diff --git "a/38456/metadata.json" "b/38456/metadata.json" new file mode 100644--- /dev/null +++ "b/38456/metadata.json" @@ -0,0 +1,36962 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "38456", + "quality_score": 0.912, + "per_segment_quality_scores": [ + { + "start": 48.18, + "end": 49.77, + "probability": 0.8214 + }, + { + "start": 50.7, + "end": 52.0, + "probability": 0.9936 + }, + { + "start": 54.68, + "end": 55.98, + "probability": 0.7287 + }, + { + "start": 56.12, + "end": 57.62, + "probability": 0.8789 + }, + { + "start": 57.72, + "end": 59.2, + "probability": 0.9407 + }, + { + "start": 59.58, + "end": 59.84, + "probability": 0.9587 + }, + { + "start": 60.42, + "end": 61.26, + "probability": 0.467 + }, + { + "start": 61.94, + "end": 64.46, + "probability": 0.7468 + }, + { + "start": 64.52, + "end": 65.46, + "probability": 0.6712 + }, + { + "start": 66.84, + "end": 69.12, + "probability": 0.9954 + }, + { + "start": 69.74, + "end": 70.84, + "probability": 0.6965 + }, + { + "start": 71.45, + "end": 75.1, + "probability": 0.3621 + }, + { + "start": 75.1, + "end": 78.6, + "probability": 0.2448 + }, + { + "start": 78.74, + "end": 80.2, + "probability": 0.6081 + }, + { + "start": 80.8, + "end": 82.48, + "probability": 0.7463 + }, + { + "start": 83.02, + "end": 86.18, + "probability": 0.7574 + }, + { + "start": 86.18, + "end": 88.84, + "probability": 0.9894 + }, + { + "start": 88.96, + "end": 90.1, + "probability": 0.6261 + }, + { + "start": 90.82, + "end": 92.1, + "probability": 0.9976 + }, + { + "start": 92.68, + "end": 96.06, + "probability": 0.7298 + }, + { + "start": 98.96, + "end": 99.42, + "probability": 0.6975 + }, + { + "start": 99.42, + "end": 101.02, + "probability": 0.6702 + }, + { + "start": 101.24, + "end": 102.56, + "probability": 0.7601 + }, + { + "start": 103.3, + "end": 106.04, + "probability": 0.8522 + }, + { + "start": 107.2, + "end": 107.66, + "probability": 0.6641 + }, + { + "start": 108.4, + "end": 110.04, + "probability": 0.0198 + }, + { + "start": 110.2, + "end": 115.04, + "probability": 0.1335 + }, + { + "start": 115.94, + "end": 119.04, + "probability": 0.5026 + }, + { + "start": 119.78, + "end": 122.16, + "probability": 0.0747 + }, + { + "start": 122.16, + "end": 122.48, + "probability": 0.285 + }, + { + "start": 123.48, + "end": 124.26, + "probability": 0.0341 + }, + { + "start": 124.26, + "end": 124.48, + "probability": 0.0463 + }, + { + "start": 124.48, + "end": 124.5, + "probability": 0.0252 + }, + { + "start": 124.5, + "end": 124.5, + "probability": 0.0327 + }, + { + "start": 124.5, + "end": 124.98, + "probability": 0.035 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.16, + "end": 127.8, + "probability": 0.9908 + }, + { + "start": 128.3, + "end": 130.42, + "probability": 0.874 + }, + { + "start": 130.54, + "end": 134.18, + "probability": 0.7681 + }, + { + "start": 134.32, + "end": 137.66, + "probability": 0.9334 + }, + { + "start": 138.46, + "end": 139.0, + "probability": 0.6246 + }, + { + "start": 139.06, + "end": 144.68, + "probability": 0.9584 + }, + { + "start": 145.66, + "end": 149.3, + "probability": 0.9965 + }, + { + "start": 149.84, + "end": 152.93, + "probability": 0.9826 + }, + { + "start": 153.06, + "end": 153.88, + "probability": 0.4501 + }, + { + "start": 154.24, + "end": 155.14, + "probability": 0.9781 + }, + { + "start": 160.78, + "end": 162.32, + "probability": 0.4178 + }, + { + "start": 162.66, + "end": 162.66, + "probability": 0.6365 + }, + { + "start": 162.7, + "end": 163.84, + "probability": 0.6624 + }, + { + "start": 164.98, + "end": 167.34, + "probability": 0.9825 + }, + { + "start": 167.6, + "end": 170.74, + "probability": 0.963 + }, + { + "start": 171.54, + "end": 174.32, + "probability": 0.9886 + }, + { + "start": 176.04, + "end": 178.79, + "probability": 0.9993 + }, + { + "start": 179.2, + "end": 181.42, + "probability": 0.9998 + }, + { + "start": 182.62, + "end": 186.6, + "probability": 0.9282 + }, + { + "start": 187.42, + "end": 188.92, + "probability": 0.8993 + }, + { + "start": 190.36, + "end": 195.2, + "probability": 0.9894 + }, + { + "start": 195.94, + "end": 196.88, + "probability": 0.7707 + }, + { + "start": 197.94, + "end": 202.16, + "probability": 0.7295 + }, + { + "start": 202.84, + "end": 205.16, + "probability": 0.9515 + }, + { + "start": 206.0, + "end": 208.78, + "probability": 0.951 + }, + { + "start": 210.0, + "end": 212.22, + "probability": 0.9568 + }, + { + "start": 212.92, + "end": 217.18, + "probability": 0.9839 + }, + { + "start": 219.16, + "end": 220.72, + "probability": 0.8971 + }, + { + "start": 221.2, + "end": 224.5, + "probability": 0.9879 + }, + { + "start": 224.86, + "end": 226.24, + "probability": 0.9814 + }, + { + "start": 226.32, + "end": 229.74, + "probability": 0.9961 + }, + { + "start": 230.26, + "end": 233.86, + "probability": 0.9977 + }, + { + "start": 234.3, + "end": 236.94, + "probability": 0.9983 + }, + { + "start": 237.56, + "end": 239.94, + "probability": 0.9937 + }, + { + "start": 240.04, + "end": 240.78, + "probability": 0.855 + }, + { + "start": 241.14, + "end": 246.14, + "probability": 0.9398 + }, + { + "start": 246.38, + "end": 251.42, + "probability": 0.9781 + }, + { + "start": 251.63, + "end": 256.75, + "probability": 0.9993 + }, + { + "start": 257.4, + "end": 262.28, + "probability": 0.9346 + }, + { + "start": 262.8, + "end": 265.5, + "probability": 0.6945 + }, + { + "start": 265.9, + "end": 266.58, + "probability": 0.7524 + }, + { + "start": 266.68, + "end": 267.32, + "probability": 0.489 + }, + { + "start": 267.48, + "end": 268.14, + "probability": 0.8403 + }, + { + "start": 268.28, + "end": 269.84, + "probability": 0.7218 + }, + { + "start": 270.78, + "end": 275.52, + "probability": 0.9416 + }, + { + "start": 275.98, + "end": 277.7, + "probability": 0.9976 + }, + { + "start": 278.08, + "end": 280.54, + "probability": 0.897 + }, + { + "start": 281.92, + "end": 284.84, + "probability": 0.6582 + }, + { + "start": 285.36, + "end": 288.3, + "probability": 0.9255 + }, + { + "start": 288.62, + "end": 290.58, + "probability": 0.897 + }, + { + "start": 291.16, + "end": 294.0, + "probability": 0.6921 + }, + { + "start": 294.12, + "end": 298.28, + "probability": 0.9708 + }, + { + "start": 298.4, + "end": 302.12, + "probability": 0.999 + }, + { + "start": 302.6, + "end": 303.7, + "probability": 0.7519 + }, + { + "start": 304.28, + "end": 307.26, + "probability": 0.9973 + }, + { + "start": 307.72, + "end": 311.9, + "probability": 0.9866 + }, + { + "start": 312.26, + "end": 314.56, + "probability": 0.9263 + }, + { + "start": 314.6, + "end": 314.76, + "probability": 0.6639 + }, + { + "start": 314.96, + "end": 317.06, + "probability": 0.8837 + }, + { + "start": 317.54, + "end": 318.54, + "probability": 0.0927 + }, + { + "start": 318.54, + "end": 321.82, + "probability": 0.9602 + }, + { + "start": 321.92, + "end": 323.69, + "probability": 0.9267 + }, + { + "start": 324.46, + "end": 324.78, + "probability": 0.4937 + }, + { + "start": 325.06, + "end": 327.7, + "probability": 0.8486 + }, + { + "start": 329.06, + "end": 331.6, + "probability": 0.9775 + }, + { + "start": 331.96, + "end": 333.08, + "probability": 0.9282 + }, + { + "start": 333.18, + "end": 334.84, + "probability": 0.957 + }, + { + "start": 335.94, + "end": 337.68, + "probability": 0.1991 + }, + { + "start": 337.78, + "end": 337.88, + "probability": 0.6096 + }, + { + "start": 338.0, + "end": 339.98, + "probability": 0.9979 + }, + { + "start": 340.24, + "end": 343.04, + "probability": 0.995 + }, + { + "start": 343.46, + "end": 345.56, + "probability": 0.9228 + }, + { + "start": 346.26, + "end": 348.3, + "probability": 0.9718 + }, + { + "start": 348.38, + "end": 351.92, + "probability": 0.9686 + }, + { + "start": 351.92, + "end": 357.56, + "probability": 0.9972 + }, + { + "start": 359.02, + "end": 360.89, + "probability": 0.9963 + }, + { + "start": 361.02, + "end": 362.22, + "probability": 0.7682 + }, + { + "start": 362.42, + "end": 364.5, + "probability": 0.6761 + }, + { + "start": 366.1, + "end": 368.14, + "probability": 0.9919 + }, + { + "start": 368.28, + "end": 371.43, + "probability": 0.995 + }, + { + "start": 371.94, + "end": 377.3, + "probability": 0.9902 + }, + { + "start": 377.64, + "end": 381.84, + "probability": 0.9767 + }, + { + "start": 382.98, + "end": 388.53, + "probability": 0.9961 + }, + { + "start": 389.0, + "end": 391.22, + "probability": 0.9061 + }, + { + "start": 391.3, + "end": 394.0, + "probability": 0.9976 + }, + { + "start": 394.2, + "end": 395.23, + "probability": 0.9302 + }, + { + "start": 396.06, + "end": 398.49, + "probability": 0.9885 + }, + { + "start": 399.32, + "end": 403.42, + "probability": 0.9926 + }, + { + "start": 404.06, + "end": 404.4, + "probability": 0.9382 + }, + { + "start": 404.44, + "end": 408.36, + "probability": 0.9928 + }, + { + "start": 408.7, + "end": 410.64, + "probability": 0.986 + }, + { + "start": 412.08, + "end": 413.12, + "probability": 0.9962 + }, + { + "start": 414.28, + "end": 417.5, + "probability": 0.9945 + }, + { + "start": 418.74, + "end": 419.02, + "probability": 0.7575 + }, + { + "start": 419.08, + "end": 422.66, + "probability": 0.9798 + }, + { + "start": 422.7, + "end": 423.58, + "probability": 0.821 + }, + { + "start": 424.0, + "end": 428.36, + "probability": 0.9863 + }, + { + "start": 429.7, + "end": 431.3, + "probability": 0.9619 + }, + { + "start": 432.32, + "end": 433.26, + "probability": 0.7521 + }, + { + "start": 434.02, + "end": 435.28, + "probability": 0.9466 + }, + { + "start": 435.88, + "end": 439.07, + "probability": 0.9573 + }, + { + "start": 439.7, + "end": 441.42, + "probability": 0.9967 + }, + { + "start": 441.52, + "end": 446.02, + "probability": 0.9813 + }, + { + "start": 446.06, + "end": 447.52, + "probability": 0.6652 + }, + { + "start": 447.84, + "end": 450.78, + "probability": 0.8458 + }, + { + "start": 451.4, + "end": 453.82, + "probability": 0.9619 + }, + { + "start": 453.82, + "end": 457.58, + "probability": 0.7995 + }, + { + "start": 458.04, + "end": 458.74, + "probability": 0.7642 + }, + { + "start": 460.52, + "end": 462.36, + "probability": 0.9492 + }, + { + "start": 463.18, + "end": 464.8, + "probability": 0.5656 + }, + { + "start": 465.04, + "end": 469.14, + "probability": 0.9478 + }, + { + "start": 469.18, + "end": 472.92, + "probability": 0.9478 + }, + { + "start": 472.96, + "end": 473.92, + "probability": 0.7665 + }, + { + "start": 474.2, + "end": 474.56, + "probability": 0.9465 + }, + { + "start": 474.68, + "end": 478.9, + "probability": 0.978 + }, + { + "start": 479.32, + "end": 483.58, + "probability": 0.9898 + }, + { + "start": 483.58, + "end": 487.58, + "probability": 0.8831 + }, + { + "start": 487.68, + "end": 488.22, + "probability": 0.7015 + }, + { + "start": 488.36, + "end": 490.12, + "probability": 0.9176 + }, + { + "start": 490.48, + "end": 494.44, + "probability": 0.9869 + }, + { + "start": 494.44, + "end": 497.1, + "probability": 0.9742 + }, + { + "start": 497.64, + "end": 502.58, + "probability": 0.8619 + }, + { + "start": 503.36, + "end": 504.32, + "probability": 0.9587 + }, + { + "start": 505.1, + "end": 506.14, + "probability": 0.9563 + }, + { + "start": 506.52, + "end": 507.08, + "probability": 0.9749 + }, + { + "start": 509.06, + "end": 509.9, + "probability": 0.8053 + }, + { + "start": 509.98, + "end": 514.7, + "probability": 0.9766 + }, + { + "start": 515.74, + "end": 516.98, + "probability": 0.5077 + }, + { + "start": 517.04, + "end": 520.72, + "probability": 0.877 + }, + { + "start": 523.32, + "end": 526.16, + "probability": 0.8776 + }, + { + "start": 526.52, + "end": 527.36, + "probability": 0.9626 + }, + { + "start": 528.16, + "end": 529.56, + "probability": 0.9713 + }, + { + "start": 530.36, + "end": 532.82, + "probability": 0.8542 + }, + { + "start": 533.0, + "end": 538.3, + "probability": 0.9102 + }, + { + "start": 538.66, + "end": 539.12, + "probability": 0.2934 + }, + { + "start": 539.18, + "end": 539.32, + "probability": 0.9412 + }, + { + "start": 539.46, + "end": 543.6, + "probability": 0.8472 + }, + { + "start": 544.08, + "end": 547.04, + "probability": 0.8474 + }, + { + "start": 547.32, + "end": 548.52, + "probability": 0.7527 + }, + { + "start": 548.52, + "end": 551.02, + "probability": 0.7828 + }, + { + "start": 551.82, + "end": 553.12, + "probability": 0.906 + }, + { + "start": 553.6, + "end": 557.74, + "probability": 0.9814 + }, + { + "start": 557.94, + "end": 560.0, + "probability": 0.7937 + }, + { + "start": 560.26, + "end": 561.1, + "probability": 0.7307 + }, + { + "start": 561.14, + "end": 564.02, + "probability": 0.988 + }, + { + "start": 564.36, + "end": 564.94, + "probability": 0.9256 + }, + { + "start": 565.0, + "end": 566.12, + "probability": 0.7284 + }, + { + "start": 566.28, + "end": 567.02, + "probability": 0.4933 + }, + { + "start": 567.08, + "end": 572.5, + "probability": 0.9867 + }, + { + "start": 572.8, + "end": 573.48, + "probability": 0.696 + }, + { + "start": 574.04, + "end": 577.8, + "probability": 0.9302 + }, + { + "start": 579.68, + "end": 581.3, + "probability": 0.9945 + }, + { + "start": 581.56, + "end": 582.65, + "probability": 0.976 + }, + { + "start": 583.32, + "end": 587.96, + "probability": 0.994 + }, + { + "start": 588.62, + "end": 590.38, + "probability": 0.9766 + }, + { + "start": 590.54, + "end": 591.44, + "probability": 0.9854 + }, + { + "start": 591.74, + "end": 594.2, + "probability": 0.9907 + }, + { + "start": 594.76, + "end": 595.72, + "probability": 0.9308 + }, + { + "start": 595.9, + "end": 596.38, + "probability": 0.6725 + }, + { + "start": 596.58, + "end": 598.74, + "probability": 0.8845 + }, + { + "start": 599.1, + "end": 601.9, + "probability": 0.9992 + }, + { + "start": 602.02, + "end": 604.8, + "probability": 0.9316 + }, + { + "start": 604.9, + "end": 605.74, + "probability": 0.7326 + }, + { + "start": 606.12, + "end": 608.32, + "probability": 0.8486 + }, + { + "start": 609.88, + "end": 611.14, + "probability": 0.8205 + }, + { + "start": 611.62, + "end": 614.43, + "probability": 0.9702 + }, + { + "start": 614.56, + "end": 617.44, + "probability": 0.9655 + }, + { + "start": 618.42, + "end": 620.24, + "probability": 0.3761 + }, + { + "start": 621.18, + "end": 623.54, + "probability": 0.8394 + }, + { + "start": 624.76, + "end": 627.26, + "probability": 0.7876 + }, + { + "start": 627.48, + "end": 628.76, + "probability": 0.7361 + }, + { + "start": 629.14, + "end": 630.38, + "probability": 0.9708 + }, + { + "start": 630.7, + "end": 631.7, + "probability": 0.8229 + }, + { + "start": 632.6, + "end": 635.56, + "probability": 0.9531 + }, + { + "start": 636.52, + "end": 639.56, + "probability": 0.935 + }, + { + "start": 640.4, + "end": 643.42, + "probability": 0.9404 + }, + { + "start": 643.52, + "end": 643.82, + "probability": 0.5917 + }, + { + "start": 643.92, + "end": 646.54, + "probability": 0.985 + }, + { + "start": 646.92, + "end": 647.96, + "probability": 0.4991 + }, + { + "start": 649.0, + "end": 651.2, + "probability": 0.9963 + }, + { + "start": 651.3, + "end": 651.48, + "probability": 0.817 + }, + { + "start": 651.56, + "end": 653.26, + "probability": 0.9913 + }, + { + "start": 653.42, + "end": 656.86, + "probability": 0.99 + }, + { + "start": 657.28, + "end": 660.07, + "probability": 0.9565 + }, + { + "start": 660.78, + "end": 665.6, + "probability": 0.8351 + }, + { + "start": 665.7, + "end": 668.4, + "probability": 0.8779 + }, + { + "start": 668.92, + "end": 673.04, + "probability": 0.9885 + }, + { + "start": 673.05, + "end": 677.06, + "probability": 0.9955 + }, + { + "start": 677.34, + "end": 680.1, + "probability": 0.9969 + }, + { + "start": 680.34, + "end": 681.16, + "probability": 0.9932 + }, + { + "start": 681.76, + "end": 682.14, + "probability": 0.3356 + }, + { + "start": 682.32, + "end": 684.7, + "probability": 0.9937 + }, + { + "start": 685.1, + "end": 686.68, + "probability": 0.9963 + }, + { + "start": 686.76, + "end": 688.08, + "probability": 0.2396 + }, + { + "start": 688.48, + "end": 689.56, + "probability": 0.9266 + }, + { + "start": 689.58, + "end": 694.54, + "probability": 0.9635 + }, + { + "start": 694.84, + "end": 694.92, + "probability": 0.0976 + }, + { + "start": 695.0, + "end": 695.18, + "probability": 0.7652 + }, + { + "start": 695.26, + "end": 696.78, + "probability": 0.9735 + }, + { + "start": 696.88, + "end": 699.26, + "probability": 0.8605 + }, + { + "start": 700.0, + "end": 703.48, + "probability": 0.9595 + }, + { + "start": 703.8, + "end": 705.38, + "probability": 0.8713 + }, + { + "start": 705.54, + "end": 707.48, + "probability": 0.1363 + }, + { + "start": 707.48, + "end": 707.96, + "probability": 0.521 + }, + { + "start": 707.96, + "end": 709.41, + "probability": 0.8237 + }, + { + "start": 709.84, + "end": 710.0, + "probability": 0.3685 + }, + { + "start": 710.28, + "end": 710.46, + "probability": 0.0417 + }, + { + "start": 710.7, + "end": 712.02, + "probability": 0.6944 + }, + { + "start": 712.28, + "end": 712.58, + "probability": 0.3056 + }, + { + "start": 712.64, + "end": 713.14, + "probability": 0.6249 + }, + { + "start": 713.14, + "end": 714.34, + "probability": 0.4554 + }, + { + "start": 714.48, + "end": 715.0, + "probability": 0.9789 + }, + { + "start": 715.1, + "end": 718.02, + "probability": 0.7435 + }, + { + "start": 718.18, + "end": 720.43, + "probability": 0.9907 + }, + { + "start": 720.66, + "end": 722.0, + "probability": 0.9838 + }, + { + "start": 722.1, + "end": 723.48, + "probability": 0.8087 + }, + { + "start": 723.9, + "end": 725.0, + "probability": 0.9421 + }, + { + "start": 725.12, + "end": 725.88, + "probability": 0.8632 + }, + { + "start": 725.92, + "end": 727.58, + "probability": 0.9938 + }, + { + "start": 728.2, + "end": 733.98, + "probability": 0.991 + }, + { + "start": 734.2, + "end": 736.48, + "probability": 0.9811 + }, + { + "start": 736.96, + "end": 738.18, + "probability": 0.9727 + }, + { + "start": 738.46, + "end": 741.92, + "probability": 0.9286 + }, + { + "start": 742.32, + "end": 742.52, + "probability": 0.7539 + }, + { + "start": 743.58, + "end": 747.92, + "probability": 0.8626 + }, + { + "start": 748.64, + "end": 750.38, + "probability": 0.7567 + }, + { + "start": 751.68, + "end": 755.96, + "probability": 0.9927 + }, + { + "start": 756.88, + "end": 761.22, + "probability": 0.9897 + }, + { + "start": 761.3, + "end": 764.14, + "probability": 0.984 + }, + { + "start": 764.26, + "end": 764.9, + "probability": 0.7038 + }, + { + "start": 765.16, + "end": 766.44, + "probability": 0.7881 + }, + { + "start": 766.98, + "end": 769.72, + "probability": 0.4499 + }, + { + "start": 769.96, + "end": 770.72, + "probability": 0.6888 + }, + { + "start": 770.92, + "end": 773.0, + "probability": 0.8213 + }, + { + "start": 773.72, + "end": 775.92, + "probability": 0.946 + }, + { + "start": 776.6, + "end": 779.36, + "probability": 0.9912 + }, + { + "start": 779.48, + "end": 781.08, + "probability": 0.987 + }, + { + "start": 781.88, + "end": 786.26, + "probability": 0.9841 + }, + { + "start": 788.0, + "end": 792.28, + "probability": 0.9552 + }, + { + "start": 792.44, + "end": 797.24, + "probability": 0.9297 + }, + { + "start": 798.68, + "end": 798.68, + "probability": 0.276 + }, + { + "start": 798.68, + "end": 799.12, + "probability": 0.6837 + }, + { + "start": 803.02, + "end": 805.74, + "probability": 0.7259 + }, + { + "start": 806.84, + "end": 814.72, + "probability": 0.9556 + }, + { + "start": 814.72, + "end": 822.14, + "probability": 0.9381 + }, + { + "start": 823.4, + "end": 828.86, + "probability": 0.825 + }, + { + "start": 829.92, + "end": 831.78, + "probability": 0.9783 + }, + { + "start": 832.4, + "end": 839.54, + "probability": 0.8875 + }, + { + "start": 840.62, + "end": 843.0, + "probability": 0.9701 + }, + { + "start": 844.16, + "end": 847.28, + "probability": 0.9768 + }, + { + "start": 847.86, + "end": 852.64, + "probability": 0.8056 + }, + { + "start": 853.64, + "end": 860.7, + "probability": 0.9981 + }, + { + "start": 861.36, + "end": 865.94, + "probability": 0.9972 + }, + { + "start": 865.94, + "end": 874.26, + "probability": 0.9851 + }, + { + "start": 874.46, + "end": 875.46, + "probability": 0.5141 + }, + { + "start": 876.9, + "end": 879.42, + "probability": 0.598 + }, + { + "start": 880.14, + "end": 886.54, + "probability": 0.8984 + }, + { + "start": 887.5, + "end": 891.32, + "probability": 0.6835 + }, + { + "start": 891.42, + "end": 894.38, + "probability": 0.787 + }, + { + "start": 894.74, + "end": 900.26, + "probability": 0.9844 + }, + { + "start": 902.0, + "end": 905.46, + "probability": 0.8302 + }, + { + "start": 906.52, + "end": 907.84, + "probability": 0.933 + }, + { + "start": 907.9, + "end": 912.64, + "probability": 0.9202 + }, + { + "start": 912.82, + "end": 913.14, + "probability": 0.8425 + }, + { + "start": 914.02, + "end": 915.76, + "probability": 0.6644 + }, + { + "start": 916.6, + "end": 918.06, + "probability": 0.6752 + }, + { + "start": 918.84, + "end": 919.46, + "probability": 0.9234 + }, + { + "start": 920.3, + "end": 921.19, + "probability": 0.9243 + }, + { + "start": 922.22, + "end": 923.16, + "probability": 0.9583 + }, + { + "start": 923.84, + "end": 928.18, + "probability": 0.947 + }, + { + "start": 929.94, + "end": 936.12, + "probability": 0.9849 + }, + { + "start": 936.28, + "end": 937.76, + "probability": 0.4287 + }, + { + "start": 937.96, + "end": 939.02, + "probability": 0.9738 + }, + { + "start": 939.96, + "end": 940.56, + "probability": 0.9677 + }, + { + "start": 941.2, + "end": 942.54, + "probability": 0.9729 + }, + { + "start": 943.1, + "end": 944.6, + "probability": 0.9975 + }, + { + "start": 945.18, + "end": 951.28, + "probability": 0.9969 + }, + { + "start": 952.54, + "end": 955.66, + "probability": 0.6779 + }, + { + "start": 956.94, + "end": 958.68, + "probability": 0.8208 + }, + { + "start": 959.6, + "end": 961.98, + "probability": 0.8459 + }, + { + "start": 963.0, + "end": 965.14, + "probability": 0.7213 + }, + { + "start": 966.36, + "end": 968.8, + "probability": 0.6866 + }, + { + "start": 970.98, + "end": 972.14, + "probability": 0.9173 + }, + { + "start": 972.84, + "end": 981.54, + "probability": 0.9685 + }, + { + "start": 983.02, + "end": 988.3, + "probability": 0.7347 + }, + { + "start": 989.3, + "end": 990.5, + "probability": 0.4103 + }, + { + "start": 991.42, + "end": 993.34, + "probability": 0.9708 + }, + { + "start": 994.28, + "end": 999.48, + "probability": 0.9878 + }, + { + "start": 1000.48, + "end": 1006.14, + "probability": 0.905 + }, + { + "start": 1007.32, + "end": 1008.22, + "probability": 0.9414 + }, + { + "start": 1009.48, + "end": 1010.94, + "probability": 0.998 + }, + { + "start": 1011.98, + "end": 1014.5, + "probability": 0.9329 + }, + { + "start": 1017.28, + "end": 1018.0, + "probability": 0.5111 + }, + { + "start": 1019.16, + "end": 1022.66, + "probability": 0.5563 + }, + { + "start": 1025.34, + "end": 1027.56, + "probability": 0.9792 + }, + { + "start": 1027.72, + "end": 1033.26, + "probability": 0.9645 + }, + { + "start": 1033.6, + "end": 1035.4, + "probability": 0.9938 + }, + { + "start": 1036.16, + "end": 1040.16, + "probability": 0.8914 + }, + { + "start": 1041.02, + "end": 1042.44, + "probability": 0.6351 + }, + { + "start": 1043.22, + "end": 1044.88, + "probability": 0.5641 + }, + { + "start": 1045.9, + "end": 1046.74, + "probability": 0.9032 + }, + { + "start": 1047.56, + "end": 1049.06, + "probability": 0.9897 + }, + { + "start": 1049.58, + "end": 1053.96, + "probability": 0.8576 + }, + { + "start": 1054.54, + "end": 1058.02, + "probability": 0.9937 + }, + { + "start": 1058.66, + "end": 1059.32, + "probability": 0.627 + }, + { + "start": 1059.46, + "end": 1062.64, + "probability": 0.9036 + }, + { + "start": 1062.74, + "end": 1068.68, + "probability": 0.9963 + }, + { + "start": 1070.36, + "end": 1072.44, + "probability": 0.9327 + }, + { + "start": 1073.2, + "end": 1077.5, + "probability": 0.6807 + }, + { + "start": 1077.66, + "end": 1079.26, + "probability": 0.7854 + }, + { + "start": 1079.96, + "end": 1083.24, + "probability": 0.9662 + }, + { + "start": 1083.42, + "end": 1084.36, + "probability": 0.9254 + }, + { + "start": 1084.48, + "end": 1085.36, + "probability": 0.9796 + }, + { + "start": 1085.42, + "end": 1093.3, + "probability": 0.9399 + }, + { + "start": 1093.54, + "end": 1095.86, + "probability": 0.9531 + }, + { + "start": 1096.4, + "end": 1098.22, + "probability": 0.9561 + }, + { + "start": 1098.36, + "end": 1100.88, + "probability": 0.8146 + }, + { + "start": 1101.56, + "end": 1103.02, + "probability": 0.8828 + }, + { + "start": 1103.14, + "end": 1106.78, + "probability": 0.9786 + }, + { + "start": 1108.22, + "end": 1110.14, + "probability": 0.9625 + }, + { + "start": 1110.88, + "end": 1111.64, + "probability": 0.1601 + }, + { + "start": 1112.44, + "end": 1116.5, + "probability": 0.5823 + }, + { + "start": 1117.84, + "end": 1120.62, + "probability": 0.9868 + }, + { + "start": 1121.26, + "end": 1123.2, + "probability": 0.9788 + }, + { + "start": 1123.32, + "end": 1124.62, + "probability": 0.887 + }, + { + "start": 1125.76, + "end": 1130.8, + "probability": 0.9922 + }, + { + "start": 1131.64, + "end": 1132.42, + "probability": 0.727 + }, + { + "start": 1133.1, + "end": 1136.9, + "probability": 0.9668 + }, + { + "start": 1137.01, + "end": 1140.9, + "probability": 0.9294 + }, + { + "start": 1141.36, + "end": 1141.82, + "probability": 0.5206 + }, + { + "start": 1142.72, + "end": 1143.76, + "probability": 0.9045 + }, + { + "start": 1145.1, + "end": 1150.5, + "probability": 0.9717 + }, + { + "start": 1150.5, + "end": 1154.14, + "probability": 0.9909 + }, + { + "start": 1154.28, + "end": 1156.34, + "probability": 0.982 + }, + { + "start": 1156.84, + "end": 1160.22, + "probability": 0.9951 + }, + { + "start": 1163.08, + "end": 1166.06, + "probability": 0.8999 + }, + { + "start": 1166.06, + "end": 1169.0, + "probability": 0.9878 + }, + { + "start": 1169.74, + "end": 1172.96, + "probability": 0.7976 + }, + { + "start": 1173.7, + "end": 1176.3, + "probability": 0.7458 + }, + { + "start": 1177.48, + "end": 1179.17, + "probability": 0.1281 + }, + { + "start": 1180.34, + "end": 1183.3, + "probability": 0.8833 + }, + { + "start": 1183.8, + "end": 1187.08, + "probability": 0.9639 + }, + { + "start": 1189.0, + "end": 1190.08, + "probability": 0.7259 + }, + { + "start": 1190.28, + "end": 1192.62, + "probability": 0.9917 + }, + { + "start": 1193.32, + "end": 1197.58, + "probability": 0.9641 + }, + { + "start": 1197.58, + "end": 1200.94, + "probability": 0.9993 + }, + { + "start": 1201.52, + "end": 1208.06, + "probability": 0.9993 + }, + { + "start": 1208.92, + "end": 1212.24, + "probability": 0.9753 + }, + { + "start": 1212.86, + "end": 1219.62, + "probability": 0.9946 + }, + { + "start": 1220.28, + "end": 1223.66, + "probability": 0.6645 + }, + { + "start": 1223.66, + "end": 1228.32, + "probability": 0.998 + }, + { + "start": 1228.98, + "end": 1231.08, + "probability": 0.8615 + }, + { + "start": 1231.82, + "end": 1236.2, + "probability": 0.9777 + }, + { + "start": 1236.76, + "end": 1237.7, + "probability": 0.9062 + }, + { + "start": 1238.28, + "end": 1243.82, + "probability": 0.9976 + }, + { + "start": 1244.46, + "end": 1247.78, + "probability": 0.9956 + }, + { + "start": 1248.46, + "end": 1249.92, + "probability": 0.9963 + }, + { + "start": 1250.5, + "end": 1256.78, + "probability": 0.9967 + }, + { + "start": 1257.34, + "end": 1264.96, + "probability": 0.9961 + }, + { + "start": 1266.28, + "end": 1269.24, + "probability": 0.7576 + }, + { + "start": 1270.32, + "end": 1270.62, + "probability": 0.8577 + }, + { + "start": 1271.64, + "end": 1272.82, + "probability": 0.9165 + }, + { + "start": 1274.18, + "end": 1277.2, + "probability": 0.9193 + }, + { + "start": 1278.04, + "end": 1281.48, + "probability": 0.5234 + }, + { + "start": 1281.58, + "end": 1285.88, + "probability": 0.7245 + }, + { + "start": 1285.94, + "end": 1289.14, + "probability": 0.6601 + }, + { + "start": 1289.38, + "end": 1291.72, + "probability": 0.7308 + }, + { + "start": 1293.2, + "end": 1295.18, + "probability": 0.9888 + }, + { + "start": 1296.5, + "end": 1298.6, + "probability": 0.6503 + }, + { + "start": 1299.78, + "end": 1302.28, + "probability": 0.7987 + }, + { + "start": 1302.44, + "end": 1303.36, + "probability": 0.7361 + }, + { + "start": 1304.52, + "end": 1304.66, + "probability": 0.1067 + }, + { + "start": 1304.9, + "end": 1304.9, + "probability": 0.198 + }, + { + "start": 1304.9, + "end": 1308.24, + "probability": 0.766 + }, + { + "start": 1308.82, + "end": 1310.14, + "probability": 0.9592 + }, + { + "start": 1310.82, + "end": 1311.76, + "probability": 0.7906 + }, + { + "start": 1313.48, + "end": 1315.44, + "probability": 0.7439 + }, + { + "start": 1315.44, + "end": 1315.44, + "probability": 0.116 + }, + { + "start": 1315.44, + "end": 1315.44, + "probability": 0.0315 + }, + { + "start": 1315.44, + "end": 1315.82, + "probability": 0.2752 + }, + { + "start": 1315.88, + "end": 1317.12, + "probability": 0.9064 + }, + { + "start": 1317.36, + "end": 1318.82, + "probability": 0.9597 + }, + { + "start": 1319.12, + "end": 1325.2, + "probability": 0.9874 + }, + { + "start": 1325.92, + "end": 1330.02, + "probability": 0.7239 + }, + { + "start": 1331.4, + "end": 1333.5, + "probability": 0.7794 + }, + { + "start": 1334.74, + "end": 1335.72, + "probability": 0.5275 + }, + { + "start": 1336.24, + "end": 1342.38, + "probability": 0.9612 + }, + { + "start": 1343.28, + "end": 1346.88, + "probability": 0.9778 + }, + { + "start": 1347.7, + "end": 1348.68, + "probability": 0.7509 + }, + { + "start": 1349.54, + "end": 1350.22, + "probability": 0.8145 + }, + { + "start": 1351.66, + "end": 1354.68, + "probability": 0.4936 + }, + { + "start": 1355.7, + "end": 1357.66, + "probability": 0.9648 + }, + { + "start": 1358.68, + "end": 1359.5, + "probability": 0.6575 + }, + { + "start": 1360.76, + "end": 1362.12, + "probability": 0.863 + }, + { + "start": 1362.84, + "end": 1366.52, + "probability": 0.9951 + }, + { + "start": 1367.62, + "end": 1371.56, + "probability": 0.9937 + }, + { + "start": 1371.96, + "end": 1377.48, + "probability": 0.9417 + }, + { + "start": 1377.6, + "end": 1383.28, + "probability": 0.9918 + }, + { + "start": 1383.72, + "end": 1385.48, + "probability": 0.9843 + }, + { + "start": 1386.14, + "end": 1390.44, + "probability": 0.9878 + }, + { + "start": 1390.44, + "end": 1395.96, + "probability": 0.9938 + }, + { + "start": 1396.6, + "end": 1398.02, + "probability": 0.7533 + }, + { + "start": 1398.82, + "end": 1399.34, + "probability": 0.8667 + }, + { + "start": 1400.72, + "end": 1402.82, + "probability": 0.9644 + }, + { + "start": 1403.52, + "end": 1405.36, + "probability": 0.9839 + }, + { + "start": 1406.24, + "end": 1408.34, + "probability": 0.7058 + }, + { + "start": 1412.98, + "end": 1416.16, + "probability": 0.9475 + }, + { + "start": 1417.06, + "end": 1418.94, + "probability": 0.8021 + }, + { + "start": 1420.42, + "end": 1423.58, + "probability": 0.9921 + }, + { + "start": 1424.54, + "end": 1427.56, + "probability": 0.766 + }, + { + "start": 1428.66, + "end": 1430.4, + "probability": 0.9731 + }, + { + "start": 1430.92, + "end": 1432.04, + "probability": 0.9301 + }, + { + "start": 1433.4, + "end": 1434.52, + "probability": 0.4251 + }, + { + "start": 1435.16, + "end": 1435.26, + "probability": 0.2388 + }, + { + "start": 1435.42, + "end": 1436.86, + "probability": 0.7599 + }, + { + "start": 1437.02, + "end": 1442.86, + "probability": 0.9863 + }, + { + "start": 1444.06, + "end": 1444.82, + "probability": 0.7364 + }, + { + "start": 1445.5, + "end": 1449.18, + "probability": 0.9981 + }, + { + "start": 1449.76, + "end": 1454.18, + "probability": 0.9762 + }, + { + "start": 1454.94, + "end": 1456.72, + "probability": 0.9398 + }, + { + "start": 1457.84, + "end": 1458.8, + "probability": 0.9867 + }, + { + "start": 1460.32, + "end": 1462.02, + "probability": 0.7932 + }, + { + "start": 1463.48, + "end": 1467.02, + "probability": 0.5409 + }, + { + "start": 1467.5, + "end": 1469.06, + "probability": 0.9339 + }, + { + "start": 1469.6, + "end": 1470.82, + "probability": 0.7493 + }, + { + "start": 1470.86, + "end": 1471.16, + "probability": 0.8022 + }, + { + "start": 1471.34, + "end": 1472.94, + "probability": 0.9456 + }, + { + "start": 1473.42, + "end": 1477.22, + "probability": 0.9967 + }, + { + "start": 1477.52, + "end": 1478.82, + "probability": 0.8835 + }, + { + "start": 1479.34, + "end": 1484.52, + "probability": 0.9984 + }, + { + "start": 1485.1, + "end": 1487.42, + "probability": 0.8992 + }, + { + "start": 1488.28, + "end": 1488.36, + "probability": 0.0619 + }, + { + "start": 1488.36, + "end": 1489.5, + "probability": 0.7795 + }, + { + "start": 1490.06, + "end": 1494.7, + "probability": 0.9392 + }, + { + "start": 1495.88, + "end": 1496.46, + "probability": 0.6702 + }, + { + "start": 1496.48, + "end": 1501.44, + "probability": 0.8563 + }, + { + "start": 1501.56, + "end": 1501.98, + "probability": 0.8065 + }, + { + "start": 1503.06, + "end": 1506.38, + "probability": 0.9055 + }, + { + "start": 1508.38, + "end": 1509.16, + "probability": 0.8823 + }, + { + "start": 1509.9, + "end": 1511.64, + "probability": 0.6535 + }, + { + "start": 1511.66, + "end": 1515.92, + "probability": 0.6459 + }, + { + "start": 1516.02, + "end": 1516.32, + "probability": 0.2446 + }, + { + "start": 1517.28, + "end": 1519.42, + "probability": 0.9951 + }, + { + "start": 1519.58, + "end": 1520.16, + "probability": 0.9254 + }, + { + "start": 1520.22, + "end": 1521.72, + "probability": 0.8499 + }, + { + "start": 1522.24, + "end": 1526.4, + "probability": 0.9937 + }, + { + "start": 1526.92, + "end": 1532.96, + "probability": 0.9486 + }, + { + "start": 1552.08, + "end": 1554.4, + "probability": 0.6532 + }, + { + "start": 1557.24, + "end": 1561.14, + "probability": 0.9641 + }, + { + "start": 1563.52, + "end": 1568.9, + "probability": 0.8286 + }, + { + "start": 1570.14, + "end": 1571.28, + "probability": 0.9252 + }, + { + "start": 1572.12, + "end": 1573.22, + "probability": 0.6517 + }, + { + "start": 1574.28, + "end": 1576.38, + "probability": 0.5949 + }, + { + "start": 1577.7, + "end": 1582.22, + "probability": 0.9258 + }, + { + "start": 1586.84, + "end": 1587.74, + "probability": 0.735 + }, + { + "start": 1587.9, + "end": 1588.68, + "probability": 0.3179 + }, + { + "start": 1589.08, + "end": 1592.12, + "probability": 0.9039 + }, + { + "start": 1593.72, + "end": 1595.6, + "probability": 0.9707 + }, + { + "start": 1596.78, + "end": 1599.64, + "probability": 0.7744 + }, + { + "start": 1600.52, + "end": 1604.34, + "probability": 0.9535 + }, + { + "start": 1605.74, + "end": 1608.1, + "probability": 0.8378 + }, + { + "start": 1608.42, + "end": 1609.26, + "probability": 0.7772 + }, + { + "start": 1609.56, + "end": 1610.74, + "probability": 0.8965 + }, + { + "start": 1611.34, + "end": 1615.14, + "probability": 0.8956 + }, + { + "start": 1615.86, + "end": 1617.32, + "probability": 0.5257 + }, + { + "start": 1618.32, + "end": 1619.84, + "probability": 0.9808 + }, + { + "start": 1621.56, + "end": 1623.02, + "probability": 0.8894 + }, + { + "start": 1624.08, + "end": 1626.18, + "probability": 0.8654 + }, + { + "start": 1626.24, + "end": 1628.66, + "probability": 0.981 + }, + { + "start": 1629.66, + "end": 1631.5, + "probability": 0.8364 + }, + { + "start": 1632.8, + "end": 1634.94, + "probability": 0.9521 + }, + { + "start": 1636.34, + "end": 1636.8, + "probability": 0.5021 + }, + { + "start": 1637.48, + "end": 1639.3, + "probability": 0.9868 + }, + { + "start": 1640.04, + "end": 1640.56, + "probability": 0.8706 + }, + { + "start": 1641.98, + "end": 1645.54, + "probability": 0.8159 + }, + { + "start": 1647.36, + "end": 1652.32, + "probability": 0.8144 + }, + { + "start": 1652.46, + "end": 1655.74, + "probability": 0.9708 + }, + { + "start": 1657.9, + "end": 1662.44, + "probability": 0.9785 + }, + { + "start": 1663.98, + "end": 1665.5, + "probability": 0.9821 + }, + { + "start": 1666.42, + "end": 1669.78, + "probability": 0.9526 + }, + { + "start": 1670.36, + "end": 1671.12, + "probability": 0.9526 + }, + { + "start": 1671.18, + "end": 1672.86, + "probability": 0.6895 + }, + { + "start": 1673.32, + "end": 1675.98, + "probability": 0.7275 + }, + { + "start": 1677.14, + "end": 1680.52, + "probability": 0.8241 + }, + { + "start": 1681.34, + "end": 1683.54, + "probability": 0.8219 + }, + { + "start": 1685.34, + "end": 1689.3, + "probability": 0.9146 + }, + { + "start": 1690.36, + "end": 1694.2, + "probability": 0.9183 + }, + { + "start": 1695.22, + "end": 1698.48, + "probability": 0.8781 + }, + { + "start": 1700.4, + "end": 1707.44, + "probability": 0.9753 + }, + { + "start": 1708.16, + "end": 1708.84, + "probability": 0.8429 + }, + { + "start": 1709.72, + "end": 1714.18, + "probability": 0.9855 + }, + { + "start": 1715.4, + "end": 1718.76, + "probability": 0.882 + }, + { + "start": 1720.26, + "end": 1722.26, + "probability": 0.9327 + }, + { + "start": 1722.32, + "end": 1723.21, + "probability": 0.6677 + }, + { + "start": 1724.14, + "end": 1727.46, + "probability": 0.8456 + }, + { + "start": 1728.7, + "end": 1731.56, + "probability": 0.9434 + }, + { + "start": 1732.54, + "end": 1733.5, + "probability": 0.7262 + }, + { + "start": 1734.5, + "end": 1735.76, + "probability": 0.5663 + }, + { + "start": 1736.26, + "end": 1739.0, + "probability": 0.9954 + }, + { + "start": 1740.0, + "end": 1743.34, + "probability": 0.9961 + }, + { + "start": 1744.24, + "end": 1746.12, + "probability": 0.8071 + }, + { + "start": 1746.9, + "end": 1750.1, + "probability": 0.9958 + }, + { + "start": 1753.32, + "end": 1754.92, + "probability": 0.6549 + }, + { + "start": 1755.04, + "end": 1756.88, + "probability": 0.0118 + }, + { + "start": 1756.98, + "end": 1761.72, + "probability": 0.9951 + }, + { + "start": 1761.9, + "end": 1762.78, + "probability": 0.8648 + }, + { + "start": 1766.72, + "end": 1769.88, + "probability": 0.9961 + }, + { + "start": 1769.88, + "end": 1774.84, + "probability": 0.9771 + }, + { + "start": 1775.18, + "end": 1780.22, + "probability": 0.9396 + }, + { + "start": 1780.82, + "end": 1781.76, + "probability": 0.8955 + }, + { + "start": 1782.26, + "end": 1786.98, + "probability": 0.9927 + }, + { + "start": 1789.32, + "end": 1790.98, + "probability": 0.699 + }, + { + "start": 1791.58, + "end": 1794.08, + "probability": 0.9777 + }, + { + "start": 1795.1, + "end": 1799.26, + "probability": 0.908 + }, + { + "start": 1800.34, + "end": 1804.4, + "probability": 0.9813 + }, + { + "start": 1807.06, + "end": 1810.26, + "probability": 0.9904 + }, + { + "start": 1810.42, + "end": 1810.84, + "probability": 0.6509 + }, + { + "start": 1810.94, + "end": 1811.92, + "probability": 0.925 + }, + { + "start": 1812.14, + "end": 1813.0, + "probability": 0.7921 + }, + { + "start": 1813.62, + "end": 1816.2, + "probability": 0.8938 + }, + { + "start": 1820.44, + "end": 1823.76, + "probability": 0.8523 + }, + { + "start": 1825.24, + "end": 1828.68, + "probability": 0.8843 + }, + { + "start": 1829.06, + "end": 1830.88, + "probability": 0.8355 + }, + { + "start": 1832.44, + "end": 1834.8, + "probability": 0.7952 + }, + { + "start": 1835.16, + "end": 1839.7, + "probability": 0.8267 + }, + { + "start": 1840.52, + "end": 1843.1, + "probability": 0.994 + }, + { + "start": 1845.08, + "end": 1850.66, + "probability": 0.9765 + }, + { + "start": 1851.88, + "end": 1854.72, + "probability": 0.9935 + }, + { + "start": 1854.72, + "end": 1858.9, + "probability": 0.8879 + }, + { + "start": 1860.64, + "end": 1863.42, + "probability": 0.8894 + }, + { + "start": 1863.76, + "end": 1867.56, + "probability": 0.9693 + }, + { + "start": 1869.02, + "end": 1874.34, + "probability": 0.9551 + }, + { + "start": 1874.58, + "end": 1875.58, + "probability": 0.4975 + }, + { + "start": 1876.68, + "end": 1878.56, + "probability": 0.4505 + }, + { + "start": 1880.2, + "end": 1884.0, + "probability": 0.9354 + }, + { + "start": 1884.64, + "end": 1887.3, + "probability": 0.9516 + }, + { + "start": 1888.26, + "end": 1889.22, + "probability": 0.7987 + }, + { + "start": 1889.86, + "end": 1891.16, + "probability": 0.9237 + }, + { + "start": 1891.4, + "end": 1895.16, + "probability": 0.9432 + }, + { + "start": 1896.56, + "end": 1902.04, + "probability": 0.9794 + }, + { + "start": 1903.06, + "end": 1905.98, + "probability": 0.9781 + }, + { + "start": 1908.36, + "end": 1913.06, + "probability": 0.9977 + }, + { + "start": 1913.7, + "end": 1915.18, + "probability": 0.9109 + }, + { + "start": 1916.26, + "end": 1918.82, + "probability": 0.97 + }, + { + "start": 1919.56, + "end": 1925.5, + "probability": 0.9803 + }, + { + "start": 1926.52, + "end": 1929.38, + "probability": 0.8929 + }, + { + "start": 1930.58, + "end": 1932.19, + "probability": 0.9626 + }, + { + "start": 1933.42, + "end": 1935.0, + "probability": 0.8057 + }, + { + "start": 1936.24, + "end": 1939.8, + "probability": 0.9922 + }, + { + "start": 1940.5, + "end": 1942.6, + "probability": 0.5754 + }, + { + "start": 1943.44, + "end": 1946.02, + "probability": 0.838 + }, + { + "start": 1947.0, + "end": 1949.46, + "probability": 0.9513 + }, + { + "start": 1951.5, + "end": 1952.58, + "probability": 0.7016 + }, + { + "start": 1953.6, + "end": 1955.74, + "probability": 0.8505 + }, + { + "start": 1957.1, + "end": 1963.22, + "probability": 0.8779 + }, + { + "start": 1964.12, + "end": 1965.56, + "probability": 0.9827 + }, + { + "start": 1967.54, + "end": 1970.04, + "probability": 0.981 + }, + { + "start": 1971.6, + "end": 1973.46, + "probability": 0.6789 + }, + { + "start": 1976.46, + "end": 1978.04, + "probability": 0.3432 + }, + { + "start": 1978.3, + "end": 1979.35, + "probability": 0.5065 + }, + { + "start": 1980.04, + "end": 1981.92, + "probability": 0.6194 + }, + { + "start": 1982.68, + "end": 1985.96, + "probability": 0.7404 + }, + { + "start": 1986.82, + "end": 1990.1, + "probability": 0.8096 + }, + { + "start": 1990.76, + "end": 1992.82, + "probability": 0.741 + }, + { + "start": 1993.74, + "end": 1997.24, + "probability": 0.9363 + }, + { + "start": 1997.96, + "end": 1999.84, + "probability": 0.9961 + }, + { + "start": 2000.9, + "end": 2002.42, + "probability": 0.7641 + }, + { + "start": 2003.18, + "end": 2004.12, + "probability": 0.813 + }, + { + "start": 2005.34, + "end": 2009.88, + "probability": 0.991 + }, + { + "start": 2012.2, + "end": 2015.74, + "probability": 0.9396 + }, + { + "start": 2016.44, + "end": 2016.96, + "probability": 0.2366 + }, + { + "start": 2017.22, + "end": 2018.04, + "probability": 0.7147 + }, + { + "start": 2018.4, + "end": 2023.56, + "probability": 0.959 + }, + { + "start": 2023.74, + "end": 2024.32, + "probability": 0.9558 + }, + { + "start": 2024.98, + "end": 2028.28, + "probability": 0.9415 + }, + { + "start": 2029.32, + "end": 2031.36, + "probability": 0.9895 + }, + { + "start": 2032.92, + "end": 2036.34, + "probability": 0.9487 + }, + { + "start": 2036.34, + "end": 2039.34, + "probability": 0.973 + }, + { + "start": 2040.18, + "end": 2043.0, + "probability": 0.834 + }, + { + "start": 2043.14, + "end": 2045.38, + "probability": 0.6288 + }, + { + "start": 2045.62, + "end": 2046.78, + "probability": 0.7081 + }, + { + "start": 2047.36, + "end": 2048.12, + "probability": 0.9318 + }, + { + "start": 2049.02, + "end": 2050.92, + "probability": 0.9944 + }, + { + "start": 2051.08, + "end": 2052.56, + "probability": 0.9141 + }, + { + "start": 2053.3, + "end": 2058.4, + "probability": 0.6992 + }, + { + "start": 2060.3, + "end": 2062.1, + "probability": 0.9595 + }, + { + "start": 2062.2, + "end": 2066.26, + "probability": 0.7471 + }, + { + "start": 2067.14, + "end": 2070.78, + "probability": 0.7925 + }, + { + "start": 2072.32, + "end": 2074.98, + "probability": 0.999 + }, + { + "start": 2074.98, + "end": 2080.46, + "probability": 0.9872 + }, + { + "start": 2080.52, + "end": 2083.34, + "probability": 0.6866 + }, + { + "start": 2084.62, + "end": 2085.64, + "probability": 0.7063 + }, + { + "start": 2086.66, + "end": 2089.36, + "probability": 0.8189 + }, + { + "start": 2090.64, + "end": 2093.8, + "probability": 0.9956 + }, + { + "start": 2094.84, + "end": 2099.62, + "probability": 0.9209 + }, + { + "start": 2099.84, + "end": 2100.12, + "probability": 0.0329 + }, + { + "start": 2100.12, + "end": 2104.44, + "probability": 0.9443 + }, + { + "start": 2107.56, + "end": 2110.96, + "probability": 0.988 + }, + { + "start": 2111.32, + "end": 2111.66, + "probability": 0.5915 + }, + { + "start": 2122.2, + "end": 2122.58, + "probability": 0.2579 + }, + { + "start": 2122.58, + "end": 2125.72, + "probability": 0.8005 + }, + { + "start": 2126.94, + "end": 2129.32, + "probability": 0.6272 + }, + { + "start": 2130.26, + "end": 2133.28, + "probability": 0.936 + }, + { + "start": 2136.54, + "end": 2137.04, + "probability": 0.0262 + }, + { + "start": 2137.04, + "end": 2138.0, + "probability": 0.4445 + }, + { + "start": 2139.4, + "end": 2140.64, + "probability": 0.748 + }, + { + "start": 2140.72, + "end": 2142.32, + "probability": 0.9821 + }, + { + "start": 2142.42, + "end": 2142.98, + "probability": 0.7458 + }, + { + "start": 2143.0, + "end": 2143.68, + "probability": 0.8745 + }, + { + "start": 2145.1, + "end": 2146.94, + "probability": 0.8647 + }, + { + "start": 2147.98, + "end": 2149.22, + "probability": 0.7497 + }, + { + "start": 2150.26, + "end": 2152.62, + "probability": 0.9707 + }, + { + "start": 2153.68, + "end": 2154.58, + "probability": 0.8799 + }, + { + "start": 2155.84, + "end": 2157.0, + "probability": 0.958 + }, + { + "start": 2158.34, + "end": 2159.28, + "probability": 0.8999 + }, + { + "start": 2162.08, + "end": 2165.66, + "probability": 0.9837 + }, + { + "start": 2166.64, + "end": 2167.56, + "probability": 0.9033 + }, + { + "start": 2168.56, + "end": 2171.2, + "probability": 0.9837 + }, + { + "start": 2173.94, + "end": 2174.76, + "probability": 0.7884 + }, + { + "start": 2176.14, + "end": 2177.18, + "probability": 0.9106 + }, + { + "start": 2178.94, + "end": 2180.02, + "probability": 0.8874 + }, + { + "start": 2181.04, + "end": 2182.0, + "probability": 0.9378 + }, + { + "start": 2182.68, + "end": 2185.1, + "probability": 0.9943 + }, + { + "start": 2185.62, + "end": 2186.28, + "probability": 0.8279 + }, + { + "start": 2188.12, + "end": 2189.1, + "probability": 0.943 + }, + { + "start": 2189.86, + "end": 2190.9, + "probability": 0.916 + }, + { + "start": 2191.98, + "end": 2193.06, + "probability": 0.9924 + }, + { + "start": 2193.74, + "end": 2195.56, + "probability": 0.9839 + }, + { + "start": 2196.7, + "end": 2198.98, + "probability": 0.9582 + }, + { + "start": 2200.04, + "end": 2201.0, + "probability": 0.5327 + }, + { + "start": 2202.2, + "end": 2205.76, + "probability": 0.9296 + }, + { + "start": 2206.66, + "end": 2207.52, + "probability": 0.9826 + }, + { + "start": 2208.88, + "end": 2210.44, + "probability": 0.9785 + }, + { + "start": 2210.98, + "end": 2212.02, + "probability": 0.8576 + }, + { + "start": 2212.88, + "end": 2214.42, + "probability": 0.9929 + }, + { + "start": 2216.0, + "end": 2221.0, + "probability": 0.9509 + }, + { + "start": 2222.12, + "end": 2225.6, + "probability": 0.9985 + }, + { + "start": 2225.6, + "end": 2228.62, + "probability": 0.9933 + }, + { + "start": 2229.64, + "end": 2231.48, + "probability": 0.9985 + }, + { + "start": 2232.38, + "end": 2234.84, + "probability": 0.9944 + }, + { + "start": 2236.14, + "end": 2242.02, + "probability": 0.9948 + }, + { + "start": 2242.02, + "end": 2246.52, + "probability": 0.8668 + }, + { + "start": 2247.76, + "end": 2250.58, + "probability": 0.8774 + }, + { + "start": 2251.66, + "end": 2252.98, + "probability": 0.8421 + }, + { + "start": 2253.98, + "end": 2257.56, + "probability": 0.9154 + }, + { + "start": 2260.04, + "end": 2262.24, + "probability": 0.8557 + }, + { + "start": 2262.78, + "end": 2267.02, + "probability": 0.9734 + }, + { + "start": 2268.34, + "end": 2269.86, + "probability": 0.9414 + }, + { + "start": 2271.0, + "end": 2273.5, + "probability": 0.9987 + }, + { + "start": 2274.7, + "end": 2277.24, + "probability": 0.8902 + }, + { + "start": 2279.52, + "end": 2281.32, + "probability": 0.9965 + }, + { + "start": 2282.34, + "end": 2285.63, + "probability": 0.9946 + }, + { + "start": 2286.4, + "end": 2287.96, + "probability": 0.9502 + }, + { + "start": 2289.24, + "end": 2295.49, + "probability": 0.9373 + }, + { + "start": 2296.32, + "end": 2299.22, + "probability": 0.8734 + }, + { + "start": 2300.1, + "end": 2301.68, + "probability": 0.8389 + }, + { + "start": 2302.2, + "end": 2303.42, + "probability": 0.6849 + }, + { + "start": 2304.12, + "end": 2304.74, + "probability": 0.3854 + }, + { + "start": 2305.52, + "end": 2306.48, + "probability": 0.6533 + }, + { + "start": 2307.38, + "end": 2309.14, + "probability": 0.7967 + }, + { + "start": 2309.72, + "end": 2312.76, + "probability": 0.1708 + }, + { + "start": 2312.76, + "end": 2312.76, + "probability": 0.0366 + }, + { + "start": 2312.76, + "end": 2313.86, + "probability": 0.4476 + }, + { + "start": 2314.64, + "end": 2317.84, + "probability": 0.7902 + }, + { + "start": 2318.64, + "end": 2322.9, + "probability": 0.9963 + }, + { + "start": 2324.0, + "end": 2325.92, + "probability": 0.8358 + }, + { + "start": 2326.24, + "end": 2326.82, + "probability": 0.5114 + }, + { + "start": 2326.9, + "end": 2328.02, + "probability": 0.8573 + }, + { + "start": 2328.94, + "end": 2329.9, + "probability": 0.981 + }, + { + "start": 2330.58, + "end": 2331.72, + "probability": 0.9698 + }, + { + "start": 2332.2, + "end": 2336.62, + "probability": 0.9958 + }, + { + "start": 2337.56, + "end": 2339.8, + "probability": 0.7126 + }, + { + "start": 2340.6, + "end": 2342.1, + "probability": 0.8602 + }, + { + "start": 2342.72, + "end": 2346.68, + "probability": 0.8608 + }, + { + "start": 2347.2, + "end": 2349.38, + "probability": 0.9912 + }, + { + "start": 2350.64, + "end": 2351.7, + "probability": 0.7965 + }, + { + "start": 2352.78, + "end": 2355.0, + "probability": 0.8289 + }, + { + "start": 2355.0, + "end": 2358.38, + "probability": 0.9984 + }, + { + "start": 2359.5, + "end": 2362.52, + "probability": 0.6955 + }, + { + "start": 2363.34, + "end": 2364.9, + "probability": 0.8718 + }, + { + "start": 2365.72, + "end": 2367.74, + "probability": 0.8643 + }, + { + "start": 2368.46, + "end": 2369.66, + "probability": 0.9217 + }, + { + "start": 2370.46, + "end": 2375.82, + "probability": 0.967 + }, + { + "start": 2376.76, + "end": 2377.34, + "probability": 0.8061 + }, + { + "start": 2377.94, + "end": 2380.32, + "probability": 0.9922 + }, + { + "start": 2381.5, + "end": 2384.14, + "probability": 0.8964 + }, + { + "start": 2385.18, + "end": 2389.44, + "probability": 0.9314 + }, + { + "start": 2389.44, + "end": 2393.42, + "probability": 0.9963 + }, + { + "start": 2393.48, + "end": 2394.06, + "probability": 0.5335 + }, + { + "start": 2395.24, + "end": 2398.24, + "probability": 0.9684 + }, + { + "start": 2398.24, + "end": 2402.0, + "probability": 0.9958 + }, + { + "start": 2402.56, + "end": 2403.52, + "probability": 0.7052 + }, + { + "start": 2404.42, + "end": 2405.96, + "probability": 0.8317 + }, + { + "start": 2406.72, + "end": 2407.92, + "probability": 0.9065 + }, + { + "start": 2408.0, + "end": 2409.94, + "probability": 0.9334 + }, + { + "start": 2411.14, + "end": 2413.18, + "probability": 0.9728 + }, + { + "start": 2413.84, + "end": 2415.5, + "probability": 0.8745 + }, + { + "start": 2416.42, + "end": 2418.42, + "probability": 0.9846 + }, + { + "start": 2419.02, + "end": 2422.94, + "probability": 0.9789 + }, + { + "start": 2423.52, + "end": 2426.14, + "probability": 0.9499 + }, + { + "start": 2427.04, + "end": 2430.78, + "probability": 0.9789 + }, + { + "start": 2431.6, + "end": 2432.44, + "probability": 0.7664 + }, + { + "start": 2433.42, + "end": 2437.5, + "probability": 0.9468 + }, + { + "start": 2438.44, + "end": 2439.86, + "probability": 0.7424 + }, + { + "start": 2440.0, + "end": 2441.6, + "probability": 0.9927 + }, + { + "start": 2442.4, + "end": 2447.96, + "probability": 0.9135 + }, + { + "start": 2448.54, + "end": 2450.8, + "probability": 0.9946 + }, + { + "start": 2451.44, + "end": 2451.54, + "probability": 0.8391 + }, + { + "start": 2451.58, + "end": 2453.16, + "probability": 0.989 + }, + { + "start": 2453.42, + "end": 2455.36, + "probability": 0.9375 + }, + { + "start": 2456.2, + "end": 2459.28, + "probability": 0.9878 + }, + { + "start": 2460.08, + "end": 2461.72, + "probability": 0.9824 + }, + { + "start": 2461.72, + "end": 2464.74, + "probability": 0.9561 + }, + { + "start": 2465.7, + "end": 2470.12, + "probability": 0.9641 + }, + { + "start": 2471.14, + "end": 2472.34, + "probability": 0.5653 + }, + { + "start": 2473.02, + "end": 2474.98, + "probability": 0.9826 + }, + { + "start": 2475.9, + "end": 2476.66, + "probability": 0.901 + }, + { + "start": 2477.76, + "end": 2480.82, + "probability": 0.9041 + }, + { + "start": 2481.72, + "end": 2483.3, + "probability": 0.7929 + }, + { + "start": 2484.24, + "end": 2485.76, + "probability": 0.8175 + }, + { + "start": 2486.44, + "end": 2488.64, + "probability": 0.587 + }, + { + "start": 2489.22, + "end": 2492.22, + "probability": 0.9767 + }, + { + "start": 2492.62, + "end": 2494.2, + "probability": 0.6591 + }, + { + "start": 2494.64, + "end": 2496.44, + "probability": 0.7406 + }, + { + "start": 2497.46, + "end": 2498.86, + "probability": 0.7991 + }, + { + "start": 2499.38, + "end": 2500.06, + "probability": 0.9922 + }, + { + "start": 2501.5, + "end": 2502.63, + "probability": 0.7576 + }, + { + "start": 2504.0, + "end": 2505.32, + "probability": 0.97 + }, + { + "start": 2506.16, + "end": 2507.06, + "probability": 0.9713 + }, + { + "start": 2507.76, + "end": 2511.74, + "probability": 0.9963 + }, + { + "start": 2512.22, + "end": 2513.3, + "probability": 0.9914 + }, + { + "start": 2513.46, + "end": 2514.46, + "probability": 0.9915 + }, + { + "start": 2514.56, + "end": 2514.66, + "probability": 0.6798 + }, + { + "start": 2516.14, + "end": 2518.6, + "probability": 0.6723 + }, + { + "start": 2519.64, + "end": 2521.26, + "probability": 0.6306 + }, + { + "start": 2521.3, + "end": 2524.7, + "probability": 0.8852 + }, + { + "start": 2525.42, + "end": 2527.92, + "probability": 0.9689 + }, + { + "start": 2528.98, + "end": 2529.54, + "probability": 0.9966 + }, + { + "start": 2530.96, + "end": 2533.4, + "probability": 0.9955 + }, + { + "start": 2534.68, + "end": 2537.42, + "probability": 0.8146 + }, + { + "start": 2538.32, + "end": 2539.18, + "probability": 0.9056 + }, + { + "start": 2539.6, + "end": 2542.35, + "probability": 0.9971 + }, + { + "start": 2543.58, + "end": 2544.42, + "probability": 0.937 + }, + { + "start": 2545.68, + "end": 2548.24, + "probability": 0.941 + }, + { + "start": 2548.78, + "end": 2550.84, + "probability": 0.809 + }, + { + "start": 2551.46, + "end": 2552.18, + "probability": 0.7896 + }, + { + "start": 2552.92, + "end": 2553.68, + "probability": 0.6544 + }, + { + "start": 2555.9, + "end": 2559.26, + "probability": 0.9616 + }, + { + "start": 2560.42, + "end": 2561.48, + "probability": 0.9219 + }, + { + "start": 2562.12, + "end": 2562.8, + "probability": 0.8911 + }, + { + "start": 2562.88, + "end": 2563.34, + "probability": 0.6643 + }, + { + "start": 2563.4, + "end": 2565.98, + "probability": 0.9557 + }, + { + "start": 2567.26, + "end": 2567.9, + "probability": 0.5879 + }, + { + "start": 2569.34, + "end": 2571.36, + "probability": 0.8638 + }, + { + "start": 2573.06, + "end": 2574.18, + "probability": 0.994 + }, + { + "start": 2576.62, + "end": 2577.34, + "probability": 0.7669 + }, + { + "start": 2578.62, + "end": 2580.42, + "probability": 0.8906 + }, + { + "start": 2580.78, + "end": 2582.62, + "probability": 0.9577 + }, + { + "start": 2583.32, + "end": 2585.82, + "probability": 0.9657 + }, + { + "start": 2586.32, + "end": 2587.92, + "probability": 0.9783 + }, + { + "start": 2589.1, + "end": 2592.24, + "probability": 0.9985 + }, + { + "start": 2592.84, + "end": 2599.04, + "probability": 0.9959 + }, + { + "start": 2601.51, + "end": 2604.52, + "probability": 0.4728 + }, + { + "start": 2605.38, + "end": 2607.7, + "probability": 0.9912 + }, + { + "start": 2608.16, + "end": 2609.04, + "probability": 0.9832 + }, + { + "start": 2609.42, + "end": 2610.12, + "probability": 0.9756 + }, + { + "start": 2611.44, + "end": 2613.94, + "probability": 0.6851 + }, + { + "start": 2616.38, + "end": 2617.63, + "probability": 0.9749 + }, + { + "start": 2618.24, + "end": 2619.48, + "probability": 0.9979 + }, + { + "start": 2620.42, + "end": 2623.22, + "probability": 0.7501 + }, + { + "start": 2625.32, + "end": 2628.72, + "probability": 0.9631 + }, + { + "start": 2629.58, + "end": 2635.4, + "probability": 0.9862 + }, + { + "start": 2637.98, + "end": 2641.24, + "probability": 0.9912 + }, + { + "start": 2643.06, + "end": 2648.1, + "probability": 0.9881 + }, + { + "start": 2648.18, + "end": 2648.52, + "probability": 0.8868 + }, + { + "start": 2651.06, + "end": 2652.1, + "probability": 0.9995 + }, + { + "start": 2652.84, + "end": 2653.8, + "probability": 0.9854 + }, + { + "start": 2654.46, + "end": 2656.04, + "probability": 0.859 + }, + { + "start": 2656.5, + "end": 2657.34, + "probability": 0.6432 + }, + { + "start": 2657.8, + "end": 2660.88, + "probability": 0.8123 + }, + { + "start": 2660.88, + "end": 2664.38, + "probability": 0.6625 + }, + { + "start": 2664.84, + "end": 2665.8, + "probability": 0.8094 + }, + { + "start": 2666.14, + "end": 2666.86, + "probability": 0.9934 + }, + { + "start": 2667.7, + "end": 2669.12, + "probability": 0.93 + }, + { + "start": 2669.96, + "end": 2672.24, + "probability": 0.9708 + }, + { + "start": 2672.24, + "end": 2673.39, + "probability": 0.2682 + }, + { + "start": 2674.22, + "end": 2676.68, + "probability": 0.9972 + }, + { + "start": 2677.26, + "end": 2678.5, + "probability": 0.9851 + }, + { + "start": 2679.02, + "end": 2679.8, + "probability": 0.5466 + }, + { + "start": 2680.14, + "end": 2680.86, + "probability": 0.6863 + }, + { + "start": 2680.86, + "end": 2681.94, + "probability": 0.7109 + }, + { + "start": 2682.2, + "end": 2683.08, + "probability": 0.9545 + }, + { + "start": 2683.94, + "end": 2684.84, + "probability": 0.9695 + }, + { + "start": 2686.3, + "end": 2690.24, + "probability": 0.7745 + }, + { + "start": 2691.12, + "end": 2691.9, + "probability": 0.5474 + }, + { + "start": 2692.04, + "end": 2693.28, + "probability": 0.9073 + }, + { + "start": 2694.36, + "end": 2697.62, + "probability": 0.9792 + }, + { + "start": 2698.28, + "end": 2699.6, + "probability": 0.973 + }, + { + "start": 2701.12, + "end": 2706.38, + "probability": 0.9787 + }, + { + "start": 2707.04, + "end": 2708.98, + "probability": 0.9703 + }, + { + "start": 2710.14, + "end": 2710.98, + "probability": 0.9497 + }, + { + "start": 2711.04, + "end": 2711.84, + "probability": 0.9674 + }, + { + "start": 2711.94, + "end": 2713.28, + "probability": 0.9442 + }, + { + "start": 2713.64, + "end": 2714.46, + "probability": 0.3593 + }, + { + "start": 2715.28, + "end": 2718.26, + "probability": 0.8906 + }, + { + "start": 2718.84, + "end": 2720.76, + "probability": 0.926 + }, + { + "start": 2721.04, + "end": 2721.28, + "probability": 0.918 + }, + { + "start": 2723.68, + "end": 2726.04, + "probability": 0.8376 + }, + { + "start": 2726.84, + "end": 2729.64, + "probability": 0.7525 + }, + { + "start": 2744.3, + "end": 2745.06, + "probability": 0.6185 + }, + { + "start": 2746.42, + "end": 2748.24, + "probability": 0.7254 + }, + { + "start": 2749.96, + "end": 2752.08, + "probability": 0.9882 + }, + { + "start": 2752.86, + "end": 2754.04, + "probability": 0.8879 + }, + { + "start": 2755.44, + "end": 2757.6, + "probability": 0.722 + }, + { + "start": 2758.84, + "end": 2761.58, + "probability": 0.8929 + }, + { + "start": 2763.04, + "end": 2767.26, + "probability": 0.9653 + }, + { + "start": 2770.48, + "end": 2775.34, + "probability": 0.8555 + }, + { + "start": 2776.6, + "end": 2777.34, + "probability": 0.7653 + }, + { + "start": 2778.94, + "end": 2781.38, + "probability": 0.9823 + }, + { + "start": 2781.8, + "end": 2783.34, + "probability": 0.7686 + }, + { + "start": 2784.96, + "end": 2789.28, + "probability": 0.7197 + }, + { + "start": 2790.36, + "end": 2793.42, + "probability": 0.995 + }, + { + "start": 2794.62, + "end": 2800.52, + "probability": 0.884 + }, + { + "start": 2801.38, + "end": 2803.56, + "probability": 0.9653 + }, + { + "start": 2804.26, + "end": 2805.95, + "probability": 0.6998 + }, + { + "start": 2807.24, + "end": 2808.22, + "probability": 0.4922 + }, + { + "start": 2809.66, + "end": 2813.0, + "probability": 0.9243 + }, + { + "start": 2813.86, + "end": 2816.44, + "probability": 0.9927 + }, + { + "start": 2817.22, + "end": 2821.88, + "probability": 0.967 + }, + { + "start": 2823.04, + "end": 2825.7, + "probability": 0.8923 + }, + { + "start": 2826.34, + "end": 2828.38, + "probability": 0.9373 + }, + { + "start": 2829.06, + "end": 2831.46, + "probability": 0.5837 + }, + { + "start": 2832.88, + "end": 2833.78, + "probability": 0.7836 + }, + { + "start": 2833.84, + "end": 2835.42, + "probability": 0.9772 + }, + { + "start": 2836.3, + "end": 2837.7, + "probability": 0.9268 + }, + { + "start": 2838.36, + "end": 2839.26, + "probability": 0.8562 + }, + { + "start": 2840.5, + "end": 2844.3, + "probability": 0.7592 + }, + { + "start": 2845.46, + "end": 2850.38, + "probability": 0.9932 + }, + { + "start": 2850.5, + "end": 2851.54, + "probability": 0.6895 + }, + { + "start": 2851.62, + "end": 2853.18, + "probability": 0.9359 + }, + { + "start": 2853.84, + "end": 2858.42, + "probability": 0.7695 + }, + { + "start": 2859.52, + "end": 2860.3, + "probability": 0.575 + }, + { + "start": 2860.94, + "end": 2863.0, + "probability": 0.9756 + }, + { + "start": 2864.54, + "end": 2867.88, + "probability": 0.8817 + }, + { + "start": 2869.76, + "end": 2871.18, + "probability": 0.9951 + }, + { + "start": 2871.92, + "end": 2878.06, + "probability": 0.9883 + }, + { + "start": 2879.08, + "end": 2880.62, + "probability": 0.8882 + }, + { + "start": 2881.38, + "end": 2885.04, + "probability": 0.994 + }, + { + "start": 2886.36, + "end": 2891.64, + "probability": 0.9753 + }, + { + "start": 2893.46, + "end": 2894.86, + "probability": 0.8127 + }, + { + "start": 2895.84, + "end": 2899.68, + "probability": 0.8449 + }, + { + "start": 2901.2, + "end": 2905.54, + "probability": 0.9536 + }, + { + "start": 2906.88, + "end": 2911.5, + "probability": 0.9952 + }, + { + "start": 2911.5, + "end": 2914.52, + "probability": 0.9912 + }, + { + "start": 2916.16, + "end": 2918.98, + "probability": 0.8468 + }, + { + "start": 2920.0, + "end": 2924.32, + "probability": 0.8815 + }, + { + "start": 2925.14, + "end": 2927.58, + "probability": 0.646 + }, + { + "start": 2928.38, + "end": 2930.76, + "probability": 0.9614 + }, + { + "start": 2931.52, + "end": 2933.38, + "probability": 0.9708 + }, + { + "start": 2934.42, + "end": 2941.58, + "probability": 0.8822 + }, + { + "start": 2942.56, + "end": 2946.34, + "probability": 0.6602 + }, + { + "start": 2946.98, + "end": 2951.52, + "probability": 0.8226 + }, + { + "start": 2952.3, + "end": 2954.42, + "probability": 0.9671 + }, + { + "start": 2954.98, + "end": 2956.52, + "probability": 0.7455 + }, + { + "start": 2957.5, + "end": 2960.6, + "probability": 0.9741 + }, + { + "start": 2961.34, + "end": 2964.0, + "probability": 0.5624 + }, + { + "start": 2964.98, + "end": 2968.24, + "probability": 0.9187 + }, + { + "start": 2968.94, + "end": 2972.28, + "probability": 0.6977 + }, + { + "start": 2972.98, + "end": 2977.38, + "probability": 0.8939 + }, + { + "start": 2977.68, + "end": 2983.04, + "probability": 0.9778 + }, + { + "start": 2984.04, + "end": 2985.16, + "probability": 0.8799 + }, + { + "start": 2987.8, + "end": 2988.42, + "probability": 0.8236 + }, + { + "start": 2988.72, + "end": 2992.44, + "probability": 0.8823 + }, + { + "start": 2993.28, + "end": 2997.82, + "probability": 0.8099 + }, + { + "start": 2997.82, + "end": 3002.48, + "probability": 0.9842 + }, + { + "start": 3002.74, + "end": 3003.64, + "probability": 0.5516 + }, + { + "start": 3004.28, + "end": 3005.64, + "probability": 0.939 + }, + { + "start": 3006.86, + "end": 3007.81, + "probability": 0.7241 + }, + { + "start": 3008.48, + "end": 3011.66, + "probability": 0.6827 + }, + { + "start": 3012.3, + "end": 3017.78, + "probability": 0.5791 + }, + { + "start": 3018.64, + "end": 3023.26, + "probability": 0.9535 + }, + { + "start": 3023.9, + "end": 3029.94, + "probability": 0.8306 + }, + { + "start": 3031.38, + "end": 3032.58, + "probability": 0.9309 + }, + { + "start": 3032.8, + "end": 3036.44, + "probability": 0.8245 + }, + { + "start": 3036.54, + "end": 3037.16, + "probability": 0.809 + }, + { + "start": 3037.58, + "end": 3039.98, + "probability": 0.9817 + }, + { + "start": 3047.32, + "end": 3050.98, + "probability": 0.6618 + }, + { + "start": 3051.94, + "end": 3052.96, + "probability": 0.6051 + }, + { + "start": 3054.14, + "end": 3056.02, + "probability": 0.8053 + }, + { + "start": 3056.08, + "end": 3056.8, + "probability": 0.7843 + }, + { + "start": 3057.24, + "end": 3058.66, + "probability": 0.8367 + }, + { + "start": 3059.08, + "end": 3060.12, + "probability": 0.976 + }, + { + "start": 3060.18, + "end": 3062.36, + "probability": 0.7196 + }, + { + "start": 3062.52, + "end": 3063.14, + "probability": 0.977 + }, + { + "start": 3063.78, + "end": 3065.76, + "probability": 0.7655 + }, + { + "start": 3066.96, + "end": 3069.14, + "probability": 0.7384 + }, + { + "start": 3070.2, + "end": 3072.64, + "probability": 0.8633 + }, + { + "start": 3074.46, + "end": 3076.48, + "probability": 0.7801 + }, + { + "start": 3077.18, + "end": 3082.82, + "probability": 0.9712 + }, + { + "start": 3084.0, + "end": 3084.4, + "probability": 0.4453 + }, + { + "start": 3084.42, + "end": 3088.8, + "probability": 0.9736 + }, + { + "start": 3090.06, + "end": 3093.0, + "probability": 0.697 + }, + { + "start": 3093.0, + "end": 3094.88, + "probability": 0.646 + }, + { + "start": 3097.0, + "end": 3100.24, + "probability": 0.9337 + }, + { + "start": 3100.24, + "end": 3108.34, + "probability": 0.9878 + }, + { + "start": 3108.84, + "end": 3109.68, + "probability": 0.4976 + }, + { + "start": 3110.4, + "end": 3111.48, + "probability": 0.989 + }, + { + "start": 3111.54, + "end": 3112.0, + "probability": 0.807 + }, + { + "start": 3112.14, + "end": 3116.2, + "probability": 0.9486 + }, + { + "start": 3117.1, + "end": 3122.88, + "probability": 0.9911 + }, + { + "start": 3124.48, + "end": 3125.8, + "probability": 0.9988 + }, + { + "start": 3126.72, + "end": 3128.88, + "probability": 0.7543 + }, + { + "start": 3129.84, + "end": 3130.22, + "probability": 0.4388 + }, + { + "start": 3130.3, + "end": 3133.24, + "probability": 0.8936 + }, + { + "start": 3133.62, + "end": 3135.26, + "probability": 0.9392 + }, + { + "start": 3135.64, + "end": 3137.28, + "probability": 0.9034 + }, + { + "start": 3137.68, + "end": 3140.4, + "probability": 0.9863 + }, + { + "start": 3141.26, + "end": 3147.44, + "probability": 0.7513 + }, + { + "start": 3147.56, + "end": 3149.7, + "probability": 0.9652 + }, + { + "start": 3150.74, + "end": 3151.95, + "probability": 0.8524 + }, + { + "start": 3153.28, + "end": 3154.6, + "probability": 0.6717 + }, + { + "start": 3154.62, + "end": 3156.42, + "probability": 0.8083 + }, + { + "start": 3156.48, + "end": 3157.28, + "probability": 0.7902 + }, + { + "start": 3157.76, + "end": 3158.5, + "probability": 0.7248 + }, + { + "start": 3158.96, + "end": 3164.98, + "probability": 0.8667 + }, + { + "start": 3165.56, + "end": 3167.34, + "probability": 0.9836 + }, + { + "start": 3167.78, + "end": 3169.6, + "probability": 0.8989 + }, + { + "start": 3170.72, + "end": 3173.58, + "probability": 0.6972 + }, + { + "start": 3174.36, + "end": 3177.18, + "probability": 0.948 + }, + { + "start": 3178.7, + "end": 3182.54, + "probability": 0.7595 + }, + { + "start": 3183.92, + "end": 3187.72, + "probability": 0.9041 + }, + { + "start": 3188.54, + "end": 3189.0, + "probability": 0.466 + }, + { + "start": 3189.12, + "end": 3194.64, + "probability": 0.922 + }, + { + "start": 3194.64, + "end": 3198.36, + "probability": 0.9642 + }, + { + "start": 3198.9, + "end": 3204.6, + "probability": 0.8861 + }, + { + "start": 3204.6, + "end": 3209.08, + "probability": 0.9913 + }, + { + "start": 3209.96, + "end": 3213.34, + "probability": 0.9432 + }, + { + "start": 3213.74, + "end": 3218.28, + "probability": 0.9737 + }, + { + "start": 3218.98, + "end": 3223.36, + "probability": 0.4956 + }, + { + "start": 3223.36, + "end": 3226.18, + "probability": 0.9404 + }, + { + "start": 3227.1, + "end": 3229.28, + "probability": 0.9423 + }, + { + "start": 3229.88, + "end": 3232.98, + "probability": 0.9523 + }, + { + "start": 3233.84, + "end": 3234.06, + "probability": 0.8257 + }, + { + "start": 3234.16, + "end": 3238.6, + "probability": 0.986 + }, + { + "start": 3238.6, + "end": 3243.6, + "probability": 0.9668 + }, + { + "start": 3244.36, + "end": 3246.62, + "probability": 0.959 + }, + { + "start": 3247.16, + "end": 3251.98, + "probability": 0.9279 + }, + { + "start": 3252.54, + "end": 3256.9, + "probability": 0.957 + }, + { + "start": 3258.22, + "end": 3259.0, + "probability": 0.8903 + }, + { + "start": 3260.76, + "end": 3267.4, + "probability": 0.9653 + }, + { + "start": 3267.5, + "end": 3268.22, + "probability": 0.5333 + }, + { + "start": 3269.32, + "end": 3270.98, + "probability": 0.8887 + }, + { + "start": 3271.5, + "end": 3274.34, + "probability": 0.8792 + }, + { + "start": 3274.96, + "end": 3277.44, + "probability": 0.937 + }, + { + "start": 3277.56, + "end": 3280.7, + "probability": 0.8639 + }, + { + "start": 3281.78, + "end": 3286.68, + "probability": 0.7812 + }, + { + "start": 3287.54, + "end": 3292.56, + "probability": 0.9659 + }, + { + "start": 3293.84, + "end": 3294.38, + "probability": 0.7548 + }, + { + "start": 3294.56, + "end": 3295.16, + "probability": 0.4409 + }, + { + "start": 3295.46, + "end": 3296.9, + "probability": 0.7971 + }, + { + "start": 3296.96, + "end": 3298.6, + "probability": 0.6045 + }, + { + "start": 3298.8, + "end": 3303.94, + "probability": 0.8928 + }, + { + "start": 3304.83, + "end": 3307.24, + "probability": 0.6019 + }, + { + "start": 3307.34, + "end": 3307.62, + "probability": 0.3789 + }, + { + "start": 3307.72, + "end": 3310.96, + "probability": 0.9276 + }, + { + "start": 3311.04, + "end": 3311.58, + "probability": 0.7432 + }, + { + "start": 3311.62, + "end": 3312.06, + "probability": 0.7708 + }, + { + "start": 3312.82, + "end": 3314.94, + "probability": 0.9456 + }, + { + "start": 3315.72, + "end": 3318.8, + "probability": 0.9096 + }, + { + "start": 3319.36, + "end": 3322.3, + "probability": 0.888 + }, + { + "start": 3322.94, + "end": 3324.9, + "probability": 0.7971 + }, + { + "start": 3325.81, + "end": 3328.1, + "probability": 0.8645 + }, + { + "start": 3329.02, + "end": 3331.82, + "probability": 0.9161 + }, + { + "start": 3332.56, + "end": 3333.44, + "probability": 0.5963 + }, + { + "start": 3334.0, + "end": 3339.98, + "probability": 0.9749 + }, + { + "start": 3340.74, + "end": 3344.04, + "probability": 0.6704 + }, + { + "start": 3344.04, + "end": 3348.0, + "probability": 0.6841 + }, + { + "start": 3348.3, + "end": 3349.84, + "probability": 0.9379 + }, + { + "start": 3350.02, + "end": 3350.64, + "probability": 0.9348 + }, + { + "start": 3352.02, + "end": 3354.6, + "probability": 0.9772 + }, + { + "start": 3354.6, + "end": 3359.08, + "probability": 0.9029 + }, + { + "start": 3359.9, + "end": 3362.22, + "probability": 0.6689 + }, + { + "start": 3362.76, + "end": 3363.32, + "probability": 0.0732 + }, + { + "start": 3363.32, + "end": 3365.26, + "probability": 0.8052 + }, + { + "start": 3365.64, + "end": 3367.44, + "probability": 0.8057 + }, + { + "start": 3368.26, + "end": 3372.26, + "probability": 0.6011 + }, + { + "start": 3372.78, + "end": 3374.1, + "probability": 0.5668 + }, + { + "start": 3376.6, + "end": 3381.88, + "probability": 0.9126 + }, + { + "start": 3382.94, + "end": 3385.38, + "probability": 0.9525 + }, + { + "start": 3386.04, + "end": 3386.8, + "probability": 0.4196 + }, + { + "start": 3386.98, + "end": 3386.98, + "probability": 0.4664 + }, + { + "start": 3387.0, + "end": 3388.54, + "probability": 0.6941 + }, + { + "start": 3389.2, + "end": 3390.34, + "probability": 0.5067 + }, + { + "start": 3390.96, + "end": 3396.88, + "probability": 0.9829 + }, + { + "start": 3397.64, + "end": 3403.96, + "probability": 0.9415 + }, + { + "start": 3403.96, + "end": 3409.52, + "probability": 0.8009 + }, + { + "start": 3409.88, + "end": 3411.04, + "probability": 0.6533 + }, + { + "start": 3411.38, + "end": 3412.1, + "probability": 0.6802 + }, + { + "start": 3412.34, + "end": 3416.12, + "probability": 0.6984 + }, + { + "start": 3416.16, + "end": 3416.8, + "probability": 0.7875 + }, + { + "start": 3435.74, + "end": 3436.74, + "probability": 0.6544 + }, + { + "start": 3437.84, + "end": 3439.58, + "probability": 0.8478 + }, + { + "start": 3442.4, + "end": 3446.72, + "probability": 0.9791 + }, + { + "start": 3447.78, + "end": 3451.58, + "probability": 0.9904 + }, + { + "start": 3454.4, + "end": 3459.12, + "probability": 0.9972 + }, + { + "start": 3461.24, + "end": 3462.66, + "probability": 0.9983 + }, + { + "start": 3464.26, + "end": 3465.34, + "probability": 0.9694 + }, + { + "start": 3466.58, + "end": 3468.0, + "probability": 0.553 + }, + { + "start": 3469.18, + "end": 3472.82, + "probability": 0.9363 + }, + { + "start": 3475.04, + "end": 3476.34, + "probability": 0.8928 + }, + { + "start": 3477.32, + "end": 3481.36, + "probability": 0.7668 + }, + { + "start": 3481.36, + "end": 3484.62, + "probability": 0.681 + }, + { + "start": 3485.72, + "end": 3487.28, + "probability": 0.82 + }, + { + "start": 3489.44, + "end": 3493.34, + "probability": 0.8456 + }, + { + "start": 3495.2, + "end": 3500.52, + "probability": 0.9663 + }, + { + "start": 3502.02, + "end": 3502.92, + "probability": 0.8245 + }, + { + "start": 3504.5, + "end": 3505.3, + "probability": 0.9256 + }, + { + "start": 3506.72, + "end": 3507.56, + "probability": 0.9801 + }, + { + "start": 3508.92, + "end": 3509.86, + "probability": 0.8295 + }, + { + "start": 3512.0, + "end": 3514.2, + "probability": 0.8722 + }, + { + "start": 3517.4, + "end": 3521.9, + "probability": 0.7864 + }, + { + "start": 3523.44, + "end": 3524.28, + "probability": 0.676 + }, + { + "start": 3525.42, + "end": 3527.14, + "probability": 0.8945 + }, + { + "start": 3528.12, + "end": 3529.06, + "probability": 0.9898 + }, + { + "start": 3529.8, + "end": 3532.54, + "probability": 0.9395 + }, + { + "start": 3534.22, + "end": 3536.08, + "probability": 0.8646 + }, + { + "start": 3537.46, + "end": 3541.08, + "probability": 0.9701 + }, + { + "start": 3542.8, + "end": 3544.02, + "probability": 0.979 + }, + { + "start": 3545.94, + "end": 3551.86, + "probability": 0.8352 + }, + { + "start": 3552.66, + "end": 3553.72, + "probability": 0.844 + }, + { + "start": 3555.52, + "end": 3556.56, + "probability": 0.8943 + }, + { + "start": 3556.66, + "end": 3558.16, + "probability": 0.9229 + }, + { + "start": 3558.16, + "end": 3560.2, + "probability": 0.9855 + }, + { + "start": 3561.84, + "end": 3563.95, + "probability": 0.9755 + }, + { + "start": 3564.62, + "end": 3564.64, + "probability": 0.267 + }, + { + "start": 3564.64, + "end": 3564.64, + "probability": 0.4985 + }, + { + "start": 3564.64, + "end": 3566.7, + "probability": 0.844 + }, + { + "start": 3566.84, + "end": 3569.38, + "probability": 0.2377 + }, + { + "start": 3569.38, + "end": 3570.36, + "probability": 0.1029 + }, + { + "start": 3570.94, + "end": 3572.56, + "probability": 0.7749 + }, + { + "start": 3573.48, + "end": 3576.28, + "probability": 0.7963 + }, + { + "start": 3577.62, + "end": 3578.52, + "probability": 0.6642 + }, + { + "start": 3579.36, + "end": 3582.5, + "probability": 0.9871 + }, + { + "start": 3583.8, + "end": 3584.16, + "probability": 0.2965 + }, + { + "start": 3586.66, + "end": 3588.62, + "probability": 0.993 + }, + { + "start": 3590.82, + "end": 3592.82, + "probability": 0.9947 + }, + { + "start": 3594.72, + "end": 3599.55, + "probability": 0.9904 + }, + { + "start": 3599.88, + "end": 3604.7, + "probability": 0.9977 + }, + { + "start": 3605.38, + "end": 3606.08, + "probability": 0.7579 + }, + { + "start": 3607.52, + "end": 3611.38, + "probability": 0.9682 + }, + { + "start": 3612.7, + "end": 3614.54, + "probability": 0.9033 + }, + { + "start": 3615.68, + "end": 3618.34, + "probability": 0.9399 + }, + { + "start": 3618.94, + "end": 3619.82, + "probability": 0.7754 + }, + { + "start": 3620.66, + "end": 3621.4, + "probability": 0.7627 + }, + { + "start": 3623.74, + "end": 3629.7, + "probability": 0.957 + }, + { + "start": 3630.28, + "end": 3630.8, + "probability": 0.8107 + }, + { + "start": 3631.2, + "end": 3636.72, + "probability": 0.9493 + }, + { + "start": 3637.58, + "end": 3639.26, + "probability": 0.9549 + }, + { + "start": 3640.42, + "end": 3642.1, + "probability": 0.9738 + }, + { + "start": 3643.26, + "end": 3645.94, + "probability": 0.9407 + }, + { + "start": 3646.48, + "end": 3647.8, + "probability": 0.9893 + }, + { + "start": 3648.84, + "end": 3649.96, + "probability": 0.8588 + }, + { + "start": 3651.38, + "end": 3653.28, + "probability": 0.9701 + }, + { + "start": 3654.14, + "end": 3655.5, + "probability": 0.8053 + }, + { + "start": 3656.34, + "end": 3659.36, + "probability": 0.8261 + }, + { + "start": 3659.56, + "end": 3662.36, + "probability": 0.7861 + }, + { + "start": 3662.36, + "end": 3665.04, + "probability": 0.9825 + }, + { + "start": 3665.66, + "end": 3667.68, + "probability": 0.9645 + }, + { + "start": 3668.76, + "end": 3669.84, + "probability": 0.7301 + }, + { + "start": 3670.88, + "end": 3671.82, + "probability": 0.8608 + }, + { + "start": 3674.06, + "end": 3675.18, + "probability": 0.9636 + }, + { + "start": 3676.34, + "end": 3677.64, + "probability": 0.9903 + }, + { + "start": 3678.7, + "end": 3685.66, + "probability": 0.9858 + }, + { + "start": 3686.8, + "end": 3687.68, + "probability": 0.9854 + }, + { + "start": 3689.98, + "end": 3696.74, + "probability": 0.9827 + }, + { + "start": 3698.14, + "end": 3698.82, + "probability": 0.6457 + }, + { + "start": 3698.84, + "end": 3702.2, + "probability": 0.9702 + }, + { + "start": 3702.72, + "end": 3704.94, + "probability": 0.8422 + }, + { + "start": 3705.72, + "end": 3706.92, + "probability": 0.9168 + }, + { + "start": 3707.7, + "end": 3712.82, + "probability": 0.981 + }, + { + "start": 3714.76, + "end": 3715.72, + "probability": 0.9765 + }, + { + "start": 3717.3, + "end": 3720.62, + "probability": 0.9822 + }, + { + "start": 3720.94, + "end": 3723.48, + "probability": 0.9924 + }, + { + "start": 3724.42, + "end": 3727.14, + "probability": 0.9392 + }, + { + "start": 3728.28, + "end": 3729.42, + "probability": 0.8193 + }, + { + "start": 3730.28, + "end": 3731.66, + "probability": 0.8266 + }, + { + "start": 3735.08, + "end": 3738.6, + "probability": 0.799 + }, + { + "start": 3740.66, + "end": 3742.0, + "probability": 0.9843 + }, + { + "start": 3743.96, + "end": 3746.26, + "probability": 0.7511 + }, + { + "start": 3747.12, + "end": 3748.1, + "probability": 0.6655 + }, + { + "start": 3749.04, + "end": 3750.18, + "probability": 0.9724 + }, + { + "start": 3752.24, + "end": 3752.58, + "probability": 0.5836 + }, + { + "start": 3753.34, + "end": 3754.24, + "probability": 0.8637 + }, + { + "start": 3756.44, + "end": 3760.44, + "probability": 0.8245 + }, + { + "start": 3761.3, + "end": 3762.44, + "probability": 0.8775 + }, + { + "start": 3762.66, + "end": 3766.64, + "probability": 0.8452 + }, + { + "start": 3768.06, + "end": 3769.14, + "probability": 0.863 + }, + { + "start": 3770.4, + "end": 3773.34, + "probability": 0.9138 + }, + { + "start": 3776.66, + "end": 3777.36, + "probability": 0.9967 + }, + { + "start": 3779.14, + "end": 3783.88, + "probability": 0.9673 + }, + { + "start": 3785.52, + "end": 3788.68, + "probability": 0.9615 + }, + { + "start": 3789.64, + "end": 3792.24, + "probability": 0.9212 + }, + { + "start": 3792.78, + "end": 3793.54, + "probability": 0.962 + }, + { + "start": 3795.5, + "end": 3797.98, + "probability": 0.9156 + }, + { + "start": 3798.82, + "end": 3802.98, + "probability": 0.9926 + }, + { + "start": 3803.56, + "end": 3807.7, + "probability": 0.9519 + }, + { + "start": 3808.58, + "end": 3809.99, + "probability": 0.6573 + }, + { + "start": 3810.2, + "end": 3811.22, + "probability": 0.7254 + }, + { + "start": 3811.92, + "end": 3814.32, + "probability": 0.8685 + }, + { + "start": 3814.46, + "end": 3815.66, + "probability": 0.8431 + }, + { + "start": 3815.74, + "end": 3816.4, + "probability": 0.6744 + }, + { + "start": 3817.72, + "end": 3818.84, + "probability": 0.8504 + }, + { + "start": 3819.38, + "end": 3820.9, + "probability": 0.8281 + }, + { + "start": 3821.36, + "end": 3823.84, + "probability": 0.7296 + }, + { + "start": 3830.46, + "end": 3831.18, + "probability": 0.7402 + }, + { + "start": 3832.96, + "end": 3835.78, + "probability": 0.6848 + }, + { + "start": 3836.0, + "end": 3836.42, + "probability": 0.9496 + }, + { + "start": 3836.5, + "end": 3838.02, + "probability": 0.9653 + }, + { + "start": 3838.08, + "end": 3839.42, + "probability": 0.9853 + }, + { + "start": 3839.5, + "end": 3840.98, + "probability": 0.8974 + }, + { + "start": 3841.66, + "end": 3844.92, + "probability": 0.9809 + }, + { + "start": 3845.92, + "end": 3849.3, + "probability": 0.9808 + }, + { + "start": 3849.44, + "end": 3852.82, + "probability": 0.8459 + }, + { + "start": 3853.5, + "end": 3854.84, + "probability": 0.9324 + }, + { + "start": 3857.16, + "end": 3860.74, + "probability": 0.9837 + }, + { + "start": 3860.74, + "end": 3864.08, + "probability": 0.9985 + }, + { + "start": 3864.28, + "end": 3866.44, + "probability": 0.9822 + }, + { + "start": 3867.28, + "end": 3868.48, + "probability": 0.8361 + }, + { + "start": 3869.38, + "end": 3874.52, + "probability": 0.9797 + }, + { + "start": 3874.82, + "end": 3877.73, + "probability": 0.9961 + }, + { + "start": 3881.1, + "end": 3886.54, + "probability": 0.984 + }, + { + "start": 3887.74, + "end": 3889.18, + "probability": 0.5339 + }, + { + "start": 3889.52, + "end": 3891.88, + "probability": 0.9971 + }, + { + "start": 3891.88, + "end": 3895.26, + "probability": 0.9948 + }, + { + "start": 3896.4, + "end": 3898.56, + "probability": 0.9442 + }, + { + "start": 3899.42, + "end": 3900.2, + "probability": 0.9872 + }, + { + "start": 3900.74, + "end": 3904.1, + "probability": 0.9404 + }, + { + "start": 3906.2, + "end": 3908.5, + "probability": 0.9971 + }, + { + "start": 3908.5, + "end": 3912.08, + "probability": 0.9879 + }, + { + "start": 3913.02, + "end": 3917.42, + "probability": 0.9906 + }, + { + "start": 3917.46, + "end": 3918.26, + "probability": 0.9233 + }, + { + "start": 3918.5, + "end": 3919.34, + "probability": 0.9222 + }, + { + "start": 3921.6, + "end": 3924.7, + "probability": 0.9946 + }, + { + "start": 3925.12, + "end": 3928.76, + "probability": 0.92 + }, + { + "start": 3929.36, + "end": 3933.44, + "probability": 0.9737 + }, + { + "start": 3934.04, + "end": 3938.54, + "probability": 0.9367 + }, + { + "start": 3938.94, + "end": 3941.82, + "probability": 0.996 + }, + { + "start": 3943.94, + "end": 3947.52, + "probability": 0.9969 + }, + { + "start": 3947.6, + "end": 3951.4, + "probability": 0.9849 + }, + { + "start": 3952.38, + "end": 3953.74, + "probability": 0.9308 + }, + { + "start": 3954.02, + "end": 3959.98, + "probability": 0.9925 + }, + { + "start": 3961.64, + "end": 3964.3, + "probability": 0.9646 + }, + { + "start": 3964.52, + "end": 3967.34, + "probability": 0.95 + }, + { + "start": 3968.42, + "end": 3970.26, + "probability": 0.9014 + }, + { + "start": 3970.32, + "end": 3970.8, + "probability": 0.955 + }, + { + "start": 3970.96, + "end": 3972.76, + "probability": 0.909 + }, + { + "start": 3973.82, + "end": 3977.48, + "probability": 0.9689 + }, + { + "start": 3977.94, + "end": 3980.78, + "probability": 0.9879 + }, + { + "start": 3982.58, + "end": 3986.22, + "probability": 0.9814 + }, + { + "start": 3986.72, + "end": 3987.24, + "probability": 0.7413 + }, + { + "start": 3988.34, + "end": 3989.28, + "probability": 0.8729 + }, + { + "start": 3990.28, + "end": 3993.92, + "probability": 0.9971 + }, + { + "start": 3994.02, + "end": 3997.1, + "probability": 0.9522 + }, + { + "start": 3997.3, + "end": 3999.32, + "probability": 0.9359 + }, + { + "start": 3999.76, + "end": 4000.3, + "probability": 0.962 + }, + { + "start": 4002.8, + "end": 4005.1, + "probability": 0.9941 + }, + { + "start": 4005.1, + "end": 4008.88, + "probability": 0.9929 + }, + { + "start": 4009.78, + "end": 4011.94, + "probability": 0.9243 + }, + { + "start": 4012.02, + "end": 4013.95, + "probability": 0.7503 + }, + { + "start": 4015.66, + "end": 4017.62, + "probability": 0.8731 + }, + { + "start": 4018.86, + "end": 4021.44, + "probability": 0.9889 + }, + { + "start": 4021.64, + "end": 4023.04, + "probability": 0.8362 + }, + { + "start": 4023.5, + "end": 4024.72, + "probability": 0.9795 + }, + { + "start": 4025.02, + "end": 4025.36, + "probability": 0.7885 + }, + { + "start": 4026.32, + "end": 4026.6, + "probability": 0.2896 + }, + { + "start": 4026.7, + "end": 4027.06, + "probability": 0.8969 + }, + { + "start": 4027.08, + "end": 4030.92, + "probability": 0.9409 + }, + { + "start": 4031.0, + "end": 4034.62, + "probability": 0.9935 + }, + { + "start": 4035.26, + "end": 4037.26, + "probability": 0.9011 + }, + { + "start": 4037.78, + "end": 4041.08, + "probability": 0.9961 + }, + { + "start": 4041.08, + "end": 4043.68, + "probability": 0.998 + }, + { + "start": 4044.72, + "end": 4045.66, + "probability": 0.8718 + }, + { + "start": 4045.82, + "end": 4046.68, + "probability": 0.8649 + }, + { + "start": 4046.76, + "end": 4048.86, + "probability": 0.9976 + }, + { + "start": 4049.76, + "end": 4053.14, + "probability": 0.9894 + }, + { + "start": 4053.78, + "end": 4057.18, + "probability": 0.9958 + }, + { + "start": 4058.04, + "end": 4061.38, + "probability": 0.995 + }, + { + "start": 4061.38, + "end": 4065.84, + "probability": 0.9997 + }, + { + "start": 4066.58, + "end": 4070.34, + "probability": 0.9478 + }, + { + "start": 4071.08, + "end": 4075.38, + "probability": 0.9841 + }, + { + "start": 4075.88, + "end": 4077.44, + "probability": 0.8984 + }, + { + "start": 4077.72, + "end": 4078.22, + "probability": 0.6943 + }, + { + "start": 4079.06, + "end": 4081.04, + "probability": 0.735 + }, + { + "start": 4081.14, + "end": 4082.62, + "probability": 0.6821 + }, + { + "start": 4083.96, + "end": 4085.02, + "probability": 0.3773 + }, + { + "start": 4085.7, + "end": 4088.32, + "probability": 0.8608 + }, + { + "start": 4090.66, + "end": 4092.26, + "probability": 0.689 + }, + { + "start": 4095.24, + "end": 4095.98, + "probability": 0.501 + }, + { + "start": 4096.12, + "end": 4096.62, + "probability": 0.787 + }, + { + "start": 4097.6, + "end": 4099.44, + "probability": 0.5662 + }, + { + "start": 4104.08, + "end": 4104.92, + "probability": 0.6475 + }, + { + "start": 4106.7, + "end": 4108.98, + "probability": 0.7473 + }, + { + "start": 4110.1, + "end": 4111.56, + "probability": 0.8099 + }, + { + "start": 4114.2, + "end": 4115.2, + "probability": 0.9368 + }, + { + "start": 4116.16, + "end": 4122.2, + "probability": 0.9631 + }, + { + "start": 4123.34, + "end": 4125.34, + "probability": 0.8316 + }, + { + "start": 4126.14, + "end": 4127.7, + "probability": 0.8296 + }, + { + "start": 4128.52, + "end": 4130.88, + "probability": 0.9916 + }, + { + "start": 4130.96, + "end": 4133.12, + "probability": 0.8708 + }, + { + "start": 4134.46, + "end": 4135.94, + "probability": 0.995 + }, + { + "start": 4136.94, + "end": 4138.63, + "probability": 0.9392 + }, + { + "start": 4139.54, + "end": 4139.98, + "probability": 0.577 + }, + { + "start": 4140.84, + "end": 4141.34, + "probability": 0.9713 + }, + { + "start": 4142.96, + "end": 4144.82, + "probability": 0.9368 + }, + { + "start": 4145.46, + "end": 4146.6, + "probability": 0.9804 + }, + { + "start": 4147.52, + "end": 4150.36, + "probability": 0.9894 + }, + { + "start": 4151.46, + "end": 4155.52, + "probability": 0.9374 + }, + { + "start": 4156.68, + "end": 4158.8, + "probability": 0.9608 + }, + { + "start": 4159.74, + "end": 4160.5, + "probability": 0.9278 + }, + { + "start": 4161.08, + "end": 4161.82, + "probability": 0.9672 + }, + { + "start": 4162.54, + "end": 4163.68, + "probability": 0.9762 + }, + { + "start": 4164.46, + "end": 4170.0, + "probability": 0.9968 + }, + { + "start": 4171.14, + "end": 4173.58, + "probability": 0.8977 + }, + { + "start": 4174.34, + "end": 4175.9, + "probability": 0.9896 + }, + { + "start": 4176.74, + "end": 4178.56, + "probability": 0.9727 + }, + { + "start": 4179.36, + "end": 4182.86, + "probability": 0.999 + }, + { + "start": 4185.0, + "end": 4187.26, + "probability": 0.9288 + }, + { + "start": 4188.66, + "end": 4191.5, + "probability": 0.892 + }, + { + "start": 4192.48, + "end": 4195.92, + "probability": 0.9548 + }, + { + "start": 4196.98, + "end": 4198.38, + "probability": 0.9766 + }, + { + "start": 4199.3, + "end": 4201.2, + "probability": 0.9558 + }, + { + "start": 4203.56, + "end": 4204.46, + "probability": 0.8438 + }, + { + "start": 4205.32, + "end": 4207.18, + "probability": 0.959 + }, + { + "start": 4208.32, + "end": 4209.86, + "probability": 0.8688 + }, + { + "start": 4210.84, + "end": 4213.82, + "probability": 0.9858 + }, + { + "start": 4214.82, + "end": 4217.38, + "probability": 0.9915 + }, + { + "start": 4218.36, + "end": 4222.48, + "probability": 0.9966 + }, + { + "start": 4222.48, + "end": 4225.14, + "probability": 0.9872 + }, + { + "start": 4226.4, + "end": 4226.92, + "probability": 0.8363 + }, + { + "start": 4228.46, + "end": 4229.8, + "probability": 0.9471 + }, + { + "start": 4230.7, + "end": 4232.8, + "probability": 0.9643 + }, + { + "start": 4233.8, + "end": 4238.12, + "probability": 0.9745 + }, + { + "start": 4239.32, + "end": 4243.94, + "probability": 0.9969 + }, + { + "start": 4243.94, + "end": 4248.14, + "probability": 0.9852 + }, + { + "start": 4249.18, + "end": 4254.0, + "probability": 0.9993 + }, + { + "start": 4254.82, + "end": 4258.9, + "probability": 0.9792 + }, + { + "start": 4260.36, + "end": 4261.54, + "probability": 0.7508 + }, + { + "start": 4262.14, + "end": 4263.4, + "probability": 0.9694 + }, + { + "start": 4264.4, + "end": 4265.88, + "probability": 0.9928 + }, + { + "start": 4267.02, + "end": 4269.36, + "probability": 0.8065 + }, + { + "start": 4270.16, + "end": 4272.66, + "probability": 0.9728 + }, + { + "start": 4273.82, + "end": 4276.62, + "probability": 0.9977 + }, + { + "start": 4277.44, + "end": 4278.88, + "probability": 0.9315 + }, + { + "start": 4279.76, + "end": 4281.92, + "probability": 0.9567 + }, + { + "start": 4283.14, + "end": 4284.5, + "probability": 0.9696 + }, + { + "start": 4285.22, + "end": 4289.78, + "probability": 0.9902 + }, + { + "start": 4291.9, + "end": 4293.14, + "probability": 0.9304 + }, + { + "start": 4293.92, + "end": 4295.58, + "probability": 0.659 + }, + { + "start": 4296.84, + "end": 4303.62, + "probability": 0.9365 + }, + { + "start": 4304.38, + "end": 4308.76, + "probability": 0.9946 + }, + { + "start": 4309.48, + "end": 4310.7, + "probability": 0.8775 + }, + { + "start": 4311.14, + "end": 4313.08, + "probability": 0.9836 + }, + { + "start": 4313.16, + "end": 4313.38, + "probability": 0.7427 + }, + { + "start": 4314.08, + "end": 4318.34, + "probability": 0.0669 + }, + { + "start": 4318.58, + "end": 4320.0, + "probability": 0.1313 + }, + { + "start": 4320.22, + "end": 4321.4, + "probability": 0.5091 + }, + { + "start": 4321.5, + "end": 4325.1, + "probability": 0.7282 + }, + { + "start": 4325.5, + "end": 4328.44, + "probability": 0.5266 + }, + { + "start": 4328.62, + "end": 4333.36, + "probability": 0.0839 + }, + { + "start": 4333.8, + "end": 4333.92, + "probability": 0.016 + }, + { + "start": 4333.92, + "end": 4336.24, + "probability": 0.4962 + }, + { + "start": 4337.4, + "end": 4338.34, + "probability": 0.6692 + }, + { + "start": 4338.44, + "end": 4339.02, + "probability": 0.281 + }, + { + "start": 4339.02, + "end": 4339.84, + "probability": 0.7502 + }, + { + "start": 4340.16, + "end": 4340.62, + "probability": 0.7827 + }, + { + "start": 4351.54, + "end": 4352.68, + "probability": 0.426 + }, + { + "start": 4352.76, + "end": 4354.82, + "probability": 0.6625 + }, + { + "start": 4358.14, + "end": 4360.6, + "probability": 0.7686 + }, + { + "start": 4361.82, + "end": 4362.8, + "probability": 0.9701 + }, + { + "start": 4366.44, + "end": 4367.36, + "probability": 0.4304 + }, + { + "start": 4368.84, + "end": 4374.54, + "probability": 0.7817 + }, + { + "start": 4375.84, + "end": 4377.08, + "probability": 0.5964 + }, + { + "start": 4378.42, + "end": 4379.86, + "probability": 0.8649 + }, + { + "start": 4380.82, + "end": 4386.72, + "probability": 0.9564 + }, + { + "start": 4387.56, + "end": 4391.42, + "probability": 0.9961 + }, + { + "start": 4392.24, + "end": 4393.19, + "probability": 0.9063 + }, + { + "start": 4394.86, + "end": 4396.34, + "probability": 0.801 + }, + { + "start": 4397.16, + "end": 4403.44, + "probability": 0.9485 + }, + { + "start": 4404.4, + "end": 4405.7, + "probability": 0.6608 + }, + { + "start": 4407.34, + "end": 4408.18, + "probability": 0.9873 + }, + { + "start": 4410.78, + "end": 4420.46, + "probability": 0.9809 + }, + { + "start": 4421.26, + "end": 4422.22, + "probability": 0.5996 + }, + { + "start": 4422.8, + "end": 4422.88, + "probability": 0.2406 + }, + { + "start": 4422.88, + "end": 4423.4, + "probability": 0.5036 + }, + { + "start": 4423.8, + "end": 4425.05, + "probability": 0.8248 + }, + { + "start": 4426.0, + "end": 4428.5, + "probability": 0.9174 + }, + { + "start": 4429.22, + "end": 4429.24, + "probability": 0.0928 + }, + { + "start": 4429.24, + "end": 4429.24, + "probability": 0.5697 + }, + { + "start": 4429.24, + "end": 4429.24, + "probability": 0.1152 + }, + { + "start": 4429.24, + "end": 4430.82, + "probability": 0.7292 + }, + { + "start": 4430.82, + "end": 4432.4, + "probability": 0.8541 + }, + { + "start": 4432.68, + "end": 4436.18, + "probability": 0.6422 + }, + { + "start": 4436.34, + "end": 4437.04, + "probability": 0.517 + }, + { + "start": 4438.06, + "end": 4438.36, + "probability": 0.236 + }, + { + "start": 4438.36, + "end": 4442.44, + "probability": 0.7112 + }, + { + "start": 4443.04, + "end": 4447.74, + "probability": 0.8453 + }, + { + "start": 4448.08, + "end": 4450.6, + "probability": 0.6873 + }, + { + "start": 4450.76, + "end": 4452.9, + "probability": 0.4607 + }, + { + "start": 4453.16, + "end": 4453.48, + "probability": 0.0749 + }, + { + "start": 4453.76, + "end": 4455.12, + "probability": 0.9922 + }, + { + "start": 4455.8, + "end": 4462.24, + "probability": 0.8214 + }, + { + "start": 4462.88, + "end": 4465.52, + "probability": 0.9954 + }, + { + "start": 4466.54, + "end": 4472.28, + "probability": 0.3043 + }, + { + "start": 4472.48, + "end": 4473.68, + "probability": 0.1142 + }, + { + "start": 4473.98, + "end": 4474.56, + "probability": 0.5653 + }, + { + "start": 4477.15, + "end": 4478.17, + "probability": 0.1966 + }, + { + "start": 4479.54, + "end": 4481.56, + "probability": 0.1637 + }, + { + "start": 4482.34, + "end": 4485.88, + "probability": 0.7709 + }, + { + "start": 4485.92, + "end": 4491.24, + "probability": 0.9782 + }, + { + "start": 4492.28, + "end": 4496.36, + "probability": 0.9975 + }, + { + "start": 4497.8, + "end": 4502.66, + "probability": 0.9956 + }, + { + "start": 4503.4, + "end": 4505.36, + "probability": 0.4341 + }, + { + "start": 4506.1, + "end": 4506.44, + "probability": 0.0 + }, + { + "start": 4507.24, + "end": 4508.66, + "probability": 0.7653 + }, + { + "start": 4509.14, + "end": 4511.52, + "probability": 0.6578 + }, + { + "start": 4511.56, + "end": 4516.0, + "probability": 0.843 + }, + { + "start": 4516.6, + "end": 4522.24, + "probability": 0.884 + }, + { + "start": 4522.86, + "end": 4524.72, + "probability": 0.9786 + }, + { + "start": 4525.42, + "end": 4526.54, + "probability": 0.8197 + }, + { + "start": 4527.18, + "end": 4529.7, + "probability": 0.56 + }, + { + "start": 4530.8, + "end": 4531.58, + "probability": 0.8724 + }, + { + "start": 4532.46, + "end": 4535.1, + "probability": 0.9564 + }, + { + "start": 4535.2, + "end": 4537.05, + "probability": 0.9927 + }, + { + "start": 4538.32, + "end": 4539.36, + "probability": 0.9924 + }, + { + "start": 4540.38, + "end": 4541.3, + "probability": 0.1531 + }, + { + "start": 4541.46, + "end": 4544.24, + "probability": 0.9286 + }, + { + "start": 4545.18, + "end": 4546.44, + "probability": 0.9189 + }, + { + "start": 4547.34, + "end": 4550.38, + "probability": 0.7271 + }, + { + "start": 4551.14, + "end": 4554.04, + "probability": 0.7572 + }, + { + "start": 4554.32, + "end": 4557.12, + "probability": 0.7562 + }, + { + "start": 4558.02, + "end": 4563.18, + "probability": 0.9723 + }, + { + "start": 4563.18, + "end": 4568.76, + "probability": 0.9919 + }, + { + "start": 4569.3, + "end": 4573.94, + "probability": 0.8226 + }, + { + "start": 4574.16, + "end": 4574.54, + "probability": 0.7101 + }, + { + "start": 4574.62, + "end": 4575.38, + "probability": 0.9479 + }, + { + "start": 4575.82, + "end": 4577.14, + "probability": 0.7831 + }, + { + "start": 4577.26, + "end": 4578.12, + "probability": 0.9501 + }, + { + "start": 4578.4, + "end": 4580.34, + "probability": 0.7806 + }, + { + "start": 4582.98, + "end": 4584.92, + "probability": 0.9722 + }, + { + "start": 4588.42, + "end": 4590.14, + "probability": 0.0088 + }, + { + "start": 4603.94, + "end": 4603.94, + "probability": 0.2393 + }, + { + "start": 4603.94, + "end": 4603.94, + "probability": 0.265 + }, + { + "start": 4603.94, + "end": 4605.02, + "probability": 0.537 + }, + { + "start": 4605.7, + "end": 4608.84, + "probability": 0.9093 + }, + { + "start": 4609.64, + "end": 4613.48, + "probability": 0.9178 + }, + { + "start": 4614.36, + "end": 4618.34, + "probability": 0.9897 + }, + { + "start": 4619.24, + "end": 4619.6, + "probability": 0.5287 + }, + { + "start": 4620.32, + "end": 4622.48, + "probability": 0.9207 + }, + { + "start": 4623.66, + "end": 4624.16, + "probability": 0.7216 + }, + { + "start": 4624.26, + "end": 4625.22, + "probability": 0.9214 + }, + { + "start": 4625.72, + "end": 4627.96, + "probability": 0.9937 + }, + { + "start": 4628.88, + "end": 4630.76, + "probability": 0.9969 + }, + { + "start": 4631.42, + "end": 4633.4, + "probability": 0.9994 + }, + { + "start": 4634.24, + "end": 4635.78, + "probability": 0.9825 + }, + { + "start": 4636.1, + "end": 4641.08, + "probability": 0.9939 + }, + { + "start": 4641.56, + "end": 4643.6, + "probability": 0.9766 + }, + { + "start": 4644.06, + "end": 4644.92, + "probability": 0.9763 + }, + { + "start": 4645.46, + "end": 4648.5, + "probability": 0.8361 + }, + { + "start": 4649.56, + "end": 4653.46, + "probability": 0.8997 + }, + { + "start": 4653.46, + "end": 4657.36, + "probability": 0.9921 + }, + { + "start": 4657.92, + "end": 4662.26, + "probability": 0.9976 + }, + { + "start": 4663.42, + "end": 4664.62, + "probability": 0.4598 + }, + { + "start": 4664.88, + "end": 4669.42, + "probability": 0.9487 + }, + { + "start": 4669.82, + "end": 4672.64, + "probability": 0.9795 + }, + { + "start": 4673.22, + "end": 4674.58, + "probability": 0.6749 + }, + { + "start": 4675.6, + "end": 4679.62, + "probability": 0.9849 + }, + { + "start": 4679.88, + "end": 4685.56, + "probability": 0.9941 + }, + { + "start": 4686.02, + "end": 4688.34, + "probability": 0.9985 + }, + { + "start": 4688.38, + "end": 4691.44, + "probability": 0.9785 + }, + { + "start": 4692.46, + "end": 4695.7, + "probability": 0.9327 + }, + { + "start": 4695.7, + "end": 4699.2, + "probability": 0.9965 + }, + { + "start": 4700.06, + "end": 4704.86, + "probability": 0.9922 + }, + { + "start": 4705.22, + "end": 4705.86, + "probability": 0.945 + }, + { + "start": 4706.84, + "end": 4708.24, + "probability": 0.9629 + }, + { + "start": 4709.18, + "end": 4713.68, + "probability": 0.8524 + }, + { + "start": 4714.24, + "end": 4718.16, + "probability": 0.9784 + }, + { + "start": 4719.5, + "end": 4725.7, + "probability": 0.9907 + }, + { + "start": 4726.16, + "end": 4730.62, + "probability": 0.9875 + }, + { + "start": 4732.4, + "end": 4735.6, + "probability": 0.8987 + }, + { + "start": 4735.6, + "end": 4738.98, + "probability": 0.9282 + }, + { + "start": 4739.42, + "end": 4743.24, + "probability": 0.9921 + }, + { + "start": 4743.24, + "end": 4746.64, + "probability": 0.9562 + }, + { + "start": 4747.6, + "end": 4752.34, + "probability": 0.9976 + }, + { + "start": 4752.74, + "end": 4753.54, + "probability": 0.7919 + }, + { + "start": 4756.04, + "end": 4759.94, + "probability": 0.9835 + }, + { + "start": 4760.92, + "end": 4762.46, + "probability": 0.8351 + }, + { + "start": 4763.34, + "end": 4765.16, + "probability": 0.9782 + }, + { + "start": 4765.7, + "end": 4769.74, + "probability": 0.964 + }, + { + "start": 4770.4, + "end": 4774.7, + "probability": 0.985 + }, + { + "start": 4775.22, + "end": 4777.64, + "probability": 0.9517 + }, + { + "start": 4778.7, + "end": 4781.36, + "probability": 0.7975 + }, + { + "start": 4781.36, + "end": 4784.4, + "probability": 0.9664 + }, + { + "start": 4784.94, + "end": 4789.14, + "probability": 0.9893 + }, + { + "start": 4790.02, + "end": 4790.66, + "probability": 0.9764 + }, + { + "start": 4790.8, + "end": 4794.3, + "probability": 0.9478 + }, + { + "start": 4794.58, + "end": 4796.26, + "probability": 0.9406 + }, + { + "start": 4796.88, + "end": 4797.94, + "probability": 0.6127 + }, + { + "start": 4798.32, + "end": 4799.6, + "probability": 0.9778 + }, + { + "start": 4799.92, + "end": 4803.72, + "probability": 0.9755 + }, + { + "start": 4804.12, + "end": 4804.32, + "probability": 0.7932 + }, + { + "start": 4804.72, + "end": 4805.26, + "probability": 0.6355 + }, + { + "start": 4805.52, + "end": 4806.95, + "probability": 0.5162 + }, + { + "start": 4814.88, + "end": 4814.88, + "probability": 0.169 + }, + { + "start": 4814.88, + "end": 4814.88, + "probability": 0.0918 + }, + { + "start": 4814.88, + "end": 4814.88, + "probability": 0.0794 + }, + { + "start": 4836.16, + "end": 4839.16, + "probability": 0.8516 + }, + { + "start": 4842.02, + "end": 4846.62, + "probability": 0.4713 + }, + { + "start": 4847.44, + "end": 4849.86, + "probability": 0.7322 + }, + { + "start": 4853.46, + "end": 4858.14, + "probability": 0.9506 + }, + { + "start": 4858.76, + "end": 4861.82, + "probability": 0.7827 + }, + { + "start": 4862.3, + "end": 4864.1, + "probability": 0.891 + }, + { + "start": 4865.04, + "end": 4866.58, + "probability": 0.9163 + }, + { + "start": 4866.68, + "end": 4867.28, + "probability": 0.5555 + }, + { + "start": 4867.4, + "end": 4868.4, + "probability": 0.7369 + }, + { + "start": 4869.26, + "end": 4876.9, + "probability": 0.8927 + }, + { + "start": 4877.58, + "end": 4878.5, + "probability": 0.6267 + }, + { + "start": 4878.68, + "end": 4882.8, + "probability": 0.9899 + }, + { + "start": 4883.46, + "end": 4886.71, + "probability": 0.9451 + }, + { + "start": 4887.18, + "end": 4889.58, + "probability": 0.9944 + }, + { + "start": 4889.58, + "end": 4891.84, + "probability": 0.9565 + }, + { + "start": 4892.4, + "end": 4894.3, + "probability": 0.978 + }, + { + "start": 4895.22, + "end": 4898.46, + "probability": 0.8882 + }, + { + "start": 4898.62, + "end": 4899.62, + "probability": 0.5783 + }, + { + "start": 4899.72, + "end": 4904.1, + "probability": 0.796 + }, + { + "start": 4904.68, + "end": 4909.34, + "probability": 0.894 + }, + { + "start": 4909.36, + "end": 4911.88, + "probability": 0.9835 + }, + { + "start": 4912.5, + "end": 4914.15, + "probability": 0.7551 + }, + { + "start": 4915.7, + "end": 4918.44, + "probability": 0.7771 + }, + { + "start": 4919.46, + "end": 4923.08, + "probability": 0.7849 + }, + { + "start": 4923.62, + "end": 4924.74, + "probability": 0.7301 + }, + { + "start": 4924.8, + "end": 4927.7, + "probability": 0.6889 + }, + { + "start": 4928.12, + "end": 4932.16, + "probability": 0.614 + }, + { + "start": 4932.66, + "end": 4934.7, + "probability": 0.5136 + }, + { + "start": 4935.1, + "end": 4936.04, + "probability": 0.6254 + }, + { + "start": 4936.16, + "end": 4939.08, + "probability": 0.8564 + }, + { + "start": 4939.44, + "end": 4943.32, + "probability": 0.9692 + }, + { + "start": 4943.9, + "end": 4948.42, + "probability": 0.9652 + }, + { + "start": 4948.42, + "end": 4953.5, + "probability": 0.991 + }, + { + "start": 4954.3, + "end": 4958.4, + "probability": 0.7574 + }, + { + "start": 4960.02, + "end": 4964.67, + "probability": 0.9888 + }, + { + "start": 4965.18, + "end": 4967.64, + "probability": 0.6795 + }, + { + "start": 4967.72, + "end": 4969.08, + "probability": 0.6968 + }, + { + "start": 4969.84, + "end": 4973.96, + "probability": 0.8867 + }, + { + "start": 4974.52, + "end": 4977.56, + "probability": 0.8507 + }, + { + "start": 4977.94, + "end": 4981.34, + "probability": 0.9639 + }, + { + "start": 4981.44, + "end": 4982.34, + "probability": 0.8312 + }, + { + "start": 4982.86, + "end": 4984.8, + "probability": 0.8146 + }, + { + "start": 4985.26, + "end": 4988.12, + "probability": 0.7407 + }, + { + "start": 4988.44, + "end": 4990.58, + "probability": 0.8337 + }, + { + "start": 4991.72, + "end": 4995.62, + "probability": 0.9403 + }, + { + "start": 4996.0, + "end": 5001.02, + "probability": 0.7638 + }, + { + "start": 5001.14, + "end": 5002.84, + "probability": 0.7387 + }, + { + "start": 5003.28, + "end": 5003.4, + "probability": 0.3902 + }, + { + "start": 5003.44, + "end": 5003.88, + "probability": 0.7337 + }, + { + "start": 5003.98, + "end": 5006.16, + "probability": 0.9554 + }, + { + "start": 5006.58, + "end": 5008.2, + "probability": 0.9556 + }, + { + "start": 5008.74, + "end": 5009.1, + "probability": 0.7684 + }, + { + "start": 5009.14, + "end": 5010.08, + "probability": 0.7006 + }, + { + "start": 5010.6, + "end": 5014.74, + "probability": 0.9309 + }, + { + "start": 5014.74, + "end": 5018.62, + "probability": 0.9849 + }, + { + "start": 5019.3, + "end": 5022.14, + "probability": 0.9495 + }, + { + "start": 5022.86, + "end": 5025.72, + "probability": 0.9565 + }, + { + "start": 5025.72, + "end": 5029.38, + "probability": 0.9957 + }, + { + "start": 5030.3, + "end": 5033.4, + "probability": 0.9772 + }, + { + "start": 5033.4, + "end": 5036.78, + "probability": 0.9455 + }, + { + "start": 5037.04, + "end": 5037.32, + "probability": 0.5801 + }, + { + "start": 5037.76, + "end": 5039.9, + "probability": 0.9258 + }, + { + "start": 5040.0, + "end": 5040.38, + "probability": 0.4193 + }, + { + "start": 5040.44, + "end": 5041.16, + "probability": 0.6198 + }, + { + "start": 5041.74, + "end": 5043.52, + "probability": 0.5677 + }, + { + "start": 5043.78, + "end": 5046.04, + "probability": 0.9363 + }, + { + "start": 5047.0, + "end": 5051.47, + "probability": 0.9336 + }, + { + "start": 5052.04, + "end": 5055.32, + "probability": 0.8383 + }, + { + "start": 5055.32, + "end": 5060.24, + "probability": 0.9772 + }, + { + "start": 5060.48, + "end": 5061.34, + "probability": 0.5164 + }, + { + "start": 5062.92, + "end": 5064.58, + "probability": 0.8881 + }, + { + "start": 5064.66, + "end": 5065.64, + "probability": 0.7228 + }, + { + "start": 5065.74, + "end": 5067.66, + "probability": 0.9945 + }, + { + "start": 5067.66, + "end": 5070.04, + "probability": 0.6095 + }, + { + "start": 5070.86, + "end": 5073.98, + "probability": 0.9867 + }, + { + "start": 5073.98, + "end": 5076.98, + "probability": 0.9932 + }, + { + "start": 5077.12, + "end": 5077.34, + "probability": 0.7738 + }, + { + "start": 5077.8, + "end": 5079.6, + "probability": 0.9891 + }, + { + "start": 5079.7, + "end": 5080.72, + "probability": 0.7369 + }, + { + "start": 5080.82, + "end": 5081.42, + "probability": 0.8284 + }, + { + "start": 5081.48, + "end": 5081.9, + "probability": 0.5261 + }, + { + "start": 5082.0, + "end": 5082.86, + "probability": 0.6427 + }, + { + "start": 5083.8, + "end": 5084.26, + "probability": 0.8904 + }, + { + "start": 5108.66, + "end": 5109.0, + "probability": 0.4773 + }, + { + "start": 5109.08, + "end": 5109.82, + "probability": 0.7693 + }, + { + "start": 5109.96, + "end": 5112.04, + "probability": 0.7773 + }, + { + "start": 5112.04, + "end": 5115.94, + "probability": 0.9716 + }, + { + "start": 5116.32, + "end": 5120.02, + "probability": 0.9771 + }, + { + "start": 5121.54, + "end": 5125.4, + "probability": 0.9746 + }, + { + "start": 5127.44, + "end": 5130.24, + "probability": 0.9678 + }, + { + "start": 5130.34, + "end": 5131.08, + "probability": 0.913 + }, + { + "start": 5131.2, + "end": 5131.94, + "probability": 0.915 + }, + { + "start": 5132.52, + "end": 5133.12, + "probability": 0.9825 + }, + { + "start": 5133.18, + "end": 5133.78, + "probability": 0.8196 + }, + { + "start": 5134.66, + "end": 5135.44, + "probability": 0.9561 + }, + { + "start": 5136.64, + "end": 5137.62, + "probability": 0.8949 + }, + { + "start": 5139.1, + "end": 5140.04, + "probability": 0.9458 + }, + { + "start": 5140.16, + "end": 5141.22, + "probability": 0.9583 + }, + { + "start": 5141.68, + "end": 5142.92, + "probability": 0.538 + }, + { + "start": 5143.0, + "end": 5144.64, + "probability": 0.9662 + }, + { + "start": 5145.26, + "end": 5146.32, + "probability": 0.9811 + }, + { + "start": 5147.48, + "end": 5152.48, + "probability": 0.9819 + }, + { + "start": 5153.56, + "end": 5159.9, + "probability": 0.9954 + }, + { + "start": 5160.94, + "end": 5164.3, + "probability": 0.9951 + }, + { + "start": 5164.3, + "end": 5167.48, + "probability": 0.9948 + }, + { + "start": 5168.82, + "end": 5169.42, + "probability": 0.7312 + }, + { + "start": 5170.58, + "end": 5174.08, + "probability": 0.9978 + }, + { + "start": 5174.52, + "end": 5176.3, + "probability": 0.8938 + }, + { + "start": 5177.08, + "end": 5177.58, + "probability": 0.994 + }, + { + "start": 5178.7, + "end": 5180.14, + "probability": 0.9317 + }, + { + "start": 5180.52, + "end": 5182.24, + "probability": 0.9447 + }, + { + "start": 5183.56, + "end": 5187.84, + "probability": 0.9797 + }, + { + "start": 5187.94, + "end": 5192.68, + "probability": 0.9515 + }, + { + "start": 5193.36, + "end": 5194.02, + "probability": 0.8606 + }, + { + "start": 5195.18, + "end": 5197.04, + "probability": 0.9964 + }, + { + "start": 5198.38, + "end": 5200.14, + "probability": 0.9505 + }, + { + "start": 5200.86, + "end": 5202.32, + "probability": 0.9974 + }, + { + "start": 5203.32, + "end": 5206.14, + "probability": 0.9969 + }, + { + "start": 5206.34, + "end": 5207.78, + "probability": 0.9893 + }, + { + "start": 5208.62, + "end": 5210.38, + "probability": 0.9581 + }, + { + "start": 5211.46, + "end": 5213.0, + "probability": 0.8922 + }, + { + "start": 5213.94, + "end": 5216.74, + "probability": 0.9954 + }, + { + "start": 5216.74, + "end": 5218.8, + "probability": 0.9857 + }, + { + "start": 5219.72, + "end": 5220.84, + "probability": 0.8663 + }, + { + "start": 5221.36, + "end": 5225.46, + "probability": 0.9868 + }, + { + "start": 5225.86, + "end": 5227.74, + "probability": 0.9543 + }, + { + "start": 5228.88, + "end": 5230.88, + "probability": 0.7609 + }, + { + "start": 5230.92, + "end": 5231.54, + "probability": 0.938 + }, + { + "start": 5231.68, + "end": 5232.54, + "probability": 0.6987 + }, + { + "start": 5233.2, + "end": 5235.9, + "probability": 0.7915 + }, + { + "start": 5236.82, + "end": 5240.7, + "probability": 0.8894 + }, + { + "start": 5241.64, + "end": 5244.12, + "probability": 0.776 + }, + { + "start": 5244.6, + "end": 5245.82, + "probability": 0.8491 + }, + { + "start": 5246.76, + "end": 5249.58, + "probability": 0.9965 + }, + { + "start": 5250.04, + "end": 5251.92, + "probability": 0.9989 + }, + { + "start": 5252.54, + "end": 5254.68, + "probability": 0.8809 + }, + { + "start": 5255.28, + "end": 5258.24, + "probability": 0.9037 + }, + { + "start": 5259.0, + "end": 5261.1, + "probability": 0.9734 + }, + { + "start": 5262.12, + "end": 5264.51, + "probability": 0.9805 + }, + { + "start": 5265.28, + "end": 5271.02, + "probability": 0.9857 + }, + { + "start": 5271.68, + "end": 5273.16, + "probability": 0.9355 + }, + { + "start": 5273.48, + "end": 5275.02, + "probability": 0.9939 + }, + { + "start": 5275.46, + "end": 5277.4, + "probability": 0.9907 + }, + { + "start": 5277.96, + "end": 5279.06, + "probability": 0.9924 + }, + { + "start": 5280.1, + "end": 5286.9, + "probability": 0.9702 + }, + { + "start": 5287.0, + "end": 5289.06, + "probability": 0.8818 + }, + { + "start": 5289.64, + "end": 5290.13, + "probability": 0.8025 + }, + { + "start": 5290.38, + "end": 5293.3, + "probability": 0.8681 + }, + { + "start": 5293.3, + "end": 5296.36, + "probability": 0.9617 + }, + { + "start": 5296.5, + "end": 5297.94, + "probability": 0.96 + }, + { + "start": 5298.14, + "end": 5298.52, + "probability": 0.6731 + }, + { + "start": 5298.7, + "end": 5300.06, + "probability": 0.683 + }, + { + "start": 5300.74, + "end": 5302.0, + "probability": 0.9875 + }, + { + "start": 5302.1, + "end": 5303.26, + "probability": 0.957 + }, + { + "start": 5303.88, + "end": 5305.36, + "probability": 0.9826 + }, + { + "start": 5305.42, + "end": 5306.08, + "probability": 0.4057 + }, + { + "start": 5306.32, + "end": 5309.5, + "probability": 0.9 + }, + { + "start": 5310.1, + "end": 5311.48, + "probability": 0.9504 + }, + { + "start": 5311.76, + "end": 5313.38, + "probability": 0.9676 + }, + { + "start": 5314.04, + "end": 5318.36, + "probability": 0.9976 + }, + { + "start": 5318.92, + "end": 5321.48, + "probability": 0.6063 + }, + { + "start": 5321.48, + "end": 5323.82, + "probability": 0.9972 + }, + { + "start": 5323.98, + "end": 5324.76, + "probability": 0.8222 + }, + { + "start": 5325.24, + "end": 5328.72, + "probability": 0.9718 + }, + { + "start": 5329.28, + "end": 5329.54, + "probability": 0.68 + }, + { + "start": 5329.56, + "end": 5331.54, + "probability": 0.9782 + }, + { + "start": 5331.78, + "end": 5332.16, + "probability": 0.8683 + }, + { + "start": 5332.24, + "end": 5333.48, + "probability": 0.7577 + }, + { + "start": 5333.54, + "end": 5335.06, + "probability": 0.7379 + }, + { + "start": 5335.2, + "end": 5335.66, + "probability": 0.5282 + }, + { + "start": 5336.3, + "end": 5337.4, + "probability": 0.6251 + }, + { + "start": 5351.96, + "end": 5353.92, + "probability": 0.8053 + }, + { + "start": 5355.84, + "end": 5357.76, + "probability": 0.9251 + }, + { + "start": 5358.8, + "end": 5363.76, + "probability": 0.8928 + }, + { + "start": 5364.78, + "end": 5366.38, + "probability": 0.9884 + }, + { + "start": 5367.42, + "end": 5370.32, + "probability": 0.9497 + }, + { + "start": 5371.08, + "end": 5372.12, + "probability": 0.8895 + }, + { + "start": 5372.24, + "end": 5373.08, + "probability": 0.9373 + }, + { + "start": 5373.14, + "end": 5374.02, + "probability": 0.9613 + }, + { + "start": 5374.36, + "end": 5376.68, + "probability": 0.937 + }, + { + "start": 5376.76, + "end": 5377.38, + "probability": 0.9731 + }, + { + "start": 5378.76, + "end": 5380.14, + "probability": 0.4973 + }, + { + "start": 5381.04, + "end": 5384.36, + "probability": 0.9804 + }, + { + "start": 5385.42, + "end": 5386.06, + "probability": 0.8481 + }, + { + "start": 5387.66, + "end": 5392.1, + "probability": 0.9254 + }, + { + "start": 5393.28, + "end": 5399.84, + "probability": 0.9846 + }, + { + "start": 5400.74, + "end": 5404.38, + "probability": 0.8118 + }, + { + "start": 5404.38, + "end": 5408.46, + "probability": 0.9977 + }, + { + "start": 5409.04, + "end": 5410.4, + "probability": 0.9973 + }, + { + "start": 5411.26, + "end": 5416.1, + "probability": 0.7516 + }, + { + "start": 5416.7, + "end": 5421.6, + "probability": 0.8224 + }, + { + "start": 5421.98, + "end": 5422.46, + "probability": 0.7375 + }, + { + "start": 5423.74, + "end": 5425.12, + "probability": 0.9498 + }, + { + "start": 5426.08, + "end": 5429.34, + "probability": 0.9694 + }, + { + "start": 5429.52, + "end": 5436.22, + "probability": 0.9902 + }, + { + "start": 5437.22, + "end": 5440.7, + "probability": 0.608 + }, + { + "start": 5441.56, + "end": 5445.38, + "probability": 0.9868 + }, + { + "start": 5446.46, + "end": 5448.68, + "probability": 0.9788 + }, + { + "start": 5448.86, + "end": 5450.14, + "probability": 0.9854 + }, + { + "start": 5451.1, + "end": 5453.42, + "probability": 0.9427 + }, + { + "start": 5454.98, + "end": 5458.32, + "probability": 0.7394 + }, + { + "start": 5458.44, + "end": 5461.5, + "probability": 0.743 + }, + { + "start": 5461.94, + "end": 5462.98, + "probability": 0.8075 + }, + { + "start": 5463.6, + "end": 5467.62, + "probability": 0.7606 + }, + { + "start": 5467.84, + "end": 5468.74, + "probability": 0.9673 + }, + { + "start": 5468.88, + "end": 5470.28, + "probability": 0.995 + }, + { + "start": 5470.76, + "end": 5474.06, + "probability": 0.9871 + }, + { + "start": 5475.12, + "end": 5478.32, + "probability": 0.6896 + }, + { + "start": 5478.4, + "end": 5479.66, + "probability": 0.4998 + }, + { + "start": 5479.66, + "end": 5481.76, + "probability": 0.5348 + }, + { + "start": 5482.76, + "end": 5483.36, + "probability": 0.9313 + }, + { + "start": 5483.42, + "end": 5484.28, + "probability": 0.8635 + }, + { + "start": 5484.7, + "end": 5488.26, + "probability": 0.9757 + }, + { + "start": 5488.26, + "end": 5490.44, + "probability": 0.8977 + }, + { + "start": 5490.96, + "end": 5491.72, + "probability": 0.318 + }, + { + "start": 5492.48, + "end": 5495.6, + "probability": 0.9965 + }, + { + "start": 5496.44, + "end": 5499.22, + "probability": 0.8475 + }, + { + "start": 5499.76, + "end": 5505.3, + "probability": 0.9214 + }, + { + "start": 5506.28, + "end": 5509.38, + "probability": 0.9229 + }, + { + "start": 5509.5, + "end": 5510.88, + "probability": 0.9165 + }, + { + "start": 5511.42, + "end": 5513.58, + "probability": 0.8967 + }, + { + "start": 5513.8, + "end": 5516.0, + "probability": 0.9811 + }, + { + "start": 5516.04, + "end": 5517.72, + "probability": 0.9831 + }, + { + "start": 5518.54, + "end": 5519.18, + "probability": 0.9452 + }, + { + "start": 5519.2, + "end": 5521.5, + "probability": 0.9882 + }, + { + "start": 5521.52, + "end": 5524.86, + "probability": 0.9417 + }, + { + "start": 5525.5, + "end": 5530.76, + "probability": 0.9855 + }, + { + "start": 5531.24, + "end": 5533.02, + "probability": 0.6846 + }, + { + "start": 5533.54, + "end": 5536.55, + "probability": 0.9414 + }, + { + "start": 5537.38, + "end": 5540.38, + "probability": 0.718 + }, + { + "start": 5541.46, + "end": 5544.42, + "probability": 0.999 + }, + { + "start": 5544.48, + "end": 5546.01, + "probability": 0.9883 + }, + { + "start": 5546.12, + "end": 5547.14, + "probability": 0.8939 + }, + { + "start": 5547.32, + "end": 5548.56, + "probability": 0.9706 + }, + { + "start": 5549.08, + "end": 5551.22, + "probability": 0.9939 + }, + { + "start": 5552.14, + "end": 5553.25, + "probability": 0.5063 + }, + { + "start": 5553.98, + "end": 5555.84, + "probability": 0.9146 + }, + { + "start": 5556.46, + "end": 5557.46, + "probability": 0.768 + }, + { + "start": 5557.64, + "end": 5558.74, + "probability": 0.9506 + }, + { + "start": 5559.24, + "end": 5561.16, + "probability": 0.7803 + }, + { + "start": 5561.22, + "end": 5562.32, + "probability": 0.9889 + }, + { + "start": 5562.8, + "end": 5564.7, + "probability": 0.7754 + }, + { + "start": 5564.92, + "end": 5567.22, + "probability": 0.9351 + }, + { + "start": 5567.22, + "end": 5570.04, + "probability": 0.9814 + }, + { + "start": 5570.48, + "end": 5571.16, + "probability": 0.5383 + }, + { + "start": 5571.18, + "end": 5571.18, + "probability": 0.4387 + }, + { + "start": 5571.2, + "end": 5573.18, + "probability": 0.6705 + }, + { + "start": 5573.26, + "end": 5574.64, + "probability": 0.8509 + }, + { + "start": 5587.28, + "end": 5588.78, + "probability": 0.5488 + }, + { + "start": 5590.02, + "end": 5592.8, + "probability": 0.8356 + }, + { + "start": 5592.86, + "end": 5597.74, + "probability": 0.9969 + }, + { + "start": 5600.3, + "end": 5606.74, + "probability": 0.9685 + }, + { + "start": 5607.62, + "end": 5609.84, + "probability": 0.6648 + }, + { + "start": 5611.76, + "end": 5614.2, + "probability": 0.9231 + }, + { + "start": 5615.98, + "end": 5616.84, + "probability": 0.9435 + }, + { + "start": 5618.32, + "end": 5622.3, + "probability": 0.9941 + }, + { + "start": 5623.52, + "end": 5627.48, + "probability": 0.9963 + }, + { + "start": 5628.74, + "end": 5629.54, + "probability": 0.7472 + }, + { + "start": 5630.44, + "end": 5631.52, + "probability": 0.9889 + }, + { + "start": 5632.66, + "end": 5634.7, + "probability": 0.9629 + }, + { + "start": 5635.88, + "end": 5639.94, + "probability": 0.9363 + }, + { + "start": 5641.58, + "end": 5644.98, + "probability": 0.9843 + }, + { + "start": 5646.66, + "end": 5648.16, + "probability": 0.542 + }, + { + "start": 5649.78, + "end": 5650.36, + "probability": 0.7333 + }, + { + "start": 5651.0, + "end": 5653.72, + "probability": 0.8789 + }, + { + "start": 5655.02, + "end": 5657.52, + "probability": 0.9523 + }, + { + "start": 5658.52, + "end": 5660.19, + "probability": 0.9451 + }, + { + "start": 5661.26, + "end": 5663.24, + "probability": 0.6874 + }, + { + "start": 5664.34, + "end": 5667.36, + "probability": 0.9882 + }, + { + "start": 5668.1, + "end": 5671.32, + "probability": 0.9855 + }, + { + "start": 5672.56, + "end": 5673.78, + "probability": 0.9917 + }, + { + "start": 5674.38, + "end": 5676.74, + "probability": 0.9469 + }, + { + "start": 5677.62, + "end": 5680.66, + "probability": 0.9663 + }, + { + "start": 5682.54, + "end": 5684.52, + "probability": 0.9937 + }, + { + "start": 5685.16, + "end": 5687.74, + "probability": 0.7491 + }, + { + "start": 5688.94, + "end": 5692.92, + "probability": 0.9221 + }, + { + "start": 5693.22, + "end": 5694.24, + "probability": 0.8542 + }, + { + "start": 5695.54, + "end": 5697.22, + "probability": 0.4974 + }, + { + "start": 5698.62, + "end": 5702.68, + "probability": 0.8199 + }, + { + "start": 5703.84, + "end": 5709.26, + "probability": 0.8991 + }, + { + "start": 5709.88, + "end": 5713.18, + "probability": 0.8218 + }, + { + "start": 5714.08, + "end": 5714.86, + "probability": 0.6835 + }, + { + "start": 5715.42, + "end": 5717.64, + "probability": 0.9785 + }, + { + "start": 5717.74, + "end": 5719.9, + "probability": 0.9472 + }, + { + "start": 5720.1, + "end": 5721.9, + "probability": 0.7905 + }, + { + "start": 5722.8, + "end": 5728.9, + "probability": 0.8799 + }, + { + "start": 5729.96, + "end": 5734.84, + "probability": 0.9362 + }, + { + "start": 5736.06, + "end": 5739.18, + "probability": 0.9871 + }, + { + "start": 5739.3, + "end": 5740.08, + "probability": 0.7562 + }, + { + "start": 5740.42, + "end": 5741.34, + "probability": 0.8473 + }, + { + "start": 5742.8, + "end": 5745.8, + "probability": 0.9928 + }, + { + "start": 5747.02, + "end": 5748.76, + "probability": 0.8497 + }, + { + "start": 5749.02, + "end": 5753.78, + "probability": 0.9889 + }, + { + "start": 5755.08, + "end": 5762.76, + "probability": 0.9718 + }, + { + "start": 5763.08, + "end": 5764.46, + "probability": 0.7022 + }, + { + "start": 5765.52, + "end": 5769.12, + "probability": 0.6113 + }, + { + "start": 5771.16, + "end": 5773.74, + "probability": 0.9573 + }, + { + "start": 5775.26, + "end": 5777.46, + "probability": 0.9077 + }, + { + "start": 5778.08, + "end": 5778.54, + "probability": 0.5338 + }, + { + "start": 5779.58, + "end": 5784.46, + "probability": 0.9189 + }, + { + "start": 5785.48, + "end": 5786.24, + "probability": 0.5375 + }, + { + "start": 5786.42, + "end": 5791.1, + "probability": 0.8389 + }, + { + "start": 5791.16, + "end": 5791.96, + "probability": 0.8523 + }, + { + "start": 5792.18, + "end": 5794.88, + "probability": 0.9557 + }, + { + "start": 5795.64, + "end": 5799.74, + "probability": 0.9102 + }, + { + "start": 5799.94, + "end": 5801.06, + "probability": 0.9533 + }, + { + "start": 5801.78, + "end": 5802.73, + "probability": 0.7474 + }, + { + "start": 5804.18, + "end": 5811.14, + "probability": 0.7954 + }, + { + "start": 5811.58, + "end": 5814.1, + "probability": 0.9752 + }, + { + "start": 5814.2, + "end": 5815.02, + "probability": 0.919 + }, + { + "start": 5815.1, + "end": 5815.82, + "probability": 0.7416 + }, + { + "start": 5816.12, + "end": 5821.74, + "probability": 0.9713 + }, + { + "start": 5821.96, + "end": 5822.2, + "probability": 0.7199 + }, + { + "start": 5822.38, + "end": 5825.02, + "probability": 0.6488 + }, + { + "start": 5825.06, + "end": 5827.68, + "probability": 0.9746 + }, + { + "start": 5828.6, + "end": 5832.64, + "probability": 0.9543 + }, + { + "start": 5832.8, + "end": 5834.26, + "probability": 0.9581 + }, + { + "start": 5834.7, + "end": 5835.16, + "probability": 0.8976 + }, + { + "start": 5835.26, + "end": 5841.26, + "probability": 0.9695 + }, + { + "start": 5841.26, + "end": 5846.96, + "probability": 0.9963 + }, + { + "start": 5847.28, + "end": 5851.59, + "probability": 0.8578 + }, + { + "start": 5852.76, + "end": 5854.88, + "probability": 0.5897 + }, + { + "start": 5855.16, + "end": 5859.9, + "probability": 0.889 + }, + { + "start": 5860.1, + "end": 5861.32, + "probability": 0.9252 + }, + { + "start": 5861.54, + "end": 5863.76, + "probability": 0.7888 + }, + { + "start": 5863.88, + "end": 5864.66, + "probability": 0.7676 + }, + { + "start": 5864.94, + "end": 5865.74, + "probability": 0.8897 + }, + { + "start": 5866.18, + "end": 5871.12, + "probability": 0.9615 + }, + { + "start": 5871.12, + "end": 5871.36, + "probability": 0.721 + }, + { + "start": 5872.18, + "end": 5873.66, + "probability": 0.4591 + }, + { + "start": 5873.74, + "end": 5875.04, + "probability": 0.7744 + }, + { + "start": 5879.02, + "end": 5882.68, + "probability": 0.347 + }, + { + "start": 5898.54, + "end": 5903.92, + "probability": 0.9205 + }, + { + "start": 5905.24, + "end": 5905.98, + "probability": 0.8335 + }, + { + "start": 5906.12, + "end": 5910.38, + "probability": 0.9634 + }, + { + "start": 5911.32, + "end": 5915.72, + "probability": 0.9722 + }, + { + "start": 5916.12, + "end": 5918.04, + "probability": 0.8546 + }, + { + "start": 5919.26, + "end": 5922.0, + "probability": 0.857 + }, + { + "start": 5922.7, + "end": 5924.48, + "probability": 0.984 + }, + { + "start": 5924.56, + "end": 5927.72, + "probability": 0.8235 + }, + { + "start": 5930.0, + "end": 5931.04, + "probability": 0.8965 + }, + { + "start": 5931.76, + "end": 5934.74, + "probability": 0.984 + }, + { + "start": 5935.72, + "end": 5936.88, + "probability": 0.9877 + }, + { + "start": 5938.54, + "end": 5940.72, + "probability": 0.9767 + }, + { + "start": 5941.24, + "end": 5942.54, + "probability": 0.964 + }, + { + "start": 5943.92, + "end": 5948.9, + "probability": 0.8069 + }, + { + "start": 5949.46, + "end": 5951.52, + "probability": 0.9327 + }, + { + "start": 5952.98, + "end": 5955.44, + "probability": 0.8952 + }, + { + "start": 5956.28, + "end": 5957.87, + "probability": 0.9839 + }, + { + "start": 5959.32, + "end": 5961.66, + "probability": 0.9572 + }, + { + "start": 5962.42, + "end": 5967.86, + "probability": 0.9992 + }, + { + "start": 5969.98, + "end": 5975.04, + "probability": 0.8982 + }, + { + "start": 5975.04, + "end": 5978.14, + "probability": 0.8988 + }, + { + "start": 5981.14, + "end": 5982.8, + "probability": 0.9252 + }, + { + "start": 5983.72, + "end": 5988.04, + "probability": 0.9768 + }, + { + "start": 5989.36, + "end": 5993.22, + "probability": 0.9956 + }, + { + "start": 5994.02, + "end": 5998.62, + "probability": 0.5671 + }, + { + "start": 5998.96, + "end": 5999.86, + "probability": 0.9189 + }, + { + "start": 5999.98, + "end": 6000.98, + "probability": 0.665 + }, + { + "start": 6001.0, + "end": 6001.92, + "probability": 0.6519 + }, + { + "start": 6002.78, + "end": 6003.98, + "probability": 0.9976 + }, + { + "start": 6007.74, + "end": 6009.62, + "probability": 0.8955 + }, + { + "start": 6010.38, + "end": 6013.2, + "probability": 0.9001 + }, + { + "start": 6014.4, + "end": 6020.26, + "probability": 0.9171 + }, + { + "start": 6020.64, + "end": 6021.54, + "probability": 0.9474 + }, + { + "start": 6021.66, + "end": 6026.12, + "probability": 0.9901 + }, + { + "start": 6027.28, + "end": 6029.5, + "probability": 0.938 + }, + { + "start": 6030.08, + "end": 6031.52, + "probability": 0.8945 + }, + { + "start": 6032.54, + "end": 6036.5, + "probability": 0.9812 + }, + { + "start": 6037.32, + "end": 6040.04, + "probability": 0.9953 + }, + { + "start": 6040.16, + "end": 6040.94, + "probability": 0.8008 + }, + { + "start": 6041.82, + "end": 6042.96, + "probability": 0.9683 + }, + { + "start": 6044.1, + "end": 6045.62, + "probability": 0.588 + }, + { + "start": 6046.24, + "end": 6048.48, + "probability": 0.9507 + }, + { + "start": 6048.8, + "end": 6051.58, + "probability": 0.9719 + }, + { + "start": 6051.72, + "end": 6052.65, + "probability": 0.9868 + }, + { + "start": 6053.78, + "end": 6056.3, + "probability": 0.7305 + }, + { + "start": 6057.52, + "end": 6060.5, + "probability": 0.9187 + }, + { + "start": 6060.5, + "end": 6063.02, + "probability": 0.9646 + }, + { + "start": 6064.04, + "end": 6066.34, + "probability": 0.9608 + }, + { + "start": 6067.26, + "end": 6069.62, + "probability": 0.9138 + }, + { + "start": 6070.16, + "end": 6072.98, + "probability": 0.9927 + }, + { + "start": 6073.52, + "end": 6077.7, + "probability": 0.9749 + }, + { + "start": 6078.2, + "end": 6079.74, + "probability": 0.8943 + }, + { + "start": 6080.98, + "end": 6083.38, + "probability": 0.9895 + }, + { + "start": 6083.78, + "end": 6086.32, + "probability": 0.9909 + }, + { + "start": 6086.9, + "end": 6088.14, + "probability": 0.8766 + }, + { + "start": 6088.7, + "end": 6092.98, + "probability": 0.9964 + }, + { + "start": 6093.36, + "end": 6098.56, + "probability": 0.9913 + }, + { + "start": 6099.58, + "end": 6100.64, + "probability": 0.9813 + }, + { + "start": 6100.7, + "end": 6102.38, + "probability": 0.7211 + }, + { + "start": 6102.38, + "end": 6102.58, + "probability": 0.1707 + }, + { + "start": 6102.58, + "end": 6106.68, + "probability": 0.9845 + }, + { + "start": 6107.54, + "end": 6109.7, + "probability": 0.9976 + }, + { + "start": 6110.68, + "end": 6112.22, + "probability": 0.9823 + }, + { + "start": 6112.62, + "end": 6114.4, + "probability": 0.8536 + }, + { + "start": 6115.0, + "end": 6117.56, + "probability": 0.7572 + }, + { + "start": 6117.66, + "end": 6118.3, + "probability": 0.8113 + }, + { + "start": 6118.9, + "end": 6120.56, + "probability": 0.7754 + }, + { + "start": 6122.0, + "end": 6122.28, + "probability": 0.5961 + }, + { + "start": 6124.22, + "end": 6134.2, + "probability": 0.6852 + }, + { + "start": 6140.46, + "end": 6145.52, + "probability": 0.7247 + }, + { + "start": 6148.56, + "end": 6149.74, + "probability": 0.9292 + }, + { + "start": 6150.7, + "end": 6151.24, + "probability": 0.344 + }, + { + "start": 6154.66, + "end": 6155.68, + "probability": 0.8508 + }, + { + "start": 6157.22, + "end": 6158.34, + "probability": 0.9466 + }, + { + "start": 6158.98, + "end": 6159.34, + "probability": 0.5763 + }, + { + "start": 6161.66, + "end": 6165.16, + "probability": 0.8714 + }, + { + "start": 6166.56, + "end": 6168.32, + "probability": 0.953 + }, + { + "start": 6170.0, + "end": 6170.68, + "probability": 0.9274 + }, + { + "start": 6171.72, + "end": 6173.88, + "probability": 0.7894 + }, + { + "start": 6175.2, + "end": 6176.14, + "probability": 0.9252 + }, + { + "start": 6177.36, + "end": 6181.46, + "probability": 0.9852 + }, + { + "start": 6181.46, + "end": 6186.68, + "probability": 0.9849 + }, + { + "start": 6188.38, + "end": 6189.68, + "probability": 0.7986 + }, + { + "start": 6194.14, + "end": 6196.98, + "probability": 0.6723 + }, + { + "start": 6198.88, + "end": 6204.1, + "probability": 0.9224 + }, + { + "start": 6205.6, + "end": 6211.0, + "probability": 0.9934 + }, + { + "start": 6211.48, + "end": 6214.92, + "probability": 0.9824 + }, + { + "start": 6217.78, + "end": 6222.78, + "probability": 0.9675 + }, + { + "start": 6223.12, + "end": 6225.02, + "probability": 0.9814 + }, + { + "start": 6226.26, + "end": 6227.12, + "probability": 0.8463 + }, + { + "start": 6228.08, + "end": 6232.01, + "probability": 0.8604 + }, + { + "start": 6234.92, + "end": 6236.64, + "probability": 0.87 + }, + { + "start": 6239.62, + "end": 6241.38, + "probability": 0.9465 + }, + { + "start": 6242.58, + "end": 6243.74, + "probability": 0.988 + }, + { + "start": 6244.9, + "end": 6246.34, + "probability": 0.7423 + }, + { + "start": 6247.82, + "end": 6248.84, + "probability": 0.9656 + }, + { + "start": 6250.56, + "end": 6255.02, + "probability": 0.8545 + }, + { + "start": 6256.1, + "end": 6256.72, + "probability": 0.9921 + }, + { + "start": 6257.9, + "end": 6260.82, + "probability": 0.8481 + }, + { + "start": 6262.32, + "end": 6264.32, + "probability": 0.7103 + }, + { + "start": 6266.46, + "end": 6270.94, + "probability": 0.9586 + }, + { + "start": 6272.7, + "end": 6276.42, + "probability": 0.981 + }, + { + "start": 6279.26, + "end": 6279.82, + "probability": 0.827 + }, + { + "start": 6284.2, + "end": 6284.88, + "probability": 0.8749 + }, + { + "start": 6285.4, + "end": 6286.12, + "probability": 0.9952 + }, + { + "start": 6288.74, + "end": 6292.24, + "probability": 0.8193 + }, + { + "start": 6292.42, + "end": 6293.25, + "probability": 0.9956 + }, + { + "start": 6294.16, + "end": 6294.58, + "probability": 0.6327 + }, + { + "start": 6297.02, + "end": 6298.92, + "probability": 0.7174 + }, + { + "start": 6299.5, + "end": 6300.78, + "probability": 0.3005 + }, + { + "start": 6300.82, + "end": 6302.22, + "probability": 0.8271 + }, + { + "start": 6302.6, + "end": 6304.06, + "probability": 0.7189 + }, + { + "start": 6304.4, + "end": 6304.91, + "probability": 0.9729 + }, + { + "start": 6305.12, + "end": 6305.82, + "probability": 0.8006 + }, + { + "start": 6305.96, + "end": 6306.79, + "probability": 0.7426 + }, + { + "start": 6308.16, + "end": 6311.46, + "probability": 0.8636 + }, + { + "start": 6312.52, + "end": 6313.6, + "probability": 0.6667 + }, + { + "start": 6314.14, + "end": 6321.18, + "probability": 0.9422 + }, + { + "start": 6322.06, + "end": 6323.68, + "probability": 0.9736 + }, + { + "start": 6324.36, + "end": 6326.72, + "probability": 0.9663 + }, + { + "start": 6328.24, + "end": 6335.66, + "probability": 0.9948 + }, + { + "start": 6335.76, + "end": 6336.34, + "probability": 0.67 + }, + { + "start": 6336.4, + "end": 6338.1, + "probability": 0.752 + }, + { + "start": 6341.6, + "end": 6345.2, + "probability": 0.9742 + }, + { + "start": 6345.32, + "end": 6345.76, + "probability": 0.8139 + }, + { + "start": 6345.9, + "end": 6348.3, + "probability": 0.917 + }, + { + "start": 6348.38, + "end": 6351.14, + "probability": 0.7959 + }, + { + "start": 6352.06, + "end": 6352.96, + "probability": 0.6526 + }, + { + "start": 6354.04, + "end": 6358.28, + "probability": 0.833 + }, + { + "start": 6358.3, + "end": 6359.0, + "probability": 0.854 + }, + { + "start": 6384.86, + "end": 6387.24, + "probability": 0.5699 + }, + { + "start": 6389.14, + "end": 6390.84, + "probability": 0.6219 + }, + { + "start": 6392.26, + "end": 6393.56, + "probability": 0.8498 + }, + { + "start": 6396.04, + "end": 6397.0, + "probability": 0.623 + }, + { + "start": 6397.76, + "end": 6398.64, + "probability": 0.833 + }, + { + "start": 6398.82, + "end": 6400.34, + "probability": 0.9785 + }, + { + "start": 6400.5, + "end": 6402.89, + "probability": 0.9844 + }, + { + "start": 6403.32, + "end": 6404.38, + "probability": 0.9873 + }, + { + "start": 6405.1, + "end": 6405.54, + "probability": 0.9672 + }, + { + "start": 6405.6, + "end": 6406.52, + "probability": 0.8826 + }, + { + "start": 6406.82, + "end": 6411.94, + "probability": 0.9829 + }, + { + "start": 6412.46, + "end": 6413.66, + "probability": 0.9517 + }, + { + "start": 6414.16, + "end": 6419.16, + "probability": 0.9943 + }, + { + "start": 6419.16, + "end": 6423.12, + "probability": 0.9976 + }, + { + "start": 6424.1, + "end": 6428.06, + "probability": 0.9029 + }, + { + "start": 6428.68, + "end": 6432.64, + "probability": 0.9697 + }, + { + "start": 6432.7, + "end": 6433.52, + "probability": 0.8539 + }, + { + "start": 6433.7, + "end": 6435.26, + "probability": 0.8759 + }, + { + "start": 6435.86, + "end": 6438.22, + "probability": 0.666 + }, + { + "start": 6439.86, + "end": 6444.92, + "probability": 0.9701 + }, + { + "start": 6445.86, + "end": 6447.14, + "probability": 0.8995 + }, + { + "start": 6447.68, + "end": 6449.66, + "probability": 0.7423 + }, + { + "start": 6450.2, + "end": 6452.82, + "probability": 0.9891 + }, + { + "start": 6454.86, + "end": 6456.12, + "probability": 0.6694 + }, + { + "start": 6456.7, + "end": 6460.44, + "probability": 0.9597 + }, + { + "start": 6460.5, + "end": 6461.96, + "probability": 0.9646 + }, + { + "start": 6462.64, + "end": 6465.52, + "probability": 0.8756 + }, + { + "start": 6466.72, + "end": 6470.7, + "probability": 0.7794 + }, + { + "start": 6471.6, + "end": 6472.48, + "probability": 0.7645 + }, + { + "start": 6474.24, + "end": 6476.29, + "probability": 0.9961 + }, + { + "start": 6477.36, + "end": 6480.58, + "probability": 0.998 + }, + { + "start": 6481.0, + "end": 6482.08, + "probability": 0.8188 + }, + { + "start": 6482.16, + "end": 6482.6, + "probability": 0.6551 + }, + { + "start": 6483.0, + "end": 6483.72, + "probability": 0.9878 + }, + { + "start": 6484.84, + "end": 6489.54, + "probability": 0.9449 + }, + { + "start": 6489.9, + "end": 6491.72, + "probability": 0.972 + }, + { + "start": 6492.54, + "end": 6496.24, + "probability": 0.9973 + }, + { + "start": 6496.78, + "end": 6497.9, + "probability": 0.8516 + }, + { + "start": 6498.48, + "end": 6499.26, + "probability": 0.6785 + }, + { + "start": 6499.58, + "end": 6500.98, + "probability": 0.9834 + }, + { + "start": 6501.0, + "end": 6502.82, + "probability": 0.647 + }, + { + "start": 6503.52, + "end": 6504.32, + "probability": 0.5931 + }, + { + "start": 6505.16, + "end": 6505.98, + "probability": 0.7542 + }, + { + "start": 6506.44, + "end": 6507.25, + "probability": 0.9961 + }, + { + "start": 6508.68, + "end": 6509.34, + "probability": 0.6979 + }, + { + "start": 6509.42, + "end": 6510.04, + "probability": 0.8918 + }, + { + "start": 6510.14, + "end": 6511.68, + "probability": 0.9871 + }, + { + "start": 6512.04, + "end": 6514.76, + "probability": 0.9658 + }, + { + "start": 6514.98, + "end": 6515.72, + "probability": 0.7191 + }, + { + "start": 6515.88, + "end": 6517.22, + "probability": 0.9673 + }, + { + "start": 6517.58, + "end": 6518.87, + "probability": 0.8899 + }, + { + "start": 6519.2, + "end": 6520.24, + "probability": 0.4109 + }, + { + "start": 6520.5, + "end": 6520.86, + "probability": 0.0306 + }, + { + "start": 6520.86, + "end": 6526.3, + "probability": 0.7283 + }, + { + "start": 6526.56, + "end": 6527.64, + "probability": 0.9939 + }, + { + "start": 6527.7, + "end": 6529.67, + "probability": 0.9519 + }, + { + "start": 6531.16, + "end": 6533.9, + "probability": 0.1077 + }, + { + "start": 6533.9, + "end": 6534.92, + "probability": 0.1826 + }, + { + "start": 6535.38, + "end": 6536.3, + "probability": 0.6271 + }, + { + "start": 6536.34, + "end": 6537.86, + "probability": 0.6721 + }, + { + "start": 6538.02, + "end": 6539.46, + "probability": 0.7635 + }, + { + "start": 6539.46, + "end": 6539.92, + "probability": 0.5988 + }, + { + "start": 6540.2, + "end": 6540.3, + "probability": 0.4741 + }, + { + "start": 6540.3, + "end": 6542.65, + "probability": 0.6216 + }, + { + "start": 6544.4, + "end": 6545.71, + "probability": 0.8292 + }, + { + "start": 6547.04, + "end": 6548.24, + "probability": 0.7418 + }, + { + "start": 6548.38, + "end": 6549.34, + "probability": 0.7065 + }, + { + "start": 6549.6, + "end": 6553.56, + "probability": 0.9885 + }, + { + "start": 6553.83, + "end": 6557.78, + "probability": 0.9541 + }, + { + "start": 6558.14, + "end": 6560.26, + "probability": 0.9067 + }, + { + "start": 6560.62, + "end": 6561.88, + "probability": 0.6662 + }, + { + "start": 6562.34, + "end": 6566.84, + "probability": 0.6767 + }, + { + "start": 6566.84, + "end": 6569.72, + "probability": 0.9877 + }, + { + "start": 6569.96, + "end": 6572.76, + "probability": 0.8582 + }, + { + "start": 6573.44, + "end": 6575.32, + "probability": 0.789 + }, + { + "start": 6575.98, + "end": 6577.88, + "probability": 0.9738 + }, + { + "start": 6578.58, + "end": 6582.98, + "probability": 0.9517 + }, + { + "start": 6583.78, + "end": 6584.82, + "probability": 0.8727 + }, + { + "start": 6585.5, + "end": 6586.8, + "probability": 0.8615 + }, + { + "start": 6588.28, + "end": 6589.22, + "probability": 0.9757 + }, + { + "start": 6589.26, + "end": 6591.42, + "probability": 0.9421 + }, + { + "start": 6591.42, + "end": 6594.5, + "probability": 0.9968 + }, + { + "start": 6594.92, + "end": 6597.72, + "probability": 0.9743 + }, + { + "start": 6597.76, + "end": 6598.35, + "probability": 0.6945 + }, + { + "start": 6599.32, + "end": 6605.92, + "probability": 0.9794 + }, + { + "start": 6606.42, + "end": 6608.32, + "probability": 0.8441 + }, + { + "start": 6610.1, + "end": 6612.2, + "probability": 0.8342 + }, + { + "start": 6613.26, + "end": 6616.14, + "probability": 0.7969 + }, + { + "start": 6617.22, + "end": 6619.58, + "probability": 0.8042 + }, + { + "start": 6620.16, + "end": 6621.2, + "probability": 0.8784 + }, + { + "start": 6621.3, + "end": 6625.45, + "probability": 0.9618 + }, + { + "start": 6625.68, + "end": 6627.38, + "probability": 0.7428 + }, + { + "start": 6628.24, + "end": 6633.84, + "probability": 0.9657 + }, + { + "start": 6634.76, + "end": 6636.84, + "probability": 0.8805 + }, + { + "start": 6636.94, + "end": 6638.08, + "probability": 0.7811 + }, + { + "start": 6638.38, + "end": 6639.68, + "probability": 0.9858 + }, + { + "start": 6640.74, + "end": 6643.72, + "probability": 0.7627 + }, + { + "start": 6644.58, + "end": 6646.9, + "probability": 0.8397 + }, + { + "start": 6647.42, + "end": 6648.34, + "probability": 0.9395 + }, + { + "start": 6648.92, + "end": 6651.86, + "probability": 0.8796 + }, + { + "start": 6652.64, + "end": 6661.14, + "probability": 0.9325 + }, + { + "start": 6661.6, + "end": 6665.26, + "probability": 0.965 + }, + { + "start": 6666.82, + "end": 6668.08, + "probability": 0.8749 + }, + { + "start": 6668.1, + "end": 6671.26, + "probability": 0.9697 + }, + { + "start": 6671.26, + "end": 6673.58, + "probability": 0.8591 + }, + { + "start": 6673.76, + "end": 6674.28, + "probability": 0.5052 + }, + { + "start": 6674.46, + "end": 6676.0, + "probability": 0.7302 + }, + { + "start": 6676.34, + "end": 6677.5, + "probability": 0.8779 + }, + { + "start": 6678.12, + "end": 6681.56, + "probability": 0.9941 + }, + { + "start": 6681.88, + "end": 6682.96, + "probability": 0.8784 + }, + { + "start": 6683.48, + "end": 6684.6, + "probability": 0.9972 + }, + { + "start": 6685.52, + "end": 6686.46, + "probability": 0.5733 + }, + { + "start": 6686.98, + "end": 6687.54, + "probability": 0.0257 + }, + { + "start": 6688.0, + "end": 6688.88, + "probability": 0.6328 + }, + { + "start": 6689.22, + "end": 6692.06, + "probability": 0.3346 + }, + { + "start": 6692.8, + "end": 6694.58, + "probability": 0.5922 + }, + { + "start": 6694.64, + "end": 6696.36, + "probability": 0.1831 + }, + { + "start": 6696.36, + "end": 6696.44, + "probability": 0.6597 + }, + { + "start": 6696.92, + "end": 6701.14, + "probability": 0.9501 + }, + { + "start": 6702.89, + "end": 6704.4, + "probability": 0.8318 + }, + { + "start": 6705.17, + "end": 6706.68, + "probability": 0.2082 + }, + { + "start": 6707.22, + "end": 6707.24, + "probability": 0.3854 + }, + { + "start": 6707.24, + "end": 6707.6, + "probability": 0.3247 + }, + { + "start": 6707.7, + "end": 6711.28, + "probability": 0.6842 + }, + { + "start": 6711.6, + "end": 6711.98, + "probability": 0.7914 + }, + { + "start": 6712.12, + "end": 6712.92, + "probability": 0.7043 + }, + { + "start": 6712.92, + "end": 6717.72, + "probability": 0.6874 + }, + { + "start": 6718.34, + "end": 6721.06, + "probability": 0.981 + }, + { + "start": 6721.46, + "end": 6722.72, + "probability": 0.6747 + }, + { + "start": 6727.8, + "end": 6728.38, + "probability": 0.252 + }, + { + "start": 6728.38, + "end": 6733.46, + "probability": 0.902 + }, + { + "start": 6734.32, + "end": 6734.56, + "probability": 0.9119 + }, + { + "start": 6734.66, + "end": 6735.42, + "probability": 0.9153 + }, + { + "start": 6735.52, + "end": 6736.7, + "probability": 0.8003 + }, + { + "start": 6737.02, + "end": 6737.78, + "probability": 0.9457 + }, + { + "start": 6738.06, + "end": 6743.24, + "probability": 0.9683 + }, + { + "start": 6743.62, + "end": 6744.16, + "probability": 0.7734 + }, + { + "start": 6744.26, + "end": 6745.54, + "probability": 0.9426 + }, + { + "start": 6746.78, + "end": 6751.46, + "probability": 0.7924 + }, + { + "start": 6752.08, + "end": 6754.86, + "probability": 0.99 + }, + { + "start": 6754.96, + "end": 6755.88, + "probability": 0.9607 + }, + { + "start": 6756.66, + "end": 6758.36, + "probability": 0.906 + }, + { + "start": 6759.46, + "end": 6760.98, + "probability": 0.9466 + }, + { + "start": 6761.76, + "end": 6762.29, + "probability": 0.5391 + }, + { + "start": 6763.2, + "end": 6764.7, + "probability": 0.3383 + }, + { + "start": 6765.12, + "end": 6768.96, + "probability": 0.9909 + }, + { + "start": 6769.78, + "end": 6771.74, + "probability": 0.9717 + }, + { + "start": 6772.36, + "end": 6774.1, + "probability": 0.9542 + }, + { + "start": 6774.96, + "end": 6775.44, + "probability": 0.7612 + }, + { + "start": 6775.48, + "end": 6775.62, + "probability": 0.8785 + }, + { + "start": 6778.22, + "end": 6778.5, + "probability": 0.1721 + }, + { + "start": 6778.5, + "end": 6779.28, + "probability": 0.4427 + }, + { + "start": 6780.26, + "end": 6782.18, + "probability": 0.8236 + }, + { + "start": 6782.76, + "end": 6787.86, + "probability": 0.7642 + }, + { + "start": 6787.86, + "end": 6788.23, + "probability": 0.0227 + }, + { + "start": 6789.06, + "end": 6791.14, + "probability": 0.0537 + }, + { + "start": 6791.96, + "end": 6792.64, + "probability": 0.874 + }, + { + "start": 6793.38, + "end": 6793.42, + "probability": 0.957 + }, + { + "start": 6794.08, + "end": 6794.26, + "probability": 0.0007 + }, + { + "start": 6794.26, + "end": 6796.42, + "probability": 0.9893 + }, + { + "start": 6798.28, + "end": 6799.06, + "probability": 0.9648 + }, + { + "start": 6799.8, + "end": 6799.8, + "probability": 0.0842 + }, + { + "start": 6799.8, + "end": 6803.3, + "probability": 0.9934 + }, + { + "start": 6803.72, + "end": 6806.94, + "probability": 0.9846 + }, + { + "start": 6807.44, + "end": 6814.36, + "probability": 0.9803 + }, + { + "start": 6814.66, + "end": 6817.14, + "probability": 0.6206 + }, + { + "start": 6817.5, + "end": 6822.96, + "probability": 0.8204 + }, + { + "start": 6824.24, + "end": 6824.34, + "probability": 0.7322 + }, + { + "start": 6826.92, + "end": 6828.43, + "probability": 0.9244 + }, + { + "start": 6829.32, + "end": 6834.06, + "probability": 0.0448 + }, + { + "start": 6834.36, + "end": 6836.22, + "probability": 0.9556 + }, + { + "start": 6841.7, + "end": 6842.5, + "probability": 0.0016 + }, + { + "start": 6842.5, + "end": 6842.5, + "probability": 0.0474 + }, + { + "start": 6842.5, + "end": 6843.27, + "probability": 0.4937 + }, + { + "start": 6844.12, + "end": 6844.12, + "probability": 0.5338 + }, + { + "start": 6844.38, + "end": 6850.3, + "probability": 0.9385 + }, + { + "start": 6850.38, + "end": 6851.68, + "probability": 0.6499 + }, + { + "start": 6852.08, + "end": 6855.82, + "probability": 0.9082 + }, + { + "start": 6856.48, + "end": 6856.6, + "probability": 0.3471 + }, + { + "start": 6856.7, + "end": 6858.42, + "probability": 0.9808 + }, + { + "start": 6858.58, + "end": 6860.0, + "probability": 0.8571 + }, + { + "start": 6860.34, + "end": 6861.58, + "probability": 0.8885 + }, + { + "start": 6861.84, + "end": 6864.42, + "probability": 0.8723 + }, + { + "start": 6865.0, + "end": 6867.16, + "probability": 0.8385 + }, + { + "start": 6867.56, + "end": 6869.0, + "probability": 0.9795 + }, + { + "start": 6869.84, + "end": 6871.74, + "probability": 0.9066 + }, + { + "start": 6873.28, + "end": 6876.28, + "probability": 0.9458 + }, + { + "start": 6877.78, + "end": 6878.9, + "probability": 0.606 + }, + { + "start": 6878.9, + "end": 6884.04, + "probability": 0.6605 + }, + { + "start": 6884.56, + "end": 6889.54, + "probability": 0.9701 + }, + { + "start": 6893.18, + "end": 6894.16, + "probability": 0.7757 + }, + { + "start": 6896.28, + "end": 6901.38, + "probability": 0.8602 + }, + { + "start": 6903.74, + "end": 6909.28, + "probability": 0.9836 + }, + { + "start": 6910.76, + "end": 6911.88, + "probability": 0.7463 + }, + { + "start": 6912.22, + "end": 6912.6, + "probability": 0.693 + }, + { + "start": 6912.74, + "end": 6913.5, + "probability": 0.6797 + }, + { + "start": 6913.98, + "end": 6917.14, + "probability": 0.5195 + }, + { + "start": 6917.14, + "end": 6917.98, + "probability": 0.3262 + }, + { + "start": 6918.52, + "end": 6920.46, + "probability": 0.887 + }, + { + "start": 6921.1, + "end": 6921.71, + "probability": 0.9297 + }, + { + "start": 6922.7, + "end": 6925.74, + "probability": 0.8105 + }, + { + "start": 6928.66, + "end": 6931.84, + "probability": 0.365 + }, + { + "start": 6932.44, + "end": 6933.58, + "probability": 0.7476 + }, + { + "start": 6934.74, + "end": 6939.32, + "probability": 0.9178 + }, + { + "start": 6939.86, + "end": 6943.42, + "probability": 0.9883 + }, + { + "start": 6944.04, + "end": 6946.22, + "probability": 0.9958 + }, + { + "start": 6947.16, + "end": 6949.2, + "probability": 0.9609 + }, + { + "start": 6949.56, + "end": 6950.4, + "probability": 0.9373 + }, + { + "start": 6950.54, + "end": 6951.72, + "probability": 0.7826 + }, + { + "start": 6952.38, + "end": 6953.62, + "probability": 0.9955 + }, + { + "start": 6953.72, + "end": 6956.8, + "probability": 0.8091 + }, + { + "start": 6957.64, + "end": 6959.5, + "probability": 0.5986 + }, + { + "start": 6960.1, + "end": 6962.16, + "probability": 0.9594 + }, + { + "start": 6963.42, + "end": 6964.18, + "probability": 0.8196 + }, + { + "start": 6964.86, + "end": 6965.7, + "probability": 0.7844 + }, + { + "start": 6966.54, + "end": 6969.54, + "probability": 0.9939 + }, + { + "start": 6970.68, + "end": 6974.66, + "probability": 0.9316 + }, + { + "start": 6975.34, + "end": 6976.72, + "probability": 0.8489 + }, + { + "start": 6977.06, + "end": 6977.78, + "probability": 0.6687 + }, + { + "start": 6977.9, + "end": 6980.5, + "probability": 0.6377 + }, + { + "start": 6982.0, + "end": 6982.78, + "probability": 0.9504 + }, + { + "start": 6982.9, + "end": 6983.96, + "probability": 0.9319 + }, + { + "start": 6984.16, + "end": 6984.98, + "probability": 0.9007 + }, + { + "start": 6985.36, + "end": 6989.12, + "probability": 0.9791 + }, + { + "start": 6989.16, + "end": 6992.72, + "probability": 0.9428 + }, + { + "start": 6992.72, + "end": 6996.28, + "probability": 0.947 + }, + { + "start": 6996.64, + "end": 6997.34, + "probability": 0.8338 + }, + { + "start": 6997.54, + "end": 6998.58, + "probability": 0.9225 + }, + { + "start": 6998.92, + "end": 7000.0, + "probability": 0.7855 + }, + { + "start": 7000.24, + "end": 7006.38, + "probability": 0.8516 + }, + { + "start": 7006.84, + "end": 7009.28, + "probability": 0.889 + }, + { + "start": 7009.98, + "end": 7010.7, + "probability": 0.8688 + }, + { + "start": 7010.92, + "end": 7011.96, + "probability": 0.3795 + }, + { + "start": 7012.2, + "end": 7015.68, + "probability": 0.9819 + }, + { + "start": 7015.94, + "end": 7017.24, + "probability": 0.8579 + }, + { + "start": 7017.66, + "end": 7019.14, + "probability": 0.9933 + }, + { + "start": 7024.54, + "end": 7028.28, + "probability": 0.6395 + }, + { + "start": 7028.38, + "end": 7029.16, + "probability": 0.7889 + }, + { + "start": 7029.26, + "end": 7032.95, + "probability": 0.9912 + }, + { + "start": 7033.52, + "end": 7040.3, + "probability": 0.9864 + }, + { + "start": 7040.64, + "end": 7041.4, + "probability": 0.8672 + }, + { + "start": 7041.58, + "end": 7042.62, + "probability": 0.5327 + }, + { + "start": 7042.96, + "end": 7043.74, + "probability": 0.7515 + }, + { + "start": 7043.9, + "end": 7044.62, + "probability": 0.9734 + }, + { + "start": 7045.04, + "end": 7045.96, + "probability": 0.9795 + }, + { + "start": 7046.34, + "end": 7047.38, + "probability": 0.9824 + }, + { + "start": 7047.52, + "end": 7048.5, + "probability": 0.9854 + }, + { + "start": 7048.7, + "end": 7050.52, + "probability": 0.9658 + }, + { + "start": 7050.84, + "end": 7051.18, + "probability": 0.721 + }, + { + "start": 7051.28, + "end": 7053.7, + "probability": 0.8575 + }, + { + "start": 7054.52, + "end": 7057.58, + "probability": 0.9814 + }, + { + "start": 7057.82, + "end": 7058.38, + "probability": 0.8533 + }, + { + "start": 7058.72, + "end": 7063.04, + "probability": 0.9949 + }, + { + "start": 7063.98, + "end": 7067.0, + "probability": 0.7045 + }, + { + "start": 7067.6, + "end": 7069.16, + "probability": 0.9386 + }, + { + "start": 7069.24, + "end": 7070.58, + "probability": 0.5662 + }, + { + "start": 7071.2, + "end": 7073.54, + "probability": 0.875 + }, + { + "start": 7076.32, + "end": 7078.72, + "probability": 0.5929 + }, + { + "start": 7080.5, + "end": 7087.02, + "probability": 0.8925 + }, + { + "start": 7087.38, + "end": 7088.86, + "probability": 0.9119 + }, + { + "start": 7089.04, + "end": 7092.76, + "probability": 0.9932 + }, + { + "start": 7093.2, + "end": 7093.96, + "probability": 0.5814 + }, + { + "start": 7094.06, + "end": 7094.64, + "probability": 0.4458 + }, + { + "start": 7094.78, + "end": 7095.56, + "probability": 0.649 + }, + { + "start": 7098.86, + "end": 7100.0, + "probability": 0.8474 + }, + { + "start": 7106.26, + "end": 7106.26, + "probability": 0.0274 + }, + { + "start": 7106.26, + "end": 7106.26, + "probability": 0.0603 + }, + { + "start": 7106.26, + "end": 7106.26, + "probability": 0.1409 + }, + { + "start": 7106.26, + "end": 7106.36, + "probability": 0.0997 + }, + { + "start": 7124.86, + "end": 7125.42, + "probability": 0.0436 + }, + { + "start": 7126.32, + "end": 7129.14, + "probability": 0.6748 + }, + { + "start": 7129.32, + "end": 7132.12, + "probability": 0.9926 + }, + { + "start": 7132.2, + "end": 7132.74, + "probability": 0.6976 + }, + { + "start": 7132.82, + "end": 7133.36, + "probability": 0.5445 + }, + { + "start": 7133.4, + "end": 7134.04, + "probability": 0.6977 + }, + { + "start": 7134.88, + "end": 7134.88, + "probability": 0.0141 + }, + { + "start": 7141.6, + "end": 7142.0, + "probability": 0.2991 + }, + { + "start": 7148.68, + "end": 7148.78, + "probability": 0.066 + }, + { + "start": 7148.78, + "end": 7152.88, + "probability": 0.6579 + }, + { + "start": 7153.24, + "end": 7155.8, + "probability": 0.8351 + }, + { + "start": 7158.46, + "end": 7160.8, + "probability": 0.8985 + }, + { + "start": 7160.9, + "end": 7163.8, + "probability": 0.9913 + }, + { + "start": 7163.94, + "end": 7164.72, + "probability": 0.5543 + }, + { + "start": 7164.88, + "end": 7167.5, + "probability": 0.9753 + }, + { + "start": 7167.96, + "end": 7168.58, + "probability": 0.6004 + }, + { + "start": 7168.66, + "end": 7169.22, + "probability": 0.509 + }, + { + "start": 7169.26, + "end": 7169.32, + "probability": 0.3945 + }, + { + "start": 7182.34, + "end": 7182.58, + "probability": 0.627 + }, + { + "start": 7182.58, + "end": 7182.58, + "probability": 0.1297 + }, + { + "start": 7182.58, + "end": 7183.32, + "probability": 0.3702 + }, + { + "start": 7184.4, + "end": 7186.44, + "probability": 0.3805 + }, + { + "start": 7187.16, + "end": 7189.14, + "probability": 0.5975 + }, + { + "start": 7189.76, + "end": 7192.56, + "probability": 0.9409 + }, + { + "start": 7193.14, + "end": 7195.26, + "probability": 0.7071 + }, + { + "start": 7195.5, + "end": 7196.08, + "probability": 0.5748 + }, + { + "start": 7196.26, + "end": 7197.86, + "probability": 0.9707 + }, + { + "start": 7198.48, + "end": 7201.1, + "probability": 0.9622 + }, + { + "start": 7201.6, + "end": 7204.4, + "probability": 0.9803 + }, + { + "start": 7204.48, + "end": 7205.08, + "probability": 0.6369 + }, + { + "start": 7205.16, + "end": 7205.7, + "probability": 0.6645 + }, + { + "start": 7206.46, + "end": 7207.2, + "probability": 0.6388 + }, + { + "start": 7220.32, + "end": 7220.54, + "probability": 0.2847 + }, + { + "start": 7224.58, + "end": 7224.58, + "probability": 0.058 + }, + { + "start": 7224.58, + "end": 7228.24, + "probability": 0.4818 + }, + { + "start": 7229.58, + "end": 7233.1, + "probability": 0.9382 + }, + { + "start": 7233.12, + "end": 7234.68, + "probability": 0.4948 + }, + { + "start": 7234.82, + "end": 7237.64, + "probability": 0.9821 + }, + { + "start": 7239.08, + "end": 7241.92, + "probability": 0.8964 + }, + { + "start": 7243.68, + "end": 7246.68, + "probability": 0.7607 + }, + { + "start": 7247.32, + "end": 7247.74, + "probability": 0.0642 + }, + { + "start": 7250.77, + "end": 7254.66, + "probability": 0.6227 + }, + { + "start": 7254.7, + "end": 7257.0, + "probability": 0.7795 + }, + { + "start": 7258.79, + "end": 7260.12, + "probability": 0.2468 + }, + { + "start": 7260.16, + "end": 7261.0, + "probability": 0.6585 + }, + { + "start": 7267.06, + "end": 7267.58, + "probability": 0.3874 + }, + { + "start": 7267.64, + "end": 7268.38, + "probability": 0.5399 + }, + { + "start": 7268.4, + "end": 7269.26, + "probability": 0.9578 + }, + { + "start": 7269.6, + "end": 7269.82, + "probability": 0.921 + }, + { + "start": 7269.94, + "end": 7271.2, + "probability": 0.9476 + }, + { + "start": 7271.78, + "end": 7272.74, + "probability": 0.9554 + }, + { + "start": 7272.8, + "end": 7274.94, + "probability": 0.9873 + }, + { + "start": 7274.94, + "end": 7277.54, + "probability": 0.6712 + }, + { + "start": 7277.7, + "end": 7281.3, + "probability": 0.7681 + }, + { + "start": 7281.3, + "end": 7283.94, + "probability": 0.8291 + }, + { + "start": 7284.04, + "end": 7287.52, + "probability": 0.959 + }, + { + "start": 7287.52, + "end": 7290.18, + "probability": 0.771 + }, + { + "start": 7290.18, + "end": 7293.34, + "probability": 0.9647 + }, + { + "start": 7293.5, + "end": 7293.64, + "probability": 0.4197 + }, + { + "start": 7293.76, + "end": 7296.36, + "probability": 0.9509 + }, + { + "start": 7296.88, + "end": 7300.76, + "probability": 0.951 + }, + { + "start": 7301.4, + "end": 7304.72, + "probability": 0.9744 + }, + { + "start": 7304.72, + "end": 7309.2, + "probability": 0.8896 + }, + { + "start": 7309.26, + "end": 7311.05, + "probability": 0.9287 + }, + { + "start": 7311.6, + "end": 7313.94, + "probability": 0.9692 + }, + { + "start": 7313.94, + "end": 7316.54, + "probability": 0.7771 + }, + { + "start": 7317.02, + "end": 7318.42, + "probability": 0.8235 + }, + { + "start": 7318.48, + "end": 7319.62, + "probability": 0.9226 + }, + { + "start": 7319.74, + "end": 7322.65, + "probability": 0.9856 + }, + { + "start": 7323.06, + "end": 7325.44, + "probability": 0.9112 + }, + { + "start": 7325.46, + "end": 7325.8, + "probability": 0.7276 + }, + { + "start": 7327.0, + "end": 7330.64, + "probability": 0.8349 + }, + { + "start": 7331.26, + "end": 7334.1, + "probability": 0.6502 + }, + { + "start": 7334.3, + "end": 7338.36, + "probability": 0.8569 + }, + { + "start": 7338.56, + "end": 7342.16, + "probability": 0.7047 + }, + { + "start": 7343.3, + "end": 7343.36, + "probability": 0.622 + }, + { + "start": 7343.36, + "end": 7343.84, + "probability": 0.4076 + }, + { + "start": 7343.94, + "end": 7344.52, + "probability": 0.5881 + }, + { + "start": 7344.54, + "end": 7345.86, + "probability": 0.6573 + }, + { + "start": 7350.18, + "end": 7352.32, + "probability": 0.6586 + }, + { + "start": 7352.92, + "end": 7353.48, + "probability": 0.0571 + }, + { + "start": 7362.37, + "end": 7365.7, + "probability": 0.4731 + }, + { + "start": 7366.14, + "end": 7369.96, + "probability": 0.9745 + }, + { + "start": 7370.54, + "end": 7372.97, + "probability": 0.9917 + }, + { + "start": 7373.12, + "end": 7373.74, + "probability": 0.7884 + }, + { + "start": 7373.84, + "end": 7374.54, + "probability": 0.7657 + }, + { + "start": 7374.76, + "end": 7375.62, + "probability": 0.787 + }, + { + "start": 7379.64, + "end": 7379.64, + "probability": 0.1188 + }, + { + "start": 7382.7, + "end": 7384.36, + "probability": 0.1117 + }, + { + "start": 7386.69, + "end": 7387.04, + "probability": 0.021 + }, + { + "start": 7388.56, + "end": 7389.68, + "probability": 0.6323 + }, + { + "start": 7390.18, + "end": 7392.92, + "probability": 0.6369 + }, + { + "start": 7393.02, + "end": 7393.7, + "probability": 0.6616 + }, + { + "start": 7393.72, + "end": 7394.5, + "probability": 0.7322 + }, + { + "start": 7394.86, + "end": 7397.0, + "probability": 0.9782 + }, + { + "start": 7397.0, + "end": 7400.48, + "probability": 0.861 + }, + { + "start": 7401.42, + "end": 7407.52, + "probability": 0.8571 + }, + { + "start": 7407.62, + "end": 7409.0, + "probability": 0.1167 + }, + { + "start": 7409.2, + "end": 7410.1, + "probability": 0.5251 + }, + { + "start": 7410.82, + "end": 7412.84, + "probability": 0.9802 + }, + { + "start": 7413.16, + "end": 7415.32, + "probability": 0.5266 + }, + { + "start": 7415.42, + "end": 7416.1, + "probability": 0.8551 + }, + { + "start": 7416.14, + "end": 7416.44, + "probability": 0.7772 + }, + { + "start": 7425.52, + "end": 7426.06, + "probability": 0.4153 + }, + { + "start": 7426.06, + "end": 7429.4, + "probability": 0.9449 + }, + { + "start": 7429.48, + "end": 7430.1, + "probability": 0.9557 + }, + { + "start": 7441.84, + "end": 7442.4, + "probability": 0.3057 + }, + { + "start": 7442.46, + "end": 7443.08, + "probability": 0.673 + }, + { + "start": 7443.18, + "end": 7443.84, + "probability": 0.9839 + }, + { + "start": 7444.14, + "end": 7445.46, + "probability": 0.7746 + }, + { + "start": 7445.56, + "end": 7446.36, + "probability": 0.9009 + }, + { + "start": 7446.42, + "end": 7446.92, + "probability": 0.8951 + }, + { + "start": 7447.02, + "end": 7449.32, + "probability": 0.995 + }, + { + "start": 7449.32, + "end": 7452.76, + "probability": 0.8236 + }, + { + "start": 7452.88, + "end": 7456.16, + "probability": 0.8206 + }, + { + "start": 7456.16, + "end": 7458.66, + "probability": 0.9987 + }, + { + "start": 7459.24, + "end": 7461.14, + "probability": 0.9937 + }, + { + "start": 7461.14, + "end": 7463.42, + "probability": 0.9773 + }, + { + "start": 7463.84, + "end": 7467.38, + "probability": 0.8476 + }, + { + "start": 7467.48, + "end": 7469.0, + "probability": 0.974 + }, + { + "start": 7469.08, + "end": 7471.12, + "probability": 0.6803 + }, + { + "start": 7471.12, + "end": 7473.6, + "probability": 0.996 + }, + { + "start": 7474.12, + "end": 7477.32, + "probability": 0.8703 + }, + { + "start": 7477.88, + "end": 7480.98, + "probability": 0.9551 + }, + { + "start": 7481.64, + "end": 7483.76, + "probability": 0.9751 + }, + { + "start": 7483.9, + "end": 7485.96, + "probability": 0.9976 + }, + { + "start": 7485.96, + "end": 7489.09, + "probability": 0.9961 + }, + { + "start": 7489.42, + "end": 7490.72, + "probability": 0.8274 + }, + { + "start": 7491.3, + "end": 7495.02, + "probability": 0.9585 + }, + { + "start": 7495.1, + "end": 7498.67, + "probability": 0.7787 + }, + { + "start": 7499.48, + "end": 7501.46, + "probability": 0.9347 + }, + { + "start": 7502.22, + "end": 7504.66, + "probability": 0.7438 + }, + { + "start": 7505.16, + "end": 7507.74, + "probability": 0.874 + }, + { + "start": 7507.84, + "end": 7512.04, + "probability": 0.9868 + }, + { + "start": 7512.54, + "end": 7515.21, + "probability": 0.7689 + }, + { + "start": 7515.86, + "end": 7517.56, + "probability": 0.9376 + }, + { + "start": 7517.58, + "end": 7520.18, + "probability": 0.6187 + }, + { + "start": 7520.26, + "end": 7524.28, + "probability": 0.9695 + }, + { + "start": 7524.88, + "end": 7528.36, + "probability": 0.9738 + }, + { + "start": 7529.16, + "end": 7530.71, + "probability": 0.8898 + }, + { + "start": 7531.02, + "end": 7534.36, + "probability": 0.9355 + }, + { + "start": 7534.36, + "end": 7536.86, + "probability": 0.8703 + }, + { + "start": 7537.26, + "end": 7537.62, + "probability": 0.8118 + }, + { + "start": 7537.74, + "end": 7538.6, + "probability": 0.7869 + }, + { + "start": 7538.68, + "end": 7540.62, + "probability": 0.9319 + }, + { + "start": 7540.78, + "end": 7543.54, + "probability": 0.6538 + }, + { + "start": 7543.94, + "end": 7548.24, + "probability": 0.8808 + }, + { + "start": 7548.36, + "end": 7548.56, + "probability": 0.6903 + }, + { + "start": 7548.88, + "end": 7551.12, + "probability": 0.96 + }, + { + "start": 7551.7, + "end": 7554.08, + "probability": 0.9784 + }, + { + "start": 7554.4, + "end": 7556.76, + "probability": 0.9556 + }, + { + "start": 7557.1, + "end": 7558.96, + "probability": 0.8523 + }, + { + "start": 7559.42, + "end": 7561.46, + "probability": 0.8632 + }, + { + "start": 7563.26, + "end": 7566.21, + "probability": 0.936 + }, + { + "start": 7567.44, + "end": 7570.18, + "probability": 0.971 + }, + { + "start": 7571.52, + "end": 7577.02, + "probability": 0.7184 + }, + { + "start": 7578.22, + "end": 7584.06, + "probability": 0.8787 + }, + { + "start": 7584.2, + "end": 7585.87, + "probability": 0.9789 + }, + { + "start": 7589.3, + "end": 7590.24, + "probability": 0.5874 + }, + { + "start": 7595.94, + "end": 7598.8, + "probability": 0.8467 + }, + { + "start": 7606.84, + "end": 7610.35, + "probability": 0.979 + }, + { + "start": 7610.82, + "end": 7613.78, + "probability": 0.8872 + }, + { + "start": 7614.08, + "end": 7618.88, + "probability": 0.9352 + }, + { + "start": 7618.88, + "end": 7619.72, + "probability": 0.3757 + }, + { + "start": 7620.94, + "end": 7625.72, + "probability": 0.6787 + }, + { + "start": 7626.24, + "end": 7626.6, + "probability": 0.0587 + }, + { + "start": 7626.6, + "end": 7629.44, + "probability": 0.5749 + }, + { + "start": 7629.86, + "end": 7635.22, + "probability": 0.7264 + }, + { + "start": 7636.2, + "end": 7640.56, + "probability": 0.893 + }, + { + "start": 7640.56, + "end": 7643.62, + "probability": 0.8878 + }, + { + "start": 7644.16, + "end": 7647.48, + "probability": 0.9163 + }, + { + "start": 7648.0, + "end": 7654.98, + "probability": 0.8515 + }, + { + "start": 7655.36, + "end": 7657.84, + "probability": 0.6706 + }, + { + "start": 7658.06, + "end": 7661.6, + "probability": 0.9919 + }, + { + "start": 7661.92, + "end": 7664.42, + "probability": 0.9922 + }, + { + "start": 7664.48, + "end": 7666.52, + "probability": 0.9319 + }, + { + "start": 7666.52, + "end": 7669.02, + "probability": 0.998 + }, + { + "start": 7669.46, + "end": 7672.8, + "probability": 0.4354 + }, + { + "start": 7672.8, + "end": 7675.52, + "probability": 0.88 + }, + { + "start": 7675.82, + "end": 7679.42, + "probability": 0.9106 + }, + { + "start": 7679.62, + "end": 7680.9, + "probability": 0.7818 + }, + { + "start": 7681.3, + "end": 7684.28, + "probability": 0.7132 + }, + { + "start": 7684.38, + "end": 7686.68, + "probability": 0.7668 + }, + { + "start": 7686.94, + "end": 7690.5, + "probability": 0.9644 + }, + { + "start": 7691.38, + "end": 7693.54, + "probability": 0.7604 + }, + { + "start": 7693.54, + "end": 7696.7, + "probability": 0.7947 + }, + { + "start": 7696.84, + "end": 7697.96, + "probability": 0.7746 + }, + { + "start": 7698.04, + "end": 7699.68, + "probability": 0.7743 + }, + { + "start": 7700.06, + "end": 7701.12, + "probability": 0.8735 + }, + { + "start": 7701.34, + "end": 7701.96, + "probability": 0.8626 + }, + { + "start": 7702.12, + "end": 7703.26, + "probability": 0.7045 + }, + { + "start": 7703.4, + "end": 7705.6, + "probability": 0.9198 + }, + { + "start": 7705.68, + "end": 7706.62, + "probability": 0.8218 + }, + { + "start": 7706.68, + "end": 7708.78, + "probability": 0.932 + }, + { + "start": 7708.86, + "end": 7710.48, + "probability": 0.9899 + }, + { + "start": 7711.18, + "end": 7713.52, + "probability": 0.9743 + }, + { + "start": 7714.32, + "end": 7714.32, + "probability": 0.1263 + }, + { + "start": 7714.32, + "end": 7716.36, + "probability": 0.9912 + }, + { + "start": 7716.92, + "end": 7717.8, + "probability": 0.8151 + }, + { + "start": 7717.92, + "end": 7723.16, + "probability": 0.9694 + }, + { + "start": 7723.38, + "end": 7724.02, + "probability": 0.6152 + }, + { + "start": 7724.14, + "end": 7725.82, + "probability": 0.9778 + }, + { + "start": 7726.04, + "end": 7727.42, + "probability": 0.8026 + }, + { + "start": 7727.5, + "end": 7731.64, + "probability": 0.9915 + }, + { + "start": 7732.06, + "end": 7737.04, + "probability": 0.9661 + }, + { + "start": 7737.18, + "end": 7738.84, + "probability": 0.9888 + }, + { + "start": 7739.04, + "end": 7739.44, + "probability": 0.7195 + }, + { + "start": 7739.56, + "end": 7740.64, + "probability": 0.9552 + }, + { + "start": 7741.0, + "end": 7742.33, + "probability": 0.9827 + }, + { + "start": 7743.0, + "end": 7745.58, + "probability": 0.3459 + }, + { + "start": 7745.76, + "end": 7747.28, + "probability": 0.8226 + }, + { + "start": 7747.5, + "end": 7748.5, + "probability": 0.9485 + }, + { + "start": 7748.62, + "end": 7753.2, + "probability": 0.9342 + }, + { + "start": 7753.52, + "end": 7754.72, + "probability": 0.9564 + }, + { + "start": 7754.84, + "end": 7755.36, + "probability": 0.9106 + }, + { + "start": 7755.6, + "end": 7757.36, + "probability": 0.7897 + }, + { + "start": 7757.42, + "end": 7757.62, + "probability": 0.7164 + }, + { + "start": 7758.4, + "end": 7760.98, + "probability": 0.9874 + }, + { + "start": 7761.42, + "end": 7763.24, + "probability": 0.7516 + }, + { + "start": 7763.88, + "end": 7768.82, + "probability": 0.9362 + }, + { + "start": 7768.82, + "end": 7772.42, + "probability": 0.8518 + }, + { + "start": 7772.58, + "end": 7774.5, + "probability": 0.4088 + }, + { + "start": 7775.36, + "end": 7776.82, + "probability": 0.7038 + }, + { + "start": 7777.16, + "end": 7778.16, + "probability": 0.7362 + }, + { + "start": 7778.2, + "end": 7778.84, + "probability": 0.9374 + }, + { + "start": 7782.0, + "end": 7782.3, + "probability": 0.0003 + }, + { + "start": 7791.68, + "end": 7793.52, + "probability": 0.1215 + }, + { + "start": 7794.2, + "end": 7796.68, + "probability": 0.5935 + }, + { + "start": 7797.12, + "end": 7798.82, + "probability": 0.879 + }, + { + "start": 7799.34, + "end": 7802.8, + "probability": 0.9926 + }, + { + "start": 7803.46, + "end": 7804.4, + "probability": 0.7376 + }, + { + "start": 7804.4, + "end": 7805.06, + "probability": 0.8518 + }, + { + "start": 7806.24, + "end": 7806.52, + "probability": 0.0105 + }, + { + "start": 7807.42, + "end": 7808.26, + "probability": 0.0359 + }, + { + "start": 7811.68, + "end": 7815.38, + "probability": 0.5153 + }, + { + "start": 7822.1, + "end": 7822.3, + "probability": 0.1344 + }, + { + "start": 7822.3, + "end": 7824.32, + "probability": 0.6464 + }, + { + "start": 7824.9, + "end": 7829.22, + "probability": 0.8742 + }, + { + "start": 7829.34, + "end": 7831.64, + "probability": 0.46 + }, + { + "start": 7831.94, + "end": 7835.4, + "probability": 0.9694 + }, + { + "start": 7837.38, + "end": 7840.48, + "probability": 0.82 + }, + { + "start": 7841.16, + "end": 7846.08, + "probability": 0.9814 + }, + { + "start": 7846.44, + "end": 7848.38, + "probability": 0.2214 + }, + { + "start": 7848.5, + "end": 7850.86, + "probability": 0.8166 + }, + { + "start": 7851.18, + "end": 7856.0, + "probability": 0.9784 + }, + { + "start": 7856.0, + "end": 7856.6, + "probability": 0.7594 + }, + { + "start": 7862.0, + "end": 7864.0, + "probability": 0.5986 + }, + { + "start": 7864.14, + "end": 7864.14, + "probability": 0.5806 + }, + { + "start": 7864.14, + "end": 7867.2, + "probability": 0.8137 + }, + { + "start": 7868.02, + "end": 7871.02, + "probability": 0.8784 + }, + { + "start": 7871.02, + "end": 7874.56, + "probability": 0.9918 + }, + { + "start": 7874.98, + "end": 7876.74, + "probability": 0.4583 + }, + { + "start": 7876.98, + "end": 7878.0, + "probability": 0.8463 + }, + { + "start": 7878.74, + "end": 7885.52, + "probability": 0.9518 + }, + { + "start": 7885.52, + "end": 7889.92, + "probability": 0.9899 + }, + { + "start": 7890.62, + "end": 7892.26, + "probability": 0.9444 + }, + { + "start": 7893.06, + "end": 7895.12, + "probability": 0.9836 + }, + { + "start": 7895.32, + "end": 7897.9, + "probability": 0.9844 + }, + { + "start": 7898.0, + "end": 7900.26, + "probability": 0.9494 + }, + { + "start": 7900.84, + "end": 7905.1, + "probability": 0.9796 + }, + { + "start": 7905.18, + "end": 7907.82, + "probability": 0.8646 + }, + { + "start": 7907.96, + "end": 7910.02, + "probability": 0.9874 + }, + { + "start": 7910.52, + "end": 7912.72, + "probability": 0.8794 + }, + { + "start": 7912.84, + "end": 7913.78, + "probability": 0.8042 + }, + { + "start": 7914.22, + "end": 7915.52, + "probability": 0.9807 + }, + { + "start": 7916.0, + "end": 7918.78, + "probability": 0.9896 + }, + { + "start": 7918.92, + "end": 7921.34, + "probability": 0.9493 + }, + { + "start": 7921.34, + "end": 7924.0, + "probability": 0.7615 + }, + { + "start": 7924.66, + "end": 7928.62, + "probability": 0.9065 + }, + { + "start": 7929.14, + "end": 7932.58, + "probability": 0.9958 + }, + { + "start": 7932.72, + "end": 7936.42, + "probability": 0.9775 + }, + { + "start": 7936.94, + "end": 7941.06, + "probability": 0.9963 + }, + { + "start": 7941.34, + "end": 7944.94, + "probability": 0.9868 + }, + { + "start": 7945.26, + "end": 7948.02, + "probability": 0.9204 + }, + { + "start": 7948.78, + "end": 7950.66, + "probability": 0.9526 + }, + { + "start": 7950.92, + "end": 7955.48, + "probability": 0.98 + }, + { + "start": 7956.84, + "end": 7959.08, + "probability": 0.9838 + }, + { + "start": 7959.16, + "end": 7960.92, + "probability": 0.6329 + }, + { + "start": 7961.46, + "end": 7966.84, + "probability": 0.949 + }, + { + "start": 7967.48, + "end": 7973.94, + "probability": 0.9952 + }, + { + "start": 7974.5, + "end": 7978.7, + "probability": 0.2852 + }, + { + "start": 7978.88, + "end": 7979.72, + "probability": 0.7094 + }, + { + "start": 7979.72, + "end": 7980.4, + "probability": 0.9192 + }, + { + "start": 7980.56, + "end": 7981.5, + "probability": 0.0583 + }, + { + "start": 7997.88, + "end": 7998.32, + "probability": 0.0502 + }, + { + "start": 7998.32, + "end": 8000.2, + "probability": 0.4219 + }, + { + "start": 8000.68, + "end": 8002.28, + "probability": 0.9316 + }, + { + "start": 8002.7, + "end": 8003.9, + "probability": 0.6992 + }, + { + "start": 8007.06, + "end": 8007.68, + "probability": 0.4501 + }, + { + "start": 8007.86, + "end": 8014.12, + "probability": 0.9888 + }, + { + "start": 8014.12, + "end": 8019.42, + "probability": 0.8351 + }, + { + "start": 8019.6, + "end": 8020.34, + "probability": 0.6234 + }, + { + "start": 8026.72, + "end": 8033.84, + "probability": 0.4366 + }, + { + "start": 8033.9, + "end": 8034.46, + "probability": 0.3157 + }, + { + "start": 8034.72, + "end": 8035.36, + "probability": 0.4616 + }, + { + "start": 8035.6, + "end": 8035.7, + "probability": 0.0139 + }, + { + "start": 8035.7, + "end": 8036.0, + "probability": 0.0261 + }, + { + "start": 8036.0, + "end": 8036.0, + "probability": 0.1374 + }, + { + "start": 8037.08, + "end": 8038.44, + "probability": 0.0275 + }, + { + "start": 8039.7, + "end": 8041.08, + "probability": 0.08 + }, + { + "start": 8055.38, + "end": 8056.26, + "probability": 0.4073 + }, + { + "start": 8056.84, + "end": 8060.06, + "probability": 0.6657 + }, + { + "start": 8060.84, + "end": 8061.48, + "probability": 0.3176 + }, + { + "start": 8061.68, + "end": 8063.56, + "probability": 0.36 + }, + { + "start": 8064.02, + "end": 8067.82, + "probability": 0.9862 + }, + { + "start": 8068.54, + "end": 8072.1, + "probability": 0.9759 + }, + { + "start": 8072.1, + "end": 8076.54, + "probability": 0.7916 + }, + { + "start": 8076.9, + "end": 8081.22, + "probability": 0.6326 + }, + { + "start": 8081.72, + "end": 8086.08, + "probability": 0.853 + }, + { + "start": 8086.24, + "end": 8088.02, + "probability": 0.9203 + }, + { + "start": 8088.12, + "end": 8089.22, + "probability": 0.879 + }, + { + "start": 8099.6, + "end": 8101.04, + "probability": 0.4813 + }, + { + "start": 8102.6, + "end": 8103.54, + "probability": 0.7256 + }, + { + "start": 8104.58, + "end": 8108.58, + "probability": 0.995 + }, + { + "start": 8109.12, + "end": 8114.16, + "probability": 0.8613 + }, + { + "start": 8115.16, + "end": 8115.16, + "probability": 0.0001 + }, + { + "start": 8115.16, + "end": 8116.74, + "probability": 0.5723 + }, + { + "start": 8117.16, + "end": 8119.42, + "probability": 0.9324 + }, + { + "start": 8119.82, + "end": 8122.01, + "probability": 0.7478 + }, + { + "start": 8122.86, + "end": 8123.32, + "probability": 0.4298 + }, + { + "start": 8123.34, + "end": 8123.68, + "probability": 0.5078 + }, + { + "start": 8123.94, + "end": 8127.17, + "probability": 0.6002 + }, + { + "start": 8128.04, + "end": 8130.16, + "probability": 0.9852 + }, + { + "start": 8131.24, + "end": 8134.16, + "probability": 0.767 + }, + { + "start": 8134.16, + "end": 8137.5, + "probability": 0.9702 + }, + { + "start": 8138.22, + "end": 8139.68, + "probability": 0.8606 + }, + { + "start": 8140.34, + "end": 8141.46, + "probability": 0.8672 + }, + { + "start": 8142.22, + "end": 8145.42, + "probability": 0.8143 + }, + { + "start": 8146.0, + "end": 8146.44, + "probability": 0.8063 + }, + { + "start": 8146.54, + "end": 8147.58, + "probability": 0.9346 + }, + { + "start": 8147.96, + "end": 8149.86, + "probability": 0.9833 + }, + { + "start": 8151.44, + "end": 8153.5, + "probability": 0.9866 + }, + { + "start": 8154.84, + "end": 8155.9, + "probability": 0.8398 + }, + { + "start": 8156.38, + "end": 8161.26, + "probability": 0.8999 + }, + { + "start": 8161.76, + "end": 8163.24, + "probability": 0.2628 + }, + { + "start": 8163.4, + "end": 8164.16, + "probability": 0.4803 + }, + { + "start": 8164.82, + "end": 8165.38, + "probability": 0.783 + }, + { + "start": 8165.4, + "end": 8166.98, + "probability": 0.8716 + }, + { + "start": 8167.08, + "end": 8169.86, + "probability": 0.9764 + }, + { + "start": 8170.0, + "end": 8171.24, + "probability": 0.7634 + }, + { + "start": 8171.78, + "end": 8173.26, + "probability": 0.9089 + }, + { + "start": 8173.26, + "end": 8173.98, + "probability": 0.8218 + }, + { + "start": 8174.08, + "end": 8174.84, + "probability": 0.7272 + }, + { + "start": 8175.32, + "end": 8178.3, + "probability": 0.7806 + }, + { + "start": 8179.22, + "end": 8181.3, + "probability": 0.7327 + }, + { + "start": 8181.84, + "end": 8183.14, + "probability": 0.5259 + }, + { + "start": 8183.92, + "end": 8185.6, + "probability": 0.4645 + }, + { + "start": 8187.78, + "end": 8188.72, + "probability": 0.0901 + }, + { + "start": 8188.96, + "end": 8190.98, + "probability": 0.2821 + }, + { + "start": 8191.46, + "end": 8191.94, + "probability": 0.4522 + }, + { + "start": 8191.94, + "end": 8193.4, + "probability": 0.9713 + }, + { + "start": 8193.54, + "end": 8193.96, + "probability": 0.8782 + }, + { + "start": 8194.2, + "end": 8195.66, + "probability": 0.8224 + }, + { + "start": 8196.06, + "end": 8197.18, + "probability": 0.6221 + }, + { + "start": 8197.58, + "end": 8201.0, + "probability": 0.9526 + }, + { + "start": 8201.32, + "end": 8203.06, + "probability": 0.855 + }, + { + "start": 8203.14, + "end": 8205.9, + "probability": 0.9198 + }, + { + "start": 8205.96, + "end": 8209.86, + "probability": 0.9076 + }, + { + "start": 8209.96, + "end": 8212.08, + "probability": 0.9038 + }, + { + "start": 8212.52, + "end": 8213.68, + "probability": 0.7469 + }, + { + "start": 8214.4, + "end": 8215.8, + "probability": 0.8203 + }, + { + "start": 8215.98, + "end": 8216.94, + "probability": 0.2656 + }, + { + "start": 8217.56, + "end": 8218.4, + "probability": 0.181 + }, + { + "start": 8218.74, + "end": 8219.86, + "probability": 0.8488 + }, + { + "start": 8219.96, + "end": 8220.18, + "probability": 0.9062 + }, + { + "start": 8220.22, + "end": 8222.0, + "probability": 0.9793 + }, + { + "start": 8222.1, + "end": 8222.62, + "probability": 0.4265 + }, + { + "start": 8223.48, + "end": 8227.46, + "probability": 0.9703 + }, + { + "start": 8228.0, + "end": 8230.64, + "probability": 0.9189 + }, + { + "start": 8231.62, + "end": 8236.84, + "probability": 0.9668 + }, + { + "start": 8238.86, + "end": 8245.78, + "probability": 0.9565 + }, + { + "start": 8246.2, + "end": 8249.52, + "probability": 0.9086 + }, + { + "start": 8249.64, + "end": 8254.06, + "probability": 0.8764 + }, + { + "start": 8254.58, + "end": 8254.72, + "probability": 0.7765 + }, + { + "start": 8254.84, + "end": 8255.8, + "probability": 0.9871 + }, + { + "start": 8256.1, + "end": 8259.88, + "probability": 0.961 + }, + { + "start": 8260.46, + "end": 8262.54, + "probability": 0.8821 + }, + { + "start": 8263.32, + "end": 8265.62, + "probability": 0.9443 + }, + { + "start": 8266.3, + "end": 8267.46, + "probability": 0.7824 + }, + { + "start": 8267.96, + "end": 8273.22, + "probability": 0.991 + }, + { + "start": 8273.42, + "end": 8274.14, + "probability": 0.6423 + }, + { + "start": 8275.0, + "end": 8277.14, + "probability": 0.9565 + }, + { + "start": 8277.2, + "end": 8280.46, + "probability": 0.9604 + }, + { + "start": 8280.6, + "end": 8283.32, + "probability": 0.9629 + }, + { + "start": 8283.64, + "end": 8285.02, + "probability": 0.894 + }, + { + "start": 8285.74, + "end": 8290.22, + "probability": 0.994 + }, + { + "start": 8291.1, + "end": 8295.08, + "probability": 0.6823 + }, + { + "start": 8295.7, + "end": 8300.86, + "probability": 0.998 + }, + { + "start": 8301.6, + "end": 8304.35, + "probability": 0.7944 + }, + { + "start": 8304.66, + "end": 8305.72, + "probability": 0.7721 + }, + { + "start": 8305.94, + "end": 8306.16, + "probability": 0.5997 + }, + { + "start": 8306.2, + "end": 8306.44, + "probability": 0.7963 + }, + { + "start": 8306.6, + "end": 8307.3, + "probability": 0.7352 + }, + { + "start": 8308.0, + "end": 8309.52, + "probability": 0.6318 + }, + { + "start": 8309.56, + "end": 8310.42, + "probability": 0.7563 + }, + { + "start": 8310.6, + "end": 8313.54, + "probability": 0.9422 + }, + { + "start": 8314.16, + "end": 8314.64, + "probability": 0.8215 + }, + { + "start": 8314.78, + "end": 8316.36, + "probability": 0.6556 + }, + { + "start": 8316.68, + "end": 8319.96, + "probability": 0.8335 + }, + { + "start": 8320.3, + "end": 8321.7, + "probability": 0.7977 + }, + { + "start": 8321.88, + "end": 8323.9, + "probability": 0.998 + }, + { + "start": 8324.26, + "end": 8329.26, + "probability": 0.9718 + }, + { + "start": 8329.6, + "end": 8329.92, + "probability": 0.7377 + }, + { + "start": 8330.66, + "end": 8333.12, + "probability": 0.9668 + }, + { + "start": 8333.28, + "end": 8334.44, + "probability": 0.9113 + }, + { + "start": 8334.52, + "end": 8335.64, + "probability": 0.7087 + }, + { + "start": 8336.08, + "end": 8340.88, + "probability": 0.916 + }, + { + "start": 8341.34, + "end": 8342.72, + "probability": 0.8601 + }, + { + "start": 8343.38, + "end": 8345.74, + "probability": 0.6079 + }, + { + "start": 8346.28, + "end": 8347.94, + "probability": 0.9683 + }, + { + "start": 8347.94, + "end": 8351.16, + "probability": 0.6619 + }, + { + "start": 8351.2, + "end": 8352.82, + "probability": 0.2705 + }, + { + "start": 8353.44, + "end": 8356.3, + "probability": 0.9102 + }, + { + "start": 8356.32, + "end": 8356.94, + "probability": 0.4735 + }, + { + "start": 8357.64, + "end": 8358.46, + "probability": 0.8823 + }, + { + "start": 8358.82, + "end": 8359.48, + "probability": 0.0248 + }, + { + "start": 8375.52, + "end": 8375.84, + "probability": 0.0281 + }, + { + "start": 8375.84, + "end": 8377.68, + "probability": 0.5956 + }, + { + "start": 8378.1, + "end": 8380.88, + "probability": 0.9525 + }, + { + "start": 8381.26, + "end": 8383.8, + "probability": 0.9976 + }, + { + "start": 8383.94, + "end": 8385.58, + "probability": 0.8747 + }, + { + "start": 8386.52, + "end": 8388.56, + "probability": 0.0047 + }, + { + "start": 8403.46, + "end": 8407.58, + "probability": 0.7037 + }, + { + "start": 8408.04, + "end": 8409.08, + "probability": 0.1517 + }, + { + "start": 8409.62, + "end": 8410.38, + "probability": 0.1131 + }, + { + "start": 8412.88, + "end": 8413.04, + "probability": 0.2376 + }, + { + "start": 8413.28, + "end": 8414.96, + "probability": 0.5292 + }, + { + "start": 8418.0, + "end": 8418.98, + "probability": 0.0069 + }, + { + "start": 8419.22, + "end": 8419.22, + "probability": 0.0196 + }, + { + "start": 8419.22, + "end": 8419.22, + "probability": 0.0269 + }, + { + "start": 8419.22, + "end": 8420.68, + "probability": 0.5521 + }, + { + "start": 8420.68, + "end": 8420.68, + "probability": 0.1533 + }, + { + "start": 8420.68, + "end": 8422.96, + "probability": 0.8628 + }, + { + "start": 8424.08, + "end": 8424.16, + "probability": 0.4019 + }, + { + "start": 8424.16, + "end": 8424.28, + "probability": 0.4553 + }, + { + "start": 8424.3, + "end": 8428.3, + "probability": 0.7741 + }, + { + "start": 8428.38, + "end": 8431.02, + "probability": 0.5248 + }, + { + "start": 8431.24, + "end": 8435.46, + "probability": 0.9927 + }, + { + "start": 8436.28, + "end": 8439.92, + "probability": 0.9063 + }, + { + "start": 8440.14, + "end": 8442.78, + "probability": 0.7147 + }, + { + "start": 8457.52, + "end": 8458.26, + "probability": 0.5484 + }, + { + "start": 8458.5, + "end": 8458.82, + "probability": 0.7306 + }, + { + "start": 8464.74, + "end": 8469.8, + "probability": 0.936 + }, + { + "start": 8469.86, + "end": 8472.88, + "probability": 0.4953 + }, + { + "start": 8473.06, + "end": 8473.42, + "probability": 0.7253 + }, + { + "start": 8473.54, + "end": 8473.86, + "probability": 0.6471 + }, + { + "start": 8473.86, + "end": 8474.76, + "probability": 0.0507 + }, + { + "start": 8474.84, + "end": 8475.54, + "probability": 0.768 + }, + { + "start": 8476.02, + "end": 8478.84, + "probability": 0.9364 + }, + { + "start": 8478.94, + "end": 8479.74, + "probability": 0.702 + }, + { + "start": 8479.8, + "end": 8481.7, + "probability": 0.8557 + }, + { + "start": 8481.88, + "end": 8483.4, + "probability": 0.8305 + }, + { + "start": 8483.54, + "end": 8484.84, + "probability": 0.9855 + }, + { + "start": 8485.08, + "end": 8485.48, + "probability": 0.8156 + }, + { + "start": 8485.54, + "end": 8485.84, + "probability": 0.8839 + }, + { + "start": 8485.92, + "end": 8488.46, + "probability": 0.904 + }, + { + "start": 8488.46, + "end": 8490.98, + "probability": 0.9297 + }, + { + "start": 8491.58, + "end": 8493.62, + "probability": 0.7403 + }, + { + "start": 8493.64, + "end": 8494.38, + "probability": 0.9061 + }, + { + "start": 8494.48, + "end": 8495.2, + "probability": 0.8016 + }, + { + "start": 8495.26, + "end": 8496.92, + "probability": 0.9736 + }, + { + "start": 8497.54, + "end": 8499.68, + "probability": 0.8269 + }, + { + "start": 8499.68, + "end": 8501.18, + "probability": 0.286 + }, + { + "start": 8502.04, + "end": 8504.64, + "probability": 0.779 + }, + { + "start": 8505.23, + "end": 8507.78, + "probability": 0.6057 + }, + { + "start": 8507.84, + "end": 8509.4, + "probability": 0.9385 + }, + { + "start": 8510.0, + "end": 8511.41, + "probability": 0.6976 + }, + { + "start": 8513.14, + "end": 8514.7, + "probability": 0.1229 + }, + { + "start": 8514.7, + "end": 8514.7, + "probability": 0.011 + }, + { + "start": 8514.7, + "end": 8516.68, + "probability": 0.9135 + }, + { + "start": 8516.78, + "end": 8520.42, + "probability": 0.9686 + }, + { + "start": 8521.04, + "end": 8522.48, + "probability": 0.9759 + }, + { + "start": 8522.68, + "end": 8523.66, + "probability": 0.7267 + }, + { + "start": 8524.0, + "end": 8524.3, + "probability": 0.6857 + }, + { + "start": 8526.4, + "end": 8529.74, + "probability": 0.786 + }, + { + "start": 8529.94, + "end": 8534.44, + "probability": 0.9187 + }, + { + "start": 8534.52, + "end": 8536.3, + "probability": 0.1607 + }, + { + "start": 8536.72, + "end": 8538.42, + "probability": 0.8681 + }, + { + "start": 8538.76, + "end": 8540.04, + "probability": 0.9842 + }, + { + "start": 8540.12, + "end": 8540.5, + "probability": 0.505 + }, + { + "start": 8540.92, + "end": 8542.82, + "probability": 0.669 + }, + { + "start": 8542.92, + "end": 8543.54, + "probability": 0.437 + }, + { + "start": 8544.48, + "end": 8546.14, + "probability": 0.6032 + }, + { + "start": 8546.72, + "end": 8549.22, + "probability": 0.9658 + }, + { + "start": 8549.4, + "end": 8549.46, + "probability": 0.1996 + }, + { + "start": 8549.46, + "end": 8549.52, + "probability": 0.399 + }, + { + "start": 8549.52, + "end": 8549.84, + "probability": 0.7258 + }, + { + "start": 8549.92, + "end": 8552.2, + "probability": 0.4752 + }, + { + "start": 8552.62, + "end": 8553.44, + "probability": 0.0611 + }, + { + "start": 8553.44, + "end": 8554.5, + "probability": 0.1999 + }, + { + "start": 8555.28, + "end": 8559.78, + "probability": 0.9855 + }, + { + "start": 8559.78, + "end": 8567.52, + "probability": 0.9074 + }, + { + "start": 8568.14, + "end": 8573.22, + "probability": 0.9816 + }, + { + "start": 8573.54, + "end": 8576.58, + "probability": 0.7443 + }, + { + "start": 8577.52, + "end": 8582.32, + "probability": 0.7921 + }, + { + "start": 8582.78, + "end": 8584.57, + "probability": 0.0211 + }, + { + "start": 8585.04, + "end": 8588.08, + "probability": 0.9953 + }, + { + "start": 8588.08, + "end": 8592.06, + "probability": 0.955 + }, + { + "start": 8593.12, + "end": 8594.5, + "probability": 0.9971 + }, + { + "start": 8594.64, + "end": 8600.96, + "probability": 0.9888 + }, + { + "start": 8601.38, + "end": 8609.0, + "probability": 0.9566 + }, + { + "start": 8609.86, + "end": 8613.12, + "probability": 0.9934 + }, + { + "start": 8614.18, + "end": 8617.8, + "probability": 0.7269 + }, + { + "start": 8617.86, + "end": 8622.98, + "probability": 0.9849 + }, + { + "start": 8623.5, + "end": 8626.02, + "probability": 0.9748 + }, + { + "start": 8627.1, + "end": 8630.28, + "probability": 0.8908 + }, + { + "start": 8630.58, + "end": 8635.08, + "probability": 0.9939 + }, + { + "start": 8635.78, + "end": 8638.78, + "probability": 0.9976 + }, + { + "start": 8639.76, + "end": 8642.06, + "probability": 0.2748 + }, + { + "start": 8642.46, + "end": 8646.02, + "probability": 0.9865 + }, + { + "start": 8646.02, + "end": 8650.18, + "probability": 0.9902 + }, + { + "start": 8650.7, + "end": 8656.96, + "probability": 0.9703 + }, + { + "start": 8657.7, + "end": 8660.51, + "probability": 0.9935 + }, + { + "start": 8661.66, + "end": 8666.92, + "probability": 0.9326 + }, + { + "start": 8667.28, + "end": 8670.24, + "probability": 0.9958 + }, + { + "start": 8670.66, + "end": 8673.84, + "probability": 0.9874 + }, + { + "start": 8673.84, + "end": 8677.3, + "probability": 0.9998 + }, + { + "start": 8678.04, + "end": 8680.88, + "probability": 0.9731 + }, + { + "start": 8681.82, + "end": 8684.02, + "probability": 0.9907 + }, + { + "start": 8684.68, + "end": 8687.04, + "probability": 0.9705 + }, + { + "start": 8687.58, + "end": 8692.7, + "probability": 0.9761 + }, + { + "start": 8693.28, + "end": 8694.38, + "probability": 0.9211 + }, + { + "start": 8694.86, + "end": 8700.28, + "probability": 0.9827 + }, + { + "start": 8701.1, + "end": 8702.26, + "probability": 0.9987 + }, + { + "start": 8704.9, + "end": 8706.2, + "probability": 0.6787 + }, + { + "start": 8706.68, + "end": 8712.48, + "probability": 0.9143 + }, + { + "start": 8713.0, + "end": 8714.52, + "probability": 0.9116 + }, + { + "start": 8715.06, + "end": 8717.01, + "probability": 0.8986 + }, + { + "start": 8717.8, + "end": 8720.54, + "probability": 0.943 + }, + { + "start": 8720.54, + "end": 8724.18, + "probability": 0.9714 + }, + { + "start": 8724.78, + "end": 8728.72, + "probability": 0.985 + }, + { + "start": 8731.38, + "end": 8731.68, + "probability": 0.7267 + }, + { + "start": 8732.46, + "end": 8733.78, + "probability": 0.9213 + }, + { + "start": 8734.18, + "end": 8736.0, + "probability": 0.996 + }, + { + "start": 8736.56, + "end": 8741.08, + "probability": 0.6747 + }, + { + "start": 8741.96, + "end": 8745.2, + "probability": 0.5669 + }, + { + "start": 8745.34, + "end": 8745.9, + "probability": 0.3812 + }, + { + "start": 8746.02, + "end": 8746.64, + "probability": 0.364 + }, + { + "start": 8747.26, + "end": 8748.96, + "probability": 0.7456 + }, + { + "start": 8750.27, + "end": 8751.91, + "probability": 0.3431 + }, + { + "start": 8753.3, + "end": 8758.72, + "probability": 0.8322 + }, + { + "start": 8759.2, + "end": 8764.08, + "probability": 0.9906 + }, + { + "start": 8767.32, + "end": 8769.18, + "probability": 0.5633 + }, + { + "start": 8769.28, + "end": 8772.26, + "probability": 0.7546 + }, + { + "start": 8773.98, + "end": 8776.1, + "probability": 0.561 + }, + { + "start": 8776.24, + "end": 8778.5, + "probability": 0.8203 + }, + { + "start": 8779.6, + "end": 8783.28, + "probability": 0.6546 + }, + { + "start": 8783.58, + "end": 8783.72, + "probability": 0.6412 + }, + { + "start": 8783.72, + "end": 8783.82, + "probability": 0.685 + }, + { + "start": 8785.66, + "end": 8785.98, + "probability": 0.4514 + }, + { + "start": 8786.74, + "end": 8787.1, + "probability": 0.8157 + }, + { + "start": 8787.48, + "end": 8788.28, + "probability": 0.2872 + }, + { + "start": 8788.62, + "end": 8788.74, + "probability": 0.3901 + }, + { + "start": 8788.76, + "end": 8789.12, + "probability": 0.2228 + }, + { + "start": 8789.22, + "end": 8791.92, + "probability": 0.7432 + }, + { + "start": 8792.32, + "end": 8792.32, + "probability": 0.4441 + }, + { + "start": 8792.32, + "end": 8793.64, + "probability": 0.6903 + }, + { + "start": 8793.74, + "end": 8797.74, + "probability": 0.24 + }, + { + "start": 8797.74, + "end": 8800.62, + "probability": 0.6856 + }, + { + "start": 8800.7, + "end": 8801.6, + "probability": 0.0424 + }, + { + "start": 8802.18, + "end": 8804.36, + "probability": 0.6545 + }, + { + "start": 8804.74, + "end": 8805.34, + "probability": 0.6709 + }, + { + "start": 8805.36, + "end": 8806.04, + "probability": 0.8233 + }, + { + "start": 8806.78, + "end": 8810.24, + "probability": 0.0052 + }, + { + "start": 8811.28, + "end": 8813.82, + "probability": 0.0913 + }, + { + "start": 8825.9, + "end": 8827.52, + "probability": 0.7108 + }, + { + "start": 8827.88, + "end": 8828.1, + "probability": 0.2285 + }, + { + "start": 8828.26, + "end": 8830.5, + "probability": 0.7511 + }, + { + "start": 8830.78, + "end": 8832.64, + "probability": 0.6909 + }, + { + "start": 8832.94, + "end": 8835.08, + "probability": 0.9299 + }, + { + "start": 8835.08, + "end": 8836.12, + "probability": 0.788 + }, + { + "start": 8836.8, + "end": 8837.58, + "probability": 0.6935 + }, + { + "start": 8838.22, + "end": 8839.08, + "probability": 0.8076 + }, + { + "start": 8839.48, + "end": 8839.88, + "probability": 0.8134 + }, + { + "start": 8841.6, + "end": 8846.08, + "probability": 0.5082 + }, + { + "start": 8846.26, + "end": 8847.28, + "probability": 0.1111 + }, + { + "start": 8847.82, + "end": 8848.28, + "probability": 0.1064 + }, + { + "start": 8856.28, + "end": 8858.02, + "probability": 0.3595 + }, + { + "start": 8858.12, + "end": 8858.32, + "probability": 0.3292 + }, + { + "start": 8858.38, + "end": 8860.64, + "probability": 0.7992 + }, + { + "start": 8860.86, + "end": 8861.96, + "probability": 0.2161 + }, + { + "start": 8862.16, + "end": 8865.36, + "probability": 0.7994 + }, + { + "start": 8865.36, + "end": 8868.34, + "probability": 0.9937 + }, + { + "start": 8874.46, + "end": 8875.82, + "probability": 0.6252 + }, + { + "start": 8876.5, + "end": 8878.1, + "probability": 0.7539 + }, + { + "start": 8879.46, + "end": 8882.48, + "probability": 0.913 + }, + { + "start": 8883.64, + "end": 8884.06, + "probability": 0.1736 + }, + { + "start": 8884.06, + "end": 8884.06, + "probability": 0.241 + }, + { + "start": 8884.06, + "end": 8886.06, + "probability": 0.7318 + }, + { + "start": 8887.22, + "end": 8888.16, + "probability": 0.8257 + }, + { + "start": 8888.78, + "end": 8892.22, + "probability": 0.9834 + }, + { + "start": 8892.22, + "end": 8895.06, + "probability": 0.964 + }, + { + "start": 8895.72, + "end": 8898.34, + "probability": 0.9946 + }, + { + "start": 8898.6, + "end": 8900.08, + "probability": 0.9963 + }, + { + "start": 8900.88, + "end": 8904.53, + "probability": 0.7196 + }, + { + "start": 8905.58, + "end": 8907.4, + "probability": 0.9655 + }, + { + "start": 8907.86, + "end": 8910.82, + "probability": 0.9906 + }, + { + "start": 8911.0, + "end": 8911.96, + "probability": 0.9709 + }, + { + "start": 8912.14, + "end": 8913.26, + "probability": 0.9951 + }, + { + "start": 8913.36, + "end": 8914.42, + "probability": 0.9241 + }, + { + "start": 8915.54, + "end": 8918.08, + "probability": 0.7591 + }, + { + "start": 8918.16, + "end": 8922.72, + "probability": 0.9737 + }, + { + "start": 8922.8, + "end": 8924.08, + "probability": 0.9067 + }, + { + "start": 8924.18, + "end": 8925.98, + "probability": 0.9971 + }, + { + "start": 8926.64, + "end": 8928.16, + "probability": 0.9946 + }, + { + "start": 8928.82, + "end": 8929.58, + "probability": 0.9988 + }, + { + "start": 8931.6, + "end": 8932.56, + "probability": 0.9644 + }, + { + "start": 8932.66, + "end": 8934.15, + "probability": 0.8007 + }, + { + "start": 8934.42, + "end": 8936.28, + "probability": 0.9971 + }, + { + "start": 8936.76, + "end": 8939.92, + "probability": 0.8647 + }, + { + "start": 8941.14, + "end": 8943.24, + "probability": 0.8504 + }, + { + "start": 8943.3, + "end": 8944.54, + "probability": 0.9829 + }, + { + "start": 8944.86, + "end": 8945.94, + "probability": 0.6189 + }, + { + "start": 8946.08, + "end": 8949.98, + "probability": 0.8787 + }, + { + "start": 8950.14, + "end": 8954.74, + "probability": 0.9512 + }, + { + "start": 8956.28, + "end": 8958.12, + "probability": 0.938 + }, + { + "start": 8958.6, + "end": 8960.54, + "probability": 0.7359 + }, + { + "start": 8960.68, + "end": 8963.78, + "probability": 0.9759 + }, + { + "start": 8963.94, + "end": 8964.66, + "probability": 0.5712 + }, + { + "start": 8965.96, + "end": 8967.4, + "probability": 0.6929 + }, + { + "start": 8967.4, + "end": 8970.08, + "probability": 0.5698 + }, + { + "start": 8979.98, + "end": 8981.04, + "probability": 0.3215 + }, + { + "start": 8981.04, + "end": 8981.9, + "probability": 0.388 + }, + { + "start": 8982.48, + "end": 8984.58, + "probability": 0.6703 + }, + { + "start": 8987.08, + "end": 8993.74, + "probability": 0.4643 + }, + { + "start": 8994.88, + "end": 8999.96, + "probability": 0.9437 + }, + { + "start": 8999.96, + "end": 9002.81, + "probability": 0.9885 + }, + { + "start": 9003.34, + "end": 9007.96, + "probability": 0.9712 + }, + { + "start": 9008.88, + "end": 9012.86, + "probability": 0.6622 + }, + { + "start": 9012.86, + "end": 9015.56, + "probability": 0.8237 + }, + { + "start": 9016.3, + "end": 9022.38, + "probability": 0.9162 + }, + { + "start": 9023.55, + "end": 9026.12, + "probability": 0.9429 + }, + { + "start": 9026.96, + "end": 9027.74, + "probability": 0.3299 + }, + { + "start": 9027.78, + "end": 9028.06, + "probability": 0.5338 + }, + { + "start": 9028.06, + "end": 9028.96, + "probability": 0.8087 + }, + { + "start": 9029.46, + "end": 9033.06, + "probability": 0.7793 + }, + { + "start": 9033.24, + "end": 9039.08, + "probability": 0.6783 + }, + { + "start": 9039.3, + "end": 9041.48, + "probability": 0.9506 + }, + { + "start": 9042.06, + "end": 9048.8, + "probability": 0.855 + }, + { + "start": 9048.8, + "end": 9056.42, + "probability": 0.9826 + }, + { + "start": 9056.92, + "end": 9062.8, + "probability": 0.9987 + }, + { + "start": 9063.36, + "end": 9065.32, + "probability": 0.6792 + }, + { + "start": 9065.46, + "end": 9066.74, + "probability": 0.8157 + }, + { + "start": 9067.44, + "end": 9074.06, + "probability": 0.9243 + }, + { + "start": 9074.12, + "end": 9076.26, + "probability": 0.962 + }, + { + "start": 9077.49, + "end": 9079.56, + "probability": 0.9939 + }, + { + "start": 9079.78, + "end": 9084.0, + "probability": 0.6703 + }, + { + "start": 9084.26, + "end": 9087.12, + "probability": 0.7681 + }, + { + "start": 9087.6, + "end": 9091.21, + "probability": 0.9911 + }, + { + "start": 9091.66, + "end": 9097.56, + "probability": 0.9663 + }, + { + "start": 9097.68, + "end": 9097.92, + "probability": 0.7412 + }, + { + "start": 9098.88, + "end": 9100.52, + "probability": 0.727 + }, + { + "start": 9101.34, + "end": 9106.1, + "probability": 0.7221 + }, + { + "start": 9106.12, + "end": 9107.64, + "probability": 0.3389 + }, + { + "start": 9107.8, + "end": 9110.18, + "probability": 0.9632 + }, + { + "start": 9110.28, + "end": 9112.74, + "probability": 0.9229 + }, + { + "start": 9112.88, + "end": 9115.14, + "probability": 0.822 + }, + { + "start": 9115.18, + "end": 9115.88, + "probability": 0.8753 + }, + { + "start": 9138.18, + "end": 9140.3, + "probability": 0.6348 + }, + { + "start": 9141.12, + "end": 9144.84, + "probability": 0.9937 + }, + { + "start": 9145.36, + "end": 9150.04, + "probability": 0.8002 + }, + { + "start": 9150.14, + "end": 9151.7, + "probability": 0.4969 + }, + { + "start": 9152.26, + "end": 9157.6, + "probability": 0.9537 + }, + { + "start": 9158.24, + "end": 9160.92, + "probability": 0.9816 + }, + { + "start": 9161.66, + "end": 9164.32, + "probability": 0.9797 + }, + { + "start": 9164.52, + "end": 9165.8, + "probability": 0.8144 + }, + { + "start": 9165.9, + "end": 9167.34, + "probability": 0.5622 + }, + { + "start": 9167.34, + "end": 9168.74, + "probability": 0.9302 + }, + { + "start": 9168.82, + "end": 9169.5, + "probability": 0.4497 + }, + { + "start": 9169.6, + "end": 9171.3, + "probability": 0.7803 + }, + { + "start": 9171.84, + "end": 9173.72, + "probability": 0.6458 + }, + { + "start": 9173.8, + "end": 9174.4, + "probability": 0.5916 + }, + { + "start": 9174.74, + "end": 9177.1, + "probability": 0.9124 + }, + { + "start": 9178.38, + "end": 9182.3, + "probability": 0.8154 + }, + { + "start": 9184.84, + "end": 9184.96, + "probability": 0.0451 + }, + { + "start": 9184.96, + "end": 9184.96, + "probability": 0.0977 + }, + { + "start": 9184.96, + "end": 9186.42, + "probability": 0.3729 + }, + { + "start": 9189.98, + "end": 9193.24, + "probability": 0.8723 + }, + { + "start": 9193.7, + "end": 9198.76, + "probability": 0.9792 + }, + { + "start": 9199.36, + "end": 9199.9, + "probability": 0.7882 + }, + { + "start": 9201.02, + "end": 9203.5, + "probability": 0.6681 + }, + { + "start": 9203.64, + "end": 9208.02, + "probability": 0.9445 + }, + { + "start": 9208.24, + "end": 9209.22, + "probability": 0.2669 + }, + { + "start": 9209.66, + "end": 9215.98, + "probability": 0.8018 + }, + { + "start": 9216.67, + "end": 9224.32, + "probability": 0.9304 + }, + { + "start": 9224.32, + "end": 9230.46, + "probability": 0.9914 + }, + { + "start": 9231.02, + "end": 9235.4, + "probability": 0.9993 + }, + { + "start": 9236.28, + "end": 9240.26, + "probability": 0.5267 + }, + { + "start": 9241.2, + "end": 9249.24, + "probability": 0.7651 + }, + { + "start": 9249.52, + "end": 9252.78, + "probability": 0.7727 + }, + { + "start": 9253.22, + "end": 9258.94, + "probability": 0.9819 + }, + { + "start": 9261.84, + "end": 9264.84, + "probability": 0.8157 + }, + { + "start": 9265.32, + "end": 9271.52, + "probability": 0.9932 + }, + { + "start": 9271.52, + "end": 9275.74, + "probability": 0.8542 + }, + { + "start": 9276.28, + "end": 9279.54, + "probability": 0.9963 + }, + { + "start": 9279.54, + "end": 9285.66, + "probability": 0.9637 + }, + { + "start": 9286.0, + "end": 9291.86, + "probability": 0.9557 + }, + { + "start": 9292.66, + "end": 9296.38, + "probability": 0.5028 + }, + { + "start": 9297.12, + "end": 9299.3, + "probability": 0.9922 + }, + { + "start": 9300.14, + "end": 9305.64, + "probability": 0.9967 + }, + { + "start": 9306.02, + "end": 9306.48, + "probability": 0.7982 + }, + { + "start": 9307.34, + "end": 9312.86, + "probability": 0.9124 + }, + { + "start": 9313.18, + "end": 9313.36, + "probability": 0.312 + }, + { + "start": 9313.46, + "end": 9313.66, + "probability": 0.3864 + }, + { + "start": 9313.82, + "end": 9314.8, + "probability": 0.6525 + }, + { + "start": 9315.42, + "end": 9318.78, + "probability": 0.8981 + }, + { + "start": 9318.96, + "end": 9319.64, + "probability": 0.707 + }, + { + "start": 9319.72, + "end": 9323.74, + "probability": 0.7167 + }, + { + "start": 9324.22, + "end": 9327.0, + "probability": 0.8063 + }, + { + "start": 9327.6, + "end": 9328.22, + "probability": 0.879 + }, + { + "start": 9328.5, + "end": 9330.66, + "probability": 0.7628 + }, + { + "start": 9330.84, + "end": 9331.3, + "probability": 0.7739 + }, + { + "start": 9331.48, + "end": 9335.8, + "probability": 0.9217 + }, + { + "start": 9335.94, + "end": 9338.3, + "probability": 0.9724 + }, + { + "start": 9339.36, + "end": 9339.7, + "probability": 0.0909 + }, + { + "start": 9340.28, + "end": 9341.72, + "probability": 0.6145 + }, + { + "start": 9341.72, + "end": 9342.56, + "probability": 0.3246 + }, + { + "start": 9342.92, + "end": 9347.78, + "probability": 0.6384 + }, + { + "start": 9348.4, + "end": 9351.68, + "probability": 0.5982 + }, + { + "start": 9351.9, + "end": 9355.54, + "probability": 0.9836 + }, + { + "start": 9356.18, + "end": 9356.74, + "probability": 0.6435 + }, + { + "start": 9356.84, + "end": 9357.36, + "probability": 0.6779 + }, + { + "start": 9357.42, + "end": 9358.1, + "probability": 0.8506 + }, + { + "start": 9358.78, + "end": 9361.16, + "probability": 0.0025 + }, + { + "start": 9362.98, + "end": 9363.18, + "probability": 0.0 + }, + { + "start": 9372.76, + "end": 9373.46, + "probability": 0.0935 + }, + { + "start": 9374.84, + "end": 9377.58, + "probability": 0.6496 + }, + { + "start": 9378.08, + "end": 9379.98, + "probability": 0.9155 + }, + { + "start": 9380.1, + "end": 9385.48, + "probability": 0.8584 + }, + { + "start": 9386.02, + "end": 9387.1, + "probability": 0.5596 + }, + { + "start": 9388.04, + "end": 9388.5, + "probability": 0.5853 + }, + { + "start": 9388.62, + "end": 9388.88, + "probability": 0.7287 + }, + { + "start": 9389.08, + "end": 9389.68, + "probability": 0.7505 + }, + { + "start": 9393.88, + "end": 9397.86, + "probability": 0.2697 + }, + { + "start": 9398.36, + "end": 9398.62, + "probability": 0.0941 + }, + { + "start": 9399.08, + "end": 9399.44, + "probability": 0.0915 + }, + { + "start": 9406.18, + "end": 9408.72, + "probability": 0.7316 + }, + { + "start": 9409.14, + "end": 9411.26, + "probability": 0.8665 + }, + { + "start": 9411.44, + "end": 9412.48, + "probability": 0.1843 + }, + { + "start": 9412.66, + "end": 9417.2, + "probability": 0.9854 + }, + { + "start": 9417.64, + "end": 9417.9, + "probability": 0.3131 + }, + { + "start": 9418.02, + "end": 9420.08, + "probability": 0.8932 + }, + { + "start": 9420.54, + "end": 9422.16, + "probability": 0.785 + }, + { + "start": 9422.44, + "end": 9422.74, + "probability": 0.6056 + }, + { + "start": 9423.24, + "end": 9423.54, + "probability": 0.0121 + }, + { + "start": 9424.22, + "end": 9424.6, + "probability": 0.3289 + }, + { + "start": 9424.92, + "end": 9425.38, + "probability": 0.6999 + }, + { + "start": 9425.46, + "end": 9426.34, + "probability": 0.7052 + }, + { + "start": 9426.56, + "end": 9426.96, + "probability": 0.9056 + }, + { + "start": 9427.04, + "end": 9429.0, + "probability": 0.9137 + }, + { + "start": 9429.94, + "end": 9431.04, + "probability": 0.7705 + }, + { + "start": 9431.16, + "end": 9433.98, + "probability": 0.8425 + }, + { + "start": 9435.14, + "end": 9435.62, + "probability": 0.9362 + }, + { + "start": 9436.48, + "end": 9440.18, + "probability": 0.9448 + }, + { + "start": 9440.22, + "end": 9442.0, + "probability": 0.7374 + }, + { + "start": 9442.76, + "end": 9444.6, + "probability": 0.6742 + }, + { + "start": 9445.62, + "end": 9448.76, + "probability": 0.9424 + }, + { + "start": 9448.78, + "end": 9450.18, + "probability": 0.725 + }, + { + "start": 9450.26, + "end": 9452.27, + "probability": 0.7356 + }, + { + "start": 9452.76, + "end": 9454.62, + "probability": 0.9857 + }, + { + "start": 9455.32, + "end": 9458.36, + "probability": 0.8709 + }, + { + "start": 9458.54, + "end": 9459.58, + "probability": 0.8504 + }, + { + "start": 9459.68, + "end": 9461.3, + "probability": 0.8698 + }, + { + "start": 9462.04, + "end": 9464.32, + "probability": 0.8856 + }, + { + "start": 9465.24, + "end": 9469.06, + "probability": 0.979 + }, + { + "start": 9469.12, + "end": 9470.16, + "probability": 0.9651 + }, + { + "start": 9470.26, + "end": 9472.68, + "probability": 0.9136 + }, + { + "start": 9473.08, + "end": 9473.6, + "probability": 0.5899 + }, + { + "start": 9473.7, + "end": 9478.36, + "probability": 0.985 + }, + { + "start": 9479.3, + "end": 9480.82, + "probability": 0.766 + }, + { + "start": 9481.08, + "end": 9481.96, + "probability": 0.9351 + }, + { + "start": 9482.18, + "end": 9485.46, + "probability": 0.79 + }, + { + "start": 9485.6, + "end": 9486.06, + "probability": 0.4776 + }, + { + "start": 9486.72, + "end": 9490.26, + "probability": 0.8998 + }, + { + "start": 9493.2, + "end": 9495.3, + "probability": 0.7138 + }, + { + "start": 9495.9, + "end": 9497.02, + "probability": 0.9985 + }, + { + "start": 9497.64, + "end": 9499.92, + "probability": 0.8498 + }, + { + "start": 9500.76, + "end": 9503.46, + "probability": 0.98 + }, + { + "start": 9503.56, + "end": 9505.68, + "probability": 0.4699 + }, + { + "start": 9505.82, + "end": 9507.42, + "probability": 0.6528 + }, + { + "start": 9507.78, + "end": 9508.8, + "probability": 0.5698 + }, + { + "start": 9509.58, + "end": 9512.78, + "probability": 0.7621 + }, + { + "start": 9513.22, + "end": 9515.66, + "probability": 0.8831 + }, + { + "start": 9515.98, + "end": 9519.7, + "probability": 0.9408 + }, + { + "start": 9520.02, + "end": 9521.32, + "probability": 0.9928 + }, + { + "start": 9521.44, + "end": 9522.04, + "probability": 0.8494 + }, + { + "start": 9522.88, + "end": 9524.44, + "probability": 0.7496 + }, + { + "start": 9524.84, + "end": 9529.04, + "probability": 0.7466 + }, + { + "start": 9529.74, + "end": 9531.2, + "probability": 0.7124 + }, + { + "start": 9531.38, + "end": 9533.38, + "probability": 0.8219 + }, + { + "start": 9533.5, + "end": 9535.68, + "probability": 0.722 + }, + { + "start": 9535.82, + "end": 9536.22, + "probability": 0.8469 + }, + { + "start": 9537.7, + "end": 9537.82, + "probability": 0.0272 + }, + { + "start": 9541.2, + "end": 9542.98, + "probability": 0.0977 + }, + { + "start": 9543.9, + "end": 9543.9, + "probability": 0.0061 + }, + { + "start": 9545.52, + "end": 9546.02, + "probability": 0.6667 + }, + { + "start": 9547.28, + "end": 9548.9, + "probability": 0.9225 + }, + { + "start": 9549.22, + "end": 9550.08, + "probability": 0.6943 + }, + { + "start": 9557.88, + "end": 9559.7, + "probability": 0.6424 + }, + { + "start": 9560.86, + "end": 9564.12, + "probability": 0.9895 + }, + { + "start": 9564.12, + "end": 9568.66, + "probability": 0.9932 + }, + { + "start": 9569.28, + "end": 9573.74, + "probability": 0.9854 + }, + { + "start": 9574.4, + "end": 9576.74, + "probability": 0.9619 + }, + { + "start": 9577.88, + "end": 9578.36, + "probability": 0.6871 + }, + { + "start": 9578.42, + "end": 9580.08, + "probability": 0.8475 + }, + { + "start": 9581.43, + "end": 9585.9, + "probability": 0.9611 + }, + { + "start": 9587.22, + "end": 9587.86, + "probability": 0.8828 + }, + { + "start": 9588.94, + "end": 9589.58, + "probability": 0.7283 + }, + { + "start": 9592.32, + "end": 9593.18, + "probability": 0.9976 + }, + { + "start": 9594.76, + "end": 9600.84, + "probability": 0.9387 + }, + { + "start": 9601.52, + "end": 9608.52, + "probability": 0.9565 + }, + { + "start": 9609.26, + "end": 9609.48, + "probability": 0.1931 + }, + { + "start": 9609.62, + "end": 9612.26, + "probability": 0.8003 + }, + { + "start": 9612.26, + "end": 9616.14, + "probability": 0.9818 + }, + { + "start": 9616.58, + "end": 9617.66, + "probability": 0.5823 + }, + { + "start": 9617.74, + "end": 9620.76, + "probability": 0.9977 + }, + { + "start": 9621.24, + "end": 9622.52, + "probability": 0.9585 + }, + { + "start": 9623.16, + "end": 9627.78, + "probability": 0.9666 + }, + { + "start": 9628.14, + "end": 9634.76, + "probability": 0.8629 + }, + { + "start": 9635.31, + "end": 9640.04, + "probability": 0.9653 + }, + { + "start": 9640.52, + "end": 9640.9, + "probability": 0.6846 + }, + { + "start": 9641.58, + "end": 9643.1, + "probability": 0.8367 + }, + { + "start": 9643.98, + "end": 9646.04, + "probability": 0.9519 + }, + { + "start": 9646.56, + "end": 9646.56, + "probability": 0.1781 + }, + { + "start": 9646.62, + "end": 9647.42, + "probability": 0.3879 + }, + { + "start": 9647.54, + "end": 9648.94, + "probability": 0.5493 + }, + { + "start": 9648.98, + "end": 9649.38, + "probability": 0.0366 + }, + { + "start": 9649.38, + "end": 9649.38, + "probability": 0.0206 + }, + { + "start": 9649.38, + "end": 9652.78, + "probability": 0.5612 + }, + { + "start": 9652.84, + "end": 9654.52, + "probability": 0.1489 + }, + { + "start": 9655.4, + "end": 9657.06, + "probability": 0.4353 + }, + { + "start": 9658.24, + "end": 9663.16, + "probability": 0.855 + }, + { + "start": 9663.98, + "end": 9666.76, + "probability": 0.9547 + }, + { + "start": 9667.26, + "end": 9667.86, + "probability": 0.9802 + }, + { + "start": 9668.42, + "end": 9671.36, + "probability": 0.9282 + }, + { + "start": 9672.22, + "end": 9675.68, + "probability": 0.8639 + }, + { + "start": 9675.76, + "end": 9678.84, + "probability": 0.972 + }, + { + "start": 9679.26, + "end": 9682.44, + "probability": 0.9947 + }, + { + "start": 9682.46, + "end": 9685.96, + "probability": 0.916 + }, + { + "start": 9686.48, + "end": 9693.16, + "probability": 0.9941 + }, + { + "start": 9693.98, + "end": 9694.5, + "probability": 0.6826 + }, + { + "start": 9695.12, + "end": 9700.8, + "probability": 0.9969 + }, + { + "start": 9701.32, + "end": 9707.38, + "probability": 0.9013 + }, + { + "start": 9707.38, + "end": 9714.2, + "probability": 0.9951 + }, + { + "start": 9714.86, + "end": 9718.22, + "probability": 0.9987 + }, + { + "start": 9718.22, + "end": 9722.32, + "probability": 0.998 + }, + { + "start": 9723.02, + "end": 9726.04, + "probability": 0.9545 + }, + { + "start": 9726.56, + "end": 9729.16, + "probability": 0.7856 + }, + { + "start": 9729.52, + "end": 9732.8, + "probability": 0.9692 + }, + { + "start": 9732.8, + "end": 9737.42, + "probability": 0.9567 + }, + { + "start": 9738.3, + "end": 9743.7, + "probability": 0.9791 + }, + { + "start": 9744.26, + "end": 9749.62, + "probability": 0.9882 + }, + { + "start": 9749.62, + "end": 9755.66, + "probability": 0.9854 + }, + { + "start": 9756.26, + "end": 9759.64, + "probability": 0.9476 + }, + { + "start": 9759.64, + "end": 9763.06, + "probability": 0.9949 + }, + { + "start": 9763.72, + "end": 9767.62, + "probability": 0.985 + }, + { + "start": 9768.1, + "end": 9769.88, + "probability": 0.9454 + }, + { + "start": 9770.94, + "end": 9772.24, + "probability": 0.836 + }, + { + "start": 9772.8, + "end": 9778.04, + "probability": 0.9764 + }, + { + "start": 9778.04, + "end": 9784.06, + "probability": 0.992 + }, + { + "start": 9784.62, + "end": 9786.63, + "probability": 0.9862 + }, + { + "start": 9787.2, + "end": 9789.82, + "probability": 0.9659 + }, + { + "start": 9789.82, + "end": 9793.88, + "probability": 0.9569 + }, + { + "start": 9794.8, + "end": 9795.24, + "probability": 0.7834 + }, + { + "start": 9796.06, + "end": 9800.5, + "probability": 0.9695 + }, + { + "start": 9800.64, + "end": 9801.94, + "probability": 0.8236 + }, + { + "start": 9802.18, + "end": 9802.38, + "probability": 0.3821 + }, + { + "start": 9802.5, + "end": 9802.92, + "probability": 0.8558 + }, + { + "start": 9803.0, + "end": 9803.7, + "probability": 0.7651 + }, + { + "start": 9804.4, + "end": 9806.98, + "probability": 0.7952 + }, + { + "start": 9807.34, + "end": 9811.38, + "probability": 0.8818 + }, + { + "start": 9812.1, + "end": 9813.24, + "probability": 0.7772 + }, + { + "start": 9814.1, + "end": 9819.94, + "probability": 0.9922 + }, + { + "start": 9819.98, + "end": 9820.22, + "probability": 0.804 + }, + { + "start": 9820.86, + "end": 9822.13, + "probability": 0.6392 + }, + { + "start": 9822.54, + "end": 9825.12, + "probability": 0.9288 + }, + { + "start": 9825.9, + "end": 9827.48, + "probability": 0.4162 + }, + { + "start": 9828.46, + "end": 9830.66, + "probability": 0.9185 + }, + { + "start": 9830.94, + "end": 9832.38, + "probability": 0.6829 + }, + { + "start": 9832.42, + "end": 9833.82, + "probability": 0.5453 + }, + { + "start": 9834.24, + "end": 9835.24, + "probability": 0.5497 + }, + { + "start": 9838.44, + "end": 9839.0, + "probability": 0.3559 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.3382 + }, + { + "start": 9839.0, + "end": 9839.56, + "probability": 0.5655 + }, + { + "start": 9840.12, + "end": 9841.71, + "probability": 0.8743 + }, + { + "start": 9843.06, + "end": 9844.02, + "probability": 0.2146 + }, + { + "start": 9844.14, + "end": 9844.8, + "probability": 0.6322 + }, + { + "start": 9848.1, + "end": 9849.1, + "probability": 0.0527 + }, + { + "start": 9853.18, + "end": 9853.18, + "probability": 0.4903 + }, + { + "start": 9853.28, + "end": 9854.16, + "probability": 0.8283 + }, + { + "start": 9854.64, + "end": 9863.6, + "probability": 0.9728 + }, + { + "start": 9863.76, + "end": 9867.04, + "probability": 0.8948 + }, + { + "start": 9867.78, + "end": 9868.6, + "probability": 0.7903 + }, + { + "start": 9869.02, + "end": 9871.27, + "probability": 0.9741 + }, + { + "start": 9871.76, + "end": 9872.74, + "probability": 0.7734 + }, + { + "start": 9872.92, + "end": 9874.06, + "probability": 0.8947 + }, + { + "start": 9874.68, + "end": 9877.9, + "probability": 0.724 + }, + { + "start": 9878.28, + "end": 9878.74, + "probability": 0.7979 + }, + { + "start": 9878.8, + "end": 9881.38, + "probability": 0.9011 + }, + { + "start": 9881.5, + "end": 9884.1, + "probability": 0.9448 + }, + { + "start": 9884.34, + "end": 9885.8, + "probability": 0.8319 + }, + { + "start": 9886.7, + "end": 9890.04, + "probability": 0.7976 + }, + { + "start": 9894.67, + "end": 9896.06, + "probability": 0.8821 + }, + { + "start": 9899.8, + "end": 9900.0, + "probability": 0.7661 + }, + { + "start": 9900.1, + "end": 9905.26, + "probability": 0.8442 + }, + { + "start": 9905.26, + "end": 9911.54, + "probability": 0.4832 + }, + { + "start": 9912.82, + "end": 9916.56, + "probability": 0.8231 + }, + { + "start": 9917.12, + "end": 9918.46, + "probability": 0.8481 + }, + { + "start": 9918.88, + "end": 9921.34, + "probability": 0.6482 + }, + { + "start": 9921.4, + "end": 9921.84, + "probability": 0.3754 + }, + { + "start": 9921.86, + "end": 9922.36, + "probability": 0.6128 + }, + { + "start": 9922.38, + "end": 9922.98, + "probability": 0.791 + }, + { + "start": 9925.8, + "end": 9928.56, + "probability": 0.0042 + }, + { + "start": 9938.8, + "end": 9939.42, + "probability": 0.0096 + }, + { + "start": 9939.42, + "end": 9941.78, + "probability": 0.6866 + }, + { + "start": 9942.44, + "end": 9944.14, + "probability": 0.939 + }, + { + "start": 9944.18, + "end": 9948.46, + "probability": 0.6799 + }, + { + "start": 9949.82, + "end": 9950.58, + "probability": 0.6188 + }, + { + "start": 9951.66, + "end": 9952.14, + "probability": 0.6506 + }, + { + "start": 9952.18, + "end": 9952.48, + "probability": 0.809 + }, + { + "start": 9954.12, + "end": 9957.1, + "probability": 0.3821 + }, + { + "start": 9957.88, + "end": 9958.86, + "probability": 0.419 + }, + { + "start": 9961.58, + "end": 9963.58, + "probability": 0.1373 + }, + { + "start": 9968.62, + "end": 9970.76, + "probability": 0.3614 + }, + { + "start": 9970.9, + "end": 9973.4, + "probability": 0.6517 + }, + { + "start": 9973.96, + "end": 9975.62, + "probability": 0.4166 + }, + { + "start": 9975.9, + "end": 9976.42, + "probability": 0.689 + }, + { + "start": 9977.04, + "end": 9979.76, + "probability": 0.7945 + }, + { + "start": 9979.94, + "end": 9983.34, + "probability": 0.4655 + }, + { + "start": 9983.34, + "end": 9985.04, + "probability": 0.7693 + }, + { + "start": 9985.06, + "end": 9985.18, + "probability": 0.7565 + }, + { + "start": 9985.9, + "end": 9988.14, + "probability": 0.9838 + }, + { + "start": 9988.86, + "end": 9991.28, + "probability": 0.9141 + }, + { + "start": 9992.1, + "end": 9994.06, + "probability": 0.9854 + }, + { + "start": 9994.66, + "end": 9995.84, + "probability": 0.9501 + }, + { + "start": 9996.5, + "end": 10001.34, + "probability": 0.9204 + }, + { + "start": 10001.94, + "end": 10003.2, + "probability": 0.9802 + }, + { + "start": 10003.32, + "end": 10009.94, + "probability": 0.9897 + }, + { + "start": 10011.18, + "end": 10013.76, + "probability": 0.7472 + }, + { + "start": 10014.34, + "end": 10017.62, + "probability": 0.9954 + }, + { + "start": 10018.64, + "end": 10024.98, + "probability": 0.942 + }, + { + "start": 10025.46, + "end": 10031.84, + "probability": 0.9574 + }, + { + "start": 10032.46, + "end": 10034.82, + "probability": 0.9949 + }, + { + "start": 10035.28, + "end": 10037.52, + "probability": 0.9969 + }, + { + "start": 10038.16, + "end": 10043.44, + "probability": 0.9958 + }, + { + "start": 10044.12, + "end": 10049.26, + "probability": 0.8436 + }, + { + "start": 10049.66, + "end": 10050.98, + "probability": 0.7608 + }, + { + "start": 10052.7, + "end": 10054.14, + "probability": 0.811 + }, + { + "start": 10054.72, + "end": 10057.6, + "probability": 0.9878 + }, + { + "start": 10057.6, + "end": 10059.78, + "probability": 0.3805 + }, + { + "start": 10060.84, + "end": 10063.38, + "probability": 0.9008 + }, + { + "start": 10064.08, + "end": 10066.7, + "probability": 0.8708 + }, + { + "start": 10067.24, + "end": 10068.76, + "probability": 0.9728 + }, + { + "start": 10069.08, + "end": 10069.94, + "probability": 0.9585 + }, + { + "start": 10070.36, + "end": 10070.62, + "probability": 0.7952 + }, + { + "start": 10071.3, + "end": 10072.06, + "probability": 0.7065 + }, + { + "start": 10072.22, + "end": 10073.3, + "probability": 0.5223 + }, + { + "start": 10074.28, + "end": 10076.22, + "probability": 0.8547 + }, + { + "start": 10076.92, + "end": 10078.5, + "probability": 0.9718 + }, + { + "start": 10078.58, + "end": 10079.2, + "probability": 0.6024 + }, + { + "start": 10079.3, + "end": 10079.88, + "probability": 0.2444 + }, + { + "start": 10080.64, + "end": 10081.26, + "probability": 0.377 + }, + { + "start": 10081.84, + "end": 10083.36, + "probability": 0.9103 + }, + { + "start": 10083.5, + "end": 10085.39, + "probability": 0.5781 + }, + { + "start": 10086.1, + "end": 10086.98, + "probability": 0.75 + }, + { + "start": 10087.1, + "end": 10089.66, + "probability": 0.6444 + }, + { + "start": 10089.76, + "end": 10090.48, + "probability": 0.6689 + }, + { + "start": 10094.56, + "end": 10100.76, + "probability": 0.9735 + }, + { + "start": 10101.6, + "end": 10103.56, + "probability": 0.8864 + }, + { + "start": 10104.96, + "end": 10105.6, + "probability": 0.557 + }, + { + "start": 10105.72, + "end": 10106.1, + "probability": 0.8906 + }, + { + "start": 10106.32, + "end": 10111.02, + "probability": 0.9948 + }, + { + "start": 10111.12, + "end": 10111.64, + "probability": 0.4691 + }, + { + "start": 10112.24, + "end": 10117.78, + "probability": 0.7481 + }, + { + "start": 10119.28, + "end": 10121.94, + "probability": 0.7555 + }, + { + "start": 10123.76, + "end": 10126.5, + "probability": 0.9937 + }, + { + "start": 10128.58, + "end": 10132.28, + "probability": 0.9692 + }, + { + "start": 10133.26, + "end": 10134.62, + "probability": 0.6412 + }, + { + "start": 10134.9, + "end": 10138.62, + "probability": 0.7322 + }, + { + "start": 10138.96, + "end": 10143.62, + "probability": 0.9741 + }, + { + "start": 10144.04, + "end": 10144.64, + "probability": 0.7657 + }, + { + "start": 10145.4, + "end": 10146.14, + "probability": 0.5375 + }, + { + "start": 10147.06, + "end": 10148.54, + "probability": 0.8056 + }, + { + "start": 10148.6, + "end": 10154.34, + "probability": 0.8059 + }, + { + "start": 10155.12, + "end": 10157.28, + "probability": 0.9907 + }, + { + "start": 10158.1, + "end": 10160.42, + "probability": 0.9956 + }, + { + "start": 10161.14, + "end": 10162.92, + "probability": 0.9958 + }, + { + "start": 10163.72, + "end": 10168.76, + "probability": 0.9952 + }, + { + "start": 10169.94, + "end": 10173.59, + "probability": 0.9203 + }, + { + "start": 10174.36, + "end": 10174.88, + "probability": 0.7858 + }, + { + "start": 10175.04, + "end": 10178.36, + "probability": 0.9848 + }, + { + "start": 10178.8, + "end": 10179.9, + "probability": 0.9787 + }, + { + "start": 10180.38, + "end": 10183.26, + "probability": 0.9945 + }, + { + "start": 10183.64, + "end": 10185.16, + "probability": 0.9246 + }, + { + "start": 10185.84, + "end": 10194.08, + "probability": 0.9954 + }, + { + "start": 10194.94, + "end": 10200.66, + "probability": 0.9933 + }, + { + "start": 10200.8, + "end": 10201.28, + "probability": 0.9569 + }, + { + "start": 10201.94, + "end": 10203.8, + "probability": 0.7939 + }, + { + "start": 10204.24, + "end": 10208.2, + "probability": 0.998 + }, + { + "start": 10208.2, + "end": 10213.0, + "probability": 0.9963 + }, + { + "start": 10213.76, + "end": 10215.81, + "probability": 0.9937 + }, + { + "start": 10216.58, + "end": 10222.55, + "probability": 0.7345 + }, + { + "start": 10223.0, + "end": 10228.38, + "probability": 0.9583 + }, + { + "start": 10228.84, + "end": 10231.84, + "probability": 0.6936 + }, + { + "start": 10234.22, + "end": 10238.04, + "probability": 0.869 + }, + { + "start": 10239.1, + "end": 10241.44, + "probability": 0.9556 + }, + { + "start": 10242.58, + "end": 10243.4, + "probability": 0.8162 + }, + { + "start": 10243.46, + "end": 10244.88, + "probability": 0.9698 + }, + { + "start": 10245.46, + "end": 10247.38, + "probability": 0.5723 + }, + { + "start": 10248.14, + "end": 10248.66, + "probability": 0.0654 + }, + { + "start": 10249.06, + "end": 10251.44, + "probability": 0.7574 + }, + { + "start": 10252.24, + "end": 10252.46, + "probability": 0.6372 + }, + { + "start": 10252.54, + "end": 10255.42, + "probability": 0.9127 + }, + { + "start": 10255.44, + "end": 10257.44, + "probability": 0.8378 + }, + { + "start": 10258.24, + "end": 10258.76, + "probability": 0.7996 + }, + { + "start": 10262.62, + "end": 10265.48, + "probability": 0.9844 + }, + { + "start": 10265.48, + "end": 10269.46, + "probability": 0.9976 + }, + { + "start": 10269.82, + "end": 10272.6, + "probability": 0.9281 + }, + { + "start": 10273.18, + "end": 10276.32, + "probability": 0.9484 + }, + { + "start": 10277.0, + "end": 10281.96, + "probability": 0.9429 + }, + { + "start": 10282.14, + "end": 10283.34, + "probability": 0.7891 + }, + { + "start": 10283.4, + "end": 10286.62, + "probability": 0.6869 + }, + { + "start": 10287.38, + "end": 10290.38, + "probability": 0.9454 + }, + { + "start": 10290.82, + "end": 10296.6, + "probability": 0.9247 + }, + { + "start": 10297.28, + "end": 10302.78, + "probability": 0.8076 + }, + { + "start": 10302.78, + "end": 10310.66, + "probability": 0.9827 + }, + { + "start": 10311.12, + "end": 10315.9, + "probability": 0.9535 + }, + { + "start": 10316.56, + "end": 10319.5, + "probability": 0.9917 + }, + { + "start": 10320.16, + "end": 10324.7, + "probability": 0.8712 + }, + { + "start": 10325.38, + "end": 10330.12, + "probability": 0.9757 + }, + { + "start": 10330.12, + "end": 10334.24, + "probability": 0.9937 + }, + { + "start": 10335.18, + "end": 10338.78, + "probability": 0.817 + }, + { + "start": 10339.42, + "end": 10341.04, + "probability": 0.7399 + }, + { + "start": 10341.86, + "end": 10345.3, + "probability": 0.7912 + }, + { + "start": 10345.78, + "end": 10347.52, + "probability": 0.8132 + }, + { + "start": 10348.04, + "end": 10351.72, + "probability": 0.9669 + }, + { + "start": 10351.72, + "end": 10355.02, + "probability": 0.9914 + }, + { + "start": 10355.44, + "end": 10355.92, + "probability": 0.7048 + }, + { + "start": 10357.28, + "end": 10359.36, + "probability": 0.7196 + }, + { + "start": 10359.88, + "end": 10362.22, + "probability": 0.9657 + }, + { + "start": 10363.08, + "end": 10364.38, + "probability": 0.4408 + }, + { + "start": 10364.64, + "end": 10365.36, + "probability": 0.1181 + }, + { + "start": 10365.98, + "end": 10367.6, + "probability": 0.4134 + }, + { + "start": 10367.86, + "end": 10368.68, + "probability": 0.4921 + }, + { + "start": 10368.7, + "end": 10371.54, + "probability": 0.8197 + }, + { + "start": 10372.16, + "end": 10374.82, + "probability": 0.6708 + }, + { + "start": 10375.96, + "end": 10376.88, + "probability": 0.8354 + }, + { + "start": 10377.62, + "end": 10379.36, + "probability": 0.6444 + }, + { + "start": 10391.87, + "end": 10393.0, + "probability": 0.1323 + }, + { + "start": 10393.34, + "end": 10397.82, + "probability": 0.2586 + }, + { + "start": 10398.78, + "end": 10401.92, + "probability": 0.0897 + }, + { + "start": 10403.22, + "end": 10405.76, + "probability": 0.1125 + }, + { + "start": 10416.7, + "end": 10416.8, + "probability": 0.0334 + }, + { + "start": 10416.8, + "end": 10417.06, + "probability": 0.2252 + }, + { + "start": 10417.06, + "end": 10418.54, + "probability": 0.3887 + }, + { + "start": 10418.54, + "end": 10418.54, + "probability": 0.0516 + }, + { + "start": 10418.54, + "end": 10418.54, + "probability": 0.1927 + }, + { + "start": 10418.54, + "end": 10418.54, + "probability": 0.3259 + }, + { + "start": 10418.54, + "end": 10418.54, + "probability": 0.3009 + }, + { + "start": 10418.54, + "end": 10420.81, + "probability": 0.8618 + }, + { + "start": 10421.62, + "end": 10422.42, + "probability": 0.928 + }, + { + "start": 10422.5, + "end": 10426.0, + "probability": 0.5456 + }, + { + "start": 10426.08, + "end": 10427.52, + "probability": 0.7528 + }, + { + "start": 10428.04, + "end": 10431.6, + "probability": 0.7604 + }, + { + "start": 10432.82, + "end": 10438.02, + "probability": 0.9634 + }, + { + "start": 10438.46, + "end": 10440.48, + "probability": 0.9353 + }, + { + "start": 10440.78, + "end": 10441.94, + "probability": 0.6083 + }, + { + "start": 10442.64, + "end": 10446.16, + "probability": 0.5525 + }, + { + "start": 10446.98, + "end": 10448.3, + "probability": 0.7378 + }, + { + "start": 10448.52, + "end": 10449.47, + "probability": 0.8223 + }, + { + "start": 10449.8, + "end": 10455.11, + "probability": 0.9225 + }, + { + "start": 10455.26, + "end": 10460.76, + "probability": 0.9319 + }, + { + "start": 10461.24, + "end": 10463.2, + "probability": 0.9951 + }, + { + "start": 10463.34, + "end": 10464.4, + "probability": 0.7982 + }, + { + "start": 10465.04, + "end": 10465.86, + "probability": 0.9168 + }, + { + "start": 10466.5, + "end": 10470.06, + "probability": 0.7799 + }, + { + "start": 10470.6, + "end": 10474.02, + "probability": 0.9048 + }, + { + "start": 10474.66, + "end": 10477.76, + "probability": 0.9236 + }, + { + "start": 10477.94, + "end": 10479.86, + "probability": 0.9355 + }, + { + "start": 10479.92, + "end": 10481.46, + "probability": 0.7115 + }, + { + "start": 10481.98, + "end": 10483.58, + "probability": 0.8356 + }, + { + "start": 10484.0, + "end": 10485.28, + "probability": 0.9042 + }, + { + "start": 10485.7, + "end": 10487.22, + "probability": 0.9274 + }, + { + "start": 10488.62, + "end": 10489.52, + "probability": 0.5926 + }, + { + "start": 10490.18, + "end": 10491.33, + "probability": 0.8582 + }, + { + "start": 10492.28, + "end": 10495.72, + "probability": 0.9701 + }, + { + "start": 10496.3, + "end": 10498.82, + "probability": 0.9157 + }, + { + "start": 10499.48, + "end": 10501.76, + "probability": 0.9099 + }, + { + "start": 10502.8, + "end": 10503.86, + "probability": 0.6619 + }, + { + "start": 10505.54, + "end": 10506.22, + "probability": 0.6816 + }, + { + "start": 10506.58, + "end": 10506.72, + "probability": 0.7107 + }, + { + "start": 10506.72, + "end": 10510.24, + "probability": 0.9332 + }, + { + "start": 10513.81, + "end": 10515.0, + "probability": 0.5429 + }, + { + "start": 10515.1, + "end": 10519.68, + "probability": 0.9696 + }, + { + "start": 10520.08, + "end": 10522.6, + "probability": 0.9826 + }, + { + "start": 10523.34, + "end": 10527.88, + "probability": 0.7494 + }, + { + "start": 10528.06, + "end": 10529.92, + "probability": 0.809 + }, + { + "start": 10530.12, + "end": 10530.6, + "probability": 0.6757 + }, + { + "start": 10530.6, + "end": 10531.24, + "probability": 0.8618 + }, + { + "start": 10531.32, + "end": 10531.88, + "probability": 0.7225 + }, + { + "start": 10531.9, + "end": 10536.3, + "probability": 0.9147 + }, + { + "start": 10536.96, + "end": 10538.32, + "probability": 0.8953 + }, + { + "start": 10538.36, + "end": 10541.24, + "probability": 0.8 + }, + { + "start": 10541.92, + "end": 10542.72, + "probability": 0.3427 + }, + { + "start": 10543.14, + "end": 10547.84, + "probability": 0.9662 + }, + { + "start": 10548.4, + "end": 10550.76, + "probability": 0.7221 + }, + { + "start": 10550.78, + "end": 10553.6, + "probability": 0.9504 + }, + { + "start": 10553.7, + "end": 10556.1, + "probability": 0.5003 + }, + { + "start": 10556.1, + "end": 10560.1, + "probability": 0.9102 + }, + { + "start": 10560.68, + "end": 10562.56, + "probability": 0.7168 + }, + { + "start": 10562.72, + "end": 10564.86, + "probability": 0.9255 + }, + { + "start": 10565.42, + "end": 10567.68, + "probability": 0.9912 + }, + { + "start": 10568.5, + "end": 10568.5, + "probability": 0.0079 + }, + { + "start": 10568.5, + "end": 10569.48, + "probability": 0.4858 + }, + { + "start": 10569.96, + "end": 10574.42, + "probability": 0.9922 + }, + { + "start": 10576.3, + "end": 10578.92, + "probability": 0.8904 + }, + { + "start": 10578.98, + "end": 10580.74, + "probability": 0.6654 + }, + { + "start": 10580.78, + "end": 10584.64, + "probability": 0.968 + }, + { + "start": 10584.7, + "end": 10586.52, + "probability": 0.7279 + }, + { + "start": 10586.58, + "end": 10588.18, + "probability": 0.8819 + }, + { + "start": 10588.28, + "end": 10590.28, + "probability": 0.9353 + }, + { + "start": 10590.66, + "end": 10593.14, + "probability": 0.9971 + }, + { + "start": 10593.24, + "end": 10593.68, + "probability": 0.8055 + }, + { + "start": 10594.46, + "end": 10595.84, + "probability": 0.6736 + }, + { + "start": 10596.04, + "end": 10598.58, + "probability": 0.8824 + }, + { + "start": 10599.88, + "end": 10601.4, + "probability": 0.4355 + }, + { + "start": 10603.7, + "end": 10604.26, + "probability": 0.7504 + }, + { + "start": 10604.3, + "end": 10605.06, + "probability": 0.8345 + }, + { + "start": 10607.28, + "end": 10610.2, + "probability": 0.7395 + }, + { + "start": 10619.08, + "end": 10619.98, + "probability": 0.0025 + }, + { + "start": 10619.98, + "end": 10622.12, + "probability": 0.451 + }, + { + "start": 10622.4, + "end": 10624.74, + "probability": 0.9106 + }, + { + "start": 10627.38, + "end": 10632.46, + "probability": 0.9528 + }, + { + "start": 10634.34, + "end": 10634.94, + "probability": 0.3787 + }, + { + "start": 10634.98, + "end": 10635.5, + "probability": 0.7007 + }, + { + "start": 10635.58, + "end": 10636.14, + "probability": 0.8144 + }, + { + "start": 10651.22, + "end": 10651.72, + "probability": 0.2732 + }, + { + "start": 10651.72, + "end": 10651.88, + "probability": 0.02 + }, + { + "start": 10651.88, + "end": 10651.88, + "probability": 0.0906 + }, + { + "start": 10651.88, + "end": 10652.22, + "probability": 0.2098 + }, + { + "start": 10652.98, + "end": 10655.02, + "probability": 0.7565 + }, + { + "start": 10655.88, + "end": 10659.12, + "probability": 0.5323 + }, + { + "start": 10659.66, + "end": 10660.54, + "probability": 0.4023 + }, + { + "start": 10662.3, + "end": 10664.28, + "probability": 0.5656 + }, + { + "start": 10665.32, + "end": 10672.42, + "probability": 0.5618 + }, + { + "start": 10674.06, + "end": 10674.88, + "probability": 0.7051 + }, + { + "start": 10677.27, + "end": 10679.38, + "probability": 0.9374 + }, + { + "start": 10683.06, + "end": 10683.8, + "probability": 0.1464 + }, + { + "start": 10686.2, + "end": 10686.4, + "probability": 0.0029 + }, + { + "start": 10694.3, + "end": 10696.56, + "probability": 0.2856 + }, + { + "start": 10696.8, + "end": 10703.64, + "probability": 0.9852 + }, + { + "start": 10705.24, + "end": 10710.4, + "probability": 0.9749 + }, + { + "start": 10711.14, + "end": 10714.28, + "probability": 0.9958 + }, + { + "start": 10715.42, + "end": 10715.62, + "probability": 0.9417 + }, + { + "start": 10716.32, + "end": 10719.06, + "probability": 0.7306 + }, + { + "start": 10719.18, + "end": 10720.04, + "probability": 0.6774 + }, + { + "start": 10720.72, + "end": 10724.94, + "probability": 0.9271 + }, + { + "start": 10725.0, + "end": 10726.24, + "probability": 0.9338 + }, + { + "start": 10726.5, + "end": 10727.62, + "probability": 0.9289 + }, + { + "start": 10727.66, + "end": 10728.64, + "probability": 0.9796 + }, + { + "start": 10729.18, + "end": 10731.26, + "probability": 0.999 + }, + { + "start": 10732.74, + "end": 10733.62, + "probability": 0.4632 + }, + { + "start": 10734.06, + "end": 10734.06, + "probability": 0.7289 + }, + { + "start": 10734.06, + "end": 10736.82, + "probability": 0.9837 + }, + { + "start": 10737.66, + "end": 10738.74, + "probability": 0.9274 + }, + { + "start": 10738.9, + "end": 10743.56, + "probability": 0.972 + }, + { + "start": 10743.66, + "end": 10745.22, + "probability": 0.265 + }, + { + "start": 10745.7, + "end": 10749.58, + "probability": 0.8123 + }, + { + "start": 10749.62, + "end": 10751.78, + "probability": 0.9402 + }, + { + "start": 10753.04, + "end": 10755.94, + "probability": 0.9753 + }, + { + "start": 10756.08, + "end": 10759.56, + "probability": 0.9679 + }, + { + "start": 10760.88, + "end": 10763.48, + "probability": 0.9929 + }, + { + "start": 10763.56, + "end": 10764.68, + "probability": 0.9486 + }, + { + "start": 10765.36, + "end": 10768.8, + "probability": 0.8576 + }, + { + "start": 10769.46, + "end": 10772.96, + "probability": 0.9987 + }, + { + "start": 10773.5, + "end": 10776.78, + "probability": 0.9989 + }, + { + "start": 10777.24, + "end": 10778.26, + "probability": 0.9839 + }, + { + "start": 10778.38, + "end": 10778.92, + "probability": 0.8825 + }, + { + "start": 10779.44, + "end": 10781.8, + "probability": 0.7891 + }, + { + "start": 10782.2, + "end": 10782.76, + "probability": 0.7711 + }, + { + "start": 10783.0, + "end": 10785.08, + "probability": 0.9232 + }, + { + "start": 10785.8, + "end": 10786.96, + "probability": 0.9275 + }, + { + "start": 10787.14, + "end": 10788.14, + "probability": 0.9213 + }, + { + "start": 10788.24, + "end": 10790.44, + "probability": 0.9932 + }, + { + "start": 10790.88, + "end": 10792.73, + "probability": 0.9805 + }, + { + "start": 10792.9, + "end": 10793.86, + "probability": 0.9437 + }, + { + "start": 10794.5, + "end": 10796.34, + "probability": 0.7083 + }, + { + "start": 10797.1, + "end": 10800.28, + "probability": 0.9285 + }, + { + "start": 10800.72, + "end": 10802.52, + "probability": 0.9866 + }, + { + "start": 10803.24, + "end": 10805.72, + "probability": 0.989 + }, + { + "start": 10805.8, + "end": 10806.46, + "probability": 0.7963 + }, + { + "start": 10806.88, + "end": 10808.1, + "probability": 0.9136 + }, + { + "start": 10808.6, + "end": 10811.76, + "probability": 0.9889 + }, + { + "start": 10812.18, + "end": 10813.44, + "probability": 0.9805 + }, + { + "start": 10813.76, + "end": 10815.16, + "probability": 0.8347 + }, + { + "start": 10815.46, + "end": 10816.76, + "probability": 0.893 + }, + { + "start": 10817.34, + "end": 10818.66, + "probability": 0.9427 + }, + { + "start": 10819.14, + "end": 10820.28, + "probability": 0.9798 + }, + { + "start": 10820.7, + "end": 10824.3, + "probability": 0.9931 + }, + { + "start": 10824.4, + "end": 10825.42, + "probability": 0.7312 + }, + { + "start": 10825.66, + "end": 10827.64, + "probability": 0.9365 + }, + { + "start": 10827.8, + "end": 10828.3, + "probability": 0.9305 + }, + { + "start": 10828.52, + "end": 10829.2, + "probability": 0.594 + }, + { + "start": 10829.4, + "end": 10832.0, + "probability": 0.7379 + }, + { + "start": 10853.72, + "end": 10855.86, + "probability": 0.5428 + }, + { + "start": 10856.9, + "end": 10861.34, + "probability": 0.6267 + }, + { + "start": 10863.62, + "end": 10867.16, + "probability": 0.9922 + }, + { + "start": 10867.96, + "end": 10870.6, + "probability": 0.7115 + }, + { + "start": 10872.78, + "end": 10875.38, + "probability": 0.653 + }, + { + "start": 10876.28, + "end": 10878.11, + "probability": 0.8572 + }, + { + "start": 10879.4, + "end": 10881.54, + "probability": 0.9663 + }, + { + "start": 10882.48, + "end": 10884.68, + "probability": 0.992 + }, + { + "start": 10885.5, + "end": 10888.38, + "probability": 0.6965 + }, + { + "start": 10889.78, + "end": 10892.54, + "probability": 0.9927 + }, + { + "start": 10893.1, + "end": 10895.3, + "probability": 0.9883 + }, + { + "start": 10895.7, + "end": 10896.7, + "probability": 0.7872 + }, + { + "start": 10897.6, + "end": 10899.42, + "probability": 0.9691 + }, + { + "start": 10900.04, + "end": 10903.74, + "probability": 0.9014 + }, + { + "start": 10905.17, + "end": 10908.4, + "probability": 0.9395 + }, + { + "start": 10909.26, + "end": 10912.68, + "probability": 0.8551 + }, + { + "start": 10913.28, + "end": 10914.16, + "probability": 0.6533 + }, + { + "start": 10915.06, + "end": 10915.66, + "probability": 0.6562 + }, + { + "start": 10916.92, + "end": 10920.08, + "probability": 0.934 + }, + { + "start": 10920.86, + "end": 10924.22, + "probability": 0.7507 + }, + { + "start": 10925.04, + "end": 10925.96, + "probability": 0.6509 + }, + { + "start": 10926.0, + "end": 10926.94, + "probability": 0.7391 + }, + { + "start": 10927.36, + "end": 10928.56, + "probability": 0.4674 + }, + { + "start": 10928.94, + "end": 10930.34, + "probability": 0.7715 + }, + { + "start": 10931.18, + "end": 10933.72, + "probability": 0.565 + }, + { + "start": 10934.34, + "end": 10937.82, + "probability": 0.6925 + }, + { + "start": 10938.52, + "end": 10941.03, + "probability": 0.959 + }, + { + "start": 10942.12, + "end": 10943.41, + "probability": 0.9328 + }, + { + "start": 10945.02, + "end": 10948.94, + "probability": 0.8294 + }, + { + "start": 10949.58, + "end": 10952.66, + "probability": 0.8546 + }, + { + "start": 10953.34, + "end": 10955.6, + "probability": 0.9176 + }, + { + "start": 10956.24, + "end": 10958.56, + "probability": 0.8001 + }, + { + "start": 10960.66, + "end": 10962.34, + "probability": 0.998 + }, + { + "start": 10962.68, + "end": 10964.24, + "probability": 0.8354 + }, + { + "start": 10964.88, + "end": 10966.84, + "probability": 0.932 + }, + { + "start": 10967.42, + "end": 10971.23, + "probability": 0.9328 + }, + { + "start": 10971.82, + "end": 10973.04, + "probability": 0.9966 + }, + { + "start": 10973.42, + "end": 10976.34, + "probability": 0.6771 + }, + { + "start": 10976.94, + "end": 10979.36, + "probability": 0.788 + }, + { + "start": 10979.54, + "end": 10980.32, + "probability": 0.8254 + }, + { + "start": 10980.8, + "end": 10982.92, + "probability": 0.9644 + }, + { + "start": 10983.44, + "end": 10983.72, + "probability": 0.6991 + }, + { + "start": 10983.76, + "end": 10984.52, + "probability": 0.9557 + }, + { + "start": 10984.62, + "end": 10986.24, + "probability": 0.9633 + }, + { + "start": 10986.58, + "end": 10987.54, + "probability": 0.3674 + }, + { + "start": 10987.68, + "end": 10989.84, + "probability": 0.8957 + }, + { + "start": 10990.2, + "end": 10993.66, + "probability": 0.8922 + }, + { + "start": 10993.72, + "end": 10995.96, + "probability": 0.5909 + }, + { + "start": 10996.58, + "end": 10997.8, + "probability": 0.4919 + }, + { + "start": 10997.9, + "end": 11000.28, + "probability": 0.3734 + }, + { + "start": 11000.84, + "end": 11003.86, + "probability": 0.9927 + }, + { + "start": 11004.48, + "end": 11006.8, + "probability": 0.9076 + }, + { + "start": 11007.68, + "end": 11009.72, + "probability": 0.8394 + }, + { + "start": 11010.18, + "end": 11010.96, + "probability": 0.7491 + }, + { + "start": 11011.06, + "end": 11012.1, + "probability": 0.79 + }, + { + "start": 11012.46, + "end": 11013.36, + "probability": 0.8952 + }, + { + "start": 11013.72, + "end": 11014.36, + "probability": 0.9697 + }, + { + "start": 11014.48, + "end": 11015.3, + "probability": 0.9524 + }, + { + "start": 11015.46, + "end": 11015.46, + "probability": 0.8311 + }, + { + "start": 11015.98, + "end": 11016.7, + "probability": 0.7795 + }, + { + "start": 11017.0, + "end": 11017.94, + "probability": 0.3853 + }, + { + "start": 11017.94, + "end": 11018.78, + "probability": 0.8717 + }, + { + "start": 11019.0, + "end": 11019.62, + "probability": 0.8941 + }, + { + "start": 11019.74, + "end": 11020.5, + "probability": 0.6528 + }, + { + "start": 11020.84, + "end": 11021.5, + "probability": 0.3045 + }, + { + "start": 11021.6, + "end": 11023.7, + "probability": 0.5124 + }, + { + "start": 11023.78, + "end": 11024.88, + "probability": 0.5205 + }, + { + "start": 11025.28, + "end": 11026.02, + "probability": 0.9452 + }, + { + "start": 11026.1, + "end": 11026.8, + "probability": 0.6643 + }, + { + "start": 11026.9, + "end": 11027.64, + "probability": 0.7955 + }, + { + "start": 11027.98, + "end": 11028.68, + "probability": 0.8316 + }, + { + "start": 11028.78, + "end": 11029.46, + "probability": 0.8248 + }, + { + "start": 11029.5, + "end": 11030.18, + "probability": 0.9169 + }, + { + "start": 11030.62, + "end": 11031.26, + "probability": 0.3376 + }, + { + "start": 11031.26, + "end": 11032.04, + "probability": 0.575 + }, + { + "start": 11032.36, + "end": 11032.98, + "probability": 0.6634 + }, + { + "start": 11033.04, + "end": 11033.76, + "probability": 0.7321 + }, + { + "start": 11034.12, + "end": 11036.12, + "probability": 0.6965 + }, + { + "start": 11036.58, + "end": 11038.64, + "probability": 0.9147 + }, + { + "start": 11038.96, + "end": 11040.46, + "probability": 0.9728 + }, + { + "start": 11040.9, + "end": 11041.78, + "probability": 0.9624 + }, + { + "start": 11042.12, + "end": 11043.42, + "probability": 0.9673 + }, + { + "start": 11043.74, + "end": 11046.14, + "probability": 0.9922 + }, + { + "start": 11046.24, + "end": 11049.9, + "probability": 0.6602 + }, + { + "start": 11050.32, + "end": 11052.56, + "probability": 0.796 + }, + { + "start": 11052.68, + "end": 11053.58, + "probability": 0.9036 + }, + { + "start": 11054.14, + "end": 11055.45, + "probability": 0.9785 + }, + { + "start": 11056.02, + "end": 11057.84, + "probability": 0.9429 + }, + { + "start": 11058.36, + "end": 11059.26, + "probability": 0.8521 + }, + { + "start": 11060.2, + "end": 11063.38, + "probability": 0.9002 + }, + { + "start": 11064.36, + "end": 11066.8, + "probability": 0.7678 + }, + { + "start": 11067.2, + "end": 11069.4, + "probability": 0.7038 + }, + { + "start": 11070.14, + "end": 11072.0, + "probability": 0.8918 + }, + { + "start": 11073.26, + "end": 11074.66, + "probability": 0.9336 + }, + { + "start": 11075.1, + "end": 11076.47, + "probability": 0.7683 + }, + { + "start": 11077.0, + "end": 11077.86, + "probability": 0.7922 + }, + { + "start": 11077.96, + "end": 11078.47, + "probability": 0.5027 + }, + { + "start": 11078.86, + "end": 11080.68, + "probability": 0.9927 + }, + { + "start": 11081.18, + "end": 11083.26, + "probability": 0.9807 + }, + { + "start": 11083.72, + "end": 11085.34, + "probability": 0.8027 + }, + { + "start": 11086.26, + "end": 11086.28, + "probability": 0.2057 + }, + { + "start": 11086.28, + "end": 11088.64, + "probability": 0.5485 + }, + { + "start": 11089.34, + "end": 11091.99, + "probability": 0.7628 + }, + { + "start": 11092.56, + "end": 11098.28, + "probability": 0.95 + }, + { + "start": 11098.42, + "end": 11100.28, + "probability": 0.9919 + }, + { + "start": 11100.4, + "end": 11101.03, + "probability": 0.9886 + }, + { + "start": 11101.46, + "end": 11102.02, + "probability": 0.9756 + }, + { + "start": 11102.88, + "end": 11104.94, + "probability": 0.9922 + }, + { + "start": 11105.32, + "end": 11106.06, + "probability": 0.9672 + }, + { + "start": 11106.46, + "end": 11108.58, + "probability": 0.5673 + }, + { + "start": 11108.66, + "end": 11112.8, + "probability": 0.9705 + }, + { + "start": 11112.9, + "end": 11114.58, + "probability": 0.8574 + }, + { + "start": 11115.18, + "end": 11117.48, + "probability": 0.978 + }, + { + "start": 11119.14, + "end": 11123.6, + "probability": 0.8272 + }, + { + "start": 11123.74, + "end": 11125.02, + "probability": 0.6229 + }, + { + "start": 11125.22, + "end": 11127.3, + "probability": 0.9467 + }, + { + "start": 11127.96, + "end": 11131.2, + "probability": 0.9716 + }, + { + "start": 11131.34, + "end": 11134.92, + "probability": 0.9091 + }, + { + "start": 11151.86, + "end": 11155.0, + "probability": 0.7239 + }, + { + "start": 11155.78, + "end": 11158.48, + "probability": 0.9883 + }, + { + "start": 11159.06, + "end": 11163.34, + "probability": 0.9087 + }, + { + "start": 11163.86, + "end": 11164.7, + "probability": 0.4102 + }, + { + "start": 11164.78, + "end": 11170.4, + "probability": 0.9349 + }, + { + "start": 11170.62, + "end": 11174.4, + "probability": 0.9563 + }, + { + "start": 11174.54, + "end": 11177.06, + "probability": 0.6832 + }, + { + "start": 11177.44, + "end": 11182.14, + "probability": 0.9961 + }, + { + "start": 11183.32, + "end": 11186.3, + "probability": 0.9327 + }, + { + "start": 11186.82, + "end": 11188.58, + "probability": 0.5301 + }, + { + "start": 11189.04, + "end": 11196.38, + "probability": 0.9866 + }, + { + "start": 11196.38, + "end": 11202.4, + "probability": 0.9857 + }, + { + "start": 11203.52, + "end": 11203.96, + "probability": 0.8968 + }, + { + "start": 11204.24, + "end": 11210.16, + "probability": 0.8026 + }, + { + "start": 11210.28, + "end": 11211.44, + "probability": 0.8276 + }, + { + "start": 11211.9, + "end": 11212.64, + "probability": 0.92 + }, + { + "start": 11212.76, + "end": 11216.84, + "probability": 0.9895 + }, + { + "start": 11217.34, + "end": 11219.04, + "probability": 0.7557 + }, + { + "start": 11219.78, + "end": 11223.34, + "probability": 0.9957 + }, + { + "start": 11223.34, + "end": 11228.08, + "probability": 0.9896 + }, + { + "start": 11228.08, + "end": 11233.78, + "probability": 0.9439 + }, + { + "start": 11234.3, + "end": 11237.04, + "probability": 0.9349 + }, + { + "start": 11237.04, + "end": 11241.5, + "probability": 0.9587 + }, + { + "start": 11242.02, + "end": 11243.6, + "probability": 0.7499 + }, + { + "start": 11243.7, + "end": 11245.98, + "probability": 0.8369 + }, + { + "start": 11248.09, + "end": 11249.28, + "probability": 0.0973 + }, + { + "start": 11249.28, + "end": 11252.7, + "probability": 0.7419 + }, + { + "start": 11253.14, + "end": 11254.56, + "probability": 0.9354 + }, + { + "start": 11254.66, + "end": 11255.58, + "probability": 0.9643 + }, + { + "start": 11256.32, + "end": 11260.6, + "probability": 0.9767 + }, + { + "start": 11260.6, + "end": 11263.78, + "probability": 0.9335 + }, + { + "start": 11263.78, + "end": 11267.3, + "probability": 0.9957 + }, + { + "start": 11268.28, + "end": 11270.94, + "probability": 0.9905 + }, + { + "start": 11270.94, + "end": 11274.68, + "probability": 0.9922 + }, + { + "start": 11275.16, + "end": 11277.01, + "probability": 0.5669 + }, + { + "start": 11277.7, + "end": 11279.16, + "probability": 0.8319 + }, + { + "start": 11279.62, + "end": 11282.6, + "probability": 0.9326 + }, + { + "start": 11282.6, + "end": 11287.0, + "probability": 0.8173 + }, + { + "start": 11287.66, + "end": 11290.82, + "probability": 0.8954 + }, + { + "start": 11291.66, + "end": 11293.58, + "probability": 0.9143 + }, + { + "start": 11293.98, + "end": 11295.76, + "probability": 0.6159 + }, + { + "start": 11295.98, + "end": 11297.14, + "probability": 0.812 + }, + { + "start": 11297.64, + "end": 11302.94, + "probability": 0.7222 + }, + { + "start": 11302.94, + "end": 11307.1, + "probability": 0.9604 + }, + { + "start": 11307.26, + "end": 11308.92, + "probability": 0.7622 + }, + { + "start": 11308.98, + "end": 11310.96, + "probability": 0.7482 + }, + { + "start": 11311.38, + "end": 11311.66, + "probability": 0.3539 + }, + { + "start": 11311.7, + "end": 11313.64, + "probability": 0.9221 + }, + { + "start": 11314.42, + "end": 11315.64, + "probability": 0.5823 + }, + { + "start": 11316.04, + "end": 11318.86, + "probability": 0.8374 + }, + { + "start": 11319.2, + "end": 11323.42, + "probability": 0.872 + }, + { + "start": 11323.84, + "end": 11327.1, + "probability": 0.9783 + }, + { + "start": 11328.22, + "end": 11328.96, + "probability": 0.8718 + }, + { + "start": 11330.36, + "end": 11331.26, + "probability": 0.88 + }, + { + "start": 11332.52, + "end": 11335.66, + "probability": 0.7613 + }, + { + "start": 11335.9, + "end": 11341.16, + "probability": 0.9948 + }, + { + "start": 11341.44, + "end": 11341.86, + "probability": 0.7699 + }, + { + "start": 11342.52, + "end": 11344.74, + "probability": 0.7511 + }, + { + "start": 11344.82, + "end": 11346.96, + "probability": 0.8734 + }, + { + "start": 11347.08, + "end": 11350.48, + "probability": 0.7739 + }, + { + "start": 11351.06, + "end": 11356.56, + "probability": 0.872 + }, + { + "start": 11357.16, + "end": 11358.0, + "probability": 0.4537 + }, + { + "start": 11360.32, + "end": 11361.36, + "probability": 0.9211 + }, + { + "start": 11367.32, + "end": 11372.54, + "probability": 0.8667 + }, + { + "start": 11372.74, + "end": 11373.94, + "probability": 0.9961 + }, + { + "start": 11374.48, + "end": 11378.44, + "probability": 0.8762 + }, + { + "start": 11378.58, + "end": 11381.56, + "probability": 0.7339 + }, + { + "start": 11381.68, + "end": 11382.52, + "probability": 0.2364 + }, + { + "start": 11383.5, + "end": 11388.66, + "probability": 0.9338 + }, + { + "start": 11389.34, + "end": 11392.2, + "probability": 0.8747 + }, + { + "start": 11392.74, + "end": 11394.42, + "probability": 0.8374 + }, + { + "start": 11394.46, + "end": 11394.94, + "probability": 0.6783 + }, + { + "start": 11395.18, + "end": 11395.68, + "probability": 0.7875 + }, + { + "start": 11395.96, + "end": 11396.92, + "probability": 0.7332 + }, + { + "start": 11397.02, + "end": 11397.86, + "probability": 0.7047 + }, + { + "start": 11398.6, + "end": 11400.48, + "probability": 0.6758 + }, + { + "start": 11401.74, + "end": 11402.92, + "probability": 0.8237 + }, + { + "start": 11403.18, + "end": 11403.68, + "probability": 0.5029 + }, + { + "start": 11403.72, + "end": 11404.46, + "probability": 0.863 + }, + { + "start": 11405.58, + "end": 11408.73, + "probability": 0.9235 + }, + { + "start": 11409.08, + "end": 11413.34, + "probability": 0.9749 + }, + { + "start": 11413.66, + "end": 11416.22, + "probability": 0.9653 + }, + { + "start": 11416.3, + "end": 11418.34, + "probability": 0.8258 + }, + { + "start": 11419.24, + "end": 11421.48, + "probability": 0.9192 + }, + { + "start": 11422.1, + "end": 11423.78, + "probability": 0.9885 + }, + { + "start": 11424.36, + "end": 11427.42, + "probability": 0.8173 + }, + { + "start": 11427.94, + "end": 11429.84, + "probability": 0.9861 + }, + { + "start": 11430.46, + "end": 11431.98, + "probability": 0.9907 + }, + { + "start": 11432.82, + "end": 11436.17, + "probability": 0.98 + }, + { + "start": 11437.56, + "end": 11440.6, + "probability": 0.9779 + }, + { + "start": 11441.38, + "end": 11445.9, + "probability": 0.9543 + }, + { + "start": 11447.0, + "end": 11449.56, + "probability": 0.9401 + }, + { + "start": 11450.26, + "end": 11452.18, + "probability": 0.9973 + }, + { + "start": 11453.72, + "end": 11458.48, + "probability": 0.916 + }, + { + "start": 11459.38, + "end": 11459.98, + "probability": 0.3156 + }, + { + "start": 11460.6, + "end": 11461.16, + "probability": 0.5922 + }, + { + "start": 11461.18, + "end": 11464.46, + "probability": 0.9194 + }, + { + "start": 11465.3, + "end": 11467.44, + "probability": 0.9921 + }, + { + "start": 11468.7, + "end": 11471.0, + "probability": 0.9185 + }, + { + "start": 11471.26, + "end": 11474.96, + "probability": 0.8849 + }, + { + "start": 11475.82, + "end": 11479.44, + "probability": 0.6618 + }, + { + "start": 11480.08, + "end": 11482.08, + "probability": 0.876 + }, + { + "start": 11482.34, + "end": 11485.28, + "probability": 0.8314 + }, + { + "start": 11486.2, + "end": 11486.84, + "probability": 0.9493 + }, + { + "start": 11487.56, + "end": 11489.36, + "probability": 0.8535 + }, + { + "start": 11490.88, + "end": 11491.9, + "probability": 0.6371 + }, + { + "start": 11494.44, + "end": 11495.16, + "probability": 0.516 + }, + { + "start": 11495.16, + "end": 11495.68, + "probability": 0.2697 + }, + { + "start": 11495.78, + "end": 11497.21, + "probability": 0.692 + }, + { + "start": 11498.24, + "end": 11499.68, + "probability": 0.7071 + }, + { + "start": 11499.96, + "end": 11500.92, + "probability": 0.8416 + }, + { + "start": 11501.0, + "end": 11502.34, + "probability": 0.4682 + }, + { + "start": 11502.74, + "end": 11503.32, + "probability": 0.7744 + }, + { + "start": 11503.4, + "end": 11503.66, + "probability": 0.4515 + }, + { + "start": 11503.72, + "end": 11504.44, + "probability": 0.7615 + }, + { + "start": 11505.8, + "end": 11507.6, + "probability": 0.6699 + }, + { + "start": 11508.76, + "end": 11509.6, + "probability": 0.19 + }, + { + "start": 11510.94, + "end": 11516.64, + "probability": 0.9102 + }, + { + "start": 11516.64, + "end": 11522.56, + "probability": 0.9763 + }, + { + "start": 11524.28, + "end": 11531.3, + "probability": 0.9963 + }, + { + "start": 11533.74, + "end": 11539.32, + "probability": 0.9603 + }, + { + "start": 11541.82, + "end": 11546.36, + "probability": 0.9945 + }, + { + "start": 11547.64, + "end": 11549.76, + "probability": 0.9958 + }, + { + "start": 11551.22, + "end": 11559.84, + "probability": 0.9945 + }, + { + "start": 11561.14, + "end": 11562.04, + "probability": 0.8784 + }, + { + "start": 11564.33, + "end": 11567.34, + "probability": 0.9985 + }, + { + "start": 11570.28, + "end": 11574.4, + "probability": 0.9979 + }, + { + "start": 11575.56, + "end": 11579.9, + "probability": 0.9025 + }, + { + "start": 11580.48, + "end": 11582.68, + "probability": 0.9792 + }, + { + "start": 11584.5, + "end": 11587.72, + "probability": 0.9978 + }, + { + "start": 11589.18, + "end": 11595.52, + "probability": 0.9954 + }, + { + "start": 11598.58, + "end": 11603.42, + "probability": 0.9946 + }, + { + "start": 11603.52, + "end": 11605.56, + "probability": 0.7211 + }, + { + "start": 11607.0, + "end": 11612.82, + "probability": 0.9771 + }, + { + "start": 11613.78, + "end": 11622.24, + "probability": 0.9727 + }, + { + "start": 11623.58, + "end": 11628.01, + "probability": 0.8367 + }, + { + "start": 11631.84, + "end": 11633.4, + "probability": 0.8608 + }, + { + "start": 11634.0, + "end": 11641.64, + "probability": 0.9926 + }, + { + "start": 11642.16, + "end": 11642.44, + "probability": 0.7422 + }, + { + "start": 11644.74, + "end": 11647.16, + "probability": 0.9592 + }, + { + "start": 11647.18, + "end": 11648.18, + "probability": 0.5728 + }, + { + "start": 11649.56, + "end": 11652.26, + "probability": 0.9615 + }, + { + "start": 11652.58, + "end": 11656.02, + "probability": 0.7131 + }, + { + "start": 11656.8, + "end": 11657.54, + "probability": 0.8899 + }, + { + "start": 11657.8, + "end": 11661.02, + "probability": 0.9097 + }, + { + "start": 11661.24, + "end": 11662.36, + "probability": 0.4974 + }, + { + "start": 11662.6, + "end": 11669.22, + "probability": 0.69 + }, + { + "start": 11669.62, + "end": 11670.3, + "probability": 0.7869 + }, + { + "start": 11670.36, + "end": 11671.26, + "probability": 0.8515 + }, + { + "start": 11671.36, + "end": 11672.12, + "probability": 0.7516 + }, + { + "start": 11672.22, + "end": 11674.8, + "probability": 0.8597 + }, + { + "start": 11674.86, + "end": 11676.76, + "probability": 0.63 + }, + { + "start": 11676.86, + "end": 11677.68, + "probability": 0.6306 + }, + { + "start": 11679.01, + "end": 11682.22, + "probability": 0.0532 + }, + { + "start": 11683.0, + "end": 11683.1, + "probability": 0.006 + }, + { + "start": 11692.28, + "end": 11696.66, + "probability": 0.0574 + }, + { + "start": 11696.92, + "end": 11702.36, + "probability": 0.5848 + }, + { + "start": 11702.96, + "end": 11704.54, + "probability": 0.5869 + }, + { + "start": 11705.32, + "end": 11708.26, + "probability": 0.8574 + }, + { + "start": 11709.12, + "end": 11710.42, + "probability": 0.6656 + }, + { + "start": 11710.76, + "end": 11711.68, + "probability": 0.6516 + }, + { + "start": 11712.44, + "end": 11712.78, + "probability": 0.66 + }, + { + "start": 11723.34, + "end": 11724.86, + "probability": 0.0496 + }, + { + "start": 11726.84, + "end": 11728.08, + "probability": 0.6857 + }, + { + "start": 11733.62, + "end": 11733.62, + "probability": 0.1384 + }, + { + "start": 11733.62, + "end": 11734.2, + "probability": 0.4299 + }, + { + "start": 11734.86, + "end": 11737.96, + "probability": 0.391 + }, + { + "start": 11738.46, + "end": 11741.4, + "probability": 0.9036 + }, + { + "start": 11741.48, + "end": 11744.16, + "probability": 0.7429 + }, + { + "start": 11744.86, + "end": 11748.02, + "probability": 0.9749 + }, + { + "start": 11748.88, + "end": 11751.86, + "probability": 0.6625 + }, + { + "start": 11751.9, + "end": 11753.16, + "probability": 0.524 + }, + { + "start": 11760.12, + "end": 11761.68, + "probability": 0.3972 + }, + { + "start": 11771.9, + "end": 11772.44, + "probability": 0.104 + }, + { + "start": 11772.44, + "end": 11773.08, + "probability": 0.2681 + }, + { + "start": 11773.76, + "end": 11775.68, + "probability": 0.2121 + }, + { + "start": 11775.74, + "end": 11775.94, + "probability": 0.193 + }, + { + "start": 11775.96, + "end": 11776.24, + "probability": 0.485 + }, + { + "start": 11776.28, + "end": 11778.78, + "probability": 0.8359 + }, + { + "start": 11778.82, + "end": 11781.02, + "probability": 0.9369 + }, + { + "start": 11781.04, + "end": 11781.48, + "probability": 0.7347 + }, + { + "start": 11782.14, + "end": 11784.4, + "probability": 0.9767 + }, + { + "start": 11784.56, + "end": 11784.98, + "probability": 0.4897 + }, + { + "start": 11785.16, + "end": 11789.74, + "probability": 0.6782 + }, + { + "start": 11789.84, + "end": 11791.38, + "probability": 0.5432 + }, + { + "start": 11791.82, + "end": 11792.12, + "probability": 0.6954 + }, + { + "start": 11792.2, + "end": 11792.48, + "probability": 0.5836 + }, + { + "start": 11792.52, + "end": 11793.54, + "probability": 0.7751 + }, + { + "start": 11793.56, + "end": 11794.02, + "probability": 0.7288 + }, + { + "start": 11794.06, + "end": 11794.54, + "probability": 0.6545 + }, + { + "start": 11798.84, + "end": 11798.98, + "probability": 0.0864 + }, + { + "start": 11810.96, + "end": 11811.46, + "probability": 0.3633 + }, + { + "start": 11811.46, + "end": 11812.52, + "probability": 0.4086 + }, + { + "start": 11813.5, + "end": 11814.5, + "probability": 0.5483 + }, + { + "start": 11815.48, + "end": 11815.94, + "probability": 0.4079 + }, + { + "start": 11816.08, + "end": 11816.38, + "probability": 0.2674 + }, + { + "start": 11816.38, + "end": 11816.7, + "probability": 0.5832 + }, + { + "start": 11816.82, + "end": 11822.48, + "probability": 0.9932 + }, + { + "start": 11822.84, + "end": 11824.4, + "probability": 0.6479 + }, + { + "start": 11824.86, + "end": 11826.66, + "probability": 0.9806 + }, + { + "start": 11826.86, + "end": 11828.1, + "probability": 0.841 + }, + { + "start": 11829.64, + "end": 11835.92, + "probability": 0.791 + }, + { + "start": 11836.18, + "end": 11837.74, + "probability": 0.4356 + }, + { + "start": 11837.96, + "end": 11838.98, + "probability": 0.7482 + }, + { + "start": 11839.02, + "end": 11842.4, + "probability": 0.9434 + }, + { + "start": 11843.02, + "end": 11844.48, + "probability": 0.7744 + }, + { + "start": 11866.14, + "end": 11867.92, + "probability": 0.5802 + }, + { + "start": 11869.48, + "end": 11873.14, + "probability": 0.9858 + }, + { + "start": 11873.16, + "end": 11877.16, + "probability": 0.966 + }, + { + "start": 11879.06, + "end": 11881.76, + "probability": 0.9935 + }, + { + "start": 11882.32, + "end": 11884.66, + "probability": 0.9989 + }, + { + "start": 11884.83, + "end": 11887.38, + "probability": 0.9731 + }, + { + "start": 11888.32, + "end": 11892.4, + "probability": 0.9832 + }, + { + "start": 11892.64, + "end": 11895.94, + "probability": 0.9979 + }, + { + "start": 11896.54, + "end": 11899.9, + "probability": 0.997 + }, + { + "start": 11900.78, + "end": 11903.8, + "probability": 0.9966 + }, + { + "start": 11904.62, + "end": 11907.64, + "probability": 0.9946 + }, + { + "start": 11907.64, + "end": 11910.18, + "probability": 0.9957 + }, + { + "start": 11911.42, + "end": 11915.14, + "probability": 0.9454 + }, + { + "start": 11915.92, + "end": 11918.08, + "probability": 0.9766 + }, + { + "start": 11918.32, + "end": 11920.08, + "probability": 0.9759 + }, + { + "start": 11920.9, + "end": 11924.7, + "probability": 0.9857 + }, + { + "start": 11925.56, + "end": 11930.28, + "probability": 0.9938 + }, + { + "start": 11930.5, + "end": 11930.86, + "probability": 0.7102 + }, + { + "start": 11931.58, + "end": 11932.9, + "probability": 0.935 + }, + { + "start": 11933.32, + "end": 11937.94, + "probability": 0.9615 + }, + { + "start": 11938.4, + "end": 11938.89, + "probability": 0.984 + }, + { + "start": 11939.72, + "end": 11940.23, + "probability": 0.9644 + }, + { + "start": 11940.92, + "end": 11944.58, + "probability": 0.991 + }, + { + "start": 11945.92, + "end": 11947.96, + "probability": 0.968 + }, + { + "start": 11948.68, + "end": 11952.78, + "probability": 0.8433 + }, + { + "start": 11952.92, + "end": 11956.74, + "probability": 0.8936 + }, + { + "start": 11957.5, + "end": 11960.0, + "probability": 0.8336 + }, + { + "start": 11960.18, + "end": 11960.26, + "probability": 0.4628 + }, + { + "start": 11960.34, + "end": 11960.44, + "probability": 0.9458 + }, + { + "start": 11960.54, + "end": 11964.02, + "probability": 0.9753 + }, + { + "start": 11964.02, + "end": 11966.44, + "probability": 0.9994 + }, + { + "start": 11967.2, + "end": 11970.5, + "probability": 0.9092 + }, + { + "start": 11971.04, + "end": 11972.84, + "probability": 0.9659 + }, + { + "start": 11973.66, + "end": 11975.24, + "probability": 0.9456 + }, + { + "start": 11976.48, + "end": 11981.54, + "probability": 0.9971 + }, + { + "start": 11982.88, + "end": 11987.56, + "probability": 0.975 + }, + { + "start": 11987.66, + "end": 11990.26, + "probability": 0.9518 + }, + { + "start": 11991.22, + "end": 11993.88, + "probability": 0.9978 + }, + { + "start": 11994.56, + "end": 12000.16, + "probability": 0.9613 + }, + { + "start": 12000.96, + "end": 12004.4, + "probability": 0.9967 + }, + { + "start": 12004.4, + "end": 12009.62, + "probability": 0.8103 + }, + { + "start": 12010.18, + "end": 12013.22, + "probability": 0.9962 + }, + { + "start": 12013.92, + "end": 12017.2, + "probability": 0.9595 + }, + { + "start": 12017.66, + "end": 12019.48, + "probability": 0.879 + }, + { + "start": 12019.9, + "end": 12020.86, + "probability": 0.9801 + }, + { + "start": 12021.62, + "end": 12024.42, + "probability": 0.9676 + }, + { + "start": 12024.58, + "end": 12026.26, + "probability": 0.964 + }, + { + "start": 12026.4, + "end": 12027.52, + "probability": 0.9864 + }, + { + "start": 12028.1, + "end": 12033.3, + "probability": 0.9883 + }, + { + "start": 12034.4, + "end": 12038.6, + "probability": 0.9775 + }, + { + "start": 12039.14, + "end": 12043.26, + "probability": 0.9671 + }, + { + "start": 12043.26, + "end": 12046.66, + "probability": 0.9912 + }, + { + "start": 12046.66, + "end": 12050.58, + "probability": 0.9993 + }, + { + "start": 12051.1, + "end": 12052.8, + "probability": 0.9867 + }, + { + "start": 12053.34, + "end": 12057.04, + "probability": 0.9754 + }, + { + "start": 12057.04, + "end": 12060.12, + "probability": 0.9935 + }, + { + "start": 12060.82, + "end": 12067.28, + "probability": 0.9961 + }, + { + "start": 12068.44, + "end": 12070.9, + "probability": 0.9147 + }, + { + "start": 12071.78, + "end": 12073.24, + "probability": 0.9198 + }, + { + "start": 12073.3, + "end": 12077.5, + "probability": 0.9865 + }, + { + "start": 12078.5, + "end": 12084.3, + "probability": 0.999 + }, + { + "start": 12084.3, + "end": 12089.06, + "probability": 0.9994 + }, + { + "start": 12089.62, + "end": 12090.34, + "probability": 0.9302 + }, + { + "start": 12090.6, + "end": 12094.7, + "probability": 0.9973 + }, + { + "start": 12094.78, + "end": 12097.92, + "probability": 0.8285 + }, + { + "start": 12097.92, + "end": 12102.1, + "probability": 0.9954 + }, + { + "start": 12102.28, + "end": 12106.16, + "probability": 0.9974 + }, + { + "start": 12106.88, + "end": 12107.86, + "probability": 0.9117 + }, + { + "start": 12107.98, + "end": 12110.86, + "probability": 0.9729 + }, + { + "start": 12111.54, + "end": 12115.9, + "probability": 0.9976 + }, + { + "start": 12116.3, + "end": 12117.7, + "probability": 0.9847 + }, + { + "start": 12118.1, + "end": 12122.5, + "probability": 0.9924 + }, + { + "start": 12122.66, + "end": 12123.0, + "probability": 0.8472 + }, + { + "start": 12124.38, + "end": 12126.26, + "probability": 0.5549 + }, + { + "start": 12126.6, + "end": 12126.9, + "probability": 0.0659 + }, + { + "start": 12126.9, + "end": 12127.42, + "probability": 0.7195 + }, + { + "start": 12128.08, + "end": 12133.98, + "probability": 0.7232 + }, + { + "start": 12135.22, + "end": 12141.68, + "probability": 0.9837 + }, + { + "start": 12142.22, + "end": 12144.2, + "probability": 0.9225 + }, + { + "start": 12144.4, + "end": 12145.7, + "probability": 0.773 + }, + { + "start": 12145.84, + "end": 12147.84, + "probability": 0.89 + }, + { + "start": 12147.9, + "end": 12149.52, + "probability": 0.9019 + }, + { + "start": 12151.82, + "end": 12152.72, + "probability": 0.7464 + }, + { + "start": 12155.84, + "end": 12158.38, + "probability": 0.7403 + }, + { + "start": 12159.82, + "end": 12161.32, + "probability": 0.8 + }, + { + "start": 12162.12, + "end": 12163.86, + "probability": 0.9824 + }, + { + "start": 12165.32, + "end": 12168.04, + "probability": 0.5793 + }, + { + "start": 12168.04, + "end": 12169.0, + "probability": 0.5587 + }, + { + "start": 12169.04, + "end": 12169.92, + "probability": 0.8611 + }, + { + "start": 12170.42, + "end": 12171.56, + "probability": 0.8901 + }, + { + "start": 12171.9, + "end": 12173.86, + "probability": 0.9087 + }, + { + "start": 12174.56, + "end": 12176.66, + "probability": 0.9943 + }, + { + "start": 12177.26, + "end": 12183.38, + "probability": 0.9657 + }, + { + "start": 12184.9, + "end": 12188.92, + "probability": 0.943 + }, + { + "start": 12189.28, + "end": 12194.46, + "probability": 0.9742 + }, + { + "start": 12194.88, + "end": 12198.16, + "probability": 0.9795 + }, + { + "start": 12199.09, + "end": 12199.58, + "probability": 0.4514 + }, + { + "start": 12199.58, + "end": 12200.52, + "probability": 0.3928 + }, + { + "start": 12201.04, + "end": 12201.71, + "probability": 0.9351 + }, + { + "start": 12201.9, + "end": 12204.68, + "probability": 0.6907 + }, + { + "start": 12204.74, + "end": 12207.46, + "probability": 0.8325 + }, + { + "start": 12207.96, + "end": 12210.68, + "probability": 0.9529 + }, + { + "start": 12210.88, + "end": 12212.76, + "probability": 0.9663 + }, + { + "start": 12214.97, + "end": 12217.36, + "probability": 0.9292 + }, + { + "start": 12217.66, + "end": 12218.6, + "probability": 0.7662 + }, + { + "start": 12218.74, + "end": 12218.92, + "probability": 0.2321 + }, + { + "start": 12219.14, + "end": 12221.82, + "probability": 0.4924 + }, + { + "start": 12222.45, + "end": 12225.14, + "probability": 0.7433 + }, + { + "start": 12225.2, + "end": 12228.1, + "probability": 0.8912 + }, + { + "start": 12228.72, + "end": 12233.7, + "probability": 0.9778 + }, + { + "start": 12233.96, + "end": 12234.66, + "probability": 0.4153 + }, + { + "start": 12235.4, + "end": 12243.7, + "probability": 0.9749 + }, + { + "start": 12243.7, + "end": 12249.68, + "probability": 0.9976 + }, + { + "start": 12250.58, + "end": 12255.56, + "probability": 0.9751 + }, + { + "start": 12255.72, + "end": 12257.06, + "probability": 0.7745 + }, + { + "start": 12257.24, + "end": 12259.52, + "probability": 0.7565 + }, + { + "start": 12260.18, + "end": 12262.64, + "probability": 0.9979 + }, + { + "start": 12262.64, + "end": 12265.76, + "probability": 0.9889 + }, + { + "start": 12266.56, + "end": 12273.24, + "probability": 0.9725 + }, + { + "start": 12273.86, + "end": 12276.06, + "probability": 0.8611 + }, + { + "start": 12277.12, + "end": 12283.98, + "probability": 0.8139 + }, + { + "start": 12284.06, + "end": 12285.14, + "probability": 0.7939 + }, + { + "start": 12285.34, + "end": 12288.54, + "probability": 0.9104 + }, + { + "start": 12289.52, + "end": 12292.36, + "probability": 0.9938 + }, + { + "start": 12292.94, + "end": 12295.74, + "probability": 0.9741 + }, + { + "start": 12296.3, + "end": 12300.2, + "probability": 0.9821 + }, + { + "start": 12300.62, + "end": 12302.88, + "probability": 0.8869 + }, + { + "start": 12302.96, + "end": 12303.34, + "probability": 0.4933 + }, + { + "start": 12303.34, + "end": 12305.52, + "probability": 0.9901 + }, + { + "start": 12306.0, + "end": 12309.14, + "probability": 0.9932 + }, + { + "start": 12309.76, + "end": 12315.08, + "probability": 0.9894 + }, + { + "start": 12315.68, + "end": 12317.2, + "probability": 0.9933 + }, + { + "start": 12318.0, + "end": 12318.9, + "probability": 0.8761 + }, + { + "start": 12320.22, + "end": 12321.9, + "probability": 0.9548 + }, + { + "start": 12322.42, + "end": 12323.34, + "probability": 0.9106 + }, + { + "start": 12324.36, + "end": 12328.16, + "probability": 0.8982 + }, + { + "start": 12328.62, + "end": 12331.46, + "probability": 0.9985 + }, + { + "start": 12332.24, + "end": 12332.82, + "probability": 0.9103 + }, + { + "start": 12332.98, + "end": 12335.8, + "probability": 0.7391 + }, + { + "start": 12336.22, + "end": 12337.14, + "probability": 0.7474 + }, + { + "start": 12337.28, + "end": 12337.96, + "probability": 0.0136 + }, + { + "start": 12337.96, + "end": 12340.16, + "probability": 0.7354 + }, + { + "start": 12340.76, + "end": 12343.34, + "probability": 0.9747 + }, + { + "start": 12344.02, + "end": 12345.9, + "probability": 0.9909 + }, + { + "start": 12346.34, + "end": 12348.58, + "probability": 0.9521 + }, + { + "start": 12349.16, + "end": 12350.7, + "probability": 0.918 + }, + { + "start": 12350.92, + "end": 12352.64, + "probability": 0.9743 + }, + { + "start": 12352.7, + "end": 12353.25, + "probability": 0.8293 + }, + { + "start": 12353.4, + "end": 12354.24, + "probability": 0.7119 + }, + { + "start": 12354.78, + "end": 12355.91, + "probability": 0.7239 + }, + { + "start": 12356.36, + "end": 12357.3, + "probability": 0.9553 + }, + { + "start": 12357.86, + "end": 12359.08, + "probability": 0.8844 + }, + { + "start": 12359.16, + "end": 12362.02, + "probability": 0.9635 + }, + { + "start": 12362.18, + "end": 12368.96, + "probability": 0.9931 + }, + { + "start": 12370.58, + "end": 12372.74, + "probability": 0.9211 + }, + { + "start": 12373.16, + "end": 12375.08, + "probability": 0.8515 + }, + { + "start": 12376.46, + "end": 12377.34, + "probability": 0.7448 + }, + { + "start": 12378.74, + "end": 12382.1, + "probability": 0.9922 + }, + { + "start": 12382.94, + "end": 12384.54, + "probability": 0.3019 + }, + { + "start": 12385.0, + "end": 12385.62, + "probability": 0.3768 + }, + { + "start": 12385.62, + "end": 12385.62, + "probability": 0.1817 + }, + { + "start": 12385.62, + "end": 12386.82, + "probability": 0.7469 + }, + { + "start": 12387.44, + "end": 12388.08, + "probability": 0.7808 + }, + { + "start": 12388.18, + "end": 12391.36, + "probability": 0.9639 + }, + { + "start": 12392.32, + "end": 12392.96, + "probability": 0.8577 + }, + { + "start": 12393.3, + "end": 12394.32, + "probability": 0.9575 + }, + { + "start": 12394.48, + "end": 12395.77, + "probability": 0.9451 + }, + { + "start": 12395.98, + "end": 12398.02, + "probability": 0.7478 + }, + { + "start": 12398.14, + "end": 12401.18, + "probability": 0.9355 + }, + { + "start": 12401.24, + "end": 12404.52, + "probability": 0.9838 + }, + { + "start": 12404.86, + "end": 12406.28, + "probability": 0.6536 + }, + { + "start": 12406.34, + "end": 12408.5, + "probability": 0.6788 + }, + { + "start": 12408.66, + "end": 12409.8, + "probability": 0.8353 + }, + { + "start": 12410.4, + "end": 12412.84, + "probability": 0.5305 + }, + { + "start": 12413.98, + "end": 12417.54, + "probability": 0.9767 + }, + { + "start": 12418.78, + "end": 12421.5, + "probability": 0.8223 + }, + { + "start": 12421.68, + "end": 12423.0, + "probability": 0.6142 + }, + { + "start": 12425.14, + "end": 12426.84, + "probability": 0.9264 + }, + { + "start": 12427.32, + "end": 12427.84, + "probability": 0.6876 + }, + { + "start": 12427.98, + "end": 12428.88, + "probability": 0.9549 + }, + { + "start": 12428.96, + "end": 12429.75, + "probability": 0.8269 + }, + { + "start": 12430.22, + "end": 12430.38, + "probability": 0.5031 + }, + { + "start": 12430.5, + "end": 12432.5, + "probability": 0.9897 + }, + { + "start": 12433.3, + "end": 12436.12, + "probability": 0.9638 + }, + { + "start": 12436.64, + "end": 12437.13, + "probability": 0.9246 + }, + { + "start": 12437.34, + "end": 12440.26, + "probability": 0.9398 + }, + { + "start": 12440.26, + "end": 12444.34, + "probability": 0.8155 + }, + { + "start": 12444.42, + "end": 12444.88, + "probability": 0.7151 + }, + { + "start": 12445.36, + "end": 12446.36, + "probability": 0.9341 + }, + { + "start": 12446.86, + "end": 12447.59, + "probability": 0.0981 + }, + { + "start": 12448.52, + "end": 12449.95, + "probability": 0.2727 + }, + { + "start": 12451.78, + "end": 12453.28, + "probability": 0.8894 + }, + { + "start": 12454.0, + "end": 12456.6, + "probability": 0.9615 + }, + { + "start": 12456.93, + "end": 12459.04, + "probability": 0.99 + }, + { + "start": 12459.24, + "end": 12461.12, + "probability": 0.9626 + }, + { + "start": 12461.72, + "end": 12466.4, + "probability": 0.9609 + }, + { + "start": 12466.58, + "end": 12468.06, + "probability": 0.4829 + }, + { + "start": 12468.06, + "end": 12469.26, + "probability": 0.6599 + }, + { + "start": 12469.7, + "end": 12474.08, + "probability": 0.8231 + }, + { + "start": 12474.12, + "end": 12475.04, + "probability": 0.7359 + }, + { + "start": 12475.26, + "end": 12476.5, + "probability": 0.9591 + }, + { + "start": 12477.12, + "end": 12477.87, + "probability": 0.9966 + }, + { + "start": 12478.54, + "end": 12481.34, + "probability": 0.9413 + }, + { + "start": 12482.02, + "end": 12482.88, + "probability": 0.7936 + }, + { + "start": 12482.98, + "end": 12487.38, + "probability": 0.8405 + }, + { + "start": 12488.08, + "end": 12493.38, + "probability": 0.9885 + }, + { + "start": 12494.18, + "end": 12496.3, + "probability": 0.9827 + }, + { + "start": 12496.68, + "end": 12497.88, + "probability": 0.8918 + }, + { + "start": 12498.5, + "end": 12499.52, + "probability": 0.6089 + }, + { + "start": 12500.2, + "end": 12501.12, + "probability": 0.7997 + }, + { + "start": 12501.5, + "end": 12503.8, + "probability": 0.5486 + }, + { + "start": 12503.92, + "end": 12505.54, + "probability": 0.9148 + }, + { + "start": 12506.36, + "end": 12509.01, + "probability": 0.9497 + }, + { + "start": 12509.96, + "end": 12511.06, + "probability": 0.9922 + }, + { + "start": 12511.68, + "end": 12512.08, + "probability": 0.5678 + }, + { + "start": 12512.1, + "end": 12512.66, + "probability": 0.7404 + }, + { + "start": 12512.78, + "end": 12514.26, + "probability": 0.981 + }, + { + "start": 12514.34, + "end": 12515.08, + "probability": 0.7738 + }, + { + "start": 12515.76, + "end": 12519.24, + "probability": 0.8605 + }, + { + "start": 12520.08, + "end": 12524.98, + "probability": 0.9909 + }, + { + "start": 12525.68, + "end": 12528.93, + "probability": 0.7759 + }, + { + "start": 12529.3, + "end": 12530.1, + "probability": 0.8068 + }, + { + "start": 12530.36, + "end": 12533.28, + "probability": 0.9613 + }, + { + "start": 12533.38, + "end": 12534.48, + "probability": 0.5144 + }, + { + "start": 12535.04, + "end": 12537.96, + "probability": 0.9234 + }, + { + "start": 12538.04, + "end": 12538.93, + "probability": 0.98 + }, + { + "start": 12539.14, + "end": 12539.42, + "probability": 0.9006 + }, + { + "start": 12540.06, + "end": 12542.72, + "probability": 0.9311 + }, + { + "start": 12543.86, + "end": 12545.8, + "probability": 0.9419 + }, + { + "start": 12545.8, + "end": 12548.76, + "probability": 0.9932 + }, + { + "start": 12548.82, + "end": 12553.98, + "probability": 0.9438 + }, + { + "start": 12554.18, + "end": 12555.16, + "probability": 0.7971 + }, + { + "start": 12555.6, + "end": 12557.5, + "probability": 0.9801 + }, + { + "start": 12557.94, + "end": 12558.45, + "probability": 0.9302 + }, + { + "start": 12559.34, + "end": 12560.78, + "probability": 0.9199 + }, + { + "start": 12560.88, + "end": 12564.04, + "probability": 0.9551 + }, + { + "start": 12564.6, + "end": 12567.02, + "probability": 0.8086 + }, + { + "start": 12567.7, + "end": 12570.9, + "probability": 0.8492 + }, + { + "start": 12571.38, + "end": 12572.58, + "probability": 0.9414 + }, + { + "start": 12572.7, + "end": 12573.47, + "probability": 0.9636 + }, + { + "start": 12573.64, + "end": 12575.1, + "probability": 0.8394 + }, + { + "start": 12575.22, + "end": 12577.06, + "probability": 0.8383 + }, + { + "start": 12577.48, + "end": 12578.9, + "probability": 0.7102 + }, + { + "start": 12579.26, + "end": 12583.72, + "probability": 0.9111 + }, + { + "start": 12584.22, + "end": 12585.12, + "probability": 0.9355 + }, + { + "start": 12585.48, + "end": 12586.42, + "probability": 0.4831 + }, + { + "start": 12586.44, + "end": 12588.08, + "probability": 0.8382 + }, + { + "start": 12588.26, + "end": 12590.36, + "probability": 0.9392 + }, + { + "start": 12590.84, + "end": 12592.76, + "probability": 0.8426 + }, + { + "start": 12592.88, + "end": 12595.58, + "probability": 0.7731 + }, + { + "start": 12595.92, + "end": 12596.86, + "probability": 0.8241 + }, + { + "start": 12596.88, + "end": 12598.14, + "probability": 0.6973 + }, + { + "start": 12598.58, + "end": 12599.34, + "probability": 0.8605 + }, + { + "start": 12599.78, + "end": 12602.54, + "probability": 0.9698 + }, + { + "start": 12603.3, + "end": 12604.8, + "probability": 0.8086 + }, + { + "start": 12605.24, + "end": 12606.46, + "probability": 0.7542 + }, + { + "start": 12606.92, + "end": 12607.78, + "probability": 0.8403 + }, + { + "start": 12607.88, + "end": 12608.62, + "probability": 0.8953 + }, + { + "start": 12608.92, + "end": 12610.48, + "probability": 0.7039 + }, + { + "start": 12610.62, + "end": 12612.88, + "probability": 0.8315 + }, + { + "start": 12613.5, + "end": 12614.3, + "probability": 0.5417 + }, + { + "start": 12614.32, + "end": 12614.78, + "probability": 0.7665 + }, + { + "start": 12615.14, + "end": 12615.98, + "probability": 0.5852 + }, + { + "start": 12616.7, + "end": 12619.22, + "probability": 0.9515 + }, + { + "start": 12619.94, + "end": 12621.76, + "probability": 0.7178 + }, + { + "start": 12622.3, + "end": 12623.49, + "probability": 0.9821 + }, + { + "start": 12624.44, + "end": 12627.86, + "probability": 0.9941 + }, + { + "start": 12627.96, + "end": 12630.6, + "probability": 0.7922 + }, + { + "start": 12630.66, + "end": 12631.21, + "probability": 0.7567 + }, + { + "start": 12631.8, + "end": 12632.5, + "probability": 0.9416 + }, + { + "start": 12633.38, + "end": 12634.32, + "probability": 0.9008 + }, + { + "start": 12636.0, + "end": 12637.51, + "probability": 0.4862 + }, + { + "start": 12638.42, + "end": 12640.2, + "probability": 0.8095 + }, + { + "start": 12641.02, + "end": 12643.7, + "probability": 0.9831 + }, + { + "start": 12644.18, + "end": 12648.74, + "probability": 0.9333 + }, + { + "start": 12649.32, + "end": 12650.2, + "probability": 0.665 + }, + { + "start": 12650.28, + "end": 12651.22, + "probability": 0.606 + }, + { + "start": 12651.28, + "end": 12653.0, + "probability": 0.3547 + }, + { + "start": 12653.36, + "end": 12654.3, + "probability": 0.3342 + }, + { + "start": 12654.6, + "end": 12656.32, + "probability": 0.7193 + }, + { + "start": 12656.42, + "end": 12656.76, + "probability": 0.9528 + }, + { + "start": 12657.66, + "end": 12660.16, + "probability": 0.8137 + }, + { + "start": 12660.58, + "end": 12664.7, + "probability": 0.9823 + }, + { + "start": 12674.82, + "end": 12678.04, + "probability": 0.9786 + }, + { + "start": 12678.04, + "end": 12682.4, + "probability": 0.9922 + }, + { + "start": 12683.12, + "end": 12686.16, + "probability": 0.9966 + }, + { + "start": 12686.7, + "end": 12688.1, + "probability": 0.8096 + }, + { + "start": 12688.42, + "end": 12689.14, + "probability": 0.9302 + }, + { + "start": 12689.36, + "end": 12690.32, + "probability": 0.6309 + }, + { + "start": 12690.54, + "end": 12691.16, + "probability": 0.4543 + }, + { + "start": 12691.42, + "end": 12695.77, + "probability": 0.987 + }, + { + "start": 12696.08, + "end": 12700.82, + "probability": 0.9659 + }, + { + "start": 12701.5, + "end": 12702.68, + "probability": 0.6477 + }, + { + "start": 12702.78, + "end": 12703.16, + "probability": 0.7195 + }, + { + "start": 12703.26, + "end": 12708.52, + "probability": 0.9613 + }, + { + "start": 12708.52, + "end": 12713.96, + "probability": 0.9847 + }, + { + "start": 12714.42, + "end": 12715.06, + "probability": 0.6683 + }, + { + "start": 12715.74, + "end": 12718.84, + "probability": 0.9805 + }, + { + "start": 12718.84, + "end": 12722.88, + "probability": 0.8961 + }, + { + "start": 12723.46, + "end": 12725.1, + "probability": 0.9219 + }, + { + "start": 12725.56, + "end": 12727.86, + "probability": 0.9799 + }, + { + "start": 12728.22, + "end": 12730.86, + "probability": 0.6493 + }, + { + "start": 12731.0, + "end": 12731.54, + "probability": 0.3782 + }, + { + "start": 12731.94, + "end": 12735.54, + "probability": 0.9572 + }, + { + "start": 12735.54, + "end": 12740.76, + "probability": 0.9154 + }, + { + "start": 12741.26, + "end": 12743.22, + "probability": 0.9183 + }, + { + "start": 12743.84, + "end": 12746.98, + "probability": 0.7685 + }, + { + "start": 12746.98, + "end": 12747.78, + "probability": 0.8527 + }, + { + "start": 12748.04, + "end": 12748.56, + "probability": 0.4084 + }, + { + "start": 12748.66, + "end": 12751.02, + "probability": 0.826 + }, + { + "start": 12751.02, + "end": 12753.32, + "probability": 0.9257 + }, + { + "start": 12753.88, + "end": 12755.96, + "probability": 0.8777 + }, + { + "start": 12756.7, + "end": 12757.78, + "probability": 0.9124 + }, + { + "start": 12758.22, + "end": 12760.04, + "probability": 0.6718 + }, + { + "start": 12760.54, + "end": 12761.26, + "probability": 0.7401 + }, + { + "start": 12761.64, + "end": 12762.24, + "probability": 0.8789 + }, + { + "start": 12762.34, + "end": 12769.44, + "probability": 0.9753 + }, + { + "start": 12769.6, + "end": 12771.45, + "probability": 0.9038 + }, + { + "start": 12771.92, + "end": 12772.62, + "probability": 0.5617 + }, + { + "start": 12773.3, + "end": 12773.6, + "probability": 0.2517 + }, + { + "start": 12775.04, + "end": 12779.52, + "probability": 0.7414 + }, + { + "start": 12780.26, + "end": 12781.53, + "probability": 0.9321 + }, + { + "start": 12781.96, + "end": 12782.66, + "probability": 0.5087 + }, + { + "start": 12782.8, + "end": 12786.74, + "probability": 0.9185 + }, + { + "start": 12786.82, + "end": 12787.34, + "probability": 0.8639 + }, + { + "start": 12787.78, + "end": 12789.16, + "probability": 0.965 + }, + { + "start": 12789.38, + "end": 12790.92, + "probability": 0.9064 + }, + { + "start": 12791.52, + "end": 12794.36, + "probability": 0.9932 + }, + { + "start": 12794.76, + "end": 12796.04, + "probability": 0.9119 + }, + { + "start": 12796.5, + "end": 12797.76, + "probability": 0.9167 + }, + { + "start": 12798.22, + "end": 12802.6, + "probability": 0.988 + }, + { + "start": 12803.04, + "end": 12803.44, + "probability": 0.8997 + }, + { + "start": 12803.6, + "end": 12805.42, + "probability": 0.9885 + }, + { + "start": 12806.66, + "end": 12809.2, + "probability": 0.3261 + }, + { + "start": 12809.22, + "end": 12814.95, + "probability": 0.7529 + }, + { + "start": 12815.08, + "end": 12815.56, + "probability": 0.537 + }, + { + "start": 12815.8, + "end": 12819.4, + "probability": 0.9672 + }, + { + "start": 12819.86, + "end": 12822.6, + "probability": 0.9862 + }, + { + "start": 12822.6, + "end": 12825.54, + "probability": 0.9865 + }, + { + "start": 12826.06, + "end": 12828.47, + "probability": 0.8247 + }, + { + "start": 12828.52, + "end": 12832.38, + "probability": 0.9971 + }, + { + "start": 12832.54, + "end": 12834.04, + "probability": 0.8525 + }, + { + "start": 12834.48, + "end": 12835.26, + "probability": 0.8156 + }, + { + "start": 12835.52, + "end": 12838.44, + "probability": 0.9814 + }, + { + "start": 12838.72, + "end": 12842.88, + "probability": 0.7165 + }, + { + "start": 12843.34, + "end": 12846.2, + "probability": 0.9788 + }, + { + "start": 12846.62, + "end": 12847.44, + "probability": 0.8713 + }, + { + "start": 12847.82, + "end": 12848.9, + "probability": 0.9743 + }, + { + "start": 12849.28, + "end": 12853.5, + "probability": 0.7858 + }, + { + "start": 12853.54, + "end": 12855.9, + "probability": 0.9744 + }, + { + "start": 12856.46, + "end": 12859.16, + "probability": 0.8167 + }, + { + "start": 12859.56, + "end": 12863.86, + "probability": 0.8226 + }, + { + "start": 12864.42, + "end": 12865.06, + "probability": 0.772 + }, + { + "start": 12865.36, + "end": 12865.76, + "probability": 0.6879 + }, + { + "start": 12865.86, + "end": 12867.54, + "probability": 0.9741 + }, + { + "start": 12867.96, + "end": 12870.38, + "probability": 0.9697 + }, + { + "start": 12870.96, + "end": 12872.64, + "probability": 0.9331 + }, + { + "start": 12872.64, + "end": 12875.74, + "probability": 0.9922 + }, + { + "start": 12876.25, + "end": 12879.54, + "probability": 0.9792 + }, + { + "start": 12880.0, + "end": 12881.42, + "probability": 0.9614 + }, + { + "start": 12881.56, + "end": 12885.64, + "probability": 0.9956 + }, + { + "start": 12886.16, + "end": 12888.22, + "probability": 0.9021 + }, + { + "start": 12888.68, + "end": 12891.46, + "probability": 0.8262 + }, + { + "start": 12892.74, + "end": 12894.7, + "probability": 0.9051 + }, + { + "start": 12895.52, + "end": 12896.52, + "probability": 0.7458 + }, + { + "start": 12896.58, + "end": 12899.8, + "probability": 0.9856 + }, + { + "start": 12903.3, + "end": 12903.36, + "probability": 0.0245 + }, + { + "start": 12920.32, + "end": 12921.12, + "probability": 0.2968 + }, + { + "start": 12922.72, + "end": 12924.18, + "probability": 0.2216 + }, + { + "start": 12924.3, + "end": 12924.62, + "probability": 0.1209 + }, + { + "start": 12925.38, + "end": 12926.62, + "probability": 0.5277 + }, + { + "start": 12927.32, + "end": 12929.98, + "probability": 0.9118 + }, + { + "start": 12932.06, + "end": 12935.8, + "probability": 0.9941 + }, + { + "start": 12938.08, + "end": 12938.92, + "probability": 0.6766 + }, + { + "start": 12939.02, + "end": 12939.84, + "probability": 0.8035 + }, + { + "start": 12940.3, + "end": 12942.2, + "probability": 0.9789 + }, + { + "start": 12942.2, + "end": 12944.34, + "probability": 0.9272 + }, + { + "start": 12944.38, + "end": 12945.16, + "probability": 0.7371 + }, + { + "start": 12946.22, + "end": 12952.3, + "probability": 0.9329 + }, + { + "start": 12953.0, + "end": 12954.78, + "probability": 0.6958 + }, + { + "start": 12955.74, + "end": 12960.02, + "probability": 0.9971 + }, + { + "start": 12960.2, + "end": 12964.74, + "probability": 0.9565 + }, + { + "start": 12977.48, + "end": 12977.96, + "probability": 0.0374 + }, + { + "start": 12977.96, + "end": 12977.96, + "probability": 0.0406 + }, + { + "start": 12977.96, + "end": 12977.96, + "probability": 0.126 + }, + { + "start": 12977.96, + "end": 12979.88, + "probability": 0.1441 + }, + { + "start": 12980.84, + "end": 12982.4, + "probability": 0.8153 + }, + { + "start": 12982.42, + "end": 12984.08, + "probability": 0.4328 + }, + { + "start": 12984.1, + "end": 12984.89, + "probability": 0.2728 + }, + { + "start": 12986.76, + "end": 12988.18, + "probability": 0.6676 + }, + { + "start": 12988.42, + "end": 12990.18, + "probability": 0.6817 + }, + { + "start": 12990.64, + "end": 12991.12, + "probability": 0.4248 + }, + { + "start": 12991.54, + "end": 12993.9, + "probability": 0.5933 + }, + { + "start": 12994.02, + "end": 12997.56, + "probability": 0.9878 + }, + { + "start": 12998.14, + "end": 13001.82, + "probability": 0.9349 + }, + { + "start": 13002.24, + "end": 13005.22, + "probability": 0.5186 + }, + { + "start": 13005.26, + "end": 13008.68, + "probability": 0.9246 + }, + { + "start": 13009.96, + "end": 13011.92, + "probability": 0.5291 + }, + { + "start": 13013.52, + "end": 13016.86, + "probability": 0.9469 + }, + { + "start": 13016.86, + "end": 13019.62, + "probability": 0.4864 + }, + { + "start": 13019.62, + "end": 13021.18, + "probability": 0.8408 + }, + { + "start": 13021.44, + "end": 13023.66, + "probability": 0.9921 + }, + { + "start": 13024.58, + "end": 13024.98, + "probability": 0.1837 + }, + { + "start": 13027.15, + "end": 13031.22, + "probability": 0.0771 + }, + { + "start": 13031.46, + "end": 13033.14, + "probability": 0.5917 + }, + { + "start": 13033.2, + "end": 13034.42, + "probability": 0.9293 + }, + { + "start": 13034.54, + "end": 13035.04, + "probability": 0.3652 + }, + { + "start": 13035.2, + "end": 13035.96, + "probability": 0.6626 + }, + { + "start": 13036.7, + "end": 13039.4, + "probability": 0.8429 + }, + { + "start": 13039.48, + "end": 13041.84, + "probability": 0.8328 + }, + { + "start": 13041.96, + "end": 13043.2, + "probability": 0.8458 + }, + { + "start": 13044.06, + "end": 13044.34, + "probability": 0.0125 + }, + { + "start": 13044.34, + "end": 13044.52, + "probability": 0.1208 + }, + { + "start": 13044.52, + "end": 13046.68, + "probability": 0.8177 + }, + { + "start": 13047.44, + "end": 13048.98, + "probability": 0.929 + }, + { + "start": 13049.22, + "end": 13050.74, + "probability": 0.8321 + }, + { + "start": 13050.8, + "end": 13051.6, + "probability": 0.8206 + }, + { + "start": 13051.6, + "end": 13053.7, + "probability": 0.9162 + }, + { + "start": 13053.72, + "end": 13055.54, + "probability": 0.9629 + }, + { + "start": 13055.88, + "end": 13057.38, + "probability": 0.8637 + }, + { + "start": 13057.78, + "end": 13059.5, + "probability": 0.8259 + }, + { + "start": 13060.14, + "end": 13061.64, + "probability": 0.8745 + }, + { + "start": 13062.04, + "end": 13062.52, + "probability": 0.7646 + }, + { + "start": 13062.58, + "end": 13063.42, + "probability": 0.5482 + }, + { + "start": 13063.52, + "end": 13067.86, + "probability": 0.6619 + }, + { + "start": 13068.16, + "end": 13068.46, + "probability": 0.3231 + }, + { + "start": 13068.46, + "end": 13068.46, + "probability": 0.6122 + }, + { + "start": 13068.46, + "end": 13071.28, + "probability": 0.9807 + }, + { + "start": 13071.28, + "end": 13074.74, + "probability": 0.9985 + }, + { + "start": 13075.44, + "end": 13082.24, + "probability": 0.9041 + }, + { + "start": 13082.24, + "end": 13088.52, + "probability": 0.962 + }, + { + "start": 13088.74, + "end": 13091.54, + "probability": 0.5954 + }, + { + "start": 13091.96, + "end": 13095.92, + "probability": 0.9896 + }, + { + "start": 13096.56, + "end": 13100.84, + "probability": 0.649 + }, + { + "start": 13100.84, + "end": 13102.28, + "probability": 0.9324 + }, + { + "start": 13102.28, + "end": 13105.39, + "probability": 0.7353 + }, + { + "start": 13105.74, + "end": 13108.76, + "probability": 0.8171 + }, + { + "start": 13109.0, + "end": 13112.56, + "probability": 0.9505 + }, + { + "start": 13113.26, + "end": 13115.36, + "probability": 0.94 + }, + { + "start": 13116.18, + "end": 13118.62, + "probability": 0.9641 + }, + { + "start": 13119.2, + "end": 13123.72, + "probability": 0.9905 + }, + { + "start": 13124.86, + "end": 13130.98, + "probability": 0.9886 + }, + { + "start": 13131.82, + "end": 13135.92, + "probability": 0.929 + }, + { + "start": 13137.88, + "end": 13142.06, + "probability": 0.9644 + }, + { + "start": 13142.64, + "end": 13146.3, + "probability": 0.9375 + }, + { + "start": 13146.88, + "end": 13147.52, + "probability": 0.5952 + }, + { + "start": 13147.66, + "end": 13148.66, + "probability": 0.848 + }, + { + "start": 13148.94, + "end": 13153.4, + "probability": 0.9505 + }, + { + "start": 13153.4, + "end": 13156.58, + "probability": 0.5953 + }, + { + "start": 13157.18, + "end": 13163.24, + "probability": 0.0341 + }, + { + "start": 13163.4, + "end": 13165.82, + "probability": 0.1969 + }, + { + "start": 13165.82, + "end": 13165.82, + "probability": 0.0382 + }, + { + "start": 13165.82, + "end": 13167.42, + "probability": 0.0215 + }, + { + "start": 13167.42, + "end": 13171.35, + "probability": 0.7341 + }, + { + "start": 13171.94, + "end": 13174.38, + "probability": 0.8162 + }, + { + "start": 13174.38, + "end": 13178.18, + "probability": 0.9938 + }, + { + "start": 13178.52, + "end": 13180.16, + "probability": 0.9821 + }, + { + "start": 13180.68, + "end": 13183.14, + "probability": 0.9847 + }, + { + "start": 13183.24, + "end": 13187.1, + "probability": 0.9606 + }, + { + "start": 13187.42, + "end": 13191.78, + "probability": 0.9421 + }, + { + "start": 13191.78, + "end": 13195.9, + "probability": 0.9687 + }, + { + "start": 13195.96, + "end": 13196.34, + "probability": 0.5714 + }, + { + "start": 13196.34, + "end": 13197.04, + "probability": 0.6205 + }, + { + "start": 13197.9, + "end": 13204.2, + "probability": 0.518 + }, + { + "start": 13204.32, + "end": 13206.06, + "probability": 0.7614 + }, + { + "start": 13206.52, + "end": 13208.06, + "probability": 0.4104 + }, + { + "start": 13208.3, + "end": 13208.98, + "probability": 0.8201 + }, + { + "start": 13209.22, + "end": 13210.68, + "probability": 0.9263 + }, + { + "start": 13211.24, + "end": 13216.52, + "probability": 0.9466 + }, + { + "start": 13216.82, + "end": 13220.88, + "probability": 0.7475 + }, + { + "start": 13221.22, + "end": 13222.32, + "probability": 0.8258 + }, + { + "start": 13223.1, + "end": 13226.7, + "probability": 0.8593 + }, + { + "start": 13226.82, + "end": 13231.96, + "probability": 0.9834 + }, + { + "start": 13232.2, + "end": 13233.05, + "probability": 0.7961 + }, + { + "start": 13233.56, + "end": 13236.3, + "probability": 0.9626 + }, + { + "start": 13236.84, + "end": 13240.54, + "probability": 0.8062 + }, + { + "start": 13240.74, + "end": 13241.42, + "probability": 0.9015 + }, + { + "start": 13241.62, + "end": 13242.3, + "probability": 0.9023 + }, + { + "start": 13242.46, + "end": 13243.24, + "probability": 0.9744 + }, + { + "start": 13243.4, + "end": 13244.3, + "probability": 0.9479 + }, + { + "start": 13244.34, + "end": 13246.36, + "probability": 0.8707 + }, + { + "start": 13246.88, + "end": 13250.06, + "probability": 0.967 + }, + { + "start": 13250.42, + "end": 13252.29, + "probability": 0.7815 + }, + { + "start": 13256.48, + "end": 13260.2, + "probability": 0.8608 + }, + { + "start": 13260.36, + "end": 13260.36, + "probability": 0.205 + }, + { + "start": 13260.48, + "end": 13264.72, + "probability": 0.9918 + }, + { + "start": 13265.58, + "end": 13269.22, + "probability": 0.9768 + }, + { + "start": 13269.92, + "end": 13272.38, + "probability": 0.9768 + }, + { + "start": 13272.88, + "end": 13275.12, + "probability": 0.0887 + }, + { + "start": 13275.18, + "end": 13276.86, + "probability": 0.6308 + }, + { + "start": 13277.92, + "end": 13279.3, + "probability": 0.8176 + }, + { + "start": 13279.62, + "end": 13282.2, + "probability": 0.991 + }, + { + "start": 13282.64, + "end": 13285.28, + "probability": 0.9785 + }, + { + "start": 13285.88, + "end": 13288.82, + "probability": 0.9707 + }, + { + "start": 13289.0, + "end": 13290.41, + "probability": 0.9812 + }, + { + "start": 13290.7, + "end": 13295.68, + "probability": 0.9849 + }, + { + "start": 13295.84, + "end": 13301.18, + "probability": 0.8525 + }, + { + "start": 13301.62, + "end": 13302.68, + "probability": 0.7555 + }, + { + "start": 13303.46, + "end": 13307.72, + "probability": 0.7432 + }, + { + "start": 13307.96, + "end": 13308.24, + "probability": 0.0956 + }, + { + "start": 13308.24, + "end": 13308.24, + "probability": 0.2275 + }, + { + "start": 13308.24, + "end": 13311.34, + "probability": 0.8574 + }, + { + "start": 13311.34, + "end": 13312.08, + "probability": 0.2722 + }, + { + "start": 13312.72, + "end": 13313.45, + "probability": 0.7838 + }, + { + "start": 13313.86, + "end": 13313.94, + "probability": 0.3245 + }, + { + "start": 13314.02, + "end": 13314.22, + "probability": 0.2216 + }, + { + "start": 13314.22, + "end": 13314.22, + "probability": 0.0282 + }, + { + "start": 13314.22, + "end": 13318.0, + "probability": 0.9761 + }, + { + "start": 13318.94, + "end": 13322.62, + "probability": 0.9641 + }, + { + "start": 13323.08, + "end": 13323.96, + "probability": 0.9844 + }, + { + "start": 13324.08, + "end": 13326.12, + "probability": 0.993 + }, + { + "start": 13326.5, + "end": 13326.96, + "probability": 0.3362 + }, + { + "start": 13326.98, + "end": 13327.42, + "probability": 0.6591 + }, + { + "start": 13327.48, + "end": 13328.78, + "probability": 0.8065 + }, + { + "start": 13329.14, + "end": 13332.44, + "probability": 0.9023 + }, + { + "start": 13332.76, + "end": 13332.76, + "probability": 0.4603 + }, + { + "start": 13332.76, + "end": 13333.14, + "probability": 0.7661 + }, + { + "start": 13333.2, + "end": 13335.07, + "probability": 0.9753 + }, + { + "start": 13335.5, + "end": 13337.16, + "probability": 0.9569 + }, + { + "start": 13337.62, + "end": 13339.8, + "probability": 0.921 + }, + { + "start": 13340.16, + "end": 13343.76, + "probability": 0.9957 + }, + { + "start": 13344.1, + "end": 13347.4, + "probability": 0.8516 + }, + { + "start": 13347.8, + "end": 13351.94, + "probability": 0.991 + }, + { + "start": 13352.34, + "end": 13355.78, + "probability": 0.9967 + }, + { + "start": 13355.84, + "end": 13355.84, + "probability": 0.3418 + }, + { + "start": 13355.86, + "end": 13358.84, + "probability": 0.9834 + }, + { + "start": 13358.96, + "end": 13361.78, + "probability": 0.9785 + }, + { + "start": 13363.13, + "end": 13366.48, + "probability": 0.5491 + }, + { + "start": 13366.6, + "end": 13367.7, + "probability": 0.9928 + }, + { + "start": 13367.74, + "end": 13368.64, + "probability": 0.8395 + }, + { + "start": 13370.34, + "end": 13370.98, + "probability": 0.1715 + }, + { + "start": 13372.96, + "end": 13373.54, + "probability": 0.3107 + }, + { + "start": 13373.66, + "end": 13376.68, + "probability": 0.3603 + }, + { + "start": 13376.68, + "end": 13380.2, + "probability": 0.9709 + }, + { + "start": 13380.32, + "end": 13382.0, + "probability": 0.8276 + }, + { + "start": 13382.96, + "end": 13386.82, + "probability": 0.9198 + }, + { + "start": 13387.0, + "end": 13388.98, + "probability": 0.8757 + }, + { + "start": 13390.82, + "end": 13392.26, + "probability": 0.1094 + }, + { + "start": 13392.28, + "end": 13394.1, + "probability": 0.6593 + }, + { + "start": 13394.18, + "end": 13395.3, + "probability": 0.7062 + }, + { + "start": 13395.36, + "end": 13397.26, + "probability": 0.9932 + }, + { + "start": 13397.58, + "end": 13400.22, + "probability": 0.9375 + }, + { + "start": 13400.78, + "end": 13405.0, + "probability": 0.9567 + }, + { + "start": 13405.82, + "end": 13408.62, + "probability": 0.9361 + }, + { + "start": 13408.8, + "end": 13410.16, + "probability": 0.6058 + }, + { + "start": 13410.78, + "end": 13411.56, + "probability": 0.7484 + }, + { + "start": 13412.86, + "end": 13417.88, + "probability": 0.8784 + }, + { + "start": 13418.8, + "end": 13421.42, + "probability": 0.9941 + }, + { + "start": 13423.77, + "end": 13428.68, + "probability": 0.8704 + }, + { + "start": 13429.48, + "end": 13435.44, + "probability": 0.9445 + }, + { + "start": 13436.44, + "end": 13436.88, + "probability": 0.3855 + }, + { + "start": 13437.46, + "end": 13444.7, + "probability": 0.9764 + }, + { + "start": 13445.24, + "end": 13447.68, + "probability": 0.9731 + }, + { + "start": 13448.68, + "end": 13453.38, + "probability": 0.6475 + }, + { + "start": 13453.38, + "end": 13458.38, + "probability": 0.8149 + }, + { + "start": 13458.72, + "end": 13459.44, + "probability": 0.7776 + }, + { + "start": 13460.02, + "end": 13464.33, + "probability": 0.8601 + }, + { + "start": 13464.54, + "end": 13465.84, + "probability": 0.835 + }, + { + "start": 13465.92, + "end": 13467.9, + "probability": 0.8852 + }, + { + "start": 13468.16, + "end": 13468.94, + "probability": 0.7523 + }, + { + "start": 13469.66, + "end": 13470.8, + "probability": 0.5847 + }, + { + "start": 13470.96, + "end": 13476.14, + "probability": 0.9868 + }, + { + "start": 13476.44, + "end": 13481.5, + "probability": 0.9258 + }, + { + "start": 13481.74, + "end": 13485.7, + "probability": 0.9886 + }, + { + "start": 13486.22, + "end": 13489.56, + "probability": 0.877 + }, + { + "start": 13489.64, + "end": 13490.47, + "probability": 0.6821 + }, + { + "start": 13491.78, + "end": 13494.32, + "probability": 0.9668 + }, + { + "start": 13495.6, + "end": 13498.32, + "probability": 0.9917 + }, + { + "start": 13498.56, + "end": 13504.16, + "probability": 0.7646 + }, + { + "start": 13504.6, + "end": 13506.2, + "probability": 0.6976 + }, + { + "start": 13507.0, + "end": 13511.96, + "probability": 0.9045 + }, + { + "start": 13512.18, + "end": 13515.36, + "probability": 0.9595 + }, + { + "start": 13515.76, + "end": 13516.24, + "probability": 0.7263 + }, + { + "start": 13516.3, + "end": 13518.06, + "probability": 0.9919 + }, + { + "start": 13518.08, + "end": 13518.78, + "probability": 0.7193 + }, + { + "start": 13519.16, + "end": 13522.22, + "probability": 0.9111 + }, + { + "start": 13522.36, + "end": 13524.54, + "probability": 0.8872 + }, + { + "start": 13524.64, + "end": 13526.34, + "probability": 0.9968 + }, + { + "start": 13527.16, + "end": 13530.46, + "probability": 0.9321 + }, + { + "start": 13530.64, + "end": 13535.16, + "probability": 0.8904 + }, + { + "start": 13535.24, + "end": 13536.36, + "probability": 0.7588 + }, + { + "start": 13536.9, + "end": 13538.74, + "probability": 0.5193 + }, + { + "start": 13539.5, + "end": 13543.56, + "probability": 0.9238 + }, + { + "start": 13543.86, + "end": 13546.88, + "probability": 0.9274 + }, + { + "start": 13547.22, + "end": 13549.98, + "probability": 0.7822 + }, + { + "start": 13550.08, + "end": 13554.68, + "probability": 0.9878 + }, + { + "start": 13555.26, + "end": 13557.4, + "probability": 0.9194 + }, + { + "start": 13557.5, + "end": 13559.04, + "probability": 0.8076 + }, + { + "start": 13559.48, + "end": 13562.84, + "probability": 0.991 + }, + { + "start": 13563.32, + "end": 13569.0, + "probability": 0.9946 + }, + { + "start": 13569.3, + "end": 13571.1, + "probability": 0.9845 + }, + { + "start": 13571.7, + "end": 13571.94, + "probability": 0.186 + }, + { + "start": 13572.58, + "end": 13574.38, + "probability": 0.935 + }, + { + "start": 13574.48, + "end": 13577.05, + "probability": 0.9565 + }, + { + "start": 13577.56, + "end": 13578.66, + "probability": 0.6767 + }, + { + "start": 13579.6, + "end": 13584.96, + "probability": 0.989 + }, + { + "start": 13585.24, + "end": 13590.58, + "probability": 0.9874 + }, + { + "start": 13590.7, + "end": 13592.38, + "probability": 0.7956 + }, + { + "start": 13592.84, + "end": 13596.5, + "probability": 0.996 + }, + { + "start": 13596.92, + "end": 13600.9, + "probability": 0.9823 + }, + { + "start": 13601.62, + "end": 13603.38, + "probability": 0.9973 + }, + { + "start": 13603.76, + "end": 13609.2, + "probability": 0.9917 + }, + { + "start": 13609.5, + "end": 13611.14, + "probability": 0.9916 + }, + { + "start": 13611.46, + "end": 13618.6, + "probability": 0.9934 + }, + { + "start": 13619.0, + "end": 13619.6, + "probability": 0.7618 + }, + { + "start": 13620.04, + "end": 13624.64, + "probability": 0.98 + }, + { + "start": 13625.46, + "end": 13630.82, + "probability": 0.939 + }, + { + "start": 13630.88, + "end": 13632.76, + "probability": 0.9836 + }, + { + "start": 13633.14, + "end": 13634.98, + "probability": 0.7349 + }, + { + "start": 13635.56, + "end": 13638.6, + "probability": 0.5572 + }, + { + "start": 13639.0, + "end": 13640.46, + "probability": 0.8176 + }, + { + "start": 13640.66, + "end": 13641.26, + "probability": 0.7402 + }, + { + "start": 13641.32, + "end": 13642.2, + "probability": 0.6043 + }, + { + "start": 13642.6, + "end": 13646.72, + "probability": 0.9844 + }, + { + "start": 13647.26, + "end": 13649.12, + "probability": 0.9824 + }, + { + "start": 13649.7, + "end": 13652.28, + "probability": 0.7731 + }, + { + "start": 13652.28, + "end": 13652.86, + "probability": 0.4205 + }, + { + "start": 13653.32, + "end": 13657.56, + "probability": 0.978 + }, + { + "start": 13657.62, + "end": 13658.04, + "probability": 0.9451 + }, + { + "start": 13658.42, + "end": 13660.68, + "probability": 0.967 + }, + { + "start": 13660.72, + "end": 13662.42, + "probability": 0.541 + }, + { + "start": 13663.04, + "end": 13667.62, + "probability": 0.8674 + }, + { + "start": 13667.78, + "end": 13669.72, + "probability": 0.5181 + }, + { + "start": 13675.16, + "end": 13677.6, + "probability": 0.7456 + }, + { + "start": 13678.64, + "end": 13680.84, + "probability": 0.9968 + }, + { + "start": 13680.84, + "end": 13687.56, + "probability": 0.9817 + }, + { + "start": 13687.68, + "end": 13688.34, + "probability": 0.6661 + }, + { + "start": 13688.46, + "end": 13691.0, + "probability": 0.7339 + }, + { + "start": 13691.84, + "end": 13695.88, + "probability": 0.9929 + }, + { + "start": 13695.94, + "end": 13698.94, + "probability": 0.9712 + }, + { + "start": 13698.94, + "end": 13702.92, + "probability": 0.9972 + }, + { + "start": 13703.06, + "end": 13703.66, + "probability": 0.5953 + }, + { + "start": 13703.84, + "end": 13705.78, + "probability": 0.7376 + }, + { + "start": 13706.58, + "end": 13710.44, + "probability": 0.9849 + }, + { + "start": 13710.44, + "end": 13714.26, + "probability": 0.8942 + }, + { + "start": 13715.02, + "end": 13717.56, + "probability": 0.808 + }, + { + "start": 13717.68, + "end": 13719.64, + "probability": 0.9575 + }, + { + "start": 13720.14, + "end": 13727.44, + "probability": 0.9852 + }, + { + "start": 13727.78, + "end": 13732.02, + "probability": 0.9909 + }, + { + "start": 13732.54, + "end": 13737.01, + "probability": 0.9941 + }, + { + "start": 13738.08, + "end": 13742.04, + "probability": 0.7312 + }, + { + "start": 13742.5, + "end": 13746.09, + "probability": 0.9871 + }, + { + "start": 13746.6, + "end": 13750.7, + "probability": 0.9733 + }, + { + "start": 13750.84, + "end": 13754.48, + "probability": 0.8984 + }, + { + "start": 13754.94, + "end": 13757.18, + "probability": 0.9915 + }, + { + "start": 13757.28, + "end": 13760.44, + "probability": 0.9888 + }, + { + "start": 13760.52, + "end": 13761.02, + "probability": 0.9371 + }, + { + "start": 13761.16, + "end": 13762.8, + "probability": 0.9659 + }, + { + "start": 13763.12, + "end": 13765.42, + "probability": 0.9586 + }, + { + "start": 13765.84, + "end": 13767.08, + "probability": 0.9845 + }, + { + "start": 13767.18, + "end": 13768.52, + "probability": 0.9963 + }, + { + "start": 13768.8, + "end": 13771.48, + "probability": 0.9961 + }, + { + "start": 13772.12, + "end": 13777.66, + "probability": 0.9663 + }, + { + "start": 13777.92, + "end": 13778.5, + "probability": 0.4589 + }, + { + "start": 13778.62, + "end": 13783.18, + "probability": 0.8938 + }, + { + "start": 13783.56, + "end": 13786.12, + "probability": 0.9963 + }, + { + "start": 13786.44, + "end": 13790.16, + "probability": 0.9763 + }, + { + "start": 13790.42, + "end": 13793.64, + "probability": 0.9683 + }, + { + "start": 13794.04, + "end": 13801.9, + "probability": 0.9097 + }, + { + "start": 13801.9, + "end": 13805.48, + "probability": 0.9899 + }, + { + "start": 13806.2, + "end": 13810.62, + "probability": 0.9969 + }, + { + "start": 13811.62, + "end": 13813.06, + "probability": 0.7789 + }, + { + "start": 13813.12, + "end": 13816.28, + "probability": 0.9621 + }, + { + "start": 13816.48, + "end": 13820.3, + "probability": 0.978 + }, + { + "start": 13820.46, + "end": 13828.7, + "probability": 0.9934 + }, + { + "start": 13829.06, + "end": 13834.22, + "probability": 0.7997 + }, + { + "start": 13834.64, + "end": 13841.12, + "probability": 0.9868 + }, + { + "start": 13841.86, + "end": 13844.56, + "probability": 0.9768 + }, + { + "start": 13844.7, + "end": 13845.68, + "probability": 0.8975 + }, + { + "start": 13845.74, + "end": 13849.14, + "probability": 0.8518 + }, + { + "start": 13849.46, + "end": 13850.9, + "probability": 0.9782 + }, + { + "start": 13851.02, + "end": 13852.16, + "probability": 0.7247 + }, + { + "start": 13852.52, + "end": 13853.48, + "probability": 0.9614 + }, + { + "start": 13853.54, + "end": 13856.02, + "probability": 0.9554 + }, + { + "start": 13856.6, + "end": 13860.78, + "probability": 0.9949 + }, + { + "start": 13861.28, + "end": 13864.08, + "probability": 0.9875 + }, + { + "start": 13864.64, + "end": 13867.26, + "probability": 0.9427 + }, + { + "start": 13867.32, + "end": 13867.94, + "probability": 0.9641 + }, + { + "start": 13868.06, + "end": 13868.66, + "probability": 0.8103 + }, + { + "start": 13869.08, + "end": 13869.48, + "probability": 0.7409 + }, + { + "start": 13869.52, + "end": 13870.22, + "probability": 0.5529 + }, + { + "start": 13870.26, + "end": 13873.04, + "probability": 0.8182 + }, + { + "start": 13873.38, + "end": 13875.14, + "probability": 0.9766 + }, + { + "start": 13875.96, + "end": 13876.96, + "probability": 0.664 + }, + { + "start": 13877.3, + "end": 13878.96, + "probability": 0.7581 + }, + { + "start": 13879.04, + "end": 13880.34, + "probability": 0.8827 + }, + { + "start": 13880.66, + "end": 13883.07, + "probability": 0.9172 + }, + { + "start": 13884.26, + "end": 13889.08, + "probability": 0.9266 + }, + { + "start": 13889.7, + "end": 13892.1, + "probability": 0.9473 + }, + { + "start": 13892.58, + "end": 13896.72, + "probability": 0.4943 + }, + { + "start": 13897.22, + "end": 13900.58, + "probability": 0.9869 + }, + { + "start": 13901.16, + "end": 13904.52, + "probability": 0.9722 + }, + { + "start": 13904.76, + "end": 13908.5, + "probability": 0.9797 + }, + { + "start": 13908.76, + "end": 13909.89, + "probability": 0.8375 + }, + { + "start": 13910.48, + "end": 13912.84, + "probability": 0.5099 + }, + { + "start": 13913.32, + "end": 13914.27, + "probability": 0.8421 + }, + { + "start": 13914.64, + "end": 13916.7, + "probability": 0.8677 + }, + { + "start": 13916.94, + "end": 13917.6, + "probability": 0.9258 + }, + { + "start": 13917.78, + "end": 13922.2, + "probability": 0.9756 + }, + { + "start": 13922.34, + "end": 13926.38, + "probability": 0.9551 + }, + { + "start": 13927.04, + "end": 13929.96, + "probability": 0.7565 + }, + { + "start": 13930.28, + "end": 13934.59, + "probability": 0.9704 + }, + { + "start": 13934.78, + "end": 13936.0, + "probability": 0.8915 + }, + { + "start": 13936.32, + "end": 13938.74, + "probability": 0.9963 + }, + { + "start": 13939.1, + "end": 13943.3, + "probability": 0.9025 + }, + { + "start": 13943.82, + "end": 13945.36, + "probability": 0.7881 + }, + { + "start": 13946.66, + "end": 13949.02, + "probability": 0.994 + }, + { + "start": 13949.12, + "end": 13950.7, + "probability": 0.9305 + }, + { + "start": 13951.06, + "end": 13953.36, + "probability": 0.9468 + }, + { + "start": 13953.66, + "end": 13958.9, + "probability": 0.8654 + }, + { + "start": 13959.08, + "end": 13960.6, + "probability": 0.9873 + }, + { + "start": 13960.6, + "end": 13960.86, + "probability": 0.4522 + }, + { + "start": 13960.88, + "end": 13960.88, + "probability": 0.5314 + }, + { + "start": 13960.88, + "end": 13963.24, + "probability": 0.9318 + }, + { + "start": 13963.52, + "end": 13965.34, + "probability": 0.696 + }, + { + "start": 13965.36, + "end": 13968.86, + "probability": 0.6494 + }, + { + "start": 13970.1, + "end": 13972.72, + "probability": 0.8908 + }, + { + "start": 13978.42, + "end": 13979.24, + "probability": 0.9709 + }, + { + "start": 13985.36, + "end": 13987.1, + "probability": 0.7164 + }, + { + "start": 13988.0, + "end": 13989.08, + "probability": 0.8178 + }, + { + "start": 13990.4, + "end": 13991.22, + "probability": 0.854 + }, + { + "start": 13992.14, + "end": 13994.52, + "probability": 0.9886 + }, + { + "start": 13994.92, + "end": 14003.5, + "probability": 0.9121 + }, + { + "start": 14004.84, + "end": 14006.48, + "probability": 0.8417 + }, + { + "start": 14007.22, + "end": 14008.56, + "probability": 0.8947 + }, + { + "start": 14008.74, + "end": 14010.88, + "probability": 0.7639 + }, + { + "start": 14011.0, + "end": 14013.78, + "probability": 0.6837 + }, + { + "start": 14013.98, + "end": 14019.88, + "probability": 0.9607 + }, + { + "start": 14021.54, + "end": 14022.94, + "probability": 0.891 + }, + { + "start": 14023.62, + "end": 14024.04, + "probability": 0.9067 + }, + { + "start": 14026.56, + "end": 14030.42, + "probability": 0.7832 + }, + { + "start": 14031.22, + "end": 14032.36, + "probability": 0.6844 + }, + { + "start": 14034.11, + "end": 14036.22, + "probability": 0.9777 + }, + { + "start": 14037.76, + "end": 14044.14, + "probability": 0.9968 + }, + { + "start": 14045.96, + "end": 14048.82, + "probability": 0.6166 + }, + { + "start": 14048.96, + "end": 14049.42, + "probability": 0.9315 + }, + { + "start": 14049.62, + "end": 14051.48, + "probability": 0.9413 + }, + { + "start": 14051.76, + "end": 14052.26, + "probability": 0.9258 + }, + { + "start": 14053.02, + "end": 14056.02, + "probability": 0.9911 + }, + { + "start": 14056.94, + "end": 14063.43, + "probability": 0.9494 + }, + { + "start": 14064.0, + "end": 14066.52, + "probability": 0.8283 + }, + { + "start": 14066.54, + "end": 14067.86, + "probability": 0.8438 + }, + { + "start": 14068.64, + "end": 14072.68, + "probability": 0.8516 + }, + { + "start": 14073.64, + "end": 14077.98, + "probability": 0.937 + }, + { + "start": 14079.28, + "end": 14081.08, + "probability": 0.9223 + }, + { + "start": 14082.0, + "end": 14082.38, + "probability": 0.9719 + }, + { + "start": 14085.9, + "end": 14090.63, + "probability": 0.9829 + }, + { + "start": 14091.42, + "end": 14092.03, + "probability": 0.8691 + }, + { + "start": 14093.32, + "end": 14100.52, + "probability": 0.8403 + }, + { + "start": 14100.56, + "end": 14101.8, + "probability": 0.988 + }, + { + "start": 14102.92, + "end": 14108.74, + "probability": 0.9906 + }, + { + "start": 14109.26, + "end": 14110.84, + "probability": 0.8802 + }, + { + "start": 14111.32, + "end": 14115.44, + "probability": 0.8506 + }, + { + "start": 14115.54, + "end": 14117.0, + "probability": 0.9124 + }, + { + "start": 14118.16, + "end": 14119.26, + "probability": 0.8288 + }, + { + "start": 14120.26, + "end": 14122.8, + "probability": 0.9171 + }, + { + "start": 14123.18, + "end": 14124.22, + "probability": 0.9361 + }, + { + "start": 14124.32, + "end": 14125.82, + "probability": 0.9739 + }, + { + "start": 14126.7, + "end": 14128.96, + "probability": 0.7389 + }, + { + "start": 14129.96, + "end": 14134.18, + "probability": 0.9214 + }, + { + "start": 14134.24, + "end": 14135.9, + "probability": 0.6516 + }, + { + "start": 14136.78, + "end": 14137.94, + "probability": 0.5073 + }, + { + "start": 14138.22, + "end": 14140.72, + "probability": 0.9409 + }, + { + "start": 14140.8, + "end": 14141.48, + "probability": 0.659 + }, + { + "start": 14142.2, + "end": 14142.76, + "probability": 0.4309 + }, + { + "start": 14144.46, + "end": 14144.76, + "probability": 0.1481 + }, + { + "start": 14144.76, + "end": 14145.12, + "probability": 0.1457 + }, + { + "start": 14146.04, + "end": 14146.66, + "probability": 0.2059 + }, + { + "start": 14146.66, + "end": 14148.96, + "probability": 0.5732 + }, + { + "start": 14149.6, + "end": 14151.17, + "probability": 0.5023 + }, + { + "start": 14152.32, + "end": 14154.36, + "probability": 0.9842 + }, + { + "start": 14154.38, + "end": 14156.44, + "probability": 0.9282 + }, + { + "start": 14156.56, + "end": 14159.38, + "probability": 0.9228 + }, + { + "start": 14159.42, + "end": 14160.49, + "probability": 0.9712 + }, + { + "start": 14160.56, + "end": 14162.16, + "probability": 0.7269 + }, + { + "start": 14162.82, + "end": 14165.28, + "probability": 0.4929 + }, + { + "start": 14166.2, + "end": 14166.2, + "probability": 0.3714 + }, + { + "start": 14166.2, + "end": 14166.2, + "probability": 0.0074 + }, + { + "start": 14166.2, + "end": 14166.2, + "probability": 0.5511 + }, + { + "start": 14166.2, + "end": 14167.6, + "probability": 0.3733 + }, + { + "start": 14167.98, + "end": 14168.12, + "probability": 0.2197 + }, + { + "start": 14168.12, + "end": 14168.12, + "probability": 0.1358 + }, + { + "start": 14168.12, + "end": 14170.72, + "probability": 0.1626 + }, + { + "start": 14171.2, + "end": 14171.44, + "probability": 0.7766 + }, + { + "start": 14171.64, + "end": 14174.62, + "probability": 0.9771 + }, + { + "start": 14174.72, + "end": 14179.42, + "probability": 0.7346 + }, + { + "start": 14180.8, + "end": 14184.24, + "probability": 0.9487 + }, + { + "start": 14184.4, + "end": 14186.14, + "probability": 0.8898 + }, + { + "start": 14186.24, + "end": 14188.2, + "probability": 0.7949 + }, + { + "start": 14188.56, + "end": 14191.32, + "probability": 0.8819 + }, + { + "start": 14192.04, + "end": 14197.78, + "probability": 0.9729 + }, + { + "start": 14199.14, + "end": 14199.64, + "probability": 0.8188 + }, + { + "start": 14200.22, + "end": 14202.16, + "probability": 0.8503 + }, + { + "start": 14203.3, + "end": 14208.22, + "probability": 0.8805 + }, + { + "start": 14208.46, + "end": 14208.98, + "probability": 0.7551 + }, + { + "start": 14209.04, + "end": 14215.28, + "probability": 0.9943 + }, + { + "start": 14215.8, + "end": 14220.2, + "probability": 0.9556 + }, + { + "start": 14220.34, + "end": 14220.58, + "probability": 0.6865 + }, + { + "start": 14220.68, + "end": 14223.68, + "probability": 0.667 + }, + { + "start": 14223.98, + "end": 14228.34, + "probability": 0.9004 + }, + { + "start": 14228.58, + "end": 14236.96, + "probability": 0.9511 + }, + { + "start": 14237.28, + "end": 14242.28, + "probability": 0.4291 + }, + { + "start": 14242.34, + "end": 14244.12, + "probability": 0.8032 + }, + { + "start": 14245.0, + "end": 14246.82, + "probability": 0.2524 + }, + { + "start": 14247.0, + "end": 14252.74, + "probability": 0.9968 + }, + { + "start": 14253.26, + "end": 14259.2, + "probability": 0.9414 + }, + { + "start": 14259.46, + "end": 14265.72, + "probability": 0.8372 + }, + { + "start": 14265.76, + "end": 14267.7, + "probability": 0.7787 + }, + { + "start": 14267.8, + "end": 14268.06, + "probability": 0.8108 + }, + { + "start": 14268.32, + "end": 14270.62, + "probability": 0.6439 + }, + { + "start": 14270.7, + "end": 14272.9, + "probability": 0.9773 + }, + { + "start": 14274.4, + "end": 14275.7, + "probability": 0.7769 + }, + { + "start": 14281.78, + "end": 14284.64, + "probability": 0.0599 + }, + { + "start": 14284.64, + "end": 14287.02, + "probability": 0.9749 + }, + { + "start": 14290.06, + "end": 14294.21, + "probability": 0.8515 + }, + { + "start": 14294.4, + "end": 14295.34, + "probability": 0.2787 + }, + { + "start": 14295.96, + "end": 14297.14, + "probability": 0.8448 + }, + { + "start": 14299.32, + "end": 14301.92, + "probability": 0.8892 + }, + { + "start": 14303.54, + "end": 14304.84, + "probability": 0.5206 + }, + { + "start": 14306.14, + "end": 14306.14, + "probability": 0.6824 + }, + { + "start": 14306.18, + "end": 14308.82, + "probability": 0.7189 + }, + { + "start": 14308.86, + "end": 14310.02, + "probability": 0.6135 + }, + { + "start": 14310.16, + "end": 14311.46, + "probability": 0.714 + }, + { + "start": 14312.56, + "end": 14313.22, + "probability": 0.5943 + }, + { + "start": 14313.36, + "end": 14317.88, + "probability": 0.9824 + }, + { + "start": 14318.27, + "end": 14324.94, + "probability": 0.7345 + }, + { + "start": 14325.1, + "end": 14326.1, + "probability": 0.7276 + }, + { + "start": 14326.24, + "end": 14327.02, + "probability": 0.6993 + }, + { + "start": 14327.04, + "end": 14329.02, + "probability": 0.955 + }, + { + "start": 14329.12, + "end": 14329.88, + "probability": 0.5333 + }, + { + "start": 14329.98, + "end": 14331.05, + "probability": 0.8145 + }, + { + "start": 14331.5, + "end": 14334.3, + "probability": 0.928 + }, + { + "start": 14335.3, + "end": 14336.08, + "probability": 0.6775 + }, + { + "start": 14336.48, + "end": 14337.56, + "probability": 0.6188 + }, + { + "start": 14337.72, + "end": 14338.4, + "probability": 0.8647 + }, + { + "start": 14338.42, + "end": 14339.22, + "probability": 0.6699 + }, + { + "start": 14339.26, + "end": 14343.08, + "probability": 0.8649 + }, + { + "start": 14343.9, + "end": 14347.96, + "probability": 0.8586 + }, + { + "start": 14349.32, + "end": 14350.08, + "probability": 0.4722 + }, + { + "start": 14350.13, + "end": 14354.64, + "probability": 0.8857 + }, + { + "start": 14354.7, + "end": 14355.26, + "probability": 0.4359 + }, + { + "start": 14356.0, + "end": 14358.32, + "probability": 0.969 + }, + { + "start": 14359.18, + "end": 14361.81, + "probability": 0.7588 + }, + { + "start": 14363.16, + "end": 14363.94, + "probability": 0.5297 + }, + { + "start": 14364.5, + "end": 14365.62, + "probability": 0.9954 + }, + { + "start": 14367.12, + "end": 14368.36, + "probability": 0.715 + }, + { + "start": 14368.92, + "end": 14370.48, + "probability": 0.8674 + }, + { + "start": 14371.2, + "end": 14372.76, + "probability": 0.9446 + }, + { + "start": 14372.9, + "end": 14373.96, + "probability": 0.9834 + }, + { + "start": 14374.1, + "end": 14375.16, + "probability": 0.7485 + }, + { + "start": 14375.46, + "end": 14378.24, + "probability": 0.9497 + }, + { + "start": 14378.76, + "end": 14383.34, + "probability": 0.9863 + }, + { + "start": 14383.64, + "end": 14384.88, + "probability": 0.7807 + }, + { + "start": 14385.6, + "end": 14390.02, + "probability": 0.9916 + }, + { + "start": 14390.1, + "end": 14391.1, + "probability": 0.4433 + }, + { + "start": 14391.14, + "end": 14392.12, + "probability": 0.6459 + }, + { + "start": 14393.44, + "end": 14394.08, + "probability": 0.937 + }, + { + "start": 14394.54, + "end": 14396.2, + "probability": 0.9966 + }, + { + "start": 14396.28, + "end": 14398.12, + "probability": 0.8335 + }, + { + "start": 14398.78, + "end": 14399.98, + "probability": 0.9993 + }, + { + "start": 14400.54, + "end": 14401.88, + "probability": 0.7808 + }, + { + "start": 14402.48, + "end": 14403.53, + "probability": 0.7725 + }, + { + "start": 14405.04, + "end": 14411.18, + "probability": 0.8878 + }, + { + "start": 14411.18, + "end": 14415.72, + "probability": 0.9142 + }, + { + "start": 14415.9, + "end": 14418.9, + "probability": 0.9789 + }, + { + "start": 14419.08, + "end": 14420.14, + "probability": 0.9246 + }, + { + "start": 14420.76, + "end": 14421.74, + "probability": 0.9802 + }, + { + "start": 14422.58, + "end": 14424.36, + "probability": 0.7293 + }, + { + "start": 14424.74, + "end": 14430.22, + "probability": 0.8189 + }, + { + "start": 14431.12, + "end": 14432.52, + "probability": 0.6752 + }, + { + "start": 14433.04, + "end": 14435.04, + "probability": 0.963 + }, + { + "start": 14436.58, + "end": 14438.08, + "probability": 0.9414 + }, + { + "start": 14438.42, + "end": 14440.84, + "probability": 0.8118 + }, + { + "start": 14442.42, + "end": 14447.96, + "probability": 0.8874 + }, + { + "start": 14448.46, + "end": 14448.94, + "probability": 0.7944 + }, + { + "start": 14449.1, + "end": 14449.4, + "probability": 0.0009 + }, + { + "start": 14450.86, + "end": 14451.86, + "probability": 0.6135 + }, + { + "start": 14453.0, + "end": 14455.54, + "probability": 0.8275 + }, + { + "start": 14456.4, + "end": 14457.54, + "probability": 0.9611 + }, + { + "start": 14457.68, + "end": 14458.38, + "probability": 0.8531 + }, + { + "start": 14458.5, + "end": 14459.87, + "probability": 0.9875 + }, + { + "start": 14460.5, + "end": 14461.66, + "probability": 0.9927 + }, + { + "start": 14461.7, + "end": 14463.69, + "probability": 0.9944 + }, + { + "start": 14464.56, + "end": 14467.82, + "probability": 0.8501 + }, + { + "start": 14468.78, + "end": 14472.1, + "probability": 0.972 + }, + { + "start": 14472.38, + "end": 14472.86, + "probability": 0.3184 + }, + { + "start": 14472.88, + "end": 14474.98, + "probability": 0.9087 + }, + { + "start": 14475.16, + "end": 14476.58, + "probability": 0.4925 + }, + { + "start": 14477.51, + "end": 14480.4, + "probability": 0.5928 + }, + { + "start": 14480.74, + "end": 14484.56, + "probability": 0.8929 + }, + { + "start": 14484.82, + "end": 14486.56, + "probability": 0.9102 + }, + { + "start": 14486.82, + "end": 14488.24, + "probability": 0.7147 + }, + { + "start": 14489.18, + "end": 14490.26, + "probability": 0.9564 + }, + { + "start": 14491.08, + "end": 14493.5, + "probability": 0.7363 + }, + { + "start": 14494.36, + "end": 14496.12, + "probability": 0.3359 + }, + { + "start": 14496.2, + "end": 14498.2, + "probability": 0.9915 + }, + { + "start": 14498.7, + "end": 14502.84, + "probability": 0.8547 + }, + { + "start": 14502.86, + "end": 14505.18, + "probability": 0.9518 + }, + { + "start": 14505.7, + "end": 14508.62, + "probability": 0.8095 + }, + { + "start": 14509.24, + "end": 14511.82, + "probability": 0.7048 + }, + { + "start": 14512.38, + "end": 14514.12, + "probability": 0.7538 + }, + { + "start": 14514.16, + "end": 14515.62, + "probability": 0.7124 + }, + { + "start": 14515.82, + "end": 14519.36, + "probability": 0.7635 + }, + { + "start": 14519.5, + "end": 14520.32, + "probability": 0.4915 + }, + { + "start": 14520.32, + "end": 14520.78, + "probability": 0.783 + }, + { + "start": 14521.0, + "end": 14523.04, + "probability": 0.8613 + }, + { + "start": 14523.48, + "end": 14525.86, + "probability": 0.6495 + }, + { + "start": 14526.08, + "end": 14527.0, + "probability": 0.9002 + }, + { + "start": 14527.44, + "end": 14528.5, + "probability": 0.9392 + }, + { + "start": 14528.52, + "end": 14529.48, + "probability": 0.405 + }, + { + "start": 14529.54, + "end": 14530.24, + "probability": 0.387 + }, + { + "start": 14530.24, + "end": 14530.72, + "probability": 0.4931 + }, + { + "start": 14531.18, + "end": 14532.32, + "probability": 0.6372 + }, + { + "start": 14533.3, + "end": 14536.98, + "probability": 0.806 + }, + { + "start": 14537.98, + "end": 14540.78, + "probability": 0.9409 + }, + { + "start": 14541.1, + "end": 14544.74, + "probability": 0.9645 + }, + { + "start": 14544.74, + "end": 14544.9, + "probability": 0.7347 + }, + { + "start": 14544.94, + "end": 14549.6, + "probability": 0.882 + }, + { + "start": 14550.04, + "end": 14551.02, + "probability": 0.5646 + }, + { + "start": 14551.9, + "end": 14552.98, + "probability": 0.6691 + }, + { + "start": 14553.02, + "end": 14553.76, + "probability": 0.5398 + }, + { + "start": 14553.84, + "end": 14556.74, + "probability": 0.8628 + }, + { + "start": 14557.99, + "end": 14559.44, + "probability": 0.2646 + }, + { + "start": 14560.87, + "end": 14561.84, + "probability": 0.6734 + }, + { + "start": 14561.84, + "end": 14561.84, + "probability": 0.6352 + }, + { + "start": 14561.84, + "end": 14563.88, + "probability": 0.8335 + }, + { + "start": 14564.1, + "end": 14567.62, + "probability": 0.9366 + }, + { + "start": 14567.92, + "end": 14569.46, + "probability": 0.843 + }, + { + "start": 14569.78, + "end": 14570.82, + "probability": 0.8765 + }, + { + "start": 14571.22, + "end": 14571.57, + "probability": 0.8083 + }, + { + "start": 14571.8, + "end": 14574.1, + "probability": 0.8713 + }, + { + "start": 14574.3, + "end": 14575.22, + "probability": 0.8054 + }, + { + "start": 14575.64, + "end": 14577.4, + "probability": 0.604 + }, + { + "start": 14577.72, + "end": 14578.84, + "probability": 0.8643 + }, + { + "start": 14578.9, + "end": 14579.98, + "probability": 0.9927 + }, + { + "start": 14580.86, + "end": 14583.1, + "probability": 0.9958 + }, + { + "start": 14583.1, + "end": 14584.8, + "probability": 0.9796 + }, + { + "start": 14584.86, + "end": 14585.92, + "probability": 0.657 + }, + { + "start": 14586.54, + "end": 14587.16, + "probability": 0.5745 + }, + { + "start": 14587.3, + "end": 14587.62, + "probability": 0.3278 + }, + { + "start": 14588.22, + "end": 14589.72, + "probability": 0.7842 + }, + { + "start": 14589.8, + "end": 14590.9, + "probability": 0.7237 + }, + { + "start": 14591.52, + "end": 14592.7, + "probability": 0.7642 + }, + { + "start": 14593.2, + "end": 14594.02, + "probability": 0.3606 + }, + { + "start": 14594.32, + "end": 14596.6, + "probability": 0.8496 + }, + { + "start": 14596.86, + "end": 14597.04, + "probability": 0.7689 + }, + { + "start": 14597.72, + "end": 14599.52, + "probability": 0.8853 + }, + { + "start": 14599.68, + "end": 14602.26, + "probability": 0.9225 + }, + { + "start": 14602.88, + "end": 14606.72, + "probability": 0.8436 + }, + { + "start": 14607.44, + "end": 14608.95, + "probability": 0.3782 + }, + { + "start": 14611.26, + "end": 14612.96, + "probability": 0.8989 + }, + { + "start": 14613.38, + "end": 14615.2, + "probability": 0.7423 + }, + { + "start": 14615.72, + "end": 14617.16, + "probability": 0.8531 + }, + { + "start": 14619.9, + "end": 14621.82, + "probability": 0.8796 + }, + { + "start": 14624.14, + "end": 14626.72, + "probability": 0.738 + }, + { + "start": 14628.7, + "end": 14630.68, + "probability": 0.847 + }, + { + "start": 14632.54, + "end": 14633.3, + "probability": 0.9842 + }, + { + "start": 14634.48, + "end": 14635.48, + "probability": 0.9208 + }, + { + "start": 14636.06, + "end": 14637.54, + "probability": 0.9294 + }, + { + "start": 14638.8, + "end": 14639.3, + "probability": 0.5333 + }, + { + "start": 14640.66, + "end": 14641.56, + "probability": 0.9595 + }, + { + "start": 14642.9, + "end": 14645.76, + "probability": 0.9458 + }, + { + "start": 14646.58, + "end": 14648.94, + "probability": 0.9963 + }, + { + "start": 14649.92, + "end": 14650.8, + "probability": 0.9388 + }, + { + "start": 14651.38, + "end": 14652.82, + "probability": 0.9746 + }, + { + "start": 14653.56, + "end": 14654.94, + "probability": 0.9582 + }, + { + "start": 14655.66, + "end": 14658.6, + "probability": 0.9973 + }, + { + "start": 14659.24, + "end": 14660.18, + "probability": 0.8896 + }, + { + "start": 14660.72, + "end": 14664.48, + "probability": 0.9689 + }, + { + "start": 14664.92, + "end": 14667.62, + "probability": 0.9934 + }, + { + "start": 14667.72, + "end": 14669.06, + "probability": 0.9893 + }, + { + "start": 14669.44, + "end": 14669.94, + "probability": 0.817 + }, + { + "start": 14670.5, + "end": 14671.28, + "probability": 0.8808 + }, + { + "start": 14671.86, + "end": 14673.78, + "probability": 0.9812 + }, + { + "start": 14674.72, + "end": 14678.04, + "probability": 0.9944 + }, + { + "start": 14678.04, + "end": 14682.74, + "probability": 0.9512 + }, + { + "start": 14683.08, + "end": 14684.2, + "probability": 0.9897 + }, + { + "start": 14685.12, + "end": 14688.88, + "probability": 0.9047 + }, + { + "start": 14689.3, + "end": 14689.7, + "probability": 0.8076 + }, + { + "start": 14691.28, + "end": 14693.78, + "probability": 0.9669 + }, + { + "start": 14694.64, + "end": 14695.24, + "probability": 0.8774 + }, + { + "start": 14696.62, + "end": 14701.12, + "probability": 0.9945 + }, + { + "start": 14701.27, + "end": 14703.5, + "probability": 0.9753 + }, + { + "start": 14704.08, + "end": 14707.23, + "probability": 0.9503 + }, + { + "start": 14707.4, + "end": 14710.96, + "probability": 0.9807 + }, + { + "start": 14711.64, + "end": 14712.36, + "probability": 0.7905 + }, + { + "start": 14712.98, + "end": 14717.06, + "probability": 0.9973 + }, + { + "start": 14717.4, + "end": 14717.94, + "probability": 0.9363 + }, + { + "start": 14718.52, + "end": 14721.84, + "probability": 0.9746 + }, + { + "start": 14722.44, + "end": 14723.28, + "probability": 0.9907 + }, + { + "start": 14723.3, + "end": 14724.88, + "probability": 0.9728 + }, + { + "start": 14725.04, + "end": 14726.26, + "probability": 0.7146 + }, + { + "start": 14726.98, + "end": 14727.66, + "probability": 0.9468 + }, + { + "start": 14727.76, + "end": 14731.7, + "probability": 0.9841 + }, + { + "start": 14731.82, + "end": 14732.24, + "probability": 0.9927 + }, + { + "start": 14732.68, + "end": 14737.94, + "probability": 0.8506 + }, + { + "start": 14739.18, + "end": 14740.92, + "probability": 0.9336 + }, + { + "start": 14741.32, + "end": 14743.7, + "probability": 0.9712 + }, + { + "start": 14743.78, + "end": 14746.66, + "probability": 0.9891 + }, + { + "start": 14746.7, + "end": 14748.04, + "probability": 0.8308 + }, + { + "start": 14748.16, + "end": 14752.22, + "probability": 0.8938 + }, + { + "start": 14753.02, + "end": 14754.6, + "probability": 0.9912 + }, + { + "start": 14755.04, + "end": 14756.52, + "probability": 0.9089 + }, + { + "start": 14756.68, + "end": 14758.46, + "probability": 0.8796 + }, + { + "start": 14758.74, + "end": 14759.33, + "probability": 0.9834 + }, + { + "start": 14759.92, + "end": 14763.66, + "probability": 0.8664 + }, + { + "start": 14764.34, + "end": 14768.7, + "probability": 0.9806 + }, + { + "start": 14768.7, + "end": 14772.66, + "probability": 0.9992 + }, + { + "start": 14772.9, + "end": 14774.77, + "probability": 0.9744 + }, + { + "start": 14775.16, + "end": 14776.82, + "probability": 0.9977 + }, + { + "start": 14777.2, + "end": 14778.14, + "probability": 0.8659 + }, + { + "start": 14778.76, + "end": 14780.22, + "probability": 0.9744 + }, + { + "start": 14780.22, + "end": 14782.88, + "probability": 0.9995 + }, + { + "start": 14783.76, + "end": 14785.18, + "probability": 0.9966 + }, + { + "start": 14786.22, + "end": 14786.68, + "probability": 0.6994 + }, + { + "start": 14786.72, + "end": 14790.82, + "probability": 0.9641 + }, + { + "start": 14791.16, + "end": 14792.96, + "probability": 0.9893 + }, + { + "start": 14793.02, + "end": 14793.8, + "probability": 0.7957 + }, + { + "start": 14793.84, + "end": 14794.84, + "probability": 0.8885 + }, + { + "start": 14795.2, + "end": 14796.38, + "probability": 0.816 + }, + { + "start": 14796.48, + "end": 14800.48, + "probability": 0.6606 + }, + { + "start": 14800.72, + "end": 14803.54, + "probability": 0.9382 + }, + { + "start": 14804.22, + "end": 14806.5, + "probability": 0.9828 + }, + { + "start": 14806.9, + "end": 14812.5, + "probability": 0.9268 + }, + { + "start": 14812.74, + "end": 14815.12, + "probability": 0.9526 + }, + { + "start": 14815.28, + "end": 14816.7, + "probability": 0.9241 + }, + { + "start": 14816.94, + "end": 14821.52, + "probability": 0.974 + }, + { + "start": 14821.76, + "end": 14824.02, + "probability": 0.8884 + }, + { + "start": 14824.94, + "end": 14828.24, + "probability": 0.773 + }, + { + "start": 14828.58, + "end": 14830.94, + "probability": 0.8672 + }, + { + "start": 14831.42, + "end": 14833.94, + "probability": 0.7962 + }, + { + "start": 14837.34, + "end": 14838.48, + "probability": 0.851 + }, + { + "start": 14841.34, + "end": 14846.16, + "probability": 0.9951 + }, + { + "start": 14846.16, + "end": 14849.04, + "probability": 0.9868 + }, + { + "start": 14849.1, + "end": 14852.72, + "probability": 0.9888 + }, + { + "start": 14853.46, + "end": 14855.34, + "probability": 0.9763 + }, + { + "start": 14855.6, + "end": 14857.6, + "probability": 0.9967 + }, + { + "start": 14858.94, + "end": 14861.0, + "probability": 0.9895 + }, + { + "start": 14862.22, + "end": 14864.07, + "probability": 0.8814 + }, + { + "start": 14864.52, + "end": 14865.34, + "probability": 0.7438 + }, + { + "start": 14865.38, + "end": 14866.5, + "probability": 0.733 + }, + { + "start": 14866.62, + "end": 14872.16, + "probability": 0.994 + }, + { + "start": 14874.92, + "end": 14875.62, + "probability": 0.606 + }, + { + "start": 14876.46, + "end": 14877.36, + "probability": 0.7365 + }, + { + "start": 14878.34, + "end": 14881.88, + "probability": 0.9982 + }, + { + "start": 14883.26, + "end": 14884.1, + "probability": 0.5903 + }, + { + "start": 14884.18, + "end": 14889.24, + "probability": 0.9871 + }, + { + "start": 14889.24, + "end": 14893.82, + "probability": 0.9973 + }, + { + "start": 14893.88, + "end": 14894.54, + "probability": 0.3446 + }, + { + "start": 14895.14, + "end": 14895.6, + "probability": 0.9227 + }, + { + "start": 14895.8, + "end": 14900.16, + "probability": 0.9893 + }, + { + "start": 14902.02, + "end": 14905.2, + "probability": 0.8227 + }, + { + "start": 14905.96, + "end": 14907.78, + "probability": 0.988 + }, + { + "start": 14908.0, + "end": 14909.92, + "probability": 0.7452 + }, + { + "start": 14910.22, + "end": 14911.76, + "probability": 0.8644 + }, + { + "start": 14912.36, + "end": 14915.5, + "probability": 0.7008 + }, + { + "start": 14916.18, + "end": 14918.9, + "probability": 0.9692 + }, + { + "start": 14919.38, + "end": 14920.58, + "probability": 0.8589 + }, + { + "start": 14920.9, + "end": 14922.8, + "probability": 0.9543 + }, + { + "start": 14924.34, + "end": 14924.94, + "probability": 0.3401 + }, + { + "start": 14925.02, + "end": 14927.1, + "probability": 0.8819 + }, + { + "start": 14927.24, + "end": 14929.48, + "probability": 0.7254 + }, + { + "start": 14929.66, + "end": 14930.36, + "probability": 0.4949 + }, + { + "start": 14930.68, + "end": 14931.9, + "probability": 0.8785 + }, + { + "start": 14932.0, + "end": 14934.1, + "probability": 0.8714 + }, + { + "start": 14934.14, + "end": 14935.72, + "probability": 0.9692 + }, + { + "start": 14936.08, + "end": 14936.36, + "probability": 0.4914 + }, + { + "start": 14936.7, + "end": 14936.72, + "probability": 0.6458 + }, + { + "start": 14936.72, + "end": 14939.64, + "probability": 0.9883 + }, + { + "start": 14939.64, + "end": 14942.96, + "probability": 0.9973 + }, + { + "start": 14943.98, + "end": 14945.74, + "probability": 0.9529 + }, + { + "start": 14945.94, + "end": 14950.36, + "probability": 0.9811 + }, + { + "start": 14950.36, + "end": 14954.4, + "probability": 0.988 + }, + { + "start": 14954.46, + "end": 14955.71, + "probability": 0.9854 + }, + { + "start": 14956.1, + "end": 14959.44, + "probability": 0.8041 + }, + { + "start": 14960.28, + "end": 14963.84, + "probability": 0.9089 + }, + { + "start": 14963.96, + "end": 14965.46, + "probability": 0.9813 + }, + { + "start": 14966.18, + "end": 14968.84, + "probability": 0.9983 + }, + { + "start": 14969.32, + "end": 14973.34, + "probability": 0.9978 + }, + { + "start": 14973.52, + "end": 14978.04, + "probability": 0.6623 + }, + { + "start": 14978.9, + "end": 14979.18, + "probability": 0.8065 + }, + { + "start": 14979.82, + "end": 14981.08, + "probability": 0.9156 + }, + { + "start": 14981.22, + "end": 14982.74, + "probability": 0.6768 + }, + { + "start": 14982.76, + "end": 14983.24, + "probability": 0.8783 + }, + { + "start": 14983.42, + "end": 14984.1, + "probability": 0.9003 + }, + { + "start": 14984.56, + "end": 14987.92, + "probability": 0.9095 + }, + { + "start": 14988.52, + "end": 14993.52, + "probability": 0.9872 + }, + { + "start": 14994.94, + "end": 14996.23, + "probability": 0.9609 + }, + { + "start": 14996.44, + "end": 14996.95, + "probability": 0.7189 + }, + { + "start": 14997.66, + "end": 14998.22, + "probability": 0.5644 + }, + { + "start": 14998.28, + "end": 15001.0, + "probability": 0.6872 + }, + { + "start": 15001.54, + "end": 15003.02, + "probability": 0.7831 + }, + { + "start": 15004.34, + "end": 15004.92, + "probability": 0.8943 + }, + { + "start": 15005.18, + "end": 15006.72, + "probability": 0.5857 + }, + { + "start": 15006.82, + "end": 15010.34, + "probability": 0.957 + }, + { + "start": 15010.34, + "end": 15013.62, + "probability": 0.9833 + }, + { + "start": 15013.84, + "end": 15016.62, + "probability": 0.923 + }, + { + "start": 15017.6, + "end": 15018.09, + "probability": 0.7147 + }, + { + "start": 15018.44, + "end": 15018.94, + "probability": 0.847 + }, + { + "start": 15018.98, + "end": 15020.08, + "probability": 0.8028 + }, + { + "start": 15020.48, + "end": 15021.92, + "probability": 0.9194 + }, + { + "start": 15022.06, + "end": 15025.58, + "probability": 0.9939 + }, + { + "start": 15026.1, + "end": 15027.0, + "probability": 0.7982 + }, + { + "start": 15027.76, + "end": 15029.66, + "probability": 0.9585 + }, + { + "start": 15030.7, + "end": 15031.44, + "probability": 0.9571 + }, + { + "start": 15031.74, + "end": 15032.32, + "probability": 0.9087 + }, + { + "start": 15032.48, + "end": 15032.86, + "probability": 0.802 + }, + { + "start": 15033.1, + "end": 15033.3, + "probability": 0.9304 + }, + { + "start": 15033.44, + "end": 15035.14, + "probability": 0.9521 + }, + { + "start": 15035.28, + "end": 15036.34, + "probability": 0.9721 + }, + { + "start": 15036.66, + "end": 15039.4, + "probability": 0.9869 + }, + { + "start": 15039.96, + "end": 15042.2, + "probability": 0.9902 + }, + { + "start": 15042.66, + "end": 15045.45, + "probability": 0.9897 + }, + { + "start": 15046.64, + "end": 15047.1, + "probability": 0.631 + }, + { + "start": 15047.28, + "end": 15051.0, + "probability": 0.9738 + }, + { + "start": 15051.4, + "end": 15052.54, + "probability": 0.9909 + }, + { + "start": 15053.16, + "end": 15053.56, + "probability": 0.8392 + }, + { + "start": 15053.6, + "end": 15058.52, + "probability": 0.9941 + }, + { + "start": 15058.72, + "end": 15060.96, + "probability": 0.9907 + }, + { + "start": 15061.76, + "end": 15065.06, + "probability": 0.62 + }, + { + "start": 15066.72, + "end": 15070.4, + "probability": 0.9793 + }, + { + "start": 15070.4, + "end": 15072.96, + "probability": 0.9879 + }, + { + "start": 15073.02, + "end": 15076.32, + "probability": 0.9946 + }, + { + "start": 15076.8, + "end": 15079.48, + "probability": 0.8915 + }, + { + "start": 15080.28, + "end": 15081.5, + "probability": 0.9394 + }, + { + "start": 15081.6, + "end": 15082.42, + "probability": 0.8033 + }, + { + "start": 15082.42, + "end": 15084.04, + "probability": 0.9294 + }, + { + "start": 15084.72, + "end": 15086.04, + "probability": 0.9884 + }, + { + "start": 15086.62, + "end": 15088.66, + "probability": 0.9865 + }, + { + "start": 15089.24, + "end": 15090.76, + "probability": 0.9995 + }, + { + "start": 15091.0, + "end": 15093.1, + "probability": 0.9263 + }, + { + "start": 15093.78, + "end": 15098.42, + "probability": 0.9551 + }, + { + "start": 15099.18, + "end": 15099.46, + "probability": 0.6384 + }, + { + "start": 15101.76, + "end": 15104.44, + "probability": 0.8202 + }, + { + "start": 15104.5, + "end": 15105.56, + "probability": 0.9331 + }, + { + "start": 15106.88, + "end": 15108.54, + "probability": 0.7711 + }, + { + "start": 15109.26, + "end": 15111.56, + "probability": 0.8251 + }, + { + "start": 15111.92, + "end": 15113.46, + "probability": 0.813 + }, + { + "start": 15113.5, + "end": 15113.6, + "probability": 0.9464 + }, + { + "start": 15122.46, + "end": 15122.54, + "probability": 0.2475 + }, + { + "start": 15122.54, + "end": 15122.54, + "probability": 0.1655 + }, + { + "start": 15122.54, + "end": 15124.2, + "probability": 0.4997 + }, + { + "start": 15124.7, + "end": 15126.56, + "probability": 0.9634 + }, + { + "start": 15127.18, + "end": 15127.5, + "probability": 0.8406 + }, + { + "start": 15127.98, + "end": 15129.3, + "probability": 0.9884 + }, + { + "start": 15129.68, + "end": 15130.28, + "probability": 0.6895 + }, + { + "start": 15130.4, + "end": 15132.5, + "probability": 0.8151 + }, + { + "start": 15133.28, + "end": 15135.7, + "probability": 0.7737 + }, + { + "start": 15136.68, + "end": 15139.16, + "probability": 0.8064 + }, + { + "start": 15140.1, + "end": 15144.34, + "probability": 0.9821 + }, + { + "start": 15144.38, + "end": 15146.48, + "probability": 0.9844 + }, + { + "start": 15148.14, + "end": 15152.88, + "probability": 0.98 + }, + { + "start": 15152.96, + "end": 15153.86, + "probability": 0.823 + }, + { + "start": 15154.42, + "end": 15156.38, + "probability": 0.9591 + }, + { + "start": 15157.98, + "end": 15161.7, + "probability": 0.967 + }, + { + "start": 15163.14, + "end": 15166.98, + "probability": 0.9227 + }, + { + "start": 15167.4, + "end": 15171.9, + "probability": 0.9585 + }, + { + "start": 15172.08, + "end": 15175.1, + "probability": 0.9349 + }, + { + "start": 15175.84, + "end": 15177.22, + "probability": 0.9355 + }, + { + "start": 15177.46, + "end": 15178.98, + "probability": 0.925 + }, + { + "start": 15179.32, + "end": 15182.1, + "probability": 0.8931 + }, + { + "start": 15182.58, + "end": 15184.76, + "probability": 0.9687 + }, + { + "start": 15185.24, + "end": 15187.96, + "probability": 0.9593 + }, + { + "start": 15188.28, + "end": 15191.28, + "probability": 0.9951 + }, + { + "start": 15192.08, + "end": 15193.4, + "probability": 0.9897 + }, + { + "start": 15194.92, + "end": 15196.76, + "probability": 0.9828 + }, + { + "start": 15196.98, + "end": 15198.72, + "probability": 0.9639 + }, + { + "start": 15198.8, + "end": 15200.9, + "probability": 0.9966 + }, + { + "start": 15202.76, + "end": 15204.44, + "probability": 0.9395 + }, + { + "start": 15204.74, + "end": 15209.4, + "probability": 0.9819 + }, + { + "start": 15213.18, + "end": 15214.44, + "probability": 0.7731 + }, + { + "start": 15214.54, + "end": 15217.44, + "probability": 0.9118 + }, + { + "start": 15218.26, + "end": 15219.14, + "probability": 0.7737 + }, + { + "start": 15219.32, + "end": 15223.14, + "probability": 0.9789 + }, + { + "start": 15223.22, + "end": 15224.86, + "probability": 0.9726 + }, + { + "start": 15225.92, + "end": 15228.52, + "probability": 0.8012 + }, + { + "start": 15228.7, + "end": 15232.16, + "probability": 0.9789 + }, + { + "start": 15232.82, + "end": 15234.82, + "probability": 0.9014 + }, + { + "start": 15235.82, + "end": 15237.65, + "probability": 0.9971 + }, + { + "start": 15238.02, + "end": 15239.6, + "probability": 0.9108 + }, + { + "start": 15239.76, + "end": 15243.02, + "probability": 0.9893 + }, + { + "start": 15243.48, + "end": 15246.18, + "probability": 0.9946 + }, + { + "start": 15246.44, + "end": 15251.88, + "probability": 0.9961 + }, + { + "start": 15253.33, + "end": 15256.16, + "probability": 0.8902 + }, + { + "start": 15256.54, + "end": 15257.98, + "probability": 0.9197 + }, + { + "start": 15258.06, + "end": 15259.0, + "probability": 0.6057 + }, + { + "start": 15259.0, + "end": 15260.1, + "probability": 0.8722 + }, + { + "start": 15260.24, + "end": 15261.62, + "probability": 0.9958 + }, + { + "start": 15261.74, + "end": 15264.08, + "probability": 0.9954 + }, + { + "start": 15264.6, + "end": 15267.88, + "probability": 0.9857 + }, + { + "start": 15269.8, + "end": 15272.72, + "probability": 0.9989 + }, + { + "start": 15272.82, + "end": 15275.18, + "probability": 0.9945 + }, + { + "start": 15275.86, + "end": 15280.48, + "probability": 0.9942 + }, + { + "start": 15281.26, + "end": 15281.5, + "probability": 0.1954 + }, + { + "start": 15281.5, + "end": 15283.16, + "probability": 0.9654 + }, + { + "start": 15283.24, + "end": 15285.54, + "probability": 0.9862 + }, + { + "start": 15286.14, + "end": 15292.74, + "probability": 0.9769 + }, + { + "start": 15293.06, + "end": 15295.9, + "probability": 0.957 + }, + { + "start": 15296.66, + "end": 15300.33, + "probability": 0.9062 + }, + { + "start": 15301.32, + "end": 15303.84, + "probability": 0.9024 + }, + { + "start": 15304.16, + "end": 15310.64, + "probability": 0.9968 + }, + { + "start": 15311.16, + "end": 15312.36, + "probability": 0.9712 + }, + { + "start": 15313.02, + "end": 15318.7, + "probability": 0.9885 + }, + { + "start": 15320.84, + "end": 15328.86, + "probability": 0.9021 + }, + { + "start": 15328.9, + "end": 15332.22, + "probability": 0.9954 + }, + { + "start": 15332.26, + "end": 15333.46, + "probability": 0.9679 + }, + { + "start": 15333.54, + "end": 15333.88, + "probability": 0.2814 + }, + { + "start": 15334.16, + "end": 15335.84, + "probability": 0.7148 + }, + { + "start": 15335.98, + "end": 15337.18, + "probability": 0.4797 + }, + { + "start": 15338.82, + "end": 15340.38, + "probability": 0.9664 + }, + { + "start": 15340.52, + "end": 15345.44, + "probability": 0.969 + }, + { + "start": 15345.78, + "end": 15346.6, + "probability": 0.7293 + }, + { + "start": 15346.74, + "end": 15348.64, + "probability": 0.9814 + }, + { + "start": 15349.12, + "end": 15352.24, + "probability": 0.9976 + }, + { + "start": 15353.2, + "end": 15357.76, + "probability": 0.972 + }, + { + "start": 15357.84, + "end": 15361.94, + "probability": 0.9204 + }, + { + "start": 15361.98, + "end": 15363.16, + "probability": 0.5498 + }, + { + "start": 15363.22, + "end": 15365.86, + "probability": 0.8663 + }, + { + "start": 15365.88, + "end": 15367.62, + "probability": 0.9027 + }, + { + "start": 15368.2, + "end": 15372.58, + "probability": 0.987 + }, + { + "start": 15372.58, + "end": 15377.22, + "probability": 0.8291 + }, + { + "start": 15377.22, + "end": 15377.54, + "probability": 0.6478 + }, + { + "start": 15377.6, + "end": 15379.34, + "probability": 0.78 + }, + { + "start": 15379.52, + "end": 15381.32, + "probability": 0.8732 + }, + { + "start": 15381.74, + "end": 15383.78, + "probability": 0.8069 + }, + { + "start": 15395.52, + "end": 15396.36, + "probability": 0.5137 + }, + { + "start": 15396.52, + "end": 15396.52, + "probability": 0.4502 + }, + { + "start": 15396.52, + "end": 15397.48, + "probability": 0.8625 + }, + { + "start": 15397.56, + "end": 15399.76, + "probability": 0.9956 + }, + { + "start": 15399.76, + "end": 15404.04, + "probability": 0.9684 + }, + { + "start": 15404.1, + "end": 15404.42, + "probability": 0.795 + }, + { + "start": 15404.5, + "end": 15407.47, + "probability": 0.9666 + }, + { + "start": 15407.68, + "end": 15409.46, + "probability": 0.7627 + }, + { + "start": 15409.66, + "end": 15411.24, + "probability": 0.975 + }, + { + "start": 15411.76, + "end": 15413.9, + "probability": 0.9669 + }, + { + "start": 15413.98, + "end": 15415.86, + "probability": 0.9827 + }, + { + "start": 15416.16, + "end": 15418.58, + "probability": 0.9898 + }, + { + "start": 15418.6, + "end": 15419.8, + "probability": 0.6486 + }, + { + "start": 15419.9, + "end": 15422.54, + "probability": 0.6831 + }, + { + "start": 15422.7, + "end": 15423.92, + "probability": 0.8531 + }, + { + "start": 15424.0, + "end": 15424.92, + "probability": 0.5132 + }, + { + "start": 15425.22, + "end": 15427.0, + "probability": 0.9485 + }, + { + "start": 15427.5, + "end": 15428.98, + "probability": 0.728 + }, + { + "start": 15429.62, + "end": 15430.96, + "probability": 0.8723 + }, + { + "start": 15431.52, + "end": 15432.28, + "probability": 0.7353 + }, + { + "start": 15432.84, + "end": 15435.1, + "probability": 0.8041 + }, + { + "start": 15435.78, + "end": 15437.92, + "probability": 0.99 + }, + { + "start": 15438.52, + "end": 15440.26, + "probability": 0.9861 + }, + { + "start": 15440.74, + "end": 15444.04, + "probability": 0.9985 + }, + { + "start": 15444.76, + "end": 15447.2, + "probability": 0.9863 + }, + { + "start": 15448.08, + "end": 15450.44, + "probability": 0.9937 + }, + { + "start": 15450.9, + "end": 15452.6, + "probability": 0.9806 + }, + { + "start": 15453.58, + "end": 15456.36, + "probability": 0.9864 + }, + { + "start": 15457.02, + "end": 15458.4, + "probability": 0.9993 + }, + { + "start": 15459.2, + "end": 15461.52, + "probability": 0.9946 + }, + { + "start": 15462.02, + "end": 15465.44, + "probability": 0.9889 + }, + { + "start": 15466.3, + "end": 15469.76, + "probability": 0.9189 + }, + { + "start": 15469.98, + "end": 15473.26, + "probability": 0.9728 + }, + { + "start": 15476.02, + "end": 15476.54, + "probability": 0.0852 + }, + { + "start": 15476.54, + "end": 15481.16, + "probability": 0.81 + }, + { + "start": 15482.04, + "end": 15486.9, + "probability": 0.9778 + }, + { + "start": 15487.7, + "end": 15489.12, + "probability": 0.8738 + }, + { + "start": 15489.28, + "end": 15491.96, + "probability": 0.9611 + }, + { + "start": 15492.78, + "end": 15499.74, + "probability": 0.9767 + }, + { + "start": 15499.84, + "end": 15502.28, + "probability": 0.9946 + }, + { + "start": 15502.72, + "end": 15503.66, + "probability": 0.8975 + }, + { + "start": 15503.86, + "end": 15504.66, + "probability": 0.7563 + }, + { + "start": 15504.74, + "end": 15507.38, + "probability": 0.9684 + }, + { + "start": 15507.98, + "end": 15508.42, + "probability": 0.6557 + }, + { + "start": 15508.48, + "end": 15509.12, + "probability": 0.9534 + }, + { + "start": 15509.22, + "end": 15511.26, + "probability": 0.9606 + }, + { + "start": 15511.64, + "end": 15513.32, + "probability": 0.9825 + }, + { + "start": 15513.78, + "end": 15516.08, + "probability": 0.9946 + }, + { + "start": 15516.88, + "end": 15519.74, + "probability": 0.979 + }, + { + "start": 15520.84, + "end": 15523.34, + "probability": 0.9937 + }, + { + "start": 15523.58, + "end": 15525.84, + "probability": 0.9895 + }, + { + "start": 15526.24, + "end": 15529.54, + "probability": 0.9918 + }, + { + "start": 15529.94, + "end": 15536.0, + "probability": 0.9536 + }, + { + "start": 15536.5, + "end": 15537.86, + "probability": 0.6928 + }, + { + "start": 15538.0, + "end": 15538.88, + "probability": 0.8358 + }, + { + "start": 15538.96, + "end": 15541.74, + "probability": 0.9971 + }, + { + "start": 15542.1, + "end": 15544.06, + "probability": 0.9956 + }, + { + "start": 15544.58, + "end": 15546.76, + "probability": 0.999 + }, + { + "start": 15546.92, + "end": 15550.2, + "probability": 0.996 + }, + { + "start": 15550.58, + "end": 15551.68, + "probability": 0.9592 + }, + { + "start": 15551.98, + "end": 15553.18, + "probability": 0.9543 + }, + { + "start": 15554.36, + "end": 15556.01, + "probability": 0.8777 + }, + { + "start": 15556.9, + "end": 15560.92, + "probability": 0.9515 + }, + { + "start": 15561.4, + "end": 15567.16, + "probability": 0.9963 + }, + { + "start": 15567.16, + "end": 15571.98, + "probability": 0.9976 + }, + { + "start": 15572.86, + "end": 15573.58, + "probability": 0.5767 + }, + { + "start": 15573.76, + "end": 15574.84, + "probability": 0.6721 + }, + { + "start": 15574.92, + "end": 15577.42, + "probability": 0.9984 + }, + { + "start": 15577.42, + "end": 15580.4, + "probability": 0.997 + }, + { + "start": 15580.84, + "end": 15586.1, + "probability": 0.9905 + }, + { + "start": 15586.1, + "end": 15590.08, + "probability": 0.9999 + }, + { + "start": 15590.18, + "end": 15591.09, + "probability": 0.6911 + }, + { + "start": 15592.04, + "end": 15595.54, + "probability": 0.9961 + }, + { + "start": 15595.54, + "end": 15598.32, + "probability": 0.998 + }, + { + "start": 15599.08, + "end": 15599.73, + "probability": 0.9885 + }, + { + "start": 15600.66, + "end": 15602.74, + "probability": 0.9163 + }, + { + "start": 15603.68, + "end": 15607.92, + "probability": 0.9912 + }, + { + "start": 15607.92, + "end": 15612.28, + "probability": 0.9916 + }, + { + "start": 15612.6, + "end": 15616.54, + "probability": 0.7092 + }, + { + "start": 15616.54, + "end": 15617.02, + "probability": 0.3128 + }, + { + "start": 15618.34, + "end": 15625.72, + "probability": 0.8958 + }, + { + "start": 15634.32, + "end": 15634.38, + "probability": 0.3176 + }, + { + "start": 15640.18, + "end": 15641.56, + "probability": 0.6873 + }, + { + "start": 15642.08, + "end": 15643.38, + "probability": 0.9703 + }, + { + "start": 15644.5, + "end": 15645.92, + "probability": 0.9031 + }, + { + "start": 15646.04, + "end": 15646.53, + "probability": 0.9459 + }, + { + "start": 15646.8, + "end": 15648.32, + "probability": 0.9928 + }, + { + "start": 15649.24, + "end": 15650.08, + "probability": 0.9604 + }, + { + "start": 15650.22, + "end": 15650.88, + "probability": 0.9927 + }, + { + "start": 15652.78, + "end": 15656.36, + "probability": 0.9924 + }, + { + "start": 15657.02, + "end": 15658.62, + "probability": 0.931 + }, + { + "start": 15659.54, + "end": 15661.14, + "probability": 0.6917 + }, + { + "start": 15661.58, + "end": 15662.8, + "probability": 0.5019 + }, + { + "start": 15663.0, + "end": 15663.72, + "probability": 0.8392 + }, + { + "start": 15666.02, + "end": 15668.36, + "probability": 0.3431 + }, + { + "start": 15668.94, + "end": 15672.28, + "probability": 0.7664 + }, + { + "start": 15672.34, + "end": 15676.02, + "probability": 0.9629 + }, + { + "start": 15676.14, + "end": 15676.84, + "probability": 0.5597 + }, + { + "start": 15677.12, + "end": 15678.43, + "probability": 0.9836 + }, + { + "start": 15679.44, + "end": 15680.08, + "probability": 0.9849 + }, + { + "start": 15681.92, + "end": 15685.34, + "probability": 0.7615 + }, + { + "start": 15685.96, + "end": 15687.56, + "probability": 0.9743 + }, + { + "start": 15687.8, + "end": 15689.84, + "probability": 0.9832 + }, + { + "start": 15689.84, + "end": 15692.84, + "probability": 0.9886 + }, + { + "start": 15692.88, + "end": 15694.22, + "probability": 0.9764 + }, + { + "start": 15694.24, + "end": 15694.34, + "probability": 0.2874 + }, + { + "start": 15694.72, + "end": 15696.4, + "probability": 0.6811 + }, + { + "start": 15696.54, + "end": 15697.84, + "probability": 0.8077 + }, + { + "start": 15698.3, + "end": 15700.17, + "probability": 0.818 + }, + { + "start": 15700.6, + "end": 15701.62, + "probability": 0.9467 + }, + { + "start": 15702.86, + "end": 15704.52, + "probability": 0.9788 + }, + { + "start": 15704.68, + "end": 15706.84, + "probability": 0.9666 + }, + { + "start": 15706.98, + "end": 15708.72, + "probability": 0.7408 + }, + { + "start": 15708.86, + "end": 15709.67, + "probability": 0.8149 + }, + { + "start": 15710.22, + "end": 15712.74, + "probability": 0.977 + }, + { + "start": 15713.66, + "end": 15715.64, + "probability": 0.9663 + }, + { + "start": 15716.18, + "end": 15717.46, + "probability": 0.9575 + }, + { + "start": 15718.14, + "end": 15720.2, + "probability": 0.9636 + }, + { + "start": 15721.26, + "end": 15725.34, + "probability": 0.7652 + }, + { + "start": 15726.6, + "end": 15727.48, + "probability": 0.5919 + }, + { + "start": 15729.06, + "end": 15730.73, + "probability": 0.7742 + }, + { + "start": 15731.52, + "end": 15735.16, + "probability": 0.693 + }, + { + "start": 15735.6, + "end": 15735.6, + "probability": 0.1181 + }, + { + "start": 15735.6, + "end": 15735.6, + "probability": 0.0123 + }, + { + "start": 15735.6, + "end": 15736.86, + "probability": 0.6607 + }, + { + "start": 15738.44, + "end": 15741.1, + "probability": 0.9011 + }, + { + "start": 15741.66, + "end": 15742.04, + "probability": 0.6774 + }, + { + "start": 15743.48, + "end": 15744.28, + "probability": 0.7987 + }, + { + "start": 15744.62, + "end": 15746.46, + "probability": 0.9873 + }, + { + "start": 15746.94, + "end": 15748.9, + "probability": 0.9533 + }, + { + "start": 15749.1, + "end": 15749.74, + "probability": 0.514 + }, + { + "start": 15749.9, + "end": 15750.48, + "probability": 0.7335 + }, + { + "start": 15751.96, + "end": 15754.7, + "probability": 0.8995 + }, + { + "start": 15756.02, + "end": 15757.16, + "probability": 0.8659 + }, + { + "start": 15758.7, + "end": 15761.8, + "probability": 0.9822 + }, + { + "start": 15762.6, + "end": 15763.84, + "probability": 0.8474 + }, + { + "start": 15766.1, + "end": 15767.58, + "probability": 0.9601 + }, + { + "start": 15767.64, + "end": 15768.2, + "probability": 0.9803 + }, + { + "start": 15768.32, + "end": 15768.72, + "probability": 0.8232 + }, + { + "start": 15768.92, + "end": 15769.2, + "probability": 0.8591 + }, + { + "start": 15769.24, + "end": 15769.64, + "probability": 0.6996 + }, + { + "start": 15770.46, + "end": 15770.56, + "probability": 0.4332 + }, + { + "start": 15770.98, + "end": 15771.9, + "probability": 0.6578 + }, + { + "start": 15772.54, + "end": 15774.46, + "probability": 0.8806 + }, + { + "start": 15774.94, + "end": 15777.03, + "probability": 0.9968 + }, + { + "start": 15779.18, + "end": 15782.4, + "probability": 0.9948 + }, + { + "start": 15783.42, + "end": 15784.64, + "probability": 0.932 + }, + { + "start": 15786.08, + "end": 15787.48, + "probability": 0.8262 + }, + { + "start": 15787.52, + "end": 15790.02, + "probability": 0.9543 + }, + { + "start": 15790.16, + "end": 15793.32, + "probability": 0.9074 + }, + { + "start": 15794.12, + "end": 15795.3, + "probability": 0.98 + }, + { + "start": 15795.4, + "end": 15796.24, + "probability": 0.9788 + }, + { + "start": 15796.3, + "end": 15796.62, + "probability": 0.6817 + }, + { + "start": 15796.66, + "end": 15798.98, + "probability": 0.9459 + }, + { + "start": 15799.12, + "end": 15799.7, + "probability": 0.6887 + }, + { + "start": 15800.24, + "end": 15802.0, + "probability": 0.7145 + }, + { + "start": 15802.96, + "end": 15808.1, + "probability": 0.9814 + }, + { + "start": 15809.32, + "end": 15810.08, + "probability": 0.875 + }, + { + "start": 15810.62, + "end": 15811.38, + "probability": 0.8102 + }, + { + "start": 15811.66, + "end": 15812.44, + "probability": 0.5265 + }, + { + "start": 15812.68, + "end": 15812.74, + "probability": 0.3252 + }, + { + "start": 15812.86, + "end": 15814.62, + "probability": 0.9895 + }, + { + "start": 15814.7, + "end": 15815.5, + "probability": 0.4928 + }, + { + "start": 15816.4, + "end": 15818.0, + "probability": 0.9834 + }, + { + "start": 15818.98, + "end": 15819.58, + "probability": 0.5023 + }, + { + "start": 15820.24, + "end": 15822.02, + "probability": 0.9873 + }, + { + "start": 15822.08, + "end": 15827.06, + "probability": 0.9632 + }, + { + "start": 15827.14, + "end": 15827.68, + "probability": 0.6127 + }, + { + "start": 15828.02, + "end": 15830.34, + "probability": 0.9969 + }, + { + "start": 15830.44, + "end": 15831.5, + "probability": 0.8502 + }, + { + "start": 15832.0, + "end": 15833.36, + "probability": 0.5391 + }, + { + "start": 15833.44, + "end": 15837.34, + "probability": 0.7328 + }, + { + "start": 15837.46, + "end": 15842.14, + "probability": 0.502 + }, + { + "start": 15842.26, + "end": 15844.32, + "probability": 0.9769 + }, + { + "start": 15844.66, + "end": 15844.88, + "probability": 0.9259 + }, + { + "start": 15844.96, + "end": 15848.42, + "probability": 0.9941 + }, + { + "start": 15849.16, + "end": 15849.7, + "probability": 0.6574 + }, + { + "start": 15849.88, + "end": 15851.4, + "probability": 0.9137 + }, + { + "start": 15852.2, + "end": 15853.96, + "probability": 0.9703 + }, + { + "start": 15854.7, + "end": 15856.38, + "probability": 0.972 + }, + { + "start": 15856.82, + "end": 15857.33, + "probability": 0.9783 + }, + { + "start": 15858.7, + "end": 15860.98, + "probability": 0.8818 + }, + { + "start": 15861.78, + "end": 15863.24, + "probability": 0.9956 + }, + { + "start": 15863.28, + "end": 15864.68, + "probability": 0.988 + }, + { + "start": 15864.78, + "end": 15865.62, + "probability": 0.9155 + }, + { + "start": 15866.12, + "end": 15866.9, + "probability": 0.9114 + }, + { + "start": 15867.18, + "end": 15868.48, + "probability": 0.978 + }, + { + "start": 15868.56, + "end": 15870.2, + "probability": 0.9355 + }, + { + "start": 15871.04, + "end": 15873.42, + "probability": 0.9919 + }, + { + "start": 15874.0, + "end": 15875.2, + "probability": 0.9872 + }, + { + "start": 15875.24, + "end": 15876.56, + "probability": 0.9907 + }, + { + "start": 15876.8, + "end": 15877.7, + "probability": 0.8434 + }, + { + "start": 15877.8, + "end": 15878.98, + "probability": 0.8604 + }, + { + "start": 15879.06, + "end": 15879.96, + "probability": 0.9912 + }, + { + "start": 15880.68, + "end": 15881.26, + "probability": 0.4362 + }, + { + "start": 15881.38, + "end": 15882.38, + "probability": 0.8945 + }, + { + "start": 15883.04, + "end": 15884.48, + "probability": 0.9663 + }, + { + "start": 15886.08, + "end": 15887.42, + "probability": 0.9902 + }, + { + "start": 15888.96, + "end": 15889.84, + "probability": 0.6882 + }, + { + "start": 15889.88, + "end": 15890.16, + "probability": 0.0068 + }, + { + "start": 15891.4, + "end": 15893.34, + "probability": 0.7905 + }, + { + "start": 15893.6, + "end": 15894.6, + "probability": 0.6146 + }, + { + "start": 15894.62, + "end": 15897.02, + "probability": 0.8962 + }, + { + "start": 15897.62, + "end": 15900.6, + "probability": 0.8882 + }, + { + "start": 15901.42, + "end": 15904.16, + "probability": 0.9722 + }, + { + "start": 15904.4, + "end": 15906.84, + "probability": 0.5209 + }, + { + "start": 15907.34, + "end": 15909.44, + "probability": 0.9608 + }, + { + "start": 15910.88, + "end": 15913.0, + "probability": 0.5168 + }, + { + "start": 15913.84, + "end": 15917.32, + "probability": 0.9835 + }, + { + "start": 15917.64, + "end": 15920.14, + "probability": 0.9863 + }, + { + "start": 15921.0, + "end": 15921.1, + "probability": 0.0726 + }, + { + "start": 15921.3, + "end": 15921.6, + "probability": 0.3618 + }, + { + "start": 15922.46, + "end": 15923.38, + "probability": 0.98 + }, + { + "start": 15923.86, + "end": 15927.14, + "probability": 0.7859 + }, + { + "start": 15927.96, + "end": 15930.5, + "probability": 0.9878 + }, + { + "start": 15930.58, + "end": 15931.82, + "probability": 0.7896 + }, + { + "start": 15932.04, + "end": 15932.3, + "probability": 0.4298 + }, + { + "start": 15932.58, + "end": 15933.84, + "probability": 0.6455 + }, + { + "start": 15934.32, + "end": 15935.92, + "probability": 0.98 + }, + { + "start": 15937.6, + "end": 15940.2, + "probability": 0.8467 + }, + { + "start": 15940.86, + "end": 15941.64, + "probability": 0.6047 + }, + { + "start": 15942.2, + "end": 15945.72, + "probability": 0.9967 + }, + { + "start": 15945.72, + "end": 15948.34, + "probability": 0.9967 + }, + { + "start": 15948.48, + "end": 15950.02, + "probability": 0.598 + }, + { + "start": 15950.6, + "end": 15951.98, + "probability": 0.7996 + }, + { + "start": 15952.3, + "end": 15954.14, + "probability": 0.5682 + }, + { + "start": 15954.46, + "end": 15956.64, + "probability": 0.9135 + }, + { + "start": 15956.68, + "end": 15957.12, + "probability": 0.6498 + }, + { + "start": 15957.42, + "end": 15960.22, + "probability": 0.9346 + }, + { + "start": 15960.84, + "end": 15963.66, + "probability": 0.9954 + }, + { + "start": 15964.66, + "end": 15966.12, + "probability": 0.8322 + }, + { + "start": 15966.26, + "end": 15967.72, + "probability": 0.8965 + }, + { + "start": 15968.24, + "end": 15969.66, + "probability": 0.9865 + }, + { + "start": 15969.8, + "end": 15972.04, + "probability": 0.8002 + }, + { + "start": 15972.56, + "end": 15973.68, + "probability": 0.3873 + }, + { + "start": 15973.78, + "end": 15975.82, + "probability": 0.8717 + }, + { + "start": 15976.12, + "end": 15977.76, + "probability": 0.9756 + }, + { + "start": 15978.32, + "end": 15980.18, + "probability": 0.8317 + }, + { + "start": 15980.86, + "end": 15984.7, + "probability": 0.9971 + }, + { + "start": 15985.62, + "end": 15986.61, + "probability": 0.9971 + }, + { + "start": 15987.46, + "end": 15990.94, + "probability": 0.8194 + }, + { + "start": 15995.38, + "end": 16000.02, + "probability": 0.9606 + }, + { + "start": 16000.08, + "end": 16001.74, + "probability": 0.9911 + }, + { + "start": 16003.68, + "end": 16007.16, + "probability": 0.9034 + }, + { + "start": 16015.22, + "end": 16016.86, + "probability": 0.7024 + }, + { + "start": 16018.04, + "end": 16021.48, + "probability": 0.8496 + }, + { + "start": 16021.82, + "end": 16023.1, + "probability": 0.3313 + }, + { + "start": 16025.69, + "end": 16025.76, + "probability": 0.0251 + }, + { + "start": 16025.76, + "end": 16030.32, + "probability": 0.9008 + }, + { + "start": 16030.44, + "end": 16032.5, + "probability": 0.943 + }, + { + "start": 16032.9, + "end": 16035.6, + "probability": 0.7034 + }, + { + "start": 16036.2, + "end": 16038.26, + "probability": 0.8889 + }, + { + "start": 16039.12, + "end": 16042.62, + "probability": 0.8724 + }, + { + "start": 16043.16, + "end": 16048.46, + "probability": 0.8823 + }, + { + "start": 16049.7, + "end": 16051.44, + "probability": 0.7256 + }, + { + "start": 16052.42, + "end": 16056.68, + "probability": 0.6712 + }, + { + "start": 16056.8, + "end": 16058.44, + "probability": 0.4986 + }, + { + "start": 16059.44, + "end": 16061.04, + "probability": 0.9477 + }, + { + "start": 16061.96, + "end": 16063.26, + "probability": 0.9939 + }, + { + "start": 16065.78, + "end": 16066.68, + "probability": 0.0932 + }, + { + "start": 16066.68, + "end": 16067.1, + "probability": 0.4729 + }, + { + "start": 16067.1, + "end": 16070.4, + "probability": 0.8458 + }, + { + "start": 16070.4, + "end": 16073.4, + "probability": 0.0586 + }, + { + "start": 16074.06, + "end": 16074.68, + "probability": 0.4158 + }, + { + "start": 16075.16, + "end": 16076.94, + "probability": 0.9651 + }, + { + "start": 16077.82, + "end": 16080.54, + "probability": 0.6245 + }, + { + "start": 16080.6, + "end": 16081.16, + "probability": 0.7645 + }, + { + "start": 16081.6, + "end": 16086.18, + "probability": 0.9789 + }, + { + "start": 16086.52, + "end": 16086.84, + "probability": 0.5646 + }, + { + "start": 16086.98, + "end": 16088.18, + "probability": 0.3044 + }, + { + "start": 16088.18, + "end": 16089.32, + "probability": 0.9062 + }, + { + "start": 16089.78, + "end": 16091.04, + "probability": 0.668 + }, + { + "start": 16091.58, + "end": 16093.22, + "probability": 0.97 + }, + { + "start": 16093.58, + "end": 16094.44, + "probability": 0.5987 + }, + { + "start": 16094.9, + "end": 16096.34, + "probability": 0.9255 + }, + { + "start": 16096.76, + "end": 16097.7, + "probability": 0.9604 + }, + { + "start": 16097.82, + "end": 16100.96, + "probability": 0.9961 + }, + { + "start": 16100.96, + "end": 16103.68, + "probability": 0.9543 + }, + { + "start": 16104.2, + "end": 16108.39, + "probability": 0.717 + }, + { + "start": 16108.64, + "end": 16110.84, + "probability": 0.5114 + }, + { + "start": 16110.84, + "end": 16114.7, + "probability": 0.9803 + }, + { + "start": 16115.06, + "end": 16117.12, + "probability": 0.6544 + }, + { + "start": 16118.52, + "end": 16120.38, + "probability": 0.8335 + }, + { + "start": 16121.1, + "end": 16123.52, + "probability": 0.9909 + }, + { + "start": 16128.6, + "end": 16133.26, + "probability": 0.9954 + }, + { + "start": 16133.4, + "end": 16133.64, + "probability": 0.6872 + }, + { + "start": 16133.7, + "end": 16135.26, + "probability": 0.8254 + }, + { + "start": 16135.88, + "end": 16141.22, + "probability": 0.7376 + }, + { + "start": 16141.22, + "end": 16143.34, + "probability": 0.9342 + }, + { + "start": 16143.8, + "end": 16146.0, + "probability": 0.7705 + }, + { + "start": 16146.58, + "end": 16152.44, + "probability": 0.9489 + }, + { + "start": 16152.44, + "end": 16155.84, + "probability": 0.9829 + }, + { + "start": 16158.23, + "end": 16159.34, + "probability": 0.2554 + }, + { + "start": 16159.34, + "end": 16159.84, + "probability": 0.5001 + }, + { + "start": 16160.0, + "end": 16162.78, + "probability": 0.7379 + }, + { + "start": 16163.14, + "end": 16164.88, + "probability": 0.9606 + }, + { + "start": 16164.94, + "end": 16165.68, + "probability": 0.8063 + }, + { + "start": 16165.72, + "end": 16167.14, + "probability": 0.7863 + }, + { + "start": 16167.52, + "end": 16169.3, + "probability": 0.967 + }, + { + "start": 16169.9, + "end": 16173.7, + "probability": 0.7744 + }, + { + "start": 16173.78, + "end": 16175.52, + "probability": 0.9604 + }, + { + "start": 16175.58, + "end": 16177.88, + "probability": 0.9962 + }, + { + "start": 16177.88, + "end": 16178.56, + "probability": 0.8108 + }, + { + "start": 16179.02, + "end": 16179.46, + "probability": 0.4724 + }, + { + "start": 16179.92, + "end": 16181.84, + "probability": 0.9828 + }, + { + "start": 16182.52, + "end": 16187.84, + "probability": 0.9982 + }, + { + "start": 16187.87, + "end": 16191.52, + "probability": 0.7029 + }, + { + "start": 16192.18, + "end": 16193.96, + "probability": 0.0187 + }, + { + "start": 16195.26, + "end": 16196.42, + "probability": 0.8854 + }, + { + "start": 16196.52, + "end": 16198.14, + "probability": 0.6667 + }, + { + "start": 16198.48, + "end": 16200.78, + "probability": 0.499 + }, + { + "start": 16201.1, + "end": 16203.3, + "probability": 0.9672 + }, + { + "start": 16203.32, + "end": 16206.42, + "probability": 0.9906 + }, + { + "start": 16206.48, + "end": 16207.32, + "probability": 0.7856 + }, + { + "start": 16207.74, + "end": 16208.96, + "probability": 0.9639 + }, + { + "start": 16210.08, + "end": 16210.18, + "probability": 0.2682 + }, + { + "start": 16210.18, + "end": 16210.54, + "probability": 0.3062 + }, + { + "start": 16211.16, + "end": 16213.78, + "probability": 0.9421 + }, + { + "start": 16214.26, + "end": 16218.22, + "probability": 0.9702 + }, + { + "start": 16218.28, + "end": 16219.76, + "probability": 0.9794 + }, + { + "start": 16219.8, + "end": 16221.86, + "probability": 0.9888 + }, + { + "start": 16222.36, + "end": 16225.86, + "probability": 0.9922 + }, + { + "start": 16226.02, + "end": 16228.64, + "probability": 0.4847 + }, + { + "start": 16228.88, + "end": 16231.66, + "probability": 0.8091 + }, + { + "start": 16232.46, + "end": 16235.84, + "probability": 0.8787 + }, + { + "start": 16236.4, + "end": 16238.68, + "probability": 0.8839 + }, + { + "start": 16239.86, + "end": 16241.72, + "probability": 0.8882 + }, + { + "start": 16242.38, + "end": 16244.66, + "probability": 0.7454 + }, + { + "start": 16244.68, + "end": 16246.96, + "probability": 0.868 + }, + { + "start": 16247.16, + "end": 16247.64, + "probability": 0.4977 + }, + { + "start": 16247.76, + "end": 16248.22, + "probability": 0.4939 + }, + { + "start": 16248.3, + "end": 16249.1, + "probability": 0.6144 + }, + { + "start": 16249.32, + "end": 16251.86, + "probability": 0.8391 + }, + { + "start": 16252.62, + "end": 16253.28, + "probability": 0.6997 + }, + { + "start": 16253.9, + "end": 16256.42, + "probability": 0.9705 + }, + { + "start": 16258.14, + "end": 16261.82, + "probability": 0.9473 + }, + { + "start": 16263.16, + "end": 16266.4, + "probability": 0.9866 + }, + { + "start": 16268.2, + "end": 16270.92, + "probability": 0.9149 + }, + { + "start": 16272.24, + "end": 16275.62, + "probability": 0.9539 + }, + { + "start": 16277.24, + "end": 16281.78, + "probability": 0.9817 + }, + { + "start": 16282.66, + "end": 16285.08, + "probability": 0.9352 + }, + { + "start": 16285.8, + "end": 16286.64, + "probability": 0.9103 + }, + { + "start": 16287.46, + "end": 16290.18, + "probability": 0.8163 + }, + { + "start": 16291.66, + "end": 16292.5, + "probability": 0.7968 + }, + { + "start": 16293.94, + "end": 16298.48, + "probability": 0.979 + }, + { + "start": 16299.5, + "end": 16300.54, + "probability": 0.8008 + }, + { + "start": 16302.34, + "end": 16304.48, + "probability": 0.9814 + }, + { + "start": 16305.76, + "end": 16310.2, + "probability": 0.8952 + }, + { + "start": 16312.28, + "end": 16316.38, + "probability": 0.9958 + }, + { + "start": 16317.84, + "end": 16318.84, + "probability": 0.9546 + }, + { + "start": 16320.08, + "end": 16323.08, + "probability": 0.9082 + }, + { + "start": 16324.08, + "end": 16326.98, + "probability": 0.9893 + }, + { + "start": 16327.7, + "end": 16327.88, + "probability": 0.5928 + }, + { + "start": 16328.0, + "end": 16330.78, + "probability": 0.8748 + }, + { + "start": 16331.26, + "end": 16331.78, + "probability": 0.8197 + }, + { + "start": 16332.42, + "end": 16333.02, + "probability": 0.9799 + }, + { + "start": 16334.28, + "end": 16337.22, + "probability": 0.9894 + }, + { + "start": 16338.2, + "end": 16344.84, + "probability": 0.79 + }, + { + "start": 16345.9, + "end": 16347.06, + "probability": 0.8522 + }, + { + "start": 16347.28, + "end": 16351.1, + "probability": 0.8961 + }, + { + "start": 16351.28, + "end": 16354.38, + "probability": 0.9957 + }, + { + "start": 16355.06, + "end": 16356.98, + "probability": 0.9963 + }, + { + "start": 16357.8, + "end": 16360.58, + "probability": 0.9819 + }, + { + "start": 16360.72, + "end": 16362.28, + "probability": 0.9956 + }, + { + "start": 16363.02, + "end": 16367.0, + "probability": 0.9681 + }, + { + "start": 16367.74, + "end": 16369.06, + "probability": 0.9556 + }, + { + "start": 16369.16, + "end": 16370.52, + "probability": 0.986 + }, + { + "start": 16370.64, + "end": 16371.22, + "probability": 0.7797 + }, + { + "start": 16371.42, + "end": 16371.82, + "probability": 0.9854 + }, + { + "start": 16372.4, + "end": 16375.34, + "probability": 0.8505 + }, + { + "start": 16375.48, + "end": 16376.8, + "probability": 0.9951 + }, + { + "start": 16377.44, + "end": 16378.9, + "probability": 0.9765 + }, + { + "start": 16380.0, + "end": 16382.02, + "probability": 0.9824 + }, + { + "start": 16382.16, + "end": 16384.44, + "probability": 0.9945 + }, + { + "start": 16385.22, + "end": 16387.5, + "probability": 0.9637 + }, + { + "start": 16388.16, + "end": 16389.7, + "probability": 0.9932 + }, + { + "start": 16391.08, + "end": 16394.4, + "probability": 0.9396 + }, + { + "start": 16395.12, + "end": 16400.8, + "probability": 0.8175 + }, + { + "start": 16402.0, + "end": 16402.82, + "probability": 0.6272 + }, + { + "start": 16403.12, + "end": 16404.38, + "probability": 0.8049 + }, + { + "start": 16405.68, + "end": 16406.4, + "probability": 0.376 + }, + { + "start": 16406.56, + "end": 16406.6, + "probability": 0.0912 + }, + { + "start": 16406.6, + "end": 16407.3, + "probability": 0.6626 + }, + { + "start": 16407.94, + "end": 16411.1, + "probability": 0.9267 + }, + { + "start": 16411.66, + "end": 16413.55, + "probability": 0.9927 + }, + { + "start": 16414.6, + "end": 16415.76, + "probability": 0.7565 + }, + { + "start": 16416.16, + "end": 16417.44, + "probability": 0.8946 + }, + { + "start": 16418.38, + "end": 16423.66, + "probability": 0.9693 + }, + { + "start": 16424.52, + "end": 16427.58, + "probability": 0.5696 + }, + { + "start": 16428.1, + "end": 16431.62, + "probability": 0.8259 + }, + { + "start": 16432.0, + "end": 16433.02, + "probability": 0.9824 + }, + { + "start": 16433.64, + "end": 16434.42, + "probability": 0.9353 + }, + { + "start": 16434.44, + "end": 16435.32, + "probability": 0.7061 + }, + { + "start": 16435.54, + "end": 16438.24, + "probability": 0.9808 + }, + { + "start": 16439.08, + "end": 16440.36, + "probability": 0.2979 + }, + { + "start": 16440.64, + "end": 16440.98, + "probability": 0.8433 + }, + { + "start": 16441.04, + "end": 16441.9, + "probability": 0.9602 + }, + { + "start": 16442.34, + "end": 16444.84, + "probability": 0.9588 + }, + { + "start": 16445.06, + "end": 16446.3, + "probability": 0.9771 + }, + { + "start": 16446.74, + "end": 16449.13, + "probability": 0.9971 + }, + { + "start": 16449.64, + "end": 16450.96, + "probability": 0.7655 + }, + { + "start": 16451.48, + "end": 16453.6, + "probability": 0.9734 + }, + { + "start": 16454.34, + "end": 16458.16, + "probability": 0.9287 + }, + { + "start": 16458.64, + "end": 16459.4, + "probability": 0.7911 + }, + { + "start": 16460.08, + "end": 16462.22, + "probability": 0.9392 + }, + { + "start": 16462.36, + "end": 16464.62, + "probability": 0.8803 + }, + { + "start": 16464.7, + "end": 16465.3, + "probability": 0.8268 + }, + { + "start": 16465.88, + "end": 16466.4, + "probability": 0.7249 + }, + { + "start": 16468.56, + "end": 16470.28, + "probability": 0.6801 + }, + { + "start": 16471.78, + "end": 16474.26, + "probability": 0.6065 + }, + { + "start": 16474.3, + "end": 16475.84, + "probability": 0.6437 + }, + { + "start": 16477.3, + "end": 16478.24, + "probability": 0.5632 + }, + { + "start": 16479.58, + "end": 16482.74, + "probability": 0.7891 + }, + { + "start": 16483.3, + "end": 16485.64, + "probability": 0.2 + }, + { + "start": 16487.16, + "end": 16490.44, + "probability": 0.9764 + }, + { + "start": 16491.98, + "end": 16493.04, + "probability": 0.5889 + }, + { + "start": 16493.48, + "end": 16493.5, + "probability": 0.3361 + }, + { + "start": 16493.5, + "end": 16495.06, + "probability": 0.7398 + }, + { + "start": 16495.28, + "end": 16498.14, + "probability": 0.95 + }, + { + "start": 16498.42, + "end": 16500.6, + "probability": 0.8757 + }, + { + "start": 16501.91, + "end": 16504.92, + "probability": 0.8023 + }, + { + "start": 16505.16, + "end": 16505.76, + "probability": 0.2196 + }, + { + "start": 16507.24, + "end": 16508.12, + "probability": 0.0377 + }, + { + "start": 16508.12, + "end": 16509.68, + "probability": 0.8459 + }, + { + "start": 16511.28, + "end": 16513.78, + "probability": 0.5915 + }, + { + "start": 16514.58, + "end": 16515.6, + "probability": 0.8879 + }, + { + "start": 16515.8, + "end": 16518.38, + "probability": 0.9689 + }, + { + "start": 16518.38, + "end": 16521.84, + "probability": 0.8655 + }, + { + "start": 16522.9, + "end": 16524.48, + "probability": 0.8894 + }, + { + "start": 16524.6, + "end": 16527.68, + "probability": 0.9326 + }, + { + "start": 16528.82, + "end": 16530.82, + "probability": 0.9963 + }, + { + "start": 16531.52, + "end": 16533.34, + "probability": 0.8691 + }, + { + "start": 16533.38, + "end": 16536.36, + "probability": 0.9967 + }, + { + "start": 16537.36, + "end": 16539.94, + "probability": 0.9388 + }, + { + "start": 16540.22, + "end": 16542.72, + "probability": 0.9727 + }, + { + "start": 16542.92, + "end": 16546.68, + "probability": 0.9897 + }, + { + "start": 16547.3, + "end": 16548.18, + "probability": 0.8007 + }, + { + "start": 16548.2, + "end": 16550.36, + "probability": 0.8201 + }, + { + "start": 16551.02, + "end": 16557.46, + "probability": 0.9429 + }, + { + "start": 16557.46, + "end": 16558.7, + "probability": 0.934 + }, + { + "start": 16559.74, + "end": 16563.74, + "probability": 0.7133 + }, + { + "start": 16564.22, + "end": 16564.42, + "probability": 0.5663 + }, + { + "start": 16564.54, + "end": 16565.72, + "probability": 0.89 + }, + { + "start": 16566.08, + "end": 16566.74, + "probability": 0.5471 + }, + { + "start": 16566.76, + "end": 16568.76, + "probability": 0.5763 + }, + { + "start": 16569.16, + "end": 16571.78, + "probability": 0.7829 + }, + { + "start": 16571.82, + "end": 16574.82, + "probability": 0.9125 + }, + { + "start": 16574.9, + "end": 16575.61, + "probability": 0.9829 + }, + { + "start": 16576.2, + "end": 16577.28, + "probability": 0.7932 + }, + { + "start": 16578.46, + "end": 16580.5, + "probability": 0.7173 + }, + { + "start": 16582.97, + "end": 16586.52, + "probability": 0.3279 + }, + { + "start": 16586.7, + "end": 16589.52, + "probability": 0.7824 + }, + { + "start": 16590.48, + "end": 16594.62, + "probability": 0.0547 + }, + { + "start": 16597.66, + "end": 16599.06, + "probability": 0.3986 + }, + { + "start": 16599.32, + "end": 16600.98, + "probability": 0.0907 + }, + { + "start": 16601.12, + "end": 16603.02, + "probability": 0.1675 + }, + { + "start": 16604.46, + "end": 16605.56, + "probability": 0.1837 + }, + { + "start": 16606.7, + "end": 16608.6, + "probability": 0.3129 + }, + { + "start": 16608.72, + "end": 16611.8, + "probability": 0.6355 + }, + { + "start": 16611.86, + "end": 16614.94, + "probability": 0.9243 + }, + { + "start": 16615.2, + "end": 16616.24, + "probability": 0.9742 + }, + { + "start": 16616.34, + "end": 16619.76, + "probability": 0.9846 + }, + { + "start": 16619.84, + "end": 16621.81, + "probability": 0.9927 + }, + { + "start": 16622.6, + "end": 16625.78, + "probability": 0.9297 + }, + { + "start": 16625.88, + "end": 16626.08, + "probability": 0.3148 + }, + { + "start": 16626.24, + "end": 16626.8, + "probability": 0.8768 + }, + { + "start": 16627.22, + "end": 16627.94, + "probability": 0.8168 + }, + { + "start": 16628.12, + "end": 16628.8, + "probability": 0.9431 + }, + { + "start": 16629.06, + "end": 16631.2, + "probability": 0.9078 + }, + { + "start": 16631.62, + "end": 16632.38, + "probability": 0.835 + }, + { + "start": 16633.06, + "end": 16634.92, + "probability": 0.0304 + }, + { + "start": 16634.98, + "end": 16637.54, + "probability": 0.8065 + }, + { + "start": 16638.43, + "end": 16640.19, + "probability": 0.9969 + }, + { + "start": 16640.38, + "end": 16642.64, + "probability": 0.9951 + }, + { + "start": 16643.26, + "end": 16644.96, + "probability": 0.9868 + }, + { + "start": 16645.12, + "end": 16646.74, + "probability": 0.6327 + }, + { + "start": 16646.88, + "end": 16648.48, + "probability": 0.9875 + }, + { + "start": 16648.52, + "end": 16650.58, + "probability": 0.9886 + }, + { + "start": 16650.78, + "end": 16654.86, + "probability": 0.9371 + }, + { + "start": 16655.14, + "end": 16660.34, + "probability": 0.9806 + }, + { + "start": 16660.5, + "end": 16661.5, + "probability": 0.6447 + }, + { + "start": 16661.64, + "end": 16662.3, + "probability": 0.7083 + }, + { + "start": 16662.38, + "end": 16662.98, + "probability": 0.8582 + }, + { + "start": 16663.14, + "end": 16664.42, + "probability": 0.9739 + }, + { + "start": 16664.58, + "end": 16665.82, + "probability": 0.6588 + }, + { + "start": 16665.96, + "end": 16668.54, + "probability": 0.5127 + }, + { + "start": 16668.54, + "end": 16670.66, + "probability": 0.9335 + }, + { + "start": 16670.94, + "end": 16673.32, + "probability": 0.9575 + }, + { + "start": 16673.5, + "end": 16674.7, + "probability": 0.8831 + }, + { + "start": 16674.94, + "end": 16678.84, + "probability": 0.9072 + }, + { + "start": 16678.98, + "end": 16679.26, + "probability": 0.1181 + }, + { + "start": 16679.26, + "end": 16680.52, + "probability": 0.9978 + }, + { + "start": 16681.04, + "end": 16686.3, + "probability": 0.8564 + }, + { + "start": 16686.64, + "end": 16690.64, + "probability": 0.9956 + }, + { + "start": 16691.2, + "end": 16692.42, + "probability": 0.7276 + }, + { + "start": 16692.66, + "end": 16695.74, + "probability": 0.9697 + }, + { + "start": 16695.98, + "end": 16698.7, + "probability": 0.9286 + }, + { + "start": 16698.78, + "end": 16701.24, + "probability": 0.8881 + }, + { + "start": 16701.66, + "end": 16705.28, + "probability": 0.8099 + }, + { + "start": 16705.74, + "end": 16710.92, + "probability": 0.833 + }, + { + "start": 16710.92, + "end": 16715.06, + "probability": 0.9164 + }, + { + "start": 16715.38, + "end": 16717.7, + "probability": 0.5947 + }, + { + "start": 16717.84, + "end": 16717.84, + "probability": 0.17 + }, + { + "start": 16717.88, + "end": 16719.96, + "probability": 0.7336 + }, + { + "start": 16720.22, + "end": 16720.34, + "probability": 0.0538 + }, + { + "start": 16720.34, + "end": 16722.11, + "probability": 0.7761 + }, + { + "start": 16722.9, + "end": 16725.48, + "probability": 0.7344 + }, + { + "start": 16725.86, + "end": 16728.42, + "probability": 0.8209 + }, + { + "start": 16728.6, + "end": 16730.1, + "probability": 0.7781 + }, + { + "start": 16730.5, + "end": 16732.8, + "probability": 0.9631 + }, + { + "start": 16733.02, + "end": 16736.1, + "probability": 0.9907 + }, + { + "start": 16736.48, + "end": 16737.82, + "probability": 0.7283 + }, + { + "start": 16737.92, + "end": 16743.38, + "probability": 0.8885 + }, + { + "start": 16743.38, + "end": 16748.5, + "probability": 0.7434 + }, + { + "start": 16748.96, + "end": 16754.42, + "probability": 0.9951 + }, + { + "start": 16754.68, + "end": 16756.1, + "probability": 0.9488 + }, + { + "start": 16756.32, + "end": 16758.66, + "probability": 0.9179 + }, + { + "start": 16759.14, + "end": 16764.26, + "probability": 0.9941 + }, + { + "start": 16764.38, + "end": 16766.98, + "probability": 0.9321 + }, + { + "start": 16767.38, + "end": 16771.4, + "probability": 0.9237 + }, + { + "start": 16771.68, + "end": 16772.82, + "probability": 0.9895 + }, + { + "start": 16772.88, + "end": 16774.06, + "probability": 0.9386 + }, + { + "start": 16774.34, + "end": 16777.78, + "probability": 0.9942 + }, + { + "start": 16778.22, + "end": 16779.6, + "probability": 0.5981 + }, + { + "start": 16779.88, + "end": 16781.1, + "probability": 0.9761 + }, + { + "start": 16781.16, + "end": 16782.18, + "probability": 0.9353 + }, + { + "start": 16782.24, + "end": 16783.46, + "probability": 0.8883 + }, + { + "start": 16783.6, + "end": 16785.5, + "probability": 0.9947 + }, + { + "start": 16786.2, + "end": 16788.04, + "probability": 0.9724 + }, + { + "start": 16788.48, + "end": 16790.84, + "probability": 0.9919 + }, + { + "start": 16790.86, + "end": 16794.28, + "probability": 0.8851 + }, + { + "start": 16794.6, + "end": 16797.72, + "probability": 0.8643 + }, + { + "start": 16797.72, + "end": 16800.24, + "probability": 0.9907 + }, + { + "start": 16800.5, + "end": 16801.0, + "probability": 0.7556 + }, + { + "start": 16801.16, + "end": 16804.08, + "probability": 0.8867 + }, + { + "start": 16804.2, + "end": 16806.7, + "probability": 0.8768 + }, + { + "start": 16807.44, + "end": 16808.48, + "probability": 0.8936 + }, + { + "start": 16809.62, + "end": 16811.04, + "probability": 0.9175 + }, + { + "start": 16811.18, + "end": 16814.52, + "probability": 0.9316 + }, + { + "start": 16814.98, + "end": 16816.36, + "probability": 0.9329 + }, + { + "start": 16831.96, + "end": 16834.52, + "probability": 0.7191 + }, + { + "start": 16835.8, + "end": 16836.4, + "probability": 0.9606 + }, + { + "start": 16839.08, + "end": 16843.32, + "probability": 0.3471 + }, + { + "start": 16843.7, + "end": 16844.4, + "probability": 0.5632 + }, + { + "start": 16845.22, + "end": 16847.94, + "probability": 0.946 + }, + { + "start": 16848.55, + "end": 16848.92, + "probability": 0.3381 + }, + { + "start": 16849.52, + "end": 16850.92, + "probability": 0.8184 + }, + { + "start": 16852.18, + "end": 16854.56, + "probability": 0.3217 + }, + { + "start": 16854.78, + "end": 16858.7, + "probability": 0.5244 + }, + { + "start": 16858.86, + "end": 16862.86, + "probability": 0.9734 + }, + { + "start": 16863.62, + "end": 16867.54, + "probability": 0.9946 + }, + { + "start": 16869.46, + "end": 16870.62, + "probability": 0.999 + }, + { + "start": 16872.24, + "end": 16875.16, + "probability": 0.8486 + }, + { + "start": 16876.66, + "end": 16879.8, + "probability": 0.9647 + }, + { + "start": 16882.18, + "end": 16883.88, + "probability": 0.6795 + }, + { + "start": 16883.88, + "end": 16888.82, + "probability": 0.9854 + }, + { + "start": 16890.06, + "end": 16891.98, + "probability": 0.9841 + }, + { + "start": 16892.64, + "end": 16893.72, + "probability": 0.9719 + }, + { + "start": 16894.74, + "end": 16896.24, + "probability": 0.9783 + }, + { + "start": 16897.5, + "end": 16902.64, + "probability": 0.6356 + }, + { + "start": 16903.78, + "end": 16905.74, + "probability": 0.4415 + }, + { + "start": 16905.78, + "end": 16909.58, + "probability": 0.9849 + }, + { + "start": 16910.22, + "end": 16912.78, + "probability": 0.8713 + }, + { + "start": 16913.42, + "end": 16915.48, + "probability": 0.8548 + }, + { + "start": 16916.0, + "end": 16918.2, + "probability": 0.9321 + }, + { + "start": 16918.8, + "end": 16921.66, + "probability": 0.6657 + }, + { + "start": 16922.92, + "end": 16926.84, + "probability": 0.9693 + }, + { + "start": 16928.72, + "end": 16929.84, + "probability": 0.8816 + }, + { + "start": 16931.78, + "end": 16935.28, + "probability": 0.8757 + }, + { + "start": 16936.02, + "end": 16936.55, + "probability": 0.0227 + }, + { + "start": 16939.16, + "end": 16941.66, + "probability": 0.866 + }, + { + "start": 16942.24, + "end": 16943.0, + "probability": 0.1543 + }, + { + "start": 16943.08, + "end": 16944.02, + "probability": 0.9863 + }, + { + "start": 16944.78, + "end": 16948.08, + "probability": 0.9859 + }, + { + "start": 16949.02, + "end": 16951.12, + "probability": 0.7789 + }, + { + "start": 16951.8, + "end": 16955.1, + "probability": 0.9961 + }, + { + "start": 16955.76, + "end": 16959.52, + "probability": 0.8757 + }, + { + "start": 16960.06, + "end": 16963.84, + "probability": 0.9442 + }, + { + "start": 16965.5, + "end": 16966.1, + "probability": 0.3348 + }, + { + "start": 16966.14, + "end": 16970.28, + "probability": 0.9922 + }, + { + "start": 16970.58, + "end": 16972.02, + "probability": 0.6365 + }, + { + "start": 16972.3, + "end": 16974.36, + "probability": 0.9561 + }, + { + "start": 16974.58, + "end": 16981.12, + "probability": 0.985 + }, + { + "start": 16981.54, + "end": 16982.5, + "probability": 0.5267 + }, + { + "start": 16982.7, + "end": 16984.06, + "probability": 0.9453 + }, + { + "start": 16984.72, + "end": 16989.76, + "probability": 0.8158 + }, + { + "start": 16990.54, + "end": 16991.46, + "probability": 0.4885 + }, + { + "start": 16991.66, + "end": 16993.3, + "probability": 0.6908 + }, + { + "start": 16993.84, + "end": 16998.62, + "probability": 0.7221 + }, + { + "start": 16999.2, + "end": 17002.01, + "probability": 0.9854 + }, + { + "start": 17004.06, + "end": 17004.66, + "probability": 0.9757 + }, + { + "start": 17005.48, + "end": 17007.2, + "probability": 0.9712 + }, + { + "start": 17007.56, + "end": 17009.4, + "probability": 0.4056 + }, + { + "start": 17009.76, + "end": 17013.7, + "probability": 0.8538 + }, + { + "start": 17013.7, + "end": 17018.86, + "probability": 0.8192 + }, + { + "start": 17019.62, + "end": 17020.54, + "probability": 0.3808 + }, + { + "start": 17021.26, + "end": 17021.7, + "probability": 0.7046 + }, + { + "start": 17021.82, + "end": 17025.42, + "probability": 0.7212 + }, + { + "start": 17025.42, + "end": 17029.52, + "probability": 0.8018 + }, + { + "start": 17030.68, + "end": 17031.24, + "probability": 0.3254 + }, + { + "start": 17032.34, + "end": 17033.16, + "probability": 0.7055 + }, + { + "start": 17035.46, + "end": 17036.98, + "probability": 0.9429 + }, + { + "start": 17038.48, + "end": 17040.72, + "probability": 0.9948 + }, + { + "start": 17041.82, + "end": 17043.1, + "probability": 0.9697 + }, + { + "start": 17045.0, + "end": 17050.58, + "probability": 0.9575 + }, + { + "start": 17051.4, + "end": 17054.4, + "probability": 0.9583 + }, + { + "start": 17056.46, + "end": 17058.28, + "probability": 0.7852 + }, + { + "start": 17058.32, + "end": 17063.28, + "probability": 0.9993 + }, + { + "start": 17064.3, + "end": 17067.44, + "probability": 0.9983 + }, + { + "start": 17068.98, + "end": 17070.48, + "probability": 0.9993 + }, + { + "start": 17071.38, + "end": 17073.97, + "probability": 0.9976 + }, + { + "start": 17074.26, + "end": 17077.42, + "probability": 0.6549 + }, + { + "start": 17077.58, + "end": 17077.58, + "probability": 0.1947 + }, + { + "start": 17078.06, + "end": 17084.9, + "probability": 0.9946 + }, + { + "start": 17085.42, + "end": 17086.1, + "probability": 0.9681 + }, + { + "start": 17086.18, + "end": 17086.84, + "probability": 0.6865 + }, + { + "start": 17086.88, + "end": 17087.56, + "probability": 0.5945 + }, + { + "start": 17087.88, + "end": 17089.24, + "probability": 0.9795 + }, + { + "start": 17091.96, + "end": 17094.68, + "probability": 0.928 + }, + { + "start": 17096.98, + "end": 17098.64, + "probability": 0.9131 + }, + { + "start": 17099.14, + "end": 17102.86, + "probability": 0.9932 + }, + { + "start": 17103.26, + "end": 17106.96, + "probability": 0.9654 + }, + { + "start": 17108.5, + "end": 17109.7, + "probability": 0.7485 + }, + { + "start": 17112.09, + "end": 17113.0, + "probability": 0.1439 + }, + { + "start": 17113.0, + "end": 17116.44, + "probability": 0.9517 + }, + { + "start": 17117.18, + "end": 17120.27, + "probability": 0.7285 + }, + { + "start": 17121.14, + "end": 17122.76, + "probability": 0.9863 + }, + { + "start": 17123.3, + "end": 17125.96, + "probability": 0.9982 + }, + { + "start": 17127.08, + "end": 17128.44, + "probability": 0.8257 + }, + { + "start": 17129.68, + "end": 17130.4, + "probability": 0.4832 + }, + { + "start": 17133.08, + "end": 17135.62, + "probability": 0.9839 + }, + { + "start": 17136.02, + "end": 17137.62, + "probability": 0.9699 + }, + { + "start": 17139.14, + "end": 17142.1, + "probability": 0.8603 + }, + { + "start": 17142.66, + "end": 17146.32, + "probability": 0.621 + }, + { + "start": 17146.84, + "end": 17149.5, + "probability": 0.9846 + }, + { + "start": 17149.5, + "end": 17153.62, + "probability": 0.9124 + }, + { + "start": 17154.16, + "end": 17155.46, + "probability": 0.6547 + }, + { + "start": 17155.7, + "end": 17158.36, + "probability": 0.9272 + }, + { + "start": 17158.82, + "end": 17159.4, + "probability": 0.8149 + }, + { + "start": 17160.48, + "end": 17162.98, + "probability": 0.9877 + }, + { + "start": 17163.6, + "end": 17164.74, + "probability": 0.6991 + }, + { + "start": 17164.98, + "end": 17168.62, + "probability": 0.7529 + }, + { + "start": 17168.8, + "end": 17169.92, + "probability": 0.9205 + }, + { + "start": 17170.14, + "end": 17170.54, + "probability": 0.4305 + }, + { + "start": 17170.7, + "end": 17172.56, + "probability": 0.8477 + }, + { + "start": 17173.34, + "end": 17177.02, + "probability": 0.9406 + }, + { + "start": 17177.74, + "end": 17177.82, + "probability": 0.3111 + }, + { + "start": 17178.42, + "end": 17180.38, + "probability": 0.9826 + }, + { + "start": 17205.58, + "end": 17206.74, + "probability": 0.6322 + }, + { + "start": 17207.76, + "end": 17208.52, + "probability": 0.7991 + }, + { + "start": 17209.68, + "end": 17210.78, + "probability": 0.912 + }, + { + "start": 17212.6, + "end": 17214.94, + "probability": 0.9985 + }, + { + "start": 17217.14, + "end": 17220.68, + "probability": 0.9883 + }, + { + "start": 17222.16, + "end": 17223.3, + "probability": 0.988 + }, + { + "start": 17224.4, + "end": 17225.22, + "probability": 0.9692 + }, + { + "start": 17227.68, + "end": 17228.98, + "probability": 0.9985 + }, + { + "start": 17230.4, + "end": 17232.86, + "probability": 0.9949 + }, + { + "start": 17233.96, + "end": 17236.2, + "probability": 0.8516 + }, + { + "start": 17237.2, + "end": 17244.4, + "probability": 0.9951 + }, + { + "start": 17245.84, + "end": 17249.0, + "probability": 0.9948 + }, + { + "start": 17250.06, + "end": 17251.94, + "probability": 0.9741 + }, + { + "start": 17253.3, + "end": 17256.64, + "probability": 0.9756 + }, + { + "start": 17258.54, + "end": 17263.72, + "probability": 0.9882 + }, + { + "start": 17265.48, + "end": 17266.64, + "probability": 0.7242 + }, + { + "start": 17268.02, + "end": 17269.56, + "probability": 0.9577 + }, + { + "start": 17271.92, + "end": 17274.56, + "probability": 0.9985 + }, + { + "start": 17275.46, + "end": 17277.62, + "probability": 0.9925 + }, + { + "start": 17278.4, + "end": 17279.78, + "probability": 0.98 + }, + { + "start": 17280.96, + "end": 17281.82, + "probability": 0.9658 + }, + { + "start": 17282.96, + "end": 17285.72, + "probability": 0.7781 + }, + { + "start": 17287.02, + "end": 17290.8, + "probability": 0.9598 + }, + { + "start": 17292.64, + "end": 17294.64, + "probability": 0.971 + }, + { + "start": 17295.46, + "end": 17296.77, + "probability": 0.9888 + }, + { + "start": 17298.04, + "end": 17299.26, + "probability": 0.9822 + }, + { + "start": 17299.84, + "end": 17300.72, + "probability": 0.8986 + }, + { + "start": 17301.46, + "end": 17302.63, + "probability": 0.9889 + }, + { + "start": 17303.32, + "end": 17305.56, + "probability": 0.7972 + }, + { + "start": 17306.64, + "end": 17309.98, + "probability": 0.9211 + }, + { + "start": 17310.5, + "end": 17312.18, + "probability": 0.991 + }, + { + "start": 17312.76, + "end": 17315.08, + "probability": 0.9355 + }, + { + "start": 17315.46, + "end": 17316.12, + "probability": 0.7961 + }, + { + "start": 17316.36, + "end": 17319.34, + "probability": 0.9907 + }, + { + "start": 17319.86, + "end": 17321.32, + "probability": 0.9772 + }, + { + "start": 17321.68, + "end": 17322.54, + "probability": 0.9925 + }, + { + "start": 17322.66, + "end": 17323.76, + "probability": 0.6206 + }, + { + "start": 17326.16, + "end": 17327.76, + "probability": 0.4857 + }, + { + "start": 17328.26, + "end": 17329.66, + "probability": 0.9918 + }, + { + "start": 17330.24, + "end": 17331.28, + "probability": 0.823 + }, + { + "start": 17334.94, + "end": 17338.34, + "probability": 0.9787 + }, + { + "start": 17338.78, + "end": 17339.6, + "probability": 0.7022 + }, + { + "start": 17339.8, + "end": 17343.36, + "probability": 0.8708 + }, + { + "start": 17343.78, + "end": 17347.76, + "probability": 0.789 + }, + { + "start": 17348.88, + "end": 17351.84, + "probability": 0.8644 + }, + { + "start": 17353.54, + "end": 17354.54, + "probability": 0.7149 + }, + { + "start": 17356.46, + "end": 17357.5, + "probability": 0.7397 + }, + { + "start": 17358.88, + "end": 17359.42, + "probability": 0.8554 + }, + { + "start": 17360.78, + "end": 17365.5, + "probability": 0.9822 + }, + { + "start": 17366.38, + "end": 17367.1, + "probability": 0.9241 + }, + { + "start": 17368.08, + "end": 17371.08, + "probability": 0.8424 + }, + { + "start": 17372.14, + "end": 17376.84, + "probability": 0.9956 + }, + { + "start": 17377.6, + "end": 17380.92, + "probability": 0.825 + }, + { + "start": 17381.7, + "end": 17383.31, + "probability": 0.6665 + }, + { + "start": 17383.96, + "end": 17384.82, + "probability": 0.5679 + }, + { + "start": 17384.86, + "end": 17386.34, + "probability": 0.9368 + }, + { + "start": 17386.8, + "end": 17390.0, + "probability": 0.8691 + }, + { + "start": 17390.32, + "end": 17391.88, + "probability": 0.8324 + }, + { + "start": 17394.66, + "end": 17395.6, + "probability": 0.6113 + }, + { + "start": 17396.96, + "end": 17400.12, + "probability": 0.6296 + }, + { + "start": 17400.96, + "end": 17403.96, + "probability": 0.675 + }, + { + "start": 17405.26, + "end": 17406.07, + "probability": 0.9772 + }, + { + "start": 17407.14, + "end": 17408.72, + "probability": 0.8752 + }, + { + "start": 17408.74, + "end": 17410.01, + "probability": 0.9541 + }, + { + "start": 17411.24, + "end": 17414.46, + "probability": 0.9714 + }, + { + "start": 17415.14, + "end": 17418.24, + "probability": 0.9983 + }, + { + "start": 17418.82, + "end": 17419.41, + "probability": 0.9861 + }, + { + "start": 17420.62, + "end": 17421.9, + "probability": 0.8397 + }, + { + "start": 17422.54, + "end": 17423.44, + "probability": 0.8662 + }, + { + "start": 17424.84, + "end": 17425.96, + "probability": 0.9162 + }, + { + "start": 17426.72, + "end": 17428.58, + "probability": 0.8397 + }, + { + "start": 17429.14, + "end": 17429.68, + "probability": 0.6973 + }, + { + "start": 17430.7, + "end": 17433.32, + "probability": 0.9108 + }, + { + "start": 17434.16, + "end": 17436.86, + "probability": 0.794 + }, + { + "start": 17437.78, + "end": 17440.58, + "probability": 0.8144 + }, + { + "start": 17441.4, + "end": 17441.92, + "probability": 0.9528 + }, + { + "start": 17442.46, + "end": 17446.98, + "probability": 0.9904 + }, + { + "start": 17447.46, + "end": 17448.16, + "probability": 0.822 + }, + { + "start": 17448.72, + "end": 17456.88, + "probability": 0.9717 + }, + { + "start": 17457.22, + "end": 17459.58, + "probability": 0.9703 + }, + { + "start": 17459.68, + "end": 17459.9, + "probability": 0.8071 + }, + { + "start": 17460.3, + "end": 17462.25, + "probability": 0.9263 + }, + { + "start": 17462.9, + "end": 17465.2, + "probability": 0.5447 + }, + { + "start": 17465.86, + "end": 17466.96, + "probability": 0.7497 + }, + { + "start": 17468.62, + "end": 17469.62, + "probability": 0.8449 + }, + { + "start": 17470.88, + "end": 17472.32, + "probability": 0.8879 + }, + { + "start": 17473.14, + "end": 17475.04, + "probability": 0.9613 + }, + { + "start": 17475.12, + "end": 17478.5, + "probability": 0.8695 + }, + { + "start": 17480.3, + "end": 17481.58, + "probability": 0.6623 + }, + { + "start": 17482.4, + "end": 17482.5, + "probability": 0.2457 + }, + { + "start": 17482.5, + "end": 17483.94, + "probability": 0.9922 + }, + { + "start": 17483.98, + "end": 17484.42, + "probability": 0.7281 + }, + { + "start": 17484.74, + "end": 17489.22, + "probability": 0.7469 + }, + { + "start": 17489.26, + "end": 17489.26, + "probability": 0.0427 + }, + { + "start": 17489.26, + "end": 17489.28, + "probability": 0.0003 + }, + { + "start": 17489.28, + "end": 17491.72, + "probability": 0.9422 + }, + { + "start": 17491.84, + "end": 17493.9, + "probability": 0.9014 + }, + { + "start": 17494.5, + "end": 17498.92, + "probability": 0.959 + }, + { + "start": 17499.0, + "end": 17501.3, + "probability": 0.8723 + }, + { + "start": 17501.3, + "end": 17502.82, + "probability": 0.8127 + }, + { + "start": 17503.74, + "end": 17504.74, + "probability": 0.7568 + }, + { + "start": 17505.3, + "end": 17506.84, + "probability": 0.832 + }, + { + "start": 17508.48, + "end": 17512.44, + "probability": 0.9071 + }, + { + "start": 17513.72, + "end": 17513.88, + "probability": 0.6829 + }, + { + "start": 17514.62, + "end": 17517.66, + "probability": 0.9894 + }, + { + "start": 17518.68, + "end": 17523.9, + "probability": 0.9978 + }, + { + "start": 17524.5, + "end": 17526.64, + "probability": 0.9763 + }, + { + "start": 17527.52, + "end": 17531.34, + "probability": 0.7808 + }, + { + "start": 17532.72, + "end": 17535.6, + "probability": 0.8108 + }, + { + "start": 17536.52, + "end": 17539.22, + "probability": 0.8012 + }, + { + "start": 17540.4, + "end": 17542.42, + "probability": 0.9889 + }, + { + "start": 17542.49, + "end": 17544.02, + "probability": 0.9194 + }, + { + "start": 17544.86, + "end": 17547.38, + "probability": 0.9727 + }, + { + "start": 17548.34, + "end": 17551.66, + "probability": 0.9922 + }, + { + "start": 17552.5, + "end": 17553.96, + "probability": 0.7754 + }, + { + "start": 17554.08, + "end": 17556.28, + "probability": 0.7542 + }, + { + "start": 17556.62, + "end": 17558.64, + "probability": 0.8376 + }, + { + "start": 17559.46, + "end": 17562.82, + "probability": 0.9971 + }, + { + "start": 17562.98, + "end": 17567.04, + "probability": 0.9951 + }, + { + "start": 17567.24, + "end": 17572.74, + "probability": 0.972 + }, + { + "start": 17572.86, + "end": 17573.5, + "probability": 0.9426 + }, + { + "start": 17574.92, + "end": 17577.64, + "probability": 0.9582 + }, + { + "start": 17577.82, + "end": 17579.28, + "probability": 0.9664 + }, + { + "start": 17579.38, + "end": 17580.2, + "probability": 0.7415 + }, + { + "start": 17580.24, + "end": 17582.22, + "probability": 0.9019 + }, + { + "start": 17583.04, + "end": 17586.83, + "probability": 0.8496 + }, + { + "start": 17586.94, + "end": 17587.84, + "probability": 0.7437 + }, + { + "start": 17588.78, + "end": 17590.76, + "probability": 0.9863 + }, + { + "start": 17591.88, + "end": 17595.12, + "probability": 0.7767 + }, + { + "start": 17595.18, + "end": 17598.84, + "probability": 0.7323 + }, + { + "start": 17599.84, + "end": 17601.8, + "probability": 0.9907 + }, + { + "start": 17602.78, + "end": 17604.26, + "probability": 0.998 + }, + { + "start": 17604.42, + "end": 17608.64, + "probability": 0.9878 + }, + { + "start": 17609.46, + "end": 17610.0, + "probability": 0.5145 + }, + { + "start": 17610.14, + "end": 17610.56, + "probability": 0.8517 + }, + { + "start": 17610.82, + "end": 17611.12, + "probability": 0.7794 + }, + { + "start": 17611.22, + "end": 17614.7, + "probability": 0.9753 + }, + { + "start": 17615.74, + "end": 17620.94, + "probability": 0.6478 + }, + { + "start": 17621.1, + "end": 17623.16, + "probability": 0.9509 + }, + { + "start": 17623.4, + "end": 17623.5, + "probability": 0.3988 + }, + { + "start": 17624.56, + "end": 17630.64, + "probability": 0.9815 + }, + { + "start": 17631.56, + "end": 17634.0, + "probability": 0.9078 + }, + { + "start": 17634.88, + "end": 17637.66, + "probability": 0.9924 + }, + { + "start": 17638.4, + "end": 17641.04, + "probability": 0.9608 + }, + { + "start": 17641.24, + "end": 17641.62, + "probability": 0.502 + }, + { + "start": 17642.38, + "end": 17642.94, + "probability": 0.6843 + }, + { + "start": 17643.66, + "end": 17646.24, + "probability": 0.9174 + }, + { + "start": 17647.08, + "end": 17648.48, + "probability": 0.9615 + }, + { + "start": 17648.74, + "end": 17649.9, + "probability": 0.9087 + }, + { + "start": 17650.56, + "end": 17656.66, + "probability": 0.8221 + }, + { + "start": 17657.1, + "end": 17659.02, + "probability": 0.9784 + }, + { + "start": 17659.56, + "end": 17660.53, + "probability": 0.9316 + }, + { + "start": 17661.66, + "end": 17665.7, + "probability": 0.9872 + }, + { + "start": 17666.28, + "end": 17669.1, + "probability": 0.9009 + }, + { + "start": 17669.38, + "end": 17671.1, + "probability": 0.8818 + }, + { + "start": 17672.52, + "end": 17678.5, + "probability": 0.8929 + }, + { + "start": 17679.32, + "end": 17681.66, + "probability": 0.9048 + }, + { + "start": 17681.74, + "end": 17684.28, + "probability": 0.9502 + }, + { + "start": 17685.18, + "end": 17689.74, + "probability": 0.9609 + }, + { + "start": 17689.74, + "end": 17694.72, + "probability": 0.9398 + }, + { + "start": 17695.14, + "end": 17699.9, + "probability": 0.9857 + }, + { + "start": 17700.08, + "end": 17700.48, + "probability": 0.762 + }, + { + "start": 17700.56, + "end": 17703.52, + "probability": 0.9165 + }, + { + "start": 17703.7, + "end": 17705.66, + "probability": 0.9304 + }, + { + "start": 17706.88, + "end": 17708.42, + "probability": 0.5248 + }, + { + "start": 17715.02, + "end": 17715.52, + "probability": 0.5588 + }, + { + "start": 17715.54, + "end": 17717.06, + "probability": 0.849 + }, + { + "start": 17717.18, + "end": 17718.24, + "probability": 0.5645 + }, + { + "start": 17720.34, + "end": 17723.0, + "probability": 0.9682 + }, + { + "start": 17723.56, + "end": 17724.88, + "probability": 0.7608 + }, + { + "start": 17724.96, + "end": 17725.52, + "probability": 0.6332 + }, + { + "start": 17726.6, + "end": 17728.3, + "probability": 0.9675 + }, + { + "start": 17738.6, + "end": 17739.16, + "probability": 0.7471 + }, + { + "start": 17740.24, + "end": 17741.02, + "probability": 0.9265 + }, + { + "start": 17741.7, + "end": 17743.56, + "probability": 0.8069 + }, + { + "start": 17745.72, + "end": 17750.92, + "probability": 0.8196 + }, + { + "start": 17751.1, + "end": 17752.18, + "probability": 0.9939 + }, + { + "start": 17752.24, + "end": 17752.78, + "probability": 0.7961 + }, + { + "start": 17753.32, + "end": 17754.87, + "probability": 0.584 + }, + { + "start": 17755.28, + "end": 17758.64, + "probability": 0.9941 + }, + { + "start": 17758.64, + "end": 17762.12, + "probability": 0.96 + }, + { + "start": 17763.32, + "end": 17764.48, + "probability": 0.8056 + }, + { + "start": 17764.66, + "end": 17766.3, + "probability": 0.9629 + }, + { + "start": 17767.08, + "end": 17769.3, + "probability": 0.6368 + }, + { + "start": 17769.46, + "end": 17769.94, + "probability": 0.7391 + }, + { + "start": 17770.6, + "end": 17772.36, + "probability": 0.7935 + }, + { + "start": 17773.6, + "end": 17774.66, + "probability": 0.7476 + }, + { + "start": 17775.06, + "end": 17776.28, + "probability": 0.9727 + }, + { + "start": 17776.48, + "end": 17777.94, + "probability": 0.9292 + }, + { + "start": 17778.82, + "end": 17780.82, + "probability": 0.8032 + }, + { + "start": 17781.56, + "end": 17786.82, + "probability": 0.9609 + }, + { + "start": 17786.92, + "end": 17789.54, + "probability": 0.5805 + }, + { + "start": 17790.08, + "end": 17794.45, + "probability": 0.9183 + }, + { + "start": 17794.48, + "end": 17797.86, + "probability": 0.9862 + }, + { + "start": 17798.82, + "end": 17802.16, + "probability": 0.6844 + }, + { + "start": 17802.6, + "end": 17805.02, + "probability": 0.8684 + }, + { + "start": 17805.02, + "end": 17809.14, + "probability": 0.9365 + }, + { + "start": 17809.5, + "end": 17810.52, + "probability": 0.7242 + }, + { + "start": 17810.74, + "end": 17816.4, + "probability": 0.9611 + }, + { + "start": 17816.4, + "end": 17820.52, + "probability": 0.9849 + }, + { + "start": 17820.66, + "end": 17820.92, + "probability": 0.465 + }, + { + "start": 17821.4, + "end": 17827.66, + "probability": 0.9963 + }, + { + "start": 17828.54, + "end": 17831.88, + "probability": 0.9124 + }, + { + "start": 17832.42, + "end": 17833.54, + "probability": 0.7829 + }, + { + "start": 17833.86, + "end": 17837.64, + "probability": 0.9828 + }, + { + "start": 17838.56, + "end": 17840.84, + "probability": 0.9885 + }, + { + "start": 17841.36, + "end": 17846.16, + "probability": 0.9141 + }, + { + "start": 17846.28, + "end": 17848.38, + "probability": 0.7623 + }, + { + "start": 17848.46, + "end": 17852.18, + "probability": 0.9546 + }, + { + "start": 17853.16, + "end": 17854.42, + "probability": 0.8798 + }, + { + "start": 17854.94, + "end": 17858.3, + "probability": 0.9219 + }, + { + "start": 17858.88, + "end": 17862.84, + "probability": 0.9819 + }, + { + "start": 17863.8, + "end": 17865.78, + "probability": 0.4706 + }, + { + "start": 17866.22, + "end": 17870.94, + "probability": 0.8424 + }, + { + "start": 17871.34, + "end": 17876.1, + "probability": 0.7641 + }, + { + "start": 17876.88, + "end": 17879.38, + "probability": 0.9778 + }, + { + "start": 17880.0, + "end": 17880.8, + "probability": 0.8743 + }, + { + "start": 17881.14, + "end": 17885.76, + "probability": 0.9707 + }, + { + "start": 17886.2, + "end": 17888.0, + "probability": 0.5001 + }, + { + "start": 17889.0, + "end": 17892.78, + "probability": 0.8275 + }, + { + "start": 17893.46, + "end": 17895.26, + "probability": 0.4479 + }, + { + "start": 17896.04, + "end": 17897.28, + "probability": 0.5021 + }, + { + "start": 17897.32, + "end": 17903.78, + "probability": 0.9861 + }, + { + "start": 17906.26, + "end": 17908.7, + "probability": 0.9733 + }, + { + "start": 17909.98, + "end": 17912.0, + "probability": 0.5626 + }, + { + "start": 17913.1, + "end": 17916.16, + "probability": 0.9889 + }, + { + "start": 17916.44, + "end": 17920.88, + "probability": 0.9609 + }, + { + "start": 17921.18, + "end": 17921.8, + "probability": 0.5551 + }, + { + "start": 17921.86, + "end": 17923.88, + "probability": 0.8373 + }, + { + "start": 17924.0, + "end": 17924.6, + "probability": 0.9001 + }, + { + "start": 17925.04, + "end": 17928.34, + "probability": 0.7125 + }, + { + "start": 17928.66, + "end": 17931.02, + "probability": 0.9972 + }, + { + "start": 17931.5, + "end": 17932.14, + "probability": 0.7485 + }, + { + "start": 17932.36, + "end": 17933.48, + "probability": 0.9627 + }, + { + "start": 17933.74, + "end": 17936.08, + "probability": 0.9031 + }, + { + "start": 17936.08, + "end": 17939.12, + "probability": 0.9883 + }, + { + "start": 17939.42, + "end": 17942.0, + "probability": 0.9727 + }, + { + "start": 17942.11, + "end": 17944.62, + "probability": 0.976 + }, + { + "start": 17945.12, + "end": 17947.04, + "probability": 0.988 + }, + { + "start": 17947.04, + "end": 17949.38, + "probability": 0.8991 + }, + { + "start": 17950.2, + "end": 17950.96, + "probability": 0.749 + }, + { + "start": 17951.6, + "end": 17953.22, + "probability": 0.9835 + }, + { + "start": 17954.5, + "end": 17955.68, + "probability": 0.7731 + }, + { + "start": 17958.56, + "end": 17959.82, + "probability": 0.9631 + }, + { + "start": 17963.52, + "end": 17965.96, + "probability": 0.8431 + }, + { + "start": 17967.5, + "end": 17970.34, + "probability": 0.8332 + }, + { + "start": 17971.42, + "end": 17976.48, + "probability": 0.9771 + }, + { + "start": 17977.16, + "end": 17983.66, + "probability": 0.981 + }, + { + "start": 17983.74, + "end": 17985.43, + "probability": 0.99 + }, + { + "start": 17986.12, + "end": 17991.1, + "probability": 0.737 + }, + { + "start": 17995.51, + "end": 17998.72, + "probability": 0.9967 + }, + { + "start": 17998.8, + "end": 17999.04, + "probability": 0.4549 + }, + { + "start": 17999.1, + "end": 18000.16, + "probability": 0.9918 + }, + { + "start": 18000.86, + "end": 18003.2, + "probability": 0.9976 + }, + { + "start": 18003.72, + "end": 18004.82, + "probability": 0.9846 + }, + { + "start": 18004.82, + "end": 18006.12, + "probability": 0.9378 + }, + { + "start": 18006.2, + "end": 18006.38, + "probability": 0.6115 + }, + { + "start": 18006.62, + "end": 18008.0, + "probability": 0.9199 + }, + { + "start": 18008.08, + "end": 18009.28, + "probability": 0.978 + }, + { + "start": 18010.32, + "end": 18015.44, + "probability": 0.9803 + }, + { + "start": 18017.06, + "end": 18017.64, + "probability": 0.8047 + }, + { + "start": 18018.28, + "end": 18021.64, + "probability": 0.9968 + }, + { + "start": 18022.7, + "end": 18026.38, + "probability": 0.9157 + }, + { + "start": 18027.46, + "end": 18032.6, + "probability": 0.9705 + }, + { + "start": 18033.9, + "end": 18035.26, + "probability": 0.7762 + }, + { + "start": 18036.8, + "end": 18038.41, + "probability": 0.9915 + }, + { + "start": 18039.38, + "end": 18041.5, + "probability": 0.9958 + }, + { + "start": 18042.34, + "end": 18043.3, + "probability": 0.9711 + }, + { + "start": 18044.68, + "end": 18046.02, + "probability": 0.9644 + }, + { + "start": 18046.62, + "end": 18049.28, + "probability": 0.8662 + }, + { + "start": 18050.06, + "end": 18056.52, + "probability": 0.9804 + }, + { + "start": 18056.6, + "end": 18062.18, + "probability": 0.9932 + }, + { + "start": 18062.78, + "end": 18065.22, + "probability": 0.6699 + }, + { + "start": 18065.74, + "end": 18068.54, + "probability": 0.8876 + }, + { + "start": 18068.88, + "end": 18070.68, + "probability": 0.8782 + }, + { + "start": 18072.5, + "end": 18076.42, + "probability": 0.9841 + }, + { + "start": 18076.52, + "end": 18077.98, + "probability": 0.7193 + }, + { + "start": 18078.76, + "end": 18080.14, + "probability": 0.9876 + }, + { + "start": 18081.22, + "end": 18087.28, + "probability": 0.9957 + }, + { + "start": 18088.2, + "end": 18092.26, + "probability": 0.9819 + }, + { + "start": 18094.02, + "end": 18095.88, + "probability": 0.941 + }, + { + "start": 18097.38, + "end": 18098.14, + "probability": 0.7186 + }, + { + "start": 18099.24, + "end": 18100.22, + "probability": 0.7842 + }, + { + "start": 18100.46, + "end": 18101.96, + "probability": 0.9323 + }, + { + "start": 18102.18, + "end": 18103.79, + "probability": 0.8578 + }, + { + "start": 18104.3, + "end": 18105.86, + "probability": 0.7483 + }, + { + "start": 18106.66, + "end": 18108.18, + "probability": 0.97 + }, + { + "start": 18110.08, + "end": 18112.58, + "probability": 0.9805 + }, + { + "start": 18112.92, + "end": 18114.84, + "probability": 0.9563 + }, + { + "start": 18115.16, + "end": 18118.84, + "probability": 0.9718 + }, + { + "start": 18119.08, + "end": 18120.32, + "probability": 0.8337 + }, + { + "start": 18120.54, + "end": 18125.86, + "probability": 0.9843 + }, + { + "start": 18126.02, + "end": 18127.0, + "probability": 0.9329 + }, + { + "start": 18127.44, + "end": 18128.0, + "probability": 0.6115 + }, + { + "start": 18128.1, + "end": 18129.18, + "probability": 0.9912 + }, + { + "start": 18129.4, + "end": 18129.54, + "probability": 0.5972 + }, + { + "start": 18129.7, + "end": 18130.02, + "probability": 0.4776 + }, + { + "start": 18130.18, + "end": 18130.58, + "probability": 0.3773 + }, + { + "start": 18130.88, + "end": 18131.72, + "probability": 0.667 + }, + { + "start": 18132.48, + "end": 18134.6, + "probability": 0.938 + }, + { + "start": 18136.32, + "end": 18138.42, + "probability": 0.9531 + }, + { + "start": 18138.9, + "end": 18140.28, + "probability": 0.9941 + }, + { + "start": 18142.88, + "end": 18144.18, + "probability": 0.6583 + }, + { + "start": 18144.26, + "end": 18145.18, + "probability": 0.9895 + }, + { + "start": 18146.14, + "end": 18150.33, + "probability": 0.2975 + }, + { + "start": 18151.58, + "end": 18151.76, + "probability": 0.0615 + }, + { + "start": 18151.76, + "end": 18155.96, + "probability": 0.5631 + }, + { + "start": 18156.36, + "end": 18157.74, + "probability": 0.8839 + }, + { + "start": 18157.78, + "end": 18158.5, + "probability": 0.4003 + }, + { + "start": 18158.62, + "end": 18159.34, + "probability": 0.9062 + }, + { + "start": 18159.64, + "end": 18163.18, + "probability": 0.7654 + }, + { + "start": 18164.46, + "end": 18165.14, + "probability": 0.8224 + }, + { + "start": 18165.36, + "end": 18165.9, + "probability": 0.7276 + }, + { + "start": 18166.6, + "end": 18167.58, + "probability": 0.6497 + }, + { + "start": 18167.68, + "end": 18169.9, + "probability": 0.9743 + }, + { + "start": 18170.3, + "end": 18172.4, + "probability": 0.8513 + }, + { + "start": 18174.06, + "end": 18176.34, + "probability": 0.9966 + }, + { + "start": 18176.44, + "end": 18177.64, + "probability": 0.9389 + }, + { + "start": 18178.56, + "end": 18182.44, + "probability": 0.9958 + }, + { + "start": 18182.5, + "end": 18184.4, + "probability": 0.7975 + }, + { + "start": 18184.7, + "end": 18187.88, + "probability": 0.99 + }, + { + "start": 18189.02, + "end": 18190.48, + "probability": 0.9868 + }, + { + "start": 18191.26, + "end": 18193.48, + "probability": 0.9043 + }, + { + "start": 18193.56, + "end": 18193.78, + "probability": 0.8772 + }, + { + "start": 18193.84, + "end": 18196.36, + "probability": 0.8266 + }, + { + "start": 18196.82, + "end": 18201.59, + "probability": 0.8145 + }, + { + "start": 18203.82, + "end": 18206.48, + "probability": 0.79 + }, + { + "start": 18208.42, + "end": 18209.72, + "probability": 0.8419 + }, + { + "start": 18220.24, + "end": 18224.4, + "probability": 0.6362 + }, + { + "start": 18224.54, + "end": 18226.72, + "probability": 0.9598 + }, + { + "start": 18226.84, + "end": 18228.68, + "probability": 0.9813 + }, + { + "start": 18229.46, + "end": 18229.96, + "probability": 0.8104 + }, + { + "start": 18230.0, + "end": 18230.76, + "probability": 0.9917 + }, + { + "start": 18231.0, + "end": 18232.08, + "probability": 0.7707 + }, + { + "start": 18243.97, + "end": 18246.64, + "probability": 0.2269 + }, + { + "start": 18246.64, + "end": 18246.64, + "probability": 0.1631 + }, + { + "start": 18247.88, + "end": 18248.7, + "probability": 0.1323 + }, + { + "start": 18249.22, + "end": 18251.2, + "probability": 0.052 + }, + { + "start": 18251.26, + "end": 18252.88, + "probability": 0.2035 + }, + { + "start": 18254.1, + "end": 18254.26, + "probability": 0.1001 + }, + { + "start": 18254.26, + "end": 18254.86, + "probability": 0.0255 + }, + { + "start": 18255.08, + "end": 18255.6, + "probability": 0.0316 + }, + { + "start": 18255.62, + "end": 18257.18, + "probability": 0.1473 + }, + { + "start": 18257.18, + "end": 18257.6, + "probability": 0.0475 + }, + { + "start": 18257.6, + "end": 18258.6, + "probability": 0.0289 + }, + { + "start": 18261.18, + "end": 18262.28, + "probability": 0.1917 + }, + { + "start": 18263.62, + "end": 18264.18, + "probability": 0.224 + }, + { + "start": 18265.7, + "end": 18267.08, + "probability": 0.1043 + }, + { + "start": 18267.22, + "end": 18267.34, + "probability": 0.473 + }, + { + "start": 18267.64, + "end": 18274.18, + "probability": 0.1045 + }, + { + "start": 18275.23, + "end": 18276.9, + "probability": 0.0934 + }, + { + "start": 18276.9, + "end": 18277.0, + "probability": 0.1415 + }, + { + "start": 18278.58, + "end": 18280.58, + "probability": 0.1939 + }, + { + "start": 18280.58, + "end": 18284.8, + "probability": 0.0339 + }, + { + "start": 18288.32, + "end": 18288.68, + "probability": 0.1127 + }, + { + "start": 18300.0, + "end": 18300.0, + "probability": 0.0 + }, + { + "start": 18300.0, + "end": 18300.0, + "probability": 0.0 + }, + { + "start": 18300.0, + "end": 18300.0, + "probability": 0.0 + }, + { + "start": 18300.0, + "end": 18300.0, + "probability": 0.0 + }, + { + "start": 18300.0, + "end": 18300.0, + "probability": 0.0 + }, + { + "start": 18300.0, + "end": 18300.0, + "probability": 0.0 + }, + { + "start": 18300.0, + "end": 18300.0, + "probability": 0.0 + }, + { + "start": 18300.0, + "end": 18300.0, + "probability": 0.0 + }, + { + "start": 18300.0, + "end": 18300.0, + "probability": 0.0 + }, + { + "start": 18300.0, + "end": 18300.0, + "probability": 0.0 + }, + { + "start": 18300.0, + "end": 18300.0, + "probability": 0.0 + }, + { + "start": 18300.5, + "end": 18302.32, + "probability": 0.6674 + }, + { + "start": 18302.42, + "end": 18304.32, + "probability": 0.71 + }, + { + "start": 18304.72, + "end": 18305.58, + "probability": 0.9593 + }, + { + "start": 18306.74, + "end": 18310.34, + "probability": 0.986 + }, + { + "start": 18310.76, + "end": 18311.54, + "probability": 0.9623 + }, + { + "start": 18312.42, + "end": 18316.7, + "probability": 0.9967 + }, + { + "start": 18317.66, + "end": 18318.08, + "probability": 0.3546 + }, + { + "start": 18318.62, + "end": 18319.96, + "probability": 0.8128 + }, + { + "start": 18320.58, + "end": 18321.12, + "probability": 0.8321 + }, + { + "start": 18321.78, + "end": 18323.1, + "probability": 0.9736 + }, + { + "start": 18323.46, + "end": 18324.86, + "probability": 0.9865 + }, + { + "start": 18324.92, + "end": 18327.06, + "probability": 0.9812 + }, + { + "start": 18327.7, + "end": 18331.22, + "probability": 0.9849 + }, + { + "start": 18331.78, + "end": 18334.76, + "probability": 0.9992 + }, + { + "start": 18335.46, + "end": 18336.89, + "probability": 0.915 + }, + { + "start": 18337.42, + "end": 18338.82, + "probability": 0.8125 + }, + { + "start": 18339.06, + "end": 18343.38, + "probability": 0.8561 + }, + { + "start": 18343.52, + "end": 18344.44, + "probability": 0.8029 + }, + { + "start": 18345.16, + "end": 18349.66, + "probability": 0.9502 + }, + { + "start": 18351.22, + "end": 18353.74, + "probability": 0.8235 + }, + { + "start": 18353.84, + "end": 18355.35, + "probability": 0.9795 + }, + { + "start": 18355.86, + "end": 18356.7, + "probability": 0.6768 + }, + { + "start": 18356.76, + "end": 18359.77, + "probability": 0.9684 + }, + { + "start": 18360.74, + "end": 18361.94, + "probability": 0.986 + }, + { + "start": 18362.14, + "end": 18362.72, + "probability": 0.4823 + }, + { + "start": 18362.98, + "end": 18365.5, + "probability": 0.9818 + }, + { + "start": 18365.78, + "end": 18367.96, + "probability": 0.9287 + }, + { + "start": 18368.32, + "end": 18369.62, + "probability": 0.6148 + }, + { + "start": 18369.7, + "end": 18371.2, + "probability": 0.9656 + }, + { + "start": 18372.18, + "end": 18374.24, + "probability": 0.772 + }, + { + "start": 18375.06, + "end": 18376.44, + "probability": 0.8776 + }, + { + "start": 18376.96, + "end": 18378.46, + "probability": 0.9293 + }, + { + "start": 18378.52, + "end": 18379.34, + "probability": 0.9644 + }, + { + "start": 18379.84, + "end": 18382.82, + "probability": 0.9767 + }, + { + "start": 18383.26, + "end": 18385.2, + "probability": 0.9954 + }, + { + "start": 18385.54, + "end": 18386.04, + "probability": 0.4871 + }, + { + "start": 18386.4, + "end": 18387.68, + "probability": 0.9197 + }, + { + "start": 18388.0, + "end": 18389.82, + "probability": 0.9483 + }, + { + "start": 18390.32, + "end": 18393.46, + "probability": 0.9758 + }, + { + "start": 18393.64, + "end": 18395.2, + "probability": 0.9908 + }, + { + "start": 18395.76, + "end": 18397.32, + "probability": 0.9935 + }, + { + "start": 18397.58, + "end": 18399.4, + "probability": 0.9437 + }, + { + "start": 18399.5, + "end": 18400.24, + "probability": 0.5671 + }, + { + "start": 18400.4, + "end": 18401.04, + "probability": 0.6419 + }, + { + "start": 18401.06, + "end": 18403.1, + "probability": 0.8579 + }, + { + "start": 18403.48, + "end": 18407.96, + "probability": 0.9871 + }, + { + "start": 18408.08, + "end": 18411.88, + "probability": 0.9955 + }, + { + "start": 18413.22, + "end": 18414.24, + "probability": 0.3222 + }, + { + "start": 18414.92, + "end": 18418.22, + "probability": 0.9966 + }, + { + "start": 18419.16, + "end": 18421.44, + "probability": 0.8135 + }, + { + "start": 18422.08, + "end": 18422.72, + "probability": 0.6237 + }, + { + "start": 18422.82, + "end": 18424.02, + "probability": 0.9895 + }, + { + "start": 18424.44, + "end": 18425.7, + "probability": 0.8902 + }, + { + "start": 18426.06, + "end": 18427.88, + "probability": 0.9333 + }, + { + "start": 18428.5, + "end": 18428.86, + "probability": 0.2631 + }, + { + "start": 18428.94, + "end": 18429.68, + "probability": 0.8652 + }, + { + "start": 18429.82, + "end": 18431.98, + "probability": 0.8818 + }, + { + "start": 18432.02, + "end": 18434.84, + "probability": 0.99 + }, + { + "start": 18435.18, + "end": 18437.34, + "probability": 0.9017 + }, + { + "start": 18437.68, + "end": 18438.42, + "probability": 0.8792 + }, + { + "start": 18438.6, + "end": 18440.22, + "probability": 0.9888 + }, + { + "start": 18440.7, + "end": 18443.48, + "probability": 0.8761 + }, + { + "start": 18443.84, + "end": 18445.32, + "probability": 0.9529 + }, + { + "start": 18445.74, + "end": 18447.64, + "probability": 0.9025 + }, + { + "start": 18448.0, + "end": 18449.26, + "probability": 0.7137 + }, + { + "start": 18450.1, + "end": 18453.52, + "probability": 0.9771 + }, + { + "start": 18454.16, + "end": 18458.54, + "probability": 0.967 + }, + { + "start": 18459.1, + "end": 18461.62, + "probability": 0.9469 + }, + { + "start": 18461.9, + "end": 18464.24, + "probability": 0.9971 + }, + { + "start": 18464.58, + "end": 18465.08, + "probability": 0.7268 + }, + { + "start": 18465.16, + "end": 18466.26, + "probability": 0.5548 + }, + { + "start": 18466.54, + "end": 18467.82, + "probability": 0.9087 + }, + { + "start": 18468.04, + "end": 18469.95, + "probability": 0.9941 + }, + { + "start": 18470.36, + "end": 18473.71, + "probability": 0.9978 + }, + { + "start": 18473.98, + "end": 18476.18, + "probability": 0.9932 + }, + { + "start": 18477.18, + "end": 18479.46, + "probability": 0.9487 + }, + { + "start": 18479.62, + "end": 18481.92, + "probability": 0.9971 + }, + { + "start": 18482.18, + "end": 18483.4, + "probability": 0.9099 + }, + { + "start": 18484.38, + "end": 18488.12, + "probability": 0.9902 + }, + { + "start": 18488.52, + "end": 18490.5, + "probability": 0.8249 + }, + { + "start": 18490.9, + "end": 18491.76, + "probability": 0.8849 + }, + { + "start": 18492.62, + "end": 18493.98, + "probability": 0.9259 + }, + { + "start": 18494.1, + "end": 18496.68, + "probability": 0.9294 + }, + { + "start": 18497.52, + "end": 18499.2, + "probability": 0.9983 + }, + { + "start": 18499.2, + "end": 18502.74, + "probability": 0.9036 + }, + { + "start": 18502.88, + "end": 18504.32, + "probability": 0.8512 + }, + { + "start": 18504.98, + "end": 18505.76, + "probability": 0.7318 + }, + { + "start": 18505.86, + "end": 18508.32, + "probability": 0.9648 + }, + { + "start": 18508.82, + "end": 18509.9, + "probability": 0.9941 + }, + { + "start": 18510.24, + "end": 18511.78, + "probability": 0.9725 + }, + { + "start": 18512.92, + "end": 18514.14, + "probability": 0.5572 + }, + { + "start": 18515.96, + "end": 18516.34, + "probability": 0.5299 + }, + { + "start": 18516.78, + "end": 18522.16, + "probability": 0.9602 + }, + { + "start": 18522.98, + "end": 18523.52, + "probability": 0.7383 + }, + { + "start": 18523.66, + "end": 18524.8, + "probability": 0.9644 + }, + { + "start": 18525.3, + "end": 18526.86, + "probability": 0.9707 + }, + { + "start": 18527.32, + "end": 18530.3, + "probability": 0.9621 + }, + { + "start": 18530.7, + "end": 18531.78, + "probability": 0.5797 + }, + { + "start": 18532.06, + "end": 18533.83, + "probability": 0.976 + }, + { + "start": 18534.5, + "end": 18535.12, + "probability": 0.7689 + }, + { + "start": 18535.22, + "end": 18536.12, + "probability": 0.9766 + }, + { + "start": 18536.62, + "end": 18537.72, + "probability": 0.5369 + }, + { + "start": 18538.3, + "end": 18539.78, + "probability": 0.9788 + }, + { + "start": 18540.22, + "end": 18541.39, + "probability": 0.8848 + }, + { + "start": 18543.96, + "end": 18544.34, + "probability": 0.4083 + }, + { + "start": 18544.34, + "end": 18544.62, + "probability": 0.136 + }, + { + "start": 18545.26, + "end": 18549.54, + "probability": 0.9934 + }, + { + "start": 18550.06, + "end": 18552.54, + "probability": 0.8113 + }, + { + "start": 18552.96, + "end": 18554.98, + "probability": 0.8829 + }, + { + "start": 18555.56, + "end": 18559.96, + "probability": 0.8388 + }, + { + "start": 18560.02, + "end": 18562.08, + "probability": 0.9436 + }, + { + "start": 18562.78, + "end": 18563.86, + "probability": 0.9703 + }, + { + "start": 18564.1, + "end": 18565.68, + "probability": 0.9335 + }, + { + "start": 18566.1, + "end": 18571.1, + "probability": 0.9971 + }, + { + "start": 18571.5, + "end": 18577.62, + "probability": 0.9971 + }, + { + "start": 18577.98, + "end": 18579.36, + "probability": 0.809 + }, + { + "start": 18579.48, + "end": 18580.57, + "probability": 0.999 + }, + { + "start": 18581.6, + "end": 18585.36, + "probability": 0.959 + }, + { + "start": 18585.54, + "end": 18586.56, + "probability": 0.9157 + }, + { + "start": 18586.94, + "end": 18587.68, + "probability": 0.6716 + }, + { + "start": 18588.08, + "end": 18588.96, + "probability": 0.9061 + }, + { + "start": 18589.5, + "end": 18593.6, + "probability": 0.9785 + }, + { + "start": 18593.68, + "end": 18594.38, + "probability": 0.6533 + }, + { + "start": 18594.66, + "end": 18598.76, + "probability": 0.8149 + }, + { + "start": 18600.54, + "end": 18602.28, + "probability": 0.7873 + }, + { + "start": 18602.46, + "end": 18603.78, + "probability": 0.9529 + }, + { + "start": 18623.74, + "end": 18626.52, + "probability": 0.7585 + }, + { + "start": 18627.4, + "end": 18630.74, + "probability": 0.9513 + }, + { + "start": 18631.22, + "end": 18633.5, + "probability": 0.8207 + }, + { + "start": 18633.72, + "end": 18637.14, + "probability": 0.9778 + }, + { + "start": 18637.94, + "end": 18643.48, + "probability": 0.9814 + }, + { + "start": 18644.18, + "end": 18644.76, + "probability": 0.6537 + }, + { + "start": 18644.94, + "end": 18647.82, + "probability": 0.4604 + }, + { + "start": 18648.52, + "end": 18648.98, + "probability": 0.3638 + }, + { + "start": 18649.42, + "end": 18649.84, + "probability": 0.732 + }, + { + "start": 18652.12, + "end": 18653.28, + "probability": 0.957 + }, + { + "start": 18654.48, + "end": 18662.08, + "probability": 0.9956 + }, + { + "start": 18663.08, + "end": 18666.62, + "probability": 0.9949 + }, + { + "start": 18667.32, + "end": 18670.58, + "probability": 0.9839 + }, + { + "start": 18671.6, + "end": 18678.28, + "probability": 0.9833 + }, + { + "start": 18678.8, + "end": 18684.26, + "probability": 0.9332 + }, + { + "start": 18685.66, + "end": 18687.6, + "probability": 0.7645 + }, + { + "start": 18688.48, + "end": 18691.34, + "probability": 0.9681 + }, + { + "start": 18692.06, + "end": 18693.02, + "probability": 0.9632 + }, + { + "start": 18693.64, + "end": 18697.54, + "probability": 0.8173 + }, + { + "start": 18698.36, + "end": 18700.2, + "probability": 0.8191 + }, + { + "start": 18700.8, + "end": 18703.94, + "probability": 0.8972 + }, + { + "start": 18704.82, + "end": 18706.42, + "probability": 0.7134 + }, + { + "start": 18707.18, + "end": 18711.38, + "probability": 0.9863 + }, + { + "start": 18712.34, + "end": 18717.72, + "probability": 0.9656 + }, + { + "start": 18718.26, + "end": 18720.04, + "probability": 0.8755 + }, + { + "start": 18720.52, + "end": 18722.42, + "probability": 0.9491 + }, + { + "start": 18722.72, + "end": 18724.74, + "probability": 0.7402 + }, + { + "start": 18724.78, + "end": 18730.98, + "probability": 0.9773 + }, + { + "start": 18731.62, + "end": 18732.98, + "probability": 0.9778 + }, + { + "start": 18735.9, + "end": 18736.58, + "probability": 0.8861 + }, + { + "start": 18737.46, + "end": 18738.16, + "probability": 0.9806 + }, + { + "start": 18738.6, + "end": 18739.26, + "probability": 0.9828 + }, + { + "start": 18739.72, + "end": 18740.48, + "probability": 0.9176 + }, + { + "start": 18740.88, + "end": 18742.04, + "probability": 0.9203 + }, + { + "start": 18742.42, + "end": 18746.16, + "probability": 0.9318 + }, + { + "start": 18747.88, + "end": 18749.6, + "probability": 0.9899 + }, + { + "start": 18752.98, + "end": 18753.98, + "probability": 0.1644 + }, + { + "start": 18755.07, + "end": 18760.56, + "probability": 0.9834 + }, + { + "start": 18761.22, + "end": 18763.04, + "probability": 0.8418 + }, + { + "start": 18764.2, + "end": 18769.3, + "probability": 0.9963 + }, + { + "start": 18770.44, + "end": 18774.76, + "probability": 0.9689 + }, + { + "start": 18775.46, + "end": 18780.06, + "probability": 0.8869 + }, + { + "start": 18780.5, + "end": 18783.34, + "probability": 0.6351 + }, + { + "start": 18783.82, + "end": 18787.86, + "probability": 0.9239 + }, + { + "start": 18788.28, + "end": 18790.98, + "probability": 0.8709 + }, + { + "start": 18791.5, + "end": 18793.26, + "probability": 0.9846 + }, + { + "start": 18794.22, + "end": 18795.5, + "probability": 0.5183 + }, + { + "start": 18796.04, + "end": 18797.08, + "probability": 0.6974 + }, + { + "start": 18797.46, + "end": 18799.68, + "probability": 0.7739 + }, + { + "start": 18800.2, + "end": 18803.94, + "probability": 0.7878 + }, + { + "start": 18804.54, + "end": 18805.86, + "probability": 0.8711 + }, + { + "start": 18806.38, + "end": 18810.96, + "probability": 0.9765 + }, + { + "start": 18811.6, + "end": 18814.88, + "probability": 0.9954 + }, + { + "start": 18815.38, + "end": 18818.5, + "probability": 0.8743 + }, + { + "start": 18819.74, + "end": 18828.72, + "probability": 0.9919 + }, + { + "start": 18829.44, + "end": 18835.84, + "probability": 0.7503 + }, + { + "start": 18836.08, + "end": 18837.2, + "probability": 0.7973 + }, + { + "start": 18838.23, + "end": 18843.02, + "probability": 0.9553 + }, + { + "start": 18843.66, + "end": 18847.28, + "probability": 0.9589 + }, + { + "start": 18848.14, + "end": 18852.4, + "probability": 0.993 + }, + { + "start": 18852.4, + "end": 18858.76, + "probability": 0.9905 + }, + { + "start": 18859.5, + "end": 18860.54, + "probability": 0.7696 + }, + { + "start": 18862.04, + "end": 18865.76, + "probability": 0.939 + }, + { + "start": 18865.8, + "end": 18871.68, + "probability": 0.9624 + }, + { + "start": 18872.56, + "end": 18875.7, + "probability": 0.6162 + }, + { + "start": 18875.7, + "end": 18883.12, + "probability": 0.8396 + }, + { + "start": 18883.36, + "end": 18885.26, + "probability": 0.4379 + }, + { + "start": 18885.52, + "end": 18887.32, + "probability": 0.6685 + }, + { + "start": 18887.48, + "end": 18889.19, + "probability": 0.567 + }, + { + "start": 18890.02, + "end": 18890.84, + "probability": 0.6865 + }, + { + "start": 18900.46, + "end": 18902.26, + "probability": 0.0965 + }, + { + "start": 18903.06, + "end": 18905.4, + "probability": 0.0228 + }, + { + "start": 18909.04, + "end": 18911.82, + "probability": 0.102 + }, + { + "start": 18911.82, + "end": 18912.44, + "probability": 0.305 + }, + { + "start": 18913.12, + "end": 18915.48, + "probability": 0.441 + }, + { + "start": 18915.58, + "end": 18915.86, + "probability": 0.6582 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18997.0, + "end": 18997.0, + "probability": 0.0 + }, + { + "start": 18998.24, + "end": 18999.72, + "probability": 0.4337 + }, + { + "start": 19000.32, + "end": 19001.58, + "probability": 0.8328 + }, + { + "start": 19002.22, + "end": 19003.22, + "probability": 0.5217 + }, + { + "start": 19003.32, + "end": 19006.46, + "probability": 0.6895 + }, + { + "start": 19007.28, + "end": 19013.36, + "probability": 0.7666 + }, + { + "start": 19014.86, + "end": 19018.14, + "probability": 0.7153 + }, + { + "start": 19018.72, + "end": 19019.84, + "probability": 0.8214 + }, + { + "start": 19020.28, + "end": 19022.1, + "probability": 0.2768 + }, + { + "start": 19022.12, + "end": 19022.14, + "probability": 0.626 + }, + { + "start": 19022.25, + "end": 19022.32, + "probability": 0.2522 + }, + { + "start": 19022.32, + "end": 19027.08, + "probability": 0.5256 + }, + { + "start": 19027.64, + "end": 19029.62, + "probability": 0.8033 + }, + { + "start": 19037.41, + "end": 19041.42, + "probability": 0.6449 + }, + { + "start": 19041.44, + "end": 19044.34, + "probability": 0.9194 + }, + { + "start": 19044.52, + "end": 19045.7, + "probability": 0.3739 + }, + { + "start": 19045.9, + "end": 19048.08, + "probability": 0.5128 + }, + { + "start": 19048.14, + "end": 19049.56, + "probability": 0.6716 + }, + { + "start": 19049.8, + "end": 19051.7, + "probability": 0.8638 + }, + { + "start": 19052.6, + "end": 19053.2, + "probability": 0.2122 + }, + { + "start": 19053.62, + "end": 19054.18, + "probability": 0.6267 + }, + { + "start": 19058.73, + "end": 19060.01, + "probability": 0.0267 + }, + { + "start": 19060.82, + "end": 19065.37, + "probability": 0.0157 + }, + { + "start": 19066.82, + "end": 19066.82, + "probability": 0.0245 + }, + { + "start": 19066.82, + "end": 19069.5, + "probability": 0.1077 + }, + { + "start": 19072.2, + "end": 19076.42, + "probability": 0.8308 + }, + { + "start": 19076.6, + "end": 19082.24, + "probability": 0.8621 + }, + { + "start": 19082.96, + "end": 19083.44, + "probability": 0.4229 + }, + { + "start": 19083.66, + "end": 19084.44, + "probability": 0.0839 + }, + { + "start": 19085.4, + "end": 19085.94, + "probability": 0.3988 + }, + { + "start": 19086.16, + "end": 19086.16, + "probability": 0.562 + }, + { + "start": 19086.58, + "end": 19088.09, + "probability": 0.791 + }, + { + "start": 19088.44, + "end": 19090.38, + "probability": 0.162 + }, + { + "start": 19090.4, + "end": 19090.86, + "probability": 0.5447 + }, + { + "start": 19090.98, + "end": 19093.46, + "probability": 0.8133 + }, + { + "start": 19093.98, + "end": 19095.72, + "probability": 0.713 + }, + { + "start": 19096.0, + "end": 19097.24, + "probability": 0.5431 + }, + { + "start": 19097.9, + "end": 19103.54, + "probability": 0.684 + }, + { + "start": 19103.54, + "end": 19106.14, + "probability": 0.185 + }, + { + "start": 19106.5, + "end": 19109.08, + "probability": 0.4544 + }, + { + "start": 19109.38, + "end": 19111.16, + "probability": 0.8813 + }, + { + "start": 19111.22, + "end": 19111.86, + "probability": 0.3338 + }, + { + "start": 19112.5, + "end": 19114.18, + "probability": 0.7824 + }, + { + "start": 19114.84, + "end": 19115.68, + "probability": 0.3994 + }, + { + "start": 19115.72, + "end": 19116.6, + "probability": 0.7043 + }, + { + "start": 19118.56, + "end": 19119.46, + "probability": 0.0468 + }, + { + "start": 19119.46, + "end": 19120.7, + "probability": 0.0086 + }, + { + "start": 19123.26, + "end": 19126.82, + "probability": 0.0904 + }, + { + "start": 19127.9, + "end": 19128.52, + "probability": 0.0206 + }, + { + "start": 19131.2, + "end": 19131.32, + "probability": 0.0756 + }, + { + "start": 19133.59, + "end": 19133.94, + "probability": 0.2537 + }, + { + "start": 19133.94, + "end": 19135.18, + "probability": 0.3546 + }, + { + "start": 19135.8, + "end": 19138.64, + "probability": 0.8014 + }, + { + "start": 19138.96, + "end": 19142.64, + "probability": 0.6528 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19254.0, + "end": 19254.0, + "probability": 0.0 + }, + { + "start": 19255.05, + "end": 19256.34, + "probability": 0.582 + }, + { + "start": 19257.64, + "end": 19260.62, + "probability": 0.9819 + }, + { + "start": 19260.62, + "end": 19264.42, + "probability": 0.56 + }, + { + "start": 19265.04, + "end": 19266.38, + "probability": 0.8458 + }, + { + "start": 19267.28, + "end": 19269.44, + "probability": 0.9878 + }, + { + "start": 19270.14, + "end": 19273.02, + "probability": 0.9784 + }, + { + "start": 19273.02, + "end": 19275.3, + "probability": 0.8551 + }, + { + "start": 19276.42, + "end": 19279.98, + "probability": 0.9746 + }, + { + "start": 19279.98, + "end": 19284.8, + "probability": 0.9928 + }, + { + "start": 19285.36, + "end": 19287.2, + "probability": 0.5906 + }, + { + "start": 19287.38, + "end": 19288.32, + "probability": 0.4625 + }, + { + "start": 19288.5, + "end": 19292.56, + "probability": 0.9565 + }, + { + "start": 19292.66, + "end": 19297.56, + "probability": 0.984 + }, + { + "start": 19298.4, + "end": 19304.0, + "probability": 0.7507 + }, + { + "start": 19304.18, + "end": 19307.22, + "probability": 0.7583 + }, + { + "start": 19307.54, + "end": 19310.2, + "probability": 0.7994 + }, + { + "start": 19310.38, + "end": 19313.82, + "probability": 0.812 + }, + { + "start": 19313.82, + "end": 19317.92, + "probability": 0.9953 + }, + { + "start": 19318.58, + "end": 19319.26, + "probability": 0.776 + }, + { + "start": 19319.46, + "end": 19321.62, + "probability": 0.8643 + }, + { + "start": 19321.62, + "end": 19325.12, + "probability": 0.8276 + }, + { + "start": 19325.58, + "end": 19329.58, + "probability": 0.9554 + }, + { + "start": 19329.58, + "end": 19333.44, + "probability": 0.9978 + }, + { + "start": 19333.92, + "end": 19337.86, + "probability": 0.9942 + }, + { + "start": 19338.7, + "end": 19343.62, + "probability": 0.9748 + }, + { + "start": 19344.1, + "end": 19349.06, + "probability": 0.7807 + }, + { + "start": 19349.44, + "end": 19352.7, + "probability": 0.7258 + }, + { + "start": 19352.82, + "end": 19354.57, + "probability": 0.7956 + }, + { + "start": 19354.94, + "end": 19358.92, + "probability": 0.9841 + }, + { + "start": 19358.92, + "end": 19362.44, + "probability": 0.7861 + }, + { + "start": 19362.82, + "end": 19366.46, + "probability": 0.9058 + }, + { + "start": 19367.76, + "end": 19370.46, + "probability": 0.8577 + }, + { + "start": 19370.58, + "end": 19371.56, + "probability": 0.8409 + }, + { + "start": 19372.12, + "end": 19374.28, + "probability": 0.9633 + }, + { + "start": 19374.46, + "end": 19374.92, + "probability": 0.8612 + }, + { + "start": 19375.18, + "end": 19377.18, + "probability": 0.7835 + }, + { + "start": 19377.32, + "end": 19378.36, + "probability": 0.936 + }, + { + "start": 19378.64, + "end": 19381.46, + "probability": 0.7846 + }, + { + "start": 19383.0, + "end": 19384.04, + "probability": 0.7376 + }, + { + "start": 19384.7, + "end": 19387.4, + "probability": 0.8644 + }, + { + "start": 19388.12, + "end": 19391.16, + "probability": 0.87 + }, + { + "start": 19392.04, + "end": 19392.98, + "probability": 0.7408 + }, + { + "start": 19393.7, + "end": 19395.38, + "probability": 0.984 + }, + { + "start": 19396.14, + "end": 19396.72, + "probability": 0.8539 + }, + { + "start": 19398.65, + "end": 19401.2, + "probability": 0.8154 + }, + { + "start": 19417.94, + "end": 19419.4, + "probability": 0.6703 + }, + { + "start": 19419.5, + "end": 19420.8, + "probability": 0.6105 + }, + { + "start": 19423.08, + "end": 19425.06, + "probability": 0.679 + }, + { + "start": 19426.5, + "end": 19427.73, + "probability": 0.8072 + }, + { + "start": 19428.46, + "end": 19433.4, + "probability": 0.9707 + }, + { + "start": 19433.46, + "end": 19437.58, + "probability": 0.9876 + }, + { + "start": 19438.82, + "end": 19441.96, + "probability": 0.8918 + }, + { + "start": 19443.16, + "end": 19451.74, + "probability": 0.976 + }, + { + "start": 19453.96, + "end": 19456.48, + "probability": 0.9712 + }, + { + "start": 19457.38, + "end": 19458.44, + "probability": 0.9733 + }, + { + "start": 19459.04, + "end": 19465.0, + "probability": 0.9948 + }, + { + "start": 19465.9, + "end": 19469.64, + "probability": 0.9916 + }, + { + "start": 19470.2, + "end": 19475.98, + "probability": 0.9701 + }, + { + "start": 19476.12, + "end": 19477.38, + "probability": 0.9683 + }, + { + "start": 19477.84, + "end": 19479.54, + "probability": 0.9943 + }, + { + "start": 19480.5, + "end": 19483.25, + "probability": 0.9941 + }, + { + "start": 19483.28, + "end": 19487.68, + "probability": 0.6222 + }, + { + "start": 19488.36, + "end": 19491.46, + "probability": 0.8556 + }, + { + "start": 19493.08, + "end": 19499.26, + "probability": 0.9285 + }, + { + "start": 19499.98, + "end": 19506.46, + "probability": 0.9875 + }, + { + "start": 19507.02, + "end": 19510.4, + "probability": 0.9934 + }, + { + "start": 19511.14, + "end": 19513.92, + "probability": 0.895 + }, + { + "start": 19514.62, + "end": 19520.0, + "probability": 0.9819 + }, + { + "start": 19521.14, + "end": 19522.9, + "probability": 0.9443 + }, + { + "start": 19523.96, + "end": 19525.64, + "probability": 0.4196 + }, + { + "start": 19527.48, + "end": 19531.52, + "probability": 0.9507 + }, + { + "start": 19531.52, + "end": 19534.42, + "probability": 0.9939 + }, + { + "start": 19535.12, + "end": 19537.1, + "probability": 0.9938 + }, + { + "start": 19537.54, + "end": 19538.66, + "probability": 0.8164 + }, + { + "start": 19539.14, + "end": 19544.98, + "probability": 0.9869 + }, + { + "start": 19545.62, + "end": 19548.64, + "probability": 0.9911 + }, + { + "start": 19550.16, + "end": 19551.22, + "probability": 0.5821 + }, + { + "start": 19551.66, + "end": 19552.8, + "probability": 0.648 + }, + { + "start": 19553.28, + "end": 19558.48, + "probability": 0.6648 + }, + { + "start": 19558.98, + "end": 19562.78, + "probability": 0.8802 + }, + { + "start": 19563.12, + "end": 19564.6, + "probability": 0.9233 + }, + { + "start": 19565.14, + "end": 19569.48, + "probability": 0.7479 + }, + { + "start": 19570.0, + "end": 19570.34, + "probability": 0.6107 + }, + { + "start": 19570.92, + "end": 19571.6, + "probability": 0.9126 + }, + { + "start": 19572.12, + "end": 19573.24, + "probability": 0.9784 + }, + { + "start": 19573.72, + "end": 19577.44, + "probability": 0.981 + }, + { + "start": 19577.54, + "end": 19578.68, + "probability": 0.5144 + }, + { + "start": 19578.78, + "end": 19580.2, + "probability": 0.8377 + }, + { + "start": 19580.26, + "end": 19582.82, + "probability": 0.7206 + }, + { + "start": 19583.62, + "end": 19584.56, + "probability": 0.5006 + }, + { + "start": 19585.24, + "end": 19587.36, + "probability": 0.7918 + }, + { + "start": 19589.0, + "end": 19590.32, + "probability": 0.9255 + }, + { + "start": 19590.82, + "end": 19591.5, + "probability": 0.8881 + }, + { + "start": 19591.62, + "end": 19592.46, + "probability": 0.9253 + }, + { + "start": 19593.3, + "end": 19594.72, + "probability": 0.7248 + }, + { + "start": 19596.14, + "end": 19596.98, + "probability": 0.4244 + }, + { + "start": 19597.52, + "end": 19599.18, + "probability": 0.9528 + }, + { + "start": 19600.3, + "end": 19601.14, + "probability": 0.8402 + }, + { + "start": 19601.68, + "end": 19603.38, + "probability": 0.8894 + }, + { + "start": 19604.26, + "end": 19606.6, + "probability": 0.8645 + }, + { + "start": 19607.78, + "end": 19610.1, + "probability": 0.9934 + }, + { + "start": 19611.04, + "end": 19614.1, + "probability": 0.7048 + }, + { + "start": 19614.84, + "end": 19617.78, + "probability": 0.9895 + }, + { + "start": 19618.76, + "end": 19621.76, + "probability": 0.8824 + }, + { + "start": 19622.98, + "end": 19623.58, + "probability": 0.7266 + }, + { + "start": 19623.6, + "end": 19625.32, + "probability": 0.9823 + }, + { + "start": 19627.02, + "end": 19628.06, + "probability": 0.7271 + }, + { + "start": 19647.66, + "end": 19650.1, + "probability": 0.2723 + }, + { + "start": 19650.24, + "end": 19651.22, + "probability": 0.9727 + }, + { + "start": 19652.3, + "end": 19653.44, + "probability": 0.6137 + }, + { + "start": 19654.6, + "end": 19656.22, + "probability": 0.8281 + }, + { + "start": 19657.9, + "end": 19661.68, + "probability": 0.6262 + }, + { + "start": 19663.16, + "end": 19665.78, + "probability": 0.9601 + }, + { + "start": 19667.22, + "end": 19669.32, + "probability": 0.9966 + }, + { + "start": 19669.88, + "end": 19670.38, + "probability": 0.7101 + }, + { + "start": 19671.62, + "end": 19675.86, + "probability": 0.9414 + }, + { + "start": 19676.02, + "end": 19676.66, + "probability": 0.71 + }, + { + "start": 19677.1, + "end": 19682.54, + "probability": 0.9946 + }, + { + "start": 19683.32, + "end": 19686.2, + "probability": 0.9707 + }, + { + "start": 19686.72, + "end": 19690.32, + "probability": 0.9476 + }, + { + "start": 19692.14, + "end": 19692.5, + "probability": 0.6588 + }, + { + "start": 19692.84, + "end": 19695.26, + "probability": 0.9918 + }, + { + "start": 19695.26, + "end": 19700.34, + "probability": 0.7424 + }, + { + "start": 19700.4, + "end": 19701.38, + "probability": 0.7166 + }, + { + "start": 19702.52, + "end": 19707.82, + "probability": 0.9893 + }, + { + "start": 19707.94, + "end": 19708.48, + "probability": 0.9863 + }, + { + "start": 19709.04, + "end": 19710.94, + "probability": 0.923 + }, + { + "start": 19711.08, + "end": 19711.84, + "probability": 0.2979 + }, + { + "start": 19711.94, + "end": 19712.88, + "probability": 0.7478 + }, + { + "start": 19713.5, + "end": 19715.48, + "probability": 0.9935 + }, + { + "start": 19716.34, + "end": 19721.68, + "probability": 0.7312 + }, + { + "start": 19721.8, + "end": 19722.2, + "probability": 0.8766 + }, + { + "start": 19722.3, + "end": 19722.82, + "probability": 0.8214 + }, + { + "start": 19723.42, + "end": 19726.38, + "probability": 0.8367 + }, + { + "start": 19727.18, + "end": 19728.18, + "probability": 0.9507 + }, + { + "start": 19728.34, + "end": 19729.34, + "probability": 0.8794 + }, + { + "start": 19730.24, + "end": 19732.0, + "probability": 0.9219 + }, + { + "start": 19732.5, + "end": 19734.42, + "probability": 0.6027 + }, + { + "start": 19735.12, + "end": 19736.38, + "probability": 0.7734 + }, + { + "start": 19736.72, + "end": 19741.82, + "probability": 0.9471 + }, + { + "start": 19742.84, + "end": 19746.92, + "probability": 0.9164 + }, + { + "start": 19747.38, + "end": 19747.92, + "probability": 0.571 + }, + { + "start": 19748.06, + "end": 19751.32, + "probability": 0.9844 + }, + { + "start": 19751.76, + "end": 19755.36, + "probability": 0.9985 + }, + { + "start": 19755.98, + "end": 19759.5, + "probability": 0.9582 + }, + { + "start": 19760.02, + "end": 19767.1, + "probability": 0.9934 + }, + { + "start": 19767.2, + "end": 19767.52, + "probability": 0.3779 + }, + { + "start": 19767.62, + "end": 19768.34, + "probability": 0.7419 + }, + { + "start": 19768.78, + "end": 19770.62, + "probability": 0.7481 + }, + { + "start": 19770.7, + "end": 19774.68, + "probability": 0.6737 + }, + { + "start": 19775.58, + "end": 19778.74, + "probability": 0.9774 + }, + { + "start": 19778.9, + "end": 19779.96, + "probability": 0.9232 + }, + { + "start": 19780.6, + "end": 19782.4, + "probability": 0.9912 + }, + { + "start": 19782.46, + "end": 19783.18, + "probability": 0.9854 + }, + { + "start": 19784.3, + "end": 19786.84, + "probability": 0.9468 + }, + { + "start": 19787.44, + "end": 19790.98, + "probability": 0.9634 + }, + { + "start": 19791.2, + "end": 19792.88, + "probability": 0.8517 + }, + { + "start": 19793.7, + "end": 19795.86, + "probability": 0.9553 + }, + { + "start": 19796.44, + "end": 19797.07, + "probability": 0.9307 + }, + { + "start": 19797.34, + "end": 19800.26, + "probability": 0.9763 + }, + { + "start": 19800.4, + "end": 19801.2, + "probability": 0.7748 + }, + { + "start": 19801.6, + "end": 19802.72, + "probability": 0.9386 + }, + { + "start": 19803.36, + "end": 19805.58, + "probability": 0.9629 + }, + { + "start": 19806.04, + "end": 19808.34, + "probability": 0.9932 + }, + { + "start": 19808.38, + "end": 19808.92, + "probability": 0.532 + }, + { + "start": 19809.02, + "end": 19809.36, + "probability": 0.3713 + }, + { + "start": 19809.44, + "end": 19811.24, + "probability": 0.5359 + }, + { + "start": 19811.6, + "end": 19812.52, + "probability": 0.8814 + }, + { + "start": 19813.2, + "end": 19818.94, + "probability": 0.9811 + }, + { + "start": 19819.38, + "end": 19821.94, + "probability": 0.9904 + }, + { + "start": 19821.99, + "end": 19825.6, + "probability": 0.9888 + }, + { + "start": 19826.04, + "end": 19828.56, + "probability": 0.749 + }, + { + "start": 19828.94, + "end": 19832.04, + "probability": 0.9546 + }, + { + "start": 19832.28, + "end": 19835.1, + "probability": 0.9347 + }, + { + "start": 19835.42, + "end": 19838.38, + "probability": 0.967 + }, + { + "start": 19838.68, + "end": 19839.24, + "probability": 0.8104 + }, + { + "start": 19839.46, + "end": 19840.68, + "probability": 0.9267 + }, + { + "start": 19841.32, + "end": 19842.98, + "probability": 0.8476 + }, + { + "start": 19843.34, + "end": 19845.9, + "probability": 0.9292 + }, + { + "start": 19846.48, + "end": 19848.52, + "probability": 0.9368 + }, + { + "start": 19849.14, + "end": 19849.72, + "probability": 0.4091 + }, + { + "start": 19850.44, + "end": 19853.98, + "probability": 0.5898 + }, + { + "start": 19854.94, + "end": 19855.5, + "probability": 0.7485 + }, + { + "start": 19856.08, + "end": 19857.03, + "probability": 0.7909 + }, + { + "start": 19858.8, + "end": 19859.68, + "probability": 0.5605 + }, + { + "start": 19859.7, + "end": 19860.86, + "probability": 0.641 + }, + { + "start": 19861.34, + "end": 19863.8, + "probability": 0.8423 + }, + { + "start": 19864.74, + "end": 19865.68, + "probability": 0.2126 + }, + { + "start": 19866.26, + "end": 19874.46, + "probability": 0.017 + }, + { + "start": 19879.52, + "end": 19881.16, + "probability": 0.0444 + }, + { + "start": 19881.16, + "end": 19881.74, + "probability": 0.0761 + }, + { + "start": 19881.74, + "end": 19881.74, + "probability": 0.2853 + }, + { + "start": 19881.74, + "end": 19884.18, + "probability": 0.3106 + }, + { + "start": 19884.62, + "end": 19890.04, + "probability": 0.9757 + }, + { + "start": 19891.02, + "end": 19895.58, + "probability": 0.9745 + }, + { + "start": 19895.76, + "end": 19897.4, + "probability": 0.6674 + }, + { + "start": 19897.9, + "end": 19898.68, + "probability": 0.7097 + }, + { + "start": 19898.86, + "end": 19900.02, + "probability": 0.889 + }, + { + "start": 19900.12, + "end": 19902.6, + "probability": 0.804 + }, + { + "start": 19902.64, + "end": 19903.1, + "probability": 0.9684 + }, + { + "start": 19910.58, + "end": 19911.06, + "probability": 0.3046 + }, + { + "start": 19912.08, + "end": 19915.36, + "probability": 0.8133 + }, + { + "start": 19916.04, + "end": 19919.92, + "probability": 0.9137 + }, + { + "start": 19919.92, + "end": 19924.5, + "probability": 0.6671 + }, + { + "start": 19924.5, + "end": 19928.2, + "probability": 0.9433 + }, + { + "start": 19929.74, + "end": 19930.62, + "probability": 0.7109 + }, + { + "start": 19930.84, + "end": 19935.08, + "probability": 0.991 + }, + { + "start": 19935.08, + "end": 19943.04, + "probability": 0.9723 + }, + { + "start": 19943.54, + "end": 19944.18, + "probability": 0.8347 + }, + { + "start": 19944.36, + "end": 19947.68, + "probability": 0.9567 + }, + { + "start": 19947.7, + "end": 19948.83, + "probability": 0.7077 + }, + { + "start": 19949.32, + "end": 19951.12, + "probability": 0.7688 + }, + { + "start": 19951.66, + "end": 19953.7, + "probability": 0.7281 + }, + { + "start": 19954.34, + "end": 19959.84, + "probability": 0.8479 + }, + { + "start": 19960.3, + "end": 19961.64, + "probability": 0.9805 + }, + { + "start": 19961.82, + "end": 19963.78, + "probability": 0.6738 + }, + { + "start": 19963.84, + "end": 19967.04, + "probability": 0.9753 + }, + { + "start": 19967.62, + "end": 19968.2, + "probability": 0.8664 + }, + { + "start": 19968.32, + "end": 19971.92, + "probability": 0.9263 + }, + { + "start": 19972.62, + "end": 19977.34, + "probability": 0.9703 + }, + { + "start": 19977.48, + "end": 19978.2, + "probability": 0.6907 + }, + { + "start": 19979.48, + "end": 19987.44, + "probability": 0.8815 + }, + { + "start": 19987.84, + "end": 19989.18, + "probability": 0.8279 + }, + { + "start": 19989.44, + "end": 19990.45, + "probability": 0.8524 + }, + { + "start": 19990.84, + "end": 19993.36, + "probability": 0.7521 + }, + { + "start": 19993.36, + "end": 19996.24, + "probability": 0.9884 + }, + { + "start": 19996.34, + "end": 19999.52, + "probability": 0.9863 + }, + { + "start": 20000.14, + "end": 20002.8, + "probability": 0.9966 + }, + { + "start": 20003.16, + "end": 20009.1, + "probability": 0.8463 + }, + { + "start": 20009.48, + "end": 20012.0, + "probability": 0.9136 + }, + { + "start": 20012.44, + "end": 20017.14, + "probability": 0.9866 + }, + { + "start": 20017.46, + "end": 20022.12, + "probability": 0.9976 + }, + { + "start": 20022.18, + "end": 20028.52, + "probability": 0.9855 + }, + { + "start": 20029.48, + "end": 20034.52, + "probability": 0.9798 + }, + { + "start": 20034.68, + "end": 20038.74, + "probability": 0.9988 + }, + { + "start": 20038.92, + "end": 20040.72, + "probability": 0.998 + }, + { + "start": 20041.44, + "end": 20042.0, + "probability": 0.7526 + }, + { + "start": 20042.18, + "end": 20044.64, + "probability": 0.9772 + }, + { + "start": 20044.64, + "end": 20048.36, + "probability": 0.8618 + }, + { + "start": 20048.46, + "end": 20049.98, + "probability": 0.8971 + }, + { + "start": 20050.48, + "end": 20055.5, + "probability": 0.9735 + }, + { + "start": 20055.5, + "end": 20058.92, + "probability": 0.9941 + }, + { + "start": 20059.56, + "end": 20061.18, + "probability": 0.8169 + }, + { + "start": 20061.3, + "end": 20064.5, + "probability": 0.9175 + }, + { + "start": 20064.66, + "end": 20065.7, + "probability": 0.9158 + }, + { + "start": 20066.22, + "end": 20066.81, + "probability": 0.9977 + }, + { + "start": 20067.74, + "end": 20070.92, + "probability": 0.9043 + }, + { + "start": 20070.92, + "end": 20075.88, + "probability": 0.7462 + }, + { + "start": 20076.34, + "end": 20078.5, + "probability": 0.9784 + }, + { + "start": 20078.68, + "end": 20080.36, + "probability": 0.9098 + }, + { + "start": 20080.58, + "end": 20082.52, + "probability": 0.9957 + }, + { + "start": 20082.8, + "end": 20083.16, + "probability": 0.8605 + }, + { + "start": 20083.72, + "end": 20084.88, + "probability": 0.6511 + }, + { + "start": 20085.04, + "end": 20086.76, + "probability": 0.9124 + }, + { + "start": 20087.04, + "end": 20090.16, + "probability": 0.9084 + }, + { + "start": 20091.08, + "end": 20093.44, + "probability": 0.9146 + }, + { + "start": 20094.22, + "end": 20096.54, + "probability": 0.9692 + }, + { + "start": 20100.56, + "end": 20101.38, + "probability": 0.7689 + }, + { + "start": 20101.42, + "end": 20102.24, + "probability": 0.3248 + }, + { + "start": 20102.24, + "end": 20102.24, + "probability": 0.6518 + }, + { + "start": 20102.24, + "end": 20103.3, + "probability": 0.6532 + }, + { + "start": 20104.44, + "end": 20105.1, + "probability": 0.6639 + }, + { + "start": 20105.78, + "end": 20107.38, + "probability": 0.8713 + }, + { + "start": 20107.94, + "end": 20112.28, + "probability": 0.9751 + }, + { + "start": 20112.38, + "end": 20112.88, + "probability": 0.9543 + }, + { + "start": 20113.94, + "end": 20115.86, + "probability": 0.7336 + }, + { + "start": 20116.48, + "end": 20122.84, + "probability": 0.6199 + }, + { + "start": 20123.04, + "end": 20124.36, + "probability": 0.7737 + }, + { + "start": 20124.52, + "end": 20125.52, + "probability": 0.94 + }, + { + "start": 20126.22, + "end": 20127.86, + "probability": 0.828 + }, + { + "start": 20128.44, + "end": 20128.92, + "probability": 0.7896 + }, + { + "start": 20128.96, + "end": 20129.64, + "probability": 0.7475 + }, + { + "start": 20130.96, + "end": 20133.3, + "probability": 0.0862 + }, + { + "start": 20135.3, + "end": 20139.38, + "probability": 0.0382 + }, + { + "start": 20139.38, + "end": 20143.46, + "probability": 0.0332 + }, + { + "start": 20143.46, + "end": 20145.98, + "probability": 0.9911 + }, + { + "start": 20147.02, + "end": 20150.24, + "probability": 0.8205 + }, + { + "start": 20150.5, + "end": 20157.56, + "probability": 0.9576 + }, + { + "start": 20158.38, + "end": 20161.15, + "probability": 0.9873 + }, + { + "start": 20162.12, + "end": 20162.96, + "probability": 0.2451 + }, + { + "start": 20163.5, + "end": 20167.12, + "probability": 0.711 + }, + { + "start": 20167.5, + "end": 20171.98, + "probability": 0.9557 + }, + { + "start": 20172.62, + "end": 20173.76, + "probability": 0.9856 + }, + { + "start": 20175.7, + "end": 20178.88, + "probability": 0.932 + }, + { + "start": 20192.0, + "end": 20193.22, + "probability": 0.6032 + }, + { + "start": 20194.86, + "end": 20196.88, + "probability": 0.9211 + }, + { + "start": 20198.26, + "end": 20206.6, + "probability": 0.9864 + }, + { + "start": 20207.16, + "end": 20208.78, + "probability": 0.8792 + }, + { + "start": 20209.88, + "end": 20211.8, + "probability": 0.8384 + }, + { + "start": 20213.26, + "end": 20215.64, + "probability": 0.6674 + }, + { + "start": 20216.44, + "end": 20217.04, + "probability": 0.0601 + }, + { + "start": 20217.5, + "end": 20221.6, + "probability": 0.9839 + }, + { + "start": 20221.64, + "end": 20223.76, + "probability": 0.9763 + }, + { + "start": 20223.78, + "end": 20226.72, + "probability": 0.7166 + }, + { + "start": 20227.78, + "end": 20234.68, + "probability": 0.9632 + }, + { + "start": 20235.94, + "end": 20238.44, + "probability": 0.9054 + }, + { + "start": 20239.94, + "end": 20242.84, + "probability": 0.9365 + }, + { + "start": 20242.88, + "end": 20245.36, + "probability": 0.999 + }, + { + "start": 20246.16, + "end": 20251.84, + "probability": 0.9875 + }, + { + "start": 20253.24, + "end": 20253.66, + "probability": 0.4733 + }, + { + "start": 20254.4, + "end": 20257.8, + "probability": 0.979 + }, + { + "start": 20258.04, + "end": 20261.8, + "probability": 0.887 + }, + { + "start": 20262.72, + "end": 20265.16, + "probability": 0.9136 + }, + { + "start": 20265.3, + "end": 20268.18, + "probability": 0.8024 + }, + { + "start": 20268.72, + "end": 20269.82, + "probability": 0.5993 + }, + { + "start": 20270.94, + "end": 20273.24, + "probability": 0.9963 + }, + { + "start": 20274.2, + "end": 20276.52, + "probability": 0.7402 + }, + { + "start": 20277.56, + "end": 20280.26, + "probability": 0.9975 + }, + { + "start": 20280.82, + "end": 20284.86, + "probability": 0.9945 + }, + { + "start": 20285.52, + "end": 20290.68, + "probability": 0.707 + }, + { + "start": 20291.88, + "end": 20297.72, + "probability": 0.9827 + }, + { + "start": 20298.72, + "end": 20302.06, + "probability": 0.9969 + }, + { + "start": 20303.42, + "end": 20308.26, + "probability": 0.9798 + }, + { + "start": 20308.5, + "end": 20313.38, + "probability": 0.9988 + }, + { + "start": 20314.1, + "end": 20316.64, + "probability": 0.9825 + }, + { + "start": 20318.78, + "end": 20324.98, + "probability": 0.9889 + }, + { + "start": 20326.4, + "end": 20331.76, + "probability": 0.9878 + }, + { + "start": 20334.94, + "end": 20336.88, + "probability": 0.7767 + }, + { + "start": 20338.32, + "end": 20340.14, + "probability": 0.844 + }, + { + "start": 20341.32, + "end": 20346.02, + "probability": 0.9932 + }, + { + "start": 20346.56, + "end": 20348.04, + "probability": 0.8723 + }, + { + "start": 20349.18, + "end": 20352.98, + "probability": 0.9348 + }, + { + "start": 20354.04, + "end": 20359.06, + "probability": 0.9708 + }, + { + "start": 20360.32, + "end": 20361.94, + "probability": 0.6649 + }, + { + "start": 20362.02, + "end": 20364.6, + "probability": 0.9845 + }, + { + "start": 20365.36, + "end": 20370.14, + "probability": 0.9952 + }, + { + "start": 20370.8, + "end": 20376.62, + "probability": 0.9798 + }, + { + "start": 20377.44, + "end": 20383.82, + "probability": 0.9752 + }, + { + "start": 20384.88, + "end": 20389.1, + "probability": 0.9963 + }, + { + "start": 20389.44, + "end": 20394.12, + "probability": 0.9658 + }, + { + "start": 20394.7, + "end": 20395.06, + "probability": 0.7757 + }, + { + "start": 20395.4, + "end": 20397.02, + "probability": 0.7663 + }, + { + "start": 20397.1, + "end": 20400.08, + "probability": 0.917 + }, + { + "start": 20401.66, + "end": 20402.8, + "probability": 0.1895 + }, + { + "start": 20403.7, + "end": 20407.28, + "probability": 0.6724 + }, + { + "start": 20408.06, + "end": 20408.78, + "probability": 0.7191 + }, + { + "start": 20409.98, + "end": 20412.88, + "probability": 0.7725 + }, + { + "start": 20413.56, + "end": 20416.3, + "probability": 0.9264 + }, + { + "start": 20416.8, + "end": 20418.62, + "probability": 0.7172 + }, + { + "start": 20419.93, + "end": 20422.3, + "probability": 0.0366 + }, + { + "start": 20434.36, + "end": 20434.36, + "probability": 0.0 + }, + { + "start": 20434.36, + "end": 20434.8, + "probability": 0.1195 + }, + { + "start": 20434.8, + "end": 20434.8, + "probability": 0.5638 + }, + { + "start": 20434.8, + "end": 20434.8, + "probability": 0.1185 + }, + { + "start": 20434.8, + "end": 20436.84, + "probability": 0.7258 + }, + { + "start": 20436.98, + "end": 20438.02, + "probability": 0.9028 + }, + { + "start": 20438.24, + "end": 20439.18, + "probability": 0.8478 + }, + { + "start": 20440.14, + "end": 20444.38, + "probability": 0.9841 + }, + { + "start": 20444.46, + "end": 20444.84, + "probability": 0.9412 + }, + { + "start": 20445.6, + "end": 20446.5, + "probability": 0.6084 + }, + { + "start": 20448.71, + "end": 20452.54, + "probability": 0.7644 + }, + { + "start": 20453.34, + "end": 20457.24, + "probability": 0.7384 + }, + { + "start": 20457.34, + "end": 20458.74, + "probability": 0.5487 + }, + { + "start": 20458.98, + "end": 20459.82, + "probability": 0.8086 + }, + { + "start": 20460.38, + "end": 20463.32, + "probability": 0.8246 + }, + { + "start": 20476.44, + "end": 20478.66, + "probability": 0.6401 + }, + { + "start": 20480.54, + "end": 20482.24, + "probability": 0.7559 + }, + { + "start": 20484.52, + "end": 20488.34, + "probability": 0.7291 + }, + { + "start": 20489.44, + "end": 20492.12, + "probability": 0.9663 + }, + { + "start": 20492.6, + "end": 20495.2, + "probability": 0.8218 + }, + { + "start": 20496.38, + "end": 20501.42, + "probability": 0.9647 + }, + { + "start": 20501.42, + "end": 20507.22, + "probability": 0.9962 + }, + { + "start": 20508.3, + "end": 20508.5, + "probability": 0.3621 + }, + { + "start": 20508.78, + "end": 20511.36, + "probability": 0.9631 + }, + { + "start": 20511.48, + "end": 20515.1, + "probability": 0.9161 + }, + { + "start": 20515.96, + "end": 20519.08, + "probability": 0.9965 + }, + { + "start": 20519.7, + "end": 20526.0, + "probability": 0.9543 + }, + { + "start": 20526.76, + "end": 20528.96, + "probability": 0.8445 + }, + { + "start": 20530.18, + "end": 20531.44, + "probability": 0.8415 + }, + { + "start": 20531.6, + "end": 20531.94, + "probability": 0.8818 + }, + { + "start": 20532.0, + "end": 20536.6, + "probability": 0.9708 + }, + { + "start": 20537.58, + "end": 20539.28, + "probability": 0.7647 + }, + { + "start": 20539.42, + "end": 20543.0, + "probability": 0.8235 + }, + { + "start": 20544.02, + "end": 20546.44, + "probability": 0.9302 + }, + { + "start": 20547.32, + "end": 20551.68, + "probability": 0.9376 + }, + { + "start": 20552.3, + "end": 20555.86, + "probability": 0.9241 + }, + { + "start": 20556.7, + "end": 20562.42, + "probability": 0.9713 + }, + { + "start": 20563.92, + "end": 20565.62, + "probability": 0.4744 + }, + { + "start": 20566.54, + "end": 20568.71, + "probability": 0.6299 + }, + { + "start": 20570.0, + "end": 20572.44, + "probability": 0.9615 + }, + { + "start": 20573.56, + "end": 20580.62, + "probability": 0.9758 + }, + { + "start": 20580.65, + "end": 20586.18, + "probability": 0.9902 + }, + { + "start": 20587.16, + "end": 20590.72, + "probability": 0.7594 + }, + { + "start": 20590.94, + "end": 20593.72, + "probability": 0.9897 + }, + { + "start": 20594.94, + "end": 20598.32, + "probability": 0.8219 + }, + { + "start": 20598.48, + "end": 20602.06, + "probability": 0.9937 + }, + { + "start": 20602.46, + "end": 20603.1, + "probability": 0.6966 + }, + { + "start": 20603.18, + "end": 20604.46, + "probability": 0.8933 + }, + { + "start": 20604.62, + "end": 20605.36, + "probability": 0.5326 + }, + { + "start": 20606.22, + "end": 20608.56, + "probability": 0.895 + }, + { + "start": 20609.66, + "end": 20611.26, + "probability": 0.5452 + }, + { + "start": 20611.32, + "end": 20612.5, + "probability": 0.909 + }, + { + "start": 20612.54, + "end": 20617.53, + "probability": 0.9836 + }, + { + "start": 20617.74, + "end": 20618.74, + "probability": 0.9003 + }, + { + "start": 20619.12, + "end": 20621.08, + "probability": 0.9873 + }, + { + "start": 20621.16, + "end": 20622.97, + "probability": 0.9665 + }, + { + "start": 20623.48, + "end": 20625.44, + "probability": 0.9753 + }, + { + "start": 20627.26, + "end": 20629.86, + "probability": 0.8578 + }, + { + "start": 20629.86, + "end": 20633.04, + "probability": 0.9906 + }, + { + "start": 20633.7, + "end": 20637.58, + "probability": 0.99 + }, + { + "start": 20638.7, + "end": 20639.08, + "probability": 0.7366 + }, + { + "start": 20639.16, + "end": 20642.4, + "probability": 0.9506 + }, + { + "start": 20642.72, + "end": 20645.08, + "probability": 0.9961 + }, + { + "start": 20645.62, + "end": 20649.8, + "probability": 0.9885 + }, + { + "start": 20652.8, + "end": 20656.06, + "probability": 0.7456 + }, + { + "start": 20656.06, + "end": 20658.64, + "probability": 0.9751 + }, + { + "start": 20661.4, + "end": 20661.46, + "probability": 0.0413 + }, + { + "start": 20661.54, + "end": 20663.4, + "probability": 0.9597 + }, + { + "start": 20665.22, + "end": 20665.64, + "probability": 0.5842 + }, + { + "start": 20665.68, + "end": 20666.92, + "probability": 0.8014 + }, + { + "start": 20667.12, + "end": 20667.68, + "probability": 0.8213 + }, + { + "start": 20667.76, + "end": 20670.66, + "probability": 0.9827 + }, + { + "start": 20672.64, + "end": 20673.32, + "probability": 0.1596 + }, + { + "start": 20673.32, + "end": 20676.8, + "probability": 0.9703 + }, + { + "start": 20677.82, + "end": 20679.04, + "probability": 0.5551 + }, + { + "start": 20680.16, + "end": 20682.66, + "probability": 0.7489 + }, + { + "start": 20682.94, + "end": 20683.98, + "probability": 0.9958 + }, + { + "start": 20684.5, + "end": 20685.02, + "probability": 0.9155 + }, + { + "start": 20685.16, + "end": 20685.72, + "probability": 0.6429 + }, + { + "start": 20685.84, + "end": 20687.06, + "probability": 0.8169 + }, + { + "start": 20687.22, + "end": 20687.74, + "probability": 0.4827 + }, + { + "start": 20688.76, + "end": 20690.86, + "probability": 0.8376 + }, + { + "start": 20691.28, + "end": 20694.94, + "probability": 0.9169 + }, + { + "start": 20695.44, + "end": 20695.6, + "probability": 0.4427 + }, + { + "start": 20695.74, + "end": 20697.94, + "probability": 0.9875 + }, + { + "start": 20697.94, + "end": 20700.42, + "probability": 0.9978 + }, + { + "start": 20701.1, + "end": 20705.54, + "probability": 0.9439 + }, + { + "start": 20705.7, + "end": 20709.5, + "probability": 0.9958 + }, + { + "start": 20709.8, + "end": 20710.44, + "probability": 0.7097 + }, + { + "start": 20711.1, + "end": 20711.56, + "probability": 0.8894 + }, + { + "start": 20711.6, + "end": 20714.02, + "probability": 0.9161 + }, + { + "start": 20714.06, + "end": 20714.96, + "probability": 0.7323 + }, + { + "start": 20715.42, + "end": 20718.3, + "probability": 0.8405 + }, + { + "start": 20718.3, + "end": 20722.19, + "probability": 0.7642 + }, + { + "start": 20722.72, + "end": 20726.36, + "probability": 0.8178 + }, + { + "start": 20727.14, + "end": 20729.34, + "probability": 0.9507 + }, + { + "start": 20730.2, + "end": 20731.12, + "probability": 0.5527 + }, + { + "start": 20731.34, + "end": 20732.9, + "probability": 0.9386 + }, + { + "start": 20733.0, + "end": 20734.9, + "probability": 0.9859 + }, + { + "start": 20735.78, + "end": 20737.74, + "probability": 0.8452 + }, + { + "start": 20738.28, + "end": 20739.2, + "probability": 0.6296 + }, + { + "start": 20739.64, + "end": 20741.36, + "probability": 0.9672 + }, + { + "start": 20741.98, + "end": 20742.64, + "probability": 0.7846 + }, + { + "start": 20742.84, + "end": 20744.46, + "probability": 0.9032 + }, + { + "start": 20746.52, + "end": 20750.3, + "probability": 0.5216 + }, + { + "start": 20751.02, + "end": 20753.16, + "probability": 0.9434 + }, + { + "start": 20758.84, + "end": 20760.76, + "probability": 0.8334 + }, + { + "start": 20761.6, + "end": 20764.28, + "probability": 0.4705 + }, + { + "start": 20767.08, + "end": 20767.7, + "probability": 0.9124 + }, + { + "start": 20768.14, + "end": 20768.3, + "probability": 0.8159 + }, + { + "start": 20768.38, + "end": 20773.7, + "probability": 0.954 + }, + { + "start": 20775.44, + "end": 20775.9, + "probability": 0.8991 + }, + { + "start": 20776.04, + "end": 20780.16, + "probability": 0.97 + }, + { + "start": 20780.98, + "end": 20782.62, + "probability": 0.9954 + }, + { + "start": 20783.34, + "end": 20784.74, + "probability": 0.9594 + }, + { + "start": 20785.8, + "end": 20788.4, + "probability": 0.9243 + }, + { + "start": 20789.32, + "end": 20792.96, + "probability": 0.853 + }, + { + "start": 20792.96, + "end": 20795.7, + "probability": 0.9936 + }, + { + "start": 20796.72, + "end": 20799.42, + "probability": 0.7105 + }, + { + "start": 20800.38, + "end": 20804.52, + "probability": 0.9926 + }, + { + "start": 20804.68, + "end": 20805.58, + "probability": 0.8706 + }, + { + "start": 20805.74, + "end": 20807.06, + "probability": 0.9464 + }, + { + "start": 20808.06, + "end": 20810.7, + "probability": 0.9875 + }, + { + "start": 20810.96, + "end": 20813.82, + "probability": 0.9312 + }, + { + "start": 20814.76, + "end": 20818.44, + "probability": 0.9413 + }, + { + "start": 20820.54, + "end": 20821.32, + "probability": 0.6077 + }, + { + "start": 20822.08, + "end": 20826.22, + "probability": 0.9049 + }, + { + "start": 20827.42, + "end": 20830.34, + "probability": 0.5708 + }, + { + "start": 20833.0, + "end": 20835.68, + "probability": 0.9707 + }, + { + "start": 20835.82, + "end": 20838.51, + "probability": 0.9917 + }, + { + "start": 20839.78, + "end": 20843.3, + "probability": 0.6159 + }, + { + "start": 20843.48, + "end": 20845.6, + "probability": 0.8535 + }, + { + "start": 20846.3, + "end": 20849.84, + "probability": 0.9225 + }, + { + "start": 20850.7, + "end": 20855.46, + "probability": 0.9744 + }, + { + "start": 20855.58, + "end": 20856.2, + "probability": 0.8299 + }, + { + "start": 20856.28, + "end": 20859.06, + "probability": 0.9717 + }, + { + "start": 20859.88, + "end": 20860.68, + "probability": 0.8295 + }, + { + "start": 20860.9, + "end": 20861.8, + "probability": 0.89 + }, + { + "start": 20862.08, + "end": 20864.58, + "probability": 0.9611 + }, + { + "start": 20864.74, + "end": 20869.58, + "probability": 0.7941 + }, + { + "start": 20869.58, + "end": 20873.42, + "probability": 0.752 + }, + { + "start": 20873.48, + "end": 20876.92, + "probability": 0.949 + }, + { + "start": 20877.46, + "end": 20879.6, + "probability": 0.9951 + }, + { + "start": 20879.98, + "end": 20880.88, + "probability": 0.9926 + }, + { + "start": 20880.98, + "end": 20881.84, + "probability": 0.9272 + }, + { + "start": 20882.18, + "end": 20883.98, + "probability": 0.9855 + }, + { + "start": 20884.48, + "end": 20889.32, + "probability": 0.9799 + }, + { + "start": 20889.92, + "end": 20891.46, + "probability": 0.9652 + }, + { + "start": 20891.86, + "end": 20892.08, + "probability": 0.6323 + }, + { + "start": 20893.34, + "end": 20895.08, + "probability": 0.8634 + }, + { + "start": 20895.24, + "end": 20897.58, + "probability": 0.827 + }, + { + "start": 20898.66, + "end": 20899.44, + "probability": 0.7037 + }, + { + "start": 20900.02, + "end": 20902.4, + "probability": 0.9913 + }, + { + "start": 20903.14, + "end": 20903.96, + "probability": 0.8922 + }, + { + "start": 20904.36, + "end": 20906.02, + "probability": 0.9972 + }, + { + "start": 20906.2, + "end": 20906.94, + "probability": 0.9775 + }, + { + "start": 20907.14, + "end": 20908.72, + "probability": 0.9053 + }, + { + "start": 20909.54, + "end": 20912.02, + "probability": 0.7908 + }, + { + "start": 20912.7, + "end": 20913.58, + "probability": 0.8228 + }, + { + "start": 20914.2, + "end": 20915.84, + "probability": 0.954 + }, + { + "start": 20916.48, + "end": 20918.02, + "probability": 0.9661 + }, + { + "start": 20918.08, + "end": 20920.26, + "probability": 0.9963 + }, + { + "start": 20920.72, + "end": 20921.62, + "probability": 0.9887 + }, + { + "start": 20921.86, + "end": 20923.52, + "probability": 0.9675 + }, + { + "start": 20924.34, + "end": 20926.28, + "probability": 0.7447 + }, + { + "start": 20927.1, + "end": 20927.88, + "probability": 0.8992 + }, + { + "start": 20928.24, + "end": 20931.04, + "probability": 0.982 + }, + { + "start": 20931.36, + "end": 20931.46, + "probability": 0.6384 + }, + { + "start": 20931.78, + "end": 20932.94, + "probability": 0.9188 + }, + { + "start": 20933.82, + "end": 20935.18, + "probability": 0.9873 + }, + { + "start": 20935.82, + "end": 20939.88, + "probability": 0.9274 + }, + { + "start": 20940.58, + "end": 20945.08, + "probability": 0.4411 + }, + { + "start": 20945.82, + "end": 20946.7, + "probability": 0.4896 + }, + { + "start": 20950.32, + "end": 20950.42, + "probability": 0.4365 + }, + { + "start": 20955.3, + "end": 20957.22, + "probability": 0.0573 + }, + { + "start": 20957.34, + "end": 20958.02, + "probability": 0.0232 + }, + { + "start": 20967.3, + "end": 20967.52, + "probability": 0.2519 + }, + { + "start": 20967.52, + "end": 20972.84, + "probability": 0.9744 + }, + { + "start": 20973.04, + "end": 20978.18, + "probability": 0.9943 + }, + { + "start": 20979.14, + "end": 20982.08, + "probability": 0.5598 + }, + { + "start": 20982.12, + "end": 20984.26, + "probability": 0.8546 + }, + { + "start": 20984.78, + "end": 20987.23, + "probability": 0.986 + }, + { + "start": 20992.72, + "end": 20993.42, + "probability": 0.192 + }, + { + "start": 20993.52, + "end": 20994.2, + "probability": 0.7369 + }, + { + "start": 20994.28, + "end": 20995.28, + "probability": 0.8823 + }, + { + "start": 20995.34, + "end": 20997.24, + "probability": 0.9944 + }, + { + "start": 20998.12, + "end": 20999.96, + "probability": 0.5587 + }, + { + "start": 20999.96, + "end": 21004.1, + "probability": 0.9922 + }, + { + "start": 21004.1, + "end": 21010.24, + "probability": 0.938 + }, + { + "start": 21011.18, + "end": 21011.76, + "probability": 0.466 + }, + { + "start": 21011.88, + "end": 21012.9, + "probability": 0.8226 + }, + { + "start": 21013.54, + "end": 21015.06, + "probability": 0.8988 + }, + { + "start": 21015.24, + "end": 21017.0, + "probability": 0.6 + }, + { + "start": 21017.18, + "end": 21017.36, + "probability": 0.7251 + }, + { + "start": 21018.2, + "end": 21021.5, + "probability": 0.9788 + }, + { + "start": 21021.66, + "end": 21024.4, + "probability": 0.9956 + }, + { + "start": 21024.42, + "end": 21028.62, + "probability": 0.7155 + }, + { + "start": 21028.78, + "end": 21032.06, + "probability": 0.8417 + }, + { + "start": 21032.18, + "end": 21034.12, + "probability": 0.7882 + }, + { + "start": 21034.52, + "end": 21036.0, + "probability": 0.1486 + }, + { + "start": 21036.22, + "end": 21038.68, + "probability": 0.7853 + }, + { + "start": 21038.84, + "end": 21041.2, + "probability": 0.4736 + }, + { + "start": 21041.56, + "end": 21043.2, + "probability": 0.8239 + }, + { + "start": 21043.28, + "end": 21044.82, + "probability": 0.8621 + }, + { + "start": 21045.12, + "end": 21046.94, + "probability": 0.1478 + }, + { + "start": 21047.08, + "end": 21049.62, + "probability": 0.8748 + }, + { + "start": 21049.62, + "end": 21051.56, + "probability": 0.3662 + }, + { + "start": 21052.5, + "end": 21054.18, + "probability": 0.8185 + }, + { + "start": 21054.62, + "end": 21056.42, + "probability": 0.7989 + }, + { + "start": 21056.6, + "end": 21058.14, + "probability": 0.5994 + }, + { + "start": 21058.24, + "end": 21059.78, + "probability": 0.7594 + }, + { + "start": 21059.92, + "end": 21061.94, + "probability": 0.4141 + }, + { + "start": 21062.7, + "end": 21064.34, + "probability": 0.7835 + }, + { + "start": 21064.4, + "end": 21065.92, + "probability": 0.8019 + }, + { + "start": 21066.06, + "end": 21067.64, + "probability": 0.3 + }, + { + "start": 21067.78, + "end": 21069.39, + "probability": 0.9673 + }, + { + "start": 21069.44, + "end": 21071.64, + "probability": 0.8165 + }, + { + "start": 21072.84, + "end": 21074.8, + "probability": 0.9202 + }, + { + "start": 21074.8, + "end": 21077.1, + "probability": 0.9907 + }, + { + "start": 21077.42, + "end": 21079.32, + "probability": 0.1343 + }, + { + "start": 21079.5, + "end": 21080.86, + "probability": 0.8423 + }, + { + "start": 21081.0, + "end": 21083.68, + "probability": 0.4042 + }, + { + "start": 21084.28, + "end": 21086.94, + "probability": 0.9969 + }, + { + "start": 21086.94, + "end": 21089.54, + "probability": 0.7788 + }, + { + "start": 21089.54, + "end": 21092.68, + "probability": 0.907 + }, + { + "start": 21092.88, + "end": 21096.16, + "probability": 0.0444 + }, + { + "start": 21096.16, + "end": 21097.96, + "probability": 0.6913 + }, + { + "start": 21098.72, + "end": 21100.96, + "probability": 0.2957 + }, + { + "start": 21101.4, + "end": 21104.44, + "probability": 0.8895 + }, + { + "start": 21104.6, + "end": 21106.46, + "probability": 0.6164 + }, + { + "start": 21106.7, + "end": 21108.34, + "probability": 0.0728 + }, + { + "start": 21108.48, + "end": 21111.38, + "probability": 0.977 + }, + { + "start": 21112.0, + "end": 21114.36, + "probability": 0.4815 + }, + { + "start": 21115.72, + "end": 21118.7, + "probability": 0.7079 + }, + { + "start": 21119.94, + "end": 21122.28, + "probability": 0.9465 + }, + { + "start": 21122.28, + "end": 21124.62, + "probability": 0.9073 + }, + { + "start": 21125.02, + "end": 21127.42, + "probability": 0.6898 + }, + { + "start": 21128.0, + "end": 21128.6, + "probability": 0.734 + }, + { + "start": 21128.76, + "end": 21130.48, + "probability": 0.7652 + }, + { + "start": 21130.56, + "end": 21131.32, + "probability": 0.8622 + }, + { + "start": 21131.42, + "end": 21134.38, + "probability": 0.9956 + }, + { + "start": 21136.2, + "end": 21140.42, + "probability": 0.9964 + }, + { + "start": 21140.42, + "end": 21146.3, + "probability": 0.9124 + }, + { + "start": 21146.74, + "end": 21150.27, + "probability": 0.7765 + }, + { + "start": 21150.34, + "end": 21150.54, + "probability": 0.7411 + }, + { + "start": 21151.0, + "end": 21154.38, + "probability": 0.9604 + }, + { + "start": 21154.66, + "end": 21155.5, + "probability": 0.5601 + }, + { + "start": 21156.08, + "end": 21156.62, + "probability": 0.5821 + }, + { + "start": 21170.94, + "end": 21171.54, + "probability": 0.1001 + }, + { + "start": 21171.54, + "end": 21171.58, + "probability": 0.1541 + }, + { + "start": 21171.58, + "end": 21175.46, + "probability": 0.812 + }, + { + "start": 21175.96, + "end": 21177.28, + "probability": 0.8877 + }, + { + "start": 21178.04, + "end": 21185.36, + "probability": 0.995 + }, + { + "start": 21185.48, + "end": 21186.06, + "probability": 0.3617 + }, + { + "start": 21186.12, + "end": 21187.16, + "probability": 0.8643 + }, + { + "start": 21187.3, + "end": 21189.66, + "probability": 0.9321 + }, + { + "start": 21189.66, + "end": 21194.57, + "probability": 0.9693 + }, + { + "start": 21195.22, + "end": 21197.1, + "probability": 0.795 + }, + { + "start": 21197.14, + "end": 21198.84, + "probability": 0.9359 + }, + { + "start": 21198.92, + "end": 21200.96, + "probability": 0.6191 + }, + { + "start": 21201.14, + "end": 21202.28, + "probability": 0.4611 + }, + { + "start": 21202.42, + "end": 21204.08, + "probability": 0.9215 + }, + { + "start": 21204.6, + "end": 21204.86, + "probability": 0.7928 + }, + { + "start": 21205.44, + "end": 21211.07, + "probability": 0.8477 + }, + { + "start": 21212.4, + "end": 21212.4, + "probability": 0.1509 + }, + { + "start": 21212.4, + "end": 21214.88, + "probability": 0.5559 + }, + { + "start": 21217.65, + "end": 21219.34, + "probability": 0.7582 + }, + { + "start": 21219.48, + "end": 21221.78, + "probability": 0.9264 + }, + { + "start": 21227.14, + "end": 21229.12, + "probability": 0.5341 + }, + { + "start": 21229.32, + "end": 21229.8, + "probability": 0.727 + }, + { + "start": 21229.88, + "end": 21230.46, + "probability": 0.8972 + }, + { + "start": 21230.56, + "end": 21235.02, + "probability": 0.8321 + }, + { + "start": 21235.02, + "end": 21238.44, + "probability": 0.9652 + }, + { + "start": 21240.16, + "end": 21240.72, + "probability": 0.4413 + }, + { + "start": 21246.6, + "end": 21250.18, + "probability": 0.2868 + }, + { + "start": 21272.82, + "end": 21273.22, + "probability": 0.1228 + }, + { + "start": 21273.22, + "end": 21274.48, + "probability": 0.0302 + }, + { + "start": 21277.22, + "end": 21277.36, + "probability": 0.002 + }, + { + "start": 21277.36, + "end": 21278.7, + "probability": 0.0132 + }, + { + "start": 21278.7, + "end": 21278.7, + "probability": 0.0346 + }, + { + "start": 21278.7, + "end": 21279.88, + "probability": 0.4562 + }, + { + "start": 21280.72, + "end": 21282.74, + "probability": 0.0436 + }, + { + "start": 21282.74, + "end": 21282.74, + "probability": 0.2703 + }, + { + "start": 21282.74, + "end": 21282.74, + "probability": 0.0184 + }, + { + "start": 21282.74, + "end": 21282.74, + "probability": 0.1417 + }, + { + "start": 21282.74, + "end": 21282.74, + "probability": 0.0966 + }, + { + "start": 21282.8, + "end": 21288.82, + "probability": 0.9542 + }, + { + "start": 21289.86, + "end": 21292.7, + "probability": 0.98 + }, + { + "start": 21293.26, + "end": 21294.66, + "probability": 0.9844 + }, + { + "start": 21295.22, + "end": 21301.22, + "probability": 0.972 + }, + { + "start": 21302.48, + "end": 21308.26, + "probability": 0.9956 + }, + { + "start": 21308.26, + "end": 21314.88, + "probability": 0.9993 + }, + { + "start": 21316.08, + "end": 21322.64, + "probability": 0.9888 + }, + { + "start": 21323.34, + "end": 21325.2, + "probability": 0.9031 + }, + { + "start": 21326.02, + "end": 21327.28, + "probability": 0.8137 + }, + { + "start": 21327.92, + "end": 21333.94, + "probability": 0.9363 + }, + { + "start": 21333.94, + "end": 21340.88, + "probability": 0.7209 + }, + { + "start": 21341.8, + "end": 21344.24, + "probability": 0.9033 + }, + { + "start": 21345.02, + "end": 21350.96, + "probability": 0.9905 + }, + { + "start": 21351.18, + "end": 21357.8, + "probability": 0.9967 + }, + { + "start": 21358.2, + "end": 21359.28, + "probability": 0.6271 + }, + { + "start": 21360.1, + "end": 21360.84, + "probability": 0.4737 + }, + { + "start": 21361.44, + "end": 21364.1, + "probability": 0.9315 + }, + { + "start": 21364.78, + "end": 21369.1, + "probability": 0.9396 + }, + { + "start": 21369.48, + "end": 21372.76, + "probability": 0.9225 + }, + { + "start": 21373.5, + "end": 21374.94, + "probability": 0.9849 + }, + { + "start": 21376.06, + "end": 21377.4, + "probability": 0.3181 + }, + { + "start": 21377.4, + "end": 21382.66, + "probability": 0.9889 + }, + { + "start": 21382.66, + "end": 21392.74, + "probability": 0.9723 + }, + { + "start": 21393.56, + "end": 21402.74, + "probability": 0.9924 + }, + { + "start": 21404.52, + "end": 21406.46, + "probability": 0.1854 + }, + { + "start": 21406.46, + "end": 21408.41, + "probability": 0.5995 + }, + { + "start": 21408.9, + "end": 21415.68, + "probability": 0.8869 + }, + { + "start": 21416.34, + "end": 21424.0, + "probability": 0.9935 + }, + { + "start": 21424.56, + "end": 21426.52, + "probability": 0.9818 + }, + { + "start": 21427.04, + "end": 21432.86, + "probability": 0.9705 + }, + { + "start": 21433.4, + "end": 21434.28, + "probability": 0.5781 + }, + { + "start": 21434.82, + "end": 21437.34, + "probability": 0.9972 + }, + { + "start": 21438.1, + "end": 21447.72, + "probability": 0.9233 + }, + { + "start": 21448.48, + "end": 21452.78, + "probability": 0.9995 + }, + { + "start": 21453.54, + "end": 21458.48, + "probability": 0.8516 + }, + { + "start": 21458.6, + "end": 21459.56, + "probability": 0.6473 + }, + { + "start": 21460.54, + "end": 21461.18, + "probability": 0.7623 + }, + { + "start": 21464.04, + "end": 21465.38, + "probability": 0.5267 + }, + { + "start": 21465.42, + "end": 21466.44, + "probability": 0.4726 + }, + { + "start": 21466.52, + "end": 21468.0, + "probability": 0.7724 + }, + { + "start": 21468.38, + "end": 21470.28, + "probability": 0.5248 + }, + { + "start": 21470.64, + "end": 21470.64, + "probability": 0.1379 + }, + { + "start": 21470.64, + "end": 21476.76, + "probability": 0.8923 + }, + { + "start": 21477.32, + "end": 21480.56, + "probability": 0.9766 + }, + { + "start": 21480.56, + "end": 21484.58, + "probability": 0.9575 + }, + { + "start": 21485.44, + "end": 21488.12, + "probability": 0.934 + }, + { + "start": 21488.7, + "end": 21494.8, + "probability": 0.9996 + }, + { + "start": 21494.8, + "end": 21502.88, + "probability": 0.9749 + }, + { + "start": 21503.88, + "end": 21505.54, + "probability": 0.7593 + }, + { + "start": 21505.54, + "end": 21505.98, + "probability": 0.6492 + }, + { + "start": 21506.1, + "end": 21513.62, + "probability": 0.9915 + }, + { + "start": 21514.04, + "end": 21514.48, + "probability": 0.7293 + }, + { + "start": 21514.66, + "end": 21516.58, + "probability": 0.7977 + }, + { + "start": 21516.74, + "end": 21518.1, + "probability": 0.811 + }, + { + "start": 21519.06, + "end": 21522.04, + "probability": 0.9834 + }, + { + "start": 21523.16, + "end": 21523.9, + "probability": 0.7983 + }, + { + "start": 21524.74, + "end": 21526.24, + "probability": 0.6622 + }, + { + "start": 21526.92, + "end": 21527.68, + "probability": 0.6696 + }, + { + "start": 21528.24, + "end": 21529.82, + "probability": 0.9645 + }, + { + "start": 21530.78, + "end": 21531.44, + "probability": 0.949 + }, + { + "start": 21532.08, + "end": 21533.84, + "probability": 0.9967 + }, + { + "start": 21534.8, + "end": 21535.62, + "probability": 0.991 + }, + { + "start": 21536.18, + "end": 21538.08, + "probability": 0.998 + }, + { + "start": 21538.7, + "end": 21539.56, + "probability": 0.8208 + }, + { + "start": 21540.9, + "end": 21545.92, + "probability": 0.8391 + }, + { + "start": 21546.1, + "end": 21547.86, + "probability": 0.6206 + }, + { + "start": 21548.36, + "end": 21549.3, + "probability": 0.7962 + }, + { + "start": 21549.38, + "end": 21552.24, + "probability": 0.7269 + }, + { + "start": 21553.58, + "end": 21554.62, + "probability": 0.2941 + }, + { + "start": 21569.3, + "end": 21569.5, + "probability": 0.0153 + }, + { + "start": 21569.5, + "end": 21569.52, + "probability": 0.0555 + }, + { + "start": 21569.52, + "end": 21569.52, + "probability": 0.5612 + }, + { + "start": 21569.52, + "end": 21571.16, + "probability": 0.6412 + }, + { + "start": 21571.26, + "end": 21572.0, + "probability": 0.7754 + }, + { + "start": 21572.14, + "end": 21572.36, + "probability": 0.6934 + }, + { + "start": 21573.04, + "end": 21575.42, + "probability": 0.9907 + }, + { + "start": 21575.64, + "end": 21578.66, + "probability": 0.9875 + }, + { + "start": 21579.88, + "end": 21585.24, + "probability": 0.9953 + }, + { + "start": 21585.24, + "end": 21591.97, + "probability": 0.9662 + }, + { + "start": 21592.63, + "end": 21596.94, + "probability": 0.9621 + }, + { + "start": 21596.94, + "end": 21600.28, + "probability": 0.8328 + }, + { + "start": 21600.58, + "end": 21601.12, + "probability": 0.8621 + }, + { + "start": 21607.56, + "end": 21609.56, + "probability": 0.89 + }, + { + "start": 21611.99, + "end": 21616.5, + "probability": 0.5579 + }, + { + "start": 21617.16, + "end": 21619.16, + "probability": 0.8957 + }, + { + "start": 21619.16, + "end": 21623.16, + "probability": 0.9134 + }, + { + "start": 21624.24, + "end": 21625.1, + "probability": 0.4876 + }, + { + "start": 21625.14, + "end": 21628.86, + "probability": 0.9195 + }, + { + "start": 21629.06, + "end": 21630.86, + "probability": 0.5851 + }, + { + "start": 21631.78, + "end": 21632.94, + "probability": 0.6718 + }, + { + "start": 21633.02, + "end": 21637.78, + "probability": 0.992 + }, + { + "start": 21637.84, + "end": 21640.44, + "probability": 0.9978 + }, + { + "start": 21641.42, + "end": 21644.3, + "probability": 0.9105 + }, + { + "start": 21644.66, + "end": 21649.6, + "probability": 0.9758 + }, + { + "start": 21650.16, + "end": 21652.86, + "probability": 0.9789 + }, + { + "start": 21652.98, + "end": 21654.68, + "probability": 0.8596 + }, + { + "start": 21655.7, + "end": 21657.26, + "probability": 0.5899 + }, + { + "start": 21657.4, + "end": 21659.54, + "probability": 0.8096 + }, + { + "start": 21660.04, + "end": 21664.12, + "probability": 0.9887 + }, + { + "start": 21664.7, + "end": 21666.18, + "probability": 0.9926 + }, + { + "start": 21666.9, + "end": 21670.34, + "probability": 0.9644 + }, + { + "start": 21670.44, + "end": 21676.26, + "probability": 0.9697 + }, + { + "start": 21676.38, + "end": 21679.44, + "probability": 0.7808 + }, + { + "start": 21680.12, + "end": 21682.04, + "probability": 0.9957 + }, + { + "start": 21682.16, + "end": 21683.45, + "probability": 0.949 + }, + { + "start": 21683.6, + "end": 21685.22, + "probability": 0.9164 + }, + { + "start": 21685.28, + "end": 21685.5, + "probability": 0.7833 + }, + { + "start": 21685.86, + "end": 21686.86, + "probability": 0.5221 + }, + { + "start": 21687.42, + "end": 21689.18, + "probability": 0.8513 + }, + { + "start": 21689.72, + "end": 21692.48, + "probability": 0.8821 + }, + { + "start": 21695.94, + "end": 21696.76, + "probability": 0.1126 + }, + { + "start": 21696.76, + "end": 21696.76, + "probability": 0.3782 + }, + { + "start": 21696.76, + "end": 21697.46, + "probability": 0.5062 + }, + { + "start": 21698.28, + "end": 21700.7, + "probability": 0.8593 + }, + { + "start": 21701.24, + "end": 21703.38, + "probability": 0.8802 + }, + { + "start": 21704.02, + "end": 21705.12, + "probability": 0.9934 + }, + { + "start": 21708.13, + "end": 21709.4, + "probability": 0.5701 + }, + { + "start": 21709.4, + "end": 21709.4, + "probability": 0.6454 + }, + { + "start": 21709.4, + "end": 21709.75, + "probability": 0.9355 + }, + { + "start": 21711.48, + "end": 21714.96, + "probability": 0.9219 + }, + { + "start": 21715.3, + "end": 21717.84, + "probability": 0.9879 + }, + { + "start": 21718.54, + "end": 21721.54, + "probability": 0.9854 + }, + { + "start": 21721.54, + "end": 21726.12, + "probability": 0.8109 + }, + { + "start": 21726.68, + "end": 21730.2, + "probability": 0.6725 + }, + { + "start": 21731.48, + "end": 21731.96, + "probability": 0.7413 + }, + { + "start": 21731.98, + "end": 21732.36, + "probability": 0.7221 + }, + { + "start": 21733.3, + "end": 21734.58, + "probability": 0.5028 + }, + { + "start": 21747.44, + "end": 21748.2, + "probability": 0.3754 + }, + { + "start": 21748.2, + "end": 21758.06, + "probability": 0.1059 + }, + { + "start": 21758.22, + "end": 21760.6, + "probability": 0.0169 + }, + { + "start": 21761.92, + "end": 21762.24, + "probability": 0.1553 + }, + { + "start": 21762.82, + "end": 21763.64, + "probability": 0.304 + }, + { + "start": 21764.16, + "end": 21765.86, + "probability": 0.0231 + }, + { + "start": 21770.36, + "end": 21774.76, + "probability": 0.0596 + }, + { + "start": 21774.76, + "end": 21775.07, + "probability": 0.1113 + }, + { + "start": 21786.76, + "end": 21787.2, + "probability": 0.0641 + }, + { + "start": 21787.58, + "end": 21791.26, + "probability": 0.0624 + }, + { + "start": 21792.02, + "end": 21795.74, + "probability": 0.017 + }, + { + "start": 21795.78, + "end": 21796.54, + "probability": 0.0444 + }, + { + "start": 21797.4, + "end": 21799.0, + "probability": 0.09 + }, + { + "start": 21799.0, + "end": 21803.78, + "probability": 0.081 + }, + { + "start": 21803.78, + "end": 21803.8, + "probability": 0.0424 + }, + { + "start": 21803.8, + "end": 21803.96, + "probability": 0.1743 + }, + { + "start": 21803.96, + "end": 21803.96, + "probability": 0.2376 + }, + { + "start": 21803.96, + "end": 21803.96, + "probability": 0.1547 + }, + { + "start": 21803.96, + "end": 21804.74, + "probability": 0.0275 + }, + { + "start": 21805.0, + "end": 21805.0, + "probability": 0.0 + }, + { + "start": 21805.0, + "end": 21805.0, + "probability": 0.0 + }, + { + "start": 21805.0, + "end": 21805.0, + "probability": 0.0 + }, + { + "start": 21805.0, + "end": 21805.0, + "probability": 0.0 + }, + { + "start": 21805.22, + "end": 21805.68, + "probability": 0.1121 + }, + { + "start": 21805.68, + "end": 21805.68, + "probability": 0.0494 + }, + { + "start": 21805.68, + "end": 21806.12, + "probability": 0.1484 + }, + { + "start": 21806.64, + "end": 21811.42, + "probability": 0.7508 + }, + { + "start": 21811.54, + "end": 21815.12, + "probability": 0.9498 + }, + { + "start": 21815.72, + "end": 21818.3, + "probability": 0.9973 + }, + { + "start": 21818.42, + "end": 21821.32, + "probability": 0.9161 + }, + { + "start": 21821.8, + "end": 21826.18, + "probability": 0.9868 + }, + { + "start": 21826.22, + "end": 21831.0, + "probability": 0.995 + }, + { + "start": 21831.62, + "end": 21834.86, + "probability": 0.9912 + }, + { + "start": 21835.16, + "end": 21836.96, + "probability": 0.7496 + }, + { + "start": 21837.64, + "end": 21842.02, + "probability": 0.8983 + }, + { + "start": 21842.18, + "end": 21842.61, + "probability": 0.8799 + }, + { + "start": 21843.26, + "end": 21845.98, + "probability": 0.9872 + }, + { + "start": 21846.46, + "end": 21849.32, + "probability": 0.9475 + }, + { + "start": 21849.48, + "end": 21850.02, + "probability": 0.9862 + }, + { + "start": 21850.36, + "end": 21851.04, + "probability": 0.9041 + }, + { + "start": 21851.2, + "end": 21853.3, + "probability": 0.9789 + }, + { + "start": 21853.66, + "end": 21858.0, + "probability": 0.9742 + }, + { + "start": 21858.7, + "end": 21859.9, + "probability": 0.9543 + }, + { + "start": 21860.02, + "end": 21861.52, + "probability": 0.6361 + }, + { + "start": 21861.78, + "end": 21862.98, + "probability": 0.9686 + }, + { + "start": 21863.52, + "end": 21864.0, + "probability": 0.8873 + }, + { + "start": 21864.12, + "end": 21866.91, + "probability": 0.7433 + }, + { + "start": 21866.98, + "end": 21869.94, + "probability": 0.9672 + }, + { + "start": 21870.24, + "end": 21873.18, + "probability": 0.9532 + }, + { + "start": 21873.64, + "end": 21874.9, + "probability": 0.7205 + }, + { + "start": 21875.08, + "end": 21879.01, + "probability": 0.8308 + }, + { + "start": 21880.0, + "end": 21884.54, + "probability": 0.9599 + }, + { + "start": 21884.66, + "end": 21887.97, + "probability": 0.9146 + }, + { + "start": 21888.8, + "end": 21893.2, + "probability": 0.9803 + }, + { + "start": 21893.84, + "end": 21897.64, + "probability": 0.9888 + }, + { + "start": 21897.64, + "end": 21902.66, + "probability": 0.9962 + }, + { + "start": 21903.46, + "end": 21903.94, + "probability": 0.47 + }, + { + "start": 21903.96, + "end": 21904.66, + "probability": 0.4527 + }, + { + "start": 21905.14, + "end": 21908.08, + "probability": 0.6404 + }, + { + "start": 21908.5, + "end": 21909.28, + "probability": 0.6384 + }, + { + "start": 21909.28, + "end": 21911.72, + "probability": 0.7482 + }, + { + "start": 21911.72, + "end": 21913.92, + "probability": 0.563 + }, + { + "start": 21914.38, + "end": 21917.44, + "probability": 0.7726 + }, + { + "start": 21918.34, + "end": 21922.64, + "probability": 0.9942 + }, + { + "start": 21923.36, + "end": 21928.36, + "probability": 0.9976 + }, + { + "start": 21928.6, + "end": 21930.78, + "probability": 0.9954 + }, + { + "start": 21931.42, + "end": 21934.92, + "probability": 0.7339 + }, + { + "start": 21935.14, + "end": 21939.94, + "probability": 0.7875 + }, + { + "start": 21940.04, + "end": 21940.48, + "probability": 0.6407 + }, + { + "start": 21941.08, + "end": 21945.08, + "probability": 0.8893 + }, + { + "start": 21945.22, + "end": 21947.02, + "probability": 0.5235 + }, + { + "start": 21947.9, + "end": 21951.04, + "probability": 0.8634 + }, + { + "start": 21951.82, + "end": 21952.14, + "probability": 0.7449 + }, + { + "start": 21953.22, + "end": 21956.82, + "probability": 0.9606 + }, + { + "start": 21957.56, + "end": 21959.06, + "probability": 0.9803 + }, + { + "start": 21959.38, + "end": 21960.06, + "probability": 0.9902 + }, + { + "start": 21960.3, + "end": 21962.32, + "probability": 0.8619 + }, + { + "start": 21963.24, + "end": 21963.82, + "probability": 0.5833 + }, + { + "start": 21964.14, + "end": 21966.94, + "probability": 0.8612 + }, + { + "start": 21969.0, + "end": 21969.76, + "probability": 0.7048 + }, + { + "start": 21971.22, + "end": 21975.36, + "probability": 0.9544 + }, + { + "start": 21980.22, + "end": 21982.55, + "probability": 0.9348 + }, + { + "start": 21982.88, + "end": 21983.3, + "probability": 0.4841 + }, + { + "start": 21983.34, + "end": 21985.9, + "probability": 0.9264 + }, + { + "start": 21985.94, + "end": 21988.56, + "probability": 0.6839 + }, + { + "start": 21988.98, + "end": 21989.84, + "probability": 0.6479 + }, + { + "start": 21991.2, + "end": 21994.46, + "probability": 0.5871 + }, + { + "start": 21994.58, + "end": 21996.28, + "probability": 0.8901 + }, + { + "start": 21996.38, + "end": 21998.98, + "probability": 0.9215 + }, + { + "start": 21999.96, + "end": 22002.08, + "probability": 0.1988 + }, + { + "start": 22002.22, + "end": 22004.22, + "probability": 0.0669 + }, + { + "start": 22004.22, + "end": 22005.02, + "probability": 0.4241 + }, + { + "start": 22005.58, + "end": 22006.4, + "probability": 0.9297 + }, + { + "start": 22008.76, + "end": 22011.7, + "probability": 0.6566 + }, + { + "start": 22013.0, + "end": 22016.32, + "probability": 0.9897 + }, + { + "start": 22016.46, + "end": 22017.14, + "probability": 0.7622 + }, + { + "start": 22017.54, + "end": 22019.32, + "probability": 0.932 + }, + { + "start": 22019.46, + "end": 22021.6, + "probability": 0.9698 + }, + { + "start": 22023.76, + "end": 22026.06, + "probability": 0.806 + }, + { + "start": 22026.08, + "end": 22026.66, + "probability": 0.3218 + }, + { + "start": 22027.45, + "end": 22029.32, + "probability": 0.5847 + }, + { + "start": 22029.44, + "end": 22030.34, + "probability": 0.9181 + }, + { + "start": 22030.52, + "end": 22034.3, + "probability": 0.7244 + }, + { + "start": 22034.42, + "end": 22037.12, + "probability": 0.5376 + }, + { + "start": 22037.4, + "end": 22037.72, + "probability": 0.4596 + }, + { + "start": 22037.74, + "end": 22038.2, + "probability": 0.4403 + }, + { + "start": 22038.4, + "end": 22038.9, + "probability": 0.6173 + }, + { + "start": 22039.02, + "end": 22039.65, + "probability": 0.7518 + }, + { + "start": 22040.38, + "end": 22040.96, + "probability": 0.9398 + }, + { + "start": 22041.2, + "end": 22043.25, + "probability": 0.9092 + }, + { + "start": 22045.7, + "end": 22049.92, + "probability": 0.9395 + }, + { + "start": 22050.4, + "end": 22054.06, + "probability": 0.3609 + }, + { + "start": 22054.82, + "end": 22057.36, + "probability": 0.8017 + }, + { + "start": 22057.68, + "end": 22060.56, + "probability": 0.8576 + }, + { + "start": 22060.62, + "end": 22062.36, + "probability": 0.4167 + }, + { + "start": 22062.46, + "end": 22064.2, + "probability": 0.8665 + }, + { + "start": 22065.8, + "end": 22069.18, + "probability": 0.8135 + }, + { + "start": 22070.44, + "end": 22074.43, + "probability": 0.6392 + }, + { + "start": 22074.52, + "end": 22076.46, + "probability": 0.5763 + }, + { + "start": 22076.88, + "end": 22078.0, + "probability": 0.7468 + }, + { + "start": 22078.08, + "end": 22079.78, + "probability": 0.4626 + }, + { + "start": 22082.24, + "end": 22083.18, + "probability": 0.8824 + }, + { + "start": 22083.84, + "end": 22084.72, + "probability": 0.9879 + }, + { + "start": 22087.94, + "end": 22093.8, + "probability": 0.0383 + }, + { + "start": 22100.94, + "end": 22101.48, + "probability": 0.0034 + }, + { + "start": 22103.12, + "end": 22104.22, + "probability": 0.0463 + }, + { + "start": 22105.94, + "end": 22109.04, + "probability": 0.0666 + }, + { + "start": 22110.05, + "end": 22114.87, + "probability": 0.9803 + }, + { + "start": 22114.94, + "end": 22115.26, + "probability": 0.1173 + }, + { + "start": 22116.06, + "end": 22116.06, + "probability": 0.0811 + }, + { + "start": 22116.06, + "end": 22116.06, + "probability": 0.0503 + }, + { + "start": 22116.06, + "end": 22116.36, + "probability": 0.0776 + }, + { + "start": 22116.36, + "end": 22117.04, + "probability": 0.1635 + }, + { + "start": 22117.36, + "end": 22118.24, + "probability": 0.718 + }, + { + "start": 22119.32, + "end": 22121.02, + "probability": 0.5996 + }, + { + "start": 22121.12, + "end": 22122.66, + "probability": 0.9493 + }, + { + "start": 22122.76, + "end": 22123.34, + "probability": 0.8949 + }, + { + "start": 22123.44, + "end": 22124.7, + "probability": 0.6864 + }, + { + "start": 22125.34, + "end": 22130.38, + "probability": 0.8753 + }, + { + "start": 22131.16, + "end": 22131.94, + "probability": 0.0914 + } + ], + "segments_count": 7389, + "words_count": 37185, + "avg_words_per_segment": 5.0325, + "avg_segment_duration": 2.2104, + "avg_words_per_minute": 100.2419, + "plenum_id": "38456", + "duration": 22257.16, + "title": null, + "plenum_date": "2014-07-07" +} \ No newline at end of file