diff --git "a/2379/metadata.json" "b/2379/metadata.json" new file mode 100644--- /dev/null +++ "b/2379/metadata.json" @@ -0,0 +1,20447 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "2379", + "quality_score": 0.8345, + "per_segment_quality_scores": [ + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.18, + "end": 123.18, + "probability": 0.1687 + }, + { + "start": 123.18, + "end": 123.18, + "probability": 0.1728 + }, + { + "start": 123.18, + "end": 123.18, + "probability": 0.2215 + }, + { + "start": 123.18, + "end": 123.58, + "probability": 0.1355 + }, + { + "start": 124.3, + "end": 126.82, + "probability": 0.7354 + }, + { + "start": 137.16, + "end": 139.86, + "probability": 0.8412 + }, + { + "start": 141.58, + "end": 143.36, + "probability": 0.0916 + }, + { + "start": 143.47, + "end": 145.15, + "probability": 0.0618 + }, + { + "start": 146.64, + "end": 147.74, + "probability": 0.0251 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.0, + "end": 252.0, + "probability": 0.0 + }, + { + "start": 252.22, + "end": 252.32, + "probability": 0.2906 + }, + { + "start": 253.38, + "end": 256.5, + "probability": 0.7029 + }, + { + "start": 257.12, + "end": 260.18, + "probability": 0.4904 + }, + { + "start": 262.78, + "end": 265.46, + "probability": 0.9933 + }, + { + "start": 265.46, + "end": 268.62, + "probability": 0.8034 + }, + { + "start": 269.56, + "end": 271.1, + "probability": 0.7229 + }, + { + "start": 272.26, + "end": 274.54, + "probability": 0.9146 + }, + { + "start": 275.44, + "end": 278.2, + "probability": 0.6733 + }, + { + "start": 281.12, + "end": 283.6, + "probability": 0.9967 + }, + { + "start": 284.4, + "end": 285.53, + "probability": 0.9988 + }, + { + "start": 286.66, + "end": 289.38, + "probability": 0.9343 + }, + { + "start": 290.3, + "end": 293.04, + "probability": 0.0726 + }, + { + "start": 295.06, + "end": 297.32, + "probability": 0.5984 + }, + { + "start": 303.58, + "end": 304.9, + "probability": 0.7623 + }, + { + "start": 308.06, + "end": 310.04, + "probability": 0.8652 + }, + { + "start": 310.18, + "end": 312.55, + "probability": 0.806 + }, + { + "start": 312.92, + "end": 312.96, + "probability": 0.1575 + }, + { + "start": 312.96, + "end": 316.88, + "probability": 0.8272 + }, + { + "start": 317.04, + "end": 319.46, + "probability": 0.1881 + }, + { + "start": 319.82, + "end": 320.1, + "probability": 0.7748 + }, + { + "start": 320.28, + "end": 322.8, + "probability": 0.9225 + }, + { + "start": 323.06, + "end": 324.4, + "probability": 0.6244 + }, + { + "start": 324.92, + "end": 325.32, + "probability": 0.2882 + }, + { + "start": 326.06, + "end": 326.27, + "probability": 0.1232 + }, + { + "start": 327.04, + "end": 329.38, + "probability": 0.7264 + }, + { + "start": 329.54, + "end": 330.84, + "probability": 0.3331 + }, + { + "start": 332.54, + "end": 337.26, + "probability": 0.907 + }, + { + "start": 337.68, + "end": 340.99, + "probability": 0.9885 + }, + { + "start": 341.42, + "end": 342.8, + "probability": 0.8941 + }, + { + "start": 343.1, + "end": 344.2, + "probability": 0.8475 + }, + { + "start": 345.64, + "end": 346.5, + "probability": 0.7585 + }, + { + "start": 349.32, + "end": 352.76, + "probability": 0.9973 + }, + { + "start": 354.56, + "end": 357.54, + "probability": 0.9317 + }, + { + "start": 358.62, + "end": 359.68, + "probability": 0.9878 + }, + { + "start": 361.08, + "end": 362.96, + "probability": 0.9848 + }, + { + "start": 364.36, + "end": 366.2, + "probability": 0.9962 + }, + { + "start": 366.78, + "end": 370.12, + "probability": 0.9858 + }, + { + "start": 371.04, + "end": 371.9, + "probability": 0.9415 + }, + { + "start": 372.96, + "end": 375.7, + "probability": 0.8606 + }, + { + "start": 377.14, + "end": 378.78, + "probability": 0.8323 + }, + { + "start": 379.24, + "end": 381.76, + "probability": 0.9814 + }, + { + "start": 383.02, + "end": 386.06, + "probability": 0.731 + }, + { + "start": 386.8, + "end": 390.62, + "probability": 0.7152 + }, + { + "start": 391.78, + "end": 397.78, + "probability": 0.9269 + }, + { + "start": 398.98, + "end": 400.2, + "probability": 0.6906 + }, + { + "start": 401.06, + "end": 404.42, + "probability": 0.9977 + }, + { + "start": 406.34, + "end": 406.86, + "probability": 0.826 + }, + { + "start": 406.98, + "end": 412.64, + "probability": 0.9948 + }, + { + "start": 414.7, + "end": 418.09, + "probability": 0.9933 + }, + { + "start": 418.52, + "end": 419.56, + "probability": 0.6882 + }, + { + "start": 419.66, + "end": 421.38, + "probability": 0.5049 + }, + { + "start": 422.74, + "end": 425.48, + "probability": 0.7909 + }, + { + "start": 426.9, + "end": 429.66, + "probability": 0.9181 + }, + { + "start": 430.18, + "end": 432.9, + "probability": 0.9446 + }, + { + "start": 434.78, + "end": 436.42, + "probability": 0.9671 + }, + { + "start": 436.5, + "end": 440.64, + "probability": 0.9666 + }, + { + "start": 441.44, + "end": 443.98, + "probability": 0.9785 + }, + { + "start": 445.0, + "end": 445.82, + "probability": 0.7627 + }, + { + "start": 448.38, + "end": 452.0, + "probability": 0.9889 + }, + { + "start": 453.8, + "end": 457.12, + "probability": 0.9514 + }, + { + "start": 458.26, + "end": 462.08, + "probability": 0.9797 + }, + { + "start": 462.64, + "end": 467.36, + "probability": 0.9944 + }, + { + "start": 468.44, + "end": 471.42, + "probability": 0.9946 + }, + { + "start": 474.24, + "end": 474.9, + "probability": 0.8383 + }, + { + "start": 475.02, + "end": 475.79, + "probability": 0.86 + }, + { + "start": 476.52, + "end": 477.34, + "probability": 0.9847 + }, + { + "start": 477.62, + "end": 478.66, + "probability": 0.9039 + }, + { + "start": 480.24, + "end": 483.38, + "probability": 0.9707 + }, + { + "start": 484.4, + "end": 486.86, + "probability": 0.998 + }, + { + "start": 487.08, + "end": 489.74, + "probability": 0.9989 + }, + { + "start": 491.04, + "end": 493.42, + "probability": 0.9951 + }, + { + "start": 494.06, + "end": 494.42, + "probability": 0.9908 + }, + { + "start": 496.44, + "end": 500.32, + "probability": 0.9967 + }, + { + "start": 501.34, + "end": 502.92, + "probability": 0.9305 + }, + { + "start": 504.96, + "end": 506.92, + "probability": 0.9867 + }, + { + "start": 507.78, + "end": 509.38, + "probability": 0.8156 + }, + { + "start": 511.18, + "end": 512.48, + "probability": 0.6423 + }, + { + "start": 514.0, + "end": 517.28, + "probability": 0.5793 + }, + { + "start": 518.58, + "end": 521.48, + "probability": 0.9738 + }, + { + "start": 523.68, + "end": 527.95, + "probability": 0.9961 + }, + { + "start": 528.1, + "end": 528.87, + "probability": 0.9846 + }, + { + "start": 529.5, + "end": 531.12, + "probability": 0.9933 + }, + { + "start": 533.0, + "end": 535.76, + "probability": 0.9238 + }, + { + "start": 536.62, + "end": 537.94, + "probability": 0.9204 + }, + { + "start": 538.6, + "end": 540.02, + "probability": 0.9565 + }, + { + "start": 540.72, + "end": 542.98, + "probability": 0.9742 + }, + { + "start": 544.3, + "end": 548.12, + "probability": 0.9808 + }, + { + "start": 548.18, + "end": 548.58, + "probability": 0.7885 + }, + { + "start": 549.7, + "end": 551.84, + "probability": 0.941 + }, + { + "start": 552.6, + "end": 555.42, + "probability": 0.9748 + }, + { + "start": 556.26, + "end": 560.62, + "probability": 0.9156 + }, + { + "start": 560.96, + "end": 562.92, + "probability": 0.1591 + }, + { + "start": 563.72, + "end": 564.8, + "probability": 0.0686 + }, + { + "start": 567.26, + "end": 570.54, + "probability": 0.9188 + }, + { + "start": 571.08, + "end": 572.08, + "probability": 0.9586 + }, + { + "start": 572.42, + "end": 578.5, + "probability": 0.9956 + }, + { + "start": 578.62, + "end": 582.38, + "probability": 0.9991 + }, + { + "start": 583.58, + "end": 585.42, + "probability": 0.9123 + }, + { + "start": 586.56, + "end": 588.94, + "probability": 0.6152 + }, + { + "start": 589.08, + "end": 589.56, + "probability": 0.8043 + }, + { + "start": 589.68, + "end": 592.92, + "probability": 0.9255 + }, + { + "start": 593.88, + "end": 596.02, + "probability": 0.9263 + }, + { + "start": 596.86, + "end": 598.14, + "probability": 0.8879 + }, + { + "start": 600.08, + "end": 604.64, + "probability": 0.9714 + }, + { + "start": 605.46, + "end": 609.64, + "probability": 0.992 + }, + { + "start": 609.64, + "end": 612.58, + "probability": 0.9977 + }, + { + "start": 613.96, + "end": 616.46, + "probability": 0.9941 + }, + { + "start": 618.22, + "end": 620.82, + "probability": 0.9982 + }, + { + "start": 622.24, + "end": 624.82, + "probability": 0.8201 + }, + { + "start": 625.56, + "end": 627.0, + "probability": 0.9902 + }, + { + "start": 628.1, + "end": 631.5, + "probability": 0.945 + }, + { + "start": 632.14, + "end": 632.98, + "probability": 0.9575 + }, + { + "start": 634.06, + "end": 638.86, + "probability": 0.9863 + }, + { + "start": 638.86, + "end": 645.1, + "probability": 0.9859 + }, + { + "start": 646.7, + "end": 651.78, + "probability": 0.97 + }, + { + "start": 651.78, + "end": 657.06, + "probability": 0.9964 + }, + { + "start": 658.5, + "end": 661.99, + "probability": 0.9961 + }, + { + "start": 663.14, + "end": 669.0, + "probability": 0.9939 + }, + { + "start": 669.0, + "end": 673.8, + "probability": 0.9949 + }, + { + "start": 675.06, + "end": 675.12, + "probability": 0.7941 + }, + { + "start": 675.16, + "end": 675.58, + "probability": 0.768 + }, + { + "start": 675.62, + "end": 676.39, + "probability": 0.9441 + }, + { + "start": 677.0, + "end": 679.26, + "probability": 0.9312 + }, + { + "start": 680.04, + "end": 682.2, + "probability": 0.9934 + }, + { + "start": 684.26, + "end": 686.54, + "probability": 0.9412 + }, + { + "start": 687.6, + "end": 691.46, + "probability": 0.9972 + }, + { + "start": 693.9, + "end": 696.14, + "probability": 0.9216 + }, + { + "start": 696.86, + "end": 697.78, + "probability": 0.8425 + }, + { + "start": 699.06, + "end": 704.8, + "probability": 0.9771 + }, + { + "start": 705.32, + "end": 705.86, + "probability": 0.905 + }, + { + "start": 707.8, + "end": 712.4, + "probability": 0.9984 + }, + { + "start": 712.96, + "end": 714.62, + "probability": 0.9964 + }, + { + "start": 716.38, + "end": 719.74, + "probability": 0.9639 + }, + { + "start": 719.85, + "end": 723.84, + "probability": 0.9961 + }, + { + "start": 724.96, + "end": 730.5, + "probability": 0.976 + }, + { + "start": 732.24, + "end": 735.52, + "probability": 0.7553 + }, + { + "start": 736.24, + "end": 737.68, + "probability": 0.9512 + }, + { + "start": 738.3, + "end": 743.6, + "probability": 0.9966 + }, + { + "start": 744.16, + "end": 746.34, + "probability": 0.9974 + }, + { + "start": 747.34, + "end": 750.08, + "probability": 0.9644 + }, + { + "start": 751.18, + "end": 751.5, + "probability": 0.5903 + }, + { + "start": 751.66, + "end": 755.64, + "probability": 0.9988 + }, + { + "start": 755.72, + "end": 758.6, + "probability": 0.9971 + }, + { + "start": 760.4, + "end": 760.74, + "probability": 0.7656 + }, + { + "start": 760.82, + "end": 761.46, + "probability": 0.8113 + }, + { + "start": 761.6, + "end": 766.6, + "probability": 0.9764 + }, + { + "start": 766.64, + "end": 772.02, + "probability": 0.989 + }, + { + "start": 773.78, + "end": 775.24, + "probability": 0.9846 + }, + { + "start": 776.34, + "end": 778.76, + "probability": 0.9507 + }, + { + "start": 779.52, + "end": 782.24, + "probability": 0.9989 + }, + { + "start": 783.02, + "end": 786.46, + "probability": 0.9949 + }, + { + "start": 787.84, + "end": 788.08, + "probability": 0.8555 + }, + { + "start": 788.12, + "end": 792.26, + "probability": 0.9806 + }, + { + "start": 792.84, + "end": 795.78, + "probability": 0.9752 + }, + { + "start": 797.1, + "end": 801.28, + "probability": 0.9966 + }, + { + "start": 801.38, + "end": 806.54, + "probability": 0.9726 + }, + { + "start": 807.9, + "end": 812.98, + "probability": 0.9925 + }, + { + "start": 813.94, + "end": 815.2, + "probability": 0.8539 + }, + { + "start": 815.9, + "end": 817.04, + "probability": 0.9078 + }, + { + "start": 817.8, + "end": 818.38, + "probability": 0.844 + }, + { + "start": 819.42, + "end": 820.52, + "probability": 0.9966 + }, + { + "start": 821.08, + "end": 822.66, + "probability": 0.988 + }, + { + "start": 823.52, + "end": 825.06, + "probability": 0.9817 + }, + { + "start": 827.2, + "end": 828.1, + "probability": 0.9819 + }, + { + "start": 828.96, + "end": 833.96, + "probability": 0.9972 + }, + { + "start": 833.96, + "end": 837.16, + "probability": 0.9996 + }, + { + "start": 838.42, + "end": 840.44, + "probability": 0.7721 + }, + { + "start": 840.98, + "end": 845.64, + "probability": 0.9954 + }, + { + "start": 848.34, + "end": 851.76, + "probability": 0.9777 + }, + { + "start": 851.88, + "end": 853.0, + "probability": 0.7097 + }, + { + "start": 854.88, + "end": 859.16, + "probability": 0.8618 + }, + { + "start": 859.16, + "end": 863.32, + "probability": 0.9803 + }, + { + "start": 864.04, + "end": 864.74, + "probability": 0.6427 + }, + { + "start": 865.5, + "end": 866.66, + "probability": 0.9299 + }, + { + "start": 867.52, + "end": 870.22, + "probability": 0.9982 + }, + { + "start": 871.44, + "end": 877.18, + "probability": 0.8303 + }, + { + "start": 878.16, + "end": 879.7, + "probability": 0.8571 + }, + { + "start": 881.18, + "end": 883.06, + "probability": 0.7064 + }, + { + "start": 883.78, + "end": 885.32, + "probability": 0.9878 + }, + { + "start": 886.84, + "end": 889.48, + "probability": 0.9595 + }, + { + "start": 890.48, + "end": 891.42, + "probability": 0.9604 + }, + { + "start": 891.98, + "end": 892.98, + "probability": 0.4336 + }, + { + "start": 893.76, + "end": 894.4, + "probability": 0.806 + }, + { + "start": 895.46, + "end": 897.54, + "probability": 0.9933 + }, + { + "start": 898.54, + "end": 899.32, + "probability": 0.7733 + }, + { + "start": 900.02, + "end": 902.84, + "probability": 0.981 + }, + { + "start": 903.62, + "end": 905.74, + "probability": 0.8616 + }, + { + "start": 907.1, + "end": 912.52, + "probability": 0.9893 + }, + { + "start": 913.2, + "end": 915.12, + "probability": 0.98 + }, + { + "start": 917.02, + "end": 918.9, + "probability": 0.9958 + }, + { + "start": 919.76, + "end": 921.88, + "probability": 0.9615 + }, + { + "start": 923.02, + "end": 925.34, + "probability": 0.9893 + }, + { + "start": 925.34, + "end": 928.8, + "probability": 0.9762 + }, + { + "start": 930.58, + "end": 930.68, + "probability": 0.3799 + }, + { + "start": 930.68, + "end": 935.62, + "probability": 0.9964 + }, + { + "start": 936.86, + "end": 939.72, + "probability": 0.969 + }, + { + "start": 940.06, + "end": 941.32, + "probability": 0.9957 + }, + { + "start": 941.86, + "end": 943.26, + "probability": 0.9988 + }, + { + "start": 943.9, + "end": 945.46, + "probability": 0.9793 + }, + { + "start": 947.86, + "end": 948.38, + "probability": 0.9009 + }, + { + "start": 949.8, + "end": 950.22, + "probability": 0.9653 + }, + { + "start": 951.1, + "end": 952.46, + "probability": 0.9116 + }, + { + "start": 955.28, + "end": 957.48, + "probability": 0.8589 + }, + { + "start": 958.6, + "end": 962.8, + "probability": 0.9198 + }, + { + "start": 964.52, + "end": 971.62, + "probability": 0.9863 + }, + { + "start": 972.34, + "end": 973.66, + "probability": 0.9604 + }, + { + "start": 974.84, + "end": 976.9, + "probability": 0.9141 + }, + { + "start": 977.36, + "end": 978.56, + "probability": 0.9276 + }, + { + "start": 979.2, + "end": 981.2, + "probability": 0.884 + }, + { + "start": 981.78, + "end": 983.47, + "probability": 0.7903 + }, + { + "start": 984.62, + "end": 987.4, + "probability": 0.1071 + }, + { + "start": 988.22, + "end": 988.94, + "probability": 0.2537 + }, + { + "start": 989.04, + "end": 989.04, + "probability": 0.3914 + }, + { + "start": 989.32, + "end": 990.04, + "probability": 0.6792 + }, + { + "start": 990.2, + "end": 992.42, + "probability": 0.8394 + }, + { + "start": 995.24, + "end": 999.48, + "probability": 0.5595 + }, + { + "start": 999.78, + "end": 1001.34, + "probability": 0.925 + }, + { + "start": 1001.97, + "end": 1002.76, + "probability": 0.9598 + }, + { + "start": 1002.76, + "end": 1004.86, + "probability": 0.9614 + }, + { + "start": 1005.88, + "end": 1007.74, + "probability": 0.9989 + }, + { + "start": 1008.76, + "end": 1010.6, + "probability": 0.9896 + }, + { + "start": 1012.08, + "end": 1016.16, + "probability": 0.9928 + }, + { + "start": 1016.88, + "end": 1018.92, + "probability": 0.9211 + }, + { + "start": 1019.22, + "end": 1019.56, + "probability": 0.8193 + }, + { + "start": 1020.16, + "end": 1022.9, + "probability": 0.7157 + }, + { + "start": 1023.46, + "end": 1024.62, + "probability": 0.7961 + }, + { + "start": 1025.22, + "end": 1025.68, + "probability": 0.3942 + }, + { + "start": 1025.8, + "end": 1025.94, + "probability": 0.5693 + }, + { + "start": 1025.94, + "end": 1027.2, + "probability": 0.9312 + }, + { + "start": 1027.64, + "end": 1032.92, + "probability": 0.9248 + }, + { + "start": 1033.2, + "end": 1033.64, + "probability": 0.41 + }, + { + "start": 1033.96, + "end": 1038.74, + "probability": 0.7704 + }, + { + "start": 1038.74, + "end": 1045.94, + "probability": 0.9841 + }, + { + "start": 1046.54, + "end": 1050.46, + "probability": 0.9077 + }, + { + "start": 1051.88, + "end": 1052.18, + "probability": 0.8035 + }, + { + "start": 1075.18, + "end": 1075.76, + "probability": 0.6789 + }, + { + "start": 1077.46, + "end": 1079.12, + "probability": 0.9346 + }, + { + "start": 1079.38, + "end": 1081.9, + "probability": 0.8285 + }, + { + "start": 1082.6, + "end": 1082.84, + "probability": 0.6252 + }, + { + "start": 1084.58, + "end": 1086.56, + "probability": 0.4863 + }, + { + "start": 1088.0, + "end": 1088.52, + "probability": 0.4041 + }, + { + "start": 1089.74, + "end": 1089.74, + "probability": 0.4073 + }, + { + "start": 1089.96, + "end": 1096.22, + "probability": 0.8904 + }, + { + "start": 1096.92, + "end": 1097.75, + "probability": 0.8701 + }, + { + "start": 1097.78, + "end": 1098.68, + "probability": 0.5063 + }, + { + "start": 1098.86, + "end": 1099.82, + "probability": 0.6769 + }, + { + "start": 1101.16, + "end": 1103.86, + "probability": 0.9922 + }, + { + "start": 1105.24, + "end": 1105.94, + "probability": 0.5847 + }, + { + "start": 1106.02, + "end": 1108.2, + "probability": 0.859 + }, + { + "start": 1109.72, + "end": 1110.62, + "probability": 0.9976 + }, + { + "start": 1111.9, + "end": 1112.78, + "probability": 0.4529 + }, + { + "start": 1114.14, + "end": 1115.19, + "probability": 0.6265 + }, + { + "start": 1115.38, + "end": 1118.62, + "probability": 0.9365 + }, + { + "start": 1119.92, + "end": 1122.3, + "probability": 0.5797 + }, + { + "start": 1123.26, + "end": 1126.02, + "probability": 0.938 + }, + { + "start": 1127.68, + "end": 1132.74, + "probability": 0.9206 + }, + { + "start": 1133.0, + "end": 1133.58, + "probability": 0.9065 + }, + { + "start": 1133.64, + "end": 1136.2, + "probability": 0.9951 + }, + { + "start": 1136.36, + "end": 1137.02, + "probability": 0.0311 + }, + { + "start": 1138.32, + "end": 1142.02, + "probability": 0.8936 + }, + { + "start": 1142.26, + "end": 1144.22, + "probability": 0.9462 + }, + { + "start": 1145.78, + "end": 1150.24, + "probability": 0.8594 + }, + { + "start": 1151.98, + "end": 1156.68, + "probability": 0.9966 + }, + { + "start": 1158.3, + "end": 1160.0, + "probability": 0.9408 + }, + { + "start": 1161.4, + "end": 1162.68, + "probability": 0.8416 + }, + { + "start": 1162.84, + "end": 1164.34, + "probability": 0.6288 + }, + { + "start": 1164.34, + "end": 1165.94, + "probability": 0.5334 + }, + { + "start": 1166.57, + "end": 1170.28, + "probability": 0.6732 + }, + { + "start": 1171.62, + "end": 1172.6, + "probability": 0.6727 + }, + { + "start": 1173.84, + "end": 1177.66, + "probability": 0.4513 + }, + { + "start": 1178.98, + "end": 1180.66, + "probability": 0.993 + }, + { + "start": 1182.44, + "end": 1188.15, + "probability": 0.8516 + }, + { + "start": 1190.12, + "end": 1193.32, + "probability": 0.9011 + }, + { + "start": 1194.14, + "end": 1196.36, + "probability": 0.8554 + }, + { + "start": 1197.62, + "end": 1201.06, + "probability": 0.7437 + }, + { + "start": 1202.3, + "end": 1206.42, + "probability": 0.9177 + }, + { + "start": 1208.86, + "end": 1211.08, + "probability": 0.9919 + }, + { + "start": 1212.48, + "end": 1214.84, + "probability": 0.9032 + }, + { + "start": 1216.7, + "end": 1217.92, + "probability": 0.7779 + }, + { + "start": 1219.0, + "end": 1221.21, + "probability": 0.7468 + }, + { + "start": 1222.52, + "end": 1227.22, + "probability": 0.5137 + }, + { + "start": 1227.56, + "end": 1234.38, + "probability": 0.6797 + }, + { + "start": 1236.75, + "end": 1240.48, + "probability": 0.8861 + }, + { + "start": 1241.32, + "end": 1245.0, + "probability": 0.8587 + }, + { + "start": 1247.58, + "end": 1254.9, + "probability": 0.9976 + }, + { + "start": 1255.68, + "end": 1261.2, + "probability": 0.998 + }, + { + "start": 1262.08, + "end": 1263.9, + "probability": 0.9536 + }, + { + "start": 1266.1, + "end": 1270.22, + "probability": 0.9668 + }, + { + "start": 1270.9, + "end": 1276.4, + "probability": 0.9766 + }, + { + "start": 1277.84, + "end": 1279.88, + "probability": 0.896 + }, + { + "start": 1281.58, + "end": 1285.82, + "probability": 0.9915 + }, + { + "start": 1286.82, + "end": 1288.12, + "probability": 0.5606 + }, + { + "start": 1289.02, + "end": 1290.78, + "probability": 0.9429 + }, + { + "start": 1291.8, + "end": 1299.32, + "probability": 0.8065 + }, + { + "start": 1299.56, + "end": 1302.88, + "probability": 0.9381 + }, + { + "start": 1303.4, + "end": 1305.34, + "probability": 0.9279 + }, + { + "start": 1306.1, + "end": 1309.24, + "probability": 0.8033 + }, + { + "start": 1309.78, + "end": 1311.16, + "probability": 0.8937 + }, + { + "start": 1312.02, + "end": 1317.26, + "probability": 0.8994 + }, + { + "start": 1328.26, + "end": 1330.82, + "probability": 0.0394 + }, + { + "start": 1330.82, + "end": 1330.82, + "probability": 0.0215 + }, + { + "start": 1330.82, + "end": 1332.64, + "probability": 0.0873 + }, + { + "start": 1333.44, + "end": 1336.64, + "probability": 0.6548 + }, + { + "start": 1337.68, + "end": 1339.66, + "probability": 0.8938 + }, + { + "start": 1340.28, + "end": 1341.14, + "probability": 0.3307 + }, + { + "start": 1342.34, + "end": 1345.86, + "probability": 0.9769 + }, + { + "start": 1346.73, + "end": 1349.7, + "probability": 0.8904 + }, + { + "start": 1349.76, + "end": 1350.2, + "probability": 0.6193 + }, + { + "start": 1350.36, + "end": 1351.0, + "probability": 0.7113 + }, + { + "start": 1353.28, + "end": 1355.14, + "probability": 0.8203 + }, + { + "start": 1356.96, + "end": 1361.5, + "probability": 0.9935 + }, + { + "start": 1361.56, + "end": 1367.38, + "probability": 0.7147 + }, + { + "start": 1369.68, + "end": 1371.92, + "probability": 0.6694 + }, + { + "start": 1373.86, + "end": 1376.12, + "probability": 0.9005 + }, + { + "start": 1376.74, + "end": 1377.98, + "probability": 0.9608 + }, + { + "start": 1379.52, + "end": 1381.26, + "probability": 0.49 + }, + { + "start": 1381.28, + "end": 1384.64, + "probability": 0.8717 + }, + { + "start": 1386.34, + "end": 1395.3, + "probability": 0.9848 + }, + { + "start": 1395.48, + "end": 1399.84, + "probability": 0.9002 + }, + { + "start": 1401.16, + "end": 1404.6, + "probability": 0.9285 + }, + { + "start": 1405.18, + "end": 1406.74, + "probability": 0.6659 + }, + { + "start": 1408.7, + "end": 1410.12, + "probability": 0.7535 + }, + { + "start": 1410.26, + "end": 1411.02, + "probability": 0.8401 + }, + { + "start": 1411.34, + "end": 1412.62, + "probability": 0.961 + }, + { + "start": 1412.74, + "end": 1413.68, + "probability": 0.9312 + }, + { + "start": 1416.0, + "end": 1417.86, + "probability": 0.8333 + }, + { + "start": 1418.04, + "end": 1418.92, + "probability": 0.9728 + }, + { + "start": 1419.02, + "end": 1421.74, + "probability": 0.7636 + }, + { + "start": 1424.04, + "end": 1427.12, + "probability": 0.9557 + }, + { + "start": 1430.12, + "end": 1430.94, + "probability": 0.8402 + }, + { + "start": 1431.52, + "end": 1433.22, + "probability": 0.8828 + }, + { + "start": 1433.38, + "end": 1433.86, + "probability": 0.8751 + }, + { + "start": 1434.36, + "end": 1438.64, + "probability": 0.9537 + }, + { + "start": 1439.42, + "end": 1441.95, + "probability": 0.8517 + }, + { + "start": 1442.8, + "end": 1444.76, + "probability": 0.7159 + }, + { + "start": 1446.12, + "end": 1446.8, + "probability": 0.952 + }, + { + "start": 1448.48, + "end": 1450.14, + "probability": 0.997 + }, + { + "start": 1450.18, + "end": 1453.24, + "probability": 0.9922 + }, + { + "start": 1453.24, + "end": 1456.12, + "probability": 0.9915 + }, + { + "start": 1457.14, + "end": 1458.44, + "probability": 0.8442 + }, + { + "start": 1459.4, + "end": 1461.38, + "probability": 0.9911 + }, + { + "start": 1463.78, + "end": 1466.42, + "probability": 0.9194 + }, + { + "start": 1466.48, + "end": 1469.88, + "probability": 0.6503 + }, + { + "start": 1470.26, + "end": 1477.74, + "probability": 0.9866 + }, + { + "start": 1478.42, + "end": 1483.74, + "probability": 0.9269 + }, + { + "start": 1484.86, + "end": 1485.78, + "probability": 0.7012 + }, + { + "start": 1485.92, + "end": 1489.48, + "probability": 0.9956 + }, + { + "start": 1489.6, + "end": 1490.04, + "probability": 0.8554 + }, + { + "start": 1490.44, + "end": 1491.66, + "probability": 0.9965 + }, + { + "start": 1493.94, + "end": 1495.2, + "probability": 0.9406 + }, + { + "start": 1496.74, + "end": 1498.58, + "probability": 0.5205 + }, + { + "start": 1500.18, + "end": 1502.3, + "probability": 0.8293 + }, + { + "start": 1503.58, + "end": 1506.16, + "probability": 0.6322 + }, + { + "start": 1506.28, + "end": 1506.34, + "probability": 0.5179 + }, + { + "start": 1506.34, + "end": 1509.32, + "probability": 0.8545 + }, + { + "start": 1510.48, + "end": 1515.0, + "probability": 0.988 + }, + { + "start": 1515.86, + "end": 1519.4, + "probability": 0.9753 + }, + { + "start": 1520.22, + "end": 1522.76, + "probability": 0.9973 + }, + { + "start": 1522.76, + "end": 1525.42, + "probability": 0.864 + }, + { + "start": 1526.42, + "end": 1528.58, + "probability": 0.9936 + }, + { + "start": 1530.0, + "end": 1533.66, + "probability": 0.6182 + }, + { + "start": 1534.48, + "end": 1536.22, + "probability": 0.938 + }, + { + "start": 1537.5, + "end": 1539.22, + "probability": 0.6236 + }, + { + "start": 1540.6, + "end": 1545.08, + "probability": 0.7176 + }, + { + "start": 1545.78, + "end": 1548.36, + "probability": 0.9442 + }, + { + "start": 1549.32, + "end": 1550.14, + "probability": 0.8662 + }, + { + "start": 1551.54, + "end": 1553.12, + "probability": 0.9961 + }, + { + "start": 1554.79, + "end": 1560.17, + "probability": 0.8566 + }, + { + "start": 1560.2, + "end": 1562.92, + "probability": 0.9965 + }, + { + "start": 1564.18, + "end": 1566.86, + "probability": 0.9966 + }, + { + "start": 1567.56, + "end": 1571.18, + "probability": 0.9884 + }, + { + "start": 1571.7, + "end": 1576.74, + "probability": 0.8633 + }, + { + "start": 1577.66, + "end": 1579.86, + "probability": 0.8215 + }, + { + "start": 1580.82, + "end": 1585.02, + "probability": 0.9948 + }, + { + "start": 1586.26, + "end": 1588.42, + "probability": 0.9902 + }, + { + "start": 1589.1, + "end": 1591.96, + "probability": 0.9968 + }, + { + "start": 1592.68, + "end": 1594.02, + "probability": 0.9138 + }, + { + "start": 1594.18, + "end": 1595.32, + "probability": 0.7524 + }, + { + "start": 1595.4, + "end": 1596.18, + "probability": 0.5183 + }, + { + "start": 1596.84, + "end": 1599.88, + "probability": 0.8335 + }, + { + "start": 1600.58, + "end": 1603.12, + "probability": 0.98 + }, + { + "start": 1603.24, + "end": 1604.42, + "probability": 0.9789 + }, + { + "start": 1604.94, + "end": 1607.14, + "probability": 0.9264 + }, + { + "start": 1607.88, + "end": 1611.62, + "probability": 0.9081 + }, + { + "start": 1611.62, + "end": 1614.76, + "probability": 0.6641 + }, + { + "start": 1615.16, + "end": 1616.84, + "probability": 0.9502 + }, + { + "start": 1617.66, + "end": 1618.24, + "probability": 0.9037 + }, + { + "start": 1619.34, + "end": 1620.2, + "probability": 0.8349 + }, + { + "start": 1621.78, + "end": 1624.72, + "probability": 0.8421 + }, + { + "start": 1624.72, + "end": 1629.14, + "probability": 0.9856 + }, + { + "start": 1629.56, + "end": 1633.32, + "probability": 0.9045 + }, + { + "start": 1633.88, + "end": 1636.96, + "probability": 0.998 + }, + { + "start": 1636.96, + "end": 1640.5, + "probability": 0.7142 + }, + { + "start": 1640.62, + "end": 1642.42, + "probability": 0.5462 + }, + { + "start": 1643.04, + "end": 1645.32, + "probability": 0.9441 + }, + { + "start": 1645.86, + "end": 1648.26, + "probability": 0.9792 + }, + { + "start": 1648.9, + "end": 1649.78, + "probability": 0.4797 + }, + { + "start": 1649.9, + "end": 1651.65, + "probability": 0.9968 + }, + { + "start": 1652.4, + "end": 1653.79, + "probability": 0.9368 + }, + { + "start": 1654.78, + "end": 1656.05, + "probability": 0.9703 + }, + { + "start": 1656.54, + "end": 1657.74, + "probability": 0.963 + }, + { + "start": 1657.84, + "end": 1658.68, + "probability": 0.7373 + }, + { + "start": 1659.28, + "end": 1664.22, + "probability": 0.7674 + }, + { + "start": 1664.36, + "end": 1665.96, + "probability": 0.9773 + }, + { + "start": 1666.42, + "end": 1667.64, + "probability": 0.9932 + }, + { + "start": 1668.5, + "end": 1668.96, + "probability": 0.3963 + }, + { + "start": 1670.14, + "end": 1671.48, + "probability": 0.9106 + }, + { + "start": 1672.48, + "end": 1673.84, + "probability": 0.6652 + }, + { + "start": 1675.18, + "end": 1677.98, + "probability": 0.8381 + }, + { + "start": 1678.86, + "end": 1679.24, + "probability": 0.1506 + }, + { + "start": 1679.76, + "end": 1680.82, + "probability": 0.9954 + }, + { + "start": 1681.3, + "end": 1684.0, + "probability": 0.8022 + }, + { + "start": 1684.58, + "end": 1685.68, + "probability": 0.833 + }, + { + "start": 1686.14, + "end": 1688.88, + "probability": 0.9314 + }, + { + "start": 1689.36, + "end": 1692.54, + "probability": 0.7557 + }, + { + "start": 1693.18, + "end": 1694.92, + "probability": 0.975 + }, + { + "start": 1696.2, + "end": 1697.4, + "probability": 0.803 + }, + { + "start": 1697.58, + "end": 1698.36, + "probability": 0.6133 + }, + { + "start": 1698.66, + "end": 1699.54, + "probability": 0.8083 + }, + { + "start": 1699.68, + "end": 1699.68, + "probability": 0.4758 + }, + { + "start": 1700.26, + "end": 1701.46, + "probability": 0.8665 + }, + { + "start": 1702.18, + "end": 1702.76, + "probability": 0.8761 + }, + { + "start": 1702.86, + "end": 1703.28, + "probability": 0.9363 + }, + { + "start": 1703.32, + "end": 1706.3, + "probability": 0.0506 + }, + { + "start": 1707.36, + "end": 1709.62, + "probability": 0.9817 + }, + { + "start": 1710.14, + "end": 1712.74, + "probability": 0.9937 + }, + { + "start": 1713.18, + "end": 1715.04, + "probability": 0.7109 + }, + { + "start": 1715.38, + "end": 1716.1, + "probability": 0.5796 + }, + { + "start": 1716.28, + "end": 1717.14, + "probability": 0.5646 + }, + { + "start": 1717.6, + "end": 1718.29, + "probability": 0.4565 + }, + { + "start": 1732.62, + "end": 1735.22, + "probability": 0.7778 + }, + { + "start": 1736.9, + "end": 1740.74, + "probability": 0.9649 + }, + { + "start": 1742.04, + "end": 1745.94, + "probability": 0.9856 + }, + { + "start": 1747.1, + "end": 1752.0, + "probability": 0.9698 + }, + { + "start": 1753.18, + "end": 1755.84, + "probability": 0.9928 + }, + { + "start": 1755.84, + "end": 1761.24, + "probability": 0.9144 + }, + { + "start": 1761.62, + "end": 1763.4, + "probability": 0.859 + }, + { + "start": 1764.2, + "end": 1767.99, + "probability": 0.8542 + }, + { + "start": 1768.72, + "end": 1769.64, + "probability": 0.9388 + }, + { + "start": 1770.38, + "end": 1770.88, + "probability": 0.1298 + }, + { + "start": 1770.98, + "end": 1772.22, + "probability": 0.8653 + }, + { + "start": 1772.86, + "end": 1775.04, + "probability": 0.7823 + }, + { + "start": 1775.2, + "end": 1780.88, + "probability": 0.9955 + }, + { + "start": 1780.92, + "end": 1785.1, + "probability": 0.9108 + }, + { + "start": 1785.46, + "end": 1788.12, + "probability": 0.8958 + }, + { + "start": 1789.04, + "end": 1792.76, + "probability": 0.8983 + }, + { + "start": 1793.06, + "end": 1796.4, + "probability": 0.7471 + }, + { + "start": 1797.56, + "end": 1798.9, + "probability": 0.6502 + }, + { + "start": 1799.96, + "end": 1803.32, + "probability": 0.9843 + }, + { + "start": 1803.46, + "end": 1805.0, + "probability": 0.9072 + }, + { + "start": 1806.1, + "end": 1809.76, + "probability": 0.9916 + }, + { + "start": 1809.94, + "end": 1812.74, + "probability": 0.8754 + }, + { + "start": 1813.54, + "end": 1819.36, + "probability": 0.9929 + }, + { + "start": 1820.08, + "end": 1821.44, + "probability": 0.8986 + }, + { + "start": 1821.58, + "end": 1823.09, + "probability": 0.9593 + }, + { + "start": 1823.64, + "end": 1824.66, + "probability": 0.8429 + }, + { + "start": 1824.8, + "end": 1829.98, + "probability": 0.9985 + }, + { + "start": 1830.14, + "end": 1836.68, + "probability": 0.9913 + }, + { + "start": 1837.34, + "end": 1839.1, + "probability": 0.9995 + }, + { + "start": 1839.52, + "end": 1844.24, + "probability": 0.9968 + }, + { + "start": 1844.68, + "end": 1848.4, + "probability": 0.9967 + }, + { + "start": 1848.4, + "end": 1852.5, + "probability": 0.9929 + }, + { + "start": 1852.72, + "end": 1856.34, + "probability": 0.8281 + }, + { + "start": 1856.48, + "end": 1859.63, + "probability": 0.9829 + }, + { + "start": 1860.04, + "end": 1861.82, + "probability": 0.9888 + }, + { + "start": 1862.22, + "end": 1863.62, + "probability": 0.9731 + }, + { + "start": 1864.02, + "end": 1866.64, + "probability": 0.9369 + }, + { + "start": 1867.28, + "end": 1870.8, + "probability": 0.7462 + }, + { + "start": 1870.86, + "end": 1872.27, + "probability": 0.8983 + }, + { + "start": 1872.62, + "end": 1875.06, + "probability": 0.6677 + }, + { + "start": 1875.26, + "end": 1877.32, + "probability": 0.9902 + }, + { + "start": 1877.4, + "end": 1878.18, + "probability": 0.7661 + }, + { + "start": 1879.78, + "end": 1882.7, + "probability": 0.6851 + }, + { + "start": 1883.42, + "end": 1885.0, + "probability": 0.9041 + }, + { + "start": 1885.2, + "end": 1886.0, + "probability": 0.6467 + }, + { + "start": 1886.24, + "end": 1888.1, + "probability": 0.9894 + }, + { + "start": 1888.24, + "end": 1890.06, + "probability": 0.9124 + }, + { + "start": 1890.32, + "end": 1890.98, + "probability": 0.6026 + }, + { + "start": 1891.5, + "end": 1892.3, + "probability": 0.7888 + }, + { + "start": 1892.42, + "end": 1896.1, + "probability": 0.9784 + }, + { + "start": 1897.0, + "end": 1898.74, + "probability": 0.713 + }, + { + "start": 1899.82, + "end": 1901.02, + "probability": 0.9741 + }, + { + "start": 1901.06, + "end": 1906.68, + "probability": 0.9541 + }, + { + "start": 1907.28, + "end": 1912.0, + "probability": 0.9835 + }, + { + "start": 1912.6, + "end": 1915.5, + "probability": 0.7661 + }, + { + "start": 1915.64, + "end": 1916.9, + "probability": 0.7742 + }, + { + "start": 1917.5, + "end": 1919.22, + "probability": 0.9484 + }, + { + "start": 1919.66, + "end": 1923.5, + "probability": 0.993 + }, + { + "start": 1924.4, + "end": 1926.2, + "probability": 0.9241 + }, + { + "start": 1926.34, + "end": 1928.92, + "probability": 0.9838 + }, + { + "start": 1928.96, + "end": 1930.16, + "probability": 0.7615 + }, + { + "start": 1930.54, + "end": 1930.9, + "probability": 0.4571 + }, + { + "start": 1931.0, + "end": 1933.44, + "probability": 0.9095 + }, + { + "start": 1934.0, + "end": 1935.12, + "probability": 0.9429 + }, + { + "start": 1935.4, + "end": 1936.42, + "probability": 0.9916 + }, + { + "start": 1936.92, + "end": 1941.2, + "probability": 0.7822 + }, + { + "start": 1941.42, + "end": 1942.72, + "probability": 0.8843 + }, + { + "start": 1943.68, + "end": 1950.14, + "probability": 0.9898 + }, + { + "start": 1950.64, + "end": 1953.7, + "probability": 0.8512 + }, + { + "start": 1953.9, + "end": 1957.66, + "probability": 0.9965 + }, + { + "start": 1958.3, + "end": 1959.0, + "probability": 0.4392 + }, + { + "start": 1959.44, + "end": 1964.98, + "probability": 0.9513 + }, + { + "start": 1965.34, + "end": 1966.44, + "probability": 0.8578 + }, + { + "start": 1966.52, + "end": 1967.98, + "probability": 0.8509 + }, + { + "start": 1968.54, + "end": 1970.9, + "probability": 0.8232 + }, + { + "start": 1971.54, + "end": 1976.3, + "probability": 0.9084 + }, + { + "start": 1976.74, + "end": 1979.72, + "probability": 0.9523 + }, + { + "start": 1979.88, + "end": 1982.78, + "probability": 0.993 + }, + { + "start": 1982.96, + "end": 1986.58, + "probability": 0.9419 + }, + { + "start": 1986.58, + "end": 1991.3, + "probability": 0.7934 + }, + { + "start": 1991.46, + "end": 1991.52, + "probability": 0.7742 + }, + { + "start": 1991.58, + "end": 1992.14, + "probability": 0.7933 + }, + { + "start": 1992.48, + "end": 1993.48, + "probability": 0.5862 + }, + { + "start": 1993.88, + "end": 1994.94, + "probability": 0.9191 + }, + { + "start": 1995.06, + "end": 1995.88, + "probability": 0.9221 + }, + { + "start": 1996.42, + "end": 1998.04, + "probability": 0.7616 + }, + { + "start": 1998.58, + "end": 2001.98, + "probability": 0.8507 + }, + { + "start": 2001.98, + "end": 2002.34, + "probability": 0.3207 + }, + { + "start": 2003.04, + "end": 2006.34, + "probability": 0.8916 + }, + { + "start": 2006.94, + "end": 2009.4, + "probability": 0.9843 + }, + { + "start": 2009.4, + "end": 2010.86, + "probability": 0.9599 + }, + { + "start": 2011.54, + "end": 2012.66, + "probability": 0.9932 + }, + { + "start": 2012.82, + "end": 2015.41, + "probability": 0.9894 + }, + { + "start": 2015.96, + "end": 2017.44, + "probability": 0.8468 + }, + { + "start": 2018.52, + "end": 2024.42, + "probability": 0.8228 + }, + { + "start": 2025.66, + "end": 2030.69, + "probability": 0.7499 + }, + { + "start": 2030.8, + "end": 2032.18, + "probability": 0.7265 + }, + { + "start": 2032.42, + "end": 2035.68, + "probability": 0.3262 + }, + { + "start": 2036.1, + "end": 2038.56, + "probability": 0.1629 + }, + { + "start": 2039.44, + "end": 2041.48, + "probability": 0.4913 + }, + { + "start": 2041.5, + "end": 2046.34, + "probability": 0.4774 + }, + { + "start": 2049.05, + "end": 2050.76, + "probability": 0.7865 + }, + { + "start": 2051.16, + "end": 2051.72, + "probability": 0.8584 + }, + { + "start": 2051.72, + "end": 2057.4, + "probability": 0.8534 + }, + { + "start": 2057.5, + "end": 2058.2, + "probability": 0.7648 + }, + { + "start": 2058.5, + "end": 2062.24, + "probability": 0.9426 + }, + { + "start": 2062.82, + "end": 2067.5, + "probability": 0.9937 + }, + { + "start": 2067.84, + "end": 2071.62, + "probability": 0.9369 + }, + { + "start": 2071.7, + "end": 2073.34, + "probability": 0.832 + }, + { + "start": 2073.8, + "end": 2074.88, + "probability": 0.5735 + }, + { + "start": 2075.3, + "end": 2076.58, + "probability": 0.9467 + }, + { + "start": 2077.28, + "end": 2079.1, + "probability": 0.7963 + }, + { + "start": 2079.36, + "end": 2080.3, + "probability": 0.9478 + }, + { + "start": 2080.54, + "end": 2083.24, + "probability": 0.9963 + }, + { + "start": 2083.24, + "end": 2087.2, + "probability": 0.9936 + }, + { + "start": 2087.34, + "end": 2088.5, + "probability": 0.9242 + }, + { + "start": 2089.42, + "end": 2091.7, + "probability": 0.7301 + }, + { + "start": 2092.14, + "end": 2095.92, + "probability": 0.9595 + }, + { + "start": 2097.06, + "end": 2101.02, + "probability": 0.9963 + }, + { + "start": 2101.4, + "end": 2105.14, + "probability": 0.9914 + }, + { + "start": 2105.2, + "end": 2108.3, + "probability": 0.9974 + }, + { + "start": 2108.3, + "end": 2111.4, + "probability": 0.9976 + }, + { + "start": 2111.6, + "end": 2113.8, + "probability": 0.9889 + }, + { + "start": 2114.38, + "end": 2117.04, + "probability": 0.9791 + }, + { + "start": 2117.3, + "end": 2121.14, + "probability": 0.7822 + }, + { + "start": 2122.26, + "end": 2124.36, + "probability": 0.9954 + }, + { + "start": 2124.72, + "end": 2130.42, + "probability": 0.9952 + }, + { + "start": 2130.86, + "end": 2137.82, + "probability": 0.9917 + }, + { + "start": 2138.24, + "end": 2141.0, + "probability": 0.991 + }, + { + "start": 2141.74, + "end": 2145.88, + "probability": 0.9055 + }, + { + "start": 2145.88, + "end": 2149.2, + "probability": 0.9976 + }, + { + "start": 2149.32, + "end": 2150.0, + "probability": 0.6076 + }, + { + "start": 2150.18, + "end": 2150.78, + "probability": 0.9363 + }, + { + "start": 2150.98, + "end": 2153.14, + "probability": 0.993 + }, + { + "start": 2153.64, + "end": 2154.74, + "probability": 0.7801 + }, + { + "start": 2155.22, + "end": 2160.78, + "probability": 0.9918 + }, + { + "start": 2161.32, + "end": 2162.6, + "probability": 0.978 + }, + { + "start": 2163.06, + "end": 2167.3, + "probability": 0.9951 + }, + { + "start": 2167.3, + "end": 2171.96, + "probability": 0.9971 + }, + { + "start": 2172.5, + "end": 2173.4, + "probability": 0.9418 + }, + { + "start": 2173.72, + "end": 2175.62, + "probability": 0.9707 + }, + { + "start": 2175.74, + "end": 2179.68, + "probability": 0.9242 + }, + { + "start": 2180.28, + "end": 2184.34, + "probability": 0.9954 + }, + { + "start": 2184.74, + "end": 2187.68, + "probability": 0.9499 + }, + { + "start": 2188.48, + "end": 2192.18, + "probability": 0.9863 + }, + { + "start": 2192.68, + "end": 2193.66, + "probability": 0.8821 + }, + { + "start": 2194.3, + "end": 2195.84, + "probability": 0.9765 + }, + { + "start": 2195.9, + "end": 2197.28, + "probability": 0.9154 + }, + { + "start": 2197.32, + "end": 2199.86, + "probability": 0.9393 + }, + { + "start": 2200.32, + "end": 2202.26, + "probability": 0.0067 + }, + { + "start": 2202.33, + "end": 2203.44, + "probability": 0.3986 + }, + { + "start": 2204.0, + "end": 2208.06, + "probability": 0.9927 + }, + { + "start": 2208.2, + "end": 2215.18, + "probability": 0.9995 + }, + { + "start": 2215.18, + "end": 2221.22, + "probability": 0.9985 + }, + { + "start": 2221.62, + "end": 2223.52, + "probability": 0.9611 + }, + { + "start": 2223.98, + "end": 2225.64, + "probability": 0.5873 + }, + { + "start": 2226.1, + "end": 2228.09, + "probability": 0.995 + }, + { + "start": 2228.44, + "end": 2230.2, + "probability": 0.9812 + }, + { + "start": 2230.56, + "end": 2236.63, + "probability": 0.9707 + }, + { + "start": 2238.06, + "end": 2238.06, + "probability": 0.0347 + }, + { + "start": 2238.06, + "end": 2239.82, + "probability": 0.9785 + }, + { + "start": 2239.9, + "end": 2244.72, + "probability": 0.9738 + }, + { + "start": 2245.48, + "end": 2249.76, + "probability": 0.9604 + }, + { + "start": 2249.78, + "end": 2252.82, + "probability": 0.9901 + }, + { + "start": 2253.3, + "end": 2254.46, + "probability": 0.9895 + }, + { + "start": 2254.84, + "end": 2257.28, + "probability": 0.9644 + }, + { + "start": 2257.32, + "end": 2261.72, + "probability": 0.9906 + }, + { + "start": 2262.24, + "end": 2266.38, + "probability": 0.9976 + }, + { + "start": 2266.38, + "end": 2271.06, + "probability": 0.6068 + }, + { + "start": 2271.58, + "end": 2272.28, + "probability": 0.7279 + }, + { + "start": 2272.94, + "end": 2277.1, + "probability": 0.9077 + }, + { + "start": 2277.22, + "end": 2280.68, + "probability": 0.9937 + }, + { + "start": 2281.1, + "end": 2286.78, + "probability": 0.9891 + }, + { + "start": 2287.06, + "end": 2290.88, + "probability": 0.9928 + }, + { + "start": 2290.98, + "end": 2293.48, + "probability": 0.9022 + }, + { + "start": 2294.06, + "end": 2295.04, + "probability": 0.9429 + }, + { + "start": 2295.28, + "end": 2298.84, + "probability": 0.9192 + }, + { + "start": 2299.08, + "end": 2301.82, + "probability": 0.9797 + }, + { + "start": 2302.78, + "end": 2307.72, + "probability": 0.9945 + }, + { + "start": 2307.72, + "end": 2313.0, + "probability": 0.9868 + }, + { + "start": 2313.2, + "end": 2316.36, + "probability": 0.6442 + }, + { + "start": 2316.64, + "end": 2317.76, + "probability": 0.8642 + }, + { + "start": 2317.86, + "end": 2321.7, + "probability": 0.9929 + }, + { + "start": 2322.22, + "end": 2326.92, + "probability": 0.9949 + }, + { + "start": 2327.0, + "end": 2328.16, + "probability": 0.7966 + }, + { + "start": 2328.24, + "end": 2328.74, + "probability": 0.9181 + }, + { + "start": 2329.2, + "end": 2332.42, + "probability": 0.9888 + }, + { + "start": 2332.92, + "end": 2335.41, + "probability": 0.837 + }, + { + "start": 2336.64, + "end": 2339.14, + "probability": 0.9819 + }, + { + "start": 2339.24, + "end": 2344.57, + "probability": 0.9958 + }, + { + "start": 2344.6, + "end": 2348.88, + "probability": 0.9963 + }, + { + "start": 2349.02, + "end": 2352.44, + "probability": 0.9963 + }, + { + "start": 2352.66, + "end": 2353.74, + "probability": 0.9617 + }, + { + "start": 2354.02, + "end": 2358.48, + "probability": 0.771 + }, + { + "start": 2358.7, + "end": 2359.58, + "probability": 0.5305 + }, + { + "start": 2360.12, + "end": 2362.76, + "probability": 0.9915 + }, + { + "start": 2363.28, + "end": 2369.56, + "probability": 0.9979 + }, + { + "start": 2369.98, + "end": 2373.24, + "probability": 0.9921 + }, + { + "start": 2373.24, + "end": 2376.46, + "probability": 0.9949 + }, + { + "start": 2376.92, + "end": 2380.06, + "probability": 0.999 + }, + { + "start": 2380.06, + "end": 2384.54, + "probability": 0.888 + }, + { + "start": 2384.9, + "end": 2389.8, + "probability": 0.9819 + }, + { + "start": 2390.16, + "end": 2390.9, + "probability": 0.8311 + }, + { + "start": 2391.14, + "end": 2392.08, + "probability": 0.8864 + }, + { + "start": 2392.28, + "end": 2395.4, + "probability": 0.9214 + }, + { + "start": 2395.4, + "end": 2398.5, + "probability": 0.7831 + }, + { + "start": 2400.3, + "end": 2402.8, + "probability": 0.9926 + }, + { + "start": 2403.0, + "end": 2405.59, + "probability": 0.9714 + }, + { + "start": 2406.08, + "end": 2406.84, + "probability": 0.9528 + }, + { + "start": 2407.18, + "end": 2412.92, + "probability": 0.9943 + }, + { + "start": 2412.92, + "end": 2417.78, + "probability": 0.9993 + }, + { + "start": 2418.48, + "end": 2419.9, + "probability": 0.9015 + }, + { + "start": 2420.04, + "end": 2424.16, + "probability": 0.9937 + }, + { + "start": 2425.0, + "end": 2426.82, + "probability": 0.1309 + }, + { + "start": 2426.94, + "end": 2432.52, + "probability": 0.9976 + }, + { + "start": 2432.9, + "end": 2434.08, + "probability": 0.9531 + }, + { + "start": 2434.48, + "end": 2436.46, + "probability": 0.9987 + }, + { + "start": 2436.58, + "end": 2441.94, + "probability": 0.985 + }, + { + "start": 2442.02, + "end": 2444.92, + "probability": 0.9561 + }, + { + "start": 2445.04, + "end": 2449.3, + "probability": 0.939 + }, + { + "start": 2450.38, + "end": 2456.06, + "probability": 0.7771 + }, + { + "start": 2456.78, + "end": 2458.62, + "probability": 0.9131 + }, + { + "start": 2458.78, + "end": 2461.17, + "probability": 0.9604 + }, + { + "start": 2461.98, + "end": 2467.59, + "probability": 0.9958 + }, + { + "start": 2468.56, + "end": 2469.94, + "probability": 0.6257 + }, + { + "start": 2470.22, + "end": 2474.96, + "probability": 0.9741 + }, + { + "start": 2475.1, + "end": 2478.6, + "probability": 0.9098 + }, + { + "start": 2479.2, + "end": 2484.82, + "probability": 0.9894 + }, + { + "start": 2484.82, + "end": 2487.18, + "probability": 0.7133 + }, + { + "start": 2488.14, + "end": 2488.3, + "probability": 0.3444 + }, + { + "start": 2488.38, + "end": 2489.08, + "probability": 0.8937 + }, + { + "start": 2489.44, + "end": 2490.48, + "probability": 0.231 + }, + { + "start": 2492.28, + "end": 2497.18, + "probability": 0.1465 + }, + { + "start": 2501.94, + "end": 2503.5, + "probability": 0.0913 + }, + { + "start": 2503.5, + "end": 2504.78, + "probability": 0.0569 + }, + { + "start": 2504.86, + "end": 2505.16, + "probability": 0.0258 + }, + { + "start": 2505.74, + "end": 2506.54, + "probability": 0.0074 + }, + { + "start": 2506.68, + "end": 2510.48, + "probability": 0.1142 + }, + { + "start": 2510.48, + "end": 2511.2, + "probability": 0.0541 + }, + { + "start": 2511.62, + "end": 2512.92, + "probability": 0.0728 + }, + { + "start": 2520.98, + "end": 2522.22, + "probability": 0.0058 + }, + { + "start": 2522.82, + "end": 2523.14, + "probability": 0.1784 + }, + { + "start": 2530.56, + "end": 2532.1, + "probability": 0.1864 + }, + { + "start": 2544.54, + "end": 2547.44, + "probability": 0.2314 + }, + { + "start": 2634.34, + "end": 2635.2, + "probability": 0.1464 + }, + { + "start": 2635.9, + "end": 2637.7, + "probability": 0.7757 + }, + { + "start": 2638.32, + "end": 2641.02, + "probability": 0.6216 + }, + { + "start": 2641.18, + "end": 2644.06, + "probability": 0.8354 + }, + { + "start": 2645.38, + "end": 2647.34, + "probability": 0.9473 + }, + { + "start": 2651.08, + "end": 2651.76, + "probability": 0.2469 + }, + { + "start": 2651.8, + "end": 2654.54, + "probability": 0.9427 + }, + { + "start": 2654.72, + "end": 2655.34, + "probability": 0.7569 + }, + { + "start": 2655.56, + "end": 2656.74, + "probability": 0.4874 + }, + { + "start": 2657.34, + "end": 2662.0, + "probability": 0.8274 + }, + { + "start": 2663.26, + "end": 2663.26, + "probability": 0.5198 + }, + { + "start": 2663.28, + "end": 2664.78, + "probability": 0.1421 + }, + { + "start": 2669.49, + "end": 2673.45, + "probability": 0.0713 + }, + { + "start": 2682.82, + "end": 2690.56, + "probability": 0.0467 + }, + { + "start": 2693.48, + "end": 2696.62, + "probability": 0.0616 + }, + { + "start": 2696.68, + "end": 2701.48, + "probability": 0.2542 + }, + { + "start": 2701.88, + "end": 2702.36, + "probability": 0.1793 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2757.0, + "end": 2757.0, + "probability": 0.0 + }, + { + "start": 2759.17, + "end": 2759.42, + "probability": 0.1603 + }, + { + "start": 2760.48, + "end": 2760.48, + "probability": 0.0404 + }, + { + "start": 2760.48, + "end": 2760.48, + "probability": 0.0633 + }, + { + "start": 2760.48, + "end": 2761.26, + "probability": 0.4417 + }, + { + "start": 2761.62, + "end": 2763.76, + "probability": 0.7295 + }, + { + "start": 2764.22, + "end": 2764.88, + "probability": 0.5119 + }, + { + "start": 2765.06, + "end": 2768.18, + "probability": 0.7865 + }, + { + "start": 2771.16, + "end": 2773.66, + "probability": 0.8529 + }, + { + "start": 2789.44, + "end": 2790.52, + "probability": 0.7252 + }, + { + "start": 2792.42, + "end": 2794.68, + "probability": 0.9418 + }, + { + "start": 2795.8, + "end": 2798.76, + "probability": 0.5433 + }, + { + "start": 2798.88, + "end": 2799.6, + "probability": 0.7959 + }, + { + "start": 2800.22, + "end": 2802.56, + "probability": 0.9584 + }, + { + "start": 2803.58, + "end": 2806.5, + "probability": 0.9126 + }, + { + "start": 2807.38, + "end": 2814.02, + "probability": 0.9594 + }, + { + "start": 2814.38, + "end": 2814.74, + "probability": 0.4822 + }, + { + "start": 2815.44, + "end": 2817.76, + "probability": 0.9473 + }, + { + "start": 2818.06, + "end": 2821.88, + "probability": 0.7161 + }, + { + "start": 2822.16, + "end": 2823.3, + "probability": 0.9167 + }, + { + "start": 2824.04, + "end": 2825.44, + "probability": 0.9885 + }, + { + "start": 2826.16, + "end": 2828.36, + "probability": 0.877 + }, + { + "start": 2829.34, + "end": 2832.64, + "probability": 0.9332 + }, + { + "start": 2833.24, + "end": 2835.02, + "probability": 0.7281 + }, + { + "start": 2837.58, + "end": 2841.08, + "probability": 0.9858 + }, + { + "start": 2841.08, + "end": 2844.66, + "probability": 0.9951 + }, + { + "start": 2845.42, + "end": 2847.3, + "probability": 0.9971 + }, + { + "start": 2848.1, + "end": 2850.04, + "probability": 0.8184 + }, + { + "start": 2851.0, + "end": 2852.12, + "probability": 0.9681 + }, + { + "start": 2852.6, + "end": 2852.78, + "probability": 0.6939 + }, + { + "start": 2852.78, + "end": 2856.26, + "probability": 0.7228 + }, + { + "start": 2856.78, + "end": 2857.41, + "probability": 0.9644 + }, + { + "start": 2858.44, + "end": 2862.48, + "probability": 0.9941 + }, + { + "start": 2862.48, + "end": 2869.76, + "probability": 0.9941 + }, + { + "start": 2870.38, + "end": 2872.1, + "probability": 0.9595 + }, + { + "start": 2873.42, + "end": 2876.18, + "probability": 0.9691 + }, + { + "start": 2877.8, + "end": 2879.42, + "probability": 0.9224 + }, + { + "start": 2880.02, + "end": 2880.88, + "probability": 0.7435 + }, + { + "start": 2881.46, + "end": 2882.88, + "probability": 0.9961 + }, + { + "start": 2885.29, + "end": 2889.7, + "probability": 0.9744 + }, + { + "start": 2890.0, + "end": 2891.5, + "probability": 0.9641 + }, + { + "start": 2893.44, + "end": 2893.8, + "probability": 0.304 + }, + { + "start": 2895.44, + "end": 2897.12, + "probability": 0.9979 + }, + { + "start": 2897.34, + "end": 2900.66, + "probability": 0.9757 + }, + { + "start": 2901.42, + "end": 2903.32, + "probability": 0.8057 + }, + { + "start": 2903.56, + "end": 2904.54, + "probability": 0.8377 + }, + { + "start": 2904.62, + "end": 2905.86, + "probability": 0.8456 + }, + { + "start": 2906.62, + "end": 2910.26, + "probability": 0.9762 + }, + { + "start": 2911.34, + "end": 2915.48, + "probability": 0.8576 + }, + { + "start": 2915.82, + "end": 2919.42, + "probability": 0.9136 + }, + { + "start": 2919.48, + "end": 2920.68, + "probability": 0.7459 + }, + { + "start": 2920.96, + "end": 2924.14, + "probability": 0.8238 + }, + { + "start": 2925.58, + "end": 2926.56, + "probability": 0.762 + }, + { + "start": 2926.96, + "end": 2930.5, + "probability": 0.9808 + }, + { + "start": 2931.0, + "end": 2933.52, + "probability": 0.9957 + }, + { + "start": 2933.52, + "end": 2936.42, + "probability": 0.9953 + }, + { + "start": 2936.6, + "end": 2937.2, + "probability": 0.8452 + }, + { + "start": 2937.34, + "end": 2938.0, + "probability": 0.6245 + }, + { + "start": 2939.14, + "end": 2940.76, + "probability": 0.8061 + }, + { + "start": 2941.32, + "end": 2943.3, + "probability": 0.9487 + }, + { + "start": 2943.5, + "end": 2944.82, + "probability": 0.967 + }, + { + "start": 2945.1, + "end": 2945.74, + "probability": 0.963 + }, + { + "start": 2945.98, + "end": 2946.73, + "probability": 0.8978 + }, + { + "start": 2947.94, + "end": 2950.64, + "probability": 0.8994 + }, + { + "start": 2952.1, + "end": 2957.34, + "probability": 0.9973 + }, + { + "start": 2957.72, + "end": 2961.08, + "probability": 0.8486 + }, + { + "start": 2962.04, + "end": 2964.32, + "probability": 0.994 + }, + { + "start": 2964.86, + "end": 2968.36, + "probability": 0.9886 + }, + { + "start": 2969.06, + "end": 2971.82, + "probability": 0.9606 + }, + { + "start": 2972.38, + "end": 2973.14, + "probability": 0.8083 + }, + { + "start": 2973.66, + "end": 2978.74, + "probability": 0.9818 + }, + { + "start": 2978.74, + "end": 2981.08, + "probability": 0.6317 + }, + { + "start": 2981.78, + "end": 2983.98, + "probability": 0.7296 + }, + { + "start": 2984.1, + "end": 2987.2, + "probability": 0.9912 + }, + { + "start": 2989.04, + "end": 2989.98, + "probability": 0.6113 + }, + { + "start": 2990.32, + "end": 2991.02, + "probability": 0.9224 + }, + { + "start": 2991.6, + "end": 2992.44, + "probability": 0.9092 + }, + { + "start": 2993.28, + "end": 2994.28, + "probability": 0.7409 + }, + { + "start": 2994.88, + "end": 2998.56, + "probability": 0.9056 + }, + { + "start": 2999.16, + "end": 3001.72, + "probability": 0.9976 + }, + { + "start": 3002.54, + "end": 3005.94, + "probability": 0.8926 + }, + { + "start": 3007.3, + "end": 3011.8, + "probability": 0.9854 + }, + { + "start": 3013.18, + "end": 3015.24, + "probability": 0.9982 + }, + { + "start": 3015.66, + "end": 3017.24, + "probability": 0.9972 + }, + { + "start": 3018.3, + "end": 3022.1, + "probability": 0.9873 + }, + { + "start": 3022.7, + "end": 3025.76, + "probability": 0.9958 + }, + { + "start": 3026.3, + "end": 3026.64, + "probability": 0.6968 + }, + { + "start": 3027.6, + "end": 3031.28, + "probability": 0.9948 + }, + { + "start": 3032.04, + "end": 3034.3, + "probability": 0.9235 + }, + { + "start": 3034.36, + "end": 3039.58, + "probability": 0.999 + }, + { + "start": 3039.96, + "end": 3042.36, + "probability": 0.8229 + }, + { + "start": 3043.26, + "end": 3045.02, + "probability": 0.854 + }, + { + "start": 3045.6, + "end": 3049.56, + "probability": 0.9985 + }, + { + "start": 3049.56, + "end": 3053.0, + "probability": 0.9993 + }, + { + "start": 3053.06, + "end": 3054.1, + "probability": 0.9919 + }, + { + "start": 3054.32, + "end": 3055.38, + "probability": 0.9356 + }, + { + "start": 3056.18, + "end": 3056.88, + "probability": 0.5437 + }, + { + "start": 3057.0, + "end": 3061.39, + "probability": 0.9695 + }, + { + "start": 3061.58, + "end": 3062.28, + "probability": 0.392 + }, + { + "start": 3062.84, + "end": 3064.64, + "probability": 0.9919 + }, + { + "start": 3064.8, + "end": 3066.54, + "probability": 0.9724 + }, + { + "start": 3067.0, + "end": 3069.76, + "probability": 0.9792 + }, + { + "start": 3070.84, + "end": 3073.86, + "probability": 0.7936 + }, + { + "start": 3074.0, + "end": 3077.02, + "probability": 0.5694 + }, + { + "start": 3077.1, + "end": 3078.0, + "probability": 0.682 + }, + { + "start": 3078.44, + "end": 3078.6, + "probability": 0.0235 + }, + { + "start": 3081.66, + "end": 3088.58, + "probability": 0.9919 + }, + { + "start": 3089.22, + "end": 3092.72, + "probability": 0.9989 + }, + { + "start": 3093.7, + "end": 3095.34, + "probability": 0.9896 + }, + { + "start": 3095.88, + "end": 3097.68, + "probability": 0.8354 + }, + { + "start": 3098.24, + "end": 3099.94, + "probability": 0.8447 + }, + { + "start": 3100.68, + "end": 3103.48, + "probability": 0.5959 + }, + { + "start": 3105.38, + "end": 3109.14, + "probability": 0.9903 + }, + { + "start": 3109.16, + "end": 3109.98, + "probability": 0.793 + }, + { + "start": 3110.04, + "end": 3111.56, + "probability": 0.8984 + }, + { + "start": 3112.56, + "end": 3115.6, + "probability": 0.9792 + }, + { + "start": 3116.12, + "end": 3120.2, + "probability": 0.9989 + }, + { + "start": 3120.64, + "end": 3121.34, + "probability": 0.7466 + }, + { + "start": 3122.22, + "end": 3123.96, + "probability": 0.9927 + }, + { + "start": 3124.04, + "end": 3125.06, + "probability": 0.9337 + }, + { + "start": 3125.56, + "end": 3129.44, + "probability": 0.9924 + }, + { + "start": 3129.44, + "end": 3132.22, + "probability": 0.9883 + }, + { + "start": 3133.36, + "end": 3135.88, + "probability": 0.6951 + }, + { + "start": 3137.48, + "end": 3139.76, + "probability": 0.9622 + }, + { + "start": 3139.84, + "end": 3142.18, + "probability": 0.9641 + }, + { + "start": 3142.64, + "end": 3146.68, + "probability": 0.9971 + }, + { + "start": 3147.32, + "end": 3148.4, + "probability": 0.958 + }, + { + "start": 3148.96, + "end": 3150.12, + "probability": 0.9955 + }, + { + "start": 3150.76, + "end": 3151.92, + "probability": 0.9164 + }, + { + "start": 3152.6, + "end": 3154.29, + "probability": 0.8651 + }, + { + "start": 3155.2, + "end": 3156.22, + "probability": 0.7728 + }, + { + "start": 3156.8, + "end": 3162.32, + "probability": 0.9546 + }, + { + "start": 3162.84, + "end": 3163.66, + "probability": 0.9553 + }, + { + "start": 3164.76, + "end": 3167.14, + "probability": 0.9552 + }, + { + "start": 3167.78, + "end": 3174.1, + "probability": 0.9915 + }, + { + "start": 3174.24, + "end": 3175.9, + "probability": 0.3971 + }, + { + "start": 3175.98, + "end": 3178.84, + "probability": 0.973 + }, + { + "start": 3178.84, + "end": 3180.77, + "probability": 0.8976 + }, + { + "start": 3181.32, + "end": 3185.34, + "probability": 0.7709 + }, + { + "start": 3185.72, + "end": 3186.73, + "probability": 0.6137 + }, + { + "start": 3187.32, + "end": 3188.98, + "probability": 0.9371 + }, + { + "start": 3189.72, + "end": 3191.18, + "probability": 0.9441 + }, + { + "start": 3191.32, + "end": 3191.42, + "probability": 0.7844 + }, + { + "start": 3191.68, + "end": 3192.34, + "probability": 0.9233 + }, + { + "start": 3192.86, + "end": 3195.2, + "probability": 0.9793 + }, + { + "start": 3195.66, + "end": 3197.56, + "probability": 0.9951 + }, + { + "start": 3198.0, + "end": 3199.38, + "probability": 0.9875 + }, + { + "start": 3199.92, + "end": 3200.48, + "probability": 0.5557 + }, + { + "start": 3201.38, + "end": 3205.5, + "probability": 0.9634 + }, + { + "start": 3205.9, + "end": 3210.02, + "probability": 0.9905 + }, + { + "start": 3210.08, + "end": 3210.62, + "probability": 0.653 + }, + { + "start": 3211.22, + "end": 3211.82, + "probability": 0.7319 + }, + { + "start": 3212.46, + "end": 3213.84, + "probability": 0.9367 + }, + { + "start": 3214.86, + "end": 3215.71, + "probability": 0.8677 + }, + { + "start": 3216.26, + "end": 3216.82, + "probability": 0.9596 + }, + { + "start": 3217.32, + "end": 3220.14, + "probability": 0.9935 + }, + { + "start": 3220.7, + "end": 3225.02, + "probability": 0.997 + }, + { + "start": 3225.53, + "end": 3227.5, + "probability": 0.8945 + }, + { + "start": 3228.01, + "end": 3228.08, + "probability": 0.1036 + }, + { + "start": 3228.08, + "end": 3230.14, + "probability": 0.9839 + }, + { + "start": 3230.78, + "end": 3231.28, + "probability": 0.7471 + }, + { + "start": 3231.42, + "end": 3233.78, + "probability": 0.933 + }, + { + "start": 3234.06, + "end": 3236.55, + "probability": 0.9875 + }, + { + "start": 3236.76, + "end": 3237.52, + "probability": 0.6113 + }, + { + "start": 3238.3, + "end": 3238.96, + "probability": 0.1591 + }, + { + "start": 3239.1, + "end": 3239.82, + "probability": 0.28 + }, + { + "start": 3239.86, + "end": 3240.34, + "probability": 0.7258 + }, + { + "start": 3240.48, + "end": 3241.18, + "probability": 0.5564 + }, + { + "start": 3242.36, + "end": 3245.18, + "probability": 0.866 + }, + { + "start": 3245.72, + "end": 3246.64, + "probability": 0.9285 + }, + { + "start": 3246.68, + "end": 3250.44, + "probability": 0.9949 + }, + { + "start": 3251.02, + "end": 3253.18, + "probability": 0.9343 + }, + { + "start": 3253.8, + "end": 3255.32, + "probability": 0.9588 + }, + { + "start": 3255.86, + "end": 3256.07, + "probability": 0.0608 + }, + { + "start": 3256.4, + "end": 3256.96, + "probability": 0.5467 + }, + { + "start": 3257.16, + "end": 3260.74, + "probability": 0.7934 + }, + { + "start": 3261.18, + "end": 3263.52, + "probability": 0.9906 + }, + { + "start": 3264.06, + "end": 3265.04, + "probability": 0.8567 + }, + { + "start": 3265.2, + "end": 3267.26, + "probability": 0.6601 + }, + { + "start": 3267.26, + "end": 3267.92, + "probability": 0.0145 + }, + { + "start": 3268.04, + "end": 3269.3, + "probability": 0.6418 + }, + { + "start": 3269.38, + "end": 3270.16, + "probability": 0.6557 + }, + { + "start": 3270.64, + "end": 3273.24, + "probability": 0.9814 + }, + { + "start": 3274.14, + "end": 3275.38, + "probability": 0.006 + }, + { + "start": 3276.88, + "end": 3280.54, + "probability": 0.1708 + }, + { + "start": 3280.54, + "end": 3280.54, + "probability": 0.0598 + }, + { + "start": 3280.54, + "end": 3280.56, + "probability": 0.0754 + }, + { + "start": 3280.7, + "end": 3280.7, + "probability": 0.0249 + }, + { + "start": 3280.88, + "end": 3281.44, + "probability": 0.0722 + }, + { + "start": 3282.78, + "end": 3286.96, + "probability": 0.5667 + }, + { + "start": 3287.52, + "end": 3288.34, + "probability": 0.6717 + }, + { + "start": 3288.44, + "end": 3289.6, + "probability": 0.5167 + }, + { + "start": 3289.62, + "end": 3291.38, + "probability": 0.5303 + }, + { + "start": 3291.44, + "end": 3293.84, + "probability": 0.8513 + }, + { + "start": 3313.84, + "end": 3315.0, + "probability": 0.6573 + }, + { + "start": 3316.92, + "end": 3318.8, + "probability": 0.8099 + }, + { + "start": 3320.44, + "end": 3325.22, + "probability": 0.7499 + }, + { + "start": 3326.38, + "end": 3329.88, + "probability": 0.9258 + }, + { + "start": 3330.86, + "end": 3331.82, + "probability": 0.8723 + }, + { + "start": 3331.98, + "end": 3332.04, + "probability": 0.9365 + }, + { + "start": 3332.58, + "end": 3335.26, + "probability": 0.9917 + }, + { + "start": 3335.48, + "end": 3337.98, + "probability": 0.9821 + }, + { + "start": 3338.4, + "end": 3339.02, + "probability": 0.5576 + }, + { + "start": 3339.14, + "end": 3340.72, + "probability": 0.9987 + }, + { + "start": 3341.38, + "end": 3346.02, + "probability": 0.9985 + }, + { + "start": 3346.8, + "end": 3348.48, + "probability": 0.984 + }, + { + "start": 3349.44, + "end": 3355.42, + "probability": 0.9456 + }, + { + "start": 3356.06, + "end": 3360.32, + "probability": 0.8507 + }, + { + "start": 3360.7, + "end": 3361.82, + "probability": 0.8861 + }, + { + "start": 3363.08, + "end": 3365.2, + "probability": 0.9709 + }, + { + "start": 3366.34, + "end": 3371.87, + "probability": 0.7908 + }, + { + "start": 3372.8, + "end": 3374.1, + "probability": 0.9359 + }, + { + "start": 3374.8, + "end": 3377.26, + "probability": 0.7817 + }, + { + "start": 3378.32, + "end": 3380.12, + "probability": 0.976 + }, + { + "start": 3380.24, + "end": 3382.96, + "probability": 0.999 + }, + { + "start": 3383.82, + "end": 3387.18, + "probability": 0.9639 + }, + { + "start": 3387.44, + "end": 3392.52, + "probability": 0.9521 + }, + { + "start": 3392.62, + "end": 3394.76, + "probability": 0.9948 + }, + { + "start": 3402.34, + "end": 3406.52, + "probability": 0.9775 + }, + { + "start": 3408.48, + "end": 3409.12, + "probability": 0.9908 + }, + { + "start": 3410.86, + "end": 3412.38, + "probability": 0.9392 + }, + { + "start": 3412.88, + "end": 3417.62, + "probability": 0.9927 + }, + { + "start": 3417.9, + "end": 3418.68, + "probability": 0.9976 + }, + { + "start": 3420.2, + "end": 3421.04, + "probability": 0.9673 + }, + { + "start": 3421.1, + "end": 3423.82, + "probability": 0.9971 + }, + { + "start": 3424.92, + "end": 3425.68, + "probability": 0.814 + }, + { + "start": 3426.38, + "end": 3431.14, + "probability": 0.8566 + }, + { + "start": 3431.82, + "end": 3435.18, + "probability": 0.9773 + }, + { + "start": 3436.2, + "end": 3438.08, + "probability": 0.8649 + }, + { + "start": 3439.18, + "end": 3440.4, + "probability": 0.92 + }, + { + "start": 3441.18, + "end": 3443.98, + "probability": 0.6002 + }, + { + "start": 3444.7, + "end": 3448.0, + "probability": 0.9728 + }, + { + "start": 3449.16, + "end": 3450.14, + "probability": 0.9617 + }, + { + "start": 3450.74, + "end": 3452.26, + "probability": 0.9239 + }, + { + "start": 3452.38, + "end": 3456.42, + "probability": 0.9897 + }, + { + "start": 3456.42, + "end": 3460.44, + "probability": 0.9834 + }, + { + "start": 3460.56, + "end": 3463.2, + "probability": 0.9893 + }, + { + "start": 3463.34, + "end": 3464.36, + "probability": 0.4877 + }, + { + "start": 3464.46, + "end": 3469.94, + "probability": 0.8459 + }, + { + "start": 3470.54, + "end": 3473.04, + "probability": 0.9226 + }, + { + "start": 3473.86, + "end": 3477.88, + "probability": 0.9517 + }, + { + "start": 3478.12, + "end": 3479.7, + "probability": 0.9722 + }, + { + "start": 3481.24, + "end": 3484.92, + "probability": 0.7744 + }, + { + "start": 3485.94, + "end": 3487.44, + "probability": 0.9429 + }, + { + "start": 3487.56, + "end": 3489.51, + "probability": 0.9761 + }, + { + "start": 3491.28, + "end": 3493.66, + "probability": 0.797 + }, + { + "start": 3495.3, + "end": 3498.62, + "probability": 0.9761 + }, + { + "start": 3498.84, + "end": 3499.08, + "probability": 0.6124 + }, + { + "start": 3501.36, + "end": 3504.14, + "probability": 0.9893 + }, + { + "start": 3505.02, + "end": 3506.38, + "probability": 0.998 + }, + { + "start": 3507.0, + "end": 3508.24, + "probability": 0.978 + }, + { + "start": 3509.32, + "end": 3512.02, + "probability": 0.99 + }, + { + "start": 3512.7, + "end": 3516.06, + "probability": 0.9982 + }, + { + "start": 3517.74, + "end": 3521.42, + "probability": 0.6697 + }, + { + "start": 3521.64, + "end": 3522.78, + "probability": 0.9761 + }, + { + "start": 3524.02, + "end": 3525.12, + "probability": 0.7695 + }, + { + "start": 3526.48, + "end": 3529.4, + "probability": 0.9692 + }, + { + "start": 3529.68, + "end": 3531.5, + "probability": 0.9217 + }, + { + "start": 3531.62, + "end": 3536.0, + "probability": 0.8263 + }, + { + "start": 3537.28, + "end": 3539.4, + "probability": 0.9038 + }, + { + "start": 3539.94, + "end": 3541.34, + "probability": 0.9908 + }, + { + "start": 3542.38, + "end": 3544.62, + "probability": 0.9492 + }, + { + "start": 3545.17, + "end": 3546.68, + "probability": 0.7777 + }, + { + "start": 3546.92, + "end": 3550.42, + "probability": 0.9204 + }, + { + "start": 3551.18, + "end": 3551.76, + "probability": 0.8021 + }, + { + "start": 3553.66, + "end": 3555.32, + "probability": 0.995 + }, + { + "start": 3556.7, + "end": 3560.86, + "probability": 0.9731 + }, + { + "start": 3560.9, + "end": 3561.34, + "probability": 0.463 + }, + { + "start": 3561.92, + "end": 3562.28, + "probability": 0.3544 + }, + { + "start": 3563.3, + "end": 3565.38, + "probability": 0.737 + }, + { + "start": 3565.88, + "end": 3568.46, + "probability": 0.8624 + }, + { + "start": 3569.2, + "end": 3569.76, + "probability": 0.5173 + }, + { + "start": 3570.64, + "end": 3572.74, + "probability": 0.9817 + }, + { + "start": 3583.68, + "end": 3585.12, + "probability": 0.7321 + }, + { + "start": 3586.9, + "end": 3587.84, + "probability": 0.7181 + }, + { + "start": 3589.2, + "end": 3590.14, + "probability": 0.9028 + }, + { + "start": 3592.62, + "end": 3595.54, + "probability": 0.9101 + }, + { + "start": 3596.18, + "end": 3596.78, + "probability": 0.9896 + }, + { + "start": 3597.84, + "end": 3600.36, + "probability": 0.9762 + }, + { + "start": 3601.7, + "end": 3603.25, + "probability": 0.9922 + }, + { + "start": 3604.54, + "end": 3606.89, + "probability": 0.9814 + }, + { + "start": 3608.36, + "end": 3609.88, + "probability": 0.9364 + }, + { + "start": 3610.54, + "end": 3614.47, + "probability": 0.8343 + }, + { + "start": 3614.82, + "end": 3616.14, + "probability": 0.9753 + }, + { + "start": 3617.38, + "end": 3620.46, + "probability": 0.9983 + }, + { + "start": 3621.78, + "end": 3624.92, + "probability": 0.9846 + }, + { + "start": 3626.42, + "end": 3629.68, + "probability": 0.7833 + }, + { + "start": 3630.62, + "end": 3634.66, + "probability": 0.9871 + }, + { + "start": 3634.66, + "end": 3638.16, + "probability": 0.997 + }, + { + "start": 3639.74, + "end": 3641.26, + "probability": 0.5627 + }, + { + "start": 3642.7, + "end": 3647.42, + "probability": 0.9971 + }, + { + "start": 3648.04, + "end": 3652.2, + "probability": 0.9948 + }, + { + "start": 3652.38, + "end": 3653.47, + "probability": 0.9971 + }, + { + "start": 3655.02, + "end": 3660.42, + "probability": 0.9814 + }, + { + "start": 3661.84, + "end": 3662.56, + "probability": 0.8939 + }, + { + "start": 3663.42, + "end": 3666.3, + "probability": 0.7963 + }, + { + "start": 3667.1, + "end": 3669.5, + "probability": 0.7885 + }, + { + "start": 3670.34, + "end": 3671.58, + "probability": 0.968 + }, + { + "start": 3672.88, + "end": 3679.52, + "probability": 0.9798 + }, + { + "start": 3679.96, + "end": 3680.34, + "probability": 0.6494 + }, + { + "start": 3681.08, + "end": 3688.94, + "probability": 0.9733 + }, + { + "start": 3689.04, + "end": 3691.08, + "probability": 0.9667 + }, + { + "start": 3691.66, + "end": 3692.56, + "probability": 0.6851 + }, + { + "start": 3692.82, + "end": 3696.3, + "probability": 0.9906 + }, + { + "start": 3697.26, + "end": 3698.42, + "probability": 0.9304 + }, + { + "start": 3698.78, + "end": 3703.24, + "probability": 0.9382 + }, + { + "start": 3704.36, + "end": 3705.47, + "probability": 0.9774 + }, + { + "start": 3705.74, + "end": 3707.22, + "probability": 0.4316 + }, + { + "start": 3707.84, + "end": 3708.18, + "probability": 0.7861 + }, + { + "start": 3708.42, + "end": 3708.62, + "probability": 0.5849 + }, + { + "start": 3710.82, + "end": 3713.36, + "probability": 0.9753 + }, + { + "start": 3714.04, + "end": 3716.8, + "probability": 0.963 + }, + { + "start": 3717.38, + "end": 3719.89, + "probability": 0.9935 + }, + { + "start": 3720.82, + "end": 3724.32, + "probability": 0.9557 + }, + { + "start": 3726.24, + "end": 3729.2, + "probability": 0.9072 + }, + { + "start": 3729.82, + "end": 3732.4, + "probability": 0.9387 + }, + { + "start": 3733.78, + "end": 3736.68, + "probability": 0.9905 + }, + { + "start": 3737.6, + "end": 3739.32, + "probability": 0.9746 + }, + { + "start": 3739.64, + "end": 3741.44, + "probability": 0.9824 + }, + { + "start": 3742.3, + "end": 3744.98, + "probability": 0.8641 + }, + { + "start": 3746.88, + "end": 3748.98, + "probability": 0.761 + }, + { + "start": 3749.58, + "end": 3750.9, + "probability": 0.935 + }, + { + "start": 3751.96, + "end": 3753.72, + "probability": 0.2775 + }, + { + "start": 3754.44, + "end": 3755.98, + "probability": 0.9288 + }, + { + "start": 3756.02, + "end": 3757.84, + "probability": 0.9773 + }, + { + "start": 3759.81, + "end": 3762.04, + "probability": 0.8596 + }, + { + "start": 3763.0, + "end": 3767.34, + "probability": 0.6069 + }, + { + "start": 3767.7, + "end": 3769.88, + "probability": 0.9973 + }, + { + "start": 3770.96, + "end": 3774.4, + "probability": 0.9841 + }, + { + "start": 3775.34, + "end": 3778.7, + "probability": 0.9982 + }, + { + "start": 3779.56, + "end": 3780.5, + "probability": 0.9443 + }, + { + "start": 3781.26, + "end": 3782.2, + "probability": 0.9812 + }, + { + "start": 3783.68, + "end": 3786.94, + "probability": 0.9436 + }, + { + "start": 3787.92, + "end": 3789.36, + "probability": 0.9908 + }, + { + "start": 3789.9, + "end": 3790.76, + "probability": 0.6221 + }, + { + "start": 3790.98, + "end": 3794.22, + "probability": 0.9946 + }, + { + "start": 3794.3, + "end": 3795.08, + "probability": 0.9446 + }, + { + "start": 3795.1, + "end": 3796.2, + "probability": 0.8369 + }, + { + "start": 3796.3, + "end": 3798.08, + "probability": 0.7892 + }, + { + "start": 3798.36, + "end": 3799.66, + "probability": 0.6805 + }, + { + "start": 3800.16, + "end": 3800.42, + "probability": 0.815 + }, + { + "start": 3801.78, + "end": 3803.23, + "probability": 0.9797 + }, + { + "start": 3804.22, + "end": 3806.38, + "probability": 0.915 + }, + { + "start": 3807.12, + "end": 3807.72, + "probability": 0.9164 + }, + { + "start": 3808.02, + "end": 3810.56, + "probability": 0.9907 + }, + { + "start": 3811.18, + "end": 3812.84, + "probability": 0.8603 + }, + { + "start": 3813.36, + "end": 3815.52, + "probability": 0.7196 + }, + { + "start": 3816.78, + "end": 3817.38, + "probability": 0.6827 + }, + { + "start": 3818.02, + "end": 3819.54, + "probability": 0.9985 + }, + { + "start": 3820.1, + "end": 3821.24, + "probability": 0.9978 + }, + { + "start": 3821.3, + "end": 3821.82, + "probability": 0.6669 + }, + { + "start": 3822.8, + "end": 3824.32, + "probability": 0.9307 + }, + { + "start": 3824.64, + "end": 3829.9, + "probability": 0.9243 + }, + { + "start": 3830.2, + "end": 3833.1, + "probability": 0.9998 + }, + { + "start": 3834.54, + "end": 3836.92, + "probability": 0.509 + }, + { + "start": 3838.28, + "end": 3838.82, + "probability": 0.7355 + }, + { + "start": 3839.38, + "end": 3839.84, + "probability": 0.688 + }, + { + "start": 3840.0, + "end": 3841.28, + "probability": 0.7485 + }, + { + "start": 3841.74, + "end": 3842.95, + "probability": 0.3263 + }, + { + "start": 3845.32, + "end": 3847.38, + "probability": 0.727 + }, + { + "start": 3847.88, + "end": 3849.24, + "probability": 0.8698 + }, + { + "start": 3849.24, + "end": 3850.07, + "probability": 0.2148 + }, + { + "start": 3850.44, + "end": 3853.38, + "probability": 0.6398 + }, + { + "start": 3853.58, + "end": 3856.3, + "probability": 0.6753 + }, + { + "start": 3856.5, + "end": 3859.44, + "probability": 0.9619 + }, + { + "start": 3860.4, + "end": 3862.96, + "probability": 0.0741 + }, + { + "start": 3862.96, + "end": 3863.14, + "probability": 0.1577 + }, + { + "start": 3863.3, + "end": 3863.65, + "probability": 0.9336 + }, + { + "start": 3864.64, + "end": 3867.74, + "probability": 0.2214 + }, + { + "start": 3867.94, + "end": 3868.88, + "probability": 0.605 + }, + { + "start": 3868.96, + "end": 3872.72, + "probability": 0.6699 + }, + { + "start": 3872.82, + "end": 3873.74, + "probability": 0.9932 + }, + { + "start": 3875.54, + "end": 3878.1, + "probability": 0.9673 + }, + { + "start": 3878.72, + "end": 3879.34, + "probability": 0.1301 + }, + { + "start": 3879.34, + "end": 3879.83, + "probability": 0.0652 + }, + { + "start": 3880.26, + "end": 3880.7, + "probability": 0.9777 + }, + { + "start": 3880.74, + "end": 3881.18, + "probability": 0.4601 + }, + { + "start": 3881.24, + "end": 3884.52, + "probability": 0.5744 + }, + { + "start": 3885.34, + "end": 3887.32, + "probability": 0.8637 + }, + { + "start": 3888.06, + "end": 3890.0, + "probability": 0.964 + }, + { + "start": 3890.36, + "end": 3890.78, + "probability": 0.3151 + }, + { + "start": 3890.98, + "end": 3891.68, + "probability": 0.701 + }, + { + "start": 3891.72, + "end": 3895.56, + "probability": 0.9633 + }, + { + "start": 3895.56, + "end": 3897.7, + "probability": 0.5758 + }, + { + "start": 3898.0, + "end": 3900.31, + "probability": 0.916 + }, + { + "start": 3900.64, + "end": 3902.02, + "probability": 0.9144 + }, + { + "start": 3903.0, + "end": 3904.66, + "probability": 0.8752 + }, + { + "start": 3904.94, + "end": 3905.4, + "probability": 0.0759 + }, + { + "start": 3905.4, + "end": 3905.4, + "probability": 0.1182 + }, + { + "start": 3905.4, + "end": 3907.12, + "probability": 0.9562 + }, + { + "start": 3907.86, + "end": 3908.42, + "probability": 0.9678 + }, + { + "start": 3908.64, + "end": 3912.12, + "probability": 0.4697 + }, + { + "start": 3912.58, + "end": 3913.4, + "probability": 0.761 + }, + { + "start": 3913.52, + "end": 3914.26, + "probability": 0.7976 + }, + { + "start": 3915.04, + "end": 3916.88, + "probability": 0.8597 + }, + { + "start": 3917.56, + "end": 3918.8, + "probability": 0.7626 + }, + { + "start": 3919.48, + "end": 3920.12, + "probability": 0.781 + }, + { + "start": 3920.18, + "end": 3920.88, + "probability": 0.9724 + }, + { + "start": 3921.14, + "end": 3926.38, + "probability": 0.9856 + }, + { + "start": 3927.08, + "end": 3929.64, + "probability": 0.9671 + }, + { + "start": 3930.64, + "end": 3934.7, + "probability": 0.7726 + }, + { + "start": 3934.88, + "end": 3937.05, + "probability": 0.9758 + }, + { + "start": 3937.22, + "end": 3938.12, + "probability": 0.4143 + }, + { + "start": 3938.18, + "end": 3942.76, + "probability": 0.8763 + }, + { + "start": 3943.53, + "end": 3948.92, + "probability": 0.9968 + }, + { + "start": 3949.34, + "end": 3950.0, + "probability": 0.7347 + }, + { + "start": 3950.12, + "end": 3950.68, + "probability": 0.6822 + }, + { + "start": 3950.7, + "end": 3951.18, + "probability": 0.8811 + }, + { + "start": 3951.46, + "end": 3951.94, + "probability": 0.1971 + }, + { + "start": 3951.98, + "end": 3953.22, + "probability": 0.5175 + }, + { + "start": 3953.36, + "end": 3954.32, + "probability": 0.9557 + }, + { + "start": 3954.66, + "end": 3958.68, + "probability": 0.6883 + }, + { + "start": 3961.06, + "end": 3961.94, + "probability": 0.6494 + }, + { + "start": 3962.02, + "end": 3962.34, + "probability": 0.5379 + }, + { + "start": 3962.58, + "end": 3964.1, + "probability": 0.8831 + }, + { + "start": 3964.28, + "end": 3965.58, + "probability": 0.9436 + }, + { + "start": 3966.82, + "end": 3967.5, + "probability": 0.856 + }, + { + "start": 3967.94, + "end": 3969.08, + "probability": 0.9341 + }, + { + "start": 3969.16, + "end": 3971.42, + "probability": 0.9874 + }, + { + "start": 3971.66, + "end": 3979.22, + "probability": 0.9741 + }, + { + "start": 3979.22, + "end": 3983.3, + "probability": 0.9884 + }, + { + "start": 3983.9, + "end": 3988.32, + "probability": 0.9961 + }, + { + "start": 3988.46, + "end": 3988.82, + "probability": 0.4146 + }, + { + "start": 3988.88, + "end": 3990.06, + "probability": 0.9639 + }, + { + "start": 3991.0, + "end": 3992.12, + "probability": 0.7908 + }, + { + "start": 3992.2, + "end": 3993.54, + "probability": 0.9517 + }, + { + "start": 3994.96, + "end": 3995.8, + "probability": 0.8873 + }, + { + "start": 3996.78, + "end": 4000.78, + "probability": 0.9176 + }, + { + "start": 4001.06, + "end": 4003.62, + "probability": 0.9556 + }, + { + "start": 4004.0, + "end": 4004.54, + "probability": 0.9183 + }, + { + "start": 4006.68, + "end": 4010.36, + "probability": 0.7806 + }, + { + "start": 4015.48, + "end": 4016.64, + "probability": 0.6941 + }, + { + "start": 4016.86, + "end": 4017.36, + "probability": 0.2758 + }, + { + "start": 4017.38, + "end": 4017.82, + "probability": 0.8492 + }, + { + "start": 4017.94, + "end": 4018.74, + "probability": 0.6973 + }, + { + "start": 4020.94, + "end": 4026.74, + "probability": 0.9976 + }, + { + "start": 4028.24, + "end": 4030.36, + "probability": 0.8096 + }, + { + "start": 4031.6, + "end": 4036.43, + "probability": 0.9979 + }, + { + "start": 4038.0, + "end": 4038.88, + "probability": 0.8978 + }, + { + "start": 4041.32, + "end": 4042.98, + "probability": 0.9988 + }, + { + "start": 4044.08, + "end": 4044.92, + "probability": 0.9872 + }, + { + "start": 4045.74, + "end": 4046.26, + "probability": 0.5573 + }, + { + "start": 4049.42, + "end": 4049.9, + "probability": 0.9928 + }, + { + "start": 4051.68, + "end": 4054.12, + "probability": 0.8976 + }, + { + "start": 4056.08, + "end": 4062.0, + "probability": 0.9962 + }, + { + "start": 4062.06, + "end": 4062.72, + "probability": 0.5101 + }, + { + "start": 4064.86, + "end": 4064.86, + "probability": 0.4438 + }, + { + "start": 4070.0, + "end": 4073.08, + "probability": 0.9953 + }, + { + "start": 4074.46, + "end": 4075.49, + "probability": 0.9868 + }, + { + "start": 4077.82, + "end": 4082.74, + "probability": 0.9929 + }, + { + "start": 4084.0, + "end": 4089.1, + "probability": 0.9976 + }, + { + "start": 4091.3, + "end": 4093.06, + "probability": 0.8284 + }, + { + "start": 4095.24, + "end": 4095.82, + "probability": 0.3384 + }, + { + "start": 4097.18, + "end": 4099.08, + "probability": 0.9841 + }, + { + "start": 4101.32, + "end": 4103.62, + "probability": 0.9993 + }, + { + "start": 4105.62, + "end": 4106.32, + "probability": 0.4998 + }, + { + "start": 4108.36, + "end": 4109.08, + "probability": 0.8319 + }, + { + "start": 4111.08, + "end": 4111.94, + "probability": 0.9242 + }, + { + "start": 4114.04, + "end": 4117.88, + "probability": 0.8789 + }, + { + "start": 4119.52, + "end": 4122.16, + "probability": 0.842 + }, + { + "start": 4123.32, + "end": 4124.68, + "probability": 0.7269 + }, + { + "start": 4125.86, + "end": 4126.88, + "probability": 0.9245 + }, + { + "start": 4127.46, + "end": 4130.68, + "probability": 0.9801 + }, + { + "start": 4132.66, + "end": 4133.82, + "probability": 0.7589 + }, + { + "start": 4135.4, + "end": 4136.2, + "probability": 0.8012 + }, + { + "start": 4137.8, + "end": 4140.84, + "probability": 0.9751 + }, + { + "start": 4142.98, + "end": 4145.52, + "probability": 0.2626 + }, + { + "start": 4146.42, + "end": 4147.62, + "probability": 0.4784 + }, + { + "start": 4148.42, + "end": 4149.78, + "probability": 0.9898 + }, + { + "start": 4150.7, + "end": 4153.6, + "probability": 0.791 + }, + { + "start": 4154.12, + "end": 4156.44, + "probability": 0.9855 + }, + { + "start": 4157.76, + "end": 4158.86, + "probability": 0.9587 + }, + { + "start": 4162.14, + "end": 4162.9, + "probability": 0.9419 + }, + { + "start": 4164.44, + "end": 4165.6, + "probability": 0.9906 + }, + { + "start": 4166.98, + "end": 4168.26, + "probability": 0.9606 + }, + { + "start": 4169.22, + "end": 4170.32, + "probability": 0.8879 + }, + { + "start": 4172.74, + "end": 4173.62, + "probability": 0.941 + }, + { + "start": 4173.78, + "end": 4174.76, + "probability": 0.9611 + }, + { + "start": 4174.88, + "end": 4176.26, + "probability": 0.6328 + }, + { + "start": 4177.22, + "end": 4180.42, + "probability": 0.5365 + }, + { + "start": 4181.4, + "end": 4182.06, + "probability": 0.9904 + }, + { + "start": 4182.98, + "end": 4183.84, + "probability": 0.9691 + }, + { + "start": 4184.82, + "end": 4186.3, + "probability": 0.9789 + }, + { + "start": 4188.14, + "end": 4190.68, + "probability": 0.971 + }, + { + "start": 4191.64, + "end": 4196.02, + "probability": 0.9801 + }, + { + "start": 4196.54, + "end": 4197.68, + "probability": 0.8815 + }, + { + "start": 4198.24, + "end": 4200.86, + "probability": 0.9837 + }, + { + "start": 4201.66, + "end": 4202.2, + "probability": 0.8271 + }, + { + "start": 4203.18, + "end": 4204.1, + "probability": 0.7902 + }, + { + "start": 4205.9, + "end": 4208.3, + "probability": 0.8639 + }, + { + "start": 4209.68, + "end": 4211.34, + "probability": 0.8127 + }, + { + "start": 4211.9, + "end": 4213.56, + "probability": 0.5305 + }, + { + "start": 4215.08, + "end": 4215.8, + "probability": 0.9905 + }, + { + "start": 4217.38, + "end": 4218.56, + "probability": 0.8205 + }, + { + "start": 4219.76, + "end": 4221.85, + "probability": 0.9799 + }, + { + "start": 4223.7, + "end": 4224.3, + "probability": 0.9701 + }, + { + "start": 4225.54, + "end": 4226.8, + "probability": 0.8713 + }, + { + "start": 4228.1, + "end": 4230.56, + "probability": 0.9637 + }, + { + "start": 4231.88, + "end": 4234.56, + "probability": 0.8288 + }, + { + "start": 4234.56, + "end": 4239.35, + "probability": 0.696 + }, + { + "start": 4239.9, + "end": 4240.66, + "probability": 0.6536 + }, + { + "start": 4240.68, + "end": 4241.8, + "probability": 0.9792 + }, + { + "start": 4243.5, + "end": 4244.52, + "probability": 0.9519 + }, + { + "start": 4245.2, + "end": 4246.3, + "probability": 0.9801 + }, + { + "start": 4247.2, + "end": 4247.87, + "probability": 0.9095 + }, + { + "start": 4251.3, + "end": 4251.72, + "probability": 0.4999 + }, + { + "start": 4253.72, + "end": 4255.48, + "probability": 0.696 + }, + { + "start": 4256.38, + "end": 4257.44, + "probability": 0.8524 + }, + { + "start": 4258.88, + "end": 4259.8, + "probability": 0.7616 + }, + { + "start": 4262.88, + "end": 4265.16, + "probability": 0.9756 + }, + { + "start": 4265.86, + "end": 4268.46, + "probability": 0.9257 + }, + { + "start": 4269.78, + "end": 4272.78, + "probability": 0.96 + }, + { + "start": 4273.76, + "end": 4274.46, + "probability": 0.6765 + }, + { + "start": 4275.42, + "end": 4277.58, + "probability": 0.8611 + }, + { + "start": 4280.2, + "end": 4281.56, + "probability": 0.9565 + }, + { + "start": 4284.08, + "end": 4289.28, + "probability": 0.8713 + }, + { + "start": 4290.38, + "end": 4291.36, + "probability": 0.9146 + }, + { + "start": 4293.52, + "end": 4294.88, + "probability": 0.9941 + }, + { + "start": 4295.84, + "end": 4296.84, + "probability": 0.978 + }, + { + "start": 4297.68, + "end": 4299.72, + "probability": 0.9968 + }, + { + "start": 4301.06, + "end": 4304.3, + "probability": 0.9412 + }, + { + "start": 4305.36, + "end": 4309.02, + "probability": 0.9597 + }, + { + "start": 4310.78, + "end": 4311.74, + "probability": 0.8435 + }, + { + "start": 4313.28, + "end": 4316.04, + "probability": 0.9956 + }, + { + "start": 4317.22, + "end": 4320.8, + "probability": 0.9813 + }, + { + "start": 4321.98, + "end": 4325.68, + "probability": 0.9137 + }, + { + "start": 4326.64, + "end": 4328.78, + "probability": 0.9773 + }, + { + "start": 4329.16, + "end": 4332.76, + "probability": 0.6035 + }, + { + "start": 4333.48, + "end": 4335.54, + "probability": 0.9683 + }, + { + "start": 4336.34, + "end": 4338.06, + "probability": 0.5463 + }, + { + "start": 4338.66, + "end": 4340.26, + "probability": 0.8433 + }, + { + "start": 4344.34, + "end": 4345.08, + "probability": 0.8755 + }, + { + "start": 4345.76, + "end": 4347.32, + "probability": 0.8613 + }, + { + "start": 4348.28, + "end": 4350.7, + "probability": 0.8323 + }, + { + "start": 4353.3, + "end": 4354.36, + "probability": 0.6738 + }, + { + "start": 4355.88, + "end": 4357.58, + "probability": 0.7233 + }, + { + "start": 4359.28, + "end": 4362.54, + "probability": 0.6615 + }, + { + "start": 4363.72, + "end": 4366.01, + "probability": 0.9855 + }, + { + "start": 4366.5, + "end": 4371.1, + "probability": 0.9963 + }, + { + "start": 4373.6, + "end": 4375.58, + "probability": 0.9729 + }, + { + "start": 4376.2, + "end": 4377.3, + "probability": 0.833 + }, + { + "start": 4378.26, + "end": 4379.48, + "probability": 0.9643 + }, + { + "start": 4380.18, + "end": 4380.7, + "probability": 0.7476 + }, + { + "start": 4381.88, + "end": 4384.22, + "probability": 0.9583 + }, + { + "start": 4387.16, + "end": 4391.15, + "probability": 0.9368 + }, + { + "start": 4392.38, + "end": 4393.68, + "probability": 0.89 + }, + { + "start": 4394.7, + "end": 4396.7, + "probability": 0.7261 + }, + { + "start": 4396.82, + "end": 4398.9, + "probability": 0.7053 + }, + { + "start": 4399.34, + "end": 4399.76, + "probability": 0.7978 + }, + { + "start": 4402.62, + "end": 4403.76, + "probability": 0.9159 + }, + { + "start": 4404.54, + "end": 4408.2, + "probability": 0.8876 + }, + { + "start": 4409.4, + "end": 4411.02, + "probability": 0.793 + }, + { + "start": 4411.74, + "end": 4412.42, + "probability": 0.8278 + }, + { + "start": 4413.86, + "end": 4420.48, + "probability": 0.9216 + }, + { + "start": 4421.98, + "end": 4423.45, + "probability": 0.7644 + }, + { + "start": 4424.44, + "end": 4425.4, + "probability": 0.6146 + }, + { + "start": 4426.36, + "end": 4427.58, + "probability": 0.8765 + }, + { + "start": 4428.24, + "end": 4430.18, + "probability": 0.8835 + }, + { + "start": 4430.78, + "end": 4431.74, + "probability": 0.6869 + }, + { + "start": 4432.26, + "end": 4432.56, + "probability": 0.5808 + }, + { + "start": 4433.56, + "end": 4434.56, + "probability": 0.4787 + }, + { + "start": 4434.62, + "end": 4438.34, + "probability": 0.8398 + }, + { + "start": 4439.14, + "end": 4441.05, + "probability": 0.2928 + }, + { + "start": 4442.02, + "end": 4443.39, + "probability": 0.5637 + }, + { + "start": 4443.64, + "end": 4447.36, + "probability": 0.5756 + }, + { + "start": 4447.82, + "end": 4448.48, + "probability": 0.4099 + }, + { + "start": 4448.54, + "end": 4449.06, + "probability": 0.8949 + }, + { + "start": 4449.52, + "end": 4452.32, + "probability": 0.7638 + }, + { + "start": 4452.78, + "end": 4453.8, + "probability": 0.9746 + }, + { + "start": 4454.06, + "end": 4454.58, + "probability": 0.3 + }, + { + "start": 4454.8, + "end": 4454.86, + "probability": 0.0817 + }, + { + "start": 4455.02, + "end": 4456.24, + "probability": 0.2893 + }, + { + "start": 4456.3, + "end": 4458.07, + "probability": 0.3594 + }, + { + "start": 4458.58, + "end": 4460.18, + "probability": 0.3452 + }, + { + "start": 4463.08, + "end": 4463.54, + "probability": 0.0259 + }, + { + "start": 4463.54, + "end": 4463.54, + "probability": 0.053 + }, + { + "start": 4463.54, + "end": 4463.54, + "probability": 0.0247 + }, + { + "start": 4463.54, + "end": 4464.16, + "probability": 0.2457 + }, + { + "start": 4464.62, + "end": 4466.38, + "probability": 0.9009 + }, + { + "start": 4466.5, + "end": 4467.3, + "probability": 0.7952 + }, + { + "start": 4467.44, + "end": 4469.28, + "probability": 0.3825 + }, + { + "start": 4469.28, + "end": 4471.82, + "probability": 0.6587 + }, + { + "start": 4471.94, + "end": 4472.78, + "probability": 0.8658 + }, + { + "start": 4473.02, + "end": 4473.2, + "probability": 0.1919 + }, + { + "start": 4473.4, + "end": 4476.86, + "probability": 0.9525 + }, + { + "start": 4477.04, + "end": 4477.7, + "probability": 0.566 + }, + { + "start": 4477.96, + "end": 4478.36, + "probability": 0.7871 + }, + { + "start": 4478.36, + "end": 4478.54, + "probability": 0.2765 + }, + { + "start": 4478.54, + "end": 4479.12, + "probability": 0.216 + }, + { + "start": 4479.52, + "end": 4480.98, + "probability": 0.981 + }, + { + "start": 4481.08, + "end": 4485.24, + "probability": 0.9396 + }, + { + "start": 4485.24, + "end": 4487.78, + "probability": 0.942 + }, + { + "start": 4487.78, + "end": 4488.92, + "probability": 0.5189 + }, + { + "start": 4489.02, + "end": 4489.7, + "probability": 0.4399 + }, + { + "start": 4490.24, + "end": 4490.8, + "probability": 0.3913 + }, + { + "start": 4491.02, + "end": 4494.94, + "probability": 0.4321 + }, + { + "start": 4494.96, + "end": 4498.84, + "probability": 0.9053 + }, + { + "start": 4499.0, + "end": 4500.56, + "probability": 0.7463 + }, + { + "start": 4500.78, + "end": 4501.5, + "probability": 0.5478 + }, + { + "start": 4501.94, + "end": 4504.24, + "probability": 0.8979 + }, + { + "start": 4504.24, + "end": 4505.02, + "probability": 0.661 + }, + { + "start": 4505.3, + "end": 4507.14, + "probability": 0.6654 + }, + { + "start": 4507.6, + "end": 4507.82, + "probability": 0.4794 + }, + { + "start": 4507.92, + "end": 4508.88, + "probability": 0.8899 + }, + { + "start": 4508.94, + "end": 4509.46, + "probability": 0.5578 + }, + { + "start": 4509.46, + "end": 4509.78, + "probability": 0.7805 + }, + { + "start": 4510.44, + "end": 4512.06, + "probability": 0.8032 + }, + { + "start": 4512.08, + "end": 4513.58, + "probability": 0.6069 + }, + { + "start": 4514.6, + "end": 4515.28, + "probability": 0.8407 + }, + { + "start": 4515.88, + "end": 4519.22, + "probability": 0.8059 + }, + { + "start": 4519.78, + "end": 4521.98, + "probability": 0.8392 + }, + { + "start": 4523.48, + "end": 4528.18, + "probability": 0.6683 + }, + { + "start": 4528.82, + "end": 4529.88, + "probability": 0.988 + }, + { + "start": 4531.78, + "end": 4532.5, + "probability": 0.9364 + }, + { + "start": 4533.04, + "end": 4533.7, + "probability": 0.8364 + }, + { + "start": 4535.96, + "end": 4537.94, + "probability": 0.8084 + }, + { + "start": 4539.44, + "end": 4541.56, + "probability": 0.9036 + }, + { + "start": 4542.5, + "end": 4543.24, + "probability": 0.9297 + }, + { + "start": 4544.24, + "end": 4544.8, + "probability": 0.9037 + }, + { + "start": 4546.96, + "end": 4548.94, + "probability": 0.7149 + }, + { + "start": 4550.44, + "end": 4553.94, + "probability": 0.4975 + }, + { + "start": 4554.68, + "end": 4555.34, + "probability": 0.4894 + }, + { + "start": 4556.64, + "end": 4560.22, + "probability": 0.5007 + }, + { + "start": 4560.88, + "end": 4561.9, + "probability": 0.6099 + }, + { + "start": 4562.24, + "end": 4563.4, + "probability": 0.6511 + }, + { + "start": 4564.22, + "end": 4564.86, + "probability": 0.9819 + }, + { + "start": 4566.44, + "end": 4567.46, + "probability": 0.9604 + }, + { + "start": 4567.8, + "end": 4568.57, + "probability": 0.8357 + }, + { + "start": 4570.08, + "end": 4572.34, + "probability": 0.6873 + }, + { + "start": 4573.08, + "end": 4573.46, + "probability": 0.8237 + }, + { + "start": 4574.6, + "end": 4575.56, + "probability": 0.6135 + }, + { + "start": 4577.18, + "end": 4579.5, + "probability": 0.7885 + }, + { + "start": 4581.44, + "end": 4583.0, + "probability": 0.9431 + }, + { + "start": 4583.54, + "end": 4584.02, + "probability": 0.6733 + }, + { + "start": 4584.82, + "end": 4586.68, + "probability": 0.5692 + }, + { + "start": 4587.32, + "end": 4588.92, + "probability": 0.6403 + }, + { + "start": 4590.4, + "end": 4590.86, + "probability": 0.5923 + }, + { + "start": 4590.9, + "end": 4591.44, + "probability": 0.7324 + }, + { + "start": 4592.74, + "end": 4595.26, + "probability": 0.4123 + }, + { + "start": 4596.08, + "end": 4599.46, + "probability": 0.7097 + }, + { + "start": 4600.06, + "end": 4603.0, + "probability": 0.7004 + }, + { + "start": 4603.18, + "end": 4605.29, + "probability": 0.8594 + }, + { + "start": 4605.84, + "end": 4607.22, + "probability": 0.9054 + }, + { + "start": 4608.94, + "end": 4609.88, + "probability": 0.8452 + }, + { + "start": 4610.84, + "end": 4612.48, + "probability": 0.9143 + }, + { + "start": 4613.3, + "end": 4614.64, + "probability": 0.7457 + }, + { + "start": 4615.34, + "end": 4615.84, + "probability": 0.9394 + }, + { + "start": 4617.22, + "end": 4617.96, + "probability": 0.9082 + }, + { + "start": 4618.82, + "end": 4620.02, + "probability": 0.9834 + }, + { + "start": 4620.58, + "end": 4622.56, + "probability": 0.9186 + }, + { + "start": 4623.14, + "end": 4625.2, + "probability": 0.7806 + }, + { + "start": 4625.82, + "end": 4626.74, + "probability": 0.8916 + }, + { + "start": 4627.54, + "end": 4628.64, + "probability": 0.9376 + }, + { + "start": 4630.06, + "end": 4631.43, + "probability": 0.7817 + }, + { + "start": 4632.36, + "end": 4633.1, + "probability": 0.9966 + }, + { + "start": 4633.76, + "end": 4634.94, + "probability": 0.9955 + }, + { + "start": 4637.06, + "end": 4639.64, + "probability": 0.9851 + }, + { + "start": 4639.86, + "end": 4640.0, + "probability": 0.6588 + }, + { + "start": 4640.7, + "end": 4643.54, + "probability": 0.9801 + }, + { + "start": 4644.5, + "end": 4646.18, + "probability": 0.4147 + }, + { + "start": 4646.46, + "end": 4648.44, + "probability": 0.8511 + }, + { + "start": 4648.7, + "end": 4648.9, + "probability": 0.7762 + }, + { + "start": 4649.98, + "end": 4653.74, + "probability": 0.6128 + }, + { + "start": 4654.38, + "end": 4655.86, + "probability": 0.9543 + }, + { + "start": 4657.12, + "end": 4658.6, + "probability": 0.671 + }, + { + "start": 4660.06, + "end": 4661.76, + "probability": 0.9044 + }, + { + "start": 4663.18, + "end": 4664.26, + "probability": 0.6942 + }, + { + "start": 4665.22, + "end": 4666.14, + "probability": 0.855 + }, + { + "start": 4668.04, + "end": 4669.0, + "probability": 0.7428 + }, + { + "start": 4669.48, + "end": 4671.28, + "probability": 0.9956 + }, + { + "start": 4672.12, + "end": 4672.92, + "probability": 0.7297 + }, + { + "start": 4674.6, + "end": 4674.68, + "probability": 0.8529 + }, + { + "start": 4686.62, + "end": 4687.82, + "probability": 0.1035 + }, + { + "start": 4688.72, + "end": 4690.64, + "probability": 0.5377 + }, + { + "start": 4691.84, + "end": 4692.52, + "probability": 0.8611 + }, + { + "start": 4692.52, + "end": 4693.04, + "probability": 0.7983 + }, + { + "start": 4693.4, + "end": 4700.04, + "probability": 0.9751 + }, + { + "start": 4700.84, + "end": 4702.8, + "probability": 0.9457 + }, + { + "start": 4703.32, + "end": 4709.28, + "probability": 0.9944 + }, + { + "start": 4710.0, + "end": 4716.32, + "probability": 0.9948 + }, + { + "start": 4717.38, + "end": 4724.12, + "probability": 0.9953 + }, + { + "start": 4724.92, + "end": 4728.56, + "probability": 0.9831 + }, + { + "start": 4729.26, + "end": 4731.36, + "probability": 0.7249 + }, + { + "start": 4731.46, + "end": 4735.38, + "probability": 0.9851 + }, + { + "start": 4735.92, + "end": 4744.04, + "probability": 0.9956 + }, + { + "start": 4744.16, + "end": 4744.78, + "probability": 0.8857 + }, + { + "start": 4744.88, + "end": 4745.46, + "probability": 0.8481 + }, + { + "start": 4746.4, + "end": 4751.8, + "probability": 0.9883 + }, + { + "start": 4752.66, + "end": 4754.38, + "probability": 0.8569 + }, + { + "start": 4755.24, + "end": 4757.48, + "probability": 0.9946 + }, + { + "start": 4758.3, + "end": 4759.84, + "probability": 0.9976 + }, + { + "start": 4760.7, + "end": 4763.12, + "probability": 0.9707 + }, + { + "start": 4763.8, + "end": 4765.44, + "probability": 0.9832 + }, + { + "start": 4766.1, + "end": 4770.48, + "probability": 0.9942 + }, + { + "start": 4770.96, + "end": 4774.94, + "probability": 0.9988 + }, + { + "start": 4775.56, + "end": 4779.88, + "probability": 0.9958 + }, + { + "start": 4780.04, + "end": 4780.38, + "probability": 0.0993 + }, + { + "start": 4780.72, + "end": 4781.68, + "probability": 0.6305 + }, + { + "start": 4783.04, + "end": 4784.96, + "probability": 0.9665 + }, + { + "start": 4785.74, + "end": 4787.66, + "probability": 0.9972 + }, + { + "start": 4788.26, + "end": 4793.56, + "probability": 0.9951 + }, + { + "start": 4794.86, + "end": 4797.08, + "probability": 0.9257 + }, + { + "start": 4798.14, + "end": 4801.26, + "probability": 0.9032 + }, + { + "start": 4801.68, + "end": 4804.34, + "probability": 0.9956 + }, + { + "start": 4805.62, + "end": 4808.66, + "probability": 0.9934 + }, + { + "start": 4808.96, + "end": 4812.38, + "probability": 0.988 + }, + { + "start": 4813.0, + "end": 4816.2, + "probability": 0.9971 + }, + { + "start": 4816.7, + "end": 4817.64, + "probability": 0.9579 + }, + { + "start": 4818.7, + "end": 4819.26, + "probability": 0.8324 + }, + { + "start": 4819.3, + "end": 4820.02, + "probability": 0.7968 + }, + { + "start": 4820.52, + "end": 4825.78, + "probability": 0.9888 + }, + { + "start": 4826.46, + "end": 4827.06, + "probability": 0.686 + }, + { + "start": 4827.8, + "end": 4829.56, + "probability": 0.9839 + }, + { + "start": 4830.3, + "end": 4833.82, + "probability": 0.9965 + }, + { + "start": 4834.22, + "end": 4837.36, + "probability": 0.9805 + }, + { + "start": 4837.88, + "end": 4840.36, + "probability": 0.998 + }, + { + "start": 4840.4, + "end": 4844.22, + "probability": 0.9112 + }, + { + "start": 4844.86, + "end": 4845.86, + "probability": 0.976 + }, + { + "start": 4846.52, + "end": 4847.7, + "probability": 0.9829 + }, + { + "start": 4848.2, + "end": 4849.7, + "probability": 0.993 + }, + { + "start": 4849.82, + "end": 4854.1, + "probability": 0.9828 + }, + { + "start": 4854.58, + "end": 4857.02, + "probability": 0.9543 + }, + { + "start": 4858.1, + "end": 4859.22, + "probability": 0.9738 + }, + { + "start": 4859.6, + "end": 4861.82, + "probability": 0.9902 + }, + { + "start": 4862.38, + "end": 4863.88, + "probability": 0.7809 + }, + { + "start": 4864.6, + "end": 4867.34, + "probability": 0.8776 + }, + { + "start": 4867.86, + "end": 4870.98, + "probability": 0.9919 + }, + { + "start": 4871.54, + "end": 4872.32, + "probability": 0.9302 + }, + { + "start": 4872.88, + "end": 4875.54, + "probability": 0.9819 + }, + { + "start": 4876.22, + "end": 4876.9, + "probability": 0.7816 + }, + { + "start": 4877.96, + "end": 4878.87, + "probability": 0.9637 + }, + { + "start": 4879.52, + "end": 4881.82, + "probability": 0.979 + }, + { + "start": 4881.92, + "end": 4883.46, + "probability": 0.9885 + }, + { + "start": 4884.36, + "end": 4887.66, + "probability": 0.9801 + }, + { + "start": 4888.56, + "end": 4888.86, + "probability": 0.7174 + }, + { + "start": 4890.24, + "end": 4891.92, + "probability": 0.9169 + }, + { + "start": 4892.66, + "end": 4894.4, + "probability": 0.988 + }, + { + "start": 4894.58, + "end": 4898.34, + "probability": 0.9938 + }, + { + "start": 4899.16, + "end": 4902.32, + "probability": 0.9977 + }, + { + "start": 4903.14, + "end": 4903.52, + "probability": 0.8872 + }, + { + "start": 4903.66, + "end": 4904.2, + "probability": 0.69 + }, + { + "start": 4905.02, + "end": 4905.26, + "probability": 0.3287 + }, + { + "start": 4905.38, + "end": 4909.18, + "probability": 0.9574 + }, + { + "start": 4910.18, + "end": 4912.02, + "probability": 0.8847 + }, + { + "start": 4912.52, + "end": 4913.5, + "probability": 0.8481 + }, + { + "start": 4913.8, + "end": 4914.54, + "probability": 0.8765 + }, + { + "start": 4914.76, + "end": 4916.12, + "probability": 0.8025 + }, + { + "start": 4916.28, + "end": 4917.14, + "probability": 0.6791 + }, + { + "start": 4917.58, + "end": 4921.4, + "probability": 0.9722 + }, + { + "start": 4922.04, + "end": 4924.22, + "probability": 0.9962 + }, + { + "start": 4924.22, + "end": 4926.96, + "probability": 0.7555 + }, + { + "start": 4927.46, + "end": 4930.3, + "probability": 0.9608 + }, + { + "start": 4930.68, + "end": 4933.94, + "probability": 0.9465 + }, + { + "start": 4934.74, + "end": 4935.4, + "probability": 0.6048 + }, + { + "start": 4936.04, + "end": 4937.63, + "probability": 0.9131 + }, + { + "start": 4938.54, + "end": 4939.6, + "probability": 0.9805 + }, + { + "start": 4939.8, + "end": 4940.22, + "probability": 0.9803 + }, + { + "start": 4940.44, + "end": 4945.18, + "probability": 0.978 + }, + { + "start": 4945.88, + "end": 4948.22, + "probability": 0.9308 + }, + { + "start": 4948.9, + "end": 4949.0, + "probability": 0.9089 + }, + { + "start": 4950.1, + "end": 4954.58, + "probability": 0.9961 + }, + { + "start": 4955.38, + "end": 4956.28, + "probability": 0.5889 + }, + { + "start": 4956.44, + "end": 4959.98, + "probability": 0.9724 + }, + { + "start": 4960.26, + "end": 4960.5, + "probability": 0.4237 + }, + { + "start": 4961.2, + "end": 4963.09, + "probability": 0.9563 + }, + { + "start": 4963.64, + "end": 4965.1, + "probability": 0.7449 + }, + { + "start": 4966.1, + "end": 4970.92, + "probability": 0.5923 + }, + { + "start": 4971.72, + "end": 4975.95, + "probability": 0.7156 + }, + { + "start": 4977.84, + "end": 4980.46, + "probability": 0.8502 + }, + { + "start": 4980.94, + "end": 4982.94, + "probability": 0.496 + }, + { + "start": 4984.02, + "end": 4986.84, + "probability": 0.575 + }, + { + "start": 4989.41, + "end": 4992.48, + "probability": 0.6998 + }, + { + "start": 4995.06, + "end": 4996.94, + "probability": 0.9985 + }, + { + "start": 4999.06, + "end": 5000.66, + "probability": 0.8341 + }, + { + "start": 5002.64, + "end": 5003.98, + "probability": 0.9836 + }, + { + "start": 5006.14, + "end": 5008.32, + "probability": 0.9634 + }, + { + "start": 5010.34, + "end": 5013.12, + "probability": 0.9956 + }, + { + "start": 5015.08, + "end": 5018.26, + "probability": 0.9393 + }, + { + "start": 5019.12, + "end": 5020.12, + "probability": 0.9388 + }, + { + "start": 5022.28, + "end": 5022.82, + "probability": 0.7906 + }, + { + "start": 5024.84, + "end": 5025.06, + "probability": 0.5885 + }, + { + "start": 5025.6, + "end": 5027.22, + "probability": 0.5211 + }, + { + "start": 5027.5, + "end": 5028.78, + "probability": 0.8457 + }, + { + "start": 5032.28, + "end": 5033.82, + "probability": 0.6812 + }, + { + "start": 5034.13, + "end": 5036.12, + "probability": 0.6103 + }, + { + "start": 5036.32, + "end": 5038.28, + "probability": 0.6395 + }, + { + "start": 5040.32, + "end": 5043.24, + "probability": 0.9828 + }, + { + "start": 5044.12, + "end": 5046.66, + "probability": 0.9961 + }, + { + "start": 5047.5, + "end": 5049.26, + "probability": 0.6351 + }, + { + "start": 5053.38, + "end": 5056.14, + "probability": 0.9697 + }, + { + "start": 5057.36, + "end": 5057.58, + "probability": 0.8957 + }, + { + "start": 5059.4, + "end": 5061.72, + "probability": 0.8682 + }, + { + "start": 5063.48, + "end": 5065.34, + "probability": 0.9931 + }, + { + "start": 5065.42, + "end": 5066.66, + "probability": 0.9938 + }, + { + "start": 5067.32, + "end": 5069.3, + "probability": 0.9202 + }, + { + "start": 5069.5, + "end": 5070.66, + "probability": 0.2899 + }, + { + "start": 5070.84, + "end": 5071.88, + "probability": 0.6134 + }, + { + "start": 5072.94, + "end": 5074.4, + "probability": 0.9338 + }, + { + "start": 5075.58, + "end": 5076.62, + "probability": 0.9961 + }, + { + "start": 5077.24, + "end": 5078.04, + "probability": 0.9667 + }, + { + "start": 5079.52, + "end": 5079.76, + "probability": 0.6157 + }, + { + "start": 5079.88, + "end": 5080.94, + "probability": 0.9906 + }, + { + "start": 5081.02, + "end": 5081.91, + "probability": 0.9761 + }, + { + "start": 5083.39, + "end": 5086.06, + "probability": 0.5064 + }, + { + "start": 5087.74, + "end": 5089.2, + "probability": 0.9539 + }, + { + "start": 5092.46, + "end": 5093.12, + "probability": 0.9194 + }, + { + "start": 5094.02, + "end": 5096.0, + "probability": 0.986 + }, + { + "start": 5096.08, + "end": 5097.8, + "probability": 0.6664 + }, + { + "start": 5097.96, + "end": 5099.27, + "probability": 0.796 + }, + { + "start": 5100.18, + "end": 5101.52, + "probability": 0.6914 + }, + { + "start": 5102.4, + "end": 5105.68, + "probability": 0.9067 + }, + { + "start": 5106.36, + "end": 5108.1, + "probability": 0.9047 + }, + { + "start": 5108.8, + "end": 5109.04, + "probability": 0.8605 + }, + { + "start": 5111.56, + "end": 5112.88, + "probability": 0.9843 + }, + { + "start": 5113.82, + "end": 5114.92, + "probability": 0.9868 + }, + { + "start": 5116.5, + "end": 5117.74, + "probability": 0.9459 + }, + { + "start": 5118.92, + "end": 5119.56, + "probability": 0.5239 + }, + { + "start": 5122.4, + "end": 5126.06, + "probability": 0.8472 + }, + { + "start": 5127.96, + "end": 5129.96, + "probability": 0.9878 + }, + { + "start": 5131.57, + "end": 5133.25, + "probability": 0.9606 + }, + { + "start": 5133.88, + "end": 5135.84, + "probability": 0.9956 + }, + { + "start": 5136.76, + "end": 5137.28, + "probability": 0.7524 + }, + { + "start": 5137.44, + "end": 5138.52, + "probability": 0.9317 + }, + { + "start": 5139.22, + "end": 5141.24, + "probability": 0.7544 + }, + { + "start": 5143.66, + "end": 5145.1, + "probability": 0.9629 + }, + { + "start": 5146.86, + "end": 5151.0, + "probability": 0.9834 + }, + { + "start": 5151.12, + "end": 5151.84, + "probability": 0.9866 + }, + { + "start": 5152.86, + "end": 5156.42, + "probability": 0.976 + }, + { + "start": 5156.54, + "end": 5157.28, + "probability": 0.8657 + }, + { + "start": 5157.72, + "end": 5158.38, + "probability": 0.6699 + }, + { + "start": 5159.38, + "end": 5160.2, + "probability": 0.967 + }, + { + "start": 5160.74, + "end": 5163.34, + "probability": 0.9219 + }, + { + "start": 5164.82, + "end": 5165.6, + "probability": 0.6604 + }, + { + "start": 5166.98, + "end": 5167.88, + "probability": 0.9812 + }, + { + "start": 5168.62, + "end": 5168.88, + "probability": 0.9858 + }, + { + "start": 5169.94, + "end": 5172.0, + "probability": 0.7931 + }, + { + "start": 5173.1, + "end": 5173.7, + "probability": 0.7996 + }, + { + "start": 5176.02, + "end": 5178.8, + "probability": 0.9609 + }, + { + "start": 5179.64, + "end": 5184.8, + "probability": 0.7208 + }, + { + "start": 5184.88, + "end": 5186.66, + "probability": 0.1394 + }, + { + "start": 5190.44, + "end": 5191.24, + "probability": 0.169 + }, + { + "start": 5192.08, + "end": 5192.56, + "probability": 0.0435 + }, + { + "start": 5195.71, + "end": 5196.14, + "probability": 0.877 + }, + { + "start": 5201.1, + "end": 5203.34, + "probability": 0.804 + }, + { + "start": 5205.24, + "end": 5207.88, + "probability": 0.958 + }, + { + "start": 5209.91, + "end": 5212.5, + "probability": 0.5892 + }, + { + "start": 5213.12, + "end": 5214.58, + "probability": 0.8376 + }, + { + "start": 5220.62, + "end": 5224.84, + "probability": 0.9958 + }, + { + "start": 5226.02, + "end": 5227.82, + "probability": 0.933 + }, + { + "start": 5228.28, + "end": 5229.14, + "probability": 0.8706 + }, + { + "start": 5230.08, + "end": 5231.94, + "probability": 0.8364 + }, + { + "start": 5232.16, + "end": 5232.96, + "probability": 0.771 + }, + { + "start": 5233.08, + "end": 5234.32, + "probability": 0.8148 + }, + { + "start": 5234.76, + "end": 5235.28, + "probability": 0.5502 + }, + { + "start": 5236.38, + "end": 5238.24, + "probability": 0.7747 + }, + { + "start": 5239.36, + "end": 5241.86, + "probability": 0.9838 + }, + { + "start": 5242.36, + "end": 5243.49, + "probability": 0.9966 + }, + { + "start": 5244.56, + "end": 5245.82, + "probability": 0.963 + }, + { + "start": 5246.4, + "end": 5249.7, + "probability": 0.923 + }, + { + "start": 5250.68, + "end": 5251.46, + "probability": 0.6859 + }, + { + "start": 5251.8, + "end": 5252.54, + "probability": 0.9966 + }, + { + "start": 5253.82, + "end": 5254.66, + "probability": 0.9229 + }, + { + "start": 5255.34, + "end": 5256.48, + "probability": 0.8453 + }, + { + "start": 5256.88, + "end": 5262.1, + "probability": 0.9807 + }, + { + "start": 5264.1, + "end": 5270.42, + "probability": 0.9387 + }, + { + "start": 5270.88, + "end": 5273.12, + "probability": 0.4572 + }, + { + "start": 5273.12, + "end": 5275.38, + "probability": 0.8434 + }, + { + "start": 5276.3, + "end": 5277.4, + "probability": 0.9249 + }, + { + "start": 5277.62, + "end": 5278.34, + "probability": 0.4606 + }, + { + "start": 5278.42, + "end": 5279.52, + "probability": 0.9204 + }, + { + "start": 5280.1, + "end": 5283.76, + "probability": 0.9211 + }, + { + "start": 5284.3, + "end": 5287.0, + "probability": 0.8443 + }, + { + "start": 5287.52, + "end": 5288.31, + "probability": 0.9487 + }, + { + "start": 5289.02, + "end": 5292.77, + "probability": 0.9748 + }, + { + "start": 5293.94, + "end": 5300.1, + "probability": 0.793 + }, + { + "start": 5301.58, + "end": 5302.7, + "probability": 0.9417 + }, + { + "start": 5303.52, + "end": 5305.96, + "probability": 0.0941 + }, + { + "start": 5305.96, + "end": 5309.1, + "probability": 0.7861 + }, + { + "start": 5309.1, + "end": 5314.84, + "probability": 0.2835 + }, + { + "start": 5314.96, + "end": 5319.14, + "probability": 0.7391 + }, + { + "start": 5320.24, + "end": 5320.7, + "probability": 0.4468 + }, + { + "start": 5320.96, + "end": 5320.96, + "probability": 0.1539 + }, + { + "start": 5320.96, + "end": 5322.65, + "probability": 0.6718 + }, + { + "start": 5323.34, + "end": 5324.12, + "probability": 0.811 + }, + { + "start": 5325.22, + "end": 5328.72, + "probability": 0.9771 + }, + { + "start": 5328.72, + "end": 5334.58, + "probability": 0.8945 + }, + { + "start": 5336.02, + "end": 5337.82, + "probability": 0.8603 + }, + { + "start": 5338.84, + "end": 5340.96, + "probability": 0.9728 + }, + { + "start": 5342.28, + "end": 5342.88, + "probability": 0.9238 + }, + { + "start": 5342.98, + "end": 5348.2, + "probability": 0.9932 + }, + { + "start": 5348.8, + "end": 5350.09, + "probability": 0.9821 + }, + { + "start": 5351.1, + "end": 5352.92, + "probability": 0.854 + }, + { + "start": 5354.27, + "end": 5357.42, + "probability": 0.7323 + }, + { + "start": 5358.86, + "end": 5362.0, + "probability": 0.9531 + }, + { + "start": 5362.7, + "end": 5364.42, + "probability": 0.9744 + }, + { + "start": 5364.52, + "end": 5365.04, + "probability": 0.6913 + }, + { + "start": 5365.2, + "end": 5365.3, + "probability": 0.8458 + }, + { + "start": 5365.44, + "end": 5366.18, + "probability": 0.9751 + }, + { + "start": 5367.28, + "end": 5368.49, + "probability": 0.681 + }, + { + "start": 5371.08, + "end": 5372.78, + "probability": 0.9497 + }, + { + "start": 5374.66, + "end": 5376.54, + "probability": 0.3647 + }, + { + "start": 5376.68, + "end": 5377.58, + "probability": 0.5458 + }, + { + "start": 5385.08, + "end": 5385.66, + "probability": 0.4683 + }, + { + "start": 5388.16, + "end": 5389.2, + "probability": 0.9102 + }, + { + "start": 5390.62, + "end": 5392.26, + "probability": 0.8968 + }, + { + "start": 5393.96, + "end": 5396.22, + "probability": 0.9683 + }, + { + "start": 5397.56, + "end": 5398.32, + "probability": 0.8859 + }, + { + "start": 5399.84, + "end": 5402.46, + "probability": 0.9629 + }, + { + "start": 5403.68, + "end": 5404.7, + "probability": 0.9511 + }, + { + "start": 5405.54, + "end": 5410.24, + "probability": 0.8564 + }, + { + "start": 5411.08, + "end": 5412.54, + "probability": 0.7564 + }, + { + "start": 5414.36, + "end": 5416.36, + "probability": 0.8357 + }, + { + "start": 5417.24, + "end": 5418.4, + "probability": 0.9111 + }, + { + "start": 5418.68, + "end": 5420.56, + "probability": 0.6576 + }, + { + "start": 5420.74, + "end": 5422.7, + "probability": 0.9532 + }, + { + "start": 5423.08, + "end": 5423.74, + "probability": 0.5721 + }, + { + "start": 5423.82, + "end": 5424.7, + "probability": 0.8744 + }, + { + "start": 5430.54, + "end": 5431.12, + "probability": 0.7252 + }, + { + "start": 5431.84, + "end": 5433.74, + "probability": 0.6145 + }, + { + "start": 5435.22, + "end": 5435.62, + "probability": 0.6235 + }, + { + "start": 5435.64, + "end": 5435.96, + "probability": 0.9768 + }, + { + "start": 5436.1, + "end": 5438.7, + "probability": 0.9897 + }, + { + "start": 5438.8, + "end": 5443.34, + "probability": 0.9729 + }, + { + "start": 5443.6, + "end": 5445.28, + "probability": 0.8969 + }, + { + "start": 5446.22, + "end": 5448.52, + "probability": 0.999 + }, + { + "start": 5450.12, + "end": 5451.73, + "probability": 0.9927 + }, + { + "start": 5452.88, + "end": 5454.82, + "probability": 0.9967 + }, + { + "start": 5456.48, + "end": 5457.58, + "probability": 0.8773 + }, + { + "start": 5459.14, + "end": 5461.54, + "probability": 0.8646 + }, + { + "start": 5462.56, + "end": 5465.22, + "probability": 0.9792 + }, + { + "start": 5466.54, + "end": 5472.52, + "probability": 0.9095 + }, + { + "start": 5473.04, + "end": 5474.06, + "probability": 0.8642 + }, + { + "start": 5476.16, + "end": 5479.72, + "probability": 0.9913 + }, + { + "start": 5481.1, + "end": 5482.4, + "probability": 0.729 + }, + { + "start": 5483.94, + "end": 5486.34, + "probability": 0.9465 + }, + { + "start": 5487.66, + "end": 5489.12, + "probability": 0.9163 + }, + { + "start": 5490.16, + "end": 5491.88, + "probability": 0.8372 + }, + { + "start": 5493.2, + "end": 5495.22, + "probability": 0.912 + }, + { + "start": 5498.16, + "end": 5498.62, + "probability": 0.7776 + }, + { + "start": 5499.62, + "end": 5500.81, + "probability": 0.9907 + }, + { + "start": 5501.3, + "end": 5501.98, + "probability": 0.8542 + }, + { + "start": 5502.16, + "end": 5502.66, + "probability": 0.9476 + }, + { + "start": 5502.76, + "end": 5503.58, + "probability": 0.9114 + }, + { + "start": 5505.52, + "end": 5506.65, + "probability": 0.9926 + }, + { + "start": 5508.38, + "end": 5510.38, + "probability": 0.9597 + }, + { + "start": 5510.54, + "end": 5511.14, + "probability": 0.8638 + }, + { + "start": 5511.94, + "end": 5514.82, + "probability": 0.9521 + }, + { + "start": 5515.48, + "end": 5516.44, + "probability": 0.8933 + }, + { + "start": 5517.14, + "end": 5518.19, + "probability": 0.9749 + }, + { + "start": 5519.92, + "end": 5520.34, + "probability": 0.9331 + }, + { + "start": 5521.22, + "end": 5523.28, + "probability": 0.9671 + }, + { + "start": 5524.76, + "end": 5527.66, + "probability": 0.1629 + }, + { + "start": 5527.99, + "end": 5530.04, + "probability": 0.6641 + }, + { + "start": 5530.48, + "end": 5530.9, + "probability": 0.0315 + }, + { + "start": 5533.64, + "end": 5534.69, + "probability": 0.6843 + }, + { + "start": 5537.88, + "end": 5539.24, + "probability": 0.9795 + }, + { + "start": 5539.96, + "end": 5540.97, + "probability": 0.9876 + }, + { + "start": 5541.06, + "end": 5541.4, + "probability": 0.4423 + }, + { + "start": 5541.6, + "end": 5542.56, + "probability": 0.2632 + }, + { + "start": 5542.74, + "end": 5543.98, + "probability": 0.5323 + }, + { + "start": 5545.66, + "end": 5547.14, + "probability": 0.9807 + }, + { + "start": 5547.42, + "end": 5549.76, + "probability": 0.6495 + }, + { + "start": 5549.8, + "end": 5551.44, + "probability": 0.9448 + }, + { + "start": 5551.64, + "end": 5552.12, + "probability": 0.8154 + }, + { + "start": 5552.16, + "end": 5555.66, + "probability": 0.8385 + }, + { + "start": 5556.92, + "end": 5559.64, + "probability": 0.9414 + }, + { + "start": 5560.24, + "end": 5563.61, + "probability": 0.8955 + }, + { + "start": 5564.26, + "end": 5565.82, + "probability": 0.988 + }, + { + "start": 5566.5, + "end": 5568.68, + "probability": 0.7825 + }, + { + "start": 5570.42, + "end": 5573.04, + "probability": 0.6664 + }, + { + "start": 5574.28, + "end": 5576.58, + "probability": 0.9461 + }, + { + "start": 5578.4, + "end": 5579.3, + "probability": 0.706 + }, + { + "start": 5579.42, + "end": 5582.24, + "probability": 0.8836 + }, + { + "start": 5582.34, + "end": 5582.54, + "probability": 0.7316 + }, + { + "start": 5582.58, + "end": 5583.52, + "probability": 0.9431 + }, + { + "start": 5583.68, + "end": 5584.28, + "probability": 0.6719 + }, + { + "start": 5585.06, + "end": 5586.28, + "probability": 0.9408 + }, + { + "start": 5587.22, + "end": 5588.52, + "probability": 0.7979 + }, + { + "start": 5588.74, + "end": 5591.75, + "probability": 0.5336 + }, + { + "start": 5592.84, + "end": 5593.86, + "probability": 0.7732 + }, + { + "start": 5594.36, + "end": 5596.37, + "probability": 0.9648 + }, + { + "start": 5597.26, + "end": 5599.84, + "probability": 0.3314 + }, + { + "start": 5600.76, + "end": 5602.62, + "probability": 0.9873 + }, + { + "start": 5602.66, + "end": 5605.18, + "probability": 0.9808 + }, + { + "start": 5605.5, + "end": 5608.0, + "probability": 0.8673 + }, + { + "start": 5609.86, + "end": 5610.12, + "probability": 0.4853 + }, + { + "start": 5610.16, + "end": 5612.18, + "probability": 0.9741 + }, + { + "start": 5613.18, + "end": 5614.02, + "probability": 0.5684 + }, + { + "start": 5615.76, + "end": 5616.3, + "probability": 0.9175 + }, + { + "start": 5616.38, + "end": 5618.2, + "probability": 0.9773 + }, + { + "start": 5618.2, + "end": 5620.9, + "probability": 0.9839 + }, + { + "start": 5623.34, + "end": 5626.84, + "probability": 0.9998 + }, + { + "start": 5627.12, + "end": 5631.16, + "probability": 0.9995 + }, + { + "start": 5631.66, + "end": 5632.64, + "probability": 0.8685 + }, + { + "start": 5633.72, + "end": 5635.24, + "probability": 0.8067 + }, + { + "start": 5636.16, + "end": 5638.3, + "probability": 0.8169 + }, + { + "start": 5638.6, + "end": 5639.92, + "probability": 0.8738 + }, + { + "start": 5640.1, + "end": 5641.04, + "probability": 0.8828 + }, + { + "start": 5641.7, + "end": 5642.84, + "probability": 0.9741 + }, + { + "start": 5643.4, + "end": 5644.5, + "probability": 0.8989 + }, + { + "start": 5645.62, + "end": 5647.8, + "probability": 0.9772 + }, + { + "start": 5648.4, + "end": 5651.68, + "probability": 0.9268 + }, + { + "start": 5652.28, + "end": 5655.1, + "probability": 0.8062 + }, + { + "start": 5655.98, + "end": 5656.92, + "probability": 0.9998 + }, + { + "start": 5657.92, + "end": 5662.26, + "probability": 0.9806 + }, + { + "start": 5663.04, + "end": 5663.82, + "probability": 0.6664 + }, + { + "start": 5664.08, + "end": 5665.22, + "probability": 0.7767 + }, + { + "start": 5665.68, + "end": 5667.1, + "probability": 0.9517 + }, + { + "start": 5667.56, + "end": 5669.62, + "probability": 0.9737 + }, + { + "start": 5670.34, + "end": 5671.56, + "probability": 0.9199 + }, + { + "start": 5671.7, + "end": 5674.82, + "probability": 0.9607 + }, + { + "start": 5675.62, + "end": 5676.5, + "probability": 0.9767 + }, + { + "start": 5677.28, + "end": 5678.76, + "probability": 0.9365 + }, + { + "start": 5679.68, + "end": 5680.94, + "probability": 0.9881 + }, + { + "start": 5680.98, + "end": 5682.42, + "probability": 0.9573 + }, + { + "start": 5682.68, + "end": 5684.36, + "probability": 0.6798 + }, + { + "start": 5684.44, + "end": 5684.8, + "probability": 0.6108 + }, + { + "start": 5685.86, + "end": 5689.74, + "probability": 0.787 + }, + { + "start": 5689.84, + "end": 5691.05, + "probability": 0.8796 + }, + { + "start": 5691.76, + "end": 5692.88, + "probability": 0.9835 + }, + { + "start": 5692.98, + "end": 5693.84, + "probability": 0.8024 + }, + { + "start": 5693.96, + "end": 5696.42, + "probability": 0.9832 + }, + { + "start": 5698.1, + "end": 5698.78, + "probability": 0.8994 + }, + { + "start": 5699.64, + "end": 5700.56, + "probability": 0.8032 + }, + { + "start": 5701.4, + "end": 5702.06, + "probability": 0.7526 + }, + { + "start": 5703.94, + "end": 5706.18, + "probability": 0.9841 + }, + { + "start": 5706.32, + "end": 5709.64, + "probability": 0.9956 + }, + { + "start": 5710.5, + "end": 5710.94, + "probability": 0.8952 + }, + { + "start": 5711.16, + "end": 5711.66, + "probability": 0.5883 + }, + { + "start": 5711.8, + "end": 5714.0, + "probability": 0.9224 + }, + { + "start": 5714.66, + "end": 5716.74, + "probability": 0.6232 + }, + { + "start": 5717.22, + "end": 5719.28, + "probability": 0.7982 + }, + { + "start": 5719.3, + "end": 5719.78, + "probability": 0.7671 + }, + { + "start": 5720.3, + "end": 5720.98, + "probability": 0.4627 + }, + { + "start": 5722.32, + "end": 5723.62, + "probability": 0.7379 + }, + { + "start": 5724.32, + "end": 5725.72, + "probability": 0.7446 + }, + { + "start": 5726.52, + "end": 5727.86, + "probability": 0.9972 + }, + { + "start": 5727.86, + "end": 5729.38, + "probability": 0.8914 + }, + { + "start": 5729.78, + "end": 5731.24, + "probability": 0.8159 + }, + { + "start": 5731.38, + "end": 5733.14, + "probability": 0.9565 + }, + { + "start": 5733.46, + "end": 5734.1, + "probability": 0.9507 + }, + { + "start": 5735.24, + "end": 5736.72, + "probability": 0.9268 + }, + { + "start": 5736.8, + "end": 5738.08, + "probability": 0.9238 + }, + { + "start": 5738.94, + "end": 5740.68, + "probability": 0.9511 + }, + { + "start": 5740.96, + "end": 5742.58, + "probability": 0.9976 + }, + { + "start": 5743.2, + "end": 5744.3, + "probability": 0.7446 + }, + { + "start": 5744.98, + "end": 5746.11, + "probability": 0.9976 + }, + { + "start": 5747.44, + "end": 5749.76, + "probability": 0.9216 + }, + { + "start": 5750.43, + "end": 5755.96, + "probability": 0.6705 + }, + { + "start": 5756.88, + "end": 5758.84, + "probability": 0.7853 + }, + { + "start": 5758.96, + "end": 5760.66, + "probability": 0.6751 + }, + { + "start": 5761.18, + "end": 5764.14, + "probability": 0.8338 + }, + { + "start": 5764.76, + "end": 5766.9, + "probability": 0.9968 + }, + { + "start": 5766.9, + "end": 5769.04, + "probability": 0.979 + }, + { + "start": 5769.7, + "end": 5771.06, + "probability": 0.9987 + }, + { + "start": 5771.16, + "end": 5772.12, + "probability": 0.9722 + }, + { + "start": 5772.66, + "end": 5775.52, + "probability": 0.8079 + }, + { + "start": 5776.02, + "end": 5778.7, + "probability": 0.8537 + }, + { + "start": 5778.8, + "end": 5780.44, + "probability": 0.7399 + }, + { + "start": 5780.98, + "end": 5783.02, + "probability": 0.9959 + }, + { + "start": 5783.1, + "end": 5784.38, + "probability": 0.8723 + }, + { + "start": 5784.8, + "end": 5786.92, + "probability": 0.8308 + }, + { + "start": 5790.72, + "end": 5792.02, + "probability": 0.654 + }, + { + "start": 5792.16, + "end": 5793.2, + "probability": 0.7605 + }, + { + "start": 5793.7, + "end": 5796.92, + "probability": 0.9506 + }, + { + "start": 5796.94, + "end": 5799.0, + "probability": 0.8222 + }, + { + "start": 5799.06, + "end": 5799.38, + "probability": 0.8685 + }, + { + "start": 5799.42, + "end": 5802.04, + "probability": 0.9712 + }, + { + "start": 5802.96, + "end": 5809.86, + "probability": 0.9097 + }, + { + "start": 5814.8, + "end": 5815.88, + "probability": 0.7903 + }, + { + "start": 5820.84, + "end": 5821.28, + "probability": 0.5082 + }, + { + "start": 5821.34, + "end": 5824.32, + "probability": 0.76 + }, + { + "start": 5825.28, + "end": 5828.66, + "probability": 0.9949 + }, + { + "start": 5829.48, + "end": 5830.36, + "probability": 0.8349 + }, + { + "start": 5830.56, + "end": 5834.8, + "probability": 0.9853 + }, + { + "start": 5836.64, + "end": 5838.58, + "probability": 0.5771 + }, + { + "start": 5839.2, + "end": 5840.35, + "probability": 0.9691 + }, + { + "start": 5840.74, + "end": 5842.16, + "probability": 0.9106 + }, + { + "start": 5842.28, + "end": 5843.84, + "probability": 0.9716 + }, + { + "start": 5844.18, + "end": 5846.18, + "probability": 0.9814 + }, + { + "start": 5846.68, + "end": 5847.8, + "probability": 0.9634 + }, + { + "start": 5847.82, + "end": 5848.86, + "probability": 0.9226 + }, + { + "start": 5848.92, + "end": 5849.42, + "probability": 0.7862 + }, + { + "start": 5851.58, + "end": 5853.32, + "probability": 0.9951 + }, + { + "start": 5854.14, + "end": 5856.48, + "probability": 0.9858 + }, + { + "start": 5857.52, + "end": 5861.02, + "probability": 0.6028 + }, + { + "start": 5861.74, + "end": 5864.46, + "probability": 0.7807 + }, + { + "start": 5865.22, + "end": 5873.08, + "probability": 0.9521 + }, + { + "start": 5874.7, + "end": 5880.36, + "probability": 0.9758 + }, + { + "start": 5880.94, + "end": 5883.32, + "probability": 0.7984 + }, + { + "start": 5884.5, + "end": 5887.66, + "probability": 0.9955 + }, + { + "start": 5888.58, + "end": 5891.02, + "probability": 0.8923 + }, + { + "start": 5891.66, + "end": 5892.54, + "probability": 0.9823 + }, + { + "start": 5893.52, + "end": 5894.22, + "probability": 0.5938 + }, + { + "start": 5894.8, + "end": 5895.7, + "probability": 0.6332 + }, + { + "start": 5897.28, + "end": 5898.7, + "probability": 0.9409 + }, + { + "start": 5899.34, + "end": 5903.38, + "probability": 0.9948 + }, + { + "start": 5904.34, + "end": 5908.16, + "probability": 0.9984 + }, + { + "start": 5909.14, + "end": 5913.58, + "probability": 0.9788 + }, + { + "start": 5914.6, + "end": 5916.8, + "probability": 0.6608 + }, + { + "start": 5917.86, + "end": 5919.42, + "probability": 0.5015 + }, + { + "start": 5920.38, + "end": 5922.3, + "probability": 0.7627 + }, + { + "start": 5922.6, + "end": 5924.6, + "probability": 0.9909 + }, + { + "start": 5925.28, + "end": 5925.28, + "probability": 0.0435 + }, + { + "start": 5925.28, + "end": 5925.54, + "probability": 0.9334 + }, + { + "start": 5925.62, + "end": 5928.1, + "probability": 0.9812 + }, + { + "start": 5928.64, + "end": 5933.88, + "probability": 0.9808 + }, + { + "start": 5934.76, + "end": 5939.86, + "probability": 0.9929 + }, + { + "start": 5940.4, + "end": 5944.7, + "probability": 0.9756 + }, + { + "start": 5945.52, + "end": 5947.94, + "probability": 0.8703 + }, + { + "start": 5948.62, + "end": 5950.32, + "probability": 0.6668 + }, + { + "start": 5951.82, + "end": 5957.24, + "probability": 0.9905 + }, + { + "start": 5957.9, + "end": 5959.88, + "probability": 0.8002 + }, + { + "start": 5960.44, + "end": 5961.74, + "probability": 0.9424 + }, + { + "start": 5961.9, + "end": 5963.4, + "probability": 0.8035 + }, + { + "start": 5963.46, + "end": 5966.16, + "probability": 0.9208 + }, + { + "start": 5966.94, + "end": 5970.24, + "probability": 0.9471 + }, + { + "start": 5970.3, + "end": 5974.0, + "probability": 0.9829 + }, + { + "start": 5974.54, + "end": 5977.48, + "probability": 0.9563 + }, + { + "start": 5978.12, + "end": 5981.53, + "probability": 0.9526 + }, + { + "start": 5982.74, + "end": 5985.56, + "probability": 0.9855 + }, + { + "start": 5986.72, + "end": 5987.62, + "probability": 0.9197 + }, + { + "start": 5987.9, + "end": 5989.24, + "probability": 0.5124 + }, + { + "start": 5989.38, + "end": 5993.32, + "probability": 0.9624 + }, + { + "start": 5994.86, + "end": 5995.94, + "probability": 0.7549 + }, + { + "start": 5996.0, + "end": 6000.06, + "probability": 0.9903 + }, + { + "start": 6000.06, + "end": 6003.7, + "probability": 0.9946 + }, + { + "start": 6004.46, + "end": 6007.6, + "probability": 0.9815 + }, + { + "start": 6007.74, + "end": 6009.1, + "probability": 0.7541 + }, + { + "start": 6009.72, + "end": 6014.32, + "probability": 0.9116 + }, + { + "start": 6014.76, + "end": 6018.24, + "probability": 0.9148 + }, + { + "start": 6018.24, + "end": 6019.64, + "probability": 0.7247 + }, + { + "start": 6020.16, + "end": 6022.0, + "probability": 0.8765 + }, + { + "start": 6022.86, + "end": 6026.24, + "probability": 0.6541 + }, + { + "start": 6027.68, + "end": 6028.2, + "probability": 0.0551 + }, + { + "start": 6028.2, + "end": 6028.54, + "probability": 0.5749 + }, + { + "start": 6028.66, + "end": 6029.66, + "probability": 0.7227 + }, + { + "start": 6029.74, + "end": 6033.42, + "probability": 0.9373 + }, + { + "start": 6034.1, + "end": 6036.08, + "probability": 0.9598 + }, + { + "start": 6037.48, + "end": 6044.22, + "probability": 0.9892 + }, + { + "start": 6044.9, + "end": 6048.72, + "probability": 0.9945 + }, + { + "start": 6049.28, + "end": 6052.2, + "probability": 0.9554 + }, + { + "start": 6053.06, + "end": 6057.2, + "probability": 0.9892 + }, + { + "start": 6057.72, + "end": 6059.58, + "probability": 0.9577 + }, + { + "start": 6060.12, + "end": 6061.36, + "probability": 0.9562 + }, + { + "start": 6061.42, + "end": 6064.26, + "probability": 0.9841 + }, + { + "start": 6064.9, + "end": 6066.06, + "probability": 0.8916 + }, + { + "start": 6066.34, + "end": 6066.58, + "probability": 0.4816 + }, + { + "start": 6066.64, + "end": 6069.76, + "probability": 0.8551 + }, + { + "start": 6070.16, + "end": 6075.4, + "probability": 0.988 + }, + { + "start": 6075.68, + "end": 6081.12, + "probability": 0.9955 + }, + { + "start": 6082.82, + "end": 6087.76, + "probability": 0.9993 + }, + { + "start": 6088.58, + "end": 6091.74, + "probability": 0.7654 + }, + { + "start": 6091.94, + "end": 6093.26, + "probability": 0.9333 + }, + { + "start": 6093.9, + "end": 6094.28, + "probability": 0.9193 + }, + { + "start": 6094.32, + "end": 6095.02, + "probability": 0.7946 + }, + { + "start": 6095.14, + "end": 6099.82, + "probability": 0.9899 + }, + { + "start": 6100.26, + "end": 6102.8, + "probability": 0.9019 + }, + { + "start": 6104.24, + "end": 6109.12, + "probability": 0.9952 + }, + { + "start": 6109.34, + "end": 6110.02, + "probability": 0.3392 + }, + { + "start": 6110.16, + "end": 6111.3, + "probability": 0.8918 + }, + { + "start": 6112.16, + "end": 6114.52, + "probability": 0.7204 + }, + { + "start": 6115.0, + "end": 6121.42, + "probability": 0.9984 + }, + { + "start": 6122.1, + "end": 6127.38, + "probability": 0.9761 + }, + { + "start": 6128.4, + "end": 6131.36, + "probability": 0.9981 + }, + { + "start": 6131.36, + "end": 6135.12, + "probability": 0.9942 + }, + { + "start": 6135.62, + "end": 6136.18, + "probability": 0.5889 + }, + { + "start": 6136.46, + "end": 6138.3, + "probability": 0.9492 + }, + { + "start": 6138.48, + "end": 6138.76, + "probability": 0.6852 + }, + { + "start": 6139.08, + "end": 6140.44, + "probability": 0.9921 + }, + { + "start": 6140.84, + "end": 6143.51, + "probability": 0.9951 + }, + { + "start": 6144.02, + "end": 6146.8, + "probability": 0.9915 + }, + { + "start": 6146.8, + "end": 6149.38, + "probability": 0.9878 + }, + { + "start": 6149.54, + "end": 6150.78, + "probability": 0.6174 + }, + { + "start": 6151.04, + "end": 6152.84, + "probability": 0.9848 + }, + { + "start": 6152.96, + "end": 6153.22, + "probability": 0.8177 + }, + { + "start": 6153.5, + "end": 6155.38, + "probability": 0.8364 + }, + { + "start": 6155.5, + "end": 6156.56, + "probability": 0.947 + }, + { + "start": 6157.24, + "end": 6158.1, + "probability": 0.788 + }, + { + "start": 6159.0, + "end": 6159.4, + "probability": 0.3754 + }, + { + "start": 6160.1, + "end": 6160.76, + "probability": 0.9888 + }, + { + "start": 6161.48, + "end": 6162.42, + "probability": 0.7465 + }, + { + "start": 6170.7, + "end": 6171.76, + "probability": 0.5664 + }, + { + "start": 6175.68, + "end": 6176.58, + "probability": 0.6935 + }, + { + "start": 6177.82, + "end": 6180.2, + "probability": 0.9615 + }, + { + "start": 6180.46, + "end": 6181.48, + "probability": 0.9854 + }, + { + "start": 6182.12, + "end": 6183.28, + "probability": 0.9834 + }, + { + "start": 6183.98, + "end": 6187.26, + "probability": 0.9463 + }, + { + "start": 6187.4, + "end": 6191.84, + "probability": 0.9707 + }, + { + "start": 6192.62, + "end": 6194.52, + "probability": 0.9944 + }, + { + "start": 6195.28, + "end": 6197.82, + "probability": 0.9552 + }, + { + "start": 6198.02, + "end": 6201.24, + "probability": 0.9182 + }, + { + "start": 6202.04, + "end": 6203.74, + "probability": 0.7025 + }, + { + "start": 6203.88, + "end": 6205.4, + "probability": 0.9789 + }, + { + "start": 6206.04, + "end": 6207.42, + "probability": 0.9978 + }, + { + "start": 6208.0, + "end": 6210.54, + "probability": 0.7573 + }, + { + "start": 6211.46, + "end": 6213.4, + "probability": 0.8936 + }, + { + "start": 6214.2, + "end": 6219.52, + "probability": 0.9689 + }, + { + "start": 6220.48, + "end": 6221.08, + "probability": 0.6849 + }, + { + "start": 6221.24, + "end": 6221.56, + "probability": 0.5629 + }, + { + "start": 6221.68, + "end": 6224.0, + "probability": 0.9935 + }, + { + "start": 6224.6, + "end": 6225.62, + "probability": 0.9969 + }, + { + "start": 6226.18, + "end": 6230.5, + "probability": 0.2013 + }, + { + "start": 6230.9, + "end": 6232.94, + "probability": 0.4823 + }, + { + "start": 6232.98, + "end": 6234.54, + "probability": 0.8962 + }, + { + "start": 6234.86, + "end": 6235.54, + "probability": 0.653 + }, + { + "start": 6235.76, + "end": 6238.26, + "probability": 0.3545 + }, + { + "start": 6238.26, + "end": 6240.76, + "probability": 0.757 + }, + { + "start": 6241.76, + "end": 6243.7, + "probability": 0.8931 + }, + { + "start": 6244.9, + "end": 6245.96, + "probability": 0.8007 + }, + { + "start": 6246.08, + "end": 6247.78, + "probability": 0.8172 + }, + { + "start": 6247.88, + "end": 6250.12, + "probability": 0.9706 + }, + { + "start": 6250.38, + "end": 6251.35, + "probability": 0.9937 + }, + { + "start": 6252.12, + "end": 6255.86, + "probability": 0.9497 + }, + { + "start": 6255.94, + "end": 6257.06, + "probability": 0.7028 + }, + { + "start": 6257.1, + "end": 6259.54, + "probability": 0.9857 + }, + { + "start": 6259.78, + "end": 6263.96, + "probability": 0.8304 + }, + { + "start": 6264.06, + "end": 6265.35, + "probability": 0.5111 + }, + { + "start": 6267.55, + "end": 6273.86, + "probability": 0.9863 + }, + { + "start": 6274.4, + "end": 6279.5, + "probability": 0.9938 + }, + { + "start": 6280.34, + "end": 6281.16, + "probability": 0.9164 + }, + { + "start": 6281.86, + "end": 6283.11, + "probability": 0.994 + }, + { + "start": 6283.34, + "end": 6286.28, + "probability": 0.7151 + }, + { + "start": 6286.96, + "end": 6289.3, + "probability": 0.7203 + }, + { + "start": 6289.4, + "end": 6293.86, + "probability": 0.9907 + }, + { + "start": 6294.0, + "end": 6295.34, + "probability": 0.9796 + }, + { + "start": 6296.8, + "end": 6300.14, + "probability": 0.9938 + }, + { + "start": 6300.28, + "end": 6306.0, + "probability": 0.9935 + }, + { + "start": 6310.12, + "end": 6314.06, + "probability": 0.9475 + }, + { + "start": 6314.2, + "end": 6315.44, + "probability": 0.9976 + }, + { + "start": 6316.02, + "end": 6320.78, + "probability": 0.9678 + }, + { + "start": 6320.78, + "end": 6324.66, + "probability": 0.9929 + }, + { + "start": 6324.84, + "end": 6327.24, + "probability": 0.932 + }, + { + "start": 6327.88, + "end": 6329.96, + "probability": 0.9791 + }, + { + "start": 6331.54, + "end": 6332.66, + "probability": 0.5942 + }, + { + "start": 6333.02, + "end": 6333.02, + "probability": 0.012 + }, + { + "start": 6334.14, + "end": 6335.24, + "probability": 0.9897 + }, + { + "start": 6335.66, + "end": 6338.12, + "probability": 0.9853 + }, + { + "start": 6339.02, + "end": 6343.08, + "probability": 0.9864 + }, + { + "start": 6343.48, + "end": 6347.08, + "probability": 0.9944 + }, + { + "start": 6347.46, + "end": 6352.52, + "probability": 0.963 + }, + { + "start": 6352.81, + "end": 6354.17, + "probability": 0.9574 + }, + { + "start": 6354.68, + "end": 6356.48, + "probability": 0.974 + }, + { + "start": 6357.02, + "end": 6357.86, + "probability": 0.6784 + }, + { + "start": 6358.4, + "end": 6362.58, + "probability": 0.9783 + }, + { + "start": 6363.8, + "end": 6366.24, + "probability": 0.9785 + }, + { + "start": 6366.58, + "end": 6368.26, + "probability": 0.9873 + }, + { + "start": 6368.8, + "end": 6371.86, + "probability": 0.8594 + }, + { + "start": 6372.0, + "end": 6372.6, + "probability": 0.6815 + }, + { + "start": 6372.92, + "end": 6374.46, + "probability": 0.7933 + }, + { + "start": 6375.12, + "end": 6380.48, + "probability": 0.8922 + }, + { + "start": 6380.76, + "end": 6382.2, + "probability": 0.8612 + }, + { + "start": 6382.7, + "end": 6384.1, + "probability": 0.9932 + }, + { + "start": 6384.98, + "end": 6390.14, + "probability": 0.6987 + }, + { + "start": 6390.68, + "end": 6393.17, + "probability": 0.6827 + }, + { + "start": 6394.14, + "end": 6394.8, + "probability": 0.8917 + }, + { + "start": 6395.72, + "end": 6399.34, + "probability": 0.9738 + }, + { + "start": 6399.86, + "end": 6402.1, + "probability": 0.9871 + }, + { + "start": 6403.28, + "end": 6403.82, + "probability": 0.4069 + }, + { + "start": 6404.38, + "end": 6408.56, + "probability": 0.985 + }, + { + "start": 6408.72, + "end": 6415.64, + "probability": 0.9775 + }, + { + "start": 6415.94, + "end": 6419.0, + "probability": 0.984 + }, + { + "start": 6419.74, + "end": 6422.5, + "probability": 0.9829 + }, + { + "start": 6422.5, + "end": 6426.48, + "probability": 0.9951 + }, + { + "start": 6427.12, + "end": 6431.18, + "probability": 0.9929 + }, + { + "start": 6431.38, + "end": 6432.16, + "probability": 0.9174 + }, + { + "start": 6432.52, + "end": 6434.32, + "probability": 0.8291 + }, + { + "start": 6434.88, + "end": 6436.06, + "probability": 0.9821 + }, + { + "start": 6437.64, + "end": 6440.68, + "probability": 0.394 + }, + { + "start": 6440.68, + "end": 6442.5, + "probability": 0.7074 + }, + { + "start": 6445.38, + "end": 6447.34, + "probability": 0.6261 + }, + { + "start": 6448.62, + "end": 6449.5, + "probability": 0.6147 + }, + { + "start": 6455.24, + "end": 6457.38, + "probability": 0.6689 + }, + { + "start": 6470.1, + "end": 6471.02, + "probability": 0.5847 + }, + { + "start": 6471.4, + "end": 6472.76, + "probability": 0.7286 + }, + { + "start": 6473.77, + "end": 6477.62, + "probability": 0.9386 + }, + { + "start": 6477.62, + "end": 6480.5, + "probability": 0.9959 + }, + { + "start": 6480.88, + "end": 6483.32, + "probability": 0.8838 + }, + { + "start": 6483.4, + "end": 6484.78, + "probability": 0.9244 + }, + { + "start": 6484.94, + "end": 6487.04, + "probability": 0.9471 + }, + { + "start": 6487.46, + "end": 6488.22, + "probability": 0.027 + }, + { + "start": 6491.02, + "end": 6491.9, + "probability": 0.6618 + }, + { + "start": 6493.04, + "end": 6495.28, + "probability": 0.7056 + }, + { + "start": 6497.12, + "end": 6499.86, + "probability": 0.979 + }, + { + "start": 6501.4, + "end": 6504.3, + "probability": 0.9797 + }, + { + "start": 6507.34, + "end": 6507.68, + "probability": 0.8267 + }, + { + "start": 6507.8, + "end": 6510.54, + "probability": 0.936 + }, + { + "start": 6510.92, + "end": 6512.86, + "probability": 0.9387 + }, + { + "start": 6514.43, + "end": 6517.64, + "probability": 0.8582 + }, + { + "start": 6518.7, + "end": 6522.52, + "probability": 0.9831 + }, + { + "start": 6524.62, + "end": 6525.82, + "probability": 0.9791 + }, + { + "start": 6526.88, + "end": 6529.72, + "probability": 0.6455 + }, + { + "start": 6529.8, + "end": 6530.3, + "probability": 0.5945 + }, + { + "start": 6530.74, + "end": 6531.68, + "probability": 0.9697 + }, + { + "start": 6532.16, + "end": 6532.96, + "probability": 0.3622 + }, + { + "start": 6533.08, + "end": 6533.74, + "probability": 0.9692 + }, + { + "start": 6535.8, + "end": 6538.54, + "probability": 0.9666 + }, + { + "start": 6538.64, + "end": 6541.44, + "probability": 0.9491 + }, + { + "start": 6543.68, + "end": 6544.34, + "probability": 0.9459 + }, + { + "start": 6546.02, + "end": 6547.7, + "probability": 0.6664 + }, + { + "start": 6550.44, + "end": 6551.08, + "probability": 0.2086 + }, + { + "start": 6551.6, + "end": 6552.09, + "probability": 0.7441 + }, + { + "start": 6553.34, + "end": 6554.86, + "probability": 0.9927 + }, + { + "start": 6557.98, + "end": 6559.18, + "probability": 0.9757 + }, + { + "start": 6560.82, + "end": 6561.98, + "probability": 0.8892 + }, + { + "start": 6562.98, + "end": 6563.92, + "probability": 0.9056 + }, + { + "start": 6564.36, + "end": 6565.74, + "probability": 0.3955 + }, + { + "start": 6566.04, + "end": 6566.58, + "probability": 0.432 + }, + { + "start": 6567.14, + "end": 6568.88, + "probability": 0.8343 + }, + { + "start": 6570.2, + "end": 6571.4, + "probability": 0.8867 + }, + { + "start": 6572.84, + "end": 6573.58, + "probability": 0.6734 + }, + { + "start": 6575.02, + "end": 6576.04, + "probability": 0.6515 + }, + { + "start": 6576.84, + "end": 6579.94, + "probability": 0.6118 + }, + { + "start": 6580.64, + "end": 6582.12, + "probability": 0.9316 + }, + { + "start": 6583.46, + "end": 6584.84, + "probability": 0.8514 + }, + { + "start": 6585.52, + "end": 6588.96, + "probability": 0.7678 + }, + { + "start": 6589.83, + "end": 6592.02, + "probability": 0.5112 + }, + { + "start": 6592.02, + "end": 6593.24, + "probability": 0.8486 + }, + { + "start": 6593.98, + "end": 6594.9, + "probability": 0.7969 + }, + { + "start": 6595.74, + "end": 6596.38, + "probability": 0.8303 + }, + { + "start": 6596.8, + "end": 6598.02, + "probability": 0.6309 + }, + { + "start": 6598.26, + "end": 6598.42, + "probability": 0.7861 + }, + { + "start": 6598.58, + "end": 6598.72, + "probability": 0.802 + }, + { + "start": 6599.06, + "end": 6601.16, + "probability": 0.111 + }, + { + "start": 6601.5, + "end": 6603.72, + "probability": 0.8972 + }, + { + "start": 6603.8, + "end": 6606.6, + "probability": 0.7656 + }, + { + "start": 6606.64, + "end": 6611.04, + "probability": 0.769 + }, + { + "start": 6611.44, + "end": 6616.72, + "probability": 0.9718 + }, + { + "start": 6617.18, + "end": 6621.56, + "probability": 0.8405 + }, + { + "start": 6623.02, + "end": 6624.26, + "probability": 0.418 + }, + { + "start": 6624.98, + "end": 6625.56, + "probability": 0.5005 + }, + { + "start": 6627.3, + "end": 6630.42, + "probability": 0.9914 + }, + { + "start": 6630.66, + "end": 6631.1, + "probability": 0.7775 + }, + { + "start": 6631.56, + "end": 6633.56, + "probability": 0.9745 + }, + { + "start": 6634.36, + "end": 6636.42, + "probability": 0.8133 + }, + { + "start": 6638.02, + "end": 6641.64, + "probability": 0.8587 + }, + { + "start": 6642.0, + "end": 6646.94, + "probability": 0.9822 + }, + { + "start": 6647.96, + "end": 6652.76, + "probability": 0.9679 + }, + { + "start": 6652.76, + "end": 6656.68, + "probability": 0.9534 + }, + { + "start": 6656.96, + "end": 6658.22, + "probability": 0.693 + }, + { + "start": 6659.0, + "end": 6660.38, + "probability": 0.9982 + }, + { + "start": 6661.86, + "end": 6667.6, + "probability": 0.7545 + }, + { + "start": 6667.6, + "end": 6667.67, + "probability": 0.5617 + }, + { + "start": 6668.72, + "end": 6669.63, + "probability": 0.5242 + }, + { + "start": 6670.42, + "end": 6675.14, + "probability": 0.7782 + }, + { + "start": 6675.14, + "end": 6675.99, + "probability": 0.5474 + }, + { + "start": 6676.8, + "end": 6677.8, + "probability": 0.9885 + }, + { + "start": 6678.7, + "end": 6682.62, + "probability": 0.885 + }, + { + "start": 6682.92, + "end": 6683.78, + "probability": 0.6276 + }, + { + "start": 6683.98, + "end": 6684.68, + "probability": 0.97 + }, + { + "start": 6684.78, + "end": 6689.56, + "probability": 0.8973 + }, + { + "start": 6689.92, + "end": 6692.82, + "probability": 0.9969 + }, + { + "start": 6694.06, + "end": 6698.1, + "probability": 0.8891 + }, + { + "start": 6699.94, + "end": 6702.32, + "probability": 0.0667 + }, + { + "start": 6705.72, + "end": 6706.49, + "probability": 0.572 + }, + { + "start": 6706.84, + "end": 6710.64, + "probability": 0.6949 + }, + { + "start": 6711.28, + "end": 6712.9, + "probability": 0.9316 + }, + { + "start": 6712.98, + "end": 6713.92, + "probability": 0.6512 + }, + { + "start": 6714.04, + "end": 6715.04, + "probability": 0.9826 + }, + { + "start": 6716.96, + "end": 6720.26, + "probability": 0.9835 + }, + { + "start": 6721.54, + "end": 6722.98, + "probability": 0.8394 + }, + { + "start": 6725.0, + "end": 6725.8, + "probability": 0.2676 + }, + { + "start": 6725.94, + "end": 6726.56, + "probability": 0.8208 + }, + { + "start": 6727.28, + "end": 6728.22, + "probability": 0.8658 + }, + { + "start": 6728.74, + "end": 6729.98, + "probability": 0.7495 + }, + { + "start": 6730.74, + "end": 6733.54, + "probability": 0.8278 + }, + { + "start": 6733.62, + "end": 6734.54, + "probability": 0.7057 + }, + { + "start": 6736.52, + "end": 6738.22, + "probability": 0.8679 + }, + { + "start": 6740.48, + "end": 6742.2, + "probability": 0.7647 + }, + { + "start": 6742.4, + "end": 6745.34, + "probability": 0.6646 + }, + { + "start": 6745.36, + "end": 6746.34, + "probability": 0.6318 + }, + { + "start": 6747.2, + "end": 6752.34, + "probability": 0.9028 + }, + { + "start": 6752.86, + "end": 6754.34, + "probability": 0.9473 + }, + { + "start": 6754.9, + "end": 6756.08, + "probability": 0.8491 + }, + { + "start": 6756.72, + "end": 6758.44, + "probability": 0.5073 + }, + { + "start": 6758.56, + "end": 6758.8, + "probability": 0.037 + }, + { + "start": 6759.0, + "end": 6760.98, + "probability": 0.9849 + }, + { + "start": 6761.96, + "end": 6764.32, + "probability": 0.8926 + }, + { + "start": 6767.5, + "end": 6770.18, + "probability": 0.9634 + }, + { + "start": 6770.44, + "end": 6772.58, + "probability": 0.8638 + }, + { + "start": 6772.7, + "end": 6773.38, + "probability": 0.4674 + }, + { + "start": 6773.74, + "end": 6776.28, + "probability": 0.7071 + }, + { + "start": 6776.8, + "end": 6778.12, + "probability": 0.9517 + }, + { + "start": 6779.1, + "end": 6780.58, + "probability": 0.7787 + }, + { + "start": 6783.06, + "end": 6787.36, + "probability": 0.8768 + }, + { + "start": 6787.56, + "end": 6788.7, + "probability": 0.832 + }, + { + "start": 6788.74, + "end": 6789.4, + "probability": 0.8651 + }, + { + "start": 6789.84, + "end": 6790.7, + "probability": 0.744 + }, + { + "start": 6791.18, + "end": 6792.74, + "probability": 0.9805 + }, + { + "start": 6793.64, + "end": 6794.58, + "probability": 0.2641 + }, + { + "start": 6795.52, + "end": 6796.5, + "probability": 0.9666 + }, + { + "start": 6797.06, + "end": 6800.24, + "probability": 0.6426 + }, + { + "start": 6801.02, + "end": 6803.18, + "probability": 0.9253 + }, + { + "start": 6803.38, + "end": 6804.82, + "probability": 0.9695 + }, + { + "start": 6805.4, + "end": 6808.1, + "probability": 0.9971 + }, + { + "start": 6808.56, + "end": 6812.18, + "probability": 0.8967 + }, + { + "start": 6812.52, + "end": 6814.1, + "probability": 0.7415 + }, + { + "start": 6814.52, + "end": 6816.9, + "probability": 0.9792 + }, + { + "start": 6817.2, + "end": 6818.16, + "probability": 0.9237 + }, + { + "start": 6818.7, + "end": 6821.34, + "probability": 0.8176 + }, + { + "start": 6821.6, + "end": 6822.02, + "probability": 0.3766 + }, + { + "start": 6822.2, + "end": 6822.46, + "probability": 0.9027 + }, + { + "start": 6822.52, + "end": 6823.3, + "probability": 0.885 + }, + { + "start": 6823.9, + "end": 6825.24, + "probability": 0.7396 + }, + { + "start": 6826.0, + "end": 6827.72, + "probability": 0.8569 + }, + { + "start": 6828.34, + "end": 6829.24, + "probability": 0.5247 + }, + { + "start": 6844.86, + "end": 6847.18, + "probability": 0.7871 + }, + { + "start": 6848.42, + "end": 6852.24, + "probability": 0.9952 + }, + { + "start": 6852.4, + "end": 6853.56, + "probability": 0.9958 + }, + { + "start": 6854.62, + "end": 6857.34, + "probability": 0.9835 + }, + { + "start": 6857.48, + "end": 6858.36, + "probability": 0.7965 + }, + { + "start": 6858.64, + "end": 6858.84, + "probability": 0.1993 + }, + { + "start": 6860.22, + "end": 6860.84, + "probability": 0.9755 + }, + { + "start": 6860.96, + "end": 6864.24, + "probability": 0.9684 + }, + { + "start": 6864.86, + "end": 6868.48, + "probability": 0.9733 + }, + { + "start": 6868.56, + "end": 6869.8, + "probability": 0.9768 + }, + { + "start": 6869.9, + "end": 6872.08, + "probability": 0.9113 + }, + { + "start": 6872.7, + "end": 6874.6, + "probability": 0.7649 + }, + { + "start": 6874.82, + "end": 6879.4, + "probability": 0.9876 + }, + { + "start": 6880.28, + "end": 6886.1, + "probability": 0.9626 + }, + { + "start": 6886.6, + "end": 6886.84, + "probability": 0.7642 + }, + { + "start": 6886.96, + "end": 6888.4, + "probability": 0.6234 + }, + { + "start": 6889.18, + "end": 6892.26, + "probability": 0.9825 + }, + { + "start": 6893.82, + "end": 6895.68, + "probability": 0.9886 + }, + { + "start": 6896.12, + "end": 6898.18, + "probability": 0.2534 + }, + { + "start": 6899.88, + "end": 6900.66, + "probability": 0.694 + }, + { + "start": 6902.35, + "end": 6907.62, + "probability": 0.3802 + }, + { + "start": 6908.26, + "end": 6910.06, + "probability": 0.8708 + }, + { + "start": 6910.2, + "end": 6911.27, + "probability": 0.0146 + }, + { + "start": 6911.62, + "end": 6915.4, + "probability": 0.8817 + }, + { + "start": 6917.84, + "end": 6918.44, + "probability": 0.0508 + }, + { + "start": 6918.52, + "end": 6921.92, + "probability": 0.5566 + }, + { + "start": 6921.98, + "end": 6922.98, + "probability": 0.3337 + }, + { + "start": 6923.6, + "end": 6924.5, + "probability": 0.3947 + }, + { + "start": 6924.5, + "end": 6925.14, + "probability": 0.6187 + }, + { + "start": 6925.48, + "end": 6930.28, + "probability": 0.1896 + }, + { + "start": 6933.06, + "end": 6934.18, + "probability": 0.231 + }, + { + "start": 6934.18, + "end": 6936.96, + "probability": 0.5143 + }, + { + "start": 6937.6, + "end": 6940.28, + "probability": 0.0875 + }, + { + "start": 6940.98, + "end": 6941.7, + "probability": 0.7885 + }, + { + "start": 6942.48, + "end": 6944.82, + "probability": 0.918 + }, + { + "start": 6946.92, + "end": 6947.76, + "probability": 0.6853 + }, + { + "start": 6947.92, + "end": 6951.58, + "probability": 0.9888 + }, + { + "start": 6952.38, + "end": 6953.44, + "probability": 0.9218 + }, + { + "start": 6953.46, + "end": 6954.48, + "probability": 0.9558 + }, + { + "start": 6954.72, + "end": 6960.12, + "probability": 0.9886 + }, + { + "start": 6960.52, + "end": 6963.06, + "probability": 0.9841 + }, + { + "start": 6963.48, + "end": 6964.58, + "probability": 0.9536 + }, + { + "start": 6964.78, + "end": 6965.24, + "probability": 0.4876 + }, + { + "start": 6965.24, + "end": 6969.02, + "probability": 0.9822 + }, + { + "start": 6969.18, + "end": 6970.53, + "probability": 0.6308 + }, + { + "start": 6971.0, + "end": 6974.32, + "probability": 0.8986 + }, + { + "start": 6974.6, + "end": 6975.4, + "probability": 0.9463 + }, + { + "start": 6975.76, + "end": 6976.36, + "probability": 0.9701 + }, + { + "start": 6977.84, + "end": 6979.06, + "probability": 0.8719 + }, + { + "start": 6979.52, + "end": 6985.5, + "probability": 0.9682 + }, + { + "start": 6986.88, + "end": 6991.08, + "probability": 0.9327 + }, + { + "start": 6992.14, + "end": 6995.18, + "probability": 0.9907 + }, + { + "start": 6997.24, + "end": 6998.6, + "probability": 0.9319 + }, + { + "start": 6999.28, + "end": 7000.08, + "probability": 0.9905 + }, + { + "start": 7000.7, + "end": 7002.76, + "probability": 0.6937 + }, + { + "start": 7003.6, + "end": 7006.06, + "probability": 0.9966 + }, + { + "start": 7007.04, + "end": 7009.32, + "probability": 0.9932 + }, + { + "start": 7010.46, + "end": 7016.36, + "probability": 0.9495 + }, + { + "start": 7017.02, + "end": 7018.76, + "probability": 0.9514 + }, + { + "start": 7019.56, + "end": 7023.08, + "probability": 0.994 + }, + { + "start": 7024.12, + "end": 7026.86, + "probability": 0.9873 + }, + { + "start": 7027.76, + "end": 7034.42, + "probability": 0.971 + }, + { + "start": 7034.42, + "end": 7041.44, + "probability": 0.9993 + }, + { + "start": 7042.74, + "end": 7043.84, + "probability": 0.4908 + }, + { + "start": 7044.5, + "end": 7047.04, + "probability": 0.9692 + }, + { + "start": 7048.02, + "end": 7049.98, + "probability": 0.971 + }, + { + "start": 7050.88, + "end": 7051.58, + "probability": 0.6049 + }, + { + "start": 7053.18, + "end": 7060.74, + "probability": 0.936 + }, + { + "start": 7062.08, + "end": 7065.34, + "probability": 0.9906 + }, + { + "start": 7066.9, + "end": 7069.86, + "probability": 0.9971 + }, + { + "start": 7071.64, + "end": 7075.94, + "probability": 0.9657 + }, + { + "start": 7076.38, + "end": 7077.56, + "probability": 0.9827 + }, + { + "start": 7078.88, + "end": 7079.38, + "probability": 0.5685 + }, + { + "start": 7079.48, + "end": 7081.24, + "probability": 0.9301 + }, + { + "start": 7085.22, + "end": 7085.94, + "probability": 0.5935 + }, + { + "start": 7086.5, + "end": 7089.16, + "probability": 0.87 + }, + { + "start": 7089.32, + "end": 7095.22, + "probability": 0.8981 + }, + { + "start": 7096.78, + "end": 7100.94, + "probability": 0.9403 + }, + { + "start": 7101.48, + "end": 7105.28, + "probability": 0.9878 + }, + { + "start": 7106.4, + "end": 7106.4, + "probability": 0.1176 + }, + { + "start": 7106.44, + "end": 7111.1, + "probability": 0.9963 + }, + { + "start": 7112.06, + "end": 7112.06, + "probability": 0.2893 + }, + { + "start": 7112.06, + "end": 7116.16, + "probability": 0.9918 + }, + { + "start": 7116.16, + "end": 7120.52, + "probability": 0.9034 + }, + { + "start": 7121.5, + "end": 7123.34, + "probability": 0.3131 + }, + { + "start": 7123.5, + "end": 7127.44, + "probability": 0.7651 + }, + { + "start": 7128.22, + "end": 7131.64, + "probability": 0.9908 + }, + { + "start": 7132.18, + "end": 7138.44, + "probability": 0.9827 + }, + { + "start": 7139.3, + "end": 7141.18, + "probability": 0.9876 + }, + { + "start": 7141.32, + "end": 7142.21, + "probability": 0.499 + }, + { + "start": 7142.9, + "end": 7143.92, + "probability": 0.9978 + }, + { + "start": 7144.5, + "end": 7148.16, + "probability": 0.9695 + }, + { + "start": 7148.78, + "end": 7150.7, + "probability": 0.9893 + }, + { + "start": 7151.8, + "end": 7157.2, + "probability": 0.9952 + }, + { + "start": 7157.66, + "end": 7162.66, + "probability": 0.9843 + }, + { + "start": 7164.46, + "end": 7167.02, + "probability": 0.5157 + }, + { + "start": 7167.02, + "end": 7167.42, + "probability": 0.4252 + }, + { + "start": 7168.9, + "end": 7169.88, + "probability": 0.613 + }, + { + "start": 7169.98, + "end": 7170.78, + "probability": 0.8778 + }, + { + "start": 7173.7, + "end": 7177.48, + "probability": 0.2814 + }, + { + "start": 7177.48, + "end": 7180.18, + "probability": 0.3304 + }, + { + "start": 7184.76, + "end": 7185.71, + "probability": 0.7013 + }, + { + "start": 7185.86, + "end": 7186.98, + "probability": 0.5439 + }, + { + "start": 7187.06, + "end": 7190.84, + "probability": 0.677 + }, + { + "start": 7190.9, + "end": 7191.2, + "probability": 0.7693 + }, + { + "start": 7191.68, + "end": 7192.8, + "probability": 0.7873 + }, + { + "start": 7192.98, + "end": 7196.06, + "probability": 0.8939 + }, + { + "start": 7196.62, + "end": 7198.34, + "probability": 0.8827 + }, + { + "start": 7198.9, + "end": 7200.96, + "probability": 0.9157 + }, + { + "start": 7201.72, + "end": 7202.08, + "probability": 0.3267 + }, + { + "start": 7202.1, + "end": 7203.0, + "probability": 0.7211 + }, + { + "start": 7203.16, + "end": 7205.52, + "probability": 0.8689 + }, + { + "start": 7211.8, + "end": 7211.8, + "probability": 0.2817 + }, + { + "start": 7211.8, + "end": 7212.38, + "probability": 0.4137 + }, + { + "start": 7212.48, + "end": 7213.7, + "probability": 0.7958 + }, + { + "start": 7213.9, + "end": 7215.44, + "probability": 0.8073 + }, + { + "start": 7216.04, + "end": 7218.66, + "probability": 0.9706 + }, + { + "start": 7219.46, + "end": 7222.68, + "probability": 0.991 + }, + { + "start": 7223.1, + "end": 7225.04, + "probability": 0.959 + }, + { + "start": 7225.94, + "end": 7229.5, + "probability": 0.6931 + }, + { + "start": 7229.94, + "end": 7233.26, + "probability": 0.9617 + }, + { + "start": 7234.24, + "end": 7236.4, + "probability": 0.749 + }, + { + "start": 7237.46, + "end": 7238.56, + "probability": 0.9788 + }, + { + "start": 7238.8, + "end": 7240.96, + "probability": 0.9797 + }, + { + "start": 7241.9, + "end": 7244.52, + "probability": 0.9675 + }, + { + "start": 7244.96, + "end": 7246.34, + "probability": 0.9611 + }, + { + "start": 7247.0, + "end": 7248.08, + "probability": 0.9238 + }, + { + "start": 7248.5, + "end": 7251.08, + "probability": 0.9871 + }, + { + "start": 7251.72, + "end": 7252.42, + "probability": 0.979 + }, + { + "start": 7252.94, + "end": 7253.96, + "probability": 0.5113 + }, + { + "start": 7254.42, + "end": 7254.94, + "probability": 0.9348 + }, + { + "start": 7255.58, + "end": 7257.54, + "probability": 0.9559 + }, + { + "start": 7257.84, + "end": 7259.72, + "probability": 0.7456 + }, + { + "start": 7261.22, + "end": 7262.88, + "probability": 0.6115 + }, + { + "start": 7263.56, + "end": 7264.52, + "probability": 0.7397 + }, + { + "start": 7265.22, + "end": 7269.52, + "probability": 0.8688 + }, + { + "start": 7270.2, + "end": 7274.98, + "probability": 0.9878 + }, + { + "start": 7275.2, + "end": 7277.08, + "probability": 0.7256 + }, + { + "start": 7277.84, + "end": 7279.38, + "probability": 0.946 + }, + { + "start": 7279.92, + "end": 7283.82, + "probability": 0.7945 + }, + { + "start": 7284.06, + "end": 7286.1, + "probability": 0.8938 + }, + { + "start": 7286.18, + "end": 7290.84, + "probability": 0.8646 + }, + { + "start": 7291.4, + "end": 7296.08, + "probability": 0.8937 + }, + { + "start": 7296.78, + "end": 7298.58, + "probability": 0.9307 + }, + { + "start": 7300.36, + "end": 7301.6, + "probability": 0.7568 + }, + { + "start": 7307.44, + "end": 7311.04, + "probability": 0.6647 + }, + { + "start": 7312.0, + "end": 7313.38, + "probability": 0.0271 + }, + { + "start": 7314.18, + "end": 7320.98, + "probability": 0.8811 + }, + { + "start": 7320.98, + "end": 7327.96, + "probability": 0.917 + }, + { + "start": 7328.48, + "end": 7332.86, + "probability": 0.4783 + }, + { + "start": 7332.92, + "end": 7337.07, + "probability": 0.0077 + }, + { + "start": 7345.32, + "end": 7346.24, + "probability": 0.1667 + }, + { + "start": 7348.66, + "end": 7348.76, + "probability": 0.0442 + }, + { + "start": 7348.78, + "end": 7350.86, + "probability": 0.6846 + }, + { + "start": 7352.28, + "end": 7356.72, + "probability": 0.431 + }, + { + "start": 7357.54, + "end": 7358.56, + "probability": 0.5221 + }, + { + "start": 7361.74, + "end": 7362.04, + "probability": 0.605 + }, + { + "start": 7365.55, + "end": 7368.72, + "probability": 0.5164 + }, + { + "start": 7369.56, + "end": 7371.0, + "probability": 0.9436 + }, + { + "start": 7371.6, + "end": 7375.66, + "probability": 0.8286 + }, + { + "start": 7376.68, + "end": 7377.6, + "probability": 0.3381 + }, + { + "start": 7378.34, + "end": 7383.74, + "probability": 0.769 + }, + { + "start": 7385.16, + "end": 7391.36, + "probability": 0.9971 + }, + { + "start": 7391.78, + "end": 7392.7, + "probability": 0.6452 + }, + { + "start": 7392.72, + "end": 7393.3, + "probability": 0.6278 + }, + { + "start": 7393.36, + "end": 7394.04, + "probability": 0.5686 + }, + { + "start": 7394.38, + "end": 7395.12, + "probability": 0.4102 + }, + { + "start": 7395.26, + "end": 7396.06, + "probability": 0.7495 + }, + { + "start": 7400.44, + "end": 7401.22, + "probability": 0.2762 + }, + { + "start": 7403.56, + "end": 7406.86, + "probability": 0.0504 + }, + { + "start": 7408.7, + "end": 7409.16, + "probability": 0.032 + }, + { + "start": 7409.16, + "end": 7412.88, + "probability": 0.5065 + }, + { + "start": 7412.98, + "end": 7416.28, + "probability": 0.9053 + }, + { + "start": 7416.82, + "end": 7418.9, + "probability": 0.829 + }, + { + "start": 7419.18, + "end": 7420.86, + "probability": 0.7677 + }, + { + "start": 7420.98, + "end": 7422.32, + "probability": 0.9455 + }, + { + "start": 7422.78, + "end": 7427.68, + "probability": 0.6953 + }, + { + "start": 7430.36, + "end": 7433.9, + "probability": 0.8109 + }, + { + "start": 7434.42, + "end": 7434.74, + "probability": 0.0615 + }, + { + "start": 7435.54, + "end": 7439.08, + "probability": 0.8846 + }, + { + "start": 7449.08, + "end": 7453.18, + "probability": 0.7643 + }, + { + "start": 7454.08, + "end": 7458.08, + "probability": 0.9677 + }, + { + "start": 7458.88, + "end": 7461.86, + "probability": 0.6661 + }, + { + "start": 7462.5, + "end": 7465.34, + "probability": 0.9932 + }, + { + "start": 7465.8, + "end": 7468.04, + "probability": 0.9804 + }, + { + "start": 7468.8, + "end": 7472.48, + "probability": 0.874 + }, + { + "start": 7472.48, + "end": 7476.16, + "probability": 0.9645 + }, + { + "start": 7477.18, + "end": 7480.78, + "probability": 0.3335 + }, + { + "start": 7481.42, + "end": 7486.18, + "probability": 0.9419 + }, + { + "start": 7486.6, + "end": 7490.86, + "probability": 0.9964 + }, + { + "start": 7491.78, + "end": 7498.58, + "probability": 0.9339 + }, + { + "start": 7498.72, + "end": 7499.48, + "probability": 0.3611 + }, + { + "start": 7500.06, + "end": 7504.14, + "probability": 0.9927 + }, + { + "start": 7505.22, + "end": 7512.62, + "probability": 0.9261 + }, + { + "start": 7512.62, + "end": 7518.64, + "probability": 0.9984 + }, + { + "start": 7519.24, + "end": 7522.66, + "probability": 0.8173 + }, + { + "start": 7523.14, + "end": 7525.14, + "probability": 0.9412 + }, + { + "start": 7525.7, + "end": 7527.38, + "probability": 0.9155 + }, + { + "start": 7528.2, + "end": 7531.06, + "probability": 0.8929 + }, + { + "start": 7531.62, + "end": 7536.36, + "probability": 0.9387 + }, + { + "start": 7537.88, + "end": 7539.12, + "probability": 0.5724 + }, + { + "start": 7540.86, + "end": 7541.66, + "probability": 0.5787 + }, + { + "start": 7541.8, + "end": 7542.76, + "probability": 0.9745 + }, + { + "start": 7543.18, + "end": 7548.02, + "probability": 0.989 + }, + { + "start": 7548.72, + "end": 7552.5, + "probability": 0.9962 + }, + { + "start": 7552.5, + "end": 7557.84, + "probability": 0.9824 + }, + { + "start": 7557.94, + "end": 7558.82, + "probability": 0.8933 + }, + { + "start": 7559.44, + "end": 7563.38, + "probability": 0.9972 + }, + { + "start": 7563.38, + "end": 7567.86, + "probability": 0.9952 + }, + { + "start": 7568.58, + "end": 7571.28, + "probability": 0.8091 + }, + { + "start": 7571.9, + "end": 7574.98, + "probability": 0.9912 + }, + { + "start": 7575.58, + "end": 7576.64, + "probability": 0.7417 + }, + { + "start": 7576.74, + "end": 7577.64, + "probability": 0.8163 + }, + { + "start": 7578.08, + "end": 7581.76, + "probability": 0.9836 + }, + { + "start": 7582.4, + "end": 7583.88, + "probability": 0.9455 + }, + { + "start": 7583.98, + "end": 7590.24, + "probability": 0.9693 + }, + { + "start": 7590.66, + "end": 7593.78, + "probability": 0.9365 + }, + { + "start": 7594.46, + "end": 7595.54, + "probability": 0.8724 + }, + { + "start": 7596.16, + "end": 7596.9, + "probability": 0.7912 + }, + { + "start": 7597.5, + "end": 7601.78, + "probability": 0.9923 + }, + { + "start": 7601.78, + "end": 7606.08, + "probability": 0.9895 + }, + { + "start": 7606.68, + "end": 7610.62, + "probability": 0.9581 + }, + { + "start": 7610.62, + "end": 7614.1, + "probability": 0.9911 + }, + { + "start": 7614.58, + "end": 7616.14, + "probability": 0.7795 + }, + { + "start": 7616.28, + "end": 7617.44, + "probability": 0.8214 + }, + { + "start": 7617.92, + "end": 7618.9, + "probability": 0.8222 + }, + { + "start": 7619.32, + "end": 7621.8, + "probability": 0.9955 + }, + { + "start": 7621.8, + "end": 7625.78, + "probability": 0.8975 + }, + { + "start": 7626.02, + "end": 7627.12, + "probability": 0.9792 + }, + { + "start": 7627.9, + "end": 7631.46, + "probability": 0.9833 + }, + { + "start": 7632.12, + "end": 7633.08, + "probability": 0.9424 + }, + { + "start": 7633.32, + "end": 7634.42, + "probability": 0.7791 + }, + { + "start": 7634.9, + "end": 7639.14, + "probability": 0.9072 + }, + { + "start": 7639.7, + "end": 7643.4, + "probability": 0.9692 + }, + { + "start": 7644.04, + "end": 7649.26, + "probability": 0.9865 + }, + { + "start": 7649.96, + "end": 7654.0, + "probability": 0.9743 + }, + { + "start": 7654.78, + "end": 7657.08, + "probability": 0.9618 + }, + { + "start": 7657.76, + "end": 7660.68, + "probability": 0.9955 + }, + { + "start": 7660.68, + "end": 7663.6, + "probability": 0.9632 + }, + { + "start": 7664.16, + "end": 7664.36, + "probability": 0.6926 + }, + { + "start": 7664.38, + "end": 7666.62, + "probability": 0.5417 + }, + { + "start": 7667.02, + "end": 7668.26, + "probability": 0.9268 + }, + { + "start": 7671.6, + "end": 7672.02, + "probability": 0.5115 + }, + { + "start": 7673.3, + "end": 7676.3, + "probability": 0.7154 + }, + { + "start": 7676.42, + "end": 7682.5, + "probability": 0.9355 + }, + { + "start": 7683.22, + "end": 7685.9, + "probability": 0.859 + }, + { + "start": 7686.42, + "end": 7690.16, + "probability": 0.8324 + }, + { + "start": 7690.7, + "end": 7694.98, + "probability": 0.584 + }, + { + "start": 7695.6, + "end": 7696.54, + "probability": 0.5967 + }, + { + "start": 7699.76, + "end": 7701.82, + "probability": 0.0025 + }, + { + "start": 7702.84, + "end": 7704.5, + "probability": 0.0002 + }, + { + "start": 7707.94, + "end": 7709.7, + "probability": 0.08 + }, + { + "start": 7710.56, + "end": 7714.06, + "probability": 0.6808 + }, + { + "start": 7716.34, + "end": 7717.06, + "probability": 0.2222 + }, + { + "start": 7718.56, + "end": 7722.64, + "probability": 0.9782 + }, + { + "start": 7723.26, + "end": 7724.48, + "probability": 0.8892 + }, + { + "start": 7726.44, + "end": 7730.12, + "probability": 0.8436 + }, + { + "start": 7730.66, + "end": 7732.2, + "probability": 0.7157 + }, + { + "start": 7732.8, + "end": 7736.68, + "probability": 0.8468 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0219 + }, + { + "start": 7737.0, + "end": 7739.08, + "probability": 0.6647 + }, + { + "start": 7739.08, + "end": 7739.66, + "probability": 0.3745 + }, + { + "start": 7739.66, + "end": 7740.16, + "probability": 0.4957 + }, + { + "start": 7740.16, + "end": 7740.6, + "probability": 0.867 + }, + { + "start": 7744.68, + "end": 7748.14, + "probability": 0.621 + }, + { + "start": 7749.78, + "end": 7750.9, + "probability": 0.0293 + }, + { + "start": 7753.68, + "end": 7754.36, + "probability": 0.2523 + }, + { + "start": 7754.36, + "end": 7757.2, + "probability": 0.7493 + }, + { + "start": 7757.7, + "end": 7764.24, + "probability": 0.7173 + }, + { + "start": 7764.64, + "end": 7765.56, + "probability": 0.3625 + }, + { + "start": 7766.34, + "end": 7770.06, + "probability": 0.7791 + }, + { + "start": 7770.22, + "end": 7772.12, + "probability": 0.879 + }, + { + "start": 7772.5, + "end": 7772.68, + "probability": 0.2545 + }, + { + "start": 7772.76, + "end": 7773.48, + "probability": 0.8371 + }, + { + "start": 7773.98, + "end": 7781.7, + "probability": 0.835 + }, + { + "start": 7781.88, + "end": 7787.56, + "probability": 0.9438 + }, + { + "start": 7789.28, + "end": 7790.34, + "probability": 0.9094 + }, + { + "start": 7792.2, + "end": 7792.54, + "probability": 0.649 + }, + { + "start": 7795.84, + "end": 7797.18, + "probability": 0.807 + }, + { + "start": 7799.48, + "end": 7800.12, + "probability": 0.8699 + }, + { + "start": 7801.68, + "end": 7803.64, + "probability": 0.9814 + }, + { + "start": 7804.54, + "end": 7807.3, + "probability": 0.7626 + }, + { + "start": 7808.64, + "end": 7811.48, + "probability": 0.8557 + }, + { + "start": 7811.58, + "end": 7815.66, + "probability": 0.7812 + }, + { + "start": 7817.06, + "end": 7818.44, + "probability": 0.9992 + }, + { + "start": 7819.26, + "end": 7820.86, + "probability": 0.9967 + }, + { + "start": 7821.52, + "end": 7823.04, + "probability": 0.8559 + }, + { + "start": 7824.14, + "end": 7825.36, + "probability": 0.9468 + }, + { + "start": 7825.96, + "end": 7828.26, + "probability": 0.8987 + }, + { + "start": 7828.86, + "end": 7833.68, + "probability": 0.877 + }, + { + "start": 7834.74, + "end": 7838.06, + "probability": 0.9867 + }, + { + "start": 7839.6, + "end": 7840.1, + "probability": 0.3221 + }, + { + "start": 7840.72, + "end": 7841.28, + "probability": 0.6777 + }, + { + "start": 7841.38, + "end": 7842.24, + "probability": 0.7114 + }, + { + "start": 7842.54, + "end": 7844.14, + "probability": 0.543 + }, + { + "start": 7844.62, + "end": 7846.98, + "probability": 0.0828 + }, + { + "start": 7847.38, + "end": 7849.64, + "probability": 0.9829 + }, + { + "start": 7850.22, + "end": 7852.32, + "probability": 0.6982 + }, + { + "start": 7854.84, + "end": 7857.57, + "probability": 0.6793 + }, + { + "start": 7859.48, + "end": 7866.82, + "probability": 0.9481 + }, + { + "start": 7867.98, + "end": 7872.64, + "probability": 0.8717 + }, + { + "start": 7873.64, + "end": 7875.18, + "probability": 0.964 + }, + { + "start": 7875.84, + "end": 7879.86, + "probability": 0.9866 + }, + { + "start": 7880.98, + "end": 7886.4, + "probability": 0.9682 + }, + { + "start": 7887.68, + "end": 7888.78, + "probability": 0.8071 + }, + { + "start": 7889.38, + "end": 7893.7, + "probability": 0.9299 + }, + { + "start": 7894.3, + "end": 7896.84, + "probability": 0.9917 + }, + { + "start": 7897.92, + "end": 7903.9, + "probability": 0.9657 + }, + { + "start": 7904.54, + "end": 7908.28, + "probability": 0.9513 + }, + { + "start": 7909.52, + "end": 7911.12, + "probability": 0.9927 + }, + { + "start": 7911.96, + "end": 7913.44, + "probability": 0.6939 + }, + { + "start": 7914.3, + "end": 7914.9, + "probability": 0.0269 + }, + { + "start": 7915.96, + "end": 7918.2, + "probability": 0.6723 + }, + { + "start": 7919.02, + "end": 7919.46, + "probability": 0.6149 + }, + { + "start": 7921.1, + "end": 7923.5, + "probability": 0.8741 + }, + { + "start": 7925.32, + "end": 7928.42, + "probability": 0.8992 + }, + { + "start": 7929.16, + "end": 7933.0, + "probability": 0.5583 + }, + { + "start": 7933.0, + "end": 7935.38, + "probability": 0.7666 + }, + { + "start": 7936.14, + "end": 7942.96, + "probability": 0.6665 + }, + { + "start": 7943.48, + "end": 7946.56, + "probability": 0.9203 + }, + { + "start": 7947.36, + "end": 7948.02, + "probability": 0.8467 + }, + { + "start": 7948.66, + "end": 7949.64, + "probability": 0.873 + }, + { + "start": 7950.16, + "end": 7951.48, + "probability": 0.8568 + }, + { + "start": 7952.0, + "end": 7956.44, + "probability": 0.9863 + }, + { + "start": 7956.68, + "end": 7959.68, + "probability": 0.9723 + }, + { + "start": 7960.34, + "end": 7960.7, + "probability": 0.3443 + }, + { + "start": 7961.18, + "end": 7961.48, + "probability": 0.4723 + }, + { + "start": 7962.28, + "end": 7963.08, + "probability": 0.0 + }, + { + "start": 7967.06, + "end": 7967.9, + "probability": 0.0004 + }, + { + "start": 7968.56, + "end": 7970.4, + "probability": 0.9651 + }, + { + "start": 7984.18, + "end": 7989.8, + "probability": 0.4609 + }, + { + "start": 7992.69, + "end": 7994.76, + "probability": 0.4747 + }, + { + "start": 7995.88, + "end": 8002.02, + "probability": 0.8602 + }, + { + "start": 8002.34, + "end": 8003.68, + "probability": 0.679 + }, + { + "start": 8004.34, + "end": 8009.38, + "probability": 0.1479 + }, + { + "start": 8009.41, + "end": 8012.98, + "probability": 0.2421 + }, + { + "start": 8013.22, + "end": 8017.2, + "probability": 0.8658 + }, + { + "start": 8018.26, + "end": 8023.92, + "probability": 0.959 + }, + { + "start": 8024.58, + "end": 8027.64, + "probability": 0.8978 + }, + { + "start": 8028.08, + "end": 8031.64, + "probability": 0.9673 + }, + { + "start": 8032.02, + "end": 8033.42, + "probability": 0.923 + }, + { + "start": 8033.88, + "end": 8036.41, + "probability": 0.593 + }, + { + "start": 8038.34, + "end": 8042.36, + "probability": 0.4041 + }, + { + "start": 8042.36, + "end": 8043.63, + "probability": 0.5498 + }, + { + "start": 8043.86, + "end": 8045.32, + "probability": 0.2791 + }, + { + "start": 8045.32, + "end": 8049.12, + "probability": 0.9186 + }, + { + "start": 8050.52, + "end": 8052.68, + "probability": 0.1717 + }, + { + "start": 8053.44, + "end": 8054.67, + "probability": 0.3054 + }, + { + "start": 8057.64, + "end": 8059.44, + "probability": 0.6618 + }, + { + "start": 8060.12, + "end": 8061.56, + "probability": 0.5949 + }, + { + "start": 8066.86, + "end": 8067.1, + "probability": 0.0274 + }, + { + "start": 8070.24, + "end": 8070.34, + "probability": 0.2006 + }, + { + "start": 8083.42, + "end": 8084.42, + "probability": 0.4316 + }, + { + "start": 8085.34, + "end": 8088.58, + "probability": 0.2425 + }, + { + "start": 8089.14, + "end": 8091.52, + "probability": 0.1912 + }, + { + "start": 8110.7, + "end": 8111.48, + "probability": 0.1667 + }, + { + "start": 8121.96, + "end": 8122.38, + "probability": 0.4246 + }, + { + "start": 8122.54, + "end": 8124.4, + "probability": 0.9366 + }, + { + "start": 8124.74, + "end": 8126.34, + "probability": 0.8456 + }, + { + "start": 8129.32, + "end": 8131.6, + "probability": 0.8667 + }, + { + "start": 8132.52, + "end": 8136.9, + "probability": 0.0339 + }, + { + "start": 8140.24, + "end": 8143.82, + "probability": 0.1709 + }, + { + "start": 8144.6, + "end": 8147.74, + "probability": 0.017 + }, + { + "start": 8151.44, + "end": 8152.51, + "probability": 0.0528 + }, + { + "start": 8274.0, + "end": 8274.0, + "probability": 0.0 + }, + { + "start": 8296.9, + "end": 8297.68, + "probability": 0.4062 + }, + { + "start": 8299.78, + "end": 8301.38, + "probability": 0.034 + }, + { + "start": 8306.58, + "end": 8307.64, + "probability": 0.0852 + }, + { + "start": 8331.54, + "end": 8332.1, + "probability": 0.2931 + }, + { + "start": 8332.16, + "end": 8333.56, + "probability": 0.3323 + }, + { + "start": 8334.98, + "end": 8341.24, + "probability": 0.1074 + }, + { + "start": 8342.47, + "end": 8344.1, + "probability": 0.2588 + }, + { + "start": 8409.0, + "end": 8409.0, + "probability": 0.0 + }, + { + "start": 8409.0, + "end": 8409.0, + "probability": 0.0 + }, + { + "start": 8409.78, + "end": 8410.62, + "probability": 0.0861 + }, + { + "start": 8414.38, + "end": 8415.0, + "probability": 0.0194 + }, + { + "start": 8416.0, + "end": 8417.1, + "probability": 0.2728 + }, + { + "start": 8431.54, + "end": 8433.22, + "probability": 0.0754 + }, + { + "start": 8433.22, + "end": 8433.56, + "probability": 0.1047 + }, + { + "start": 8434.34, + "end": 8435.26, + "probability": 0.1666 + }, + { + "start": 8438.04, + "end": 8438.54, + "probability": 0.0133 + }, + { + "start": 8763.22, + "end": 8764.96, + "probability": 0.0633 + }, + { + "start": 8771.38, + "end": 8775.22, + "probability": 0.0897 + }, + { + "start": 8778.18, + "end": 8778.62, + "probability": 0.0685 + }, + { + "start": 8784.4, + "end": 8786.88, + "probability": 0.6021 + }, + { + "start": 8789.27, + "end": 8789.7, + "probability": 0.3654 + }, + { + "start": 8790.34, + "end": 8796.44, + "probability": 0.1408 + }, + { + "start": 8797.88, + "end": 8799.18, + "probability": 0.2559 + }, + { + "start": 8948.26, + "end": 8951.12, + "probability": 0.0065 + }, + { + "start": 8957.16, + "end": 8960.8, + "probability": 0.0707 + }, + { + "start": 9146.99, + "end": 9149.54, + "probability": 0.0644 + }, + { + "start": 9178.0, + "end": 9178.1, + "probability": 0.072 + }, + { + "start": 9180.83, + "end": 9185.55, + "probability": 0.1378 + }, + { + "start": 9259.0, + "end": 9259.0, + "probability": 0.0 + }, + { + "start": 9259.0, + "end": 9259.0, + "probability": 0.0 + }, + { + "start": 9259.26, + "end": 9260.32, + "probability": 0.0276 + }, + { + "start": 9266.62, + "end": 9268.54, + "probability": 0.0314 + }, + { + "start": 9275.72, + "end": 9277.12, + "probability": 0.0067 + }, + { + "start": 9278.52, + "end": 9279.4, + "probability": 0.0278 + }, + { + "start": 9279.92, + "end": 9281.88, + "probability": 0.0217 + }, + { + "start": 9383.89, + "end": 9384.92, + "probability": 0.0584 + }, + { + "start": 9385.48, + "end": 9385.64, + "probability": 0.0572 + }, + { + "start": 9385.64, + "end": 9389.32, + "probability": 0.0713 + }, + { + "start": 9389.54, + "end": 9392.34, + "probability": 0.0236 + }, + { + "start": 9396.34, + "end": 9400.26, + "probability": 0.0815 + }, + { + "start": 9400.88, + "end": 9401.1, + "probability": 0.017 + }, + { + "start": 9516.0, + "end": 9516.0, + "probability": 0.0 + }, + { + "start": 9516.51, + "end": 9516.58, + "probability": 0.7377 + }, + { + "start": 9516.58, + "end": 9516.64, + "probability": 0.1789 + }, + { + "start": 9516.64, + "end": 9517.06, + "probability": 0.2962 + }, + { + "start": 9517.06, + "end": 9523.06, + "probability": 0.6822 + }, + { + "start": 9523.16, + "end": 9523.6, + "probability": 0.7184 + }, + { + "start": 9528.68, + "end": 9531.58, + "probability": 0.8717 + }, + { + "start": 9531.94, + "end": 9533.94, + "probability": 0.9418 + }, + { + "start": 9536.82, + "end": 9537.22, + "probability": 0.0205 + }, + { + "start": 9638.58, + "end": 9643.46, + "probability": 0.0269 + }, + { + "start": 9764.34, + "end": 9768.18, + "probability": 0.0922 + }, + { + "start": 9770.97, + "end": 9775.14, + "probability": 0.0476 + }, + { + "start": 9777.2, + "end": 9778.0, + "probability": 0.0262 + }, + { + "start": 9778.0, + "end": 9779.86, + "probability": 0.0418 + }, + { + "start": 9886.0, + "end": 9886.0, + "probability": 0.0 + }, + { + "start": 9924.72, + "end": 9925.4, + "probability": 0.0948 + }, + { + "start": 9925.4, + "end": 9926.7, + "probability": 0.0281 + }, + { + "start": 9929.3, + "end": 9932.52, + "probability": 0.15 + }, + { + "start": 9933.52, + "end": 9939.0, + "probability": 0.0543 + }, + { + "start": 10057.52, + "end": 10057.82, + "probability": 0.0505 + }, + { + "start": 10061.2, + "end": 10062.52, + "probability": 0.0574 + }, + { + "start": 10072.76, + "end": 10076.2, + "probability": 0.0744 + }, + { + "start": 10077.46, + "end": 10078.6, + "probability": 0.6435 + }, + { + "start": 10079.54, + "end": 10079.68, + "probability": 0.0106 + }, + { + "start": 10319.46, + "end": 10320.36, + "probability": 0.643 + }, + { + "start": 10327.5, + "end": 10328.28, + "probability": 0.0948 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.69, + "end": 10424.94, + "probability": 0.5669 + }, + { + "start": 10426.06, + "end": 10430.32, + "probability": 0.7213 + }, + { + "start": 10432.46, + "end": 10434.46, + "probability": 0.0876 + }, + { + "start": 10435.74, + "end": 10437.85, + "probability": 0.1486 + }, + { + "start": 10463.22, + "end": 10465.9, + "probability": 0.0952 + }, + { + "start": 10545.0, + "end": 10545.0, + "probability": 0.0 + }, + { + "start": 10545.0, + "end": 10545.0, + "probability": 0.0 + }, + { + "start": 10545.0, + "end": 10545.0, + "probability": 0.0 + }, + { + "start": 10545.0, + "end": 10545.0, + "probability": 0.0 + }, + { + "start": 10545.0, + "end": 10545.0, + "probability": 0.0 + }, + { + "start": 10546.76, + "end": 10547.56, + "probability": 0.0001 + }, + { + "start": 10553.32, + "end": 10554.56, + "probability": 0.0892 + }, + { + "start": 10556.66, + "end": 10557.11, + "probability": 0.0189 + }, + { + "start": 10566.5, + "end": 10567.5, + "probability": 0.0788 + }, + { + "start": 10570.5, + "end": 10570.96, + "probability": 0.1438 + }, + { + "start": 10573.82, + "end": 10574.5, + "probability": 0.0427 + }, + { + "start": 10574.97, + "end": 10575.6, + "probability": 0.2446 + }, + { + "start": 10575.64, + "end": 10578.12, + "probability": 0.162 + }, + { + "start": 10859.0, + "end": 10859.0, + "probability": 0.0 + }, + { + "start": 10862.64, + "end": 10863.46, + "probability": 0.2588 + }, + { + "start": 10880.76, + "end": 10882.1, + "probability": 0.0387 + }, + { + "start": 10890.9, + "end": 10894.7, + "probability": 0.284 + }, + { + "start": 10895.38, + "end": 10895.56, + "probability": 0.0104 + }, + { + "start": 11004.2, + "end": 11009.42, + "probability": 0.0635 + }, + { + "start": 11010.82, + "end": 11012.68, + "probability": 0.0467 + }, + { + "start": 11147.8, + "end": 11148.56, + "probability": 0.0655 + }, + { + "start": 11149.48, + "end": 11153.02, + "probability": 0.1761 + }, + { + "start": 11158.8, + "end": 11160.74, + "probability": 0.096 + }, + { + "start": 11162.28, + "end": 11163.8, + "probability": 0.0099 + }, + { + "start": 11313.28, + "end": 11314.96, + "probability": 0.013 + }, + { + "start": 11323.38, + "end": 11324.9, + "probability": 0.0801 + }, + { + "start": 11327.88, + "end": 11331.58, + "probability": 0.0407 + }, + { + "start": 11332.54, + "end": 11335.82, + "probability": 0.0678 + }, + { + "start": 11342.04, + "end": 11345.06, + "probability": 0.3447 + }, + { + "start": 11453.84, + "end": 11456.4, + "probability": 0.017 + }, + { + "start": 11475.4, + "end": 11476.8, + "probability": 0.0362 + }, + { + "start": 11481.7, + "end": 11483.04, + "probability": 0.0505 + }, + { + "start": 11668.18, + "end": 11668.62, + "probability": 0.089 + }, + { + "start": 11669.38, + "end": 11672.78, + "probability": 0.8106 + }, + { + "start": 11673.7, + "end": 11674.98, + "probability": 0.8811 + }, + { + "start": 11675.16, + "end": 11678.8, + "probability": 0.8997 + }, + { + "start": 11679.66, + "end": 11680.82, + "probability": 0.9792 + }, + { + "start": 11683.56, + "end": 11686.34, + "probability": 0.9607 + }, + { + "start": 11688.52, + "end": 11690.28, + "probability": 0.501 + }, + { + "start": 11690.52, + "end": 11697.34, + "probability": 0.8326 + }, + { + "start": 11698.5, + "end": 11700.58, + "probability": 0.0629 + }, + { + "start": 11702.0, + "end": 11702.54, + "probability": 0.0339 + }, + { + "start": 11703.42, + "end": 11704.34, + "probability": 0.0216 + }, + { + "start": 11706.58, + "end": 11708.42, + "probability": 0.2165 + }, + { + "start": 11848.18, + "end": 11848.68, + "probability": 0.0121 + }, + { + "start": 11849.32, + "end": 11850.14, + "probability": 0.0312 + }, + { + "start": 11851.1, + "end": 11853.22, + "probability": 0.0494 + }, + { + "start": 11857.26, + "end": 11858.2, + "probability": 0.3371 + }, + { + "start": 11868.92, + "end": 11871.24, + "probability": 0.0555 + }, + { + "start": 11873.38, + "end": 11873.86, + "probability": 0.0183 + }, + { + "start": 11973.0, + "end": 11973.0, + "probability": 0.0 + }, + { + "start": 11973.12, + "end": 11977.24, + "probability": 0.6953 + }, + { + "start": 11977.76, + "end": 11980.2, + "probability": 0.9946 + }, + { + "start": 11981.34, + "end": 11982.96, + "probability": 0.811 + }, + { + "start": 11983.2, + "end": 11985.92, + "probability": 0.8156 + }, + { + "start": 11997.56, + "end": 11999.32, + "probability": 0.9326 + }, + { + "start": 12000.2, + "end": 12000.52, + "probability": 0.7326 + }, + { + "start": 12000.62, + "end": 12002.9, + "probability": 0.9137 + }, + { + "start": 12003.22, + "end": 12004.31, + "probability": 0.7501 + }, + { + "start": 12004.95, + "end": 12005.54, + "probability": 0.0565 + }, + { + "start": 12006.72, + "end": 12007.6, + "probability": 0.3567 + }, + { + "start": 12011.58, + "end": 12012.46, + "probability": 0.0833 + }, + { + "start": 12014.84, + "end": 12017.84, + "probability": 0.0893 + }, + { + "start": 12019.2, + "end": 12020.0, + "probability": 0.2716 + }, + { + "start": 12244.0, + "end": 12244.0, + "probability": 0.0 + }, + { + "start": 12244.0, + "end": 12244.0, + "probability": 0.0 + }, + { + "start": 12244.0, + "end": 12244.0, + "probability": 0.0 + }, + { + "start": 12244.0, + "end": 12244.0, + "probability": 0.0 + }, + { + "start": 12244.0, + "end": 12244.0, + "probability": 0.0 + }, + { + "start": 12244.0, + "end": 12244.0, + "probability": 0.0 + }, + { + "start": 12265.7, + "end": 12267.06, + "probability": 0.0496 + }, + { + "start": 12267.34, + "end": 12271.7, + "probability": 0.16 + }, + { + "start": 12272.02, + "end": 12272.16, + "probability": 0.2073 + }, + { + "start": 12272.9, + "end": 12273.34, + "probability": 0.3348 + }, + { + "start": 12372.26, + "end": 12372.66, + "probability": 0.1059 + }, + { + "start": 12380.3, + "end": 12382.88, + "probability": 0.1462 + }, + { + "start": 12389.72, + "end": 12391.12, + "probability": 0.1333 + }, + { + "start": 12393.22, + "end": 12397.66, + "probability": 0.3732 + }, + { + "start": 12400.86, + "end": 12403.2, + "probability": 0.3055 + }, + { + "start": 12403.88, + "end": 12404.6, + "probability": 0.1411 + }, + { + "start": 12404.7, + "end": 12406.49, + "probability": 0.1406 + }, + { + "start": 12409.51, + "end": 12410.28, + "probability": 0.0195 + }, + { + "start": 12500.0, + "end": 12500.0, + "probability": 0.0 + }, + { + "start": 12500.0, + "end": 12500.0, + "probability": 0.0 + }, + { + "start": 12500.0, + "end": 12500.0, + "probability": 0.0 + }, + { + "start": 12535.78, + "end": 12537.98, + "probability": 0.0771 + }, + { + "start": 12539.46, + "end": 12539.48, + "probability": 0.1677 + }, + { + "start": 12631.0, + "end": 12631.0, + "probability": 0.0 + }, + { + "start": 12636.56, + "end": 12636.58, + "probability": 0.0093 + }, + { + "start": 12637.34, + "end": 12640.2, + "probability": 0.039 + }, + { + "start": 12644.48, + "end": 12644.66, + "probability": 0.0227 + }, + { + "start": 12645.88, + "end": 12648.4, + "probability": 0.027 + }, + { + "start": 12661.38, + "end": 12661.98, + "probability": 0.0062 + }, + { + "start": 12674.87, + "end": 12675.58, + "probability": 0.5005 + }, + { + "start": 12676.04, + "end": 12676.52, + "probability": 0.3218 + }, + { + "start": 12676.94, + "end": 12677.14, + "probability": 0.0657 + }, + { + "start": 12680.96, + "end": 12681.24, + "probability": 0.1205 + }, + { + "start": 12682.14, + "end": 12682.32, + "probability": 0.5175 + }, + { + "start": 12683.4, + "end": 12685.2, + "probability": 0.0211 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12754.17, + "end": 12754.55, + "probability": 0.0318 + }, + { + "start": 12756.14, + "end": 12756.8, + "probability": 0.1918 + }, + { + "start": 12759.34, + "end": 12760.86, + "probability": 0.0475 + }, + { + "start": 12763.9, + "end": 12767.14, + "probability": 0.0749 + }, + { + "start": 12771.62, + "end": 12774.28, + "probability": 0.0891 + }, + { + "start": 12774.28, + "end": 12775.28, + "probability": 0.0046 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12902.03, + "end": 12903.16, + "probability": 0.0605 + }, + { + "start": 12903.76, + "end": 12905.88, + "probability": 0.0437 + }, + { + "start": 13191.0, + "end": 13191.0, + "probability": 0.0 + }, + { + "start": 13228.54, + "end": 13229.38, + "probability": 0.0273 + }, + { + "start": 13233.76, + "end": 13234.36, + "probability": 0.0886 + }, + { + "start": 13237.14, + "end": 13238.02, + "probability": 0.0745 + }, + { + "start": 13247.78, + "end": 13248.9, + "probability": 0.0889 + }, + { + "start": 13249.98, + "end": 13250.26, + "probability": 0.0449 + }, + { + "start": 13251.15, + "end": 13253.84, + "probability": 0.0222 + }, + { + "start": 13254.98, + "end": 13255.5, + "probability": 0.1012 + }, + { + "start": 13256.62, + "end": 13257.66, + "probability": 0.3349 + }, + { + "start": 13258.32, + "end": 13260.4, + "probability": 0.0875 + }, + { + "start": 13265.55, + "end": 13267.38, + "probability": 0.3118 + }, + { + "start": 13268.8, + "end": 13273.14, + "probability": 0.221 + }, + { + "start": 14453.0, + "end": 14453.0, + "probability": 0.0 + }, + { + "start": 14453.0, + "end": 14453.0, + "probability": 0.0 + }, + { + "start": 14453.0, + "end": 14453.0, + "probability": 0.0 + }, + { + "start": 14453.0, + "end": 14453.0, + "probability": 0.0 + }, + { + "start": 14453.0, + "end": 14453.0, + "probability": 0.0 + }, + { + "start": 14453.0, + "end": 14453.0, + "probability": 0.0 + }, + { + "start": 14453.0, + "end": 14453.0, + "probability": 0.0 + }, + { + "start": 14453.0, + "end": 14453.0, + "probability": 0.0 + }, + { + "start": 14453.0, + "end": 14453.0, + "probability": 0.0 + }, + { + "start": 14453.0, + "end": 14453.0, + "probability": 0.0 + }, + { + "start": 14453.0, + "end": 14453.0, + "probability": 0.0 + }, + { + "start": 14465.46, + "end": 14466.82, + "probability": 0.0426 + }, + { + "start": 14467.46, + "end": 14468.58, + "probability": 0.0865 + }, + { + "start": 14469.4, + "end": 14469.6, + "probability": 0.0829 + }, + { + "start": 14469.82, + "end": 14471.0, + "probability": 0.1943 + }, + { + "start": 14471.4, + "end": 14473.52, + "probability": 0.0434 + }, + { + "start": 14474.3, + "end": 14475.56, + "probability": 0.6403 + }, + { + "start": 14477.1, + "end": 14478.2, + "probability": 0.006 + }, + { + "start": 14895.5, + "end": 14895.7, + "probability": 0.0192 + }, + { + "start": 14896.22, + "end": 14897.74, + "probability": 0.0582 + }, + { + "start": 14911.66, + "end": 14911.84, + "probability": 0.0144 + }, + { + "start": 14923.78, + "end": 14924.1, + "probability": 0.0656 + }, + { + "start": 14928.58, + "end": 14931.0, + "probability": 0.015 + }, + { + "start": 14987.58, + "end": 14988.66, + "probability": 0.4898 + }, + { + "start": 15000.0, + "end": 15000.84, + "probability": 0.2692 + }, + { + "start": 15149.0, + "end": 15149.0, + "probability": 0.0 + }, + { + "start": 15149.0, + "end": 15149.0, + "probability": 0.0 + }, + { + "start": 15149.0, + "end": 15149.0, + "probability": 0.0 + }, + { + "start": 15149.0, + "end": 15149.0, + "probability": 0.0 + }, + { + "start": 15150.13, + "end": 15153.52, + "probability": 0.0297 + }, + { + "start": 15157.2, + "end": 15157.26, + "probability": 0.5256 + }, + { + "start": 15161.08, + "end": 15161.32, + "probability": 0.5446 + }, + { + "start": 15161.98, + "end": 15162.1, + "probability": 0.0267 + }, + { + "start": 15163.06, + "end": 15167.08, + "probability": 0.0661 + }, + { + "start": 15314.59, + "end": 15315.32, + "probability": 0.0341 + }, + { + "start": 15331.37, + "end": 15332.89, + "probability": 0.0219 + }, + { + "start": 15334.07, + "end": 15336.85, + "probability": 0.2803 + }, + { + "start": 15439.54, + "end": 15443.92, + "probability": 0.8803 + }, + { + "start": 15445.8, + "end": 15446.98, + "probability": 0.8183 + }, + { + "start": 15448.4, + "end": 15449.12, + "probability": 0.8214 + }, + { + "start": 15451.32, + "end": 15452.4, + "probability": 0.6239 + }, + { + "start": 15453.82, + "end": 15454.52, + "probability": 0.9574 + }, + { + "start": 15455.44, + "end": 15456.24, + "probability": 0.592 + }, + { + "start": 15471.0, + "end": 15473.74, + "probability": 0.1283 + }, + { + "start": 15475.98, + "end": 15476.98, + "probability": 0.5094 + }, + { + "start": 15478.84, + "end": 15481.44, + "probability": 0.6563 + }, + { + "start": 15488.54, + "end": 15489.44, + "probability": 0.0423 + }, + { + "start": 15634.66, + "end": 15637.52, + "probability": 0.1886 + }, + { + "start": 15640.0, + "end": 15643.14, + "probability": 0.6392 + }, + { + "start": 15643.94, + "end": 15647.28, + "probability": 0.8422 + }, + { + "start": 15650.58, + "end": 15651.62, + "probability": 0.2923 + }, + { + "start": 15651.94, + "end": 15653.98, + "probability": 0.4167 + }, + { + "start": 15654.3, + "end": 15657.8, + "probability": 0.2436 + }, + { + "start": 15658.04, + "end": 15658.86, + "probability": 0.8646 + }, + { + "start": 15659.9, + "end": 15664.78, + "probability": 0.6375 + }, + { + "start": 15667.1, + "end": 15667.66, + "probability": 0.6044 + }, + { + "start": 15667.8, + "end": 15669.16, + "probability": 0.9095 + }, + { + "start": 15669.32, + "end": 15671.43, + "probability": 0.5928 + }, + { + "start": 15673.64, + "end": 15674.66, + "probability": 0.6766 + }, + { + "start": 15676.06, + "end": 15677.08, + "probability": 0.7754 + }, + { + "start": 15678.54, + "end": 15680.66, + "probability": 0.8877 + }, + { + "start": 15680.82, + "end": 15681.62, + "probability": 0.869 + }, + { + "start": 15681.88, + "end": 15683.4, + "probability": 0.0625 + }, + { + "start": 15684.06, + "end": 15686.94, + "probability": 0.9856 + }, + { + "start": 15686.94, + "end": 15690.06, + "probability": 0.9983 + }, + { + "start": 15690.78, + "end": 15692.42, + "probability": 0.9775 + }, + { + "start": 15693.18, + "end": 15695.96, + "probability": 0.83 + }, + { + "start": 15695.96, + "end": 15699.52, + "probability": 0.9992 + }, + { + "start": 15700.36, + "end": 15703.22, + "probability": 0.9979 + }, + { + "start": 15704.3, + "end": 15705.26, + "probability": 0.8038 + }, + { + "start": 15705.62, + "end": 15706.48, + "probability": 0.77 + }, + { + "start": 15706.52, + "end": 15708.86, + "probability": 0.9054 + }, + { + "start": 15708.95, + "end": 15712.02, + "probability": 0.9902 + }, + { + "start": 15714.9, + "end": 15717.78, + "probability": 0.9625 + }, + { + "start": 15717.78, + "end": 15720.06, + "probability": 0.9912 + }, + { + "start": 15720.64, + "end": 15723.18, + "probability": 0.9663 + }, + { + "start": 15724.08, + "end": 15726.0, + "probability": 0.9476 + }, + { + "start": 15726.72, + "end": 15729.5, + "probability": 0.994 + }, + { + "start": 15730.72, + "end": 15734.02, + "probability": 0.9113 + }, + { + "start": 15734.06, + "end": 15736.0, + "probability": 0.9799 + }, + { + "start": 15736.66, + "end": 15737.16, + "probability": 0.7139 + }, + { + "start": 15738.16, + "end": 15741.56, + "probability": 0.9766 + }, + { + "start": 15741.64, + "end": 15745.64, + "probability": 0.9844 + }, + { + "start": 15746.26, + "end": 15747.92, + "probability": 0.9485 + }, + { + "start": 15748.38, + "end": 15750.9, + "probability": 0.6526 + }, + { + "start": 15751.8, + "end": 15752.4, + "probability": 0.8075 + }, + { + "start": 15753.04, + "end": 15754.14, + "probability": 0.9866 + }, + { + "start": 15754.98, + "end": 15760.76, + "probability": 0.9868 + }, + { + "start": 15760.76, + "end": 15764.72, + "probability": 0.984 + }, + { + "start": 15764.76, + "end": 15768.12, + "probability": 0.9946 + }, + { + "start": 15768.7, + "end": 15770.84, + "probability": 0.9808 + }, + { + "start": 15772.22, + "end": 15773.9, + "probability": 0.4174 + }, + { + "start": 15773.98, + "end": 15774.98, + "probability": 0.7058 + }, + { + "start": 15775.32, + "end": 15776.86, + "probability": 0.8599 + }, + { + "start": 15779.68, + "end": 15781.38, + "probability": 0.8743 + }, + { + "start": 15783.74, + "end": 15785.56, + "probability": 0.6968 + }, + { + "start": 15787.38, + "end": 15790.22, + "probability": 0.1794 + }, + { + "start": 15805.03, + "end": 15807.76, + "probability": 0.7579 + }, + { + "start": 15809.16, + "end": 15814.76, + "probability": 0.9963 + }, + { + "start": 15814.82, + "end": 15819.85, + "probability": 0.9897 + }, + { + "start": 15821.76, + "end": 15825.0, + "probability": 0.9973 + }, + { + "start": 15825.0, + "end": 15830.56, + "probability": 0.9987 + }, + { + "start": 15831.56, + "end": 15835.6, + "probability": 0.9847 + }, + { + "start": 15836.52, + "end": 15838.56, + "probability": 0.9065 + }, + { + "start": 15841.5, + "end": 15845.84, + "probability": 0.9987 + }, + { + "start": 15846.16, + "end": 15847.81, + "probability": 0.8953 + }, + { + "start": 15848.3, + "end": 15851.07, + "probability": 0.936 + }, + { + "start": 15851.96, + "end": 15853.02, + "probability": 0.8237 + }, + { + "start": 15855.08, + "end": 15857.54, + "probability": 0.9318 + }, + { + "start": 15858.32, + "end": 15863.9, + "probability": 0.9691 + }, + { + "start": 15864.54, + "end": 15867.38, + "probability": 0.9985 + }, + { + "start": 15868.04, + "end": 15869.78, + "probability": 0.9157 + }, + { + "start": 15870.34, + "end": 15872.48, + "probability": 0.668 + }, + { + "start": 15873.1, + "end": 15875.4, + "probability": 0.9974 + }, + { + "start": 15875.5, + "end": 15876.78, + "probability": 0.9976 + }, + { + "start": 15877.34, + "end": 15880.1, + "probability": 0.8265 + }, + { + "start": 15881.36, + "end": 15885.96, + "probability": 0.9839 + }, + { + "start": 15886.32, + "end": 15888.26, + "probability": 0.8241 + }, + { + "start": 15889.16, + "end": 15892.06, + "probability": 0.9876 + }, + { + "start": 15892.22, + "end": 15892.82, + "probability": 0.7364 + }, + { + "start": 15893.16, + "end": 15894.0, + "probability": 0.9248 + }, + { + "start": 15894.52, + "end": 15896.98, + "probability": 0.7483 + }, + { + "start": 15897.86, + "end": 15899.32, + "probability": 0.7759 + }, + { + "start": 15900.26, + "end": 15903.84, + "probability": 0.8813 + }, + { + "start": 15903.92, + "end": 15904.75, + "probability": 0.8596 + }, + { + "start": 15905.12, + "end": 15908.52, + "probability": 0.8721 + }, + { + "start": 15909.02, + "end": 15909.66, + "probability": 0.9771 + }, + { + "start": 15909.74, + "end": 15912.1, + "probability": 0.9741 + }, + { + "start": 15912.6, + "end": 15914.29, + "probability": 0.995 + }, + { + "start": 15915.18, + "end": 15915.63, + "probability": 0.494 + }, + { + "start": 15916.1, + "end": 15918.25, + "probability": 0.9769 + }, + { + "start": 15918.94, + "end": 15921.68, + "probability": 0.9904 + }, + { + "start": 15922.3, + "end": 15926.62, + "probability": 0.9956 + }, + { + "start": 15927.22, + "end": 15932.52, + "probability": 0.9897 + }, + { + "start": 15932.58, + "end": 15932.76, + "probability": 0.5224 + }, + { + "start": 15933.94, + "end": 15935.04, + "probability": 0.6342 + }, + { + "start": 15935.34, + "end": 15936.28, + "probability": 0.5591 + }, + { + "start": 15936.86, + "end": 15938.22, + "probability": 0.5048 + }, + { + "start": 15938.22, + "end": 15939.74, + "probability": 0.635 + }, + { + "start": 15941.88, + "end": 15943.58, + "probability": 0.8234 + }, + { + "start": 15953.16, + "end": 15953.48, + "probability": 0.495 + }, + { + "start": 15954.48, + "end": 15955.9, + "probability": 0.5195 + }, + { + "start": 15956.06, + "end": 15958.36, + "probability": 0.7167 + }, + { + "start": 15959.14, + "end": 15960.78, + "probability": 0.9964 + }, + { + "start": 15962.74, + "end": 15964.62, + "probability": 0.964 + }, + { + "start": 15965.44, + "end": 15971.48, + "probability": 0.9967 + }, + { + "start": 15972.3, + "end": 15974.4, + "probability": 0.9853 + }, + { + "start": 15974.4, + "end": 15977.16, + "probability": 0.9882 + }, + { + "start": 15978.0, + "end": 15982.0, + "probability": 0.9777 + }, + { + "start": 15982.72, + "end": 15986.44, + "probability": 0.999 + }, + { + "start": 15987.94, + "end": 15991.38, + "probability": 0.9891 + }, + { + "start": 15993.72, + "end": 15999.82, + "probability": 0.9968 + }, + { + "start": 16000.62, + "end": 16003.94, + "probability": 0.9918 + }, + { + "start": 16004.12, + "end": 16005.18, + "probability": 0.6307 + }, + { + "start": 16006.06, + "end": 16008.3, + "probability": 0.9924 + }, + { + "start": 16009.0, + "end": 16011.0, + "probability": 0.9375 + }, + { + "start": 16011.52, + "end": 16020.76, + "probability": 0.9864 + }, + { + "start": 16021.34, + "end": 16025.44, + "probability": 0.8207 + }, + { + "start": 16025.48, + "end": 16027.64, + "probability": 0.98 + }, + { + "start": 16028.32, + "end": 16029.11, + "probability": 0.9813 + }, + { + "start": 16029.72, + "end": 16033.36, + "probability": 0.9886 + }, + { + "start": 16034.18, + "end": 16035.07, + "probability": 0.9849 + }, + { + "start": 16035.68, + "end": 16036.69, + "probability": 0.9893 + }, + { + "start": 16037.34, + "end": 16040.56, + "probability": 0.9968 + }, + { + "start": 16040.96, + "end": 16043.9, + "probability": 0.9833 + }, + { + "start": 16043.9, + "end": 16047.12, + "probability": 0.8271 + }, + { + "start": 16048.78, + "end": 16049.74, + "probability": 0.8646 + }, + { + "start": 16049.86, + "end": 16051.88, + "probability": 0.8465 + }, + { + "start": 16052.06, + "end": 16053.04, + "probability": 0.9539 + }, + { + "start": 16053.22, + "end": 16056.14, + "probability": 0.9487 + }, + { + "start": 16057.2, + "end": 16060.08, + "probability": 0.9845 + }, + { + "start": 16060.08, + "end": 16063.28, + "probability": 0.9416 + }, + { + "start": 16063.88, + "end": 16067.4, + "probability": 0.9839 + }, + { + "start": 16067.76, + "end": 16068.92, + "probability": 0.9648 + }, + { + "start": 16069.38, + "end": 16071.68, + "probability": 0.9849 + }, + { + "start": 16072.4, + "end": 16073.92, + "probability": 0.9863 + }, + { + "start": 16074.54, + "end": 16075.98, + "probability": 0.9834 + }, + { + "start": 16076.62, + "end": 16079.74, + "probability": 0.8516 + }, + { + "start": 16080.74, + "end": 16083.2, + "probability": 0.9808 + }, + { + "start": 16084.16, + "end": 16086.82, + "probability": 0.9824 + }, + { + "start": 16087.34, + "end": 16090.18, + "probability": 0.9941 + }, + { + "start": 16090.78, + "end": 16092.56, + "probability": 0.9299 + }, + { + "start": 16093.1, + "end": 16095.04, + "probability": 0.999 + }, + { + "start": 16095.22, + "end": 16096.6, + "probability": 0.9999 + }, + { + "start": 16098.02, + "end": 16103.2, + "probability": 0.8908 + }, + { + "start": 16104.02, + "end": 16105.34, + "probability": 0.8599 + }, + { + "start": 16105.96, + "end": 16110.0, + "probability": 0.9906 + }, + { + "start": 16110.54, + "end": 16114.42, + "probability": 0.8942 + }, + { + "start": 16115.12, + "end": 16115.6, + "probability": 0.2959 + }, + { + "start": 16115.74, + "end": 16116.8, + "probability": 0.9347 + }, + { + "start": 16116.84, + "end": 16119.4, + "probability": 0.9816 + }, + { + "start": 16120.02, + "end": 16122.1, + "probability": 0.997 + }, + { + "start": 16122.1, + "end": 16124.44, + "probability": 0.9602 + }, + { + "start": 16125.6, + "end": 16127.7, + "probability": 0.962 + }, + { + "start": 16128.62, + "end": 16135.58, + "probability": 0.9891 + }, + { + "start": 16135.88, + "end": 16137.18, + "probability": 0.9957 + }, + { + "start": 16137.24, + "end": 16138.15, + "probability": 0.9907 + }, + { + "start": 16138.72, + "end": 16140.28, + "probability": 0.9525 + }, + { + "start": 16140.76, + "end": 16142.54, + "probability": 0.9976 + }, + { + "start": 16143.38, + "end": 16145.48, + "probability": 0.9927 + }, + { + "start": 16145.52, + "end": 16145.9, + "probability": 0.7501 + }, + { + "start": 16146.04, + "end": 16146.96, + "probability": 0.5394 + }, + { + "start": 16147.1, + "end": 16147.36, + "probability": 0.7394 + }, + { + "start": 16147.5, + "end": 16148.7, + "probability": 0.9771 + }, + { + "start": 16149.08, + "end": 16150.08, + "probability": 0.9971 + }, + { + "start": 16150.28, + "end": 16151.2, + "probability": 0.879 + }, + { + "start": 16151.72, + "end": 16153.34, + "probability": 0.9409 + }, + { + "start": 16153.56, + "end": 16154.9, + "probability": 0.4734 + }, + { + "start": 16164.68, + "end": 16169.47, + "probability": 0.9543 + }, + { + "start": 16169.7, + "end": 16170.88, + "probability": 0.8972 + }, + { + "start": 16170.98, + "end": 16171.74, + "probability": 0.9451 + }, + { + "start": 16172.04, + "end": 16172.26, + "probability": 0.8452 + }, + { + "start": 16173.94, + "end": 16175.78, + "probability": 0.5121 + }, + { + "start": 16177.02, + "end": 16177.26, + "probability": 0.8511 + }, + { + "start": 16180.66, + "end": 16182.76, + "probability": 0.8003 + }, + { + "start": 16183.84, + "end": 16185.78, + "probability": 0.9702 + }, + { + "start": 16186.74, + "end": 16187.92, + "probability": 0.6888 + }, + { + "start": 16188.12, + "end": 16192.38, + "probability": 0.7888 + }, + { + "start": 16193.4, + "end": 16193.98, + "probability": 0.869 + }, + { + "start": 16195.34, + "end": 16196.58, + "probability": 0.8125 + }, + { + "start": 16197.74, + "end": 16200.16, + "probability": 0.5981 + }, + { + "start": 16201.14, + "end": 16203.6, + "probability": 0.9481 + }, + { + "start": 16204.3, + "end": 16206.1, + "probability": 0.9956 + }, + { + "start": 16207.08, + "end": 16210.02, + "probability": 0.9625 + }, + { + "start": 16210.02, + "end": 16213.92, + "probability": 0.9097 + }, + { + "start": 16214.52, + "end": 16220.12, + "probability": 0.9902 + }, + { + "start": 16221.16, + "end": 16223.8, + "probability": 0.9893 + }, + { + "start": 16223.98, + "end": 16224.81, + "probability": 0.9861 + }, + { + "start": 16226.04, + "end": 16226.6, + "probability": 0.9893 + }, + { + "start": 16227.16, + "end": 16230.94, + "probability": 0.9737 + }, + { + "start": 16231.48, + "end": 16233.03, + "probability": 0.995 + }, + { + "start": 16234.02, + "end": 16237.84, + "probability": 0.9785 + }, + { + "start": 16239.08, + "end": 16242.78, + "probability": 0.9555 + }, + { + "start": 16242.86, + "end": 16247.2, + "probability": 0.8965 + }, + { + "start": 16248.1, + "end": 16251.08, + "probability": 0.5886 + }, + { + "start": 16251.62, + "end": 16253.6, + "probability": 0.9679 + }, + { + "start": 16254.34, + "end": 16255.78, + "probability": 0.4624 + }, + { + "start": 16256.96, + "end": 16259.52, + "probability": 0.9658 + }, + { + "start": 16260.18, + "end": 16261.32, + "probability": 0.6898 + }, + { + "start": 16261.9, + "end": 16264.3, + "probability": 0.953 + }, + { + "start": 16265.42, + "end": 16267.42, + "probability": 0.5247 + }, + { + "start": 16267.98, + "end": 16271.52, + "probability": 0.9456 + }, + { + "start": 16272.3, + "end": 16274.02, + "probability": 0.8173 + }, + { + "start": 16275.16, + "end": 16279.36, + "probability": 0.872 + }, + { + "start": 16280.06, + "end": 16282.78, + "probability": 0.9812 + }, + { + "start": 16283.38, + "end": 16287.22, + "probability": 0.9731 + }, + { + "start": 16288.22, + "end": 16290.74, + "probability": 0.9222 + }, + { + "start": 16291.52, + "end": 16292.57, + "probability": 0.5906 + }, + { + "start": 16293.7, + "end": 16296.32, + "probability": 0.9358 + }, + { + "start": 16296.84, + "end": 16298.34, + "probability": 0.9618 + }, + { + "start": 16299.06, + "end": 16300.2, + "probability": 0.5849 + }, + { + "start": 16300.22, + "end": 16300.46, + "probability": 0.7983 + }, + { + "start": 16302.12, + "end": 16302.54, + "probability": 0.5318 + }, + { + "start": 16302.86, + "end": 16303.62, + "probability": 0.2901 + }, + { + "start": 16307.36, + "end": 16307.58, + "probability": 0.0 + }, + { + "start": 16315.9, + "end": 16317.9, + "probability": 0.0503 + }, + { + "start": 16317.96, + "end": 16318.82, + "probability": 0.6495 + }, + { + "start": 16324.18, + "end": 16324.72, + "probability": 0.7307 + }, + { + "start": 16326.48, + "end": 16328.08, + "probability": 0.7502 + }, + { + "start": 16329.86, + "end": 16329.86, + "probability": 0.0221 + }, + { + "start": 16329.86, + "end": 16333.26, + "probability": 0.9812 + }, + { + "start": 16334.82, + "end": 16335.66, + "probability": 0.8589 + }, + { + "start": 16337.36, + "end": 16340.46, + "probability": 0.8712 + }, + { + "start": 16341.46, + "end": 16344.06, + "probability": 0.7473 + }, + { + "start": 16344.98, + "end": 16346.52, + "probability": 0.7947 + }, + { + "start": 16346.68, + "end": 16350.56, + "probability": 0.797 + }, + { + "start": 16351.26, + "end": 16355.32, + "probability": 0.9098 + }, + { + "start": 16356.14, + "end": 16360.68, + "probability": 0.9863 + }, + { + "start": 16361.5, + "end": 16362.62, + "probability": 0.757 + }, + { + "start": 16363.22, + "end": 16364.06, + "probability": 0.8625 + }, + { + "start": 16364.44, + "end": 16366.78, + "probability": 0.9559 + }, + { + "start": 16366.8, + "end": 16367.76, + "probability": 0.7194 + }, + { + "start": 16367.8, + "end": 16368.5, + "probability": 0.9926 + }, + { + "start": 16370.84, + "end": 16371.28, + "probability": 0.6753 + }, + { + "start": 16371.86, + "end": 16373.32, + "probability": 0.9923 + }, + { + "start": 16373.48, + "end": 16374.4, + "probability": 0.6949 + }, + { + "start": 16374.98, + "end": 16376.44, + "probability": 0.5499 + }, + { + "start": 16377.1, + "end": 16378.5, + "probability": 0.873 + }, + { + "start": 16379.34, + "end": 16384.98, + "probability": 0.7159 + }, + { + "start": 16385.14, + "end": 16385.48, + "probability": 0.6535 + }, + { + "start": 16386.32, + "end": 16390.04, + "probability": 0.88 + }, + { + "start": 16390.98, + "end": 16394.7, + "probability": 0.9257 + }, + { + "start": 16395.48, + "end": 16398.36, + "probability": 0.9166 + }, + { + "start": 16399.46, + "end": 16401.9, + "probability": 0.8479 + }, + { + "start": 16402.6, + "end": 16403.32, + "probability": 0.9667 + }, + { + "start": 16403.86, + "end": 16406.62, + "probability": 0.6506 + }, + { + "start": 16407.2, + "end": 16409.06, + "probability": 0.878 + }, + { + "start": 16409.7, + "end": 16411.53, + "probability": 0.9592 + }, + { + "start": 16411.82, + "end": 16412.82, + "probability": 0.6984 + }, + { + "start": 16412.98, + "end": 16413.6, + "probability": 0.8714 + }, + { + "start": 16414.44, + "end": 16415.0, + "probability": 0.1664 + }, + { + "start": 16415.0, + "end": 16415.63, + "probability": 0.807 + }, + { + "start": 16416.58, + "end": 16420.64, + "probability": 0.9911 + }, + { + "start": 16421.22, + "end": 16423.58, + "probability": 0.9941 + }, + { + "start": 16424.06, + "end": 16425.32, + "probability": 0.7047 + }, + { + "start": 16426.0, + "end": 16432.54, + "probability": 0.9558 + }, + { + "start": 16433.68, + "end": 16436.92, + "probability": 0.9894 + }, + { + "start": 16437.54, + "end": 16441.9, + "probability": 0.9948 + }, + { + "start": 16442.42, + "end": 16443.32, + "probability": 0.6922 + }, + { + "start": 16443.6, + "end": 16444.76, + "probability": 0.6807 + }, + { + "start": 16445.3, + "end": 16447.26, + "probability": 0.9973 + }, + { + "start": 16447.92, + "end": 16448.84, + "probability": 0.9309 + }, + { + "start": 16449.18, + "end": 16450.92, + "probability": 0.7284 + }, + { + "start": 16451.12, + "end": 16452.1, + "probability": 0.7859 + }, + { + "start": 16452.58, + "end": 16453.72, + "probability": 0.9865 + }, + { + "start": 16453.88, + "end": 16455.34, + "probability": 0.9815 + }, + { + "start": 16455.78, + "end": 16457.82, + "probability": 0.9009 + }, + { + "start": 16457.92, + "end": 16459.76, + "probability": 0.6549 + }, + { + "start": 16459.82, + "end": 16460.66, + "probability": 0.956 + }, + { + "start": 16461.2, + "end": 16462.34, + "probability": 0.9283 + }, + { + "start": 16463.5, + "end": 16464.9, + "probability": 0.7902 + }, + { + "start": 16465.28, + "end": 16466.64, + "probability": 0.7607 + }, + { + "start": 16467.38, + "end": 16469.88, + "probability": 0.9503 + }, + { + "start": 16470.5, + "end": 16471.24, + "probability": 0.6382 + }, + { + "start": 16471.8, + "end": 16473.12, + "probability": 0.6661 + }, + { + "start": 16474.0, + "end": 16477.02, + "probability": 0.7747 + }, + { + "start": 16477.62, + "end": 16482.72, + "probability": 0.875 + }, + { + "start": 16484.2, + "end": 16485.46, + "probability": 0.3556 + }, + { + "start": 16486.36, + "end": 16487.74, + "probability": 0.7302 + }, + { + "start": 16488.7, + "end": 16488.96, + "probability": 0.064 + }, + { + "start": 16488.96, + "end": 16488.96, + "probability": 0.2166 + }, + { + "start": 16488.96, + "end": 16491.8, + "probability": 0.99 + }, + { + "start": 16491.8, + "end": 16497.17, + "probability": 0.855 + }, + { + "start": 16497.96, + "end": 16501.58, + "probability": 0.486 + }, + { + "start": 16501.82, + "end": 16503.76, + "probability": 0.662 + }, + { + "start": 16504.22, + "end": 16505.96, + "probability": 0.8119 + }, + { + "start": 16506.33, + "end": 16508.7, + "probability": 0.9845 + }, + { + "start": 16509.34, + "end": 16510.0, + "probability": 0.9312 + }, + { + "start": 16510.74, + "end": 16514.02, + "probability": 0.9821 + }, + { + "start": 16514.92, + "end": 16516.82, + "probability": 0.8843 + }, + { + "start": 16517.8, + "end": 16520.48, + "probability": 0.8491 + }, + { + "start": 16521.02, + "end": 16521.6, + "probability": 0.5092 + }, + { + "start": 16522.06, + "end": 16522.06, + "probability": 0.3584 + }, + { + "start": 16522.18, + "end": 16523.02, + "probability": 0.2929 + }, + { + "start": 16523.02, + "end": 16524.2, + "probability": 0.8975 + }, + { + "start": 16525.2, + "end": 16527.4, + "probability": 0.8628 + }, + { + "start": 16530.98, + "end": 16531.42, + "probability": 0.1077 + }, + { + "start": 16532.24, + "end": 16533.06, + "probability": 0.0466 + }, + { + "start": 16534.54, + "end": 16538.4, + "probability": 0.0522 + }, + { + "start": 16538.68, + "end": 16540.2, + "probability": 0.1879 + }, + { + "start": 16551.38, + "end": 16553.16, + "probability": 0.0263 + }, + { + "start": 16554.19, + "end": 16555.5, + "probability": 0.0234 + }, + { + "start": 16559.14, + "end": 16560.18, + "probability": 0.2237 + }, + { + "start": 16560.22, + "end": 16561.12, + "probability": 0.6139 + }, + { + "start": 16561.28, + "end": 16564.16, + "probability": 0.7132 + }, + { + "start": 16564.3, + "end": 16565.86, + "probability": 0.4564 + }, + { + "start": 16565.86, + "end": 16567.18, + "probability": 0.0762 + }, + { + "start": 16567.52, + "end": 16569.16, + "probability": 0.4268 + }, + { + "start": 16569.16, + "end": 16571.42, + "probability": 0.3843 + }, + { + "start": 16572.28, + "end": 16572.88, + "probability": 0.3041 + }, + { + "start": 16575.1, + "end": 16575.42, + "probability": 0.1243 + }, + { + "start": 16576.37, + "end": 16576.44, + "probability": 0.6744 + }, + { + "start": 16576.44, + "end": 16578.36, + "probability": 0.6662 + }, + { + "start": 16598.12, + "end": 16599.36, + "probability": 0.5936 + }, + { + "start": 16600.12, + "end": 16603.94, + "probability": 0.9509 + }, + { + "start": 16604.64, + "end": 16605.32, + "probability": 0.5612 + }, + { + "start": 16605.34, + "end": 16605.92, + "probability": 0.7507 + }, + { + "start": 16606.0, + "end": 16609.02, + "probability": 0.9724 + }, + { + "start": 16609.02, + "end": 16613.38, + "probability": 0.8268 + }, + { + "start": 16613.46, + "end": 16615.96, + "probability": 0.9322 + }, + { + "start": 16615.96, + "end": 16618.08, + "probability": 0.5057 + }, + { + "start": 16618.44, + "end": 16619.08, + "probability": 0.5915 + }, + { + "start": 16619.22, + "end": 16620.04, + "probability": 0.2009 + }, + { + "start": 16620.42, + "end": 16621.62, + "probability": 0.9917 + }, + { + "start": 16621.88, + "end": 16623.2, + "probability": 0.1545 + }, + { + "start": 16624.16, + "end": 16624.78, + "probability": 0.81 + }, + { + "start": 16624.86, + "end": 16627.26, + "probability": 0.9344 + }, + { + "start": 16627.32, + "end": 16629.2, + "probability": 0.9756 + }, + { + "start": 16629.24, + "end": 16631.76, + "probability": 0.9948 + }, + { + "start": 16632.12, + "end": 16632.88, + "probability": 0.2123 + }, + { + "start": 16633.14, + "end": 16634.48, + "probability": 0.8173 + }, + { + "start": 16634.64, + "end": 16635.78, + "probability": 0.4057 + }, + { + "start": 16637.98, + "end": 16639.94, + "probability": 0.8486 + }, + { + "start": 16640.62, + "end": 16641.34, + "probability": 0.6207 + }, + { + "start": 16641.38, + "end": 16641.96, + "probability": 0.7985 + }, + { + "start": 16642.06, + "end": 16643.6, + "probability": 0.9143 + }, + { + "start": 16643.86, + "end": 16644.82, + "probability": 0.8597 + }, + { + "start": 16645.4, + "end": 16647.12, + "probability": 0.5341 + }, + { + "start": 16647.24, + "end": 16649.76, + "probability": 0.9556 + }, + { + "start": 16649.86, + "end": 16652.36, + "probability": 0.9954 + }, + { + "start": 16653.04, + "end": 16653.72, + "probability": 0.751 + }, + { + "start": 16654.74, + "end": 16656.0, + "probability": 0.4293 + }, + { + "start": 16656.06, + "end": 16657.04, + "probability": 0.7135 + }, + { + "start": 16657.14, + "end": 16658.3, + "probability": 0.9493 + }, + { + "start": 16658.38, + "end": 16659.24, + "probability": 0.9033 + }, + { + "start": 16659.28, + "end": 16660.1, + "probability": 0.8864 + }, + { + "start": 16660.16, + "end": 16661.28, + "probability": 0.8261 + }, + { + "start": 16661.9, + "end": 16662.9, + "probability": 0.9724 + }, + { + "start": 16663.02, + "end": 16664.36, + "probability": 0.9514 + }, + { + "start": 16664.52, + "end": 16665.06, + "probability": 0.8838 + }, + { + "start": 16665.1, + "end": 16665.7, + "probability": 0.6961 + }, + { + "start": 16665.92, + "end": 16666.88, + "probability": 0.7469 + }, + { + "start": 16667.12, + "end": 16669.5, + "probability": 0.9842 + }, + { + "start": 16670.56, + "end": 16673.42, + "probability": 0.8644 + }, + { + "start": 16673.88, + "end": 16676.02, + "probability": 0.5266 + }, + { + "start": 16676.06, + "end": 16676.48, + "probability": 0.4231 + }, + { + "start": 16676.56, + "end": 16676.8, + "probability": 0.8354 + }, + { + "start": 16676.92, + "end": 16677.3, + "probability": 0.7045 + }, + { + "start": 16677.42, + "end": 16677.88, + "probability": 0.7573 + }, + { + "start": 16678.34, + "end": 16679.96, + "probability": 0.3524 + }, + { + "start": 16680.72, + "end": 16681.46, + "probability": 0.6699 + }, + { + "start": 16681.6, + "end": 16682.34, + "probability": 0.8529 + }, + { + "start": 16682.44, + "end": 16687.78, + "probability": 0.991 + }, + { + "start": 16688.32, + "end": 16692.86, + "probability": 0.9849 + }, + { + "start": 16692.98, + "end": 16694.28, + "probability": 0.2971 + }, + { + "start": 16694.66, + "end": 16696.52, + "probability": 0.8982 + }, + { + "start": 16696.6, + "end": 16698.16, + "probability": 0.9357 + }, + { + "start": 16698.62, + "end": 16701.02, + "probability": 0.9817 + }, + { + "start": 16701.02, + "end": 16703.08, + "probability": 0.9961 + }, + { + "start": 16703.18, + "end": 16705.62, + "probability": 0.9946 + }, + { + "start": 16706.2, + "end": 16707.24, + "probability": 0.9934 + }, + { + "start": 16707.3, + "end": 16711.04, + "probability": 0.9715 + }, + { + "start": 16711.64, + "end": 16714.24, + "probability": 0.9967 + }, + { + "start": 16714.24, + "end": 16716.48, + "probability": 0.9832 + }, + { + "start": 16716.58, + "end": 16719.2, + "probability": 0.9929 + }, + { + "start": 16719.84, + "end": 16722.34, + "probability": 0.725 + }, + { + "start": 16722.42, + "end": 16724.38, + "probability": 0.7839 + }, + { + "start": 16725.14, + "end": 16725.46, + "probability": 0.3651 + }, + { + "start": 16725.46, + "end": 16726.1, + "probability": 0.6245 + }, + { + "start": 16726.62, + "end": 16726.88, + "probability": 0.3111 + }, + { + "start": 16727.52, + "end": 16728.32, + "probability": 0.0455 + }, + { + "start": 16728.56, + "end": 16729.9, + "probability": 0.2713 + }, + { + "start": 16732.22, + "end": 16736.3, + "probability": 0.2175 + }, + { + "start": 16737.06, + "end": 16738.28, + "probability": 0.4137 + }, + { + "start": 16738.96, + "end": 16739.9, + "probability": 0.6553 + }, + { + "start": 16741.7, + "end": 16742.7, + "probability": 0.3937 + }, + { + "start": 16742.76, + "end": 16746.8, + "probability": 0.7134 + }, + { + "start": 16747.2, + "end": 16749.53, + "probability": 0.1804 + }, + { + "start": 16756.88, + "end": 16762.12, + "probability": 0.042 + }, + { + "start": 16762.9, + "end": 16764.06, + "probability": 0.0047 + }, + { + "start": 16775.76, + "end": 16789.94, + "probability": 0.501 + }, + { + "start": 16794.36, + "end": 16796.14, + "probability": 0.0187 + }, + { + "start": 16796.14, + "end": 16796.76, + "probability": 0.2859 + }, + { + "start": 16796.76, + "end": 16797.75, + "probability": 0.0352 + }, + { + "start": 16800.58, + "end": 16804.44, + "probability": 0.0855 + }, + { + "start": 16804.78, + "end": 16806.4, + "probability": 0.1574 + }, + { + "start": 16806.44, + "end": 16807.22, + "probability": 0.1487 + }, + { + "start": 16808.36, + "end": 16809.58, + "probability": 0.1133 + }, + { + "start": 16809.8, + "end": 16809.92, + "probability": 0.1193 + }, + { + "start": 16811.62, + "end": 16812.14, + "probability": 0.0476 + }, + { + "start": 16814.09, + "end": 16820.63, + "probability": 0.1226 + }, + { + "start": 16822.65, + "end": 16824.23, + "probability": 0.3308 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.0, + "end": 16839.0, + "probability": 0.0 + }, + { + "start": 16839.3, + "end": 16840.98, + "probability": 0.6835 + }, + { + "start": 16841.3, + "end": 16841.54, + "probability": 0.3757 + }, + { + "start": 16841.76, + "end": 16844.38, + "probability": 0.7052 + }, + { + "start": 16845.54, + "end": 16847.84, + "probability": 0.6155 + }, + { + "start": 16853.82, + "end": 16857.4, + "probability": 0.1735 + }, + { + "start": 16859.54, + "end": 16859.84, + "probability": 0.0579 + }, + { + "start": 16861.2, + "end": 16861.32, + "probability": 0.3263 + }, + { + "start": 16864.76, + "end": 16864.82, + "probability": 0.1161 + }, + { + "start": 16864.82, + "end": 16865.72, + "probability": 0.601 + }, + { + "start": 16865.84, + "end": 16869.9, + "probability": 0.748 + }, + { + "start": 16870.08, + "end": 16870.64, + "probability": 0.5903 + }, + { + "start": 16870.84, + "end": 16871.44, + "probability": 0.4888 + }, + { + "start": 16871.72, + "end": 16872.04, + "probability": 0.7227 + }, + { + "start": 16875.76, + "end": 16877.42, + "probability": 0.8804 + }, + { + "start": 16878.48, + "end": 16882.74, + "probability": 0.5374 + }, + { + "start": 16883.84, + "end": 16888.44, + "probability": 0.5441 + }, + { + "start": 16892.7, + "end": 16898.52, + "probability": 0.4614 + }, + { + "start": 16899.68, + "end": 16901.72, + "probability": 0.6585 + }, + { + "start": 16902.66, + "end": 16904.58, + "probability": 0.7571 + }, + { + "start": 16906.84, + "end": 16907.24, + "probability": 0.7127 + }, + { + "start": 16908.22, + "end": 16909.3, + "probability": 0.9411 + }, + { + "start": 16913.97, + "end": 16916.92, + "probability": 0.9692 + }, + { + "start": 16916.92, + "end": 16918.76, + "probability": 0.973 + }, + { + "start": 16919.36, + "end": 16919.46, + "probability": 0.2645 + }, + { + "start": 16920.58, + "end": 16921.6, + "probability": 0.5466 + }, + { + "start": 16922.0, + "end": 16926.22, + "probability": 0.9419 + }, + { + "start": 16926.22, + "end": 16930.94, + "probability": 0.9974 + }, + { + "start": 16931.62, + "end": 16935.76, + "probability": 0.979 + }, + { + "start": 16935.96, + "end": 16939.3, + "probability": 0.936 + }, + { + "start": 16939.82, + "end": 16944.34, + "probability": 0.9737 + }, + { + "start": 16945.08, + "end": 16946.08, + "probability": 0.9898 + }, + { + "start": 16947.54, + "end": 16951.64, + "probability": 0.8364 + }, + { + "start": 16952.12, + "end": 16954.18, + "probability": 0.2786 + }, + { + "start": 16955.0, + "end": 16957.46, + "probability": 0.7667 + }, + { + "start": 16957.64, + "end": 16958.78, + "probability": 0.8236 + }, + { + "start": 16959.56, + "end": 16964.88, + "probability": 0.8108 + }, + { + "start": 16965.6, + "end": 16967.0, + "probability": 0.2647 + }, + { + "start": 16967.16, + "end": 16970.98, + "probability": 0.9679 + }, + { + "start": 16970.98, + "end": 16973.2, + "probability": 0.9854 + }, + { + "start": 16974.08, + "end": 16980.98, + "probability": 0.9305 + }, + { + "start": 16980.98, + "end": 16986.04, + "probability": 0.996 + }, + { + "start": 16986.86, + "end": 16988.96, + "probability": 0.7138 + }, + { + "start": 16990.8, + "end": 16993.18, + "probability": 0.9925 + }, + { + "start": 16993.8, + "end": 16994.64, + "probability": 0.9867 + }, + { + "start": 16994.72, + "end": 16998.4, + "probability": 0.981 + }, + { + "start": 16999.14, + "end": 17001.0, + "probability": 0.8006 + }, + { + "start": 17001.04, + "end": 17004.2, + "probability": 0.9116 + }, + { + "start": 17004.2, + "end": 17006.98, + "probability": 0.9637 + }, + { + "start": 17007.72, + "end": 17008.62, + "probability": 0.9429 + }, + { + "start": 17009.26, + "end": 17012.46, + "probability": 0.9931 + }, + { + "start": 17013.08, + "end": 17014.76, + "probability": 0.7778 + }, + { + "start": 17014.98, + "end": 17018.65, + "probability": 0.9792 + }, + { + "start": 17019.18, + "end": 17021.72, + "probability": 0.9857 + }, + { + "start": 17021.82, + "end": 17022.22, + "probability": 0.8325 + }, + { + "start": 17022.82, + "end": 17024.58, + "probability": 0.8488 + }, + { + "start": 17025.12, + "end": 17028.76, + "probability": 0.915 + }, + { + "start": 17028.9, + "end": 17029.18, + "probability": 0.4031 + }, + { + "start": 17029.78, + "end": 17031.58, + "probability": 0.9679 + }, + { + "start": 17032.42, + "end": 17035.2, + "probability": 0.9383 + }, + { + "start": 17036.18, + "end": 17038.36, + "probability": 0.9198 + }, + { + "start": 17041.0, + "end": 17042.4, + "probability": 0.7438 + }, + { + "start": 17042.46, + "end": 17043.58, + "probability": 0.8326 + }, + { + "start": 17043.68, + "end": 17048.0, + "probability": 0.8682 + }, + { + "start": 17048.36, + "end": 17051.16, + "probability": 0.9682 + }, + { + "start": 17051.7, + "end": 17053.84, + "probability": 0.9746 + }, + { + "start": 17055.16, + "end": 17059.28, + "probability": 0.9761 + }, + { + "start": 17059.28, + "end": 17063.0, + "probability": 0.9613 + }, + { + "start": 17063.54, + "end": 17066.9, + "probability": 0.9851 + }, + { + "start": 17067.07, + "end": 17070.9, + "probability": 0.9831 + }, + { + "start": 17071.64, + "end": 17074.78, + "probability": 0.9665 + }, + { + "start": 17075.48, + "end": 17079.36, + "probability": 0.9724 + }, + { + "start": 17079.8, + "end": 17084.64, + "probability": 0.9644 + }, + { + "start": 17084.74, + "end": 17086.78, + "probability": 0.9982 + }, + { + "start": 17087.5, + "end": 17091.68, + "probability": 0.9587 + }, + { + "start": 17092.4, + "end": 17095.8, + "probability": 0.7876 + }, + { + "start": 17098.1, + "end": 17100.32, + "probability": 0.974 + }, + { + "start": 17100.32, + "end": 17102.82, + "probability": 0.8197 + }, + { + "start": 17103.3, + "end": 17103.46, + "probability": 0.6302 + }, + { + "start": 17104.26, + "end": 17107.92, + "probability": 0.8687 + }, + { + "start": 17108.04, + "end": 17108.54, + "probability": 0.8504 + }, + { + "start": 17109.2, + "end": 17112.46, + "probability": 0.8218 + }, + { + "start": 17112.98, + "end": 17116.6, + "probability": 0.9631 + }, + { + "start": 17116.94, + "end": 17118.8, + "probability": 0.9814 + }, + { + "start": 17118.88, + "end": 17120.48, + "probability": 0.8076 + }, + { + "start": 17121.14, + "end": 17124.16, + "probability": 0.9808 + }, + { + "start": 17125.04, + "end": 17125.82, + "probability": 0.5935 + }, + { + "start": 17126.58, + "end": 17128.04, + "probability": 0.6708 + }, + { + "start": 17128.8, + "end": 17131.43, + "probability": 0.9347 + }, + { + "start": 17131.86, + "end": 17132.62, + "probability": 0.8005 + }, + { + "start": 17133.08, + "end": 17134.74, + "probability": 0.9567 + }, + { + "start": 17134.92, + "end": 17136.36, + "probability": 0.946 + }, + { + "start": 17136.9, + "end": 17143.18, + "probability": 0.892 + }, + { + "start": 17143.22, + "end": 17146.32, + "probability": 0.7003 + }, + { + "start": 17146.94, + "end": 17148.7, + "probability": 0.9 + }, + { + "start": 17148.7, + "end": 17150.78, + "probability": 0.9222 + }, + { + "start": 17150.9, + "end": 17153.5, + "probability": 0.7686 + }, + { + "start": 17153.82, + "end": 17154.04, + "probability": 0.7502 + }, + { + "start": 17154.16, + "end": 17154.8, + "probability": 0.4592 + }, + { + "start": 17154.9, + "end": 17157.56, + "probability": 0.9796 + }, + { + "start": 17158.16, + "end": 17160.88, + "probability": 0.9382 + }, + { + "start": 17161.58, + "end": 17161.98, + "probability": 0.6726 + }, + { + "start": 17163.18, + "end": 17164.22, + "probability": 0.9341 + }, + { + "start": 17165.5, + "end": 17166.28, + "probability": 0.9696 + }, + { + "start": 17168.8, + "end": 17170.72, + "probability": 0.7828 + }, + { + "start": 17173.42, + "end": 17176.98, + "probability": 0.8607 + }, + { + "start": 17178.66, + "end": 17179.96, + "probability": 0.779 + }, + { + "start": 17184.38, + "end": 17186.22, + "probability": 0.7414 + }, + { + "start": 17187.2, + "end": 17191.92, + "probability": 0.9838 + }, + { + "start": 17192.16, + "end": 17195.7, + "probability": 0.9899 + }, + { + "start": 17195.9, + "end": 17200.14, + "probability": 0.9888 + }, + { + "start": 17201.02, + "end": 17204.68, + "probability": 0.9758 + }, + { + "start": 17204.68, + "end": 17207.56, + "probability": 0.995 + }, + { + "start": 17208.12, + "end": 17214.04, + "probability": 0.9775 + }, + { + "start": 17214.72, + "end": 17218.38, + "probability": 0.6601 + }, + { + "start": 17218.5, + "end": 17218.88, + "probability": 0.4327 + }, + { + "start": 17218.96, + "end": 17219.24, + "probability": 0.8839 + }, + { + "start": 17219.36, + "end": 17222.22, + "probability": 0.8477 + }, + { + "start": 17222.3, + "end": 17223.02, + "probability": 0.8175 + }, + { + "start": 17223.12, + "end": 17226.66, + "probability": 0.9791 + }, + { + "start": 17227.04, + "end": 17232.78, + "probability": 0.9478 + }, + { + "start": 17232.78, + "end": 17238.18, + "probability": 0.9826 + }, + { + "start": 17239.34, + "end": 17242.4, + "probability": 0.0379 + }, + { + "start": 17242.46, + "end": 17247.22, + "probability": 0.9648 + }, + { + "start": 17248.1, + "end": 17249.9, + "probability": 0.8734 + }, + { + "start": 17249.9, + "end": 17252.18, + "probability": 0.9883 + }, + { + "start": 17253.02, + "end": 17255.94, + "probability": 0.8994 + }, + { + "start": 17256.04, + "end": 17258.28, + "probability": 0.9976 + }, + { + "start": 17259.14, + "end": 17263.35, + "probability": 0.9783 + }, + { + "start": 17264.14, + "end": 17268.5, + "probability": 0.9709 + }, + { + "start": 17268.5, + "end": 17271.88, + "probability": 0.9101 + }, + { + "start": 17272.04, + "end": 17274.02, + "probability": 0.9538 + }, + { + "start": 17274.54, + "end": 17281.24, + "probability": 0.8932 + }, + { + "start": 17282.44, + "end": 17287.36, + "probability": 0.998 + }, + { + "start": 17287.4, + "end": 17294.54, + "probability": 0.9974 + }, + { + "start": 17295.66, + "end": 17299.0, + "probability": 0.9883 + }, + { + "start": 17299.6, + "end": 17304.76, + "probability": 0.9731 + }, + { + "start": 17305.28, + "end": 17309.44, + "probability": 0.7496 + }, + { + "start": 17309.44, + "end": 17313.38, + "probability": 0.9963 + }, + { + "start": 17313.84, + "end": 17319.74, + "probability": 0.9425 + }, + { + "start": 17320.52, + "end": 17321.06, + "probability": 0.5909 + }, + { + "start": 17321.16, + "end": 17321.58, + "probability": 0.6571 + }, + { + "start": 17321.72, + "end": 17326.46, + "probability": 0.7949 + }, + { + "start": 17326.46, + "end": 17330.74, + "probability": 0.9741 + }, + { + "start": 17331.36, + "end": 17334.2, + "probability": 0.8265 + }, + { + "start": 17335.36, + "end": 17340.16, + "probability": 0.1347 + }, + { + "start": 17340.32, + "end": 17341.48, + "probability": 0.8091 + }, + { + "start": 17341.54, + "end": 17344.72, + "probability": 0.7496 + }, + { + "start": 17345.1, + "end": 17350.74, + "probability": 0.9875 + }, + { + "start": 17351.14, + "end": 17352.8, + "probability": 0.9905 + }, + { + "start": 17353.58, + "end": 17354.16, + "probability": 0.8268 + }, + { + "start": 17354.26, + "end": 17357.28, + "probability": 0.9861 + }, + { + "start": 17357.28, + "end": 17361.2, + "probability": 0.9946 + }, + { + "start": 17361.56, + "end": 17365.1, + "probability": 0.9797 + }, + { + "start": 17365.1, + "end": 17368.26, + "probability": 0.9995 + }, + { + "start": 17368.6, + "end": 17369.68, + "probability": 0.4691 + }, + { + "start": 17370.42, + "end": 17372.37, + "probability": 0.8734 + }, + { + "start": 17373.3, + "end": 17374.4, + "probability": 0.5607 + }, + { + "start": 17375.71, + "end": 17377.1, + "probability": 0.776 + }, + { + "start": 17390.92, + "end": 17391.77, + "probability": 0.1129 + }, + { + "start": 17394.28, + "end": 17395.58, + "probability": 0.9913 + }, + { + "start": 17396.96, + "end": 17400.24, + "probability": 0.984 + }, + { + "start": 17401.62, + "end": 17402.92, + "probability": 0.7132 + }, + { + "start": 17403.04, + "end": 17408.02, + "probability": 0.8952 + }, + { + "start": 17409.08, + "end": 17411.62, + "probability": 0.888 + }, + { + "start": 17412.26, + "end": 17414.22, + "probability": 0.9879 + }, + { + "start": 17415.44, + "end": 17417.92, + "probability": 0.9308 + }, + { + "start": 17419.06, + "end": 17423.38, + "probability": 0.9912 + }, + { + "start": 17424.56, + "end": 17428.26, + "probability": 0.998 + }, + { + "start": 17428.84, + "end": 17430.12, + "probability": 0.9958 + }, + { + "start": 17430.8, + "end": 17432.72, + "probability": 0.8 + }, + { + "start": 17433.52, + "end": 17434.44, + "probability": 0.8578 + }, + { + "start": 17435.08, + "end": 17438.94, + "probability": 0.9392 + }, + { + "start": 17440.06, + "end": 17442.44, + "probability": 0.9437 + }, + { + "start": 17443.48, + "end": 17444.92, + "probability": 0.6784 + }, + { + "start": 17445.6, + "end": 17449.88, + "probability": 0.6858 + }, + { + "start": 17450.04, + "end": 17452.88, + "probability": 0.7505 + }, + { + "start": 17453.6, + "end": 17456.64, + "probability": 0.8319 + }, + { + "start": 17457.4, + "end": 17459.05, + "probability": 0.9577 + }, + { + "start": 17459.8, + "end": 17461.72, + "probability": 0.9763 + }, + { + "start": 17462.32, + "end": 17463.2, + "probability": 0.68 + }, + { + "start": 17464.14, + "end": 17467.54, + "probability": 0.9683 + }, + { + "start": 17468.42, + "end": 17470.02, + "probability": 0.9889 + }, + { + "start": 17470.6, + "end": 17480.18, + "probability": 0.9722 + }, + { + "start": 17480.2, + "end": 17480.44, + "probability": 0.667 + }, + { + "start": 17481.74, + "end": 17482.24, + "probability": 0.4555 + }, + { + "start": 17482.66, + "end": 17484.66, + "probability": 0.665 + }, + { + "start": 17486.42, + "end": 17489.44, + "probability": 0.149 + }, + { + "start": 17490.36, + "end": 17490.76, + "probability": 0.1111 + }, + { + "start": 17490.76, + "end": 17491.22, + "probability": 0.0163 + }, + { + "start": 17513.32, + "end": 17514.74, + "probability": 0.4225 + }, + { + "start": 17519.49, + "end": 17520.88, + "probability": 0.5031 + }, + { + "start": 17521.08, + "end": 17523.62, + "probability": 0.9088 + }, + { + "start": 17525.08, + "end": 17527.2, + "probability": 0.8679 + }, + { + "start": 17528.0, + "end": 17528.52, + "probability": 0.9656 + }, + { + "start": 17530.08, + "end": 17535.06, + "probability": 0.9137 + }, + { + "start": 17535.06, + "end": 17537.12, + "probability": 0.8094 + }, + { + "start": 17538.28, + "end": 17540.92, + "probability": 0.9058 + }, + { + "start": 17541.18, + "end": 17542.42, + "probability": 0.7437 + }, + { + "start": 17542.58, + "end": 17545.38, + "probability": 0.9683 + }, + { + "start": 17547.24, + "end": 17554.12, + "probability": 0.9816 + }, + { + "start": 17555.36, + "end": 17555.48, + "probability": 0.3072 + }, + { + "start": 17555.64, + "end": 17560.92, + "probability": 0.9857 + }, + { + "start": 17560.92, + "end": 17565.1, + "probability": 0.9985 + }, + { + "start": 17566.06, + "end": 17567.84, + "probability": 0.846 + }, + { + "start": 17569.58, + "end": 17573.04, + "probability": 0.7333 + }, + { + "start": 17573.26, + "end": 17574.1, + "probability": 0.9014 + }, + { + "start": 17574.3, + "end": 17576.78, + "probability": 0.3254 + }, + { + "start": 17576.78, + "end": 17577.4, + "probability": 0.2962 + }, + { + "start": 17578.12, + "end": 17579.8, + "probability": 0.9917 + }, + { + "start": 17579.88, + "end": 17580.78, + "probability": 0.9342 + }, + { + "start": 17581.38, + "end": 17581.7, + "probability": 0.9294 + }, + { + "start": 17583.2, + "end": 17584.92, + "probability": 0.9753 + }, + { + "start": 17586.1, + "end": 17589.46, + "probability": 0.9768 + }, + { + "start": 17590.32, + "end": 17592.0, + "probability": 0.9962 + }, + { + "start": 17592.74, + "end": 17594.86, + "probability": 0.978 + }, + { + "start": 17595.08, + "end": 17599.42, + "probability": 0.8378 + }, + { + "start": 17599.9, + "end": 17601.26, + "probability": 0.9547 + }, + { + "start": 17601.98, + "end": 17603.18, + "probability": 0.3057 + }, + { + "start": 17604.5, + "end": 17604.7, + "probability": 0.2608 + }, + { + "start": 17604.8, + "end": 17605.47, + "probability": 0.8931 + }, + { + "start": 17605.72, + "end": 17607.88, + "probability": 0.9751 + }, + { + "start": 17608.18, + "end": 17611.24, + "probability": 0.9817 + }, + { + "start": 17611.38, + "end": 17612.56, + "probability": 0.8095 + }, + { + "start": 17613.76, + "end": 17615.58, + "probability": 0.9852 + }, + { + "start": 17616.48, + "end": 17618.72, + "probability": 0.9946 + }, + { + "start": 17618.9, + "end": 17619.66, + "probability": 0.793 + }, + { + "start": 17620.94, + "end": 17624.32, + "probability": 0.935 + }, + { + "start": 17624.58, + "end": 17626.04, + "probability": 0.9647 + }, + { + "start": 17626.58, + "end": 17628.3, + "probability": 0.8445 + }, + { + "start": 17628.42, + "end": 17631.4, + "probability": 0.6474 + }, + { + "start": 17631.52, + "end": 17632.58, + "probability": 0.8583 + }, + { + "start": 17633.04, + "end": 17636.14, + "probability": 0.823 + }, + { + "start": 17636.14, + "end": 17637.0, + "probability": 0.5345 + }, + { + "start": 17637.1, + "end": 17638.18, + "probability": 0.7959 + }, + { + "start": 17638.74, + "end": 17640.56, + "probability": 0.9966 + }, + { + "start": 17641.9, + "end": 17645.01, + "probability": 0.9756 + }, + { + "start": 17645.22, + "end": 17648.74, + "probability": 0.721 + }, + { + "start": 17649.36, + "end": 17651.1, + "probability": 0.9476 + }, + { + "start": 17651.82, + "end": 17654.64, + "probability": 0.9984 + }, + { + "start": 17654.78, + "end": 17656.5, + "probability": 0.8325 + }, + { + "start": 17657.28, + "end": 17659.24, + "probability": 0.432 + }, + { + "start": 17659.8, + "end": 17661.48, + "probability": 0.9952 + }, + { + "start": 17661.9, + "end": 17664.88, + "probability": 0.9697 + }, + { + "start": 17665.5, + "end": 17668.08, + "probability": 0.9951 + }, + { + "start": 17668.72, + "end": 17672.0, + "probability": 0.9937 + }, + { + "start": 17672.52, + "end": 17672.74, + "probability": 0.7532 + }, + { + "start": 17673.36, + "end": 17673.58, + "probability": 0.7728 + }, + { + "start": 17674.52, + "end": 17675.64, + "probability": 0.9191 + }, + { + "start": 17676.18, + "end": 17677.22, + "probability": 0.7131 + }, + { + "start": 17678.5, + "end": 17680.32, + "probability": 0.2115 + }, + { + "start": 17680.32, + "end": 17682.18, + "probability": 0.0929 + }, + { + "start": 17688.66, + "end": 17688.76, + "probability": 0.2484 + }, + { + "start": 17699.82, + "end": 17703.58, + "probability": 0.0892 + }, + { + "start": 17704.26, + "end": 17704.71, + "probability": 0.053 + }, + { + "start": 17706.84, + "end": 17707.66, + "probability": 0.7078 + }, + { + "start": 17707.82, + "end": 17711.96, + "probability": 0.561 + }, + { + "start": 17712.06, + "end": 17713.58, + "probability": 0.3448 + }, + { + "start": 17714.02, + "end": 17717.3, + "probability": 0.7212 + }, + { + "start": 17717.44, + "end": 17718.24, + "probability": 0.387 + }, + { + "start": 17718.76, + "end": 17719.58, + "probability": 0.3689 + }, + { + "start": 17720.46, + "end": 17721.87, + "probability": 0.5033 + }, + { + "start": 17727.2, + "end": 17729.36, + "probability": 0.9191 + }, + { + "start": 17731.02, + "end": 17735.24, + "probability": 0.8076 + }, + { + "start": 17735.48, + "end": 17739.64, + "probability": 0.9937 + }, + { + "start": 17739.9, + "end": 17741.52, + "probability": 0.0211 + }, + { + "start": 17741.62, + "end": 17743.06, + "probability": 0.2383 + }, + { + "start": 17743.6, + "end": 17747.14, + "probability": 0.8655 + }, + { + "start": 17747.24, + "end": 17748.8, + "probability": 0.9371 + }, + { + "start": 17773.76, + "end": 17776.68, + "probability": 0.6862 + }, + { + "start": 17777.64, + "end": 17780.76, + "probability": 0.7571 + }, + { + "start": 17780.76, + "end": 17783.84, + "probability": 0.9976 + }, + { + "start": 17784.66, + "end": 17786.52, + "probability": 0.5442 + }, + { + "start": 17787.18, + "end": 17789.28, + "probability": 0.1596 + }, + { + "start": 17789.94, + "end": 17790.96, + "probability": 0.7616 + }, + { + "start": 17791.1, + "end": 17792.86, + "probability": 0.835 + }, + { + "start": 17793.14, + "end": 17801.45, + "probability": 0.8035 + }, + { + "start": 17801.98, + "end": 17803.82, + "probability": 0.8758 + }, + { + "start": 17803.92, + "end": 17806.72, + "probability": 0.7987 + }, + { + "start": 17806.82, + "end": 17810.08, + "probability": 0.7265 + }, + { + "start": 17810.6, + "end": 17815.56, + "probability": 0.6538 + }, + { + "start": 17816.12, + "end": 17817.98, + "probability": 0.7854 + }, + { + "start": 17818.48, + "end": 17823.4, + "probability": 0.9346 + }, + { + "start": 17823.4, + "end": 17827.86, + "probability": 0.9937 + }, + { + "start": 17828.18, + "end": 17833.8, + "probability": 0.7104 + }, + { + "start": 17834.1, + "end": 17835.98, + "probability": 0.7568 + }, + { + "start": 17836.5, + "end": 17842.0, + "probability": 0.8524 + }, + { + "start": 17842.16, + "end": 17842.68, + "probability": 0.4292 + }, + { + "start": 17845.26, + "end": 17845.82, + "probability": 0.5684 + }, + { + "start": 17848.35, + "end": 17851.9, + "probability": 0.8698 + }, + { + "start": 17852.5, + "end": 17854.1, + "probability": 0.9274 + }, + { + "start": 17854.66, + "end": 17858.4, + "probability": 0.936 + }, + { + "start": 17859.36, + "end": 17860.74, + "probability": 0.7937 + }, + { + "start": 17861.52, + "end": 17862.98, + "probability": 0.9237 + }, + { + "start": 17877.7, + "end": 17880.96, + "probability": 0.962 + }, + { + "start": 17881.66, + "end": 17884.18, + "probability": 0.6215 + }, + { + "start": 17884.96, + "end": 17887.44, + "probability": 0.9676 + }, + { + "start": 17895.36, + "end": 17898.22, + "probability": 0.296 + }, + { + "start": 17898.3, + "end": 17900.24, + "probability": 0.9733 + }, + { + "start": 17901.5, + "end": 17904.7, + "probability": 0.0057 + }, + { + "start": 17907.48, + "end": 17910.46, + "probability": 0.0326 + }, + { + "start": 17911.38, + "end": 17919.34, + "probability": 0.0625 + }, + { + "start": 17922.54, + "end": 17923.42, + "probability": 0.0071 + }, + { + "start": 17923.61, + "end": 17924.99, + "probability": 0.18 + }, + { + "start": 17927.72, + "end": 17928.32, + "probability": 0.0538 + }, + { + "start": 17929.26, + "end": 17931.86, + "probability": 0.135 + }, + { + "start": 17931.86, + "end": 17936.3, + "probability": 0.0198 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.0, + "end": 18068.0, + "probability": 0.0 + }, + { + "start": 18068.4, + "end": 18068.4, + "probability": 0.0066 + }, + { + "start": 18068.4, + "end": 18071.68, + "probability": 0.81 + }, + { + "start": 18071.72, + "end": 18073.52, + "probability": 0.5433 + }, + { + "start": 18073.62, + "end": 18076.86, + "probability": 0.8726 + }, + { + "start": 18077.46, + "end": 18080.82, + "probability": 0.691 + }, + { + "start": 18081.18, + "end": 18081.36, + "probability": 0.0297 + }, + { + "start": 18081.98, + "end": 18082.44, + "probability": 0.7307 + }, + { + "start": 18082.96, + "end": 18084.84, + "probability": 0.8899 + }, + { + "start": 18084.84, + "end": 18088.1, + "probability": 0.7412 + }, + { + "start": 18088.6, + "end": 18091.22, + "probability": 0.4351 + }, + { + "start": 18091.22, + "end": 18094.19, + "probability": 0.5951 + }, + { + "start": 18095.68, + "end": 18095.88, + "probability": 0.1198 + }, + { + "start": 18096.34, + "end": 18097.1, + "probability": 0.0761 + }, + { + "start": 18097.28, + "end": 18100.86, + "probability": 0.9086 + }, + { + "start": 18101.58, + "end": 18104.38, + "probability": 0.9519 + }, + { + "start": 18104.88, + "end": 18108.16, + "probability": 0.9454 + }, + { + "start": 18108.16, + "end": 18110.7, + "probability": 0.9088 + }, + { + "start": 18112.22, + "end": 18112.3, + "probability": 0.019 + }, + { + "start": 18112.5, + "end": 18116.02, + "probability": 0.5948 + }, + { + "start": 18116.12, + "end": 18119.32, + "probability": 0.7659 + }, + { + "start": 18121.56, + "end": 18124.24, + "probability": 0.894 + }, + { + "start": 18124.24, + "end": 18127.9, + "probability": 0.827 + }, + { + "start": 18128.08, + "end": 18131.09, + "probability": 0.79 + }, + { + "start": 18132.06, + "end": 18135.56, + "probability": 0.6086 + }, + { + "start": 18135.56, + "end": 18137.86, + "probability": 0.6038 + }, + { + "start": 18138.4, + "end": 18140.56, + "probability": 0.9176 + }, + { + "start": 18141.44, + "end": 18145.24, + "probability": 0.8451 + }, + { + "start": 18145.7, + "end": 18148.54, + "probability": 0.6224 + }, + { + "start": 18148.54, + "end": 18152.24, + "probability": 0.9163 + }, + { + "start": 18152.4, + "end": 18155.06, + "probability": 0.7431 + }, + { + "start": 18155.7, + "end": 18159.2, + "probability": 0.9429 + }, + { + "start": 18159.24, + "end": 18163.04, + "probability": 0.8777 + }, + { + "start": 18163.2, + "end": 18166.02, + "probability": 0.6552 + }, + { + "start": 18166.64, + "end": 18169.5, + "probability": 0.6785 + }, + { + "start": 18169.5, + "end": 18173.64, + "probability": 0.9457 + }, + { + "start": 18174.12, + "end": 18175.04, + "probability": 0.4053 + }, + { + "start": 18175.1, + "end": 18178.84, + "probability": 0.8936 + }, + { + "start": 18183.36, + "end": 18186.26, + "probability": 0.6156 + }, + { + "start": 18186.34, + "end": 18187.46, + "probability": 0.5995 + }, + { + "start": 18187.52, + "end": 18191.0, + "probability": 0.8733 + }, + { + "start": 18191.42, + "end": 18192.38, + "probability": 0.726 + }, + { + "start": 18192.88, + "end": 18200.02, + "probability": 0.8554 + }, + { + "start": 18200.38, + "end": 18202.1, + "probability": 0.8149 + }, + { + "start": 18202.58, + "end": 18206.18, + "probability": 0.9902 + }, + { + "start": 18206.18, + "end": 18209.88, + "probability": 0.9741 + }, + { + "start": 18210.52, + "end": 18216.2, + "probability": 0.9492 + }, + { + "start": 18216.9, + "end": 18219.6, + "probability": 0.9795 + }, + { + "start": 18220.42, + "end": 18221.27, + "probability": 0.8041 + }, + { + "start": 18221.78, + "end": 18224.56, + "probability": 0.9665 + }, + { + "start": 18225.32, + "end": 18227.78, + "probability": 0.7118 + }, + { + "start": 18228.47, + "end": 18230.32, + "probability": 0.7041 + }, + { + "start": 18230.44, + "end": 18232.22, + "probability": 0.7382 + }, + { + "start": 18232.32, + "end": 18236.3, + "probability": 0.9109 + }, + { + "start": 18236.98, + "end": 18240.1, + "probability": 0.8038 + }, + { + "start": 18241.34, + "end": 18244.02, + "probability": 0.9255 + }, + { + "start": 18244.64, + "end": 18247.36, + "probability": 0.9955 + }, + { + "start": 18247.52, + "end": 18252.76, + "probability": 0.8356 + }, + { + "start": 18253.16, + "end": 18256.2, + "probability": 0.8208 + }, + { + "start": 18256.84, + "end": 18261.42, + "probability": 0.9919 + }, + { + "start": 18262.54, + "end": 18267.12, + "probability": 0.6164 + }, + { + "start": 18267.3, + "end": 18268.46, + "probability": 0.9876 + }, + { + "start": 18269.06, + "end": 18270.38, + "probability": 0.4741 + }, + { + "start": 18271.94, + "end": 18272.26, + "probability": 0.6066 + }, + { + "start": 18272.8, + "end": 18274.78, + "probability": 0.7494 + }, + { + "start": 18275.78, + "end": 18277.66, + "probability": 0.9053 + }, + { + "start": 18278.26, + "end": 18280.56, + "probability": 0.981 + }, + { + "start": 18283.9, + "end": 18287.3, + "probability": 0.0231 + }, + { + "start": 18288.3, + "end": 18293.38, + "probability": 0.1108 + }, + { + "start": 18304.06, + "end": 18306.16, + "probability": 0.0607 + }, + { + "start": 18325.48, + "end": 18326.98, + "probability": 0.1852 + }, + { + "start": 18332.8, + "end": 18337.84, + "probability": 0.1875 + }, + { + "start": 18337.84, + "end": 18341.16, + "probability": 0.2142 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.0, + "probability": 0.0 + }, + { + "start": 18371.0, + "end": 18371.26, + "probability": 0.1329 + }, + { + "start": 18371.7, + "end": 18373.47, + "probability": 0.5565 + }, + { + "start": 18374.16, + "end": 18376.74, + "probability": 0.9801 + }, + { + "start": 18377.24, + "end": 18378.68, + "probability": 0.7761 + }, + { + "start": 18379.14, + "end": 18383.96, + "probability": 0.9084 + }, + { + "start": 18384.0, + "end": 18384.52, + "probability": 0.5916 + }, + { + "start": 18384.72, + "end": 18385.6, + "probability": 0.5898 + }, + { + "start": 18386.0, + "end": 18386.58, + "probability": 0.6584 + }, + { + "start": 18387.02, + "end": 18390.14, + "probability": 0.7355 + }, + { + "start": 18391.1, + "end": 18394.14, + "probability": 0.944 + }, + { + "start": 18395.04, + "end": 18395.3, + "probability": 0.9674 + }, + { + "start": 18395.9, + "end": 18396.14, + "probability": 0.9619 + }, + { + "start": 18396.96, + "end": 18397.2, + "probability": 0.5232 + }, + { + "start": 18399.7, + "end": 18400.46, + "probability": 0.8416 + }, + { + "start": 18401.26, + "end": 18403.42, + "probability": 0.024 + }, + { + "start": 18404.12, + "end": 18405.88, + "probability": 0.6433 + }, + { + "start": 18406.04, + "end": 18406.81, + "probability": 0.1346 + }, + { + "start": 18415.42, + "end": 18416.88, + "probability": 0.1725 + }, + { + "start": 18416.88, + "end": 18428.78, + "probability": 0.0362 + }, + { + "start": 18430.11, + "end": 18434.64, + "probability": 0.0252 + }, + { + "start": 18435.08, + "end": 18436.38, + "probability": 0.1974 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.0, + "end": 18495.0, + "probability": 0.0 + }, + { + "start": 18495.88, + "end": 18495.88, + "probability": 0.4394 + }, + { + "start": 18495.88, + "end": 18495.88, + "probability": 0.4383 + }, + { + "start": 18495.88, + "end": 18495.88, + "probability": 0.2331 + }, + { + "start": 18495.88, + "end": 18495.88, + "probability": 0.0506 + }, + { + "start": 18495.88, + "end": 18500.12, + "probability": 0.4061 + }, + { + "start": 18500.88, + "end": 18501.66, + "probability": 0.627 + }, + { + "start": 18502.16, + "end": 18502.36, + "probability": 0.7098 + }, + { + "start": 18502.86, + "end": 18507.1, + "probability": 0.7404 + }, + { + "start": 18507.8, + "end": 18509.98, + "probability": 0.979 + }, + { + "start": 18510.5, + "end": 18510.96, + "probability": 0.7811 + }, + { + "start": 18511.36, + "end": 18516.42, + "probability": 0.9781 + }, + { + "start": 18516.42, + "end": 18520.4, + "probability": 0.976 + }, + { + "start": 18520.58, + "end": 18521.66, + "probability": 0.7524 + }, + { + "start": 18523.04, + "end": 18523.62, + "probability": 0.7784 + }, + { + "start": 18524.3, + "end": 18526.2, + "probability": 0.813 + }, + { + "start": 18528.52, + "end": 18529.52, + "probability": 0.8713 + }, + { + "start": 18529.7, + "end": 18535.52, + "probability": 0.9302 + }, + { + "start": 18535.95, + "end": 18536.2, + "probability": 0.5634 + }, + { + "start": 18537.18, + "end": 18539.46, + "probability": 0.9455 + }, + { + "start": 18540.02, + "end": 18543.06, + "probability": 0.3283 + }, + { + "start": 18543.72, + "end": 18544.36, + "probability": 0.0288 + }, + { + "start": 18544.54, + "end": 18546.0, + "probability": 0.5154 + }, + { + "start": 18546.06, + "end": 18548.4, + "probability": 0.2312 + }, + { + "start": 18549.08, + "end": 18551.7, + "probability": 0.9307 + }, + { + "start": 18551.84, + "end": 18555.1, + "probability": 0.9626 + }, + { + "start": 18555.66, + "end": 18556.48, + "probability": 0.7683 + }, + { + "start": 18556.58, + "end": 18558.62, + "probability": 0.9684 + }, + { + "start": 18559.4, + "end": 18563.18, + "probability": 0.7265 + }, + { + "start": 18563.38, + "end": 18565.76, + "probability": 0.959 + }, + { + "start": 18566.26, + "end": 18567.98, + "probability": 0.9154 + }, + { + "start": 18569.06, + "end": 18569.48, + "probability": 0.6967 + }, + { + "start": 18569.88, + "end": 18570.28, + "probability": 0.5683 + }, + { + "start": 18570.38, + "end": 18572.3, + "probability": 0.9401 + }, + { + "start": 18573.32, + "end": 18579.06, + "probability": 0.6475 + }, + { + "start": 18580.22, + "end": 18581.74, + "probability": 0.4598 + }, + { + "start": 18582.54, + "end": 18584.04, + "probability": 0.9788 + }, + { + "start": 18585.02, + "end": 18586.38, + "probability": 0.0292 + }, + { + "start": 18586.96, + "end": 18588.16, + "probability": 0.0925 + }, + { + "start": 18588.42, + "end": 18590.28, + "probability": 0.6729 + }, + { + "start": 18590.92, + "end": 18593.36, + "probability": 0.0169 + }, + { + "start": 18593.66, + "end": 18595.15, + "probability": 0.9886 + }, + { + "start": 18595.36, + "end": 18596.58, + "probability": 0.8826 + }, + { + "start": 18596.7, + "end": 18597.34, + "probability": 0.0804 + }, + { + "start": 18598.92, + "end": 18601.82, + "probability": 0.0122 + }, + { + "start": 18603.02, + "end": 18606.82, + "probability": 0.1112 + }, + { + "start": 18610.92, + "end": 18611.44, + "probability": 0.7628 + }, + { + "start": 18612.61, + "end": 18614.73, + "probability": 0.0446 + }, + { + "start": 18616.16, + "end": 18616.36, + "probability": 0.0635 + }, + { + "start": 18616.36, + "end": 18624.82, + "probability": 0.1143 + }, + { + "start": 18624.97, + "end": 18626.96, + "probability": 0.0206 + }, + { + "start": 18628.34, + "end": 18632.0, + "probability": 0.0446 + }, + { + "start": 18632.16, + "end": 18632.84, + "probability": 0.1858 + }, + { + "start": 18634.38, + "end": 18637.0, + "probability": 0.0369 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18664.0, + "end": 18664.0, + "probability": 0.0 + }, + { + "start": 18690.8, + "end": 18691.72, + "probability": 0.1369 + }, + { + "start": 18694.91, + "end": 18698.62, + "probability": 0.1862 + }, + { + "start": 18698.68, + "end": 18703.6, + "probability": 0.1279 + }, + { + "start": 18710.39, + "end": 18711.24, + "probability": 0.0755 + }, + { + "start": 18711.24, + "end": 18711.78, + "probability": 0.0549 + }, + { + "start": 18711.98, + "end": 18715.78, + "probability": 0.2826 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18786.0, + "end": 18786.0, + "probability": 0.0 + }, + { + "start": 18812.86, + "end": 18814.28, + "probability": 0.0234 + }, + { + "start": 18814.28, + "end": 18816.4, + "probability": 0.1158 + }, + { + "start": 18817.0, + "end": 18817.34, + "probability": 0.0235 + }, + { + "start": 18817.34, + "end": 18817.38, + "probability": 0.0338 + }, + { + "start": 18817.38, + "end": 18821.16, + "probability": 0.1411 + }, + { + "start": 18822.74, + "end": 18825.22, + "probability": 0.1251 + }, + { + "start": 18826.44, + "end": 18828.86, + "probability": 0.0673 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18919.0, + "end": 18919.0, + "probability": 0.0 + }, + { + "start": 18923.04, + "end": 18924.52, + "probability": 0.5544 + }, + { + "start": 18924.52, + "end": 18926.92, + "probability": 0.0859 + }, + { + "start": 18927.44, + "end": 18929.46, + "probability": 0.0846 + }, + { + "start": 18934.3, + "end": 18934.96, + "probability": 0.0545 + }, + { + "start": 18935.76, + "end": 18939.28, + "probability": 0.2208 + }, + { + "start": 18939.54, + "end": 18941.96, + "probability": 0.1012 + }, + { + "start": 18942.58, + "end": 18943.64, + "probability": 0.2208 + }, + { + "start": 18944.24, + "end": 18945.6, + "probability": 0.0252 + }, + { + "start": 18945.64, + "end": 18945.78, + "probability": 0.0114 + }, + { + "start": 18946.84, + "end": 18946.84, + "probability": 0.1942 + }, + { + "start": 18946.84, + "end": 18948.72, + "probability": 0.0499 + }, + { + "start": 18953.3, + "end": 18954.96, + "probability": 0.129 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.0, + "end": 19045.0, + "probability": 0.0 + }, + { + "start": 19045.54, + "end": 19051.08, + "probability": 0.5308 + }, + { + "start": 19051.74, + "end": 19056.95, + "probability": 0.9116 + }, + { + "start": 19069.62, + "end": 19069.96, + "probability": 0.0111 + } + ], + "segments_count": 4086, + "words_count": 20715, + "avg_words_per_segment": 5.0698, + "avg_segment_duration": 1.931, + "avg_words_per_minute": 65.0438, + "plenum_id": "2379", + "duration": 19108.67, + "title": null, + "plenum_date": "2009-06-08" +} \ No newline at end of file