": 8219.12, + "end": 8220.1, + "probability": 0.7621 + }, + { + "start": 8221.08, + "end": 8221.82, + "probability": 0.9034 + }, + { + "start": 8222.82, + "end": 8223.46, + "probability": 0.7245 + }, + { + "start": 8224.46, + "end": 8227.76, + "probability": 0.8875 + }, + { + "start": 8228.6, + "end": 8231.42, + "probability": 0.9684 + }, + { + "start": 8233.78, + "end": 8235.52, + "probability": 0.6004 + }, + { + "start": 8236.7, + "end": 8241.02, + "probability": 0.981 + }, + { + "start": 8241.92, + "end": 8245.18, + "probability": 0.9711 + }, + { + "start": 8246.5, + "end": 8249.06, + "probability": 0.312 + }, + { + "start": 8249.78, + "end": 8256.18, + "probability": 0.957 + }, + { + "start": 8256.18, + "end": 8264.24, + "probability": 0.9927 + }, + { + "start": 8265.02, + "end": 8265.82, + "probability": 0.6739 + }, + { + "start": 8266.4, + "end": 8268.78, + "probability": 0.9755 + }, + { + "start": 8269.66, + "end": 8271.24, + "probability": 0.6879 + }, + { + "start": 8271.82, + "end": 8276.27, + "probability": 0.995 + }, + { + "start": 8277.04, + "end": 8280.18, + "probability": 0.9756 + }, + { + "start": 8280.66, + "end": 8285.18, + "probability": 0.9721 + }, + { + "start": 8286.36, + "end": 8292.3, + "probability": 0.9072 + }, + { + "start": 8292.62, + "end": 8293.44, + "probability": 0.5651 + }, + { + "start": 8294.4, + "end": 8299.6, + "probability": 0.8392 + }, + { + "start": 8299.7, + "end": 8301.88, + "probability": 0.9962 + }, + { + "start": 8302.24, + "end": 8306.58, + "probability": 0.9889 + }, + { + "start": 8307.1, + "end": 8308.28, + "probability": 0.8062 + }, + { + "start": 8308.98, + "end": 8315.52, + "probability": 0.9886 + }, + { + "start": 8316.0, + "end": 8317.58, + "probability": 0.9951 + }, + { + "start": 8318.14, + "end": 8322.64, + "probability": 0.9849 + }, + { + "start": 8323.28, + "end": 8327.0, + "probability": 0.9929 + }, + { + "start": 8327.52, + "end": 8327.72, + "probability": 0.9999 + }, + { + "start": 8328.54, + "end": 8329.82, + "probability": 0.8212 + }, + { + "start": 8330.72, + "end": 8331.94, + "probability": 0.9976 + }, + { + "start": 8332.3, + "end": 8332.3, + "probability": 0.1494 + }, + { + "start": 8333.14, + "end": 8335.5, + "probability": 0.8997 + }, + { + "start": 8335.7, + "end": 8336.9, + "probability": 0.998 + }, + { + "start": 8337.06, + "end": 8338.18, + "probability": 0.9736 + }, + { + "start": 8338.76, + "end": 8338.98, + "probability": 0.3427 + }, + { + "start": 8339.08, + "end": 8339.68, + "probability": 0.6802 + }, + { + "start": 8340.18, + "end": 8341.0, + "probability": 0.7397 + }, + { + "start": 8341.08, + "end": 8341.72, + "probability": 0.8542 + }, + { + "start": 8341.78, + "end": 8346.28, + "probability": 0.9675 + }, + { + "start": 8346.4, + "end": 8349.9, + "probability": 0.9709 + }, + { + "start": 8350.68, + "end": 8352.73, + "probability": 0.9922 + }, + { + "start": 8353.7, + "end": 8354.34, + "probability": 0.7579 + }, + { + "start": 8354.62, + "end": 8355.72, + "probability": 0.9938 + }, + { + "start": 8355.86, + "end": 8358.98, + "probability": 0.9569 + }, + { + "start": 8359.38, + "end": 8362.14, + "probability": 0.9951 + }, + { + "start": 8362.9, + "end": 8363.24, + "probability": 0.4118 + }, + { + "start": 8363.44, + "end": 8366.38, + "probability": 0.9498 + }, + { + "start": 8368.2, + "end": 8369.9, + "probability": 0.7927 + }, + { + "start": 8370.6, + "end": 8373.48, + "probability": 0.9882 + }, + { + "start": 8373.5, + "end": 8378.46, + "probability": 0.9941 + }, + { + "start": 8378.46, + "end": 8382.06, + "probability": 0.9981 + }, + { + "start": 8382.22, + "end": 8383.5, + "probability": 0.8201 + }, + { + "start": 8383.7, + "end": 8384.08, + "probability": 0.3917 + }, + { + "start": 8384.16, + "end": 8385.09, + "probability": 0.8201 + }, + { + "start": 8385.82, + "end": 8387.36, + "probability": 0.8685 + }, + { + "start": 8387.42, + "end": 8387.98, + "probability": 0.747 + }, + { + "start": 8388.1, + "end": 8389.1, + "probability": 0.7831 + }, + { + "start": 8389.26, + "end": 8390.76, + "probability": 0.9767 + }, + { + "start": 8391.38, + "end": 8393.54, + "probability": 0.9909 + }, + { + "start": 8394.62, + "end": 8398.12, + "probability": 0.9663 + }, + { + "start": 8398.96, + "end": 8401.12, + "probability": 0.9978 + }, + { + "start": 8401.54, + "end": 8405.2, + "probability": 0.7269 + }, + { + "start": 8405.68, + "end": 8407.74, + "probability": 0.9865 + }, + { + "start": 8408.22, + "end": 8410.66, + "probability": 0.9371 + }, + { + "start": 8411.48, + "end": 8413.1, + "probability": 0.9788 + }, + { + "start": 8413.64, + "end": 8414.34, + "probability": 0.8804 + }, + { + "start": 8414.68, + "end": 8415.06, + "probability": 0.8921 + }, + { + "start": 8416.64, + "end": 8417.64, + "probability": 0.0029 + }, + { + "start": 8444.46, + "end": 8450.46, + "probability": 0.064 + }, + { + "start": 8450.46, + "end": 8450.46, + "probability": 0.1019 + }, + { + "start": 8450.46, + "end": 8450.46, + "probability": 0.05 + }, + { + "start": 8450.46, + "end": 8450.46, + "probability": 0.0401 + }, + { + "start": 8455.94, + "end": 8456.84, + "probability": 0.5766 + }, + { + "start": 8457.02, + "end": 8458.22, + "probability": 0.0344 + }, + { + "start": 8458.3, + "end": 8458.88, + "probability": 0.0909 + }, + { + "start": 8458.98, + "end": 8459.32, + "probability": 0.0679 + }, + { + "start": 8459.32, + "end": 8459.32, + "probability": 0.0435 + }, + { + "start": 8459.32, + "end": 8459.48, + "probability": 0.538 + }, + { + "start": 8470.32, + "end": 8476.04, + "probability": 0.1987 + }, + { + "start": 8479.0, + "end": 8479.68, + "probability": 0.2766 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.0, + "end": 8616.0, + "probability": 0.0 + }, + { + "start": 8616.2, + "end": 8618.06, + "probability": 0.0856 + }, + { + "start": 8619.42, + "end": 8621.36, + "probability": 0.8274 + }, + { + "start": 8621.88, + "end": 8625.74, + "probability": 0.9684 + }, + { + "start": 8626.18, + "end": 8628.04, + "probability": 0.8432 + }, + { + "start": 8628.56, + "end": 8629.06, + "probability": 0.4099 + }, + { + "start": 8629.86, + "end": 8631.06, + "probability": 0.6201 + }, + { + "start": 8631.96, + "end": 8635.24, + "probability": 0.9863 + }, + { + "start": 8636.52, + "end": 8641.12, + "probability": 0.7502 + }, + { + "start": 8641.38, + "end": 8643.64, + "probability": 0.3404 + }, + { + "start": 8644.36, + "end": 8647.72, + "probability": 0.9648 + }, + { + "start": 8648.28, + "end": 8650.96, + "probability": 0.4327 + }, + { + "start": 8651.56, + "end": 8656.5, + "probability": 0.9033 + }, + { + "start": 8656.5, + "end": 8660.26, + "probability": 0.9951 + }, + { + "start": 8661.16, + "end": 8668.16, + "probability": 0.9875 + }, + { + "start": 8669.06, + "end": 8670.64, + "probability": 0.8834 + }, + { + "start": 8672.1, + "end": 8673.08, + "probability": 0.7539 + }, + { + "start": 8674.04, + "end": 8676.96, + "probability": 0.9954 + }, + { + "start": 8677.78, + "end": 8680.52, + "probability": 0.828 + }, + { + "start": 8681.42, + "end": 8683.34, + "probability": 0.958 + }, + { + "start": 8684.06, + "end": 8686.92, + "probability": 0.9948 + }, + { + "start": 8688.12, + "end": 8691.46, + "probability": 0.9647 + }, + { + "start": 8692.02, + "end": 8697.32, + "probability": 0.9862 + }, + { + "start": 8698.1, + "end": 8702.14, + "probability": 0.953 + }, + { + "start": 8702.84, + "end": 8706.2, + "probability": 0.9926 + }, + { + "start": 8706.2, + "end": 8708.7, + "probability": 0.8887 + }, + { + "start": 8709.76, + "end": 8713.6, + "probability": 0.7038 + }, + { + "start": 8713.6, + "end": 8717.42, + "probability": 0.8793 + }, + { + "start": 8717.92, + "end": 8723.46, + "probability": 0.8523 + }, + { + "start": 8724.6, + "end": 8724.8, + "probability": 0.6668 + }, + { + "start": 8725.64, + "end": 8727.4, + "probability": 0.6068 + }, + { + "start": 8728.06, + "end": 8728.64, + "probability": 0.0828 + }, + { + "start": 8729.36, + "end": 8729.94, + "probability": 0.8698 + }, + { + "start": 8730.22, + "end": 8730.94, + "probability": 0.7934 + }, + { + "start": 8731.0, + "end": 8733.72, + "probability": 0.991 + }, + { + "start": 8734.12, + "end": 8734.64, + "probability": 0.0096 + }, + { + "start": 8734.64, + "end": 8734.9, + "probability": 0.374 + }, + { + "start": 8746.58, + "end": 8747.04, + "probability": 0.0405 + }, + { + "start": 8749.26, + "end": 8749.88, + "probability": 0.0317 + }, + { + "start": 8751.86, + "end": 8753.0, + "probability": 0.0646 + }, + { + "start": 8753.06, + "end": 8753.72, + "probability": 0.1185 + }, + { + "start": 8755.12, + "end": 8755.9, + "probability": 0.3865 + }, + { + "start": 8756.6, + "end": 8759.02, + "probability": 0.2553 + }, + { + "start": 8759.06, + "end": 8759.38, + "probability": 0.191 + }, + { + "start": 8761.06, + "end": 8761.66, + "probability": 0.0493 + }, + { + "start": 8761.9, + "end": 8763.42, + "probability": 0.268 + }, + { + "start": 8763.42, + "end": 8764.4, + "probability": 0.1237 + }, + { + "start": 8764.4, + "end": 8767.6, + "probability": 0.3125 + }, + { + "start": 8767.88, + "end": 8771.94, + "probability": 0.8331 + }, + { + "start": 8775.2, + "end": 8780.74, + "probability": 0.0393 + }, + { + "start": 8781.26, + "end": 8781.26, + "probability": 0.0699 + }, + { + "start": 8781.26, + "end": 8781.26, + "probability": 0.0344 + }, + { + "start": 8781.26, + "end": 8785.44, + "probability": 0.1056 + }, + { + "start": 8785.44, + "end": 8785.44, + "probability": 0.4572 + }, + { + "start": 8785.44, + "end": 8785.44, + "probability": 0.0614 + }, + { + "start": 8785.44, + "end": 8785.88, + "probability": 0.0611 + }, + { + "start": 8785.88, + "end": 8790.52, + "probability": 0.8584 + }, + { + "start": 8791.32, + "end": 8792.2, + "probability": 0.691 + }, + { + "start": 8792.46, + "end": 8796.54, + "probability": 0.9755 + }, + { + "start": 8798.17, + "end": 8802.34, + "probability": 0.9753 + }, + { + "start": 8802.82, + "end": 8807.48, + "probability": 0.7782 + }, + { + "start": 8807.56, + "end": 8812.32, + "probability": 0.9504 + }, + { + "start": 8813.78, + "end": 8815.62, + "probability": 0.7623 + }, + { + "start": 8816.08, + "end": 8817.44, + "probability": 0.9653 + }, + { + "start": 8818.84, + "end": 8820.04, + "probability": 0.8611 + }, + { + "start": 8821.16, + "end": 8824.14, + "probability": 0.9862 + }, + { + "start": 8824.66, + "end": 8825.88, + "probability": 0.9682 + }, + { + "start": 8826.92, + "end": 8827.54, + "probability": 0.9724 + }, + { + "start": 8829.08, + "end": 8835.28, + "probability": 0.7613 + }, + { + "start": 8835.52, + "end": 8836.64, + "probability": 0.9641 + }, + { + "start": 8836.82, + "end": 8837.52, + "probability": 0.7166 + }, + { + "start": 8838.44, + "end": 8838.92, + "probability": 0.8048 + }, + { + "start": 8839.72, + "end": 8840.86, + "probability": 0.8818 + }, + { + "start": 8841.44, + "end": 8843.32, + "probability": 0.6365 + }, + { + "start": 8843.54, + "end": 8845.08, + "probability": 0.7014 + }, + { + "start": 8845.16, + "end": 8846.9, + "probability": 0.9507 + }, + { + "start": 8847.76, + "end": 8854.12, + "probability": 0.9613 + }, + { + "start": 8855.24, + "end": 8857.72, + "probability": 0.973 + }, + { + "start": 8858.46, + "end": 8861.44, + "probability": 0.8626 + }, + { + "start": 8862.08, + "end": 8864.56, + "probability": 0.9912 + }, + { + "start": 8865.38, + "end": 8867.68, + "probability": 0.9401 + }, + { + "start": 8868.36, + "end": 8871.96, + "probability": 0.8994 + }, + { + "start": 8872.72, + "end": 8874.38, + "probability": 0.9939 + }, + { + "start": 8875.12, + "end": 8878.48, + "probability": 0.9963 + }, + { + "start": 8879.06, + "end": 8880.59, + "probability": 0.9564 + }, + { + "start": 8881.26, + "end": 8882.66, + "probability": 0.9905 + }, + { + "start": 8883.9, + "end": 8887.92, + "probability": 0.9868 + }, + { + "start": 8887.92, + "end": 8891.58, + "probability": 0.9938 + }, + { + "start": 8892.08, + "end": 8892.74, + "probability": 0.2668 + }, + { + "start": 8893.12, + "end": 8895.46, + "probability": 0.8937 + }, + { + "start": 8896.38, + "end": 8900.16, + "probability": 0.77 + }, + { + "start": 8901.26, + "end": 8903.66, + "probability": 0.8676 + }, + { + "start": 8904.78, + "end": 8907.12, + "probability": 0.8821 + }, + { + "start": 8907.7, + "end": 8916.06, + "probability": 0.9233 + }, + { + "start": 8916.8, + "end": 8919.72, + "probability": 0.6533 + }, + { + "start": 8919.9, + "end": 8923.68, + "probability": 0.9574 + }, + { + "start": 8925.54, + "end": 8926.66, + "probability": 0.8285 + }, + { + "start": 8936.02, + "end": 8936.78, + "probability": 0.4112 + }, + { + "start": 8937.56, + "end": 8940.06, + "probability": 0.6586 + }, + { + "start": 8941.3, + "end": 8943.18, + "probability": 0.2394 + }, + { + "start": 8944.84, + "end": 8946.26, + "probability": 0.613 + }, + { + "start": 8946.96, + "end": 8947.72, + "probability": 0.3489 + }, + { + "start": 8948.02, + "end": 8948.02, + "probability": 0.5509 + }, + { + "start": 8948.02, + "end": 8948.1, + "probability": 0.3269 + }, + { + "start": 8957.62, + "end": 8959.1, + "probability": 0.4565 + }, + { + "start": 8959.54, + "end": 8960.04, + "probability": 0.6014 + }, + { + "start": 8960.1, + "end": 8961.15, + "probability": 0.7168 + }, + { + "start": 8961.34, + "end": 8961.92, + "probability": 0.6991 + }, + { + "start": 8962.26, + "end": 8967.24, + "probability": 0.9513 + }, + { + "start": 8968.56, + "end": 8970.8, + "probability": 0.9775 + }, + { + "start": 8970.8, + "end": 8973.7, + "probability": 0.9712 + }, + { + "start": 8973.78, + "end": 8975.2, + "probability": 0.7476 + }, + { + "start": 8975.28, + "end": 8976.06, + "probability": 0.908 + }, + { + "start": 8977.02, + "end": 8978.8, + "probability": 0.6809 + }, + { + "start": 8978.8, + "end": 8979.74, + "probability": 0.8807 + }, + { + "start": 8979.94, + "end": 8981.16, + "probability": 0.187 + }, + { + "start": 8981.46, + "end": 8984.08, + "probability": 0.4875 + }, + { + "start": 8984.4, + "end": 8986.3, + "probability": 0.8955 + }, + { + "start": 8986.44, + "end": 8988.22, + "probability": 0.7564 + }, + { + "start": 8988.78, + "end": 8992.8, + "probability": 0.8284 + }, + { + "start": 8993.08, + "end": 8994.84, + "probability": 0.8922 + }, + { + "start": 8995.94, + "end": 8998.76, + "probability": 0.8454 + }, + { + "start": 9000.74, + "end": 9001.52, + "probability": 0.5779 + }, + { + "start": 9001.52, + "end": 9002.74, + "probability": 0.9269 + }, + { + "start": 9002.82, + "end": 9003.99, + "probability": 0.3699 + }, + { + "start": 9004.4, + "end": 9005.92, + "probability": 0.4485 + }, + { + "start": 9006.06, + "end": 9006.98, + "probability": 0.9679 + }, + { + "start": 9007.08, + "end": 9011.48, + "probability": 0.9036 + }, + { + "start": 9012.04, + "end": 9012.3, + "probability": 0.1307 + }, + { + "start": 9012.56, + "end": 9014.3, + "probability": 0.9941 + }, + { + "start": 9014.54, + "end": 9015.86, + "probability": 0.208 + }, + { + "start": 9016.02, + "end": 9018.3, + "probability": 0.3218 + }, + { + "start": 9018.48, + "end": 9020.06, + "probability": 0.9033 + }, + { + "start": 9020.74, + "end": 9024.24, + "probability": 0.9976 + }, + { + "start": 9024.38, + "end": 9029.12, + "probability": 0.9806 + }, + { + "start": 9029.84, + "end": 9032.22, + "probability": 0.9952 + }, + { + "start": 9032.42, + "end": 9032.68, + "probability": 0.8403 + }, + { + "start": 9032.8, + "end": 9036.56, + "probability": 0.897 + }, + { + "start": 9036.8, + "end": 9041.98, + "probability": 0.8925 + }, + { + "start": 9042.12, + "end": 9045.78, + "probability": 0.8912 + }, + { + "start": 9046.5, + "end": 9050.74, + "probability": 0.9614 + }, + { + "start": 9051.82, + "end": 9055.82, + "probability": 0.9518 + }, + { + "start": 9055.84, + "end": 9057.74, + "probability": 0.9593 + }, + { + "start": 9057.86, + "end": 9059.4, + "probability": 0.9991 + }, + { + "start": 9060.32, + "end": 9062.48, + "probability": 0.9991 + }, + { + "start": 9063.0, + "end": 9064.18, + "probability": 0.7297 + }, + { + "start": 9064.24, + "end": 9064.96, + "probability": 0.7123 + }, + { + "start": 9065.3, + "end": 9066.0, + "probability": 0.3525 + }, + { + "start": 9066.58, + "end": 9070.7, + "probability": 0.6007 + }, + { + "start": 9070.8, + "end": 9071.52, + "probability": 0.3781 + }, + { + "start": 9071.58, + "end": 9072.78, + "probability": 0.6747 + }, + { + "start": 9076.55, + "end": 9077.48, + "probability": 0.8605 + }, + { + "start": 9079.08, + "end": 9079.74, + "probability": 0.4227 + }, + { + "start": 9080.0, + "end": 9080.9, + "probability": 0.3257 + }, + { + "start": 9084.58, + "end": 9084.76, + "probability": 0.3148 + }, + { + "start": 9084.76, + "end": 9086.94, + "probability": 0.529 + }, + { + "start": 9088.18, + "end": 9088.98, + "probability": 0.513 + }, + { + "start": 9089.18, + "end": 9092.46, + "probability": 0.3579 + }, + { + "start": 9096.2, + "end": 9100.1, + "probability": 0.2664 + }, + { + "start": 9104.87, + "end": 9108.74, + "probability": 0.0834 + }, + { + "start": 9109.46, + "end": 9112.04, + "probability": 0.0245 + }, + { + "start": 9114.04, + "end": 9115.96, + "probability": 0.0769 + }, + { + "start": 9116.8, + "end": 9118.44, + "probability": 0.0292 + }, + { + "start": 9126.82, + "end": 9129.1, + "probability": 0.033 + }, + { + "start": 9130.45, + "end": 9132.5, + "probability": 0.2768 + }, + { + "start": 9132.5, + "end": 9134.74, + "probability": 0.3824 + }, + { + "start": 9134.76, + "end": 9138.62, + "probability": 0.0502 + }, + { + "start": 9139.64, + "end": 9140.2, + "probability": 0.0209 + }, + { + "start": 9140.2, + "end": 9142.56, + "probability": 0.0644 + }, + { + "start": 9142.98, + "end": 9144.52, + "probability": 0.1031 + }, + { + "start": 9144.52, + "end": 9145.7, + "probability": 0.5691 + }, + { + "start": 9146.46, + "end": 9147.52, + "probability": 0.2133 + }, + { + "start": 9150.6, + "end": 9152.08, + "probability": 0.1468 + }, + { + "start": 9152.57, + "end": 9154.9, + "probability": 0.1534 + }, + { + "start": 9155.2, + "end": 9155.6, + "probability": 0.0728 + }, + { + "start": 9160.0, + "end": 9160.0, + "probability": 0.0 + }, + { + "start": 9160.0, + "end": 9160.0, + "probability": 0.0 + }, + { + "start": 9160.0, + "end": 9160.0, + "probability": 0.0 + }, + { + "start": 9160.0, + "end": 9160.0, + "probability": 0.0 + }, + { + "start": 9160.0, + "end": 9160.0, + "probability": 0.0 + }, + { + "start": 9160.6, + "end": 9161.52, + "probability": 0.0443 + }, + { + "start": 9161.52, + "end": 9161.52, + "probability": 0.1682 + }, + { + "start": 9161.52, + "end": 9162.38, + "probability": 0.3919 + }, + { + "start": 9163.68, + "end": 9164.74, + "probability": 0.429 + }, + { + "start": 9165.46, + "end": 9167.04, + "probability": 0.8065 + }, + { + "start": 9168.0, + "end": 9169.58, + "probability": 0.592 + }, + { + "start": 9169.78, + "end": 9170.5, + "probability": 0.64 + }, + { + "start": 9170.98, + "end": 9171.46, + "probability": 0.8628 + }, + { + "start": 9172.28, + "end": 9177.28, + "probability": 0.977 + }, + { + "start": 9177.54, + "end": 9178.28, + "probability": 0.2698 + }, + { + "start": 9180.55, + "end": 9192.66, + "probability": 0.9879 + }, + { + "start": 9192.91, + "end": 9198.06, + "probability": 0.9962 + }, + { + "start": 9198.6, + "end": 9199.78, + "probability": 0.6941 + }, + { + "start": 9200.9, + "end": 9203.6, + "probability": 0.8863 + }, + { + "start": 9204.48, + "end": 9207.38, + "probability": 0.9644 + }, + { + "start": 9207.9, + "end": 9208.56, + "probability": 0.8037 + }, + { + "start": 9209.36, + "end": 9212.34, + "probability": 0.9476 + }, + { + "start": 9212.98, + "end": 9218.72, + "probability": 0.9766 + }, + { + "start": 9219.26, + "end": 9222.2, + "probability": 0.8254 + }, + { + "start": 9222.22, + "end": 9224.66, + "probability": 0.9578 + }, + { + "start": 9225.3, + "end": 9225.8, + "probability": 0.6058 + }, + { + "start": 9226.08, + "end": 9232.0, + "probability": 0.7463 + }, + { + "start": 9232.12, + "end": 9235.36, + "probability": 0.9794 + }, + { + "start": 9236.38, + "end": 9240.62, + "probability": 0.9906 + }, + { + "start": 9241.76, + "end": 9242.5, + "probability": 0.9608 + }, + { + "start": 9242.6, + "end": 9243.2, + "probability": 0.7603 + }, + { + "start": 9243.38, + "end": 9246.68, + "probability": 0.9775 + }, + { + "start": 9246.76, + "end": 9249.38, + "probability": 0.7181 + }, + { + "start": 9249.72, + "end": 9250.06, + "probability": 0.8515 + }, + { + "start": 9250.2, + "end": 9255.7, + "probability": 0.9823 + }, + { + "start": 9255.76, + "end": 9257.36, + "probability": 0.967 + }, + { + "start": 9257.52, + "end": 9258.08, + "probability": 0.686 + }, + { + "start": 9258.12, + "end": 9262.84, + "probability": 0.9834 + }, + { + "start": 9263.52, + "end": 9264.2, + "probability": 0.7756 + }, + { + "start": 9264.32, + "end": 9264.98, + "probability": 0.9285 + }, + { + "start": 9265.18, + "end": 9271.34, + "probability": 0.9826 + }, + { + "start": 9271.42, + "end": 9272.16, + "probability": 0.8169 + }, + { + "start": 9272.86, + "end": 9275.02, + "probability": 0.8389 + }, + { + "start": 9275.4, + "end": 9281.46, + "probability": 0.9347 + }, + { + "start": 9282.88, + "end": 9286.52, + "probability": 0.849 + }, + { + "start": 9286.7, + "end": 9288.06, + "probability": 0.7806 + }, + { + "start": 9288.18, + "end": 9289.4, + "probability": 0.925 + }, + { + "start": 9290.0, + "end": 9290.72, + "probability": 0.9414 + }, + { + "start": 9290.84, + "end": 9293.02, + "probability": 0.9679 + }, + { + "start": 9293.12, + "end": 9294.84, + "probability": 0.7981 + }, + { + "start": 9295.14, + "end": 9295.2, + "probability": 0.938 + }, + { + "start": 9295.8, + "end": 9297.16, + "probability": 0.803 + }, + { + "start": 9297.24, + "end": 9297.74, + "probability": 0.8786 + }, + { + "start": 9297.82, + "end": 9301.42, + "probability": 0.9812 + }, + { + "start": 9301.42, + "end": 9304.54, + "probability": 0.9934 + }, + { + "start": 9305.36, + "end": 9308.68, + "probability": 0.7947 + }, + { + "start": 9308.74, + "end": 9309.72, + "probability": 0.954 + }, + { + "start": 9309.84, + "end": 9310.28, + "probability": 0.8971 + }, + { + "start": 9310.34, + "end": 9311.2, + "probability": 0.7776 + }, + { + "start": 9312.0, + "end": 9314.5, + "probability": 0.8454 + }, + { + "start": 9314.56, + "end": 9318.63, + "probability": 0.8793 + }, + { + "start": 9319.62, + "end": 9321.28, + "probability": 0.0669 + }, + { + "start": 9322.24, + "end": 9322.94, + "probability": 0.4592 + }, + { + "start": 9323.02, + "end": 9323.32, + "probability": 0.3406 + }, + { + "start": 9323.32, + "end": 9324.07, + "probability": 0.8525 + }, + { + "start": 9324.48, + "end": 9326.82, + "probability": 0.9653 + }, + { + "start": 9326.92, + "end": 9330.18, + "probability": 0.4465 + }, + { + "start": 9330.9, + "end": 9331.2, + "probability": 0.8672 + }, + { + "start": 9331.42, + "end": 9334.24, + "probability": 0.981 + }, + { + "start": 9334.54, + "end": 9336.38, + "probability": 0.8901 + }, + { + "start": 9336.74, + "end": 9340.02, + "probability": 0.9847 + }, + { + "start": 9340.98, + "end": 9341.66, + "probability": 0.6636 + }, + { + "start": 9342.0, + "end": 9342.38, + "probability": 0.8245 + }, + { + "start": 9342.52, + "end": 9343.84, + "probability": 0.5689 + }, + { + "start": 9344.38, + "end": 9348.44, + "probability": 0.3781 + }, + { + "start": 9348.44, + "end": 9348.44, + "probability": 0.0066 + }, + { + "start": 9348.44, + "end": 9348.52, + "probability": 0.4454 + }, + { + "start": 9348.76, + "end": 9348.9, + "probability": 0.67 + }, + { + "start": 9348.96, + "end": 9349.12, + "probability": 0.702 + }, + { + "start": 9349.26, + "end": 9349.34, + "probability": 0.1038 + }, + { + "start": 9349.56, + "end": 9351.76, + "probability": 0.6812 + }, + { + "start": 9351.76, + "end": 9352.74, + "probability": 0.7956 + }, + { + "start": 9352.94, + "end": 9357.34, + "probability": 0.9395 + }, + { + "start": 9357.34, + "end": 9364.12, + "probability": 0.8306 + }, + { + "start": 9364.84, + "end": 9366.9, + "probability": 0.6913 + }, + { + "start": 9367.3, + "end": 9367.76, + "probability": 0.7319 + }, + { + "start": 9367.98, + "end": 9368.76, + "probability": 0.0375 + }, + { + "start": 9369.02, + "end": 9371.79, + "probability": 0.7881 + }, + { + "start": 9372.42, + "end": 9373.1, + "probability": 0.7347 + }, + { + "start": 9373.2, + "end": 9376.2, + "probability": 0.9295 + }, + { + "start": 9376.74, + "end": 9377.38, + "probability": 0.7314 + }, + { + "start": 9378.46, + "end": 9378.7, + "probability": 0.8326 + }, + { + "start": 9378.78, + "end": 9380.1, + "probability": 0.4652 + }, + { + "start": 9380.74, + "end": 9384.04, + "probability": 0.9849 + }, + { + "start": 9384.82, + "end": 9387.84, + "probability": 0.9585 + }, + { + "start": 9388.3, + "end": 9390.02, + "probability": 0.9314 + }, + { + "start": 9390.58, + "end": 9391.8, + "probability": 0.8824 + }, + { + "start": 9391.9, + "end": 9394.08, + "probability": 0.9844 + }, + { + "start": 9394.42, + "end": 9395.61, + "probability": 0.9844 + }, + { + "start": 9395.78, + "end": 9396.72, + "probability": 0.9684 + }, + { + "start": 9397.5, + "end": 9401.25, + "probability": 0.8889 + }, + { + "start": 9401.84, + "end": 9403.18, + "probability": 0.5001 + }, + { + "start": 9403.92, + "end": 9404.5, + "probability": 0.596 + }, + { + "start": 9404.7, + "end": 9409.38, + "probability": 0.8503 + }, + { + "start": 9409.38, + "end": 9411.94, + "probability": 0.9985 + }, + { + "start": 9412.16, + "end": 9416.22, + "probability": 0.9782 + }, + { + "start": 9416.22, + "end": 9419.18, + "probability": 0.9099 + }, + { + "start": 9419.52, + "end": 9420.78, + "probability": 0.9219 + }, + { + "start": 9420.94, + "end": 9422.74, + "probability": 0.9562 + }, + { + "start": 9422.88, + "end": 9425.02, + "probability": 0.6764 + }, + { + "start": 9425.08, + "end": 9425.08, + "probability": 0.3694 + }, + { + "start": 9425.18, + "end": 9425.76, + "probability": 0.4895 + }, + { + "start": 9425.76, + "end": 9426.86, + "probability": 0.9484 + }, + { + "start": 9427.26, + "end": 9427.8, + "probability": 0.8577 + }, + { + "start": 9427.86, + "end": 9429.6, + "probability": 0.9725 + }, + { + "start": 9429.7, + "end": 9430.12, + "probability": 0.5052 + }, + { + "start": 9430.24, + "end": 9430.84, + "probability": 0.8965 + }, + { + "start": 9431.28, + "end": 9432.14, + "probability": 0.6261 + }, + { + "start": 9432.28, + "end": 9432.78, + "probability": 0.4085 + }, + { + "start": 9432.8, + "end": 9433.38, + "probability": 0.1479 + }, + { + "start": 9434.04, + "end": 9436.4, + "probability": 0.5361 + }, + { + "start": 9436.82, + "end": 9437.86, + "probability": 0.8555 + }, + { + "start": 9438.0, + "end": 9438.66, + "probability": 0.0313 + }, + { + "start": 9439.14, + "end": 9439.42, + "probability": 0.2026 + }, + { + "start": 9439.48, + "end": 9440.74, + "probability": 0.7451 + }, + { + "start": 9442.2, + "end": 9444.0, + "probability": 0.1688 + }, + { + "start": 9444.0, + "end": 9446.04, + "probability": 0.6375 + }, + { + "start": 9446.38, + "end": 9448.05, + "probability": 0.9902 + }, + { + "start": 9448.18, + "end": 9452.24, + "probability": 0.9921 + }, + { + "start": 9452.3, + "end": 9456.18, + "probability": 0.998 + }, + { + "start": 9456.82, + "end": 9461.83, + "probability": 0.9793 + }, + { + "start": 9462.44, + "end": 9462.84, + "probability": 0.2686 + }, + { + "start": 9462.86, + "end": 9464.34, + "probability": 0.9839 + }, + { + "start": 9464.78, + "end": 9465.54, + "probability": 0.9495 + }, + { + "start": 9466.0, + "end": 9466.6, + "probability": 0.8823 + }, + { + "start": 9467.06, + "end": 9467.88, + "probability": 0.6135 + }, + { + "start": 9468.06, + "end": 9469.0, + "probability": 0.8934 + }, + { + "start": 9469.52, + "end": 9471.12, + "probability": 0.978 + }, + { + "start": 9471.84, + "end": 9476.8, + "probability": 0.963 + }, + { + "start": 9477.52, + "end": 9480.61, + "probability": 0.9768 + }, + { + "start": 9481.48, + "end": 9486.24, + "probability": 0.9986 + }, + { + "start": 9487.0, + "end": 9488.3, + "probability": 0.9506 + }, + { + "start": 9488.74, + "end": 9493.56, + "probability": 0.9843 + }, + { + "start": 9493.8, + "end": 9494.38, + "probability": 0.3606 + }, + { + "start": 9494.86, + "end": 9496.14, + "probability": 0.8277 + }, + { + "start": 9496.26, + "end": 9501.02, + "probability": 0.9448 + }, + { + "start": 9501.2, + "end": 9502.24, + "probability": 0.9812 + }, + { + "start": 9502.52, + "end": 9505.96, + "probability": 0.9797 + }, + { + "start": 9506.28, + "end": 9509.42, + "probability": 0.9655 + }, + { + "start": 9510.0, + "end": 9516.33, + "probability": 0.9896 + }, + { + "start": 9516.76, + "end": 9518.36, + "probability": 0.6733 + }, + { + "start": 9519.02, + "end": 9522.9, + "probability": 0.9849 + }, + { + "start": 9524.2, + "end": 9527.56, + "probability": 0.8948 + }, + { + "start": 9528.14, + "end": 9528.54, + "probability": 0.837 + }, + { + "start": 9529.48, + "end": 9530.6, + "probability": 0.9083 + }, + { + "start": 9531.24, + "end": 9532.38, + "probability": 0.814 + }, + { + "start": 9532.5, + "end": 9532.8, + "probability": 0.6241 + }, + { + "start": 9532.84, + "end": 9533.4, + "probability": 0.7587 + }, + { + "start": 9533.46, + "end": 9535.56, + "probability": 0.998 + }, + { + "start": 9536.24, + "end": 9539.16, + "probability": 0.9567 + }, + { + "start": 9539.16, + "end": 9539.38, + "probability": 0.9603 + }, + { + "start": 9540.18, + "end": 9541.54, + "probability": 0.7609 + }, + { + "start": 9541.6, + "end": 9541.98, + "probability": 0.8497 + }, + { + "start": 9542.04, + "end": 9543.79, + "probability": 0.9856 + }, + { + "start": 9544.74, + "end": 9545.86, + "probability": 0.9521 + }, + { + "start": 9546.64, + "end": 9548.74, + "probability": 0.9971 + }, + { + "start": 9549.52, + "end": 9551.84, + "probability": 0.7878 + }, + { + "start": 9552.36, + "end": 9554.5, + "probability": 0.9952 + }, + { + "start": 9555.42, + "end": 9558.74, + "probability": 0.9202 + }, + { + "start": 9558.94, + "end": 9561.36, + "probability": 0.9703 + }, + { + "start": 9562.48, + "end": 9566.18, + "probability": 0.9956 + }, + { + "start": 9566.18, + "end": 9570.34, + "probability": 0.9995 + }, + { + "start": 9571.44, + "end": 9575.28, + "probability": 0.8384 + }, + { + "start": 9576.36, + "end": 9578.04, + "probability": 0.9417 + }, + { + "start": 9578.86, + "end": 9580.58, + "probability": 0.9926 + }, + { + "start": 9581.16, + "end": 9584.8, + "probability": 0.8264 + }, + { + "start": 9585.46, + "end": 9588.32, + "probability": 0.7761 + }, + { + "start": 9589.0, + "end": 9592.0, + "probability": 0.9482 + }, + { + "start": 9592.76, + "end": 9594.04, + "probability": 0.7831 + }, + { + "start": 9594.2, + "end": 9595.92, + "probability": 0.973 + }, + { + "start": 9595.98, + "end": 9597.82, + "probability": 0.9904 + }, + { + "start": 9598.64, + "end": 9599.22, + "probability": 0.9772 + }, + { + "start": 9599.82, + "end": 9604.74, + "probability": 0.8467 + }, + { + "start": 9604.96, + "end": 9605.52, + "probability": 0.8345 + }, + { + "start": 9605.64, + "end": 9606.42, + "probability": 0.9115 + }, + { + "start": 9607.08, + "end": 9608.96, + "probability": 0.979 + }, + { + "start": 9609.26, + "end": 9610.9, + "probability": 0.9948 + }, + { + "start": 9611.32, + "end": 9614.74, + "probability": 0.9944 + }, + { + "start": 9615.16, + "end": 9616.44, + "probability": 0.9025 + }, + { + "start": 9616.98, + "end": 9622.92, + "probability": 0.6667 + }, + { + "start": 9623.52, + "end": 9626.02, + "probability": 0.9425 + }, + { + "start": 9626.78, + "end": 9628.24, + "probability": 0.8918 + }, + { + "start": 9628.62, + "end": 9633.52, + "probability": 0.9907 + }, + { + "start": 9633.52, + "end": 9636.46, + "probability": 0.9866 + }, + { + "start": 9636.86, + "end": 9639.46, + "probability": 0.9334 + }, + { + "start": 9639.76, + "end": 9640.04, + "probability": 0.7358 + }, + { + "start": 9641.1, + "end": 9642.62, + "probability": 0.4812 + }, + { + "start": 9642.82, + "end": 9645.56, + "probability": 0.5946 + }, + { + "start": 9645.7, + "end": 9646.43, + "probability": 0.7663 + }, + { + "start": 9647.52, + "end": 9650.2, + "probability": 0.631 + }, + { + "start": 9650.48, + "end": 9652.5, + "probability": 0.8635 + }, + { + "start": 9653.42, + "end": 9655.34, + "probability": 0.4828 + }, + { + "start": 9656.64, + "end": 9657.22, + "probability": 0.8806 + }, + { + "start": 9659.02, + "end": 9661.94, + "probability": 0.5845 + }, + { + "start": 9661.94, + "end": 9662.16, + "probability": 0.2097 + }, + { + "start": 9663.38, + "end": 9663.84, + "probability": 0.0415 + }, + { + "start": 9687.48, + "end": 9689.77, + "probability": 0.4621 + }, + { + "start": 9691.56, + "end": 9699.14, + "probability": 0.9055 + }, + { + "start": 9699.14, + "end": 9702.15, + "probability": 0.8916 + }, + { + "start": 9703.52, + "end": 9703.74, + "probability": 0.8025 + }, + { + "start": 9703.74, + "end": 9706.22, + "probability": 0.441 + }, + { + "start": 9706.5, + "end": 9714.26, + "probability": 0.9023 + }, + { + "start": 9714.26, + "end": 9717.43, + "probability": 0.8944 + }, + { + "start": 9718.02, + "end": 9720.58, + "probability": 0.3722 + }, + { + "start": 9721.28, + "end": 9724.1, + "probability": 0.6523 + }, + { + "start": 9726.61, + "end": 9729.01, + "probability": 0.6772 + }, + { + "start": 9729.1, + "end": 9737.22, + "probability": 0.9517 + }, + { + "start": 9737.24, + "end": 9738.65, + "probability": 0.8958 + }, + { + "start": 9739.34, + "end": 9742.86, + "probability": 0.9911 + }, + { + "start": 9743.52, + "end": 9745.06, + "probability": 0.979 + }, + { + "start": 9745.26, + "end": 9745.76, + "probability": 0.7062 + }, + { + "start": 9746.34, + "end": 9751.2, + "probability": 0.9062 + }, + { + "start": 9751.48, + "end": 9752.7, + "probability": 0.8772 + }, + { + "start": 9753.62, + "end": 9754.94, + "probability": 0.9729 + }, + { + "start": 9755.12, + "end": 9761.52, + "probability": 0.7466 + }, + { + "start": 9762.14, + "end": 9766.3, + "probability": 0.7818 + }, + { + "start": 9766.36, + "end": 9769.44, + "probability": 0.9905 + }, + { + "start": 9769.5, + "end": 9769.9, + "probability": 0.1683 + }, + { + "start": 9770.82, + "end": 9773.79, + "probability": 0.611 + }, + { + "start": 9776.64, + "end": 9779.32, + "probability": 0.8931 + }, + { + "start": 9780.46, + "end": 9789.8, + "probability": 0.7497 + }, + { + "start": 9790.84, + "end": 9793.25, + "probability": 0.6113 + }, + { + "start": 9794.2, + "end": 9800.14, + "probability": 0.957 + }, + { + "start": 9800.76, + "end": 9805.76, + "probability": 0.9829 + }, + { + "start": 9805.76, + "end": 9809.4, + "probability": 0.9966 + }, + { + "start": 9810.5, + "end": 9814.58, + "probability": 0.4995 + }, + { + "start": 9814.7, + "end": 9816.94, + "probability": 0.0482 + }, + { + "start": 9816.94, + "end": 9818.66, + "probability": 0.5134 + }, + { + "start": 9819.56, + "end": 9821.42, + "probability": 0.7903 + }, + { + "start": 9821.48, + "end": 9827.14, + "probability": 0.5418 + }, + { + "start": 9827.69, + "end": 9831.98, + "probability": 0.9863 + }, + { + "start": 9832.42, + "end": 9833.66, + "probability": 0.7211 + }, + { + "start": 9833.76, + "end": 9835.26, + "probability": 0.6271 + }, + { + "start": 9835.96, + "end": 9837.24, + "probability": 0.9397 + }, + { + "start": 9837.44, + "end": 9841.5, + "probability": 0.8565 + }, + { + "start": 9842.1, + "end": 9847.96, + "probability": 0.9573 + }, + { + "start": 9848.54, + "end": 9851.56, + "probability": 0.7895 + }, + { + "start": 9851.62, + "end": 9853.08, + "probability": 0.3371 + }, + { + "start": 9853.62, + "end": 9855.68, + "probability": 0.7715 + }, + { + "start": 9855.92, + "end": 9856.44, + "probability": 0.6792 + }, + { + "start": 9856.86, + "end": 9857.26, + "probability": 0.8075 + }, + { + "start": 9858.4, + "end": 9859.16, + "probability": 0.7495 + }, + { + "start": 9861.0, + "end": 9861.74, + "probability": 0.4238 + }, + { + "start": 9863.35, + "end": 9866.2, + "probability": 0.045 + }, + { + "start": 9871.3, + "end": 9874.06, + "probability": 0.0078 + }, + { + "start": 9875.3, + "end": 9878.66, + "probability": 0.0144 + }, + { + "start": 9879.5, + "end": 9881.68, + "probability": 0.2672 + }, + { + "start": 9884.28, + "end": 9884.96, + "probability": 0.2229 + }, + { + "start": 9887.1, + "end": 9887.54, + "probability": 0.2932 + }, + { + "start": 9888.94, + "end": 9892.24, + "probability": 0.5653 + }, + { + "start": 9892.42, + "end": 9896.22, + "probability": 0.108 + }, + { + "start": 9896.22, + "end": 9897.38, + "probability": 0.0579 + }, + { + "start": 9897.99, + "end": 9902.16, + "probability": 0.0108 + }, + { + "start": 9902.16, + "end": 9903.9, + "probability": 0.1664 + }, + { + "start": 9903.9, + "end": 9905.3, + "probability": 0.0436 + }, + { + "start": 9908.92, + "end": 9913.56, + "probability": 0.1303 + }, + { + "start": 9914.12, + "end": 9914.61, + "probability": 0.0946 + }, + { + "start": 9914.84, + "end": 9916.38, + "probability": 0.0419 + }, + { + "start": 9916.86, + "end": 9917.64, + "probability": 0.0081 + }, + { + "start": 9920.56, + "end": 9922.06, + "probability": 0.0425 + }, + { + "start": 9922.24, + "end": 9922.64, + "probability": 0.1183 + }, + { + "start": 9922.64, + "end": 9922.66, + "probability": 0.0612 + }, + { + "start": 9922.66, + "end": 9922.73, + "probability": 0.0356 + }, + { + "start": 9922.74, + "end": 9922.74, + "probability": 0.0953 + }, + { + "start": 9922.74, + "end": 9922.815, + "probability": 0.0092 + }, + { + "start": 9922.815, + "end": 9922.815, + "probability": 0.0 + }, + { + "start": 9922.815, + "end": 9922.815, + "probability": 0.0 + }, + { + "start": 9922.815, + "end": 9922.815, + "probability": 0.0 + } + ], + "segments_count": 3298, + "words_count": 16384, + "avg_words_per_segment": 4.9679, + "avg_segment_duration": 2.1242, + "avg_words_per_minute": 99.0687, + "plenum_id": "10092", + "duration": 9922.81, + "title": null, + "plenum_date": "2010-11-16" +} \ No newline at end of file