diff --git "a/30038/metadata.json" "b/30038/metadata.json" new file mode 100644--- /dev/null +++ "b/30038/metadata.json" @@ -0,0 +1,19102 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "30038", + "quality_score": 0.8971, + "per_segment_quality_scores": [ + { + "start": 45.98, + "end": 46.98, + "probability": 0.3327 + }, + { + "start": 47.16, + "end": 51.22, + "probability": 0.6164 + }, + { + "start": 51.26, + "end": 56.06, + "probability": 0.8519 + }, + { + "start": 56.22, + "end": 62.78, + "probability": 0.9919 + }, + { + "start": 62.78, + "end": 67.06, + "probability": 0.9925 + }, + { + "start": 67.34, + "end": 67.5, + "probability": 0.6358 + }, + { + "start": 68.36, + "end": 69.82, + "probability": 0.8446 + }, + { + "start": 71.3, + "end": 71.68, + "probability": 0.635 + }, + { + "start": 71.7, + "end": 73.02, + "probability": 0.7084 + }, + { + "start": 73.12, + "end": 75.5, + "probability": 0.8778 + }, + { + "start": 76.1, + "end": 79.08, + "probability": 0.9946 + }, + { + "start": 79.08, + "end": 85.12, + "probability": 0.9219 + }, + { + "start": 85.84, + "end": 92.8, + "probability": 0.9912 + }, + { + "start": 92.84, + "end": 93.88, + "probability": 0.7728 + }, + { + "start": 93.96, + "end": 95.58, + "probability": 0.8852 + }, + { + "start": 96.22, + "end": 99.82, + "probability": 0.9854 + }, + { + "start": 100.98, + "end": 102.46, + "probability": 0.4944 + }, + { + "start": 102.62, + "end": 105.06, + "probability": 0.9873 + }, + { + "start": 105.24, + "end": 106.62, + "probability": 0.8059 + }, + { + "start": 107.48, + "end": 108.2, + "probability": 0.8656 + }, + { + "start": 108.44, + "end": 109.24, + "probability": 0.5778 + }, + { + "start": 109.3, + "end": 116.8, + "probability": 0.9662 + }, + { + "start": 116.96, + "end": 119.32, + "probability": 0.9304 + }, + { + "start": 125.84, + "end": 126.7, + "probability": 0.5506 + }, + { + "start": 126.84, + "end": 128.1, + "probability": 0.6695 + }, + { + "start": 128.3, + "end": 137.1, + "probability": 0.9481 + }, + { + "start": 138.48, + "end": 146.18, + "probability": 0.7997 + }, + { + "start": 146.88, + "end": 149.86, + "probability": 0.7344 + }, + { + "start": 150.44, + "end": 152.38, + "probability": 0.7115 + }, + { + "start": 152.54, + "end": 163.7, + "probability": 0.6838 + }, + { + "start": 163.7, + "end": 167.84, + "probability": 0.8152 + }, + { + "start": 168.08, + "end": 171.46, + "probability": 0.9733 + }, + { + "start": 172.32, + "end": 174.0, + "probability": 0.9814 + }, + { + "start": 175.56, + "end": 179.22, + "probability": 0.8272 + }, + { + "start": 179.48, + "end": 181.78, + "probability": 0.7357 + }, + { + "start": 181.82, + "end": 183.07, + "probability": 0.9194 + }, + { + "start": 183.64, + "end": 185.58, + "probability": 0.8824 + }, + { + "start": 186.88, + "end": 192.6, + "probability": 0.9723 + }, + { + "start": 193.44, + "end": 194.84, + "probability": 0.4883 + }, + { + "start": 195.14, + "end": 199.78, + "probability": 0.9951 + }, + { + "start": 200.48, + "end": 204.76, + "probability": 0.9744 + }, + { + "start": 205.26, + "end": 206.5, + "probability": 0.7401 + }, + { + "start": 207.08, + "end": 212.54, + "probability": 0.8707 + }, + { + "start": 213.4, + "end": 216.33, + "probability": 0.9118 + }, + { + "start": 217.18, + "end": 219.12, + "probability": 0.8981 + }, + { + "start": 219.22, + "end": 220.08, + "probability": 0.847 + }, + { + "start": 220.74, + "end": 223.7, + "probability": 0.7778 + }, + { + "start": 224.01, + "end": 228.46, + "probability": 0.9984 + }, + { + "start": 228.46, + "end": 232.32, + "probability": 0.9878 + }, + { + "start": 232.72, + "end": 232.9, + "probability": 0.5856 + }, + { + "start": 233.38, + "end": 234.94, + "probability": 0.7501 + }, + { + "start": 237.4, + "end": 237.84, + "probability": 0.3579 + }, + { + "start": 237.84, + "end": 237.84, + "probability": 0.1279 + }, + { + "start": 237.84, + "end": 238.54, + "probability": 0.5231 + }, + { + "start": 243.68, + "end": 245.5, + "probability": 0.7605 + }, + { + "start": 247.24, + "end": 248.72, + "probability": 0.976 + }, + { + "start": 250.68, + "end": 253.08, + "probability": 0.7549 + }, + { + "start": 253.22, + "end": 255.44, + "probability": 0.8746 + }, + { + "start": 255.52, + "end": 256.12, + "probability": 0.5362 + }, + { + "start": 256.12, + "end": 259.46, + "probability": 0.6266 + }, + { + "start": 260.0, + "end": 260.78, + "probability": 0.1043 + }, + { + "start": 263.06, + "end": 270.54, + "probability": 0.9675 + }, + { + "start": 270.54, + "end": 275.86, + "probability": 0.9932 + }, + { + "start": 276.68, + "end": 281.1, + "probability": 0.9845 + }, + { + "start": 283.4, + "end": 287.72, + "probability": 0.9653 + }, + { + "start": 287.72, + "end": 295.16, + "probability": 0.9976 + }, + { + "start": 297.88, + "end": 298.76, + "probability": 0.8751 + }, + { + "start": 299.5, + "end": 301.84, + "probability": 0.8745 + }, + { + "start": 302.12, + "end": 307.62, + "probability": 0.9297 + }, + { + "start": 308.7, + "end": 317.42, + "probability": 0.8011 + }, + { + "start": 319.24, + "end": 320.1, + "probability": 0.4792 + }, + { + "start": 321.04, + "end": 323.38, + "probability": 0.6774 + }, + { + "start": 324.24, + "end": 325.78, + "probability": 0.9635 + }, + { + "start": 325.82, + "end": 326.6, + "probability": 0.9526 + }, + { + "start": 326.72, + "end": 327.26, + "probability": 0.7208 + }, + { + "start": 327.38, + "end": 331.48, + "probability": 0.9893 + }, + { + "start": 331.56, + "end": 332.58, + "probability": 0.5796 + }, + { + "start": 332.84, + "end": 333.16, + "probability": 0.6132 + }, + { + "start": 333.64, + "end": 333.88, + "probability": 0.3997 + }, + { + "start": 334.76, + "end": 335.14, + "probability": 0.8729 + }, + { + "start": 335.74, + "end": 337.38, + "probability": 0.946 + }, + { + "start": 337.5, + "end": 339.28, + "probability": 0.9065 + }, + { + "start": 339.36, + "end": 340.38, + "probability": 0.5294 + }, + { + "start": 340.4, + "end": 341.4, + "probability": 0.9939 + }, + { + "start": 345.64, + "end": 346.24, + "probability": 0.1768 + }, + { + "start": 346.58, + "end": 350.42, + "probability": 0.7631 + }, + { + "start": 350.7, + "end": 352.16, + "probability": 0.8854 + }, + { + "start": 353.42, + "end": 354.24, + "probability": 0.9382 + }, + { + "start": 354.32, + "end": 355.2, + "probability": 0.5992 + }, + { + "start": 355.42, + "end": 358.2, + "probability": 0.8674 + }, + { + "start": 358.7, + "end": 360.46, + "probability": 0.8487 + }, + { + "start": 361.72, + "end": 362.36, + "probability": 0.6783 + }, + { + "start": 362.44, + "end": 363.28, + "probability": 0.4798 + }, + { + "start": 363.68, + "end": 364.82, + "probability": 0.8892 + }, + { + "start": 364.96, + "end": 366.85, + "probability": 0.8779 + }, + { + "start": 367.68, + "end": 368.7, + "probability": 0.8533 + }, + { + "start": 369.06, + "end": 370.68, + "probability": 0.974 + }, + { + "start": 371.08, + "end": 375.52, + "probability": 0.9856 + }, + { + "start": 376.54, + "end": 379.8, + "probability": 0.9939 + }, + { + "start": 379.8, + "end": 385.14, + "probability": 0.953 + }, + { + "start": 385.38, + "end": 386.36, + "probability": 0.4671 + }, + { + "start": 386.74, + "end": 392.0, + "probability": 0.9817 + }, + { + "start": 392.86, + "end": 395.4, + "probability": 0.9947 + }, + { + "start": 395.72, + "end": 398.48, + "probability": 0.9653 + }, + { + "start": 399.38, + "end": 399.86, + "probability": 0.6449 + }, + { + "start": 400.0, + "end": 400.9, + "probability": 0.4547 + }, + { + "start": 401.3, + "end": 404.16, + "probability": 0.789 + }, + { + "start": 404.16, + "end": 406.62, + "probability": 0.9766 + }, + { + "start": 407.5, + "end": 408.18, + "probability": 0.7999 + }, + { + "start": 408.3, + "end": 408.98, + "probability": 0.9276 + }, + { + "start": 409.16, + "end": 411.12, + "probability": 0.9378 + }, + { + "start": 412.1, + "end": 412.58, + "probability": 0.627 + }, + { + "start": 412.84, + "end": 413.64, + "probability": 0.488 + }, + { + "start": 413.96, + "end": 415.11, + "probability": 0.8836 + }, + { + "start": 415.34, + "end": 415.84, + "probability": 0.6118 + }, + { + "start": 415.86, + "end": 416.66, + "probability": 0.8837 + }, + { + "start": 417.08, + "end": 419.28, + "probability": 0.9583 + }, + { + "start": 420.22, + "end": 420.64, + "probability": 0.9529 + }, + { + "start": 421.14, + "end": 421.74, + "probability": 0.84 + }, + { + "start": 422.06, + "end": 422.98, + "probability": 0.7607 + }, + { + "start": 423.04, + "end": 425.99, + "probability": 0.9315 + }, + { + "start": 426.0, + "end": 429.28, + "probability": 0.9592 + }, + { + "start": 430.3, + "end": 432.4, + "probability": 0.9861 + }, + { + "start": 432.56, + "end": 436.24, + "probability": 0.9912 + }, + { + "start": 437.0, + "end": 440.22, + "probability": 0.9443 + }, + { + "start": 440.6, + "end": 443.0, + "probability": 0.9195 + }, + { + "start": 443.66, + "end": 446.52, + "probability": 0.9636 + }, + { + "start": 447.2, + "end": 450.16, + "probability": 0.9226 + }, + { + "start": 450.46, + "end": 452.18, + "probability": 0.9339 + }, + { + "start": 452.6, + "end": 453.76, + "probability": 0.3507 + }, + { + "start": 454.92, + "end": 458.94, + "probability": 0.9926 + }, + { + "start": 459.56, + "end": 459.74, + "probability": 0.8682 + }, + { + "start": 461.06, + "end": 462.78, + "probability": 0.8236 + }, + { + "start": 462.92, + "end": 464.18, + "probability": 0.7908 + }, + { + "start": 464.92, + "end": 467.76, + "probability": 0.6922 + }, + { + "start": 469.2, + "end": 470.28, + "probability": 0.7542 + }, + { + "start": 471.2, + "end": 475.5, + "probability": 0.9389 + }, + { + "start": 475.5, + "end": 478.2, + "probability": 0.9691 + }, + { + "start": 478.92, + "end": 481.78, + "probability": 0.998 + }, + { + "start": 481.78, + "end": 483.68, + "probability": 0.9973 + }, + { + "start": 484.38, + "end": 487.4, + "probability": 0.8971 + }, + { + "start": 488.02, + "end": 492.73, + "probability": 0.6795 + }, + { + "start": 493.6, + "end": 497.08, + "probability": 0.9011 + }, + { + "start": 497.6, + "end": 499.52, + "probability": 0.7243 + }, + { + "start": 500.0, + "end": 501.02, + "probability": 0.6933 + }, + { + "start": 501.38, + "end": 503.8, + "probability": 0.9478 + }, + { + "start": 504.42, + "end": 505.52, + "probability": 0.9347 + }, + { + "start": 506.16, + "end": 507.79, + "probability": 0.7998 + }, + { + "start": 508.0, + "end": 508.98, + "probability": 0.8975 + }, + { + "start": 509.14, + "end": 510.12, + "probability": 0.7964 + }, + { + "start": 510.26, + "end": 512.4, + "probability": 0.9675 + }, + { + "start": 512.88, + "end": 513.84, + "probability": 0.9137 + }, + { + "start": 513.9, + "end": 515.34, + "probability": 0.8527 + }, + { + "start": 516.26, + "end": 517.96, + "probability": 0.7449 + }, + { + "start": 518.06, + "end": 521.72, + "probability": 0.9764 + }, + { + "start": 521.84, + "end": 522.28, + "probability": 0.855 + }, + { + "start": 523.02, + "end": 526.52, + "probability": 0.907 + }, + { + "start": 527.28, + "end": 531.62, + "probability": 0.9963 + }, + { + "start": 531.76, + "end": 532.35, + "probability": 0.8305 + }, + { + "start": 532.64, + "end": 535.96, + "probability": 0.9922 + }, + { + "start": 536.0, + "end": 540.02, + "probability": 0.9883 + }, + { + "start": 540.38, + "end": 542.74, + "probability": 0.9351 + }, + { + "start": 543.14, + "end": 546.78, + "probability": 0.8893 + }, + { + "start": 546.82, + "end": 548.2, + "probability": 0.7725 + }, + { + "start": 548.4, + "end": 549.52, + "probability": 0.7558 + }, + { + "start": 549.7, + "end": 550.8, + "probability": 0.921 + }, + { + "start": 550.82, + "end": 553.02, + "probability": 0.7456 + }, + { + "start": 553.16, + "end": 553.34, + "probability": 0.5752 + }, + { + "start": 553.66, + "end": 555.68, + "probability": 0.7466 + }, + { + "start": 556.12, + "end": 557.94, + "probability": 0.607 + }, + { + "start": 558.04, + "end": 558.66, + "probability": 0.5605 + }, + { + "start": 558.84, + "end": 560.2, + "probability": 0.9415 + }, + { + "start": 565.9, + "end": 566.58, + "probability": 0.5128 + }, + { + "start": 566.66, + "end": 570.9, + "probability": 0.7887 + }, + { + "start": 571.54, + "end": 574.6, + "probability": 0.7937 + }, + { + "start": 576.04, + "end": 579.62, + "probability": 0.826 + }, + { + "start": 580.96, + "end": 585.9, + "probability": 0.9675 + }, + { + "start": 586.96, + "end": 587.94, + "probability": 0.6977 + }, + { + "start": 588.74, + "end": 591.92, + "probability": 0.94 + }, + { + "start": 592.64, + "end": 596.48, + "probability": 0.9951 + }, + { + "start": 596.48, + "end": 602.66, + "probability": 0.9631 + }, + { + "start": 602.68, + "end": 605.72, + "probability": 0.9274 + }, + { + "start": 605.8, + "end": 607.64, + "probability": 0.7061 + }, + { + "start": 608.24, + "end": 613.58, + "probability": 0.9695 + }, + { + "start": 614.12, + "end": 617.18, + "probability": 0.8279 + }, + { + "start": 617.72, + "end": 620.68, + "probability": 0.9803 + }, + { + "start": 621.12, + "end": 622.62, + "probability": 0.6564 + }, + { + "start": 622.7, + "end": 625.8, + "probability": 0.9946 + }, + { + "start": 625.8, + "end": 628.74, + "probability": 0.9778 + }, + { + "start": 629.3, + "end": 632.78, + "probability": 0.9922 + }, + { + "start": 633.1, + "end": 636.5, + "probability": 0.9983 + }, + { + "start": 636.64, + "end": 640.2, + "probability": 0.8857 + }, + { + "start": 640.24, + "end": 644.2, + "probability": 0.9888 + }, + { + "start": 644.42, + "end": 647.2, + "probability": 0.9287 + }, + { + "start": 647.34, + "end": 651.44, + "probability": 0.9648 + }, + { + "start": 651.64, + "end": 653.12, + "probability": 0.9583 + }, + { + "start": 653.28, + "end": 657.86, + "probability": 0.98 + }, + { + "start": 658.22, + "end": 659.6, + "probability": 0.9953 + }, + { + "start": 660.14, + "end": 662.18, + "probability": 0.6981 + }, + { + "start": 662.48, + "end": 664.08, + "probability": 0.9477 + }, + { + "start": 664.38, + "end": 665.46, + "probability": 0.9355 + }, + { + "start": 665.54, + "end": 665.7, + "probability": 0.7112 + }, + { + "start": 665.8, + "end": 667.88, + "probability": 0.584 + }, + { + "start": 667.9, + "end": 670.12, + "probability": 0.7973 + }, + { + "start": 670.74, + "end": 672.94, + "probability": 0.6985 + }, + { + "start": 679.72, + "end": 681.5, + "probability": 0.6608 + }, + { + "start": 682.26, + "end": 685.6, + "probability": 0.9807 + }, + { + "start": 685.96, + "end": 688.22, + "probability": 0.8723 + }, + { + "start": 689.04, + "end": 693.78, + "probability": 0.9949 + }, + { + "start": 693.78, + "end": 697.5, + "probability": 0.9526 + }, + { + "start": 698.4, + "end": 704.94, + "probability": 0.7161 + }, + { + "start": 705.86, + "end": 711.0, + "probability": 0.7742 + }, + { + "start": 711.88, + "end": 717.7, + "probability": 0.991 + }, + { + "start": 718.12, + "end": 723.04, + "probability": 0.9971 + }, + { + "start": 723.04, + "end": 728.64, + "probability": 0.9902 + }, + { + "start": 729.8, + "end": 734.86, + "probability": 0.8213 + }, + { + "start": 734.86, + "end": 739.54, + "probability": 0.8899 + }, + { + "start": 739.56, + "end": 745.6, + "probability": 0.7972 + }, + { + "start": 745.96, + "end": 746.18, + "probability": 0.5362 + }, + { + "start": 746.58, + "end": 748.38, + "probability": 0.5295 + }, + { + "start": 748.54, + "end": 750.26, + "probability": 0.5716 + }, + { + "start": 750.32, + "end": 750.94, + "probability": 0.5124 + }, + { + "start": 750.96, + "end": 752.2, + "probability": 0.9396 + }, + { + "start": 756.1, + "end": 757.94, + "probability": 0.6238 + }, + { + "start": 758.52, + "end": 760.8, + "probability": 0.4725 + }, + { + "start": 760.98, + "end": 762.62, + "probability": 0.8334 + }, + { + "start": 763.1, + "end": 764.34, + "probability": 0.9213 + }, + { + "start": 765.04, + "end": 767.68, + "probability": 0.6092 + }, + { + "start": 768.58, + "end": 771.9, + "probability": 0.6554 + }, + { + "start": 772.66, + "end": 777.28, + "probability": 0.7806 + }, + { + "start": 778.3, + "end": 783.86, + "probability": 0.8031 + }, + { + "start": 785.18, + "end": 789.64, + "probability": 0.9424 + }, + { + "start": 790.6, + "end": 794.38, + "probability": 0.8409 + }, + { + "start": 795.34, + "end": 804.38, + "probability": 0.801 + }, + { + "start": 805.02, + "end": 809.8, + "probability": 0.9275 + }, + { + "start": 810.04, + "end": 810.24, + "probability": 0.8134 + }, + { + "start": 811.0, + "end": 813.1, + "probability": 0.7737 + }, + { + "start": 813.54, + "end": 815.8, + "probability": 0.7758 + }, + { + "start": 815.92, + "end": 816.16, + "probability": 0.3956 + }, + { + "start": 816.24, + "end": 817.64, + "probability": 0.979 + }, + { + "start": 819.8, + "end": 821.28, + "probability": 0.819 + }, + { + "start": 821.8, + "end": 824.82, + "probability": 0.8784 + }, + { + "start": 825.64, + "end": 829.38, + "probability": 0.9948 + }, + { + "start": 829.98, + "end": 834.36, + "probability": 0.9961 + }, + { + "start": 834.36, + "end": 838.62, + "probability": 0.9944 + }, + { + "start": 839.16, + "end": 843.68, + "probability": 0.9775 + }, + { + "start": 844.4, + "end": 848.96, + "probability": 0.9822 + }, + { + "start": 848.96, + "end": 852.9, + "probability": 0.9922 + }, + { + "start": 853.34, + "end": 859.3, + "probability": 0.9873 + }, + { + "start": 860.02, + "end": 861.98, + "probability": 0.9377 + }, + { + "start": 862.1, + "end": 863.16, + "probability": 0.6952 + }, + { + "start": 863.52, + "end": 868.78, + "probability": 0.9988 + }, + { + "start": 869.4, + "end": 872.98, + "probability": 0.9893 + }, + { + "start": 872.98, + "end": 877.32, + "probability": 0.9925 + }, + { + "start": 878.8, + "end": 883.88, + "probability": 0.9962 + }, + { + "start": 883.88, + "end": 889.62, + "probability": 0.9852 + }, + { + "start": 889.62, + "end": 895.18, + "probability": 0.9982 + }, + { + "start": 895.72, + "end": 896.12, + "probability": 0.7726 + }, + { + "start": 896.3, + "end": 899.02, + "probability": 0.9356 + }, + { + "start": 899.18, + "end": 900.08, + "probability": 0.838 + }, + { + "start": 900.08, + "end": 904.64, + "probability": 0.9937 + }, + { + "start": 905.16, + "end": 909.66, + "probability": 0.9918 + }, + { + "start": 910.22, + "end": 910.86, + "probability": 0.4746 + }, + { + "start": 910.92, + "end": 917.2, + "probability": 0.9237 + }, + { + "start": 917.2, + "end": 926.08, + "probability": 0.9954 + }, + { + "start": 926.36, + "end": 926.78, + "probability": 0.6314 + }, + { + "start": 928.62, + "end": 930.55, + "probability": 0.9712 + }, + { + "start": 931.82, + "end": 933.7, + "probability": 0.9758 + }, + { + "start": 933.8, + "end": 935.94, + "probability": 0.7712 + }, + { + "start": 941.98, + "end": 944.24, + "probability": 0.763 + }, + { + "start": 945.3, + "end": 949.19, + "probability": 0.9958 + }, + { + "start": 949.48, + "end": 953.5, + "probability": 0.9772 + }, + { + "start": 953.62, + "end": 956.82, + "probability": 0.991 + }, + { + "start": 957.52, + "end": 961.12, + "probability": 0.9266 + }, + { + "start": 961.6, + "end": 966.14, + "probability": 0.9917 + }, + { + "start": 966.26, + "end": 969.42, + "probability": 0.9923 + }, + { + "start": 969.48, + "end": 970.78, + "probability": 0.6441 + }, + { + "start": 970.86, + "end": 972.96, + "probability": 0.9941 + }, + { + "start": 973.52, + "end": 976.54, + "probability": 0.9917 + }, + { + "start": 977.02, + "end": 980.16, + "probability": 0.9834 + }, + { + "start": 980.58, + "end": 984.56, + "probability": 0.9966 + }, + { + "start": 985.06, + "end": 985.6, + "probability": 0.3406 + }, + { + "start": 985.66, + "end": 990.2, + "probability": 0.9883 + }, + { + "start": 990.24, + "end": 993.04, + "probability": 0.999 + }, + { + "start": 993.62, + "end": 995.76, + "probability": 0.9812 + }, + { + "start": 995.94, + "end": 996.92, + "probability": 0.818 + }, + { + "start": 997.08, + "end": 998.94, + "probability": 0.916 + }, + { + "start": 999.4, + "end": 1004.12, + "probability": 0.9733 + }, + { + "start": 1004.46, + "end": 1005.88, + "probability": 0.9742 + }, + { + "start": 1006.22, + "end": 1006.94, + "probability": 0.949 + }, + { + "start": 1007.1, + "end": 1007.76, + "probability": 0.9541 + }, + { + "start": 1007.96, + "end": 1009.06, + "probability": 0.9219 + }, + { + "start": 1009.42, + "end": 1013.96, + "probability": 0.9915 + }, + { + "start": 1014.06, + "end": 1014.36, + "probability": 0.6843 + }, + { + "start": 1015.4, + "end": 1017.2, + "probability": 0.9536 + }, + { + "start": 1017.4, + "end": 1019.04, + "probability": 0.7893 + }, + { + "start": 1019.3, + "end": 1021.76, + "probability": 0.9454 + }, + { + "start": 1024.66, + "end": 1024.66, + "probability": 0.1422 + }, + { + "start": 1024.66, + "end": 1024.66, + "probability": 0.0857 + }, + { + "start": 1024.66, + "end": 1026.08, + "probability": 0.9013 + }, + { + "start": 1026.26, + "end": 1031.23, + "probability": 0.9686 + }, + { + "start": 1031.46, + "end": 1035.72, + "probability": 0.9569 + }, + { + "start": 1036.8, + "end": 1039.84, + "probability": 0.8704 + }, + { + "start": 1040.4, + "end": 1043.36, + "probability": 0.9953 + }, + { + "start": 1043.36, + "end": 1047.94, + "probability": 0.8739 + }, + { + "start": 1048.74, + "end": 1051.52, + "probability": 0.7872 + }, + { + "start": 1051.7, + "end": 1056.56, + "probability": 0.9462 + }, + { + "start": 1056.56, + "end": 1059.56, + "probability": 0.9962 + }, + { + "start": 1059.68, + "end": 1060.84, + "probability": 0.8376 + }, + { + "start": 1061.3, + "end": 1061.4, + "probability": 0.444 + }, + { + "start": 1061.54, + "end": 1063.03, + "probability": 0.9453 + }, + { + "start": 1063.64, + "end": 1066.06, + "probability": 0.9673 + }, + { + "start": 1066.12, + "end": 1067.1, + "probability": 0.4074 + }, + { + "start": 1067.7, + "end": 1071.14, + "probability": 0.8391 + }, + { + "start": 1071.22, + "end": 1072.04, + "probability": 0.6186 + }, + { + "start": 1072.1, + "end": 1075.04, + "probability": 0.9774 + }, + { + "start": 1075.34, + "end": 1080.36, + "probability": 0.9897 + }, + { + "start": 1080.36, + "end": 1085.38, + "probability": 0.9911 + }, + { + "start": 1085.84, + "end": 1090.42, + "probability": 0.9928 + }, + { + "start": 1090.74, + "end": 1093.96, + "probability": 0.9581 + }, + { + "start": 1094.02, + "end": 1094.26, + "probability": 0.7271 + }, + { + "start": 1094.68, + "end": 1096.3, + "probability": 0.7402 + }, + { + "start": 1096.5, + "end": 1098.04, + "probability": 0.7967 + }, + { + "start": 1098.62, + "end": 1100.32, + "probability": 0.8264 + }, + { + "start": 1107.12, + "end": 1109.82, + "probability": 0.7672 + }, + { + "start": 1111.16, + "end": 1114.98, + "probability": 0.9841 + }, + { + "start": 1114.98, + "end": 1117.7, + "probability": 0.9975 + }, + { + "start": 1118.7, + "end": 1122.4, + "probability": 0.9969 + }, + { + "start": 1124.32, + "end": 1124.68, + "probability": 0.6335 + }, + { + "start": 1124.8, + "end": 1125.44, + "probability": 0.7012 + }, + { + "start": 1125.66, + "end": 1127.1, + "probability": 0.9838 + }, + { + "start": 1127.18, + "end": 1127.86, + "probability": 0.4408 + }, + { + "start": 1128.56, + "end": 1132.82, + "probability": 0.8573 + }, + { + "start": 1134.22, + "end": 1138.12, + "probability": 0.8334 + }, + { + "start": 1138.86, + "end": 1139.84, + "probability": 0.7638 + }, + { + "start": 1140.72, + "end": 1142.47, + "probability": 0.939 + }, + { + "start": 1143.56, + "end": 1150.36, + "probability": 0.9231 + }, + { + "start": 1151.2, + "end": 1156.3, + "probability": 0.7461 + }, + { + "start": 1156.3, + "end": 1162.0, + "probability": 0.9932 + }, + { + "start": 1162.58, + "end": 1167.4, + "probability": 0.9448 + }, + { + "start": 1167.6, + "end": 1168.44, + "probability": 0.7873 + }, + { + "start": 1168.44, + "end": 1170.48, + "probability": 0.7432 + }, + { + "start": 1170.94, + "end": 1171.8, + "probability": 0.8699 + }, + { + "start": 1172.1, + "end": 1173.9, + "probability": 0.7868 + }, + { + "start": 1173.96, + "end": 1178.6, + "probability": 0.9966 + }, + { + "start": 1179.16, + "end": 1179.76, + "probability": 0.8198 + }, + { + "start": 1179.86, + "end": 1182.08, + "probability": 0.8649 + }, + { + "start": 1182.54, + "end": 1187.32, + "probability": 0.8159 + }, + { + "start": 1187.62, + "end": 1190.02, + "probability": 0.953 + }, + { + "start": 1190.56, + "end": 1192.9, + "probability": 0.917 + }, + { + "start": 1192.94, + "end": 1195.96, + "probability": 0.9797 + }, + { + "start": 1196.28, + "end": 1198.64, + "probability": 0.9917 + }, + { + "start": 1198.64, + "end": 1202.42, + "probability": 0.9989 + }, + { + "start": 1202.5, + "end": 1204.96, + "probability": 0.9754 + }, + { + "start": 1205.36, + "end": 1209.38, + "probability": 0.7056 + }, + { + "start": 1209.96, + "end": 1213.98, + "probability": 0.861 + }, + { + "start": 1213.98, + "end": 1217.98, + "probability": 0.998 + }, + { + "start": 1219.82, + "end": 1221.58, + "probability": 0.821 + }, + { + "start": 1221.72, + "end": 1223.72, + "probability": 0.7379 + }, + { + "start": 1223.88, + "end": 1225.8, + "probability": 0.8732 + }, + { + "start": 1228.14, + "end": 1229.0, + "probability": 0.7303 + }, + { + "start": 1229.44, + "end": 1233.68, + "probability": 0.9852 + }, + { + "start": 1234.5, + "end": 1236.18, + "probability": 0.6786 + }, + { + "start": 1236.32, + "end": 1239.88, + "probability": 0.9888 + }, + { + "start": 1240.38, + "end": 1244.26, + "probability": 0.9775 + }, + { + "start": 1244.4, + "end": 1249.3, + "probability": 0.9585 + }, + { + "start": 1250.26, + "end": 1253.3, + "probability": 0.931 + }, + { + "start": 1253.82, + "end": 1256.08, + "probability": 0.9596 + }, + { + "start": 1256.12, + "end": 1257.3, + "probability": 0.7918 + }, + { + "start": 1257.42, + "end": 1260.1, + "probability": 0.981 + }, + { + "start": 1260.74, + "end": 1264.48, + "probability": 0.9554 + }, + { + "start": 1264.7, + "end": 1265.74, + "probability": 0.8516 + }, + { + "start": 1267.66, + "end": 1269.42, + "probability": 0.9585 + }, + { + "start": 1269.5, + "end": 1272.22, + "probability": 0.9923 + }, + { + "start": 1272.28, + "end": 1274.3, + "probability": 0.8324 + }, + { + "start": 1274.42, + "end": 1275.82, + "probability": 0.8622 + }, + { + "start": 1275.92, + "end": 1277.92, + "probability": 0.8686 + }, + { + "start": 1278.0, + "end": 1280.44, + "probability": 0.7595 + }, + { + "start": 1280.82, + "end": 1281.6, + "probability": 0.8361 + }, + { + "start": 1281.68, + "end": 1286.14, + "probability": 0.991 + }, + { + "start": 1286.34, + "end": 1287.89, + "probability": 0.5591 + }, + { + "start": 1289.2, + "end": 1294.3, + "probability": 0.8746 + }, + { + "start": 1294.74, + "end": 1296.14, + "probability": 0.9484 + }, + { + "start": 1296.54, + "end": 1300.98, + "probability": 0.9654 + }, + { + "start": 1301.34, + "end": 1307.74, + "probability": 0.9847 + }, + { + "start": 1308.46, + "end": 1309.3, + "probability": 0.6093 + }, + { + "start": 1309.94, + "end": 1311.46, + "probability": 0.6663 + }, + { + "start": 1312.47, + "end": 1317.82, + "probability": 0.9832 + }, + { + "start": 1317.9, + "end": 1318.38, + "probability": 0.768 + }, + { + "start": 1318.9, + "end": 1321.14, + "probability": 0.7642 + }, + { + "start": 1321.56, + "end": 1323.26, + "probability": 0.9067 + }, + { + "start": 1323.44, + "end": 1323.78, + "probability": 0.4676 + }, + { + "start": 1324.02, + "end": 1325.0, + "probability": 0.9183 + }, + { + "start": 1328.72, + "end": 1329.76, + "probability": 0.7601 + }, + { + "start": 1330.62, + "end": 1335.42, + "probability": 0.9488 + }, + { + "start": 1336.22, + "end": 1337.88, + "probability": 0.9967 + }, + { + "start": 1338.42, + "end": 1341.84, + "probability": 0.9042 + }, + { + "start": 1341.92, + "end": 1345.78, + "probability": 0.9913 + }, + { + "start": 1346.54, + "end": 1350.98, + "probability": 0.9914 + }, + { + "start": 1351.86, + "end": 1353.66, + "probability": 0.9362 + }, + { + "start": 1354.5, + "end": 1358.46, + "probability": 0.8724 + }, + { + "start": 1358.54, + "end": 1359.68, + "probability": 0.8804 + }, + { + "start": 1360.98, + "end": 1362.74, + "probability": 0.9297 + }, + { + "start": 1363.46, + "end": 1367.3, + "probability": 0.8221 + }, + { + "start": 1369.3, + "end": 1372.44, + "probability": 0.9919 + }, + { + "start": 1372.44, + "end": 1376.24, + "probability": 0.9529 + }, + { + "start": 1377.04, + "end": 1380.02, + "probability": 0.9185 + }, + { + "start": 1380.92, + "end": 1383.64, + "probability": 0.8503 + }, + { + "start": 1384.26, + "end": 1385.8, + "probability": 0.9876 + }, + { + "start": 1386.58, + "end": 1389.92, + "probability": 0.9961 + }, + { + "start": 1390.4, + "end": 1391.76, + "probability": 0.9832 + }, + { + "start": 1392.14, + "end": 1394.6, + "probability": 0.9597 + }, + { + "start": 1395.22, + "end": 1397.0, + "probability": 0.9883 + }, + { + "start": 1397.4, + "end": 1399.7, + "probability": 0.9935 + }, + { + "start": 1399.7, + "end": 1403.44, + "probability": 0.7652 + }, + { + "start": 1403.52, + "end": 1403.74, + "probability": 0.6087 + }, + { + "start": 1404.54, + "end": 1406.1, + "probability": 0.7666 + }, + { + "start": 1406.24, + "end": 1407.84, + "probability": 0.6191 + }, + { + "start": 1408.42, + "end": 1410.2, + "probability": 0.7288 + }, + { + "start": 1411.22, + "end": 1412.34, + "probability": 0.7967 + }, + { + "start": 1412.48, + "end": 1415.62, + "probability": 0.9832 + }, + { + "start": 1416.32, + "end": 1420.88, + "probability": 0.6915 + }, + { + "start": 1420.88, + "end": 1424.82, + "probability": 0.9152 + }, + { + "start": 1425.42, + "end": 1428.72, + "probability": 0.8125 + }, + { + "start": 1429.42, + "end": 1433.05, + "probability": 0.9323 + }, + { + "start": 1433.82, + "end": 1436.7, + "probability": 0.9755 + }, + { + "start": 1436.88, + "end": 1437.28, + "probability": 0.8092 + }, + { + "start": 1437.34, + "end": 1438.52, + "probability": 0.6877 + }, + { + "start": 1438.92, + "end": 1439.28, + "probability": 0.525 + }, + { + "start": 1439.34, + "end": 1441.42, + "probability": 0.9963 + }, + { + "start": 1441.54, + "end": 1442.74, + "probability": 0.7824 + }, + { + "start": 1443.34, + "end": 1444.5, + "probability": 0.8293 + }, + { + "start": 1444.6, + "end": 1445.76, + "probability": 0.9783 + }, + { + "start": 1445.82, + "end": 1447.38, + "probability": 0.8837 + }, + { + "start": 1447.78, + "end": 1448.04, + "probability": 0.6373 + }, + { + "start": 1448.1, + "end": 1448.82, + "probability": 0.8186 + }, + { + "start": 1448.9, + "end": 1451.9, + "probability": 0.9661 + }, + { + "start": 1452.36, + "end": 1453.3, + "probability": 0.838 + }, + { + "start": 1453.34, + "end": 1455.52, + "probability": 0.9113 + }, + { + "start": 1455.98, + "end": 1457.76, + "probability": 0.9106 + }, + { + "start": 1458.12, + "end": 1459.42, + "probability": 0.8478 + }, + { + "start": 1459.52, + "end": 1463.04, + "probability": 0.9829 + }, + { + "start": 1463.8, + "end": 1464.42, + "probability": 0.7106 + }, + { + "start": 1464.74, + "end": 1469.08, + "probability": 0.8649 + }, + { + "start": 1469.1, + "end": 1469.82, + "probability": 0.6838 + }, + { + "start": 1469.92, + "end": 1472.08, + "probability": 0.9701 + }, + { + "start": 1472.12, + "end": 1473.34, + "probability": 0.9455 + }, + { + "start": 1473.88, + "end": 1475.24, + "probability": 0.9805 + }, + { + "start": 1475.34, + "end": 1475.9, + "probability": 0.6844 + }, + { + "start": 1476.04, + "end": 1477.64, + "probability": 0.5834 + }, + { + "start": 1477.8, + "end": 1478.16, + "probability": 0.731 + }, + { + "start": 1479.8, + "end": 1481.66, + "probability": 0.7415 + }, + { + "start": 1481.78, + "end": 1483.3, + "probability": 0.7997 + }, + { + "start": 1483.9, + "end": 1485.94, + "probability": 0.9473 + }, + { + "start": 1488.24, + "end": 1488.84, + "probability": 0.7176 + }, + { + "start": 1488.9, + "end": 1490.06, + "probability": 0.608 + }, + { + "start": 1490.22, + "end": 1493.72, + "probability": 0.973 + }, + { + "start": 1493.72, + "end": 1496.68, + "probability": 0.9941 + }, + { + "start": 1497.78, + "end": 1498.48, + "probability": 0.4809 + }, + { + "start": 1498.92, + "end": 1504.82, + "probability": 0.996 + }, + { + "start": 1505.9, + "end": 1506.9, + "probability": 0.6888 + }, + { + "start": 1506.96, + "end": 1508.94, + "probability": 0.8542 + }, + { + "start": 1509.42, + "end": 1513.5, + "probability": 0.9831 + }, + { + "start": 1513.96, + "end": 1519.42, + "probability": 0.9915 + }, + { + "start": 1520.2, + "end": 1524.38, + "probability": 0.9399 + }, + { + "start": 1524.92, + "end": 1530.12, + "probability": 0.9979 + }, + { + "start": 1530.44, + "end": 1532.26, + "probability": 0.7279 + }, + { + "start": 1532.68, + "end": 1534.22, + "probability": 0.999 + }, + { + "start": 1534.76, + "end": 1535.14, + "probability": 0.4501 + }, + { + "start": 1535.2, + "end": 1536.02, + "probability": 0.7456 + }, + { + "start": 1536.16, + "end": 1539.7, + "probability": 0.9963 + }, + { + "start": 1540.16, + "end": 1542.04, + "probability": 0.9884 + }, + { + "start": 1542.12, + "end": 1545.98, + "probability": 0.8502 + }, + { + "start": 1546.08, + "end": 1551.96, + "probability": 0.9587 + }, + { + "start": 1552.08, + "end": 1552.52, + "probability": 0.6589 + }, + { + "start": 1553.54, + "end": 1555.7, + "probability": 0.6646 + }, + { + "start": 1556.2, + "end": 1558.58, + "probability": 0.8781 + }, + { + "start": 1559.26, + "end": 1561.36, + "probability": 0.949 + }, + { + "start": 1569.78, + "end": 1572.62, + "probability": 0.7621 + }, + { + "start": 1573.72, + "end": 1576.74, + "probability": 0.9438 + }, + { + "start": 1577.56, + "end": 1584.92, + "probability": 0.944 + }, + { + "start": 1584.92, + "end": 1591.62, + "probability": 0.9951 + }, + { + "start": 1592.24, + "end": 1593.73, + "probability": 0.9463 + }, + { + "start": 1594.66, + "end": 1599.32, + "probability": 0.9814 + }, + { + "start": 1599.32, + "end": 1603.28, + "probability": 0.9961 + }, + { + "start": 1603.56, + "end": 1607.44, + "probability": 0.9416 + }, + { + "start": 1607.44, + "end": 1610.18, + "probability": 0.9819 + }, + { + "start": 1611.14, + "end": 1614.66, + "probability": 0.938 + }, + { + "start": 1615.72, + "end": 1619.08, + "probability": 0.9547 + }, + { + "start": 1620.3, + "end": 1622.64, + "probability": 0.991 + }, + { + "start": 1622.64, + "end": 1626.22, + "probability": 0.844 + }, + { + "start": 1627.32, + "end": 1633.9, + "probability": 0.9948 + }, + { + "start": 1634.94, + "end": 1638.58, + "probability": 0.7543 + }, + { + "start": 1639.18, + "end": 1645.04, + "probability": 0.9287 + }, + { + "start": 1645.1, + "end": 1647.56, + "probability": 0.9808 + }, + { + "start": 1647.92, + "end": 1649.58, + "probability": 0.9829 + }, + { + "start": 1650.34, + "end": 1653.04, + "probability": 0.8292 + }, + { + "start": 1653.78, + "end": 1654.48, + "probability": 0.9791 + }, + { + "start": 1654.62, + "end": 1656.78, + "probability": 0.9868 + }, + { + "start": 1656.86, + "end": 1657.39, + "probability": 0.9519 + }, + { + "start": 1658.68, + "end": 1660.58, + "probability": 0.9552 + }, + { + "start": 1660.78, + "end": 1665.42, + "probability": 0.9956 + }, + { + "start": 1665.86, + "end": 1668.82, + "probability": 0.9437 + }, + { + "start": 1668.88, + "end": 1669.08, + "probability": 0.7065 + }, + { + "start": 1670.76, + "end": 1672.9, + "probability": 0.917 + }, + { + "start": 1673.04, + "end": 1675.34, + "probability": 0.9701 + }, + { + "start": 1686.08, + "end": 1687.2, + "probability": 0.6594 + }, + { + "start": 1689.28, + "end": 1691.4, + "probability": 0.6841 + }, + { + "start": 1693.54, + "end": 1697.02, + "probability": 0.8603 + }, + { + "start": 1698.7, + "end": 1702.63, + "probability": 0.9954 + }, + { + "start": 1704.3, + "end": 1706.58, + "probability": 0.9478 + }, + { + "start": 1707.95, + "end": 1712.44, + "probability": 0.871 + }, + { + "start": 1713.08, + "end": 1718.22, + "probability": 0.9779 + }, + { + "start": 1719.52, + "end": 1725.4, + "probability": 0.9977 + }, + { + "start": 1726.58, + "end": 1730.52, + "probability": 0.9565 + }, + { + "start": 1732.66, + "end": 1733.16, + "probability": 0.6469 + }, + { + "start": 1733.9, + "end": 1736.7, + "probability": 0.7229 + }, + { + "start": 1737.26, + "end": 1739.34, + "probability": 0.8606 + }, + { + "start": 1751.22, + "end": 1751.48, + "probability": 0.3407 + }, + { + "start": 1751.48, + "end": 1751.84, + "probability": 0.542 + }, + { + "start": 1751.94, + "end": 1752.85, + "probability": 0.7115 + }, + { + "start": 1752.99, + "end": 1757.0, + "probability": 0.9484 + }, + { + "start": 1757.0, + "end": 1759.54, + "probability": 0.9849 + }, + { + "start": 1760.32, + "end": 1763.06, + "probability": 0.9631 + }, + { + "start": 1764.18, + "end": 1769.64, + "probability": 0.8098 + }, + { + "start": 1769.66, + "end": 1769.66, + "probability": 0.4378 + }, + { + "start": 1769.66, + "end": 1774.62, + "probability": 0.9915 + }, + { + "start": 1774.64, + "end": 1776.78, + "probability": 0.9911 + }, + { + "start": 1777.04, + "end": 1781.2, + "probability": 0.9514 + }, + { + "start": 1781.7, + "end": 1783.02, + "probability": 0.967 + }, + { + "start": 1783.8, + "end": 1785.78, + "probability": 0.9153 + }, + { + "start": 1786.36, + "end": 1787.03, + "probability": 0.6903 + }, + { + "start": 1787.36, + "end": 1790.8, + "probability": 0.9407 + }, + { + "start": 1790.9, + "end": 1793.1, + "probability": 0.9963 + }, + { + "start": 1793.72, + "end": 1794.85, + "probability": 0.9875 + }, + { + "start": 1795.7, + "end": 1797.94, + "probability": 0.9306 + }, + { + "start": 1798.02, + "end": 1799.9, + "probability": 0.8892 + }, + { + "start": 1800.4, + "end": 1802.64, + "probability": 0.9806 + }, + { + "start": 1803.0, + "end": 1805.6, + "probability": 0.9613 + }, + { + "start": 1805.74, + "end": 1810.16, + "probability": 0.8887 + }, + { + "start": 1810.58, + "end": 1814.32, + "probability": 0.991 + }, + { + "start": 1814.68, + "end": 1816.9, + "probability": 0.9025 + }, + { + "start": 1816.98, + "end": 1819.66, + "probability": 0.8409 + }, + { + "start": 1819.96, + "end": 1820.18, + "probability": 0.4175 + }, + { + "start": 1820.24, + "end": 1823.5, + "probability": 0.9328 + }, + { + "start": 1823.52, + "end": 1823.76, + "probability": 0.4462 + }, + { + "start": 1824.3, + "end": 1825.92, + "probability": 0.8457 + }, + { + "start": 1826.16, + "end": 1830.14, + "probability": 0.9731 + }, + { + "start": 1830.18, + "end": 1830.84, + "probability": 0.3809 + }, + { + "start": 1830.98, + "end": 1835.86, + "probability": 0.9805 + }, + { + "start": 1836.42, + "end": 1838.02, + "probability": 0.9905 + }, + { + "start": 1839.76, + "end": 1844.92, + "probability": 0.9622 + }, + { + "start": 1845.76, + "end": 1846.5, + "probability": 0.966 + }, + { + "start": 1847.16, + "end": 1852.14, + "probability": 0.9789 + }, + { + "start": 1853.22, + "end": 1855.0, + "probability": 0.993 + }, + { + "start": 1855.1, + "end": 1860.04, + "probability": 0.9338 + }, + { + "start": 1860.52, + "end": 1864.86, + "probability": 0.9727 + }, + { + "start": 1865.62, + "end": 1869.86, + "probability": 0.8415 + }, + { + "start": 1870.54, + "end": 1870.8, + "probability": 0.6982 + }, + { + "start": 1872.66, + "end": 1875.74, + "probability": 0.8568 + }, + { + "start": 1877.5, + "end": 1880.45, + "probability": 0.7638 + }, + { + "start": 1881.4, + "end": 1882.98, + "probability": 0.4871 + }, + { + "start": 1883.06, + "end": 1886.4, + "probability": 0.9326 + }, + { + "start": 1886.6, + "end": 1893.08, + "probability": 0.9916 + }, + { + "start": 1893.2, + "end": 1894.08, + "probability": 0.7518 + }, + { + "start": 1894.16, + "end": 1895.26, + "probability": 0.7979 + }, + { + "start": 1895.36, + "end": 1897.64, + "probability": 0.9118 + }, + { + "start": 1897.82, + "end": 1898.98, + "probability": 0.715 + }, + { + "start": 1899.78, + "end": 1903.24, + "probability": 0.962 + }, + { + "start": 1916.8, + "end": 1916.8, + "probability": 0.0398 + }, + { + "start": 1916.8, + "end": 1916.8, + "probability": 0.0588 + }, + { + "start": 1916.8, + "end": 1916.8, + "probability": 0.0217 + }, + { + "start": 1916.82, + "end": 1917.04, + "probability": 0.0902 + }, + { + "start": 1917.04, + "end": 1917.08, + "probability": 0.0943 + }, + { + "start": 1938.7, + "end": 1939.56, + "probability": 0.4803 + }, + { + "start": 1940.96, + "end": 1944.1, + "probability": 0.8567 + }, + { + "start": 1944.92, + "end": 1947.68, + "probability": 0.6662 + }, + { + "start": 1948.92, + "end": 1952.44, + "probability": 0.9256 + }, + { + "start": 1952.96, + "end": 1954.96, + "probability": 0.9097 + }, + { + "start": 1955.0, + "end": 1956.62, + "probability": 0.6647 + }, + { + "start": 1956.68, + "end": 1958.04, + "probability": 0.7457 + }, + { + "start": 1959.06, + "end": 1962.82, + "probability": 0.8623 + }, + { + "start": 1964.92, + "end": 1968.62, + "probability": 0.9496 + }, + { + "start": 1971.76, + "end": 1975.0, + "probability": 0.9714 + }, + { + "start": 1976.52, + "end": 1978.52, + "probability": 0.9245 + }, + { + "start": 1979.16, + "end": 1980.82, + "probability": 0.5128 + }, + { + "start": 1980.9, + "end": 1985.9, + "probability": 0.7171 + }, + { + "start": 1988.38, + "end": 1992.96, + "probability": 0.9635 + }, + { + "start": 1995.82, + "end": 1997.32, + "probability": 0.8743 + }, + { + "start": 1997.38, + "end": 1998.38, + "probability": 0.749 + }, + { + "start": 1998.46, + "end": 2001.16, + "probability": 0.9224 + }, + { + "start": 2003.72, + "end": 2004.52, + "probability": 0.7488 + }, + { + "start": 2005.62, + "end": 2006.68, + "probability": 0.9702 + }, + { + "start": 2008.86, + "end": 2012.02, + "probability": 0.9841 + }, + { + "start": 2012.36, + "end": 2013.42, + "probability": 0.8457 + }, + { + "start": 2013.96, + "end": 2018.72, + "probability": 0.8085 + }, + { + "start": 2020.06, + "end": 2023.16, + "probability": 0.9879 + }, + { + "start": 2024.1, + "end": 2027.22, + "probability": 0.931 + }, + { + "start": 2028.26, + "end": 2031.92, + "probability": 0.9073 + }, + { + "start": 2032.7, + "end": 2033.8, + "probability": 0.9584 + }, + { + "start": 2034.46, + "end": 2035.68, + "probability": 0.9885 + }, + { + "start": 2036.62, + "end": 2039.66, + "probability": 0.9476 + }, + { + "start": 2042.06, + "end": 2044.84, + "probability": 0.5392 + }, + { + "start": 2045.98, + "end": 2048.73, + "probability": 0.8594 + }, + { + "start": 2050.3, + "end": 2053.1, + "probability": 0.916 + }, + { + "start": 2053.68, + "end": 2057.28, + "probability": 0.9111 + }, + { + "start": 2057.28, + "end": 2060.96, + "probability": 0.9505 + }, + { + "start": 2062.52, + "end": 2067.62, + "probability": 0.9134 + }, + { + "start": 2068.98, + "end": 2076.7, + "probability": 0.9631 + }, + { + "start": 2077.74, + "end": 2083.38, + "probability": 0.9665 + }, + { + "start": 2084.04, + "end": 2086.28, + "probability": 0.502 + }, + { + "start": 2086.36, + "end": 2086.98, + "probability": 0.8041 + }, + { + "start": 2087.04, + "end": 2087.64, + "probability": 0.7289 + }, + { + "start": 2087.7, + "end": 2088.2, + "probability": 0.7168 + }, + { + "start": 2088.68, + "end": 2094.9, + "probability": 0.9787 + }, + { + "start": 2096.76, + "end": 2102.04, + "probability": 0.9482 + }, + { + "start": 2102.14, + "end": 2102.64, + "probability": 0.7383 + }, + { + "start": 2102.78, + "end": 2103.66, + "probability": 0.9477 + }, + { + "start": 2103.74, + "end": 2104.34, + "probability": 0.9778 + }, + { + "start": 2105.58, + "end": 2111.44, + "probability": 0.982 + }, + { + "start": 2112.9, + "end": 2115.26, + "probability": 0.9968 + }, + { + "start": 2115.78, + "end": 2121.08, + "probability": 0.9834 + }, + { + "start": 2122.02, + "end": 2124.68, + "probability": 0.8817 + }, + { + "start": 2125.04, + "end": 2130.32, + "probability": 0.9919 + }, + { + "start": 2131.04, + "end": 2133.04, + "probability": 0.9578 + }, + { + "start": 2134.0, + "end": 2139.18, + "probability": 0.9956 + }, + { + "start": 2139.18, + "end": 2146.0, + "probability": 0.9991 + }, + { + "start": 2147.72, + "end": 2151.68, + "probability": 0.7504 + }, + { + "start": 2152.52, + "end": 2155.54, + "probability": 0.8205 + }, + { + "start": 2155.84, + "end": 2156.96, + "probability": 0.8295 + }, + { + "start": 2157.86, + "end": 2161.46, + "probability": 0.9904 + }, + { + "start": 2162.6, + "end": 2166.36, + "probability": 0.9196 + }, + { + "start": 2167.96, + "end": 2169.0, + "probability": 0.9133 + }, + { + "start": 2169.2, + "end": 2174.94, + "probability": 0.8325 + }, + { + "start": 2175.62, + "end": 2176.66, + "probability": 0.8726 + }, + { + "start": 2178.26, + "end": 2181.06, + "probability": 0.9973 + }, + { + "start": 2181.1, + "end": 2183.0, + "probability": 0.8441 + }, + { + "start": 2183.58, + "end": 2187.36, + "probability": 0.9893 + }, + { + "start": 2188.1, + "end": 2188.68, + "probability": 0.6687 + }, + { + "start": 2189.84, + "end": 2193.54, + "probability": 0.9961 + }, + { + "start": 2193.84, + "end": 2198.89, + "probability": 0.9956 + }, + { + "start": 2199.44, + "end": 2204.64, + "probability": 0.9958 + }, + { + "start": 2205.08, + "end": 2211.72, + "probability": 0.9989 + }, + { + "start": 2213.32, + "end": 2215.32, + "probability": 0.9922 + }, + { + "start": 2215.56, + "end": 2222.3, + "probability": 0.9518 + }, + { + "start": 2223.8, + "end": 2225.86, + "probability": 0.8309 + }, + { + "start": 2226.82, + "end": 2230.34, + "probability": 0.9119 + }, + { + "start": 2231.14, + "end": 2236.4, + "probability": 0.9596 + }, + { + "start": 2236.94, + "end": 2240.98, + "probability": 0.991 + }, + { + "start": 2242.24, + "end": 2242.7, + "probability": 0.9496 + }, + { + "start": 2243.22, + "end": 2245.44, + "probability": 0.7271 + }, + { + "start": 2246.04, + "end": 2247.9, + "probability": 0.9268 + }, + { + "start": 2249.0, + "end": 2251.98, + "probability": 0.9068 + }, + { + "start": 2253.2, + "end": 2255.58, + "probability": 0.9848 + }, + { + "start": 2256.16, + "end": 2258.56, + "probability": 0.9728 + }, + { + "start": 2259.0, + "end": 2262.62, + "probability": 0.9902 + }, + { + "start": 2264.12, + "end": 2268.7, + "probability": 0.7938 + }, + { + "start": 2269.4, + "end": 2272.82, + "probability": 0.9671 + }, + { + "start": 2273.14, + "end": 2273.94, + "probability": 0.9622 + }, + { + "start": 2273.94, + "end": 2274.92, + "probability": 0.9716 + }, + { + "start": 2275.54, + "end": 2277.1, + "probability": 0.8745 + }, + { + "start": 2278.76, + "end": 2281.54, + "probability": 0.8303 + }, + { + "start": 2281.66, + "end": 2285.8, + "probability": 0.8536 + }, + { + "start": 2286.12, + "end": 2287.9, + "probability": 0.5163 + }, + { + "start": 2287.94, + "end": 2289.64, + "probability": 0.8394 + }, + { + "start": 2290.02, + "end": 2292.72, + "probability": 0.9462 + }, + { + "start": 2295.54, + "end": 2300.9, + "probability": 0.9717 + }, + { + "start": 2301.92, + "end": 2303.2, + "probability": 0.8112 + }, + { + "start": 2303.36, + "end": 2305.66, + "probability": 0.9776 + }, + { + "start": 2306.04, + "end": 2307.74, + "probability": 0.7691 + }, + { + "start": 2307.9, + "end": 2309.44, + "probability": 0.4695 + }, + { + "start": 2309.92, + "end": 2311.82, + "probability": 0.9785 + }, + { + "start": 2312.78, + "end": 2313.5, + "probability": 0.9164 + }, + { + "start": 2317.22, + "end": 2317.32, + "probability": 0.6174 + }, + { + "start": 2317.6, + "end": 2324.14, + "probability": 0.9901 + }, + { + "start": 2324.14, + "end": 2327.76, + "probability": 0.9982 + }, + { + "start": 2328.66, + "end": 2332.72, + "probability": 0.9565 + }, + { + "start": 2332.72, + "end": 2337.64, + "probability": 0.991 + }, + { + "start": 2341.4, + "end": 2342.86, + "probability": 0.7937 + }, + { + "start": 2342.96, + "end": 2344.86, + "probability": 0.9408 + }, + { + "start": 2345.06, + "end": 2345.7, + "probability": 0.51 + }, + { + "start": 2345.78, + "end": 2346.64, + "probability": 0.5399 + }, + { + "start": 2346.74, + "end": 2349.46, + "probability": 0.8403 + }, + { + "start": 2350.96, + "end": 2352.3, + "probability": 0.9745 + }, + { + "start": 2353.48, + "end": 2354.16, + "probability": 0.9606 + }, + { + "start": 2355.18, + "end": 2356.52, + "probability": 0.9148 + }, + { + "start": 2356.9, + "end": 2360.66, + "probability": 0.9891 + }, + { + "start": 2361.6, + "end": 2365.02, + "probability": 0.8669 + }, + { + "start": 2365.1, + "end": 2365.62, + "probability": 0.9502 + }, + { + "start": 2366.06, + "end": 2369.38, + "probability": 0.9832 + }, + { + "start": 2369.52, + "end": 2370.8, + "probability": 0.8908 + }, + { + "start": 2371.76, + "end": 2374.58, + "probability": 0.974 + }, + { + "start": 2375.9, + "end": 2378.18, + "probability": 0.8861 + }, + { + "start": 2378.28, + "end": 2378.94, + "probability": 0.7715 + }, + { + "start": 2379.2, + "end": 2382.78, + "probability": 0.6499 + }, + { + "start": 2383.44, + "end": 2386.78, + "probability": 0.9785 + }, + { + "start": 2386.78, + "end": 2390.94, + "probability": 0.9962 + }, + { + "start": 2391.74, + "end": 2397.28, + "probability": 0.9964 + }, + { + "start": 2397.28, + "end": 2402.38, + "probability": 0.9989 + }, + { + "start": 2403.16, + "end": 2405.01, + "probability": 0.9878 + }, + { + "start": 2405.9, + "end": 2409.66, + "probability": 0.9644 + }, + { + "start": 2410.76, + "end": 2414.32, + "probability": 0.916 + }, + { + "start": 2414.88, + "end": 2416.8, + "probability": 0.7866 + }, + { + "start": 2417.12, + "end": 2418.18, + "probability": 0.7368 + }, + { + "start": 2418.28, + "end": 2423.68, + "probability": 0.6499 + }, + { + "start": 2424.29, + "end": 2429.12, + "probability": 0.9839 + }, + { + "start": 2429.9, + "end": 2431.06, + "probability": 0.6035 + }, + { + "start": 2432.56, + "end": 2435.92, + "probability": 0.9821 + }, + { + "start": 2435.92, + "end": 2438.68, + "probability": 0.9072 + }, + { + "start": 2439.34, + "end": 2441.98, + "probability": 0.9824 + }, + { + "start": 2442.92, + "end": 2447.08, + "probability": 0.9787 + }, + { + "start": 2447.42, + "end": 2449.96, + "probability": 0.7925 + }, + { + "start": 2450.06, + "end": 2450.76, + "probability": 0.8781 + }, + { + "start": 2450.94, + "end": 2454.32, + "probability": 0.9214 + }, + { + "start": 2455.08, + "end": 2457.04, + "probability": 0.7397 + }, + { + "start": 2457.56, + "end": 2458.86, + "probability": 0.7539 + }, + { + "start": 2459.6, + "end": 2462.9, + "probability": 0.9796 + }, + { + "start": 2462.9, + "end": 2467.58, + "probability": 0.9803 + }, + { + "start": 2468.04, + "end": 2471.38, + "probability": 0.8234 + }, + { + "start": 2472.28, + "end": 2476.2, + "probability": 0.9759 + }, + { + "start": 2476.68, + "end": 2483.16, + "probability": 0.9852 + }, + { + "start": 2483.96, + "end": 2488.94, + "probability": 0.9828 + }, + { + "start": 2489.6, + "end": 2492.84, + "probability": 0.6662 + }, + { + "start": 2494.3, + "end": 2494.74, + "probability": 0.7263 + }, + { + "start": 2496.72, + "end": 2498.42, + "probability": 0.9946 + }, + { + "start": 2499.0, + "end": 2500.0, + "probability": 0.8517 + }, + { + "start": 2500.4, + "end": 2501.74, + "probability": 0.9865 + }, + { + "start": 2502.2, + "end": 2504.64, + "probability": 0.9709 + }, + { + "start": 2505.1, + "end": 2506.62, + "probability": 0.7604 + }, + { + "start": 2507.26, + "end": 2508.4, + "probability": 0.7846 + }, + { + "start": 2508.96, + "end": 2509.68, + "probability": 0.9199 + }, + { + "start": 2510.2, + "end": 2511.76, + "probability": 0.9851 + }, + { + "start": 2513.22, + "end": 2515.72, + "probability": 0.9958 + }, + { + "start": 2515.84, + "end": 2517.58, + "probability": 0.9943 + }, + { + "start": 2517.68, + "end": 2518.46, + "probability": 0.8221 + }, + { + "start": 2538.6, + "end": 2539.72, + "probability": 0.7993 + }, + { + "start": 2542.0, + "end": 2543.84, + "probability": 0.9584 + }, + { + "start": 2545.62, + "end": 2547.48, + "probability": 0.8732 + }, + { + "start": 2548.0, + "end": 2549.08, + "probability": 0.7996 + }, + { + "start": 2551.58, + "end": 2554.24, + "probability": 0.7896 + }, + { + "start": 2555.72, + "end": 2557.92, + "probability": 0.9142 + }, + { + "start": 2559.04, + "end": 2561.4, + "probability": 0.9717 + }, + { + "start": 2562.3, + "end": 2563.08, + "probability": 0.4585 + }, + { + "start": 2565.1, + "end": 2567.16, + "probability": 0.9678 + }, + { + "start": 2568.64, + "end": 2569.1, + "probability": 0.9855 + }, + { + "start": 2569.94, + "end": 2574.16, + "probability": 0.9172 + }, + { + "start": 2575.76, + "end": 2576.84, + "probability": 0.8705 + }, + { + "start": 2577.94, + "end": 2581.2, + "probability": 0.9355 + }, + { + "start": 2583.0, + "end": 2585.28, + "probability": 0.9686 + }, + { + "start": 2586.72, + "end": 2588.88, + "probability": 0.9852 + }, + { + "start": 2590.92, + "end": 2592.76, + "probability": 0.9605 + }, + { + "start": 2595.0, + "end": 2596.32, + "probability": 0.9185 + }, + { + "start": 2597.16, + "end": 2600.72, + "probability": 0.901 + }, + { + "start": 2602.06, + "end": 2606.35, + "probability": 0.8791 + }, + { + "start": 2607.0, + "end": 2608.6, + "probability": 0.9272 + }, + { + "start": 2609.42, + "end": 2611.2, + "probability": 0.9927 + }, + { + "start": 2612.8, + "end": 2613.42, + "probability": 0.6744 + }, + { + "start": 2615.46, + "end": 2620.68, + "probability": 0.9834 + }, + { + "start": 2622.14, + "end": 2627.28, + "probability": 0.9927 + }, + { + "start": 2629.06, + "end": 2632.48, + "probability": 0.9816 + }, + { + "start": 2635.02, + "end": 2638.54, + "probability": 0.9914 + }, + { + "start": 2640.5, + "end": 2641.54, + "probability": 0.8649 + }, + { + "start": 2644.6, + "end": 2647.36, + "probability": 0.9938 + }, + { + "start": 2648.74, + "end": 2650.82, + "probability": 0.5669 + }, + { + "start": 2651.56, + "end": 2652.6, + "probability": 0.52 + }, + { + "start": 2653.26, + "end": 2654.0, + "probability": 0.5795 + }, + { + "start": 2655.76, + "end": 2657.62, + "probability": 0.97 + }, + { + "start": 2657.7, + "end": 2658.78, + "probability": 0.7618 + }, + { + "start": 2658.9, + "end": 2660.79, + "probability": 0.752 + }, + { + "start": 2662.38, + "end": 2664.91, + "probability": 0.99 + }, + { + "start": 2666.5, + "end": 2668.36, + "probability": 0.6447 + }, + { + "start": 2668.42, + "end": 2670.22, + "probability": 0.9993 + }, + { + "start": 2671.38, + "end": 2673.42, + "probability": 0.931 + }, + { + "start": 2673.6, + "end": 2677.0, + "probability": 0.9666 + }, + { + "start": 2678.84, + "end": 2682.6, + "probability": 0.9977 + }, + { + "start": 2684.82, + "end": 2687.0, + "probability": 0.9767 + }, + { + "start": 2690.16, + "end": 2693.0, + "probability": 0.7996 + }, + { + "start": 2693.16, + "end": 2693.79, + "probability": 0.9331 + }, + { + "start": 2694.1, + "end": 2701.74, + "probability": 0.9475 + }, + { + "start": 2702.66, + "end": 2710.5, + "probability": 0.9951 + }, + { + "start": 2712.26, + "end": 2717.76, + "probability": 0.9548 + }, + { + "start": 2719.36, + "end": 2723.48, + "probability": 0.9613 + }, + { + "start": 2723.48, + "end": 2727.56, + "probability": 0.9989 + }, + { + "start": 2728.46, + "end": 2730.3, + "probability": 0.8331 + }, + { + "start": 2731.36, + "end": 2731.84, + "probability": 0.8439 + }, + { + "start": 2731.92, + "end": 2732.36, + "probability": 0.8998 + }, + { + "start": 2732.4, + "end": 2735.52, + "probability": 0.9723 + }, + { + "start": 2735.82, + "end": 2736.68, + "probability": 0.8902 + }, + { + "start": 2737.86, + "end": 2739.74, + "probability": 0.9887 + }, + { + "start": 2740.42, + "end": 2741.18, + "probability": 0.882 + }, + { + "start": 2742.32, + "end": 2743.28, + "probability": 0.8167 + }, + { + "start": 2744.12, + "end": 2746.9, + "probability": 0.9458 + }, + { + "start": 2748.7, + "end": 2749.7, + "probability": 0.9439 + }, + { + "start": 2750.26, + "end": 2753.88, + "probability": 0.9957 + }, + { + "start": 2753.88, + "end": 2756.56, + "probability": 0.9985 + }, + { + "start": 2758.46, + "end": 2762.08, + "probability": 0.9856 + }, + { + "start": 2763.56, + "end": 2769.0, + "probability": 0.9855 + }, + { + "start": 2769.94, + "end": 2772.7, + "probability": 0.9951 + }, + { + "start": 2772.7, + "end": 2774.38, + "probability": 0.9346 + }, + { + "start": 2774.5, + "end": 2778.06, + "probability": 0.9836 + }, + { + "start": 2778.06, + "end": 2782.32, + "probability": 0.9794 + }, + { + "start": 2782.36, + "end": 2786.0, + "probability": 0.9738 + }, + { + "start": 2786.84, + "end": 2791.32, + "probability": 0.9969 + }, + { + "start": 2792.8, + "end": 2798.96, + "probability": 0.998 + }, + { + "start": 2799.12, + "end": 2799.76, + "probability": 0.5835 + }, + { + "start": 2801.66, + "end": 2803.54, + "probability": 0.999 + }, + { + "start": 2805.28, + "end": 2806.06, + "probability": 0.9011 + }, + { + "start": 2808.84, + "end": 2811.74, + "probability": 0.9944 + }, + { + "start": 2812.86, + "end": 2814.22, + "probability": 0.843 + }, + { + "start": 2814.86, + "end": 2820.22, + "probability": 0.9621 + }, + { + "start": 2821.74, + "end": 2825.36, + "probability": 0.9961 + }, + { + "start": 2826.86, + "end": 2828.67, + "probability": 0.9971 + }, + { + "start": 2830.02, + "end": 2830.9, + "probability": 0.7806 + }, + { + "start": 2832.3, + "end": 2832.96, + "probability": 0.9385 + }, + { + "start": 2833.96, + "end": 2837.36, + "probability": 0.9533 + }, + { + "start": 2838.44, + "end": 2843.46, + "probability": 0.7922 + }, + { + "start": 2844.58, + "end": 2845.12, + "probability": 0.9508 + }, + { + "start": 2846.14, + "end": 2849.4, + "probability": 0.9979 + }, + { + "start": 2850.36, + "end": 2851.82, + "probability": 0.9326 + }, + { + "start": 2852.64, + "end": 2855.34, + "probability": 0.7635 + }, + { + "start": 2855.98, + "end": 2859.12, + "probability": 0.8754 + }, + { + "start": 2860.2, + "end": 2862.58, + "probability": 0.9195 + }, + { + "start": 2863.82, + "end": 2868.58, + "probability": 0.9493 + }, + { + "start": 2869.48, + "end": 2872.76, + "probability": 0.9036 + }, + { + "start": 2873.68, + "end": 2874.8, + "probability": 0.8726 + }, + { + "start": 2875.64, + "end": 2877.46, + "probability": 0.9802 + }, + { + "start": 2878.74, + "end": 2880.37, + "probability": 0.9868 + }, + { + "start": 2883.64, + "end": 2886.34, + "probability": 0.9844 + }, + { + "start": 2887.34, + "end": 2892.56, + "probability": 0.9794 + }, + { + "start": 2892.68, + "end": 2893.28, + "probability": 0.7629 + }, + { + "start": 2895.56, + "end": 2901.16, + "probability": 0.9888 + }, + { + "start": 2902.98, + "end": 2904.72, + "probability": 0.7685 + }, + { + "start": 2905.8, + "end": 2907.64, + "probability": 0.8629 + }, + { + "start": 2909.02, + "end": 2911.22, + "probability": 0.9884 + }, + { + "start": 2911.92, + "end": 2913.6, + "probability": 0.9658 + }, + { + "start": 2915.14, + "end": 2918.32, + "probability": 0.9782 + }, + { + "start": 2918.5, + "end": 2921.5, + "probability": 0.9585 + }, + { + "start": 2922.92, + "end": 2926.82, + "probability": 0.9009 + }, + { + "start": 2927.98, + "end": 2929.45, + "probability": 0.9501 + }, + { + "start": 2930.74, + "end": 2931.56, + "probability": 0.6673 + }, + { + "start": 2933.16, + "end": 2934.42, + "probability": 0.9806 + }, + { + "start": 2937.44, + "end": 2940.16, + "probability": 0.9472 + }, + { + "start": 2941.8, + "end": 2945.82, + "probability": 0.9746 + }, + { + "start": 2947.06, + "end": 2948.64, + "probability": 0.5687 + }, + { + "start": 2949.42, + "end": 2955.04, + "probability": 0.9704 + }, + { + "start": 2956.16, + "end": 2961.24, + "probability": 0.9956 + }, + { + "start": 2961.58, + "end": 2962.12, + "probability": 0.9446 + }, + { + "start": 2962.24, + "end": 2970.04, + "probability": 0.9302 + }, + { + "start": 2970.96, + "end": 2972.58, + "probability": 0.9994 + }, + { + "start": 2973.56, + "end": 2976.88, + "probability": 0.9978 + }, + { + "start": 2976.96, + "end": 2977.78, + "probability": 0.9648 + }, + { + "start": 2978.72, + "end": 2980.08, + "probability": 0.9396 + }, + { + "start": 2980.74, + "end": 2981.76, + "probability": 0.8094 + }, + { + "start": 2982.7, + "end": 2984.94, + "probability": 0.9806 + }, + { + "start": 2985.78, + "end": 2987.34, + "probability": 0.9256 + }, + { + "start": 2987.46, + "end": 2992.4, + "probability": 0.8872 + }, + { + "start": 2993.52, + "end": 2997.62, + "probability": 0.9717 + }, + { + "start": 2997.66, + "end": 2998.4, + "probability": 0.729 + }, + { + "start": 2998.56, + "end": 2999.28, + "probability": 0.9297 + }, + { + "start": 2999.42, + "end": 3000.48, + "probability": 0.9797 + }, + { + "start": 3000.58, + "end": 3001.02, + "probability": 0.7915 + }, + { + "start": 3002.2, + "end": 3003.24, + "probability": 0.7968 + }, + { + "start": 3004.3, + "end": 3006.7, + "probability": 0.9144 + }, + { + "start": 3007.58, + "end": 3010.38, + "probability": 0.8785 + }, + { + "start": 3011.16, + "end": 3015.34, + "probability": 0.9622 + }, + { + "start": 3016.24, + "end": 3019.56, + "probability": 0.9792 + }, + { + "start": 3020.75, + "end": 3022.92, + "probability": 0.9978 + }, + { + "start": 3023.98, + "end": 3028.42, + "probability": 0.9779 + }, + { + "start": 3029.4, + "end": 3031.42, + "probability": 0.5754 + }, + { + "start": 3031.92, + "end": 3034.99, + "probability": 0.9966 + }, + { + "start": 3036.34, + "end": 3040.66, + "probability": 0.9966 + }, + { + "start": 3042.8, + "end": 3048.44, + "probability": 0.9901 + }, + { + "start": 3049.82, + "end": 3055.71, + "probability": 0.988 + }, + { + "start": 3057.64, + "end": 3058.44, + "probability": 0.9628 + }, + { + "start": 3059.26, + "end": 3060.77, + "probability": 0.9954 + }, + { + "start": 3062.12, + "end": 3064.66, + "probability": 0.9166 + }, + { + "start": 3066.06, + "end": 3068.78, + "probability": 0.9912 + }, + { + "start": 3072.0, + "end": 3073.62, + "probability": 0.9424 + }, + { + "start": 3075.0, + "end": 3076.32, + "probability": 0.9007 + }, + { + "start": 3077.52, + "end": 3080.52, + "probability": 0.9342 + }, + { + "start": 3081.54, + "end": 3086.48, + "probability": 0.9151 + }, + { + "start": 3087.02, + "end": 3089.7, + "probability": 0.9279 + }, + { + "start": 3091.14, + "end": 3091.92, + "probability": 0.8667 + }, + { + "start": 3093.76, + "end": 3095.34, + "probability": 0.7454 + }, + { + "start": 3096.8, + "end": 3098.15, + "probability": 0.8917 + }, + { + "start": 3100.16, + "end": 3101.26, + "probability": 0.4651 + }, + { + "start": 3102.06, + "end": 3104.04, + "probability": 0.9602 + }, + { + "start": 3104.82, + "end": 3105.5, + "probability": 0.751 + }, + { + "start": 3106.36, + "end": 3109.72, + "probability": 0.999 + }, + { + "start": 3110.92, + "end": 3113.48, + "probability": 0.9618 + }, + { + "start": 3114.32, + "end": 3118.18, + "probability": 0.9926 + }, + { + "start": 3121.98, + "end": 3123.62, + "probability": 0.9803 + }, + { + "start": 3124.48, + "end": 3129.68, + "probability": 0.9103 + }, + { + "start": 3130.78, + "end": 3131.78, + "probability": 0.8613 + }, + { + "start": 3132.8, + "end": 3133.64, + "probability": 0.5881 + }, + { + "start": 3134.76, + "end": 3135.2, + "probability": 0.5044 + }, + { + "start": 3136.54, + "end": 3139.78, + "probability": 0.6456 + }, + { + "start": 3140.3, + "end": 3144.38, + "probability": 0.9983 + }, + { + "start": 3145.36, + "end": 3148.28, + "probability": 0.998 + }, + { + "start": 3150.74, + "end": 3151.24, + "probability": 0.8781 + }, + { + "start": 3152.76, + "end": 3156.17, + "probability": 0.9308 + }, + { + "start": 3157.62, + "end": 3161.5, + "probability": 0.9894 + }, + { + "start": 3163.4, + "end": 3166.62, + "probability": 0.9128 + }, + { + "start": 3166.74, + "end": 3169.28, + "probability": 0.9696 + }, + { + "start": 3169.38, + "end": 3171.12, + "probability": 0.9349 + }, + { + "start": 3171.26, + "end": 3172.08, + "probability": 0.5663 + }, + { + "start": 3186.42, + "end": 3188.96, + "probability": 0.9526 + }, + { + "start": 3189.44, + "end": 3191.16, + "probability": 0.9849 + }, + { + "start": 3191.94, + "end": 3193.24, + "probability": 0.9565 + }, + { + "start": 3193.88, + "end": 3197.94, + "probability": 0.9937 + }, + { + "start": 3198.68, + "end": 3199.59, + "probability": 0.9795 + }, + { + "start": 3200.8, + "end": 3202.9, + "probability": 0.9667 + }, + { + "start": 3203.36, + "end": 3206.0, + "probability": 0.9036 + }, + { + "start": 3206.1, + "end": 3208.82, + "probability": 0.9608 + }, + { + "start": 3208.9, + "end": 3210.34, + "probability": 0.8123 + }, + { + "start": 3210.8, + "end": 3212.48, + "probability": 0.6213 + }, + { + "start": 3214.64, + "end": 3215.37, + "probability": 0.8877 + }, + { + "start": 3216.56, + "end": 3226.08, + "probability": 0.9535 + }, + { + "start": 3226.94, + "end": 3232.46, + "probability": 0.7506 + }, + { + "start": 3233.14, + "end": 3234.32, + "probability": 0.9904 + }, + { + "start": 3235.42, + "end": 3240.66, + "probability": 0.9764 + }, + { + "start": 3241.16, + "end": 3242.68, + "probability": 0.8695 + }, + { + "start": 3243.66, + "end": 3251.44, + "probability": 0.9351 + }, + { + "start": 3252.42, + "end": 3256.0, + "probability": 0.9935 + }, + { + "start": 3256.0, + "end": 3261.96, + "probability": 0.9973 + }, + { + "start": 3263.2, + "end": 3268.36, + "probability": 0.9948 + }, + { + "start": 3269.66, + "end": 3275.36, + "probability": 0.9941 + }, + { + "start": 3277.26, + "end": 3281.18, + "probability": 0.9619 + }, + { + "start": 3282.64, + "end": 3286.4, + "probability": 0.9306 + }, + { + "start": 3286.58, + "end": 3287.46, + "probability": 0.7357 + }, + { + "start": 3287.78, + "end": 3290.38, + "probability": 0.9927 + }, + { + "start": 3290.94, + "end": 3296.7, + "probability": 0.9937 + }, + { + "start": 3297.26, + "end": 3299.72, + "probability": 0.9965 + }, + { + "start": 3300.6, + "end": 3305.72, + "probability": 0.9609 + }, + { + "start": 3305.72, + "end": 3311.78, + "probability": 0.9911 + }, + { + "start": 3313.24, + "end": 3314.56, + "probability": 0.7497 + }, + { + "start": 3316.04, + "end": 3320.1, + "probability": 0.9874 + }, + { + "start": 3320.9, + "end": 3324.72, + "probability": 0.9347 + }, + { + "start": 3325.62, + "end": 3328.17, + "probability": 0.9401 + }, + { + "start": 3329.82, + "end": 3330.12, + "probability": 0.9546 + }, + { + "start": 3330.12, + "end": 3335.14, + "probability": 0.9462 + }, + { + "start": 3335.14, + "end": 3340.0, + "probability": 0.996 + }, + { + "start": 3340.98, + "end": 3343.22, + "probability": 0.9915 + }, + { + "start": 3343.44, + "end": 3345.34, + "probability": 0.995 + }, + { + "start": 3345.88, + "end": 3351.44, + "probability": 0.9824 + }, + { + "start": 3352.66, + "end": 3352.96, + "probability": 0.7505 + }, + { + "start": 3353.06, + "end": 3358.58, + "probability": 0.9657 + }, + { + "start": 3359.1, + "end": 3360.54, + "probability": 0.8337 + }, + { + "start": 3362.0, + "end": 3365.44, + "probability": 0.9977 + }, + { + "start": 3366.74, + "end": 3367.49, + "probability": 0.9675 + }, + { + "start": 3368.74, + "end": 3370.11, + "probability": 0.9785 + }, + { + "start": 3371.02, + "end": 3373.94, + "probability": 0.3438 + }, + { + "start": 3374.84, + "end": 3375.86, + "probability": 0.9628 + }, + { + "start": 3376.58, + "end": 3379.53, + "probability": 0.9883 + }, + { + "start": 3380.62, + "end": 3384.26, + "probability": 0.9982 + }, + { + "start": 3384.86, + "end": 3386.1, + "probability": 0.9967 + }, + { + "start": 3387.34, + "end": 3388.62, + "probability": 0.6746 + }, + { + "start": 3388.8, + "end": 3393.08, + "probability": 0.9974 + }, + { + "start": 3394.66, + "end": 3397.9, + "probability": 0.9821 + }, + { + "start": 3399.52, + "end": 3401.49, + "probability": 0.9697 + }, + { + "start": 3402.24, + "end": 3406.48, + "probability": 0.951 + }, + { + "start": 3407.16, + "end": 3410.3, + "probability": 0.9834 + }, + { + "start": 3410.3, + "end": 3413.9, + "probability": 0.8448 + }, + { + "start": 3415.14, + "end": 3419.36, + "probability": 0.9928 + }, + { + "start": 3420.78, + "end": 3423.2, + "probability": 0.9106 + }, + { + "start": 3424.04, + "end": 3425.08, + "probability": 0.8858 + }, + { + "start": 3425.68, + "end": 3428.08, + "probability": 0.981 + }, + { + "start": 3428.94, + "end": 3433.9, + "probability": 0.9771 + }, + { + "start": 3434.9, + "end": 3436.2, + "probability": 0.7306 + }, + { + "start": 3436.52, + "end": 3442.5, + "probability": 0.9017 + }, + { + "start": 3444.02, + "end": 3446.62, + "probability": 0.9848 + }, + { + "start": 3448.06, + "end": 3452.04, + "probability": 0.9885 + }, + { + "start": 3453.24, + "end": 3454.18, + "probability": 0.9297 + }, + { + "start": 3455.04, + "end": 3457.96, + "probability": 0.9976 + }, + { + "start": 3459.2, + "end": 3461.12, + "probability": 0.8848 + }, + { + "start": 3461.2, + "end": 3463.42, + "probability": 0.9021 + }, + { + "start": 3464.22, + "end": 3467.74, + "probability": 0.9902 + }, + { + "start": 3467.92, + "end": 3470.22, + "probability": 0.9956 + }, + { + "start": 3471.0, + "end": 3472.44, + "probability": 0.8928 + }, + { + "start": 3473.08, + "end": 3476.14, + "probability": 0.7498 + }, + { + "start": 3477.06, + "end": 3484.06, + "probability": 0.9874 + }, + { + "start": 3485.48, + "end": 3490.78, + "probability": 0.9967 + }, + { + "start": 3490.78, + "end": 3496.56, + "probability": 0.9478 + }, + { + "start": 3499.06, + "end": 3503.34, + "probability": 0.9811 + }, + { + "start": 3504.54, + "end": 3508.54, + "probability": 0.9585 + }, + { + "start": 3509.38, + "end": 3509.98, + "probability": 0.7603 + }, + { + "start": 3511.28, + "end": 3515.9, + "probability": 0.949 + }, + { + "start": 3516.58, + "end": 3518.28, + "probability": 0.7354 + }, + { + "start": 3519.54, + "end": 3523.76, + "probability": 0.957 + }, + { + "start": 3526.36, + "end": 3527.28, + "probability": 0.9176 + }, + { + "start": 3528.96, + "end": 3534.04, + "probability": 0.8867 + }, + { + "start": 3534.06, + "end": 3537.7, + "probability": 0.6758 + }, + { + "start": 3538.9, + "end": 3542.48, + "probability": 0.8652 + }, + { + "start": 3543.96, + "end": 3546.44, + "probability": 0.9952 + }, + { + "start": 3547.66, + "end": 3548.74, + "probability": 0.9434 + }, + { + "start": 3549.36, + "end": 3551.76, + "probability": 0.7445 + }, + { + "start": 3552.02, + "end": 3554.16, + "probability": 0.8643 + }, + { + "start": 3554.98, + "end": 3556.96, + "probability": 0.9938 + }, + { + "start": 3557.5, + "end": 3558.66, + "probability": 0.814 + }, + { + "start": 3559.2, + "end": 3561.8, + "probability": 0.9912 + }, + { + "start": 3562.42, + "end": 3564.12, + "probability": 0.9976 + }, + { + "start": 3564.16, + "end": 3565.92, + "probability": 0.715 + }, + { + "start": 3566.1, + "end": 3566.94, + "probability": 0.8946 + }, + { + "start": 3567.06, + "end": 3569.1, + "probability": 0.8794 + }, + { + "start": 3569.22, + "end": 3571.54, + "probability": 0.9418 + }, + { + "start": 3572.58, + "end": 3575.86, + "probability": 0.8747 + }, + { + "start": 3575.86, + "end": 3578.7, + "probability": 0.9741 + }, + { + "start": 3579.18, + "end": 3581.66, + "probability": 0.9744 + }, + { + "start": 3581.7, + "end": 3584.38, + "probability": 0.9727 + }, + { + "start": 3585.32, + "end": 3587.76, + "probability": 0.9909 + }, + { + "start": 3588.42, + "end": 3590.56, + "probability": 0.8501 + }, + { + "start": 3591.16, + "end": 3592.28, + "probability": 0.7541 + }, + { + "start": 3592.4, + "end": 3593.8, + "probability": 0.9526 + }, + { + "start": 3594.1, + "end": 3597.1, + "probability": 0.9854 + }, + { + "start": 3597.96, + "end": 3599.72, + "probability": 0.8569 + }, + { + "start": 3600.58, + "end": 3602.0, + "probability": 0.9211 + }, + { + "start": 3603.24, + "end": 3604.68, + "probability": 0.8306 + }, + { + "start": 3605.52, + "end": 3609.16, + "probability": 0.9956 + }, + { + "start": 3610.5, + "end": 3613.14, + "probability": 0.9971 + }, + { + "start": 3613.24, + "end": 3615.68, + "probability": 0.8514 + }, + { + "start": 3616.6, + "end": 3619.5, + "probability": 0.9946 + }, + { + "start": 3620.12, + "end": 3626.26, + "probability": 0.9941 + }, + { + "start": 3627.58, + "end": 3628.82, + "probability": 0.0037 + }, + { + "start": 3630.46, + "end": 3630.62, + "probability": 0.0001 + }, + { + "start": 3630.62, + "end": 3630.62, + "probability": 0.1834 + }, + { + "start": 3630.62, + "end": 3637.36, + "probability": 0.9468 + }, + { + "start": 3637.52, + "end": 3638.86, + "probability": 0.9956 + }, + { + "start": 3639.44, + "end": 3645.6, + "probability": 0.9715 + }, + { + "start": 3646.54, + "end": 3649.26, + "probability": 0.9893 + }, + { + "start": 3650.62, + "end": 3654.0, + "probability": 0.9707 + }, + { + "start": 3654.52, + "end": 3659.64, + "probability": 0.9879 + }, + { + "start": 3660.42, + "end": 3663.18, + "probability": 0.9922 + }, + { + "start": 3663.5, + "end": 3665.18, + "probability": 0.9395 + }, + { + "start": 3666.58, + "end": 3668.52, + "probability": 0.9943 + }, + { + "start": 3668.82, + "end": 3671.86, + "probability": 0.9957 + }, + { + "start": 3673.38, + "end": 3674.8, + "probability": 0.887 + }, + { + "start": 3674.86, + "end": 3678.36, + "probability": 0.9894 + }, + { + "start": 3679.2, + "end": 3683.72, + "probability": 0.9669 + }, + { + "start": 3684.74, + "end": 3689.14, + "probability": 0.9971 + }, + { + "start": 3690.38, + "end": 3692.24, + "probability": 0.8117 + }, + { + "start": 3693.3, + "end": 3694.0, + "probability": 0.9783 + }, + { + "start": 3694.18, + "end": 3697.54, + "probability": 0.9547 + }, + { + "start": 3697.54, + "end": 3700.96, + "probability": 0.9976 + }, + { + "start": 3701.06, + "end": 3702.06, + "probability": 0.6536 + }, + { + "start": 3702.54, + "end": 3704.15, + "probability": 0.9954 + }, + { + "start": 3704.86, + "end": 3707.14, + "probability": 0.9456 + }, + { + "start": 3707.48, + "end": 3708.78, + "probability": 0.8672 + }, + { + "start": 3709.06, + "end": 3710.84, + "probability": 0.9279 + }, + { + "start": 3711.08, + "end": 3714.32, + "probability": 0.9777 + }, + { + "start": 3714.36, + "end": 3718.42, + "probability": 0.9712 + }, + { + "start": 3719.1, + "end": 3724.18, + "probability": 0.9954 + }, + { + "start": 3725.14, + "end": 3731.32, + "probability": 0.8741 + }, + { + "start": 3732.18, + "end": 3734.52, + "probability": 0.976 + }, + { + "start": 3734.58, + "end": 3739.66, + "probability": 0.9885 + }, + { + "start": 3739.82, + "end": 3742.3, + "probability": 0.9482 + }, + { + "start": 3742.44, + "end": 3746.02, + "probability": 0.9928 + }, + { + "start": 3746.02, + "end": 3750.44, + "probability": 0.9827 + }, + { + "start": 3751.26, + "end": 3756.74, + "probability": 0.9702 + }, + { + "start": 3757.6, + "end": 3758.56, + "probability": 0.7387 + }, + { + "start": 3759.14, + "end": 3760.34, + "probability": 0.9177 + }, + { + "start": 3761.16, + "end": 3761.9, + "probability": 0.9833 + }, + { + "start": 3763.06, + "end": 3770.54, + "probability": 0.9674 + }, + { + "start": 3770.82, + "end": 3773.7, + "probability": 0.8816 + }, + { + "start": 3773.94, + "end": 3777.08, + "probability": 0.884 + }, + { + "start": 3777.88, + "end": 3779.9, + "probability": 0.9233 + }, + { + "start": 3781.1, + "end": 3781.72, + "probability": 0.8821 + }, + { + "start": 3782.26, + "end": 3784.92, + "probability": 0.9977 + }, + { + "start": 3786.1, + "end": 3787.5, + "probability": 0.7433 + }, + { + "start": 3788.48, + "end": 3789.64, + "probability": 0.8692 + }, + { + "start": 3790.72, + "end": 3797.08, + "probability": 0.9794 + }, + { + "start": 3797.76, + "end": 3798.6, + "probability": 0.9545 + }, + { + "start": 3800.74, + "end": 3804.76, + "probability": 0.8099 + }, + { + "start": 3804.9, + "end": 3808.0, + "probability": 0.8173 + }, + { + "start": 3808.08, + "end": 3810.36, + "probability": 0.816 + }, + { + "start": 3822.72, + "end": 3825.3, + "probability": 0.7262 + }, + { + "start": 3825.34, + "end": 3828.34, + "probability": 0.9083 + }, + { + "start": 3830.02, + "end": 3833.52, + "probability": 0.9556 + }, + { + "start": 3834.32, + "end": 3835.54, + "probability": 0.6152 + }, + { + "start": 3835.7, + "end": 3837.62, + "probability": 0.8361 + }, + { + "start": 3837.74, + "end": 3838.82, + "probability": 0.9286 + }, + { + "start": 3838.96, + "end": 3841.36, + "probability": 0.867 + }, + { + "start": 3841.48, + "end": 3841.98, + "probability": 0.5037 + }, + { + "start": 3842.96, + "end": 3846.54, + "probability": 0.9081 + }, + { + "start": 3847.76, + "end": 3852.88, + "probability": 0.9884 + }, + { + "start": 3868.72, + "end": 3869.48, + "probability": 0.5886 + }, + { + "start": 3873.64, + "end": 3874.98, + "probability": 0.7911 + }, + { + "start": 3875.58, + "end": 3876.44, + "probability": 0.9811 + }, + { + "start": 3877.64, + "end": 3879.06, + "probability": 0.9404 + }, + { + "start": 3879.58, + "end": 3883.76, + "probability": 0.7614 + }, + { + "start": 3884.82, + "end": 3890.46, + "probability": 0.9927 + }, + { + "start": 3890.46, + "end": 3896.48, + "probability": 0.9977 + }, + { + "start": 3897.16, + "end": 3902.46, + "probability": 0.9607 + }, + { + "start": 3903.18, + "end": 3908.26, + "probability": 0.9946 + }, + { + "start": 3909.42, + "end": 3914.88, + "probability": 0.9811 + }, + { + "start": 3914.88, + "end": 3921.96, + "probability": 0.9897 + }, + { + "start": 3922.54, + "end": 3925.9, + "probability": 0.9596 + }, + { + "start": 3926.74, + "end": 3930.4, + "probability": 0.9387 + }, + { + "start": 3931.1, + "end": 3934.36, + "probability": 0.8682 + }, + { + "start": 3934.96, + "end": 3937.25, + "probability": 0.9934 + }, + { + "start": 3937.86, + "end": 3938.26, + "probability": 0.6147 + }, + { + "start": 3938.4, + "end": 3943.38, + "probability": 0.9935 + }, + { + "start": 3944.12, + "end": 3945.48, + "probability": 0.9268 + }, + { + "start": 3946.12, + "end": 3950.54, + "probability": 0.95 + }, + { + "start": 3951.26, + "end": 3953.38, + "probability": 0.9858 + }, + { + "start": 3953.98, + "end": 3955.93, + "probability": 0.8943 + }, + { + "start": 3956.76, + "end": 3961.14, + "probability": 0.9796 + }, + { + "start": 3961.98, + "end": 3966.3, + "probability": 0.7754 + }, + { + "start": 3966.3, + "end": 3970.0, + "probability": 0.8222 + }, + { + "start": 3970.46, + "end": 3973.06, + "probability": 0.9932 + }, + { + "start": 3973.96, + "end": 3978.08, + "probability": 0.987 + }, + { + "start": 3978.7, + "end": 3980.66, + "probability": 0.8105 + }, + { + "start": 3981.3, + "end": 3983.18, + "probability": 0.8429 + }, + { + "start": 3984.1, + "end": 3988.86, + "probability": 0.994 + }, + { + "start": 3989.62, + "end": 3993.22, + "probability": 0.9888 + }, + { + "start": 3994.66, + "end": 3995.64, + "probability": 0.8872 + }, + { + "start": 3996.14, + "end": 4001.12, + "probability": 0.9047 + }, + { + "start": 4001.78, + "end": 4004.88, + "probability": 0.993 + }, + { + "start": 4005.48, + "end": 4009.16, + "probability": 0.8461 + }, + { + "start": 4009.9, + "end": 4012.78, + "probability": 0.9954 + }, + { + "start": 4013.68, + "end": 4015.06, + "probability": 0.6932 + }, + { + "start": 4015.46, + "end": 4016.22, + "probability": 0.8096 + }, + { + "start": 4016.66, + "end": 4019.08, + "probability": 0.8115 + }, + { + "start": 4019.78, + "end": 4021.86, + "probability": 0.9595 + }, + { + "start": 4022.54, + "end": 4027.22, + "probability": 0.9957 + }, + { + "start": 4027.9, + "end": 4028.84, + "probability": 0.5338 + }, + { + "start": 4029.5, + "end": 4031.38, + "probability": 0.9399 + }, + { + "start": 4031.96, + "end": 4034.16, + "probability": 0.9641 + }, + { + "start": 4034.88, + "end": 4038.82, + "probability": 0.8192 + }, + { + "start": 4039.44, + "end": 4040.16, + "probability": 0.9572 + }, + { + "start": 4040.24, + "end": 4044.34, + "probability": 0.8563 + }, + { + "start": 4044.5, + "end": 4045.5, + "probability": 0.6737 + }, + { + "start": 4045.66, + "end": 4050.66, + "probability": 0.9829 + }, + { + "start": 4051.34, + "end": 4053.28, + "probability": 0.985 + }, + { + "start": 4053.96, + "end": 4060.58, + "probability": 0.9572 + }, + { + "start": 4061.02, + "end": 4064.16, + "probability": 0.9833 + }, + { + "start": 4065.06, + "end": 4071.24, + "probability": 0.9487 + }, + { + "start": 4071.64, + "end": 4077.02, + "probability": 0.9869 + }, + { + "start": 4077.72, + "end": 4082.12, + "probability": 0.9595 + }, + { + "start": 4082.76, + "end": 4087.1, + "probability": 0.9708 + }, + { + "start": 4087.78, + "end": 4093.48, + "probability": 0.894 + }, + { + "start": 4094.96, + "end": 4099.02, + "probability": 0.9793 + }, + { + "start": 4099.66, + "end": 4100.74, + "probability": 0.8031 + }, + { + "start": 4101.48, + "end": 4106.58, + "probability": 0.9932 + }, + { + "start": 4107.14, + "end": 4107.94, + "probability": 0.568 + }, + { + "start": 4108.48, + "end": 4110.18, + "probability": 0.9856 + }, + { + "start": 4111.58, + "end": 4111.9, + "probability": 0.649 + }, + { + "start": 4111.94, + "end": 4114.52, + "probability": 0.8188 + }, + { + "start": 4114.8, + "end": 4116.9, + "probability": 0.9659 + }, + { + "start": 4117.3, + "end": 4122.06, + "probability": 0.9727 + }, + { + "start": 4122.22, + "end": 4123.26, + "probability": 0.8818 + }, + { + "start": 4123.72, + "end": 4126.34, + "probability": 0.9959 + }, + { + "start": 4126.74, + "end": 4129.28, + "probability": 0.9854 + }, + { + "start": 4129.76, + "end": 4133.72, + "probability": 0.9562 + }, + { + "start": 4134.02, + "end": 4134.68, + "probability": 0.7815 + }, + { + "start": 4134.8, + "end": 4137.0, + "probability": 0.9237 + }, + { + "start": 4137.78, + "end": 4140.66, + "probability": 0.96 + }, + { + "start": 4140.66, + "end": 4145.12, + "probability": 0.9932 + }, + { + "start": 4145.7, + "end": 4150.08, + "probability": 0.9969 + }, + { + "start": 4150.92, + "end": 4152.77, + "probability": 0.7287 + }, + { + "start": 4153.14, + "end": 4155.78, + "probability": 0.9615 + }, + { + "start": 4156.32, + "end": 4159.04, + "probability": 0.8111 + }, + { + "start": 4159.74, + "end": 4162.28, + "probability": 0.8474 + }, + { + "start": 4162.68, + "end": 4164.9, + "probability": 0.7812 + }, + { + "start": 4165.42, + "end": 4168.74, + "probability": 0.9536 + }, + { + "start": 4168.74, + "end": 4172.7, + "probability": 0.732 + }, + { + "start": 4173.06, + "end": 4176.45, + "probability": 0.9972 + }, + { + "start": 4176.76, + "end": 4180.34, + "probability": 0.9931 + }, + { + "start": 4180.52, + "end": 4181.5, + "probability": 0.7931 + }, + { + "start": 4182.26, + "end": 4186.12, + "probability": 0.8937 + }, + { + "start": 4186.54, + "end": 4189.1, + "probability": 0.9676 + }, + { + "start": 4189.76, + "end": 4193.44, + "probability": 0.9841 + }, + { + "start": 4193.52, + "end": 4194.42, + "probability": 0.7685 + }, + { + "start": 4195.22, + "end": 4198.8, + "probability": 0.9952 + }, + { + "start": 4199.38, + "end": 4202.06, + "probability": 0.9025 + }, + { + "start": 4202.58, + "end": 4203.26, + "probability": 0.6531 + }, + { + "start": 4203.44, + "end": 4205.58, + "probability": 0.3454 + }, + { + "start": 4205.82, + "end": 4208.56, + "probability": 0.9923 + }, + { + "start": 4209.48, + "end": 4210.86, + "probability": 0.8882 + }, + { + "start": 4211.1, + "end": 4212.36, + "probability": 0.9761 + }, + { + "start": 4212.9, + "end": 4215.96, + "probability": 0.9778 + }, + { + "start": 4216.4, + "end": 4218.08, + "probability": 0.9774 + }, + { + "start": 4219.0, + "end": 4222.6, + "probability": 0.9721 + }, + { + "start": 4222.9, + "end": 4226.22, + "probability": 0.8605 + }, + { + "start": 4226.22, + "end": 4230.46, + "probability": 0.9517 + }, + { + "start": 4231.12, + "end": 4236.53, + "probability": 0.8449 + }, + { + "start": 4236.86, + "end": 4239.74, + "probability": 0.8598 + }, + { + "start": 4240.38, + "end": 4244.44, + "probability": 0.9553 + }, + { + "start": 4244.86, + "end": 4246.44, + "probability": 0.852 + }, + { + "start": 4246.86, + "end": 4249.06, + "probability": 0.7371 + }, + { + "start": 4249.62, + "end": 4252.34, + "probability": 0.9462 + }, + { + "start": 4252.84, + "end": 4256.42, + "probability": 0.9807 + }, + { + "start": 4256.94, + "end": 4259.34, + "probability": 0.6928 + }, + { + "start": 4262.6, + "end": 4266.68, + "probability": 0.6926 + }, + { + "start": 4269.18, + "end": 4269.18, + "probability": 0.8477 + }, + { + "start": 4276.08, + "end": 4281.46, + "probability": 0.9818 + }, + { + "start": 4281.62, + "end": 4283.28, + "probability": 0.9522 + }, + { + "start": 4283.92, + "end": 4284.64, + "probability": 0.8229 + }, + { + "start": 4291.0, + "end": 4293.1, + "probability": 0.9919 + }, + { + "start": 4293.62, + "end": 4295.5, + "probability": 0.6046 + }, + { + "start": 4297.14, + "end": 4299.5, + "probability": 0.5933 + }, + { + "start": 4300.44, + "end": 4300.68, + "probability": 0.8767 + }, + { + "start": 4301.26, + "end": 4302.62, + "probability": 0.9431 + }, + { + "start": 4303.52, + "end": 4304.26, + "probability": 0.1732 + }, + { + "start": 4306.46, + "end": 4310.3, + "probability": 0.939 + }, + { + "start": 4310.92, + "end": 4312.58, + "probability": 0.9728 + }, + { + "start": 4313.86, + "end": 4314.94, + "probability": 0.7228 + }, + { + "start": 4315.54, + "end": 4316.28, + "probability": 0.8832 + }, + { + "start": 4317.3, + "end": 4320.56, + "probability": 0.9244 + }, + { + "start": 4321.94, + "end": 4322.9, + "probability": 0.8721 + }, + { + "start": 4323.72, + "end": 4325.54, + "probability": 0.7584 + }, + { + "start": 4326.84, + "end": 4328.3, + "probability": 0.6473 + }, + { + "start": 4328.38, + "end": 4330.3, + "probability": 0.9786 + }, + { + "start": 4330.8, + "end": 4332.1, + "probability": 0.9898 + }, + { + "start": 4333.7, + "end": 4334.04, + "probability": 0.6488 + }, + { + "start": 4334.48, + "end": 4336.76, + "probability": 0.8168 + }, + { + "start": 4336.8, + "end": 4337.28, + "probability": 0.9393 + }, + { + "start": 4337.36, + "end": 4337.9, + "probability": 0.4417 + }, + { + "start": 4338.02, + "end": 4338.38, + "probability": 0.9004 + }, + { + "start": 4338.6, + "end": 4339.02, + "probability": 0.6614 + }, + { + "start": 4339.84, + "end": 4340.5, + "probability": 0.4332 + }, + { + "start": 4341.82, + "end": 4343.5, + "probability": 0.7183 + }, + { + "start": 4344.88, + "end": 4348.6, + "probability": 0.9196 + }, + { + "start": 4349.76, + "end": 4354.18, + "probability": 0.9659 + }, + { + "start": 4355.8, + "end": 4360.06, + "probability": 0.9917 + }, + { + "start": 4360.72, + "end": 4365.53, + "probability": 0.7706 + }, + { + "start": 4366.3, + "end": 4369.54, + "probability": 0.9761 + }, + { + "start": 4372.02, + "end": 4378.0, + "probability": 0.9857 + }, + { + "start": 4378.8, + "end": 4381.46, + "probability": 0.9081 + }, + { + "start": 4381.62, + "end": 4384.08, + "probability": 0.7322 + }, + { + "start": 4384.22, + "end": 4387.34, + "probability": 0.9838 + }, + { + "start": 4388.54, + "end": 4391.34, + "probability": 0.8795 + }, + { + "start": 4391.9, + "end": 4394.14, + "probability": 0.9618 + }, + { + "start": 4395.14, + "end": 4400.28, + "probability": 0.9008 + }, + { + "start": 4400.46, + "end": 4403.78, + "probability": 0.9775 + }, + { + "start": 4405.02, + "end": 4407.56, + "probability": 0.9813 + }, + { + "start": 4408.08, + "end": 4409.54, + "probability": 0.8144 + }, + { + "start": 4409.88, + "end": 4415.18, + "probability": 0.9718 + }, + { + "start": 4416.52, + "end": 4419.16, + "probability": 0.9868 + }, + { + "start": 4419.16, + "end": 4421.62, + "probability": 0.9772 + }, + { + "start": 4422.3, + "end": 4425.46, + "probability": 0.9792 + }, + { + "start": 4426.44, + "end": 4429.62, + "probability": 0.72 + }, + { + "start": 4429.62, + "end": 4433.3, + "probability": 0.9336 + }, + { + "start": 4434.2, + "end": 4437.64, + "probability": 0.9923 + }, + { + "start": 4437.88, + "end": 4441.32, + "probability": 0.9015 + }, + { + "start": 4442.24, + "end": 4443.6, + "probability": 0.5617 + }, + { + "start": 4443.68, + "end": 4444.72, + "probability": 0.73 + }, + { + "start": 4444.82, + "end": 4447.12, + "probability": 0.9311 + }, + { + "start": 4447.54, + "end": 4452.36, + "probability": 0.9476 + }, + { + "start": 4453.92, + "end": 4455.76, + "probability": 0.998 + }, + { + "start": 4455.96, + "end": 4456.36, + "probability": 0.9123 + }, + { + "start": 4456.46, + "end": 4457.12, + "probability": 0.8844 + }, + { + "start": 4457.2, + "end": 4458.68, + "probability": 0.8695 + }, + { + "start": 4459.16, + "end": 4464.42, + "probability": 0.9834 + }, + { + "start": 4465.2, + "end": 4470.88, + "probability": 0.9966 + }, + { + "start": 4471.54, + "end": 4474.64, + "probability": 0.7483 + }, + { + "start": 4474.92, + "end": 4479.4, + "probability": 0.9874 + }, + { + "start": 4480.66, + "end": 4483.32, + "probability": 0.9966 + }, + { + "start": 4483.32, + "end": 4486.02, + "probability": 0.999 + }, + { + "start": 4487.0, + "end": 4491.2, + "probability": 0.9243 + }, + { + "start": 4491.78, + "end": 4495.78, + "probability": 0.9985 + }, + { + "start": 4496.58, + "end": 4500.44, + "probability": 0.9908 + }, + { + "start": 4500.54, + "end": 4502.98, + "probability": 0.939 + }, + { + "start": 4504.0, + "end": 4508.36, + "probability": 0.9847 + }, + { + "start": 4508.84, + "end": 4511.38, + "probability": 0.97 + }, + { + "start": 4512.1, + "end": 4515.94, + "probability": 0.9949 + }, + { + "start": 4516.56, + "end": 4520.34, + "probability": 0.9927 + }, + { + "start": 4520.36, + "end": 4523.93, + "probability": 0.9808 + }, + { + "start": 4525.24, + "end": 4527.22, + "probability": 0.9543 + }, + { + "start": 4527.34, + "end": 4528.54, + "probability": 0.9158 + }, + { + "start": 4528.72, + "end": 4530.52, + "probability": 0.9712 + }, + { + "start": 4531.38, + "end": 4533.96, + "probability": 0.9651 + }, + { + "start": 4534.58, + "end": 4538.7, + "probability": 0.9785 + }, + { + "start": 4539.9, + "end": 4542.52, + "probability": 0.9614 + }, + { + "start": 4542.86, + "end": 4544.13, + "probability": 0.9773 + }, + { + "start": 4544.76, + "end": 4547.36, + "probability": 0.7498 + }, + { + "start": 4547.7, + "end": 4550.96, + "probability": 0.9208 + }, + { + "start": 4551.22, + "end": 4553.86, + "probability": 0.9948 + }, + { + "start": 4553.86, + "end": 4557.54, + "probability": 0.9963 + }, + { + "start": 4558.58, + "end": 4563.32, + "probability": 0.9281 + }, + { + "start": 4563.42, + "end": 4565.72, + "probability": 0.8436 + }, + { + "start": 4566.22, + "end": 4569.24, + "probability": 0.6761 + }, + { + "start": 4569.24, + "end": 4572.86, + "probability": 0.98 + }, + { + "start": 4574.12, + "end": 4578.88, + "probability": 0.8469 + }, + { + "start": 4578.88, + "end": 4582.32, + "probability": 0.999 + }, + { + "start": 4582.94, + "end": 4587.6, + "probability": 0.993 + }, + { + "start": 4588.28, + "end": 4590.08, + "probability": 0.818 + }, + { + "start": 4590.4, + "end": 4592.28, + "probability": 0.9899 + }, + { + "start": 4592.36, + "end": 4593.28, + "probability": 0.8523 + }, + { + "start": 4593.36, + "end": 4594.42, + "probability": 0.8781 + }, + { + "start": 4594.98, + "end": 4598.52, + "probability": 0.9635 + }, + { + "start": 4599.44, + "end": 4604.9, + "probability": 0.9621 + }, + { + "start": 4605.64, + "end": 4608.42, + "probability": 0.9323 + }, + { + "start": 4608.78, + "end": 4609.96, + "probability": 0.9409 + }, + { + "start": 4610.66, + "end": 4612.66, + "probability": 0.9352 + }, + { + "start": 4613.36, + "end": 4616.5, + "probability": 0.9652 + }, + { + "start": 4616.82, + "end": 4620.04, + "probability": 0.9435 + }, + { + "start": 4620.8, + "end": 4621.96, + "probability": 0.8632 + }, + { + "start": 4622.14, + "end": 4623.32, + "probability": 0.8967 + }, + { + "start": 4623.82, + "end": 4626.32, + "probability": 0.973 + }, + { + "start": 4626.32, + "end": 4630.26, + "probability": 0.9607 + }, + { + "start": 4631.64, + "end": 4636.76, + "probability": 0.9614 + }, + { + "start": 4636.76, + "end": 4640.48, + "probability": 0.9558 + }, + { + "start": 4640.66, + "end": 4642.84, + "probability": 0.8867 + }, + { + "start": 4643.0, + "end": 4643.44, + "probability": 0.9095 + }, + { + "start": 4644.4, + "end": 4648.28, + "probability": 0.9396 + }, + { + "start": 4649.1, + "end": 4651.62, + "probability": 0.912 + }, + { + "start": 4652.28, + "end": 4653.32, + "probability": 0.7762 + }, + { + "start": 4653.8, + "end": 4655.36, + "probability": 0.9238 + }, + { + "start": 4655.8, + "end": 4658.28, + "probability": 0.9888 + }, + { + "start": 4658.7, + "end": 4660.04, + "probability": 0.8775 + }, + { + "start": 4660.16, + "end": 4661.44, + "probability": 0.8611 + }, + { + "start": 4661.66, + "end": 4663.16, + "probability": 0.6537 + }, + { + "start": 4664.16, + "end": 4666.16, + "probability": 0.7962 + }, + { + "start": 4666.44, + "end": 4669.34, + "probability": 0.9896 + }, + { + "start": 4670.46, + "end": 4673.3, + "probability": 0.9076 + }, + { + "start": 4674.08, + "end": 4674.38, + "probability": 0.6393 + }, + { + "start": 4674.74, + "end": 4677.96, + "probability": 0.9591 + }, + { + "start": 4678.06, + "end": 4679.72, + "probability": 0.9987 + }, + { + "start": 4682.38, + "end": 4682.58, + "probability": 0.1867 + }, + { + "start": 4682.58, + "end": 4684.08, + "probability": 0.3028 + }, + { + "start": 4684.26, + "end": 4684.6, + "probability": 0.7806 + }, + { + "start": 4684.7, + "end": 4685.28, + "probability": 0.9399 + }, + { + "start": 4685.7, + "end": 4688.0, + "probability": 0.774 + }, + { + "start": 4688.96, + "end": 4692.08, + "probability": 0.7696 + }, + { + "start": 4692.08, + "end": 4694.94, + "probability": 0.8743 + }, + { + "start": 4699.26, + "end": 4700.14, + "probability": 0.708 + }, + { + "start": 4700.42, + "end": 4704.64, + "probability": 0.8041 + }, + { + "start": 4706.38, + "end": 4710.7, + "probability": 0.8914 + }, + { + "start": 4710.78, + "end": 4712.34, + "probability": 0.9172 + }, + { + "start": 4712.6, + "end": 4713.42, + "probability": 0.958 + }, + { + "start": 4716.2, + "end": 4720.48, + "probability": 0.9924 + }, + { + "start": 4721.52, + "end": 4728.34, + "probability": 0.9849 + }, + { + "start": 4728.46, + "end": 4729.52, + "probability": 0.7606 + }, + { + "start": 4729.98, + "end": 4733.35, + "probability": 0.999 + }, + { + "start": 4734.02, + "end": 4736.98, + "probability": 0.9987 + }, + { + "start": 4737.78, + "end": 4742.1, + "probability": 0.9979 + }, + { + "start": 4742.1, + "end": 4746.54, + "probability": 0.9977 + }, + { + "start": 4748.22, + "end": 4748.46, + "probability": 0.3153 + }, + { + "start": 4748.68, + "end": 4749.46, + "probability": 0.8783 + }, + { + "start": 4749.56, + "end": 4753.14, + "probability": 0.5424 + }, + { + "start": 4756.04, + "end": 4757.7, + "probability": 0.5402 + }, + { + "start": 4775.04, + "end": 4775.04, + "probability": 0.0005 + }, + { + "start": 4779.46, + "end": 4780.02, + "probability": 0.0258 + }, + { + "start": 4780.58, + "end": 4780.72, + "probability": 0.0073 + }, + { + "start": 4787.96, + "end": 4788.18, + "probability": 0.0773 + }, + { + "start": 4817.54, + "end": 4819.18, + "probability": 0.6563 + }, + { + "start": 4819.18, + "end": 4819.48, + "probability": 0.1372 + }, + { + "start": 4837.52, + "end": 4839.1, + "probability": 0.2798 + }, + { + "start": 4847.8, + "end": 4849.0, + "probability": 0.0056 + }, + { + "start": 4849.54, + "end": 4850.1, + "probability": 0.0159 + }, + { + "start": 4851.36, + "end": 4854.46, + "probability": 0.7158 + }, + { + "start": 4854.46, + "end": 4859.7, + "probability": 0.9922 + }, + { + "start": 4860.2, + "end": 4860.72, + "probability": 0.6142 + }, + { + "start": 4878.46, + "end": 4878.82, + "probability": 0.3719 + }, + { + "start": 4891.7, + "end": 4892.62, + "probability": 0.6418 + }, + { + "start": 4892.82, + "end": 4896.62, + "probability": 0.9829 + }, + { + "start": 4896.68, + "end": 4898.32, + "probability": 0.073 + }, + { + "start": 4898.52, + "end": 4900.04, + "probability": 0.8332 + }, + { + "start": 4901.08, + "end": 4903.92, + "probability": 0.8861 + }, + { + "start": 4904.02, + "end": 4905.6, + "probability": 0.688 + }, + { + "start": 4905.62, + "end": 4912.98, + "probability": 0.7237 + }, + { + "start": 4913.86, + "end": 4916.38, + "probability": 0.9077 + }, + { + "start": 4916.38, + "end": 4918.92, + "probability": 0.9966 + }, + { + "start": 4919.48, + "end": 4920.43, + "probability": 0.3386 + }, + { + "start": 4921.42, + "end": 4921.44, + "probability": 0.1023 + }, + { + "start": 4921.44, + "end": 4925.73, + "probability": 0.9919 + }, + { + "start": 4926.38, + "end": 4929.54, + "probability": 0.965 + }, + { + "start": 4929.54, + "end": 4932.66, + "probability": 0.999 + }, + { + "start": 4933.32, + "end": 4937.04, + "probability": 0.9185 + }, + { + "start": 4938.2, + "end": 4943.1, + "probability": 0.9969 + }, + { + "start": 4943.72, + "end": 4945.74, + "probability": 0.9749 + }, + { + "start": 4945.8, + "end": 4948.04, + "probability": 0.7397 + }, + { + "start": 4948.52, + "end": 4950.56, + "probability": 0.5778 + }, + { + "start": 4950.68, + "end": 4952.5, + "probability": 0.8185 + }, + { + "start": 4952.54, + "end": 4955.64, + "probability": 0.9818 + }, + { + "start": 4955.74, + "end": 4956.02, + "probability": 0.7734 + }, + { + "start": 4957.28, + "end": 4959.64, + "probability": 0.9905 + }, + { + "start": 4960.18, + "end": 4963.14, + "probability": 0.9658 + }, + { + "start": 4964.56, + "end": 4968.54, + "probability": 0.5052 + }, + { + "start": 4968.6, + "end": 4971.06, + "probability": 0.105 + }, + { + "start": 4971.68, + "end": 4974.9, + "probability": 0.9043 + }, + { + "start": 4975.36, + "end": 4976.0, + "probability": 0.7856 + }, + { + "start": 4976.08, + "end": 4976.64, + "probability": 0.8425 + }, + { + "start": 4976.72, + "end": 4977.46, + "probability": 0.8398 + }, + { + "start": 4981.02, + "end": 4981.66, + "probability": 0.0099 + }, + { + "start": 4983.46, + "end": 4984.91, + "probability": 0.0098 + }, + { + "start": 4986.84, + "end": 4990.92, + "probability": 0.6901 + }, + { + "start": 4991.6, + "end": 4992.94, + "probability": 0.4507 + }, + { + "start": 4993.46, + "end": 4995.22, + "probability": 0.6693 + }, + { + "start": 4995.82, + "end": 4998.96, + "probability": 0.8531 + }, + { + "start": 4999.04, + "end": 4999.68, + "probability": 0.9781 + }, + { + "start": 5000.2, + "end": 5001.42, + "probability": 0.7324 + }, + { + "start": 5002.14, + "end": 5002.74, + "probability": 0.5976 + }, + { + "start": 5002.88, + "end": 5003.44, + "probability": 0.5907 + }, + { + "start": 5003.54, + "end": 5004.28, + "probability": 0.6917 + }, + { + "start": 5016.36, + "end": 5019.36, + "probability": 0.1337 + }, + { + "start": 5019.36, + "end": 5021.77, + "probability": 0.6906 + }, + { + "start": 5022.12, + "end": 5025.48, + "probability": 0.813 + }, + { + "start": 5025.48, + "end": 5027.4, + "probability": 0.4814 + }, + { + "start": 5027.84, + "end": 5028.96, + "probability": 0.5724 + }, + { + "start": 5029.04, + "end": 5029.96, + "probability": 0.7794 + }, + { + "start": 5031.58, + "end": 5033.58, + "probability": 0.9693 + }, + { + "start": 5034.5, + "end": 5035.9, + "probability": 0.8894 + }, + { + "start": 5036.44, + "end": 5038.0, + "probability": 0.8964 + }, + { + "start": 5038.32, + "end": 5040.26, + "probability": 0.8816 + }, + { + "start": 5040.58, + "end": 5042.04, + "probability": 0.9082 + }, + { + "start": 5042.16, + "end": 5043.1, + "probability": 0.8127 + }, + { + "start": 5043.62, + "end": 5045.62, + "probability": 0.6312 + }, + { + "start": 5045.62, + "end": 5048.84, + "probability": 0.706 + }, + { + "start": 5050.99, + "end": 5053.54, + "probability": 0.7643 + }, + { + "start": 5053.64, + "end": 5061.18, + "probability": 0.666 + }, + { + "start": 5064.3, + "end": 5065.12, + "probability": 0.5936 + }, + { + "start": 5065.18, + "end": 5065.9, + "probability": 0.7072 + }, + { + "start": 5065.9, + "end": 5066.54, + "probability": 0.6961 + }, + { + "start": 5066.6, + "end": 5068.24, + "probability": 0.663 + }, + { + "start": 5070.22, + "end": 5070.34, + "probability": 0.0266 + }, + { + "start": 5070.34, + "end": 5070.34, + "probability": 0.1704 + }, + { + "start": 5070.34, + "end": 5071.58, + "probability": 0.8007 + }, + { + "start": 5072.34, + "end": 5075.72, + "probability": 0.6558 + }, + { + "start": 5076.46, + "end": 5080.74, + "probability": 0.5109 + }, + { + "start": 5081.06, + "end": 5082.4, + "probability": 0.0413 + }, + { + "start": 5082.64, + "end": 5087.06, + "probability": 0.9388 + }, + { + "start": 5087.58, + "end": 5087.66, + "probability": 0.5153 + }, + { + "start": 5087.66, + "end": 5090.58, + "probability": 0.9307 + }, + { + "start": 5090.64, + "end": 5092.56, + "probability": 0.7469 + }, + { + "start": 5098.38, + "end": 5099.94, + "probability": 0.5855 + }, + { + "start": 5100.82, + "end": 5102.56, + "probability": 0.9778 + }, + { + "start": 5102.56, + "end": 5105.18, + "probability": 0.7905 + }, + { + "start": 5105.96, + "end": 5106.7, + "probability": 0.6621 + }, + { + "start": 5107.38, + "end": 5108.79, + "probability": 0.8539 + }, + { + "start": 5108.92, + "end": 5112.84, + "probability": 0.8062 + }, + { + "start": 5112.96, + "end": 5116.1, + "probability": 0.9417 + }, + { + "start": 5117.62, + "end": 5119.58, + "probability": 0.2865 + }, + { + "start": 5119.86, + "end": 5125.2, + "probability": 0.8806 + }, + { + "start": 5125.26, + "end": 5126.8, + "probability": 0.9034 + }, + { + "start": 5127.08, + "end": 5129.26, + "probability": 0.5288 + }, + { + "start": 5129.36, + "end": 5130.18, + "probability": 0.9573 + }, + { + "start": 5131.16, + "end": 5132.76, + "probability": 0.9092 + }, + { + "start": 5132.8, + "end": 5135.56, + "probability": 0.7552 + }, + { + "start": 5135.84, + "end": 5137.0, + "probability": 0.9117 + }, + { + "start": 5137.14, + "end": 5140.82, + "probability": 0.8121 + }, + { + "start": 5141.4, + "end": 5143.2, + "probability": 0.9294 + }, + { + "start": 5143.5, + "end": 5144.76, + "probability": 0.9263 + }, + { + "start": 5145.46, + "end": 5145.6, + "probability": 0.5856 + }, + { + "start": 5145.78, + "end": 5147.72, + "probability": 0.9951 + }, + { + "start": 5147.78, + "end": 5149.74, + "probability": 0.9792 + }, + { + "start": 5149.86, + "end": 5151.08, + "probability": 0.904 + }, + { + "start": 5151.66, + "end": 5156.94, + "probability": 0.9375 + }, + { + "start": 5157.42, + "end": 5157.98, + "probability": 0.9789 + }, + { + "start": 5158.16, + "end": 5159.74, + "probability": 0.9912 + }, + { + "start": 5160.52, + "end": 5161.45, + "probability": 0.9398 + }, + { + "start": 5164.46, + "end": 5164.46, + "probability": 0.074 + }, + { + "start": 5164.46, + "end": 5165.86, + "probability": 0.2656 + }, + { + "start": 5165.86, + "end": 5167.9, + "probability": 0.7015 + }, + { + "start": 5168.2, + "end": 5169.53, + "probability": 0.9152 + }, + { + "start": 5169.88, + "end": 5170.57, + "probability": 0.6565 + }, + { + "start": 5171.56, + "end": 5172.1, + "probability": 0.9045 + }, + { + "start": 5172.14, + "end": 5173.07, + "probability": 0.7612 + }, + { + "start": 5174.2, + "end": 5174.6, + "probability": 0.3848 + }, + { + "start": 5174.76, + "end": 5175.46, + "probability": 0.7004 + }, + { + "start": 5176.02, + "end": 5177.08, + "probability": 0.8899 + }, + { + "start": 5177.34, + "end": 5184.7, + "probability": 0.9235 + }, + { + "start": 5185.44, + "end": 5187.82, + "probability": 0.8623 + }, + { + "start": 5188.24, + "end": 5188.96, + "probability": 0.6593 + }, + { + "start": 5189.2, + "end": 5191.78, + "probability": 0.8384 + }, + { + "start": 5192.34, + "end": 5195.36, + "probability": 0.8914 + }, + { + "start": 5195.7, + "end": 5198.56, + "probability": 0.9047 + }, + { + "start": 5198.92, + "end": 5202.78, + "probability": 0.9362 + }, + { + "start": 5202.9, + "end": 5204.23, + "probability": 0.9315 + }, + { + "start": 5204.66, + "end": 5206.12, + "probability": 0.7791 + }, + { + "start": 5206.5, + "end": 5208.94, + "probability": 0.862 + }, + { + "start": 5210.28, + "end": 5211.98, + "probability": 0.5755 + }, + { + "start": 5213.88, + "end": 5214.3, + "probability": 0.5197 + }, + { + "start": 5214.38, + "end": 5215.82, + "probability": 0.8069 + }, + { + "start": 5216.18, + "end": 5217.54, + "probability": 0.646 + }, + { + "start": 5218.08, + "end": 5218.46, + "probability": 0.8454 + }, + { + "start": 5218.56, + "end": 5219.76, + "probability": 0.8458 + }, + { + "start": 5219.96, + "end": 5220.66, + "probability": 0.95 + }, + { + "start": 5221.76, + "end": 5221.88, + "probability": 0.8456 + }, + { + "start": 5222.06, + "end": 5225.5, + "probability": 0.9094 + }, + { + "start": 5225.54, + "end": 5226.32, + "probability": 0.5842 + }, + { + "start": 5226.46, + "end": 5227.88, + "probability": 0.9894 + }, + { + "start": 5227.92, + "end": 5228.8, + "probability": 0.9401 + }, + { + "start": 5229.64, + "end": 5231.16, + "probability": 0.9629 + }, + { + "start": 5231.94, + "end": 5233.25, + "probability": 0.9912 + }, + { + "start": 5234.2, + "end": 5235.02, + "probability": 0.9653 + }, + { + "start": 5235.78, + "end": 5238.72, + "probability": 0.9492 + }, + { + "start": 5239.66, + "end": 5240.68, + "probability": 0.9893 + }, + { + "start": 5241.5, + "end": 5242.5, + "probability": 0.9686 + }, + { + "start": 5242.58, + "end": 5243.65, + "probability": 0.9541 + }, + { + "start": 5243.74, + "end": 5245.02, + "probability": 0.9838 + }, + { + "start": 5245.22, + "end": 5246.0, + "probability": 0.9779 + }, + { + "start": 5246.1, + "end": 5246.74, + "probability": 0.9046 + }, + { + "start": 5246.9, + "end": 5247.12, + "probability": 0.3262 + }, + { + "start": 5247.14, + "end": 5248.56, + "probability": 0.6638 + }, + { + "start": 5248.66, + "end": 5249.28, + "probability": 0.8328 + }, + { + "start": 5249.4, + "end": 5250.38, + "probability": 0.975 + }, + { + "start": 5250.54, + "end": 5251.74, + "probability": 0.9104 + }, + { + "start": 5252.52, + "end": 5253.74, + "probability": 0.5846 + }, + { + "start": 5253.82, + "end": 5256.04, + "probability": 0.9565 + }, + { + "start": 5256.48, + "end": 5260.32, + "probability": 0.9572 + }, + { + "start": 5260.72, + "end": 5264.72, + "probability": 0.9937 + }, + { + "start": 5265.18, + "end": 5269.04, + "probability": 0.9984 + }, + { + "start": 5269.6, + "end": 5269.96, + "probability": 0.5539 + }, + { + "start": 5270.12, + "end": 5270.76, + "probability": 0.8184 + }, + { + "start": 5271.06, + "end": 5272.6, + "probability": 0.9517 + }, + { + "start": 5272.8, + "end": 5273.6, + "probability": 0.7561 + }, + { + "start": 5273.88, + "end": 5275.28, + "probability": 0.7953 + }, + { + "start": 5276.36, + "end": 5278.2, + "probability": 0.8715 + }, + { + "start": 5278.52, + "end": 5278.94, + "probability": 0.5017 + }, + { + "start": 5279.02, + "end": 5279.42, + "probability": 0.5832 + }, + { + "start": 5279.56, + "end": 5280.72, + "probability": 0.8285 + }, + { + "start": 5281.14, + "end": 5282.2, + "probability": 0.1005 + }, + { + "start": 5282.3, + "end": 5284.1, + "probability": 0.9708 + }, + { + "start": 5284.56, + "end": 5285.72, + "probability": 0.5213 + }, + { + "start": 5285.9, + "end": 5286.39, + "probability": 0.7831 + }, + { + "start": 5287.14, + "end": 5289.34, + "probability": 0.8748 + }, + { + "start": 5289.66, + "end": 5290.71, + "probability": 0.9888 + }, + { + "start": 5291.26, + "end": 5291.76, + "probability": 0.8744 + }, + { + "start": 5292.08, + "end": 5296.78, + "probability": 0.955 + }, + { + "start": 5297.14, + "end": 5297.38, + "probability": 0.6569 + }, + { + "start": 5297.46, + "end": 5298.42, + "probability": 0.7766 + }, + { + "start": 5299.0, + "end": 5300.8, + "probability": 0.5308 + }, + { + "start": 5301.2, + "end": 5304.56, + "probability": 0.6436 + }, + { + "start": 5304.58, + "end": 5306.94, + "probability": 0.67 + }, + { + "start": 5307.04, + "end": 5309.72, + "probability": 0.9709 + }, + { + "start": 5309.76, + "end": 5311.16, + "probability": 0.9438 + }, + { + "start": 5311.22, + "end": 5312.4, + "probability": 0.9944 + }, + { + "start": 5313.3, + "end": 5315.08, + "probability": 0.4546 + }, + { + "start": 5315.12, + "end": 5317.98, + "probability": 0.6025 + }, + { + "start": 5318.42, + "end": 5319.3, + "probability": 0.6849 + }, + { + "start": 5320.22, + "end": 5320.86, + "probability": 0.3695 + }, + { + "start": 5320.86, + "end": 5323.18, + "probability": 0.78 + }, + { + "start": 5323.26, + "end": 5324.69, + "probability": 0.9671 + }, + { + "start": 5325.04, + "end": 5326.58, + "probability": 0.7974 + }, + { + "start": 5326.84, + "end": 5330.64, + "probability": 0.7939 + }, + { + "start": 5330.7, + "end": 5332.82, + "probability": 0.7927 + }, + { + "start": 5333.3, + "end": 5336.18, + "probability": 0.9395 + }, + { + "start": 5336.78, + "end": 5336.86, + "probability": 0.4588 + }, + { + "start": 5336.96, + "end": 5337.18, + "probability": 0.6704 + }, + { + "start": 5337.34, + "end": 5338.48, + "probability": 0.9368 + }, + { + "start": 5338.52, + "end": 5342.36, + "probability": 0.5392 + }, + { + "start": 5342.36, + "end": 5346.14, + "probability": 0.8708 + }, + { + "start": 5346.5, + "end": 5347.24, + "probability": 0.8415 + }, + { + "start": 5347.76, + "end": 5351.46, + "probability": 0.6741 + }, + { + "start": 5352.16, + "end": 5355.28, + "probability": 0.9169 + }, + { + "start": 5355.3, + "end": 5359.1, + "probability": 0.9897 + }, + { + "start": 5359.88, + "end": 5360.98, + "probability": 0.874 + }, + { + "start": 5361.3, + "end": 5362.86, + "probability": 0.9592 + }, + { + "start": 5363.08, + "end": 5364.08, + "probability": 0.6263 + }, + { + "start": 5365.26, + "end": 5366.76, + "probability": 0.5333 + }, + { + "start": 5367.4, + "end": 5368.24, + "probability": 0.4182 + }, + { + "start": 5369.64, + "end": 5370.68, + "probability": 0.9792 + }, + { + "start": 5370.8, + "end": 5371.94, + "probability": 0.7742 + }, + { + "start": 5372.32, + "end": 5373.57, + "probability": 0.7798 + }, + { + "start": 5374.08, + "end": 5374.44, + "probability": 0.6717 + }, + { + "start": 5374.52, + "end": 5374.96, + "probability": 0.8865 + }, + { + "start": 5375.08, + "end": 5382.06, + "probability": 0.8674 + }, + { + "start": 5382.34, + "end": 5383.92, + "probability": 0.6553 + }, + { + "start": 5384.74, + "end": 5386.1, + "probability": 0.885 + }, + { + "start": 5386.56, + "end": 5389.32, + "probability": 0.7112 + }, + { + "start": 5389.86, + "end": 5390.54, + "probability": 0.4229 + }, + { + "start": 5390.64, + "end": 5392.22, + "probability": 0.3771 + }, + { + "start": 5392.66, + "end": 5395.72, + "probability": 0.9839 + }, + { + "start": 5396.24, + "end": 5397.5, + "probability": 0.6852 + }, + { + "start": 5398.0, + "end": 5399.5, + "probability": 0.9183 + }, + { + "start": 5400.66, + "end": 5402.6, + "probability": 0.8361 + }, + { + "start": 5403.26, + "end": 5405.48, + "probability": 0.7864 + }, + { + "start": 5406.32, + "end": 5408.0, + "probability": 0.9547 + }, + { + "start": 5408.96, + "end": 5410.19, + "probability": 0.9597 + }, + { + "start": 5410.62, + "end": 5413.9, + "probability": 0.946 + }, + { + "start": 5413.96, + "end": 5416.24, + "probability": 0.9616 + }, + { + "start": 5416.54, + "end": 5419.08, + "probability": 0.9985 + }, + { + "start": 5419.1, + "end": 5420.9, + "probability": 0.895 + }, + { + "start": 5420.96, + "end": 5423.1, + "probability": 0.9645 + }, + { + "start": 5423.42, + "end": 5423.64, + "probability": 0.8338 + }, + { + "start": 5424.08, + "end": 5424.78, + "probability": 0.8315 + }, + { + "start": 5424.88, + "end": 5426.32, + "probability": 0.8369 + }, + { + "start": 5426.46, + "end": 5426.98, + "probability": 0.9111 + }, + { + "start": 5427.1, + "end": 5427.56, + "probability": 0.3066 + }, + { + "start": 5427.62, + "end": 5428.0, + "probability": 0.5513 + }, + { + "start": 5428.36, + "end": 5428.98, + "probability": 0.9023 + }, + { + "start": 5429.1, + "end": 5429.88, + "probability": 0.8784 + }, + { + "start": 5431.42, + "end": 5433.08, + "probability": 0.9082 + }, + { + "start": 5434.52, + "end": 5434.92, + "probability": 0.3979 + }, + { + "start": 5434.92, + "end": 5436.4, + "probability": 0.8387 + }, + { + "start": 5437.18, + "end": 5439.68, + "probability": 0.9781 + }, + { + "start": 5439.84, + "end": 5440.02, + "probability": 0.4588 + }, + { + "start": 5440.08, + "end": 5441.1, + "probability": 0.7772 + }, + { + "start": 5441.3, + "end": 5441.86, + "probability": 0.8375 + }, + { + "start": 5441.88, + "end": 5442.6, + "probability": 0.875 + }, + { + "start": 5443.1, + "end": 5445.28, + "probability": 0.9625 + }, + { + "start": 5445.28, + "end": 5448.52, + "probability": 0.9855 + }, + { + "start": 5448.88, + "end": 5449.62, + "probability": 0.496 + }, + { + "start": 5449.84, + "end": 5452.02, + "probability": 0.8341 + }, + { + "start": 5452.1, + "end": 5453.48, + "probability": 0.6711 + }, + { + "start": 5455.06, + "end": 5456.18, + "probability": 0.4103 + }, + { + "start": 5456.7, + "end": 5456.96, + "probability": 0.1665 + }, + { + "start": 5457.02, + "end": 5457.4, + "probability": 0.8453 + }, + { + "start": 5457.44, + "end": 5460.22, + "probability": 0.4992 + }, + { + "start": 5460.55, + "end": 5462.42, + "probability": 0.925 + }, + { + "start": 5462.84, + "end": 5463.2, + "probability": 0.9079 + }, + { + "start": 5463.88, + "end": 5464.76, + "probability": 0.4926 + }, + { + "start": 5464.82, + "end": 5467.27, + "probability": 0.7341 + }, + { + "start": 5468.58, + "end": 5470.02, + "probability": 0.7796 + }, + { + "start": 5470.12, + "end": 5471.6, + "probability": 0.7412 + }, + { + "start": 5472.34, + "end": 5475.74, + "probability": 0.828 + }, + { + "start": 5475.74, + "end": 5479.94, + "probability": 0.9268 + }, + { + "start": 5480.52, + "end": 5484.04, + "probability": 0.9663 + }, + { + "start": 5484.72, + "end": 5487.72, + "probability": 0.9541 + }, + { + "start": 5488.04, + "end": 5488.56, + "probability": 0.7178 + }, + { + "start": 5489.0, + "end": 5489.88, + "probability": 0.7694 + }, + { + "start": 5490.36, + "end": 5494.86, + "probability": 0.9286 + }, + { + "start": 5494.86, + "end": 5498.68, + "probability": 0.9403 + }, + { + "start": 5499.06, + "end": 5499.68, + "probability": 0.7982 + }, + { + "start": 5501.5, + "end": 5505.06, + "probability": 0.894 + }, + { + "start": 5506.8, + "end": 5511.02, + "probability": 0.9773 + }, + { + "start": 5511.52, + "end": 5517.28, + "probability": 0.814 + }, + { + "start": 5518.12, + "end": 5520.04, + "probability": 0.9739 + }, + { + "start": 5520.04, + "end": 5522.58, + "probability": 0.9753 + }, + { + "start": 5523.18, + "end": 5526.5, + "probability": 0.9658 + }, + { + "start": 5527.02, + "end": 5529.78, + "probability": 0.8363 + }, + { + "start": 5531.38, + "end": 5532.06, + "probability": 0.6368 + }, + { + "start": 5532.16, + "end": 5534.48, + "probability": 0.9651 + }, + { + "start": 5534.74, + "end": 5536.52, + "probability": 0.8499 + }, + { + "start": 5537.48, + "end": 5540.06, + "probability": 0.8838 + }, + { + "start": 5540.14, + "end": 5542.16, + "probability": 0.9934 + }, + { + "start": 5542.52, + "end": 5544.38, + "probability": 0.9585 + }, + { + "start": 5544.38, + "end": 5549.38, + "probability": 0.894 + }, + { + "start": 5549.92, + "end": 5552.16, + "probability": 0.9014 + }, + { + "start": 5552.28, + "end": 5554.82, + "probability": 0.9935 + }, + { + "start": 5555.22, + "end": 5555.9, + "probability": 0.5693 + }, + { + "start": 5555.96, + "end": 5556.78, + "probability": 0.8689 + }, + { + "start": 5556.78, + "end": 5560.34, + "probability": 0.9801 + }, + { + "start": 5560.78, + "end": 5564.84, + "probability": 0.8307 + }, + { + "start": 5565.02, + "end": 5567.44, + "probability": 0.8088 + }, + { + "start": 5567.44, + "end": 5569.94, + "probability": 0.8552 + }, + { + "start": 5570.58, + "end": 5572.7, + "probability": 0.9724 + }, + { + "start": 5572.82, + "end": 5573.08, + "probability": 0.6724 + }, + { + "start": 5573.18, + "end": 5574.26, + "probability": 0.608 + }, + { + "start": 5574.34, + "end": 5576.54, + "probability": 0.976 + }, + { + "start": 5576.66, + "end": 5577.22, + "probability": 0.6487 + }, + { + "start": 5577.3, + "end": 5577.48, + "probability": 0.5854 + }, + { + "start": 5577.52, + "end": 5578.18, + "probability": 0.838 + }, + { + "start": 5578.76, + "end": 5579.28, + "probability": 0.7562 + }, + { + "start": 5580.06, + "end": 5582.78, + "probability": 0.892 + }, + { + "start": 5583.6, + "end": 5585.64, + "probability": 0.8001 + }, + { + "start": 5585.98, + "end": 5587.62, + "probability": 0.9895 + }, + { + "start": 5587.7, + "end": 5588.08, + "probability": 0.4416 + }, + { + "start": 5588.12, + "end": 5588.7, + "probability": 0.4828 + }, + { + "start": 5589.32, + "end": 5590.94, + "probability": 0.4492 + }, + { + "start": 5591.34, + "end": 5594.92, + "probability": 0.8903 + }, + { + "start": 5595.6, + "end": 5597.7, + "probability": 0.6483 + }, + { + "start": 5598.08, + "end": 5601.46, + "probability": 0.9902 + }, + { + "start": 5601.78, + "end": 5604.64, + "probability": 0.8855 + }, + { + "start": 5604.64, + "end": 5607.44, + "probability": 0.9345 + }, + { + "start": 5607.74, + "end": 5609.88, + "probability": 0.969 + }, + { + "start": 5610.12, + "end": 5613.14, + "probability": 0.8815 + }, + { + "start": 5613.36, + "end": 5616.3, + "probability": 0.9582 + }, + { + "start": 5616.6, + "end": 5616.92, + "probability": 0.8369 + }, + { + "start": 5617.72, + "end": 5619.64, + "probability": 0.6742 + }, + { + "start": 5620.16, + "end": 5622.84, + "probability": 0.9761 + }, + { + "start": 5623.08, + "end": 5623.44, + "probability": 0.5932 + }, + { + "start": 5623.52, + "end": 5625.18, + "probability": 0.678 + }, + { + "start": 5625.4, + "end": 5626.35, + "probability": 0.9712 + }, + { + "start": 5627.82, + "end": 5629.2, + "probability": 0.8563 + }, + { + "start": 5630.18, + "end": 5631.04, + "probability": 0.4802 + }, + { + "start": 5632.74, + "end": 5634.26, + "probability": 0.7009 + }, + { + "start": 5635.06, + "end": 5635.84, + "probability": 0.5346 + }, + { + "start": 5637.1, + "end": 5637.88, + "probability": 0.8827 + }, + { + "start": 5639.66, + "end": 5640.44, + "probability": 0.9541 + }, + { + "start": 5642.46, + "end": 5644.71, + "probability": 0.9963 + }, + { + "start": 5646.0, + "end": 5646.86, + "probability": 0.7437 + }, + { + "start": 5648.3, + "end": 5649.52, + "probability": 0.9086 + }, + { + "start": 5650.84, + "end": 5651.56, + "probability": 0.7508 + }, + { + "start": 5652.26, + "end": 5652.26, + "probability": 0.7182 + }, + { + "start": 5652.84, + "end": 5654.44, + "probability": 0.9252 + }, + { + "start": 5664.44, + "end": 5664.56, + "probability": 0.2684 + }, + { + "start": 5664.56, + "end": 5664.82, + "probability": 0.8138 + }, + { + "start": 5670.48, + "end": 5672.9, + "probability": 0.6927 + }, + { + "start": 5674.46, + "end": 5677.0, + "probability": 0.9811 + }, + { + "start": 5677.94, + "end": 5683.52, + "probability": 0.9806 + }, + { + "start": 5683.68, + "end": 5685.76, + "probability": 0.9738 + }, + { + "start": 5686.7, + "end": 5688.83, + "probability": 0.9956 + }, + { + "start": 5689.08, + "end": 5692.3, + "probability": 0.9062 + }, + { + "start": 5692.3, + "end": 5695.68, + "probability": 0.999 + }, + { + "start": 5696.96, + "end": 5702.08, + "probability": 0.9964 + }, + { + "start": 5702.08, + "end": 5708.18, + "probability": 0.9927 + }, + { + "start": 5708.9, + "end": 5714.68, + "probability": 0.7629 + }, + { + "start": 5714.86, + "end": 5716.72, + "probability": 0.9858 + }, + { + "start": 5717.6, + "end": 5721.18, + "probability": 0.9905 + }, + { + "start": 5721.7, + "end": 5722.46, + "probability": 0.934 + }, + { + "start": 5722.56, + "end": 5726.96, + "probability": 0.9933 + }, + { + "start": 5727.72, + "end": 5729.98, + "probability": 0.9953 + }, + { + "start": 5731.0, + "end": 5734.34, + "probability": 0.9972 + }, + { + "start": 5734.86, + "end": 5738.64, + "probability": 0.988 + }, + { + "start": 5740.38, + "end": 5745.04, + "probability": 0.8932 + }, + { + "start": 5745.26, + "end": 5748.9, + "probability": 0.9846 + }, + { + "start": 5749.76, + "end": 5752.78, + "probability": 0.9905 + }, + { + "start": 5753.76, + "end": 5762.58, + "probability": 0.9825 + }, + { + "start": 5763.34, + "end": 5766.88, + "probability": 0.9343 + }, + { + "start": 5767.5, + "end": 5771.66, + "probability": 0.7935 + }, + { + "start": 5772.46, + "end": 5773.32, + "probability": 0.8785 + }, + { + "start": 5773.86, + "end": 5776.02, + "probability": 0.8835 + }, + { + "start": 5776.62, + "end": 5783.26, + "probability": 0.9772 + }, + { + "start": 5784.0, + "end": 5790.02, + "probability": 0.9932 + }, + { + "start": 5790.98, + "end": 5794.12, + "probability": 0.7878 + }, + { + "start": 5794.26, + "end": 5800.0, + "probability": 0.9736 + }, + { + "start": 5800.0, + "end": 5802.86, + "probability": 0.9975 + }, + { + "start": 5803.32, + "end": 5807.52, + "probability": 0.9949 + }, + { + "start": 5807.52, + "end": 5812.54, + "probability": 0.9341 + }, + { + "start": 5813.0, + "end": 5816.64, + "probability": 0.9844 + }, + { + "start": 5817.24, + "end": 5824.32, + "probability": 0.9648 + }, + { + "start": 5824.46, + "end": 5826.68, + "probability": 0.9314 + }, + { + "start": 5827.2, + "end": 5829.56, + "probability": 0.6952 + }, + { + "start": 5830.34, + "end": 5831.69, + "probability": 0.6117 + }, + { + "start": 5832.22, + "end": 5837.34, + "probability": 0.9783 + }, + { + "start": 5837.34, + "end": 5843.36, + "probability": 0.9767 + }, + { + "start": 5843.52, + "end": 5845.4, + "probability": 0.8535 + }, + { + "start": 5846.24, + "end": 5854.72, + "probability": 0.9819 + }, + { + "start": 5855.3, + "end": 5857.9, + "probability": 0.9683 + }, + { + "start": 5858.58, + "end": 5863.74, + "probability": 0.5763 + }, + { + "start": 5863.74, + "end": 5869.12, + "probability": 0.671 + }, + { + "start": 5869.46, + "end": 5870.48, + "probability": 0.5585 + }, + { + "start": 5871.76, + "end": 5875.4, + "probability": 0.8851 + }, + { + "start": 5875.4, + "end": 5878.92, + "probability": 0.987 + }, + { + "start": 5879.58, + "end": 5880.08, + "probability": 0.9189 + }, + { + "start": 5880.42, + "end": 5880.64, + "probability": 0.7649 + }, + { + "start": 5880.98, + "end": 5881.52, + "probability": 0.7527 + }, + { + "start": 5882.98, + "end": 5884.34, + "probability": 0.9323 + }, + { + "start": 5885.38, + "end": 5886.44, + "probability": 0.5272 + }, + { + "start": 5888.38, + "end": 5889.8, + "probability": 0.9738 + }, + { + "start": 5890.54, + "end": 5891.42, + "probability": 0.7886 + }, + { + "start": 5892.82, + "end": 5894.28, + "probability": 0.9969 + }, + { + "start": 5896.98, + "end": 5897.88, + "probability": 0.9093 + }, + { + "start": 5900.0, + "end": 5901.37, + "probability": 0.6195 + }, + { + "start": 5903.8, + "end": 5904.72, + "probability": 0.4318 + }, + { + "start": 5906.26, + "end": 5907.76, + "probability": 0.853 + }, + { + "start": 5910.22, + "end": 5911.12, + "probability": 0.5188 + }, + { + "start": 5912.2, + "end": 5913.68, + "probability": 0.9863 + }, + { + "start": 5915.32, + "end": 5916.32, + "probability": 0.8376 + }, + { + "start": 5918.88, + "end": 5922.94, + "probability": 0.9286 + }, + { + "start": 5925.62, + "end": 5926.6, + "probability": 0.7788 + }, + { + "start": 5927.18, + "end": 5927.98, + "probability": 0.6087 + }, + { + "start": 5928.54, + "end": 5930.2, + "probability": 0.843 + }, + { + "start": 5930.92, + "end": 5931.88, + "probability": 0.5196 + }, + { + "start": 5933.6, + "end": 5937.84, + "probability": 0.6658 + }, + { + "start": 5939.12, + "end": 5940.08, + "probability": 0.7854 + }, + { + "start": 5945.36, + "end": 5946.98, + "probability": 0.9774 + }, + { + "start": 5947.76, + "end": 5948.84, + "probability": 0.9503 + }, + { + "start": 5952.36, + "end": 5955.02, + "probability": 0.9731 + }, + { + "start": 5957.0, + "end": 5960.1, + "probability": 0.663 + }, + { + "start": 5961.24, + "end": 5963.06, + "probability": 0.9432 + }, + { + "start": 5964.3, + "end": 5965.08, + "probability": 0.8901 + }, + { + "start": 5965.78, + "end": 5967.8, + "probability": 0.9822 + }, + { + "start": 5969.0, + "end": 5970.02, + "probability": 0.6075 + }, + { + "start": 5971.08, + "end": 5972.66, + "probability": 0.9742 + }, + { + "start": 5973.18, + "end": 5974.12, + "probability": 0.7448 + }, + { + "start": 5975.98, + "end": 5977.68, + "probability": 0.9933 + }, + { + "start": 5978.38, + "end": 5979.3, + "probability": 0.57 + }, + { + "start": 5982.08, + "end": 5983.38, + "probability": 0.6839 + }, + { + "start": 5991.94, + "end": 5991.94, + "probability": 0.1586 + }, + { + "start": 5991.94, + "end": 5991.94, + "probability": 0.1922 + }, + { + "start": 5991.94, + "end": 5991.94, + "probability": 0.0111 + }, + { + "start": 5991.94, + "end": 5991.94, + "probability": 0.0731 + }, + { + "start": 5991.94, + "end": 5991.96, + "probability": 0.0423 + }, + { + "start": 6010.92, + "end": 6012.1, + "probability": 0.2992 + }, + { + "start": 6012.78, + "end": 6014.3, + "probability": 0.6317 + }, + { + "start": 6025.98, + "end": 6027.72, + "probability": 0.3874 + }, + { + "start": 6028.62, + "end": 6030.02, + "probability": 0.845 + }, + { + "start": 6031.4, + "end": 6033.66, + "probability": 0.7194 + }, + { + "start": 6034.32, + "end": 6036.44, + "probability": 0.8204 + }, + { + "start": 6037.74, + "end": 6043.78, + "probability": 0.9673 + }, + { + "start": 6044.42, + "end": 6046.3, + "probability": 0.7502 + }, + { + "start": 6046.94, + "end": 6052.96, + "probability": 0.6532 + }, + { + "start": 6053.54, + "end": 6054.93, + "probability": 0.89 + }, + { + "start": 6055.52, + "end": 6060.46, + "probability": 0.8838 + }, + { + "start": 6060.9, + "end": 6066.86, + "probability": 0.9132 + }, + { + "start": 6067.62, + "end": 6069.12, + "probability": 0.8904 + }, + { + "start": 6070.14, + "end": 6072.84, + "probability": 0.9392 + }, + { + "start": 6073.48, + "end": 6077.02, + "probability": 0.9769 + }, + { + "start": 6077.12, + "end": 6077.76, + "probability": 0.6705 + }, + { + "start": 6078.24, + "end": 6079.34, + "probability": 0.8796 + }, + { + "start": 6080.2, + "end": 6081.26, + "probability": 0.5493 + }, + { + "start": 6081.82, + "end": 6082.54, + "probability": 0.503 + }, + { + "start": 6083.04, + "end": 6084.02, + "probability": 0.7097 + }, + { + "start": 6084.24, + "end": 6085.02, + "probability": 0.7379 + }, + { + "start": 6085.44, + "end": 6086.16, + "probability": 0.854 + }, + { + "start": 6086.82, + "end": 6091.66, + "probability": 0.9753 + }, + { + "start": 6092.2, + "end": 6093.38, + "probability": 0.9283 + }, + { + "start": 6093.92, + "end": 6097.0, + "probability": 0.9858 + }, + { + "start": 6097.96, + "end": 6100.52, + "probability": 0.9843 + }, + { + "start": 6101.28, + "end": 6104.2, + "probability": 0.7567 + }, + { + "start": 6106.08, + "end": 6108.02, + "probability": 0.9575 + }, + { + "start": 6108.16, + "end": 6108.84, + "probability": 0.6136 + }, + { + "start": 6109.32, + "end": 6111.6, + "probability": 0.8014 + }, + { + "start": 6111.84, + "end": 6112.8, + "probability": 0.9614 + }, + { + "start": 6112.84, + "end": 6114.56, + "probability": 0.8804 + }, + { + "start": 6115.54, + "end": 6117.88, + "probability": 0.9946 + }, + { + "start": 6119.28, + "end": 6123.02, + "probability": 0.7517 + }, + { + "start": 6124.02, + "end": 6124.44, + "probability": 0.106 + }, + { + "start": 6124.96, + "end": 6127.25, + "probability": 0.9671 + }, + { + "start": 6128.42, + "end": 6131.4, + "probability": 0.8253 + }, + { + "start": 6132.1, + "end": 6139.06, + "probability": 0.9218 + }, + { + "start": 6139.6, + "end": 6140.02, + "probability": 0.4141 + }, + { + "start": 6140.16, + "end": 6140.86, + "probability": 0.8582 + }, + { + "start": 6140.98, + "end": 6142.23, + "probability": 0.6476 + }, + { + "start": 6142.6, + "end": 6143.42, + "probability": 0.9683 + }, + { + "start": 6144.4, + "end": 6146.36, + "probability": 0.9781 + }, + { + "start": 6147.08, + "end": 6148.7, + "probability": 0.645 + }, + { + "start": 6149.1, + "end": 6151.62, + "probability": 0.9727 + }, + { + "start": 6153.06, + "end": 6153.78, + "probability": 0.0268 + }, + { + "start": 6153.92, + "end": 6158.72, + "probability": 0.7545 + }, + { + "start": 6159.24, + "end": 6161.66, + "probability": 0.848 + }, + { + "start": 6162.84, + "end": 6164.86, + "probability": 0.9685 + }, + { + "start": 6165.64, + "end": 6165.98, + "probability": 0.5869 + }, + { + "start": 6166.06, + "end": 6166.72, + "probability": 0.7212 + }, + { + "start": 6166.88, + "end": 6168.37, + "probability": 0.7412 + }, + { + "start": 6168.74, + "end": 6170.06, + "probability": 0.6601 + }, + { + "start": 6170.12, + "end": 6173.54, + "probability": 0.9718 + }, + { + "start": 6173.98, + "end": 6179.7, + "probability": 0.9061 + }, + { + "start": 6181.12, + "end": 6183.02, + "probability": 0.8051 + }, + { + "start": 6183.34, + "end": 6184.44, + "probability": 0.9806 + }, + { + "start": 6197.46, + "end": 6198.54, + "probability": 0.7036 + }, + { + "start": 6198.84, + "end": 6198.84, + "probability": 0.1136 + }, + { + "start": 6198.98, + "end": 6199.5, + "probability": 0.746 + }, + { + "start": 6199.6, + "end": 6200.26, + "probability": 0.8502 + }, + { + "start": 6200.78, + "end": 6201.12, + "probability": 0.7438 + }, + { + "start": 6202.92, + "end": 6204.26, + "probability": 0.9663 + }, + { + "start": 6204.26, + "end": 6207.68, + "probability": 0.9832 + }, + { + "start": 6207.84, + "end": 6208.77, + "probability": 0.8214 + }, + { + "start": 6209.72, + "end": 6212.4, + "probability": 0.8505 + }, + { + "start": 6213.08, + "end": 6214.76, + "probability": 0.6777 + }, + { + "start": 6216.04, + "end": 6222.76, + "probability": 0.8031 + }, + { + "start": 6223.57, + "end": 6230.5, + "probability": 0.9902 + }, + { + "start": 6231.08, + "end": 6231.5, + "probability": 0.832 + }, + { + "start": 6231.6, + "end": 6237.74, + "probability": 0.9583 + }, + { + "start": 6237.78, + "end": 6238.82, + "probability": 0.9536 + }, + { + "start": 6238.88, + "end": 6243.02, + "probability": 0.9274 + }, + { + "start": 6243.52, + "end": 6244.68, + "probability": 0.6672 + }, + { + "start": 6245.14, + "end": 6250.3, + "probability": 0.854 + }, + { + "start": 6250.8, + "end": 6257.1, + "probability": 0.9973 + }, + { + "start": 6257.34, + "end": 6258.48, + "probability": 0.7403 + }, + { + "start": 6258.58, + "end": 6264.88, + "probability": 0.9948 + }, + { + "start": 6265.92, + "end": 6267.18, + "probability": 0.9181 + }, + { + "start": 6267.26, + "end": 6267.88, + "probability": 0.8875 + }, + { + "start": 6267.98, + "end": 6271.36, + "probability": 0.928 + }, + { + "start": 6272.24, + "end": 6275.32, + "probability": 0.8027 + }, + { + "start": 6276.16, + "end": 6278.14, + "probability": 0.5117 + }, + { + "start": 6278.3, + "end": 6280.6, + "probability": 0.8802 + }, + { + "start": 6281.08, + "end": 6283.94, + "probability": 0.5021 + }, + { + "start": 6284.04, + "end": 6284.98, + "probability": 0.6667 + }, + { + "start": 6285.46, + "end": 6285.9, + "probability": 0.5549 + }, + { + "start": 6286.06, + "end": 6288.16, + "probability": 0.9138 + }, + { + "start": 6288.52, + "end": 6295.18, + "probability": 0.89 + }, + { + "start": 6295.6, + "end": 6297.54, + "probability": 0.7848 + }, + { + "start": 6297.86, + "end": 6299.06, + "probability": 0.98 + }, + { + "start": 6300.26, + "end": 6300.58, + "probability": 0.8986 + }, + { + "start": 6300.66, + "end": 6303.01, + "probability": 0.9655 + }, + { + "start": 6303.58, + "end": 6306.82, + "probability": 0.8817 + }, + { + "start": 6307.16, + "end": 6307.95, + "probability": 0.6642 + }, + { + "start": 6308.72, + "end": 6309.56, + "probability": 0.3854 + }, + { + "start": 6312.92, + "end": 6313.62, + "probability": 0.7033 + }, + { + "start": 6314.04, + "end": 6316.55, + "probability": 0.8816 + }, + { + "start": 6316.82, + "end": 6318.5, + "probability": 0.4548 + }, + { + "start": 6319.22, + "end": 6320.78, + "probability": 0.9443 + }, + { + "start": 6320.96, + "end": 6321.54, + "probability": 0.7874 + }, + { + "start": 6321.68, + "end": 6322.26, + "probability": 0.6484 + }, + { + "start": 6322.36, + "end": 6323.68, + "probability": 0.9285 + }, + { + "start": 6324.0, + "end": 6327.62, + "probability": 0.9541 + }, + { + "start": 6327.74, + "end": 6335.52, + "probability": 0.9907 + }, + { + "start": 6335.58, + "end": 6336.14, + "probability": 0.7253 + }, + { + "start": 6337.24, + "end": 6339.0, + "probability": 0.7454 + }, + { + "start": 6340.34, + "end": 6341.76, + "probability": 0.9272 + }, + { + "start": 6342.6, + "end": 6343.44, + "probability": 0.7788 + }, + { + "start": 6344.6, + "end": 6347.82, + "probability": 0.6034 + }, + { + "start": 6349.06, + "end": 6350.5, + "probability": 0.7425 + }, + { + "start": 6351.28, + "end": 6352.26, + "probability": 0.5987 + }, + { + "start": 6353.28, + "end": 6354.58, + "probability": 0.9945 + }, + { + "start": 6381.18, + "end": 6384.0, + "probability": 0.7157 + }, + { + "start": 6385.96, + "end": 6390.58, + "probability": 0.967 + }, + { + "start": 6390.58, + "end": 6395.54, + "probability": 0.8944 + }, + { + "start": 6395.6, + "end": 6397.52, + "probability": 0.9552 + }, + { + "start": 6398.26, + "end": 6400.7, + "probability": 0.592 + }, + { + "start": 6401.58, + "end": 6407.64, + "probability": 0.9302 + }, + { + "start": 6407.82, + "end": 6408.66, + "probability": 0.7707 + }, + { + "start": 6408.78, + "end": 6408.98, + "probability": 0.4019 + }, + { + "start": 6409.06, + "end": 6410.62, + "probability": 0.9614 + }, + { + "start": 6410.7, + "end": 6411.24, + "probability": 0.2994 + }, + { + "start": 6412.2, + "end": 6414.12, + "probability": 0.8955 + }, + { + "start": 6414.24, + "end": 6415.86, + "probability": 0.9956 + }, + { + "start": 6415.94, + "end": 6416.77, + "probability": 0.8511 + }, + { + "start": 6416.88, + "end": 6417.32, + "probability": 0.4512 + }, + { + "start": 6417.5, + "end": 6418.88, + "probability": 0.9779 + }, + { + "start": 6420.34, + "end": 6421.11, + "probability": 0.7526 + }, + { + "start": 6422.46, + "end": 6425.18, + "probability": 0.6079 + }, + { + "start": 6426.4, + "end": 6430.56, + "probability": 0.7257 + }, + { + "start": 6431.34, + "end": 6436.84, + "probability": 0.6611 + }, + { + "start": 6437.6, + "end": 6439.3, + "probability": 0.8623 + }, + { + "start": 6439.92, + "end": 6441.5, + "probability": 0.978 + }, + { + "start": 6441.6, + "end": 6444.36, + "probability": 0.7913 + }, + { + "start": 6444.5, + "end": 6445.44, + "probability": 0.7572 + }, + { + "start": 6446.54, + "end": 6447.76, + "probability": 0.9707 + }, + { + "start": 6447.84, + "end": 6451.16, + "probability": 0.8679 + }, + { + "start": 6451.22, + "end": 6452.46, + "probability": 0.9033 + }, + { + "start": 6452.52, + "end": 6452.76, + "probability": 0.9296 + }, + { + "start": 6452.82, + "end": 6454.26, + "probability": 0.9829 + }, + { + "start": 6456.14, + "end": 6456.96, + "probability": 0.8298 + }, + { + "start": 6457.44, + "end": 6459.04, + "probability": 0.5364 + }, + { + "start": 6459.18, + "end": 6463.76, + "probability": 0.7427 + }, + { + "start": 6463.76, + "end": 6466.08, + "probability": 0.9856 + }, + { + "start": 6466.64, + "end": 6467.16, + "probability": 0.8269 + }, + { + "start": 6467.78, + "end": 6470.68, + "probability": 0.9683 + }, + { + "start": 6471.28, + "end": 6476.18, + "probability": 0.9666 + }, + { + "start": 6476.5, + "end": 6479.9, + "probability": 0.7352 + }, + { + "start": 6479.96, + "end": 6480.64, + "probability": 0.8667 + }, + { + "start": 6480.72, + "end": 6481.51, + "probability": 0.9523 + }, + { + "start": 6482.1, + "end": 6486.3, + "probability": 0.9897 + }, + { + "start": 6486.36, + "end": 6487.18, + "probability": 0.846 + }, + { + "start": 6487.56, + "end": 6489.32, + "probability": 0.9907 + }, + { + "start": 6489.54, + "end": 6492.7, + "probability": 0.6692 + }, + { + "start": 6492.82, + "end": 6496.66, + "probability": 0.9753 + }, + { + "start": 6496.94, + "end": 6497.84, + "probability": 0.8696 + }, + { + "start": 6498.04, + "end": 6498.32, + "probability": 0.6791 + }, + { + "start": 6498.44, + "end": 6505.42, + "probability": 0.9951 + }, + { + "start": 6505.74, + "end": 6508.06, + "probability": 0.8916 + }, + { + "start": 6508.68, + "end": 6510.08, + "probability": 0.9148 + }, + { + "start": 6510.4, + "end": 6514.24, + "probability": 0.9533 + }, + { + "start": 6514.24, + "end": 6516.04, + "probability": 0.6561 + }, + { + "start": 6516.04, + "end": 6516.64, + "probability": 0.3609 + }, + { + "start": 6517.06, + "end": 6519.74, + "probability": 0.841 + }, + { + "start": 6520.12, + "end": 6522.84, + "probability": 0.9665 + }, + { + "start": 6524.0, + "end": 6525.34, + "probability": 0.6851 + }, + { + "start": 6525.44, + "end": 6527.8, + "probability": 0.7045 + }, + { + "start": 6527.9, + "end": 6529.04, + "probability": 0.8333 + }, + { + "start": 6529.2, + "end": 6530.02, + "probability": 0.8051 + }, + { + "start": 6530.08, + "end": 6532.46, + "probability": 0.85 + }, + { + "start": 6532.68, + "end": 6536.24, + "probability": 0.5766 + }, + { + "start": 6536.24, + "end": 6538.88, + "probability": 0.9888 + }, + { + "start": 6539.58, + "end": 6542.6, + "probability": 0.9657 + }, + { + "start": 6542.72, + "end": 6543.28, + "probability": 0.9252 + }, + { + "start": 6543.3, + "end": 6545.46, + "probability": 0.9702 + }, + { + "start": 6545.8, + "end": 6547.7, + "probability": 0.7347 + }, + { + "start": 6548.1, + "end": 6549.62, + "probability": 0.909 + }, + { + "start": 6549.82, + "end": 6550.61, + "probability": 0.9873 + }, + { + "start": 6551.12, + "end": 6554.14, + "probability": 0.9807 + }, + { + "start": 6554.44, + "end": 6555.59, + "probability": 0.5147 + }, + { + "start": 6556.5, + "end": 6560.98, + "probability": 0.8334 + }, + { + "start": 6561.36, + "end": 6563.26, + "probability": 0.5738 + }, + { + "start": 6563.66, + "end": 6564.24, + "probability": 0.5218 + }, + { + "start": 6564.58, + "end": 6566.74, + "probability": 0.9777 + }, + { + "start": 6566.84, + "end": 6567.52, + "probability": 0.6994 + }, + { + "start": 6568.77, + "end": 6571.57, + "probability": 0.9941 + }, + { + "start": 6572.02, + "end": 6575.02, + "probability": 0.8644 + }, + { + "start": 6575.14, + "end": 6575.62, + "probability": 0.8485 + }, + { + "start": 6575.72, + "end": 6577.54, + "probability": 0.9894 + }, + { + "start": 6577.56, + "end": 6578.84, + "probability": 0.8312 + }, + { + "start": 6579.02, + "end": 6579.58, + "probability": 0.7665 + }, + { + "start": 6579.98, + "end": 6583.16, + "probability": 0.7591 + }, + { + "start": 6583.46, + "end": 6586.22, + "probability": 0.9348 + }, + { + "start": 6586.34, + "end": 6587.64, + "probability": 0.9966 + }, + { + "start": 6588.08, + "end": 6591.12, + "probability": 0.9806 + }, + { + "start": 6591.8, + "end": 6593.0, + "probability": 0.6639 + }, + { + "start": 6593.1, + "end": 6594.42, + "probability": 0.957 + }, + { + "start": 6594.96, + "end": 6595.28, + "probability": 0.7493 + }, + { + "start": 6595.62, + "end": 6596.48, + "probability": 0.6696 + }, + { + "start": 6600.72, + "end": 6601.74, + "probability": 0.7649 + }, + { + "start": 6623.72, + "end": 6624.7, + "probability": 0.5044 + }, + { + "start": 6625.64, + "end": 6625.96, + "probability": 0.4003 + }, + { + "start": 6625.96, + "end": 6628.72, + "probability": 0.8759 + }, + { + "start": 6629.42, + "end": 6632.56, + "probability": 0.9954 + }, + { + "start": 6633.34, + "end": 6637.58, + "probability": 0.8791 + }, + { + "start": 6637.82, + "end": 6641.32, + "probability": 0.509 + }, + { + "start": 6642.52, + "end": 6647.12, + "probability": 0.9899 + }, + { + "start": 6647.12, + "end": 6651.62, + "probability": 0.9849 + }, + { + "start": 6651.94, + "end": 6654.88, + "probability": 0.989 + }, + { + "start": 6655.26, + "end": 6656.46, + "probability": 0.7891 + }, + { + "start": 6656.5, + "end": 6659.26, + "probability": 0.9757 + }, + { + "start": 6659.98, + "end": 6664.1, + "probability": 0.959 + }, + { + "start": 6664.82, + "end": 6669.22, + "probability": 0.9231 + }, + { + "start": 6669.3, + "end": 6675.55, + "probability": 0.9951 + }, + { + "start": 6676.7, + "end": 6679.54, + "probability": 0.988 + }, + { + "start": 6680.3, + "end": 6686.3, + "probability": 0.99 + }, + { + "start": 6686.3, + "end": 6690.73, + "probability": 0.9706 + }, + { + "start": 6691.1, + "end": 6694.72, + "probability": 0.9895 + }, + { + "start": 6694.72, + "end": 6699.7, + "probability": 0.9847 + }, + { + "start": 6699.9, + "end": 6700.39, + "probability": 0.5879 + }, + { + "start": 6700.76, + "end": 6704.38, + "probability": 0.7244 + }, + { + "start": 6704.68, + "end": 6705.49, + "probability": 0.8252 + }, + { + "start": 6705.86, + "end": 6710.9, + "probability": 0.6756 + }, + { + "start": 6711.0, + "end": 6711.72, + "probability": 0.6091 + }, + { + "start": 6712.48, + "end": 6715.48, + "probability": 0.9005 + }, + { + "start": 6716.5, + "end": 6718.76, + "probability": 0.931 + }, + { + "start": 6718.88, + "end": 6721.88, + "probability": 0.984 + }, + { + "start": 6722.82, + "end": 6726.92, + "probability": 0.9766 + }, + { + "start": 6727.54, + "end": 6729.66, + "probability": 0.9954 + }, + { + "start": 6730.34, + "end": 6731.86, + "probability": 0.902 + }, + { + "start": 6732.7, + "end": 6734.72, + "probability": 0.7296 + }, + { + "start": 6735.38, + "end": 6741.98, + "probability": 0.7948 + }, + { + "start": 6742.18, + "end": 6742.55, + "probability": 0.7861 + }, + { + "start": 6743.16, + "end": 6743.78, + "probability": 0.3682 + }, + { + "start": 6744.14, + "end": 6744.7, + "probability": 0.6958 + }, + { + "start": 6745.24, + "end": 6745.46, + "probability": 0.8665 + }, + { + "start": 6745.84, + "end": 6747.0, + "probability": 0.9751 + }, + { + "start": 6747.42, + "end": 6751.92, + "probability": 0.9642 + }, + { + "start": 6752.48, + "end": 6755.16, + "probability": 0.5702 + }, + { + "start": 6755.4, + "end": 6756.4, + "probability": 0.7771 + }, + { + "start": 6756.62, + "end": 6758.38, + "probability": 0.9248 + }, + { + "start": 6758.68, + "end": 6760.36, + "probability": 0.8628 + }, + { + "start": 6761.32, + "end": 6763.79, + "probability": 0.9023 + }, + { + "start": 6764.02, + "end": 6764.37, + "probability": 0.6938 + }, + { + "start": 6764.46, + "end": 6766.12, + "probability": 0.9018 + }, + { + "start": 6766.41, + "end": 6770.94, + "probability": 0.8049 + }, + { + "start": 6770.96, + "end": 6773.88, + "probability": 0.9819 + }, + { + "start": 6775.36, + "end": 6782.96, + "probability": 0.9946 + }, + { + "start": 6783.02, + "end": 6785.2, + "probability": 0.957 + }, + { + "start": 6785.32, + "end": 6786.1, + "probability": 0.9878 + }, + { + "start": 6786.42, + "end": 6787.5, + "probability": 0.9517 + }, + { + "start": 6788.36, + "end": 6788.82, + "probability": 0.7847 + }, + { + "start": 6788.84, + "end": 6792.04, + "probability": 0.8463 + }, + { + "start": 6792.1, + "end": 6792.78, + "probability": 0.6597 + }, + { + "start": 6793.18, + "end": 6793.88, + "probability": 0.8859 + }, + { + "start": 6793.96, + "end": 6794.96, + "probability": 0.8267 + }, + { + "start": 6795.04, + "end": 6797.82, + "probability": 0.9705 + }, + { + "start": 6798.34, + "end": 6798.95, + "probability": 0.9797 + }, + { + "start": 6799.26, + "end": 6800.82, + "probability": 0.7866 + }, + { + "start": 6801.02, + "end": 6802.74, + "probability": 0.8588 + }, + { + "start": 6803.24, + "end": 6803.3, + "probability": 0.2652 + }, + { + "start": 6803.4, + "end": 6807.22, + "probability": 0.7397 + }, + { + "start": 6807.22, + "end": 6814.0, + "probability": 0.9735 + }, + { + "start": 6814.38, + "end": 6815.54, + "probability": 0.7517 + }, + { + "start": 6816.38, + "end": 6817.48, + "probability": 0.5218 + }, + { + "start": 6817.6, + "end": 6821.06, + "probability": 0.6223 + }, + { + "start": 6821.56, + "end": 6824.86, + "probability": 0.847 + }, + { + "start": 6825.16, + "end": 6827.04, + "probability": 0.9534 + }, + { + "start": 6827.26, + "end": 6827.6, + "probability": 0.7219 + }, + { + "start": 6827.68, + "end": 6829.12, + "probability": 0.9933 + }, + { + "start": 6829.24, + "end": 6832.76, + "probability": 0.9406 + }, + { + "start": 6832.78, + "end": 6833.64, + "probability": 0.8135 + }, + { + "start": 6834.34, + "end": 6834.62, + "probability": 0.0019 + }, + { + "start": 6835.58, + "end": 6836.42, + "probability": 0.437 + }, + { + "start": 6837.3, + "end": 6839.46, + "probability": 0.9124 + }, + { + "start": 6839.76, + "end": 6841.72, + "probability": 0.3262 + }, + { + "start": 6841.72, + "end": 6844.12, + "probability": 0.0741 + }, + { + "start": 6844.12, + "end": 6845.16, + "probability": 0.2636 + }, + { + "start": 6845.16, + "end": 6845.74, + "probability": 0.8521 + }, + { + "start": 6846.48, + "end": 6848.24, + "probability": 0.6861 + }, + { + "start": 6848.3, + "end": 6851.58, + "probability": 0.8109 + }, + { + "start": 6851.72, + "end": 6858.44, + "probability": 0.96 + }, + { + "start": 6858.56, + "end": 6859.06, + "probability": 0.5376 + }, + { + "start": 6860.44, + "end": 6860.44, + "probability": 0.4533 + }, + { + "start": 6860.44, + "end": 6860.44, + "probability": 0.244 + }, + { + "start": 6860.44, + "end": 6861.26, + "probability": 0.5046 + }, + { + "start": 6863.24, + "end": 6864.02, + "probability": 0.8544 + }, + { + "start": 6884.1, + "end": 6885.36, + "probability": 0.5536 + }, + { + "start": 6886.98, + "end": 6888.86, + "probability": 0.7662 + }, + { + "start": 6890.24, + "end": 6893.76, + "probability": 0.9971 + }, + { + "start": 6894.03, + "end": 6898.82, + "probability": 0.9771 + }, + { + "start": 6900.32, + "end": 6902.1, + "probability": 0.9951 + }, + { + "start": 6902.58, + "end": 6904.56, + "probability": 0.9128 + }, + { + "start": 6904.7, + "end": 6905.56, + "probability": 0.7857 + }, + { + "start": 6905.98, + "end": 6908.92, + "probability": 0.7664 + }, + { + "start": 6910.18, + "end": 6915.56, + "probability": 0.9829 + }, + { + "start": 6916.18, + "end": 6917.72, + "probability": 0.8882 + }, + { + "start": 6919.12, + "end": 6922.1, + "probability": 0.9593 + }, + { + "start": 6923.82, + "end": 6930.58, + "probability": 0.9112 + }, + { + "start": 6930.94, + "end": 6932.8, + "probability": 0.5657 + }, + { + "start": 6933.6, + "end": 6935.64, + "probability": 0.9118 + }, + { + "start": 6936.16, + "end": 6939.2, + "probability": 0.9968 + }, + { + "start": 6941.0, + "end": 6943.14, + "probability": 0.6684 + }, + { + "start": 6943.54, + "end": 6945.84, + "probability": 0.8582 + }, + { + "start": 6945.9, + "end": 6948.76, + "probability": 0.5621 + }, + { + "start": 6948.98, + "end": 6952.22, + "probability": 0.981 + }, + { + "start": 6952.8, + "end": 6955.2, + "probability": 0.5886 + }, + { + "start": 6955.76, + "end": 6958.28, + "probability": 0.8312 + }, + { + "start": 6958.36, + "end": 6959.96, + "probability": 0.7358 + }, + { + "start": 6960.3, + "end": 6961.38, + "probability": 0.652 + }, + { + "start": 6962.0, + "end": 6963.56, + "probability": 0.8247 + }, + { + "start": 6964.88, + "end": 6966.72, + "probability": 0.931 + }, + { + "start": 6966.76, + "end": 6967.4, + "probability": 0.6593 + }, + { + "start": 6967.46, + "end": 6968.5, + "probability": 0.9784 + }, + { + "start": 6968.76, + "end": 6970.52, + "probability": 0.9858 + }, + { + "start": 6971.0, + "end": 6978.44, + "probability": 0.9644 + }, + { + "start": 6978.8, + "end": 6980.98, + "probability": 0.9312 + }, + { + "start": 6981.8, + "end": 6982.41, + "probability": 0.7185 + }, + { + "start": 6982.54, + "end": 6984.72, + "probability": 0.4929 + }, + { + "start": 6984.96, + "end": 6989.88, + "probability": 0.8235 + }, + { + "start": 6990.12, + "end": 6992.02, + "probability": 0.9394 + }, + { + "start": 6993.34, + "end": 6994.22, + "probability": 0.8994 + }, + { + "start": 6994.46, + "end": 6996.46, + "probability": 0.5532 + }, + { + "start": 6996.64, + "end": 6997.8, + "probability": 0.7036 + }, + { + "start": 6998.22, + "end": 7000.46, + "probability": 0.9867 + }, + { + "start": 7000.9, + "end": 7002.96, + "probability": 0.9092 + }, + { + "start": 7003.38, + "end": 7005.9, + "probability": 0.9885 + }, + { + "start": 7006.18, + "end": 7007.38, + "probability": 0.8713 + }, + { + "start": 7007.48, + "end": 7010.88, + "probability": 0.9507 + }, + { + "start": 7011.16, + "end": 7012.63, + "probability": 0.9458 + }, + { + "start": 7013.08, + "end": 7015.38, + "probability": 0.8297 + }, + { + "start": 7015.38, + "end": 7019.8, + "probability": 0.9313 + }, + { + "start": 7020.16, + "end": 7024.42, + "probability": 0.9357 + }, + { + "start": 7024.42, + "end": 7027.06, + "probability": 0.6334 + }, + { + "start": 7028.1, + "end": 7028.74, + "probability": 0.5272 + }, + { + "start": 7028.78, + "end": 7029.98, + "probability": 0.4803 + }, + { + "start": 7030.04, + "end": 7031.83, + "probability": 0.995 + }, + { + "start": 7032.76, + "end": 7034.44, + "probability": 0.8986 + }, + { + "start": 7034.52, + "end": 7037.72, + "probability": 0.6396 + }, + { + "start": 7039.5, + "end": 7041.8, + "probability": 0.7298 + }, + { + "start": 7041.8, + "end": 7046.74, + "probability": 0.6479 + }, + { + "start": 7047.04, + "end": 7050.78, + "probability": 0.9679 + }, + { + "start": 7051.04, + "end": 7056.2, + "probability": 0.9285 + }, + { + "start": 7056.26, + "end": 7057.84, + "probability": 0.9836 + }, + { + "start": 7057.92, + "end": 7060.7, + "probability": 0.804 + }, + { + "start": 7061.02, + "end": 7062.9, + "probability": 0.8553 + }, + { + "start": 7063.04, + "end": 7065.36, + "probability": 0.7755 + }, + { + "start": 7065.54, + "end": 7066.74, + "probability": 0.884 + }, + { + "start": 7066.86, + "end": 7068.5, + "probability": 0.9764 + }, + { + "start": 7070.24, + "end": 7072.46, + "probability": 0.7736 + }, + { + "start": 7073.02, + "end": 7075.52, + "probability": 0.9263 + }, + { + "start": 7076.08, + "end": 7079.12, + "probability": 0.6884 + }, + { + "start": 7079.26, + "end": 7080.2, + "probability": 0.899 + }, + { + "start": 7081.08, + "end": 7084.26, + "probability": 0.6344 + }, + { + "start": 7084.28, + "end": 7085.48, + "probability": 0.9526 + }, + { + "start": 7085.88, + "end": 7088.86, + "probability": 0.9006 + }, + { + "start": 7089.42, + "end": 7091.24, + "probability": 0.8739 + }, + { + "start": 7092.38, + "end": 7093.0, + "probability": 0.728 + }, + { + "start": 7093.06, + "end": 7095.22, + "probability": 0.9592 + }, + { + "start": 7095.76, + "end": 7098.64, + "probability": 0.5565 + }, + { + "start": 7099.02, + "end": 7100.05, + "probability": 0.6923 + }, + { + "start": 7100.64, + "end": 7102.96, + "probability": 0.8997 + }, + { + "start": 7103.54, + "end": 7108.63, + "probability": 0.8651 + }, + { + "start": 7108.84, + "end": 7110.06, + "probability": 0.8926 + }, + { + "start": 7110.34, + "end": 7111.6, + "probability": 0.6975 + }, + { + "start": 7112.46, + "end": 7115.06, + "probability": 0.657 + }, + { + "start": 7115.4, + "end": 7119.3, + "probability": 0.9732 + }, + { + "start": 7119.66, + "end": 7121.14, + "probability": 0.8184 + }, + { + "start": 7121.2, + "end": 7122.32, + "probability": 0.6495 + }, + { + "start": 7122.6, + "end": 7124.52, + "probability": 0.8702 + }, + { + "start": 7124.68, + "end": 7127.1, + "probability": 0.8893 + }, + { + "start": 7127.28, + "end": 7131.46, + "probability": 0.6704 + }, + { + "start": 7132.04, + "end": 7137.12, + "probability": 0.9592 + }, + { + "start": 7137.94, + "end": 7143.34, + "probability": 0.7056 + }, + { + "start": 7143.64, + "end": 7144.68, + "probability": 0.9751 + }, + { + "start": 7145.64, + "end": 7147.78, + "probability": 0.8039 + }, + { + "start": 7148.08, + "end": 7148.16, + "probability": 0.1458 + }, + { + "start": 7148.16, + "end": 7148.16, + "probability": 0.1021 + }, + { + "start": 7148.16, + "end": 7150.08, + "probability": 0.6778 + }, + { + "start": 7150.32, + "end": 7151.9, + "probability": 0.5019 + }, + { + "start": 7151.94, + "end": 7155.08, + "probability": 0.7926 + }, + { + "start": 7155.24, + "end": 7158.46, + "probability": 0.7936 + }, + { + "start": 7158.46, + "end": 7163.42, + "probability": 0.9326 + }, + { + "start": 7163.8, + "end": 7166.02, + "probability": 0.4476 + }, + { + "start": 7166.54, + "end": 7168.48, + "probability": 0.9697 + }, + { + "start": 7168.5, + "end": 7169.62, + "probability": 0.7702 + }, + { + "start": 7169.8, + "end": 7170.38, + "probability": 0.5222 + }, + { + "start": 7170.5, + "end": 7171.02, + "probability": 0.3497 + }, + { + "start": 7171.12, + "end": 7172.7, + "probability": 0.8016 + }, + { + "start": 7173.02, + "end": 7175.56, + "probability": 0.6179 + }, + { + "start": 7176.26, + "end": 7177.36, + "probability": 0.8091 + }, + { + "start": 7177.48, + "end": 7179.98, + "probability": 0.9388 + }, + { + "start": 7180.06, + "end": 7183.44, + "probability": 0.7444 + }, + { + "start": 7183.88, + "end": 7186.37, + "probability": 0.7438 + }, + { + "start": 7186.66, + "end": 7187.86, + "probability": 0.9289 + }, + { + "start": 7187.9, + "end": 7188.7, + "probability": 0.7858 + }, + { + "start": 7188.76, + "end": 7189.42, + "probability": 0.63 + }, + { + "start": 7189.82, + "end": 7191.3, + "probability": 0.9927 + }, + { + "start": 7192.22, + "end": 7193.96, + "probability": 0.7809 + }, + { + "start": 7194.08, + "end": 7195.64, + "probability": 0.9917 + }, + { + "start": 7195.7, + "end": 7195.9, + "probability": 0.7062 + }, + { + "start": 7196.2, + "end": 7197.9, + "probability": 0.714 + }, + { + "start": 7198.18, + "end": 7199.24, + "probability": 0.9966 + }, + { + "start": 7205.18, + "end": 7207.72, + "probability": 0.5341 + }, + { + "start": 7207.92, + "end": 7209.82, + "probability": 0.7202 + }, + { + "start": 7209.9, + "end": 7212.22, + "probability": 0.2561 + }, + { + "start": 7212.28, + "end": 7212.94, + "probability": 0.7269 + }, + { + "start": 7214.44, + "end": 7215.94, + "probability": 0.6905 + }, + { + "start": 7216.4, + "end": 7217.6, + "probability": 0.0967 + }, + { + "start": 7231.64, + "end": 7232.78, + "probability": 0.0002 + }, + { + "start": 7233.5, + "end": 7234.2, + "probability": 0.064 + }, + { + "start": 7234.2, + "end": 7234.2, + "probability": 0.065 + }, + { + "start": 7234.2, + "end": 7234.2, + "probability": 0.6385 + }, + { + "start": 7234.2, + "end": 7235.69, + "probability": 0.2374 + }, + { + "start": 7236.36, + "end": 7238.66, + "probability": 0.9125 + }, + { + "start": 7240.68, + "end": 7242.78, + "probability": 0.6125 + }, + { + "start": 7243.4, + "end": 7244.04, + "probability": 0.8163 + }, + { + "start": 7244.56, + "end": 7248.64, + "probability": 0.5772 + }, + { + "start": 7248.8, + "end": 7251.14, + "probability": 0.1064 + }, + { + "start": 7251.49, + "end": 7256.1, + "probability": 0.9639 + }, + { + "start": 7256.78, + "end": 7256.78, + "probability": 0.0637 + }, + { + "start": 7256.78, + "end": 7259.18, + "probability": 0.9339 + }, + { + "start": 7265.88, + "end": 7267.32, + "probability": 0.7305 + }, + { + "start": 7267.6, + "end": 7267.6, + "probability": 0.4368 + }, + { + "start": 7267.6, + "end": 7268.2, + "probability": 0.7819 + }, + { + "start": 7268.28, + "end": 7269.54, + "probability": 0.7491 + }, + { + "start": 7270.66, + "end": 7279.86, + "probability": 0.9031 + }, + { + "start": 7280.78, + "end": 7284.28, + "probability": 0.9744 + }, + { + "start": 7284.28, + "end": 7286.88, + "probability": 0.9909 + }, + { + "start": 7287.92, + "end": 7292.54, + "probability": 0.9932 + }, + { + "start": 7293.16, + "end": 7298.46, + "probability": 0.999 + }, + { + "start": 7298.46, + "end": 7303.28, + "probability": 0.9937 + }, + { + "start": 7303.92, + "end": 7310.34, + "probability": 0.9125 + }, + { + "start": 7310.34, + "end": 7315.19, + "probability": 0.9974 + }, + { + "start": 7315.84, + "end": 7319.36, + "probability": 0.762 + }, + { + "start": 7321.14, + "end": 7321.34, + "probability": 0.2044 + }, + { + "start": 7321.36, + "end": 7321.66, + "probability": 0.9011 + }, + { + "start": 7321.76, + "end": 7324.1, + "probability": 0.9875 + }, + { + "start": 7324.18, + "end": 7324.86, + "probability": 0.8334 + }, + { + "start": 7324.98, + "end": 7326.02, + "probability": 0.7869 + }, + { + "start": 7326.4, + "end": 7329.0, + "probability": 0.9779 + }, + { + "start": 7329.92, + "end": 7333.04, + "probability": 0.8655 + }, + { + "start": 7333.3, + "end": 7336.42, + "probability": 0.9474 + }, + { + "start": 7336.66, + "end": 7338.42, + "probability": 0.9743 + }, + { + "start": 7339.0, + "end": 7340.72, + "probability": 0.808 + }, + { + "start": 7341.58, + "end": 7347.52, + "probability": 0.9529 + }, + { + "start": 7347.88, + "end": 7349.34, + "probability": 0.9627 + }, + { + "start": 7349.8, + "end": 7350.92, + "probability": 0.9872 + }, + { + "start": 7351.42, + "end": 7355.82, + "probability": 0.9879 + }, + { + "start": 7355.82, + "end": 7362.14, + "probability": 0.9834 + }, + { + "start": 7362.24, + "end": 7366.56, + "probability": 0.7704 + }, + { + "start": 7367.1, + "end": 7369.08, + "probability": 0.901 + }, + { + "start": 7369.26, + "end": 7372.86, + "probability": 0.9963 + }, + { + "start": 7372.86, + "end": 7376.22, + "probability": 0.9937 + }, + { + "start": 7376.76, + "end": 7379.14, + "probability": 0.968 + }, + { + "start": 7379.52, + "end": 7380.68, + "probability": 0.8406 + }, + { + "start": 7381.1, + "end": 7387.28, + "probability": 0.9976 + }, + { + "start": 7387.44, + "end": 7392.18, + "probability": 0.983 + }, + { + "start": 7393.36, + "end": 7398.2, + "probability": 0.9944 + }, + { + "start": 7398.2, + "end": 7401.32, + "probability": 0.9905 + }, + { + "start": 7401.42, + "end": 7404.38, + "probability": 0.9907 + }, + { + "start": 7404.46, + "end": 7405.82, + "probability": 0.8534 + }, + { + "start": 7406.82, + "end": 7411.22, + "probability": 0.8324 + }, + { + "start": 7411.22, + "end": 7415.06, + "probability": 0.8784 + }, + { + "start": 7415.28, + "end": 7418.66, + "probability": 0.9351 + }, + { + "start": 7418.66, + "end": 7425.1, + "probability": 0.9955 + }, + { + "start": 7426.08, + "end": 7430.58, + "probability": 0.9965 + }, + { + "start": 7430.78, + "end": 7431.88, + "probability": 0.8901 + }, + { + "start": 7432.6, + "end": 7438.26, + "probability": 0.965 + }, + { + "start": 7440.06, + "end": 7440.9, + "probability": 0.9082 + }, + { + "start": 7440.94, + "end": 7442.08, + "probability": 0.813 + }, + { + "start": 7442.54, + "end": 7442.84, + "probability": 0.4507 + }, + { + "start": 7442.98, + "end": 7443.78, + "probability": 0.9562 + }, + { + "start": 7443.82, + "end": 7446.98, + "probability": 0.937 + }, + { + "start": 7447.54, + "end": 7449.76, + "probability": 0.9984 + }, + { + "start": 7450.62, + "end": 7455.16, + "probability": 0.9969 + }, + { + "start": 7455.68, + "end": 7457.92, + "probability": 0.9661 + }, + { + "start": 7458.5, + "end": 7463.26, + "probability": 0.8944 + }, + { + "start": 7463.26, + "end": 7470.22, + "probability": 0.994 + }, + { + "start": 7470.22, + "end": 7476.7, + "probability": 0.9868 + }, + { + "start": 7477.3, + "end": 7477.5, + "probability": 0.2866 + }, + { + "start": 7477.56, + "end": 7477.92, + "probability": 0.8041 + }, + { + "start": 7478.0, + "end": 7480.58, + "probability": 0.899 + }, + { + "start": 7481.22, + "end": 7483.36, + "probability": 0.9927 + }, + { + "start": 7483.94, + "end": 7486.32, + "probability": 0.9724 + }, + { + "start": 7486.82, + "end": 7489.24, + "probability": 0.9902 + }, + { + "start": 7489.36, + "end": 7489.62, + "probability": 0.8713 + }, + { + "start": 7490.6, + "end": 7491.9, + "probability": 0.5652 + }, + { + "start": 7492.5, + "end": 7494.96, + "probability": 0.9392 + }, + { + "start": 7507.7, + "end": 7509.74, + "probability": 0.4144 + }, + { + "start": 7509.82, + "end": 7510.48, + "probability": 0.7883 + }, + { + "start": 7510.56, + "end": 7514.92, + "probability": 0.8672 + }, + { + "start": 7515.12, + "end": 7518.92, + "probability": 0.9313 + }, + { + "start": 7519.42, + "end": 7521.8, + "probability": 0.9795 + }, + { + "start": 7521.8, + "end": 7525.48, + "probability": 0.9844 + }, + { + "start": 7526.0, + "end": 7528.58, + "probability": 0.988 + }, + { + "start": 7529.0, + "end": 7533.34, + "probability": 0.9625 + }, + { + "start": 7533.46, + "end": 7535.66, + "probability": 0.8316 + }, + { + "start": 7536.64, + "end": 7543.92, + "probability": 0.708 + }, + { + "start": 7544.98, + "end": 7547.64, + "probability": 0.9958 + }, + { + "start": 7547.64, + "end": 7550.0, + "probability": 0.9698 + }, + { + "start": 7550.7, + "end": 7552.02, + "probability": 0.9575 + }, + { + "start": 7552.56, + "end": 7553.36, + "probability": 0.7549 + }, + { + "start": 7553.44, + "end": 7553.82, + "probability": 0.5143 + }, + { + "start": 7553.98, + "end": 7558.56, + "probability": 0.9196 + }, + { + "start": 7558.7, + "end": 7564.3, + "probability": 0.6291 + }, + { + "start": 7564.52, + "end": 7565.44, + "probability": 0.4986 + }, + { + "start": 7565.8, + "end": 7568.02, + "probability": 0.8816 + }, + { + "start": 7568.08, + "end": 7569.8, + "probability": 0.9653 + }, + { + "start": 7571.52, + "end": 7573.8, + "probability": 0.8382 + }, + { + "start": 7573.84, + "end": 7575.22, + "probability": 0.9097 + }, + { + "start": 7575.34, + "end": 7576.58, + "probability": 0.8882 + }, + { + "start": 7577.2, + "end": 7579.1, + "probability": 0.981 + }, + { + "start": 7579.54, + "end": 7583.94, + "probability": 0.9912 + }, + { + "start": 7584.98, + "end": 7587.0, + "probability": 0.8692 + }, + { + "start": 7587.48, + "end": 7589.74, + "probability": 0.9546 + }, + { + "start": 7589.86, + "end": 7591.02, + "probability": 0.7202 + }, + { + "start": 7591.34, + "end": 7592.94, + "probability": 0.9005 + }, + { + "start": 7593.42, + "end": 7595.96, + "probability": 0.9937 + }, + { + "start": 7595.96, + "end": 7599.94, + "probability": 0.999 + }, + { + "start": 7600.2, + "end": 7601.5, + "probability": 0.9708 + }, + { + "start": 7601.56, + "end": 7602.08, + "probability": 0.4572 + }, + { + "start": 7602.82, + "end": 7604.3, + "probability": 0.8331 + }, + { + "start": 7604.9, + "end": 7604.9, + "probability": 0.2401 + }, + { + "start": 7604.9, + "end": 7610.16, + "probability": 0.9801 + }, + { + "start": 7610.36, + "end": 7611.34, + "probability": 0.5085 + }, + { + "start": 7611.9, + "end": 7612.0, + "probability": 0.2468 + }, + { + "start": 7612.0, + "end": 7613.86, + "probability": 0.963 + }, + { + "start": 7614.38, + "end": 7615.74, + "probability": 0.5024 + }, + { + "start": 7615.82, + "end": 7617.32, + "probability": 0.7911 + }, + { + "start": 7617.36, + "end": 7619.74, + "probability": 0.9702 + }, + { + "start": 7619.94, + "end": 7623.58, + "probability": 0.8029 + }, + { + "start": 7623.64, + "end": 7626.14, + "probability": 0.8365 + }, + { + "start": 7626.62, + "end": 7627.9, + "probability": 0.6091 + }, + { + "start": 7628.68, + "end": 7629.58, + "probability": 0.0321 + }, + { + "start": 7632.24, + "end": 7633.8, + "probability": 0.7231 + }, + { + "start": 7634.82, + "end": 7635.86, + "probability": 0.7288 + }, + { + "start": 7637.08, + "end": 7639.7, + "probability": 0.8128 + }, + { + "start": 7640.98, + "end": 7642.18, + "probability": 0.4948 + }, + { + "start": 7642.84, + "end": 7643.8, + "probability": 0.8422 + }, + { + "start": 7646.36, + "end": 7649.82, + "probability": 0.9731 + }, + { + "start": 7651.64, + "end": 7653.04, + "probability": 0.8491 + }, + { + "start": 7669.54, + "end": 7670.74, + "probability": 0.537 + }, + { + "start": 7670.8, + "end": 7671.66, + "probability": 0.7478 + }, + { + "start": 7671.72, + "end": 7672.76, + "probability": 0.7984 + }, + { + "start": 7672.98, + "end": 7677.7, + "probability": 0.9635 + }, + { + "start": 7677.98, + "end": 7678.44, + "probability": 0.9561 + }, + { + "start": 7679.08, + "end": 7681.52, + "probability": 0.9974 + }, + { + "start": 7682.2, + "end": 7685.94, + "probability": 0.998 + }, + { + "start": 7685.94, + "end": 7689.7, + "probability": 0.9916 + }, + { + "start": 7690.68, + "end": 7693.94, + "probability": 0.9976 + }, + { + "start": 7695.22, + "end": 7696.98, + "probability": 0.9918 + }, + { + "start": 7697.44, + "end": 7700.06, + "probability": 0.9991 + }, + { + "start": 7700.7, + "end": 7701.8, + "probability": 0.8226 + }, + { + "start": 7702.84, + "end": 7707.92, + "probability": 0.9646 + }, + { + "start": 7708.36, + "end": 7709.48, + "probability": 0.9971 + }, + { + "start": 7710.04, + "end": 7716.08, + "probability": 0.9902 + }, + { + "start": 7716.74, + "end": 7719.46, + "probability": 0.936 + }, + { + "start": 7720.38, + "end": 7726.16, + "probability": 0.982 + }, + { + "start": 7727.49, + "end": 7730.2, + "probability": 0.5768 + }, + { + "start": 7730.42, + "end": 7731.36, + "probability": 0.686 + }, + { + "start": 7731.56, + "end": 7735.92, + "probability": 0.9785 + }, + { + "start": 7736.5, + "end": 7739.14, + "probability": 0.7768 + }, + { + "start": 7739.64, + "end": 7743.0, + "probability": 0.9073 + }, + { + "start": 7743.34, + "end": 7746.4, + "probability": 0.9979 + }, + { + "start": 7746.82, + "end": 7751.1, + "probability": 0.9919 + }, + { + "start": 7751.1, + "end": 7753.82, + "probability": 0.9976 + }, + { + "start": 7756.44, + "end": 7757.6, + "probability": 0.5472 + }, + { + "start": 7758.3, + "end": 7762.1, + "probability": 0.984 + }, + { + "start": 7762.72, + "end": 7767.12, + "probability": 0.9913 + }, + { + "start": 7768.06, + "end": 7769.68, + "probability": 0.9578 + }, + { + "start": 7769.86, + "end": 7770.8, + "probability": 0.9463 + }, + { + "start": 7770.82, + "end": 7775.04, + "probability": 0.9727 + }, + { + "start": 7775.78, + "end": 7781.38, + "probability": 0.9783 + }, + { + "start": 7781.56, + "end": 7784.88, + "probability": 0.9988 + }, + { + "start": 7785.1, + "end": 7789.38, + "probability": 0.9912 + }, + { + "start": 7789.96, + "end": 7794.08, + "probability": 0.9781 + }, + { + "start": 7794.14, + "end": 7796.98, + "probability": 0.981 + }, + { + "start": 7797.06, + "end": 7797.44, + "probability": 0.745 + }, + { + "start": 7797.82, + "end": 7799.98, + "probability": 0.4786 + }, + { + "start": 7801.44, + "end": 7802.82, + "probability": 0.7596 + }, + { + "start": 7804.22, + "end": 7805.2, + "probability": 0.9043 + }, + { + "start": 7806.34, + "end": 7807.52, + "probability": 0.882 + }, + { + "start": 7821.06, + "end": 7824.62, + "probability": 0.7432 + }, + { + "start": 7825.36, + "end": 7827.66, + "probability": 0.807 + }, + { + "start": 7828.82, + "end": 7832.68, + "probability": 0.8107 + }, + { + "start": 7833.58, + "end": 7836.27, + "probability": 0.6295 + }, + { + "start": 7837.44, + "end": 7840.48, + "probability": 0.8995 + }, + { + "start": 7841.28, + "end": 7847.7, + "probability": 0.9282 + }, + { + "start": 7847.78, + "end": 7852.32, + "probability": 0.991 + }, + { + "start": 7853.9, + "end": 7857.88, + "probability": 0.8517 + }, + { + "start": 7858.76, + "end": 7859.82, + "probability": 0.2288 + }, + { + "start": 7859.94, + "end": 7860.0, + "probability": 0.2351 + }, + { + "start": 7860.5, + "end": 7865.0, + "probability": 0.9762 + }, + { + "start": 7865.44, + "end": 7868.5, + "probability": 0.9163 + }, + { + "start": 7868.62, + "end": 7872.76, + "probability": 0.9924 + }, + { + "start": 7872.84, + "end": 7875.56, + "probability": 0.9048 + }, + { + "start": 7875.64, + "end": 7876.52, + "probability": 0.7075 + }, + { + "start": 7876.52, + "end": 7877.2, + "probability": 0.6021 + }, + { + "start": 7877.24, + "end": 7878.3, + "probability": 0.8858 + }, + { + "start": 7878.98, + "end": 7883.17, + "probability": 0.9361 + }, + { + "start": 7883.4, + "end": 7884.72, + "probability": 0.9102 + }, + { + "start": 7885.36, + "end": 7888.84, + "probability": 0.9885 + }, + { + "start": 7889.48, + "end": 7895.42, + "probability": 0.9854 + }, + { + "start": 7895.82, + "end": 7897.04, + "probability": 0.9836 + }, + { + "start": 7898.83, + "end": 7900.42, + "probability": 0.7778 + }, + { + "start": 7901.12, + "end": 7902.5, + "probability": 0.8774 + }, + { + "start": 7902.54, + "end": 7903.28, + "probability": 0.8394 + }, + { + "start": 7903.42, + "end": 7904.56, + "probability": 0.9071 + }, + { + "start": 7904.94, + "end": 7907.08, + "probability": 0.9157 + }, + { + "start": 7907.42, + "end": 7908.34, + "probability": 0.9424 + }, + { + "start": 7908.62, + "end": 7911.52, + "probability": 0.9948 + }, + { + "start": 7911.62, + "end": 7914.1, + "probability": 0.9805 + }, + { + "start": 7914.42, + "end": 7915.4, + "probability": 0.9143 + }, + { + "start": 7915.48, + "end": 7919.78, + "probability": 0.9403 + }, + { + "start": 7921.2, + "end": 7922.2, + "probability": 0.9937 + }, + { + "start": 7923.0, + "end": 7924.07, + "probability": 0.9839 + }, + { + "start": 7925.36, + "end": 7926.54, + "probability": 0.9908 + }, + { + "start": 7927.02, + "end": 7928.09, + "probability": 0.9972 + }, + { + "start": 7929.62, + "end": 7930.74, + "probability": 0.5 + }, + { + "start": 7931.18, + "end": 7933.04, + "probability": 0.9007 + }, + { + "start": 7933.18, + "end": 7934.12, + "probability": 0.9236 + }, + { + "start": 7934.18, + "end": 7935.78, + "probability": 0.9902 + }, + { + "start": 7935.88, + "end": 7938.52, + "probability": 0.9488 + }, + { + "start": 7938.6, + "end": 7939.14, + "probability": 0.7214 + }, + { + "start": 7939.52, + "end": 7940.18, + "probability": 0.8022 + }, + { + "start": 7941.02, + "end": 7943.74, + "probability": 0.5605 + }, + { + "start": 7944.9, + "end": 7946.3, + "probability": 0.9805 + }, + { + "start": 7948.92, + "end": 7950.16, + "probability": 0.75 + }, + { + "start": 7950.2, + "end": 7953.95, + "probability": 0.9886 + }, + { + "start": 7955.22, + "end": 7957.0, + "probability": 0.9933 + }, + { + "start": 7957.08, + "end": 7957.58, + "probability": 0.8637 + }, + { + "start": 7957.64, + "end": 7958.6, + "probability": 0.9838 + }, + { + "start": 7959.08, + "end": 7960.64, + "probability": 0.9956 + }, + { + "start": 7961.0, + "end": 7962.06, + "probability": 0.7602 + }, + { + "start": 7962.5, + "end": 7963.56, + "probability": 0.8989 + }, + { + "start": 7963.74, + "end": 7966.28, + "probability": 0.9832 + }, + { + "start": 7966.8, + "end": 7969.3, + "probability": 0.98 + }, + { + "start": 7970.28, + "end": 7971.44, + "probability": 0.8237 + }, + { + "start": 7971.96, + "end": 7973.51, + "probability": 0.9935 + }, + { + "start": 7973.66, + "end": 7974.98, + "probability": 0.868 + }, + { + "start": 7975.26, + "end": 7976.4, + "probability": 0.9924 + }, + { + "start": 7977.64, + "end": 7980.11, + "probability": 0.701 + }, + { + "start": 7980.72, + "end": 7982.2, + "probability": 0.6271 + }, + { + "start": 7982.58, + "end": 7986.6, + "probability": 0.9651 + }, + { + "start": 7987.02, + "end": 7989.58, + "probability": 0.8498 + }, + { + "start": 7990.0, + "end": 7990.52, + "probability": 0.6617 + }, + { + "start": 7990.6, + "end": 7991.04, + "probability": 0.6514 + }, + { + "start": 7991.82, + "end": 7994.68, + "probability": 0.8349 + }, + { + "start": 7995.22, + "end": 7996.7, + "probability": 0.9897 + }, + { + "start": 7998.16, + "end": 8000.27, + "probability": 0.9871 + }, + { + "start": 8000.98, + "end": 8006.62, + "probability": 0.9736 + }, + { + "start": 8006.9, + "end": 8009.42, + "probability": 0.9152 + }, + { + "start": 8009.56, + "end": 8010.34, + "probability": 0.5644 + }, + { + "start": 8010.58, + "end": 8012.36, + "probability": 0.5674 + }, + { + "start": 8012.42, + "end": 8013.98, + "probability": 0.8288 + }, + { + "start": 8014.06, + "end": 8016.68, + "probability": 0.9583 + }, + { + "start": 8017.26, + "end": 8019.82, + "probability": 0.9557 + }, + { + "start": 8020.0, + "end": 8021.58, + "probability": 0.9409 + }, + { + "start": 8021.96, + "end": 8022.22, + "probability": 0.8228 + }, + { + "start": 8022.32, + "end": 8025.28, + "probability": 0.947 + }, + { + "start": 8025.7, + "end": 8028.44, + "probability": 0.8495 + }, + { + "start": 8028.46, + "end": 8028.74, + "probability": 0.6786 + }, + { + "start": 8029.86, + "end": 8032.1, + "probability": 0.5776 + }, + { + "start": 8033.58, + "end": 8034.96, + "probability": 0.986 + }, + { + "start": 8035.94, + "end": 8036.84, + "probability": 0.7473 + }, + { + "start": 8037.76, + "end": 8040.04, + "probability": 0.9624 + }, + { + "start": 8041.06, + "end": 8041.9, + "probability": 0.7821 + }, + { + "start": 8042.48, + "end": 8043.42, + "probability": 0.5281 + }, + { + "start": 8043.56, + "end": 8044.76, + "probability": 0.4942 + }, + { + "start": 8046.3, + "end": 8046.72, + "probability": 0.0795 + }, + { + "start": 8046.72, + "end": 8046.86, + "probability": 0.2193 + }, + { + "start": 8046.96, + "end": 8047.12, + "probability": 0.467 + }, + { + "start": 8048.5, + "end": 8051.82, + "probability": 0.8524 + }, + { + "start": 8053.42, + "end": 8055.86, + "probability": 0.7252 + }, + { + "start": 8056.54, + "end": 8058.3, + "probability": 0.9693 + }, + { + "start": 8058.86, + "end": 8059.76, + "probability": 0.9792 + }, + { + "start": 8061.9, + "end": 8063.5, + "probability": 0.6116 + }, + { + "start": 8064.74, + "end": 8065.7, + "probability": 0.8878 + }, + { + "start": 8066.94, + "end": 8069.9, + "probability": 0.9784 + }, + { + "start": 8071.52, + "end": 8072.62, + "probability": 0.8552 + }, + { + "start": 8073.76, + "end": 8074.72, + "probability": 0.9465 + }, + { + "start": 8082.12, + "end": 8085.76, + "probability": 0.9775 + }, + { + "start": 8087.16, + "end": 8089.8, + "probability": 0.6988 + }, + { + "start": 8091.36, + "end": 8093.62, + "probability": 0.8831 + }, + { + "start": 8094.3, + "end": 8095.38, + "probability": 0.9555 + }, + { + "start": 8096.5, + "end": 8098.08, + "probability": 0.9941 + }, + { + "start": 8098.98, + "end": 8100.02, + "probability": 0.9869 + }, + { + "start": 8100.6, + "end": 8101.96, + "probability": 0.9839 + }, + { + "start": 8102.72, + "end": 8103.54, + "probability": 0.957 + }, + { + "start": 8104.62, + "end": 8106.03, + "probability": 0.9899 + }, + { + "start": 8106.64, + "end": 8107.64, + "probability": 0.6569 + }, + { + "start": 8108.46, + "end": 8111.0, + "probability": 0.8167 + }, + { + "start": 8112.36, + "end": 8113.82, + "probability": 0.8595 + }, + { + "start": 8115.82, + "end": 8117.32, + "probability": 0.8077 + }, + { + "start": 8133.64, + "end": 8134.54, + "probability": 0.4575 + }, + { + "start": 8134.54, + "end": 8135.26, + "probability": 0.5406 + }, + { + "start": 8135.3, + "end": 8136.95, + "probability": 0.9771 + }, + { + "start": 8138.04, + "end": 8138.54, + "probability": 0.7729 + }, + { + "start": 8138.72, + "end": 8143.76, + "probability": 0.9922 + }, + { + "start": 8144.64, + "end": 8149.56, + "probability": 0.9868 + }, + { + "start": 8149.64, + "end": 8151.02, + "probability": 0.9861 + }, + { + "start": 8152.08, + "end": 8153.9, + "probability": 0.8967 + }, + { + "start": 8154.94, + "end": 8155.38, + "probability": 0.0064 + }, + { + "start": 8155.38, + "end": 8158.64, + "probability": 0.2673 + }, + { + "start": 8159.02, + "end": 8160.88, + "probability": 0.8217 + }, + { + "start": 8161.06, + "end": 8163.0, + "probability": 0.3211 + }, + { + "start": 8164.42, + "end": 8170.88, + "probability": 0.9264 + }, + { + "start": 8171.02, + "end": 8171.54, + "probability": 0.6224 + }, + { + "start": 8171.8, + "end": 8174.5, + "probability": 0.7294 + }, + { + "start": 8174.62, + "end": 8175.56, + "probability": 0.7491 + }, + { + "start": 8175.62, + "end": 8177.62, + "probability": 0.991 + }, + { + "start": 8177.72, + "end": 8178.52, + "probability": 0.8998 + }, + { + "start": 8179.26, + "end": 8184.16, + "probability": 0.9868 + }, + { + "start": 8184.8, + "end": 8190.48, + "probability": 0.9976 + }, + { + "start": 8191.0, + "end": 8196.52, + "probability": 0.9688 + }, + { + "start": 8196.56, + "end": 8197.08, + "probability": 0.5301 + }, + { + "start": 8197.82, + "end": 8199.2, + "probability": 0.7951 + }, + { + "start": 8199.28, + "end": 8201.78, + "probability": 0.8909 + }, + { + "start": 8203.94, + "end": 8206.06, + "probability": 0.677 + }, + { + "start": 8206.24, + "end": 8207.9, + "probability": 0.7407 + }, + { + "start": 8208.36, + "end": 8208.68, + "probability": 0.6526 + }, + { + "start": 8208.84, + "end": 8209.32, + "probability": 0.6329 + }, + { + "start": 8209.62, + "end": 8210.58, + "probability": 0.8191 + }, + { + "start": 8211.06, + "end": 8215.26, + "probability": 0.8607 + }, + { + "start": 8215.36, + "end": 8218.18, + "probability": 0.9865 + }, + { + "start": 8218.5, + "end": 8219.7, + "probability": 0.6069 + }, + { + "start": 8220.14, + "end": 8220.52, + "probability": 0.4203 + }, + { + "start": 8220.54, + "end": 8221.98, + "probability": 0.9141 + }, + { + "start": 8222.96, + "end": 8225.14, + "probability": 0.9263 + }, + { + "start": 8225.46, + "end": 8228.68, + "probability": 0.8962 + }, + { + "start": 8228.86, + "end": 8229.32, + "probability": 0.4896 + }, + { + "start": 8229.56, + "end": 8229.82, + "probability": 0.708 + }, + { + "start": 8229.92, + "end": 8232.14, + "probability": 0.5964 + }, + { + "start": 8232.22, + "end": 8233.16, + "probability": 0.2266 + }, + { + "start": 8234.08, + "end": 8234.08, + "probability": 0.0479 + }, + { + "start": 8234.08, + "end": 8234.38, + "probability": 0.7008 + }, + { + "start": 8234.44, + "end": 8236.32, + "probability": 0.624 + }, + { + "start": 8236.32, + "end": 8237.44, + "probability": 0.3402 + }, + { + "start": 8237.96, + "end": 8239.42, + "probability": 0.2458 + }, + { + "start": 8239.98, + "end": 8240.26, + "probability": 0.7626 + }, + { + "start": 8244.44, + "end": 8247.18, + "probability": 0.8771 + }, + { + "start": 8247.3, + "end": 8249.3, + "probability": 0.5946 + }, + { + "start": 8249.36, + "end": 8250.4, + "probability": 0.6789 + }, + { + "start": 8250.8, + "end": 8251.84, + "probability": 0.6554 + }, + { + "start": 8252.86, + "end": 8258.2, + "probability": 0.3583 + }, + { + "start": 8258.28, + "end": 8259.32, + "probability": 0.8947 + }, + { + "start": 8260.04, + "end": 8260.32, + "probability": 0.1598 + }, + { + "start": 8260.32, + "end": 8262.68, + "probability": 0.2439 + }, + { + "start": 8263.02, + "end": 8263.18, + "probability": 0.2744 + }, + { + "start": 8263.24, + "end": 8265.7, + "probability": 0.9471 + }, + { + "start": 8265.86, + "end": 8267.68, + "probability": 0.3594 + }, + { + "start": 8267.76, + "end": 8269.59, + "probability": 0.7339 + }, + { + "start": 8269.8, + "end": 8271.82, + "probability": 0.6256 + }, + { + "start": 8271.88, + "end": 8272.58, + "probability": 0.7714 + }, + { + "start": 8273.82, + "end": 8275.28, + "probability": 0.9868 + }, + { + "start": 8275.4, + "end": 8276.38, + "probability": 0.8525 + }, + { + "start": 8277.1, + "end": 8279.48, + "probability": 0.9592 + }, + { + "start": 8280.9, + "end": 8283.58, + "probability": 0.8426 + }, + { + "start": 8284.3, + "end": 8287.12, + "probability": 0.9268 + }, + { + "start": 8288.56, + "end": 8292.68, + "probability": 0.9858 + }, + { + "start": 8293.48, + "end": 8296.8, + "probability": 0.9939 + }, + { + "start": 8297.38, + "end": 8299.82, + "probability": 0.5483 + }, + { + "start": 8300.38, + "end": 8303.64, + "probability": 0.9927 + }, + { + "start": 8304.36, + "end": 8305.8, + "probability": 0.7556 + }, + { + "start": 8306.06, + "end": 8307.02, + "probability": 0.7042 + }, + { + "start": 8307.38, + "end": 8308.62, + "probability": 0.8776 + }, + { + "start": 8309.34, + "end": 8312.08, + "probability": 0.9702 + }, + { + "start": 8312.72, + "end": 8312.86, + "probability": 0.2588 + }, + { + "start": 8313.02, + "end": 8314.04, + "probability": 0.2779 + }, + { + "start": 8314.7, + "end": 8315.06, + "probability": 0.1637 + }, + { + "start": 8315.3, + "end": 8315.3, + "probability": 0.485 + }, + { + "start": 8315.3, + "end": 8315.36, + "probability": 0.2101 + }, + { + "start": 8315.36, + "end": 8316.66, + "probability": 0.5751 + }, + { + "start": 8316.66, + "end": 8319.34, + "probability": 0.6132 + }, + { + "start": 8319.34, + "end": 8319.8, + "probability": 0.2222 + }, + { + "start": 8322.13, + "end": 8322.8, + "probability": 0.1828 + }, + { + "start": 8322.8, + "end": 8322.8, + "probability": 0.0866 + }, + { + "start": 8322.8, + "end": 8323.48, + "probability": 0.8518 + }, + { + "start": 8323.5, + "end": 8325.72, + "probability": 0.7057 + }, + { + "start": 8326.2, + "end": 8326.3, + "probability": 0.5784 + }, + { + "start": 8327.5, + "end": 8328.02, + "probability": 0.5638 + }, + { + "start": 8328.02, + "end": 8328.92, + "probability": 0.3237 + }, + { + "start": 8328.94, + "end": 8330.12, + "probability": 0.9131 + }, + { + "start": 8330.54, + "end": 8332.84, + "probability": 0.589 + }, + { + "start": 8333.42, + "end": 8334.56, + "probability": 0.9883 + }, + { + "start": 8334.6, + "end": 8339.7, + "probability": 0.9831 + }, + { + "start": 8339.88, + "end": 8340.58, + "probability": 0.7213 + }, + { + "start": 8341.24, + "end": 8343.82, + "probability": 0.9954 + }, + { + "start": 8344.84, + "end": 8346.06, + "probability": 0.7085 + }, + { + "start": 8346.78, + "end": 8347.64, + "probability": 0.4513 + }, + { + "start": 8347.74, + "end": 8348.7, + "probability": 0.9175 + }, + { + "start": 8348.86, + "end": 8353.12, + "probability": 0.5639 + }, + { + "start": 8353.3, + "end": 8354.88, + "probability": 0.9946 + }, + { + "start": 8355.08, + "end": 8355.66, + "probability": 0.96 + }, + { + "start": 8356.28, + "end": 8358.68, + "probability": 0.8792 + }, + { + "start": 8359.2, + "end": 8362.5, + "probability": 0.817 + }, + { + "start": 8362.6, + "end": 8364.94, + "probability": 0.9575 + }, + { + "start": 8365.0, + "end": 8365.84, + "probability": 0.8064 + }, + { + "start": 8365.84, + "end": 8365.88, + "probability": 0.6066 + }, + { + "start": 8366.16, + "end": 8366.78, + "probability": 0.8616 + }, + { + "start": 8366.78, + "end": 8368.36, + "probability": 0.748 + }, + { + "start": 8368.48, + "end": 8369.78, + "probability": 0.9147 + }, + { + "start": 8370.14, + "end": 8370.64, + "probability": 0.7648 + }, + { + "start": 8371.3, + "end": 8371.73, + "probability": 0.3316 + }, + { + "start": 8371.76, + "end": 8372.0, + "probability": 0.0797 + }, + { + "start": 8372.0, + "end": 8374.37, + "probability": 0.2669 + }, + { + "start": 8374.66, + "end": 8377.08, + "probability": 0.7598 + }, + { + "start": 8378.08, + "end": 8378.8, + "probability": 0.3801 + }, + { + "start": 8378.98, + "end": 8379.84, + "probability": 0.7299 + }, + { + "start": 8379.98, + "end": 8381.26, + "probability": 0.933 + }, + { + "start": 8381.52, + "end": 8382.12, + "probability": 0.2937 + }, + { + "start": 8382.98, + "end": 8384.6, + "probability": 0.7982 + }, + { + "start": 8385.2, + "end": 8387.0, + "probability": 0.42 + }, + { + "start": 8387.14, + "end": 8388.12, + "probability": 0.5755 + }, + { + "start": 8388.92, + "end": 8390.02, + "probability": 0.0019 + }, + { + "start": 8390.04, + "end": 8395.52, + "probability": 0.6742 + }, + { + "start": 8396.34, + "end": 8397.48, + "probability": 0.5358 + }, + { + "start": 8397.62, + "end": 8400.22, + "probability": 0.1129 + }, + { + "start": 8400.6, + "end": 8401.32, + "probability": 0.7145 + }, + { + "start": 8403.96, + "end": 8405.61, + "probability": 0.5593 + }, + { + "start": 8410.14, + "end": 8412.52, + "probability": 0.3789 + }, + { + "start": 8412.72, + "end": 8413.6, + "probability": 0.6845 + }, + { + "start": 8414.48, + "end": 8416.36, + "probability": 0.0579 + }, + { + "start": 8418.86, + "end": 8426.7, + "probability": 0.0928 + }, + { + "start": 8429.34, + "end": 8429.62, + "probability": 0.0255 + }, + { + "start": 8431.28, + "end": 8434.42, + "probability": 0.7491 + }, + { + "start": 8436.6, + "end": 8437.6, + "probability": 0.045 + }, + { + "start": 8437.6, + "end": 8437.6, + "probability": 0.0953 + }, + { + "start": 8437.6, + "end": 8437.6, + "probability": 0.1393 + }, + { + "start": 8437.6, + "end": 8437.6, + "probability": 0.066 + }, + { + "start": 8437.6, + "end": 8438.82, + "probability": 0.7142 + }, + { + "start": 8440.28, + "end": 8441.84, + "probability": 0.2756 + }, + { + "start": 8442.36, + "end": 8445.26, + "probability": 0.7515 + }, + { + "start": 8445.4, + "end": 8447.8, + "probability": 0.2308 + }, + { + "start": 8448.0, + "end": 8450.7, + "probability": 0.9771 + }, + { + "start": 8451.5, + "end": 8451.5, + "probability": 0.5379 + }, + { + "start": 8451.5, + "end": 8452.66, + "probability": 0.9361 + }, + { + "start": 8453.26, + "end": 8454.72, + "probability": 0.9545 + }, + { + "start": 8456.7, + "end": 8459.3, + "probability": 0.6795 + }, + { + "start": 8460.82, + "end": 8464.46, + "probability": 0.997 + }, + { + "start": 8465.22, + "end": 8467.56, + "probability": 0.9758 + }, + { + "start": 8469.45, + "end": 8472.88, + "probability": 0.9916 + }, + { + "start": 8475.38, + "end": 8476.26, + "probability": 0.5022 + }, + { + "start": 8476.34, + "end": 8479.66, + "probability": 0.7203 + }, + { + "start": 8480.34, + "end": 8483.5, + "probability": 0.9643 + }, + { + "start": 8487.26, + "end": 8488.56, + "probability": 0.9956 + }, + { + "start": 8488.96, + "end": 8497.44, + "probability": 0.9658 + }, + { + "start": 8497.9, + "end": 8498.9, + "probability": 0.8376 + }, + { + "start": 8500.1, + "end": 8503.98, + "probability": 0.9152 + }, + { + "start": 8504.46, + "end": 8510.74, + "probability": 0.9878 + }, + { + "start": 8511.06, + "end": 8511.54, + "probability": 0.8389 + }, + { + "start": 8511.98, + "end": 8512.64, + "probability": 0.6946 + }, + { + "start": 8514.22, + "end": 8515.28, + "probability": 0.9272 + }, + { + "start": 8516.34, + "end": 8517.96, + "probability": 0.8289 + }, + { + "start": 8518.74, + "end": 8519.7, + "probability": 0.6444 + }, + { + "start": 8520.86, + "end": 8522.28, + "probability": 0.8726 + }, + { + "start": 8523.04, + "end": 8523.92, + "probability": 0.9395 + }, + { + "start": 8524.96, + "end": 8526.36, + "probability": 0.9209 + }, + { + "start": 8527.28, + "end": 8528.08, + "probability": 0.9611 + }, + { + "start": 8528.82, + "end": 8530.12, + "probability": 0.9736 + }, + { + "start": 8532.04, + "end": 8532.72, + "probability": 0.519 + }, + { + "start": 8533.96, + "end": 8534.64, + "probability": 0.9953 + }, + { + "start": 8535.42, + "end": 8536.46, + "probability": 0.909 + }, + { + "start": 8537.62, + "end": 8538.46, + "probability": 0.9663 + }, + { + "start": 8539.86, + "end": 8541.5, + "probability": 0.7461 + }, + { + "start": 8542.56, + "end": 8543.38, + "probability": 0.6476 + }, + { + "start": 8544.84, + "end": 8545.82, + "probability": 0.9796 + }, + { + "start": 8547.24, + "end": 8548.34, + "probability": 0.8953 + }, + { + "start": 8549.38, + "end": 8550.24, + "probability": 0.9737 + }, + { + "start": 8552.88, + "end": 8554.84, + "probability": 0.844 + }, + { + "start": 8555.58, + "end": 8556.78, + "probability": 0.9772 + }, + { + "start": 8557.64, + "end": 8560.18, + "probability": 0.9448 + }, + { + "start": 8561.76, + "end": 8564.2, + "probability": 0.7826 + }, + { + "start": 8566.06, + "end": 8567.94, + "probability": 0.9633 + }, + { + "start": 8569.23, + "end": 8571.86, + "probability": 0.3509 + }, + { + "start": 8572.08, + "end": 8574.78, + "probability": 0.9262 + }, + { + "start": 8574.88, + "end": 8576.2, + "probability": 0.4052 + }, + { + "start": 8576.64, + "end": 8578.36, + "probability": 0.9614 + }, + { + "start": 8578.6, + "end": 8579.6, + "probability": 0.7529 + }, + { + "start": 8580.18, + "end": 8581.26, + "probability": 0.9155 + }, + { + "start": 8581.4, + "end": 8584.2, + "probability": 0.9718 + }, + { + "start": 8584.86, + "end": 8590.22, + "probability": 0.9656 + }, + { + "start": 8590.44, + "end": 8594.0, + "probability": 0.8583 + }, + { + "start": 8594.74, + "end": 8597.38, + "probability": 0.9777 + }, + { + "start": 8597.82, + "end": 8599.54, + "probability": 0.9954 + }, + { + "start": 8599.86, + "end": 8600.73, + "probability": 0.2305 + }, + { + "start": 8601.06, + "end": 8603.08, + "probability": 0.4776 + }, + { + "start": 8603.4, + "end": 8604.5, + "probability": 0.0327 + }, + { + "start": 8606.53, + "end": 8611.36, + "probability": 0.7607 + }, + { + "start": 8612.06, + "end": 8614.54, + "probability": 0.9463 + }, + { + "start": 8614.54, + "end": 8619.68, + "probability": 0.557 + }, + { + "start": 8619.68, + "end": 8622.08, + "probability": 0.181 + }, + { + "start": 8624.28, + "end": 8627.3, + "probability": 0.8552 + }, + { + "start": 8630.42, + "end": 8631.1, + "probability": 0.7208 + }, + { + "start": 8631.62, + "end": 8634.44, + "probability": 0.7064 + }, + { + "start": 8635.5, + "end": 8638.24, + "probability": 0.9672 + }, + { + "start": 8640.22, + "end": 8642.92, + "probability": 0.9754 + }, + { + "start": 8644.08, + "end": 8645.78, + "probability": 0.7633 + }, + { + "start": 8646.32, + "end": 8647.58, + "probability": 0.9888 + }, + { + "start": 8648.48, + "end": 8651.34, + "probability": 0.8571 + }, + { + "start": 8652.22, + "end": 8654.56, + "probability": 0.7563 + }, + { + "start": 8655.58, + "end": 8657.32, + "probability": 0.9717 + }, + { + "start": 8657.88, + "end": 8658.94, + "probability": 0.9459 + }, + { + "start": 8660.72, + "end": 8663.89, + "probability": 0.9749 + }, + { + "start": 8665.0, + "end": 8667.04, + "probability": 0.9829 + }, + { + "start": 8668.6, + "end": 8670.18, + "probability": 0.9696 + }, + { + "start": 8683.84, + "end": 8686.44, + "probability": 0.9515 + }, + { + "start": 8687.97, + "end": 8691.2, + "probability": 0.7724 + }, + { + "start": 8691.36, + "end": 8693.68, + "probability": 0.3739 + }, + { + "start": 8693.9, + "end": 8695.16, + "probability": 0.6974 + }, + { + "start": 8695.66, + "end": 8697.27, + "probability": 0.966 + }, + { + "start": 8697.68, + "end": 8700.88, + "probability": 0.9222 + }, + { + "start": 8700.98, + "end": 8703.24, + "probability": 0.753 + }, + { + "start": 8703.34, + "end": 8704.51, + "probability": 0.6521 + }, + { + "start": 8704.78, + "end": 8704.78, + "probability": 0.0376 + }, + { + "start": 8704.78, + "end": 8707.2, + "probability": 0.972 + }, + { + "start": 8707.28, + "end": 8708.96, + "probability": 0.7767 + }, + { + "start": 8709.16, + "end": 8711.06, + "probability": 0.8413 + }, + { + "start": 8711.18, + "end": 8711.92, + "probability": 0.7607 + }, + { + "start": 8712.1, + "end": 8713.16, + "probability": 0.5103 + }, + { + "start": 8713.5, + "end": 8716.26, + "probability": 0.9749 + }, + { + "start": 8716.34, + "end": 8716.92, + "probability": 0.6561 + }, + { + "start": 8717.1, + "end": 8717.9, + "probability": 0.743 + }, + { + "start": 8718.2, + "end": 8718.68, + "probability": 0.7438 + }, + { + "start": 8718.74, + "end": 8719.76, + "probability": 0.4432 + }, + { + "start": 8721.63, + "end": 8725.34, + "probability": 0.7336 + }, + { + "start": 8726.14, + "end": 8728.62, + "probability": 0.8355 + }, + { + "start": 8729.68, + "end": 8735.12, + "probability": 0.8428 + }, + { + "start": 8736.24, + "end": 8740.06, + "probability": 0.8667 + }, + { + "start": 8741.42, + "end": 8743.54, + "probability": 0.8877 + }, + { + "start": 8744.24, + "end": 8750.1, + "probability": 0.9878 + }, + { + "start": 8751.7, + "end": 8752.02, + "probability": 0.7958 + }, + { + "start": 8752.78, + "end": 8753.38, + "probability": 0.8942 + }, + { + "start": 8755.42, + "end": 8757.02, + "probability": 0.7472 + }, + { + "start": 8758.0, + "end": 8763.28, + "probability": 0.9709 + }, + { + "start": 8763.88, + "end": 8766.1, + "probability": 0.9312 + }, + { + "start": 8766.22, + "end": 8767.74, + "probability": 0.8318 + }, + { + "start": 8767.9, + "end": 8770.32, + "probability": 0.8533 + }, + { + "start": 8771.1, + "end": 8771.76, + "probability": 0.3463 + }, + { + "start": 8772.32, + "end": 8774.1, + "probability": 0.8887 + }, + { + "start": 8774.1, + "end": 8776.84, + "probability": 0.3059 + }, + { + "start": 8776.92, + "end": 8778.14, + "probability": 0.796 + }, + { + "start": 8778.18, + "end": 8780.08, + "probability": 0.8312 + }, + { + "start": 8780.32, + "end": 8784.3, + "probability": 0.9525 + }, + { + "start": 8784.74, + "end": 8787.72, + "probability": 0.6148 + }, + { + "start": 8787.82, + "end": 8788.08, + "probability": 0.7199 + }, + { + "start": 8788.32, + "end": 8793.04, + "probability": 0.8972 + }, + { + "start": 8793.36, + "end": 8794.01, + "probability": 0.8878 + }, + { + "start": 8794.46, + "end": 8801.38, + "probability": 0.9591 + }, + { + "start": 8801.58, + "end": 8802.46, + "probability": 0.885 + }, + { + "start": 8802.76, + "end": 8806.96, + "probability": 0.9518 + }, + { + "start": 8807.34, + "end": 8808.28, + "probability": 0.8286 + }, + { + "start": 8809.08, + "end": 8814.26, + "probability": 0.8865 + }, + { + "start": 8814.84, + "end": 8818.46, + "probability": 0.9936 + }, + { + "start": 8818.64, + "end": 8820.14, + "probability": 0.9812 + }, + { + "start": 8820.88, + "end": 8821.96, + "probability": 0.6857 + }, + { + "start": 8822.42, + "end": 8828.2, + "probability": 0.9747 + }, + { + "start": 8829.26, + "end": 8830.18, + "probability": 0.9604 + }, + { + "start": 8830.4, + "end": 8835.24, + "probability": 0.9706 + }, + { + "start": 8835.68, + "end": 8836.48, + "probability": 0.9904 + }, + { + "start": 8837.32, + "end": 8839.92, + "probability": 0.9917 + }, + { + "start": 8841.2, + "end": 8846.06, + "probability": 0.812 + }, + { + "start": 8847.02, + "end": 8851.22, + "probability": 0.9844 + }, + { + "start": 8853.66, + "end": 8857.36, + "probability": 0.4862 + }, + { + "start": 8857.42, + "end": 8860.36, + "probability": 0.8581 + }, + { + "start": 8860.86, + "end": 8864.18, + "probability": 0.9938 + }, + { + "start": 8865.22, + "end": 8869.12, + "probability": 0.9642 + }, + { + "start": 8869.84, + "end": 8870.9, + "probability": 0.889 + }, + { + "start": 8871.42, + "end": 8875.1, + "probability": 0.9597 + }, + { + "start": 8875.1, + "end": 8877.48, + "probability": 0.9907 + }, + { + "start": 8877.74, + "end": 8879.18, + "probability": 0.3471 + }, + { + "start": 8879.82, + "end": 8880.9, + "probability": 0.6357 + }, + { + "start": 8881.14, + "end": 8881.72, + "probability": 0.7237 + }, + { + "start": 8881.9, + "end": 8884.9, + "probability": 0.4712 + }, + { + "start": 8885.16, + "end": 8885.96, + "probability": 0.4979 + }, + { + "start": 8886.14, + "end": 8889.28, + "probability": 0.9108 + }, + { + "start": 8889.76, + "end": 8890.88, + "probability": 0.565 + }, + { + "start": 8890.9, + "end": 8891.86, + "probability": 0.7251 + }, + { + "start": 8892.56, + "end": 8893.2, + "probability": 0.3584 + }, + { + "start": 8893.36, + "end": 8894.18, + "probability": 0.6208 + }, + { + "start": 8894.68, + "end": 8896.3, + "probability": 0.9866 + }, + { + "start": 8896.84, + "end": 8900.26, + "probability": 0.9394 + }, + { + "start": 8900.6, + "end": 8900.6, + "probability": 0.0089 + }, + { + "start": 8900.6, + "end": 8901.88, + "probability": 0.4935 + }, + { + "start": 8902.34, + "end": 8907.38, + "probability": 0.9926 + }, + { + "start": 8907.4, + "end": 8910.8, + "probability": 0.4828 + }, + { + "start": 8911.06, + "end": 8911.76, + "probability": 0.341 + }, + { + "start": 8911.9, + "end": 8913.55, + "probability": 0.9265 + }, + { + "start": 8913.96, + "end": 8915.38, + "probability": 0.9775 + }, + { + "start": 8915.74, + "end": 8919.04, + "probability": 0.9771 + }, + { + "start": 8919.08, + "end": 8924.48, + "probability": 0.9385 + }, + { + "start": 8924.84, + "end": 8928.68, + "probability": 0.5735 + }, + { + "start": 8929.2, + "end": 8931.36, + "probability": 0.5162 + }, + { + "start": 8932.74, + "end": 8934.74, + "probability": 0.6744 + }, + { + "start": 8938.22, + "end": 8940.66, + "probability": 0.9256 + }, + { + "start": 8941.6, + "end": 8944.42, + "probability": 0.7897 + }, + { + "start": 8944.94, + "end": 8946.5, + "probability": 0.9483 + }, + { + "start": 8947.2, + "end": 8948.14, + "probability": 0.7641 + }, + { + "start": 8949.56, + "end": 8950.98, + "probability": 0.9674 + }, + { + "start": 8951.56, + "end": 8952.18, + "probability": 0.6818 + }, + { + "start": 8952.4, + "end": 8953.18, + "probability": 0.6107 + }, + { + "start": 8953.66, + "end": 8959.12, + "probability": 0.7827 + }, + { + "start": 8960.28, + "end": 8963.44, + "probability": 0.9455 + }, + { + "start": 8964.2, + "end": 8966.56, + "probability": 0.8519 + }, + { + "start": 8966.66, + "end": 8969.28, + "probability": 0.1396 + }, + { + "start": 8969.52, + "end": 8970.72, + "probability": 0.7183 + }, + { + "start": 8974.78, + "end": 8976.66, + "probability": 0.4526 + }, + { + "start": 8995.64, + "end": 8998.04, + "probability": 0.4577 + }, + { + "start": 8998.04, + "end": 9001.82, + "probability": 0.634 + }, + { + "start": 9002.22, + "end": 9004.04, + "probability": 0.1349 + }, + { + "start": 9007.69, + "end": 9010.38, + "probability": 0.6596 + }, + { + "start": 9013.66, + "end": 9014.52, + "probability": 0.1288 + }, + { + "start": 9014.52, + "end": 9016.72, + "probability": 0.0258 + }, + { + "start": 9018.0, + "end": 9019.56, + "probability": 0.0136 + }, + { + "start": 9019.96, + "end": 9024.7, + "probability": 0.0816 + }, + { + "start": 9025.06, + "end": 9026.7, + "probability": 0.1445 + }, + { + "start": 9026.7, + "end": 9027.2, + "probability": 0.1147 + }, + { + "start": 9028.9, + "end": 9031.72, + "probability": 0.0026 + }, + { + "start": 9034.6, + "end": 9041.14, + "probability": 0.0471 + }, + { + "start": 9041.14, + "end": 9044.66, + "probability": 0.0659 + }, + { + "start": 9045.24, + "end": 9050.75, + "probability": 0.0673 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.0, + "end": 9068.0, + "probability": 0.0 + }, + { + "start": 9068.1, + "end": 9073.16, + "probability": 0.5035 + }, + { + "start": 9074.44, + "end": 9081.96, + "probability": 0.9831 + }, + { + "start": 9084.26, + "end": 9086.26, + "probability": 0.9082 + }, + { + "start": 9086.26, + "end": 9088.78, + "probability": 0.8844 + }, + { + "start": 9089.34, + "end": 9091.22, + "probability": 0.915 + }, + { + "start": 9093.1, + "end": 9093.54, + "probability": 0.2355 + }, + { + "start": 9093.54, + "end": 9094.5, + "probability": 0.4928 + }, + { + "start": 9096.5, + "end": 9098.26, + "probability": 0.8642 + }, + { + "start": 9098.36, + "end": 9103.04, + "probability": 0.9822 + }, + { + "start": 9103.6, + "end": 9108.1, + "probability": 0.9499 + }, + { + "start": 9109.95, + "end": 9114.06, + "probability": 0.9921 + }, + { + "start": 9114.4, + "end": 9117.18, + "probability": 0.9935 + }, + { + "start": 9117.92, + "end": 9123.9, + "probability": 0.9263 + }, + { + "start": 9124.44, + "end": 9125.36, + "probability": 0.9879 + }, + { + "start": 9125.46, + "end": 9128.72, + "probability": 0.9809 + }, + { + "start": 9128.94, + "end": 9129.52, + "probability": 0.7648 + }, + { + "start": 9129.74, + "end": 9130.86, + "probability": 0.2597 + }, + { + "start": 9131.12, + "end": 9132.62, + "probability": 0.6606 + }, + { + "start": 9132.62, + "end": 9133.48, + "probability": 0.0938 + }, + { + "start": 9133.8, + "end": 9135.18, + "probability": 0.0214 + }, + { + "start": 9135.48, + "end": 9135.6, + "probability": 0.1976 + }, + { + "start": 9136.42, + "end": 9136.64, + "probability": 0.1297 + }, + { + "start": 9136.84, + "end": 9138.32, + "probability": 0.8857 + }, + { + "start": 9139.12, + "end": 9140.14, + "probability": 0.7804 + }, + { + "start": 9142.18, + "end": 9145.86, + "probability": 0.8393 + }, + { + "start": 9147.42, + "end": 9148.78, + "probability": 0.9227 + }, + { + "start": 9149.38, + "end": 9150.4, + "probability": 0.6774 + }, + { + "start": 9163.26, + "end": 9164.0, + "probability": 0.4911 + }, + { + "start": 9164.0, + "end": 9164.0, + "probability": 0.0087 + }, + { + "start": 9164.0, + "end": 9164.0, + "probability": 0.2543 + }, + { + "start": 9164.0, + "end": 9164.0, + "probability": 0.3511 + }, + { + "start": 9164.0, + "end": 9164.0, + "probability": 0.2885 + }, + { + "start": 9164.0, + "end": 9164.98, + "probability": 0.6079 + }, + { + "start": 9166.06, + "end": 9167.0, + "probability": 0.6223 + }, + { + "start": 9168.28, + "end": 9169.5, + "probability": 0.8112 + }, + { + "start": 9182.8, + "end": 9184.02, + "probability": 0.7269 + }, + { + "start": 9185.26, + "end": 9187.9, + "probability": 0.9098 + }, + { + "start": 9188.98, + "end": 9192.5, + "probability": 0.9313 + }, + { + "start": 9193.22, + "end": 9197.7, + "probability": 0.981 + }, + { + "start": 9198.66, + "end": 9201.24, + "probability": 0.9962 + }, + { + "start": 9202.28, + "end": 9203.32, + "probability": 0.8941 + }, + { + "start": 9204.46, + "end": 9205.78, + "probability": 0.8822 + }, + { + "start": 9206.26, + "end": 9207.8, + "probability": 0.9948 + }, + { + "start": 9210.9, + "end": 9215.12, + "probability": 0.9946 + }, + { + "start": 9215.12, + "end": 9217.58, + "probability": 0.9988 + }, + { + "start": 9218.4, + "end": 9220.72, + "probability": 0.9985 + }, + { + "start": 9221.38, + "end": 9223.81, + "probability": 0.7969 + }, + { + "start": 9225.12, + "end": 9226.3, + "probability": 0.7939 + }, + { + "start": 9227.8, + "end": 9228.68, + "probability": 0.6933 + }, + { + "start": 9229.44, + "end": 9229.44, + "probability": 0.1976 + }, + { + "start": 9229.44, + "end": 9231.72, + "probability": 0.6976 + }, + { + "start": 9233.02, + "end": 9236.64, + "probability": 0.9943 + }, + { + "start": 9237.82, + "end": 9241.78, + "probability": 0.8834 + }, + { + "start": 9241.78, + "end": 9241.86, + "probability": 0.2886 + }, + { + "start": 9242.04, + "end": 9244.64, + "probability": 0.7204 + }, + { + "start": 9246.42, + "end": 9248.64, + "probability": 0.98 + }, + { + "start": 9249.22, + "end": 9254.76, + "probability": 0.922 + }, + { + "start": 9255.8, + "end": 9257.28, + "probability": 0.8684 + }, + { + "start": 9258.6, + "end": 9262.34, + "probability": 0.9916 + }, + { + "start": 9262.68, + "end": 9265.4, + "probability": 0.8626 + }, + { + "start": 9267.0, + "end": 9268.7, + "probability": 0.9886 + }, + { + "start": 9269.96, + "end": 9272.24, + "probability": 0.9104 + }, + { + "start": 9272.86, + "end": 9273.7, + "probability": 0.4529 + }, + { + "start": 9274.52, + "end": 9276.38, + "probability": 0.9773 + }, + { + "start": 9277.28, + "end": 9279.56, + "probability": 0.9069 + }, + { + "start": 9281.12, + "end": 9284.64, + "probability": 0.9911 + }, + { + "start": 9284.64, + "end": 9288.28, + "probability": 0.9895 + }, + { + "start": 9288.86, + "end": 9289.6, + "probability": 0.9347 + }, + { + "start": 9290.68, + "end": 9291.86, + "probability": 0.9804 + }, + { + "start": 9292.76, + "end": 9293.62, + "probability": 0.7493 + }, + { + "start": 9293.66, + "end": 9295.8, + "probability": 0.8582 + }, + { + "start": 9296.1, + "end": 9297.04, + "probability": 0.8131 + }, + { + "start": 9297.16, + "end": 9297.4, + "probability": 0.6187 + }, + { + "start": 9297.42, + "end": 9299.62, + "probability": 0.7441 + }, + { + "start": 9299.72, + "end": 9299.92, + "probability": 0.5058 + }, + { + "start": 9300.0, + "end": 9300.16, + "probability": 0.7695 + }, + { + "start": 9300.22, + "end": 9301.14, + "probability": 0.9252 + }, + { + "start": 9301.56, + "end": 9302.94, + "probability": 0.9716 + }, + { + "start": 9303.44, + "end": 9304.2, + "probability": 0.9548 + }, + { + "start": 9304.92, + "end": 9306.98, + "probability": 0.8748 + }, + { + "start": 9307.26, + "end": 9312.0, + "probability": 0.8783 + }, + { + "start": 9312.0, + "end": 9312.82, + "probability": 0.7277 + }, + { + "start": 9313.14, + "end": 9314.5, + "probability": 0.8546 + }, + { + "start": 9314.86, + "end": 9315.16, + "probability": 0.6128 + }, + { + "start": 9315.26, + "end": 9316.97, + "probability": 0.8467 + }, + { + "start": 9318.26, + "end": 9318.88, + "probability": 0.3821 + }, + { + "start": 9319.66, + "end": 9321.7, + "probability": 0.7416 + }, + { + "start": 9321.8, + "end": 9322.94, + "probability": 0.5697 + }, + { + "start": 9323.08, + "end": 9327.36, + "probability": 0.7388 + }, + { + "start": 9330.6, + "end": 9332.7, + "probability": 0.4292 + }, + { + "start": 9333.22, + "end": 9333.46, + "probability": 0.6285 + }, + { + "start": 9333.56, + "end": 9335.06, + "probability": 0.5882 + }, + { + "start": 9335.1, + "end": 9336.26, + "probability": 0.0837 + }, + { + "start": 9336.62, + "end": 9339.02, + "probability": 0.8659 + }, + { + "start": 9339.42, + "end": 9341.48, + "probability": 0.8683 + }, + { + "start": 9341.88, + "end": 9344.82, + "probability": 0.6746 + }, + { + "start": 9345.42, + "end": 9347.08, + "probability": 0.6849 + }, + { + "start": 9347.32, + "end": 9348.82, + "probability": 0.8511 + }, + { + "start": 9349.38, + "end": 9350.16, + "probability": 0.7455 + }, + { + "start": 9350.26, + "end": 9350.8, + "probability": 0.6918 + }, + { + "start": 9350.92, + "end": 9351.96, + "probability": 0.9819 + }, + { + "start": 9351.96, + "end": 9351.98, + "probability": 0.3759 + }, + { + "start": 9352.04, + "end": 9353.34, + "probability": 0.7976 + }, + { + "start": 9353.34, + "end": 9353.94, + "probability": 0.7433 + }, + { + "start": 9353.94, + "end": 9354.2, + "probability": 0.4506 + }, + { + "start": 9354.2, + "end": 9354.32, + "probability": 0.8288 + }, + { + "start": 9354.36, + "end": 9356.3, + "probability": 0.438 + }, + { + "start": 9356.3, + "end": 9357.14, + "probability": 0.4802 + }, + { + "start": 9357.14, + "end": 9357.14, + "probability": 0.1813 + }, + { + "start": 9359.44, + "end": 9359.62, + "probability": 0.0116 + }, + { + "start": 9359.62, + "end": 9359.84, + "probability": 0.4875 + }, + { + "start": 9359.84, + "end": 9359.9, + "probability": 0.0385 + }, + { + "start": 9360.08, + "end": 9360.86, + "probability": 0.3901 + }, + { + "start": 9360.86, + "end": 9361.2, + "probability": 0.5724 + }, + { + "start": 9361.28, + "end": 9361.28, + "probability": 0.5247 + }, + { + "start": 9361.3, + "end": 9362.02, + "probability": 0.9283 + }, + { + "start": 9362.14, + "end": 9362.5, + "probability": 0.7868 + }, + { + "start": 9362.64, + "end": 9363.2, + "probability": 0.5941 + }, + { + "start": 9363.2, + "end": 9363.98, + "probability": 0.0675 + }, + { + "start": 9364.1, + "end": 9364.59, + "probability": 0.7149 + }, + { + "start": 9365.0, + "end": 9365.49, + "probability": 0.9463 + }, + { + "start": 9365.62, + "end": 9366.64, + "probability": 0.8812 + }, + { + "start": 9366.74, + "end": 9368.12, + "probability": 0.8239 + }, + { + "start": 9368.66, + "end": 9370.12, + "probability": 0.9476 + }, + { + "start": 9370.52, + "end": 9371.42, + "probability": 0.6966 + }, + { + "start": 9371.6, + "end": 9371.78, + "probability": 0.748 + }, + { + "start": 9371.86, + "end": 9375.2, + "probability": 0.9329 + }, + { + "start": 9375.48, + "end": 9376.8, + "probability": 0.4908 + }, + { + "start": 9376.88, + "end": 9380.6, + "probability": 0.9797 + }, + { + "start": 9380.6, + "end": 9383.46, + "probability": 0.9985 + }, + { + "start": 9383.66, + "end": 9384.56, + "probability": 0.8068 + }, + { + "start": 9385.48, + "end": 9386.5, + "probability": 0.8183 + }, + { + "start": 9387.58, + "end": 9391.48, + "probability": 0.9854 + }, + { + "start": 9391.72, + "end": 9392.66, + "probability": 0.6131 + }, + { + "start": 9392.76, + "end": 9393.46, + "probability": 0.4869 + }, + { + "start": 9393.5, + "end": 9394.78, + "probability": 0.6056 + }, + { + "start": 9395.08, + "end": 9398.46, + "probability": 0.9731 + }, + { + "start": 9398.7, + "end": 9399.54, + "probability": 0.8537 + }, + { + "start": 9400.2, + "end": 9400.66, + "probability": 0.8816 + }, + { + "start": 9401.02, + "end": 9403.26, + "probability": 0.8212 + }, + { + "start": 9405.04, + "end": 9406.48, + "probability": 0.8776 + }, + { + "start": 9407.44, + "end": 9408.26, + "probability": 0.6998 + }, + { + "start": 9409.72, + "end": 9411.04, + "probability": 0.9791 + }, + { + "start": 9411.9, + "end": 9412.88, + "probability": 0.9705 + }, + { + "start": 9414.82, + "end": 9416.22, + "probability": 0.7445 + }, + { + "start": 9417.42, + "end": 9418.5, + "probability": 0.9833 + }, + { + "start": 9419.86, + "end": 9421.44, + "probability": 0.978 + }, + { + "start": 9422.84, + "end": 9425.82, + "probability": 0.8958 + }, + { + "start": 9426.78, + "end": 9427.92, + "probability": 0.7076 + }, + { + "start": 9428.68, + "end": 9430.14, + "probability": 0.7712 + }, + { + "start": 9430.86, + "end": 9431.74, + "probability": 0.7761 + }, + { + "start": 9433.28, + "end": 9436.96, + "probability": 0.9693 + }, + { + "start": 9438.28, + "end": 9441.02, + "probability": 0.957 + }, + { + "start": 9442.36, + "end": 9443.96, + "probability": 0.9907 + }, + { + "start": 9448.3, + "end": 9453.4, + "probability": 0.6362 + }, + { + "start": 9453.68, + "end": 9453.68, + "probability": 0.0022 + }, + { + "start": 9454.56, + "end": 9454.92, + "probability": 0.142 + }, + { + "start": 9455.34, + "end": 9457.2, + "probability": 0.5943 + }, + { + "start": 9457.7, + "end": 9457.91, + "probability": 0.0575 + }, + { + "start": 9458.62, + "end": 9459.54, + "probability": 0.2261 + }, + { + "start": 9459.84, + "end": 9461.06, + "probability": 0.1199 + }, + { + "start": 9461.06, + "end": 9462.42, + "probability": 0.0845 + }, + { + "start": 9465.16, + "end": 9467.42, + "probability": 0.032 + }, + { + "start": 9467.8, + "end": 9468.46, + "probability": 0.0116 + }, + { + "start": 9468.46, + "end": 9468.46, + "probability": 0.1235 + }, + { + "start": 9468.46, + "end": 9469.45, + "probability": 0.4543 + }, + { + "start": 9470.08, + "end": 9472.92, + "probability": 0.9399 + }, + { + "start": 9473.36, + "end": 9474.84, + "probability": 0.4365 + }, + { + "start": 9475.38, + "end": 9477.18, + "probability": 0.4645 + }, + { + "start": 9477.84, + "end": 9478.92, + "probability": 0.7295 + }, + { + "start": 9482.02, + "end": 9483.2, + "probability": 0.6042 + }, + { + "start": 9483.36, + "end": 9487.68, + "probability": 0.6919 + }, + { + "start": 9487.76, + "end": 9490.9, + "probability": 0.9921 + }, + { + "start": 9490.9, + "end": 9496.52, + "probability": 0.8092 + }, + { + "start": 9497.48, + "end": 9498.32, + "probability": 0.6656 + }, + { + "start": 9499.28, + "end": 9500.46, + "probability": 0.854 + }, + { + "start": 9500.62, + "end": 9505.96, + "probability": 0.9586 + }, + { + "start": 9506.38, + "end": 9507.6, + "probability": 0.9425 + }, + { + "start": 9507.6, + "end": 9510.06, + "probability": 0.712 + }, + { + "start": 9510.64, + "end": 9512.4, + "probability": 0.7992 + }, + { + "start": 9512.84, + "end": 9515.8, + "probability": 0.0751 + }, + { + "start": 9515.8, + "end": 9520.72, + "probability": 0.8961 + }, + { + "start": 9521.16, + "end": 9523.2, + "probability": 0.5694 + }, + { + "start": 9526.82, + "end": 9526.9, + "probability": 0.2311 + }, + { + "start": 9526.9, + "end": 9526.9, + "probability": 0.4834 + }, + { + "start": 9526.9, + "end": 9526.92, + "probability": 0.0666 + }, + { + "start": 9526.92, + "end": 9527.92, + "probability": 0.1074 + }, + { + "start": 9528.44, + "end": 9528.8, + "probability": 0.2218 + }, + { + "start": 9528.96, + "end": 9529.62, + "probability": 0.1606 + }, + { + "start": 9530.0, + "end": 9536.12, + "probability": 0.8761 + }, + { + "start": 9536.66, + "end": 9537.36, + "probability": 0.3786 + }, + { + "start": 9537.66, + "end": 9540.62, + "probability": 0.8892 + }, + { + "start": 9540.72, + "end": 9540.84, + "probability": 0.4177 + }, + { + "start": 9540.88, + "end": 9542.48, + "probability": 0.7912 + }, + { + "start": 9542.48, + "end": 9548.4, + "probability": 0.9325 + }, + { + "start": 9548.92, + "end": 9552.88, + "probability": 0.6836 + }, + { + "start": 9553.04, + "end": 9553.64, + "probability": 0.8238 + }, + { + "start": 9554.24, + "end": 9556.32, + "probability": 0.9161 + }, + { + "start": 9556.44, + "end": 9560.36, + "probability": 0.9854 + }, + { + "start": 9560.54, + "end": 9563.28, + "probability": 0.2016 + }, + { + "start": 9564.0, + "end": 9565.26, + "probability": 0.1006 + }, + { + "start": 9566.64, + "end": 9568.68, + "probability": 0.6172 + }, + { + "start": 9568.68, + "end": 9569.64, + "probability": 0.0672 + }, + { + "start": 9569.86, + "end": 9570.74, + "probability": 0.2474 + }, + { + "start": 9570.74, + "end": 9570.96, + "probability": 0.0561 + }, + { + "start": 9570.96, + "end": 9570.96, + "probability": 0.1888 + }, + { + "start": 9570.96, + "end": 9570.96, + "probability": 0.0506 + }, + { + "start": 9570.96, + "end": 9570.96, + "probability": 0.0631 + }, + { + "start": 9570.96, + "end": 9571.36, + "probability": 0.1751 + }, + { + "start": 9571.4, + "end": 9572.82, + "probability": 0.0959 + }, + { + "start": 9573.18, + "end": 9573.68, + "probability": 0.6227 + }, + { + "start": 9574.44, + "end": 9579.46, + "probability": 0.844 + }, + { + "start": 9579.68, + "end": 9582.62, + "probability": 0.9974 + }, + { + "start": 9582.72, + "end": 9583.13, + "probability": 0.6096 + }, + { + "start": 9583.74, + "end": 9584.68, + "probability": 0.8371 + }, + { + "start": 9584.76, + "end": 9585.26, + "probability": 0.5011 + }, + { + "start": 9585.36, + "end": 9587.26, + "probability": 0.8463 + }, + { + "start": 9587.38, + "end": 9589.02, + "probability": 0.3229 + }, + { + "start": 9589.08, + "end": 9591.88, + "probability": 0.5665 + }, + { + "start": 9591.94, + "end": 9593.27, + "probability": 0.618 + }, + { + "start": 9593.98, + "end": 9595.22, + "probability": 0.7666 + }, + { + "start": 9596.14, + "end": 9596.94, + "probability": 0.0227 + }, + { + "start": 9597.5, + "end": 9602.64, + "probability": 0.9722 + }, + { + "start": 9603.3, + "end": 9605.42, + "probability": 0.9617 + }, + { + "start": 9605.62, + "end": 9605.96, + "probability": 0.8326 + }, + { + "start": 9606.3, + "end": 9608.1, + "probability": 0.692 + }, + { + "start": 9608.98, + "end": 9610.98, + "probability": 0.915 + }, + { + "start": 9611.8, + "end": 9613.76, + "probability": 0.3236 + }, + { + "start": 9613.9, + "end": 9617.32, + "probability": 0.7194 + }, + { + "start": 9617.5, + "end": 9619.42, + "probability": 0.0877 + }, + { + "start": 9619.84, + "end": 9621.68, + "probability": 0.6892 + }, + { + "start": 9624.1, + "end": 9625.74, + "probability": 0.6138 + }, + { + "start": 9628.06, + "end": 9629.6, + "probability": 0.0434 + }, + { + "start": 9639.32, + "end": 9640.02, + "probability": 0.1663 + }, + { + "start": 9640.62, + "end": 9646.4, + "probability": 0.2563 + }, + { + "start": 9646.56, + "end": 9649.24, + "probability": 0.5586 + }, + { + "start": 9649.3, + "end": 9651.68, + "probability": 0.1739 + }, + { + "start": 9652.54, + "end": 9654.98, + "probability": 0.8027 + }, + { + "start": 9660.64, + "end": 9661.04, + "probability": 0.0268 + }, + { + "start": 9663.36, + "end": 9665.96, + "probability": 0.0754 + }, + { + "start": 9666.54, + "end": 9667.3, + "probability": 0.1032 + }, + { + "start": 9668.77, + "end": 9673.54, + "probability": 0.1849 + }, + { + "start": 9674.52, + "end": 9674.52, + "probability": 0.0027 + }, + { + "start": 9679.34, + "end": 9686.24, + "probability": 0.0578 + }, + { + "start": 9687.06, + "end": 9688.52, + "probability": 0.0253 + }, + { + "start": 9689.36, + "end": 9692.09, + "probability": 0.0948 + }, + { + "start": 9693.62, + "end": 9695.7, + "probability": 0.0376 + }, + { + "start": 9696.56, + "end": 9697.38, + "probability": 0.0993 + }, + { + "start": 9697.38, + "end": 9700.52, + "probability": 0.5469 + }, + { + "start": 9703.0, + "end": 9703.0, + "probability": 0.0 + }, + { + "start": 9703.0, + "end": 9703.0, + "probability": 0.0 + }, + { + "start": 9703.0, + "end": 9703.0, + "probability": 0.0 + }, + { + "start": 9703.0, + "end": 9703.0, + "probability": 0.0 + }, + { + "start": 9703.0, + "end": 9703.0, + "probability": 0.0 + }, + { + "start": 9703.0, + "end": 9703.0, + "probability": 0.0 + }, + { + "start": 9703.0, + "end": 9703.0, + "probability": 0.0 + }, + { + "start": 9703.0, + "end": 9703.0, + "probability": 0.0 + }, + { + "start": 9703.36, + "end": 9709.7, + "probability": 0.7989 + }, + { + "start": 9709.7, + "end": 9713.26, + "probability": 0.9736 + }, + { + "start": 9714.28, + "end": 9718.1, + "probability": 0.9927 + }, + { + "start": 9718.2, + "end": 9722.36, + "probability": 0.9094 + }, + { + "start": 9723.2, + "end": 9725.96, + "probability": 0.997 + }, + { + "start": 9726.44, + "end": 9728.84, + "probability": 0.9583 + }, + { + "start": 9729.44, + "end": 9731.48, + "probability": 0.8254 + }, + { + "start": 9731.48, + "end": 9733.92, + "probability": 0.9944 + }, + { + "start": 9734.0, + "end": 9736.3, + "probability": 0.7982 + }, + { + "start": 9736.4, + "end": 9738.26, + "probability": 0.9025 + }, + { + "start": 9738.74, + "end": 9741.48, + "probability": 0.9268 + }, + { + "start": 9742.84, + "end": 9744.08, + "probability": 0.61 + }, + { + "start": 9744.2, + "end": 9750.66, + "probability": 0.9878 + }, + { + "start": 9750.66, + "end": 9755.24, + "probability": 0.9432 + }, + { + "start": 9755.76, + "end": 9760.72, + "probability": 0.9851 + }, + { + "start": 9761.42, + "end": 9763.74, + "probability": 0.9722 + }, + { + "start": 9764.42, + "end": 9766.62, + "probability": 0.9513 + }, + { + "start": 9766.7, + "end": 9769.34, + "probability": 0.9958 + }, + { + "start": 9769.82, + "end": 9770.78, + "probability": 0.7408 + }, + { + "start": 9771.34, + "end": 9774.84, + "probability": 0.9854 + }, + { + "start": 9774.84, + "end": 9778.88, + "probability": 0.9407 + }, + { + "start": 9779.04, + "end": 9781.98, + "probability": 0.9741 + }, + { + "start": 9781.98, + "end": 9783.2, + "probability": 0.4969 + }, + { + "start": 9783.42, + "end": 9787.08, + "probability": 0.9926 + }, + { + "start": 9787.08, + "end": 9790.5, + "probability": 0.9978 + }, + { + "start": 9791.22, + "end": 9794.17, + "probability": 0.9918 + }, + { + "start": 9794.64, + "end": 9797.78, + "probability": 0.9917 + }, + { + "start": 9797.78, + "end": 9799.92, + "probability": 0.9914 + }, + { + "start": 9801.86, + "end": 9806.08, + "probability": 0.999 + }, + { + "start": 9806.08, + "end": 9809.72, + "probability": 0.9976 + }, + { + "start": 9809.94, + "end": 9815.82, + "probability": 0.9653 + }, + { + "start": 9816.3, + "end": 9816.56, + "probability": 0.4803 + }, + { + "start": 9816.68, + "end": 9819.28, + "probability": 0.9976 + }, + { + "start": 9819.74, + "end": 9824.12, + "probability": 0.9753 + }, + { + "start": 9824.8, + "end": 9828.7, + "probability": 0.9906 + }, + { + "start": 9830.2, + "end": 9831.88, + "probability": 0.7205 + }, + { + "start": 9832.2, + "end": 9832.9, + "probability": 0.8475 + }, + { + "start": 9832.94, + "end": 9835.54, + "probability": 0.9139 + }, + { + "start": 9836.68, + "end": 9841.6, + "probability": 0.9933 + }, + { + "start": 9842.38, + "end": 9844.62, + "probability": 0.9863 + }, + { + "start": 9844.62, + "end": 9849.14, + "probability": 0.9894 + }, + { + "start": 9849.72, + "end": 9853.68, + "probability": 0.9972 + }, + { + "start": 9854.44, + "end": 9857.76, + "probability": 0.91 + }, + { + "start": 9857.76, + "end": 9859.8, + "probability": 0.9954 + }, + { + "start": 9859.92, + "end": 9861.84, + "probability": 0.959 + }, + { + "start": 9862.2, + "end": 9868.06, + "probability": 0.9917 + }, + { + "start": 9868.28, + "end": 9871.86, + "probability": 0.9967 + }, + { + "start": 9872.52, + "end": 9874.48, + "probability": 0.9907 + }, + { + "start": 9874.48, + "end": 9877.5, + "probability": 0.8376 + }, + { + "start": 9878.08, + "end": 9878.52, + "probability": 0.4977 + }, + { + "start": 9878.54, + "end": 9879.16, + "probability": 0.9618 + }, + { + "start": 9879.58, + "end": 9881.2, + "probability": 0.9949 + }, + { + "start": 9882.7, + "end": 9885.68, + "probability": 0.7742 + }, + { + "start": 9885.84, + "end": 9888.6, + "probability": 0.8729 + }, + { + "start": 9889.2, + "end": 9890.54, + "probability": 0.9222 + }, + { + "start": 9890.98, + "end": 9893.62, + "probability": 0.9589 + }, + { + "start": 9896.34, + "end": 9898.72, + "probability": 0.9901 + }, + { + "start": 9899.24, + "end": 9900.76, + "probability": 0.8347 + }, + { + "start": 9901.42, + "end": 9903.48, + "probability": 0.8216 + }, + { + "start": 9904.16, + "end": 9905.66, + "probability": 0.8748 + }, + { + "start": 9905.92, + "end": 9908.26, + "probability": 0.9971 + }, + { + "start": 9908.82, + "end": 9912.06, + "probability": 0.7898 + }, + { + "start": 9912.46, + "end": 9914.02, + "probability": 0.6758 + }, + { + "start": 9914.26, + "end": 9917.4, + "probability": 0.9737 + }, + { + "start": 9918.32, + "end": 9922.06, + "probability": 0.9917 + }, + { + "start": 9922.06, + "end": 9926.42, + "probability": 0.9956 + }, + { + "start": 9928.65, + "end": 9934.44, + "probability": 0.9771 + }, + { + "start": 9935.42, + "end": 9938.34, + "probability": 0.9887 + }, + { + "start": 9938.46, + "end": 9938.6, + "probability": 0.326 + }, + { + "start": 9938.64, + "end": 9938.98, + "probability": 0.7968 + }, + { + "start": 9939.0, + "end": 9942.6, + "probability": 0.9552 + }, + { + "start": 9942.6, + "end": 9945.84, + "probability": 0.9169 + }, + { + "start": 9946.54, + "end": 9949.08, + "probability": 0.9947 + }, + { + "start": 9949.12, + "end": 9950.28, + "probability": 0.9325 + }, + { + "start": 9950.42, + "end": 9955.88, + "probability": 0.9927 + }, + { + "start": 9956.44, + "end": 9958.76, + "probability": 0.9703 + }, + { + "start": 9959.74, + "end": 9960.38, + "probability": 0.8968 + }, + { + "start": 9960.88, + "end": 9963.28, + "probability": 0.9941 + }, + { + "start": 9963.34, + "end": 9966.4, + "probability": 0.9834 + }, + { + "start": 9966.4, + "end": 9969.14, + "probability": 0.9712 + }, + { + "start": 9969.86, + "end": 9974.22, + "probability": 0.9417 + }, + { + "start": 9974.22, + "end": 9977.98, + "probability": 0.9878 + }, + { + "start": 9978.54, + "end": 9981.2, + "probability": 0.6531 + }, + { + "start": 9981.74, + "end": 9987.58, + "probability": 0.8778 + }, + { + "start": 9988.08, + "end": 9991.1, + "probability": 0.9941 + }, + { + "start": 9991.1, + "end": 9995.08, + "probability": 0.9697 + }, + { + "start": 9995.6, + "end": 9998.0, + "probability": 0.8735 + }, + { + "start": 9998.66, + "end": 10000.44, + "probability": 0.9791 + }, + { + "start": 10000.96, + "end": 10003.54, + "probability": 0.984 + }, + { + "start": 10003.54, + "end": 10007.86, + "probability": 0.9971 + }, + { + "start": 10008.42, + "end": 10010.5, + "probability": 0.6417 + }, + { + "start": 10010.64, + "end": 10016.6, + "probability": 0.9974 + }, + { + "start": 10017.34, + "end": 10019.56, + "probability": 0.9895 + }, + { + "start": 10019.56, + "end": 10022.94, + "probability": 0.9956 + }, + { + "start": 10023.96, + "end": 10030.2, + "probability": 0.9884 + }, + { + "start": 10030.22, + "end": 10034.44, + "probability": 0.9797 + }, + { + "start": 10034.44, + "end": 10038.86, + "probability": 0.9946 + }, + { + "start": 10039.26, + "end": 10044.2, + "probability": 0.968 + }, + { + "start": 10044.36, + "end": 10048.32, + "probability": 0.8502 + }, + { + "start": 10048.32, + "end": 10051.22, + "probability": 0.9578 + }, + { + "start": 10051.78, + "end": 10054.06, + "probability": 0.9834 + }, + { + "start": 10054.4, + "end": 10058.34, + "probability": 0.985 + }, + { + "start": 10058.34, + "end": 10062.36, + "probability": 0.9887 + }, + { + "start": 10063.0, + "end": 10063.66, + "probability": 0.9832 + }, + { + "start": 10064.34, + "end": 10068.6, + "probability": 0.9924 + }, + { + "start": 10068.68, + "end": 10071.5, + "probability": 0.9976 + }, + { + "start": 10072.08, + "end": 10076.82, + "probability": 0.987 + }, + { + "start": 10076.82, + "end": 10080.5, + "probability": 0.996 + }, + { + "start": 10081.02, + "end": 10084.28, + "probability": 0.8613 + }, + { + "start": 10084.38, + "end": 10089.4, + "probability": 0.8722 + }, + { + "start": 10089.6, + "end": 10094.72, + "probability": 0.9449 + }, + { + "start": 10096.14, + "end": 10100.7, + "probability": 0.8532 + }, + { + "start": 10100.7, + "end": 10104.1, + "probability": 0.9122 + }, + { + "start": 10105.26, + "end": 10109.46, + "probability": 0.9309 + }, + { + "start": 10109.46, + "end": 10113.18, + "probability": 0.9809 + }, + { + "start": 10114.06, + "end": 10117.8, + "probability": 0.9168 + }, + { + "start": 10117.8, + "end": 10121.92, + "probability": 0.981 + }, + { + "start": 10122.48, + "end": 10124.94, + "probability": 0.9403 + }, + { + "start": 10125.24, + "end": 10127.64, + "probability": 0.6767 + }, + { + "start": 10127.72, + "end": 10131.19, + "probability": 0.9578 + }, + { + "start": 10133.02, + "end": 10137.26, + "probability": 0.9797 + }, + { + "start": 10137.26, + "end": 10144.04, + "probability": 0.9954 + }, + { + "start": 10144.92, + "end": 10149.34, + "probability": 0.962 + }, + { + "start": 10149.34, + "end": 10152.54, + "probability": 0.9802 + }, + { + "start": 10152.54, + "end": 10156.04, + "probability": 0.954 + }, + { + "start": 10156.06, + "end": 10156.6, + "probability": 0.4405 + }, + { + "start": 10161.5, + "end": 10166.04, + "probability": 0.9631 + }, + { + "start": 10166.24, + "end": 10167.98, + "probability": 0.9003 + }, + { + "start": 10167.98, + "end": 10168.56, + "probability": 0.8644 + }, + { + "start": 10169.26, + "end": 10171.86, + "probability": 0.779 + }, + { + "start": 10172.22, + "end": 10175.1, + "probability": 0.9758 + }, + { + "start": 10175.16, + "end": 10178.94, + "probability": 0.7626 + }, + { + "start": 10178.96, + "end": 10182.54, + "probability": 0.996 + }, + { + "start": 10182.58, + "end": 10185.9, + "probability": 0.9087 + }, + { + "start": 10186.12, + "end": 10186.46, + "probability": 0.7182 + }, + { + "start": 10188.82, + "end": 10190.74, + "probability": 0.601 + }, + { + "start": 10191.78, + "end": 10193.2, + "probability": 0.6248 + }, + { + "start": 10194.84, + "end": 10196.36, + "probability": 0.8438 + }, + { + "start": 10197.06, + "end": 10198.14, + "probability": 0.5118 + }, + { + "start": 10199.82, + "end": 10200.62, + "probability": 0.9672 + }, + { + "start": 10201.56, + "end": 10203.9, + "probability": 0.7827 + }, + { + "start": 10205.08, + "end": 10206.62, + "probability": 0.989 + }, + { + "start": 10207.14, + "end": 10208.1, + "probability": 0.6983 + }, + { + "start": 10208.9, + "end": 10210.12, + "probability": 0.9913 + }, + { + "start": 10210.94, + "end": 10212.54, + "probability": 0.476 + }, + { + "start": 10212.62, + "end": 10213.28, + "probability": 0.4458 + }, + { + "start": 10214.34, + "end": 10216.9, + "probability": 0.8167 + }, + { + "start": 10218.2, + "end": 10220.76, + "probability": 0.8532 + }, + { + "start": 10221.42, + "end": 10222.76, + "probability": 0.8031 + }, + { + "start": 10224.38, + "end": 10226.52, + "probability": 0.7565 + }, + { + "start": 10231.9, + "end": 10233.2, + "probability": 0.7374 + }, + { + "start": 10240.5, + "end": 10242.42, + "probability": 0.6578 + }, + { + "start": 10247.36, + "end": 10251.24, + "probability": 0.4903 + }, + { + "start": 10252.32, + "end": 10253.86, + "probability": 0.321 + }, + { + "start": 10254.78, + "end": 10256.55, + "probability": 0.0849 + }, + { + "start": 10257.43, + "end": 10261.84, + "probability": 0.5992 + }, + { + "start": 10262.74, + "end": 10263.32, + "probability": 0.6899 + }, + { + "start": 10263.38, + "end": 10263.6, + "probability": 0.6891 + }, + { + "start": 10263.64, + "end": 10271.74, + "probability": 0.9629 + }, + { + "start": 10272.5, + "end": 10273.48, + "probability": 0.6473 + }, + { + "start": 10274.9, + "end": 10279.5, + "probability": 0.7112 + }, + { + "start": 10279.5, + "end": 10284.08, + "probability": 0.9906 + }, + { + "start": 10284.24, + "end": 10285.84, + "probability": 0.5174 + }, + { + "start": 10286.38, + "end": 10290.4, + "probability": 0.9865 + }, + { + "start": 10290.5, + "end": 10295.14, + "probability": 0.8633 + }, + { + "start": 10295.8, + "end": 10299.56, + "probability": 0.6839 + }, + { + "start": 10300.86, + "end": 10302.5, + "probability": 0.6479 + }, + { + "start": 10303.48, + "end": 10307.36, + "probability": 0.9779 + }, + { + "start": 10307.36, + "end": 10312.52, + "probability": 0.9958 + }, + { + "start": 10313.4, + "end": 10316.08, + "probability": 0.698 + }, + { + "start": 10316.64, + "end": 10324.72, + "probability": 0.9517 + }, + { + "start": 10325.92, + "end": 10329.1, + "probability": 0.9495 + }, + { + "start": 10329.1, + "end": 10333.6, + "probability": 0.981 + }, + { + "start": 10333.94, + "end": 10337.28, + "probability": 0.6688 + }, + { + "start": 10337.3, + "end": 10338.76, + "probability": 0.5764 + }, + { + "start": 10338.88, + "end": 10340.73, + "probability": 0.9105 + }, + { + "start": 10341.54, + "end": 10343.44, + "probability": 0.9924 + }, + { + "start": 10344.08, + "end": 10345.36, + "probability": 0.9792 + }, + { + "start": 10346.38, + "end": 10350.02, + "probability": 0.9499 + }, + { + "start": 10350.56, + "end": 10352.0, + "probability": 0.7692 + }, + { + "start": 10352.14, + "end": 10352.8, + "probability": 0.7286 + }, + { + "start": 10353.16, + "end": 10356.78, + "probability": 0.9565 + }, + { + "start": 10357.36, + "end": 10363.12, + "probability": 0.6948 + }, + { + "start": 10363.42, + "end": 10365.82, + "probability": 0.9849 + }, + { + "start": 10366.44, + "end": 10366.78, + "probability": 0.4991 + }, + { + "start": 10366.82, + "end": 10367.44, + "probability": 0.5058 + }, + { + "start": 10367.91, + "end": 10375.9, + "probability": 0.9274 + }, + { + "start": 10375.9, + "end": 10382.36, + "probability": 0.9911 + }, + { + "start": 10382.96, + "end": 10385.16, + "probability": 0.7499 + }, + { + "start": 10386.53, + "end": 10388.72, + "probability": 0.9175 + }, + { + "start": 10389.22, + "end": 10391.48, + "probability": 0.8354 + }, + { + "start": 10391.88, + "end": 10393.12, + "probability": 0.8384 + }, + { + "start": 10393.22, + "end": 10394.1, + "probability": 0.7609 + }, + { + "start": 10394.52, + "end": 10397.64, + "probability": 0.9503 + }, + { + "start": 10398.0, + "end": 10401.84, + "probability": 0.9821 + }, + { + "start": 10401.96, + "end": 10402.5, + "probability": 0.9041 + }, + { + "start": 10402.92, + "end": 10406.72, + "probability": 0.9893 + }, + { + "start": 10406.9, + "end": 10409.28, + "probability": 0.8821 + }, + { + "start": 10409.7, + "end": 10411.9, + "probability": 0.8801 + }, + { + "start": 10412.44, + "end": 10412.98, + "probability": 0.933 + }, + { + "start": 10413.24, + "end": 10415.34, + "probability": 0.5721 + }, + { + "start": 10415.56, + "end": 10419.42, + "probability": 0.9019 + }, + { + "start": 10420.3, + "end": 10423.22, + "probability": 0.0506 + }, + { + "start": 10430.72, + "end": 10431.88, + "probability": 0.3113 + }, + { + "start": 10446.56, + "end": 10452.16, + "probability": 0.0333 + }, + { + "start": 10452.36, + "end": 10452.5, + "probability": 0.1706 + }, + { + "start": 10452.5, + "end": 10453.72, + "probability": 0.4427 + }, + { + "start": 10454.54, + "end": 10457.7, + "probability": 0.132 + }, + { + "start": 10458.22, + "end": 10459.82, + "probability": 0.677 + }, + { + "start": 10461.14, + "end": 10463.1, + "probability": 0.5751 + }, + { + "start": 10469.8, + "end": 10473.14, + "probability": 0.0742 + }, + { + "start": 10473.14, + "end": 10473.8, + "probability": 0.0908 + }, + { + "start": 10474.62, + "end": 10476.38, + "probability": 0.0183 + }, + { + "start": 10477.14, + "end": 10482.16, + "probability": 0.0345 + }, + { + "start": 10498.24, + "end": 10498.74, + "probability": 0.0447 + }, + { + "start": 10501.14, + "end": 10504.94, + "probability": 0.0521 + }, + { + "start": 10506.2, + "end": 10507.7, + "probability": 0.2646 + }, + { + "start": 10508.86, + "end": 10513.72, + "probability": 0.2934 + }, + { + "start": 10540.0, + "end": 10540.0, + "probability": 0.0 + }, + { + "start": 10540.0, + "end": 10540.0, + "probability": 0.0 + }, + { + "start": 10540.0, + "end": 10540.0, + "probability": 0.0 + }, + { + "start": 10540.0, + "end": 10540.0, + "probability": 0.0 + }, + { + "start": 10540.0, + "end": 10540.0, + "probability": 0.0 + }, + { + "start": 10540.0, + "end": 10540.0, + "probability": 0.0 + }, + { + "start": 10540.0, + "end": 10540.0, + "probability": 0.0 + }, + { + "start": 10540.0, + "end": 10540.0, + "probability": 0.0 + }, + { + "start": 10540.0, + "end": 10540.0, + "probability": 0.0 + }, + { + "start": 10550.92, + "end": 10552.74, + "probability": 0.1249 + }, + { + "start": 10553.12, + "end": 10558.02, + "probability": 0.0327 + }, + { + "start": 10569.94, + "end": 10570.98, + "probability": 0.0573 + }, + { + "start": 10573.44, + "end": 10575.7, + "probability": 0.0342 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10667.0, + "end": 10667.0, + "probability": 0.0 + }, + { + "start": 10674.14, + "end": 10677.63, + "probability": 0.3987 + }, + { + "start": 10678.38, + "end": 10680.4, + "probability": 0.2958 + }, + { + "start": 10681.52, + "end": 10682.04, + "probability": 0.095 + }, + { + "start": 10683.03, + "end": 10683.66, + "probability": 0.1212 + }, + { + "start": 10684.7, + "end": 10684.8, + "probability": 0.2096 + }, + { + "start": 10684.8, + "end": 10691.15, + "probability": 0.1105 + }, + { + "start": 10691.84, + "end": 10694.16, + "probability": 0.1614 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.0, + "end": 10792.0, + "probability": 0.0 + }, + { + "start": 10792.32, + "end": 10792.32, + "probability": 0.0002 + }, + { + "start": 10792.38, + "end": 10792.56, + "probability": 0.0278 + }, + { + "start": 10792.56, + "end": 10792.56, + "probability": 0.0237 + }, + { + "start": 10792.56, + "end": 10792.56, + "probability": 0.0628 + }, + { + "start": 10792.56, + "end": 10792.56, + "probability": 0.0959 + }, + { + "start": 10792.56, + "end": 10792.74, + "probability": 0.0482 + }, + { + "start": 10793.16, + "end": 10795.88, + "probability": 0.989 + }, + { + "start": 10795.88, + "end": 10800.0, + "probability": 0.778 + }, + { + "start": 10800.46, + "end": 10803.02, + "probability": 0.9422 + }, + { + "start": 10803.04, + "end": 10807.58, + "probability": 0.9922 + }, + { + "start": 10807.58, + "end": 10809.56, + "probability": 0.9356 + }, + { + "start": 10810.1, + "end": 10812.2, + "probability": 0.9346 + }, + { + "start": 10815.46, + "end": 10816.56, + "probability": 0.1256 + }, + { + "start": 10816.56, + "end": 10816.56, + "probability": 0.3152 + }, + { + "start": 10816.56, + "end": 10817.5, + "probability": 0.2019 + }, + { + "start": 10817.98, + "end": 10819.2, + "probability": 0.7373 + }, + { + "start": 10819.3, + "end": 10820.22, + "probability": 0.567 + }, + { + "start": 10820.72, + "end": 10822.92, + "probability": 0.792 + }, + { + "start": 10824.06, + "end": 10824.66, + "probability": 0.866 + }, + { + "start": 10824.76, + "end": 10830.98, + "probability": 0.9895 + }, + { + "start": 10831.28, + "end": 10832.04, + "probability": 0.8329 + }, + { + "start": 10832.12, + "end": 10834.4, + "probability": 0.7153 + }, + { + "start": 10834.42, + "end": 10836.8, + "probability": 0.8943 + }, + { + "start": 10838.1, + "end": 10839.42, + "probability": 0.9628 + }, + { + "start": 10839.72, + "end": 10841.04, + "probability": 0.9177 + }, + { + "start": 10841.36, + "end": 10845.08, + "probability": 0.9829 + }, + { + "start": 10845.52, + "end": 10846.02, + "probability": 0.8422 + }, + { + "start": 10846.48, + "end": 10848.1, + "probability": 0.8856 + }, + { + "start": 10848.96, + "end": 10850.5, + "probability": 0.9182 + }, + { + "start": 10850.6, + "end": 10852.72, + "probability": 0.8167 + }, + { + "start": 10854.98, + "end": 10855.07, + "probability": 0.0891 + }, + { + "start": 10855.5, + "end": 10855.85, + "probability": 0.157 + }, + { + "start": 10857.1, + "end": 10857.3, + "probability": 0.1246 + }, + { + "start": 10857.3, + "end": 10858.42, + "probability": 0.5601 + }, + { + "start": 10858.42, + "end": 10859.84, + "probability": 0.8994 + }, + { + "start": 10862.11, + "end": 10863.54, + "probability": 0.5471 + }, + { + "start": 10870.06, + "end": 10871.42, + "probability": 0.5143 + }, + { + "start": 10871.68, + "end": 10874.78, + "probability": 0.4632 + }, + { + "start": 10875.42, + "end": 10879.58, + "probability": 0.9571 + }, + { + "start": 10880.12, + "end": 10885.07, + "probability": 0.8066 + }, + { + "start": 10885.8, + "end": 10890.34, + "probability": 0.6793 + }, + { + "start": 10891.61, + "end": 10895.94, + "probability": 0.9712 + }, + { + "start": 10895.98, + "end": 10896.96, + "probability": 0.9362 + }, + { + "start": 10897.14, + "end": 10898.94, + "probability": 0.9517 + }, + { + "start": 10899.1, + "end": 10903.6, + "probability": 0.9188 + }, + { + "start": 10903.6, + "end": 10907.4, + "probability": 0.9808 + }, + { + "start": 10907.9, + "end": 10908.82, + "probability": 0.6564 + }, + { + "start": 10909.6, + "end": 10910.02, + "probability": 0.1638 + }, + { + "start": 10910.08, + "end": 10913.02, + "probability": 0.8527 + }, + { + "start": 10913.5, + "end": 10916.9, + "probability": 0.9631 + }, + { + "start": 10918.14, + "end": 10924.36, + "probability": 0.9819 + }, + { + "start": 10925.2, + "end": 10927.48, + "probability": 0.8129 + }, + { + "start": 10928.18, + "end": 10929.14, + "probability": 0.8545 + }, + { + "start": 10930.64, + "end": 10937.6, + "probability": 0.8711 + }, + { + "start": 10938.28, + "end": 10943.1, + "probability": 0.9759 + }, + { + "start": 10943.26, + "end": 10944.04, + "probability": 0.8122 + }, + { + "start": 10944.72, + "end": 10946.28, + "probability": 0.7271 + }, + { + "start": 10947.06, + "end": 10953.48, + "probability": 0.9915 + }, + { + "start": 10954.1, + "end": 10957.26, + "probability": 0.6703 + }, + { + "start": 10957.88, + "end": 10958.45, + "probability": 0.7363 + }, + { + "start": 10959.44, + "end": 10962.58, + "probability": 0.9324 + }, + { + "start": 10963.22, + "end": 10967.9, + "probability": 0.9925 + }, + { + "start": 10968.08, + "end": 10969.38, + "probability": 0.8557 + }, + { + "start": 10970.1, + "end": 10973.7, + "probability": 0.988 + }, + { + "start": 10974.6, + "end": 10977.61, + "probability": 0.9657 + }, + { + "start": 10978.12, + "end": 10978.74, + "probability": 0.9506 + }, + { + "start": 10979.52, + "end": 10979.94, + "probability": 0.7227 + }, + { + "start": 10980.14, + "end": 10981.28, + "probability": 0.7182 + }, + { + "start": 10981.3, + "end": 10984.48, + "probability": 0.937 + }, + { + "start": 10984.5, + "end": 10989.1, + "probability": 0.9036 + }, + { + "start": 10989.86, + "end": 10991.02, + "probability": 0.8219 + }, + { + "start": 10991.24, + "end": 10992.18, + "probability": 0.8546 + }, + { + "start": 10992.76, + "end": 10996.94, + "probability": 0.8894 + }, + { + "start": 10997.6, + "end": 11001.52, + "probability": 0.9951 + }, + { + "start": 11002.4, + "end": 11003.62, + "probability": 0.9929 + }, + { + "start": 11003.8, + "end": 11007.3, + "probability": 0.9917 + }, + { + "start": 11007.58, + "end": 11010.38, + "probability": 0.9767 + }, + { + "start": 11010.38, + "end": 11015.18, + "probability": 0.8306 + }, + { + "start": 11016.32, + "end": 11020.24, + "probability": 0.6866 + }, + { + "start": 11020.36, + "end": 11023.32, + "probability": 0.9937 + }, + { + "start": 11024.02, + "end": 11027.46, + "probability": 0.5818 + }, + { + "start": 11028.94, + "end": 11030.74, + "probability": 0.9866 + }, + { + "start": 11030.86, + "end": 11031.68, + "probability": 0.7663 + }, + { + "start": 11031.78, + "end": 11032.52, + "probability": 0.9548 + }, + { + "start": 11032.66, + "end": 11034.55, + "probability": 0.3388 + }, + { + "start": 11035.04, + "end": 11037.26, + "probability": 0.9663 + }, + { + "start": 11037.84, + "end": 11039.82, + "probability": 0.959 + }, + { + "start": 11040.5, + "end": 11045.54, + "probability": 0.7798 + }, + { + "start": 11045.66, + "end": 11048.96, + "probability": 0.9651 + }, + { + "start": 11049.06, + "end": 11053.66, + "probability": 0.8621 + }, + { + "start": 11054.2, + "end": 11055.78, + "probability": 0.9728 + }, + { + "start": 11055.88, + "end": 11057.47, + "probability": 0.7739 + }, + { + "start": 11057.73, + "end": 11059.43, + "probability": 0.9561 + }, + { + "start": 11060.66, + "end": 11062.88, + "probability": 0.6177 + }, + { + "start": 11062.88, + "end": 11065.16, + "probability": 0.1229 + }, + { + "start": 11065.44, + "end": 11068.96, + "probability": 0.9342 + }, + { + "start": 11069.48, + "end": 11072.84, + "probability": 0.988 + }, + { + "start": 11073.64, + "end": 11078.26, + "probability": 0.7196 + }, + { + "start": 11078.26, + "end": 11078.66, + "probability": 0.3573 + }, + { + "start": 11079.06, + "end": 11079.88, + "probability": 0.8056 + }, + { + "start": 11080.14, + "end": 11080.75, + "probability": 0.7375 + }, + { + "start": 11081.48, + "end": 11084.22, + "probability": 0.9283 + }, + { + "start": 11084.6, + "end": 11086.1, + "probability": 0.3407 + }, + { + "start": 11086.2, + "end": 11088.25, + "probability": 0.8004 + }, + { + "start": 11088.3, + "end": 11089.1, + "probability": 0.1453 + }, + { + "start": 11089.34, + "end": 11095.04, + "probability": 0.2038 + }, + { + "start": 11097.02, + "end": 11097.24, + "probability": 0.0147 + }, + { + "start": 11097.24, + "end": 11097.46, + "probability": 0.3016 + }, + { + "start": 11097.74, + "end": 11099.38, + "probability": 0.8958 + }, + { + "start": 11099.48, + "end": 11100.6, + "probability": 0.9658 + }, + { + "start": 11101.18, + "end": 11103.3, + "probability": 0.7014 + }, + { + "start": 11103.66, + "end": 11106.6, + "probability": 0.9276 + }, + { + "start": 11106.7, + "end": 11107.42, + "probability": 0.248 + }, + { + "start": 11107.82, + "end": 11108.18, + "probability": 0.1661 + }, + { + "start": 11109.38, + "end": 11112.74, + "probability": 0.7054 + }, + { + "start": 11113.56, + "end": 11114.56, + "probability": 0.6796 + }, + { + "start": 11115.66, + "end": 11118.26, + "probability": 0.9236 + }, + { + "start": 11118.84, + "end": 11121.5, + "probability": 0.7502 + }, + { + "start": 11122.18, + "end": 11125.1, + "probability": 0.7938 + }, + { + "start": 11125.72, + "end": 11129.04, + "probability": 0.9594 + }, + { + "start": 11129.66, + "end": 11135.32, + "probability": 0.8377 + }, + { + "start": 11135.9, + "end": 11138.1, + "probability": 0.8076 + }, + { + "start": 11138.74, + "end": 11139.14, + "probability": 0.9839 + }, + { + "start": 11140.12, + "end": 11142.23, + "probability": 0.9119 + }, + { + "start": 11142.74, + "end": 11145.4, + "probability": 0.6412 + }, + { + "start": 11145.82, + "end": 11147.88, + "probability": 0.5898 + }, + { + "start": 11147.88, + "end": 11148.57, + "probability": 0.332 + }, + { + "start": 11149.2, + "end": 11150.22, + "probability": 0.5015 + }, + { + "start": 11150.5, + "end": 11158.68, + "probability": 0.7078 + }, + { + "start": 11159.0, + "end": 11159.04, + "probability": 0.186 + }, + { + "start": 11159.04, + "end": 11159.78, + "probability": 0.441 + }, + { + "start": 11160.16, + "end": 11162.9, + "probability": 0.1894 + }, + { + "start": 11163.54, + "end": 11167.76, + "probability": 0.4759 + }, + { + "start": 11167.8, + "end": 11170.68, + "probability": 0.7647 + }, + { + "start": 11170.72, + "end": 11172.4, + "probability": 0.1252 + }, + { + "start": 11172.58, + "end": 11175.1, + "probability": 0.3229 + }, + { + "start": 11177.96, + "end": 11179.54, + "probability": 0.501 + }, + { + "start": 11193.3, + "end": 11196.94, + "probability": 0.0864 + }, + { + "start": 11196.94, + "end": 11198.58, + "probability": 0.1077 + }, + { + "start": 11198.6, + "end": 11201.16, + "probability": 0.5061 + }, + { + "start": 11202.82, + "end": 11204.02, + "probability": 0.1185 + }, + { + "start": 11207.14, + "end": 11207.84, + "probability": 0.3267 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11402.0, + "end": 11402.0, + "probability": 0.0 + }, + { + "start": 11403.24, + "end": 11403.68, + "probability": 0.5162 + }, + { + "start": 11403.76, + "end": 11404.18, + "probability": 0.6122 + }, + { + "start": 11404.82, + "end": 11405.77, + "probability": 0.9224 + }, + { + "start": 11406.62, + "end": 11407.92, + "probability": 0.9539 + }, + { + "start": 11409.12, + "end": 11411.32, + "probability": 0.5576 + }, + { + "start": 11412.12, + "end": 11415.47, + "probability": 0.9697 + }, + { + "start": 11416.54, + "end": 11417.96, + "probability": 0.809 + }, + { + "start": 11420.86, + "end": 11421.84, + "probability": 0.8878 + }, + { + "start": 11439.48, + "end": 11441.84, + "probability": 0.7276 + }, + { + "start": 11442.72, + "end": 11446.16, + "probability": 0.8711 + }, + { + "start": 11447.0, + "end": 11450.58, + "probability": 0.954 + }, + { + "start": 11451.5, + "end": 11452.32, + "probability": 0.9676 + }, + { + "start": 11452.88, + "end": 11455.18, + "probability": 0.4817 + }, + { + "start": 11456.16, + "end": 11458.78, + "probability": 0.8167 + }, + { + "start": 11459.36, + "end": 11462.78, + "probability": 0.9584 + }, + { + "start": 11465.2, + "end": 11470.0, + "probability": 0.7703 + }, + { + "start": 11471.56, + "end": 11474.82, + "probability": 0.9372 + }, + { + "start": 11476.06, + "end": 11477.82, + "probability": 0.9116 + }, + { + "start": 11478.56, + "end": 11479.18, + "probability": 0.802 + }, + { + "start": 11479.24, + "end": 11485.82, + "probability": 0.9839 + }, + { + "start": 11486.68, + "end": 11488.18, + "probability": 0.9639 + }, + { + "start": 11488.58, + "end": 11492.7, + "probability": 0.8658 + }, + { + "start": 11493.28, + "end": 11493.64, + "probability": 0.8524 + }, + { + "start": 11493.72, + "end": 11498.76, + "probability": 0.6441 + }, + { + "start": 11499.06, + "end": 11500.94, + "probability": 0.8523 + }, + { + "start": 11501.38, + "end": 11505.12, + "probability": 0.9891 + }, + { + "start": 11506.08, + "end": 11506.94, + "probability": 0.8694 + }, + { + "start": 11507.94, + "end": 11511.7, + "probability": 0.9506 + }, + { + "start": 11512.7, + "end": 11514.52, + "probability": 0.9575 + }, + { + "start": 11515.62, + "end": 11518.96, + "probability": 0.9065 + }, + { + "start": 11519.54, + "end": 11524.22, + "probability": 0.9373 + }, + { + "start": 11524.98, + "end": 11526.71, + "probability": 0.7424 + }, + { + "start": 11528.84, + "end": 11532.26, + "probability": 0.8493 + }, + { + "start": 11533.68, + "end": 11538.0, + "probability": 0.9802 + }, + { + "start": 11538.0, + "end": 11540.82, + "probability": 0.574 + }, + { + "start": 11542.4, + "end": 11546.36, + "probability": 0.9751 + }, + { + "start": 11546.4, + "end": 11549.78, + "probability": 0.9788 + }, + { + "start": 11550.38, + "end": 11553.84, + "probability": 0.9342 + }, + { + "start": 11554.12, + "end": 11555.02, + "probability": 0.9858 + }, + { + "start": 11555.64, + "end": 11556.06, + "probability": 0.6274 + }, + { + "start": 11556.44, + "end": 11557.52, + "probability": 0.6528 + }, + { + "start": 11557.92, + "end": 11558.62, + "probability": 0.8273 + }, + { + "start": 11558.74, + "end": 11559.44, + "probability": 0.8724 + }, + { + "start": 11559.9, + "end": 11561.34, + "probability": 0.8477 + }, + { + "start": 11561.4, + "end": 11561.92, + "probability": 0.7022 + }, + { + "start": 11562.64, + "end": 11566.24, + "probability": 0.984 + }, + { + "start": 11567.18, + "end": 11568.2, + "probability": 0.9409 + }, + { + "start": 11569.46, + "end": 11572.88, + "probability": 0.9985 + }, + { + "start": 11572.88, + "end": 11575.82, + "probability": 0.999 + }, + { + "start": 11576.9, + "end": 11578.06, + "probability": 0.7852 + }, + { + "start": 11578.62, + "end": 11582.14, + "probability": 0.9902 + }, + { + "start": 11582.52, + "end": 11589.24, + "probability": 0.992 + }, + { + "start": 11590.12, + "end": 11595.1, + "probability": 0.8185 + }, + { + "start": 11595.82, + "end": 11599.1, + "probability": 0.6525 + }, + { + "start": 11599.38, + "end": 11600.42, + "probability": 0.9626 + }, + { + "start": 11600.86, + "end": 11603.04, + "probability": 0.8217 + }, + { + "start": 11603.72, + "end": 11607.64, + "probability": 0.8888 + }, + { + "start": 11608.06, + "end": 11609.16, + "probability": 0.8614 + }, + { + "start": 11609.3, + "end": 11609.88, + "probability": 0.4271 + }, + { + "start": 11610.1, + "end": 11613.16, + "probability": 0.8759 + }, + { + "start": 11613.54, + "end": 11613.84, + "probability": 0.4974 + }, + { + "start": 11613.94, + "end": 11617.82, + "probability": 0.957 + }, + { + "start": 11618.1, + "end": 11619.2, + "probability": 0.898 + }, + { + "start": 11619.52, + "end": 11620.28, + "probability": 0.9437 + }, + { + "start": 11620.52, + "end": 11622.46, + "probability": 0.992 + }, + { + "start": 11622.58, + "end": 11622.84, + "probability": 0.5087 + }, + { + "start": 11623.44, + "end": 11623.44, + "probability": 0.4542 + }, + { + "start": 11623.44, + "end": 11624.94, + "probability": 0.5989 + }, + { + "start": 11625.12, + "end": 11628.86, + "probability": 0.8125 + }, + { + "start": 11629.4, + "end": 11633.6, + "probability": 0.5741 + }, + { + "start": 11634.46, + "end": 11635.42, + "probability": 0.922 + }, + { + "start": 11639.96, + "end": 11641.58, + "probability": 0.7086 + }, + { + "start": 11655.06, + "end": 11658.2, + "probability": 0.1637 + }, + { + "start": 11659.04, + "end": 11659.76, + "probability": 0.0255 + }, + { + "start": 11659.76, + "end": 11660.76, + "probability": 0.0518 + }, + { + "start": 11660.76, + "end": 11662.04, + "probability": 0.5259 + }, + { + "start": 11662.78, + "end": 11663.46, + "probability": 0.4117 + }, + { + "start": 11665.86, + "end": 11665.86, + "probability": 0.037 + }, + { + "start": 11665.86, + "end": 11665.86, + "probability": 0.0822 + }, + { + "start": 11665.86, + "end": 11665.86, + "probability": 0.1535 + }, + { + "start": 11665.86, + "end": 11668.46, + "probability": 0.7611 + }, + { + "start": 11681.44, + "end": 11682.82, + "probability": 0.5745 + }, + { + "start": 11690.96, + "end": 11692.1, + "probability": 0.2223 + }, + { + "start": 11693.38, + "end": 11695.38, + "probability": 0.1673 + }, + { + "start": 11695.76, + "end": 11706.9, + "probability": 0.0448 + }, + { + "start": 11707.98, + "end": 11708.48, + "probability": 0.1853 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11749.0, + "end": 11749.0, + "probability": 0.0 + }, + { + "start": 11750.98, + "end": 11753.74, + "probability": 0.7502 + }, + { + "start": 11755.62, + "end": 11756.18, + "probability": 0.7253 + }, + { + "start": 11761.16, + "end": 11763.18, + "probability": 0.7048 + }, + { + "start": 11764.44, + "end": 11764.76, + "probability": 0.1838 + }, + { + "start": 11764.76, + "end": 11766.08, + "probability": 0.4131 + }, + { + "start": 11768.8, + "end": 11771.34, + "probability": 0.9011 + }, + { + "start": 11772.2, + "end": 11780.06, + "probability": 0.7063 + }, + { + "start": 11780.9, + "end": 11784.34, + "probability": 0.7992 + }, + { + "start": 11785.14, + "end": 11788.18, + "probability": 0.7665 + }, + { + "start": 11788.7, + "end": 11790.7, + "probability": 0.4882 + }, + { + "start": 11790.94, + "end": 11795.98, + "probability": 0.9302 + }, + { + "start": 11796.7, + "end": 11800.42, + "probability": 0.7814 + }, + { + "start": 11800.42, + "end": 11804.18, + "probability": 0.6895 + }, + { + "start": 11804.74, + "end": 11808.26, + "probability": 0.8292 + }, + { + "start": 11809.04, + "end": 11811.36, + "probability": 0.7161 + }, + { + "start": 11811.94, + "end": 11817.02, + "probability": 0.8694 + }, + { + "start": 11817.02, + "end": 11822.86, + "probability": 0.8888 + }, + { + "start": 11823.46, + "end": 11825.72, + "probability": 0.3707 + }, + { + "start": 11825.96, + "end": 11829.28, + "probability": 0.7501 + }, + { + "start": 11829.88, + "end": 11835.82, + "probability": 0.9919 + }, + { + "start": 11835.82, + "end": 11841.22, + "probability": 0.969 + }, + { + "start": 11841.68, + "end": 11842.98, + "probability": 0.9034 + }, + { + "start": 11843.08, + "end": 11843.44, + "probability": 0.5159 + }, + { + "start": 11843.56, + "end": 11849.56, + "probability": 0.8669 + }, + { + "start": 11850.0, + "end": 11853.74, + "probability": 0.9818 + }, + { + "start": 11853.74, + "end": 11858.38, + "probability": 0.9925 + }, + { + "start": 11859.46, + "end": 11863.28, + "probability": 0.6531 + }, + { + "start": 11863.32, + "end": 11866.38, + "probability": 0.8852 + }, + { + "start": 11866.38, + "end": 11869.92, + "probability": 0.9846 + }, + { + "start": 11870.1, + "end": 11870.58, + "probability": 0.46 + }, + { + "start": 11870.62, + "end": 11874.5, + "probability": 0.9712 + }, + { + "start": 11874.5, + "end": 11878.32, + "probability": 0.9311 + }, + { + "start": 11878.68, + "end": 11880.52, + "probability": 0.8118 + }, + { + "start": 11880.94, + "end": 11882.72, + "probability": 0.8923 + }, + { + "start": 11882.72, + "end": 11882.92, + "probability": 0.7489 + }, + { + "start": 11883.58, + "end": 11884.82, + "probability": 0.203 + }, + { + "start": 11885.58, + "end": 11887.76, + "probability": 0.8298 + }, + { + "start": 11887.76, + "end": 11890.52, + "probability": 0.6434 + }, + { + "start": 11890.52, + "end": 11895.98, + "probability": 0.694 + }, + { + "start": 11896.1, + "end": 11901.38, + "probability": 0.7142 + }, + { + "start": 11904.0, + "end": 11905.62, + "probability": 0.6152 + }, + { + "start": 11905.7, + "end": 11907.89, + "probability": 0.1143 + }, + { + "start": 11909.08, + "end": 11909.6, + "probability": 0.0036 + }, + { + "start": 11909.6, + "end": 11909.6, + "probability": 0.1143 + }, + { + "start": 11909.6, + "end": 11909.6, + "probability": 0.0965 + }, + { + "start": 11909.6, + "end": 11910.62, + "probability": 0.8554 + }, + { + "start": 11912.48, + "end": 11914.24, + "probability": 0.3616 + }, + { + "start": 11914.46, + "end": 11916.73, + "probability": 0.5866 + }, + { + "start": 11920.94, + "end": 11922.78, + "probability": 0.6443 + }, + { + "start": 11926.14, + "end": 11928.34, + "probability": 0.6971 + }, + { + "start": 11929.29, + "end": 11932.52, + "probability": 0.0235 + }, + { + "start": 11932.52, + "end": 11933.22, + "probability": 0.0118 + }, + { + "start": 11933.92, + "end": 11935.0, + "probability": 0.1159 + }, + { + "start": 11938.42, + "end": 11939.52, + "probability": 0.0261 + }, + { + "start": 11946.84, + "end": 11947.38, + "probability": 0.0503 + }, + { + "start": 11947.38, + "end": 11947.38, + "probability": 0.0177 + }, + { + "start": 11948.4, + "end": 11948.4, + "probability": 0.0802 + }, + { + "start": 11949.18, + "end": 11950.7, + "probability": 0.1871 + }, + { + "start": 11955.86, + "end": 11956.04, + "probability": 0.0337 + }, + { + "start": 11967.76, + "end": 11968.44, + "probability": 0.0045 + }, + { + "start": 11968.64, + "end": 11968.64, + "probability": 0.1715 + }, + { + "start": 11968.64, + "end": 11970.38, + "probability": 0.0933 + }, + { + "start": 11970.38, + "end": 11971.4, + "probability": 0.1309 + }, + { + "start": 11972.68, + "end": 11973.02, + "probability": 0.0309 + }, + { + "start": 11973.02, + "end": 11974.56, + "probability": 0.0205 + }, + { + "start": 11976.18, + "end": 11977.16, + "probability": 0.0269 + }, + { + "start": 11978.57, + "end": 11980.86, + "probability": 0.0141 + }, + { + "start": 11981.64, + "end": 11981.74, + "probability": 0.2005 + }, + { + "start": 11981.74, + "end": 11982.06, + "probability": 0.1857 + }, + { + "start": 11982.06, + "end": 11982.98, + "probability": 0.0134 + }, + { + "start": 11983.0, + "end": 11983.0, + "probability": 0.0 + }, + { + "start": 11983.0, + "end": 11983.0, + "probability": 0.0 + }, + { + "start": 11983.0, + "end": 11983.0, + "probability": 0.0 + }, + { + "start": 11983.14, + "end": 11983.36, + "probability": 0.03 + }, + { + "start": 11983.36, + "end": 11986.04, + "probability": 0.7917 + }, + { + "start": 11986.04, + "end": 11988.62, + "probability": 0.824 + }, + { + "start": 11989.3, + "end": 11992.9, + "probability": 0.9448 + }, + { + "start": 11993.28, + "end": 11996.1, + "probability": 0.7681 + }, + { + "start": 11996.46, + "end": 11998.48, + "probability": 0.6469 + }, + { + "start": 12000.94, + "end": 12004.56, + "probability": 0.8208 + }, + { + "start": 12005.56, + "end": 12008.1, + "probability": 0.5704 + }, + { + "start": 12008.38, + "end": 12009.41, + "probability": 0.7069 + }, + { + "start": 12010.58, + "end": 12013.32, + "probability": 0.8993 + }, + { + "start": 12014.7, + "end": 12021.36, + "probability": 0.9915 + }, + { + "start": 12022.32, + "end": 12024.86, + "probability": 0.9432 + }, + { + "start": 12025.66, + "end": 12030.26, + "probability": 0.9424 + }, + { + "start": 12031.34, + "end": 12034.3, + "probability": 0.9697 + }, + { + "start": 12035.68, + "end": 12036.98, + "probability": 0.8206 + }, + { + "start": 12037.16, + "end": 12043.8, + "probability": 0.9746 + }, + { + "start": 12044.94, + "end": 12049.36, + "probability": 0.9963 + }, + { + "start": 12049.36, + "end": 12055.5, + "probability": 0.9967 + }, + { + "start": 12056.8, + "end": 12058.26, + "probability": 0.9058 + }, + { + "start": 12059.42, + "end": 12061.22, + "probability": 0.9557 + }, + { + "start": 12062.0, + "end": 12064.74, + "probability": 0.9843 + }, + { + "start": 12065.54, + "end": 12068.66, + "probability": 0.7807 + }, + { + "start": 12069.6, + "end": 12071.8, + "probability": 0.939 + }, + { + "start": 12072.42, + "end": 12073.06, + "probability": 0.8648 + }, + { + "start": 12073.8, + "end": 12077.34, + "probability": 0.9869 + }, + { + "start": 12077.92, + "end": 12080.74, + "probability": 0.995 + }, + { + "start": 12081.44, + "end": 12083.68, + "probability": 0.8725 + }, + { + "start": 12084.88, + "end": 12085.5, + "probability": 0.7042 + }, + { + "start": 12086.32, + "end": 12094.52, + "probability": 0.9957 + }, + { + "start": 12095.22, + "end": 12101.4, + "probability": 0.989 + }, + { + "start": 12101.98, + "end": 12109.98, + "probability": 0.9815 + }, + { + "start": 12110.04, + "end": 12115.38, + "probability": 0.9953 + }, + { + "start": 12115.52, + "end": 12118.58, + "probability": 0.9892 + }, + { + "start": 12119.9, + "end": 12123.72, + "probability": 0.9741 + }, + { + "start": 12123.72, + "end": 12128.1, + "probability": 0.9963 + }, + { + "start": 12128.78, + "end": 12132.22, + "probability": 0.7746 + }, + { + "start": 12132.82, + "end": 12136.2, + "probability": 0.9814 + }, + { + "start": 12137.08, + "end": 12140.28, + "probability": 0.9978 + }, + { + "start": 12140.94, + "end": 12143.84, + "probability": 0.7951 + }, + { + "start": 12144.6, + "end": 12147.64, + "probability": 0.9942 + }, + { + "start": 12148.4, + "end": 12154.2, + "probability": 0.9917 + }, + { + "start": 12154.88, + "end": 12155.38, + "probability": 0.7701 + }, + { + "start": 12155.84, + "end": 12163.12, + "probability": 0.9973 + }, + { + "start": 12163.68, + "end": 12166.62, + "probability": 0.6487 + }, + { + "start": 12166.74, + "end": 12168.32, + "probability": 0.9929 + }, + { + "start": 12170.04, + "end": 12170.78, + "probability": 0.6139 + }, + { + "start": 12175.18, + "end": 12176.86, + "probability": 0.9879 + }, + { + "start": 12177.08, + "end": 12178.85, + "probability": 0.9455 + }, + { + "start": 12180.02, + "end": 12181.04, + "probability": 0.479 + }, + { + "start": 12181.04, + "end": 12181.64, + "probability": 0.477 + }, + { + "start": 12183.22, + "end": 12189.84, + "probability": 0.968 + }, + { + "start": 12191.84, + "end": 12192.34, + "probability": 0.8789 + }, + { + "start": 12192.68, + "end": 12193.09, + "probability": 0.9038 + }, + { + "start": 12194.54, + "end": 12198.64, + "probability": 0.8732 + }, + { + "start": 12199.54, + "end": 12201.12, + "probability": 0.5055 + }, + { + "start": 12201.38, + "end": 12202.74, + "probability": 0.9854 + }, + { + "start": 12202.9, + "end": 12206.48, + "probability": 0.9346 + }, + { + "start": 12206.8, + "end": 12210.46, + "probability": 0.9617 + }, + { + "start": 12210.86, + "end": 12212.52, + "probability": 0.8917 + }, + { + "start": 12212.52, + "end": 12215.18, + "probability": 0.9805 + }, + { + "start": 12216.3, + "end": 12216.76, + "probability": 0.5143 + }, + { + "start": 12216.78, + "end": 12218.24, + "probability": 0.7376 + }, + { + "start": 12218.82, + "end": 12222.88, + "probability": 0.6344 + }, + { + "start": 12223.02, + "end": 12224.6, + "probability": 0.8718 + }, + { + "start": 12225.3, + "end": 12226.88, + "probability": 0.8112 + }, + { + "start": 12227.36, + "end": 12228.52, + "probability": 0.8342 + }, + { + "start": 12232.54, + "end": 12232.98, + "probability": 0.5152 + }, + { + "start": 12232.98, + "end": 12232.98, + "probability": 0.0659 + }, + { + "start": 12232.98, + "end": 12233.74, + "probability": 0.2468 + }, + { + "start": 12234.8, + "end": 12236.58, + "probability": 0.7264 + }, + { + "start": 12236.82, + "end": 12237.76, + "probability": 0.8341 + }, + { + "start": 12237.8, + "end": 12239.37, + "probability": 0.4612 + }, + { + "start": 12240.58, + "end": 12244.26, + "probability": 0.3762 + }, + { + "start": 12244.66, + "end": 12248.0, + "probability": 0.7948 + }, + { + "start": 12249.18, + "end": 12250.26, + "probability": 0.1964 + } + ], + "segments_count": 3817, + "words_count": 20161, + "avg_words_per_segment": 5.2819, + "avg_segment_duration": 2.2782, + "avg_words_per_minute": 98.6542, + "plenum_id": "30038", + "duration": 12261.62, + "title": null, + "plenum_date": "2013-07-09" +} \ No newline at end of file